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The Evolution of Niche Width 

This thesis examines the ultimate and proximate determinants of niche width, with a focus on 

how cognition and biological information processing may drive the evolution of niche width. 

Using both field and laboratory experiments I investigate how learning can alter resource use 

in syrphids. Modelling biological information processing using artificial neural networks I 

consider how various ecological factors interact and can impact information processing to 

determine decision accuracy (a proposed factor in the evolution of niche width). Finally the 

ability of artificial neural networks to overcome evolutionary dead ends due to specialisation 

and functional loss is examined. I found that syrphids were able to use external, inter-specific 

cues to alter their resource use. Specialist artificial neural networks decision accuracy was 

altered by the introduction of the ecological variables they were subjected to and the loss of 

functionality can create an evolutionary dead end scenario only in very extreme cases or 

under specific ecological pressures. 

I studied the syrphid (Episyrphus balteatus) both in the field and under laboratory conditions. 

There is a huge amount of literature describing how bees use scent marks to aid decision 

making before landing on flowers but there is currently no work on the syrphids ability to 

detect and utilise these scent marks. The question I posed was ‘Can syrphids modify their 

pattern of resource utilisation by using this scent mark information?’ 

The field work was carried out using motion detection cameras positioned above flowers of 

knapweed (Centaurea nigra). The flowers had two different treatments: one was bagged 

overnight to prevent pollinator access and the other was left unbagged allowing foraging 

insects to deplete the nectar and pollen. Visits from both conditions were recorded and 

compared. I found that previously bagged flowers received more visits from both bumblebees 

(Bombus spp.) and syrphids suggesting that syrphids could also detect when a flower was 

depleted without landing. 

https://en.wikipedia.org/wiki/Centaurea_nigra
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The laboratory tests were conducted in an arena using artificial flowers. The experiment was 

split into a learning phase and a testing phase. I tested the syrphids ability to recognise and 

learn an association to two different compounds, bee scent marks or 1-Hexanol. I found that 

syrphids could learn to associate both bee scent marks and 1-Hexanol with negative rewards 

and use this information to change their foraging behaviour. 

I used artificial neural networks to investigate differences between the decision accuracy of 

specialists and generalists when foraging under ecological pressures. Previous work has 

shown that specialists had higher decision accuracy when non-host selection carried a mild 

reward and I was interested to see how ecological variables would impact this advantage. The 

ecological conditions I considered were search costs, resource availability and starvation. To 

do this I trained neural networks to recognise different numbers of binary images (hosts) over 

a range of positive and negative non-host rewards or punishments. The fewer hosts a network 

had the more specialised it was. I found that both starvation and resource availability reduced 

the range of non-host values across which specialist networks had a fitness advantage over 

generalists. Interestingly I found that introducing search costs shifts the range of non-host 

values where specialist advantage occurs rather than narrowing them as in the previous 

conditions. Specialists suffering from search costs performed better when non-host selection 

carried a high to intermediate punishment.    

Finally, I used artificial neural networks to investigate the evolutionary dead end theory. This 

theory states that specialist organisms will lose genetic variation and will be unable to respond 

as effectively to ecological change. I first trained networks as specialists. These networks 

were then re-trained as generalists. While re-training networks had a percentage of their 

weights fixed to simulate the suggested reduction in evolutionary potential of specialists. 

Ecological conditions in these simulations were either non-host penalties, search costs or a 

combination of the two. I found that networks were relatively robust to loss of evolutionary 
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potential. All of the networks performed well even at intermediate (50%) weight fixation. The 

application of search costs reduced overall network fitness but this effect was not as 

pronounced as when non-host penalties were introduced. Non-host penalties had the greatest 

effect on the fitness of networks. These results suggest that specialisation should only become 

an ‘evolutionary dead end’ under very specific and severe conditions. 
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1. Introduction 

1.1. Niche Theory 

There are many different descriptions of what an ecological niche is (Grinnell, 1917; Elton, 

1927) and it was in fact Grinnell that first used the term as it is used now when he referred to 

the Californian Thrasher (Toxostoma redivivum). He defined the niche as ‘...various 

circumstances, which emphasize dependence upon cover, and adaptation in physical structure 

and temperament thereto...’ However this is clearly archaic and the definition of niche that I 

will use throughout this thesis is that of Hutchinson (1958). He describes a niche as an n-

dimensional hypervolume in N-space. Hutchinson’s description of the fundamental niche 

states that each dimension of the niche will have an upper and lower limit based on the 

organism’s tolerances or suite of abilities. Together these limiting factors combine to provide 

a multi-dimensional description of the range of factors that will allow an organism to persist 

in its environment.  

 

To define niche width we must think about the fundamental niche of an organism in the first 

instance. This fundamental niche covers the range of habitats and resources the organism can 

potentially survive within. This, however, is an unrealistic scenario as due to pressures from 

the abiotic and biotic environment the actual or realised niche of an organism will usually be 

much narrower than the fundamental niche (Hutchinson, 1958). So the difference between a 

fundamental niche and a realised niche will depend upon the conditions in which the 

organism finds itself at any given time and place. Care must be taken when reviewing work 

on niche theory however as there are many possible definitions and these can differ greatly in 

their terms (Whittaker et al., 1973). 
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A major problem when investigating niche width is how it is measured. The nature of the n-

dimensional hypervolume creates many axes over which the niche is partitioned. It is not only 

the measuring of these factors that could potentially be a source of error. It could be argued 

that a larger problem is actually establishing what the dimensions are. This is often far from 

intuitive and any errors will change the shape of the recorded niche, possibly skewing data or 

invalidating the work altogether. Many studies have attempted to clarify this issue (Collier et 

al., 1972; Vandermeer, 1972) and thanks to this work there are several methods available to 

minimise errors when accumulating or assessing data relating to the niche of an organism.  

1.2. Historical Studies 

Historically the methods of studying niche width have stressed the value of using actual 

ecological data (Colwell and Futuyma, 1971; Pielou, 1972; Roughgarden, 1972) however 

many of these studies also stress that we must be aware of the relative weighting of the 

different factors. Simply measuring every aspect of niche width will not provide us with an 

accurate predictive niche width for our subject. Pielou (1972) also stresses that using data 

recorded in the field will only provide information on the realised niche and not necessarily 

on its fundamental niche. This can pose a problem for the ecologist when assessing habitat for 

the introduction of an organism. Potentially suitable locations could be discounted due to 

pressures in the study areas preventing colonisation of similar habitat, or unsuitable habitats 

could be chosen based on factors which have been weighted too highly. Despite these 

concerns the use of recorded ecological data remains a common method of studying niche 

width.  

 

Initially the idea of ecological niches was restricted to ecological studies but it was not long 

until the term moved into other areas with population geneticists (Remington, 1968), 

microbiologists (Hungate, 1955) and biochemists (Jones, 1961) applying the term to research 
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in other fields. The term ecological niche was also quickly taken up by evolutionary biologists 

and has remained very common to the present day in the relevant literature.  

 

1.3. Current Work on Niche Width 

Futuyma and Moreno (1988) suggested that the study of “The evolution of ‘niche breadth,’ or 

‘niche width,’ was a more popular topic in the evolutionary ecological literature of the 1960s 

and 1970s”. This may have been true at the time but a great deal of work has been undertaken 

in this field in more recent years and this remains an active area of research (Fridley et al., 

2007; Layman et al., 2007; Bolnick et al., 2010). With new techniques and approaches our 

ability to investigate this topic has greatly increased. Modern investigations of niche width 

often concentrate not on the actual niche itself but the mechanisms driving the dimensions of 

the niche (Bolnick, 2001; Svanbäck and Persson, 2004). This, combined with the numerous 

studies based on theoretically predicting niche width (Nagelkerke and Menken, 2013; Bar-

Massada, 2015), has increased our understanding of the complex relationships that exist 

between the organism and its niche.  

 

Methods such as geographic information systems (GIS), artificial neural networks (ANNs), 

and differential equations have been employed successfully to show how variables such as 

environment and attentional load impact the formation and maintenance of niche width 

(Holmes et al., 1994; Gehring and Swihart, 2003; Park et al., 2003). The combination of these 

different techniques have allowed scientists to locate small populations of rare species and 

have increased the accuracy of assessing where surveys should be performed when recording 

distributions (Dunn et al., 2015). Our understanding of niche theory has also enabled us to 

begin to understand how the evolution of an organism is influenced by its ecological niche. 



4 
 

Selection pressures such as competition for resources and changing landscapes will alter the 

realised niche of a population but when these pressures become high enough the fundamental 

niche can be affected (Bolnick, 2001). Changes to the fundamental niche will be genetic in 

nature leading to behavioural or physiological changes which can result in the organism 

becoming more ‘specialised’ or more ‘generalised’.  

 

Many determinants of niche width exist such as competitive exclusion, habitat fragmentation, 

local availability of hosts etc. and I will discuss two of these below. These are both important 

in creating the ecological niche of a species but are not the focus of this thesis and are 

included for completeness only. 

 

Adaptive trade-offs involve species performing behaviour that could, at first glance, be 

considered to be non-adaptive. Species reducing their resource range despite many possible 

hosts, or utilising toxic hosts when non-toxic hosts are present are examples of this. This has 

been demonstrated in the evolution of some angiosperms towards improved pollination by 

specialist pollinators. This will reduce the number of animals capable of pollinating the 

organism. However, this will also improve the pollination benefits from the specialist species 

that remain (Muchhala, 2007). These trade-offs can also shape the evolution of species that 

are more mobile than plants. Schluter (2009) demonstrated that changes in morphology of 

sticklebacks (Gasterosteus sp.) can impact fitness in different foraging environments. Larger 

benthic species suffer reduced growth when foraging in open water, compared with the 

smaller limnetic species, due to their morphology; this pattern is reversed when both are 

foraging in the littoral zone. Trade-offs such as these can have significant impacts on the 

dimensions of the organisms’ realised niche which, over time, could alter the fundamental 

niche. 
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Enemy-free space is another likely determinant of niche width. Jeffries and Lawton (1984) 

define enemy-free space as ‘ways of living that reduce or eliminate a species' vulnerability to 

one or more species of natural enemies’. In this case niche width can be altered by a species 

moving from an area with high predation into a relatively low predation area despite possible 

reductions in resources or loss of some benefit those resources provide (Ballabeni et al., 

2001). Alternatively this could involve egg laying on hosts which are less rewarding for 

larvae but have less predation risk associated with them (Wiklund and Friberg, 2008; 

Rodrigues et al., 2010). Reduced predation will allow for longer foraging trips and less 

vigilance behaviour allowing the organism to maximise fitness in the area. This would not be 

possible in a high predation area as the need for vigilance and shorter foraging periods could 

reduce fitness even when resources were more abundant or of higher quality. This will change 

the realised niche of the organism in the short term but if resource type changes in the enemy-

free space the organism moves to then this could, over time, also impact the fundamental 

niche as the organism evolves in the new environment (Atsatt, 1981). 

 

1.4. Specialists and Generalists  

Organisms are often classified as either generalist or specialist species. These can be rather 

broad terms and a suitable definition is useful. We will use the term generalist mostly as 

equivalent to polyphagous (many potential hosts) and specialist as equivalent to oligophagous 

(few hosts) or monophagous (a single host) as in Futuyma and Moreno (1988). The range of 

resources eaten by an organism is a good proxy of specialisation or generalisation as it 

provides insight into not only diet but also physiology via the ability to digest several 

different hosts or potentially toxic resources and cognitive and morphological abilities 

through the ability to locate and handle different prey types or hosts. Many recent studies in 

niche theory have investigated the relationship of specialist organisms to their realised or 
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fundamental niche. It is thought that the wider niche of generalist species means changes in 

resources or climate should have relatively less of an effect on their fitness than they would 

with specialists (Kassen, 2002). It should be mentioned that it has been argued that this could 

lead to the opposite scenario in which specialists react more quickly to evolutionary pressures 

than generalists (Whitlock, 1996). This is by no means the consensus however with several 

studies showing that specialist species are more at risk from climate fluctuations in particular 

than generalists (Warren et al., 2001; Robert J Wilson et al., 2007; Gilman et al., 2010). 

Obviously given the current rate of climate change and habitat loss for many species this 

factor is of great concern. The question of whether a species will be sufficiently able to adapt 

to the changing environment is one being asked of many different species.  

 

Studies of the evolution of specialist and generalist organisms often look at the relative fitness 

of the different strategies (David Sloan Wilson and Yoshimura, 1994). Different species 

foraging in the same environment often have very different degrees of specialisation and it is 

not always readily apparent why this should be the case. The fundamental niches of 

apparently similar species can be very different. Inter-specific competition is thought to be a 

common driver of specialisation with less competitive species being forced onto less 

rewarding hosts and having to then adapt or decline and possibly go extinct (Futuyma and 

Moreno, 1988). Comparisons of specialist and generalist organisms can be useful for many 

reasons. In ecology, habitat utilisation information of both specialists and generalists can help 

build models that predict occurrence of species given the local conditions and community 

(Dunn et al., 2015).  

 

More recently there has been renewed interest in the idea that generalist and specialist 

populations are actually made up of individuals whose realised niche is much smaller than the 
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species’ fundamental niche. The realised niche of these individuals can be very different to 

conspecifics but can result in the observed rapid adaptations to changing conditions (Bolnick 

et al., 2007) or often, in the case of specialists, the inability to adapt. Many studies have 

suggested that generalist species are replacing specialists in diverse different habitats, across 

many different taxa (Fisher et al., 2003; Munday, 2004; Rooney et al., 2004). This loss of 

specialists can result in functional homogenisation (Clavel et al., 2010). If a habitat undergoes 

functional homogenisation the range of services provided by that ecosystem will decrease. 

Specialists are lost and are replaced by generalists lacking the behaviours or adaptations to 

perform the same tasks as the locally extinct specialists. This will further impact the local 

environment with species that relied on the specialists, for pollination, as prey etc., suffering 

fitness losses or becoming locally extinct in turn. 

 

1.5. Competition between Specialists and Generalists 

Both specialists and generalists will regularly encounter competition from other species. The 

effect of competing generalist species was the idea behind the first chapter of this thesis. The 

overall premise of this initial work was to investigate the effect on the realised niche width of 

one competing generalist species when foraging closely with another species with similar 

foraging behaviour. I also wanted to investigate whether generalist – generalist competition 

could impact evolution via behaviour. There has been a great deal of work on many of the 

pollinating hymenoptera, especially the European honeybee (Apis mellifera) which has been 

studied for around 100 years (Minnich, 1919; Bitterman et al., 1983; Genersch, 2010). 

Bumblebees (Bombus spp.) are less commonly studied than honeybees however there is still a 

huge body of work on these pollinators (Plath, 1923; Kullenberg et al., 1973; Hagen et al., 

2011). I was interested in how the behaviour of bumblebees could shape the behaviour and 

evolution of syrphids, a competing generalist species. In the complex and often patchy 
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environment in which syrphids forage, information regarding the reward available at any 

given location would improve foraging efficiency. It is well known that many different 

species of bee can deposit and detect scent marks of not just their own species but of many 

conspecifics as well (Giurfa, 1992; D Goulson, Hawson, SA, & Stout, JC, 1998; Gawleta et 

al., 2005). The benefits of being able to make foraging decisions without having to alight are 

obvious and we could expect this ability to be found in other species that forage in a similar 

manner and/or environments.  

 

1.6. Chapter 1 

Chapter 1 concerns itself with the foraging of syrphids in both the field and in laboratory 

based conditions. I wanted to investigate several questions in this chapter: Are syrphids able 

to detect the scent marks of bumblebees at all? If so, can foraging syrphids use these scent 

marks to aid their foraging decisions i.e. alter their realised niche? Can other odours be used 

by syrphids to improve their foraging accuracy?  

 

1.7. Cognition and Niche Width 

The cognitive ability of an organism can have a role in niche structure. The neural limitations 

hypothesis (NLH) is an excellent example of how cognition can alter the niche width of a 

species. This theory predicts that a generalist species will suffer from reduced decision 

accuracy when compared to a specialist due to limitations in neural processing ability and a 

higher attentional load (Futuyma and Moreno, 1988; Dall and Cuthill, 1997; Wee and Singer, 

2007). If this is true then generalists should be at a disadvantage when conditions are the same 

for both the generalists and specialists. This theory was the main focus of chapter two. I used 

ANNs trained to be resource specialists or generalists via a genetic algorithm and compared 
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network decision accuracy once trained and how this is affected by different ecological 

factors during evolution.   

 

1.8. Machine Learning and Artificial Neural Networks 

Famously it was Alan Turing (1950), in his paper ‘Computing Machinery and Intelligence’, 

who made simulated thought and learning popular in both the scientific community and 

among the public. He described a computer that could evolve to become more adept at 

problem solving. This was just the beginning however and much work was needed before the 

development of the methods used by scientists and engineers today. The combination of 

different techniques has provided many varied solutions to the concepts proposed by Turing 

since then. Artificial neural networks (ANNs) had been around for some time when he wrote 

his paper (McCulloch and Pitts, 1943) but at the time they were not capable of the things 

Turing predicted. Since they were first described ANNs have been applied to a range of 

diverse fields. These range from civil engineering (Flood and Kartam, 1994), aeronautics 

(Faller and Schreck, 1996) and even medical procedures (Abbass, 2002). ANNs are now a 

relatively common tool for scientists in all fields and provide an excellent theoretical 

approach to solving problems. From the perspective of the biologist ANNs have become a 

useful tool. They have been applied to several problems such as predicting presence and 

abundance of species in different habitats (Park et al., 2003), the prediction of adverse 

ecological effects (Recknagel et al., 1997) and the sorting of biological molecules and 

sequences (Wu, 1997). More relevant to this work is the application of ANNs to investigating 

the evolution of behaviour. Using neural networks has provided biologists with an excellent 

tool to explore evolution in a way that was previously almost impossible. Neural networks 

have been employed to study the evolution of beneficial grouping behaviour (Ferrauto et al., 

2013), the evolution of altruism (Waibel et al., 2011) and attention to conspecifics displays in 

http://www.jstor.org/stable/2251299
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túngara frogs (Steven M Phelps and Ryan, 1998; SM Phelps and Ryan, 2000) to name just a 

few. The use of simple ANNs to study animal behaviour is often called ‘connectionism’. 

 

1.9. Evolving Artificial Neural Networks 

There are several methods of evolving ANNs to improve their behaviour (Yao, 1993). A 

common method, and the one which I have used in this thesis, is the genetic algorithm (GA). 

John Henry Holland was instrumental in the development of the GA and his work is still the 

foundation of many GAs to this day (Holland, 1992). Another of the major pioneers of GAs 

was Hans-Joachim Bremermann (1962). He, along with Holland, helped develop the GA into 

what it is today. These GAs use the principles of genetic evolution to evolve ANNs 

stochastically via mutation, insertion and recombination. This allows networks to be modified 

through random change, simulating Darwinian evolution. The weights connecting the 

artificial neurons in the ANNs are subjected to this modification and are rewarded for 

accuracy by way of a fitness value. This fitness score is used to select the highest performing 

networks which are then used to create the next generation of networks. When creating the 

next generation the weights from the selected networks are subjected to mutation and 

crossover to create new, potentially higher performing networks (Mitchell, 1998). Over time 

this significantly improves the performance of the ANN.  As biologists this is a very exciting 

prospect. It is often very difficult, if not impossible, to study the evolution of a species 

directly. This is especially true of larger, longer lived organisms. GAs are useful to study the 

evolution of complex systems and, as much of the organic structure of an organism consists of 

complex systems, this makes them a very useful tool. Complex interactions at the species or 

community level can also be studied using this method which would be very difficult to study 

in the field. The GA allows us to simulate the main processes involved in this evolution and 

make predictions based on many different variables. GAs are now often used in the study of 
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behavioural evolution in both robot systems (Floreano and Keller, 2010) as well as more 

biologically relevant ones (Kamo et al., 1998; C. R. Tosh et al., 2009; Lewis et al., 2010) 

 

1.10. Chapter 2 

My studies have focussed on the evolution of ecological niche width and how this can 

influence the persistence and success of organisms. Specialist and generalist organisms 

interacting in an environment will face different challenges. This will create pressure on the 

behaviour and evolution of the species over time. How this impacts on the evolution of niche 

width is the main focus of this thesis. Chapter 2 investigates the decision accuracy of 

specialist and generalist ANNs when foraging in a complex environment under ecological 

pressures. This is an extension of the work of C. R. Tosh et al. (2009) who found specialist 

networks only displayed a higher decision accuracy than generalists when a poor foraging 

choice was associated with no penalty or a small reward. This work in turn was elaborating on 

the work of EA Bernays (2001) and her neural constraints hypothesis. Interestingly it was not 

high punishments for making errors in foraging that improved decision accuracy. In this 

original work the networks had little in the way of ecological pressures applied to their 

evolution. In my work I introduced three different ecological factors; search costs, starvation 

and resource availability. These factors were each applied separately and network decision 

accuracy was compared across different degrees of specialisation or generalisation. Insight 

into the mechanisms that drive specialisation could provide us with a better understanding of 

community structure and resource utilisation within natural ecosystems.  
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1.11. Chapter 3 

Finally I wanted to investigate the evolutionary dead end theory first proposed by George 

Gaylord Simpson (1944). The theory predicts that specialist organisms should be less able to 

shift host preferences and thereby change their ecological niche. This is based on the 

hypothesis that specialist species have lost variation, either in their suite of behaviours or their 

genetics, for which there is some evidence (PJ Smith and Fujio, 1982; Futuyma and Moreno, 

1988; Lahti et al., 2009). This inability to adapt to changing conditions is predicted to cause 

many specialist species to become trapped in their ecological niche and should the resources 

or conditions they rely on change then they would be expected to become extinct. This idea 

has received both support (Nancy A Moran, 1988; Futuyma and Mitter, 1996; Andrew B 

Smith and Jeffery, 1998; Colles et al., 2009) and criticism (Flessa et al., 1975; Armbruster 

and Baldwin, 1998; Janz et al., 2001; Nosil and Mooers, 2005) and remains a common thread 

throughout the literature. Chapter 3 examines the ability of ANNs to evolve from specialists 

to generalists. During this process the ANNs have a percentage of their network weights fixed 

to remove some of the variation available. This simulates the reduced variation seen in 

specialist organisms and should, if the evolutionary dead end theory is correct, impair the 

ability of specialists to expand their host range. I also introduced ecological variables to assess 

the impact of external factors. These ecological variables were either non-host penalties, 

search costs or a combination of the two. Would specialists with limited variability have 

difficulty re-generalising? How do the introduced ecological penalties affect the ability of 

these networks to re-generalise? Which ecological factor has the greatest impact on the range 

expansion of specialists?   
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2. Chapter 1: Olfactory Ecology of the Syrphid, Episyrphus balteatus 

2.1. Abstract 

The ability of pollinators to detect plant odours and species specific scent marks have been 

well studied however almost all of this work has concentrated on different species of bees. 

We investigated the syrphid Episyrphus balteatus and its ability to detect and learn to 

associate these odours with a reward. In field trials we used previously bagged and previously 

unbagged flowers to test visitation rates. Both bees and syrphids showed a significant 

preference for the previously bagged flowers. This provided good evidence that bees and 

syrphids could detect a reward without landing on the flower. We followed this with 

laboratory trials in which visitation behaviour of syrphids was recorded. We presented 

different odours and associated these with unrewarding artificial flowers to discover if 

syrphids were able to learn odour cues when making short range foraging decisions. E. 

balteatus consistently learned and responded to both Bombus sp. scent marks and a plant 

volatile (1-Hexanol). The syrphids were able to develop short term memory based on 

exposure to these odours and learned to avoid scented artificial flowers when reward in both 

scented and unscented flower was subsequently equalised. We discuss possible applications 

of this finding and implications for pollinator and pest management. 
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2.2. Introduction 

Pollinators around the world are in serious decline (Potts et al., 2010). The majority of the 

current research has focused on bees, especially the European honey bee (Apis mellifera (L.)) 

(Bacandritsos et al., 2010; Genersch, 2010). Much of the remainder of the work has 

concentrated on bumblebees and solitary bees (D. Goulson et al., 2008; Ricketts et al., 2008). 

Very little work has concentrated on the syrphids as pollinators, probably due to syrphids 

being much less commercially important than bees. However, syrphids play a substantial role 

in wildflower pollination and should not be overlooked (D. Goulson and Wright, 1998). With 

the global reduction in many pollinator species numbers, particularly bees (Ghazoul, 2005), it 

is becoming increasingly important to better understand the less well studied groups that 

could reduce the impact of this decline.  

 

Pollinators must forage in highly complex environments. They face many challenges 

including competition from many other species as well as conspecifics, variation in reward 

due to flower size, handling time differences between complex and simple inflourescences 

and stochastically distributed resources. Optimal gains will only be possible when methods 

are employed to minimise time spent searching for the next rewarding flower (Zimmerman, 

1982; D. Goulson, 1999).  

 

When foraging, pollinators should aim to locate rewarding flowers while avoiding revisiting 

flowers they or another pollinator have recently depleted. One of the most common and 

widely used tactics is the direct detection of pollen or nectar using visual cues (D Goulson, 

Chapman, JW, & Hughes WHO, 2001). Simple radial flowers often have clearly visible 

rewards which can be easily seen by an animal as it passes allowing the reward contained to 
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be assessed and enabling a decision to visit the flower to be made. This is likely to be the 

primary method employed and is arguably the most important. 

 

Flight directionality and flower constancy are used by both bees (L Chittka, Gumbert, A, & 

Kunze, J, 1997; L. Chittka et al., 1999; Gegear, 2005) and syrphid pollinators (D. Goulson 

and Wright, 1998) moving through a patchy environment with differing possible rewards. 

These methods enable decisions to be made at relatively large distances from a flower. 

 

Night flowering plants such as Petunia axillaris (Lam.) attract moths using very specific 

complex odours while many day flowering plants use different odours depending on their 

preferred pollinator (Hoballah et al., 2005). Many of the components of these scents are 

attractive to pollinators individually or as components of other complex compounds. These 

scents are often used to locate flowers but nectar scents have also been isolated that are 

thought to provide pollinators with information regarding the size of the reward present at the 

inflourescence (Howell and Alarcón, 2007). Honey bees (A. mellifera), bumblebees (Bombus 

spp.) and several solitary bee species commonly use scent marks deposited from the hind tarsi 

to provide information about possible nectar content when approaching a flower (Free and 

Williams, 1983; Wetherwax, 1986; D Goulson, Stout, JC, Langley, J, & Hughes WOH, 

2000). Scent marks can be repellent or attractive (Giurfa, 1992; D Goulson, Hawson, SA, & 

Stout, JC, 1998) and allow these pollinators to avoid revisiting flowers and recognise flowers 

that are particularly rewarding or have been drained by another individual. Interspecific 

recognition of scent marks has been illustrated in many studies focusing on bees (D Goulson, 

Hawson, SA, & Stout, JC, 1998; J. C. Stout et al., 1998; JC Stout, & Goulson, D, 2001). 

Syrphids forage in the same environments so they will also have to locate rewarding flowers 
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and could be using bee scent marks to maximise their foraging efficiency. 

 

 

Odour is also an important aid to learning in many species. Floral scent has been used to elicit 

a conditioned response (proboscis extension) from harnessed honeybees and bumblebees 

(bees restrained in a harness leaving only the head free to move) (Bitterman et al., 1983; Laloi 

et al., 1999). Learning, both long and short term, has been demonstrated in Drosophila 

melanogaster (Belvin and Yin, 1997). D. melanogaster have also been trained to select foods 

based on the association of an odour with a reward or punishment (Fiala, 2007). This method 

of odour learning would suit the environment in which pollinators forage and would increase 

foraging success for most species, if not all.  

 

In this study we investigate the effect of Bombus spp. scent marks on syrphid foraging 

behaviour using pollinator excluded flowers in the field, and in focussed experiments in the 

laboratory. We also examine the ability of a syrphid species (Episyrphus balteatus (Degeer)) 

to learn to associate bee scent and a plant volatile (1-Hexanol) with a lack of reward. Lonicera 

periclymenum (European honeysuckle) flowers were also introduced to investigate the ability 

of syrphids to use nectar odour as an aid to learning. We initially suggest that bee scent 

marking behaviour will influence syrphid foraging in the field. We also predict that syrphids 

will be able to learn to use odours to aid foraging decisions in laboratory trials on artificial 

flowers. Finally we hypothesise that syrphid behaviour should be influenced by the presence 

or absence of nectar in honeysuckle flowers. 
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2.3. Methods 

2.3.1. Field Work 

Our field site was at the Close House biological field station in Heddon-on-the-Wall in 

Northumberland, England. Phillips SPC1330 webcams were supported at 20cm above flowers 

of Knapweed (Centaurea nigra (L.)) and Himalayan balsam (Impatiens glandulifera (R.)) 

using clamp stands. The flowers were tied to canes to prevent excessive movement that would 

interfere with the motion detection software. Data was recorded on six days from the 19
th

 

August 2010 – 2
nd

 September 2010.  The cameras recorded from 23:00 of one day to 23:00 on 

the next. Cameras were connected to notebook computers which used the newly developed 

Rana motion capture software (O'Neill, 2012) to record only when larger pollinators were 

present. This included most Syrphid and all Bombus species but not smaller invertebrates such 

as pollen beetles or aphids. Visits by both of these groups were recorded separately. To test 

our first hypothesis, that syrphid behaviour is affected by bee scent marking behaviour, 

perforated bags were used to seal off pollinator access to two of four inflorescences. This was 

done at around 4pm the preceding day and flowers were unbagged at around 10am on the day 

of the experiment. When the bags were removed the pollinators had full unrestricted access to 

the flowers. The visits to both bagged and unbagged flowers were recorded until the cameras 

stopped recording due to insufficient light. This footage was then reviewed and the number of 

visits to each flower was recorded. This was done separately for each hour of the day. Footage 

was reviewed using software capable of frame by frame playback to enable accurate 

identification of species visiting the flowers.  

 

2.3.2. Lab Work 

Episyrphus balteatus used in the lab were initially acquired from Katz Biotech. These were 

kept in a BugDorm-2120 Insect Rearing Tent (60x60x60 cm, cat no. BD2120), which doubled 
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as the flight arena for the free flying trials.  Individuals were constantly replaced from our 

laboratory culture or purchased from Katz Biotech to maintain a population size of 100 to 125 

individuals. The laboratory culture was maintained at 20°C with an 18/6 day night cycle with 

a relative humidity of 60-70%. Syrphids were fed using Raw Living organic bee pollen and a 

1:1 mixture of Rouse™ Organic Honey and water. We used this honey/water solution for fly 

maintenance and as experimental reward (see below) rather than a sucrose solution as the 

syrphids were reluctant to visit the sucrose when it was offered, no matter the concentration.  

Free flying experiments were all done in the BugDorm and the flies had unrestricted access to 

two artificial flowers with differing treatments. The artificial flowers were positioned within 

the arena, 15cm apart beneath a camera which recorded visits (for complete dimensions see 

Figure A1.1). Any treatments using bee scent used a bumblebee (Bombus terrestris) that had 

died within the previous 48 hours. The hind tarsi of the bee were rubbed over the surface of 

the blotting paper to impregnate it with the scent. This was done directly prior to the flower 

being introduced to the syrphids. As scent marks can remain repellent for between 20 minutes 

to 24 hours (J.C. Stout and Goulson, 2002) we reapplied the scent every hour. Renewing the 

scent was achieved by removing the flower and applying the scent using the same method as 

mentioned previously. When this was done both of the flowers were removed, the original 

scent marked flower was treated, then both were re-introduced. 

 

 The 1-Hexanol used in these experiments was diluted with mineral oil (Sigma-Aldrich, Cat. 

no. 33. 077-9) to a concentration of 1:500. Greater concentrations had adverse effects on the 

syrphids and often caused death. During 1-Hexanol trials the solution was contained in 

separate pots placed adjacent to one of the flowers to prevent contact with the animals as this 

also proved to be fatal in most cases. These pots were covered with gauze to further prevent 

contact (See Figure A1.3). Syrphids could therefore only use olfaction to locate the odour. A 
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second small pot containing tap water was placed next to the other flower but otherwise set up 

as above. Honeysuckle (L. periclymenum) was purchased from a local grower and was 

brought to flower in a glasshouse on site. Two plants were used to provide the flowers for 

these trials. Flowers were removed from the plant immediately prior to being used in the 

trials. Four flowers were used in each trial. These were all taken from the same plant for each 

trial. Two were drained of nectar using capillary tubes and the others were unaltered.   

 

The free flying trails were conducted in the BugDorm enclosure and lasted for 5 hours. To test 

the second hypothesis, that syrphids can learn to use odours to aid foraging decisions, six 

treatments were used for the learning stage of 3 hours.  

1. Both artificial flowers had no odour and contained an equal reward of honey/water 

(control). 

2. Both artificial flowers contained an equal rewards and one had Bombus scent marks 

applied and (control).  

3. Both artificial flowers contained equal rewards and one was paired with 0.2 ml of the 

1-Hexanol/mineral oil solution (control).  

4. The first artificial flower had no reward with Bombus scent marks applied. The second 

had no scent applied and contained a reward of honey/water. 

5. The first artificial flower had no reward and was paired with 0.2 ml of the 1-

Hexanol/mineral oil solution. The second had no scent applied and contained a reward 

of honey/water. 

6. Artificial flowers were replaced with honeysuckle flowers. These were supported in 

eppendorf tubes in the same way the artificial flowers were arranged. One of the tubes 

contained two flowers that had been drained of nectar and the other contained the 

unmodified flowers.  
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The three control trials were included to ensure that no innate preference would influence the 

results. As the reward in all three controls was equal in both flowers there would be no 

advantage in using odour to aid foraging and therefore any difference in visitation should be 

due to a reaction to the odour itself and not a potential reward. We had, at this stage, already 

run directional preference controls. As there is no directional preference there was no 

necessity for further controls to be used (Figure A1.4). For the remaining two hours (testing 

phase) the odours remained the same but the rewards were all equalised. Rewarding flowers 

contained cotton wool soaked in 1:1 honey/water solution while the unrewarding flowers 

contained only dry cotton wool. Positions of flowers were switched when rewards were 

equalised in case of any learned positional preference.  

 

We also ran learning trials in small clear pots containing smaller artificial flowers made from 

eppendorf tubes cut through the centre (for complete dimensions see Figure A1.2.). These 

were otherwise constructed in the same way as the larger flowers. Treatments were exactly as 

in the trials in the flight arena with only one syrphid in each bottle.  These trials were intended 

to provide the individual syrphids greater exposure to the experimental odours. In the arena, 

syrphids had a large area in which to move around and some individuals never came into 

contact with the artificial flowers during the course of a trial. The reduced area in the bottles 

was intended to force the individual to make a choice between the two stimuli. Bottles and 

treatments within the bottles were oriented in opposite directions to correct for any innate 

directional preference.  
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2.4. Results  

2.4.1. Field Work 

 Figure 2.1: Graphs of the visit data for bumblebees on previously bagged (solid lines) and 

previously unbagged (dashed lines) flowers over time as in the total visits graph. 19/08/10 – 

26/09/10 were recorded on Centaurea nigra. 01/09/10 – 02/09/10 were recorded on Impatiens 

glandulifera.  

 Figure 2.2: Graphs of the visit data for syrphids on previously bagged (solid lines) and previously 

unbagged (dashed lines) flowers over time as in the total visits graph. 19/08/10 – 26/09/10 were 

recorded on Centaurea nigra. 01/09/10 – 02/09/10 were recorded on Impatiens glandulifera. 
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We fit a generalised linear mixed effects model to our data to investigate the relationship 

between the syrphid visits to several other variables. The model with the best fit is illustrated 

below. The best model for the data was selected using Akaike’s information criterion, AIC. 

As our data is counts of the visits we used a poisson distribution.  

                                       

Where a is syrphid visits to the previously bagged flower, b is Bombus visits to the previously 

bagged flower and c is syrphid visits to the unbagged flower. The time was recorded in one 

hour intervals.  

Fixed effects coefficients (95% CIs): 

Name Estimate SE tStat DF pValue Lower Upper 

'(Intercept)' 4.3404 0.37563 11.555 56 1.88e-16 3.5879 5.0928 

'b' 0.035446 0.005217 6.7949 56 7.55e-09 0.024996 0.045897 

'c' 0.019087 0.002615 7.2988 56 1.11e-09 0.013848 0.024325 

'time' -0.07906 0.019604 -4.033 56 0.000168 -0.11833 -0.03979 

'flower' -1.1486 0.12976 -8.8518 56 3.13e-12 -1.4086 -0.88869 

 

Table 2.1: Data from the GLME investigating the relative impacts of different factors relating 

to syrphid visitation to the previously bagged flower.   

R
2
: 

Ordinary Adjusted 

0.8748 0.8659 

 

Of greatest interest, our model suggests that Bombus visits to the previously unbagged flower 

have a significant effect on the visits of the syrphids to the previously bagged flowers. 

Additionally, syrphid visits to the unbagged flower and time of day also impact the visits to 

the bagged flower. The type of flower had a strong effect however this is thought to be due to 

the complex nature of the flowers of I. Glandulifera and the increased handling time they 

would impose on a syrphid. This model provides good evidence for our first hypothesis; that 

bee scent marking has an effect on syrphid visitation (Table 2.1).  
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2.4.2. Lab Work – Arena 

 

Figure 2.3: Bar chart showing control trials in the arena. Bars show mean visits ± 1 SE. Trials were 

run over 6-7 days for each treatment.  

 

Our data showed no significant preference for direction (paired t-test, t-value = 0.72 (df = 20), p-

value = 0.493) or bee scent (paired t-test, t-value = 1.02 (df = 20), p-value = 0.342). A significant 

difference was found in the 1-Hexanol trials (paired t-test, t-value = 2.68 (df = 17), p-value = 

0.031) illustrating an innate aversion to this odour (Figure 2.3.). For 1-Hexanol concentration 

controls see Figure A1.4. 
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Figure 2.4: Bar chart showing total visits to bee scent marked vs unscented flower in arena 

experiments. Trials were run over 14 days. Bars are mean ± 1 SE.   

 

Visits during the learning phase of the bee scent learning experiments showed significant 

differences (paired t-test, t-value = -2.63 (df = 13), p-value = 0.025) (Figure 2.4). The testing 

phase showed similar differences to the learning phase (paired t-test, t-value = -3.63 (df = 13), p-

value = 0.005) suggesting that memory was being used to locate the reward.   
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Figure 2.5: Graph showing confidence intervals for the differences between means of the 

arena experiments. Control is included to illustrate the increased aversion to 1-Hexanol after 

syrphids had performed the learning trials.   

 

 

Patterns of visitation within the 1-Hexanol learning experiments were similar to those in the 

bee scent learning experiments however analysis of the 1-Hexanol results was complicated by 

the fact that syrphids have an innate aversion to 1-Hexanol. We therefore analysed data by 

comparing differences between means (effect sizes) (Figure 2.5 & 2.8). Syrphids 

preferentially visited the flower with no odour in both the learning and the testing phase in the 

arena trials (Figure 2.5). This effect was more pronounced than in the control trials. This is 

also despite the fact that rewards in the testing trials were equal and clearly visible. The 

similarity of visitation patterns between learning and testing phases, coupled with the fact that 

confidence intervals for the difference between the means in these treatments and the control 

showed a low degree of overlap, indicated that syrphids use learning and memory when 

foraging. 
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2.4.3. Lab Work – Pots 

Figure 2.6: Bar graph showing control data from the pot experiments. Bars are mean ± 1 SE. There 

were 9 trials in all and each trial used 6 individuals in separate pots.  

 

Controls contained equal reward in both flowers and differed only in the treatment applied 

(Figure 2.6). Data from our controls showed no significant differences in time spent on the 

flower nearest the cap of the bottle or the one at the base (t-test, t-value = 0.10 (df = 53), p-value 

= 0.924). We also recorded no significant differences between time spent on a bee scent 

marked flower or an un-marked flower (t-test, t-value = 0.81 (df = 53), p-value = 0.439). There 

was a difference when 1-Hexanol/mineral oil was present (t-test, t-value = -2.36 (df = 53), p-

value = 0.046). As in the arena trials the syrphids spent less time on the flower nearest the 1-

Hexanol suggesting an innate aversion to this odour.  
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Figure 2.7: Bar chart showing mean time spent on bee scent marked vs unmarked flowers during 

the last hour of the learning phase and the first hour of the testing phase in the pot experiments. Bars 

are mean ± 1 SE.  

 

Syrphids spent significantly less time on the unscented rewarding flower throughout the 

learning phase (t-test, t-value = -7.23 (df = 45), p-value < 0.001, n = 46) (Figure 2.7). Data from 

our testing phase using the bee scent shows significant difference (t-test, t-value = -3.35(df = 45), 

p-value = 0.002, n = 46). Syrphids displayed strong learning in these enclosed environments 

and developed an aversion to the bee scent.   
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Figure 2.8: Graph showing confidence intervals for the differences between means of the pot 

experiments. Control is included to illustrate the increased aversion to 1-Hexanol after 

syrphids had performed the learning trials.  

 

Qualitative patterns of visitation in the pot experiments were essentially the same as those in 

the free-flying experiments and as the syrphids again showed an innate aversion to 1-Hexanol 

we analysed differences between means in the learning and testing phased relative to controls. 

In the 1-Hexanol trials our results also showed an increased preference for the unscented 

rewarding flower during the learning phase (Figure 2.8). Our data also shows a similar 

preference for the unscented flower during the testing phase of these trials. This difference 

was much greater than the difference between treatments within control experiments. 

 

Our second hypothesis was that syrphids would be able to learn to make foraging decisions 

based on olfactory information. These results show a strong learning effect when the syrphids 

are in an arena and an enclosed space. Syrphids learned to associate both the bee scent and the 

1-Hexanol with no reward quickly and accurately.  
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Figure 2.9: Bar chart showing honeysuckle visitation in the arena. Trials were run over three days 

for each treatment and lasted 3 hours. Bars are mean visits ±1SE. 

 

We found no significant differences in visitation to the drained versus the un-drained flowers 

(paired t-test, t-value = -0.50 (df = 8), p-value = 0.667, n = 9) (Figure 2.9). Although plant 

volatiles such as 1-Hexanol appear to be a potential olfactory cue syrphids are not using 

honeysuckle nectar odours to guide them towards the flower. Our third hypothesis, that 

syrphids would use nectar odours to aid in foraging decisions, appears to be incorrect in this 

instance.  
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2.5. Discussion 

Our initial hypothesis was that Bombus scent marking will affect the visitation rate of 

syrphids. Results from the field work showed a distinct pattern, with the bagged flower 

regularly receiving more attention from pollinators across the trials. The preference of the 

bees for the bagged flower seen in the field trials lasts longer than could be explained simply 

from the use of scent marking. The previously bagged flower should rapidly become scent 

marked by the high number of bees visiting and would become less attractive quickly. Nectar 

scents, visual cues and individual memory of a good reward could all be influencing this 

prolonged preference. Interestingly the syrphids show very similar patterns to the bumblebees, 

especially over the first three days. Our model results suggest that bee visitation is having an 

impact on the number of syrphid visits (Table 2.1). This is an interesting finding as there has 

previously been no record of syrphid behaviour being influenced by bees. It is almost certain 

that scent marking is being used by the Bombus species initially (Free and Williams, 1983; 

Wetherwax, 1986; Giurfa, 1992). This is then being followed by a longer lasting attraction 

which could be a learned behaviour based on the individual’s recent experiences.  

 

Our experiments demonstrate the syrphids’ ability to learn an odour and pair it in memory 

with an unrewarding host. It was interesting that syrphids showed an innate aversion to 1-

Hexanol. It would appear that this odour provides a strong stimulus for syrphid behaviour on 

its own but can also be an equally strong aid to memory when used as an aversive stimulus. 

The bee scent marks also had a significant effect on the behaviour of syrphids when choosing 

where to forage despite the lack of any innate aversion toward these odours.  The two flowers 

in the confined experiments were 50mm apart. From this distance the individuals undergoing 

testing should have been able to detect the reward in both flowers from anywhere in the 

bottle. This provides good evidence that they have developed short term memory influencing 
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aversion to the scented flower. Numbers of visits throughout the arena trials were relatively 

low. This is most likely due to the reduced appetitive behaviour of syrphids when compared 

to most bee species. Foraging behaviour of bees is dictated by the energy requirements of the 

nest (Molet et al., 2008) while syrphids forage only for themselves. Starving the syrphids 

prior to running trials seemed to have little or no effect other than to greatly increase mortality 

rates.   

 

Throughout our trials syrphids consistently learned to use olfactory stimuli to avoid an 

unrewarding host. The reward in all trials apart from the honeysuckle experiments was a 

50/50 mix of honey and water. This was a visible yellow colour which suggests that syrphids 

were not using visual cues when foraging during the testing phases of our trials. Had they 

been using vision to make a decision both rewards would have appeared to be equal and we 

would have seen no preference. Our results show that odour is important for hoverflies when 

attempting to maximise rewards. We have shown that in confined spaces learning through 

olfaction is fast and accurate but as distance increases and contact with the stimulus 

diminishes this effect is reduced. These results demonstrate that syrphids are able to learn to 

associate bee scent marks with a reduced or absent reward. This ability to detect and respond 

to Bombus scent marks is of great interest.  

 

More field work will be required to determine if bee scents are actually being used by 

syrphids in the field. Their ability to learn scent marks is clear but to what extent, if at all, 

syrphids use these odours when foraging in the wild is still unclear. If syrphids are using scent 

marks then their foraging behaviour could be more strongly influenced by other pollinators 

than previously thought. As the numbers of bees continue to decrease, syrphid foraging 

efficiency could increase substantially as not only is competition reduced but less aversive 
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stimuli will be present. However the opposite could also be true. If syrphids in the field are 

using scent marks to improve foraging, a reduction in the number of bees could negatively 

affect the ability of syrphids to maximise rewards. Syrphid pollination is unlikely to replace 

bee pollination in environments containing many complex flowers simply because they 

typically do not visit these flowers. However on more accessible flowers a reduction in bees 

could actually promote increased syrphid activity which in turn could reduce the negative 

effect of dwindling bee numbers on the local pollination.  

 

Our work demonstrates similarities between foraging behaviour of bees and syrphids which 

have previously been studied less. It has previously been shown that syrphids forage using 

colour (Haslett, 1989; Campbell et al., 2010) and flower complexity (D. Goulson and Wright, 

1998). Adding odour to this list opens up new possibilities for the study of syrphids. In future 

work it would be interesting to observe syrphid behaviour on recently bee scent marked 

flowers in the field to assess the impact these odours have on foraging patterns. If Bombus 

scent marks are influencing hoverfly visitations then field margin seed mixes that attract pest 

control insects should be constructed to be less attractive to bees. Current field margins are 

designed to attract syrphids using visual cues based on syrphid abundance and persistence at 

sites (MacLeod, 1999). These mixes include many less complex flowers which are more 

easily accessible to hoverflies. Our results suggest that using odours could increase the 

efficacy of the field margin bringing more syrphids into the crop area and greatly reducing the 

numbers of pest insects. Further investigating which plant volatiles are attractive or aversive 

could provide information regarding which plant species to select for field margins. Pairing 

attractive odours with highly rewarding flowers could further increase the attractiveness of the 

margin.  We have shown that syrphids can learn to associate 1-Hexanol with a lack of reward, 

a negative association. This ability to learn an association should work equally well in the 
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other direction with syrphids associating an odour with a reward. Syrphid pollination could 

therefore be manipulated and increased in both commercial and domestic environments. This 

would in turn reduce pesticide use which would benefit both pollinators and growers.
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3. Chapter 2: The Impact of Resource Availability, Search Costs and 

Starvation on the Evolution of Decision Accuracy 

 

3.1. Abstract 

The neural limitations hypothesis states that, given appropriate ecological conditions, animals 

may evolve towards niche specialisation to improve their decision accuracy. In a previous 

study it was shown that specialists can evolve to outperform generalists only when a non-host 

choice carries a small fitness gain. We extend this study to investigate the effects of three 

environmental conditions on the decision accuracy of artificial neural networks trained as 

either specialists or generalists. These conditions are resource availability, search time costs 

and starvation. Low resource availability and starvation lower the range of parameter states 

(range of punishment/reward values for selecting a non-host) that support a pronounced 

advantage in decision accuracy to specialists. Search cost shifts the parameter range over 

which specialists enjoy an advantage: with no search costs specialist networks are better 

decision makers than generalists when rewarded for selecting non hosts, and they are worse 

decision makers when punished for selecting a non-host. With high search costs these trends 

are reversed. Predictions relating to resource abundance and starvation are consistent with 

other studies concerning their relevant impacts. Predictions relating to search costs are novel 

and not intuitively obvious, so may be a fresh source of insight for workers in this field.  
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3.2. Introduction 

Individuals are often referred to as using host resources to describe their diet. However 

resources that would be described as non-hosts are equally rewarding in many cases (Futuyma 

and Moreno, 1988; Holmgren and Getz, 2000; Egan and Funk, 2006). This apparently 

counterintuitive fact has been the subject of much discussion throughout diverse areas of 

biology (Fellows and Heed, 1972; Nancy Moran, 1984; EA Bernays, 1990). Organisms are 

regularly classified as specialists based on limited diet breadth however, there is some debate 

regarding how useful this factor is in determining an individual’s level of specialisation 

(Sargeant, 2007). An individual’s level of specialisation is related to its ecological niche 

which includes many factors such as temperature tolerance, preference for oviposition sites 

and nest site choice among others (Colwell and Futuyma, 1971; Futuyma and Moreno, 1988).  

Despite this, diet breadth still remains a valuable tool for investigation. Ecological 

specialisation has been attributed to many factors and it is unlikely that there is one single 

cause in any species.  

 

The neural limitations hypothesis (NLH) has been demonstrated to be a robust explanation 

that probably contributes toward many instances of specialisation (Dall and Cuthill, 1997; 

Elizabeth A Bernays and Funk, 1999; EA Bernays, 2001; Colin R Tosh et al., 2003). The 

NLH states that generalist individuals will suffer lower decision accuracy due to the higher 

attentional load relative to specialists. Concentrating on one or a small number of hosts allows 

faster decision making and a greater degree of accuracy (Futuyma and Moreno, 1988; Janz 

and Nylin, 1997; EA Bernays, 1998; EA Bernays and Bright, 2001; Wee and Singer, 2007; 

Forister et al., 2012; Liu et al., 2012). It was previously thought that this would have a greater 

effect on organisms with limited neural architecture such as insects, but a recent review 

pointed out that analogous effects have been demonstrated many times in humans (C.R. Tosh 
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et al., 2011). C. R. Tosh et al. (2009) used the NLH as the basis of their theoretical 

investigation by looking at how decision accuracy is affected by the level of specialisation an 

organism displays. Using artificial neural networks they found that specialists outperform 

generalists only when a non-host choice carries no punishment or a small gain in fitness 

during evolution of host range. This finding suggests ecological conditions which could drive 

the evolution of specialisation or indeed slow down this process. Here we extend this analysis 

by considering how an organism’s internal physiological environment and its external 

environment can affect these findings. 

The NLH goes some way to explaining how specialisation arose but there are many other 

influences which can speed up or slow down this process. Competition, both inter- and intra-

specific, resource availability, secondary fitness gains such as the ability to sequester plant 

toxins or cryptic foraging environments and many more have also been suggested as possible 

drivers of specialisation (Futuyma and Moreno, 1988; Jaenike, 1990; Finch and Collier, 2000; 

Carletto et al., 2009). We chose to investigate three potential determinants of niche width that 

we and previous authors (Hoffmann, 1985; Jaenike, 1990; Bolnick et al., 2003; Burns, 2005; 

Lars Chittka et al., 2009; Beest et al., 2014) consider likely to be fundamental in their effect 

on the relative fitness of the different strategies: resource availability, search time costs and 

starvation.   

 

Artificial neural networks have been used for many different ecological and behavioural 

applications and they lend themselves well to this type of investigation (Joy and Death, 2004; 

Enquist and Ghirlanda, 2005; Holmgren et al., 2007). Fundamentally we believe that while 

mathematical and numerical optimisation studies are valuable and may inform on ultimate 

causes of phenomena, biological system state will be a function of both optima and 

constraints due to organic structure. Observed system state can, therefore, best be described 
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by embodying evolution in a meaningful organic structure. While the time is fast approaching 

where evolutionary simulations can be embodied in an anatomically correct decision making 

apparatus (Ito et al., 2009) examination of a significant ecological parameter space still 

requires simplification of the information processing system. We therefore embody 

simulations in simple neural networks: systems that are relatively computationally 

inexpensive while displaying several biologically meaningful behaviours (Enquist and 

Ghirlanda, 2005). We use artificial neural networks trained to different degrees of 

specialisation/generalisation to assess the impact of different environmental and internal 

conditions. The networks are trained on different reward/punishment values simulating 

organisms with the ability to utilise non-host resources with positive benefits through to those 

which suffer large penalties for choosing a non-host. Resource availability, search time 

penalties and starvation are introduced to the model to investigate their impact on decision 

accuracy. We hypothesise that overall decision accuracy will be negatively affected when 

introducing ecological variables into the model. Additionally we suggest that these ecological 

variables will have a greater effect on the specialist networks than the generalist networks. 
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3.3. Methods 

We employ the same methods as C. R. Tosh et al. (2009) and the methods below are an 

amalgam of the methods and SI from that paper. Changes to methods from the original model 

are listed at the end of the present methods section.  

 

We used a 2-layer neural network with 200 input units and 3 output units. The network was 

‘‘fully connected’’ in that there was a connection between all input and output units. Output 

units were binary stochastic elements with pi, the probability of firing of the ith unit, defined 

by 

           

 

   

  

where g(x) is the binary sigmoid function g(x) = 1/(1+exp(-x)), the jth input layer unit 

provides input xj to the ith unit via the connection wij, and M is the number of inputs to the 

unit. 

 

We constructed 40 different artificial resource items, each of which could be projected onto 

the sensory surface of the consumer. Number of pixels in each resource projection was 

rounded from random samples of the normal distribution with mean of 11.8 and variance 3.1. 

These 40 items could be split into 4 types: those with bilateral symmetry (e.g., most animals), 

those with radial symmetry (e.g., cnidarians, echinoderms, and many flowers), those that were 

asymmetric (e.g., sponges and many plants in gross morphology), and those that were 

completely random in conformation. The former 3 categories were, moreover, all designated 

‘‘cohesive’’ in body plan in that no pieces of body tissue (no activated pixels) were spatially 

isolated from the rest (Figure 3.2). Images were input to the network in binary form i.e. where 
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a resource body part was present the input was represented by 1 and where no resource body 

part was present the input was 0.  

 

 

Figure 3.1: Body plan images used as host and non-host resources for the neural networks. 

The asymmetrical body plan was used to represent hosts while the remaining 30 images 

represented non-hosts. Figure reproduced from C. R. Tosh et al. (2009). 

 

Each neural network could output one of three decisions: select a section of the sensory 

surface onto which a host resource is projected, select a section of the sensory surface onto 

which a non-host resource is projected, or select an empty section of the sensory surface 

(analogous to ‘‘continue search’’). Depending on the stimulation pattern of the input surface, 

the network could output 1 of 8, 3-digit binary codes. Each of these codes represented 

selection of a particular input section. Resources could only be projected within these 8 

sections and could not be over an intersection. Input sections ran clockwise from 1 to 8, with 

segment 1 in the top left corner of the input layer (Figure 3.2), and output firing patterns for 

each segment were as follows: 1 = (1, 1, 1), 2 = (1, 1, 0), 3 =  (1, 0, 0), 4 = (0, 0, 0), 5 = (0, 0, 

1), 6 = (0, 1, 1), 7 = (1, 0, 1), 8 = (0, 1, 0).  
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The basic input–output mapping is not unlike certain systems of visuospatial processing in 

higher animals (Rolls and Deco, 2002); however, the model is stripped of all but the most 

fundamental elements of neural processing (namely parallel distributed processing). Although 

this aspect of the model makes it a more simplified representation of real, organic information 

processing systems, it also gives it a potentially very wide application across the animal 

kingdom (Figure 3.2). 

 

Figure 3.2: Example of an input to the network. The ‘retina’ contains the projections of 

host/non-host resources. Networks can choose any of the 8 larger 5x5 squares. This decision 

is output as a binary 3 digit code. Based on the area chosen the network is either punished or 

rewarded. Figure reproduced from C. R. Tosh et al. (2009).  

 

We trained the neural network using a genetic algorithm. Fifty networks were created in each 

generation of training, with initial weight values for each selected at random between 1 and -

1, and the 600 synaptic weights in each encoded in a vector. Within each of these vectors 

representing weights between different layers of the neural network, the linear position of a 

weight was given by:  
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where (i,j,k,l) index a position in a 4-dimensional array with dimensions [d1, d2, d3, and d4; 

in this case (10 20 1 3)].  

 

Multiple projections containing 1-8 resource items were randomly created from the 40 

possible resources (Figure 3.1) and input into the neural network. In all cases a resource 

projection consisted of a random number, chosen from a uniform random distribution, of 

resources between 1 and 8, chosen at random from the pool of 40. 

 

 We trained networks to select asymmetric resource items from each of these projections and 

to avoid all others (i.e., asymmetric resources were designated hosts and all other resources 

were non-hosts), but the number of asymmetric resources that the network was trained to 

select was also varied. At one extreme, there was a generalist treatment where the network 

was rewarded for selecting any of the 10 asymmetric resources (i.e., there were 10 resource 

types designated as host, and the 30 remaining resources were non-hosts). At the other 

extreme, there was a specialist treatment where only 1 specific asymmetric item was rewarded 

(only 1 host and the remaining 39 resources were designated non-hosts). We varied the score 

for choosing a non-host resource within the genetic algorithm. The reward for choosing a host 

resource was fixed at +5, but punishment/reward for choosing a non-host was sampled as 

follows: -5, -2.5, -1, -0.5, 0, +0.5, +1, +2.5, and +5. The last value (+5) was a control; the 

selection of hosts and non-hosts was equally valuable, and thus differential range has not been 

selected. In the extreme generalist treatment we rewarded selection of all 10 asymmetric items 

and then removed 2 resources at random from the list of rewarded types, now rewarding 

selection of only 8 asymmetric resources and punishing selection of all other resources. This 
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removal process was repeated, removing 2 resources (or 1 if only 2 remained) each time until 

we arrived at the extreme specialist treatment where only 1 asymmetric resource was 

rewarded. We thus created a series of networks training on a specific set of resources and 

varied their level of specialization. This process of training and removal was repeated 10 

times to obtain 10 replicates representing unique sets of resources that varied networks 

ecological range. Each one of these replicates was in turn represented by 10 stochastic repeats 

of training procedures. These procedures were repeated for various values of 

reward/punishment for choosing a non-host resource. 

 

Overall scores of each of the 50 neural networks after presentation of 250 projections were 

calculated, and the top scoring 10% of networks were chosen for mutation and recombination. 

Networks were paired at random from this 10% to produce 25 pairs, and while a pairing could 

occur more than once, no network could mate with itself. Pairs were recombined with a 

probability of 0.6 and during the recombination event sections of the paired weight vectors 

were swapped at a recombination point chosen at random between 0 and 600. After 

recombination, or if a recombination event did not occur, vectors were mutated. This occurred 

with a probability of 0.1 at each vector element, with the amount to be added or subtracted to 

the present value sampled at random from a normal distribution with mean 0 and variance 3. 

After recombination and mutation, the 50 networks were passed to the next generation of 

training, and the same projection set used in the last generation was presented to each 

network. The average score of networks had invariably settled to an asymptote value after 

training was run for 300 generations. 

 

When testing the decision accuracy of the trained networks we required a set of input 

projections that would give us an equivalent, standardized measure of decision accuracy (the 



43 
 

ability of networks to select host resources, those rewarded with +5 during training, from 

projections containing hosts and non-hosts, those punished/rewarded during training) of 

networks regardless of training experience. A set of 250 projections was created exactly as 

described above for training sets. In each projection we then selected the sections on which 

resources of one of the four shape types were projected (this choice was arbitrary as allocation 

of resources from the 40 projections is random) and designated these ‘‘host locations.’’ All 

other locations where resources were projected were designated ‘‘non-host locations.’’ We 

then modified this template set of projections for each set of networks that were trained to a 

particular ecological range, and obtained this ecological range on a specific set of resources, 

inserting appropriate hosts for each treatment randomly into host locations and non-hosts into 

non-host locations. For example consider a treatment that included 4 asymmetric resources 

(first, second, sixth, and eighth, from the left of Figure 3.1) during training. During testing of 

decision accuracy these resources were inserted at random into host locations of the template 

projections and the remaining 36 resources inserted at random in the non-host sections. Thus, 

regardless of training experience, decision accuracy of networks was gauged by their ability 

to select host resources from input projections containing the same number of hosts and non-

hosts, at exactly the same positions of the neural network input. 

 

3.3.1. Differences from the Methods in C. R. Tosh et al. (2009) 

To introduce differential resource availability into the model we limited the number of 

projections containing a resource during network evolution. In the original model every 

projection had at least one resource but in this model only a percentage of projections had 

resources. Projections containing resources increased in ten percent increments from 10% up 

to 90%. Search time penalties were introduced by including a negative punishment to 

selection of empty spaces in the projections. Previously selecting these empty spaces carried a 
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neutral 0 reward/punishment but in this version of the model they carried a penalty as follows: 

-5, -2.5, -1 and -0.5.  Starvation and death occurred when a network’s fitness dropped below a 

pre-set value. This value was set before the training began and for this reason had to be 

postponed for a number of generations before it took effect as the networks’ fitness often fell 

below the set value early in the simulation. A network starved if its fitness dropped to -250 

but this only took effect after 150 generations. We justify this delay in the starvation effect by 

assuming that any animal choosing to specialise has at least some skill in handling the chosen 

resource. This would allow us to partially train our networks before allowing them to suffer 

the effects of starvation. We chose -250 fitness and 150 generations after experimenting with 

various combinations of both fitness (-200 to -350) and delay (50 to 200). The combination of 

-250 fitness and a 150 generation delay was the only stable combination we found. The higher 

fitness (-200) ‘killed’ too many networks for the simulation to continue irrespective of the 

delay set. Lower fitness levels (-300 to -350) had no effect on network performance. A 

network which starved was removed from the model and could not contribute to the next 

generation of networks via the genetic algorithm i.e. it died. This is in contrast to the original 

model in which every network reached the end of the simulation and the top scoring 10% 

were chosen from this pool to create the next generation. 
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3.4. Results 

3.4.1. Resource Availability 

 

Figure 3.3: The effect of resource availability on decision accuracy. Level of network 

specialisation relates to the number of resources a network considered hosts. Extreme 

specialists had one host through to the extreme generalists with ten hosts. Network decision 

accuracy is the number of correct choices the networks make when tested with 250 

projections after training. Error bars show ±95% CI, n = 10. Only 50% and 10% resource 

availability have been illustrated to show the range of values and the changing pattern of the 

data. 

 

When looking at the effect of resource availability we found that overall decision accuracy 

was significantly lower across both specialist and generalist networks as resource availability 

decreased (Figure 3.3). While specialist networks subject to high resource availability 

outperformed generalist ones across a wide range of reward values (from 0 to +2.5), this 

range for specialist networks subject to reduced resource availability was lower. There was 

clearly no advantage to specialisation with 10% resource availability and a non-host 

punishment/reward of 0, but at the same punishment/reward level and 100% resource 
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availability, there was a specialist advantage. Also, low resource availability reduced the 

absolute amount of specialist advantage that a specialist enjoys over a generalist in the region 

of parameter space where specialist advantage exists i.e. specialists may still enjoy some 

advantage over generalists at particular values of non-host reward/punishment but the 

advantage is not great. The finding of C. R. Tosh et al. (2009) that specialists can enjoy 

higher decision accuracy than generalists under realistic ecological conditions, is therefore 

probably most applicable to the situation where resources are abundant and organisms 

encounter resources each time they disperse and land. Lower resource availability will 

generally lower specialist advantage. Both our hypotheses have proved to be true in this set of 

simulations. The predicted overall reduction in decision accuracy for all networks was 

apparent and the effect of resource availability was more pronounced in the specialist 

networks. 
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3.4.2. Punishment for Extended Search Time 

 

 

Figure 3.4: The effect of search time penalties on decision accuracy. Level of network 

specialisation relates to the number of resources a network considered hosts. Extreme 

specialists had one host through to the extreme generalists with ten hosts. Network decision 

accuracy is the number of correct choices the networks make when tested with 250 

projections after training. Error bars show ±95% CI, n = 10. Punishment values were applied 

to networks choosing an empty space during training. Only the extreme punishments have 

been included in the figure to illustrate the effects of search costs (-0.5 and -5). The -1 and -

2.5 punishment results were intermediate to these. 

 

A high punishment for continuing search reduces the advantage to specialists in the region 

where mistakes for selecting a non-host are rewarded. High search punishment increases the 

advantage to specialists in the region where mistakes for selecting a non-host are punished. 

Moreover a high punishment for continuing search helps maintain high overall decision 

accuracy in this latter region. In relation to the results of (C. R. Tosh et al., 2009) increasing 

search costs shifts rather than narrows the range of parameter space over which specialists 

enjoy an advantage in decision accuracy. Our first hypothesis, that overall decision accuracy 
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is reduced for all networks, was again accurate in this simulation. However our prediction that 

specialists would suffer greater losses in decision accuracy was false. The shifting of the 

range over which specialists outperform generalists is a very interesting result. 

 

3.4.3. Starvation 

 

 

Figure 3.5: The effect of starvation on decision accuracy. Level of network specialisation 

relates to the number of resources a network considered hosts. Extreme specialists had one 

host through to the extreme generalists with ten hosts. Network decision accuracy is the 

number of correct choices the networks make when tested with 250 projections after training. 

Error bars show ±95% CI, n = 10. 

  

While it should be borne in mind that simulation of starvation in our model was only possible 

for a relatively narrow range of ecological circumstances, simulations indicate that starvation 

has three main effects (Figure 3.5). It firstly reduces the absolute level of decision accuracy 

across reward/punishment values for choosing a non –host. Secondly it slightly reduces the 

range of reward/punishment values for choosing a non –host in which specialists networks 

enjoy an advantage in terms of decision accuracy. Whereas the specialists networks that do 
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not starve enjoy superior decision accuracy to generalists when there is 0 reward/punishment 

for selecting a non-host, the opposite is true when networks can starve. Thirdly, it reduces the 

absolute amount of specialist advantage that a specialist enjoys over a generalist in the region 

of parameter space where specialist advantage exists (+0.5, +1). Thus as for resource 

availability, the addition of this relevant physiological characteristic of animals tends to 

reduce the parameter space over which specialist networks enjoy a substantial advantage over 

generalists. As in the resource availability simulations both of our hypotheses have been 

accurate under the conditions in this simulation. We see lower overall decision accuracy for 

all networks and also that specialists fail to outperform generalists to a greater degree than 

when starvation is not included in the simulation. 
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3.5. Discussion 

The model of C. R. Tosh et al. (2009) indicated that specialisation is associated with 

increased decision accuracy when choice of a non-host is associated with a mild reward 

during evolution of host range.  They considered this important because often specialist 

organisms confined to non-hosts do quite well, hence these predictions provide an explanation 

for the evolution of specialisation when ecological conditions would commonly appear not to 

support it. Essentially low resource availability and an increased tendency for death through 

starvation lower the range of parameter states (the range of punishment/reward values for 

selecting a non-host) that support a pronounced advantage to specialist networks in terms of 

decision accuracy. This brings the evolution of niche specialisation through advantages in 

decision accuracy associated with this strategy in line with previous work considering the role 

of these factors in the evolution of niche width. Most studies have indicated that low resource 

availability (Kunin and Iwasa, 1996; Bolnick et al., 2003; Beest et al., 2014) and an increased 

tendency for death through starvation (Hoffmann, 1985; Hoffmann and Turelli, 1985; Jaenike, 

1990) promote generalisation rather than specialisation and it is intuitively reasonable that 

they should do so.  

 

Predictions relating to search costs produced here are more interesting. Varying search costs 

shifts the parameter range over which specialists enjoy a decision accuracy advantage: with 

no search costs specialist networks are better decision makers than generalists when networks 

are rewarded for selecting non-hosts, and they are worse decision makers when networks are 

punished for selecting a non-host. With high search costs these trends are reversed. This is a 

complex scenario and while envisioning of the internal dynamics of the neural network could 

be attempted, the reason for this shift is not intuitively obvious; however the implications for 

the dynamics of the evolution of niche width are clear. This work suggests that specialists 
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enjoy increased decision accuracy when search costs and non-host penalties are high and we 

could expect narrow niche width to be advantageous under these circumstances. In their 

model of niche width Ackermann and Doebeli (2004) illustrate this effect on generalist 

organisms. In their simulations individuals were able to evolve their ecological niche under 

different conditions. They found that generalist niches tended to persist or even widen when 

costs were low but when costs were high for a widening of the niche the model split into 

smaller niches or specialists. Generalist organisms faced with high search costs/non-host 

penalties would be expected to perform poorly and be outperformed by specialists. This could 

potentially drive the generalist population niche to become more refined over time or 

alternatively could remove the generalist from the niche altogether. Previous studies have 

shown, reasonably, that increased search costs promote the evolution of generalisation: 

organisms will accept any resource rather than incur further search costs (Ackermann and 

Doebeli, 2004; Burns, 2005; Lars Chittka et al., 2009). This has not, however, taken into 

account the possibility of large penalties associated with the non-host resource. Search cost 

penalties in our model can potentially be understood in the context of the decision speed vs 

accuracy trade-offs identified in previous studies. Not making a choice (i.e. choosing an 

empty space) results in a penalty which could be seen as increased time to make a decision. 

Networks choosing to make a decision to avoid search costs are essentially making a snap 

decision and would be expected to be, on the whole, less accurate. Lars Chittka et al. (2009) 

demonstrate this effect in bees. Their review of the literature shows that fast, possibly 

inaccurate decision making can be adaptive when penalties are low for making a poor 

decision. Our results reflect this in that networks suffering a smaller punishment for search 

time were less accurate than those that suffered large penalties but only when non-host choice 

leads to a punishment. When rewarded for choosing a non-host the effect disappears. This 

effect has also been shown by Burns (2005) who found that faster decisions are better in a 

rewarding environment even when this results in reduced accuracy in Bombus terrestris. 
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Other studies in bumblebee foraging behaviour support this finding with the most efficient 

foragers being those making faster decisions but more inaccurate ones (Burns and Dyer, 

2008).    

 

 Ultimately this model requires further validation. In the first instance we can consider the 

cross-taxonomic relationships that are already known between niche width and resource 

abundance, search costs and resistance to starvation (see above). Where less is known about 

the relationship between a variable we have considered and niche width a focussed 

quantitative analysis of the literature would be valuable. Another way very specific 

predictions of our model could be and have been tested is to use learning or artificial selection 

experiments with an appropriate organism. For example, C.R. Tosh et al. (2011) used a 

human-computer interactive in which humans learned letters appearing on a screen to show 

that ‘specialist’ humans are more accurate decision-makers than generalists when their 

mistakes are rewarded during training to recognise the most valuable letters, but not when 

mistakes are punished (the principal prediction of the C. R. Tosh et al. (2009) model) . Such 

an approach could easily be extended to the variables studied in the present article. 

Alternatively, in an organism with a short generation time that shows active choice of 

resources, such as Drosophila melanogaster, fundamental predictions of the model could be 

tested through evolution across generations. One last approach that could be adopted is to 

measure search costs and performance on non-hosts of selected taxa in the field. If decision 

accuracy is driving specialisation, our work suggests that those taxa with high search costs 

that are punished for selecting non-hosts in error are those most likely to be host specialists.   

 

Another issue these predictions raise is that of the relative benefits of mathematical 

(numerical or analytical) vs complex system approaches in ecology and evolution. The use of 
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an ‘organic’ model (a complex systems model that has some ‘physical’ or computational 

resemblance to a complex organic structure) can embody some of the constraints inherent in 

evolution that are difficult to study as comprehensively using mathematical approaches. So it 

is common now to examine evolutionary dynamics (particularly behavioural evolutionary 

dynamics) while embodying the system in some form of organic model architecture such as a 

neural network (Marchiori and Warglien, 2008; Lewis et al., 2010; Delton et al., 2011; 

McNally et al., 2012). The next step in the development of this research program is to 

embody study systems within more realistic organic architecture (Ito et al., 2009; Patel et al., 

2009).       
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4. Chapter 3: Is Specialised Behaviour an Evolutionary Dead End: 

Predictions from Connectionist Networks 

 

4.1. Introduction 

The idea that specialists exist in an evolutionary dead end has been a pervasive theory for 

many years (Simpson, 1944; Simpson, 1953). It is based on the idea that when an organism 

specialises then the variation in its suite of abilities is lost (PJ Smith and Fujio, 1982). 

Relaxed selection pressure on genes which enabled a more generalist life history can lead to 

loss of function of receptors and structures or even changes in behaviour (Lahti et al., 2009). 

Once lost, this variation is thought to be unavailable to the organism, reducing the ability to 

adapt to changing environments (Futuyma and Moreno, 1988; Jaenike, 1990). 

 

Several studies have supported the evolutionary dead end theory including Nancy A Moran 

(1988) who suggests that, in aphids, over-specialisation by certain morphs within the aphid 

life cycle actually constrains evolution making an expansion of host range difficult. 

Additionally, host shifts during the evolution of chrysomelid beetles have typically been 

toward closely related plants suggesting difficulty in major host shifts (Futuyma and Mitter, 

1996). Most convincing perhaps are the findings of McBride (2007) who shows that in 

Drosophila sechellia, a recently specialised Dipteran, olfactory and gustatory receptor genes 

are being lost at a greatly increased rate. This could be due to relaxed selection on those genes 

no longer regarded as host genes which could render them inoperative or equally could be 

positive selection on those same genes as increased sensitivity to a new host becomes 

paramount. This effect will be more pronounced in species moving from generalism to 

specialism as more genes will become obsolete than in a specialist expanding its host range. 
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D. sechellia has also seen a greatly reduced female reproductive capacity since becoming a 

specialist. Although this is offset by the stimulant effect of the host fruit (Morinda citrifolia) 

without the fruit the species would be at a distinct fitness disadvantage (R'kha et al., 1997). 

Similarly Drosophila pachea has lost genetic function in the neverland gene which has left it 

unable to process cholesterol and it now relies on its host plant, senita cactus (Pachycereus 

schottii), to provide uncommon sterols (Lang et al., 2012).  

 

This is of great concern now more than ever due to the accelerating rate of climate change 

coupled with the many incidences of specialist species at risk from extinction. If 

specialisation is actually a dead end then many species could be forced to extinction because 

they cannot adapt (Warren et al., 2001; Travis, 2003; Robert J Wilson et al., 2007; Gilman et 

al., 2010). 

 

The theory is not without criticism however. Phylogenetic studies of nymphalid butterflies 

show no trend toward specialisation. The Nymphalidae tribe has seen an increase in host 

range as often as a reduction (Janz et al., 2001). Termonia et al. (2001) found that the most 

recent evolutionarily derived ability to utilise host plant compounds actually enabled some 

specialist Chrysomelid beetles to produce a wider range of defensive compounds. Similarly, 

several phylogenies of phytophagous insects also show no tendency for species to move 

toward specialisation (for a full list of groups studied see Nosil and Mooers (2005)). Shifts in 

both directions are equally common despite the dead end theory suggesting that this should 

not be the case. The same effect has been seen in fruit flies in the genus Tomoplagia. No trend 

towards specialisation has been observed. Despite many of the genus being specialised, host 

expansions are still common (Yotoko et al., 2005). Kelley and Farrell (1998) provide further 

evidence of specialist species expanding host range in Dendroctonus beetles. Using molecular 
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phylogenies they show that specialists in this genus have, at least 4 times, expanded host 

range to become generalists. 

 

Biological neural networks are the basic building blocks of behaviour. Neural networks 

control all aspects of behaviour from metabolism (Selverston et al., 1976) to movement such 

as hunting or predator avoidance (Ewert, 1970; Levi and Camhi, 2000). Simplified artificial 

versions of these networks can provide considerable insight into the underlying mechanisms 

of behaviour or ecology which are difficult, if not impossible, to study in living organisms or 

ecosystems (Fukushima, 1986; Lek and Guégan, 1999; Özesmi et al., 2006; Park and Chon, 

2007). While there has been much work on creating useful, biologically accurate ANNs 

(Maass, 1997) we are still at a stage in the study of the evolution of behaviour where we need 

to reduce the complexity of our models in order to investigate a significant proportion of state 

space.  

 

Host range expansion or contraction is often mediated initially by behavioural evolution 

(Thomas et al., 2001). This can have far reaching consequences for an organism as the 

changes in behaviour can lead to changes in physiology and can eventually produce specialist 

and generalist species. This link between specialisation and behaviour makes the study of the 

evolution of behaviour particularly relevant to the theory of specialisation as a dead end.  

 

We used ANNs to investigate the effects of limited evolvability on the evolution of behaviour 

in a small population. Our interest was in the ability of the networks to reverse the trend 

toward specialisation and become more generalist. Is re-expansion possible after 

specialisation and loss of genetic diversity or function and how robust are the networks to 
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limited evolvability? To investigate this we attempted to answer 2 specific questions:  

1. Does a reduction in evolvability prevent specialist networks expanding their host range? 

2. Does the introduction of ecological variables increase the likelihood of networks becoming 

trapped in an evolutionary dead end? 

 

Genetic diversity is this instance is being represented by network weight diversity. A 

reduction in diversity for a network is easy to achieve by simply preventing a number of the 

networks weights from changing during crossover and mutation in our model and we were 

interested to see if this had a similar effect on the network’s evolutionary potential as it is 

predicted to have on specialist species. Artificial neural networks (ANNs) have been applied 

to many areas of biology and lend themselves well to investigations such as this (Enquist and 

Ghirlanda, 2005; Holmgren et al., 2007).  

 

To test our first hypothesis we trained networks as resource specialists then, using these same 

networks, we re-trained them as generalists. However, before re-training a percentage of the 

network weights were fixed to impair their ability to adapt. This is analogous to the loss of 

evolvability either genetically or physiologically, through loss of function, that may occur 

over time when species become specialised. Overall fitness scores were recorded for the 

resulting generalist networks. When testing our second hypothesis we included variables in 

our model to simulate ecological factors of interest. These were negative search costs and a 

non-host punishment value.  
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4.2. Methods 

Our model includes major code additions to the neural network and genetic algorithm in 

Chapter 2. There are also the introduced ecological factors and the ability to alter the 

evolvability of the networks to consider. It is therefore described again here in full.  

 

We created 2-layer artificial neural networks with 200 input units and 3 output units. Our 

networks were fully connected; each input was connected to each of the output units. Output 

units were binary stochastic elements with pi, the probability of firing of the ith unit, defined 

by 

           

 

   

  

where g(x) is the binary sigmoid function g(x) = 1/(1+exp(-x)), the jth input layer unit 

provides input xj to the ith unit via the connection wij, and M is the number of inputs to the 

unit.  

 

Figure 4.1: Body plan images used as host and non-host resources for the neural networks. 

The asymmetrical body plan was used to represent hosts while the remaining 30 images 

represented non-hosts. Figure reproduced from C. R. Tosh et al. (2009). 
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We defined a generalist network as a network trained to recognise ten ‘host’ projections. 

Specialist networks were trained to recognise only one ‘host’ projection which was taken 

from the same pool of ten ‘hosts’ recognised by the generalists. Each input consisted of eight 

5x5 squares with a random number of host projections, non-host projections and empty 

squares. Projections were composed of binary structures where the body plan is created from 

1s and empty space by 0s. The squares which did not contain a host/non-host were filled with 

0s. In total 40 resource projections were created (Figure 4.1). The number of pixels in each 

resource projection was rounded from random samples of the normal distribution with a mean 

of 11.8 and variance 3.1. The 40 projections were further split into four groups of ten. The 

groups were: bilateral symmetry, radial symmetry, asymmetric and random conformation. We 

classified the first three categories as cohesive i.e. no body parts were completely isolated 

from the rest. We designated the asymmetric group as hosts for all networks with specialists 

having one host from this group and generalists using all ten of the asymmetric projections as 

hosts. 

 

Network outputs were three-digit binary codes relating to the position on the input projection 

that was being chosen. Networks had three possible choices they could make. Choose a host 

area, a non-host area, or an empty space (equivalent to continue to search). Resources were 

always positioned in one of the eight 5x5 sections of the input projection and could not 

overlap. The network could output eight different codes relating to the eight sections of the 

input projection. These were : (1, 1, 1) section 1, (1, 1, 0) section 2, (1, 0, 0) section 3, (0, 0, 

0) section 4, (0, 0, 1) section 5, (0, 1, 1) section 6, (1, 0, 1) section 7, (0, 1, 0) section 8.  

 

Models were run for 500 generations per training period - specialist training and generalist 

training. Simulations were limited to 500 generations as after this period there was very little 
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change, with maximum fitness settling to a stable value. To simulate reduced diversity 

following specialisation we fixed weights within the network after the first 500 generations. 

This was the point that trained specialist networks switched and became generalists. Fixing 

weights was done in steps of 10% from 0% through to 100%. 0% and 100% were included as 

controls for comparison. To select weights to fix we first randomly selected one individual 

from our population of trained specialists. We then randomly selected a percentage of the 

weights from this network to be the fixed weights for all networks. These weights were then 

inserted into all networks at the position they occupied in the chosen network. For example a 

simulation with 30% fixed weights would train 50 networks as specialists with no fixed 

weights. After 500 generations one individual from these specialist networks would be chosen 

and 30% of its weights would be randomly selected. These weights would then be inserted 

into all 49 of the other networks at the position they appeared in the chosen networks weight 

matrix. This allowed us to simplify the coding process dramatically. 

 

This process will only be valid if the variation between weights at the same location across 

the population is very small; therefore, to validate the process we trained 50 populations of 50 

networks to specialisation for 500 generations then selected 30% of their 600 weights and 

compared these to the other weights at that position in their population. Overall mean variance 

and mean standard deviation of the final weights after the 500 generations were 0.0374 and 

0.0506 respectively (n = 450000).  The mean value of weights across all control networks was 

0.5320. 

 

Final fitness scores for all networks were compared and the top 10% of the networks went on 

to create the next generation. Networks were randomly paired with each other from this pool. 

The same pairing could occur more than once but networks could not be paired with 
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themselves. After each generation networks underwent a mutation and recombination process. 

Recombination occurred with a probability of 0.6. Networks chosen to recombine had a 

section of their weight matrix at a randomly chosen point between 1 and 600 swapped with 

their partner. Mutation was achieved by replacing a weight in the network with a probability 

of 0.1. The chosen values were changed by a value randomly generated from a normal 

distribution with a mean of 0 and a variance of 3. After this process was complete any fixed 

weights were reinserted at their original points in the weight matrix effectively removing any 

modification that might have occurred. 

 

We rewarded networks with +5 points for a correct host selection. Networks were trained 

under four different conditions:  

To investigate hypothesis 1; does a reduction in evolvability prevent specialist networks 

expanding their host range? 

 Networks suffered no penalty for errors or choosing an empty square – analogous to 

no search costs and non-toxic non-hosts. 

To investigate hypothesis 2; does the introduction of ecological variables increase the 

likelihood of networks becoming trapped in an evolutionary dead end? 

 Networks suffered a minus 5 (-5) penalty for choosing a non-host but no penalty for 

choosing an empty square  - analogous to a toxic or indigestible non-host population 

with no costs for searching for a host. 

 Networks suffered a minus 5 (-5) penalty for choosing an empty square but no penalty 

for choosing a non-host – analogous to a high search cost and non-toxic hosts. 
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 Networks suffered a minus 5 (-5) penalty for choosing a non-host and a minus 5 (-5) 

penalty for choosing an empty square – a combination of search costs and toxic non-

hosts 

For each simulation the condition the network was trained under to become a specialist was 

also the condition it retrained under as a generalist. For example networks training as 

specialists with high search costs would retrain as generalists with high search costs.  
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4.3. Results 

 

Figure 4.2: Showing control data for the no punishment simulation. Data shows the mean 

fitness score for all networks at each generation as they retrain as generalists. Included are the 

data for 0% fixed weights, 100% fixed weights and random selection. Also included is the 

maximum possible fitness score for comparison. Random data refers to networks choosing 

one of the 8 hosts at random. 

 

To illustrate our control simulations we have used the data from our no punishment for non-

host and no search cost simulations (Figure 4.2). Our controls show that without any 

reduction in variation (0% fixed weights), networks could achieve similar fitness scores to 

those seen when generalist networks are trained without previously being trained as 

specialists (mean final fitness = 723.89, SE = 12.87, n = 20). This lower final fitness for 

generalist networks could be due to an increased attentional load because of the increased 

number of hosts. 
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Figure 4.3: Graph showing the final mean fitness score ±2SE after retraining as generalists for 

networks for each percentage of fixed weights. We used ±2SE to aid in visualisation as the errors were 

very small. Included are the data for no punishment (black), search costs (blue), non-host punishment 

(green) and both search costs and non-host punishment (red).   
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All ecological parameters introduced reduce overall network fitness (Figure 4.3). Search costs 

have the least impact with non-host punishment intermediate and the combination of both 

punishments having the greatest impact. When no punishment is present we can see from the 

results that networks are very robust when it comes to loss of evolutionary potential (weight 

fixation). It is not until high fixation values that networks suffer irreversibility and can no 

longer evolve to generalise. When we start to introduce ecological parameters this becomes 

more apparent and the ability of networks to evolve decreases. As we might expect the 

combination of non-host penalties and search costs has the greatest effect on overall fitness 

(Figure 4.3). What is less intuitive perhaps is the scale of the effect that search costs have 

when combined with the non-host punishment. Although there is a large reduction in fitness 

from the no punishment data, when both costs are present search costs have a minor effect on 

overall fitness until weight fixation reaches 50% versus the non-host penalty simulations. 

After this a minor reduction in overall fitness is apparent when compared with the non-host 

penalty alone.    

 

 50% fixed 90% fixed 

No punishment 78.38% 64.26% 

Non-host punishment 75.67% 41.45% 

Search costs 79.92% 51.07% 

Non-host punishment and 

search costs 

75.59% 40.18% 

Table 4.1: Showing the percentage of maximum fitness (difference between fitness at 0% 

fixed weights and 100% fixed weights) that networks were able to recover at 50% fixed 

weights and 90% fixed weights. Data is from Table A2.2. 

 

Overall networks across all simulations perform at a similar level of recovery until around 

50% of network weights are fixed (Figure 4.4). After this stage the performance of those 
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networks with either non-host penalties or both non-host penalties and search costs combined 

begins to degrade more rapidly. Our results in Table 4.1 show that even in the most extreme 

condition (90% of weights fixed) networks suffering no punishment for search costs or non-

host selection were able to recover 64% of the maximum fitness achievable. Search costs had 

a reduced effect on fitness when compared to non-host punishment with networks recovering 

over half of potential fitness even at 90% fixation. Individually non-host punishment had the 

greatest impact on network fitness. When both of these punishments are applied to networks 

search costs cause very little impact to the already low score induced by non-host punishment. 

The introduction of search costs to an environment with high non-host penalties does not have 

a great effect. 

 

At 50% fixed weights the networks all recover over 75% of the maximum fitness possible. 

Both the no punishment and search costs conditions perform best with search costs actually 

maintaining a marginally higher fitness than the networks suffering no punishment. Again we 

see almost no difference between the non-host punishment condition and the combined search 

costs and non-host punishment condition suggesting that the non-host punishment effect is 

effectively cancelling the search cost effect.   
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Figure 4.4: Graph showing the percentage of maximum fitness networks were able to recover. 

Maximum fitness possible was calculated as the difference between final fitness at 0% fixed 

weights and final fitness at 100% fixed weights. At each level of fixation we recorded the 

difference between that simulations final fitness and final fitness at 100% fixed weights. We 

then calculated the percentage of final fitness that this represented from the maximum. Error 

bars have been omitted due to their small size and for ease of visualisation of the data. See 

Table A2.2 for data.  

 

Figure 4.4 presents a more complete picture of the relationship between the percentage of 

maximum fitness recovered and percentage of fixed weights. The overall pattern of the data 

shows the downward trend we would expect from Table 4.1 however it is clear that these 

results do not generalise perfectly from the smaller sample of results in Table 4.1. In Table 4.1 

I have compared intermediate weight fixation with extreme weight fixation (50% vs 90% 

weight fixation). When examining that data we must be aware that there is considerable 

variation in the data and care must be taken when interpreting it.   
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4.4. Discussion 

The most common argument for the evolutionary dead end theory has been that a specialist 

organism, after undergoing niche specialisation, will have a reduced genetic variability when 

compared to a similar generalist and that this reduction in evolvability will reduce fitness 

when attempting to expand its host range or if environmental conditions change (PJ Smith and 

Fujio, 1982; Frankham et al., 1999; Frankham, 2005; Jump et al., 2009). This is not what our 

simulations show, however. If this reduction in genetic variation affects the behaviour of the 

organism in question then our results would suggest that organisms would be robust to this 

loss of genetic variation and still be free to evolve alternative behavioural states. The 

performance of our networks remained high when no punishment was applied with all 

simulations managing to recover over 75% of maximum fitness when 50% of their weights 

were fixed (Figure 4.4). From this we would expect a behaviourally specialist organism to be 

able to escape this dead end and become more generalist without too much of a negative 

impact at low to intermediate reductions in evolvability, even when under ecological 

pressures.  

 

Specialist networks with limited ability to evolve weights performed reasonably well when 

allowed to evolve to become generalists when no other pressures are present. In the 

simulations with no search costs or non-host penalties networks were able to recover over 

60% of their maximum possible fitness (Figure 4.4) even at 90% fixation of weights. This 

condition should therefore be most suited to breaking from specialisation and expanding host 

range. In biological populations, this ability to adapt despite extremely low variation should 

allow organisms to avoid suffering a reduction in fitness that would cause a situation such as 

the evolutionary dead end.  
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When faced with additional ecological pressure, either from search costs and/or from non-host 

penalties, networks were still able to perform reasonably well. However the added ecological 

factors we introduced had a pronounced effect on the ability of specialist networks when 

retraining as generalists at high levels of weight fixation. This scenario could lead to 

specialisation becoming a dead end as specialist organisms with low evolvability, from 

bottleneck events, founder effects, genetic drift or inbreeding etc, should find it more difficult 

to adapt when under high levels of environmental pressure. In this case then we could expect 

specialists to become trapped and it would be much more difficult for them to diversify. 

 

When search costs are introduced into the simulation we see a further reduction in overall 

fitness when compared with the no punishment situation. These networks were only able to 

recover around 50% of maximum possible fitness when weight fixation reached 90% (Figure 

4.4). The extra pressure from this ecological variable creates a situation in which 

specialisation becomes more difficult to break from. Specialist organisms with high search 

costs and very limited evolvability attempting to become more generalist are more likely than 

those under no ecological stress to become trapped in specialisation as their fitness reduces 

considerably. The finding that search costs impact overall fitness in generalist species agrees 

with studies such as Futuyma and Moreno (1988) that demonstrate a potentially higher search 

time and therefore cost for generalist organisms when compared to specialists. 

 

Non-host penalties had the greatest effect on the performance of our networks overall. In both 

the non-host penalty and the combined non-host penalty and search costs simulations we see a 

similar negative effect. Both had a low final fitness of ~40% at maximum weight fixation 

(Figure 4.4). This suggests that non-host penalties are most detrimental to host range 

expansion. When faced with multiple toxic non-hosts our models predict that evolution from 
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specialist to generalist would be significantly more difficult to achieve when the ability to 

adapt is low. This suggests that the dead end theory could, in this type of ecology, be accurate 

and specialists would effectively become trapped. Both simulations including non-host 

penalties displayed similar trends across all different levels of weight fixation.  

 

The introduction of search costs to simulations with non-host penalties had very little effect 

on the performance of the networks versus the simulations with only non-host penalties. The 

amount of maximum fitness recovered by networks suffering both penalties was only 1.27% 

less than networks suffering only non-host punishment at 90% weight fixation (Table 4.1). 

This result would suggest that networks find compensating for search costs a significantly 

easier task than dealing with toxic non-hosts and even when both are applied they can 

minimise the impact of negative search costs on their evolution. Across the range of weight 

fixation applied to the networks we see little difference in the results for non-host punishment 

when compared to the simulations with both non-host punishment and search costs. Species in 

ecologically similar habitats to this dual punishment simulation would be more at risk of 

finding themselves in an evolutionary dead end and indeed we would expect this scenario to 

be the most difficult to escape from if only marginally more difficult than non-host 

punishments alone. This raises concerns when considering the patchy nature of many 

ecosystems and the prevalence of manmade compounds used in crop defence. This 

combination of enforced search time and the likelihood of encountering toxins could well be 

preventing specialists expanding their host range and may become a contributing factor in the 

extinction of these species. Patchy habitats have already been linked to species extinction 

(Travis, 2003) and the addition of toxic compounds into the environment could be creating a 

much worse situation. A further compounding factor is the method of application of 
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pesticides. As they are sprayed over large areas onto highly abundant hosts (crops) the 

likelihood of contact with these toxins will be high. 

 

We must be aware that the data in Table 4.1 does not generalise perfectly across all levels of 

weight fixation (Figure 4.4). This suggests that the results we have found could be more 

complicated than first thought. There are perhaps other factors which are acting on the fitness 

recovery in these simulations and this will require more work to discover. The data includes 

several points of interest. In particular the networks suffering search costs appear to be able to 

perform best at 40% and 60% weight fixation and can exceed the no punishment networks 

performance at these levels of fixation and also marginally at 80%. Networks suffering no 

punishments had areas in which they performed better than would be expected, specifically at 

30% and 70% fixation. Even when non-host punishments are present network behaviour was 

slightly variable with these networks scoring highly at 20% and 40% fixation. The reasons for 

this are as yet unknown but it would be interesting to explore this further. The results found 

here suggest that the interaction of the ecological factors could be having greater, more 

complex effects on network fitness than previously thought.    

 

But it is not only direct genetic or synaptic variation that must be considered when 

investigating behavioural evolutionary dead ends. Many studies, particularly those on 

Drosophila, show that a major contributing factor to host range is the number of active 

receptor proteins possessed by the organism (McBride, 2007; Dworkin and Jones, 2009). 

Gustatory and olfactory receptors have an influence over formation and maintenance of host 

preference (Jordan et al., 2009) and it would be useful to explore the effect of gains and losses 

of receptors on the evolution of networks with limited evolvability. This would perhaps be 

better studied using more biologically realistic architecture. A realistically structured network 
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including receptor neurons and their target areas of the brain would provide much needed 

insight into how these inputs can shape behaviour. This could be used for many different 

organisms, although complexity and computer processing power would dictate more simple 

systems. A good starting point would be the encoding of receptors that can be deactivated 

during evolution within the input of the network. An investigation of this kind would provide 

valuable information on the interaction between receptors and their effect on behaviour. There 

has been a great deal of research on olfactory information processing in Drosophila and 

because of the large amount of information available this would be an excellent candidate to 

investigate (Stocker, 1994; Couto et al., 2005; Silbering et al., 2008; Masse et al., 2009). 

These systems are possibly too complex to simulate directly but simplified versions could 

provide valuable insights into the role of olfactory receptors in behaviour.  

 

The idea of specialisation being an evolutionary dead end is one which cannot be completely 

discarded. Although possibly not as common as some of the literature would suggest, when 

under high levels of ecological pressure we clearly see that networks suffered high fitness 

costs which lends weight to the dead end theory. Empirically these results need more 

investigation to explore how this may be affecting specialists in the field. Specialist host 

range expansions and local extinctions would all be useful to examine when attempting to 

establish how much of an impact the dead end could have in the future. Comparative work 

with generalist species, such as investigations into the ability of both specialist and generalist 

species to deal with identical ecological pressures, would also prove valuable and would 

provide empirical evidence for the differences in the ability of these 2 strategies to react to 

rapid changes in their environment. 
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5. General Discussion 

 

In this thesis I have demonstrated three different mechanisms that can shape the niche width 

of a species’. Olfactory information such as bee scent marks or floral volatiles, external 

ecological pressures such as search costs, starvation or research availability, and a reduction 

in the species’ evolvability underlying the properties of a model organic system can all 

influence resource use. These factors are therefore all important considerations when studying 

both the fundamental and realised niche of a species and how it evolves over time. 

Reasonably, we could expect all of these factors to be having an impact on the evolution of 

niche width in many natural populations. Without a greater understanding of how these 

factors shape niche width we could be disregarding important interactions within and between 

species.  

 

5.1. Chapter 1 

Foraging is efficient in most, if not all, pollinator species (Pyke, 1978; Graham and Jones, 

1996). Scent marking is a low cost and reliable system used to improve foraging by many 

different Hymenoptera species (Giurfa, 1992; D Goulson, Hawson, SA, & Stout, JC, 1998; 

Gawleta et al., 2005). Many bee species can recognise not only conspecific scent marks but 

also those of other species of bee. Although it is known that syrphids use olfactory cues when 

foraging to locate specific flowers (Primante and Dötterl, 2010) and oviposition sites 

(Almohamad et al., 2008) this ability to utilise interspecific scent marks had never been 

investigated in syrphids. Finding that syrphids can not only learn to recognise these scent 

marks but can also use them to improve their own foraging accuracy is an important 

discovery. The olfactory abilities of syrphids could also be an important factor in the 
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evolution of their ecological niche. Competition with bees will be common and any 

improvement in foraging efficiency should be favoured over time. Further evidence for the 

complex nature of syrphids’ use of olfactory information was found when they were trained to 

recognise and respond to 1-Hexanol. As this is another compound they will come into contact 

with regularly, it being a common component of floral odour (Knudsen et al., 2006), it is 

perhaps not a surprise that syrphids could use this odour when making foraging decisions.  

 

If syrphids are using this odour learning ability in the field it is also possible that the number 

of foraging syrphids could increase in the absence of pollinators such as bumblebees or 

honeybees due to reduced contact with scent marks. Greater numbers of syrphids could 

reduce the negative impact of recent declines in the number of pollinating hymenoptera in the 

field (D. Goulson et al., 2008; Bacandritsos et al., 2010). If syrphid behaviour can be affected 

by these odours in the field it is reasonable to assume that syrphid foraging can be influenced 

by the artificial application of odours to areas where pollinators are scarce. Manipulating the 

behaviour of these pollinators could become a useful tool for gardeners or in small scale 

agriculture. A further advantage of being able to control syrphid behaviour would be their use 

as a biological control agent. Syrphid larvae predate aphids so greater numbers of syrphids 

could also reduce damage to plants. Field margins are already managed to increase syrphid 

numbers for pest management (MacLeod, 1999; Haenke et al., 2009) and the possibility of 

using odour to attract hoverflies has been demonstrated in other contexts (Laubertie et al., 

2006). 

 

It would be useful to test these results in the field. Random application of scent marks on 

flowers in the field along with bagging flowers overnight to prevent access to bees would 

provide valuable data regarding how much, if at all, syrphids are using scent mark 
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information in their foraging. If this work is carried out in areas with different densities of 

foraging bees, differences in any levels of utilisation of scent marks through previous learning 

by syrphids could be examined. As the syrphids also learned to avoid 1-Hexanol, 

investigations into their ability to learn to associate other odours would be welcome.  

 

Another useful experiment would be to test the ability of the syrphids to make positive 

associations with odour. If they can learn an odour paired with a reward then increased 

preferences could be formed. Additional investigations into the long term memory capabilities 

of hoverflies would aid this work. It is well known that Hymenoptera such as wasps (Jander, 

1998) and other Diptera such as Drosophila sp. (Tempel et al., 1983) are capable of this type 

of positive reinforcement, long term memory training but no work has yet been done using 

Syrphids. The ability to form long term memory is important if syrphids are to be considered 

as a biological control agent or for increased pollination. 

 

This work is only concerned with syrphids however there are many other pollinating insects 

including several families of Diptera, Lepidoptera and Hymenoptera to which this type of 

study could be applied. In particular it would be interesting to examine the use of scent marks 

by the lepidoptera. The butterflies and moths are a well studied group and much is known 

about their ability to use odour for various tasks from host plant location to communication 

and mate finding (Hansson, 1995). My work suggests that bee scent marks are utilised by 

more than just other Hymenoptera and, as many Lepidopterans are rather large insects, I 

would suggest that the use of interspecific scent marks when foraging could improve foraging 

efficiency in this order of insects. Further to this one could reasonably expect predatory 

organisms to utilise scent marks when either hunting or searching for suitable habitat. For 

example, bee hunting spiders could improve their success rate by inhabiting a flower that is 
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more heavily scent marked and therefore more frequently visited by bees. Movements of 

spiders between flowers have been recorded (Schmalhofer, 2001) but no work has yet been 

done on the mechanism by which the spider chooses a flower. This would not be a difficult 

behaviour to investigate and could provide useful insight into the foraging strategies of 

pollinator hunting spiders.     

 

5.2. Chapter 2 

The effect of ecological factors on the decision accuracy of artificial neural networks (ANNs) 

suggests that environmental pressures can have a major effect on the success of both specialist 

and generalists. In previous work C. R. Tosh et al. (2009) demonstrated that specialist 

networks can outperform generalist networks, in terms of decision accuracy, over a range of 

non-host values (±0, +0.5 and +1 fitness for a non-host selection) when host choice has a 

fixed value (+5). In Chapter 2, in both the resource availability and the starvation simulations, 

this range was reduced. Specialist networks suffering from starvation could still outperform 

generalist networks over +0.5 and +1 non-host fitness values, albeit to a lesser degree than in 

the absence of this pressure (Figure 4.3). This finding is well supported in the literature 

(Hoffmann and Turelli, 1985; Jaenike, 1990). The introduction of resource availability had a 

similar effect with greater reductions in resources further narrowing the range of specialist 

advantage (Figure 4.3). Again this result agrees with the current literature (Bolnick et al., 

2003; Beest et al., 2014). In the field this would suggest that when these ecological pressures 

are present, specialisation is less likely to evolve through benefits accruing in decision 

accuracy and existing specialists would see greater declines than generalist species 

experiencing the same pressures. This would maintain the wider niche width of species or 

even increase the foraging range of the species under these pressures while reducing the 

persistence of more specialist species with narrower niches. This does not mean that 
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specialisation will not occur however, only that it will be less common under these ecological 

conditions.  

 

More interestingly I have shown that search costs could increase specialists’ decision 

accuracy advantage over generalists in conditions where they otherwise were being out-

competed. With no ecological pressures other than non-host penalties, generalists have higher 

decision accuracy in conditions where a non-host choice is punished. This shifts when high 

search costs are introduced and under these new conditions specialists’ decision accuracy is 

greater than generalists’ at all negative values of non-host punishment. Therefore in natural 

populations we would expect to see more specialist species in historically patchy resource 

environments or more sparse habitats when these habitats contain toxic or harmful non-hosts. 

This finding agrees with both theoretical (Ackermann and Doebeli, 2004) and empirical work 

(Lars Chittka et al., 2009).  

 

To examine this, a comparative analysis would be useful. The predictions in Chapter 2 should 

be visible in both neo- and paleoecological studies. It has been suggested that human impacts 

such as landscape fragmentation will have a greater effect on specialist species (Clavel et al., 

2010) however if what I have found in my theoretical studies is also apparent in natural 

populations then it could be argued that the opposite could be true; specialists will outperform 

generalists when high search costs are present for both strategies and a non-host choice carries 

a penalty.       

 

Ecological work, and in particular climate change research, could be improved by work such 

as this. Currently much ecological work relies on observations and historical studies. The 
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ability to accurately predict how a species will adapt to a changing environment could 

improve the efficacy of ecological methods such as reintroductions, habitat management, and 

aid in choosing which areas to protect. When considering climate change, historical work is of 

limited use (McCarty, 2001). Comparisons of the same or similar species are of greater value 

but unless conditions are the same then errors could still skew any results. Predictive models 

that provide data not on what has happened to a species or a population but on what is most 

likely to happen in the future will be more useful, particularly as climate change accelerates.  

 

5.3. Chapter 3 

The theory that specialisation is an evolutionary dead end has been around for a long time 

(Simpson, 1944). There is a huge amount of work both in favour of and against this idea 

(Futuyma and Moreno, 1988; Janz et al., 2001; Nosil and Mooers, 2005; McBride, 2007). 

Using evolvable ANNs as a simple model of biological information processing, what I have 

shown, using ANNs subject to different levels of weight fixation, is that the situation is not as 

simple as many studies would have us believe. It is not a matter of the theory being correct in 

all scenarios. Rather it seems that, under certain conditions, the evolutionary dead end is more 

probable. While this is true, it is also true that conditions favouring evolutionary dead ends 

are rather extreme. Networks at relatively high levels of weight fixation were still able to 

perform at a high percentage of their maximum possible fitness when tasked with evolving 

back to generalism. It is not the reduction in evolvability itself that prevented the ANNs from 

escaping the ‘dead end’ but the ecological factors which they were subjected to alongside this 

reduction.  
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More specifically, of all the networks that I trained, the worst performing by far were those 

networks suffering from non-host penalties. For a specialist to become trapped in 

specialisation it would need to lose almost all of its ability to evolve and even then my results 

suggest that they could potentially recover almost 65% of their maximum possible fitness. 

Introduce non-host penalties and this figure drops ~25%. From this I would suggest that a 

lack of variability, in isolation, slightly increases the likelihood of a species to suffer from an 

evolutionary dead end scenario. The introduction of search costs to the simulation had a much 

reduced effect on the overall fitness of the networks compared to non-host penalties. Fitness 

was reduced when search costs were present but even when variation was at a minimum these 

networks only lost a further ~15% of maximum possible fitness compared to networks 

suffering no ecological pressures. Interestingly when non-host penalties were present the 

introduction of search costs had a relatively minor effect. The networks suffering both 

pressures only saw a further reduction of ~10% compared to the non-host penalties only 

simulation. In the field species will be much less likely to find themselves in an evolutionary 

dead end when suffering search costs alone but when this is compounded with toxic non-hosts 

the likelihood of the dead end increases significantly.    

  

This is a difficult area to study experimentally due to the large timescale over which these 

effects occur. Additionally, the conditions experienced by organisms in evolutionary history 

are often unknown or poorly understood. Empirical work using organisms with a short 

generation time could be used to investigate the effects I have described. Artificially selected 

lines of insects such as Drosophila could be used to test predictions in my models. Specialist 

and generalist lines could be raised and used to look at fitness costs of the different foraging 

strategies when under similar ecological conditions to those I have applied. Recently collected 

inbred lines of Drosophila would be an ideal subject for this. Preferably this would involve 
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specialist species which could, if they were subjected to the conditions used in my ANNs, 

provide evidence either for or against the results I have found with the theoretical work. 

Equally this would be an interesting experiment to run with a generalist species to see how the 

two strategies compare. My work suggests that specialists forced to widen their host range 

will suffer more if their ecological conditions deteriorate dramatically but how generalists 

would adapt to the same pressures is just as valid when considering these aspects of ecology. 

To test the effects of non-host penalties bacterial colonies could be employed. If a specialist 

organism was to be studied then a medium containing a single host resource could be used 

and fitness measures such as colony size or growth rate could be measured. With the short 

generation time of microbes, evolution could be observed over many generations. The 

introduction of additional potential host resources into the medium along with hosts which are 

toxic should provide insight into the effect that these have on evolution. 

 

The large body of work on larger organisms such as cheetah (May, 1995; Hedrick, 1996), 

black-footed ferrets (Wisely et al., 2002) and koala (Sherwin et al., 2000; Tsangaras et al., 

2012) illustrates the importance of work such as this. The questions I have asked have 

applications from the microscopic to the higher vertebrates. In all of the studies mentioned 

above researchers found that very low genetic diversity did not appear to be having the level 

of negative consequences that would be predicted by the evolutionary dead end theory. My 

results would certainly agree with these findings however my work goes further in that I 

investigate the impacts of ecological variables that are perhaps not currently affecting the 

studied populations. That there seems to be little evidence for the dead end at present my 

results would suggest that if suitable host resources become scarce then the negative impacts 

this would incur could lead to a situation in which the populations struggle to adapt. 
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5.4 Conclusions 

The lab work with the syrphids has provided excellent evidence of their ability to learn and 

recognise odours as well using those odours to aid their foraging. This does not necessarily 

translate to wild individuals however. More work will be needed to investigate the interaction 

between syrphids and scent marks before we can be sure that they are utilising these cues. 

Much of my work has been performed using computer modelling and theoretical scenarios. 

While this can provide valuable insight into subject areas that have previously been difficult 

to research we must also be careful that these results reflect the systems or organisms we are 

claiming to study. When using ANNs the network is a much simplified version of the system 

being studied therefore care must be taken to encapsulate all of the relevant behaviours of the 

system. Comparisons with the relevant literature at all stages have been useful in building and 

discussing my models. 
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A1. Appendix 1: Olfactory Ecology of the Syrphid, Episyrphus balteatus 

A1.1. Methods – Dimensions of Arena 

 

 

 

 

 

 

Figure A1.1: Dimensions of arena and artificial flowers.  

 

Our BugDorm arena was 600mm
3
. Flowers were 70mm tall and constructed from a crocodile 

clip glued to a card base of 40mm
2 

holding 1.5ml eppendorf tubes containing the reward. The 

diameter of these tubes was 10mm. The eppendorf tube was pushed through the centre of a 

card disc of 40mm diameter. A disc of blotting paper was used to cover the top of the card. 

The bee scent was applied directly to the blotting paper. Smaller 0.5ml eppendorf tubes with a 

7mm diameter were used to hold the 1-Hexanol solution. These were cut to 20mm and 

attached to the card disc. These smaller tubes contained 0.2ml of the 1-Hexanol solution and 

were covered by a 10mm
2
 fine mesh to prevent any direct contact between syrphids the 

solution (Figure A1.3).  Flowers were 150mm apart. 

  

40mm 
150mm 

10mm 
600mm 
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A1.2. Methods – Dimensions of Pots 

 

 

 

 

 

 

Figure A1.2: Dimensions of the pots used in the pot trials. 

 

Pots were 100mm tall with a diameter of 52mm. Pots were placed on their side for the trials. 

Flowers were constructed of a 1.5ml eppendorf tube cut down to 20mm tall. A disc of blotting 

paper was placed over this to provide a landing platform. The bee scent was applied directly 

to the paper. Flowers were set up 50mm apart. 1-Hexanol solution was contained in smaller 

0.5ml tubes also cut to 20mm in height (Figure A1.3). The 0.5mm tubes were secured at the 

cap and the base of the pot using Blu-Tac. Flowers were likewise attached to the pot using 

small amounts of Blu-Tac. 

 

 

  

 

 

 

 

Figure A1.3: Dimensions of pots containing 1-Hexanol solution.  
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A1.3. 1-Hexanol Control Graphs 

 

Figure A1.4: 1-Hexanol controls for mineral oil/1-Hexanol solution. Data is from arena trials 

run over 4 days for one hour each day.  

 

Syrphids showed an aversion to our dilute (1:500) 1-Hexanol/mineral oil solution when it was 

paired with water (paired t-test, t = 4.28 (df = 3), P <0.05). No other preference was recorded. 

Pure 1-Hexanol with water (paired t-test, t = 1.41 (df = 3), P >0.05), 1-Hexanol with mineral oil 

(paired t-test, t = 2.32(df = 3), P >0.05), 1-Hexanol/mineral oil solution with mineral oil (paired 

t-test, t -value < 0.001 (df = 3), P > 0.05). What was interesting was the aversion seen in our 

other control trials for 1-Hexanol appears to be absent when using pure 1-Hexanol. This result 

could be explained by the extremely high mortality seen in syrphids when we used pure 1-

Hexanol in the pot experiments. Within two hours all flies were dead. This strong toxic effect, 

although reduced in the arena trials, could have been having an effect on the behaviour of the 

syrphids. We therefore decided to use only the dilute 1-Hexanol in our trials despite the small 

innate aversion. 
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A2. Appendix 2: Is Specialised Behaviour an Evolutionary Dead End: Predictions from Connectionist Networks 

 

 0%  

fixed 

10% 

fixed 

20% 

fixed 

30% 

fixed 

40% 

fixed 

50% 

fixed 

60%  

fixed 

70% 

fixed 

80% 

fixed 

90% 

fixed 

100% 

fixed 

No 

punishment 

709.30 728.60 683.80 699.30 585.40 598.10 545.80 590.60 529.10 525.50 195.00 

Non-host 

punishment 

444.75 406.63 444.75 366.44 275.38 283.99 181.62 178.50 124.27 57.8800 -216.00 

Search 

costs 

682.05 673.18 631.59 606.50 564.47 522.28 494.01 432.80 411.81 292.750 -113.50 

Non-host 

and search 

costs 

450.76 429.62 381.54 323.52 253.20 210.58 79.70 72.16 -87.62 -137.720 -533.00 

Table A2.1: Actual mean final fitness scores for all network conditions after 500 generations at all different weight fixation levels. Maximum 

fitness possible is the difference between 0% fixed weights and 100% fixed weights. This data was used to produce Figure 4.3 and Table A2.2. 
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 10% fixed 20% fixed 30% fixed 40% fixed 50% fixed 60%  fixed 70% fixed 80% fixed 90% fixed 

No 

punishment 

103.75% 95.04% 98.06% 75.91% 78.38% 68.21% 76.92% 64.96% 64.26% 

Non-host 

punishment 

94.23% 100.00% 88.15% 74.37% 75.67% 60.18% 59.70% 51.50% 41.45% 

Search 

Costs 

98.89% 93.66% 90.50% 85.22% 79.92% 76.36% 68.67% 66.03% 51.07% 

Non-host 

and search 

costs 

97.85% 92.96% 87.07% 79.92% 75.59% 62.28% 61.52% 45.27% 40.18% 

Table A2.2: Percentage of maximum fitness (difference between fitness at 0% fixed weights and 100% fixed weights) networks were able to 

recover. Figure 4.4 shows a graphical representation of this data and was used to produce Table 4.1. 

 


