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Abstract		

This	thesis	explores	the	impacts	of	ozone	pollution	on	the	nutritional	quality	of	nectar	

and	pollen.	We	report	the	use	of	HPLC	and	HPIC	to	quantify	the	amino	acids	and	carbohydrates	

in	nectar	and	the	development	of		a	microwave-assisted	acid	hydrolysis	to	quantify	the	protein-

bound	 amino	 acids	 available	 in	 pollen,	 allowing	 back-calculation	 to	 estimate	 total	 protein	

content.	

Utilising	ten	cultivars	of	broad	bean	(Vicia	faba	L.),	exhibiting	considerable	variation	in	

response	 to	 ozone,	 we	 explored	 what	 parameters	 are	 meaningful	 when	 attempting	 to	

determine	 the	 impacts	 of	 ozone	 (reductions	 in	 biomass,	 seed	 yield	 etc.)	 and	whether	 these	

measures	are	consistent	with	the	influence	of	the	pollutant	on	pollen	quality.	We	found	little	

correlation	between	impacts	on	pollen	quality	and	any	usually-measured	plant	traits	affected	

by	ozone.	We	 	 concluded	 that	ozone	 influences	pollen	qualities	 in	 two	ways;	 (i)	exposure	 to	

ozone	during	plant	growth	 influences	the	allocation	of	proteins	to	pollen,	and	(ii)	ozone	may	

cause	direct	oxidative	damage	to	pollen	once	dehisced	from	anthers.	

We	investigated	the	impact	of	ozone	on	the	allocation	of	amino	acid	and	carbohydrate	

resources	to	nectar	and	pollen,	using	broad	bean	(Vicia	faba	L.)	as	a	convenient	model.	Plants	

grown	 in	 O3	 and	 exposed	 to	 charcoal/purafil®	 filtered	 air	 (CFA)	 at	 flowering	 allocated	

significantly	more	 sucrose	and	amino	acids	 into	 their	 nectar	 than	plants	 in	other	 fumigation	

treatments.	We	discovered	a	reduction	in	the	amount	of	free	amino	acids	recoverable	from	the	

outer	surface	of	the	pollen	in	all	treatments	subject	to	O3	exposure,	but	most	significant	in	plants	

maintained	throughout	in	O3.	We	also	found	a	significant	shift	in	the	proportions	of	amino	acids	

in	the	respective	ozone	treatments.	

	 The	final	experimental	thesis	chapter	explored	the	potential	impact	of	ozone-induced	

changes	 in	 nectar	 quality	 on	 bee	 behaviour.	 Simulated	 ozone-induced	 changes	 in	 nutrient	

composition	of	nectar	were	employed	in	an	olfactory	conditioning	assay	using	honeybees.	Bees	

trained	with	 nectar	matching	 that	 of	 plants	 subject	 to	 O3	 and	 exposed	 to	 CFA	 at	 flowering	

demonstrated	 an	 initially	 improved	 rate	 of	 learning,	 but	 association	with	 reward	 decreased	

rapidly,	whereas	those	trained	with	nectar	matching	that	of	plants	from	CFA	was	sustained.		
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1.0	General	introduction	

	

1.1	Background	to	ozone	

	 Ozone	 (O3)	 is	 a	 pungent,	 naturally-occurring	 three	 atom	 allotrope	 of	 atomic	

oxygen.	It	was	its	unique	odour	that	led	Swiss	chemist,	Schönbein,	to	its	discovery	and	

identification	 in	 the	mid	 19th	 century	 during	 electrolytic	 studies	 on	 the	 hydrolysis	 of	

water	 (Schönbein,	1841).	He	began	detailed	 investigation	and	characterisation	of	the	

gas	 (he	 later	 named	 ozone)	 that	 was	 liberated	 at	 the	 positive	 electrode	 during	 his	

experimentation,	noting	that	it	could	depolarise	gold	and	platinum	and	suggesting	that	

the	gas	could	have	negative	impacts	on	organisms	(Schönbein,	1844).	He	was	correct	

and	 research	 subsequent	 to	 his	 discovery	 has	 identified	 ozone	 as	 an	 abundant	 and	

powerful	 oxidant,	 causing	 negative	 impacts	 to	 physical	materials,	 animal	 health	 and	

vegetation	(Ashmore,	2005).		

	

	 Ozone	 is	 predominantly	 formed	 in	 the	 two	 atmospheric	 layers	 closest	 to	 the	

earth;	the	stratosphere,	encompassing	the	air	space	10	to	30	miles	above	the	earth’s	

surface,	and	the	troposphere,	the	air	space	below	the	stratosphere,	contacting	ground	

level.	Ozone	in	the	stratosphere	is	formed	by	the	photolysis	of	O2	to	atomic	oxygen	by	

UV	light	and	is	beneficial	to	life	on	earth	by	absorbing	harmful	UV	radiation	(Chameides	

and	Lodge,	1992).	Mixing	of	air	between	the	stratosphere	and	troposphere	results	in	a	

natural	background	concentration	of	ozone	in	the	troposphere	(reviewed	by	Vingarzan,	

2004),	 but	 concentrations	 are	 influenced	 to	 a	 greater	 extent	 by	 anthropogenic	

influences	which	lead	to	unnaturally	high	ground-level	concentrations	of	the	pollutant	

via	 complex	 photochemical	 reactions	 involving	 oxides	 of	 nitrogen	 (NOx)	 and	 volatile	

organic	compounds	(VOCs)	released	by	a	myriad	of	sources,	particularly	the	burning	of	

fossil	 fuels,	 which	 are	 favoured	 by	 meteorological	 conditions	 i.e.	 high	 levels	 of	

irradiation,	favourable	temperatures,	dry	and	stagnant	air	masses	(Figure	1.1).		
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Figure	 1.1.	 Schematic	 of	 ozone-production	 and	 cycling	 in	 response	 to	 anthropogenic	
sources	of	precursor	emissions.	Diamond	boxes	represent	primary	pollutants	and	round	
boxes	represent	secondary	pollutants	formed	by	atmospheric	reactions.	(From	Barnes	
and	Wellburn,	1998).	
	

1.2	Ozone	formation	and	distribution		

The	nature	of	ozone	pollution	in	Europe	and	North	America	is	changing	(see	The	

Royal	 Society,	 2008).	 High	 emissions	 of	 NOx	 and	 VOCs,	 associated	 with	 industrial	

development,	 have	 resulted	 in	 the	 recognition	 of	 ozone	 as	 a	 serious	 pollutant	 and	

growing	problem	since	the	1970’s.	However,	policy-driven	abatement	strategies,	 in	a	

deliberate	effort	to	curb	precursor	emissions	via	the	burning	of	fossil	fuels,	have	led	to	

a	successful	reduction	in	peak	ozone	concentrations	(Jenkin,	2008).	However,	efforts	to	

reduce	 ozone	 precursor	 emissions	 in	 the	 Northern	 hemisphere	 are	 not	 sufficient	 to	

account	 for	 increased	 industrial	 development	 in	 other	 parts	 of	 the	world	 (Ashmore,	

2005;	 Fuhrer,	 2009)	 and	 thus	 due	 to	 long	 distance	 transport	 of	 precursors	 from	 the	

growing	 economies	 in	 the	 Southern	 hemisphere,	 background	 concentrations	 of	

tropospheric	O3	have	been,	and	will	continue	to	rise,	steadily	for	the	foreseeable	future	

(The	Royal	Society,	2008;	RoTAP,	2012).	There	 is	general	agreement	that	background	

ozone	concentrations	have	increased	annually	by	~0.2	ppb	per	year	over	the	last	20-25	

years	(Figure	1.2).	Despite	the	decrease	in	peak	episodes	of	ozone	pollution,	including	

the	UK,	when	conditions	are	favourable	for	ozone	formation,	short-term	average	hourly	
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ground-level	O3	concentrations	can	exceed	110	ppb	during	the	summer	months	in	the	

South	of	England	(RoTAP,	2012).	

	

	

	

	

Figure	 1.2	 Evidence	 of	 increasing	 baseline	 ozone	 levels	 over	 20-year	 period	 from	
measurements	made	at	Mace	Head,	West	coast	of	Ireland	between	1986	and	2006.	The	
dotted	line	represents	monthly	values	and	the	solid	line	indicates	the	running	annual	
mean.	Data	reveal	an	average	increase	in	ground	level	ozone	concentration	of	~5	ppb	
(From	RoTAP,	2012).	
		

	 Ground-level	concentrations	of	ozone	are	highly	dependent	on	spatial	location	

and	climate	(The	Royal	Society,	2008;	Fuhrer,	2009).	Episodes	of	high	ozone	pollution	

develop	 when	 weather	 conditions	 allow	 precursors	 to	 accumulate.	 Although	

concentrations	of	precursor	emissions	are	highest	in	urban	areas	(generally	the	site	of	

intense	 emissions),	 transport	 of	 ozone	 and	 its	 precursors	 to	 rural	 areas	 leads	 to	

damaging	 levels	 of	 pollution	 in	 regions	 far	 from	 emission	 sources	 (Stockwell,	 1997).	

Lowland	environments	are	more	likely	to	experience	a	strong	diurnal	cycling	in	ozone	

concentrations,	due	to	dry	deposition	at	ground	level,	whereas,	exposed	upland	habitats	

experience	more	stable	and	longer	episodes	of	ozone	exposure	because	O3	supply	from	

higher	elevations	surpasses	the	rate	of	dry	deposition	(Figure	1.3).		
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Figure	1.3.	Evidence	of	increased	diurnal	exposure	in	higher	altitude	environments	(blue	
lines)	compared	to	lowland,	valley	environments	(pink	lines)	(From	The	Royal	Society,	
2008).	

	

1.3	Ozone	phytotoxicity	and	plant	responses	

	 Ozone	is	particularly	phytotoxic	and	enters	plant	tissue	through	open	stomata.	

Once	 inside	 the	 leaf	 ozone	 dissolves	 in	 the	 leaf	 apoplast;	 intercellular	 space	

measurements	are	close	to	zero	(Laisk	et	al.,	1989).	Ozone	is	a	powerful	oxidising	agent	

(oxidising	 potential	 =	 2.07	 V)	 and	 the	 primary	 oxidation	 targets	 in	 plant	 tissue	 are	

metabolites	(Plöchl	et	al.,	2000),	lipids/unsaturated	fatty	acids	(Pryor	et	al.,	1991)	and	

proteins	(Mudd	et	al.,	1969;	Fordham,	1994)	in	cell	membranes	and	cell	walls	(Itiri	and	

Faoro,	2009).	Primary	oxidative	reactions	and	dissolution	 in	the	apoplast	 	 lead	to	the	

production	of	a	 suite	of	 reactive	oxygen	 species	 (ROS)	 (including,	but	not	 limited	 to,		

hydrogen	peroxide	 (H2O2),	 superoxide	 (O2
-)	 and	peroxyl	 radicals	 (‘O2)),	which	 further	

intensify	the	oxidative	burden	on	cell	membrane	components	(Fiscus	et	al.,	2005;	Sarkar	

et	 al.,	 2010)	 and	 result	 in	 marked	 shifts	 in	 the	 expression	 of	 stress-related	 genes	

(Kangasjarvi,	1994;	Sharma	and	Davis,	1997;	Cho	et	al.,	2008)	including	rbcS	(the	gene(s)	

encoding	 the	 small	 subunit	 of	 ribulose-1,5-carboxylase/oxygenase	 (RubisCO))	 which	

results	in	a	decline	in	photosynthetic	capacity	(Cooley	and	Manning,	1987).	Ozone	can	

also	result	in	visible	blemishes	on	foliage	and	major	changes	in	assimilate	distribution	

between	and	within	plant	organs	(Davison	and	Barnes,	1998;	Booker	et	al.,	2009).	The	
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ultimate	manifestation	of	all	these	impacts	is	reduced	crop	yield	via	negative	impacts	on	

plant	biomass,	numbers	of	 flowers	and	 flower	abortion	 (Fuhrer,	2009;	 Jaggard	et	al.,	

2010).		

	

1.4	Risks	posed	by	ozone	to	agriculture		

The	 first	 identified	crop	damage	resulting	 from	exposure	 to	ambient	 levels	of	

ozone	resulted	from	observations	made	in	highly	polluted	regions	of	Southern	California	

in	 the	 1940’s	 (Thomas,	 1951).	 Since	 then,	 visible	 symptoms	of	 tissue	 damage	 (often	

referred	 to	 as	 ‘flecking’)	 have	 been	 identified	 as	 a	 common	 feature	 associated	with	

ozone-stress	around	the	globe.	More	importantly,	it	is	now	recognised	that	current	and	

predicted	ground	level	concentrations	of	ozone	pose	a	very	real	threat	to	global	food	

security	(Avnery	et	al.,	2011a,b)	and	yield	reductions	have	been	reported	in	many	major	

crops,	 some	 exposed	 to	 long-term	 daily	 average	 concentrations	 as	 low	 as	 30	 ppb	

(Jaggard	et	al.,	2010).	It	is	recognized	that	present-day	concentrations	of	the	pollutant	

may	be	responsible	for	>5%	reduction	in	yield	of	some	sensitive	crops	including	cotton,	

lettuce,	pulses,	soybean,	peas,	rice,	onion,	tomato,	potatoes,	strawberries,	watermelon	

and	wheat	 (Mills	et	al.,	2013).	Other	crops	have	been	proven	to	be	more	tolerant	to	

ozone-stress,	these	include	barley,	plum	and	Brassicaceae	(Mills	et	al.,	2013).	Current	

estimates	 of	 the	 global	 costs	 to	 the	 agricultural	 economy	 are	 between	 $11	 and	 $26	

billion	 (Van	Dingenen	et	al.,	2009;	Avnery	et	al.,	2011a).	However,	by	the	year	2030,	

losses	to	agriculture	as	a	result	of	rising	O3	concentrations	are	expected	to	increase	to	

between	$19	and	$35	billion	per	annum	(Avnery	et	al.,	2011b).	

	

Increases	 in	 the	 human	 population	 are	 putting	 unprecedented	 pressures	 on	

successful	agricultural	practice,	with	global	crop	demands	predicted	to	increase	by	100%	

by	the	year	2050	(Tilman	et	al.,	2011).	There	is	particular	concern	over	food	security	in	

rapidly	 developing	 parts	 of	 the	 world	 such	 as	 India	 and	 China	 where	 ozone	

concentrations	are	expected	to	spike	rapidly	in	response	to	increased	industrialisation	

(Ashmore,	2005;	Fuhrer,	2009).	
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1.5	Impacts	of	ozone	on	plant	reproductive	processes	

Agricultural	 productivity	 is	 compromised,	 in	 part,	 by	 the	 impacts	 of	 ozone	

pollution	on	plant	reproductive	biology.	Any	part	of	the	plant	that	is	directly	exposed	to	

air	is	a	potential	site	for	oxidative	damage	by	ozone.	It	has	been	acknowledged	that	the	

timing	 of	 exposure	 to	 ozone	 during	 reproductive	 development	 can	 be	 significant	

(Wolters	and	Martens,	1987;	Black	et	al.,	2000)	with	implications	for	knock-on	effects	of	

crop	 success/yield	 when	 damage	 occurs	 at	 flowering/anthesis	 (Soja,	 1997;	

Vandermeiren	and	De	Temmermann,	1996;	Pleijel	et	al.,	1998;	Gonzalez-Fernandez	et	

al.,	2010)	(Figure	1.4).	

	

	
Figure	 1.4	 Potential	 targets	 where	 exposure	 to	 ozone	 may	 influence	 fruit	
development/reproductive	 success	 of	 higher	 plants	 (Redrawn	 from	 Wolters	 and	
Martens,	1987).	
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1.5.1	Nectar		

Impacts	of	ozone	pollution	on	nectar	production	and	composition	have	rarely	

been	studied.	Nectar1	is	secreted	by	plants	for	the	purpose	of	supplying	visiting	animals	

with	 a	 reward	 in	 exchange	 for	 a	 reproductive	 service	 to	 the	 plant.	 Floral	 nectar	 is	

produced	by	angiosperms	for	the	sole	purpose	of	attracting	and	rewarding	floral	visitors	

(Simpson	and	Neff,	1981;	Pacini	and	Nicolson,	2007;	González-Teuber	and	Heil,	2009),	

in	 return	 for	 the	 transfer	 of	 pollen	 to	 conspecifics.	 Nectar	 provides	 a	major	 dietary	

source	of	nutrition	to	insects,	birds	and	mammals	and	the	qualities	of	floral	nectar	are	

thought	to	be	shaped	by	the	animals	that	feed	and	pollinate	certain	guilds	(Nicolson,	

2007).	In	the	case	of	eusocial	bees	such	as	honeybees	(Apis	mellifera)	and	bumblebees	

(Bombus	 spp.),	nectar	 is	 the	primary	 source	of	 carbohydrate	 to	nourish	not	only	 the	

individual	insect,	but	the	entire	colony,	where	nectar	is	stored	and	condensed	to	form	

honey.		

	

Nectar	is	secreted	by	nectaries,	a	collective	name	for	a	diverse	set	of	specialised	

structures	 that	generally	share	 the	 following	 traits:	 (i)	epidermis	 (stomata	present	or	

absent),	(ii)	parenchyma,	which	store	nectar	substances,	and	(iii)	vascular	bundles,	that	

provide	 water	 and/or	 nutrients	 to	 parenchyma	 (Fahn,	 2000;	 Pacini	 et	 al.,	 2003).	

Furthermore,	nectaries	are	found	at	all	structures	of	a	plant,	excluding	the	roots	(Pacini,	

et	al.,	2003;	Nicolson	et	al.,	2007;	Heil,	2011)	and	can	be	classified	as	floral	or	extrafloral.	

Floral	nectaries	supply	a	nutritive	reward	to	a	pollinating	animal,	whereas	extrafloral	

nectaries	 are	 usually	 involved	 in	 providing	 a	 reward	 to	 animals,	 such	 as	 ants,	 for	

herbivore	deterrence	(Pacini	and	Nicolson,	2007).		

	

Genetic	mechanisms	 governing	nectar	 production,	 composition	 and	 secretion	

have,	 for	 the	 most	 part,	 been	 overlooked	 (Kram	 and	 Carter,	 2009).	 There	 is	 an	

exceptional	 level	of	understanding	of	 the	genetic	basis	of	 some	model	plant	species,	

such	as	Arabadopsis	thaliana	L.	but	this	species	does	not	easily	lend	itself	to	the	study	

of	nectar	because	it	has	very	small	nectaries	and	produces	low	volumes	of	nectar	(Kram	

and	 Carter,	 2009).	 One	 of	 the	 consequences	 of	 this	 is	 that	 we	 have	 a	 rather	 poor	

understanding	of	 the	genetic	 controls	over	nectar	production.	Plants	 that	have	 large	

																																																								
1	In	Greek:		‘the	drink	of	the	gods’	
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nectaries	 and	 produce	 greater	 volumes	 of	 nectar,	 such	 as	 ornamental	 tobacco	

(Nicotiana	 spp.)	 (Carter	 et	 al.,	 1999;	 Ren	 et	 al.,	 2007)	 constitute	 an	 ideal	model	 for	

nectary	and	nectar	studies.	However,	the	genetic	resources	for	such	species	are	not	as	

advanced	as	for	A.	thaliana,	for	example,	and	so	identification	of	specific	genes	allied	to	

nectary	and	nectar	control	is	problematic	(Kram	and	Carter,	2009).		

	

It	is	generally	accepted	that	phloem	sap	constitutes	the	primary	substance	that	

becomes	floral	nectar	(Fahn,	2000;	Pacini	and	Nepi	et	al.,	2007).	‘Pre-nectar’	is	unloaded	

from	phloem	sieve	elements	to	adjoining	parenchyma	via	companion	cells.	There	are	

then	two	suggested	pathways	in	which	pre-nectar	is	transported	to	the	excretion	sites	

at	floral	nectaries;	the	symplast	or	apoplast	route	(Figure	1.5).	In	the	symplastic	route	

pre-nectar	 travels	 from	the	phloem	parenchyma	to	 the	nectary	parenchyma	through	

plasmodesmata.	In	the	apoplastic	route,	pre-nectar	in	transferred	from	sieve	elements	

to	the	secretory	cells	via	cell	walls	and	intercellular	space	(Pacini	and	Nepi,	2007).	

	

	
	
Figure	1.5	Potential	pathways	in	which	phloem	sap	may	be	transported	as	‘pre-nectar’	
to	nectary	stomata	(st).	Phloem	sap	from	the	sieve	element	(se)	is	transported	to	the	
phloem	paranchyma	(php)	by	ingrowths	on	companion	cells	(cc).	It	is	then	transported	
to	 subnectary	 parenchyma	 (snp)	 and	on	 to	 the	nectary	 parenchyma	 (np)	where	 it	 is	
converted	to	nectar	via	symplast	(dotted	line)	and/or	apoplast	(solid	line)	(From	Pacini	
and	Nepi,	2007).	
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A	 recent	 study	 observed	 that	 starch	 accumulated	 in	 the	 nectaries	 of	

Anemopaegma	album	Mart.	 prior	 to	nectar	 secretion	and	 that	 starch	depleted	 from	

parenchyma	surrounding	the	nectary	during	active	nectar	secretion	(Guimarães	et	al.,	

2016).	The	authors	concluded	that	starch	is	the	primary	source	of	nectar	constituents	

after	 initial	depletion	of	nectar	from	the	flower,	ensuring	that	the	nutritive	quality	of	

nectar	 is	maintained	 throughout	 the	 lifetime	of	 the	 flower	 (Guimarães	et	 al.,	 2016).	

Starch	 accumulation	 in	 the	 nectaries	 of	 ornamental	 tobacco	 has	 also	 been	 reported	

during	 nectary	 development,	 with	 rapid	 depletion	 after	 anthesis	 (Ren	 et	 al.,	 2007),	

suggesting	conversion	of	 starch	 to	hexoses	 is	necessary	 to	supply	nectar	with	simple	

sugars.	

	

The	proposition	that	“pre	nectar”	from	phloem	sap	is	the	basis	of	floral	nectar	is	

generally	supported	(Davis	et	al.,	1988;	Ren	et	al.,	2007;	Wenzler	et	al.,	2008;	Kram	and	

Carter,	 2009).	 Yet,	 nectar	 constituents	 do	 not	 necessarily	 reflect	 the	 constituents	 of	

phloem.	 A	 study	 that	 compared	 the	 carbohydrate	 and	 amino	 acid	 composition	 of	

phloem	 sap	 and	 nectar	 in	 the	 same	 plant	 species	 found	 significant	 differences	 in	

composition	(Lohaus	and	Schwerdtfeger,	2014).	Nectar	of	Maurandya	barclayana	Auct.,	

Lophospermum	erubescens	D.	Don,	and	Brassica	napus	L.	contain	sucrose,	glucose	and	

fructose,	yet	only	sucrose	is	present	in	phloem	sap.	This	suggests	invertase	enzymes	in	

the	nectary	convert	sucrose	to	monosaccharides	(Rhulmann	et	al.,	2010).	Total	amino	

acids	are	consistently	reported	to	be	present	at	lower	concentrations	in	nectar	than	in	

phloem	sap,	 suggesting	 the	preservation	of	nitrogenous	compounds	within	 the	plant	

(Lohaus	and	Schwerdtfeger,	2014).	Furthermore,	 the	proportions	of	 individual	amino	

acids	 also	 vary	 between	 phloem	 sap	 and	 nectar	 (Lohaus	 and	 Schwerdtfeger,	 2014),	

suggesting	that	there	is	greater	control	over	nectar	production	than	simple	passive	flow	

from	phloem	sap.	Few	studies	have	focussed	on	mechanisms	controlling	nectar	quality.	

However,	a	recent	publication	reported	the	study	of	sucrose	production	in	nectar	and	

identified	the	expression	of	SWEET9,	a	gene	highly	expressed	in	nectary	parenchyma,	to	

be	essential	for	sucrose	control	in	nectar	(Lin	et	al.,	2014).	The	authors	also	report	that	

mutation	of	the	SWEET9	gene	causes	nectar	secretion	to	cease.	There	is	a	significant	gap	

in	 published	 literature	 on	 mechanisms	 controlling	 the	 allocation	 of	 amino	 acids	 to	

nectar.	Yet,	these	nutrients	are	seemingly	important	given	their	universal	presence	in	



	 10	

floral	nectars;	concentrations	of	which	have	been	shaped	by	their	consumers	(Baker,	

1977;	Baker	and	baker,	1973,	1977;	Lanza	and	Kraus,	1984;	Carter	et	al.,	2006).	

	

To	date,	no	studies	have	been	reported	on	the	influence	of	ozone	on	floral	nectar	

composition.	 However,	 it	 has	 been	 reported	 that	 long-term	 exposure	 of	 lima	 beans	

(Phaseolus	lunatus	L.)	to	120	and	160	ppb	O3	induces	production	of	extrafloral	nectar	

(EFN),	while	exposure	to	lower	concentrations	of	80	and	100	ppb	did	not	(Blande	et	al.,	

2010).	The	authors	suggest	that	production	of	EFN	at	high	concentrations	of	O3	may	be	

linked	to	strategy	favouring	plant	defence	(Blande	et	al.,	2010).	Ozone-stress	is	known	

to	reduce	phloem	loading	from	source	 leaves	 (Grantz,	2003),	so	we	hypothesise	that	

nectar	production	is	directly	related	to	phloem	content	and	thus	ozone	exposure	may	

alter	the	amount	of	carbon	allocated	to	sugars	in	nectar.		

	

1.5.2	Pollen		

	 Pollen	 is	 the	 gametophyte	 produced	 by	 vascular	 plants	 as	 a	means	 to	 safely	

transport	the	male	genetic	material	to	conspecifics.	Development	of	angiosperm	pollen	

usually	follows	the	following	details.	Pollen	develops	in	pollen	sacs	on	the	anthers	of	a	

flower.	 Microsporocytes	 within	 the	 pollen	 sack	 undergo	 meiosis	 until	 haploid	

microspores	are	developed.	Each	microspore	contains	a	nucleus	which	then	divides	by	

mitosis	to	produce	a	two-celled	pollen	grain;	the	generative	cell	within	the	vegetative	

cell	(Vasil,	1967).	Pollen	that	meets	the	stigma	of	a	suitable	conspecific	then	germinates	

and	the	pollen	tube,	carrying	the	male	genetic	material,	travels	down	the	style	to	the	

ovules	where	fertilisation	takes	place.		

	

Aside	from	its	obvious	role	in	plant	reproduction,	pollen	also	constitutes	a	vital	

nutrient	source	which	is	consumed	by	a	diverse	range	of	animal	taxa,	including	insects,	

birds	 and	mammals	 (Roulston	 and	 Cane,	 2000).	 The	 nutritional	 content	 of	 pollen	 is	

diverse	and	macronutrient	concentrations	range	from	~2.5	to	~61%	protein	(Buchmann,	

1986),	~2	to	20%	fats	(Roulston	and	Cane,	2000)	and	~0	to	22%	carbohydrate	(Todd	and	

Bretherick,	 1942;	 Roulston	 and	 Cane,	 2000).	 Pollen	 also	 provides	 a	 diverse	 range	 of	

micronutrients	including	vitamins,	minerals	and	other	secondary	metabolites	(reviewed	

by	 Puerto	et	 al.,	 2015).	 Pollen	 cytoplasm	 is	well	 protected	 by	 the	 exine,	 and	 so	 the	
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question	of	how	pollen	consumers	gain	access	to	nutrients	has	been	widely	speculated.	

Roulston	and	Cane	 (2000)	 compared	 the	digestibility	of	pollen	between	animals	 and	

highlighted	the	diverse	range	of	taxa	that	consume	it.	They	also	noted	that	in	general,	

honeybees	(Apis	mellifera)	were	able	to	digest	pollen	better	than	mammals	(Crailsheim	

et	al.,	1992;	Van	Tets,	1997;	Law,	1992b;	Herrera	and	Martinez	del	Rio,	1998;	Turner,	

1984;	Quin	et	al.,	1996),	and	birds	(Paton,	1981;	Wooler	et	al.,	1988;	Grant,	1996;	Brice	

et	al.,	1989).	

	

The	influence	of	ozone	pollution	on	pollen	has	received	a	little	more	attention	

than	that	of	the	gas	on	nectar,	but	in-depth	knowledge	of	pollen-ozone	interactions	is	

far	from	exhaustive.	The	topographic	structure	of	pollen	exine	has	been	demonstrated	

to	be	influenced	by	environmentally-relevant	levels	of	O3,	this	results	in	changes	in	the	

autofluorescent	spectra,	a	phenomenon	believed	to	be	due	to	damage	to	lipofuscin-like	

compounds	 in	 carotenoids	 (Roshchina	 and	 Karnaukhov,	 1999;	 Roshchina	 and	

Mel'Nikova,	2001).	The	composition	of	pectin-like	material	in	the	exine	of	the	pollen	of	

ragweed	(Ambrosia	artemisiifolia	L.)	has	also	been	reported	to	be	altered	by	exposure	

to	 O3	 (Kanter	 et	 al.,	 2013).	 Commonly	 observed	 impacts	 of	 ozone	 on	 pollen	 are	 a	

reduction	in	viability	due	to	impaired	pollen	germination	and	germ	tube	growth	(Black	

et	 al.,	 2007;	 Leisner	 and	 Ainsworth,	 2012;	 Gillespie	 et	 al.,	 2015).	 The	 mechanisms	

governing	such	detrimental	impacts	are	not	understood.	A	further	reported	impact	of	

exposure	to	ozone	is	a	reduction	in	the	soluble	protein	content	of	pollen	(Ribeiro	et	al.,	

2013)	and	increased	NADPH	oxidase	activity	in	the	cell	walls	suggestive	of	an	increase	in	

oxidative	burden	(Pasqualini	et	al.,	2011).	

	

1.6	Pollinators		

Animal	pollination	is	essential	for	reproductive	success	in	wild	plant	communities	

(Kearns	et	al.,	1998;	Larson	and	Barret,	2000;	Ashman	et	al.,	2004)	and	domesticated	

crops	(McGregor,	1976;	Klein	et	al.,	2007).	It	is	estimated	that	yield	of	around	84%	of	

European	crops	depend	on	some	form	of	animal	pollination	(Williams,	1994)	and	the	

most	important	pollinators,	from	an	agricultural	perspective,	are	bees.	Bee	pollination	

is	essential	for	the	success	of	many	crops	and	reductions	in	yield	of	more	than	90%	are	

reported	when	some	fruit,	seed	and	nut	crops	go	without	bee	visitation	(Southwick	and	
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Southwick,	1992;	Kearns	et	al.,	1998).	Furthermore,	it	is	estimated	that	around	one	third	

of	all	food	consumed	by	humans	is	dependent	on	bee	pollination	(McGregor,	1976;	Klein	

et	al.,	2007).		

	

Pollination	by	commercially-kept	honeybees	is	an	important	agricultural	service.	

However,	a	combination	of	factors	including	pesticide	exposure,	parasites	and	disease	

transmission	 are	 resulting	 in	 commercial	 beekeepers	 reporting	 unprecedented	 and	

alarming	 losses	 (of	 between	 20	 and	 40%)	 of	 their	 colonies	 annually	 since	 2006	

(Neumann	and	Carreck,	2010;	Lee	et	al.,	2015)	–	a	phenomenon	commonly	referred	to	

colony	 collapse	disorder	 (CCD).	A	 further	 critical	 stress	 that	 bees	 are	 faced	with	 is	 a	

significant	reduction	in	the	diversity	of	food	on	which	they	can	forage	(Williams,	1986).	

Monoculture	 is	an	ever	 increasing	tool	 in	modern	agriculture,	and	where	bees	would	

once	have	access	to	forage	on	a	diverse	flora,	in	many	parts	of	the	world	agricultural	

land	is	now	dominated	by	individual	crops.			

	

All	animals	have	a	specific	requirement	for	nutrients	at	any	given	time	in	their	

life	(Simpson	and	Raubenheimer,	2012).	Both	honeybees	and	bumblebees	regulate	their	

intake	of	protein,	essential	amino	acids	and	carbohydrate	in	order	to	achieve	nutritional	

homeostasis	(Altaye,	et	al.,	2010;	Pirk	et	al.,	2010;	Paoli	et	al.,	2014;	Stabler	et	al.,	2015).	

When	bees	are	restricted	to	diets	outside	of	the	range	in	which	they	can	balance	their	

nutrient	intake,	early	mortality	results	(Altaye	et	al.,	2010;	Stabler	et	al.,	2015).	There	is	

a	 significant	 knowledge	 gap	 regarding	 the	nutritional	 quality	 of	 nectar	 and	pollen	of	

individual	crops	for	bee	pollinators,	and	so	the	manner	in	which	bees	are	able	to	regulate	

their	intake	of	nutrients	when	foraging	on	monoculture	crops	is	unknown.	It	is	believed	

that	when	bees	are	restricted	to	forage	on	a	single	crop	that	does	not	allow	them	to	

maintain	 the	 correct	 balance	 of	 nutrient	 intake,	 this	 contributes	 to	 the	 observed	

premature	mortality	of	honeybee	colonies	associated	with	CCD.		

	

Foraging	bees	are	exceptional	at	learning	and	remembering	floral	cues	including	

odour	 (Menzel	 and	 Giurfa,	 2001;	 Spaethe	 et	 al.,	 2007;	 Wright	 et	 al.,	 2007),	 floral	

morphology	 (Laverty,	1994;	Chittka	et	al.,	1999)	and	colour	 (Gumbert,	2000;	Nicholls	

and	Hempel	de	Ibarra,	2014).	When	foraging,	bees	assess	the	quality	of	nectar	rewards	
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from	available	plants	and	preferentially	 forage	 from	plants	 that	provide	 the	greatest	

food	resource	(Ribbands,	1949;	von	Frisch,	1967;	Waser,	1986).	Upon	returning	to	the	

colony,	 forager	bees	dance	 to	 communicate	 a	 lucrative	 food	 resource	 to	nest-mates	

which,	in	turn,	recruits	more	bees	to	forage	from	the	same	resource	(von	Frisch,	1967).	

It	is	interesting	to	consider	how	bees	would	respond	to	the	cues	given	by	plants	if	the	

nectar	rewards	were	not	consistent.	Would	an	unreliable	cue	for	a	reward	reduce	the	

pollination	service	to	that	plant?	

	

Foraging	bees	can	assess	and	learn	pollen	quality,	in	terms	of	its	protein	content,	

and	associate	the	information	with	the	colour	cues	of	flowers	(Nicholls	and	Hempel	de	

Ibarra,	2014).	Pollen	is	a	source	of	essential	nutrients	for	the	development	of	honeybee	

colonies.	However,	the	ability	of	honeybees	to	digest	pollen	and	protein	declines	as	they	

age	(Crailsheim	1986,	1990;	Moritz	and	Crailsheim	1987;	Crailsheim	et	al.,	1992;	Lass	

and	Crailsheim	1996;	Paoli	et	al.,	2014),	and	studies	have	repeatedly	demonstrated	that	

when	bees	are	limited	to	feed	from	diets	in	which	the	protein	concentration	exceeds	

their	regulatory	range,	this	is	reflected	in	increased	mortality	(Altaye	et	al.,	2009;	Pirk	et	

al.,	2010;	Paoli	et	al.,	2014;	Stabler	et	al.,	2015).		

	

1.7	Project	outline	

Background	concentrations	of	ozone	in	the	Northern	hemisphere	are	increasing	

and	are	predicted	to	continue	on	this	trajectory	for	the	foreseeable	future.	Considerable	

effort	has	been	made	to	identify	the	risks	posed	by	ozone	pollution	to	wild	and	domestic	

vegetation,	but	the	impacts	of	the	pollutant	on	plant-pollinator	interactions	has	been	

largely	overlooked.	Bees	are	responsible	for	delivering	≈30%	of	the	food	that	we	eat.	

Yet,	in	spite	of	this,	their	nutritional	requirements	have	been	largely	overlooked	when	

considering	 environmental	 impacts.	 The	 experiments	 described	 in	 this	 thesis	 were	

designed	to	explore	the	allocation	of	protein-bound	and	free	amino	acids,	non-structural	

carbohydrates	and	free	fatty	acids	to	nectar	and	pollen	under	defined	ozone-exposure	

conditions,	employing	broad	bean	(Vicia	faba)	as	a	convenient	model	plant.	Seed	set	of	

this	major	crop	plant	is	reliant	on	insect	pollination	and	bees	foraging	on	broad	bean	

collect	both	pollen	and	nectar	from	the	flower.		
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There	is	a	significant	gap	in	published	literature	accounting	for	the	influence	of	

shifts	 in	 resource	 allocation	within	 a	 plant	 and	 how	demands	 for	 resources	 in	 some	

tissues	may	alter	allocation	to	others	(i.e.	leaves/pollen/nectar).	To	bridge	the	gap,	these	

novel	 studies	 explore	 how	 plants	 exposed	 to	 long	 and	 short	 term	 ozone-exposure	

regimes	allocate	protein,	free	amino	acids	and	carbohydrates	to	nectar	and	pollen.	The	

study	of	ozone	exposure	on	the	chemical	composition	and	volume	of	nectar	is	entirely	

novel	and	the	experiments	described	in	chapter	5	exploit	this.	The	influence	of	ozone	on	

the	 amino	 acid	 composition	 of	 pollen	 is	 novel,	 however,	 reductions	 in	 protein	

concentration	have	been	reported	(Ribeiro	et	al.,	2013).	There	are	currently	no	reported	

studies	comparing	the	presence	of	nectar-like	compositions	of	carbohydrates	and	amino	

acids	on	learning	and	memory	in	honeybees.	We	exploit	this	in	Chapter	6	and	report	and	

novel	role	for	amino	acids	in	nectar.	

	

The	aims	of	the	research	described	in	this	thesis	include:	

• Development	of	novel	methods	for	the	quantification	of	protein-bound	and	free	

amino	acids	 in	pollen	using	microwave-assisted	acid	hydrolysis	utilising	 small	

amounts	of	pollen.	

• Exploration	of	methods	for	the	reliable	extraction	and	quantification	of	amino	

acids	and	carbohydrates	in	nectar	from	low-volume	nectar	flowers.		

• Exploration	 of	 whether	 existing	 measures	 for	 the	 assessment	 of	 plant	

‘sensitivity’	to	ozone	constitute	suitable	surrogates	for	ozone-induced	changes	

in	pollen	quality.	

• Investigation	of	the	impacts	of	sustained-	and	short-term	exposure	to	ozone	on	

resource	allocation	within	plants	and	to	nectar	and	pollen.	

• Assessment	 of	 how	 ozone-induced	 changes	 in	 amino	 acid	 and	 carbohydrate			

composition	of	nectar	may	influence	honeybee	olfactory	learning.	
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2.0	Chapter	2:	Exploration	of	methods	to	quantify	the	amino	acid	qualities	

of	pollen	

	

2.1	Introduction	

	

Pollen	is	produced	by	vascular	plants	to	carry	the	male	gamete,	facilitating	safe	

transfer	of	genetic	material	and	 leading	 to	sexual	out-crossing	 in	plant	 reproduction.	

Wind	transport	accounts	for	the	majority	of	successful	pollination	in	gymnosperms	and	

is	also	a	common	mechanism	for	angiosperms.		However,	angiosperms	also	rely	heavily	

on	 animal	 pollinators	 for	 sexual	 reproduction.	 	 The	 evolution	 of	 multimodal	 cues	

provided	 by	 flowers	 (diverse	 colours,	 sizes,	 shapes	 and	 odours)	 enables	 pollinating	

animals	 to	 more	 accurately	 collect	 and	 deliver	 pollen	 to	 the	 appropriate	 recipient	

(Gegear,	2005;	Ghazoul,	2006;	Raguso,	2008	(review);	Wright	and	Schiestl,	2009),	giving	

rise	to	complex	and	diverse	mutualisms.	

	

Most	 pollinating	 insects	 visit	 flowers	 to	 collect	 pollen	 as	 a	 source	 of	 food	

(Roulston	 et	 al.,	 2000).	 The	 main	 dietary	 components	 of	 pollen	 include	 enzymatic	

proteins,	 lipids,	 starch,	 vitamins	 and	 free	 amino	 acids,	 held	within	 pollen	 cytoplasm	

(Stanley	and	Linkens,	1974).	Pollen	grains	are	protected	by	a	robust	exine	and	intine	that	

form	the	pollen	wall	(Roulston	and	Cane,	2000).	The	pollenkitt	on	the	outer	surface	of	

the	exine	 contains	 free	 amino	acids,	 lipids,	 fatty	 acids,	 sterols	 and	 small	 amounts	of	

carbohydrate	 (Dobson,	 1987;	 Dobson	 and	 Bergström,	 2000;	 Pacini	 and	Hesse,	 2005;	

Piskorski	et	al.,	2011).	 It	 is	hypothesised	that	pollinators	may	use	components	of	the	

pollenkitt	 as	 phagostimulatory	 cues	 with	 which	 they	 can	 detect	 and	 discriminate	

between	nutritional	resources	(Dobson,	1987).		

	

Honeybees	 are	 important	 pollinators	 of	 wild	 (Ashman	 et	 al.,	 2004)	 and	

domesticated	(Klein	et	al.,	2007)	plant	species.	They	rely	on	pollen	and	nectar	as	their	

main	source	of	nutrition	to	feed	developing	larvae	and	nurse	bees.	Bees	utilise	pollen	as	

a	 source	of	proteins,	 amino	acids,	 fatty	acids,	 vitamins	and	 sterols	and	achieve	 their	

carbohydrate	 requirements	 by	 feeding	 on	 nectar.	 On	 average,	 the	 concentration	 of	

protein	provided	by	different	species	of	plants	ranges	between	~2.5	and	60	%	of	the	dry	
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weight	 (Buchmann,	1986;	Roulston	et	al.,	2000).	However,	very	 little	 is	known	about	

variations	in	the	distribution	of	specific	amino	acids	contained	in	the	pollen	of	different	

plant	species.	Understanding	the	constituents	of	pollen	(and	nectar)	is	important	when	

considering	 the	nutritional	 requirements	of	pollinators	and	assessing	whether	or	not	

they	 are	being	met	by	 the	 landscapes	 in	which	 they	 forage.	Assessing	 the	quality	of	

pollen	could	also	be	a	useful	tool	in	developing	agri-environment	schemes	and	managing	

both	 urban	 and	 rural	 areas	 to	 provide	 pollinators	 with	 reliable	 and	 nutritious	 floral	

resources	or	substitutes.	

	

The	study	of	pollen	chemistry	poses	several	challenges.		Standard	methods	for	

protein	analysis	require	sample	sizes	of	raw	material	of	between	60-150	mg	to	1	g	for	

combustion	and	micro-Kjeldahl	methods,	respectively	(Roulston	et	al.,	2000).	However,	

the	 amount	 of	 pollen	 produced	 by	 anthers	 of	 angiosperms	 is	 generally	 orders	 of	

magnitude	lower	than	this.	For	example,	Denisow	(2008)	described	pollen	production	in	

six	 Brassicacae	 species	 and	 found	 the	 maximum	weight	 of	 pollen	 produced	 by	 one	

species	hybrid	 (Aubrieta	 x	hybrida)	was	66.8	µg	of	pollen	per	anther	and	 the	 lowest	

recovered	 weight	 was	 11.6	 µg	 of	 pollen	 per	 anther	 (Iberis	 semprevinems	 L.).	 	 An	

additional	challenge	 is	that	the	physical	structure	of	pollen	provides	 limitations	to	 its	

study.	 Free	 amino	 acids	 can	 simply	 be	washed	 from	 the	 pollen	 surface	with	 solvent	

(Mondal	 et	 al.,	 1998;	 Cook	 et	 al.,	 2003),	 but	 protein-bound	 amino	 acids	 are	 well	

protected	by	the	exine,	and	so	this	robust	structure	must	be	ruptured	effectively	when	

protein-quantification	is	necessary.	

	

Three	 main	 methods	 for	 determining	 protein	 concentration	 of	 pollen	 are	

currently	 in	 use;	 the	 Bradford	 assay,	 micro-Kjeldahl	 digestion	 and	 combustion.	 The	

Bradford	assay	(Bradford,	1976)	is	used	to	estimate	total	soluble	protein	concentration.	

The	assay	involves	the	binding	of	Coomassie	blue	dye	reagent	to	soluble	proteins	and	

the	 absorbance	 is	 read	 at	 595nm	 using	 a	 spectrophotometer.	 Although	

straightforwardly	 implemented,	the	method	suffers	a	number	of	 limitations.	Proteins	

are	held	within	the	pollen	exine,	so	pollen-dye	interactions	will	not	bind	if	the	exine	is	in	

place.		Pollen	proteins	are	not	all	soluble	(Zársky	et	al.,	1985;	Evans	et	al.,	1992;	Shahi	et	

al.,	 2008)	 and	 so	 the	 assay	 may	 significantly	 underestimate	 insoluble	 protein	
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concentration	 (Gotham	 et	 al.,	 1988).	 Moreover,	 in	 the	 acidic	 state	 of	 the	 reagent,	

Coomassie	dye	binds	with	basic	amino	acid	side	chains	such	as	arginine,	histidine	and	

lysine	 (Schaffner	 and	Weissmann,	 1973;	 Tal	 et	 al.,	 1985;	 Syorvy	 and	 Hodny,	 1991).	

Proteins	 lacking	 amino	 acids	 with	 such	 side	 chains	 are	 likely	 to	 be	 underestimated	

(Sapan	et	al.,	1999).	However,	a	potential	benefit	of	the	Bradford	assay	is	that	it	requires	

1000-	and	100-fold	less	sample	tissue	to	quantify	protein	than	required	for	Kjeldahl	and	

combustion	methods,	respectively	(Roulston	et	al.,	2000).		

	

The	Kjeldahl	method	 involves	protein	hydrolysis	 using	 a	 strong	acid,	whereas	

combustion	 involves	heating	 samples	 to	~900	℃	without	 the	use	of	 chemicals.	Both	

Kjeldahl	and	combustion	methods	rely	on	digestion	of	protein	to	absolute	nitrogen	(N),	

with	the	application	of	a	correction	factor	to	back	calculate	from	absolute	nitrogen	to	

crude	total	protein	concentration.	

	

Roulston	and	colleagues	(2000)	compared	the	Bradford	assay	with	combustion	

and	micro-Kjeldahl	methods	for	the	analysis	of	protein	in	pollen	by	measuring	N	with	a	

carbon	 and	 nitrogen	 analyser	 for	 combustion	 experiments	 and	 a	 Technicon	

Autoanalyser	II	for	micro	Kjeldahl	digestion.	They	found	that	all	three	methods	produced	

similar	concentrations	of	protein	after	the	application	of	a	multiplication	factor	of	6.25	

for	micro	kjeldahl	and	combustion	methods.	This	suggests	that,	although	all	methods	

produce	 similar	 estimates	 for	 crude	 protein	 concentration,	 none	 are	 adequate	 for	

measurement	of	the	individual	protein-bound	amino	acids	in	pollen.	An	advantage	of	

the	Bradford	assay	over	combustion	and	micro-Kjeldahl	methods	is	that	a	Bradford	assay	

can	be	applied	reliably	using	1	mg	of	pollen,	whereas	combustion	and	micro-Kjeldahl	

require	~100	mg	and	~1000	mg	of	plant	material,	 respectively.	Moreover,	estimating	

crude	protein	concentration	from	absolute	nitrogen	content	can	be	unreliable.	Firstly,	

nitrogen	may	not	all	be	of	protein-origin.	Secondly,	the	multiplication	factor	applied	to	

nitrogen	 values	 may	 be	 variable	 leading	 to	 a	 misinterpretation	 of	 actual	 protein	

concentration;	there	are	several	views	on	which	correction	factors	to	use	for	different	

protein	types	(Rabie	et	al.,	1983;	Buchmann,	1986;	Roulston	et	al.,	2000).	A	correction	

factor	of	6.25	is	commonly	adopted	for	Kjeldahl	analyses.	However,	this	estimation	is	

based	 on	 the	 assumed	 N	 content	 of	 animal	 derived	 proteins,	 which	 average	 ~16%	



	 18	

(100/16	 =	 6.25)	 (Jones,	 1941)	 and	 may	 not	 be	 applicable	 to	 determining	 protein	

concentration	from	nitrogen	 in	plant	tissue	(Conklin-Brittain	et	al.,	1999).	Milton	and	

Dintzis	(1981)	suggested	overall	lower	correction	factors	for	plant	tissue	and	concluded	

that	correction	factors	of	3.9	for	floral	tissue,	4.0	for	ripe	fruit	and	4.2	for	young	leaves	

were	more	appropriate.	Although	the	Bradford	assay,	combustion	and	micro-Kjeldahl	

methods	produce	similar	estimates	of	protein	concentration	(Roulston	et	al.,	2000),	the	

major	limitation	of	these	methods	is	the	lack	of	information	on	the	amino	acid	profiles	

in	 the	 proteins,	 meaning	 that	 quantification	 of	 the	 nutritional	 quality	 of	 protein	 is	

unachievable.			

	

Protein	 bound	 amino	 acids	 can	 be	 cleaved	 by	 subjecting	 proteins	 to	 acid	

hydrolysis.	 Acid	 hydrolysis	 has	 been	 used	 to	 allow	 quantification	 of	 protein-bound	

amino	acids/peptides	in	a	number	of	recent	publications	(Gonzalez-Paramás	et	al.,	2006;	

Human	 and	 Nicolson,	 2006;	 Nicolson	 and	 Human,	 2013;	 Vanderplank	 et	 al.,	 2014;	

Somme	et	al.,	2015).	Standard	methods	for	hydrolysis	of	proteins	to	enable	amino	acid	

quantification	involve	acidic	digestion	with	6	M	HCl,	boiled	at	110°C	for	24	h	(Blackburn,	

1978;	 Fountoulakis	 and	 Lahm,	 1998).	 Amino	 acids	 in	 the	 hydrolysate	 can	 then	 be	

detected	 and	 quantified	 by	 HPLC	 (Nicolson	 and	 Human,	 2013).	 Amino	 acids	 can	 be	

derivatized	either	pre-	or	post-column	(Fountoulakis	and	Lahm,	1998)	and	detected	by	

UV	or	fluorescence.		

	

Analysis	of	the	amino	acid	properties	of	pollen	is	critically	important	in	the	study	

of	 nutritional	 quality	 to	 consumers.	 This	 chapter	 describes	 a	 series	 of	 experiments	

designed	to	 investigate	the	reliability	of	adopting	the	Bradford	assay	to	estimate	the	

protein	concentration	of	pollen	and	compares	the	outcomes	to	a	method	involving	acid	

hydrolysis,	back	calculating	amino	acid	concentrations	to	represent	crude	protein.	We	

also	aimed	to	identify	the	minimum	amount	of	pollen	needed	to	carry-out	amino	acid	

analyses	in	a	robust,	quick	and	inexpensive	manner.	
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2.2	Methods	

	

2.2.1	Pre-treatment	regimes:	Estimation	of	protein	content	of	pollen	

To	test	how	solubility	affected	measurements	made	 in	the	Bradford	assay	 for	

bee-collected	 pollen,	 four	 preparation	 treatments	 were	 applied	 to	 pollen	 before	

determining	protein	content:	 (1)	untreated,	 (2)	methanol	washed,	(3)	ground	and	(4)	

methanol	washed	and	ground.	Honeybee-collected	rock	rose	pollen	(Cistus	spp.	mixed	

source)	was	used	as	 a	 standard	pollen-type	 (Kiki	 Ltd.	Rock	 rose	pollen,	Norfolk,	UK).	

Pollen	was	dried	at	65°C	for	48	h,	ground	using	a	pestle	and	mortar,	then	1	mg	of	the	

ground	pollen		weighed	in	to	1.5	ml	microcentrifuge	tubes	(N	=	10)	before	adding	1	ml	

nanopure	H2O	to	untreated	pollen	and	mixing	using	a	vortex	for	15	min	(1).	Untreated	

pollen	was	used	as	a	control	to	compare	the	binding	efficiency	of	Bradford	reagent	to	

pollen	proteins	from	other	pre-treatments.	To	test	if	solubility	caused	by	fats	in	pollen	

affected	the	Bradford	assay	(2),	200	µl	of	methanol	was	added	to	1	mg	of	pollen.	The	

tube	was	vortexed	for	1	min,	and	left	for	10	min	at	room	temperature	and	mixed	again	

for	1	min.	The	sample	was	centrifuged	at	13,249	x	g	for	30	min	and	then	the	methanol	

decanted.	The	remaining	pollen	pellet	was	dried	at	60°C	prior	to	the	addition	of		1	ml	of	

nanopure	water	and	mixing	using		a	vortex	for	15	min.	To	test	if	the	cell	walls	of	pollen	

affected	the	Bradford	assay	(Roulston	and	Cane,	2000)	(3),	1	ml	H2O	was	added	to	the	

dried	pollen	along	with	20	mg	of	0.7	mm	diameter	zirconia	beads	(Bio	Spec	Products	Inc.	

Cat	No.	11079107zx).	The	sample	was	homogenised	in	a	tissue	lyser	(frequency	30	Hz)	

for	5	min	(TissueLyser	2,	Qiagen).	The	tube	was	briefly	centrifuged	to	settle	the	beads	

before	protein	content	was	measured.	In	treatment	4,	pollen	was	methanol-washed	and	

dried,	as	in	treatment	2,	then	1	ml	of	nanopure	H2O	and	20	mg	of	zirconia	beads	were	

added	to	the	dried	pollen	and	the	sample	homogenised	in	a	tissue	lyser	for	5	min.	The	

tube	was	briefly	centrifuged	(13,249	x	g)	to	settle	the	beads	before	protein	analysis.		

	

Following	 pollen	 pre-treatments,	 50	 µl	 of	 the	 pollen/protein	 solution	 was	

removed	and	pipetted	 into	a	2	ml	micro-centrifuge	 tube.	To	 this,	1.5	ml	of	Bradford	

reagent	(Sigma	Aldrich,	Cat.	Ref.	B6916)	was	added	and	the	protein-Bradford	mixture	

was	vortexed	for	30	s.	Samples	were	left	to	incubate	at	room	temperature	for	15	min	

before	being	mixed	on	a	vortex	for	a	 further	30	s.	The	protein-Bradford	mixture	was	
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then	added	to	a	cuvette	and	absorbance	recorded	at	595	nm	on	a	spectrophotometer	

(Genesys	10	VIS,	Thermo	Scientific).	Protein	concentration	was	quantified	from	a	graph	

of	standards	(developed	using	bovine	serum	albumin	(BSA)	at	five	dilutions;	0,	0.25,	0.5,	

0.1	and	1.4	mg	ml-1	(Appendix	A)).		

	

2.2.2	Efficacy	of	Bradford	assay	with	different	proteins	

Twelve	 protein	 sources	 were	 compared	 using	 the	 spectrophotometric	 assay	

(Bradford,	1976).	Protein	 isolates	used	were:	 (1)	 sodium	caseinate,	 (2)	bovine	serum	

albumin	 (BSA),	 (3)	 rock	 rose	pollen,	 (4)	 calcium	caseinate,	 (5)	egg	white	albumin,	 (6)	

brown	 rice	protein,	 (7)	 hemp	protein,	 (8)	 impact	whey	 isolate,	 (9)	 isopro	whey,	 (10)	

honeybee	royal	 jelly,	 (11)	soy	protein	 isolate	and	(12)	pea	protein	 isolate	(Table	2.1).	

Each	protein	was	weighed	out	to	1	mg	into	separate	1.5	ml	micro-centrifuge	tubes.	To	

each,	 1	 ml	 of	 deionised	 water	 was	 added,	 then	 samples	 were	 vortexed	 at	 room	

temperature	 for	 10	min	 to	 allow	maximum	 hydration	 of	 the	 proteins.	 Each	 protein	

solution	was	then	subject	to	Bradford	assay,	as	described	in	Section	2.2.1.	

	

2.2.3	Impact	of	protein	hydrolysis	on	Bradford	assay	 	

Bovine	serum	albumin	(BSA)	was	weighed	out	to	1	mg	and	added	to	100	µl	of	

6M	HCl	prior	to		vortexing	for	30	s.	The	samples	were	placed	in	a	900W	microwave	with	

a	glass	beaker	containing	600	ml	water	(for	safety	and	to	absorb	excess	radiation	(Zhong	

et	al.,	2005)).	The	samples	were	then	hydrolysed	in	the	microwave	at	full	power	(900W)	

for	20	min.	Once	finished,	samples	were	left	to	cool,	then	tubes	were	moved	to	a	heat	

block	and	the	lids	opened.	The	acid	was	evaporated	at	100	°C.	Once	dry,	1	ml	nanopure	

water	was	added	and	the	sample	was	mixed	using	a	vortex	for	15	min.	A	Bradford	assay	

was	then	carried-out	on	hydrolysed	BSA	and	un-treated	BSA	(1	mg	ml-1)	as	described	in	

Section	2.2.1.		

	

2.2.4	Optimisation	of	protein	hydrolysis	for	HPLC	analysis	

A	series	of	experiments	was	conducted	 to	optimise	a	 reliable	and	convenient	

method	for	hydrolysing	protein	in	pollen.	Three	experiments	were	carried	out	to	test	(1)	

how	the	volume	of	HCl	affected	the	hydrolysis	of	the	sample;	(2)	how	the	amount	of	

sample	 affected	 hydrolysis	 efficiency	 and	 (3)	 to	 identify	 whether	 the	 efficiency	 of	
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hydrolysis	was	affected	by	sample	size	at	a	specific	ratio	of	HCl	to	sample	(1	:	100	mg	:	

µl).		

	

Experiment	1:	The	amount	of	sample	was	constant	(1	mg)	but	volume	of	acid	varied	(10,	

50,	100,	150	and	200	µl	HCl)	(Appendix	B).	

	

Experiment	2:	Amount	of	HCl	 (6M)	was	constant	 (100	µl)	but	 the	amount	of	 sample	

varied	(Appendix	B)	

	

Experiment	3:	Variable	amounts	of	BSA	were	used	in	a	hydrolysis	experiment	in	which	

the	volume	of	acid	used	was	proportional	to	the	amount	of	protein	present.	A	fixed	ratio	

of	1	:	100	(mg	:	µl)	of	protein	to	acid	was	used	(Appendix	B)	.	 	

	

In	all	above	experiments	samples	were	hydrolysed	at	full	power	(900W)	for	20	

min	using	the	microwave	method	described	 in	Section	2.2.3.	Acid	was	evaporated	at	

100°C	 in	a	heat	block	 in	a	 fume	hood	and	samples	were	 recovered	 in	HPLC	gradient	

grade	H2O	(Fisher	Scientific.	Product	code:	10221712).	Tubes	were	vortexed	for	15	min	

and	then	centrifuged	at	13,249	x	g	for	30	min.	Supernatant	was	removed	with	a	sterile	

1	ml	syringe	(Tuberculin	 luer)	and	passed	through	a	0.45	µm	syringe	filter	(Whatman	

Puradisc	4	syringe	filter,	0.45	µm,	nylon)	to	remove	any	remaining	particulates.	Filtrate	

was	then	centrifuged	at	13,249	x	g	for	a	further	10	min	before	HPLC	analysis.	

	

2.2.5	Optimisation	of	pollen	protein	hydrolysis	

Amino	 acid	 composition	 was	 determined	 in	 pollen	 prepared	 as	 described	 in	

experiment	3,	 Section	2.2.4	 following	microwave-assisted	acid	hydrolysis.	A	 range	of	

weights	of	pollen	were	added	to	sealed	tubes;	 low	weights	 included	0.1,	0.2,	0.3	0.4	

(n=5)	and	0.5	mg	(n=20),	high	weights	included	1,	2,	3,	4	and	5	mg	(n=20).	To	each	tube,	

200	µl	of	HPLC	gradient	grade	methanol	was	added	prior	to		vortexing	for	1	min.	Samples	

were	then	left	to	stand	at	room	temperature	for	10	min	prior	to	re-vortexing	for	1	min,	

then	subject	to	centrifugation	for	30	min	at	13,249	x	g	and	the	supernatant	decanted.	

The	remaining	pollen	pellet	was	retained	for	analysis	of	protein-bound	amino	acids	(see	

below).	The	methanol	extract	was	dried	at	70°C	in	a	heat	block	prior	to	recovery	in	300	



	 22	

µl	HPLC	gradient	grade	H2O.		Samples	were	passed	through	a	0.45	µm	syringe	filter	to	

remove	particulates	prior	to	storage	at	-20°C	until	HPLC	analysis.	

	

Following	methanol-extraction,	the	remaining	fraction	of	the	pellet	was	used	for	

the	analysis	of	protein-bound	amino	acids.	Amino	acids	were	hydrolysed	from	proteins	

using	microwave-assisted	acid	hydrolysis	(See	Section	2.2.3).	The	volume	of	acid	added	

was	maintained	in	a	relative	volume	for	each	weight	of	pollen	used	(see	appendix	B.	1	

mg	pollen:	100	µl	6M	HCl).	Samples	were	vortexed	briefly	prior	to	microwave-assisted	

hydrolysis	(as	described	in	Section	2.2.3).	

	

2.2.6	Amino	acid	analysis	

	 Ultra	high	performance	liquid	chromatography	(uHPLC)	was	used	to	measure	the	

concentration	 of	 21	 amino	 acids:	 aspartic	 acid	 (asp),	 glutamic	 acid	 (glu),	 asparagine	

(asn),	serine	(ser),	glutamine	(gln),	histidine	(his),	glycine	(gly),	threonine	(thr),	arginine	

(arg),	alanine	(ala),	tyrosine	(tyr),	cysteine	(cys),	valine	(val),	methionine	(met),	gamma-

aminobutyric	acid	(GABA),	tryptophan	(trp),	phenylalanine	(phe),	isoleucine	(ile),	leucine	

(leu),	lysine	(lys)	and	proline	(pro).		

	

Immediately	 before	 injection,	 using	 an	 automated	 pre-column	 derivitization	

programme	for	the	autosampler	(Ultimate	3000	Autosampler,	Dionex,	Thermo	Fisher	

Scientific	 Inc.),	 10	 µl	 of	 sample	 was	 treated	 for	 1	 min	 with	 15	 µl	 of	 7.5	 mM	 o-

phthaldialdehyde	(OPA)	and	225	mM	3-	mercaptopropionic	acid	(MPA)	in	0.1	M	sodium	

tetraborate	decahydratre	(Na2B4O7
.10	H2O),	pH	10.2	and	for	1	min	with	10	µl	of	96.6	

mM	9-fluroenylmethoxycarbonyl	chloride	(FMOC)	in	1	M	acetonitrile.	This	was	followed	

by	 the	addition	of	6	µl	of	1M	acetic	acid.	After	pre-treating,	30	µl	of	 the	amino	acid	

derivatives	were	then	 injected	onto	a	150	x	2.1	mm	Accucore	RP-MS	(Thermo	Fisher	

Scientific	 Inc.)	uHPLC-column.	Elution	solvents	were:	A	=	10	mM	di-sodium	hydrogen	

orthophosphate	 (Na2HPO4),	 10	 mM	 Na2B4O7
.10	 H2O,	 0.5	 mM	 sodium	 azide	 (NaN3),	

adjusted	 to	 pH	 7.8	 with	 concentrated	 HCl,	 and	 B	 =	 Acetonitrile/Methanol/Water	

(45/45/10	v/v/v).	Elution	of	the	column	occurred	at	a	constant	flow	rate	of	500	µl	min-1	

using	a	 linear	gradient	of	3	 to	57%	(v/v)	of	solvent	B	over	14	min,	 followed	by	100%	

solvent	 B	 for	 2	min	 and	 a	 reduction	 to	 97%	 solvent	 B	 for	 the	 remaining	 4	min.	 The	
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derivatives	were	detected	by	 fluorescence	 (Ultimate	3000	RS	Fluorescence	Detector,	

Dionex,	Thermo	Fisher	Scientific,	OPA:	excitation	at	330	nm	and	emission	at	450	nm,	

FMOC:	 excitation	 at	 266	 nm	 and	 emission	 at	 305	 nm)	 and	 quantified	 by	 automatic	

integration	 after	 calibration	 of	 the	 system	 with	 amino	 acid	 standards.	

Reference	calibrations	(for	all	amino	acids)	were	conducted	following	the	processing	of	

each	batch	of	20	samples	by	injecting	calibration	standards	(a	pre-made	solution	of	17	

amino	 acid	 standards	 for	 fluorescence	 detection	 (Sigma-Aldrich)).	 The	 missing	 four	

amino	acids	(available	in	solid	form	from	Sigma-Aldrich)	were	added	manually	prior	to	

system	calibration;	mean	concentration=	25	mM.	Elution	profiles	(see	example	provided	

in	 Appendix	 C)	 were	 analysed	 using	 Chromeleon	 software	 v.	 6.8	 (Thermo	 Fisher	

Scientific	Inc).	Amino	acid	peaks	were	automatically	detected	based	on	pre-calibrated	

elution	 times	 via	 Chromeleon	 software,	 with	 all	 peaks	 checked	 to	 ensure	 correct	

identification.	 If	amino	acid	peaks	were	wrongly	assigned	by	 the	software,	 then	they	

were	manually	re-assigned	by	selecting	the	peak	area	of	the	correct	peak,	identified	by	

retention	 time	of	 the	 standard.	 Chromeleon	output	 (micromoles	per	 litre	 (µM))	was	

converted	to	a	standardised	unit	(µg	mg-1)	in	order	to	compare	methods.	

	

2.2.7	Statistical	analysis	

Data	were	first	checked	for	normality	of	distribution,	then	subject	to	one-way	

analysis	of	 variance	 (ANOVA)	 to	 compare	 the	effect	of	pre-treatment	on	 the	protein	

content	of	pollen,	and	the	binding	efficiency	of	Bradford	reagent	to	different	proteins.	

The	expected	values	for	each	protein	(%)	were	compared	to	median	measured	values	in	

a	 one-sample	 non-parametric	 test.	 Low	 and	 high	weights	 of	 BSA	 and	 pollen	 used	 in	

hydrolysis	 experiments	were	 analysed	 separately.	 Total	 amino	 acids	 recovered	 from	

hydrolysis	 of	 both	 BSA	 and	 rock	 rose	 pollen	 were	 compared	 in	 a	 generalised	 linear	

model,	 comparing	 source	 and	weight	 of	 the	 protein.	 To	 compare	 the	distribution	of	

amino	 acids	 quantified	 in	 hydrolysis	 experiments,	 values	 for	 each	 amino	 acid	 were	

square	root	transformed	(√(x+1))	and	used	in	a	factor	analysis	(principal	components)	

to	 reduce	 variables	 into	 significant	 factors	with	 similar	 correlations.	 Tryptophan	 and	

GABA	were	removed	from	the	data	set	prior	to	analysis	because	they	were	present	at	

values	 <	 0.1	 ng	 mg-1	 of	 pollen.	 Factors	 produced	 from	 the	 PCA	 were	 then	 used	 as	

dependent	 variables	 in	 a	 multivariate	 analysis	 of	 variance	 (MANOVA)	 using	 protein	
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weight	 as	 a	 main	 effect.	 The	 total	 free-	 and	 protein-bound	 amino	 acids	 recovered	

following	the	hydrolysis	of	rock	rose	pollen	were	compared	in	a	MANOVA	using	pollen	

weight	as	a	main	effect	and	total	free	amino	acids	and	total	protein-bound	amino	acids	

as	dependent	variables.	

	

2.3	Results	

	

2.3.1	Pre-treatment	regimes:	Estimation	of	protein	content	of	pollen	

Figure	2.1	illustrates	the	impact	of	four	ways	of	pre-treating	pollen	on	the	protein	

content	 recovered	 (estimated	 by	 Bradford	 assay).	 Pre-treatment	 of	 pollen	 with	 a	

methanol	wash	or	mechanical	disruption	significantly	(P<	0.001)	affected	the	amount	of	

protein	 recovered.	 Homogenisation	 of	 pollen	 (no	 wash	 treatment)	 resulted	 in	 the	

highest	protein	return	(6%),	whereas	a	simple	methanol-wash	returned	the	lowest	value	

(0.5%).		

	
Figure	 2.1.	 Estimated	 protein	 concentration	 of	 pollen	 following	 four	 pre-treatments;	
washed	(methanol),	washed	and	homogenised,	untreated,	and	homogenised.	Different	
letters	represent	significant	difference	at	5%	level,	±	standard	error	of	mean.	
	

A

B

B

C
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2.3.2	Efficacy	of	Bradford	assay	with	different	proteins	

Twelve	protein	fractions	were	used	in	an	equivalent	assay	to	compare	binding	

efficiency	to	Bradford	reagent.	Data	revealed	a	significant	(P<	0.05)	difference	between	

measured	 and	 expected	 protein	 content	 of	 different	 isolates	 (Table	 2.1).	 Assay	 of	

sodium	caseinate,	BSA,	and	calcium	caseinate	produced	results	anticipated.	However,	

the	Bradford	assay	significantly	(P<	0.05)	underestimated	protein	concentration	of	all	

other	protein.		

	

	

	

Table	2.1.	Protein	isolates	used	in	a	protein	quantification	assay	using	Bradford	reagent.	
Estimated	percentage	of	protein	is	presented	with	±	standard	error	of	mean.	Expected	
protein	concentrations	are	presented	with	significance	values	from	a	one	sample	non-
parametric	test	comparing	measured	values	to	the	expected	
	

	
	

	

2.3.3	Optimisation	of	pollen	protein	hydrolysis	

The	total	protein-bound	amino	acids	(µg	mg-1)	returned	from	a	hydrolysis	of	BSA	

were	a	function	of	the	amount	of	sample		(Linear	regression,	r2	=	0.842,	,	P<	0.001).	This	

relationship	was	also	observed	for	the	hydrolysate	of	pollen,	but	the	relationship	was	

not	as	strong	(Linear	regression,	r2	=	0.134,	P<	0.001).	The	relative	increase	in	amount	of	

protein-bound	amino	acids	with	weight	of	sample	was	similar	for	low	weights	of	pollen	

Protein isolate Mean	(%)	
± St. Error

Expected	value	
(%) P-value

BSA 109.9	± 4.7 100 0.059
Sodium	caseinate 92.8	± 6.5 99 0.333
Calcium	caseinate 86.4	± 6.3 90 0.114

soy 38.7	± 2.7 95 0.005
Isopro whey 37.7	± 3.0 78 0.005

Egg	white	albumin 31.3	± 2.9 97 0.005
Hemp	protein 29.4	± 3.8 50 0.005

Impact	whey	isolate 27.4	± 1.6	 92 0.005
Pea protein	isolate 20.0	± 1.2 80 0.005

Royal	jelly 18.7	± 1.0 12.5 0.005
Rock	rose	pollen 3.5	± 0.9 14.2 0.005
Brown	rice	protein 2.0	± 1.0 79 0.005
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and	 BSA.	 For	 sample	 weights	 ≥	 1	 mg	 of	 BSA,	 the	 total	 protein	 bound-amino	 acids	

rendered	by	hydrolysis	increased	as	a	function	of	the	sample	size	(P<	0.001),	the	same	

was	not	true	for	pollen	(Figure	2.2).	For	BSA,	the	largest	sample	sizes	tested,	4	and	5	mg,	

yielded	 similar	 concentrations	 of	 protein-bound	 amino	 acids.	 All	 pollen	 samples	

between	1	and	5	mg	returned	similar	amounts	of	protein-bound	amino	acids	 (Figure	

2.2).	

	

For	BSA,	the	mean	total	amino	acids	rendered	by	hydrolysis	ceased	to	change	

between	the	4	and	5	mg	samples.	The	mean	concentration	was	97.5	µg	mg-1,	with	the	

highest	relative	amount	rendered	by	the	hydrolysis	method.	The	expected	value	should	

have	been	close	to	1000	µg	mg-1	from	hydrolysis	of	the	pure	protein.	This	indicated	that	

the	efficiency	of	hydrolysis	 in	 this	assay	was	~9.75%	of	 the	available	protein.	For	 the	

pollen	 samples,	 the	 total	 mean	 amount	 of	 amino	 acids	 (22.7	µg	mg-1)	 rendered	 by	

hydrolysis	 ceased	 to	 change	 for	 samples	≥	1	mg	 (Figure	2.2).	 This	 indicated	 that	 the	

efficiency	of	the	hydrolysis	was	stable	within	the	designated	sample	range.	Assuming	

that	the	hydrolysis	method	worked	with	the	same	level	of	efficiency	for	both	pollen	and	

BSA,	 returning	 ~10%	 of	 the	 protein	 as	 lysate	 when	 the	 amount	 rendered	 as	 lysate	

stabilised,	then	the	total	protein	concentration	of	rock	rose	pollen	should	be	~23.2%.	

Because	 efficiency	 of	 hydrolysis	 for	 pollen	weights	 ≥	 1	mg	was	 stable,	 a	 ‘correction’	

factor	of	10.3	was	applied	to	these	weights.	Efficiency	of	hydrolysis	was	not	stable	for	

low	weights	of	pollen.	We	therefore	developed	separate	multiplication	factors	for	lower	

weights	of	pollen.	The	correction	factors	were	regressed	against	sample	size;	the	best	

fit	to	the	data	was	a	first	order	inverse	function	(Curve	estimation,	r2	=	0.506,	F1,58	=	59.4,	

P<	0.001).	The	equation	of	this	line	(Figure	2.3,	y=14.4074+(4.8282/x))	was	then	used	to	

deduce	a	specific	adjustment	factor	for	a	given	starting	weight	of	pollen,	to	allow	the	

estimation	of	the	protein	concentration	of	the	pollen.		
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Figure	2.3.	Inverse	first	order	line	fitted	to	the	correction	factors	of	low	weights	of	pollen	
(0.1-0.5	mg).	The	correction	factor	for	the	1	mg	weight	is	included	as	a	reference	point	
for	weights	between	0.5	and	1mg.	

	

	

	

Factor	 analysis	 (principal	 components)	 was	 used	 to	 test	 whether	 weight	 of	

sample	 used	 influenced	 the	 distribution	 of	 protein-bound	 and	 free	 amino	 acids	

recovered	from	hydrolysed	pollen.	Factor	analysis	was	applied	to	the	free	and	protein-

bound	amino	acids	for	sample	sizes	between	0.1	-	0.5	mg	(low)	and	separately	to	sample	

sizes	between	1	–	5	mg	(high).	

	

2.3.4	Protein-bound	amino	acids	–	low	weights	

Each	protein-bound	amino	acid	from	low	weights	of	pollen	was	represented	by	

one	of	four	significant	factors	explaining	84%	of	the	variance	in	the	data	(protein	bound	

amino	acids,	 Table	2.2).	 Factor	 1	 covered	 the	 greatest	 variance	of	 the	data	 and	was	

represented	by	positive	correlations	between	4	amino	acids	(asp,	asn,	his	and	met)	and	

a	 negative	 correlation	 with	 ser.	 Factor	 2	 represented	 6	 amino	 acids	 with	 positive	
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correlations	 (leu,	 val,	 phe,	 ile,	 and	 lys)	 with	 pro	 negatively	 correlation.	 Factor	 3	

represented	by	positive	correlations	between	all	5	amino	acids	represented	(glu,	 thr,	

ala,	tyr	and	cys).	The	fourth	factor	only	represented	a	positive	correlation	between	two	

amino	acids	(gly	and	arg).	Pollen	weight	was	responsible	for	a	change	in	the	profile	of	

amino	acids	in	Factors	1	and	3	but	did	not	influence	factors	2	and	4	(Table	2.2,	MANOVA).	

The	distribution	of	amino	acids	from	the	0.5	mg	samples	were	different	to	that	of	the	

0.1	-	0.4	mg	weights	(P<	0.001),	which	were	all	similar	to	each	other.	Each	weight	of	

pollen	produced	a	different	distribution	of	amino	acids,	represented	by	factor	3,	to	at	

least	one	other	weight	(P<	0.05).	

	

2.3.5	Free	amino	acids	–	low	weights	

Free	 amino	 acids	 in	 the	 low	 weights	 of	 pollen	 were	 also	 reduced	 to	 four	

significant	factors,	accounting	for	77.9%	of	the	variance	in	the	data	(free	amino	acids,	

Table	2.2).	Factor	1	represented	positive	correlations	between	9	amino	acids	(asn,	ser,	

his,	 thr,	ala,	tyr,	cys,	phe	and	 lys)	and	represented	the	greatest	variation	 in	the	data.	

Factor	2	was	characterised	by	positive	correlations	between	5	amino	acids	(asp,	leu,	arg,	

val	and	met)	and	a	negative	correlation	between	these	and	glu.	Two	amino	acids	were	

represented	 in	 the	 third	 factor	 (gly	and	pro)	and	only	 ile	 in	 the	 fourth	Factor.	Pollen	

weight	significantly	influenced	the	distribution	of	amino	acids	in	Factor	2	and	4	but	not	

in	Factor	1	and	3	(Table	2.2,	MANOVA).	Distribution	of	amino	acids	in	0.5	mg	samples	

were	different	to	all	other	weights	of	pollen	in	Factor	2	(P<	0.001),	whereas	distribution	

of	amino	acids	represented	in	factor	4	were	similar	in	1	and	5	mg	weights	and	2,	3,	4	and	

5	mg	weights.	
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Table	2.2	PCA	and	MANOVA	for	amino	acid	distribution	in	low	weights	of	pollen	

	
	

2.3.6	Protein-bound	amino	acids	–	higher	weights	

The	distribution	of	amino	acids	 in	high	weights	of	pollen	was	not	the	same	as	

found	previously	for	the	low	weights.	Protein-bound	amino	acids	were	reduced	down	

to	four	significant	factors	(75.9%	of	variance),	(protein	bound	amino	acids,	Table	2.3).	

Factor	1	covered	the	greatest	variation	in	the	data	and	was	characterised	by	positive	

correlations	between	9	amino	acids	(asp,	glu,	asn,	leu,	thr,	tyr,	cys,	val	and	met).	Factor	

2	represented	4	amino	acids	(phe,	ile,	lys	and	pro).	The	third	Factor	was	characterised	

by	three	amino	acids	(gly,	arg	and	ala)	and	the	fourth	being	led	by	strong	correlations	

between	ser	and	his.	Unlike	the	lower	weights	of	pollen,	weight	of	pollen	used	in	the	

higher	weight	experiments	did	not	 influence	the	distribution	of	protein-bound	amino	

acids	in	any	factor	(Table	2.3).			

	

2.3.7	Free	amino	acids	–	higher	weights	

The	distribution	of	 free	amino	acids	 in	 the	 large	sample	sizes	was	 reduced	 to	

three	significant	factors.		The	majority	of	amino	acids	loaded	on	the	first	factor,	which	

covered	most	of	the	variation	in	the	data	(asp,	asn,	ser,	his,	leu,	gly,	thr,	arg,	ala,	tyr,	cys,	

met,	 ile	 and	 pro).	 Factor	 2	 represented	 positive	 correlations	 between	 phe	 and	 lys,	

whereas	 the	 third	 factor	was	 influenced	by	glu	and	val.	Similar	 to	 the	protein-bound	

Protein-bound	amino	acids

Factors

1 2 3 4

Eigenvalue 4.83 4.59 3.49 2.20

Variance	%	 26.8 25.5 19.4 12.2

Amino	acids

Asp 0.777 0.408 0.024 0.231

Glu -0.035 -0.088 0.830 0.050

Asn 0.851 0.458 0.014 -0.069

Ser -0.773 -0.365 0.412 0.141

His 0.795 0.155 0.085 -0.124

Leu 0.441 0.750 0.389 -0.008

Gly 0.589 0.143 0.120 0.690
Thr 0.540 0.233 0.696 -0.184

Arg -0.031 -0.269 -0.043 0.928
Ala 0.382 0.293 0.627 -0.555

Tyr 0.139 0.214 0.755 -0.382

Cys -0.200 0.097 0.842 0.337

Val 0.340 0.800 0.011 -0.239

Met 0.820 0.336 0.234 0.128

Phe 0.232 0.927 0.066 -0.110

Ile 0.355 0.646 -0.013 -0.266

Lys 0.160 0.837 0.302 0.035

Pro -0.485 -0.683 0.384 -0.049

Test	stat	F 21.999	4,35 2.488	4,35 4.252	4,35 0.457	4,35
P	value <0.001 0.061 0.007 0.767

Free	amino	acids

Factors

1 2 3 4

Eigenvalue 6.28 4.50 1.70 1.56

Variance	% 34.9 25.0 9.4 8.6

Amino	acids

Asp 0.009 0.881 0.088 0.415

Glu 0.485 -0.638 -0.341 0.089

Asn 0.914 0.042 0.253 0.026

Ser 0.956 -0.096 0.150 0.047

His 0.704 -0.654 -0.117 -0.081

Leu 0.471 0.589 0.062 0.491

Gly 0.236 0.182 0.688 0.439

Thr 0.853 0.186 0.219 0.122

Arg 0.322 0.729 0.188 0.005

Ala 0.671 -0.415 0.226 0.277

Tyr 0.884 -0.008 -0.16 -0.051

Cys 0.549 0.004 0.343 -0.156

Val 0.428 0.763 0.218 0.034

Met -0.212 0.779 -0.105 0.200

Phe 0.695 0.318 0.017 -0.034

Ile -0.102 0.249 -0.109 0.849
Lys 0.653 -0.623 -0.118 -0.083

Pro -0.076 -0.136 -0.792 0.210

Test	stat	F 1.238	4,35 20.421	4,35 0.207	4,35 3.477	4,35
P	value 0.313 <0.001 0.933 0.017
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amino	acids,	weight	of	pollen	did	not	change	the	distribution	of	free	amino	acids	in	the	

higher	weight	experiments	(free	amino	acids,	Table	2.3	MANOVA).	

	

Table	2.3.	PCA	and	MANOVA	for	amino	acid	distribution	in	high	weights	of	pollen	

	
	

	

	

Relevant	multiplication	factors	were	applied	to	the	total	protein-bound	amino	

acids	for	each	weight	of	pollen	(Table	2.4).	The	protein-bound	amino	acids	were	then	

plotted	against	the	free	amino	acids	in	a	bivariate	plot	(Figure	2.4).	Low	weights	of	pollen	

produced	 similar	 concentrations	 of	 free	 amino	 acids,	 and	 applying	 relevant	

multiplication	 factors,	 we	 produced	 similar	 concentrations	 of	 protein-bound	 amino	

acids.	Higher	weights	of	pollen	also	produced	similar	concentrations	of	free	and	protein-

bound	amino	acids.	

	

	

	

Protein-bound	amino acids

Factors

1 2 3 4

Eigenvalue 5.957 3.696 2.742 1.703

Variance	% 33.1 20.5 15.2 9.5

Amino	acids

Asp 0.617 0.28 0.442 0.178

Glu 0.708 -0.020 0.002 0.111

Asn 0.835 0.256 -0.05 -0.384

Ser -0.153 0.17 0.155 0.820
His 0.246 -0.033 -0.048 0.835
Leu 0.697 0.559 0.042 0.147

Gly 0.323 -0.219 0.798 0.094

Thr 0.849 0.112 -0.042 0.123

Arg 0.035 -0.104 0.904 0.088

Ala 0.492 0.081 -0.761 0.086

Tyr 0.615 -0.006 -0.581 0.050

Cys 0.837 0.376 0.092 -0.126

Val 0.616 0.496 -0.259 0.107

Met 0.802 0.480 -0.062 0.061

Phe 0.469 0.811 -0.190 0.112

Ile 0.453 0.827 -0.149 0.113

Lys 0.428 0.712 -0.076 0.106

Pro 0.171 -0.815 0.033 0.098

Test	stat	F 1.18	4,95 0.224	4,95 0.014	4,95 1.447	4,95
P	value 0.325 0.924 1 0.225

Free	amino	acids

Factors

1 2 3

Eigenvalue 8.603 3.616 1.437

Variance	% 47.8 20.1 8.0

Amino	acids

Asp 0.892 0.201 -0.205

Glu -0.102 0.545 0.559
Asn 0.762 0.549 0.149

Ser 0.861 0.438 0.175

His 0.849 0.242 -0.073

Leu 0.753 0.529 0.073

Gly 0.822 0.06 0.152

Thr 0.751 0.486 0.198

Arg 0.737 0.563 -0.076

Ala 0.728 0.033 0.447

Tyr 0.814 0.182 0.103

Cys 0.810 0.467 0.067

Val 0.168 0.029 0.757
Met 0.698 0.626 -0.055

Phe 0.553 0.643 0.099

Ile 0.676 0.477 -0.031

Lys 0.165 0.771 0.027

Pro 0.501 0.093 -0.388

Test	stat	F 0.431	4,95 0.118	4,95 0.473	4,95
P	value 0.786 0.976 0.755
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Table	2.4	Multiplication	factors	for	protein-bound	amino	acids	for	each	weight	of	pollen	
used	in	hydrolysis	experiments	

	
	

	

	
	

	
Figure	2.4.	Bivariate	plot	of	mean	total	protein-bound	(after	correction	factor)	and	mean	
total	free	amino	acids	recovered	following	hydrolysis	of	a	range	of	weights	of	pollen.		
	

	

pollen	
weight	(mg)

correction	
factor

0.1 62.60
0.2 38.25
0.3 30.13
0.4 26.07
0.5 23.63
1 10.26
2 10.26
3 10.26
4 10.26
5 10.26
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2.4	Discussion	

	

2.4.1	Estimation	of	protein	concentration	from	amino	acids	in	pollen	hydrolysate	

Our	 analyses	 indicated	 that	 1	mg	 represents	 the	minimum	 amount	 of	 pollen	

needed	to	reliably	estimate	protein	concentration	after	acid	hydrolysis.	Even	though	the	

results	were	 variable,	 the	 total	 amino	 acid/protein	 concentration	 returned	 from	 the	

lysate	of	low	sample	sizes	(0.1	-	0.5	mg)	still	represented	a	function	of	the	amount	of	

pollen	 used	 in	 the	 hydrolysis.	 As	 pollen	 sample	 size	 increased,	 hydrolysis	 was	more	

complete,	delivering	more	reliable	values	(Figure	2.2).		

	

Previously,	 studies	which	employed	Bradford,	micro-Kjeldahl,	and	combustion	

methods	used	quantities	of	pollen	between	1	and	1000	mg	(Roulston	et	al.,	2000),	far	

greater	than	is	usually	achievable	when	hand-collecting	pollen	from	individual	plants.	

Both	micro-Kjeldahl	 digestion	 and	 combustion	methods	 rely	 on	 reducing	 proteins	 to	

absolute	nitrogen	and	back-calculating	these	values	with	fixed	correction	factors	to	give	

a	 protein	 concentration	 (Roulston	 et	 al.,	 2000).	 The	 standard	 factor	 for	 estimating	

protein	from	nitrogen	concentrations	is	6.25.	Our	method	indicated	a	correction	factor	

of	10.3	was	more	applicable	to	weights	of	pollen	≥	1	mg.	Both	Kjeldahl	and	combustion	

methods	are	 limited	 in	that	crude	protein	concentration	can	be	calculated.	However,	

these	methods	do	not	provide	information	about	the	amino	acid	composition	of	protein	

in	 pollen.	 The	method	 developed	 in	 this	 chapter	 provides	 a	 partial	 hydrolysis,	 from	

which	total	protein	content	is	estimated	based	on	the	total	amino	acids	rendered	versus	

an	 expected	 value	 of	 a	 pure	 protein	 (BSA).	 The	 efficiency	 of	 the	 hydrolysis	 can	 be	

improved	by	increasing	the	ratio	between	protein	and	acid	from	1	:	100	to	1	:		400	(mg	

:	µl)	(Appendix	B).	However,	using	higher	volumes	of	acid	is	unsafe,	increasing	the	risk	

of	the	seal	on	tubes	breaking	under	pressure	while	in	the	microwave.	

	

	Development	of	current	methodolgy	to	allow	the	reliable	nutritional	study	of	

pollen	 is	of	considerable	 importance,	 though	the	collection	of	sufficient	quantities	of	

pollen	 to	 allow	 appropriate	 analysis	 remains	 a	 recurrent	 problem	 to	 be	 addressed.	

Common	practice	is	to	exploit	pollen	that	is	collected	on	the	corbicula,	or	‘pollen	basket’,	

of	foraging	bees	(Cook	et	al.,	2003;	Gonzalez-Paramas	et	al.,	2006;	Höcherl	et	al.,	2012;	
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Nicolson	 and	 Human,	 2013;	 Vanderplanck	 et	 al.,	 2014;	 Somme	 et	 al.,	 2015).	 Yet,	

exploration	 of	 free	 amino	 acid	 and	 carbohydrate	 concentration	 of	 such	 pollen	 is	

erroneous	because	up	to	40%	of	the	dry	weight	of	such	pollen	pellets	may	contain	sugar	

and	amino	acids	from	regurgitated	nectar	(Roulston	and	Cane,	2000).	Researchers	who	

elect	to	analyse	hand-collected	pollen	are	invariably	limited	by	the	amount	of	sample	

that	can	be	collected,	so	pollen	is	commonly	‘pooled’	to	provide	sufficient	amounts	for	

analysis	(Weiner	et	al.,	2010;	Human	and	Nicolson,	2013).	Pooling	hand-collected	pollen	

masks	any	 information	on	variation	within	populations	and	makes	 collecting	enough	

material	for	sufficient	biological	replicates	problematic.		In	addition,	replication	can	be	

difficult	if	composite	samples	have	to	be	made	in	order	to	obtain	sufficient	samples	for	

analysis.	Our	method	allows	 reliable	quantification	of	 free	and	protein-bound	amino	

acids	in	samples	as	low	as	1	mg;	this	is	100-	and	1000-fold	lower	than	that	needed	to	

carry-out	reliable	combustion	and	micro-Kjeldahl	approaches,	respectively	(Roulston	et	

al.,	2000).	

	

Hydrolysis	 of	 protein	 followed	 by	 amino	 acid	 analysis	 is	 a	 commonly	 used	

technique.	The	major	advantage	of	hydrolysing	proteins	and	quantifying	amino	acids	

over	other	methods	of	protein	quantification	(Bradford	assay,	Kjeldahl	or	combustion	

etc.)	is	that	while	crude	protein	concentration	can	still	be	estimated,	amino	acids	can	be	

quantified	 thus	 providing	 essential	 information	 on	 nutritive	 value.	 Quantification	 of	

amino	acids	in	pollen	is	useful	when	assessing	the	quality	of	pollen	as	a	food	source	for	

pollinators,	 assuming	 greater	 nutritive	 value	 with	 a	 greater	 proportion	 of	 essential	

amino	acids	to	non-essential	(Wathelet,	1999).	Microwave-assisted	acid	hydrolysis	has	

greatly	 improved	 the	 speed	 at	 which	 hydrolysis	 can	 be	 performed,	 reducing	 the		

standard	 method	 (6M	 HCl	 boiled	 at	 110°C	 for	 24	 h)	 by	 between	 1	 and	 30	 min	

(Fountoulakis	and	Lahm,	1998).	Microwave-assisted	hydrolysis	is	also	beneficial	in	that	

it	allows	samples	to	be	hydrolysed	in	batches,	making	treatments	more	comparable.	

	

Currently,	 there	 is	 no	 protein	 hydrolysis	 method	 that	 allows	 successful	

quantification	of	all	protein-bound	amino	acids.	Fountoulakis	and	Lahm	(1998)	highlight	

that	under	the	conditions	of	acid	hydrolysis,	amino	acids	themselves	can	be	hydrolysed	

and	so	correction	factors	need	to	be	applied	for	accurate	quantification	and	estimation	
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of	overall	protein	content.	Sulphur	amino	acids	(methionine	and	cysteine)	benefit	from	

oxidation	 prior	 to	 hydrolysis.	 However,	 oxidation	 reduces	 the	measureable	 tyrosine	

(Bech-Andersen	et	al.,	1990).	Tryptophan	is	entirely	destroyed	by	acid	hydrolysis	and	so	

samples	 must	 be	 subject	 to	 alkaline	 hydrolysis	 in	 a	 separate	 representative	 sample	

(Fountoulakis	and	Lahm,	1998),	while	asparagine	and	glutamine	are	readily	deaminated	

to	aspartic	acid	and	glutamic	acid,	respectively.		

	

Previous	publications	have	suggested	methods	for	correcting	amino	acid	values	

measured	in	hydrolysate	claiming	to	compensate	for	losses	in	amino	acids	during	acid	

hydrolysis.	Robel	and	Crane	(1972)	hydrolysed	a	purified	protein	(lysozyme)	after	4,	24,	

50,	 72	and	141	h	hydrolysis.	 Plotting	 the	amino	acid	 residues	detected	at	 each	 time	

point,	they	proposed	a	non-linear	least-squares	equation	to	account	for	hydrolysis	and	

loss	 rates	 for	 individual	 amino	 acids.	 A	 similar	 approach	 by	 Darragh	 and	 colleagues	

(1996)	also	applied	a	non-linear	least-squares	equation	but	they	highlighted	the	need	

for	sample	replication	and	raised	the	issue	that	unknown	contaminants	may	influence	

hydrolysis	efficiency.	They	suggested	a	formula	correcting	for	the	time	needed	to	cleave	

amino	acids	from	proteins,	the	time	at	which	amino	acids	are	available	for	detection	and	

the	 time	amino	acids	are	 stable	before	acid	degradation.	 It	has	been	 suggested	 that	

separate	 correction	 factors	 for	 individual	 amino	 acids	 are	 necessary	 based	 on	 the	

different	individual	rates	of	degradation	during	hydrolysis	(Rees,	1946;	Darragh	et	al.,	

1996;	Bunka	et	al.,	2009).	Increasing	the	duration	of	hydrolysis	can	also	increase	amino	

acid	 loss	 (Simpson	et	al.,	1976;	Bunka	et	al.,	2009).	Hydrolysis	efficiency	may	also	be	

influenced	 by	 protein	 structure;	 complex	 proteins	 require	 longer	 hydrolysis	 times	

(Blackburn,	1978).	However,	a	balance	must	be	made	between	how	long	to	hydrolyse	

and	 how	 much	 amino	 acid	 loss	 is	 acceptable.	 Glutamine	 and	 tryptophan	 were	 not	

detected	in	lysate	of	any	hydrolysed	pollen	samples.	There	is	evidence	that	glutamine	is	

rapidly	 deaminated	 to	 glutamic	 acid	 under	 hydrolysis	 conditions	 (Salo-väänänen	 and	

Koivistoinen,	1996).	Tryptophan	is	well	documented	as	being	entirely	destroyed	by	acid	

hydrolysis	(Blackburn,	1978).	

	

It	 is	 interesting	 that	 the	 efficiency	of	 hydrolysis	 of	 BSA	 improves	with	overall	

amount	of	protein	and	acid	when	the	ratio	between	the	two	components	is	maintained.	
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The	 same	 relationship	 was	 not	 observed	 when	 hydrolysing	 proteins	 in	 pollen.	 One	

reason	for	this	could	be	that	pollen	is	a	very	different	substrate	to	that	of	pure	protein.	

Another	is	that	there	simply	is	no	more	protein	available	in	the	pollen	to	be	hydrolysed	

and	so	 the	 rate	of	hydrolysis	plateaus.	Protein-bound	amino	acids	of	pollen	are	held	

within	the	pollen	exine	and	are	also	expected	to	be	considerably	lower	in	concentration	

than	 in	 a	 pure	 protein.	 We	 found	 that	 efficiency	 of	 hydrolysis	 of	 BSA	 was	 greatly	

improved	when	the	ratio	of	protein	to	acid	was	closer	to	1	:	400	(mg	:	µl)	(Appendix	B).	

However,	using	this	volume	of	acid	becomes	unsafe:	tubes	began	to	burst	open	during	

microwave	 irradiation.	Our	 goal	was	 to	 develop	 a	method	 that	 is	 cost	 effective	 and	

convenient	to	ecologists,	and	avoid	the	requirement	for	specialist	equipment	which	is	

invariably	costly	and	unsuitable	for	high	throughput	experiments.		

	

2.4.2	Protein	quantification	using	a	Bradford	assay	depends	on	solubility	of	the	

protein	

In	 this	 study	 a	 variety	 of	 pollen	 pre-treatments	 were	 explored	 to	 enquire	

whether	 this	 would	 influence	 protein/reagent	 binding.	 We	 found	 that	 using	 the	

regularly-employed	Bradford	assay	(Bradford,	1976)	resulted	in	the	underestimation	of	

protein	concentration	in	all	treatments	employed.	The	highest	concentration	returned	

was	for	pollen	that	was	homogenised,	but	this	value	was	still	significantly	short	of	the	

expected	 value.	 This	 suggests	 that	 Bradford	 reagent	 is	 not	 suitable	 for	 accurate	

quantification	of	protein	in	small	sample	sizes	of	pollen.	The	solubility	of	the	proteins	

within	pollen	may	influence	the	binding	efficiency	of	protein	to	the	Bradford	reagent,	as	

we	discovered	that	pollen	washed	 in	methanol	showed	a	significant	 reduction	 in	 the	

estimated	protein	concentration	as	compared	to	the	untreated	controls.	This	suggests	

that	either	proteins	are	being	removed	from	the	pollenkitt	and	so	are	no	longer	available	

for	protein-dye	binding,	or	that	the	Bradford	reagent	is	actually	binding	to	free	amino	

acids	present	 in	 the	pollenkitt,	 and	 thus	not	actually	 representing	 the	protein	of	 the	

pollen.	 It	 is	 also	 well	 documented	 that	 Bradford	 reagent	 readily	 binds	 to	 the	 basic	

structures	of	 amino	acids.	A	protein-dye	 complex	 is	 formed	when	positively	 charged	

amino	 acids	 (arginine,	 histidine	 and	 lysine)	 mix	 with	 the	 acidic	 dye	 (Schaffner	 and	

Weissmann,	1973:	Tal	et	al.,	1985:	Syorvy	and	Hodny,	1991),	and	so	proteins	 lacking	

amino	 acids	 with	 basic	 side	 chains	 may	 be	 less	 likely	 to	 be	 represented	 in	 the	
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colorimetric	reading.	One	method	that	could	improve	the	accuracy	of	using	a	Bradford	

assay	to	quantify	protein	concentration	of	pollen	 is	to	use	a	pollen	of	known	protein	

concentration	 to	 calibrate	 the	 standard	 curve	 (Roulston	et	al.,	 2000;	Yeamans	et	al.,	

2014)	instead	of	a	vastly	different	protein	‘standard’	such	as	BSA	(Roulston	et	al.,	2000;	

Yeamans	et	al.,	2014).	

	 		

2.4.3	Free	amino	acids	are	reliably	measured	in	pollen	weights	≥	1	mg	

It	is	important	to	understand	the	profile	of	amino	acids	within	the	pollenkitt	as	

pollinators	 may	 use	 olfactory	 and	 gustatory	 cues	 provided	 to	 make	 assessments	 of	

pollen	quality	based	on	either	pre-	or	post-ingestive	feedback	(Dobson,	1987).	Using	the	

method	described	by	Cook	and	co-workers	(2003),	free	amino	acids	were	washed	from	

pollen	 and	 not	 exposed	 to	 hydrolysis.	 Pollen	 weights	 ≥	 1	 mg	 produced	 similar	

concentrations	of	free	amino	acids.	However,	there	was	significantly	greater	variation	

in	smaller	sample	sizes,	so	we	recommend	using	larger	sample	sizes	if	sufficient	amounts	

of	pollen	can	be	collected.	An	extraction	buffer	preventing	any	further	amino	acid	loss	

may	provide	more	reliable	extraction,	but	this	would	need	to	be	tested.		

	

2.4.4	Conclusion	

Using	HPLC	to	analyse	a	lysate	of	pollen	proteins	allowed	the	determination	of	

total	protein	content	of	pollen	more	accurately	than	using	a	Bradford	assay.	The	highest	

measured	 protein	 concentration	 for	 rock	 rose	 pollen	 was	 ~6%	 whereas	 quantifying	

protein	bound	amino	acids	in	the	lysate	produced	~23%	protein.	We	demonstrated	that	

free	amino	acids	and	protein-bound	amino	acids	can	be	reliably	quantified	from	pollen	

weights	≥	1	mg.	Weights	of	pollen	lower	than	this	are	prone	to	result	in	unacceptable	

degrees	of	error.	
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3.0	Chapter	3:	Analysis	of	nectar	from	low-volume	flowers:	a	comparison	

of	collection	methods	for	carbohydrates	and	free	amino	acids		

	

3.1	Introduction	

Nectar	 is	 produced	 by	 flowering	 plants	 as	 a	 nutritional	 reward	 for	 animal	

pollinators.	 Pollinating	 animals	 learn	 to	 associate	 the	 multimodal	 cues	 provided	 by	

flowers	(colour,	size,	odour	etc.)	with	nectar	so	that	they	can	identify	other	conspecific	

flowers	to	obtain	nectar.	Pollinator	fidelity	to	the	flowers	of	a	particular	plant	species	

results	in	successful	pollination.	The	carbohydrate	and	amino	acid	properties	of	nectar	

have	a	great	influence	on	visitation	rates	and	nectar	preferences	by	insect	pollinators	

(Alm	 et	 al.,	 1990;	 Chitka	 and	 Shürkens,	 2001;	 Simcock	 et	 al.,	 2014)	 and	 how	 well	

pollinators	will	form	lasting	associations	between	floral	features	and	a	nectar	reward.		

	

Nectar	is	a	water-based	secretion	mainly	composed	of	a	broad	range	(7%	to	70%	

w/w)	of	 simple	 sugars	 (glucose,	 fructose	and	 sucrose)	 (Nicolson	et	al.,	 2007).	Amino	

acids	 are	 the	 second	 most	 abundant	 nutrients	 in	 nectar	 (Baker	 and	 Baker,	 1973;	

Petanidou	 et	 al.,	 2006),	 yet	 a	 thousand	 times	 less	 concentrated	 than	 sugars	

(Gottsberger,	1984;	Petanidou	et	al.,	2006).	For	pollinators	that	do	not	eat	pollen,	nectar	

is	 an	 important	 source	of	dietary	amino	acids	 (Baker	and	Baker,	 1973;	Baker,	 1977).	

Amino	acids	have	also	been	shown	to	affect	pollinator	behaviour	(Inouye	and	Waller,	

1984;	Gardener	and	Gillman,	2002;	Simcock,	2014;	Hendricksma	et	al.	2014).	The	study	

of	nectar	chemistry	has	focused	primarily	on	carbohydrates	and	amino	acids	and	other	

nectar	constituents	have	been	less	well	studied	(Nepi,	2014).		

	

The	 study	 of	 nectar	 chemistry	 has	 been	 subject	 to	 some	 limitations.	 Many	

flowers	 are	 very	 small	 and/or	 produce	 very	 low	 volumes	 of	 nectar	 (~1	 µl).	 	 Plants	

naturally	vary	in	the	volumes	of	nectar	secreted	(<	1	µl	to	>	20	ml),	so	most	studies	have	

focussed	on	those	that	produce	greater	volumes	due	to	the	ease	of	sample	collection.	

There	are	a	number	of	commonly	used	methods	for	nectar	collection.	Raw	nectar	can	

be	extracted	from	flowers	using	microcapillary	tubes.	This	method	involves	inserting	the	

capillary	tube	into	the	flower	and	precisely	placing	the	tube	over	the	nectaries.	Nectar	

is	drawn	 into	 the	 tube	by	capilliary	action.	This	method	allows	 the	volume	of	nectar	
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available	in	the	flower	to	be	measured	directly	and	the	nectar	can	be	expelled	from	the	

tube	to	allow	further	analysis	(Corbet,	2003;	Morrant	et	al.,	2009).	Alternatively,	filter	

paper	can	be	cut	into	wicks	and	used	to	absorb	nectar	from	flowers.	To	allow	further	

analysis	of	nectar,	the	filter	paper	must	be	soaked	in	water.	This	method	is	limited	in	

that	estimations	of	the	volume	of	nectar	extracted	from	flowers	cannot	be	calculated	

(McKenna	and	Thomson,	1988;	Kearns	and	Inouye,	1993;	Morrant	et	al.,	2009).	A	further	

method	to	extract	nectar	from	flowers,	referred	to	as	‘wash’	is	to	excise	the	flower	from	

the	plant	 and	 immerse	 the	 floral	 tissue	 in	 a	 specific	 volume	of	water	 (Käpylä,	 1978;	

Grunfeld	et	al.,	1989;	Morrant	et	al.,	2009).	It	has	also	been	reported	that	nectar	can	be	

collected	by	‘rinsing’	a	known	volume	of	water	directly	over	the	nectaries	and	collecting	

the	nectar-water	solution	for	analysis	(Núñez,	1977;	Mallick,	2000;	Morrant	et	al.,	2009).	

	

A	 study	 comparing	 nectar-collecting	 techniques	 in	 low-volume	 flowers	

(Eucalyptus	 spp.)	 reported	 that	 sampling	method	 (microcapillary	 tubes,	 filter	 paper,	

washing	 and	 rinsing)	 influenced	 the	 ratio	 and	 overall	 mean	 concentration	 of	

carbohydrates	 recovered	 from	 flowers	 (Morrant	 et	 al.,	 2009).	 The	 authors	

recommended	washing	and	rinsing	flowers	(immersion	or	addition	of	2	ml	of	water	to	a	

flower	 to	 dilute	 and	 extract	 nectar)	 to	 estimate	 quantities	 available	 to	 pollinators	

because	these	methods	recovered	a	higher	concentration	of	carbohydrates.	However,	

it	is	not	clear	whether	these	rinse/wash	methods	provide	a	realistic	measure	of	the	total	

concentration	of	carbohydrates	available	to	a	flower	visitor.	Samples	collected	by	rinsing	

or	washing	 could	 include	 dried	 carbohydrates	 on	 the	 flower	 surfaces	which	 are	 not	

obtainable	by	a	flower	visitor.	Furthermore,	a	major	problem	with	the	use	of	rinsing	or	

washing	is	that	pollen	could	contaminate	the	samples	leading	to	an	overestimation	of	

solutes	 including	 amino	 acids	 or	 toxins	 (Gottsberger	 et	 al.	 1984;	 Gottsberger	 et	 al.,	

1990).	

	

	The	 experiments	 in	 this	 chapter	 report	 the	 use	 of	 high	 performance	 ion	

chromatography	(HPIC)	and	uHPLC	(Ultra	High	Performance	Liquid	Chromatography)	to	

compare	 and	 identify	 how	 different	 methods	 of	 nectar	 collection	 may	 affect	 the	

carbohydrate	and	amino	acid	compositions	of	low-volume	nectar	flowers,	using	Calluna	

vulgaris	as	a	model	species.	
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3.2	Methods	

	

3.2.1	Nectar	collection	

Five	methods	of	nectar	collection	were	compared	for	sugar	and	amino	acid	recovery	

using	flowers	collected	from	Calluna	vulgaris	L.	(Ericaceae).	Plants	of	the	same	age	and	

condition	were	bought	at	a	garden	centre	in	Newcastle	Upon	Tyne,	United	Kingdom.	To	

reduce	variation	based	on	flower	age,	plant	and	time	of	sampling	(Nicolson	et	al.,	2007),	

four	flowers	of	similar	maturity	(open	and	showing	no	signs	of	senescence)	were	taken	

from	each	of	the	three	plants	at	the	same	time	for	each	collection	method.	Nectar	was	

sampled	 from	 these	 flowers	 using	 the	 following	 methods:	 (1)	 microcapillary	 tubes	

(McKenna	and	Thomson,	1988;	Kearns	and	Inouye,	1993;	Corbet,	2003;	Morrant	et	al.,	

2009);	(2)	filter	paper	wicks	(McKenna	and	Thomson,	1988;	Kearns	and	Inouye,	1993;	

Morrant	et	al.,	2009);	(3)	washing	in	2	ml	of	water	(Morrant	et	al.,	2009);	(4)	rinsing	with	

2	ml	of	water	(Morrant	et	al.,	2009);	and	(5)	rinsing	with	2	µl	of	water.	The	first	four	

methods	were	compared	by	Morrant	and	colleagues	(2009)	 in	terms	of	suitability	for	

sugar	recovery	in	low-nectar	flowers,	in	addition	here,	a	fifth	method	has	been	explored	

as	suitable	for	sugar	and	amino	acid	recovery.	The	details	of	each	collection	method	are	

given	below.	

	

(1) Microcapillary	 tubes	 (raw	 nectar):	 This	 method	 allows	 the	 estimation	 of	 the	

volume	of	nectar	obtained	from	individual	flowers.	In	the	experiments	decribed	

in	 this	 chapter,	 nectar	 was	 sampled	 from	 12	 individual	 flowers	 using	 1	 µl	

microcapillary	 tubes	 (Hirschmann	 Laborgeräte	 GmbH	 &	 Co.	 KG,	 Eberstadt,	

Germany).	Nectar	was	drawn	into	the	tubes	by	capillary	action.	This	was	done	to	

avoid	damage	 to	 floral	 tissue	and	 to	prevent	uptake	of	pollen	grains	 into	 the	

sample.	The	volume	of	withdrawn	nectar	was	quantified	by	measuring	the	length	

of	the	tube	(mm)	and	calculating	the	proportion	of	the	tube	that	was	filled	with	

nectar.	Each	nectar	sample	was	diluted	with	de-ionised	uHPLC	gradient	grade	

water	 (Fisher	 Scientific	UK	 Ltd.,	 Loughborough,	United	Kingdom)	 to	meet	 the	

minimal	sample	volume	requirements	for	HPIC	and	uHPLC	analysis	(uHPLC	amino	

acid	dilution:	10	µl	requiring	1	 :	65	dilution;	HPIC	carbohydrate	dilution:	30	µl	

requiring	1	:	2,000	dilution).		
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(2) Filter	paper:	Nectar	was	sampled	from	12	flowers	using	filter	paper	wicks,	sensu	

Morrant	and	colleagues	(2009).	Twelve	strips	of	Fisherbrand	QL100	filter	paper	

(Fisher	Scientific	UK	Ltd.,	Loughborough,	United	Kingdom)	with	dimensions	(5	x	

42	mm,	tapered	to	1	mm	width	tip	at	one	end)	were	cut	using	sterile	blades.	

Using	 sterile	 forceps,	 the	 edges	 of	 one	 filter	 paper	 strip	were	 applied	 to	 the	

nectaries	of	one	flower.	Each	strip	was	then	placed	in	a	sealed	sterile	vial	(20	ml)	

containing	2	ml	of	de-ionised	uHPLC	gradient	grade	water,	soaked	for	15	min	and	

then	agitated	for	1	min.		

(3) Wash	2	ml:	Nectar	was	sampled	from	12	flowers	using	a	washing	method	sensu	

Morrant	and	colleagues	(2009).	Each	flower	was	cut	from	the	plant	and	placed	

in	a	sealed	sterile	vial	(20	ml)	containing	2	ml	of	de-ionised	uHPLC	gradient	grade	

water.	The	vial	was	agitated	for	1	min.		

(4) Rinse	2	ml:	Nectar	was	sampled	from	12	flowers	using	a	rinsing	method	sensu	

Morrant	and	colleagues	(2009).	A	flower	was	inverted	over	a	2	ml	sterile	vial	and	

four	successive	rinses	(0.5	ml)	of	de-ionised	uHPLC	gradient	grade	water	were	

expelled	over	the	floral	nectaries	using	a	sterile	pipette.	It	was	not	necessary	to	

remove	the	flowers	from	the	plant	for	this	method.	

(5) Rinse	2	µl	 (micro-rinse):	Nectar	was	 sampled	 from	12	 flowers.	Using	a	 sterile	

pipette,	2	µl	of	de-ionised	uHPLC	gradient	grade	water	was	expelled	into	a	flower	

over	the	nectaries.	The	water	was	left	to	remain	in	the	flower	for	1	min	then	the	

nectar-water	solution	was	drawn	into	a	10	µl	microcapillary	tube	(Hirschmann	

Laborgeräte	GmbH	&	Co.	KG,	Eberstadt,	Germany).	This	was	done	with	care	to	

avoid	damaging	floral	tissue,	preventing	uptake	of	pollen	grains	into	the	sample.	

No	floral	tissue	was	removed	prior	to	rinsing.	The	volume	of	withdrawn	nectar-

water	solution	was	quantified	by	calculating	the	proportion	of	the	tube	that	was	

filled	 with	 solution.	 Each	 sample	 was	 diluted	 further	 with	 de-ionised	 uHPLC	

gradient	grade	water	to	meet	minimal	sample	volume	requirements	for	HPIC	and	

uHPLC	analysis	(see	above).	It	was	not	necessary	to	remove	the	flowers	from	the	

plant	for	this	method.	The	2	µl	volume	of	water	added	to	the	nectary	was	chosen	

because	it	was	a	sufficient-sized	volume	to	cover	the	nectary	but	not	the	anthers.	

(6) Filter	 paper	 control:	 To	 determine	 if	 filter	 paper	 leached	 amino	 acid	

contaminants	into	the	nectar	sample,	ten	filter	paper	wicks	of	similar	type	and	
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dimensions	as	used	in	the	above	method	were	dipped	using	sterile	forceps	in	ten	

sterile	2	ml	microcentrifuge	tubes	containing	1	µl	of	de-ionised	uHPLC	gradient	

grade	water.	This	procedure	was	designed	to	emulate	nectar	extraction	from	12	

flowers.	Each	strip	was	then	placed	in	a	sealed	sterile	vial	(20	ml)	containing	2	ml	

of	de-ionised	uHPLC	gradient	grade	water,	soaked	for	15	mins	and	then	agitated	

for	1	min.	

	

When	 using	 filter	 paper,	 washing	 or	 rinsing	methods,	 separate	 estimates	 of	 the	

average	standing	crop	(nectar	volume	per	flower)	had	to	be	made	so	that	the	mass	of	

solutes	in	nectar	per	flower	could	be	calculated.	To	obtain	an	average	standing	crop,	the	

volume	 of	 nectar	 in	 12	 flowers	was	 recorded	 and	 averaged	 using	 the	microcapillary	

method.	In	addition,	previous	studies	have	used	distilled	water	to	dissolve	nectar	solutes	

from	filter	paper	or	wash	and	rinse	nectar	from	flowers	(McKenna	and	Thomson,	1988;	

Mallick,	2000;	Petanidou	et	al.,	2006;	Morrant	et	al.,	2009).	 In	 the	present	study	de-

ionised	uHPLC	grade	water	was	used	which	 is	 free	 from	amino	acids	and	other	 ionic	

contamination.		

		

3.2.2	Nectar	sample	preparation	and	analysis		

	

3.2.2.1	Filtration	

For	the	analysis	of	sugars	via	high	performance	ion	chromatography	(HPIC),	30	

µl	of	sample	volume	was	required	while	for	uHPLC	amino	acid	analysis,	10	µl	of	sample	

was	 required.	 Some	nectar	 collection	methods	produced	enough	 sample	 volume	 for	

analysis	(e.g.	filter	paper,	wash	2	ml,	rinse	2	ml	methods	and	filter	paper	control).	These	

samples	were	filtered	using	a	sterile	0.45	µm	4	mm	nylon	Whatman	Puradisc	syringe	

filter	 to	 remove	 particulates	 and	 plant	material	 (Note:	 filtering	 caused	 the	 loss	 of	 a	

significant	amount	of	sample).	Low	volume	(<	100	µl)	samples	were	not	filtered.	

	

3.2.2.2	Centrifugation	

Microcapillary	and	rinse	2	µl	samples	were	diluted	2,000-fold	for	sugar	analysis	

and	65-fold	for	amino	acid	analysis	using	de-ionised	uHPLC	gradient	grade	water.	These	

dilution	 factors	 were	 derived	 by	 diluting	 nectar	 so	 that	 sugar	 and	 amino	 acid	
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concentrations	matched	those	of	the	sugar	and	amino	acid	standards	used	to	calibrate	

the	chromatography	instruments.	Low-volume	samples	were	centrifuged	for	10	min	at	

13,249	x	g	to	remove	soluble	sugars	and	amino	acids	(supernatant)	from	any	residual	

plant	material.		

	

3.2.3	Carbohydrate	analysis	

The	 concentrations	 of	 glucose,	 fructose,	 sucrose,	 sorbitol	 and	mannitol	were	

measured	by	HPIC.	The	HPIC	analysis	was	conducted	by	injecting	20	µl	of	each	sample	

via	a	Rheodyne	valve	onto	a	Carbopac	PA-100	column	(Dionex,	Sunnyvale,	California,	

USA)	fitted	with	a	Dionex	Carbopac	PA-100	BioLC	guard	(4	x	50	mm).	Approximately	30	

µl	 of	 sample	 was	 inserted	 into	 an	 analysis	 vial	 to	 ensure	 optimal	 immersion	 of	 the	

autosampler	 syringe.	 Sample	 components	were	 eluted	 from	 the	 column	 isocratically	

using	100	mM	NaOH	(de-gassed	by	helium	gas)	employing	a	flow	rate	of	1	ml	min-1	for	

10	min	 at	 room	 temperature	 (RT).	 The	 chromatographic	 profile	 was	 recorded	 using	

pulsed	 amperometric	 detection	 with	 an	 ED40	 electrochemical	 detector	 (Dionex,	

Sunnyvale,	 California,	 USA).	 Elution	 profiles	 were	 analysed	 using	 Chromeleon	 v.6.8	

software	(Thermo	Fisher	Scientific	Inc.,	MA,	USA)	which	automatically	calculated	solute	

concentrations	 based	 on	 a	 range	 (different	 dilutions)	 of	 pre-programmed	 reference	

curves	for	each	sugar	and/or	sugar	alcohol.	The	HPIC	was	calibrated	at	least	twice	every	

24	h	period	for	glucose,	fructose,	sucrose,	sorbitol	and	mannitol	by	injecting	calibration	

standards	 (Appendix	 D).	 Standard	 solutions	were	made	 from	 the	 solid	 form	 of	 each	

sugar	 available	 (Sigma-Aldrich,	 St.	 Louis,	 MO,	 USA).	 The	 dual	 calibration	 each	 day	

ensured	accuracy	of	peak	 identification	 in	the	event	of	daily	drift	 in	elution	times	for	

sugars.	The	optimal	dilution	of	nectar	 :	water	 required	 for	 this	HPIC	method	was	1	 :	

2,000,	requiring	approximately	0.05	µl	of	raw	nectar	(to	make	100	µl	of	solution).		

	

3.2.4	Amino	acid	analysis	

The	 concentrations	of	 21	 amino	acids	 in	nectar	were	measured	using	uHPLC:	

aspartic	acid	 (asp),	glutamic	acid	 (glu),	asparagine	(asn),	 serine	 (ser),	glutamine	(gln),	

histidine	(his),	glycine	(gly),	threonine	(thr),	arginine	(arg),	alanine	(ala),	tyrosine	(tyr),	

cysteine	 (cys),	 valine	 (val),	 methionine	 (met),	 gamma-aminobutyric	 acid	 (GABA),	

tryptophan	 (trp),	 phenylalanine	 (phe),	 isoleucine	 (ile),	 leucine	 (leu),	 lysine	 (lys)	 and	
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proline	 (pro).	 The	 method	 employed	 for	 amino	 acid	 quantification	 with	 uHPLC	 is	

described	in	Section	2.2.6.	The	optimal	dilution	of	nectar	:	water	required	for	this	HPLC	

method	was	1	:	65;	requiring	at	least	0.25	µl	of	raw	nectar	(to	make	16.25	µl	of	solution).		

	

3.2.5	Derivation	of	values	

After	each	compound	was	identified	in	each	chromatogram,	values	produced	by	

the	Chromeleon	software	were	scaled	up	to	their	original	concentrations	in	nectar	based	

on	how	much	the	nectar	was	diluted	by	each	method.	Microcapillary	method:	the	raw	

nectar	extracted	directly	from	the	flower	was	diluted	to	make	enough	sample	for	the	

chromatography	 instruments.	 Therefore,	 the	 measured	 sugar/amino	 acid	

concentrations	 were	multiplied	 by	 the	 dilution	 factor	 used	 to	 dilute	 the	 raw	 nectar	

before	analysis	(2,000	for	sugars	and	65	for	amino	acids).	Filter	paper,	wash	and	rinse	2	

ml	methods:	these	methods	yielded	volumes	of	2,000	µl.	To	estimate	how	much	the	raw	

nectar	was	diluted,	the	total	amount	of	water	added	to	extract	the	nectar	(2,000	µl)	was	

divided	by	the	average	standing	crop	per	flower.		The	mean	standing	crop	per	flower	

recovered	using	microcapillary	tubes	was	0.5	µl	(±	0.06	SE).	The	standing	crop	was	used	

as	an	estimate	of	how	much	nectar	was	in	the	flower	at	the	time	of	sampling.		

	

	

	

	

Equation	1:	

"	 = 	%& 	

Where:	D	=	final	dilution	factor;	W	=	amount	of	water	(µl)	added	to	flower	during	nectar	

sampling;	 S	 =	 standing	 crop	 (µl).	 The	 final	 dilution	 factor	 was	 multiplied	 by	 the	

Chromeleon	 sample	measurement	 for	 each	 sugar/amino	 acid	 to	 obtain	 approximate	

raw	nectar	values.	

	

The	2	µl	rinse	method:	in	this	method,	the	raw	nectar	was	first	diluted	by	adding	

2	µl	to	the	flower	to	extract	the	nectar.	The	mean	recovery	of	nectar	solution	from	this	

treatment	was	2	µl	(±	0.1	SE).	The	nectar	solution	was	then	diluted	a	second	time	to	

increase	 the	 sample	 volume	 for	 optimal	 machine	 operation.	 Therefore,	 calculations	
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were	as	follows:	the	2	µl	added	to	the	flower	was	divided	by	the	average	standing	crop	

per	flower	(similar	to	above).	This	value	was	then	multiplied	by	the	initial	dilution	factor	

used	to	prepare	the	samples	for	the	machine	(1	:	2,000	for	sugars	and	1	:	65	for	amino	

acids).		

	

Equation	2:	

"	 = 	 %& 	×(	

	

Where:	 D,	 W	 and	 S	 as	 for	 Equation	 1;	 I	 =	 initial	 dilution	 factor	 (the	 value	 for	

carbohydrates	was	2000	and	 for	 amino	acids	 it	was	65).	 The	 final	 dilution	 factor	 (D)	

derived	from	this	calculation	was	multiplied	by	the	Chromeleon	sample	measurement	

to	obtain	approximate	raw	nectar	values	for	each	sugar/amino	acid.	

	

3.2.6	Statisitical	analysis	

Statistical	analysis	was	carried	out	using	SPSS	(Version	2.1).	Glucose	and	fructose	

were	significantly	more	concentrated	in	the	nectar	of	this	plant	than	sucrose,	sorbitol	

and	mannitol	and	so	were	analysed	separately.	Mannitol	was	only	present	in	samples	

from	the	2	ml	wash	method	so	was	excluded	from	the	analysis.	All	sugar	values	were	log	

transformed	(ln(x	+	1))	prior	to	analysis.	Carbohydrate	concentration	was	analysed	using	

a	2-way	analysis	of	variance	(ANOVA)	with	sampling	method	and	carbohydrate	as	main	

effects.		Sidak’s	post	hoc	tests	were	used	for	pairwise	comparisons.		

	

Essential	 amino	 acids	 (arginine,	 threonine,	 phenylalanine,	 isoleucine,	 leucine,	

lysine,	methionine,	valine,	histidine,	tryptophan)	and	non-essential	amino	acids	(proline,	

aspartic	acid,	alanine,	cysteine,	glutamic	acid,	glycine,	serine,	tyrosine,	glutamine,	and	

GABA)	 were	 analysed	 separately.	 Proline	 was	 analysed	 independently	 because	 the	

dataset	contained	extreme	outliers.	Total	amino	acid	concentrations	(excluding	proline)	

were	 log	 transformed	 (ln(x	 +	 1));	 concentrations	 of	 proline	 were	 square	 root	

transformed	(√(x+1)).	Total	amino	acids	were	analysed	in	a	2-way	ANOVA	with	method	

and	amino	acid	group	as	main	effects.	Data	were	subject	to	one-way	ANOVA	to	test	the	

effect	of	method	on	proline	concentration.	Sidak’s	post	hoc	tests	were	used	for	pairwise	

comparisons.	
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Differences	 in	 the	distribution	of	 individual	amino	acids	 (except	proline)	were	

explored	using	a	factor	analysis	(principle	components	analysis)	for	all	5	nectar	collection	

methods.	The	factor	scores	produced	by	the	factor	analysis	were	compared	with	a	one-

way	ANOVA	using	nectar	collection	method	as	the	main	effect.		

	

	

	

3.3	Results	

	

3.3.1	Carbohydrates	

Glucose	 and	 fructose	 were	 the	 most	 abundant	 sugars	 found	 in	 nectar,	 with	

sucrose,	 sorbitol	 and	mannitol	 100-fold	 less	 concentrated	 than	 glucose	 and	 fructose	

(Figure	 3.1,	 Table	 3.1).	 Sampling	 method	 had	 a	 strong	 effect	 on	 the	 estimated	

concentrations	 of	 carbohydrates.	 Glucose,	 fructose,	 sucrose	 and	 sorbitol	 were	

significantly	(P<	0.001)	higher	in	concentration	in	the	rinse	2	ml	and	wash	2	ml	samples	

than	in	the	microcapillary,	filter	paper	and	rinse	2	µl	methods.	Recovery	of	glucose	and	

fructose	did	not	depend	on	sampling	method,	but	the	method	adopted	did	significantly	

(sugar*method	P<	0.001)	affect	the	proportions	of	sorbitol	and	sucrose	recovered.		
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Figure	3.1.	The	mean	concentrations	of	glucose	and	fructose	(a)	and	sucrose,	sorbitol	
and	mannitol	(b)	from	nectar	collected	by	five	methods:	MC	=	microcapillary;	FP	=	filter	
paper;	MR	=	rinse	2	µl;	R	=	rinse	2	ml	and	W	=	wash	2	ml.	Letters	denote	significant	
differences	between	methods	(P<	0.05).	Bars	represent	standard	error	of	mean.		
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Table	3.1.	Mean	(±	SE)	sugar	concentration	(mM)	in	samples	from	five	nectar	collection	
methods		

	
	

3.3.2	Amino	acids	

Amino	 acids	 were	 present	 at	 concentrations	 that	 were	 orders	 of	 magnitude	

lower	than	glucose	and	fructose	in	nectar	(Figure	3.2,	Table	3.2).	Figure	3.2	shows	that	

the	total	average	essential	and	non-essential	amino	acid	concentrations	depended	on	

the	method	of	sampling	(amino	acids*method	P<	0.001).	The	microcapillary	method,	

which	it	was	predicted	would	be	the	most	reliable	indicator	of	the	actual	values	of	the	

solutes	 found	 in	nectar,	 returned	 the	 lowest	 total	 amino	acid	 concentrations	 (Figure	

3.2).		The	filter	paper,	rinse	2	ml	and	wash	2	ml	recovered	total	average	values	for	both	

essential	and	non-essential	amino	acids	that	were	10	-	50	times	greater	than	the	rinse	2	

µl	and	microcapillary	methods.		

	

Proline	 quantification	 from	 these	 samples	 seemed	 to	 vary	 greatly	 and	 it	 is	

possible	 that	 there	was	 contamination	 of	 this	 peak	 (from	non-amino	 acid	 solutes	 in	

nectar).	In	general,	the	concentration	of	proline	was	greater	than	any	other	amino	acid	

(Figure	3.2,	Table	3.2)	but	there	was	large	variation	between	samples.	The	filter	paper	

method	 recovered	 more	 ‘proline’	 (P<	 0.001)	 in	 the	 sample	 than	 any	 of	 the	 other	

methods.		

Sugars

Method
Glucose Fructose Sucrose Sorbitol Mannitol

Mean	(±SE) Mean	(±SE) Mean	(±SE) Mean	(±SE) Mean	(±SE)

Microcapillary 20±10 20±10 0.2±0.2 0.9±0.06 0±0

Filter	paper 30±10 30±10 0.2±0.2 2±0.2 0±0

Rinse	2µl 30±10 30±10 0.03±0.03 1±0.09 0±0

Rinse	2ml 590±110 590±110 3.7±0.5 0.5±0.2 0±0

Wash	2ml 320±14 320±140 4.5±2.2 0.2±0.2 0.2±0.2
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Figure	 3.2	 (a):	 mean	 percentage	 contribution	 of	 all	 amino	 acids	 to	 nectar	 samples	
collected	by	five	methods:	MC	=	microcapillary;	FP	=	filter	paper;	MR	=	rinse	2	µl;	R	=	
rinse	2	ml	and	W	=	wash	2	ml.	Note:	the	dominance	of	proline	in	the	microcapillary,	filter	
paper	and	rinse	2	µl	methods.	(b)	The	mean	concentration	of	proline	(µmol/ml)	in	nectar	
samples	collected	by	five	methods.	Columns	bearing	same	 letter	are	not	significantly	
different	at	the	5%	level.	
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Figure	3.3	(a):	Mean	(±	SE)	total	essential	and	non-essential	amino	acid	concentration	in	
nectar	samples	collected	by	five	methods:	MC	=	microcapillary;	FP	=	filter	paper;	MR	=	
rinse	2	µl;	R	=	rinse	2	ml	and	W	=	wash	2	ml.	The	filter	paper,	rinse	2	ml	and	wash	2	ml	
methods	recovered	a	significantly	higher	concentration	of	essential	than	non-essential	
amino	 acids	whereas	 the	microcapillary	 and	 rinse	 2	 µl	methods	 recovered	 relatively	
equal	concentrations	of	both.	Letters	denote	significant	differences	between	methods	
and	 amino	 acids	 (P<	 0.05).	 Analysis	 was	 done	 using	 Sidak	 post-hoc	 tests.	 (b)	Mean	
percentage	contribution	of	essential	amino	acids	to	nectar	samples	collected	by	the	five	
methods	employed.	(c)	The	mean	percentage	contribution	of	non-essential	amino	acids	
to	nectar	samples	collected	by	the	five	methods	employed.		
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Table	3.2:	Mean	(±SE)	amino	acid	concentration	in	samples	from	five	nectar	collection	
methods	and	a	filter	paper	control	
	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Amino	Acids
Microcapillary
(µmol/ml)

Filter	paper	
(µmol/ml)

Rinse	2µl	
(µmol/ml)

Wash	2ml	
(µmol/ml)

Rinse	2ml	
(µmol/ml)

Filter	paper	
control	
(µmol/ml)

Aspartic	acid 0.01±<0.01 0.12±0.04 0.01±<0.01 0.23±0.03 0.19±0.03 0

Glutamic	 acid 1.60±0.38 17.35±6.81 15.51±2.83 26.02±6.55 34.68±5.31 <0.01±<0.01

Asparagine <0.01±<0.01 <0.01±<0.01 <0.01±<0.01 <0.01±<0.01 <0.01±<0.01 0

Serine 0.02±<0.01 0.55±0.25 0.10±0.03 1.78±0.60 2.52±0.94 <0.01±<0.01

Glutamine 0	 0	 0 <0.01±<0.01 <0.01±<0.01 0

Histidine 0.03±0.01 0 0.15±0.08 0.81±0.24 1.64±0.51 <0.01±<0.01

Glycine 0.01±<0.01 0.06±0.32 0.05±0.01 0.77±0.09 0.71±0.09 <0.01±<0.01

Threonine 0.01±<0.01 0 0.03±0.02 0.18±0.09 0.16±0.09 0

Arginine 1.12±0.27 17.82±10.66 5.07±1.68 17.55±0.95 18.56±2.33 <0.01±<0.01

Alanine 0 0 0 0.16±0.05 0.16±0.04 <0.01±<0.01

GABA 0.01±<0.01 0.62±0.02 0.03±<0.01 0.25±0.04 0.28±0.04 <0.01±<0.01

Tyrosine 0.08±<0.01 5.98±0.04 0.35±0.01 0.14±0.09 0.32±0.02 0

Cysteine 0.02±0.01 0.22±0.15 0.04±0.01 0.25±0.08 0.13±0.06 <0.01±<0.01

Valine 0.18±0.08 43.78±0.96 2.62±0.04 0.40±0.12 0.78±0.13 0.01±<0.01

Methionine 0.18±0.04 0 0 35.27±0.59 47.67±0.17 0

Tryptophan 0 0 0 0 0 <0.01±<0.01

Phenylalanine 0.06±0.02 3.64±0.14 0.45±0.13 4.00±1.48 3.90±1.00 <0.01±<0.01

Isoleucine 0.03±0.02 5.46±1.06 0.04±0.04 0.46±0.26 0.01±0.01 <0.01±<0.01

Leucine 0.02±0.01 0 0.16±0.10 2.78±0.83 0.33±0.16 <0.01±<0.01

Lysine 0.28±0.11 18.76±5.84 2.02±0.89 38.56±5.74 28.87±3.26 <0.01±<0.01

Proline 11.73±3.51 812.23±159.27 109.19±38.24 7.18±1.28 8.86±0.82 <0.01±<0.01
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To	compare	how	nectar	sampling	method	influenced	the	available	amino	acids	

that	 could	be	quantified,	 each	 amino	acid	was	 applied	 to	 a	 factor	 analysis	 (principal	

components).	Amino	acids	were	reduced	to	six	principal	components	(F1	–	6)	accounting	

for	83%	of	the	variation	in	the	data	set	(Table	3.3).	The	majority	of	amino	acids	were	

significantly	 positively	 correlated	 with	 the	 first	 four	 factors	 with	 the	 exception	 of	

cysteine	(F5)	and	asparagine	(F6).	Sampling	method	influenced	the	amino	acid	profiles	

represented	in	the	factor	analysis	for	F1,	F2,	and	F4.	Importantly,	the	microcapillary	and	

the	rinse	2	µl	methods	did	not	significantly	differ	in	their	amino	acid	profiles	(Table	3.3).	

However,	the	filter	paper,	rinse	2	ml	and	wash	2	ml	treatments	exhibited	significantly	

different	amino	acid	profiles	compared	to	the	microcapillary	method	(Table	3.3,	Figure	

3.5).	Specifically,	the	filter	paper	method	contained	a	higher	proportion	of	val,	ile	and	

tyr	(F1)	than	the	microcapillary	method	(Figure	4	(b)	and	(c)).	The	rinse	2	ml	and	wash	2	

ml	 methods	 contained	 higher	 proportions	 of	met,	 ser	 and	 lys	 (F2	 and	 F4)	 than	 the	

microcapillary	method	(Figure	4	(b)	and	(c)).	Some	amino	acids	did	not	differ	depending	

on	the	method,	and	those	were	represented	by	F3,	F5,	and	F6	(Table	3.3).		

	

To	 identify	 whether	 the	 filter	 paper	 method	 introduced	 amino	 acid	

contamination,	a	simple	rinse	of	the	filter	paper	was	analysed	by	uHPLC.	Filter	paper	

added	 very	 low	 amounts	 (0.1%	 of	 nectar	 concentration)	 of	 15	 of	 the	 amino	 acids	

measured	(Table	3.2).	
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Table	 3.3:	 Factor	 analysis	 of	 amino	 acids.	 Top	 panel:	 eigenvalues	 and	 percentage	
variance	for	six	factors	(F1	–	6)	extracted	from	all	data	(excluding	proline).	Values	for	
each	amino	acid	represent	Pearson	correlation	coefficients	(r)	with	each	factor.	Amino	
acids	significantly	associated	with	each	factor	are	denoted	with	asterisks:	*P<	0.05;	**P<	
0.01;	***P<	0.001.	Middle	panel:	one-way	ANOVA	comparing	methods.	Bottom	panel:	
Sidak	post-hoc	pairwise	comparisons	of	each	method	against	the	microcapillary	method.		

	
	

	

	

	

Factor

1 2 3 4 5 6

Eigenvalue 6.16 3.84 1.82 1.51 1.33 1.06

%	variance 19.9 18.1 17.2 10.9 9.8 7.1

Amino	acids
Aspartic	acid 0.086 0.735*** 0.343** 0.097 0.089 -0.069
Glutamic	acid -0.016 0.187 0.209 0.741*** 0.313* 0.169
Asparagine -0.100 -0.013 0.106 -0.026 0.016 0.966***
Serine -0.036 0.130 0.875*** 0.286* 0.183 -0.121
Glutamine -0.130 0.396** 0.790*** -0.060 0.058 -0.227
Histidine -0.130 0.239 0.818*** 0.127 -0.023 0.326**
Glycine -0.225 0.807*** 0.239* 0.208 0.227 -0.038
Threonine -0.106 0.073 0.813*** 0.229 0.032 0.269*
Arginine 0.108 0.056 0.096 0.309* 0.845*** 0.175
Alanine -0.215 0.474*** 0.083 0.600*** 0.038 -0.146
GABA 0.889*** 0.302* -0.095 0.231 0.073 -0.022
Tyrosine 0.959*** -0.155 -0.085 0.012 0.107 -0.031
Cysteine 0.103 0.175 0.059 -0.003 0.914*** -0.128
Valine 0.957*** -0.176 -0.087 -0.032 0.123 -0.037
Methionine -0.230 0.743*** 0.141 0.476*** 0.017 0.145
Phenylalanine 0.301* 0.186 0.372** 0.679*** 0.031 -0.143
Isoleucine 0.881*** -0.049 -0.060 -0.130 -0.063 -0.060
Leucine -0.126 0.524*** 0.325 -0.219 0.284* -0.086
Lysine 0.172 0.841*** 0.023 0.219 -0.022 0.081
1-way	ANOVA

Test	stat	(Fdf) 2094,59 31.24,59 1.324,59 4.014,59 0.694,59 1.564,59

P	value <0.01 <0.01 0.27 0.01 0.60 0.20

Post-hoc	tests

Filter	paper <0.01 0.25 1.00 0.90 0.93 1.00

Rinse	2	µl 0.98 1.00 1.00 1.00 1.00 0.96

Rinse2	ml 0.01 <0.01 0.71 <0.01 1.00 0.37

Wash	2	ml 0.01 <0.01 0.73 0.87 0.84 1.00
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3.4	Discussion	

The	 method	 used	 to	 collect	 nectar	 considerably	 affected	 the	 mean	 total	

carbohydrate	(glucose	and	fructose)	and	amino	acid	concentrations	measured	by	HPIC	

and	HPLC	in	nectar	from	C.	vulgaris.	Samples	obtained	using	the	wash	2	ml	and	rinse	2	

ml	methods	reported	much	higher	carbohydrate	concentrations	than	the	microcapillary,	

filter	paper	and	rinse	2	µl	methods.	Amino	acid	concentrations	followed	a	similar	pattern	

with	the	wash	2	ml,	rinse	2	ml	and	filter	paper	methods	containing	higher	concentrations	

and	significantly	different	amino	acid	composition	compared	to	the	microcapillary	and	

rinse	2	µl	methods.	

	

Matching	the	data	presented	in	this	chapter,	Morrant	and	colleagues	(2009)	and	

Petit	and	colleagues	(2011)	found	that	nectar	collected	using	microcapillaries	returned	

lower	 measurements	 of	 carbohydrates	 than	 nectar	 collected	 using	 rinse	 or	 wash	

methods.	This	is	probably	because	washing	dissolves	carbohydrates	that	have	dried	on	

the	inner	petal	surfaces.	These	dried	carbohydrates	are	unlikely	to	be	available	to	floral	

visitors.	Moreover,	most	insect	pollinators	have	very	short	visits	to	flowers,	in	order	to	

maximize	 collection	 rates	 when	 competing	 with	 other	 pollinators.	 For	 example,	

bumblebees	are	reported	to	spend	between	0.5	and	3	s	per	flower	on	a	variety	of	plant	

species	 (time	 spent	 foraging	was	 correlated	with	 corolla	 length)	 (Inouye,	1980).	 Two	

bumblebee	species’	nectar	removal	rates	have	also	been	estimated	to	be	between	0.3	-	

0.4	µl	s-1	in	two	high-nectar	producing	plant	species	(Graham	and	Jones,	1996).	For	this	

reason,	rapid	licking	or	sucking	near	the	nectary	is	unlikely	to	involve	much	ingestion	of	

solutes	present	in	crystallised	form	across	the	entire	flower	surface.	The	microcapillary	

method	recovers	only	nectar	around	the	nectary	(liquid	and	crystallised	carbohydrates,	

amino	acids,	etc.).		

	

The	microcapillary	method	exhibits	the	lowest	risk	of	contamination	from	non-

nectar	sources	such	as	pollen.	Pollen	is	a	common	source	of	contamination	of	nectar	by	

free	amino	acids	(Gottsberger	et	al.,	1990).	Contamination	of	the	microcapillary	samples	

happens	 less	 frequently	 because	 the	 microcapillary	 tubes	 are	 narrow	 and	 can	 be	

positioned	more	 directly	 to	 the	 nectary.	 However,	 the	microcapillary	method	 is	 not	

always	effective	in	extracting	nectar	from	flowers	with	low-nectar	volumes	because	the	
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nectar	around	the	nectaries	may	be	too	viscous	to	be	removed	by	capillary	action.	Thus,	

other	methods	for	nectar	collection	are	required	for	low	nectar	volume	flowers.		

	

Of	all	the	methods	in	our	study,	the	rinse	2	µl	method	returned	the	most	similar	

results	 to	 the	 microcapillary	 method.	 The	 rinse	 2	 µl	 method	 recovered	 the	 same	

carbohydrate	 concentrations	 as	 the	microcapillary	method	 and	 a	 similar	 amino	 acid	

profile	(albeit	a	higher	mean	total	of	amino	acids).	Like	the	microcapillary	method,	the	

rinse	2	µl	method	 recovers	mainly	nectar	 around	 the	nectary	 (liquid	and	 crystallised	

solutes)	as	this	is	a	sufficient	volume	of	water	to	cover	only	the	nectary	of	C.	vulgaris.	In	

addition,	contamination	was	kept	to	a	minimum	since	the	pipette	tips	and	microcapillary	

tubes	used	in	this	method	were	narrow,	and	so	contact	with	anthers	and	other	floral	

parts	were	reduced.	Techniques	that	emulate	the	microcapillary	method	allow	for	easier	

comparison	 between	 low-	 and	 high-nectar	 volume	 flowers	where	 the	microcapillary	

method	is	most	commonly	used.	The	rinse	2	µl	method	is	the	next	best	method,	besides	

the	microcapillary	method,	for	carbohydrate	and	amino	acid	recovery	from	low-nectar	

flowers.			

	

Other	studies	have	suggested	that	filter	paper	is	useful	in	extracting	nectar	from	

low-nectar-flowers	 (McKenna	 and	 Thomson,	 1988;	 Petanidou	 et	 al.,	 2006).	 In	 these	

experiments,	the	filter	paper	method	returned	similar	carbohydrate	concentrations	to	

the	microcapillary	method	and	may	be	a	suitable	method	if	carbohydrates	are	the	sole	

purpose	 of	 investigation.	 However,	 in	 comparison	 to	 carbohydrates,	 filter	 papers	

worked	less	well	for	reliably	measuring	amino	acids.	Significantly	higher	concentrations	

of	 amino	 acids	 (particularly	 essential	 amino	 acids)	were	 reported	 in	 the	 filter	 paper	

samples,	 and	 the	 amino	 acid	 composition	 was	 significantly	 different	 to	 that	 of	 the	

microcapillary	method.	It	is	probable	that	this	difference	arises	from	contamination	by	

pollen.	Filter	paper	wicks	can	easily	collect	pollen;	when	they	come	into	contact	with	the	

nectary,	they	most	likely	touch	the	surrounding	flower	(especially	when	the	flowers	are	

very	small	such	as	in	C.	vulgaris).	Therefore,	it	is	not	recommended	to	use	the	filter	paper	

method	to	analyse	any	nectar	solutes	other	than	carbohydrates	due	to	the	risk	of	sample	

contamination.	
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The	wash	2	ml	and	rinse	2	ml	methods	recovered	significantly	higher	mean	total	

concentrations	of	carbohydrates	and	amino	acids	than	the	microcapillary	method,	and	

the	 proportion	 of	 amino	 acids	 recovered	 from	 the	 samples	 was	 affected	 by	 these	

methods.	In	terms	of	carbohydrates,	these	findings	are	similar	to	that	of	Morrant	and	

colleagues	 (2009)	 and	 Petit	 and	 colleagues	 (2011),	 where	 these	 methods	 returned	

higher	values	for	carbohydrates	on	average.	The	wash	2	ml	and	rinse	2	ml	methods	cover	

the	entire	floral	structure	in	water	and,	in	the	case	of	the	wash	2	ml	method,	the	entire	

flower	 and	 cut	 stem	 are	 immersed	 and	 agitated	 in	 water,	 which	 is	 then	 analysed.	

Possible	contaminants	may	include	vascular	fluid	(from	damaged	floral	tissue),	cellular	

fluid	(de-ionised	water	may	cause	leaching	of	carbohydrates	from	the	flower’s	cells	as	a	

result	of	osmotic	pressure),	crystallised	nectar	or	pollen.	Phloem	carbohydrates	consist	

mainly	of	sucrose	(Fukumorita	et	al.,	1982;	Pate	et	al.,	1985;	Lohaus	et	al.,	2014).	It	is	

thought	that	sucrose	is	hydrolysed	to	glucose	and	fructose	in	the	nectary	by	invertase	

prior	 to	 or	 during	 nectar	 secretion	 (Pate	et	 al.,	 1985).	 If	 phloem	 contents	 leak	 from	

damaged	floral	tissue	(i.e.	cut	stem,	etc.)	then	one	would	expect	an	increased	sucrose	

concentration	 in	 the	nectar	 sample.	The	nectar	of	our	model	 species	almost	entirely	

consisted	of	glucose	and	fructose	but	there	were	slightly	raised	levels	of	sucrose	in	the	

wash	2	ml	and	rinse	2	ml	methods.	This	may	indicate	minor	contamination	by	phloem	

sap	but	does	not	explain	the	significantly	higher	concentrations	of	glucose	and	fructose	

in	the	wash	2	ml	and	rinse	2	ml	methods	compared	to	the	other	three	methods.		These	

values	are	probably	inflated	due	to	contamination	of	wash	2	ml	and	rinse	2	ml	samples	

by	crystallised	carbohydrates,	or	because	of	back-calculation	errors	that	overestimate	

the	amount	present	in	the	sample	due	to	the	large	wash	volume.		

	

The	wash	2	ml	and	rinse	2	ml	methods	also	affected	the	amount	and	composition	

of	 amino	 acids.	 For	 example,	 methionine,	 serine,	 and	 lysine	 were	 present	 in	 high	

amounts.	Gottsberger	and	colleagues	(1990)	found	that	damaging	flowers	altered	the	

amino	acid	profile	of	nectar,	particularly	in	terms	of	asparagine.	It	is	likely	that,	if	amino	

acid	 leakage	 occurred	 from	 the	 phloem,	 the	 amino	 acids	 involved	would	 be	 species	

specific.	Amino	acid	concentrations	in	phloem	have	been	measured	in	the	region	of	121	

-	300	mM	for	plants	 like	alfalfa	and	spinach,	and	cytosolic	concentrations	have	been	

found	 to	 be	 121	 mM	 (Girousse	 et	 al,	 1996;	 Riens	 et	 al,	 1991).	 These	 values	 are	
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approximately	2,000	times	more	concentrated	than	the	amino	acids	found	in	our	nectar	

samples.	 Given	 the	 low	 concentrations	 of	 amino	 acids	 in	 nectar	 in	 our	model	 plant	

species	versus	 that	 reported	 in	 phloem	 for	 other	 species,	 it	would	 take	only	 a	 small	

quantity	 of	 leaked	 cellular	 or	 vascular	 fluid	 to	 significantly	 alter	 nectar	 amino	 acid	

composition.	It	is	possible	that	amino	acids	are	also	present	at	higher	concentrations	in	

the	wash	2	ml	and	rinse	2	ml	samples	because	they	were	obtained	 from	nectar	 that	

dried	across	the	floral	surface.	The	greatest	source	of	amino	acid	contamination	in	these	

methods,	however,	is	pollen.	The	amount	of	contamination	caused	by	pollen	in	nectar	

probably	does	not	reflect	what	floral	visitors	retrieve	when	they	visit	for	nectar.	While	

one	could	remove	anthers	with	tweezers	prior	to	sampling,	this	runs	the	risk	of	vascular	

fluid	 leaking	 into	 the	 sample.	 Sealing	 the	 cut	 surface	with	wax	 or	 surgical	 glue	may	

prevent	fluid	leakage	(Morrant	et	al.,	2009)	but	would	be	extremely	time	consuming	and	

difficult	to	accomplish	with	small	flowers.			

	

There	is	no	available	information	on	which	amino	acids	are	transported	from	the	

phloem	into	nectar	and	this	is	likely	to	be	species	specific	due	to	the	varying	nature	of	

nectar	amino	acid	content	between	plant	species	(Baker,	1977).	It	is	clear	from	this	study	

that	the	wash	2	ml	and	rinse	2	ml	methods	do	not	emulate	nectar	extraction	methods	

by	most	insect	visitors.	Further	research	is	needed	to	elucidate	the	relationship	between	

cellular	and	vascular	carbohydrate	or	amino	acid	content	and	nectar	secretion	so	that	

the	high	variation	between	nectar	sampling	methods	may	be	more	easily	understood.	

When	 analysing	 nectar	 for	 amino	 acids	 it	 is	 important	 to	 reduce	 environmental	

contamination	of	samples.	For	example,	proline	values	for	some	samples	were	erratic,	

particularly	 in	the	filter	paper	method.	However,	no	amino	acids	were	found	to	have	

leached	 from	 the	 filter	paper	 itself.	 Pollen	 can	be	a	 source	of	proline	 contamination	

(Gottsberger	et	al.,	1990)	but	the	filter	paper	is	less	likely	to	be	contaminated	with	pollen	

compared	to	the	wash	2	ml	or	rinse	2	ml	methods.	Contamination	reduction	in	nectar	

analysis	is	critically	important	as	amino	acids	are	low	in	concentration	in	nectar	but	are	

widespread	in	the	environment.	

	

There	 are	 drawbacks	 associated	 with	 different	 nectar	 collection	 methods	

because	 their	 efficacy	 is	 influenced	 by	 floral	 morphology,	 nectar	 characteristics,	
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sampling	 regime,	 nectar	 volume	 and	 the	 intended	 chemical	 analysis	 (Bolten	 and	

Feinsinger,	1978;	Kearns	and	Inouye,	1993;	Lloyd	et	al.,	2002;	Morrant	et	al.,	2009).	This	

study	 demonstrated	 that	 nectar	 carbohydrate	 and	 amino	 acid	 recovery	 from	 low-

volume	flowers	differs	significantly	depending	on	collection	method.	There	is	no	perfect	

method	of	nectar	extraction	from	low-volume	flowers	because	nectar	can	be	viscous,	

preventing	uptake	by	microcapillary	tubes	and	the	original	nectar	volume	may	need	to	

be	estimated	if	using	a	rinse	method.	However,	microcapillaries,	a	micro-rinse	(rinse	2	

µl)	or	filter	paper	can	provide	reliable	methods	of	nectar	extraction	for	carbohydrate	

analyses.		Only	microcapillary	or	micro-rinse	methods	are	suitable	when	amino	acids	are	

to	be	quantified.		
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4.0	Chapter	4:	Impacts	of	ozone	on	growth	and/or	yield	components:	are	

they	a	surrogate	for	impacts	on	the	quality	of	pollen?		

	

4.1	Introduction	

Ozone	 (O3)	 is	 a	 phytotoxic	 gas	 that	 is	 directly	 responsible	 for	 global	 losses	 in	

agricultural	productivity	amounting	to	~$26	billion	per	annum	(Avnery	et	al.,	2011a)	and	

the	situation	is	expected	to	worsen	with	predicted	losses	amounting	to	a	value	of	~$35	

billion	p.a.	by	 the	year	2030	 (Avnery	et	al.,	 2011b).	Many	 crop	plants	 are	negatively	

affected	 by	 present-day	 ground-level	 O3	 concentrations,	 with	 impacts	 varying	 in	 a	

species-specific	manner	from	transient	visible	symptoms	of	‘injury’	to	substantive	losses	

in	 yield	 (Lefohn,	 1991).	A	 commonly-reported	 symptom	of	 ozone-induced	 impacts	 is	

visible	 injury	 to	 foliage	 (Vollenweider	 et	 al.,	 2003).	 It	 can	 be	 reasoned	 that	 foliage	

harvested	and	sold	fresh	may	be	subject	to	economic	losses	under	such	circumstances,	

but	if	visible	injuries	were	the	only	symptom	present	in	a	root	crop,	then	the	detrimental	

effect	would	be	minimal	(Ashmore,	2005).	Indeed,	it	is	generally	argued	that	measuring	

visible	injury	to	leaf	tissue	is	not	a	reliable	measure	of	plant	sensitivity	to	the	pollutant,	

and	represents	no	more	than	a	reaction	to	the	pollutant	at	the	cellular	level	(Ashmore	

and	Davison,	1996;	Davison	and	Barnes,	1998).		

	

Visible	 injury	 is	 only	 one	 of	 many	 physical	 impacts	 of	 exposure	 to	

environmentally-relevant	 levels	 of	O3.	 The	 phytotoxicity	 of	 this	 pollutant	 is	 primarily	

caused	 by	 the	 dissolution	 of	 the	 gas	 in	 the	 mesophyll	 cell	 walls	 bounding	 the	 sub-

stomatal	cavity	following	uptake	via	open	stomata	(Turcsanyi	et	al.,	2000)	which	initiates	

an	oxidative	cascade	resulting	in	enhanced	levels	of	maintenance	respiration,	changes	

in	the	distribution	of	assimilate	and	reduced	photosynthetic	activity	(Barnes	et	al.,	1999;	

Burkey	 et	 al.	 2012).	 In	 crop	 plants	 this	 is	 ultimately	 manifested	 in	 reduced	 yield	

(Ashmore,	2005).		

	

Plant	species	vary	in	their	sensitivity	to	environmentally-relevant	levels	of	O3	and	

responses	within-species	 (i.e.	between	cultivars	or	varieties	of	 the	same	species)	can	

also	show	significant	variation	(Barnes	et	al.,	1990;	Barnes	et	al.	1997;	Lyons	et	al.,	1997;	

Burkey	and	Carter	2009;	Saitanis	et	al.,	2014).	For	a	domesticated	crop	plant	the	most	
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detrimental	impact	that	O3	exposure	could	exert	would	be	a	reduction	in	yield.	When	

studying	the	impacts	of	O3	on	plants	a	variety	of	parameters	are	often	measured	as	key	

performance-related	 indicators.	 In	this	study	we	question	which	of	these	parameters	

are	 relevant	 to	 the	 assessment	 of	 O3	 impacts,	 and	 explore	whether	 any	 commonly-

related	measures	of	‘ozone	sensitivity’	relate	to	impacts	on	parameters	associated	with	

plant-pollinator	interactions	(including	the	free	amino	acid,	protein	and	non-structural	

carbohydrate	 content	of	 pollen).	 Insect	 pollination	 improves	 the	quality	 and	 yield	of	

many	agricultural	crops	(Klein	et	al.,	2007;	Klatt	et	al.,	2013)	including	broad	bean	(Vicia	

faba),	 a	 globally	 important	 crop	 known	 to	 be	 ‘sensitive’	 to	 O3	 and	 reliant	 on	 insect	

pollination	(Bartomeus	et	al.,	2014).	Foraging	insects,	like	bumblebees	and	honeybees,	

visit	 flowers	 to	collect	nectar	and	pollen	as	a	source	of	nutrition.	Pollen	proteins	are	

essential	 for	 bee	 survival	 and	 changes	 in	 protein	 content	 are	 reported	 to	 influence	

reproduction,	physiology,	immunity	and	larval	development	of	honeybees	(Alaux	et	al.,	

2010;	Cardoza	et	al.,	2012;	Di	Pasquale	et	al.,	2013;	Génissel	et	al.,	2002;	Human	et	al.,	

2007;	Li	et	al.,	2012;	Tasei	and	Aupinel,	2008).		

	

In	 this	 study	we	 employed	 ten	 cultivars	 of	 broad	 bean	 exhibiting	 a	 range	 of	

‘sensitivity’	 to	 environmentally-relevant	 levels	 of	 O3.	 We	 chose	 broad	 bean	 as	 a	

convenient	model	for	study	since	it	is	considered	sensitive	to	O3,	lends	itself	to	chamber-

based	studies,	pollen	can	be	readily	collected,	and	it	is	per	se,	a	globally	important	crop	

used	as	food,	feed	and	green	manure	(Crépon	et	al.,	2010;	Jensen	et	al.,	2010).	The	crop	

returns	an	average	annual	yield	in	the	field		equating	to	1.8	tonnes	ha-1	(FAOSTAT,	2008;	

Jensen	 et	 al.,	 2010)	 and	 almost	 50%	 of	 the	 global	 crop	 is	 grown	 in	 Asia	 (FAOSTAT,	

http://faostat3.fao.org/);	 a	 part	 of	 the	 world	 where	 O3	 pollution	 poses	 a	 growing	

problem	(Ashmore,	2005;	Fuhrer,	2009).	
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4.2	Materials	and	Methods	

	

4.2.1	Plant	material	
	

	 Dwarf	broad	bean	(Vicia	faba	L.)	cultivars	were	acquired	from	UK-based	suppliers	

(Appendix	E).		Seeds	were	imbibed	with	tap	water	for	24	h	prior	to	potting	in	John-Innes	

No.2	(JI2)	(supplied	by	East	Riding	Horticulture)	compost	in	48-cell	plug	trays	(each	cell	

containing	32	cm3	compost).	Seed	trays	were	incubated	in	growth	chambers,	fumigated	

with	particulate/charcoal/Purafil®-filtered	air	for	24	h	d-1	and	subject	to	300	µmol	m-2	s-

1	PPFD	(at	tray	height)	administered	as	an	8	h	photoperiod	via	metal-halide	floodlights	

(full	growth	cabinet	details	in	Barnes	et	al.,	1995).	Two	weeks	after	germination,	plants	

were	 potted-up	 into	 pots	 containing	 1.5	 dm3	 JI2	 compost	 and	 placed	 back	 into	 the	

‘incubator	chambers’.	One	week	after	being	potted-on,	plants	were	transferred	to	six	

glass-cladded	open	top	chambers	(OTCs)	situated	at	Close	House	Field	Station	(Heddon-

on-the-Wall,	Northumberland,	UK	[NZ	128658]).	For	each	of	the	10	cultivars,	20	plants	

were	 divided	 across	 two	 OTC	 treatments;	 particulate/charcoal	 filtered	 air	 (CFA)	 or	

particulate/charcoal	filtered	air	plus	110	ppb	ozone	24	h	d-1	(O3).	Both	treatments	were	

replicated	in	three	separate	randomised	OTCs.	Details	of	the	OTCs	and	ozone	delivery	/	

monitoring	systems	are	provided	elsewhere	(Gonzalez-Fernandez	et	al.,	2008).	Plants	

were	maintained	in	the	OTCs	for	~8	weeks	until	flowering.	When	flowers	were	mature,	

pollen	was	collected	from	50%		of	the	plants,	using	a	200	µl	PCR	tube	to	collect	pollen	

from	flowers	on	one	raceme	(this	constituted	one	sample		for	HPLC	analysis).	Following	

collection,	pollen	was	frozen	at	-20	°C	until	further	analysis.	One	week	after	pollen	was	

collected,	the	same	subset	of	plants	was	harvested,	root	separated	from	shoot	at	soil	

level	and	then	all	soil	was	washed	free	from	the	root.	Plant	components	were	then	dried	

to	constant	mass	at	60	°C,	before	determining	the	dry	weight.	

	

The	 remaining	plants	were	maintained	 in	 the	OTCs	until	 seed	 set.	 Bees	were	

observed	in	all	chambers	and	so	it	was	assumed	that	all	plants	had	a	similar	pollination	

service,	and	differences	in	seed	set	would	thus	be	a	result	of	either	cultivar	or	response	

to	treatment.	Once	seed	pods	had	developed	and	begun	to	dry,	all	pods	were	harvested.	

Numbers	of	 pods	per	 plant	 and	 seeds	per	 pod	were	 recorded,	 along	with	pod	 fresh	

weight.	Pods	and	seed	were	then	dried	to	constant	mass	and	re-weighed.		
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4.2.2	Growth	analysis	

Once	dry	weight	of	 root,	 shoot	and	pods	had	been	 recorded,	 relative	growth	

rates	were	calculated.	Total	relative	growth	rate	(RGR)	 included	the	biomass	of	roots	

(RGRr)	and	shoots	(RGRs),	excluding	pod	weight	(RGRpod).	The	method	described	in	Hunt	

(1990)	was	used	to	calculate	plant	resistance	(R%)	and	root	to	shoot	allometry	(K%).	

	

RGR	=	(logW2–logW1)/(t2-t1)	

W	=	dry	weight	(g)	

	t	=	time	(weeks)	

	

The	ratio	of	resource	allocation	between	root	and	shoot	allometry	was	also	calculated	

as:	

	

K%	=	RGRr	/	RGRs	x	100	

	

Resistance	to	O3	(R%)	was	calculated	as	the	relative	change	in	biomass	of	plants	grown	

in	O3	compared	to	those	grown	in	CFA:	

	

R%	=	(RGRO3/RGRCFA)	x	100	

	

Relative	change	in	number	of	seeds	(seed%),	number	of	pods	(pod%),	pod	fresh	weight	

(podfresh%),	pod	dry	weight	(poddry%)	and	pod	moisture	content	(podmoisture%)	were	also	

calculated.	

	

4.2.3	Pollen	analysis	

For	pollen	analyses,	the	frozen	pollen	was	dried	at	60°C	for	48	h	and	then	1	mg	

weighed	in	to	a	1.5	ml	microcentrifuge	tube.	Pollen	was	then	subject	to	a	series	of	steps	

in	order	to	separate	the	free	amino	acids	and	non-structural	carbohydrates	in	the	outer	

coating	 of	 pollen	 from	 the	 protein-bound	 amino	 acids	 held	within	 the	 pollen	 exine.	

Detailed	methods	employed	for	pollen	analyses	are	described	in	Sections	2.2.4	-	2.2.6.	
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4.2.4	Statistical	analysis	

Biomass	of	roots,	shoots	and	pods	from	10	broad	bean	cultivars	were	compared	

using	a	generalised	linear	model	(GLM)	with	cultivar	and	treatment	(CFA	or	O3)	as	key	

factors.	Pairwise	comparisons	were	made	between	each	cultivar	and	treatment	using	

least	significant	difference	(LSD).	RGR,	K,	number	of	seeds	and	pods	produced	and	the	

water	content	of	pods	were	analysed	using	GLM,	with	LSD	at	the	5%	level	applied	post	

hoc	to	compare	the	effect	of	treatment	on	each	cultivar.	Linear	regressions	were	applied	

to	correlate	plant	 resistance	 (R%)	against	 the	number	of	 seeds	produced,	number	of	

pods	 produced,	 pod	 fresh	 weight,	 pod	 dry	 weight	 and	 pod	moisture	 content.	 Total	

protein-bound	amino	acids	and	total	free	amino	acids	were	compared	using	a	two-way	

analysis	of	variance	(ANOVA)	using	cultivar	and	treatment	as	factors.	The	distribution	of	

protein-bound	 and	 free	 amino	 acids	 were	 compared	 using	 a	 canonical	 discriminant	

analysis	(CDA).	Total	non-structural	carbohydrate	was	compared	in	a	two-way	ANOVA	

and	 individual	 carbohydrates	 were	 compared	 in	 a	 two-way	 multivariate	 analysis	 of	

variance	(MANOVA).	
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4.3	Results	

The	 impacts	of	 ozone	pollution	on	 various	 key	performance	 indicators	of	 ten	

dwarf	broad	bean	cultivars	were	assessed;	biomass	of	root,	shoot	and	pod,	number	of	

pods/seeds	produced	(crop	yield),	water	status	and	the	protein/amino	acid	and	non-

structural	carbohydrate	content	of	pollen.		

	

4.3.1	Plant	growth	and	resource	allocation	

Ozone	 treatment	 and	 cultivar	 both	 significantly	 (P<	 0.001)	 influenced	 total	

biomass	(root,	shoot	and	pod	dry	weight)	(Figure	4.1).	Impacts	of	ozone	on	each	of	the	

contributing	 measures	 to	 overall	 biomass	 (dry	 root,	 shoot	 and	 pod	 weight)	 varied	

between	cultivars	 (treatment*cultivar;	 root	P=	0.008;	shoot	P=	0.003;	pod,	P=	0.019,	

respectively).	 	The	total	biomass	of	cultivars	1,	2,	3,	7,	8	and	10	was	significantly	 (P≤	

0.01)	 reduced	 by	 O3	 exposure,	 with	 the	 greatest	 overall	 reduction	 in	 total	 biomass	

recorded	in	cultivar	7	where	plants	exposed	to	O3	weighed	58%	less	than	the	controls	

grown	in		CFA.	Total	biomass	of	cultivars	4,	5,	6	and	9	was	not	significantly	influenced	by	

exposure	to	O3.		

	

Ozone	impacts	on	plant	RGR	(root	and	shoot	biomass,	excluding	pod)	depended	

on	 cultivar	 (treatment*cultivar	 P<	 0.001):	 plant	 RGR	 of	 cultivars	 1,	 2,	 3	 and	 7	 was	

significantly	(P≤	0.01)	decreased	by	exposure	to	O3	whereas	plant	RGR	of	cultivars	4,	5,	

6,	8,	9	and	10	was	unaffected	by	O3	(see	Figure	4.2).	Figure	4.3	shows	that	exposure	to	

O3	also	caused	a	significant	shift	in	resource	allocation	to	support	root	growth	relative	

to	 shoot	 growth	 (K)	 in	 all	 cultivars,	 with	 the	 impacts	 dependent	 on	 the	 cultivar	

(treatment*cultivar,	P≤	0.04).	
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Figure	4.4(a)	shows	there	was	significant	variation	between	cultivar	responses	

to	O3	 in	the	number	of	pods	produced	(treatment*cultivar	P<	0.001).	The	number	of	

pods	produced	by	cultivars	1	and	2	in	O3	was	reduced	significantly	(P<	0.05)	by	~61	and	

~38%,	 respectively.	 In	 contrast,	 the	 number	 of	 pods	 produced	 by	 cultivars	 4	 and	 5	

increased	(P≤	0.02)	in	response	to	O3	exposure,	by	~77	and	~130	%,	respectively.	The	

number	 of	 pods	 produced	 by	 all	 other	 cultivars	 was	 not	 significantly	 affected	 by	

exposure	to	O3.	

	

Figure	4.4(b)	 shows	 the	number	of	 seeds	produced	per	plant	varied	between	

cultivars	and	was	differentially	affected	by	exposure	to	O3	(treatment*cultivar	P<	0.001).	

Cultivars	1,	2	and	8	produced	~65,	~36	and	~61	%,	respectively,	fewer	seeds	per	plant	

(P≤	0.04)	when	exposed	to	O3	than	control	plants	raised	in	CFA.	Conversely,	cultivars	4	

and	5	produced	~60	and	~97	%	more	seeds	per	plant	under	O3	than	those	grown	under	

CFA	 (P≤	0.04).	All	other	cultivars	produced	similar	numbers	of	seeds	per	plant	under	

both	control	(CFA)	and	O3	treatment.		
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Figure	4.4	Impacts	of	exposure	to	CFA	(CFA)	or	CFA	+	110	ppb	O3	24	h	d-1	(O3)	on	(a)	the	
number	of	pods	and	(b)	number	of	seeds	produced	per	plant	in	ten	cultivars	of	broad	
been.	 Bars	 represent	 standard	 error	 of	mean.	 Significant	 differences	 in	 biomass	 are	
noted	using:	*	P≤	0.05,	**	P≤	0.01,	***	P≤	0.001.		n.s.	indicates	no	significant	difference	
at	5%	significance		
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4.3.2	Relationship	analyses	

Regressions	were	used	to	explore	whether	the	impact	of	O3	on	growth,	in	terms	

of	 impacts	 on	 RGRplant	 (R%),	 constituted	 a	 reliable	 surrogate	 for	 prediction	 of	 the	

influence	of	O3	on	other	ecologically-	and	agriculturally-important	parameters.		

	

Plant	resistance	to	ozone	(R%)	afforded	a	significant	predictor	of	the	impacts	of	

O3	on	the	number	of	seeds	(seed%)	that	were	produced	by	broad	beans	(Table	4.1.	P=	

0.039).	Out	of	10	cultivars,	7	demonstrated	reductions	in	both	R%	and	seed%	(Figure	

4.5).		

	

The	number	of	pods	produced	also	followed	a	similar	trend	to	number	of	seeds.	

A	clear	relationship	existed	between	impacts	of	O3	on	the	number	of	pods	and	seeds	

produced.	Similarly,	7	out	of	the	10	cultivars	that	demonstrated	a	reduction	in	R%,	also	

exhibited	decreased	pod%,	as	a	direct	response	to	ozone	exposure	(Table	4.1.	P=	0.022,	

Figure	4.6a).		

	

Pod	fresh	weight	was	also	correlated	with	R%	(Table	4.1,	P=	0.027).	Seven	of	the	

10	broad	bean	cultivars	produced	pods	with	significantly	(P<	0.05)	lower	fresh	weight	

than	those	grown	in	CFA	(Figure	4.6b).	Pod	dry	weight	showed	a	similar	trend	to	fresh	

weight,	and	7	cultivars	that	showed	increased	sensitivity	to	ozone,	reflected	in	reduction	

in	R%,	produced	pods	which	weighed	less	than	plants	grown	in	CFA	(Table	4.1,	P=	0.024,	

Figure	4.6c).		

	

	

Table	4.1.	Regression	analyses	for	measured	traits	of	broad	beans	exposed	to	CFA	(CFA)	
or	CFA	+	110	ppb	O3	24	h	d-1	(O3).	

	
	

X	axis Y	axis N r2 P	value Regression
%seed %R 10 0.430 0.039 y	=	53.7644	+	0.2966	x
%Pod %R 10 0.502 0.022 y	=	54.0180	+	0.2725	x
%podfreshweight %R 10 0.477 0.027 y	=	60.2568	+	0.3864	x
%pod	weight %R 10 0.493 0.024 y	=	55.9345	+	0.4088	x
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Figure	4.5.	Correlation	between	ozone-induced	change	 in	number	of	seeds	produced	
per	plant	(Seed	%)	and	relative	change	in	growth	(R%)	across	ten	cultivars	of	broad	bean	
(Vicia	faba	L.)	exposed	in	OTCs	to	either	CFA	(CFA)	or	CFA	+	110	ppb	O3	24	h	d-1	(O3)	
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Figure	4.6.	Correlation	between	ozone-induced	change	growth	(R%)	and	(a)	the	relative	
change	in	number	of	pods	produced	per	plant,	(b)	the	change	in	fresh	weight	of	pods	
and	(c)	the	change	in	dry	weight	of	pods.	
	

	

	

	

4.3.3	Pollen	qualities	

Pollen	 from	 three	 cultivars	 exhibiting	 a	 range	of	 sensitivities	 to	O3	 (based	on	

impacts	on	seed	yield)	was	collected	and	the	protein-bound	and	free	amino	acid,	plus	

non-structural	 carbohydrate	 qualities	 quantified.	 Total	 protein-bound	 amino	 acids	

recovered	 via	 a	 microwave-assisted	 acid	 hydrolysis	 of	 broad	 bean	 pollen	 was	 not	

significantly	 influenced	 by	 exposure	 to	 O3	 (Figure	 4.7a).	 There	 was	 no	 significant	

treatment*cultivar	 and	 interaction	 on	 free	 amino	 acid	 composition,	 but	 overall	

exposure	 to	O3	 significantly	 (P=	 0.003)	 reduced	 the	 total	 free	 amino	 acid	 content	 of	

pollen	(Figure	4.7b).	

	

a

c

b
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Figure	4.7.	Total	protein-bound	(a)	amino	acids	and	(b)	total	free	amino	acids	from	the	
pollen	of	three	cultivars	exhibiting	contrasting	responses	to	exposure	to	CFA	(CFA)	or	
CFA	+	110	ppb	O3	24	h	d-1	(O3).	Bars	represent	standard	error	of	mean	(n	=	10).	
	

	

	

	

	

	

	

a

b



	 74	

A	canonical	discriminant	analysis	 (CDA)	was	used	to	 identify	major	changes	 in	

the	 amino-acid	 composition	 of	 proteins	 in	 pollen.	 Pollen	 from	 plants	 that	 showed	

enhanced	seed	yield	when	exposed	to	O3,	had	significantly	(P=	0.033)	greater	amounts	

of	 histidine,	 leucine,	 methionine,	 phenylalanine	 and	 isoleucine,	 and	 less	 threonine,	

arginine,	valine,	and	lysine	(Tables	4.2,	4.3	Appendix	F).		

	

	

Table	4.2.	CDA	table	for	pollen	protein-bound	essential	amino	acids	

	
	

	

	

	

	

	

Essential	amino	acids

Canonical	discriminant	function	statistics

Function Eigenvalue %	Variance test	stat P	value

Sensitive function 3.589 100 !"#=14.5 0.106

Resistant function 16.085 100 !$#=11.4 0.182

Enhanced function 56.20 100 !"#=18.2 0.033

Pooled within-groups	correlations

Function

Amino	acid Sensitive Amino	acid Resistant Amino	acid Enhanced
Methionine 0.434 Lysine -0.325 Methionine -0.088

Lysine -0.427 Isoleucine 0.311 Lysine 0.087

Valine -0.283 Phenylalanine * Histidine -0.076

Isoleucine -0.204 Valine -0.118 Valine 0.04

Phenylalanine -0.183 Histidine 0.114 Leucine -0.024

Threonine -0.105 Threonine -0.099 Threonine 0.013

Arginine 0.087 Leucine 0.046 Arginine 0.011

Leucine -0.043 Arginine -0.037 Isoleucine -0.006

Histidine 0.007 Methionine 0.037 Phenylalanine -0.003

Canonical discriminant	function	coefficients

Function

Treatment Sensitive Resistant Enhanced

CFA -1.195 -3.587 7.428

O3 2.629 3.587 -6.19
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Table	4.3.	CDA	table	for	pollen	protein-bound	non-essential	amino	acids	

	
	

	

The	free	essential	amino	acids	of	pollen	collected	from	broad	beans	identified	as	

‘sensitive’	and	‘resistant’	to	O3	differed	significantly	(Table	4.4	and	Appendix	G).	In	the	

sensitive	 cultivar,	 the	 amount	 of	 histidine,	 leucine,	 threonine,	 arginine,	 valine,	 and	

isoleucine	in	pollen	was	significantly	(P=	0.03)	lower	in	O3-treated	plants	than	that	from	

plants	grown	in	CFA.	However,	the	amount	of	free	methionine	and	lysine	was	higher	in	

plants	sampled	under	O3	compared	to	those	in	CFA.	When	exposed	to	O3,	the	amounts	

of	arginine,	threonine,	histidine,	leucine,	valine	and	isoleucine	were	lower	(P=	0.002)	in	

pollen	of	the	resistant	cultivar	than	the	equivalent	plants	grown	in	CFA.	Yet,	lysine	and	

methionine	content	was	higher	and	similar	to	the	profile	of	protein-bound	amino	acids	

of	plants	in	the	sensitive	cultivar	(Table	4.2	and	Appendix	G).	The	CDA	was	unable	to	

categorise	 the	 free	 essential	 amino	 acids	 based	 on	 treatment	 for	 the	 seed	 yield-

Non-essential	amino	acids
Canonical	discriminant	function	statistics

Function Eigenvalue %	Variance test	stat P	value
Sensitive function 1.131 100 !"#=6.81 0.557
Resistant function 5.49 100 !$#=11.2 0.082
Enhanced function 5.21 100 !%#=10.0 0.186

Pooled within-groups	correlations

Function
Amino	acid Sensitive Amino	acid Resistant Amino	acid Enhanced
Proline 0.765 Proline * Glycine -0.322
Aspartic	acid -0.177 Glycine 0.13 Proline 0.201
Glycine -0.165 Cysteine * Aspartic	acid 0.135
Alanine 0.098 Alanine -0.034 Glutamic	acid 0.122
Cysteine -0.052 Glutamic	acid 0.03 Alanine *
Serine 0.037 Tyrosine -0.011 Cysteine -0.005
Glutamic	acid -0.034 Aspartic	acid 0.01 Tyrosine -0.005
Tyrosine 0.026 Serine 0.006 Serine -0.001

Canonical discriminant	function	coefficients
Function

Treatment Sensitive Resistant Enhanced
CFA -0.597 2.322 -2.262
O3 1.642 -1.935 1.885
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enhanced	 cultivar.	 A	 CDA	 of	 the	 free	 non-essential	 amino	 acids	 was	 also	 unable	 to	

extract	any	significant	changes	in	profile	of	amino	acids	for	either	cultivar	of	broad	bean	

(Tables	4.5	Appendix	G).	

	

	

Table	4.4.	CDA	table	for	pollen	free	essential	amino	acids	

	
	

	

	

	

	

	

	

	

	

Essential	amino	acids

Canonical	discriminant	function	statistics

Function Eigenvalue %	Variance test	stat P	value

Sensitive function 4.457 100 !"#=14.5 0.03

Resistant function 399.2 100 !"#=11.4 0.002

Enhanced function 22.38 100 !"#=18.2 0.126

Pooled within-groups	correlations

Function

Amino	acid Sensitive Amino	acid Resistant Amino	acid Enhanced

Methionine 0.312 Arginine -0.043 Lysine 0.209

Histidine -0.152 Threonine -0.038 Methionine 0.16

Arginine -0.135 Lysine 0.034 Arginine -0.119

Valine -0.121 Methionine 0.031 Histidine -0.108

Lysine 0.085 Histidine -0.022 Leucine 0.075

Leucine -0.058 Leucine -0.013 Isoleucine 0.067

Threonine -0.056 Valine -0.002 Threonine -0.054

Isoleucine -0.027 Isoleucine -0.002 Valine 0.04

Canonical discriminant	function	coefficients

Function

Treatment Sensitive Resistant Enhanced

CFA -1.331 -17.87 -4.232

O3 2.929 17.87 4.232
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Table	4.5.	CDA	table	for	pollen	free	non-essential	amino	acids	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

Non-essential	amino	acids

Canonical	discriminant	function	statistics

Function Eigenvalue %	Variance test	stat P	value

Sensitive function 1.473 100 !"#=9.05 0.338

Resistant function 1.608 100 !$#=4.31 0.743

Enhanced function 4.187 100 !"#=6.59 0.582

Pooled within-groups	correlations

Function

Amino	acid Sensitive Amino	acid Resistant Amino	acid Enhanced
Proline 0.416 Tyrosine 0.192 Aspartic	acid 0.13

Glycine 0.374 Aspartic	acid 0.179 Glutamic	acid -0.111

Tyrosine 0.268 Glycine -0.148 Tyrosine -0.1

Alanine 0.249 Cysteine 0.08 Alanine 0.091

Cysteine 0.248 Serine 0.053 Glycine 0.084

Serine 0.174 Alanine 0.048 Serine 0.072

Aspartic	acid 0.136 Glutamic	acid 0.03 Proline 0.041

Glutamic	acid -0.055 Proline * Cysteine -0.002

Canonical discriminant	function	coefficients

Function

Treatment Sensitive Resistant Enhanced

CFA 0.765 1.134 1.83

O3 -1.684 -1.134 -1.83



	 78	

The	 non-structural	 carbohydrates	washed	 from	 pollen	were	 quantified.	 Total	

non-structural	carbohydrate	content	was	not	influenced	by	cultivar	or	treatment,	and	

there	was	no	significant	cultivar*treatment	interaction.	(Figure	4.8).	

	

	

	

	
Figure	4.8.	Concentration	of	key	soluble	non-structural	carbohydrates	washed	from	the	
pollen	of	three	cultivars	of	broad	bean	exhibiting	contrasting	growth	responses	when	
exposed	to	CFA	(CFA)	or	CFA	+	110	ppb	O3	24	h	d-1	(O3).	Bars	represent	standard	error	of	
mean	(n	=	10).	
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4.4	Discussion	

The	‘ozone-sensitivity’	of	broad	beans	was	assessed	using	a	variety	of	commonly-

adopted	parameters.	The	study	demonstrated	that	impacts	on	growth	rate	(R%)	of	roots	

and	shoots	constitute	a	reliable	predictor	of	impacts	on	seed	yield	of	broad	bean.	The	

measured	 changes	 in	 the	 relative	 growth	 rate	 (RGR)	 of	 broad	 beans,	 in	 response	 to	

exposure	to	O3,	were	cultivar-dependent;	only	4	of	 the	10	cultivars	 tested	showing	a	

statistically	significant	reduction	 in	RGR.	 Intraspecific	variation	 in	responses	to	O3	are	

well	documented	in	other	species	including	wheat	(Barnes	et	al.,	1990),	Plantago	major	

(Lyons	et	al.,	1997)	and	Centaurea	jacea	(Bassin	et	al.,	2004).	A	reduction	in	the	root	to	

shoot	allometric	coefficient	(K)	has	been	demonstrated	repeatedly	in	many	species	as	a	

result	 of	 both	 short-term	 (Davison	 and	 Barnes	 1998)	 and	 long-term	 exposure	 to	 O3	

(Grantz	et	al.,	 2006).	Herein,	 all	 10	 cultivars	of	broad	bean	 tested	exhibited	 reduced	

resource	 allocation	 to	 roots,	 in	 comparison	 to	 that	 of	 shoots,	 under	 O3	 stress.	 This	

finding	supports	numerous	other	publications	that	demonstrate	a	reduction	in	K	in	both	

wild	species	and	crop	plants	subject	to	environmentally-relevant	levels	of	O3	pollution	

(Barnes	 et	 al.,	 1990;	 Davison	 and	 Barnes,	 1998;	 Grantz	 et	 al.,	 2006;	 Chaudhary	 and	

Agrawal,	 2015).	Although	 the	mechanisms	behind	O3-induced	 reductions	 in	 resource	

allocation	to	root	growth	are	not	fully	elucidated,	it	is	generally	assumed	that	the	cause	

is	due	to	a	disruption	in	phloem	loading	mechanisms,	which	result	in	reduced	ability	to	

translocate	assimilate	from	source	leaves	(Spence	et	al.,	1990;	Chiou	and	Bush,	1998;	

Fuhrer	 and	 Booker,	 2003)	 and	 therefore	 reduces	 assimilate	 allocation	 to	 sinks	

(Anderson,	2003).		

	

It	 can	be	 reasonably	argued	 that	 seed	and	pod	production	 (yield)	 is	 the	most	

valuable	measure	of	ozone-sensitivity	in	crop	plants	such	as	broad	bean.	As	a	short-lived,	

crop	plant,	any	influences	of	ozone	on	biomass	and	physical	injury	may	be	irrelevant	if	

seed	production	is	not	negatively	impacted.	Ozone	is	well	documented	to	reduce	crop	

yield	(Black	et	al.,	2000;	Feng	et	al.,	2003;	Fuhrer	and	Booker,	2003;	Fiscuss	et	al.,	2005;	

Ainsworth	et	al.,	2008;	Fuhrer,	2009a)	and	in	this	experiment	it	was	found	that	ozone	

reduced	the	number	of	pods	produced	per	plant	in	2	out	of	the	10	cultivars	tested	and	

reduced	 the	 total	 number	 and	 weight	 of	 seeds	 in	 3	 cultivars.	 However,	 potentially	
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interestingly	from	a	breeding	perspective,	two	cultivars	actually	produced	significantly	

more	pods	and	seeds	in	response	to	ozone	exposure.	An	O3-induced	increase	in	seed	

yield	 has	 been	 previously	 reported	 in	 some	 other	 cultivars	 of	 the	 Fabaceae	 family	

including	soy	bean	(Endress	and	Grunwald,	1985)	and	french	bean	(Sanders	et	al.,	1992).	

Cultivars	producing	more	pods	per	plant	may	respond	to	O3	stress	by	investing	greater	

resources	into	reproduction;	something	that	is	especially	important	in	short-	lived	plants	

like	broad	bean.		

	

As	found	in	previous	studies	(Barnes	et	al.,	1990;	Barnes	et	al.	1997;	Lyons	et	al.,	

1997;	 Burkey	 and	 Carter	 2009;	 Saitanis	 et	 al.,	 2014)	 cultivars	 of	 the	 same	 species	

exhibited	 marked	 variation	 in	 their	 responses	 to	 O3	 pollution;	 some	 cultivars	 even	

showing	enhanced	yield	in	response	to	exposure	to	O3.	However,	O3	impacts	on	growth	

and	yield	proved	a	poor	predictor	of	effects	on	the	quality	of	pollen;	the	present	study	

shows	 that	 the	 protein	 and	 amino	 acid	 composition	 of	 pollen	 may	 be	 significantly	

influenced	by	long-term	exposure	to	ozone	with	no	correlation	to	impacts	on	growth	or	

yield.	Pollen	from	3	cultivars	identified	as	‘ozone	sensitive’,	‘ozone	resistant’	and	‘ozone	

enhanced’	 was	 analysed	 in	 terms	 of	 protein,	 free	 amino	 acid	 and	 non-structural	

carbohydrate	content.	Ozone	is	acknowledged	to	inhibit	pollen	viability	and	germ	tube	

growth	 and	 it	 is	 thought	 that	 most	 of	 its	 detrimental	 impact	 arises	 during	 pollen	

development	(Black	et	al.,	2000;	Gillespie	et	al.,	2015).	However,	studies	on	the	pollen	

of	Acer	negundo,	Quercus	rober	and	Plantanus.	spp.	exposed	to	ozone	after	collection	

reveal	a	significant	reduction	in	soluble	protein	content.	This	suggests	the	pollutant	may	

also	exert	direct	effects	on	pollen	after	dehiscence	(Ribeiro	et	al.,	2013).	In	the	present	

study	no	impact	of	O3	was	identified	on	protein	content	of	broad	bean	pollen.	However,	

we	did	observe	that	the	suite	of	protein-bound	essential	amino	acids	quantified	in	the	

‘enhanced’	cultivar	was	altered	compared	to	that	of	plants	grown	in	CFA.	No	changes	

were	observed	in	the	‘sensitive’	or	‘resistant’	cultivars.	Changes	in	the	types	of	proteins	

present	 in	pollen	 induced	by	ozone	exposure	have	previously	been	 reported;	usually	

associated	with	 increased	allergens	 such	as	 the	PR-10,	Bet	 v	 1	 and	Cup	a	3	 proteins	

(Cortegano	et	al.,	2004;	Suárez-Cervera	et	al.,	2008;	Pasqualini	et	al.,	2011;	Beck	et	al.,	

2013;	Frank	and	Ernst,	2016).	Interestingly,	in	the	present	study,	we	observed	a	marked	

reduction	 in	 the	 free	 amino	 acids	 washed	 from	 the	 external	 coating	 of	 pollen	 (also	
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known	as	the	pollenkitt)	subject	to	O3,	in	all	three	cultivars	tested	–	regardless	of	‘ozone	

sensitivity’	 based	 on	 impacts	 on	 growth	 and	 yield.	 The	 distribution	 of	 free	 essential	

amino	 acids	 was	 also	 altered	 in	 the	 sensitive	 and	 resistant	 cultivars,	 but	 not	 in	 the	

enhanced	cultivar.	These	data	suggest	two	modes	in	which	the	pollutant	influences	the	

quality	of	broad	bean	pollen.	Firstly,	that	during	pollen	development,	exposure	to	ozone	

may	cause	the	plant	to	allocate	different	resources	to	pollen	(reflected	in	a	change	in	

the	distribution	of	protein-bound	amino	acids),	and	secondly	that	exposure	to	ozone	

after	 anther	 dehiscence	 may	 cause	 direct	 oxidation	 of	 the	 free	 amino	 acids	 in	 the	

pollenkitt	and	also	disruption	in	the	suite	of	essential	amino	acids.	

	

Ozone	pollution	is	recognised	to	induce	shifts	in	natural	and	semi-natural	plant	

communities	(Davison	and	Barnes,	1998;	Fuhrer	et	al.,	1997).	Ozone-sensitive	species	

are	thought	to	be	outcompeted	by	ozone-resistant	species	under	long	term	exposure	to	

the	 pollutant.	 However,	 the	 way	 in	 which	 species	 are	 classified	 as	 ozone-sensitive	

and/or	 –resistant	 has	 failed	 to	 measure	 the	 response	 of	 pollen	 to	 ozone	 and	 its	

contribution	to	species	fitness.	Changes	in	the	nutrient	qualities	in	pollen	will	impact	on	

consumers,	 as	 will	 changes	 in	 leaf	 composition	 for	 herbivorous	 insects	 (Mills	 et	 al.,	

2013).	 It	 is	 important	 that	when	 defining	 a	 species	 as	 ‘sensitive’	 or	 ‘resistant’	 to	O3	

pollution,	 that	 all	 qualities	 that	 could	 induce	 significant	 downstream	 affects	 are	

considered.	As	such,	meta	analyses	of	the	relative	sensitivities	of	plants	based	on	ozone-

induced	 changes	 in	 biomass	 (such	 as	 that	 presented	 by	 Hayes	 et	 al.,	 2007)	may	 be	

extremely	misleading.	

	

The	findings	in	this	chapter	highlight	the	need	to	consider	additional	traits	when	

assessing	ozone	sensitivity.	Widely	used	traits	such	as	relative	change	in	biomass	and	

yield	in	response	to	ozone	were	correlated	in	broad	bean,	however	these	traits	were	

not	suitable	indicators	of	impacts	on	pollen	quality	–	a	major	determinant	of	pollinator	

interactions.	Changes	in	plant	community	structure	and	biodiversity	as	a	consequence	

of	exposure	to	ozone	have	not	investigated	the	role	of	ozone-induced	changes	in	pollen	

quality	in	governing	changes	in	populations.	Carry-	over	effects	of	detrimental	changes	

to	pollen	may	influence	reproductive	success	(Black	et	al.,	2000;	Gillespie	et	al.,	2015).	

However,	as	a	primary	nutrient	source	to	pollinators,	changes	in	pollen	quality	could	put	
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nutritional	 stress	 on	 the	 insect,	 impacting	 pollinator	 visitation	 rates	 (Somme	 et	 al.,	

2015).	A	reduction	in	pollinator	visitation	and	therefore	pollination	success	could	lead	

to	species	with	ozone-sensitive	pollen	being	outcompeted	by	resistant	species.	Further	

work	should	explore	plant	species	variation	in	terms	of	ozone	sensitivity/resistance	of	

pollen.	 If	ozone	pollution	causes	direct	negative	oxidative	effects,	as	we	report,	 then	

changes	to	pollinator	nutrition	may	be	widespread	in	polluted	regions.		
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5.0	Chapter	5:	The	influence	of	ozone	pollution	on	nutrient	allocation	to	

nectar	and	pollen	

	

5.1	Introduction	

Tropospheric	 ozone	 (O3)	 concentrations	 are	 not	 constant.	 Ground-level	

concentrations	peak	when	conditions	favour	the	photolytic	generation	of	the	pollutant	

in	 the	 troposphere	 ie.	 high	 levels	 of	 NOx	 and	 VOCs,	 bright	 sunshine,	 elevated	

temperatures	and	low	humidity	(RoTAP,	2012).	Diurnal	variations	are	more	pronounced	

in	lowland	and	urban	areas,	correlating	with	times	of	particularly	heavy	anthropogenic	

precursor	emissions	(Marr	and	Harley,	2002)	and	subsiding	 in	response	to	 lower	NOx	

and	VOC	emissions	(Simon	et	al.,	2014),	with	levels	commonly	accumulating	over	several	

days	during	peak	episodes	 (Chameides	et	al.,	 1994).	 Climate	has	 a	 strong	 impact	on	

ground-level	 ozone	 concentrations	 (Ashmore,	 2005).	 Generally,	 the	 greatest	

concentrations	are	measured	at	the	hottest	part	of	the	day	(Fiscus	et	al.,	2005),	though	

rainfall	and	high	humidity	can	diminish	ground-level	O3	concentrations	via	the	removal	

of	precursors	and	the	dissolution	of	gaseous	O3	(Varotsos	et	al.,	2013;	Smith	and	Tirpak,	

1988).	Wind	can	also	strongly	influence	ground	level	O3	concentrations	dependent	on	

the	location	(Notario	et	al.,	2012).	As	a	consequence,	the	atmospheric	concentrations	

of	O3	to	which	vegetation	is	exposed	can	change	rapidly	and	often.		

	

Ozone	is	highly	reactive	and	almost	exclusively	enters	plant	tissue	through	open	

stomata	(Fuhrer	et	al.,	1997).	The	primary	oxidation	targets	in	plant	tissue	are	generally	

believed	 to	 be	 lipids/unsaturated	 fatty	 acids	 (Pryor	 and	 Church,	 1991)	 and	 protein	

components	of	 cell	membranes.	Dissolution	of	O3	 in	 the	 cell	walls	 of	mesophyll	 and	

palisade	cells,	and	reaction	with	constituents	of	the	apoplast,	lead	to	the	synthesis	of	

reactive	oxygen	species	(ROS)	(incl.	H2O2,	O2
-,	 ‘O2),	which	may	oxidise	cell	membrane	

constituents	when	the	titre	of	ROS	exceeds	the	intrinsic	ROS	scavenging	capability	of	the	

apoplast/symplast	(Lyons	et	al.,	1999;	Plöchl	et	al.,	2000).	The	oxidative	burden	resulting	

from	the	uptake	of	ozone	results	 in	marked	shifts	 in	gene	expression,	which	displays	

commonalities	with	responses	at	the	molecular	level	induced	by	a	range	of	other	abiotic	

and	biotic	stresses	(Kangasjärvi	et	al.,	1994).	Consequences	include	a	marked	increase	

in	maintenance	respiration	(to	fuel	cellular	repair	and	detoxification	of	ROS)	(Amthor,	
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1988),	a	commonly	substantive	decline	in		carbon	assimilation	(as	result	of	a	decline	in	

RubisCO	activity)	(Heath,	1994)	and	significant	shifts	in	the	allocation	of	newly-produced	

assimilates	within	and	between	plant	 tissues	 (Davison	and	Barnes,	 1998;	 Fuhrer	 and	

Brooker,	2003)	ultimately	resulting	in	often	pronounced	reductions	in	biomass	and	crop	

yield	(Ashmore,	2002;	Jaggard	et	al.,	2010).	

	

Little	 is	 known	 about	 how	 changes	 in	 resource	 allocation	 within	 the	 plant,	

resulting	from	exposure	to	O3,	may	influence	supply	and	support	for	plant	reproductive	

processes	(in	particular	nectar	and	pollen).	There	appears	to	be	no	literature	pertaining	

to	the	impacts	of	O3	on	floral	nectar	quality,	though	a	few	studies	have	probed	impacts,	

in	a	rather	superficial	manner,	on	pollen.	With	regard	to	impacts	on	nectar	quality	and	

composition	it	may	be	prudent	to	consider	the	impact	of	other	stress	factors	on	resource	

allocation	to	nectar.	Soil	water	deficit	has	for	example	been	shown	to	result	in	a	three-

fold	 reduction	 in	 the	 volume	 of	 nectar	 collected	 from	 fireweed	 flowers	 (Epilobium	

angustifolium	L.)	though	carbohydrate	concentration	of	the	nectar	remained	unaffected	

(Carroll	 et	 al.,	 2001).	 Conversely,	 supplemental	 watering	 of	 field-grown	 milkweed	

(Asclepias	syriaca	L.)	results	in	an	increase	in	the	volume	of	nectar	produced	and	also	

the	concentration	of	carbohydrates	in	the	nectar	(Wyatt	et	al.,	1992).	High	temperatures	

have	been	shown	to	increase	nectar	secretion	in	thyme	(Thymus	capitatus	Hoff.	et	Link.)	

and	 result	 in	 	 relative	 increases	 in	 carbohydrate	 concentration,	 although	 at		

temperatures	above	38	°C	nectar	flow	subsided	(Petanidou	and	Smets,	1996).	

	

	Pollen,	 on	 the	 other	 hand,	 has	 been	 shown	 to	 be	 negatively	 affected	 by	

exposure	to	O3	(Black	et	al.,	2000).	Exposure	to	environmentally-relevant	concentrations	

of	O3	at	critical	developmental	times	slows	maturation	rate	of	pollen	by	inhibiting	starch	

accumulation	(Schoene	et	al.,	2004)	and	the	pollutant	has	been	shown	to	inhibit	germ-

tube	growth	in	several	studies	(Wolters	and	Martens,	1987;	Black	et	al.,	2007;	Pasqualini	

et	al.,	2011;	Gillespie	et	al.,	2015).	Interestingly,	there	are	also	data	indicating	a	negative	

effect	 of	 O3	 pollution	 on	mature	 pollen;	 pollen	 of	 an	 O3-sensitive	 strain	 of	 tobacco	

(Nicotiana	tabacum	L.	Bel	W-3)	showing	both	reduced	pollen	viability	and	germ	tube	

growth	upon	exposure	to	O3	following	collection	from	plants	grown	in	clean	air	(Feder,	

1968).		
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Plants	and	pollinators	have	a	mutualism	that	relies	on	the	exchange	of	nectar	in	

return	for	pollination	services.	Some	pollinators,	such	as	bees,	also	collect	pollen	as	a	

source	of	food.	The	quality	of	nectar	and	pollen	offered	by	a	plant	strongly	influences	

the	 visitation	 rate	 by	 insect	 pollinators	 (Seeley	 et	 al.,	 1991;	 Seeley,	 2009);	 plants	

providing	 nectar	 with	 low	 concentrations	 of	 carbohydrate	 are	 less	 likely	 to	 receive	

multiple	floral	visits	from	insect	pollinators	when	there	are	more	nutrient-rich	sources	

available	(Von	Frisch,	1965;	Richter	and	Waddington,	1993;	Seeley,	2009;	Waddington,	

1998;	Scheiner	et	al.,	2004).	Amino	acids	are	the	second	most	abundant	component	in	

nectar	and	the	majority	of	floral	nectars	contain	amino	acids	(Baker	and	Baker,	1973).	

Honeybees	will	preferentially	feed	from	nectar-like	solutions	that	contain	amino	acids	

(Alm	et	al.,	1990),	and	more	specifically,	solutions	that	contain	the	essential	amino	acids	

over	non-essential	amino	acids	(Hendriksma	et	al.,	2014).	However,	some	amino	acids	

can	be	repellent	to	bees,	including	glycine,	glutamic	acid,	serine,	alanine	and	arginine	

when	amino	acid	concentrations	exceed	35	-	80	mM	in	50%	sucrose	(Hendriksma	et	al.,	

2014;	Roubik	et	al.,	1995).	

	

The	experiments	described	in	this	chapter	were	designed	to	assess	the	impact	of	

both	 long-	 	 and	 short-term	exposure	 to	O3	 on	 carbohydrate	 and	 amino	 acid/protein	

allocation	 to	 nectar	 and	 pollen.	 It	 is	 important	 to	 ascertain	 how	 quickly	 changes	 in	

nutrient	allocation	may	occur	when	considering	the	impact	on	the	available	nutrition	to	

pollinating	animals	and	also	how	this	may	be	reflected	 in	plant	reproductive	success.	

Because	 ozone	 concentrations	 are	 highly	 variable	 and	 microclimate-specific,	 it	 is	

important	to	identify	whether	short-term	exposures	can	influence	the	nutrient	qualities	

of	 the	 rewards	 and	 food	 sources	 utilised	 by	 the	 plants’	 pollinators.	 In	 this	 study,	 I	

exposed	plants	to	clean	air	or	O3	for	extended	periods	during	their	development	as	well	

as	conducting	transfer	experiments	to	identify	short-term	as	well	as	long-term	impacts	

of	exposure	to	O3.	
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5.2	Methods	

	

5.2.1	Plants	and	growth	chambers		

Seeds	of	an	ozone-sensitive	variety	of	dwarf	broad	bean	(identified	in	Chapter	4)	

(‘The	Sutton’,	B&Q,	UK)	were	germinated	in	48	cell	trays,	each	cell	filled	with	32cm3	of	

John	Innes	No.2	compost	(JI2:	East	Riding	Horticulture,	Sutton	Upon	Derwent,	UK).	Five	

days	 after	 germination,	 seedlings	were	potted-up	 in	 to	pots	 containing	1	dm3	of	 JI2.	

Seven	 days’	 post	 germination,	 plants	 were	 moved	 into	 their	 respective	 treatment	

chambers.	Plants	were	grown	 in	purpose-built	 fumigation	chambers	 (internal	volume	

660	dm3)	designed	and	described	by	Barnes	and	colleagues	(1995).	Air	was	supplied	to	

growth	 chambers	 from	 an	 air-handling	 unit,	 making	 two	 complete	 air	 changes	 per	

minute	in	each	chamber	(Zheng	et	al.,	1998).		Lighting	was	provided	using	metal-halide	

luminaires	(Siemens	HR400H	units	fitted	with	400-W	HQI-T	lamps,	Osram,	St.	Helens,	

Merseyside,	UK).	This	created	a	photosynthetic	photon	flux	density	(PPFD)	of	250	µmol	

m-2	s-1	(at	canopy	height)	delivered	as	a	16	:	8	h	light/dark	cycle.	

	

5.2.2	Fumigation	treatments	

Plants	were	subjected	to	one	of	four	treatments:	Charcoal/Purafil®	filtered	clean	

air	(CFA),	CFA	plus	110	ppb	ozone	for	8	hours	per	day	(O3),	transfer	from	CFA	to	110	ppb	

O3	for	8	h	d-1	at	flowering	(CFA-O3),	and	transfer	from	110	ppb	O3	for	8	h	d-1	to	CFA	at	

flowering	(O3-CFA).	Plants	were	exposed	to	each	treatment	in	duplicate	chambers	with	

10	plants	in	each	chamber.		Plants	in	reciprocal	transfer	treatments	(CFA-O3	and	O3-CFA)	

were	moved	when	all	flowers	on	a	raceme	were	mature,	usually	within	three	days	of	

the	first	flower	bud	opening.	Plants	in	permanent	treatments	(CFA	and	O3)	were	also	

moved	 to	 the	 duplicate	 chamber	 to	 control	 for	 any	 potential	 impact	 on	 physical	

movement	on	nutrient	allocation	to	nectar	and	pollen.	A	schematic	of	the	treatment	

regimes	 is	 shown	 in	 Figure	 5.1.	 The	 entire	 experiment	 was	 repeated	 and	 results	

combined.		
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Figure	 5.1.	 Diagram	 showing	 O3	 treatments.	 Plants	 were	 exposed	 in	 controlled	
environment	chambers	to	charcoal/Purafil®	filtered	air	24	h	d-1	(CFA)	or	110	ppb	O3	8	h	
d-1	(O3).	Some	plants	were	transferred	from	CFA	to	O3	(CFA-O3)	at	flowering,	others	were	
transferred	from	O3	to	CFA	(O3-CFA)	at	flowering.	
	

	

5.2.3	Biomass	

A	subset	of	plants	(5	plants/chamber)	were	destructively	harvested.	Shoots	were	

cut	 from	roots	where	 the	shoot	met	 the	soil	and	soil	was	carefully	washed	 from	the	

roots.	Roots	and	shoots	were	then	placed	in	labelled	paper	bags	and	dried	in	an	oven	at	

60°C	to	constant	mass.	When	dry,	roots	and	shoots	were	weighed	separately.	A	subset	

of	plants	(10	plants/chamber)	was	used	for	analysis	of	nectar	and	pollen	at	the	same	

time	as	plants	used	in	the	destructive	harvest.	The	number	of	racemes	on	each	plant	

was	recorded	along	with	the	number	of	flowers	contributing	to	each	raceme.	

	

5.2.4	Nectar	collection	and	analysis	

Three	days	after	all	flowers	on	an	individual	raceme	were	open,	the	raceme	was	

removed	 and	 the	 flowers	were	 sampled	 for	 nectar.	 Nectar	was	 collected	 from	 each	

flower	 on	 a	 raceme	 and	 composited	 to	 constitute	 a	 sample,	 so	 that	 each	 raceme	

constituted	a	surrogate	for	a	plant	in	the	analyses.	Nectar	was	extracted	from	flowers	

by	 inserting	 a	 5	 µl	 microcapillary	 tube	 (McKenna	 and	 Thomson,	 1988;	 Kearns	 and	

Inouye,	1993;	Corbet,	2003;	Morrant	et	al.,	2009)	in	to	the	intact	flower	to	reach	the	

nectaries	at	the	base	of	the	corolla.	Available	nectar	was	then	drawn	in	to	the	capillary	

tubes	and	the	capillary	tube	was	placed	in	to	a	2	ml	microcentrifuge	tube	until	analysis.	

Nectar	 volume	was	calculated	by	measuring	 the	 length	of	 the	nectar	 in	 the	capillary	

CFA-O3

O3CFA
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tube.	The	maximum	volume	of	the	tube	was	5	µl	and	the	length	of	the	tube	was	30	mm,	

allowing	a	conversion	value	of	6.	Measured	length	of	nectar	was	divided	by	6	to	convert	

the	distance	of	nectar	in	the	tube	to	µl	(eg.	30	/	6	=	5	µl).	Nectar	samples	were	stored	at	

-20°C	until	HPLC	analysis.	Composite	samples	were	made	after	volume	of	nectar	from	

each	 flower	 had	 been	 measured.	 Nectar	 was	 ejected	 from	 each	 capillary	 tube	 by	

squeezing	air	into	the	capillary	tube	or	spinning	the	microcentrifuge	tubes	in	a	centrifuge	

to	draw	the	nectar	out	of	the	tubes.		

	

To	prepare	samples	for	amino	acid	analysis,	raw	nectar	was	diluted	1	 in	30	 in	

HPLC	 gradient	 grade	 H2O	 (Fisher	 Scientific	 UK	 Ltd.,	 Loughborough,	 United	 Kingdom	

Fisher).	The	solution	was	then	mixed	on	a	vortex	for	1	min	before	being	further	diluted	

for	carbohydrate	analysis	(1	:	2,000).	Pilot	studies	had	previously	optimised	the	dilution	

of	nectar	for	carbohydrate	and	amino	acid	analyses.	Carbohydrates	were	separated	and	

quantified	 using	 high	 performance	 ion	 chromatography	 (HPIC).	 Thirty	 microliters	 of	

sample	were	required	for	each	injection	on	to	the	column.		

	

5.2.5	Carbohydrate	chromatographic	method	

Concentrations	 of	 glucose,	 fructose	 and	 sucrose	 were	 measured	 using	 HPIC.	

Thirty	µl	of	sample	was	pipetted	in	to	a	200	µl	glass	insert	held	in	a	snap-cap	vial	that	

was	 placed	 in	 the	 auto	 sampler	 tray.	 Twenty	µl	 of	 the	 sample	was	 injected	 on	 to	 a	

Carbopac	 PA-100	 column	 (Dionex,	 Sunnyvale,	 California,	 USA)	 fitted	 with	 a	 Dionex	

Carbopac	PA-100	BioLC	guard	(4	x	50	mm)	via	a	Rheodyne	valve.		Sample	components	

were	eluted	from	the	column	isocratically	using	100	mM	NaOH	(de-gassed	using	helium)	

employing	a	flow	rate	of	1	ml	min-1	 for	10	min	at	RT.	The	chromatogram	profile	was	

recorded	using	pulsed	amperometric	detection	with	an	ED40	electrochemical	detector	

(Dionex,	Sunnyvale,	California,	USA).	Elution	profiles	were	analysed	using	Chromeleon	v	

6.8	 software	 package	 (Thermo	 Fisher	 Scientific	 Inc.,	 MA,	 USA)	 which	 automatically	

calculates	 solute	 concentrations	 based	 on	 a	 range	 (different	 dilutions)	 of	 pre-

programmed	 reference	 calibrations	 for	 each	 sugar.	 The	HPIC	was	 calibrated	 at	 least	

twice	 every	 24	 h	 period	 for	 glucose,	 fructose,	 and	 sucrose	 by	 injecting	 calibration	

standards	with	concentrations	of	10	ppm	each.	Standard	solutions	were	made	from	the	

solid	 form	 of	 each	 sugar	 available	 (Sigma-Aldrich,	 St.	 Louis,	 MO,	 USA).	 The	 dual	
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calibration	each	day	ensured	accuracy	of	peak	identification	in	the	event	of	a	daily	drift	

in	elution	times.	After	each	compound	was	identified	in	each	chromatogram,	the	values	

produced	by	the	Chromeleon	software	were	scaled	up	to	their	original	concentrations	

in	nectar	based	on	how	much	the	nectar	was	diluted.		

	

5.2.6	Amino	acid	analysis	method	

Raw	nectar	was	diluted	to	1	in	30	for	amino	acid	analysis,	then	10	µl	of	solution	

was	added	to	a	200	µl	tapered	glass	insert	and	held	in	the	same	autosampler	vials	as	

with	carbohydrate	HPIC.	The	chromatographic	method	for	amino	acid	separation	and	

detection	is	described	in	Section	2.2.6.	

	

5.2.7	Pollen	collection	and	analysis	

									Pollen	from	all	flowers	on	one	raceme	was	collected	in	a	200	µl	microcentrifuge	

tube.	Pollen	that	had	not	fallen	from	the	anthers	was	collected	by	lightly	tapping	the	

anther	in	to	the	microcentrifuge	tube.	Pollen	was	stored	at	-20°C	until	analysis.	Pollen	

was	dried	to	constant	mass	at	60°C	in	an	oven	and	then	1	mg	weighed	out.	Free	amino	

acids,	non-structural	carbohydrates	and	fatty	acids	were	extracted	by	washing	pollen	in	

200	µl	Methanol	(MeOH).	The	sample	was	centrifuged	at	13,249	×	g	for	20	min	and	the	

MeOH	extract	was	removed	to	a	clean	microcentrifuge	tube.	The	remaining	pollen	pellet	

was	subject	 to	a	microwave-assisted	acid	hydrolysis.	Detailed	methods	of	extraction,	

hydrolysis	 and	 quantification	 using	 HPLC	 are	 provided	 in	 Section	 2.2.4	 and	 2.2.5.	

Carbohydrates	were	quantified	using	the	same	 isocratic	method	described	for	nectar	

carbohydrate	 quantification	 (see	 Section	 3.2.3).	 Fatty	 acids	 were	 quantified	 using	

GC/MS.	 A	 50	 µl	 aliquot	 of	 the	 MeOH	 extract	 was	 removed	 to	 a	 clean	 2	 ml	

microcentrifuge	tube.	The	lid	was	opened	and	the	tubes	were	placed	in	a	heat	block	in	

a	 fume	hood	at	35	°C	until	dry.	To	the	dried	extract,	250	µl	of	hexane	containing	an	

internal	standard	(20	µg	ml-1	 tridecanoic	acid)	was	added	and	the	sample	was	 left	to	

extract	overnight.	Fatty	acids	were	analysed	using	a	Hewlett-Packard	HP	6890	series	gas	

chromatograph	paired	with	a	Hewlett-Packard	HP	5973	mass	spectrometry	detector.	

Fatty	acids	were	eluted	through	a	DB-FFAP	column	using	helium	as	the	carrier	gas.	
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5.2.8	Leaf	tissue	analysis	

The	 first	 mature	 leaf	 and	 an	 immature	 leaf	 from	 each	 plant	 was	 removed,	

weighed,	and	then	snap	frozen	in	liquid	nitrogen	in	a	labelled	foil	packet.	Mature	leaves	

were	identified	as	the	first	leaf	on	the	main	stem	of	the	plant.	The	immature	leaf	was	

identified	as	a	 leaf	 that	was	not	 yet	 fully	extended	and	usually	 the	5th	 leaf	 from	 the	

growing	tip.	Leaves	were	stored	at	-80°C	until	analysis.		

	

Non-structural	carbohydrate	content	was	profiled	and	quantified	using	the	HPIC	

method	 described	 in	 Section	 3.2.3.	 Carbohydrates	 were	 extracted	 from	 leaves	 by	

grinding	 frozen	 samples	 in	 liquid	 nitrogen	 and	 aliquoting	 the	 dry	 powder	 in	 to	 pre-

weighed	2	ml	microcentrifuge	tubes.	To	each	tube,	1.5	ml	80%	MeOH	was	added	and	

each	tube	was	 incubated	at	75°C	for	1	h.	Tubes	were	then	centrifuged	for	30	min	at	

13,249	×	g	and	the	supernatant	was	removed	to	a	clean	2	ml	microcentrifuge	tube.	The	

MeOH	 extract	 was	 dried	 	 at	 70°C	 in	 a	 block	 heater	 using	 a	 concentrator	 that	 blew	

compressed	 air	 over	 the	 sample	 until	 dry.	 The	 sample	 was	 re-suspended	 in	 200	 µl	

nanopure	water.	The	leaf	extract	was	then	de-salted	prior	to	HPLC	analysis.	To	desalt	

the	extract,	columns	were	prepared	by	placing	a	small	piece	of	glass	wool	inside	a	5	ml	

column,	 then	~0.7	cm3	Amberlite	was	placed	on	top	of	 the	glass	wool,	and	~0.7	cm3	

Dowex,	on	top	of	that.	The	column	was	washed	with	Nanopure	water	prior	to	samples	

being	washed	through	it	and	collected	in	a	clean	5	ml	plastic	sample	tube.	Dowex	and	

Amberlite	were	prepared	as	follows:	30	g	of	Dowex	(AG50W	X4	-	200)	was	washed	in	

95%	ethanol	with	one	change	in	30	min	to	remove	most	of	the	colour.	This	was	washed	

repeatedly	with	deionised	water	until	clear.	The	30	g	of	Amberlite	(IRA-67)	was	washed	

with	 5	 volumes	 of	 1M	NaOH	 for	 30	min,	 stirring	 every	 5	min.	 This	 was	 rinsed	with	

deionised	water	until	neutral,	as	indicated	using	litmus	paper.	From	each	sample,	200	µl	

was	placed	on	to	the	column	and	allowed	to	soak	in.	This	was	then	washed	through	with	

3	 ml	 of	 HPLC	 gradient	 grade	 H2O,	 and	 the	 eluent	 collected,	 centrifuged	 and	 then	

analysed	using	HPIC	as	described	in	Section	3.2.3.	

	

5.2.9	Statistical	analysis	

Statistical	analyses	were	carried	out	using	SPSS	v.	22.	Prior	to	combining	the	data	

from	 the	 repeated	 experiment,	 the	 influence	 of	 growth	 chamber	 and	 round	 of	
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experiment	 were	 tested	 in	 a	 2-way	 analysis	 of	 variance	 (ANOVA).	 The	 were	 no	

confounding	impacts	of	experimental	replicate	and	growth	chamber	and	so	data	were	

combined.	Biomass	of	root,	shoot,	root	to	shoot	ratio,	number	of	racemes,	number	of	

flowers	 and	 volume	 of	 nectar	 were	 all	 compared	 using	 a	 one-way	 ANOVA	 with	

significance	determined	using	least	square	difference	(LSD)	post	hoc	analysis	at	the	5%	

level.	Concentration	of	nectar	carbohydrates	were	compared	in	a	multivariate	analysis	

of	 variance	 (MANOVA)	with	 significance	at	 the	5%	 level	determined	using	 LSD.	Total	

essential	and	non-essential	amino	acids	were	analysed	with	a	MANOVA	with	significance	

at	the	5%	level	determined	using	LSD.	The	distributions	of	amino	acids	in	nectar	were	

analysed	using	a	canonical	discriminant	analysis	(CDA),	having	first	removed	tryptophan,	

GABA	and	glutamine	data	(which	were	more	than	10-fold	lower	than	other	amino	acid	

concentrations).	Pollen	weight	was	compared	using	MANOVA.	Free	and	protein-bound	

amino	acids	were	also	analysed	using	CDA.	Treatment	effects	on	pollen	carbohydrates	

and	fatty	acid	composition	were	compared	using	MANOVA.	Mature	and	immature	leaf	

weights	were	compared	in	a	one-way	ANOVA.	
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5.3	Results	

	

5.3.1	Growth	characteristics		

	 Exposure	to	ozone	had	a	significant	 (P=	0.007)	 influence	on	the	dry	weight	of	

shoots	 (Figure	5.2A).	 Transfer	 from	O3	to	CFA	 (O3-CFA)	 caused	a	 significant	 (P<	0.05)	

reduction	in	shoot	biomass	compared	to	that	of	plants	subject	to	sustained	exposure	to	

110	 ppb	 O3	 for	 8	 h	 d-1.	 Whereas	 shoots	 from	 plants	 maintained	 in	 O3	 throughout	

weighed	significantly	(P<	0.05)	more	than	those	of	plants	in	both	transfer	treatments	

(CFA-O3	and	O3-CFA)	but	were	similar	to	plants	maintained	in	charcoal-filtered	air	(CFA)	

throughout.	Ozone	exposure	resulted	in	no	significant	change	in	the	dry	weight	of	roots	

nor	the	ratio	between	root	and	shoot	weight	(Figure	5.2B	and	5.2C).		

	

Sustained	 exposure	 to	 110	 ppb	 O3	 for	 8	 h	 d-1	 (O3)	 resulted	 in	 no	 significant	

influence	on	the	number	of	flowers	produced	on	each	raceme	(Figure	5.3A)	nor	on	the	

number	of	racemes	produced	(Figure	5.3B).	Sustained	exposure	to	O3	had	no	significant	

influence	on	the	volume	of	floral	nectar	produced	by	broad	beans	compared	to	plants	

raised	 throughout	 in	 CFA.	 Interestingly,	 the	 volume	 of	 nectar	 collected	 from	 both	

transfer	 treatments	 i.e.	 plants	 transferred	 from	 O3	 to	 CFA	 and	 vice	 versa,	 was	

significantly	 (P<	 0.001)	 increased	 by	 more	 than	 2-fold	 that	 of	 plants	 maintained	 in	

permanent	 conditions	 (Figure	 5.3C).	 There	 was	 a	 significant	 interaction	 between	

treatment	 and	 leaf	 age	 on	 the	 fresh	 weight	 of	 broad	 bean	 leaves	 (treatment*age,	

P<0.001)	(Figure	5.4).	Plants	grown	under	CFA	(CFA	and	CFA-O3)	produced	mature	and	

immature	leaves	of	similar	weights	(P=	0.132).	Plants	maintained	in	O3	produced	leaves	

with	the	lowest	weight	(P	≤	0.001)	and	those	in	the	O3-CFA	treatment	were	of	a		similar		

weight	to	those	in	the	CFA-O3	treatment	(P=0.378),	but	weighed	significantly	less	than	

those	sustained	in	CFA	(P=0.018)	and	more	than	those	sustained	in	O3	(P=0.001).	
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Figure	5.2.	Biomass	(dry	weight)	of	shoots	(A),	roots	(B)	and	root:shoot	ratio	(C)	
of	broad	beans	 (Vicia	 faba)	grown	from	seed	and	exposed	to	 four	 fumigation	
treatments;	charcoal	filtered	air	(CFA),	CFA	+	110	ppb	O3	8	h	d-1	(O3),	grown	in	
CFA	and	moved	to	CFA	+	110	pbb	O3	8	h	d-1	at	flowering	(CFA-O3)	and	grown	in	
CFA	+	110	pbb	O3	8	h	d-1	and	moved	to	CFA	at	flowering	(O3-CFA).	Different	letters	
indicate	significant	differences	at	the	5%	level.	Error	bars	represent	+/-SEM.	
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Figure	 5.3.	 Average	 number	 of	 flowers	 present	 per	 raceme	 (A),	 number	 of	
racemes	(B)	and	volume	of	nectar	per	flower	(C)	from	broad	bean	(Vicia	faba)	
grown	under	four	treatments;	charcoal	filtered	air	(CFA),	CFA	+	110	ppb	O3	8	h	d-
1	(O3),	grown	in	CFA	and	moved	to	CFA	+	110	ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	
and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	and	moved	to	CFA	at	flowering	(O3-CFA).	
Different	 letters	 indicate	 significant	 differences	 at	 the	 5%	 level.	 Error	 bars	
represent	+/-SEM.	
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Figure	5.4.	Mature	and	immature	leaf	fresh	weight	from	broad	bean	(Vicia	faba)	
plants	grown	under	charcoal	 filtered	air	 (CFA),	CFA	+	110	ppb	O3	8	h	d-1	 (O3),	
grown	in	CFA	and	moved	to	CFA	+	110	ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	or	
grown	 in	 CFA	 +	 110	 ppb	O3	 8	h	 d-1	 and	moved	 to	 CFA	 at	 flowering	 (O3-CFA).	
Different	 letters	 indicate	 significant	 differences	 at	 the	 5%	 level.	 Error	 bars	
represent	+/-SEM.	
	

	

	

5.3.2	Leaf	non-structural	carbohydrates	

The	non-structural	carbohydrate	content	of	mature	and	immature	broad	bean	

leaves	was	quantified	(Figure	5.5A	and	5.5B).	The	concentrations	of	glucose	and	fructose	

in	mature	 leaves	did	not	differ	 in	 response	to	exposure	to	O3.	However,	 there	was	a	

significant	 (P<	 0.05)	 effect	 of	 O3	 on	 the	 concentration	 of	 sucrose	 in	mature	 leaves.	

Sucrose	accumulated	to	similar	concentrations	of	~7.8	µg	g	fwt-1	and	~5.4	µg	g	fwt-1	in	

plants	grown	 in	O3	and	O3-CFA,	respectively,	but	was	significantly	 (P≤	0.02)	higher	 in	

plants	 raised	 in	 O3	 throughout	 than	 in	 plants	 subject	 to	 	 CFA	 (CFA	 and	 CFA-O3).	

Conversely,	 in	 immature	 leaves	glucose	 (P<	0.001)	 and	 fructose	 (P<	0.02)	 content	of	



	 96	

leaves	 was	 significantly	 influenced	 by	 treatment,	 whereas	 effects	 on	 sucrose	

concentration	was	on	the	borderlines	of	statistical	significance	(P<	0.08).	Plants	in	the	

O3-CFA	treatment	exhibited	the	lowest	(P≤	0.005)	concentration	of	glucose	in	foliage.	

Plants	grown	in	CFA	(CFA	and	CFA-O3)	had	similar	concentrations	of	glucose	in	immature	

leaves	(2.9	and	2.2	µg/g	fwt-1	CFA	and	CFA-O3,	respectively),	as	did	plants	sustained	in	

O3	 and	 those	 transferred	 from	 CFA	 to	 O3	 at	 flowering.	 Transfer	 from	 O3	 to	 CFA	 at	

flowering	induced	a	reduction	in	the	amount	of	fructose	in	immature	leaves	compared	

to	plants	grown	in	CFA	(CFA	and	CFA-O3)	(P≤	0.016).	Plants	sustained	in	O3	had	similar	

concentrations	of	fructose	to	all	other	treatments.	
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Figure	 5.5.	 	 Leaf	 non-structural	 carbohydrate	 composition	 of	mature	 (A)	 and	
immature	 (B)	 leaves	of	 broad	bean	 (Vicia	 faba)	 grown	 in	 charcoal	 filtered	 air	
(CFA),	CFA	+	110	ppb	O3	8	h	d-1	(O3),	grown	in	CFA	and	moved	to	CFA	+	110	ppb	
O3	8	h	d-1	at	flowering	(CFA-O3)	and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	and	moved	
to	CFA	at	flowering	(O3-CFA).	Error	bars	represent	+/-SEM.	
	

	

	

	

	

	

	

	

A.	Mature	leaves

B.	Immature	leaves
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5.3.3	Nectar	composition		

	

5.3.3.1	Carbohydrates	

The	concentration	of	glucose	and	fructose	in	nectar	of	broad	bean	flowers	was	

similar	in	all	treatments.	However,	plants	grown	in	O3	and	moved	to	CFA	at	flowering	

(O3-CFA)	 produced	 nectar	 with	 2-fold	 more	 concentrated	 sucrose	 than	 all	 other	

treatments	(P≤	0.01)	(Figure	5.6).	

	

	
Figure	5.6.	Nectar	concentrations	of	glucose,	fructose	and	sucrose	collected	from	
flowers	 of	 broad	 bean	 (Vicia	 faba)	 grown	 under	 four	 treatments;	 charcoal	
filtered	air	(CFA),	CFA	+	110	ppb	O3	8	h	d-1	(O3),	grown	in	CFA	and	moved	to	CFA	
+	110	ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	
and	moved	to	CFA	at	flowering	(O3-CFA).	Error	bars	represent	+/-SEM.	
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5.3.3.2	Amino	acids	

	 The	 total	 amino	 acid	 content	 of	 nectar	was	 significantly	 influenced	 by	 ozone	

exposure	 (P=	 0.01)	 (Figure	 5.7).	 However,	 the	 total	 essential	 amino	 acid	 content	 of	

nectar	was	not	significantly	influenced	by	exposure	to	ozone.	The	total	concentration	of	

non-essential	amino	acids	(P=	0.004)	was	the	main	factor	influencing	the	change	in	total	

concentration	of	amino	acids	in	nectar	(Figure	5.8).	Nectar	of	plants	grown	in		O3	then	

transferred	to	clean	air	(CFA)	at	flowering	contained	significantly	(P	≤	0.01)	more	non-

essential	amino	acids	than	any	other	treatment.	

	

	
Figure	5.7.	Nectar	concentrations	of	total	free	amino	acids	collected	from	broad	
bean	 (Vicia	 faba)	 flowers	 grown	 under	 four	 fumigation	 treatments:	 charcoal	
filtered	air	(CFA),	CFA	+	110	ppb	O3	8	h	d-1	(O3),	grown	in	CFA	and	moved	to	CFA	
+	110	ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	
and	moved	to	CFA	at	flowering	(O3-CFA).	Error	bars	represent	+/-SEM.	
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Figure	5.8	Nectar	essential	and	non-essential	amino	acids	quantified	from	broad	
bean	 (Vicia	 faba)	 flowers	 under	 four	 growth	 treatments:	 charcoal	 filtered	 air	
(CFA),	CFA	+	110	ppb	O3	8	h	d-1	(O3),	grown	in	CFA	and	moved	to	CFA	+	110	ppb	
O3	8	h	d-1	at	flowering	(CFA-O3)	and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	and	moved	
to	CFA	at	flowering	(O3-CFA).	Different	letters	indicate	significant	differences	at	
the	5%	level.	Error	bars	represent	+/-SEM.	
	
	

	

5.3.3.3	Distribution	of	essential	and	non-essential	amino	acids	in	nectar	

Canonical	discrimination	analysis	(CDA)	was	used	to	identify	whether	exposure	

to	ozone	influenced	the	distribution	of	amino	acids	in	nectar.	Essential	and	non-essential	

amino	acids	were	analysed	in	two	separate	CDAs.	

	

Essential	amino	acids	were	reduced	to	two	significant	functions	accounting	for	

90%	of	the	variation	in	the	data.	The	first	discriminant	function	separated	plants	that	

were	maintained	in	O3	and	those	grown	in	O3	and	transferred	to	CFA	at	flowering	from	

the	other	treatments	(canonical	discriminant	function	coefficients,	Table	5.2).	Threonine	
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in	 nectar	 of	 plants	 subject	 to	 sustained	 	 O3	 accumulated	 to	 ~2.3-fold⋅	 that	 of	 the	

concentration	 in	 nectar	 from	 plants	 sustained	 in	 CFA.	 However,	 when	 plants	 were	

moved	 from	O3	 to	CFA	at	 flowering,	 the	concentration	of	 threonine	dropped	to	zero	

(Table	5.1	and	pooled	within-groups	correlations,	Table	5.2).	The	second	discriminant	

function	 separated	 plants	 grown	 in	 CFA-O3	 from	 those	 in	 the	 O3-CFA	 treatment	

(canonical	discriminant	function	coefficients,	Table	5.2).	Plants	that	were	grown	in	O3	

and	moved	to	CFA	at	flowering	exhibited	higher	concentrations	of	histidine,	isoleucine	

and	methionine	than	plants	grown	in	CFA	and	transferred	to	O3	at	flowering	(Tables	5.1	

and	5.2).	The	third	discriminant	function	was	unable	to	significantly	distinguish	between	

treatment	groups.	

	

A	 CDA	 on	 non-essential	 amino	 acids	 also	 produced	 two	 significant	 functions	

(Table	5.2).	The	first	discriminant	function	distinguished	the	difference	between	plants	

that	were	grown	in	O3	and	transferred	to	CFA	at	flowering	from	those	maintained	in	CFA	

or	O3	throughout	(canonical	discriminant	 function	coefficients,	Table	5.2).	Transfer	of	

plants	 from	O3	 to	 CFA	 at	 flowering	 resulted	 in	 increased	 concentrations	 of	 cysteine,	

proline,	asparagine	and	glutamic	acid	in	nectar	compared	to	plants	maintained	in	either	

condition	(CFA	or	O3)	throughout	(Tables	5.1	and	5.2).	The	second	significant	function	

distinguished	plants	grown	in	CFA	and	transferred	in	to	O3	at	flowering	(CFA-O3)	from	

the	 other	 treatment	 groups	 (canonical	 discriminant	 function	 coefficients,	 Table	 5.2).	

Nectar	of	plants	grown	in	CFA	and	moved	to	O3	(CFA-O3)	at	flowering	contained	more	

aspartic	 acid	 and	 serine,	 but	 had	 lower	 concentrations	 of	 glycine,	 in	 comparison	 to	

plants	grown	under	O3	and	transferred	to	CFA	at	flowering	(O3-CFA)	(Tables	5.1	and	5.2).		
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5.3.4	Pollen	composition		

Exposure	 to	 ozone	 at	 flowering	 was	 directly	 responsible	 for	 a	 significant	 (P<	

0.001)	reduction	in	the	fresh	weight	of	pollen	collected	from	broad	bean	flowers	(Figure	

5.9).	The	weight	of	pollen	collected	from	plants	sampled	in	CFA	(CFA	and	O3-CFA)	was	

similar.	However,	the	weight	of	pollen	produced	by	plants	sampled	in	O3	(O3	and	CFA-

O3)	was	significantly	(P<	0.02)	less	than	that	of	plants	sampled	in	CFA.	

	

Total	protein-bound	essential	amino	acids	were	significantly	(P<	0.001)	reduced	

in	 plants	 exposed	 to	O3	 by	 ~75%	 in	 the	 sustained	 treatment.	 In	 fact,	 all	 treatments	

involving	 exposure	 to	 ozone	 (O3,	 CFA-O3	 and	 O3-CFA)	 resulted	 in	 the	 recovery	 of	

significantly	 (P<	 0.001)	 less	 total	 protein-bound	 essential	 amino	 acids	 from	 pollen	

compared	to	plants	subject	to	sustained	CFA.	Pollen	from	plants	in	reciprocal	transfer	

treatments	 exhibited	 similar	 concentrations	 of	 total	 protein-bound	 essential	 amino	

acids	 (Figure	 5.10).	 Total	 protein-bound	 non-essential	 amino	 acids	 were	 also	

significantly	 (P<	0.001)	 reduced	 in	plants	exposed	to	O3.	Like	protein-bound	essential	

amino	acids,	all	plants	subject	to	O3	(O3,	CFA-O3	and	O3-CFA)	exhibited	less	(P<	0.001)	

total	free	essential	amino	acids	in	pollen	than	plants	subject	to	sustained	CFA	(Figure	

5.10).		

	

The	total	free	essential	amino	acids	reduced	by	~75%	in	plants	sustained	under	

O3	(P<	0.001);	however,	plants	 in	all	other	 treatments	 (CFA,	CFA-O3	and	O3-CFA)	had	

similar	total	concentrations	of	free	essential	amino	acids	in	their	pollen	(Figure	5.10).	

Total	free	non-essential	amino	acids	were	also	influenced	by	ozone	exposure	(P<	0.001).	

Plants	 sustained	 in	 O3	 had	 ~17%	 more	 free	 non-essential	 amino	 acids	 than	 plants	

sustained	in	CFA	(P=	0.031).	Plants	grown	in	CFA	and	transferred	in	to	O3	at	flowering	

had	 ~24%	 less	 (P≤	 0.01)	 free	non-essential	 amino	 acids	 than	 those	 sustained	 in	 CFA	

(Figure	5.10).	
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Figure	5.9.	Weight	of	pollen	per	flower	collected	from	broad	bean	(Vicia	faba)	from	four	
growth	treatments:	charcoal	filtered	air	(CFA),	CFA	+	110	ppb	O3	8	h	d-1	(O3),	grown	in	
CFA	and	moved	to	CFA	+	110	ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	and	grown	in	CFA	+	
110	ppb	O3	8	h	d-1	and	moved	to	CFA	at	flowering	(O3-CFA).	Different	letters	 indicate	
significant	differences	at	the	5%	level.	Error	bars	represent	+/-SEM.	
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Figure	5.10	Pollen	total	protein-bound	and	free	essential	amino	acids	from	broad	bean	
(Vicia	faba)	from	four	growth	treatments:	charcoal	filtered	air	(CFA),	CFA	+	110	ppb	O3	
8	h	d-1	(O3),	grown	in	CFA	and	moved	to	CFA	+	110	ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	
and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	and	moved	to	CFA	at	flowering	(O3-CFA).	Different	
letters	indicate	significant	differences	at	the	5%	level.	Error	bars	represent	+/-SEM.		
	

	

	

5.3.5	Protein-bound	amino	acid	composition	

The	distribution	of	protein-bound	essential	amino	acids	were	analysed	using	a	

CDA	 to	 identify	 ozone-induced	 changes	 to	 the	 distribution	 of	 amino	 acids	 in	 pollen.	

Three	significant	functions	were	produced	from	nine	essential	amino	acids,	(tryptophan	

was	not	 included	in	the	analysis).	The	first	function	represented	the	change	in	amino	

acids	between	plants	maintained	in	CFA	and	those	grown	in	CFA	and	moved	to	O3	at	

flowering	 (canonical	 discriminant	 function	 coefficients,	 Table	 5.4).	 All	 nine	 essential	

amino	 acids	 were	 able	 to	 be	 predicted	 based	 on	 treatment	 (pooled	 within-groups	

correlations,	 Table	 5.4).	 The	 amount	 of	 histidine,	 leucine,	 arginine,	 methionine,	

phenylalanine	and	isoleucine	decreased	as	a	direct	impact	of	plants	being	moved	to	O3	

a

b

c c
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a
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b b

b
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at	 flowering.	 However,	 plants	 that	were	moved	 from	 CFA	 to	 O3	 exhibited	 a	 greater	

amount	 of	 protein-bound	 threonine,	 lysine	 and	 valine	 than	 those	 subject	 to	 CFA	

throughout	(Tables	5.3	and	5.4).	The	second	discriminant	function	separated	reciprocal	

transfer	treatments	(CFA-O3	and	O3-CFA)	from	sustained	exposure	to	either	O3	or	CFA	

(canonical	discriminant	function	coefficients,	Table	5.4).	Pollen	of	plants	grown	in	CFA	

contained	~two-fold	more	threonine	than	those	grown	in	O3	(Tables	5.3	and	5.4).	The	

third	discriminant	function	was	able	to	separate	plants	that	had	been	grown	under	O3	

and	transferred	in	to	CFA	from	those	sustained	in	O3	(canonical	discriminant	function	

coefficients,	 Table	5.4).	When	plants	were	moved	 from	O3	 in	 to	CFA,	 the	amount	of	

protein-bound	methionine,	arginine,	lysine,	leucine,	valine,	histidine,	phenylalanine	and	

isoleucine	increased	in	pollen	compared	to	that	of	plants	subject	to	sustained	O3	(Tables	

5.3	and	5.4).	

	

Ozone-induced	 shifts	 in	 protein-bound	 non-essential	 amino	 acids	 were	 also	

successfully	 explained	by	 three	 significant	 functions.	 The	 first	 function	 extracted	 the	

difference	 between	 plants	 maintained	 throughout	 in	 CFA	 and	 those	 maintained	

throughout	 in	 O3	 (canonical	 discriminant	 function	 coefficients,	 Table	 5.4).	 	 	 Protein-

bound	glycine	was	~79%	higher	 in	pollen	 from	plants	maintained	 in	O3	 compared	 to	

those	maintained	in	CFA	(Tables	5.3	and	5.4).	The	second	function	highlighted	the	effect	

of	 transferring	 plants	 from	 CFA	 to	 O3	 at	 flowering	 (canonical	 discriminant	 function	

coefficients,	Table	5.4).	Plants	that	were	moved	into	O3	at	flowering	exhibited	increased	

levels	of	protein-bound	aspartic	acid	and	serine	in	pollen	(Tables	5.3	and	5.4).	The	third	

significant	function	explained	differences	between	plants	grown	in	O3	and	moved	in	to	

CFA	 at	 flowering	 with	 those	 sustained	 in	 CFA	 (canonical	 discriminant	 function	

coefficients,	Table	5.4);	plants	grown	 in	O3	and	moved	 to	CFA	at	 flowering	exhibited	

significantly	lower	levels	of	protein-bound	tyrosine,	alanine,	asparagine,	glutamic	acid,	

cysteine	and	proline	in	pollen	compared	to	plants	maintained	throughout	in	CFA	(Tables	

5.3	and	5.4).	
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5.3.6	Free	amino	acid	composition	

Impacts	of	O3	on	free	essential	amino	acids	were	explained	by	three	significant	

functions	via	CDA	(Table	5.6).	The	first	function	separated	plants	that	were	maintained	

in	 CFA	 and	 O3	 from	 those	 transferred	 between	 treatments	 at	 flowering	 (canonical	

discriminant	function	coefficients,	Table	5.6);	sustained	exposure	to	O3	resulting	in	~43%	

more	free	valine	in	pollen,	but	~75%	less	free	lysine	compared	to	plants	maintained	in	

CFA	 (Tables	 5.5	 and	 5.6).	 The	 second	 function	 separated	 the	 treatments	 that	 were	

sampled	 in	CFA	 (CFA	and	O3-CFA)	 from	 the	other	 treatments	 (canonical	discriminant	

function	coefficients,	Table	5.6).	The	amount	of	methionine	was	100%	higher,	arginine	

was	 ~29%	 higher	 and	 leucine	 was	 ~70%	 higher	 in	 plants	moved	 from	 O3	 to	 CFA	 at	

flowering	 compared	 to	 those	 subject	 to	 sustained	 CFA.	 However,	 the	 amount	 of	

threonine	and	phenylalanine	was	reduced,	by	~78%	and	~30%,	respectively	(Tables	5.5	

and	 5.6).	 The	 third	 function	 extracted	 the	 differences	 between	 plants	 subject	 to	

reciprocal	 transfers	 (CFA-O3	 and	 O3-CFA)	 from	 the	 other	 treatments	 (canonical	

discriminant	function	coefficients,	Table	5.6),	analyses	revealing	histidine	and	isoleucine	

were	lower	in	plants	transferred	from	O3	to	CFA	at	flowering	compared	to	plants	grown	

in	CFA	and	transferred	to	O3	at	flowering	(Tables	5.5	and	5.6).	

	

Impacts	 of	 O3	 on	 free	 non-essential	 amino	 acid	 composition	 were	 again	

explained	by	three	significant	functions	via	CDA	(Table	5.6).	The	first	function	separated	

the	plants	maintained	throughout	 in	CFA	or	O3	 from	the	other	treatments	 (canonical	

discriminant	 function	 coefficients,	 Table	 5.6).	 Plants	 exposed	 to	 O3	 exhibited	 ~98%	

higher	levels	of	free	alanine	but	~81%	lower	levels	of	aspartic	acid	compared	with	plants	

maintained	 in	 clean	 air	 (CFA)	 throughout	 (Tables	 5.5	 and	 5.6).	 The	 second	 function	

highlighted	 the	 impact	 of	 transferring	 plants	 from	CFA	 to	O3	 at	 flowering	 (canonical	

discriminant	function	coefficients,	Table	5.6);	transfer	to	O3	at	flowering	causing	a	~92%	

increase	 in	 free	glycine	compared	to	plants	maintained	 in	clean	air	 (CFA)	 throughout	

(Tables	 5.5	 and	 5.6).	 The	 third	 function	 separated	 plants	 in	 the	 reciprocal	 transfer	

treatments	 from	 the	 permanent	 treatments	 (canonical	 discriminant	 function	

coefficients,	Table	5.6).	Transfer	from	O3	to	CFA	at	flowering	resulted	in	increased	levels	

of	 free	proline,	 tyrosine	and	glutamic	acid	by	~96%,	~50%	and	~36%,	respectively.	 In	

contrast,	serine	and	cysteine	levels	decreased	by	~53%	and	48%,	respectively,	compared	



	 111	

to	pollen	from	plants	grown	in	CFA	and	transferred	to	O3	at	flowering	(Tables	5.5	and	

5.6).	
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5.3.7	Non-structural	carbohydrate	composition	

Non-structural	 carbohydrate	 (CHO)	 composition	 was	 quantified	 by	 HPLC.	

Sucrose	was	 the	dominant	 component,	 followed	by	 fructose,	with	glucose	being	 the	

least	abundant	CHO	(Figure	5.11).	Treatments	significantly	influenced	the	carbohydrate	

composition	of	broad	bean	pollen	 (glucose	P<	0.001,	 fructose,	P<	0.001,	 sucrose,	P<	

0.001).	The	amount	of	glucose	was	significantly	(P≤	0.05)	higher	in	pollen	from	plants	

grown	under	O3	(O3	and	O3-CFA)	compared	to	those	grown	in	CFA	(CFA	and	CFA-O3).	The	

amount	of	fructose	in	pollen	appeared	to	be	a	product	of	the	treatment	in	which	plants	

were	sampled	during	flowering;	plants	sampled	in	CFA	(CFA	and	O3-CFA)	exhibited	no	

significant	 difference	 in	 concentrations	 of	 fructose	 recovered	 from	 pollen,	 whereas	

plants	maintained	in	O3	exhibited	the	highest	(P≤	0.001)	levels	of		fructose	and	plants	

grown	in	CFA	and	transferred	to	O3	at	flowering	exhibited	the		lowest	(P≤	0.001)	levels	

of	fructose.	Sucrose	content	of	pollen	was	similar	in	plants	subject	to	CFA,	O3	or	O3-CFA.	

However	pollen	from	plants	raised	in		CFA	and	transferred	to	O3	at	flowering	exhibited	

significantly	(P≤	0.001)	lower	levels	of		sucrose	in	pollen	than	other	treatments	(Figure	

5.11).	
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Figure	5.11.	Non-structural	carbohydrates	extracted	from	pollen	of	broad	bean	(Vicia	
faba)	 in	four	growth	treatments;	charcoal	filtered	air	(CFA),	CFA	+	110	ppb	O3	8	h	d-1	
(O3),	grown	in	CFA	and	moved	to	CFA	+	110	ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	and	
grown	in	CFA	+	110	ppb	O3	8	h	d-1	and	moved	to	CFA	at	flowering	(O3-CFA).	+/-SEM.		
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5.3.8	Fatty	acid	composition		

Fatty	acid	composition	of	pollen	was	largely	unaffected	by	exposure	to	O3	(Table	

5.7).	However,	growth	in	O3	resulted	in	a	significant	(P<	0.024)	increase	in	the	proportion	

of	the	essential	fatty	acid,	α-linoleic	acid	(omega	6)	in	pollen	and	this	altered	the	ratio	

of	α-linoleic	:	α-linolenic	acid,	from	1	:	3	in	clean	air-grown	plants	(CFA)	to	1	:	1,	and	1	:	

2	in	O3	and	O3-CFA	treatments,	respectively.	

	

	

Table	 5.7.	 Concentrations	 of	 fatty	 acids	 (±	 SEM)	washed	 from	 pollen	 collected	 from	
broad	bean	(Vicia	faba)	flowers	from	four	to	one	of	four	growth	treatments;	charcoal	
filtered	air	(CFA),	CFA	+	110	ppb	O3	8	h	d-1	(O3),	grown	in	CFA	and	moved	to	CFA	+	110	
ppb	O3	8	h	d-1	at	flowering	(CFA-O3)	and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	and	moved	to	
CFA	at	flowering	(O3-CFA).	MANOVA	output	is	presented	with	F	statistic.	
	

	
	

	

	

	

	

	

	

	

	

	

	

	

µg/mg ng/mg

Treatment Tetradecanoic
acid

Hexadecanoic
acid

Octadecanoic
acid

Linoleic
acid

Linolenic
acid

CFA 3.65±1.06 1.64±0.50 2.80±0.78 12.0±1.99 32.5±4.21

O3 14.6±6.42 3.93±1.28 8.16±2.01 47.7±10.8 56.4±7.61

CFA-O3 11.8±5.74 4.17±1.31 12.5±6.34 37.0±9.78 72.7±13.2

O3-CFA 4.58±1.42 1.76±0.36 1.71±0.68 27.9±7.63 62.3±23.9

Test	stat	(F) 1.493,76 1.983,76 2.183,76 3.323,76 1.423,76
P	value 0.223 0.124 0.097 0.024 0.244
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5.4	Discussion	

The	present	study	has	shown	that	exposure	to	transient,	field-relevant	levels	of	

ozone	during	flowering	significantly	affects	nutrient	allocation	to	nectar	and	pollen.		

	

Nectar	quality	appeared	to	be	highly	sensitive	to	environmental	perturbations	

and	was	clearly	 influenced	by	short-term,	as	well	as	 long-term,	exposure	to	elevated	

levels	of	ozone	pollution.	The	main	influences	of	O3	on	pollen	seemed	to	be	the	direct	

oxidation	of	free-essential	amino	acids	in	the	pollenkitt,	and	a	reduction	in	total	protein	

content	within	the	pollen.	Furthermore,	the	total	weight	of	pollen	available	to	collect	

from	plants	maintained	under	O3	was	 ~50%	 lower	 than	plants	maintained	 in	 CFA.	A	

reduction	in	the	amount	of	food	available	could	have	significant	implications	for	plant-

pollinator	 interactions.	 It	 is	 likely	 that	 there	 are	 at	 least	 two	ways	 that	 transient	O3	

exposure	affects	the	nutrients	measured	in	nectar	and	pollen.	First,	that	the	nutrient	

requirements	for	somatic	maintenance	of	plant	tissue	increase	in	response	to	oxidative	

stress	and	so	allocation	of	resources	to	reproductive	processes	(nectar	and	pollen)	are	

altered	 to	 accommodate	 this	 shift	 in	 nutrient	 requirements.	 Second,	 O3	 may	 also	

influence	the	nutrients	available	in	pollen	as	a	result	of	direct	oxidation.		

	

5.4.1	Impacts	of	O3	on	plant	performance	and	resource	allocation		

The	biomass	of	broad	bean	was	unaffected	by	long-term	exposure	to	ozone	in	

this	 experiment.	 However,	 a	 direct	 response	 to	 short-term	 exposure	was	 evident	 in	

terms	of	 reduced	shoot	weight;	plants	grown	 in	CFA	and	exposed	 to	O3	at	 flowering	

exhibited	 a	 reduction	 in	 shoot	 dry	 weight	 after	 only	 three	 days’	 exposure	 to	 O3	

compared	with	plants	maintained	 in	 clean	air	 throughout	 (CFA).	 Interestingly,	 plants	

that	 were	 grown	 under	 O3	 and	 exposed	 to	 CFA	 at	 flowering	 showed	 an	 equivalent	

reduction	in	shoot	biomass	compared	to	plants	sustained	under	O3.	It	may	be	that	plants	

in	 the	 sustained	 O3	 treatments	 had	 acclimatised	 to	 the	 O3-induced	 oxidative	 stress	

during	growth,	so,	when	exposed	to	clean	air	at	flowering,	this	allowed	the	mechanisms	

underlying	tolerance	to	be	diminished,	changing	assimilate	distribution	within	the	plant	

(Wang	et	al.,	2003).		
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There	were	 no	 ozone-induced	 changes	 in	 the	 number	 of	 racemes	 or	 flowers	

produced	by	broad	beans.	This	was	not	unexpected	since	it	is	unlikely	that	short-term	

exposure	would	influence	the	number	of	flowers	because	most	assimilate	investment	in	

floral	 development	 has	 already	 taken	 place.	 Likewise,	 Black	 and	 co-workers	 (2007)	

reported	that	the	number	of	flowers	and	racemes	produced	by	Brassica	campestris	were	

unaffected	by	short-term	(two	day)	exposure	to	O3	at	the	time	of	flowering.	However,	

the	literature	shows	that	long-term	exposure	to	ambient	O3	can	reduce	the	number	of	

flowers	produced	by	plants	(Bergweiller	and	Manning,	1999;	Black	et	al.,	2000).	In	the	

present	experiment,	no	evidence	of	this	was	found	but	Black	and	colleagues	(2000)	do	

highlight	that	this	effect	of	O3	on	flowering	may	be	concentration	and	species-specific.	

	

5.4.2	Nectar	quality	

The	most	 abundant	 nutrients	 in	 nectar	 are	 carbohydrates;	 primarily	 glucose,	

fructose	 and	 sucrose	 (Nicolson	et	al.,	 2007),	 though	amino	acids	 are	 also	prominent	

constituents	(Baker	and	Baker,	1973).	Nectar	appears	to	be	predominantly	derived	from	

phloem	constituents	(Fahn,	2000;	Nicolson	et	al.,	2007),	but	there	may	be	many	other	

factors	 contributing	 to	 its	 composition,	 including	 degradation	 of	 stored	 starch	 and	

possibly	the	degradation	of	nectary	parts	(Nicolson	2007;	Pacini	et	al.,	2003).	Nectary	

tissue	itself	can	be	capable	of	photosynthesis,	and	chloroplasts	have	been	reported	as	

present	 in	 the	nectary	parenchyma	of	Vicia	 faba	 (Davis	et	al.,	1988),	 suggesting	 that	

phloem	content	may	not	be	the	only	factor	governing	nectar	nutritive	quality.	

	

Long-term	O3	exposure	had	no	influence	on	the	volume	of	nectar	produced	by	

broad	bean	nor	on	the	non-structural	carbohydrate	content	of	nectar.	However,	plants	

in	transfer	treatments	(CFA-O3	or	O3-CFA)	responded	by	changing	the	composition	and	

volume	of	the	nectar	available	in	their	flowers.	In	both	transfer	treatments	(CFA-O3	or	

O3-CFA)	 the	 volume	 of	 nectar	 in	 flowers	 increased	 compared	 to	 that	 of	 plants	 in	

sustained	treatments	(CFA	or	O3).	The	concentration	of	carbohydrates	 in	nectar	from	

plants	in	the	transfer	between	CFA	and	O3	(at	flowering),	was	similar	to	that	of	plants	in	

the	CFA	and	O3	treatments.	But,	plants	grown	under	O3	and	exposed	to	CFA	at	flowering	

provisioned	nectar	with	double	the	concentration	of	sucrose.	It	is	also	worth	noting	that	

in	both	transfer	treatments	the	volume	of	nectar	in	flowers	increased.	This	correlates	
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with	 a	 reduction	 in	 the	 measured	 biomass	 of	 shoots,	 suggesting	 that	 resource	

investment	was	partitioned	towards	reproduction	as	opposed	to	somatic	maintenance.		

	

An	 interesting	 finding	 of	 this	 study	 is	 that	 long-term	 exposure	 to	 O3	 caused	

sucrose	to	accumulate	in	mature	leaf	tissue,	yet	this	increased	demand	for	sucrose	was	

not	reflected	in	a	reduction	in	the	sucrose	present	in	nectar.	However,	when	plants	were	

grown	under	O3	and	exposed	to	CFA	at	flowering,	the	amount	of	sucrose	in	leaf	tissue	

decreased	compared	to	plants	subject	to	sustained	O3,	and	this	corresponded	with	a	

marked	increase	in	the	amount	of	sucrose	in	the	nectar	of	these	plants.	Interestingly,	

the	demand	for	sucrose	in	leaf	tissue	did	not	cause	any	detrimental	impact	on	the	quality	

of	the	plants’	nectar.	This	could	suggest	that	nectar	composition	is	tightly	conserved	and	

that	minimum	thresholds	of	nectar	quality	are	maintained	so	as	 to	ensure	pollinator	

visitation	(Shuel,	1952,	Petanidou	et	al.	1999;	Davis,	2003).	Sucrose	is	the	main	vector	

for	assimilate	transport	in	plants	(Ziegler,	1975).	Nutrient	allocation	to	cell	maintenance	

increases	 when	 plants	 are	 exposed	 to	 ozone	 (Amthor,	 1988;	 Grantz,	 2003)	 and	

assimilates	 are	 accumulated	 in	 foliage	 (Friend	 and	 Tomlinson,	 1992;	 Robinson	 and	

Rowland,	 1996).	 Despite	 the	 lack	 of	 O3	 impacts	 on	 biomass	 accumulation	 or	 visible	

symptoms	of	injury	(leaf	flecking,	reduced	biomass),	an	O3-induced	oxidative	burden	on	

cells	 is	 still	 likely	 to	 have	 taken	 place.	 I	 hypothesize	 that	 the	 demand	 for	 carbon	 in	

stressed	leaf	tissue	increases	when	plants	are	subject	to	O3	and	so	more	of	the	nutrient	

is	allocated	 to	 leaf	 tissue	 (Guy	et	al.,	1992;	Ashmore,	2005).	When	plants	are	grown	

under	O3	but	exposed	to	CFA	at	flowering,	oxidation	by	O3	in	leaves	is	less	of	a	burden	

and	the	demand	for	extra	carbon	in	leaf	tissue	decreases.	The	accumulated	sucrose	in	

leaf	 tissue	 is	 then	 freely	available	 to	be	allocated	to	nectar,	 improving	nectar	quality	

(increased	volume	and	sucrose	concentration).		

	

The	proportions	of	total	essential	and	non-essential	amino	acids	in	the	nectar	of	

plants	 grown	 in	 CFA	 were	 almost	 equal.	 Ozone	 exposure	 at	 flowering	 resulted	 in	 a	

reduction	 in	 the	 total	 essential	 amino	 acids	 in	 the	 nectar	 of	 plants	 grown	 in	 CFA.	

Similarly,	plants	that	were	grown	under	O3	but	exposed	to	CFA	at	flowering	allocated	far	

more	non-essential	amino	acids	to	nectar	than	any	other	treatment.	
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									A	 striking	 finding	 of	 the	 analysis	 conducted	 on	 nectar	 was	 that	 plants	 in	 both	

transfer	treatments	(CFA-O3	and	O3-CFA)	provisioned	less	threonine	to	their	nectar	than	

plants	 subject	 to	 sustained	 CFA	 or	 O3.	 Threonine	 protein	 phosphatases	 have	 been	

identified	as	important	markers	of	stress	responses	in	plants	(País	et	al.,	2009).	They	are	

also	involved	in	the	transmission	of	jasmonic	acid	signalling	(País	et	al.,	2009;	Dammann	

et	al.,	1997),	a	reaction	well	documented	as	a	response	to	ozone	exposure	(Kangasjarvi	

et	al.,	1994;	Zadra	et	al.,	2006).	The	demand	for	threonine	phosphatases	in	plant	tissue	

may	 increase	 in	 response	 to	 a	 perceived	 change	 in	 air	 quality,	 so	 the	 availability	 of	

threonine	for	partitioning	in	to	nectar	may	be	compromised.	This	observation	suggests	

further	evidence	that	‘sudden’	changes	in	air	quality	may	be	as,	if	not	more,	stressful,	

than	sustained	daily	exposure	to	elevated	levels	of	O3.		

	

Proline	 was	 one	 of	 most	 concentrated	 amino	 acids	 in	 nectar.	 This	 finding	

supports	previous	studies	in	which	proline	has	been	found	to	be	a	dominant	amino	acid	

in	the	nectar	of	a	range	of	plant	species	(Carter	et	al.,	2006;	Baker,	1978;	Gardener	and	

Gillman,	 2001a;	 Kaczorowski	 et	 al.	 2005).	 In	 the	 present	 study,	 I	 found	 that	 the	

concentration	 of	 proline	 in	 nectar	 was	 heavily	 dependent	 on	 O3	 treatment;	 plants	

subject	to	sustained	levels	of	elevated	O3	produced	the	lowest	concentration	of	proline,	

but	when	O3-stress	 subsided	 (ie	 plants	were	 transferred	 to	 CFA	 at	 flowering)	 plants	

responded	 by	 allocating	 ~12-fold	 more	 proline	 to	 their	 nectar	 than	 plants	 that	

maintained	in	O3.	This	may	indicate	that	proline	is	accumulated	elsewhere	in	response	

to	exposure	to	O3.	Indeed,	proline	accumulation	has	been	well	documented	as	a	marker	

for	 plants	 under	 stress,	 including	 drought,	 osmotic	 stress	 and	 high	 temperature	

(Szabados	and	Savouré	2009;	Mafakheri	et	al.,	2010;	Sairam	et	al.,	2002;	Zhang	et	al.,	

2013).		

	

Glutamic	acid	followed	a	similar	trend	to	proline.	When	plants	grown	in	O3	were	

exposed	 to	CFA	at	 flowering,	 the	concentration	of	glutamic	acid	was	~22-fold	higher	

than	 that	 in	 plants	 subject	 to	 sustained	 in	 O3.	 Glutamic	 acid	 (glutamate)	 is	 highly	

important	in	its	function	of	donating	both	its	α-amino	group	and	carbon	skeleton	to	the	

production	of	other	amino	acids	(Forde	and	Lea,	2007),	and	therefore	is	essential	for	

nitrogen	metabolism	in	plants.	This	could	suggest	that	enhanced	nitrogen	metabolism	
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is	required	to	combat	oxidative	stress	at	the	plant	tissue	level	and	so	less	is	partitioned	

in	to	nectar	(Singh	et	al.,	1973;	Hare	and	Cress,	1997;	Di	Martino	et	al.,	2003).	Moreover,	

glutamic	acid	 is	a	precursor	for	both	arginine	and	proline,	so	observed	 impacts	of	O3	

exposure	on	arginine	and	proline	levels	may	be	linked	(Miflin,	2014).		

	

Non-essential	amino	acids	can	be	synthesised	in	the	bodies	of	animals,	so	dietary	

consumption	 is	 not	 essential.	 However,	 some	 amino	 acids	 are	 utilised	 in	 greater	

proportions	than	can	be	synthesized	in	the	body.	For	example,	proline	is	utilised	by	bees	

in	the	initial	stages	of	flight	(Barker	and	Lehner,	1972;	Carter	et	al.,	2006;	Micheu	et	al.,	

2000;	Mollaei	et	al.,	2013)	and	is	used	as	a	rapid	energy	source,	yielding	a	similar	amount	

of	ATP	as	glucose	in	a	shorter	reaction	time	(Carter	et	al.,	2006).	

	

5.4.3	Pollen	

There	 were	 two	 critical	 findings.	 Firstly,	 that	 sustained	 exposure	 to	 O3	

significantly	reduced	the	protein	content	of	pollen	compared	to	that	of	plants	subject	to	

sustained	clean	air	(CFA).	Short-term	exposure	to	O3	also	induced	a	reduction	in	pollen	

protein	content.	This	could	reflect	the	fact	that	nutritional	investment	in	pollen	is	still	

ongoing	in	the	late	stages	of	pollen	development	(Pacini,	2000).	Pollen	is	dehisced	from	

anthers	 after	 nutrient	 absorption	 and	 dehydration	 of	 the	 locular	 fluid	 in	 the	 anther	

(Clement	et	al.,	 1998;	Pacini,	 2000).	 It	 is	possible	 that	 the	availability	of	nutrients	 to	

pollen	can	be	influenced	right	up	to	the	point	of	dehiscence.	Further	evidence	to	support	

this	is	illustrated	in	the	increase	in	total	protein	observed	in	plants	transferred	from	O3	

to	 CFA	 at	 flowering	 compared	 with	 that	 of	 plants	 maintained	 in	 O3	 throughout.	

Interestingly,	 not	 only	 did	 the	 total	 amount	 of	 pollen	 protein	 change,	 but	 also	 the	

distribution	of	protein-bound	amino	acids,	potentially	suggesting	that	a	different	suite	

of	 proteins	maybe	 present	 in	 the	 pollen	 of	 plants	 that	 have	 experienced	 short-term	

ozone	exposure.		

	

The	detrimental	effects	of	ozone	on	pollen	are	generally	agreed	upon.	Previous	

publications	have	reported	 impaired	pollen	germination	and	germ	tube	development	

(Wolters	and	Martens,	1987;	Black	et	al.,	2007;	Pasqualini	et	al.,	2011).	 Interestingly,	

Gillespie	 and	 co-workers	 (2015)	 found	 that	 pollen	 from	 tomato	 plants	 exposed	 to	
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elevated	O3	were	as	negatively	affected	when	crossed	in	to	stamens	of	plants	in	clean	

air,	 suggesting	 that	 detrimental	 impacts	 on	 pollen	 were	 long-term	 and	 influenced	

viability	after	exposure	to	the	pollutant	ceased.	The	data	reported	herein	lend	additional	

support	to	the	view	that	O3	exposure	negatively	influences	pollen	viability	since	I	report	

that	exposure	to	ozone	reduced	the	total	amount	of	protein	 in	pollen	and	negatively	

affected	protein-bound	amino	acid	composition.	

	

5.4.4	Fatty	acids	

The	composition	of	fatty	acids	was	largely	unaffected	by	transient	exposure	to	

ozone.	However,	a	potentially		important	finding	was	that	pollen	sampled	from	plants	

raised	in	O3	exhibited	a		higher	proportion	of	the	essential	fatty	acid	α-linoleic	(omega	

6)	than	those	raised	in	CFA,	altering	the	ratio	of	α-linoleic	to	α-linolenic	acid	(omega	3).	

A	recent	publication	has	highlighted	the	importance	of	the	balance	between	omega	3	

and	omega	6	(Arien	et	al.,	2015).	These	authors	reported	that	bees	fed	a	low	omega	3	

diet	suffer	cognitively,	and	perform	poorly	at	olfactory	learning	tests.	They	also	found	

that	bees	on	low	omega	3	diets	produced	smaller	hypopharyngeal	glands.	It	is	not	known	

what	 causes	 the	 increase	 in	 omega	 6	 in	 pollen	 of	 plants	 exposed	 to	 O3,	 but	 lipid	

peroxidation	could	be	taking	place,	releasing	greater	proportions	of	the	free	fatty	acid	

from	 triacylglycerides,	 the	most	abundant	 form	of	 lipid	 in	pollen	 (Cresti	et	al.,	 1986;	

Dumas,	1977;	Walters-Arts	et	al.,	1998).	A	further	interesting	function	of	lipids	in	pollen	

is	 their	 essential	 requirement	 for	 pollen	 germination	 and	 penetration	 of	 the	 stigma.	

Pollen	from	tobacco	plants	did	not	germinate	without	lipids	present	on	the	pollenkitt,	

and	would	 even	 penetrate	 leaf	 tissue	when	 lipids	were	 present	 (Walters-Arts	et	 al.,	

1998).	

	

5.4.5	Conclusion	

	 Ground-level	concentrations	of	O3	fluctuate	greatly	(RoTAP,	2012).	However,	the	

short	term	impacts	of	O3	exposure	on	vegetation	are	rarely	studied.	The	experiments	

described	in	this	chapter	have	highlighted	that	detrimental	changes	in	nutrient	qualities	

of	nectar	and	pollen	in	response	to	O3-exposure	can	occur	rapidly.	Furthermore,	long-

term	 exposure	 to	 the	 pollutant	 also	 causes	 significant	 detrimental	 effects	 to	 pollen	

protein	and	fatty	acid	qualities.	The	implications	of	such	rapid	changes	in	the	available	
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nutrition	to	nectar	and	pollen	feeders	is	therefore	likely	to	be	a	common	occurrence	in	

the	natural	environment.	There	is	therefore	potential	for	severe	negative	implications	

for	both	plant	and	animal	fitness	and	this	should	be	explored	in	future	studies.	
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6.0	Chapter	6:	Ozone-induced	changes	in	nectar	quality	reduce	honeybee	

learning	

	

6.1	Introduction	

The	 ability	 to	 learn	 and	 remember	 floral	 traits	 is	 essential	 for	 pollinators	 to	

forage	efficiently.	Eusocial	pollinators	like	honeybees	are	unique	in	that	they	forage	not	

only	 to	 supply	 nutrition	 to	 themselves,	 but	 their	 foraging	 choices	 also	 influence	 the	

nutrition	of	the	colony	(Von	frisch,	1967).	Bees	must	discriminate	between	flowers	and	

their	reward	quality	and	adapt	their	foraging	behaviour	to	exploit	the	most	nutritionally	

rewarding	 food	 source.	 To	 do	 this,	 they	 learn	which	 floral	 traits	 (odour,	 flower	 size,	

colour	 and	 shape)	 signal	 a	 flower	with	 high	 quality	 nectar	 and	 those	 that	 indicate	 a	

flower	 with	 low	 quality	 nectar	 or	 one	 that	 is	 nectarless.	 Honeybees	 are	 capable	 of	

forming	long-lasting	memories	of	floral	cues	and	reward	quality	(Wright	et	al.,	2007)	and	

share	their	memory	of	a	high	quality	food	resource	with	hive-mates	via	a	waggle	dance	

in	the	colony	(von	Frisch,	1967).	

	

	 Bee	learning	has	been	studied	in	numerous	ways.	Free-flying	experiments	have	

been	useful	in	identifying	colour	preferences	and	floral	visitation	rates	of	bees	(Gegear	

and	 Laverty,	 2004;	 Hempel	 de	 Ibarra	 et	 al.,	 2000).	 However,	 laboratory	 studies	 on	

individual	restrained	bees	have	allowed	greater	control	over	variables	such	as	the	timing	

that	the	insect	is	exposed	to	certain	experimental	conditions;	something	that	is	difficult	

with	free-flying	animals.	The	learning	ability	of	restrained	honeybees	has	been	exploited	

since	the	mid	1940’s	when	their	ability	to	associate	odours	with	rewards	was	explored	

(Frings,	1944).	Techniques	for	studying	bee	learning	were	developed	along	with	robust	

methods	 for	 studying	 the	 olfactory	 learning	 of	 honeybees	 (Bitterman	 et	 al.,	 1983).	

Associative	 learning	 is	 a	 form	 of	 classical	 conditioning,	 the	 principles	 of	 which	 are	

demonstrated	in	pavlovian	conditioning	(Pavlov,	1927).	In	appetitive	learning,	animals	

associate	a	conditioned	stimulus	(CS)	(odour,	sound,	colour	etc.)	with	an	unconditioned	

stimulus	 (US)	 (nutritional	 reward)	 (Pavlov,	1927).	The	 response	of	 the	animal	 is	 then	

measured	as	an	indication	of	its	level	of	association.	Pavlov’s	study	involved	pairing	a	

sound	(CS)	with	feeding	(US)	using	dogs	and	measuring	their	salivary	secretions	as	the	

response.	The	same	principle	can	be	applied	to	bees	in	olfactory	conditioning,	where	
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odour	is	used	as	a	conditioned	stimulus.	When	sucrose	contacts	chemoreceptors	on	the	

antenna,	feet	or	mouthparts	of	bees	(Bitterman	et	al.,	1983)	the	proboscis	is	extended	

to	 initiate	 feeding	 (proboscis	 extension	 reflex	 [PER];	 unconditioned	 stimulus	 [US]).	

Conveniently,	this	feeding	reflex	can	be	paired	with	cues	such	as	odour	or	colour,	and	

bees	will	elicit	PER	in	response	to	the	presentation	of	a	paired	stimulus.	The	probability	

that	a	cohort	of	bees	will	respond	to	a	CS	after	subsequent	training	trials	with	a	food	US	

can	be	used	as	an	indication	of	how	well	the	animal	has	learnt	the	association	between	

the	odour	and	the	reward	(Menzel	et	al.,	1974).		

	

Sucrose	has	been	used	as	a	rewarding	stimulus	in	olfactory	conditioning	of	PER	

in	numerous	 insect	species	 including	 flies	 (Drosophila	melanogaster)	 (Chabaud	et	al.,	

2006),	moths	(Manduca	sexta)	 (Daly	and	Smith,	2000)	and	honeybees	(Menzel	et	al.,	

1974;	Wright	et	al.,	2007,	2013).	Honeybees	can	learn	an	association	between	an	odour	

and	 a	 sucrose	 reward	 after	 one	 reinforcing	 trial	 (Smith,	 1991)	 and	 the	 majority	 of	

honeybees	will	learn	an	association	by	the	third	reinforcing	trial	(Menzel	et	al.,	1974).	

Most	studies	employing	olfactory	conditioning	of	PER	using	honeybees	use	sucrose	as	

the	reward.	This	is	justified	as	sucrose	is	a	common	compound	in	floral	nectar	(Nicolson	

et	al.,	 2007)	and	 the	probability	 that	bees	will	 elicit	PER	 is	positively	 correlated	with	

concentration	of	 sucrose	used	 to	 stimulate	 receptors	on	 the	antenna	 (Menzel	et	al.,	

1996;	Pankiw	and	Page,	2000;	Haupt	and	Klemt,	2005).		

	

Sucrose	 is	used	so	commonly	 that	 there	are	 few	studies	 reporting	 the	role	of	

amino	 acids	 as	 reinforcers	 for	 pollinators	 feeding	 on	 nectar	 and	 there	 are	 no	

publications	assessing	true	‘nectar	 like’	solutions	containing	full	suites	of	amino	acids	

and	 carbohydrates	 on	 the	 learning	 rate	 of	 honeybees.	 A	 free-flying	 experiment	

demonstrated	 that	honeybees	would	consume	significantly	more	of	a	 sucrose-amino	

acids	 solution	 than	 a	 sucrose-only	 solution	 (Alm	 et	 al.,	 1990).	 However,	 the	

concentrations	 of	 amino	 acids	 used	 in	 the	 study	did	 not	match	 those	of	 nectar	 that	

would	normally	be	accessible	 to	short-tongued	bees.	There	are	also	suggestions	 that	

some	amino	acids	are	initially	deterrent	to	bees,	in	particular	glycine	(Inouye	and	Waller,	

1984;	Hendriksma	et	al.,	 2014).	However,	 at	 specific	 concentrations	 amino	acids	 are	

preferred	over	 sugar-only	 solutions	 (Inouye	and	Waller,	 1984).	Also,	 some	 individual	
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amino	acids	improve	olfactory	conditioning	of	PER	(Kim	and	Smith,	2000;	Simcock	et	al.,	

2014)	 compared	 to	 sucrose-only	 solutions	 and	 the	 study	 by	 Simcock	 et	 al.,	 (2014)	

highlighted	that	prior	feeding	of	amino	acids	can	influence	their	learning	ability;	bees	

pre-fed	with	proline	 and	 isoleucine	were	more	 likely	 to	 learn	 an	 association	when	a	

reward	also	contained	amino	acids	(Simcock	et	al.,	2014).	

	

This	chapter	utilises	an	olfactory	conditioning	of	the	honeybee’s	PER	to	assess	

how	O3-induced	changes	in	nectar	quality	affect	the	way	in	which	honeybees	learn	and	

remember	odours	associated	with	reward.	Broad	bean	plants	subjected	to	a	transient	

change	 in	 air	 quality	 following	 long-term	O3	 exposure	 provisioned	 their	 nectar	 with	

greater	 concentrations	 of	 carbohydrates	 (sucrose)	 and	 amino	 acids.	 Simulating	 this	

influence,	nectar	equivalent	in	carbohydrate	and	amino	acid	qualities	quantified	from	

broad	bean	flowers,	described	in	Chapter	5,	was	tested	to	see	if	the	impacts	influenced	

the	 nectar	 preferences	 of	 honeybees,	 as	 reflected	 in	 their	 motivation	 to	 form	 an	

olfactory	association	with	the	nectars	differing	in	amino	acid	composition.	
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6.2	Methods	

	

6.2.1	General	

Returning	 forager	 honeybees	 (Apis	 mellifera)	 (Ridley	 Building	 2,	 Newcastle	

University)	were	collected	from	one	colony	in	plastic	ventilated	vials.	No	more	than	5	

bees	were	 collected	 in	each	vial.	Vials	 containing	bees	were	placed	on	 ice	 to	 induce	

anaesthesia	(usually	<	3	min).	Anaesthetised	bees	were	placed	in	to	a	plastic	harness	

using	fine	forceps.	Harnesses	were	made	from	modified	1	ml	plastic	pipette	tips	with	

the	 tip	end	 cut	off	 and	a	 small	 groove	 cut	 into	 the	 remaining	 structure	 to	allow	 the	

abdomen	of	the	bee	to	be	exposed	to	air,	allowing	the	bee	to	breathe.	The	bee	was	

positioned	so	that	its	head	was	free-moving	and	black	tape	was	used	to	secure	the	bee	

to	the	harness	over	the	back	of	the	head.	After	checking	that	movement	of	the	proboscis	

was	not	 inhibited	by	positioning	 in	 the	harness,	bees	were	 left	 to	 recover	 from	cold	

anaesthesia	for	~15	min.	Bees	were	then	fed	0.7	M	sucrose	until	satiety,	by	delivering	

the	solution	directly	to	the	mouthparts	with	a	pipette.	Once	fed,	bees	were	left	24	h	

before	being	used	in	the	experiment.	

	

6.2.2	Training		

Bees	were	trained	with	5	different	treatment	solutions.	A	1	M	sucrose	solution	

was	 used	 as	 the	 control.	 Treatment	 solutions	 simulated	 the	 amino	 acid	 and	

carbohydrate	 compositions	 of	 nectar	 from	broad	 beans	 exposed	 to	 charcoal-Purafil®	

filtered	air	(CFA	nectar)	or	from	plants	that	were	exposed	to	O3	during	growth	and	then	

CFA	at	 flowering	 (O3	nectar).	To	control	 for	 the	presence	of	amino	acids	 in	solutions,	

treatments	were	used	in	which	only	the	carbohydrate	profiles	of	nectar	were	present;	

amino	 acids	 were	 not	 (CFA	 carbs	 and	 O3	 carbs).	 Detailed	 solution	 composition	 is	

presented	in	Table	6.1.	
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Table	 6.1.	 Carbohydrate	 and	 amino	 acid	 composition	 of	 treatment	 solutions	 used	 in	
olfactory	conditioning	assays	with	honeybees.		

	
	

	

	

	

	

	

	

	

Treatment	solution

CFAnectar O3-CFA	nectar CFAcarbs O3-CFAcarbs

Carbohydrates (M)
Sucrose 1.0 2.0 1.0 2.0
Glucose 0.5 0.5 0.5 0.5
Fructose 0.5 0.5 0.5 0.5
Essential
Amino	acids	(µM)
Threonine 530.7 0
Valine 187.5 291.4
Lysine 124.1 126.5
Arginine 83.8 123.5
Phenylalanine 72.3 81.9
Leucine 59.5 108
Methionine 47.4 43.8
Histidine 14.7 344.4
Isoleucine 1.24 82.5
Tryptophan 0.02 0.04
Non-essential
amino acids (µM)
Glycine 386.9 60.5
Proline 238.1 1405
Glutamic	acid 124.3 1395
Serine 114.3 388
Alanine 34.6 139
Aspartic	acid 28.3 21.4
Cysteine 25.3 99.3
Tyrosine 23.9 21.8
GABA 3.02 0.77
Asparagine 0.12 2.16
Glutamine 0.03 0.4
Total	amino acids	(mM) 2.10 4.74
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6.2.3	Olfactory	conditioning	

Olfactory	condition	experiments	using	honeybees	were	designed	based	on	the	

methods	of	Bitterman	and	colleagues	(1983).	All	bees	were	tested	for	their	sensitivity	to	

sucrose	by	stimulating	the	antenna	with	1	M	sucrose	with	a	pipette.	Bees	that	did	not	

elicit	 a	 proboscis	 extension	 reflex	 (PER)	were	 not	 used	 in	 the	 olfactory	 conditioning	

experiment.	The	odour	used	in	training	was	1-hexanol	(98%	purity,	Sigma-Aldrich).	To	

present	the	odour,	5	µl	of	pure	1-hexanol	was	pipetted	on	to	a	strip	of	filter	paper	and	

placed	 in	 to	 a	 glass	 tube	 that	was	 connected	 to	 an	 air	 supply,	 pre-programmed	and	

controlled	 by	 a	 2-way	 valve	 connected	 to	 a	 Programmable	 Logic	 Controller	 (PLC)	

(Automation	Direct,	Cumming,	GA,	USA).	Air	was	directed	through	the	odour	tube	by	

pressing	a	button	connected	to	the	PLC	which	was	programmed	to	exert	a	4	s	flow	of	air	

through	the	odour	tube.	Individual	bees	were	positioned	3	cm	in	front	of	the	odour	tube.	

Air	 was	 constantly	 drawn	 over	 the	 bee	 and	 odour	was	 removed	 by	 a	 fixed	 exhaust	

system	positioned	behind	the	bee.	Bees	were	conditioned	to	the	odour	by	pairing	a	food	

reward	(unconditioned	stimulus)	with	the	odour	pulse	(conditioned	stimulus).	The	food	

reward	was	treatment-dependent	(Table	6.1).	Following	an	odour	pulse,	the	antenna	of	

the	bee	was	stimulated	with	1	M	sucrose	to	elicit	a	PER	response.	The	bee	was	then	fed	

a	0.4	µl	droplet	of	the	treatment	solution	2	s	after	the	odour	pulse	had	started	but	before	

the	 odour	 stimulus	 had	 ceased	 (Figure	 6.1).	 Bees	 were	 then	 left	 for	 5	min	 and	 the	

process	was	repeated.	In	each	trial,	the	PER	response	of	the	bee	was	recorded.	If	bees	

elicited	 a	 PER	 in	 response	 to	 the	 odour	 stimulus	 the	 response	was	 recorded	 as	 ‘1’.	

However,	if	antennal	stimulation	with	1	M	sucrose	was	needed	to	induce	a	PER,	then	

the	response	was	recorded	as	‘0’.	Bees	were	trained	for	6	consecutive	trials,	each	with	

a	5	min	inter-trial	interval	(ITI).	
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Figure	 6.1.	 Schematic	 diagram	 illustrating	 the	 timing	 of	 odour	 stimulus	 and	 reward	
presentation.	An	odour	pulse	 (conditioned	 stimulus)	 is	delivered	 for	3	 s.	A	 reward	 is	
presented	 to	 the	 subject	 after	 2	 s	 so	 that	 the	 animal	 can	 associate	 the	 odour	 with	
reward.	
	

	

6.2.4	Testing	

After	training	for	6	trials,	bees	were	left	for	10	min.	To	test	for	memory	of	the	

association	between	the	treatment	reward	and	the	odour	stimulus,	the	trained	odour	

was	presented	to	the	bee	and	the	PER	response	was	recorded	as	‘1’	or	‘0’	for	a	positive	

PER	 or	 no	 response,	 respectively.	 After	 testing,	 bees	were	 fed	 to	 satiety	with	 0.7M	

sucrose	and	left	for	24	h.	After	24	h,	PER	response	to	the	odour	was	tested	again.		

	

6.2.5	Statistical	analysis	

Data	collected	 for	olfactory	conditioning	 trials	were	binary	and	so	 treatments	

were	 compared	 using	 a	 two-way	 binary	 logistic	 regression	 using	 treatment	 and	 trial	

number	as	factors.	Comparisons	between	treatment	and	trial	number	were	made	using	

least	significant	difference	(LSD).	Short	term	(10	min)	and	long	term	(24	h)	memory	of	

association	 were	 also	 analysed	 using	 a	 binary	 logistic	 regression	 with	 significance	

determined	using	LSD.	

	

	

	

	

	

	

	

	

	

	

Time	(s)
1 2 3 4

Odour	 (CS)
Reward	(US)
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6.3	Results	

Bees	were	trained	to	associate	an	odour	(1-hexanol)	with	different	nectar-like	

rewards,	simulating	the	amino	acid	and	carbohydrate	composition	of	broad	bean	nectar	

collected	from	plants	subject	to	(i)	charcoal/Purafil®	filtered,	clean	air	(CFA	nectar)	or	(ii)	

110	 ppb	O3	 for	 8	 h	 d-1	 until	 flowering	 and	 then	 exposed	 to	 CFA	 (O3-CFA	nectar).	 To	

control	 for	 the	presence	of	 amino	acids	 in	nectar,	 bees	were	also	 trained	with	diets	

matching	only	the	carbohydrate	composition	of	these	nectars	(CFA	carbs	and	O3-CFA	

carbs).	

	

6.3.1	Influence	of	ozone-induced	changes	in	nectar	quality	on	honeybee	learning	

The	reward	treatment	exerted	a	significant	(P=	0.002)	influence	on	the	rate	at	

which	 honeybees	 learned	 to	 associate	 the	 odour	 with	 reward	 (Figure	 6.2).	 The	

probability	that	honeybees	exhibited	a	conditioned	response	on	the	second	training	trial	

was	 30%	higher	when	bees	 trained	with	O3-CFA	nectar	 than	 those	 trained	with	 CFA	

nectar	 (P=	0.027).	The	acquisition	of	association	between	odour	and	reward	reached	

~73%	in	trials	3	and	4	 in	both	treatments.	However,	by	the	fifth	trial	bees	reinforced	

with	O3-CFA	nectar	were	~23%	less	likely	to	elicit	PER	than	those	trained	with	CFA	nectar	

(P=	0.023).	The	probability	of	response	continued	to	decrease	in	the	sixth	trial,	and	bees	

trained	with	O3-CFA	nectar	were	~40%	 less	 likely	 to	 respond	to	 the	odour	 than	bees	

trained	with	CFA	nectar	(P=	0.001)	(Figure	6.2).	Bees	were	tested	for	their	memory	of	

the	association	between	odour	and	reward	at	10	min	and	24	h	after	training	trials	(Figure	

6.2).	There	was	no	significant	interaction	between	treatment	and	time	of	test.	However,	

there	was	a	significant	(P=	0.017)	change	in	memory	development	between	the	10	min	

test	and	the	24	h	test.		In	bees	trained	with	CFA	nectar,	memory	at	24	h	was	significantly	

(P=	0.004)	higher	than	the	10	min	test.	There	was	no	difference	in	response	between	10	

min	and	24	h	tests	for	bees	trained	with	O3-CFA	nectar.	
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Figure	6.2.	(A)	Olfactory	conditioning	of	nectar	simulating	that	of	nectar	collected	from	
flowers	of	broad	beans	grown	under	two	ozone-exposure	treatments;	charcoal	filtered	
air	(CFA)	and	grown	in	CFA	+	110	ppb	O3	8	h	d-1	and	moved	to	CFA	at	flowering	(O3-CFA).	
Significant	differences	between	CFA	and	O3-CFA	responses	are	indicated	by	asterisks	(*	
P<	0.05,	**	P<	0.01,	***	P<	0.001)	ns	indicates	no	significant	differences	by	LSD	at	5%	
level.	 (B)	 Olfactory	 memory	 tests	 10	 min	 and	 24	 h	 after	 conditioning.	 Error	 bars	
represent	+/-SEM.	
	

	

	

	

6.3.2	Amino	acids	in	floral	nectar	enhance	honeybee	learning			

Bees	were	trained	to	associate	1-hexanol	with	solutions	simulating	the	amino	

acid	and	carbohydrate	profiles	of	nectar	from	broad	bean	flowers	grown	in	CFA	or	O3	

and	 transiently	 exposed	 to	 CFA	 at	 flowering.	 Additional	 bees	 were	 also	 trained	 to	

associate	 the	odour	with	 the	 same	solutions	 lacking	amino	acids.	Presence	of	amino	

acids	in	CFA	nectar	significantly	(P<	0.001)	influenced	the	rate	at	which	bees	learned	to	

associate	 the	 training	 odour	with	 reward	 (Figure	 6.3).	 Bees	 trained	with	 CFA	 nectar	

(containing	amino	acids)	were	33%	more	 likely	 to	elicit	PER	on	 the	 second	 trial	 than	

those	 trained	with	CFA	carbs	 (P=	0.017).	 The	acquisition	 rates	 in	 trials	3	and	4	were	

similar	for	both	treatments	(CFA	nectar	and	CFA	carbs)	with	between	60%	and	80%	of	

bees	eliciting	PER.	However,	by	trial	5	bees	were	~46%	more	likely	to	respond	to	the	

odour	(PER)	when	the	training	solution	contained	amino	acids	(CFA	nectar)	(P≤	0.001).	

Similarly,	by	trial	6	bees	were	~29%	more	likely	to	respond	to	a	solution	that	contained	

amino	acids	 (CFA	nectar)	 (P=	0.015).	The	olfactory	memory	of	bees	 trained	with	CFA	

*
***ns ns

A B

**

ns
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carbs	and	CFA	nectar	were	not	influenced	by	treatment.	However,	24	h	test	memory	

was	significantly	(P<	0.001)	higher	than	10	min	tests	in	both	treatments.	

	

Presence	 of	 amino	 acids	 in	 O3-CFA	 nectar	 also	 influenced	 the	 acquisition	

behaviour	 of	 bees,	 but	 there	 was	 no	 significant	 treatment*trial	 interaction,	 though	

there	was	a	significant	(P=	0.003)	treatment	effect	(Figure	6.3).	Bees	that	were	trained	

with	O3-CFA	 nectar	 and	O3-CFA	 carbs	 solutions	 learnt	 the	 association	 of	 odour	with	

reward	at	a	similar	rate,	for	the	first	four	trials.	However,	by	trials	5	and	6,	bees	were	

more	likely	to	elicit	PER	when	trained	with	O3-CFA	nectar	than	those	trained	with	O3-

CFAcarbs	 (P≤	 0.05).	 Bees	 trained	 with	 O3-CFA	 carbs	 and	 O3-CFA	 nectar	 showed	 no	

significant	differences	in	their	10	min	test	or	24	hr	test	for	olfactory	memory.	
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Figure	6.3.	(A)	Olfactory	conditioning	of	synthesised	nectar	matching	carbohydrate	(CFA	
carbs)	 and	 the	 amino	 acids	 and	 carbohydrate	 (CFA	 nectar)	 composition	 of	 nectar	
collected	from	flowers	of	broad	beans	under	two	growth	treatments;	charcoal	filtered	
air	(CFA).	(C)	Olfactory	conditioning	of	synthesised	nectar	matching	carbohydrate	(O3-
CFA	carbs)	and	the	amino	acids	and	carbohydrate	(O3-CFA	nectar)	composition	of	nectar	
collected	from	flowers	of	broad	beans	grown	under	CFA	+	110	ppb	O3	8	h	d-1	and	moved	
to	CFA	at	flowering	(O3-CFA).	(B	and	D)	Olfactory	memory	tests	10	min	and	24	h	after	
conditioning.	Significant	differences	between	responses	are	indicated	by	asterisks	(*	P<	
0.05,	**	P<	0.01,	***	P<	0.001),	ns	indicates	no	significant	differences	by	LSD.	
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6.4	Discussion	

Amino	acids	in	nectar	are	not	thought	to	be	major	nutritive	sources	to	bees,	in	

particular	 because	 the	 primary	 source	 of	 protein	 and	 amino	 acids	 for	 bees	 is	 pollen	

(Hendriksma	et	al.,	2014).	The	present	study	yields	evidence	that	amino	acids	in	nectar	

may	play	a	 role	 in	controlling	pollinator	behaviour	and	 floral	visitation	 rate.	My	data	

clearly	demonstrate	that	the	presence	and	concentration	of	amino	acids	in	nectar	can	

cause	pollinators	to	positively	modify	their	behaviour	in	favour	of	learning	to	associate	

an	 odour	 with	 the	 reward	 when	 amino	 acids	 are	 present.	 In	 agreement	 with	 other	

publications	 (Kim	and	Smith,	2000;	Carter	et	al.,	2006;	Hendriksma	et	al.,	2014),	 it	 is	

demonstrated	that	honeybees	may	show	a	foraging	preference	for	some	amino	acids,	

evidenced	by	the	increased	motivation	to	maintain	an	association	of	odour	and	reward	

when	amino	acid	concentrations	are	higher	(O3-CFA	nectar)	than	when	trained	with	a	

diet	of	lower	amino	acid	concentration	(CFA	nectar).	

	

The	initially	slower	rate	of	acquisition	for	nectars	that	contain	amino	acids	(CFA	

nectar	 and	O3-CFA	 nectar),	 over	 those	without	 (CFA	 carbs	 and	O3-CFA	 carbs),	 could	

suggest	that	preliminary	nutritive	assessment	of	a	nectar	is	made	on	the	perception	of	

its	 sweetness.	 There	 is	 some	 evidence	 that	 some	 amino	 acids	 such	 as	 proline	 may	

stimulate	salt	cell	receptors	in	insect	labella	(Goldrich,	1973;	Hansen,	1998),	which	could	

inhibit	the	perceived	sweetness	of	a	sugar	solution	containing	amino	acids	(Carter	et	al.,	

2006).	Glycine	has	been	reported	to	be	initially	aversive	to	honeybees	(Hendriksma	et	

al.,	2014),	and	in	our	treatment	solution	where	glycine	was	minimal	(O3	nectar)	bees	

were	observed	to	demonstrate	improved	association.	Conversely,	presence	of	glycine	in	

a	 sucrose	 reward	 has	 also	 been	 reported	 to	 enhance	 olfactory	 conditioning	 in	

honeybees	(Kim	and	Smith,	2003).	Possible	discrepancy	between	these	findings	may	be	

attributed	 to	 experimental	 design.	 The	 study	 by	 Hendriksma	 and	 co-workers	 (2014)	

involved	 free-flying	 bees,	 whereas	 the	 study	 by	 Kim	 and	 Smith	 (2000)	 involved	

harnessed	 bees	 that	 had	 been	 food	 deprived.	 Phenylalanine	 has	 been	 described	 as	

phagostimulatory	 amino	 acid	 to	 honeybees	 and	 when	 given	 the	 choice,	 bees	 will	

consume	 greater	 proportions	 of	 sucrose	 solutions	 containing	 phenylalanine	 than	 a	

sucrose-only	 solution	 (Hendriksma	 et	 al.,	 2014).	 Phenylalanine	 may	 be	
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phagostimulatory	to	bees	as	it	has	been	identified	to	stimulate	sugar-sensing	neurons	

in	flesh	flies	and	blow	flies	(Shiraishi	and	Kuwabara,	1970).		

	

The	observed	 increase	 in	 the	olfactory	association	 in	 subsequent	 trials,	when	

amino	acids	were	present	compared	to	those	trained	without	amino	acids	in	the	nectar,	

could	indicate	that	amino	acid	detection	and	nutritive	assessment	is	more	likely	to	be	

based	on	post-ingestive	feedback,	and	 less	on	an	 initial	taste	assessment	of	the	food	

source	(Wright	et	al.,	2007).	A	few	studies	have	begun	to	investigate	the	role	of	post-

ingestive	 feedback	 between	 the	 gut	 and	 brain	 and	 its	 ability	 to	 regulate	 appetitive	

learning.	Bees	that	were	injected	with	individual	amino	acids	(2	µl	of	10-6	M	per	amino	

acid)	prior	to	an	olfactory	conditioning	assay	showed	both	improved	and	inhibited	short-	

and	long-term	memory	depending	on	the	amino	acid	injected	(Chalisova	et	al.,	2011).	

Short-term	memory	was	enhanced	by	the	injection	of	arginine,	glutamic	acid,	aspartic	

acid,	 tyrosine,	 valine	 and	 threonine,	 but	 inhibited	 by	 the	 injection	 of	 lysine	 and	

tryptophan	(Chalisova	et	al.,	2011).	Long-term	memory	was	enhanced	by	the	injection	

of	fewer	amino	acids;	alanine,	asparagine,	aspartic	acid	and	isoleucine,	but	inhibited	by	

the	injection	of	 lysine,	proline,	cysteine	and	valine	(Chalisova	et	al.,	2011).	A	study	in	

which	honeybees	were	pre-fed	 isoleucine,	phenylalanine,	proline	or	methionine	24	h	

before	an	olfactory	conditioning	assay	reported	that	bees	that	were	pre-fed	amino	acids	

were	less	likely	to	learn	an	association	when	trained	with	sucrose-only	(Simcock	et	al.,	

2014).	 However,	 pre-feeding	 bees	 with	 isoleucine	 or	 proline	 improved	 associative	

learning	when	bees	were	rewarded	with	solutions	containing	amino	acids	(Simcock	et	

al.,	2014).	

	

It	is	possible	that	the	amino	acids	and	sucrose	in	the	training	solutions	used	in	

the	present	study	could	pass	through	the	gut	and	into	the	haemolymph	in	the	5	min	ITI	

used	in	the	olfactory	conditioning	trials	influencing	appetitive	decisions	in	subsequent	

trials.	A	study	on	the	transport	of	sugars	in	honeybees	identified	that	after	feeding	bees	

1	M	glucose,	50%	of	it	had	reached	the	haemolymph	5	min	after	feeding	(Crailsheim,	

1988a;	1988b).	Once	nutrients	have	reached	the	haemolymph	it	is	likely	that	the	brain	

can	then	detect	nutrient	qualities	in	the	haemolymph	and	a	recent	study	has	suggested	

that	an	initial	pre-ingestive	deterrent	taste	of	proline	is	overcome	by	a	post-ingestive	
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response	 (Simcock	 et	 al.,	 2014),	 enhancing	 a	 memory	 of	 reward.	 Furthermore,	

honeybees	actively	regulate	their	dietary	consumption	of	essential	amino	acids	to	meet	

specific	intake	targets	(Paoli	et	al.,	2014),	delivering	further	evidence	that	post-ingestive	

feedback	is	important	in	making	foraging	decisions.		

	

An	ozone-enriched	climate	 is	highly	 likely	 in	 the	coming	decades	and	average	

ground-level	 concentrations	 are	 predicted	 to	 continue	 to	 steadily	 increase	 for	 the	

foreseeable	 future	 in	 the	 Northern	 hemisphere	 (Ashmore,	 2005).	 We	 have	

demonstrated	 that	 transient,	 short-term	 changes	 in	 exposure	 to	 O3	 are	 enough	 to	

influence	the	carbohydrate	and	amino	acid	qualities	of	nectar	produced	by	broad	bean	

flowers,	and	in	turn,	have	demonstrated	that	such	changes	have	direct	impacts	on	the	

foraging	behaviour	of	honeybees,	reducing	the	likelihood	of	forming	a	lasting	olfactory	

association	with	plants.	Further	studies	are	required	to	test	the	response	of	free-flying	

bees.	Real	world	implications	of	reductions	in	visitation	rates	to	pollinator-dependent	

crops	 could	 have	 a	 huge	 impact	 on	 crop	 success.	 Not	 only	 should	 the	 influence	 of	

environmental	stressors	such	as	ozone	pollution,	higher	temperatures,	soil	water	deficit,	

rising	 [CO2]	 and	 increased	 nitrogen	 be	 studied	 for	 their	 influence	 on	 nectar,	 but	

assessments	of	nectar	quality	could	be	an	important	tool	in	the	targeted	developmental	

breeding	of	new	varieties	to	produce	crops	that	will	attract	and	maintain	a	pollination	

service	by	meeting	the	nutrient	demands	of	the	pollinators.	
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7.0	General	discussion	

	

The	 intention	 of	 this	 thesis	 was	 to	 explore	 the	 interactions	 between	 ozone	

pollution	 and	 the	 allocation	 of	 nutrients	 to	 nectar	 and	 pollen;	 essential	 sources	 of	

nutrition	 to	 pollinating	 insects.	 The	 initial	 experiments	 explored	 and	 refined	

methodology	to	allow	chemical	analyses	of	amino	acids	and	carbohydrates	in	nectar	and	

pollen.	 These	 methods	 were	 then	 applied	 in	 experiments	 exploring	 intraspecific	

variations	in	‘ozone	sensitivity’	and	the	protein	and	free	amino	acid	qualities	of	pollen.	

A	 ‘sensitive’	 genotype	 was	 then	 selected	 and	 used	 to	 probe	 impacts	 on	 resource	

allocation,	exploring	how	plants	 responded	to	 long-term	and	short-term	exposure	 to	

ozone.	Changes	in	nectar	composition	induced	by	ozone	pollution	were	then	applied	to	

a	honeybee	learning	experiment	to	assess	how	the	impacts	of	the	pollutant	on	reward	

quality,	particularly	amino	acids,	influence	bee	learning	and	memory.	

	

7.1	Methods	for	nectar	and	pollen	analysis	

Pollen	and	nectar	are	important	ecological	drivers	of	both	plant	and	pollinator	

fitness.	However,	methods	for	studying	their	nutrient	composition	are	largely	unsuitable	

for	 the	 analysis	 of	 amino	 acids;	 either	 because	 of	 the	 large	 sample	 size	 needed	 or	

because	 of	 the	 loss	 of	 amino	 acids	 during	 the	 hydrolysis/combustion	 procedures	

adopted	 for	 sample	preparation.	 The	method	developed	 for	 the	hydrolysis	 of	 pollen	

proteins	 (see	 Chapter	 2)	 allows	 the	 quantification	 of	 free	 and	 protein-bound	 amino	

acids.	Previous	methods	commonly	used	for	quantifying	protein	in	pollen	have	required	

much	larger	samples	than	are	easily	collected	from	plants,	for	example	20	mg	(Nicolson	

and	 Human,	 2013).	 Also,	 methods	 such	 as	 micro-kjehldahl	 and	 combustion	 rely	 on	

degrading	 the	 sample	 to	 absolute	 nitrogen	 and	 back-calculating	 to	 estimate	 crude	

protein	content	(Roulston	and	Cane,	2000).	There	are	arguments	over	the	reliability	of	

these	methods,	as	the	correction	factor	used	to	estimate	protein	content	are	subject	to	

differences	depending	on	the	tissue	used	(Roulston	and	Cane,	2000)	and	also	because	

not	all	of	the	nitrogen	measured	may	be	off	protein-origin.	Hydrolysis	of	small	amounts	

of	pollen	(≥	1	mg)	in	a	microwave-assisted	acid	manner		provides	a	partial	hydrolysis,	

liberating	free	amino	acids	that	can	be	quantified	using	HPLC.	The	measured	values	of	

amino	acids	can	then	be	used	to	back-calculate	(i.e.	estimate)	total	protein	content	by	
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multiplying	by	10.3.	Lower	weights	of	pollen	(<	1	mg)	can	be	used	in	this	assay,	but	a	

specific	 multiplication	 factor	 must	 be	 applied	 to	 correct	 for	 the	 efficiency	 of	 the	

hydrolysis	 associated	with	 lower	 sample	 sizes	 (See	Chapter	 2).	 Collection	 techniques	

were	 compared	 for	 their	 reliability	 in	 determining	 carbohydrate	 and	 amino	 acid	

composition	 of	 nectar.	 We	 established	 that	 using	 a	 microcapillary	 tube	 to	 carefully	

extract	nectar	from	flowers	was	the	most	reliable	collection	method;	techniques	such	

as	 filter	 paper,	 wash	 2	ml	 and	 rinse	 2	ml	methods	 are	 likely	 to	 incorporate	 various	

contaminants	in	the	sample,	such	as	amino	acids	and	carbohydrates	from	phloem,	xylem	

and	pollen.	The	microcapillary	method	was	applied	to	nectar	sampling	 in	subsequent	

thesis	Chapters	(Chapters	4	and	5).	

	

7.2	Measures	of	ozone-sensitivity		

Broad	bean	cultivars	demonstrated	considerable	variation	in	their	physiological	

response	to	O3	exposure.	The	one	shared	trait	among	all	cultivars	tested	was	a	reduction	

in	 resource	 allocation	 to	 roots	 compared	 to	 shoots	 (K),	 but	 there	 was	 considerable	

variation	in	the	impacts	of	ozone	on	biomass	accumulation	and	the	number	of	pods	and	

seeds	produced	per	plant.	Interestingly,	ozone-induced	changes	in	biomass	constituted	

a	reliable	 indicator	of	pollutant	 impacts	on	seed	and	pod	production.	The	number	of	

seeds	and	pods	produced	by	7	out	of	10	cultivars	was	negatively	impacted	by	ozone-

exposure,	but	two	cultivars	demonstrated	significantly	enhanced	seed	and	pod	yield	in	

response	to	ozone-exposure.	Similar	observations	have	been	reported	previously	when	

numerous	 cultivars	 of	 the	 same	 species	 are	 screened	 for	 their	 response	 to	

environmentally-relevant	levels	of	ozone	pollution,	but	these	positive	responses	remain	

largely	unexplained	(Endress	and	Grunwald,	1985;	Sanders	et	al.,	1992).	Perhaps	this	

represents	 a	 common	 stress	 response	 favouring	 reproductive	 success;	 a	 particularly	

important	feature	for	short-lived,	annual	plants.			

	

Interestingly,	 ozone	 impacts	 on	 growth	 and	 resource	 allocation	 were	 not	

representative	 of	 the	 impacts	 of	 the	 pollutant	 on	 pollen.	 It	 seems	 likely	 that	 ozone	

results	 in	 direct	 oxidative	 damage	 to	 the	 free	 amino	 acid	 components	 on	 the	 outer	

surface	of	pollen,	the	‘pollenkitt’.	Consistent	with	our	findings,	Benoit	and	colleagues	

(1983)	 found	 no	 correlation	 between	 ozone-induced	 foliar	 symptoms	 of	 ‘injury’	 and	
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impacts	on	pollen	viability.	The	results	of	the	present	study	suggest	that	the	parameters	

used	to	assess	a	species	‘sensitivity’	to	ozone	need	to	be	viewed	with	caution.	Effects	of	

ozone	on	reproductive	structures	and	features	could	have	serious	carry-over	effects	to	

following	generations.	The	viability	of	pollen	and	seed	was	not	explored	in	this	thesis,	

but	 this	would	be	a	valuable	addition	 to	 future	datasets.	Potential	 carry-over	effects	

would	have	a	huge	impact	on	wild	plant	community	structure.	From	an	agricultural	and	

horticultural	perspective,	unsuccessful	pollination	would	have	a	detrimental	impact	on	

productivity	and	commercial	value.		

	

7.3	Ozone	exposure	and	resource	allocation	

	 An	interesting	finding	in	the	present	study	was	that	the	greatest	impacts	on	the	

volume	 and	 nutrient	 composition	 of	 nectar	 was	 observed	 in	 the	 short-term	 ozone	

transfer	treatments.	Plants	that	were	grown	in	either	CFA	or	O3	but	then	exposed	to	the	

alternate	 treatment	 at	 flowering	 (CFA-O3	 and	 O3-CFA)	 responded	 by	 producing	

increased	volumes	of	nectar	compared	to	plants	sustained	in	either	condition	(CFA	or	

O3).	 The	weight	 of	 pollen	produced	by	plants	 exposed	 to	O3	 for	 sustained	 and	 short	

periods	 was	 significantly	 lower	 than	 plants	 maintained	 in	 CFA.	 It	 is	 potentially	 very	

important	to	study	the	short-term	effects	of	ozone,	as	evidenced	in	this	work,	exposure	

to	O3	for	3	days	caused	a	reduction	in	pollen	weight.	Short-term	exposures	to	O3	clearly	

have	rapid	impacts	on	plant	response	and	in	turn	the	nutrient	qualities	of	nectar	and	

pollen.	The	vast	majority	of	prior	research	on	the	influence	of	ozone	on	plant	growth	

compares	plants	raised	from	seed	or	seedlings	in	a	constant	daily	ozone	environment	

against	counterparts	raised	in	clean	air	(controls).	However,	in	reality,	plants	are	rarely	

exposed	 to	 long	 periods	 of	 ozone-free	 air,	 and	 similarly,	 when	 O3	 is	 present,	

concentrations	 tend	 to	 fluctuate	 on	 an	 episodic	 basis	 from	day-to-day	 and	week-to-

week	 in	many	 low-lying	 agricultural	 areas.	 This	 raises	 the	question	of	what	 is	 a	 true	

ozone	control	 treatment?	The	conditions	 that	are	used	as	control	 treatments	 should	

probably	match	real-world	exposures	of	the	pollutant	and	future	studies	need	to	pay	

greater	heed	to	the	influence	of	natural	diurnal	and	spasmodic	variations	in	O3	exposure	

on	plant	performance.	The	study	in	Chapter	5	reports	the	effect	of	long-term	and	short-

term	 exposure	 to	 O3,	 but	 it	 seems	 important	 to	 also	 understand	 how	 growth	 and	
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nutrient	 allocation	 is	 affected	 if	 plants	 are	 exposed	 to	 long-	 term	 fluctuations	 in	 air	

quality	versus	constant	exposure.	

	

7.4	Impact	of	ozone	to	pollinators	

	 Ozone	can	influence	the	available	nutrition	to	pollinating	animals	in	three	main	

ways;	changes	to	nectar	quality,	pollen	quality	and	floral	availability.	Firstly,	as	novelly	

described	in	this	thesis,	the	amino	acid	and	carbohydrate	composition	as	well	as	volume	

of	nectar	produced	by	plants	can	be	influenced	by	long-	and	short-term	ozone	exposure.		

	

	 There	are	numerous	 reports	on	 the	 influence	of	ozone	 causing	a	detrimental	

impact	to	pollen	viability	in	terms	of	germination	and	tube	growth	(Summarised	in	table	

7.1).	The	pollen	of	almond,	apple,	apricot,	nectarine,	peach,	pear	(Hormaza	et	al.,	1996),	

white	pine	(Benoit	et	al.,	1983),	petunia	(Feder	and	Sullivan,	1969b;	Harrison	and	Feder,	

1974;	Krause		et	al.,	1975;	Feder,	1981;	Feder	et	al.,	1982;	Feder,	1968),	tobacco	(Feder	

and	Sullivan,	1969a,b;	Krause	et	al.,	1975),	tomato	(Feder	et	al.,	1982;	Gillespie	et	al.,	

2015),	maize	(Mumford	et	al.,	1972),	greater	plantain,	Wisconsin	Fast	Plants	(Stewart,	

1998)	and	Ragweed	(Pasqualini	et	al.,	2011)	all	demonstrated	reduced	pollen	viability	in	

terms	of	inhibited	germination	and/or	tube	growth.	However,	Stewart	(1998)	noted	that	

different	populations	of	greater	plantain	demonstrated	variability	in	their	response	to	

ozone	and	some	exhibited	increased	pollen	tube	growth.	In	vivo	experiments	have	given	

evidence	to	suggest	that	the	pollen	of	tobacco	(Feder,	1968),	tomato	(Feder	et	al.,	1982),	

greater	plantain	and	Wisconsin	Fast	Plants	(Stewart,	1998)	also	demonstrate	reduced	

pollen	viability	due	to	exposure	to	ozone.	However,	fewer	studies	have	quantified	the	

protein	content	of	pollen	in	response	to	ozone.	A	significant	reduction	in	protein	was	

reported	in	the	pollen	of	Boxelder	maple,	English	oak,	sycamore	(Ribeiro	et	al.,	2013),	

Hophornbeam	 (Cuincia	et	al.,	 2014)	 and	as	demonstrated	 in	 this	 thesis,	 broad	bean.	

However,	there	was	no	noticeable	change	in	the	amount	of	protein	in	ragweed	pollen	

(Pasqualini	et	al.,	2011).	Furthermore,	free	amino	acids	of	pollen	have	been	reported	to	

increase	in	maize	pollen	in	response	to	ozone	exposure	(Mumford	et	al.,	1972).	In	the	

work	conducted	in	this	thesis,	the	proportion	of	free	amino	acids	of	broad	bean	pollen	

was	significantly	reduced	(Table	7.1).	
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	 Ozone	 can	 cause	 changes	 in	 available	 nutrition	 by	 influencing	 the	 flowering	

behaviour	of	plants	and	also	causing	changes	in	species	composition.	Without	flowers,	

pollinating	 animals	 would	 have	 no	 food	 source.	 Therefore,	 influences	 of	 ozone	 on	

flowering	 are	 of	 great	 importance.	 It	 has	 been	 acknowledged	 that	 the	 timing	 of	

flowering	can	be	influenced	by	exposure	to	O3	and	that	there	is	great	species	diversity	

in	this	response	to	the	pollutant	(summarized	in	Table	7.2).	Delayed	flowering	has	been	

reported	 in	 numerous	 species	 including	 soybean	 (Amundson,	 et	 al.,	 1986),	 cotton	

(Oshima	et	al.,	 1979),	 duckweed	 (Feder	 and	Sullivan,	 1969b;	 Feder,	 1970),	 geranium	

(Feder,	1970);	carnation	(Feder	and	Campbell,	1968),	buddleia	(Findley	et	al.,	1997),	and	

spreading	dogbane	(Bergweiler	and	Manning,	1999),	Harebell	and	Tufted	vetch	(Rämö	

et	 al.,	 2007).	 Conversely,	 O3	 exposure	 is	 reported	 to	 accelerate	 flowering	 of	 Lotus	

corniculatus	L.	(Hayes	et	al.,	2012).	Aside	from	altering	the	timing	of	flowering,	ozone	

has	 also	 been	 reported	 to	 cause	 a	 reduction	 in	 flowers	 produced	 by	 many	 species	

including	harebell	(Hayes	et	al.,	2012;	Rämö	et	al.,	2007;	Franzaring	et	al.,	2000;	Gimeo	

et	al.,	2004),	meado	buttercup	(Witton,	2013;	Wedlich	et	al.,	2012),	watermelon	and	

muskmelon	 (Fernandez-Bavon	 et	 al.,	 1993),	 duckweed	 (Feder	 and	 Sullivan,	 1969b;	

Feder,	1970),	carnation	(Feder	and	Campbell,	1968;	Feder,	1970),	begonia,	petunia	and	

snapdragon	 (Adedipe	 et	 al.,	 1972;	 Reinert	 and	 Nelson,	 1979),	Wisconsin	 Fast	 Plants	

(Stewart,	1998),	Buddleia	(Findley	et	al.,	1997)	and	spreading	dogbane	(Bergweiler	and	

Manning,	1999).	However,	ozone	exposure	had	no	influence	on	the	flowering	of	broad	

bean	in	the	experiments	described	in	Chapters	4	and	5.	

	

Studies	 into	the	species	composition	of	an	open	air	 fumigation	experiment	at	

Keenley	Fell	reported	significant	reductions	in	the	biomass	of	Rhinanthus	minor	L.	after	

3	years	of	ozone	exposure,	compared	to	control	plots	(Wedlich	et	al.,	2012).	Changes	in	

floral	resource	availability	could	have	huge	impacts	on	the	available	nutrition	to	foraging	

animals.		
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Table	7.1	Effects	of	ozone	exposure	to	pollen	viability/germination,	protein	content	and	
free	amino	acids.	Arrows	indicate	an	increase	or	decrease	in	the	response	variable	and	
=	indicates	no	measured	changes	(adapted	from	Black	et	al.,	2000).	

	
	

Response Effect Species Common name References

In vitro

Germinationand/or	
tube	growth

↓ Prunus dulcis Almond Hormaza et	al.,	1996

Malus domestica Apple Hormaza et	al.,	1996

Prunus armeniaca Apricot Hormaza et	al.,	1996

Prunus persica Nectarine Hormaza et	al.,	1996

Prunis persica Peach Hormaza et	al.,	1996

Pyrus communis Pear Hormaza et	al.,	1996

Pinus strobus White	pine Benoit	et	al.,	1983

Petunia hybrida Petunia Feder and	Sullivan,	1969b

Harrison	and	Feder,	1974

Krause	et al.,	1975

Feder, 1981

Feder et	al.,	1982

Feder,	1968

Nicotiana tabacum Tobacco Feder and	Sullivan,	1969a,b

Krause	et	al.,	1975

Lycopersicon esculentum Tomato Feder et al.,	1982

Gillespie	et	al., 2015

Zeamays Maize Mumford	et	al.,	1972

Plantago major Greater plantain Stewart,	1998

Brassica camperstris Wisconsin	Fast	Plants Stewart,	1998

Ambrosia artemisiifolia Ragweed Pasqualini et	al,	2011

Tube	growth ↑ Plantago major Greater	plantain Stewart,	1998

In vivo ↓ Nicotiana tabacum Tobacco Feder,	1968

Lycopersicon esculentum Tomato Feder et	al.,	1982

Plantago major Greater plantain Stewart, 1998

Brassica	campestris Wisconsin Fast	Plants Stewart,	1998

Protein	content ↓ Acer negundo Boxelder	maple Riberio et	al.,	2013

Quercus robur EnglishOak Riberio et	al.,	2013

Platanus spp. Sycamore Riberio et	al.,	2013

Ostrya spp. Hophornbeam Cuinica et	al.,	2014

Vicia faba Broad bean Stabler, 2016

= Ambrosia artemisiifolia Ragweed Pasqualini et	al.,	2011

Amino	acids ↑ Zeamays Maize Mumford	et al.,	1972

↓ Vicia faba Broad bean Stabler,	2016
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Table	7.2	Effects	of	ozone	exposure	on	flowering,	including	rate	of	flowering,	and	floral	
production.	Arrows	indicate	an	increase	or	decrease	in	the	response	variable	(adapted	
from	Black	et	al.,	2000).	

	
	
	
	
	
	
	

Response Effect Species Common name References

Flowering	rate delayed Glycie max Soybean Amundson	et	al., 1986

Gossypiumhirsutum Cotton Oshima et al.,	1979

Lemma	perpusilla Duckweed Feder and	Sullivan,	1969b

Feder, 1970

Pelegonium × hortorum Geranium Feder, 1970

Dianthus	caryophyllus Carnation Feder and Campbell,	1968

Feder,	1970

Buddleia	davidii Buddleia Findley	et	al.,	1997

Apocynum androsaemifolium Spreading dogbane Bergweiler and	Manning,	1999

Campanula	 rotundifolia Harebell Rämöet	al.,	2007

Vicia cracca Tufted vetch Rämöet	al.,	2007

Increased Lotus	corniculatus Birdsfoot trefoil Hayes	et	al.,	2012

Flower	production ↓ Campanula rotundifolia Harebell Hayes	et	al.,	2012

Rämöet	al.,	2007

Franzaring et	al., 2000

Gimenoet	al.,	2004

Ranunculus acris Meadow	buttercup Witton,	2013

Wedlichet al.,	2012

Citrullus lanatus Watermelon Fernandez-Bayonet	al.,	1993

Cucumis melo Muskmelon Fernandez-Bayonet	al.,	1993

Lemna perpusilla Duckweed Feder and	Sullivan,	1969b

Feder,	1970

Dianthus	caryophyllus Carnation Feder and	Campbell, 1968

Feder,	1970

Begonia	semperflorens Begonia Adedipe et	al.,	1972

Petunia	× hybrida Petunia Adedipe et	al.,	1972

Antirrhinum	majus Snapdragon Adedipe et	al.,	1972

Begonia	× hiemalis Elatior Begonia Reinert and	Nelson,	1979

Brassica camperstris Wisconsin Fast	Plants Stewart,	1998

Buddleia davidii Buddleia Findley	et al.,	1997

Apocynum androsaemifolium Spreading	dogbane Bergweiler and	Manning,	1999

↑ Conopodium majus Pignut Witton, 2013

Dactylis glomerata Orchard grass Witton,	2013
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Ozone	also	has	a	profound	influence	on	the	VOCs	emitted	from	plants	(Heiden	

et	 al.,	 1999;	 Pinto	 et	 al,	 2010)	 and	 degradation	 of	 VOCs	 can	 reduce	 the	 ability	 of	

herbivorous	insects	to	locate	the	flowers	of	their	hosts	eg.	the	striped	cucumber	beetle	

(Acalymma	vittatum)	struggles	to	locate	the	flowers	of	its	host	Cucurbita	foetidissima	

(Fuentes	et	al.,	2013).	Of	particular	importance	is	the	influence	of	VOC	degradation	on	

pollinator	behaviour.	Reliable	 floral	odours	are	essential	 for	 floral	discrimination	and	

olfactory	 conditioning	 in	 foraging	 bees	 (Wright	 and	 Shiestl,	 2009).	 The	 influence	 of	

ozone	 pollution	 on	 floral	 scent	 trails	 was	 modelled	 by	 McFrederick	 and	 colleagues	

(2008).	They	suggest	that	reactions	between	the	O3	and	VOCs	in	polluted	regions	reduce	

the	distance	that	volatiles	travel	from	their	floral	source	from	kilometres	to	less	than	

200	m	(McFrederick	et	al.,	2008).	The	significance	of	such	modelling	studies	is	revealed	

by	studies	on	the	degradation	of	VOCs	in	the	floral	scent	of	Brassica	nigra	L.	by	exposure	

to	O3	(Farré-Armengol	et	al.,	2016).	These	authors	went	on	to	illustrate	the	influence	of	

reduced	floral	scent	of	B.	nigra	on	pollinator	(Bombus	terrestris)	attraction;	bees	were	

more	likely	to	orient	to	flowers	that	had	a	floral	scent	than	clean	air.	However,	when	

this	scent	was	mixed	with	O3	bees	were	more	likely	to	orient	to	a	floral	source	at	0	m	

from	the	odour	source	and	the	attraction	decreased	over	4.5	m	(Farré-Armengol	et	al.,	

2016).	The	degradation	of	floral	VOCs	may	change	the	profile	of	compounds	within	the	

suite	of	VOCs	released	as	floral	odour	(McFrederick	et	al.,	2008;	Farré-Armengol	et	al.,	

2016).	Honeybees	are	capable	of	discriminating	specific	odour	compounds	(Wright	et	

al.,	2005)	and	so	an	unstable	odour	plume	would	be	expected	to	produce	unreliable	

plant	cues	to	foraging	bees.	This	requires	further	experimentation	in	the	field.			

	

Bees	actively	regulate	their	protein,	carbohydrate	(Altaye	et	al.,	2010;	Paoli	et	

al.,	2014;	Stabler	et	al.,	2015)	and	fatty	acid	(see	Appendix	I)	 intake.	Ozone	has	been	

shown	to	reduce	the	protein	content	of	pollen	(see	Chapter	4;	Ribeiro	et	al.,	2013).	As	

the	 sole	 source	 of	 protein	 to	 eusocial	 bee	 colonies,	 negative	 impacts	 of	 O3	 on	 the	

nutrient	qualities	of	pollen	could	put	greater	foraging	demands	on	the	colony,	which	in	

turn	would	put	 greater	 nutritional	 demands	on	 the	 colony.	When	honeybees	 forage	

from	low	quality	pollen,	the	number	of	pollen	foragers	from	the	colony	increases	(Pernal	

and	Currie,	2001).	It	could	be	assumed	that	an	increase	in	the	number	of	foraging	bees	

could	actually	improve	the	pollination	service	to	the	plant.	However,	ozone	can	cause	
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significant	 detrimental	 impacts	 on	 pollen	 viability	 and	 so	 increased	 pollination,	 or	

transfer	of	pollen,	may	not	actually	improve	plant	fitness.		

	

Ozone	concentrations	in	the	Northern	hemisphere	are	increasing	and	vegetation	

is	exposed	to	longer	periods	of	elevated	air	pollution	(The	Royal	Sociey,	2008).	Of	course,	

ozone	is	not	an	exclusive	air	pollutant.	There	is	evidence	that	other	pollutants	such	as	

NOx	can	degrade	floral	VOCs	(Girling	et	al.,	2013)	and	such	changes	reduce	honeybee’s	

olfactory	memory	of	a	conditioned	stimulus	when	the	odour	profile	changes	(Lusebrink	

et	al.,	2015).	Ozone	pollution	clearly	has	the	potential	to	cause	numerous	detrimental	

impacts	 to	plant-pollinator	 interactions,	evidenced	by	 the	degradation	of	 floral	 scent	

(McFrederick	 et	 al.,	 2008;	 Farré-Armengol	 et	 al.,	 2016),	 changes	 to	 the	 timing	 of	

flowering	and	floral	senescence	(Rämö	et	al.,	2007;	Hayes	et	al.,	2012),	and	as	described	

in	this	thesis,	profound	influences	on	the	only	food	source	to	bees;	nectar	and	pollen.		

	

7.6	Research	limitations	

The	results	pertaining	to	the	nutrient	composition	of	nectar	and	pollen	in	Chapter	4	

and	5	give	robust	evidence	that	both	 long	and	short	term	exposure	to	ozone,	during	

development	and	at	a	critical	time,	such	as	flowering,	can	cause	detrimental	impacts	to	

the	 available	 nutrition	 to	 floral	 visitors.	 However,	 caution	 must	 be	 taken	 when	

extrapolating	such	findings	to	possible	 field	conditions.	The	findings	described	 in	this	

thesis	 compare	 the	 influence	 of	 110	 ppb	 O3	 to	 CFA.	 However,	 it	 is	 unlikely	 that	

vegetation	would	be	exposed	to	0	ppb	O3	in	the	natural	environment	(The	Royal	Society,	

2008),	therefore,	it	would	be	beneficial	to	further	study	the	influence	of	O3	on	nutrient	

allocation	to	nectar	and	pollen	versus	non-filtered	air.	However,	it	was	necessary	to	filter	

the	 air	 in	 the	 reported	 experiments	 due	 to	 the	 city	 centre	 location	 and	 the	 high	

concentrations	of	ozone	precursors	such	as	NOx	and	diesel	fumes.	A	further	limitation	is	

that	episodes	of	peak	O3	exposure	are	not	likely	to	sustain	the	length	of	time	(~7	weeks)	

that	 plants	 were	 exposed	 to	 the	 pollutant	 in	 the	 long	 term	 treatment.	 It	 would	 be	

valuable	to	study	the	impact	of	 long	term	exposure	to	background	O3	concentrations	

(~30-40	ppb)	with	peak	episodes	of	exposure	to	higher	concentrations	(110	ppb)	and	

determine	how	this	may	influence	resource	allocation	to	nectar	and	pollen.	
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7.7	Future	research	suggestions	

The	influence	of	O3	on	plant-pollinator	interactions	remains	a	largely	understudied	

topic,	 with	 potentially	 vast	 consequences	 for	 plants,	 pollinators	 and	 agricultural	

productivity.	 Further	 studies	 that	would	 continue	 the	 findings	 reported	 in	 this	 thesis	

include:	

	

• Measured	changes	 in	pollen	 induced	by	environmentally-relevant	exposure	to	

O3	should	be	applied	to	behavioural	assays	in	which	pollinators	are	assessed	for	

their	pollen	preferences.	Field	studies	quantifying	visitation	rates	to	plants	with	

different	pollen	qualities	would	expose	any	real-world	influence	of	pollen	quality	

on	the	fitness	of	plants	exposed	to	ozone.	We	were	planning	to	undertake	such	

experiments	 in	 the	 final	 year	of	 this	 study	using	 the	OTCs	 that	were	at	Close	

House	but	the	facility	was	destroyed	before	this	could	be	achieved.	

• A	screening	style	experiment	should	be	carried-out	on	a	diverse	range	of	plant	

species	for	their	response	in	terms	of	nutrient	allocation	to	nectar	and	pollen.	If	

ozone-resistant	 cultivars	 of	 crop	 plants	 can	 be	 identified,	 in	 terms	 of	 their	

resistance	 to	 changes	 in	 nectar	 and	 pollen	 quality,	 then	 this	 trait	 could	 be	

exploited	in	agricultural	practice	to	maintain	nutrient	availability	to	pollinators.	

• Secretion	of	sucrose	is	dependent	on	sweet9.	Without	the	gene,	nectaries	do	not	

secrete	sucrose.	 	 It	would	be	 interesting	to	 investigate	whether	there	are	any	

genetic	markers	 for	 stress	 that	 could	 be	 assessed	 to	 identify	whether	 nectar	

control	 at	 a	 molecular	 level	 is	 influenced	 by	 ozone.	 If	 ozone	 influences	 the	

secretion	of	sucrose	in	nectar,	as	it	did	in	these	experiments,	then	perhaps	the	

expression	 of	 sweet9	 is	 influenced.	 Expression	may	 be	 enhanced	 in	 order	 to	

improve	the	quality	of	the	nectar	in	order	to	attract	more	pollination	visitation	

ensuring	seed	set.	

• This	work	has	not	 elucidated	whether	nectaries	 are	 controlling	 the	quality	of	

nectar,	or	if	indeed	changes	in	the	phloem	sap	are	responsible	for	the	nectar	end	

product.	 Further	 study	 should	 sample	 phloem	 sap	 from	 stem	 to	 nectary	 and	

trace	the	nectar	components.	

	

	



	 148	

References	

	

Adedipe,	N.O.,	Barrett,	R.F.	&	Ormrod,	D.P.	(1972)	Phytotoxicity	and	growth	responses	

of	ornamental	bedding	plants	to	ozone	and	sulfur	dioxide.	Journal	of	the	American	

Society	for	Horticultural	Science	97	(3),	341-345.	

Ainsworth,	E.A.,	Rogers,	A.	&	Leakey,	A.D.B.	(2008)	Targets	for	crop	biotechnology	in	a	

future	high-CO2	and	high-O3	world.	Plant	Physiology	147	(1),	13–19.	

Alaux,	 C.,	 Ducloz,	 F.,	 Crauser,	 D.	 &	 Le	 Conte,	 Y.	 (2010)	 Diet	 effects	 on	 honeybee	

immunocompetence.	Biology	Letters.	DOI:	1098/rsbl.2009.0986.	

Alm,	 J.,	Ohnmeiss,	T.E.,	 Lanza,	 J.	&	Vriesenga,	 L.	 (1990)	Preference	of	 cabbage	white	

butterflies	and	honey	bees	for	nectar	that	contains	amino	acids.	Oecologia	84	(1),	

53–57.	

Altaye,	 S.Z.,	 Pirk,	 C.W.W.,	 Crewe,	 R.M.	 &	 Nicolson,	 S.W.	 (2010)	 Convergence	 of	

carbohydrate-biased	 intake	 targets	 in	 caged	 worker	 honeybees	 fed	 different	

protein	sources.	Journal	of	Experimental	Biology	213	(19),	3311–3318.	

Amthor,	J.S.	(1988)	Growth	and	maintenance	respiration	in	leaves	of	bean	(Phaseolus	

vulgaris	L.)	exposed	to	ozone	in	open-top	chambers	in	the	field.	New	Phytologist.	

110	(3),	319–325.	

Amundson,	R.G.,	Raba,	R.M.,	Schoettle,	A.W.	&	Reich,	P.B.	(1986)	Response	of	soybean	

to	 low	 concentrations	 of	 ozone:	 II.	 Effects	 on	 growth,	 biomass	 allocation,	 and	

flowering.	Journal	of	Environmental	Quality	15	(2),	161–167.	

Andersen,	C.P.	(2003)	Source–sink	balance	and	carbon	allocation	below	ground	in	plants	

exposed	to	ozone.	New	Phytologist	157	(2),	213–228.	

Arien,	Y.,	Dag,	A.,	Zarchin,	S.,	Masci,	T.	&	Shafir,	S.	(2015)	Omega-3	deficiency	impairs	

honey	bee	 learning.	Proceedings	of	 the	National	Academy	of	Sciences.	112	 (51),	

15761-15766.	



	 149	

Ashman,	 T.-L.,	 Knight,	 T.M.,	 Steets,	 J.A.,	 Amarasekare,	 P.,	 Burd,	M.,	 Campbell,	 D.R.,	

Dudash,	M.R.,	Johnston,	M.O.,	Mazer,	S.J.	&	Mitchell,	R.J.	(2004)	Pollen	limitation	

of	 plant	 reproduction:	 ecological	 and	 evolutionary	 causes	 and	 consequences.	

Ecology	85	(9),	2408–2421.	

Ashmore,	M.R.	(2005)	Assessing	the	future	global	impacts	of	ozone	on	vegetation.	Plant,	

Cell	&	Environment	28	(8),	949–964.	

Ashmore,	M.R.	(2002)	Effects	of	oxidants	at	the	whole	plant	and	community	level.	In	Air	

Pollution	and	Plant	Life.	Eds.	J.N.B.	Bell	&	M.	Treshow.	John	Wiley,	Chichester,	UK.	

pp.	89–118	

Ashmore,	M.R.	&	Davison,	 A.W.	 (1996)	 'Towards	 a	 critical	 level	 of	 ozone	 for	 natural	

vegetation',	 in	 Critical	 Levels	 for	 Ozone	 in	 Europe:	 Testing	 and	 Finalizing	 the	

Concepts.	UNECE	Workshop	Report.	Eds.	L.	Kärenlampi	and	L.	Skärby.	pp.	58–71.	

Avnery,	S.,	Mauzerall,	D.L.,	Liu,	J.	&	Horowitz,	L.W.	(2011a)	Global	crop	yield	reductions	

due	to	surface	ozone	exposure :	1.	Year	2000	crop	production	losses	and	economic	

damage.	Atmospheric	Environment	45	(13),	2284–2296.	

Avnery,	S.,	Mauzerall,	D.L.,	Liu,	J.	&	Horowitz,	L.W.	(2011b)	Global	crop	yield	reductions	

due	to	surface	ozone	exposure :	2	.	Year	2030	potential	crop	production	losses	and	

economic	damage	under	two	scenarios	of	O3	pollution.	Atmospheric	Environment	

45	(13),	2297–2309.	

Baker	HG	 (1978)	 Chemical	 aspects	 of	 the	 pollination	 biology	 of	woody	 plants	 in	 the	

	 tropics.	In:	Tomlinson	P,	Zimmerman	MH.	Eds.	Tropical	trees	as	living	systems:	

	 the	 proceedings	 of	 the	 fourth	 Cabot	 Symposium,	Harvard	 Forest,	 Petersham,	

	 Massachusetts,	26–30	April,	1976.	Cambridge	University	Press,	New	York,	pp														

												57–82.	 	

Baker,	H.G.	&	Baker,	I.	(1973)	Amino-acids	in	nectar	and	their	evolutionary	significance.	

Nature	241,	543-545.	



	 150	

Baker,	H.G.	(1978)	Chemical	aspects	of	the	pollination	biology	of	woody	plants	 in	the	

Troipics.	 In	 Tropical	 Trees	 as	 Living	 Systems.	 Eds.	 P.B.	 Tomlinson	 &	 M.H.	

Zimmermann	Cambridge:	Cambridge	Universiry	Press.	pp.	57-82.	

Baker,	H.G.	(1977)	Non-sugar	chemical	constituents	of	nectar.	Apidologie	8	(4),	349–356.	

Baker,	 H.G.	 &	 Baker,	 I.	 (1977)	 Intraspecific	 constancy	 of	 floral	 nectar	 amino	 acid	

complements.	Botanical	Gazette	138	(2),	183–191.	

Barker,	R.J.	&	Lehner,	Y.	(1972)	Free	amino	acids	in	thoraces	of	flown	honey	bees,	Apis	

mellifera	L.	(Hymenoptera:	Apidae).	Comparative	Biochemistry	and	Physiology	Part	

B:	Comparative	Biochemistry	43	(1),	163–169.	

Barnes,	J.D.,	Bettarini,	I.,	Polle,	A.,	Slee,	N.,	Raines,	C.,	Miglietta,	F.,	Raschi,	A.	&	Fordham,	

M.	(1997)	The	impact	of	elevated	CO2	on	growth	and	photosynthesis	 in	Agrostis	

canina	L.	ssp.	monteluccii	adapted	to	contrasting	atmospheric	CO2	concentrations.	

Oecologia	110	(2),	169–178.	

Barnes,	J.D.,	Pfirrmann,	T.,	Steiner,	K.,	LÜTz,	C.,	Busch,	U.,	KüChenhoff,	H.	&	Payer,	H.D.	

(1995)	Effects	of	elevated	CO2,	elevated	O3	and	potassium	deficiency	on	Norway	

spruce	 [Picea	 abies	 (L)	 Karst.]:	 seasonal	 changes	 in	 photosynthesis	 and	 non-

structural	carbohydrate	content.	Plant,	Cell	&	Environment	18	(12),	1345–1457.	

Barnes,	J.D.,	Velissariou,	D.,	Davison,	A.W.	&	Holevas,	C.D.	(1990)	Comparative	ozone	

sensitivity	of	old	and	modern	Greek	cultivars	of	spring	wheat.	New	Phytologist116	

(4),	707–714.	

Barnes,	J.D.	&	Wellburn,	A.R.	(1998)	Air	pollutant	combinations.	In	De	Kok	L.J.,	Stuhlen	

I,	eds.	Responses	of	Plant	Metabolism	to	Air	Pollution	and	Global	Change.	Backhuys	

publishing,	pp.	147-164.	

Barnes,	J.,	Bender,	J.,	Lyons,	T.	&	Borland,	A.	(1999)	Natural	and	man-made	selection	for	

air	pollution	resistance.	Journal	of	Experimental	Botany	50	(338),	1423–1435.	

Bartomeus,	 I.,	 Potts,	 S.G.,	 Steffan-Dewenter,	 I.,	 Vaissiere,	 B.E.,	 Woyciechowski,	 M.,	

Krewenka,	 K.M.,	 Tscheulin,	 T.,	 Roberts,	 S.P.M.,	 Szentgyörgyi,	 H.	 &	Westphal,	 C.	



	 151	

(2014)	 Contribution	 of	 insect	 pollinators	 to	 crop	 yield	 and	 quality	 varies	 with	

agricultural	intensification.	PeerJ.	2,	e328.	(doi:10.7717/peerj.328)	

Bassin,	S.,	Kölliker,	R.,	Cretton,	C.,	Bertossa,	M.,	Widmer,	F.,	Bungener,	P.	&	Fuhrer,	J.	

(2004)	Intra-specific	variability	of	ozone	sensitivity	in	Centaurea	jacea	L.,	a	potential	

bioindicator	for	elevated	ozone	concentrations.	Environmental	Pollution	131	(1),	1–

12.	

Bech-Andersen,	 S.,	 Mason,	 V.C.	 &	 Dhanoa,	M.S.	 (1990)	 Hydrolysate	 preparation	 for	

amino	acid	determinations	in	feed	constituents:	9.	Modifications	to	oxidation	and	

hydrolysis	conditions	for	streamlined	procedures.	Journal	of	Animal	Physiology	and	

Animal	Nutrition	63	(1-5),	188–197.	

Beck,	I.,	Jochner,	S.,	Gilles,	S.,	McIntyre,	M.,	Buters,	J.T.M.,	Schmidt-Weber,	C.,	Behrendt,	

H.,	 Ring,	 J.,	Menzel,	 A.	&	 Traidl-Hoffmann,	 C.	 (2013)	High	 environmental	 ozone	

levels	lead	to	enhanced	allergenicity	of	birch	pollen.	PLoS	One	8	(11),	e80147.	

Benoit,	L.F.,	Skelly,	J.M.,	Moore,	L.D.	&	Dochinger,	L.S.	(1983)	The	influence	of	ozone	on	

Pinus	strobus	 L.	pollen	germination.	Canadian	 Journal	of	Forest	Research	13	 (1),	

184–187.	

Bergweiler,	C.J.	&	Manning,	W.J.	(1999)	Inhibition	of	flowering	and	reproductive	success	

in	 spreading	 dogbane	 (Apocynum	 androsaemifolium)	 by	 exposure	 to	 ambient	

ozone.	Environmental	Pollution	105	(3),	333–339.	

Bitterman,	 M.E.,	 Menzel,	 R.,	 Fietz,	 A.	 &	 Schäfer,	 S.	 (1983)	 Classical	 conditioning	 of	

proboscis	 extension	 in	 honeybees	 (Apis	 mellifera).	 Journal	 of	 Comparative	

Psychology	97	(2),	107–119.	

Black,	 V.J.,	 Black,	 C.R.,	 Roberts,	 J.A.	&	 Stewart,	 C.A.	 (2000)	 Impacts	 of	 ozone	 on	 the	

reproductive	development	of	plants.	New	Phytologist	147	(3),	421–447.	

Black,	V.J.,	Stewart,	C.A.,	Roberts,	J.A.	&	Black,	C.R.	(2007)	Ozone	affects	gas	exchange,	

growth	 and	 reproductive	 development	 in	 Brassica	 campestris	 (Wisconsin	 Fast	

Plants).	New	Phytologist	176	(1),	150–163.	



	 152	

Blackburn,	 S.	 (1978)	 Sample	 preparation	 and	 hydrolytic	 methods.	 In	 Amino	 Acid	

Determination	Methods	and	Techniques.	Ed.	Blackburn.	Marcel	Dekker,	New	York.	

pp.	7–37.	

Blande,	 J.D.,	 Holopainen,	 J.K.	 &	 Li,	 T.	 (2010)	 Air	 pollution	 impedes	 plant-to-plant	

communication	by	volatiles.	Ecology	letters	13	(9),	1172–1181.	

Bolten,	A.B.	&	Feinsinger,	P.	(1978)	Why	do	hummingbird	flowers	secrete	dilute	nectar?	

Biotropica.	10	(4),	307–309.	

Booker,	F.,	Muntifering,	R.,	McGrath,	M.,	Burkey,	K.,	Decoteau,	D.,	Fiscus,	E.,	Manning,	

W.,	Krupa,	S.,	Chappelka,	A.	&	Grantz,	D.	(2009)	The	ozone	component	of	global	

change:	 potential	 effects	 on	 agricultural	 and	 horticultural	 plant	 yield,	 product	

quality	and	interactions	with	invasive	species.	Journal	of	Integrative	Plant	Biology.	

51	(4),	337–351.	

Bradford,	M.M.	(1976)	A	rapid	and	sensitive	method	for	the	quantitation	of	microgram	

quantities	 of	 protein	 utilizing	 the	 principle	 of	 protein-dye	 binding.	 Analytical	

Biochemistry	72	(1-2),	248–254.	

Brice,	 A.T.,	 Dahl,	 K.H.	 &	 Grau,	 C.R.	 (1989)	 Pollen	 digestibility	 by	 hummingbirds	 and	

psittacines.	Condor	681–688.	

Buchmann,	S.L.	(1986)	Vibratile	pollination	in	Solanum	and	Lycopersicon:	a	look	at	pollen	

chemistry.	Solanaceae:	biology	and	systematics.	Columbia	University	Press,	New	

York.	pp.	237–252.	

Buňka,	F.,	Kříž,	O.,	Veličková,	A.,	Buňková,	L.	&	Kráčmar,	S.	(2009)	Effect	of	acid	hydrolysis	

time	on	amino	acid	determination	in	casein	and	processed	cheeses	with	different	

fat	content.	Journal	of	Food	Composition	and	Analysis	22	(3),	224–232.	

Burkey,	K.O.,	Booker,	F.L.,	Ainsworth,	E.A.	&	Nelson,	R.L.	(2012)	Field	assessment	of	a	

snap	bean	ozone	bioindicator	system	under	elevated	ozone	and	carbon	dioxide	in	

a	free	air	system.	Environmental	Pollution	166,	167–171.	



	 153	

Burkey,	K.O.	&	Carter,	T.E.	(2009)	Foliar	resistance	to	ozone	injury	in	the	genetic	base	of	

US	and	Canadian	soybean	and	prediction	of	resistance	in	descendent	cultivars	using	

coefficient	of	parentage.	Field	Crops	Research	111	(3),	207–217.	

Cardoza,	Y.J.,	Harris,	G.K.	&	Grozinger,	C.M.	(2012)	Effects	of	soil	quality	enhancement	

on	pollinator-plant	interactions.	Psyche:	A	Journal	of	Entomology	2012,	1-8.	

Carroll,	A.B.,	Pallardy,	S.G.	&	Galen,	C.	 (2001)	Drought	stress,	plant	water	status,	and	

floral	trait	expression	in	fireweed,	Epilobium	angustifolium	(onagraceae).	American	

Journal	of	Botany	88	(3),	438–446.	

Carter,	C.,	Graham,	R.A.	&	Thornburg,	R.W.	(1999)	Nectarin	I	is	a	novel,	soluble	germin-

like	protein	expressed	in	the	nectar	of	Nicotiana	spp.	Plant	Molecular	bBology.	41	

(2),	207–216.	

Carter,	C.,	Shafir,	S.,	Yehonatan,	L.,	Palmer,	R.G.	&	Thornburg,	R.	(2006)	A	novel	role	for	

proline	in	plant	floral	nectars.	Naturwissenschaften	93	(2),	72–79.	

Chabaud,	 M.-A.,	 Devaud,	 J.-M.,	 Pham-Delègue,	 M.-H.,	 Preat,	 T.	 &	 Kaiser,	 L.	 (2006)	

Olfactory	conditioning	of	proboscis	activity	in	Drosophila	melanogaster.	Journal	of	

Comparative	Physiology	A	192	(12),	1335–1348.	

Chalisova,	N.I.,	Kamyshev,	N.G.,	Lopatina,	N.G.,	Kontsevaya,	E.A.,	Urtieva,	S.A.	&	Urtieva,	

T.A.	(2011)	Effect	of	encoded	amino	acids	on	associative	learning	of	honeybee	Apis	

mellifera.	Journal	of	Evolutionary	Biochemistry	and	Physiology	47	(6),	607–610.	

Chameides,	W.L.,	Lodge,	J.P.,	(1992)	Tropospheric	ozone:	formation	and	fate.	In:	Lefohn,	

A.S.,	 eds.	Surface	 Level	Ozone	 Exposures	 and	 Their	 Effects	 on	Vegetation.	 Lewis	

publishers,	USA,	pp.	1–30.	

Chameides,	W.L.,	Kasibhatla,	P.S.,	Yienger,	J.	&	Levy,	H.	(1994)	Growth	of	continental-

scale	 metro-agro-plexes,	 regional	 ozone	 pollution,	 and	 world	 food	 production.	

Science	264	(5155),	74–77.	



	 154	

Chaudhary,	N.	&	Agrawal,	S.B.	(2015)	The	role	of	elevated	ozone	on	growth,	yield	and	

seed	quality	amongst	six	cultivars	of	mung	bean.	Ecotoxicology	and	Environmental	

Safety	111,	286–294.	

Chiou,	T.-J.	&	Bush,	D.R.	(1998)	Sucrose	is	a	signal	molecule	in	assimilate	partitioning.	

Proceedings	of	the	National	Academy	of	Sciences	95	(8),	4784–4788.	

Chitka,	L.	&	Schürkens,	S.	(2001)	Successful	invasion	of	a	floral	market.	An	exotic	Asian	

plant	has	moved	in	on	Europe’s	river-banks	by	bribing	pollinators.	Nature	411:	653.	

Chittka,	L.,	Thomson,	J.D.	&	Waser,	N.M.	(1999)	Flower	constancy,	 insect	psychology,	

and	plant	evolution.	Naturwissenschaften	86	(8),	361–377.	

Cho,	K.,	Shibato,	J.,	Agrawal,	G.K.,	Jung,	Y.-H.,	Kubo,	A.,	Jwa,	N.-S.,	Tamogami,	S.,	Satoh,	

K.,	 Kikuchi,	 S.	 &	 Higashi,	 T.	 (2008)	 Integrated	 transcriptomics,	 proteomics,	 and	

metabolomics	analyses	to	survey	ozone	responses	 in	the	 leaves	of	rice	seedling.	

Journal	of	Proteome	Research	7	(7),	2980–2998.	

Clément,	C.,	Laporte,	P.	&	Audran,	J.C.	(1998)	The	loculus	content	and	tapetum	during	

pollen	development	in	Lilium.	Sexual	plant	reproduction	11	(2),	94–106.	

Conklin-Brittain,	 N.L.,	 Dierenfeld,	 E.S.,	 Wrangham,	 R.W.,	 Norconk,	 M.	 &	 Silver,	 S.C.	

(1999)	Chemical	protein	analysis:	a	comparison	of	Kjeldahl	crude	protein	and	total	

ninhydrin	protein	 from	wild,	 tropical	vegetation.	 Journal	of	Chemical	Ecology	25	

(12),	2601–2622.	

Cook,	S.M.,	Awmack,	C.S.,	Murray,	D.A.	&	Williams,	I.H.	(2003)	Are	honey	bees’	foraging	

preferences	affected	by	pollen	amino	acid	composition?	Ecological	Entomology	28	

(5),	622–627.	

Cooley,	D.R.	&	Manning,	W.J.	(1987)	The	impact	of	ozone	on	assimilate	partitioning	in	

plants:	A	review.	Environmental	Pollution	47	(2),	95–113.	

Corbet,	S.	(2003)	Nectar	sugar	content:	estimating	standing	crop	and	secretion	rate	in	

the	field.	Apidologie	34	(1),	1–10.	



	 155	

Cortegano,	I.,	Civantos,	E.,	Aceituno,	E.,	Del	Moral,	A.,	Lopez,	E.,	Lombardero,	M.,	Del	

Pozo,	 V.	 &	 Lahoz,	 C.	 (2004)	 Cloning	 and	 expression	 of	 a	 major	 allergen	 from	

Cupressus	 arizonica	 pollen,	 Cup	 a	 3,	 a	 PR-5	 protein	 expressed	 under	 polluted	

environment.	Allergy	59	(5),	485–490.	

Crailsheim,	K.	(1990)	The	protein	balance	of	the	honey	bee	worker.	Apidologie	21	(5),	

417–429.	

Crailsheim,	K.,	Schneider,	L.H.W.,	Hrassnigg,	N.,	Bühlmann,	G.,	Brosch,	U.,	Gmeinbauer,	

R.	 &	 Schöffmann,	 B.	 (1992)	 Pollen	 consumption	 and	 utilization	 in	 worker	

honeybees	 (Apis	mellifera	 carnica):	 dependence	on	 individual	 age	 and	 function.	

Journal	of	Insect	Physiology	38	(6),	409–419.	

Crailsheim,	K.	(1988)	Regulation	of	food	passage	in	the	intestine	of	the	honeybee	(Apis	

mellifera	L.).	Journal	of	Insect	Physiology	34	(2),	85–90.	

Crailsheim,	K.	(1988)	Intestinal	transport	of	sugars	in	the	honeybee	(Apis	mellifera	L.).	

Journal	of	Insect	Physiology.	34	(9),	839–845.	

Crailsheim,	 K.	 (1986)	 Dependence	 of	 protein	 metabolism	 on	 age	 and	 season	 in	 the	

honeybee	(Apis	mellifica	carnica	Pollm).	Journal	of	Insect	Physiology	32	(7),	629–

634.	

Crépon,	K.,	Marget,	P.,	Peyronnet,	C.,	Carrouée,	B.,	Arese,	P.	&	Duc,	G.	(2010)	Nutritional	

value	of	faba	bean	(Vicia	faba	L.)	seeds	for	feed	and	food.	Field	Crops	Research	115	

(3),	329–339.	

Cresti,	M.,	Keijzer,	C.J.,	Tiezzi,	A.,	Ciampolini,	F.	&	Focardi,	S.	(1986)	Stigma	of	Nicotiana:	

ultrastructural	and	biochemical	studies.	American	Journal	of	Botany	1713–1722.	

Cuinica,	L.G.,	Abreu,	I.	&	da	Silva,	J.C.G.E.	(2014)	In	vitro	exposure	of	Ostrya	carpinifolia	

and	 Carpinus	 betulus	 pollen	 to	 atmospheric	 levels	 of	 CO,	 O3	 and	 SO2.	

Environmental	Science	and	Pollution	Research.	21	(3),	2256–2262.	

Daly,	K.C.	&	Smith,	B.H.	(2000)	Associative	olfactory	learning	in	the	moth	Manduca	sexta.	

Journal	of	Experimental	Biology	203	(13),	2025–2038.	



	 156	

Dammann,	C.,	Rojo,	E.	&	Sánchez-Serrano,	 J.J.	 (1997)	Abscisic	acid	and	 jasmonic	acid	

activate	wound-inducible	genes	in	potato	through	separate,	organ-specific	signal	

transduction	pathways.	The	Plant	Journal	11	(4),	773–782.	

Darragh,	A.J.,	Garrick,	D.J.,	Moughan,	P.J.	&	Hendriks,	W.H.	(1996)	Correction	for	amino	

acid	loss	during	acid	hydrolysis	of	a	purified	protein.	Analytical	bBochemistry	236	

(2),	199–207.	

Davis,	A.R.	(2003)	Influence	of	elevated	CO2	and	ultraviolet-B	radiation	levels	on	floral	

nectar	 production:	 a	 nectary-morphological	 perspective.	 Plant	 Systematics	 and	

Evolution	238	(1-4),	169–181.	

Davis,	A.R.,	Peterson,	R.L.	&	Shuel,	R.W.	 (1988)	Vasculature	and	ultrastructure	of	 the	

floral	 and	 stipular	 nectaries	 of	 Vicia	 faba	 (Leguminosae).	 Canadian	 Journal	 of	

Botany	66	(1971),	1435–1448.	

Davison,	A.W.	&	Barnes,	J.D.	(1998)	Effects	of	ozone	on	wild	plants.	New	Phytologist139	

(1),	135–151.	

Denisow,	 B.	 (2008)	 Flowering	 and	 pollen	 production	 of	 several	 f.	 Brassicaceae	

ornamentals.	Journal	of	Apicultural	Science	52	(2),	13-21.	

De	Ibarra,	N.H.,	Vorobyev,	M.,	Brandt,	R.	&	Giurfa,	M.	(2000)	Detection	of	bright	and	

dim	colours	by	honeybees.	Journal	of	Experimental	Biology		203	(21),	3289–3298.	

Di	Martino,	C.,	Delfine,	S.,	Pizzuto,	R.,	Loreto,	F.	&	Fuggi,	A.	(2003)	Free	amino	acids	and	

glycine	 betaine	 in	 leaf	 osmoregulation	 of	 spinach	 responding	 to	 increasing	 salt	

stress.	New	Phytologist	158	(3),	455–463.	

Di	Pasquale,	G.,	Salignon,	M.,	Le	Conte,	Y.,	Belzunces,	L.P.,	Decourtye,	A.,	Kretzschmar,	

A.,	Suchail,	S.,	Brunet,	J.-L.	&	Alaux,	C.	(2013)	Influence	of	pollen	nutrition	on	honey	

bee	health:	do	pollen	quality	and	diversity	matter?	PloS	one	8	(8),	e72016.	

Dobson,	H.E.M.	(1987)	Role	of	 flower	and	pollen	aromas	 in	host-plant	recognition	by	

solitary	bees.	Oecologia	72	(4),	618–623.	



	 157	

Dobson,	H.E.M.	&	Bergström,	G.	(2000)	The	ecology	and	evolution	of	pollen	odors.	Plant	

Systematics	and	Evolution	222	(1-4),	63–87.	

Dumas,	C.	 (1977)	Lipochemistry	of	the	progamic	stage	of	a	self-incompatible	species:	

Neutral	lipids	and	fatty	acids	of	the	secretory	stigma	during	its	glandular	activity,	

and	 of	 the	 solid	 style,	 the	 ovary	 and	 the	 anther	 in	 Forsythia	 intermedia	 Zab.	

(Heterostylic	species).	Planta	137	(2),	177–184.	

Endress,	A.G.	&	Grunwald,	C.	(1985)	Impact	of	chronic	ozone	on	soybean	growth	and	

biomass	partitioning.	Agriculture,	Ecosystems	&	Environment	13	(1),	9–23.	

Evans,	D.E.,	Taylor,	P.E.,	Singh,	M.B.	&	Knox,	R.B.	(1992)	The	interrelationship	between	

the	accumulation	of	lipids,	protein	and	the	level	of	acyl	carrier	protein	during	the	

development	of	Brassica	napus	L.	pollen.	Planta	186	(3),	343–354.	

Fahn,	 A.	 (2000)	 Structure	 and	 function	 of	 secretory	 cells.	 In	 Advances	 in	 Botanical	

Research:	Incorporating	Advances	in	Plant	Pathology,	Plant	Trichomes,	vol.	31.	Ed.	

Gray,	J.C.	Academic	Press,	London.	pp.	37–75.	

FAOSTAT	(2008),	Food	and	Agricultural	Organisation	of	the	United	Nations.	Available	at:	

http://faostat3.fao.org/	(Last	accessed,	20	May	2012).	

Farre-Armengol,	G.,	Pe,	J.,	Li,	T.,	Yli-piril,	P.,	Filella,	 I.,	Llusia,	J.,	Blande,	J.D.	&	Farr,	G.	

(2016)	Ozone	degrades	 floral	 scent	and	reduces	pollinator	attraction	 to	 flowers.	

New	Phytologist	209,	152-160.	

Feder,	 W.A.	 (1968)	 Reduction	 in	 tobacco	 pollen	 germination	 and	 tube	 elongation,	

induced	by	low	levels	of	ozone.	Science	160	(832),	1122.	

Feder,	W.A.	(1970)	Plant	response	to	chronic	exposure	of	low	levels	of	oxidant	type	air	

pollution.	Environmental	Pollution	1	(1),	73–79.	

Feder,	W.A.	 (1981)	Bioassaying	 for	ozone	with	pollen	 systems.	Environmental	Health	

Perspectives	37,	117-123.	

	



	 158	

Feder,	W.A.	&	Campbell,	 F.J.	 (1968)	 Influence	of	 low	 levels	of	ozone	on	 flowering	of	

carnations.	Phytopathology	58,	1038-1039.	

Feder,	W.A.,	Krause,	G.H.M.,	Harrison,	B.H.	&	Riley,	W.D.	(1982)	Ozone	effects	on	pollen-

	 tube		 growth	in	vivo	and	in	vitro.	In	Unsworth	M.H.,	Ormrod	D.P.,	eds.	Effects	

	 of	 gaseous	 air	 pollutants	 in	 agriculture	 and	 horticulture.	 London,	 UK:	

	 Butterworth	Scientific,	482.��

Feder,	W.A.	&	Sullivan,	F.	 (1969a)	Differential	 susceptibility	of	pollen	grains	 to	ozone	

injury.	Phytopathology	59,	399.	

Feder,	W.A.	&	Sullivan,	F.	(1969b)	Ozone:	Depression	of	frond	multiplication	and	floral	

production	in	duckweed	Science.	165	(3900),	1373–1374. 

Feng,	Z.,	Jin,	M.,	Zhang,	F.	&	Huang,	Y.	(2003)	Effects	of	ground-level	ozone	(O3)	pollution	

on	 the	 yields	 of	 rice	 and	 winter	 wheat	 in	 the	 Yangtze	 River	 Delta.	 Journal	 of	

Environmental	Sciences	15	(3),	360–362.	

Fernandez-Bayon,	 J.M.,	 Barnes,	 J.D.,	 Ollerenshaw,	 J.H.	 &	 Davison,	 A.W.	 (1993)	

Physiological	effects	of	ozone	on	cultivars	of	watermelon	 (Citrullus	 lanatus)	and	

muskmelon	(Cucumis	melo)	widely	grown	in	Spain.	Environmental	Pollution	81	(3),	

199–206.	

Findley,	D.A.,	Keever,	G.J.,	Chappelka,	A.H.,	Eakes,	D.J.	&	Gilliam,	C.H.	(1997)	Differential	

response	of	buddleia	(Buddleia	davidii	Franch.)	to	ozone.	Environmental	Pollution	

98	(1),	105–111.	

Fiscus,	E.L.,	Booker,	F.L.	&	Burkey,	K.O.	(2005)	Crop	responses	to	ozone:	uptake,	modes	

of	action,	carbon	assimilation	and	partitioning.	Plant,	Cell	&	Environment	28	 (8),	

997–1011.	

Forde,	 B.G.	 &	 Lea,	 P.J.	 (2007)	 Glutamate	 in	 plants:	 metabolism,	 regulation,	 and	

signalling.	Journal	of	Experimental	Botany	58	(9),	2339–2358.	

Fordham,	M.	(1994)	The	plasmalemma	as	the	primary	site	of	action	of	ozone.	Doctoral	

dissertation,	University	of	Newcastle	upon	Tyne.	



	 159	

Fountoulakis,	M.	&	Lahm,	H.-W.	(1998)	Hydrolysis	and	amino	acid	composition	analysis	

of	proteins.	Journal	of	Chromatography	A	826	(2),	109–134.	

Frank,	U.	&	Ernst,	D.	(2016)	Effects	of	NO2	and	ozone	on	pollen	allergenicity.	Frontiers	in	

Plant	science	7	(91).	Doi:10.3389/fpls.2016.00091.	

Franzaring,	 J.,	 Tonneijck,	 A.E.G.,	 Kooijman,	 A.W.N.	 &	 Dueck,	 T.A.	 (2000)	 Growth	

responses	 to	 ozone	 in	 plant	 species	 from	 wetlands.	 Environmental	 and	

Experimental	Botany	44	(1),	39–48.	

Friend,	A.L.	&	Tomlinson,	P.T.	(1992)	Mild	ozone	exposure	alters	14C	dynamics	in	foliage	

of	Pinus	taeda	L.	Tree	Physiology	11	(3),	215–227.	

Frings,	H.	(1944)	The	loci	of	olfactory	end-organs	in	the	honey-bee,	Apis	mellifera	Linn.	

Journal	of	Experimental	Zoology	97,	123-134.	

Fuentes,	J.D.,	T’ai,	H.R.	&	Zenker,	J.	(2013)	Ozone	impedes	the	ability	of	a	herbivore	to	

find	its	host.	Environmental	Research	Letters	8	(1),	14048.	

Fuhrer,	 J.	 (2009)	 Ozone	 risk	 for	 crops	 and	 pastures	 in	 present	 and	 future	 climates.	

Naturwissenschaften	96	(2),	173–194.	

Fuhrer,	 J.	 &	 Booker,	 F.	 (2003)	 Ecological	 issues	 related	 to	 ozone:	 agricultural	 issues.	

Environment	International	29	(2),	141–154.	

Fuhrer,	 J.,	 Skärby,	 L.	 &	 Ashmore,	 M.R.	 (1997)	 Critical	 levels	 for	 ozone	 effects	 on	

vegetation	in	Europe.	Environmental	Pollution	97	(1),	91–106.	

Fukumorita,	 T.	 &	 Chino,	M.	 (1982)	 Sugar,	 amino	 acid	 and	 inorganic	 contents	 in	 rice	

phloem	sap.	Plant	and	Cell	Physiology	23	(2),	273–283.	

Gardener,	 M.C.	 &	 Gillman,	 M.P.	 (2001)	 Analyzing	 variability	 in	 nectar	 amino	 acids:	

composition	 is	 less	 variable	 than	 concentration.	 Journal	 of	 Chemical	 Ecology	 27	

(12),	2545–2558.	



	 160	

Gardener,	 M.C.	 &	 Gillman,	 M.P.	 (2002)	 The	 taste	 of	 nectar–a	 neglected	 area	 of	

pollination	ecology.	Oikos	98	(3),	552–557.	

Gegear,	 R.J.	 (2005)	 Multicomponent	 floral	 signals	 elicit	 selective	 foraging	 in	

bumblebees.	Naturwissenschaften	92	(6),	269–271.	

Gegear,	 R.J.	 &	 Laverty,	 T.M.	 (2004)	 Effect	 of	 a	 colour	 dimorphism	 on	 the	 flower	

constancy	of	honey	bees	and	bumble	bees.	Canadian	 Journal	of	 Zoology	 82	 (4),	

587–593.	

Genissel,	A.,	Aupinel,	P.,	Bressac,	C.,	Tasei,	J.	&	Chevrier,	C.	(2002)	Influence	of	pollen	

origin	 on	 performance	 of	 Bombus	 terrestris	 micro-colonies.	 Entomologia	

Experimentalis	et	Applicata	104	(2-3),	329–336.	

Ghazoul,	J.	(2006)	Floral	diversity	and	the	facilitation	of	pollination.	Journal	of	Ecology	

94	(2),	295–304.	

Gillespie,	C.,	Stabler,	D.,	Tallentire,	E.,	Goumenaki,	E.	&	Barnes,	 J.	 (2015)	Exposure	to	

environmentally-relevant	 levels	 of	 ozone	 negatively	 influence	 pollen	 and	 fruit	

development.	Environmental	Pollution	206,	494–501.	

Gimeno,	B.S.,	Bermejo,	V.,	Sanz,	J.,	De	la	Torre,	D.	&	Gil,	J.M.	(2004)	Assessment	of	the	

effects	 of	 ozone	 exposure	 and	 plant	 competition	 on	 the	 reproductive	 ability	 of	

three	therophytic	clover	species	from	Iberian	pastures.	Atmospheric	Environment	

38	(15),	2295–2303.	

Girling,	 R.D.,	 Lusebrink,	 I.,	 Farthing,	 E.,	 Newman,	 T.A.	 &	 Poppy,	 G.M.	 (2013)	 Diesel	

exhaust	 rapidly	 degrades	 floral	 odours	 used	 by	 honeybees.	 Scientific	 reports	 3,	

2779.	

Girousse,	C.,	Bournoville,	R.	&	Bonnemain,	J.-L.	(1996)	Water	deficit-induced	changes	in	

concentrations	in	proline	and	some	other	amino	acids	in	the	phloem	sap	of	alfalfa.	

Plant	Physiology	111	(1),	109–113.	

Goldrich,	 N.R.	 (1973)	 Behavioral	 responses	 of	 Phormia	 regina	 (Meigen)	 to	 labellar	

stimulation	with	amino	acids.	The	Journal	of	General	Physiology	61	(1),	74–88.	



	 161	

González-Paramás,	A.M.,	Bárez,	 J.A.G.,	Marcos,	C.C.,	García-Villanova,	R.J.	&	Sánchez,	

J.S.	(2006)	HPLC-fluorimetric	method	for	analysis	of	amino	acids	in	products	of	the	

hive	(honey	and	bee-pollen).	Food	Chemistry	95	(1),	148–156.	

González-Teuber,	M.	&	Heil,	M.	(2009)	Nectar	chemistry	is	tailored	for	both	attraction	

of	mutualists	and	protection	from	exploiters.	Plant	Signaling	&	Behavior	4	(9),	809–

813.	

Gonzalez–Fernandez,	 I.,	 Kaminska,	 A.,	 Dodmani,	 M.,	 Goumenaki,	 E.,	 Quarrie,	 S.	 &	

Barnes,	 J.D.	 (2010)	 Establishing	 ozone	 flux–response	 relationships	 for	 winter	

wheat:	 Analysis	 of	 uncertainties	 based	 on	 data	 for	 UK	 and	 Polish	 genotypes.	

Atmospheric	Environment	44	(5),	621–630.	

Gotham,	 S.M.,	 Fryer,	 P.J.	 &	 Paterson,	 W.R.	 (1988)	 The	 measurement	 of	 insoluble	

proteins	using	a	modified	Bradford	assay.	Analytical	Biochemistry	173	(2),	353–358.	

Gottsberger,	G.,	Arnold,	T.	&	Linskens,	H.F.	(1990)	Variation	in	floral	nectar	amino	acids	

with	aging	of	flowers,	pollen	contamination,	and	flower	damage.	Israel	Journal	of	

Botany	39	(1-2),	167–176.	

Gottsberger,	G.,	Schrauwen,	J.	&	Linskens,	H.F.	(1984)	Amino	acids	and	sugars	in	nectar,	

and	their	putative	evolutionary	significance.	Plant	Systematics	and	Evolution	145	

(1-2),	55–77.	

Graham,	L.	&	Jones,	K.N.	(1996)	Resource	partitioning	and	per-flower	foraging	efficiency	

in	two	bumble	bee	species.	American	Midland	Naturalist	136,	401–406.	

Grant,	 B.R.	 (1996)	 Pollen	 digestion	 by	 Darwin’s	 finches	 and	 its	 importance	 for	 early	

breeding.	Ecology	77,	489–499.	

Grantz,	D.A.,	Gunn,	S.	&	VU,	H.	(2006)	O3	impacts	on	plant	development:	a	meta-analysis	

of	root/shoot	allocation	and	growth.	Plant,	Cell	&	Environment.	29	(7),	1193–1209.	

Grantz,	 D.A.	 (2003)	 Ozone	 impacts	 on	 cotton:	 Towards	 an	 integrated	 mechanism.	

Environmental	Pollution	126	(3),	331–344.	



	 162	

Grunfeld,	E.,	Vincent,	C.	&	Bagnara,	D.	(1989)	High-performance	liquid	chromatography	

analysis	of	nectar	and	pollen	of	strawberry	flowers.	Journal	of	Agricultural	and	Food	

Chemistry	37	(2),	290–294.	

Guimarães,	E.,	Nogueira,	A.	&	Machado,	S.R.	(2016)	Floral	nectar	production	and	nectary	

structure	of	a	bee-pollinated	shrub	from	Neotropical	savanna.	Plant	Biology	18	(1),	

26–36.	

Gumbert,	 A.	 (2000)	 Color	 choices	 by	 bumble	 bees	 (Bombus	 terrestris):	 innate	

preferences	and	generalization	after	learning.	Behavioral	Ecology	and	Sociobiology	

48	(1),	36–43.	

Guy,	 C.L.,	 Huber,	 J.L.	 &	 Huber,	 S.C.	 (1992)	 Sucrose	 phosphate	 synthase	 and	 sucrose	

accumulation	at	low	temperature.	Plant	Physiology	100,	502–508.	

Hansen,	 K.A.I.,	 Wacht,	 S.,	 Seebauer,	 H.	 &	 Schnuch,	 M.	 (1998)	 New	 aspects	 of	

chemoreception	in	flies.	Annals	of	the	New	York	Academy	of	Sciences	855	(1),	143–

147.	

Hare,	 P.D.	 &	 Cress,	 W.A.	 (1997)	 Metabolic	 implications	 of	 stress-induced	 proline	

accumulation	in	plants.	Plant	Growth	Regulation	21	(2),	79–102.	

Harrison,	B.H.	&	Feder,	W.A.	(1974)	Ultrastructural	changes	in	pollen	exposed	to	ozone.	

Phytopathology	64,	257-258.	

Haupt,	 S.S.	 &	 Klemt,	 W.	 (2005)	 Habituation	 and	 dishabituation	 of	 exploratory	 and	

appetitive	 responses	 in	 the	 honey	 bee	 (Apis	 mellifera	 L.).	 Behavioural	 Brain	

Research	165	(1),	12–17.	

Hayes,	F.,	Jones,	M.L.M.,	Mills,	G.	&	Ashmore,	M.	(2007)	Meta-analysis	of	the	relative	

sensitivity	 of	 semi-natural	 vegetation	 species	 to	 ozone.	Environmental	 Pollution	

146	(3),	754–762.	

Hayes,	F.,	Williamson,	J.	&	Mills,	G.	(2012)	Ozone	pollution	affects	flower	numbers	and	

timing	in	a	simulated	BAP	priority	calcareous	grassland	community.	Environmental	

Pollution	163,	40–47.	



	 163	

Heath,	R.L.	(1994)	Possible	mechanisms	for	the	inhibition	of	photosynthesis	by	ozone.	

Photosynthesis	Research	39	(3),	439–451.	

Heiden,	A.C.,	Hoffmann,	T.,	Kahl,	J.,	Kley,	D.,	Klockow,	D.,	Langebartels,	C.,	Mehlhorn,	H.,	

Sandermann	Jr,	H.,	Schraudner,	M.	&	Schuh,	G.	(1999)	Emission	of	volatile	organic	

compounds	from	ozone-exposed	plants.	Ecological	Applications	9	(4),	1160–1167.	

Heil,	M.	(2011)	Nectar:	Generation,	regulation	and	ecological	functions.	Trends	in	Plant	

Science.	16	(4),	191–200.	

Hempel	De	Ibarra,	N.,	Vorobyev,	M.,	Brandt,	R.	&	Giurfa,	M.	(2000)	Detection	of	bright	

and	dim	colours	by	honeybees.	 Journal	of	Experimental	Biology	203	 (21),	3289–

3298.	

Hendriksma,	H.P.,	Oxman,	K.L.	&	Shafir,	S.	(2014)	Amino	acid	and	carbohydrate	tradeoffs	

by	 honey	 bee	 nectar	 foragers	 and	 their	 implications	 for	 plant-pollinator	

interactions.	Journal	of	Insect	Physiology	69,	56–64.	

Herrera	M,	L.G.	&	Martínez	Del	Río,	C.	(1998)	Pollen	digestion	by	New	World	bats:	effects	

of	processing	time	and	feeding	habits.	Ecology	79	(8),	2828–2838.	

Höcherl,	N.,	Siede,	R.,	Illies,	I.,	Gätschenberger,	H.	&	Tautz,	J.	(2012)	Evaluation	of	the	

nutritive	value	of	maize	for	honey	bees.	Journal	of	Insect	Physiology	58	(2),	278–

285.	

Hormaza,	 J.I.,	 Pinney,	 K.	 &	 Polito,	 V.S.	 (1996)	 Correlation	 in	 the	 tolerance	 to	 ozone	

between	sporophytes	and	male	gametophytes	of	several	fruit	and	nut	tree	species	

(Rosaceae).	Sexual	Plant	Reproduction	9	(1),	44–48.	

Human,	H.,	Nicolson,	S.W.,	Strauss,	K.,	Pirk,	C.W.W.	&	Dietemann,	V.	(2007)	Influence	of	

pollen	 quality	 on	 ovarian	 development	 in	 honeybee	 workers	 (Apis	 mellifera	

scutellata).	Journal	of	Insect	Physiology	53	(7),	649–655.	

Human,	 H.	 &	 Nicolson,	 S.W.	 (2006)	 Nutritional	 content	 of	 fresh,	 bee-collected	 and	

stored	pollen	of	Aloe	greatheadii	var.	davyana	(Asphodelaceae).	Phytochemistry	67	

(14),	1486–1492.	



	 164	

Inouye,	D.W.	(1980)	The	terminology	of	floral	larceny.	Ecology	61	(5),	1251–1253.	

Inouye,	D.W.	&	Waller,	G.D.	(1984)	Responses	of	honey	bees	(Apis	mellifera)	to	amino	

acid	solutions	mimicking	floral	nectars.	Ecology	618–625.	

Iriti,	M.	&	Faoro,	F.	(2009)	Chemical	diversity	and	defence	metabolism:	how	plants	cope	

with	pathogens	and	ozone	pollution.	International	Journal	of	Molecular	Sciences.	

10	(8),	3371–3399.	

Jaggard,	K.W.,	Qi,	A.	&	Ober,	E.S.	(2010)	Possible	changes	to	arable	crop	yields	by	2050.	

Philosophical	Transactions	of	the	Royal	Society	B:	Biological	Sciences	365	(1554),	

2835–2851.	

Jenkin,	M.E.	(2008)	Trends	in	ozone	concentration	distributions	in	the	UK	since	1990:	

Local,	 regional	 and	 global	 influences.	 Atmospheric	 Environment	 42	 (21),	 5434–

5445.	

Jensen,	 E.S.,	 Peoples,	 M.B.	 &	 Hauggaard-Nielsen,	 H.	 (2010)	 Faba	 bean	 in	 cropping	

systems.	Field	Crops	Research	115	(3),	203–216.	

Jones,	D.B.	(1941)	Factors	for	converting	percentages	of	nitrogen	in	foods	and	feeds	into	

percentages	of	proteins.	US	Department	of	Agriculture	Washington,	DC.	

Kaczorowski,	 R.L.,	 Gardener,	M.C.	&	Holtsford,	 T.P.	 (2005)	 Nectar	 traits	 in	 Nicotiana	

section	 Alatae	 (Solanaceae)	 in	 relation	 to	 floral	 traits,	 pollinators,	 and	 mating	

system.	American	Journal	of	Botany	92	(8),	1270–1283.	

Kangasjärvi,	J.,	Talvinen,	J.,	Utriainen,	M.	&	Karjalainen,	R.	(1994)	Plant	defence	systems	

induced	by	ozone.	Plant,	Cell	&	Environment	17	(7),	783–794.	

Kanter,	U.,	Heller,	W.,	Durner,	J.,	Winkler,	 J.B.,	Engel,	M.,	Behrendt,	H.,	Holzinger,	A.,	

Braun,	 P.,	 Hauser,	 M.	 &	 Ferreira,	 F.	 (2013)	 Molecular	 and	 immunological	

characterization	of	ragweed	(Ambrosia	artemisiifolia	L.)	pollen	after	exposure	of	

the	plants	to	elevated	ozone	over	a	whole	growing	season.	PloS	one	8	(4),	e61518.	



	 165	

Käpylä,	M.	 (1978)	Amount	and	 type	of	nectar	 sugar	 in	 some	wild	 flowers	 in	 Finland,	

Annales	Botanici	Fennici	15,	85–88.	

Kearns,	 C.A.,	 Inouye,	 D.W.	 &	 Waser,	 N.M.	 (1998)	 Endangered	 mutualisms:	 the	

conservation	 of	 plant-pollinator	 interactions.	 Annual	 Review	 of	 Ecology	 and	

Systematics	29,	83–112.	

Kearns,	C.A.	&	Inouye,	D.W.	(1993)	Techniques	for	Pollination	Biologists.	University	Press	

of	Colorado,	Niwot.	

Kim,	 Y.S.	 &	 Smith,	 B.H.	 (2000)	 Effect	 of	 an	 amino	 acid	 on	 feeding	 preferences	 and	

learning	behavior	in	the	honey	bee,	Apis	mellifera.	Journal	of	Insect	Physiology	46	

(5),	793–801.	

Klatt,	B.K.,	Holzschuh,	A.,	Westphal,	C.,	Clough,	Y.,	Smit,	I.,	Pawelzik,	E.	&	Tscharntke,	T.	

(2014)	 Bee	 pollination	 improves	 crop	 quality,	 shelf	 life	 and	 commercial	 value.	

Proceedings	 of	 the	 Royal	 Society	 of	 London	 B:	 Biological	 Sciences	 281	 (1775)	

:20132440.	

Klein,	A.-M.,	Vaissiere,	B.E.,	Cane,	J.H.,	Steffan-Dewenter,	I.,	Cunningham,	S.A.,	Kremen,	

C.	&	 Tscharntke,	 T.	 (2007)	 Importance	of	 pollinators	 in	 changing	 landscapes	 for	

world	crops.	Proceedings	of	the	Royal	Society	of	London	B:	Biological	Sciences	274	

(1608),	303–313.	

Kram,	B.W.	&	Carter,	C.J.	(2009)	Arabidopsis	thaliana	as	a	model	for	functional	nectary	

analysis.	Sexual	Plant	Reproduction	22	(4),	235–246.	

Krause,	G.H.M.,	Riley,	W.D.	&	Feder,	W.A.	(1975)	Effects	of	ozone	on	petunia	and	tomato	

pollen	tube	elongation	in	vivo,	in	Proceedings	of	the	American	Phytopathological	

Society	2,	100.	

Laisk,	A.,	Kull,	O.	&	Moldau,	H.	(1989)	Ozone	concentration	in	leaf	intercellular	air	spaces	

is	close	to	zero.	Plant	Physiology	90	(3),	1163–1167.	

Lanza,	 J.	 &	 Krauss,	 B.R.	 (1984)	 Detection	 of	 amino	 acids	 in	 artificial	 nectars	 by	 two	

tropical	ants,	Leptothorax	and	Monomorium.	Oecologia	63	(3),	423–425.	



	 166	

Larson,	B.M.H.	&	Barrett,	S.C.H.	 (2000)	A	comparative	analysis	of	pollen	 limitation	 in	

flowering	plants.	Biological	Journal	of	the	Linnean	Society	69	(4),	503–520.	

Lass,	A.	&	Crailsheim,	K.	(1996)	Influence	of	age	and	caging	upon	protein	metabolism,	

hypopharyngeal	glands	and	trophallactic	behavior	in	the	honey	bee	(Apis	mellifera	

L.).	Insectes	Sociaux	43	(4),	347–358.	

Law,	B.S.	(1992)	Physiological	factors	affecting	pollen	use	by	Queensland	blossom	bats	

(Syconycteris	australis).	Functional	Ecology	6,	257–264.	

Lee,	K.	V,	Steinhauer,	N.,	Rennich,	K.,	Wilson,	M.E.,	Tarpy,	D.R.,	Caron,	D.M.,	Rose,	R.,	

Delaplane,	K.S.,	Baylis,	K.	&	Lengerich,	E.J.	 (2015)	A	national	 survey	of	managed	

honey	bee	2013–2014	annual	colony	losses	in	the	USA.	Apidologie	46	(3),	292–305.	

Lefohn,	A.S.	(1991)	Surface-level	Ozone	Exposures	and	Their	Effects	on	Vegetation.	Lewis	

Publishers,	Chelsea,	UK.	

Leisner,	 C.P.	 &	 Ainsworth,	 E.A.	 (2012)	 Quantifying	 the	 effects	 of	 ozone	 on	 plant	

reproductive	growth	and	development.	Global	Change	Biology	18	(2),	606–616.	

Li,	C.,	Xu,	B.,	Wang,	Y.,	Feng,	Q.	&	Yang,	W.	(2012)	Effects	of	dietary	crude	protein	levels	

on	development,	antioxidant	status,	and	total	midgut	protease	activity	of	honey	

bee	(Apis	mellifera	ligustica).	Apidologie	43	(5),	576–586.	

Lin,	 I.W.,	 Sosso,	 D.,	 Chen,	 L.-Q.,	 Gase,	 K.,	 Kim,	 S.-G.,	 Kessler,	 D.,	 Klinkenberg,	 P.M.,	

Gorder,	 M.K.,	 Hou,	 B.-H.	 &	 Qu,	 X.-Q.	 (2014)	 Nectar	 secretion	 requires	 sucrose	

phosphate	synthases	and	the	sugar	transporter	SWEET9.	Nature	508	(7497),	546–

549.	

Lloyd,	 S.,	Ayre,	D.J.	&	Whelan,	R.J.	 (2002)	A	 rapid	and	accurate	 visual	 assessment	of	

nectar	production	can	 reveal	patterns	of	 temporal	variation	 in	Banksia	ericifolia	

(Proteaceae).	Australian	Journal	of	Botany	50	(5),	595–600.	

Lohaus,	G.	&	 Schwerdtfeger,	M.	 (2014)	 Comparison	of	 sugars,	 iridoid	 glycosides	 and	

amino	acids	in	nectar	and	phloem	sap	of	Maurandya	barclayana,	Lophospermum	

erubescens,	and	Brassica	napus.	PloS	one	9	(1),	e87689.	



	 167	

Lusebrink,	 I.,	 Girling,	 R.D.,	 Farthing,	 E.,	 Newman,	 T.A.,	 Jackson,	 C.W.	 &	 Poppy,	 G.M.	

(2015)	 The	 effects	 of	 diesel	 exhaust	 pollution	 on	 floral	 volatiles	 and	 the	

consequences	for	honey	bee	olfaction.	Journal	of	Chemical	Ecology	41	(10),	904–

912.	

Lyons,	T.M.,	Barnes,	J.D.	&	Davison,	A.W.	(1997)	Relationships	between	ozone	resistance	

and	climate	in	European	populations	of	Plantago	major.	New	Phytologist	136	(3),	

503–510.	

Lyons,	T.,	Ollerenshaw,	J.H.	&	Barnes,	J.D.	(1999)	Impacts	of	ozone	on	Plantago	major:	

apoplastic	and	symplastic	antioxidant	status.	New	Phytologist.	141	(2),	253–263.	

Mafakheri,	A.,	Siosemardeh,	A.,	Bahramnejad,	B.,	Struik,	P.C.	&	Sohrabi,	Y.	(2010)	Effect	

of	 drought	 stress	 on	 yield,	 proline	 and	 chlorophyll	 contents	 in	 three	 chickpea	

cultivars.	Australian	Journal	of	Crop	Science	4	(8),	580.	

Mallick,	 S.A.	 (2000)	 Technique	 for	 washing	 nectar	 from	 the	 flowers	 of	 Tasmanian	

leatherwood	(Eucryphia	lucida	Eucryphiaceae).		Austral	Ecology	25	(2),	210–212.	

Marr,	L.C.	&	Harley,	R.A.	(2002)	Spectral	analysis	of	weekday–weekend	differences	in	

ambient	 ozone,	 nitrogen	 oxide,	 and	 non-methane	 hydrocarbon	 time	 series	 in	

California.	Atmospheric	Environment	36	(14),	2327–2335.	

McFrederick,	Q.S.,	Kathilankal,	 J.C.	&	Fuentes,	J.D.	(2008)	Air	pollution	modifies	floral	

scent	trails.	Atmospheric	Environment	42	(10),	2336–2348.	

McGregor,	S.E.	(1976)	Insect	Pollination	of	Cultivated	Crop	Plants.	Vol.	496.	Agricultural	

Research	Service,	US	Department	of	Agriculture.	

McKenna,	M.A.	&	Thomson,	J.D.	(1988)	A	technique	for	sampling	and	measuring	small	

amounts	of	floral	nectar.	Ecology	69	(4),	1306–1307.	

Menzel,	R.	&	Muller,	U.	(1996)	Learning	and	memory	in	honeybees:	from	behavior	to	

neural	substrates.	Annual	Review	of	Neuroscience	19	(1),	379–404.	



	 168	

Menzel,	R.,	 Erber,	 J.	&	Masuhr,	 T.	 (1974)	Learning	and	Memory	 in	 the	Honeybee',	 in	

Experimental	Analysis	of	Insect	Behaviour.	Browne	B.L.	Ed.	Springer.	pp.	195–217.	

Menzel,	R.	&	Giurfa,	M.	 (2001)	Cognitive	architecture	of	a	mini-brain:	 the	honeybee.	

Trends	in	Cognitive	Sciences	5	(2),	62–71.	

Micheu,	S.,	Crailsheim,	K.	&	Leonhard,	B.	(2000)	Importance	of	proline	and	other	amino	

acids	during	honeybee	flight.	Amino	Acids.	18	(2),	157–175.	

Miflin,	B.J.	(1980)	Amino	Acids	and	Derivatives.	in	The	Biochemistry	of	Plants.	Ed.	Miflin,	

B.J.	Vol	5.	Academic	Press,	New	York.	pp.	169-202.	

Mills,	G.,	Wagg,	S.	&	Harmens,	H.	(2013)	Ozone	pollution:	Impacts	on	ecosystem	services	

and	biodiversity.	NERC/Centre	for	Ecology	&	Hydrology.	ISBN	978-1-906698-39-3.	

Milton,	K.	&	Dintzis,	F.R.	(1981)	Nitrogen-to-protein	conversion	factors	for	tropical	plant	

samples.	Biotropica	13,	177–181.	

Mollaei,	M.,	Hoseini,	S.A.,	Karimi,	M.	&	Hekmat,	Z.	(2013)	Short	communication.	Impact	

of	 the	 amino	 acid	 proline	on	 the	 cold	 hardiness	 of	 honey	bee,	Apis	mellifera	 L.	

Spanish	Journal	of	Agricultural	Research	11	(3),	714–717.	

Mondal,	A.K.,	Parui,	S.	&	Mandal,	S.	(1998)	Analysis	of	the	free	amino	acid	content	in	

pollen	 of	 nine	 Asteraceae	 species	 of	 known	 allergenic	 activity.	 Annals	 of	

Agricultural	and	Environmental	Medicine	5,	17–20.	

Moritz,	B.	&	Crailsheim,	K.	(1987)	Physiology	of	protein	digestion	in	the	midgut	of	the	

honeybee	(Apis	mellifera	L.).	Journal	of	Insect	Physiology	33	(12),	923–931.	

Morrant,	D.S.,	Schumann,	R.	&	Petit,	S.	(2009)	Field	methods	for	sampling	and	storing	

nectar	from	flowers	with	low	nectar	volumes.	Annals	of	Botany	103	(3),	533–542.	

Mudd,	J.B.,	Leavitt,	R.,	Ongun,	A.	&	McManus,	T.T.	(1969)	Reaction	of	ozone	with	amino	

acids	and	proteins.	Atmospheric	Environment	3	(6),	669–681.	



	 169	

Mumford,	R.A.,	Lipke,	H.,	Laufer,	D.A.	&	Feder,	W.A.	(1972)	Ozone-induced	changes	in	

corn	pollen.	Environmental	Science	and	Technology	6	(5),	427–430.	

Nepi,	M.	 (2014)	Beyond	nectar	 sweetness:	 the	hidden	ecological	 role	of	non-protein	

amino	acids	in	nectar.	Journal	of	Ecology	102	(1),	108–115.	

Neumann,	 P.	 &	 Carreck,	 N.L.	 (2010)	 Honey	 bee	 colony	 losses.	 Journal	 of	 Apicultural	

Research	49	(1),	1–6.	

Nicholls,	E.	&	Hempel	de	Ibarra,	N.	(2014)	Bees	associate	colour	cues	with	differences	in	

pollen	rewards.	Journal	of	Experimental	Biology	217	(15),	2783–2788.	

Nicolson,	S.W.	&	Human,	H.	(2013)	Chemical	composition	of	the	‘low	quality’	pollen	of	

sunflower	(Helianthus	annuus,	Asteraceae).	Apidologie	44	(2),	144–152.	

Nicolson,	S.W.	(2007)	Nectar	consumers,	In:	Nectaries	and	Nectar.	Eds.	Nicolson,	S.W.,	

Nepi,	M.	&	Pacini,	E.	Springer.	pp.	289–342.	

Nicolson,	S.W.,	Nepi,	M.	&	Pacini,	E.	(2007)	Nectaries	and	Nectar.	Springer.	Dordrecht,	

The	Netherlands.	

Notario,	A.,	Díaz-de-Mera,	Y.,	Aranda,	A.,	Adame,	J.A.,	Parra,	A.,	Romero,	E.,	Parra,	J.	&	

Muñoz,	 F.	 (2012)	 Surface	 ozone	 comparison	 conducted	 in	 two	 rural	 areas	 in	

central-southern	Spain.	Environmental	Science	and	Pollution	Research	19	(1),	186–

200.	

Núñez,	J.	(1977)	Nectar	flow	by	melliferous	flora	and	gathering	flow	by	Apis	mellifera	

ligustica.	Journal	of	Insect	Physiology	23	(2),	265–275.	

Oshima,	R.J.,	Braegelmann,	P.K.,	Flagler,	R.B.	&	Teso,	R.R.	(1979)	The	effects	of	ozone	on	

the	growth,	yield,	and	partitioning	of	dry	matter	in	cotton.	Journal	of	Environmental	

Quality	8	(4),	474–479.	

Pacini,	 E.,	 Nepi,	M.	 &	 Vesprini,	 J.L.	 (2003)	 Nectar	 biodiversity:	 a	 short	 review.	 Plant	

Systematics	and	Evolution	238	(1),	7–21.	



	 170	

Pacini,	 E.	 (2000)	 From	 anther	 and	 pollen	 ripening	 to	 pollen	 presentation.	 Plant	

Systematics	and	Evolution	222,	19–43.	

Pacini,	E.	&	Hesse,	M.	 (2005)	Pollenkitt	 -	 Its	composition,	 forms	and	functions.	Flora:	

Morphology,	Distribution,	Functional	Ecology	of	Plants	200	(5),	399–415.	

Pacini,	E.	&	Nepi,	M.	(2007)	Nectar	production	and	presentation.	In	Nicolson,	S.W.	Nepi,	

M.	and	Pacini,	E.		Eds.	Nectaries	and	Nectar.	Springer.	pp.	167–214.	

Pacini,	E.,	Nicolson,	S.W.,	(2007)	Introduction.	In	Nicolson,	S.W.	Nepi,	M.	and	Pacini,	E.	

	 eds.	Nectaries	and	Nectar.	Springer.	pp.	1-18.	

País,	 S.M.,	 Téllez-Iñón,	 M.T.	 &	 Capiati,	 D.A.	 (2009)	 Serine/threonine	 protein	

phosphatases	type	2A	and	their	roles	in	stress	signaling.	Plant	Signaling	&	Behavior	

4	(11),	1013–5.	

Pankiw,	T.	&	Page	Jr,	R.E.	(2000)	Response	thresholds	to	sucrose	predict	foraging	division	

of	labor	in	honeybees.	Behavioral	Ecology	and	Sociobiology	47	(4),	265–267.	

Paoli,	P.P.,	Donley,	D.,	 Stabler,	D.,	 Saseendranath,	A.,	Nicolson,	S.W.,	Simpson,	S.J.	&	

Wright,	G.	a.	(2014)	Nutritional	balance	of	essential	amino	acids	and	carbohydrates	

of	the	adult	worker	honeybee	depends	on	age.	Amino	Acids.	46	(6),	1449–1458.	

Pasqualini,	 S.,	 Tedeschini,	 E.,	 Frenguelli,	G.,	Wopfner,	N.,	 Ferreira,	 F.,	D’Amato,	G.	&	

Ederli,	L.	(2011)	Ozone	affects	pollen	viability	and	NAD	(P)	H	oxidase	release	from	

Ambrosia	artemisiifolia	pollen.	Environmental	Pollution	159	(10),	2823–2830.	

Pate,	 J.S.,	Peoples,	M.B.,	Storer,	P.J.	&	Atkins,	C.A.	 (1985)	The	extrafloral	nectaries	of	

cowpea	 (Vigna	 unguiculata	 (L.)	 Walp.)	 II.	 Nectar	 composition,	 origin	 of	 nectar	

solutes,	and	nectary	functioning.	Planta	166	(1),	28–38.	

Paton,	D.C.	(1981)	The	significance	of	pollen	in	the	diet	of	the	New	Holland	Honeyeater,	

Phylidonyris	novaehollandiae	(Aves:	Meliphagidae).	Australian	Journal	of	Zoology	

29	(2),	217–224.	



	 171	

Pavlov,	I.P.	(1927)	Conditioned	reflexes:	An	investigation	of	the	physiological	activity	of	

the	cerebral	cortex.	Annals	of	Neurosciences	17	(3),	136–141.	

Pernal,	S.F.	&	Currie,	R.W.	(2001)	The	influence	of	pollen	quality	on	foraging	behavior	in	

honeybees	(Apis	mellifera	L.).	Behavioral	Ecology	and	Sociobiology.	51	(1),	53–68.	

Petanidou,	 T.,	 Goethals,	 V.	 &	 Smets,	 E.	 (1999)	 The	 effect	 of	 nutrient	 and	 water	

availability	 on	 nectar	 secretion	 and	 nectary	 structure	 of	 the	 dominant	 Labiatae	

species	of	phrygana.	Systematics	and	Geography	of	Plants	68,	233–244.	

Petanidou,	T.	&	Smets,	E.	 (1996)	Does	 temperature	 stress	 induce	nectar	 secretion	 in	

Mediterranean	plants?	New	Phytologist	133	(3),	513–518.	

Petanidou,	T.,	Van	Laere,	A.,	N	Ellis,	W.	&	Smets,	E.	(2006)	What	shapes	amino	acid	and	

sugar	composition	in	Mediterranean	floral	nectars?	Oikos	115	(1),	155–169.	

Petit,	S.,	Rubbo,	N.	&	Schumann,	R.	(2011)	Nectar	collected	with	microcapillary	tubes	is	

less	concentrated	than	total	nectar	in	flowers	with	small	nectar	volumes.	Australian	

Journal	of	Botany	59	(6),	593–599.	

Pinto,	D.M.,	Blande,	J.D.,	Souza,	S.R.,	Nerg,	A.-M.	&	Holopainen,	J.K.	(2010)	Plant	volatile	

organic	 compounds	 (VOCs)	 in	 ozone	 (O3)	 polluted	 atmospheres:	 the	 ecological	

effects.	Journal	of	Chemical	Ecology	36	(1),	22–34.	

Pirk,	C.W.W.,	Boodhoo,	C.,	Human,	H.	&	Nicolson,	S.W.	(2010)	The	importance	of	protein	

type	and	protein	to	carbohydrate	ratio	for	survival	and	ovarian	activation	of	caged	

honeybees	(Apis	mellifera	scutellata).	Apidologie	41	(1),	62–72.	

Piskorski,	R.,	Kroder,	S.	&	Dorn,	S.	(2011)	Can	pollen	headspace	volatiles	and	pollenkitt	

lipids	serve	as	reliable	chemical	cues	for	bee	pollinators?	Chemistry	&	Biodiversity	

8	(4),	577–586.	

Pleijel,	 H.,	 Danielsson,	 H.,	 Gelang,	 J.,	 Sild,	 E.	 &	 Selldén,	 G.	 (1998)	 Growth	 stage	

dependence	 of	 the	 grain	 yield	 response	 to	 ozone	 in	 spring	 wheat	 (Triticum	

aestivum	L.).	Agriculture,	Ecosystems	&	Environment	70	(1),	61–68.	



	 172	

Plöchl,	M.,	Lyons,	T.,	Ollerenshaw,	J.	&	Barnes,	J.	(2000)	Simulating	ozone	detoxification	

in	the	leaf	apoplast	through	the	direct	reaction	with	ascorbate.	Planta	210	(3),	454–

467.	

Pryor,	W.A.,	Das,	 B.	&	Church,	D.F.	 (1991)	 The	ozonation	of	 unsaturated	 fatty	 acids:	

aldehydes	 and	hydrogen	peroxide	 as	 products	 and	possible	mediators	 of	 ozone	

toxicity.	Chemical	Research	in	Toxicology	4	(3),	341–348.	

Puerto,	N.,	Prieto,	G.	&	Castro,	R.	(2015)	Chemical	composition	and	antioxidant	activity	

of	 pollen.	 Review.	 Chilean	 Journal	 of	 Agricultural	 &	 Animal	 Sciences,	 ex	 Agro-

Ciencia	31	(2),	115–126.	

Quin,	 D.,	 Goldingay,	 R.,	 Churchill,	 S.	 &	 Engel,	 D.	 (1996)	 Feeding	 behaviour	 and	 food	

availability	of	the	yellow-bellied	glider	in	North	Queensland.	Wildlife	Research	23	

(6),	637–646.	

Rabie,	A.L.,	Wells,	J.D.	&	Dent,	L.K.	(1983)	The	nitrogen	content	of	pollen	protein.	Journal	

of	Apicultural	Research	22	(2),	119–123.	

Raguso,	R.A.	(2008)	Wake	up	and	smell	the	roses:	the	ecology	and	evolution	of	floral	

scent.	Annual	Review	of	Ecology,	Evolution,	and	Systematics	39,	549–569.	

Rämö,	K.,	Kanerva,	T.,	Ojanperä,	K.	&	Manninen,	S.	(2007)	Growth	onset,	senescence,	

and	 reproductive	 development	 of	 meadow	 species	 in	 mesocosms	 exposed	 to	

elevated	O3	and	CO2.	Environmental	Pollution	145	(3),	850–860.	

Rees,	M.W.	 (1946)	 The	 estimation	 of	 threonine	 and	 serine	 in	 proteins.	 Biochemical	

Journal	40	(5-6),	632.	

Ren,	G.,	Healy,	R.A.,	Klyne,	A.M.,	Horner,	H.T.,	James,	M.G.	&	Thornburg,	R.W.	(2007)	

Transient	 starch	 metabolism	 in	 ornamental	 tobacco	 floral	 nectaries	 regulates	

nectar	composition	and	release.	Plant	Science	173	(3),	277–290.	

Reinert,	 R.A.	&	Nelson,	 P.	 V	 (1979)	 Sensitivity	 and	 growth	 of	 twelve	Elatior	 begonia	

cultivars	to	ozone.	HortScience	14	(6),	747-748.	



	 173	

Ribbands,	 C.R.	 (1949)	 The	 foraging	method	 of	 individual	 honey-bees.	 The	 Journal	 of	

Animal	Ecology	18,	47–66.	

Ribeiro,	H.,	Duque,	 L.,	 Sousa,	 R.	&	Abreu,	 I.	 (2013)	Ozone	effects	 on	 soluble	 protein	

content	of	Acer	negundo,	Quercus	robur	and	Platanus	spp.	pollen.	Aerobiologia	29	

(3),	443–447.	

Richter,	M.R.	&	Waddington,	K.D.	(1993)	Past	foraging	experience	influences	honey	bee	

dance	behaviour.	Animal	Behaviour	46	(1),	123–128.	

Riens,	B.,	Lohaus,	G.,	Heineke,	D.	&	Heldt,	H.W.	(1991)	Amino	acid	and	sucrose	content	

determined	in	the	cytosolic,	chloroplastic,	and	vacuolar	compartments	and	in	the	

phloem	sap	of	spinach	leaves.	Plant	Physiology	97	(1),	227–233.	

Robel,	E.J.	&	Crane,	A.B.	(1972)	An	accurate	method	for	correcting	unknown	amino	acid	

losses	from	protein	hydrolyzates.	Analytical	Biochemistry	48	(1),	233–246.	

Robinson,	 J.M.	 &	 Rowland,	 R.A.	 (1996)	 Carbohydrate	 and	 carbon	 metabolite	

accumulation	responses	in	leaves	of	ozone	tolerant	and	ozone	susceptible	spinach	

plants	after	acute	ozone	exposure.	Photosynthesis	Research	50,	103–115.	

Roshchina,	V.	V	&	Karnaukhov,	V.N.	(1999)	Changes	in	pollen	autofluorescence	induced	

by	ozone.	Biologia	Plantarum	42	(2),	273–278.	

Roshchina,	 V.	 V	 &	 Mel’nikova,	 E.	 V	 (2001)	 Pollen	 chemosensitivity	 to	 ozone	 and	

peroxides.	Russian	Journal	of	Plant	Physiology	48	(1),	74–83.	

RoTAP,	 (2012)	 Review	 of	 Transboundary	 Air	 Pollution:	 Acidification,	 Eutrification,	

	 Ground	 Level	 Ozone	 and	 Heavy	 Metals	 in	 the	 UK.	 Contract	 Report	 to	 the	

	 Department	 for	 Environment,	 Food	 and	 Rural	 affairs.	 Centre	 for	 Ecology	 and	

	 Hydrology.	

Roubik,	 D.W.,	 Yanega,	 D.,	 Buchmann,	 S.L.	 &	 Inouye,	 D.W.	 (1995)	 On	 optimal	 nectar	

foraging	by	some	tropical	bees	(Hymenoptera:	Apidae).	Apidologie	26	(3),	197–211.	



	 174	

Roulston,	T.H.	&	Cane,	J.H.	(2000)	Pollen	nutritional	content	and	digestibility	for	animals.	

Plant	Systematics	and	Evolution	222	(1-4),	187–209.	

Roulston,	 T.H.,	 Cane,	 J.H.	&	Buchmann,	 S.L.	 (2000)	What	 governs	protein	 content	of	

pollen:	Pollinator	preferences,	pollen-pistil	interactions,	or	phylogeny?	Ecological	

Monographs	70	(4),	617–643.	

Ruhlmann,	 J.M.,	Kram,	B.W.	&	Carter,	C.J.	 (2010)	Cell	wall	 invertase	4	 is	 required	 for	

nectar	production	in	Arabidopsis.	Journal	of	Experimental	Botany	61	(2),	395–404.	

Sairam,	 R.K.,	 Rao,	 K.V.	 &	 Srivastava,	 G.C.	 (2002)	 Differential	 response	 of	 wheat	

genotypes	 to	 long	 term	salinity	 stress	 in	 relation	 to	oxidative	stress,	antioxidant	

activity	and	osmolyte	concentration.	Plant	Science		163	(5),	1037–1046.	

Saitanis,	C.J.,	Bari,	 S.M.,	Burkey,	K.O.,	Stamatelopoulos,	D.	&	Agathokleous,	E.	 (2014)	

Screening	 of	 Bangladeshi	 winter	 wheat	 (Triticum	 aestivum	 L.)	 cultivars	 for	

sensitivity	to	ozone.	Environmental	Science	and	Pollution	Research	21	(23),	13560–

13571.	

Salo-väänänen,	 P.P.	 &	 Koivistoinen,	 P.E.	 (1996)	 Determination	 of	 protein	 in	 foods:	

comparison	of	net	protein	and	crude	protein	(N×	6.25)	values.	Food	Chemistry	57	

(1),	27–31.	

Sanders,	G.E.,	Colls,	J.J.,	Clark,	A.G.,	Galaup,	S.,	Bonte,	J.	&	Cantuel,	J.	(1992)	Phaseolus	

vulgaris	 and	 ozone:	 results	 from	 open-top	 chamber	 experiments	 in	 France	 and	

England.	Agriculture,	Ecosystems	&	Environment	38	(1),	31–40.	

Sapan,	C.	V,	Lundblad,	R.L.	&	Price,	N.C.	(1999)	Colorimetric	protein	assay	techniques.	

Biotechnology	and	Applied	Biochemistry	29	(2),	99–108.	

Sarkar,	A.,	Rakwal,	R.,	Bhushan	Agrawal,	S.,	Shibato,	J.,	Ogawa,	Y.,	Yoshida,	Y.,	Kumar	

Agrawal,	G.	&	Agrawal,	M.	 (2010)	 Investigating	 the	 impact	of	 elevated	 levels	of	

ozone	on	tropical	wheat	using	integrated	phenotypical,	physiological,	biochemical,	

and	proteomics	approaches.	Journal	of	Proteome	Research	9	(9),	4565–4584.	



	 175	

Schaffner,	W.	&	Weissmann,	C.	(1973)	A	rapid,	sensitive,	and	specific	method	for	the	

determination	of	protein	 in	dilute	 solution.	Analytical	Biochemistry	 56	 (2),	 502–

514.	

Scheiner,	R.,	Page,	R.	&	Erber,	J.	(2004)	Sucrose	responsiveness	and	behavioral	plasticity	

in	honey	bees	(Apis	mellifera).	Apidologie	35	(2),	133–142.	

Schoene,	K.,	Franz,	J.T.	&	Masuch,	G.	(2004)	The	effect	of	ozone	on	pollen	development	

in	Lolium	perenne	L.	Environmental	Pollution	131	(3),	347–354.	

Schönbein,	C.F.	(1841)	Beobachtungen	über	die	electrischen	Wirkungen	des	Zitter-Aales.	

Schönbein,	C.F.	(1844)	Über	die	Erzeugung	des	Ozons	auf	chemischen	Wege.	

Seeley,	T.D.	(2009)	The	Wisdom	of	the	Hive:	the	Social	Physiology	of	Honey	Bee	Colonies.	

Harvard	University	Press.	

Seeley,	T.D.,	Camazine,	S.	&	Sneyd,	J.	(1991)	Collective	decision-making	in	honey	bees:	

how	colonies	choose	among	nectar	sources.	Behavioral	Ecology	and	Sociobiology	

28	(4),	277–290.	

Shahi,	 S.,	 Katiyar,	 R.K.,	 Bhatnagar,	 A.K.	 &	 Singh,	 A.B.	 (2008)	 Soluble	 and	 nonsoluble	

protein	 assay	 for	 antigenic	 extracts	 from	pollen	 and	 seeds	of	mustard	 (Brassica	

spp.),	in	Allergy	and	Asthma	ProceedingsOceanSide	Publications	Inc.	pp.	78–87.	

Sharma,	Y.K.	&	Davis,	K.R.	(1997)	The	effects	of	ozone	on	antioxidant	responses	in	plants.	

Free	Radical	Biology	and	Medicine	23	(3),	480–488.	

Shiraishi,	 A.	 &	 Kuwabara,	M.	 (1970)	 The	 effects	 of	 amino	 acids	 on	 the	 labellar	 hair	

chemosensory	cells	of	the	fly.	The	Journal	of	General	Physiology	56	(6),	768–782.	

Shuel,	 R.W.	 (1952)	 Some	 factors	 affecting	 nectar	 secretion	 in	 red	 clover.	 Plant	

Physiology	27	(1),	95.	



	 176	

Simcock,	N.K.,	Gray,	H.E.	&	Wright,	G.A.	(2014)	Single	amino	acids	in	sucrose	rewards	

modulate	 feeding	 and	 associative	 learning	 in	 the	 honeybee.	 Journal	 of	 insect	

Physiology	69,	41–48.	

Simon,	H.,	Reff,	A.,	Wells,	B.,	Xing,	J.	&	Frank,	N.	(2014)	Ozone	trends	across	the	United	

States	over	a	period	of	decreasing	NOx	and	VOC	emissions.	Environmental	Science	

&	Technology	49	(1),	186–195.	

Simpson,	B.B.	&	Neff,	J.L.	(1981)	Floral	rewards:	alternatives	to	pollen	and	nectar.	Annals	

of	the	Missouri	Botanical	Garden	68,	301–322.	

Simpson,	 R.J.,	 Neuberger,	 M.R.	 &	 Liu,	 T.Y.	 (1976)	 Complete	 amino	 acid	 analysis	 of	

proteins	from	a	single	hydrolysate.	Journal	of	Biological	Chemistry	251	(7),	1936–

1940.	

Simpson,	S.J.	&	Raubenheimer,	D.	(2012)	The	nature	of	nutrition:	a	unifying	framework	

from	animal	adaptation	to	human	obesity.	Princeton	University	Press.	

Singh,	T.N.,	Paleg,	I.G.	&	Aspinall,	D.	(1973)	Stress	metabolism	I.	Nitrogen	metabolism	

and	growth	in	the	barley	plant	during	water	stress.	Australian	Journal	of	Biological	

Sciences	26	(1),	45–56.	

Smith,	 B.H.	 (1991)	 The	olfactory	memory	of	 the	honeybee	Apis	mellifera:	 I.	Odorant	

modulation	of	short-and	intermediate-term	memory	after	single-trial	conditioning.	

Journal	of	Experimental	Biology	161	(1),	367–382.	

Smith,	J.B.	&	Tirpak,	D.A.	(1988)	The	Potential	Effects	of	Global	Climate	Change	on	the	

United	States:	Regional	studies.	Vol.	1.	US	Environmental	Protection	Agency,	Office	

of	Policy,	Planning,	and	Evaluation,	Office	of	Research	and	Development.	

Soja,	 G.	 (1997)	 Growth	 stage	 as	 a	 modifier	 of	 ozone	 response	 in	 winter	 wheat.	 In	

Exceedences	of	Critical	Loads	and	Levels.	Eds.	Knoflacher,	M.,	Shneider,	J.	&	Soja,	

G.	Conference	Papers	vol.	15	Umweltbundesamt,	Vienna,	Austria.	155-163.		



	 177	

Somme,	L.,	Vanderplanck,	M.,	Michez,	D.,	 Lombaerde,	 I.,	Moerman,	R.,	Wathelet,	B.,	

Wattiez,	R.,	Lognay,	G.	&	Jacquemart,	A.-L.	(2015)	Pollen	and	nectar	quality	drive	

the	major	and	minor	floral	choices	of	bumble	bees.	Apidologie	46	(1),	92–106.	

Southwick,	E.E.	&	Southwick,	 L.	 (1992)	Estimating	 the	economic	value	of	honey	bees	

(Hymenoptera:	Apidae)	as	agricultural	pollinators	in	the	United	States.	Journal	of	

Economic	Entomology	85	(3),	621–633.	

Spaethe,	 J.,	 Brockmann,	 A.,	 Halbig,	 C.	 &	 Tautz,	 J.	 (2007)	 Size	 determines	 antennal	

sensitivity	 and	 behavioral	 threshold	 to	 odours	 in	 bumblebee	 workers.	

Naturwissenschaften	94	(9),	733–739.	

Spence,	R.D.,	Rykiel,	E.J.	&	Sharpe,	P.J.H.	(1990)	Ozone	alters	carbon	allocation	in	loblolly	

pine:	assessment	with	carbon-11	labeling.	Environmental	Pollution	64	(2),	93–106.	

Stabler,	D.,	Paoli,	P.P.,	Nicolson,	S.W.	&	Wright,	G.A.	(2015)	Nutrient	balancing	of	the	

adult	 worker	 bumblebee	 (Bombus	 terrestris)	 depends	 on	 its	 dietary	 source	 of	

essential	amino	acids.	Journal	of	Experimental	Biology	218,	793–802.	

Stanley,	R.G.	&	Linskens,	H.F.	(2012)	Pollen:	Biology	Biochemistry	Management.	Springer	

Science	&	Business	Media.	

Stockwell,	 W.R.,	 Kramm,	 G.,	 Scheel,	 H.-E.,	 Mohnen,	 V.A.	 &	 Seiler,	W.	 (1997)	 Ozone	

formation,	destruction	and	exposure	 in	 Europe	and	 the	United	States,	 in	Forest	

Decline	and	Ozone.	Springer.	pp.	1–38.	

Suárez-Cervera,	M.,	Castells,	T.,	Vega-Maray,	A.,	Civantos,	E.,	del	Pozo,	V.,	Fernández-

González,	 D.,	 Moreno-Grau,	 S.,	 Moral,	 A.,	 López-Iglesias,	 C.	 &	 Lahoz,	 C.	 (2008)	

Effects	of	 air	 pollution	on	Cup	a	3	 allergen	 in	Cupressus	arizonica	 pollen	grains.	

Annals	of	Allergy,	Asthma	&	Immunology	101	(1),	57–66.	

Syrový,	 I.	 &	 Hodný,	 Z.	 (1991)	 Staining	 and	 quantification	 of	 proteins	 separated	 by	

polyacrylamide	 gel	 electrophoresis.	 Journal	 of	 Chromatography	 B:	 Biomedical	

Sciences	and	Applications	569	(1-2),	175–196.	



	 178	

Szabados,	L.	&	Savoure,	A.	(2010)	Proline:	a	multifunctional	amino	acid.	Trends	in	Plant	

Science.	15	(2),	89–97.	

Tal,	M.,	Silberstein,	A.	&	Nusser,	E.	(1985)	Why	does	Coomassie	Brilliant	Blue	R	interact	

differently	with	different	proteins?	A	partial	answer.	Journal	of	Biological	Chemistry	

260	(18),	9976–9980.	

Tasei,	 J.-N.	&	Aupinel,	P.	 (2008)	Nutritive	value	of	15	single	pollens	and	pollen	mixes	

tested	 on	 larvae	 produced	 by	 bumblebee	 workers	 (Bombus	 terrestris,	

Hymenoptera:	Apidae).	Apidologie	39	(4),	397–409.	

The	Royal	Society	(2008)	Ground-level	Ozone	in	the	21st	Century:	Future	Trends,	Impacts	

and	Policy	 Implications.	The	Royal	Society,	Carlton	House	Terrace,	 London,	 ISBN	

978-0-85403-713-1,	RS	Policy	document	15/08.	

Thomas,	M.D.	 (1951)	Gas	damage	to	plants.	Annual	Review	of	Plant	Physiology	2	 (1),	

293–322.	

Tilman,	 D.,	 Balzer,	 C.,	 Hill,	 J.	 &	 Befort,	 B.L.	 (2011)	 Global	 food	 demand	 and	 the	

sustainable	intensification	of	agriculture.	Proceedings	of	the	National	Academy	of	

Sciences	108	(50),	20260–20264.	

Todd,	 F.E.	 &	 Bretherick,	 O.	 (1942)	 The	 composition	 of	 pollens.	 Journal	 of	 Economic	

Entomology	35	(3),	312–317.	

Turcsányi,	E.,	Lyons,	T.,	Plöchl,	M.	&	Barnes,	J.	(2000)	Does	ascorbate	in	the	mesophyll	

cell	walls	form	the	first	line	of	defence	against	ozone?	Testing	the	concept	using	

broad	bean	(Vicia	faba	L.).	Journal	of	Experimental	Botany.	51	(346),	901–910.	

Turner,	V.	 (1984)	Banksia	pollen	as	 a	 source	of	protein	 in	 the	diet	of	 two	Australian	

marsupials	Cercartetus	nanus	and	Tarsipes	rostratus.	Oikos.	43,	53–61.	

Vandermeiren,	K.,	De	Temmermann,	L.,	(1996)	Different	responses	of	Phaseolus	vulgaris	

	 to	 sub-acute	 and	 chronic	 ozone	 fumigations	 at	 an	 equal	 AOT40	 value.	 In	

	 Kärenlampi,	 L.,	 Skärby,	 L.	 (Eds.)	 Critical	 Levels	 for	 Ozone	 Damage	 in	 Europe:	

	 Testing	and	Finalising	the	Concepts.	UN-ECE	Workshop	Report.	Department	of	



	 179	

	 Ecology	and	Environmental	Science,	University	of	Kuopio,	Kuopio,	Finland,	pp.	

	 337-342.	

Van	Dingenen,	R.,	Dentener,	F.J.,	Raes,	F.,	Krol,	M.C.,	Emberson,	L.	&	Cofala,	J.	(2009)	

The	global	impact	of	ozone	on	agricultural	crop	yields	under	current	and	future	air	

quality	legislation.	Atmospheric	Environment	43	(3),	604–618.	

Van	 Tets,	 I.G.	 (1997)	 Extraction	 of	 nutrients	 from	 Protea	 pollen	 by	 African	 rodents.	

Belgian	Journal	of	Zoology	127,	59–66.	

Vanderplanck,	M.,	Moerman,	R.,	Rasmont,	P.,	Lognay,	G.,	Wathelet,	B.,	Wattiez,	R.	&	

Michez,	D.	 (2014)	How	does	 pollen	 chemistry	 impact	 development	 and	 feeding	

behaviour	of	polylectic	bees?	PloS	one	9	(1),	e86209.	

Varotsos,	K.	V,	Giannakopoulos,	C.	&	Tombrou,	M.	(2013)	Assessment	of	the	Impacts	of	

climate	change	on	European	ozone	levels.	Water,	Air,	&	Soil	Pollution	224	(6),	1–

13.	

Vasil,	I.K.	(1967)	Physiology	and	cytology	of	anther	development.	Biological	Reviews	42	

(3),	327–366.	

Vingarzan,	 R.	 (2004)	 A	 review	 of	 surface	 ozone	 background	 levels	 and	 trends.	

Atmospheric	Environment	38	(21),	3431–3442.	

Vollenweider,	P.,	Woodcock,	H.,	Kelty,	M.J.	&	Hofer,	R.-M.	 (2003)	Reduction	of	 stem	

growth	 and	 site	 dependency	 of	 leaf	 injury	 in	 Massachusetts	 black	 cherries	

exhibiting	ozone	symptoms.	Environmental	Pollution	125	(3),	467–480.	

Von	Frisch,	K.	(1965)	Die	tänze	der	Bienen.	Springer	Berlin	Heidelberg.	pp.	3-330.	

Von	Frisch,	K.	(1967)	The	Dance	Language	and	Orientation	of	Bees.	Harvard	University	

Press.	pp.	28-235.	

Waddington,	 K.D.,	 Newlson,	 M.C.	 &	 Page,	 R.E.	 (1998)	 Effects	 of	 pollen	 quality	 and	

genotype	on	the	dance	of	foraging	honey	bees.	Animal	Behaviour	56	(1),	35–39.	



	 180	

Wang,	W.,	 Vinocur,	 B.	 &	 Altman,	 A.	 (2003)	 Plant	 responses	 to	 drought,	 salinity	 and	

extreme	 temperatures:	 towards	genetic	engineering	 for	 stress	 tolerance.	Planta	

218	(1),	1–14.	

Waser,	N.M.	(1986)	Flower	constancy:	definition,	cause,	and	measurement.	American	

Naturalist	593–603.	

Wathelet,	 B.	 (1999)	 Nutritional	 analyses	 for	 proteins	 and	 amino	 acids	 in	 beans	

(Phaseolus	sp.).	Biotechnologie,	Agronomie,	Société	et	Environnement	3	(4),	197–

200.	

Wedlich,	 K.	 V,	 Rintoul,	 N.,	 Peacock,	 S.,	 Cape,	 J.N.,	 Coyle,	 M.,	 Toet,	 S.,	 Barnes,	 J.	 &	

Ashmore,	 M.	 (2012)	 Effects	 of	 ozone	 on	 species	 composition	 in	 an	 upland	

grassland.	Oecologia	168	(4),	1137–1146.	

Weiner,	 C.N.,	 Hilpert,	 A.,	Werner,	M.,	 Linsenmair,	 K.E.	 &	 Blüthgen,	 N.	 (2010)	 Pollen	

amino	acids	and	flower	specialisation	in	solitary	bees.	Apidologie	41	(4),	476–487.	

Wenzler,	M.,	Hölscher,	D.,	Oerther,	T.	&	Schneider,	B.	(2008)	Nectar	formation	and	floral	

nectary	 anatomy	 of	 Anigozanthos	 flavidus:	 a	 combined	 magnetic	 resonance	

imaging	and	 spectroscopy	 study.	 Journal	of	 Experimental	Botany	 59	 (12),	 3425–

3434.	

Williams,	I.H.	(1994)	The	dependence	of	crop	production	within	the	European	Union	on	

pollination	by	honey	bees.	Agricultural	Zoology	Reviews	6,	229-257.		

Williams,	P.H.	(1986)	Environmental	change	and	the	distributions	of	British	bumble	bees	

(Bombus	Latr.).	Bee	world	67	(2),	50–61.	

Witton,	J.T.	(2013)	Plant	responses	to	long	term	elevated	ozone	in	a	British	upland	semi-

natural	grassland.	MSc	thesis,	University	of	York.	

Wolters-Arts,	M.,	 Lush,	W.M.	&	Mariani,	C.	 (1998)	 Lipids	are	 required	 for	directional	

pollen-tube	growth.	Nature	392	(6678),	818–821.	



	 181	

Wolters,	 J.H.B.	 &	 Martens,	 M.J.M.	 (1987)	 Effects	 of	 air	 pollutants	 on	 pollen.	 The	

Botanical	Review	53	(3),	372–414.	

Wooller,	R.D.,	Richardson,	K.C.	&	Pagendham,	C.M.	(1988)	The	digestion	of	pollen	by	

some	Australian	birds.	Australian	Journal	of	Zoology	36	(4),	357–362.	

Wright,	G.	A,	Baker,	D.D.,	Palmer,	M.J.,	Stabler,	D.,	Mustard,	J.	a,	Power,	E.F.,	Borland,	a	

M.	 &	 Stevenson,	 P.C.	 (2013)	 Caffeine	 in	 floral	 nectar	 enhances	 a	 pollinator’s	

memory	of	reward.	Science.	339	(6124),	1202–1204.		

Wright,	G.A.,	Lutmerding,	A.,	Dudareva,	N.	&	Smith,	B.H.	(2005)	Intensity	and	the	ratios	

of	compounds	 in	 the	scent	of	snapdragon	flowers	affect	scent	discrimination	by	

honeybees	(Apis	mellifera).	Journal	of	Comparative	Physiology	A.	191	(2),	105–114.	

Wright,	 G.A.,	Mustard,	 J.A.,	 Kottcamp,	 S.M.	 &	 Smith,	 B.H.	 (2007)	 Olfactory	memory	

formation	and	the	influence	of	reward	pathway	during	appetitive	learning	by	honey	

bees.	Journal	of	Experimental	Biology	210	(22),	4024–4033.	

Wright,	 G.A.	 &	 Schiestl,	 F.P.	 (2009)	 The	 evolution	 of	 floral	 scent:	 the	 influence	 of	

olfactory	learning	by	insect	pollinators	on	the	honest	signalling	of	floral	rewards.	

Functional	Ecology	23	(5),	841–851.	

Wyatt	 R,	 Broyles	 SB,	 D.G.	 (1992)	 Environmental	 influences	 on	 nectar	 secretion.	

American	Journal	of	Botany	79	(6),	636–642.	

Yeamans,	R.L.,	 Roulston,	 T.H.	&	Carr,	D.E.	 (2014)	Pollen	quality	 for	pollinators	 tracks	

pollen	quality	for	plants	in	Mimulus	guttatus.	Ecosphere	5	(7),	1–8.	

Zadra,	C.,	Borgogni,	A.	&	Marucchini,	C.	(2006)	Quantification	of	jasmonic	acid	by	SPME	

in	tomato	plants	stressed	by	ozone.	Journal	of	Agricultural	and	Food	Chemistry	54	

(25),	9317–9321.	

Zárský,	V.,	Čapková,	V.,	Hrabětová,	E.	&	Tupý,	J.	(1985)	Protein	changes	during	pollen	

development	in	Nicotiana	tabacum	L.	Biologia	Plantarum	27	(6),	438–444.	



	 182	

Zhang,	 C.Y.,	 Wang,	 N.N.,	 Zhang,	 Y.H.,	 Feng,	 Q.Z.,	 Yang,	 C.W.	 &	 Liu,	 B.	 (2013)	 DNA	

methylation	involved	in	proline	accumulation	in	response	to	osmotic	stress	in	rice	

(Oryza	sativa).	Genetics	and	Molecular	Research	12	(2),	1269–1277.	

Zheng,	 Y.,	 Stevenson,	 K.J.,	 Barrowcliffe,	 R.,	 Chen,	 S.,	Wang,	 H.	&	 Barnes,	 J.D.	 (1998)	

Ozone	levels	in	Chongqing:	A	potential	threat	to	crop	plants	commonly	grown	in	

the	region?	Environmental	Pollution	99	(3),	299–308.	

Zhong,	H.,	Marcus,	S.L.	&	Li,	 L.	 (2005)	Microwave-assisted	acid	hydrolysis	of	proteins	

combined	with	 liquid	 chromatography	MALDI	MS/MS	 for	 protein	 identification.	

Journal	of	the	American	Society	for	Mass	Spectrometry	16	(4),	471–481.	

Ziegler,	 H.	 (1975)	 Nature	 of	 transported	 substances.	 In	 Transport	 in	 Plants.	 Phloem	

transport.	Encyclopedia	of	Plant	Physiology.	Eds.	Zimmerman,	M.H.	&	Milburn,	J.A.	

Berlin:	Springer-Verlag.	pp.	59–100.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 183	

Appendix	A:	Bradford	assay	standard	curve	

	

	

Appendix	A.	Bradford	assay	standard	curve	used	to	estimate	protein	concentration	from	
unknown	samples.	Absorbance	values	are	applied	to	the	equation	of	the	line	to	calculate	
protein	concentration	(mg/ml).	
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Appendix	B:	Protein	(BSA)	hydrolysis	method	refinement	
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Appendix	C	

	

	
Appendix	C.	Example	chromatogram	showing	retention	times	for	21	amino	acids	
quantified.	Note	that	GABA	elutes	as	two	peaks.		
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Appendix	D	

	

	

	

Appendix	D.	Example	chromatogram	showing	retention	times	for	5	sugars	quantified.		
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	



	 187	

Appendix	E	

	

	

Appendix	E	Populations	of	broad	bean	(Vicia	faba	L.)	used	to	screen	for	
sensitivity	to	ozone	(See	Chapter	4).	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Cultivar	number Supplier Location
1 B&Q Chandlers	Ford,	Hampshire
2 Sowseeds.co.uk Cuddington,	 Cheshire
3 Thomson	and	Morgan Ipswich,	Suffolk
4 Unwins Huntington,	 Cambridshire
5 Johnsons Newmarket,	Suffolk
6 Sutton Seeds Paignton,	Devon
7 Country Value Newmarket, Suffolk
8 Mr.	Fothergills Kentford,	Suffolk
9 Wilko Worksop, Nottinghamshire
10 Homebase Avebury,	Milton	Keynes
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a b s t r a c t

A combination of in vitro and in vivo studies on tomato (Lycopersicon esculentum Mill. cv. Triton) revealed
that environmentally-relevant levels of ozone (O3) pollution adversely affected pollen germination, germ
tube growth and pollen-stigma interactions e pollen originating from plants raised in charcoal-Purafil®

filtered air (CFA) exhibited reduced germ tube development on the stigma of plants exposed to
environmentally-relevant levels of O3. The O3-induced decline in in vivo pollen viability was reflected in
increased numbers of non-fertilized and fertilized non-viable ovules in immature fruit. Negative effects
of O3 on fertilization occurred regardless of the timing of exposure, with reductions in ovule viability
evident in O3 ! CFA and CFA ! O3 crossed plants. This suggests O3-induced reductions in fertilization
were associated with reduced pollen viability and/or ovule development. Fruit born on trusses inde-
pendently exposed to 100 nmol mol"1 O3 (10 h d"1) from flowering exhibited a decline in seed number
and this was reflected in a marked decline in the weight and size of individual fruit e a clear demon-
stration of the direct consequence of the effects of the pollutant on reproductive processes. Ozone
exposure also resulted in shifts in the starch and ascorbic acid (Vitamin C) content of fruit that were
consistent with accelerated ripening. The findings of this study draw attention to the need for greater
consideration of, and possibly the adoption of weightings for the direct impacts of O3, and potentially
other gaseous pollutants, on reproductive biology during ‘risk assessment’ exercises.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ozone (O3) is considered to be the most common phytotoxic air
pollutant to which agricultural, horticultural and wild vegetation is
exposed, and is known to be responsible for substantial losses in
crop yield and shifts in the composition of wild plant communities
(The Royal Society, 2008; RoTAP, 2011). Losses to the agricultural
economy are estimated to be between $11 and $26 billion (Van
Dingenen et al., 2009; Avnery et al., 2011a), with predicted eco-
nomic losses rising to between $19 and $35 billion per annum by
2030 (Avnery et al., 2011b). Tomato is generally considered to be
sensitive (Mills et al., 2007) and in the U.S. alone the pollutant is
believed to be responsible for losses amounting to z7% of pro-
duction (Mutters and Soret, 1998; Grantz and Shrestha, 2005).

The adverse effects of ozone on yield and/or vegetative growth
are the net result of a myriad of changes in gene expression

(Kangasj€arvi et al., 1994) that ultimately manifest in a decline in
assimilation, and increase in respiration and pronounced shifts in
assimilate distribution (Davison and Barnes, 1998; Booker et al.,
2009; Burkey et al. 2012). Impacts on yield manifest through the
direct effects of ozone on reproductive processes are poorly un-
derstood and have rarely been considered in isolation (Thwe et al.,
2015). The reproductive phase is a critical stage in the plant life-
cycle and given the known impacts of O3-induced oxidative stress
on plant metabolism there is a high likelihood that reproductive
success may be negatively affected (Drogoudi and Ashmore, 2000,
2001; Morgan et al., 2003; Zhang et al., 2014). Either directly
through the direct impact of the pollutant on the reproductive or-
gans themselves e about which little is known and documented
(see Stewart et al., 1996) or indirectly via effects on the vegetative
organs and the resulting consequences of these effects on assimi-
late distribution and the timing of flowering (Barnes et al., 1999;
Wedlich et al., 2012). Impairment of any steps during reproduc-
tive development, such as plantepollinator interaction, physical
events associated with pollination, fertilization and seed develop-
ment may have significant implications for reproductive success,
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and thus yield determinants, in many agricultural and ecologically-
important plant species.

The sensitivity of the key stages of the plant reproductive cycle
to air pollutants is known to vary considerably (see Supplementary
Fig. from Wolters and Martens, 1987). Pollen is considered partic-
ularly sensitive; direct exposure to various air pollutants, including
O3, resulting in reduced pollen germination and germ tube devel-
opment (Wolters and Martens, 1987; Black et al., 2007; Pasqualini
et al., 2011), but neither the degree of damage nor the mode of
action are understood. There are reports of shifts in the topography
of the stigmatic surface and pollen exine induced by direct expo-
sure of pollen to O3, which are associated with a reduction in the
soluble protein content of pollen of different species (Roshchina
and Karnaukhov, 1999; Roshchina and Mel'Nikova, 2001; Ribeiro
et al., 2013) but the consequences of these observations have not
been explored.

It is well documented that the timing of exposure to O3 in
relation to the plant life-cycle is an important determinant of the
net impact of the pollutant on plant growth and yield (Lyons and
Barnes, 1998), with many crops exhibiting enhanced sensitivity
when exposure occurs during or after flowering/anthesis (Soja,
1997; Vandermeiren and De Temmermann, 1996; Pleijel et al.,
1998; Gonzalez-Fernandez et al., 2010). It is important to better
understand the extent of these impacts and to discriminate be-
tween indirect and direct effects of pollutants, such as ozone, on
plant reproductive biology in order that considerationmay be given
to the potential need to adjust flux-based risk assessment ap-
proaches to better accommodate such impacts. In this manuscript
we report a series of purposely-designed investigations employing
tomato (Lycopersicon esculentum Mill.) as a model to discriminate
between effects on fruit yield attributable to direct effects of O3 on
reproductive biology versus indirect effects mediated via damage to
vegetative organs (e.g. reduced CO2 fixation and shifts in resource
partitioning).

2. Materials and methods

2.1. Plant material

Individual seeds of tomato (L. esculentum Mill. cv. Triton) were
sown into plugs (2.5 cm2) containing Levington M3 compost and
placed in a controlled environment chamber ventilated with
charcoal/Purafil®-filtered air (CFA: <5 nmol mol"1 O3). Chamber
details are described elsewhere (see Barnes et al., 1995).

2.2. Impacts of O3 on pollen viability and fertilization

Following germination, 10-d-old seedlings were transplanted
individually into pots containing 5 dm3 Levington M3 compost and
transferred to duplicate controlled environment chambers venti-
lated with CFA (<5 nmol mol"1 O3) or CFA plus 75 nmol mol"1 O3
7 h d"1. Plants were watered three-times-per-day as required, and
fed every 10 d with Phosphogen tomato food (Phosphogen Tomato
Food, Monsanto, UK). Chambers were constructed frommelamine-
clad tubular steel and vented by a dedicated air conditioning sys-
tem providing almost 2 air changes per minute in each chamber.
Each chamber was supplied with particulate/charcoal/purafil®-
filtered air into which ozone produced by electric discharge from
pure oxygen was introduced via a mass flow PC-controlled system.
Monitors were serviced regularly by an experienced technician and
cross-calibrated against EPA standards using an annually-calibrated
Dasibi 1008PC monitor. Details of the controlled ozone exposure
system are provided elsewhere (Zheng et al., 1998).

Flowers were emasculated prior to dehiscence, by removing the
anthers and connecting cone, so as to prevent self-fertilization.

Tomato flowers exhibit diurnal opening and closing patterns,
with pollen release occurring naturally around midday, when the
petals are fully reflexed. Pollen removed from flowers, prior to full
petal reflex exhibit low germination (see Picken, 1984), therefore
pollen was removed on the second day of opening, when petals
attained full reflex (between 11:00 and 13:00). All pollen was ob-
tained from fully open flowers born on the 3rd truss of plants
exposed to either CFA (<5 nmol mol"1 O3) or plants exposed to
ozone (75 nmol mol"1 O3 7 h d"1) since they were 10-d-old.

For crosses, pollen (collected and applied with the aid of a camel
hair brush) was placed on the stigma of emasculated flowers borne
on the 3rd truss of another plant. Methodological controls were
performed to investigate the intrinsic effects of flower emascula-
tion and self versus cross-pollination. These controls revealed no
effects of flower emasculation or self versus cross-pollination.
Consequently, all recipient flowers were emasculated and individ-
ual trusses were used to host both donor and recipient flowers (i.e.
donor and recipient flowers on plants exposed to CFA
(<5 nmol mol"1 O3) or þ O3 (75 nmol mol"1 O3 7 h d"1 from 10-d-
old).

2.3. Impacts of O3 on pollen viability in vitro

Pollen harvested from plants exposed to CFA (<5 nmol mol"1

O3) or þ O3 (75 nmol mol"1 O3 7 h d"1) was sown on 0.1% agar
fortified with 0.6 mM CaNO3 and 10% sucrose (sensu Brewbaker
and Kwack, 1963). Agar plates were partitioned in to 1 cm2 seg-
ments and pollen distributed within each segment.

Seeded plates were incubated in duplicate mini-controlled
environment chambers ventilated with either charcoal/Purafil-
filtered air or O3-enriched CFA at a rate sufficient to achieve 0.4
air changes min"1 in each chamber. The fumigation system was
housed in a walk-in temperature controlled growth-room main-
tained at 22 ± 2 $C using an air conditioning system supplied by
Troldahl Ltd. (Gateshead, UK). Ozone was generated by passing
oxygen through a dielectric generator (model SGA01 Pacific Ozone
Technology Inc., Brentwood, CA, USA) and diluted with CFA prior to
injecting into individual mini-chambers at a rate of 2 dm3 min"1.
Sampled air was continuously drawn from eachmini-chamber via a
multi-channel sampling unit (ICAM Ltd., Worthing, Sussex, UK),
which diverted sample lines to an O3 monitor (model 450,
Advanced Pollution Instrumentation Inc., San Diego, CA, U.S.A.
supplied and serviced by EnviroTechnology Ltd, Stroud, U.K.).
Chambers were illuminated by four 250 W daylight fluorescent
tubes (GE Lighting, General Electric Corporation, USA) providing a
PPFD of 160 mmol m"2 s"1 (at the position in the chamber occupied
by the plates) supplied as a 14 h photoperiod.

Pollen tube development was assessed periodically by removing
three agar segments at intervals from duplicate plates, and then
studying 20 pollen grains per segment under a light microscope
(!400).

2.4. Impacts of O3 on pollen viability in vivo

Provisional experimentation indicated that germ tube devel-
opment was best-studied in vivo 48 h after pollination. At this stage,
gynoecia (comprising carpels, stigma, style and ovaries) were
removed from all treatment ! cross combinations and fixed ac-
cording to Wedderburn and Richards (1990). The procedure
involved the fixing of gynoecia for 24 h in 3:1 absolute ethanol:-
glacial acetic acid, prior to transfer to 80% ethanol and storage
at "20 $C. To undertake visual assessments, gynoecia were soft-
ened in 1 M NaOH for 40 min, transferred to 2% parosaniline for
15 min then counter-stained for a further 15 min in 0.1% aniline
blue made up in 0.1 M K2HPO4. Gynoecia were mounted on to a
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slide and gently squashed in 50% glycerol and examined (at !400)
using a Nikon SF fluorescence microscope employing dark ground
illumination. Non-germinated pollen was observed in the
mounting medium. This suggested some unattached pollen grains
became dislodged during slide preparation, so pollen germination
scores may be under-estimated. We have no reason to believe that
displacement was treatment-related in any way. Development of
all pollen on the surface of the stigma was recorded and a pollen
viability index1 derived. Tomato flowers exhibited a robust style
and stigma, and tangled pollen tubes. Consequently, it was not
possible to track pollen germ tube development within the
gynoecial tissues. However it was possible to derive a pollen tube
development index.2 This was calculated by recording the number
of pollen tubes that had reached the bottom of the style,
approaching the ovary.

2.5. Impacts of O3 on ovule fertilization

Following germination, 10-d-old seedlings were transplanted to
pots (5 dm3) containing Levington M3 compost and transferred to
duplicate controlled environment chambers ventilated with either
CFA (<5 nmol mol"1 O3) or O3-enriched CFA (75 nmol mol"1 O3
7 h d"1). Plants were watered as required, and fed every 10 d with
Phosphogen tomato food (Phosphogen Tomato Food, Monsanto,
UK).

Following cross-pollination, fruit were allowed to expand for
3e4 weeks until they reached a standard circumference of 11 cm.
The immature fruit were harvested and 20 ovules per fruit
randomly sampled using a microscope (!20) to assess state of
ovule fertilization. At this stage of fruit development, 3 types of
ovule were clearly discernible: non-fertilized embryos (under-
developed, appearing withered and coloured green/brown), fertil-
ized non-viable seed (clear, and containing no embryo) and fertil-
ized viable seed.

2.6. Direct effects of O3 on fruit yield

Plants were grown in controlled environment chambers venti-
lated with CFA until the first flowering truss emerged, then they
were transferred to a cubicle in a glasshouse at the University's
Field Station (Close House, Northumberland, UK [NZ 128658]),
maintained at a temperature of 25 ± 2 $C day, 18 ± 2 $C night and
supplementally-illuminated with 5 metal-halide lamps (Siemens
HR400H housing fitted with 400WHQI-T lamps, Osram, St. Helens,
Merseyside, UK), providing a minimum PPFD of
z500 mmol m"2 s"1 mid-canopy, delivered in a manner designed
to extend the natural photoperiod to 14 h (07:00e21:00).

Once the flower buds comprising the 3rd truss began to emerge,
the whole truss was placed inside a purpose-built fumigation
chamber constructed from 6 mm clear perspex (see Plate 1). This
procedure was repeated for ten independent plants. Individual
fumigation chambers (each 0.28 m3 internal volume) were con-
nected via ¼00 Teflon® tubing to a diaphragm pump (Air Supply Ltd,
Washington, Co. Durham, UK) supplying CFA air at a flow rate
sufficient to achieve 0.4 air changes min"1 in each chamber.

Charcoal/Purafil®-filtered air was injected in to each of the
truss-holding chambers directly belowa fan (12 V, 2700 rpm fan, RS
Ltd, UK), which provided turbulence inside each fumigation
chamber. Ozone was generated by pumping Charcoal/Purafil®-

filtered air through an electric discharge generator (BA. 023 labo-
ratory ozone generator, Wallace and Tiernan, Tunbridge, Kent, UK)
and subsequently filtering through a cold water trap (replaced
every couple of days). The airstream entering each chamber was
diluted with CFA and injection in to individual chambers to attain
two target treatments CFA (<5 nmol mol"1 O3) and O3 (CFA þ O3:
<5 nmol mol"1 O3 overnight rising to a maximum between
08:00e18:00 of 100 nmol mol"1 O3).

Sampled air was continuously drawn from each chamber via a
multi-channel ICAM sampling unit (ICAM Ltd., Worthing, Sussex,
UK), which diverted each of the lines to an O3 monitor (Monitor
Labs 8810, serviced and supplied by EnviroTechnology Ltd., Stroud,
Gloucs, UK). Each sample line was monitored for 600 s, with 5 s
values over the final 30 s of the recording period averaged and
logged. An internal mixing fan maintained the temperature within
each chamber at 0.5 ± 0.2 $C higher than outside.

Flowers were purposely self- and cross-pollinated (using pollen
derived from a different plant in the same treatment), to maximise
pollination efficacy and mimick bee assisted-pollination; a com-
mon practice in commercial glasshouses.

Fruit were harvested when they achieved full maturity, ripening
on the truss to a commercially-marketable Class 1 grade3 (sensu
Slack et al., 1988). Fruit size and fresh weight were recorded, then
fruit were dried to constant weight in an oven at 70 $C prior to
recording the number of seed.

2.7. Analysis of non-structural carbohydrate content

The non-structural carbohydrate content of the pericarp was
analysed using the phenol-sulphuric method of Dubois et al.
(1956). A two-stage extraction procedure was adopted. Fresh
pericarp was cut finely and incubated in hot 80% ethanol. The su-
pernatant was decanted for later analysis. The remaining plant
material was used forstarch determination. Tissue was rinsed
several times in distilled water then ground (using a pestle and
mortar) in 2.4 ml acetate buffer (0.1 M sodium acetate and 0.1 M
acetic acid pH 4.5) and autoclaved for 30 min at 120 $C to assist the
solubilisation of starch. Extracts were cooled, then 0.5U a-amylase
and 5U of amyloglucosidase (SigmaeAldrich) added and samples
incubated overnight at 45 $C. After centrifugation at 12,000 g for
10min the supernatant was assayed for glucose equivalents. For the
assay of glucose, 10 ml of extract was added to 0.5 ml H2O, 1 ml 5%
phenol and 5 ml conc. sulphuric acid. The mixture was agitated
occasionally and allowed to cool for 15 min. The absorbance of
duplicate samples was subsequently read at 483 nm using an
automated UV/visible spectrophotometer (Pye-Unicam SP8700)
and carbohydrate content determined from a standard curve con-
structed using glucose standards.

2.8. Analysis of ascorbate (vitamin C) content and redox state

Analyses were performed on c. 1.0 g of fresh pericarp. Plant
material was homogenized in 1 ml of buffer (2% metaphosphoric
acid, 2.5 mM EDTA), then transferred to 1.5 ml Eppendorf tubes and
centrifuged for 3 min at 11,000 g at 4 $C. The supernatant was
decanted and kept on ice. All assays were duplicated and performed
within 20 min of the preparation of crude extracts.

The assay contained 100 ml of extract in 1 M potassium phos-
phate buffer (pH 6.1). The absorbance was measured at 265 nm,
then 5 ml of ascorbate oxidase (AO; E.C. 1.10.3.3) added. The residual
absorbance was recorded following complete oxidation of ASC

1 Pollen viability index e germinated versus non-germinated pollen on the
stigmatic surface.

2 Pollen tube development index e number of pollen tubes at the base of the
papillia versus the number of germinated pollen on the surface of the stigma.

3 Class 1 fruit e round, uniformly-coloured, free from blemish and ripening
disorders with a maximum diameter of 40e57 mm.
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(2 min). Ascorbate content was determined from the difference
between these measurements. Total ascorbate [ASC þ DHA] con-
tent was estimated in a parallel sample, following the reduction of
DHA to ASC by DL-dithiotheritol (DTT). The assay mix contained
100 ml of extract in 1 M potassium phosphate buffer (pH 6.1),
following the complete reduction of DHA to ASC (12 min) the
absorbance was determined at 265 nm. An extinction coefficient of
14.3mM"1 cm"1 for ASC at 265 nmwas employed in calculations to
determine ASC content (sensu Takahama and Oniki, 1992). Absor-
bance was registered using a Pye-Unicam UV/visible spectropho-
tometer (Model SP 8700) fitted with an eight-cell carriage. All
assays were performed at 25 $C employing matched quartz
cuvettes.

2.9. Statistical analysis

Statistical analysis was performed using SPSS (SPSS Inc, Chicago,
USA). Data were first subjected to ANOVA, to determine whether
there was significant chamber-to-chamber variation within treat-
ments. No evidence to support block effects was detected, so data
for individual treatments were re-analysed using multivariate
ANOVA (MANOVA) to investigate the significance of O3, time and
interactions with crosses/plant history. All percentage data were
arcsine transformed prior to ANOVA. Significant differences were
determined using either a t-test or the least significant differences
(LSD), calculated at the 5% level.

3. Results

3.1. Impacts of O3 on pollen viability in vitro

Effects of in vitro exposure to O3 on pollen germination and
subsequent germ tube development are shown on Fig. 1. Germi-
nation of pollen from O3-grown plants incubated in an O3-
enriched environment (O3/O3) was significantly (P < 0.001)
retarded in comparison with plants raised in CFA and incubated in
clean air (CFA/CFA). However, the final extent of pollen germina-
tion (assessed after 33 h) was not significantly different from the
control. Germination of pollen originating from plants exposed to

O3, but incubated in NFA (i.e. O3/CFA), was significantly (P < 0.001)
greater than that of O3/O3 pollen. This suggests direct effects of O3
on pollen germination, rather than ‘memory’ effects resulting
from the exposure of flowers and vegetative organs to the
pollutant. This conclusion is substantiated by the observation that
pollen germination from CFA-grown plants was significantly
(P < 0.05) decreased by O3 exposure in vitro (i.e. CFA/O3 versus CFA/
CFA). Germ tube development was significantly (P < 0.001)
reduced in O3/O3 pollen compared with controls (CFA/CFA pollen),
and a major contributor to this effect appeared to be the ‘direct’
impact of the pollutant on pollen viability e germ tube develop-
ment in CFA/O3 pollen was also significantly (P < 0.001) less than
that of controls (i.e. CFA/CFA pollen), while there was no signifi-
cant difference in germ tube development between O3/O3 and O3/
CFA.

3.2. Impacts of O3 on pollen viability in vivo

The effects of parental O3 history on pollen germination and
germ tube development in vivo are illustrated in Fig. 2. Pollen
originating from plants grown in O3 exhibited reduced (P < 0.05)
germination when placed on the stigma of flowers borne on other
plants subjected to the same treatment (i.e. O3 ! O3). Pollen
germination in O3 ! CFA and CFA ! O3 crosses was not significantly
different from CFA controls and substantially higher (c. 25%) than
that of O3 ! O3 crosses. Interestingly, the fraction of germ tubes
reaching the base of the papilla was significantly (P < 0.05) reduced
in O3 ! O3 and CFA ! O3 crosses compared with CFA ! CFA or
O3 ! CFA crosses.

3.3. Impacts of O3 on ovule fertilization

Fertilization success for reciprocal crosses performed on plants
subjected to CFA or O3 are shown in Fig. 3. The proportion of
fertilized viable ovules contained in immature tomato fruit was
reduced (P < 0.05) substantially (c. 26%) in O3 ! O3 crosses
compared with CFA ! CFA. This effect appeared to be independent
of pollen exposure to the pollutant (i.e. the proportion of viable
fertilized ovules was reduced to a similar extent in O3 ! CFA,
CFA ! O3 and O3 ! O3 crosses). In addition the proportion of non-
fertilized ovules was highest (P < 0.05) in fruit resulting from
O3 ! O3 crosses compared with controls (i.e. those resulting from
CFA ! CFA crosses). Also, embryo abortion was 29% less in fruit
originating from CFA ! CFA crosses, compared with those from
plants exposed to O3 prior to, or following, pollen transfer (i.e.
O3 ! O3, CFA ! O3 and O3 ! CFA crosses).

3.4. Direct effects of O3 on fruit yield

The impact of O3-exposure on the 3rd truss of tomato (i.e.
isolated exposure of the 3rd truss independent of the rest of the
plant) is shown in Table 1. Ozone exposure resulted in a ‘direct’
reduction (P < 0.05) in fruit size, fresh and dry weight plus the
average number of seeds per fruit. Moreover, the number of fruit
reaching maturity was also consistently reduced by ‘direct’ expo-
sure to O3 e though the effect did not attain a statistically signif-
icant level. Notably, for plants in which the isolated 3rd truss was
exposed to ozone, there were no significant effects of the treat-
ment on fruit size, number or weight (or seed number per fruit) in
truss 2.

Plants were grown in a glasshouse cubicle (<5 nmol mol"1 O3)
under natural daylight, with supplemental lighting. From initiation,
the 3rd flowering truss was isolated and exposed in specially-

Plate 1. Truss fumigation system. The 3rd truss of Lycopersicon esculentum (Mill.) cv.
Triton was isolated and developed within fumigation chambers ventilated with CFA
(<5 nmol mol"1 O3) or CFA plus O3 (100 nmol mol"1 O3 10 h d"1). Plants were grown in
‘clean air’ in a glasshouse cubicle e the 3rd truss, independent of the rest of the plant,
was exposed to a controlled level of ozone from flower initiation to fruit ripening.
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constructed chambers to CFA (<5 nmol mol"1 O3) or CFA plus O3
(100 nmol mol"1 O3 8 h d"1). Values represent mean ± SE of be-
tween 24 and 21 fully-ripe ‘Class 1’ fruit per treatment. Values
bearing the same superscript are not significantly different at the
5% level.

A linear relationship was found between the number of viable
seed contained within mature fruit and fruit size/weight; the
greater the seed count, the larger the fruit (see Supplementary
Material)

Isolated exposure of the 3rd truss to O3 significantly (P < 0.05)
reduced the starch content of ‘Class 1’ tomato fruit, but resulted in
no change in soluble carbohydrate content (Table 1).

Direct exposure of developing fruit to controlled levels of O3
resulted in a significant (P < 0.05) decrease in the total ascorbate
content (ASC þ DHA) of fruit (Table 1). Despite a slight (but sta-
tistically significant) improvement in ascorbate redox status, the
level of the reduced form (i.e. vitamin C) was reduced significantly
(P < 0.05) by c. 15% in O3-treated fruit.
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Fig. 2. Impacts of O3 on pollen viability in vivo. (a) pollen germination index for pollen on the surface of the stigma and (b) development index for germ tubes successfully reaching
the base of the stigma in Lycopersicon esculentum (Mill.) cv. Triton. Pollen from donor flowers was transferred to the stigma of recipient flowers and the plants returned to CFA
(<5 nmol mol"1 O3) or CFA þ O3 (75 nmol mol"1 O3 7 h d"1). Crosses: pollen from CFA plants was used to pollinate flowers borne on another CFA-grown plant (CFA ! CFA; ), pollen
from plants raised in O3 was used to pollinate flowers borne on another O3-grown plant (O3 ! O3; ,), pollen from CFA plants was used to pollinate flowers borne on a plant raised
in O3 (CFA ! O3; ) or pollen from a plant raised in O3 was used to pollinate flowers borne on a plant raised in CFA (O3 ! CFA; ). Values represent the mean ± SE of 15 independent
observations. Values bearing the same superscript are not significantly different at the 5% level.

Fig. 1. Impacts of O3 on pollen germination (a,b) and germ tube development (c,d) in vitro. Pollen was harvested from flowers borne on the 3rd truss of tomato (Lycopersicon
esculentum (Mill.) cv. Triton) plants raised from 10-d-old in CFA (<5 nmol mol"1 O3) or CFA plus O3 (75 nmol mol"1 O3 7 h d"1). Harvested pollen was sown on fortified agar and
exposed in vitro to CFA (<5 nmol mol"1 O3) or O3-enriched CFA (100 nmol mol"1 O3 7 h d"1). Treatment combinations: pollen from CFA-grown plants incubated in CFA (CFA/CFA;
d-d), pollen from O3-grown plants incubated in an O3-enriched atmosphere (O3/O3; —,—), pollen from CFA-grown plants incubated in an O3-enriched atmosphere (CFA/O3;
dCd) and pollen from O3-grown plants incubated in CFA (O3/CFA; —B—). Values represent mean of 120 observations± SE of three agar segments per duplicate plate. Significant
differences denoted: *P < 0.05, **P < 0.01, ***P < 0.001. n.s. ¼ no significant difference at 5% level.
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4. Discussion

In vitro experimentation plus the isolated exposure of the 3rd
truss of tomato to environmentally-relevant levels of O3 demon-
strated clearly that the pollutant exerts ‘direct’ adverse effects on
flower-related reproductive biology and results in detrimental ef-
fects on fruit yield and quality.

A combination of in vitro and in vivo studies on pollen viability
revealed that exposure to environmentally-relevant levels of O3
retards pollen germination and decreases germ tube development
in tomato. Agar-based studies performed in vitro indicated direct
effects on pollen, while studies conducted in vivo reflect effects on
pollen-stigma interactions as well as impacts of the environment.
The combination of approaches is important, since pollen viability
determined in vitro does not necessarily reflect that in vivo
(Dempsey, 1970). Our finding that exposure to O3 results in adverse
effects on pollen viability are in general agreement with the
available literature e sparse though it is (reviewed by Black et al.,
2000). However, virtually no information is available as to the
mode of action of O3. Some authors suggest that O3 exposure may
damage pollen and cause shifts in pollen exine composition e thus
affecting adhesion and recognition at the surface of the stigma
(Roshchina and Karnaukhov, 1999; Cuinica et al., 2013; Taia et al.,
2013). Others suggest that O3 may weaken pollen to the extent
that the metabolite levels required to fuel germination fall below a
critical threshold (Black et al., 2000).

Germination occurs following the adherence and hydration of
pollen on the stigma. The germ tube emerges and enters the pro-
tection of the style, growing down the transmitting tract of the
pistil towards the ovary where the male gametes are eventually
delivered to the ovule (reviewed by Franklin-Tong, 1999; Shi and
Yang, 2010). Consequently, the developing germ tube is protected
by the style from direct contact with gaseous pollutants. However,
germ tube development is heavily dependent on the topography of
the stigma (Feder and Shrier, 1990), the supply of water, carbohy-
drates and amino acids provided via the style of the recipient
(reviewed in Lord, 2000, 2003) and is controlled through signals
passed between pollen and stigma (Brugi"ere et al., 2000; Dickinson,
2000). There is thus an intimate relationship between the pollen
tube and the epidermal cells of the transmission tract in the pistil.
Impacts of O3 on the complex interaction between pollen and
stigma may well have contributed to our observation that O3-
exposure substantially reduced germ tube development in vivo as
well as in vitro and are consistent with our finding that germination
and development of O3-exposed pollen recovered (to control
levels) when placed on the stigma of CFA-grown plants. Interest-
ingly, some authors have suggested that impacts of O3 on pollen
germination and development may reflect the tolerance of the
parent to O3 stress (Feder, 1968), and genotype screening pro-
grammes involving the in vitro screening of pollen under varying
environmental conditions such as temperature and air pollutants
have confirmed a strong genotypeeenvironment interaction with
regard pollen success (Hormaza and Herrero, 1996; Hedhly et al.,
2005).

The reduced performance of O3-exposed pollen was reflected in
higher numbers of non-fertilized and fertilized non-viable ovules in
fruit resulting from O3 ! O3 crosses compared with CFA ! CFA, as
well as a decline in the proportion of seed attaining maturity.
Interestingly, the adverse effects of O3 on fertilization persisted
prior to or following crossing (i.e. adverse effects were notable in
O3 ! CFA and CFA ! O3 crosses), suggesting the main impact of O3
to be on pollen development (i.e. via reduced pollen viability) and/
or ovule development.

Initial and continued cell division within developing fruit is
closely dependent on the success of ovule fertilization (Johnson
et al., 1992; Gillaspy et al., 1993; Vivian-Smith et al., 2001).
Although tomato can be parthenocarpic, so a seed threshold is
unnecessary for initiating fruit swelling, the fruit produced are
generally smaller and of lower quality (Varoquaux et al., 2000;

Table 1
‘Direct’ effects of O3-exposure on fruit yield and development of tomato (Lyco-
persicon esculentum (Mill.) cv. Triton).

CFA O3

Fruit yield parameters
Final fruit diam. (mm) 48.9 ± 10.9a 46.6 ± 0.5b

Fruit fresh weight (g) 67.0 ± 2.0a 54.0 ± 2.0b

Fruit dry weight (g) 3.3 ± 0.2a 2.7 ± 0.1b

Seed count per fruit 74.9 ± 3.1a 64.4 ± 3.7b

Total number of fruit 24 21
Carbohydrate content (mg [CH2O]6 g"1 fwt)
Soluble sugars 273.5 ± 14a 306.4 ± 27a

Starch 47.8± 4a 31.9± 5b

Ascorbate content (nmol g"1 fwt.)
Total ascorbate 448.8 ± 25a 373.2 ± 18b

Redox state (%) 89.7± 2a 95.4± 1b

Values bearing the same superscript are not significantly different at the 5% level.
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Fig. 3. Impacts of O3 on ovule fertilization. Proportion of (a) viable fertilized ovules, (b) non-viable fertilized ovules and (c) non-fertilized ovules in immature fruit of Lycopersicon
esculentum (Mill.) cv. Triton resulting from crosses between plants raised in controlled environment chambers ventilated with CFA (<5 nmol mol"1 O3) or O3 (75 nmol mol"1 O3

7 h d"1). Pollen was harvested from the 3rd truss of donor plants raised in CFA or O3 and transferred to the stigma of a flower borne on another plant subject to the same or different
treatment. Crosses: pollen from CFA-grown plant used to pollinate flowers borne on another plant subject to the same treatment (CFA ! CFA; ), pollen O3-grown plant used to
pollinate flowers borne on a different plant subject to the same treatment (O3 ! O3; ,), pollen from CFA-grown plant used to pollinate flowers borne on a plant exposed to O3

(CFA ! O3; ) or pollen from an O3-treated plant used to pollinate flowers borne on a plant raised in CFA (O3 ! CFA; ). Values represent the mean ± SE (n ¼ 15). Values bearing the
same superscript are not significantly different at 5% level.
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Vergara and Fonseca-Buendía, 2012). There is increasing optimism
that modern approaches will be capable of engineering partheno-
carpic fruit to surpass the yield of fruit fertilized in a conventional
sense (Pandolfini et al., 2002; Gorguet et al., 2005). Nevertheless,
the number of seed within a tomato fruit strongly influences final
size with seed number and fruit weight generally correlated within
cultivars (Reviewed by Picken, 1984; Vergara and Fonseca-Buendía,
2012). This finding is supported by the strong relationship noted in
the present study between seed number and yield parameters (i.e.
fresh and dry weight and final fruit size). Although the precise role
of seed in fruit development is poorly understood, it is known that
the developing seed and embryo constitute a rich source of hor-
mones (with gibberellin and auxin believedmost important) which
stimulate cell division and fruit swelling (reviewed by De Jong et al.,
2009). In the present study, there was no effect of O3 on fruit fresh:
dry weight ratio, indicating both initial cell division and cell
expansion were jointly affected by O3 exposure. Considering the
key role played by fertilized seed in fruit development and given
the adverse effects shown on pollen germination and development,
it is perhaps not unsurprising to find that O3-exposure resulted in
‘direct’ effects on fruit yield e in terms of impacts on weight,
number and quality-related characteristics. Our findings in this
regard are consistent with previous reports of O3 on the yield of
tomato, though the authors did not seek to differentiate between
‘direct’ and ‘indirect’ impacts on fruit, but noted that O3-induced
reductions in yield were more substantial when exposure to the
pollutant co-incided with flowering and early fruit development
(Tenga et al., 1990; Younglove et al., 1994; Thwe et al., 2015).

Removal or damage of immature trusses on mature tomato
plants induces a compensatory shift in yield within trusses located
directly above and below those damaged (Slack and Calvert, 1977;
Horridge and Cockshull, 1998). Similarly, removal of individual
flowers within a truss can initiate compensatory weight increases
within the remaining fruit (Cockshull and Ho, 1995). No evidence
was found in the present study to suggest that depression in yield
components resulting from exposure of the 3rd truss to O3 were
offset by compensatory increases in the weight or number of fruit
borne on the 2nd truss.

Interestingly, direct exposure of the 3rd truss to O3 resulted in a
decline in the starch and ascorbate (vitamin C) content of fruit i.e.
quality-related characteristics. Both starch and ascorbate content
correlate with ripening. Starch levels within a tomato fruit are
relatively low decreasing to almost trace levels as the fruit ripens
(Cuartero and Fern#andez-Mu~noz, 1998; Gao et al., 1998). In
contrast, ascorbate levels generally attain optimum levels imme-
diately prior to full ripening (Islam et al., 1996) and then gradually
decline (Yahia et al., 2001). The pattern of changes induced by O3
exposure are consistent with the accelerated ripening of tomato
fruit under the influence of the pollutant. A similar conclusion was
drawn by Crisosto et al. (1993) when studying the effects of O3 on
plum (Prunus salicina Lindel., ‘Casselman’).

The results of the present study draw attention to the potential
need to give greater consideration to the impacts of O3 on plants
during the reproductive phases of growth both from a mechanistic
perspective as well as from the point of view of risk assessment.
Indeed, there are numerous studies on a range of crops that suggest
greater impacts of O3 on crop yields where exposures co-inside with
anthesis, grain fill or fruit development (Younglove et al., 1994; Soja,
1997; Vandermeiren and De Temmermann, 1996; Pleijel et al., 1998;
Mina et al., 2010; Thwe et al., 2015; Zhang et al., 2014). The differ-
ential impacts of pollutants (including O3) on pollen could, and
probably should, be explored as a potential opportunity for rapid,
relatively straightforward, large-scale screening programmes aimed
at breeding of crops with enhanced tolerance to ozone, and pro-
spectively other air pollutants.
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Summary Statement 24	
Bumble bees selectively feed among synthetic diets to acquire proteins and lipids ideal for 25	
survival. Optimal protein:lipid ratios are similar to the values of pollen from their preferred 26	
host-plant species. 27	
 28	
Abstract 29	
Bee population declines are linked to reduction of nutritional resources due to land-use 30	
intensification, yet we know little about the specific nutritional needs of many bee species. 31	
Pollen provides bees their primary source of protein and lipids, but nutritional quality 32	
varies widely among host-plant species. Therefore, as with other animal species, bees may 33	
be adapted to assess resource quality and adjust their foraging behavior to balance nutrition 34	
from multiple food sources. We tested the ability of two bumble bee species, Bombus 35	
terrestris and B. impatiens, to regulate protein and lipid intake. We restricted B. terrestris 36	
adults to single synthetic diets varying in protein:lipid ratios (P:L). The bees overate protein 37	
on low fat diets and overate lipid on high fat diets to reach their targets of lipid and protein 38	
respectively. The bees survived best on a 10:1 P:L diet; the risk of dying increased as a 39	
function of dietary lipid when bees ate diets with lipid contents greater than 5:1 P:L. 40	
Hypothesizing that P:L intake target of adult worker bumble bees was between 25:1-5:1, 41	
we presented workers from both species unbalanced but complementary paired diets to 42	
determine if they self-select their diet to reach a specific intake target. Bees consumed 43	
similar amounts of proteins and lipids in each treatment and averaged a 14:1 P:L for B. 44	
terrestris and 12:1 P:L for B. impatiens. These results demonstrate that adult worker 45	
bumble bees select foods that provide them with a specific ratio of P:L. These P:L intake 46	
targets could affect pollen foraging in the field and help explain patterns of host-plant 47	
species choice by bumble bees. 48	



Introduction 49	
Bee population declines are linked with many interacting factors associated with 50	
anthropogenic land-use intensification (Goulson et al., 2015; Ollerton et al., 2014). 51	
Intensification often dramatically reduces host-plant abundance and diversity, which may 52	
lead to nutritional stress for some bee species (Biesmeijer et al., 2006; Carvell et al., 2006; 53	
Potts et al., 2010). Bees depend entirely on floral resources for nutrition, but nutritional 54	
quality and quantity of nectar and pollen differ widely among plant species (Nicolson et al., 55	
2007; Roulston and Cane, 2000). Differences in resource quality can have direct effects on 56	
bee development, reproduction, immunocompetence, resilience to stress, and survival 57	
(Vaudo et al., 2015). Therefore, if bees are limited to suboptimal resources within their 58	
foraging range, then adults, developing larvae, and colonies could suffer negative health 59	
consequences. To address the problem of nutritional deprivation in the landscape, it is 60	
crucial to develop a comprehensive understanding of the nutritional requirements of bees. 61	
 62	
Bees obtain their macronutrients (carbohydrates, proteins, and lipids) from both nectar and 63	
pollen. Macronutrients are considered the most important nutrients required for fitness and 64	
survival, and obtaining them is considered a main driver of foraging strategies of animals 65	
(Behmer, 2009). Bees primarily obtain carbohydrates from nectar to fuel energetically 66	
costly foraging efforts, and adults cannot survive without a continuous carbohydrate source 67	
(Brodschneider and Crailsheim, 2010). Bees obtain proteins and lipids from pollen. 68	
Differences in protein in bee diets can influence adult reproduction, physiology, and 69	
immunity, and larval development (Alaux et al., 2010; Cardoza et al., 2012; Di Pasquale et 70	
al., 2013; Génissel et al., 2002; Human et al., 2007; Li et al., 2012; Tasei and Aupinel, 71	
2008a). Lipids fulfill many functions in insects; for bees, they play important roles in 72	
production of cuticular hydrocarbons and wax, behavioral maturation in adults (through the 73	
reduction in lipid stores), diapause, learning, and development of glands that produce brood 74	
food (Canavoso et al., 2001; Fliszkiewicz and Wilkaniec, 2007; Toth et al., 2005). Essential 75	
sterols obtained exclusively from pollen are precursors for molting hormone, which is 76	
essential for larval development (Feldlaufer et al., 1986; Roulston and Cane, 2000; 77	
Vanderplanck et al., 2014). Moreover, the lipid-dominant pollenkitt on the exterior of 78	
pollen is an important discriminative stimulus and phagostimulus of pollen for bees 79	
(Dobson and Bergström, 2000; Pacini and Hesse, 2005).  80	
 81	
Although bees can obtain protein and lipids from most pollen sources, the nutritional 82	
quality and quantity of these resources varies across plant species. Pollen protein (including 83	
essential amino acids) and lipid (including essential fatty acids and sterols) concentrations 84	
vary considerably among plant species (pollen contains ~2-60% protein and ~2-20% lipid; 85	
(Roulston and Cane, 2000). Inequality of nutrients among plant species suggests that bees 86	
may prefer certain species whose resource quality meets their nutritional demands. 87	
Generalist bee species, such as Bombus terrestris (Hymenoptera: Apidae) in Europe, North 88	
Africa, and  and B. impatiens in North America, which are active throughout the growing 89	
season, forage on a variety of different plant species during their lives. A handful of studies 90	
have suggested that bumble bees preferentially forage on flowers that have high sugar 91	
concentrations in nectar (Cnaani et al., 2006; Somme et al., 2014), and high protein 92	
(Cardoza et al., 2012; Hanley et al., 2008; Konzmann and Lunau, 2014) or amino acid and 93	
sterol content in pollen (Somme et al., 2014).  94	
 95	
Although foraging bumble bees collect pollen mainly to feed developing larvae, adult 96	
workers eat pollen as well (Brodschneider and Crailsheim, 2010; Roulston and Cane, 97	



2000), when they assess nutritional stores in pollen pots (Dornhaus and Chittka, 2005), 98	
while they feed pollen to larvae (Pereboom, 2000; Pereboom et al., 2003), or when they eat 99	
pollen to develop their own ovaries for male-egg laying (Amsalem et al., 2015; Tasei and 100	
Aupinel, 2008a). Note that in three-worker queenless microcolonies, workers ate between 101	
0.4-0.9g of pollen in the five days prior to egg laying, which would average ~25- 102	
60mg/pollen/day by worker egg-layers (Tasei and Aupinel, 2008a; Tasei and Aupinel, 103	
2008b).  104	
 105	
However, it remains to be determined the extent to which bumble bees selectively forage 106	
from floral resources to balance their diet and meet specific macronutrient intake targets. 107	
This could be an important skill, however, because nutritional intake can influence 108	
reproductive success. For example, B. terrestris microcolonies fed low protein pollen diets 109	
had higher larval abortion rates and those fed higher protein diets had higher larval weight 110	
(Tasei and Aupinel, 2008a). Indeed, recent studies demonstrated that B. impatiens–both 111	
when foraging for colonies with brood or isolated from brood–preferentially forage for 112	
pollen with high protein:lipid ratios and their consumption of pollen diets depended on 113	
protein and lipid concentrations (Vaudo et al., submitted). This indicates that bees are 114	
sensitive to nutritional components and ratios and exhibit nutrient regulation that affects 115	
their feeding behavior. 116	
 117	
Many studies have demonstrated that insects regulate their consumption of food around 118	
optimal proportions of macronutrients in ways that reflect their age, somatic needs, and 119	
reproductive status (Behmer, 2009; Simpson and Raubenheimer, 1993; Simpson et al., 120	
2004). The geometric framework (GF) for nutrition is a method for examining the 121	
mechanisms and constraints that govern how animals regulate feeding to achieve specific 122	
macronutrient optima, or “intake targets.” It employs an approach wherein individuals self- 123	
select diets or alter food consumption when confined to diets comprising specific ratios of 124	
macronutrients (Raubenheimer and Simpson, 1999; Simpson and Raubenheimer, 1993). 125	
This approach has made it possible to characterize simultaneous regulation of protein and 126	
carbohydrate in arthropods, fish, reptiles, birds, and mammals (Behmer, 2009; Simpson and 127	
Raubenheimer, 1997; Simpson and Raubenheimer, 2001; Simpson and Raubenheimer, 128	
2012). 129	
 130	
The GF has been successfully used to characterize nutrient balancing for protein and 131	
carbohydrate in worker honey bees (Altaye et al., 2010; Paoli et al., 2014; Pirk et al., 2009) 132	
and bumble bees (Stabler et al., 2015). Workers, especially foragers, have a high demand 133	
for carbohydrates, as reflected in their measured intake targets (for bumble bees, this is 134	
~1:150 protein:carbohydrate or P:C ratio). Moreover, their tolerance of dietary protein (or 135	
essential amino acids) is relatively low, as they have reduced survival when forced to ingest 136	
surplus protein (Altaye et al., 2010; Paoli et al., 2014; Pirk et al., 2009; Stabler et al., 2015).  137	
 138	
None of the previous studies using the GF have tested whether bees or other social insects 139	
regulate their dietary intake of fats. Indeed, the few studies that have investigated protein 140	
and fat regulation in insect herbivores have been limited to lepidopteran larvae, but were 141	
not clear assessments using the GF of simultaneous regulation of protein and fat. The 142	
tobacco hornworm (Manduca sexta) did not regulate lipid intake but preferred high fat diets 143	
(Thompson and Redak, 2005). Gypsy moth (Lymantria dispar) males switched from high- 144	
protein to high-fat diets in later instars, potentially to store energy for flight for adulthood 145	
(Stockhoff, 1993). In contrast, arthropod predators clearly regulate both protein and fat 146	



simultaneously. For example, the ground beetle Agonum dorsale, when reared on food 147	
deficient in protein or fat adjusts its consumption of complementary foods to meet an intake 148	
target (Mayntz et al., 2005). Furthermore, the intake target of A. dorsale was biased toward 149	
lipid following diapause, but switched to a protein-biased target as it aged (Raubenheimer 150	
et al., 2007). Similar to A. dorsale, the wolf spider Pardosa prativaga was able to regulate 151	
its diet by eating flies that complemented a previous diet that was higher in protein or fat 152	
(Mayntz et al., 2005), and also overate protein on lipid poor diets to reach an intake target 153	
for lipid (Jensen et al., 2011).  154	
 155	
Here, we use the GF methodology to test and measure regulation of protein and lipid intake 156	
in bumble bee foragers of two species, B. terrestris and B. impatiens (both important crop 157	
pollinators and commercially available in their respective geographic range [Velthuis and 158	
van Doorn, 2006; (Amsalem et al., 2015; Velthuis and van Doorn, 2006)]). In our first 159	
experiment, we restricted B. terrestris individuals to single synthetic diets differing in P:L 160	
ratios that spanned the realistic and extreme possibilities found in pollen, and measured 161	
their food consumption and survival. Then to determine if the two species indeed regulate 162	
protein and lipids to a specific intake target, we presented individual B. terrestris and B. 163	
impatiens two diets differing in their P:L ratios, while providing a separate and constant 164	
carbohydrate source. We expected that the species would regulate their P:L intake to a 165	
target at which they survived best. Furthermore, given the importance of P:C regulation in 166	
insects, we expected that the bumble bees would defend a specific P:C intake target in both 167	
experiments. Our results characterize the specific macronutrient requirements of these two 168	
species and provide insights into the ability of bumble bees to regulate lipids in their diet, 169	
suggesting nutritional quality may drive pollen foraging preferences.  170	
 171	
Methods 172	
General bee rearing conditions 173	
We purchased mature research colonies of Bombus terrestris (“Single P:L diet assay” and 174	
“Paired P:L diets assay”) and B. impatiens (“Paired P:Ls diet assay”) from Koppert 175	
Biological Systems (Havervill, Suffolk, UK for B. terrestris; Howell, MI, USA for B. 176	
impatiens). Each colony contained approximately 100 workers and the natal queen. During 177	
the course of the study, we stored colonies at ambient temperatures and provided them 178	
sugar water ad libitum. For each assay, we collected foragers as they exited their colonies 179	
and placed individual bees in their own 11 × 11 × 10-cm plastic cages kept in a 24-hr dark 180	
incubator at 28°C and 40% humidity. We provided all diets to bees in 2-mL 181	
microcentrifuge tubes with four holes drilled in the tube from which the bees could feed. 182	
The tubes were suspended halfway up and at opposite sides of each cage such that the bees 183	
could perch on the tube and feed through the holes.  184	
 185	
Single P:L diet assay 186	
Individual forager bumble bees (15 bees/treatment, 4 colonies) were given access to food 187	
tubes containing 0.5 M sucrose solution or 0.5 M sucrose solution containing a specific 188	
protein:lipid ratio (P:L). We tested eight different dietary ratios of P:L (Protein-only, 50:1, 189	
25:1, 10:1, 5:1, 1:1, 1:5, and 1:10; Table 1). We chose these particular P:L diets to include 190	
possible ranges of P:L ratios in pollen (Roulston and Cane, 2000) as well as values outside of 191	
the reported range of P:L in pollen. Nutrient sources were sucrose (Sigma-Aldrich, St. 192	
Louis, MO, USA) for carbohydrates, casein sodium salt from bovine milk (Sigma-Aldrich) 193	
for protein, and soy lecithin (Optima Health & Nutrition, Bradford, UK) for lipids, which 194	
contains essential fatty acids (32% ⍵-6/linoleic acid, 4% ⍵-3/alpha-linolenic acid).  195	



 196	
Experiments lasted seven days, and we replaced each food tube daily. We weighed food 197	
tubes each day prior to placement in the cage and 24 hr later. Cages with three tubes of 198	
each diet with no bees served as controls to measure evaporation rate for each diet. 199	
Amounts of solution (g) consumed by bees were adjusted by the mean amount of solution 200	
that had evaporated from the “control” cages prior to analysis. We calculated the mass of 201	
each nutrient (carbohydrate, protein, lipid) consumed from the total mass consumed from 202	
each diet tube each day. We measured the thorax width of each individual bee as a 203	
covariate in data analyses to control for the effect of size on diet consumption. We recorded 204	
the number of days each bee survived in the assay with a maximum of seven days.  205	
 206	
Paired P:L diets assay 207	
To test our hypothesis that bumble bee intake targets lie within the 25:1-5:1 P:L range (see 208	
“Results-Single P:L diet assay”), we measured survival and nutrient consumption of B. 209	
impatiens and B.terrestris foragers presented with paired P:L diets encompassing this 210	
range. As in the “Single P:L diet assay,” we collected B. impatiens and B. terrestris 211	
foragers as they exited their colonies and caged them individually (20 bees/treatment; 2 212	
colonies for each species).  213	
 214	
For each treatment, we provided a bee with one of four paired P:L diets and with a sucrose- 215	
only food tube. These diet pairings were: 1) 25:1 and 5:1, 2) 50:1 and 5:1, 3) 75:1 and 5:1, 216	
and 4) 100:1 and 5:1 P:L (diets prepared as above; Table 1). We measured daily 217	
consumption of each diet and nutrient (accounting for evaporation rate) and survival of 218	
bees over seven days (see “Single P:L diet assay”). Prior to placement in cages, we cold 219	
anaesthetized and weighed foragers to use their weight as a covariate in data analyses to 220	
control for effects of size on diet consumption (note thorax width and bee weight are 221	
correlated (Stabler et al., 2015)], and we measured thorax width in the “Single P:L diet 222	
assay”). 223	
 224	
Statistical analysis 225	
Single P:L diet assay 226	
We conducted survival analyses with Cox-regression proportional hazards, and used the 227	
Protein-only treatment as reference to determine the effect of adding lipid to the diet on bee 228	
survival. To determine whether bumble bees ate randomly among diet sources, we analyzed 229	
differences in daily consumption of diet sources among treatments by 2-way ANOVA and 230	
post-hoc Tukey-HSD pairwise comparisons with treatment, diet source (treatment diet or 231	
sucrose-only), and the interaction of treatment and diet source as independent variables and 232	
thorax width as a covariate. To analyze differences in daily consumption of nutrients 233	
among treatments, we used MANCOVA with post-hoc Tukey-HSD pairwise comparisons 234	
with nutrient (carbohydrate, protein, or lipid) as the dependent variable and thorax width as 235	
a covariate. Finally, for bees that survived on the diets for all seven days, we analyzed 236	
differences in cumulative consumption of carbohydrate, protein, and lipid with 237	
MANCOVA and post-hoc Tukey-HSD pairwise comparisons with nutrient (carbohydrate, 238	
protein, or lipid) as the dependent variable and thorax width as a covariate. After reviewing 239	
the data, it was apparent that there were differences in amounts of nutrients consumed 240	
between bees that died and survived in the 1:10 P:L treatment. We compared their 241	
cumulative consumption of nutrients on day three, using MANOVA and post-hoc t-tests for 242	
each nutrient.   243	
 244	



Paired P:L diets assay 245	
We analyzed differences in survival among treatments with the Kaplan-Meier test. To 246	
determine daily differences in mass of diets consumed among treatments, we conducted 2- 247	
way ANOVA and post-hoc Tukey-HSD pairwise comparisons, using treatment, diet source 248	
(5:1, treatment diet, and sucrose-only), and the interaction of treatment and diet source as 249	
independent variables with colony and bee weight as covariates. Finally, for bees that 250	
survived all seven days, we analyzed cumulative nutrient consumption among treatments 251	
with MANCOVA with post-hoc Tukey-HSD pairwise comparisons with nutrient 252	
(carbohydrate, protein, or lipid) as the dependent variable and colony and bee weight as 253	
covariates. If consumption of each nutrient among treatments was similar, we could 254	
conclude that the bumble bees were regulating their nutrients equally. We determined P:C 255	
and P:L ratios consumed by bees using the average cumulative consumption of each 256	
treatment. All statistical analyses were conducted with JMP Pro v.12 (SAS Institute; SPSS 257	
Statistics [IBM] was used for Cox-regression). 258	
 259	
Results 260	
Single P:L diet assay 261	
For seven days, we fed B. terrestris foragers with sucrose only and one of the P:L diets. 262	
The bees consumed similar quantities of total food each day across treatments (F7,1321 = 263	
1.99, P = 0.053), except that foragers in the “protein only” treatment ate more each day 264	
than bees on the high fat 1:5 P:L treatment at P < 0.05 (Figure 1). Bees differed in the 265	
relative amounts of each diet (treatment diet versus sucrose only) consumed (treatment x 266	
solution; F7,1321 = 16.0, P < 0.001) (Figure 1). Notably, bees consumed much less of the 267	
treatment diet than sucrose-only diet in the highest lipid treatments (1:5, 1:10 P:L) (Figure 268	
1).  269	
 270	
The only significant difference in daily consumption of carbohydrates was between protein- 271	
only and 1:5 treatments (F8,666 = 5.32, P < 0.001; Table 2), but bees across treatments 272	
differed significantly in amounts of protein and lipid consumed (MANCOVA: F21,1640 = 273	
13.7, P < 0.001). Bees on the highest fat diets (1:5 and 1:10 P:L) consumed much less 274	
protein than the other treatments (F8,663 = 14.7, P < 0.001; Table 2), suggesting that they 275	
ceased eating the diet after having reached or exceeded their lipid intake target, and 276	
therefore did not reach their protein target. Finally, bees across treatments differed 277	
significantly in amounts of lipids consumed; specifically, bees consumed more lipids as 278	
lipid content of the treatment diet increased (F7,573 = 20.4, P < 0.01; Table 2).  279	
 280	
For the bees that survived all seven days of the experiment, there were significant 281	
differences among treatments in cumulative amount of nutrients consumed (MANCOVA: 282	
F21,164 = 5.03, P < 0.001; Figure 2). Though there were no differences in cumulative 283	
carbohydrates consumed across treatments (F7,59 = 1.13, P = 0.36; Figure 2a,c), bees on 284	
different diets consumed significantly different amounts of cumulative protein and lipids 285	
over seven days; similar to the daily consumption data, bees on the highest lipid treatments 286	
(1:5 and 1:10 P:L) consumed significantly less protein (F7,59 = 3.86, P = 0.002; Figure 287	
2a,b).  288	
 289	
For cumulative lipids consumed, surviving bees in the 1:10, 1:5, and 1:1 treatments 290	
consumed significantly more lipids than bees on the remaining treatments (F7,59 = 10.2, P < 291	
0.001, Figure 2b,c). Furthermore, bumble bee foragers consumed on average ~3.5mg 292	
protein on 1:1, 5:1, 10:1 and 25:1 P:L diets, while consuming ~5.1mg protein on the 50:1 293	



P:L diet (F1,59 = 2.86, P < 0.1), suggesting that bees compensated for low lipids by 294	
overeating the 50:1 diet to reach an intake target for lipid (Figure 2b). These data also 295	
indicate that B. impatiens foragers regulated their protein intake eating similar amounts of 296	
proteins (~4.0mg) except on the highest lipid diets of 1:5 and 1:10 (~0.6mg). 297	
 298	
Bombus terrestris foragers were more likely to die when they consumed diets high in lipid 299	
(Table 3). Additionally, there tended to be higher mortality of bees over seven days as lipid 300	
content of diets increased or decreased relative to the 10:1 P:L treatment (Table 3). 301	
Although bees in the high fat treatment (1:5 P:L) appeared to survive well in the first days 302	
of the study, their mortality increased sharply over the remainder of the week and ended 303	
with the second highest mortality and a nearly equal hazard ratio (Figure 1, Figure 3). 304	
Interestingly, by day three on the 1:10 P:L diet, surviving bees had eaten significantly less 305	
of their treatment diet (protein and lipid) than those bees that died (t14 = 2.29, P < 0.02), but 306	
living and dead bees ate equal amounts of carbohydrates (t14 = 0.64, P = 0.27; Figure 4). 307	
These data suggest that high lipid consumption leads to toxicity and increased mortality. 308	
 309	
Bombus terrestris foragers 1) overate lipids to defend their protein intake, 2) had increased 310	
mortality as lipid content of diets increased or decreased away from 10:1 P:L), and 3) 311	
increased protein consumption on the 50:1 P:L diet to potentially defend a lipid target. 312	
Therefore, we hypothesized that the bumble bees’ P:L intake target lies within the 25:1 – 313	
5:1 range. We performed a “Paired P:L diets assay” to identify the actual intake target for 314	
P:L of B. terrestris, and to compare it to the intake target of B. impatiens. 315	
 316	
Paired P:L diets assay 317	
For seven days, we fed Bombus impatiens and B. terrestris workers a single sucrose-only 318	
diet, a 5:1 P:L diet, and a complementary treatment P:L diet (25:1, 50:1, 75:1, or 100:1). 319	
Each diet pairing of 5:1 P:L and treatment P:L created a protein and lipid nutrient space 320	
encompassing the hypothesized P:L intake target. The bees consumed significantly 321	
different amounts of total food consumed across treatment (B. impatiens: F3,1446 = 5.65, P < 322	
0.001; B. terrestris: F3,1178 = 4.75, P < 0.003), diet sources (B. impatiens: F2,1446 = 23.7, P < 323	
0.01; B. terrestris: F2,1178 = 30.7, P < 0.001), and the relative amounts of each diet source 324	
consumed among treatments (treatment × diet source interaction: B. impatiens: F6,1446 = 325	
3.55, P = 0.0017; B. terrestris: F6,1178 = 3.31, P = 0.003; Figure S1). Importantly, daily 326	
consumption differed between treatment diet (25:1, 50:1, 75:1, 100:1) and 5:1 diet for both 327	
B. impatiens and B. terrestris, indicating that these diets were not being consumed 328	
randomly (Figure S1).  329	
 330	
Surviving B. impatiens and B. terrestris foragers regulated their carbohydrate, protein, and 331	
lipid intake, consuming equal amounts of the three macronutrients and total nutrients across 332	
treatments (carbohydrate: B. impatiens: F3,52 = 2.20, P = 0.10; B. terrestris: F3,47 = 1.50, P 333	
= 0.23; protein: B. impatiens: F3,52 = 2.63, P = 0.06; B. terrestris: F3,47 = 1.02, P = 0.39; 334	
lipid: B. impatiens: F3,52 = 1.78, P = 0.16; B. terrestris: F3,47 = 0.02, P = 0.99; total 335	
nutrients: B. impatiens: MANCOVA: F9,122 = 1.35, P = 0.22; B. terrestris: MANCOVA: 336	
F9,110 = 1.07, P = 0.39; Table 4, Figure 5, Figure S2). Therefore, B. impatiens and B. 337	
terrestris, foragers regulated their P:L intake to within our hypothesized range, averaging 338	
12:1 P:L for B. impatiens and 14:1 P:L for B. terrestris (Table 4, Figure 5, Figure S2). The 339	
P:C intake targets regulated by both species averaged 1:85 P:C for B. impatiens and 1:67 340	
P:C for B. terrestris (Table 4, Figure 5,Figure S2). Both bee species survived equally well 341	



on the various diets (B. impatiens: χ2 = 3.98, df = 3, P = 0.26; B. terrestris: χ2 = 0.39, df = 342	
3, P = 0.94;  Figure S1).  343	
 344	
Discussion 345	
Our experiments revealed that B. terrestris and B. impatiens regulated their protein and 346	
lipid intake to an average of 14:1 and 12:1, respectively, with B. terrestris preferring a diet 347	
slightly lower in fat than B. impatiens. Also, bees limited to diets high in lipids had 348	
increased risk of mortality (Table 3, Figure 3). Taken together, this study provides the first 349	
evidence that pollinators (specifically Bombus spp. bees) regulate fat intake. Coupled with 350	
our previous study that demonstrated that bumble bees foraging preferences were 351	
significantly correlated with protein:lipid ratios in pollen (Vaudo et al., submitted), these 352	
results suggest that pollinators adjust their foraging to achieve specific macronutrient 353	
targets.   354	
 355	
The protein and lipid regulation of bumble bee adults appears more similar to predaceous 356	
arthropods than herbivorous ones. Manduca sexta caterpillars, within a similar design as 357	
our “Paired P:L diets assay,” failed to regulate lipid intake but preferred diets high in fat 358	
(Thompson and Redak, 2005). In contrast, both B. terrestris and B. impatiens workers 359	
regulated their intake of fat, and preferred diets with specific P:L ratios. This difference is 360	
likely due to the vastly different life histories between lepidopteran larvae, which are 361	
typically constrained to specific food sources, and hymenopteran adults, which can forage 362	
among many sources. Both predaceous species (i.e., the wolf spider and ground beetle) ate 363	
protein excessively on low fat diets, apparently to reach a lipid intake target (~4:1 P:L for 364	
wolf spider;  or ~2:1 P:L in for ground beetle; [(Jensen et al., 2011; Mayntz et al., 2005; 365	
Raubenheimer et al., 2007)]). In our work, B. terrestris generally ate more protein on the 366	
low-fat diet (50:1 P:L) than the other treatments, including those that provided only protein. 367	
This behavior indicates that workers may also overeat protein to reach their lipid intake; 368	
indeed, lipid intake did not differ across the groups fed 50:1, 25:1, 10:1 and 5:1 diets. 369	
Finally, the web building spider Stegodyphus lineatus having no control over the nutrient 370	
composition of prey captured in its web selectively extracted dietary protein from prey 371	
based on previous feeding history (Mayntz et al., 2005). Few studies have shown that bee 372	
larvae assimilate pollen protein and lipids efficiently (Roulston and Cane, 2000), but it 373	
remains to be tested if the sedentary and dependent bee larvae can regulate their nutrient 374	
intake or if they are completely dependent upon adults to sense and select an appropriate 375	
diet for them.  376	
 377	
In contrast to A. dorsale, the predatory ground beetle, which stopped eating when it reached 378	
its lipid intake target in high fat diets (Raubenheimer et al., 2007), B. terrestris overate lipid 379	
in high-fat diets (1:1, 1:5, and 1:10 P:L), potentially to reach their protein target. This 380	
overconsumption of lipid to reach a protein target may have led to increased mortality. For 381	
example, bees survived when they ate less of the high fat diet 1:10 P:L (Figure 4). And 382	
although the bees in the 1:5 P:L treatment ate significantly less of the treatment diet than 383	
the sucrose-only diet, their high lipid consumption in the first days of the study likely lead 384	
to their rapid death (Figure 1-3). Thus, surviving bees were able to eat enough to meet their 385	
nutritional needs, sense the toxicity of the diet, and cease feeding, while the others did not. 386	
What caused this individual variation in behavior remains to be determined; the bees used 387	
in this study were not age-controlled, and thus there may have been physiological 388	
differences associated with age, social status, or behavioral task.  389	
 390	



The exact mechanism underlying the toxicity of high-fat diet consumption is unclear. One 391	
possibility is a deficiency in protein intake, though this seems unlikely because adult bees 392	
can survive quite well on sugar diets alone (Brodschneider and Crailsheim, 2010; Paoli et 393	
al., 2014). Another possibility is that high intracellular concentrations of lipids is toxic; 394	
with too much fat in the diet, insufficient amounts could be converted into storage 395	
triacylglycerols or expelled from the body (Canavoso et al., 2001). The ratio of the essential 396	
fatty acids ⍵-6:⍵-3 in our diets was 8:1. Excessive amount of ⍵-6 in diets (i.e., ⍵-3 397	
deficiency) has been linked to chronic diseases in humans (Simopoulos, 2002; Simopoulos, 398	
2008), and impaired learning and physiology in honey bees (Arien et al., 2015). Moreover, 399	
high polyunsaturated fatty acids (including essential fatty acids) in the diet may lead to lipid 400	
peroxidation and cell damage, and cell membrane composition has been linked to the vast 401	
difference in maximum lifespan between honey bee queens (highly monounsaturated) and 402	
workers (highly polyunsaturated) (Haddad et al., 2007).  403	

 404	
Although not the focal test of the study, bees consistently ate similar amounts of 405	
carbohydrates across all treatments in both the single and paired diets assays. The 406	
protein:carbohydrate ratio (P:C) intake target averaged 1:69 P:C for B. terrestris and 1:85 407	
for B. impatiens. These are carbohydrate-biased as expected, but significantly lower than 408	
previously found for B. terrestris in studies that did not include lipid intake (Stabler et al., 409	
2015). It may be that the energy otherwise obtained from carbohydrates (e.g., for flight) 410	
was metabolized from the lipids ingested in our study, resulting in reduced feeding from the 411	
sucrose only solution (Canavoso et al., 2001). 412	
 413	
The results of this study may provide insights into the nutritional ecology of foraging bees. 414	
First, the high requirement of carbohydrates for bumble bees is likely met by nectar 415	
foraging, which explains the attraction of bees to flowering species with high volumes and 416	
high sugar concentrations of nectar (Cnaani et al., 2006; Somme et al., 2014). Because 417	
carbohydrate concentrations in pollen are fairly low, bees appear to forage on pollen to 418	
meet their protein and lipid needs. Our results suggest that bumble bees forage to obtain 419	
pollen that allows them to achieve a dietary ratio of 12:1 - 14:1 P:L. Notably, in previous 420	
work, B. impatiens exponentially increased their foraging rates to the plant species with the 421	
5:1 P:L ratio; moreover, using assays with caged bees and nutritionally modified pollen, B. 422	
impatiens was most attracted to 5:1 and 10:1 P:L diets (Vaudo et al. submitted). These 423	
preferred diets matched the results from the current study, which found that bumble bee 424	
workers survive best on, and regulate their diets to, approximately 10:1 P:L. Because the 425	
pollen P:L ratio in the previous work (Vaudo et al., submitted) had an upper limit of 5:1, it 426	
is unclear whether bumble bees can reach 10:1 P:L from pollen in the field. Even if the 427	
target P:L ratio cannot be met, the predisposition of bumble bees to prefer protein-biased 428	
pollen may explain host-plant preferences in natural environments (Cardoza et al., 2012; 429	
Hanley et al., 2008; Somme et al., 2014); Vaudo et al., submitted).  430	
 431	
It must be noted that in the current study, we evaluated feeding preferences of isolated 432	
bumble bee workers. It is unknown whether bumble bee foragers adjust their nutritional and 433	
foraging preferences depending on the colony needs, and specifically presence of larvae 434	
(Hendriksma and Shafir, 2016). Information on pollen quality and its availability in the 435	
colony may be accessible to workers via pollen pots (Dornhaus and Chittka, 2005; Kitaoka 436	
and Nieh, 2008) allowing the colony to make informed foraging decisions. Indeed, in our 437	
other studies, attraction of bumble bees to pollen with 5:1 and 10:1 P:L ratios remained 438	



intact for both bees foraging for colonies or foraging in cages, suggesting that these dietary 439	
preferences are conserved across a variety of scenarios (Vaudo et al., submitted).  440	
 441	
Our study demonstrated that two bumble bee species, which occupy separate geographic 442	
ranges, regulate their protein and fat intake and converge on similar intake targets, likely 443	
due to their relatedness, similar life histories, and foraging behavior (Amsalem et al., 2015). 444	
Notably, their ability to regulate protein and lipids is more similar to arthropod predators 445	
than herbivores, perhaps because pollen is more nutritionally similar to prey (versus leaf 446	
tissue) with high protein and lipid concentrations (Jensen et al., 2011; Raubenheimer et al., 447	
2007). Because bees are a monophyletic group evolved from predatory wasps (Danforth et 448	
al., 2013), it is likely that bees maintained their protein and lipid biases when making the 449	
transition to pollen feeding. There may be taxa-specific P:L intake targets across bee 450	
families, genera, or species that could explain the patterns of foraging behavior and pollen 451	
preferences observed among host-plant species in field-based studies (Behmer and Joern, 452	
2008). Knowing these particular intake targets can guide decisions for targeted habitat 453	
restoration protocols by matching nutritional intake targets of bee species to pollen quality 454	
of host-plant species (Vaudo et al., 2015). 455	
 456	
 457	



List of Symbols and Abbreviations 458	
GF – Geometric framework for nutrition 459	
P:C – Protein to carbohydrate ratio 460	
P:L – Protein to lipid ratio 461	
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Figures 640	
 641	
 642	
 643	

 644	
Figure 1. Mean (± SE) daily consumption of diets across treatments for B. terrestris 645	
foragers in “Single P:L diet assay.” Treatments are represented by their protein:lipid (P:L) 646	
treatment diet ratio, including protein-only diets. Diets are represented as sucrose-only and 647	
diet associated with each treatment. Asterisks represent significant differences (P < 0.05) in 648	
diet consumed within treatment (N = 15 bees/treatment). 649	
 650	



 651	
Figure 2. Nutritional arrays of B. terrestris foragers surviving seven days in “Single P:L 652	
diet assay.” Treatments are represented by their protein:lipid (P:L) diet ratio, including 653	
protein-only diet. Markers of each treatment represent mean cumulative consumption of 654	
each nutrient for each successive day up to seven days forming daily trajectories. a) 655	
carbohydrate and protein array, b) protein and lipid array, c) carbohydrate and lipid array 656	
(NProtein = 10, N50:1 = 9, N25:1 = 9, N10:1 = 11, N5:1 =10, N1:1 = 8, N1:5 = 7, N1:10 = 4).  657	
 658	
 659	



 660	
Figure 3. Survival curve of B. terrestris foragers in “Single P:L diet assay.” Treatments are 661	
represented by their protein:lipid (P:L) treatment diet ratio, including protein-only diet. 662	
Note that mortality increased as the lipid content of the diets increased (N = 15 663	
bees/treatment). 664	
 665	



 666	
Figure 4. Mean (± SE) cumulative consumption of nutrients by deceased (N = 11) and 667	
surviving (N = 4) B. terrestris foragers in 1:10 P:L treatment on Day 3 of “Single P:L diet 668	
assay”: a) carbohydrate and protein, b) protein and lipid, c) carbohydrate and protein. Note 669	
that surviving bees ate significantly less protein and lipid than the deceased bees.  670	
 671	



 672	
Figure 5. Mean (± SE) cumulative consumption nutrients of B. impatiens and B. terrestris 673	
foragers in “Paired P:L diets assay” that survived for seven days. Note for both species 674	
there were no significant differences in carbohydrate, protein, or lipid consumption across 675	
treatments. Treatments are represented by protein:lipid diet ratio (P:L) paired with 5:1 P:L 676	
diet: a) carbohydrate and protein, b) protein and lipid. Lines represent the different diet 677	
rails, emphasizing that across treatments all P:L intake targets lie within our expected 25:1- 678	
5:1 P:L range, c) carbohydrate and protein (B. impatiens: N25:1 = 16, N50:1 = 16, N75:1 = 12, 679	
N100:1 = 16; B. terrestris:  N25:1 = 12, N50:1 = 16, N75:1 = 14, N100:1 = 14). 680	



 681	

 682	
Supplementary Figure 1. Mean (± SE) daily consumption of diets across treatments for a) 683	
B. impatiens and b) B. terrestris foragers in “Paired P:L diets assay.” Diets are represented 684	
as 5:1 P:L, sucrose-only, and the treatment P:L diet (25:1, 50:1, 75:1, and 100:1). Bars 685	
marked with different letters are statistically different (P < 0.05) within treatment (N = 20 686	
bees/treatment). 687	
 688	
 689	
 690	
 691	
 692	



 693	
Supplementary Figure 2. Daily trajectories of B. impatiens (a-c) and B. terrestris (d-f) in 694	
“Paired P:L diets assay.” Treatments are represented by their protein:lipid diet ratio (P:L) 695	
paired with 5:1 P:L diet. Markers within each diet represent mean cumulative consumption 696	
of each nutrient for each successive day up to seven days: a,d) carbohydrate and protein 697	
trajectories, b,e) protein and lipid trajectories, c,f) carbohydrate and lipid trajectories (B. 698	
impatiens: N25:1 = 16, N50:1 = 16, N75:1 = 12, N100:1 = 16; B. terrestris:  N25:1 = 12, N50:1 = 699	
16, N75:1 = 14, N100:1 = 14). 700	
 701	
 702	
 703	



 704	
Supplementary Figure 3. Survival curve of B. impatiens and B. terrestris foragers in 705	
“Paired P:L diets assay.” Treatments are represented by their species and protein:lipid diet 706	
ratio (P:L) paired with 5:1 P:L diet (N = 20 bees/treatment). 707	



  
Table 1. Diet recipes. Diets are represented by their protein:lipid (P:L) ratios or sucrose-only and protein-only diets. Sucrose was used as the 
carbohydrate source, soy lecithin was used as the lipid source, and casein as a protein source. 
Nutrient 
source 

Sucrose-
only 

Protein-
only 

100:1 75:1 50:1 25:1 10:1 5:1 1:1 1:5 1:10 

Sucrose  171g 17.1g 17.1g 17.1g 17.1g 17.1g 17.1g 17.1g 17.1g 17.1g 17.1g 
Casein  - 0.342g 0.342g 0.342g 0.342g 0.342g 0.342g 0.342g 0.342g 0.342g 0.342g 
Lecithin  - - 0.00342g 0.00456g 0.00685g 0.0137g 0.0342g 0.0685g 0.342g 1.71g 3.42g 
H2O  1000mL 100mL 100mL 100mL 100mL 100mL 100mL 100mL 100mL 100mL 100mL 



  

Table 2.  Mean (± SE) daily consumption (mg) of nutrients for B. terrestris foragers in 
“Single P:L diet assay.” Treatments are represented by their protein:lipid (P:L) diet ratio, 
including protein-only diet. Means marked with different letters within each column are 
statistically different (P < 0.05). 
Treatment Carbohydrate Protein Lipid 
1:10 50 ± 7 ab 0.12 ± 0.02 b 1.20 ± 0.23 a 
1:5 44 ± 3 b 0.11 ± 0.02 b 0.57 ± 0.10 b 
1:1 50 ± 4 ab 0.44 ± 0.06 a 0.44 ± 0.06 bc 
5:1 47 ± 3 ab 0.50 ± 0.06 a 0.11 ± 0.012 cd 
10:1 47 ± 3 ab 0.49 ± 0.05 a 0.05 ± 0.005 d 
25:1 50 ± 3 ab 0.47 ± 0.05 a 0.02 ± 0.002 d 
50:1 57 ± 5 ab 0.66 ± 0.11 a 0.01 ± 0.002 d 
Protein-only 60 ± 4 a 0.60 ± 0.05 a - 



  

Table 3.  Cox – regression of survival for B. terrestris foragers in “Single P:L diet assay.”  Treatments are 
represented by their protein:lipid (P:L) diet ratio, including protein-only diet. Protein-only diet (no lipid) 
was used as reference to test the effect of adding lipids to the diet. Note that likelihood of mortality (B) 
decreased for 10:1 treatment, and increased as the lipid content of the diet increased. Model:  χ2 = 10.52, df 
= 7, p = 0.161 
       95.0% CI for Exp(B) 
Treatment B SE χ2 df Sig. Exp(B) Lower Upper 
Protein   9.667 7 0.208 

 
  

50:1 0.266 0.606 0.193 1 0.661 1.305 0.398 4.275 
25:1 0.186 0.606 0.094 1 0.759 1.204 0.367 3.946 
10:1 -0.256 0.671 0.146 1 0.703 0.774 0.208 2.884 
5:1 -0.019 0.632 0.001 1 0.976 0.981 0.284 3.389 
1:1 0.375 0.586 0.410 1 0.522 1.455 0.462 4.584 
1:5 0.372 0.570 0.425 1 0.514 1.451 0.474 4.436 
1:10 1.136 0.540 4.424 1 0.035 3.113 1.080 8.970 



Table 4. Consumption (g; mean ± SE) by B. impatiens and B. terrestris foragers in the “Paired P:L diets assay” 
and protein:carbohydrate (P:C) and protein:lipid (P:L) intake ratios over seven days. Each treatment was paired 
with a 5:1 P:L diet. Within each species, there were no statistical differences in total carbohydrate, protein, or 
lipid consumed.  
 Treatment  Carbohydrate  Protein  Lipid  P:C P:L 
B. impatiens 25:1  475 ± 58.5  5.46 ± 0.90  0.56 ± 0.11  1:87.01 9.84 
 50:1  470 ± 70.2  6.62 ± 1.29  0.54 ± 0.12  1:71.05 12.22 
 75:1 344 ± 46.7  3.84 ± 0.90  0.37 ± 0.15  1:89.55 10.49 
 100:1 398 ± 51.9  4.34 ± 0.66 0.29 ± 0.06  1:91.69 14.83 
B. terrestris 25:1 199 ± 29.5  2.74 ± 0.41  0.25 ± 0.05  1:72.41 10.83 
 50:1 248 ± 36.1  3.47 ± 0.62  0.26 ± 0.09  1:71.39 13.29 
 75:1 264 ± 65.4  4.09 ± 1.32  0.32 ± 0.13  1:64.61 12.98 
 100:1 335 ± 39.5  5.01 ± 0.76  0.27 ± 0.05 1:66.86 18.40 
 



	 192	

Appendix	J	
	

Nutrient	balancing	of	the	adult	worker	bumblebee	(Bombus	terrestris)	
depends	on	the	dietary	source	of	essential	amino	acids	
	



RESEARCH ARTICLE

Nutrient balancing of the adult worker bumblebee (Bombus
terrestris) depends on the dietary source of essential amino acids
Daniel Stabler1, Pier P. Paoli1, Susan W. Nicolson2 and Geraldine A. Wright1,*

ABSTRACT
Animals carefully regulate the amount of protein that they consume.
The quantity of individual essential amino acids (EAAs) obtained from
dietary protein depends on the protein source, but how the proportion
of EAAs in the diet affects nutrient balancing has rarely been studied.
Recent research using the Geometric Framework for Nutrition has
revealed that forager honeybees who receive much of their dietary
EAAs from floral nectar and not from solid protein have relatively low
requirements for dietary EAAs. Here, we examined the nutritional
requirements for protein and carbohydrates of foragers of the buff-
tailed bumblebee Bombus terrestris. By using protein (sodium
caseinate) or an equimolar mixture of the 10 EAAs, we found that
the intake target (nutritional optimum) of adult workers depended on
the source and proportion of dietary EAAs. When bees consumed
caseinate-containing diets in a range of ratios between 1:250 and
1:25 (protein to carbohydrate), they achieved an intake target (IT) of
1:149 (w/w). In contrast to those fed protein, bees fed the EAA diets
had an IT more biased towards carbohydrates (1:560 w/w) but also
had a greater risk of death than those fed caseinate. We also tested
how the dietary source of EAAs affected free AAs in bee
haemolymph. Bees fed diets near their IT had similar haemolymph
AA profiles, whereas bees fed diets high in caseinate had elevated
levels of leucine, threonine, valine and alanine in the haemolymph.
We found that like honeybees, bumblebee workers prioritize
carbohydrate intake and have a relatively low requirement for
protein. The dietary source of EAAs influenced both the ratio of
protein/EAA to carbohydrate and the overall amount of carbohydrate
eaten. Our data support the idea that EAAs and carbohydrates in
haemolymph are important determinants of nutritional state in
insects.

KEY WORDS: Carbohydrate, Protein, Geometric framework, Apis,
Bee, Forager

INTRODUCTION
Animals obtain essential amino acids (EAAs) by the consumption
of plant or animal proteins. Proteins are digested into amino acid
(AA) units, which are absorbed and then used to produce new
proteins, generate ATP, make other amino acids or used as signals
between cells. Because the need for AAs continues throughout an
animal’s lifespan, protein intake is actively regulated around a

nutritional optimum that is determined by age, physiological state
and reproductive capacity (Simpson and Raubenheimer, 2012).
Animals regulate their protein intake by altering quantities of food
eaten (Simpson et al., 2004) or by consuming a mixture of foods
with the correct balance of protein and other macronutrients
(Raubenheimer and Simpson, 1993; Simpson and Raubenheimer,
1993, 2012; Simpson et al., 2004). How the regulation of protein
intake is accomplished by the body’s ability to detect the need for
essential amino acids (EAAs) is largely unknown (Morrison et al.,
2012).

The protein source determines the proportion and types of AAs
produced by its digestion (Boisen et al., 2000) and can affect
macronutrient balancing (Lee, 2007; Altaye et al., 2010). The
amount of protein consumed in the diet directly affects the
concentration of free AAs in the blood/haemolymph (Zanotto
et al., 1996; Abisgold and Simpson, 1988). For this reason, several
authors have hypothesized that blood/haemolymph levels of AAs
are a potential means by which the body detects AA nutritional
sufficiency (Sanahuja and Harper, 1963; Peters and Harper, 1985;
Simpson and Raubenheimer, 1993; Morrison et al., 2012; Solon-
Biet et al., 2014). For example, haemolymph AA titre can directly
influence feeding behaviour, as seen when injection with AA
solutions reduces meal size and increases the time between meals in
locusts (Abisgold and Simpson, 1988). Haemolymph EAA
composition can also modulate gustatory sensitivity to AAs in
taste neurons (Simpson and Simpson, 1992) and could interact with
feeding circuits in the brain to regulate protein feeding. In mammals,
neurons in the hypothalamus, which govern food intake and are
sensitive to carbohydrate levels in the blood, also respond to specific
AAs, including leucine (Karnani et al., 2011), and direct injection
with AAs can reduce meal size (Jordi et al., 2013). However, few
AAs have been identified that interact with these neurons and
additional brain structures could also be involved (Schwartz, 2013).

The Geometric Framework for Nutrition is a modelling method
that works on the principle that all animals need specific proportions
of macronutrients for optimal performance (Simpson and
Raubenheimer, 2012). This optimum, called the ‘intake target’,
can be determined experimentally for a species with a given set of
traits (sex, age, reproductive status) (Simpson and Raubenheimer,
1993; Raubenheimer and Simpson, 1997; Simpson et al., 2004).
This is accomplished by either confining individuals to diets
composed of specific proportions of macronutrients or by giving
animals a choice of two diets with different macronutrient ratios and
measuring the amount of food they consume as well as other
performance indicators including lifespan, digestion efficiency,
weight and health (Raubenheimer and Simpson, 1993; Simpson and
Raubenheimer, 2012).

Adult workers of eusocial insects such as honeybees and ants are
unusual because their requirements for dietary protein are very low
(Pirk et al., 2010; Altaye et al., 2010; Paoli et al., 2014a,b;
Dussutour and Simpson, 2009). For example, a recent study usingReceived 18 September 2014; Accepted 28 December 2014
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the Geometric Framework estimated that foraging worker
honeybees need 250 times less dietary EAAs than bee larvae
(Paoli et al., 2014a,b); broodless honeybee ‘nurses’, in contrast,
required five times more dietary EAAs than foragers (Paoli et al.,
2014a). However, few other social insect species have been studied
using the Geometric Framework. The buff-tailed bumblebee
Bombus terrestris is a generalist pollinator that lives in eusocial
colonies of a few hundred individuals. It is an important wild
pollinator but has recently been domesticated and is now used
extensively in commercial pollination systems. In comparison to
honeybees, its biology is more similar to other wild bee species in
that it does not store much food; instead pollen brought back to the
colony is consumed quickly by colony residents and fed to brood,
and only nectar is stored. In comparison to other wild pollinators,
commercially reared colonies make it easy to study this species
under lab conditions. At present, we know very little about the
dietary requirements of bee species other than honeybees, and
whether the low requirement for dietary protein is common to other
species of eusocial insect workers. Furthermore, because workers
mainly require protein for somatic maintenance, bees could be ideal
models to test how the dietary intake of EAAs is regulated in the
absence of sexual reproduction. Foraging worker bees are unusual
because they derive a portion of their dietary EAAs from free AAs
found in floral nectar (Gardener and Gillman, 2002; Petanidou et al.,
2006; Nicolson and Thornburg, 2007) and readily consume
solutions containing AAs.
Here, we use the Geometric Framework to identify the nutritional

optimum for dietary EAAs and carbohydrates of the adult worker
bumblebee (B. terrestris). Previous studies of its nutrition have
shown that microcolonies compensate for protein levels in pollen:
bumblebees eat relatively more pollen when its protein content is
low (measured as %N) (Tasei and Aupinel, 2008). At present,
however, very little is known about the macronutrient requirements
of this bee species, in spite of the fact that it is widely used in
commercial pollination and is an important model in laboratory
studies. In these experiments, the IT for carbohydrates and a dietary
source of EAAs (either the 10 EAAs or a protein, caseinate), was
determined using an experimental design where bees were allowed
to choose between a diet containing sucrose and a source of EAAs
and sucrose alone. Using this design, we were also able to test
whether the dietary source of EAAs influenced the IT. To gain
insight into the mechanisms of nutrient regulation (Simpson and
Raubenheimer, 1993), we also measured how the amount of AAs
present in bumblebee haemolymph depended on the dietary protein
source and concentration.

RESULTS
Nutrient balancing depends on the source of EAAs
The intake target of worker bumblebees depended on the dietary
source of EAAs (Fig. 1A, B). Three of the diet solutions in each of
the treatments (protein or EAAs) allowed bees to achieve their
intake target. Bees fed with caseinate achieved an intake target of
1:149 (w/w) when given the option to eat from tubes containing
0.5 mol l−1 sucrose paired with the 1:100, 1:75 and 1:50 (w/w)
caseinate and sucrose diets (Fig. 1A). Bees fed with both 0.5 mol l−1

sucrose and sucrose containing free EAA achieved an intake target
of ∼1:255 (mol/mol) when fed with the 1:90, 1:75 and 1:50 (mol/
mol) diets (Fig. 1B), which translates into an intake target of 1:560
w/w. Bees fed with the caseinate diets consumed approximately
twice asmuch carbohydrate as those fed with the free EAA solutions
when they were feeding on diets within the range over which they
could achieve their intake target (1:50, 1:75, 1:100 w/w).

We calculated the intake target by measuring the total amount of
food consumed by adult worker bumblebees over the course of the
7 day experiment. The proportion of protein to carbohydrate (P:C)
or EAA:C in the diet solution had a strong effect on the amount of
food eaten (Fig. 1). Bees fed with sucrose paired with sucrose-
caseinate solutions (Fig. 1A) ate significantly more caseinate when
they were given the 1:25 and 1:10 (w/w) diets than the bees fed
with any of the other diets (Table 1, Šidák’s post hoc, P<0.05).
These diets had a much higher concentration of protein than the
bees’ intake target. In contrast, bees fed with the diet pairs in
which it was not possible for them to eat enough to achieve their
intake target for protein (the 1:500 and 1:250 diets) ate less on
average (Fig. 1A) but also ate significantly less carbohydrate than
bees on the other caseinate diets (Table 1, Šidák’s post hoc,
P<0.05). Like the bees fed diets containing a high proportion of
caseinate, bees fed the diets made of free EAAs ate significantly
more EAAs when fed the diets with high EAA:C proportions (1:10
and 1:25 mol/mol) (Fig. 1B, Table 1, Šidák’s post hoc, P<0.05).
These data show that bees have a set mean requirement for daily
carbohydrate (supplementary material Fig. S1; ∼45 mg day−1) and
prioritize their intake of carbohydrate over their intake of protein.
Unlike the bees fed the dilute caseinate diets, however, bees fed
the most dilute EAA:C diet (1:100) ate significantly more
carbohydrate than those fed with the other diets (Table 1,
Šidák’s post hoc, P<0.05).

In our analysis, we controlled for the colony of origin of the bees
and found that it affected the amount of carbohydrate consumed in
both sets of experiments (Table 1). The colony also influenced the
amount of caseinate but not the amount of EAAs eaten (Table 1). In
addition, we controlled for bee size and found that it influenced the
amount of carbohydrate consumed when bees were fed the caseinate
diets (Table 1). For both diet treatments, larger bees ate more
carbohydrate (Pearson’s correlation coefficient: caseinate, r=0.496,
P<0.001; EAA, r=0.221, P=0.043).

The source of EAAs in diet also influenced themean daily volume
of each diet solution consumed by bees (Fig. 1C,D). Bees fed with
the caseinate diets altered their intake to consumemore sucrose-only
solution when it was paired with a high-protein solution (e.g. 1:50
diet) but ate less of the sucrose-only solution when it was paired with
a dilute protein source (e.g. 1:250) (Fig. 1C, two-way ANOVA,
treatment×solution, F6,234=7.99, P<0.001). Bees fed with caseinate
diets on the extreme ends of the range we tested (1:500, 1:25, 1:10)
did not compensate in this way. Furthermore, larger bees ate a greater
volume of the diet solutions on average [two-way ANOVA, weight
(cov), F1,249=5.85, P=0.016]. The amount of food eaten also varied
as a function of colony [two-way ANOVA, colony (cov),
F1,249=9.07, P=0.003]. In contrast, bees fed with diets containing
the 10 EAAs in 0.5 mol l−1 sucrose solution always ate more of the
sucrose solution (Fig. 1D), and the amount of the EAA diet solution
they consumed depended on the proportion of EAA:C (two-way
ANOVA, trt×solution, F5,223=7.07, P<0.001). There was no effect
of bee size on this relationship (two-way ANOVA, weight covariate,
F1,224=1.05, P=0.306). The volume eaten varied as a function of
colony [two-way ANOVA, weight (cov), F1,249=6.49, P=0.012].

High concentrations of EAA in food increase the risk of
mortality
Bees fed diets composed of caseinate had very low rates of mortality
and their survival was largely unaffected by caseinate concentration in
the diet (Coxreg, χ12=2.79, P=0.095) (Fig 1E). However, the bees fed
the highest concentration of caseinate (1:10) had a 3.9 times greater
risk of dying than those fed themost dilute diet (1:500). Bees fed diets

794

RESEARCH ARTICLE The Journal of Experimental Biology (2015) 218, 793-802 doi:10.1242/jeb.114249

Th
e
Jo
ur
na

lo
f
Ex

pe
ri
m
en

ta
lB

io
lo
gy



high inEAA, however, weremore likely to die during the course of the
experiment than those fed with caseinate (Fig. 1F, Coxreg, χ12=5.78,
P=0.016). The risk of dying increased as a function of the amount of
EAAs in the diet; bees fed diets with EAA:C ratios less than 1:90
(mol/mol) had a 3–7 times greater risk of dying than those fed diets
higher in carbohydrates (e.g. >1:90).

Dietarysourceof EAAs influences theamount andproportion
of sugars and AAs in haemolymph
We confined bees to a specific diet and measured how diet
influenced haemolymph nutrient composition. The ratio of P:C or

EAA:C in the diet influenced the amount and proportion of sugars
and amino acids in the bee haemolymph (Fig. 2). The main sugars
we found in bumblebee haemolymph were trehalose, glucose and
fructose (Fig. 2A); sucrosewas also present, but at concentrations≥2
orders of magnitude lower than the other sugars (0.380 mmol l−1;
data not shown). The amount and proportion of sugars in bee
haemolymph depended on the diet (GEE, treatment×sugar,
χ122 =58.1, P<0.001). Of all the sugars we measured, trehalose was
present in the haemolymph in the highest concentration, except in
bees fed the low EAA diet (1:600 mol/mol). In these bees, glucose
was at a higher concentration than trehalose (Šidák’s post hoc,
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Fig. 1. Nutrient balancing towards an
intake target depends on the dietary
source of EAAs. (A) Bees fed a choice of
diets containing caseinate and 0.5 mol l−1

sucrose and 0.5 mol l−1 sucrose alone
balanced their intake of protein and
carbohydrate to an intake target of 1:149w/w
(P:C). (B) Bees fed with diets containing free
EAAs and 0.5 mol l−1 sucrose and
0.5 mol l−1 sucrose alone achieved an intake
target of 1:255 mol/mol (1:560 w/w). The
dotted line in both panels illustrates the
putative intake target. (C) The proportion of
caseinate-sucrose diet to sucrose-only diet
depended on the diet pair. (D) Bees fed the
EAA-sucrose to sucrose-only diet
consistently atemore of the sucrose-only diet
than thediets containing freeEAAs. (E)Bees
fed with diets high in caseinate had a lower
risk of mortality than bees fed diets high in
free EAA (F). The data are for the same
individuals in all panels. Error bars indicate
s.e.m. N=20 bees per diet pair per panel.

Table 1. MANOVA of total amount of each macronutrient eaten over 7 days

Casein diet Free amino acid diet

Effect Dependent Test stat (d.f.) P-value Test stat (d.f.) P-value

Diet Protein/EAA F6,113=32.4 <0.001 F5,75=15.8 <0.001
Carbohydrate F6,113=2.56 0.023 F5,75=15.7 0.026

Colony (cov) Protein/EAA F1,113=4.56 0.016 F1,75=1.20 0.275
Carbohydrate F1,113=1.40 0.005 F1,75=13.4 <0.001

Bee size (cov) Protein/EAA F1,113=1.36 0.185 F1,75=2.04 0.090
Carbohydrate F1,113=1.45 0.004 F1,75=0.36 0.148
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P<0.05). In all of the bees we sampled, fructose was present at an
average concentration of∼9.2±0.8 mmol l−1; in contrast to trehalose
and glucose, fructose concentration did not vary as a function of the
diet treatment (Fig. 2A, Šidák’s post hoc, all P>0.05).
Haemolymph amino acid concentrations were also influenced by

diet (Fig. 2B). The proportion of total EAAs to non-EAAs depended
on diet (GEE, diet×AA class, χ42=24.4, P<0.001). In all the diet
treatments except the high caseinate diet (1:20 w/w), the bees had
lower concentrations of EAAs than non-EAAs in haemolymph
(Fig. 2B). The bees fed the high caseinate diet had almost three
times the level of haemolymph EAAs compared with bees fed the
other diets; in fact, six of the 10 EAAs (leucine, isoleucine, valine,
methionine, threonine and lysine) were elevated in haemolymph
when bees were fed this diet (Table 2). Total haemolymph EAAs
were not significantly different for any of the other diet treatments
(Šidák’s post hoc, P>0.05). Interestingly, with the exception of bees
fed sucrose, the mean concentration of non-EAAs was not strongly
affected by diet treatment (Fig. 2B, Šidák’s post hoc, P>0.05); the
sucrose-only fed bees had significantly lower non-EAAs than those
fed with the high EAA diet (Šidák’s post hoc, P=0.042).
To identify whether specific amino acids signalled protein/EAA

sufficiency, it was necessary to identify whether diet influenced the

amino acid profile of haemolymph. To do this, we tested whether the
proportion of specific EAAs and non-EAAs in bumblebee
haemolymph could predict the diet the bees were fed using
canonical discriminant analysis (CDA). A CDA for the EAAs
revealed that diet influenced the specific profile of AAs in bee
haemolymph (Table 3). The first canonical discriminant function
(function 1) separated the bees fed diets high in protein (high
caseinate diet, 1:20 w/w) and the bees fed diets high in EAAs (high
AAdiet, 1:30mol/mol) from all other groups (canonical discriminant
function coefficients, Table 3). The main haemolymph AAs used to
separate the bees fed the high caseinate diet from the other groups
were leucine, threonine and valine (pooledwithin-group correlations,
Table 3). In fact, these bees had ∼10× as much leucine in their blood
as the bees fed the sucrose-only or low caseinate diets. Bees fed the
high AA diet, however, had the lowest concentration of leucine of all
the diets. The seconddiscriminant function distinguished the bees fed
sucrose only and the low AA diet from those fed with the low
caseinate diet; the bees fed the low caseinate diet had relatively
elevated levels of tryptophan and low levels of phenylalanine
(Tables 2 and 3). The third and fourth discriminant functions did not
significantly distinguish the groups.

A second CDA was performed for the non-essential AAs
(Table 3). Three significant functions were produced. The first
function distinguished the bees fed the sucrose-only diet from those
fed caseinate based on the quantities of cysteine and glutamine
(Tables 2 and 3). Cysteine was highest in concentration in the low
caseinate diet and glutamine was highest in concentration in the
sucrose-only diet. The second discriminant function distinguished
the bees fed the low caseinate diets and those fed the high AA diets
from the others based on the concentration of cysteine and tyrosine
(Tables 2 and 3). The third distinguished the low AA diet and the
high caseinate diet from the high AA diet; the low AA diet and the
high caseinate diet had relatively greater concentrations of alanine
and lower concentrations of GABA (Tables 2 and 3).

DISCUSSION
Our experiments show that, like honeybees (Paoli et al., 2014a,b),
bumblebee workers prioritize their intake of carbohydrates over the
ingestion of dietary EAAs. The source of dietary EAAs influenced
nutrient balancing: when bees were fed with a protein (caseinate),
they ate a relatively higher proportion of P:C (intake target, 1:149
w/w) than bees fed with the equimolar, free EAA solutions (intake
target, 1:255 mol/mol or 1:566 w/w). Interestingly, bees fed with
caseinate also consumed almost twice as much carbohydrate as
those fed with the free EAA solutions, even though proportionally
their diets were skewed towards protein. The bees fed solutions of
free EAAs required less of the EAA solution, consumed less
carbohydrate and regulated their intake of the solution over a wider
range of concentrations. Like other social insect workers studied
previously (Dussutour and Simpson, 2009; Pirk et al., 2010; Paoli
et al., 2014a,b), diets high in EAAs caused higher rates of mortality
in adult worker bumblebees.

Potential mechanisms for adjustment of protein/EAA intake
One of the most striking results of our study was that the amount and
proportion of EAAs in food affected the regulation of EAA intake
by individual bees. Bees fed the caseinate diet consumed ∼4×more
of the sucrose-caseinate diet to meet their needs for EAAs than bees
fed with diets containing equimolar concentrations of free EAAs.
This could be as a result of incomplete digestion of the casein by the
bees, resulting in a greater demand for the substrate, but we were
unable to test the frass of the bees to confirm this. Furthermore, the
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costs of production of enzymes to digest casein might also cause a
greater demand for EAAs. The bees fed with diets dilute in caseinate
also exhibited difficulty in regulating their intake to compensate for
the low amount of protein, suggesting that they might not be capable
of post-ingestively detecting protein in the diet when it is present at
concentrations less than 1:250 w/w.
The main difference between the caseinate-sucrose diet and the

free EAA-sucrose diets was the proportion of EAAs (Table 4). The
fact that the bees had to eat ∼4× more caseinate implies that some
of the less abundant EAAs produced by the digestion of caseinate
were important for the regulation of protein intake. With the
exception of isoleucine and phenylalanine, the free EAA diet had
greater proportions of all the other EAAs than caseinate. Two of
these, threonine and valine, were ∼4× less concentrated in the
caseinate diet (Table 4); the close match of their relative
concentration to the factor by which the bumblebees ate more
caseinate could imply that these two are particularly important for
the regulation of EAA intake. Only lysine was less concentrated
than threonine and valine; it was ∼13× less concentrated in the
caseinate diet. Furthermore, phenylalanine and isoleucine were
more concentrated than any of the other EAAs, perhaps indicating
that they are less important in protein regulation. Our caseinate
digest data also show that hydrolysis of caseinate yielded non-
EAAs, which were not present in our equimolar, free EAA diet.
The fact that bees had to ingest more caseinate to meet their needs
for dietary EAAs – in spite of the fact that the caseinate diet also
provided non-EAAs – indicates that non-EAAs play only a minor
role in the regulation of food intake.
The mechanisms that give rise to the regulation of protein intake

are largely unknown (see Morrison et al., 2012 for a review).
Dietary protein can affect signalling by peptides such as insulin
(Buch et al., 2008), and this could indirectly provide a way of
determining that protein has been eaten. A few studies have
identified that an ‘over-abundance’ of specific amino acids can

limit feeding behaviour (Purpera et al., 2012; Jordi et al., 2013).
Leucine, for example, and the other branched-chain EAAs,
isoleucine and valine, which activate the cellular target TOR
(target of rapamycin), suppress feeding when they are present in
abundance in diets fed to vertebrates (Peters and Harper, 1985) or
injected directly into the brain centres involved in feeding, such as
the hypothalamus (Blouet and Schwartz, 2010; Karnani et al.,
2011; Laeger et al., 2014). In our experiments, only valine matched
the predictions that branched-chain EAAs are important for protein
regulation because it was four times less concentrated in the
caseinate-sucrose diet than in the free EAA-sucrose diet; leucine
was ∼30% less concentrated than in the free EAA diet and
isoleucine was six times more concentrated (Table 4). These data
imply either that valine is more important in protein regulation in
insects or more than one EAA is necessary for the body to
determine protein sufficiency. At present, there are few data to
support the idea that the abundance of a single amino acid (e.g.
valine or threonine) is used as a signal of protein sufficiency
(Laeger et al., 2014). The more likely explanation is that more than
one EAA is necessary for regulation of protein/EAA intake.
Previous studies in locusts and rats have shown that the ingestion of
several amino acids simultaneously often has a stronger effect on
feeding than individual amino acids (Simpson et al., 1990; Karnani
et al., 2011). It is possible that the ratios of the branched-chain
amino acids to each other – or to combinations of other EAAs – are
what affect the body’s signals for protein sufficiency. Future studies
that test how much each of the branched-chain AAs contributes to
the intake of protein when they are present in a mixture of other
EAAs will be necessary to identify whether all EAAs must be
present in specific proportions to signal protein sufficiency.

Dietary source of EAAs influences AAs in haemolymph
Our study is the first to establish that the dietary source of EAAs has a
direct influence on haemolymph levels of AAs, especially EAAs, in

Table 2. Mean concentration of amino acids in bumblebee haemolymph 3 days after feeding

Sucrose only Low AA High AA Low casein High casein

Essential amino acids
Arginine 177.7 340.3 514.2 1624 834.6
Histidine 190.6 362.4 333.8 140.3 373.2
Isoleucine 478.9 342.5 465.7 356.4 1282
Leucine 45.82 72.17 32.07 44.23 401.2
Lysine 218.5 310.3 421.6 150.9 624.6
Methionine 864.7 580.4 877.0 858.1 3597
Phenylalanine 92.67 86.64 2.278 13.73 50.75
Threonine 100.1 204.9 123.2 126.1 722.9
Tryptophan 0.0357 0.0435 0.1629 0.1361 0.0715
Valine 724.8 1712 1012 759.2 3211

Total 2893 4011 3782 4073 11,097

Non-essential amino acids
Alanine 267.4 599.9 184.7 318.4 1110
Asparagine 12.71 16.81 14.21 10.44 12.65
Aspartic acid 211.6 373.4 243.1 429.1 460.5
Cysteine 162.7 249.7 191.6 422.1 182.7
GABA 0.5793 0.2933 0.5346 0.5846 0.1840
Glutamine 0.1873 0.1388 0.1794 0.0746 0.1400
Glutamic acid 263.6 775.1 240.2 309.1 484.6
Glycine 148.8 175.8 403.3 326.6 440.6
Proline 4049 4834 5566 4536 3974
Serine 356.6 467.8 335.9 262.8 290.3
Tyrosine 84.52 119.5 349.2 155.2 193.3

Total 5557 7612 7528 6770 7148

Grey highlights indicate the highest concentration (nmol l−1) in the five treatments for each AA.
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an insect. In this experiment, we confined bees to diets that we
predicted were either near the intake target or strongly unbalanced
towards protein/EAA, with the expectation that we would be able to
identify differences in the unbalanced diets that predicted the signal
for protein sufficiency. Asmight be expected, our data show that over-
ingestion of caseinate (arising from the need of the bees confined to
this diet to ingest sufficient carbohydrate) resulted in ∼3–4× greater
concentrations of 7 of the 10 EAAs in haemolymph. Notably, two of
the branched-chain EAAs (leucine and valine) were elevated in
haemolymph in spite of the fact that they were not the most abundant
AAs present in the caseinate digest. A recent study also showed that
rats chronically fed diets high in protein had elevated levels of the
branched-chain AAs (leucine, isoleucine and valine) in their blood
(Solon-Biet et al., 2014). Furthermore, in this same study, all other
plasma AAs were negatively correlated with protein intake or not
correlated at all. The selective elevation of the branched-chain EAAs
in haemolymph when diets are high in protein could indicate that all
other AAs from protein: (1) do not pass across the gut wall as readily;
(2) are used more quickly by corporeal cells; or (3) are selectively
excreted when they are in excess in haemolymph.
An interesting aspect of our study was that bumblebees did not

accurately regulate their intake of EAAs when diets were high in
protein or EAAs, as they over-ate EAAs in these diets, in spite of the
fact that they were also given access to a sucrose-only diet. This
suggests several possible explanations. The first is that bees cannot
easily taste differences in the concentration of protein or EAAs in
the diet, such that they passively over-ingest protein/EAAs in sugar

solution. Few studies have examined the ability of bees to taste
amino acids (Inouye and Waller, 1984; Roubik et al., 1995; Carter
et al., 2006; Simcock et al., 2014; Hendriksma et al., 2014) and none
have reported whether B. terrestris or other bees have the
appropriate gustatory receptor neurons to detect them. The second
is that post-ingestive mechanisms for the regulation of protein/EAA
intake may be tuned to a specific range of concentrations of these
amino acids, and if the concentration of protein/EAA is too high, the
bees cannot adjust by reducing their intake.

Bees prioritize carbohydrates over protein intake
We also observed that carbohydrate regulation depended on the
dietary source of EAAs and the amount of protein eaten. Bees fed
sucrose could only clearly regulate their intake around a specific
daily quantity of carbohydrates (∼45±4 mg sucrose day−1,
supplementary material Fig. S1). Bees fed with the free EAA-
sucrose diets also regulated their intake of carbohydrates to
∼47±2 mg sucrose day−1; when caseinate was very dilute in the
diet, as in the 1:250 and 1:500 caseinate-sucrose diets, bees
regulated their intake to a similar amount (36±3 mg sucrose
day−1). However, when caseinate was present at concentrations
greater than the 1:250 diet, the bees not only consumed
proportionally more caseinate (∼5±0.1 mg day−1), they also
increased their total intake of carbohydrates to twice that of the
bees on all the other diets (75±2 mg sucrose day−1). Our data
could indicate that the brain integrates information about
nutritional state using carbohydrates and EAAs simultaneously

Table 3. Canonical discriminant analysis of amino acids in bee haemolymph

Essential amino acids Non-essential amino acids

Canonical discriminant function statistics Canonical discriminant function statistics

Function Eigenvalue % Var Test stat P-value Function Eigenvalue % Var Test stat P-value

1 11.8 77.6 χ40
2 =131 <0.001 1 3.95 52.6 χ44

2 =107 <0.001
2 2.41 15.7 χ27

2 =27 <0.001 2 1.75 23.3 χ30
2 =62.6 <0.001

3 0.57 3.70 χ24
2 =16 0.090 3 1.38 18.4 χ18

2 =34.2 0.012
4 0.45 3.00 χ7

2=7 0.153 4 0.42 5.70 χ8
2=9.99 0.265

Pooled within-groups correlations Pooled within-groups correlations

Function Function

AA 1 2 3 4 AA 1 2 3 4

Leu 0.518 0.149 0.025 −0.349 Tyr 0.175 0.607 0.358 0.089
Thr 0.454 0.175 −0.092 −0.172 Cys 0.311 −0.448 0.222 0.323
Val 0.372 0.102 −0.309 0.175 Gln −0.248 0.285 0.019 −0.152
Phe 0.081 −0.586 0.420 0.242 Gly 0.211 0.245 0.019 −0.177
Trp −0.097 0.437 −0.401 −0.176 Ala 0.117 0.056 −0.541 −0.133
Arg −0.001 0.498 0.634 0.115 GABA −0.078 −0.155 0.475 −0.132
His 0.084 0.001 −0.575 0.165 Asp 0.148 −0.079 −0.159 0.047
Lys 0.103 0.046 −0.399 −0.119 Ser −0.220 0.078 −0.125 0.673
Met 0.390 0.171 −0.021 −0.591 Glu 0.021 −0.026 −0.306 0.468
Ile 0.289 0.058 −0.128 −0.514 Asn −0.073 0.147 −0.065 0.343

Pro 0.026 0.138 0.165 0.230

Canonical discriminant function coefficients Canonical discriminant function coefficients

Function Function

Diet 1 2 3 4 Diet 1 2 3 4

Sucrose −1.103 −2.122 0.402 −0.446 Sucrose −2.76 −0.741 0.026 −0.439
Low AA 0.766 −1.215 −0.281 1.697 Low AA −0.908 −0.311 −1.242 1.571
High AA −2.039 0.677 −0.98 −0.234 High AA 0.127 1.612 1.063 0.111
Low casein −1.873 1.746 0.933 0.159 Low casein 2.236 −1.618 0.719 0.002
High casein 7.039 0.536 −0.027 −0.285 High casein 1.552 0.789 −1.941 −0.577

Pooled within-groups correlations in bold indicate the highest correlation of each amino acid with each discriminant function. Canonical discriminant function
coefficients indicate how the CDA split each treatment in distinct groups; treatments with the highest magnitude (in bold) for significant functions indicate how the
classification separated the groups based on the weighting of each amino acid to each discriminant function.
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(Simpson and Raubenheimer, 2012), and that this calculation is
done independently from an evaluation of the sufficiency of
individual EAAs in the diet. Like other proteins, caseinate does
not provide the same proportions of all EAAs (Table 4); to obtain
sufficient specific EAAs, the bumblebees probably had to
consume more caseinate (w/w) than the free EAA solution
(w/w). However, they did this whilst also maintaining their intake
target for a specific proportion of P:C and this forced them to eat,
in total, more carbohydrates than the bees fed with the free EAA
diets. Thus, our data show that the proportions of EAAs (as
determined by the EAAs produced when protein is digested) can
also influence the total dietary intake of carbohydrates, perhaps
through two different mechanisms.
Our study is the first to examine in detail the nutritional needs for

protein/EAA and carbohydrates of the adult worker bumblebee. The
bumblebees in our experiments strongly regulated their daily intake of
carbohydrate to achieve a minimum of 45 mg sucrose day−1. Our
previous work has also shown that adult worker honeybees prioritize
their intake of carbohydrate over EAAs/protein (Altaye et al., 2010;
Paoli et al., 2014a,b; Archer et al., 2014), and that the need for
carbohydrate increases when honeybee workers become foragers
(Paoli et al., 2014a,b). In our studies with honeybees, we estimated
that the IT for newly-emerged honeybees fed the free EAA diets was
1:50 mol/mol. The IT we observed for bumblebees fed the free EAA
dietswas 1:255mol/mol– avalue that is very similar to our estimate of
the IT for honeybee foragers (∼1:250 mol/mol, Paoli et al., 2014a,b).
Worker bees have significant demands for carbohydrates to fuel
flight (Joos et al., 1997; Suarez et al., 1996; Harrison and Roberts,
2000; Darveau et al., 2014) and also have high resting metabolic
rates (Harrison and Roberts, 2000). Their main dietary source of
carbohydrates is floral nectar: a solution that contains free AAs but
whose composition is largely sucrose, glucose and fructose (Baker
and Baker, 1982; Petanidou et al., 2006; Nicolson and Thornburg,
2007). Thus, unlike herbivorous or carnivorous insects, by consuming

a nectar-only diet it is possible for foraging bees to selectively
consume carbohydrates without being required to eat high
concentrations of protein/EAAs at the same time. In this way, they
can obtain their carbohydrate needs first, and secondarily consume
other substrates (e.g. pollen or glandular secretions from other nest
mates) to meet their needs for dietary EAAs.

Honeybees regulate their intake of carbohydrates to maintain
haemolymph trehalose titres (Blatt and Roces, 2002a,b). In spite of
changes in the quality and quantity of sugar solutions fed to
honeybees, the trehalose concentration in haemolymph is tightly
regulated to a constant level (Blatt andRoces, 2001, 2002a,b) because
trehalose is the main sugar, along with glucose, used to produce
glucose-6-phosphate as a substrate for ATP production to fuel flight
muscles (Beenakkers et al., 1984). In contrast, we found that in
bumblebees, trehalose concentration varied with diet composition,
but fructose concentration remained constant. If the maintenance of a
storage carbohydrate in haemolymph facilitates flight, we predict that
the diet-invariant nature of haemolymph fructose indicates that
bumblebees use fructose rather than trehalose to fuel flight.
Interestingly, enzymatic studies of bumblebee flight muscles have
shown that bumblebees are unique among insects because they rely
on fructose-6-phosphate and fructose-1,6-diphosphate as cycling
substrates for flight muscles (Staples et al., 2004; Clark et al., 1973;
Beenakkers et al., 1984) rather than glucose and glucose-6-phosphate
produced from trehalose used by other insects (Beenakkers et al.,
1984). Fructose-6-phosphate and fructose-1,6-phosphate can be
produced from both glucose and fructose, but the production of
fructose-1,6-phosphate– one of the substrates forATPproduction in a
fructose-6-phosphate/fructose-1,6-phosphate cycle – requires fewer
enzymatic steps than it would if trehalose was used as a substrate
(Beenakkers et al., 1984; Berg et al., 2012). For this reason, it would
be faster and require less ATP for Bombus sp. to use fructose than
trehalose as a haemolymph storage carbohydrate. Future research on
this topicmay reveal that fructose plays an important role in the diet of

Table 4. Proportion of amino acids found in sodium caseinate and in the equimolar EAA diet

Casein
diet (µg g−1)

Proportion of total
EAA in casein

Free EAA
diet (mg ml−1)

Proportion of total
EAA in EAA diet Casein/EAA diet

Essential amino acids
Arginine 855.2±118.1 0.06 1.74 0.11 0.55
Histidine 622.9±76.4 0.04 1.55 0.10 0.40
Isoleucine 7235±909 0.52 1.31 0.09 5.8
Leucine 779.2±93.4 0.05 1.31 0.09 0.67
Lysine 145.0±16.7 0.01 1.82 0.12 0.08
Methionine 589.5±85.3 0.04 1.49 0.10 0.40
Phenylalanine 3015±351 0.22 1.65 0.11 2
Threonine 226.5±23.2 0.02 1.19 0.08 0.25
Tryptophan 0.1874±0.0188 <0.01 2.04 0.13 0.08
Valine 336.6±22.1 0.02 1.17 0.07 0.28

Non-essential amino acids
Alanine 13.65±1.74
Asparagine 0.032±0.014
Aspartic acid 97.64±7.95
Cysteine 711.5±102.4
GABA 1.467±0.330
Glutamine 0.0839±0.006
Glutamic acid 1674±77.8
Glycine 248.8±29.9
Proline 58.93±5.06
Serine 678.3±78.3
Tyrosine 1211±163.2

Sodium caseinate was digested using acid hydrolysis to render EAA and non-EAAs. AAs with the greatest concentrations are highlighted in grey. Note that
tryptophan is often destroyed by acid hydrolysis and these data may not reflect actual values rendered by bee digestion. N=6 samples.
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foraging bumblebees for this reason. We also provide the first report
we know of that shows sucrose in insect haemolymph, but the
significance of this is unknown.

Diets high in protein lead to eusocial worker mortality
In addition to requiring diets high in carbohydrates to fuel flight,
the bumblebees in our study, as well as worker honeybees and
ants, also exhibit high rates of mortality when fed diets high in
protein or EAAs (Pirk et al., 2010; Paoli et al., 2014a,b; Dussutour
and Simpson, 2012) but can survive on a diet of sucrose alone for
several days (Paoli et al., 2014a,b). In fact, in addition to having
modest demands for dietary protein, bees have significant
diversification of genes encoding enzymes necessary for sugar
metabolism (Kunieda et al., 2006). Most animals fed diets higher
in protein than their actual IT can convert dietary AAs into fuel via
gluconeogenesis; we have been unable to find many accounts
where diets high in protein kill animals outright, although an
abundance of some amino acids, such as methionine, has been
associated with toxicity or a reduction in lifespan (Harper et al.,
1970; Grandison et al., 2009). These studies, in combination with
our data, suggest that the need for diets high in carbohydrates is a
general trait of social Hymenoptera workers and could suggest
that workers in these lineages have undergone a metabolic trade-
off that has perhaps enhanced their ability to use carbohydrates
but at the cost of being able to use EAAs efficiently as substrates
for energy production.

MATERIALS AND METHODS
Experimental animals
Fourteen commercially reared bumblebee (Bombus terrestris terrestris
Linnaeus 1758) colonies (Koppert Ltd, UK and Syngenta Bioline) were kept
in a temperature controlled room or incubators maintained at 28°C and 60%
relative humidity at Newcastle University (UK). Prior to the experiment,
each colony had access to a liquid food source suppliedwith the colonies and
∼3 g of honeybee collected pollen was provided daily to each colony.
Female worker bees were removed from the colony by opening the flight
holes and catching individual bees in plastic vials; bees that emerged from
the colony exit were used in the experiments. Bees were briefly cold-
anaesthetized on ice until activity was reduced to transfer them into the
feeding chambers. Only female bees were used; to identify females, genitals
were inspected during cold anaesthesia for the presence of male claspers
(Hannan et al., 2012). Workers of all sizes were captured and used in the
experiments and care was taken to distribute them randomly across
treatments.

Experimental chambers
Bees were housed individually in a plastic box (16.5×11×6.5 cm) with 20
holes (2 mm) drilled at each end of the lid for ventilation. In three sides of
the box, a hole was cut to insert a 2 ml microcentrifuge tube; each tube had
four holes (2 mm) drilled in a line in one side of the tube to facilitate feeding
by the bees. Two of the tubes were filled with food solution; the remaining
tube was filled with deionized water. A piece of absorbent laboratory paper
was added to the housing box, covering the base. After being placed in the
box, bees were left to acclimatize at room temperature before the feeding
solutions were added. Bees were then moved into the 28°C controlled
temperature room or incubator and kept in darkness for 7 days, through the
course of the experiment. After use in treatments, bees were killed by
freezing at −20°C.

Nutrient balancing experiments and diets
To test how the dietary source of EAAs influenced the intake target of adult
worker bumblebees, each beewas presented with a choice of two solutions: a
0.5 mol l−1 sucrose solution and another solution that contained 0.5 mol l−1

sucrose with protein (sodium caseinate, Sigma-Aldrich, C8654) or the 10
EAAs at equimolar concentrations (Table 5). The AAs used were:

methionine, tryptophan, leucine, lysine, valine, arginine, isoleucine,
phenylalanine, threonine and histidine (all from Sigma-Aldrich). These
AAs are essential for many insect species and were identified as ‘essential’
for honeybees by de Groot (1953). Both of the EAA sources were dissolved
in a 0.5 mol l−1 sucrose solution made with deionized water. Diets were
made to specific protein to carbohydrate ratios (P:C), where the carbohydrate
concentration remained constant (0.5 mol l−1 sucrose) (Tables 4 and 5). The
caseinate solutions were based on weight-to-weight proportions; the EAA
solutions were based on the molar ratio of the EAAs-to-sucrose as in Paoli
et al. (2014a,b). Our diets did not have the same proportion of EAAs: upon
acid hydrolysis (see below), caseinate was digested to a specific proportion
of EAA and non-EAA that was dominated by isoleucine, phenylalanine,
glutamic acid and tyrosine (Table 4). Furthermore, the most concentrated
amino acids were in some cases three or four orders ofmagnitude higher than
the least concentrated amino acids. In contrast, our EAA diet was nearly
equimolar with a similar proportion w/w.

Diet tubes were weighed and replaced every 24 h. To adjust for
evaporation, evaporation rates for each solution were measured in boxes
containing the solutions (without bees). The average value for each solution
was subtracted from the final weights for the consumption of each diet
solution. Values for the amount of carbohydrate or protein and EAAs
consumed were determined by dividing theweight of the consumed solution
by its density (1.06) to obtain the volume. The amount of each solute in the
solution was then obtained for the volume of solution consumed; this
amount was combined to give a single value for consumption of protein and
carbohydrate for each day. Total consumption was a measure of the total
amount eaten over the 7 day period.

Effect of diet on haemolymph composition
We measured haemolymph sugars and AAs with the aim of identifying
how diets of caseinate or EAAs influenced nutritional state and hence
nutrient balancing (Simpson and Raubenheimer, 1993). To do this, we
restricted individual bees for 3 days to one of the following diets: sucrose
only, low caseinate (1:140 w/w), high caseinate (1:20 w/w), low EAAs
(1:600 mol/mol), or high EAAs (1:30 mol/mol) using the protocol
described above. After 3 days, haemolymph was collected from each bee.
Bees were cold-anaesthetized, and a hypodermic needle was used to cut an
incision in the back of the head posterior to the ocelli. Haemolymph from
individual bees was collected using 10 µl capillary tubes and expelled into
a 0.2 ml microcentrifuge tube with an equal volume of 0.1 mol l−1

perchloric acid to haemolymph. Each sample represented haemolymph
from one bee. The average volume of haemolymph collected from an
individual was 6.16 µl (the volume of haemolymph did not differ between
treatment groups). Samples were kept frozen at −20°C until HPLC
analysis. For HPLC analysis, 4 µl of haemolymph-perchloric acid mixture
from each bee was diluted to 1:30 with HPLC gradient grade H2O. Each
sample was passed through a 0.45 μm syringe-tip filter (Whatman
Puradisc 4, nylon, 4 mm) prior to analysis.

In each sample, we used HPLC to measure glucose, trehalose, fructose
and sucrose and a suite of EAAs and non-EAAs. Sugars were quantified
using a Dionex DX500 HPLC system with an ED40 electrochemical

Table 5. Ratios of dietary source of EAA:C

Dietary EAA source EAA:C (w/w) EAA:C (m/m)

Casein 1:500 –

1:250 –

1:100 –

1:75 –

1:50 –

1:25 –

1:10 –

Essential amino acids 1:230 1:100
1:206 1:90
1:153 1:75
1:115 1:50
1:57 1:25
1:23 1:10
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detection unit. The mobile phase was 100 mmol l−1 NaOH. A separate
aliquot of the original haemolymph-perchloric acid sample was diluted to
1:200 with distilled, deionized water. Twenty microlitres of this sample was
injected on to a Carbopac PA-100 column (Dionex, Sunnyvale, California,
USA). Sugars were eluted isocratically with 100 mmol l−1 NaOH with a
flow rate of 1 ml min−1. Elution profiles were analysed with Chromeleon
software (Thermo Fisher Scientific).

We quantified 21 AAs in the samples using a Dionex Ultimate 3000 RS
system fitted with a 150×2.1 mm Accucore RP-MS (Thermo Scientific)
column. Before being injected onto the column, 10 µl of diluted sample was
pre-treated for 1 min with 15 µl of 7.5 mmol l−1 o-phthaldialdehyde (OPA)
and 225 mmol l−1 3-mercaptopropionic acid (MPA) in 0.1 mol l−1 sodium
borate (Na2B4O7·10H2O, pH 10.2), then with 10 µl of 96.6 mmol l−1

9-fluroenylmethoxycarbonyl chloride (FMOC) in 1 mol l−1 acetonitrile for
1 min, followed by the addition of 6 µl of 1 mol l−1 acetic acid. A final volume
of 30 µl of the treated samplewas then injected into the HPLC system. Elution
solvents used were: A, acetonitrile/methanol/water (45/45/45 v/v/v) and B,
10 mmol l−1 Na2HPO4, 10 mmol l−1 Na2B4O7·10H2O, 0.5 mmol l−1 sodium
azide (NaN3), adjusted to pH 7.8 with concentrated HCl. Elution of the
column occurred at a constant flow rate of 500 µl min−1 with a linear gradient
of 3 to 100% (v/v) eluent A and 97 to 0% eluent B. Amino acid derivatives
were fluorometrically detected (Ultimate 3000 RS Fluorescence Detector,
Dionex, Thermo Fisher Scientific) and elution profiles were analysed using
Chromeleon software (Thermo Fisher Scientific).

Amino acid composition of sodium caseinate
To identify the AAs produced by the digestion of caseinate, we digested
sodium caseinate in HCl. Sodium caseinate (1.7 mg) was first washed in
200 µl of methanol to extract free AAs. The samples were vortexed for 1 min
and then left for 10 min and vortexed a second time for 1 min (Cook et al.,
2003). Each sample was centrifuged for 30 min at 134,000 r.p.m. The
supernatant was removed and placed in a new microcentrifuge tube. The
remaining pellet and the supernatant sample were dried down in a heat block
at 70°C. Dry samples from the methanol extract were then recovered in
200 µl HPLC gradient grade water and vortexed for 1 min. To the dried
caseinate pellet, we added 170 µl of 6 mol l−1 hydrochloric acid (HCl) and
the sample was briefly vortexed. Sealed tubes were placed in plastic
microcentrifuge tube boxes, sealed, and placed in a domestic 900 W
(2450 MHz) microwave oven inside of a fume hood. A Pyrex beaker
containing 800 ml of cold tap water was also placed in the microwave oven
to absorb excess radiation (Zhong et al., 2005). Samples were irradiated for
15 min on full power and then left to cool. Cooled samples were then moved
to a heat block within a fume hood, unsealed and heated at 70°C to evaporate
the acid. Once dry, 200 µl of deionized UHPLC gradient grade water was
added to each sample. Both free AA (supernatant) and hydrolysed protein-
bound AA samples (digested pellet) were centrifuged for 1 min and filtered
through 0.45 µm syringe-tip filters (Whatman Puradisc 4, nylon, 4 mm).
Ten microlitres of each filtered sample was analysed using the HPLC
method for AA analysis above.

Statistical analyses
Analyses were carried out using IBM SPSS v19. The amount of food
consumed (mg) was analysed using multivariate analysis of variance
(MANOVA) and the volume analysed using two-way analysis of variance
(ANOVA). Both analyses included colony and bee size as covariates.
Šidák’s post hoc tests were used for multiple comparisons. Data were natural
log transformed prior to analysis. (Note that we used bee weight as a proxy
for bee size based on a factor analysis that identified that bee weight had the
strongest correlation with four other measured parameters: abdomen and
thorax width, head length, total bee length.) The intake targets were
determined by the post hoc comparisons of the amount of protein/EAAs and
carbohydrates eaten on each dietary treatment; diet treatments that were not
significantly different in both were averaged to determine the intake target
P:C or EAA:C ratio. Survival data were analysed using a Cox regression
(Coxreg) analysis with diet treatment as a covariate; comparisons between
groups were evaluated using the ‘indicator’ contrasts. The hazard ratio (HR)
was calculated for each comparison against the indicator group, which was
always the most dilute EAA:C or P:C treatment. Generalized estimating

equations (GEEs) were used to test for differences in haemolymph sugars
and total EAA and non-EAA. A canonical discriminant analysis (CDA) was
used to identify differences in the treatments in the amount and proportion of
specific AAs in haemolymph.
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Caffeine in Floral Nectar Enhances a
Pollinator’s Memory of Reward
G. A. Wright,1* D. D. Baker,2 M. J. Palmer,3 D. Stabler,1,2 J. A. Mustard,4 E. F. Power,1,2

A. M. Borland,2 P. C. Stevenson5,6

Plant defense compounds occur in floral nectar, but their ecological role is not well understood.
We provide evidence that plant compounds pharmacologically alter pollinator behavior by
enhancing their memory of reward. Honeybees rewarded with caffeine, which occurs naturally in
nectar of Coffea and Citrus species, were three times as likely to remember a learned floral scent
as were honeybees rewarded with sucrose alone. Caffeine potentiated responses of mushroom
body neurons involved in olfactory learning and memory by acting as an adenosine receptor
antagonist. Caffeine concentrations in nectar did not exceed the bees’ bitter taste threshold,
implying that pollinators impose selection for nectar that is pharmacologically active but not
repellent. By using a drug to enhance memories of reward, plants secure pollinator fidelity and
improve reproductive success.

Many drugs commonly consumed by hu-
mans are produced by plants as a form
of toxic defense against herbivores

(1, 2). Although plant-derived drugs like caffeine
or nicotine are lethal in high doses (3–5), at low
doses they have pharmacological effects on mam-
malian behavior. For example, low doses of caf-

feine are mildly rewarding and enhance cognitive
performance and memory retention (6). Caffeine
has been detected in low doses in the floral nectar
and pollen of Citrus (7), but whether it has an
ecological function is unknown.

Two caffeine-producing plant genera, Citrus
and Coffea, have large floral displays with strong
scents and produce more fruits and seeds when
pollinated by bees (8, 9). If caffeine confers a se-
lective advantage when these plants interact with
pollinators, we might expect it to be commonly
encountered in nectar. We measured caffeine in
the nectar of three species of Coffea (C. canephora,
C. arabica, and C. liberica) and four species of
Citrus (C. paradisi, C. maxima, C. sinensis, and
C. reticulata) using liquid chromatography–mass
spectrometry (10) (fig. S1A). When caffeine was
present, its concentration ranged from 0.003

to 0.253 mM. The median caffeine concentra-
tion in both genera was not significantly dif-
ferent (Fig. 1A, Mann-Whitney, Z = –1.09, P =
0.272). Caffeine was more common in the nec-
tar of C. canephora than in that of C. arabica
or C. liberica (Coffea: logistic regression c2

2 =
11.1, P = 0.004); it was always present in Citrus
nectar. The mean total nectar sugar concentra-
tion ranged from 0.338 to 0.843 M (Fig. 1B; see
fig S1B for individual sugars). Caffeine concen-
tration in nectar did not correlate with total sugar
concentration (Pearson’s r = 0.063, P = 0.596).

We hypothesized that caffeine could affect
the learning and memory of foraging pollinators.
To test this, we trained individual honeybees to
associate floral scent with 0.7 M sucrose and
seven different concentrations of caffeine and
tested their olfactory memory. Using a method
for classical conditioning of feeding responses
(proboscis extension reflex) (11), we trained bees
for six trials with 30 s between each pairing of
odor with reward. This intertrial interval ap-
proximated the rate of floral visitation exhibited
by honeybees foraging from multiple flowers on
a single Citrus tree (see methods). The presence
of low doses of caffeine in reward had a weak
effect on the rate of learning (Fig. 2A), but it had
a profound effect on long-term memory. When
rewarded with solutions containing nectar levels
of caffeine, three times as many bees remembered
the conditioned scent 24 hours later and re-
sponded as if it predicted reward (Fig. 2B, lo-
gistic regression, c7

2 = 41.9, P < 0.001). Twice as
many bees remembered it 72 hours later (Fig. 2C).
This improvement in memory performance was
not due to a general increase in olfactory sensi-
tivity resulting from caffeine consumption (fig.
S2A). Indeed, the effect of caffeine on long-term

1Centre for Behaviour and Evolution, Institute of Neuro-
science, Newcastle University, Newcastle upon Tyne NE1 7RU,
UK. 2School of Biology, Newcastle University, Newcastle upon
Tyne NE1 7RU, UK. 3Division of Neuroscience, Medical Re-
search Institute, Ninewells Medical School, University of Dundee,
Dundee DD1 9SY, UK. 4School of Life Sciences, Arizona State
University, Tempe, AZ 85287, USA. 5Jodrell Laboratory, Royal
Botanic Gardens, Kew, Surrey TW9 3AB, UK. 6Natural Resources
Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK.

*To whom correspondence should be addressed. E-mail:
jeri.wright@ncl.ac.uk

Fig. 1. (A) Caffeine concentration in Coffea and Citrus spp. and a cup of
instant coffee. Caffeine concentration depended on species within each
genus (Coffea: Kruskal-Wallis, c22 = 28.1, P < 0.001; Citrus: Kruskal-Wallis,
c2

2 = 6.98, P = 0.030); C. canephora had the highest mean concentration of
all species sampled. (B) The sum of the concentration of sucrose, glucose,
and fructose (total nectar sugars) depended on species (one-way analysis of

variance: F5, 161 = 4.64, P < 0.001) and was greatest in Citrus maxima and
hybrids (citron, lemons, clementines). [C. can., Coffea canephora, N = 34;
C. lib., Coffea liberica, N = 31; C. arab., Coffea arabica, N = 27; C. par., Citrus
paradisi and hybrids, Ncp = 17; C. max., Citrus maxima and hybrids, N = 5;
C. sin. and C. ret., Citrus sinensis and Citrus reticulata, NCS = 7, NCR = 5 (data
for these two species were pooled).] Mean responses T SE.
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Fig. 2. (A) The rate of learning of bees conditioned with an odor stimulus paired with a 0.7 M
sucrose reward containing caffeine. The rate of learning was slightly greater for the bees fed
caffeine in reward during conditioning (logistic regression, c1

2 = 4.85, P = 0.028). N ≥ 79 for all
groups. (B) Memory recall test for odors at 10 min (white bars) or 24 hours (red bars) after bees
had been trained as in (A). Bright red bars indicate that the response at 24 hours was significantly
different from the control (0.7 M sucrose) (least-squares contrasts: P < 0.05); dark red bars were
not significantly different. Nectar levels of caffeine are indicated by hatching. N > 79 for each
group. (C) Bees fed 0.1 mM caffeine in sucrose (orange bars) were more likely to remember the
conditioned odor than sucrose alone (white bars) (logistic regression, c1

2 = 9.04, P < 0.003) at
24 hours and 72 hours after conditioning. N = 40 per group.
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Fig. 3. The effect of caffeine on Kenyon cells. (A andB) Example traces from a
KC in intact honeybee brain recorded under voltage-clamp [(A), VH = –73 mV)
and current-clamp [(B), at resting VM), showing the increase in IM and de-
polarization evoked by bath application of caffeine (100 mM) and subsequent
reversal by the nAChR antagonist d-TC (500 mM). (C and D) Mean data
showing the reversal by d-TC (500 mM) of the effect of caffeine (Caff; 100 mM)
on IM [(C);N= 6, t5 = 4.03, P= 0.010; t5 = 4.07, P= 0.010] and VM [(D);N= 6,
t5 = 34.1, P < 0.001; t5 = 12.0, P < 0.001]. (E and F) Comparison of the mean

effects of caffeine and DPCPX on IM [(E); Caff: N = 10, t9 = 3.84, P = 0.004;
DPCPX: N = 6, t5 = 4.04, P = 0.010] and VM [(F) Caff: N = 6, t5 = 34.1, P <
0.001; DPCPX: N = 6, t5 = 3.39, P = 0.019]. (G and H) Example traces [(G);
rising phase shown on an expanded time scale below] andmean data [(H); rate
of rise:N = 6, t5 = 2.20, P= 0.079; tdecay:N = 9, t8 = 3.54, P = 0.008] showing
that DPCPX (100 nM) and caffeine (100 mM) slowed the decay and, in six of
nine KCs, potentiated the fast component of the response evoked by exogenous
ACh. (Student’s paired t test used in all comparisons.) Mean responses T SE.
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olfactory memory in bees was greater than that
produced by high concentrations of sucrose when
the same experimental methods were used (e.g.,
2.0 M, fig. S2B).

Caffeine’s influence on cognition in mam-
mals is in part mediated by its action as an aden-
osine receptor antagonist (6). In the hippocampal
CA2 region, inhibition of adenosine receptors
by caffeine induces long-term potentiation (12),
a key mechanism of memory formation (13). The
Kenyon cells (KCs) in mushroom bodies of the
insect brain are similar in function to hippocam-
pal neurons: They integrate sensory input during
associative learning, exhibit long-term potentiation,
and are involved in memory formation (14–16).
To determine whether nectar-caffeine doses affect
mushroom body function, we made whole-KC
recordings in the intact honeybee brain. Caffeine
(100 mM) evoked a small increase in the holding
current (IM) and depolarized KC membrane po-
tential (VM) toward the action potential firing
threshold, by increasing nicotinic acetylcholine
receptor (nAChR) activation (Fig. 3, A to D).
To determine whether the observed effects of
caffeine were due to interactions with adeno-
sine receptors, we applied the adenosine re-
ceptor antagonist DPCPX and observed that it
similarly increased IM and depolarized VM, but
to a lesser extent (Fig. 3, E and F). Both caffeine
and DPCPX affected KC response kinetics evoked
by brief, local application of ACh, increasing the
activation rate and slowing the decay (Fig. 3, G
and H). Our data show that caffeine modulates
cholinergic input via a postsynaptic action, but
could act via presynaptic adenosine receptors to
potentiate ACh release (17). The resulting increase
in KC excitability should lead to an increased
probability of action potential firing in response
to sensory stimulation (18), thereby facilitating
the induction of associative synaptic plasticity in
KCs (19). The enhanced activation of KCs may
also facilitate plasticity at synapses with mush-

room body extrinsic neurons (20), which exhibit
spike-timing–dependent plasticity (21). In this
way, a “memory trace” could be formed for the
odor associated with reward during and after
conditioning (22, 23).

Caffeine is bitter tasting to mammals and is
both toxic (24) and repellent to honeybees at
high concentrations (25, 26). If bees can detect
caffeine, theymight learn to avoid flowers offering
nectar containing it (27).We found that honeybees
were deterred from drinking sucrose solutions
containing caffeine at concentrations greater than
1 mM (Fig. 4); they also have neurons that detect
caffeine in sensilla on their mouthparts (fig. S3).
However, nectar concentrations did not exceed
0.3 mM (0.058 mg/ml), even though levels of
caffeine in vegetative and seed tissues of Coffea
have been reported to be as great as 24 mg/ml
(28). This implies that pollinators drive selection
toward concentrations of caffeine that are not
repellent but still pharmacologically active.

Our data show that plant-produced alkaloids
like caffeine have a role in addition to defense:
They can pharmacologically manipulate a pol-
linator’s behavior. When bees and other polli-
nators learn to associate floral scent with food
while foraging (29), they are more likely to visit
flowers bearing the same scent signals. Such
behavior increases their foraging efficiency (30)
while concomitantly leading to more effective pol-
lination (31, 32). Our experiments suggest that
by affecting a pollinator’s memory, plants reap
the reproductive benefits arising from enhanced
pollinator fidelity.
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Fig. 4. Bees are more
likely to reject sucrose
solutions containing caf-
feine at concentrations
greater than 1 mM (lo-
gistic regression, c4

2 =
23.4, P < 0.001; for 0.7
and 1.0 M, 1 mM caf-
feine versus sucrose post
hoc, P < 0.05; for 0.3 M,
100 mM caffeine versus
sucrose post hoc, P <
0.05). Bees were less like-
ly to drink 0.3 M sucrose
(pale pink diamonds) than
0.7M (pink circles) or 1.0M
solutions (red triangles) (lo-
gistic regression,c2

2=8.69,
P= 0.013). Mean responses
T SE. N0.3M = 29, N0.7M =
100, N1.0M = 20.
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Abstract Dietary sources of essential amino acids
(EAAs) are used for growth, somatic maintenance and

reproduction. Eusocial insect workers such as honeybees

are sterile, and unlike other animals, their nutritional needs
should be largely dictated by somatic demands that arise

from their role within the colony. Here, we investigated the

extent to which the dietary requirements of adult worker
honeybees for EAAs and carbohydrates are affected by

behavioural caste using the Geometric Framework for

nutrition. The nutritional optimum, or intake target (IT),
was determined by confining cohorts of 20 young bees or

foragers to liquid diets composed of specific proportions of

EAAs and sucrose. The IT of young, queenless bees shifted
from a proportion of EAAs-to-carbohydrates (EAA:C) of

1:50 towards 1:75 over a 2-week period, accompanied by a

reduced lifespan on diets high in EAAs. Foragers required
a diet high in carbohydrates (1:250) and also had low

survival on diets high in EAA. Workers exposed to queen
mandibular pheromone lived longer on diets high in EAA,

even when those diets contained 59 their dietary require-

ments. Our data show that worker honeybees prioritize
their intake of carbohydrates over dietary EAAs, even

when overeating EAAs to obtain sufficient carbohydrates

results in a shorter lifespan. Thus, our data demonstrate that
even when young bees are not nursing brood and foragers

are not flying, their nutritional needs shift towards a diet

largely composed of carbohydrates when they make the
transition from within-hive duties to foraging.

Keywords Honeybee ! Amino acid ! Nutrition ! Protein-

to-carbohydrate ratio ! Apis mellifera ! Diet

Introduction

All animals require a dietary source of essential amino

acids (EAAs) which are used for growth, somatic mainte-
nance, and reproduction. EAAs are obtained by consuming

the protein found in other animals or plants and are in
greatest demand during periods of growth early in life

(Behmer 2009; Tigreros 2013). In contrast to juvenile

animals, adults mainly require amino acids for basic
somatic functions (e.g. production of enzymes, peptide or

amine signalling, tissue repair, immune function) or

reproduction, and their needs for EAA decline with age
(Millward et al. 1997; van de Rest et al. 2013). Repro-

duction, in the form of allocation of resources to eggs or

offspring by females (O’Brien et al. 2002) or the donation
of nuptial gifts and the production of sperm by males

(Voigt et al. 2008), also places demands on the acquisition

of amino acids in adult diets, which is often manifested as a
trade-off between lifespan and protein/amino acid
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ingestion (Fanson et al. 2012; Grandison et al. 2009;

Maklakov et al. 2008).
Adult eusocial insects such as ants and bees live in

colonies of closely related, largely sterile adults that

engage in a division of labour that includes caring for the
queen and brood. In honeybees, behavioural caste corre-

lates with age within the colony. After eclosion, adult

worker bees perform within-colony activities such as
cleaning, food storage, rearing larvae, and attending the

queen (Winston 1987). These bees continue to perform
within-hive behavioural tasks as a function of their expo-

sure to the queen’s mandibular pheromone (QMP); bees

near the queen remain more ‘nurse-like’ whereas bees
exposed to less of the queen’s pheromones become for-

agers (Pankiw et al. 1998). Honeybees are unique, even

among social insects, because nurses provision larvae,
other workers, and the queen with glandular secretions as

food––royal jelly––which is the main source of protein that

larvae receive for the first three instars after hatching
(Winston 1987). Because most adult bees or ants are ster-

ile, their nutritional requirements for amino acids should be

considerably less than those of queens or drones. However,
the production of royal jelly is likely to place metabolic

demands on young bees (e.g. nurses) for dietary amino

acids (Crailsheim 1990): how much that demand exceeds
their own requirements for somatic maintenance is

unknown. As young bees mature and pass through their

behavioural ontogeny, they stop eating pollen and lose the
ability to digest solid proteins (Crailsheim 1986, 1990;

Lass and Crailsheim 1996; Moritz and Crailsheim 1987);

they also stop producing glandular secretions and tending
larvae and start building wax comb, packing food into the

cells, guarding the colony entrance and eventually become

foragers (Winston 1987). Furthermore, during this period,
their physiology changes substantially: their mandibular

glands and ovaries atrophy (Winston 1987) and their fat

body reduces (Seehuus et al. 2007; Ament et al. 2008).
How much their nutritional optimum depends on their

behavioural caste and age has not yet been tested.

The Geometric Framework (GF) for nutrition is a
modelling method developed to identify an animal’s opti-

mal intake of key nutrients such as protein and carbohy-

drate, and the regulatory priorities for different nutrients
and performance consequences when animals are confined

to suboptimal diets (Simpson and Raubenheimer 1993,

2012). The GF is based on the principle that animals
require multiple nutrients simultaneously. The requirement

to achieve the optimal proportion of nutrients in their diet

forces them to consume a varied diet and/or make trade-
offs by overeating or undereating specific nutrients in

available foods (Raubenheimer and Simpson 1997). When

animals are restricted to a diet containing a set proportion
of nutrients, the amount they eat should reflect a ‘rule of

compromise’ that is governed by homeostatic mechanisms

tuned to regulate feeding behaviour (Raubenheimer and
Simpson 1997; Simpson et al. 2004). These rules are dic-

tated both by nutrient requirements, but also by costs

associated with over or under-consuming nutrients relative
to requirements (Simpson et al. 2004). The optimal

amounts and ratio of specific nutrients, or the ‘intake tar-

get’ (IT), for an animal can be identified in various ways,
including by examining the food intake of animals when

they are confined to one of several foods composed of
different proportions of two or more nutrients (Simpson

et al. 2004) or by offering different pairwise choices of

nutritionally complementary foods (Chambers et al. 1995).
Here, we tested how caste determined the adult worker

honeybee’s nutritional requirements for EAAs using the

principles in the GF (Simpson and Raubenheimer 1993;
Simpson et al. 2004). By confining cohorts of workers to

single diets composed of specific proportions of sucrose

and the ten EAAs required by honeybees (i.e. protein), we
identified the ITs of young bees (days 0–14 from emer-

gence within the colony) and foragers (collected from

outside the colony). Diet was limited to carbohydrates
(sucrose) and amino acids because these are the main

components of honey (Anklam 1998; Hermosin et al.

2003): one of the foods eaten by young workers within the
colony and the only food consumed by foragers (with the

exception of glandular secretions received during trophal-

laxis, see Crailsheim 1998). To identify costs associated
with over consumption of specific nutrients, we also mea-

sured how dietary intake of EAAs influenced survival. To

confirm that the costs associated with overeating EAAs was
a result of physiological changes associated with age and

behavioural caste, we exposed newly enclosed workers to

synthetic QMP and measured food consumption and sur-
vival on diets high in EAA. This study is the first to show

that the nutritional requirements of honeybees change as a

function of age and behavioural role, and has implications
for dietary intervention strategies designed to improve

honeybee health.

Materials and methods

Animals

Frames of newly emerged workers were removed from two
colonies of Apis mellifera ‘‘Buckfast’’ hybrid honeybees

kept in outdoor colonies at Newcastle University. Each

frame was placed in a box in a controlled temperature room
at 34 "C and 60 % relative humidity. Newly emerged bees

were brushed off the frame each day; foraging workers

were collected daily at the hive entrance by capturing
individuals in plastic sample tubes. For each cohort, 20
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bees were placed in a Perspex box (11 9 6 9 20 cm) with

five feeding tubes consisting of 2-ml microcentrifuge tubes
(four 3-mm holes were drilled along the top of each tube).

Four feeding tubes were filled with a treatment solution;

each box also had a water tube. The boxes were placed in a
constant temperature room at 34 "C and 60 % RH.

Experiments continued for 14 days for newly emerged

workers (i.e. nurse bees), and 7 days for foraging workers
(or as long as the bees survived in both cases). The number

of dead bees in each box was counted daily.

Diets

Each of the ten EAAs needed by honeybees (de Groot 1953;

methionine, tryptophan, arginine, lysine, histidine, phenyl-

alanine, isoleucine, threonine, leucine, valine) was added to
a 1.0 M sucrose solution (Table S1). Ratios of amino acids

to carbohydrates (sucrose) were calculated on a molar–

molar basis as the following: 1:750, 1:500, 1:250, 1:100,
1:75, 1:50, 1:10, 1:5. All ten amino acids were was added at

the same concentration: for example, for the 1:10 diet, the

total final concentration of the amino acids was 0.1 M, with
each amino acid present at a concentration of 0.01 M.

To measure food consumption, each tube containing

nutrient solution or water was weighed, placed in the box,
and then reweighed 24 h later. Each tube was replaced with

a new, full tube daily. The difference in weight was a

measure of the amount consumed in a 24-h period. A con-
trol for the evaporation rate of the solution from each tube

was performed for each diet by monitoring weight loss in

feeding tubes in empty boxes daily for a 5-day period. The
final figure for total consumption from each tube was

adjusted for evaporation rate by subtracting the amount of

solution evaporated from the control boxes with no bees;
changes in concentration were also estimated (Table S2).

Total daily consumption represented the sum of the adjusted

weight of all four feeding tubes; this figure was then divided
by the number of live bees remaining on that day. Total

carbohydrate and amino acid consumption was calculated

by multiplying the amount consumed per bee by the weight
of sucrose and the weight of amino acid in 1 ml of solution.

For the sucrose only experiments, cohorts of 20 bees

were confined to feeding on 1.0 M sucrose solution for
14 days for young bees and 7 days for foragers. The total

volume of solution was measured each day. The volume

was adjusted by the evaporation rate in each tube as above.

Queen mandibular pheromone

Cohorts of 20 newly emerged honeybees were kept in the

same conditions as described previously. QMP was

administered to the treatment group by placing a 2-cm strip
of BeeBoost QMP substitute (Pherotech) in each box.

Honeybees without QMP were maintained in a separate

incubator to avoid contamination with QMP, as were the
diets. The diets were administered as described previously;

the two diets chosen were sucrose only and the 1:5 diet.

Experiments continued for 14 days, with survival and
consumption recorded each day for each box (10 per

treatment).

Statistics

Daily and total consumption data were analysed using

generalized linear models or repeated-measures ANOVA

using SPSS (IBM SPSS Statistics v.19) with diet as a main
effect. Post hoc comparisons were made using least squares

difference (LSD) analysis with significance at P B 0.05.

The impact of diet on survival was analysed using a Cox
regression (Coxreg) analysis to calculate the hazard ratio

(HR) or by Kaplan–Meier analysis. Diets were compared

per day over the experimental period using log-rank,
pairwise comparisons for each strata, and LSD post hoc

tests.

Results

Nutritional intake target of worker bees shifts

towards carbohydrate with age and caste

The GF model described by Simpson and Raubenheimer

(1993, 2012) predicts that animals make compromises

when they are confined to unbalanced diets that reflect the
fitness costs associated with over-ingesting and under-

ingesting specific nutrients relative to the IT (Fig. 1a, b). In

Fig. 1a, the case is illustrated where the underlying fitness
landscape is symmetrical about the IT, i.e. the fitness costs

of over-ingestion equal the costs of under-ingestion for a

given nutrient relative to the IT (and in the case illustrated
in Fig. 1a, the costs are also symmetrical between the two

nutrients). Here, the intake array across an array of

unbalanced food rails forms a smooth arc (Simpson et al.
2004). In Fig. 1b, by contrast, the costs of ingesting

excesses are less than those of ingesting deficits of either or

both nutrients (Simpson et al. 2004). In this case, the intake
array across a range of food rails in not a smooth arc, but

rather it can be inferred that the IT lies at the hinge point of

the array––identified as a red dot in Fig. 1.
By confining bees to specific proportions of EAAs and

sucrose, we were able to identify the IT and the rule of

compromise for diets composed of EAAs and carbohy-
drates (EAA:C). The IT of queenless, newly emerged

(young) worker honeybees shifted towards carbohydrates

as the workers aged and transitioned to the forager caste
(Figs. 2, 3). The intake arrays recorded in the present
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experiment tended to hinge at a point of least consumption

on one diet and open outwards as bees ingested more on

diets diverging from this ratio, indicating that the bees
followed an asymmetrical quadratic rule of compromise as

in Fig. 1b (Simpson et al. 2004).

Young bees consistently overate diets high in EAAs to

obtain sufficient carbohydrate (Fig. 2a, GLZM, main

effect, diet: v6
2 = 182, P \ 0.001), but would also overeat

diets containing a high proportion of carbohydrates to

obtain sufficient EAAs (GLZM, main effect, diet:

Fig. 1 Model of dietary regulation when animals are confined to
diets of specific proportions of two macronutrients. When unable to
reach an optimal diet composition (the IT, indicated as red dot) they
must trade-off overeating the nutrient in excess against undereating
the nutrient in deficit. Across an array of diets, these trade-off points
form an intake array, the shape of which reflects the underlying fitness
landscape describing the costs of ingesting nutrient excess and

deficits. Fig. 1a, b showcases whether the costs of eating excesses are
less than the costs of ingesting deficits relative to the IT. Figure 1a, b
indicates cases for quadratic cost functions with these being
symmetrical for the two nutrients in a and asymmetrical in b. Note
how in b the array hinges outwards at the IT, and hence the hinge
point in an array of this form can be used to infer the position of the
IT (colour figure online)

Fig. 2 Nutritional regulation in
young honeybees and foragers.
The demand for EAAs
decreases when worker
honeybees become foragers
(n = 10 cohorts of 20 bees each
per rail). a Newly emerged
workers confined to diets of
specific proportions of EAAs
and sucrose regulated their
intake around an IT of 1:50.
b The total volume of diet
solution consumed by young
bees depended on the proportion
of EAAs and carbohydrates in
the diet (one-way ANOVA,
1:50 9 all other diets, all
P \ 0.033). c Foragers use an
asymmetric rule of compromise
when regulating their intake,
such that intake is always
skewed towards carbohydrates;
the IT was estimated to 1:250.
d The average daily volume
consumed by foragers did not
depend on diet
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v6
2 = 182, P \ 0.001). The hinge point in this graph, when

compared to Fig. 1, indicates that young, adult worker
honeybees have an IT of 1:50 (Compared to previous work

using protein in diet instead of amino acids, our 1:50 diet is

equivalent to a weight-for-weight diet of 1:115, amino
acid-to-carbohydrate, Table S1). The daily average volume

of each diet solution consumed by the cohorts of young

bees was not significantly different (Fig. 2b, GLZM, main
effect, diet: v7

2 = 10.8, P = 0.145).

Foragers died rapidly when confined to cages within the

lab; for this reason, we evaluated the survival and con-
sumption of foragers over 7 days rather than 14 days.

Using the same logic as above in Fig. 1, we estimate that

the IT of foragers was 1:250 (Fig. 2c). The foragers
defended their intake of carbohydrates at the expense of

overeating EAAs: the cumulative quantity of EAAs con-

sumed depended on the diet (Fig. 2c, GLZM, main effect,
diet: v6

2 = 182, P \ 0.001), but the amount of carbohy-

drates was constant (GLZM, main effect, diet: v6
2 = 10.7,

P = 0.097). Again, the daily average volume of each diet
solution consumed was not significantly different (Fig. 2d,

GLZM, main effect, diet: v6
2 = 4.83, P = 0.565).

The shift towards a diet high in carbohydrates between
young bees and foragers is most obvious when a subgroup of

the rails around the IT for newly emerged bees, young bees,

and foragers is plotted separately (Fig. 3). Since we noticed
a large change in the ability to survive on diets high in EAAs,

we compared whether there was an effect of diet on the IT of

nurses aged 0–7 days (Fig. 3a), nurses aged 8–14 days
(Fig. 3b), and foragers (Fig. 3c). The amount of diet con-

sumed per day depended on the age group and the dietary

ratio of EAA:C (three-way interaction: repeated-measures
ANOVA, day 9 age 9 diet, F8,702 = 6.44, P \ 0.001).

Fig. 3 ITs of honeybees shift
towards carbohydrates as bees
age. The IT of newly emerged
bees a, young worker bees b,
and foragers c is re-plotted from
a subset of data in Fig. 2. d The
trajectory for bees fed the diet
closest to the IT of all three age
groups is shown; foragers
require *5-fold less dietary
EAAs than young bees

Fig. 4 Dietary demand for carbohydrates increases with age
(n = 20). Bees aged 0–7 days consumed the least amount of 1.0 M
sucrose solution (pairwise LSD: vs. 8–14 days, P = 0.002; vs.
foragers: P \ 0.001); foragers consumed the most (8–14 day-old
bees vs. foragers, pairwise LSD, P \ 0.001)
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Young bees during days 0–7 had an IT closest to 1:50,

whereas bees aged 8–14 days had an IT that had shifted
towards 1:75. When the ITs of all three groups are compared

(Fig. 3d), it is clear that as adult worker bees age, their IT

shifts away from a diet relatively high in EAAs towards a
diet that has 5 times less EAAs.

This change in the need for dietary EAAs was also

accompanied by a shift towards a greater demand for car-
bohydrates (Fig. 4). In a separate experiment, we found

that foragers ate 60 % more 1.0 M sucrose solution than

young bees (Fig. 4, GLZM: age, v2
2 = 50.3, P \ 0.001).

Thus, the shift in the IT with changes in caste reflected not

only a reduced demand for EAAs, but also an increase in

the overall amount of carbohydrates needed by foragers.

Diets high in amino acid concentration result in poor

longevity

To identify costs associated with over consumption, we

also compared the survival of each behavioural caste of the
bees when fed each diet. Both young bees and foragers

exhibited shorter lifespans on diets high in EAAs (Fig. 5).

For the first 7 days, newly emerged bees had a lower
proportional hazard of dying regardless of diet (Fig. 5a,

Coxreg, days 0–7, sucrose 9 all other diets, HR = all\0.9
[95 % CI (confidence interval) 0.366–2.403], all

P = 1.000). For bees aged 8–14 days, however, the risk of

dying on diets high in EAAs increased dramatically such
that there was a 6.5-fold increased risk when they were fed

the 1:5 diet compared to sucrose (Coxreg, days 8–14,

sucrose 9 1:5 diet, HR = 6.065 [95 % CI 2.402–15.312],
P \ 0.001).

The proportional hazard of dying for foragers was also

greater when they consumed diets containing EAAs
(Fig. 5b, Coxreg, sucrose 9 1:750–1:75, HR = 1–2.333

[95 % CI 0.202–9.03], P = 0.220). Their risk was *3-fold

greater when they were fed the 1:10 diet, and 8.3-fold
greater when they were fed the 1:5 diet compared to

sucrose (Coxreg, 1:10 9 sucrose, HR = 3.00 [95 % CI

0.812–11.1], P = 0.067; 1:5 9 sucrose, HR = 8.333,
[95 % CI 2.52–27.6], P = 0.001).

Young bees tolerate diets high in EAAs longer
when exposed to QMP

To identify whether EAAs affected survival of bees
regardless of caste, we maintained bees in the ‘nurse-like’

caste using QMP and measured their rate of survival when

fed a diet high in EAAs (1:5) or sucrose alone (Fig. 6a).
Bees exposed to QMP had lower proportional hazard of

dying over the 14-day period, regardless of diet (Coxreg,

?QMP vs -QMP, HR = 0.688 [95 % CI 1.01–1.71],
P = 0.045). As we observed in Fig. 4, when fed the 1:5

diet, bees had a greater risk of dying if they were reared in

the absence of QMP (Coxreg, sucrose vs 1:5, HR = 6.50
[95 % CI 2.75–15.4], P \ 0.001). When bees were

exposed to QMP, the diet high in EAA (1:5) did not
increase their risk of death during days 0–10 (Fig. 6a,

Coxreg, sucrose vs 1:5, HR = 1 [95 % CI 0.791–1.27],

P = 1.00). However, in days 11–14, regardless of QMP
exposure, the 1:5 diet reduced survival compared to

sucrose only (Coxreg, sucrose vs. 1:5, HR = 1 [95 % CI

1.932–11.27], P = 0.001). To verify this result, we also
tested whether these curves were different fitting a Kaplan–

Fig. 5 Survival of young bees and foragers is compromised by high
concentrations of EAA. Survival on the amino acid diets for nurses
over 14 days a and foragers b over 7 days. Each rail is represented as
the total proportion of live bees/day (n = 10 cohorts of 20 bees each
per rail). a Young bees fed on diets high in EAAs died at a faster rate

than those on diets low in EAAs or sucrose alone (GLZM, Preg, two-
way interaction, diet 9 day, v73

2 = 3.5 9 1014, P \ 0.001). b Forag-
ers fed diets containing EAAs also died at a faster rate (GLZM, Preg,
two-way interaction, diet 9 day, v56

2 = 752.45, P \ 0.001)
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Meier model; comparison of these treatments revealed that

QMP-exposed bees fed the 1:5 diet died at a faster rate in

the second week of the experiment (Kaplan–Meier, log-
rank pairwise comparison, sucrose 9 1:5, v1

2 = 23.9,

P \ 0.001). Bees exposed to QMP did not consume sig-

nificantly more of either the sucrose or the 1:5 diets than
the unexposed bees (Fig. 6b, 2-way GLZM: QMP

trt 9 diet, v1
2 = 3.58, P = 0.058).

Discussion

Our data demonstrate four important findings: (1) adult

worker honeybees prioritize their dietary intake of carbo-
hydrates over EAAs; (2) nutritional requirements for EAAs

are greater for young bees, but shift as they age and

become foragers; (3) workers show reduced survival on
diets high in EAAs, but no cost is associated with eating

diets composed only of carbohydrates; and (4) the risk of

death associated with consumption of diets high in EAAs is
a function of age and caste.

We expect that the IT for young bees (EAA:C of 1:50)

mainly represents the IT required for somatic maintenance
without the demands of producing glandular secretions or

wax. Honeybees are unusual among insects, because adult

workers have a specialisation that allows them to produce
glandular secretions (e.g. royal jelly) as a form of care for

offspring and other nest mates. Like mammalian milk, the

glandular secretions produced by adult nurse bees are
composed of proteins, fatty acids, and carbohydrates

(Garcia-Amoedo and de Almeida-Muradian 2007; Kanbur

et al. 2009; Peixoto et al. 2009) and are likely to place great
nutritional demands on nurse bees during their production.

In our experiments, young bees probably produced much

less of their glandular secretions because they were not

caring for larvae or exposed to brood pheromone. In

addition to the demand for nutrients to produce royal jelly,
young bees also sequester nutrients by making hexamerin

proteins that are stored in the fat body and later used as a

source of amino acids (Martins et al. 2008, 2010). In our
experiments, the demand for EAA was high in broodless

young bees, but perhaps not as great as if they had been in

contact with brood or the queen in the colony. In this case,
we predict that the young adult worker’s IT will be near the

P:C ratio found in royal jelly (*1:1) (Garcia-Amoedo and
de Almeida-Muradian 2007; Kanbur et al. 2009; Peixoto

et al. 2009; Schmitzova et al. 1998).

In honeybees, behavioural caste is confounded with age:
young bees are nurses, comb builders or guards and older

bees are foragers (Robinson 1992). The transition to for-

aging is affected in part by proximity to the queen and
exposure to QMP (Pankiw et al. 1998) as well as brood

pheromone (Pankiw 2007). Workers that have little or no

exposure to the queen or her pheromones undergo sub-
stantial physiological changes orchestrated by juvenile

hormone (Robinson 1992) and begin to behave like foragers

(Pankiw et al. 1998). Furthermore, in the absence of the
queen, workers lose the ability to digest protein after their

eighth day post-eclosion (Moritz and Crailsheim 1987).

After the eighth day in our experiments with queenless
workers, we also observed that the IT of our young bees

shifted towards more carbohydrates. Using synthetic QMP

as a tool to prevent young bees from transitioning to the
forager caste, we were able to show that workers continue to

tolerate high levels of dietary EAAs, even at levels

exceeding their IT. In spite of having better survival early
on, however, the QMP-exposed nurse bees fed with the 1:5

diet still died at a faster rate than those fed with sucrose in

Fig. 6 QMP exposure increases tolerance for dietary EAA. a Bees
exposed to QMP have a higher rate of survival than same-aged
queenless bees when fed a diet high in EAAs. Cohorts of 20 bees were
confined to either sucrose or a 1:5 diet of EAAs and sucrose for
14 days. In the absence of QMP, young bees die faster when fed the

1:5 diet indicating that QMP is required to maintain them in the nurse-
caste nutritional physiology. b Daily average consumption was not
significantly different between bees exposed to QMP and bees that
were not exposed to QMP. n = 10 cohorts per treatment
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the final days of the experiment. It is possible that in this

case, even though they were exposed to QMP, their lifespan
was affected by the continued consumption of diets high in

amino acids (Grandison et al. 2009) or that synthetic QMP

alone was not sufficient to keep them in the ‘nurse-like’
caste (Maisonnasse et al. 2010).

The carbohydrate and lipid metabolism of bees is also

affected by QMP (Fischer and Grozinger 2008). QMP
maintains the abdominal fat of young bees and increases

their resistance to starvation (Fischer and Grozinger 2008).
Our data indicate that this resistance to starvation may be

due to the fact that the presence of QMP maintains their

physiological state such that they require much less car-
bohydrate. Thermal stress is another factor that could

influence the within-hive bees’ demand for carbohydrates.

In the presence of brood, young bees keep the brood warm
using their flight muscles to produce heat when the tem-

peratures outside of the colony drop (Simpson 1961;

Fahrenholz et al. 1992; Stabentheiner et al. 2010). Our bees
were neither exposed to brood nor did we investigate the

influence of temperature on the IT, but we predict that

young, within-hive bees performing endothermy would
exhibit a greater demand for dietary carbohydrates. Based

on our data, we also estimate that the workers’ demands for

carbohydrate increase from 2 to 5 times when they become
foragers. Foraging honeybees fly to and from the nest to

collect food and water for the colony: an activity with high

demands for energy (Suarez and Darveau 2005; Suarez
et al. 2005). Indeed, the mass-specific metabolic rate of

flying foragers is the highest of any animal recorded (Su-

arez et al. 1996). If placed under the demands of flight and
carrying pollen loads, the energetic demands of foragers

increase to ?50-fold greater than at rest (Joos et al. 1997).

For this reason, we predict the IT of flying foragers to be
skewed even further towards the intake of carbohydrates

than we were able to measure in our cohorts of bees con-

fined to cages.
Previous studies of worker honeybee and ant nutrition

also showed that workers die at a faster rate when they are

forced to consume diets high in protein (Pirk et al. 2010;
Dussutour and Simpson 2012). In our experiments, the

foragers fed diets high in EAAs (1:10 and 1:5 diets) had

much reduced survival because they were required to over-
ingest EAA to obtain sufficient carbohydrates. Their pre-

mature mortality was not a function of a refusal to eat diets

high in dietary EAA, indicating that consumption of the
EAA was the cause of mortality. Even bees exposed to

QMP and fed the 1:5 diet for 14 days had greater mortality

during days 11–14 than those fed sucrose alone. The fact
that honeybee workers are more likely to die as a function

of eating EAAs may indicate that bees are not efficient at

converting EAAs into energy via gluconeogenesis. Diets
high in EAAs could cause metabolic stress and require that

excess is excreted. Locusts fed diets high in protein excrete

higher concentrations of amino acids in their faeces than
those fed diets low in protein (Zanotto et al. 1994). In the

cohorts fed diets high in EAAs, we also observed more

defecation within the boxes. This could indicate that bees
accumulated waste associated with excess amino acids or

uric acid and had difficulty eliminating it.

A previous study showed that the IT of isolated cohorts
of young worker honeybees was 1:12 (wt/wt) when they

were fed solid diets based on proteins such as casein (Al-
taye et al. 2010). This is an almost 10-fold lower IT for

EAAs compared to the IT of our young bees (*1:115 wt/

wt, Table S1). The digestion of protein requires the pro-
duction of proteases, which could place a greater demand

on bees for EAAs (Moritz and Crailsheim 1987). Further-

more, proteins such as casein are composed of unequal
ratios of amino acids when they are digested (Moritz and

Crailsheim 1987; Szolderits and Crailsheim 1993), whereas

our liquid diets were composed of all the EAAs at the same
concentration. While we did not specifically test this, the

fact that our IT was strongly skewed towards carbohydrates

in comparison to an IT calculated for solid proteins (Altaye
et al. 2010) implies that the ratios of EAAs in diet strongly

affect dietary regulation of protein/EAA intake. This could

be a general feature of protein regulation in animals, but
has yet to be tested. In support of this, Altaye et al. (2010)

found that diets rich in digestible protein such as royal jelly

yielded a ratio skewed more towards carbohydrate (royal
jelly: 1:14), whereas artificial diets that are likely to be

more difficult for bees to digest predicted an IT of 1:11.

Previous studies have found that starvation and social
isolation induce the transition to the foraging caste (Marco

Antonio et al. 2008; Pankiw et al. 1998). The young worker

bees in our study were not socially isolated and were given
ad libitum access to food sources, yet they still continued

on a trajectory towards a nutritional IT biased towards

carbohydrate––consistent with them undergoing physio-
logical changes that accompany foraging. Our data dem-

onstrate that caste determines dietary needs of workers in

the honeybee colony. Worker honeybees fail to survive if
they do not consume sufficient dietary carbohydrates, and

will over-ingest EAAs to obtain carbohydrate, even if it

reduces their long-term survival. The influence of the
queen, combined with feedback about the amount of food

in the colony (Marco Antonio et al. 2008) and the presence

of other foragers (Leoncini et al. 2004), is all likely to be
the factors that affect the worker bee’s caste and hence its

nutritional optimum.
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