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Abstract 

 

Many offshore structures have been installed to harvest resources in the ocean. These large 

structures undergo several experimental and numerical tests before they are constructed. A 

reliable and efficient analysis tool is therefore crucial to this industry. Many methods have been 

introduced; each offering different advantages while providing the solution, as well as suffering 

from certain limitations.  

The scaled boundary finite element method (SBFEM) was developed to solve engineering 

problems. This particular method combines the advantages of two commonly used methods in 

the offshore industry, the Finite Element Method (FEM) and the Boundary Element Method 

(BEM), making it a suitable semi-analytical approach that requires less computational time 

while satisfying the boundary condition at infinity. Several attempts at using this method to 

solve the hydrodynamic problem have been executed with great success. However, there is still 

much room for further development.  

The first part of this thesis discusses further application of the two-dimensional SBFEM, using 

the proposed advantages by manipulating the position of the scaling centre to solve for more 

complex geometry. This methodology has also been extended with an integrated model to 

evaluate the wave-structure-soil interaction examining offshore monopile deflection.  

The second part of this thesis develops a three-dimensional (3D) SBFEM model. General 

formulations in the Scaled Boundary coordinates for the 3D SBFEM model have been 

developed and are presented in detail. Case studies have been carried out demonstrating the 

validity and efficiency of the 3D model. These developments are important in allowing 

extended usage of the methodology to solve more complex problems such as wave interaction 

with floating offshore structures.  

Due to its clear advantages in computational efficiency and accuracy, the extended SBFEM 

model can be applied to engineering problems in hydrodynamic analysis for more complex 

wave-structure interaction in the offshore industry.  
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Chapter 1  

 

Introduction 

 

 

1.1  Background 

As the quality of life for much of the world’s population increases, the demand for energy also 

rises. From 2000 to 2013, total world energy consumption increased 1.5 times, with a steady 

increase from about 8800 Mtoe to about 12700 Mtoe (Energy Academy, 2014). Energy can be 

obtained from several different sources, and can be categorised into non-renewable and 

renewable energy. Non-renewable sources, which include fossil fuels (oil, gas and coal) and 

nuclear energy, are non-sustainable sources and may run out in the future. Renewable energies 

are sustainable sources such as wind, wave, and solar that are more environmentally friendly.  

To meet increasing world energy demand, some countries are moving towards offshore oil 

and gas as part of the solution while other countries such as Denmark, Germany, and China 

(REN21, 2014) are moving towards offshore renewable sources or both. There has therefore 

been significant investment in both research and engineering in the offshore energy field over 

the last 40 years. Due to the limitations of production and a lack of suitable conditions onshore, 

the harvesting of energy has slowly moved offshore over time. Known offshore resources 

currently produce 30% of the total oil and gas supply (Brakenhoff, 2015). The first offshore oil 

well was drilled in 1898 in California, in the Summerland oilfield, situated 90 meters from 

shore. The discovery of offshore oilfields continues and with advances in technology, it is 

possible to obtain energy from previously inaccessible locations. For example, the ultra-

deepwater dynamically positioned drillship ‘Atwood Achiever’ manufactured by Atwood 

Oceanics can drill at water depths of up to 3600 m (AtwoodOceanics, 2015). Shell’s giant 

Olympus deepwater tension leg platform (TLP), used to assist in offshore oil and gas production 

in the Gulf of Mexico is shown in Figure 1.1 (left) while the picture on the right shows an 

offshore wind turbine from the Thornton bank wind farm, Belgium, used to harness energy 

from the wind.  
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In order to harvest the variety of offshore energy resources, new developments and novel 

designs have been introduced for offshore installation, exploration, production, storage and 

loading. An important point to consider when installing a large structure offshore is the 

interaction between the structure and the surrounding seawater. In addition, safety, accuracy, 

efficiency and cost all need to be taken into account.  

 

Figure 1.1 Offshore structures for non-renewable energy (left), and renewable energy (right). 

Offshore structures can be regarded as large structures positioned in the water, which must 

be able to withstand local environmental conditions. Depending on the configuration, offshore 

structures can be characterised as either fixed or floating structures. In the oil and gas industry, 

examples of fixed platform structures are jackets, gravity based, compliant towers and guyed 

towers. One of the earliest deployed fixed offshore structures was located 1.6 km offshore from 

Calcasieu Parish, Louisiana, in water at a depth of 4.3 m, which was built in 1937. In 1947, the 

first fixed offshore oil platform that could not be seen from the shore was also constructed in 

Louisiana and this is considered to mark the beginning of the offshore industry. Today (2016), 

the deepest fixed offshore structure is the Chevron Petronius tower, which is a compliant piled 

tower design for use in a water depth of 535 m servicing the Gulf of Mexico (GoM) 

(OffshoreTechnology, 2001). Fixed offshore structures have come a long way since their first 

use, and the deepest water depth reached is now almost 150 fold greater than the first example. 
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Since offshore structures were needed in increasingly deep waters, floating platforms were 

introduced. Floating platforms are moored to the seabed so that offshore activities can continue 

even in the deeper parts of the ocean. Some common examples of the technologies used are 

semi-submersibles, Tension Leg Platforms (TLP), and spar platforms. One of the earliest 

floating platforms built in the early 1980s was the Hutton TLP (MustangEngineering, 2010) 

servicing the North Sea, which is now decommissioned. To date, Perdido (Shell, 2015) is the 

deepest offshore floating oil spar platform, operating at a water depth of 2450 m. Regardless of 

whether structures are fixed or floating, it is essential to be able to understand and model the 

interactions of these structures with the surrounding water. 

In terms of renewable energy, offshore wind turbines will be discussed. This is a clean source 

of energy that is plentiful and environmentally friendly, as it does not produce greenhouse gas 

emissions. One of the earliest offshore wind farms was installed in 1991, 2km from shore at a 

depth of 5 m, at Vindeby, Denmark (Breton and Moe, 2009). The deepest fixed foundation wind 

turbines can be found at the Beatrice wind farm, United Kingdom at a depth of 45 m which 

were constructed and built in 2007 (Failla and Arena, 2015). The majority of wind turbines are 

located in shallow water where the dominant loading comes from a combination of wave and 

wind loads. Due to the fact that wind turbines are fairly new compared to offshore platforms, 

the designs of these wind turbine supports were based on experience from the oil and gas 

industry. Wind turbines were first used onshore, but due to the greater and steadier wind speeds 

that are available offshore, wind farms are increasingly being built offshore. Most wind turbines 

are supported by fixed structures of different forms such as monopiles, gravity structures, jacket 

supports and tripod supports. Figure 1.2 shows the different types of offshore wind turbine 

foundation. Floating wind turbines are still a relatively new concept, with the first floating wind 

turbine prototype placed off the coast of Italy in December 2007. Several other floating wind 

turbine foundation concepts that are used are the Blue H Technologies, Hywind and the 

WindFloat structures (Robertson and Jonkman, 2011), where the first example uses a TLP like 

mooring to hold the platform in position, the second is similar to a spar buoy while the last 

example uses a tricolumn triangular platform. These different structures allow a flexible 

installation process, and have demonstrated positive economic prospects. 
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Type Typical waterdepth (m) Typical size (m) Typical weight (tonnes) 

(1) Gravity ≈ 20 ≈ 30 1000 - 3000 

(2) Monopile ≈ 35 ≈ 4 - 5 600 - 700 

(3) Tripod ≈ 50 ≈ 35 x 60 1000 

(4) Jacket ≤70 ≈ 25 x 60 700 - 900 

Figure 1.2 Types of fixed offshore wind turbine foundation (1) Gravity (2) Monopile (3) 

Tripod (4) Jacket (EWEA, 2013) 

In order to successfully install these structures offshore, it is essential to ensure their 

structural integrity and that they are fit for purpose, including the need to withstand harsh 

environmental conditions for their designed service life. In addition, since offshore structures 

are expensive to install and to decommission, a detailed understanding and analysis of their 

performance prior to their construction and deployment is crucial. One of the most important 

engineering aspects that is normally assessed before deployment offshore is the impact of waves 

on the structure. This includes an understanding of the wave elevation, the effect of wave forces 

on the structure, deflection of the structure in the ocean, and the life cycle of the structure. Many 

different approaches have been used over the years to quantify and understand these 

environmental effects on such structures. The approaches used can be categorised into three 

major types: analytical, numerical, and experimental. The selection of a particular approach 

usually depends on the geometrical complexity of the structure and also the surrounding 

conditions. Each of these methods has its advantages and limitations, and are discussed further 

in section 2.2. Consideration of cost, time available, accuracy and efficiency are also taken into 

account when choosing the most appropriate methods for solving specific problems. This thesis 

will address the selection and development of such analytical methods.  
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1.2 Thesis outline 

1.2.1 Chapter 1 - Introduction 

Chapter one provides an introduction to the diversity of offshore structures and underlines the 

importance and contribution of wave-structure analysis to the industry. It also includes the 

thesis outline, which highlights the main points and contribution of each individual chapter.   

 

1.2.2 Chapter 2 – Literature review 

A comprehensive literature review is presented to identify the methodologies that are available 

for calculating wave-structure interactions. Development of the analytical, numerical and 

experimental methods to tackle this problem is discussed. The SBFEM is introduced and the 

attributes of this method are underlined. The development and usage of the SBFEM in 

engineering is discussed, and special attention is drawn to the contribution towards the offshore 

industry. Current knowledge gaps are identified and the specific aims and objectives of this 

work are defined.  

 

1.2.3 Chapter 3 – Model development and applications of 2D SBFEM to offshore 

structures 

The first part of chapter three applies the 2D SBFEM model to a structure of complex cross 

section. An octagonal cylinder will be used, demonstrating how substructuring and the 

introduction of a virtual circular cylinder outside the structure helps to simplify the solution by 

using a small number of elements in the calculation. The second part of the application of the 

2D SBFEM model is to conduct integrated analysis of wave-structure-foundation for a large 

offshore wind turbine supporting structure. The results illustrate the application of the 2D 

SBFEM to a novel design, namely an octagonal monopile supporting an offshore wind turbine 

that was proposed by RCID (Resource Centre for Innovation and Design) Newcastle. This 

method was chosen since the singularity that normally occurs at sharp corners is overcome and 

the radiation boundary condition at infinity is satisfied by choosing the Hankel function as the 

base solution.  
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1.2.4 Chapter 4 – Methodology development of 3D SBFEM  

Chapter four presents the new development of 3D SBFEM in solving hydrodynamic problems. 

To date, the SBFEM has only been applied to solve the two-dimensional problem for wave 

diffraction around a large cylinder with a uniform cross section. The 3D SBFEM reduces the 

spatial dimension by one leading to a significant reduction in discretisation of the fluid domain. 

A step by step methodology development is presented to allow future expansion of this method 

to be carried out more easily. Factors such as position of scaling centres, shape function choice 

and selection of base solution are carefully designated and presented.  

 

1.2.5 Chapter 5 – Validation and applications of 3D SBFEM  

Chapter five validates the methodology of the 3D SBFEM developed by applying it to solve 

practical wave-structure interaction problems. The application of the developed three-

dimensional SBFEM for solving the wave diffraction problem is carried out and results 

obtained are compared with those obtained using other numerical methods. The first validation 

is on a structure of infinite length extended to the seabed whilst the second validation is carried 

out by applying the method to solve the wave diffraction problem around a floating structure. 

This chapter concludes by describing how the extended 3D SBFEM can be used in applications 

in the offshore industry. The limitations of the method and suggestions for its further 

improvement are discussed. An analysis of the results is also presented to support the validity 

of the methodology development. 

 

1.2.6 Chapter 6 – Conclusions and recommendations for future work 

Chapter six draws together the main findings of the thesis, highlighting the efforts in integrated 

wave-structure-foundation analysis using the 2D SBFEM model and also the new development 

of the 3D SBFEM model. This is followed by recommendations for future work as the next 

phase of methodology development and its application to understanding wave interactions with 

floating structures.   
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Chapter 2  

 

Literature review 

 

 

2.1  Waves and effects of waves on offshore structures 

The understanding of wave characteristics and behaviour is crucial in determining and 

understanding wave-structure interactions. The different wave theories that are used are 

characterised through the observation of the physical parameters of the wave such as the 

wavelength (L), water depth (h), wave height (H) and wave period (T). These parameters are 

important in developing wave theories. Figure 2.1 describes the progressive surface wave 

parameters used, so that the nomenclature that follows can be conveniently followed and 

visualised. 

Figure 2. 1 Parameters of a regular progressive wave 

The parameter of surface elevation (ή) and axis of the progressive wave are also shown in 

the diagram. The seabed can be written as 𝑧 = −ℎ and the mean water surface as 𝑧 = 0. In 

order to categorise these waves according to the various wave profiles, several important 

assumptions are made. By assuming that the fluid particles are incompressible, the conservation 
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of mass is satisfied. Another important assumption is that the fluid flow is irrotational, where 

there is no rotation of the fluid particles. This assumption is important in order to be able to 

represent the flow in the form of a velocity potential function (Φ). The Laplace equation arises 

when this potential function is substituted into the continuity equation, which represents the 

statement of mass conservation. In situations where the fluid viscosity is negligible, the Euler 

equation can be used to represent the fluid flow (Dalrymple and Dean, 199l). 

 

2.1.1 Wave theories 

 

It is important to understand and determine the choice of wave theory and also the type of 

structure that it interacts with, in order to better analyse the impact of waves on structures in 

the offshore industry. An overview of the different wave theories are summarised in Figure 2.2, 

by considering the physical parameters of the waves, the theories can be further categorised 

into regular waves and irregular waves. Regular waves have a wave profile that behaves in the 

same manner with every cycle, often in a sinusoidal shape, where the shape of the waves is 

identical and repeats itself, forming a wave train. However, regular waves do not exist in the 

real world, but are often used to estimate and calculate the loading on a structure. These wave 

theories have been validated analytically (Dean, 1970) and experimentally (Hattori, 1986). 

These are ideal waves that are simplified to allow the analysis and understanding of waves 

acting with different frequencies. Irregular waves can be seen as the reconstitution of the linear 

superposition of a number of linear wave components. In reality, real ocean waves are 

represented by irregular waves, also known as random waves, where an attempt is made to 

model wave train using the time domain or the frequency domain approach. 

Since regular waves can be quantified more readily, they are often used in offshore analyses. 

Several different types of wave theories are developed using regular waves, which can be 

categorised as linear wave theories and nonlinear wave theories. Wave theories have been 

developed since the early 1800s (Craik, 2004). The lower order wave theory is also known as 

the linear wave theory or the Airy wave theory, proposed in 1841 and has been routinely used 

since then (Airy, 1841). Linear wave theory is where the wave profiles consist of small 

steepness represented by small wave height and longer wavelength, as illustrated in Figure 2.4. 

In general, the waves have a perfect sinusoidal pattern in the surface profile. However, this 

linear wave theory is not detailed enough to accurately describe hasher sea conditions. Hence, 

when waves are moving in a nonlinear manner, in some cases where the wave profiles have 
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greater steepness and the troughs are flatter, nonlinear wave theories are applied. The nonlinear 

wave theories are more complicated to apply, and can be understood using different wave 

spectra to represent them. One of the earliest descriptions of nonlinear wave theory is by Stokes, 

who further derived the higher order wave theories (Stokes, 1847), which includes the drift and 

added inertia of the flow. The Stokes’ 5th order theory is suitable for the calculation of extreme 

wave conditions. Another commonly used wave theory is the cnoidal wave theory (Fenton, 

1979) that is usually applied in shallow water conditions. Some other examples of regular wave 

theories are solitary wave theory, hyperbolic theory, long wave theory and Trochoidal theory 

(Barltrop and Adams, 1991). With regards to the irregular wave theories, these can be 

represented by the stream function theory (Dean, 1965) or the Fourier approximation method 

(Sobey, 1992). These irregular waves can also be the result of superposition of many regular 

waves with different frequencies and amplitude, such as the long-crested wave and the short-

crested wave. The irregular waves are solved using statistical methods to describe the time 

dependent nature of the waves. 

 

 

Figure 2.2 Overview of different wave theories 

Figure 2.3 shows the graphical representation of a linear wave and two nonlinear waves, 

known as the Stokes wave and the cnoidal wave. The linear wave is illustrated where the wave 

is assumed to move in a perfect sinusoidal pattern, where T, L and the H can be obtained. The 

nonlinear Stokes wave and Cnoidal wave are also illustrated (Stokes, 1847; Korteweg and de 

Vries, 1895). Cnoidal waves have sharper crests and much flatter troughs compared to Stokes 

waves.  
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Figure 2.3 Comparison of profiles of the different progressive waves (FlowScience) 

 

Selection of the appropriate wave theory depends on the wave height, wave period and water 

depth. One of the factors that influences the selection of a suitable wave theory, is the ratio of 

water depth to wavelength, this was described by Isobe in 1985 (Hattori, 1986). In general cases, 

there are limits to the application. When h/L>1/2, it is regarded as a deep water region, whereas 

when h/L<1/20, it is regarded as shallow water. The region in between is termed intermediate 

water depth. Several theories are proposed and each can be applied to different scenarios to 

achieve the best approximation in terms of accuracy. The range of suitability of the different 

wave theories is outlined in Figure 2.4 (Dean, 1970; Mehaute, 1976). This comparison did not 

include the kinematic effects, resulting in disagreements. The water particle velocity and 

acceleration is included later on in categorisation of theories (Mitchell et al., 1990). It was 

concluded that when several theories produces the same result, the lower order theory can be 

used with accuracy. The use and practicality of the higher order Stokes theory has also been 

discussed in detail (Sorensen, 2006; USACE, 2006). The best-fit theory must be selected, where 

it is within the validity limits, otherwise the results may differ. Before proceeding any further 

with the numerical or analytical analysis, the most appropriate wave theory has to be chosen to 

secure a realistic approximation.  



Chapter 2 Literature review 
 

11  
 

 

Figure 2.4 Range of suitability of water wave theories (Le Mehaute, 1976) 

. 

2.1.2 Importance of velocity potential 

When a wave passes through an octagonal pile supporting a wind turbine, if the ratio of the 

monopile diameter to the wavelength is greater than 0.2, the wave pattern changes when it is 

reflected off the structure and results in wave diffraction (MacCamy and Fuchs, 1954), and it 

is assumed that there is no separation. Throughout this thesis, potential flow theory is used to 

evaluate the velocity potential. The velocity potential is a scalar potential developed by Joseph-

Louis Lagrange in 1788 (Anderson Jr, 1997). By evaluating the velocity potential, the flow 

velocity, water particle acceleration, dynamic pressure and also the force incurred on the surface 

of the structure can be determined. Equation 2.1 shows that the overall velocity potential in the 

wave field is made up of the incident velocity potential, the scattered velocity potential and the 

radiated wave potential. The scattered velocity potential is composed of the diffracted velocity 

potential (propagation of the wave around a body) and the reflected velocity potential (wave 

bounce back from the body encountered). It is assumed that the structure is fixed and that the 
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radiated part can be ignored (McIver, 1996). The refracted wave, which takes into account the 

slowing, and bending of waves in shallow water is not taken into account for cases in deeper 

water, where the water depth is deeper than one-half their wavelength and that the bottom does 

not interfere with the wave orbits on the free surface (Chakrabarti, 1987). Hence, the total 

velocity potential in this case is reduced to the sum of the incident velocity potential and the 

scattered velocity potential.  

 

 

(2.1) 

For a given velocity potential of incident progressive wave, the velocity potential of the 

diffracted wave can be calculated. The importance of obtaining the velocity potential is shown 

in Figure 2.5, which shows that by obtaining the overall velocity potential, the kinematic and 

dynamic properties of the wave particle can be found. The kinematic properties of the water 

particle describes the ability of the particle’s resistance to slow down under the weight of 

gravity whilst the dynamic properties describe the particle under external forces. An example 

of the kinematic hydrodynamic properties is the flow velocity, by differentiating with respect 

to time the particle’s acceleration can be found. The dynamic properties are dependent on the 

density of the fluid, by applying Bernoulli’s equation, the impact on the structure such as 

dynamic pressure and force can also be calculated. These physical properties are important for 

the design of offshore structures (Barltrop and Adams, 1991).  
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Figure 2.5 Calculation of the force on a structure from the overall velocity potential 

(Chakrabarti, 1987) 

 

2.1.3 Waves on offshore structures 

There are increasing numbers of offshore structures installed in the ocean. As a result, 

understanding the wave-structure interaction to ensure safe design is of growing importance. 

The study of wave-structure interactions will assist in calculating the wave impact and effects 

on the structure, which has been a central concern for decades. There are several methods used 

to calculate the wave forces on structures, depending on the properties of the incoming waves 

and the size of the structure itself. Among the common theories available are the Morison 

equation, Froude-Krylov theory and Diffraction theory. The choice of force theory to be applied 

depends on the following three major factors;  

(a) Wave steepness, 
𝐻

𝐿
 

(b) Diffraction parameter, 
𝐷

𝐿
 (MacCamy and Fuchs, 1954) 

(c) Keulegan-Carpenter number (KC), 
𝑢𝑚𝑎𝑥𝑇

𝐷
 (Keulegan and Carpernter, 1956) 

where the 𝑢𝑚𝑎𝑥 represents the maximum velocity of the fluid particle. The wave steepness 

will help to determine the most suitable wave theory to apply; the diffraction parameter can be 

interpreted as the ratio of diameter of the body to the wavelength. When the diffraction 
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parameter increases, the diffraction effects are more important. As the KC number increases, 

the flow separation becomes more important.  

Hydrodynamic loading can be simplified and assumed to consist of three parts, the drag 

force, inertia force and the diffraction force. The drag force is caused by the fluid passing 

through a structure, which increases if the structure is not smooth and if the fluid has a large 

Reynolds number that results in turbulence as it passes through the structure. The inertia force 

is caused by the pressure gradient generated in an accelerating fluid when passing through a 

structure. The diffraction force is a type of inertia force that happens when the large structure 

modifies the wave pattern when passing through it (Chakrabarti, 1987). The drag force can be 

represented as 𝐹𝐷 =
1

2
𝐶𝐷𝜌𝑣

2𝐴́, where 𝐶𝐷 is the drag coefficient, 𝜌 is the fluid density, 𝑣 is the 

velocity of the fluid and 𝐴́ is the cross sectional area of the structure. Many experiments to 

evaluate the drag force have been carried out and coefficients quantified (Morison et al., 1953; 

MacCamy and Fuchs, 1954). When the wave passes through a slender structure, the incident 

flow separates from the surface of the structure, forming a low-pressure area behind the 

structure, resulting in a wake. In this case, the KC number is relatively high and the fluid will 

experience separation. In situations where the drag force is dominant, the Morison equation 

could be applicable. The Morison equation is often used to calculate the drag and the inertia 

loading on slender structures (O'Brien and Morison, 1952). However, when the wave passes 

through a slender structure but the incident wave dominates, the Froude-Krylov (F-K) theory, 

which is calculated using the pressure area method can be used. This theory is limited to a 

certain number of simple configurations such as the horizontal cylinder, sphere, vertical 

cylinder, rectangular block and circular plate, where close form solutions are available.  When 

the diffraction parameter is low, the F-K approximation is valid. The effect of the Keulegan-

Carpenter number (KC) and the Reynolds number (Re) on the oscillatory flow separation has 

been studied for structures which are static (Sarpkaya, 1966). Further studies have also been 

carried out to investigate the wave force for oscillating cylinders (Sarpkaya, 1978).  

The inertial force is also derived from potential wave theory, where the velocity potential 

comprises the incident wave potential, the diffraction wave potential and the radiated wave 

potential. In the case where the structure is large compared to the wavelength, diffraction theory 

can be applied. The structure changes the wave profile when the incident wave is reflected off 

the structure surface. In cases where the diameter of the cross sectional body (D) over the 

wavelength, D/L< 0.2 the body is considered as slender and the Morison equation is applicable. 

When D/L > 0.2, it implies that the wave is moving through a large body (Mei, 1992). For the 
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linear diffraction range, the forces on structures can be calculated using the methods proposed 

by McCamy & Fuchs. However, for the nonlinear range of wave diffraction, the wave forces 

can be further categorised as the linear oscillating force, quadratic oscillating force and drift 

force. This can be calculated using the quadratic McCamy & Fuchs method. Both these types 

of wave diffraction have been solved by Garrett and Oglvie. These are shown graphically in 

Figure 2.6 and described in more detail in the table summarised by Vannucci (2006).  The 

different range are described in Sarpkaya, (2010) as;  

(a) Inertia dominated range 

(b) Large inertia dominated range 

(c) Morison range 

(d) Diffraction range 

 

 KC < 4 

H/L < 0.5 H/Lmax 

KC < 4 

H/L > 0.5 H/Lmax 

KC > 4 

H/L < 0.5 H/Lmax 

KC > 4 

H/L > 0.5 H/Lmax 

D/L < 

0.2 

Inertial range 

Linear wave 

theory 

Force: Froude-

Krylov 

Inertial range 

Nonlinear wave 

theory 

Force: Nonlinear 

Froude-Krylov 

Separation range 

Linear wave 

theory 

Force: 

Morison’s 

equation 

Separation range 

Nonlinear wave 

theory 

Force: Lighthill’s 

modification of 

Morison’s equation 
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D/L > 

0.2 

Diffraction 

range 

Linear wave 

theory 

Force: Linear 

diffraction 

theory 

Diffraction range 

Non-linear wave 

theory 

Force: Nonlinear 

diffraction theory 

  

Figure 2.6 Summary of dominating forces (Dalrymple and Dean, 1991)  

  

2.2 Analyses of wave-structure interaction 

The research focus of this thesis is wave diffraction around large structures, which is justified 

by the increasing use of offshore structures (Chapter1). To analyse the wave diffraction problem, 

diffraction theory is used, which does not consider the viscosity and separation of the fluid. The 

diffraction effect is first observed by Havelock, when a body is placed in a moving body of 

water. This sparked the introduction of the first order analytical solutions for different water 

depths such as deep water (Havelock, 1940), intermediate water depth (MacCamy and Fuchs, 

1954) and shallow water (Chen and Mei, 1973). The second order solution methods consider 

the free surface problem where the solution becomes more complicated. Nonlinear 

hydrodynamics are more important when considering wave drift forces, springing, ringing and 

wave slam. The wave equation is solved where the second order wave is used to determine the 

diffraction of waves around objects in the infinite water depth (Lighthill, 1979), and for similar 

cases in finite water depth (Molin, 1979). The second order wave diffraction problem of a 

vertical cylinder in plane waves was also solved by Chau and Taylor, (1992), describing a clear 

procedure that is used for validation in many numerical cases, whilst the diffraction problem 

up to the second order short crested wave diffraction forces on a vertical circular cylinder was 

solved by Zhu, (1994). The second order waves becomes more important when calculating 

fluid-structure interaction for waves with a higher slope where higher order waves can provide 

a better representation. In this thesis, only waves with a small slope are used, hence the first 

order potential theory is used.  
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Due to design safety at sea, the understanding of wave-structure interaction is increasingly 

important. Besides solving the wave equation for the velocity potential of a wave moving 

through a single structure, studies have also been carried out to solve the wave diffraction 

problem that occurs when the wave passes through an array of cylindrical monopiles. There are 

several different approaches that are undertaken to solve the wave diffraction problem, which 

can be broadly categorised as experimental methods, analytical methods and numerical 

methods. 

 

2.2.1 Experimental methods 

An early experimental study regarding the wave-structure interaction was carried out to 

investigate forces on circular piles in intermediate water depths, and was able to demonstrate 

that the wave forces can be divided into drag force and inertia force (Morison et al., 1953). It 

also shows good agreement with the analytical solution for wave diffraction around vertical 

cylinders (MacCamy and Fuchs, 1954). Different parameters of wave height, geometry of the 

monopile and the effects of spacing between two piles were also investigated. The dynamic 

effects of waves on large circular cylinders was studied and experiments were carried out in a 

wave tank to validate empirically the pressure and forces on structures (Chakrabarti and Tam, 

1973). Wave diffraction experiments to examine the dynamic pressure and the drag coefficients 

and vortices that occur under different wave conditions have also been carried out by 

Chakrabarti and Tam, (1975) who were able to successfully validate the analytical solutions 

proposed by Chen and Mei, (1973) for shallow water conditions. The experimental results 

reported by Nakayama, (1983) were also successful in validating the numerical calculations 

using the boundary element method to determine the wave run-up on a wall. 

An experimental method to investigate wave diffraction around a structure is normally 

suggested to verify the analytical and numerical calculations. However, the cost, time and 

physical limitations of experimental facilities generally do not allow valuable experiments to 

be carried out for every case.  

 

2.2.2 Analytical methods 

Many studies have investigated the linear wave and monopile interaction, where earlier 

analytical solutions for linear problems of wave diffraction were obtained by Havelock, (1940) 

for deep water conditions. Later, MacCamy and Fuchs, (1954) extended the solution for 
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intermediate water depths, with a surface piercing vertical circular cylinder fixed on the seabed. 

This work was followed up for shallow water (Chen and Mei, 1973). The hydrodynamic 

coefficients were obtained and the velocity potential for any number of cylinders which are 

positioned either vertically or horizontally have been calculated (Chakrabarti, 1979; 

Chakrabarti, 1980). Using these coefficients, simple analytical calculations can easily be carried 

out. Analytical solutions containing Bessel functions that can be used to solve for the 

hydrodynamic loading for N number of cylinders have been described. This work was further 

developed by investigating the wave forces on cylinders in a channel, introducing new boundary 

conditions (Taylor et al., 1983; McIver and Evans, 1984). 

Analytical solutions can be further classified into the direct method and the indirect method. 

The direct method is based on the standing wave technique whilst the indirect method is based 

on the use of different loads and their corresponding responses (Crocker, 1998). An example of 

the use of the direct method to determine the diffraction force on a single structure is reported 

using cnoidal wave theory (Isaacson, 1977). The direct method is also applied to solve for the 

wave diffraction around multiple cylinders (Ming-de and Yu, 1987). Both of these methods are 

proposed for shallow water only. The indirect method is a little less complicated as there is no 

need for the explicit solution to be known beforehand. Taylor and Hung, (1987) provided the 

analytical solution for a single cylinder, by solving the second order wave diffraction forces 

and tackling the free surface integral, while Abul‐Azm and Williams, (1988) proposed the 

solution for wave diffraction around multiple cylinders. Both of these indirect methods are 

suitable for structures that extend to the seabed. The main limitation of the analytical approach 

is that it is only possible when dealing with structures of simple geometry such as a circular 

cylinder.  

 

2.2.3 Numerical methods 

Numerical methods are also commonly used to obtain the best numerical approximation to 

solve the wave-structure interaction problem. The main purpose of numerical modelling is to 

understand the physical problem and display it in a common mathematical structure (Tonti, 

1975). The numerical process includes a standard step where the problem is defined, modelled 

mathematically and simulations run on computers. Factors to consider when choosing the most 

appropriate numerical method are the accuracy, performance and required computational 

capacity. The choice of computational model depends on the model problem, which considers 
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the governing equations and boundary conditions. The main difference between these methods 

is discretisation. Figure 2.7 describes graphically the discretisation of a model problem using 

each of the numerical methods. 

One of the earliest approaches used is the Finite Difference Method (FDM) (Liszka and 

Orkisz, 1980). Essentially, this approach uses a topologically square network of lines when 

discretising the physical domain. It uses the strong form of governing equations, where the 

exact solution is available. The main disadvantage of this method is that it faces challenges 

when solving a more complex geometry due to the difficulty of modelling an unstructured grid 

(LeVeque, 2005). The Finite Element Method (FEM) (Chung, 1978; Zienkiewicz et al., 2014) 

and the Finite Volume Method (FVM) (Versteeg, 2007) were later used to overcome this 

limitation. Both these methods can be described as the integral form of the solution for the 

Partial Differential Equation (PDE), and when multiplied with the weighted function, the 

governing equation is weakened. One of the main advantages of the FEM is the flexibility which 

allows complicated geometries to be modelled mathematically, i.e., the use of non-uniform 

grids, and discretisation size which allows higher order time discretisation problems to be 

solved, such as taking into account the nonlinearity of waves. The boundary element method 

(BEM) (Hanna and Humar, 1982; Becker, 1992) provides the solution by transforming the 

domain governing differential equations into integral identities across the surface of the 

boundary.  

 

Figure 2.7 Classification of numerical methods in continuum mechanics (Becker, 1992) 

Numerical methods in continuum 

mechanics 

Finite Element Method 

(FEM) 

Domain 

elements 
Boundary (surface) 

elements 
Internal cells 

Boundary Element 

Method (BEM) 
Finite Difference 

Method (FDM) 
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The FEM and FVM methods are quite similar (Table 2.1). The FVM, which uses cell 

volumes rather than nodes during discretisation, has been used to successfully model wave 

diffraction around cylinders (Laghrouche et al., 2002; Cao et al., 2011). FVM requires less 

computational memory and power compared to the FEM. This is also affected by the fact that 

the FVM stores the dependent values in the centre of the finite volume while the FEM stores 

the dependent values at the element nodes. The method of discretisation also differs, FVM 

discretisation is by solving the integral form of the partial differential equation, while the FEM 

uses specific shape function to discretise the domain. The solution of the FVM is discrete 

whereas the solution of the FEM is continuous. In terms of programming, the FVM is easier 

compared to the FEM. 

Table 2.1  Comparison of FEM and FVM (Yip, 2007) 

Finite element method (FEM) Finite volume method (FVM) 

Requires greater computational resources 

and computer processing power 

Requires comparatively less computer 

memory and power 

The dependent values are stored at the 

element nodes 

The dependent values are stored in the 

centre of the finite volume 

Discretisation is based upon a piecewise 

representation of the solution in terms of 

specified basis functions 

Discretisation is based upon an integral 

form of the PDE to be solved (e.g. 

conservation of mass, momentum, or 

energy) 

Provides continuous solution (up to a point) Provides discrete solutions 

FEM can be complex to program 
FVM and FDM are generally considered 

easier to program 

 

These different numerical methods can be applied to solve the wave diffraction problem. 

Some of the earlier applications of the BEM method in solving the plane wave diffraction 

problem were developed in the 1980s (Au and Brebbia, 1983). One of the most attractive 
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characteristics of the BEM is that only the boundaries are discretised, resulting in a reduction 

of the spatial dimensions of the problem by one. This characteristic reduces the number of 

elements used to represent the structure, hence the number of data or nodes required is 

significantly reduced, resulting in a lower requirement for computational power and time to 

search for the solution. The Boundary Integral Equation Method (BIEM) allows the use of a 

fundamental solution to satisfy the radiation boundary condition to infinity (Grilli et al., 1989) 

and results in the most prominent characteristics of the BEM where it can be used to solve the 

problem in the unbounded domain. However, the main downside is that a fundamental solution 

is needed for this to take place. This fundamental solution is not available for all cases. This 

method also suffers from the problem of singularity, especially at the sharp corners of the 

structure (Walton et al., 1985) and may face irregular frequency difficulty (Ferrant and Le 

Touzé, 2002).  

The numerical methods are also commonly used to solve the wave interaction problem with 

multiple cylinders (Ohkusu, 1973; Monkmeyer, 1974). Complexity increases compared to the 

wave diffraction around a single cylinder since the hydrodynamic interactions between 

cylinders have to be modelled. The hydrodynamic interaction between two structures using the 

constant panel method were also explained (Oortmerssen, 1979). The previous solutions are 

obtained with the assumption that the cylinders are either fixed or floating in an infinite water 

depth. The wave diffraction around multiple cylinders in shallow water have also been solved 

(Ming-de and Yu, 1987). Most of the solutions for wave diffraction deal with circular cylinders 

and the wave diffraction around multiple cylinders with an arbitrary cross section have been 

successfully obtained (Yoshida and Goo, 1990).   

 

2.2.4  Combining different methods for analyses 

The various numerical methods available can be coupled together to extend their ability to solve 

for more engineering problems. For example, the FEM and BEM can be coupled to solve the 

fluid and structure interaction problem in the time domain (Estorff and Antes, 1991), and for 

wave simulation at higher Reynolds number (Young et al., 2001). The FEM is usually used to 

solve the nonlinear part of the problem and the BEM is used to tackle the problem of a radiated 

wave, which propagates to infinity. Structures placed in the ocean have a boundary condition 

of radiation to infinity to be satisfied, resulting in an unbounded domain. Instead of setting an 

approximate boundary at the far end of the structure, the FEM can be coupled with other 

methods, where the near field still uses the FEM to tackle the nonlinearity whilst the far field 
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uses other methods to resolve the problem in the unbounded domain. FEM can be coupled with 

a number of other methods (Zienkiewicz et al., 2014) such as the Trefftz type element method 

which uses the Galerkin technique to solve the PDE (Qin, 2005). Representation of the two-

dimensional wave diffraction problem using the Helmholtz equation also allows the FEM to be 

used effectively (Harari and Hughes, 1991). 

One of the major challenges for the FEM is to obtain solutions satisfying the radiated 

boundary condition. Some attempts have been made to overcome this issue (Huang et al., 1985) 

with the use of boundary dampers (Zienkiewicz et al., 1978), matching the FEM with the 

boundary series (Yue et al., 1978) and boundary integral equations (Johnson and Nedelec, 

1980), or using infinite elements (Bettess and Zienkiewicz, 1977). The method to overcome the 

irregular frequency that often occurs when applying BEM to wave diffraction problems has 

been addressed (Lee and Sclavounos, 1989), whilst BEM can also be coupled with other 

existing numerical methods (Chen and Rahman, 1994). 

 

2.2.5  Other engineering applications 

Analytical and numerical methods have been used to provide solutions and give confidence in 

various engineering fields such as soil engineering, crack growth, hydrodynamics, 

electromagnetism, and heat transfer (Lee and Schiesser, 2003). In the context of fluid and 

structure interaction, the analyses can be carried out using several different approaches, which 

can be categorised as analytical, numerical and experimental methods. The typical approach 

used to obtain a solution by computational methods is to first define the boundary value problem. 

The boundary value problem (BVP) describes equations that govern the wave propagation 

where the incoming wave impacts on a solid structure. A mathematical model is then 

established to best describe the boundary value problem with the governing equations satisfying 

a set of boundary conditions. When the most suitable mathematical model has been selected, it 

can then be used to compute the solution using simulation tools implemented in computational 

programmes such as Matlab, Fortran, Maple and C++, to solve the unknowns. As problems and 

structures become more complex, an efficient and reliable method of analysis is essential. The 

whole system can be solved using discretisation, where domains can be broken down into small 

pieces, allowing arbitrary domain subdivisions to be calculated individually and then assembled 

together to represent the global system. However, the computational time needed then becomes 

an important factor especially when solving for large-scale complex geometry problems. 

Advances in computing performance coupled with mathematics have enabled a large number 
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of complicated models to be used and further calculations to be carried out for design and 

analysis using software such as ANSYS and SESAM (Tucker, 2004; Veritas, 2013). 

 

2.3 Introduction to the SBFEM 

Recently, a new semi-analytical numerical method which combines the advantages of FEM and 

BEM, termed the scaled boundary finite element method (SBFEM) was introduced (Wolf, 

2003). The SBFEM, formerly known as the consistent infinitesimal finite element method was 

developed mainly to compute the dynamic stiffness of an unbounded domain (Wolf, 1996; Song 

and Wolf, 1997). This method was first developed to solve the elasto-dynamic soil and structure 

problem, by introducing an analytical solution of the SBFEM in the frequency domain (Song 

and Wolf, 1998). The effect of body loads was later added and solved (Song and Wolf, 1999). 

Detailed derivations, solutions and applications were developed (Song and Wolf, 2000; Wolf 

and Song, 2000), which also include the use of weighted residual formulations (Wolf, 2003). 

Computation of the dynamic stiffness of unbounded media is recommended for solving 

geotechnical problems by evaluating the soil-structure interaction. The solution provided is 

based on the specific properties of the body movement in the soil.  

The two numerical methods FEM and BEM are the basis of the current development of the 

novel approach of the Scaled Boundary Finite Element Method (SBFEM) (Wolf, 2003). FEM 

is most suited to solving problems with a complex geometry. The whole domain is discretised 

and the coefficient matrix obtained is usually sparse, banded and symmetric. This allows the 

problem represented in the matrix form to be solved. On the other hand the disadvantages of 

BEM are tackled where the SBFEM development has addressed the need for a fundamental 

solution, and that it can be applied to problems without fundamental solutions. However, BEM 

often faces problems with singularity especially when tackling problems with a more complex 

geometry with sharp corners. FEM also has some limitations in dealing with problems of 

unbounded domains. Here, an approximation has to be applied to truncate the unbounded 

domain. FEM was first applied to solving the problem of wave diffraction in the 1970s (Bai, 

1975). Since then, FEM has gained popularity in the offshore industries due to the ability of the 

method to tackle problems with complicated geometries, and has been successfully 

implemented through specialist software (Lee, 1995).  

In summary, by observing the history of the expansion of wave-structure interaction analysis, 

the increasing complexity of the model problem is noted, while solving for the wave diffraction 



Chapter 2 Literature review 
 

24  
 

problem in both the analytical and the numerical sense. The use of wave diffraction theory and 

how it is used and expanded to solve wave diffraction on a single column and on multiple 

columns can also be seen. Solving the wave diffraction problem using analytical solutions are 

also in agreement with numerical methods. The SBFEM is based on finite element analysis but 

with discretisation on the boundary only. This method is exact in the radial direction and 

converges to an exact solution in the finite-element sense on the circumference. Some of the 

main advantages of SBFEM include a reduction of the spatial dimension by one. Moreover, it 

retains the advantage of FEM where no fundamental solution is necessary, thus no singular 

integrals must be evaluated. Hence, general anisotropic material is analysed without an increase 

in computational effort. Boundary conditions on interfaces between different materials are 

enforced exactly without the need for discretisation. It also allows great flexibility in 

representing the geometry and the material used. A summary of the properties of FEM and 

BEM and also how these were developed to produce SBFEM, is shown in Table 2.2. The figure 

also shows that individual limitations associated with FEM and BEM are overcome by SBFEM. 

Due to the effect of side-faces, there is no need to discretise the free and fixed boundaries, 

including the interface between different materials. This characteristic stands out when solving 

for soil properties where the stiffness changes according to the different layers of soil is applied 

(Wolf, 2003). 

Table 2.2 Comparison of properties in FEM, BEM, and SBFEM (Wolf, 2003) 

 Finite element 

method 

(FEM) 

Boundary 

element method 

(BEM) 

Scaled boundary 

finite element 

method (SBFEM) 

Reduction of spatial dimension by one  X X 

Analytical solution in domain   X 

No fundamental solution required X  X 

Radiation condition at infinity satisfied  X X 

No discretisation of free and fixed 

boundaries and interfaces between 

different materials 

  X 
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No approximation needed besides 

surface finite elements on boundaries 
 X X 

Symmetric dynamic-stiffness and unit-

impulse response matrices for 

unbounded media 

X (X) X 

Symmetric static-stiffness and mass 

matrices for bounded media (super 

element) 

X (X) X 

Body loads processed without additional 

domain discretisation  
X  X 

Straightforward calculation of stress 

concentrations and intensity factors 

based on their definition 

  X 

No fictitious eigenfrequencies for 

unbounded media 
X  X 

Straightforward coupling by standard 

assemblage of structure discretised with 

finite elements with unbounded domain 

X  X 

 

By applying the scaled boundary coordinate system, the model problem can be described 

using a scaled boundary equation, which can be derived using either a transformation-based 

derivation or a mechanically-based derivation (Song and Wolf, 2000; Wolf and Song, 2000). 

The former includes the transformation of the boundary from the Cartesian coordinates to the 

Scaled Boundary coordinates. This transformation allows the radial direction to be satisfied 

exactly and the circumferential direction to be represented by the weighted residual function. 

Jacobian elliptic functions are used to make this transformation possible (Appendix F).  Shape 

functions are introduced to solve continuous problems and are used to enable the modelling of 

more complicated scenarios. The method of application is similar to the FEM (Boeraeve, 2010). 

It is important to approximate the continuous function with a group of known functions. Figure 

2.8  represents the relationship of the parent element to the scaled boundary transformation 

(Wolf, 2003). The line element is transformed to represent the geometry of interest. For the 
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bounded domain, where the region is bounded by the radial direction (𝜉) where 𝜉 = 0 and 𝜉 =

1, only the circumferential direction (η) is discretised, according to the geometry that is to be 

evaluated. 

 

Figure 2.8 Scaled boundary transformation (a) and the three noded parent element (b) (Wolf, 

2003) 

The second method of deriving the SBFE equation is to use a mechanically-based derivation 

shown in Figure 2.9, where a layer of finite element cells is created between the boundaries and 

to perform the limit of the cell width towards zero analytically (Wolf, 1996). This approximate 

solution for each finite element cell allows the properties to be determined on an element basis, 

which can then be assembled. This method is often used to form the global model. The dynamic 

characteristics of a bounded and unbounded medium can be described by the force-

displacement relationship with respect to the degrees of freedom of the nodes on the boundary 

interface. This method of derivation also allows problem with parallel side-faces to be 

overcome.  
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Figure 2.9 Mechanically based derivation concept (Wolf, 2003) 

One of the important characteristics of the SBFEM is the position of the scaling centre. The 

typical scaling centre is located in the inner domain, but for certain problems, the scaling centre 

is located outside of the domain or even at infinity (Li et al., 2005a; Li, 2009). For example, the 

mechanically based derivation approach places the scaling centre at infinity, choosing a large 

finite distance between the boundary of the structure and the fictitious boundary (Wolf, 2003). 

This allows the SBFEM to be used without compromising on the advantages where the side-

faces passing through it do not need to be discretised (Li et al., 2005a). The example of 

calculating horizontally layered unbounded soil resting on rigid rock is shown (Wolf, 2003). In 

general, the circumferential curve has to be visible from the scaling centre, which places some 

restrictions on this method, especially when solving for more complex geometries.  

However, this limitation can be overcome by placing the scaling centres at different positions 

using substructuring, this results in the use of more than one scaling centre in a problem. 

Substructuring also results in subdividing the total domain into subdomains. By introducing 

several subdomains, there are additional boundaries between adjacent subdomains, which need 

to be discretised. However, the increase in the number of degrees of freedom due to 

substructuring is modest in comparison to the total system. There are five reasons why 

substructuring is important and useful in some applications (Wolf, 2003).  

(a) The boundary that is to be analysed must have visibility from the scaling centre.  

(b) Increased computational efficiency. As the number of degrees of freedom which needs 

to be solved increases significantly as more complicated geometries are tackled, this 

approach is faster and it is easier to solve eigenvalue problems of modest size.  
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(c) Increased accuracy when modelling dynamics in a bounded domain. In the SBFEM, 

only the degrees of freedom on the nodes on the boundary are taken into account. 

Hence, introducing more boundaries by substructuring will introduce more degrees of 

freedom, leading to a greater ease of calculation.  

(d) The SBFEM places the scaling centre at the re-entrant corner to capture stress 

singularities. For boundaries which have several re-entrant corners, substructuring is 

used to place the scaling centre at each re-entrant corner. By allocating the scaling 

centre at end of each loaded zone it can help to represent stress discontinuities. 

(e) The side-faces in SBFEM are not discretised, so that fewer boundary conditions need 

to be enforced. For the unbounded domain, the boundary should be modelled as far as 

possible with side-faces, in order to produce more accurate results. 

 

2.3.1 Different applications of SBFEM 

The application of SBFEM has been further explored to solve different aspects of both 

elastostatic and elastodynamic engineering problems. One of the areas that this method could 

address is the crack problem in fracture mechanics, where the singularities on the tip of the 

crack can be evaluated semi-analytically as shown in Figure 2.10 (Yang, 2006; Bird et al., 2010). 

The multiple crack problem has also been successfully investigated using this method (Ooi and 

Yang, 2009). Dynamic crack propagation has also been studied using SBFEM (Yang and Deeks, 

2007; Ooi et al., 2012). This body of work has demonstrated the advantages of the SBFEM in 

terms of accuracy and efficiency compared to other conventional numerical methods.   

 

Figure 2.10  Cracked subdomain (left), equivalent shadow domain of cracked subdomain 

(right) (Ooi and Yang, 2009) 
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When the SBFEM was first developed, it was used to solve problems in the field of 

earthquake engineering and also soil-structure interactions (Wolf, 2003). One other advantage 

of SBFEM is for situations where the side-faces do not need to be discretised and this allows 

layers of different properties to be evaluated at the same time. This is applicable to soil 

properties which vary with depth (Liang et al., 2005) and can be applied to multi material 

problems (Mayland and Becker, 2009) with continuum mechanics. The latest development 

solves the wave propagation in layered soil, by applying the SBFEM on the near field/far field 

interface, truncating the force-displacement relationship, resulting in reduction in 

computational time in completing the analysis (Chen et al., 2015). A dynamic modelling of 

soil-foundation interaction has also been successfully carried out (Han et al., 2016).  

The application of SBFEM can also be extended when coupled with other numerical 

methods such as FEM, to overcome some of the limitations, when specific problems cannot be 

solved solely using SBFEM. Coupled methods are used in several different disciplines, and one 

of the initial applications was to investigate crack growth (Yang and Deeks, 2007; Yang et 

al.,2015), where the FEM is coupled with the SBFEM. It has also been used to verify the pile 

integrity test (Schauer and Langer, 2012), soil-structure interaction where the near field is 

represented by the FEM while the far field is represented by the SBFEM. This approach thus 

allows the advantages of each method to be harnessed. The coupled method can also be 

extended to solve seismic soil-structure interaction in the time domain. The SBFEM can also 

be coupled with the BEM, where it is successfully used to solve linear elastic fracture mechanics 

(Bird et al., 2010). The parallelised coupled FEM, BEM and SBFEM to solve the dynamic 

analysis of large scale soil-structure interaction has also been investigated (Genes, 2012), where 

the unbounded domain was solved using the BEM and SBFEM to model the dynamic response 

while the FEM was used in the bounded domain in order to the tackle the nonlinear soil 

properties. Figure 2.11 shows an example of the soil-structure interaction using the coupled 

FEM and SBFEM. 
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Figure 2.11 Representation of the SBFEM in soil-structure interaction (Birk, 2013) 

Most of the applications are based on the frequency domain solution. However, several 

attempts to solve the problem in the time domain have been carried out for the coupled model 

(Schauer et al., 2012), for three-dimensional soil-structure interaction and higher order 

equations (Birk et al., 2012).  

 

2.3.2 SBFEM in offshore wave diffraction 

The main advantages of the SBFEM application in solving the wave-structure interaction are 

that the spatial dimension is reduced by one and that the radiation condition to infinity is 

satisfied automatically. Many applications of the SBFEM in solving the wave-structure 

interaction solve the linear wave theory, but the limitation of this method for solving the 

nonlinear wave still needs to be addressed. A modified method was introduced to enable 

SBFEM to be applied in marine hydrodynamics, this breakthrough also addressed model 

problems with parallel side-faces (Li et al., 2005a; Li et al., 2005b). The governing equation 

used in these approaches are the two-dimensional Laplace equations. The solutions show great 

accuracy and good convergence with a small number of elements in the lower wave frequencies. 

In this application, the structure is assumed to be distant from the seabed and treated as infinitely 

long in the horizontal direction. The fluid flow is then represented by the two-dimensional 

Helmholtz equation, and the wave diffraction problem is again solved using the SBFEM (Li et 

al., 2006). The wave diffraction is also directly solved using the SBFEM by selecting the 

Hankel function as the base solution when solving for short crested wave effects on a circular 

cylinder (Tao et al., 2007) and an elliptic cylinder (Tao and Song, 2008). The use of the Hankel 

function allows a wider range of wave frequencies to be satisfied. Wave diffraction around 
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porous structures in the ocean has also been tackled using this approach by varying the porosity 

from zero for a solid structure to infinity for structure with openings (Tao et al., 2009). The 

SBFEM solving the wave diffraction on porous structures was then extended to solve for double 

layer perforated cylinders (Liu and Lin, 2013). The second order wave diffraction problem has 

been solved using the SBFEM by combining it with the homotopy analysis method (Lin and 

Liao, 2011). This method has been extended to three-dimensional form to solve the wave-

structure interaction, where the solid cylinder deflection is modelled using 3D SBFEM and 

coupled with the two-dimensional governing Helmholtz SBFEM for the fluid domain (Li et al., 

2013a; Li et al., 2013b). Li et al (2016) further develop the dynamic analysis of pile foundation 

resulting from the ocean waves. However, the use of 3D SBFEM to solve the hydrodynamic 

part of the wave diffraction problem has not yet been carried out.   

 

2.4 Aims and objectives 

The main aim of this project is to develop the application of numerical methodology in 

offshore hydrodynamic analysis, and specifically to develop the SBFEM which shows many 

advantages over other existing methods. The main advantage is that the SBFEM utilises the 

semi-analytical approach to solve for model problems.  

The SBFEM was further developed here by combining the FEM and BEM, and 

introducing a virtual circular cylinder and by choosing the Hankel function for the analytical 

solution representation in the radial direction. This thesis describes the development of 2D 

and 3D models using SBFEM and their application to wave diffraction around large offshore 

structures of different configurations. 

The specific objectives are  

a. Application of the 2D SBFEM to a new polygonal model proposed as a possible 

substitution of the typical cylindrical monopile supporting an offshore wind turbine.  

b. Introduce the use of a virtual cylinder outside the polygonal cylinder to enable the base 

solution of the Hankel function that satisfies the cylindrical coordinates to be satisfied.  

c. Explore and utilise the substructuring process to best eliminate the singularity and 

irregular frequencies problems that often exist at re-entrant corners.  

d. Develop a 3D SBFEM model for hydrodynamic analysis of complex offshore structures, 

by considering a more suitable type of scaling function.  
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e. Validate the new proposed 3D SBFEM on the current simplified structures. 

f. Apply the newly developed 3D SBFEM model to a case study of wave-structure 

interaction.  

 

2.5 Summary  

 

The research focus of this thesis is wave diffraction around large structures. This thesis further 

develops the current SBFEM in terms of its two-dimensional application in hydrodynamics. 

More complicated structural geometry will also be analysed to test this existing method. A 

novel analytical-numerical method called the Scaled Boundary Finite Element Method 

(SBFEM) will be presented. In addition, two-dimensional applications and the development of 

three-dimensional methodology will be the main focus of this research. 

The wave forces obtained from the SBFEM analysis will be applied to more practical 

engineering usage, such as evaluating the overall application of soil-structure-wave interaction 

of a monopile. A further three-dimensional extension of SBFEM will be carried out and the 

solution will be presented. The general applications of this novel approach will be discussed 

with regard to its feasibility and reliability, while validating it with existing analytical and 

numerical methods. 
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Chapter 3 

 

Model development and applications of 2D SBFEM to 
offshore structures 

 

 

3.1 Introduction 

In order to begin SBFEM methodology development, it is first necessary to understand the 

proposed solution technique. Several cases of wave diffraction problems commonly found in 

the offshore industry have been solved using the 2D SBFEM model (Tao et al., 2007; Song et 

al., 2010; Liu et al., 2013). Analytical solutions are available for the wave diffraction problem 

around simple structures, but for more complicated geometries, solutions are not readily 

available. In this chapter, SBFEM is applied to two-dimensional structures with different cross-

sectional shapes, including wave loading on a polygonal monopile with recent field applications 

proposed in the offshore renewable energy industry (RCID, 2010a; RCID, 2010b; RCID 2010c). 

The results obtained will be used for further applications, with regards to the effect of 

hydrodynamic forces on structure deflection. This chapter develops the application of the 

SBFEM to solve the wave diffraction problem on a realistic and physical offshore octagonal 

structure in a step by step manner. 

Section 3.2 will introduce the model problem and discuss the wave diffraction around a two-

dimensional structure, while Section 3.3 transforms the model problem into a scaled boundary 

representation. This section reviews the substructuring, geometry transformation and side-faces 

that are used in solving this model problem using the SBFEM. The solution is shown in Section 

3.4, solving the bounded domain and unbounded domain separately and assembling them to 

obtain the overall properties in the wave field. Finally, Section 3.5 presents the validation of 

the methodology and further discussion of the results obtained. Section 3.6 explains further 

applications that can be carried out and Section 3.7 provides the summary and conclusions. 

Detailed calculations are shown in the appendices.  
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3.2 Wave diffraction around a two-dimensional cylindrical structure 

 

As renewable energy becomes more important, the demand for offshore wind turbines is also 

increasing. New offshore capacity installations increased by 200% in first half of 2015 

compared to the first half of 2014 (EWEA, 2015). A typical offshore wind turbine is supported 

by circular monopiles. These monopiles are usually fabricated by rolling a large thick (>100 

mm) plate of steel, welding them together, and connecting the subsections as a circular cylinder. 

This rolling process is very time consuming. There is also high capital investment involved, in 

terms of machinery and facilities required for rolling thick plates. Moreover, the length of each 

section is limited by the width of the rollers. For a typical design, due to the restrictions of the 

machines used, subsection sheets of 3 m width are normally manufactured using specialist 

rollers. A novel solution to the problem of long fabrication times was suggested by the Resource 

Centre for Innovation and Design (RCID) in Newcastle, where the monopile could be replaced 

by a polygonal monopile (NaREC, 2012). With the polygonal pile, longer sections can be 

manufactured by welding together flat plates of approximately 10 m in length. Several 

polygonal structures were investigated (RCID, 2010a; RCID, 2010b; RCID, 2010c), starting 

from a 4 sided structure up to a 12 sided one. In this thesis, the analysis of an octagonal pile 

will be considered due to its capability to withstand wave stress during preliminary structural 

analysis.   

 

3.2.1 Wave diffraction around two-dimensional cylinder 

Figure 3.1 shows a diagrammatic representation of a wave passing through an octagonal cross 

sectioned monopile extended into the seabed and also piercing the surface. A virtual circular 

cylinder is placed outside the octagonal pile so that the advantages of choosing the Hankel 

function as part of the base solution could be applied to the unbounded domain (Tao et al., 

2007). The inner bounded domain is treated separately where the power series is chosen as the 

base solution. A monochromatic short crested wave train is propagated at an angle 𝜃 along the 

positive x-axis. An octagonal monopile is fixed at the seabed parallel to the x-axis, piercing the 

water surface. The top part represents the plan view with x-y-axis while the bottom part shows 

the side of the monopile along the y-z-axis (Figure 3.1). The coordinate origin is defined as the 

centre of the monopile where it passes through the mean water surface. The section between 

the circular cross section and the octagonal cross section is considered as the inner bounded 
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region, 𝑆𝑗. The domain outside the circular cylinder towards infinity is regarded as the outer 

unbounded domain, 𝑆0. 

 

Figure 3.1 Wave diffraction around an octagonal pile. Plan view (top) and front elevation 

(bottom) 

 

When dealing with wave diffraction, potential theory can be applied, where the fluid can be 

represented using velocity potential. In order to formulate the fluid motion, the fluid flow is 

assumed to be irrotational, incompressible and inviscid. The problem is formulated in two-

dimensions, so the time harmonic motion term in the angular frequency ω and the z direction 

term can be separated from the overall velocity potential. The variables of the velocity potential 

could be separated and represented as 

 Φ(𝑥, 𝑦, 𝑧, 𝑡) = ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt (3.1) 

The total velocity potential can be expressed as the sum of the incident velocity potential 

and the scattered velocity potential. By separating the variables, the scalar quantity of ϕ(𝑥, 𝑦) 

is investigated. The term ϕ𝐼(𝑥, 𝑦) is the known value of the incident wave and the unknown 

term ϕ𝑆(𝑥, 𝑦) of the scattered wave needs to be solved 
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 Φ(𝑥, 𝑦, 𝑧, 𝑡) = Φ𝐼(𝑥, 𝑦, 𝑧, 𝑡) + Φ𝑆(𝑥, 𝑦, 𝑧, 𝑡) (3.2) 

 ϕ(𝑥, 𝑦) = ϕ𝐼(𝑥, 𝑦) + ϕ𝑆(𝑥, 𝑦) (3.3) 

The z direction term describes the vertical direction where it could be solved analytically, 

satisfying the sea bottom condition 

 𝑍(𝑧) =
cosh  𝑘(𝑧 + ℎ)

cosh (𝑘ℎ)
 (3.4) 

The angular frequency 𝜔 is related to the wave number 𝑘, and can be defined using the linear 

dispersion relationship, where  

 𝜔2 = 𝑔𝑘 tanh (𝑘ℎ) (3.5) 

For deep water, where h approaches larger values, the tanh (kh) part tends to 1, hence, the 

dispersion relationship can be written as 𝜔2 = 𝑔𝑘. The wave diffraction solutions discussed in 

Chapter 2 use plane waves, which are two-dimensional long crested waves. However, the three-

dimensional short crested wave which can describe the real sea state by taking into account 

wind generated waves is considered here (Jeffreys, 1925). By using this approach, oblique 

waves can also be evaluated. Though the plane wave predicts higher forces on structures which 

can be used in designs, the short crested phenomenon that represents more realistic sea waves 

is evaluated (Zhu, 1993). The short crested incident wave illustrated by Mei (1992) and Zhu 

(1993) can be written as  

 Φ𝐼 = −
𝑖𝑔𝐴

𝜔
𝑍(𝑧)𝑒𝑖(𝑘𝑥𝑥−𝜔𝑡)cos (𝑘𝑦𝑦) (3.6) 

The imaginary part represents the phase change, where 𝑖 = √−1 , and the wave number 𝑘 

is obtained using   

 𝑘 = √𝑘𝑥
2 + 𝑘𝑦

2
 (3.7) 

The real part of this equation represents the scalar potential of the potential flow theory.  
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3.2.2 Boundary value problem 

The boundary value problem (BVP) describes the mathematical formulation that governs the 

wave propagation where the incoming wave impinges on a solid structure and the resulting 

scattered wave needs to be accounted for. In the case of the two-dimensional problem, the wave 

equation can be represented using the Helmholtz equation (Appendix A). The computational 

domain is divided into two parts, the internal bounded domain 𝑆𝑗 and the external unbounded 

domain 𝑆0, as shown in Figure 3.1. The velocity potential in these domains are expressed by 

equations (3.2) and (3.3). The external domain of the two-dimensional scattered velocity 

potential 𝜙𝑆 governed by the Helmholtz equation is written as  

 ∇2ϕ0
𝑆 + 𝑘2ϕ0

𝑆 = 0 (3.8) 

The boundary condition on the virtual circular cylinder 𝛤𝐶 can be written where the flow into 

the inner domain is equal to the flow into the outer domain 

 ϕ0,𝑛
𝑆 + ϕ0,𝑛

𝐼 = −ϕ𝑎𝑑𝑗,𝑛 on 𝛤𝑐 (3.9) 

Subscript n denotes the normal to the boundary and subscript “adj” denotes the physical 

quantities in the adjacent subdomain, while the subscript comma (,) describes the partial 

derivative with respect to the following variable that is shown. The boundary condition at 

infinity can be represented by the two-dimensional Sommerfeld’s radiation condition (Lamb, 

1910), where  

 lim
𝑘𝑟→∞

(𝑘𝑟)
1

2 (ϕ0,𝑟
𝑆 − 𝑖𝑘ϕ0

𝑆) = 0 on 𝛤∞ (3.10) 

In comparison to other numerical methods, in order to satisfy this radiation condition, the 

FEM prescribes an artificial boundary at a distance away from the structure. Whereas, choosing 

the Hankel function as the base solution is similar to the BEM approach where the radiation 

condition at infinity can be satisfied (Kausel, 2006) , Appendix B. 

The internal domain 𝑆𝑗 in Figure 3.1 is further subdivided into several subdomains, this is 

done to enable the properties of the SBFEM to fully overcome the problem of singularity that 

occurs at the sharp corners. Detailed discussion of this is found in subsection 3.3.2. Figure 3.2 

shows one of the internal subdomains of this particular model problem. The adjacent boundary 

of each inner subdomain is denoted as 𝛤𝑠 and the boundary between the inner domain and the 
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outer domain is denoted as 𝛤𝑐, whilst the boundary between the body of the structure and the 

inner domain is denoted as 𝛤𝑏.  

 

Figure 3.2 Example of the boundaries in an inner subdomain 𝛤𝑏, 𝛤𝑠 and  𝛤𝑐  

 

For the inner subdomain 𝑆𝑗, the same governing Helmholtz equation can be written as  

 ∇2ϕ𝑗 + 𝑘
2ϕ𝑗 = 0 (3.11) 

The velocity potential in between the inner subdomains satisfies the Dirichlet boundary 

condition as in equation (3.12). The normal velocity potential on 𝛤𝑐 is shown in equation (3.13).  

 Tangential: ϕ𝑗 = ϕ𝑎𝑑𝑗 on 𝛤𝑠 (3.12) 

 Normal: ϕ𝑗,𝑛 = −ϕ0,𝑛
𝑆 − ϕ0,𝑛

𝐼  on 𝛤𝑐 (3.13) 

The body boundary condition specifies that no flow passes through the solid octagonal wall 

and that the outward facing normal velocity on the body surface is zero. 

 ϕ𝑗,𝑛 = 0 on 𝛤𝑏 (3.14) 

To solve for the boundary value problem, the governing equations in (3.8) and (3.11) and 

the boundary conditions (3.9 – 3.14) need to be satisfied.  

 

3.3 Scaled boundary finite element transformation 

SBFEM is analysed in a different coordinate system, (𝜂, 𝜉) for two dimensions (see Figure 3.3) 

and (𝜂, ζ, 𝜉) for three dimensions (see Figure 4.3), instead of the Cartesian Coordinate system 

(x, y) and (x, y, z) respectively. The main reason for this is because the Cartesian coordinate 
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axes are fixed, and by transforming and applying the local Scaled Boundary coordinates more 

flexibility for mapping more complex geometries that involve multiple subdomains can be 

achieved, while preserving the advantage of the SBFEM where the radial direction can be 

solved analytically. It also allows discontinuous boundary conditions to be satisfied, which is 

an advantage when solving for soil-structure interactions. The value ξ on the radial direction is 

also known as a scaling factor, which is measured from its unique and individual scaling centre 

allowing the analytical solution to be obtained. 

Numerical procedures can be carried out in the circumferential direction, based on the 

weighted residual technique. The axis 𝜂 is introduced and used for two-dimensional solutions, 

discussed in this chapter, while an additional axis ζ can be applied to tackle the three-

dimensional problem, which will be presented in Chapter 4. The SBFEM allows a solution to 

be formulated in the analytical form in the radial direction and numerically in the 

circumferential direction.  

This coordinate transformation also overcomes the singularity issue that normally occurs, 

especially when solving for problems of geometries with sharp corners. This is possible when 

the radial coordinate acts from the boundary towards the interior singular point in the bounded 

domain. Using the scaled boundary coordinate system and by placing the scaling centre at the 

sharp corner, the singularity problem can be solved (Li et al., 2005a; Li et al., 2005b). On the 

other hand, the radiation condition at infinity could be overcome by setting the radial coordinate 

to act outward from the boundary to infinity (Li et al., 2005a; Li et al., 2005b), or by selecting 

the appropriate base solution that satisfies it, such as the Hankel function (Tao et al., 2007). 

However, it should be noted that the Hankel function only allows a solution in the cylindrical 

coordinate system. The coordinate transformation also depends on the choice of scaling centre.  

3.3.1 Coordinate transformation 

Figure 3.3 shows a typical definition of the SBFEM in the form of a diagram. There are three 

lines on the corresponding axis ξ as it surrounds the scaling centre O(𝑥𝑜 , 𝑦𝑜), where the bold 

line portrays the typical SBFE, where ξ=1 usually falls on the surface geometry that is evaluated. 

The inner line describes the internal SBFEM ξi, also known as the inner domain while the 

outermost line represents the external SBFE ξe, also known as the outer domain. The points on 

the external, typical and internal SBFE relate to each other in a scaled manner. The 

corresponding points on each section should form a line passing through the scaling centre. The 

position of the scaling centre can be located at different positions depending on the problem. 
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Figure 3.3 Scaled Boundary coordinate definition and definition of boundaries 

 

In order to solve the problem in a different coordinate system, the transformation of 

coordinates is done using the chain rule, where 

 
𝜕

𝜕𝜉
=
𝜕𝑥̂

𝜕𝜉
∙
𝜕

𝜕𝑥̂
+
𝜕𝑦̂

𝜕𝜉
∙
𝜕

𝜕𝑦̂
 (3.15) 

 
𝜕

𝜕𝜂
=
𝜕𝑥̂

𝜕𝜂
∙
𝜕

𝜕𝑥̂
+
𝜕𝑦̂

𝜕𝜂
∙
𝜕

𝜕𝑦̂
 (3.16) 

This is usually represented in a matrix form.  

 

{
 

 
𝜕

𝜕𝜉
𝜕

𝜕𝜂}
 

 

=

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦̂

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦̂

𝜕𝜂]
 
 
 
 

{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂}
 

 
 (3.17) 

The introduction of the Jacobian Matrix [𝐽(𝜉, 𝜂)]  defines the linear mapping of linear 

approximation. The transformation of coordinates is shown in detail in Appendix F. 

 

{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂}
 

 
=
1

|𝐽|

[
 
 
 
 
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉

−
𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜉 ]
 
 
 
 

{
 

 
𝜕

𝜕𝜉
𝜕

𝜕𝜂}
 

 

 (3.18) 
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With this coordinate transformation, the whole boundary value problem can be redefined in 

the Scaled Boundary coordinate system with a radial coordinate that can be scaled and the 

divergence operator defined (see Appendix I). Operator ∇ and infinitesimal areas in the Scaled 

Boundary coordinates can be expressed as in equations (3.19) and (3.20) respectively. 

 ∇= {𝑏1(𝜂)}
𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂)}

𝜕

𝜕𝜂
 (3.19) 

 𝜕𝑥𝜕𝑦 = |𝐽|𝜉𝜕𝜉𝜕𝜂 (3.20) 

The Jacobian is written as  

 |𝐽| = 𝑥(𝜂)𝑦(𝜂),𝜂 − 𝑦(𝜂)𝑥(𝜂),𝜂 (3.21) 

Equations (3.19 – 3.21) are later substituted into the new governing equation to allow the 

BVP to be solved in the Scaled Boundary coordinate system.  

 

3.3.2 Scaling centre and substructuring 

To solve the problem using the SBFEM, it is important to consider the position of the scaling 

centre. The structure that is considered has an octagonal cross section. Placing the scaling centre 

at the centre of the cross section is visible from the circumference around it but would pose 

singularity problems at the sharp corners. To overcome this, a scaling centre is placed at each 

corner of the polygonal structure, corresponding to the individual subdomains. Moreover, the 

Hankel function could be used to achieve an exact solution for a circular cross section (Tao et 

al., 2007) which satisfies the Sommerfeld boundary condition at infinity. Hence, a virtual 

cylinder is placed outside the octagonal structure to take advantage of this. The scaling centre 

for the external circular unbounded domain is placed in the middle of the circle (see Figure 3.4).  

The complete computational domain is now divided into several inner subdomains (left), 

where the radial section is bounded by 𝜉𝑖 = 0 and 𝜉𝑒 = 1 while the outer domain (right) is 

bounded by 𝜉𝑖 = 1 and 𝜉𝑒 = ∞. Equal size and shaped bounded subdomains are used and 

discretised to simplify the computation of the entire domain.  
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Figure 3.4 Radial boundary of the inner subdomains (left) and the outer subdomain (right) 

 

For the inner subdomain, the typical scaled boundary diagram can be visualised as  

 

Figure 3.5 Typical scaled boundary diagram for inner subdomain 

 

The scaling equation is used to transform the scaling centre in the problem from the Cartesian 

coordinate to the Scaled Boundary coordinate, where 

 

𝑥(𝜉, 𝜂) = 𝜉𝑥𝑏(𝜂) + 𝑥0 

𝑦̂(𝜉, 𝜂) = 𝜉𝑦𝑏(𝜂) + 𝑦0 

(3.22) 

The subscript b denotes the coordinate on the boundary. To solve the velocity potential of 

the whole domain, both the inner subdomains and the outer domain are considered together 

(Figure 3.6). This also shows the overall substructuring proposed to solve the wave diffraction 

around an octagonal pile, in a manner where the advantages of the SBFEM can be preserved. 
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The inner domain is made out of eight subdomains denoted S1 ,S2.. S8, while the outer domain 

is a separate subdomain denoted S0. The inner subdomains coincide at adjacent boundaries at 

Г𝑠 and the inner and outer boundaries share the same boundary at boundary Г𝑐 where 𝜉 = 1. 

 

 

Figure 3.6 Substructuring of an octagonal pile and a virtual circular cylinder 

 

It is worth noting that several scaling centres can be used to define one large domain if 

necessary. Depending on the geometry of the system, scaling centres are usually placed at the 

sharp corners if they exist in the problem. By doing so, the SBFEM is able to overcome the 

disadvantage encountered by the BEM where the problem of singularity appears at the re-

entrant point, which may lead to the occurrence of irregular frequency. A similar approach was 

also adopted to solve fracture problems in crack mechanics (Yang, 2006). The reason for this 

is that the selective positioning will result in the side-faces passing through the scaling centre, 

and need not be discretised, allowing the side-faces to be solved analytically. The information 

on the side-faces can be obtained by scaling the values calculated at the edge that coincide with 

the line that passes through the scaling centre. 
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In situations where the side-faces overlap, the SBFE could be defined as a closed curve. The 

values on each side-face are equal in magnitude but opposite in direction. When the side-faces 

coincide, the values cancel each other out, and the side-faces play no role in the solution. 

However, when the side-faces does not coincide, the SBFE is considered as an open curve. 

Other than this, the SBFEM seeks for an approximate solution, where the shape function is used 

just as in the FEM. For this octagonal problem, the side-faces result in an open curve, and pass 

through the scaling centre and properties on the side-faces can be found using the scaling 

method (Wolf, 2003).  

 

3.3.3 Mapping function 

The shape function is used in a similar way to any FEM or BEM approach. A suitable shape 

function, which interpolates the velocity potential at the mesh boundary nodes, is selected. Note 

that due to the advantage of the spatial dimension being reduced by one, the elements are treated 

as one-dimensional elements. Here, a three noded quadratic shape function, shown in Figure 

3.7 is chosen for the one-dimensional element, which will produce a better approximation than 

a two noded line element when fewer elements are used to discretise the geometry (Appendix 

G). 

 

Figure 3.7 Quadratic line shape function 

 

The shape function, similar to that used in FEM can be written as  

 [𝑁(𝜂)] = [𝑁(𝜂)1 𝑁(𝜂)2 𝑁(𝜂)3] (3.23) 

where   

 𝑁(𝜂)1 =
1

2
𝜂(𝜂 − 1) (3.24) 
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 𝑁(𝜂)2 = −(𝜂 + 1)(𝜂 − 1) (3.25) 

 𝑁(𝜂)3 =
1

2
𝜂(𝜂 + 1) (3.26) 

This shape function is used to interpolate the solution between discrete values on the 

corresponding nodes. Due to the transformation of the coordinate system, the shape function 

used is in the Scaled Boundary coordinate system, and only the values on the boundary are 

discretised. Points in the Cartesian coordinates are denoted with the subscript c, {𝑥𝑐} and {𝑦𝑐}. 

The points in the new coordinate system are found using   

 

𝑥𝑏(𝜂) = [𝑁(𝜂, 𝜁)]{𝑥𝑐} 

𝑦𝑏(𝜂) = [𝑁(𝜂, 𝜁)]{𝑦𝑐} 

(3.27) 

Substitute equations (3.27) into the scaling equation (3.22), to obtain the transformation of 

the coordinates yields, 

 

𝑥̂(𝜉, 𝜂) = 𝑥0 + 𝜉[𝑁(𝜂, 𝜁)]{𝑥𝑐} 

𝑦̂(𝜉, 𝜂) = 𝑦0 + 𝜉[𝑁(𝜂, 𝜁)]{𝑦𝑐} 

(3.28) 

Notice that the formula of the shape function is only dependent on 𝜂 , which is the 

circumferential direction. Hence, the governing Helmholtz equation is weakened by the shape 

function in the circumferential direction. An approximate solution for ϕ𝐴 can be found using 

the similar shape function, where  

 ϕ𝐴(𝜉, 𝜂) = [𝑁(𝜂)]{𝑎(𝜉)} (3.29) 

Substituting equations (3.23) and (3.29) into 𝑣𝐴 = ∇ϕ𝑗 , the approximate velocity 𝑣𝐴 can be 

obtained in equation (3.30). Detailed derivations can be found in Appendix J. 

 𝑣𝐴 = ∇ϕ𝐴 = [𝐵1(𝜂)]{𝑎(𝜉)},𝜉 +
1

𝜉
[𝐵2(𝜂)]{𝑎(𝜉)} (3.30) 

where 



Chapter 3 Model development and applications of 2D SBFEM to offshore structures 

46  
 

[𝐵1(𝜂)] = {𝑏1(𝜂)}[𝑁(𝜂)] 

[𝐵2(𝜂)] = {𝑏2(𝜂)}[𝑁(𝜂)],𝜂 

The shape function is also used to convert the differential equation relating to the weighted 

function into the discrete problem, using the Galerkin approach, where  

 𝑤(𝜉, 𝜂) = [𝑁(𝜂)]{𝑤(𝜉)} = {𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇 (3.31) 

   

3.3.4 SBFE equation 

From the governing Helmholtz equations in (3.8) and (3.11), the approximate velocity potential 

can be solved by multiplying it with the weighting function and integrating anticlockwise 

around the whole domain, to set the error to zero. The boundary with prescribed velocity 𝑣̅𝑛 is 

denoted as  

 𝜙,𝑛
𝑆 = 𝑣̅𝑛 on 𝛤𝑣 (3.32) 

𝛤𝑣
 is defined as the velocity boundary. For simplification of the equations, the brackets 

representing the matrices are removed. Through integration by parts (Appendix H), the general 

equation can be rewritten as  

 

∬(𝑤 𝜙,𝑥 ),𝑥

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦 +∬(𝑤 𝜙,𝑦 ),𝑦

 

Ω

𝑑𝑥𝑑𝑦

−∬𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦 +∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 = 0 

(3.33) 

Note that only the Neumann boundary condition applies in this two-dimensional case. By 

including the boundary condition (3.32), the new Helmholtz equation can be expanded and 

rewritten as  

 ∬∇𝑇𝑤∇𝜙
 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 − ∮ 𝑣̅𝑛𝑤 𝑑𝛤𝑏

 

𝛤𝑏

= 0 (3.34) 

The solution to the problem can be obtained from the weighted residual equation by 

expanding the equation. Coefficients are introduced to simplify the representation of the 
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equation, where the terms containing 𝜂  are factored into the coefficients. The coefficient 

matrices introduced are  

 

𝐸0 = ∫ 𝐵1(𝜂)
𝑇𝐵1(𝜂)|𝐽|𝑑𝜂

𝜂

 

𝐸1 = ∫ 𝐵2(𝜂)
𝑇𝐵1(𝜂)|𝐽|𝑑𝜂

𝜂

 

𝐸2 = ∫ 𝐵2(𝜂)
𝑇𝐵2(𝜂)|𝐽|𝑑𝜂

𝜂

 

𝑀0 = ∫ 𝑁(𝜂)𝑇𝑁(𝜂)|𝐽|𝑑𝜂
𝜂

 

(3.35) 

 𝐹𝜂(𝜉) = [𝑁(𝜂1)]
𝑇(−𝑣̅𝑛(𝜉, 𝜂1))|𝐽(𝜂1)| + [𝑁(𝜂0)]

𝑇(−𝑣̅𝑛(𝜉, 𝜂0))|𝐽(𝜂0)| (3.36) 

Substituting equations (3.35) into equation (3.36) results in 

 

{𝑤(𝜉𝑒)}
𝑇 [𝐸0𝜉𝑒{𝑎(𝜉𝑒)},𝜉 + 𝐸1

𝑇{𝑎(𝜉𝑒)} − ∮[𝑁(𝜂)]
𝑇𝑣̅𝑛(𝜉𝑒 , 𝜂)𝑑𝜂

 

𝜂

]

− {𝑤(𝜉𝑖)}
𝑇 [𝐸0𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + 𝐸0

𝑇{𝑎(𝜉𝑖)}

+ ∮[𝑁(𝜂)]𝑇𝑣̅𝑛(𝜉𝑖, 𝜂)𝑑𝜂
 

𝜂

]

− ∫ {𝑤(𝜉)}𝑇 (𝐸0𝜉{𝑎(𝜉)},𝜉𝜉 + (𝐸0 + 𝐸1
𝑇 − 𝐸1){𝑎(𝜉)},𝜉

𝜉𝑒

𝜉𝑖

− 𝐸2{𝑎(𝜉)}
1

𝜉
+ 𝑀0𝑘

2{𝑎(𝜉)}𝜉 − 𝐹𝜂(𝜉))𝜕𝜉 = 0 

(3.37) 

The discretisation of the inner and outer part of the boundary can be represented in the scaled 

boundary form as 

 {𝑞(𝜉)} = 𝐸0𝜉{𝑎(𝜉)},𝜉 + 𝐸1
𝑇{𝑎(𝜉)} (3.38) 

In order to satisfy all the weighted function equations, the following conditions must be met:  
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 𝐸0𝜉𝑒{𝑎(𝜉𝑒)},𝜉 + 𝐸1
𝑇{𝑎(𝜉𝑒)} − ∮[𝑁(𝜂)]

𝑇𝑣̅𝑛(𝜉𝑒 , 𝜂)𝑑𝜂
 

𝜂

= 0 (3.39) 

 𝐸0𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + 𝐸0
𝑇{𝑎(𝜉𝑖)} + ∮[𝑁(𝜂)]

𝑇𝑣̅𝑛(𝜉𝑖, 𝜂)𝑑𝜂
 

𝜂

= 0 (3.40) 

 
𝜉𝐸0{𝑎(𝜉)},𝜉𝜉 + (𝐸0 + 𝐸1

𝑇 − 𝐸1){𝑎(𝜉)},𝜉 −
1

𝜉
𝐸2{𝑎(𝜉)} + 𝜉𝑘

2𝑀0{𝑎(𝜉)}

− 𝐹𝜂(𝜉) = 0 

(3.41) 

The SBFE equation (3.41) is a non-homogeneous second order partial differential equation 

(PDE). In order to solve this eigenvalue problem, the rank of the coefficients must be equal to 

the number of nodes at the boundary.  

 

3.4 Solution procedure 

The solution to the unbounded domain could be solved using the approach proposed (Tao et al., 

2007). The formulations derived are similar to those previously proposed (Wolf, 2003), and 

later modified (Li et al., 2006) to solve the Helmholtz equation in the context of hydrodynamics. 

In the present work, each of these modifications is combined and adopted in solving the wave 

diffraction problem for an octagonal cylinder and integrated modelling of wave-structure-soil 

interaction in this chapter.  

 

3.4.1 Bounded domain 

To satisfy the weighted function, the new governing equation presented in the Scaled Boundary 

coordinate needs to be satisfied.  

Solving for  

 
𝜉2𝐸0{𝑎(𝜉)},𝜉𝜉 + 𝜉(𝐸0 + 𝐸1

𝑇 − 𝐸1){𝑎(𝜉)},𝜉 − 𝐸2{𝑎(𝜉)} + 𝜉
2𝑘2𝑀0{𝑎(𝜉)}

= 𝜉𝐹𝜂(𝜉) 
(3.42) 

At the side-face, water does not flow into the structure, by applying this body boundary 

condition it leads to 𝐹𝜂(𝜉) = 0. This results in a homogeneous second order PDE.  
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 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 + 𝜉(𝐸0 + 𝐸1

𝑇 − 𝐸1){𝑎(𝜉)},𝜉 − 𝐸2{𝑎(𝜉)} + 𝑀0𝜉
2𝑘2{𝑎(𝜉)} = 0 (3.43) 

One approach to solving this second order PDE is to split the equation into two first order 

equations with two unknowns. The weighted function weakens the boundary condition at the 

nodal flow, where the nodal force is represented as in equation (3.38). Rearranging equation 

(3.38) yields  

 𝐸0𝜉{𝑎(𝜉)},𝜉 = {𝑞(𝜉)} − 𝐸1
𝑇{𝑎(𝜉)} (3.44) 

Differentiating equation (3.44) in terms of  𝜉 leads to,  

 𝐸0𝜉{𝑎(𝜉)},𝜉𝜉 + 𝐸0{𝑎(𝜉)},𝜉 = {𝑞(𝜉)},𝜉 − 𝐸1
𝑇{𝑎(𝜉)},𝜉 (3.45) 

Rearranging equation (3.45) and multiply with 𝜉 yields, 

 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 = 𝜉{𝑞(𝜉)},𝜉 − 𝐸1

𝑇𝜉{𝑎(𝜉)},𝜉 − 𝐸0𝜉{𝑎(𝜉)},𝜉 (3.46) 

The SBFE equation and boundary condition can be rewritten by substituting (3.46) into the 

general SBFE equation in (3.43),  

 
𝜉{𝑞(𝜉)},𝜉 − 𝐸1

𝑇𝜉{𝑎(𝜉)},𝜉 − 𝐸0𝜉{𝑎(𝜉)},𝜉 + (𝐸0 + 𝐸1
𝑇 − 𝐸1)𝜉{𝑎(𝜉)},𝜉

− 𝐸2{𝑎(𝜉)} + 𝑀0𝜉
2𝑘2{𝑎(𝜉)} = 0 

(3.47) 

Simplifying equation (3.47) results in equation  

 𝜉{𝑞(𝜉)},𝜉 − 𝐸1𝜉{𝑎(𝜉)},𝜉 − 𝐸2{𝑎(𝜉)} + 𝑀0𝜉
2𝑘2{𝑎(𝜉)} = 0 (3.48) 

Rearranging the boundary condition (3.46) and substituting into (3.48), leads to  

 
𝜉{𝑞(𝜉)},𝜉 + (−𝐸2

 + 𝐸1
 𝐸0

−1𝐸1
𝑇){𝑎(𝜉)} − 𝐸1

 𝐸0
−1{𝑞(𝜉)} + 𝑀0𝜉

2𝑘2{𝑎(𝜉)}

= 0 
(3.49) 

Hence, equation (3.44) and (3.49) can be written in a matrix form   
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𝜉 {
{𝑎(𝜉)},𝜉
{𝑞(𝜉)},𝜉

} = [
−𝐸0

−1𝐸1
𝑇 𝐸0

−1

𝐸2
 − 𝐸1

 𝐸0
−1𝐸1

𝑇 𝐸1
 𝐸0

−1] {
{𝑎(𝜉)}

{𝑞(𝜉)}
}

− 𝜉2𝑘2 [
0 0
𝑀0 0

] {
{𝑎(𝜉)}

{𝑞(𝜉)}
} 

(3.50) 

The second order PDE can be transformed into two first order PDE. With two equations and 

two unknowns, the equations can now be solved. Notice that this step also increases the degree 

of freedom that needs to be solved. The two PDE can be written as one by introducing another 

dependent variable where  

 {𝑋(𝜉)} = {
{𝑎(𝜉)}
{𝑞(𝜉)}

} (3.51) 

The term {𝑎(𝜉)}  represents the velocity potential at the nodes and {𝑞(𝜉)}  is the flow 

function at the respective nodes. This allows the analytical solution in the frequency domain to 

be calculated, and the velocity potential for each specific point in the domain can be identified. 

The angular frequency is directly proportional to the wave number, hence, a new independent 

variable can be introduced, where  

 𝜁̅ = 𝑘 ∙ 𝑏 ∙ 𝜉 (3.52) 

Equation (3.50) can be written as  

 𝜁{̅𝑋(𝜁)̅},𝜁̅ = [𝑍]{𝑋(𝜁)̅} − 𝜁
2̅[𝑀]{𝑋(𝜁)̅} (3.53) 

where 

 [𝑀] =
1

𝑏2
[
0 0

[𝑀0] 0
] (3.54) 

and the Hamiltonian matrix 

 [𝑍] = [
−𝐸0

−1𝐸1
𝑇 𝐸0

−1

𝐸2
 − 𝐸1

 𝐸0
−1𝐸1

𝑇 𝐸1
 𝐸0

−1] 
(3.55) 

The solution of {𝑋(𝜁̅)} can be obtained by introducing a constant {𝑐}, where  

 {𝑋(𝜁̅)} = [𝑋(𝜁̅)]{𝑐} (3.56) 

Hence, the governing equation can be rewritten as  
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 𝜁[̅𝑋(𝜁)̅],𝜁̅ = [𝑍][𝑋(𝜁)̅] − 𝜁2̅[𝑀][𝑋(𝜁)̅] (3.57) 

For systems of first order differential equations, the eigenvalue and eigenvector method can 

be used to solve equation (3.57). A new vector is introduced [𝑊(𝜁)̅], where 

 [𝑋(𝜁)̅] = [Φ][𝑊(𝜁)̅] (3.58) 

 [𝑋(𝜁)̅],𝜁̅ = [Φ][𝑊(𝜁)̅],𝜁̅ (3.59) 

[Φ] is a modal matrix, for the eigenvector of [Z] with the rank of m, where m is the number 

of nodal points to be evaluated, which can be written as an (𝑚 ×  𝑚) matrix. This is the key 

point, where the eigenvectors are used to diagonalise a matrix with distinct eigenvalues. 

Substituting equations (3.58) and (3.59) into the governing equation (3.57) yields, 

 [Φ][𝑊(𝜁)̅],𝜁̅ = [𝑍][𝑋(𝜁)̅] − 𝜁2̅[𝑀][Φ][𝑊(𝜁)̅] (3.60) 

by using the Jordan decomposition (Li et al., 2005a), the following equation is satisfied.  

 [𝑊(𝜁)̅],𝜁̅ = [Φ]−1[𝑍][Φ][𝑊(𝜁)̅] − 𝜁2̅[Φ]−1[𝑀][Φ][𝑊(𝜁)̅] (3.61) 

Introducing the diagonal matrix of [Λ], which is made up of the eigenvalue of [𝑍], and can 

be written as  

 [Λ] = [Φ]−1[𝑍][Φ] = [
  −𝜆1

1
0 1

1

0 𝜆1
] (3.62) 

This is also known as the similarity transform where 𝜆 represents the eigenvalues. However, 

in the context of hydrodynamics, the zero eigenvalue in each 𝜆 is present, signifying that there 

is no flow in the fluid domain, leading to the singularity problem when solving the equation, 

hence, a Jordan decomposition of the matrix [𝑍] is introduced to overcome this problem (Li et 

al., 2006). A transformation matrix is applied, 

 [𝑍][𝑇] = [𝑇][Λ′] (3.63) 

where  
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 [Λ′] = [

 −𝜆1
1

  

 [
0 1
0 0

]  

    𝜆1
1

] (3.64) 

Hence the equation (3.61) can be rewritten as,  

 [𝑊(𝜁)̅],𝜁̅ = [Λ′][𝑊(𝜁)̅] − 𝜁2̅[Λ′][𝑊(𝜁)̅] (3.65) 

According to the theory of matrices, [𝑊(𝜁)̅] can be solved using the product of two square 

matrix functions in term of 𝜁,̅ where  

 [𝑊(𝜁)̅] = [𝑅(𝜁)̅][𝑌(𝜁)̅] (3.66) 

The matrix [𝑅(𝜁)̅] can be formulated in a power series, where 𝑘 = 1,2,3… 

 [𝑅(𝜁)̅] = [𝐼] + 𝜁2̅[𝑅1] + 𝜁
4̅[𝑅2] + ⋯+ 𝜁

2̅𝑘[𝑅𝑘] + ⋯ (3.67) 

The second matrix [𝑌(𝜁)̅] has to satisfy the ordinary differential equation,  

 𝜁[̅𝑌(𝜁)̅],𝜁̅ = [𝑃(𝜁)̅][𝑌(𝜁)̅] (3.68) 

And the matrix [𝑃(𝜁)̅] can also be represented in the power series, where 𝑘 = 0,1,2… 

 [𝑃(𝜁)̅] = [𝑃0] + 𝜁
2̅[𝑃1] + 𝜁

4̅[𝑃2] + ⋯+ 𝜁
2̅𝑘[𝑃𝑘] + ⋯ (3.69) 

The solution process follows the previously proposed solution (Serre, 2000; Wolf, 2003). 

The [𝑌(𝜁)̅] term also satisfies [𝑌(𝜁)̅] = 𝜁  ̅[Λ] and can be expressed as an upper triangular matrix. 

Hence, the overall analytical solution can be rewritten as 

 {𝑋(𝜁̅)} = {
𝑎(𝜁̅)

𝑞(𝜁̅)
} = [

[T11] [T12]
[T21] [T22]

] [
[R11] [R12]
[R21] [R22]

] [
[Y11] [Y12]
0 [Y22]

] {
𝑐1
𝑐2
} (3.70) 

Let [𝐾(𝜁)̅] = [T][𝑅(𝜁)̅], equation (3.70) can be simplified as  

 {
𝑎(𝜁)̅

𝑞(𝜁)̅
} = [

[𝐾11] [𝐾12]

[𝐾21] [𝐾22]
] [
𝜁−̅𝜆 𝜁𝑃̅

0 𝜁𝜆̅
] {
{𝑐1}

{𝑐2}
} (3.71) 



Chapter 3 Model development and applications of 2D SBFEM to offshore structures 

53  
 

According to previous literature (Wolf, 2003), the following equations have to be satisfied 

to attain the solution, where [𝑃0] = [Λ], [Λ][𝑅1] − [𝑅1][Λ] − 2[𝑅1] = [𝑃1] + [𝑀], [Λ][𝑅𝑚] −

[𝑅𝑚][Λ] − 2𝑚[𝑅𝑚] = [𝑃𝑚] + [𝐶𝑚], written as 

 [𝐶𝑚] = [𝑀][𝑅𝑚−1] + ∑[𝑅𝑗]

𝑚−1

𝑗=1

[𝑃𝑚−𝑗] (3.72) 

The scaling centre at 𝜁̅ = 0 should be finite for the bounded domain, hence, the constant 

{𝑐2} must be equal to zero. The remaining equation is written as  

 {𝑎(𝜁)̅} = [𝐴(𝜁)̅]{c1} = [K11]𝜁
−̅𝜆{𝑐1} (3.73) 

 {𝑞(𝜁)̅} = [𝑄(𝜁)̅]{c1} = [K21]𝜁
−̅𝜆{𝑐1} (3.74) 

Solving equations (3.73) and (3.74), the constant can be eliminated by dividing {𝑎(𝜁)̅}  by 

{𝑞(𝜁)̅} 

 
{𝑞(𝜁)̅}

{𝑎(𝜁)̅}
=
[𝑄(𝜁)̅]{c1}

[𝐴(𝜁)̅]{c1}
=
[K21]{c1}

[K11]{c1}
 (3.75) 

Let [𝐻(𝜁)̅] = [𝑄(𝜁)̅][𝐴(𝜁)̅]−1 = [K21][K11]
−1, equation (3.75) can be are simplified as, 

 {𝑞(𝜁)̅} = [𝐻(𝜁)̅]{𝑎(𝜁)̅} (3.76) 

At the outer boundary where 𝜁̅ = 1, the entire solution is unknown. However, the particular 

solution of the nodal force is known. The complete solution is denoted by the subscript 𝑐𝑠 and 

the particular solution is denoted by subscript 𝑝𝑠. 

The entire complete solution is now represented as,  

 {𝑞(𝜁)̅𝑐𝑠} = [𝐻(𝜁)̅𝑐𝑠]{𝑎(𝜁)̅𝑐𝑠} (3.77) 

And the particular solution is written as  

 {𝑞(𝜁)̅𝑝𝑠} = [𝐻(𝜁)̅𝑝𝑠]{𝑎(𝜁)̅𝑝𝑠} (3.78) 
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To solve the unknown at 𝜁̅ = 1 where different subdomain intersects, the particular solution 

can be removed from the complete solution.  

 {𝑞(𝜁)̅𝑐𝑠} − {𝑞(𝜁)̅𝑝𝑠} = [𝐻(𝜁)̅𝑐𝑠]{𝑎(𝜁)̅𝑐𝑠} − [𝐻(𝜁)̅𝑝𝑠]{𝑎(𝜁)̅𝑝𝑠} (3.79) 

   

3.4.2 Unbounded domain  

This section presents the brief solution procedure for the unbounded domain with more detailed 

derivations shown in Appendix L. The Scaled Boundary coordinates of the virtual circular 

cylinder can be expressed as  

 

𝑥𝜂(𝜂) = 𝑏 ∙ 𝑐𝑜𝑠 (
𝜂

𝑏
) 

𝑦𝜂(𝜂) = 𝑏 ∙ 𝑠𝑖𝑛 (
𝜂

𝑏
) 

(3.80) 

Parameter 𝑏  is the radius of the cylinder. The equation (3.43) can be simplified by 

substituting equation (3.52), so that the SBFE equation can be represented in a Bessel form of 

a partial differential equation.  

 𝜁2̅{𝑎(𝜁)̅},𝜁̅𝜁̅ + 𝜁{̅𝑎(𝜁)̅},𝜁̅ − 𝐸0
−1𝐸2{𝑎(𝜁)̅} + 𝜁

2̅{𝑎(𝜁)̅} = 0 (3.81) 

On the boundary at infinity Г∞, the Sommerfeld radiation condition must be satisfied, where 

the scattered waves vanish and only the propagating waves are left. The solution can be found 

by taking 𝐻𝑟𝑗(𝜁)̅𝑇𝑗 as the base solution, where the Hankel function of the first kind shows that 

the wave is moving continually away from the point source, where r = 0. This will automatically 

satisfy the boundary condition at infinity. This is illustrated by the equation (3.82) (Abramowitz 

and Stegun, 1964), when 𝑟 → ∞, the Hankel term will slowly diminish: 

 𝐻𝑗
(1)(𝑘𝑟)~√

2

𝑘𝑟
𝑒𝑖(𝑘𝑟−

2𝑗−1
4

)𝜋
 (3.82) 

The vectors of the scattered wave velocity potential values 𝑎0(𝜁)̅ can be expressed in the 

series form.  
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 𝑎0
𝑆(𝜁)̅ = ∑𝑐𝑗𝐻𝑟𝑗(𝜁)̅𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻(𝜁)̅𝐶 (3.83) 

The term 𝑇𝑗 represents the vector with the rank m, which corresponds to the number of nodes 

on the virtual cylinder. The term 𝑐𝑗 also represents the coefficient with rank m and 𝐻𝑟𝑗(𝜁) is the 

Hankel function of the first kind, shown as a diagonal matrix. These can be written as   

 𝑇 = [𝑇1, 𝑇2, … , 𝑇𝑚] (3.84) 

 𝐻(𝜁)̅ = 𝑑𝑖𝑎𝑔[𝐻𝑟1(𝜁)̅, 𝐻𝑟2(𝜁)̅, … , 𝐻𝑟𝑚(𝜁)̅] (3.85) 

 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚]
𝑇 (3.86) 

The solution to the scattered velocity potential for the unbounded domain can be written as  

 𝑎0
𝑆(𝜁)̅ =∑(𝐸0

−1𝐸2 − 𝑟𝑗
2𝐼)𝑇𝑗 ∙ 𝑐𝑗𝐻𝑟𝑗(𝜁)̅

𝑚

𝑗=1

= 0 (3.87) 

For equation (3.87) to be valid, for any arbitrary term 𝑐𝑗𝐻𝑟𝑗(𝜁)̅, (𝐸0
−1𝐸2 − 𝑟𝑗

2𝐼)𝑇𝑗 must be 

zero. Hence, to solve the quadratic eigenproblem, the term 𝜆𝑗 is introduced as the eigenvalues 

of 𝐸0
−1𝐸2. Vector 𝑟𝑗 = √𝜆𝑗 is obtained. The term 𝑇𝑗 shows the eigenvectors of 𝐸0

−1𝐸2.  

Using equation (3.83) and the orthogonal properties of 𝐸1𝐼 = 0 to solve for equation (3.38) 

 {𝑞(𝑘𝑏)} = 𝐸0𝑘𝑏∑𝑐𝑗𝐻𝑟𝑗(𝑘𝑏)
′𝑇𝑗

𝑚

𝑗=1

= −∫ [𝑁(𝜂)]𝑇[𝑁(𝜂)]𝑑𝜂
𝜂

𝑣̅𝑛
𝑠 = 0 (3.88) 

   

3.4.3 Assembly of subdomains 

The individual solution process to obtain the nodal potential is illustrated for both the bounded 

(3.79) and unbounded domain (3.88). Each of these subdomains are defined by the individual 

scaling centre. The subdomains need to be assembled to apply the boundary conditions to 

achieve the solution for the entire wave field. The steps required to assemble the subdomains 

to obtain the overall solution are shown below (Appendix M), where the starting point is from 
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the relationship of the nodal potential {𝑎(𝜁)̅}  and the nodal flow function {𝑞(𝜁)̅} , where 

{𝑎(𝜁)̅} = [𝐻(𝜁)̅]{𝑞(𝜁)̅}. A detailed step by step procedure is now presented so that other users 

can apply this method to solve for other cases that involve several subdomains.  

Step 1: Assembly of the bounded subdomains  

First, the bounded domains are assembled. [𝐻(𝜁)̅ 
𝑏] for individual subdomains are obtained and 

assembled, satisfying the boundary conditions where the tangential velocity potential is equal 

to the adjacent nodal potential whereas the normal velocity potential is opposite in direction but 

equal in magnitude to the adjacent nodal flow.  

Each bounded subdomain can be represented as in equation (3.76), where the superscript b 

denotes the bounded domain. 

 {𝑞(𝜁)̅ 
𝑏} = [𝐻(𝜁)̅ 

𝑏]{𝑎(𝜁)̅ 
𝑏} (3.89) 

Satisfying the relationship of the incident, scattered and total velocity potential in equation 

(3.3), the entire bounded domain can be rewritten as  

 {𝑞(𝜁)̅𝐼
𝑏} + {𝑞(𝜁)̅𝑆

𝑏} = [𝐻(𝜁)̅ 
𝑏]({𝑎(𝜁)̅𝐼

𝑏} + {𝑎(𝜁)̅𝑆
𝑏}) (3.90) 

Step 2: Assembly of the bounded domain with the unbounded domain  

The nodal flow between the bounded and the unbounded domains is also equal but opposite in 

direction, on the virtual circular cylinder. At the interface of the velocity boundary 𝛤𝑣, the value 

of the velocity potential is prescribed 𝑣̅𝑛, as shown in equation (3.32). 

To combine the bounded and unbounded domain, the boundary condition at 𝛤𝑐  , where 

ϕ𝑗,𝑛 = −ϕ𝑎𝑑𝑗,𝑛 has to be satisfied. The flow condition on the unbounded domain is described 

as [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑆

∞} = −{𝑞(𝜁)̅𝑆
∞}. The superscript ∞ denotes the unbounded domain. 

 [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑆

∞} + [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝐼

∞} = −{𝑞(𝜁)̅𝑆
∞} + [𝐻(𝜁)̅ 

∞]{𝑎(𝜁)̅𝐼
∞} (3.91) 

To obtain the total {𝑎(𝜁)̅𝑇
∞} , the first and second terms [𝐻(𝜁)̅ 

∞]{𝑎(𝜁)̅𝑆
∞}  and 

[𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝐼

∞} are summed up as in equation (3.3), giving rise to  

 [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑇

∞} = −{𝑞(𝜁)̅𝑆
∞} + [𝐻(𝜁)̅ 

∞]{𝑎(𝜁)̅𝐼
∞} (3.92) 
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It is also known that {𝑞(𝜁)̅𝑇
∞} = {𝑞(𝜁)̅𝐼

∞} + {𝑞(𝜁)̅𝑆
∞} and rearranging results in  {𝑞(𝜁)̅𝑆

∞} =

{𝑞(𝜁)̅𝑇
∞} − {𝑞(𝜁)̅𝐼

∞}. Substituting this into equation (3.94) yields,  

 [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑇

∞} = −{𝑞(𝜁)̅𝑇
∞} + {𝑞(𝜁)̅𝐼

∞} + [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝐼

∞} (3.93) 

On the virtual boundary, the nodal potential from both domains are equal, {𝑎(𝜁)̅𝑇
∞} =

{𝑎(𝜁)̅𝑇
𝑏} 

 [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑇

𝑏} = −{𝑞(𝜁)̅𝑇
∞} + {𝑞(𝜁)̅𝐼

∞} + [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝐼

∞} (3.94) 

Rearranging equation (3.96) yields,  

 [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑇

𝑏} + {𝑞(𝜁)̅𝑇
∞} = {𝑞(𝜁)̅𝐼

∞} + [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝐼

∞} (3.95) 

Again, on the virtual cylinder, there is a relationship for the nodal flow between these two 

domains, where it is equal in magnitude but opposite in direction, {𝑞(𝜁)̅𝑇
∞} = −{𝑞(𝜁)̅𝑇

𝑏} 

 

[𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑇

𝑏} − {𝑞(𝜁)̅𝑇
𝑏} = {𝑞(𝜁)̅𝐼

∞} + [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝐼

∞} 

[𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝑇

𝑏} − [𝐻(𝜁)̅ 
𝑏]{𝑎(𝜁)̅𝑇

𝑏} = {𝑞(𝜁)̅𝐼
∞} + [𝐻(𝜁)̅ 

∞]{𝑎(𝜁)̅𝐼
∞} 

([𝐻(𝜁)̅ 
∞] − [𝐻(𝜁)̅ 

𝑏]){𝑎(𝜁)̅𝑇
𝑏} = {𝑞(𝜁)̅𝐼

∞} + [𝐻(𝜁)̅ 
∞]{𝑎(𝜁)̅𝐼

∞} 

(3.96) 

Now, {𝑎(𝜁)̅𝐼
∞} can be calculated using the incident velocity potential equation, and {𝑞(𝜁)̅𝐼

∞} 

is calculated using the relationship of the normal flow at the boundary. Both [𝐻(𝜁)̅ 
∞] and 

[𝐻(𝜁)̅ 
𝑏] can be calculated using the coefficients. Hence, {𝑎(𝜁)̅𝑇

𝑏} can be calculated using linear 

algebra, hereafter the nodal potential at the virtual cylinder can be found.  

Step 3: Solve for velocity potential in the whole domain 

{𝑎(𝜁)̅𝑇
𝑏} is placed back into each individual subdomain to calculate the constant {𝑐1} in both 

bounded and unbounded domain at 𝜁̅ = 1 , using the equation (3.73), where 𝑎(𝜁)̅ =

𝐾11(𝜁)̅𝜁
𝛬̅0𝑌11(𝜁)̅𝑐1.The solution for the whole bounded domain can then be calculated. The 

scattered velocity potential can be calculated from 𝑎0
𝑆(𝜁) = ∑ 𝑐𝑗𝐻𝑟𝑗(𝜁)𝑇𝑗

𝑚
𝑗=1 . Hence, the 

solution of the entire wave domain can be obtained.  
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3.5 Results and discussion 

Before conducting the simulation, the parameters of the wave properties are given as input data 

as recommended in Appendix D. The results and discussion comprises several parts, 

a) Validating the codes of the 2D SBFEM with the analytical solution for simple 

geometries 

- Vertical circular cylinder 

- Vertical square cylinder 

b) 2D SBFEM results for a vertical octagonal cylinder 

- Convergence analysis 

- Wave forces on the structure with varying wave number  

 

 

3.5.1 Validating SBFEM results with simple geometries 

The SBFEM is first tested to see if the codes can be used to solve the wave diffraction around 

vertical cylinders with simple geometries. The validation is done by comparing the present 

SBFEM solution with previously published results of Zhu (1993). Figure 3.8 and Figure 3.9 are 

nondimensional wave elevation around the cylinder, which is obtained using 8 elements in each 

quarter, with 65 nodes discretising the entire boundary of the circular cylinder. The graphs are 

plotted with different kx and ky on the cylinder with a radius of 1.0 m and the total incident wave 

number of 𝑘 = √2 𝑚−1 and 𝑘 = √5 𝑚−1 respectively. The different kx and ky values show the 

effect of the short crested wave on the changes of the wave elevation around the circular 

cylinder. The results agree very well with the semi-analytical results whereby the solution is 

obtained using the perturbation series. It is interesting to see that the SBFEM provides a solution 

that agrees well with the previous studies. In order to compute the wave elevation around a 

circular cylinder, 3 elements in each quarter were used and could show convergence with the 

model. These two graphs demonstrate that the SBFE approach is able to solve the wave 

diffraction problem around a circular cylinder.  
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Figure 3.8 Wave elevation validation of a cylinder with total incident wave number k=√2  

 

Figure 3.9 Wave elevation validation of a cylinder with total incident wave number 𝑘 = √5 

with radius 1.0 
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Further validation is carried out to evaluate the wave forces on a square cylinder. The 

numerical calculation of forces induced by short crested waves on a vertical square cylinder is 

shown in Figure 3.10 (Zhu and Moule, 1994).  

 

Figure 3.10 Nondimensional force on a square cylinder (kx = 1 ky = 0) 

Again, the SBFEM uses substructuring where the domain is divided into bounded 

subdomains with scaling centres placed at the sharp corners of the square cross section, and an 

unbounded domain of a virtual circular cylinder enveloping the original structure. From Figure 

3.10, it can be seen that the forces on the square cylinder at different angles obtained from the 

present SBFEM model agree well with the BEM solutions provided previously by Zhu and 

Moule. The wave properties used in this model are kx = 1 and ky = 0. 

 

3.5.2  Wave diffraction around an octagonal monopile 

The SBFEM is then applied to study wave interaction with an octagonal cylinder. The 

numerical calculations are only an approximation according to the degree of discretization on 

the boundaries. Hence, as accuracy is important, the wave diffraction is examined by 

progressively repeating the procedure by increasing the number of elements used for calculation. 

In this study, the convergence test was carried out to examine the number of elements needed 

to obtain acceptable results.  

Figure 3.6 shows an example of the nodal points used. The scaling centres used are the same 

irrespective to the number of elements per subdomain. The elements shown in Figure 3.11 and 
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Table 3.1 represents elements used per subdomain to calculate the velocity potential and the 

nondimensional wave run-up |ή|/𝐴,. Wave run-ups are presented at 8 different points on the 

structure, at point  

(𝑎, 0), (𝑎 𝑐𝑜𝑠 (
𝜋

4
) , 𝑎 𝑠𝑖𝑛 (

𝜋

4
)) , (0, 𝑎), (𝑎 𝑐𝑜𝑠 (

3𝜋

4
) , 𝑎 𝑠𝑖𝑛 (

3𝜋

4
)), 

(−𝑎, 0), (𝑎 𝑐𝑜𝑠 (5𝜋/4), 𝑎 𝑠𝑖𝑛 (5𝜋/4)), (0, −𝑎) and (𝑎 𝑐𝑜𝑠 (7𝜋/4), 𝑎 𝑠𝑖𝑛 (7𝜋/4))  

represented by 

|𝜂́1|, |𝜂́2|, |𝜂́3|, |𝜂́4|, |𝜂́5|, |𝜂́6|, |𝜂́7| and |𝜂́8| respectively.  

 

Figure 3.11 Convergence test of wave run-up for ka=1 

 

In Table 3.1, each Side represents the number of quadratic line elements used at the interface 

𝛤𝑆, between each of the bounded subdomains and Circle represents the number of quadratic line 

elements used on the virtual cylinder interfaces, between a section of the bounded subdomain 

and the unbounded domain that is adjacent to it.  
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Table 3.1 Convergence test of horizontal forces for ka=1 

Side Circle |𝑷𝒙| 

1 1 1.2715 

1 2 1.3482 

2 4 1.3571 

3 6 1.3634 

4 8 1.3672 

 

By increasing the number of elements used in the computation, a clear convergence is 

obtained for both the wave run-up and the nondimensional forces in the x direction, represented 

by |𝑃𝑥 |. Results are taken for ka=1.0. By increasing the discretisation from 1 Side element and 

2 Circle elements to 2 Side elements and 4 Circle elements, the percentage error on |𝑃𝑥 | 

converges to less than 0.8% as compared to a finer mesh. A percentage difference of less than 

1% is considered acceptable for this particular convergence test. The model is discretised 

further only to reveal a discrepancy of less than 0.3%. From the results, it is seen that the wave 

run-up also converges with just a few elements used. Table 3.1 shows the total nondimensional 

horizontal force in the x-axis |Px|=|Fx|/ρgAa2tanh(kh). It is shown that convergence is achieved 

when more elements are used.  

 

3.5.3 Comparison between cylindrical structures with different cross sections 

The SBFEM model has been applied for wave diffraction around cylinders with a circular and 

a square cross section. For the comparison of wave induced force on different cross sectional 

cylinders, the results obtained are compared with the wave forces on a circular cylinder 

calculated using SBFEM which has been validated analytically (Tao et al., 2007) and the wave 

forces on a square cylinder calculated using SBFEM which has been validated numerically with 

the BEM (Song and Tao, 2008). These nondimensional forces are computed using the present 

SBFEM models and are compared in Figure 3.13. For a circular cylinder, 4 elements are used 

to plot the curve; for a square cylinder, 1 Side element and 2 Circle elements are used; and for 

an octagonal cylinder, 2 Side elements and 4 Circle elements are used. The wave induced load 

on the circular cylinder is seen to be in good agreement with the analytical solution. 
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Cross sections having the same value of a are compared as shown in Figure 3.12. This is to 

ensure that the comparison from the x and y axes are compatible. All comparisons for wave run-

ups and diffraction forces for different structure configurations are made on the same projected 

characteristic length. 

 

Figure 3.12 Comparison of wave diffraction around cylinders of different cross sections 

The total horizontal force exerted on the different cross section cylinders is calculated and 

nondimensionalised. In Figure 3.13, the octagonal shaped cylinder clearly shows a reduction of 

nondimensional force compared to the square cylinder at low ka.  

 

Figure 3.13 Nondimensional horizontal forces on cylinders 

For the nondimensional wave forces at low ka/𝜋 values between 0 and 0.25, the maximum 

wave induced forces are on the square cylinder in the x direction, followed by the octagonal 

cylinder and circular cylinder. However, it is seen that the force difference in the low ka region 

is negligible for the octagonal and circular cylinder. For ka/ 𝜋 values at about 0.25 to 1.0, the 
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square cross section cylinder however, shows slightly less induced force. The methodology and 

results of this section has been published (Lim and Tao, 2013).  

 

3.6  Wave-structure-soil model 

A coupled monopile interaction due to soil-structure and wave-structure are investigated by 

applying the present SBFEM in this chapter. This second section, which is a case study, is 

related to the structure deformation. It shows that the hydrodynamic forces calculated using the 

SBFEM can be applied to the monopile where the foundation penetrates into the ground and 

the structure extends above the water level. The soil stiffness and material properties of the 

structure are also taken into account. Convergence analysis is used to further verify the outcome. 

Since the circular, square and octagonal wave forces are calculated earlier, they are applied as 

horizontal forces on monopiles of different cross sections. The wind force is also applied to 

simulate a more realistic situation. The flow chart to obtain the total pile deflection is shown in 

Figure 3.14.  

 

Figure 3.14 Flow chart of wave-structure-soil model 

 

The input data in this case study includes the environmental conditions such as wave 

properties, and concentrated wind force. The physical dimensions and the material properties 

of the monopile are also considered. For the portion of monopile that is immersed in the soil, 

the in situ measurements of the soil are used to model this part. By using the SBFEM to calculate 

the wave diffraction around the pile, the scattered velocity potential can be evaluated, allowing 

calculation of the total velocity potential and the forces incurred on the structure. In order to 
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model the structure deflection, the monopile is modelled in Abaqus, the meshing process and 

finite element calculations allowed the pile deflection to be determined. Spring stiffness is used 

to model the soil portion, which is holding the monopile in position.  

 

3.6.1  Case study 

The new case study is shown in Figure 3.15 with different forces applied on the monopile, both 

in the plan view and in elevation. The octagonal monopile acts as a support for a wind turbine, 

supporting the tower and the hub. The 3.6 MW capacity wind turbine foundation modelled here 

has a diameter of 6.3 m, with a water depth of 25 m and the section penetrating the soil below 

the seabed is 28.5 m. At the top of the pile, a concentrated wind load is applied, followed by a 

hydrodynamic plane wave load on the structure that was calculated in the previous section. The 

part under the seabed is held together using springs that represents soil stiffness. Three different 

cross section monopiles have been used, the typical circular cross section, the innovative design 

of the octagonal monopile, and a square cross section for comparison. The top figure shows the 

plane view, which consist of the monopile and virtual cylinder surrounding it. It also illustrates 

that the monopile is subjected to concentrated wind force at the top pile, hydrodynamic wave 

loads at the section in the water and a series of uncoupled springs has been used to model the 

soil stiffness holding the monopile. Each subsection will be treated separately. 

For the structure part of the monopile, a hollow octagonal cylindrical thick walled pile is 

used. Thickness of the plates is 104 mm, with a total vertical length of 57 m. The material is 

assumed to behave perfectly elastically, with a Young’s modulus of E = 205 GPa and a Poisson 

ratio of v = 0.3. The monopile is treated as an elastic beam with linear elasticity. The bottom of 

the pile is assumed to be fixed. 
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Figure 3.15 Plan view and elevation view of loading on an offshore monopile 

 

The top pile concentrated load is applied by constraining the surrounding geometry of the 

cross section to a centre point. Two forces are applied here, where the horizontal force in the x 

direction represents the wind force and the vertical force in the z direction takes into account 

the weight of the tower and the turbine.  

The stiffness of the soil is a major factor in evaluating the pile deflection. Lateral loading by 

soil on the pile is very important. There are several ways to model the soil stiffness. The Winkler 

approach models the soil as a series of uncoupled springs (Barltrop and Adams, 1991). Each 

spring is assumed to be linear. Another method that is commonly used for design of monopiles 

is the p-y method that is also used to evaluate offshore foundations. The curves for different 

soil types are semi-empirical. Standards such as API RP2A can be used to calculate the p-y 

curve for different soil types (API, 2000). In the p-y method, each layered spring is treated as 
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non-linear. Value p is the lateral resistance (kN/m2) and y is the deflection of the pile (m). 

Several numerical modelling approaches have also been carried out using the finite element and 

boundary element method to analyse the lateral loading on the pile. A typical p-y curve is shown 

in Figure 3.16. The curve shows that the soil starts off by having a linear behaviour. The middle 

section shows the transition from linear to non-linear behaviour of the soil, when it reaches a 

certain limit, the soil will fail. 

A stiff clay soil type is used for calculations in this case study. The p-y curve for each layer 

of soil was obtained from the interim report (RCID, 2010b), based on evaluations provided by 

SEtech, which provides in-situ results that take into account the non-linearity of soil. This case 

study looks at the lateral loading on the pile. It is assumed that a rigid rock is under the pile and 

ignores any possible vertical radiation. The p value on the seabed and the non-homogeneity of 

soil causes the increase in Young’s modulus E as a function of depth. The spring stiffness can 

be calculated using the gradient of the p-y curve.  

A typical example is shown in Figure 3.15. It is assumed that the soil pressure is distributed 

evenly round the pile. For other soil types, p-y curves can be constructed using stress-strain data 

from experimental soil samples. Using iterative procedures, a compatible set of load-deflection 

values for the pile-soil system can be developed (El-Reddy, 2012). 

 

Figure 3.16 Typical p-y curve 

The hydrodynamic aspects of this model have been presented in section 2.5. The structural 

analysis is carried out using Abaqus software and a numerical calculation is carried out using 
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the free body diagram by assuming the pile acts as a cantilevered beam. The main output of 

interest is the extent of pile deflection when the calculated loadings are applied to it. A different 

number of springs are used to model the changes of soil stiffness as it penetrates deeper into the 

ground. The results are all plotted in a nondimensionalised form for easy comparison between 

structures of different cross section. Different mesh sizes are tested to find the best 

representation of accurate stress-strain contours when the pile deflects. Monopiles of different 

cross-sections are compared to examine their structural performance. 

 

3.6.2 Results and discussion 

The SBFEM can generate accurate and reliable results for problems such as wave diffraction. 

In this case, wave loading is calculated using the SBFEM as discussed in detail in the previous 

section. Figure 3.17 shows that deflection converges as more layers of springs are applied. Each 

spring represents a layer of soil, providing the stiffness to hold the pile in place. Several layers 

of soil stiffness are used until the maximum top deflection converges. It can be seen that top 

deflection converges when 4 layers of different soil stiffness are modelled. 

By obtaining this optimum number of soil layers, Figure 3.17 shows a comparison of 

monopile deflection with different cross sectional profiles. In each case, 4 different springs 

representing soil stiffness are applied during analysis. The typical circular cross section cylinder 

and the suggested octagonal monopile is considered. A square cross section monopile is also 

calculated for comparison. 

In Figure 3.17, it is seen that the pile with the octagonal cross section starts to deflect at the 

same height of about 28.5m. In this second case study, the SBFEM is able to generate input 

data for the preliminary design of a wind turbine monopile.  
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Figure 3.17 Change in pile deflection when a different number of springs are applied 

 

Comparing the octagonal pile with the circular pile, the starting point of deflection does not 

vary much, whereas the square pile starts to deflect at a lower point in the soil. In Figure 3.18, 

it is seen that the square cross section pile will have the highest loading and deflect the most, 

followed by the octagonal pile and then the circular pile. Using the existing SBFEM, the soil-

structure interaction can be carried out, but is not covered within the scope of this thesis. A full 

wave-soil-structure interaction can then be developed, where this method would be able to 

combine a hydrodynamic and a geotechnical engineering problem using the SBFEM. This 

methodology and results are published (Lim and Tao, 2014).   
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Figure 3.18 Deflection of a pile with different cross section 

 

The overall monopile deflection obtained is compared with results obtained using analytical 

calculations for validation (Table 3.2), where the overall pile deflection is calculated. To 

investigate the structural behaviour, the free body diagram is drawn for easier understanding 

and calculations. The monopile is treated as a cantilever beam, tapering from the bottom layer 

of the seabed to the free end supporting the tower and wind turbine. Only the lateral forces and 

effects are accounted for. The overall forces can be divided into different parts during the 

calculations and the individual parts are superimposed to obtain the forces imposed on the 

structure. The soil part is divided into several layers to account for the different stiffness of the 

soil with depth below the seabed. Uniform distributed pressure is assumed for each layer. The 

hydrodynamic force applied is distributed along the monopile and exponentially decreasing 

from the free surface while the wind force is applied as a point load. The overall loading applied 

on the pile is evaluated by superimposing individual loads, and the free body diagram is shown 

in Figure 3.19.  
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Figure 3.19 Free body diagram of forces on a pile 

 

The shear force and bending moment diagrams are illustrated in Figure 3.20. For a reliable 

structural design, structures should be able to withstand the external forces, in both shear and 

moment, which occur after forces are applied to it. This should be below the structure allowance, 

which is the maximum shear and moment that the structure can withstand. Formulations of the 

detailed calculations can be found in Appendix F: Beam equations (Dupen, 2012). 
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Figure 3.20 Shear loading and bending moment curves 

 

To calculate the maximum deflection of the monopile using the analytical method, values of 

respective Young’s Modulus and area moment of inertia are required (Table 3.3). The method 

of superposition is used, with the assumptions where the beam is elastic in both cases of 

combined loading and also when individual loading is imposed. The overall pile deflection is a 

summation of individual deflections when individual loading is applied. 

Table 3.2 Comparison of pile deflection under loading 

Cross section Circular Square  Octagonal  

Area (mm^2) 2010624 2560000 2119680 

Moment of Inertia (mm^4) 1.02969E+13 1.74805E+13 1.15372E+13 

D
e

fl
ec

ti
o

n
 (

m
m

) 

Analytical (Cantilever beam) 389 595 476 

Abaqus (Finite element analysis) 365 550 438 
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As compared to the results calculated from the report by SEtech using the beam model and 

Research Centre for Innovation and Design (RCID) using the shell model for the polygonal pile, 

the deflection is 430 mm and 445 mm respectively. From the results obtained from Abaqus, the 

percentage difference from the SEtech is 3.9% and RCID is 0.5%. It is seen that the analytical 

cantilever beam calculations over predict the pile deflection by approximately 6.5% compared 

to the finite element analysis. Nevertheless, the analytical solution in Appendix N applying the 

beam theory can be used as a good preliminary design.  

 

3.7 Summary  

Chapter 3 provides an overview of previous research of the SBFEM in offshore hydrodynamics. 

The SBFEM is further extended to solve wave diffraction around an octagonal monopile, 

proposed as a novel solution for the support of offshore wind turbines. This particular shape of 

monopile is chosen due to the advantages in manufacturing compared to the traditional 

cylindrical monopile of circular cross section, where the manufacturing cost and time are lower. 

A detailed derivation of the model from the governing equations and the boundary conditions 

to the solution process is presented here and in the appendices.  

The SBFEM is further applied and combined with FEM to solve for the overall loading from 

wind, wave and soil on a monopole.  These forces are imposed on the structure and the overall 

deflection of the pile is investigated. The soil properties are investigated and a convergence 

analysis is carried out to decide the optimum number of layers for the soil interaction 

calculations. The deflection is calculated using Abaqus (finite element analysis), and compared 

using the analytical cantilever beam method and also the results from the BEAM method and 

SHELL method from the published project report. This method can be used to carry out a good 

preliminary design, where the loading on the pile from waves can be calculated accurately and 

efficiently.  
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Chapter 4  
 

Methodology development of 3D SBFEM  

 

 

4.1  Background 

Mathematical derivations for the SBFEM have been developed since 1997 (Song and Wolf, 

1997) and the two-dimensional approach has been applied on marine hydrodynamics since 2005 

(Li et al., 2005a). Further applications were developed in Chapter 3 in order to calculate the 

wave diffraction around an octagonal vertical monopile supporting offshore wind turbines and 

to evaluate the structural deflection of the pile using the calculated wave forces. This chapter 

describes the detailed development of 3D SBFEM for hydrodynamic analysis of offshore 

structures.  

To date, the SBFEM has been used to solve the two-dimensional wave diffraction around a 

large cylinder with the uniform cross section. The characteristics where this SBFEM reduces 

the spatial dimension by one will allow the three-dimensional solution to reduce the 

discretisation of the domain so that it is effectively two-dimensional. 3D SBFEM has been 

attempted successfully for soil-structure integration (Birk et al., 2012), and for the structural 

analysis of monopile deflection in the study of wave diffraction around a monopile (Li et al., 

2013a; Li et al., 2013b). However, the three-dimensional development of SBFEM in terms of 

wave diffraction has not previously been done. Figure 4.1 illustrates the steps taken to obtain 

the general function in a Scaled Boundary coordinate system.  

The solution of the wave diffraction problem around offshore structures can be obtained 

using both analytical and numerical methods. An approximated solution to the BVP that 

satisfies the governing equations and boundary conditions can be obtained by discretising the 

entire domain using elements. One key aspect to consider when solving for the properties in the 

domain is to decide if the problem can be solved easily without giving rise to irregular data, 

singularity or overflow of data. One approach is to solve the domain as a whole and another is 

to separate the entire domain into smaller subdomains and treat them separately before 

assembling them together. 
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Figure 4.1 Outline of approaches used to derive the SBFEM 

 

The numerical solution is an approximation, and the aim is to minimise the error or set the 

overall solution of the whole domain to have a zero error. The shape function is introduced to 

model the problem in a local coordinate system. Only the surface boundary is discretised in the 

circumferential and vertical direction. The radial direction is separated and solved analytically. 

The domain method is chosen here, where the approximate solution on the boundaries are 

satisfied (Wolf, 2003). These nodal approximations weaken the governing equation and lead to 

a residual function. Utilising the weighted residual function, these residual errors are forced to 

zero when multiplied with the weighting function and integrated along the whole domain and 

boundary.  

When the weighted function is included, integration by parts is carried out, resulting in only 

the first order differentiation for the approximate potential. However, this process requires the 

weighted function to be differentiated. This reduction of order on the potential changes the 

strong form of governing equation to a weak form. Introducing the prescribed boundary values 

results in the generalised weighted residual formulation.  

The mathematical formulation and detailed derivation for the 3D wave diffraction problem 

to obtain the general equation in the Scaled Boundary coordinate system are demonstrated. 

Then, the solution process for the BVP is presented. A general approach of deriving the 3D 

SBFEM is shown in Figure 4.1. 
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4.2 Three-dimensional boundary value problem 

Three-dimensional wave diffraction around a simple circular cylinder is considered so that 

validations that are readily available can be used (Figure 4.2). A monochromatic short crested 

wave approaches a circular cylinder that is fixed at the seabed and truncated, piercing the free 

surface of the water.  

 

Figure 4.2 Three-dimensional model problem 

 

The wave pattern deforms when it interacts with a large object. Suggested physical 

parameters for the wave diffraction phenomena are shown in Table 4.1 below, and further 

detailed explanations are found in Appendix D. The case study can be represented in a 

mathematical form to analyse the wave-structure interaction.  



Chapter 4 Methodology development of 3D SBFEM 

77  
 

Table 4.1 Parameters for wave diffraction 

Wave number 

(k) 

Wave length 

(L) 

Diameter 

(D) 

D/L 

(>0.2) 

√𝟐/𝟐 8.89 2 0.23 

1 6.29 2 0.32 

√𝟐 4.44 2 0.45 

2 3.14 2 0.64 

3 2.09 2 0.95 

4 1.57 2 1.27 

5 1.26 2 1.59 

 

4.2.1 Governing equation and boundary conditions 

By assuming an ideal fluid, fluid motion is expressed using a velocity potential. This governing 

equation in three-dimensional potential flow satisfies the Laplace Equation.  

 ∇2𝜙(𝑥, 𝑦, 𝑧) = 0 (4.1) 

To account for the three-dimensional fluid properties, the Helmholtz equation is no longer 

applicable. The mathematical explanation and justification are in Appendix A. Considering this 

third dimensional property using the SBFEM for analysis is essential for a much broader 

application of the method in marine hydrodynamics, where floating structures can be evaluated. 

The main goal of this work is to provide a foundation for the 3D SBFEM, so that future 

expansion and research of this methodology can proceed more readily. Boundary conditions 

similar to those used in Chapter 3 are extended and applied in a three-dimensional form:  

(a) Linear free surface boundary condition at 𝑧 = 0 on 𝛤𝑓 

 
𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑧
=
𝜔2

𝑔
𝜙(𝑥, 𝑦, 𝑧) (4.2) 

(b) Bottom seabed boundary condition at 𝑧 = −ℎ on 𝛤𝑧 

 
𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑧
= 0 (4.3) 



Chapter 4 Methodology development of 3D SBFEM 

78  
 

(c) Body boundary condition on 𝛤𝑏 

 
𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑛
= 𝑣̅𝑛 (4.4) 

(d) Sommerfeld’s boundary condition at 𝑥 = ±∞ on 𝛤∞ 

 lim
𝑟→∞

𝑟 (
𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑟
− 𝑖𝑘𝜙(𝑥, 𝑦, 𝑧)) = 0 (4.5) 

The linear free surface boundary condition considered here is related to the wave number 

using the dispersion relationship, where 𝜔2 = 𝑔𝑘 tanh (𝑘ℎ). In the two-dimensional analysis, 

the cylinder is assumed to be immersed in deep water where the h value is large, the equation 

is thus reduced to 𝜔2 = 𝑔𝑘.  

This free surface boundary condition is derived from the Bernoulli equation, where the 

pressure is considered to be a constant. The seabed boundary condition considers that the seabed 

is even at a water depth of – h and it is assumed that there is no fluid flow going into the seabed 

and vice versa. The impermeable body boundary condition is applied where the sum of the 

normal outward flow of fluid on the body and the inward flow equals zero and fluid does not 

penetrate through the body. For the circular cylinder case, the normal velocity potential to the 

surface of the body is the derivative of the velocity potential around the radius of the cylinder. 

Lastly, Sommerfeld’s boundary condition states that the radiation at the far end of infinity must 

be equal to zero (Appendix B). 

 

4.3 Three-dimensional SBFE methodology development 

4.3.1 Weighted residual function 

Error occurs in numerical calculations due to approximation, but this error can be made small 

over the domain and on the boundary using various numerical techniques (Reddy, 1989). The 

errors can be distributed in a certain manner, which produces different types of approximate 

methods. In this case, the errors or residuals are multiplied by a certain function, called the 

weighting function, and integration of this over the domain and the boundary will be forced to 

zero. A general equation is generated using the weighted residual function before the BVP can 

be solved. For the present 3D wave diffraction problem, the error of the whole solution is set to 

zero by multiplying the residual error with a selected weighted residual function and integrated 
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anticlockwise around the domain. A detailed step by step derivation of this can be found in 

Appendix Q. Only the main equations showing the process are presented here. The steps used 

are:  

a) Expand the unknown solution, for this case, the velocity potential, using a set of shape functions 

together with the parameter of interest. This approximation is known as the trial solution. 

b) This trial solution needs to satisfy both the governing equation and the boundary conditions.  

c) The residual function is defined first using the governing equation before including the boundary 

conditions.  

d) The weighted residual function is set to zero and by substitution of the appropriate boundary 

conditions, the overall equation can be solved.  

e) The solution is then examined by increasing the elements by constructing continuous 

approximations used to discretise the boundary, and can be achieved through convergence 

analysis. 

The residual function of the Laplace equation is represented as 𝑅(𝑥, 𝑦, 𝑧) and can be written 

as  

 𝛻2𝜙(𝑥, 𝑦, 𝑧) = 𝑅(𝑥, 𝑦, 𝑧) (4.6) 

This residual function of the governing Laplace equation is multiplied with the weighted 

function, and integrated around the whole domain and set to zero. Note that the weighted 

function here is in three dimensions. 

 
∫𝑅(𝑥, 𝑦, 𝑧)
 

Ω

. 𝑤(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧 = 0 
(4.7) 

Applying integration by parts, the residual formula can be further represented as  

 

∫∫∫(𝑤 𝜙,𝑥 ),𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 − ∫∫∫𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

+ ∫∫∫(𝑤 𝜙,𝑦 ),𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 −∫∫∫𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

+ ∫∫∫(𝑤 𝜙,𝑧 ),𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 − ∫∫∫𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

(4.8) 
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Further derivation using the divergence theorem or Gauss’s theorem is carried out, where 

the gradient of the function (𝑤 𝜙,𝑥 ), (𝑤 𝜙,𝑦 ), and (𝑤 𝜙,𝑧 ) in three-dimensional space going 

through volume integration is equal to the surface integral over the boundary of the volume 

(Spiegel, 1999). Integrating across the whole domain, the residual function can be rewritten and 

rearranged using the divergence theorem ∫∫∫ (∇. 𝐹)
 

Ω
𝑑𝑥𝑑𝑦𝑑𝑧 = ∯ (𝐹. 𝑛)

 

𝛤
𝑑𝛤 as 

 

∫∫∫𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

−∯𝜙,𝑛𝑤 𝑑𝛤
 

𝛤

= 0 

(4.9) 

By including this closed form surface integration of the boundary conditions of the free 

surface, the seabed and body surface, the new general residual function is expressed as  

 
∫∫∫𝑤,𝑥 𝜙,𝑥+ 𝑤,𝑦 𝜙,𝑦+𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 −∯ 𝑘2𝜙𝑤 𝑑𝛤𝑓

 

𝛤𝑓

−∯ 𝑣̅𝑛𝑤 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

(4.10) 

Notice that the Sommefeld’s boundary condition is not included here because this particular 

boundary condition is satisfied automatically later, by choosing the Hankel function of the first 

kind as the base solution. The final general weighted residual function is written in the gradient 

form to be in line with the two-dimensional representation, and this simplifies the representation 

for easier calculation further on  

 ∫∫∫∇𝑇𝑤∇𝜙
 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 −∯ 𝑘2𝜙𝑤 𝑑𝛤𝑓

 

𝛤𝑓

−∯ 𝑣̅𝑛𝑤 𝑑𝛤𝑏

 

𝛤𝑏

= 0 (4.11) 

 

4.3.2 Coordinate transformation 

To solve the problem in the Scaled Boundary coordinate system, the global coordinate system 

remains as the Cartesian coordinates and the local coordinates are written as Scaled Boundary 

coordinates. To achieve this, the coordinate transformation is performed. The main reason to 

change the coordinate system is because a typical Cartesian coordinate system has fixed axes. 

However, on the boundary where conditions are to be enforced, it does not always coincide 

with the axes and a more flexible coordinate system is required. The use of fixed Cartesian 

coordinates results in difficulties in mapping the geometry accurately and easily. A new 
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coordinate system is introduced, where it is more appropriate to work in a local coordinate 

system 𝜉, 𝜂, 𝜁 (Figure 4.3). The axes 𝜂, 𝜁 lies in the circumferential direction and top to bottom 

direction respectively. 𝜉 is measured from the scaling point, situated on the left of the boundary, 

it is denoted as the radial coordinate. It is important to note that the solution is a semi-analytical 

method, and that 𝜉 can be solved analytically and factored out. Secondly, this Scaled Boundary 

coordinate system 𝜉, 𝜂, 𝜁 permits a numerical treatment in the circumferential directions 𝜂, 𝜁 

based on a weighted residual technique as in the finite element method. This will transform the 

partial differential equations to ordinary differential equations in the radial 𝜉 direction. The 

coefficients of the ordinary differential equations are determined by the finite element 

approximation in the circumferential directions.   

 

Figure 4.3 Geometrical representation of both the Cartesian coordinate system and the 

Scaled Boundary coordinate system 

Figure 4.3 shows the position of both coordinate systems on a section of the geometry of the 

cylinder. Note that the 𝜂 direction can be flexible and can be discretised to smaller components 

to accurately map the desired geometry. Details of this transformation can be found in Appendix 

O. The transformation can be written in matrix form when changing from the global Cartesian 

coordinates (𝑥̂, 𝑦̂, 𝑧̂) to the local Scaled Boundary coordinates (𝜉, 𝜂, 𝜁) using the chain function. 

It is rewritten here in matrix form.  

 

{
  
 

  
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

=

[
 
 
 
 
 
 
𝜕𝑥̂

𝜕𝜉

𝜕𝑦̂

𝜕𝜉

𝜕𝑧̂

𝜕𝜉
𝜕𝑥̂

𝜕𝜂

𝜕𝑦̂

𝜕𝜂

𝜕𝑧̂

𝜕𝜂
𝜕𝑥̂

𝜕𝜁

𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜁]
 
 
 
 
 
 

{
  
 

  
 
𝜕

𝜕𝑥̂
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

 (4.12) 
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This coordinate transformation is carried out using the Jacobian transformation, where the 

Jacobian is written as  

 [𝐽(𝜉, 𝜂, 𝜁)] =

[
 
 
 
 
 
 
𝜕𝑥̂

𝜕𝜉

𝜕𝑦̂

𝜕𝜉

𝜕𝑧̂

𝜕𝜉
𝜕𝑥̂

𝜕𝜂

𝜕𝑦̂

𝜕𝜂

𝜕𝑧̂

𝜕𝜂
𝜕𝑥̂

𝜕𝜁

𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜁]
 
 
 
 
 
 

 (4.13) 

The Scaled Boundary coordinate can be expressed as  

 

{
  
 

  
 
𝜕

𝜕𝑥̂
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

=
1

𝑑𝑒𝑡[𝐽(𝜉, 𝜂, 𝜁)]
(𝑎𝑑𝑗𝑜𝑖𝑛𝑔 𝑜𝑓 [𝐽(𝜉, 𝜂, 𝜁)])

{
  
 

  
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 (4.14) 

From Figure 4.3, the radial direction is factored out to allow analytical evaluation in this 

direction. Only the surface boundary is discretised and evaluated numerically. Any coordinates 

of points within the domain can be represented as  

 𝑥̂(𝜉, 𝜂, 𝜁) = 𝜉𝑥𝑏(𝜂, 𝜁) + 𝑥0 (4.15) 

 𝑦̂(𝜉, 𝜂, 𝜁) = 𝜉𝑦𝑏(𝜂, 𝜁) + 𝑦0 (4.16) 

 𝑧̂(𝜉, 𝜂, 𝜁) = 𝑧𝑏(𝜂, 𝜁) + 𝑧0 (4.17) 

The scaling centre is written as 𝑥0, 𝑦0, 𝑧0. This scaling centre should possess the flexibility 

to be positioned at a desirable location as the geometry of the structure changes. For the circular 

cylinder, the scaling centre is positioned in the centre of the cylinder, whereas for structures 

with sharp edges, the scaling centre could be positioned at the sharp corners to overcome the 

problem of singularity. Note that the vertical axis in the original 𝑧̂ is independent of the 𝜉. 

 

4.3.3 Mapping function 

The Scaled Boundary coordinates can be interpolated using the shape function for further 

approximation. To solve for hydrodynamic properties such as the wave elevation, pressure 

distribution and wave forces on the structure, the velocity potential has to be evaluated. The 
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Rayleigh-Ritz method can be used to assume that the approximate solution of the velocity 

potential is in the form of a series, where 

 𝜙 ≈ 𝜙ℎ(𝜉, 𝜂, 𝜁) =∑[𝑁𝑖(𝜂, 𝜁)]𝑎𝑖

𝑛

𝑖=1

(𝜉) (4.18) 

A two-dimensional eight noded surface shape function is used to map the domain (Appendix 

P). The surface shape function can be defined as in Figure 4.4. 

 

Figure 4.4 Eight-node surface finite element 

The nodal interpolation can be approximated and simplified as  

 𝜙(𝜉, 𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑎(𝜉)} (4.19) 

The velocity potential for each node can be written as 

 {𝑎(𝜉)} = {𝑎1(𝜉)  𝑎2(𝜉)  𝑎3(𝜉)  𝑎4(𝜉)  𝑎5(𝜉)  𝑎6(𝜉)  𝑎7(𝜉)  𝑎8(𝜉)}
𝑇 (4.20) 

and a linear shape function as  

 

[𝑁(𝜂, 𝜁)]
= [𝑁1(𝜂, 𝜁)  𝑁2(𝜂, 𝜁)  𝑁3(𝜂, 𝜁)  𝑁4(𝜂, 𝜁)  𝑁5(𝜂, 𝜁)  𝑁6(𝜂, 𝜁)  𝑁7(𝜂, 𝜁)  𝑁8(𝜂, 𝜁)] 

 

(4.21) 

Each node is represented as,  

 
𝑁1 =

1

4
(1 − ƞ)(1 − 𝜁) −

1

2
(𝑁8 + 𝑁5) 

𝑁2 = 
1

4
(1 + ƞ)(1 − 𝜁) −

1

2
(𝑁5 + 𝑁6) 

(4.22) 
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𝑁3 = 
1

4
(1 + ƞ)(1 + 𝜁) −

1

2
(𝑁6 + 𝑁7) 

𝑁4 = 
1

4
(1 − ƞ)(1 + 𝜁) −

1

2
(𝑁7 + 𝑁8) 

𝑁5 = 
1

2
(1 − ƞ2)(1 − 𝜁) 

𝑁6 = 
1

2
(1 + ƞ)(1 − 𝜁2) 

𝑁7 = 
1

2
(1 − ƞ2)(1 + 𝜁) 

𝑁8 = 
1

2
(1 − ƞ)(1 − 𝜁2) 

 

Using the same nodal interpolation, the coordinates of individual nodes on the boundary can be 

approximated by substituting into equations (4.15 - 4.17) and written as  

 𝑥̂(𝜉, 𝜂, 𝜁) = 𝜉𝑥𝑏(𝜂, 𝜁) + 𝑥0 = 𝜉[𝑁(𝜂, 𝜁)]{𝑥} + x0 (4.23) 

 𝑦̂(𝜉, 𝜂, 𝜁) = 𝜉𝑦𝑏(𝜂, 𝜁) + 𝑦0 = 𝜉[𝑁(𝜂, 𝜁)]{𝑦} + y0 (4.24) 

 𝑧̂(𝜉, 𝜂, 𝜁) = 𝑧𝑏(𝜂, 𝜁) + 𝑧0 = [𝑁(𝜂, 𝜁)]{𝑧} + z0 (4.25) 

These equations are differentiated and substituted into the overall transformation. The terms 

are integrated and substituted into the Jacobian. Note that the derivations are not affected by 

the position of the scaling centre and can be used in general three-dimensional cases. 

 
𝑥̂,𝜉 = 𝑥𝑏(𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑥} 

𝑥̂,𝜂= 𝜉𝑥𝑏(𝜂, 𝜁),𝜂= 𝜉[𝑁(𝜂, 𝜁)],𝜂 {𝑥} 

𝑥̂,𝜁 = 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 = 𝜉[𝑁(𝜂, 𝜁)],𝜁 {𝑥} 

(4.26) 

________________________________________________ 

 
𝑦̂,𝜉 = 𝑦𝑏(𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑦} 

𝑦̂,𝜂= 𝜉𝑦𝑏(𝜂, 𝜁),𝜂= 𝜉[𝑁(𝜂, 𝜁)],𝜂 {𝑦} 

𝑦̂,𝜁 = 𝜉𝑦𝑏(𝜂, 𝜁),𝜁 = 𝜉[𝑁(𝜂, 𝜁)],𝜁 {𝑦} 

(4.27) 

                    ________________________________________________  

 
𝑧̂,𝜉 = 0 

𝑧̂,𝜂 = 𝑧𝑏(𝜂, 𝜁),𝜂= [𝑁(𝜂, 𝜁)],𝜂 {𝑧} 

𝑧̂,𝜁 = 𝑧𝑏(𝜂, 𝜁),𝜁 = [𝑁(𝜂, 𝜁)],𝜁 {𝑧} 

(4.28) 
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In Figure 4.4, the {𝑥}, {𝑦}, {𝑧} coordinates are defined from -1 to 0 to 1 in each direction and 

can be written as 

 {𝑥} = {−1 1 1 −1 0 1 0 −1}𝑇 (4.29) 

 {𝑦} = {−1 1 1 −1 0 1 0 −1}𝑇 (4.30) 

 {𝑧} = {−1 −1 1 1 −1 0 1 0}𝑇 (4.31) 

Substituting the local nodal value (4.29 - 4.31) into the shape function, the following 

relationships are obtained 

 𝑥̂,𝜁 = 0          ;       𝑦̂,𝜁 = 0        ;           𝑧̂,𝜂= 0 (4.32) 

Substituting (4.32) into the coordinate transformation, the Jacobian is now presented as 

 [𝐽(𝜉, 𝜂, 𝜁)] = [

𝑥̂,𝜉 𝑦̂,𝜉 𝑧̂,𝜉
𝑥̂,𝜂 𝑦̂,𝜂 𝑧̂,𝜂
𝑥̂,𝜁 𝑦̂,𝜁 𝑧̂,𝜁

] = [

𝑥(𝜂, 𝜁) 𝑦(𝜂, 𝜁) 0
𝜉𝑥(𝜂, 𝜁),𝜂 𝜉𝑦(𝜂, 𝜁),𝜂 0

0 0 𝑧(𝜂, 𝜁),𝜁

] (4.33) 

   

 The determinant is represented as  

 𝑑𝑒𝑡[𝐽(𝜉, 𝜂, 𝜁)] = 𝜉𝑧(𝜂, 𝜁),𝜁 (𝑥(𝜂, 𝜁). 𝑦(𝜂, 𝜁),𝜂− 𝑥(𝜂, 𝜁),𝜂 𝑦(𝜂, 𝜁)) (4.34) 

Detailed expansion of the "𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑜𝑓 [𝐽(𝜉, 𝜂, 𝜁)]" is shown in Appendix O. Substituting 

and factoring out the common factor 𝜉 to adjust the term to enable the analytical solution in the 

radial direction yields, 

 

{
  
 

  
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

=
1

|𝐽|
[

𝑦,𝜂∙ 𝑧,𝜁 −𝑦 ∙ 𝑧,𝜁 0

−𝑥,𝜂∙ 𝑧,𝜁 𝑥 ∙ 𝑧,𝜁 0

0 0 𝑥 ∙ 𝑦,𝜂− 𝑦 ∙ 𝑥,𝜂

]

{
  
 

  
 

1

𝜉

𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 (4.35) 

The determinant of the Jacobian can be written as 

 |𝐽| = 𝑧,𝜁 (𝑥 ∙ 𝑦,𝜂− 𝑥,𝜂 𝑦) (4.36) 
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Using the same shape function through the Galerkin approach, the weighted function in the 

differential equation relates the weighted function to the discrete problem.   

 𝑤(𝜉, 𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑤(𝜉)} = {𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇 (4.37) 

   

4.3.4 SBFE equation 

This section will describe the approach for defining the new governing equation and boundary 

conditions in the Scaled Boundary coordinates. More detailed derivations can be found in 

Appendix Q and S. The approximate velocity is calculated by the divergent of the velocity 

potential. By separating the time function 𝑒−𝑖ωt, the velocity potential and the velocity can be 

defined as  

 Φ(𝑥, 𝑦, 𝑧, 𝑡) = ϕ(𝑥, 𝑦, 𝑧)𝑒−𝑖ωt (4.38) 

 𝑣𝐴 = ∇ϕ(𝑥, 𝑦, 𝑧)𝑒
−𝑖ωt (4.39) 

From Appendix R, the divergence operator is rewritten as  

 ∇= {𝑏1(𝜂, 𝜁)}
𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂, 𝜁)}

𝜕

𝜕𝜂
+ {𝑏3(𝜂, 𝜁)}

𝜕

𝜕𝜁
 (4.40) 

The simplifications are given as  

 {𝑏1(𝜂, 𝜁)} =
1

|𝐽|
{

𝑦,𝜂∙ 𝑧,𝜁
−𝑥,𝜂∙ 𝑧,𝜁

0
} (4.41) 

 {𝑏2(𝜂, 𝜁)} =
1

|𝐽|
{

−𝑦 ∙ 𝑧,𝜁
𝑥 ∙ 𝑧,𝜁
0

} (4.42) 

 {𝑏3(𝜂, 𝜁)} =
1

|𝐽|
{

0
0

𝑥 ∙ 𝑦,𝜂− 𝑦 ∙ 𝑥,𝜂
} (4.43) 

Substituting these into the velocity equation (4.39) yields, 
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 𝑣𝐴 = [𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉 +
1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)} + [𝐵3(𝜂, 𝜁)]{𝑎(𝜉)} (4.44) 

The simplifications are given as  

 

[𝐵1(𝜂, 𝜁)] = {𝑏1(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)]   

[𝐵2(𝜂, 𝜁)] = {𝑏2(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)],𝜂  

[𝐵3(𝜂, 𝜁)] = {𝑏3(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)],𝜁 

(4.45) 

Substituting the shape function, infinitesimal volume, infinitesimal area, and divergence 

operator into the weighted residual function, the general equation (4.11) can be rewritten as 

follows,  

 

∫∫∫ ([𝐵1(𝜂, 𝜁)]
𝑇{𝑤(𝜉)},𝜉

𝑇[𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉

 

Ω

+ [𝐵1(𝜂, 𝜁)]
𝑇{𝑤(𝜉)},𝜉

𝑇 1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)}

+ [𝐵1(𝜂, 𝜁)]
𝑇{𝑤(𝜉)},𝜉

𝑇[𝐵3(𝜂, 𝜁)]{𝑎(𝜉)}

+
1

𝜉
[𝐵2(𝜂, 𝜁)]

𝑇{𝑤(𝜉)}𝑇[𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉

+
1

𝜉
[𝐵2(𝜂, 𝜁)]

𝑇{𝑤(𝜉)}𝑇
1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)}

+
1

𝜉
[𝐵2(𝜂, 𝜁)]

𝑇{𝑤(𝜉)}𝑇[𝐵3(𝜂, 𝜁)]{𝑎(𝜉)}

+ [𝐵3(𝜂, 𝜁)]
𝑇{𝑤(𝜉)}𝑇[𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉

+ [𝐵3(𝜂, 𝜁)]
𝑇{𝑤(𝜉)}𝑇

1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)}

+ [𝐵3(𝜂, 𝜁)]
𝑇{𝑤(𝜉)}𝑇[𝐵3(𝜂, 𝜁)]{𝑎(𝜉)}) |𝐽|𝜉𝑑𝜉𝑑𝜂𝑑𝜁

− ∫ ∫({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇)𝑘2([𝑁(𝜂, 𝜁)]{𝑎(𝜉)})𝜉|𝐽𝜉𝜂|𝑑𝜉𝑑𝜂
 

𝜉

 

𝜂

−∯ ({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛) 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(4.46) 
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The infinitesimal area and infinitesimal volume are expressed as in Appendix E. Note that 

for the free surface boundary 𝛤𝑓, the value 𝜁 for the free surface is written as +1. A coefficient 

matrix is introduced to simplify the equation further,  

 [𝐸0] = ∫ ∫[𝐵1(𝜂, 𝜁)]
𝑇[𝐵1(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 (4.47) 

   

 [𝐸1] = ∫ ∫[𝐵2(𝜂, 𝜁)]
𝑇[𝐵1(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 (4.48) 

   

 [𝐸2] = ∫ ∫[𝐵2(𝜂, 𝜁)]
𝑇[𝐵2(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 (4.49) 

   

 [𝐸3] = ∫ ∫[𝐵1(𝜂, 𝜁)]
𝑇[𝐵3(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 (4.50) 

   

 [𝐸4] = ∫ ∫[𝐵2(𝜂, 𝜁)]
𝑇[𝐵3(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 (4.51) 

   

 [𝐸5] = ∫ ∫[𝐵3(𝜂, 𝜁)]
𝑇[𝐵3(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 (4.52) 

   

 [𝑀0] = ∫[𝑁(𝜂, +1)]𝑇[𝑁(𝜂,+1)]|𝐽𝜉𝜂|𝑑𝜂
 

𝜂

 (4.53) 

By substituting the coefficients and performing integration by parts on all terms containing 

{𝑤(𝜉)},𝜉 , the formula can be rewritten as 
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[𝐸0]𝜉𝑒{𝑎(𝜉𝑒)},𝜉{𝑤(𝜉𝑒)}
𝑇 + [𝐸1]

𝑇{𝑎(𝜉𝑒)} {𝑤(𝜉𝑒)}
𝑇

+ [𝐸3]𝜉𝑒{𝑎(𝜉𝑒)}{𝑤(𝜉𝑒)}
𝑇 − [𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉{𝑤(𝜉𝑖)}

𝑇

− [𝐸1]
𝑇{𝑎(𝜉𝑖)} {𝑤(𝜉𝑖)}

𝑇 − [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)}{𝑤(𝜉𝑖)}
𝑇

− {𝑤(𝜉𝑒)}
𝑇∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

− {𝑤(𝜉𝑖)}
𝑇∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

+∫{𝑤(𝜉)}𝑇 (−[𝐸0]{𝑎(𝜉)},𝜉 − [𝐸0]{𝑎(𝜉)},𝜉𝜉𝜉
 

𝜉

− [𝐸1]
𝑇{𝑎(𝜉)},𝜉 − [𝐸3]{𝑎(𝜉)} − 𝜉[𝐸3]{𝑎(𝜉)},𝜉

+ [𝐸1]{𝑎(𝜉)},𝜉 + [𝐸2]
1

𝜉
{𝑎(𝜉)} + [𝐸4]{𝑎(𝜉)}

+ 𝜉[𝐸3]
𝑇{𝑎(𝜉)},𝜉 + [𝐸4]

𝑇{𝑎(𝜉)} + 𝜉[𝐸5]{𝑎(𝜉)}

− 𝑘2𝜉[𝑀0]{𝑎(𝜉)}) 𝜕𝜉 = 0 

 

(4.54) 

Introducing the term to represent the flow potential, subscript i represents the internal 

boundary and the subscript e represents the external boundary of the domain that is discretised. 

The part from the scaling point to the boundary of the cylinder where 𝜉𝑖 = 0 and 𝜉𝑒 = 1 is not 

considered. To solve for the domain from the body of the cylinder to the infinite end from the 

cylinder, the boundary can be represented as 𝜉𝑖 = 1 and 𝜉𝑒 = ∞. From this, it is seen that the 

domain can be solved analytically in the radial direction by specifying the scalar between 1 ≤

𝜉 ≤ ∞. 

 {𝑞(𝜉𝑒)}  = [𝐸0]𝜉𝑒{𝑎(𝜉𝑒)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉𝑒)}  + [𝐸3]𝜉𝑒{𝑎(𝜉𝑒)} (4.55) 

   

 {𝑞(𝜉𝑖)}  = [𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉𝑖)} + [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)} (4.56) 

In order to satisfy the weighted residual function for all arbitrary values, the following 

equations must be valid. 

 {𝑞(𝜉𝑒)} = ∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]
𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

 (4.57) 
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 {𝑞(𝜉𝑖)} = −∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]
𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

 (4.58) 

 

[𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + ([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2]
1

𝜉
+ [𝐸3] − [𝐸4] − [𝐸4]

𝑇 − 𝜉[𝐸5]

+ 𝑘2𝜉[𝑀0]) {𝑎(𝜉)} = 0 

(4.59) 

This homogeneous second order partial differential equation (4.59) is termed the SBFE 

equation for the 3D SBFEM. Both boundary integrals (4.57) and (4.58) have prescribed values 

and can be evaluated. 

  

4.4 Solution procedure 

4.4.1 Surface discretisation  

The surface interface of the solid cylinder and the wave is divided into different layers in the 

vertical direction to achieve better accuracy; this is similar to using a finer mesh in the z 

direction. Figure 4.5 shows a sample of the cylinder divided into three layers with three scaling 

centres.  

 

Figure 4.5 Defining the scaling centre for each layer 

 

Several different shape function can be selected, first, second or third order. Use of a higher 

order shape function will lead to more accurate geometrical representation, with lesser elements 
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used. The mapping function [𝑁(𝜂, 𝜁)] can be defined in the global Cartesian coordinate system. 

The shape function selected is similar to the discretisation of the FEM. For the presentation 

case, an 8 noded surface shape function is used (Appendix P). At each layer, the surface is then 

divided into several finite elements. Finer discretisation will allow convergence of results and 

the properties at each nodal point can be evaluated. Figure 4.6 shows three sample elements 

with nodal numbering which is important for the assembly process when solving for the whole 

structure.  

 

Figure 4.6 Local nodal positions of the surface elements 

The Scaled Boundary coordinates on the body surface to be discretised can be expressed as  

 𝑥𝑏(𝜂, 𝜁) = 𝑏 ∙ 𝑐𝑜𝑠 (
𝜂

𝑏
) (4.60) 

 𝑦𝑏(𝜂, 𝜁) = 𝑏 ∙ 𝑠𝑖𝑛 (
𝜂

𝑏
) (4.61) 

 𝑧𝑏(𝜂, 𝜁) = −𝜁 ∙ 𝑧1 (4.62) 

   

4.4.2 Solving SBFE equation and boundary conditions 

By choosing the Hankel function as the base solution, only the solution on the body boundary 

(4.56) has to be considered since the base function now satisfies the boundary condition at 

infinity (4.55) directly.  

The equation and the boundary condition that needs to be satisfied is reduced to the following, 

notice that only the inner boundary of the unbounded domain and the SBFEM equation needs 

to be satisfied. 
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  [𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉𝑖)} + [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)} = 0 (4.63) 

 

[𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + ([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2]
1

𝜉
+ [𝐸3] − [𝐸4] − [𝐸4]

𝑇 − 𝜉[𝐸5]

+ 𝑘2𝜉[𝑀0]) {𝑎(𝜉)} = 0 

(4.64) 

The detailed unbounded 3D SBFEM solution is shown here. A quadratic general equation is 

obtained as 

 

 

𝜉2[𝐸0]{𝑎(𝜉)},𝜉𝜉 + 𝜉([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2] + 𝜉[𝐸3] − 𝜉[𝐸4] − 𝜉[𝐸4]
𝑇 − 𝜉2[𝐸5]

+ 𝑘2𝜉2[𝑀0]){𝑎(𝜉)} = 0 

(4.65) 

From the numerical calculations, the following relationships are obtained, where 

 [𝐸1]. 𝐼 = 0 (4.66) 

 [𝐸3]. 𝐼 = 0 (4.67) 

 [𝐸4]. 𝐼 = 0 (4.68) 

 [𝐸0]
−1[𝐸0]. 𝐼 = 𝐼 (4.69) 

Substituting equations (4.66 – 4.69) into the SBFE equation (4.65) and dividing both sides 

by [𝐸0] yields, 

 

𝜉2{𝑎(𝜉)},𝜉𝜉 + 𝜉{𝑎(𝜉)},𝜉

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5] + 𝑘

2𝜉2[𝐸0]
−1[𝑀0]){𝑎(𝜉)}

= 0 

(4.70) 

The vectors of the scattered wave velocity potential values 𝑎0(𝜉) can be expressed in series 

form, using the Hankel function as part of the solution, by derivation in terms of 𝜉, only the 

Hankel function that relates to it is affected (4.71 - 4.73). Both the T and C terms are constants.   
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 𝑎0
𝑆(𝜉) =∑𝑐𝑗𝐻𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜉)𝐶 (4.71) 

 {𝑎(𝜉)},𝜉 =∑𝑐𝑗𝐻𝑟𝑗(𝜉)
′𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜉)
′𝐶 (4.72) 

 {𝑎(𝜉)},𝜉𝜉 =∑𝑐𝑗𝐻𝑟𝑗(𝜉)
′′𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜉)
′′𝐶 (4.73) 

In the same way as in Chapter 3, the Hankel function is selected as a base solution to 

automatically satisfy the radiation condition at infinity, when the radial direction increases to 

an infinite distance, the Hankel function of the first type that acts as a source radiating outwards 

tends to zero. Substituting equations (4.71 – 4.73) into equation (4.70) and bringing out the 

common constants, the following is achieved (Appendix T).  

 

∑(𝜉2𝐻𝑟𝑗(𝜉)
′′ + 𝜉𝐻𝑟𝑗(𝜉)

′

𝑚

𝑗=1

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5]

+ 𝑘2𝜉2[𝐸0]
−1[𝑀0])𝐻𝑟𝑗(𝜉))𝑇𝑗𝑐𝑗 = 0 

(4.74) 

Special differentiation of the Hankel function is substituted  

 

∑(−𝜉2𝐻𝑟𝑗(𝜉) + 𝜉𝐻𝑟𝑗+1(𝜉) − 𝑟𝑗𝐻𝑟𝑗(𝜉) + 𝑟𝑗
2𝐻𝑟𝑗(𝜉) − 𝜉𝐻𝑟𝑗+1(𝜉)

𝑚

𝑗=1

+ 𝑟𝑗𝐻𝑟𝑗(𝜉)

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5]

+ 𝑘2𝜉2[𝐸0]
−1[𝑀0])𝐻𝑟𝑗(𝜉))𝑇𝑗𝑐𝑗 = 0 

(4.75) 

Note that after simplification, only one variable of the Hankel function remains, which 

allows the equation to be solved.  
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∑(𝑟𝑗

2𝐼 + (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5] + 𝑘

2𝜉2[𝐸0]
−1[𝑀0]) − 𝜉

2𝐼)𝑇𝑗

𝑚

𝑗=1

∙ 𝐻𝑟𝑗(𝜉)𝑐𝑗 = 0 

(4.76) 

Rearranging (4.76) yields, 

 
∑(([𝐸0]

−1[𝐸2] + 𝜉
2[𝐸0]

−1[𝐸5] − 𝑘
2𝜉2[𝐸0]

−1[𝑀0] + 𝜉
2𝐼) − 𝑟𝑗

2𝐼) 𝑇𝑗

𝑚

𝑗=1

∙ 𝐻𝑟𝑗(𝜉)𝑐𝑗 = 0 

(4.77) 

The term T represents the vector of rank m, which corresponds to the number of nodes on 

the virtual cylinder. The constant C represents the coefficient up to rank m and H is the Hankel 

function of the first kind, shown as a diagonal matrix. These can be written as  

 𝑇 = [𝑇1, 𝑇2, … , 𝑇𝑚] (4.78) 

 𝐻(𝜉) = 𝑑𝑖𝑎𝑔[𝐻𝑟1(𝜉),𝐻𝑟2(𝜉),… , 𝐻𝑟𝑚(𝜉)] (4.79) 

 𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚]
𝑇 (4.80) 

The solution to the scattered velocity potential for the unbounded domain can be written as  

 

𝑎0
𝑆(𝜉) =∑(([𝐸0]

−1[𝐸2] + 𝜉
2[𝐸0]

−1[𝐸5] + 𝑘
2𝜉2[𝐸0]

−1[𝑀0] + 𝜉
2𝐼)

𝑚

𝑗=1

− 𝑟𝑗
2𝐼) 𝑇𝑗 ∙ 𝑐𝑗𝐻𝑟𝑗(𝜉) = 0 

(4.81) 

For arbitrary 𝑐𝑗𝐻𝑟𝑗(𝜉), the term (([𝐸0]
−1[𝐸2] + 𝜉

2[𝐸0]
−1[𝐸5] − 𝑘

2𝜉2[𝐸0]
−1[𝑀0] + 𝜉

2𝐼) −

𝑟𝑗
2𝐼) 𝑇𝑗  must be zero. Hence, to solve the quadratic eigenproblem, 𝜆𝑗  is introduced as the 

eigenvalues of ([𝐸0]
−1[𝐸2] + 𝜉

2[𝐸0]
−1[𝐸5] − 𝑘

2𝜉2[𝐸0]
−1[𝑀0] + 𝜉

2𝐼) . Calculating for 𝑟𝑗 =

√𝜆𝑗. 𝑇𝑗 , which are the eigenvectors of ([𝐸0]
−1[𝐸2] + 𝜉

2[𝐸0]
−1[𝐸5] − 𝑘

2𝜉2[𝐸0]
−1[𝑀0] + 𝜉

2𝐼).  

Only the internal boundary of flow velocity is considered because the external boundary is 

satisfied by the Hankel function. 
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{𝑞(𝜉)} = [𝐸0]𝜉{𝑎(𝜉)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉)}  + [𝐸3]𝜉{𝑎(𝜉)}

+ ∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

= 0 
(4.82) 

Substituting the relationships of (4.66 - 4.69) and (4.72) into equation (4.82) yields,  

 {𝑞(𝜉)} = [𝐸0]𝜉∑𝑐𝑗𝐻𝑟𝑗(𝜉)
′𝑇𝑗

𝑚

𝑗=1

= −∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (4.83) 

A new symbol S is introduced to simplify the equation, with |𝐽𝜂𝜁| as the transformation of 

infinitesimal area on the surface boundary of the structure with constant 𝜉, the constant C can 

be identified 

 𝐶 = −𝐻𝑑(𝜉)
−1𝑇−1[𝐸0]

−1𝑆𝑣̅𝑛 (4.84) 

The term 𝑣̅𝑛 is the vector of nodal normal velocity of a scattered wave on the body boundary 

𝛤𝑏 , and this can be calculated using equation (4.4) and the short crested incident velocity 

potential. Hence, the solution can be obtained   

 {𝑎(𝜉)} =∑𝑐𝑗𝐻𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻(𝜉)𝐶 = −𝑇𝐻ℎ(𝜉)𝑇
−1[𝐸0]

−1𝑆𝑣̅𝑛(𝜉) (4.85) 

By substituting equation (4.85) into (4.19) and (4.44), the approximate scattered velocity 

potential and the velocity in the domain can be obtained. This value is used to plot the results 

and to determine the physical properties such as the wave run-up, pressure and force induced 

by waves on the structure. The validation of this method can be found in Chapter 5, where the 

wave interacts with an offshore monopole. 

 

4.5 Application of 3D SBFEM to a floating structure 

The 3D SBFE formulations have been developed in the first section of this chapter. This section 

will apply the 3D SBFE approach to solving the wave diffraction problem around a static 

floating structure. The model of the floating structure is described, and new boundary 

conditions are incorporated.  
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4.5.1  Model description for a floating structure 

 

 

Figure 4.7 Wave diffraction around a cylindrical offshore floating structure. Plan view 

(top) and elevation (bottom) 

Figure 4.7 shows the model of a floating offshore structure subjected to waves. The 3D SBFE 

formulations are also applied to a case with a cylindrical offshore floating structure of radius b. 

The aim of this is to further demonstrate the versatility of the 3D SBFEM in solving for the 

wave diffraction problem. A plane wave of small amplitude is first used and propagates in the 

x-direction towards the floating structure with frequency 𝜔. The fluid domain is divided into 

two parts where the external domain denoted as 𝑆0 is within the domain 𝑟 ≥ 𝑏 and −ℎ ≤ 𝑧 ≤

0 whilst the internal domain denoted as 𝑆1 is within the domain 𝑟 ≤ 𝑏 and −ℎ ≤ 𝑧 ≤ −𝑙. A 

monochromatic short crested wave propagates towards the structure. The floating body on 

boundary 𝛤𝑠 represents a floating body whilst the boundary 𝛤𝑝 is assumed to be an infinitely 

porous body to represent a non-existent structure. Together, they form a floating cylindrical 
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structure. The potential flow of both the external domain and internal domain satisfies the 

governing Laplace equation. 

 

 ∇2𝜙0(𝑥, 𝑦, 𝑧) = 0 in 𝑆0 (4.86) 

 

 ∇2𝜙1(𝑥, 𝑦, 𝑧) = 0 in 𝑆1 (4.87) 

 

The boundary conditions that need to be satisfied by the potential are as follow: 

External domain 𝑺𝟎 

(a) Linearised free surface boundary condition at 𝑧 = 0 

 
𝜕𝜙0(𝑥, 𝑦, 𝑧)

𝜕𝑧
−
𝜔2

𝑔
𝜙0(𝑥, 𝑦, 𝑧) = 0 (4.88) 

 

(b) Seabed boundary condition at 𝑧 = −ℎ 

 
𝜕𝜙0(𝑥, 𝑦, 𝑧)

𝜕𝑧
= 0 (4.89) 

 

(c) Sommerfeld’s boundary condition at 𝑥 = ±∞ on 𝛤∞ 

 lim
𝑟→∞

𝑟 (
𝜕𝜙0(𝑥, 𝑦, 𝑧)

𝜕𝑟
− 𝑖𝑘𝜙0(𝑥, 𝑦, 𝑧)) = 0 (4.90) 

 

(d) Body boundary condition on  𝛤𝑠 

 
𝜕𝜙0(𝑥, 𝑦, 𝑧)

𝜕𝑛
= 𝑣̅𝑛 (4.91) 

 

(e) Porous boundary condition on  𝛤𝑝 
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𝜕𝜙0(𝑥, 𝑦, 𝑧)

𝜕𝑛
= 𝑊 (4.92) 

   

where W represents the pressure difference across the thickness of the porous surface flow 

velocity (Taylor, 1956). This flow is assumed to obey Darcy’s law.  

 𝑊 =
𝛾

𝜇
𝜌𝑖𝜔(𝜙1 − 𝜙0) (4.93) 

 

This parameter can be nondimensionalised by introducing the following where 

 𝐺0 =
𝜌𝜔𝛾

𝜇𝑘
 (4.94) 

 

Hence, the porous body boundary condition on  𝛤𝑝 can be written as  

 
𝜕𝜙0(𝑥, 𝑦, 𝑧)

𝜕𝑛
= 𝑖𝐺0𝑘(𝜙1 − 𝜙0) (4.95) 

 

When the wall of the structure is solid, the porosity 𝛾 is zero, leading to 𝐺0 = 0,  the increase 

value of porosity 𝛾 leads to the higher transparency of the walls. For the case of a floating 

structure, the surface is infinitely porous on the surface 𝛤𝑝, allowing all the fluid to flow through 

without obstruction.  

This equation is only valid when assuming that the porous wall is straight (Yu, 1995).  

 

Internal domain 𝑺𝟏 

(a) Body boundary condition at 𝑧 = −𝑙 

 
𝜕𝜙1(𝑥, 𝑦, 𝑧)

𝜕𝑧
= 0 (4.96) 

 

(b) Seabed boundary condition at 𝑧 = −ℎ 

 
𝜕𝜙1(𝑥, 𝑦, 𝑧)

𝜕𝑧
= 0 (4.97) 
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(c) Porous boundary condition on  𝛤𝑝 

 
𝜕𝜙1(𝑥, 𝑦, 𝑧)

𝜕𝑛
= −𝑖𝐺0𝑘(𝜙1 − 𝜙0) (4.98) 

The velocity potential that links the internal domain and the external domain on 𝑟 = 𝑏 can be 

represented by the conditions below:  

 

 𝜙1(𝑥, 𝑦, 𝑧) = 𝜙0(𝑥, 𝑦, 𝑧)  (4.99) 

and 

 
𝜕𝜙1(𝑥, 𝑦, 𝑧)

𝜕𝑛
=
𝜕𝜙0(𝑥, 𝑦, 𝑧)

𝜕𝑛
 (4.100) 

   

4.5.2 Solution for wave diffraction around a floating structure 

The scaled boundary transformation is performed using the SBFEM, obtaining a non-

homogeneous general equation. 

 

[𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + ([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2]
1

𝜉
+ [𝐸3] − [𝐸4] − [𝐸4]

𝑇 − 𝜉[𝐸5]

+ 𝑘2𝜉[𝑀0]) {𝑎(𝜉)} = 𝜉𝐹𝜂𝜁(𝜉) 

(4.101) 

Although the bottom part of the cylinder is infinitely porous to resemble a complete model 

of a floating cylinder, the side faces still coincide, forming a closed circle where the normal 

flow is equal in magnitude and opposite in direction. Hence, no external forces at the side face, 

resulting in 𝐹𝜂𝜁(𝜉) = 0 . The general equation is now a quadratic second order partial 

differential equation. Substituting equations (4.66 – 4.69), the 3D SBFE equation can be written 

as  
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𝜉2{𝑎(𝜉)},𝜉𝜉 + 𝜉[𝐸0]
−1[𝐸0]{𝑎(𝜉)},𝜉

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5] + 𝑘

2𝜉2[𝐸0]
−1[𝑀0]){𝑎(𝜉)}

= 0 

(4.102) 

The boundary conditions satisfies the following conditions 

 {𝑞(𝜉𝑒)} = ∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]
𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

 (4.103) 

 {𝑞(𝜉𝑖)} = −∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]
𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

 (4.104) 

The flow is represented by  

 {𝑞(𝜉)}  = [𝐸0]𝜉{𝑎(𝜉)},𝜉 (4.105) 

   

The Hankel function is chosen as the base solution of the outer domain 𝑆0 and the Bessel 

function of the first kind for the solution of the inner domain 𝑆1. Hence, the potential at each 

point in the unbounded and bounded domains is represented respectively by  

 𝑎0
 (𝜉) =∑𝑐𝑗

0𝐻𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜉)𝐶
0 (4.106) 

 𝑎1
 (𝜉) =∑𝑐𝑗

1𝐽𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐽𝑟𝑗(𝜉)𝐶
1 (4.107) 

 

On the intersection of the body boundary, satisfying equation 4.99, the flow will be equal 

and opposite in direction. 

 𝑣̅𝑛0 = −𝑣̅𝑛1 (4.108) 

   

𝑣̅𝑛0 represents the normal flow from the outer domain into the inner domain whilst 𝑣̅𝑛1 

represents the normal flow from the inner domain into the outer domain. The values of 𝑣̅𝑛0 can 

be further separated to denote the top non-porous wall and the bottom porous wall.  
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 {𝑣̅𝑛0}  = {
𝑣̅𝑛0
𝑇

0
} + {

0
𝑣̅𝑛0
𝐵 } (4.109) 

   

Equation (4.109) that shows the relation of flow can now be written as  

 {𝑣̅𝑛0
𝑇

0
} + {

0
𝑣̅𝑛0
𝐵 } = − {

0
𝑣̅𝑛1
𝐵 } (4.110) 

 

The flow is also made up of the sum of the incident wave and the scattered wave, denoted 

using the superscript I and S respectively. The incident wave can be found using the real part 

of the incident wave velocity potential.  

 {𝑣̅𝑛0
𝑇𝐼 + 𝑣̅𝑛0

𝑇𝑆

0
} + {

0
𝑣̅𝑛0
𝐵𝐼 + 𝑣̅𝑛0

𝐵𝑆} = − {
0
𝑣̅𝑛1
𝐵 } (4.111) 

 

From the boundary conditions, the normal of the velocity potential is equal to the flow. 

Equation (4.111) can be written as two equations. The first equation can be written as 

 𝑣̅𝑛0
𝑇𝐼 + 𝑣̅𝑛0

𝑇𝑆 = 0 (4.112) 

 

The value 𝑣̅𝑛0
𝑇𝐼  is prescribed and the second equation can be written as  

 𝑣̅𝑛0
𝐵𝐼 + 𝑣̅𝑛0

𝐵𝑆 = 𝑣̅𝑛1
𝐵  (4.113) 

   

By substituting equations 4.98, 4.103 - 4.105, the unknown 𝑎0
 (𝜉) and 𝑎1

 (𝜉) are determined. 

The solution is also shown explicitly in Appendix U. When the unknown scattered velocity 

potential value is obtained, the values of velocity at each point of the domain and the total force 

of wave on structure can be calculated.  The results obtained using these methodologies are 

presented in the next chapter.  

  



Chapter 4 Methodology development of 3D SBFEM 

102  
 

4.6 Summary 

Chapter 4 illustrates the core methodology development of the 3D SBFEM. This use of 3D 

SBFEM to solve the wave diffraction problem is a novel expansion of this method. The step by 

step solution is presented for both bounded and unbounded domain. This development is also 

applied on a fully three dimensional large offshore structure. A new coordinate transformation 

is introduced to allow this development, where the radial direction is kept to enable the 

analytical solution in this direction to be obtained. The governing equations and boundary 

conditions are satisfied by selecting the Bessel function of the first kind as the base function. 
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Chapter 5  
 

Validation and applications of 3D SBFEM  

 

 

5.1  Validation of wave diffraction on a fixed pile using 3D SBFEM 

3D SBFEM has been used to analyse wave diffraction around offshore structures as a case study. 

Part (a) and (b) show the wave diffraction around a truncated cylindrical structure fixed on the 

seabed. The surface of the cylinder is discretised with elements represented by the 8 noded 

shape functions as proposed in Chapter 4. Part (c) of the analysis shows the curves of equal 

amplitude and equal phase around the monopile modelled using 3D SBFEM.  

(a) Wave diffraction of a plane wave on a fixed monopile 

- Varying element number in the circumferential direction 

- Varying element number in the vertical direction (layers) 

(b) Wave diffraction of short crested wave on a fixed monopile 

- Varying element number in the circumferential direction 

- Varying element number in the vertical direction (layers) 

(c) Curve of equal amplitude and equal phase around the monopile modelled by 3D SBFEM 

 

5.1.1  Analysis of wave run-up modelled by 3D SBFEM 

The first set of convergence results shows the wave run-up profile when the number of elements 

around the circumferential direction increases. Due to the symmetrical properties of the circular 

cross section, only half the discretised circumference is shown. Elements used shown in the 

graphs represent the number of element per quarter of a circle. A larger number of layers 

discretising the vertical direction is used to ensure accurate convergence of the results. The 

wave run-up analysis is carried out for cases with ka values of 0.5, 1.0, 3.0, and 5.0. This is to 

be consistent with the 2D SBFEM analysis (Tao et al., 2007). The analytical solution shows 

good agreement with the 2D SBFEM, hence only the analytical solution is presented in the 

graph. The results are shown together with the analytical solutions for comparison.   
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Plane wave: varying element number in the circumferential direction 

 

Figure 5.1 Wave run-up of a circular cylinder for ka=0.5 with varying number of elements 

per quarter of a circumference modelled using 3D SBFEM 

 

Figure 5.2 Wave run-up of a circular cylinder for ka=1.0 with varying number of elements 

per quarter of a circumference modelled using 3D SBFEM 
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Figure 5.3 Wave run-up of a circular cylinder for ka=3.0 with varying number of elements 

per quarter of a circumference modelled using 3D SBFEM 

 

 

Figure 5.4 Wave run-up of a circular cylinder for ka=5.0 with varying number of elements 

per quarter of a circumference modelled using 3D SBFEM 
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From Figures 5.1 to 5.4, it can be seen that the results converge with an increasing number 

of elements used to discretise the circumference of the cylinder. The results are assumed to be 

converged when the error from the analytical solution is less than 2.5%. For the case where ka 

= 0.5, only 3 elements per quarter of a cylinder is needed for the results to converge, whilst for 

ka = 1.0, 5 elements per quarter is needed, for ka = 3.0, 10 elements per quarter is required and 

for ka = 5.0, at least 15 elements are needed for the results to converge and to enable the accurate 

representation of wave run-up on a cylinder.  

 

Plane wave: varying element number in vertical direction (layers) 

Figures 5.5 to 5.8 show the convergence of wave run-up around a circular cylinder with a 10 m 

water depth for cases where ka = 0.5, 1.0, 3.0 and 5.0. From the results, it can be concluded that 

with 10 layers of discretisation in the vertical direction, the wave run-up results converge. These 

are also compared with the analytical solutions (Zhu, 1993), with an error of less than 2% for 8 

layers of discretisation and less than 0.5% when discretised with 10 layers.  

 

 

Figure 5.5 Wave run-up of a circular cylinder for ka=0.5 with varying number of layers 

discretised modelled using 3D SBFEM 
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Figure 5.6 Wave run-up of a circular cylinder for ka=1.0 with varying number of layers 

discretised modelled using 3D SBFEM 

 

 

Figure 5.7 Wave run-up of a circular cylinder for ka=3.0 with varying number of layers 

discretised modelled using 3D SBFEM 
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Figure 5.8 Wave run-up of a circular cylinder for ka=5.0 with varying number of layers 

discretised modelled using 3D SBFEM 

Short-crested wave: varying element number in vertical direction (layers)  

 

Figure 5.9 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and total 

incident wave number 𝑘 = √2 𝑚−1 (𝑘𝑥 = √2 𝑚
−1, 𝑘𝑦 = 0 𝑚

−1 ), modelled using 3D SBFEM 
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Figure 5.10 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and 

total incident wave number 𝑘 = √2 𝑚−1 (𝑘𝑥 = 1.2 𝑚
−1, 𝑘𝑦 = √0.56 𝑚

−1 ), modelled using 

3D SBFEM 

 

Figure 5.11 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and 

total incident wave number 𝑘 = √2 𝑚−1 (𝑘𝑥 = 1.0 𝑚
−1, 𝑘𝑦 = 1.0 𝑚

−1 ), modelled using 3D 

SBFEM 
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Figure 5.12 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and 

total incident wave number 𝑘 = √2 𝑚−1 (𝑘𝑥 = √0.56 𝑚
−1, 𝑘𝑦 = 1.2 𝑚

−1 ), modelled using 

3D SBFEM 

 

Figure 5.13 Comparison of short crested wave run-up on a cylinder with radius a=1.0 m and 

total incident wave number 𝑘 = √2 𝑚−1 (𝑘𝑥 = 0 𝑚
−1, 𝑘𝑦 = √2 𝑚

−1 ), modelled using 3D 

SBFEM 
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Figures 5.10 to 5.13 show convergence analysis of short-crested wave run-up on a circular 

cylinder of radius 1.0 m. Five cases with a wave number of √2 and varying 𝑘𝑥  and 𝑘𝑦  are 

shown. Results with an error of less than 0.5% are obtained with 10 layers of discretisation 

along the vertical direction of the cylinder with a water depth of 10 m.     

All derivations and numerical computations were carried out using Maple 18 and Matlab 

R2015a. The longest time taken to compute when running the case when ka = 5.0 with 10 layers 

of discretisation, is less than 60 seconds. It is also important to understand how the built in 

functions within the software work. The integration functions may slow down or lead to 

inconclusive results, hence, a good approximation process of numerical integration is needed 

to tackle this issue. The two-dimensional Gauss quadrature approximation is used to carry out 

the integrations, where 4 pairs of weights and coordinates are used to represent the Gauss eight-

point rules (Abramowitz and Stegun, 1964). 

The integration over a quadrilateral where 𝑤𝑖 and 𝑤𝑗 are the weights can be written as,  

 𝐸 = ∫ ∫ 𝜙(𝜂, 𝜁)
1

−1

1

−1

𝑑𝜂𝑑𝜁 =∑∑𝑤𝑖𝑤𝑗𝜙(𝜂𝑖 , 𝜁𝑗)

𝑚

𝑗=1

𝑛

𝑖=1

 (5.1) 

The weights are listed in Table 5.1, 

Table 5.1 Table of weights (wi) and roots (xi) for Gaussian integrals (Abramowitz and Stegun, 

1964)  

 

All the convergence analysis is carried out and compared with the existing numerical 

solution (Zhu, 1993). The convergence analysis is shown up to the error of less than 2.5%. 
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5.1.2 Analysis of effective inertia coefficient, effective drag coefficient and total force 

modelled by 3D SBFEM 

Tables 5.2 to 5.7 compare the effective inertia coefficient (CM), effective drag coefficient (CD) 

and total forces (|2πaR|) on the monopile, showing corresponding convergence in Figures 5.14 

to 5.23. The solutions are compared to the analytical solution that is available (Zhu, 1993). 

Figure 5.24 to 5.26 shows the trend of CM, CD, and |2πaR| when the ratio of ky and kx changes. 

Note that the element number shown in the table is the element number per quarter of a circle. 

This section presents the analysis for comparison in two parts. 

(a) Validation and convergence of coefficients and total forces 

- Varying element number in circumferential direction: CM 

- Varying element number in vertical direction (layers): CM 

- Varying element number in circumferential direction: CD 

- Varying element number in vertical direction (layers): CD 

- Varying element number in circumferential direction: |2πaR| 

- Varying element number in vertical direction (layers): |2πaR| 

 

(b) Variation of coefficients and total forces vs the ratio ky /kx for kx a = 2 

- effective inertia coefficient (CM) 

- effective drag coefficient (CD) 

- total force (|2πaR|) 

Comparison of effective inertia, drag coefficient and total forces 

Table 5.2 Validation of effective inertia coefficient (CM) with varying number of 

circumferential elements 

kx (m
-1) ky (m

-1) k (m
-1) 𝑎 (m) 

CM 

Zhu (1993) 3D SBFEM 

1.0 1.0 √2 1.0 0.8824 0.8665 

√0.56 1.2 √2 1.0 0.8824 0.8663 

1.2 √0.56 √2 1.0 0.8824 0.8665 

√2 0.0 √2 1.0 0.8824 0.8666 

1.0 1.0 √2 2.0 0.2354# 0.2308 

√0.56 1.2 √2 2.0 0.2354# 0.2308 

1.2 √0.56 √2 2.0 0.2354# 0.2307 

√2 0.0 √2 2.0 0.2354# 0.2305 



Chapter 5 Validation and applications of 3D SBFEM 

113  
 

 

Figure 5.14 Convergence of effective inertia coefficient (CM) with varying number of 

circumferential elements when a = 1.0 m 

 

Figure 5.15 Convergence of effective inertia coefficient (CM) with varying number of 

circumferential elements when a = 2.0 m 
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When the number of circumferential elements changes, the number of layers is kept at 15, 

whereas when the number of layers changes, the circumferential element is kept at 25 per 

quarter. This is to increase accuracy and to minimise the error when comparing in the direction 

of interest. The general trend in Figures 5.14 to 5.23 shows that as the number of layers used to 

discretise the vertical length of the monopile increases, the value converges in comparison with 

the analytical solution, with up to 2% error. Similarly, as the number of elements used to 

discretise the circumference increases, the results converge with the analytical solution with an 

error of up to 2%.  

Table 5.3 Validation of effective inertia coefficient (CM) with varying number of elements in 

the vertical direction (layers) of a monopile 

kx  (m
-1) ky (m

-1) k (m
-1) 𝑎 (m) 

CM 

Zhu (1993) 3D SBFEM 

1.0 1.0 √2 1.0 0.8824 0.8652 

√0.56 1.2 √2 1.0 0.8824 0.8652 

1.2 √0.56 √2 1.0 0.8824 0.8652 

√2 0.0 √2 1.0 0.8824 0.8654 

1.0 1.0 √2 2.0 0.2354# 0.2307 

√0.56 1.2 √2 2.0 0.2354# 0.2307 

1.2 √0.56 √2 2.0 0.2354# 0.2307 

√2 0.0 √2 2.0 0.2354# 0.2307 
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Figure 5.16 Convergence of effective inertia coefficient (CM) with varying number of elements 

in the vertical direction (layers) of a monopile when a = 1.0m 

 

 

Figure 5.17 Convergence of effective inertia coefficient (CM) with varying number of elements 

in the vertical direction (layers) of a monopile when a = 2.0m 
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Table 5.4 Validation of effective drag coefficient (CD) with varying number of circumferential 

elements 

kx (m
-1) ky (m

-1) k (m-1) 𝑎 (m) 
CD 

Zhu (1993) 3D SBFEM 

1.0 1.0 √2 1.0 0.2271 0.2229 

√0.56 1.2 √2 1.0 0.2271 0.2231 

1.2 √0.56 √2 1.0 0.2271 0.2228 

√2 0.0 √2 1.0 0.2271 0.2226 

1.0 1.0 √2 2.0 -0.2398 -0.2352 

√0.56 1.2 √2 2.0 -0.2398 -0.2351 

1.2 √0.56 √2 2.0 -0.2398 -0.2354 

√2 0.0 √2 2.0 -0.2398 -0.2355 

 

 

 

Figure 5.18 Convergence of effective drag coefficient (CD) with varying number of 

circumferential elements when a = 1.0m 
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Figure 5.19 Convergence of effective drag coefficient (CD) with varying number of 

circumferential elements when a = 2.0m 

 

The results obtained here agree with the analytical solution. For fixed ka, with changing kx 

and ky number, the CM and CD values does not change. As pointed out previously (Tao et al, 

2007), the results shown in Zhu’s paper are reversed where superscript * (Table 5.6- 5.7) is 

presented whereas the values are erroneous as denoted as superscript # (Table 5.2 – 5.3). 
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Table 5.5 Validation of effective drag coefficient (CD) with varying number of elements in the 

vertical direction (layers) of a monopile 

kx (m
-1) ky (m

-1) k (m
-1) 𝑎 (m) 

CD 

Zhu (1993) 3D SBFEM 

1.0 1.0 √2 1.0 0.2271 0.2224 

√0.56 1.2 √2 1.0 0.2271 0.2225 

1.2 √0.56 √2 1.0 0.2271 0.2226 

√2 0.0 √2 1.0 0.2271 0.2228 

1.0 1.0 √2 2.0 -0.2398 -0.2349 

√0.56 1.2 √2 2.0 -0.2398 -0.2351 

1.2 √0.56 √2 2.0 -0.2398 -0.2348 

√2 0.0 √2 2.0 -0.2398 -0.2348 

 

 

Figure 5.20 Convergence of effective drag coefficient (CD) with varying number of 

elements in the vertical direction (layers) of a monopile when a = 1.0m 
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Figure 5.21 Convergence of effective drag coefficient (CD) with varying number of 

elements in the vertical direction (layers) of a monopile when a = 2.0m 

 

The forces on the structure are shown in Table 5.6 and Table 5.7. Keeping the wave number 

constant where 𝑘 = √2, the short crested wave induces a different total force on the monopile 

when changing kx and ky.  

 

Table 5.6 Validation of effective total forces with varying number of circumferential elements 

kx (m
-1) ky (m

-1) k (m-1) 𝑎 (m) 
|2π𝑎R| 

Zhu (1993) 3D SBFEM 

1.0 1.0 √2 1.0 2.8626* 2.8107 

√0.56 1.2 √2 1.0 2.1421* 2.1031 

1.2 √0.56 √2 1.0 3.4351 3.3730 

√2 0.0 √2 1.0 4.0483 3.9750 

1.0 1.0 √2 2.0 4.2228* 4.1415 

√0.56 1.2 √2 2.0 3.1601* 3.0982 

1.2 √0.56 √2 2.0 5.0674 4.9697 

√2 0.0 √2 2.0 5.9720 5.8558 
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Figure 5.22 Convergence of effective total forces with varying number of circumferential 

elements when a = 1.0m 

 

 

Figure 5.23 Convergence of effective total forces with varying number of circumferential 

elements when a = 2.0m 
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Table 5.7 Validation of effective total forces with varying number of elements in the vertical 

direction (layers) of a monopile 

kx (m
-1) ky (m

-1) k (m-1) 𝑎 (m) 
|2π𝑎R| 

Zhu (1993) 3D SBFEM 

1.0 1.0 √2 1.0 2.8626* 2.8066 

√0.56 1.2 √2 1.0 2.1421* 2.1009 

1.2 √0.56 √2 1.0 3.4351 3.3683 

√2 0.0 √2 1.0 4.0483 3.9701 

1.0 1.0 √2 2.0 4.2228* 4.1387 

√0.56 1.2 √2 2.0 3.1601* 3.0978 

1.2 √0.56 √2 2.0 5.0674 4.9645 

√2 0.0 √2 2.0 5.9720 5.8501 

 

Variation of the effective inertia coefficient (CM), effective drag coefficient (CD) and total 

force (|2πaR|) vs the ky /kx ratio 

kxa is kept constant at 2.0 and the results obtained using the 3D SBFEM are evaluated for 4 

cases with different values of kx. The results are compared with the analytical solution (Zhu, 

1993) and the results obtained using 2D SBFEM (Tao and Song, 2007) are plotted using 15 

elements to discretise half a circular circumference.  

Case 1: kx = 0.8 m-1 , a = 2.5 m; 

Case 2: kx = 1.0 m-1 , a = 2.0 m; 

Case 3: kx = 1.6 m-1 , a = 1.25 m; 

Case 4: kx = 2.0 m-1 , a = 1.0 m; 

The results are obtained using 15 elements per quarter to discretise along the circumferential 

direction and 15 elements are used to discretise along the vertical direction.  
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Figure 5.24 Variation of the effective inertia coefficient CM vs the ratio ky /kx at kx𝑎 = 2, 

modelled using 3D SBFEM 

 

Figure 5.25 Variation of the effective drag coefficient CD vs the ratio ky /kx at kx𝑎 = 2, 

modelled using 3D SBFEM 
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Figure 5.26 Variation of the total force vs the ratio ky /kx at kx𝑎 = 2, modelled using 3D 

SBFEM 

 

Figures 5.24 and 5.25 show good agreement when compared with results from the 2D 

SBFEM and the analytical solution. For kxa of the same value, the effective inertia coefficients 

and the effective drag coefficients do not affect the results when the 4 cases are presented. These 

data also show that the short-crested wave is a superposition of two plane-waves. Figure 5.26 

shows the total forces when kxa is fixed at 2.0. The total force shows a decreasing trend as the 

incident wave becomes more short-crested. These results are used as a benchmark comparison 

to validate the 3D SBFEM. 

 

5.1.3 Curve of equal amplitude and equal phase around a circular monopile modelled 

by 3D SBFEM 

The waves within a region 10 times the radius of the cylinder, is presented graphically to show 

changes in the wave properties. The curves of equal amplitude and equal phase are presented, 

for both long crested and short crested waves.  



Chapter 5 Validation and applications of 3D SBFEM 

124  
 

 

Figure 5.27 Curves of equal amplitude (co-amplitude) for the incident waves with 

longitudinal and lateral wave numbers kx=1.0m-1 and ky=0.0m-1 

 

 

Figure 5.28 Curves of equal phase (co-phase) for the incident waves with longitudinal and 

lateral wave numbers kx=1.0m-1 and ky=0.0m-1 
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Figure 5.29 Curves of equal amplitude (co-amplitude) for the incident waves with 

longitudinal and lateral wave numbers kx=1.0m-1 and ky=0.5m-1 

 

 

Figure 5.30 Curves of equal phase (co-phase) for the incident waves with longitudinal and 

lateral wave numbers kx=1.0m-1 and ky=0.5m-1 
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Figure 5.31 Curves of equal amplitude (co-amplitude) for the incident waves with 

longitudinal and lateral wave numbers kx=1.0m-1 and ky=1.0m-1 

 

 

Figure 5.32 Curves of equal phase (co-phase) for the incident waves with longitudinal and 

lateral wave numbers kx=1.0m-1 and ky=1.0m-1 
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Figure 5.27 shows the amplitude for a long crested wave while Figure 5.29 and 5.31 shows 

the effect of short crested waves. This shows that the overall wave profile is more complicated 

when short crested waves are applied. It is noticed that the wave amplitude at the rear of the 

structure is lower as the wave becomes more short crested. These filled contour diagrams are 

able to demonstrate the wave elevation of the domain around the monopile. Figure 5.28 shows 

the phase difference for a long crested wave while Figure 5.30 and 5.32 shows the effect of 

short crested waves. The darker region shows the quick change in phase from +𝜋/2 to -𝜋/2. The 

black and white contour diagram is able to demonstrate clearly the phase difference around the 

monopile. These Figures 5.27 to 5.32 are shown in a circular shape to show scaling of the radial 

direction from the scaling centre that is located in the middle of the circular cross section of the 

monopile. The scale shown in the figures is from the domain that encloses 1 ≤ 𝜉 ≤ 10.  

 

5.2  Validation of wave diffraction on a floating structure using 3D SBFEM 
 

The 3D SBFEM is applied to solve the wave diffraction problem for a large circular floating 

structure. A convergence analysis is carried out to gauge the effect of an increase in the number 

of elements on the force experienced by the structure. The analysis of wave forces on the 

floating structure is also carried out to compare cylinders of different submerged depth ratio to 

the depth of the water. The term (h-l) represents the distance under the floating cylinder from 

the surface of the seabed, as illustrated in Figure 4.7. The term b represents the radius of the 

floating circular cylinder. The horizontal wave forces are evaluated when the ratio of (h-l)/b is 

0.0, 0.25, and 0.5 respectively. The wave forces on the structure within the region 0 ≤ 𝑘𝑎 ≤

10 are calculated.  
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5.2.1 Convergence analysis of wave diffraction on a floating structure 

 

Figure 5.33 Horizontal wave forces on a floating structure where (h-l)/b=0 with varying 

number of elements per quarter of a circumference modelled using 3D SBFEM 

 

 

Figure 5.34 Horizontal wave forces on a floating structure where (h-l)/b=0.25 with varying 

number of elements per quarter of a circumference modelled using 3D SBFEM 
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Figure 5.35 Horizontal wave forces on a floating structure where (h-l)/b=0.5 with varying 

number of elements per quarter of a circumference modelled using 3D SBFEM 

 

Figures 5.33 to 5.35 shows the convergence analysis when the number of elements around a 

quarter of the circumference increases. As the number of elements increases, the results 

converge towards the analytical solution proposed by Williams et al, (2000). The number of 

elements used to discretise the vertical direction is 15 layers, including both the thickness of 

the submerged cylinder and the distance of the bottom of the floating cylinder to the top of the 

seabed. The overall convergence analysis shows that less elements are needed to show 

convergence for large ka. In the situation with 8 elements per quarter, the difference from the 

analytical solution is less than 5% whilst when only 10 elements per quarter are used, the results 

converges nicely.  
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Figure 5.36 Horizontal wave forces on a floating structure where (h-l)/b=0 with varying 

number of layers modelled using 3D SBFEM 

 

 

 

Figure 5.37 Horizontal wave forces on a floating structure where (h-l)/b=0.25 with varying 

number of layers modelled using 3D SBFEM 
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Figure 5.38 Horizontal wave forces on a floating structure where (h-l)/b=0.5 with varying 

number of layers modelled using 3D SBFEM 

 

 

Figures 5.36 to 5.38 show the convergence analysis when the number of vertical layers 

increases. As the number of vertical layers increases, the results converge towards the analytical 

solution using the Bessel function. The number of elements used to discretise the circumference 

is set to 10 elements per quarter, where the results shown to converge as in Figures 5.33 to 5.35.  

From the graphs, the use of 8 layers of discretisation allows prediction the forces on a floating 

structure accurately, especially when the distance between the bottom of the floating cylinder 

and the top of the seabed is smaller. For when (h-l)/b = 0.5, at least 10 layers of vertical 

discretisation is needed to obtain good results with a difference of less than 1% from the 

analytical solution. Both sets of discretisation show that the results converge as the number of 

elements increases, without an overflow of data during calculations. 

 

5.2.2 Analysis of wave forces on a floating structure 

The horizontal force incurred on a floating cylinder is calculated. The results are compared with 

the results obtained using eigenfunction expansion proposed by William et al. (2000). Both 

these results demonstrate good agreement.  



Chapter 5 Validation and applications of 3D SBFEM 

132  
 

 

Figure 5.39 Dimensionless force in the x-direction on circular cylinder when h/a = 0.75 

 

Figure 5.40 Dimensionless force in the x-direction on circular cylinder when h/a = 1.50 
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Figures 5.39 and 5.40 show the dimensionless force on the floating cylinder in the x-

direction when h/a = 0.75 and 1.50 respectively. Results are obtained using 10 elements per 

quarter of a circumference and 10 layers of discretisation, where the number of layers represents 

the region of the solid structure and the fully porous region. These results demonstrate that the 

3D SBFEM can be applied to effectively solve the wave diffraction problem of a three-

dimensional floating body.  

 

5.2 Summary  

The 2D SBFEM used to solve hydrodynamic problems has been extended to 3D SBFEM and 

applied to hydrodynamic analysis of offshore structures for the first time. Mathematical 

formulation and detailed solution procedures of the 3D SBFEM model are presented. The 3D 

model is applied to a circular cylinder extended from the seabed and truncated above the free 

water surface. A case study investigating plane and short-crested wave diffraction around a 

circular cylinder is presented with the results in terms of the wave run-up and forces. After 

comparison with the analytical and numerical results in the literature the present 3D SBFEM 

model is demonstrated to be an efficient semi-analytical model with very good levels of 

accuracy for offshore hydrodynamic analysis.  

Some of the challenges are overcome in the expansion of this method, which includes the 

selection of appropriate scaling centre, and conversion of a three dimensional coordinate 

transformation to a scaled boundary coordinate system. The versatility of the position of the 

scaling centre will allow this method to be used to solve for more complicated structural 

geometries. The 3D SBFEM model developed in this chapter has also been successfully applied 

to a static floating structure with promising results. This is useful as further extension can be 

used to solve dynamic floating structures by adding a solver of the body motion equation.  
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Chapter 6  
 

 
Conclusions and recommendations for future work  

 

 

This chapter summarises the significance of this research and the contribution of this work to 

the numerical solution of hydrodynamics problems in the case of large offshore structures. 

Conclusions are drawn from the two major parts of the thesis.  The first part investigates the 

practicality and application of the two-dimensional SBFEM in the offshore industry, in 

particular the wave-structure-soil interaction of wind turbine monopiles. The second part 

further develops the solution of SBFEM in hydrodynamics and extends this method to solve 

three-dimensional cases. Here, we sum up the advantages and limitations in terms of solving 

hydrodynamic problems. The further development of this work is also proposed in this chapter, 

where the detailed solution technique presented in this thesis to solve the hydrodynamic 

problems using the SBFEM can be further extended to solve more complicated and realistic 

offshore problems.  

 

6.1 Conclusions 

The characteristics of wave interactions with typical offshore structures of different 

configurations can be analysed using a variety of different wave theories, which have been 

comprehensively discussed in the introduction. Wave diffraction theory is the central focus of 

this thesis, where the cross sectional length of the body spans a significant amount of the 

incident wave length and a clear parametric example is provided (Appendix D). The 

introduction also explains different methods, analytical, numerical and experimental 

approaches that could lead to reasonable evaluation of the wave diffraction problem. A 

systematic discussion of the pros and cons of each method was presented. The SBFEM was 

then chosen for the present study due to the key advantages of this method. 
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6.1.1 Development of 2D SBFEM for hydrodynamic applications 

A thorough study has been carried out to apply the SBFEM to solving the partial differential 

equations in marine hydrodynamics. The 2D SBFEM has been applied to solve the marine 

hydrodynamics problem since 2005 (Li et al., 2005a). In this thesis, the SBFEM is validated 

using the analytical method for simple cases such as the wave diffraction around a circular 

cylinder (Mei, 1992), whilst BEM is used to validate the wave diffraction around a square 

cylinder (Song and Tao, 2008). The results obtained match results published previously thus 

validating that this SBFEM is capable of handling wave diffraction around a large cylinder, 

with either long crested plane waves or short crested waves. A proposed polygonal shaped 

cylinder to support offshore wind turbines has been investigated since 2010 and the pragmatic 

approach from the manufacturing point of view is that this shape is advantageous compared to 

typical circular monopiles (RCID, 2010b). The manufacturing time is shortened by eliminating 

the need for sheet steel rolling by welding flat plates together to form the monopiles (RCID, 

2010a). By changing the cross-sectional shape of the structure, the forces induced on it by the 

waves will also change. This change is studied to understand the feasibility of using the 

proposed polygonal pile in place of currently used circular monopiles. In addition to evaluating 

the wave effect, the effect on the pile of wind and soil was also analysed to investigate pile 

deflection and the bending moment on the structure.  

The solution process of the wave-structure interaction is carried out following the SBFE 

equation obtained. Careful substructuring is carried out so that the Hankel function of the first 

kind (Tao et al., 2007) that satisfies the radiation condition at infinity, can be satisfied rigorously 

(Appendix B). In addition, scaling centres are also introduced on each corner of the joint flat 

plates to overcome the problem of singularity and irregular frequency from the mathematical 

point of view when solving the regions with re-entrant corners. The governing eigenvalue 

problem results in the Hamiltonian matrix, which is solved using the Jordan decomposition 

(Wolf, 2003) and modified to fit the solution of the wave diffraction problem (Li et al., 2006). 

By combining all of these approaches, the wave diffraction around the octagonal monopile 

could be evaluated.  

Due to the fact that more subdomains are involved when solving the wave interaction 

problem with structures of complex configurations, the number of elements and nodes increases 

accordingly. However, this increase in nodes in the solution procedure is easier to handle, 

compared to the need to satisfy the extra boundary condition at infinity. The rigorous Hankel 

function solution also allows a wider range of frequencies to be satisfied (Tao et al., 2007), as 
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compared to the power series solution proposed (Li et al., 2005a; Li et al., 2005b). Convergence 

analysis shows that the small increase in elements used can significantly reduce the percentage 

error. The analysis of the soil layer is also carried out to allow the hydrodynamic properties 

obtained from the SBFEM to be utilised in a more practical way. The optimum number of soil 

layers needed to properly model the entire pile deflection is evaluated. It is found that, for a 

good representation of the soil stiffness supporting a pile 28.5 m penetrating into the seabed, at 

least four layers of soil stiffness are required to model a more realistic on site scenario.  

A comprehensive comparison is then carried out to compare the different effects of wave 

induced forces on the structure when the cross sectional monopile varies in shape. The typical 

circular cylinder is compared to the octagonal monopile that is evaluated, in addition, a square 

monopile is also evaluated. It is found that the overall force induced on the cylinder is higher 

for a square cylinder followed by an octagonal cylinder and circular cylinder for smaller ka 

values of less than 0.2. However, when the ka value is 0.2 to 0.3, the total force induced by the 

wave is about the same for all structures. As the ka value increases further, a slightly increased 

force is induced on the circular cylinder, though the difference compared to the other two pile 

cross sections is rather small. Overall pile deflections were also compared, and it could be 

concluded that the square monopile experiences the greatest wave force, which therefore incurs 

the greatest deflection. Nevertheless, there were small differences in the overall maximum 

deflection for the octagonal monopile and the circular monopile. From this point of view, it can 

be concluded that the octagonal pile could therefore serve as a good substitute for supporting 

wind turbines offshore.   

In short, the second chapter presents a sound validation of the 2D SBFEM using analytical 

and numerical methods. It also shows that further engineering applications can be carried out 

using the accurate results that have been obtained.  

 

6.1.2 Methodology development of 3D SBFEM 

After establishing that the 2D SBFEM works effectively for solving the wave-structure 

interaction, further effort is put into developing the methodology to enable solutions to be 

achieved in three-dimensions. The main reason this is important is due to the limitations of the 

2D SBFEM in terms of solving for more complex scenarios such as floating structures in the 

ocean and also when the structure cross section changes in size as it approaches the seabed. 

This thesis clearly demonstrates important considerations in numerical and physical terms, 

whilst preserving the advantages that this SBFEM contributes.  
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The first part is realising that the governing equation of the Helmholtz equation is no longer 

applicable in solving a three-dimensional problem and that a Laplace equation has to be used 

instead (Appendix A). In the three-dimensional model, all three x-y, y-z and x-z planes are 

considered. There is no further requirement to assume that the structure has a constant cross 

section in one direction, or that it is extended infinitely long at one plane.  

One of the main differences of the 2D and 3D SBFEM development is that the Jacobian 

transformation changes. This is used to change the Cartesian coordinates to the Scaled 

Boundary coordinates. Careful coordinate transformation is shown in Appendix O using the 

chain rule. The substructuring and problem discretisation also varies between these two 

methods. In the two-dimensional problem, a line element is used whereas in the three-

dimensional problem, a surface element is used. This three-dimensional layered approach 

contributes to different substructuring, where the whole problem is considered to be made up 

of different layers as it extends towards the seabed. A different shape function is also introduced 

to discretise the body boundary. An eight noded surface shape function is chosen because it is 

able to represent the three-dimensional body by reintroducing the least number of nodes while 

maintaining accuracy (Appendix P). In both the two-dimensional and three-dimensional cases, 

the spatial dimension is still reduced by one. When solving the 3D SBFEM, the surface is 

discretised instead of the volume of the whole domain. Nevertheless, increasing the 2D SBFEM 

line discretisation to the 3D SBFEM surface discretisation will still result in a significant 

increase in the number of elements and nodes that need to be evaluated. With the appropriate 

shape function, the approximate solution and weighted function can be evaluated by applying 

it in the general polynomial.  

The newly developed 3D SBFEM model is first validated and then applied to plane and 

short-crested wave interactions with a stationary offshore structure. All physical quantities 

including wave run-ups and wave forces exerted on the structures are obtained. This case study 

demonstrates that the present 3D SBFEM model has clear advantages in numerical accuracy. 

Detailed workings, which are often not readily available from the literature, are presented, and 

allow the 3D SBFEM to be followed through and easily understood to solve for additional 

engineering problems.  

 

6.2 Overall advantages of the SBFEM 

Most of the numerical methods that exist currently suffer from different limitations when 

solving different problems. There is no one effective method that fits all, hence, an 
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understanding of the model problem and the capability of existing methods is important. The 

method chosen to arrive at the solution will result in differences in the time required and also 

the accuracy of the solution. The SBFEM has limitations of its own when used to solve for 

marine hydrodynamic problems in cases where the nonlinearity of the waves needs to be taken 

into account (Lin and Liao, 2011). However, this thesis shows that the SBFEM has great 

potential when used to solve for wave diffraction around large cylinders with sharp corners and 

an unbounded domain at the far end. The advantages of the SBFEM and the method of 

addressing it are reiterated here to outline the importance of the extension of this method.  

a) The analytical solution in the radial direction speeds up the solution process where the 

spatial dimension is reduced by one, in a similar way to the boundary element method. 

This also allows the side-faces to be evaluated analytically and does not need to be 

discretised. This property is preserved in the 2D and 3D SBFEM where the 𝜉 term is 

scaled and can be addressed in an analytical manner. 

b) In terms of hydrodynamics in the unbounded domain, the boundary condition at infinity 

can be tackled by choosing the appropriate base solution such as the Hankel function of 

the first kind, which satisfies the condition as the radius becomes infinite from the 

scaling centre. This satisfies the radiation condition at infinity rigorously. This base 

solution transforms the boundary value problem that is produced by a circular source. 

Hence it is only selected when the inner boundary of the unbounded domain is circular. 

This also explains the need for the virtual circular cylinder when solving for the wave 

diffraction around an octagonal pile. 

c) One of the criteria of the SBFEM is that the scaling centre must be visible from the 

boundary that it defines, a careful selection of the position of the scaling centre 

overcomes the singularity problem faced when solving for boundaries with sharp 

corners. This is extended to solve for the octagonal cylinder, by increasing the number 

of scaling centres and positioning them at each of the sharp corners. Solution at the 

sharp corners also imposes the problem of irregular frequency, and this can once again 

be satisfied by repositioning the scaling centre. The extra scaling centres used increases 

the number of subdomains needed to define the internal domain. Symmetrical 

subdomain discretisation also allows the domain to be modelled more efficiently. 

d) Substructuring is also useful, where the entire domain is split into smaller domains to 

be analysed. By doing this, the number of elements to be handled increases significantly, 

but this step allows the solution process to be simplified. These subdomains contain 

individual scaling centres which are placed at sharp corners to overcome the problem 
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of singularity. Furthermore, this substructuring process is effective when solving for 

much more complex structural configuration.  

e) No fundamental solution is required in contrast to the typical BEM. This is one of the 

main disadvantages of the traditional BEM approach. This is because the boundary of 

interest is discretised using the FEM approach.  

f) This method can also be readily coupled with other existing numerical methods, since 

the base derivations are similar. This is not investigated in this thesis but several 

successful attempts have been demonstrated by coupling SBFEM with the homotopy 

analysis method (HAM) in hydrodynamics by (Lin and Liao, 2011) and the FEM for 

soil and structure interaction (Birk et al., 2012). This coupled numerical approach is 

introduced to tackle the nonlinearity at this present time. 

 

6.3 Recommendations for future work  

The SBFEM clearly has a number of distinct advantages. However, there are still some 

limitations to this method that need to be tackled, especially the ability of this method to solve 

nonlinear problems. In continuation of the application of 2D SBFEM, more complicated 

scenarios could be attempted, by using it to solve wave diffraction in an actual wind farm where 

there are many monopiles placed in a defined area. In terms of 3D SBFEM, both the 

methodology development and further applications require additional research;  

a) In terms of fixed offshore structures, this method can also be further developed to solve 

for the wave diffraction around cylinder of varying cross section as it moves deeper 

towards the seabed. One additional important factor to consider is the angle where the 

wave deflects from the structure which also needs to be taken into account.  

b) The solution for the SBFE equation in wave-structure interaction now exists in two and 

three dimensions. One valuable extension is to combine both 3D SBFEM model of 

wave-structure interaction and structure-soil interaction to solve for the complete wave-

structure-soil interaction using the integrated 3D SBFEM model.  

c) The derived 3D SBFEM has successfully allowed the solution of a simple circular 

cylinder and static floating cylinder. Wave diffraction around more complex structures 

such as dynamic floating offshore structures is the logical extension. Combining with a 

numerical solver of motion equation of the floating structure including wave radiation, 

a comprehensive SBFEM model can be developed for complete hydrodynamic analysis 

of floating offshore systems. Such an extension will be useful in providing a high quality 
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and efficient analysis tool for hydrodynamic analysis for practical offshore engineering 

design. 

d) It is also important to recognise the limitations of the SBFEM, where the nonlinearity 

of harsher waves on the free surface is not readily solved analytically in the radial 

direction. The current approach is by coupling the existing numerical methods with the 

SBFEM, where the nonlinearity is solved using methods such as HAM or FEM and the 

far field, which has linear properties are solved using the SBFEM. 

 

6.4 Concluding remarks 

This thesis has successfully extended the standing 2D SBFEM to solve for different cross 

section monopiles that are used to support wind turbines. The hydrodynamic properties 

obtained are then combined with the other forces impacting the structure to evaluate the 

structural deflection and other relevant properties. This is a clear demonstration of where the 

SBFEM, developed theoretically, can be applied to solve a practical engineering problem.  

The three-dimensional methodology development can solve for a fixed circular cylinder. 

This is the first step to extend and apply a 3D SBFEM solution in terms of marine 

hydrodynamics, where more practical and complex problems can be solved in an effective and 

accurate manner. Although there is still room for improvement of the SBFEM, it can be 

concluded that the advantages and ability of this method to solve marine hydrodynamic 

problems using a semi-analytical approach are useful.   
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Appendix A. 
 

Helmholtz equation 
 

 

This appendix shows how the governing wave equation can be represented using the Helmholtz 

equation in a two-dimensional problem.  

The velocity potential can be expressed as a scalar wave with the field variable ϕ that are 

function of 𝑥, 𝑦 direction. The vertical 𝑧 direction and the time factor 𝑡 are separated. 

 Φ(𝑥, 𝑦, 𝑧, 𝑡) = ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt (A.1) 

 

From the general wave equation, where  

 ∇2Φ =
1

𝑐2
𝜕2Φ

𝜕𝑡2
 (A.2) 

 

Substitute the velocity potential (A.1) into the wave equation (A.2) 

 ∇2(ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt) =
1

𝑐2
𝜕2(ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt)

𝜕𝑡2
 (A.3) 

 

The whole equation of (A.3) is differentiated with the time term 

 ∇2(ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt) = −
𝜔2

𝑐2
ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt (A.4) 

 

It can be further simplified to  

 ∇2(ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt) = −
𝜔2

𝑐2
ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt (A.5) 

 

The wave number can be written as  

 𝑘 =
𝜔

𝑐
=
2𝜋𝑓

𝑐
=
2𝜋

𝜆
 (A.6) 

 

Hence, the wave equation is transformed into  

 ∇2ϕ(𝑥, 𝑦) = −𝑘2ϕ(𝑥, 𝑦) (A.7) 
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Rearranging, the two-dimensional Helmholtz equation to represent the waves 

 ∇2ϕ(𝑥, 𝑦)+ 𝑘2ϕ(𝑥, 𝑦) = 0 (A.8) 

 

Note that this partial differential equation involves space but is time independent. This is 

achieved through the separation of variables in equation (A.1). However, it can be evaluated in 

the frequency domain, as seen in equation (A.6). 
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Appendix B. 
 

Sommerfeld radiation condition 
 

 

As seen in Appendix A, the Helmholtz equation is used to formulate the boundary value problem 

mathematically. In solving the wave-structure interaction, an incident wave that impinges on 

an object is induced, resulting in the effect where the scattered wave is generated. Besides that, 

the solution also provides incoming waves which originate at infinity, moving towards the 

object. These incoming waves are physically meaningless and must be rejected by some criteria 

built into the mathematical formulation of the problem (Sommerfeld, 1964). Sommerfeld 

introduced a mathematically precise condition which, when added to the exterior boundary 

value problem ensures a unique solution. This condition is applied at infinity (Lamb, 1910; 

Schot, 1992). It is also proven that the radiation condition satisfies the different dimensions that 

is accounted for.  

 
lim
𝑟→∞

𝑟
(𝑛−1)
2 (

𝜕𝜙

𝜕𝑟
− 𝑖𝑘𝜙) = 0 

 

(B.1) 

   

𝑛 describes the number of dimensions considered. This incoming wave form propagates a 

long distance from infinity, 𝜙 can be represented by the Bessel function of zero order 𝐽0. The 

total disturbance breaks into two parts where the primary disturbance is created from the 

internal source and the secondary disturbance created from the far end. To separate both these 

disturbances, the Bessel function can be divided into two parts, comprising the Hankel function 

of the first kind, 𝐻0
(1)

 and the Hankel function of the second kind, 𝐻0
(2)

. Since the case studies 

only focus on the part where the wave propagates outward asymptotically from the source, 

which is represented by 𝐻0
(1)

, only this first part is taken into account. Therefore the Hankel 

function of the first kind is used to satisfy this boundary condition at infinity.  
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Appendix C. 
 

Derivations of incident and normal waves 
 

 

The short crested incident wave which is the wind generated wave formula is applied because 

it better represents the real sea state. It can be written in a separation of variable form as  

 
𝛷𝐼 = −

𝑖𝑔𝐴

𝜔
𝑍(𝑧)𝑒𝑖(𝑘𝑥𝑥−𝜔𝑡)𝑐𝑜𝑠 (𝑘𝑦𝑦) 

 

(C.1) 

 

 𝜙𝐼 = 𝑒𝑖(𝑘𝑥𝑥)𝑐𝑜𝑠 (𝑘𝑦𝑦) 

 

(C.2) 

 

For a circular cylinder, the position at the Cartesian coordinate can be written as  

 𝑥 = 𝑟. cos (𝜃) (C.3) 

 

 𝑦 = 𝑟. sin (𝜃) (C.4) 

 

The normal of the incident wave on the body is equal in magnitude but opposite direction to 

the normal flow.  

 𝜙,𝑛
𝐼 = −𝜙,𝑛

𝑆 = 𝑣̅𝑛 (C.5) 

 

 𝜕𝜙𝐼

𝜕𝑟
= 𝑒𝑖(𝑘𝑥𝑟.cos (𝜃))(𝑖 cos 𝜃 . cos (𝑘𝑦. 𝑟. sin𝜃))𝑘𝑥 − 𝑘𝑦. 𝑠𝑖𝑛𝜃. sin (𝑘𝑦. 𝑟. sin𝜃) (C.6) 
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Appendix D. 
 

Parameters for wave diffraction 
 

 

In this thesis, the wave diffraction is a main focus, describing how the wave changes form when 

a body interrupts the flow. In order to apply the linear wave theory (Airy Theory), there are 

criteria that must be satisfied. The diffraction parameter needs to be satisfied, where D/L>0.2. 

Table D.1 shows the suggested parameters that are used in the thesis, where different cases are 

analysed and compared for different values of ka. 

 

Table D.1 Parameters for wave diffraction 

Wave number 

(k) 

Wave length 

(L) 

Diameter 

(D) 

D/L 

(>0.2) 

√𝟐/𝟐 8.89 2 0.23 

1 6.29 2 0.32 

√𝟐 4.44 2 0.45 

2 3.14 2 0.64 

3 2.09 2 0.95 

4 1.57 2 1.27 

5 1.26 2 1.59 
 

 

In addition, to applying linear potential theory, it must be within the region as seen in Figure 

1.5. The last two columns in Table D.2 show that the wave criteria fall in the region where the 

potential theory can be used to predict the flow, satisfying the linear wave theory, where the 

wave length must be long and slope of the wave must be small.  
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Table D.2 Parameters for potential theory 

Mean 

water 

depth (h) 

Wave 

number (k) 

Wave 

length (L) 

Dispersion 

(omega) 

Wave 

period (T) 

Wave 

Height (H) 
H/gT^2 h/gT^2 

25 √2/2 8.89 2.63 2.39 0.001 1.79E-05 0.45 

25 1 6.29 3.13 2.00 0.001 2.53E-05 0.63 

25 √2 4.44 3.72 1.69 0.001 3.58E-05 0.90 

25 2 3.14 4.43 1.42 0.001 5.07E-05 1.27 

25 3 2.09 5.42 1.16 0.001 7.6E-05 1.90 

25 4 1.57 6.26 1.00 0.001 1.01E-04 2.53 

25 5 1.26 7.00 0.90 0.001 1.27E-04 3.17 
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Appendix E. 
 

Infinitesimal line, area and volume 
  

 

After defining the coordinate transformation, the infinitesimal line, area and volume can be 

represented as  

 

{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦}
 

 
=
1

|𝐽|
[
𝑎 𝑏
𝑐 𝑑

]

{
 

 
𝜕

𝜕𝜉
1

𝜉

𝜕

𝜕𝜂}
 

 

  ;  

{
  
 

  
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧}
  
 

  
 

=
1

|𝐽|
[
𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

]

{
  
 

  
 
𝜕

𝜕𝜉
1

𝜉

𝜕

𝜕𝜂
𝜕

𝜕𝜁 }
  
 

  
 

 

 

(E.1) 

These can also be represented graphically as follow: 

(a) Infinitesimal area for 2D SBFEM: 

 

 𝑑Ω = 𝜕𝑥𝜕𝑦 = |𝐽|𝜉𝑑𝜉𝑑𝜂 (E.2) 

 

(b) Infinitesimal volume for 3D SBFEM: 

 

 𝑑Ω = 𝜕𝑥𝜕𝑦𝜕𝑧 = 𝜉|𝐽|𝑑𝜉𝑑𝜂𝑑𝜁 (E.3) 
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Appendix F. 
 

2D coordinate transformation 
 

 

One of the major steps required in order to apply the SBFEM is to transform the Cartesian 

coordinate system to the Scaled Boundary coordinate system. The reason is that the Cartesian 

coordinate axes are fixed while the Scaled Boundary coordinate system allows flexibility in 

describing the geometry, where 𝜉  represents the radial direction and 𝜂  represents the 

circumferential direction. In the two-dimensional solution, the (𝑥, 𝑦) coordinate is transformed 

into the (𝜉, 𝜂) coordinate using the Jacobian matrix. 

The Jacobian is used to map the different axis.  

(a) One-dimensional Jacobian maps a line of width 𝑑𝑥 to 𝑑𝜉 

(b) Two-dimensional Jacobian maps the area 𝑑𝑥𝑑𝑦 to 𝑑𝜉𝑑𝜂 

(c) Three-dimensional Jacobian maps the volume 𝑑𝑥𝑑𝑦𝑑𝑧 to 𝑑𝜉𝑑𝜂𝑑𝜁 

Figure F.1 shows the transformation from one coordinate system to another. 

 

Figure F.1 Two-dimensional coordinate transformation 

 

In order to solve the problem in a different coordinate system, the transformation of 

coordinates can be related using the chain rule, where 

 𝜕

𝜕𝜉
=
𝜕𝑥̂

𝜕𝜉
∙
𝜕

𝜕𝑥̂
+
𝜕𝑦̂

𝜕𝜉
∙
𝜕

𝜕𝑦̂
 (F.1) 
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 𝜕

𝜕𝜂
=
𝜕𝑥̂

𝜕𝜂
∙
𝜕

𝜕𝑥̂
+
𝜕𝑦̂

𝜕𝜂
∙
𝜕

𝜕𝑦̂
 (F.2) 

 

This can be represented in a matrix form, with the introduction of the Jacobian Matrix 

[𝐽(𝜉, 𝜂)] which helps to define the linear mapping of linear approximation, where  

 

{
 

 
𝜕

𝜕𝜉
𝜕

𝜕𝜂}
 

 

=

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦̂

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦̂

𝜕𝜂]
 
 
 
 

{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂}
 

 
 (F.3) 

 

 

 

[𝐽(𝜉, 𝜂)] =

[
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦̂

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦̂

𝜕𝜂]
 
 
 
 

 

 

(F.4) 

 

 

 

Following the formula,  

  

[𝐽(𝜉, 𝜂)]−1 =
1

det[𝐽(𝜉, 𝜂)]

[
 
 
 
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉

−
𝜕𝑥̂

𝜕𝜂

𝜕𝑥̂

𝜕𝜉 ]
 
 
 

=
1

𝜕𝑦̂
𝜕𝜂
.
𝜕𝑥̂
𝜕𝜉
−
𝜕𝑦̂
𝜕𝜉
.
𝜕𝑥̂
𝜕𝜂 [
 
 
 
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉

−
𝜕𝑥̂

𝜕𝜂

𝜕𝑥̂

𝜕𝜉 ]
 
 
 

 

 

(F.5) 

 

The determinant of a Jacobian matrix is called the Jacobian, which can be viewed as the 

derivative to the total derivative of the coordinate transformation, and can be represented as  

 |𝐽| = det[𝐽(𝜉, 𝜂)] 
 

(F.6) 

The inverse of [𝐽(𝜉, 𝜂)] can be obtained using this formula  

 

For 𝐴 = [
𝑎 𝑏
 𝑐 𝑑

], 

𝐴−1 =
1

det 𝐴
[
𝑑 −𝑏
−𝑐 𝑎

] =
1

𝑎𝑑 − 𝑏𝑐
[
𝑑 −𝑏
−𝑐 𝑎

] 
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The transformation of coordinates can be found using the inverse, where  

  

{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂}
 

 
=
1

|𝐽|

[
 
 
 
 
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉

−
𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜉 ]
 
 
 
 

{
 

 
𝜕

𝜕𝜉
𝜕

𝜕𝜂}
 

 

 

 

(F.7) 

 

The Jacobian is written as follows 

  

|𝐽| =
𝜕𝑥

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑥

𝜕𝜂
∙
𝜕𝑦̂

𝜕𝜉
 

 

(F.8) 
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Appendix G. 
 

2D shape function 
 

 

The shape function is introduced as in the FEM, to transform the system to a local system 

representation. It is also known as the interpolation function. The approximation is executed by 

using a selected set of shape functions that are appropriate, depending on the accuracy and the 

geometry that needs to be defined. According the BEM, the spatial dimension is reduced by 

one and the approximate function can be written using the nodal values by  

(a) Linear shape function 

(b) Quadratic shape function 

(c) Cubic shape function 

The approximate solution of 𝜙 from the derived general equation using Green’s identity 

function can be evaluated using the quadratic shape function. Every element can be represented 

by three nodes, and the quadratic local element shape function can be graphically represented 

by  

 

Figure G.1 Quadratic shape function 

 

The approximated function is the sum of the shape functions [𝑁(𝜂)] weighted by the radial 

nodal values {𝑎(𝜉)}. The shape function can be verified to be valid by substituting the value of  

𝜂 at each node: 
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Table G.1 Validation of shape function used 

 𝑵(𝜼)𝟏 =
𝟏

𝟐
𝜼(𝜼 − 𝟏) 𝑵(𝜼)𝟐 = −(𝜼 + 𝟏)(𝜼 − 𝟏) 𝑵(𝜼)𝟑 =

𝟏

𝟐
𝜼(𝜼 + 𝟏) 

𝜼 = −𝟏 1 0 0 

𝜼 = 𝟎 0 1 0 

𝜼 = +𝟏 0 0 1 

 

The approximate velocity potential is written as  

  

𝜙𝐴(𝜉, 𝜂) = [𝑁(𝜂)1]{𝑎(𝜉)1} + [𝑁(𝜂)2]{𝑎(𝜉)2} + [𝑁(𝜂)3]{𝑎(𝜉)3} 
 

(G.1) 

 

And is simplified as  

 

𝜙𝐴(𝜉, 𝜂) =∑[𝑁(𝜂)]𝑖

3

𝑖=1

{𝑎(𝜉)}𝑖 

 

(G.2) 

Applying the general polynomial, the approximate solution can be written as   

 𝜙𝐴(𝜉, 𝜂) = [𝑁(𝜂)]{𝑎(𝜉)} 
 

(G.3) 

where  

[𝑁(𝜂)] = [𝑁(𝜂)1 𝑁(𝜂)2 𝑁(𝜂)3] 

{𝑎(𝜉)} = {𝑎(𝜉)1 𝑎(𝜉)2 𝑎(𝜉)3}
𝑇 

 

In the same manner, the weighted function can be written as  

 𝑤𝐴(𝜉, 𝜂) = [𝑁(𝜂)]{𝑤(𝜉)} = {𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇 

 
(G.4) 

 



Appendix H– 2D weighted residual 
  

153  
 

Appendix H. 
 

2D weighted residual 
 

 

The governing equation is the Helmholtz equation.  

 𝛻2𝜙(𝑥, 𝑦) + 𝑘2𝜙(𝑥, 𝑦) = 0 
 

(H.1) 

 

The residual function can be written as  

 𝛻2𝜙(𝑥, 𝑦) + 𝑘2𝜙(𝑥, 𝑦) = 𝑅(𝑥, 𝑦) 
 

(H.2) 

 

The weighted residual method can be used to solve this second order ordinary differential 

equation. An approximate solution could be used to calculate the solution, but the residual error 

can be minimised by multiplying a weighting function and integrating over the whole domain.    

 
∫𝑅(𝑥, 𝑦)
 

Ω

. 𝑤(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 0 

 

(H.3) 

For (H.3) to be valid at all times, the residual 𝑅(𝑥, 𝑦) must approach zero. This can be done 

by following the procedures and steps in (Wolf, 2003). For simplicity, the differential equations 

is written as such,  

𝜕𝜙

𝜕𝑥
= 𝜙,𝑥  ;  

𝜕𝜙

𝜕𝑦
= 𝜙,𝑦  ;  

𝜕2𝜙

𝜕𝑥2
= 𝜙,𝑥𝑥  ;  

𝜕2𝜙

𝜕𝑦2
= 𝜙,𝑦𝑦  ;  

𝜕𝜙

𝜕𝑛
= 𝜙,𝑛 

𝜕𝑤

𝜕𝑥
= 𝑤,𝑥  ;  

𝜕𝑤

𝜕𝑦
= 𝑤,𝑦  ;  

𝜕2𝑤

𝜕𝑥2
= 𝑤,𝑥𝑥  ;  

𝜕2𝑤

𝜕𝑦2
= 𝑤,𝑦𝑦 

The whole two-dimensional domain is represented in the double integral of Ω, while the line 

boundary is represented as single integral as 𝛤. 

Substituting (H.2) into (H.3), the weighted residual function is written as  

 
∬𝑤(∇2𝜙 + 𝑘2𝜙)

 

Ω

𝑑𝑥𝑑𝑦 = 0 

 

(H.4) 
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The following few steps are mathematical derivations to prove the general equation in the 

weighted residual manner and is not numbered. 

∬𝑤(∇2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 +∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 = 0 

∬𝜙,𝑥𝑥𝑤
 

Ω

𝑑𝑥𝑑𝑦 +∬𝜙,𝑦𝑦𝑤
 

Ω

𝑑𝑥𝑑𝑦 +∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 = 0 

∬(𝑤 𝜙,𝑥 ),𝑥

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦 +∬(𝑤 𝜙,𝑦 ),𝑦

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦

+∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 = 0 

 

According to the Green’s identity, the area in the two-dimensional space has a piecewise 

smooth boundary 𝛤. By integrating the boundary in the anticlockwise direction, the whole 

boundary containing the domain is expressed as.  

 
∮𝑤 𝜙,𝑛  𝑑𝛤
 

𝛤

−∬𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦 +∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦

= 0 
 

(H.5) 

Rearranging the equation and bringing it to the other side yields,  

 
∬𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦 +∬𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 − ∮𝑤 𝜙,𝑛  𝑑𝛤
 

𝛤

= 0 

(H.6) 

 

Including all the boundary conditions in the 2D case study, 

(a) Body boundary 

𝜙,𝑛= 𝑣̅𝑛 

 

(b) Seabed boundary 

𝜙,𝑛= 0 

 

Substituting the boundary conditions into (H.6), 
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∬𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦 +∬𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 − ∮ 𝑤 𝑣̅𝑛𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(H.7) 

Combining the first two parts together, 

 
∬𝑤,𝑥 𝜙,𝑥+𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 − ∮ 𝑤 𝑣̅𝑛 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(H.8) 

 

The gradients can be written as  

∇=

[
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦]
 
 
 

  , ∇𝑇= [
𝜕

𝜕𝑥

𝜕

𝜕𝑦
] 

 

∇𝑇𝑤∇𝜙 = [𝑤,𝑥 𝑤,𝑦] [
𝜙,𝑥
𝜙,𝑦

] = 𝑤,𝑥 𝜙,𝑥+ 𝑤,𝑦 𝜙,𝑦 

 

Hence, the weighted residual function in (H.8) can be rewritten as 

 
∬∇𝑇𝑤∇𝜙

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 − ∮ 𝑤 𝑣̅𝑛 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(H.9) 
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Appendix I. 
 

2D Divergence operator in the SBFEM 
 

 

From Appendix F, the new coordinate in any part of the domain can be defined as  

 

{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂}
 

 
=
1

|𝐽|

[
 
 
 
 
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉

−
𝜕𝑥

𝜕𝜂

𝜕𝑥

𝜕𝜉 ]
 
 
 
 

{
 

 
𝜕

𝜕𝜉
𝜕

𝜕𝜂}
 

 

 

 

(I.1) 

 

All the simplifications used here are consistent with the previously published work. The 

divergence operator is represented as  

 
∇=

𝜕

𝜕𝑥̂
+
𝜕

𝜕𝑦̂
=
1

|𝐽|
(
𝜕𝑦̂

𝜕𝜂

𝜕

𝜕𝜉
−
𝜕𝑦̂

𝜕𝜉

𝜕

𝜕𝜂
) +

1

|𝐽|
(−

𝜕𝑥̂

𝜕𝜂

𝜕

𝜕𝜉
−
𝜕𝑥̂

𝜕𝜉

𝜕

𝜕𝜂
) (I.2) 

 

The 𝜉  represent the radial direction and is not discretised, only the 𝜂  circumferential 

direction is discretised. Only the boundary is transformed and the coordinate on the boundary 

is represented by (𝑥𝑏, 𝑦𝑏) and the scaling equation can be represented as  

 𝑥 = 𝑥0 + 𝜉𝑥𝑏(𝜂)  ;  𝑦̂ = 𝑦0 + 𝜉𝑦𝑏(𝜂) (I.3) 

 

Hence, the derivatives are obtained as 

𝜕𝑥̂(𝜂)

𝜕𝜂
= 𝜉𝑥𝑏(𝜂),𝜂  ;  

𝜕𝑦̂(𝜂)

𝜕𝜂
= 𝜉𝑦

𝑏
(𝜂),𝜂  ;  

𝜕𝑥̂(𝜂)

𝜕𝜉
= 𝑥𝑏(𝜂) ; 

𝜕𝑦̂(𝜂)

𝜕𝜉
= 𝑦

𝑏
(𝜂)  

Substituting these simplifications into equation (I.1) yields,  

 

{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂}
 

 
=
1

|𝐽|
[
𝜉𝑦𝑏(𝜂),𝜂 −𝜉𝑦𝑏(𝜂)

−𝑥(𝜂),
𝜂

𝑥(𝜂)
]

{
 

 
𝜕

𝜕𝜉
𝜕

𝜕𝜂}
 

 

 (I.4) 
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{
 

 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂}
 

 
=
1

|𝐽|
[
𝑦𝑏(𝜂),𝜂 −𝑦𝑏(𝜂)

−𝑥𝑏(𝜂),𝜂 𝑥𝑏(𝜂)
]

{
 

 
𝜕

𝜕𝜉
1

𝜉

𝜕

𝜕𝜂}
 

 

 

 

(I.5) 

 

Rewriting the divergence operator on the boundary can be simplified as,  

 
∇=

𝜕

𝜕𝑥̂
+
𝜕

𝜕𝑦̂
=
1

|𝐽|
(𝑦

𝑏
(𝜂),𝜂− 𝑦𝑏(𝜂) )

𝜕

𝜕𝜉
+
1

|𝐽|
(−𝑥𝑏(𝜂) − 𝑥𝑏(𝜂))

1

𝜉

𝜕

𝜕𝜂
 (I.6) 

 

New variables are introduced to simplify the equation, where  

 
{𝑏1(𝜂)} =

1

|𝐽|
{
𝑦𝑏(𝜂),𝜂
−𝑥𝑏(𝜂),𝜂

}  ;  𝑏2(𝜂) =
1

|𝐽|
{
−𝑦𝑏(𝜂)
𝑥𝑏(𝜂)

} (I.7) 

 

Hence, the divergence operator can be represented as  

 
∇= 𝑏1(𝜂)

𝜕

𝜕𝜉
+
1

𝜉
𝑏2(𝜂)

𝜕

𝜕𝜂
 (I.8) 
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Appendix J 
 

2D SBFEM derivations 
 

 

Obtaining the general solution using the weighted residual function, and the appropriate shape 

function, the problem can be defined in the scaled boundary manner. The infinitesimal area is 

derived from the graphical representation and the divergence operator is used.  

Appendix E; Ω = 𝑑𝑥𝑑𝑦 = |𝐽|𝜉𝑑𝜉𝑑𝜂 ;  

Appendix G; ϕ𝐴(𝜉, 𝜂) = [𝑁(𝜂)]{𝑎(𝜉)} ; 𝑤𝐴(𝜉, 𝜂) = {𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇 

Appendix H; ∬ ∇𝑇𝑤∇𝜙
 

Ω
𝑑𝑥𝑑𝑦 −∬ 𝑤(𝑘2𝜙)

 

Ω
𝑑𝑥𝑑𝑦 − ∮ 𝑤 𝑣̅𝑛𝑑𝛤𝑏

 

𝛤𝑏
= 0 

Appendix I; ∇= {𝑏1(𝜂)}
𝜕

𝜕𝜉
+
1

𝜉
𝑏2(𝜂)

𝜕

𝜕𝜂
 

The approximate velocity is given by 

 𝑣𝐴 = ∇𝛷𝐴 

 
(J.1) 

 

The variables in the velocity potential can be separated. Substituting this into equation above, 

where  

 Φ(𝑥, 𝑦, 𝑧, 𝑡) = ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt (J.2) 

 

 𝑣𝐴 = ∇ϕ(𝑥, 𝑦)𝑍(𝑧)𝑒−𝑖ωt (J.3) 

 

Excluding the terms of 𝑍(𝑧) and 𝑒−𝑖ωt, and substituting the previously derived parameters 

from Appendix E, G, H and I, the velocity potential is expressed as  

 𝑣𝐴 = ∇ϕ(𝑥, 𝑦) (J.4) 
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𝑣𝐴 = ({𝑏1(𝜂)}

𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂)}

𝜕

𝜕𝜂
) ([𝑁(𝜂)]{𝑎(𝜉)}) (J.5) 

 

 
𝑣𝐴 = {𝑏1(𝜂)}[𝑁(𝜂)]{𝑎(𝜉)}

𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂)}[𝑁(𝜂)]{𝑎(𝜉)}

𝜕

𝜕𝜂
 (J.6) 

 

 
𝑣𝐴 = {𝑏1(𝜂)}[𝑁(𝜂)]{𝑎(𝜉)},𝜉 +

1

𝜉
{𝑏2(𝜂)}[𝑁(𝜂)],𝜂{𝑎(𝜉)} (J.7) 

   

Introducing new variables to simplify further, where 

 [𝐵1(𝜂)] = {𝑏1(𝜂)}[𝑁(𝜂)]  ;  [𝐵2(𝜂)] = {𝑏2(𝜂)}[𝑁(𝜂)],𝜂 (J.8) 

 

Substituting the new variables, equation (J.2) can be rewritten as  

 
𝑣𝐴 = 𝐵1(𝜂){𝑎(𝜉)},𝜉 +

1

𝜉
𝐵2(𝜂){𝑎(𝜉)} 

 

(J.9) 

Substituting the divergence operator and the shape function into the general weighted 

function, the following is obtained.  

 
∬∇𝑇𝑤∇𝜙

 

Ω

𝑑𝑥𝑑𝑦 −∬𝑤(𝑘2𝜙)
 

Ω

𝑑𝑥𝑑𝑦 − ∮𝑤 𝑣̅𝑛 𝑑𝛤
 

𝛤

= 0 (J.10) 

 

 
∬ [𝐵1(𝜂){𝑤(𝜉)},𝜉 +

1

𝜉
𝐵2(𝜂){𝑤(𝜉)}]

𝑇

[𝐵1(𝜂){𝑎(𝜉)},𝜉

 

Ω

+
1

𝜉
𝐵2(𝜂){𝑎(𝜉)}] 𝑑𝛺

−∬{𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇𝑘2[𝑁(𝜂)]{𝑎(𝜉)}𝑑𝛺
 

Ω

−∮{𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤
 

𝛤

= 0 

(J.11) 

 

Introducing the coefficient matrix to simplify the equation,  

 
𝐸0 = ∫𝐵1(𝜂)

𝑇𝐵1(𝜂)|𝐽|𝑑𝜂
 

𝜂

 (J.12) 

 

 
𝐸1 = ∫𝐵2(𝜂)

𝑇𝐵1(𝜂)|𝐽|𝑑𝜂
 

𝜂

 (J.13) 
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𝐸2 = ∫𝐵2(𝜂)

𝑇𝐵2(𝜂)|𝐽|𝑑𝜂
 

𝜂

 (J.14) 

 

 
𝑀0 = ∫𝑁(𝜂)𝑇𝑁(𝜂)|𝐽|𝑑𝜂

 

𝜂

 (J.15) 

 

Substituting the coefficient matrix into (J.4) yields, 

 
∫ (𝐸0{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)},𝜉 + 𝐸1
𝑇 1

𝜉
{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)} + 𝐸1
1

𝜉
{𝑤(𝜉)}𝑇{𝑎(𝜉)},𝜉

 

𝜉

+ 𝐸2
1

𝜉2
{𝑤(𝜉)}𝑇{𝑎(𝜉)}) 𝜉𝜕𝜉 − ∫𝑀0𝑘

2𝜉{𝑤(𝜉)}𝑇{𝑎(𝜉)}𝜕𝜉
 

𝜉

−∮{𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤
 

𝛤

= 0 

 

(J.16) 

All terms containing {𝑤(𝜉)},𝜉 are integrated using integration by parts. Integrating the first 

term, ∫ 𝐸0{𝑤(𝜉)},𝜉
𝑇{𝑎(𝜉)},𝜉𝜉𝜕𝜉

 

𝜉
 

∫𝑢 𝑣 𝑤′ = 𝑢 𝑣 𝑤 − ∫  𝑢′𝑣 𝑤 − ∫𝑢 𝑣′ 𝑤 

Let ∶  u = 𝜉 ; 𝑣 = {𝑎(𝜉)},𝜉; 𝑤
′ = {𝑤(𝜉)},𝜉

𝑇
  

Hence ∶  𝑢′ = 1 ; 𝑣′ = {𝑎(𝜉)},𝜉𝜉 ; 𝑤 = {𝑤(𝜉)}𝑇 

 

 
∫𝐸0{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)},𝜉𝜉𝜕𝜉
 

𝜉

= 𝐸0𝜉{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒 −∫𝐸0{𝑎(𝜉)},𝜉{𝑤(𝜉)}

𝑇𝜕𝜉
 

𝜉

−∫𝐸0{𝑎(𝜉)},𝜉𝜉{𝑤(𝜉)}
𝑇𝜉𝜕𝜉

 

𝜉

 

 

(J.17) 

Integrating the second term, ∫ 𝐸1
𝑇 1

𝜉
{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)}𝜉𝜕𝜉
 

𝜉
 

∫𝑢 𝑣′  = 𝑢 𝑣  − ∫  𝑢′𝑣  

Let ∶  u = {𝑎(𝜉)} ; 𝑣′ = {𝑤(𝜉)},𝜉
𝑇

 

Hence ∶  𝑢′ = {𝑎(𝜉)},𝜉 ; 𝑣 = {𝑤(𝜉)}𝑇 
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∫𝐸1

𝑇{𝑤(𝜉)},𝜉
𝑇{𝑎(𝜉)}𝜕𝜉

 

𝜉

= 𝐸1
𝑇{𝑎(𝜉)} {𝑤(𝜉)}𝑇|𝜉𝑖

𝜉𝑒 −∫𝐸1
𝑇{𝑎(𝜉)},𝜉{𝑤(𝜉)}

𝑇𝜕𝜉
 

𝜉

 

 

(J.18) 

Substituting the integrated terms back into the original equation,  

 𝐸0𝜉{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒 + 𝐸1

𝑇{𝑎(𝜉)} {𝑤(𝜉)}𝑇|𝜉𝑖
𝜉𝑒

+∫ (−𝐸0
1

𝜉
{𝑎(𝜉)},𝜉{𝑤(𝜉)}

𝑇 − 𝐸0{𝑎(𝜉)},𝜉𝜉{𝑤(𝜉)}
𝑇

 

𝜉

− 𝐸1
𝑇 1

𝜉
{𝑎(𝜉)},𝜉{𝑤(𝜉)}

𝑇 + 𝐸1
1

𝜉
{𝑤(𝜉)}𝑇{𝑎(𝜉)},𝜉

+ 𝐸2
1

𝜉2
{𝑤(𝜉)}𝑇{𝑎(𝜉)}) 𝜉𝜕𝜉 − ∫𝑀0𝑘

2{𝑤(𝜉)}𝑇{𝑎(𝜉)}𝜉𝜕𝜉
 

𝜉

−∮{𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤
 

𝛤

= 0 

 

(J.19) 

(J.19) is then simplified to 

 𝐸0𝜉{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒 + 𝐸1

𝑇{𝑎(𝜉)} {𝑤(𝜉)}𝑇|𝜉𝑖
𝜉𝑒

+ {𝑤(𝜉)}𝑇∫ (−𝐸0
1

𝜉
{𝑎(𝜉)},𝜉 − 𝐸0{𝑎(𝜉)},𝜉𝜉 − 𝐸1

𝑇 1

𝜉
{𝑎(𝜉)},𝜉

 

𝜉

+ 𝐸1
1

𝜉
{𝑎(𝜉)},𝜉 + 𝐸2

1

𝜉2
{𝑎(𝜉)} − 𝑀0𝑘

2{𝑎(𝜉)}) 𝜉𝜕𝜉

− ∮{𝑤(𝜉)}𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤
 

𝛤

= 0 

(J.20) 

 

In order to satisfy all terms of weighted function in equation (J.8), the following equations 

have to be satisfied:  

 
𝐸0𝜉𝑒{𝑎(𝜉𝑒)},𝜉{𝑤(𝜉𝑒)}

𝑇 + 𝐸1
𝑇{𝑎(𝜉𝑒)} {𝑤(𝜉𝑒)}

𝑇 −∮{𝑤(𝜉𝑒)}
𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤

 

𝛤

= 0 

(J.21) 

 

 
−𝐸0𝜉𝑖{𝑎(𝜉𝑖)},𝜉{𝑤(𝜉𝑖)}

𝑇 − 𝐸1
𝑇{𝑎(𝜉𝑖)} {𝑤(𝜉𝑖)}

𝑇 −∮{𝑤(𝜉𝑖)}
𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤

 

𝛤

= 0 

(J.22) 
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{𝑤(𝜉)}𝑇∫ (−𝐸0

1

𝜉
{𝑎(𝜉)},𝜉 − 𝐸0{𝑎(𝜉)},𝜉𝜉 − 𝐸1

𝑇 1

𝜉
{𝑎(𝜉)},𝜉 + 𝐸1

1

𝜉
{𝑎(𝜉)},𝜉

 

𝜉

+ 𝐸2
1

𝜉2
{𝑎(𝜉)} − 𝑀0𝑘

2{𝑎(𝜉)}) 𝜉𝜕𝜉 

(J.23) 

 

Simplifying,  

 
𝐸0𝜉𝑒{𝑎(𝜉𝑒)},𝜉 + 𝐸1

𝑇{𝑎(𝜉𝑒)}  = ∮ {𝑤(𝜉𝑒)}
𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤

 

𝛤

 

 

(J.24) 

 
𝐸0𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + 𝐸1

𝑇{𝑎(𝜉𝑖)}  = −∮{𝑤(𝜉𝑖)}
𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛𝑑𝛤

 

𝛤

 

 

(J.25) 

For both 𝜉𝑒 and 𝜉𝑖, (J.26) is valid 

 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 + (𝐸0 + 𝐸1

𝑇 − 𝐸1)𝜉{𝑎(𝜉)},𝜉 − 𝐸2{𝑎(𝜉)} + 𝑀0𝑘
2𝜉2{𝑎(𝜉)} = 0 

 
(J.26) 

 

Equation (J.26) is termed the SBFE equation.  
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Appendix K. 
 

2D bounded domain solution 
 

 

Obtaining the SBFE equation using the weighted residual method, and the associated boundary 

conditions, the solution of the bounded domain can be carried out Appendix J:  

 
𝐸0𝜉𝑒{𝑎(𝜉𝑒)},𝜉 + 𝐸1

𝑇{𝑎(𝜉𝑒)}  = ∮{𝑤(𝜉𝑒)}
𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛

𝑠𝑑𝛤
 

𝛤

 (K.1) 

 
𝐸0𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + 𝐸1

𝑇{𝑎(𝜉𝑖)}  = −∮{𝑤(𝜉𝑖)}
𝑇[𝑁(𝜂)]𝑇𝑣̅𝑛

𝑠𝑑𝛤
 

𝛤

 (K.2) 

   

The term 𝑣̅𝑛
𝑠 is the vector of nodal normal velocity of scattered wave on the body boundary. 

Now, the term 𝐶 can be solved where 

For both 𝜉𝑒 and 𝜉𝑖,  

 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 + (𝐸0 + 𝐸1

𝑇 − 𝐸1)𝜉{𝑎(𝜉)},𝜉 − 𝐸2{𝑎(𝜉)} + 𝑀0𝑘
2𝜉2{𝑎(𝜉)} = 0 (K.3) 

 

Boundary conditions (K.1) and (K.2) can be considered as the flow potential, represented by  

 {𝑞(𝜉)} = 𝐸0𝜉{𝑎(𝜉)},𝜉 + 𝐸1
𝑇{𝑎(𝜉)} (K.4) 

   

Equation (K.3) is a homogeneous second order partial differential equation. (Song and Wolf, 

1998) suggested transformation of this into two first order ordinary differential equations. The 

order is now double the original equation. Equations (K.5 – K.7) show the derivations of 

transformation. Rearranging (K.4) by differentiating and multiply by 𝜉 we have, 

 𝐸0𝜉{𝑎(𝜉)},𝜉 = {𝑞(𝜉)} − 𝐸1
𝑇{𝑎(𝜉)} (K.5) 

   

 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 + 𝐸0𝜉{𝑎(𝜉)},𝜉 = 𝜉{𝑞(𝜉)},𝜉 − 𝐸1

𝑇𝜉{𝑎(𝜉)},𝜉 (K.6) 

   

 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 = 𝜉{𝑞(𝜉)},𝜉 − 𝐸1

𝑇𝜉{𝑎(𝜉)},𝜉 − 𝐸0𝜉{𝑎(𝜉)},𝜉 (K.7) 
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Substituting this into the general SBFE equation (K.3),  

 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 + (𝐸0 + 𝐸1

𝑇 − 𝐸1)𝜉{𝑎(𝜉)},𝜉 − 𝐸2{𝑎(𝜉)} + 𝑀0𝜉̅
2{𝑎(𝜉)} = 0 (K.8) 

 

 𝜉{𝑞(𝜉)},𝜉 − 𝐸1
𝑇𝜉{𝑎(𝜉)},𝜉 − 𝐸0𝜉{𝑎(𝜉)},𝜉 + (𝐸0 + 𝐸1

𝑇 − 𝐸1)𝜉{𝑎(𝜉)},𝜉

− 𝐸2{𝑎(𝜉)} + 𝑀0𝜉̅
2{𝑎(𝜉)} = 0 

(K.9) 

 

 𝜉{𝑞(𝜉)},𝜉 − 𝐸1𝜉{𝑎(𝜉)},𝜉 − 𝐸2{𝑎(𝜉)} + 𝑀0𝜉̅
2{𝑎(𝜉)} = 0 (K.10) 

 

Rearranging the boundary condition (K.4),   

 𝜉{𝑞(𝜉)} = 𝐸0𝜉{𝑎(𝜉)},𝜉 + 𝐸1
𝑇{𝑎(𝜉)} (K.11) 

 

 𝜉{𝑎(𝜉)},𝜉 = −𝐸0
−1𝐸1

𝑇{𝑎(𝜉)} + 𝐸0
−1{𝑞(𝜉)} (K.12) 

 

 𝜉{𝑞(𝜉)},𝜉 − 𝐸1(−𝐸0
−1𝐸1

𝑇{𝑎(𝜉)} + 𝐸0
−1{𝑞(𝜉)}) − 𝐸2{𝑎(𝜉)} + 𝑀0𝜉̅

2{𝑎(𝜉)}

= 0 
(K.13) 

 

 𝜉{𝑞(𝜉)},𝜉 + (−𝐸2
 + 𝐸1

 𝐸0
−1𝐸1

𝑇){𝑎(𝜉)} − 𝐸1
 𝐸0

−1{𝑞(𝜉)} + 𝑀0𝜉̅
2{𝑎(𝜉)} = 0 (K.14) 

 

Hence, this can be rewritten in the matrix form as  

 
𝜉 {
{𝑎(𝜉)},𝜉
{𝑞(𝜉)},𝜉

} = [
−𝐸0

−1𝐸1
𝑇 𝐸0

−1

𝐸2
 − 𝐸1

 𝐸0
−1𝐸1

𝑇 𝐸1
 𝐸0

−1] {
{𝑎(𝜉)}

{𝑞(𝜉)}
}

− 𝜉2𝑘2 [
0 0
𝑀0 0

] {
{𝑎(𝜉)}

{𝑞(𝜉)}
} 

 

(K.15) 

These two PDEs can be solved by introducing another dependent variable where  

 
{𝑋(𝜉̅)} = {

{𝑎(𝜉)}
{𝑞(𝜉)}

} (K.16) 
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The term {𝑎(𝜉)} represents the velocity potential function at the nodes and {𝑞(𝜉)} is the 

flow function at respective nodes. The coefficient matrix can be represented by a block matrix 

where  

 
[𝑍] = [

−𝐸0
−1𝐸1

𝑇 𝐸0
−1

𝐸2
 − 𝐸1

 𝐸0
−1𝐸1

𝑇 𝐸1
 𝐸0

−1] 
(K.17) 

And  

 
[𝑀] =

1

𝑏2
[
0 0

[𝑀0] 0
] (K.18) 

 

Hence, the PDE can be written in simplified form as  

 𝜁{̅𝑋(𝜁)̅},𝜁̅ = [𝑍]{𝑋(𝜁)̅} − 𝜁2̅[𝑀]{𝑋(𝜁)̅} (K.19) 

 

The solution of {𝑋(𝜁̅)} can be obtained by introducing a constant {𝑐}, where  

 {𝑋(𝜁̅)} = [𝑋(𝜁̅)]{𝑐} (K.20) 

 

Hence, the governing equation is written as  

 𝜁[̅𝑋(𝜁)̅],𝜁̅ = [𝑍][𝑋(𝜁)̅] − 𝜁2̅[𝑀][𝑋(𝜁)̅] (K.21) 
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Appendix L.  
 

2D unbounded domain solution 
 

 

The Scaled Boundary coordinates of the virtual circular cylinder can be expressed as  

 𝑥𝜂(𝜂) = 𝑏 ∙ 𝑐𝑜𝑠 (
𝜂

𝑏
) 

 

(L.1) 

 𝑦𝜂(𝜂) = 𝑏 ∙ 𝑠𝑖𝑛 (
𝜂

𝑏
) (L.2) 

 

𝑏 denotes the radius of the cylinder. Simplifying the equation by introducing 𝜁̅ = 𝑘 ∙ 𝑏 ∙ 𝜉, 

and is substituted into the original SBFE equation 

 𝐸0𝜉
2{𝑎(𝜉)},𝜉𝜉 = 𝜉{𝑞(𝜉)},𝜉 − 𝐸1

𝑇𝜉{𝑎(𝜉)},𝜉 − 𝐸0𝜉{𝑎(𝜉)},𝜉 

 

(L.3) 

 

This is so that the SBFE equation can be represented in the Bessel form of partial differential 

equation for ease of solution. The whole SBFE is also simplified by multiplying 𝐸0
−1, resulting 

in 

 𝜁2̅{𝑎(𝜁)̅},𝜁̅𝜁̅ + 𝜁{̅𝑎(𝜁)̅},𝜁̅ − 𝐸0
−1𝐸2{𝑎(𝜁)̅} + 𝜁

2̅{𝑎(𝜁)̅} = 0 (L.4) 

 

On the boundary Г∞ , the Sommerfeld radiation condition must be satisfied, where the 

evanescent modes of standing waves vanish and only the propagating wave remains. The 

solution can be found by taking 𝐻𝑟𝑗(𝜁)𝑇𝑗 as the base solution. This will automatically satisfy 

the boundary condition at infinity, this is illustrated in equation (L.5) (Abramowitz and Stegun, 

1964), when 𝑟 → ∞, the Hankel term will slowly diminish: 

 

𝐻𝑟𝑗
(1)(𝑘𝑟)~√

2

𝑘𝑟
𝑒𝑖(𝑘𝑟−

2𝑗−1
4

)𝜋
 (L.5) 
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Note that the Hankel function of first kind is selected rather than the second type, this is 

because the Hankel function of first kind is able to represent the wave propagating from a source 

into infinity. The vectors of the scattered wave velocity potential values 𝑎0(𝜁) can be expressed 

in the series form.  

 
𝑎0
𝑆(𝜁)̅ = ∑𝑐𝑗𝐻𝑟𝑗(𝜁)̅𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻(𝜁)̅𝐶 (L.6) 

 

Differentiation of the Hankel function can be expressed as  

 𝜁𝐻̅𝑟𝑗(𝜁)̅
′ = −𝜁𝐻̅𝑟𝑗+1(𝜁)̅ + 𝑟𝑗𝐻𝑟𝑗(𝜁)̅ (L.7) 

 

 𝜁2̅𝐻𝑟𝑗(𝜁)̅
′′ = −𝜁2̅𝐻𝑟𝑗(𝜁)̅ + 𝜁𝐻̅𝑟𝑗+1(𝜁)̅ − 𝑟𝑗𝐻𝑟𝑗(𝜁)̅ + 𝑟𝑗

2𝐻𝑟𝑗(𝜁)̅ (L.8) 

 

Substituting these differentiation into the base function 

 
𝑎0
𝑆(𝜁)̅ =∑𝑐𝑗𝐻𝑟𝑗(𝜁)̅𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜁)̅𝐶 (L.9) 

 

 {𝑎0
𝑆(𝜁)̅},𝜁̅ = 𝑇𝐻𝑟𝑗(𝜁)̅

′𝐶 (L.10) 

 

 {𝑎0
𝑆(𝜁)̅},𝜁̅𝜁̅ = 𝑇𝐻𝑟𝑗(𝜁)̅

′′𝐶 (L.11) 

 

Substituting all these into the original equation 

 𝜁2̅{𝑎(𝜁)̅},𝜁̅𝜁̅ + 𝜁{̅𝑎(𝜁)̅},𝜁̅ − 𝐸0
−1𝐸2{𝑎(𝜁)̅} + 𝜁

2̅{𝑎(𝜁)̅} = 0 (L.12) 

 

 𝜁2̅𝑇𝐻𝑟𝑗(𝜁)̅
′′𝐶 + 𝜁𝑇̅𝐻𝑟𝑗(𝜁)̅

′𝐶 − 𝐸0
−1𝐸2𝑇𝐻𝑟𝑗(𝜁)̅𝐶 + 𝜁

2̅𝑇𝐻𝑟𝑗(𝜁)̅𝐶 = 0 (L.13) 

 

 (𝜁2̅𝐻𝑟𝑗(𝜁)̅
′′ + 𝜁𝐻̅𝑟𝑗(𝜁)̅

′ − 𝐸0
−1𝐸2𝐻𝑟𝑗(𝜁)̅ + 𝜁

2̅𝐻𝑟𝑗(𝜁)̅) 𝑇𝐶 = 0 (L.14) 
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 (−𝜁2̅𝐻𝑟𝑗(𝜁)̅ + 𝜁𝐻̅𝑟𝑗+1(𝜁)̅ − 𝑟𝑗𝐻𝑟𝑗(𝜁)̅ + 𝑟𝑗
2𝐻𝑟𝑗(𝜁)̅ + −𝜁𝐻̅𝑟𝑗+1(𝜁)̅ + 𝑟𝑗𝐻𝑟𝑗(𝜁)̅

− 𝐸0
−1𝐸2𝐻𝑟𝑗(𝜁)̅ + 𝜁

2̅𝐻𝑟𝑗(𝜁)̅) 𝑇𝐶 = 0 

(L.15) 

 

 (𝑟𝑗
2𝐼 − 𝐸0

−1𝐸2)𝐻𝑟𝑗(𝜁)̅𝑇𝐶 = 0 (L.16) 

 

Rearranging, 

 (𝐸0
−1𝐸2 − 𝑟𝑗

2𝐼)𝑇𝑗 ∙ 𝑐𝑗𝐻𝑟𝑗(𝜁)̅ = 0 (L.17) 

 

𝑇𝑗 represents the vector of rank m, which corresponds to the number of nodes on the virtual 

cylinder. 𝑐𝑗 represents the coefficient up to rank m and 𝐻𝑟𝑗(𝜁)̅ is the Hankel function of the first 

kind, shown as a diagonal matrix. These can be written as  

𝑇 = [𝑇1, 𝑇2, … , 𝑇𝑚] 

𝐻𝑟𝑗(𝜁)̅ = 𝑑𝑖𝑎𝑔[𝐻𝑟1(𝜁)̅, 𝐻𝑟2(𝜁)̅, … , 𝐻𝑟𝑚(𝜁)̅] 

𝐶 = [𝐶1, 𝐶2, … , 𝐶𝑚]
𝑇 

 

The solution to the scattered velocity potential for the unbounded domain can be written as  

 
𝑎0
𝑆(𝜁)̅ =∑(𝐸0

−1𝐸2 − 𝑟𝑗
2𝐼)𝑇𝑗 ∙ 𝑐𝑗𝐻𝑟𝑗(𝜁)̅

𝑚

𝑗=1

= 0 (L.18) 

 

For this equation to be valid, at any arbitrary 𝑐𝑗𝐻𝑟𝑗(𝜁)̅, (𝐸0
−1𝐸2 − 𝑟𝑗

2𝐼)𝑇𝑗  must be zero. 

Hence, to solve the quadratic eigenproblem, introduce 𝜆𝑗  as the eigenvalues of 𝐸0
−1𝐸2 . 

Calculating for 𝑟𝑗 = √𝜆𝑗 . And 𝑇𝑗  are the eigenvectors of 𝐸0
−1𝐸2. Given the prescribed value 

obtained from the body boundary condition, equations (L.19 – L.21) can be solved.  

 
𝐸0𝜉𝑒{𝑎(𝜉𝑒)},𝜉 + 𝐸1

𝑇{𝑎(𝜉𝑒)}  = ∫ [𝑁(𝜂)]
𝑇[𝑁(𝜂)]𝑣̅𝑛

𝑠𝑑𝛤
 

𝛤

 

𝐸0𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + 𝐸1
𝑇{𝑎(𝜉𝑖)}  = ∫ [𝑁(𝜂)]

𝑇[𝑁(𝜂)]𝑣̅𝑛
𝑠𝑑𝛤

 

𝛤

 

(L.19) 
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𝐸0𝜁̅∑𝑐𝑗𝐻𝑟𝑗(𝜁)̅

′𝑇𝑗

𝑚

𝑗=1

 = ∫ [𝑁(𝜂)]𝑇[𝑁(𝜂)]𝑣̅𝑛
𝑠𝑑𝛤

 

𝛤

 (L.20) 

 

Note that for a circular shape, this following equation is valid 

 
𝐸0𝑏 = ∫ [𝑁(𝜂)]

𝑇[𝑁(𝜂)]𝑑𝜂
 

𝜂

 (L.21) 

 

Through substitution, 

 
𝐶 =

−𝐸0𝑏𝑣̅𝑛
𝑠

𝐸0𝑘𝑏𝐻𝑟𝑗(𝑘𝑏)
′𝑇

 (L.22) 

 

Let 𝐻𝑑
−1 =

1

𝐻𝑟𝑗
(𝑘𝑏)′

. And 𝑣̅𝑛  is the vector of nodal normal velocity of scattered wave on 

𝛤𝐶.The constant 𝐶 can be solved where 

 
𝐶 =

1

𝑘
𝐻𝑑
−1𝑇−1𝑣̅𝑛

𝑠 (L.23) 

 

Substituting equation (L.23) into equation (L.18), the solution is obtained where   

 
𝑎0
𝑆(𝜁)̅ = ∑𝑐𝑗𝐻𝑟𝑗(𝜁)̅𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻(𝜁)̅𝐶 =
1

𝑘
𝑇𝐻(𝜁)̅𝐻𝑑

−1𝑇−1𝑣̅𝑛
𝑠 (L.24) 

This solution is valid when solving the wave diffraction of a solid circular cylinder. However, 

when the substructuring is involved for cross sections of arbitrary shape, the constant C can 

only be found after assembly of the domains. 
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Appendix M. 
 

2D assembly of subdomains 
 

 

Superscript ∞ denotes the unbounded domain and superscript b denotes the bounded domain. 

Subscript I denotes the incident wave, subscript S denotes the scattered waves, subscript j 

denotes the given boundary number, subscript e denotes the exterior boundary, subscript i 

denotes the interior boundary.   

Assembly of all the subdomains is carried out as follows.  

(a) Assemble all bounded domains 

As in the definition of total velocity potential, the total nodal velocity potential is equal to 

the sum of incident nodal velocity potential and scattered nodal velocity potential. 

 {𝑎𝑇
𝑏(𝜉)} = {𝑎𝐼

𝑏(𝜉)} + {𝑎𝑆
𝑏(𝜉)} (M.1) 

   

As in the definition of total flow potential, the total flow potential is equal to the sum of 

incident flow potential and scattered flow potential.  

 {𝑞𝑇
𝑏(𝜉)} = {𝑞𝐼

𝑏(𝜉)} + {𝑞𝑆
𝑏(𝜉)} (M.2) 

 

At boundary of adjacent bounded subdomain, the nodal potential shares the same value, 

however, the nodal flow potential is equal in magnitude but opposite in direction. Superposition 

of the flow potential cancels each other out.  

 {𝑎𝑗
𝑏(𝜉)} = {𝑎𝑗+1

𝑏 (𝜉)} (M.3) 

 {𝑞𝑗
𝑏(𝜉)} = −{𝑞𝑗+1

𝑏 (𝜉)} (M.4) 

 

From the solution process, the nodal velocity potential and the nodal flow potential is related 

by  

 {𝑞𝑇
𝑏(𝜉)} = [𝐻𝑏(𝜉̅)] {𝑎𝑇

𝑏(𝜉)} (M.5) 
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 {𝑞𝑆
𝑏(𝜉)} = [𝐻𝑏(𝜉̅)] {𝑎𝑆

𝑏(𝜉)} (M.6) 

 

Substituting equation (M.1) and equation (M.2) into equation (M.4) yields, 

 {𝑞𝐼
𝑏(𝜉)} + {𝑞𝑆

𝑏(𝜉)} = [𝐻𝑏(𝜉̅)]{𝑎𝐼
𝑏(𝜉)} + [𝐻𝑏(𝜉̅)]{𝑎𝑆

𝑏(𝜉)} (M.7) 

 

(b) Assemble the bounded domains with the unbounded domain 

The exterior of the bounded domains are assembled with the interior boundary of the 

unbounded domain. At this adjacent subdomain, the nodal flow potential is again equal in 

magnitude but opposite in direction. Superposition of the flow potential cancels off each other. 

 {𝑎𝑒
𝑏(𝜉)} = {𝑎𝑖

∞(𝜉)} (M.8) 

 {𝑞𝑒
𝑏(𝜉)} = −{𝑞𝑖

∞(𝜉)} (M.97) 

 

From the solution process of the unbounded domain, the nodal velocity potential and the 

nodal flow potential is related by  

 {𝑞𝑆
∞(𝜉)} = [𝐻∞(𝜉̅)]{𝑎𝑆

∞(𝜉)} (M.10) 

 

On the intersection of the boundary of the bounded and unbounded domains, the scattered 

bounded nodal velocity potential is equal to the scattered unbounded nodal velocity potential. 

 [𝐻∞(𝜉̅)]{𝑎𝑆
∞(𝜉)} = [𝐻𝑏(𝜉̅)]{𝑎𝑆

𝑏(𝜉)} (M.11) 

 

Substituting,  

 {𝑞𝐼
𝑏(𝜉)} + [𝐻∞(𝜉̅)]{𝑎𝑆

∞(𝜉)} = [𝐻𝑏(𝜉̅)]{𝑎𝐼
𝑏(𝜉)} + [𝐻𝑏(𝜉̅)]{𝑎𝑆

𝑏(𝜉)} (M.12) 

 

Rearranging equation (M.12),  

 {𝑞𝐼
𝑏(𝜉)} − [𝐻𝑏(𝜉̅)]{𝑎𝐼

𝑏(𝜉)} = [𝐻𝑏(𝜉̅)]{𝑎𝑆
𝑏(𝜉)} − [𝐻∞(𝜉̅)]{𝑎𝑆

𝑏(𝜉)} 

 

(M.13) 

 

 {𝑞𝐼
𝑏(𝜉)} − [𝐻𝑏(𝜉̅)]{𝑎𝐼

𝑏(𝜉)} = ([𝐻𝑏(𝜉̅)] − [𝐻∞(𝜉̅)]){𝑎𝑆
𝑏(𝜉)} (M.14) 
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The only unknown here is {𝑎𝑆
𝑏(𝜉)}, hence, the solution (M.14) can be solved.  

{𝑎𝑆
𝑏(𝜉)} = ([𝐻𝑏(𝜉̅)] − [𝐻∞(𝜉̅)])

−1
{𝑞𝐼
𝑏(𝜉)} − ([𝐻𝑏(𝜉̅)] − [𝐻∞(𝜉̅)])

−1
[𝐻𝑏(𝜉̅)]{𝑎𝐼

𝑏(𝜉)} 

(M.15) 
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Appendix N. 
 

Analytical calculation for pile deflection 
 

 

The pile deflection in this thesis is calculated using Abaqus, where the structural analysis is 

carried out Finite Element analysis. This is validated and checked using the analytical results, 

by assuming that the monopile acts as a cantilevered beam. The maximum deflection and slope 

at free end from different loading can be calculated from equations (N.1 to N.4), using the 

method of superposition together with the cantilever beam theory. 

  

(a) Point load 

 
𝑥𝑚𝑎𝑥 = −

𝑃𝐿3

3𝐸𝐼
 

 

(N.1) 

 

 
𝜃𝑚𝑎𝑥 = −

𝑃𝐿2

2𝐸𝐼
 (N.2) 

 

(b) Evenly distributed load 

 
𝑥𝑚𝑎𝑥 = −

𝑤𝐿4

8𝐸𝐼
 (N.3) 

 

 
𝜃𝑚𝑎𝑥 = −

𝑤𝐿3

6𝐸𝐼
 (N.4) 

 

The whole monopile can be assumed to be a cantilever beam and can be divided into different 

sub beams to simplify the calculations. This is known as the method of superposition, solving 

the deflection at different sections and adding them together to gain the end product. 
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Appendix O. 
 

3D coordinate transformation 
 

 

Figure O.1 shows the three-dimensional coordinate separately  

 

Figure O.1 Three-dimensional coordinate transformation 

 

Similarly to the two-dimensional approach, the three-dimensional transformation of 

coordinate can be related using chain rule, where 

 𝜕

𝜕𝜉
=
𝜕𝑥̂

𝜕𝜉
∙
𝜕

𝜕𝑥̂
+
𝜕𝑦̂

𝜕𝜉
∙
𝜕

𝜕𝑦̂
+
𝜕𝑧̂

𝜕𝜉
∙
𝜕

𝜕𝑧̂
 (O.1) 

 

 𝜕

𝜕𝜂
=
𝜕𝑥̂

𝜕𝜂
∙
𝜕

𝜕𝑥̂
+
𝜕𝑦̂

𝜕𝜂
∙
𝜕

𝜕𝑦̂
+
𝜕𝑧̂

𝜕𝜂
∙
𝜕

𝜕𝑧̂
 (O.2) 

 

 𝜕

𝜕𝜁
=
𝜕𝑥̂

𝜕𝜁
∙
𝜕

𝜕𝑥̂
+
𝜕𝑦̂

𝜕𝜁
∙
𝜕

𝜕𝑦̂
+
𝜕𝑧̂

𝜕𝜁
∙
𝜕

𝜕𝑧̂
 (O.3) 

   

This can be represented in a matrix form, with the introduction of the Jacobian Matrix 

[𝐽(𝜉, 𝜂)] which helps to define the linear mapping of linear approximation, where  
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{
  
 

  
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

=

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦̂

𝜕𝜉

𝜕𝑧̂

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦̂

𝜕𝜂

𝜕𝑧̂

𝜕𝜂
𝜕𝑥

𝜕𝜁

𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜁]
 
 
 
 
 
 

{
  
 

  
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

 

 

(O.4) 

 

[𝐽(𝜉, 𝜂, 𝜁)] =

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦̂

𝜕𝜉

𝜕𝑧̂

𝜕𝜉
𝜕𝑥

𝜕𝜂

𝜕𝑦̂

𝜕𝜂

𝜕𝑧̂

𝜕𝜂
𝜕𝑥

𝜕𝜁

𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜁]
 
 
 
 
 
 

 

 

 

(O.5) 

The Jacobian also applies for the three-dimensional transformations. The adjoint method is 

used to determine the inverse of the function. In theory, 

 

The inverse of [𝐽(𝜉, 𝜂)] can be obtained using this formula  

 

For 𝐴 = [

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

], 

𝐴−1 =
1

det 𝐴
(𝑎𝑑𝑗𝑜𝑖𝑛𝑡 𝑜𝑓 𝐴) 

First find the cofactors of each element 

 

𝐴11 = |
𝑒 𝑓
ℎ 𝑖

| = 𝑒𝑖 − 𝑓ℎ 

 

𝐴12 = −|
𝑑 𝑓
𝑔 𝑖

| = 𝑓𝑔 − 𝑑𝑖 𝐴13 = |
𝑑 𝑒
𝑔 ℎ

| = 𝑑ℎ − 𝑒𝑔 

 

𝐴21 = − |
𝑏 𝑐
ℎ 𝑖

| = 𝑐ℎ − 𝑏𝑖 

 

𝐴22 = |
𝑎 𝑐
𝑔 𝑖| = 𝑎𝑖 − 𝑐𝑔 𝐴23 = − |

𝑎 𝑏
𝑔 ℎ

| = 𝑏𝑔 − 𝑎ℎ 

 

𝐴31 = |
𝑏 𝑐
𝑒 𝑓

| = 𝑏𝑓 − 𝑐𝑒 

 

𝐴32 = − |
𝑎 𝑐
𝑑 𝑓| = 𝑐𝑑 − 𝑎𝑓 𝐴33 = |

𝑎 𝑏
𝑑 𝑒

| = 𝑎𝑒 − 𝑏𝑑 

The cofactor matrix of A is  

[

𝑒𝑖 − 𝑓ℎ 𝑓𝑔− 𝑑𝑖 𝑑ℎ − 𝑒𝑔
𝑐ℎ − 𝑏𝑖 𝑎𝑖 − 𝑐𝑔 𝑏𝑔− 𝑎ℎ
𝑏𝑓− 𝑐𝑒 𝑐𝑑 − 𝑎𝑓 𝑎𝑒 − 𝑏𝑑

] 

The adjoint of A is the transpose of the cofactor matrix  

𝑎𝑑𝑗 𝐴 = [

𝑒𝑖 − 𝑓ℎ 𝑐ℎ − 𝑏𝑖 𝑏𝑓 − 𝑐𝑒
𝑓𝑔− 𝑑𝑖 𝑎𝑖 − 𝑐𝑔 𝑐𝑑 − 𝑎𝑓
𝑑ℎ− 𝑒𝑔 𝑏𝑔− 𝑎ℎ 𝑎𝑒 − 𝑏𝑑

] 
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The equation is inversed to represent the Cartesian coordinate form 

 

{
  
 

  
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

= [𝐽(𝜉, 𝜂, 𝜁)]
−1

{
  
 

  
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 

 

(O.6) 

 

where 

  

[𝐽̂(𝜉, 𝜂, 𝜁)]−1

=
1

det[𝐽̂(𝜉, 𝜂, 𝜁)]

[
 
 
 
 
 
 
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁

𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁

𝜕𝑥̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜂
−
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
𝜕𝑥̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑥̂

𝜕𝜁

𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁

𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜂]
 
 
 
 
 
 

=
1

|𝐽̂(𝜉, 𝜂, 𝜁)|

[
 
 
 
 
 
 
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁

𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁

𝜕𝑥̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜂
−
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
𝜕𝑥̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑥̂

𝜕𝜁

𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁

𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜂]
 
 
 
 
 
 

 

 

(O.7) 

 

The three-dimensional Jacobian can be written as  

 

 
|𝐽(𝜉, 𝜂, 𝜁)| = (

𝜕𝑦̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁
)(
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜁
)(
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜂
)

+ (
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
)(
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜂
−
𝜕𝑥

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
)(
𝜕𝑥̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑥̂

𝜕𝜁
)

+ (
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
)(
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑥

𝜕𝜁
−
𝜕𝑥

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
)(
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁
)

− (
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
)(
𝜕𝑥

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜁
)(
𝜕𝑥̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑥

𝜕𝜁
)

− (
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁
)(
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜂
−
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
)(
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁
)

− (
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
)(
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑥

𝜕𝜁
−
𝜕𝑥

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
)(
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜂
) 

 

(O.8) 

 

Hence, substituting this into the coordinate transformation leads to 
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{
  
 

  
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

=
1

|𝐽(𝜉, 𝜂, 𝜁)|

[
 
 
 
 
 
 
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁

𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
𝜕𝑧̂

𝜕𝜂
.
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁

𝜕𝑥

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜂
−
𝜕𝑥

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜂
𝜕𝑥

𝜕𝜂
.
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑥

𝜕𝜁

𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜁

𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥

𝜕𝜂]
 
 
 
 
 
 

{
  
 

  
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 

(O.9) 

 

 

The terms can be substituted by the following equations 

 𝑥̂(𝜉, 𝜂, 𝜁) = 𝜉𝑥𝑏(𝜂, 𝜁) + 𝑥0 = 𝜉[𝑁(𝜂, 𝜁)]{𝑥} + x0 

𝑦̂(𝜉, 𝜂, 𝜁) = 𝜉𝑦𝑏(𝜂, 𝜁) + 𝑦0 = 𝜉[𝑁(𝜂, 𝜁)]{𝑦} + y0 

𝑧̂(𝜉, 𝜂, 𝜁) = 𝑧𝑏(𝜂, 𝜁) + 𝑧0 = [𝑁(𝜂, 𝜁)]{𝑧} + z0 

 

𝑥̂,𝜉 = 𝑥𝑏(𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑥} 

𝑥̂,𝜂= 𝜉𝑥𝑏(𝜂, 𝜁),𝜂= 𝜉[𝑁(𝜂, 𝜁)],𝜂 {𝑥} 

𝑥̂,𝜁 = 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 = 𝜉[𝑁(𝜂, 𝜁)],𝜁 {𝑥} 

 

𝑦̂,𝜉 = 𝑦𝑏(𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑦} 

𝑦̂,𝜂= 𝜉𝑦𝑏(𝜂, 𝜁),𝜂= 𝜉[𝑁(𝜂, 𝜁)],𝜂 {𝑦} 

𝑦̂,𝜁 = 𝜉𝑦𝑏(𝜂, 𝜁),𝜁 = 𝜉[𝑁(𝜂, 𝜁)],𝜁 {𝑦} 

 

𝑧̂,𝜉 = 0 

𝑧̂,𝜂 = 𝑧𝑏(𝜂, 𝜁),𝜂= [𝑁(𝜂, 𝜁)],𝜂 {𝑧} 

𝑧̂,𝜁 = 𝑧𝑏(𝜂, 𝜁),𝜁 = [𝑁(𝜂, 𝜁)],𝜁 {𝑧} 

 

(O.10) 

 

From the original text in Chapter 3, it is shown that the following relationships are valid 

𝑥̂,𝜁 = 0          ;       𝑦̂,𝜁 = 0        ;           𝑧̂,𝜂= 0     ;            𝑧̂,𝜉 = 0 

Substituting these into the Jacobian 
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[𝐽(𝜉, 𝜂, 𝜁)] =

[
 
 
 
 
 
 
𝜕𝑥

𝜕𝜉

𝜕𝑦̂

𝜕𝜉
0

𝜕𝑥

𝜕𝜂

𝜕𝑦̂

𝜕𝜂
0

0 0
𝜕𝑧̂

𝜕𝜁]
 
 
 
 
 
 

 (O.11) 

 

The determinant is written as  

 
|𝐽(𝜉, 𝜂, 𝜁)| =

𝜕𝑧̂

𝜕𝜁
(
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜂
) 

 

|𝐽(𝜉, 𝜂, 𝜁)| = 𝑧𝑏(𝜂, 𝜁),𝜁 (𝑥𝑏(𝜂, 𝜁). 𝜉𝑦𝑏(𝜂, 𝜁),𝜂− 𝑦𝑏(𝜂, 𝜁). 𝜉𝑥𝑏(𝜂, 𝜁),𝜂 ) 

 

|𝐽(𝜉, 𝜂, 𝜁)| = 𝜉𝑧𝑏(𝜂, 𝜁),𝜁 (𝑥𝑏(𝜂, 𝜁). 𝑦𝑏(𝜂, 𝜁),𝜂− 𝑦𝑏(𝜂, 𝜁). 𝑥𝑏(𝜂, 𝜁),𝜂 ) 

(O.12) 

 

The inverse of the Jacobian can be written as  

 

[𝐽̂(𝜉, 𝜂, 𝜁)]−1 =
1

|𝐽̂(𝜉, 𝜂, 𝜁)|

[
 
 
 
 
 
 
𝜕𝑦̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
0

−
𝜕𝑥̂

𝜕𝜂
.
𝜕𝑧̂

𝜕𝜁

𝜕𝑥̂

𝜕𝜉
.
𝜕𝑧̂

𝜕𝜁
0

0 0
𝜕𝑥̂

𝜕𝜉
.
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
.
𝜕𝑥̂

𝜕𝜂]
 
 
 
 
 
 

=
1

|𝐽̂(𝜉, 𝜂, 𝜁)|
[

𝜉𝑦𝑏(𝜂, 𝜁),𝜂 𝑧𝑏(𝜂, 𝜁),𝜁 −𝑦𝑏(𝜂, 𝜁)𝑧𝑏(𝜂, 𝜁),𝜁 0

−𝜉𝑥𝑏(𝜂, 𝜁),𝜂 𝑧𝑏(𝜂, 𝜁),𝜁 𝑥𝑏(𝜂, 𝜁)𝑧𝑏(𝜂, 𝜁),𝜁 0

0 0 𝜉𝑥𝑏(𝜂, 𝜁)𝑦𝑏(𝜂, 𝜁),𝜂− 𝜉𝑦𝑏(𝜂, 𝜁)𝑥𝑏(𝜂, 𝜁),𝜂

] 

 

(O.13) 

 

By substitution and bringing out the 𝜉 function, 

 

{
  
 

  
 
𝜕

𝜕𝑥̂
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

=
1

|𝐽(𝜉, 𝜂, 𝜁)|

[
 
 
 
𝜉𝑦𝑏(𝜂, 𝜁),𝜂 𝑧𝑏(𝜂, 𝜁),𝜁 −𝑦𝑏(𝜂, 𝜁)𝑧𝑏(𝜂, 𝜁),𝜁 0

−𝜉𝑥𝑏(𝜂, 𝜁),𝜂 𝑧𝑏(𝜂, 𝜁),𝜁 𝑥𝑏(𝜂, 𝜁)𝑧𝑏(𝜂, 𝜁),𝜁 0

0 0 𝜉𝑥𝑏(𝜂, 𝜁)𝑦𝑏(𝜂, 𝜁),𝜂− 𝜉𝑦𝑏
(𝜂, 𝜁)𝑥𝑏(𝜂, 𝜁),𝜂]

 
 
 

{
  
 

  
 

1

𝜉 

𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 

 

(O.14) 

 

 



Appendix P– 3D shape function 
  

179  
 

Appendix P. 
 

3D shape function 
 

 

The shape function is introduced as in the FEM, in order to transform the system into a local 

system representation. It is also known as the interpolation function. The approximation is 

executed by using a selected set of shape functions that is appropriate, depending on the 

accuracy and the geometry that needs to be defined. According the BEM, the spatial dimension 

is reduced by one and the approximate function can be written using the nodal values with an 

eight noded surface shape function. 

The approximate solution of 𝜙 from the derived general equation using the Green’s identity 

function can be evaluated using the surface shape function. Every element can be represented 

by eight nodes, and the quadratic local element shape function can be graphically represented 

by  

 

Figure P.1 Eight noded shape function 
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𝑁1 =

1

4
(1 − 𝜂)(1 − 𝜁) −

1

2
(𝑁8 +𝑁5) 

𝑁2 = 
1

4
(1 + 𝜂)(1 − 𝜁) −

1

2
(𝑁5 +𝑁6) 

𝑁3 = 
1

4
(1 + 𝜂)(1 + 𝜁) −

1

2
(𝑁6 +𝑁7) 

𝑁4 = 
1

4
(1 − 𝜂)(1 + 𝜁) −

1

2
(𝑁7 +𝑁8) 

𝑁5 = 
1

2
(1 − 𝜂2)(1 − 𝜁) 

𝑁6 = 
1

2
(1 + 𝜂)(1 − 𝜁2) 

𝑁7 = 
1

2
(1 − 𝜂2)(1 + 𝜁) 

𝑁8 = 
1

2
(1 − 𝜂)(1 − 𝜁2) 

 

(P.1) 

The approximated function is obtained with the sum of the shape functions [𝑁(𝜂, 𝜁)] 

weighted by the radial nodal values {𝑎(𝜉)} as in equation (P.1). The shape function can be 

tested for validity by substituting the value of 𝜂 and 𝜁 into each nodal point: 

 

Table P.1 Validation of three-dimensional shape function 

η ζ 𝑵𝟏 𝑵𝟐 𝑵𝟑 𝑵𝟒 𝑵𝟓 𝑵𝟔 𝑵𝟕 𝑵𝟖 

-1 -1 1        

1 -1  1       

1 1   1      

-1 1    1     

0 -1     1    

1 0      1   

0 1       1  

-1 1        1 

 

The approximate velocity potential is written as  

  

𝜙𝐴(𝜉, 𝜂, 𝜁) = [𝑁(𝜂, 𝜁)1]{𝑎(𝜉)1} + [𝑁(𝜂, 𝜁)2]{𝑎(𝜉)2} + [𝑁(𝜂, 𝜁)3]{𝑎(𝜉)3}
+ [𝑁(𝜂, 𝜁)4]{𝑎(𝜉)4} + [𝑁(𝜂, 𝜁)5]{𝑎(𝜉)5}
+ [𝑁(𝜂, 𝜁)6]{𝑎(𝜉)6} + [𝑁(𝜂, 𝜁)7]{𝑎(𝜉)7}
+ [𝑁(𝜂, 𝜁)8]{𝑎(𝜉)8} 

 

(P.2) 
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And can be simplified as  

 

𝜙𝐴(𝜉, 𝜂, 𝜁) =∑[𝑁(𝜂, 𝜁)]𝑖

8

𝑖=1

{𝑎(𝜉)}𝑖 

 

(P.3) 

Applying the general polynomial, the approximate solution can be written as   

 𝜙𝐴(𝜉, 𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑎(𝜉)} 
 

(P.4) 

where  

 [𝑁(𝜂)]

= [𝑁1(𝜂, 𝜁)  𝑁2(𝜂, 𝜁)  𝑁3(𝜂, 𝜁)  𝑁4(𝜂, 𝜁)  𝑁5(𝜂, 𝜁)  𝑁6(𝜂, 𝜁)  𝑁7(𝜂, 𝜁)  𝑁8(𝜂, 𝜁)] 
(P.5) 

 

And  

 {𝑎(𝜉)} = {𝑎1(𝜉)  𝑎2(𝜉)  𝑎3(𝜉)  𝑎4(𝜉)  𝑎5(𝜉)  𝑎6(𝜉)  𝑎7(𝜉)  𝑎8(𝜉)}
𝑇 (P.6) 

 

In the same manner, the weighted function can be written as  

 𝑤𝐴(𝜉, 𝜂, 𝜁) = [𝑁(𝜂, 𝜁)]{𝑤(𝜉)} = {𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇 (P.7) 
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Appendix Q. 
 

3D weighted residual 
 

 

The governing equation for the three-dimensional case study is the Laplace equation.  

 𝛻2𝜙(𝑥, 𝑦, 𝑧) = 0 (Q.1) 

 

To solve this, the residual function can be written as  

 𝛻2𝜙(𝑥, 𝑦, 𝑧) = 𝑅(𝑥, 𝑦, 𝑧) (Q.2) 

 

The weighted residual method can be used to solve this second order ordinary differential 

equation. An approximate solution could be used to calculate the solution, where the residual 

error can be minimised by multiplying a weighting function and integrating over the whole 

domain.    

 
∫∫∫𝑅(𝑥, 𝑦, 𝑧)

 

Ω

. 𝑤(𝑥, 𝑦, 𝑧) 𝑑𝑥𝑑𝑦𝑑𝑧 = 0 (Q.3) 

 

For equation (Q.2) to be valid at all times, the residual 𝑅(𝑥, 𝑦, 𝑧) must approach zero. This 

is done by following the procedures and steps in (Wolf, 2003). For simplicity, the differential 

equations is written as,  

 𝜕𝜙

𝜕𝑥
= 𝜙,𝑥  ;  

𝜕𝜙

𝜕𝑦
= 𝜙,𝑦  ;

𝜕𝜙

𝜕𝑧
= 𝜙,𝑧  ;  

𝜕2𝜙

𝜕𝑥2
= 𝜙,𝑥𝑥  ;  

𝜕2𝜙

𝜕𝑦2
= 𝜙,𝑦𝑦  ;  

𝜕2𝜙

𝜕𝑧2

= 𝜙,𝑧𝑧  ;  
𝜕𝜙

𝜕𝑛
= 𝜙,𝑛 ; 

𝜕𝑤

𝜕𝑥
= 𝑤,𝑥  ;  

𝜕𝑤

𝜕𝑦
= 𝑤,𝑦  ;

𝜕𝑤

𝜕𝑧
= 𝑤,𝑧  ;  

𝜕2𝑤

𝜕𝑥2
= 𝑤,𝑥𝑥  ;  

𝜕2𝑤

𝜕𝑦2
= 𝑤,𝑦𝑦 ;  

𝜕2𝑤

𝜕𝑧2

= 𝑤,𝑧𝑧 

(Q.4) 
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The whole three-dimensional domain is represented in the three integrals for Ω, while the 

surface boundary is represented as double integrals represented by 𝛤. Substituting equation 

(Q.2) into equation (Q.3), the weighted residual function is written as  

 
∫∫∫𝑤(∇2𝜙)

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

 

(Q.5) 

The following few steps show the mathematical derivations to derive the general equation 

in the weighted residual form. Using integration by parts, the governing equation can be further 

derived,  

 
∫∫∫𝑤(∇2𝜙)

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 = 0 (Q.6) 

 

 
∫∫∫𝜙,𝑥𝑥𝑤

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝜙,𝑦𝑦𝑤
 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝜙,𝑧𝑧𝑤
 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

= 0 

(Q.7) 

 

 
∫∫∫(𝑤 𝜙,𝑥 ),𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 − ∫∫∫𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

+ ∫∫∫(𝑤 𝜙,𝑦 ),𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 −∫∫∫𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

+ ∫∫∫(𝑤 𝜙,𝑧 ),𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 − ∫∫∫𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

(Q.8) 

 

According to the Green’s identity and divergence theorem, the volume in the three-

dimensional space has piecewise smooth surface boundary 𝛤 as illustrated in Figure Q.1. 

 
∫∫∫(∇. 𝐹)

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 =∯(𝐹. 𝑛)
 

𝛤

𝑑𝛤 (Q.9) 
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Figure Q.1 Divergence theorem (Arfken, 1985) 

 

By integrating the boundary in an anticlockwise direction, the whole domain is integrated.  

 
∯𝜙,𝑛𝑤 𝑑𝛤

 

𝛤

−∫∫∫𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 − ∫∫∫𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

− ∫∫∫𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 = 0 

 

(Q.10) 

Rearranging the equation and bringing it to the other side yields,  

 
∫∫∫𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

−∯𝜙,𝑛𝑤 𝑑𝛤
 

𝛤

= 0 

(Q.11) 

 

All the boundary conditions in the case study as presented in Chapter 3 are included, 

a. Free surface boundary condition at 𝑧 = 0 on 𝛤𝑓 

 𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑧
=
𝜔2

𝑔
𝜙(𝑥, 𝑦, 𝑧) ; 𝜙,𝑛= 𝑘2𝜙(𝑥, 𝑦, 𝑧) (Q.12) 

 

b. Bottom seabed boundary condition at 𝑧 = −ℎ on 𝛤𝑧 

 𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑧
= 0 ; 𝜙,𝑛= 0 (Q.13) 

 

c. Body boundary condition on 𝛤𝑏 

 

 𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑛
= 𝑣𝑛̅̅ ̅ ; 𝜙,𝑛= 𝑣̅𝑛 (Q.14) 

 

d. Sommerfeld’s boundary condition at 𝑥 = ±∞ on 𝛤∞ 
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lim
𝑟→∞

𝑟 (
𝜕𝜙(𝑥, 𝑦, 𝑧)

𝜕𝑟
− 𝑖𝑘𝜙(𝑥, 𝑦, 𝑧)) = 0 (Q.15) 

 

The boundary conditions are substituted into the residual equation (Q.11), 

 
∫∫∫𝑤,𝑥 𝜙,𝑥

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝑤,𝑦 𝜙,𝑦

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 + ∫∫∫𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧

−∯ 𝑘2𝜙𝑤 𝑑𝛤𝑓

 

𝛤𝑓

−∯ 0 𝑤 𝑑𝛤𝑧

 

𝛤𝑧

−∯ 𝑣̅𝑛𝑤 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(Q.16) 

The first three parts that integrates the volume are combined and expressed as 

 
∫∫∫𝑤,𝑥 𝜙,𝑥+𝑤,𝑦 𝜙,𝑦+𝑤,𝑧 𝜙,𝑧

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 −∯ 𝑘2𝜙𝑤 𝑑𝛤𝑓

 

𝛤𝑓

−∯ 𝑣̅𝑛𝑤 𝑑𝛤𝑏

 

𝛤𝑏

= 0 
 

(Q.17) 

The gradients can be written as  

 

∇=

[
 
 
 
 
 
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧]
 
 
 
 
 
 

  , ∇𝑇= [
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
] (Q.18) 

 

And the first term in equation (Q.17) can be represented as 

 

∇𝑇𝑤∇𝜙 = [𝑤,𝑥 𝑤,𝑦 𝑤,𝑧] [

𝜙,𝑥
𝜙,𝑦
𝜙,𝑧

] = 𝑤,𝑥 𝜙,𝑥+ 𝑤,𝑦 𝜙,𝑦+𝑤,𝑧 𝜙,𝑧 
(Q.19) 

 

Hence, the weighted residual function is obtained as  

 
∫∫∫∇𝑇𝑤∇𝜙

 

Ω

𝑑𝑥𝑑𝑦𝑑𝑧 −∯ 𝑘2𝜙𝑤 𝑑𝛤𝑓

 

𝛤𝑓

−∯ 𝑣̅𝑛𝑤 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(Q.20) 
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Appendix R. 
 

3D divergence operator in the SBFEM 
 

 

From Appendix O, the new coordinate in any part of the domain can be defined as  

 

{
  
 

  
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

=
1

|𝐽|

[
 
 
 
 
 
 
𝜕𝑦̂

𝜕𝜂
∙
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜂
∙
𝜕𝑦̂

𝜕𝜁

𝜕𝑧̂

𝜕𝜂
∙
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥

𝜕𝜂
∙
𝜕𝑧̂

𝜕𝜁

𝜕𝑥

𝜕𝜂
∙
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜂
∙
𝜕𝑥

𝜕𝜁
𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜁

𝜕𝑥̂

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑥

𝜕𝜁

𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑥

𝜕𝜁
−
𝜕𝑥

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜁
𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜂
−
𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜂

𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑥

𝜕𝜂
−
𝜕𝑥

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜂

𝜕𝑥

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑥

𝜕𝜂]
 
 
 
 
 
 

{
  
 

  
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 

 

(R.1) 

 

All these simplifications that are used are in-line with the previous work so that a consistent 

methodology development can be achieved. The divergence operator is represented as  

 
∇=

𝜕

𝜕𝑥̂
+
𝜕

𝜕𝑦̂
+
𝜕

𝜕𝑧̂

=
1

|𝐽|
((
𝜕𝑦̂

𝜕𝜂
∙
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜂
∙
𝜕𝑦̂

𝜕𝜁
)
𝜕

𝜕𝜉
+ (

𝜕𝑧̂

𝜕𝜂
∙
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜂
∙
𝜕𝑧̂

𝜕𝜁
)
𝜕

𝜕𝜂

+ (
𝜕𝑥̂

𝜕𝜂
∙
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜂
∙
𝜕𝑥̂

𝜕𝜁
)
𝜕

𝜕𝜁
)

+
1

|𝐽|
((
𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜁
−
𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜁
)
𝜕

𝜕𝜉
+ (

𝜕𝑥̂

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜁
−
𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑥̂

𝜕𝜁
)
𝜕

𝜕𝜂

+ (
𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑥̂

𝜕𝜁
−
𝜕𝑥̂

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜁
)
𝜕

𝜕𝜁
)

+
1

|𝐽|
((
𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜂
−
𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜂
)
𝜕

𝜕𝜉
+ (

𝜕𝑧̂

𝜕𝜉
∙
𝜕𝑥̂

𝜕𝜂
−
𝜕𝑥̂

𝜕𝜉
∙
𝜕𝑧̂

𝜕𝜂
)
𝜕

𝜕𝜂

+ (
𝜕𝑥̂

𝜕𝜉
∙
𝜕𝑦̂

𝜕𝜂
−
𝜕𝑦̂

𝜕𝜉
∙
𝜕𝑥̂

𝜕𝜂
)
𝜕

𝜕𝜁
) 

 

(R.2) 

The 𝜉  represents the radial direction and is not discretised, only the 𝜂  circumferential 

direction is discretised. Hence, only the boundary is transformed and the coordinates on the 

boundary are represented by (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏). Therefore, the scaling equation can be represented as  

 𝑥 = 𝑥0 + 𝜉𝑥𝑏(𝜂, 𝜁)  ; 𝑦̂ = 𝑦0 + 𝜉𝑦𝑏(𝜂, 𝜁) ; 𝑧̂ = 𝑧0 + 𝑧𝑏(𝜂, 𝜁) (R.3) 
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Hence, the derivatives are expressed as 

 𝜕𝑥̂(𝜂, 𝜁)

𝜕𝜂
= 𝜉𝑥𝑏(𝜂, 𝜁),𝜂  ;  

𝜕𝑦̂(𝜂, 𝜁)

𝜕𝜂
= 𝜉𝑦

𝑏
(𝜂, 𝜁),𝜂  ;  

𝜕𝑧̂(𝜂, 𝜁)

𝜕𝜂
= 𝑧𝑏(𝜂, 𝜁),𝜂 

 
𝜕𝑥̂(𝜂, 𝜁)

𝜕𝜉
= 𝑥𝑏(𝜂, 𝜁)   ;  

𝜕𝑦̂(𝜂, 𝜁)

𝜕𝜉
= 𝑦

𝑏
(𝜂, 𝜁)     ;  

𝜕𝑧̂(𝜂, 𝜁)

𝜕𝜉
= 0 

 
𝜕𝑥̂(𝜂, 𝜁)

𝜕𝜁
= 𝜉𝑥𝑏(𝜂, 𝜁),𝜁  ;  

𝜕𝑦̂(𝜂, 𝜁)

𝜕𝜁
= 𝜉𝑦

𝑏
(𝜂, 𝜁),𝜁  ;  

𝜕𝑧̂(𝜂, 𝜁)

𝜕𝜁
= 𝑧𝑏(𝜂, 𝜁),𝜁 

(R.4) 

  

Substituting these simplification into equation (R.1) and the Jacobian, the following is 

obtained 

 

{
  
 

  
 
𝜕

𝜕𝑥̂
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

=
1

|𝐽|
[

𝜉𝑦𝑏(𝜂, 𝜁),𝜂  . 𝑧𝑏(𝜂, 𝜁),𝜁− 𝑧𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑦𝑏(𝜂, 𝜁),𝜁 𝑧𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑥𝑏(𝜂, 𝜁),𝜁− 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 . 𝑧𝑏(𝜂, 𝜁),𝜁 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 . 𝜉𝑦𝑏(𝜂, 𝜁),𝜁− 𝜉𝑦𝑏(𝜂, 𝜁),𝜂  . 𝜉𝑥𝑏(𝜂, 𝜁),𝜁
0. 𝜉𝑦𝑏(𝜂, 𝜁),𝜁− 𝑦𝑏(𝜂, 𝜁) . 𝑧𝑏(𝜂, 𝜁),𝜁 𝑥𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜁− 0. 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 𝑦𝑏(𝜂, 𝜁). 𝜉𝑥𝑏(𝜂, 𝜁),𝜁− 𝑥𝑏(𝜂, 𝜁). 𝜉𝑦𝑏(𝜂, 𝜁),𝜁
𝑦𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜂− 0. 𝜉𝑦𝑏(𝜂, 𝜁),𝜂 0. 𝜉𝑥𝑏(𝜂, 𝜁),𝜁− 𝑥𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜂 𝑥𝑏(𝜂, 𝜁). 𝜉𝑦𝑏(𝜂, 𝜁),𝜂 − 𝑦𝑏(𝜂, 𝜁). 𝜉𝑥𝑏(𝜂, 𝜁),𝜁

]

{
  
 

  
 
𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 

 

(R.5) 

  
  

where 

 |𝐽| = (𝜉𝑦𝑏(𝜂, 𝜁),𝜂 . 𝑧𝑏(𝜂, 𝜁),𝜁− 𝑧𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑦𝑏(𝜂, 𝜁),𝜁 )(𝑥𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜁
− 0. 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 )(𝑥𝑏(𝜂, 𝜁). 𝜉𝑦𝑏(𝜂, 𝜁),𝜂− 𝑦𝑏(𝜂, 𝜁). 𝜉𝑥𝑏(𝜂, 𝜁),𝜂 )

+ (𝑧𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑥𝑏(𝜂, 𝜁),𝜁
− 𝜉𝑥𝑏(𝜂, 𝜁),𝜂 . 𝑧𝑏(𝜂, 𝜁),𝜁 )(𝑦𝑏(𝜂, 𝜁). 𝜉𝑥𝑏(𝜂, 𝜁),𝜁
− 𝑥𝑏(𝜂, 𝜁). 𝜉𝑦𝑏(𝜂, 𝜁),𝜁 )(𝑦𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜂− 0. 𝜉𝑦𝑏(𝜂, 𝜁),𝜂 )

+ (𝜉𝑥𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑦𝑏(𝜂, 𝜁),𝜁
− 𝜉𝑦𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 )(0. 𝜉𝑦𝑏(𝜂, 𝜁),𝜁
− 𝑦𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜁 )(0. 𝜉𝑥𝑏(𝜂, 𝜁),𝜂− 𝑥𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜂 )

− (𝑧𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑥𝑏(𝜂, 𝜁),𝜁− 𝜉𝑥𝑏(𝜂, 𝜁),𝜂 . 𝑧𝑏(𝜂, 𝜁),𝜁 )(0. 𝜉𝑦𝑏(𝜂, 𝜁),𝜁
− 𝑦𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜁 )(𝑥𝑏(𝜂, 𝜁). 𝜉𝑦𝑏(𝜂, 𝜁),𝜂
− 𝑦𝑏(𝜂, 𝜁). 𝜉𝑥𝑏(𝜂, 𝜁),𝜂 )

− (𝜉𝑦𝑏(𝜂, 𝜁),𝜂 . 𝑧𝑏(𝜂, 𝜁),𝜁
− 𝑧𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑦𝑏(𝜂, 𝜁),𝜁 )(𝑦𝑏(𝜂, 𝜁). 𝜉𝑥𝑏(𝜂, 𝜁),𝜁
− 𝑥𝑏(𝜂, 𝜁). 𝜉𝑦𝑏(𝜂, 𝜁),𝜁 )(0. 𝜉𝑥𝑏(𝜂, 𝜁),𝜂− 𝑥𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜂 )

− (𝜉𝑥𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑦𝑏(𝜂, 𝜁),𝜁
− 𝜉𝑦𝑏(𝜂, 𝜁),𝜂 . 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 )(𝑥𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜁
− 0. 𝜉𝑥𝑏(𝜂, 𝜁),𝜁 )(𝑦𝑏(𝜂, 𝜁). 𝑧𝑏(𝜂, 𝜁),𝜂− 0. 𝜉𝑦𝑏(𝜂, 𝜁),𝜂 ) 

 

(R.6) 

Hence,  
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{
  
 

  
 
𝜕

𝜕𝑥
𝜕

𝜕𝑦̂
𝜕

𝜕𝑧̂}
  
 

  
 

=
1

|𝐽|
[

𝑦,𝜂∙ 𝑧,𝜁 −𝑦 ∙ 𝑧,𝜁 0

−𝑥,𝜂∙ 𝑧,𝜁 𝑥 ∙ 𝑧,𝜁 0

0 0 𝑥 ∙ 𝑦,𝜂− 𝑦 ∙ 𝑥,𝜂

]

{
  
 

  
 

1

𝜉

𝜕

𝜕𝜉
𝜕

𝜕𝜂
𝜕

𝜕𝜁}
  
 

  
 

 (R.7) 

 

The divergence operator on the boundary can be simplified as,  

 
∇=

𝜕

𝜕𝑥̂
+
𝜕

𝜕𝑦̂
+
𝜕

𝜕𝑧̂

=
1

|𝐽|
(𝑦,

𝜂
. 𝑧,𝜁− 𝑦. 𝑧,𝜁 )

𝜕

𝜕𝜉
+
1

|𝐽|
(−𝑥,𝜂 . 𝑧,𝜁+ 𝑥. 𝑧,𝜁 )

1

𝜉

𝜕

𝜕𝜂

+
1

|𝐽|
(𝑥. 𝑦,

𝜂
− 𝑦. 𝑥,𝜂 )

𝜕

𝜕𝜁
 

 

(R.8) 

New variables are introduced to simplify the equation, where  

 
{𝑏1(𝜂)} =

1

|𝐽|
{

𝑦,𝜂∙ 𝑧,𝜁
−𝑥,𝜂∙ 𝑧,𝜁

0
}  ;  𝑏2(𝜂) =

1

|𝐽|
{

−𝑦 ∙ 𝑧,𝜁
𝑥 ∙ 𝑧,𝜁
0

} ; 𝑏3(𝜂) =
1

|𝐽|
{

0
0

𝑥. 𝑦,𝜂− 𝑦. 𝑥,𝜂
} (R.9) 

 

Hence, the divergence operator can be represented as  

 
∇= {𝑏1(𝜂)}

𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂)}

𝜕

𝜕𝜂
+ {𝑏3(𝜂)}

𝜕

𝜕𝜁
 (R.10) 
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Appendix S. 
 

3D SBFEM derivations 
 

 

Obtaining the general solution using the weighted residual function and the appropriate shape 

function, it can be defined in the scaled boundary form. The infinitesimal area is derived from 

the graphical representation and the divergence operator is used.  

Appendix E; 𝑑Ω = 𝑑𝑥𝑑𝑦𝑑𝑧 = |𝐽|. 𝑑𝜉. 𝜉𝑑𝜂. 𝑑𝜁 

Appendix P; ϕ𝐴(𝜉, 𝜂) = [𝑁(𝜂, 𝜁)]{𝑎(𝜉)} ; 𝑤𝐴(𝜉, 𝜂) = {𝑤(𝜉)}
𝑇[𝑁(𝜂, 𝜁)]𝑇 

 Appendix Q; ∫∫∫ ∇𝑇𝑤∇𝜙
 

Ω
𝑑𝑥𝑑𝑦𝑑𝑧 −∯ 𝑘2𝜙𝑤 𝑑𝛤𝑓

 

𝛤𝑓
−∯ 𝒗𝒏̅̅̅̅ 𝑤 𝑑𝛤𝑏

 

𝛤𝑏
= 0 

Appendix R; ∇= {𝑏1(𝜂, 𝜁)}
𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂, 𝜁)}

𝜕

𝜕𝜂
+ {𝑏3(𝜂, 𝜁)}

𝜕

𝜕𝜁
 

The approximate velocity is given by 

 𝑣𝐴 = ∇ϕ𝐴 
 

(S.1) 

The variables in the velocity potential can be separated. Substituting this into equation (S.1), 

where  

 Φ(𝑥, 𝑦, 𝑧, 𝑡) = ϕ(𝑥, 𝑦, 𝑧)𝑒−𝑖ωt (S.2) 

 

 𝑣𝐴 = ∇ϕ(𝑥, 𝑦, 𝑧)𝑒
−𝑖ωt (S.3) 

 

Excluding the time term 𝑒−𝑖ωt , and substituting the previously derived parameters in 

Appendix E,P,Q and R yields, 

 𝑣𝐴 = ∇ϕ(𝑥, 𝑦, 𝑧) (S.4) 

 

 
𝑣𝐴 = (

𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
+
𝜕

𝜕𝑧
) ([𝑁(𝜂, 𝜁)]{𝑎(𝜉)}) (S.5) 
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𝑣𝐴 = ({𝑏1(𝜂, 𝜁)}

𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂, 𝜁)}

𝜕

𝜕𝜂
+ {𝑏3(𝜂, 𝜁)}

𝜕

𝜕𝜁
) ([𝑁(𝜂, 𝜁)]{𝑎(𝜉)}) (S.6) 

 

 
𝑣𝐴 = {𝑏1(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)]{𝑎(𝜉)}

𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)]{𝑎(𝜉)}

𝜕

𝜕𝜂

+ {𝑏3(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)]{𝑎(𝜉)}
𝜕

𝜕𝜁
 

(S.7) 

 

 
𝑣𝐴 = {𝑏1(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)]{𝑎(𝜉)},𝜉 +

1

𝜉
{𝑏2(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)],𝜂{𝑎(𝜉)}

+ {𝑏3(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)],𝜁{𝑎(𝜉)} 

(S.8) 

 

Introducing new variables to simplify further, where 

 [𝐵1(𝜂, 𝜁)] = {𝑏1(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)]  ;  

[𝐵2(𝜂, 𝜁)] = {𝑏2(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)],𝜂;  

[𝐵3(𝜂, 𝜁)] = {𝑏3(𝜂, 𝜁)}[𝑁(𝜂, 𝜁)],𝜁 

(S.9) 

 

Substituting the new variables, equation (S.2) can be rewritten as  

 𝑣𝐴 = ∇ϕ(𝑥, 𝑦, 𝑧)

= [𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉 +
1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)} + [𝐵3(𝜂, 𝜁)]{𝑎(𝜉)} 

 

(S.10) 

Substituting the divergence operator and the shape function into the general weighted 

function, the following is obtained.  

 
∇= {𝑏1(𝜂, 𝜁)}

𝜕

𝜕𝜉
+
1

𝜉
{𝑏2(𝜂, 𝜁)}

𝜕

𝜕𝜂
+ {𝑏3(𝜂, 𝜁)}

𝜕

𝜕𝜁
 (S.11) 

 

 
∫∫∫∇𝑇𝑤∇𝜙𝑑𝑥𝑑𝑦𝑑𝑧

 

Ω

−∯ 𝑤(𝑘2𝜙) 𝑑𝛤𝑓

 

𝛤𝑓

−∯ 𝑣𝑛̅̅ ̅𝑤 𝑑𝛤𝑏

 

𝛤𝑏

= 0 (S.12) 
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∫∫∫ ([𝐵1(𝜂, 𝜁)]{𝑤(𝜉)},𝜉 +

1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑤(𝜉)}

 

Ω

+ [𝐵3(𝜂, 𝜁)]{𝑤(𝜉)})
𝑇

([𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉

+
1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)} + [𝐵3(𝜂, 𝜁)]{𝑎(𝜉)}) 𝑑𝛺

−∯ ({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇)(𝑘2([𝑁(𝜂, 𝜁)]{𝑎(𝜉)})) 𝑑𝛤𝑓

 

𝛤𝑓

−∯ 𝒗̅𝒏({𝑤(𝜉)}
𝑇[𝑁(𝜂, 𝜁)]𝑇) 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

(S.13) 

 

The boundary 𝛤𝑓 denotes the free surface boundary, enclosed by the surface 𝜉 and 𝜂, which 

can be written as Γ𝜉𝜂. The boundary 𝛤𝑏 on the other hand denotes the body boundary, enclosed 

by the surface 𝜂 and 𝜁, which can be written as Γ𝜂𝜁. Introducing new infinitesimal area yields,   

  

∫∫∫ ([𝐵1(𝜂, 𝜁)]
𝑇{𝑤(𝜉)},𝜉

𝑇[𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉

 

Ω

+ [𝐵1(𝜂, 𝜁)]
𝑇{𝑤(𝜉)},𝜉

𝑇 1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)}

+ [𝐵1(𝜂, 𝜁)]
𝑇{𝑤(𝜉)},𝜉

𝑇[𝐵3(𝜂, 𝜁)]{𝑎(𝜉)}

+
1

𝜉
[𝐵2(𝜂, 𝜁)]

𝑇{𝑤(𝜉)}𝑇[𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉

+
1

𝜉
[𝐵2(𝜂, 𝜁)]

𝑇{𝑤(𝜉)}𝑇
1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)}

+
1

𝜉
[𝐵2(𝜂, 𝜁)]

𝑇{𝑤(𝜉)}𝑇[𝐵3(𝜂, 𝜁)]{𝑎(𝜉)}

+ [𝐵3(𝜂, 𝜁)]
𝑇{𝑤(𝜉)}𝑇[𝐵1(𝜂, 𝜁)]{𝑎(𝜉)},𝜉

+ [𝐵3(𝜂, 𝜁)]
𝑇{𝑤(𝜉)}𝑇

1

𝜉
[𝐵2(𝜂, 𝜁)]{𝑎(𝜉)}

+ [𝐵3(𝜂, 𝜁)]
𝑇{𝑤(𝜉)}𝑇[𝐵3(𝜂, 𝜁)]{𝑎(𝜉)}) |𝐽|𝜉𝑑𝜉𝑑𝜂𝑑𝜁

− ∫ ∫({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇)𝑘2([𝑁(𝜂, 𝜁)]{𝑎(𝜉)})𝜉|𝐽𝜉𝜂|𝑑𝜉𝑑𝜂
 

𝜉

 

𝜂

−∯ ({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛) 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

(S.14) 

 

On the boundary of the free surface boundary 𝛤𝑓, the value 𝜁 is always +1. Introducing the 

coefficient matrix to simplify the equation,  
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[𝐸0] = ∫ ∫[𝐵1(𝜂, 𝜁)]

𝑇[𝐵1(𝜂, 𝜁)]|𝐽|𝑑𝜂
 

𝜂

 

𝜁

𝑑𝜁 

[𝐸1] = ∫ ∫[𝐵2(𝜂, 𝜁)]
𝑇[𝐵1(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 

[𝐸2] = ∫ ∫[𝐵2(𝜂, 𝜁)]
𝑇[𝐵2(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 

[𝐸3] = ∫ ∫[𝐵1(𝜂, 𝜁)]
𝑇[𝐵3(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 

[𝐸4] = ∫ ∫[𝐵2(𝜂, 𝜁)]
𝑇[𝐵3(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 

[𝐸5] = ∫ ∫[𝐵3(𝜂, 𝜁)]
𝑇[𝐵3(𝜂, 𝜁)]|𝐽|𝑑𝜂

 

𝜂

 

𝜁

𝑑𝜁 

[𝑀0] = ∫([𝑁(𝜂,+1)]𝑇)([𝑁(𝜂,+1)])|𝐽𝜉𝜂|𝑑𝜂
 

𝜂

 

(S.15) 

 

Substituting the coefficient matrix into equation (S.4) yields, 

 
∫ ([𝐸0]{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)},𝜉 + [𝐸1]
𝑇{𝑤(𝜉)},𝜉

𝑇 1

𝜉
{𝑎(𝜉)}

 

𝜉

+ [𝐸3]{𝑤(𝜉)},𝜉
𝑇{𝑎(𝜉)} +

1

𝜉
[𝐸1]{𝑤(𝜉)}

𝑇{𝑎(𝜉)},𝜉

+
1

𝜉
[𝐸2]{𝑤(𝜉)}

𝑇
1

𝜉
{𝑎(𝜉)} +

1

𝜉
[𝐸4]{𝑤(𝜉)}

𝑇{𝑎(𝜉)}

+ [𝐸3]
𝑇{𝑤(𝜉)}𝑇{𝑎(𝜉)},𝜉 + [𝐸4]

𝑇{𝑤(𝜉)}𝑇
1

𝜉
{𝑎(𝜉)}

+ [𝐸5]{𝑤(𝜉)}
𝑇{𝑎(𝜉)}) |𝐽|𝜉𝑑𝜉 − ∫{𝑤(𝜉)}𝑇𝑘2𝜉[𝑀0]{𝑎(𝜉)}𝑑𝜉

 

𝜉

−∯ ({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛) 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(S.16) 

All terms containing {𝑤(𝜉)},𝜉 are integrated using integration by parts. Integrating the first 

term in equation (S.5),  

∫[𝐸0]{𝑤(𝜉)},𝜉
𝑇{𝑎(𝜉)},𝜉𝜉𝜕𝜉

 

𝜉

 

∫𝑢 𝑣 𝑤′ = 𝑢 𝑣 𝑤 − ∫  𝑢′𝑣 𝑤 − ∫𝑢 𝑣′ 𝑤 

Let ∶  u = 𝜉 ; 𝑣 = {𝑎(𝜉)},𝜉; 𝑤
′ = {𝑤(𝜉)},𝜉

𝑇
  

Hence ∶  𝑢′ = 1 ; 𝑣′ = {𝑎(𝜉)},𝜉𝜉 ; 𝑤 = {𝑤(𝜉)}𝑇 
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∫[𝐸0]{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)},𝜉𝜉𝜕𝜉
 

𝜉

= [𝐸0]𝜉{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒 −∫[𝐸0]{𝑎(𝜉)},𝜉{𝑤(𝜉)}

𝑇𝜕𝜉
 

𝜉

−∫[𝐸0]{𝑎(𝜉)},𝜉𝜉{𝑤(𝜉)}
𝑇𝜉𝜕𝜉

 

𝜉

 

 

(S.17) 

Integrating the second term, ∫ [𝐸1]
𝑇 1

𝜉
{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)}𝜉𝜕𝜉
 

𝜉
  

 

∫𝑢 𝑣′  = 𝑢 𝑣  − ∫  𝑢′𝑣  

Let ∶  u = {𝑎(𝜉)} ; 𝑣′ = {𝑤(𝜉)},𝜉
𝑇

 

Hence ∶  𝑢′ = {𝑎(𝜉)},𝜉 ; 𝑣 = {𝑤(𝜉)}𝑇 

 

 
∫[𝐸1]

𝑇{𝑤(𝜉)},𝜉
𝑇{𝑎(𝜉)}𝜕𝜉

 

𝜉

= [𝐸1]
𝑇{𝑎(𝜉)} {𝑤(𝜉)}𝑇|𝜉𝑖

𝜉𝑒 −∫[𝐸1]
𝑇{𝑎(𝜉)},𝜉{𝑤(𝜉)}

𝑇𝜕𝜉
 

𝜉

 

 

(S.18) 

Integrating the third term, ∫ [𝐸3]{𝑤(𝜉)},𝜉
𝑇{𝑎(𝜉)}𝜉𝜕𝜉

 

𝜉
 

∫𝑢 𝑣 𝑤′ = 𝑢 𝑣 𝑤 − ∫  𝑢′𝑣 𝑤 − ∫𝑢 𝑣′ 𝑤 

Let ∶  u = 𝜉 ; 𝑣 = {𝑎(𝜉)};𝑤′ = {𝑤(𝜉)},𝜉
𝑇
  

Hence ∶  𝑢′ = 1 ; 𝑣′ = {𝑎(𝜉)},𝜉 ; 𝑤 = {𝑤(𝜉)}𝑇 

 
∫[𝐸3]{𝑤(𝜉)},𝜉

𝑇{𝑎(𝜉)}𝜉𝜕𝜉
 

𝜉

= [𝐸3]𝜉{𝑎(𝜉)}{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒 −∫[𝐸3]{𝑎(𝜉)}{𝑤(𝜉)}

𝑇𝜕𝜉
 

𝜉

−∫[𝐸3]{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇𝜉𝜕𝜉

 

𝜉

 

 

(S.19) 

Substituting the integrated equations back to the original governing equation yields,  
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 [𝐸0]𝜉{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒 + [𝐸1]

𝑇{𝑎(𝜉)} {𝑤(𝜉)}𝑇|𝜉𝑖
𝜉𝑒

+ [𝐸3]𝜉{𝑎(𝜉)}{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒

+∫ (−[𝐸0]{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇 − [𝐸0]{𝑎(𝜉)},𝜉𝜉{𝑤(𝜉)}

𝑇𝜉
 

𝜉

− [𝐸1]
𝑇{𝑎(𝜉)},𝜉{𝑤(𝜉)}

𝑇 − [𝐸3]{𝑎(𝜉)}{𝑤(𝜉)}
𝑇

− 𝜉[𝐸3]{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇 + [𝐸1]{𝑤(𝜉)}

𝑇{𝑎(𝜉)},𝜉

+ [𝐸2]{𝑤(𝜉)}
𝑇
1

𝜉
{𝑎(𝜉)} + [𝐸4]{𝑤(𝜉)}

𝑇{𝑎(𝜉)}

+ 𝜉[𝐸3]
𝑇{𝑤(𝜉)}𝑇{𝑎(𝜉)},𝜉 + [𝐸4]

𝑇{𝑤(𝜉)}𝑇{𝑎(𝜉)}

+ 𝜉[𝐸5]{𝑤(𝜉)}
𝑇{𝑎(𝜉)}) 𝜕𝜉 − ∫{𝑤(𝜉)}𝑇𝑘2𝜉[𝑀0]{𝑎(𝜉)}𝑑𝜉

 

𝜉

−∯ ({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛) 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

 

(S.20) 

Simplifying equation (S.20), the following is obtained 

 [𝐸0]𝜉{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒 + [𝐸1]

𝑇{𝑎(𝜉)} {𝑤(𝜉)}𝑇|𝜉𝑖
𝜉𝑒

+ [𝐸3]𝜉{𝑎(𝜉)}{𝑤(𝜉)}
𝑇|𝜉𝑖
𝜉𝑒

+∫{𝑤(𝜉)}𝑇 (−[𝐸0]{𝑎(𝜉)},𝜉 − [𝐸0]{𝑎(𝜉)},𝜉𝜉𝜉
 

𝜉

− [𝐸1]
𝑇{𝑎(𝜉)},𝜉 − [𝐸3]{𝑎(𝜉)} − 𝜉[𝐸3]{𝑎(𝜉)},𝜉

+ [𝐸1]{𝑎(𝜉)},𝜉 + [𝐸2]
1

𝜉
{𝑎(𝜉)} + [𝐸4]{𝑎(𝜉)}

+ 𝜉[𝐸3]
𝑇{𝑎(𝜉)},𝜉 + [𝐸4]

𝑇{𝑎(𝜉)} + 𝜉[𝐸5]{𝑎(𝜉)}

− 𝑘2𝜉[𝑀0]{𝑎(𝜉)}) 𝜕𝜉 −∯ ({𝑤(𝜉)}𝑇[𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛) 𝑑𝛤𝑏

 

𝛤𝑏

= 0 

(S.21) 

Expanding all terms yields,  
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 [𝐸0]𝜉𝑒{𝑎(𝜉𝑒)},𝜉{𝑤(𝜉𝑒)}
𝑇 + [𝐸1]

𝑇{𝑎(𝜉𝑒)} {𝑤(𝜉𝑒)}
𝑇

+ [𝐸3]𝜉𝑒{𝑎(𝜉𝑒)}{𝑤(𝜉𝑒)}
𝑇 − [𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉{𝑤(𝜉𝑖)}

𝑇

− [𝐸1]
𝑇{𝑎(𝜉𝑖)} {𝑤(𝜉𝑖)}

𝑇 − [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)}{𝑤(𝜉𝑖)}
𝑇

− {𝑤(𝜉𝑒)}
𝑇∫ ∫([𝑁(𝜂, 𝜁)]𝑇)𝑣̅𝑛|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

− {𝑤(𝜉𝑖)}
𝑇∫ ∫([𝑁(𝜂, 𝜁)]𝑇)𝑣̅𝑛|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

+∫{𝑤(𝜉)}𝑇 (−[𝐸0]{𝑎(𝜉)},𝜉 − [𝐸0]{𝑎(𝜉)},𝜉𝜉𝜉
 

𝜉

− [𝐸1]
𝑇{𝑎(𝜉)},𝜉 − [𝐸3]{𝑎(𝜉)} − 𝜉[𝐸3]{𝑎(𝜉)},𝜉

+ [𝐸1]{𝑎(𝜉)},𝜉 + [𝐸2]
1

𝜉
{𝑎(𝜉)} + [𝐸4]{𝑎(𝜉)}

+ 𝜉[𝐸3]
𝑇{𝑎(𝜉)},𝜉 + [𝐸4]

𝑇{𝑎(𝜉)} + 𝜉[𝐸5]{𝑎(𝜉)}

− 𝑘2𝜉[𝑀0]{𝑎(𝜉)}) 𝜕𝜉 = 0 

 

(S.22) 

In order to satisfy all terms of weighted function in equation (S.8), the following equations 

have to be satisfied:  

 [𝐸0]𝜉𝑒{𝑎(𝜉𝑒)},𝜉{𝑤(𝜉𝑒)}
𝑇 + [𝐸1]

𝑇{𝑎(𝜉𝑒)} {𝑤(𝜉𝑒)}
𝑇

+ [𝐸3]𝜉𝑒{𝑎(𝜉𝑒)}{𝑤(𝜉𝑒)}
𝑇

− {𝑤(𝜉𝑒)}
𝑇∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]

𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

= 0 

(S.23) 

   

 −[𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉{𝑤(𝜉𝑖)}
𝑇 − [𝐸1]

𝑇{𝑎(𝜉𝑖)} {𝑤(𝜉𝑖)}
𝑇 − [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)}{𝑤(𝜉𝑖)}

𝑇

− {𝑤(𝜉𝑖)}
𝑇∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]

𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

= 0 

(S.24) 

 

 
∫{𝑤(𝜉)}𝑇 (−[𝐸0]{𝑎(𝜉)},𝜉 − [𝐸0]{𝑎(𝜉)},𝜉𝜉𝜉 − [𝐸1]

𝑇{𝑎(𝜉)},𝜉 − [𝐸3]{𝑎(𝜉)}
 

𝜉

− 𝜉[𝐸3]{𝑎(𝜉)},𝜉 + [𝐸1]{𝑎(𝜉)},𝜉 + [𝐸2]
1

𝜉
{𝑎(𝜉)} + [𝐸4]{𝑎(𝜉)}

+ 𝜉[𝐸3]
𝑇{𝑎(𝜉)},𝜉 + [𝐸4]

𝑇{𝑎(𝜉)} + 𝜉[𝐸5]{𝑎(𝜉)}

− 𝑘2𝜉[𝑀0]{𝑎(𝜉)}) 𝜕𝜉 = 0 

(S.25) 
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For any arbitrary weighted function, equation (S.25) must be satisfied, and simplified in 

equation (S.26)  

 [𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + [𝐸0]{𝑎(𝜉)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉)},𝜉 + [𝐸3]{𝑎(𝜉)}

+ 𝜉[𝐸3]{𝑎(𝜉)},𝜉 − [𝐸1]{𝑎(𝜉)},𝜉 − [𝐸2]
1

𝜉
{𝑎(𝜉)} − [𝐸4]{𝑎(𝜉)}

− 𝜉[𝐸3]
𝑇{𝑎(𝜉)},𝜉 − [𝐸4]

𝑇{𝑎(𝜉)} − 𝜉[𝐸5]{𝑎(𝜉)}

+ 𝑘2𝜉[𝑀0]{𝑎(𝜉)} = 0 

(S.26) 

 

 [𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + ([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2]
1

𝜉
+ [𝐸3] − [𝐸4] − [𝐸4]

𝑇 − 𝜉[𝐸5]

+ 𝑘2𝜉[𝑀0]) {𝑎(𝜉)} = 0 

 

(S.27) 

These following equations must be valid to set the residual function to zero:  

 [𝐸0]𝜉𝑒{𝑎(𝜉𝑒)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉𝑒)}  + [𝐸3]𝜉𝑒{𝑎(𝜉𝑒)}

− ∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]
𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

= 0 
(S.28) 

   

 −[𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉 − [𝐸1]
𝑇{𝑎(𝜉𝑖)}  − [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)}

− ∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]
𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

= 0 

(S.29) 

 

 [𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + ([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2]
1

𝜉
+ [𝐸3] − [𝐸4] − [𝐸4]

𝑇 − 𝜉[𝐸5]

− 𝑘2𝜉[𝑀0]) {𝑎(𝜉)} = 0 

(S.30) 

 

The flow potential can be represented as  

 {𝑞(𝜉)} = [𝐸0]𝜉{𝑎(𝜉)},𝜉{𝑤(𝜉)}
𝑇 + [𝐸1]

𝑇{𝑎(𝜉)} {𝑤(𝜉)}𝑇

+ [𝐸3]𝜉{𝑎(𝜉)}{𝑤(𝜉)}
𝑇 

(S.31) 
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Equation (T.14) and (T.15) can be represented as   

 
{𝑞(𝜉𝑒)}  = ∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]

𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (S.32) 

 
{𝑞(𝜉𝑖)}  = −∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]

𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (S.33) 

   

For both 𝜉𝑒 and 𝜉𝑖,  

 [𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + ([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2]
1

𝜉
+ [𝐸3] − [𝐸4] − [𝐸4]

𝑇 − 𝜉[𝐸5] − 𝑘
2𝜉[𝑀0]) {𝑎(𝜉)}

= 0 

(S.34) 

 

This equation is termed the SBFE equation.  
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Appendix T. 
 

3D SBFE solution 
 

 

This appendix elaborates the steps needed to solve the 3D SBFE. From Appendix S, the 

governing equation and the boundary conditions in term of the Scaled Boundary coordinate is 

derived.  

 [𝐸0]𝜉{𝑎(𝜉)},𝜉𝜉 + ([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2]
1

𝜉
+ [𝐸3] − [𝐸4] − [𝐸4]

𝑇 − 𝜉[𝐸5]

− 𝑘2𝜉[𝑀0]) {𝑎(𝜉)} = 0 

(T.1) 

 

And the flow potential is represented as  

 {𝑞(𝜉)} = [𝐸0]𝜉{𝑎(𝜉)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉)}  + [𝐸3]𝜉{𝑎(𝜉)} (T.2) 

 

The equation of the flow can be calculated from the prescribed value obtained from the 

incident flow 

 
{𝑞(𝜉𝑒)}  = ∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]

𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (T.3) 

 
{𝑞(𝜉𝑖)}  = −∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]

𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (T.4) 

 

The SBFE equation represents the external boundary 𝜉𝑒 and the internal boundary 𝜉𝑖. The 

region from the scaling point to the boundary of the cylinder where 𝜉𝑖 = 0 and 𝜉𝑒 = 1 is not 

considered as there is no flow in this region. To solve for the velocity potential in the domain 

from the body of the cylinder to the infinite end from the cylinder, where region is bounded by 

𝜉𝑖 = 1 and 𝜉𝑒 = ∞. From this, the domain can be solved analytically in the radial direction by 

specifying the scalar of 𝜉 between 1 ≤ 𝜉 ≤ ∞. 
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The detailed unbounded 3D SBFEM solution is shown here.  

 

 𝜉2[𝐸0]{𝑎(𝜉)},𝜉𝜉 + 𝜉([𝐸0] + [𝐸1]
𝑇 − [𝐸1] + 𝜉[𝐸3] − 𝜉[𝐸3]

𝑇){𝑎(𝜉)},𝜉

+ (−[𝐸2] + 𝜉[𝐸3] − 𝜉[𝐸4] − 𝜉[𝐸4]
𝑇 − 𝜉2[𝐸5]

− 𝑘2𝜉2[𝑀0]){𝑎(𝜉)} = 0 

(T.5) 

 

From the numerical calculations, the following relationship is obtained, where 

 [𝐸1] ∙ 𝐼 = 0 (T.6) 

 

 [𝐸3] ∙ 𝐼 = 0 (T.7) 

 

 [𝐸4] ∙ 𝐼 = 0 (T.8) 

 

 [𝐸0]
−1[𝐸0] ∙ 𝐼 = 𝐼 (T.9) 

 

Hence, the SBFE formula can be simplified to  

 𝜉2[𝐸0]{𝑎(𝜉)},𝜉𝜉 + 𝜉[𝐸0]{𝑎(𝜉)},𝜉 + (−[𝐸2] − 𝜉
2[𝐸5] − 𝑘

2𝜉2[𝑀0]){𝑎(𝜉)}

= 0 
(T.10) 

 

Both sides of the equation are divided by [𝐸0], giving 

 𝜉2{𝑎(𝜉)},𝜉𝜉 + 𝜉{𝑎(𝜉)},𝜉

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5] − 𝑘

2𝜉2[𝐸0]
−1[𝑀0]){𝑎(𝜉)}

= 0 

(T.11) 

 

The vectors of the scattered wave velocity potential values {𝑎(𝜉)} can be expressed in the 

series form, using the Hankel function as part of the base solution, by derivation in term of 𝜉, 

only the Hankel function is affected. Both the T and C terms are constants.   
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{𝑎(𝜉)} =∑𝑐𝑗𝐻𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜉)𝐶 (T.12) 

 

 
{𝑎(𝜉)},𝜉 =∑𝑐𝑗𝐻𝑟𝑗(𝜉)

′𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜉)
′𝐶 (T.13) 

 

 
{𝑎(𝜉)},𝜉𝜉 =∑𝑐𝑗𝐻𝑟𝑗(𝜉)

′′𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻𝑟𝑗(𝜉)
′′𝐶 (T.14) 

 

These are substituted into the main SBFE equation, where  

 
∑(𝜉2𝑐𝑗𝐻𝑟𝑗(𝜉)

′′𝑇𝑗 + 𝜉𝑐𝑗𝐻𝑟𝑗(𝜉)
′𝑇𝑗

𝑚

𝑗=1

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5]

− 𝑘2𝜉[𝐸0]
−1[𝑀0])𝑐𝑗𝐻𝑟𝑗(𝜉)𝑇𝑗) = 0 

 

(T.15) 

 

Bringing out the common terms 𝑇𝑗 and 𝑐𝑗 yields, 

 
∑(𝜉2𝐻𝑟𝑗(𝜉)

′′ + 𝜉𝐻𝑟𝑗(𝜉)
′

𝑚

𝑗=1

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5]

− 𝑘2𝜉2[𝐸0]
−1[𝑀0])𝐻𝑟𝑗(𝜉))𝑇𝑗𝑐𝑗 = 0 

(T.16) 

 

The differentiation of the Hankel function, 𝐻𝑟𝑗(𝜉), has the following properties, where 

 

 𝜉𝐻𝑟𝑗(𝜉)
′ = −𝜉𝐻𝑟𝑗+1(𝜉) + 𝑟𝑗𝐻𝑟𝑗(𝜉) (T.17) 

 

 𝜉2𝐻𝑟𝑗(𝜉)
′′ = −𝜉2𝐻𝑟𝑗(𝜉) + 𝜉𝐻𝑟𝑗+1(𝜉) − 𝑟𝑗𝐻𝑟𝑗(𝜉) + 𝑟𝑗

2𝐻𝑟𝑗(𝜉) (T.18) 
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Substituting equations (T.17) and (T.18) into equation (T.16) yields, 

 
∑(−𝜉2𝐻𝑟𝑗(𝜉) + 𝜉𝐻𝑟𝑗+1(𝜉) − 𝑟𝑗𝐻𝑟𝑗(𝜉) + 𝑟𝑗

2𝐻𝑟𝑗(𝜉) − 𝜉𝐻𝑟𝑗+1(𝜉)

𝑚

𝑗=1

+ 𝑟𝑗𝐻𝑟𝑗(𝜉)

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5]

− 𝑘2𝜉2[𝐸0]
−1[𝑀0])𝐻𝑟𝑗(𝜉))𝑇𝑗𝑐𝑗 = 0 

(T.19) 

 

Simplify the equation (T.19) yields  

 
∑(−𝜉2𝐻𝑟𝑗(𝜉) + 𝑟𝑗

2𝐻𝑟𝑗(𝜉)

𝑚

𝑗=1

+ (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5]

− 𝑘2𝜉2[𝐸0]
−1[𝑀0])𝐻𝑟𝑗(𝜉))𝑇𝑗𝑐𝑗 = 0 

(T.20) 

 

The common Hankel function is brought out 

 
∑(−𝜉2𝐼 + 𝑟𝑗

2𝐼 + (−[𝐸0]
−1[𝐸2] − 𝜉

2[𝐸0]
−1[𝐸5] − 𝑘

2𝜉2[𝐸0]
−1[𝑀0])) 𝑇𝑗

𝑚

𝑗=1

∙ 𝐻𝑟𝑗(𝜉)𝑐𝑗 = 0 

(T.21) 

 

For any 𝑐𝑗𝐻𝑟𝑗(𝜉) to be valid, the following must be satisfied 

 (𝑟𝑗
2𝐼 + (−[𝐸0]

−1[𝐸2] − 𝜉
2[𝐸0]

−1[𝐸5] − 𝑘
2𝜉2[𝐸0]

−1[𝑀0] − 𝜉
2𝐼)) 𝑇𝑗 = 0 (T.22) 

 

Rearranging (T.22) to be in the same form as the two-dimensional solution gives,  

 (([𝐸0]
−1[𝐸2] + 𝜉

2[𝐸0]
−1[𝐸5] + 𝑘

2𝜉2[𝐸0]
−1[𝑀0] + 𝜉

2𝐼) − 𝑟𝑗
2𝐼) 𝑇𝑗 = 0 (T.23) 

 

(T.23) is an eigenvalue problem where  
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𝜆𝑗 represents the eigenvalues for [𝐸0]
−1[𝐸2] + 𝜉

2[𝐸0]
−1[𝐸5] + 𝑘

2𝜉2[𝐸0]
−1[𝑀0] + 𝜉

2𝐼 

And 𝑟𝑗 = √𝜆𝑗 

And 𝑇𝑗 are the eigenvectors of ([𝐸0]
−1[𝐸2] + 𝜉

2[𝐸0]
−1[𝐸5] + 𝑘

2𝜉2[𝐸0]
−1[𝑀0] + 𝜉

2𝐼) 

The body boundary can be rewritten by using the flow potential relationship, where the 

normal velocity can be represented in the Scaled Boundary coordinate using  

 
{𝑞(𝜉𝑖)}  = −∫ ∫(𝑣̅𝑛[𝑁(𝜂, 𝜁)]

𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (T.24) 

 

 {𝑞(𝜉𝑖)} = [𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉𝑖)}  + [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)} (T.25) 

 

 [𝐸0]𝜉𝑖{𝑎(𝜉𝑖)},𝜉 + [𝐸1]
𝑇{𝑎(𝜉𝑖)}  + [𝐸3]𝜉𝑖{𝑎(𝜉𝑖)}

= −∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 
(T.26) 

 

Substituting the relationship of equations (T.6 – T.9) into equation (T.26), the equation is 

reduced to  

 
{𝑞(𝜉)} = [𝐸0]{𝑎(𝜉)},𝜉 = −∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

 (T.27) 

 

The velocity potential is represented in the form of equation (T.12 – T.14), substituting into 

equation (T.27), the constant C can be obtained  

 
[𝐸0]∑𝑐𝑗𝐻𝑟𝑗(𝜉)

′𝑇𝑗

𝑚

𝑗=1

= −∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (T.28) 

 

 
[𝐸0]𝑇𝐻𝑟𝑗(𝜉)

′𝐶 = −∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁
 

𝜂

 

𝜁

 (T.29) 

 

 
𝐶 = 𝐻𝑑(𝜉)

−1𝑇−1[𝐸0]
−1 (−∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

) (T.30) 
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𝐻𝑑(𝜉) = 𝑑𝑖𝑎𝑔[𝐻𝑟1(𝜉),𝐻𝑟2(𝜉),… , 𝐻𝑟𝑚(𝜉)]. Substituting the constant C from (T.30) into 

(T.12), the potential value of {𝑎(𝜉)} is found, where 

 
{𝑎(𝜉)} = 𝑇𝐻𝑟𝑗(𝜉)𝐻𝑑

−1𝑇−1[𝐸0]
−1 (−∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

) (T.31) 

 

 
{𝑎(𝜉)} = 𝑇𝐻ℎ(𝜉)𝑇

−1[𝐸0]
−1 (−∫ ∫([𝑁(𝜂, 𝜁)]𝑇𝑣̅𝑛)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

) 

 

(T.32) 

Let 𝐻ℎ(𝜉) = 𝑑𝑖𝑎𝑔 [
𝐻𝑟1(𝜉)

𝐻𝑑1(𝜉)
′
,
𝐻𝑟2(𝜉)

𝐻𝑑2(𝜉)
′
, … ,

𝐻𝑟𝑚(𝜉)

𝐻𝑑𝑚(𝜉)
′
], and introducing a parameter S to simplify 

the calculation yields, 

 
𝑆 = (∫ ∫([𝑁(𝜂, 𝜁)]𝑇)|𝐽𝜂𝜁|𝑑𝜂𝑑𝜁

 

𝜂

 

𝜁

) (T.33) 

 

Hence, the potential values can be expressed as  

 {𝑎(𝜉)} = −𝑇𝐻ℎ(𝜉)𝑇
−1[𝐸0]

−1𝑆 ∙ 𝑣̅𝑛(𝜉) (T.34) 
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Appendix U. 
 

3D SBFEM solution for floating structure 
 

 

Solving scattered velocity of the outer domain follows the procedure that was previously 

described, hence,  

 {𝑎0
𝑇(𝜉)} =∑𝑐𝑗𝐻𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻(𝜉)𝐶 = −𝑇𝐻ℎ(𝜉)𝑇
−1[𝐸0]

−1𝑆𝑣̅𝑛0
𝑇𝐼  (U.1) 

 

 {𝑎0
𝐵(𝜉)} =∑𝑐𝑗𝐻𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐻(𝜉)𝐶 = −𝑇𝐻ℎ(𝜉)𝑇
−1[𝐸0]

−1𝑆𝑣̅𝑛0
𝐵𝐼  (U.2) 

 

From the boundary conditions, equation (5.28) can be solved to obtain the scattered velocity 

potential of the inner domain.  

 

 𝑣̅𝑛0
𝐵𝐼 + 𝑎1

 (𝜉) = −𝑖𝐺0𝑘(𝜙1
𝐼 + 𝑎1

 (𝜉) − 𝜙0
𝐼 − 𝑎0

𝐵(𝜉)) (U.3) 

 

 𝑣̅𝑛0
𝐵𝐼 + 𝑎1

 (𝜉) = −𝑖𝐺0𝑘(𝜙1
𝐼 + 𝑎1

 (𝜉) − 𝜙0
𝐼 + 𝑇𝐻ℎ(𝜉)𝑇

−1[𝐸0]
−1𝑆𝑣̅𝑛0

𝐵𝐼) (U.4) 

 

 

 

The equation is rearranged to obtain the constants 

𝐶1 = 𝐽𝑟𝑗(𝜉)
−1𝑇−1

−𝜙1
𝐼 + 𝜙0

𝐼 − 𝑇𝐻ℎ(𝜉)𝑇
−1[𝐸0]

−1𝑆𝑣̅𝑛0
𝐵𝐼 −

𝑣̅𝑛0
𝐵𝐼

𝑖𝐺0𝑘

(
1

𝑖𝐺0𝑘
+ 1)

 

Substituting back the constant into equation U.1 and U.2, the potentials can be solved. 
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𝑎1
 (𝜉) =∑𝑐𝑗

1𝐽𝑟𝑗(𝜉)𝑇𝑗

𝑚

𝑗=1

= 𝑇𝐽𝑟𝑗(𝜉)(𝐽𝑟𝑗(𝜉)
−1𝑇−1

−𝜙1
𝐼 + 𝜙0

𝐼 − 𝑇𝐻ℎ(𝜉)𝑇
−1[𝐸0]

−1𝑆𝑣̅𝑛0
𝐵𝐼 −

𝑣̅𝑛0
𝐵𝐼

𝑖𝐺0𝑘

(
1

𝑖𝐺0𝑘
+ 1)

) 

(U.5) 
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