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Abstract 

White spot lesions (WSL) are a common complication with fixed orthodontic treatment. 

Fluoride incorporation into orthodontic adhesives is an effective way to prevent WSL. New 

fluoride releasing adhesives are being developed for this purpose. Four experimental groups 

were prepared by mixing different ratios of powder (polymethylmethacrylate and sodium 

fluoride; 10:0, 9:1, 8:2 and 7:3 wt) with liquids (60% methylmethacrylate and 40% 2-

hydroxyethylmethacrylate). Therefore, this work aimed to further develop the fluoridated 

acrylic resin materials for possible use as an orthodontic adhesive. 

Acetone was added at 0%, 10%, 20%, 30% and 40wt% to reduce the materials’ viscosity. 

Addition of acetone up to 20% did not have detrimental effects on setting characteristics. The 

materials continued to release fluoride over 160 days.  

Different photo-initiators were investigated and the 1% camphorquinone and 1% 2-

Dimethylamino ethyl methacrylate group was chosen for further development based on 

achieving the highest degree of conversion (DoC) at 40s of light curing. 

To improve bonding characteristics 4-methacryloyloxyethyl trimellitate anhydride (4-META) 

was added as an adhesion promoting monomer at 0% and 5wt%. The experimental materials 

were compared with a resin-based orthodontic adhesive (TransbondTMXT) and a glass ionomer 

cement (KetacTM Cem) as commercial comparator. DoC, fluoride release and recharging, water 

sorption and solubility were measured. Shear bond strength (SBS) was measured for the 9:1 

group at two time points after 30 minutes and 30 days of insertion in phosphate buffered saline. 

All experimental materials had significantly higher DoC than TransbondTMXT. All 

experimental materials had comparable or higher fluoride release compared to KetacTM Cem. 

All of the developed materials showed similar recharge behaviour to the KetacTM Cem 

specimens. The solubility of the materials increased with increasing NaF concentrations. SBS 

of the experimental materials were significantly decreased at 30 days water storage compared 

to 30 minutes and were lower than TransbondTMXT. Addition of 4-META and NaF did not 

influence the SBS of the material. 

In summary, the developed light-cured fluoridated material showed good fluoride release and 

high recharge ability, which may prevent WSL. The developed material shows good DoC, in a 

reasonable timeframe, which would indicate stability. However, as a result of high water 

sorption and as a consequence of fluoride release, the SBS of the materials decreased after being 

in water. 

In conclusion, this material shows potential as a fluoride releasing orthodontic adhesive, which 

could help to reduce decay during fixed appliance treatment. Further work is required to 
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improve the stability and bond strength of the material, which could involve investigation of 

different monomer combinations or different fluoride sources. 
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 Introduction 

There is significant demand for orthodontic treatment in the UK with 44% of 12 year old 

children wanting treatment and 37% deemed in need of orthodontic treatment according to the 

Child Dental Health Survey 2013 (Steele  et al., 2015). Orthodontic treatment is most 

commonly undertaken using fixed appliances (Chestnutt et al., 2006). Bonding systems are 

used to secure orthodontic brackets to teeth during fixed orthodontic treatment. 

White spot lesions (WSL) are one of the common complications of fixed orthodontic treatment. 

Studies have reported development of enamel demineralization only one month after appliance 

placement (O'Reilly and Featherstone, 1987; Gorton and Featherstone, 2003) and it has been 

reported that 73% of orthodontic patients develop WSL (Richter et al., 2011; Arruda et al., 

2012). Fluoride is known to be effective in reducing WSL and one of the ways of delivering 

fluoride is through its incorporation into orthodontic adhesives. Clinical and laboratory studies 

have shown the contribution of fluoride releasing orthodontic adhesives towards reduction of 

WSL (Corry et al., 2003; Gorton and Featherstone, 2003; Lodaya et al., 2011). In addition to 

WSL, enamel may be lost during debonding and adhesive removal ranging from 4.57 µm to 

55.6 µm in depth (Fitzpatrick and Way, 1977; Pus and Way, 1980; Hosein et al., 2004; Al 

Shamsi et al., 2007; Ryf et al., 2012; Janiszewska-Olszowska et al., 2015). Ideally, adhesive 

failure should occur between the adhesive and enamel on debonding, with little or no adhesive 

remaining on the tooth surface after debonding. Cohesive failure within the adhesive layer will 

result in the need to remove adhesive from the tooth, which could result in enamel damage. 

Cohesive failure within the tooth structure, can result from fracture of enamel during debonding 

(Joseph and Rossouw, 1990; Meng et al., 1998; Rix et al., 2001b; Chen-Sheng et al., 2008). 

Currently, composite resins are the most widely used bonding agents in fixed orthodontic 

treatment. This is due to them having a high bond strength and proven clinical success for the 

bonding of brackets. These adhesives are mostly based on the monomers bisphenol A diglycidyl 

methacrylate (BisGMA) and urethane dimethacrylate (UDMA) which are cross-linked (Graber 

TM, 2005) and hydrophobic. Therefore, the polymer network is highly cross-linked which 

contributes to greater strength and lower water absorption, slowing down the transportation of 

water and ions into the polymer (Asmussen and Peutzfeldt, 2002; Cohen et al., 2003). 

Therefore, even with the addition of a soluble fluoride salt, fluoride release from the material 

may be poor (Cacciafesta et al., 2007). Problems during debonding have also been reported, 

including enamel loss during debonding and adhesive removal and in some case enamel fracture 

(Ireland et al., 2005; Kim et al., 2014) 
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To make bracket debonding easier and safer, some manufacturers have developed a methyl 

methacrylate (MMA) based orthodontic adhesive. This is available as a commercial product 

(Super-Bond, MCP Bond®).  MMA produces a linear polymer with low density chains (Ferracane 

et al., 1998; Ferracane, 2006) which results in a softer, more flexible and potentially weaker 

material (Gorelick et al., 1978). Therefore, less enamel loss and fracture is seen after debonding 

a MMA based orthodontic adhesive in comparison to a conventional composite resin (Brown 

and Way, 1978; Su et al., 2010; Kim et al., 2014). A new fluoride releasing MMA based 

orthodontic adhesive resin has been developed at Newcastle University (Su et al., 2010). The 

original proposed material was chemically cured and composed of a monomer mixture of 2-

hydroxy ethylmethacrylate/MMA, with polymethylmethacrylate and sodium fluoride as a filler 

and source of fluoride, respectively. It has been shown to release fluoride at levels comparable 

to a GIC. It has also been shown to have comparable bond strength and less adhesive remaining 

on the tooth surface after debonding compared to a conventional composite resin see appendix 

1.  

Previous work developing the fluoride releasing acrylic resins has concentrated on optimising 

fluoride release. However, the developed material still had a number of shortcomings. It was 

very viscous, set very slowly by chemically activation and its bond strength decreased after 

immersion in water for 30 days (Su et al., 2010). For these materials to be appropriate for use 

as an orthodontic adhesive it is important that they have adequate handling characteristics to 

enable accurate dispensing, optimum bracket placement and set within a reasonable time to 

allow early activation of the appliance. The handling characteristics of orthodontic adhesives 

have been linked to several factors such as ease of application, viscosity and setting kinetics of 

the adhesive (Papakonstantinou et al., 2013 ). In addition, the bond strength of developed 

materials should be adequate to retain brackets throughout treatment and should be easily 

removed after finishing of treatment.  

Therefore, this project was aimed to optimize the handling characteristics of the materials as 

well as the bond strength of the materials for uses as an orthodontic adhesive. The developed 

materials are designed to combine beneficial properties of GIC and composite resin based 

orthodontic adhesives. Certain properties of these developed materials were also compared with 

commercial GIC cement and resin based composite orthodontic adhesive. 
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 Literature review 

In this chapter some common complications during fixed orthodontic treatment, in particular 

white spot lesions and enamel loss will be discussed. All types of orthodontic adhesives will be 

considered, in particular fluoride releasing orthodontic adhesives. A description of the ideal 

properties of orthodontic adhesives will be presented, including test approaches and limitations. 

Finally, the chemical composition of resin based orthodontic adhesives, will then be discussed. 

2.1 Introduction to some common complications during fixed orthodontic treatment 

There is huge demand for orthodontic treatment. According to the 2013 Children’s Dental 

Health Survey, 37% of UK children at age 15 were judged to need orthodontic treatment (Steele  

et al., 2015). Most orthodontic treatment is carried out for children aged 10-14 and cost GBP 

258 million according to the National Health Service in England and Wales between April 2011 

and March 2012 (NHS Dental Statistics for England, 2012). 

There are two types of orthodontic appliances that are used for treating malocclusions - 

removable appliances and fixed appliances. Fixed type orthodontic treatment provides a better 

treatment outcome in terms of improving malocclusions (Richmond et al., 1992) and it can be 

used to provide all types of tooth movement. Therefore, fixed type orthodontic treatments are 

most commonly used (Chestnutt et al., 2006). The success of fixed orthodontic treatment is 

partially dependant on the attachment of the appliances to the tooth surface. For this reason 

orthodontic adhesives are used. However, there are several common complications which occur 

during fixed orthodontic treatment, such as enamel demineralization around brackets, enamel 

loss during debonding and adhesive removal. These complications will compromise one of the 

primary aims of treatment, which is improving aesthetics and should be considered during 

treatment. These complications and possible solutions will be discussed in the sections below. 

 White spot lesion formation (WSL) 

Enamel demineralization adjacent to brackets is one of the most undesirable and common 

complications of fixed orthodontic therapy (Chang et al., 1997), despite multiple advances in 

orthodontic materials and techniques in recent years. This is due to the orthodontic appliance 

impairing the efficacy of oral hygiene in orthodontic patients. Studies have reported the 

development of enamel demineralization from only one month after appliance placement 

(O'Reilly and Featherstone, 1987; Gorton and Featherstone, 2003) appearing as a white chalky 

tissue around the brackets, known as white spot lesions (WSL) (see Figure 2.1). Clinical studies 

have reported a high incidence of WSL affecting about 73% of orthodontic patients (Richter et 

al., 2011). Different approaches have been used to prevent enamel demineralization and WSL 

formation. 
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Figure 2.1 Orthodontic white spot lesions on enamel surfaces. This picture is taken from web. 

http://texomaorthodontist.com/2012/09/11/white-spot-lesions/. 

Mechanical removal of the bacterial biofilm is effective in reducing WSL formation. It has been 

found that frequent prophylaxis, such as every three months, including scaling, irrigation of 

sub-gingival pockets with chlorhexidine and fluoride application are effective in reducing 

demineralization (Zimmer and Rottwinkel, 2004). However, this is costly as it takes additional 

chairside time in the clinic. 

Application of fluoride is another way to prevent WSL formation. Fluoride is an effective 

anticariogenic agent in reducing enamel demineralization. The mechanisms of action of 

fluoride in reducing WSL formations are as follows: firstly, it prevents demineralisation 

through formation of less soluble fluor-hydroxyapatite crystals. Secondly, fluoride enhances 

remineralisation of an already demineralized enamel surface through enhancing precipitation 

of calcium phosphates, and formation of fluor-hydroxyapatite crystals on the enamel surface, 

which has a lower solubility than the original hydroxyapatite crystals (HAP)  (Wiltshire and 

Janse van Rensburg, 1995; Cate, 1999). Thirdly, fluoride has an antibacterial effect. It has been 

shown that fluoride releasing adhesives may decrease the amount of the Streptococcus mutans, 

the most cariogenic bacteria, in the biofilm (Seppa et al., 1993; Loyola-Rodriguez and Garcia-

Godoy, 1996; Pandit et al., 2011). The importance of fluoride application is recognised in the 

Public Health England document, “Delivering Better Oral Health”, which assigns patients 

undergoing orthodontic treatment to a “high risk” category and advises patients to brush twice 

daily with fluoridated toothpaste, typically those continuing 1,350-1,500 ppm fluoride, to use a 

fluoride mouth rinse daily (0.05% sodium fluoride (NaF)) at a different time to brushing and 

changing dietary habits such as reducing sugary food and drink consumption. It also suggests a 

number of fluoride based interventions dentists can undertake to reduce demineralization 

http://texomaorthodontist.com/2012/09/11/white-spot-lesions/
http://texomaorthodontist.com/wp-content/uploads/2012/09/11/white-spot-lesions/Picture1.jpg
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including topical fluoride application two or more times a year (2.2% NaF) and prescription of 

a high fluoride toothpaste (2800 ppm / 5000 ppm) for patients with active disease. (Public 

Health England, 2014).  

Different methods have been used for the delivery of fluoride to the teeth of orthodontic 

patients. These include topical fluorides such as mouthrinse, gel, varnish and toothpaste, all of 

which have been shown to be effective in reducing WSL formation (Demito et al., 2004; Øgaard 

et al., 2006; Benson et al., 2013). However, most of these regimes depend on patient 

cooperation and it is the responsibility of patients to maintain these regimes to prevent WSL 

formation (Maxfield et al., 2012). It has been shown that less than 15% of patients comply with 

fluoride rinsing daily (Geiger et al., 1992). According to a study in Norway only 23% of 

adolescent orthodontic patients comply fully (Hadler-Olsen et al., 2012). Most orthodontic 

patients are of teenage and may be unlikely to follow oral hygiene instructions, especially 

during the first 5 months of treatment. However, it has been shown to improve after this time 

(Thikriat et al., 2011).   

In addition to topical fluoride application, fluoride-releasing materials such as bonding 

materials, sealants and elastomers have been used and it was found they are effective in 

reducing enamel demineralization (Wiltshire, 1999; Mattick et al., 2001; Benson et al., 2005; 

O'Reilly et al., 2013). Fluoride releasing adhesives are effective in preventing or reducing 

demineralization because they provide a fluoride reservoir that does not depend on patient 

cooperation and is localized in the area most susceptible to white spot lesions. 

Investigation of the efficacy of fluoride releasing orthodontic adhesives in reducing 

demineralization around brackets has been done either in vitro in laboratory experiments or in 

in vivo clinical studies of patients and volunteers. In laboratory studies, brackets have been 

attached to human and bovine teeth using the materials under test. The samples were then 

exposed to an artificial acid challenge. In some studies optical techniques were used to 

investigate enamel surfaces around brackets pre- and post-acid exposure, to study the 

differences made by the material. Photos or stereomicroscope images or QLF (Quantitative 

light induced fluorescence) images of the teeth have been used for this purpose (Corry et al., 

2003; Paschos et al., 2015). Other studies investigated mechanical properties such as hardness 

of the enamel surfaces around brackets were tested before and after acid exposure (Kohda et 

al., 2011; Lodaya et al., 2011; Melo et al., 2014; Raji et al., 2014). These studies have found 

effectiveness of fluoride releasing adhesives in reducing enamel demineralization compared to 

non-fluoride releasing adhesive. These laboratory studies are easy, cheap, sensitive to enamel 

changes and can be done in a short time. However, these studies are typically done in artificial 

conditions that are not representative of what is happening in the mouth and disregard the 
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effects of complex bacterial biofilms and their by-products that are produced in the mouth. In 

addition, they are mostly undertaken for a short period of time, with no standardized protocol 

for laboratory tests for this purpose (Benson, 2010).  

To overcome these shortcomings clinical studies have been undertaken, using visual inspection 

(Chapman et al., 2010; Eser et al., 2011) or QLF to detect WSL formation (Robertson et al., 

2011). Patient’s teeth have been examined before, during and after orthodontic treatment for 

changes on the enamel surface. Where teeth are scheduled for extraction, a mechanical property 

such as micro-hardness has been measured (Gorton and Featherstone, 2003; Pascotto et al., 

2004). They found the micro-hardness of the enamel surface of non-fluoride releasing adhesives 

was lower than that of the fluoride releasing adhesives. These studies truly represent the effects 

of fluoride releasing orthodontic adhesives in real life and are more reliable in terms of actual 

performance of the material (Benson, 2010). However, in order to undertake such studies there 

are ethical issues to consider, where permanent but preventable damage might occur to the teeth 

without intervention. Additionally, all clinical studies must be approved by an ethics committee 

and this can be a lengthy process.   

In both clinical and laboratory studies it appears that fluoride releasing orthodontic adhesives 

contribute towards reduction of enamel demineralization around brackets (Corry et al., 2003; 

Gorton and Featherstone, 2003; Pascotto et al., 2004; Eissaa et al., 2013). Low, sustained levels 

of free fluoride release for a long period of time are helpful in remineralisation (Arends and 

Christoffersen, 1990). Nevertheless, there is no clear evidence confirming the amount of 

fluoride release that would be sufficient for prevention of enamel demineralization, because of 

individual patient variations in factors such as oral hygiene, oral flora and diet. Various levels 

have been suggested, including daily fluoride release of about 0.63 to 1.3 μg/cm² is effective 

for prevention of enamel demineralisation (McNeill et al., 2001) and free fluoride 

concentrations of 1ppm or 50 mmol/L in the liquid phase (Arends and van der Zee, 1990). 

However, these are based on in vitro studies and there is no evidence based clinical study to 

confirm the critical level of fluoride required to prevent enamel demineralization. For an 

orthodontic adhesive to be effective in preventing demineralization, it should provide sustained 

slow release of fluoride for a long period of time, because completion of orthodontic treatment 

usually takes 2-3 years. The ability to release fluoride, the quantity and rate of fluoride released 

and the duration of fluoride release is different for each fluoridated orthodontic 

adhesives(Grobler et al., 1998; Vermeersch et al., 1998; Karantakis et al., 2000; Duraisamy et 

al., 2012a). These differences may come from the differences in the nature and composition of 

each material. Fluoride releasing orthodontic adhesives will be discussed later in section 2.2. 
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In addition to fluoride application, amorphous calcium phosphate (ACP), is an essential mineral 

phase formed in mineralized tissues and the first commercial product as artificial 

hydroxyapatite, has been used to reduce WSL formation. It has been shown that using casein 

phosphopeptide-ACP (CPP–ACP) paste is effective in reducing enamel demineralization, when 

applied directly to the enamel surface in a fluoride tray for a minimum of 3 to 5 minutes each 

day at night after brushing (Robertson et al., 2011). In an in vitro study a CPP–ACP paste was 

found to be effective in reducing demineralization when the paste was applied to a dried enamel 

surface (Behnan et al., 2010). There is another version of CPP–ACP which is fluoride 

containing, which is also effective in reducing enamel demineralization. There are some 

controversy on the effect of CPP–ACP treatment prior to bonding on the shear bond strength 

(SBS) of brackets to teeth. It has been shown that non fluoride containing CPP–ACP application 

may decrease the bond strength of the bonded bracket when applied to tooth surface before 

bonding with BisGMA/TEGMA based orthodontic adhesive (Transbond XT) (Çehreli et al., 

2012). It also decreased SBS of enamel to other resin based adhesives (Shadman et al., 2015). 

In contrast, it has been shown that non-fluoride CPP–ACP treatment of enamel does not appear 

to decrease the micro-SBS of etch-and-rinse and self-etching adhesives (Adebayo et al., 2007; 

Park et al., 2013). In addition, when ACP was incorporated into a commercial resin cement 

which is composed of UDMA and other Di-methacrylate monomers (Agies-ortho), it was found 

that it is less effective than fluoride varnish in reducing demineralization however, it is more 

effective than using CPP–ACP paste (Behnan et al., 2010).  

In addition to the above mentioned methods for preventing WSL formation, application of a 

protective barrier on enamel has been used, termed sealants. The sealants, which are made of 

filled and unfilled resins, are applied to the surface of enamel around brackets in order to make 

a physical barrier to prevent demineralization. Studies have shown their effectiveness in 

reducing WSL formation and it has been shown to be as effective as fluoride varnish in in vitro 

studies (Behnan et al., 2010; Knösel et al., 2012). Others have added fluoride to these sealants 

to act as an additional preventive factor. However, the addition of fluoride has been shown to 

add no extra benefit (Leizer et al., 2010). There are issues regarding durability of sealants which 

require reapplication of the sealant every 3 months, this will become a costly procedure (Knösel 

et al., 2015). In addition to the possible demineralization caused by acid etching, as sealants are 

applied after acid etching 

 Enamel loss 

Enamel loss may occur during bonding, debonding and adhesive removal. For all composite 

based adhesives, acid etching is used to produce a porous surface to enhance bonding. This aids 
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penetration of resin tags to the etched enamel prisms and the formation of micro-interlocking 

between enamel and adhesive. Consequently a strong bond is obtained, however, this strong 

adhesive bond may lead to complications such as enamel loss in the area of the enamel during 

bracket debonding (Lin et al., 2011). 

Orthodontic adhesives require not only sufficient bond strength to retain brackets from 

masticatory and orthodontic forces during service, they should also allow easy removal of 

brackets upon completion of treatment (a process termed debonding). During debonding, pliers 

are used to detach brackets, which may lead to pain (Mangnall et al., 2013) enamel cracking 

and fracture (Meng et al., 1998; Rix et al., 2001b; Chen-Sheng et al., 2008). After debonding, 

adhesive remnants remain on the enamel surface, which need to be removed using rotatory 

instruments and this will lead to enamel loss, ranging from 4.57µm to 55.6 µmin depth 

(Fitzpatrick and Way, 1977; Pus and Way, 1980; Hosein et al., 2004; Al Shamsi et al., 2007; 

Ryf et al., 2012; Janiszewska-Olszowska et al., 2015). Attempts have been made to reduce pain 

and enamel damage during debonding, for instance, by using ultrasonic instrumentation (Boyer 

et al., 1995), electrochemical heating (Jost-Brinkmann et al., 1997) or laser irradiation (Ma et 

al., 1997; Oztoprak et al., 2010). However, these methods have the disadvantages of being time-

consuming procedures and being of high cost. Another way to overcome these problems, is 

through developing orthodontic adhesives with easy removal, this is either through using 

unfilled linear acrylic resins or via inclusion of thermo-degradable additives into orthodontic 

adhesives (Kameda et al., 2014; Kim et al., 2014). This will be discussed in further detail in 

section 2.3.1.  

 Bond failure 

Another complication is bond failure during treatment, which slows treatment progression and 

is costly in terms of time, material and patient inconvenience (Mandall et al., 2003). Once the 

bracket has failed, the remnant adhesive residue should be removed, which in addition to being 

time consuming, can also lead to removal of up to 50 µm of enamel surface (Al Shamsi et al., 

2007). Therefore, orthodontic adhesives should have an optimal bond strength to retain brackets 

throughout treatment. There is no clear evidence on the optimal bond strength for this purpose 

but most studies refer to 6-8 MPa as an adequate bond strength for orthodontics (Reynolds, 

1975). This is explored in more detail in a later section 2.3.1. 

2.2 Orthodontic adhesives 

In orthodontics, bonding systems are used to secure orthodontic brackets to teeth. Traditional 

orthodontic bonding systems consist of three agents: 
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 Enamel conditioner (acid etchant); an acid which is used to produce micro-porosities on 

the enamel surface to allow mechanical retention of resin tags. 

 Primer solution; an unfilled resin composed of monomers with solvents added that is 

painted onto the enamel surface after acid etching to enhance penetration of resin tags 

into the etched enamel surface and to improve the effectiveness of the final bond. In 

some new systems, conditioning and priming are combined in to 1 solution known as a 

self-etching primer. This either comes as a one step or two step self-etching primer, in 

which acidic monomers are used to produce etching as well as adhesion. 

 Orthodontic adhesive; which is applied after primer application. Some orthodontic 

adhesives can be applied without using acid etching and primer applications such as 

glass ionomer cements (GICs) and resin modified glass ionomer cements (RMGIC). 

Orthodontic adhesives can be classified into conventional resin based, MMA-based orthodontic 

adhesives and fluoride releasing orthodontic adhesives such as GIC, RMGIC and compomers: 

 Conventional resin based adhesives 

Direct bonding of attachments revolutionized the placement of orthodontic appliances. The 

adhesion mechanism of composite resins is micromechanical, between an etched enamel 

surface and composite resin with the aid of a suitable primer/bonding agent (Mickenautsch et 

al., 2012). Currently, composite resins are the most widely used bonding agents in fixed 

orthodontic treatment. This is due to quickly achieving a clinically acceptable bond strength 

through light curing and ease of application. The majority of these are based on the monomers 

bisphenol A diglycidyl methacrylate (BisGMA) and urethane Di-methacrylate (UDMA) which 

are cross-linked (Graber TM, 2005). As both of these monomers are di-functional and 

hydrophobic, the polymer network is highly cross-linked which contributes to greater strength, 

lower water absorption and less polymerization shrinkage. This slows down transportation of 

water and ions in the polymer (Asmussen and Peutzfeldt, 2002; Cohen et al., 2003). There are 

issues of enamel loss during debonding and adhesive removal and problems of WSL during 

fixed orthodontic treatment as discussed in section 2.1. Therefore, to prevent WSL formation 

fluoride is added to the conventional orthodontic adhesives. This modified group are known as 

fluoride releasing composite resin orthodontic adhesives. 

Attempts have been made to integrate fluoride into conventional resin based adhesives in  

different forms such as the addition of water soluble salts like (NaF,SnF2) and ion leachable 

glass (Wiegand et al., 2007). Laboratory studies have revealed a poor fluoride release in terms 

of quantity and duration of fluoride release (Ghani et al., 1994; Cacciafesta et al., 2007). 

Fluoride release from composite resins containing fluoride is characterized by short-term 
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release at very low levels (Chan et al., 1990; Naoum et al., 2011), that they are unlikely to have 

any therapeutic effect (Fox, 1990). This could be due to the chemical composition of composite 

resins which are mostly based on crosslinking polymers like BisGMA and UDMA which are 

hydrophobic and once polymerized produce a rigid polymer and with low water sorption ability 

and consequently low fluoride releasing ability. Fluoride releasing composite resins release less 

fluoride compared to glass ionomer cements (GICs) and resin modified glass ionomer cement 

(RMGIC) (Weidlich et al., 2000; dos Santos et al., 2013). In addition, they have a higher bond 

failure rate (Trimpeneers and Dermaut, 1996) and a lower bond strength compared to 

conventional composite resins after 48 hours of bonding (Chan et al., 1990). 

Based upon the polymerization activation mechanism, different types of conventional resin 

based orthodontic adhesives are present, including chemically cured, light cured and dual cured 

composites (Eliades et al., 2000). Generally there is no superiority of chemical over light cured 

orthodontic adhesives in terms of bond strength, failure rate and setting characteristics of the 

material. No difference has been shown in DoC, monomer leaching and cytotoxicity between 

two commercial chemically cured and light cured adhesives based on BisGMA and TEGMA. 

A chemically cured, no-mix adhesive (Rely-bond; Reliance, Ithaca, Ill) and a visible light-cured 

adhesive (Reliance) were used (Gioka et al., 2005). Light cure systems have advantages over 

chemical cured in terms of handling of the materials. The light cure adhesive can be easy to use 

and the working time can be extended when necessary. Consequently, with light cure systems 

there is sufficient time for precise bracket placement, in addition to having time for removal of 

excess material before light curing of the material. Therefore, currently, light curing orthodontic 

adhesives are most commonly used (Yoshida et al., 2012). Another advantage of light cure 

adhesive resins over chemically cured is a reduced chance of air entrapment and oxygen 

inhibition. As they supplied as a single tube they do not need any mixing while, chemically 

cured orthodontic adhesives come either as two paste or liquid and powder which need to be 

mixed before use. An increase in the number of porosities has been shown after mixing the two 

pastes of a chemically activated material in comparison to each of the pastes alone (Fano et al., 

1995). 

 Methylmethacrylate based orthodontic adhesives (MMA-based orthodontic 

adhesives) 

There are attempts to use less crosslinked monomers like methylmethacrylate (MMA) for 

orthodontic adhesive use to make bracket debonding easier and safer. This is available as a 

commercial product (Super-Bond, MCP Bond®). This product has also been described as 4-

META-based adhesives or 4-META/MMA-TBB available as powder of 
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polymethylmethacrylate (PMMA) and Tri-n-butylborane (TBB) as activator with liquid 

methylmethacrylate (MMA) and 4-methacryloyloxyethy trimellitate anhydride at 5% (4-

META). It has been shown that this adhesive results in a strong bond to enamel (Mogi, 1982) 

and metals (Takeyama et al., 1978; Mogi, 1982). The 4-META containing adhesives provide 

significantly higher bond strength than the conventional orthodontic adhesives (Clark et al., 

2003; Rikuta et al., 2008). Some in vitro studies have reported enamel fracture during 

debonding (Toledano et al., 2003). Therefore, several attempts have been made to modify 4-

META/MMA-TBB, so as to make the material easier and safer at debonding without loss of 

adequate bond strength in addition to making the materials release fluoride (Kawabata et al., 

2006; Kawabata et al., 2007). For this purpose a degradable additive (α-tricalcium phosphate) 

and fluoride compounds such as calcium fluoride (CaF2) and Sodium fluoride (NaF) have been 

incorporated into the material (Kawabata et al., 2006; Kawabata et al., 2007; Iijima et al., 2013). 

The addition of these additives results in more residual resin remaining after debonding 

compared to the original 4-META/MMA-TBB resin. Thus the possibility of enamel fracture 

decreased by addition of additives (Kawabata et al., 2006; Kawabata et al., 2007). In addition, 

they provide fluoride release after NaF addition (Iijima et al., 2013). This might be due to 

presence of  4-META which increased water uptake characteristics of polymers of MMA due 

to formation of hydrogen bonds at polar sites with water molecules and this may promote 

fluoride release of the material (Unemori et al., 2003). Details about 4-META will be discussed 

in section 2.4.1. 

MMA-based resins have potential for use as an orthodontic adhesive. Su et al., (2010) 

developed a new experimental fluoride releasing acrylic resin for using as an orthodontic 

adhesive. The material was based on MMA and 2-Hydroxyethylmethacrylate (HEMA) as a 

liquid and NaF and PMMA were used as powder as a filler and as a source of fluoride. HEMA 

is hydrophilic and it is an excellent adhesion promoting monomer and it readily absorbs water 

in polymer form (Arima et al., 1995; Van Landuyt et al., 2007). Therefore, HEMA was used to 

promote rapid diffusion of water and accelerate fluoride release. Water molecules bonding via 

hydrogen bonding to the polar sites of HEMA contribute to water diffusion through polymer 

matrices (Yiu et al., 2006). NaF was used as a source fluoride which easily dissolves in water 

into Na+ and F- ions. Therefore the material can release large amount of fluoride (Su et al., 

2010). One of the disadvantages of using NaF is once it leaches out it leaves a porosity in the 

material consequently affecting the mechanical properties of the material (Arends et al., 1995). 

However, this could contribute towards making the material easier to remove during debonding 

which as demonstrated by the lower ARI (adhesive remnant index) found by Su et al. (2010) 

when compared to a commercial BisGMA/TEGMA based material (Transbond XT) (Su et al., 
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2010). Another reason might be due to polymer matrix of the material which was composed of 

a copolymer of HEMA and MMA which are linear, flexible and porous (Tay et al., 2002a). 

Details about HEMA and MMA can be found in section2.4.1. 

Further to the fluoride releasing ability of the material, it has comparable bond strength to 

commercial orthodontic adhesives (Su et al., 2010). The bond strength of the material was 

decreased after being in water for 30 days. This could be due to HEMA, which was plasticized 

by water, however, the material needed HEMA to maintain the fluoride release of the material. 

The developed material was chemically cured with a long setting time (3-4) minutes that 

potentially makes it clinically difficult to use. In addition to problems of mixing the powder and 

liquid together before use increased the chance of oxygen incorporation into the material. 

Zahroon et al. (2014) further developed this material to be cured by light activation and for 

potential use as a fissure sealant. Camphorquinone (CQ) and 2-dimethylaminoethyl 

Methacrylate (DMAEMA) were used for this purpose. However, the material still needed 120 

seconds of light curing to obtain a DoC of 56%.  To optimise the fluoride release, four 

experimental groups were developed based on different NaF concentrations, namely 0%, 10%, 

20% and 30% NaF (Zahroon, 2014; Al-Sammarraie, 2015). The experimental materials 

demonstrated higher fluoride release than commercial GIC based fissure sealants and 

interestingly also showed considerable recharge potential (Zahroon, 2014).  

 Glass ionomer cement (GIC) 

Glass ionomer cements (GICs) are composed of fluoride containing aluminosilicate glass and 

polyalkenoic acid, which sets by an acid base reaction occurring between the liquid and powder. 

During setting, fluoride is released from the glass (Wiegand et al., 2007). GICs contain hydrogel 

phases which aid remineralisation of enamel and dentin through supporting movement of 

calcium, strontium and other ions particularly fluoride ions. These hydrogel phases are believed 

to be responsible for the fluoride uptake and re-release from topical fluoride gels, fluoridated 

mouth rinses and dentifrices (Ewoldsen and Demke, 2001). 

The highest levels of fluoride are released during the first 24-48 hours (Creanor et al., 1994; 

Chatzistavrou et al., 2010). This is likely to be due to the burst of fluoride released from the 

glass particles when reacting with the polyalkenoic acid during the setting reaction (Wiegand 

et al., 2007). During the first 24 hours, the amount of fluoride released from GICs ranges 

between about 40 to 100 µg/cm² (Xu and Burgess, 2003). Daily fluoride release declines rapidly 

over the first week (Vermeersch et al., 2001) and is then followed by a slow fluoride release 

for a longer period over 3 months (Vermeersch et al., 2001). GICs, in addition to long-term 

fluoride release, can also absorb fluoride from external sources, such as topical fluoride gels 
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(Ashcraft et al., 1997), fluoridated toothpastes and mouth rinses; therefore, they act as a 

rechargeable slow release fluoride device (Hatibovic-Kofman and Koch, 1991; Lin et al., 2008). 

The amount of fluoride release after re-fluoridation exposing to 0.05% NaF has been shown to 

be higher than the release from within the materials without recharging (Cildir and Sandalli, 

2005). Therefore, in most studies GICs are taken as the gold standard for fluoride release and 

recharge to compare with other commercial or experimental materials. 

Several clinical studies confirm the local anticariogenic effect of GICs on the enamel around 

brackets owing to fluoride release (Hallgren et al., 1990; Marcusson et al., 1997; Twetman et 

al., 1997; Gorton and Featherstone, 2003; Pascotto et al., 2004; Shungin et al., 2010). This is 

based on taking optical photographs before and after treatment. Bonding with a GIC leads to an 

increase in the fluoride content on the outer surface of enamel at 2 µm depth to 33% compared 

to 8% of deeper surfaces at 100 µm from dentine enamel junction (Chatzistavrou et al., 2010).  

GICs are most commonly used for band cementation because of their anticariogenic and 

adhesive properties, fluoride release and recharge behaviour, (Millett et al., 2007) as well as 

due to their capacity to bond even in the presence of moisture (Ewoldsen and Demke, 2001). 

However, GICs are not routinely used for bonding orthodontic brackets due to the increased 

risk of debonding during treatment compared to conventional composite resin (Miller et al., 

1996; Norevall et al., 1996). They show a significantly higher failure rate (50.89%) compared 

to composite resin (7.96%) (Miguel et al., 1995). Therefore, it is not generally recommended 

to use GICs for bonding (Chu et al.,1989) owing to too low shear bond strength for example 

5.3 MPa (Ashcraft et al., 1997). However, bonding with GIC provides easier debonding and 

clean-up time in addition to reduction of WSLs around orthodontic brackets (Norevall et al., 

1996). 

 Resin modified glass ionomer cement (RMGIC) 

Resin modified glass ionomer cements (RMGIC) have a similar composition to that of GICs 

with added 10% to 20% resin monomers. The hydrophilic monomer HEMA is generally used 

for this purpose. Either light or chemical activation are used to polymerize the monomers. 

RMGICs are superior to GICs in their physical properties and stability (Ewoldsen and Demke, 

2001). Mechanisms of adhesion of RMGICs are micromechanical and chemical bonding, the 

latter contributing to the prolonged adhesion of RMGIC (Mitra et al., 2009).  

The highest amount of fluoride is released by RMGICs during the first 24 hours, which ranges 

between about 17 to 60 µg/cm² (Xu and Burgess, 2003; Duraisamy et al., 2012a), it then 

declines rapidly over the first week (Vermeersch et al., 2001) until it reaches 3 to7 µg/cm²  at 
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the 3rd week. Both GICs and RMGICs demonstrate an increase in fluoride release after 

exposure to 2% sodium fluoride ex vivo (Coonar et al., 2001). RMGICs prevent 

demineralization around orthodontic brackets in comparison to the non-fluoride releasing 

materials (conventional orthodontic adhesive) (Wilson and Donly, 2001). Corry et al., (2003) 

suggested that RMGICs supplemented with fluoride exposure inhibit WSLs in vitro. In 

addition, the fluoride availability from RMGICs is controlled by pH, with increased release at 

low pH (Forsten, 1995). It has been shown that fluoride release rate of GIC and RMGICs 

increase with decreasing pH from neutral (pH 7) to acidic (pH 4) (Carey et al., 2003; Moreau 

and Xu, 2010). 

RMGICs have a lower shear bond strength of a bracket to enamel (15-18 MPa) compared to 

conventional resin adhesives (22-25 MPa) (Bishara et al., 1999; Owens and Miller, 2000; 

Sfondrini et al., 2001; Manuel et al., 2003; Ali and Maroli, 2012). This is related to a higher 

failure rate reported for RMGICs compared to composite resin (Gaworski et al., 1999). 

However, the weaker chemical bonding between the adhesive and the enamel contribute to an 

easier clean up clinically after debonding (Summers et al., 2004). RMGICs further aid 

preservation of the integrity of the enamel surface, because they can be used without etching 

(Fricker, 1996), however, it appears that using RMGICs without etching reduces the bond 

strength significantly (Manuel et al., 2003; Godoy-Bezerra et al., 2006). 

 Polyacid modified resins (Compomers) 

Compomers are composed of aluminosilicate glass, the ion-leachable glass fillers used in GICs 

but in smaller sizes, in a matrix of carboxyl modified resin monomers and light activated 

conventional resin monomers such as BisGMA and UDMA. Initial setting is performed by 

light-activated polymerization which is followed by an acid-base reaction that arises from 

sorption of water (Wiegand et al., 2007).  

Compomer fluoride release levels are significantly lower than those of GICs (Grobler et al., 

1998). The highest amount of fluoride released by compomers is during the first 24 hours, 

which ranges between about 3 to 28 µg/cm² (Xu and Burgess, 2003; Duraisamy et al., 2012a). 

It then declines rapidly over the first week until it reaches 1- 4 µg/cm² at day 21 (Xu and 

Burgess, 2003). The pattern of fluoride release from both materials is characterized by an initial 

rapid release followed by a rapid reduction in the rate of release (Itota et al., 2004b). In addition, 

compomers are capable of taking up fluoride from dentifrice solutions and later releasing it to 

the demineralising solution, maintaining a relatively constant release for a month and at a higher 

level than that seen between days 5 and 7 (Vieira et al., 1999). It has been confirmed that 

bonding brackets with compomers results in less decalcification around brackets than with 
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conventional composite resin (Chung et al., 1998; Millett et al., 2000). In addition, fluoride 

release from compomers like RMGICs is pH-controlled, and fluoride release may be increased 

by the effect of hydrolytic enzymes and under acidic conditions (Geurtsen et al., 1999).  

Compomers have a lower shear bond strength of the bracket to enamel compared to 

conventional resin adhesives (Haydar et al., 1999; Duraisamy et al., 2012b). In a clinical trial 

comparing a conventional orthodontic adhesive to a compomer, a higher bond failure rate was 

found for the compomer compared to the conventional orthodontic resin adhesive 

(Mavropoulos et al., 2003). However, bonding with compomers results in less adhesive 

remnant than conventional orthodontic adhesives after debonding (Vicente et al., 2006).  

2.3 Properties of ideal orthodontic adhesives 

In orthodontics, bonding systems are used to secure orthodontic brackets to teeth. The ideal 

orthodontic adhesives should (Mandall et al., 2003):  

1- Provide sufficient bond strength to keep orthodontic brackets in place throughout the 

treatment. 

2- Be easily removed after completion of treatment without damaging the tooth surface. 

3- Provide easy handling for clinical use. 

4- Prevent enamel decalcification and caries around the brackets. 

5- Be inexpensive. 

In this section, each property of orthodontic adhesive and its testing procedure and limitations 

will be discussed in detail: 

 Bond strength 

Bond strength testing is a common means of evaluating the clinical performance of an 

orthodontic adhesive. It is an important factor that determines success and efficacy of 

orthodontic treatment. Orthodontic adhesives should provide sufficient bond strength to retain 

brackets throughout treatment. However, too high a bond strength might lead to fracture of 

enamel during debonding (Rix et al., 2001b). Insufficient bond strength leads to bond failure 

of brackets during treatment time, consequently retarding treatment (Mandall et al., 2003).  

There is no clear evidence in the literature as to what the magnitude of the bond strength of an 

orthodontic adhesive is to be considered adequate for clinical use. Most studies have cited the 

study by Reynolds (Reynolds, 1975) who proposed 6-8MPa as adequate bond strength for 

orthodontic purpose (Al Shamsi et al., 2006). However, this assumption may not be entirely 

accurate for the following reasons: firstly, it was based only on tensile bond strength and did 

not account for the complex forces and fatigue developed during mastication and chewing, in 

addition to the stresses arising during activation of the arch wire. Secondly, it fails to include 
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the environmental factors which exist in the mouth, such as extreme pH change, temperature 

change and oral microflora and by-products. In addition, the potential for bond strength 

reduction due to the aging of adhesive was disregarded (Brantley and Eliades, 2000).  

Generally, there are three types of orthodontic bond strength testing study: 

 In vitro studies, are the most commonly reported studies. In these experiments, the study 

design can be easily controlled and each variable can be accounted for. Both bovine and 

human enamel are used for this purpose. However, in vitro tests disregard the effects of 

complex forces developed during mastication and biting in addition to the effect of acid 

formation and microbial by-products and temperature changes that occur in the mouth. 

Therefore, care should be taken when comparing the results of the in vitro test with that 

of in vivo. However, in vitro tests may give an indication about the clinical performance 

of the orthodontic adhesive. 

During treatment and debonding, orthodontic brackets are exposed to a combination of 

loads in all directions. Therefore, different modes of applying force have been used for 

testing orthodontic bond strength such as torsion, tensile and shear/peel loading 

(Katona, 1997; Rix et al., 2001b; Katona and Long, 2006; Chen-Sheng et al., 2008; Lin 

et al., 2011). In tensile testing the force is applied perpendicular to the adhesive layer, 

whilst in shear testing the force is applied in the plane of the adhesive and in torsion the 

force is applied in torque. These different test setups produce markedly different results 

for the same adhesive (Fox et al., 1994; Katona and Long, 2006). 

 In vivo studies have been done either through using a removable appliance holding 

brackets bonded to enamel slabs and inserting into patient’s mouth or through 

debonding of the brackets at the end of treatment and measuring bond strength using a 

special device. Whilst these tests do not simulate the actual force that a bonded bracket 

is subjected to in a clinical situation, they are most appropriate for studying the clinical 

behaviour of the bond strength. Bond strengths measured in vivo are significantly lower 

than those measured from in vitro testing (Pickett et al., 2001; Murray and Hobson, 

2003; Hajrassie and Khier, 2007). In addition to the above type of studies some clinical 

studies have been done in which bracket survival is taken as an indicator of bond 

strength (Gaworski et al., 1999; Ireland et al., 2003; Reis et al., 2008). However, in 

these cases a full control of the test environment is not possible due to individual 

variations in diet, eating and oral hygiene practices which might affect the outcome. 

 Ex vivo studies in which finite element analysis of the bracket, enamel and adhesive are 

used (Katona, 1997; Chen-Sheng et al., 2008; Lin et al., 2011). In these studies, 
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mathematical models are constructed to simulate the different types of force applied 

during orthodontic debonding. This can be considered as an in vitro measurements. 

There is no standard protocol for measuring bond strength in vitro. There are some confounding 

factors that affect bond strength such as type of the teeth used, storage media and time of storing 

before boding, storage media of the bonded specimens, curing time and cross head speed of the 

debonding forces (Finnema et al., 2010) as well as bracket base design (Sharma-Sayal et al., 

2003). Therefore, care should be taken when comparing the results of different studies. In order 

to understand each of these factors I am going to discuss them in detail. 

Factors that affect Bond strength testing: 

2.3.1.1 Types of Bond strength testing 

During treatment and debonding, orthodontic brackets are exposed to a combination of loads in 

all directions. Therefore, different modes of applying force have been used for testing 

orthodontic bond strength such as torsion, tensile and shear/peel loading (Katona, 1997; Rix et 

al., 2001b; Katona and Long, 2006; Chen-Sheng et al., 2008; Lin et al., 2011). In tensile testing 

the force is applied perpendicular to the adhesive layer, whilst in shear testing the force is 

applied in the plane of the adhesive and in torsion the force is applied in torque. These different 

test setups produce markedly different results for the same adhesive (Fox et al., 1994; Katona 

and Long, 2006). 

The most commonly used method is shear bond strength (SBS). However, it is more technique 

sensitive than tensile bond strength (Thomas et al., 1999). Many methods have used to apply 

SBS such as wire loops and steel blades or rods (Rognvald and Peter, 2001; Lamper et al., 2012; 

Shooter et al., 2012; Vinagre et al., 2014). The wire loop method has been compared against 

the blade method for SBS debonding in sample of bovine teeth and using composite resin based 

orthodontic adhesive (Transbond XT). It was found that the SBS result using blade was higher 

and more variable (24.8 MPa, coefficient of variation 29.91%) than using wire loop (17.12 

MPa, coefficient of variation 18.44%) (Mojtahedzadeh et al., 2006). The same finding was 

confirmed in a resin–dentin microshear bond strength (μSBS) of two adhesive system in which 

µSBS was higher and more variable using a blade compared to a wire loop (Muñoz et al., 2014). 

However, other work on resin-dentin SBS has shown the opposite in which wire loop gave a 

higher SBS than blade (Sinhoreti et al., 2001). There are some factors which might contribute 

to the variability of the results of SBS related to using a blade. Firstly, the blade produces 

puncture loading, because it contacts the bonded interface in a smaller point area than the 

orthodontic-wire loop does (Muñoz et al., 2014). Secondly, the design of the blade affects the 

force outcome, a wider blade tip may have a larger contact area with the adhesive in comparison 
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to a narrow blade tip. Thirdly, the blade is likely to blunt with time and between samples, 

leading to inconsistent load application. Finally, the position of the force application, whether 

on adhesive, bracket or on both adhesive and bracket, is another variable factor that is difficult 

to control due to irregular tooth surface and adhesive thickness. However, using a wire loop 

may have a problem of wire dislodgment. In addition, the wire loop is not rigid compared to a 

blade therefore some of the energy might be absorbed during upward movement of the 

crosshead of the debonding system (Mojtahedzadeh et al., 2006). Frictional resistance of the 

wire loop is another confounding factor might affect the SBS result. Friction of the wire loop 

might be overcome by using a high gauge wire to completely fill all the area under the tie wing 

between the tie wing and the base of the bracket (Littlewood and Redhead, 1998). 

The direction of force application has been shown to influence SBS results (Fox et al., 1994). 

In SBS testing using a wire loop the ideal direction of pull is parallel to the loading interface 

(Littlewood and Redhead, 1998). Deviation of the debonding force by a 15° angle will lead to 

a significant difference in comparison to 0° angle. A 15° angle towards the enamel surface 

increases SBS and 15° angle away from enamel decreases the SBS value (Klocke and Kahl-

Nieke, 2006). The direction of force should be carefully controlled in order to reduce variability. 

Crosshead speed of the debonding force during SBS testing is another confounding factor that 

should be taken into account especially when comparing the results of different studies using 

different crosshead speeds. Crosshead speeds ranging from 0.5 -5 mm/min have been used in 

the literature. However, in the clinical scenario the brackets are subjected to forces at higher 

maximum impact velocity where the viscoelastic property of the orthodontic adhesive is 

immaterial. In order to mimic that condition a study was conducted using 200 mm/minute in 

comparison to 1mm/minute and it was found that SBS decreases significantly with increasing 

debonding force. This could be due to to the induction of a stiff body response and the 

elimination of the viscoelastic properties of the adhesive (Eliades et al., 2004). Despite that, 

some studies have shown no significant difference at low crosshead speeds of 0.1, 0.5, 1, 2 and 

5 mm/minute (Klocke and Kahl-Nieke, 2005; Shooter et al., 2012). Other studies have shown 

a significant difference between 0.5 and 5 mm/minute (Bishara et al., 2005). These 

discrepancies might be attributed to the type of debonding apparatus, where in the former a 

sharp debonding blade and wire loop were used while in the latter a flattened steel rod was used 

for debonding. According to a systematic review and meta-analysis done on in vitro tests, it 

was concluded that crosshead speed affects SBS in which each each millimetre per minute of 

greater crosshead speed increased SBS by 1.3 MPa (Finnema et al., 2010). However, the author 

does not have any explanation of the discrepancies between those studies which show that bond 
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strength increases with increasing crosshead speed compared to others which show no 

difference.  

2.3.1.2 Tooth Selection 

Human and animal teeth have been used in vitro for bond strength testing. Human teeth such 

as premolars, upper central incisors, lower incisor and molars have been used for bond strength 

testing (Lamper et al., 2012; Arici and Bulut, 2014; Vinagre et al., 2014). Maxillary central 

incisors are ideal teeth for orthodontic bond strength testing due to their flat surface and 

consequently relatively consistent adhesive thickness during bonding. However, incisors are 

mostly extracted due to periodontal conditions which are more common in elderly patients. 

Aging might have an effect on mechanical properties of human enamel such as hardness and 

elastic modulus, which increase in older enamel (Park et al., 2008) in addition to increasing 

mineral content and toughness in older enamel (Zheng et al., 2013). Those teeth are likely to 

be exposed to prolonged fluoride exposure, and have a higher fluoride content in the outermost 

surface (Weatherell et al., 1972) which might affect bond strength and care should be taken. 

The shape of molars and premolars is highly variable (Oesterle et al., 1998). This may create 

an uneven adhesive layer thickness between the teeth and the bracket and the bracket base may 

not closely fit to the tooth. Despite this, sound premolars are mostly extracted for orthodontic 

purpose and therefore commonly used.  However, collecting a sufficient amount of healthy 

teeth requires time and time in storage after extraction may influence results.  In addition to this 

it has been shown that SBS is different in different tooth types in in vitro studies. However, 

different studies report conflicting results. For example, one study showed canines (upper 12·3 

MPa, lower 12·1 MPa) and premolars (upper 11·9 MPa, lower 10·9 MPa) to have higher shear 

bond strength in comparison to the central incisors (upper 6·9 MPa, lower 9·0 MPa) (Rognvald 

and Peter, 2001). However, Hobson et al. (2001) showed no significant difference between 

upper central incisors, canines and premolars. Therefore, orthodontic bond strength 

measurements should be made using the same tooth type in order to minimize avoidable 

variations. 

Bovine teeth are not identical to human teeth in either chemistry or micro-structure (Yassen et 

al., 2011), however, they have been suggested as a useful substitute to human teeth in 

orthodontic bonding tests (Oesterle et al., 1998) for the following reasons. Firstly, it is difficult 

to obtain sufficient human teeth in terms of quantity and quality as most are extracted due to 

extensive carious lesions. In addition, it is difficult to control the age of the extracted human 

teeth, in contrast to bovine teeth which can be extracted at a specific age. Human teeth are small 

and irregular shaped in comparison to large and flat surface of bovine teeth. Finally concerns 



20 

 

about infection hazards and ethical issues are more complex with human teeth compared to 

bovine teeth. However, bond strength test results on bovine teeth should be compared with 

caution to those using human teeth. One study, which only used 10 samples per group, showed 

no significant differences in SBS values using bovine and human teeth and a light cured 

composite resin (Fowler et al., 1992). However, SBS measured using bovine teeth are typically 

lower than those measured using human teeth by 44% (Oesterle et al., 1998). Other studies 

have shown significant differences in SBS on bovine and human  teeth (Rüttermann et al., 2013) 

which could be due to the differences in crystal configuration and more lattice defects in bovine 

enamel compared to human enamel (Fonseca et al., 2008; Tanaka et al., 2008). Both permanent 

and primary bovine teeth have been used for bond strength testing and no significant difference 

seen between them (Oesterle et al., 1998). The number of samples used in studies are different 

from one study to another generally they are between 15-30 samples per group (Evans et al., 

2002; Swanson et al., 2004; Klocke and Kahl-Nieke, 2005; Su et al., 2010; Parrish et al., 2011; 

Yoshida et al., 2012; Vinagre et al., 2014) see Table 2.1. 

Table 2.1 The type of teeth and the number of samples used in some previous studies. 

References Number of samples per 

group 

Type of teeth used 

(Parrish et al., 2011) 22 Flattened bovine incisor 

(Vinagre et al., 2014) 15 Human premolar 

(Swanson et al., 2004) 20 Human molar 

(Evans et al., 2002) 15 Bovine incisor 

(Yoshida et al., 2012) 8 Bovine incisor 

(Klocke and Kahl-Nieke, 

2005) 

30 Bovine incisor 

(Su et al., 2010) 18 Human premolar 

While many studies have used both bovine and human enamel with an intact surface, some 

studies have used a ground enamel surface to obtain a flat substrate (Arnold et al., 2002). This 

was to overcome the roughness variability of the substrate (Gibb and Katona, 2006). The 

procedure of grinding of the outermost enamel surface is inappropriate if attempting to replicate 

clinical conditions. In addition to that, extra variability may arise in the roughness as well as in 

the thickness of the remaining enamel after grinding as this is difficult to control. In terms of 

the impact of grinding the tooth surface on bond strength, this is controversial in the literature. 

Some studies show increasing bond strength on ground surfaces compared to the intact enamel 

surface (Hadad et al., 2006), while others report no difference in the tensile bond strengths 
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(Perdigao and Geraldeli, 2003). It has previously been suggested that the roughness of bovine 

teeth does not correlate to the tensile and shear bond strength (Jung et al., 1999; Barkmeier et 

al., 2009; Sabatoski et al., 2010). However, there is an old study hypothesised that the topography 

of the adherent surface (bovine enamel and dentine) can affect bonding of a resin based adhesive 

system (Eick et al., 1972). In general using the intact enamel surface better replicates the clinical 

situation.  

Most studies have measured bond strength 24 hours after a bracket has been bonded, which is 

different to the clinical scenario where load would be applied shortly after bracket placement, 

as most clinicians activate orthodontic appliance within 10-15 minutes of the appliance 

placement. Bond strength values tend to increase with time, with SBS and tensile bond strength 

shown to be significantly higher at 24 hours compared to 30 minutes after bracket bonding 

using a range of filled and unfilled BisGMA, UDMA and TEGMA based commercially 

available orthodontic adhesives (including ConciseTM Self-curing, TransbondTM XT Light-

curing and Heliosit® Orthodontic Light-curing ) (Bishara et al., 1999; Yamamoto et al., 2006; 

Su et al., 2010; Yoshida et al., 2012; Vinagre et al., 2014). This is most likely due to the 

increasing degree of conversion (DoC) of the orthodontic adhesive with time. In addition in 

some in vitro studies bond strengths were measured after long period of time (a month) in order 

to know the long term bond strength of the material. It has been shown that storing teeth for a 

month in distilled water resulted in in increasing SBS of brackets bonded to human premolars 

using Transbond XT (Su et al., 2010). 

2.3.1.3 Bonding procedure 

Bonding in orthodontics is achieved firstly by etching the enamel surface to dissolve enamel 

rods and produce a porous surface to enhance mechanical retention of adhesive resin prior to 

primer application. There are two techniques of etching either a conventional technique or using 

self-etching primers. Several studies have compared self-etching primers with conventional 

etching in terms of SBS. Some studies reported no superiority of one over another (Tamer et 

al., 2003; Chalgren et al., 2007). However, others showed decreased SBS with self-etching 

primers compared to conventional etching (Bishara et al., 2001; Goracci et al., 2013). Self-

etching primers may produce smaller and fewer tags in comparison to phosphoric acid, 

consequently producing less irreversible damage to the tooth surface (Fjeld and Øgaard, 2006). 

The length of resin tags in enamel surface is not believed to be associated with the tensile bond 

strength (Shinchi et al., 2000). Surprisingly, it has been shown using conventional etching leads 

to less enamel decalcification than using self-etching primer (Ghiz et al., 2009). 
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In conventional etching several factors might influence SBS and tensile bond strength, such as 

type of etchant, duration of etching and concentration of etchant (Olsen et al., 1996; Shinchi et 

al., 2000; Gardner and Hobson, 2001; Chang et al., 2005; Chalgren et al., 2007). Phosphoric 

acid is generally used for acid etching. No difference was found in SBS either using phosphoric 

acid in gel form or in liquid form (Chalgren et al., 2007). Duration of acid etching should be 

considered during bracket bonding to enamel. No differences in SBS were reported when the 

enamel was etched for 10, 20 and 30 second of etching with 37% phosphoric acid, while SBS 

significantly decreased when the etching time was decreased to 5 seconds (Olsen et al., 1996). 

30 seconds of acid etching has been recommended for cleaning and producing a proper etch 

(Gardner and Hobson, 2001). Regarding concentration of etchant, no differences were seen in 

the tensile bond strength when between 3% to 65% phosphoric acid was used for 30 seconds 

(Shinchi et al., 2000).   However, higher acid concentrations might lead to longer resin tags, 

which could have a potential adverse effect on the enamel substrate (Shinchi et al., 2000). 

Primer, typically an unfilled resin, is applied on the etched enamel surface prior to application 

of the adhesive and bracket. This is to enhance penetration of resin tags into the porous enamel 

surface to improve effectiveness of the final bond. There are several in vitro studies showing 

no significant difference in orthodontic SBS between using a primer or without using it 

(Chalgren et al., 2007). A randomized clinical trial has shown no significant difference in the 

failure rate between using  primer (11.1%) and without primer (15.8%) for a period of 12 

months using pre-coated  brackets (Nandhra et al., 2015). However, this study was criticized as 

other factors that relate to performance of the material, such as type of bracket used, debonding 

process and duration of the study should be considered prior to omitting one step from bonding 

procedure (Eliades, 2014). In addition, the advantages of primers in sealing the enamel surface 

to prevent leakage and enamel demineralization should also be considered (Ghiz et al., 2009). 

The amount of adhesive used and amount of the force applied during positioning of the brackets 

are confounding factors which may influence the bond strength. In an attempt to standardize 

the amount and thickness of the orthodontic adhesive, attempts have been made to establish a 

standard protocol. For instance, a protocol was used in which standardized amount of adhesive 

with standardized amount of force for distinct time was used, aiming to achieve an equal 

thickness for all the samples (Korbmacher et al., 2006; Chen-Sheng et al., 2008; Lamper et al., 

2012). However, this may simulate the clinical scenario only in the case of using pre-coated 

brackets. Therefore,  it has been proposed that it is generally acceptable if a skilled orthodontist 

prepares samples for in vitro testing (Rahiotis et al., 2013).  
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2.3.1.4 Storage media 

Extracted teeth used for bond strength testing are generally kept first in disinfecting solutions 

and then stored in storage media such as water, an aqueous solution of chloramine T, ethanol, 

formalin, thymol and artificial saliva  (Rolland et al., 2007; Gittner et al., 2010). The purpose 

is to prevent the teeth from desiccating. Even though enamel has a high inorganic content (95%) 

and low organic component, it may be affected by drying out and desiccation (Jaffer et al., 

2009). 

Pre-test storage media, a solution in which extracted teeth were stored prior to bonding, may 

have an effect on the SBS and tensile bond strength (Jaffer et al., 2009; Gittner et al., 2010). It 

has been shown that storing ground bovine teeth for 7 months at 4°C, prior to bonding to pre-

coated brackets using Transbond XT, in each of water, isotonic saline, Chloramine T at 1% and 

10%  and 10% formalin solution resulted in no significant difference in SBS while most liquid 

storage media gave significantly higher SBS than storing the teeth in dry (air) or within 70% 

ethanol (Jaffer et al., 2009). In another study on human teeth bonded with ceramic brackets 

using Transbond XT, it was shown that storing teeth in 96% ethanol leads to lower SBS than 

storing in 0.1% thymol. However, in this study they mentioned that the ethanol group were 

stored for an unknown period (Gittner et al., 2010). However, in another study on µSBS of 

composite resin to enamel it was shown that storing teeth in 0.1% thymol resulted in lower 

µSBS  than storing in distilled water (Tosun et al., 2007). 

In addition to the type of storage, the duration of pre-test storage varies in the literature from 

24 hours to 5 years. No significant difference in  µSBS of composite resin to enamel was shown 

at 2 hours and 2 months time of  storing teeth in distilled water, 0.1% thymol and 10% formalin 

solution (Tosun et al., 2007). In addition, no differences were found in dentin micro tensile 

bond strength of the freshly extracted teeth compared to those that were stored for 2 years 

immersed in 0.5% chloramine solution or dry condition (Mobarak et al., 2010). In addition, it 

was suggested that storage of human molar teeth for up to 5 years in distilled water does not 

affect enamel SBS (Williams and Svare, 1985). However, more recently it has been shown that 

minerals leach out of the enamel surface (Secilmis et al., 2013). Therefore, it is recommended 

to use extracted teeth within 6 months to obtain some standardization. 

2.3.1.5 Lighting Conditions 

In photo-activated orthodontic adhesives the light intensity and exposure time affects bond 

strength. It has been shown that SBS increases with increasing light intensity from 500 to 3000 

mW/cm2 for 4s from 2 MPa to 17 MPa in a sample of bovine teeth bonded to metallic brackets 

using Transbond XT (Staudt et al., 2006). However, it has been shown that increasing the 
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exposure time has a greater impact on SBS than increasing light intensity in a study using a 

halogen light at 200 and 400 mW/cm2 for 3,5 and 10 seconds of light curing in a range of filled 

BisGMA, UDMA and TEGMA based commercially available light curing orthodontic 

adhesives like (Beauty Ortho bond, TransbondTM XT Light-curing and Orthophia LC) (Yoshida 

et al., 2012). There are several studies which have shown the effect of exposure time on 

increasing SBS (Serdar et al., 2004; Swanson et al., 2004; Usumez et al., 2004; Staudt et al., 

2005; Lamper et al., 2012). It has been shown that increasing light exposure time from 6s to 

10s leads to a significant increase of the SBS from 8.6 MPa to 11.6 MPa of a commercial 

adhesive (Transbond XT) using an LED light with 1600 mW/cm2 intensity (Gomes et al., 

2014). However, whilst SBS will increase with increasing exposure time a threshold is reached 

above which it might not offer any extra benefit. For example, some studies have shown no 

significant difference between 20 s and 40 s of exposure time (Serdar et al., 2004). In addition, 

the impact of the type of the adhesive system used should not be discounted. For example it has 

been shown that increasing the exposure time from 20 s to 40 s using a halogen LCU leads to 

an increase in SBS of the brackets with the two component self-etching primers like (Transbond 

plus and Clearfil SE bond) whilst no difference was observed with the single component etching 

primers like (iBond and Ideal1) and conventional three step Transbond XT (Lamper et al., 

2012). Another factor that should be considered is the type of light curing unit used. For 

example a study has shown an increase in bond strength with increasing exposure time for the 

same material with a halogen LCU but not with an LED LCU. In most of the studies 40 seconds 

of light curing has been used as a control group, as this was considered practical in terms of 

orthodontic bonding (Oesterle et al., 1995; Evans et al., 2002; Usumez et al., 2004; 

Mavropoulos et al., 2008). Different types of LCUs have been used to polymerize light cured 

orthodontic adhesives. There is no clear clinical evidence in superiority of one type of light over 

others in terms of bond failure (Fleming et al., 2013).  

The efficacy of the light cured orthodontic adhesive depends on the amount of energy absorbed 

by the light cured composite resin. Radiant exposure (J/cm2) which is the product of light 

intensity (mW/cm2) and exposure time (seconds) affects the bond strength, with SBS increasing 

with increasing radiant exposure (Mavropoulos et al., 2008). This is based on the idea of the 

total amount of energy that is delivered to the orthodontic adhesive. It has been shown that 

increasing the radiant exposure from 6000 mJ/cm2 to 18000mJ/cm2 using a halogen light with 

3000 mW/cm2 with 2 and 6 second respectively, leads to an increase in SBS from 8 MPa to 15 

MPa (Erion and Banu, 2011). The exposure reciprocity law is based on the concept that 

comparable material properties can be achieved as long as the radiant exposure is kept constant 

irrespective of the light intensity and exposure time, no matter how the radiant exposure is 
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obtained by different combinations of light intensity and exposure time (Leprince et al., 2013). 

The concept of reciprocity law is controversial and will be discussed in section 2.61 B. The 

concept of the reciprocity law does not seem to hold for orthodontic adhesives (Mavropoulos 

et al., 2008) and this is likely to be because a thin layer of adhesive is used, unlike a 

conventional restoration and secondly, the light activation occurs primarily indirectly through 

the tooth surface. 

Another factor that can influence degree of cure and bond strength is the distance between the 

light curing tip and the bracket base. It has been shown that an orthodontic adhesive achieved 

higher SBS at 0 mm distance using an LED LCU compared to 3 and 6 mm distance (Cacciafesta 

et al., 2005). This was due to decreasing intensity of the exposure light with increasing the 

distance between the light curing tip and the bracket base (Price et al., 2004). The angle of the 

light curing tip is another factor that should be considered during bond strength testing, 

however, it has been shown that curing an orthodontic adhesive (Transbond XT) for 40 seconds 

using 0°, 45° and 90° angles at 3 mm distance shows no difference in SBS results (Yusoff et 

al., 2008) 

2.3.1.6 Assessment of bond failure 

Adhesive remnant index (ARI) has been used to score the residual adhesive after debonding on 

the enamel surface. This is to evaluate the site of adhesive failure between enamel, adhesive 

and bracket base. It was first introduced by Artun and Bergland in 1984. This index system 

used four scores as follows: score (0) no adhesive left on the tooth; score (1) less than half of 

the adhesive left on the tooth; score (2) more than half of the adhesive left on the tooth; and 

score (3) all adhesive left on the tooth with a distinct impression of the bracket mesh (Artun 

and Bergland, 1984). This index has been modified to account for the amount of adhesive 

remnant more quantitatively resulting in a modified ARI which was based on 5 scores: score 

(5) no adhesive; score (4) less than 10% of the adhesive retained; score (3) between 10% and 

90% of the adhesive left; score (2) more than 90% and; score (1) all adhesive remain on the 

tooth surface with imprints of the bracket base (Bishara et al., 2000). Both of the scores are 

measured subjectively either under light microscopy with 10X and 20X magnification or with 

the naked eye. A study has shown a difference scoring with 20X compared to 10X and 0X 

magnification (Montasser and Drummond, 2009). It was found that at higher magnifications, 

there is a tendency for lower scores to decrease and for higher scores to increase compared with 

lower magnifications. (Montasser and Drummond, 2009). Several attempts have been made to 

develop a quantitative method for measuring ARI scoring such as SEM scanning, finite element 

analysis and three dimensional profilometry (Kim et al., 2007; Chen-Sheng et al., 2008; Cehreli 
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et al., 2012). However, it has been shown that qualitative visual scoring using the ARI (using 

stereomicroscope under 20X) is capable of generating similar results compared to those 

assessed by quantitative image analysis techniques such as SEM images and elemental mapping 

(Cehreli et al., 2012). Therefore, a qualitative method using visual inspection is commonly used 

to investigate ARI, despite subjectivity of the method. However, care should be taken when 

comparing results of different studies based on different magnifications and different methods 

in regard to ARI scoring. 

It has been shown that the percentage of ARI increased with increasing SBS (Osorio et al., 

1998), as well as factors such as bracket base design and adhesive properties, which might 

contribute to the residual adhesive (O'Brien et al., 1988). 

 Easy removal and less adhesive remnant during debonding 

Whilst the orthodontic adhesive should provide sufficient bond strength to retain brackets 

during treatment it is important that the adhesive is easily removed at completion of orthodontic 

treatment. Ideally, little or no adhesive should be retained on the tooth surface after debonding. 

During debonding bond failure occurs either at bracket/adhesive and/or enamel/adhesive 

interface. The latter is more favourable since it contributes to minimise the time required and 

enamel loss after debonding (Fox et al., 1994). Therefore, to reduce the amount of adhesive 

remnant, it is important to consider increasing bond strength between adhesive and bracket 

(within sufficient bond strength scope).  

Different techniques have been used to remove the residual adhesive on the enamel surface 

after debonding, including a slow speed bur, high speed bur, aluminium oxide disc and 

ultrasonic scaler. Studies have been done to determine the effect of these techniques on human 

teeth (Ireland et al., 2005; Cehreli et al., 2008; Cochrane et al., 2012). It has been found that 

removal of residual adhesive can lead to enamel loss ranging from 4.57µm to 55.6 µm 

(Fitzpatrick and Way, 1977; Hosein et al., 2004; Al Shamsi et al., 2007; Ryf et al., 2012). 

In an attempt to decrease enamel loss researchers have attempted to develop new orthodontic 

adhesives with the potential of easy removal, this is either through the use of unfilled linear 

acrylic resin (Su et al., 2010) or via inclusion of thermo-degradable additives into orthodontic 

adhesives (Tsuruoka et al., 2007; Ryu et al., 2011; Saito et al., 2015). Su et al. (2010) developed 

a new orthodontic adhesive which was made of copolymer of HEMA and MMA with polymer 

powders of PMMA and NaF salt as filler. The developed material demonstrated a lower ARI 

in comparison to a commercial composite resin based orthodontic adhesive, in addition to 

having a lower hardness than the comparator.  This was particularly apparent after water storage 

for 30 days due to the presence of HEMA resulting in water absorption, softening and therefore 
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easy removal (Su et al., 2010). Polymers of MMA-based resins are linear or only lightly cross-

linked, which results in a softer, more flexible and potentially weaker material (Gorelick et al., 

1978). At the end of orthodontic treatment on average less enamel loss has been shown to occur 

during adhesive removal of an unfilled polymethylmethacrylate adhesive than removal of 

highly filled composite adhesive (Brown and Way, 1978; Su et al., 2010). Additionally, less 

enamel fracture was seen after debonding an MMA-based resin (Super-Bond and experimental 

MMA-based resin) in comparison to a conventional BisGMA/TEGMA based composite resin 

(Kim et al., 2014). 

Another method of developing easily de-bonded adhesives is through inclusion of thermo-

degradable materials into an experimental resin, such as heat-expandable microcapsules. 

(Tsuruoka et al., 2007; Ryu et al., 2011; Saito et al., 2015). This is based on the notion of 

lowering the glass transition temperature. Debonding of the adhesive can then be encouraged 

by application of a high temperature of up to 160 C° for up to 20 seconds. However, care should 

be taken as there are inherent risks of using high temperature such as burning of dental tissues 

and pulp damage. There is also increased risk of bond failure during consumption of hot drinks 

and foods by the patients. 

 Handling characteristics of orthodontic adhesives 

Further important properties of orthodontic adhesives are their handling properties, which are 

mainly dependent on the rheological properties of orthodontic adhesives. These are determined 

by the components of the material such as filler amount, size and shape, monomer blend, and 

degree of cross-linking (Papakonstantinou et al., 2013 ). It is essential for an orthodontic 

adhesive to have a low viscosity so as to penetrate into the pores of the enamel surface and form 

resin tags after being etched. However, using an adhesive resin without fillers, may lead to 

poorer bond strength and inferior handling properties compared to filled resin (Lee et al., 2006; 

Faltermeier et al., 2007). To overcome this problem first a primer is used, which is unfilled 

resin, then a more viscous adhesive resin used to secure the bracket. The viscosity of the 

adhesive must also be optimised, to allow easy positioning of the brackets. However, there is 

no clear evidence in the literature regarding the optimal viscosity of orthodontic adhesives. 

In addition to viscosity, the primer and adhesive must be capable of achieving an adequate DoC 

in a reasonable length of time beneath the bracket base. In order to evaluate the handling 

characteristics, both the rheological characteristics and polymerization reaction should be 

considered. 
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2.3.3.1  Rheological properties of orthodontic adhesives 

Orthodontic adhesives should have optimum viscosity during application that allows controlled 

positioning of brackets on the teeth surface without the bracket moving before curing. Low 

viscosity monomers have been used to lower the viscosity of resin based orthodontic adhesives, 

such as 2-Hydroxyethylmethacrylate (HEMA), methylmethacrylate (MMA), triethylene glycol 

Di-methacrylate (TEGMA) and HEMA-Phosphate. TEGMA, HEMA and 3-hydroxypropyl 

methacrylate (HPMA) were used as diluents to investigate their effect on the viscosity of 

urethane Di-methacrylate (UDMA) formulations using a Bohlin rheometer at 23C°, 37C° and 

60C°. It was found that viscosity decreased substantially as the diluent concentration increases 

in the experimental UDMA/diluent formulations (Silikas and Watts, 1999). TEGMA has been 

used widely in conventional orthodontic adhesives to reduce viscosity of the BisGMA and 

UDMA. A study using a steady shear sweep test (shear ramp parameter) to measure the 

viscosity of different filled and unfilled UDMA based resins in comparison to BisGMA based 

resin. It demonstrated that both filled and unfilled UDMA as well as unfilled BisGMA are 

Newtonian in behaviour in contrast to filled BisGMA which was non-Newtonian (viscosity 

increase with increasing shear rate). They also found that the viscosity of both filled and unfilled 

UDMA based resin decreased with increasing TEGMA concentrations (Papakonstantinou et 

al., 2013 ). In addition to using low viscous monomers, solvents are used to lower resin 

viscosity. Water, ethanol and acetone are the most commonly used solvents in dental adhesives 

(Van Landuyt et al., 2007).  

In general, the viscosity of composites is affected by the type and ratio of the resin matrix 

components, the size and shape of the inorganic filler and the filler content. (Lee et al., 2003; 

Beun et al., 2009). A study has been undertaken to investigate the rheological properties of 

flowable, conventional hybrid and condensable composite resins. The advanced rheometric 

expansion system was used to measure the shear strain, according to the material condition to 

measure the viscosity of different types of composite. It was found that the composite resins 

have psuedoplastic non-Newtonian nature. It was also demonstrated that the lower viscosity of 

flowable composite, compared to conventional composite, is related to a lower proportion of 

filler particles (Lee et al., 2003). Another study was conducted to investigate the effects of 

monomer and filler concentration on the rheological properties related to handling 

characteristics of composites. A 60:40 BisGMA: TEGMA blend was mixed with silane-treated 

barium glass, fumed silicate or round silica. It was found that resin matrices were Newtonian 

fluids and all experimental composites exhibited pseudoplasticity. The viscosity exponentially 

increased as the percentage of the filler volume was increased, but decreased with increasing 
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temperature. For identical filler volumes, as the filler size decreased, viscosity increased (Lee 

et al., 2006). 

The viscosity and rheological behavior can be measured using a number of conventional 

techniques, including rotational rheometer, oscillatory rheometry and capillary rheometry. 

Different rheometrical techniques have been used to measure viscosity of the resin based 

adhesives such as steady shear sweep test, advanced rheometric expansion system  and vertical 

oscillation rheometer (Lee et al., 2007; Papakonstantinou et al., 2013 ). However, the problems 

in using of these viscometers for the determination of the viscosity of orthodontic adhesives are 

complexity, adhesive evaporation, in addition to the paste nature of the orthodontic adhesives 

that make it difficult to measure its viscosity. Therefore, alternative test methodologies are 

required. 

A simple method, a syringe and a device to produce force, has been used to measure relative 

viscosity of the calcium phosphate bone cement (Fatimi et al., 2012) “When the material is 

extruded at a constant rate the shear stress is related to the pressure required to depress the barrel 

of the syringe, whereas the shear rate is a function of the flow rate. Thus, a material of low 

viscosity requires only a low pressure to produce a high flow rate, whereas a more viscous 

material may require a high pressure to produce a relatively small rate of flow” (McCabe and 

Walls, 2009). Therefore viscosity can be obtained using equation 1.1 below (see figure 2.2) 

Equation 2.1                          Viscosity= kp/Q (p=pressure, k=constant, Q= plunger speed) 

 

Figure 2.2 The rheological properties of Fluids and pastes can be represented by extrusion of 

materials from a syringe (McCabe and Walls, 2009)  

The microcapillary rheometer has been shown to be a reliable and reproducible method for 

quantitative rheological measurement of Newtonian and non-Newtonian rheological behaviors 

(Allahham et al., 2004). A capillary rheometer can be used to obtain the force that is required 

to extrude the material from a syringe catheter device, known as injectability (Ratier et al., 

2004). Injectability is defined as the ability of calcium phosphate bone cement to move through 

a syringe–catheter device (Ratier et al., 2004). Injectability has been used to measure extrusion 

behaviour of pastes like calcium phosphate bone cement. 
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For this purpose, a simple syringe with or without a needle has been used to quantitatively 

measure extrusion (injectability). Different methods have been used for measuring injectability, 

including using a mechanical test machine to apply a constant force, with the load rate 

determined by the materials viscosity (Wang, 2006). However, whilst this method may work 

for materials of similar viscosity it is less useful for measuring a wide range of viscosities as 

for viscous materials a high load is required to extrude the material, while for less viscous 

materials a high load may lead to rapid extrusion of the material.  

Another method proposed is using mechanical test machine to measure the maximum applied 

force at a steady given load rate or to monitor the force applied during whole extrusion 

(Allahham et al., 2004; Bohner and Baroud, 2005; Fatimi et al., 2012). Controlling the 

compression rate is useful as the rate of compression is stable with the only difference being 

the materials viscosity which determines the amount of force required to extrude the material 

for a given displacement. 

Both injectability methods have been used for a wide range of materials from very viscous 

pastes (such as calcium phosphate bone cement) to liquids (Bercier et al., 2010; Fatimi et al., 

2012; Montufar et al., 2013). However, this method has not been applied to measure the 

viscosity of orthodontic adhesives. Currently most commercial orthodontic adhesives are 

delivered in a sealed dark syringe, to allow easy application. Therefore, the adhesives must be 

extruded from the syringe or capsule (injected) for use. Therefore, it is more practical to 

measure injectability of the adhesives since it is more clinically relevant rather than just 

measuring viscosity. 

The injectability is defined as the ability of cement to move through a syringe–catheter device 

(Ratier et al., 2004). Injectability is measured by weighing the residual mass of the material 

retained into the syringes after loading with a constant force (Alves et al., 2008). Injectability 

has been used to measure extrusion behaviour of pastes like calcium phosphate bone cement. 

Injectability does not measure viscosity directly however, injectability is related to viscosity of 

the material. A material with the lowest injectability coefficient has the highest viscosity 

(Ginebra et al., 2001). When a force is used to extrude a syringe filled with a paste from, the 

injectability coefficient is determined as the percentage by weight of that part of the amount of 

a paste that could be extruded from a syringe with respect to the total mass of the cement 

introduced in the syringe (Khairoun et al., 1998; Ginebra et al., 2001). 

 

2.3.3.2 Setting characteristics of orthodontic adhesives 

During polymerization carbon double bonds of methacrylate monomers are converted to a 

polymer network of single carbon bonds so the ratio of conversion of monomer to polymer is 
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called degree of conversion (DoC). DoC attained during polymerization is an important 

determinant of the physical and mechanical properties of dental resins (Ferracane and Greener, 

1986; Calheiros et al., 2008) in particular solubility and degradation. A linear relationship has 

been demonstrated between Knoop micro-hardness and DoC of a commercial di-methacrylate 

based (Tetric EvoCeram) composite resin (Price et al., 2011). Generally, DoC of dental resins 

are of the order of 43- 75% (Lovell et al., 1999; Moraes et al., 2008; Nithya et al., 2009). The 

DoC for adequate clinical performance has not yet been established. Low DoC contributes to 

high permeability of the adhesive, low mechanical strength, more water sorption and results in 

leaching of monomers, polymerization initiators and inhibitors, hence biocompatibility of the 

material is compromised (Santerre et al., 2001; Van Landuyt et al., 2007). 

Type of brackets and polymerization activation methods have influence on DoC of orthodontic 

adhesives. Eliades et al (2000) examined DoC of light cured, chemically cured and dual cured 

orthodontic adhesives. With a ceramic bracket, the dual-cured adhesive showed the highest 

DoC followed by the light-cured and the chemically-cured adhesives showing the lowest DoC, 

whilst with the metallic bracket, the DoC of a light-cured adhesive was comparable with that 

of the chemically-cured adhesive (Eliades et al., 2000). In addition to the type of bracket and 

polymerization activation method, other factors interact to control the extent of polymerization 

such as resin composition (Kedjarune et al., 1999), photoinitiator concentration, light intensity 

(Soh et al., 2003) and exposure time (Cadenaro et al., 2005; Moraes et al., 2008; Ceballos et 

al., 2009; Eliades, 2010; Ferreira et al., 2011). They will be discussed further in section 2.5 as 

intrinsic and extrinsic factors that control photo-polymerization. 

Different techniques have been used to determine the DoC of adhesive resins such as FTIR 

(Fourier transform infrared spectroscopy), Raman spectroscopy, EPR (electron paramagnetic 

resonance), NMR (nuclear magnetic resonance), DSC (differential scanning calorimetry) and 

DTA (differential thermal analysis). The most widely used technique is FTIR (Moraes et al., 

2008). 

FTIR has been used to investigate DoC in dental adhesive resins within various applications 

such as sealants, orthodontic adhesives and restoratives as well as for monitoring the extent and 

rate of acid base reaction of GICs. FTIR use is based on the notion that when infrared radiation 

(IR) light passes through a polymer sample the molecules are excited to vibration of chemical 

bonds at frequencies characteristic of the chemical bonds present. The excited molecules absorb 

the radiation then real time IR spectra are produced in relation to wavenumbers obtained (Wendl 

et al., 2004; Rahiotis et al., 2013). Most studies are performed at mid IR region of 4000- 400 

cmˉˡ. FTIR spectra have been taken as a single scan to monitor DoC of copolymer resin of 

MMA and HEMA (Zahroon, 2014), in order to obtain real time spectra of the material following 
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light exposure. However, in most studies co-addition scans are taken and the number of scans 

taken varies amongst studies. Some take 12 co-addition scans (Conde et al., 2009), 16 co-

addition scans (Calheiros et al., 2008) , 32 co-addition scans (Loguercio et al., 2011; Rastelli 

et al., 2012) and 64 co-addition scans (Fróes-Salgado et al., 2009). The reason behind taking 

co-addition scans is to increase the signal to noise ratio. 

The setting reaction of an orthodontic adhesive can be monitored by quantifying the carbon-

carbon double bond (C=C) conversion. The DoC of a material is generally calculated by 

comparing the intensity of the carbon double bond in the aliphatic band, which is around 

1638cmˉˡ, relative to a band of a bond which is not affected by polymerization, which is called 

the internal reference peak. In most Di-methacrylate resins the aromatic band of the carbon-

carbon single bond, which is around 1608cmˉˡ, is taken as the internal reference, as carbon 

single bonds are not affected by the polymerization reaction (Chung et al., 2002; Calheiros et 

al., 2008). However, in cases where there is no aromatic monomer, the carbonyl group of C=O 

at 1715cmˉˡ has been taken as an internal standard (Pianelli et al., 1999; Kashi et al., 2007; Guo 

et al., 2009) or the N-H reference band at 3380cmˉˡ can also be used (Rahiotis et al., 2013). In 

order to obtain the percentage of DoC the following equations (Equation 2.2 and Equation 2.3) 

are used: 

Equation 2.2……………..% DoC =100(1- %C=C) 

Equation 2.3... (%C = C) =  
[𝐴𝑏𝑠 (1638 𝑐𝑚ˉˡ)/(Abs (Internal Reference peak)]polymer

[𝐴𝑏𝑠 (1638 𝑐𝑚ˉˡ)/(𝐴𝑏𝑠 (𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑒𝑎𝑘)]𝑚𝑜𝑛𝑜𝑚𝑒𝑟
 

In which, Abs is absorbance intensity.  

One of the limitations of the attenuated total reflectance-FTIR technique (ATR-FTIR) is that it 

is a surface analytical technique with a mean of 2-4 µm depth. This means the middle zone of 

minimum conversion in the adhesive sample cannot be analysed (Rahiotis et al., 2013). 

Therefore, care should be taken to obtain intimate contact of the sample with the diamond 

crystal of ATR-FTIR stage of FTIR. In addition, to intimate contact, the intensity of the FTIR 

spectrum is affected by contact pressure (Friedrich and Weidler, 2010), therefore requiring 

constant pressure between samples tested. However, one of the reasons for taking an internal 

reference peak is to counter the effect of differences in pressure. 

In addition to FTIR, DSC has been used to monitor heat produced during polymerization as the 

polymerization reaction is an exothermic reaction. DSC is commonly used to study heat flow 

of dental adhesive resins because it is easy to use and a small amount of material can be tested 

(Gao et al., 2012). Another advantage of DSC is that it follows the polymerization reaction in 

real time through monitoring heat release during polymerization. Consequently DoC can be 
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obtained based on the assumption that the heat produced during the reaction is proportional to 

the percentage of the monomers that contribute in the polymerization process (Cadenaro et al., 

2005; Emami and Soderholm, 2005). Based on this if the only thermal event is a polymerization 

reaction, then the reaction rate is proportional to the heat flow (Ma and Gao, 2006). DoC can 

be obtained from calculating theoretical heat release of carbon-carbon double bonds which is 

56 kJ/mol over time using the following equation (Schneider et al., 2008; Schneider et al., 

2012).  

DoC= (Heat release of the material/ Theoretical heat release) X 100. 

In addition to obtaining the DoC of the test material against reaction time, polymerization rate 

as a function of irradiation time can be obtained from the DSC. Once a monomer sample 

undergoes an isothermal reaction in a DSC, the DSC apparatus monitors heat release over time. 

Polymerization rate can be calculated from enthalpy of the sample, molecular weight and mass 

of the sample (Cook, 1992). 

Photo-calorimetry is a valuable technique and it gives reliable results if used correctly. 

However, it is very sensitive to some experimental variables and variation in sample preparation 

such as thickness of the sample (Maffezzoli et al., 1995), test conditions and temperature 

(Jakubiak et al., 2001). Therefore, small aluminium crucibles are used in constant temperature 

throughout the experiment. In addition, photo-DSC is very sensitive to the type and intensity of 

the LCU used.  Different types of LCU have been used with DSC for monitoring photo 

polymerization of dental adhesive resins such as LED LCU (Gao et al., 2012), halogen lights 

and plasma arc lights (Emami and Soderholm, 2005), giving light intensities ranging from 1 

mW/cm² to 1000 mW/cm² (Lovell et al., 1999; Emami and Soderholm, 2005; Gatti et al., 2007). 

Therefore it is difficult to compare heat flow from different studies due to the different light 

sources and different intensities used. Moreover, time of polymerization varies from 10 seconds 

to 10 minutes. Furthermore, photo-DSC is sensitive to the polymerization conditions, therefore 

some researchers use nitrogen gas to provide a purged environment (Lovell et al., 1999; 

Schneider et al., 2012) whilst in other cases polymerisation is undertaken in air with the samples 

covered with a transparent matrix (Zahroon, 2014). In both cases the intention is to prevent the 

surface of the examined material from, suffering oxygen inhibition as oxygen inhibition affects 

the polymerization reaction and may therefore reduce the overall value of heat release. 

 Fluoride release  

Several studies have been undertaken to measure fluoride release of orthodontic adhesives. 

However, there is no standard protocol for fluoride releasing studies. There are variations in the 

size and shape of the samples among studies. Some studies used disc shaped samples immersed 
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in storage media (Xu and Burgess, 2003; Dionysopoulos et al., 2013; Zahroon, 2014) while 

others used brackets bonded with the test material on human teeth (Wheeler et al., 2002). A 

study has been done to compare fluoride release from disc shapes and bracketed teeth with two 

fluoride containing orthodontic adhesives, RMGIC and compomer. The study found significant 

differences in fluoride release between disc shapes and bracketed teeth (Rix et al., 2001b). In 

addition to variations in the shape of the specimen, different storage media like distilled water, 

saliva and lactic acid were used. Storage media has an effect on the amount of fluoride release. 

It appears that saliva decreases fluoride release in comparison to distilled water (Yoda et al., 

2006; Madhyastha et al., 2013). In addition to storage media, temperature has effect on fluoride 

release, with fluoride release from GIC increasing with higher temperatures from 4°C to 37C°  

(Yan et al., 2007; Madhyastha et al., 2013). Therefore, care should be taken when comparing 

results of different studies. 

Different methods have been used to measure the amount of fluoride release by materials, 

including ion selective electrode (ISE) and ion chromatography (IC). ISE has been used widely 

to measure the total fluoride ions (free and complex fluoride ions) at concentrations 0.5 to 0.1 

ppm. With ISE acetic buffer solutions (TISAB) are used to release free fluoride ions from 

complex fluoride ions (McCabe et al., 2002; Itota et al., 2004a; Itota et al., 2004b). This 

increases the amount of real fluoride ions released by the test material and it is known that only 

free fluoride ions are effective in enhancing remineralisation (Arends and Christoffersen, 1990). 

The advantage of ISE is that it is easy to use. IC is another method for measuring fluoride ions, 

which measures free fluoride ions at concentrations up to 0.001 ppm (McCabe et al., 2002). 

This method has advantages over ISE in measuring lower levels of fluoride ions up to 0.001 

ppm (McCabe et al., 2002; Itota et al., 2004a; Itota et al., 2004b) and in measuring only free 

ions. However, it is more complicated than ISE.  

In addition to the fluoride releasing ability of orthodontic adhesives, fluoride recharging is 

another interesting property of fluoride releasing orthodontic adhesives. Fluoride releasing 

orthodontic adhesives can take up fluoride from the oral environment to replace the fluoride 

that has been lost. Orthodontic adhesives vary in their capacity to absorb and re-release fluoride. 

There are several ways of delivering fluoride into the oral environment such as using 

dentifrices, mouthwashes and fluoride gels. Topical fluoride agents can be used to restore the 

fluoride release capability of orthodontic adhesives, and it has been shown that those materials 

which have higher recharge capability are those which have higher initial fluoride release (Xu 

and Burgess, 2003). Recharging is essential to maintain continuous increased levels of fluoride. 

This is why for clinical use the fluoride recharging ability will become an important factor in 

choosing materials (Mousavinasab and Meyers, 2009). Different factors influence fluoride 
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release and recharge characteristics of the fluoride releasing adhesives such as the matrices, 

filler type and fluoride content, setting mechanism and environmental conditions. (Wiegand et 

al., 2007; Dionysopoulos et al., 2013). The amount of glass ionomer matrix of the glass filler 

affects the fluoride releasing and recharging abilities of the adhesives like RMGIC and 

compomer (Itota et al., 2004b) . 

Fluoride releasing adhesives, when re-exposed to a fluoridated mouth rinse after their fluoride 

content is exhausted, provide sustained fluoride release when compared to those prior to 

exhaustion (Benson et al., 2005). In some fluoride releasing materials such as GIC and RMGIC 

the amount of fluoride release after re-fluoridation is higher than the release from within the 

materials (Cildir and Sandalli, 2005). However, this re-charging potential appears to diminish 

over time and with repeated exposure to supplemental fluoride (Coonar et al., 2001). The 

pattern of fluoride release after exposure to supplemental fluoride is a burst-effect (Attar and 

Turgut, 2003; Cohen et al., 2003). It means a high amount of fluoride is released in the first day 

then the fluoride release returns to the pre-exposure level after   2 to 3 days (Young et al., 1996). 

There are some suggestions regarding the mechanism of fluoride recharging. Firstly, it has been 

suggested that recharging behaviour  of adhesives is caused by surface effects  not chemical 

recharging (Gao and Smales, 2001) because fluoride uptake and rerelease is probably due to 

the processes of surface retention and matrix diffusion of fluoride (Cohen et al., 2003; Preston 

et al., 2003). Secondly, it has been suggested that recharging is due to the replacement of 

intrinsic fluoride and fluoride diffusion into porosities within the material (Xu and Burgess, 

2003). 

There is no standard recharging protocol. Different studies have been done in vitro to measure 

the fluoride recharging ability of orthodontic adhesives. The test material is exposed to an 

external fluoride source after its own fluoride content is exhausted to study fluoride uptake of 

the material and this can be compared to fresh samples (Lim et al., 2011). Fluoride solutions 

have been used at different concentrations from 200 ppm to 1000 ppm (Coonar et al., 2001; 

Lim et al., 2011), with fluoride rinsing with 1000 ppm NaF found to be effective for recharging 

orthodontic adhesives (Ahn et al., 2011). Therefore, care should be taken when comparing 

results of different fluoride recharging studies. 

The amount of fluoride released into water appears to be related to the contribution of the two 

mechanisms. The first one is an immediate reaction which involves rapid dissolution from the 

outer surface into solution. The second mechanism is long-term diffusion of ions through the 

bulk cement (Verbeeck et al., 1998; Lee et al., 2000; Wiegand et al., 2007). 

The fluoride release of fluoridated resin based orthodontic adhesives is regulated by the water 

absorption capacity of the materials. The mechanism of fluoride release comes from either acid 
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base reaction of the materials such as in case of GIC, RMGIC and compomer (Verbeeck et al., 

1998; Lee et al., 2000), or in fluoride releasing composite resin depends on dissolution of the 

additive fluoride sources like soluble salts of NaF, CaF2 and SnF2 or ion leachable glasses that 

are added to the material. Therefore, for fluoride release to occur, water must be absorbed into 

the material before diffusion of fluoride to its surroundings. This is describes as 

diffusion/dissolution mechanism (Verbeeck et al., 1998). To understand fluoride release and 

recharging ability of orthodontic materials it is crucial to study water sorption of the materials.  

Water absorption has been measured by monitoring weight changes before insertion of disc 

shaped samples of a material into water and after being in water for a specific time. By knowing 

the amount of weight changes and volume of the disc shaped samples, water absorption can be 

calculated using Equation 2.4 (Cefaly et al., 2003; Marghalani, 2012).  Water sorption is highly 

influenced by the porosity of the material in which  high porosity leads to high water sorption 

in GICs (McCabe et al., 2009). It will also be affected by the amount of soluble fraction within 

the material. The kinetics of water sorption depend on two processes, water diffusion and 

diffusion of soluble fraction out of the sample (see Figure 2.3)(Van Noort, 2013). 

In addition to water absorption, water solubility is important in order to understand how soluble 

the material is after being in a solution. For this purpose disc shaped samples are stored in water 

for specific time, desiccated to remove all water and weighed (Van Noort, 2013). The weight 

change that occurs may be due to leaching out of monomers, initiators and other components 

of the material and may therefore impact on the biocompatibility of the material. Solubility 

measurement is an important indicator of how well the material can withstand the oral 

environment without degradation. Degradation of the material leads to bond failure which 

consequently lengthens treatment time. Water solubility can be measured using Equation 2.5 

(Cefaly et al., 2003; Marghalani, 2012). 

Equation 2.4…………….Water absorption (µg/cm²) = (W1-W0) /V  

Equation 2.5                     Water solubility (µg/cm²) = (W0-W2) /V    

In which: W0= weight of the samples before water insertion, W1=weight of the samples after 

water insertion, W2= weight of the samples after desiccation and V=volume of the material. 
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Figure 2.3 Schematic presentation of the kinetics of water sorption and the dissolution of the 

soluble fraction  from (Van Noort, 2013). 

Water sorption and solubility are in the range of 30-50 µg/cm² for most polymer resins, higher 

than this is likely to affect performance of the material (Van Noort, 2013). Sorption and 

solubility have been measured for orthodontic cements for banding and bonding after being 

stored in different solutions like distilled water, artificial saliva, and ethanol and mouthrinse 

solution in order to understand how orthodontic adhesives behave in these solutions (Toledano 

et al., 2006). In general, resin based orthodontic adhesives are less soluble in comparison to 

glass ionomer cements.  

2.4 Composition of resin based orthodontic adhesive 

  Monomers 

2.4.1.1 Di-methacrylate 

Conventional orthodontic adhesives consist of two principal components, an organic matrix and 

an inorganic filler. The organic matrix is formed by free radical polymerization of Di-

methacrylates such as BisGMA (bisphenol A diglycidyl methacrylate), UDMA (urethane Di-

methacrylate) and TEGMA (triethylene glycol Di-methacrylate). BisGMA, TEGMA and 

UDMA are the most commonly used cross-linking agents in dental adhesives. This crosslinking 

contributes to greater strength, lower water absorption and less polymerization shrinkage. 

BisGMA, also called Bowens-resin, has a high molecular weight. It is the most commonly used 

base monomer in dental composites. It is a very viscous monomer that makes it difficult to 

incorporate reinforcing fillers into the matrix and results in a low conversion rate (Lovell et al., 

1999). Therefore, TEGMA, a low viscosity diluent monomer, is often added to optimize the 

viscosity and increase the final conversion of the matrix phase (Lovell et al., 1999; Sideridou 

et al., 2002) (see figure 2.4). TEGMA has low molecular weight therefore resulting in high 
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polymerization shrinkage as well as lower mechanical properties. Polymerization shrinkage can 

be decreased by increasing the percentage of BisGMA in BisGMA/TEGMA mixture (Atai et 

al., 2005). It has been shown that the percentage of 40:60 of BisGMA/TEGMA is the optimal 

concentration to optimize viscosity, decrease residual monomers and increase DoC (Davidenko 

et al., 2005). BisGMA and TEGMA exhibit 5.2% and 12.5% volumetric shrinkage respectively 

that is reduced to 2% and 6% respectively in the resin composites due to inclusion of inorganic 

fillers (Labella et al., 1999). 

UDMA has been used to act as a substitute to BisGMA as UDMA has a flexible ester group 

compared to rigid benzoic groups of BisGMA (see Figure 2.4). This offers better materials 

handling properties (Papakonstantinou et al., 2013 ). Differential scanning calorimetry (DSC) 

shows homo-polymerization of UDMA reach a higher DoC (43%) compared to BisGMA (7%) 

(Dickens et al., 2003). Another study has shown in a mixture of BisGMA/TEGMA together 

DoC increased with increasing UDMA% up to 50% (Atai et al., 2005). However, a UDMA-

based resin matrix provides poorer mechanical properties such as hardness and flexural strength 

compared to a BisGMA based resin matrix (Zhang et al., 2013). In adhesives, UDMA is often 

used alone or in combination with TEGMA and /or BisGMA. It has been shown in a mixture 

of BisGMA/UDMA/TEGMA that substitution of BisGMA or TEGMA by UDMA resulted in 

an increase in tensile and flexural strength, and that substitution of BisGMA by TEGMA 

increased tensile, but reduced flexural strength (Asmussen and Peutzfeldt, 1998). TEGMA has 

been used as diluent to decrease the viscosity of UDMA and also can increase conversion rate 

of resulted polymer (Sideridou et al., 2002). In addition to TEGMA, other low molecular weight 

monomers have been used as diluents with UDMA including, 2-Hydroxyethylmethacrylate 

(HEMA) and 3-hydroxypropyl methacrylate (HPMA) (Silikas and Watts, 1999).  

A.  

B.   

C.  

Figure 2.4 Molecular structure of A- BisGMA, B- TEGMA and C- UDMA 
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2.4.1.2 Methylmethacrylate (MMA) 

Methylmethacrylate (MMA) is one of the oldest monomers used in dentistry. It has a low 

molecular weight and can be used as a solvent or diluent for other monomers (Neumann et al., 

2005) (Figure 2.5). It is a mono-functional monomer and it is less reactive than di-functional 

monomers. Therefore, MMA reaches its maximum shrinkage-strain rate, after a prolonged time 

in comparison with the di-functional monomers (Atai et al., 2005). PMMA can be produced 

using free radical polymerization of MMA. The free radical polymerization of acrylates and 

methacrylate is a chain polymerization across the carbon-carbon double bond of the monomer.  

MMA-based resins are uncommonly used for permanent restorations due to their lower 

strength, high coefficient of thermal expansion and high residual monomer. Polymers of MMA 

are used as an orthodontic adhesive and denture base or liners. However, different factors within 

the oral environment such as saliva, forces of mastication and dietary changes may have 

physical and mechanical detrimental effects on acrylic resins (Bettencourt et al., 2010). MMA-

based resins have a potential for using as orthodontic adhesives (Newman et al., 1968; Su et 

al., 2010). 

The most common commercial MMA-based orthodontic adhesives are based on mixtures of 4-

META/MMA/TBB and it is available as a commercial product as Super-Bond, whose 

polymerization is initiated by tri-n-butylborane (TBB). 4-META significantly affects water 

uptake and solubility characteristics of polymers of MMA. 4-META is shown to increase water 

sorption of the PMMA, however, it does not affect solubility of the PMMA (Unemori et al., 

2003). MMA-based orthodontic adhesives have an advantage over conventional 

BisGMA/TEGMA based orthodontic adhesives like Transbond XT in that they lead to less 

enamel fracture than Transbond XT (Kim et al., 2014) as it is more flexible and therefore easier 

to debond from the tooth surface. 

2.4.1.3 HEMA (2-Hydroxyethylmethacrylate) 

HEMA is a low molecular weight hydrophilic methacrylate monomer that is commonly used 

in dental adhesives (Figure 2.5). HEMA is widely used in the biomedical fields in the 

construction of hydrogels (Kulygin and Silverstein, 2007) and contact lenses as well as in 

dentistry. HEMA is prepared in a single step by the addition of CH2OH group to the MMA side 

group (Montheard et al., 1992). HEMA is a mono-functional monomer and after polymerization 

it forms weaker, linear polymers, unlike multifunctional monomers that are capable of 

crosslinking. Polymers of HEMA are flexible and porous (Tay et al., 2002a). However, 

crosslinking agents can be used to improve mechanical properties of the polymers of HEMA 

(Arima et al., 1995). HEMA can be used to control the rheological behaviour of viscous Di-
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methacrylate monomers such as BisGMA and UDMA (Silikas and Watts, 1999; Atai et al., 

2005; Kodkeaw et al., 2010) and it can be used as a solvent (Ely et al., 2012). Its hydrophilicity 

makes this material an excellent adhesion promoting monomer and it readily absorbs water in 

polymer form (Arima et al., 1995; Van Landuyt et al., 2007). 

A copolymer of MMA and HEMA at 60:40 ratio has been used to develop fluoride releasing 

materials for using as orthodontic adhesives, fissure sealants and a denture liner (Su et al., 2010; 

Zahroon, 2014; Al-Sammarraie, 2015). The reason for choosing HEMA was mostly due to the 

hydrophilicity of the material which makes the material readily absorb water, to enhance water 

diffusion and fluoride release of the material. It was reported that HEMA added to base 

monomers like bisphenol A glycerolate diacrylate, glycerol 1,3- diglycerolate diacrylate and 

diurethane Di-methacrylate leads to more water sorption than TEGMA for the same 

composition (Kodkeaw et al., 2010). Water molecules bonding via hydrogen bonding to the 

polar sites of HEMA contribute to water diffusion through polymer matrices (Yiu et al., 2006). 

HEMA is prone to hydrolysis faster by basic solutions than by acidic solutions. However, acid 

hydrolysis of HEMA increases with increasing temperature and acid concentration (Kazantsev 

et al., 2003). 

HEMA has been used in primers of dentine bonding agents to increase bond strength (Eick et 

al., 1993; Nakaoki et al., 2000) through improving the infiltration of the resin into the wet 

dentin surface. It has been suggested that the bond strength to enamel significantly increased 

with  the introduction of small quantities of HEMA to the dentine bonding adhesives (between 

10% and 19%); however, with greater quantities (36%) bond strength decreases due to water 

attraction and osmosis through the polymerized adhesive layer (Torkabadi et al., 2008). HEMA 

may decrease the vapour pressure of water and it is relatively unvolatile (Pashley et al., 1998). 

HEMA may also contribute to less acetone loss and decrease the evaporation rate of acetone 

(Yiu et al., 2005; Nihi et al., 2009) due to the hydrophilicity of HEMA, as the more hydrophilic 

the monomer in an adhesive system the more solvent is retained (Malacarne-Zanon et al., 2009). 

 

Figure 2.5 Molecular structure of A MMA and B HEMA.  
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2.4.1.4 4-META (4-methacryloyloxyethy trimellitate anhydride) 

4-META presents in nature as a white crystalline structure. It can be prepared by the reduction 

of 2-hydroxyethyl methacrylate and trimellitic anhydride chloride in the presence of pyridine 

to remove hydrogen chloride (Chang et al., 2002). 4-META has hydrophilic aromatic group 

and hydrophobic methacrylate group (Figure 2.6). 

 

Figure 2.6 Molecular structure of the 4-META monomer. 

4-META is used as an adhesion promoting monomer, it increases the bond strength of acrylic 

resin with  enamel (Takeyama et al., 1978) through promoting the infiltration of monomers into 

dental hard tissue and after polymerization there is excellent adhesion obtained with the enamel 

(Nakabayashi et al., 1982; Hotta et al., 1992). 4-META monomer is able to adhere to 

hydroxyapatite and form an ionic bond with calcium in hydroxyapatite (Yoshida et al., 2004). 

4-META has been used to improve bond strength of brackets to amalgam, gold alloy, metal 

alloys and porcelain in conjunction with conventional orthodontic resins (Ohno et al., 1992; 

Björn et al., 1995; Büyükyilmaz et al., 1995; Zachrisson et al., 1996; Minami et al., 2013). 

Furthermore adding 1-5% 4-META by volume has been shown to enhance the bond strength 

of the acrylic resin to the dental alloy (Takeyama et al., 1978; Khasawneh et al., 2003; Shimizu 

and Takahashi, 2012), because the molecule forms both hydrophilic and hydrophobic bonds 

when added to the acrylic resin. However, it has been shown that the tensile bond strength of a 

monomer matrix of TEGMA containing 2 or 5% 4-META leads to decreasing bond strength to 

bovine dentine in comparison to groups without 4-META (Nikaido et al., 1990). However, no 

evidence was found in literature on the effect of 4-META on HEMA. 

4-META is commonly used together with MMA in the form of 4-META/MMA-TBB adhesives 

and it is available as a commercial product as (Super-Bond, MCP Bond®), whose 

polymerization is initiated by tri-n-butylborane (TBB). 4-META containing adhesives provide 

significantly higher bond strength than the conventional orthodontic adhesives (Clark et al., 
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2003). Water absorption of MMA based adhesive increases with an increasing 4-META 

concentration up to 5%wt (Unemori et al., 2003). 

4-META is commonly used in solvated self-etching primers or one step bonding agents as an 

acidic monomer (Tay et al., 2002b; Carvalho et al., 2005). Care should be taken to select the 

appropriate type of solvent used as using alcohol based solvents like ethanol leads to 

esterification of the compound however, with acetone esterification does not occure (Fujita et 

al., 2007).  

 Fillers 

Fillers are another component of resin based orthodontic adhesives. Fillers commonly used 

include quartz, fused silica and many types of glass including aluminosilicates and 

borosilicates, some containing barium oxide (McCabe and Walls, 2009). All monomers used in 

resin based adhesives including BisGMA, UDMA and TEGMA, HEMA and MMA, undergo 

shrinkage during polymerization.  Fillers are used to decrease the volumetric shrinkage of resin 

based adhesives that occurs during polymerization (Labella et al., 1999).  

In addition to lowering shrinkage, fillers have other advantages, including increasing bond 

strength and increasing the strength of the material. Orthodontic adhesives with higher filler 

content offer higher bond strength than lower filled or unfilled resins (Faltermeier et al., 2007). 

There is correlation between mechanical properties of composite (hardness and diametral 

tensile strength) and the volume fraction of filler content (Chung and Greener, 1990). Fillers 

are not only added to the adhesive, they are included in some of primers as well in order to 

enhance bond strength. Addition of 10% silica nano-filler into mixture of Bis-GMA, TEGMA 

and UDMA has been shown to increase the cohesive strength of the adhesive (Conde et al., 

2009).  

PMMA powder has been used as a filler. Most MMA-based orthodontic adhesives have used 

PMMA as an organic filler and they are available as a liquid mixture of MMA and PMMA as 

powder. They are available as commercial products, for example Super-Bond and MCP Bond®. 

Beads of PMMA also have been used as fillers of experimental composite resins. Addition of 

2% by wt spherical PMMA filler, with 30 µm diameter to the composite resin has been shown 

to enhance certain properties of composite resin, including compressive strength and prevention 

of crack propagation without altering water sorption capacity of the material (Kondo et al., 

2010). However, these authors do not describe the exact composition of the composite resin. In 

addition it was reported an increase in flexural strength and hardness after addition of PMMA 

powder to ethylene glycol Di-methacrylate (EGDM) (Atsuta and Turner, 1983; Bajpai et al., 

1993). 
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Fillers have the additional advantage in providing a potential source of fluoride. Some fillers 

have fluoride releasing ability such as fluoroaluminosilicate glasses (FAG) which has been used 

in RMGIC and compomers. In resin based adhesives, fluoride can be incorporated into either 

the polymer matrix as a fluoride releasing monomer (Ling et al., 2009; Xu et al., 2012) or in 

the form of fillers. Fluoride releasing components have included fluoroaluminosilicate glasses 

(FAG), stannous fluoride (SnF2), organic amine fluorides (CAFH) and ytterbium fluoride 

(YbF2). Organic salts of fluoride such as sodium fluoride (NaF), potassium fluoride (KF), 

calcium fluoride (CaF2) and stannous fluoride (SnF2) have been incorporated as fluoride 

releasing fillers into the polymer matrix (Patel et al., 1998; Nakabo et al., 2002; Anusavice et 

al., 2005; Kodkeaw et al., 2010). 

NaF is water soluble salt that dissolves easily into Na+ and F- ions. It has been used in water 

fluoridation and has been incorporated into dental adhesive resins as a source of fluoride. NaF 

has been used with a monomer mixture of MMA/HEMA as a source of fluoride in the 

development of fluoride releasing orthodontic adhesive, fissure sealant and denture base linear 

(Su et al., 2010; Zahroon, 2014; Al-Sammarraie, 2015). The material has a fluoride release at 

amounts comparable to GIC. In addition, NaF has been added to flowable composite resins and 

has been shown to have preventive effect as a result of releasing fluoride ions (Tiveron et al., 

2015). However, in this work the composition of the monomer mixture is not discussed and this 

will have a significant impact on fluoride release. In addition NaF has been added to a 

BisGMA/TEGMA mixture showing fluoride releasing ability (Nakabo et al., 2002). However, 

after the NaF was treated with γ-methacryloxypropyltrimethoxysilane this resulted in slow 

release of fluoride from the BisGMA/TEGMA mixture (Nakabo et al., 2002). NaF has been 

added into a matrix of diurethane Di-methacrylate (DU-DMA)/HEMA, BisGMA/HEMA for 

using as a denture coating material. The material had released over the four weeks of the study 

(Kodkeaw et al., 2010). NaF has been added to commercial MMA-based acrylic orthodontic 

adhesives 4-META/MMA-TBB (Super-Bond/F3) and it has been shown that the material can 

release fluoride for up to 6 months (Iijima et al., 2013). 

Potassium fluoride (KF) is another fluoride salt that has been used in dental adhesives. It was 

reported that in polymer systems comprised of poly(ethyl methacrylate) powder (PEM), with 

tetrahydrofurfuryl methacrylate (THFM), and n-butyl methacrylate (nBM), the water uptake in 

the KF containing samples is much less than corresponding NaF samples (Patel et al., 1998). 

In addition to NaF and KF, CaF2 has been used in dental adhesives. CaF2 has a lower water 

solubility 0.016 g/L at 18 in comparison to NaF which is 42 g/L at 20°C. Therefore it was 

reported that CaF2 released less fluoride ions in comparison to NaF in the first four weeks in a 

matrix of DU-DMA/HEMA, BisGMA/HEMA used as a denture coating material (Kodkeaw et 
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al., 2010). However, CaF2 has the ability to release at a low sustained level for as long as 4 

months at 0.10 g/cm2·h, in a polymer resin of UDMA/TEGMA at  ratio 70:30 (Anusavice et 

al., 2005). Water soluble salts like NaF, KF, CaF2 and SnF2 provide high levels of fluoride 

release. However, one of the disadvantages of using them is that once the fluoride has leached 

out it leaves porosity in the resin and this will affect the mechanical properties of the material  

(Arends et al., 1995). 

 Solvents 

Solvents are used to lower resin viscosity. The most commonly used solvents in resin based 

materials are acetone, ethanol and water. In addition to these, some monomers of  low molecular 

weight have been used as solvents such as HEMA, MMA, MAA methacrylic acid, 3-

hydroxypropyl methacrylate (HPMA) and TEGMA (Silikas and Watts, 1999; Atai et al., 2005; 

Van Landuyt et al., 2007; Kodkeaw et al., 2010). The primary aim of solvents in resin based 

adhesives is to lower resin viscosity. They facilitate infiltration of viscous monomers into 

demineralized dentine and enamel. In addition, solvents act as a carrier to help easy movement 

of monomer blends and initiators into tooth structure. Solvents have been used to facilitate 

dissolution of the initiator system into the monomer mixture. Acetone has been used in order 

to decrease the viscosity of BisGMA/TEGMA at 8% to allow dissolving of the initiator in the 

monomer mixture (Lovell et al., 1999).  Therefore solvents have been added to almost all 

commercial bonding agents (primers) up to 80% (Reis et al., 2003). 

One of the important characteristics of a solvent is vapour pressure which should be considered 

when incorporating solvents into dental adhesives. Vapour pressure is a physical property that 

determines the time at which a solvent would need to evaporate at a given temperature 

(Ekambaram et al., 2015). It has been shown that acetone based adhesives evaporate at a higher 

rate and have a higher solvent evaporation capacity than ethanol, water and ethanol/water-based 

materials, with mass loss ranging from 2.15 to 21.80% (Abate et al., 2000; Nihi et al., 2009). 

Therefore acetone-based adhesives may have a shorter useful life than ethanol- and water-based 

adhesives (Perdigao et al., 1999). The high volatility of acetone is related to poor hydrogen 

capacity to monomers in the adhesive resin (Yiu et al., 2005), with the hydrogen bonding 

capacity of acetone 30% of ethanol (δh: 7J/cm3 vs 19.4J/cm3) (Ekambaram et al., 2015).  

Addition of solvents has impact on bond strength of dental adhesive systems to dentine not 

enamel. It has been shown the solvent type (acetone or ethanol) had no influence on enamel 

bond strength, but had a great influence on dentin bonding, which should be taken into account 

when choosing the adhesive system (Lopes et al., 2006). In addition it was suggested that the 

presence of organic solvents does not influence micro tensile bond strength (micro-TBS) to 
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enamel. However, micro-TBS to dentin was significantly affected by the absence of solvents in 

the adhesive system (Reis et al., 2003).  

Organic solvents have an effect on the DoC of adhesive resins. This is dependent on the amount 

of solvent used. At low solvent concentrations the DoC increases.  It has been shown that using 

solvents like ethanol and acetone up to 2.5 to 5Mol respectively, leads to an increase in DoC 

for a BisGMA/TEGMA mixture (Holmes et al., 2007). In another study using ethanol up to 

30wt% for a range of monomer mixtures including HEMA/BisGMA, TEGMA/BisGMA 

resulted in increasing DoC (Cadenaro et al., 2008; Cadenaro et al., 2009). This is potentially 

due to increased diffusion of free radicals and growth of polymer chains after solvent addition. 

However at higher solvent concentrations, the rate and extent of polymerization decreases 

(Holmes et al., 2007; Cadenaro et al., 2008). One of the reasons proposed is absorption of the 

heat generated during the polymeric exothermic reaction by the solvent (Lee et al., 2004). 

Another reason is that with increasing solvent concentration, the possibility of physical 

separation of free radicals, photo-activation constituents and growing polymer chains from each 

other happens and this may lead to decreased monomer conversion (Holmes et al., 2007). 

However, in all cases this will depend on the photo-polymerization time, as with increasing 

polymerization time the DoC increases (Cadenaro et al., 2009). The amount of the solvent up 

to which DoC increases depends on type of solvent used which was found to be 5M for acetone 

in comparison to 2.5M for ethanol in a monomer mixture of BisGMA/TEGMA (Holmes et al., 

2007).  

 Initiator system 

In composite resins, polymerization of monomers occurs due to free radical polymerization. 

For this reaction to occur, small amounts of initiators are required which will be consumed 

during the polymerization reaction. A variety of methods can be used to produce free radicals 

such as thermal, photochemical and chemical methods. The polymerization of composite resins 

can be activated by chemicals or by light. 

2.4.4.1  Chemical initiators 

A chemical initiator commonly used in chemical initiator systems is benzoyl peroxide (BPO). 

To provoke the decomposition of BPO, an aromatic tertiary amine is used such as N,N-

dimethyl-p-toluidine (DMPT), 4-(N,N-dimethylamino)phenethylalchohol (DMPOH), 4-(N,N-

dimethylamino)phenylacetic acid (DMAPAA), EDAB or N,N-dihydroxyethyl-p-toluidine 

(DHPT) (Achilias and Sideridou, 2004; Sideridou et al., 2006). The role of the tertiary amine 

is to react with the BPO (reduction-oxidation) and yield free radicals. DMPT has been shown 

to demonstrate higher activity with BPO than DHPT, however it is more temperature sensitive 
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(Mathew et al., 1997). BPO in a Di-methacrylate mixture is sensitive to temperature and 

therefore should be stored in a refrigerator to prevent radical formation (Kwon et al., 2012) 

Another chemical initiator is tri-n-butyl borane (TBB), which does not need a tertiary amine. It 

has been shown using high performance liquid chromatography (HPLC) that post-

polymerization, at 24 hours, 1 week, of PMMA/MMA resins with TBB initiator contain less 

residual monomer compared to a PMMA/MMA resin initiated with CQ (Hirabayashi and Imai, 

2002). TBB has been shown to be an option for a dual cure system as a chemically accelerated 

initiator component (Hirabayashi, 2003). 

Composite resins with chemical initiators are supplied in various formats: as two paste, powder 

and liquid or paste and liquid, in which one of the paste or powder contains an initiator like 

BPO and the other paste or liquid contains a tertiary amine. These need to be  mixed together 

either manually or mechanically (McCabe and Walls, 2009). However, this increases the chance 

of oxygen integration during mixing in addition to the chance of increasing voids in the resultant 

polymer (Fano et al., 1995). This will affect the mechanical and physical properties of the 

resultant polymer.  

2.4.4.2 Photo-initiators 

One of the important factors that affects polymerization and the mechanical and physical 

properties of light curing composite resins is the chemical composition of the photo-initiator 

system. Two components are present in most commercial photo-activated dental resins. First 

the photo initiator which can absorb light directly, secondly a co-initiator or activator that does 

not absorb light but interacts with the activated photo-initiator to generate a reactive free radical 

and initiate polymerization. However, some photo-initiators do not need co-initiator as 

discussed below. 

In light cured dental adhesive resins different photo-initiator systems have been used with 

composite resins including camphorquinone (CQ), phenylpropanedione (PPD) and phosphine 

oxide. 

A Camphorquinone (CQ) 

CQ combined with different tertiary amines, which act as an electron donors are widely used 

photo-initiator system in dental resins and composites (Sun and Chae, 2000; Jakubiak et al., 

2003; Leprince et al., 2013) (Figure 2.7). The absorption range of CQ is about 360-470 nm with 

a peak absorbance wavelength at around 470nm (Figure 2.12 and Figure 2.13) (Schroeder et 

al., 2008; Arikawa et al., 2009). The emission spectra of most conventional LED light curing 

units (LCU) matches with the absorption spectrum of CQ. 
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Figure 2.7 Chemical structure of CQ 

The type and quantity of co-initiator used with the photo-initiator affects the quality of the 

resulting polymerization. Several amines have been used with CQ as co-initiators such as 2-

dimethylaminoethyl Methacrylate (DMAEMA), EDAB, N,N-cyanoethylmethylaniline 

(CEMA), NN-dimethyl p-toluidine (DMPT), N,N-diethanol p-toluidine (DEPT) or N,N-

dimethyl-p-aminobenzoic acid ethylester (DABE) (Yoshida and Greener, 1993; Teshima et al., 

2003; Emami and Soderholm, 2005; Furuse et al., 2011). A study employing Fourier transform 

infrared (FTIR) to measure DoC of BisGMA/TEGMA experimental resins and CQ with 

different co-initiators, showed that experimental resins with DMAEMA co-initiator provide 

higher DoC compared to resins containing other co-initiators including CEMA, DMPT, DEPT 

or DABE (Furuse et al., 2011) because DMAEMA interacts strongly with monomers which 

have a methacrylate functional group capable of copolymerization with the matrix monomer 

(see Figure 2.8). Others investigators demonstrated higher DoC of CQ with DMAEMA co-

initiator over DMPT co-initiator (Yoshida and Greener, 1993). However, other studies showed 

superiority of CQ/DMPT over CQ/DMAEMA in generating free radicals (Teshima et al., 

2003). These conflicting results may have arisen because different monomer mixtures are used 

in those studies. There is no standard ratio of initiator to co-initiator concentrations and it is 

varied from 2:1 to 1:2 by weight (Asmussen and Vallo, 2009; Schneider et al., 2009a). Any 

increase of the co-initiator concentration above the optimum concentration level will not 

improve the quality of polymerization (Yoshida and Greener, 1993) However, too much co-

initiator will cause discolouration (yellowing) of the resin (Schneider et al., 2009a) as well as 

compromising biocompatibility, as amines cause cytotoxicity (Bakopoulou et al., 2009). 

 

Figure 2.8 Chemical structure of DMAEMA 
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Figure 2.9 Chemical structure of EDAB 

High concentrations of CQ have been reported to improve the DoC and mechanical properties 

of the resultant resin (Musanje et al., 2009; Pfeifer et al., 2009). However, it has been shown 

that above certain concentrations of CQ there is no further beneficial effect (Jakubiak et al., 

2001; Jan et al., 2001; Musanje et al., 2009). In addition, higher concentrations of CQ may lead 

to a yellow colour that contributes to poor aesthetics in dental resins. On the other hand, 

inadequate concentrations of the photoinitiators results in insufficient polymerization. This 

results in inferior biocompatibility, colour stability, physical and mechanical properties and 

wear resistance of the resultant polymer (Jan et al., 2001; Musanje et al., 2009) 

One of the disadvantages of using CQ is the yellow colour which affects the colour of the 

resultant resins. To improve the aesthetic quality of dental composite resins and to optimize 

efficiency of polymerization, numerous alternative photo-initiator systems have been 

developed such as PPD and phosphine oxides. 

B Phenylpropanedione (PPD) 

The diketone PPD (see figure 2.10) has been introduced to improve the aesthetics of dental 

composite resins. It has been suggested that CQ may be mixed with or replaced by PPD to 

produce a resin with higher DoC and reduced yellowing effect (Park et al., 1999). However, 

this depends on the type of LCU, as PPD has an absorption spectra near the ultraviolet (UV) 

region with a maximum absorption peak of PPD is 398 nm (Sun and Chae, 2000; Neumann et 

al., 2006) (see Figure 2.10, Figure 2.12 and Figure 2.13). Therefore, it has been shown that PPD 

cured with a conventional LED LCU results in a lower DoC in comparison to CQ or CQ/PPD 

together (Brandt et al., 2011). In addition, is slower to react and produce free radicals than CQ 

(Emami and Soderholm, 2005). However, PPD can  photo-crosslink, which leads to higher 

mechanical properties than CQ in a mixture of BisGMA (Sun and Chae, 2000). It has been 

reported that photo-polymerisation of BisGMA in the presence of PPD does not depend on an 

activator like DMAEMA, compared to CQ which is highly dependent on the concentration of 

the co-initiator. Therefore in order to optimize curing efficiency of CQ and PPD, care should 

be taken in choosing the tertiary amine activator with these photo-initiators (Asmussen and 

Vallo, 2009). 
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Figure 2.10 Chemical structure of PPD 

C Acylphosphine oxide  

Acylphosphines represent a wide group of photo-initiators. They have a maximum absorption 

near UV light, also extending into the visible part of the spectrum (see Figure 2.11, Figure 2.12 

and Figure 2.13(Neumann et al., 2005). Some of them have been used in dental resins including 

(2,4,6- trimethylbenzoyl) diphenylphosphine oxide or TPO (LucirinTPO, BASF), a 

monoacylphosphine and bis(2,4,6-trimethylbenzoyl)-phenylphosphine oxide or Irgacure 

819(Ciba-Geigy), a diacylophosphine. 

Lucirin TPO photo initiator has advantages when compared to CQ and PPD in that it has a 

minimum effect on colour change of adhesive resins before and after polymerization, therefore 

resulting in better colour stability (Shin and Rawls, 2009). Another advantage of Lucirin over 

CQ is that Lucirin does not need a tertiary amine, however CQ needs a tertiary amine (Schneider 

et al., 2009; Schneider et al., 2012)..  

Another advantage of Lucirin TPO is the ability to achieve a high DoC, with the reported DoC 

reaching as high as 75.7% (Arikawa et al., 2009) and higher than CQ (Leprince et al., 2011). 

This is due to Lucirin TPO being more reactive than CQ and PPD. It has a high quantum yield 

of polymerization, with the amount of monomer polymerized per absorbed photon of Lucirin 

TPO being greater than CQ and PPD  (Neumann et al., 2006). Each molecule of Lucirin 

generates two free radicals to initiate polymerization, compared to conversion of a molecule of 

CQ and PPD that generates one free radical (Neumann et al., 2006; Leprince et al., 2013). 

However the absorption spectra of TPO (380-430nm) is narrower than CQ (380-500 nm) and 

PPD (380-500nm) but has greater absorption at shorter wave lengths in a mixture of BisGMA 

and TEGMA (Neumann et al., 2006; Arikawa et al., 2009; Schneider et al., 2012). The 

conventional LED LCU does not match the absorption spectra of Lucirin, and therefore a 

different LCU such as Bluephase should be used (see figures Figure 2.12 and Figure 2.13).  

Despite the positive factors related to using Lucirin TPO, it has some disadvantages. It has been 

reported that phosphine oxide leads to a lower depth of cure than CQ (Leprince et al., 2011; 

Miletic and Santini, 2012a; Schneider et al., 2012). However, in these studies the light emission 

spectra were more suitable for CQ than to Lucirin TPO. 
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Figure 2.11 Chemical structure of Lucirin 

 

Figure 2.12 Extinction coefficients, molar absorption coefficient or molar coefficient, which 

are parameters defining how strongly a substance absorbs light at a given wavelength, per 

mass density or per molar concentration, respectively, of photoinitiators (solid lines), and 

photon output of the LCU (dashed lines) used. Ultrablue IS is an LED LCU while Optilux is 

Optilux 401 halogen LCU. The figure shows the maximum absorption of Lucirin at 371 nm 

followed by Irgacure photoinitator at 360 nm followed by PPD at 391 nm next is CQ at 470 

nm. The maximum emission for LCU is Ultrablue IS LCU at 470nm followed by Optilux at 

495nm (Neumann et al., 2006). 

 

Figure 2.13 Absorption spectra of various LCUs and photo-initiators adopted from (Santini, 

2010). 
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2.5 Polymerization reaction 

Polymers are prepared by chemically interconnecting monomer units to produce high molecular 

weight molecules. There are two types of polymerization reactions, addition polymerization and 

condensation polymerization. In addition, polymerization, the reaction occurs without any by-

products in four phases called activation, initiation, propagation, and termination. This type of 

polymerization can be seen with most of the acrylic resin materials (Yau et al., 2002). Whilst in 

condensation polymerization, low molecular weight by-products are produced as a result of 

polymerization reaction. This type of reaction can be seen in some impression materials such as 

polysulfide (Craig, 2002).  

There are several factors that affect polymerization efficiency which can be divided into 

intrinsic and extrinsic factors. 

 Intrinsic factors 

The photoinitiator system used has been shown to affect photo-polymerization. In dental resins 

the most commonly used photoinitiator system is CQ. However, other photoinitiators systems 

have been developed to replace CQ such as PPD and Lucirin TPO. As previously described, 

each photoinitiator has its own maximum absorption spectra at specific range. In addition to 

that, the combination of the initiator with co-initiator type and quantity affect the overall photo 

polymerization. 

In addition to the initiator system, the type and viscosity of the monomer mixture affect photo-

polymerization. Monomers like TEGMA are less viscous than BisGMA, resulting in twice the 

higher maximum conversion at 60% vs 30% respectively. In addition, TEGMA reaches its 

maximum polymerization rate at 22% DoC in comparison to only 5% DoC for BISGMA. 

However, different co-monomer mixtures of the two monomers leads to intermediate values 

between them (Lovell et al., 1999).  Homopolymerization of UDMA is higher than BisGMA, 

the DoC of UDMA reaching 43% compared to 7% for BisGMA (Dickens et al., 2003). It was 

shown that monomer mixture of UDMA/TEGMA has a higher DoC compared to 

BisGMA/TEGMA (Papakonstantinou et al., 2013 ). However, in this study the 

BisGMA/TEGMA mixture used for comparison was commercial Transbond XT, rather than an 

experimental mixture. 

Fillers also have an impact on photo-polymerization. It has been shown that the DoC decreases 

with increasing filler content, in a monomer mixture of BisGMA/TEGMA (Halvorson et al., 

2003; Garoushi et al., 2008). It has been shown that even differences in filler size and geometry 

result in differences in DoC from 48% to 61% for a monomer mixture of 
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BisGMA/UDMA/TEGMA at a constant filler volume of 56.7%  (Turssi et al., 2005). Other 

studies have shown that light transmission through a composite might be diminished by higher filler 

content (Duangthip et al., 2011) due to reduction in the mobility of free radicals (Almeida and 

Mothé, 2009). 

  Extrinsic factors: 

There are some extrinsic factors that affect photo polymerization of adhesive resins. One factor 

is the light curing unit (LCU) and its emission spectra. In light cured adhesive resins to achieve 

optimum polymerization, the absorption spectrum of the photo-initiator should correspond to 

the radiation spectrum of the dental LCU used for photo-polymerization (Arikawa et al., 2009; 

Leprince et al., 2010a). Different types of LCU have been used for dental composites such as 

LED, halogen and plasma arc polywave LED LCU. It has been shown that conventional LED 

LCU has an emission spectra centred around the maximum absorption spectra of CQ, to 

polymerize CQ based materials, compared to halogen light which has a broad emission spectra 

see (Figure 2.13)(Nomoto et al., 2009). Therefore curing CQ based composite resins with a 

conventional LED LCU leads to a higher DoC than a halogen light does. Conventional LED 

LCUs tend to emit light over a narrower wavelength compared to polywave LED LCUand 

halogen lights. 

Light intensity, exposure time and radiant exposure are also factors that affect photo-

polymerisation. Radiant exposure (J/cm2) is the product of light intensity (W/cm2) and exposure 

time (s) and it is defined as the total amount of energy delivered to the resin composite surface 

during the entire light curing procedure (Leprince et al., 2013). The exposure reciprocity law is 

based on a concept that comparable material properties can be achieved as long as the radiant 

exposure is kept constant, irrespective of the light intensity and exposure time (Leprince et al., 

2013b). There is controversy amongst authors on the reciprocity law, some support radiant 

exposure as the major determinant factor regardless of the light intensity and exposure time 

(Miyazaki et al., 1996; Price et al., 2004; Emami and Soderholm, 2005; Erickson et al., 2014). 

However, in the case of Miyazaki et al. (1996), only narrow ranges of moderate light cure 

intensity 100–400 mW/cm2  and exposure times (30–120 s) were examined (Miyazaki et al., 

1996). Therefore, it cannot be generalized over all materials as a general rule. 

However, several other studies have contradicted the reciprocity law and believe that 

reciprocity law cannot be used as a general rule (Musanje and Darvell, 2003; Feng et al., 2009; 

Feng and Suh, 2009; Leprince et al., 2010b; Leprince et al., 2011). It has been shown that for 

some mechanical properties like flexural strength, no extra benefit is observed by increasing 

the light intensity above 1000 mW/cm2 (Musanje and Darvell, 2003). In addition, it has been 

reported that despite an increase in the flexural strength and flexural modulus at increasing 
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radiant exposure, changing exposure time and light intensity resulted in significant change in 

the materials properties (Peutzfeldt and Asmussen, 2005).  

The distance of the LCU tip to the material affects polymerization and DoC, as the farther the 

distance, the lower light intensity (Price et al., 2004) and consequently the lower DoC.  For 

example, DoC significantly decreases when the distance is increased from 0 or 3 mm to 7 mm 

in a sample of a micro-hybrid composite (Esthet- X), with a halogen light used at 400 and 600 

mW/cm2 (Fróes-Salgado et al., 2009). 

Another factor that affects photo-polymerization is the temperature during polymerization. It 

has been shown that increasing the temperature during polymerization from room temperature 

22 °C to mouth temperature 35 °C results in superior DoC and  mechanical properties of the 

material (Price et al., 2011). A higher temperature will lead to increasing polymerization rate 

by improving the monomer conversion, encouraging more reaction to occur prior to vitrification 

(Lovell et al., 1999; Trujillo et al., 2004; Daronch et al., 2006). 

Finally oxygen inhibition that occurs during photo-polymerization is another extrinsic factor 

that affects photo-polymerization and the resultant polymer. Oxygen inhibition of 

polymerization has a detrimental effect on the properties of cured resin. Oxygen is a powerful 

inhibitor which reacts with free radicals to form unreactive peroxy radicals that retard and even 

terminate polymerization by reacting with themselves or other propagating radicals to form 

inactive products resulting in a poorly polymerized resin surface (Odian, 2004). Cold cure 

acrylic resin is also affected by air inhibition and retards curing time (Lee et al., 2002). Different 

approaches have been used to avoid oxygen diffusion, including shortening the air exposure 

time prior to polymerization, optimising the mixing regime to decrease porosity and use of a 

matrix to block oxygen from the resin (Brantley and Eliades, 2000). 

2.6 Mixing of experimental resin 

Different types of mixing methods have been used for mixing experimental composites in 

laboratory studies including hand mixing, vacuum mixing and centrifugation. Many researchers 

have used hand mixing method for mixing experimental resins of their studies. However this 

method has some pitfalls such as a high chance of introducing air bubbles into the material, 

oxygen inhibition by inclusion of oxygen into the resin surface and increased risk of the 

operator to exposure to the volatile substances. It was found that 20 seconds of spatulation in 

air of a single paste light cured composite resin (Prisma-Fil) led to a mean porosity increase 

from 0.23% for minimally handled material to 1.53 %  for hand spatulated material (McCabe 

and Ogden, 1987). Also there was an increase in the number of porosities after mixing the two 
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pastes of chemically activated material in comparison to each of the pastes alone (Fano et al., 

1995). Porosity can affect the mechanical and physical properties of the materials.  

There is a high risk of bias in the comparison between experimental hand spatulated materials 

and commercial products. It is therefore difficult to extrapolate data based on these 

comparisons. Most researchers prepare experimental resins and report significant findings 

without mentioning the method of mixing (Marquis, 2003). However, it is possible their 

findings are inconsistent due to non-homogenous mixing. Inconsistent data may be apparent 

due to high standard deviations (SD). Therefore there is a need to optimize the mixing method 

of experimental resins to produce a standard, reproducible method to be used as a reliable 

method in order to precisely compare the data of experimental resins between researchers 

(Kumar and Shortall, 2011).  

There is no published standardized method for mixing experimental composite resins. A study 

has been undertaken on the effect of the mixing method on flexural strength of an experimental 

resin based composite. The composite resin was composed of mixtures of BisGMA and 

TEGMA as monomers and barium alumina borosilicate and fumed silica glass as filler and hand 

mixing was compared to mechanical mixing with dual asymmetric centrifugation (DAC 

system) (Speed-Mixer™, DAC 150 FVZK, Hauschild Engineering, Germany). However the 

mixing time was not described. They reported that hand spatulation leads to more voids visible 

under SEM scan compared to mechanical mixing. In addition, mechanical mixing was shown 

to improve the mechanical properties including the biaxial flexural strength of the composite 

resin (Kumar and Shortall, 2011).  

The DAC system is considered to be a suitable technology for mixing composite resin (Kumar 

and Shortall, 2011) One of the advantages of this method is the speed of mixing which can be 

increased up to 3500 rpm, significantly faster than can be achieved by hand mixing. This higher 

speed of mixing results in more homogenous paste. As it was shown increasing speed of mixing 

results in a more homogenous mixture (Massing et al., 2008). Another advantage of this method 

is that DAC provides two types of rotation at the same time. One is clockwise centrifugation of 

the sample which tries to push the material in to the corner of the sample container. The second 

is counter-clockwise rotation of the container which takes place around container’s own vertical 

axis and forces the material towards the center of the container (see Figure 2.14). These two 

types of rotations lead to shear forces and result in a more homogenous mix (Massing et al., 

2008). The DAC system has been used to prepare viscous mixtures such as liposomes and 

siRNA-liposomes (Massing et al., 2008; Hirsch et al., 2009) and also used as a preparation 

method for parenteral fat emulsions (Tenambergen et al., 2013). It has also been used for mixing 

viscous components of polymer-based clay composites at 3000rpm (Kint et al., 2005). The 
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DAC system has been used at different speed from 1300 -3500 rpm and for different durations 

of time from 1 to 5 minute to mix the whole composite resin component together to produce 

homogenous paste (Faltermeier et al., 2007; Garoushi et al., 2008; Schneider et al., 2008; 

Schneider et al., 2009a; Schneider et al., 2009b). Therefore it is considered to be a suitable 

technology for mixing dental resin composites. 

 

Figure 2.14 DAC system. The picture shows two types of rotation: the first rotation is 

clockwise centrifugation of the sample which reach maximum 3500 rpm and the second 

rotation around container’s own vertical axis which reaches 900 rpm 

2.7 Summary 

Resin based composites are the materials most commonly used for orthodontic bonding, due to 

their high bond strength and low failure rate. However, conventional composite resin based 

orthodontic adhesives d not release fluoride. There is an issue of WSL during fixed orthodontic 

treatment which drives studies to develop orthodontic adhesives with the potential to release 

fluoride. There is evidence supporting the effectiveness of fluoride releasing orthodontic 

adhesives in reducing WSL during orthodontic treatment. Additionally, enamel loss during 

adhesive removal and debonding is reported and orthodontic adhesives that can be easily 

removed would be preferable. Therefore, a fluoride releasing orthodontic adhesive which can 

be easily removed would be a valuable addition to the current materials that are available. 

The background of the present work is the continued development of a new fluoride releasing 

acrylic based orthodontic adhesive based on HEMA and MMA. NaF has been added as a source 

of fluoride. A copolymer of HEMA and MMA has previously been proposed as having potential 

to use for this purpose. Previous work has demonstrated promising characteristics in the 

developed material including, the setting characteristics, bond strength and fluoride releasing 

ability of the material (Su et al, 2010). Therefore, a copolymer of HEMA and MMA with NaF 

can be used to develop a new fluoride releasing orthodontic adhesive, by further developing the 

materials chemistry proposed by Su et al, 2010, working towards reducing existing issues of 

the current material such as high viscosity of the material, chemically curing with a long setting 

time and low bond strength particularly after water storage. 

http://www.google.co.uk/imgres?imgurl=http://www.igt.com.sg/resources/content/products/120611135135_mixing technique_zoom.png&imgrefurl=http://www.igt.com.sg/products/details/high-speed-mixer&h=390&w=560&tbnid=ihm60KYmNdaiOM:&zoom=1&docid=xiloGzzdz5tcdM&ei=vwBBVa-bFoLUas7egJAO&tbm=isch&ved=0CEIQMygWMBY
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 Aims and program of work 

3.1 Aims 

The aim of this project is to develop a new fluoride releasing acrylic based orthodontic adhesive. 

To achieve this overall aim, a number of secondary aims have been identified: 

1. To reduce the viscosity of the material to improve handling characteristics. 

2. To reduce the curing time of the material through the use of different photo-initiator 

systems. 

3. To improve the bond strength of the adhesive through the use of 4-META. 

 

3.2 Objectives 

To achieve the aims, it was important to establish the following objectives: 

1. To establish the effect of acetone on certain key properties of the developed material 

as an orthodontic adhesive such as DoC, heat release and injectability. 

2. To establish the effect of acetone on fluoride release of the developed material. 

3. To establish the effect of different photo-initiator systems (CQ and Lucirin® TPO) on 

DoC of the developed material. 

4. To establish the effect of 4-META on certain key properties of the developed material 

as an orthodontic adhesive such as DoC, water sorption and solubility. 

5. To establish the effect of 4-META on fluoride release and recharging ability of the 

developed material. 

6. To establish the effect of 4-META on SBS of the developed material. 



57 

 

3.3 Hypotheses 

The following hypothesis were tested: 

1. The addition of acetone will result in decreasing viscosity of the material without 

decreasing DoC, heat release and deteriorating fluoride release of the material. 

2. The degree of conversion (DoC) of the material will increase with increasing photo-

initiator concentrations. 

3. The addition of 4-META will increase the bond strength of the material without 

deteriorating the DoC, fluoride release and recharging ability of the material. 

4. The the properties of the experimental materials will not differ significantly from those of 

the controls (Ketac-cement and Transbond XT)  

 

3.4 Program of work 

The plan of the study was designed to be conducted as below: 

 

Development of the 
materials composition

(1) Addition of Acetone
(2) Investigating different 

photo-initiator system
(3) Addition of 4-META

Shear bond strength of 
the material
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 The effect of acetone on a new fluoride releasing orthodontic 

adhesives 

4.1 Introduction 

This phase of the project was designed to develop the materials chemistry to provide better 

handling properties of the material. The handling characteristics of orthodontic adhesives have 

been linked to several factors such as ease of application, viscosity and setting kinetics 

(Papakonstantinou et al., 2013 ). The first two parameters can be altered with the addition of a 

solvent. Acetone was chosen due to its common use in dental materials (Yiu et al., 2005; Van 

Landuyt et al., 2007; Ye et al., 2007; Ekambaram et al., 2015), in particular it has been shown 

to not reduce the bond strength of resin based adhesives to enamel (Reis et al., 2003; Lopes et 

al., 2006). 

Consequently, the work described in this chapter involved analysing the effect that the addition 

of the solvent, acetone, had on a number of physical parameters of the materials. For measuring 

the rheological characteristics of the experimental materials, an injectability test (microcapillary 

rheometer) was developed to measure the force required to extrude the material from a simple 

disposable syringe. Injectability has been shown to be a reliable and reproducible method for 

quantitative rheological measurement of both Newtonian and Non-Newtonian rheological 

behaviours (Allahham et al., 2004).  

To investigate the effect of acetone on the setting characteristics of the materials, DoC and heat 

release were taken. Differential scanning calorimetry (DSC) was used to monitor heat produced 

during polymerization, as the polymerization reaction is an exothermic reaction. Consequently, 

the DoC can be obtained based on assumption that the heat produced during the setting reaction 

is proportional to the percentage of the monomers that contribute to polymerization (Cadenaro 

et al., 2005; Emami and Soderholm, 2005). Fourier transform infrared spectroscopy (FTIR) 

was also used to measure DoC of the materials. The DoC is an important determinant of the 

physical and mechanical properties of dental resins (Ferracane and Greener, 1986; Calheiros et 

al., 2008; Price et al., 2011).   

In addition to the handling and setting characteristics of the material, fluoride release from an 

orthodontic adhesive could help prevent WSL during orthodontic treatment. Consequently, 

fluoride release was measured from the developed adhesives using an ion selective electrode 

over a 160 day period of storage in an aqueous environment.  

Therefore, the purpose of present work was to determine the effect of acetone on setting 

characteristics, injectability and fluoride release of the experimental orthodontic adhesives. 
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4.2 Aims and hypotheses: 

 Aims 

Four aims were identified for this part of the project:  

1-To investigate the effect of acetone on the degree of conversion (DoC). 

2-To investigate the effect of acetone on the heat release of the material. 

3-To investigate the effect of acetone on injectability. 

4-To investigate the effect of acetone on fluoride release. 

 Hypotheses 

1-Acetone will decrease the DoC of the experimental materials. 

2-Acetone will decrease the heat released by the experimental materials. 

3-Acetone will increase injectability of the experimental materials. 

4-Acetone has no effect on fluoride release ability of the experimental materials. 

4.3 Experimental Materials  

Four experimental groups were prepared by mixing different ratios of MMA (methyl 

methacrylate, Sigma-Aldrich, UK), HEMA (2-hydroxyethyl methacrylate, Sigma-Aldrich), 

PMMA (polymethyl methacrylate, Esschem, UK) and NaF (sodium fluoride, Sigma-Aldrich), 

using CQ (camphorquinone, Sigma-Aldrich) as an initiator and DMAEMA (dimethylamino 

ethyl methacrylate, Sigma-Aldrich) as an activator as shown in (Table 4.1and Table 4.2). Four 

different concentrations of acetone were used to decrease viscosity of the material. For clarity 

four colours have been used to present the four groups as shown in Table 4.3. 
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Table 4.1 list of materials and their manufacturers that were used for preparation of 

experimental materials 

Materials Description Manufacturer 

PMMA low molecular weight benzoyl 

peroxide free 

Esschem Europe, County Durham, 

UK  
 

NaF Sodium fluoride Sigma-Aldrich Company Ltd., Dorset, 

UK  

MMA Methyl methacrylate 99% 

(GC)  
 

Sigma-Aldrich Company Ltd., Dorset, 

UK 

HEMA 97% 2-Hydroxyethyl 

methacrylate 

Sigma-Aldrich Company Ltd., Dorset, 

UK 

CQ 97% Camphorquinone Sigma-Aldrich Company Ltd., Dorset, 

UK  

DMAEMA 98% 2- (Dimethylamino)ethyl 

methacrylate 

Sigma-Aldrich Company Ltd., Dorset, 

UK 

Acetone Acetone Sigma-Aldrich Company Ltd., Dorset, 

UK 
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Table 4.2 Composition of the experimental groups.  

Groups Group 

Label 

PMMA % NaF % Acetone% Other components 

10:0 0%A 10:0 100 0 0 Liquid: 

HEMA 60wt% 

MMA 40%wt% 

 

Photo-initiator system: 

CQ 0.6wt% 

DMAEMA 0.8wt% 

10:0 10%A 10:0 100 0 10 

10:0 20%A 10:0 100 0 20 

10:0 30%A 10:0 100 0 30 

10:0 40%A 10:0 100 0 40 

9:1 0%A 9:1 90 10 0 

9:1 10%A 9:1 90 10 10 

9:1 20%A 9:1 90 10 20 

9:1 30%A 9:1 90 10 30 

9:1 40%A 9:1 90 10 40 

8:2 0%A 8:2 80 20 0 

8:2 10%A 8:2 80 20 10 

8:2 20%A 8:2 80 20 20 

8:2 30%A 8:2 80 20 30 

8:2 40%A 8:2 80 20 40 

7:3 0%A 7:3 70 30 0 

7:3 10%A 7:3 70 30 10 

7:3 20%A 7:3 70 30 20 

7:3 30%A 7:3 70 30 30 

7:3 40%A 7:3 70 30 40 

MMA (methyl methacrylate), HEMA (2-hydroxyethyl methacrylate), PMMA (poly methyl 

methacrylate), CQ (Camphorquinone), DMAEMA (dimethylaminoethyl methacrylate). 

Table 4.3 Colours used to present different groups. 

Groups Colours for tables Colour for figures 

10:0 Blue  

9:1 Red  

8:2 Green  

7:3 Purple   
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 Preparing the Powder 

Four different ratios of PMMA, and NaF were weighed using an electronic balance (Mettler-

Toledo Ltd., sensitivity 0.1mg, Switzerland) into a 20 g plastic jar (Synergy Devices Ltd, 

Germany) container (Table 4.2) 

 Preparing the liquid 

All work preparing the liquid component was conducted using amber-glass bottles (500 ml, 

Sigma-Aldrich) to reduce the potential for accidental activation of the photoinitiator. The 

overall ratio of MMA to HEMA in the liquid component of the experimental materials was 

60wt% to 40wt%. Where required, prior to mixing with MMA, 0.6wt% CQ and 0.8wt% 

DMAEMA were added to the HEMA and mixed for 60 minutes using a magnetic stirrer (VELP, 

Scientifica, Italy). Next, the MMA was added and mixed using magnetic stirring for 30 minutes. 

Then the liquid blend was stored in the amber bottles further wrapped with aluminium foil until 

use within a week. 

 Mixing powder and liquid 

The liquid was mixed with powder by 1:2 by weight. 5g of the liquid was added to 10g of 

prepared powder in a container. Then acetone was added to the mixture according to the total 

weight of the liquid. Five different concentrations of acetone were used, namely 0%A, 10%A, 

20%A, 30%A, 40%A, making 20 experimental resin formulations (Table 4.2). The container 

was then placed in a centrifugal mixer (SpeedMixerTM DAC 150.1 FVZ, Hauschild 

Engineering, Germany) ready for mixing (). Unless otherwise stated, all formulations were 

mixed initially for 4 minutes mixing at 2000 rpm (first round mixing), followed by a further 4 

minutes at 3300 rpm (second round mixing) with the aim of producing an homogeneous paste 

(Schneider et al., 2012; Zahroon, 2014). Once mixing was complete, the containers were sealed 

with Parafilm (Parafilm®M, Bemis company, Inc., UK) and wrapped in aluminium foil to 

prevent accidental light exposure and then stored at 4°C until use. All materials were used only 

for single experiments and were used within a week of mixing. 
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Figure 4.1 SpeedMixerTM DAC 150.1 FVZ that used for mixing of the experimental 

materials. 

4.4 Experimental Methods 

 Investigating acetone loss 

In order to know the amount of acetone and monomer lost during mixing procedure, a 

preliminary study was conducted. The materials were mixed as discussed in section 4.3.3, 

except the CQ and DMAEMA were not included. Groups 10:0 and 7:3 each with 0% and 40% 

acetone were taken to investigate amount of acetone loss. 2 samples of each group were 

examined. 

The weight of the containers that contained 10 g of powder was measured using a digital balance 

(Mettler AE 240, 0.01mg accuracy, Switzerland) before adding the liquid (monomers) and then 

following addition of the liquid and acetone. This measurement was repeated at the following 

times: 

1- Immediately after adding acetone (as a reference). 

2- After the first round of mixing, to investigate any weight lost through sealed containers after 

the first round mixing. 

3- After the second round mixing, to investigate the amount of weight lost during the second 

round mixing. 

4- After leaving the lid off the pots for 1, 2, 3, 4, 5, 10, 15 minutes after mixing, to investigate 

the effect of evaporation of components due to leaving the lid off. 

To investigate the amount of weight lost during storage of the material, another preliminary 

study was conducted, in which the weight loss after 10 days storage was measured. Pots used 
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in this part of the study were stored in a refrigerator at 4°C and weighed daily to calculate the 

amount of weight lost. 

 Degree of conversion (DoC) 

All degree of conversion measurements were conducted using an FTIR spectrometer (Spectrum 

One, PerkinElmer, Bucks, UK) with a diamond-crystal ATR attachment. Spectra were recorded 

at 4 cm-1 spectral resolution between 2000–750 cmˉ¹ wavenumbers, using dedicated software 

(TimeBase, PerkinElmer). Specimens were placed in contact with the diamond crystal, to a 

thickness of 1 mm, using two glass microscope slides attached to the sides of the crystal and 

third glass to press the material to ensure 1 mm thickness and to minimise oxygen inhibition 

and acetone evaporation. The light guide tip of the curing light was positioned directly above 

the glass slide (1 mm) and perpendicular to the surface of the ATR crystal, see Figure 4.2. This 

technique has been used previously to monitor the photo-polymerization kinetics of resin based 

adhesives (Ye et al., 2007; Cadenaro et al., 2009; Abedin et al., 2014; Zahroon, 2014). 

 

Figure 4.2 Schematic diagram of the FTIR. 

For each specimen, spectra were measured before curing commenced to obtain the uncured 

state and then once the LED curing light was positioned on the specimen, a spectrum was 

measured after each 10s exposure of light. For all experiments, the same LED curing light unit 

(Coltolux® LED, Coltene, USA) with an intensity of 800-850 mW/cm² measured with an 

intensity meter (Coltolux LED, Sussex, UK) was used. In total the materials were exposed to 

120 s of light, with 13 spectra measured for each specimen. For each experimental group 5 

specimens were measured. All experimental procedures were carried out in a dark room to 

reduce the effects of ambient light on the photo-polymerisation. 
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The FTIR spectra collected from each specimen were the result of adding 13 scans together 

representing a spectra at uncured state and the 12 post cure interval using Spectrum TimeBase 

(Perkin Elmer Inc., Germany) and OMNIC (OMNICTM Series software, Thermo scientific) 

software and then converted into ASCII for exporting for processing using Microsoft Excel 

(Version 14, Microsoft Office Professional Plus 2013).The standard baseline method was used 

to assess the peak heights (Rueggeberg et al., 1990). To calculate DoC the percentage of 

uncured carbon double bonds (%C=C) at any time was determined from the ratio of absorbance 

intensities of the aliphatic peak at 1638 cmˉˡ against an internal standard peak, the carboxyl 

group with a peak at 1715 cm-1 (Jafarzadeh Kashi et al., 2007; Guo et al., 2009; Abedin et al., 

2014), using Equation 4.1 and Equation 4.2: 

Equation 4.1………..(%C = C) =  
[𝐴𝑏𝑠 (1638 𝑐𝑚ˉˡ)/(Abs (1715 cmˉˡ)]polymer

[𝐴𝑏𝑠 (1638 𝑐𝑚ˉˡ)/(𝐴𝑏𝑠 (1715 𝑐𝑚ˉˡ)]𝑚𝑜𝑛𝑜𝑚𝑒𝑟
× 1 

From this the DoC could be calculated as: 

Equation 4.2………..  DC% = 100 − % C = C 

After processing, all data were then imported into dedicated statistical software (SPSS 19 for 

windows, IBM SPSS Inc., USA) for analysis. Data normality was tested using the Shapiro-

Wilk test. The data were not normally distributed therefore non-parametric tests were used to 

investigate statistical difference between groups. Thus a median DoC was calculated and the 

variability of the DoC was estimated using the interquartile range (IQR). 

IQR= upper quartile-lower quartile. 

Kruskal-Wallis H and Mann-Whitney U tests were used to determine significant differences 

between groups. A significance level of 5% was selected as a significant for all comparisons.  

In order to consider the effects of each of the independent variables Acetone%, Fluoride%, 

exposure time on the DoC (dependant), a three way ANOVA was undertaken. As there is no 

non-parametric equivalent test to a three way ANOVA, the data was transformed to normal 

using a two-step transformation to normality in SPSS (Templeton, 2011) as previously 

described (Ramadas et al.; Mulcan et al., 2015). Shapiro-Wilk test at (P<0.05) indicated the 

data to be normally distributed after transformation (see appendix 2). 

 Heat of polymerization (DSC) 

The heat flow measurement was performed using a differential scanning calorimeter (DSC) 

(Mettler Toledo, Switzerland) coupled to a photocalorimetry accessory. (Mettler Toledo, 

Switzerland) equipped with a halogen light curing unit (Heliomat H2, Vivadent, Austria) which 

had an intensity of 200-250 mW/cm2 measured with an intensity meter (Coltolux LED, Sussex, 



66 

 

UK) see Figure 4.3. Five samples of approximately 10 mg of the experimental materials were 

placed in pre-weighed aluminium crucibles (Thorn Scientific Services Ltd., UK) and covered 

with a transparent polyethylene terephthalate (PET) film. The samples were placed in to the 

DSC chamber against an empty crucible. The weight of the empty crucibles and filled crucibles 

were measured using an electronic balance (Mettler AE 240, 0.01 mg accuracy, Switzerland). 

All measurements were performed isothermal at 37°C to represent the human oral temperature. 

The DSC chamber was sealed with a cover. The cover was used to isolate the sample and 

reference (empty) pans while still allowing curing lights to be positioned on the pans through 

two holes to guide the light on both equally see figure 4.3 and figure 4.4. 

 

Figure 4.3 DSC with photocalorimetry accessory used in this study. 

 

Figure 4.4 Schematic illustration of DSC apparatus.  

The experiment was commenced after waiting for 2 minutes at the beginning to allow the 

temperature to equalize within the cell and to provide the same experimental condition for all 
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samples, then the samples were irradiated for 60 seconds every 3 minutes for 20 minutes to 

obtain 6 thermograms. Next, to measure the energy associated with the light source only, the 

samples were irradiated for an extra 10 minutes with a more powerful LED light curing unit 

(Coltolux® LED, intensity 800-850 mW/cm²). After this, it was assumed that no further 

polymerisation would occur. Then, two further thermograms were measured after exposing to 

60 seconds of light exposure (using the halogen light) with 3 minute time interval. Five 

replications for each group were conducted. The area under each thermogram was integrated 

by the dedicated software (STARe SW 9.01, Mettler Toledo, Switzerland) in milliJoule (mJ). 

After changing the integration peak into Joule (J) and dividing by the mass of the specimen, 

gram (g), the heat release (enthalpy) J/g was recorded. The isothermal heat of polymerization 

was obtained by subtracting the average of the peak areas of light source only from the areas of 

the 6 peaks (Cadenaro et al., 2008). 

After processing, all data were analysed using statistical software (SPSS 19 for windows, IBM 

SPSS Inc., USA). The Shapiro-Wilk test was used to test normality of the data. The data were 

normally distributed. Therefore, mean heat release and standard deviations (SD) were 

calculated. Significant differences in heat release parameters of each fluoride and acetone 

subgroups and exposure time were identified using the Tukey post-hoc test. Three-way 

ANOVA was used to determine statistically significant differences between groups at the 5% 

level (P<0.05). 

 Injectability test 

Preliminary studies: 

Several pilot studies were conducted to develop a method to investigate injectability of the 

materials. First a load control method was used in which a maximum applied load of 400 N was 

used, and the resultant load rate measured as an estimate of viscosity. Secondly, load rate 

control method was used, in which loading rates of between 1 mm/min and 15 mm/min were 

tried.  

The load control method proved difficult to standardise for the range of materials studied, with 

the lowest viscosity materials (group 7:3 40%A) extruding from the syringe immediately upon 

application of the force, while the most viscous materials (group 10:0 0%A) exhibited only 

small amounts of extruded from the syringe at this force. 

For the loading rate control methods, the highest loading rates (5, 10 and 15 mm/minute) led to 

rupture of the syringes, figure 4.5, during testing with the 10:0 group. Consequently, a loading 

rate of 1 mm/min was selected for the injectability test, as no syringe ruptures were found with 

this rate. 
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Figure 4.5 Showing syringe failure at compression rate of 5, 10 and 15 mm/minute. 

The method: 

The experimental materials were prepared using the same method as described in section 4.2.3 

except they were prepared in cartridge containers (Semco 2.5oz hd cartridge, Synergy Devices 

Ltd, Germany) and without addition of initiator system. Directly after mixing, the cartridge was 

put into the Semco 850 manual gun ready to dispense (Figure 4.6). 5 ml of the prepared material 

was introduced to a 5 ml syringe (disposable syringes, Omnifix®), with a 2 mm aperture, from 

the top and then sealed with cap seal ready for experiment. To make the syringes free of bubbles 

they were put in upright position for 30 minutes to aggregate all air bubbles at the top then 

pushing out. All tests were started immediately after 30 minutes from insertion into the syringes. 

 

Figure 4.6 SEMCO manual gun and syringes ready to dispense material in to syringes. 

The syringes were secured on the lower compartment of the test machine (model 5567, Instron, 

UK) within a clear acrylic tube (14 mm diameter, 30 cm length) holding them parallel to the 

loading direction of the test machine. A spirit level was used to ensure the syringe was level 
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before testing commenced (Figure 4.7). The acrylic tubes were held rigidly in place using retort 

stands and clamps. 

 

Figure 4.7 Using spirit level to keep the acrylic tube and plunger of the syringe level before 

starting test. 

A universal test machine was used to apply pressure to the syringe plunger. A 1 kN load cell 

was mounted vertically on top of the plunger for 10 minutes at a compression rate of 1mm/min 

(figure 4.8). The load was recorded in Newton (N) as a function of the plunger run. The graph 

obtained was extrusion force in (N) against the plunger displacement in (mm). The maximum 

forces of extrusion were recorded for comparison.  

 

Figure 4.8 Experiment setup 1-1kN load cell 2-syringe 3- metal plate 4- acrylic tube 5- retort 

stand and clamp 6- lower compartment of universal tester. 
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A filled syringe could experience five cycles of extrusion (termed pushes subsequently) and 

these were investigated for specimens of the group 10:0. The results show no significant 

difference between the force-displacement behaviour of the first and second pushes (Table 4.4). 

Subsequent pushes showed differences in behaviour, particularly the final push, where it is 

likely that the proximity of the material to the syringe end caused a boundary effect. The 

coefficient of variation of the third and fifth push were so high, while the first and second push 

were less varied. Based on that it was decided to subject each syringes to 2 pushes with a three-

minute time interval between each pushes.  

Table 4.4 Mean extrusion force of the five pushes of the group 10:0.  

Pushes Mean extrusion force SD CV% 

First 79 15 19 

Second 79 12 14 

Third 75 26 35 

Fourth 88 12 13 

Fifth 121 27 23 

Injectability for five repetitions of each experimental material and three Newtonian fluids and 

water (see Table 4.5) were taken using the same method as described above. 

Table 4.5 Newtonian fluids used in this study. 

Newtonian 

fluid 

description Known viscosity mPa.s Manufacture 

Water tap water - - 

B29 PAO 

oli100% 

28.81 mPa.s at 25°C with 

certification issued in 

2009. 

 

 

Brookfield engeering lab. Inc., 

Massachusetts, USA 

 

B200 PAO 

oli100% 

198.5 mPa.s at 25°C with 

certification issued in 

2009. 

B10200 PAO 

oli100% 

9959 mPa.s at 25°C with 

certification issued in 

2010. 

All data were analysed using statistical software (SPSS 19 for windows, IBM SPSS Inc., USA). 

The Shapiro-Wilk test was used to test normality of the data. The data were normally distributed 

therefore parametric tests were used for statistical comparisons. A paired sample t-test was 

carried out to show the significances between first and second push. Two way ANOVA were 
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taken using the fluoride% (%F) and the Acetone% (%A) concentrations as the two factors. Post 

hoc Tukey method was used to determine any statistical significant differences between groups 

at (P<0.05). 

 Fluoride release 

The experimental materials were placed into a plastic mould (10 mm diameter, 1 mm height), 

which was supported on a glass plate and transparent polyethylene terephthalate (PET) film 

(Goodfellow Cambridge Ltd., Huntingdon, Cambs., UK). A second strip and glass plate were then 

applied to the top surface of the mould. The moulds, covered with the glass plates was pressed 

to form flat disc shaped specimens, were light cured from both surfaces for 40 seconds each 

using an LED light curing unit (Coltolux® LED, Coltene, USA) with an intensity of 800-850 

mW/cm² measured with an intensity meter (Coltolux LED, Sussex, UK). 

Four specimens were prepared from each 0%A, 10%A, and 20%A acetone concentration. 

Based on previous experiments the two highest concentrations of acetone (30%A and 40%A) 

were excluded from the groups for fluoride release measurements due to inadequate curing.  

After curing, the specimens were removed from the moulds and lapped using dry 1200-grit 

silicon carbide paper (Norton, Abrasive Technological Excellence, France). The diameter and 

thickness of the specimens were measured using digital Vernier callipers (Mitutoyo Digimatic, 

Japan), and weight was taken using a digital balance (Mettler AE 240, 0.01 mg accuracy, 

Switzerland). Specimens were stored in a sealed container together with a moist paper towel to 

produce 100% humidity in an incubator for 24 hours at 37°C (Gallenkamp, Riley Industries 

Ltd., UK). 

Next, the specimens were placed into polyethylene vials (12 ml, VWR international Ltd.) 

containing 5 ml of distilled deionized water (DDW) and stored at 37°C. The containers were 

placed horizontally to allow full immersion of the specimens in the storage water while 

maintaining minimal contact with the walls (see figure 4.9). The water in the containers was 

changed daily for the first two weeks, then every 7 days up to 1 month and monthly thereafter. 

 

Figure 4.9 Sample within 5ml of distilled deionized water. 
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An ion-selective electrode (Orion Research, Thermo Scientific, Waltham, MA, USA) 

connected to an ion analyser (Thermo electron corporation, Orion 4 star, USA) was used to 

measure fluoride ion release over 24 hour period daily for 14 days, then weekly up to 28 days, 

then at day 42, 70, 100 and 160. For weekly and monthly measurements, the storage water was 

replaced one day before measurement. At the time of fluoride measurement, each specimen was 

removed from its container and the storage solution decanted for analysis. The specimens were 

then washed with a DDW spray and dried in a paper towel then they were placed into fresh 

vials containing 5 ml of DDW for the next measurement. 

The concentration reading of each storage (sample) solution was recorded after adding 0.5 ml 

of TISAB III (TISAB III concentrate with CDTA, Thermo Fisher science). The electrode was 

immersed into the solution and a magnetic stirrer (VELP, Scientifica, Italy) used to stir the 

solutions for three minutes prior to measurement (see figure 4.10). 

 

Figure 4.10 Ion selective electrodes used in this study. 

The instrument was calibrated daily, therefore five standard fluoride solutions containing 0.01, 

0.1, 1, 10, and 100 ppm F were prepared from a 100 ppm standard solution (activity standard 

solution for fluoride electrode 100 ppm as fluoride, Fluka, Sigma Aldrich). A new calibration 

curve was plotted every two hours. The concentration reading in milliVolts (mV) of each 

sample solution was recorded. A logarithmic equation was used to convert mV to corresponding 

fluoride concentrations in ppm as shown below. The ppm values were then converted into 

micrograms per unit surface area (calculated from the initial dimensions of the specimen). The 

final results were reported as daily fluoride-release rate (µg/cm²/day). All conversions were 

undertaken using Microsoft Excel software 2013. 
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The following equations were used to transfer mV into ppm of fluoride samples (Zahroon, 

2014): 

Equation 4.3                
mV1−mV2

𝑙𝑜𝑔𝐶1−𝑙𝑜𝑔𝐶2
=

mVs−mV2

𝑙𝑜𝑔𝐶𝑠−𝑙𝑜𝑔𝐶2
 

Equation 4.4               
𝑙𝑜𝑔𝐶𝑠−𝑙𝑜𝑔𝑐2

𝑙𝑜𝑔𝐶1−𝑙𝑜𝑔𝑐2
=

mVs−mV2

mV1−mV2
  

Equation 4.5               𝑙𝑜𝑔𝑐𝑠 − 𝑙𝑜𝑔𝑐2 = (
mVs−mV2

mV1−mV2
) ∗ ( 𝑙𝑜𝑔𝑐1 − 𝑙𝑜𝑔𝑐2)  

Equation 4.6               𝑙𝑜𝑔𝐶𝑠 = (
mVs−mV2

mV1−mV2
) 𝑙𝑜𝑔𝐶1 − (

mVs−mV2

mV1−mV2
) 𝑙𝑜𝑔𝐶2 + 𝑙𝑜𝑔𝐶2 

Equation 4.7               𝐶𝑠 = 10logCs  

mV1 and mV2 represent mV of standard solutions, C1 and C2 represent concentration of standard 

solutions, mVs represents mV of testing sample, Cs represents concentration of testing sample, 

Logcs represents the concentration of testing sample in ppm, mV represents the milliVolts from 

the analyser reading, ppm represents the parts per million. 

After processing, all data were then imported into dedicated statistical software (SPSS 19 for 

windows, IBM SPSS Inc., USA) for analysis. Data normality was tested using the Shapiro-

Wilk test. The data were not normally distributed therefore non-parametric tests were used to 

investigate statistical difference between groups. Kruskal-Wallis H was used to find significant 

differences in the fluoride release for each fluoride and acetone group for each day. Mann-

Whitney U test was used to characterise significant differences between groups at (P<0.05). 

In order to consider the effects of each of the variables (Acetone%, Fluoride%, daily release) 

on the fluoride release, a three way ANOVA was undertaken. Therefore, the data was 

transformed to normal using a two-step transformation to normality in SPSS (Templeton, 

2011). After transformation, the data was confirmed to be normally distributed using a Shapiro-

Wilk test at (P<0.05) 

.

4.5 Results 

 Investigating acetone loss 

The amount of weight lost for 10:0 40%A was 1.3% after 15 minutes exposure to air compared 

to 0.5% for 10:0 0%A see table 4.6. The percentage of weight lost for 7:3 40%A 1.6% was 

higher than 7:3 0%A 0.6% after 15 minutes exposure to air (see table 4.7). There was no weight 

change for all groups during the first and second round of mixing. 
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Table 4.6 Percentage weight loss of the material during preparation. 

Experimental 

groups  

First 

round 

mixing 

Second 

round 

mixing 

1 

min 

2 

min 

3 

min 

4 

min 

5 

min 

10 

min 

15 

min 

30 

min 

10:0 40%A 0 0 0.5 0.6 0.7 0.7 0.8 1 1 1.3 

10:0 0%A 0 0 0.1 0.2 0.2 0.2 0.3 0.4 0.5 0.5 

7:3 40%A 0 0 0.6 0.7 0.8 0.9 1 1.4 1.6 1.7 

7:3 0%A 0 0 0.1 0.1 0.2 0.2 0.2 0.3 0.6 0.6 

During storage of the materials no weight change occurred after 10 days storage for all groups 

see Table 4.7 

Table 4.7 Percentage weight loss of the material during storage at different time intervals. 

Experimental 

groups  

First 

round 

mixing 

Second 

round 

mixing 

Day 

1 

Day 

2 

Day 

3 

Day 

4 

Day 

 5 

Day 

10 

10:0 40%A 0 0 0 0 0 0 0 0 

10:0 0%A 0 0 0 0 0 0 0 0 

7:3 40%A 0 0 0 0 0 0 0 0 

7:3 0%A 0 0 0 0 0 0 0 0 

 Degree of conversion (DoC) 

Representative FTIR spectra of the experimental materials collected after different curing times 

are shown in figure 4.11. From this, the principal functional groups present in each experimental 

material can be identified. These are approximately 1720cm-¹ C=O, 1640 cm-¹ C=C, 1610 cm-

¹ Phenyl C=C, 1460 cm-¹ CH2CH3 and 1118 cm-¹ phenyl C-O-C. The absorption peak at 1638 

cm-¹ represents the methacrylate C=C which changes with polymerisation. While the absorption 

peak at 1715cm-¹ represents C=O which does not change with polymerisation and therefore was 

taken as an internal standard. Therefore, a typical spectra focussing on the two key peaks, taken 

from one specimen at each time point, is shown in Figure 4.12. The graph shows the aliphatic 

C=C peak decreasing with light exposure however, the C=O peak remains relatively stable 

during polymerization. 
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Figure 4.11 Representative FTIR spectra from 850 to 1850 cm-¹ of the group 10:0 0%%A  

collected before and after different time of light exposure from 0 to 120 sec. 

 

 

Figure 4.12 Representative FTIR spectra from 1600 to 1800 cm¯¹ from a specimen of group 

10:0 0%A.
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The median percentages of DoC of the experimental groups with different concentrations of 

acetone are shown in Table 4.8 and figure 4.13, 4.14, 4.15 and 4.16. At higher solvent content 

(30%A and 40%A) and after 40 seconds of light curing, DoC was significantly lower in all 

groups compared to the (0%A, 10%A and 20%A) except group 10:0 (p<0.05, Mann-Whitney 

U test) Table 4.8. 

The results show that all 20%A groups had a significantly higher DoC compared to groups with 

30%A and 40%A after 80 seconds light curing except for group 10:0 (p<0.05, Mann-Whitney 

U test), Table 4. 8. 

After 120 second light curing, all groups with 20%A achieved significantly higher DoC 

compared to groups with 0%A and 10%A except group 7:3 which was not significantly 

different to the  0%A (p<0.05,  Mann-Whitney U test) Table 4.8.
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Table 4.8 Median degree of conversion (IQR) % of groups 10:0, 9:1, 8:2 and 7:3 with 

different concentrations of acetone, at different curing interval times. 

Groups % Acetone Median (IQR) DC% 

40 sec. 80 sec. 120 sec. 

 

10:0  

 

0%A  24 (8)ab  29 (8)h 35 (11)n 

10%A  32 (5)a 37 (7)h 41 (6)n 

20%A  44 (5)b 55 (5)i 60 (6)o 

30%A  42 (8)b 60 (1)i 66 (1)o 

40%A  16 (4)a 34 (9)h 51 (6)n 

 

 

7:3 

 

0%A  45 (4) 54 (4)l 56 (5)tuv 

10%A  34 (6) 54 (2)l 58 (3)t 

20%A  28 (5)f 55 (4)l 63 (1)u 

30%A  12 (2)g 24 (7)m 37 (13)tuv 

40%A  14 (4)fg 26 (13)m 41 (13)v 

The DoC values are median with IQR in the parenthesis. Values exhibited similar superscript 

letters indicate no significant difference within columns (p> 0.05) as determined using Mann-

Whitney U.

 

9:1 

 

0%A 43 (2)c 48 (3)j 50 (1)p 

10%A  47 (6)c 55 (7)j 57 (6)p 

20%A 38 (3)c 60 (1) 64(3)q 

30%A 22 (1) 44 (8)j 63 (2)q 

40%A  18 (7) 30 (13) 43 (16)pq 

 

8:2 

 

0%A  36 (10)de 41 (11)y 43 (9)r 

10%A  42 (4)d 53 (5)k 57 (5)s 

20%A  27 (3)e 56 (2)k 64 (1) 

30%A  15 (4) 31.17 (5)y 50 (7)rs 

40%A  10.03 (2) 18.22 (4) 26 (4) 
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Figure 4.13 Median DoC for Group 10:0 with different concentrations of acetone. The figure 

shows the effect of acetone on DoC of group 10:0. The error bars represent IQR. 

 

 

Figure 4.14 Median DoC for Group 9:1 with different concentrations of acetone. The figure 

shows the effect of acetone on DoC of group 9:1. The error bars represent IQR. 
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Figure 4.15 Median DoC for Group 8:2 with different concentrations of acetone. The figure 

shows the effect of acetone on DoC of group 8:2. The error bars represent IQR. 

 

Figure 4.16 Median DoC for Group 7:3 with different concentrations of acetone. The figure 

shows the effect of acetone on DoC of group 7:3. The error bars represent IQR. 

The data for the average value of DoC could also be presented as a function of fluoride and 

acetone concentrations, as illustrated in figures 4.17, 4.18, 4.19 and 4.20. A linear model was 

fitted to this data. Comparing DoC and acetone concentrations revealed the 10:0 group 

potentially showing a weak positive relationship and the 7:3 group potentially showing a weak 
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negative relationship between acetone concentration and DoC, however, no significant 

correlation was found for any group (P>0.05), see figure 4.19. 

Similarly, no clear trend was evident indicating a relationship between fluoride concentration 

and DoC. While there was a significant correlation found for the 30%A specimens, and r values 

in excess of 0.6 for the 0%A, 10%A and 20%A, the trends were inconsistent between materials, 

suggesting that there is no clear relationship between these two parameters, see figure 4.20. 

The results of three-way ANOVA showed that acetone, fluoride concentrations and exposure 

time had a significant effect on DoC at (P≤0.001), with a statistically significant interaction 

between fluoride%, acetone% and exposure time (P≤0.001).  

 

Figure 4.17 Median DoC of all experimental materials at different acetone concentrations 

after 120 seconds of light exposure. The error bars represent IQR. 
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Figure 4.18 Median DoC of all experimental materials different fluoride concentrations after 

120 seconds of light exposure. The error bars represent IQR. 

 

Figure 4.19 Relationship between DoC and acetone concentrations at 120 seconds of light 

curing. Data represents median value with error bars represent IQR. The r values are 0.68, 

0.14, 0.43 and 0.71 for the groups 10:0, 9:1, 8:2 and 7:3 respectively. 
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Figure 4.20 Relationship between DoC and fluoride concentrations at 120 seconds of light 

curing and at 0%A, 10%A, 20%A, 30%A and 40%A. Data represents median value with error 

bars represent IQR. The r values are 0.76, 0.81, 0.62, 0.96 and 0.59 of the 0%A, 10%A, 

20%A, 30%A and 40%A respectively. 
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 Heat of polymerization (DSC) 

Representative isothermal DSC thermograms obtained during photo-calorimetry at 37°C of the 

samples of the group7:3 with 0%A, 10%A, 20%A, 30%A and 40%A are shown in Figure 4.21. 

The figure shows heat release decrease and extend with increasing acetone concentrations. The 

first six peaks (dotted lines) represent the exotherm generated by the polymerization of resin 

plus the heat released from the light source. The next two thermograms (solid lines) represent 

the energy from the light source only. The light source peaks were added to the 6 thermograms 

for simplicity. 

 

Figure 4.21 Representative isothermal DSC thermogram obtained during photo-calorimetry at 

37C°of group 7:3 with different acetone concentrations. The dot line peaks represent heat of 

polymerization plus light source (six peaks). The solid line peaks represent the thermograms 

of the light sources only (two peaks). 

 

The mean heat release from the experimental groups with different concentrations of acetone 

is shown in figures 4.21, 4.22, 4.23, 4.24 and table 4.9. All groups with 30% and 40% acetone 
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had significantly lower heat release at 60 and 120 seconds of light curing than groups with 0% 

and 10% acetone (Post hoc Tukey test, p<0.05). Groups 8:2 and 7:3 with 0%A had significantly 

higher heat release than 20%A at 60 and 120 seconds of light curing except group 8:2 at 60 

seconds of light curing. However, there were no significant differences between 0%A and 

20%A for groups 9:1 and 10:0 at (Post hoc Tukey test, p<0.05). 

The effect of acetone and fluoride concentrations on heat release is shown in Figure 4.26 and 

4.27. It was appearing that the addition of up to 20%A had no effect on the heat release until 

the concentration of NaF increased at least 20%A, after which there was a significant decrease 

in heat release as the acetone concentration increased (Post hoc Tukey test, p<0.05) see table 

4.9. 

.
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Table 4.9 Heat release values of groups 10:0, 9:1, 8:2 and 7:3 with different concentrations of 

acetone, at different curing interval times. 

Groups % Acetone Mean (SD) of Heat release  

60 sec 120 sec 180 sec 240 sec 300 sec 360 sec 

 

10:0  

 

0%  102(8)a 105(9)ah 106(9)c 107(9)d 108(9)e 109(9)f 

10%  109(8)a 112(8)ahi 114(7)cg 115(6)dh 116(6)e 117 (5)f 

20%  102(7)a 108(6)cdh 111(5)c 112(6)d 113(6)e 114(7)f 

30%  47(5) 87(9)ef 114(9)c 127(10)h 130(11)i 131(10)j 

40%  39(4) 67(6)g 90(9)g 112(12)h 129(11)i 137(8)j 

 

 

9:1 

 

0%  105(6)a 108(6)aij 111(6)d 113(6)f 114(6)j 115(6)h 

10%  112(9)a 116(8)bj 118(8)de 120(8)fi 121(9)jk 122(10)hl 

20%  108(5)a 117(7)cj 121(7)e 124(6)i 127(5)k 129(4)l 

30%  58(9) 98(10)ei 118(5)de 12(7)i 128(8)k 130(9)l 

40%  40(5) 70(9)g 96(11) 117(9)fi 130(8)k 135(10)l 

 

 

8:2  

 

0%  108(4) 111(4)ak 112(4)b 114(4)c 115(4)dj 116(4)e 

10%  87(7) 109(7)bk 111(8)b 114(8)cg 115(9)dhj 116(9)ei 

20%  53(3) 102(4)dk 117(4)b 121(4)g 123(4)h 125(4)i 

30%  39(6) 65(10)f 91(14) 113(12) 123(8)dh 126(7)ik 

40%  30(3) 51(5) 68(7) 85(10) 102(13)j 117(15)ek 

 

 

7:3 

 

0%  104(8)a 107(8)am 108(8)cg 108(8)d 109(8)e 109(8)f 

10%  92(12)a 105(4)bm 108(4)c 109(5)d 110(5)e 111(5)f 

20%  40(2)h 73(6)l 108(8)cg 116(11)d 116(12)e 114(12)f 

30%  40(8)h 71(21)l 91(15)g 106(8)d 112(6)e 112(6)f 

40%  21(2) 36(4) 47(6) 57(8) 67(10) 76(11) 

The heat release values are expressed as mean and SD in the parenthesis. Values exhibited 

similar superscript letters indicate no significant difference within columns within groups (p> 

0.05) as determined using Post hoc test.
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Figure 4.22 Mean heat release for Group 10:0 with different concentrations of acetone. The 

figure shows the effect of heat release of group 10:0. The error bars represent SD. 

 

Figure 4.23 Mean heat release for Group 9:1 with different concentrations of acetone. The 

figure shows the effect of heat release of group 9:1. The error bars represent SD. 
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Figure 4.24 Mean heat release for Group 8:2 with different concentrations of acetone. The 

figure shows the effect of heat release of group 8:2. The error bars represent SD. 

 

Figure 4.25 Mean heat release for Group 7:3 with different concentrations of acetone. The 

figure shows the effect of heat release of group 7:3. The error bars represent SD. 
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The data for the average value of heat release could also be presented as a function of fluoride 

and acetone concentrations at 120 seconds of light curing, as illustrated in figures 4.28 and 4.29. 

A linear model was fitted to this data. There was an inverse correlation between heat release 

and acetone concentrations. The relationship was significant for the groups 8:2 and 7:3 at 

p<0.05. The r values are 0.84, 0.77, 0.94 and 0.95 for the groups 10:0, 9:1, 8:2 and 7:3 

respectively (Figure 4.28). 

The correlation between heat release and fluoride concentration at 120 seconds of light curing 

are shown in figure 4.29. There was no relationship at 0%A, while when the concentrations of 

acetone (%A) increased an inverse relationship can be seen which becomes significant at 40%A 

at p<0.05. 

The results of three way ANOVA showed that acetone and fluoride concentrations and 

exposure time had significant effect on heat release at (P≤0.001). There was a statistically 

significant interaction between fluoride%, acetone% and exposure time (P≤0.001).  

 

Figure 4.26 Mean heat release of all experimental materials at 120 seconds of light exposure. 

The error bars represent SD. 
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Figure 4.27 Mean heat release of al experimental materials at 120 seconds of light curing. The 

error bars represent SD.  

 

Figure 4.28 Relationship between heat release and acetone concentrations at 120 seconds of 

light curing. Data represents mean value with error bars represent SD. The r values are 0.84, 

0.77, 0.94 and 0.95 for the groups 10:0, 9:1, 8:2 and 7:3 respectively. 



90 

 

 

Figure 4.29 Relationship between heat release and fluoride concentrations at 120 seconds of 

light curing and at 0%A, 10%A, 20%A, 30%A and 40%A. Data represents mean value with 

error bars represent SD. The r values are 0.4, 0.8, 0.8, 0.69 and 0.91 of the 0%A, 10%A, 

20%A, 30%A and 40%A respectively.

 Injectability test 

A representative force-displacement graph of group 10:0 at 0%A, 10%A, 20%A, 30%A and 

40%A of one sample are shown in figure 4.30. There were two stages in the force displacement 

curves. The first stage consisted of an initial rapid increase of the applied load to reach the yield 

load, which corresponds to the load needed for the material to start flowing (extruding). In the 

second stage, the materials flow was in steady state at a constant load (injection load). Figure 

4.30 shows that the extrusion force decreases with increasing acetone concentrations. These 
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representative graphs also show similar behaviour of first and second push. The maximum force 

of extrusion of the materials was taken as a comparison between groups. 

.  

 

 

Figure 4.30 Representative extrusion force of group 10:0 at different acetone concentrations. 
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There was no significant difference between first and second push (Paired Sample t test, p<0.05) 

therefore the average was taken for comparison. The graphs of first and second push are shown 

in figures 4.31 and 4.32. The mean extrusion forces (N) with different concentrations of acetone 

for the first and second push and average of first and second push are shown in table 4.10 and 

figure 4.33. 

The results show that the force required to extrude the materials varied according to different 

concentrations of NaF with 0%A the extrusion force decreased with increasing NaF 

concentrations, in which group 10:0 had high extrusion force followed by 9:1 and both were 

higher than the 8:2 group and all of them had higher extrusion force than the 7:3 group see 

figure 4.35 (Post hoc Tukey test, p<0.05). 

For all groups there was a significant difference in the force of extrusion of the 0%A and groups 

with 20%A ,30%A and 40%A at (P<0.05) see figure 4.33. In addition, all groups at 10%A had 

significantly higher extrusion force than groups with 30%A and 40%A (Post hoc Tukey test, 

p<0.05). 

Both NaF and acetone concentration up to 20% significantly affected injectability, with an 

increase in the concentration of either resulting in a significant decrease in the force required to 

extrude the material (Post hoc Tukey test, p<0.05). 

.
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Table 4.10 Mean extrusion force and SD of first and second push of groups 10:0, 9:1, 8:2 and 

7:3 with different concentrations of acetone. 

Groups % Acetone Mean (SD) of extrusion force (N) 

First push Second push Mean of first and 

second push 

 

10:0  

 

0%A  52.6(10.1) 62.4(11.9) 57.6 (11.7) 

10%A  32.5(6.9) 30.9(4.8) 31.7 (5.7) 

20%A  12.9(1.7)a 13.1(1.7)b 13 (1.6)r 

30%A  11.9(2)a 10.1(2.5)bc 11 (2.3)r 

40%A  10.3(2.1)a 10.2(1.5)c 10.2 (1.7)r 

 

 

9:1 

 

0%A 33.5(5.2) 32.6(3.5) 33.1 (4.3) 

10%A 13.5(1.3) 14.3(2.6) 13.9 (2)a 

20%A  8.4(1.4)d 8.6(1.4)e 8.5 (1.4)s 

30%A  9.0(0.7)d 9.1(2.4)e 9.1 (1.6)s 

40%A  8.0(1.3)d 8.4(1.4)e 8.2 (1.3)s 

 

 

8:2  

 

0%A  20.2(1.2) 19.4(1.6) 19.8 (1.4) 

10%A  11.4(2)f 12.5(1.2)i 11.9 (1.8)t 

20%A  9.6(0.9)fg 10.0(1.3)ij 9.8 9 (1.1)tu 

30%A  7.9(1.3)gh 7.3(1.7)jk 7.7 (1.5)uv 

40%A  7.3(1)h 6.7(0.5)k 7 (0.8)v 

 

 

7:3 

 

0%  14.2(2.3)l 14.1(3.2)o 14.2 (2.7)x 

10%  11.1(2.3)lm 10.9(2.5)op 11 (2.3)xy 

20%  9.8(2.1)me 9.6(1.5)p 9.7 (1.8)y 

30%  7.7(1)n 7.5(1.1)q 7.6 (1)y 

40%  7.3(1.1)n 7.4(0.7)q 7.4 (0.9)y 

The entries are mean value with SD in the parenthesis. No differences were found between 

first and second push (p> 0.05 Using Paired Sample t test). Values exhibited similar 

superscript letters indicate no significant difference within columns within groups (p> 0.05) 

as determined using Post hoc Tukey method
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Figure 4.31 Mean extrusion force and SD of first push of groups 10:0, 9:1, 8:2 and 7:3 with 

different concentrations of acetone 

 

Figure 4.32 Mean extrusion force and SD of second push of groups 10:0, 9:1, 8:2 and 7:3 with 

different concentrations of acetone
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Figure 4.33 Mean extrusion force and SD of groups 10:0, 9:1, 8:2 and 7:3 with different 

concentrations of acetone. 

The data for the average value of extrusion force could also be presented as a function of 

fluoride and acetone concentrations, as illustrated in figures 4.34 and 4.36. A linear model was 

fitted to this data. There was an inverse correlation between extrusion force and %A acetone 

concentrations (see figure 4.34). The relationship was significant for all experimental groups at 

p< 0.05. The r values are 0.89, 0.81, 0.91 and 0.95 for groups 10:0, 9:1, 8:2 and 7:3 respectively. 

The correlation between extrusion force and fluoride concentrations are shown in Figure 4.36. 

There was an inverse correlation between extrusion force and fluoride% concentrations at all 

acetone concentrations. The reduction in extrusion force with the addition of acetone was 

greater at lower concentrations of fluoride and vice versa. 

The results of the two way analysis of variance test of the data showed that acetone and fluoride 

concentrations had significant effect on extrusion force at (P ≤ 0.001). The effect of different 

levels of Acetone% depended on what level of Fluoride % was present. There was a statistically 

significant interaction between Acetone% and Fluoride % (P ≤ 0.001). 
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Figure 4.34 Relationship between extrusion force and acetone concentrations. Data represents 

mean value with error bars represent SD. The r values are 0.89, 0.81, 0.91 and 0.95 at (P = 

<0.001) for the groups 10:0, 9:1, 8:2 and 7:3 respectively. 

 

Figure 4.35 Mean extrusion force of all experimental materails at different fluoride 

concentartions. 
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Figure 4.36 Relationship between extrusion force and fluoride concentrations at 0%A, 10%A, 

20%A, 30%A and 40%A. Data represents mean value with error bars represent SD. The r 

values are 0.95, 0.84, 0.56, 0.93 and 0.87 of the 0%A, 10%A, 20%A, 30%A and 40%A 

respectively. 

 

The mean extrusion force of Newtonian fluids are shown in table 4.11. There was high variation 

in the extrusion force of the samples of the water and Newtonian fluids. The graph obtained 

from Newtonian fluids (see figure 4.37) shows the yield force of first push was lower than the 

second push. There was no significant difference between these four fluids, despite the fact that 

they have different viscosities see table 4.11. 
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Table 4.11 Mean extrusion force of Newtonian fluids. 

Newtonian fluids First push CV% Second push CV% Viscosity 

at 25°C 

in mPa.s 

Water 3.4 (1.3) 39 3.1 (1.1) 37 - 

B29 4.7 (0.80 18 5.5 (1.1) 20 28.81 

B200 4.1 (1) 24 5.1 (1.5) 30 198.5 

B10200 4.6 (0.2) 6 4.5 (1.2) 26 9959 

No significant differences were found bwteen Newtonian fluids (p> 0.05, ANOVA).  

 

Figure 4.37 Representative force displacement curve for Newtonian fluids and water. 
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 Fluoride release 

The median fluoride release (IQR) values of all experimental materials at days 1, 7, 14, 21, 28, 

42, 70, 100 and 160 are shown in table 4.12. Group 10:0 had small amount of fluoride release 

only at day 1, followed by a negligible amount of fluoride release. 

Fluoride release of groups 9:1 at 10%A and 20%A were higher than 0% A till day 21 for 10%A 

and till day 70 except day 3 for 20%A (Mann-Whitney test, P<0.05). No significant differences 

found between 10%A and 20%A except at day 21 and 70 at (P<0.05, Table 4.12). 

Fluoride release of group 8:2 at 20%A was significantly higher than 0%A and 10%A except at 

day 1 at (P<0.05). However, fluoride release at 10%A was significantly higher than 0%A till 

day 21 (P<0.05, Table 4.12)  

Fluoride release of group 7:3 at 10%A released higher fluoride than 0%A except at day 2 at 

(P<0.05). However, at 20%A was significantly different from the 10%A only at day 1 and from 

0%A at days 42 and 70 at (P<0.05). However, at 10%A released higher fluoride than 0%A 

except at day 2 at (P<0.05). 

The pattern of fluoride release were similar for all experimental materials. All fluoride 

containing experimental materials 9:1, 8:2 and 7:3 had an initial high level of fluoride release 

for the first day. Fluoride release then decreased sharply from day 2 until day 14 and then after 

the first two weeks the amount of fluoride release became steady at a low level, gradually 

decreasing with time (see figures 4.38, 4.39, 4.40, 4.41, 4.42, and 4.43). 
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Table 4.12 Median fluoride release values of groups 9:1, 8:2 and 7:3 with different 

concentrations of acetone, at different days. 

Groups  % 

Acetone 

Median Fluoride release  (IQR ) µg/cm²/day 

Day 

 1 

Day  

7 

Day  

14 

Day 

21 

Day 

28 

Day 

42 

Day 

70 

Day 

100 

Day 

160 

10:0 0% 0.3 0 0 0 0 0 0 0 0 

10% 0.1 0 0 0 0 0 0 0 0 

20% 0.1 0 0 0 0 0 0 0 0 

  

 

9:1 

 

0% 122  

(22.1) 

21.2 

(7.4) 

4.1 

(0.6) 

3 

(1.1) 

1 

(0)n 

0.5 

(0.1)q 

0.3 

(0.1) 

0.2 

(0.1) 

0.1 

(0.1) 

10% 149  

(22)a 

24.6 

(2.4) 

8.4 

(0.5) 

4 

(0.4) 

1 

(0.1)n 

0.54 

(0.3)qr 

0.5 

(0.4) 

0.1 

(0.1) 

0.1 

(0.2) 

20% 176 

(17.5)a 

28.9 

(4.4) 

17.8 

(7.1) 

13 

(2.2) 

3 

(1.3) 

1 

(0.3)r 

1.2 

(0.2) 

0.4 

(0.1) 

0.1 

(0.1) 

  

 

8:2 

 

0% 308 

(21) 

26.2 

(10.7) 

5.8 

(2.5) 

5 

(2) 

2 

(1)o 

2 

(0.2)s 

1.7 

(0.3) 

0.7 

(0.2) 

0.5 

(0.1) 

10% 456 

(32)b 

43.9 

(6.2) 

13.3 

(2.5) 

9 

(1) 

3 

(0)o 

1 

(0.5)s 

1.1 

(0.5) 

0.3 

(0.2) 

0.6 

(0.2) 

20% 457 

(28)b 

82.4 

(18.7) 

34.3 

(16.2) 

21 

(14) 

12 

(7) 

6.25 

(2) 

6.5 

(1.6) 

1.1 

(0.1) 

0.6 

(0.2) 

  

 

7:3 

 

0% 505 

(164)cd 

77.9 

(1.9) 

29.9 

(5.8) 

14 (6)l 
 

6 

(4) 

3 

(2) 

3.1 

(1.7) 

2.1 

(0.9) 

1.1 

(0.7) 

10% 579 

(48)c 

85.1 

(10.7) 

44.8 

(7.8) 

35 

(5)m 

19 

(6)p 

8 

(5)t 

8.1 

(4.5) 

2.6 

(1.9) 

1.8 

(0.2) 

20% 497 

(46)d 

63.2 

(34.1) 

28.2 

(1.5) 

21 

(9)lm 

15 

(2)p 

9 

(2)t 

8.7 

(2.1) 

2.5 

(0.1) 

1.5 

(0.4) 

The entries are median value with IQR in the parenthesis. Values exhibited similar superscript 

letters indicate no significant difference within columns (p> 0.05) as determined using Mann-

Whitney U.
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Figure 4.38 Median fluoride release for group 9:1 with different concentrations of acetone 

during 10 weeks study.  

 

Figure 4.39 Cumulative fluoride release for the 9:1 group with different concentrations of 

acetone 0%A, 10%A and 20%A. 



102 

 

 

Figure 4.40 Median fluoride release for group 8:2 with different concentrations of acetone 

during 10 weeks study. 

 

Figure 4.41 Cumulative fluoride release for the 8:2 group with different concentrations of 

acetone 0%A, 10%A and 20%A. 
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Figure 4.42 Median fluoride release for group 7:3 with different concentrations of acetone 

during 10 weeks study.  

 

Figure 4.43 Cumulative fluoride release for the 7:3 group with different concentrations of 

acetone 0%A, 10%A and 20%A. 
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The data for the average value of fluoride release could also be presented as a function of 

fluoride concentrations, as illustrated in figure 4.45. A linear model was fitted to this data. The 

correlation between fluoride release and fluoride concentrations at day 28 are shown in figure 

4.45. There was significant correlation at 0%A, 10%A and 20%A at p <0.05. The r values are 

0.92, 0.9 and 0.93 of the 0%A, 10%A and 20%A respectively. 

The results of three way ANOVA showed that acetone and fluoride concentrations and storage 

time had significant effect on fluoride release at (P≤0.001). There was a statistically significant 

interaction between fluoride%, acetone% and storage time (P≤0.001). 

 

Figure 4.44 Relatioship between fluoride release and and fluoride concentrations at day 28. 

Data represents median value with error bars represent IQR. 
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Figure 4.45 Relationship between fluoride release and fluoride concentrations at day 28 and at 

0%A, 10%A, 20%A. Data represents median value with error bars represent IQR. The r 

values are 0.92, 0.9 and 0.93 of the 0%A, 10%A and 20%A respectively 

 Summary of results 

The setting characteristics of experimental materials, DoC and heat release, were affected by 

the NaF and acetone concentrations. With an increasing in concentrations of both acetone and 

NaF together above 20% the effect was detrimental. However, the effect of curing time should 

not be neglected as DoC increased with increasing curing time. 

Both NaF and acetone concentration up to 20% significantly affected injectability, with an 

increase in the concentration of either resulting in a significant decrease in the force required to 

extrude the material (p<0.05). 

All fluoride contained groups had released fluoride for up to 160 days. The amount of fluoride 

release depend on the concentrations of NaF in each group the higher the NaF concentrations 

the higher fluoride release. Acetone had not detrimental effect on the fluoride release of the 

materials up to 20%A. 
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4.6 Discussion 

A new fluoride releasing acrylic potential orthodontic adhesive has been developed. 

Orthodontic adhesives should have sufficiently low viscosity to allow easy positioning of 

brackets during treatment. The previously developed experimental materials were considered 

too viscous for orthodontic use, and therefore it was essential to improve the handling 

characteristics of the material by reducing its viscosity. Acetone was chosen for this due to its 

common use in dental materials (Yiu et al., 2005; Van Landuyt et al., 2007; Wiegand et al., 

2007; Ekambaram et al., 2015), in particular it has been shown to not reduce the bond strength 

of resin based adhesives to enamel (Reis et al., 2003; Lopes et al., 2006). 

There are some important properties for the developed materials to maintain after acetone 

addition such as setting characteristics and fluoride releasing ability. Therefore in order to 

investigate the effect of the acetone addition on the material a number of characteristics were 

measured, including injectability, setting characteristics and fluoride release. Four experimental 

groups were prepared in this study based on fluoride content including group 10:0 with no 

fluoride representing a control group, group 9:1 with 10% fluoride, 8:2 with 20% fluoride and 

7:3 with 30% fluoride (Su et al., 2010; Zahroon, 2014; Al-Sammarraie, 2015) . These groups 

were chosen as it has been shown they have fluoride release (except 10:0) up to 192 days in 

addition to having recharging ability when they are used as a fissure sealant (Zahroon, 2014). 

It was shown that the groups 10:0 and 9:1 have a comparable bond strength to commercial 

orthodontic adhesives in addition to having fluoride release (group 9:1) comparable to a 

commercial GIC (Su et al., 2010).  

Sodium fluoride (NaF) was used as a source of fluoride in this study as NaF is a very soluble 

salt and it is easily dissolves to free Na+ and F- ions (Nakajo et al., 2009). NaF has been added 

to commercial MMA based acrylic orthodontic adhesives and it has been shown that the 

material can release fluoride for up to 6 months (Iijima et al., 2013). Some studies have 

investigated other sources of fluoride including stannous fluoride (SnF2) and calcium fluoride 

(CaF2) as these sources are reported to provide continuous sustained level of fluoride for long 

time (Kodkeaw et al., 2010). The solubility of NaF is not affected by the pH of the medium 

unlike fluorosilicate glass and calcium fluoride (Anusavice et al., 2005; Shen et al., 2007). 

Therefore, NaF was used in this study as there is a fluctuating pH in the oral environment. In 

addition NaF has been used before as a source of fluoride in orthodontic adhesives and in fissure 

sealants and it was shown fluoride release up to 192 days (Shen et al., 2007; Zahroon, 2014). 

To make the material more easily absorb water HEMA was used, as HEMA is hydrophilic and 

facilitates water sorption into the material. (Yiu et al., 2006; Kodkeaw et al., 2010). Polymers 
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of HEMA are flexible and porous (Tay et al., 2002a) which might contribute to easy debonding 

at finishing. HEMA was used with MMA at 40:60wt% as it has previously been shown to be 

the best ratio to provide fluoride release after addition of NaF (Su et al., 2010). MMA was 

chosen as a monomer and it is easily polymerizes. PMMA powder was used as an organic filler 

as it is compatible with MMA and it has been used before for denture construction. PMMA is a 

linear polymer with low density chains (Ferracane et al., 1998; Ferracane, 2006) which results in 

a softer, more flexible and potentially weaker material (Gorelick et al., 1978). At the end of 

orthodontic treatment on average less enamel loss has been shown to occur during adhesive 

removal of an unfilled polymethylmethacrylate adhesive than removal of highly filled 

composite adhesive (Brown and Way, 1978; Su et al., 2010). Less enamel fracture was seen 

after debonding an MMA based resin (Super-Bond and experimental MMA-based resin) in 

comparison to conventional Transbond XT (Kim et al., 2014). Therefore, PMMA powder was 

used to make the experimental materials safe and easy removal during debonding. 

It has been shown that photo-initiators like CQ can undergo polymerization under ambient light 

(Crivello, 2009). Therefore, for preparation of the experimental groups at first the liquids were 

prepared in dark amber bottles wrapped with aluminium foil to reduce the potential for 

accidental activation of the photo-initiator. The CQ and DMAEMA were mixed in monomers 

for 30 minutes in HEMA alone then 90 minutes in mixture of HEMA and MMA to allow 

thorough dissolution of the CQ and DMAEMA in the liquid as this has previously shown to be 

effective (Zahroon, 2014) and it has been shown that proper dissolution and homogeneous 

mixing are vital for a functional initiator system (Ogunyinka et al., 2007). 

The liquid and powder were mechanically mixed using a DAC system (dual asymmetric 

centrifugation) with the aim of producing a homogenous mixture (Massing et al., 2008) and to 

reduce the chance of introducing air bubbles into the material, thereby reducing the oxygen 

content of the material, which could influence curing. The DAC system is considered to be a 

suitable technology for mixing of composite resin (Kumar and Shortall, 2011). One of the 

advantages of this method is the speed of mixing which can be set up to 3300 rpm which cannot 

achieved by hand mixing. This higher speed of mixing results in more homogenous paste. As 

it was shown increasing speed of mixing results in a more homogenous mixture (Massing et 

al., 2008). Another advantage of this method is that DAC provides two type of rotation at the 

same time. One is clockwise centrifugation of the sample, which tries to push the material in to 

the corners of the sample container. The second is counter-clockwise rotation of the container, 

which takes place around container’s own vertical axis which forces the material towards the 

centre of the container (See figure 2.14). These two types of rotations lead to shear forces and 

result in a homogenous mix (Massing et al., 2008). The DAC system is recommended for 
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mixing experimental composite resins (Kumar and Shortall, 2011) and it has been used 

previously by many researchers for mixing experimental resins (Lee et al., 2006; Faltermeier 

et al., 2007; Garoushi et al., 2008; Schneider et al., 2008). 

In order to consider the effects of each of the independent variables Acetone%, Fluoride%, 

exposure time on the DoC (dependant), a three way ANOVA was undertaken. There is no three 

way ANOVA for non-parametric data.  Therefore, the data was transformed to normal using a 

two-step transformation to normality in SPSS (Templeton, 2011) as previously described 

(Ramadas et al.; Mulcan et al., 2015). Shapiro-Wilk test at (P<0.05) indicated the data to be 

normally distributed after transformation. Another three way ANOVA was taken for 

untransformed data assuming as normally distributed. The results of both transformed and 

untransformed data showed the same interactions between each variables. The same procedure 

was done for the data of fluoride release taking fluoride, acetone and daily fluoride release as 

independent variables, see appendix 2. 

 Acetone loss 

The experimental materials were prepared in sealed containers (pots) to prevent evaporation of 

the material (monomers and acetone). However, during opening the lids of the pots some weight 

loss is inevitable. Two preliminary studies were conducted to demonstrate the amount of 

monomer and acetone loss during preparation and storage for two samples of each 10:0 and 7:3 

at 0% acetone and 40% acetone. It was found that material loss did not occur during storage 

and preparation. It only occurred during opening the lid of the pots, which was less than 1% 

and 2% of the total weight after 5 and 30 minutes respectively. However, in real life with good 

laboratory technique the lid is unlikely to be left off for more than 2 minutes at any one time. 

Therefore the minimal loss of acetone (and monomers) observed after 5 minutes of leaving the 

lid off is not considered important. This indicated acetone loss does not appear to be a 

significant factor. 

The weight lost was likely to be due to evaporation of monomers and acetone and this is 

supported by comparison of the weight loss of 0%A to 40%A. The vapour pressure of acetone 

is very high. It has previously been shown that up to almost 80% of acetone evaporates within 

10 minutes of exposure to air (Nihi et al., 2009). However, in the mixed material less than 2% 

of the material weight was lost (acetone + monomers) after 10 minutes. This might be due in 

part to the presence of HEMA which has been shown to reduce acetone evaporation four-fold 

(Nihi et al., 2009).  
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In order to maintain a consistent approach and for standardization all materials were prepared 

within a week of any experiment to be done. The lids of the pots were kept tightly shut whenever 

feasible. The materials were quickly dispensed from the pots for preparation of the samples. 

 Degree of conversion 

ATR-FTIR was used for obtaining the DoC of the materials, as it is a commonly used technique 

for monitoring DoC (Alshali et al., 2013; Leprince et al., 2013; Al-Ahdal et al., 2015). The 

DoC of a material is calculated by comparing the intensity of the carbon double bond in the 

aliphatic band, which is around 1638 cm-1, relative to the peak of a bond that is not affected by 

polymerization; this is referred to as the internal reference peak. Previous studies on most 

dimethacrylate resins (like BisGMA ,TEGDMA and UDMA) use the aromatic band of the 

carbon-carbon double bond which is around 1608 cmˉˡ as the internal reference, as the aromatic 

band of the carbon-carbon double bond are not affected by the polymerization reaction (Chung 

et al., 2002; Calheiros et al., 2008; Al-Ahdal et al., 2015). However, in the current study there 

was no aromatic band, therefore the carbonyl group of C=O at 1715 cmˉˡ was used as the 

internal standard (Pianelli et al., 1999; Kashi et al., 2007; Guo et al., 2009). The C=O group 

was taken as internal standard as it does not participate in the polymerization reaction (Duray 

et al., 1997) and has previously been used for monitoring the polymerisation of the HEMA 

monomer alone (Jafarzadeh Kashi et al., 2007) and for monomer mixtures containing HEMA 

(Guo et al., 2009; Abedin et al., 2014). The carbonyl group peak was readily identifiable in the 

material, had no overlap with the other peaks and it appeared to be relatively stable during 

polymerization (see Figure 4.12). 

It was shown that resin based adhesives that contain photo-initiator like CQ undergo 

polymerization under ambient light (Crivello, 2009). Therefore, all experimental procedures 

were carried out in dark room to reduce the effects of ambient light on the photo-polymerisation. 

For all experiments, the same LED curing light unit (Coltolux® LED, Coltene, USA) with an 

intensity of 800-850 mW/cm² was used. The LCU was returned to its battery charger after each 

use to make sure the LCU remained fully charged, as the charging is one of the factors which 

affects the LCU intensity (Jadhav et al., 2011). In addition an intensity meter (Coltolux LED, 

Sussex, UK) was used every time to ensure the intensity of the LCU remained consistent 

throughout the experiment. 

The current experimental materials were paste-like materials, therefore they were placed 

directly onto the ATR stage to enable measurement of changes in DoC in real time, for up to 

120 seconds in increments of 10 seconds. This was to indicate the curing kinetics whilst 

monitoring the point at which the curing curve becomes flattened and to avoid post curing 
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effects between scans due to some continued reaction after the light unit was turned off, as it 

was shown that there is post curing polymerization (Par et al., 2014; Al-Ahdal et al., 2015) 

Therefore, a single scan FTIR spectra was taken to make sure that at this stage, we were not 

seeing some “post-curing effects” in the spectra due to some continued reaction after the LCU 

was turned off.  

Fillers have been shown to have an impact on the DoC. The DoC has been shown to decrease 

with increasing filler content, in a monomer mixture of BisGMA/TEGDMA (Halvorson et al., 

2003; Garoushi et al., 2008). It has been also shown that even differences in filler size and 

geometry result in differences in the DoC from 48% to 61% for a monomer mixture of 

BisGMA/UDMA/TEGDMA at a constant filler volume of 56.7% (Turssi et al., 2005). This 

might be due absorption and scattering of a part of the light during the activation process 

consequently reducing the amount of energy absorbed by the materials and reducing the DoC 

of the material (Almeida and Mothé, 2009). This is due to refractive index of fillers which 

differs from the monomer mixture (Shortall et al., 2008). The refractive index determines how 

much light is bent, or refracted, when entering a material. Whilst this study cannot be directly 

correlated to Almedia and Mothe 2009, I postulate that NaF and acetone both have a different 

refractive index to PMMA see Table 4.13. This will consequently be contributing to the 

refractive index change. This effect was seen at high fluoride concentrations, in particular when 

the concentration of acetone increased to 30%A and 40%A. Therefore, at these high fluoride 

and acetone concentrations the DoC decreased. 

Table 4.13 Refractive index of the materials used in this study. 

Materials  Acetone PMMA NaF 

Refractive index 1.35 n 1.49 n (in the 

wavelength ranges 

500-650nm) 

1.32 n 

References (Sadek, 2004) (Schubert et al., 

2005) 

(Varner et al., 2012) 

The curing curves showed different materials reach a plateau (ie. curing slows because they 

have reached close to their maximal curing level) at different curing times depending on acetone 

and fluoride concentrations. It appears that for groups 8:2 and 7:3 at 30%A and 40%A the 

curing curve doesn’t reach plateau during the illumination time of 120 seconds. This might be 

due to the combined effect of acetone and fluoride to extended curing. Therefore in the future, 

FTIR spectra should be recorded for a longer time.  

https://en.wikipedia.org/wiki/Refraction
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The results show that the addition of acetone to the experimental acrylic resin affects the DoC 

of the material. As such, the first hypothesis which states “Acetone will decrease the DoC of 

the experimental resins” was partially supported by this. At the initial low acetone 

concentrations (up to 20% acetone) in the groups up to 20% fluoride, the DoC of the 

experimental acrylic resins increased, potentially due to increase diffusion of free radicals and 

more rapid growth of polymer chains after acetone addition (Cadenaro et al., 2009; Malacarne-

Zanon et al., 2009). These results are similar to the results of previous study in which the DoC 

increased when between 2.5 and 5 M acetone was added to a BisGMA/TEGDMA mixture but 

above 5 M of acetone the DoC declined (Holmes et al., 2007). Similarly, the addition of ethanol 

up to 20% led to an increase in DoC of a 40HEMA/60BisGMA mixture (Ye et al., 2007). 

However, at acetone concentrations greater than 20%A the rate and extent of polymerization 

were decreased and there may be several reasons for this. The first reason may be because of 

absorption by the solvent of the heat generated during the polymeric exothermic reaction (Lee 

et al., 2004). Another possible explanation is that with increasing acetone concentration, there 

may be physical separation of free radicals, photoactivation constituents and growing polymer 

chains from each other thereby resulting in a reduced DoC (Holmes et al., 2007). 

Acetone has a relatively high specific heat capacity compared to other constituents (Table 4.14). 

The specific heat capacity of a substance is the amount of energy needed to change the 

temperature of 1 kg of the substance by 1°C. Therefore, as the acetone concentration increases, 

it will tend to absorb more of the heat during polymerization (Lee et al., 2004), thereby reducing 

heat release and DoC at high acetone concentrations (30%A and 40%A). In addition to acetone, 

NaF has also a specific heat that is lower than PMMA. It appears that at 0% acetone 

concentrations the heat release is similar. While when both fluoride and acetone concentrations 

are increased the heat release changes accordingly. 

Table 4.14 Specific heat capacity of some materials used in this study. 

Materials Acetone PMMA NaF 

Specific heat 

Jkg-1K-1 

2210 1446 1088 

References (Verma et 

al.) 

(Iannone, 

2014) 

Sodium fluoride data sheet 

Materials Data from Crystran Ltd. Poole. UK 
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 Heat release 

DSC was used for monitoring thermodynamics of photo-polymerization as DSC is the most 

commonly used for this purpose (Maffezzoli et al., 1995; Lovell et al., 1999; Cotti et al., 2011). 

An empty pan (crucible) was used as a reference against which to compare the sample, based 

on previous studies (Cotti et al., 2011). A transparent cover was used to cover the samples to 

minimise acetone evaporation and oxygen inhibition on the surface of the samples, as it has 

been shown that oxygen decreases the heat release of dimethacrylate mixture measured by DSC 

(Nie et al., 1998). The light source was adjusted to ensure 60 seconds of light exposure with 

the lights equally positioned above both the sample and reference pans. The 60 second light 

exposure was chosen because from the FTIR data it appeared that some groups took up to 60 

seconds to reach a reasonable DoC (above 45%) and to monitor polymerization with time for a 

longer period of time. 

The photo-polymerization of dental resin based adhesives are investigated at very low light 

intensity as low as 0.4 mW/cm² (Lovell et al., 1999) others used different light intensities 

ranging from 1 mW/cm² to 1000 mW/cm² (Lovell et al., 1999; Emami and Soderholm, 2005; 

Gatti et al., 2007; Gao et al., 2012). In the current study the light curing unit of the 

photocalorimetry accessory of DSC had a low intensity of 200-250 mW/cm2. As increasing 

intensity increases polymerization reaction and heat release (Peutzfeldt and Asmussen, 2005). 

Therefore, some of the differences between the DoC data and heat release might attribute to the 

fact that higher intensity LED LCU (800 mW/cm2) was used for FTIR data compared to the 

low intensity of light used for the DSC.  

To calculate the heat release of the experimental materials only, the energy of light source must 

be subtracted from the total energy recorded. Some of previous studies have used the average 

of the peak areas under second and third thermogram as the energy from light sources only 

(Emami and Soderholm, 2005; Schneider et al., 2008; Schneider et al., 2009a). The reason that 

these previous studies used these peaks was based on assumption that no more polymerization 

happens after the first peak and the second and third peak are similar in height and referred to 

light sources only. However, this could not be used for the current experimental materials. As 

some of the experimental resins in this study (particularly those with 30% and 40%A) showed 

6 peaks of similar low height peaks compared to groups with 0%A indicating these groups 

needed more time to fully polymerize. Previous work has used heat release of fully polymerized 

material to obtain the energy of light sources only, this is subtracted from the total heat release 

of the material to obtain heat release of the material only (Cook, 1992; Cadenaro et al., 2005; 

Cadenaro et al., 2008). Therefore, it was decided to further irradiate each specimen, after the 
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first 6 light exposure cycle, for an extra 10 minutes with a more powerful LED light with 800-

850 mW/cm². A similar, constant peak was obtained after this extra irradiation time of each 

material, indicating they were fully polymerized and they were representing the energy of light 

sources only.  

As mentioned earlier in section 1.4.2, some of the polymerization heat might be absorbed by 

acetone, NaF and PMMA, resulting in different levels of heat release. As each of these 

constituents have different specific heat capacity. Therefore, at 0% acetone concentration the 

heat release was similar as there was little difference in the heat capacity of PMMA compared 

to NaF that could not lead to differences in the heat release. While when both fluoride and 

acetone concentrations increased, the heat release decreased as some of the heat has been 

absorbed by the acetone (Lee et al., 2004) and NaF. The experiment was carried out at a 

constant temperature of 37°C to keep the temperature of the cell consistent throughout the study 

and to simulate the oral temperature. Therefore, any differences observed might be due to 

different concentrations of each of these variables (Acetone, NaF and PMMA) within the 

materials. In addition these variables have different refractive indexes. As the materials photo-

polymerize each of these variables will have affected reflection of light and the amount of 

energy which reaches the materials. Hence, the photo polymerization will have been affected 

differently.  

All the experimental resins passed through three stages of polymerization, as described by Gatti 

et al. (2007) and Decker (1996), with differences in the contribution of each stage according to 

different concentrations of fluoride and acetone: 

The first stage is the auto-acceleration stage, which occurs at the very beginning of the 

irradiation in which the reaction reaches its maximum value due to a rapid increase in viscosity 

of the material. It appeared that acetone prolonged and slowed down this process. This slowing 

down was significant at concentrations of acetone in excess of 30% for all experimental 

materials and in excess of 20% for groups 8:2 and 7:3.  

The second stage is characterised by the material polymerizing at a constant rate. From the 

results it appeared that the experimental materials reached constant heat flow at a different times 

depending on acetone concentrations, with the presence of acetone slowing down reaching the 

constant rate of polymerisation. This may indicate acetone may acted as a physical barrier in 

reducing meeting free radicals, photoactivation constituents and growing polymer chains 

together (Holmes et al., 2007). This effect was significant at higher acetone concentrations at 

30% and 40%. 

The final stage is auto-deceleration in which, due to increased viscosity, the propagation 

becomes diffusion controlled. However, as the addition of acetone decreased viscosity of the 
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materials propagation could continue for longer times without being diffusion controlled. It 

means acetone postponed auto-deceleration, in particular at higher acetone concentrations.  The 

representative graph (Figure 4.21) shows that as the concentration of acetone increased the 

material continue to polymerize for longer times.  

Overall, the results of DSC and FTIR analysis both support the conclusion that acetone affects 

the setting characteristics (DoC and heat release) of the materials. Up to 20%A this effect was 

not detrimental. Therefore, the second hypothesis which states “Acetone will decrease the heat 

released by the experimental materials” was partially accepted. However, there are some 

differences between the results of DSC (heat release) with that of FTIR (DoC). The differences 

may be attributed to the following reasons: 

Firstly, DSC and FTIR are different techniques. FTIR monitors molecular changes occurring 

during polymerization, that is the conversion of C=C to C-C. While DSC measures heat release 

based on the exothermic polymerisation reaction of the material. Perhaps the presence of each 

of the variables acetone and fluoride affect these measurements differently. However, it has 

been shown that with both techniques the DoC is comparable (de la Caba et al., 1998) 

Secondly, different light sources were used for the polymerization of the materials, which was 

halogen light with 250 mW/cm² intensity for DSC and LED LCU with 800 mW/cm² for FTIR. 

It is known that the type of LCU affects polymerization reaction (Silva et al., 2011). It has been 

shown that conventional LED LCU has an emission spectra centred around the maximum 

absorption spectra of CQ to polymerize CQ based materials compared to halogen light which 

has a broad emission spectra (Nomoto et al., 2009). Another difference is the difference in the 

intensity of light used which was 250 mW/cm² for halogen light compare to 800 mW/cm² for 

LED all of these affect the results. As mentioned in the literature review in section ( 2.5.2), it 

has previously been shown increasing intensity increases polymerization reaction (Peutzfeldt 

and Asmussen, 2005) that is why most of the DoC curing curves flattened at only 80 s in 

comparison to heat  release curves which took 120 s to flatten.   

Thirdly, heat release by DSC was taken at 37°C however, FTIR spectra were measured at room 

temperature. It is known that temperature affects the polymerization reaction (Lovell et al., 

1999). Previous work has shown that increasing the temperature during polymerization from 

room temperature 22°C to mouth temperature 35°C results in an increasing DoC of the material 

(Price et al., 2011). A higher temperature will lead to an increase in the polymerization rate by 

improving the monomer conversion, thereby encouraging more reaction to occur prior to 

vitrification (de la Caba et al., 1998; Lovell et al., 1999; Trujillo et al., 2004; Daronch et al., 

2006). However, the DoC was not calculated from the heat release data to show whether the 

DoC from DSC data different from the FTIR data.  



115 

 

 Injectability 

A simple microcapillary rheometer was developed for measuring the injectability of the 

experimental materials. As it was discussed in section 2.3.3 a micro capillary rheometer can be 

used to measure the force that is required to extrude a material from a syringe termed the 

injectability (Ratier et al., 2004). The pressure needed to extrude a material through a syringe 

can be predicted through measuring the viscosity of the material (Fatimi et al., 2012). When 

the material is extruded at a constant rate the shear stress is related to the pressure required to 

depress the barrel of the syringe, whereas the shear rate is a function of the flow rate. Thus, a 

material of low viscosity requires only a low pressure to produce a high flow rate, whereas a 

more viscous material may require a high pressure to produce a relatively small rate of flow 

(McCabe and Walls, 2009). The force required to extrude the material was used to compare 

between groups, as it was interesting to determine the relative viscosity (injectability) of the 

material for comparison rather than going into detailed complex viscosity. For measuring 

complex viscosity of resin based adhesives different rheometrical techniques have been used 

such as steady shear sweep test, advanced rheometric expansion system and vertical oscillation 

rheometer (Lee et al., 2007; Papakonstantinou et al., 2013 ). However, the problems in using 

of these viscometers for the determination of the viscosity of orthodontic adhesives are 

complexity, adhesive evaporation, in addition to paste nature of the orthodontic adhesives that 

make it difficult to measure its viscosity.  

Injectability is applicable and useful for testing the experimental materials. This technique has 

been used to measure extrusion force of non-setting paste of calcium phosphate bone cement 

which has a paste-like nature and has previously been reported to be a reproducible method for 

this purpose (Bohner and Baroud, 2005) which is similar in viscosity to the current materials. 

This method is very straightforward and seems to be a reproducible method as there was little 

variation between samples of each experimental group. It was used to compare the relative 

viscosity of the materials and to give an indication of the viscosity of the material, however, it 

was not used to give an absolute measurement of viscosity. It was interesting to know relative 

viscosity of the material for comparison to assess the impact of the altering the materials 

constituents. Finally, this method is more practical to measure injectability of the adhesives 

since it is more clinically relevant rather than just measuring viscosity, since currently most of 

the commercial orthodontic adhesives delivered in a sealed dark syringe (or compule). This 

makes quicker application and easy adjusting without excess material. The clinicians need to 

press the plunger of the syringe to extrude (inject) the adhesive.  
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The development of the injectability method was based on two pilot studies in which the two 

different methods were investigated that have been used in the literature for investigating 

injectability of calcium sulphate bone cement. The first method involved controlling the applied 

force, with the load rate determined by the materials viscosity (Wang et al., 2006). It was shown 

that the extrusion force increases with increasing viscosity (Bohner and Baroud, 2005). As there 

was a wide range of viscosity of the experimental materials from very viscous to very low 

viscosity. Some experimental materials were so viscous they required a 400 N force to allow 

material extrusion, while other groups were so fluid they immediately dispensed when 400 N 

force applied. This high force also resulted in failure (rupture) of the syringes used. Therefore, 

it was decided not to follow this method. 

The second technique trialled involved controlling the compression rate and measuring the 

force required to extrude the material. This was more useful as the rate of compression could 

be kept stable and the only difference between materials was the amount of force required to 

extrude the materials for a given displacement (Ginebra et al., 2001; Bohner and Baroud, 2005; 

Bercier et al., 2010; Fatimi et al., 2012). Therefore this technique was adopted for measuring 

the extrusion force to allow comparison between groups. 

In order to determine a suitable compression rate, different compression rates of 1, 5, 10 and 

15 mm/minute were tested for those groups thought to be the most and the least viscous (10:0 

without acetone and 7:3 40% acetone respectively). It was found that with group 10:0 with 5, 

10 and 15 mm/minute the syringes ruptured and cracked (Figure 4.5). The extrusion force has 

been shown to increase with increasing compression rate (Allahham et al., 2004; Fatimi et al., 

2012) and so it is likely that at these compression rates an excessive extrusion force was reached 

(300 N) leading to syringe failure. Therefore 1 mm/minute was used to minimise failure of the 

syringes. 

Further preliminary work was undertaken to determine differences between the five different 

pushes per syringe for the group 10:0 as the most viscous group. No significant difference was 

found between the force-displacement behaviour of the first and second pushes. Subsequent 

pushes showed differences in behaviour, particularly the final push, where it is likely that the 

proximity of the material to the syringe end caused a boundary effect. There was no significant 

differences between first and second push and they were less varied looking at their SD. 

Therefore, the first and second push were taken for comparison between all groups. The 

maximum forces of extrusion were recorded for comparison. The friction due to the movement 

of the piston along the syringe was neglected for the calculation of the extrusion force, as only 

a relative measure of viscosity was required in this study. While this friction will clearly effect 
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the rate of extrusion of material, it is likely that this effect will be approximately constant for 

all of the materials studied here. 

The syringes used in the injectability study were transparent. As CQ can polymerise under 

ambient light (Crivello, 2009), which would lead to an increase in the viscosity of the mixtures 

(Lovell et al., 1999; Gao et al., 2012), it was decided that for this part of the experimental work 

the mixtures would be made without either CQ or DMEAMA. As the concentrations of CQ and 

DMEAMA were less than 1 wt% of the total mixture, and the concentrations were identical for 

all mixtures the exclusion of these components was not considered to significantly affect the 

relative viscosities of the materials. In a previous study, in which the rheological properties of 

BisGMA-based composites a similar approach of excluding the photoinitator system was also 

followed (Lee et al., 2006).  

There was not a large difference in extrusion force measured between the Newtonian fluids 

used in this study, despite their different viscosities. This could be due to oily nature of these 

materials, which were very different from the experimental materials and this may also tend to 

lubricate the plunger of the syringe which will have an influence on the results. Another reason 

might be related to the diameter of the syringe opening. Previously, a micro-capillary rheometer 

was used to measure the viscosity and predict viscosity from extrusion force of Newtonian 

fluids such as B100, B50, B10 and Vaseline oil which are viscosity standards. (Allahham et al., 

2004; Fatimi et al., 2012). However, the syringe opening in those studies was less than 0.8 mm 

while in the current study the opening was 2mm. Finally, this may indicate that this technique 

is not very precise (sensitive) in determining differences at low viscosity.  

The current findings confirm that different concentrations of acetone lead to differences in the 

extrusion force of the experimental groups. As such, the extrusion force decreased with 

increasing acetone concentration. This was due to decreasing viscosity of the material. 

However, this reduction of extrusion force was up to certain concentration. There were little 

differences between the 20 and 40% acetone groups. This may indicate that this technique is 

not very precise (sensitive) in determining differences at low viscosity as it was seen for 

different Newtonian fluids. 

Another interesting finding is that the extrusion force decreased with increasing NaF 

concentration. This indicates that the viscosity of the material decreased with increasing NaF 

concentration. This could be due to a reduction in the PMMA powder which absorbs monomer 

up 100% of its weight which would result in increased viscosity (McCabe and Walls, 2009). 

Another reason might be due to the particles of NaF which are smaller than those of PMMA 

and the smaller the particle size will result in a more injectable material (Bohner and Baroud, 

2005). 
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 Fluoride release 

Fluoride release is a desirable property for an orthodontic adhesive to have to reduce 

demineralisation. Fluoride release values for different orthodontic adhesives vary in the 

literature with the type of storage medium also effecting the values. Previous studies have 

shown more fluoride release when specimens are stored in distilled water compared to storage 

in artificial saliva. This could be due to presence of organic components in saliva, which may 

act as a barrier and could interfere with the ion release process (McNeill et al., 2001; Preston et 

al., 2003). Other previous studies reported the influences of pH value of the solution on the 

release of fluoride ion (Yoda et al., 2006). In the present study, DDW was used as a storage 

solution to investigate the general fluoride release behaviour of the experimental materials. 

DDW water was used to reduce the interference at the ion electrode surface that might be 

induced by ions and impurities. In addition, distilled water (Yoda et al., 2006) and deionized 

water (Kodkeaw et al., 2010; Dionysopoulos et al., 2013) have been widely used for fluoride 

release measurement studies.  

Samples were prepared using 80 seconds of light curing as the DoC data shows most of the 

groups reached almost 50% DoC by this time. However, as mentioned in section 2.3.3 there is 

no established DoC value for adequate clinical performance. The DoC of most orthodontic 

adhesives previously reported are between 43- 75% (Nithya et al., 2009). 80 seconds cure time 

has been previously used for similar materials (Zahroon, 2014). However, at that curing time 

all of 30%A and 40%A groups reached less than 40% DoC. Therefore the groups with high 

acetone concentration 30% and 40% were omitted from fluoride release measurements. 

The protocol used in this study was daily fluoride measurement for the first two weeks then 

weekly for a month, followed by monthly measurements.  This has been used previously by 

many researchers (McNeill et al., 2001; Cohen et al., 2003; Su et al., 2010; Zahroon, 2014; Al-

Sammarraie, 2015). To avoid fluoride saturation of the samples by continued fluoride release 

(Forsten, 1990; Rix et al., 2001a) the fluoride release measurement was taken after a 24 hour 

period at each time point, not cumulative fluoride release. This was achieved by changing the 

water 24 hours before weekly and monthly fluoride release measurements were taken (Rix et 

al., 2001a) The fluoride release was measured for 160 days in order to get an insight into the 

long-term fluoride releasing ability of the material.  

An ion selective electrode was used to measure fluoride release. This instrument is reliable, 

easy to use and has great selectivity and specificity for fluoride ions (McCabe et al., 2002) 

Therefore it is most commonly used for fluoride release measurements. However, this 

instrument is highly sensitive to temperature and pH changes and it is not very accurate at very 



119 

 

low fluoride concentrations (Itota et al., 2004a). Therefore, a magnetic stirrer was used to stir 

the solution as it was needed to stabilize the analyser reading (McCabe et al., 2002) to optimise 

the analytic parameters of the electrode and to facilitate ion transmission through the electrode 

membrane. The instrument was calibrated every 2 hours during fluoride measurements using a 

standard solution in order to help account for any temperature change during the day, as 

temperature might have effect on fluoride release. TISAB was added to the solutions (standard 

and sample solutions) to de-complex fluoride ions (McCabe et al., 2002; Itota et al., 2004a; 

Itota et al., 2004b) and prevent interference from other ions such as hydroxide ions (-OH) 

(McNeill et al., 2001), as –OH has similar ionic charge and ion radius as fluoride ion (McCabe 

et al., 2002; Rajković and Novaković, 2007). In addition, TISAB regulates the pH value of the 

solution in range of 5-7 (Rajković and Novaković, 2007). 

The detection threshold of ion selective electrode is more than 0.01 μg/cm2 of F-, because the 

group 10:0 did not contain fluoride. The group 10:0 did not release sufficient fluoride to meet 

the detection threshold of the fluoride electrode except in the first day. The possible reason is 

due to contamination of the Teflon moulds that were used for preparation of the specimens. The 

other reason would be due to accumulation of fluoride ions around the electrode membrane. 

This was similar to the results of Zahroon in which fluoride was detected from non-fluoride 

containing materials during the first four days of fluoride measurement (Zahroon, 2014). 

The patterns of fluoride release from all experimental materials were similar. In the first day 

the greatest amount of fluoride release was observed. This high level and rapid fluoride release 

is supposed to come mostly from surface ‘wash-off’ of the exposed surface of the material (Tay 

and Braden, 1988; Anusavice et al., 2005) which was caused mostly by surface degradation 

(Khouw-Liu et al., 1999). Fluoride release, then from day two decreased sharply until day 14 

and then after the first two weeks the amount of fluoride release almost levelled-off at low level. 

This pattern of fluoride release is very similar to the result of (Kodkeaw et al., 2010) in which 

5% w/w NaF was added to a group of di-methacrylate copolymers contained HEMA. Also it 

was similar to the results of (Zahroon, 2014). The pattern of fluoride release from all 

experimental materials supported the two-phase diffusion theory. The first process relates to 

early rapid surface elution of short-term release. The second process relates to bulk diffusion 

resulting from prolonged slow elution and long-term release from the subsurface layers of the 

fluoride releasing materials (Tay and Braden, 1988; Verbeeck et al., 1998; Anusavice et al., 

2005; Dionysopoulos et al., 2013). 

A higher fluoride concentration resulted in greater fluoride release. This was due to higher 

amount of NaF that dissolved to fluoride ions. NaF is a very soluble salt and it is easily dissolved 

to free Na and F ions (Nakajo et al., 2009). The results also show that the addition of acetone 
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had increased fluoride release from the acrylic resin, which may be due to increased water 

sorption and solubility of the material. The results of section 6.2.2 confirm that. the water 

sorption of group 9:1 and 10:0 increased at 10% acetone. This may result in accelerated 

diffusion of fluoride ions within absorbed aqueous medium within first 12 – 24 h (Malacarne-

Zanon et al., 2009). In addition, inclusion of a solvent may influence on long term release of 

fluoride. 

Based on the results of the current study, the fourth hypothesis “Acetone has no effect on 

fluoride release ability of the experimental materials” was not accepted. Acetone concentrations 

influenced the amount and rate of fluoride release from fluoridated experimental materials. 

However, the effect was not detrimental. 

4.7 Summary 

Using acetone as a solvent up to 20% increases injectability and does not negatively affect the 

setting characteristics and fluoride release of the experimental materials. Future work will focus 

on increasing the amount of initiator CQ and activator DMAEMA to increase DoC and decrease 

the time needed for curing the material. 
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 Investigating the photo- initiator system of the experimental 

materials 

5.1 Introduction: 

Previous work undertaken has demonstrated the effect of addition of acetone on the 

experimental materials setting characteristics and fluoride release. However, in this phase of 

the study, the photo-initiator composition and concentrations were altered in an attempt to 

polymerize the materials faster. In order to investigate the concentration and type of the photo-

initiator system of the experimental materials in relation to the DoC of the materials, a number 

of combinations of photo-initiator and activator concentrations were examined, using different 

concentrations of acetone. Two photoinitiators were considered, camphorquinone (CQ) and 

diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide (Lucirin® TPO). Where an activator was 

needed, two activators were considered, DMEAMA and EDAB (Table 5.2). 

 FTIR was used to monitor DoC of the material.   

5.2 Aims and hypotheses 

 Aims 

To investigate different photo-initiators to attempt to increase the DoC and reduce the setting 

time. 

1- To compare the curing efficiency of different concentrations of CQ. 

2- To compare the curing efficiency of CQ with different activators (DMEAMA, EDAB). 

3- To compare the curing efficiency of Lucirin® TPO with CQ /activator system. 

 Hypotheses 

1- DoC increases with increasing CQ concentrations. 

2- DoC of groups CQ/DMAEMA will be higher than CQ/EDAB. 

3- DoC of Lucirin® TPO group will be higher and maximum DoC reached quicker than CQ 

groups. 

5.3 Materials and methods 

Based on previous experiments 12 groups were chosen, each group with 0%A, 10%A and 

20%A (see Table 5.1). Six different concentrations of the photo-initiator system were used (see 

table 5.2). The experimental materials were mixed using the same method as discussed in 

chapter 4. The FTIR was used to monitor DoC using the same method as previously mentioned 

in 4.3.2 except 26 scans were taken. Due to the different excitation wavelengths of CQ and 

Lucirin TPO at 470 nm and 390 nm respectively, all experiments were conducted using an LED 
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curing light capable of emitting light at both these wavelengths which was bluephase®20i 

(Bluephase, Ivoclar, Germany). The light intensity was 1130 mW/cm2 for all experiments, 

measured using a Coltolux® light meter. In total the materials were exposed to 260 s of light, 

with 27 spectra for each specimen. The same method was used to determine DoC from the FTIR 

data as described in section 4.3.2. 

Microsoft Excel (Version 14, Microsoft office professional Plus 2010) was used to collate the 

data which was then imported into statistical software (SPSS 19 for windows, IBM SPSS Inc., 

USA) for analysis. Shapiro-Wilk test was used to test normality of the data. The data was not 

normally distributed therefore non-parametric tests were used to investigate statistical 

difference between groups. Kruskal-wallis H was used to determine statistical significant 

differences between groups at (P<0.05). Pairwise comparisons were performed using Dunn's 

(1964) procedure with a Bonferroni correction for multiple comparisons (Post hoc test).  

Table 5.1 Experimental groups used in this study 

Groups Group 

Label 

PMMA % NaF % Acetone Other components 

10:0 0%A 10:0 100 0 0 Liquid: 

HEMA 60wt% 

MMA 40%wt% 

 

Photo-initiator 

system: 

6 different photo-

initiators were used as 

shown in  

 

 

 

 

Table 5.2 

10:0 10%A 10:0 100 0 10 

10:0 20%A 10:0 100 0 20 

9:1 0%A 9:1 90 10 0 

9:1 10%A 9:1 90 10 10 

9:1 20%A 9:1 90 10 20 

8:2 0%A 8:2 80 20 0 

8:2 10%A 8:2 80 20 10 

8:2 20%A 8:2 80 20 20 

7:3 0%A 7:3 70 30 0 

7:3 10%A 7:3 70 30 10 

7:3 20%A 7:3 70 30 20 

MMA (methyl methacrylate), HEMA (2-hydroxyethyl methacrylate), PMMA (poly methyl 

methacrylate), CQ (Camphorquinone), DMAEMA (dimethylaminoethyl methacrylate 
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Table 5.2 Experimental groups. 

Experiments Group Labels CQ

% 

DMAEMA

% 

EDAB

% 

Lucirin 

TPO% 

1- 0.6 CQ/0.8 DMAEMA 0.6CQ 0.6 0.8 - - 

2- 0.8 CQ/ 0.8 DMAEMA 0.8CQ 0.8 0.8 - - 

3- 1 CQ/ 1 DMAEMA 1CQ 1 1   

4- 1 CQ/1 EDAB 1EDAB 1  1  

5- 1% Lucirin TPO 1Lucirin    1 

6- 1.5% Lucirin TPO 1.5Lucirin    1.5 

CQ (camphorquinone), DMAEMA (dimethylaminoethyl methacrylate), EDAB (ethyl-4-

(dimethylamino) benzoate), Lucirin® TPO (diphenyl (2, 4, 6-trimethylbenzoyl) phosphine 

oxide). 

5.4 Results 

In order to compare the efficiency of different photo-initiator systems they are presented in 

three sections. The first section describes the amount of the DoC obtained with different photo-

initiator systems and at different light curing times. The second and third sections describe the 

effect of acetone and fluoride on the DoC. This is based on the amount of DoC achieved after 

40 and 120 seconds of light curing. 40 seconds curing time was used for comparison as it is 

considered an acceptable time for curing clinically. A 120 second curing time was used to 

compare the results at long curing time measured. 

 Photo-initiator systems and DoC 

The results of median DoC of all experimental groups are summarized in table 5.3, table 5.4, 

table 5.5 and table 5.6 for groups 10:0, 9:1, 8:2 and 7:3 respectively. A Kruskal-Wallis H test 

was run to determine if there were differences in median DoC between groups of each groups 

with different acetone and photo-initiator concentrations at 40s, 120s, and 260s of light curing. 

Median DoC were statistically significantly different between groups at 40 s, 120 s and 260s 

for all groups 10:0, 9:1, 8:2 and 7:3 (Kruskal-Wallis H, p<0.05). 

The results show that at 40, 120 and 260 seconds of light curing the DoC of most groups with 

10%A and 20%A of 0.8 CQ were higher than groups with 0.6 CQ (Kruskal-Wallis H, post hoc 

test, p<0.05). The results also showed that generally the 1 CQ groups were higher than 1EDAB 

at 40 second of light curing (Kruskal-Wallis H, post hoc test, p<0.05). 

There were no significant differences between the 1 and 1.5 Lucirin at 0% acetone while when 

the concentration of acetone increased to 10% and 20%, the 1.5 Lucirin in most groups had 
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higher DoC than the 1 Lucirin using (Kruskal-Wallis H, post hoc test, p<0.05). However, the 

DoC of almost all groups with 1 and 1.5 Lucirin were higher than CQ groups using (Kruskal-

Wallis H, post hoc test, p<0.05). 

Median DoC of all experimental groups at different photo-initiator concentrations are shown in 

figures 5.1, 5.2, 5.3 and 5.4. These figures show that there are two stages in the curing process. 

The first stage consists of an initial rapid increase of the DoC, whilst in the second stage the 

DoC reaches a plateau. Analysis of these graphs demonstrates that the process of reaching the 

plateau in DoC curves varied according to different photo-initiator concentrations. The groups 

with 1 and 1.5 Lucirin reach the plateau after only 10 seconds of light curing irrespective of the 

concentration of the Lucirin. However, all CQ groups need more curing time before they reach 

the plateau. This time appears to depend on the concentrations of CQ and DMAEMA with 

increasing concentration of either agents resulting in more rapid first stage of curing and 

reaching the plateau sooner. However, CQ groups containing EDAB were generally more 

delayed in reaching the plateau in comparison to those with DMAEMA. In all of the CQ groups 

the curing curve delayed reaching the plateau with increasing acetone concentrations, in which 

higher acetone concentrations resulted in it taking a longer time to reach the plateau. 
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Table 5.3 Median DoC (IQR) of group 10:0 containing different photo-initiator systems and 

different acetone content at different curing times. 

Experimental 

Groups  

Acetone 

concentrations 

(%) 

Median degree of conversion (IQR) at different 

curing time (s) 

40 s 120 s 260 s 

1.5Lucirin 0 53 (1.5)a 58 (1.0)h 62 (0.2)q 

 10 64 (0.7)b 70 (0.4)ij 73 (0.3)rs 

 20 70 (0.4) 76 (0.4) 79 (1.0) 

1Lucirin 0 53 (2.6)a 58 (1.2)hk 62 (0.5)q 

 10 63 (3.2)b 67 (3.3)jm 71 (0.0)t 

 20 67 (2.1) 72 (2.0)i 75 (1.1)r 

1CQ 0 43 (3.2)d 52 (3.9)l 54 (2.3)uv 

 10 51 (1.5)ae 60 (2.2) 63 (1.1)q 

 20 50 (5.8)ae 66 (2.5)m 69 (4.1)sy 

1EDAB 0 43 (1.2)d 50 (4.8)ln 53 (1.4)ux 

 10 35 (7.8)df 49 (4.1)n 57 (1.2)v 

 20 18 (11.0) g 39 (7.8)o 58 (1.1)v 

0.8CQ 0 44 (18.0)de 53 (17.5)l 56 (0.0)v 

 10 44 (5.2)de 53 (2.2)l 56 (0.6)v 

 20 39 (11.5)df 65 (5.7)m 71 (4.0)rt 

0.6CQ 0 33 (13.5)f 44 (9.4)o 45 (6.6)x 

 10 44 (9.3)de 55 (9.0)h 59 (8.5)qv 

 20 22 (0.9)g 56 (0.7)h 69 (1.2)ty 

The entries are median values with IQR in the parenthesis. Superscript letters indicate no 

significant difference within columns (Kruskal-Wallis H, post hoc test, p<0.05)
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Table 5.4 Median DoC (IQR) of group 9:1 containing different photo-initiator systems and 

different acetone content at different curing times. 

Experimental 

Groups  

Acetone 

Concentrations (%) 

Median degree of conversion  (IQR) at different 

curing time  (s) 

40 s 120 s 260 s 

1.5Lucirin 0 56 (1)a 61 (1.3)g 63 (0.2)k 

 10 64 (1.6)b 69(1.6)h 73 (0.5)l 

 20 66 (3.2)b 72 (5.1)h 76 (1)o 

1Lucirin 0 54 (3.1)ac 60 (3.4)g 63 (3.8)k 

 10 60 (1.2) 65 (1.9)i 67 (1.2)m 

 20 66 (1)b 72 (1.2)h 77 (0.1)o 

1CQ 0 48 (17.2)cd 54 (15.8)g 57 (13.8)n 

 10 48 (07)d 63 (3.3)i 67 (3.2)m 

 20 38 (12)e 69 (1.7)h 72 (2.1)l 

1EDAB 0 45 (24.4)cd 51 (18.5)gk 56 (21.7)n 

 10 21 (6.1)f 43 (3.2)k 52 (1.6) 

 20 29 (10.4)f 56 (7)g 68 (0.9)m 

0.8CQ 0 35 (13.1)e 42 (14.4)k 49 (11.8) 

 10 48 (2.3)d 60 (1.3)g 66 (3.4)km 

 20 33 (8.1)e 65 (0.3)i 70 (1) 

0.6CQ 0 46 (2.4)d 54 (3.8)g 57 (2.7)n 

 10 43 (9.7)d 57 (5.8)g 61 (5.1)k 

 20 23 (5)f 59 (0.9)g 66 (2.7)m 

The entries are median values with IQR in the parenthesis. Superscript letters indicate no 

significant difference within columns (Kruskal-Wallis H, post hoc test, p<0.05). 
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Table 5.5 Median DoC (IQR) of group 8:2 containing different photo-initiator systems and 

different acetone content at different curing times. 

Experimental 

Groups  

Acetone 

concentrations 

(%) 

Median degree of conversion (IQR) at different 

curing time (s) 

  40 s 120 s 260 s 

1.5Lucirin 0 56 (0.8)a 61 (1.9)g 64 (1.2)m 

 10 64 (0.2)b 70 (0.6)h 72 (1.8)n 

 20 68 (10.7) 74 (8.9) 77 (4.4) 

1Lucirin 0 56 (2.6)a 60 (1.4)g 64 (1.7)m 

 10 61 (0.5) 68 (1.6)hj 72 (2.3)n 

 20 64 (3.1)b 70 (0.4)h 73 (2.9)n 

1CQ 0 50 (2.7)c 57 (0.6)i 60 (2.2)o 

 10 45 (6.1)c 62 (2.3)g 67 (4.0)p 

 20 24 (4.4)e 67 (2.3)j 73 (1.3)n 

1EDAB 0 42 (17)c 54 (15.6)jk 59 (14.3) 

 10 36 (6.0)d 58 (4.3)i 64 (6.2)m 

 20 21 (4.2)e 50 (3.6)k 71 (1.3)n 

0.8CQ 0 37 (1.4)d 42 (1.3) 47 (2.9) 

 10 45 (4.8)c 58 (3.6)i 64 (3.4)m 

 20 27 (3.1)e 64 (1.2)g 70 (2.6)n 

0.6CQ 0 46 (9.9)c 54 (9.3)i 57 (7.1)o 

 10 36 (7.2)d 57 (0.5)i 61 (1.9)mo 

 20 24 (2.8)e 57 (2.5)i 66 (0.6)p 

The entries are median values with IQR in the parenthesis. Superscript letters indicate no 

significant difference within columns (Kruskal-Wallis H, post hoc test, p<0.05)
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Table 5.6 Median DoC (IQR) of group 7:3 containing different photo-initiator systems and 

different acetone content at different curing times. 

Experimental 

Groups  

Acetone 

concentrations 

(%) 

Median degree of conversion (IQR) at different 

curing time  (s) 

40 s 120 s 260 s 

1.5Lucirin 0 54 (1)a 59 (0.8)i 61 (0.9)n 

 10 63 (0.4)b 67 (1.2)j 71 (1.7)o 

 20 64 (16.4)b 69 (14.2)j 73 (13.2)o 

1Lucirin 0 54 (3.6)a 58 (2.1)i 64 (3.6)n 

 10 61 (3.0)b 67 (2.5)j 68 (3.2)o 

 20 48 (13.6)c 57 (7.7)i 62 (10.1)n 

1CQ 0 49 (1.2)c 59 (0.6)i 62 (0.9)n 

 10 30 (6.4)d 64 (1.2)k 67 (2.8)np 

 20 20 (3.8)e 65 (3.0)k 71 (0.1)o 

1EDAB 0 28 (1.9)d 42 (0.4)l 45 (6.4) 

 10 34 (1.4)d 57 (1.6)i 66 (1.4)p 

 20 24 (3.1)ef 50 (2.0) 67 (1.8)p 

0.8CQ 0 48 (2.1)c 56 (1.1)i 60 (1.2)n 

 10 28 (1.5)f 59 (1.4)i 64 (0.2)n 

 20 15 (4.9)g 37 (2.8) 66 (6.7)pn 

0.6CQ 0 39 (5.3)h 47 (9.2)l 54 (8.6)n 

 10 35 (6.1)dh 57 (3.3)i 59 (4.2)n 

 20 15 (2.4)g 46 (2.5)l 64 (0.7)n 

The entries are median values with IQR in the parenthesis. Superscript letters indicate no 

significant difference within columns (Kruskal-Wallis H, post hoc test, p<0.05)
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Figure 5.1 Median DoC of group 10:0 containing different photo-initiator systems and 

different acetone content at different curing times.                                                                                                      
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Figure 5.2 Median DoC of group 9:1 containing different photo-initiator systems and different 

acetone content at different curing times. 
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Figure 5.3 Median DoC of group 8:2 containing different photo-initiator systems and different 

acetone content at different curing times. 
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Figure 5.4 Median DoC of group 7:3 containing different photo-initiator systems and different 

acetone content at different curing times. 
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 Acetone concentrations and DoC in relation to photo-initiator systems 

At 40 and 120 seconds of light curing the DoC of all Lucirin® TPO groups increased with 

increasing acetone concentrations except in group 7:3 at 1 Lucirin the DoC decreased at 20%A 

(see Figure 5.5). 

At 40 seconds of light curing the DoC of 1 EDAB decreased with increasing acetone 

concentrations (see Figure 5.5). 

At 120 seconds of light curing the DoC of all CQ groups increased with increasing acetone 

concentrations except in group7:3 at 0.8 CQ the DoC decreased (see Figure 5.5) 
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Figure 5.5 Representative DoC at two curing times (40 seconds (left) and 120 seconds (right 

figure) of all experimental groups containing different photo-initiator systems and different 

acetone content. 
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 Fluoride concentrations and Doc in relation to photo-initiator system 

Figures 5.6 and 5.7 showing the effect of fluoride concentrations on the DoC at 40s and 120s 

of light curing and at different acetone concentrations 0%A, 10%A and 20%A. 

At 40 seconds of light curing the DoC of all Lucirin® TPO groups did not change with increasing 

fluoride concentrations except group 1Lucirin at 30% fluoride and 20%A where the DoC 

decreased. While for all CQ groups the DoC was not affected by increasing fluoride 

concentrations up to 10%A. At 20%A the DoC of all CQ groups decreased with increasing 

fluoride concentrations (see Figure 5.6) 

At 120 seconds of light curing the DoC of all photo-initiator systems was not affected by 

increasing fluoride concentrations (see Figure 5.7). 
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Figure 5.6 Representative DoC at 40 seconds curing time of all experimental groups 

containing different photo-initiator system and different fluoride content. 

 



137 

 

 

Figure 5.7 Representative DoC at 120 seconds curing time of all experimental groups 

containing different photo-initiator system and different fluoride content. 

 Summary of the results 

DoC increased with increasing CQ concentrations. 

Generally the DoC of CQ groups with 1% DMAEMA were higher than those containing 1% 

EDAB. 
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The DoC of all groups with Lucirin® TPO was higher and polymerized faster than CQ 

containing groups. 

5.5 Discussion: 

Lucirin® TPO is currently a relatively new material developed for use as a photo-initiator. It 

produces greater colour stability than CQ (Arikawa et al., 2009; Shin and Rawls, 2009). Unlike 

CQ, Lucirin® TPO does not need a tertiary amine to activate the polymerization that contributes 

to a greater yellowing effect (Schneider et al., 2009a; Schneider et al., 2012). Lucirin® TPO 

also leads to higher DoC than CQ (Arikawa et al., 2009; Leprince et al., 2011). Despite these 

positive aspects of using Lucirin® TPO, it has a low depth of cure compared to CQ (Leprince 

et al., 2011; Miletic and Santini, 2012a; Schneider et al., 2012). CQ is still the most commonly 

used photo-initiator in dental resins and composites (Sun and Chae, 2000; Jakubiak et al., 2003; 

Leprince et al., 2013), despite its tendency to discolour.  

The same methodology was used for measuring DoC as discussed in previous chapter section 

4.3.2. However, the FTIR spectra were measured for a longer curing time (260 seconds) in 

order to investigate the effect of each photo-initiator for a longer exposure time and to continue 

curing until the curing curve flattened, because in previous work for some experimental 

compositions the curing curve was not flattened indicating curing may still be continuing at the 

point where the experiment was ceased. The light source was also different, for this experiment 

a poly-wave LCU bluephase®20i was used. This was to cover the absorption spectra of Lucirin® 

TPO as well as the CQ. The bluephase®20i has two emission peaks one around 470 nm to cover 

the absorption spectrum of CQ and the other around 400 to cover the spectrum of Lucirin® TPO 

(Price et al., 2010)(see Figure 5.8). Lucirin® TPO has exhibits maximum absorption near UV 

light, also extending into the visible part of the spectrum (380-430 nm), which is  narrower than 

CQ (380-500 nm) but has greater absorption at shorter wave lengths (Neumann et al., 2005; 

Neumann et al., 2006; Arikawa et al., 2009; Schneider et al., 2012). The absorption range of 

CQ is about 380-500 nm with a peak absorbance wavelength at around 470 nm (Schroeder et 

al., 2008; Arikawa et al., 2009). In the previous chapter a conventional LED LCU (single wave) 

with intensity of 800 mW/cm² was used while in this chapter the higher intensity polywave 

LCU bluephase®20i with an intensity of 1130 mW/cm² was used. As it has previously been 

shown that increasing intensity increases the rate of the polymerization reaction (Peutzfeldt and 

Asmussen, 2005). Therefore, there might be some differences in the values of the results 

between the previous chapter and this chapter but trends should be similar. The results of this 

chapter confirms the results of previous experiments which show that acetone and fluoride had 

an effect on DoC. These were discussed in chapter 1.  
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Figure 5.8 The emission spectra of bluephase®20i as shown by manufacture. 

Ideally, the concentration of the photo-initiator molecules in any photo-polymerized resin based 

systems should be limited to the amount that is necessary to bring about a satisfactory DoC 

within a clinically acceptable curing time. Previous studies experimented with various 

concentrations of CQ in dental composites (Taira et al., 1988; Asmussen and Vallo, 2009; 

Musanje et al., 2009). Some have used different concentrations to find optimal CQ 

concentrations from 0.17 to 1.03 wt% of the resin (Taira et al., 1988) whilst others suggested 

that at 1%CQ a resin composite of TEGDMA/BisGMA/UDMA reaches maximum DoC, 

compared to a range of CQ concentrations from 0.1-1.6 wt% (Musanje et al., 2009). Therefore, 

in the present study 0.6%, 0.8% and 1%CQ were used to determine the amount needed to 

potentially maximise DoC. The results of the current study showed that generally DoC 

increased with increasing photo-initiator concentrations at 10% and 20%A acetone 

concentrations. High concentrations of CQ have been reported to improve the DoC and 

mechanical properties of the resultant resin (Musanje et al., 2009; Pfeifer et al., 2009). 

However, it was shown that above certain concentrations additional CQ has no further 

beneficial effect (Jakubiak et al., 2001; Jan et al., 2001; Musanje et al., 2009). Within the 

limitations of the current study the first hypothesis “DoC increases with increasing CQ 

concentrations” was accepted as generally the DoC increased with increasing CQ 

concentrations. 

Two tertiary amines (DMAEMA and EDAB) have previously been widely used with CQ as 

activators (Yoshida and Greener, 1993; Teshima et al., 2003; Emami and Soderholm, 2005; 

Musanje et al., 2009; Furuse et al., 2011) and these were therefore used in this study. Some 

studies have used CQ with either EDAB or DMAEMA at 1:1wt% in monomer mixture of 

BisGMA/TEGDMA (Asmussen and Vallo, 2009). Our results showed that almost all CQ 
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groups with DMAEMA had higher DoC than EDAB. This could be due to increased activity of 

DMAEMA over EDAB. It has been shown that consumption of CQ and PPD in combination 

with DMAEMA is more rapid than that of the photoinitiators combined with EDAB in a 

mixture of BisGMA/TEGDMA (Asmussen and Vallo, 2009). In addition, DMAEMA interacts 

strongly with monomers which have a methacrylate functional group capable of 

copolymerization with the matrix monomer (Jan et al., 2001). Therefore, the second hypothesis 

“DoC of groups CQ/DMAEMA will be higher than CQ/EDAB” was accepted as DoC of groups 

CQ/DMAEMA higher than CQ/EDAB. 

Lucirin® TPO was used in two concentrations at 1 wt% and 1.5 wt% without an activator. 

Previous studies have used Lucirin® TPO at 1.5 wt% (Arikawa et al., 2009) and it was found 

that in a mixture of BisGMA/TEGDMA the DoC reaches 80% with both a halogen light and a 

custom made light curing unit with an emitting spectra from 390-430 nm (Arikawa et al., 2009). 

It has been shown that the curing curve reaches a plateau at 1.08 wt% and 1.5 wt% Lucirin® 

TPO in a mixture of BisGMA/TEGDMA using a polywave LED LCU (Miletic and Santini, 

2012b). In another study it was found that using Lucirin® TPO alone at 1wt% produces higher 

DoC than using TPO with CQ and an activator like EDAB at 0.4% (Miletic and Santini, 2012a). 

It has also been reported that there is no significant change in DoC after addition of activator 

like EDAB in a mixture of BisGMA/TEGDMA with Lucirin® TPO as the photo-initiator 

(Schneider et al., 2012). This might be due to the chemistry of Lucirin® TPO as it undergoes 

fast photolysis of the carbon-phosphorus bond, generating benzoyl and phosphonyl radicals, 

independent of a tertiary amine (activator) (Kajiwara et al., 1993; Medsker et al., 1998).  

The results of the current study showed that all groups with the CQ initiator system had lower 

DoC and a slower reaction than groups containing Lucirin® TPO. This has been shown in 

previous literature in mixtures of BisGMA/TEGDMA (Arikawa et al., 2009; Leprince et al., 

2011). Therefore, the third hypothesis was accepted “DoC of Lucirin® TPO group will be higher 

and polymerized faster than CQ groups”. Various factors may contribute to this difference. 

Firstly, CQ has a lower molar absorptivity (molar absorption coefficient or molar coefficient, 

molar extinction coefficient), which are parameters defining how strongly a substance absorbs 

light at a given wavelength, per mass density or per molar concentration, respectively, than 

Lucirin® TPO this means that the probability for CQ to absorb light at the peak of its absorption 

range is much lower than Lucirin® TPO (Neumann et al., 2006; Schneider et al., 2008). 

Secondly, CQ has a lower quantum yield conversion, which is the ratio of the number of 

converted photoinitiators to the number of photons absorbed by the initiators (Chen et al., 

2007), in comparison to Lucirin® TPO. It has been shown that the quantum yield of CQ 

combined with dimethylaminoethyl methacrylate is 0.07, this means that the absorption of 14 
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photons is necessary for the conversion of one CQ molecule (Chen et al., 2007). However, 

much higher initiation quantum yield values were reported for Lucirin® TPO. Thirdly, each 

converted CQ molecule can only generate one free radical to initiate polymerization, whereas 

Lucirin® TPO generates two active radicals (Neumann et al., 2006) see Table 5.7. 

CQ and Lucirin® TPO have different initiation mechanisms. Initiation of CQ involves the 

presence of an activator (DMAEMA, EDAB), due to its diketone grouping. In this case only 

one active radical is expected, as only the alpha radicals are derived from the activator, which 

are considered effective for polymerization initiation (Teshima et al., 2003; Neumann et al., 

2006). However Lucirin® TPO undergoes fast photolysis of the carbon-phosphorus bond, 

generating benzoyl and phosphonyl radicals, which are both very reactive and capable of 

initiating vinyl monomer polymerization (Kajiwara et al., 1993; Medsker et al., 1998). 

Table 5.7Characteristics of the photoinitiators used in this study. 
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Whilst Lucirin® TPO provided a higher DoC and faster polymerization than CQ, the 1%CQ 

was chosen for further development of the materials. Lucirin® TPO is known to have a low 

depth of cure and this might be an important issue for orthodontic adhesives which polymerize 

under metallic brackets and therefore require a high depth of cure. The height and width of 
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orthodontic brackets are different from one manufacture to another generally they are between 

1.5 - 4 mm. There is no study up to my knowledge on depth of cure of orthodontic adhesives 

under brackets. However, there is one study investigated the issue of depth of cure of a light 

cured adhesive cement for metallic orthodontic bands (Namura et al., 2006). There are some 

studies on comparing micro-leakage of orthodontic adhesives under metallic and ceramic 

adhesives. The highest micro-leakage was found of the adhesives under metallic brackets 

compared to ceramic bracket, they postulated that incomplete polymerization of the adhesives 

under metallic brackets was the cause (Arikan et al., 2006; Tancan et al., 2008) due to metallic 

brackets  not conducting light while, ceramic brackets do. 

Additionally, CQ is the most commonly used photo-initiator in most dental adhesive systems 

and it is suitable for curing with all LED LCU unlike Lucirin® TPO which requires special LCU 

to cover the absorption spectra of the material which is near UV light. Regarding acetone 

concentrations, the 0%A and 10%A were chosen for further development of the experimental 

materials composition as at 40 seconds of light curing the DoC of all experimental materials up 

to 10%A was minimally affected, apart from group 7:3, which showed a significant reduction 

in DoC with 10%A. (see Figure 5.5). The 40 seconds of light curing was chosen for comparison 

of the materials. It was considered suitable for further testing because it is considered an 

acceptable curing time for orthodontic bonding. In addition, in most of orthodontic bond 

strength studies 40 seconds of light curing has been used (Oesterle et al., 1995; Evans et al., 

2002; Usumez et al., 2004; Mavropoulos et al., 2008), although many recent studies focus on 

decreasing curing time of orthodontic adhesives to 5s  or even less by increasing the intensity 

of LCU (Erion and Banu, 2011), however, this was not considered the focus of this research. 

5.6 Summary 

Lucirin® TPO is an effective photo-initiator which can be used to increase the rate and amount 

of polymerization of the material compared to a CQ photo-initiator system. However, 1% CQ 

was chosen for further development of the materials composition for several reasons. Firstly, 

CQ is still the most commonly used photo-initiator in dental adhesives. Secondly, there are 

some problems with using Lucirin® TPO reported in the literature like low depth of cure and 

the requirement for a specific and non-standard LCU. 1 wt% CQ had higher DoC than other 

concentrations of CQ and activator. Regarding acetone concentrations, the 0%A and 10%A 

were chosen for further investigation because at 40 seconds of light curing up to 10%A the DoC 

was not significantly affected apart from group 7:3. Regarding fluoride concentrations, all 

experimental groups were taken for further investigation as at this stage I felt it was important 

to explore fluoride release in all groups. 
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The next phase of this study focuses on the addition of an adhesive promotor 4-

methacryloyloxyethy trimellitate anhydride (4-META) to the material to increase the bond 

strength of the material to brackets and to enamel. 
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 Investigating the effect of 4-META on the developed materials 

6.1  Introduction 

Bond strength is one of the important parameters that determines the success and efficacy of 

orthodontic adhesives. Orthodontic adhesives should provide sufficient bond strength to retain 

brackets throughout treatment. Insufficient bond strength leads to bond failure of brackets 

during treatment, consequently retarding treatment, which is costly in terms of time, material, 

and patient inconvenience (Mandall et al., 2003). Once the bracket bond has failed, the adhesive 

residue should be removed, which in addition to being time consuming, can also lead to the 

removal up to 50 µm of enamel surface (Al Shamsi et al., 2007).  

A previous study by (Su et al., 2010) showed that the bond strength of the developed material 

decreased after storage in water for 30 days. In this chapter, as part of further developing the 

materials, 4-META was added to increase bond strength of the materials as an adhesion 

promoting monomer. The 4-META monomer is able to adhere to hydroxyapatite and form an 

ionic bond with calcium in hydroxyapatite (Yoshida et al., 2004). Therefore, a 4-META 

containing adhesives potentially will provide significantly higher bond strength than the 

conventional orthodontic adhesives (Clark et al., 2003; Rikuta et al., 2008). 4-META has also 

been used to improve bond strength of brackets to amalgam, gold alloy, metal alloys and 

porcelain in conjunction with conventional orthodontic resins (Ohno et al., 1992; Björn et al., 

1995; Büyükyilmaz et al., 1995; Zachrisson et al., 1996; Minami et al., 2013). 4-META is 

commonly used together with MMA in the form of 4-META/MMA-TBB adhesives and it is 

available as a commercial product as Superbond C&B, whose polymerization is initiated by tri-

n-butylborane (TBB).  

Previously, the handling characteristics of the materials were developed through the addition 

of acetone to decrease materials viscosity and the investigation of different photo-initiator 

systems. In this phase of the study, 4-META was added to the developed materials as an 

adhesion promoting monomer to increase bond strength of the material. Consequently, the work 

described in this chapter involved analysing the effect that the addition of the adhesion  

promoting monomer, 4-META, had on a number of physical parameters of the materials. 

Therefore the aim of this chapter is to investigate the effect of 4-META on DoC, fluoride 

release, fluoride recharge, water sorption and solubility of the developed material. 

file:///H:/My%20desk%20documents/word%20writing/Thesis/Review%20of%20Literature/All%20Literature%20review%20chapter/Chapter%20two%20Literature%20review%20V1%20Hadi.docx%23_ENREF_1
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6.2 Aims and hypothesis 

 Aims 

1-To investigate the effect of 4-META on DoC and compare the DoC with commercially 

available Transbond XT. 

2- To investigate the effect of 4-META on water sorption and solubility of the material and 

compare this to Ketac-cement and Transbond XT. 

3- To investigate the effect of 4-META on fluoride release and compare this with the Ketac-

cement.  

4- To determine the fluoride recharging ability of 4-META containing experimental acrylic 

resins after application of a fluoride source and comparison of fluoride release with that of a 

commercially available GIC based material. 

5- To investigate the effect of 4-META on surface morphology of experimental samples after 

being in water for 28 days. 

 Hypotheses  

1- 4-META does not deteriorate DoC of the experimental materials. 

2- 4-META increases water sorption and solubility of the material 

3- 4-META increases fluoride release of the experimental materials. 

4- 4-META increases the fluoride recharging ability of the material. 

6.3 Materials and methods 

Based on previous results all experimental groups based on NaF concentrations of 0%, 10%, 

20% and 30% were used. Acetone was added at two concentrations (0%A and 10%A). An 

adhesion promoting monomer (4-META) was added at two concentrations namely 0%M and 

5%M. The material was mixed using the same procedure as described in chapter 4, with the 5% 

4-META added to the liquid to encourage its dissolution, because it is supplied as a powder. A 

total of 16 experimental groups were prepared (see Table 6.1). TransbondTM XT (3M Unitek, 

UK) and Ketac-cement (KetacTM Cem, 3M ESPE, Germany) was used as a commercial 

comparator. Four experiments were undertaken including, DoC, water sorption and solubility, 

fluoride release and fluoride recharge. SEM images were taken for all experimental materials 

immediately after specimen preparation (fresh) and after immersion in water for 28 days (aged). 
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Table 6.1 Composition of experimental groups 

Experimental 

Materials 

PMM

A% 

NaF% Acetone% 4-META% Other components 

10:0 0%A 0%M 100 0 0 0 Monomers: 

40% HEMA 

60% MMA 

 

Photo-initiator system: 

1% CQ 

1% DMAEMA 

10:0 0%A 5%M 100 0 0 5 

10:0 10%A 0%M 100 0 10 0 

10:0 10%A 5%M 100 0 10 5 

9:1 0%A 0%M 90 1 0 0 

9:1 0%A 5%M 90 1 0 5 

9:1 10%A 0%M 90 1 10 0 

9:1 10%A 5%M 90 1 10 5 

8:2 0%A 5% M 80 2 0 0 

8:2 0%A 5%M 80 2 0 5 

8:2 10%A 0%M 80 2 10 0 

8:2 10%A 5%M 80 2 10 5 

7:3 0%A 0%M 70 3 0 0 

7:30%A 5%M 70 3 0 5 

7:3 10%A 0%M 70 3 10 0 

7:3 10%A 5%M 70 3 10 5 

 

 Degree of conversion (DoC) 

The DoC of the experimental materials and TransbondTM XT (3M Unitek, UK) as a commercial 

comparator were taken using FTIR-ATR (Spectrum 100, PerkinElmer, Bucks, UK). 10 

specimens of each material were prepared by placing the material into washers of (6.4 mm 

internal diameter and 0.8 mm thick) (A2 stainless steel plain washer metric BS4320), which 

were light cured for 40 seconds using bluephase® 20i LCU, emitting 1130 mW/cm2 intensity 

(measured using Coltolux Intensity Meter, Germany). The polymerized specimens were 

directly placed on the diamond crystal of a horizontal attenuated total reflectance attachment 

stage (ATR) using a clamp to obtain contact between the sample and diamond disc. For each 

material 5 spectra were measured in the unpolymerized state, which the material were placed 

in the washers on the ATR-sensor. The upper surface of the specimen was covered with a Mylar 

sheet and a glass slide of 1mm thickness and slightly pressed against the ATR to ensure the 

good contact of the specimen. The FTIR spectrometer was operating under the following 



147 

 

conditions: 4000–750 cmˉ¹ range, 4 cmˉ¹ resolution, and 32 co-added scans, using dedicated 

software (Spectrum, PerkinElmer). 

The same method as described in section 4.4.2 was used for analysis and calculation of the 

DoC, except for Transbond XT group where the aromatic band of C-C at 1607cm-1 peak was 

taken as the internal standard. After processing, all data was imported into dedicated statistical 

software (SPSS 19 for windows, IBM SPSS Inc., USA) for analysis. The Shapiro-Wilk test was 

used to test normality of the data. The data were normally distributed. One-way ANOVA and 

post-hoc Tukey tests were used to determine statistically significant differences between groups 

at the 5% level (P<0.05). In order to consider the effects of each of the variables (Acetone%, 

Fluoride%, 4-META%) on the DoC, a three way ANOVA was undertaken.  

 Water sorption and solubility 

Circular discs were prepared of all experimental materials, Transbond XT and Ketac-cement.  

The materials were prepared using a Teflon mould of 1 mm thick and 10 mm in diameter, and 

light cured for 40 seconds using bluephase®20i LCU. The Ketac-cement samples were prepared 

by mixing the powder and liquid (3:8:1 w/w) ratio according to the manufacturer’s instructions, 

placed into the same Teflon mould and left for 24 hours to set. Samples were then polished with 

12000 grit sandpaper to obtain a smooth surface. Samples were then placed into a desiccator 

containing dried silica gel and placed into an oven at 37°C for 24 hours. The desiccator was 

then removed from the oven and all specimens weighed using an analytical electronic balance 

(Mettler AE 240, 0.01mg accuracy, Switzerland). A constant weight was considered to have 

been achieved when the mass change of each specimen did not exceed 0.1 mg in any 24 hour 

period, and this weight was designated as w1. 

Samples were stored in 5 ml distilled water in an oven at 37°C for 28 days. The water was 

changed daily for the first two weeks then each week for the next two weeks. At 28 days, 

samples were removed from the water, blotted dry until the surface appeared free of visible 

moisture, air dried for 15 seconds (by waving it gently while it is being held by tweezers) and 

weighed. The saturated weight was designated as w2. They were then reconditioned to a dry 

constant mass using a desiccator as described above. The constant mass was designated as w3. 

Sample volume (V) was calculated in mm3 after measuring the diameter and thickness of each 

sample. Thickness was measured in the center of each sample and at 4 equally spaced points 

around the circumference to allow calculation of the average thickness of each sample. Water 

sorption and solubility was then calculated in (µg/mm3) using the following Equation 6.1 and 

Equation 6.2. 

Equation 6.1……….  Water sorption (µg/mm³) =
W2−W1

V
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Equation 6.2………..  Water Solubility (µg/mm³) =
W3−W1

V
 

All data were analysed using statistical software (SPSS 19 for windows, IBM SPSS Inc., USA). 

The Shapiro-Wilk test was used to test normality of the data. The data were normally 

distributed. Two individual one-way ANOVA and Tukey post hoc (one for water sorption and 

the other for solubility data), using the materials as the main factor was used to determine 

statistically significant differences between groups at the 5% level (P<0.05).  

 Fluoride release: 

10 specimens were prepared of each of the fluoride containing experimental materials using the 

same method described in chapter 4.3.4, except that curing was undertaken for this experiment 

using the bluephase®20i LCU. For preparing Ketac-cement the powder and liquid were mixed 

using 3.8:1 w/w powder to liquid ratio according to the manufacturer’s instructions. The 

prepared material was then placed into the same mould as used for the experimental materials 

and compressed to expel excess material. The specimens were left in the mould for 24 hours to 

set. Samples were then polished with 12000 grit sandpaper to obtain a smooth surface. 

Fluoride release measurements were taken using the same method as described in chapter 4 

except they were taken for only 28 days. After fluoride measurement, all data were then 

imported into dedicated statistical software (SPSS 19 for windows, IBM SPSS Inc., USA). The 

Shapiro-Wilk test was used to test normality of the data. The data were normally distributed. 

One-way ANOVA and post hoc Tukey test were used to determine statistically significant 

differences between groups at the 5% level (P<0.05). 

 Fluoride recharge: 

The recharging ability of all fluoride contained experimental groups and Ketac-cement 

commercial GIC were tested. 10 specimens for each group were prepared using the same 

method as mentioned in section 6.3.3. All specimens were stored in cylindrical vials containing 

5ml of deionized distilled water (DDW) for 28 days before recharging commenced. The water 

was changed every week to prevent saturation. 

One day before recharging, fluoride release measurements of all specimens were taken using 

the same procedure described in section 6.3.3. For recharging, the specimen disc was immersed 

in 5 ml of a 1000 ppm fluoride solution, made by dissolving 2.21 g of NaF in 100 g water, for 

three minutes in an ultrasonic bath to simulate the weekly mouth wash. Samples were then 

rinsed with DDW, dried with paper towel and stored in 5ml of fresh DDW. Daily fluoride 

measurements were taken for seven days after recharging, after which the specimens were left 

in DDW for a week before repeating the recharge process for a further 2 cycles. The DDW was 

replaced a day before starting each recharge cycle.  
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All data were imported into dedicated statistical software (SPSS 19 for windows, IBM SPSS 

Inc., USA). The Shapiro-Wilk test was used to test normality of the data. The data were 

normally distributed. A paired sample t-test was carried out to show the significances between 

pairs of samples of the same group for each recharge cycle. In all tests, a significance level of 

5 per cent was used. 

 SEM observation 

Three aged and three freshly made specimens from each fluoridated experimental group and 

Ketac-cement were observed under SEM (Stereoscan S40, Cambridge Instruments, UK). Aged 

specimens were examined following immersion in water for 28 days with daily water change 

for the first two weeks and weekly for the two following weeks. Fresh and aged specimens were 

made using the same procedure used in preparation of fluoride releasing samples and stored at 

37°C in an incubator for 24 hours in relatively 100% humidity. After 24 hours these surfaces 

were lapped using 1200 grit paper (Norton, Abrasive Technological Excellence, France).  

Aged and fresh specimens were dried in a desiccator for seven days then mounted on an 

aluminium stub and coated with gold (standard 15 nm) using a Polaron SEM coating unit. SEM 

images were taken at two different magnification powers. Approximately 50X and 500X were 

applied to examine the surfaces of both fresh and aged specimens. 

6.4 Results 

 Degree of conversion (DoC) 

The DoCs of all experimental materials are shown in Table 6.2. All experimental groups had 

higher DoC than Transbond XT except group 8:2 0%A 5%M (p<0.05, one-way ANOVA).  

Group 10:0 0%A 0%M had significantly higher DoC than all experimental groups except group 

7:3 0%A 0%M (p<0.05, one-way ANOVA). 

In group 10:0, addition of either acetone or 4-META results in lowering DoC as illustrated in 

Figure 6.1 (p<0.05, one-way ANOVA).   

In groups 9:1 and 8:2, no differences were found after addition of either acetone or 4-META or 

a combination of both (p<0.05, one-way ANOVA) see Figure 6.2and Figure 6.3. 

In group 7:3, addition of either acetone or 4-META alone results in decreasing DoC, while 

when both 4-META and acetone added together no differences were found (p<0.05, one-way 

ANOVA) see figure 6.4. 

Figure 6.5 shows that all experimental groups had DoC more than 50%, with group 10:0%A 

0%M had higher DoC than the rest except 7:3 0%A 0%M (p<0.05, one-way ANOVA). 

The data for the average value of DoC could also be presented as a function of fluoride 

concentrations, as illustrated in figure 6.6. A linear model was fitted to this data. Weak 



150 

 

correlations were observed between DoC and fluoride concentrations at (0%A 5%M) and 

(10%A 0%M) (r=0.50, 0.60 for (0%A 5%M) and (10%A 0%M) respectively. No relationship 

was seen at (0%A 0%M) and (10%A and 5%M) 

The results of three way ANOVA showed that there was a statistically significant interaction 

between Fluoride%, Acetone% and 4-META% (P = 0.002). 

Table 6.2 Show mean DoC of all experimental groups   

Experimental 

Materials 

Mean DoC (%) at 40 

seconds  

10:0 0%A 0%M 71 (2)a 

10:0 0%A 5%M 63 (2)bg 

10:0 10%A 0%M 62 (5)bg 

10:0 10%A 5%M 61 (3)bg 

9:1 0%A 0%M 59 (4)b 

9:1 0%A 5%M 57 (1)b 

9:1 10%A 0%M 62 (5)bg 

9:1 10%A 5%M 61 (2)bg 

8:2 0%A 5% M 56 (4)bc 

8:2 0%A 5%M 50 (7)bh 

8:2 10%A 0%M 62 (5)bg 

8:2 10%A 5%M 62 (3)bg 

7:3 0%A 0%M 66 (4)ag 

7:3 0%A 5%M 55 (4)c 

7:3 10%A 0%M 53 (9)c 

7:3 10%A 5%M 60 (6)bcg 

Transbond XT 43 (4)h 

The entries are mean values with SD in the parenthesis. Similar superscript letters indicate no 

significant differences between groups (ANOVA, post-hoc Tukey test, p> 0.0
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Figure 6.1 Mean degree of conversion of the group 10:0 with and without 10% acetone and 

5% 4-META. Error bars represent SD 

 

Figure 6.2 Mean degree of conversion of the group 9:1 with and without 10% acetone and 5% 

4-META. Error bars represent SD. 
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Figure 6.3 Mean degree of conversion of the group 8:2 with and without 10% acetone and 5% 

4-META. Error bars represent SD. 

 

Figure 6.4 Mean degree of conversion of the group 7:3 with and without 10% acetone and 5% 

4-META. Error bars represent SD. 
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Figure 6.5 Mean DoC of all experimental groups based on different fluoride, acetone and 4-

META concentrations. Error bars represent SD. 

 

Figure 6.6 Relationship between DoC and fluoride concentrations at 40 seconds of light 

curing and at 0% and 5% and 10% acetone and 4-META. Data represents mean value with 

error bars represent SD.
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 Water sorption and solubility 

The water sorption and solubility values are summarized in table 6.3. Solubility significantly 

increases with increasing NaF concentration irrespective of the acetone and 4-META 

concentrations (p<0.05, ANOVA, Tukeys test). Transbond XT had the lowest solubility 

(p<0.05, one-way ANOVA). 

All experimental groups with 10%A 0%M had significantly higher solubility than the rest of 

the groups (p<0.05, one-way ANOVA) see figure 6.7. 

In groups 10:0 and 9:1 all samples containing 10%A 0%M had significantly higher water 

sorption than the rest (p<0.05, one-way ANOVA) see figures 6.8 and 6.9. 

The water sorption and solubility of group 7:3 Ketac-cement and Transbond XT are shown in 

figure 6.10 and 6.11.  

The relationship between water sorption and fluoride concentration of all experimental 

materials is shown in figure 6.12. The figure shows that water sorption depends on fluoride and 

acetone and 4-META content of the material. 

The relationship between water solubility and fluoride concentration of all experimental 

materials is shown in figure 6.13. The figure shows that solubility increases with increasing 

NaF concentrations. 

The data for the average value of solubility could also be presented as a function of fluoride 

concentrations, as illustrated in figure 6.14. A linear model was fitted to this data. There was a 

significant correlation at p<0.01 between solubility and fluoride concentrations. The r values 

are (0.97, 0.98, 0.93 and 0.96) of the groups (0%A 0%M, 0%A 5%M, 10%A 0%M and 10%A 

5%M) respectively. 

.
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Table 6.3 Water sorption and solubility. 

Materials Water sorption µg/mm³ 

Mean (SDV) 

Solubility µg/mm³ 

Mean (SDV) 

10:0 0%A 0%M 44 (7)A 16 (4)ae 

10:0 0%A 5%M 36 (7)A 18 (3)ab 

10:0 10%A 0%M 68 (9)A 45 (6)bck 

10:0 10%A 5%M 35 (5)A 33 (8)cbd 

9:1 0%A 0%M 53 (15)A 43 (6)bef 

9:1 0%A 5%M 63 (12)A 48 (3)ckg 

9:1 10%A 0%M 133 (56)B 125 (31)h 

9:1 10%A 5%M 46 (9)A 54 (5)dgk 

8:2 0%A 5% M 29 (4)A 87 (13)l 

8:2 0%A 5%M 88 (14)A 111 (32)hl 

8:2 10%A 0%M 45 (22)A 154 (25)o 

8:2 10%A 5%M 39 (14)A 97 (12)l 

7:3 0%A 0%M 4 (10)C 147 (15)ho 

7:30%A 5%M 11 (5)C 154 (24)o 

Ketac-cement 15 (10)C 138 (34)hmo 

Transbond XT 12 (3)C 2 (3)a 

The entries are mean value with SD in the parenthesis. Values exhibited similar superscript 

letters indicate no significant difference within columns (p> 0.05) 
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Figure 6.7 Mean water sorption and solubility of group 10:0 with and without acetone (10%) 

and 4-META (5%). Error bars represent SD. 

 

 

Figure 6.8 Mean water sorption and solubility of group 9:1 with and without acetone (10%) 

and 4-META (5%). Error bars represent SD. 
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Figure 6.9 Mean water sorption and solubility of group 8:2 with and without acetone (10%) 

and 4-META (5%). Error bars represent SD. 

 

 

Figure 6.10 Mean water sorption and solubility of group 7:3 with and without 4-META (5%). 

Error bars represent SD. 
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Figure 6.11 Mean water sorption and solubility of ketac-cement and Transbond XT. Error 

bars represent SD. 

 

Figure 6.12 Mean water sorption of all experimental materials.  Error bars represent SD. 
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Figure 6.13 Relationship between water solubility and fluoride concentrations of all 

experimental materials. Error bars represent SD. 

 

Figure 6.14 relationship between Solubility and fluoride concentrations. Data represents mean 

value with error bars represent SD.   
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 Fluoride release 

All experimental materials had significantly greater fluoride release than Ketac-cement at days 

1, 2 and 7 (p<0.05, one-way ANOVA), with the groups with the 10%A 0%M exhibiting the 

highest amount except in group 8:2 and 7:3 see table 6.4. 

At day 28, all experimental groups with the 0%M had significantly higher fluoride release than 

the 5% M and the Ketac-cement specimens (p<0.05, one-way ANOVA) see table 6.4. 

The pattern of fluoride release was similar for all experimental materials and Ketac-cement. All 

materials had an initial burst-effect fluoride release followed by decreasing with time see 

figures 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21 and 6.22. 

In comparison between groups, group 7:3 released significantly higher fluoride at days 1 and 2 

than all groups in each measurement point, followed by group 8:2 which showed significant 

greater release than group 9:1 (p<0.05) see table 6.4. 

The fluoride release measurement at day 1 and 28 are shown in figures 6.23 and 6.24 at day 1 

the figure shows groups with 10%A 0%M had higher fluoride release than other groups while 

on day 28 all groups with 0%M had higher fluoride release than those with 5%M.  

The cumulative fluoride release for the 28 days are shown in figure 6.25, which shows groups 

9:1 and 8:2 with 10%A 5%M have lower fluoride release than 10%A 0%M. 
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Table 6.4 Show the mean fluoride release of the fluoride containing groups and Ketac-cement 

at day 1, 2, 7, 14, 21st and 28th. 

Materials Mean Fluoride release (SDV) µg/cm²/day 

Day 1 Day 2 Day 7 Day 14 Day 21 Day28 

9:1 0%A 0%M 148 

(12)ab 

85 

(17)fg 

20 

(4)j 

10 

(2)op 

9 

(2)v 

12 

(2)z 

9:1 0%A 5%M 
143 

(15)ab 

85 

(9)fg 

15 

(3)j 

5 

(1)oq 

4 

(1)vw 

4 

(1)A 

9:1 10%A 0%M 
196 

(23)b 

130 

(20)g 

70 

(18)k 

26 

(8)r 

16 

(4)x 

12 

(4)z 

9:1 10%A 5%M 
108 

(16)a 

61 

(11)f 

19 

(8)j 

6 

(1)oq 

5 

(1)v 

3 

(1)A 

 

8:2 0%A 0%M 297 

(29)c 

278 

(22)h 

47 

(5)l 

27 

(4)r 

31 

(6)y 

21 

(3)B 

8:2 0%A 5%M 
417 

(55)d 

246 

(122)hi 

68 

(46)kl 

19 

(7)s 

24 

(13)x 

14 

(3)z 

8:2 10%A 0%M 
394 

(59)d 

296 

(36)h 

85 

(21)km 

37 

(7)t 

22 

(6)x 

23 

(3)BC 

8:2 10%A 5%M 
250 

(69)c 

218 

(35)i 

43 

(9)l 

14 

(2)ps 

21 

(4)x 

12 

(2)z 

 

7:3 0%A 0%M 613 

(90)e 

456 

(52)f 

101 

(6)n 

59 

(4)l 

 

47 

(4) 

37 

(3) 

7:3 0%A 5%M 
573 

(52)e 

517 

(72) 

91 

(16)mn 

39 

(4)t 

35 

(6)y 

25 

(3)C 

Ketac-cement 
18 

(5) 

8 

(4) 

4 

(1) 

3 

(1)q 

3 

(1)w 

3 

(1)A 

The entries are mean value with SD in the parenthesis. Values exhibited similar superscript 

letters indicate no significant difference within columns (p> 0.05) as determined using Tukey 

HSD.
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Figure 6.15 Mean fluoride release of all group 9:1 with and without acetone (10%) and 4-

META (5%). The figure shows the burst effect pattern of fluoride release from the materials. 

The error bars represent SD of the mean fluoride release. 

 

Figure 6.16 Cumulative fluoride release of all group 9:1 with and without acetone (10%) and 

4-META (5%).  
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Figure 6.17 Mean fluoride release of Group 8:2 with and without acetone (10%) and 4-META 

(5%). The figure shows the burst effect pattern of fluoride release from the materials. The 

error bars represent SD of the mean fluoride release. 

 

Figure 6.18 Cumulative fluoride release of all group 8:2 with and without acetone (10%) and 

4-META (5%).  
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Figure 6.19 Mean fluoride release of group 7:3 with and without 4-META (5%). The figure 

shows the burst effect pattern of fluoride release from the materials. The error bars represent 

SD of the mean fluoride release. 

 

Figure 6.20 Cumulative fluoride release of all group 7:3 with and without 4-META (5%).  
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Figure 6.21 Mean fluoride release of Ketac-cement. The error bars represent SD of the mean 

fluoride release. 

 

Figure 6.22 Cumulative fluoride release of Ketac-cement. 
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Figure 6.23 Fluoride release at day 1. Fluoride release increased with increasing fluoride 

concentrations.  

 

Figure 6.24 Fluoride release at day 28. Showing fluoride release increase with increasing 

fluoride concentrations. Fluoride release decreased with addition of 4-META. 



167 

 

 

Figure 6.25 Cumulative fluoride release of all experimental materials and at day 28. The 

graph shows increasing fluoride release with increasing fluoride concentrations. 

 Fluoride recharge 

The mean amounts of fluoride release pre and post three recharge cycles of all experimental 

groups and Ketac-cement are presented in Table 6.5. The fluoride re-release after recharging is 

greater in all experimental groups, however, the release was significant in the third recharging 

cycle for experimental groups and the second recharging of all experimental groups except 9:1 

and 8:2 at 10%A 0%M and 8:2 0%A and 0%M (at p<0.05, paired sample t test). The group 9:1 

also significantly increased at all recharging cycles except 10%A 0%M at first and second cycle 

(at p<0.05, paired sample t test). Ketac-cement also showed significant increase in fluoride 

release after recharging compared to before recharging in all recharging cycles (at p<0.05, 

paired sample t test). 

The pattern of fluoride recharge from the experimental materials is shown in figures 6.26, 6.27, 

and 6.28. These show a fluctuating or oscillating manner of re-release for a week after exposure 

to the recharge solution with the peak re-release at the third, fourth or fifth day after recharge. 

While Ketac-cement showed a peak level of re-release 24 hours after recharge, the level of 

fluoride re-release from Ketac-cement during the second day after recharge exposure dropped 

back to a lower level than that recorded before recharge as shown in figure 6.29. 
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Table 6.5 Mean fluoride release of experimental materials containing fluoride and Ketac-

cement. 

 

 

Materials 

 

Mean fluoride recharge µg/cm2/day 

(showing day before and after recharge) 

Mean (SD) 

1stround 2ndround 3rdround 

Before After Before After Before After 

9:1 0%A 0%M 8 (1) 13 (3) 7 (1) 10 (2) 4 (1) 8 (1) 

9:1 0%A 5%M 4 (1) 8 (1) 4 (1) 9 (2) 2 (0) 8 (1) 

9:1 10%A 0%M 13 (4)a 15 (3)a 12 (3)b 13 (6)b 6 (1) 11 (1) 

9:1 10%A 5%M 2 (1) 4 (1) 3 (1) 5 (1) 1 (0) 5 (0) 

8:2 0%A 0%M 19 (2) 21 (2) 20 (3)e 21 (2)e 11 (2) 15 (2) 

8:2 0%A 5%M 14 (2) 17 (2) 14 (2) 16 (1) 8 (2) 14 (2) 

8:2 10%A 0%M 30 (4)g 31 (6)g 25 (4)h 26 (3)h 15 (1) 19 (2) 

8:2 10%A 5%M 12 (2)i 12 (2)i 9 (2) 10 (2) 6 (1) 9 (1) 

7:3 0%A 0%M 37 (3)l 39 (7)l 36 (3) 44 (5) 21 (2) 28 (2) 

7:3 0%A 5%M 32 (7)m 32 (7)m 26 (3) 29 (3) 17 (1) 24 (2) 

Ketac-cement 2 (1) 5 (1) 1 (0) 5 (1) 2 (0) 5 (1) 

The entries are mean values with SD in the parenthesis. Values exhibited similar superscript 

letters indicate no significant difference within rows (p> 0.05) as determined using Paired 

Sample t test. 
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Figure 6.26 Mean fluoride recharging of group 9:1 with different acetone and 4-META 

concentrations. The dotted lines indicate fluoride release during the first day after recharging. 

The peaks represent an increase in the fluoride release levels after 24 hours post exposure to 

the recharging solution. (The error bars represent SD of the mean fluoride release). 

 

Figure 6.27 Mean fluoride recharging of group 8:2 with different acetone and 4-META 

concentrations. The dotted lines indicate fluoride release during the first day after recharging. 

The peaks represent an increase in the fluoride release levels after 24 hours post exposure to 

the recharging solution. (The error bars represent SD of the mean fluoride release). 
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Figure 6.28 Mean fluoride recharging of group 7:3 with different 4-META concentrations. 

The dotted lines indicate fluoride release during the first day after recharging. The peaks 

represent an increase in the fluoride release levels after 24 hours post exposure to the 

recharging solution. (The error bars represent SD of the mean fluoride release). 

 

Figure 6.29 Mean fluoride recharging of Ketac-cement. The dotted lines indicate fluoride 

release during the first day after recharging. The peaks represent an increase in the fluoride 

release levels after 24 hours post exposure to the recharging solution. (The error bars 

represent SD of the mean fluoride release).
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 SEM observation 

SEM images of fresh samples are shown in figures 6.30, 6.32, 6.34, 6.46, 6.38, 6.40, 6.42, 6.44, 

6.46 and 6.48. Aged samples which have been exposed to 28 days in water are shown in figures 

6.31, 6.33, 6.35, 6.37, 6.39, 6.41, 6.43, 6.45, 6.47 and 6.49. All images of experimental 

materials are shown at two magnifications (50× and 500×). 

The images of freshly made specimens revealed smooth surfaces and all groups appeared to be 

similar. There are some scratches, which are due to lapping the specimens during preparation 

with 1200 grit silicon carbide paper. Cracks are also seen which are likely to have formed during 

desiccation of the samples for SEM analyses. 

The images of aged specimens revealed pores on the surface of specimens. The pores are of 

oval, irregular and round shapes. The number of these pores appear to increase with increasing 

NaF concentrations. In addition, cracks are also seen which are likely to have formed during 

desiccation of the samples for SEM analysis. 

SEM images of Ketac-cement fresh and aged specimens are shown at two magnifications (50X 

and 500X) in figures 6.50 and 6.51. The images of fresh and aged samples show cracks and the 

cracks were more marked in the aged specimen compared to the fresh specimen.   
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Figure 6.30 SEM images of fresh specimens of group 9:1 0%A 0%M at two magnifications 

50X (left side) and 500X (right side). 

  

Figure 6.31 SEM images of aged specimens of group 9:1 0%A 0%M at two magnifications 

50X (left side) and 500X (right side). 

 

  



173 

 

 

Figure 6.32  SEM images of fresh specimens of group 9:1 0%A 5%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.33 SEM images of aged specimens of group 9:1 0%A 5%M at two magnifications 

50X (left side) and 500X (right side).
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Figure 6.34 SEM images of fresh specimens of group 9:1 10%A 0%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.35 SEM images of aged specimens of group 9:1 10%A 0%M at two magnifications 

50X (left side) and 500X (right side). 
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Figure 6.36 SEM images of fresh specimens of group 9:1 10%A 5%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.37 SEM images of aged specimens of group 9:1 10%A 5%M at two magnifications 

50X (left side) and 500X (right side).
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Figure 6.38 SEM images of fresh specimens of group 8:2 0%A 0%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.39 SEM images of aged specimens of group 8:2 0%A 0%M at two magnifications 

50X (left side) and 500X (right side). 
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Figure 6.40 SEM images of fresh specimens of group 8:2 0%A 5%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.41 SEM images of aged specimens of group 8:2 0%A 5%M at two magnifications 

50X (left side) and 500X (right side).



178 

 

 

Figure 6.42 SEM images of fresh specimens of group 8:2 10%A 0%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.43 SEM images of aged specimens of group 8:2 10%A 0%M at two magnifications 

50X (left side) and 500X (right side). 
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Figure 6.44 SEM images of fresh specimens of group 8:2 10%A 5%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.45 SEM images of aged specimens of group 8:2 10%A 5%M at two magnifications 

50X (left side) and 500X (right side). 
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Figure 6.46 SEM images of fresh specimens of group 7:3 0%A 0%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.47 SEM images of aged specimens of group 7:3 0%A 0%M at two magnifications 

50X (left side) and 500X (right side). 
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Figure 6.48 SEM images of fresh specimens of group 7:3 0%A 5%M at two magnifications 

50X (left side) and 500X (right side). 

 

Figure 6.49 SEM images of aged specimens of group 7:3 0%A 5%M at two magnifications 

50X (left side) and 500X (right side). 
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Figure 6.50 SEM images of Ketac-cement fresh specimens at two magnifications 50X (left 

side) and 500X (right side). 

 

Figure 6.51 SEM images of Ketac-cement aged specimens at two magnifications 50X (left 

side) and 500X (right side).
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 Summary of the results 

The DoC of experimental materials was not significantly affected by the addition of 4-META 

and it was higher than DoC of Transbond XT. 

The solubility of experimental materials increased with increasing NaF concentrations. 

However, solubility was not affected by the addition of 4-META. 

All experimental materials had fluoride releasing and recharging ability comparable to Ketac-

cement. 

6.5 Discussion 

In this chapter 4-META was added to the experimental materials as an adhesion promoter, to 

increase the bond strength of the materials. It has been shown that 4-META containing 

adhesives had higher SBS than composite resin based orthodontic adhesives like Transbond XT 

(Clark et al., 2003). 4-META was used at 5% as primer to increase tensile bond strength of 4-

META/MMA-TBB resin to dentine (Nakabayashi and Hiranuma, 2000).  

There are some key properties which it is important that the experimental materials maintain 

after the addition of 4-META such as setting characteristics and fluoride releasing ability. It is 

also important to investigate the water sorption and solubility of the developed materials after 

the addition of 4-META. This was to understand the fluoride release and recharge of the 

materials. As it was known that fluoride release of most orthodontic adhesives is controlled by 

diffusion/dissolution mechanism (Verbeeck et al., 1998). In addition fluoride recharging is also 

important to ensure sustained fluoride release and thereby minimise WSL. Therefore in order 

to investigate the effect of the addition of 4-META to the experimental materials a number of 

characteristics were measured, including DoC, water sorption and solubility, fluoride release 

and recharging ability in addition to observing the surface characteristics of the fluoride 

releasing samples after being in water for 28 days. 

 Degree of conversion (DoC) 

In previous chapter the method used for measuring the DoC of the materials was directly 

applying the experimental materials on to the ATR stage of the FTIR then light curing in place. 

It was impossible to use this method after the addition of 4-META because the materials are 

likely to adhere to the ATR stage and removal could cause scratching and permanent damage 

to the crystal of the ATR. As 4-META containing adhesives strongly adhere to metals and 

stainless steel (Björn et al., 1995; Yoshida et al., 1996; Hayakawa and Nemoto, 2003). 

Therefore, in this chapter a more conventional methodology was used to measure the spectra, 

which has been previously used by many researchers (Silikas et al., 2000; Furuse et al., 2011). 

In contrast to the single scan per spectrum method used in the previous chapter, in this 



184 

 

experiment 32 co-addition scans were taken to increase signal to noise ratio (Furuse et al., 2011; 

Loguercio et al., 2011; Rastelli et al., 2012). Regarding calculation of the DoC the same method 

was used as described before (chapter 4.3.2) using aliphatic C=C for comparison and carbonyl 

group C=O as the internal standard. However, for calculating the DoC of Transbond XT, which 

is composed of dimethacrylate based monomers like BisGMA and TEGDMA, the aromatic 

band of C=C around 1607cm-¹ was taken as the internal standard as it does not participate in 

polymerization reaction and has been widely used before (Chung et al., 2002; Calheiros et al., 

2008; Al-Ahdal et al., 2015). 

The results of this chapter confirm the results of first and second chapter in which acetone and 

NaF were seen to have an effect on the DoC of the experimental materials. However, the results 

of this chapter showed that the DoC of the experimental materials behave differently according 

to different fluoride and 4-META concentrations. For groups 9:1 and 8:2 no significant 

differences were found after acetone and 4-META addition while with group 10:0 the DoC 

decreased with acetone and/or 4-META addition while for group 7:3 the DoC decreased with 

addition of either acetone or 4-META. The results of group 10:0 10%A contradicted those 

found in the previous chapter, in which the DoC increased after acetone addition. These 

differences might be attributed to the following reasons: 

Firstly while the spectra measured in the first chapter were measured in real time, as the 

specimen polymerized, in this chapter the specimens were polymerized and then analyzed at a 

later time. Potentially, the delay between light exposure and analysis could have led to some 

post-curing of the specimens (Par et al., 2014; Al-Ahdal et al., 2015). 

Secondly the difference might arise from differences in the pressure applied on the samples 

during the ATR measurement. It has been shown that pressure has effect on FTIR spectra. In a 

study to investigate structure of kaolinite, clay minerals, it was found that with increasing 

applied pressure the ATR spectra of Si-O silicon-oxygen bond shifted in addition the intensity 

of the bonds increase with increasing pressure (Friedrich and Weidler, 2010). For the single 

scans the tip of the LCU was used to apply pressure on the sample, because of the short 

timeframe between curing and taking an FTIR measurement (every 10 seconds), whilst in this 

experiment the ATR accessory clamp was used to press the sample against the crystal of ATR 

stage at 90 -120 MPa.  

Finally in this chapter 32 co-added scans were taken to increase SNR (signal to noise ratio) 

compared to a single scan in previous chapter. It is suggested that for spectra with 100 co-added 

spectra would have SNR ratio 10 times better than a single scan (Perkins, 1987; Griffiths and 

De Haseth, 2007; Smith, 2011). However, the single scan was taken in the previous chapter to 



185 

 

make sure, at this stage, that no post-curing effects were present in the spectra due to some 

continued reaction after the LCU turned off. 

Based on the results of the current study, the first hypothesis “4-META does not deteriorate 

DoC of the experimental materials.” was partially accepted. For some groups like group 10:0 

the DoC decreased with 4-META addition while for other groups (9:1 and 8:2) no differences 

were found after 4-META addition. Therefore, 4-META concentrations influenced the DoC of 

some of the experimental materials. However, the DoC of all experimental groups were higher 

than Transbond XT and all experimental groups had satisfactory DoC more than 50%. 

Generally, DoC of dental resins is between 43- 75% (Lovell et al., 1999; Moraes et al., 2008). 

 Water sorption and solubility 

The kinetics of water sorption depend on two processes, water diffusion and diffusion of soluble 

fraction out of the sample, see figure 2.3 (Van Noort, 2013). When an acrylic resin or resin 

composite is soaked in water two processes occur. Firstly, a rapid elution of unreacted 

monomers and other dissolving elements within the resin takes place. Secondly, water is 

absorbed by the resin, and occupies the holes left by eluting monomer and the space between 

the polymer chains (Costella et al., 2010); this process is time dependant, slow and diffusion 

controlled (Sideridou et al., 2007). There are two mechanisms through which water diffuses 

into polymeric materials. Firstly, infiltration into free spaces which is controlled by the free 

spaces available. The commonly occurring micro-voids and other morphological defects, 

increasing free space should result in increasing water uptake and diffusivity (Unemori et al., 

2003). The second mechanism is diffusion by molecular interaction. This is controlled by the 

available hydrogen bond at hydrophilic sites of the monomer that formed the polymer. The 

water sorption is the net gain of the weight of a specimen as a result of the ingress of water 

molecules and egress of monomers and other molecules (Chai et al., 2004; Sideridou et al., 

2007). 

In the current project the experimental materials were prepared like fluoride releasing samples. 

The specimen sizes used were disks of 10 mm diameter and 1 mm thickness and they were put 

in to 5 ml water as used for fluoride releasing procedure. The reason for this was to simulate 

the fluoride releasing condition in order to understand the fluoride releasing behaviour. In 

addition these dimensions have been used previously to study water sorption and solubility of 

a range dental composite restorative materials (Rahim et al., 2012). 

The experimental materials contained NaF at different ratios. This was 30% for the 7:3 group, 

20% for the 8:2 group and 10% for the 9:1 group. NaF is a very soluble salt and easily dissolves 

into Na+ and F- ions (Nakajo et al., 2009). The highest amount of NaF present in the materials 
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the highest amount of fluoride dissolved and leached out. Once the fluoride leached out it was 

replaced by water and water has a lower molecular weight than NaF. Therefore, the net weight 

change for the 7:3 group appeared to be lower than 8:2 and both were lower than the group 9:1. 

Therefore, in order to know the effect of 4-META on water sorption each experimental group 

should be taken individually based on the percentage of NaF.  

The rate and extent of water sorption depends on resin polarity, dictated by the concentration 

of polar sites available to form hydrogen bonds with water (Unemori et al., 2003; Malacarne et 

al., 2006). The monomer 4-META is hydrophilic and it has been previously shown that for 

materials based on 4-META and PMMA there is a significant correlation between the 4-META 

concentration and water sorption (Unemori et al., 2003). However, in the current study there 

was no significant difference between groups with and without 4-META. This might be due to 

the fact that there was roughly equal content of hydrophilic monomers in all materials because 

when adding 4-META the concentration of HEMA, also a hydrophilic monomer, (Arima et al., 

1995; Van Landuyt et al., 2007; Su et al., 2010) was reduced. All experimental groups 

containing 10% acetone without 4-META showed increased water sorption compared to those 

that did have 10% acetone and 5% 4-META. It has been shown that presence of solvents results 

in increasing water sorption of adhesive resins (Malacarne-Zanon et al., 2009).  

The results of this study also showed that solubility did not change with the addition of 4-

META. This is in accordance with other studies on the effect of addition of 4-META on 

solubility of MMA/4-META resin (Unemori et al., 2003). Solubility of materials containing 

10% acetone without 4-META increased, this might be due to increasing micro-voids within 

the materials as a result of acetone evaporation, increasing water diffusion (as shown by 

increased water sorption) and consequently increased solubility.  

Solubility also increased with increasing NaF concentrations, materials with higher NaF content 

unsurprisingly showed greater solubility. This was due to leaching out of fluorides after being 

in water, the more fluoride content the more fluoride leached out. Therefore, the solubility of 

group 10:0 was lower than group 9:1 as there was no fluoride to leach out. Increasing NaF 

concentrations from 10% to 20 % the solubility increased by two-fold and then three-fold to 

30% fluoride accordingly except groups with 10% acetone without 4-META. Interestingly all 

groups with 10%A and 5% 4-META had lower solubility compared to groups with 10%A 

without 4-META. Thus, it appeared that addition of 5% 4-META to the groups with 10%A 

controlled solubility of the materials. The solubility of all the 9:1 groups except at 10%A are 

within the acceptable range which is (30-50 µg/ mm³) (Van Noort, 2013). 

The results of this study showed low water sorption and solubility for Transbond X, which was 

lower than experimental materials. This was due to a highly cross-linked nature of 
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dimethacrylates, such as BisGMA and UDMA (Braden et al., 1976; Söderholm, 1981), which 

slow down the transportation rate of water and ions in the polymer (Asmussen and Peutzfeldt, 

2002). Also there was no soluble fractions apart from unreacted monomers. There are some 

studies which have looked at water sorption and solubility of a range of experimental and 

commercial filled and unfilled composite resin based on dimethacrlaytes like BisGMA, UDMA 

and TEGDMA. They found water sorption and solubility in deionized water between (5.16 - 37 

µg/mm³)(Gerdolle et al., 2008; Uysal et al., 2008; Sunbul et al., 2015). However, a different 

methodology was used, as the size of the prepared discs was different from the current study 

and water sorption and solubility was taken for different times compared to the current study. 

All these results show that the water sorption and solubility of Transbond XT in the current 

study are comparable to previous studies and it was within a range that considered acceptable 

(30-50 µg/ mm³) (Van Noort, 2013). 

 Fluoride release 

The same method of fluoride measurement was used as mentioned before. The specimens were 

prepared using the same method as described in chapter 4.4.5. The only difference was using 

Bluephase®20i which had greater intensity 1130 mW/cm2 compared to Coltolux 800 mW/cm2. 

Group 7:3 with 10%A was omitted because the samples remained soft after preparation. Group 

10:0 was not included for fluoride release measurements as there was no fluoride in this group 

to be released and the results of first chapter showed no fluoride release for this group. WSL 

can develop within one month of appliance placement (O'Reilly and Featherstone, 1987; Gorton 

and Featherstone, 2003), and therefore fluoride release is important in the first month after 

appliance placement to prevent WSL. Therefore, fluoride release measurements were taken for 

only 28 days. This protocol has been used in a number of previous studies (Wheeler et al., 2002; 

Vahid-Dastjerdi et al., 2012). 

The pattern of fluoride release of the experimental materials was seen to be comparable to 

Ketac-cement. The current findings were also similar to all published data on GIC, RMGIC and 

compomers (Verbeeck et al., 1998; Xu and Burgess, 2003) in which the highest levels of 

fluoride are released during the first 24-48 hours (Creanor et al., 1994; Chatzistavrou et al., 

2010). The highest amount of fluoride was followed by a rapid decrease in level. In the present 

study, an initial high release from Ketc-cement on day 1 was due to the well-documented burst 

of fluoride released from the glass particles when reacting with the polyalkenoic acid during 

the setting reaction (Wiegand et al., 2007; Dionysopoulos et al., 2013).  

The results of this chapter confirm those of the first chapter in which addition of 10%A resulted 

in increasing fluoride release, which was thought to be due to increasing water soprtion of the 
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materials (Malacarne-Zanon et al., 2009) and the presence of greater porosity after acetone 

evaporation. These factors result in higher water diffusion and therefore greater leaching of 

NaF. The addition of solvents has been shown to increase water sorption in adhesives 

(Malacarne-Zanon et al., 2009), which may result in accelerating diffusion of fluoride ions 

within absorbed aqueous medium. It was suggested that the kinetics of fluoride elution is a 

diffusion-dissolution mechanism (Verbeeck et al., 1998). This means fluoride elution depends 

on dissolution of the additive fluoride source, NaF, which was added to the material by the 

water diffusion. Therefore the mechanism must be water absorption and then diffusion of 

fluoride to its surroundings. 

The addition of 4-META generally led to a reduction in fluoride release irrespective of whether 

acetone was present or not. Despite 4-META being a hydrophilic monomer it did not increase 

water sorption of the experimental materials, most likely due the fact that the overall content of 

hydrophilic monomers was not changed. Interestingly, 4-META seemed to regulate the fluoride 

release of the experimental materials even in the presence of 10% acetone. Whilst it is not clear 

what the reason for this is, the 4-META containing adhesives still exhibited significantly greater 

fluoride release than the Ketac-cement. Based on the results of the current study, the fourth 

hypothesis “4-META increases fluoride release of the experimental materials” was rejected. 4-

META concentrations influenced the amount and rate of fluoride release from fluoridated 

experimental materials. However, it appeared that 4-META addition may make materials 

release a low level of fluoride for longer, therefore, the effect was not detrimental. 

 Fluoride recharge 

In addition to the fluoride release of orthodontic adhesives, fluoride recharging is another 

interesting property of fluoride releasing orthodontic adhesives. Fluoride releasing orthodontic 

adhesives can take up fluoride from the oral environment to replace the fluoride that has been 

lost. Fluoride release is important to prevent WSLs after appliance placement then fluoride 

recharging is important to top up the fluoride release of the materials after its internal fluoride 

content is exhausted. This results in sustained fluoride release for a long period of time and 

consequently prolonged prevention.  

There is no standard recharging protocol. Different studies have been done in vitro to measure 

fluoride recharge of orthodontic adhesives, through exposing the tested material to an external 

fluoride source to study fluoride uptake of a material (Lim et al., 2011). Fluoride has been used 

at different concentrations from 200 ppm to 1000 ppm (Coonar et al., 2001; Lim et al., 2011). 

In the present study the recharging ability (fluoride uptake) of the experimental materials were 

tested after exposing the materials to 1000 ppm NaF solution for three minutes over three 
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recharging cycles two weeks apart. A 1000 ppm NaF solution was used as it was shown fluoride 

rinsing with 1000 ppm NaF has been found to be effective in recharging of orthodontic 

adhesives (Ahn et al., 2011). This was to represent a weekly mouthrinse. An ultrasonic bath 

was used to simulate the weekly mouth wash and to enhance dispersion of fluoride (Zahroon, 

2014). NaF was used as a source for fluoride recharging in the present study because it is the 

most commonly used source in different dentifrices and mouthwashes (Preston et al., 1999; 

Preston et al., 2003). The NaF was used in neutral solution as it is recommended to use neutral 

sodium fluoride gel for home use in patients with GICs and composite restorations. This is to 

maintain the material integrity and minimize surface degradation (El-Badrawy et al., 1993; 

Diaz-Arnold et al., 1995). 

The recharge samples were soaked in water for 28 days before starting the fluoride recharge 

treatment. This was to give the materials 28 days of high initial burst fluoride release as there 

was a high amount of fluoride release during the first 28 days of water immersion. There might 

be some differences between the value of fluoride recharging samples at day 28 compared to 

the standard fluoride releasing experiment at same time of immersion in water. This could be 

due to the changes in the frequency of water changes. For the fluoride releasing experiment the 

water was replaced daily for the first 14 days while for the recharging specimens the water was 

changed weekly. These differences have been reported previously in similar experiments 

(Zahroon, 2014).  

The pattern of fluoride release after exposure to supplemental fluoride is a burst-effect (Attar 

and Turgut, 2003; Cohen et al., 2003). A high amount of fluoride is released in the first day 

then the fluoride release returns to pre-exposure level after 2 to 3 days (Young et al., 1996). 

This behaviour was similar to Ketac-cement in the current study, with fluoride release levelling 

off by the third day (Figure 6.29). Whilst for the experimental materials there were peaks at 

third, fourth, even fifth day after recharge (see Figure 6.26, Figure 6.27and Figure 6.28).  

The reason for this delayed pattern of fluoride release after recharging is not completely 

understood. However, there are some suggestions regarding the mechanism of fluoride 

recharging. Firstly, it is suggested that recharging behaviour of adhesives is caused by surface 

effects not chemical recharging (Gao and Smales, 2001) because fluoride uptake and rerelease 

is probably due to the processes of surface retention and matrix diffusion of fluoride (Cohen et 

al., 2003; Preston et al., 2003). All experimental materials were based on hydrophilic monomers 

HEMA and 4-META. These hydrophilic monomers readily absorb water in polymer form 

(Arima et al., 1995; Van Landuyt et al., 2007; Su et al., 2010) with fluoride ions from the 

external fluoride source. This was likely to diffuse deeper rather than being on the samples’ 

surface only. As water molecules binding via hydrogen bonding to the polar sites of HEMA 
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and 4-META contribute to water diffusion through polymer matrices (Yiu et al., 2006). Thus, 

the fluoride that retained on the surface and on deeper layers re-released afterward. In addition 

to hydrophilicity of monomers, another factor might helped this water diffusion which is 

porosity of polymers of HEMA (Tay et al., 2002a). It has been shown that presence of lots of 

porosities in GIC and RMGIC produce high fluoride recharging abilities (Xu and Burgess, 

2003). 

The second possible reason for this recharging is due to replacement of intrinsic fluoride and 

fluoride diffusion into porosities within the material (Xu and Burgess, 2003). The SEM images 

of aged specimens showed that the number of voids increased compared to fresh specimens, 

this was due to dissolution NaF particles. This might allow more fluoride ions from the external 

source to diffuse deeper into the samples, replacing the dissolved fluoride, resulting in a higher 

amount of re-release. The diffusion increases the entrapment of fluoride ions from the external 

source and re-releases it slowly into the local environment (Takahashi et al., 1993; Yan et al., 

2007).  

However, in case of Ketac-cement, the presence of a hydrogel matrix increases their 

permeability to water (Preston et al., 2003) and their uptake/release of ions through the 

polyacrylic matrix (Takahashi et al., 1993; Attin et al., 1999). It has been proposed that the 

recharging ability of GICs is dependent on the glass component. In particular upon the structure 

of the hydrogel layer around glass filler particles, which is formed due to reactions between 

fluoridated glass particles and polyacrylic acids (Dionysopoulos et al., 2013). 

The results of the present study indicate that all the experimental acrylic resins possess fluoride 

recharging ability. Addition of 4-META did not increase fluoride recharge of the materials. The 

reason might be related to the water sorption of the materials that was not changed after 4-

META addition consequently fluoride recharging was not increased. Therefore, the third 

hypothesis which was “4-META increase fluoride recharging ability of the material” was not 

accepted. From clinical point of view, the results of current study indicate that fluoridated 

acrylic resins could be used to act as reservoir for fluoride once internal fluoride has finished. 

Further investigations may explain the recharge behaviour of the experimental materials by 

carrying out a longer pre- and post- recharge measurement. Evaluating the fluoride 

uptake/release of different fluoride sources may also be beneficial. 

 SEM observation 

SEM was used to examine surface morphology of the disc shaped samples of the fluoride 

releasing samples. SEM is the most commonly used technique to analyze the morphology of 

the surface of the materials (Bootz et al., 2004; Perevyazko et al., 2010). It has been used to 
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analyze the changes of surfaces after exposure to storage environment (Markovic et al., 2008). 

SEM can be used to record the surface appearance of specimens of differing thickness (Zhu et 

al., 2010) depending on the imaging source of the focused electron beam (Giannuzzi and Stevie, 

1999; Canovic et al., 2008). An essential step in preparing specimens for SEM imaging is 

drying prior to gold coating which may cause deformation of biological samples (Pathan et al., 

2008). However, in the current study since dental material specimens were analysed, the drying 

effect was limited to formation of cracks on the materials surface (Zahroon, 2014). 

The SEM images obtained in this study showed cracks in all groups of the fresh and aged 

specimens. These cracks could be formed during processing for SEM analysis by the 

dehydration of the samples. Similar cracks was found in previous studies on resin based 

materials and GIC (Bala et al., 2012; Zahroon, 2014) which they referred to be formed during 

sample preparation for SEM images. The cracks were more predominant in the aged specimens 

compared to the fresh specimens. The reason behind that could be due to the prolonged storage 

in water leading to leaching out of elements during fluoride release. 

In addition to cracks, voids were also found on the surface of specimens. These voids were 

thought to be produced due to elution of NaF particles during ion exchange process, releasing 

fluoride during 28 days in water, because these voids were not found in fresh specimens. The 

number of voids can be seen to be increasing with increasing NaF concentrations, supporting 

this theory. These voids were also observed in a previous study of acrylic resin adhesives 

(Zahroon, 2014). Some other voids might be produced during mixing and placing the specimens 

into moulds during specimen preparations, but these would be expected to be visible on both 

the fresh and aged specimens. Further investigation may be helpful in determining the 

morphology of these voids together with the morphology of NaF particles by using a different 

technique may be useful for future examination such as, using transmission electron microscope 

or perhaps using environmental SEM to avoid drying of specimens.

6.6 Summary 

The results showed that 4-META addition had no detrimental effect on the DoC and fluoride 

releasing and recharging ability of the experimental materials. The results also showed that the 

developed materials had fluoride release in addition to recharging potential. Those groups with 

the highest fluoride content had high fluoride release ability and this resulted in greater 

solubility. The Group 9:1 demonstrated fluoride release, recharge ability and reasonable DoC 

and it was less soluble than the rest of the fluoride releasing groups therefore it was selected as 

the most suitable material for bond strength testing. 



192 

 

 Investigating the shear bond strength of the developed materials 

7.1 Introduction 

Previously the effect of adding 4-META to the experimental material was investigated, through 

the measurement of certain key handling properties and fluoride release. In this chapter the 

effect of 4-META on the SBS of the experimental materials was investigated. Two 

experimental groups (9:1 10%A and 9:1 10%A 5%M) were chosen based on previously 

measured properties such as DoC, fluoride release, recharge and water solubility. Another two 

experimental groups, without NaF, (10:0 10%A 0%M and 10:0 10%A 5%M) were taken as 

comparators, together with Transbond XT as a composite resin based commercial orthodontic 

adhesive.  

7.2 Aims and hypothesis 

 Aims 

To investigate the effect of 4-META on SBS of the developed material and compared with 

Transbond XT. 

 Hypothesis 

4-META increases bond strength of the experimental materials 

7.3 Materials and methods: 

Based on previous experiments four groups were chosen for SBS testing see Table 7.1. For 

assessing SBS Transbond XT was used as a commercial comparator (see table 7.2). The 

experimental materials were mixed using the same method as described in chapter 4. 

Table 7.1 Experimental groups used for SBS study. 

Experimental 

materials 

PMMA% NaF% Acetone% 4-META% Other 

components 

10:0 10%A 0%M 100 0 10 0 40% HEMA 

60% MMA 

1% CQ 

1% DMAEMA 

10:0 10%A 5%M 100 0 10 5 

9:1 10%A 0%M 90 1 10 0 

9:1 10%A 5%M 90 1 10 5 

 Sample selection and storage: 

A total of 200 fresh permanent bovine central incisors were extracted at a local slaughter house 

and stored in a solution of 0.1% wt Chloramine-T (Sigma-aldrich.Dorset.UK) at 4°C. The 

criteria for tooth selection were that it must have an intact facial surface with no obvious defects 
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(cracks or caries). The crowns were split into three sections, see figure 7.1 using a diamond disc 

(Skillbond direct Ltd., UK). The sections were then stored in Chloramine T until required. The 

storage solution was changed every week to preserve the integrity of the tooth structure. 

 Roughness 

In order to compare the roughness variation between sections, 7 bovine teeth were randomly 

selected for investigation using profilometry. Each tooth was sectioned into three sections as 

previously described in section 1.3.1. Three measurements were recorded from the surface of 

each tooth specimen as illustrated in figures 7.1 and 7.2. A stylus profilometer (Mitutoyo 

Surftest SV-2000) and its associated software (Surfpak-SV Mitutoyo Corp V1.600) were used 

for sample profiling. Sections were mounted in the profilometer perpendicular to the stylus tip, 

using a spirit level. The stylus was a diamond cone tip with a 5 μm radius applying a force of 4 

mN. The profilometer was calibrated at the start of each assessment day using a standard metal 

calibration block Ra 2.9 μm (Mitutoyo precision reference specimen, serial number 534298, 

Japan) to ensure that the results were within the normal range of reproducibility. The stylus was 

run with a speed of 1 mm/sec on an evaluation length of 4 mm. Three measurements were taken 

in each section, 1 mm apart.  The Ra value, the arithmetic mean value of the profile, was 

obtained from the 3 lines of each section by the associated software. A final Ra average was 

then calculated for that specimen which was transferred to Microsoft Excel (Microsoft office 

14) for analysis. 

 

Figure 7.1 Schematic diagram showing bovine incisor teeth dissection in to three sections 

(black dot lines) including right section (R), left section (L) and middle section (M). The red 

lines indicate the surface profilometery taken on each section.  
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Figure 7.2 Stylus profilometry. Sample preparation 

Epoxy resin (Bonda clear casting resin, UK) was used to embed the teeth, using plastic rings 

(Samplkups, 30mm diameter, Buheler, UK) of 30 mm diameter. Each specimen was encased 

in resin, but leaving the facial surface exposed. Each tooth was oriented so as that its labial 

surface would be parallel to the shearing force (see figure 7.3). 

 Bracket 

Standard Edgewise central incisor orthodontic brackets (0.022-inch slot, Orthocare, UK) were 

used for bonding to bovine teeth. The average surface area of the bracket base was measured 

using digital Vernier callipers (Mitutoyo Digimatic, Japan) and it was 11 mm² (0.2) based on 

measuring width and length of the base of 10 brackets. 

 Bonding procedure 

The teeth were polished for 10 seconds using fluoride/oil free prophy paste (Orapol polishing 

paste, S.S. White Group, UK) using a prophy cup (Junior Rubber Prophy Cups, UK) attached 

to a slow hand-piece see table 7.2. The teeth were washed and dried for 10 seconds using oil 

free compressed air. Acid etchant (36% conditioner, Dentsply, UK) was used to etch the enamel 

surface for 30 seconds before thorough rinsing and drying for another 30 seconds using 

compressed air until the enamel surface appeared chalky white. A thin coating of Heliobond 

(Ivoclar Vivadent, Uk) was used as a primer before applying the bracket, coated with the 

experimental material. The bonded interface was light cured for 20 seconds from each side (80 

seconds in total) at a 3-5 mm distance at 45 degree angle using bluephase® 20i LCU emitting 

1130 mW/cm2 intensity (measured using Coltolux Intensity Meter, Germany). The cordless 

Bluephase LCUs were returned to their battery chargers after each specimen was cured. For the 

comparator group Transbond® XT primer (3M Unitek , UK) was used with Transbond® XT 

(Unitek, UK) adhesive according to the manufacturer’s instructions and light cured as above. 
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21 samples were prepared for each group for each experiment. The first group (30 MINUTES) 

were tested after 30 minutes of water storage and the second group (30 DAYS) were stored in 

phosphate buffer saline (PBS) (phosphate buffer saline, Sigma Aldrich, UK) at 37 °C for 1 

month. The storage solution was changed every week. 

Table 7.2 Commercial materials used in this study. 

Names Type Manufacture Composition 

Heliobond Primer Ivoclar Vivadent BisGMA 60% TEGDMA 40% 

DeTrey® 

Conditioner 36 

Acid etchant DENTSPLY 

DeTrey GmbH 

Phosphoric acid 36% 

Transbond TM XT Light cure 

orthodontic 

adhesive 

3M Unitek Silane treated quartz, BisGMA, 

Silane treated silica, Bisphenol A 

Bis(2-Hydroxyethy ether) 

Dimethacrylate ,Diphenylidonium, 

Hexafluorophosphate 

KetacTM Cem 

radiopaque  

Glass ionomer 

luting cement 

3M ESPE Powder: Glass powder, 

Polycarboxylic acid 

Liquid: Water, Tartaric acid 

Transbond XT 

Primer 

Primer 3M Unitek BisGMA, TEGDMA, 

Triphenylantimony, 4-

(Dimethylamino)-benzene ethanol, 

Dl-camphorquinone, 

Hydroquinone.  

Orapol 

Prophylaxis paste 

Dental cleaning 

pastes 

S.S. White 

Group, UK 

- 

Standard 

Edgewise Twin 

Bracket 

Upper Central 

Incisor. Wide 

0.022-inch slot  

Orthocare, UK  
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 Debonding and shear bond strength (SBS) 

All samples were mounted in a universal testing machine (Instron model 5567, Berks, UK) with 

the enamel surface parallel to the direction of the applied force. Shear bond strength was 

measured using the wire loop technique by threading a stainless steel orthodontic wire (0.6 mm) 

under the gingival wings of the bracket and then attaching this wire to a specially made holder 

in the machine at a cross head speed of 1mm/min see figure 7.3. The force required to debond 

the bracket was recorded in (N) using a 1KN load cell. The SBS was determined by dividing 

the debonding force over the surface area of the bracket using Equation 7.1. A typical force of 

120 N for Transbond XT was measured see figure 7.4. The average surface area of the bracket 

base was measured using digital Vernier callipers (Mitutoyo Digimatic, Japan) and it was 11 

mm² (0.2) based on measuring width and length of the base of 10 brackets. 

Equation 7.1                      Shear force (MPa) =
Debonding force (N)

area (mm2)
 

 

  

Figure 7.3 Shear bond strength testing setup. 
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Figure 7.4 Representative force displacement of one sample of Transbond XT group at day 

30.  

 Adhesive Remnant Index 

The debonded samples were examined under a stereomicroscope, using 10X magnification to 

assess the mode of failure. The enamel surfaces were scored according to adhesive remnant 

index (ARI) (Artun and Bergland, 1984) score (0) no adhesive left on the tooth; score (1) less 

than half of the adhesive left on the tooth; score (2) more than half of the adhesive left on the 

tooth; and score (3) all adhesive left on the tooth with a distinct impression of the bracket mesh. 

 Statistical analysis 

All data were analysed using statistical software (SPSS 19 for windows, IBM SPSS Inc., USA). 

The Shapiro-Wilk test was used to test normality of the data. The Roughness and SBS data 

were normally distributed. One-way ANOVA and post hoc Tukeys test were used to determine 

statistically significant differences between groups at the 5% level (P<0.05). Kruskal–Wallis 

and Mann–Whitney tests were used to determine significant differences in ARI scores between 

groups at P<0.05. 

7.4 Results 

 Roughness of bovine enamel sections 

Figures 7.4, 7.5 and 7.6 show similar mean profile roughness of the right left and middle 

sections. The Ra values are shown in table 7.3 there was no significant differences in Ra 

between sections (ANOVA, Tukeys test P<0.05). 
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Table 7.3 Mean Ra. 

Bovine tooth sections Mean Ra (µm) / (SD) 

R 4.2 (1.4) 

L 4.3 (1.6) 

M 6.2 (1.3) 

 

Figure 7.5 Typical stylus profilometry profile of the right section. 

 

Figure 7.6 Typical stylus profilometry profile of the left section. 
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Figure 7.7 Typical stylus profilometry profile of middle part. 

 Shear bond strength (SBS). 

Bond strengths of the experimental materials were significantly decreased at 30 days compared 

to 30 mins (p<0.05, one-way ANOVA) and were lower than Transbond XT (p<0.05). Neither 

the 4-META nor NaF affected the SBS of the material (p<0.05) see table 7.4 and figure 7.7. 

Table 7.4 Mean SBS of all experimental groups and the comparator group. 

Experimental groups SBS Mean (SD) 

30 mins 30 days 

10:0 10%A 0%M 4.8 (1.1)a 1.7 (0.7)b 

10:0 10%A 10%M 4.1 (1.8)a 1.6 (0.7)b 

9:1 10%A 10%M 6.2 (1.4)a 2.3 (1)b 

9:1 5%A 10%M 5.8 (1)a 2.7 (1)b 

Transbond XT 12.8 (2)c 16.4 (4.6)c 

Superscript letters indicate no significant differences between groups. 
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Figure 7.8 Mean SBS of all experimental groups and the comparator group 

 Adhesive Remnant Index  

Kruskal-Wallis test showed highly significant differences at 30 minutes and 30 days (P<0.05). 

Mann-Whitney test showed that all experimental groups at 30 minutes had significantly lower 

ARI score than Transbond XT (P<0.05). At 30 days, the Mann-Whitney test revealed 

Transbond XT had significantly higher ARI score than groups 9:1 at (P<0.05) see Table 7.5.
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Table 7.5 ARI of all experimental groups on bovine teeth. 

Experimental groups ARI 

0 1 2 3 

30 mins 

10:0 10%A 0%M 2 17 2 0 

10:0 10%A 5%M 0 17 4 0 

9:1 10%A 0%M 0 17 4 0 

9:1 10%A 5%M 0 18 3 0 

Transbond XT 0 1 8 12 

30 days 

10:0 10%A 0%M 0 2 12 7 

10:0 10%A 5%M 1 4 12 4 

9:1 10%A 0%M 1 5 14 1 

9:1 10%A 5%M 2 6 9 2 

Transbond XT 0 3 10 8 

7.5 Discussion 

Bond strength is an important factor that determines success and efficacy of orthodontic 

treatment. In the current study some experimental groups (9:1) were chosen for SBS study to 

investigate the clinical performance (bond strength of the developed materials). Previous results 

had shown that the group 9:1 had fluoride release and recharge, together with reasonable DoC. 

In addition, the 9:1 groups were had a lower solubility than other experimental groups. To test 

the SBS of the materials bovine teeth were used to bond orthodontic brackets using 

experimental materials and then debonding them for measuring SBS. 

Bovine teeth are not identical to human teeth in either chemistry or micro-structure (Yassen et 

al., 2011), however, they have been suggested as a useful substitute to human teeth in 

orthodontic bonding tests (Oesterle et al., 1998) and have been used before in many bond 

strength studies (Klocke and Kahl-Nieke, 2005; Yamamoto et al., 2006; Parrish et al., 2011). 

In the current study bovine central incisors were used, due to their relatively flat buccal surface 

allowing us to bond to intact surface. The bovine central incisors were large enough to be 
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dissected into three sections, giving sufficient samples for a meaningful sample size. It was 

decided to take 21 specimen per each group. It was based on previous studies which are mostly 

taken between 15 - 30 samples per group as mentioned in literature review see (Table 2.1) 

(Evans et al., 2002; Swanson et al., 2004; Klocke and Kahl-Nieke, 2005; Su et al., 2010; Parrish 

et al., 2011; Yoshida et al., 2012; Vinagre et al., 2014). Previously bovine teeth have been 

sectioned to remove the incisal edge and root  prior to bond strength testing (Farret et al., 2012). 

Human premolars have also been dissected into buccal and lingual sections in many studies 

(Parrish et al., 2011). Even buccal surfaces of premolars dissected in to right and left to increase 

sample size (Chow et al., 2011)  

A study has shown that the topography of the adherent surface (bovine enamel and dentine) can 

affect bonding of a resin based adhesive system (Eick et al., 1972). While others has been 

previously shown that there is no correlation between roughness and adhesive bond strength in 

a range of studies (Jung et al., 1999; Barkmeier et al., 2009; Sabatoski et al., 2010). Therefore, 

in order to know if there is any effect due to roughness on bond strength, it was decided to 

measure the roughness of the specimen. The roughness of each section was investigated to 

determine if there was any difference in roughness between different sections.  No significant 

differences were found between different sections of bovine teeth. Stylus profilometry was used 

to investigate the roughness profile of each sections of bovine teeth (Sabatoski et al., 2010). In 

this study, stylus profilometry was used as it can measure samples with larger size and scale in 

comparison with atomic force microscopy.  

While many studies have used both bovine and human enamel with an intact surface, some 

studies have used a ground enamel surface to obtain a flat substrate. This was to overcome the 

roughness variability of the substrate (Gibb and Katona, 2006). However, in the current study 

intact enamel surface was used for some reasons. Firstly there was no significant differences in 

the roughness between different sections. Secondly, the procedure of grinding of the outer most 

enamel surface is inappropriate if attempting to replicate clinical conditions (Eliades and 

Brantley, 2000), in addition, extra variability may arise in the roughness as well as in the 

thickness of the remaining enamel after grinding as this is difficult to control (Schneider et al., 

1981). In terms of the impact of grinding the tooth surface on bond strength, this is controversial 

in the literature. Some studies have shown increasing bond strength on ground surfaces 

compared to the intact enamel surface of (Hadad et al., 2006), while others report no difference 

in the bond strengths (Perdigao and Geraldeli, 2003). In general using an intact enamel surface 

better replicates the clinical situation. 

The enamel surfaces were prepared by polishing and etching. An enamel conditioner, which 

was composed of 36% phosphoric acid, was used to etch the enamel surface for 30 seconds. 
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This is has been used previously in studies using bovine teeth with etching for 30 seconds 

(Oesterle et al., 1998; Shinchi et al., 2000). 30 seconds of acid etching has been recommended 

for cleaning and producing a proper etch (Gardner and Hobson, 2001). No differences were 

found in the tensile bond strength of enamel to composite resin when bovine enamel surfaces 

were treated with phosphoric acid between 3% to 65%  for 30 seconds (Shinchi et al., 2000). 

After etching, the enamel surface was painted with a primer. A primer with a very simple 

structure compared to other available commercial primers, based on 40 wt% BisGMA and 60 

wt% TEGDMA, was used to paint the enamel surface prior to application of the experimental 

material and brackets. The reason was to choose a primer that should be compatible with 

experimental materials. The data would suggest the primer and experimental resin were 

compatible as few failures were observed entirely at the tooth – experimental resin interface. In 

addition, there are some in vitro studies showing no significant difference in orthodontic bond 

strength between using a primer or without using it (Chalgren et al., 2007). A randomized 

clinical trial has shown no significant difference in the failure rate between using primer 

(11.1%) and without primer (15.8%) for a period of 12 months using pre-coated  brackets 

(Nandhra et al., 2015). While, for the Transbond XT the Transbond XT primer was used as 

supplied with the adhesive by manufacturer.  

During treatment and debonding, orthodontic brackets are exposed to combination of forces in 

many directions. Therefore, different modes of applying force have been used for testing 

orthodontic bond strength such as torsion, tensile and shear/peel loading. The most commonly 

used method is shear bond strength (SBS). Many methods have been used to apply shear such 

as wire loops and steel blades or rods (Rognvald and Peter, 2001; Lamper et al., 2012; Shooter 

et al., 2012; Vinagre et al., 2014). As mentioned in the literature review, there are some advantages 

and disadvantages of each technique. In the current study the wire loop method was used as it is 

considered to more closely resemble the clinical situation compared to using a blade 

(Mojtahedzadeh et al., 2006). 

Debonding was undertaken at two time points at 30 minutes and 30 days after curing of the 

bonded interface. Most studies have measured bond strength 24 hours after a bracket has been 

bonded (Arnold et al., 2002), which is different to the clinical scenario where load would be 

applied shortly after bracket placement, as most clinicians activate orthodontic appliances 

within 10-15 minutes of the appliance placement. Studies have demonstrated higher SBS at 24 

hours compared to 30 minutes after bracket bonding using a range of filled and unfilled 

BisGMA, UDMA and TEGDMA based commercially available orthodontic adhesives (Bishara 

et al., 1999; Yamamoto et al., 2006; Su et al., 2010; Yoshida et al., 2012; Vinagre et al., 2014). 

In the current study bond strength was taken after 30 minutes to more closely simulate the 
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clinical scenario. Another SBS measurement was taken after storage in PBS for 30 days, to 

investigate longer term performance of the materials. PBS was used because it has neutral pH 

in comparison to DW which is acidic and might demineralize the enamel surfaces and affect 

the SBS results.  

The results showed no significant differences between different sections of the teeth. The initial 

bond strength (30 minutes) was nearly 5-6 MPa which was significantly lower than Transbond 

XT. However, this is near the range that considered to be acceptable clinically (6-8 MPa) 

(Reynolds, 1975). The low bond strength of the experimental materials compared to the 

Transbond XT was related to the fact that it was based on a linear co-polymer of HEMA and 

MMA which are both linear and less crosslinked compared to a highly crosslinked nature of 

BisGMA of the Transbond XT. Experimental materials form linear structure after 

polymerization (Imai and Ikeda, 1997; Tsuruoka et al., 2007). This resulted in a more flexible 

polymer (Tay et al., 2002a; Kim et al., 2014). This may contribute in making debonding of the 

experimental materials easier and safer than Transbond XT (Kim et al., 2014). One of  the 

primary aims for the developing of the current experimental materials was to make it easier and 

safer at debonding compared to composite resin based orthodontic adhesives which can result 

in enamel loss during debonding and adhesive removal (Ireland et al., 2005; Kim et al., 2014). 

The results of the SBS test also showed that the SBS of the experimental materials decreased 

after being in PBS for 30 days, to an unacceptably low value (2 MPa). This is probably due to 

presence of 40% of HEMA in the material, which leads to high water absorption (Arima et al., 

1995; Van Landuyt et al., 2007; Su et al., 2010). The water absorbed by the materials reduces 

the frictional forces between polymer chains, plasticising them, negatively affecting the 

mechanical properties of the polymer (Sideridou et al., 2007). This is supported by the data of 

water sorption in which the group 9:1 demonstrated high water sorption which was significantly 

higher than Transbond XT. Transbond XT showed a slight increase in SBS at 30 days compared 

to 30 minutes, which may be attributed to continued post curing polymerization of the resin 

during storage (Al-Ahdal et al., 2015). The higher the DoC the higher mechanical properties of 

the material. However, these were not significantly different. 

4-META has been widely used as an adhesion promoting monomer to increase the bond 

strength of adhesive resins to enamel, amalgam, gold alloy, metal alloys and porcelain (Ohno 

et al., 1992; Björn et al., 1995; Büyükyilmaz et al., 1995; Zachrisson et al., 1996; Minami et 

al., 2013). It was shown that using 4-META at 5% with acetone as a primer increases bond 

strength of 4-META/methyl methacrylate (MMA)-tri-n-butyl borane adhesives resin to dentine 

(Nakabayashi and Hiranuma, 2000). It has been also shown that 4-META containing adhesives 

had higher SBS than composite resin based orthodontic adhesives like Transbond XT (Clark et 
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al., 2003). In the current study, the SBS of the experimental materials was lower than Transbond 

XT. In addition, no significant differences were found between groups with and without NaF 

and 4-META, therefore the hypothesis “4-META increases bond strength of the experimental 

materials” was rejected. 

Previous work by Su et al. (2010) on a similar material showed bond strength results higher 

than those measured in our work. One possible reason for this difference could be due to 

different tooth structure, human teeth were used by Su et al (2010) compared to bovine teeth 

used in this study. A study has shown no significant differences in SBS values using bovine 

and human teeth in using a light cured composite resin  (Fowler et al., 1992), however, in this 

study only 10 samples were used per each group. In contrast, in most studies have shown higher 

SBS value in human teeth compared to bovine teeth (Oesterle et al., 1998; Rüttermann et al., 

2013). This could be due to the differences in crystal configuration and more lattice defects 

than human enamel (Fonseca et al., 2008; Tanaka et al., 2008) 

The ARI scores were used to determine the site of bond failure within each experimental and 

Transbond XT group. During debonding, the bond failure occurs either at bracket/adhesive 

and/or enamel/adhesive interface. The latter is more favourable since it contributes to minimise 

the time required and enamel loss after debonding (Fox et al., 1994). At 30 minutes, significant 

differences in ARI scores were observed for all experimental groups compared with the 

Transbond XT control material. All experimental materials had a preponderance of score 1 (< 

50% adhesive retained on the enamel surface). By contrast, Transbond XT was likely to leave 

adhesive on at least more than 50% of the bonded area of the tooth on half of the cases on the 

other half all adhesive left on the tooth surface (score 2). This would imply that there should be 

some differences in the materials when ease of clean up considered. Therefore, experimental 

materials may be more easily removed compared to Transbond XT. This might be due to the 

increased flexibility of the experimental materials which are MMA based resin in comparison 

to Transbond XT which is filled dimethacrylate-based resin. It has been shown that less enamel 

fracture occurs after debonding an experimental MMA based resin in comparison to 

conventional Transbond XT (Kim et al., 2014). At 30 days there was significant differences 

between Transbond XT and experimental groups. However, as the experimental materials bond 

strength was quite low the mode of failure may be relatively meaningless. When the ARI score 

of Transbond XT at 30 minutes compared to 30 days there was no significant differences in 

ARI score. This might indicate that 30 days water storage did not affect ARI and SBS of 

Transbond XT. 

For future work the bond strength of the experimental materials should be optimized. One 

suggestion may be decreasing the concentration of hydrophilic monomer HEMA to reduce 
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water sorption of the material, replacing part of the HEMA content with different monomers 

such as BisGMA or UDMA. As it has been shown that the mechanical properties of adhesive 

resins (such as compressive and flexural strength) can be improved by reducing hydrophilic 

monomers so as to reduce water sorption (Ling et al., 2009) In addition it was found that SBS 

increased with decreasing TEGMA (hydrophilic) in a base monomer of UDMA as an 

orthodontic adhesive (Papakonstantinou et al., 2013 ). 

Another suggestion might be adding some inorganic fillers and bioglasses to the material to 

increase bond strength of the materials as some studies have shown that addition of inorganic 

fillers increase bond strength of the orthodontic adhesives. Orthodontic adhesives with higher 

filler content offer higher bond strength than lower filled or unfilled resins (Faltermeier et al., 

2007). There is correlation between mechanical properties of composite (hardness and 

diametrial tensile strength) and the volume fraction of filler content (Chung and Greener, 1990). 

A final suggestion would be to consider replacing NaF with a more stable fluoride source such 

as CaF2 as a soluble salt or fluoraluminosilicate glass. CaF2 has a lower water solubility 0.016 

g/L at 18 °C in comparison to NaF which is 42 g/L at 20°C. Therefore it results in less release 

of fluoride ions from CaF2 in comparison to NaF in the first four weeks in a matrix of DU-

DMA/HEMA, BisGMA/HEMA (Kodkeaw et al., 2010). This resulted in releasing fluoride at 

a low sustained level for as long as 4 months in a polymer resin of UDMA/TEGMA at ratio 

70:30 (Anusavice et al., 2005). Transbond XT has a combination of hexafluorophosphate with 

silanated filler particles. Perhaps, mixing silanated filler particles with NaF may provide a way 

forward in developing fluoride releasing materials with better bond strengths.  Or perhaps using 

fluoraluminosilicate glass as a filler, as fluoraluminosilicate glass has been use as a fluoride 

source in GICs, RMGICs and compomers and has been shown to release fluoride at low levels 

for a long time.  

However, at each stage of further development of the materials care should be taken to monitor 

other properties of the material that are considered to be important, such as the fluoride release 

and setting characteristics of the material as well as bond strength of the material.

7.6 Summary 

Whilst the experimental materials demonstrated lower bond strengths in comparison to 

commercially available orthodontic adhesive, particularly after water storage, the initial bond 

strength (after 30 minutes) was close to the range that is considered an acceptable bond strength 

for orthodontic adhesives at 6-8MPa. In addition to that, the developed materials had lower ARI 

score indicating less adhesive remains on the enamel surface after debonding, which may 

contribute to less enamel damage at debond by reducing the need for adhesive removal, which 
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is usually undertaken with a steel bur. So the experimental materials, whilst exhibiting lower 

bond strengths leave less adhesive remnant than commercially available orthodontic adhesives. 

However, the developed materials had lower bond strength after being in water for a month due 

to presence of HEMA in the materials which absorbed water, resulting in plasticization of the 

material by water. Therefore these materials need further development to be used as an 

orthodontic adhesive. Future work should aim to optimize the bond strength of the material 

with consideration to maintaining key important properties of the materials such as fluoride 

release and setting characteristics of the materials. 

.
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 General discussion 

8.1 Introduction 

White spot lesions (WSL) are one of the most common problems during fixed orthodontic 

treatment, they compromise one of the primary aims of the treatment, which is to improve 

esthetics. Fluoride releasing orthodontic adhesives are potentially one of the methods to prevent 

WSL, with some evidence in the literature to support their use (Corry et al., 2003; Gorton and 

Featherstone, 2003). A number of studies have focused on developing new fluoride releasing 

adhesives, the majority of which aimed at developing materials suitable for use as an 

orthodontic adhesive. Su et al. (2010) developed an MMA-based fluoride containing material, 

which showed potential for use as a fluoride releasing orthodontic adhesive. The present study 

was designed to further develop this material for use as an orthodontic adhesive. During this 

development the ideal properties of orthodontic adhesives were used as a focus for the 

experimental work. 

The ideal properties of an orthodontic adhesive were explored in detail in the literature review 

and the following characteristics were identified. Firstly, the adhesive should possess good 

handling characteristics, in particular viscosity and setting characteristics of the materials. 

Secondly, the materials should have fluoride release to help prevent WSL. Thirdly, the materials 

should have an adequate bond strength to minimize debonding during treatment, but be easily 

removed at the end of treatment (Mandall et al., 2003). Therefore during developing the 

materials the focus was on keeping and improving these key important properties of the 

materials without deteriorating by further development. 

8.2 Methodological considerations 

Four experimental groups were prepared in this study based on fluoride content including group 

10:0, that contained no fluoride representing a control group, group 9:1 with 10% fluoride, 8:2 

with 20% fluoride and 7:3 with 30% fluoride (Su et al., 2010; Zahroon, 2014; Al-Sammarraie, 

2015). Sodium fluoride (NaF) was used as a source of fluoride in this study as NaF is a very 

soluble salt that easily dissolves to free Na and F ions in an aqueous environment (Nakajo et 

al., 2009). NaF has been used before as a source of fluoride in orthodontic adhesives and in 

fissure sealants (Shen et al., 2007; Zahroon, 2014). To make the materials absorb water more 

easily, HEMA was incorporated due to its hydrophilic nature which facilitates water sorption 

into the material. (Yiu et al., 2006; Kodkeaw et al., 2010). HEMA was used with MMA at 

40:60wt% as it has previously been shown to be the best ratio to provide fluoride release after 

NaF addition (Su et al., 2010). To make bracket debonding easier and safer, MMA was chosen 

as a linear monomer as it is easily polymerized and has successfully been used in a commercial 

file:///H:/My%20desk%20documents/word%20writing/Thesis/Result%20chapters/Chapter%20%204/Chapter%201%20V2%20HMI_SLR.docx%23_ENREF_49


209 

 

orthodontic adhesive with PMMA and 4-META (Super-Bond, MCP Bond®). PMMA powder 

was used as an organic filler as it is compatible with MMA. PMMA is a linear polymer with 

low density chains (Ferracane et al., 1998; Ferracane, 2006) which results in a softer, more 

flexible and potentially weaker material (Gorelick et al., 1978). Therefore, less enamel loss and 

fracture is seen after debonding a MMA-based orthodontic adhesive in comparison to a 

conventional BisGMA/TEGMA based composite resin (Brown and Way, 1978; Su et al., 2010; 

Kim et al., 2014). 

In this work the experimental materials were developed by adding acetone, to decrease 

viscosity, then different photoinitiators were investigated and finally, 4-META was added to 

potentially increase the adhesion between the materials and a stainless steel bracket. 

8.3 The “Ideal” orthodontic adhesive 

  Handling properties 

To improve the handling properties of the experimental material, acetone was added at five 

concentrations, namely 0%A, 10%A, 20%A, 30%A and 40%A, to decrease viscosity of the 

materials. With increasing acetone concentrations the injectability of the materials increased, 

indicating that the viscosity of the materials was decreased, creating a material with handling 

properties more suitable for clinical use. However, the addition of acetone may affect setting 

characteristics and fluoride release of the materials. Measurement of DoC and heat release at 

different acetone concentrations indicated that the effect was not detrimental at low 

concentrations up to 20%A. The materials still continued to release fluoride after acetone 

addition for as long as 160 days, comparable to a commercial GIC. Therefore the first 

hypothesis “The addition of acetone will result in decreased viscosity of the material without 

deteriorating DoC, heat release, fluoride release of the material” was accepted, as acetone up to 

20% can be used to decrease viscosity of the materials without deteriorating setting 

characteristics and fluoride release of the materials. Thus all experimental materials at 0%A, 

10%A and 20%A were taken for further development, investigating different photoinitiators to 

reduce curing time to a clinically acceptable level. 

Different photo-initiators were investigated at different concentrations in order to obtain 

maximum DoC at shorter exposure time. For this CQ, with either DMAEMA or EDAB as 

activator, and Lucirin TPO were used, the former as a most commonly used photo-initiator in 

dental adhesives and the latter as a relatively new photo-initiator. The DoC was taken as it has 

effect on mechanical and physical properties of the materials. The higher the DoC the greater 

the mechanical and physical properties of the materials (Ferracane and Greener, 1986; 

Calheiros et al., 2008; Price et al., 2011). The results showed that the DoC increased with 
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increasing CQ concentrations. In addition, the results also showed that DoC of CQ with 1% 

DMAEMA was higher than with 1% EDAB activator. Therefore, the second hypothesis, which 

is “The degree of conversion (DoC) of the material will increase with increasing photo-initiator 

concentrations” was accepted. The results also showed that all experimental groups with 

Lucirin TPO polymerize faster and with a highest DoC than groups with CQ. However, CQ 

was taken for further developing of the materials as CQ is still the most commonly used photo-

initiator, and secondly, Lucirin TPO has a low depth of cure according to literature (Leprince 

et al., 2011; Miletic and Santini, 2012a; Schneider et al., 2012). This low depth of cure might 

be an issue for adhesion of orthodontic adhesives as they are light cured under metallic brackets 

which block light transmission. This may result in low DoC of the part of adhesive far from the 

LCU tip consequently results in low mechanical properties of the adhesive and low bond 

strength. Therefore, CQ at 1% with 1% DMAEMA was taken for further development of the 

materials. However, experimental groups containing 20%A acetone were omitted from further 

experiments as at 40 seconds of light curing (considered an acceptable curing time for 

orthodontic bonding) some of the experimental groups (group 7:3) excluded low DoC (below 

40%). 

 Fluoride release 

Fluoride release of the experimental materials was one of the focuses of this study. Therefore, 

at each stage of development the fluoride release of the materials was measured to make sure 

that changes made do not significantly deteriorate the fluoride release of the experimental 

materials. In this study NaF was used as a source of fluoride as it is a very soluble salt and it is 

easily dissolves to free Na+ and F- ions (Nakajo et al., 2009). HEMA was used as a hydrophilic 

monomer to facilitate water diffusion and consequently fluoride release. HEMA makes the 

materials absorb water more easily as HEMA is hydrophilic and facilitates water sorption and 

diffusion into the material and consequently releasing fluoride (Arima et al., 1995; Yiu et al., 

2006; Van Landuyt et al., 2007; Kodkeaw et al., 2010; Su et al., 2010). Therefore, HEMA was 

used with MMA at 40:60wt% as it has previously been shown to be the best ratio to provide 

fluoride release after addition of NaF (Su et al., 2010). All experimental materials had released 

fluoride up to 160 days of water storage. Interestingly, the fluoride release level up to 160 days 

was within the range that considered to be effective for prevention of enamel demineralisation 

which is daily fluoride release of about 0.63 to 1.3 μg/cm² is (McNeill et al., 2001). More 

interestingly all experimental materials had recharged and subsequently released fluoride after 

being exposed to 1000 ppm NaF solution. 
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Water sorption and solubility were also measured to better understand the fluoride releasing 

ability of the materials. The water sorption of the experimental materials is attributed to the 

HEMA monomer. Acetone addition to the experimental materials seems to increase water 

sorption and fluoride releasing ability of the materials (Malacarne-Zanon et al., 2009). This was 

due to increasing porosity within the materials after acetone evaporation. The solubility of the 

experimental materials increased with increasing NaF concentrations, with higher fluoride 

content correlating with greater solubility. 

The presence of NaF provides high levels of fluoride release of the experimental materials. One 

of the disadvantages of using water soluble salts like NaF, KF, CaF2 and SnF2 is that once the 

fluoride has leached out it leaves porosity in the resin. This was seen in SEM images the higher 

the fluoride content the higher number of voids. It has been shown previously that leaching out 

soluble salts like NaF and CaF2 from a resin based material will affect mechanical properties 

of the material (Arends et al., 1995). Therefore, one of the recommendations for further study 

might be testing other less soluble sources of fluoride like fluoride releasing glasses. 

 Bond strength  

4-META was added as an adhesion promoting monomer with the aim of increasing the bond 

strength of the materials to enamel. However, this addition should not be to the detriment of 

DoC and the fluoride release of the materials. The results showed that all experimental groups 

still had acceptable DoC, fluoride release and fluoride recharge after 4-META addition. Group 

9:1 demonstrated good fluoride release and recharge and reasonable DoC and it also had lower 

solubility than the other of the fluoride releasing groups, therefore, it was selected as the “best” 

material for bond strength testing.  

Measurement of the SBS indicated that 4-META addition did not increase the SBS of the 

materials. Also the SBS of all experimental groups decreased after being in water for 30 days. 

Therefore, the third hypothesis “The addition of 4-META will increase the bond strength of the 

material without deteriorating the DoC, fluoride release and recharging ability of the material” 

was partially accepted, as there was no detrimental effect of 4-META on these properties. 

However, the bond strength was not changed after 4-META addition. Perhaps increasing 4-

META concentration for future is an option to increase bond strength. Or reducing the 

concentration of HEMA to improve the mechanical properties of the material. As it has been 

shown the mechanical properties of adhesive resins (such as compressive and flexural strength 

) can be improved by reducing hydrophilic monomers so as to reduce water sorption (Ling et 

al., 2009). However, presence of a hydrophilic monomer is necessary to maintain the ability of 

the materials to release fluoride. 
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8.4 Is the experimental material an “Ideal Orthodontic Adhesive”? 

The group 9:1 was considered the “best” fluoride containing experimental material and was 

therefore compared to commercially available materials. Transbond XT was taken as the gold 

standard commercial material to compare the bond strength, water sorption, solubility and DoC. 

To compare fluoride release and recharge a glass ionomer, Ketac-cement, was taken as a 

commercial comparator.  

The developed materials, particularly group 9:1, have some potential for use as an orthodontic 

adhesive, although further development is required. The materials exhibited a DoC similar to 

Transbond XT. They also exhibited fluoride release and recharge levels similar to Ketac-

cement. Therefore, the experimental materials have the potential to reduce decalcification and 

caries around orthodontic brackets, an advantage over many commercial adhesives. However, 

the developed materials had lower bond strengths in comparison to Transbond XT. Whilst the 

initial SBS was near the range that is generally considered to be acceptable clinically at 6-8MPa 

(Reynolds, 1975), after storage the bond strength was disappointingly low. 

After water storage for 30 days the bond strength of the experimental materials had dramatically 

decreased compared to the initial bond strength. The most likely reason for this was due to the 

plasticizing effect of water on HEMA. The water absorbed by the materials reduce the frictional 

forces between polymer chains which can in turn negatively affected the mechanical properties 

(tensile and flexural strength) of the polymer (Sideridou et al., 2007). The primary aim of using 

HEMA was to make the materials absorb water more easily and to facilitate water diffusion and 

fluoride release. The second reason is flexibility and porosity of HEMA polymers (Tay et al., 

2002a) which might allow easier debonding at finishing. More flexible resins have been shown 

to leave less enamel fracture and adhesive remnants compared to filled dimethacrylate-based 

resin (Kim et al., 2014).  

The developed materials had lower adhesive remnant index (ARI) scores compared with the 

Transbond XT indicating less adhesive remained on the enamel surface after removal. All 

experimental materials had a preponderance to score 1 (< 50% adhesive retained on the enamel 

surface). By contrast, Transbond XT was likely to leave adhesive on at least more than 50% of 

the bonded area of the tooth on half of the cases on the other half all adhesive left on the tooth 

surface (score 2). So the developed materials tend to detach from the enamel surface rather than 

the bracket surface. This could potentially reduce the need for aggressive removal of adhesive 

remnants after treatment reducing the likelihood of enamel damage. Therefore, the fourth 

hypothesis “the properties of the experimental materials would not differ significantly from 

those of the controls (GIC and Transbond XT)” was partially accepted, as the DoC and fluoride 
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release of the materials were comparable with the commercial comparators. However, the bond 

strength of the experimental materials is lower than Transbond XT and it was significantly 

reduced after being in water for 30 days. Therefore, the experimental materials have potential 

to use as an orthodontic adhesive, however, they require further development, particularly to 

improve their stability.  

8.5 Conclusions and suggestions 

Within the limitations of this work and based on the results found in this thesis, the developed 

materials have potential to use as an orthodontic adhesive however, they require further 

development. 

The following recommendations may be made to improve the current developed material 

focusing on optimizing the bond strength of the materials. However, care should be taken during 

further development to monitor other properties of the material that are considered important 

for a fluoride releasing orthodontic adhesive, such as fluoride releasing and recharging, in 

addition to having optimal setting characteristics. 

1- Reduce HEMA content and replace it with a more stable and less hydrophilic monomer. 

However, all hydrophilic component cannot be completely removed as this will have a 

significant impact on fluoride release. Different types of monomers such as UDMA should be 

trialed, together with monitoring the rheological properties of the materials. 

2- The combined effect of HEMA and 4-META needs to be studied in order to obtain improved 

bond strength. 

 3- Improvement of the mechanical properties of the experimental acrylic resin could be 

investigated by adding other type of fillers. Probably adding some glass fillers to replace part 

or all of polymethylmethacrylate powder.  

5- Different fluoride sources may be recommended. Replacing NaF with a more stable fluoride 

source such as fluoraluminosilicate glass. Fluoride investigation in this study was 28 days, a 

longer study is suggested to examine the fluoride release for longer than 28 days and compare 

it with commercially available GIC. 

6- Using silanated filler particles with the NaF may provide a way forward in developing 

fluoride releasing materials with better bond strengths 

7- Further investigation is required to improve handling characteristics of the experimental 

materials and to investigate orthodontist’s preference in terms of viscosity of the orthodontic 

adhesive. 
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 Appendices 

Appendix 1: 

The current project was a continuation of previous work by Su et al., (2010). I will therefore 

summarize the previous findings of Su, and compare them with current findings. Su et al., 

(2010) developed a new experimental fluoride releasing acrylic resin for using as an orthodontic 

adhesive. The material was based on MMA and HEMA liquids with NaF and PMMA added as 

powder, to act as a filler and as a source of fluoride (see table 10.1 below). Varying 

concentrations of these materials were used. This material was chemically cured, the PMMA 

powder contained a BPO chemical initiator, with a long setting time of 3-4 minutes. This would 

potentially make it difficult to use clinically, even as an orthodontic adhesive. In the current 

project a ratio of 60:40 HEMA/MMA was chosen to make four experimental groups with 

varying concentrations of PMMA:NaF (see table 10.2). CQ and DMAEMA was used as a 

photo-initiator. 

Su’s materials demonstrated fluoride release over a period of at least 16 weeks as shown in 

figure 10.1. The current experimental materials also demonstrated fluoride release, which was 

measured for 4 weeks (figure 10.2). Su’s materials and the current experimental materials 

demonstrated relatively similar heat release during polymerization (see table 10.3). 

Shear bond strength measurements were taken for Su’s materials and the current experimental 

materials. The primary difference in the two experiments, apart from varying materials 

constituents was the type of teeth, human teeth were used in the earlier work compared to bovine 

teeth in the current work (see table 10.3). The SBS of Su’s materials was shown to be 

comparable to commercial orthodontic adhesives and was not significantly adversely affected 

by storage. In comparison the bond strength of the current experimental materials was lower 

than that of commercial materials and decreased after storage in water for 30 days (see table 

10.3). 

Findings from studying the ARI were similar between Su’s materials and the current work, 

despite the fact that a different ARI scoring system was used (see tables 10.4 and 10.5). A 

modified adhesive remnant index (ARI) analysis was used by Su, including a score for enamel 

fracture. 
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Table 10.1 Experimental groups of Su et al., (2010) study. 

Experimental groups PMMA NaF MMA% HEMA% 

Ex1 90 10 60 40 

Ex2 95 5 60 40 

Ex3 90 10 90 10 

Control group 1 100 - 100 - 

Control group 2 (GIC) KetacTM Fil Plus (3M ESPE, Germany), glass ionomer 

cement 

Control group 3 Transbond XT Transbond XT (3M Unitek, USA), composite luting 

material 

 

Table 10.2 Experimental groups of the current project 

Experimental 

Materials 

PMM

A% 

NaF% Acetone% 4-META% Other components 

10:0 0%A 0%M 100 0 0 0 Monomers: 

40% HEMA 

60% MMA 

Photo-initiator system: 

1% CQ 

1% DMAEMA 

10:0 0%A 5%M 100 0 0 5 

10:0 10%A 0%M 100 0 10 0 

10:0 10%A 5%M 100 0 10 5 

9:1 0%A 0%M 90 1 0 0 

9:1 0%A 5%M 90 1 0 5 

9:1 10%A 0%M 90 1 10 0 

9:1 10%A 5%M 90 1 10 5 

8:2 0%A 5% M 80 2 0 0 

8:2 0%A 5%M 80 2 0 5 

8:2 10%A 0%M 80 2 10 0 

8:2 10%A 5%M 80 2 10 5 

7:3 0%A 0%M 70 3 0 0 

7:30%A 5%M 70 3 0 5 

7:3 10%A 0%M 70 3 10 0 

7:3 10%A 5%M 70 3 10 5 

Ketac-cement Ketac-Cem (3M ESPE, Germany), glass ionomer cement 

Transbond XT Transbond XT (3M Unitek, USA), composite luting material 
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Figure 10.1 Mean daily flouride release of Su et al., (2010) materials over a period of 16 

weeks. 

 

 

Figure 10.2 Mean daily fluoride release from the group 9:1 and Ketac cement over a period of 

4 weeks. 
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Table 10.3 Comparison of SBS and heat release between current project and Su et al., (2010) 

results: 

 Groups SBS MPa (SD)  Heat release 

at 30 min at 30 days Type of teeth 

used 

Su Li groups Ex1 15.41 (2.92) 15.09 (3.19) Human 

premolar 

135.33 (6.5) 

Ex2 17.11 (3.46) 14.85 (2.89) 141.33 (12.1) 

Ex3 17.12 (2.80) 19.78 (3.93) 134.67 (4) 

Control 3 13.26 (3.79) 25.81 (5.62) - 

Current 

experimental 

groups 

9:1 10%A 

0%M 

6.2 (1.4) 2.3 (1) Bovine teeth 122(10) 

9:1 10%A 

5%A 

5.8 (1) 2.7 (1) - 

Transbond 

XT 

12.8 (2) 16.4 (4.6) - 
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Table 10.4 ARI of the the Su et al., (2010) experimental groups.   

Experimental groups ARI score 

1 2 3 4 5 10 

30 mins 

Ex1 1 6 3 8 0 0 

Ex2 1 5 6 6 0 0 

Ex3 1 10 3 4 0 0 

Transbond XT 0 4 5 9 0 0 

30 days 

Ex1 2 10 2 3 1 0 

Ex2 3 10 4 1 0 0 

Ex3 4 7 4 3 0 0 

Transbond XT 0 3 7 4 0 4 

Score 1 is assigned when no adhesive remained on the enamel; 2, when 90% of the enamel base 

area is covered with adhesive; 3, when 10% – 90% of the surface was covered with residual 

adhesive; 4, when >90% of the enamel base area was covered with adhesive; and 5 when all 

adhesive remains on the enamel surface, along with a clear imprint of the brackets base. A score 

of 10 is recorded when enamel fracture has occurred. 
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Table 10.5 ARI of the current experimental groups on bovine teeth. 

Experimental groups ARI score 

0 1 2 3 

30 mins 

9:1 10%A 0%M 0 17 4 0 

9:1 10%A 5%M 0 18 3 0 

Transbond XT 0 1 8 12 

30 days 

9:1 10%A 0%M 1 5 14 1 

9:1 10%A 5%M 2 6 9 2 

Transbond XT 0 3 10 8 

Score 0 no adhesive left on the tooth; score 1, less than half of the adhesive left on the tooth; 

score 2, more than half of the adhesive left on the tooth; and score 3, all adhesive left on the 

tooth with a distinct impression of the bracket mesh  
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Appendix 2:  

Table 10.6 Results of three way ANOVA of DoC untransformed data. 

Tests of Between-Subjects Effects 

Dependent Variable:   DoC   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 326560.061a 239 1366.360 31.831 .000 

Intercept 1567399.551 1 1567399.551 36514.352 .000 

fluoride 5953.692 3 1984.564 46.233 .000 

Acetone 61050.407 4 15262.602 355.560 .000 

Time 189371.328 11 17215.575 401.056 .000 

fluoride * Acetone 38812.392 12 3234.366 75.348 .000 

fluoride * Time 1481.811 33 44.903 1.046 .398 

Acetone * Time 19083.737 44 433.721 10.104 .000 

fluoride * Acetone * Time 10311.602 132 78.118 1.820 .000 

Error 41079.775 957 42.926   

Total 1933933.941 1197    

Corrected Total 367639.836 1196    

a. R Squared = .888 (Adjusted R Squared = .860) 

Table 10.7 Table Results of three way ANOVA of DoC of the transformed data. 

Tests of Between-Subjects Effects 

Dependent Variable:   Transformed DoC   

Source 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model 844.323a 239 3.533 29.504 .000 

Intercept 578473.468 1 578473.468 4831105.296 .000 

fluoride 16.552 3 5.517 46.077 .000 

Acetone 149.786 4 37.446 312.733 .000 

Time 493.829 11 44.894 374.927 .000 

fluoride * Acetone 100.075 12 8.340 69.648 .000 

fluoride * Time 4.404 33 .133 1.114 .303 

Acetone * Time 54.086 44 1.229 10.266 .000 

fluoride * Acetone * Time 23.664 132 .179 1.497 .001 

Error 114.471 956 .120   

Total 579822.817 1196    

Corrected Total 958.794 1195    

a. R Squared = .881 (Adjusted R Squared = .851) 
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Appendix 3: Conference Attendance 

9 September 2013: British Society for Oral and Dental Research 2013, bath (Poster 

presentation) 
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11 March 2015 International Association for Dental Research, 2015 General exhibition 

Boston, MASS., USA. 
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26 August 2015 European Dental Materials Conference 2015, Nurnberg (Poster 

presentation) 
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14 September 2015 British Society for Oral and Dental Research 2015, Cardiff (Oral 

presentation, Voco prize) 

Title: Optimizing photo-initiator system of new fluoride-releasing acrylic orthodontic adhesive 

Objectives: White spot lesions are a common complication with orthodontic treatment. We are 

developing a photo-polymerizing fluoride-releasing orthodontic adhesive. This study aims to 

investigate the effect of different initiator systems on degree of conversion (DoC) of the 

developed material. 

Methods: Sodium fluoride at 10wt% was added to 90wt% polymethylmethacrylate powder and 

mixed at a powder:liquid ratio of 2:1 with liquid 2-hydroxyethylemethacrylate and 

methylmethacrylate (40wt%:60wt%), alongside two concentrations of acetone (A-0wt% and 

10wt%). Four groups of resin were prepared with varied photo-initiator systems: (1) 1wt% 

camphorquinone and 1wt% N,N-dimethylaminoethylmethacrylate  (DMAEMA); (2) 1wt% 

camphorquinone and 1wt% Ethyl 4-(dimethyl-amino) benzoate (EDAB) activator; (3) 1wt% 

diphenyl (2, 4, 6-trimethylbenzoyl) phosphine oxide (Lucirin TPO) and (4) 1.5wt% Lucirin 

TPO (table 1). FTIR was used to measure DoC for all the materials at 10, 20, 30, 40 and 80s of 

light curing using Bluephase®20i at 1130mW/cm2.   

 

Results: The DoC of group CQ/DMAEMA at 10%Acetone are higher than CQ/EDAB at 30, 

40 and 80s (p<0.05). The DC of all groups with Lucirin TPO was higher than groups with CQ 

initiator system (p<0.05, one-way ANOVA).  

 

Conclusion: Lucirin TPO is an effective photo-initiator system which results in higher and 

faster polymerisation than the CQ system. 

Time s 

Acetone % 

 

Photo- 

initiators  

% 

DoC % Mean (SD) 

10s 20s 30s 40s 80s 

0%A 10%A 0%A 10%A 0%A 10%A 0%A 10%A 0%A 10%A 

(1) 

1CQ/1DMAEMA 

24 

(4) 
11 (1) 

34 

(8) 
23 (2) 

39 

(10) 
38 (1) 

42 

(10) 
48 (1) 46 (9) 59 (2) 

(2) 1CQ/1EDAB 
25 

(12) 
10 (6) 

32 

(13) 
17 (6) 

34 

(13) 
21 (6) 38(13) 24 (5) 41(10) 35 (6) 

(3) 1 Lucirin 
47 

(3) 
52 (1) 

51 

(3) 
56 (1) 

53 

(3) 
58 (2) 54 (3) 60 (1) 58 (3) 63 (2) 

(4) 1.5 Lucirin 
49 

(2) 
56 (3) 

52 

(1) 
60 (1) 

54 

(1) 
62 (2) 56 (1) 64 (1) 59 (1) 67 (2) 
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