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Abstract

Many offshore structures have been installed to harvest resources in the ocean. These large
structures undergo several experimental and numerical tests before they are constructed. A
reliable and efficient analysis tool is therefore crucial to this industry. Many methods have been
introduced; each offering different advantages while providing the solution, as well as suffering

from certain limitations.

The scaled boundary finite element method (SBFEM) was developed to solve engineering
problems. This particular method combines the advantages of two commonly used methods in
the offshore industry, the Finite Element Method (FEM) and the Boundary Element Method
(BEM), making it a suitable semi-analytical approach that requires less computational time
while satisfying the boundary condition at infinity. Several attempts at using this method to
solve the hydrodynamic problem have been executed with great success. However, there is still

much room for further development.

The first part of this thesis discusses further application of the two-dimensional SBFEM, using
the proposed advantages by manipulating the position of the scaling centre to solve for more
complex geometry. This methodology has also been extended with an integrated model to

evaluate the wave-structure-soil interaction examining offshore monopile deflection.

The second part of this thesis develops a three-dimensional (3D) SBFEM model. General
formulations in the Scaled Boundary coordinates for the 3D SBFEM model have been
developed and are presented in detail. Case studies have been carried out demonstrating the
validity and efficiency of the 3D model. These developments are important in allowing
extended usage of the methodology to solve more complex problems such as wave interaction

with floating offshore structures.

Due to its clear advantages in computational efficiency and accuracy, the extended SBFEM
model can be applied to engineering problems in hydrodynamic analysis for more complex

wave-structure interaction in the offshore industry.
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Chapter 1 Introduction

Chapter 1

Introduction

1.1 Background

As the quality of life for much of the world’s population increases, the demand for energy also
rises. From 2000 to 2013, total world energy consumption increased 1.5 times, with a steady
increase from about 8800 Mtoe to about 12700 Mtoe (Energy Academy, 2014). Energy can be
obtained from several different sources, and can be categorised into non-renewable and
renewable energy. Non-renewable sources, which include fossil fuels (oil, gas and coal) and
nuclear energy, are non-sustainable sources and may run out in the future. Renewable energies

are sustainable sources such as wind, wave, and solar that are more environmentally friendly.

To meet increasing world energy demand, some countries are moving towards offshore oil
and gas as part of the solution while other countries such as Denmark, Germany, and China
(REN21, 2014) are moving towards offshore renewable sources or both. There has therefore
been significant investment in both research and engineering in the offshore energy field over
the last 40 years. Due to the limitations of production and a lack of suitable conditions onshore,
the harvesting of energy has slowly moved offshore over time. Known offshore resources
currently produce 30% of the total oil and gas supply (Brakenhoff, 2015). The first offshore oil
well was drilled in 1898 in California, in the Summerland oilfield, situated 90 meters from
shore. The discovery of offshore oilfields continues and with advances in technology, it is
possible to obtain energy from previously inaccessible locations. For example, the ultra-
deepwater dynamically positioned drillship ‘Atwood Achiever’ manufactured by Atwood
Oceanics can drill at water depths of up to 3600 m (AtwoodOceanics, 2015). Shell’s giant
Olympus deepwater tension leg platform (TLP), used to assist in offshore oil and gas production
in the Gulf of Mexico is shown in Figure 1.1 (left) while the picture on the right shows an
offshore wind turbine from the Thornton bank wind farm, Belgium, used to harness energy

from the wind.



Chapter 1 Introduction

In order to harvest the variety of offshore energy resources, new developments and novel
designs have been introduced for offshore installation, exploration, production, storage and
loading. An important point to consider when installing a large structure offshore is the
interaction between the structure and the surrounding seawater. In addition, safety, accuracy,

efficiency and cost all need to be taken into account.

Figure 1.1 Offshore structures for non-renewable energy (left), and renewable energy (right).

Offshore structures can be regarded as large structures positioned in the water, which must
be able to withstand local environmental conditions. Depending on the configuration, offshore
structures can be characterised as either fixed or floating structures. In the oil and gas industry,
examples of fixed platform structures are jackets, gravity based, compliant towers and guyed
towers. One of the earliest deployed fixed offshore structures was located 1.6 km offshore from
Calcasieu Parish, Louisiana, in water at a depth of 4.3 m, which was built in 1937. In 1947, the
first fixed offshore oil platform that could not be seen from the shore was also constructed in
Louisiana and this is considered to mark the beginning of the offshore industry. Today (2016),
the deepest fixed offshore structure is the Chevron Petronius tower, which is a compliant piled
tower design for use in a water depth of 535 m servicing the Gulf of Mexico (GoM)
(OffshoreTechnology, 2001). Fixed offshore structures have come a long way since their first
use, and the deepest water depth reached is now almost 150 fold greater than the first example.

2
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Since offshore structures were needed in increasingly deep waters, floating platforms were
introduced. Floating platforms are moored to the seabed so that offshore activities can continue
even in the deeper parts of the ocean. Some common examples of the technologies used are
semi-submersibles, Tension Leg Platforms (TLP), and spar platforms. One of the earliest
floating platforms built in the early 1980s was the Hutton TLP (MustangEngineering, 2010)
servicing the North Sea, which is now decommissioned. To date, Perdido (Shell, 2015) is the
deepest offshore floating oil spar platform, operating at a water depth of 2450 m. Regardless of
whether structures are fixed or floating, it is essential to be able to understand and model the

interactions of these structures with the surrounding water.

In terms of renewable energy, offshore wind turbines will be discussed. This is a clean source
of energy that is plentiful and environmentally friendly, as it does not produce greenhouse gas
emissions. One of the earliest offshore wind farms was installed in 1991, 2km from shore at a
depth of 5 m, at Vindeby, Denmark (Breton and Moe, 2009). The deepest fixed foundation wind
turbines can be found at the Beatrice wind farm, United Kingdom at a depth of 45 m which
were constructed and built in 2007 (Failla and Arena, 2015). The majority of wind turbines are
located in shallow water where the dominant loading comes from a combination of wave and
wind loads. Due to the fact that wind turbines are fairly new compared to offshore platforms,
the designs of these wind turbine supports were based on experience from the oil and gas
industry. Wind turbines were first used onshore, but due to the greater and steadier wind speeds
that are available offshore, wind farms are increasingly being built offshore. Most wind turbines
are supported by fixed structures of different forms such as monopiles, gravity structures, jacket
supports and tripod supports. Figure 1.2 shows the different types of offshore wind turbine
foundation. Floating wind turbines are still a relatively new concept, with the first floating wind
turbine prototype placed off the coast of Italy in December 2007. Several other floating wind
turbine foundation concepts that are used are the Blue H Technologies, Hywind and the
WindFloat structures (Robertson and Jonkman, 2011), where the first example uses a TLP like
mooring to hold the platform in position, the second is similar to a spar buoy while the last
example uses a tricolumn triangular platform. These different structures allow a flexible

installation process, and have demonstrated positive economic prospects.
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Type Typical waterdepth (m) | Typical size (m) | Typical weight (tonnes)
(1) Gravity ~20 ~ 30 1000 - 3000
(2) Monopile ~35 ~4-5 600 - 700
(3) Tripod ~ 50 ~35x 60 1000
(4) Jacket <70 ~25x 60 700 - 900

Figure 1.2 Types of fixed offshore wind turbine foundation (1) Gravity (2) Monopile (3)
Tripod (4) Jacket (EWEA, 2013)

In order to successfully install these structures offshore, it is essential to ensure their
structural integrity and that they are fit for purpose, including the need to withstand harsh
environmental conditions for their designed service life. In addition, since offshore structures
are expensive to install and to decommission, a detailed understanding and analysis of their
performance prior to their construction and deployment is crucial. One of the most important
engineering aspects that is normally assessed before deployment offshore is the impact of waves
on the structure. This includes an understanding of the wave elevation, the effect of wave forces
on the structure, deflection of the structure in the ocean, and the life cycle of the structure. Many
different approaches have been used over the years to quantify and understand these
environmental effects on such structures. The approaches used can be categorised into three
major types: analytical, numerical, and experimental. The selection of a particular approach
usually depends on the geometrical complexity of the structure and also the surrounding
conditions. Each of these methods has its advantages and limitations, and are discussed further
in section 2.2. Consideration of cost, time available, accuracy and efficiency are also taken into
account when choosing the most appropriate methods for solving specific problems. This thesis

will address the selection and development of such analytical methods.
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1.2 Thesis outline
1.2.1  Chapter 1 - Introduction

Chapter one provides an introduction to the diversity of offshore structures and underlines the
importance and contribution of wave-structure analysis to the industry. It also includes the

thesis outline, which highlights the main points and contribution of each individual chapter.

1.2.2  Chapter 2 — Literature review

A comprehensive literature review is presented to identify the methodologies that are available
for calculating wave-structure interactions. Development of the analytical, numerical and
experimental methods to tackle this problem is discussed. The SBFEM is introduced and the
attributes of this method are underlined. The development and usage of the SBFEM in
engineering is discussed, and special attention is drawn to the contribution towards the offshore
industry. Current knowledge gaps are identified and the specific aims and objectives of this

work are defined.

1.2.3 Chapter 3 — Model development and applications of 2D SBFEM to offshore

structures

The first part of chapter three applies the 2D SBFEM model to a structure of complex cross
section. An octagonal cylinder will be used, demonstrating how substructuring and the
introduction of a virtual circular cylinder outside the structure helps to simplify the solution by
using a small number of elements in the calculation. The second part of the application of the
2D SBFEM model is to conduct integrated analysis of wave-structure-foundation for a large
offshore wind turbine supporting structure. The results illustrate the application of the 2D
SBFEM to a novel design, namely an octagonal monopile supporting an offshore wind turbine
that was proposed by RCID (Resource Centre for Innovation and Design) Newcastle. This
method was chosen since the singularity that normally occurs at sharp corners is overcome and
the radiation boundary condition at infinity is satisfied by choosing the Hankel function as the

base solution.
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1.2.4  Chapter 4 — Methodology development of 3D SBFEM

Chapter four presents the new development of 3D SBFEM in solving hydrodynamic problems.
To date, the SBFEM has only been applied to solve the two-dimensional problem for wave
diffraction around a large cylinder with a uniform cross section. The 3D SBFEM reduces the
spatial dimension by one leading to a significant reduction in discretisation of the fluid domain.
A step by step methodology development is presented to allow future expansion of this method
to be carried out more easily. Factors such as position of scaling centres, shape function choice

and selection of base solution are carefully designated and presented.

1.2.5 Chapter 5 - Validation and applications of 3D SBFEM

Chapter five validates the methodology of the 3D SBFEM developed by applying it to solve
practical wave-structure interaction problems. The application of the developed three-
dimensional SBFEM for solving the wave diffraction problem is carried out and results
obtained are compared with those obtained using other numerical methods. The first validation
is on a structure of infinite length extended to the seabed whilst the second validation is carried
out by applying the method to solve the wave diffraction problem around a floating structure.
This chapter concludes by describing how the extended 3D SBFEM can be used in applications
in the offshore industry. The limitations of the method and suggestions for its further
improvement are discussed. An analysis of the results is also presented to support the validity

of the methodology development.

1.2.6  Chapter 6 — Conclusions and recommendations for future work

Chapter six draws together the main findings of the thesis, highlighting the efforts in integrated
wave-structure-foundation analysis using the 2D SBFEM model and also the new development
of the 3D SBFEM model. This is followed by recommendations for future work as the next
phase of methodology development and its application to understanding wave interactions with

floating structures.
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Chapter 2

Literature review

2.1 Waves and effects of waves on offshore structures

The understanding of wave characteristics and behaviour is crucial in determining and
understanding wave-structure interactions. The different wave theories that are used are
characterised through the observation of the physical parameters of the wave such as the
wavelength (L), water depth (h), wave height (H) and wave period (T). These parameters are
important in developing wave theories. Figure 2.1 describes the progressive surface wave
parameters used, so that the nomenclature that follows can be conveniently followed and

visualised.

b
v

~ -~ -~ ~ -~ -~ -~

Figure 2. 1 Parameters of a regular progressive wave

The parameter of surface elevation (7) and axis of the progressive wave are also shown in
the diagram. The seabed can be written as z = —h and the mean water surface as z = 0. In
order to categorise these waves according to the various wave profiles, several important

assumptions are made. By assuming that the fluid particles are incompressible, the conservation
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of mass is satisfied. Another important assumption is that the fluid flow is irrotational, where
there is no rotation of the fluid particles. This assumption is important in order to be able to
represent the flow in the form of a velocity potential function (&). The Laplace equation arises
when this potential function is substituted into the continuity equation, which represents the
statement of mass conservation. In situations where the fluid viscosity is negligible, the Euler
equation can be used to represent the fluid flow (Dalrymple and Dean, 199I).

2.1.1  Wave theories

It is important to understand and determine the choice of wave theory and also the type of
structure that it interacts with, in order to better analyse the impact of waves on structures in
the offshore industry. An overview of the different wave theories are summarised in Figure 2.2,
by considering the physical parameters of the waves, the theories can be further categorised
into regular waves and irregular waves. Regular waves have a wave profile that behaves in the
same manner with every cycle, often in a sinusoidal shape, where the shape of the waves is
identical and repeats itself, forming a wave train. However, regular waves do not exist in the
real world, but are often used to estimate and calculate the loading on a structure. These wave
theories have been validated analytically (Dean, 1970) and experimentally (Hattori, 1986).
These are ideal waves that are simplified to allow the analysis and understanding of waves
acting with different frequencies. Irregular waves can be seen as the reconstitution of the linear
superposition of a number of linear wave components. In reality, real ocean waves are
represented by irregular waves, also known as random waves, where an attempt is made to

model wave train using the time domain or the frequency domain approach.

Since regular waves can be quantified more readily, they are often used in offshore analyses.
Several different types of wave theories are developed using regular waves, which can be
categorised as linear wave theories and nonlinear wave theories. Wave theories have been
developed since the early 1800s (Craik, 2004). The lower order wave theory is also known as
the linear wave theory or the Airy wave theory, proposed in 1841 and has been routinely used
since then (Airy, 1841). Linear wave theory is where the wave profiles consist of small
steepness represented by small wave height and longer wavelength, as illustrated in Figure 2.4.
In general, the waves have a perfect sinusoidal pattern in the surface profile. However, this
linear wave theory is not detailed enough to accurately describe hasher sea conditions. Hence,

when waves are moving in a nonlinear manner, in some cases where the wave profiles have
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greater steepness and the troughs are flatter, nonlinear wave theories are applied. The nonlinear
wave theories are more complicated to apply, and can be understood using different wave
spectra to represent them. One of the earliest descriptions of nonlinear wave theory is by Stokes,
who further derived the higher order wave theories (Stokes, 1847), which includes the drift and
added inertia of the flow. The Stokes’ 5" order theory is suitable for the calculation of extreme
wave conditions. Another commonly used wave theory is the cnoidal wave theory (Fenton,
1979) that is usually applied in shallow water conditions. Some other examples of regular wave
theories are solitary wave theory, hyperbolic theory, long wave theory and Trochoidal theory
(Barltrop and Adams, 1991). With regards to the irregular wave theories, these can be
represented by the stream function theory (Dean, 1965) or the Fourier approximation method
(Sobey, 1992). These irregular waves can also be the result of superposition of many regular
waves with different frequencies and amplitude, such as the long-crested wave and the short-
crested wave. The irregular waves are solved using statistical methods to describe the time

dependent nature of the waves.

Wave theories
Takes into account physical parameters such as wave length,
water depth, wave height and wave period

Regular waves Inregular waves
‘Wave profile of Superposition of
repeating shape several regular waves
Linear wave theory Nonlinear wave theory
First order waves/ Higher order waves, such as
Airy wave theory 5t order Stokes’ theory,
Cnoidal wave theory

Figure 2.2 Overview of different wave theories

Figure 2.3 shows the graphical representation of a linear wave and two nonlinear waves,
known as the Stokes wave and the cnoidal wave. The linear wave is illustrated where the wave
is assumed to move in a perfect sinusoidal pattern, where T, L and the H can be obtained. The
nonlinear Stokes wave and Cnoidal wave are also illustrated (Stokes, 1847; Korteweg and de
Vries, 1895). Cnoidal waves have sharper crests and much flatter troughs compared to Stokes

waves.
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Linear wave A NG s oo T TN s T

Stokes wave W
Cnoidal wave w

Figure 2.3 Comparison of profiles of the different progressive waves (FlowScience)

Selection of the appropriate wave theory depends on the wave height, wave period and water
depth. One of the factors that influences the selection of a suitable wave theory, is the ratio of
water depth to wavelength, this was described by Isobe in 1985 (Hattori, 1986). In general cases,
there are limits to the application. When h/L>1/2, it is regarded as a deep water region, whereas
when h/L<1/20, it is regarded as shallow water. The region in between is termed intermediate
water depth. Several theories are proposed and each can be applied to different scenarios to
achieve the best approximation in terms of accuracy. The range of suitability of the different
wave theories is outlined in Figure 2.4 (Dean, 1970; Mehaute, 1976). This comparison did not
include the kinematic effects, resulting in disagreements. The water particle velocity and
acceleration is included later on in categorisation of theories (Mitchell et al., 1990). It was
concluded that when several theories produces the same result, the lower order theory can be
used with accuracy. The use and practicality of the higher order Stokes theory has also been
discussed in detail (Sorensen, 2006; USACE, 2006). The best-fit theory must be selected, where
it is within the validity limits, otherwise the results may differ. Before proceeding any further
with the numerical or analytical analysis, the most appropriate wave theory has to be chosen to

secure a realistic approximation.
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Figure 2.4 Range of suitability of water wave theories (Le Mehaute, 1976)

2.1.2  Importance of velocity potential

When a wave passes through an octagonal pile supporting a wind turbine, if the ratio of the
monopile diameter to the wavelength is greater than 0.2, the wave pattern changes when it is
reflected off the structure and results in wave diffraction (MacCamy and Fuchs, 1954), and it
is assumed that there is no separation. Throughout this thesis, potential flow theory is used to
evaluate the velocity potential. The velocity potential is a scalar potential developed by Joseph-
Louis Lagrange in 1788 (Anderson Jr, 1997). By evaluating the velocity potential, the flow
velocity, water particle acceleration, dynamic pressure and also the force incurred on the surface
of the structure can be determined. Equation 2.1 shows that the overall velocity potential in the
wave field is made up of the incident velocity potential, the scattered velocity potential and the
radiated wave potential. The scattered velocity potential is composed of the diffracted velocity
potential (propagation of the wave around a body) and the reflected velocity potential (wave

bounce back from the body encountered). It is assumed that the structure is fixed and that the
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radiated part can be ignored (Mclver, 1996). The refracted wave, which takes into account the
slowing, and bending of waves in shallow water is not taken into account for cases in deeper
water, where the water depth is deeper than one-half their wavelength and that the bottom does
not interfere with the wave orbits on the free surface (Chakrabarti, 1987). Hence, the total
velocity potential in this case is reduced to the sum of the incident velocity potential and the

scattered velocity potential.

Scattered velocity potential

LD (x,y,2,t) = P/ (x,y,2,1) + D5 (x,y,2,1) - DR (x,y,2,t)

Incident Diffracted ! Radiated (2.1)
wave and reflected: wave
wave potential

For a given velocity potential of incident progressive wave, the velocity potential of the
diffracted wave can be calculated. The importance of obtaining the velocity potential is shown
in Figure 2.5, which shows that by obtaining the overall velocity potential, the kinematic and
dynamic properties of the wave particle can be found. The kinematic properties of the water
particle describes the ability of the particle’s resistance to slow down under the weight of
gravity whilst the dynamic properties describe the particle under external forces. An example
of the kinematic hydrodynamic properties is the flow velocity, by differentiating with respect
to time the particle’s acceleration can be found. The dynamic properties are dependent on the
density of the fluid, by applying Bernoulli’s equation, the impact on the structure such as
dynamic pressure and force can also be calculated. These physical properties are important for

the design of offshore structures (Barltrop and Adams, 1991).
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Figure 2.5 Calculation of the force on a structure from the overall velocity potential
(Chakrabarti, 1987)

2.1.3  Waves on offshore structures

There are increasing numbers of offshore structures installed in the ocean. As a result,
understanding the wave-structure interaction to ensure safe design is of growing importance.
The study of wave-structure interactions will assist in calculating the wave impact and effects
on the structure, which has been a central concern for decades. There are several methods used
to calculate the wave forces on structures, depending on the properties of the incoming waves
and the size of the structure itself. Among the common theories available are the Morison
equation, Froude-Krylov theory and Diffraction theory. The choice of force theory to be applied

depends on the following three major factors;

(a) Wave steepness, %

(b) Diffraction parameter, % (MacCamy and Fuchs, 1954)

UmaxT
D

(c) Keulegan-Carpenter number (KC), (Keulegan and Carpernter, 1956)

where the u,,,, represents the maximum velocity of the fluid particle. The wave steepness
will help to determine the most suitable wave theory to apply; the diffraction parameter can be

interpreted as the ratio of diameter of the body to the wavelength. When the diffraction
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parameter increases, the diffraction effects are more important. As the KC number increases,

the flow separation becomes more important.

Hydrodynamic loading can be simplified and assumed to consist of three parts, the drag
force, inertia force and the diffraction force. The drag force is caused by the fluid passing
through a structure, which increases if the structure is not smooth and if the fluid has a large
Reynolds number that results in turbulence as it passes through the structure. The inertia force
is caused by the pressure gradient generated in an accelerating fluid when passing through a
structure. The diffraction force is a type of inertia force that happens when the large structure

modifies the wave pattern when passing through it (Chakrabarti, 1987). The drag force can be
represented as Fp = %CDpva, where Cj, is the drag coefficient, p is the fluid density, v is the

velocity of the fluid and A4 is the cross sectional area of the structure. Many experiments to
evaluate the drag force have been carried out and coefficients quantified (Morison et al., 1953;
MacCamy and Fuchs, 1954). When the wave passes through a slender structure, the incident
flow separates from the surface of the structure, forming a low-pressure area behind the
structure, resulting in a wake. In this case, the KC number is relatively high and the fluid will
experience separation. In situations where the drag force is dominant, the Morison equation
could be applicable. The Morison equation is often used to calculate the drag and the inertia
loading on slender structures (O'Brien and Morison, 1952). However, when the wave passes
through a slender structure but the incident wave dominates, the Froude-Krylov (F-K) theory,
which is calculated using the pressure area method can be used. This theory is limited to a
certain number of simple configurations such as the horizontal cylinder, sphere, vertical
cylinder, rectangular block and circular plate, where close form solutions are available. When
the diffraction parameter is low, the F-K approximation is valid. The effect of the Keulegan-
Carpenter number (KC) and the Reynolds number (Re) on the oscillatory flow separation has
been studied for structures which are static (Sarpkaya, 1966). Further studies have also been

carried out to investigate the wave force for oscillating cylinders (Sarpkaya, 1978).

The inertial force is also derived from potential wave theory, where the velocity potential
comprises the incident wave potential, the diffraction wave potential and the radiated wave
potential. In the case where the structure is large compared to the wavelength, diffraction theory
can be applied. The structure changes the wave profile when the incident wave is reflected off
the structure surface. In cases where the diameter of the cross sectional body (D) over the
wavelength, D/L< 0.2 the body is considered as slender and the Morison equation is applicable.

When D/L > 0.2, it implies that the wave is moving through a large body (Mei, 1992). For the
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linear diffraction range, the forces on structures can be calculated using the methods proposed
by McCamy & Fuchs. However, for the nonlinear range of wave diffraction, the wave forces
can be further categorised as the linear oscillating force, quadratic oscillating force and drift
force. This can be calculated using the quadratic McCamy & Fuchs method. Both these types
of wave diffraction have been solved by Garrett and Oglvie. These are shown graphically in
Figure 2.6 and described in more detail in the table summarised by Vannucci (2006). The

different range are described in Sarpkaya, (2010) as;

(@ Inertia dominated range
(b) Large inertia dominated range
(c) Morison range

(d) Diffraction range

10

prtant non-linear effectsf

0 0.1 0.2 03 04 05
D/L
KC<4 KC<4 KC>4 KC>4
H/L < 0.5 H/Lmax H/L > 0.5 H/Lmax H/L < 0.5 H/Lmax H/L > 0.5 H/Lmax
D/L < | Inertial range Inertial range Separation range | Separation range
0.2
Linear wave Nonlinear wave Linear wave Nonlinear wave
theory theory theory theory
Force: Froude- | Force: Nonlinear | Force: Force: Lighthill’s
Krylov Froude-Krylov Morison’s modification of
equation Morison’s equation
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D/L > | Diffraction Diffraction range
0.2 range
Non-linear wave
Linear wave theory
theory
Force: Nonlinear
Force: Linear diffraction theory
diffraction
theory

Figure 2.6 Summary of dominating forces (Dalrymple and Dean, 1991)

2.2 Analyses of wave-structure interaction

The research focus of this thesis is wave diffraction around large structures, which is justified
by the increasing use of offshore structures (Chapterl). To analyse the wave diffraction problem,
diffraction theory is used, which does not consider the viscosity and separation of the fluid. The
diffraction effect is first observed by Havelock, when a body is placed in a moving body of
water. This sparked the introduction of the first order analytical solutions for different water
depths such as deep water (Havelock, 1940), intermediate water depth (MacCamy and Fuchs,
1954) and shallow water (Chen and Mei, 1973). The second order solution methods consider
the free surface problem where the solution becomes more complicated. Nonlinear
hydrodynamics are more important when considering wave drift forces, springing, ringing and
wave slam. The wave equation is solved where the second order wave is used to determine the
diffraction of waves around objects in the infinite water depth (Lighthill, 1979), and for similar
cases in finite water depth (Molin, 1979). The second order wave diffraction problem of a
vertical cylinder in plane waves was also solved by Chau and Taylor, (1992), describing a clear
procedure that is used for validation in many numerical cases, whilst the diffraction problem
up to the second order short crested wave diffraction forces on a vertical circular cylinder was
solved by Zhu, (1994). The second order waves becomes more important when calculating
fluid-structure interaction for waves with a higher slope where higher order waves can provide
a better representation. In this thesis, only waves with a small slope are used, hence the first

order potential theory is used.
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Due to design safety at sea, the understanding of wave-structure interaction is increasingly
important. Besides solving the wave equation for the velocity potential of a wave moving
through a single structure, studies have also been carried out to solve the wave diffraction
problem that occurs when the wave passes through an array of cylindrical monopiles. There are
several different approaches that are undertaken to solve the wave diffraction problem, which
can be broadly categorised as experimental methods, analytical methods and numerical

methods.

2.2.1  Experimental methods

An early experimental study regarding the wave-structure interaction was carried out to
investigate forces on circular piles in intermediate water depths, and was able to demonstrate
that the wave forces can be divided into drag force and inertia force (Morison et al., 1953). It
also shows good agreement with the analytical solution for wave diffraction around vertical
cylinders (MacCamy and Fuchs, 1954). Different parameters of wave height, geometry of the
monopile and the effects of spacing between two piles were also investigated. The dynamic
effects of waves on large circular cylinders was studied and experiments were carried out in a
wave tank to validate empirically the pressure and forces on structures (Chakrabarti and Tam,
1973). Wave diffraction experiments to examine the dynamic pressure and the drag coefficients
and vortices that occur under different wave conditions have also been carried out by
Chakrabarti and Tam, (1975) who were able to successfully validate the analytical solutions
proposed by Chen and Mei, (1973) for shallow water conditions. The experimental results
reported by Nakayama, (1983) were also successful in validating the numerical calculations

using the boundary element method to determine the wave run-up on a wall.

An experimental method to investigate wave diffraction around a structure is normally
suggested to verify the analytical and numerical calculations. However, the cost, time and
physical limitations of experimental facilities generally do not allow valuable experiments to

be carried out for every case.

2.2.2  Analytical methods

Many studies have investigated the linear wave and monopile interaction, where earlier
analytical solutions for linear problems of wave diffraction were obtained by Havelock, (1940)

for deep water conditions. Later, MacCamy and Fuchs, (1954) extended the solution for
17



Chapter 2 Literature review

intermediate water depths, with a surface piercing vertical circular cylinder fixed on the seabed.
This work was followed up for shallow water (Chen and Mei, 1973). The hydrodynamic
coefficients were obtained and the velocity potential for any number of cylinders which are
positioned either vertically or horizontally have been calculated (Chakrabarti, 1979;
Chakrabarti, 1980). Using these coefficients, simple analytical calculations can easily be carried
out. Analytical solutions containing Bessel functions that can be used to solve for the
hydrodynamic loading for N number of cylinders have been described. This work was further
developed by investigating the wave forces on cylinders in a channel, introducing new boundary
conditions (Taylor et al., 1983; Mclver and Evans, 1984).

Analytical solutions can be further classified into the direct method and the indirect method.
The direct method is based on the standing wave technique whilst the indirect method is based
on the use of different loads and their corresponding responses (Crocker, 1998). An example of
the use of the direct method to determine the diffraction force on a single structure is reported
using cnoidal wave theory (Isaacson, 1977). The direct method is also applied to solve for the
wave diffraction around multiple cylinders (Ming-de and Yu, 1987). Both of these methods are
proposed for shallow water only. The indirect method is a little less complicated as there is no
need for the explicit solution to be known beforehand. Taylor and Hung, (1987) provided the
analytical solution for a single cylinder, by solving the second order wave diffraction forces
and tackling the free surface integral, while Abul-Azm and Williams, (1988) proposed the
solution for wave diffraction around multiple cylinders. Both of these indirect methods are
suitable for structures that extend to the seabed. The main limitation of the analytical approach
is that it is only possible when dealing with structures of simple geometry such as a circular
cylinder.

2.2.3 Numerical methods

Numerical methods are also commonly used to obtain the best numerical approximation to
solve the wave-structure interaction problem. The main purpose of numerical modelling is to
understand the physical problem and display it in a common mathematical structure (Tonti,
1975). The numerical process includes a standard step where the problem is defined, modelled
mathematically and simulations run on computers. Factors to consider when choosing the most
appropriate numerical method are the accuracy, performance and required computational

capacity. The choice of computational model depends on the model problem, which considers
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the governing equations and boundary conditions. The main difference between these methods
is discretisation. Figure 2.7 describes graphically the discretisation of a model problem using

each of the numerical methods.

One of the earliest approaches used is the Finite Difference Method (FDM) (Liszka and
Orkisz, 1980). Essentially, this approach uses a topologically square network of lines when
discretising the physical domain. It uses the strong form of governing equations, where the
exact solution is available. The main disadvantage of this method is that it faces challenges
when solving a more complex geometry due to the difficulty of modelling an unstructured grid
(LeVeque, 2005). The Finite Element Method (FEM) (Chung, 1978; Zienkiewicz et al., 2014)
and the Finite Volume Method (FVM) (Versteeg, 2007) were later used to overcome this
limitation. Both these methods can be described as the integral form of the solution for the
Partial Differential Equation (PDE), and when multiplied with the weighted function, the
governing equation is weakened. One of the main advantages of the FEM is the flexibility which
allows complicated geometries to be modelled mathematically, i.e., the use of non-uniform
grids, and discretisation size which allows higher order time discretisation problems to be
solved, such as taking into account the nonlinearity of waves. The boundary element method
(BEM) (Hanna and Humar, 1982; Becker, 1992) provides the solution by transforming the
domain governing differential equations into integral identities across the surface of the

boundary.
Numerical methods in continuum
mechanics
Finite Difference Finite Element Method Boundary Element
Method (FDM) (FEM) Method (BEM)
[~
|
N
Internal cells Domain Boundary (surface)
elements

elements

Figure 2.7 Classification of numerical methods in continuum mechanics (Becker, 1992)
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The FEM and FVM methods are quite similar (Table 2.1). The FVM, which uses cell
volumes rather than nodes during discretisation, has been used to successfully model wave
diffraction around cylinders (Laghrouche et al., 2002; Cao et al., 2011). FVM requires less
computational memory and power compared to the FEM. This is also affected by the fact that
the FVM stores the dependent values in the centre of the finite volume while the FEM stores
the dependent values at the element nodes. The method of discretisation also differs, FVM
discretisation is by solving the integral form of the partial differential equation, while the FEM
uses specific shape function to discretise the domain. The solution of the FVM is discrete
whereas the solution of the FEM is continuous. In terms of programming, the FVM is easier

compared to the FEM.

Table 2.1 Comparison of FEM and FVM (Yip, 2007)

Finite element method (FEM) Finite volume method (FVM)
Requires greater computational resources Requires comparatively less computer
and computer processing power memory and power
The dependent values are stored at the The dependent values are stored in the
element nodes centre of the finite volume

) o ) ) Discretisation is based upon an integral
Discretisation is based upon a piecewise
) o form of the PDE to be solved (e.g.
representation of the solution in terms of _
conservation of mass, momentum, or

specified basis functions
energy)

Provides continuous solution (up to a point) Provides discrete solutions

FVM and FDM are generally considered
FEM can be complex to program

easier to program

These different numerical methods can be applied to solve the wave diffraction problem.
Some of the earlier applications of the BEM method in solving the plane wave diffraction

problem were developed in the 1980s (Au and Brebbia, 1983). One of the most attractive
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characteristics of the BEM is that only the boundaries are discretised, resulting in a reduction
of the spatial dimensions of the problem by one. This characteristic reduces the number of
elements used to represent the structure, hence the number of data or nodes required is
significantly reduced, resulting in a lower requirement for computational power and time to
search for the solution. The Boundary Integral Equation Method (BIEM) allows the use of a
fundamental solution to satisfy the radiation boundary condition to infinity (Grilli et al., 1989)
and results in the most prominent characteristics of the BEM where it can be used to solve the
problem in the unbounded domain. However, the main downside is that a fundamental solution
is needed for this to take place. This fundamental solution is not available for all cases. This
method also suffers from the problem of singularity, especially at the sharp corners of the
structure (Walton et al., 1985) and may face irregular frequency difficulty (Ferrant and Le
Touzeé, 2002).

The numerical methods are also commonly used to solve the wave interaction problem with
multiple cylinders (Ohkusu, 1973; Monkmeyer, 1974). Complexity increases compared to the
wave diffraction around a single cylinder since the hydrodynamic interactions between
cylinders have to be modelled. The hydrodynamic interaction between two structures using the
constant panel method were also explained (Oortmerssen, 1979). The previous solutions are
obtained with the assumption that the cylinders are either fixed or floating in an infinite water
depth. The wave diffraction around multiple cylinders in shallow water have also been solved
(Ming-de and Yu, 1987). Most of the solutions for wave diffraction deal with circular cylinders
and the wave diffraction around multiple cylinders with an arbitrary cross section have been
successfully obtained (Yoshida and Goo, 1990).

2.2.4  Combining different methods for analyses

The various numerical methods available can be coupled together to extend their ability to solve
for more engineering problems. For example, the FEM and BEM can be coupled to solve the
fluid and structure interaction problem in the time domain (Estorff and Antes, 1991), and for
wave simulation at higher Reynolds number (Young et al., 2001). The FEM is usually used to
solve the nonlinear part of the problem and the BEM is used to tackle the problem of a radiated
wave, which propagates to infinity. Structures placed in the ocean have a boundary condition
of radiation to infinity to be satisfied, resulting in an unbounded domain. Instead of setting an
approximate boundary at the far end of the structure, the FEM can be coupled with other

methods, where the near field still uses the FEM to tackle the nonlinearity whilst the far field
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uses other methods to resolve the problem in the unbounded domain. FEM can be coupled with
a number of other methods (Zienkiewicz et al., 2014) such as the Trefftz type element method
which uses the Galerkin technique to solve the PDE (Qin, 2005). Representation of the two-
dimensional wave diffraction problem using the Helmholtz equation also allows the FEM to be

used effectively (Harari and Hughes, 1991).

One of the major challenges for the FEM is to obtain solutions satisfying the radiated
boundary condition. Some attempts have been made to overcome this issue (Huang et al., 1985)
with the use of boundary dampers (Zienkiewicz et al., 1978), matching the FEM with the
boundary series (Yue et al., 1978) and boundary integral equations (Johnson and Nedelec,
1980), or using infinite elements (Bettess and Zienkiewicz, 1977). The method to overcome the
irregular frequency that often occurs when applying BEM to wave diffraction problems has
been addressed (Lee and Sclavounos, 1989), whilst BEM can also be coupled with other

existing numerical methods (Chen and Rahman, 1994).

2.2.5  Other engineering applications

Analytical and numerical methods have been used to provide solutions and give confidence in
various engineering fields such as soil engineering, crack growth, hydrodynamics,
electromagnetism, and heat transfer (Lee and Schiesser, 2003). In the context of fluid and
structure interaction, the analyses can be carried out using several different approaches, which
can be categorised as analytical, numerical and experimental methods. The typical approach
used to obtain a solution by computational methods is to first define the boundary value problem.
The boundary value problem (BVP) describes equations that govern the wave propagation
where the incoming wave impacts on a solid structure. A mathematical model is then
established to best describe the boundary value problem with the governing equations satisfying
a set of boundary conditions. When the most suitable mathematical model has been selected, it
can then be used to compute the solution using simulation tools implemented in computational
programmes such as Matlab, Fortran, Maple and C++, to solve the unknowns. As problems and
structures become more complex, an efficient and reliable method of analysis is essential. The
whole system can be solved using discretisation, where domains can be broken down into small
pieces, allowing arbitrary domain subdivisions to be calculated individually and then assembled
together to represent the global system. However, the computational time needed then becomes
an important factor especially when solving for large-scale complex geometry problems.

Advances in computing performance coupled with mathematics have enabled a large number
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of complicated models to be used and further calculations to be carried out for design and
analysis using software such as ANSYS and SESAM (Tucker, 2004; Veritas, 2013).

2.3 Introduction to the SBFEM

Recently, a new semi-analytical numerical method which combines the advantages of FEM and
BEM, termed the scaled boundary finite element method (SBFEM) was introduced (Wolf,
2003). The SBFEM, formerly known as the consistent infinitesimal finite element method was
developed mainly to compute the dynamic stiffness of an unbounded domain (Wolf, 1996; Song
and Wolf, 1997). This method was first developed to solve the elasto-dynamic soil and structure
problem, by introducing an analytical solution of the SBFEM in the frequency domain (Song
and Wolf, 1998). The effect of body loads was later added and solved (Song and Wolf, 1999).
Detailed derivations, solutions and applications were developed (Song and Wolf, 2000; Wolf
and Song, 2000), which also include the use of weighted residual formulations (Wolf, 2003).
Computation of the dynamic stiffness of unbounded media is recommended for solving
geotechnical problems by evaluating the soil-structure interaction. The solution provided is
based on the specific properties of the body movement in the soil.

The two numerical methods FEM and BEM are the basis of the current development of the
novel approach of the Scaled Boundary Finite Element Method (SBFEM) (Wolf, 2003). FEM
is most suited to solving problems with a complex geometry. The whole domain is discretised
and the coefficient matrix obtained is usually sparse, banded and symmetric. This allows the
problem represented in the matrix form to be solved. On the other hand the disadvantages of
BEM are tackled where the SBFEM development has addressed the need for a fundamental
solution, and that it can be applied to problems without fundamental solutions. However, BEM
often faces problems with singularity especially when tackling problems with a more complex
geometry with sharp corners. FEM also has some limitations in dealing with problems of
unbounded domains. Here, an approximation has to be applied to truncate the unbounded
domain. FEM was first applied to solving the problem of wave diffraction in the 1970s (Bai,
1975). Since then, FEM has gained popularity in the offshore industries due to the ability of the
method to tackle problems with complicated geometries, and has been successfully

implemented through specialist software (Lee, 1995).

In summary, by observing the history of the expansion of wave-structure interaction analysis,

the increasing complexity of the model problem is noted, while solving for the wave diffraction
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problem in both the analytical and the numerical sense. The use of wave diffraction theory and
how it is used and expanded to solve wave diffraction on a single column and on multiple
columns can also be seen. Solving the wave diffraction problem using analytical solutions are
also in agreement with numerical methods. The SBFEM is based on finite element analysis but
with discretisation on the boundary only. This method is exact in the radial direction and
converges to an exact solution in the finite-element sense on the circumference. Some of the
main advantages of SBFEM include a reduction of the spatial dimension by one. Moreover, it
retains the advantage of FEM where no fundamental solution is necessary, thus no singular
integrals must be evaluated. Hence, general anisotropic material is analysed without an increase
in computational effort. Boundary conditions on interfaces between different materials are
enforced exactly without the need for discretisation. It also allows great flexibility in
representing the geometry and the material used. A summary of the properties of FEM and
BEM and also how these were developed to produce SBFEM, is shown in Table 2.2. The figure
also shows that individual limitations associated with FEM and BEM are overcome by SBFEM.
Due to the effect of side-faces, there is no need to discretise the free and fixed boundaries,
including the interface between different materials. This characteristic stands out when solving
for soil properties where the stiffness changes according to the different layers of soil is applied
(Wolf, 2003).

Table 2.2 Comparison of properties in FEM, BEM, and SBFEM (Wolf, 2003)

Finite element Boundary Scaled boundary
method element method finite element
(FEM) (BEM) method (SBFEM)
Reduction of spatial dimension by one X X
Analytical solution in domain X
No fundamental solution required X X
Radiation condition at infinity satisfied X X
No discretisation of free and fixed
boundaries and interfaces between X

different materials
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No approximation needed besides

surface finite elements on boundaries

Symmetric dynamic-stiffness and unit-
impulse response matrices for X X) X

unbounded media

Symmetric static-stiffness and mass
matrices for bounded media (super X X) X

element)

Body loads processed without additional

domain discretisation

Straightforward calculation of stress
concentrations and intensity factors X

based on their definition

No fictitious eigenfrequencies for

unbounded media

Straightforward coupling by standard
assemblage of structure discretised with X X

finite elements with unbounded domain

By applying the scaled boundary coordinate system, the model problem can be described
using a scaled boundary equation, which can be derived using either a transformation-based
derivation or a mechanically-based derivation (Song and Wolf, 2000; Wolf and Song, 2000).
The former includes the transformation of the boundary from the Cartesian coordinates to the
Scaled Boundary coordinates. This transformation allows the radial direction to be satisfied
exactly and the circumferential direction to be represented by the weighted residual function.
Jacobian elliptic functions are used to make this transformation possible (Appendix F). Shape
functions are introduced to solve continuous problems and are used to enable the modelling of
more complicated scenarios. The method of application is similar to the FEM (Boeraeve, 2010).
It is important to approximate the continuous function with a group of known functions. Figure
2.8 represents the relationship of the parent element to the scaled boundary transformation

(Wolf, 2003). The line element is transformed to represent the geometry of interest. For the
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bounded domain, where the region is bounded by the radial direction (¢) where ¢ = 0 and & =
1, only the circumferential direction (1) is discretised, according to the geometry that is to be

evaluated.

Figure 2.8 Scaled boundary transformation (a) and the three noded parent element (b) (Wollf,
2003)

The second method of deriving the SBFE equation is to use a mechanically-based derivation
shown in Figure 2.9, where a layer of finite element cells is created between the boundaries and
to perform the limit of the cell width towards zero analytically (Wolf, 1996). This approximate
solution for each finite element cell allows the properties to be determined on an element basis,
which can then be assembled. This method is often used to form the global model. The dynamic
characteristics of a bounded and unbounded medium can be described by the force-
displacement relationship with respect to the degrees of freedom of the nodes on the boundary
interface. This method of derivation also allows problem with parallel side-faces to be

overcome.
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Figure 2.9 Mechanically based derivation concept (Wolf, 2003)

One of the important characteristics of the SBFEM is the position of the scaling centre. The
typical scaling centre is located in the inner domain, but for certain problems, the scaling centre
is located outside of the domain or even at infinity (Li et al., 2005a; Li, 2009). For example, the
mechanically based derivation approach places the scaling centre at infinity, choosing a large
finite distance between the boundary of the structure and the fictitious boundary (Wolf, 2003).
This allows the SBFEM to be used without compromising on the advantages where the side-
faces passing through it do not need to be discretised (Li et al., 2005a). The example of
calculating horizontally layered unbounded soil resting on rigid rock is shown (Wolf, 2003). In
general, the circumferential curve has to be visible from the scaling centre, which places some

restrictions on this method, especially when solving for more complex geometries.

However, this limitation can be overcome by placing the scaling centres at different positions
using substructuring, this results in the use of more than one scaling centre in a problem.
Substructuring also results in subdividing the total domain into subdomains. By introducing
several subdomains, there are additional boundaries between adjacent subdomains, which need
to be discretised. However, the increase in the number of degrees of freedom due to
substructuring is modest in comparison to the total system. There are five reasons why

substructuring is important and useful in some applications (Wolf, 2003).

(@ The boundary that is to be analysed must have visibility from the scaling centre.

(b) Increased computational efficiency. As the number of degrees of freedom which needs
to be solved increases significantly as more complicated geometries are tackled, this
approach is faster and it is easier to solve eigenvalue problems of modest size.
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(¢) Increased accuracy when modelling dynamics in a bounded domain. In the SBFEM,
only the degrees of freedom on the nodes on the boundary are taken into account.
Hence, introducing more boundaries by substructuring will introduce more degrees of
freedom, leading to a greater ease of calculation.

(d) The SBFEM places the scaling centre at the re-entrant corner to capture stress
singularities. For boundaries which have several re-entrant corners, substructuring is
used to place the scaling centre at each re-entrant corner. By allocating the scaling
centre at end of each loaded zone it can help to represent stress discontinuities.

(e) The side-faces in SBFEM are not discretised, so that fewer boundary conditions need
to be enforced. For the unbounded domain, the boundary should be modelled as far as

possible with side-faces, in order to produce more accurate results.

2.3.1 Different applications of SBFEM

The application of SBFEM has been further explored to solve different aspects of both
elastostatic and elastodynamic engineering problems. One of the areas that this method could
address is the crack problem in fracture mechanics, where the singularities on the tip of the
crack can be evaluated semi-analytically as shown in Figure 2.10 (Yang, 2006; Bird et al., 2010).
The multiple crack problem has also been successfully investigated using this method (Ooi and
Yang, 2009). Dynamic crack propagation has also been studied using SBFEM (Yang and Deeks,
2007; Ooi et al., 2012). This body of work has demonstrated the advantages of the SBFEM in

terms of accuracy and efficiency compared to other conventional numerical methods.

Figure 2.10 Cracked subdomain (left), equivalent shadow domain of cracked subdomain
(right) (Ooi and Yang, 2009)

28



Chapter 2 Literature review

When the SBFEM was first developed, it was used to solve problems in the field of
earthquake engineering and also soil-structure interactions (Wolf, 2003). One other advantage
of SBFEM is for situations where the side-faces do not need to be discretised and this allows
layers of different properties to be evaluated at the same time. This is applicable to soil
properties which vary with depth (Liang et al., 2005) and can be applied to multi material
problems (Mayland and Becker, 2009) with continuum mechanics. The latest development
solves the wave propagation in layered soil, by applying the SBFEM on the near field/far field
interface, truncating the force-displacement relationship, resulting in reduction in
computational time in completing the analysis (Chen et al., 2015). A dynamic modelling of
soil-foundation interaction has also been successfully carried out (Han et al., 2016).

The application of SBFEM can also be extended when coupled with other numerical
methods such as FEM, to overcome some of the limitations, when specific problems cannot be
solved solely using SBFEM. Coupled methods are used in several different disciplines, and one
of the initial applications was to investigate crack growth (Yang and Deeks, 2007; Yang et
al.,2015), where the FEM is coupled with the SBFEM. It has also been used to verify the pile
integrity test (Schauer and Langer, 2012), soil-structure interaction where the near field is
represented by the FEM while the far field is represented by the SBFEM. This approach thus
allows the advantages of each method to be harnessed. The coupled method can also be
extended to solve seismic soil-structure interaction in the time domain. The SBFEM can also
be coupled with the BEM, where it is successfully used to solve linear elastic fracture mechanics
(Bird et al., 2010). The parallelised coupled FEM, BEM and SBFEM to solve the dynamic
analysis of large scale soil-structure interaction has also been investigated (Genes, 2012), where
the unbounded domain was solved using the BEM and SBFEM to model the dynamic response
while the FEM was used in the bounded domain in order to the tackle the nonlinear soil
properties. Figure 2.11 shows an example of the soil-structure interaction using the coupled
FEM and SBFEM.
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near field:
FEM

far field: SBFEM

Figure 2.11 Representation of the SBFEM in soil-structure interaction (Birk, 2013)

Most of the applications are based on the frequency domain solution. However, several
attempts to solve the problem in the time domain have been carried out for the coupled model
(Schauer et al., 2012), for three-dimensional soil-structure interaction and higher order
equations (Birk et al., 2012).

2.3.2 SBFEM in offshore wave diffraction

The main advantages of the SBFEM application in solving the wave-structure interaction are
that the spatial dimension is reduced by one and that the radiation condition to infinity is
satisfied automatically. Many applications of the SBFEM in solving the wave-structure
interaction solve the linear wave theory, but the limitation of this method for solving the
nonlinear wave still needs to be addressed. A modified method was introduced to enable
SBFEM to be applied in marine hydrodynamics, this breakthrough also addressed model
problems with parallel side-faces (Li et al., 2005a; Li et al., 2005b). The governing equation
used in these approaches are the two-dimensional Laplace equations. The solutions show great
accuracy and good convergence with a small number of elements in the lower wave frequencies.
In this application, the structure is assumed to be distant from the seabed and treated as infinitely
long in the horizontal direction. The fluid flow is then represented by the two-dimensional
Helmholtz equation, and the wave diffraction problem is again solved using the SBFEM (L.i et
al., 2006). The wave diffraction is also directly solved using the SBFEM by selecting the
Hankel function as the base solution when solving for short crested wave effects on a circular
cylinder (Tao et al., 2007) and an elliptic cylinder (Tao and Song, 2008). The use of the Hankel

function allows a wider range of wave frequencies to be satisfied. Wave diffraction around
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porous structures in the ocean has also been tackled using this approach by varying the porosity
from zero for a solid structure to infinity for structure with openings (Tao et al., 2009). The
SBFEM solving the wave diffraction on porous structures was then extended to solve for double
layer perforated cylinders (Liu and Lin, 2013). The second order wave diffraction problem has
been solved using the SBFEM by combining it with the homotopy analysis method (Lin and
Liao, 2011). This method has been extended to three-dimensional form to solve the wave-
structure interaction, where the solid cylinder deflection is modelled using 3D SBFEM and
coupled with the two-dimensional governing Helmholtz SBFEM for the fluid domain (Li et al.,
2013a; Lietal., 2013Db). Li et al (2016) further develop the dynamic analysis of pile foundation
resulting from the ocean waves. However, the use of 3D SBFEM to solve the hydrodynamic

part of the wave diffraction problem has not yet been carried out.

2.4 Aims and objectives

The main aim of this project is to develop the application of numerical methodology in
offshore hydrodynamic analysis, and specifically to develop the SBFEM which shows many
advantages over other existing methods. The main advantage is that the SBFEM utilises the

semi-analytical approach to solve for model problems.

The SBFEM was further developed here by combining the FEM and BEM, and
introducing a virtual circular cylinder and by choosing the Hankel function for the analytical
solution representation in the radial direction. This thesis describes the development of 2D
and 3D models using SBFEM and their application to wave diffraction around large offshore

structures of different configurations.
The specific objectives are

a. Application of the 2D SBFEM to a new polygonal model proposed as a possible
substitution of the typical cylindrical monopile supporting an offshore wind turbine.

b. Introduce the use of a virtual cylinder outside the polygonal cylinder to enable the base
solution of the Hankel function that satisfies the cylindrical coordinates to be satisfied.

c. Explore and utilise the substructuring process to best eliminate the singularity and
irregular frequencies problems that often exist at re-entrant corners.

d. Develop a 3D SBFEM model for hydrodynamic analysis of complex offshore structures,
by considering a more suitable type of scaling function.
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e. Validate the new proposed 3D SBFEM on the current simplified structures.
f. Apply the newly developed 3D SBFEM model to a case study of wave-structure

interaction.

2.5 Summary

The research focus of this thesis is wave diffraction around large structures. This thesis further
develops the current SBFEM in terms of its two-dimensional application in hydrodynamics.
More complicated structural geometry will also be analysed to test this existing method. A
novel analytical-numerical method called the Scaled Boundary Finite Element Method
(SBFEM) will be presented. In addition, two-dimensional applications and the development of

three-dimensional methodology will be the main focus of this research.

The wave forces obtained from the SBFEM analysis will be applied to more practical
engineering usage, such as evaluating the overall application of soil-structure-wave interaction
of a monopile. A further three-dimensional extension of SBFEM will be carried out and the
solution will be presented. The general applications of this novel approach will be discussed
with regard to its feasibility and reliability, while validating it with existing analytical and

numerical methods.
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Chapter 3

Model development and applications of 2D SBFEM to
offshore structures

3.1 Introduction

In order to begin SBFEM methodology development, it is first necessary to understand the
proposed solution technique. Several cases of wave diffraction problems commonly found in
the offshore industry have been solved using the 2D SBFEM model (Tao et al., 2007; Song et
al., 2010; Liu et al., 2013). Analytical solutions are available for the wave diffraction problem
around simple structures, but for more complicated geometries, solutions are not readily
available. In this chapter, SBFEM is applied to two-dimensional structures with different cross-
sectional shapes, including wave loading on a polygonal monopile with recent field applications
proposed in the offshore renewable energy industry (RCID, 2010a; RCID, 2010b; RCID 2010c).
The results obtained will be used for further applications, with regards to the effect of
hydrodynamic forces on structure deflection. This chapter develops the application of the
SBFEM to solve the wave diffraction problem on a realistic and physical offshore octagonal

structure in a step by step manner.

Section 3.2 will introduce the model problem and discuss the wave diffraction around a two-
dimensional structure, while Section 3.3 transforms the model problem into a scaled boundary
representation. This section reviews the substructuring, geometry transformation and side-faces
that are used in solving this model problem using the SBFEM. The solution is shown in Section
3.4, solving the bounded domain and unbounded domain separately and assembling them to
obtain the overall properties in the wave field. Finally, Section 3.5 presents the validation of
the methodology and further discussion of the results obtained. Section 3.6 explains further
applications that can be carried out and Section 3.7 provides the summary and conclusions.

Detailed calculations are shown in the appendices.
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3.2 Wauve diffraction around a two-dimensional cylindrical structure

As renewable energy becomes more important, the demand for offshore wind turbines is also
increasing. New offshore capacity installations increased by 200% in first half of 2015
compared to the first half of 2014 (EWEA, 2015). A typical offshore wind turbine is supported
by circular monopiles. These monopiles are usually fabricated by rolling a large thick (>100
mm) plate of steel, welding them together, and connecting the subsections as a circular cylinder.
This rolling process is very time consuming. There is also high capital investment involved, in
terms of machinery and facilities required for rolling thick plates. Moreover, the length of each
section is limited by the width of the rollers. For a typical design, due to the restrictions of the
machines used, subsection sheets of 3 m width are normally manufactured using specialist
rollers. A novel solution to the problem of long fabrication times was suggested by the Resource
Centre for Innovation and Design (RCID) in Newcastle, where the monopile could be replaced
by a polygonal monopile (NaREC, 2012). With the polygonal pile, longer sections can be
manufactured by welding together flat plates of approximately 10 m in length. Several
polygonal structures were investigated (RCID, 2010a; RCID, 2010b; RCID, 2010c), starting
from a 4 sided structure up to a 12 sided one. In this thesis, the analysis of an octagonal pile
will be considered due to its capability to withstand wave stress during preliminary structural

analysis.

3.2.1  Wave diffraction around two-dimensional cylinder

Figure 3.1 shows a diagrammatic representation of a wave passing through an octagonal cross
sectioned monopile extended into the seabed and also piercing the surface. A virtual circular
cylinder is placed outside the octagonal pile so that the advantages of choosing the Hankel
function as part of the base solution could be applied to the unbounded domain (Tao et al.,
2007). The inner bounded domain is treated separately where the power series is chosen as the
base solution. A monochromatic short crested wave train is propagated at an angle 8 along the
positive x-axis. An octagonal monopile is fixed at the seabed parallel to the x-axis, piercing the
water surface. The top part represents the plan view with x-y-axis while the bottom part shows
the side of the monopile along the y-z-axis (Figure 3.1). The coordinate origin is defined as the
centre of the monopile where it passes through the mean water surface. The section between

the circular cross section and the octagonal cross section is considered as the inner bounded
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region, S;. The domain outside the circular cylinder towards infinity is regarded as the outer

unbounded domain, S,.
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Figure 3.1 Wave diffraction around an octagonal pile. Plan view (top) and front elevation
(bottom)

When dealing with wave diffraction, potential theory can be applied, where the fluid can be
represented using velocity potential. In order to formulate the fluid motion, the fluid flow is
assumed to be irrotational, incompressible and inviscid. The problem is formulated in two-
dimensions, so the time harmonic motion term in the angular frequency w and the z direction

term can be separated from the overall velocity potential. The variables of the velocity potential
could be separated and represented as

d(x,y,2,t) = dp(x,y)Z(2)e "t (3.1)

The total velocity potential can be expressed as the sum of the incident velocity potential
and the scattered velocity potential. By separating the variables, the scalar quantity of ¢(x, y)
is investigated. The term ¢! (x, y) is the known value of the incident wave and the unknown

term ¢ (x, y) of the scattered wave needs to be solved
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D(x,y,2z,t) = Dl(x,y,2,t) + P(x,y,2,t) (3.2)

d(xy) = d'(xy) + d°(x, ) (3.3)

The z direction term describes the vertical direction where it could be solved analytically,

satisfying the sea bottom condition

cosh k(z+ h)
2(2) = cosh(kh)

(3.4)

The angular frequency w is related to the wave number k, and can be defined using the linear

dispersion relationship, where

w? = gk tanh (kh) (3.5)

For deep water, where h approaches larger values, the tanh (kh) part tends to 1, hence, the
dispersion relationship can be written as w? = gk. The wave diffraction solutions discussed in
Chapter 2 use plane waves, which are two-dimensional long crested waves. However, the three-
dimensional short crested wave which can describe the real sea state by taking into account
wind generated waves is considered here (Jeffreys, 1925). By using this approach, oblique
waves can also be evaluated. Though the plane wave predicts higher forces on structures which
can be used in designs, the short crested phenomenon that represents more realistic sea waves
is evaluated (Zhu, 1993). The short crested incident wave illustrated by Mei (1992) and Zhu
(1993) can be written as

b, = — %Z(z)ei(kxx‘wt)cos(kyy) (3.6)

The imaginary part represents the phase change, where i = v/—1 , and the wave number k

IS obtained using

k= /kxz + k)’ 3.7)

The real part of this equation represents the scalar potential of the potential flow theory.
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3.2.2  Boundary value problem

The boundary value problem (BVP) describes the mathematical formulation that governs the
wave propagation where the incoming wave impinges on a solid structure and the resulting
scattered wave needs to be accounted for. In the case of the two-dimensional problem, the wave
equation can be represented using the Helmholtz equation (Appendix A). The computational
domain is divided into two parts, the internal bounded domain S; and the external unbounded
domain S,, as shown in Figure 3.1. The velocity potential in these domains are expressed by
equations (3.2) and (3.3). The external domain of the two-dimensional scattered velocity

potential ¢> governed by the Helmholtz equation is written as

V2PS + k25 = 0 (3.8)

The boundary condition on the virtual circular cylinder I'; can be written where the flow into

the inner domain is equal to the flow into the outer domain

(I)g,n + (H)n = _d)adj,n on I (39)

Subscript n denotes the normal to the boundary and subscript “adj” denotes the physical
quantities in the adjacent subdomain, while the subscript comma (,) describes the partial
derivative with respect to the following variable that is shown. The boundary condition at
infinity can be represented by the two-dimensional Sommerfeld’s radiation condition (Lamb,
1910), where

1
Jim (kr)z (5, — ikdp3) =00n T, (3.10)

In comparison to other numerical methods, in order to satisfy this radiation condition, the
FEM prescribes an artificial boundary at a distance away from the structure. Whereas, choosing
the Hankel function as the base solution is similar to the BEM approach where the radiation

condition at infinity can be satisfied (Kausel, 2006) , Appendix B.

The internal domain S; in Figure 3.1 is further subdivided into several subdomains, this is
done to enable the properties of the SBFEM to fully overcome the problem of singularity that
occurs at the sharp corners. Detailed discussion of this is found in subsection 3.3.2. Figure 3.2
shows one of the internal subdomains of this particular model problem. The adjacent boundary

of each inner subdomain is denoted as I; and the boundary between the inner domain and the
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outer domain is denoted as I, whilst the boundary between the body of the structure and the

inner domain is denoted as I},.

Figure 3.2 Example of the boundaries in an inner subdomain I, I and I

For the inner subdomain S;, the same governing Helmholtz equation can be written as

V2 + k2d; = 0 (3.11)

The velocity potential in between the inner subdomains satisfies the Dirichlet boundary

condition as in equation (3.12). The normal velocity potential on I7. is shown in equation (3.13).

Tangential: ¢; = ¢gqj ON I (3.12)
Normal: ¢, = =g, — $o, ON I, (3.13)

The body boundary condition specifies that no flow passes through the solid octagonal wall

and that the outward facing normal velocity on the body surface is zero.

bjn=00nT, (3.14)

To solve for the boundary value problem, the governing equations in (3.8) and (3.11) and

the boundary conditions (3.9 — 3.14) need to be satisfied.

3.3 Scaled boundary finite element transformation

SBFEM is analysed in a different coordinate system, (n, &) for two dimensions (see Figure 3.3)
and (n, ¢, &) for three dimensions (see Figure 4.3), instead of the Cartesian Coordinate system

(x, y) and (x, y, z) respectively. The main reason for this is because the Cartesian coordinate
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axes are fixed, and by transforming and applying the local Scaled Boundary coordinates more
flexibility for mapping more complex geometries that involve multiple subdomains can be
achieved, while preserving the advantage of the SBFEM where the radial direction can be
solved analytically. It also allows discontinuous boundary conditions to be satisfied, which is
an advantage when solving for soil-structure interactions. The value & on the radial direction is
also known as a scaling factor, which is measured from its unique and individual scaling centre

allowing the analytical solution to be obtained.

Numerical procedures can be carried out in the circumferential direction, based on the
weighted residual technique. The axis n is introduced and used for two-dimensional solutions,
discussed in this chapter, while an additional axis { can be applied to tackle the three-
dimensional problem, which will be presented in Chapter 4. The SBFEM allows a solution to
be formulated in the analytical form in the radial direction and numerically in the

circumferential direction.

This coordinate transformation also overcomes the singularity issue that normally occurs,
especially when solving for problems of geometries with sharp corners. This is possible when
the radial coordinate acts from the boundary towards the interior singular point in the bounded
domain. Using the scaled boundary coordinate system and by placing the scaling centre at the
sharp corner, the singularity problem can be solved (Li et al., 2005a; Li et al., 2005b). On the
other hand, the radiation condition at infinity could be overcome by setting the radial coordinate
to act outward from the boundary to infinity (Li et al., 2005a; Li et al., 2005b), or by selecting
the appropriate base solution that satisfies it, such as the Hankel function (Tao et al., 2007).
However, it should be noted that the Hankel function only allows a solution in the cylindrical

coordinate system. The coordinate transformation also depends on the choice of scaling centre.
3.3.1 Coordinate transformation

Figure 3.3 shows a typical definition of the SBFEM in the form of a diagram. There are three
lines on the corresponding axis & as it surrounds the scaling centre O(x,, y,), where the bold
line portrays the typical SBFE, where £=1 usually falls on the surface geometry that is evaluated.
The inner line describes the internal SBFEM &, also known as the inner domain while the
outermost line represents the external SBFE &, also known as the outer domain. The points on
the external, typical and internal SBFE relate to each other in a scaled manner. The
corresponding points on each section should form a line passing through the scaling centre. The
position of the scaling centre can be located at different positions depending on the problem.
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External SBFE

Typical
Element

Typical SBFE

Internal SBFE

O(YO, y 0)

\??=??0

Side faces

- =M

Figure 3.3 Scaled Boundary coordinate definition and definition of boundaries

In order to solve the problem in a different coordinate system, the transformation of

coordinates is done using the chain rule, where

d 0% a+ay 0 (3.15)
0§ 0& 9z  0¢ 0y '
d 0x 40 0dy 0

g_*x 9 _y_A (3.16)
dn 0dn Jdx oOn Jdy

This is usually represented in a matrix form.

9 [63? 397 [ d

oc | _log agl)az
{61_{69? ay[) 2 (3.17)
k(’)n) on onl \oy

The introduction of the Jacobian Matrix [J(&,7n)] defines the linear mapping of linear

approximation. The transformation of coordinates is shown in detail in Appendix F.

(_\ [0Y _9971(9)

{ } 1lon % |i"’f} (3.18)
il ez ez | o

\ay) "5 & 1\
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With this coordinate transformation, the whole boundary value problem can be redefined in
the Scaled Boundary coordinate system with a radial coordinate that can be scaled and the
divergence operator defined (see Appendix I). Operator V and infinitesimal areas in the Scaled

Boundary coordinates can be expressed as in equations (3.19) and (3.20) respectively.

Ja 1 0
V= {bl(n)}ﬁ + E{bz(n)}% (3.19)
dxdy = |J|§d&an (3.20)
The Jacobian is written as
Ul =xmy@), —ymxm), (3.21)

Equations (3.19 — 3.21) are later substituted into the new governing equation to allow the

BVP to be solved in the Scaled Boundary coordinate system.

3.3.2  Scaling centre and substructuring

To solve the problem using the SBFEM, it is important to consider the position of the scaling
centre. The structure that is considered has an octagonal cross section. Placing the scaling centre
at the centre of the cross section is visible from the circumference around it but would pose
singularity problems at the sharp corners. To overcome this, a scaling centre is placed at each
corner of the polygonal structure, corresponding to the individual subdomains. Moreover, the
Hankel function could be used to achieve an exact solution for a circular cross section (Tao et
al., 2007) which satisfies the Sommerfeld boundary condition at infinity. Hence, a virtual
cylinder is placed outside the octagonal structure to take advantage of this. The scaling centre
for the external circular unbounded domain is placed in the middle of the circle (see Figure 3.4).

The complete computational domain is now divided into several inner subdomains (left),
where the radial section is bounded by &; = 0 and &, = 1 while the outer domain (right) is
bounded by &, = 1 and &, = . Equal size and shaped bounded subdomains are used and

discretised to simplify the computation of the entire domain.
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Figure 3.4 Radial boundary of the inner subdomains (left) and the outer subdomain (right)

For the inner subdomain, the typical scaled boundary diagram can be visualised as

On boundary, § = 1

/
/
\/
Side-face —— \ Atfarend, § =
Iﬁ Scaling cenfre, § =0 —
x Side-face §

Figure 3.5 Typical scaled boundary diagram for inner subdomain

The scaling equation is used to transform the scaling centre in the problem from the Cartesian
coordinate to the Scaled Boundary coordinate, where

(&) =Exp() + x¢

(3.22)
Y& m =&y + yo

The subscript b denotes the coordinate on the boundary. To solve the velocity potential of
the whole domain, both the inner subdomains and the outer domain are considered together
(Figure 3.6). This also shows the overall substructuring proposed to solve the wave diffraction

around an octagonal pile, in a manner where the advantages of the SBFEM can be preserved.
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The inner domain is made out of eight subdomains denoted S; ,S>.. S, while the outer domain
IS a separate subdomain denoted So. The inner subdomains coincide at adjacent boundaries at

I'; and the inner and outer boundaries share the same boundary at boundary I', where & = 1.

I

0 Nodal point
@ Scaling centre for bounded domain
Scaling centre for unbounded domain

Figure 3.6 Substructuring of an octagonal pile and a virtual circular cylinder

It is worth noting that several scaling centres can be used to define one large domain if
necessary. Depending on the geometry of the system, scaling centres are usually placed at the
sharp corners if they exist in the problem. By doing so, the SBFEM is able to overcome the
disadvantage encountered by the BEM where the problem of singularity appears at the re-
entrant point, which may lead to the occurrence of irregular frequency. A similar approach was
also adopted to solve fracture problems in crack mechanics (Yang, 2006). The reason for this
is that the selective positioning will result in the side-faces passing through the scaling centre,
and need not be discretised, allowing the side-faces to be solved analytically. The information
on the side-faces can be obtained by scaling the values calculated at the edge that coincide with

the line that passes through the scaling centre.
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In situations where the side-faces overlap, the SBFE could be defined as a closed curve. The
values on each side-face are equal in magnitude but opposite in direction. When the side-faces
coincide, the values cancel each other out, and the side-faces play no role in the solution.
However, when the side-faces does not coincide, the SBFE is considered as an open curve.
Other than this, the SBFEM seeks for an approximate solution, where the shape function is used
just as in the FEM. For this octagonal problem, the side-faces result in an open curve, and pass
through the scaling centre and properties on the side-faces can be found using the scaling
method (Wolf, 2003).

3.3.3  Mapping function

The shape function is used in a similar way to any FEM or BEM approach. A suitable shape
function, which interpolates the velocity potential at the mesh boundary nodes, is selected. Note
that due to the advantage of the spatial dimension being reduced by one, the elements are treated
as one-dimensional elements. Here, a three noded quadratic shape function, shown in Figure
3.7 is chosen for the one-dimensional element, which will produce a better approximation than
a two noded line element when fewer elements are used to discretise the geometry (Appendix
G).

n+1 n n-—1

Figure 3.7 Quadratic line shape function

The shape function, similar to that used in FEM can be written as

[IN(DI =[N N2 N)sl (3.23)

where

1
N(m), = En(n -1 (3.24)
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Nm,=-+Dmn—-1) (3.25)

1
N(m)s = En(n +1) (3.26)

This shape function is used to interpolate the solution between discrete values on the
corresponding nodes. Due to the transformation of the coordinate system, the shape function
used is in the Scaled Boundary coordinate system, and only the values on the boundary are
discretised. Points in the Cartesian coordinates are denoted with the subscript c, {x.} and {y.}.

The points in the new coordinate system are found using

xp(m) = [N(m, O I{x.}
(3.27)
yo(M) = [N(m, Oy}

Substitute equations (3.27) into the scaling equation (3.22), to obtain the transformation of

the coordinates yields,

55(5' TI) = Xo + S([N(TL {)]{xc}

(3.28)
9EN =yo + NGOy, }

Notice that the formula of the shape function is only dependent on n, which is the
circumferential direction. Hence, the governing Helmholtz equation is weakened by the shape
function in the circumferential direction. An approximate solution for ¢4 can be found using

the similar shape function, where

$a (€, n) = [N {ald)} (3.29)

Substituting equations (3.23) and (3.29) into v, = V¢, , the approximate velocity v, can be

obtained in equation (3.30). Detailed derivations can be found in Appendix J.

1

vs = Vo, = [Bi(m{a(®)} s + z [B2(m{a($)} (3.30)

where
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[B:(m)] = {bs(m}IN ()]
[B2(m)] = (b (m3IN(]

The shape function is also used to convert the differential equation relating to the weighted

function into the discrete problem, using the Galerkin approach, where

w(&,m) = [INMIw (O} = w©Y NI (3.31)

3.3.4  SBFE equation

From the governing Helmholtz equations in (3.8) and (3.11), the approximate velocity potential
can be solved by multiplying it with the weighting function and integrating anticlockwise
around the whole domain, to set the error to zero. The boundary with prescribed velocity v, is

denoted as

¢ =T, 0onT, (3.32)

I, is defined as the velocity boundary. For simplification of the equations, the brackets
representing the matrices are removed. Through integration by parts (Appendix H), the general

equation can be rewritten as

jfn(w Box ) dxdy — UQW'X ¢, dxdy + ﬂﬂ(w by )y dxdy
(3.33)

_ﬂQW,yqb,ydxdy+ﬂﬂw(kzd))dxdy= .

Note that only the Neumann boundary condition applies in this two-dimensional case. By
including the boundary condition (3.32), the new Helmholtz equation can be expanded and

rewritten as

f fﬂ VT wVe dxdy — f fﬂw(kqu) dxdy — 35 G,w dl, = 0 (3.34)
r

b

The solution to the problem can be obtained from the weighted residual equation by

expanding the equation. Coefficients are introduced to simplify the representation of the

46



Chapter 3 Model development and applications of 2D SBFEM to offshore structures

equation, where the terms containing n are factored into the coefficients. The coefficient

matrices introduced are

Ey =f Bl(n)TBl(n)IJIdU
n
Bo= | B B ldy
n
(3.35)
E, =f BZ(U)TBZ(U)UldU
n

M, = f NN @)L ldr
n

E,(©) = NI (=5, 1))/ ) + N0 (=5n(§,m0) )1/ (o) (3.36)

Substituting equations (3.35) into equation (3.36) results in

{W(ge)}T lEofe{a(fe)},f + ElT{a(fe)} - f [N(n)]Tﬁn(fe' Tl)dTI

n
- w(&)y" [Eofi{a(fi)},f + Eo {a(§)}

+ i[N(U)]Tﬁn(fi,U)dnl (3.37)

¢e
- : w(®)}y" <Eof{a(f)},ff + (Eo +E" - E1){a(f)},f

- Ez{a(f)}é + Mok*{a (D)} — Fn(f)> 9§ =0

The discretisation of the inner and outer part of the boundary can be represented in the scaled

boundary form as

{a(©)} = Eoé{a(®}¢ + 1" {a(®) (3.38)

In order to satisfy all the weighted function equations, the following conditions must be met:
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Eofu{a(€)} ¢ + EsT{a(€)} — 35 INGDT" 5 (E0rm)dn = O (3.39)
n

EoEi{a(E)} ¢ + Eo{a(€)} + f INGDTT5a (€ = 0 (3.40)
n

1
on{a(f)},ff + (Eo + E1T - E1){a(f)},$ - EEz{a(f)} + &k*Mo{a($)} (3.41)

- Fn(f) =0

The SBFE equation (3.41) is a non-homogeneous second order partial differential equation
(PDE). In order to solve this eigenvalue problem, the rank of the coefficients must be equal to

the number of nodes at the boundary.

3.4 Solution procedure

The solution to the unbounded domain could be solved using the approach proposed (Tao et al.,
2007). The formulations derived are similar to those previously proposed (Wolf, 2003), and
later modified (Li et al., 2006) to solve the Helmholtz equation in the context of hydrodynamics.
In the present work, each of these modifications is combined and adopted in solving the wave
diffraction problem for an octagonal cylinder and integrated modelling of wave-structure-soil

interaction in this chapter.

3.41 Bounded domain

To satisfy the weighted function, the new governing equation presented in the Scaled Boundary

coordinate needs to be satisfied.

Solving for

szo{a(f)},SE + f(Eo + E1T - E1){a(sz)},§ — Ex{a(§)} + fszMo{a(f)}

3.42
=$E () 42

At the side-face, water does not flow into the structure, by applying this body boundary
condition it leads to F,(§) = 0. This results in a homogeneous second order PDE.
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Eofz{a(f)},ff + E(Eo + E1T - E1){a(€)},f — Ex{a(®)} + My&?k*{a(§)} =0 (3.43)

One approach to solving this second order PDE is to split the equation into two first order
equations with two unknowns. The weighted function weakens the boundary condition at the
nodal flow, where the nodal force is represented as in equation (3.38). Rearranging equation
(3.38) yields

Eoé{a(®)}e = {q(9} — 1" {a(®)} (3.44)

Differentiating equation (3.44) in terms of ¢ leads to,

Eoé{a(®)}es + Eo{la(®)} s = {q(O)} ¢ — E1 {a(®)} ¢ (3.45)

Rearranging equation (3.45) and multiply with & yields,

Eoé*{a(O)}er = £{q(©)}e — Ey"E{a(®)} e — Epé{a(®)}e (3.46)

The SBFE equation and boundary condition can be rewritten by substituting (3.46) into the
general SBFE equation in (3.43),

§a(®)}e — B &lal®)} ¢ — Eoé{a(®}e + (Eo + 1" — E1){a(®)) g

(3.47)
— E{a()} + Mo&?k*{a(§)} =0
Simplifying equation (3.47) results in equation
(D} — E18{a(D)} ¢ — E2{a(D)} + Mok {a()} =0 (3.48)
Rearranging the boundary condition (3.46) and substituting into (3.48), leads to
Ea@e + (—E2 + B B Ey Na(©)} — Ey B Ha(©)} + Mo§2k* (a(©)} 3.49)

=0

Hence, equation (3.44) and (3.49) can be written in a matrix form
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Egdak}_[ —Eq'E{ %“lgda%
|E, —E,E;*E,T ELEy Ug(8)}

(a®)
-, o)

The second order PDE can be transformed into two first order PDE. With two equations and

(3.50)

two unknowns, the equations can now be solved. Notice that this step also increases the degree
of freedom that needs to be solved. The two PDE can be written as one by introducing another
dependent variable where

_ ({a(©)} 3.51
mgn—&“aﬁ (3.51)

The term {a(&)} represents the velocity potential at the nodes and {q(¢)} is the flow
function at the respective nodes. This allows the analytical solution in the frequency domain to
be calculated, and the velocity potential for each specific point in the domain can be identified.
The angular frequency is directly proportional to the wave number, hence, a new independent

variable can be introduced, where

I=k-b-¢ (3.52)
Equation (3.50) can be written as
JX D3z = (21X (D} - P IMIX (D)} (3.53)
where
[M] = i[ 0 0 (3.54)
b2 [[Mp] 0
and the Hamiltonian matrix
_|  —Eo'E{ Eq* 3.55
m_brfﬁfﬁTﬁ%J 559

The solution of {X({)} can be obtained by introducing a constant {c}, where

x@)} = [x@]te3 (3.56)
Hence, the governing equation can be rewritten as
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{xX(D]z = [Z1[x(D] = CMI[X (D] (3.57)

For systems of first order differential equations, the eigenvalue and eigenvector method can

be used to solve equation (3.57). A new vector is introduced [W ({)], where

[X(D] = [@][W (] (3.58)
XDz = [@]IW(D]g (3.59)

[@] is a modal matrix, for the eigenvector of [Z] with the rank of m, where m is the number
of nodal points to be evaluated, which can be written as an (m x m) matrix. This is the key
point, where the eigenvectors are used to diagonalise a matrix with distinct eigenvalues.

Substituting equations (3.58) and (3.59) into the governing equation (3.57) yields,

[@][W (D] = [Z][X(D)] — Z[M][PIW (D] (3.60)

by using the Jordan decomposition (Li et al., 2005a), the following equation is satisfied.

W(Dlz =[] ZI[@][W (D] - Z[@] [M][@][W (D] (3.61)

Introducing the diagonal matrix of [A], which is made up of the eigenvalue of [Z], and can

be written as

[A]=[CI>]‘1[Z][<D]=[ S l (3.62)

This is also known as the similarity transform where A represents the eigenvalues. However,
in the context of hydrodynamics, the zero eigenvalue in each A is present, signifying that there
is no flow in the fluid domain, leading to the singularity problem when solving the equation,
hence, a Jordan decomposition of the matrix [Z] is introduced to overcome this problem (Li et

al., 2006). A transformation matrix is applied,

[Z][T] = [T][A] (3.63)

where
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-1
[A] = b (3.64)
A
Hence the equation (3.61) can be rewritten as,
WDz = [N]W (D] - ZINW ()] (3.65)

According to the theory of matrices, [W ({)] can be solved using the product of two square

matrix functions in term of {, where

W (DI =[RDIY (I (3.66)

The matrix [R({)] can be formulated in a power series, where k = 1,2,3 ...

[R(D] =11+ {P[Ry] + T*[Ro] + -+ + TPF[Re] + -+ (3.67)

The second matrix [Y({)] has to satisfy the ordinary differential equation,

Y (Dlz = [POIY (] (3.68)

And the matrix [P({)] can also be represented in the power series, where k = 0,1,2 ...

[P(D] = [Po] + C[Pi] + [Pl + -+ ([P + - (3.69)

The solution process follows the previously proposed solution (Serre, 2000; Wolf, 2003).
The [Y ()] term also satisfies [Y ({)] = ¢ Al and can be expressed as an upper triangular matrix.

Hence, the overall analytical solution can be rewritten as

>\ a(O) _[Ty1] [Ted([[Ri1] [Rizl][[Y11] [Yi2l] (€1
{X(O}‘{q(z)}‘[[m [TZZ]H[RH] [RZZ]H 0 [Yzz]]{CZ} (3.70)

Let [K({)] = [T][R({)], equation (3.70) can be simplified as

a({) K11 c-ﬂ cpl {c}
{q@} (K1) l (c2) (3.71)
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According to previous literature (Wolf, 2003), the following equations have to be satisfied
to attain the solution, where [P,] = [A], [A][R1] — [R{][A] — 2[R1] = [P1] + [M], [A][R] —
[Rn1[A] = 2m[R,,] = [Py] + [C,], Written as

m-—1
[Cn] = MI[Rp—1]+ > [R;][Pm-)] (3.72)

j=1

The scaling centre at ¢ = 0 should be finite for the bounded domain, hence, the constant

{c,} must be equal to zero. The remaining equation is written as

{a(D)} = [ADNes} = [Kq1]{Hed (3.73)
{a(D} = [Q(D{er} = [Ka11T e} (3.74)

Solving equations (3.73) and (3.74), the constant can be eliminated by dividing {a({)} by
{q(D}

{CI(E)} _ [Q(f_)]{cﬂ _ [Kp11{cq}
@@} [ADNc}  [Kil{edd

(3.75)
Let [H())] = [Q(DIA(D]™! = [K1][K;11]71, equation (3.75) can be are simplified as,

{a(D} = [HDHa)} (3.76)

At the outer boundary where ¢ = 1, the entire solution is unknown. However, the particular
solution of the nodal force is known. The complete solution is denoted by the subscript cs and

the particular solution is denoted by subscript ps.

The entire complete solution is now represented as,

{a(Des} = [H(Desl{a(Des} 3.77)

And the particular solution is written as

{aDps} = [HDpsl{alps} (3.78)
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To solve the unknown at { = 1 where different subdomain intersects, the particular solution

can be removed from the complete solution.

{aDest = {aDps} = [HDeslaDes} = [Hps[{alO)ps} (3.79)

3.4.2 Unbounded domain

This section presents the brief solution procedure for the unbounded domain with more detailed
derivations shown in Appendix L. The Scaled Boundary coordinates of the virtual circular

cylinder can be expressed as

x,(n) = b cos (%)

(3.80)
ya(m) = b - sin (%)

Parameter b is the radius of the cylinder. The equation (3.43) can be simplified by
substituting equation (3.52), so that the SBFE equation can be represented in a Bessel form of

a partial differential equation.

PaDl gz + HalD}g — Eg ' Ex{a(D} + {Ha(D} =0 (3.81)

On the boundary at infinity I'y,, the Sommerfeld radiation condition must be satisfied, where
the scattered waves vanish and only the propagating waves are left. The solution can be found
by taking Hrj({_)Tj as the base solution, where the Hankel function of the first kind shows that
the wave is moving continually away from the point source, where r = 0. This will automatically
satisfy the boundary condition at infinity. This is illustrated by the equation (3.82) (Abramowitz

and Stegun, 1964), when r — oo, the Hankel term will slowly diminish:

HD (kr)~ 2 (k-2 ) (3.82)
J kr

The vectors of the scattered wave velocity potential values a,({) can be expressed in the

series form.
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m

a§@ = ) GHy(OT; = THEC (3.83)

Jj=1

The term T; represents the vector with the rank m, which corresponds to the number of nodes
on the virtual cylinder. The term ¢; also represents the coefficient with rank m and H,.;(¢) is the

Hankel function of the first kind, shown as a diagonal matrix. These can be written as

T = [Ty, Ty oo, Tl (3.84)
H({) = diag[H,, (D), Hy, (), ..., Hy, (D] (3.85)
C=[C,Cy...,Cpp]T (3.86)

The solution to the scattered velocity potential for the unbounded domain can be written as

a$@ = ) (B5'Ey = 11Ty Hyy (D) = 0 (3.87)
=1

For equation (3.87) to be valid, for any arbitrary term c]-Hr]-((_), (Eo‘lE2 — erI)Tj must be
zero. Hence, to solve the quadratic eigenproblem, the term 4; is introduced as the eigenvalues

of Eq'E,. Vector rj = \//1—] is obtained. The term T; shows the eigenvectors of Eg 'E,.

Using equation (3.83) and the orthogonal properties of E;I = 0 to solve for equation (3.38)

{q(kb)} = Eokbz ciHy (kb)'Tj = — f [NGD]T[N(]dn 75 = (3.88)
j=1 K

3.4.3  Assembly of subdomains

The individual solution process to obtain the nodal potential is illustrated for both the bounded
(3.79) and unbounded domain (3.88). Each of these subdomains are defined by the individual
scaling centre. The subdomains need to be assembled to apply the boundary conditions to
achieve the solution for the entire wave field. The steps required to assemble the subdomains

to obtain the overall solution are shown below (Appendix M), where the starting point is from
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the relationship of the nodal potential {a({)} and the nodal flow function {q({)}, where
{a(O} = [H()]{q()}. A detailed step by step procedure is now presented so that other users

can apply this method to solve for other cases that involve several subdomains.
Step 1: Assembly of the bounded subdomains

First, the bounded domains are assembled. [H ({)?] for individual subdomains are obtained and
assembled, satisfying the boundary conditions where the tangential velocity potential is equal
to the adjacent nodal potential whereas the normal velocity potential is opposite in direction but

equal in magnitude to the adjacent nodal flow.

Each bounded subdomain can be represented as in equation (3.76), where the superscript b

denotes the bounded domain.

{a(D"} = [HD"Ha(D)"} (3.89)

Satisfying the relationship of the incident, scattered and total velocity potential in equation

(3.3), the entire bounded domain can be rewritten as

{aDr}+{aDs} = [HD 1({a (D7} + {a(D3)) (3.90)
Step 2: Assembly of the bounded domain with the unbounded domain

The nodal flow between the bounded and the unbounded domains is also equal but opposite in
direction, on the virtual circular cylinder. At the interface of the velocity boundary I, the value

of the velocity potential is prescribed ,,, as shown in equation (3.32).

To combine the bounded and unbounded domain, the boundary condition at I, , where

$jn = —Paajn has to be satisfied. The flow condition on the unbounded domain is described

as [H()*{a({)?} = —{q({)Z}. The superscript oo denotes the unbounded domain.

[H()*1{a(D$} + [HO"HaD)i"} = —{q(D$} + [H(O " HalDr} (3.91)

To obtain the total {a({)7}, the first and second terms [H({)*]{a({)¥} and
[H()*{a({)s} are summed up as in equation (3.3), giving rise to

[H(O*Ha(D7} = —{a(DF} + [H()*{a(Di’} (3.92)
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It is also known that {g({)¥} = {q()*} + {q({)Z} and rearranging results in {q({)¥} =
{q(OF} — {q()$}. Substituting this into equation (3.94) yields,

[H* a7} = —{a )7} +{q( D} + [H*Ha())r} (3.93)
On the virtual boundary, the nodal potential from both domains are equal, {a({)¥} =
{a®H)
[H(O*NaDr} = —{a(DF} + (gD} + [HD*H{a(DF (3.94)

Rearranging equation (3.96) yields,

[H(D*{a(D?} +{a( D7} = {g(DF} + [HD*{aDi} (3.95)

Again, on the virtual cylinder, there is a relationship for the nodal flow between these two

domains, where it is equal in magnitude but opposite in direction, {q({)¥} = —{q({)%}

[HO*“a D} - {a D} = gD} + [HO*Ha(Di}
[H(O*HaD?} = [HO a2} = (D} + [HO*HaDi} (3.96)
(HO™1 = [HO"D{a D} = (a7} + [HO*Ha (i}

Now, {a({){°} can be calculated using the incident velocity potential equation, and {q({){°}
is calculated using the relationship of the normal flow at the boundary. Both [H({)*] and
[H({)?] can be calculated using the coefficients. Hence, {a(f)?} can be calculated using linear

algebra, hereafter the nodal potential at the virtual cylinder can be found.
Step 3: Solve for velocity potential in the whole domain

{a(f_)lT’} is placed back into each individual subdomain to calculate the constant {c,} in both
bounded and unbounded domain at { =1, using the equation (3.73), where a({) =
K;1({){%Y,,({)cy.The solution for the whole bounded domain can then be calculated. The
scattered velocity potential can be calculated from a3(¢) = i1 ¢iHy;({)T; . Hence, the

solution of the entire wave domain can be obtained.
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3.5 Results and discussion

Before conducting the simulation, the parameters of the wave properties are given as input data

as recommended in Appendix D. The results and discussion comprises several parts,

a) Validating the codes of the 2D SBFEM with the analytical solution for simple
geometries
- Vertical circular cylinder
- Vertical square cylinder
b) 2D SBFEM results for a vertical octagonal cylinder
- Convergence analysis

- Wave forces on the structure with varying wave number

3.5.1 Validating SBFEM results with simple geometries

The SBFEM is first tested to see if the codes can be used to solve the wave diffraction around
vertical cylinders with simple geometries. The validation is done by comparing the present
SBFEM solution with previously published results of Zhu (1993). Figure 3.8 and Figure 3.9 are
nondimensional wave elevation around the cylinder, which is obtained using 8 elements in each
quarter, with 65 nodes discretising the entire boundary of the circular cylinder. The graphs are

plotted with different ky and ky on the cylinder with a radius of 1.0 m and the total incident wave

number of k = v2m~! and k = /5 m™~? respectively. The different ks and ky values show the
effect of the short crested wave on the changes of the wave elevation around the circular
cylinder. The results agree very well with the semi-analytical results whereby the solution is
obtained using the perturbation series. It is interesting to see that the SBFEM provides a solution
that agrees well with the previous studies. In order to compute the wave elevation around a
circular cylinder, 3 elements in each quarter were used and could show convergence with the
model. These two graphs demonstrate that the SBFE approach is able to solve the wave

diffraction problem around a circular cylinder.
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Figure 3.8 Wave elevation validation of a cylinder with total incident wave number k=+/2
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Figure 3.9 Wave elevation validation of a cylinder with total incident wave number k = v/5
with radius 1.0
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Further validation is carried out to evaluate the wave forces on a square cylinder. The

numerical calculation of forces induced by short crested waves on a vertical square cylinder is
shown in Figure 3.10 (Zhu and Moule, 1994).

o, xforce_ZHU(1994)
: yforce_ZHU[1854)
— totalforce_ZHU[1994)

Fiipgadh tanhikh/{kh))

, ___ SBFEM_fx
2T N ---- SBFEM_fy
J - --- SBFEM_Ft
1 -
0 —tg t Y
0 10 20 30 10 50 60 70 80 90

Meident Angle {7}

Figure 3.10 Nondimensional force on a square cylinder (kx= 1 ky=0)

Again, the SBFEM uses substructuring where the domain is divided into bounded
subdomains with scaling centres placed at the sharp corners of the square cross section, and an
unbounded domain of a virtual circular cylinder enveloping the original structure. From Figure
3.10, it can be seen that the forces on the square cylinder at different angles obtained from the
present SBFEM model agree well with the BEM solutions provided previously by Zhu and

Moule. The wave properties used in this model are kx = 1 and ky = 0.

3.5.2  Wave diffraction around an octagonal monopile

The SBFEM is then applied to study wave interaction with an octagonal cylinder. The
numerical calculations are only an approximation according to the degree of discretization on
the boundaries. Hence, as accuracy is important, the wave diffraction is examined by
progressively repeating the procedure by increasing the number of elements used for calculation.
In this study, the convergence test was carried out to examine the number of elements needed

to obtain acceptable results.

Figure 3.6 shows an example of the nodal points used. The scaling centres used are the same

irrespective to the number of elements per subdomain. The elements shown in Figure 3.11 and
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Table 3.1 represents elements used per subdomain to calculate the velocity potential and the
nondimensional wave run-up |1|/A,. Wave run-ups are presented at 8 different points on the

structure, at point

(a,0), (a cos (%) ,asin (g)) ,(0,a), (a cos (%T) ,a sin (%)),

(—a,0), (a cos (5m/4),a sin (57/4)),(0,—a) and (a cos (77/4), a sin (77 /4))
represented by

|ﬁ1|' |ﬁ2|' |ﬁ3|' |ﬁ4|' IﬁSli |ﬁ6|i |ﬁ7| and |r,]8| respeCtiver'
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Figure 3.11 Convergence test of wave run-up for ka=1

In Table 3.1, each Side represents the number of quadratic line elements used at the interface
I, between each of the bounded subdomains and Circle represents the number of quadratic line
elements used on the virtual cylinder interfaces, between a section of the bounded subdomain

and the unbounded domain that is adjacent to it.
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Table 3.1 Convergence test of horizontal forces for ka=1

Side Circle |P,|
1 1 1.2715
1 2 1.3482
2 4 1.3571
3 6 1.3634
4 8 1.3672

By increasing the number of elements used in the computation, a clear convergence is
obtained for both the wave run-up and the nondimensional forces in the x direction, represented
by |Px |. Results are taken for ka=1.0. By increasing the discretisation from 1 Side element and
2 Circle elements to 2 Side elements and 4 Circle elements, the percentage error on |Px |
converges to less than 0.8% as compared to a finer mesh. A percentage difference of less than
1% is considered acceptable for this particular convergence test. The model is discretised
further only to reveal a discrepancy of less than 0.3%. From the results, it is seen that the wave
run-up also converges with just a few elements used. Table 3.1 shows the total nondimensional
horizontal force in the x-axis |Px|=|Fx|/pgda2tanh(kh). It is shown that convergence is achieved

when more elements are used.

3.5.3  Comparison between cylindrical structures with different cross sections

The SBFEM model has been applied for wave diffraction around cylinders with a circular and
a square cross section. For the comparison of wave induced force on different cross sectional
cylinders, the results obtained are compared with the wave forces on a circular cylinder
calculated using SBFEM which has been validated analytically (Tao et al., 2007) and the wave
forces on a square cylinder calculated using SBFEM which has been validated numerically with
the BEM (Song and Tao, 2008). These nondimensional forces are computed using the present
SBFEM models and are compared in Figure 3.13. For a circular cylinder, 4 elements are used
to plot the curve; for a square cylinder, 1 Side element and 2 Circle elements are used; and for
an octagonal cylinder, 2 Side elements and 4 Circle elements are used. The wave induced load

on the circular cylinder is seen to be in good agreement with the analytical solution.
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Cross sections having the same value of a are compared as shown in Figure 3.12. This is to
ensure that the comparison from the x and y axes are compatible. All comparisons for wave run-
ups and diffraction forces for different structure configurations are made on the same projected

characteristic length.

Figure 3.12 Comparison of wave diffraction around cylinders of different cross sections

The total horizontal force exerted on the different cross section cylinders is calculated and
nondimensionalised. In Figure 3.13, the octagonal shaped cylinder clearly shows a reduction of

nondimensional force compared to the square cylinder at low ka.
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Figure 3.13 Nondimensional horizontal forces on cylinders

For the nondimensional wave forces at low ka/7z values between 0 and 0.25, the maximum
wave induced forces are on the square cylinder in the x direction, followed by the octagonal
cylinder and circular cylinder. However, it is seen that the force difference in the low ka region

is negligible for the octagonal and circular cylinder. For ka/ 7z values at about 0.25 to 1.0, the
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square cross section cylinder however, shows slightly less induced force. The methodology and

results of this section has been published (Lim and Tao, 2013).

3.6 Wave-structure-soil model

A coupled monopile interaction due to soil-structure and wave-structure are investigated by
applying the present SBFEM in this chapter. This second section, which is a case study, is
related to the structure deformation. It shows that the hydrodynamic forces calculated using the
SBFEM can be applied to the monopile where the foundation penetrates into the ground and
the structure extends above the water level. The soil stiffness and material properties of the
structure are also taken into account. Convergence analysis is used to further verify the outcome.
Since the circular, square and octagonal wave forces are calculated earlier, they are applied as
horizontal forces on monopiles of different cross sections. The wind force is also applied to
simulate a more realistic situation. The flow chart to obtain the total pile deflection is shown in
Figure 3.14.

| | I
Input data | Process I Output data | Pile deflection
. ] E
Environmental cgndmon | SBFEM : - Scattered velocity |
- Wave properties > potential -
- Concentrated wind fOI'Cé! | - Total velocity potential I Abaqus results (FEM)
| | - Force on structure |
Structure (M ie) [ | I Validation :
ucture (Vonopiie [ Abaqus | ' - Cantilever beam calculation
- PhYSi?al dimensions : 1 : » - Mesh of structure : o BEAM method
- Material properties I ! | - SHELL method
| Insiu | i
Soil type i111easm‘ements| » - Spring stiffness for |
i (p-y curve) | layered soil |
I -

Figure 3.14 Flow chart of wave-structure-soil model

The input data in this case study includes the environmental conditions such as wave
properties, and concentrated wind force. The physical dimensions and the material properties
of the monopile are also considered. For the portion of monopile that is immersed in the soil,
the in situ measurements of the soil are used to model this part. By using the SBFEM to calculate
the wave diffraction around the pile, the scattered velocity potential can be evaluated, allowing

calculation of the total velocity potential and the forces incurred on the structure. In order to
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model the structure deflection, the monopile is modelled in Abaqus, the meshing process and
finite element calculations allowed the pile deflection to be determined. Spring stiffness is used
to model the soil portion, which is holding the monopile in position.

3.6.1 Case study

The new case study is shown in Figure 3.15 with different forces applied on the monopile, both
in the plan view and in elevation. The octagonal monopile acts as a support for a wind turbine,
supporting the tower and the hub. The 3.6 MW capacity wind turbine foundation modelled here
has a diameter of 6.3 m, with a water depth of 25 m and the section penetrating the soil below
the seabed is 28.5 m. At the top of the pile, a concentrated wind load is applied, followed by a
hydrodynamic plane wave load on the structure that was calculated in the previous section. The
part under the seabed is held together using springs that represents soil stiffness. Three different
cross section monopiles have been used, the typical circular cross section, the innovative design
of the octagonal monopile, and a square cross section for comparison. The top figure shows the
plane view, which consist of the monopile and virtual cylinder surrounding it. It also illustrates
that the monopile is subjected to concentrated wind force at the top pile, hydrodynamic wave
loads at the section in the water and a series of uncoupled springs has been used to model the
soil stiffness holding the monopile. Each subsection will be treated separately.

For the structure part of the monopile, a hollow octagonal cylindrical thick walled pile is
used. Thickness of the plates is 104 mm, with a total vertical length of 57 m. The material is
assumed to behave perfectly elastically, with a Young’s modulus of E = 205 GPa and a Poisson
ratio of v = 0.3. The monopile is treated as an elastic beam with linear elasticity. The bottom of

the pile is assumed to be fixed.
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Figure 3.15 Plan view and elevation view of loading on an offshore monopile

The top pile concentrated load is applied by constraining the surrounding geometry of the
cross section to a centre point. Two forces are applied here, where the horizontal force in the x
direction represents the wind force and the vertical force in the z direction takes into account

the weight of the tower and the turbine.

The stiffness of the soil is a major factor in evaluating the pile deflection. Lateral loading by
soil on the pile is very important. There are several ways to model the soil stiffness. The Winkler
approach models the soil as a series of uncoupled springs (Barltrop and Adams, 1991). Each
spring is assumed to be linear. Another method that is commonly used for design of monopiles
is the p-y method that is also used to evaluate offshore foundations. The curves for different
soil types are semi-empirical. Standards such as APl RP2A can be used to calculate the p-y
curve for different soil types (API, 2000). In the p-y method, each layered spring is treated as
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non-linear. Value p is the lateral resistance (KN/m2) and y is the deflection of the pile (m).
Several numerical modelling approaches have also been carried out using the finite element and
boundary element method to analyse the lateral loading on the pile. A typical p-y curve is shown
in Figure 3.16. The curve shows that the soil starts off by having a linear behaviour. The middle
section shows the transition from linear to non-linear behaviour of the soil, when it reaches a

certain limit, the soil will fail.

A stiff clay soil type is used for calculations in this case study. The p-y curve for each layer
of soil was obtained from the interim report (RCID, 2010b), based on evaluations provided by
SEtech, which provides in-situ results that take into account the non-linearity of soil. This case
study looks at the lateral loading on the pile. It is assumed that a rigid rock is under the pile and
ignores any possible vertical radiation. The p value on the seabed and the non-homogeneity of
soil causes the increase in Young’s modulus E as a function of depth. The spring stiffness can

be calculated using the gradient of the p-y curve.

A typical example is shown in Figure 3.15. It is assumed that the soil pressure is distributed
evenly round the pile. For other soil types, p-y curves can be constructed using stress-strain data
from experimental soil samples. Using iterative procedures, a compatible set of load-deflection

values for the pile-soil system can be developed (El-Reddy, 2012).
[
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Figure 3.16 Typical p-y curve

The hydrodynamic aspects of this model have been presented in section 2.5. The structural

analysis is carried out using Abaqus software and a numerical calculation is carried out using
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the free body diagram by assuming the pile acts as a cantilevered beam. The main output of
interest is the extent of pile deflection when the calculated loadings are applied to it. A different
number of springs are used to model the changes of soil stiffness as it penetrates deeper into the
ground. The results are all plotted in a nondimensionalised form for easy comparison between
structures of different cross section. Different mesh sizes are tested to find the best
representation of accurate stress-strain contours when the pile deflects. Monopiles of different

cross-sections are compared to examine their structural performance.

3.6.2 Results and discussion

The SBFEM can generate accurate and reliable results for problems such as wave diffraction.
In this case, wave loading is calculated using the SBFEM as discussed in detail in the previous
section. Figure 3.17 shows that deflection converges as more layers of springs are applied. Each
spring represents a layer of soil, providing the stiffness to hold the pile in place. Several layers
of soil stiffness are used until the maximum top deflection converges. It can be seen that top
deflection converges when 4 layers of different soil stiffness are modelled.

By obtaining this optimum number of soil layers, Figure 3.17 shows a comparison of
monopile deflection with different cross sectional profiles. In each case, 4 different springs
representing soil stiffness are applied during analysis. The typical circular cross section cylinder
and the suggested octagonal monopile is considered. A square cross section monopile is also

calculated for comparison.

In Figure 3.17, it is seen that the pile with the octagonal cross section starts to deflect at the
same height of about 28.5m. In this second case study, the SBFEM is able to generate input
data for the preliminary design of a wind turbine monopile.
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Figure 3.17 Change in pile deflection when a different number of springs are applied

Comparing the octagonal pile with the circular pile, the starting point of deflection does not
vary much, whereas the square pile starts to deflect at a lower point in the soil. In Figure 3.18,
it is seen that the square cross section pile will have the highest loading and deflect the most,
followed by the octagonal pile and then the circular pile. Using the existing SBFEM, the soil-
structure interaction can be carried out, but is not covered within the scope of this thesis. A full
wave-soil-structure interaction can then be developed, where this method would be able to
combine a hydrodynamic and a geotechnical engineering problem using the SBFEM. This
methodology and results are published (Lim and Tao, 2014).
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Figure 3.18 Deflection of a pile with different cross section

The overall monopile deflection obtained is compared with results obtained using analytical
calculations for validation (Table 3.2), where the overall pile deflection is calculated. To
investigate the structural behaviour, the free body diagram is drawn for easier understanding
and calculations. The monopile is treated as a cantilever beam, tapering from the bottom layer
of the seabed to the free end supporting the tower and wind turbine. Only the lateral forces and
effects are accounted for. The overall forces can be divided into different parts during the
calculations and the individual parts are superimposed to obtain the forces imposed on the
structure. The soil part is divided into several layers to account for the different stiffness of the
soil with depth below the seabed. Uniform distributed pressure is assumed for each layer. The
hydrodynamic force applied is distributed along the monopile and exponentially decreasing
from the free surface while the wind force is applied as a point load. The overall loading applied
on the pile is evaluated by superimposing individual loads, and the free body diagram is shown
in Figure 3.19.
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Figure 3.19 Free body diagram of forces on a pile

The shear force and bending moment diagrams are illustrated in Figure 3.20. For a reliable
structural design, structures should be able to withstand the external forces, in both shear and
moment, which occur after forces are applied to it. This should be below the structure allowance,
which is the maximum shear and moment that the structure can withstand. Formulations of the

detailed calculations can be found in Appendix F: Beam equations (Dupen, 2012).
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Figure 3.20 Shear loading and bending moment curves

To calculate the maximum deflection of the monopile using the analytical method, values of
respective Young’s Modulus and area moment of inertia are required (Table 3.3). The method
of superposition is used, with the assumptions where the beam is elastic in both cases of
combined loading and also when individual loading is imposed. The overall pile deflection is a

summation of individual deflections when individual loading is applied.

Table 3.2 Comparison of pile deflection under loading

Cross section Circular Square Octagonal
Area (mm~2) 2010624 2560000 2119680
Moment of Inertia (mm~4) 1.02969E+13 | 1.74805E+13 | 1.15372E+13

E

3 Analytical (Cantilever beam) 389 595 476

s

5]

9

"g Abaqus (Finite element analysis) 365 550 438
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As compared to the results calculated from the report by SEtech using the beam model and
Research Centre for Innovation and Design (RCID) using the shell model for the polygonal pile,
the deflection is 430 mm and 445 mm respectively. From the results obtained from Abaqus, the
percentage difference from the SEtech is 3.9% and RCID is 0.5%. It is seen that the analytical
cantilever beam calculations over predict the pile deflection by approximately 6.5% compared
to the finite element analysis. Nevertheless, the analytical solution in Appendix N applying the

beam theory can be used as a good preliminary design.

3.7 Summary

Chapter 3 provides an overview of previous research of the SBFEM in offshore hydrodynamics.
The SBFEM is further extended to solve wave diffraction around an octagonal monopile,
proposed as a novel solution for the support of offshore wind turbines. This particular shape of
monopile is chosen due to the advantages in manufacturing compared to the traditional
cylindrical monopile of circular cross section, where the manufacturing cost and time are lower.
A detailed derivation of the model from the governing equations and the boundary conditions

to the solution process is presented here and in the appendices.

The SBFEM is further applied and combined with FEM to solve for the overall loading from
wind, wave and soil on a monopole. These forces are imposed on the structure and the overall
deflection of the pile is investigated. The soil properties are investigated and a convergence
analysis is carried out to decide the optimum number of layers for the soil interaction
calculations. The deflection is calculated using Abaqus (finite element analysis), and compared
using the analytical cantilever beam method and also the results from the BEAM method and
SHELL method from the published project report. This method can be used to carry out a good
preliminary design, where the loading on the pile from waves can be calculated accurately and

efficiently.
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Chapter 4

Methodology development of 3D SBFEM

4.1 Background

Mathematical derivations for the SBFEM have been developed since 1997 (Song and Wolf,
1997) and the two-dimensional approach has been applied on marine hydrodynamics since 2005
(Li et al., 2005a). Further applications were developed in Chapter 3 in order to calculate the
wave diffraction around an octagonal vertical monopile supporting offshore wind turbines and
to evaluate the structural deflection of the pile using the calculated wave forces. This chapter
describes the detailed development of 3D SBFEM for hydrodynamic analysis of offshore

structures.

To date, the SBFEM has been used to solve the two-dimensional wave diffraction around a
large cylinder with the uniform cross section. The characteristics where this SBFEM reduces
the spatial dimension by one will allow the three-dimensional solution to reduce the
discretisation of the domain so that it is effectively two-dimensional. 3D SBFEM has been
attempted successfully for soil-structure integration (Birk et al., 2012), and for the structural
analysis of monopile deflection in the study of wave diffraction around a monopile (Li et al.,
2013a; Li et al., 2013b). However, the three-dimensional development of SBFEM in terms of
wave diffraction has not previously been done. Figure 4.1 illustrates the steps taken to obtain

the general function in a Scaled Boundary coordinate system.

The solution of the wave diffraction problem around offshore structures can be obtained
using both analytical and numerical methods. An approximated solution to the BVP that
satisfies the governing equations and boundary conditions can be obtained by discretising the
entire domain using elements. One key aspect to consider when solving for the properties in the
domain is to decide if the problem can be solved easily without giving rise to irregular data,
singularity or overflow of data. One approach is to solve the domain as a whole and another is
to separate the entire domain into smaller subdomains and treat them separately before

assembling them together.
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Approximate Weighted
Model problem |guud  numerical residual
solution formulation
Introduce
| | Governing || . | | prescribed
equation Shape function boundary
condition
* Generalised
| | Boundary || Weighted || weighted
conditions residual function residual
formulation
Domains — inner
' and outer
subdomains

Figure 4.1 Outline of approaches used to derive the SBFEM

The numerical solution is an approximation, and the aim is to minimise the error or set the
overall solution of the whole domain to have a zero error. The shape function is introduced to
model the problem in a local coordinate system. Only the surface boundary is discretised in the
circumferential and vertical direction. The radial direction is separated and solved analytically.
The domain method is chosen here, where the approximate solution on the boundaries are
satisfied (Wolf, 2003). These nodal approximations weaken the governing equation and lead to
a residual function. Utilising the weighted residual function, these residual errors are forced to
zero when multiplied with the weighting function and integrated along the whole domain and

boundary.

When the weighted function is included, integration by parts is carried out, resulting in only
the first order differentiation for the approximate potential. However, this process requires the
weighted function to be differentiated. This reduction of order on the potential changes the
strong form of governing equation to a weak form. Introducing the prescribed boundary values

results in the generalised weighted residual formulation.

The mathematical formulation and detailed derivation for the 3D wave diffraction problem
to obtain the general equation in the Scaled Boundary coordinate system are demonstrated.
Then, the solution process for the BVP is presented. A general approach of deriving the 3D
SBFEM is shown in Figure 4.1.
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4.2 Three-dimensional boundary value problem

Three-dimensional wave diffraction around a simple circular cylinder is considered so that
validations that are readily available can be used (Figure 4.2). A monochromatic short crested
wave approaches a circular cylinder that is fixed at the seabed and truncated, piercing the free

surface of the water.
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Figure 4.2 Three-dimensional model problem

The wave pattern deforms when it interacts with a large object. Suggested physical
parameters for the wave diffraction phenomena are shown in Table 4.1 below, and further
detailed explanations are found in Appendix D. The case study can be represented in a

mathematical form to analyse the wave-structure interaction.
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Table 4.1 Parameters for wave diffraction

Wave number Wave length Diameter D/L
(k) (L) (D) (>0.2)

V2/2 8.89 2 0.23

1 6.29 2 0.32

V2 4.44 2 0.45

2 3.14 2 0.64

3 2.09 2 0.95

4 1.57 2 1.27

5 1.26 2 1.59

4.2.1 Governing equation and boundary conditions

By assuming an ideal fluid, fluid motion is expressed using a velocity potential. This governing

equation in three-dimensional potential flow satisfies the Laplace Equation.

Vip(x,y,z) =0 4.1)

To account for the three-dimensional fluid properties, the Helmholtz equation is no longer
applicable. The mathematical explanation and justification are in Appendix A. Considering this
third dimensional property using the SBFEM for analysis is essential for a much broader
application of the method in marine hydrodynamics, where floating structures can be evaluated.
The main goal of this work is to provide a foundation for the 3D SBFEM, so that future
expansion and research of this methodology can proceed more readily. Boundary conditions

similar to those used in Chapter 3 are extended and applied in a three-dimensional form:

(a) Linear free surface boundary condition at z = 0 on I}

0p(x,y,2)  w?
%, = ?qh(x, y,7) (4.2)

(b) Bottom seabed boundary conditionat z = —h on I,

0p(x,y,2) _
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(c) Body boundary condition on 1},

0p(x,y,z) _ _
“on (44)

(d) Sommerfeld’s boundary condition at x = 00 0On I,

lim r

T—00

<—0¢(3(;,ry, 2 _ ikp(x,y, Z)) =0 (4.5)

The linear free surface boundary condition considered here is related to the wave number
using the dispersion relationship, where w? = gk tanh(kh). In the two-dimensional analysis,
the cylinder is assumed to be immersed in deep water where the h value is large, the equation

is thus reduced to w? = gk.

This free surface boundary condition is derived from the Bernoulli equation, where the
pressure is considered to be a constant. The seabed boundary condition considers that the seabed
is even at a water depth of — h and it is assumed that there is no fluid flow going into the seabed
and vice versa. The impermeable body boundary condition is applied where the sum of the
normal outward flow of fluid on the body and the inward flow equals zero and fluid does not
penetrate through the body. For the circular cylinder case, the normal velocity potential to the
surface of the body is the derivative of the velocity potential around the radius of the cylinder.
Lastly, Sommerfeld’s boundary condition states that the radiation at the far end of infinity must

be equal to zero (Appendix B).

4.3 Three-dimensional SBFE methodology development
4.3.1  Weighted residual function

Error occurs in numerical calculations due to approximation, but this error can be made small
over the domain and on the boundary using various numerical techniques (Reddy, 1989). The
errors can be distributed in a certain manner, which produces different types of approximate
methods. In this case, the errors or residuals are multiplied by a certain function, called the
weighting function, and integration of this over the domain and the boundary will be forced to
zero. A general equation is generated using the weighted residual function before the BVP can
be solved. For the present 3D wave diffraction problem, the error of the whole solution is set to
zero by multiplying the residual error with a selected weighted residual function and integrated

78



Chapter 4 Methodology development of 3D SBFEM

anticlockwise around the domain. A detailed step by step derivation of this can be found in
Appendix Q. Only the main equations showing the process are presented here. The steps used

are:

a) Expand the unknown solution, for this case, the velocity potential, using a set of shape functions
together with the parameter of interest. This approximation is known as the trial solution.

b) This trial solution needs to satisfy both the governing equation and the boundary conditions.

¢) Theresidual function is defined first using the governing equation before including the boundary
conditions.

d) The weighted residual function is set to zero and by substitution of the appropriate boundary
conditions, the overall equation can be solved.

e) The solution is then examined by increasing the elements by constructing continuous
approximations used to discretise the boundary, and can be achieved through convergence

analysis.

The residual function of the Laplace equation is represented as R(x, y, z) and can be written

as

V2p(x,y,2z) = R(x,y,2) (4.6)
This residual function of the governing Laplace equation is multiplied with the weighted

function, and integrated around the whole domain and set to zero. Note that the weighted

function here is in three dimensions.
jR(x, y,z) .w(x,y,z)dxdydz = 0 @4.7)
a )

Applying integration by parts, the residual formula can be further represented as

j j jg(w Prx ) dxdydz — f J JQW'x ¢, dxdydz
* f J JQ(W Bry )y dxdydz = J J fQW'y ¢,y dxdydz 4.8)

[ [ et [ [ [epiivi-o
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Further derivation using the divergence theorem or Gauss’s theorem is carried out, where
the gradient of the function (w ¢, ), (w b,y ), and (w ¢,, ) in three-dimensional space going
through volume integration is equal to the surface integral over the boundary of the volume
(Spiegel, 1999). Integrating across the whole domain, the residual function can be rewritten and

rearranged using the divergence theorem [ [ [ (V. F) dxdydz = ¢f.(F.n) dr as

fffw,x¢,xdxdydz+fffw,yqb,ydxdydz-i-fffw,qu,zdxdydz
Q Q Q

4.9
—#qﬁ,nwdF:O “9
r

By including this closed form surface integration of the boundary conditions of the free

surface, the seabed and body surface, the new general residual function is expressed as

I'p

.f f f W:x ¢!x+ W!y ¢1y+ W’Z d),z dXdde _—
Q
=0

r'y

Notice that the Sommefeld’s boundary condition is not included here because this particular
boundary condition is satisfied automatically later, by choosing the Hankel function of the first
kind as the base solution. The final general weighted residual function is written in the gradient
form to be in line with the two-dimensional representation, and this simplifies the representation

for easier calculation further on

f f fVTWV¢ dxdydz — k*pw dI; — # vo,wdl, =0 (4.11)
Q Ff

I'p

4.3.2 Coordinate transformation

To solve the problem in the Scaled Boundary coordinate system, the global coordinate system
remains as the Cartesian coordinates and the local coordinates are written as Scaled Boundary
coordinates. To achieve this, the coordinate transformation is performed. The main reason to
change the coordinate system is because a typical Cartesian coordinate system has fixed axes.
However, on the boundary where conditions are to be enforced, it does not always coincide
with the axes and a more flexible coordinate system is required. The use of fixed Cartesian

coordinates results in difficulties in mapping the geometry accurately and easily. A new
80



Chapter 4 Methodology development of 3D SBFEM

coordinate system is introduced, where it is more appropriate to work in a local coordinate
system &,n,  (Figure 4.3). The axes n, { lies in the circumferential direction and top to bottom
direction respectively. & is measured from the scaling point, situated on the left of the boundary,
it is denoted as the radial coordinate. It is important to note that the solution is a semi-analytical
method, and that ¢ can be solved analytically and factored out. Secondly, this Scaled Boundary
coordinate system &,n, ¢ permits a numerical treatment in the circumferential directions n, {
based on a weighted residual technique as in the finite element method. This will transform the
partial differential equations to ordinary differential equations in the radial ¢ direction. The
coefficients of the ordinary differential equations are determined by the finite element

approximation in the circumferential directions.

A X

&N

S

Figure 4.3 Geometrical representation of both the Cartesian coordinate system and the
Scaled Boundary coordinate system

Figure 4.3 shows the position of both coordinate systems on a section of the geometry of the
cylinder. Note that the n direction can be flexible and can be discretised to smaller components
to accurately map the desired geometry. Details of this transformation can be found in Appendix
O. The transformation can be written in matrix form when changing from the global Cartesian
coordinates (%, ¥, 2) to the local Scaled Boundary coordinates (&, 7, {) using the chain function.

It is rewritten here in matrix form.

(0 [0 0V 0Z7 .9
9 9§ 0§ 95| |azx
2| _loz o9 o2|) 0 a1
on on Jdn on||dy
d ox ady dz|| o
\a¢) lac a¢ a¢l \oz
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This coordinate transformation is carried out using the Jacobian transformation, where the

Jacobian is written as

0% 0y 927
8¢ 0t 0t
9x 9y 0% (4.13)
dn 0dn 0dn
9x 09 02
[6¢ a¢ ol

JEn0] =

The Scaled Boundary coordinate can be expressed as

(0 (0
% 9

{ iA = A;(adjoing of [J(&,n,D])4 9 . (4.14)
09| det[(¢,n,0)] an
d d

\92/ a7

From Figure 4.3, the radial direction is factored out to allow analytical evaluation in this
direction. Only the surface boundary is discretised and evaluated numerically. Any coordinates

of points within the domain can be represented as

(&m0 =8x,(m,0) + %o (4.15)
Y& =y + yo (4.16)
2(&,n,0) = z,(0,0) + 2, (4.17)

The scaling centre is written as x,, yo, Zo- This scaling centre should possess the flexibility
to be positioned at a desirable location as the geometry of the structure changes. For the circular
cylinder, the scaling centre is positioned in the centre of the cylinder, whereas for structures
with sharp edges, the scaling centre could be positioned at the sharp corners to overcome the

problem of singularity. Note that the vertical axis in the original Z is independent of the ¢.

4.3.3 Mapping function

The Scaled Boundary coordinates can be interpolated using the shape function for further
approximation. To solve for hydrodynamic properties such as the wave elevation, pressure

distribution and wave forces on the structure, the velocity potential has to be evaluated. The
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Rayleigh-Ritz method can be used to assume that the approximate solution of the velocity

potential is in the form of a series, where

n

b~ (1.0 = ) N Ol ()

i=1

(4.18)

A two-dimensional eight noded surface shape function is used to map the domain (Appendix

P). The surface shape function can be defined as in Figure 4.4.

AS

3! 7, !

- 2I
‘3 \\521
- :
"41 51 (EO
. ! 1:\.(=_1
_ =0 .

Figure 4.4 Eight-node surface finite element
The nodal interpolation can be approximated and simplified as

(& n.0) =[N, D{a(é)} (4.19)

The velocity potential for each node can be written as

{a(©)} = {a1() a2(§) az(§) as(§) as(§) as(§) as(§) ag(O} (4.20)

and a linear shape function as

[N(m,{)]
= [N1(1,{) N.(n,{) N3(1,0) Ny(m,$) Ns(n,{) Ne(n,0) N;(m,¢) Ng(n,{)] (4.21)

Each node is represented as,

1 1
Ny ==(1-1n)1—-¢) —5(Ng+Ns)
4 2 (4.22)

Ny =5 (1401 =) =5 (N5 + Ny)
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1 1
N; =Z(1 +)A+ —E(Ne + N7)

Ni=5(1 =) +) =5 (N; + Ny)

Ns==(1-12)(1—{)

T2
Ne=>(1+n)1—¢?)

Ny ==(1-12)(1+{)

T2

Ng=>(1—n)(—¢?)

Using the same nodal interpolation, the coordinates of individual nodes on the boundary can be

approximated by substituting into equations (4.15 - 4.17) and written as

(&m0 =Exp(m,0) +x9 = E[N(m, OI{x} + % (4.23)
YEM =&y, 0) +yo = EINM, DI} + yo (4.24)
ZA(E' n, () =Zp (77, () + Zy = [N(T" ()]{Z} + Zgy (425)

These equations are differentiated and substituted into the overall transformation. The terms
are integrated and substituted into the Jacobian. Note that the derivations are not affected by

the position of the scaling centre and can be used in general three-dimensional cases.

2= x,(n,0) = [N(m, O){x}
2= x50,y = EINM, D],yy {3 (4.26)
f,( = fxb(nl C)'{ = f[N(U:O]'( {X}

Ve=yp(m0) =[N, Dy}
P =EVp(@ Oy = EINM, D1,y (7} (4.27)
9:=Evp(M, O =EINM, D Iy}

ZA,E = 0
Zm =2y, O =[N, D],y {2} (4.28)
Ze=2,(0,{)g= [N, D),¢ {2}
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In Figure 4.4, the {x},{y}, {z} coordinates are defined from -1 to 0 to 1 in each direction and

can be written as

x}={-1 11 -1 0 1 0 -1} (4.29)
r={-1 11 -1 0 1 0 —-1}7 (4.30)
{zy={-1 -1 1.1 -1 0 1 0} (4.31)

Substituting the local nodal value (4.29 - 4.31) into the shape function, the following

relationships are obtained
55,( =0 ; y,( =0 ; ZA,n =0 (432)

Substituting (4.32) into the coordinate transformation, the Jacobian is now presented as

JEnD] =20 Im ExmOm YMDm 0 (4.33)

fif 5\115 ‘ [ x(ﬂ' () }’(77' () 0
55,( 5/\,5 0 Z(TI' ():{

The determinant is represented as
det[J(&,n, O] = £2(0, D¢ (x(0,0). (1, )= 21, Dy Y1, ) (4.34)

Detailed expansion of the "adjoint of [J(£,7,¢)]" is shown in Appendix O. Substituting

and factoring out the common factor ¢ to adjust the term to enable the analytical solution in the

radial direction yields,

5| :
% I3
aax Y By —YV'Z¢ 0 . af
— —X," Z, X"z, 0 {—— 4.35
iay? 7] S A 1 (439
9 Ym= Y Xm0 g
\33/ )
The determinant of the Jacobian can be written as
lJ| = Zy¢ (x “Vm— Xm y) (4.36)
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Using the same shape function through the Galerkin approach, the weighted function in the

differential equation relates the weighted function to the discrete problem.

w(§,n,Q) = [N, OIw ()} = w3 IN™, OI” (4.37)

4.3.4 SBFE equation

This section will describe the approach for defining the new governing equation and boundary
conditions in the Scaled Boundary coordinates. More detailed derivations can be found in
Appendix Q and S. The approximate velocity is calculated by the divergent of the velocity
potential. By separating the time function e ~**t, the velocity potential and the velocity can be

defined as

d(x,y,2,t) = Pp(x,y,z)e” ot (4.38)
vy = Vd(x,y,z)e ot (4.39)

From Appendix R, the divergence operator is rewritten as

Jd 1 d d
V= {b:(n, C)}a—f + E{bz(m ()}% + {b3(n, ()}a—( (4.40)
The simplifications are given as
1 (Y %g
{b1(m, )} = 717 %m" 2 (4.41)
T
1 (7Y%
{by(0, )} =1 X" 22 (4.42)
U,
1 0
{bs(n, O} = m{ 0 } (4.43)
X Ym— Y Xy

Substituting these into the velocity equation (4.39) yields,
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1

vs = [B1(n, OHa(§)}¢ + 7 [B2(n, O Na($)} + [Bs(n, OHHa($)} (4.44)

The simplifications are given as

[B:(m, O] = {b1(n,{}NM, ]
[B.(n, O] = {b.(n, N, D] 5 (4.45)
[Bs(m, )] = {bs(m, O}INm, D] ¢

Substituting the shape function, infinitesimal volume, infinitesimal area, and divergence
operator into the weighted residual function, the general equation (4.11) can be rewritten as

follows,

f f fn([Bl(’% DI w(@©} e [B1(n, Olal®)} ¢

r1
+ [B;(, DITw(©)} ¢ 7 [B2(n. Ol{a()}
+ [B1(, OITw(©)} ¢ [Bs(, DI{a(d)}

1
+ E [B,(1, DI {w (Y [B1(m, H{a(é)} ¢

1 1
+ 1B, OF @Y 5 B2, ONa©)}

1
+ £ [B2 (0, DI w ()} [Bs (1, e ()}
(4.46)

+ [Bs(n, DI {w (Y [B.(n, DI{a(®)} ¢
+ [Bz(n,i)]T{W(f)}T%[Bz(n, ONHal®)}

+ [Bs(n, DT {w ()} [Bs (n, C)]{a(f)}> 71§d§dndd

- f L_ w @Y NG, OTK(N @, ONa@©DE e |dedn
n

- # (W@ ING, I3y dly, = 0
Tp
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The infinitesimal area and infinitesimal volume are expressed as in Appendix E. Note that
for the free surface boundary I%, the value ¢ for the free surface is written as +1. A coefficient

matrix is introduced to simplify the equation further,

(ol = L fn (B, (n, 17 (B (n, )11l g (4.47)
[£,] = L fn [B,(n, I B (1, 11/l g (4.48)

L j [B,(n, O (B, (1, DI 1dn 4 (4.49)
(3] = L fn (B, (1, I (B3 (n, 11/l dg (4.50)
[E,] = L fn [B,(n, T [B3(n, OV 1y d (451)

L fn [B4(n, O (B3 (0, DIV 1 43 (452)
[My] = L [N (n, + DI NGy, +1)]|Jgy | (459)

By substituting the coefficients and performing integration by parts on all terms containing

{w(&)} ¢ , the formula can be rewritten as
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[Eolée{a(§e)}ew(€} + [Ex]™{a(Ee)} fw(E)}
+ [Eslée{a(€Hw (€D} — [Eol§i{a§)} elw(ED}T
— [E]"{a@@D} w(ED} — [EsléifaE)}w (€D}

WD f f (NG DT 5 e | dndg
¢n

— wEY f f (NG, O 50 |Je [ dndg
¢

¥ L WOV (~[Ea(®))¢ ~ [Eol(al©)) 8 454
BT @)} — [Eal{a()} — ElE:Ha©))

+ B + [B:] £ @©) + [E](a)

+ EETT{a(®)) ¢ + [E,]T{a(©)} + E[Es}a)

— K% [Mol{a()}) 9§ = 0

Introducing the term to represent the flow potential, subscript i represents the internal
boundary and the subscript e represents the external boundary of the domain that is discretised.
The part from the scaling point to the boundary of the cylinder where ¢; = 0 and é, = 1 is not
considered. To solve for the domain from the body of the cylinder to the infinite end from the
cylinder, the boundary can be represented as ¢; = 1 and &, = co. From this, it is seen that the
domain can be solved analytically in the radial direction by specifying the scalar between 1 <
¢ < .

{a€e)} = [Eoléela(@e)}s + [Er]{a(Se)} + [Eslée{alée)} (4.55)

{a@€D} = [Eoléifa} ¢ + [E1]{a(§D} + [Es]§i{a(§)} (4.56)

In order to satisfy the weighted residual function for all arbitrary values, the following

equations must be valid.
()} = f f @GN, 1) e |dndg (4.57)
¢Jn
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@) = | | @ING O iylands (458)
¢vn

[Eolé{a(}ee + ([Eol + [Ex]" — [Ex] + §[Es] — §[Es]D{a()}e

1
+ (—[Ez] 7+ [Bs] = [Ba] = [Eal" — £[5s] (4.59)

+ K26 [Mo]) (a(©)) = 0

This homogeneous second order partial differential equation (4.59) is termed the SBFE
equation for the 3D SBFEM. Both boundary integrals (4.57) and (4.58) have prescribed values
and can be evaluated.

4.4 Solution procedure

4.4.1  Surface discretisation

The surface interface of the solid cylinder and the wave is divided into different layers in the
vertical direction to achieve better accuracy; this is similar to using a finer mesh in the z
direction. Figure 4.5 shows a sample of the cylinder divided into three layers with three scaling

centres.

o

(x0, Yo- 21)

(x0, Y0, Z2)

(XOJyOrZQ)

Figure 4.5 Defining the scaling centre for each layer

Several different shape function can be selected, first, second or third order. Use of a higher
order shape function will lead to more accurate geometrical representation, with lesser elements
90



Chapter 4 Methodology development of 3D SBFEM

used. The mapping function [N (n, {)] can be defined in the global Cartesian coordinate system.
The shape function selected is similar to the discretisation of the FEM. For the presentation
case, an 8 noded surface shape function is used (Appendix P). At each layer, the surface is then
divided into several finite elements. Finer discretisation will allow convergence of results and
the properties at each nodal point can be evaluated. Figure 4.6 shows three sample elements
with nodal numbering which is important for the assembly process when solving for the whole

structure.

Figure 4.6 Local nodal positions of the surface elements

The Scaled Boundary coordinates on the body surface to be discretised can be expressed as

xpy(,{) = b-cos (%) (4.60)
yp(1,{) = b sin (g) (4.61)
zy(,{) =—C 2 (4.62)

4.4.2 Solving SBFE equation and boundary conditions

By choosing the Hankel function as the base solution, only the solution on the body boundary
(4.56) has to be considered since the base function now satisfies the boundary condition at
infinity (4.55) directly.

The equation and the boundary condition that needs to be satisfied is reduced to the following,
notice that only the inner boundary of the unbounded domain and the SBFEM equation needs

to be satisfied.
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[Eoléi{a(§)}e + [E1){a(§D} + [Es]§i{a(§)} =0 (4.63)

[Eolé{a(D}ee + ([Eol + [Ex]™ — [Ex] + §[Es] — §[Es]D{a(}e

+(~LEaD 4 [Ea] ~ [E4] (£ — £IE:]
2 E 3 4 4 5 (464)

+ 2 [Mo]) (a(©) = 0

The detailed unbounded 3D SBFEM solution is shown here. A quadratic general equation is
obtained as

§2Eol{a(©)} ge + E([Eol + [E1]" — [Ex] + §[E5] — [Es]){a(O)} ¢
+ (=[Ez] + §[Es] — §[E4] — §[E4]" — §?[Es] (4.65)
+ k282 [MoD{a($)} =0

From the numerical calculations, the following relationships are obtained, where

[E1].1=0 (4.66)
[Es].1=0 (4.67)
[E4].1 =0 (4.68)
[Eo]l '[Eo). 1 =1 (4.69)

Substituting equations (4.66 — 4.69) into the SBFE equation (4.65) and dividing both sides
by [E,] yields,

§2{a(®)}ee +&E{a(®)} s
+ (=[EolME,] — §2[EolMEs] + k2E%[Eo] Mo {a(§)}  (4.70)
=0

The vectors of the scattered wave velocity potential values a,(¢) can be expressed in series
form, using the Hankel function as part of the solution, by derivation in terms of &, only the

Hankel function that relates to it is affected (4.71 - 4.73). Both the T and C terms are constants.
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m

a$(©) = ) GH, () = TH, ()¢ (4.71)

Jj=1

m

(@O} = ) Gy, ()T, = TH, ()'C (@.72)

Jj=1

m

(@ = ) ¢Hy, ()T = TH, ()" (4.73)

Jj=1

In the same way as in Chapter 3, the Hankel function is selected as a base solution to
automatically satisfy the radiation condition at infinity, when the radial direction increases to
an infinite distance, the Hankel function of the first type that acts as a source radiating outwards
tends to zero. Substituting equations (4.71 — 4.73) into equation (4.70) and bringing out the
common constants, the following is achieved (Appendix T).

i (628, + £, (0"
&
¥ (1Bl Byl — £2(Fo 1 Es] (@74
+I2E2[EG] [MoDH, () ) Ty = 0
Special differentiation of the Hankel function is substituted
i (=82Hr, ) + £y 12(6) = 13y (©) + 177 Hy () = EHy r ()
=
+17Hy () (4.75)

+ (=[Eo] 7 [E2] — §*[Eo][Es]

+I2E B MoDH, () ) Ty = 0

Note that after simplification, only one variable of the Hankel function remains, which

allows the equation to be solved.
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Z(rjzl + (=[Eo) 7 [E2] = §%[Eo] 7 [Es] + k*E*[Eo] ™1 [M,]) — SZI)T]-
=1

(4.76)
’ Hrj(f)cj =0
Rearranging (4.76) yields,
D (B [Ba) + £21B6] ™ [Bs) = K2§2[Eol ™ Mol + £21) = 1721 T,
= 4.77)

) Hrj(f)cj =0

The term T represents the vector of rank m, which corresponds to the number of nodes on
the virtual cylinder. The constant C represents the coefficient up to rank m and H is the Hankel

function of the first kind, shown as a diagonal matrix. These can be written as

T = [Ty, Ty, .., Tyl (4.78)
H(¢) = diag[H, (&), Hy, (&), ..., H, (8)] (4.79)
C=1[Cy,Cy...,Cp]” (4.80)

The solution to the scattered velocity potential for the unbounded domain can be written as

as(©) =Z B + §2[Eo] ™ [Bs] + k262 [Eol ™ [Mo] + £21)
y= (4.81)

- szl)Tj “CiHR(§) =0

For arbitrary c;H,;(§), the term (([EO]‘l[EZ] + E2[E 7 Es] — k2&2[Eo] 1 [M,] + £21) —
rjzl)Tj must be zero. Hence, to solve the quadratic eigenproblem, 4; is introduced as the
eigenvalues of ([Eo]™*[E,] + &2[Eo]*[Es] — k2E2[Eo]~1[M,] + £%1). Calculating for r; =

J4;- T; , which are the eigenvectors of ([Eo]"*[E,] + €2[Eo] ™ [Es] — k2E2[Eo] " [Mo] + €2D).

Only the internal boundary of flow velocity is considered because the external boundary is

satisfied by the Hankel function.
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{a(©)} = [Eolé{a(®}e + [E1]{a(©)} + [Esléfa(®)}

- 4.82
.ff([N(n’z)]Tﬁn)ljnddT]d( 0 ( )
¢Jn

Substituting the relationships of (4.66 - 4.69) and (4.72) into equation (4.82) yields,

@) = [l Y it @' = = | | AN O Elicldnas (482)
j=1

¢y
A new symbol S is introduced to simplify the equation, with |]n¢| as the transformation of

infinitesimal area on the surface boundary of the structure with constant &, the constant C can

be identified

C=—Ha(O)T' T [E] ™Sy, (4.84)

The term 7, is the vector of nodal normal velocity of a scattered wave on the body boundary
I,, and this can be calculated using equation (4.4) and the short crested incident velocity

potential. Hence, the solution can be obtained

(@) = ) GH T = THEC = -TH(OTE]S7,()  (485)
j=1

By substituting equation (4.85) into (4.19) and (4.44), the approximate scattered velocity
potential and the velocity in the domain can be obtained. This value is used to plot the results
and to determine the physical properties such as the wave run-up, pressure and force induced
by waves on the structure. The validation of this method can be found in Chapter 5, where the

wave interacts with an offshore monopole.

4.5 Application of 3D SBFEM to a floating structure

The 3D SBFE formulations have been developed in the first section of this chapter. This section
will apply the 3D SBFE approach to solving the wave diffraction problem around a static
floating structure. The model of the floating structure is described, and new boundary

conditions are incorporated.
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45.1 Model description for a floating structure

z=-h :

Figure 4.7 Wave diffraction around a cylindrical offshore floating structure. Plan view

(top) and elevation (bottom)

Figure 4.7 shows the model of a floating offshore structure subjected to waves. The 3D SBFE
formulations are also applied to a case with a cylindrical offshore floating structure of radius b.
The aim of this is to further demonstrate the versatility of the 3D SBFEM in solving for the
wave diffraction problem. A plane wave of small amplitude is first used and propagates in the
x-direction towards the floating structure with frequency w. The fluid domain is divided into
two parts where the external domain denoted as S, is within the domainr > band —h < z <
0 whilst the internal domain denoted as S, is within the domainr < band -h <z < —-I. A
monochromatic short crested wave propagates towards the structure. The floating body on

boundary I; represents a floating body whilst the boundary I, is assumed to be an infinitely

porous body to represent a non-existent structure. Together, they form a floating cylindrical
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structure. The potential flow of both the external domain and internal domain satisfies the

governing Laplace equation.

V2¢0(X, v, Z) =0 |n SO (486)

V2¢)1(x, y, Z) - O in Sl (487)

The boundary conditions that need to be satisfied by the potential are as follow:

External domain S,

(@) Linearised free surface boundary conditionat z = 0

a )Y, 2
W - %qbo(x, y,2) =0 (4.88)

(b) Seabed boundary condition at z = —h

a()bO(xi Y Z) —

4.89
P 0 (4.89)

(c) Sommerfeld’s boundary condition at x = +oo on [,

a ) )
lim r (W —ikgy(x,y, Z)) =0 (4.90)
(d) Body boundary condition on I
0%y, 2) _ 7, (4.91)

on

(e) Porous boundary condition on I,
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a¢0(x' y' Z) —

4.92
— w (4.92)

where W represents the pressure difference across the thickness of the porous surface flow

velocity (Taylor, 1956). This flow is assumed to obey Darcy’s law.

W= Epiw(qbl ~ o) (4.93)

This parameter can be nondimensionalised by introducing the following where

_ pwy
Go =" (4.94)

Hence, the porous body boundary condition on I3, can be written as

0901, 7,
WELD) _ 6ok~ ) (4.95)

When the wall of the structure is solid, the porosity y is zero, leading to G, = 0, the increase
value of porosity y leads to the higher transparency of the walls. For the case of a floating
structure, the surface is infinitely porous on the surface I,, allowing all the fluid to flow through

without obstruction.

This equation is only valid when assuming that the porous wall is straight (Yu, 1995).

Internal domain S,

(a) Body boundary condition at z = —I

0p1(x,y,2) ~0
0z - (4.96)
(b) Seabed boundary condition at z = —h
ad)l(x’y'z) -0
0z - (4.97)
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(c) Porous boundary condition on I,

0 Y
W = _iGok(¢1 - ¢0) (4.98)

The velocity potential that links the internal domain and the external domain on » = b can be

represented by the conditions below:

¢1(x, Y Z) = d)o(x, Y Z) (499)
and
0¢1(x,y,z) — a¢0(x'yrz) (4100)
on on

4.5.2 Solution for wave diffraction around a floating structure

The scaled boundary transformation is performed using the SBFEM, obtaining a non-

homogeneous general equation.

[Eolé{a(©)} ge + ([Eol + [E1]" — [E1] + §[Es] — §[Es]){a(O)} e

+<_[E]l+[E]—[E]—[E 1" — §[Es]
Zf 3 4 4 5 (4.101)

+ K2 Mo]) (a() = £Fye(©)

Although the bottom part of the cylinder is infinitely porous to resemble a complete model
of a floating cylinder, the side faces still coincide, forming a closed circle where the normal
flow is equal in magnitude and opposite in direction. Hence, no external forces at the side face,
resulting in F,,,(§) = 0. The general equation is now a quadratic second order partial
differential equation. Substituting equations (4.66 — 4.69), the 3D SBFE equation can be written

as
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§Ha(®)} ge + [Eo] HEol{a (D)} s
+ (=[Eo] T E2] — §2[Eo] T [Es] + k*$2[Eo] [MoDfa()}  (4.102)
=0

The boundary conditions satisfies the following conditions

(@) = | | @INGL O i lands (4.103)
¢vn
@) == [ [ NGO\l (4.104)
¢n
The flow is represented by
{a(©)} = [Eo]é{a(®)} s (4.105)

The Hankel function is chosen as the base solution of the outer domain S, and the Bessel
function of the first kind for the solution of the inner domain S;. Hence, the potential at each

point in the unbounded and bounded domains is represented respectively by

ao(§) = z ¢/ Hy,(T; = TH, (§)C° (4.106)
j=1

a(§) = ) ¢}y, (DT = T, (OC (4.107)
j=1

On the intersection of the body boundary, satisfying equation 4.99, the flow will be equal

and opposite in direction.

‘ETLO = _‘Enl (4108)

Vo represents the normal flow from the outer domain into the inner domain whilst ,,,
represents the normal flow from the inner domain into the outer domain. The values of v,,, can

be further separated to denote the top non-porous wall and the bottom porous wall.
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(o} ={7mo}+ {5 | (4.109)

Caot+ g} =~ lon) (4.110)

The flow is also made up of the sum of the incident wave and the scattered wave, denoted
using the superscript | and S respectively. The incident wave can be found using the real part

of the incident wave velocity potential.

=TI | =TS 0 0
Un0+vn0}+{_ _ }:_{_ } 4111
U0 o+ ot} =~ ot @At

From the boundary conditions, the normal of the velocity potential is equal to the flow.

Equation (4.111) can be written as two equations. The first equation can be written as

IO+ Uiy =0 (4.112)

The value ©1} is prescribed and the second equation can be written as

Bl + pBS = B (4.113)

By substituting equations 4.98, 4.103 - 4.105, the unknown a, () and a, (¢) are determined.
The solution is also shown explicitly in Appendix U. When the unknown scattered velocity
potential value is obtained, the values of velocity at each point of the domain and the total force
of wave on structure can be calculated. The results obtained using these methodologies are

presented in the next chapter.
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4.6 Summary

Chapter 4 illustrates the core methodology development of the 3D SBFEM. This use of 3D
SBFEM to solve the wave diffraction problem is a novel expansion of this method. The step by
step solution is presented for both bounded and unbounded domain. This development is also
applied on a fully three dimensional large offshore structure. A new coordinate transformation
is introduced to allow this development, where the radial direction is kept to enable the
analytical solution in this direction to be obtained. The governing equations and boundary

conditions are satisfied by selecting the Bessel function of the first kind as the base function.
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Chapter 5

Validation and applications of 3D SBFEM

5.1 Validation of wave diffraction on a fixed pile using 3D SBFEM

3D SBFEM has been used to analyse wave diffraction around offshore structures as a case study.
Part (a) and (b) show the wave diffraction around a truncated cylindrical structure fixed on the
seabed. The surface of the cylinder is discretised with elements represented by the 8 noded
shape functions as proposed in Chapter 4. Part (c) of the analysis shows the curves of equal

amplitude and equal phase around the monopile modelled using 3D SBFEM.

(a) Wave diffraction of a plane wave on a fixed monopile
- Varying element number in the circumferential direction
- Varying element number in the vertical direction (layers)
(b) Wave diffraction of short crested wave on a fixed monopile
- Varying element number in the circumferential direction
- Varying element number in the vertical direction (layers)
(c) Curve of equal amplitude and equal phase around the monopile modelled by 3D SBFEM

5.1.1  Analysis of wave run-up modelled by 3D SBFEM

The first set of convergence results shows the wave run-up profile when the number of elements
around the circumferential direction increases. Due to the symmetrical properties of the circular
cross section, only half the discretised circumference is shown. Elements used shown in the
graphs represent the number of element per quarter of a circle. A larger number of layers
discretising the vertical direction is used to ensure accurate convergence of the results. The
wave run-up analysis is carried out for cases with ka values of 0.5, 1.0, 3.0, and 5.0. This is to
be consistent with the 2D SBFEM analysis (Tao et al., 2007). The analytical solution shows
good agreement with the 2D SBFEM, hence only the analytical solution is presented in the

graph. The results are shown together with the analytical solutions for comparison.
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Plane wave: varying element number in the circumferential direction

25 +
lta=03
2 —4
1.5 +
T
=
I M—Aﬂﬂyﬁml solution
| = 1 element
+ 3 elements
0.5 + 5 elements
= 10 elements
| = 15 elements
0 : } . } . | . } T i
1] 0.2 0.4 0.6 0.8 1

&

Figure 5.1 Wave run-up of a circular cylinder for ka=0.5 with varying number of elements
per quarter of a circumference modelled using 3D SBFEM

2.5 —
ka=1.10
2 L
4 [ |
Ew“mmqm + Ze iR 4
P
1.5 + pﬁqpﬂ“
o @
T o
1 4 o - . )
Boq Lo Analytical solution
| e, Mg;ﬂ*’ = | clement
o o + 3 elements
0.5 -+ 5 elements
* 10 elements
i = 15 elements
D T I T I T I T I T I
1] 0.2 0.4 0.6 0.8 1
&4t

Figure 5.2 Wave run-up of a circular cylinder for ka=1.0 with varying number of elements
per quarter of a circumference modelled using 3D SBFEM
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25
ka=30
2 4
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1~ —Analytical solution
_. = | element
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0 T } T } T } T } T !
0 0.2 0.4 0.6 0.8 1
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Figure 5.3 Wave run-up of a circular cylinder for ka=3.0 with varying number of elements
per quarter of a circumference modelled using 3D SBFEM
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Figure 5.4 Wave run-up of a circular cylinder for ka=5.0 with varying number of elements
per quarter of a circumference modelled using 3D SBFEM
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From Figures 5.1 to 5.4, it can be seen that the results converge with an increasing number
of elements used to discretise the circumference of the cylinder. The results are assumed to be
converged when the error from the analytical solution is less than 2.5%. For the case where ka
= 0.5, only 3 elements per quarter of a cylinder is needed for the results to converge, whilst for
ka = 1.0, 5 elements per quarter is needed, for ka = 3.0, 10 elements per quarter is required and
for ka =5.0, at least 15 elements are needed for the results to converge and to enable the accurate

representation of wave run-up on a cylinder.

Plane wave: varying element number in vertical direction (layers)

Figures 5.5 to 5.8 show the convergence of wave run-up around a circular cylinder with a 10 m
water depth for cases where ka = 0.5, 1.0, 3.0 and 5.0. From the results, it can be concluded that
with 10 layers of discretisation in the vertical direction, the wave run-up results converge. These
are also compared with the analytical solutions (Zhu, 1993), with an error of less than 2% for 8

layers of discretisation and less than 0.5% when discretised with 10 layers.

25 T
ka=0.5
2 4
4 ¥ ¥ ¥
1.5 y ¥ | S-S
X
1 4 — Analytical solution
s ., R s 1 layer
s Xox i oF ' = 3 layers
05 1 * 5 layers
o 8 layers
= 10 layers
0 T I T } T I - } - |
0 0.2 0.4 0.6 0.8 1

o

Figure 5.5 Wave run-up of a circular cylinder for ka=0.5 with varying number of layers
discretised modelled using 3D SBFEM
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25 T
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2 1
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14 — Analytical solution
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0.5"“‘“,&1“%-. * 5 layers
TEE LN o 8 layers
- 10 layers
0 T : T : T : T : T :
0 0.2 0.4 0.6 0.8 1
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Figure 5.6 Wave run-up of a circular cylinder for ka=1.0 with varying number of layers
discretised modelled using 3D SBFEM
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Figure 5.7 Wave run-up of a circular cylinder for ka=3.0 with varying number of layers
discretised modelled using 3D SBFEM
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Figure 5.8 Wave run-up of a circular cylinder for ka=5.0 with varying number of layers
discretised modelled using 3D SBFEM

Short-crested wave: varying element number in vertical direction (layers)

25
7.1 -1
ky=22m "k, =0m
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Figure 5.9 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and total
incident wave number k = v2m™* (k, = vV2m™,k, = 0m™! ), modelled using 3D SBFEM
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25 -
-1 R
> 1 ky=12m""k, =0562m
15 +
I
=
14 —Zhu, 1993
+ 1 layer
] = 3 layers
* 5 layers
05 4+ - Y
o 8 layers
Fanys
- 10 layers
0 i i i i |
0 0.2 04 06 03 1

e/r

Figure 5.10 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and
total incident wave number k = v2m™* (k, = 1.2m™,k,, = v0.56 m~* ), modelled using

3D SBFEM
25 -
k,=1.0 m_l,ky =1.0m™1
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Figure 5.11 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and
total incident wave number k = vV2m™ (k, = 1.0m™%,k,, = 1.0 m™* ), modelled using 3D
SBFEM
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25 1

1
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Figure 5.12 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and
total incident wave number k = vV2m™?* (k, = v0.56 m~1,k, = 1.2 m™" ), modelled using

3D SBFEM
25 T
i 1
ke =2Z2m Yk, =0m™? —Zhu, 1993
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Figure 5.13 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and
total incident wave number k = V2m™ (k, = 0m™,k, = vV2m™" ), modelled using 3D
SBFEM
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Figures 5.10 to 5.13 show convergence analysis of short-crested wave run-up on a circular
cylinder of radius 1.0 m. Five cases with a wave number of +/2 and varying k, and k, are

shown. Results with an error of less than 0.5% are obtained with 10 layers of discretisation
along the vertical direction of the cylinder with a water depth of 10 m.

All derivations and numerical computations were carried out using Maple 18 and Matlab
R2015a. The longest time taken to compute when running the case when ka = 5.0 with 10 layers
of discretisation, is less than 60 seconds. It is also important to understand how the built in
functions within the software work. The integration functions may slow down or lead to
inconclusive results, hence, a good approximation process of numerical integration is needed
to tackle this issue. The two-dimensional Gauss quadrature approximation is used to carry out
the integrations, where 4 pairs of weights and coordinates are used to represent the Gauss eight-

point rules (Abramowitz and Stegun, 1964).

The integration over a quadrilateral where w; and w; are the weights can be written as,

f f 61,9 dnag =iiwiw,-¢(m,<j) 1)
i=1j=1

The weights are listed in Table 5.1,

Table 5.1 Table of weights (wi) and roots (xi) for Gaussian integrals (Abramowitz and Stegun,

1964)
n wy T; n wy T
1 (20 0.0 g | 01012285363 | £0.9602B%E565
2| L0 +0.5773502692 0.2223810345 | £0.79666647T4
3 | 0.5555555EEF | £0_TT4EG66602 0.313T066450 | 405255324000
033558334839 0.0 03626837834 | £0.1834346425
4 [ 0.34T5548451 | £0.B611363LLE 9 [ 0.0812T453585 | £0.96E1602395
06521451549 | £0.3399810436 01806481607 | £0.8360311073
5 [ 0.2369268851 | £0.9061798459 02606106564 3
0.4T86286T05 | £0.5384693101 0.3123470770 | £0.3242534234
05688888889 0.0 03302393580 0.0
6 [ 0.1T1324497& | £0. 9324605142 [[ 10 [ 0.0666T13443 +IZI.:'1T:EIDEF)’2P:5
0.3607T615T30 | £0.6612003668 01494513492 | +0, 2650633667
04679139346 | 02386101861 021908636285 | +0,6734055683
7| 0.1794840662 | £0.5491079123 0.2692667193 4333953941
0.2797053915 | £0. 7415311856 0.2955342247 | 01488743300
0.3818300505 | £0.4058451514
0.4179591837 ]

All the convergence analysis is carried out and compared with the existing numerical

solution (Zhu, 1993). The convergence analysis is shown up to the error of less than 2.5%.
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5.1.2 Analysis of effective inertia coefficient, effective drag coefficient and total force
modelled by 3D SBFEM

Tables 5.2 to 5.7 compare the effective inertia coefficient (Cw), effective drag coefficient (Cp)
and total forces (|2maR|) on the monopile, showing corresponding convergence in Figures 5.14
to 5.23. The solutions are compared to the analytical solution that is available (Zhu, 1993).
Figure 5.24 to 5.26 shows the trend of Cwm, Cp, and [2maR| when the ratio of ky and kx changes.
Note that the element number shown in the table is the element number per quarter of a circle.

This section presents the analysis for comparison in two parts.

(@) Validation and convergence of coefficients and total forces
- Varying element number in circumferential direction: Cm
- Varying element number in vertical direction (layers): Cm
- Varying element number in circumferential direction: Cp
- Varying element number in vertical direction (layers): Cp
- Varying element number in circumferential direction: [2naR|

- Varying element number in vertical direction (layers): |2raR|

(b) Variation of coefficients and total forces vs the ratio ky /kx for kya = 2
- effective inertia coefficient (Cwm)
- effective drag coefficient (Cp)
- total force (|]2maR|)

Comparison of effective inertia, drag coefficient and total forces

Table 5.2 Validation of effective inertia coefficient (Cm) with varying number of
circumferential elements

k(M) ko () k() a(m) Zhu (1993) T 3D SBFEM
1.0 1.0 \2 1.0 0.8824 0.8665

0.56 1.2 \2 1.0 0.8824 0.8663
1.2 0.56 \2 1.0 0.8824 0.8665
\2 0.0 \2 1.0 0.8824 0.8666
1.0 1.0 \2 2.0 0.2354% 0.2308

0.56 1.2 \2 2.0 0.2354" 0.2308
1.2 0.56 \2 2.0 0.2354* 0.2307
\2 0.0 V2 2.0 0.2354* 0.2305
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Figure 5.14 Convergence of effective inertia coefficient (Cwm) with varying number of

circumferential elements whena =1.0 m
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Figure 5.15 Convergence of effective inertia coefficient (Cm) with varying number of

circumferential elements whena =2.0m
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When the number of circumferential elements changes, the number of layers is kept at 15,
whereas when the number of layers changes, the circumferential element is kept at 25 per
quarter. This is to increase accuracy and to minimise the error when comparing in the direction
of interest. The general trend in Figures 5.14 to 5.23 shows that as the number of layers used to
discretise the vertical length of the monopile increases, the value converges in comparison with
the analytical solution, with up to 2% error. Similarly, as the number of elements used to
discretise the circumference increases, the results converge with the analytical solution with an
error of up to 2%.

Table 5.3 Validation of effective inertia coefficient (Cm) with varying number of elements in
the vertical direction (layers) of a monopile

Cwm
ks () k() k(m) @ (m) Zhu (1993) 3D SBFEM
1.0 1.0 \2 1.0 0.8824 0.8652
0.56 1.2 \2 1.0 0.8824 0.8652
1.2 0.56 \2 1.0 0.8824 0.8652
\2 0.0 \2 1.0 0.8824 0.8654
1.0 1.0 \2 2.0 0.2354* 0.2307
0.56 1.2 \2 2.0 0.2354* 0.2307
1.2 0.56 \2 2.0 0.2354* 0.2307
\2 0.0 \2 2.0 0.2354" 0.2307
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Figure 5.16 Convergence of effective inertia coefficient (Cm) with varying number of elements
in the vertical direction (layers) of a monopile when a = 1.0m
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Figure 5.17 Convergence of effective inertia coefficient (Cwm) with varying number of elements
in the vertical direction (layers) of a monopile when a = 2.0m
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Table 5.4 Validation of effective drag coefficient (Cp) with varying number of circumferential

elements
kx (M) ky (m™) k (m?) a (m) Co
Zhu (1993) | 3D SBFEM
1.0 1.0 \2 1.0 0.2271 0.2229
70.56 1.2 \2 1.0 0.2271 0.2231
1.2 0.56 \2 1.0 0.2271 0.2228
\2 0.0 V2 1.0 0.2271 0.2226
1.0 1.0 \2 2.0 -0.2398 -0.2352
0.56 1.2 \2 2.0 -0.2398 -0.2351
1.2 70.56 \2 2.0 -0.2398 -0.2354
\2 0.0 \2 2.0 -0.2398 -0.2355
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Figure 5.18 Convergence of effective drag coefficient (Cp) with varying number of
circumferential elements when a = 1.0m
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Figure 5.19 Convergence of effective drag coefficient (Cp) with varying number of
circumferential elements when a = 2.0m

The results obtained here agree with the analytical solution. For fixed ka, with changing kx
and ky number, the Cm and Cp values does not change. As pointed out previously (Tao et al,
2007), the results shown in Zhu’s paper are reversed where superscript * (Table 5.6- 5.7) is
presented whereas the values are erroneous as denoted as superscript # (Table 5.2 — 5.3).
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Table 5.5 Validation of effective drag coefficient (Cp) with varying number of elements in the
vertical direction (layers) of a monopile

Co
ky (m™? ky (m? k(mt m
«(m?) y(m) (m™) a(m) Zhu (1993) | 3D SBFEM
1.0 1.0 \2 1.0 0.2271 0.2224
70.56 1.2 \2 1.0 0.2271 0.2225
1.2 70.56 \2 1.0 0.2271 0.2226
\2 0.0 \2 1.0 0.2271 0.2228
1.0 1.0 \2 2.0 -0.2398 -0.2349
70.56 1.2 \2 2.0 -0.2398 -0.2351
1.2 70.56 \2 2.0 -0.2398 -0.2348
\2 0.0 \2 2.0 -0.2398 -0.2348
0.3
0.25
a=1
—

a 0.2
W)
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Figure 5.20 Convergence of effective drag coefficient (Cp) with varying number of

elements in the vertical direction (layers) of a monopile when a = 1.0m
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Figure 5.21 Convergence of effective drag coefficient (Cp) with varying number of

elements in the vertical direction (layers) of a monopile when a = 2.0m

The forces on the structure are shown in Table 5.6 and Table 5.7. Keeping the wave number

constant where k = /2, the short crested wave induces a different total force on the monopile

when changing kx and ky.

Table 5.6 Validation of effective total forces with varying number of circumferential elements

1 4 4 2naR|

()| k(M) k) a(m) Zhu (1993) 3D SBFEM
1.0 1.0 \2 1.0 2.8626" 2.8107
0.56 1.2 \2 1.0 2.1421" 2.1031
1.2 0.56 \2 1.0 3.4351 3.3730
\2 0.0 \2 1.0 4.0483 3.9750
1.0 1.0 \2 2.0 4.2228" 4.1415
0.56 1.2 \2 2.0 3.1601" 3.0982
1.2 0.56 \2 2.0 5.0674 4.9697
\2 0.0 \2 2.0 5.9720 5.8558
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Figure 5.22 Convergence of effective total forces with varying number of circumferential
elements when a = 1.0m
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Figure 5.23 Convergence of effective total forces with varying number of circumferential
elements when a = 2.0m
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Table 5.7 Validation of effective total forces with varying number of elements in the vertical
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direction (layers) of a monopile

-1 1 1 2naR|

k() k() |k (m) a(m) Zhu (1993) | 3D SBFEM
1.0 1.0 \2 1.0 2.8626" 2.8066
0.56 1.2 \2 1.0 2.1421" 2.1009
1.2 0.56 \2 1.0 3.4351 3.3683
\2 0.0 \2 1.0 4.0483 3.9701
1.0 1.0 \2 2.0 4.2228" 4.1387
0.56 1.2 \2 2.0 3.1601" 3.0978
1.2 0.56 \2 2.0 5.0674 4.9645
\2 0.0 \2 2.0 5.9720 5.8501

Variation of the effective inertia coefficient (Cwm), effective drag coefficient (Cp) and total
force (]2waR|) vs the ky /ky ratio

kxa is kept constant at 2.0 and the results obtained using the 3D SBFEM are evaluated for 4
cases with different values of k. The results are compared with the analytical solution (Zhu,
1993) and the results obtained using 2D SBFEM (Tao and Song, 2007) are plotted using 15

elements to discretise half a circular circumference.
Case 1: kx=0.8m'! a=25m;
Case2: kx=1.0mt,a=2.0m;
Case 3: kx=1.6m",a=1.25m;
Case 4: kx=2.0m?, a=1.0m;

The results are obtained using 15 elements per quarter to discretise along the circumferential

direction and 15 elements are used to discretise along the vertical direction.
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Figure 5.24 Variation of the effective inertia coefficient Cwm vs the ratio ky /kx at kxa = 2,
modelled using 3D SBFEM
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Figure 5.25 Variation of the effective drag coefficient Cp vs the ratio ky /ky at kxa = 2,
modelled using 3D SBFEM
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Figure 5.26 Variation of the total force vs the ratio ky /kx at kxa = 2, modelled using 3D
SBFEM

Figures 5.24 and 5.25 show good agreement when compared with results from the 2D
SBFEM and the analytical solution. For kya of the same value, the effective inertia coefficients
and the effective drag coefficients do not affect the results when the 4 cases are presented. These
data also show that the short-crested wave is a superposition of two plane-waves. Figure 5.26
shows the total forces when kya is fixed at 2.0. The total force shows a decreasing trend as the
incident wave becomes more short-crested. These results are used as a benchmark comparison
to validate the 3D SBFEM.

5.1.3 Curve of equal amplitude and equal phase around a circular monopile modelled
by 3D SBFEM

The waves within a region 10 times the radius of the cylinder, is presented graphically to show
changes in the wave properties. The curves of equal amplitude and equal phase are presented,

for both long crested and short crested waves.
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Figure 5.27 Curves of equal amplitude (co-amplitude) for the incident waves with

longitudinal and lateral wave numbers ky=1.0m* and ky=0.0m*

Figure 5.28 Curves of equal phase (co-phase) for the incident waves with longitudinal and

lateral wave numbers ky=1.0m™ and ky=0.0m™
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Figure 5.29 Curves of equal amplitude (co-amplitude) for the incident waves with

longitudinal and lateral wave numbers ky=1.0m* and ky=0.5m*

Figure 5.30 Curves of equal phase (co-phase) for the incident waves with longitudinal and

lateral wave numbers ky=1.0m* and ky=0.5m"
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Figure 5.31 Curves of equal amplitude (co-amplitude) for the incident waves with

longitudinal and lateral wave numbers ky=1.0m* and ky=1.0m*

Figure 5.32 Curves of equal phase (co-phase) for the incident waves with longitudinal and

lateral wave numbers ky=1.0m* and ky=1.0m™
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Figure 5.27 shows the amplitude for a long crested wave while Figure 5.29 and 5.31 shows
the effect of short crested waves. This shows that the overall wave profile is more complicated
when short crested waves are applied. It is noticed that the wave amplitude at the rear of the
structure is lower as the wave becomes more short crested. These filled contour diagrams are
able to demonstrate the wave elevation of the domain around the monopile. Figure 5.28 shows
the phase difference for a long crested wave while Figure 5.30 and 5.32 shows the effect of
short crested waves. The darker region shows the quick change in phase from +m/2 to -m/2. The
black and white contour diagram is able to demonstrate clearly the phase difference around the
monopile. These Figures 5.27 to 5.32 are shown in a circular shape to show scaling of the radial
direction from the scaling centre that is located in the middle of the circular cross section of the

monopile. The scale shown in the figures is from the domain that encloses 1 < ¢ < 10.

5.2 Validation of wave diffraction on a floating structure using 3D SBFEM

The 3D SBFEM is applied to solve the wave diffraction problem for a large circular floating
structure. A convergence analysis is carried out to gauge the effect of an increase in the number
of elements on the force experienced by the structure. The analysis of wave forces on the
floating structure is also carried out to compare cylinders of different submerged depth ratio to
the depth of the water. The term (h-1) represents the distance under the floating cylinder from
the surface of the seabed, as illustrated in Figure 4.7. The term b represents the radius of the
floating circular cylinder. The horizontal wave forces are evaluated when the ratio of (h-1)/b is
0.0, 0.25, and 0.5 respectively. The wave forces on the structure within the region 0 < ka <

10 are calculated.
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5.2.1  Convergence analysis of wave diffraction on a floating structure
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Figure 5.33 Horizontal wave forces on a floating structure where (h-1)/b=0 with varying
number of elements per quarter of a circumference modelled using 3D SBFEM
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Figure 5.34 Horizontal wave forces on a floating structure where (h-1)/b=0.25 with varying
number of elements per quarter of a circumference modelled using 3D SBFEM
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Figure 5.35 Horizontal wave forces on a floating structure where (h-1)/b=0.5 with varying
number of elements per quarter of a circumference modelled using 3D SBFEM

Figures 5.33 to 5.35 shows the convergence analysis when the number of elements around a

quarter of the circumference increases. As the number of elements increases, the results

converge towards the analytical solution proposed by Williams et al, (2000). The number of

elements used to discretise the vertical direction is 15 layers, including both the thickness of

the submerged cylinder and the distance of the bottom of the floating cylinder to the top of the

seabed. The overall convergence analysis shows that less elements are needed to show

convergence for large ka. In the situation with 8 elements per quarter, the difference from the

analytical solution is less than 5% whilst when only 10 elements per quarter are used, the results

converges nicely.
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Figure 5.36 Horizontal wave forces on a floating structure where (h-1)/b=0 with varying
number of layers modelled using 3D SBFEM
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Figure 5.37 Horizontal wave forces on a floating structure where (h-1)/b=0.25 with varying
number of layers modelled using 3D SBFEM
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Figure 5.38 Horizontal wave forces on a floating structure where (h-1)/b=0.5 with varying
number of layers modelled using 3D SBFEM

Figures 5.36 to 5.38 show the convergence analysis when the number of vertical layers
increases. As the number of vertical layers increases, the results converge towards the analytical
solution using the Bessel function. The number of elements used to discretise the circumference
is set to 10 elements per quarter, where the results shown to converge as in Figures 5.33 to 5.35.
From the graphs, the use of 8 layers of discretisation allows prediction the forces on a floating
structure accurately, especially when the distance between the bottom of the floating cylinder
and the top of the seabed is smaller. For when (h-1)/b = 0.5, at least 10 layers of vertical
discretisation is needed to obtain good results with a difference of less than 1% from the
analytical solution. Both sets of discretisation show that the results converge as the number of

elements increases, without an overflow of data during calculations.

5.2.2  Analysis of wave forces on a floating structure

The horizontal force incurred on a floating cylinder is calculated. The results are compared with
the results obtained using eigenfunction expansion proposed by William et al. (2000). Both

these results demonstrate good agreement.
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Figure 5.40 Dimensionless force in the x-direction on circular cylinder when h/a = 1.50
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Figures 5.39 and 5.40 show the dimensionless force on the floating cylinder in the x-
direction when h/a = 0.75 and 1.50 respectively. Results are obtained using 10 elements per
quarter of a circumference and 10 layers of discretisation, where the number of layers represents
the region of the solid structure and the fully porous region. These results demonstrate that the
3D SBFEM can be applied to effectively solve the wave diffraction problem of a three-

dimensional floating body.

5.2 Summary

The 2D SBFEM used to solve hydrodynamic problems has been extended to 3D SBFEM and
applied to hydrodynamic analysis of offshore structures for the first time. Mathematical
formulation and detailed solution procedures of the 3D SBFEM model are presented. The 3D
model is applied to a circular cylinder extended from the seabed and truncated above the free
water surface. A case study investigating plane and short-crested wave diffraction around a
circular cylinder is presented with the results in terms of the wave run-up and forces. After
comparison with the analytical and numerical results in the literature the present 3D SBFEM
model is demonstrated to be an efficient semi-analytical model with very good levels of
accuracy for offshore hydrodynamic analysis.

Some of the challenges are overcome in the expansion of this method, which includes the
selection of appropriate scaling centre, and conversion of a three dimensional coordinate
transformation to a scaled boundary coordinate system. The versatility of the position of the
scaling centre will allow this method to be used to solve for more complicated structural
geometries. The 3D SBFEM model developed in this chapter has also been successfully applied
to a static floating structure with promising results. This is useful as further extension can be

used to solve dynamic floating structures by adding a solver of the body motion equation.
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Chapter 6

Conclusions and recommendations for future work

This chapter summarises the significance of this research and the contribution of this work to
the numerical solution of hydrodynamics problems in the case of large offshore structures.
Conclusions are drawn from the two major parts of the thesis. The first part investigates the
practicality and application of the two-dimensional SBFEM in the offshore industry, in
particular the wave-structure-soil interaction of wind turbine monopiles. The second part
further develops the solution of SBFEM in hydrodynamics and extends this method to solve
three-dimensional cases. Here, we sum up the advantages and limitations in terms of solving
hydrodynamic problems. The further development of this work is also proposed in this chapter,
where the detailed solution technique presented in this thesis to solve the hydrodynamic
problems using the SBFEM can be further extended to solve more complicated and realistic

offshore problems.

6.1 Conclusions

The characteristics of wave interactions with typical offshore structures of different
configurations can be analysed using a variety of different wave theories, which have been
comprehensively discussed in the introduction. Wave diffraction theory is the central focus of
this thesis, where the cross sectional length of the body spans a significant amount of the
incident wave length and a clear parametric example is provided (Appendix D). The
introduction also explains different methods, analytical, numerical and experimental
approaches that could lead to reasonable evaluation of the wave diffraction problem. A
systematic discussion of the pros and cons of each method was presented. The SBFEM was

then chosen for the present study due to the key advantages of this method.
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6.1.1 Development of 2D SBFEM for hydrodynamic applications

A thorough study has been carried out to apply the SBFEM to solving the partial differential
equations in marine hydrodynamics. The 2D SBFEM has been applied to solve the marine
hydrodynamics problem since 2005 (Li et al., 2005a). In this thesis, the SBFEM is validated
using the analytical method for simple cases such as the wave diffraction around a circular
cylinder (Mei, 1992), whilst BEM is used to validate the wave diffraction around a square
cylinder (Song and Tao, 2008). The results obtained match results published previously thus
validating that this SBFEM is capable of handling wave diffraction around a large cylinder,
with either long crested plane waves or short crested waves. A proposed polygonal shaped
cylinder to support offshore wind turbines has been investigated since 2010 and the pragmatic
approach from the manufacturing point of view is that this shape is advantageous compared to
typical circular monopiles (RCID, 2010b). The manufacturing time is shortened by eliminating
the need for sheet steel rolling by welding flat plates together to form the monopiles (RCID,
2010a). By changing the cross-sectional shape of the structure, the forces induced on it by the
waves will also change. This change is studied to understand the feasibility of using the
proposed polygonal pile in place of currently used circular monopiles. In addition to evaluating
the wave effect, the effect on the pile of wind and soil was also analysed to investigate pile
deflection and the bending moment on the structure.

The solution process of the wave-structure interaction is carried out following the SBFE
equation obtained. Careful substructuring is carried out so that the Hankel function of the first
kind (Tao et al., 2007) that satisfies the radiation condition at infinity, can be satisfied rigorously
(Appendix B). In addition, scaling centres are also introduced on each corner of the joint flat
plates to overcome the problem of singularity and irregular frequency from the mathematical
point of view when solving the regions with re-entrant corners. The governing eigenvalue
problem results in the Hamiltonian matrix, which is solved using the Jordan decomposition
(Wolf, 2003) and modified to fit the solution of the wave diffraction problem (Li et al., 2006).
By combining all of these approaches, the wave diffraction around the octagonal monopile

could be evaluated.

Due to the fact that more subdomains are involved when solving the wave interaction
problem with structures of complex configurations, the number of elements and nodes increases
accordingly. However, this increase in nodes in the solution procedure is easier to handle,
compared to the need to satisfy the extra boundary condition at infinity. The rigorous Hankel

function solution also allows a wider range of frequencies to be satisfied (Tao et al., 2007), as

135



Chapter 6 Conclusions and recommendations for future work

compared to the power series solution proposed (Li et al., 2005a; Li et al., 2005b). Convergence
analysis shows that the small increase in elements used can significantly reduce the percentage
error. The analysis of the soil layer is also carried out to allow the hydrodynamic properties
obtained from the SBFEM to be utilised in a more practical way. The optimum number of soil
layers needed to properly model the entire pile deflection is evaluated. It is found that, for a
good representation of the soil stiffness supporting a pile 28.5 m penetrating into the seabed, at
least four layers of soil stiffness are required to model a more realistic on site scenario.

A comprehensive comparison is then carried out to compare the different effects of wave
induced forces on the structure when the cross sectional monopile varies in shape. The typical
circular cylinder is compared to the octagonal monopile that is evaluated, in addition, a square
monopile is also evaluated. It is found that the overall force induced on the cylinder is higher
for a square cylinder followed by an octagonal cylinder and circular cylinder for smaller ka
values of less than 0.2. However, when the ka value is 0.2 to 0.3, the total force induced by the
wave is about the same for all structures. As the ka value increases further, a slightly increased
force is induced on the circular cylinder, though the difference compared to the other two pile
cross sections is rather small. Overall pile deflections were also compared, and it could be
concluded that the square monopile experiences the greatest wave force, which therefore incurs
the greatest deflection. Nevertheless, there were small differences in the overall maximum
deflection for the octagonal monopile and the circular monopile. From this point of view, it can
be concluded that the octagonal pile could therefore serve as a good substitute for supporting

wind turbines offshore.

In short, the second chapter presents a sound validation of the 2D SBFEM using analytical
and numerical methods. It also shows that further engineering applications can be carried out
using the accurate results that have been obtained.

6.1.2  Methodology development of 3D SBFEM

After establishing that the 2D SBFEM works effectively for solving the wave-structure
interaction, further effort is put into developing the methodology to enable solutions to be
achieved in three-dimensions. The main reason this is important is due to the limitations of the
2D SBFEM in terms of solving for more complex scenarios such as floating structures in the
ocean and also when the structure cross section changes in size as it approaches the seabed.
This thesis clearly demonstrates important considerations in numerical and physical terms,
whilst preserving the advantages that this SBFEM contributes.
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The first part is realising that the governing equation of the Helmholtz equation is no longer
applicable in solving a three-dimensional problem and that a Laplace equation has to be used
instead (Appendix A). In the three-dimensional model, all three x-y, y-z and x-z planes are
considered. There is no further requirement to assume that the structure has a constant cross

section in one direction, or that it is extended infinitely long at one plane.

One of the main differences of the 2D and 3D SBFEM development is that the Jacobian
transformation changes. This is used to change the Cartesian coordinates to the Scaled
Boundary coordinates. Careful coordinate transformation is shown in Appendix O using the
chain rule. The substructuring and problem discretisation also varies between these two
methods. In the two-dimensional problem, a line element is used whereas in the three-
dimensional problem, a surface element is used. This three-dimensional layered approach
contributes to different substructuring, where the whole problem is considered to be made up
of different layers as it extends towards the seabed. A different shape function is also introduced
to discretise the body boundary. An eight noded surface shape function is chosen because it is
able to represent the three-dimensional body by reintroducing the least number of nodes while
maintaining accuracy (Appendix P). In both the two-dimensional and three-dimensional cases,
the spatial dimension is still reduced by one. When solving the 3D SBFEM, the surface is
discretised instead of the volume of the whole domain. Nevertheless, increasing the 2D SBFEM
line discretisation to the 3D SBFEM surface discretisation will still result in a significant
increase in the number of elements and nodes that need to be evaluated. With the appropriate
shape function, the approximate solution and weighted function can be evaluated by applying
it in the general polynomial.

The newly developed 3D SBFEM model is first validated and then applied to plane and
short-crested wave interactions with a stationary offshore structure. All physical quantities
including wave run-ups and wave forces exerted on the structures are obtained. This case study
demonstrates that the present 3D SBFEM model has clear advantages in numerical accuracy.
Detailed workings, which are often not readily available from the literature, are presented, and
allow the 3D SBFEM to be followed through and easily understood to solve for additional

engineering problems.

6.2 Overall advantages of the SBFEM

Most of the numerical methods that exist currently suffer from different limitations when

solving different problems. There is no one effective method that fits all, hence, an
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understanding of the model problem and the capability of existing methods is important. The

method chosen to arrive at the solution will result in differences in the time required and also

the accuracy of the solution. The SBFEM has limitations of its own when used to solve for

marine hydrodynamic problems in cases where the nonlinearity of the waves needs to be taken

into account (Lin and Liao, 2011). However, this thesis shows that the SBFEM has great

potential when used to solve for wave diffraction around large cylinders with sharp corners and

an unbounded domain at the far end. The advantages of the SBFEM and the method of

addressing it are reiterated here to outline the importance of the extension of this method.

a)

b)

d)

The analytical solution in the radial direction speeds up the solution process where the
spatial dimension is reduced by one, in a similar way to the boundary element method.
This also allows the side-faces to be evaluated analytically and does not need to be
discretised. This property is preserved in the 2D and 3D SBFEM where the & term is
scaled and can be addressed in an analytical manner.

In terms of hydrodynamics in the unbounded domain, the boundary condition at infinity
can be tackled by choosing the appropriate base solution such as the Hankel function of
the first kind, which satisfies the condition as the radius becomes infinite from the
scaling centre. This satisfies the radiation condition at infinity rigorously. This base
solution transforms the boundary value problem that is produced by a circular source.
Hence it is only selected when the inner boundary of the unbounded domain is circular.
This also explains the need for the virtual circular cylinder when solving for the wave
diffraction around an octagonal pile.

One of the criteria of the SBFEM s that the scaling centre must be visible from the
boundary that it defines, a careful selection of the position of the scaling centre
overcomes the singularity problem faced when solving for boundaries with sharp
corners. This is extended to solve for the octagonal cylinder, by increasing the number
of scaling centres and positioning them at each of the sharp corners. Solution at the
sharp corners also imposes the problem of irregular frequency, and this can once again
be satisfied by repositioning the scaling centre. The extra scaling centres used increases
the number of subdomains needed to define the internal domain. Symmetrical
subdomain discretisation also allows the domain to be modelled more efficiently.
Substructuring is also useful, where the entire domain is split into smaller domains to
be analysed. By doing this, the number of elements to be handled increases significantly,
but this step allows the solution process to be simplified. These subdomains contain

individual scaling centres which are placed at sharp corners to overcome the problem
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of singularity. Furthermore, this substructuring process is effective when solving for
much more complex structural configuration.

No fundamental solution is required in contrast to the typical BEM. This is one of the
main disadvantages of the traditional BEM approach. This is because the boundary of
interest is discretised using the FEM approach.

This method can also be readily coupled with other existing numerical methods, since
the base derivations are similar. This is not investigated in this thesis but several
successful attempts have been demonstrated by coupling SBFEM with the homotopy
analysis method (HAM) in hydrodynamics by (Lin and Liao, 2011) and the FEM for
soil and structure interaction (Birk et al., 2012). This coupled numerical approach is

introduced to tackle the nonlinearity at this present time.

6.3 Recommendations for future work

The SBFEM clearly has a number of distinct advantages. However, there are still some

limitations to this method that need to be tackled, especially the ability of this method to solve

nonlinear problems. In continuation of the application of 2D SBFEM, more complicated

scenarios could be attempted, by using it to solve wave diffraction in an actual wind farm where

there are many monopiles placed in a defined area. In terms of 3D SBFEM, both the

methodology development and further applications require additional research;

a)

b)

In terms of fixed offshore structures, this method can also be further developed to solve
for the wave diffraction around cylinder of varying cross section as it moves deeper
towards the seabed. One additional important factor to consider is the angle where the
wave deflects from the structure which also needs to be taken into account.

The solution for the SBFE equation in wave-structure interaction now exists in two and
three dimensions. One valuable extension is to combine both 3D SBFEM model of
wave-structure interaction and structure-soil interaction to solve for the complete wave-
structure-soil interaction using the integrated 3D SBFEM model.

The derived 3D SBFEM has successfully allowed the solution of a simple circular
cylinder and static floating cylinder. Wave diffraction around more complex structures
such as dynamic floating offshore structures is the logical extension. Combining with a
numerical solver of motion equation of the floating structure including wave radiation,
a comprehensive SBFEM model can be developed for complete hydrodynamic analysis

of floating offshore systems. Such an extension will be useful in providing a high quality
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and efficient analysis tool for hydrodynamic analysis for practical offshore engineering
design.

d) It is also important to recognise the limitations of the SBFEM, where the nonlinearity
of harsher waves on the free surface is not readily solved analytically in the radial
direction. The current approach is by coupling the existing numerical methods with the
SBFEM, where the nonlinearity is solved using methods such as HAM or FEM and the
far field, which has linear properties are solved using the SBFEM.

6.4 Concluding remarks

This thesis has successfully extended the standing 2D SBFEM to solve for different cross
section monopiles that are used to support wind turbines. The hydrodynamic properties
obtained are then combined with the other forces impacting the structure to evaluate the
structural deflection and other relevant properties. This is a clear demonstration of where the

SBFEM, developed theoretically, can be applied to solve a practical engineering problem.

The three-dimensional methodology development can solve for a fixed circular cylinder.
This is the first step to extend and apply a 3D SBFEM solution in terms of marine
hydrodynamics, where more practical and complex problems can be solved in an effective and
accurate manner. Although there is still room for improvement of the SBFEM, it can be
concluded that the advantages and ability of this method to solve marine hydrodynamic

problems using a semi-analytical approach are useful.
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Appendix A.

Helmholtz equation

This appendix shows how the governing wave equation can be represented using the Helmholtz

equation in a two-dimensional problem.

The velocity potential can be expressed as a scalar wave with the field variable ¢ that are

function of x, y direction. The vertical z direction and the time factor t are separated.

P(x,y,2,t) = ¢(x,y)Z(2)e™™" (A1)

From the general wave equation, where

1 0%
V2 = —— (A.2)
CZ atZ

Substitute the velocity potential (A.1) into the wave equation (A.2)

10° (9l y)Z(z)e ") (A3)

VA(d(xy)Z(@e™ ) = 5 o

The whole equation of (A.3) is differentiated with the time term

2
V2((x, y)Z(2)e" %) = — %q)(x, NZ(Z)eiot (A4)
It can be further simplified to
. w2 .
V((r NZ(@)e™ ) = = — d(x, ) Z(2)e (A.5)
The wave number can be written as
L (A6)
c c A
Hence, the wave equation is transformed into
V2Pp(x,y) = —k*P(x,y) (A7)
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Rearranging, the two-dimensional Helmholtz equation to represent the waves

VZh(x,y) + K d(x,y) = 0 (A.8)

Note that this partial differential equation involves space but is time independent. This is
achieved through the separation of variables in equation (A.1). However, it can be evaluated in
the frequency domain, as seen in equation (A.6).
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Appendix B.

Sommerfeld radiation condition

As seen in Appendix A, the Helmholtz equation is used to formulate the boundary value problem
mathematically. In solving the wave-structure interaction, an incident wave that impinges on
an object is induced, resulting in the effect where the scattered wave is generated. Besides that,
the solution also provides incoming waves which originate at infinity, moving towards the
object. These incoming waves are physically meaningless and must be rejected by some criteria
built into the mathematical formulation of the problem (Sommerfeld, 1964). Sommerfeld
introduced a mathematically precise condition which, when added to the exterior boundary
value problem ensures a unique solution. This condition is applied at infinity (Lamb, 1910;
Schot, 1992). It is also proven that the radiation condition satisfies the different dimensions that

is accounted for.

(n-1) /0
limr 7z (a—‘f - ik¢>> =0 (B.1)

T—00

n describes the number of dimensions considered. This incoming wave form propagates a
long distance from infinity, ¢ can be represented by the Bessel function of zero order J,. The
total disturbance breaks into two parts where the primary disturbance is created from the
internal source and the secondary disturbance created from the far end. To separate both these
disturbances, the Bessel function can be divided into two parts, comprising the Hankel function
of the first kind, Hél) and the Hankel function of the second kind, Héz). Since the case studies

only focus on the part where the wave propagates outward asymptotically from the source,

which is represented by Hél), only this first part is taken into account. Therefore the Hankel

function of the first kind is used to satisfy this boundary condition at infinity.
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Appendix C.

Derivations of incident and normal waves

The short crested incident wave which is the wind generated wave formula is applied because

it better represents the real sea state. It can be written in a separation of variable form as

igA

—_ _ g i(kxx—wt)
@, " Z(z)e cos(kyy) (C.1)
¢! = el cos(k,y) (C2)
For a circular cylinder, the position at the Cartesian coordinate can be written as
x =r.cos(6) (C.3)
y = r.sin(0) (C.49)

The normal of the incident wave on the body is equal in magnitude but opposite direction to

the normal flow.

b =—Pn ="y (C.5)

o’ ,
a;t = ellkxmcos(9)) (j cos @ . cos(ky. 7. sin@))kx — ky. sinf.sin(ky.r.sinf)  (C.6)

144



Appendix D — Parameters for wave diffraction

Appendix D.

Parameters for wave diffraction

In this thesis, the wave diffraction is a main focus, describing how the wave changes form when
a body interrupts the flow. In order to apply the linear wave theory (Airy Theory), there are
criteria that must be satisfied. The diffraction parameter needs to be satisfied, where D/L>0.2.
Table D.1 shows the suggested parameters that are used in the thesis, where different cases are

analysed and compared for different values of ka.

Table D.1 Parameters for wave diffraction

Wave number Wave length Diameter D/L
(k) (L) (D) (>0.2)

V2/2 8.89 2 0.23

1 6.29 2 0.32

V2 4.44 2 0.45

2 3.14 2 0.64

3 2.09 2 0.95

4 1.57 2 1.27

5 1.26 2 1.59

In addition, to applying linear potential theory, it must be within the region as seen in Figure
1.5. The last two columns in Table D.2 show that the wave criteria fall in the region where the
potential theory can be used to predict the flow, satisfying the linear wave theory, where the

wave length must be long and slope of the wave must be small.
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Table D.2 Parameters for potential theory

Mean . .
dg’;";‘;e(rh) nur\gvbae\:’e(k) |er\1/gtar\\/§|_) D('Sﬂfergsé‘in pe\rm/?n He\i/z:;/ﬁ;/(zH) HIgT"2  higT™2
25 V2/2 8.89 2.63 2.39 0.001 1.79E-05 0.45
25 1 6.29 3.13 2.00 0.001 2.53E-05 0.63
25 V2 4.44 3.72 1.69 0.001 3.58E-05 0.90
25 2 3.14 4.43 1.42 0.001 5.07E-05 1.27
25 3 2.09 5.42 1.16 0.001 7.6E-05 1.90
25 4 1.57 6.26 1.00 0.001 1.01E-04 2.53
25 5 1.26 7.00 0.90 0.001 1.27E-04 3.17
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Appendix E.

Infinitesimal line, area and volume

After defining the coordinate transformation, the infinitesimal line, area and volume can be
represented as

(0 (9
ox| _lya pyJos| JOl_1 190
{6}‘m[c dHla}’<ay>_|]|d ¢ ].C]<§an> (E.D)
3y (Fan) g ot
y g on a 9
\9z/ \ 9 J

These can also be represented graphically as follow:

(@) Infinitesimal area for 2D SBFEM:

dQ = dxdy = |J|EdEdn (E2)

(b) Infinitesimal volume for 3D SBFEM:

dQ = 0xdydz = &|J|dEdnd] (E3)
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Appendix F.

2D coordinate transformation

One of the major steps required in order to apply the SBFEM is to transform the Cartesian
coordinate system to the Scaled Boundary coordinate system. The reason is that the Cartesian
coordinate axes are fixed while the Scaled Boundary coordinate system allows flexibility in
describing the geometry, where & represents the radial direction and n represents the
circumferential direction. In the two-dimensional solution, the (x, y) coordinate is transformed

into the (&, 1) coordinate using the Jacobian matrix.
The Jacobian is used to map the different axis.

(@ One-dimensional Jacobian maps a line of width dx to dé
(b) Two-dimensional Jacobian maps the area dxdy to dédn

(c) Three-dimensional Jacobian maps the volume dxdydz to dédnd{

Figure F.1 shows the transformation from one coordinate system to another.

2y n
dn
dy
dé §
dx
. X
Transformation

Figure F.1 Two-dimensional coordinate transformation

In order to solve the problem in a different coordinate system, the transformation of

coordinates can be related using the chain rule, where

= — T — (F.1)
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d 0dx 0 0y 0
—=—'—=+t—"== (F.2)
dn oOn J0x Jn Jdy

This can be represented in a matrix form, with the introduction of the Jacobian Matrix

[J(¢,71)] which helps to define the linear mapping of linear approximation, where

LANN
o¢| _|o¢ oa¢l)oaz
{al‘ ax ady i (F3)
\or) 15y aql Gy
4
_[9¢ 9¢
15y anl
The inverse of [J(&,7n)] can be obtained using this formula
ForAz[a
c
4__+q1d -=by___ L 1d -b
4 _detA[—c ]_ad—bc[—c a]
Following the formula,
[ ay 3% ay 0y
1~ |om 06] 1 [an FR 5
Ve JCTGEY N e | N Y
T Al wETEmM T g

The determinant of a Jacobian matrix is called the Jacobian, which can be viewed as the

derivative to the total derivative of the coordinate transformation, and can be represented as

/1 = detly(&,m)] (F.6)
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The transformation of coordinates can be found using the inverse, where

(9 [0y _991(
{af}_ﬂ on  og|
o | _ox oz |
V27 =T
The Jacobian is written as follows
9% 99 0% 0y
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Appendix G.

2D shape function

The shape function is introduced as in the FEM, to transform the system to a local system
representation. It is also known as the interpolation function. The approximation is executed by
using a selected set of shape functions that are appropriate, depending on the accuracy and the
geometry that needs to be defined. According the BEM, the spatial dimension is reduced by

one and the approximate function can be written using the nodal values by

(@ Linear shape function
(b) Quadratic shape function

(c) Cubic shape function

The approximate solution of ¢ from the derived general equation using Green’s identity
function can be evaluated using the quadratic shape function. Every element can be represented

by three nodes, and the quadratic local element shape function can be graphically represented

by

\Wam) L\ mm ma/
_il 0T -1 0 +1 0 +1

Figure G.1 Quadratic shape function

The approximated function is the sum of the shape functions [N (n)] weighted by the radial
nodal values {a(¢)}. The shape function can be verified to be valid by substituting the value of

7 at each node:

151



Appendix G— 2D shape function

Table G.1 Validation of shape function used

N =gnm -1 N =-0+D@-1  Nps = sn0r+ D
n=-1 1 0 0
n=20 0 1 0
n=+1 0 0 1

The approximate velocity potential is written as

Ga(E,n) = [N H{a(@)1} + [N 1{a(®) 2} + IN(;s1{a(®)s) (G.1)

And is simplified as

3

Balé) = ) INODL: (2 (G.2)

i=1

Applying the general polynomial, the approximate solution can be written as

Pa(€,m) = [N {a($)} (G.3)

where
INGD] =[N+ N@: N@s]

{a®} ={a®)1 a(®: a(®)s}’

In the same manner, the weighted function can be written as

wa(§,m) = INMIHw ()} = w(OY NI (G.4)
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Appendix H.

2D weighted residual

The governing equation is the Helmholtz equation.

Vip(x,y) + k*¢p(x,y) =0 (H.1)

The residual function can be written as

V2p(x,y) + k*¢p(x,y) = R(x, ) (H.2)

The weighted residual method can be used to solve this second order ordinary differential
equation. An approximate solution could be used to calculate the solution, but the residual error
can be minimised by multiplying a weighting function and integrating over the whole domain.

| Reuyy W yddxdy =0 (H3)
Q

For (H.3) to be valid at all times, the residual R(x, y) must approach zero. This can be done
by following the procedures and steps in (Wolf, 2003). For simplicity, the differential equations

is written as such,

d¢ d¢ 2*¢ 0%¢ d¢
a_(p:x;w_(p:yrﬁ_(P:xx;a_yz_(pryy;%_d);n

ow ow 22w 02w
E=W,x ; E=W,y ; sz'xx ; a—yz=W,yy

The whole two-dimensional domain is represented in the double integral of Q, while the line

boundary is represented as single integral as I'.

Substituting (H.2) into (H.3), the weighted residual function is written as

V2 + k2¢) dxdy = 0
ffnw( ¢ + k) dxdy (H.4)

153



Appendix H—- 2D weighted residual

The following few steps are mathematical derivations to prove the general equation in the

weighted residual manner and is not numbered.

JLW(VZ(P) dxdy + ffnw(kqu) dxdy = 0
fL‘P;xdoxdy + ffn¢)pydexdy + JfQW(qub) dxdy = 0

ffﬂ(w D.x )y dxdy — foW’x o, dxdy + ffﬂ(w by )y dxdy — .U;lw,y ¢,y dxdy

+ ffﬂw(kqu) dxdy =0

According to the Green’s identity, the area in the two-dimensional space has a piecewise
smooth boundary I'. By integrating the boundary in the anticlockwise direction, the whole

boundary containing the domain is expressed as.

jgw ¢, dI — ffﬂw,x ¢, dxdy — ffﬂw,y ¢,y dxdy + fLw(k2¢) dxdy
=0

(H.5)

Rearranging the equation and bringing it to the other side yields,

ﬂnw,x ¢, dxdy + ﬂﬂw,y ¢,y dxdy — ﬂQW(k2¢) dxdy — ﬁw bm dl' (Hp)
=0

Including all the boundary conditions in the 2D case study,

@ Body boundary

(b) Seabed boundary

Substituting the boundary conditions into (H.6),

154



Appendix H—- 2D weighted residual

ff W,y @, dxdy + ff W,y ¢,y dxdy — ff w(k?¢) dxdy — f w B, drI,
Q Q Q I

_, (H.7)

Combining the first two parts together,

ffﬂw,x Gt W,y b, dxdy — ffﬂw(kqu) dxdy — jgr w,dlr, =0 (H.8)

b

The gradients can be written as

0
0x

0
0

|
SR

<
-

VwTp = W Wl [§7] = wie bt wy by

Hence, the weighted residual function in (H.8) can be rewritten as

HQVTWqu dxdy — ﬂﬂw(kzcl)) dxdy — ﬁ W, dlr, =0 (H.9)

b
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Appendix .

2D Divergence operator in the SBFEM

From Appendix F, the new coordinate in any part of the domain can be defined as

N,

9 ]
az | _ an ER
0 ‘u_|| 0% 0% |{ l (1.1)
oy |- _Ikanj

on 0

All the simplifications used here are consistent with the previously published work. The

divergence operator is represented as

dndé 0&an

o 0 (aya aya) 1(6%6 afca)
Ul ono§ 0 an

% Tl

= 1.2
Oﬁ_kay (12)

The & represent the radial direction and is not discretised, only the n circumferential
direction is discretised. Only the boundary is transformed and the coordinate on the boundary

is represented by (xb, yb) and the scaling equation can be represented as

X =x0+ (M) 5 Y=Y+ Eyp(m) (1.3)

Hence, the derivatives are obtained as

02(n) 0 0%(n) ()
0 = o = 6, = ) 5 = 3, ()

Substituting these simplifications into equation (1.1) yields,

0 0
{(g\}_i e, —em] (3] "
O Ul =x0m,  x(m) i 9 f '
kay) an
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$on

d d
x| _ 1 Yo,  —yp(m) {a_gl
9 —xp ().,  x(m) [ |10
9y

Rewriting the divergence operator on the boundary can be simplified as,

0 ! ( )i i( )li
yb(n)n]— yb(n) + _xb(n) - xb(n) 5677

X o |l

T 0% @ B m
New variables are introduced to simplify the equation, where

1 (),
{bl(n)} - U_l{_xb(n);n}

bl = 2]

Hence, the divergence operator can be represented as

Jd 1 d
V= bl(n)a—f+gbz(n)a
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Appendix J

2D SBFEM derivations

Obtaining the general solution using the weighted residual function, and the appropriate shape
function, the problem can be defined in the scaled boundary manner. The infinitesimal area is

derived from the graphical representation and the divergence operator is used.
Appendix E; 22 = dxdy = |J|&dé&dn ;
Appendix G; d4(¢,n) = [IN(NHa(®)} ;s wa(§,m) = WO INmI"
Appendix H; [f, VIwV¢ dxdy — [[ w(k?¢) dxdy — girb W Updl, =0
Appendix I; V= {by (M)} = + 2 b, (m) =
The approximate velocity is given by

Vy = V(pA (Jl)

The variables in the velocity potential can be separated. Substituting this into equation above,

where

D(x,y,2z,t) = d(x,y)Z(z)e " (.2)
v, = Vo (x,y)Z(z)e ot (J.3)
Excluding the terms of Z(z) and e~*t, and substituting the previously derived parameters

from Appendix E, G, H and I, the velocity potential is expressed as

va = Vo(x, y) (J.4)
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o 1 0
va = (20 3+ 7 a0 30) (N Na(©))) (15
0o 1 0
va = Ly INNa(O) 35 + 2 (2N DI} 5 (16

1

va = YO Ha)s +

{b2(M3INM)] 5 {ald)} (.7

Introducing new variables to simplify further, where

[B:(m)] = {b1 N1 ;5 [B2(m)] = {b.(mIIN(D] (J.8)

Substituting the new variables, equation (J.2) can be rewritten as
1
va = Bu{a(O}s + 7 B2(D{a®) 1.9)

Substituting the divergence operator and the shape function into the general weighted

function, the following is obtained.

foVTWVd) dxdy — ffﬂw(kng) dxdy — iw v, dl =0 (J.10)

JJ [Beaoowen, + 5, (n){w(f)}]T |5 0D ta(),

1
+35; (n{a()|do o
- jj WOV INDITKIN D a(®)}dn
Q
- ;( WOV NI 5,dl" = 0
Introducing the coefficient matrix to simplify the equation,

Fo = [ BuGDBLGD U (0.12)
n

E, = f B, ()" By ()l dy (1.13)
n
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Appendix J— 2D SBFEM derivations

E, = f B, ()" B, () ldn (1.19)
n

M, = f N N/ dn (J.15)
n

Substituting the coefficient matrix into (J.4) yields,

:
§

1

w(®} (a(®} +E; ;

L (Botw (@) (@@ + B WOV ()}

Fa 2 () (ae))) §06 — [ MokE 0wV (a0
R (O ale)]) 600 = | Mok“etw(OFHalIos g 1)
~ § WOV INGDI 5yl = 0

r

All terms containing {w(¢)} ; are integrated using integration by parts. Integrating the first

term, [, Eo{w(£)3¢' {a()}¢£0¢

fuvw’ =uvw —fu’vw—fuv’w

Let: u=¢&;v="{a@®}sw = W@}

Hence : u' = 1;v" = {a(O)} g ;w = {w(®)}'

L Eotw(©)}" (a()} 60

= Eo§{a(§)} w1 - L Eofa(§)} ¢lw($)} 0¢ (1.17)

- L Eo{a(©)} g w ()} €06

Integrating the second term, ff E," % w(®} ¢ {a(®))éag

fuv’ =uv —fu’v

Let: u={a(@®)};v' = W@}

Hence : u' = {a(§)} ;v = {(w(§)}"
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L ET{w(©)) " (a(6)}0¢

) ; ) (3.18)
= E"(a(®)} @Y% - L BT {a(9)) (w708

Substituting the integrated terms back into the original equation,
Eoé{a(®)} w1 + By {a(@} w3
1
+ | (~Eo 3 a@) W) — Eola(©) eclw (Y
¢

! L@y @)
3 3 ¢ (3.19)

1
+ By 5 (Y {a()}) §05 - L Mok W )Y {a()}605

—E," 2 {a(@©}ew(©) + E

52
- 55 W@ N 5pdl” = 0

(J.19) is then simplified to

Eoé{a(©)}ew(OY I + B {a(®)} (w1

; 1 o1
+ W) L (~Eopla@s — Eala(@es — £ 7 (@l

1 1
+E 7 {a©)g + By 5 ()} - Mokz{a(f)}) £o¢
- 36 w@Y NI dl” = 0
r

(J.20)

In order to satisfy all terms of weighted function in equation (J.8), the following equations

have to be satisfied:

Eoela(§)}ew(€))" + By {a(§)} (w(€))" — jg W@ INMI D, dl 0.21)

=0

~Eo§i{a(§)} e w ()} — Ex"{a(§D} w (&)} — f WY INMI D, dIr 0.22)
r .

=0
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Appendix J— 2D SBFEM derivations

1 1 1
{W(s‘)}TJ; (-Eog{a(f)},g — Eo{a(§)}ee — EITE{a(E)},f + Elg{a(s‘)},f

1 (3.23)
+ B, 75 () — Mok (a©)}) 0%
Simplifying,
Eoe{a(€)} e + BT {a(€)} = 35 WENINGT BT (0.24)
Eoé{a(€)} e + Ey {a(E)} = — i WY N par (1.25)

For both &, and ¢;, (J.26) is valid

Eo&*{a(®)}ec + (Eo + Er" — E1)§{a()} ¢ — E{a(®)} + Mok*$*{a()} =0 (3.26)

Equation (J.26) is termed the SBFE equation.
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Appendix K.

2D bounded domain solution

Obtaining the SBFE equation using the weighted residual method, and the associated boundary
conditions, the solution of the bounded domain can be carried out Appendix J:

Eoéela(§)}e + Er' (a8} = ff{W(fe)}T[N(n)]Tﬁfldl" (K.1)

Eofi{a(€)} ¢ + ExT{a(€)} = — f WY NI ST (K.2)

The term 7 is the vector of nodal normal velocity of scattered wave on the body boundary.

Now, the term € can be solved where

For both &, and ¢;,

Eo&*{a(®)}ee + (Eo + Ey" — Ey)&{a(®)} s — E{a(®)} + Mok?E2{a(®)} =0  (K3)

Boundary conditions (K.1) and (K.2) can be considered as the flow potential, represented by

{a(©)} = Eo§{a(®)}e + By {a(§)} (K.4)

Equation (K.3) is a homogeneous second order partial differential equation. (Song and Wolf,
1998) suggested transformation of this into two first order ordinary differential equations. The
order is now double the original equation. Equations (K.5 — K.7) show the derivations of

transformation. Rearranging (K.4) by differentiating and multiply by & we have,

Eoé{a(®)}¢ = (q()} — E"{a($)} (K.5)
Eo&*{a(®)}ee + Eoéla(®)}e = ${q()}¢ — E1 ${a(®)}g (K.6)
Eo&*{a(©)} e = §{a()}e — Ex"E{a(®)} ¢ — Eos{al®)} e (K.7)
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Appendix K— 2D bounded domain solution

Substituting this into the general SBFE equation (K.3),

Eoé*{a(§)}es + (Eo + Er' — E1)§{a(®)} ¢ — E{a(®)} + Mp&*{a(©)} =0  (K8)

§a®)} e — B §la(®)} g — Eoéla(®)} g + (Eo + Er' — E1)&{a(®)} ¢

_ (K.9)
— Ex{a(©)} + Mpé?*{a(9} =0
a3 e — Erg{al®)} e — E{a(®)} + MoS*{a(D} =0 (K.10)
Rearranging the boundary condition (K.4),
§q(©)} = Eo{a(®)} ¢ + EL"{a(9) (K.11)
§a(®e = —Eo " E.{a(©)} + By H{q ()} (K12)
f{Q(f)}s - E1(_E0_1E1T{a(f)} + Eo_l{Q(f)}) — Ex{a(§)} + Mof_z{a(f)} (K.13)

=0
E{CI(E)}E + (_Ez + E; Eo_1E1T){a(f)} —E; Eo_l{Q(f)} + MOE_Z{a(f)} =0 (K.14)

Hence, this can be rewritten in the matrix form as

s({{a(f)},g}_l —Ey'E] Egt l{{a(f)}}
{q®}e)  |E, —E Ey'E)T EEp | Wq(9)}

_g2,2[0 0 {a(§)} (K.15)
o) o)
These two PDEs can be solved by introducing another dependent variable where
x®) = ) (.16)
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The term {a (&)} represents the velocity potential function at the nodes and {q(¢)} is the

flow function at respective nodes. The coefficient matrix can be represented by a block matrix

where
z=| BB B (K.17)
E, —E\Ey'E\" E Ey!
And
[M] = i[ 0 0 (K.18)
bz 1[My] O

Hence, the PDE can be written in simplified form as

XD}z = [Z1{x(D} — CMI{x (D)} (K.19)

The solution of {X({)} can be obtained by introducing a constant {c}, where

x@)} =[xt} (K.20)

Hence, the governing equation is written as

{XDlg = [Z11x(D] = FM][x(D)] (K.21)
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Appendix L.

2D unbounded domain solution

The Scaled Boundary coordinates of the virtual circular cylinder can be expressed as
n
x,(n) = b - cos (E) (L1)

Yn(n) = b sin (%) (L.2)

b denotes the radius of the cylinder. Simplifying the equation by introducing { = k- b - £,

and is substituted into the original SBFE equation

Eo&*{a()}ee = §{a(©)}e — Ex"§{al(®)} ¢ — Eos{al®) g (L.3)

This is so that the SBFE equation can be represented in the Bessel form of partial differential
equation for ease of solution. The whole SBFE is also simplified by multiplying E,*, resulting

in

PaDl gz + HaD}g — Eg ' Ex{a(D} + {Ha(D} =0 (L.4)

On the boundary T',,, the Sommerfeld radiation condition must be satisfied, where the
evanescent modes of standing waves vanish and only the propagating wave remains. The
solution can be found by taking H,;(¢)T; as the base solution. This will automatically satisfy
the boundary condition at infinity, this is illustrated in equation (L.5) (Abramowitz and Stegun,

1964), when r — oo, the Hankel term will slowly diminish:

, o 2)-
H® (kr)~ iel(kr_ L) (L.5)
J kr
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Note that the Hankel function of first kind is selected rather than the second type, this is

because the Hankel function of first kind is able to represent the wave propagating from a source

into infinity. The vectors of the scattered wave velocity potential values a,({) can be expressed

in the series form.

m

a$@) = ) H. T = THQ)C

j=1

Differentiation of the Hankel function can be expressed as

Z_Hrj((_)’ = _Z_Hrj+1((_) + errj((_)
H, (0 = —0Hy () + {Hy, (D) = 1ty (D) +152Hy ()

Substituting these differentiation into the base function

m

a$@ = ) gty (DT, = TH, )¢

=
{ag(D}z =TH,(D'C
{ag(D}sz = TH, (D)"C

Substituting all these into the original equation

{a(D}zz + {{aDYg — Eg ' E2{a(D} + (PHa(D)} = 0

F2THy, ()'C +{THy, (0)'C = By ExTHy (DC + S*TH, (D)€ = 0

(2H @ + Tty @ = B Byt (@) + F2Hy (D)) TC = 0
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Appendix L— 2D unbounded domain solution

(_?Hrj(q_) + z_Hrj+1(<_) - UHTJ({) + GZHrj(C_) + _C_Hrj+1(c_) + UHTJ({_)

(L.15)
— By EpHy (§) + PHy (D) TC = 0
(%1 — Eo‘lEz)Hrj((_)TC =0 (L.16)
Rearranging,
(Eq"Ey = 1*1)T; - ¢;Hr () = 0 (L.17)

T; represents the vector of rank m, which corresponds to the number of nodes on the virtual
cylinder. ¢; represents the coefficient up to rank m and H,;({) is the Hankel function of the first

kind, shown as a diagonal matrix. These can be written as

T = [Ty, Ty, ..., Ty
H,({) = diag|H,, (), Hy, (), ..., Hy,, ()]

C = [Cl, Cz, ...,Cm]T

The solution to the scattered velocity potential for the unbounded domain can be written as

m

a;({) = Z(Eo‘lEz — 12T, - ¢iH,j({) = 0 (L.18)

j=1

For this equation to be valid, at any arbitrary ¢;H,;({), (Eg*E, — r;°I)T; must be zero.
Hence, to solve the quadratic eigenproblem, introduce 4; as the eigenvalues of Ej'E,.
Calculating for 7; = \/T] And T; are the eigenvectors of Ey'E,. Given the prescribed value
obtained from the body boundary condition, equations (L.19 — L.21) can be solved.

Fofela(6) + BT (a6} = | INGDY INOpIaiar

r

(L.19)
EoE{a(6)} ¢ + EyT{a(€)} = f (NG [N()]55dr

r
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Appendix L— 2D unbounded domain solution

7 , T, — T =S
Eoc;c,Hrj(o T, fr INGDITINGDIZ3dr (L.20)

Note that for a circular shape, this following equation is valid

Bob = [ NG INGDId (L21)
n
Through substitution,
¢= EokbH, (kb)'T (L.22)

1

Let H;l = m
J

And 7, is the vector of nodal normal velocity of scattered wave on

Iz.The constant C can be solved where

1
€= Ha' 75 (L.23)

Substituting equation (L.23) into equation (L.18), the solution is obtained where

m

- - - 1 -
a§@ = Y GHy(OT; = THQOC = L THOH;'T 53 (L24)
=1

This solution is valid when solving the wave diffraction of a solid circular cylinder. However,
when the substructuring is involved for cross sections of arbitrary shape, the constant C can

only be found after assembly of the domains.
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Appendix M.

2D assembly of subdomains

Superscript co denotes the unbounded domain and superscript b denotes the bounded domain.
Subscript | denotes the incident wave, subscript S denotes the scattered waves, subscript |
denotes the given boundary number, subscript e denotes the exterior boundary, subscript i

denotes the interior boundary.
Assembly of all the subdomains is carried out as follows.
(@) Assemble all bounded domains

As in the definition of total velocity potential, the total nodal velocity potential is equal to

the sum of incident nodal velocity potential and scattered nodal velocity potential.

{2} = {a? (O} +{a?(®)} (M.1)

As in the definition of total flow potential, the total flow potential is equal to the sum of

incident flow potential and scattered flow potential.

{2®}={a? O} +{a2®} (M.2)

At boundary of adjacent bounded subdomain, the nodal potential shares the same value,
however, the nodal flow potential is equal in magnitude but opposite in direction. Superposition
of the flow potential cancels each other out.

{@/ (O} ={a}11 (D)} (M.3)
{47} = ~{a}:1(©} (M.4)

From the solution process, the nodal velocity potential and the nodal flow potential is related

by

(@) = [H*(®)] {(dh®)} (M.5)
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(a5®}) = |H"(®)] (a®) (M.6)

Substituting equation (M.1) and equation (M.2) into equation (M.4) yields,

a7 O} +{a8(©} = [H° () ]{a? O} + [H* () [{a2 (D} (M.7)

(b) Assemble the bounded domains with the unbounded domain

The exterior of the bounded domains are assembled with the interior boundary of the
unbounded domain. At this adjacent subdomain, the nodal flow potential is again equal in

magnitude but opposite in direction. Superposition of the flow potential cancels off each other.

{a8(©)} ={a ()} (M.8)
{a2 (O} = —{a" ()} (M.97)

From the solution process of the unbounded domain, the nodal velocity potential and the

nodal flow potential is related by

a7} = [H*(H)Has ()} (M.10)

On the intersection of the boundary of the bounded and unbounded domains, the scattered

bounded nodal velocity potential is equal to the scattered unbounded nodal velocity potential.

[H(O)]{as ()} = [H*(§)[{as ()} (M.11)

Substituting,

{a? @)+ [H*(O)]{ae ()} = [H()){{a? (O} + [H*(£)]{ad (D)} (M.12)

Rearranging equation (M.12),

{a? (©} = [H°(O){a? (O} = [H*(E) {a2(®} = [H=(£)]{aé ()} (M.13)

{ar©} = [H*(E){a? )} = ([H*()] = [H*(E)]){as(©)} (M.14)
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The only unknown here is {a2(¢)}, hence, the solution (M.14) can be solved.

(@©} = ((H O] - [H=OD {a? ©) - (O] - =D [H*(D)){a? )

(M.15)
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Appendix N.

Analytical calculation for pile deflection

The pile deflection in this thesis is calculated using Abaqus, where the structural analysis is
carried out Finite Element analysis. This is validated and checked using the analytical results,
by assuming that the monopile acts as a cantilevered beam. The maximum deflection and slope
at free end from different loading can be calculated from equations (N.1 to N.4), using the
method of superposition together with the cantilever beam theory.

(a) Point load

PL3

Xmax = T 3pp (N.1)
PL?

emax = _ﬁ (N-Z)

(b) Evenly distributed load

wlL?*

Xmax = — @ (N3)
wl3

Omax = ~%ET (N.4)

The whole monopile can be assumed to be a cantilever beam and can be divided into different
sub beams to simplify the calculations. This is known as the method of superposition, solving
the deflection at different sections and adding them together to gain the end product.
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Appendix O.

3D coordinate transformation

Figure O.1 shows the three-dimensional coordinate separately

Transformation

Figure O.1 Three-dimensional coordinate transformation

Similarly to the two-dimensional approach, the three-dimensional transformation of

coordinate can be related using chain rule, where

0 0x 9 0y 0 0z

]
A AR T TR ©1
0 _0% 9 0y 9 0929 ©02)
on on 0x odn 0y OJn 0z '
0 _08 9 090 020 ©03)
0 9¢ dx 94 9y 0¢ 0z '

This can be represented in a matrix form, with the introduction of the Jacobian Matrix

[J(&¢,7m)] which helps to define the linear mapping of linear approximation, where
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o\ [0% 89 021,
(09?

oc| |o& o¢ o¢

Jol_[oz 95 22])0
an( " [on on %iayt (04)
a| |oz a9 oz|| @
a7) oz 3 a7l @
9% 89 02
0f 9% 0%
. 9% 9y 02
9% 8y 02
9 9 o¢

The Jacobian also applies for the three-dimensional transformations. The adjoint method is

used to determine the inverse of the function. In theory,

The inverse of [J(£,1)] can be obtained using this formula

1
ATl = Tord (adjoint of A)

First find the cofactors of each element

e . d . d e
b ) a c _ a b

Ay = b §|=Ch—bl A22=|g i|=al—cg A23=—g h=bg—ah
b c a ¢ b

A31= e f =bf_Ce A32=_|d f|=Cd_af A33: Ell e|=ae_bd

The cofactor matrix of A is

ch—bi ai—cg bg—ah

lei—fh fg—di dh—eg
bf —ce cd—af ae—bd

The adjoint of A is the transpose of the cofactor matrix

adjA=|fg—di ai—cg cd-—af

dh—eg bg—ah ae—bd

ei—fh ch—>bi bf—ce\
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Appendix O— 3D coordinate transformation

The equation is inversed to represent the Cartesian coordinate form
] 0
5| 3

0 s _1< 6#
0 0
\32) a¢)
where
JEn It
dy 0z 0z 0y 0z dy 0y 0Z 0y 0z 0z
on'9{ on a¢ 0¢&a¢ 09§ 9 9¢ an 0
B 1 0z 0x O0x 02z 0x 02 0z 0x 0z 0x O0x
det[J(&,n,]|0n 0 on a7 9§'d{ 0a¢& dy 9 on 9¢
dx 0y 0y 0x dy dx O0x dy 0dx dy 0y
0n 7 o0n d{ 0 9 0& a7 0& on ¢
[0y 0z 0z 0y 0z 0y 0y 0Z dy 0z 0z 0]
on'd{ 0n af o0& d{ 09& Al o0& on ¢ on
B 1 0z 0x 0x 0z 0x 0z 0z 0x 0z 0x Ox 0z
JEnOl|on 0 on 9l 9§ a7 98¢ d{ 9 an 9E oy
dx dy 0y dx dy dx 0Jx dy 0x 0y dJdy 0%
[0n 0 0n ' d¢ 0§97 0& 0 0& on 0¢& ond

The three-dimensional Jacobian can be written as

) 09 2 02 89\ [0z 02 02 9%\ (0% 99 09 0%
60l = (5552 5-¢) 3 5¢ 3¢ o) (o 30~ ot )
92\ (02 0% 0% 02\ (0% 35 09
3¢) 5 3~ 52 a) (3 7~
2 0% 0% 82\ [0y 0% 0%
(357~ ay3¢) (3¢ a7
0% 02 02 0%\ (0% 09 09
(3552~ 3¢ ) (50~
02 0x O0x 02\ /0y 0x O0x
pesiee s
Z 0%
an°a¢ an o¢

0z 99 99
+ a_f.a_{ a_f.
y 97 02

9" 9¢

Hence, substituting this into the coordinate transformation leads to
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Q
S
e’

0

0
35/ ©09)
09 02 0z 99 92 09 099 0z 9y 92 02 09| 0y '
dn'a¢ 9dn'a¢ 0§ 0 09&°9¢ 9&an 0& an||o¢
__ 1 |0z 08 oz o0z 020z _020% 020% 02 02|)0 |

/(&,n,O||0n ¢ dn'd{ 9§ 9 9§ a{ 9§ on 09E on||an
dx 0y 9y 0z 09 9% 0% 99 0% 8y 9y ox|| 9

on°9¢  9n'9¢ 9&a7 9 9¢ 9F an 9& anl \ag)

The terms can be substituted by the following equations
Q(E: m {) = fxb (77» {) + Xo = f[N(U: ()]{X} + Xo
Y& =8y, +yo =SINM DIy} + o
ZA(ff n, Z) =2Zp (T], Z) + Zy = [N(U: ()]{Z} + Zo

Xe=x,(n,¢) = [N(n, {)I{x}
X =&xp(0, Oy = EIN(M, Oy {x}
%:=8xy(, O =N, O] {x}
(0.10)
Ve=yp(1,0) =[N(@ ONy}
Im=Eyvp(M, O =EINM, D],y ¥}
V=8, O =§IN(M, O].¢ {v}
26=0
Zy =2, )y = [N(m, D)y {2}
Z;=2,(0, 0 = [N(m, D¢ {2}

From the original text in Chapter 3, it is shown that the following relationships are valid

J?,§=O ; )7,<=0 ; 2,n=0 ; ZA,5=0

Substituting these into the Jacobian
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The determinant is written as

. _02(0% 0y 0y 0%
V(& n. 0| = &(a_fﬁ_ﬁﬁ)
(0.12)
JEND| =201, 0Dg (1,0 E¥ 1, D= ¥ 1, 0). Ex, (1, O,y )
|j(€: n, C)l = Ezb (77, Z)i( (xb (77: () Vb (77' ()'n_ Vb (77' () Xp (T]' ()rr) )
The inverse of the Jacobian can be written as
r 0y 0Z dy 0z 0
o 9&ar
Kemo]t = L__| 0802 03 02
UG Ol =ga ol "mac oo 0
0 0% 99 09 0% (0.13)
| a¢ oy ¢ on
oM ODmze(m g~y (M2, )ig 0
= TG0l —$xp(M, Dz e XM,z (M, ()¢ 0 ‘
o 0 0 Exp (M, Y1, O)y— $yp (1, Dxp(, Doy
By substitution and bringing out the ¢ function,
(2) (2
% [ Y0, 26,0 =Y, (0, D2p(1, )iy 0 11 9%
éj—yﬁ - m|—fxb<n, D260y X025, O 0 | %%E (0.14)
2 | 0 0 &2, 9y, (1,9, = E3, (. DX (. 9,y | l aJ
a2 ac
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Appendix P.

3D shape function

The shape function is introduced as in the FEM, in order to transform the system into a local
system representation. It is also known as the interpolation function. The approximation is
executed by using a selected set of shape functions that is appropriate, depending on the
accuracy and the geometry that needs to be defined. According the BEM, the spatial dimension
is reduced by one and the approximate function can be written using the nodal values with an
eight noded surface shape function.

The approximate solution of ¢ from the derived general equation using the Green’s identity
function can be evaluated using the surface shape function. Every element can be represented

by eight nodes, and the quadratic local element shape function can be graphically represented

Figure P.1 Eight noded shape function
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1 1
Ny =Z(1—n)(1—6) _E(N8+N5)

Ny =5 (1 +n) (1 —¢) =5 (Ns + Ne)

T4

N3 =5 (1401 +¢) =5 (Ng + Ny)

Ny=5(1=m(1+) =5 Ny + Ng)

T4

Ng=2(1-n2)(1-9)

T2

(P.1)
Ng==(1+m(1—¢?)
N, =51 =) (A +9)
Ng=5(1—m(1—7?)

The approximated function is obtained with the sum of the shape functions [N(n, {)]

weighted by the radial nodal values {a(¢)} as in equation (P.1). The shape function can be

tested for validity by substituting the value of n and ¢ into each nodal point:

Table P.1 Validation of three-dimensional shape function

n g N4 N, N3 N, Ns N N, Ng
-1 -1 1

1 -1 1

1 1 1

-1 1 1

0 -1 1

1 0 1

0 1 1

-1 1 1

The approximate velocity potential is written as

$a(€,n,9) = [N(m, OD11{a($)1} + [IN(m, OD21{a(§)2} + IN(m, O)3l{al(§)s}
+INM, O)al{a(§)s} + [N(n, Osl{a(d)s} (P.2)
+ [N, Osl{al$)e} + [N, O)7{a($)7}
+ [N, Dgl{al$)s}
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And can be simplified as

8

BaE1,0) = ) NGO ) (°3)

i=1

Applying the general polynomial, the approximate solution can be written as

¢a(§,m,¢) = [N, H]{a(©)} (P.4)

where

[N(m)]

P.5
= [N:(1,{) N.(n,{) N3(1,0) Ny(m,$) Ns(n,{) Ne(n,{) N;(m,¢) Ng(n,{)] 7-5)

And

{a(©)} = {a1() a2(§) az(§) as(§) as(§) as(§) as(§) ag(O} (P.6)

In the same manner, the weighted function can be written as

wa(§,1,0) = [N(m, OHw(©)} = {w(OY [N(, DI (P.7)
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Appendix Q.

3D weighted residual

The governing equation for the three-dimensional case study is the Laplace equation.

Vip(x,v,z) =0 (Q.1)

To solve this, the residual function can be written as

72¢(x,y,2) = R(x,y,2) (Q-2)

The weighted residual method can be used to solve this second order ordinary differential
equation. An approximate solution could be used to calculate the solution, where the residual

error can be minimised by multiplying a weighting function and integrating over the whole

domain.

]JJR(x'y:Z)-W(X:y.Z) dxdydz = 0 (Q.3)
Q

For equation (Q.2) to be valid at all times, the residual R (x, y, z) must approach zero. This

is done by following the procedures and steps in (Wolf, 2003). For simplicity, the differential

equations is written as,

¢ ¢ ¢ 2% 0% 0%
_=¢1x;_=¢;y;_=¢;Z;_2=¢’xx;_2=¢;yy;_2
0x dy 0z dx dy 0z
¢
- ¢’zz ’ % - ¢ﬂn' (Q4)
ow 0w ow .azw_ _82w_ .azw
ax gy T Wwigy T W gar T Wk Gua T Wy G0

=W,z
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Appendix Q— 3D weighted residual

The whole three-dimensional domain is represented in the three integrals for Q, while the
surface boundary is represented as double integrals represented by I'. Substituting equation

(Q.2) into equation (Q.3), the weighted residual function is written as

f f fﬂw(vch) dxdydz = 0 (Q.5)

The following few steps show the mathematical derivations to derive the general equation
in the weighted residual form. Using integration by parts, the governing equation can be further

derived,

j j fQW(VZCI)) dxdydz = 0 (Q.6)

fffngb,xxwdxdydz + f f fﬂd),yywdxdydz + f f fﬂq,'),zzwdxdydz .7)
=0

j ] ]Q(W Prx ) dxdydz — j J JQW:x ¢,x dxdydz

t [ [ ] won)yxvaz— | [ [wy,dxayaz (@8)

+ j J JQ(W ., ),z dxdydz — f J fﬂw,z ¢,, dxdydz = 0

According to the Green’s identity and divergence theorem, the volume in the three-

dimensional space has piecewise smooth surface boundary I" as illustrated in Figure Q.1.

IJJQ(V. F) dxdydz = ﬁgp(F. n)dr Q.9
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Figure Q.1 Divergence theorem (Arfken, 1985)

By integrating the boundary in an anticlockwise direction, the whole domain is integrated.

# Qowdl — j f f W,y @, dxdydz — j J J W,y ¢,y dxdydz
r Q Q

—fffw,z ¢,,dxdydz =0
Q

(Q.10)

Rearranging the equation and bringing it to the other side yields,

—#cp,nwdl“:o
r

fffﬂw,xq.’),x dxdydz+fffﬂw,y¢,y dxdydz+fffﬂw,qu,zdxdydz ©0.11)

All the boundary conditions in the case study as presented in Chapter 3 are included,

a.

Free surface boundary conditionat z = 0 on I}

0p(x,y,2)  w?
0z

Bottom seabed boundary conditionatz = —h on I,

d¢p(x, y,z)
oz Viem=0
Body boundary condition on I},
LG T p— b =7
an n» m n

Sommerfeld’s boundary condition at x = o0 on I,
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lim

T—00

T (W —ikdp(x,y, Z)) =0 (Q.15)

The boundary conditions are substituted into the residual equation (Q.11),

fffw,x¢,xdxdydz+fffw,yqb,ydxdydz-i-fjJW,ZQI),dedydz
Q Q Q

— b k*pw dr; — # Owdr, — # Tow dl', =0 (Q.16)
ry, I

The first three parts that integrates the volume are combined and expressed as

kz(l)W d['f_# ﬁnW de

.f f f W:x ¢;x+ W!y ¢1y+ W’Z ¢’Z dXdde -
? ry (Q.17)

=0

ry

The gradients can be written as
— a -
dx
v=|2| e [i 9 i] (Q.18)
dy dx 0dy 0z

0
¥

And the first term in equation (Q.17) can be represented as

o
VIwVg = [Wix Wiy Wy [cp,y] = W Pt Way Byt Way by (Q.19)
b,

Hence, the weighted residual function is obtained as

T — 2 r —# 7 r, =
jjjﬂv wVe¢ dxdydz rfk dw drI'; FUan » =10 (Q.20)

b
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Appendix R.

3D divergence operator in the SBFEM

From Appendix O, the new coordinate in any part of the domain can be defined as

j

l

dy 02 0z 09y 02 0% O0x 0z 09?_037_037 0X7 (0

1 an d¢ dn ¢ an d¢ an ¢ on d{ on 9¢||aE

1102 99 9y 82 0z 82 92 9z 8y 9% 9% 99| 0

(T UI|ag 9¢ 9 ac 9 ac o€ ¢ a¢ a¢ ot ac||am[ RD
J 09 92 02 99 02 9% 0% 0z 0% 9y 09 0z|| 0
9 9n 9% 9n 9¢ on 0Z on 9% oan 0¢ oyl \a¢

SIS«

All these simplifications that are used are in-line with the previous work so that a consistent

methodology development can be achieved. The divergence operator is represented as

d 0 0
V=§+@+£
1 dy 0z 0z 0y\ 0 0z 0dx 0x 07\ 0
=m<(%'a—c‘%'a—z)a—f+(an'a—z‘%'a—cm
9% 9y 9y 0\ 9
(%'a—c‘%'a—e%—z)
+1<(§.@_@.§)i+(@@_@@)i
IJI\\o¢ a¢ o0& a¢/as \o¢ a7 09¢ a{/on (R.2)
9y 9% 9% 9%\ 0
(a—s'a—z‘&'a—z)a—c)
+1<(@ﬁ_%.@)0 (2.2 % 28y 0
|JI\\o& on 09& on/o¢ \d& on 0§ oOn/on

The & represents the radial direction and is not discretised, only the n circumferential
direction is discretised. Hence, only the boundary is transformed and the coordinates on the

boundary are represented by (x;, y,, z,). Therefore, the scaling equation can be represented as

X=x0+sx,(,0) 5 Y=y, +Eye(,9) 5 2= 2o +2,(n,9) (R.3)
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Appendix R— 3D divergence operator in SBFEM

Hence, the derivatives are expressed as

9x(n, ¢) 9y, ¢) 9z2(n,{)
an = Exb(nJ ()»n ) a—n = fyb(n: ()lr] ) 077 = Zb(n' z)m
0x(n,¢) 03,9 _ 0z, Q)
9x(n, ¢) 9y(,4) 0z(n, )
a7 =&x,(1,)i¢ s “or =&y, Dy B =z,(1,{¢

Substituting these simplification into equation (R.1) and the Jacobian, the following is

obtained
)
i
3
a

(9)
90, O 20, D= 20, E36 (0. D 260Dy 800, D= . D20 D G000, Dt £ 0, D= E96 0Dy £ (0,00 | |
I]I[ 0.8y, (n D=y, 2,1, ¢ X, (1,92, (1, 0= 0.8x, (1, )¢ Yo (1,0 §x, (0, Oe— 2, (1,0)-$yp (1, D¢ ]

Y (1,9)-2,(1, )y — 0.8y, (0, Doy 0.8, (1, O e— 2,1, ). 2,1, Oy %, (1,0)- v (1, Doy = ¥ (1, 0. €6, (1,

[

|

“‘I@@‘\WQ’I@

(R.5)

9 {
19|
a¢)

where

Ul = €y D26 o= 261 Dy - E¥p (1, Doz ) (x5 1,025 (1, O
—0.8x, (1, 0oz ) (6 1, 0)- E¥p (1, D= ¥ (1, - Ex, (1, Oy )
+ (251, Oy - Ex5 (1, ¢
—&xp (1, D - 2610, ) W (1, 0. Ex5(1, D¢
— x5, 0. &7 (1, Oc ) 6 1.0 21, Doy — 0.8v, (1, Oy )
+ (Exp (1, Doy - Evp (M, Dz
— &V, Doy - Ex5 (1,01 ) (0. €y, (1, )¢
— ¥ (1,0)- 25 (1, 0z )(0.Ex, (0, Dy — 251, 0)- 251, Oy )

- (Zb M,y - Exp(M,0)ig— Exp (1, Doy - 2 (M, O)ig )(0 Evp(m Qg (R.6)
— ¥ 1,0)- 251, 0z ) (o1, O Evp (1, Doy

— ¥ (1,0)-Exp, (11, )y )

- (S()’b (™, f)»n zp(M, f);q

— 251, Oy - €V (1, Do ) 7 0, 0)- x5 (1, Oz

— % (1,0)-Eyp (1, iz ) (0. €5 (1, ODoy— %61, 0)- 25 (1, Oy )

— (&xp (1, Dy - Sy, Dz

—&yp (1, Oy - Ex5 (1, g ) (X 1,0 25 (1, D¢

— 0.8, )t )75 1, 9)- 251,y — 0. &9, (1, D)

Hence,
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( 0 \ ( i\
[ a
aax N A 0 . 66
— = X, Ze X°Z, 0 {——1% (R7)
EE T ‘ £ an
a2 \ 9/
The divergence operator on the boundary can be simplified as,
V= d N d N d
0% 9y 0%
1 d 1 10
:m(y,n.z,(— y.z,() |]| ( Xy ,(+x Z'()fa (R.8)

1 0
k)5

New variables are introduced to simplify the equation, where

1 (Ym %2 1 (7 Z'c 1 0
{bs(m} = |]|{ x»n'Z’c}: by () = Ill{ } bs(n) = IJI{ 0 } (R.9)
0 0 XY= ¥-Xom

Hence, the divergence operator can be represented as

V= {bl(n)}a—€+ f{bz(m} +{b3(n)}a% (R.10)
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Appendix S.

3D SBFEM derivations

Obtaining the general solution using the weighted residual function and the appropriate shape
function, it can be defined in the scaled boundary form. The infinitesimal area is derived from

the graphical representation and the divergence operator is used.
Appendix E; dQ = dxdydz = |]|.d¢.&dn.d{
Appendix P; &, (&,m) = [N(, HHa(@)} s wa,m) = w(OY IN(M, O]
Appendix Q; [ [ [, V'wV¢ dxdydz — qjirf k*pw dI; — gﬁﬁrb v,wdl, =0
ix R: V= 2,1 2 2
Appendix R; V= {b;(n, )} Py + ; {b,(n, O} o + {bs(n, O} PYe
The approximate velocity is given by

vy =Vy (S.1)

The variables in the velocity potential can be separated. Substituting this into equation (S.1),

where
d(x,y,2,t) = dp(x,y,z)e ot (S.2)

vy = Vo (x,y,z)e" @t (S.3)

Excluding the time term e~*t and substituting the previously derived parameters in
Appendix E,P,Q and R yields,

va = V(x,7,2) 54
o a9 0
v = (551 35+ 5) V@ Ola©)) (55)
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0 1 d 0
Uy = <{b1(77, O}a_f + E{bz , Z)}% +{b3(n, C)}a—€> (N, OHa(©)})  (S.6)

0 1 0
vs = {hi(n, ()}[N(H,C)]{a(f)}& + E{bz(n, ON @, Z)]{a(s‘)}%
(S.7)

4]
+{b3(n, O}N (O, C)]{a(f)}a—(

1
va = {b1(, OIN(, Oa(©)}e + E{bz(n: OIMN®, D] 4{al$)} .9)

+{b3(, O}IN(™, D] c{a($)}

Introducing new variables to simplify further, where

[B2(m, O] = {b2(n, N, ] s (S.9)

Substituting the new variables, equation (S.2) can be rewritten as
vA = V(I)(X, y' Z)

1
= [B(0. OHa(©lg + 7 [B2 01, OHa()} + [Bs (. ONa(©)} (S.10)

Substituting the divergence operator and the shape function into the general weighted

function, the following is obtained.

d 1 d d
V={b;(m, O}ﬁ + E{bz(n, f)}% + {b3 (U'O}G_C (S.11)
ViwVodxdydz — k%¢p) dIl; — vwdl, =0 S.12
fffﬂ wV¢dxdydz ﬁfW( ®) f ﬁbvw b ( )
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Appendix S— 3D SBFEM derivations
1
| [ ] (im0 n0weene + 82 00wy
Q
T
By DIW©)}) (B, DN}

[B2(n, O1{a()} + [Bs(n, Z)]{a(s‘)}) di (S.13)
(W@ NG, OID (K2 (IN (1, ON{a©)D) dIf

f

- # B (W@ NG, OI7) dIy = 0
r

b

+

—

+

W

SS

The boundary I denotes the free surface boundary, enclosed by the surface ¢ and n, which
can be written as I's,. The boundary I}, on the other hand denotes the body boundary, enclosed

by the surface n and ¢, which can be written as I};. Introducing new infinitesimal area yields,

f f fn([Bl(’% OI w(@©} " [B:(n, Olal®)} ¢

r1
+ [B;(, DITw(©)} ¢ 7 [B2(n. Ol{a()}
+ [B1(, OITw()} ¢ [Bs(, DI{a(d)}

1
+ E [B,(1, DI {w (Y [B1(, H{a(é)} ¢

1 1
+ 1B, OF @Y 5 B2, ONa©)}

e [B2(n, OITw ()} [B:(m, )]{a(€)} (S.14)

§
+ [Bs(n, O {w(} [B: (0, D Ha()} ¢

+ [Bs(n,i)]T{W(f)}T%[Bz(n, ONHal®)}
+ [Bs(n, O {w(} [Bs(n, Z)]{a(f)}> 71§d§dndd

- f L_ W@ NG, OTK(N @, ONa@©DE e |dedn
n

- wW@OYINM,OI"9) dl, =0

I'p

On the boundary of the free surface boundary I%, the value ¢ is always +1. Introducing the

coefficient matrix to simplify the equation,
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[Eol = L fn (B (n, 1T [By (1, D11 1y d
[£,] = L fn [B,(n, I B, (1, )11 Ik g
[E,] = L fn [B,(n, I B, n, 11/l g
(3] = L fn (B, (n, T B3 (n, 11/l dg (5.15)
[E,] = L fn [B,(n, I (B3 n, )11/l dg
[E5] = L fn [B(n, I B3 n, )11/ ldn dg

=

] ([N, + DI AN @, + DD ey |dn

Il
=

Substituting the coefficient matrix into equation (S.4) yields,
J ((esto e ta@n + T @3 gty
+ BV @) + £ [EHw OV e
+ 2 [EIWOF Ha©) + £ EIW O e©)
BT w(©Y {a(©)) s + [E4]T{w<f)}T§{a(f)} (5.10)
B O @) Vigds ~ | @Y keIMolaoleg
- ﬁi O INGOT ) dry = 0

All terms containing {w(¢)} ; are integrated using integration by parts. Integrating the first

term in equation (S.5),

L (Eo)w(©)) ¢ {a(6)) ¢£0¢

fuvw' =uvw —f u’vw—fuv’w

Let: u=¢&;v="{a(®}sw' = {W(f)}.é’T

Hence : u' = 1;v" = {a(O)} g ;w = {w(©)}
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L [Eal(w()} ¢ (a(9)) 60

= [Bolé(a(®)} ;w5 - j; [Eol{a(O}sw(OYog o

- L [Eo)(a(©)} ¢ (w(©))T€0E

Integrating the second term, ff [E,]" % {w(f)},gT{a(E)}EGE

fuv’ =uv —fu’v

Let: u={a(®};v' = W()}¢'
Hence : u' = {a(§}s;v = {w(§)}"

L E ] w(©)} ¢ (a()}oe

T T (Se T T (S.18)
= [E1] {a()} WO} | _L[El] {a(§)}elw(§)} 0

Integrating the third term, fE[E3]{w(E)}IET{a(§)}§a§

juvw’ =uvw —j u’vw—fuv’w

Let: u=¢&;v={a(@}w =W}
Hence : u' = 1;v" = {a(§)}¢;w = {(w(&)}"

L ES1w(©)} ¢ {a(©)}é0¢
= [B)E{a@w(©OY | — L EHa@W @Y% oo

- L (B (a(©)} ¢ w(©))T €08

Substituting the integrated equations back to the original governing equation yields,
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[Bol§{a(®}ew (Y 1% + (B (a(O)} (w(OYIE

+ B a(@YwE©Y I

+ L (-~ Ha(@} 0w ()T = [EoHa(} g w()7¢

— [E1]"{a(©)} e w(D} — [Esl{a(OHw (D}
—EsHa(O}ew(O} + [E1l{w(©)} {a(D)} ¢

1
+EJwO) 7 a©) + [E]wO) (a(©)
+ BT WY @) + B WY a(©)
+ LB W) (a(©))) ¢ - L (WY KMo} a))dg

(S.20)

~§ OOV INGLOV5) dry = 0

simplifying equation (S.20), the following is obtained
[EolE el L (YIS + (BT (a(©)} tw (O I
+ B 6@ OV
+ | 0@ (~IEa©Y ~ [Folae) o8
— B () ¢ — [B:){a() — £[E:a©))g (s21)
+ B + (B2 @©) + [E](a)
+ E[ET(a(O) ¢ + [ETa(©)} + ELEN{a(e))
~ KEEMOa() 06 - ff (O INGL OB dy =0

Expanding all terms yields,
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[Eo)ée{a(§e)} elw (€D} + [E1]"{a(€)} (w(E.)}"

+ [Esl§e{a) W)} — [Eol§i{a(§} e W€D}

— [E1]"{a(€)} w (DY — [E5)§i{a(§)}w(ED}T

— wE) f f (NG, 1)l Je|dndg
¢n

W& f f (NG OT7 )Tl |dndg
¢Jn

+ L WY (~[Bl(@®) e — [Fol{a®) 6 (.22)
— [EJ™{a()} ¢ = [Bsla()} - §[EsHa))

# B + [B:] £ @®) + [E](a)

+§IETT (@) e + (e} + §EsHa)

— k2§ [Mol{a(§)}) 9§ = 0

In order to satisfy all terms of weighted function in equation (S.8), the following equations
have to be satisfied:

[EO]Ee{a(fe)},f{W(Ee)}T + [El]T{a(fe)} {W(Ee)}T
+ [Eslée{a(§) Hw (&)}

(5.23)
— WY L [ @@ Tyl dnag = o
n

—[Eol&i{a(€)} e iw(&)} — [E1]"{a(€D} W€D} — [E3l&{a(EDHw(EDY  (S.24)
= (" [ [ NG, 1|yl dnds = 0
¢Jn

L{W(E)}T (—[Eo]{a(f)},g — [Eol{a(©)} g — [E1]"{a(O)} ¢ — [EsH{a(©)}

1
— §[EsHa(©)} g + [E1l{a(©)} ¢ + [E-] E{a(f)} + [E4]{a(§)} (5.25)
+{[Es]{a(©)} ¢ + [Eo]"{a()} + E[EsH{a(©)}

— K% [Mo)(a()}) 2§ = 0
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For any arbitrary weighted function, equation (S.25) must be satisfied, and simplified in
equation (S.26)

[Eolé{a(O}ee + [Eol{al©)} ¢ + [E1]"{a(D}e + [EsHa(E)}
+$[EsHa(©)}e — [E1l{a(§)} s — [E-] g{a(s‘)} — [Es]{a($)}

— {[Es]{a(©)} ¢ — [Ea]"{a()} — §[EsH{a()}
+ k2§ [Mol{a(§)} =0

(S.26)

[Eolé{a(®}ee + ([Eo] + [Ex]" — [Ex] + §[Es] — §[Es] D {a(}e

1
+ (—[EZ] 7+ [Bs] = [Ea] =[BT - §[Es]
(S.27)

+ K26 [Mo]) (a(©) = 0

These following equations must be valid to set the residual function to zero:

[EO]Ee{a(Ee)},E + [El]T{a(Ee)} + [E3]€e{a(€e)}

S.28
_“(ﬁ"[’v("' O Jngldndg = 0 (S.28)
n

EoJE{a(€D) ¢ — [E]T(a(€)} — [Es)eda(€)) (5.29)
- L f G INGL DT el dndg = 0
n

[Eolé{a(©)} ge + ([Eol + [E1]" — [E1] + §[Es] — §[Es]){a()} e

1
+ (‘[Ez] z + [E3] — [Eq] — [E4]" — §[Es] (5.30)

~ k%€ [Mo]) (a(©) = 0

The flow potential can be represented as

{a(©)} = [Eolé{a(®}efw (O} + [E1]"{a(©)} {w(D)}

(S.31)
+ [E3]é{a(@)Hw ()}
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Equation (T.14) and (T.15) can be represented as
@& = | | @INa.OI|yldnds (532)
¢y
@) == [ | @INe O |l ang (5.33)
¢n

For both &, and ¢&;,

[Eolé{a(}ee + ([Eol + [Ex]" — [Ex] + €[Es] — §[Es]{a(©)}e

1
+ (_[Ez] et [E3] — [Es] — [Ea]" — ¢[Es] — kZE[M0]> {a(®) (:34)
=0

This equation is termed the SBFE equation.
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Appendix T— 3D SBFE solution
Appendix T.

3D SBFE solution

This appendix elaborates the steps needed to solve the 3D SBFE. From Appendix S, the
governing equation and the boundary conditions in term of the Scaled Boundary coordinate is

derived.
[Eolé{a(®)}er + ([Eol + [E1]" — [Eq] + §[Es] — ¢[E5]M){a(®)} s

+(_[E]1+[E]—[E]—[E " = ¢[Es]
25 3 4 4 5 (T.1)

~ k%€ [Mo]) (a(©)) = 0

And the flow potential is represented as

{a(©)} = [Eolé{a(D}e + [E1]{a(©)} + [Esléfa(®)} (T.2)

The equation of the flow can be calculated from the prescribed value obtained from the

incident flow
(&)} = f f @GN, DTy |dndg (13)
¢ In
(@)} = — f f G INGL OT7) el dndg (T.4)
{7

The SBFE equation represents the external boundary &, and the internal boundary &;. The
region from the scaling point to the boundary of the cylinder where ¢; = 0 and ¢, = 1 is not
considered as there is no flow in this region. To solve for the velocity potential in the domain
from the body of the cylinder to the infinite end from the cylinder, where region is bounded by
& = 1and &, = oo. From this, the domain can be solved analytically in the radial direction by

specifying the scalar of & between 1 < & < co.
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The detailed unbounded 3D SBFEM solution is shown here.

§2[Eol{a(©)} ge + E([Eol + [E1]" — [Ex] + §[E5] — E[Es] ) {a(D)} ¢
+ (=[Ez] + §[Es] — [E4] — §[E4]" — §2[Es] (T.5)
— k22 [MoD{a($)} =0

From the numerical calculations, the following relationship is obtained, where

[E{]1=0 (T.6)
[Es]1=0 (T.7)
[E,]-1=0 (T.8)
[Eo] M [Eo] -1 =1 (T.9)

Hence, the SBFE formula can be simplified to

§EoH{a(©)} ge + [El{a(D}e + (—[Ea] — §2[Es] — k2§ [MoD{a(9)}

(T.10)
=0
Both sides of the equation are divided by [E,], giving
§2{a(®)}er +&E{a(®)} s
+ (=[Eol *[E2] — §2[Eo] *[Es] — k?$2[Eo]  [MoD{a($)}  (T-11)
=0

The vectors of the scattered wave velocity potential values {a(é)} can be expressed in the
series form, using the Hankel function as part of the base solution, by derivation in term of &,

only the Hankel function is affected. Both the T and C terms are constants.
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Appendix T— 3D SBFE solution

m

(@O =) GHy (T = TH, (§)C (T12)
j=1

(@O} = ) Gy, ()T, = TH, ()'C (T.13)
j=1

(@O = ) GHy, ()T = TH, (§)"C (T.14)
j=1

These are substituted into the main SBFE equation, where
m
> (£26H ©"T; + g6y, @',

j=1
+ (=[Eo] ' [E2] — §*[Eo]~*[Es] (T.15)

— K2E[Eo] " Mo]DeHy ()T ) = 0

Bringing out the common terms T; and c; yields,
m
> (62H,, ()" + M, (&)
j=1

+ (= [Eo] M [Es) — €2[Eo] [Es] (1.16)

— K2E7[Eo] " [MoDH, () ) Tye; = 0
The differentiation of the Hankel function, H,.;(£), has the following properties, where

erj(f), = _erj"'l(f) + UHrj(E) (T.17)

§2H, (§)" = —§2H, (§) + €Hy 11 (§) — 1iHy, () + 12 H,. (©) (T.18)
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Appendix T— 3D SBFE solution

Substituting equations (T.17) and (T.18) into equation (T.16) yields,

D (=82He, @) + EHy 1 () = 13 () + 177 Hy () = €Hr 1 €)

j=1
+1:Hy (§) (T.19)
+ (—[Eo] ' [E2] — &%[Eo] ' [Es]

— K2E7[Eo] " [MoDH, () ) Tye; = 0

Simplify the equation (T.19) yields

> (=82, @ + 172H, ()
j=1
+ (—[Eo] M [Ey] — €2[Eo] [Es) (T.20)
— K2E2[Eo] " [MoDH, () ) Ty = 0
The common Hankel function is brought out
D (=714 121+ (LB ) — §21Eo] [Es] — KE2[Eo ] [MD) T,
j=1 (T.21)

’ Hrj(f)cj =0

For any chrj(E) to be valid, the following must be satisfied

(1721 + (—[Eo] " [Ea] — €2[Eo] ™ [Es] — k2§2[Eol M [Mo] = §21)) Ty =0 (T22)

Rearranging (T.22) to be in the same form as the two-dimensional solution gives,

(([EoI[Ex] + &2[E] ™ [Es] + k2§2[Eo] M [M] + §21) = 1,21) Ty =0 (T.23)

(T.23) is an eigenvalue problem where

201



Appendix T— 3D SBFE solution

A; represents the eigenvalues for [Eo] ™ [E,] + E2[Eo] ' [Es] + k*&2[E] ™' [Mo] + &21
And T; are the eigenvectors of ([Eo] ™' [E,] + E*[Eq] 7 [Es] + k*E2[Eo] ™ [M,] + €21)

The body boundary can be rewritten by using the flow potential relationship, where the
normal velocity can be represented in the Scaled Boundary coordinate using

@) = - f f @GN G1, OT) e |dndg (T.24)
¢Yn
(@)} = [Eo)e{a(e)s + [E]™{a(€D) + [Es]E{a(€)) (T.25)

[Eoléi{a(€)} e + [E1]"{a(¢)} + [E5lé{a(é)}

T.26
= —LJ([N(U,Z)]Tﬁn)|]nc|d77d5 e
i

Substituting the relationship of equations (T.6 — T.9) into equation (T.26), the equation is
reduced to

(@(©)} = [Eola@®)} s = - L f (NG, O 50 || dndg (T.27)
n

The velocity potential is represented in the form of equation (T.12 — T.14), substituting into

equation (T.27), the constant C can be obtained

£0l Y, 6T = = || (NGO 8 chanag (7.28)
j=1 K
(Bl ©C = = | | (NGO 5 el (T.29)
¢Jn
€ = Ha(®) T [E] (— [ [avan <>]Tﬁn)|1,,<|dndc) (T30)
¢n
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Hy(§) = diag[H,, (&), Hy, (§), ..., H, (£)]. Substituting the constant C from (T.30) into
(T.12), the potential value of {a(&)} is found, where

{a(f)}=THT,-<E>Hd'1T-1[Eo]-1<— L f ([N(U'Q]Tﬁn)lfnzldnd(> (T.31)

i

(@(©)} = THA(E) T [Eo] ™ (— f j ([N(n,orﬁn)l/ngldndz)

¢In (T.32)

He () Hey@)  Hpp (O
Hay, @) Hay®' '™ Hapy (O

Let H,(§) = diag [ , and introducing a parameter S to simplify

the calculation yields,

s=<j f ([N(n,i)]T)llnglan) (T.33)
¢Jn

Hence, the potential values can be expressed as

{a(©)} = —TH(OTE]™*S - 7n($) (T.34)

203



Appendix U- 3D SBFE solution for floating structure

Appendix U.

3D SBFEM solution for floating structure

Solving scattered velocity of the outer domain follows the procedure that was previously
described, hence,

(@5} = D GH,OT, = THEC = ~TH(OT B So  (U.)
j=1

(@) = ) GHy(OT; = THEC = ~TH(OT Bl 'so85  (U2)
j=1

From the boundary conditions, equation (5.28) can be solved to obtain the scattered velocity

potential of the inner domain.

Tno + a1(§) = —iGok(¢1 + a1 (§) — pg — ag (¥)) (U.3)

Upo + () = —iGok(¢] + a,(§) — b + THL ()T [Ep] 1 STE} (U.4)

The equation is rearranged to obtain the constants
=Bl

_ P %
—¢1 + ¢ — THa (T [Eol ™' STRo — 775
iGok

1

(iaok + 1)

Substituting back the constant into equation U.1 and U.2, the potentials can be solved.

C' =) (O
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a(§) = ) ¢} (OT;
j=1
> ub
4+ b - THLOT B st — 2\
=T) (| J, T T :
(o + 1)
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