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Abstract

Microscopic charcoal analyses of sediment cores are used widely by
palaeoecologists for reconstructing proxy records of past fire activity. Few studies,
however, have reconstructed fire histories from UK and Irish moorland environments, a
rather surprising situation considering the fact that much of the heather-dominated
moorland in the UK and Ireland has been managed and maintained using fire for many
centuries, and in some instances millennia. This thesis addresses the main issues regarding
the use and applicability of microscopic charcoal analyses in moorland contexts.

The literature pertaining to the theory and practical application of microscopic
charcoal analyses is comprehensively reviewed, and all aspects of microscopic charcoal
analysis, from charcoal production through to the interpretation of sediment charcoal
profiles, are discussed and wherever possible related to their applicability in moorland
contexts.

An investigation of the taphonomy of microscopic charcoal around small moorland
fires was conducted in order to provide an appreciation of the processes of charcoal
production and the extent of charcoal particle dispersal. The results suggest that small
moorland fires produce differential quantities of charcoal particles of different size ranges,
smaller particles are produced in significantly greater quantities than progressively larger
ones. The majority of charcoal particles produced by small muirburns are deposited
locally, within approximately 70-100 m of parent fires, and the wind direction at the time
of the fire may be a key factor determining the dispersal of microscopic charcoal particles,
the majority being deposited down-wind of fires, few are dispersed laterally or into the
wind.

A microscopic charcoal quantification technique was developed to reconstruct
extended (>50 year) fire histories from moorland soil profiles. A number of fire histories
from mor humus-rich moorland soil cores of approximately several centuries duration
were reconstructed. Fossil charcoal assemblages produced by in situ fires were
distinguished from those produced by nearby ex situ fires on the basis of differences in
gross charcoal abundance and charcoal size class distributions. Charcoal assemblages
produced by in situ fires are determinable from those produced by ex situ fires because
they generally contain a greater total abundance of charcoal particles and higher
proportions of medium to large particles.

Microscopic charcoal analyses of lake sediment cores from seven UK and Irish
moorland catchments were used to reconstruct long-term (>100 year) fire histories. The
reconstructed fire histories were used to assess whether changes in fire activity in the
catchments may have been responsible for initiating past episodes of peat erosion, inferred
from loss on ignition measurements, and declines in Calluna cover, inferred from pollen
analyses, evident at all of the sites. The results suggest that moorland burning may have
been an influential factor contributing to the initiation of peat erosion at only one of the
seven sites studied. Similarly, fire activity was only significantly related to the loss of
Calluna at two of the seven sites studied.
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Chapter 1: Introduction and Thesis outline

Microscopic charcoal analysis of moorland soils and lake sediments.

1.1 Introduction

The Calluna vulgaris-dominated moorlands of Britain and Ireland represent
ecosystems of national and international importance for both their ecological and
economic value (Ratcliffe & Thompson, 1988, Sydes & Miller, 1988; Thompson et al.,
1995). Britain’s heather-dominated moorland not only supports many rare plant
communities (Rodwell, 1991) and bird species, e.g. golden plover (Pluvialis apricaria)
and merlin (Falco columbarius), but represents a uniquely sustainable resource in the
upland agricultural economy for sheep, grouse and deer production (Usher &
Thompson, 1993).

The conservation value of moorland ecosystems is reflected in the vast amount
of research which has been conducted on them, and particularly into the ecology of
Calluna vulgaris (e.g. Gimingham, 1960; Gimingham, 1972). Fire has been used to
manage and maintain Calluna vulgaris-dominated moorland for many centuries
(Gimingham, 1970) and accordingly the relationships between fire and the ecology of
Calluna vulgaris has received a great deal of study (e.g. Kayll, 1966; Mallik &
Gimingham, 1983; Hobbs & Gimingham, 1984; Maltby et al., 1990). However, the
vast majority of this research has been of a short-term nature, concentrating on the
dynamics of communities over time-scales of rarely longer than several decades.
Observations made over such short time-scales are insufficient for predicting the long-
term effects of anthropogenically imposed fire regimes, and consequently the long-term
dynamics of moorland vegetation are relatively poorly understood (Stevenson &
Thompson, 1993; Legg, 1995).

An increasing volume of research suggests that British and Irish Calluna-
dominated moorland communities are in decline (Andersen & Yalden, 1981; Sydes &
Miller, 1988; NCC, 1987; Thompson et al., 1995), and may have been for at least
several centuries (Stevenson & Thompson, 1993). Britain is not alone in experiencing
declines in heather-dominated vegetation, Sweden, Denmark, The Netherlands,

Belgium, Germany and France have also suffered considerable losses in area over the



past century (Gimingham, 1977). In addition, upland moorland ecosystems are also
suffering extensive degradation by peat erosion, a further problem proven to have been
occurring over prolonged periods of time, and in some instances for millennia
(McGreal & Larmour, 1979; Bradshaw & McGee, 1988). The long-term nature of
these problems dictates that long-term perspectives need to be adopted if their causes
are to be elucidated.

Palaeoecological techniques, palynology and microscopic charcoal analyses,
provide the means to reconstruct long-term vegetation and fire histories (Moore ef al,,
1991; Patterson et al., 1987). Fossil pollen and charcoal analyses have provided
valuable insights into landscabe and vegetation community dynamics in a wide range of
environments (e.g. Swain, 1973; Singh ef al, 1974; Griffin & Goldberg, 1975;
Heusser, 1989). However, considering the semi-natural nature and dependency of most
heather-dominated communities on muirburn management for their maintenance
(Gimingham, 1970; Gimingham, 1972) moorland ecosystems have received little
palaeoenvironmental attention (e.g. Iversen, 1941, 1969; Odgaard, 1992, 1994
Charman, 1992).

1.2 Thesis outline

The work described in this thesis is an attempt to determine what can or cannot
be deduced from fire histories derived from microscopic fossil charcoal analyses in soil
and lake sediments from moorland contexts. Moorland environments represent
potentially complex environments in which to reconstruct fire histories from sediment
records. Muirburn management of moorland vegetation, which involves the periodic
burning of small patches of heather in rotation (Muirburn Working Party, 1977),
results in relatively small quantities of microscopic chareoal being produced by large
numbers of isolated, relatively low intensity, extremely short duration fires, set on an
annual basis, at locations spread randomly over the moor surface. In this thesis an
attempt is made to quantify and elucidate the fundamental processes of charcoal
production and taphonomy around muirburns; to develop a method of reconstructing
extended (>50 year) fire histories for individual locations on moors using microscopic
charcoal analyses of mor humus soil profiles; and to assess whether changes in the

long-term (up to 1000 year) burning regimes of a number of UK and Irish heather-



dominated catchments may have been responsible for causing the initiation peat

erosion episodes and the protracted decline of Calluna vulgaris in them.

Microscopic charcoal analyses have been widely adopted by palaeoecologists
and a considerable amount of research has been conducted into the theoretical tenets
of, and the practicalities of conducting, such analyses. Chapter 2 of this thesis reviews
the wealth of literature published on the subject of microscopic charcoal analyses. The
role of this review is to provide the reader with a comprehensive introduction to the
principles of microscopic charcoal analyses and background knowledge of the nature
of past study in this field. The following issues are among those covered: the current
level of understanding of charcoal particle production, dispersal, deposition and
sedimentation processes; site selection criteria and the merits and weaknesses of soils,
peats and lake sediments as depositories of charcoal records; available techniques of
sediment sample preparation and charcoal quantification; and the information that can
be gained from, and how to interpret sediment charcoal profiles. Throughout the
review the applicability of past theory and.practice to moorland environments is
emphasised.

In Chapter 3 the sites and methods of analysis used for this study are described.
Special attention is given to the laboratory procedures for charcoal sample preparation
and quantification developed for this study. Chapter 4 outlines the methods used to
develop and validate a methodology for reconstructing extended (>50 year) fire
histories of individual locations on moors. The methodology was developed to enable
the determination of the approximate dates when stands of heather were last burned, or
the frequency and periodicity at which they have been burned over past centuries,
potentially useful information in all manner of ecological studies. Analyses of aerial
photographs and microscopic charcoal from mor humus soil cores are used to
determine the resolution of the sediment charcoal record and to characterise how
charcoal assemblages produced by in situ and ex situ fire events differ and are
manifested in soil profiles. Extended histories of local fire activity are produced for a
number of locations on six moorland sites in Perthshire, Scotland in order to test and

validate the techniques developed.



In Chapter 5 the taphonomy of microscopic charcoal around past muirburns on
a Perthshire moorland site is investigated. Aerial photographs are used to map patterns
of past muirburn activity and charcoal analyses of soil cores located at known distances
around the edges of dated fires are used to quantify patterns of charcoal dispersal. The
processes of charcoal production by, and dispersal around, controlled heather burns are
explored. The results provide important information to aid the estimation of the
distances over which charcoal can be dispersed and to delimit charcoal source areas for -
sediment sinks in moorland areas from which fire histories may be reconstructed. The
charcoal dispersal information is used in this study to inform the interpretation of the
charcoal records form lake sediment cores presented in Chapters 6 and 7.

In Chapter 6 microscopic charcoal analyses and associated palaeoecological
techniques of lake sediment cores are used to try and elucidate the causes of past peat
erosion in seven UK and Irish moorland catchments. Of primary concern is whether
excessive burning of catchment vegetation may have been instrumental in causing the
inception of erosion, although a number of other possible causes are considered.
Redundancy analyses (RDA; ter Braak, 199Qa) are used to determine the statistical
relationship between the inferred fire (charcoal) and erosion (loss on ignition) records
providing a means of estimating the possible influence of fire activity as a cause of
erosion.

In Chapter 7 a palaeoecological approach similar to that adopted in Chapter 6,
using microscopic charcoal and pollen’ analyses are used to determine whether
excessive heather burning may have caused declines in Calluna vulgaris cover in the
same seven UK and Irish moorland catchments over the past four centuries. Possible
alternative causes of Calluna cover loss are also considered. Chapter 8 provides a
summary of the conclusions made throughout the research project and suggestions for

further study.



Chapter 2: Literature Review

Abstract

A large body of literature concerning all aspects of microscopic charcoal analysis is
reviewed. The processes of charcoal formation by biomass fires are described, and the
current state of knowledge of microscopic charcoal dispersal, deposition and
sedimentation processes is outlined and discussed in light of studies of pollen taphonomy.
Site selection considerations, sediment sampling strategies and charcoal analysis
techniques are discussed. Guidelines on the interpretation of microscopic charcoal profiles
are also provided. Where appropriate the theories proposed and conclusions reached by
past studies are assessed with respect to their applicability to charcoal analyses in

moorland contexts.

2.1 Charcoal definition

The term ‘charcoal’ is taken, throughout this thesis, to represent ‘an impure form
of carbon produced by the incomplete combustion of biomass’ (Goldberg, 1985). Two
types of black carbon are produced by biomass burning, sub-micron particles formed from
the vapour phase, and larger particles (> tens of microns) that reflect the structure of the
burned material or the burning process, only the second category is of concern here.
Charcoal is typically black, lustrous, fragile, relatively inert, and retains the form of the
plant material from which it was derived (Clark, 1984; Scott & Jones, 1991). Charcoal is
synonymous with char, fusain, black carbon, elemental carbon and soot referred to by
other authors (Goldberg, 1985).

An explicit distinction between the carbon rich products of biomass burning and
those produced by fossil fuel combustion is assumed throughout this work. Black carbon
particulates formed by the high temperature combustion of fossil fuels, which are
morphologically distinct from those produced by biomass burning by their spherical shape,
will be referred to as ‘spherical carbonaceous particles’ (SCPs) not charcoal (Griffin &

Goldberg, 1981; Renberg & Wik, 1985).



2.2 Charcoal formation

Charcoal is formed by the incomplete combustion of plant tissues under conditions
of restricted oxygen (Aaron, 1980; Clark & Russell, 1981; Chandler et al., 1983). Plant
tissues are typically made up of cellulose, hemicellulose (together 50% to 75% of most dry
plant material), lignin (15% to 35%), proteins, nucleic acids, amino acids, volatile
extractables and water (which can account for up to 60% of a plant’s fresh weight)
(Lobert & Warnatz, 1993). The process of charcoal formation and the characteristics of
the charcoal produced are closely related to the temperature and duration of combustion.

When plant tissues are burned at temperatures of up to 200°C water (completely
removed at 140°C), carbon dioxide and other trace gases are evolved (Cope & Chaloner,
1985). Charcoal can be produced at these temperatures but the process requires prolonged
exposure to heat (Smart & Hoffman, 1988). At temperatures between 200°C and 280°C
thermal decomposition of wood produces charcoal and liberates non combustible gases.
As temperatures increase to between 280°C and 500°C combustible gases (e.g. carbon
monoxide, methane, and hydrogen) and volatile compounds such as tars are consumed by
pyrolysis and charcoal forms as a solid residue. (Cope & Chaloner, 1985). Temperatures in
excess of 500°C result in diminished charcoal preservation as much is oxidised to ash (the
inorganic products of charcoal combustion composed mostly of oxides, potassium,
phosphates and silicates) (Smart & Hoffman, 1988). If temperatures exceed 1100°C

charcoal is oxidised directly to carbon monoxide and hydrogen (Cope & Chaloner, 1985).

2.2.1 Charcoal formation during moorland fires

Moorland fires are surface fires which spread by flaming combustion of vegetation
on or near the land surface fuelled by litter (fallen dead vegetation components) and
mosses, standing dead fuels (woody shrub stems and grasses), and live ericaceous shrubs,
grasses and other plant material (Albini, 1993). Typical temperatures attained are between
250°C and 670°C, although temperatures approaching 900°C have been recorded during
particularly intense fires (Kayll, 1966, Whittaker, 1961, Kenworthy, 1963). Peak
temperatures, however, are generally only maintained for periods of less than 60 seconds

duration (Kenworthy, 1963; Hobbs & Gimingham, 1987a), and complete combustion of



all woody material is rarely achieved. In most instances a period of smouldering or
‘glowing’ combustion follows the initial flaming stage, the embers being fanned by the
wind until sufficient heat is lost that combustion ceases and beds of partially charred and
unburned fuel are left (Albini, 1993). It is during this period of glowing combustion that
fuel decomposition and charcoal formation are greatest.

The quantity and properties of the charcoal produced by moorland fires depend on
the behaviour and characteristics of the parent fire. Fire intensity is closely related to fuel
structure and density, and thus the age of vegetation stands. The most intense moorland
fires are experienced in 25 - 26 year old Calluna stands which are generally composed of
densely structured live woody stems with abundant foliage and significant amounts of
dead woody material and litter, excellent fuel for intense combustion (Kayll, 1966).
Younger stands lack the high densities of woody material and litter, and older degenerate
stands the fine stem and leaf components necessary to sustain high temperatures. Charcoal
production is likely to be greatest in vegetation stands aged between 20-30 years.

The moisture content of plant material has a great influence on its performance as
a fuel because plant- water must be driven-off, a process demanding much energy, before
ignition can occur. Green plant material in heather stands impedes the burning efficiency,
retarding flaming pyrolysis and enhancing smouldering combustion (Lobert & Warantz,
1993). Indeed, if heather stands did not contain significant components of dead woody
material and litter they would not burn effectively. Kayll (1966) found that the high
moisture condition of fuels during spring retarded fire efficiency to the extent that only
30% was consumed, in contrast autumn fires, under drier fuel conditions, consumed
approximately 93% of available vegetation. More charcoal is likely to be formed by the
burning of drier, but not tinder dry, vegetation.

Methods of burning can influence charcoal production. The majority of muirburns
are allowed to run with the wind (heading fires) (Muirburn Working Party, 1977; Phillips
et al., 1993). During heading fires the flames at the fire front bend towards the unignited
fuel and increase the rate of heat transfer substantially. As a result, the fire spreads much
more rapidly in the direction of the wind than against or perpendicular to it (Albini, 1993).

Heading fires produce large flames but because they move relatively quickly have a



tendency to incompletely oxidise larger diameter fuel components (Lobert & Warantz,
1993). Burns littered with large quantities of superficially scorched heather stems and
completely charred leaf and fine debris are typical of heading fires. As wind speeds
increase and fires move more quickly they become less efficient and consume even less
fuel, in strong winds often only the crowns of shrubs are ignited and most of the woody
material is left unconsumed (Hobbs & Gimingham, 1984). When burns are conducted into
the wind (backing fires) the flames bend back into the burning zone, decreasing radiant
heating of nearby unignited fuel. As a consequence backing fires have relatively small
flames and slow rates of fire spread, but combustion is more efficient (Albini, 1993; Lobert
& Warantz, 1993). Backing fires generally produce more charcoal than heading fires.

Topography can also influence the burmning behaviour of fires, particuiarly smaf
fires like muirburns. A burn behaves like a backing fire if it proceeds down-slope, burning
efficiently, while an up-slope fire moves faster consuming the fuel more like a wind-driven
fire. This is because the flames at the fire edge tend to be vertical and on the up-slope the
angle between the flame and the vegetation is less than 90 degrees, hence the rate of heat
transfer to the unignited fuel is great. On the downslope, the angle between the flames and
the unignited fuel is more than 90 degrees and fire spread is retarded (Hobbs &
Gimingham, 1987; Lobert & Warantz, 1993; Albini, 1993).

2.3 Charcoal taphonomy

The processes and mechanisms of pollen dispersal and deposition have received a
great deal of both experimental and theoretical attention and as a consequence are
relatively well understood (Moore, Webb, & Collinson, 1991; Jackson, 1994). Charcoal
taphonomy, however, has been greatly neglected and remains as perhaps the single most
important factor limiting the full and unequivocal interpretation of sedimentary charcoal
profiles (Battson & Cawker, 1983; Clark, 1983; Anderson & Davis, 1986). Greater
appreciation of charcoal source areas and the processes of charcoal dispersal and
sedimentation are needed.

In the following section the physics of charcoal dispersal in the atmosphere are

outlined briefly. A selection of models and studies of charcoal and pollen taphonomy are



then reviewed. The models are evaluated for theories and concepts which can be applied

to understanding the mechanisms of microscopic charcoal dispersal and deposition.

2.3.1 The physics of charcoal dispersal in the atmosphere

All particles suspended in the atmosphere are subject to the force of gravity, to a
buoyant force, and to drag forces which combine to govern their motion (Chamberlain,
1975). The deposition of smooth spherical particles can be modelled because terminal
velocities, stopping distances and trajectories can be determined using Stoke’s Law
(Gregory, 1945; Chamberlain, 1975). However, it is much more difficult to provide
models of charcoal particulate dispersal and deposition because of their angular shapes,
differing sizes, and variable densities. Rather than following predictable trajectories
elongated particles tend to fall more horizontally with their greatest surface area presented
to the resistance of the air, sometimes falling more slowly than spherical particles of the
same volume, and sometimes more quickly (Buller, 1909; Fuchs, 1964). Generally
speaking, however, charcoal particles should settle and be sorted on the basis of their ‘fall
velocities’, a function dependent mainly upon size and density but also on shape and
surface roughness. Large heavy particles and those with high volume to surface ratios will
tend to be deposited more quickly than smaller, lighter ones (Walker, 1971; Patterson et
al., 1987).

It is likely, although as yet unproven, that charcoal deposition away from a source
will approximate a leptokurtic curve, similar to that observed for pollen, spores, dusts, and
other particulates (Colwell, 1951; Green & Lane, 1964; Turner, 1964; Janssen, 1966,
1984; Raynor et al., 1968, 1972a, 1972b, 1975, 1976; Prentice, 1985; Okubu & Levin,
1989) (a supposition strengthened by observations of charcoal dispersal made in this
study, see Figure 5.5). Charcoal concentrations decrease rapidly away from the production
source and then the concentrations deposited on the ground remain relatively steady but
low with increasing distance. Deposition curves for particles of different sizes will vary
slightly, rates of deposition with increasing distance being more pronounced for larger

particles than progressively smaller ones (Walker, 1971).



In addition to the vertical force of gravity, the dispersal and deposition patterns of
particles are also complicated by the forces of wind. Wind is predominantly a horizontal
force and is characteristically turbulent rather than laminar in motion, particles are thus to
some extent diffused in all directions, both vertically and laterally, as well as in a
downwind direction (Gregory, 1945). Experiments on pollen capture near the ground
(Tauber, 1965), however, illustrate that most of the time at normal wind velocities the
majority of particles do move predominantly horizontally and in the direction of the wind,
i.e. whilst some particulates are dispersed laterally the vast majority are transported in a

downwind direction.

2.3.2 Charcoal dispersal experiments

A number of authors have sought to quantify microscopic charcoal particle
dispersal from fires by conducting experimental fires and trapping the resultant particulates
at varying distances away from the parent fire. The following section outlines the methods
used and the results obtained.

The charcoal dispersal experiments by conducted R.L. Clark represent the most
thorough investigation of the subject to date (Clark, 1983). To assess the dispersal
distances of charcoal particles of different sizes from bush fires Clark laid microscope
slides coated with a thin film of petroleum jelly out on the ground along transects at 10,
20, 40 and 80 metre distances from the ‘edges of ten controlled burns. All charcoal
particles of minimum dimension >6.5 pm trapped on the slides were counted and tallied
into size classes. The concentration of charcoal particles decreased with distance from the
burned areas and the distribution of the charcoal reflecting the wind direction at the time
of the fires, the majority being deposited downwind. The reduction in the numbers of
charcoal particles with distance from the fires was not due to larger particles falling out
closer to the experimental area, but to fewer particles of all sizes travelling greater
distances. Neither the area burned or the type of the fire were reflected in the numbers of

charcoal particles collected (Clark, 1983).
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In an additional experiment two hundred and twenty-eight microscope slides
coated in petroleum jelly were laid out in transects, at distances ranging from S metres to
3.85 kilometres, away from the edge of another controlled fire to gain further information
about the long distance dispersal of charcoal particles in smoke. The areas of charcoal
deposited on each slide were quantified using the point count method (Clark, 1982).
Abundant charcoal was only deposited on the downwind edge of the fire, even at a
distance of only 5-15 metres from the upwind edge of the fire charcoal deposition was
minimal. Apart from on the slides around the fire edge no significant correlation between
the charcoal area and distance from the fire was found. The deposition of larger particles
(>5 pm) from the smoke was negligible beyond somewhere between 0.1 km - 1 km (the
poor resolution is attributable to the low density of the sampling network) (Clark, 1983).

In a further experiment Rotorod air samplers were used to sample smoke particles
from a grass-fire whilst it burned in order to assess the sizes and abundance of the
particulates produced and dispersed. Although strong winds carried the smoke ahead of
the fire the concentration of larger particles (>5 pum) was only high immediately in front of
the fire and fell off rapidly (Clark, 1983). .

Water samples taken from the Wallagaraugh River both before and after a large,
high intensity forest fire in it’s catchment were analysed for charcoal particles to determine
the importance of streams for charcoal transport. Significant amounts of charcoal were
only washed off the catchment in the first post-fire rainfall events, with the highest
concentrations conveyed at the beginning of the events. The results suggesting that
particles initially deposited on the ground surface are resistant to further redistribution

(Clark, 1983).

Evans & Allen (1971) conducted charcoal particle dispersal experiments as part of
a study of nutrient losses in the smoke from heather burns. Three artificial burns
comprising of 50 kg quantities of cut heather were set on fine days with slight breezes
(Beaufort Scale 1-2). Large sheets of polyethylene were spread out and secured
downwind of the fires at distances of 10, 20, 40, 80 and 120 metres to act as aerosol traps.

After the fires the deposits on each of the sheets were collected and weighed, however,
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particulate recovery was poor because much of the deposited material was blown off the
sheeting before collection was possible.

Observations made during the fires, however, prompted the authors to suggest that
convection currents produced by heather burns are likely to be weakly formed. Ash and
other small particulates only ‘float’ short distances before settling, and that much of the
ash produced during actual moor burns would be retained by the uneven ground and
residual unburnt debris. Very severe burn conditions are necessary to generate intense
convection currents which could carry fine smoke particles into the higher air stream and

disperse them widely within and beyond the limits of the moor (Evans & Allen, 1971).

Wein, Burzynski, Sreenisva, & Tolonen, (1987) also conducted experiments to
determine how far charcoal particles were carried by the wind during vegetation fires.
Two experimental burns were set, one in a wind speed of 5 km/h and the second in a
stronger wind of approximately 20 km/h. Glass test tubes fitted with 60 ml plastic funnels
(mouth diameters of 6 cm) were buried so that their tops were flush with the ground
surface to act as traps to capture dispersed particulates. The test tubes were arranged at
100 m intervals along a 1 km transect from the down wind edge of the fire. Following the
fires the charcoal in the traps was quantified in five size classes (100-2800, 2800-44400,
44400-135800, 135800-277200, & >277200 pm?).

Particle size and the number of particles per size class were found to be indirectly
proportional to the distance from the fire front. Few particles in the largest three size
classes were recovered, with a wind speed of 5 km/h a few were found up to 0.4 km from
the fire and a few were carried further by the stronger wind. The smaller particles (<44400
um?®) were still represented 1 km from the fire but their abundance also declined as

distance increased. -

2.3.3 Models of charcoal taphonomy
The processes of charcoal particulate dispersal are obviously complex, however,
success in explaining patterns of pollen dispersal using theoretical models (Bradshaw &

Webb, 1985; Prentice, 1985, 1988; Jackson, 1990, 1991), suggest that it may be possible
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to model charcoal taphonomy (Patterson ef al., 1987; Clark, 1988). Such theories could
provide much valuable information about sedimentary charcoal assemblages and how they
record evidence of fire (Tauber, 1965; Prentice, 1985; Clark; 1988). The following models

of charcoal dispersal from biomass fires have been proposed.

Patterson, Edwards, & Maguire model (1987)

Patterson ef al. (1987) proposed a theoretical model of charcoal particle dispersal
during fires based upon the theories of pollen taphonomy developed by Tauber (1965) and
Jacobson & Bradshaw (1981), and the sand dispersal theories of Bagnold (1941). Two
fundamental assumptions underlie the model: (i) that charcoal dispersal conforms to the
‘distance-decay principle’, i.e. that with increasing distance from a fire the quantity and
size of charcoal particles decreases, and (ii) that equal quantities of small, medium and
large particles are produced by each fire event. The first assumption conforms well with
accepted theory, however, data presented in Chapter S of this thesis casts doubt upon the
validity of the second assumption, a consideration which may have important implications
for the interpretation of charcoal assemblages. .

In the absence of wind Patterson ef al. (1987) theorised that charcoal particles are
dispersed equally in all directions, that the largest quantities are deposited close to the fire,
and that the average size of particles decreases away from the fire edge. Under windy
conditions it is proposed that the majority of the charcoal produced will be dispersed in a
downwind direction and little is transporfed to any significant distance into the wind. High
wind speeds increase the distances over which particles are dispersed, particularly with
regard to smaller particles which may be distributed over significantly greater distances
than under still conditions (Patterson ef al., 1987). These theories agree with the results of
experiments conducted by Clark (1983) and Wein et al. (1987).

The authors acknowledge that the model presents a very simplified view, however,
it does provide a clear outline of a number of fundamental principles of charcoal

taphonomy which have been widely adopted by subsequent analysts.
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J.S. Clark ‘skip distance’ model (1988a)

J.S. Clark (1988a) presented an excellent theoretical treatment of the mechanisms
governing charcoal particulate dispersal and transport by applying particle motion theories
from studies of dust and sand (Bagnold, 1941; Foda, 1983; Greeley & Iversen, 1985). He
focused on aeolian processes believing surface runoff to be relatively unimportant as a
mechanism for transporting charcoal to lake sediments (Clark, 1988a).

Clark theorised that during a fire particulate dispersal distances are a function of
particle size, fire temperature (the principle determinant of the height of the convective
current formed), and wind speed. Graphs were used to show the relative ‘skip distances’
(the distance between the point of initial suspension of a particle in the atmosphere and the
point of impact back on the ground surface) of different sized particles lofted to variable
heights by convective currents (Clark, 1988).

The principal conclusions reached by Clark (1988a) were as follows: (i) that
smaller particles generally travel much further than larger ones before settling back to the
ground. Pollen slide size charcoal (>90% of which is 5-20 pm in length) behave like dust
in the atmosphere and can be dispersed over subcontinental or global ranges if lofted to a
sufficient altitude (Patterson ef al., 1987). Charcoal particles falling within the range of
sand or larger particulates (50-10,000 um in length) require high surface wind speeds to
lift them from the surface into suspension, and if suspended are transported much shorter
distances than considerably smaller particles; and (ii) that there is almost always a finite
‘skip distance’ for the bulk of particles iﬁ a given size range and that ‘skip distances’ for
particles of given dimensions increase with wind speed and the height to which they were
lofted (Clark, 1988a).

Following a fire, before vegetation regeneration stabilises the bare soil surface,
Clark (1988a) acknowledged that charcoal fragments may be transported to sedimentary
sinks by both winds and surface runoff, but believed that the importance of fluvial
processes had been over estimated by previous analysts, e.g. Blong & Gillespie (1978) and
Clark (1983). He argued that surface flow never occurs on uncompacted forest soils
(Waring & Schlesinger, 1985), and that even under conditions when it does occur

cohesive forces between soil and charcoal particulates would greatly reduce the amount
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actually transported at the low velocities and laminar flow of surface runoff (Clark,
1988a). The aeolian processes of suspension, saltation and traction, were stated to be the
dominant mechanisms of post-fire charcoal transport. Charcoal particles in the range 130-
150 pm in length are most readily lifted by normal winds. Cohesive forces build up
between smaller particles making them less readily suspended, although if they are lifted
into the atmosphere they can be dispersed widely. Particles >150 um can be picked up by
surface winds but their relatively high mass dictates that they are generally deposited
nearby. A process similar to saltation is suggested to be a major contributor to the post-
fire transport of medium to large charcoal particles. Particles lifted by the wind (probably
no more than one metre above the ground) are deposited nearby perhaps disturbing other
particles on impact and causing their temporary suspension (Clark, 1988a).

The above model provides a relatively comprehensive treatment of dispersal
processes both during and after fires. It also introduces the processes of post-fire dispersal

which are seldom addressed elsewhere.

2.3.4 Pollen dispersal models and their implications for charcoal taphonomy

The field experiments and theoretical models of charcoal particle dispersal provide
some insight into the taphonomy of microscopic charcoal particulates. However, much
greater understanding of the processes involved is needed to enable full interpretation of
sediment records. The taphonomy of pollen grains has received a much greater quantity of
research than charcoal taphonomy and Because of the similarities in the processes of
dispersal, deposition and sedimentation (Odgaard, 1992) theories of pollen taphonomy
may be used to inform charcoal analysts. A number of the main theoretical treatments of
pollen taphonomy are presented below and discussed in the context of their relevance to

charcoal taphonomy. -

Tauber model (1965, 1977)
The Tauber model is a schematic treatment of pollen dispersal in forested regions
(Tauber, 1965, 1977). The basic concepts of the model have been widely accepted and

have formed the basis for subsequent theoretical models (e.g. Jacobson & Bradshaw,
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1981; Prentice, 1985, 1988). The basic tenet of the theory is that pollen assemblages in
sedimentary basins are the sum of a number of components transported to the sediment
from a range of distances, by a number of different physical processes. The theory is

summarised by the following equation:
P=C;+Ci+C.+C;+C,

The total pollen sum (P) is composed of: pollen which falls directly into the lake
from overhanging vegetation (Cg) and thus has local origins; pollen carried to the lake
through the trunk-space by low velocity winds (C;) and tends to be derived from
vegetation within 100-1000 metres of the basin; pollen transported by turbulent winds
immediately above the vegetation canopy (C.), such pollen could originate from plants
growing up to tens of kilometres from the lake; pollen washed out of the atmosphere by
rain (C;) which may have been transported great distances by high winds; and a pollen
component washed into the lake by streams or surface runoff from the immediate
catchment (Cs) (Tauber, 1965; 1977). .

The model provides a simple but effective means of outlining the contributions
made by different transport mechanisms and the complexities involved in the formation of
a sedimentary pollen assemblage. The importance of each mode of transport must be
ascertained to gain a full appreciation of the pollen assemblage. The relative importance of
each of the components is the subject of rﬁuch disagreement, for example Prentice (1985,
1988) assumes the canopy component (C.) to be of primary importance whilst Bennett
(1983, 1986) believes the water borne component (Cy) to be predominant. It is clear that
sites with different characteristics and from different environments may have very different
charcoal inputs, each site should be considered on an +individual basis, e.g. waterborne
transport may be important in catchments with permanent inflow streams, high watershed
area:lake area ratios and steep slopes (Jackson, 1994).

In terms of charcoal dispersal the basic concepts of the model are very useful. A
number of different transport mechanisms, with a range of source areas, contribute to

sedimentary charcoal assemblages, and the modes of transport are likely to be similar to
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those outlined for pollen. The determination of the relative importance of, and
quantification of the contribution made by, each mode of dispersal is the key to

understanding and interpreting the charcoal record successfully.

Jacobson & Bradshaw ‘basin size’ model (1981)

Jacobson & Bradshaw (1981) developed and modified the basic constructs of the
model outlined by Tauber (1965; 1977). Their principal conclusions concern the
relationship between sedimentary basin size and pollen source area: pollen source area
increases as basin surface area increases; in basins with surface areas less that one hectare
the dominant component of the pollen assemblage originates from within a few hundred
metres of the basin; and for large basins, e.g. in excess of 75 hectares, the vast majority of
the pollen comes from regional sources derived from the canopy (C.) and ‘rainout’ (C,)
components (Tauber, 1965; 1977; Jacobson & Bradshaw, 1981).

Studies conducted by Bradshaw & Webb (1985) and Jackson (1990), which
sought to estimate pollen source areas and compared them with basin size, confirmed the
general validity of the model. ‘

The basic principles of this model can also be applied to microscopic charcoal.
Large lakes and bogs have the potential to trap charcoal from much greater source areas
than small ones. As a consequence the influences of basin size should be considered when
choosing sites for study, small basins or hollows should be used for studies of local fire
activity and sediment records from largef lakes should be used for reconstruction of
catchment wide or regional fire regimes (Jacobson & Bradshaw, 1981; Sugita, 1993;
1994; Bradshaw, 1994).

Prentice model (1985, 1988) -

The Prentice model (Prentice, 1985; 1988) predicts the proportions of different
pollen taxa deposited in a basin as a function of their deposition velocity (size and mass
dependent), above-canopy wind velocity and basin radius. The model assumes that the
dominant mode of pollen transport is by winds above the vegetation canopy, and that

patterns of pollen dispersal conform to a leptokurtic curve (Prentice, 1985; 1988). Under
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constant wind speeds pollen source area increases with lake size and decreasing settling
velocity of particles. As lake size and pollen source area increase the ‘pollen rain’
sedimented at a site becomes more homogeneous because it is increasingly well mixed in
both the atmosphere and the lake basin before final sedimentation. This is reflected in the
sedimentary pollen record by reduced resolution of local vegetation changes. Thus, the
spatial scale of vegetation heterogeneity interacts with lake size, i.e. when a lake is
substantially larger than the patch size of plant species in the landscape, pollen loading
processes are likely to record vegetation as homogeneous rather than patchy (Prentice,
1985; Sugita, 1993; 1994).

Jackson (1994) describes the Prentice model as ‘the best available model for
estimating pollen source areas for basins where atmospheric transport is dominant’. The
model produces results consistent with the majority of empirical studies of pollen source
area (Prentice, 1985, 1988; Bradshaw & Webb, 1985; Prentice ef al., 1987; Gaudreau et
al., 1989; Jackson, 1990, 1991), correctly predicting the effects of basin size on pollen
assemblages. Further comprehensive tests of its parameters are, however, still needed
(Jackson, 1994).

The model elucidates a number concepts which can be applied to charcoal
analyses: firstly, that charcoal source areas can be expected to increase with increasing
basin size; secondly, that source areas are greater for smaller charcoal particles than for
larger ones because of their lower settling velocities; and thirdly, that sedimentary charcoal
records from large lakes will not necessarily be able to distinguish periods during which
large numbers of small scale fires occurred in the catchment from periods in which a few
large fires predominated (Prentice, 1985, 1988). The final concept is particularly
applicable to moorland environments in which muirburn is practised for management
purposes but occasional large scale uncontrolled fires-occur (Imeson, 1971; Muirburn

Working Party, 1977, Maltby, 1980).
Prentice-Sugita model (1993, 1994)

A modification of the Prentice model (1985, 1988) by Sugita (1993, 1994) to

estimate pollen source areas for entire lake surfaces rather than just the point at the centre
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of the basin. The Prentice-Sugita model is more appropriate for approximating the source
area of pollen in lake sediment, because mixing and focusing of sediment redistribute the
pollen originally deposited over the entire surface (Davis, 1968; 1978; Davis & Brubaker,
1973; Lehman, 1975; Likens & Davis, 1975; Davis ef al., 1984; Jackson, 1994). The
Prentice model is, however, still perhaps more appropriate for bogs and mires where
horizontal and vertical movement of pollen after deposition is negligible (Clymo, 1973;
Sugita, 1993).

The Prentice-Sugita model is based upon the same basic assumption as the
Prentice model, i.e. that wind above the canopy and gravity below the canopy are assumed
to be the dominant transport mechanisms. Pollen abundance is treated as a distance-
weighted record of plant abundance, i.e. a tree 100 m away is represented by fewer pollen
grains than a similar tree 10 m away.

Sugita (1993; 1994) made empirical predictions of pollen source area for a range
of lakes with different diameters, using simulated landscapes of patchy vegetation. He
found that: in general terms pollen source radii for entire basin surfaces were 10-30%
smaller than those -estimated by the Prentice model for a point at the basin centre;
differences in source radius were also more profound for heavier pollen types; and average
inputs to the entire surface were more strongly influenced by nearby pollen sources than
pollen deposition at the centre. The pollen record from a lake may, therefore, have
significantly different spatial resolution from that recorded by a bog of similar radius
(Sugita, 1993; 1994). |

‘Relevant’ source areas for pollen, the areas within which the pollen produced
dominates the sediment assemblage, in simulated landscapes were within 50-100 m from
the edge of forest hollows (radius = 2 m), 300-400 m for small lakes (radius = 50 m) and
600-800 m for medium sized lakes (radius = 250 m). Although only about 30-45% of the
total pollen loading comes from within these distances, the model demonstrated that when
background pollen was constant, this proportion was adequate to reflect local vegetation
composition (Sugita, 1994).

Sugita’s results also demonstrate how larger basin radii reduce site-to-site

variations in pollen loading and the representation of pollen proportion. Large variations in
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pollen loading and proportion among small forest hollows (R = 2 m) result from strong
pollen signals of localised source plants. Large lakes, however, have little or no site-to-site
variation, indicating that pollen loading in large lakes records the spatial distribution
pattern as homogeneous, rather than patchy (Sugita, 1994).

The Prentice-Sugita model has important implications for charcoal analysis. In
terms of charcoal source areas the model suggests that local fires may have a far greater
influence upon the sedimentary record than previously believed, because ‘relevant’ source
areas of charcoal particulates may be rather smaller than previously estimated, especially
for lakes. The results also reinforce the concept that larger particles are less mobile than

smaller ones (Sugita, 1993; 1994).

2.4 The deposition and sedimentation of microscopic charcoal particles

Microscopic charcoal particles may be deposited, remobilised and redistributed
many times before finally being incorporated into a sedimentary sequence (Patterson et al.,
1987). A factor which must be considered if charcoal records are to be interpreted
effectively and accurately.

The majority of charcoal produced by a fire is, however, likely to remain within the
boundaries of the parent fire (Clark, 1983), in the forms of partially charred plants still
rooted in the ground, macroscopic fragments too large to be readily transported, and
microscopic particles which have either not been lofted and dispersed by the fire or which
were entrained temporarily in the atmospﬁere but deposited back within the confines of
the fires limits. A large proportion of this charcoal deposited in situ will remain there,
trapped within the micro-topographical features of the ground surface, until integrated
into the sediment matrix. The proportion of the charcoal produced and dispersed widely at
the time of the fire is likely to be relatively small (Clark, 1988a; Patterson et al., 1987).

The ground surface on which charcoal particles are deposited determines whether
they are susceptible to further transport. Particles falling onto bare unvegetated ground,
especially in exposed locations or on steep slopes, are particularly susceptible to secondary
transport by either aeolian or fluvial forces. Those deposited in live or partially charred

vegetation are much less readily entrained and dispersed by wind or water, because even
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relatively sparse vegetation cover greatly reduces surface wind speeds (Gregory, 1945;
ChamBerlain, 1975) and moderate amounts of leaf litter greatly reduce the effectiveness of
overland air and water flows to remove particulates from the soil surface (McVean &
Lockie, 1969). Moist land or plant surfaces have extremely high retention capacities and
are effective at preventing further mobilisation of small particulates.

Water bodies act as perfect sinks for microscopic particulates, once trapped by the
surface tension of the water the retention capacity is so great that they will not be returned
to the atmosphere by even the strongest winds (Green & Lane, 1964). However, charcoal
particles deposited in streams or lakes can be susceptible to a number of complex
redistribution and sedimentation mechanisms both within and between sedimentary basins
(Davis, 1968; 1973; 1978; Davis & Brubaker, 1973; Davis et al., 1984; Lehman, 1975,
Likens & Davis, 1975).

Charcoal analyses are normally conducted on three main types of sedimentary
matrices, soils, peats and lacustrine sediments. Each have unique characteristics and
problems as depositional environments, these shall now be discussed. The processes of
deposition and sedimentation of microscopic particulates in lakes are much more complex

than for soils and peats and therefore receive more attention.

2.4.1 Soils

The number of charcoal analyses conducted on soil profiies has been limited (e.g.
Iversen, 1941, 1969). Possibly because charcoal analyses are generally conducted as
adjuncts to pollen analyses and pollen studies on soils are rare (Dimbleby, 1981). Soils are
seldom used for pollen analyses because the anoxic conditions necessary to preserve
pollen are rarely found and consequently the pollen are generally degraded and difficult to
identify. Soils also accumulate much more slowly than peats and lake sediments and
therefore provide relatively low resolution palaeoenvironmental records (Dimbleby, 1961;
1985; Bradshaw, 1994). An exception to these general rules are forest mor humus soils
which have provided a number of high quality pollen and charcoal records (e.g. Iversen,

1969; Bradshaw & Zackrisson, 1990; Bradshaw & Hannon, 1992). Whilst problems of
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low accumulation rate and resolution are shared by charcoal analyses of soils, charcoal
preservation is much less problematic because it is chemically inert (Goldberg, 1985).
Charcoal analyses of soils, therefore, are potentially useful for reconstructing fire histories
in a wide range of environments.

The movement of charcoal particles following initial deposition on a soil surface is
controlled by a complicated interaction of factors, the most important being: vegetation
type and density, micro-topography of the soil surface, moisture content of the soil
surface, slope gradient, soil structure and hydrology, and local climate (principally wind
speeds and direction, and rainfall intensity). Due to the slow accumulation rates particles
may remain on the soil surface exposed to agents of dispersal for protracted periods of
time before incorporation and final stabilisation (Griffin & Goldberg, 1975; Clark, 1983).

Charcoal deposited on bare ground is more likely to experience secondary
distribution than that falling beneath vegetation (Chamberlain, 1975). Particles deposited
on rough soil surfaces, composed of larger aggregates and broken by obstacles such as
rocks, are less susceptible to wind erosion than those on relatively flat and uniform
surfaces. Soil surfaces with high moisture contents will have high retention capacities for
small particles, retaining them within the surface tension of soil water. Charcoal particles
on dry soils are much more susceptible to redistribution by surface winds. On steep slopes
gravity enhances particle movement in a down-slope direction and retards up-slope
movement. Soils with high infiltration capacities, common in humus rich forest and
moorland soils, are only subject to surface runoff under extreme precipitation conditions
and thus particulates deposited on them are unlikely to experience transport by such
mechanisms (Waring & Schlesinger, 1985). Similarly, particle movement is likely to be
greatest in regions where agents of dispersal are strongest, i.e. those areas with strong
winds and high rainfall (Bagnold, 1941; Chepil, 1945). -

The deposition of particles onto vegetation involves a complex interaction of
gravity and impaction processes (Chamberlain, 1975). Many particles < S pum in length are
retained on plant surfaces after initial impacts, especially those surfaces which are wet,
sticky or hairy, and once at rest they are not easily disturbed by wind alone because

surface tension and other forces hold them, and the drag of the wind is reduced by the

22



viscous sub-layer (Gregory, 1961; Chamberlain, 1967a; Chadwick, 1972). Most are
probably washed off the plants and deposited on the ground beneath by rainsplash
mechanisms, although a small proportion may be liberated and re-dispersed. On impact
with plant surfaces larger particles are more likely to rebound from surface to surface by
saltation, or to be retained temporarily and then subsequently removed, soon becoming
resident on the ground surface below the canopy (Chamberlain, 1975). Once the
particulates are on the soil surface below the vegetation they will rarely be moved by the
wind because the shearing stress on the soil is too low even in high winds (Chamberlain,
1975).

After incorporation into the soil matrix the movement of particles is likely to be
variable and dependent upon a number of factors. Dimbleby (1985) suggests that in some
instances pollen, and presumably other microscopic particulates such as charcoal, can be
locked in humic complexes in the soil preventing movement. However, in other instances
significant down profile movements of particulates may occur in water percolating through
the soil (Dimbleby, 1985), although other studies have dismissed such movements as being
insignificant (Havinga, 1974). Movements of microscopic particulates in soil matrices may
also be facilitated by soil fauna. In some well aerated soils rich in fauna, vertical and lateral
movements of particles may be considerable (Walch et al,, 1970; Dimbleby, 1985;
Andersen, 1986). In acid soils, such as moorland podzols and mor humus rich soils,
mixing is minimal because earthworms and other fauna are absent (Dimbleby, 1985). Soils
subjected to minimal faunal mixing and pércolation disturbance can be reasonably well
stratified and provide clearly defined charcoal records, and even those which have
experienced some disturbance can yield useful information if interpreted with care

(Dimbleby, 1956, 1985; Moore ef al., 1991).

2.4.2 Peats

Charcoal particles deposited on peats are subject to possible processes of
subsequent transport similar to those encountered on soil surfaces. When the ground
surface is bare the particles are more susceptible to remobilisation than when it is covered

by vegetation or plant debris. In addition, the predominantly wet nature of bog surfaces
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impede particulate movement. A number of authors have commented that once deposited
on a vegetated bog surface pollen and charcoal are highly unlikely to be redistributed
(Gillette & Goodwin, 1974; Chamberlain, 1975).

Following incorporation in the peat matrix vertical movement of particles within
bog profiles is likely to be minimal and generally unimportant on the time scales usually
encountered in palaeoecological studies (Birks & Birks, 1980). This does not, however,
rule out movement at very fine scales, as small-scale movements due to changing levels of
the water table can occur (Clymo, 1973). However, studies using finely sampled peats
have shown large sample-to-sample variations in pollen abundance which correlate well
with environmental characters and suggest post-depositional stability (e.g. Green et al.,
1988; Polach & Singh, 1980). Peats generally provide sedimentary sequences of
considerably higher resolution than soils, although rates of peat accumulation can vary

markedly over time, both within and between individual bogs (Clymo, 1973).

2.4.3 Lakes

Lake sediments are the most commonly used sedimentary medium for charcoal
analyses, however, they are also the most complex of the depositional environments
encountered. The processes controlling the sedimentation of microscopic particulates from
their initial deposition on the lake surface to final incorporation in the sedimentary
sequence are potentially complicated, highly variable and by no means fully understood.
The processes of differential deposition, rédeposition and focusing (Davis, 1968; 1973;
1978; Davis & Brubaker, 1973; Davis ef al., 1984; Lehman, 1975; Likens & Davis, 1975)
have important implications for understanding and interpreting sedimentary microfossil
records. The majority of theoretical and experimental work discussed below refers to the
sedimentation of pollen, however, the fundamental principles are generally applicable to
(Davis & Brubaker, 1973), and have been adopted by charcoal analysts (Patterson et al.,
1987; Odgaard, 1993; Scott & Jones, 1994).

Within the first few days of entering a lake differential sedimentation of different
sized particulates may result in variations in the spatial distribution of particles over the

bottom of lake basins. Differential sedimentation was first outlined by Davis & Brubaker
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(1973) using submerged pollen traps in Frains Lake, Michigan. Ragweed pollen, because
of their small size and low mass, were found to have sufficiently slow sink rates that they
were swept across the lake by wind-driven currents before sinking to depth in the water
column. The initial input of ragweed pollen was, therefore, predominant in the littoral
sediment on the windward side of the lake. In contrast, larger oak pollen were deposited
more or less equally throughout the lake because the wind-driven water currents failed to
significantly affect their deposition (Davis & Brubaker, 1973).

Similar mechanisms are likely to influence the initial settling of microscopic
charcoal particles. An appreciation of the differences in settling behaviour between
charcoal particles and pollen has been gained through a number of theoretical and
experimental studies (Skolnick, 1958; Davis, 1967; Renfrew, 1973; Cope, 1984; Odgaard,
1993). Renfrew (1973) estimated the specific weight of charcoal to be between 1.4-1.7,
approximately equal to that for pollen exines, 1.4-1.5 (Flenley, 1970). However, the
porous nature of charcoal particles (60-80%; Renfrew, 1973) may greatly reduce the
apparent specific gravity of charcoal to between 0.3-0.6 (Patterson ef al., 1987). Such low
specific weights and the small size of the majority of particles in lake sediments (55% are
between 82-172 um®) suggest that settling rates of charcoal particles in water are likely to
be lower than those of angiosperm pollen (Patterson ez al., 1987).

Laboratory experiments to determine rates of charcoal settling through water
columns have provided contradictory results. Skolnick (1958) experimented with the
deposition times of a range of different sizéd charcoal particles (significantly larger than
those commonly found in lacustrine sediments) in a water bath. He observed that unlike
typical inorganic clasts, which tend to settle out of the transporting medium as soon as
competency falls below the critical threshold velocity, charcoal fragments remain afloat for
long periods of time (the time periods are not noted) until they become waterlogged
(Skolnick, 1958). Cope (1984) obtained similar results, he observed the depositional
behaviour of four size classes of Pinus charcoal fragments (1-2, 2-4, 4-8 & 7-8 mm
length) in an agitated water bath over a period of seven months. Progressively larger

particles remained afloat for longer, some remaining afloat after seven months. Davis
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(1967) mixed small charcoal fragments, similar in size to those encountered in lake
sediment cores, with water and found that they soon became saturated and sank.

Although the differences in the sizes of charcoal particles complicate the
comparison of the results from these experiments, a key concept common to them all is
that charcoal particles, regardless of size, need to be waterlogged before settling through
the water column. The implications of this are that charcoal particles will be deposited
most rapidly under agitated water conditions which generally facilitate rapid waterlogging.
Under still water conditions, rarely encountered in natural water bodies, charcoal particles
may be dispersed and deposited widely, the larger ones (which take longer to become
waterlogged) being deposited in the windward margins whilst the very small ones are
deposited more evenly over the basin sediments. Such processes also have implications for
the differential loss of particles from lake systems with significant outflows. Large buoyant
particles are most likely to be lost via the outlet, altering the input-sedimentation equation
and complicating the interpretation of the sedimentary record (Davis & Brubaker, 1973).
A further implication is that dry charcoal particles entering a lake from the atmosphere will
settle more slowly than those transported to- the lake in stream courses and which are
already saturated. Further work needs to be done on all aspects of charcoal deposition to
elucidate questions such as the magnitude in differences in specific gravity of charcoals
produced at different temperatures and the implications for their dispersal and deposition
(Scott & Jones, 1994).

Initial deposition of a particulate on fhe lake floor may be followed by a protracted
period of resuspension and redistribution before final incorporation into the sedimentary
sequence occurs (Davis, 1968; 1973; 1978; Davis & Brubaker, 1973; Davis ef al., 1984,
Lehman, 1975; Likens & Davis, 1975; Odgaard, 1993). Pioneering work in this field was
carried out by R.B. Davis (1967) who noted the effects-of sediment mixing on lacustrine
charcoal records. Davis observed that charcoal peaks in a sediment core produced by
severe local forest fires were relatively insignificant and indistinct despite the fact that high
winds during, and rainfall events soon after the fires ensured that great quantities of
charcoal were rapidly transported to the lake (Davis, 1967). The vegetation around the

lake re-established itself quickly and small quantities of charcoal were visible on the land
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surface a couple of years after the fires suggesting that most of the charcoal had entered
the lake in a short period of time. Why were the charcoal peaks not more prominent? In
order to establish that the charcoal had not been floating on the lake surface for many
years before deposition Davis mixed charcoal particles of a similar size to those found in
the lake sediments in a water bath in the laboratory and found that they soon sank. He
concluded that the vertical spread in the charcoal peaks (over more than 20 years’
sediment depth) must be due to the mixing of sediment after initial deposition (Davis,
1967).

Studies have illustrated that lacustrine sediments can be mixed by burrowing
organisms, annual over-turn events or wind-induced currents (Davis, 1967, 1974). The
effects of burrowing fauna, such as tubificids, and seasonal over-turn can be important in a
restricted number of cases, however, the effect of wind-induced currents are far more
important in a greater number of cases (Davis, 1968; 1973; 1978; Davis & Brubaker,
1973; Davis et al., 1984; Lehman, 1975; Likens & Davis, 1975; Jackson, 1991). The
majority of studies of sediment mixing and redeposition in lakes have been pollen based
(Davis, 1968; 1973; 1978; Davis & Brubaker, 1973; Davis et al., 1984; Lehman, 1975,
Likens & Davis, 1975; Jackson, 1991). Davis (1968) was the first to quantify the general
movement of pollen and sediment from shallow littoral zones to deeper basins within lakes
by wind induced currents. She found that sediments resuspended in shallow areas were
mixed in the surrounding water and redeposited over the whole of the basin, repeated
resuspensions resulted in net accretions of sediment in the deeper areas. Subsequent
studies have reinforced these theories (Jackson, 1994). It has been estimated that pollen
grains (and presumably other microscopic particulates) are deposited on average two to
four times before being buried deeply enough to escape further resuspension and
redeposition (Davis, 1978). In extreme cases, however,-in particularly exposed locations
such as the western seaboard of Scotland, wind-induced currents in lakes can prevent
sediment coming to rest in water depths in excess of 50-60 m and many resuspensions may
occur (Pennington et al., 1972).

Redeposition processes redistribute sediment without sorting, i.e. organic and

inorganic material (except large sand grains) are moved together with no evidence of
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differential settling related to particle size or weight (Davis, 1973). However, processes of
redeposition do alter initial patterns of particle distribution. The movement of sediment
rich in smaller pollen, initially deposited in the shallow lake fringes, to the basin centre
tends to equalise the absolute amounts of smaller pollen over the basin (Davis &
Brubaker, 1973). In contrast resuspension and deposition of shallow but not deep water
sediments concentrates the larger pollen, which were initially deposited evenly over the
lake floor, in the deeper basins (Davis, 1973). Consequently, the ratio of small:large pollen
is highest in the shallower areas than the deeper ones. Sediment focusing in lakes has been
indicated in a number of pollen accumulation studies by continuous up-core decreases of
pollen sedimentation rates as the lakes fill in (Lehman, 1975; Odgaard, 1993). The effects
of sediment focusing are further complicated by the effects of sediment compaction with
depth. To account for the combined effects of these problems and to aid interpretation of
sediment charcoal profiles Odgaard (1993) built a regression factor into his model of
charcoal deposition, an approach which may be of value in subsequent studies.

Redeposition processes mix new sediment with older previously deposited
sediment and, therefore, tend to ‘smooth’ temporal variations in sediment input (Davis,
1973). Green (1981) observed that sediment mixing acts like a ‘moving average process’,
observed charcoal values in sediment samples for a certain time effectively equate to
weighted means of actual charcoal inputs for periods spanning several years both before
and after initial deposition. Davis et al. (1984), Davis (1978) and Jacobson & Bradshaw
(1981) all found evidence of significant pbllen and sediment mixing and state that a
moderate amount of sediment mixing is not necessarily detrimental to the reconstruction
of vegetation records, on the contrary in many cases the ‘smoothing’ of pollen records can
be advantageous. Moderate mixing imparts a degree of uniformity and consistency to
sedimentary pollen contents (Davis, 1978), integrating annual differences in pollen
production that might otherwise complicate analyses of vegetation composition (Jacobson
& Bradshaw, 1981), although obviously, excessive amounts of mixing will obscure fine
resolution changes.

In terms of charcoal analyses the process of mixing may have greater detrimental

implications. Charcoal is generally produced by very short duration fire events and is
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generally deposited perhaps more rapidly than pollen (Clark, 1983). Theoretically in the
sediment record of a ‘perfect sink’ (in which rapid deposition with no mixing or
redeposition occurs) fire events would be represented by discrete, individual charcoal
layers bounded by sediments devoid of charcoal (representing fire free periods).
Redeposition and mixing processes, however, destroy the individuality of each fire event,
rendering sedimentary sequences from well mixed lacustrine sediments useful only for
determining and defining periods of relative fire abundance and surfeit in a catchment.

In studies of lake sediments multiple core approaches are preferable to single core
records because they provide an insight into changing depositional regimes (Edwards &
MacDonald, 1991). Palaeoecologists, however, tend to collect a single core from the
deepest point in a lake basin, because of the labour intensive nature of palynological
investigation. Davis et al. (1984) conclude that where single cores are used the deepest
point is probably the best location to use. The deepest point is often the area experiencing
the most rapid rate of deposition, as the focal point of sediment focusing (although it
might not have been so in the past), and thus resolution is greatest. The sediment record in
the deepest part of a lake is also most.likely to be most complete (free from
uncomformities and hiati) as it is the area of the lake most sheltered from wind-driven
water currents (Davis et al., 1984). Only complete sequences of annually laminated
sediments from deep sedimentary basins, where the effects of mixing can be discounted,
can be taken to provide undisturbed, high resolution environmental records (Saarnisto,
1986, Clark, 1988b). All other sediment séquences should be treated with caution and
interpreted with care.

Processes of deposition, resuspension, redeposition and focusing vary greatly from
lake to lake, the principal controls being basin morphometry and the strength of local wind
driven currents (Odgaard, 1993). Unfortunately there is o means of assessing which lakes
have fewest problems before sampling (Sarmaja-Korjonen, 1992). The effects of sediment
focusing, when significant, need to be accounted for during profile interpretation (See

section 2.8.4).
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2.5 Site selection

The selection of a site for charcoal analyses follows the same general principles
defined for palaeovegetation studies (Jacobson & Bradshaw, 1981). The characteristics of
the site selected determine the type of application to which the individual site is suited, and
the detail and reliability of the inferred reconstructions (Bradshaw, 1994). Specific types
of site can be chosen to answer pertinent research questions (Jacobson & Bradshaw,
1981), however, the wrong choice of site may greatly restrict the success of a project. The
large amount of time required to collect and analyse palaeoecological data makes the
consideration of suitable sites a major concern.

Study sites should be chosen on the basis of the aims of the research problem to be
addressed, the temporal and spatial scales to be studied, and the availability of a suitable
sediment deposit in the proposed study area. Lake sediments, peats and soils can all be
used for microscopic charcoal analyses. The type of deposit sampled, the size and
topographic characteristics of the depositional basin and the prevailing taphonomic
processes at the site all have important implications for the fire history reconstructed.

2.5.1 Lakes

Lake size, basin morphology, catchment topography / geology / soils / vegetation /
hydrology, microclimatology, and sediment characteristics vary greatly and as a
consequence so do their charcoal source areas and possible applications of the sediment
record for fire history reconstruction (Sarmaja-Korjonen, 1992). Perhaps the most
important characteristic controlling the nature of the charcoal record ‘sensed’ by a lake is
its size (Jacobson & Bradshaw, 1981; Bradshaw & Webb, 1985). Large lakes tend to
receive charcoal from large, predominantly regional source areas and are preferred for
studies of regional fire history (Tolonen, 1983; Edwards, 1987). Progressively smaller
lakes trap predominantly locally produced charcoal and are suited to reconstructions of
more local fire histories (Jacobson & Bradshaw, 1981; Bradshaw, 1994).

The characteristics of lakes and their catchments also determine the major
processes by which the charcoal is transported to, and deposited in, the lake. The most

appropriate lakes for reliable detection of atmospheric charcoal input have essentially
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closed, relatively shallow basins, without any major inflowing streams, very small
outflows, very small drainage areas, gentle shores and ideally, dense wetland vegetation
around their perimeters to effectively filter the long-term input of charcoal particles
transported by surface runoff. Ideal lakes to collect charcoal from surface runoff would be
small, closed, and deep, with steep surrounding slopes and without a wide filtering
vegetation zone on the shore (Terasmae & Weeks, 1979; Tolonen, 1983).

The potential of lake sediments for the reconstruction of highly temporally
resolved records depends upon the degree of sediment mixing and redeposition
experienced on the lake floor. Only annually laminated lacustrine sediments can be relied
upon to provide high precision records, all other sediment sequences must be treated as if

at least some mixing may have occurred (Saarnisto, 1986).

2.5.2 Peats

Peat deposits generally provide less useful information about regional fire histories
than lake sediments because they recruit charcoal from much more local source areas
(Tolonen, 1983; Edwards, 1987). Bog surfaces do receive inputs of charcoal from
regional sources (‘background’ deposition) but the quantities are generally so small that
they are relatively insignificant when diluted by the dominant local component (Sugita,
1994).

The processes of charcoal particle dispersal and sedimentation in peatlands are
significantly different, and generally less complex, than those at lake sites (Bradshaw,
1994). The inputs of microscopic charcoal to peats are likely to be similar to those for
pollen. The major inputs being from atmospheric sources (Green & Dolman, 1988,
Bradshaw, 1994), although waterborne components cannot be totally discounted,
particularly in rheotrophic mires (Moore et al., 1991). As is the case with lake sites the
topographic characteristics of the mire or bog determine the nature of the source area
from which charcoal is recruited, i.e. small enclosed hollows generally record more local
histories of fire than larger, more open peatlands (Patterson et al., 1987; Sugita, 1994).

Stratified peat deposits are particularly useful for high resolution fire histories

because post depositional, horizontal and vertical mixing of microscopic particulates is
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generally minimal (Clymo, 1973). In some cases palynomorphs may experience movement
but the influence on the stratigraphic record is likely to be insignificant (Clymo & Mackay,
1987). Turner & Peglar (1988) and Green ef al. (1988) conducted extremely fine
resolution palynological studies of peat deposits and evidence of mixing was undetected.
Peatlands are generally wet and thus rarely burn, although their drier margins may
be more susceptible to fire (Tolonen, 1983). When they do burn, however, the fire events
are recorded by conspicuous charcoal layers within the peat stratigraphy (Tolonen, 1983;
Edwards, 1987). In situ fire events are, therefore, generally readily identifiable in

comparison with local or extra-local fire activity.

2.5.3 Soils

Soils, like peats, generally provide records of local fire activity, as although they
may receive some input of charcoal particulates from extra-local or regional sources it is
insignificant in comparison with that produced by local fires (Patterson et al., 1987,
Sugita, 1994). Charcoal records from soil profiles should not, therefore, be interpreted in
terms of regional fire activity. Indeed, data provided in Chapters 4 and S of this thesis
suggest that soil core charcoal records are perhaps only relevant for reconstructing in situ
fire activity. In moorland soils the dominant sources of charcoal are most likely to be in
situ fires (Rhodes, 1995) or atmosphere inputs during or immediately after local fires.
Some dispersal of charcoal in overland water flows may occur but this is likely to be of
minimal importance in most cases (Clark, 1991).

Well stratified soils with a high degree of temporal integrity, i.e. those which have
not experienced extensive mixing, erosion and loss of soil material, or deposition and
addition of non-contemporaneous material, are of most use to the charcoal analyst. Acidic
soils, such as podzols, in which faunal life is restricted provide perhaps the best
opportunities for finding relatively undisturbed soil profiles (Dimbleby, 1985). A number
of studies have produced good palacoenvironmental charcoal records from forest and
moorland podzols and mor humus soils, e.g. Iversen (1941, 1969), Whittington (1983),
Odgaard (1988), Bradshaw & Zackrisson (1990), Mitchell (1990), and Bradshaw (1993).
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In order to find continuous, relatively undisturbed soil profiles it is best to avoid
locations on steep slopes which may have experienced erosion, or at the base of slopes
where colluvial material may be deposited. Flat, uniform ground surfaces perhaps provide
the best opportunities for good soil profiles, but if they are not available water-shedding
locations are preferable to ones receiving flows of surface water which could carry re-

worked sediments and charcoal.

2.6 Sampling

The issue of sediment sampling strategies and their implications for the
interpretation of charcoal profiles have been addressed in detail (R.L. Clark, 1983; 1987;
J.S. Clark, 1988; Green & Dolman, 1988). Clark (1983; 1987) was the first to address the
matter in a systematic manner providing a theoretical model of how sampling regimes of
different intensities alter the form and resolution of a sedimentary charcoal profile and the
amount of information to be gained from it. The subsequent studies of Clark (1988) and
Green & Dolman (1988) reiterate the same fundamental concepts.

A principal- problem -is the conflict of scales between the relatively slow
accumulation rates of sediments and the short duration of fire events. Vegetation fires are
short duration events, lasting from several hours to a maximum of several weeks. In
theory, given rapid charcoal dispersal and deposition, limited delayed transport of charcoal
from the catchment to the sediment sink, and minimal post-depositional disturbance, local
fires should be represented in sediments as discrete horizons of microscopic charcoal of
perhaps 1-2 mm in thickness. Problems of resolution arise, however, because typical sub-
samples taken from cores for analysis are one centimetre thick, a depth of sediment which
may represent between 5-20 years (or in many cases much longer periods) worth of
deposition in a lake or bog (Clark, 1988). Much higher resolution sampling, 1-2 mm
sediment slices, are required to ‘sense’ individual events effectively. Individual fires may
be resolved in one centimetre thick sections of the sediment when fire recurrence intervals
are greater than the time period contained in the sample, but when several fires occur

within the period of a single sample the charcoal from the separate fires will be
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agglomerated. In practice, therefore, the amalgamation of charcoal from several fires is
almost inevitable when dealing with such coarse sampling densities.

Matters are further complicated by the fact that in most lakes, even when very fine
interval samples are taken (1-2 mm thick) the processes of mixing and redeposition
combine the charcoal from a number of fires. The charcoal in an individual sediment
sample may be the product of a single fire diluted by sediment from years of no fire, or the
product of many fires within the period over which the sediment has accumulated (Clark,
1983; 1987; Clark, 1988). Varved sediments provide the only means of attaining a degree
of temporal control (Saarnisto, 1986), however, even within the time taken for an
individual lamination to form many fires may have burned within the catchment and the
charcoal within the lamination may be the product of many of a number of these fires. In
the sediment record it is impossible to distinguish between the microscopic charcoals
produced by different fires.

The resolution of the record is obviously highest when sampling frequency is
greatest and fine resolution samples are taken contiguously. Long sedimentary sequences,
however, are rarely sampled contiguously, because time constraints on analyses dictate
that in most cases samples are taken at minimum intervals of 4 or even 8 cm. Therefore,
large gaps occur in the reconstructed fire record. Clark (1983; 1987) illustrates the extent
to which a charcoal record can be distorted by different sampling intensities. Coarse
sampling schemes miss much more fire activity than they record providing little more than
cursory information about fire frequency, aﬁd allowing no more than gross generalisation
of changing fire regimes over time.

Sampling strategies are also constrained by the nature of the sediment, the methods
of core collection and the method of charcoal quantification. Unconsolidated lake mud and
fibrous peat are much more difficult to section thinly-than clay-rich or well humified
sediments, an important consideration if high resolution records are required. Monoliths of
peats and soils have proven particularly useful for capturing large sediment samples which
can be sectioned accurately using a microtome (Turner, 1964). Freeze coring technologies
have been at the centre of advances in high resolution palynology and charcoal analysis of

annually laminated lacustrine sediments (Cwynar, 1978; Tolonen, 1978; Gajewski ef al.,
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1985; Clark, 1988; Green & Dolman, 1988; Peglar, 1993). Sample preparation and
charcoal quantification techniques which allow the processing of large numbers of samples
are necessary to produce high resolution fire histories, see section 2.7 for a treatment of

possible methods.

2.7 Sample preparation & counting procedures.

In the five decades since the inception of microscopic charcoal analyses a great
number of techniques have been devised (See reviews in Tolonen, 1986; Patterson et al.,
1987). Unlike in the field of palynology, where a small number of methods (Faegri &
Iversen, 1989; Moore, Webb & Collinson, 1991) have been adopted universally, standard
sample preparation and charcoal quantification procedures have not been accepted
(Patterson ef al., 1987). Perhaps the principal reason for this is that different preparation
and quantification methods are more practical and appropriate for specific studies,
depending upon the aims of the analyst, the characteristics of the site and the sedimentary
assemblage under scrutiny. For example, a petrographic thin section method would be
more appropriate than a pollen slide point count method for reconstructing local fire
activity from varved lake sediments (Clark, .1988; Clark et al., 1989: Clark & Royall,
1995).

For this study a single preparation procedure and two different charcoal
quantification strategies were used, one for the analysis of soil cores and one for lake
sediments. To provide the rationale behind their adoption, the alternative methods used by
previous exponents of charcoal analysis will be discussed.

The counting of charcoal on pollen slides has been, and still is, by far the most
frequently used approach, accounting for 78% of the 156 studies noted here (See
Appendix 1 for a full list). The principal reason beirlg that the majority of charcoal
analyses are conducted in conjunction with pollen studies and analysts can save both
sample preparation and counting time by quantifying the pollen and charcoal
simultaneously. Despite the acceptance of pollen slide preparations as a medium for
charcoal quantification by the majority of analysts no single standard counting technique

has achieved general acceptance. Broadly similar methodologies are practised but
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practically all authors slightly modify parameters such as the size ranges of particles
counted, the number and form of size classes used, or how charcoal abundance is
expressed. As a consequence a bewildering range of methodological considerations exist
for prospective analysts.

In order to simplify matters greatly and allow a generalised discussion, the pollen
slide charcoal techniques have been divided into four broad categories:
[1] Absolute particle abundance methods - all charcoal particles are counted regardless of
size to provide a measure of the total number encountered on the slide (e.g. Iversen, 1941;
Davis, 1967).
[2] Size class methods - individual charcoal particles are tallied into predetermined size
classes, on the basis of particle length or surface area, using an eyepiece grid or graticule.
Charcoal abundance can be expressed as an area of charcoal in each individual size class
or as a total area of charcoal encountered in a sample by summing the areas of the
individual size classes (e.g. Waddington, 1969; Swain, 1973).
[3] Point count method - charcoal abundance is quantified by recording the number of hits
on charcoal particles scored by a standard number of points on an eyepiece reticle during
scans of a predetermined area of slide (Clark, 1982).
[4] Subjective estimate - estimation of the charcoal content of a sample on either a 5/7-
point scale or percentage basis (e.g. Tallis, 1975; Tolonen, 1983).

Table 2.1 provides a summary of the relative popularity of charcoal quantification
methods within a sample of 156 charcoal stﬁdies (See Appendix 1 for a full list) performed
during the past six decades. The pollen slide methods are also compared with alternative

approaches.
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Table 2.1: Temporal trends in the application of microscopic charcoal quantification
methods.

Time period (i.e. 40-49 = 1940-1949)
Charcoal Quantification Method 40-49 50-59 60-69 70-79 80-89 90-94 Total

Pollen slide - Particle abundance 1 3 5 21 19 49
Polien slide - Size class / Particle

area 1 9 23 9 42
Pollen slide - Point count 15 12 27
Pollen slide - Subjective estimate 1 2 1 4
Chemical digestion / ignition /

spectroscopy 4 9 1 14
Petrographic thin sections 3 2 5
Petri dish 1 1
Macrofossil 4 10 14
Total 1 4 19 78 54 156

Over the period from 1940-1994 the absolute abundance and size class methods
have been most frequently employed, however, the point count method (Clark, 1982) has
gained popularity more recently because of the speed at which samples can be processed.
Subjective estimates of charcoal abundance on pollen slides are rarely used in favour of
the more quantitative approaches, they can, however, be useful when sedimentary charcoal
contents of samples are extremely high (Vuorela & Hiekkanen, 1991).

Table 2.2 summarises the relative merits and weaknesses of each of the techniques.
Each individual method has a number of pbsitive and negative characteristics and pollen
slide methods as a whole have a number of common advantages and deficiencies. As
mentioned previously a great benefit of pollen slide methods is that no additional sample
preparation is necessary beyond the preparation of the pollen slides. In addition, all of the
counting methods are relatively quick and easy, point counts and subjective estimations
being more rapid than size class methods, and can be performed at the same time as pollen

counts.
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Table 2.2: The merits and weaknesses of pollen slide charcoal analysis techniques.

Method Positive points Negative points

Pollen slide - 1. Utilises pollen slide 1. Particle fragmentation & loss

absolute preparations during preparation

abundance 2. Counting relatively quick & 2. Large particles ‘sieved-out’ during
easy slide preparation

3. Uncertainty of identification
4. No account for particle size

Pollen slide 1. Utilises pollen slide 1. Particle fragmentation & loss
- size class preparations during preparation
2. ‘Local vs regional’ source 2. Large particles ‘sieved-out’ during
determination using size slide preparation
classes 3. Uncertainty of identification
4. Measurement of particles time
consuming
Pollen slide 1. Utilises pollen slide 1. Particle fragmentation & loss
- point count preparations during preparation

2. Counting very quick & easy 2. Large particles ‘sieved-out’
' ) 3. Uncertainty of identification
4. No account for particle size

Pollen slide 1. Utilises pollen slide 1. Particle fragmentation & loss
- subjective preparations during preparation
estimate 2. Extremely quick & easy 2. Large particles ‘sieved-out’ during

slide preparation

3. Uncertainty of identification
4. No account for particle size

5. ‘Subjective’ estimation error

The main disadvantages of pollen slide techniques are several fold. Perhaps most
important is the detrimental effect that preparation procc;;iures have on charcoal particles.
Pollen slide preparation procedures are both chemically and mechanically rigorous (Faegri
& Iversen, 1989; Moore, Webb & Collinson, 1991), this is necessary in order to digest
and remove organic and inorganic material from the sediment matrix. Pollen grains are

highly resistant to the preparation processes because of their sporopollenin rich exines
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(Birks & Birks, 1980) and generally survive them in tact and undamaged. Fossil
microscopic charcoal particles, however, are much less robust. Although carbon is
chemically inert (Clark, 1984; Scott & Jones, 1991) charcoals produced by biomass
burning are rarely composed of pure carbon (Goldberg, 1985) and so they are susceptible
to oxidation and degradation during acetolysis. Perhaps more importantly, charcoals are
mechanically fragile, especially when saturated, and thus sieving, stirring and particularly
centrifuging of samples will cause particle fragmentation. Clark (1983; 1984) proved the
significant extent to which pollen preparation procedures cause charcoal fragmentation
and loss, and it is for this reason that such preparation techniques are far from ideal. Every
precaution should be taken to preserve the form of the original sedimentary charcoal
population during sample processing, minimising particle fragmentation and loss and thus
ensuring that the charcoal index reconstructed provides a true representation of that
deposited and sampled.

Sediment samples processed by standard pollen preparation procedures are
normally passed through circa 180 micron aperture sieves to remove unwanted detrital
material (Moore ef-al., 1991), however, large charcoal particles are also removed. The
consequences of this process must be taken into consideration when quantifying charcoal
on pollen slides and approaches count particles into size classes are rendered particularly
impotent. The removal of larger particles, and particle fragmentation, results in over 90
percent of the charcoal found on pollen slides being between 5 and 20 um in length
(Patterson et al., 1987). Such small particlés behave like dust in the atmosphere, having
the potential for being transported great distances before being deposited. Pollen slide
charcoal assemblages, therefore, tend to provide records of regional fire activity unless
sites are carefully selected to provide a more local record (See Section 2.5). A number of
authors have sought to redress this problem by saving the sieve washings, quantifying the
charcoal in them and using the charcoal counts in conjunction with the pollen slide counts
(Mehringer et al., 1977; Robinson, 1987; Bradshaw, 1993).

Correctly identifying the charcoal represents a further fundamental problem
associated with quantifying charcoal on pollen slides. Microscopic charcoal particles are

by definition very small (predominantly 5-20 pm in length, Patterson et al., 1987), and
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even under x400-500 magnification (typically used for pollen analysis) structural features
necessary for conclusive identification are indiscernible or absent in most cases. Most
analysts identify charcoal particles on the basis of being angular, uniformly black and
opaque (Swain, 1978; Head, 1980; Battson & Cawker, 1983; Edney ef al., 1990; Clark et
al., 1989). Such identification criteria are highly questionable because they are fulfilled by
other organic and inorganic particles found in pollen preparations, e.g. pyrite, marcasite
and biotite (Bolton, 1988). Pollen processing procedures have also been found to darken
organic material considerably (Clark, 1984) and this great care is needed in counting
charcoal on pollen slides. Some authors have attempted to eradicate errors by making type
slides of charcoal samples to aid in identification (e.g. Davis, 1967), however, unequivocal

identification is still difficult.

It is evident that although pollen slide methods are the most widely used methods
of charcoal analysis they are far from perfect, and as a consequence a range of alternative
approaches have also been developed. Table 2.3 summarises the relative merits and
weaknesses of the principal alternative methods.

Chemical digestion-assay methods were developed to quantify the elemental
carbon content of sediments without having to perform tedious microscope counts (Tallis,
1975; White & Hannus, 1981; Griffin & Goldberg, 1983; Winkler, 1984). In theory such
techniques should produce charcoal records unaffected by biases encountered by pollen
slide methods. The percentage carbon index derived represents an approximation of the
absolute carbon/charcoal content of a sediment sample and should, therefore, allow direct
comparisons of charcoal profiles both within and between sites (Winkler, 1984; Patterson
et al., 1987). Chemical digestion methods have not, however, been widely adopted (Table
2.1). Robinson (1984), Jones et al. (1987) and Bolton (1988) all attempted to apply
chemical-assay techniques but encountered problems which led to them being abandoned
in favour of pollen slide methods. The principal problems encountered were that fibrous
peaty sediments were inadequately digested by standard chemical digests, and that small-
scale changes in carbon content (typically only 1-5% of the sediment sample) could not be

resolved by the methods.
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Table 2.3: The merits and weaknesses of commonly used ‘non-pollen slide’ charcoal

analysis methods.

Method

Positive points

Negative points

Chemical
digestion-assay

Petrographic
thin section
- size class

Petrographic
thin section
- point count

Petri dish
method

Sediment slurry
- point count

1. ‘Absolute % carbon’ measure
comparable between sediment
sequences and sites

2. Relatively quick method which
doesn’t require microscope work

1. Minimal particle fragmentation
& loss during preparation

2. Contiguous 10 cm samples

3. ‘Local vs regional’ source
determination using size classes
4. No removal of large particles
by sieving

5. Appreciation of depositional
context of charcoal particles

1. Minimal particle fragmentation
& loss during preparation

2. Contiguous 10 cm samples

3. No sieve removal of large
particles by sieving

4. Appreciation of depositional
context of charcoal particles

1. Minimal particle fragmentation
& loss during preparation

2. Minimal uncertainty of
identification

3. No removal of large particles
4. SCPs can be counted
simultaneously

1. Minimal particle fragmentation
& loss during preparation
2. Counting very quick & easy

1. Low sedimentary carbon contents
(typically 1-5%) produce unexceptional
profiles

2. No account for particle size

3. No differentiation between carbon
from biomass & fossil fuel combustion
4. Inefficient in fibrous peats

1. Extremely time consuming preparation
procedure

2. Unable to count pollen simultaneously
3. Measurement of particles time
consuming

1. Extremely time consuming preparation
procedure

2. Pollen cannot be counted
simultaneously

3. No account for particle size

1. Relatively time consuming counting
procedure
2. Cannot count pollen simultaneously

1. Unable to count pollen simultaneously
2. Uncertainty of identification
3. No account for particle size
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A further problem with the technique is that chemical digestion-assay are incapable
of discriminating between carbon produced by the combustion of local biomass and that
produced by the high temperature combustion of fossil fuels. Sediments deposited during
the past century are enriched with industrially derived carbon which can obscure the
charcoal record of local catchment fire (Winkler, 1985; Patterson ez al., 1987).

Petrographic thin section methods were introduced to lake sediment charcoal
studies by Clark (1988). Previously utilised widely in the fields of soil science and geology,
Clark (1988; 1989; 1990; Clark et al., 1989) adapted the technique to provide high
resolution fire histories of annually laminated lake sediments. The method is particularly
effective for the reconstruction of local fire histories because the majority of charcoal
particles represented are relatively large (50-10,000 um in length) and unlikely to have
been transported great distances from their point of origin before deposition (Clark,
1988). The large size of the particles also means that they are easily identified, and both
size class and point count methods can be used to quantify the charcoal depending upon
the objectives of the analysts (Clark, 1982; Clark, 1988; 1989; 1990). Despite the obvious
potential of the method it has not been adopted by other analysts, this is probably due to
the potentially complex and time-consuming nature of the sample preparation procedure,
and the fact that pollen and charcoal cannot be counted simultaneously.

The ‘petri dish method’ adopted by Simmons and Innes (1981) provides a very
simple means of preparing and quantifying charcoal abundance, akin to standard -
macrofossil analyses. The authors disaggregated peat samples mixed with water in gridded
petri dishes and estimated the percentage charcoal cover in each of the grid squares under
a binocular microscope at x60 magnification. The advantages of such a simple approach
are the speed at which samples can be analysed and the minimal chance of charcoal
fragmentation during sample preparation. The disadvantages are equally obvious, despite
an estimated error of replicability of only +/- 3% on charcoal estimation (Simmons &
Innes, 1981) the accuracy and consistency of such subjective quantification methods are
open to doubt. There is, however, no reason why more quantitative counting methods

cannot be used with petri dish preparation methods (See Section 3.6).
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The sediment slurry preparation procedure developed by Clark (1986) is a further
method which is both easy to perform and minimises charcoal particle fragmentation
during sample preparation. Aliquots of unadulterated, standardised sediment slurries are
mounted on pollen slides under sealed cover slips. Clark (1986) advocated a point count
method with this preparation procedure there is no reason why size classes could not be
used. It is surprising that no other studies have been based around this technique, despite

its obvious merits, most analysts still preferring pollen slide techniques.

2.8 The interpretation of charcoal records

Charcoal records represent the most direct evidence of fire in sediments (Wright,
1981). However, the inference of spatial and temporal patterns of fire activity from
fluctuations in microscopic charcoal abundance in sediment sequences is an extremely
complex process. Many of the problems faced are similar to those encountered in
interpreting pollen records (Faegri & Iversen, 1975), but many more are unique to
charcoal analyses (Clark, 1983). The aim of the following section is to review and discuss
how charcoal data has been interpreted in the.past and to provide a synthesis of effective
techniques and realistic assumptions for future interpretation. It should be borne in mind
from the outset, however, that current inadequacies in the knowledge of charcoal
production, dispersal, deposition, sedimentation, sampling and methods of quantification
severely restrict the potential reliability and accuracy of fire histories reconstructed using

microscopic charcoal analyses (Battson & Cawker, 1983; Anderson & Davis, 1986).

2.8.1 The nature of sedimentary charcoal data

Charcoal is produced by the partial or incomplete combustion of plant material, a
relatively simple process (Section 2.2). However, before-charcoal particles are integrated
in a sediment sequence they are subjected to dispersive and depositional processes of
unreconstructable form, duration and spatial scale. The charcoal particles are then
subjected to further, possibly detrimental, procedures during sample capture, preparation
and quantification, before the charcoal profile is produced. Sedimentary charcoal records

are, therefore, the products of very complex chains of processes, and are as much, if not
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more so, the product of the processes which combined to form the sediment assemblage
and the methods used to quantify and express the charcoal abundance, as they are the
product of the size, intensity, and locality of the parent fires. It is no wonder, therefore,
that they are so potentially difficult to interpret.

Palynologists are able to identify the pollen of individual plant taxa and use their
relative abundance to reconstruct detailed vegetation histories (Moore et al., 1991). In
contrast, with the exception of charred fragments of monocotyledon epidermis, it is not
possible to identify the plant taxa or species from which microscopic charcoal particles
originate (Clark, 1983; Burney, 1987). The various cellular structures which enable
palaeoethnobotanists to identify macroscopic charcoal specimens are not present in the
microscopic particles encountered by palaeoecologists (Smart & Hoffman, 1988).
Microscopic charcoal analysts, therefore, can only quantify the relative total abundance of
charcoal in a sample. This greatly restricts the amount of information to be gained from a
microscopic charcoal record, and is analogous to attempting to reconstruct vegetation

histories using the total pollen sum alone.

2.8.2 Expression of charcoal abundance

The simplest method of charcoal quantification, both practically and theoretically,
is to count the number of particles in each sample irrespective of size (e.g. Iversen, 1941,
1969). Charcoal abundance can be expressed as a concentration of particles in a unit
volume/weight of sediment (e.g. Davis, 1967, Tsudaka & Deevey, 1967; Bradbury et al.,
1975; Head, 1980), or preferably given a high degree of dating control as an influx of
particles per unit surface area of sediment per year (e.g. Amundson & Wright, 1979;
Huttunen, 1980; Kodela & Dodson, 1988). Gross changes in particle abundance are
interpreted as representative of changing fire activity, abundant charcoal being the product
of intensive regional and local fire activity and nominal amounts of charcoal the product of
limited fire activity (Patterson et al., 1987).

The quantification of charcoal particles in size classes was introduced to
‘maximise‘ the amount of information attainable from charcoal records (e.g. Waddington,

1969; Bradbury & Waddington, 1973; Swain, 1973). A theory based upon the premise
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that smaller particles are more susceptible to dispersal than larger ones, and that tallying
particles by size provides additional information about the proximity of the source
fire/fires (Patterson et al., 1987, Clark, 1988). An abundance of large charcoal fragments
in a charcoal assemblage is taken to denote local fire activity, whilst a predominance of
small particles is indicative of regional rather than local fire activity (e.g. Tolonen, 1985;
Patterson ef al., 1987, Wein et al., 1987, Clark, 1988; Sarmaja-Korjonen, 1992). Indices
of total charcoal area in a given sample can also be calculated by summing the areas of the
individual particles, providing a measure of charcoal abundance which is a function of
both particle frequency and size (e.g. Byme et al., 1977; Cwynar, 1978; Davis, 1979,
Green, 1981; Robinson, 1983; Clark, 1986; Burney ef al., 1994).

The validity of expressing charcoal abundance in terms of particle size classes and
total area indices was questioned by Battson & Cawker (1983). Their argument centred
around the fact that as so little is actually confirmed about the differential taphonomy of
charcoal particulates of varying size it is inappropriate to interpret charcoal assemblages
on such a basis. In addition, charcoal area indices place an artificially inflated importance
on larger particles in relation to smaller ones, when it is perhaps more wise to assume that
each particle, regardless of size, represents a piece of information of equal importance
(Battson & Cawker, 1983). This argument is supported by several studies which have
noted that frequencies of large particles are generally simply common when particles of all
sizes are common (e.g. Mehringer et al., 1977; Patterson et al., 1987; Tipping et al.,
1993), the high degree of correlation between size classes found rendering the use of size
classes ineffectual for interpretation.

Many studies which perform charcoal analyses in unison with pollen analyses
express charcoal abundance as a percentage of the total pollen sum (e.g. Hope &
Peterson, 1976; Terasmae & Weeks, 1979; Battson &-Cawker, 1983; Edwards, 1985).
The assumption is made that pollen and charcoal have approximately similar source areas
and are dispersed by similar processes, however, this might not necessarily be the case as
further work on charcoal taphonomy is needed. Swain (1973) expressed charcoal
abundance as a ratio of total pollen abundance (C:P ratio) in an attempt to distinguish

‘true’ contemporaneous catchment fires from ‘false’ peaks in the charcoal record
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produced by in-washes of charcoal-rich soil or redeposition of sediments in a lake basin.
Immediately after a fire in a catchment charcoal abundance should be high and pollen
production depressed due to the destruction of the vegetation (Swain, 1973). Many others
have adopted the C:P ratio as a means of expressing charcoal abundance, e.g. Amundson
& Wright, 1979; Head, 1983; Gajewski et al., 1985; Tolonen, 1985; MacDonald ef al.,
1989; Bennett et al., 1990), but again caution is needed in accepting the assumption that
pollen and charcoal are dispersed and deposited by the same processes.

There is no single ‘right’ way of expressing charcoal abundance, each of those
discussed above has both positive and negative points, and a case could be put forward to
support the adoption of each. However, given the complex nature of charcoal taphonomy
one might be best advised to err on the side of caution and avoid attempts to infer fire
proximity on the basis of charcoal particle size, except perhaps with respect to highly
localised fire histories reconstructed from soils and peats (See Chapters 4 & 5), and
merely express charcoal abundance as a total sum of all particles regardless of their size or

arca.

2.8.3 Source of ignition

‘The presence of charcoal in pollen preparations merely tells us that combustible
materials have been ignited’ (Edwards, 1987) but not how they were ignited. Fires can be
started by both natural and anthropogenic means, and it is not possible to determine the
ignition source from the microscopic charcoal itself (Clark, 1983). Great care needs to be
taken inferring likely causes of ignition. Charcoals formed and deposited before human
occupation, or in locations unoccupied by humans, must have been started by natural
processes, i.e. lightning strikes, volcanic action, sparks from rock falls, or spontaneous
combustion (Komarek, 1964; 1968; 1971; 1972), however, during periods of human
occupation of an area it is impossible to determine unequivocally whether natural or
anthropogenic sources are responsible for igniting fires.

Charcoal records are regularly used, often in conjunction with pollen analyses from
archaeological contexts, to infer human modification of the landscape using fire (e.g.

Simmons & Innes, 1981; Chambers ef al., 1988; Mitchell, 1990; Charman, 1992). The

46



coincidence of abundant charcoal with declining arboreal pollen in Neolithic or later
sediments is often attributed to anthropogenic woodland clearance (Edwards, 1985;
Bennett ef al., 1990). However, although the circumstantial evidence for such an
explanation is strong, especially since major natural fires in Britain are rare (Rackham,
1980; Day, 1993), it is by no means a certainty. Evidence of considerable numbers of
contemporary fires being ignited by natural processes, particularly lightning strikes, should
be used a healthy level of caution, e.g. Cwynar (1977) estimates that 48.5% of modern

fires in Canadian wildwood were started by lightning.

2.8.4 What information can be gained from microscopic charcoal assemblages?

A fundamental consideration when interpreting sedimentary charcoal records is
whether individual fires can be resolved? Swain (1973) and Byme et al. (1977) were able
to identify individual fire events in lake sediment records, however, they used extremely
high resolution sampling strategies and annually laminated sediments. The vast majority of
charcoal analyses conducted, however, use low intensity sampling regimes, and the diffuse
nature of the boundaries between adjacent stratigraphic units (caused by sediment mixing
and redeposition), dictate that individual fires can not be detected (Terasmae & Weeks,
1979; Edwards, 1990). Whilst it is tempting to interpret all of the pronounced peaks in
charcoal records as representative of individual fires (Tolonen, 1978, 1983), most charcoal
records are no more than histories of the relative importance of fire in the general
environment around sediment sinks and should be interpreted as such (Patterson ef al.,
1987; Edwards, 1990). Too many charcoal records are perhaps over-interpreted.

What can be inferred from charcoal records about fire frequency, size, intensity,
and location in the landscape? Extremely highly resolved fire records can be reconstructed
using high resolution analyses of contiguously sampled laminated sediments (Clark, 1988;
Clark et al., 1989; Peglar, 1993), and in some instances it may be possible to determine
the frequency of individual fires. The unequivocal reconstruction of the size, intensity, and
position of individual fires in the landscape, however, is impossible using single lake or
terrestrial sediment cores (Tolonen, 1983; 1986, Patterson ef al., 1987; Clark et al,

1989).
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Each and every charcoal profile should be interpreted individually and in isolation
within their own unique context, generalisations should be avoided wherever possible.
Listed below, however, are some cautious guidelines useful for interpreting relatively low
resolution fire records: low charcoal contents generally represent periods when few or no
large fires occurred locally (Huttunen & Tolonen, 1977; Tolonen, 1978); high charcoal
levels suggest fire frequency was possibly higher, although, it is not necessarily possible to
determine whether the fires burned locally or regionally (Winkler, 1985); the height of
charcoal peaks is not a good indication of fire proximity because local fires do not
necessarily produce more prominent peaks than regional fires (Swain, 1973); and, in order
to confirm the local origin of the charcoal source one is best advised to use indirect
measures such as charcoal:pollen ratios, varve thickness (Swain, 1973), mineral magnetic
measurements (Rummery ef a/., 1981), aluminium and vanadium influxes (Cwynar, 1977),
or abrupt changes in ash and mineral contents of the sediment (Tolonen, 1980) in addition
to charcoal records.

It is impossible to distinguish changes in fire frequency from changes in fire
intensity in the sediment charcoal records of the majority of catchments (Singh ef al.,
1981). Relatively high and low frequencies and/or intensities of fire are both generally
expressed by respectively high and low relative proportions of charcoal in the sediment.
More charcoal, however, may be deposited in sediments after a high intensity fire than a
low intensity fire or a series of low intensity fires because: firstly, more charcoal is
produced as more combustible material is burnt; secondly, a high intensity fire is likely to
burn a greater area of the catchment; and thirdly, removal of more of the vegetation cover
may allow greater runoff and more charcoal to be washed into the sedimentary sink (Singh
et al., 1981). Patterson & Sassaman (1988) also suggest that ‘other things being equal,
intense fires or repeated low-intensity fires, should result in greater accumulations of
sedimentary charcoal than infrequent, low-intensity ones’.

More charcoal does not, however, necessarily mean more fires (Clark, 1983). Not
only do the quantities of charcoal produced by individual fires vary greatly but dispersal
and deposition processes can have an overriding influence on the form of sedimentary

charcoal records. As a result, rather than using the abundance of charcoal to provide an
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indication of fire frequency Clark (1983) suggests that the form of the curve is more
important. In general, more frequent fires produce a smoother curve than less frequent
ones, and less frequent fires tend to show greater difference between charcoal content
maxima and minima (Clark, 1983; Sarmaja-Korjonen, 1991).

In situ fires in peat or soil profiles may be identifiable by the presence of
conspicuous microscopic charcoal layers, macroscopic charcoal remains, or evidence of

obvious in situ charring of surface organic matter and litter (Tolonen, 1985, 1987).

2.8.5 Interpretation of charcoal assemblages from lakes in which sediment mixing or
focusing may have occurred.

Pennington (1979) addressed the problem of determining whether sediment mixing
had affected pollen assemblages in lake sediments by expressing pollen abundance in
several formats, as a concentration, as an influx and as a percentage of the total pollen
sum, and by contrasting the signals provided by each. Contemporaneous changes in all
three measures are most likely to reflect real changes in pollen influx to the lake, and
changes occurring due to focusing tend to show up as changes in pollen influx without a
correlative change in concentration (Pennington, 1979). A similar methodology could be
adopted with respect to microscopic charcoal assemblages.

A number of independent indices have also been formulated to aid and corroborate
the correct interpretation of charcoal records in lacustrine environments. The
Charcoal:Pollen ratio introduced by (Swain, 1973) has been adopted by a number of
authors as an effective means of distinguishing charcoal peaks of local and regional origin
(e.g. Cwynar, 1978; Swain, 1978; Huttunen, 1980; Patterson & Sassaman, 1988; Sarmaja-
Korjonen, 1992). However, differential focusing of pollen and charcoal suggests that the
final deposition of the more buoyant microscopic charcoal particles will only occur in the
calmest areas of a lake in contrast to pollen which will be sedimented over a generally
larger area, leading to an over representation of charcoal relative to pollen in the focal
points of lakes (Odgaard, 1993). This must have implications for the validity of
Charcoal:Pollen ratios. Edwards & MacDonald (1991) provided an excellent example to

highlight such problems. Six cores taken from different locations in Loch Doon revealed
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marked variations in the charcoal profiles implying disparities in the depositional processes
between cores. Interestingly, however, the profiles for alder pollen exhibited much less
variation between cores, suggesting less significant redeposition within the pollen
population, and marked differential focusing between the charcoal particles and the alder
pollen.

Other indirect confirmatory evidence of ‘local’ fire activity has also been gained by
equating charcoal peaks with abrupt and contemporaneous changes in the following
parameters: varve thickness (Swain, 1973; Cwynar 1977); influx of vanadium and
aluminium (Cwynar, 1977); abrupt increases in sedimentary ash and mineral contents
(Tolonen, 1978); declines in Picea pollen (Tolonen, 1978); sudden but temporary changes
in diatom assemblages (Tolonen, 1980); an enormous rise in magnetic minerals (Rummery
et al., 1979; 1981). The most reliable interpretations will be gained by using as many of

these indices together as possible.
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Chapter 3: Methods

Abstract

The locations, descriptions and selection criteria of the sites used in this study are
outlined. The methods used to produce maps of post-1940/50 muirburn on Tulach Hill,
Perthshire, from aerial photographs are presented along with the coring and
palacoenvironmental laboratory techniques adopted to produced extended fire histories
from microscopic charcoal analyses. The microscopic charcoal analysis methods

developed for this study are described and discussed.

3.1 Site selection
3.1.1 Sites for the studies of soil core muirburn history reconstruction and charcoal
taphonomy around muirburns

Six heather-dominated moorland sites in Perthshire, Scotland were chosen for a
study to determine whether microscopic charcoal analyses of moorland soil profiles could
be used to reconstruct extended fire histories. The ultimate aim of the study being to
ascertain whether dates of last burning for heather stands could be effectively estimated by
this method. The locations of the sites, Tulach Hill, Trochry Hill, Auldallan Hill, Blacklaw
Hill, Happas Farm and Gallow Hill, are shown on Figure 3.1. Table 3.1 provides a
summary of relevant site characteristics.

These sites were selected because they fulfilled a number of criteria. All of the sites
are readily accessible, all have relatively thick mor humus soils (>20 cm) and all have a
range of different aged heather-stands (the result of management burning over extended
periods), including some particularly old stands which aerial photograph analyses suggest

have not been burned during the post-1940/50 period (Kirkpatrick, 1992).
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Figure 3.1: The locations of the sites used in the studies of muirburn history reconstruction
and charcoal taphonomy around muirburns.

3 Auldalian Hill
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Table 3.1: Summary of site characteristics.

Tulach Hill Trochry Auldallan Hill Blacklaw Happas Farm  Gallow Hill

Hill Hill
Grid reference NN8663 NN987385 NO315590 N0290335 NO445409 NO395410
Altitude 300460 m 310m 360 m 200 m 170 m 340 m
Geology Schists and Schists and Altered Igneous basalt  Lower Old Red  Lower Old Red
limestone greywakes millstone grts & dolerite Sandstone Sandstone
NVC* classification HI12/H16 HI10/H16 Hl6 HIO0 H21 H10
Soil type Peaty Podsol ~ Peaty Podsol Iron-rich .. Iron-rich Peaty Podsol Iron-rich
Podsol Podsol Podsol

* National Vegetation Classification (Rodwell, 1991).
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Tulach Hill was selected as the principal site for the development of the soil profile
charcoal analysis techniques because of the exceptional aerial photographic coverage of
the site, a time-series of eight aerial photographs, taken in 1950, 1959, 1965, 1969, 1976,
1980, 1985 and 1988 respectively was available of the site. The comprehensive temporal
and spatial record of muirburn activity on the moor, reconstructed from the aerial
photographs, was used to identify the approximate dates when individual locations on the
moor were last burned. The effectiveness of the charcoal analysis technique was
ascertained by analysing soil cores from locations for which the date of last burning were
known.

The Tulach Hill site was also used for a study of charcoal taphonomy from
muirburns, again utilising the excellent aerial photograph cover and charcoal analysis of

soil cores.

3.1.2 Sites for studies of peat erosion and Calluna loss

Seven lacustrine sites were chosen for the study of long-term peat erosion and
Calluna loss (Figure 3.2). The sites were selected from the extensive network of UK and
Irish sites sampled for the Surface Waters Acidification Project (SWAP) (Battarbee ef al,,
1988; Patrick et al., 1989) which were made available by the Department of Geography,
University College London. The seven selected sites fulfilled a number of important
criteria; firstly, each had experienced both marked losses of Callunetum (Stevenson &
Thompson, 1993) and episodes of peat erosion (Stevenson, 1992) in their catchments
during the last millennium; secondly, all are headwater lakes with accordingly small pollen
source areas (Peck, 1973; Bonny, 1976) and negligible networks of inflowing streams to
minimise inputs of streamborne pollen and charcoal (Jacobson & Bradshaw, 1981; Birks et
al., 1990); the cores from them all had been dated by-either *°Pb methods alone or a
combination of °Pb and *C methods; and lastly, detailed loss-on-ignition (LOI) and
pollen analyses had been conducted on the cores (Stevenson, 1992; Stevenson &

Thompson, 1993).
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Figure 3.2: Locations of sites for the studies of peat erosion and Calluna loss.
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Lough Muck, Donegal, Republic of Ireland (B 194 408)
Altitude: 210 m.
Lake size & depth: ~ Area 36 ha; depth 19 m maximum,; 2 very short minor tributaries.

Catchment size: 25 ha (excluding lake).
Geology: Predominantly granite.
Soils: Considerable areas of fairly flat blanket peats which is in some

places undergoing, or has undergone, active erosion.
Vegetation: Acid moorland dominated by Molinia grassland with Calluna

vulgaris occurring on the drier ground.

Blue Lough, County Down, Northern Ireland (J 328 252)

Altitude: 340 m.

Lake size & depth:  Area 2.1 ha; depth 5 m maximum; circular shape; no discrete
inflow.

Catchment size: 35 ha (excluding lake); rises steeply to the north (703 m

elevation) in a steep headwall.

Geology: Entirely granite.

Soils: Thin blanket peat in the less steep areas & bare granite rock and
scree on the northern slope.

Vegetation: Calluna vulgaris dominated, ranging from young vigorous

plants in burned areas to mature and leggy stands.

Loch Teanga, South Uist, Quter Hebrides, N.W. Scotland (NF 818 383)
Altitude: 25 m.
Lake size & depth: ~ Area 7 ha; depth 21 m maximum,; steeply shelving rock margins; no

significant drainage streams.

Catchment size: 33 ha (excluding lake).

Geology: Lewisian Gneiss

Soils: Abundant blanket peat.

Vegetation: Calluna dominated heath, extensively burned for sheep.
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Llyn Conwy, Gwynedd, Wales (SH 780 463)

Altitude:

Lake size & depth:
Catchment size:
Geology:

Soils:

Vegetation:

450 m.

Area 40 ha; depth 22 m maximum.
189 ha (excluding lake).
Ordovician Rhyolite.

Blanket peat.

Calluna dominated.

Round Loch of Glenhead, Galloway, S.W. Scotland (NX 450 804)

Altitude:

Lake size & depth:
Catchment size:
Geology:

Soils:

Vegetation:

300 m.

Area 12.5 ha; depth 13.5 m maximum

95.1 ha (excluding lake).

Tonalite (Loch Doon granite).

Deep peats and peaty podsols; skeletal soils and bare rock on the
steeper slopes.

Dominated by Molinia caerulea with Erica cinerea &
Trichophorum cespitosum;, also common Calluna vulgaris,

Nardus stricta, Potentilla erecta & Narthecium ossifragum.

Loch Na Larach, N.W. Scotland (NC 217 583)

Altitude:

Lake size & depth:
Catchment size:
Geology:

Soils:

Vegetation:

61 m.

Area 9.5 ha; depth 8.5 m maximum.
54 ha (excluding lake). -
Moine Gneiss.

Blanket peat.

Molinia & Calluna dominated.
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Loch Tanna, Arran, N.W. Scotland (NR 921 428)
Altitude: 315 m.

Lake size & depth:  Area 32.9 ha; depth 3 m maximum; very shallow for its size.

Catchment size: 300.4 ha (excluding lake).

Geology: Granite.

Soils: Dominated by blanket peats.

Vegetation: Mature Calluna, with Molinia and Eriophorum on the wetter
ground.

3.2 Aerial photograph analyses

PC ARC/INFO (Environmental Systems Research Institute, 1989), a desk-top
geographical information system (GIS), was used to digitise muirburns from a time-series
of eight aerial photographs of the Tulach Hill study area (1950, 1959, 1965, 1969, 1976,
1980, 1985 and 1988). The monochrome aerial photographs ranged in scale from
approximately 1:83,000 to 1:20,000, stereo-pairs were not used. Errors in image
translation, due to camera tilt, are believed to.be minimal since near perfect matches were
found when the digitised images of burns visible on more than one photograph were
overlaid. The accuracy of interpretation was checked by locating burns from the 1988
aerial photograph in the field.

Aerial photograph analyses at Auldallan Hill, Blacklaw Hill, Gallow Hill, Trochry
Hill and Happas Farm were performed by Dr H. Kirkpatrick (Kirkpatrick, 1992).
Individual burn coverages were traced onto acetate sheets, combined, and annotated onto
a recent AP to be used to locate burns in the field (Kirkpatrick, 1992; Stevenson et al.,
1996).

3.3 Coring techniques
3.3.1 Mor humus soil cores

The mor humus soil cores (<10 cm in length), sixteen at Tulach Hill and one each
at Trochry Hill, Auldallan Hill, Blacklaw Hill, Happas Farm and Gallow Hill, were taken

by inserting sharpened 8 c¢m diameter plastic drainpipes into the soil. The cores were
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wrapped in plastic to prevent desiccation and transported to the laboratory where they
were sectioned using a hand wound ram and sharp blade. Apart from the unconsolidated

surface litter the cores were sectioned into contiguous 2 mm slices.

3.3.2 Lake sediment cores

The seven lake cores were taken between 1984 and 1988 by members of the
PRU/ECRU at UCL. Loch Teanga, Round Loch of Glenhead and Llyn Conwy were cored
from a stable anchored platform using a square-rod Livingstone corer and a piston corer
to sample the uppermost sediment (Jones et al., 1989). Short cores, approximately 80 cm
long, were recovered from Blue Lough, Lough Muck, Loch Tanna and Loch Na Larach
using a mini-Mackereth corer (Mackereth, 1969).

3.4 Laboratory analyses
3.4.1 Pollen analysis

Samples for pollen analysis were prepared and counted using standard
methodologies (Moore ef al, 1991) by Professor A.C. Stevenson, Department of
Geography, University of Newcastle upon Tyne between 1986 and 1991.

3.4.2 Percentage loss-on-ignition (LOI)

Known weights of homogenised dry sediment were placed in weighed crucibles
and ignited in a muffle furnace at 550°C for two hours. The crucibles of sediment were
allowed to cool in a desiccator before reweighing. The loss of sediment mass was taken to
represent the organic carbon content of the sample. The LOI analyses were performed by
members of the PRU/ECRU in the Department of Geography, UCL.

3.4.3 Sediment geochemistry

Concentrations of the trace metals (Pb, Zn, Ni, Cd) were determined for the seven

lake cores by flame atomic absorption spectrophotometry, after digestion of the sediment

by hydrofluoric, nitric and perchloric acids (Rippey, 1990). The trace metal analyses were
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conducted by Dr B Rippey, University of Ulster, Freshwater Laboratory, Traad Point,

Ballyronan, Northern Ireland.

3.4.4 Dating techniques
3.4.4.1 Radiometric techniques

The upper sediments of the seven lake cores were dated using gamma
spectrometry analysis of 2°Pb, 2%Ra, ®’Cs and *'Am (Appleby et al., 1986) in the
Department of Applied Mathematics and Theoretical Physics at the University of
Liverpool (see Appendix 5). The %!° Pb chronologies for the Round Loch of Glenhead and
Loch Teanga cores were augmented with '*C dates carried out by the Scottish Universities

Research & Reactor Centre at East Kilbride (Jones ef al., 1989) (see Appendix 6).

3.4.4 Spherical carbonaceous particle analysis

Funds were not available for radiometric dating of the mor humus soil profiles.
SCPs were, therefore, used to provide isochrones for relative dating (Renberg & Wik,
1984; 1985a; Wik- & Natkanski, 1990; Rose, 1991; Rose ef al., 1995). Spherical
carbonaceous particles (SCPs) were quantified for all of the mor humus soil cores. The
SCPs (> ¢.10 um in diameter) were counted at the same time as the charcoal, in the petri
dish charcoal preparations, under a stereo-microscope at x40 magnification, a method
similar to that used by Renberg & Wik (1984; 1985a; 1985b). See Section 3.5 for the

sediment sample preparation procedure.

3.5 A method for the preparation of lake sediment and soil samples for microscopic

charcoal analysis

(1) Place 0.2g of air dry sediment in a 250 ml conical flask. Add 20 ml of distilled water,

cover and leave for 24 hrs to allow the sediment to rehydrate.
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0.2g of sediment proved sufficient for both the mor humus soil and lake sediment samples.
Larger sediment samples reduce counting efficiency because the sediment slurries

produced spread too thickly over the petri dish and obscure charcoal particles.
(2) Add 20 ml of 6% hydrogen peroxide, cover and leave in an oven at 50°C for 48 hrs.

This stage is designed to initiate the bleaching of the dark organic component of the
sediment samples. No attempt is made to totally remove this organic component, the aim
of the preparation is merely to bleach the dark organic material so that the black charcoal
particles are readily recognisable under the microscope. A series of digests with a wide
range of different H,O; strengths was conducted to determine the minimum concentration
of the reagent which would facilitate sufficient bleaching. 6% H,0, produces adequate
bleaching of the organic component and does not fragment or cause the loss of

microscopic charcoal particles (White & Hannus, 1981).

(3) Filter through a Whatman No.1 filter paper (pore size ~11 microns). Retain the

contents of the filterpaper and dispose of the supernatant.

Filtering is necessary to remove the dark organic leachate produced by the last stage. If
the filtering process is performed carefully nominal quantities of charcoal particles and
SCPs are lost. Filtering was preferred to centrifugation as a means of separating the
organic material from the superfluous liquid because it is much less likely to cause

charcoal particle fragmentation (Clark, 1984).

(4) Wash the filtrate into a 9 cm diameter plastic petri-dish using distilled water. In an
oven at 50°C evaporate away the excess water, until the samples are barely covered in

liquid.

Evaporating the excess water ensures that any discrepancies in the amounts of water used

to wash the organic samples into the petri dishes are redressed before more reagents are

60



added. Care should be taken to ensure that the samples are not fully dehydrated because

this may cause charcoal particle fragmentation.
(5) Add 20 ml of 6% hydrogen peroxide, cover and leave in an oven at 50°C for 48 hrs.

A second mild digest to bleach any remaining dark organic material. Plant fragments with

diameters of up to several millimetres require this extra bleaching.

(8) In an oven at S0°C evaporate off the excess liquid until the samples are dry. The

samples are now ready to count.

N.B. All samples for each core should be prepared in a single batch, ensuring that all of the
samples from a core receive exactly the same preparation procedure. Differences in
charcoal particle abundance and size class distribution between samples from individual
cores are, therefore, very unlikely to be the result of differential particle fragmentation

caused by preparation procedures.

3.6 Charcoal quantification
Two separate charcoal counting strategies were used, one for the mor humus soil
cores and a second for the lake cores. Both sets of samples were, however, prepared by

the laboratory method described above.

3.6.1 Mor humus soil cores

Charcoal counts were conducted at a magnification of x40 under an Olympus
VH20 stereoscopic microscope with top lighting provided by a Schott fibre optic light
source. The charcoal particles were tallied into six size classes of 16-31 pm, 31-63 pm,
63-125 um, 125-250 pm, 250-500 um and >500 um in length using an eyepiece graticule.
Particles >500 um in length were measured individually. Particles smaller than 16 um were

ignored because correct identification could not be assured.

61



3.6.2 Lake sediment cores

Charcoal in the lake sediment samples was quantified under a magnification of
x160 using the same stereoscopic microscope equipment described above. The greater
magnification was necessary because the charcoal particles were considerably smaller than
those encountered in the soil cores. Only the absolute numbers of particles per sample
were counted, the charcoal particles were not quantified in size classes. Size classes were
not used because it was felt that such small particle sizes provide little, if any, additional

information above that attained from absolute abundance counts (see Section 2.3 .4).

3.6.3 Recovery rate

An experiment was conducted to determine whether the preparation procedure
removed or fragmented microscopic charcoal particles. Charred twigs collected from a
moorland fire were ground with a pestle and mortar to produce microscopic charcoal
particles. Six sub-samples of the charcoal were counted in size classes, subjected to the
preparation procedure outlined in Section 3.5, and then recounted. The results are shown

in Table 3.2. : .

Table 3.2: The effect of the charcoal preparation procedure on six charcoal assemblages.

Charcoal samples (B=before & A=after the preparation procedure)
1 2 -3 4 5 6
Size class B A B A B A B A B A B A
<16 pm 47 39 37 38 49 49 19 15 62 65 71 55
16-31 pm 82 92 90 90 82 79 66 48 93 93 93 88
31-63 pm 86 84 62 69 79 77 56 63 81 87 78 72
63-125 um 18 12 25 18 24 26 31-- 29 33 31 20 27

125250pym 7 5 6 8 13 20 14 18 1l 14 1 IS
250-500pm 9 10 8 8 6 1l 6 11 15 15 13 15
>500 pm 33 1 1 1 2 1 1 4 6 5 6

T Total 2522457229 7232 254 263192 183299 311 291 278
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The total numbers of particles and the size class distributions of the six charcoal
assemblages before and after preparation are very similar, indicating that the preparation
procedure causes very little particle fragmentation or loss. The minor differences between
the total numbers of particles in the pre- and post-preparation counts, between 1.3% for
Sample 2 and 4.7% for Sample 4, are probably due to observer error and the nature of the
counting process. Charcoal particles are not regular in shape and dimension, and variations
in particle orientation between counts may well lead to slight discrepancies in counts.
Overall, however, the results of the experiment are very encouraging illustrating that the
sample preparation procedure does not cause excessive amounts of charcoal particle

fragmentation or loss, and that the counting procedure has a good level of replicability.

3.6.4 Discussion

The charcoal sample preparation procedure outlined above was developed to fulfil
a number of criteria specific to this project. The principal aim was to minimise particle
fragmentation during preparation because the particles were to be quantified in size
classes. This was achieved by keeping the chemical and physical stresses placed on the
charcoal particles to a minimum by using dilute organic oxidants and avoiding rigorous
mechanical processes such as mixing and centrifuging. The method developed is simple,
quick, cheap and effective with both mor humus and lake sediments.

The second consideration was that SCPs could be counted simultaneously with the
charcoal, saving both preparation and counting time. No other charcoal method yet
developed allows the analyst to do this. Although, the method of SCP quantification
adopted may be less accurate than the methods developed by Rose (1990) or Renberg &
Wik (1984), the results are satisfactory for the purpose of this study (See Section 4.4.2).

A further advantage is that charcoal particle idertification is much more effective
and reliable using uncovered petri dishes under a stereomicroscope than on pollen slides
under a transmitted light microscope. The identification of particles can be verified by
changing their orientation or observing how they fracture when pressed with a sharp
instrument. Charcoal particles fracture tangentially in a fashion which makes them readily

distinguishable from pyrite and other black minerals (Bolton, 1988).
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The charcoal particles in the mor humus cores were quantified in six size classes in
an attempt to ascertain whether information about fire proximity could be obtained from
the size class distributions (See Section 3.1). Many authors have tallied charcoal particles
in size classes (e.g. Waddington, 1969; Swain, 1973, 1978; Clark, 1988) but there has
been no standardisation of either the number used or the dimensions of the size classes
adopted (Appendix 2). Six size classes were used in this study, the minimum number
deemed necessary to gain an effective insight into changes in charcoal assemblage
structure, greater numbers of size classes make counting laborious and time consuming.
The dimensions of the size classes are based on the squares of a gridded eyepiece
graticule, with squares of 63 um on a side. The wide range of particle sizes, between 16
um and >500 um, ensure that significant differences in dispersal distances and patterns
might be expected (Clark, 1988a). Geometrically progressive size classes were adopted
because the number of fragments in a given size class has been shown to decrease
exponentially as size class increases (Patterson et al., 1987). The low magnification (x40)
used on the samples from the mor humus cores ensured that only relatively large charcoal
particles were counted. Particles of these proportions are believed most likely to provide a
record of local or in situ fire activity (Clark, 1988a). Particles smaller than 0.25 of a grid
square were not quantified because correct identification could not be guaranteed.

The charcoal particles recovered from the lake sediment cores were markedly
smaller than those in the mor humus cores, over 80-90% were <20 um in length. As a
consequence they were counted under x160 magnification to try to ensure correct
identification. The lacustrine charcoal particles were not tallied into size classes because
their small size, the restricted range of particle sizes, and the possibility of mixing and
focusing in the lake basin after initial deposition (Davis, 1973; Davis & Brubaker, 1973;

Odgaard, 1992), negate their usefulness for determining source areas (See Section 2.4.3).

3.7 Statistical analyses.
Microsoft EXCEL 5 was used for all exploratory data analysis (Microsoft
Corporation, 1994). CANOCO (ter Braak, 1990) was used for the multivariate statistical

analyses. Details of the various techniques used are presented in the relevant sections.

64



Chapter 4: Analyses of mor humus soil cores
Abstract
Aerial photograph and microscopic charcoal analyses of mor humus moorland soil
cores are used to develop a technique for reconstructing long-term fire histories for specific
locations on moorland. Sub-fossil charcoal assemblages produced by in sifu fires are shown to
be distinguishable from those produced by nearby ex sifu fires on the basis of charcoal particle
abundance and size class distribution. Extended fire histories (>50 years) are produced for

specific locations on six different Perthshire moors.

4.1 Introduction

Moorland ecology, and particularly the relationship between burning and vegetation
dynamics, has been studied intensively (e.g. Gimingham, 1972; Mallik & Gimingham, 1983;
Hobbs & Gimingham, 1984; Gimingham & Hobbs, 1987; Maltby et al., 1990). The vast
majority of these studies have, however, been conducted over very short time-scales, and the
long-term community dynamics are relatively poorly understood (May, 1994; Legg, 1995). A
number of key questions concerning moorland ecology require longer-term perspectives to
elucidate them, e.g. Calluna growth cycles, nutrient cycling processes and the reasons why
Callunetum is declining on a national scale (Stevenson & Thompson, 1993; Thompson ef al.,
1995; Smidt, 1995). Palaeoecological analyses can provide the long term perspective
necessary to address such issues.

Fossil microscopic charcoal analyses have been used in moorland contexts but the
majority have concentrated on catchment or regional scales and produce relatively low
resolution fire histories (Iversen, 1941, 1969; Odgaard, 1988, 1992; Charman, 1992). The aim
of this study is to assess the extent to which microscopic charcoal analyses of moorland soils
can be used to provide highly temporally and spatially tesolved extended fire histories.
Techniques to reconstruct accurate long-term fire histories (>100 years) of individual
vegetation stands would allow the impact of prolonged muirburn management on moorland
communities and the effects of different burning periodicities to be assessed.

Aerial photographs can be used to reconstruct the burning histories of individual
heather stands for the past forty to fifty years (Hester and Sydes, 1992) however, the
reconstruction of muirburn histories beyond the limit of aerial photographic analyses is

problematical. Even the most conscientiously kept estate records cannot provide stand-specific
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burning histories on a time-scale of several centuries. Traditionally charcoal and palynological

studies have been conducted on lake or peat sediments, few have been conducted on

catchment soils (Dimbleby, 1964; Iversen, 1964, 1969). In order to produce fire histories for

individual locations in moorland landscapes soil cores need to be used.

A number of potential problems may be important in restricting the efficacy of

palaeoecological analyses of soils. The following questions need answering:

¢ Can individual fires be resolved in mor humus soil matrices? Soils accumulate at relatively
slow rates (approximately 0.24 - 0.61 mm yr’ at Tulach Hill; Table 4.7) and resultant
palaeo-records are consequently of low temporal resolution. In a moorland, where areas of
vegetation may be burned on 10-15 year rotations, the sediment record of fire must be able
to resolve individual fires on such time-scales.

¢ Can charcoal assemblages produced by in sifu fires be discerned from those produced by
ex situ ones in the soil charcoal record? Moorland managed by muirburn is characterised
by large numbers of small, discrete fires set on an annual basis. Large quantities of
microscopic charcoal are likely to be produced and if dispersal and redistribution rates of
charcoal are high this could cause considerable problems for interpreting sediment charcoal
profiles. ‘Background’ charcoal, i.e. non-local or ‘old’ re-mobilised charcoal, may mask or
complicate records of contemporary local fire activity.

¢ Do moorland fires destroy the upper soil horizons removing the record of former fire
activity? Moorland fires are surface fires whose principle fuels are vegetation and litter on
the soil surface, problems in reconstructing extended fire histories may arise if subsequent

fires remove surface sediments.

4.2 Outline of methodology

The aim of this study was to develop a technique-to reconstruct unequivocal, high
resolution long-term histories of fire activity from moorland soils, in order that dates of last
burning and burn frequency/periodicity could be estimated. In order to achieve this the
fallowing methodology was devised.

e Use aerial photographs to reconstruct the recent (post-1940/50) muirburn history of a

moor.
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e Collect mor humus soil cores from locations on the moor with different post-1940/50
burning histories, i.e. some that had been burned once, some twice and some not at all but
at known distances from fires.

o Conduct microscopic charcoal analyses on the soil cores. Do the fire histories produced by
the charcoal analyses agree with those produced by AP analyses? Are the soil records of
sufficient resolution for individual fires to be distinguishable?

e Use discriminant analyses to differentiate charcoal assemblages produced by in sifu and ex
situ fires. Can charcoal assemblages produced by in situ fires be reliably discriminated
from those produced by nearby ex situ ones on the basis of their particle size distributions?

e Use the knowledge gained from the recent fire histories to extend the charcoal fire
histories to pre-aerial photograph age sediments using charcoal analyses.

o Apply the palaeoecological techniques developed at Tulach Hill to a number of other sites

to test the effectiveness of the methods elsewhere.

4.2.1 Site selection rationale

Tulach Hill, Blair Atholl, Perthshire was thosen as the main site for developing soil
core charcoal analyses. The primary reason that Tulach Hill (Figure 3.1) was chosen as the site
for studying patterns of past muirburn was the excellent aexial photagraph covemgr waetk,
eight APs spanning the period between 1950-1988, allowed a comprehensive assessment of
post-c.1940/50 fire activity on the moor. The site was also suitable for charcoal analyses
because the mor humus soils which cover the majority of the maar are well develaped (>2Q
cm depth) and relatively homogenous providing suitable sediment sequences for
palacoecological investigation.

The sites at Auldallan Hill, Blacklaw Hill, Gallow Hill, Trochry Hill and Happas Farm
(Figure 3.1) were used as sites at which to test the charcoal analysis techniques developed at
Tulach Hill. These sites were chosen because they are readily accessible, have relatively thick
mor humus soils and some particularly old stands of heather not burned during the post

1940/50 period (assessed by aerial photograph analyses; Kirkpatrick, 1992).
4.2.2 Aerial photograph analysis of post-1940/50 muirburn on Tulach Hill

The time-series of eight aerial photographs from Tulach Hill, 1950, 1959, 1965, 1969,
1976, 1980, 1985 and 1988, provided a particularly comprehensive coverage from which to
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reconstruct the recent temporal and spatial patterns of burning of vegetation on the moor.
ARC/INFO (ESRI, 1989), a desk-top geographical information system (GIS), was used to
capture and manipulate the aerial photograph information. Previous methods, which involved
tracing muirburns from photographs on to acetate sheets by hand, were rather primitive and
inaccurate (Hester & Sydes, 1992; Kirkpatrick, 1992), the GIS approach is much more
effective, increasing the speed and accuracy of data capture and allowing greater manipulation
and analysis of the data.

On dry heather-dominated moorland Hester and Sydes (1992) estimate that all patches
of muirburn remain visible on APs for at least 7 years, ninety percent of them for at least eight
years, and some may remain visible for up to 13/15 years. At Tulach Hill because the intervals
between APs were less than 7 years in all but one case, 1950-59, practically all fires can be
guaranteed to be presented on the muirburn summary maps (Figures 4.1 & 4.2). The longevity
of burned patches on photographs meant that considerable numbers of burns were visible on
successive APs, only new burns not visible on a previous aerial photograph are presented on
Figures 4.1 and 4.2. Figures 4.1 and 4.2 provide accurate maps summarising the spatial and

temporal patterns of muirburn on Tulach Hill over.the period from ¢.1940/50 to present.

4.2.3 The reconstruction of fire histories from mor humus soils

Sixteen soil cores were collected from the locations depicted by stars on Figures 4.1
and 4.2. Suitable core locations were identified from the maps of past burning produced by the
AP analyses. A range of locations with varied post-c.1940/50 burning histories were selected,
i.e. some that had been burned once'only, some which had been burned twice and some which
had escaped burning during this period. A map of coring locations was drawn on a recent AP,
and an EDM was used to locate core locations in the field by triangulation. A number of
constraints determined which areas could be cored. Open moorland is relatively homogeneous
and it can be very difficult to locate oneself accurately within swathes of open vegetation, even
using features from aerial photographs. Core locations in close proximity to readily identifiable
landmarks, ie. fences, path junctions efc, were therefore chosen. Only very small areas of
moorland had been burned frequently, the more times a patch had been burned the smaller it
tended to be, and consequently the more difficult it is to locate in the field. No locations on
Tulach Hill which had been burned more than twice, were large enough or near enough to

obvious ground features for them to be reliably determined. Four cores were taken from

70



locations burned only once, two from areas burned twice, and ten from positions not burned at
all during the post-1940/50 period.

In order to provide fire histories of the highest possible resolution, and because of
concerns about the slow accumulation rate of the soils (Table 4.7), the cores were sectioned
where possible into contiguous 2 mm thick samples. The sample preparation and counting
methods outlined in Chapter 3 were used to reconstruct the fire histories, Figures 4.3 - 4.10.

In order to verify that the fire history reconstruction methods developed at Tulach Hill
were applicable to other moorlands the analyses were conducted on mor humus soil cores
from a further five sites. The sites are all in the Tayside region, Auldallan Hill, Blacklaw Hill,
Gallow Gill, Happas Farm and Trochry Hill (Figure 3.1).

Preliminary aerial photograph analyses performed by Dr H. Kirkpatrick (1992)
suggested that the locations cored had not been burned post-c.1940. The cores were
processed in exactly the same manner as those from Tulach Hill with the additional aim of
determining when the locations on the moor had been last burned (part of a project conducted

by Professor A.C. Stevenson on nutrient cycling and the effects of heather burning; Stevenson

(1994)).

4.2.4 Spherical carbonaceous particle analysis

All SCPs greater than approximately 10 pm in diameter were quantified in all of the
sediment samples in which charcoal was counted using the method outlined in Section 3.4.4.2.
Rates of SCP recovery using this method are much poorer than those obtained by the methods
outlined by Rose (1991) and Renberg & Wik (1984) because of the less rigorous digestion of
organic material during sediment sample preparation. Undigested organic material in the
samples, including charcoal, may obscure some SCPs during the counting procedure.
Notwithstanding this, however, the technique provides a comparatively quick and satisfactorily

effective means of deriving approximate SCP profiles (Figures 4.3-4.10 and 4.13-4.15).
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Figure 4.3: Charcoal profiles from the Tulach Hill mor humus soil cores Tulach I and Tulach 2.

Tulach 1: Charcoal profile.

/—* Charcoal particle size-classes (mm)

N\ ) )
& s s s s >
" N S > > &
KIS IQ“ o Qé, o ¥
s } 1
.‘\\\ :
1 ot
0 [T '
e .
[ .
IEL | W]
[
110
AT
In sly Ive ¢ 1950 e - - .. - -- - -
N Vi . - > e - -
SCP loke-off ¢.1940 il 11 —_— — —
[
- -
04+ = ‘
- -
\ -
-— -
ol |
2 JErE }
V-
£ w7l
St 1 -\
F -t - l
a V=
] T
e ’— .
- -
0y =+ }
gl }
-
54— —|,
V=
En——
- |
w I—I—I
v—=1 .
-t =
65 /-\: f
-— -
[ '
nil= - .
r = .
=1 .
‘. A . |
- ™ T —— P ————— py)
2500 5000 1500 3000 1000 2000 00 1000’ 50
Number of parlicles per g/dwt

Tulach 2' Charcoal profile
Chorcoal particle size-classes (mm)

> )
o I\ @
& o
IQ.\ IQ(L
r r
. .
. .
. R
' .
. .
SOP toke-olf ¢ 1940 — ) —
sty fre € 1930 - E S — - - -
sy fwe ¢ é
=
3
nsdy fre ¢ 1920 (=] — —— — —— — — —
In shy fire ¢ 1900 - —_ - = —_—e— - — —
. .
, .
, .
— I | e ea——) i t T —
00 1000 50 1 0 100 %0 1000 100 2000 SO 100 150 200

000
Number of parlicies per g/dut

72



Figure 4.4: Charcoal profiles from the Tulach Hill mor humus soil cores Tulach 3 and Tulach 4.
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Figure 4.5: Charcoal profiles from the Tulach Hill mor humus soil cores Tulach 5 and Tulach 6.

fulach 5: Charceal profile.
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Charcoal profiles from the Tulach Hill mor humus soil cores Tulach 7 and Tulach 8.

Figure 4.6

Tulach 7: Charcoal profile
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Figure 4.7: Charcoal profiles from the Tulach Hill mor humus soil cores Tulach 9 and Tulach 10.
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Chorcoal porticle size:

Charcoal profiles from the Tulach Hill mor humus soil cores Tulach 11 and Tulach 12.

Figure 4.8
Tulach 11: Charcoal profile
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Figure 4.9: Charcoal profiles from the Tulach Hill mor humus soil cores Tulach 13 and Tulach 14,

Tulach 13: Charcoal profile
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d Tulach 16.

Jan

Chorcool porlicle size-classes (mm)

Charcoal profiles from the Tulach Hill mor humus soil cores Tulach 1

Figure 4.10

Tulach 15: Charcoal profile
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4.2.5 Discriminant analysis of charcoal assemblages from in situ and ex situ fires

Discriminant analysis is a powerful multivariate statistical technique used to
characterise groups of samples on the basis of common quantitative variables. The linear
combination of the varables, or discriminant function, which maximises the differences
between the predetermined groups can be used to assign cases of unknown origin to a group
(Davis, 1986; Klovan and Billings, 1967). At Tulach Hill discriminant analyses were used to
determine whether fossil charcoal assemblages formed by in situ fires were significantly
different from those derived from ex situ fires, on the basis of their particle size class structure.
The discriminant functions produced were then used to classify charcoal assemblages of
unknown origin from pre-AP sediments into either the in situ or ex situ categories.

Seven in situ and sixty-one ex situ post-1950 sedimentary charcoal assemblages,
identified from aerial photograph analyses, were used as the data set on which to calculate the
discriminant function. Charcoal abundance in the assemblages was converted into an
approximate particle influx so that samples from different cores could be compared. Influx
values were calculated from dates interpolated from the SCP profiles by simple linear
regression. A number of discriminant analyses were performed using different combinations of
the six size classes as discriminatory variables to determine the combination of size class
variables most effective at differentiating in situ assemblages from ex situ ones (Table 4.3). As
the charcoal variables did not have multivariate normal distributions nonparametric nearest
neighbour discriminant analyses were employed, prior probabilities of group membership were

assumed to be equal. All discriminant analyses were performed using the computer statistics

package SAS (SAS Institute Inc., 1985).

4.3 Results
4.3.1 Results of the AP analyses on Tulach Hill -

Figures 4.1 and 4.2 provide summary maps of muirburn activity on Tulach Hill over
the post-1940/50 period. Each AP holds a burning record of different duration, i.e. 9 years for
the 1959 AP (1950-1959) but only 3 years for the 1988 AP (1985-1988). In an attempt to
provide a more representative picture of annual patterns of fire activity approximate mean
annual fire frequencies for the periods between adjacent APs were calculated, i.e. the numbers
of burns on an AP divided by the number of years since the previous one (Table 4.1). Such an

index only provides an approximate indication of gross changes in fire activity as it is unlikely
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that equal amounts of burning will have been carried out in each of the individual years
between APs, and in some years no burning at all may have been conducted. The exact period

of fire activity represented on the 1950 AP is indeterminable, though it is likely to hold a

record of burning of between 7-13 years duration (Hester & Sydes, 1992). Figure 4.11 is a
Figure 4.11: The total area of Tulach Hill burned during the post-1940/50 period. Produced by

composite map produced by overlaying the individual muirburn maps and enables the

identification of areas of the moor not burned at all during the post-1940/50 period.

overlaying the eight muirburn maps derived from aerial photographs.

»

North
Scale

Conifer Forest

Streams

(N/] walls
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Burning histories of every heather stand on the moor were determined by overlaying all
of the possible combinations. The present day vegetation of Tulach Hill is a mosaic of heather
patches with a wide spectrum of burning histories, vegetation stands with one hundred and
twenty different burning histories were located (Stevenson et al., 1995). Table 4.2 provides a

shortened summary of how frequently areas of the moor were bumed between ¢.1950 and

1988.

Table 4.1: Summary statistics for areas burned on Tulach Hill between the 1940s and 1988.

Aerial No. of years No. of No. of Area burned (ha) % of whole moor Mean

photograph burning new burns burned area per
represented burns per year burn (ha)
Total Per year Total Per year
1950 7 to 13* 29 -t 92.14 - 9.5 -t 3.18
1959 9 57 7.13 134.09 16.76 13.8 1.7 2.35
1965 6 52 8.67 87.81 14.64 9 1.5 1.69
1969 4 36 9.00 85.05 21.26 838 22 2.36
1976 7 37 5.29 69.90 9.98 7.2 1.0 1.89
1980 4 40 10.00 21.56 5.39 22 0.6 0.54
1985 5 42 8.40 85.35 17.07 8.8 1.8 2.03
1988 3 6 2.00 4.73 1.58 0.5 0.2 0.79
....... P T | M 7. T R T

* The exact number of years muirburns represented on the 1950 AP is indeterminable but is
likely to fall between 7 and 13 years (Hester & Sydes, 1992).

+ As the exact number of years burning activity represented on the 1950 AP is not known
mean figures cannot be calculated for these indices.

Levels of muirburn on Tulach Hill over the period studied were very low, on average
less than 2% of the moor being burned annually (Table 4. 1.)'. Such low burning rates are far
below the optimum of 10-15% prescribed Muirburn Working Party (1977) but are comparable
with estimates derived for the Grampian and Border regions by Hester and Sydes (1992). As a
consequence of the low burning rates approximately 56% of the moorland vegetation at

Tulach Hill was not burned at all during the post-1940s period (Table 4.2 & Figure 4.11).
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Table 4.2: Burn recurrence intervals for Tulach Hill over the 1940s-1988 period.

Number of times Area of land % of land area
burned post-1940s burned (ha) burned

0 545 56

1 271 29

2 111 12

3 21 2

4 5 0.5

5 0.3 0.03

6 0.01 0.001

Patterns of muirburn varied greatly over the period studied (Figures 4.1 & 4.2), prior
to 1950 a small number of large, wide patches were burned, between 1977-1980 an above
average number (c.10 per year) of very small, thin muirburns were conducted, and between
1986-1988 only a restricted number of very small areas of the moor were burned. Throughout

the rest of the period the numbers of fires conducted were relatively constant (7-9 per year)

with a mixture of all sizes.

4.3.2 SCP profiles
The form of the SCP curves in the Tulach Hill soil profiles, on the left of Figures 4.3-

4.10 & 4.13-4.15, reflect those commonly found in lake sediment cores (Figure 4.12) (e.g.
Renberg & Wik, 1984; Renberg & Wik, 1985a & b; Rose, 1991; Rose ef al., 1995). Rose et
al. (1995) suggest that three features of SCP profiles from UK and Irish sediment sequences
can be used for dating purposes: A - the start of the SCP record which equates to the mid-
nineteenth century; B - the rapid increase in SCP concentration between the 1940s-1970s; and
C - the sub-surface peak in SCP concentration dated to the late-1970s to early-1980s (Figure
4.12). The utility of these features in the mor humus soil cores studied is discussed in Section

44.2.
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Figure 4.12: Schematic spherical carbonaceous particle profile showing the three dating

features referred to in the text. (Redrawn from Rose et al. (1995))
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4.3.3 Fire histories reconstructed using charcoal analyses

4.3.3.1 The Tulach Hill fire histories

The fire histories of the sixteen locations on Tulach Hill reconstructed by charcoal
analysis are presented in Figures 4.3-4.10. The charcoal data are displayed in several formats:
size class distribution across six geometrically progressive size classes; charcoal sum (i.e. the
sum of particles in all size classes); and charcoal area (i.e. the sum over size classes of the
product of mean particle area and particle number). All measures are expressed per gram dry
weight of sediment. A key for the lithologies on the left of the charcoal diagrams can be found
in Appendix 3 (Troels-Smith, 1955).

Despite the relatively low accumulation rates of the mor humus soils (Table 4.7), clear
and differentiable patterns of charcoal abundance exist in the sediment records and the
resolution is sufficient in most instances for individual fires to be discernible. The majority of
known post-1950 in situ fire events are readily identifiable in the charcoal diagrams,
represented by marked increases of charcoal particle abundance in all six size classes, the
charcoal sum and the total area index (e.g. 21-22 mm in Tulach I & 9-10 mm in Tulach 4).
The known in situ fire event in core Tulach 1/ is not, however, so obvious. It is marked by
increases in charcoal abundance across the range of indices but it is not so obvious that it is
are immediately recognisable as the product of an in situ fire event, a feature which could lead
to potential problems of interpretation.

Two cores, Tulach 11 & Tulach 16, were taken from locations burned twice during
the post-1950 period, in Tulach 11 both fire events are discernible (at depths of 13-14 and 19-
20 mm respectively). However, in Tulach 16 the sampling resolution was too coarse for the
two fire events to be differentiated and they are represented by a single peak in charcoal
abundance between at 16-20 mm. Cores taken from locations not burned in the post-1950
period have very low quantities of charcoal in their upper prefiles, despite the fact that most of
the cores were taken from positions <60 m (some as close as 10-20 m) from known fires

during this period, suggesting that charcoal dispersal from the muirburns on Tulach Hill was

very limited (Chapter 5).

4.3.3.2 Discriminant analyses of the Tulach Hill charcoal data.
Table 4.3 summarises the performance of the various combinations of the six charcoal

size class variables at discriminating charcoal assemblages produced by in situ and ex situ fires.
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The percentages of assemblages correctly classified and the squared differences between
groups represent measures of the effectiveness of each of the discriminant analyses (Gauch,

1982; Klovan & Billings, 1967).

Table 4.3: The relative performance of discriminant analyses conducted to discriminate
charcoal assemblages produced by in sifu and ex situ fires using different combinations of the

six charcoal size classes as discriminatory variables.

Charcoal size classes used as Proportion of assemblages Squared distance between groups
discriminant variables correctly classified

ABCDEF 0.985 22.12
ACDEF 0.985 22.07
ABCDE 0.985 21.68
BCDEF 0.985 21.24
BCDE 0.985 21.02
CDE 0.985 20.32
ABCEF 0.985 16.12
BCE 0.971 13.08
CE 0.971 12.26
BE 0.971 11.65
AE ' 0.971° 11.62
DE 0.971 11.58
E 0.971 11.57
ADCDF 0.956 16.64
ABDEF 0.956 15.34
BCD 0.956 15.06
CD 0.956 14.73
EF 0.956 12.12
CF 0.941 12.19
BF . 0.941 10.84
AC 0.941 10.42
BC 0.941 10.41

C 0.941 10.41
DF 0.926 10.16
AF 0.926 9.81

F 0.926 7.42

B 0.912 - 9.59

A 0912 8.52

D 0.912 7.54

Key to size class variables:
A=16-31 pm B =31-63 pm C=63-125 pm
D =125-250 pm E =250-500 pm F=>500 pm

The discriminant function calculated using all six charcoal size classes as discriminatory
variables was most effective, the full results of this analysis are presented below in the

‘confusion table’ (Table 4.4).
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Table 4.4: Results of the discriminant analysis of in situ and ex situ charcoal assemblages using

all six of the size classes as discriminatory variables.

Predicted group membership

Actual group No. of charcoal In situ Ex situ
assemblages
In situ assemblage 7 7 0
100% 0%
Ex situ assemblage 61 1 60
1.64% 98.36%

Percentage of 'grouped’ assemblages correctly classified: 98.53%

All of the in situ assemblages were correctly classified and only one ex situ charcoal
assemblage was wrongly classified, i.e. as having the characteristics similar to those of an in
situ assemblage. This indicates that in the majority of cases the size class distributions of the
charcoal assemblages derived from in situ fires are notably different those of ex situ fire
events. Interestingly the ex situ assemblage wrongly classified as an in situ assemblage was
produced by a fire event >50 m away from the deposition site, whilst charcoal assemblages
derived from much more local fires, as little as 10 m away, were correctly classified as ex situ
assemblages.

The majority of the charcoal assemblages produced by in situ fires are notable in the
charcoal diagrams by obvious peaks in total particle abundance, e.g. at 22 mm depth in Tulach
I and 9 mm depth in Tulach 4 respectively. For this reason a further discriminant analysis was
performed on the in situ / ex situ charcoal assemblage data et with the total charcoal sum as
the only discriminatory variable in order to determine whether charcoal assemblages could be
differentiated on this basis alone. If the total charcoal sum were as equally effective at
distinguishing in situ from ex situ fires as the size class distribution a significant amount of

analysis time could be saved over counting the charcoal particles into size classes.
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Table 4.5: Results of the discriminant analysis with total charcoal sum as the only

discriminatory variable.

Predicted group membership

Actual group No. of charcoal In situ Ex situ
assemblages
In situ assemblage 7 7 0
100% 0%
Ex situ assemblage 61 7 54
11.48% 88.52%

Percentage of 'grouped' assemblages correctly classified: 89.71%

Table 4.5 presents the results of the discriminant analysis using total charcoal
abundance as the lone discriminatory variable. Almost ninety percent of the samples were
correctly classified, including all of the in situ assemblages, however, discrimination by total

charcoal sum alone is not as effective as using the size class information (98.53% correct

classification).

4.3.3.3 Classification of pre-1950 fire events.

The linear discriminant function, derived from all six size class variables, was used to
classify charcoal assemblages from the Tulach Hill soil cores pre-dating aerial photograph
records of fire activity. Twenty-three charcoal assemblages, those believed most likely to
represent in situ or nearby fires because of their prominerg nature in the charcoal profiles,
were selected and classified using the discriminant function. The results of the classification

exercise are displayed below in Table 4.6.
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Table 4.6: Results of the classification of suspected in situ fire events by the Tulach Hill

discriminant function.

Core Sample depth Group classified into Posterior probability of
(mm) group membership

Tulach 2 37-38 In situ 81.33%

Tulach 2 43-44 In situ 81.33%

Tulach 2 53-54 In situ 81.33%

Tulach 3 25-26 In situ 100.00%

Tulach 3 33-34 In situ 81.33%

Tulach 3 37-38 Ex situ 100.00%
Tulach 5 23-24 Ex situ 100.00%
Tulach 5 33-34 Ex situ 100.00%
Tulach 5 43-44 Ex situ 100.00%
Tulach 5 51-52 Ex situ 100.00%
Tulach 5 55-56 Ex situ 100.00%
Tulach 5 61-62 Ex situ 100.00%
Tulach 6 15-16 Ex situ 100.00%
Tulach 7 16-17 Ex situ 100.00%
Tulach 7 18-19 Ex situ 100.00%
Tulach 7 20-21 In situ 94.57%

Tulach 8 24-25 Ex situ 100.00%
Tulach 8 26-27 Ex situ 100.00%
Tulach 9 33-34 In situ 81.33%

Tulach 9 © 37-38 In situ . 81.33%

Tulach 10 27-28 Ex situ 100.00%
Tulach 10 31-32 In situ 81.33%

Tulach 11 27-28 Ex situ 100.00%

Nine of the twenty-three suspected im sifu charcoal assemblages were actually
classified as in situ fire events by the discriminant function. The majority of the assemblages
which were classified as being the product of in situ fires are represented in the charcoal
profiles by pronounced peaks in charcoal abundance, confirming subjective interpretations. A
number of less pronounced charcoal assemblages, however, which would not necessarily have
been identified subjectively as in situ assemblages (e.g. 43-44 and 53-54 mm depth in Tulach
2), were also classified as having in situ origins. Alternatively, the prominent peak at a depth
of 33-34 mm depth in Tulach 5 was not classified as an in situ fire event, whilst by eye alone
an analysts may well have interpreted this assemblage as the product of an in situ fire event.
The consistently high posterior probabilities of classification (>81.33% in all cases), an
estimate of how likely correct membership of the predicted group is, suggest that classification

of unknown samples is relatively reliable (Klovan & Billings, 1967; Gauch, 1982).
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The stratigraphic features of the fire histories from the sixteen Tulach Hill cores,
determined by the various methods described above, are summarised in Table 4.7. The
approximate chronologies of the cores were estimated by extrapolation and interpolation from
the SCP records using simple linear regression methods, assuming constant accumulation rates
and no hiatuses. It is acknowledged that such an approach makes a number of implicit
assumptions, the most important being that accumulation rates have been constant over time.
The isochrones available from the SCP profiles (Section 4.4.2), the positions of the known
post-1950 fires which fit well in to the interpolated chronologies and the homogeneous nature

of the mor humus soil profiles do however suggest that the method adopted is relatively

accurate.

Table 4.7: Summary of the stratigraphic features in the charcoal profiles from the sixteen

Tulach Hill cores.
Core Core SCP Post-1940 Ageof Post-1950 Distance from  Pre-1950
length take-off accumulation core in situ nearest in situ
(mm) (mm) rate (mm/yr) base fires post-1950 fire fires®
Tulach 1 75.5 22.5 0.42 c.1810 1 (1950% 50 m (1965) None
Tulach 2 73.5 32.5 0.61 c.1870 None 50 m (1950) 3
Tulach 3 65.5 20.5 0.39 c.1820 None 60 m (1950) 2
Tulach 4 63.5 18.5 0.35 c.1810 1 (1976) 90 m (1976) None
Tulach § 67.5 20.5 0.39 c.1820 None 60 m (1950) None
Tulach 6 215 12.5 0.24 ¢.1900 None 10 m (1950) None
Tulach 7 28.5 15.5 0.29 c.1900 None 40 m (1950) 1
Tulach 8 30.5 23.5 0.44 c.1920 None 20 m (1950) None
Tulach 9 43.5 28.5 0.54 c.1910 None 45 m (1950) 2
Tulach 10 33.5 22.5 0.42 c.1910 None 50 m (1985) 1
Tulach 11 27.5 20.5 0.39 c.1920 2(1950 & 90 m (1976) None
1965)
Tulach 12 30.5 23.5 0.44 ¢.1920 1 (1965) 20 m (1950) None
Tulach 13 30.5 21.5 0.41 ¢.1915 1 (1950) 30 m (1965) None
Tulach 14 325 255 0.48 ¢.1910 Nore 20 m (1965) None
Tulach 15 25.5 20.5 0.39 c.1925 None 40 m (1965) None
Tulach 16 33.5 245 0.46 c.1920 2(1959& 20 m (1950) None
1976)
* Date of aerial photograph on which fire identified ® See Table 4.6

4.3.4 Burning histories of old heather stands from five additional Perthshire moors.
The Auldallan Hill, Blacklaw Hill, Gallow Hill and Trochry Hill cores (Figures 4.13-

4.15) all have very low post-1940 charcoal levels confirming that the core locations were not
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Figure 4.13: Charcoal profiles from the Auldallan Hill and Blacklaw Hill mor humus soil cores.

Auldallan Hill: Charcoal profile
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Figure 4.14: Charcoal profiles from the Gallow Hill and Trochry Hill mor humus soil cores.
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Figure 4.15: Charcoal profile from the Happas Farm mor humus soil core.
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burned during the period. At Happas Farm, however, more variable charcoal levels throughout
the post-1940 period suggest local fire activity may have occurred. Subsequent AP analyses,
of APs not included in the original analysis conducted by Kirkpatrick (1992), however,
confirm that a number of burns had been set very close to the site during this period but no in
situ fires had occurred.

The interpretation of these charcoal profiles proved somewhat problematic as in several of
them it was not immediately obvious which charcoal assemblages were definitely the product
of in situ and ex situ fire events. As the analyses of the Tulach Hill profiles demonstrate not all
in situ and ex situ charcoal assemblages can be categorically differentiated by eye alone, or at
least not without detailed study. The discriminant function developed at Tulach Hill could not
realistically be used to classify the charcoal assemblages from these sites in order to aid
differentiation of them, despite the similarities in soil characteristics. The following
interpretations of fire activity at the sites are, therefore, based on subjective interpretations

only, using the knowledge gained from the Tulach Hill cores.

Auldallan Hill - The known lack of in situ fires in the post-1940 period is a reflected by very
low sedimentary charcoal levels. The last in situ fires at the site, inferred from the prominent
peaks in charcoal abundance between 38-40 and 40-42 mm, are estimated to have occurred
¢.1920 and ¢. 1910 respectively. Average charcoal abundance pre-1940 is much greater than in

the post-1940 period perhaps suggesting generally higher levels of local burning activity.

Blacklaw Hill - Very low charcoal abundance in the post-1940 sediment reflect the known
absence of in situ fires. The prominent charcoal peak between 27-29 mm (c.1910) is suspected
to represent the last in situ fire event on the site. The less prominent charcoal assemblages at
21-23 and 33-34 mm are believed to be the product of-ex situ fires. Average charcoal
abundance pre-1940 is much greater than in the post-1940 period perhaps suggesting a

generally higher intensity of local fire activity.

Gallow Hill - An almost total absence of charcoal in the upper 30 mm of the core reflects the
lack of post-1940 nearby and in situ fire activity. The charcoal peak at 43-44 mm is
particularly marked and is assigned an in situ origin. The slightly less obvious assemblage at

31-34 mm could possibly be the product of an in situ fire, however, it is thought that it is more
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likely to represent a nearby ex situ fire. This location is, therefore, believed to have been last
burned ¢.1900. Again average charcoal abundance pre-1940 is much greater than in the post-

1940 period suggesting possibly higher levels of local fire activity.

Trochry Hill - The known absence of in situ burning during the post-1940 period is reflected
by the very low charcoal abundance above 45 mm depth. The two prominent peaks in charcoal
abundance, at 59-60 and 65-66 mm, are interpreted as the product of in situ fire events dating
to approximately ¢.1920 and ¢.1910-1915 respectively. Average charcoal abundance pre-1940
is much greater than in the post-1940 period suggesting a generally higher intensity of local

burning activity.

Happas Farm - On first inspection the post-c.1940 sediment record of the Happas Farm core
appears to contain considerable quantities of charcoal, however, when studied more closely
charcoal concentrations are low (<1600 particles per g/dwt of sediment). Such low quantities
of charcoal throughout this period are believed to reflect fallout from nearby, but not in situ,

fires. This location on Happas Hill has not been burned since ¢.1860, the approximate period

covered by the core.

4.4 Discussion & conclusions

4.4.1 Aerial photograph analyses
Analyses of aerial photographs (APs) have been used previously in studies of

vegetation and more specifically studies of moorland muirburn (e.g. Hester and Sydes 1992;
Hunting Surveys and Consultants Ltd, 1986; Kirkpatrick, 1992; National Countryside
Monitoring Scheme, 1988; Nature Conservancy Council, 1990). APs provide an excellent
means of reconstructing histories of recent fire activity in the landscape, providing not only
temporal histories of fire activity but the exact areal extent of fires. Aerial photographs are
particularly useful in moorland contexts because the areas of vegetation burned are generally
small and large numbers can be discerned and mapped on individual photographs.

The main constraint on using APs for reconstructing moorland fire histories is that a
comprehensive time series of photographs is available for the study area so that fires are not
missed in the periods between coverages. Ideally the time periods between photographs should

not exceed approximately seven years, the length of time over which all muirburns remain
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visible on APs (Hester & Sydes, 1992). When the intervals between photographs consistently
exceed seven years doubt must be cast upon the reliability of the fire history derived.

The use of the GIS system ARC/INFO to capture and collate the spatial data from the
APs of Tulach Hill proved extremely effective providing results of an unprecedented degree of
accuracy, far superior to less sophisticated methods involving the tracing and overlaying of
muirburn patterns on acetate. The results from Tulach Hill reveal a remarkable degree of local
heterogeneity in fire history, a feature which has not been reported before for Scottish
heathland vegetation. Despite only approximately 1-2% of the moor being burned annually,
and approximately 56% of the vegetation on the moor not having been burned for at least
forty/fifty years, vegetation stands with one hundred and twenty different burning histories
were identified (Appendix 4). Some small patches of present day vegetation had been burned
up to six times in the 40-50 year period covered by this study. This aspect of heterogeneity of
vegetation composition even on moors burned relatively infrequently perhaps deserves further
investigation.

The potential of using APs for reconstructing histories of muirburn in moorlands has been
shown to be excellent,- and they should not be overlooked in other environmental contexts
where temporal and spatial patterns of fire activity need to be mapped. Charcoal analyses of
sediment sequences provide both a complementary and an alternative method of
reconstructing fire histories which are of particular benefit beyond the time scale of aerial
photographs. However, wherever possible when reconstructing recent fire histories for the
post-1940/50 period AP analyses should perhaps be used in preference to charcoal analyses
because they provide not only a record of the temporal frequency of fire but also the spatial

extent of individual fire events which cannot be gained from charcoal analyses.

4.4.2 Spherical carbonaceous particles -

Spherical carbonaceous particles (SCP) have not been previously quantified in mor
humus profiles for dating purposes, although they have been quantified in surface samples of
forest mor humus soils in a survey of their dispersal around industrial sources (Renberg &
Wik, 1985b). The SCP analyses conducted in this study, therefore, represent an assessment of
their utility for dating recent mor humus soil profiles.

The SCP profiles produced for the mor humus cores proved relatively successful

(Figures 4.3-4.10 & Figures 4.13-4.15), their form closely approximating those found in
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Scottish loch sediments (Wik et al., 1986; Wik & Natkanski, 1990; Rose, 1991; Rose ef al.,
1995). The three main dating features ascribed to SCP profiles by Rose et al. (1995), the start
of the SCP record, the marked increase in particle concentrations and the peak in SCP
abundance (Figure 4.12), are identifiable in practically all of the soil profiles.

The rapid increase in SCP concentration evident in all of the Tulach Hill and the other
five Perthshire sites is estimated to have occurred during the 1940s because it marginally
predates known ¢.1950 fire events in the Tulach I (Figure 4.3) and Tulach 13 (Figure 4.9)
cores. This date falls within the range of dates suggested for this feature in Scotland (1940s-
1960s) by Rose et al. (1995), and the readily recognisable nature of the feature makes it a
useful isochrone.

The start of the SCP record is evident in some of the profiles analysed, but in the
others the core base post-dates the mid-nineteenth century and thus the beginning of the SCP
profile. The validity of relying upon this isochrone in these soil profiles could, however, be
called into question because the SCP quantification method used in this study lacks precision
at low particle concentrations (Section 3.4.4). The exact start of the SCP record may not,
therefore, be accurately resolved and caution must be used in interpreting this feature in the
profiles. Independent dating methods, possibly ‘wiggle matching’ of AMS C dates (Pearson,
1986), are needed to determine whether the start of the SCP record in these profiles is
synchronous with those produced by the more accurate SCP analyses of lake sediment cores
(Rose et al., 1995). Notwithstanding this, however, approximate dates of the start of the SCP
curve extrapolated from the rapid ipcrease in SCP concentration (Feature B) by simple linear
regression suggest that it lies within the approximate mid-nineteenth century period.

The peak in SCP abundance dated to approximately 1976-1980 in UK and Irish lake
sediment cores (Rose, 1991; Rose ef al., 1995) is identifiable in some of the mor humus soil
core SCP profiles. However, this potential dating feature eannot perhaps be relied upon in
these cores because of the low resolution of the soil records in the upper horizons. The
relatively unconsolidated nature of the surface litter meant that they could only be sectioned
coarsely, i.e. ¢.5 mm sections, and the poor resolution means that the possible isochrone is
unreliable.

The relative success of the exploratory SCP analyses conducted at the Perthshire sites
suggests that they could be used to provide recent isochrones for the relative dating of

moorland soil profiles, the technique may not only be applicable to lacustrine sediments
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(Renberg & Wik, 1984, 1985a, 1985b; Wik & Natkanski, 1990; Wik e al., 1986; Rose, 1991;
Rose et al., 1995). Whether SCPs could be used to date other terrestrial sediments remains to

be tested, however, the potential for wider application of the technique is obvious.

4.4.3 Fire histories

The initial fears concerning the potential of mor humus soils for reconstructing fire
histories in moorland, expressed in Section 4.1, proved to be unfounded. Muirburns do not
generally combust the soil surface layers and destroy the sediment record of previous fire
activity because although small-scale heathland fires can reach temperatures of up to 840°C
(Whittaker, 1961), only about 8% of the heat generated is conducted to the soil (Packham,
1971; DeBano et al., 1976). Soil temperatures only rise above 100°C after all the moisture has
been liberated after prolonged heating, a situation rarely achieved under small-scale muirburns
(Cromer and Vines, 1966; Roberts, 1965). As a result controlled moorland fires are not
represented in soil profiles by major layers of macrofossil charcoal, as may be the case in some
peatland systems following catastrophic, uncontrolled fires (Maltby, et al., 1990; Tolonen,
1985) but microscopic examination of sediment samples is necessary to detect the
characteristic increased abundance of all sizes of microscopic charcoal.

The analyses conducted at Tulach Hill also demonstrate that the accumulation rates of
mor humus soils, although relatively slow in comparison with peats and lake sediments,
approximately 0.24-0.61 mm per year at Tulach Hill, are generally sufficient for individual fires
to be resolved. Fire histories approaching 190 years in duration were produced from cores of
up to 76 mm in length on Tulach Hill but given deeper soil sequences longer records of fire
activity could be reconstructed.

One of the primary fears expressed before the analyses were conducted was that
because of the large numbers of small fires set on moors on a-regular basis sediment records of
local fire activity would be obscured or ‘masked’ by charcoal from nearby or extra-local fires.
This fear proved, however, to be unfounded. Charcoal assemblages produced by in situ fires
were generally identifiable by distinct increases in particle abundance across the range of sizes
quantified, and in contrast periods of nearby but ex situ fire activity were characterised by very
low sediment charcoal contents. These results suggest that microscopic charcoal dispersal
around muirburns is surprisingly restricted, i.e. most charcoal produced remains fairly close to

the parent fire, and as a consequence histories of local fire activity are not obscured by
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‘background’ charcoal from indeterminable source areas (Issues of charcoal dispersal around
muirburns are discussed fully in Chapter 5).

Analysis of the charcoal assemblages produced by known in situ fires in the Tulach Hill
cores illustrated that whilst some in situ fire events are readily discernible, because of the gross
abundance of charcoal in the assemblages (e.g. 22 mm depth in Tulach I and 9 mm depth in
Tulach 4) others are rather less easily identified (e.g. 43-44 mm and 53-54 mm in Tulach 2)
and require an appreciation of the distribution of charcoal across the range of size classes.
Unequivocal identification of pre-aerial photograph fires by eye alone is, therefore, not always
possible. For this reason linear discriminant analyses were used in an attempt to differentiate
between in situ and ex situ fires in a more quantitative way using the quantities and size class
distributions of charcoal in assemblages.

The linear discriminant function derived from all six of the size class variables was very
effective at discriminating between charcoal assemblages produced by in situ and ex situ fires,
98.53% were correctly classified (Table 4.4). However, a discriminant analysis using total
charcoal abundance alone as the discriminatory variable was also relatively effective at
differentiating the assemblages from different origins, classifying 89.71% of the assemblages
correctly (Table 4.5). These results suggest that both the total abundance of charcoal in an
assemblage, in situ assemblages are generally characterised by high charcoal abundance, and
the size class distribution of the charcoal particles are both important factors contributing to
the effectiveness of the discrimination process.

What size class characteristics of the assemblages are most important in determining
effective discrimination? The high degree of correlation between the size-class variables makes
it difficult to assess the importance of individual variables in the derivation of the discriminant
function. However, the relative performance of the different combinations of size class
variables in the series of discriminant analyses conducted in -Table 4.3 suggest that differences
in the proportions of particles in the size classes E (250-500 pm) and C (63-125 pm) between
in situ and ex situ assemblages are most influential in the discrimination process. Why this
relationship exists is not immediately clear from this data. Conventional theory (i.e. Clark,
1988a) would suggest that particles in the largest size classes, those most resistant to dispersal
from the fire site, might be expected to be most prevalent in and conspicuous components of
in situ assemblages, and smaller particles to be present in greater proportions in ex situ

assemblages. Particles in the less extreme medium size ranges might be expected to be more
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ubiquitous in all assemblages. In the discriminant analyses performed on the Tulach Hill data
set, therefore, one might have expected the largest and smallest size class variables (F and A
respectively) to exert greater influence on the performance of the discriminant analyses than
the medium size classes. That this is not the case suggests that rather more complex charcoal
production, dispersal and sedimentation processes than previously acknowledged may be
occurring, such processes are discussed further in Chapter 5.

Partial ignorance of the taphonomic processes which determine the size class
distributions of the different charcoal assemblages, however, does not detract from the efficacy
of the linear discriminant function derived at differentiating in situ assemblages from ex situ
ones, or the validity of using the discriminant function for classifying unknown assemblages.
Table 4.6 displays the results gained by using the Tulach Hill discriminant function to classify
unknown assemblages, i.e. those assemblages not known to be of either in situ or ex situ
origin. The nine charcoal assemblages classified as the probable product of in situ fires by the
discriminant function were all classified with consistently high posterior probabilities of
classification (>81.33% in all cases) suggesting that classification was relatively reliable
(Klovan & Billings, 1967; Gauch, 1982). With this data set, however, there is no unequivocal
means of checking whether the discriminant function is correctly allocating the charcoal
assemblages. A set of known in sifu and ex sifu charcoal assemblages, not used in the
calculation of the discriminatory function, are needed to validate the effectiveness of the
discriminant function at classifying unknown assemblages further.

The Tulach Hill discriminant function was not used to verify the identification of in situ
versus ex situ charcoal assemblages from the five additional Perthshire moor cores. A
discriminant function derived from a much larger data set and containing charcoal assemblages
from a wide number of moors is needed before the technique could be used more widely. The
use of the discriminant analysis approach at Tulach Hill does; however, suggest that it may be
a useful technique if developed more fully. The interpretations of fire activity from the
Auldallan Hill, Blacklaw Hill, Gallow Hill, Trochry Hill and Happas Farm cores are therefore
rather more subjective, and perhaps less accurate, than those produced for the Tulach Hill
cores. The cores do, however, indicate that charcoal analyses of mor humus soils can be used
to reconstruct fire histories at a range of sites and have microscopic charcoal profiles of

broadly comparable form and character.
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The charcoal analysis and charcoal assemblage characterisation methods used in this
study are at an early stage in their development. Much larger data sets are needed to develop
them to their full potential and to verify their validity and applicability, however, the available
results do suggest that the techniques have appreciable potential. Used together aerial
photograph and palaeoecological charcoal analyses represent a potentially powerful tool for
reconstructing moorland burning regimes. The long-term perspective provided could be used
to elucidate the role of fire in a great number of contentious debates facing ecology in
moorland contexts, e.g. the role of fire in heathland initiation, the long-term decline of

Callunetum, and the succession of heather by scrub-woodland to name but a few.
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Chapter S: Charcoal Taphonomy

Abstract

The taphonomy of microscopic charcoal around small moorland vegetation fires is
studied using aerial photographs and palaeoecological charcoal analyses of short soil
cores. The quantities of charcoal produced by individual fires is found to be highly variable
and charcoal particles of varying sizes are found to be produced in significantly different
proportions. Smaller charcoal particles being produced in increasingly greater quantities
than successively larger ones. The majority of charcoal particles produced by muirburns
appear to be deposited within ¢.70-80 m of the parent fire, and the wind direction at the
time of the fire appears to exert a strong control on charcoal particle dispersal. The

predominant direction of charcoal particle dispersal is down-wind, relatively few are

dispersed laterally or into the wind.

5.1 Introduction

The taphonomy of microscopic’ charcoal has received relatively little attention in
comparison with pollen taphonomy and as a consequence is relatively poorly understood.
The poor level of understanding of charcoal dispersal and deposition processes is widely
acknowledged as the greatest factor restricting the efficacy of charcoal analyses (e.g.
Battson & Cawker, 1983; Anderson & Davis, 1986; Patterson ef al., 1987). The use of
microscopic charcoal analyses in palaeoecological and palaeoenvironmental studies has
increased markedly in recent years and it is critical that understanding of microscopic
charcoal taphonomy is improved to ensure that future interpretations of charcoal data are
realistic and founded upon fact rather than supposition.

The taphonomy of microscopic charcoal produced by muirburns has not been
studied directly before. The experiments of Evans & Allea (1971), to assess nutrient losses
in heather smoke, and the theoretical treatment of charcoal dispersal in Danish moorlands
by Odgaard (1993) represent the most relevant work to date. Managed by regular burning
moorlands are potentially complex systems in which to study microscopic charcoal
taphonomy because large quantities of charcoal are produced annually by a number of

discrete, small-scale fire events scattered over the moor. However, they also provide much
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scope for experimentation because the fires are small, relatively uniform in character, have
well defined boundaries, and large numbers of them are conducted on a regular basis.

My original intention was to perform a number of controlled muirburns and to
measure dispersal around them directly, both during and for an extended period after the
fires. However, the logistics of securing sufficient experienced manpower to control the
burns within the restrictive temporal constraints imposed by appropriate weather
conditions proved impossible. The alternative approach adopted, using aerial photographs
and fossil microscopic charcoal assemblages from soil cores, does not provide such direct
evidence of dispersal processes, but it does provide a valuable insight into production

processes, the spatial patterns of dispersal around muirburns and the relative importance

of different taphonomic processes.

5.2 Outline of methodology
The charcoal dispersal study was conducted on Tulach Hill, Blair Atholl,

Perthshire. Maps of muirburns (c.1940/50-1988) were produced from aerial photographs
using PC ARC/INFO (Figures 4.1 & 4.2). These were used to define the network of 16
mor humus soil cores shown on Figure 3.1. Cores Tulach 1, 4, 12 & 13 were taken from
locations burned once during the post-c.1950 period, cores Tulach 11 & 16 from areas
burned twice, and the others from positions known not to have been burned during the
post-1940/50 period.

The distances between each of the cores and the three nearest burns on each of the
eight aerial photograph maps of muirburns were measured using the GIS. The aim of this
exercise was to determine the possible sources of charcoal in the cores. It was assumed
that the muirburn closest to the core were most likely to have contributed most of the
input of charcoal. As it was impossible to determine the source of the charcoal in core
assemblages which had been in close proximity to more than one burn for a given time
period, any core within <250m of more than one burn was excluded from the analysis. The
250m limit was decided upon as a conservative estimate of the likely distance over which
significant quantities of charcoal particulates were likely to be dispersed around such

small, low intensity fires. (The subsequent analyses of dispersal proved this estimate to be
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satisfactory as relatively few charcoal particulates were found to be dispersed over
distances in excess of 70-80m,; see Section 5.3.2).

The approximate chronology of the upper sediments in the cores interpolated
between the surface and the ¢.1940 SCP isochrone by linear regression was used to
identify charcoal assemblages contemporaneous with each of the AP coverages of
muirburn. Although this method of chronology determination has a limited degree of
accuracy it worked satisfactorily well for the purpose of this study. As illustrated in
Figures 4.3-4.10 charcoal assemblages produced by individual fire events were manifested
in the soil cores by obvious, discrete peaks in charcoal abundance whilst periods of non-
local fires were characterised by an almost absence of charcoal. This allowed assemblages
of charcoal produced by individual fire events to be readily recognisable within the
approximate chronologies produced. In addition, where possible charcoal assemblages in
close proximity to the SCP isochrone were used to maximise the degree of temporal
accuracy and ensure the correct identification of assemblages.

Sixty-eight charcoal assemblages, seven known to have been produced in situ by
fires and sixty-one produced and deposited at.known distances from fires, were identified
and used in the analyses of charcoal taphonomy. These sixty-eight assemblages represent a
small proportion of the ¢.750 charcoal samples counted, the remainder were not utilised in
the analyses because their source could not be reliably determined. Only those charcoal
assemblages which were believed to have been accurately identified and whose source

fires were determined beyond reasonable doubt were used in the analyses.

5.3 Results
5.3.1 Charcoal production

The amount of charcoal produced by individual burns was found to be highly
variable. A fact well illustrated by the charcoal assemblages recovered from ‘in situ’ fires
on Tulach Hill (Figure 5.1). These assemblages are composed of particles produced,

deposited and incorporated into the soil within the boundary of known fires.
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Table 5.1: Quantities of charcoal produced by, and deposited within the mor humus

beneath, seven Tulach Hill muirburns.

Assemblage 1 2 3 4 5 6 7
Particle
concentration 2070 1400 320 465 550 540 455
(no./g/yr™)

There are marked differences in the quantities of charcoal produced and
incorporated in the sediments within the individual burns, with values ranging from only
¢.320 particles/g/yr? to 2070 particles/g/yr’. The causes of these differences are not
immediately clear as charcoal production is potentially controlled by a complex range of
variables: fuel volume and moisture content; fire size, temperature, duration and intensity;
prevailing weather conditions at the time of the fire event; efc. Such factors interact in an
inextricable manner to control charcoal production and their individual influence cannot be
determined from the sedimentary charcoal record, i.e. fire characteristics cannot be
reconstructed and thus little can be assumed about the nature of the parent fire.
Sedimentary microscopic charcoal assemblages, therefore, merely indicate that biomass
has been burned (Edwards, 1987). Scott & Jones (1991) have used measures of charcoal
particle reflectance to determine approximate fire temperatures but alone such information
is of limited use to the charcoal analysts and palynologist.

The fact that highly variable quantities of charcoal can be produced by fires
suggests that great care is needed when interpreting the magnitude of charcoal peaks in
sedimentary charcoal records (Swain, 1973). The very largest charcoal peaks may
represent local burning, but smaller ones may also and should not be dismissed as the

product of less local or even regional fire activity.

The size class distributions of the in sifu assemblages were studied to determine
whether a relationship exists between the quantity of particles produced by fires and the
proportions of particles in each size class. Are equal quantities of each size produced by

individual fires or do differentials in production exist?
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Figure 5.1: The percentage size class distributions of charcoal particles in the seven in situ

charcoal assemblages from Tulach Hill.
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Figure 5.1 illustrates that the proportions of particles produced across the range of
size classes are very similar for the seven assemblages sampled, despite the large
differences in the total numbers of particles produced (Table 5.1). As size class increases
the proportion of particles within that size class falls approximately logarithmically.
Approximately 46.8% of the charcoal particles produced fall into the 16-31 um size class,
27.5% into the 31-63 um class, 14.5% into the 63-125 pum class, 6.2% into the 250-500

um class and only 1.3% into the >500 um class. The slight discrepancies between

assemblages are highlighted in Table 5.2.

Table 5.2: The proportions of charcoal particles in each of the size classes for the seven in

situ charcoal assemblages.

Size class (unty

16-31 31-63 63-125 125-250 250-500 >500

Assemblage 1 46.5% 27.7% 148% 7.4% 3.2% 0.4%
Assemblage 2 54.5% 265% 88% 15% 4.4% 1.3%
Assemblage3 43.0% 26.1% 164% 73% 5.5% 1.8%
Assemblage4 444% 266% 166% 7.1% 3.7% 1.7%
AssemblageS 464% 302% 14.1% 48% 3.6% 0.8%
Assemblage 6 44.4% 335% 147% 49% 1.1% 1.3%
Assemblage 7 482% 218% 163% 7.5% 4.1% 2.1%
Mean 46.8% 27.5% 145% 6.2% 3.7% 1.3%
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The data set of only seven charcoal assemblages is rather small to be making
unequivocal assertions about production processes. However, the close agreement of the
size class distributions within the sample suggests that a bias in the production of different
sized charcoal particles (here-after, ‘production-bias’) would appear to exist, smaller
particles being produced in greater abundance than progressively larger ones. (The
implications of production-bias are important for the interpretation of sedimentary

charcoal profiles, these are discussed further in Section 5.4.1.)

5.3.2 Distance of dispersal

There is much debate about the distances over which microscopic charcoal
particles of different dimensions can be transported (e.g. Patterson et al., 1987; Clark,
1988a; Clark & Royall, 1995). Despite attempts to quantify charcoal fluxes from fires
experimentally (e.g. Evans & Allen, 1971; Clark, 1983; Wein ef al., 1987), and several
theoretical models of dispersal processes the issue has been far from resolved. Charcoal
taphonomy in moorlands in particular has received little attention and the distances over
which charcoal particles can be transported before deposition and sedimentation are
unknown.

Figure 5.2 illustrates the relationship between total charcoal particle influx and the
distance from the fire for 41 charcoal assemblages recovered from Tulach Hill. The seven
values plotted on the y-axis represent in sifu assemblages, with dispersal distances of 0 m,
the others fall along a distance gradient of between 15-300 m from fires. It is important to
note that the charcoal assemblages presented are the product of many different fire events
and that the areal pattern of charcoal dispersal is, therefore, complicated by differential
charcoal production, wind speeds at the time of the fires-and climatic conditions following
the fire events. Consequently the relationship between charcoal abundance and distance

from the fire is not a simple one, however, a reasonably coherent pattern is displayed.
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Figure 5.2: Microscopic charcoal dispersal from muirburns on Tulach Hill.
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A logarithmic trendline has been fitted to the charcoal dispersal data in Figure 5.2.
Charcoal deposition away from the Tulach Hill fires approximates a leptokurtic curve, i.e.
particle abundance decreases very rapidly away from the source and then remains low but
relatively steady over greater distances. Such a pattern has been observed during studies
of the dispersal characteristics of a wide variety of other microscopic particulates
(Colwell, 1951; Green & Lane, 1964; Turner, 1964; Janssen, 1966, 1984; Raynor et al.,
1972; Prentice, 1985; Okubu & Levin, 1989).

Figure 5.3 illustrates the relationship between dispersal distance and charcoal
influx for each individual charcoal sample. (Care should be taken in interpreting the x-axis.
It is not a continuous distance gcale, the distances from each fire are displayed as discrete
values, i.e. the seven left-most assemblages are all in situ ones with distances from source
of 0 m. Only every other distance measure is displayed because of the axis scaling).
Charcoal influx generally declines with increasing distance from the parent fire in a fairly
constant manner up until 65 m from the fire, between 65 and 78 m there are three
anomalously high charcoal abundance values. Beyond ¢.80 m generally minimal amounts

of charcoal were deposited.
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Figure 5.3: The magnitude of charcoal dispersal with distance from Tulach Hill muirburns.
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The three very high influx values at 65, 70 and 78 m respectively are of particular
interest. Why are such large quantities dispersed uncharacteristically long distances?
Examination of these three assemblages and the morphology of their parent burns provides
a possible explanation for the phenomena, and also an insight into the mechanisms of
dispersal (See Figures 5.4a, b & c). Each of the three anomalous assemblages were
deposited at the end of long thin burns.

Four samples were collected around the margin of the fire in Figure 5.4a and
although the location 65 m from the fire boundary is considerably further from the fire
than the other three, which are located approximately perpendicular to the long axis of the
burn, it received a far greater influx of charcoal. Likewise in Figure 5.4b the position 78 m
from the end of the long-axis of the burn received a far greater quantity of charcoal than
the closer lateral one. In the third instance, Figure 5.4c, charcoal influx 70 m from the end
of the burn is only marginally lower than within the burn itself.

It is proposed that the phenomena can be explained by the direction of the wind at
the time of the fire. Unconfined vegetation fires spread rapidly in the direction of local
wind or upslope in uneven terrain and in uniform fuel on smooth terrain fires grow from
the point of ignition to form an elongated shape, a shape which is the same in savannah,

shrub or timber crown fires (Crutzen & Goldammer, 1992). On moorland and heath the
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vast majority of muirburns are allowed to run with the wind to form long thin burns of any
length and ideally not wider than 30 m across (Muirburn Working Party, 1977; Phillips et
al., 1993). Although the flanks of muirburns are controlled by beaters, on areas of
relatively flat moor their long-axes are likely to be aligned with the direction of the wind at
the time of burning.

All three of the Tulach Hill burns (Figure 5.4) were conducted on flat areas of the
moor and all have obvious long-axes. It is proposed that the anomalous assemblages
received inordinately large influxes of charcoal because they were down-wind of the fires.
Smoke and particulates are dispersed down-wind of fire (Chamberlain, 1975; Clark,
1983). The lack of charcoal dispersed perpendicular to the long-axes of the burns, Figure
5.4a & b, suggests that lateral dispersal is limited. Some particles are deposited laterally,
the consequence of random turbulent eddies (Gregory, 1945) or temporary changes in
wind direction, however, the principal direction of particulate dispersal is in a down wind
direction. The dependence of charcoal dispersal on wind direction has important
implications for the interpretation of charcoal assemblages in the moorland system, and

perhaps other environments, these implications are discussed in Section 5.5.3.

5.3.3 Differential dispersal of different sized charcoal particles

It is generally accepted, mainly on the basis of theoretical models founded upon
pollen and sand dispersal, that small charcoal particles are transported further from source
fires than larger ones (Patterson et al., 1987; Clark, 1988a). Few studies of charcoal
taphonomy have, however, been able to provide convincing data to illustrate that this is

actually the case (e.g. Clark, 1983; Wein ef al., 1987).
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Figure 5.5a: The dispersal of charcoal particles in the 16-31 pm, 31-63 um and 63-125

um size classes from muirburns on Tulach Hill.
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Figure 5.5a: The dispersal of charcoal particles in the 125-250 um, 250-500 um and >500

um size classes from muirburns on Tulach Hill.
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Figures 5.5a & b illustrate the relationship between the range of particle sizes
quantified at Tulach Hill and the distances over which they were dispersed from fire
events. Logarithmic trendlines have been plotted for each of the six size classes. The
dispersal curves for all of the size classes are leptokurtic, the quantity of charcoal
deposited declining rapidly away from the source before levelling out. The dispersal curves
are ‘stepped’ according to size class, a feature attributed to production and dispersal
biases. Smaller particles are produced in greater quantities than progressively larger ones,
hence the relative magnitudes of the decay curves, and smaller, lighter particles have
greater properties for dispersal than larger ones, a feature illustrated by the continued
separation of the curves over the whole distance sampled.

There is a strong relationship between the sizes of particles and the distances over

which they are dispersed, a relationship further illustrated by Figures 5.6a-5.6f.

Figure 5.6a: Dispersal of charcoal particles in the 16-31 pm size class.
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Figure 5.6b: Dispersal of charcoal particles in the 31-63 pm size class.
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Notable quantities of the smallest particles (16-31 um) ace found in 2 dut six of
the assemblages sampled, those lacking small particles are all in excess of 85 metres from
the source fires. Particles in the 31-63 um size range are present in all but eight of the
assemblages and in a number of instances notable quantities are dispersed up to 220 m

from fires.

Figure 5.6¢c: Dispersal of charcoal particles in the 63-125 um size class.
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Particles in the 63-125 pm and 125-250 pum size ranges are absent from twelve and
fourteen samples respectively but small quantities of both size ranges can be dispersed up

to 300 m from fires.
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Figure 5.6d: Dispersal of charcoal particles in the 125-250 um size class.
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Particles in the 250-500 um size class are not generally dispersed further than eighty

metres and are absent from twenty-one of the forty-one samples.

Figure 5.6e: Dispersal of charcoal particles in the 250-500 pm size class.
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Significant quantities of particles in the largest class, >500 um, are present in only sixteen

of the forty-one samples, and very few are deposited further than 80 m from the parent

fires.
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Figure 5.6f Dispersal of charcoal particles in the >500 pm size class.
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The range of distances sampled, up to 300 m, is insufficient to delimit the maximum
distances over which charcoal particles of all sizes may be dispersed. However, the
analyses indicate that particles in the two largest size classes are rarely dispersed further
than 80-120 m. The smaller particles are often readily carried at least 300 m, evidently
much greater networks of samples are necessary to determine maximal dispersal distances
of the smaller particles.

In Chapter 4 a discriminant function was used to classify charcoal assemblages
produced by in situ and ex situ fire events on the basis of their size class distributions,
however, the differences between the assemblages was not fully explored. Figures 5.7a, b,
c, d, e & fillustrate the differences between in situ and ex situ assemblages deposited over

a range of distances from fires.
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Figure 5.7: Percentage deviations from the mean distributions of particles in each of the

six size classes:
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In general the in situ assemblages on the left of the diagram have approximately 5-
10% less than averége proportions of 16-31 pm particles, as do assemblages deposited up
to ¢.70 m from fires. Beyond 70 m there is no obvious relationship between distance from
the fire and the abundance of 16-31 um particles, approximately half of the assemblages
have above average (between ¢.5-45%) quantities of small particles whilst the other half
have below average abundance. The in sifu assemblages and those up to 70 m away from
fires generally have above average proportions of particles in the 31-63 um and 63-125
um size ranges (Figures 5.6b & 5.6¢c). Over distances in excess of ¢.70 m charcoal
abundance in the assemblages vary greatly between well in excess and well below the

mean figure.
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d) 125-250 pm particles
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The in situ and <70 m assemblages contain generally higher than average

-500 pm particles, whilst more distant assemblages

250 pum and 250

proportions of 125-

are relatively deficient of particles in these size classes.
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f) >500 pm particles
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Particles >500 pm are present in above average proportions in the in situ
assemblages and those <40 m from fires. Assemblages at >40 m from fires are generally
deficient in particles of such large dimensions.

A number of relationships in the data set are worthy of reiteration. The in situ
assemblages generaily contain greater than average proportions of particles in all size
classes apart from the smallest, which they contain in lower than average proportions.
Assemblages up to ¢.65-70 m from fires generally have approximately similar distributions
to in situ ones, being deficient in the smallest class of particles but having above average
proportions of all other sizes. Only in the largest size class (>500 pm) is this general
pattern broken, particles in this size class are only found in above average proportions at
distances <40 m from fires. These relationships are discussed further in Sections 5.4.1 and

542

5.4 Discussion
The analyses of charcoal dispersal on Tulach Hill produced a great deal of useful
information about charcoal taphonomy, information which although specific to charcoal

dispersal in moorlands in the first instance may be useful in wider contexts. The data
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confirms a number of established assumptions concerning charcoal dispersal but it also

casts doubts upon others and suggests a number of new principles.

5.4.1 Charcoal production

The Tulach Hill fires produced unequal proportions of different sized charcoal
particles. Smaller particles were produced in greater abundance than progressively larger
ones. These findings are contrary to previously held beliefs which assumed that equal
quantities of all particle sizes were produced by biomass fires (Patterson ef al., 1987) and
have important implications in studies where particles are quantified according to their
size, and either size class distributions or measures of charcoal particle area are used to
infer fire proximity. When it is assumed that equal proportions of each particle size are
produced, differences in the particle size distribution of a sedimentary assemblage are
solely a function of differential dispersal processes. The presence of large particles is being
taken as indicative of local fire activity or of high energy transport mechanisms (high wind
velocities or surface runoff) (Clark, 1988a). However, size class production-bias imparts
further complications into the equation.

The available evidence suggests that charcoal assemblages tend to be dominated by
small particles, with decreasing quantities of progressively larger ones (Patterson, 1978;
Patterson et al., 1987, Carter, 1986). Could this be a consequence of the proportions in
which they are produced? Over long distances dispersal-biases may be important in
shaping the form of the sedimentary charcoal assemblage, small particles being transported
further than larger ones and, therefore, being dominant in distant sedimentary assemblages
despite to some extent the influence of production-bias. Over shorter distances (perhaps
up to several hundred metres from the fire), however, production-bias may play a more
influential role in determining the size class distribution-of charcoal assemblages. Within
the ‘skip distance’ (the maximum distance over which a particle of a given size is likely to
be dispersed; Clark, 1988a) of the largest class of particles being studied, given the
evidence of production bias from Tulach Hill, all charcoal assemblages will tend to have
similar percentage size class distributions, whether they are within the boundary of the fire

or at the limit of the largest particles dispersal-range because distance-decay curves for all
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particle sizes are parallel in form (Figure 5.5). The presence of large particles equate to
‘local’ fires as their presence indicates that a fire was within the particles skip distance, in
accordance with traditional assumptions (e.g. Patterson et al., 1987, Clark, 1988a).
However, large particles are unlikely to comprise more than 1-2% of the total charcoal
assemblage, regardless of how close the fire is, because of the production-bias inferred
from the Tulach Hill data. Such an argument agrees with that of Battson & Cawker (1983)
who expected to find that local fires would be characterised by high quantities of large
particles but actually found that charcoal assemblages from nearby fires were swamped by
small particles.

The presence of large particles in proportion to that dictated by production-bias
would, therefore, indicate a relatively local fire, whilst lesser abundance may suggest a
more distant source approaching or marginally beyond such particles typical range of
dispersal. Charcoal assemblages dominated by small particles, however, are as likely to
form near the parent fire as they are at considerable distance. It follows, therefore, that
whilst assemblages of charcoal with high proportions of large particles may be relatively
reliable indicators of proximity to a fire, the converse is not true. Charcoal assemblages
dominated by small particles are not reliable indicators of an extra-local or regional source.
A great deal of caution is therefore needed when interpreting charcoal source areas on the
basis of size class distributions.

An insight into the importance of production-bias on sedimentary charcoal
distributions can be gained by examining those obtained by previous studies. Patterson et
al. (1987) noted that distributions of charcoal particles in arbitrarily assigned size classes
generally adhere to a characteristic pattern. This pattern is illustrated by Patterson (1978)
using over 27,000 charcoal particles from Squaw Lake, Minnesota tallied into size classes,
see Figure 5.8.1 and Table 5.3.1. The Squaw Lake distribution is compared with the mean
in- and ex situ size class distributions from Tulach Hill. Both the Squaw Lake and Tulach
Hill data sets were quantified in six geometrically progressive size classes, and although
the dimensions of the size classes differ (Squaw Lake = 86-172, 172-344, 344-688, 688-
1376, 1376-2752, 2752-4472 pm? Tulach Hill = 992-1984, 1984-3968, 3968-7936,
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7936-15872, 15872-31744, >31744 um?), this is of little consequence as it is the overall

shape of the assemblages that is of interest.

Figure 5.8: Comparison of the proportions of charcoal particles in six size classes from

Squaw Lake (Patterson, 1978) and Tulach Hill.

% of all particles

S a5

Size class (grid squares)

Table 5.3: Comparison of the mean proportions of charcoal particles (expressed as

percentages) in six size classes from Squaw Lake (Patterson, 1978) and Tulach Hill.

Grid squares 0.25-0.5 0.5-1 1-2 24 4-8 >8
Patterson
(1978)t 56% 25% 11% 5% 2% 1%
Tulach Hill
ex situ 57% 25% 11% 5% 1.5% 0.5%
Tulach Hill
in situ 47% 27.5% 14.5% - 6% 3.5% 1.5%

+ The values were approximated from Figure 5 (Patterson ef al., 1987).

The Squaw Lake size class distribution is extremely similar to that of the ex sifu
assemblages from Tulach Hill, strengthening the assertion made by Patterson et al. (1987)

that such characteristic size class distributions are common. Of further interest is the
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relatively close agreement of the percentage size class distributions between both the
Squaw Lake and Tulach Hill ex situ assemblage distributions with the distribution of
particles in size classes in in sifu assemblages from Tulach Hill (taken to represent the
actual proportions of charcoal produced by the moorland fires on Tulach Hill).
Assemblages at source have slightly higher concentrations of all classes of larger particles
and less than average very small ones, a feature which has been attributed to the
differential dispersal distances of different sized particles (Section 5.3.2). However, the
generally close relationship between the distributions of assemblages suggests that the
differences in the proportions of charcoal produced at source are being translated to the
sedimentary record. Production-bias appears to have had a profound effect on the size
class distribution of the sedimentary charcoal records from both Tulach Hill and Squaw
Lake. It is highly unlikely that the similarities between the distributions of the charcoal
populations from the two sites, taken from totally different sedimentary media and
analysed by different methods are the result of coincidence.

Further evidence of the possible magnitude of the influence of production-bias on
sediment charcoal assemblages is provided by the substantial number of authors who have
noted strong positive correlations between the quantities of charcoal across ranges of size
classes (e.g. Mehringer ef al., 1977, Battson & Cawker, 1983; Carter, 1986; Patterson et
al., 1987; Tipping et al., 1993). For example, Mehringer et al. (1977) initially quantified
charcoal from Lost Trail Pass Bog in eight size classes, and found that when particle
abundance in the smallest size class was high, charcoal of all sizes was more common. As
a consequence they converted their data into only two size classes, particles 10-25 um
(which contained the majority of particles) and those >25 pm, which were positively
correlated at a high level of significance. The strong correlation between the size classes
was attributed to being the result of charcoal particle breakage during sample preparation,
the smaller particles being fragmented larger ones (Mehringer et al,, 1977). As a result
they preferred to interpret only the larger fraction because they believed it was more
representative of the original charcoal population.

Alternatively, it could be proposed that the correlation between the size classes is

the result of production-bias, i.e. smaller particles are more abundant than larger ones
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because they were produced in greater abundance and the size classes are positively
correlated for similar reasons. The relationship is perhaps particularly strong because the
site 1s a peatland one, i.e. charcoal particles, like pollen, on bog surfaces are likely to be of
a predominantly local origin and are resistant to mobilisation and redistribution (Gillette &
Goodwin, 1974; Chamberlain, 1975) and the charactenistic distributions of particles
produced are likely to persist undisturbed in the charcoal assemblages.

Differential rates of pollen production by different plant species have long been
acknowledged by palynologists (Pohl, 1937) and a number of correction factors have been
developed to minimise the effects of production-bias on the interpretation of pollen
diagrams (e.g. Iversen, 1949; Davis, 1963; Andersen, 1970). Similar considerations may
need to be made when interpreting charcoal records so that the influences of production-

bias are not erroneously interpreted as the product of dispersal-bias.

5.4.2 Dispersal during the fire event

Conventional wisdom and the evidence from Tulach Hill indicates that the majority
of charcoal produced by fires is deposited rapidly, either during or very soon after the fire
event (Patterson ef al., 1987). The dispersal mechanisms during fire events can, therefore,
very important in determining the eventual distribution of the charcoal particle population,
particularly when post-fire redistribution is limited. The principal mode of charcoal
transport during fire events is through the atmosphere under the influence of gravity and
wind (Clark, 1988a). ‘

Vegetation fires vary greatly in form and intensity, from small low temperature
ground fires to massive uncontrollable bush fires, and the spatial extent to which the
charcoal particulates derived are dispersed varies accordingly. The height to which
particles are lofted by convection currents formed by the fire and the wind direction and
velocity during the fire are the two most important factors controlling patterns of dispersal
(Chandler et al., 1983). Elevation of particles by convection is important because
deposition does not occur until the plume reaches the ground, and even quite small
elevations of the source can strongly affect the proportion of particles travelling more than

certain distances (Chamberlain, 1975). Particles lifted only several metres above the
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ground and not entrained within the convection column can in some instances be scattered
hundreds of metres. Charcoal fragments lofted to a height of 1000 m could be transported
tens to hundreds of kilometres (Clark, 1988a). Under the influence of strong winds
dispersal distances are greatly extended. Dust sized particles (< 20 um) can travel for
hundreds or even thousands of kilometres in the atmosphere under the influence of the air-
mass trajectories of zonal winds (Gillette, 1974). Much larger and heavier particles,
however, are rarely lofted to sufficient altitudes for such transport to occur. They tend to
have much shorter travel distances, in the order of hundreds of metres maximum, and are
confined to the near-ground layer where the direction of travel is determined by the local
surface winds (Foda, 1983).

Wind velocities during the Tulach Hill fires cannot be estimated from the muirburn
maps, therefore, the effect of wind speed on dispersal distances cannot be fully discussed.
Some of the effects of wind direction at the time of burning can, however, perhaps be
estimated. The majority of charcoal is deposited down-wind of a fire, little is deposited
laterally, perpendicular to the wind direction, or up-wind (Clark, 1982; Patterson ef al.,
1987). This has important implications for the formation of charcoal records in sediment
sinks. The vast majority of charcoal is deposited near to the fire, and though fires may
occur close to sediment sinks unless they are down-wind they may receive little charcoal.
The influence of wind direction is particularly important for short duration fire events
during which the wind direction is unlikely to change markedly and distribute charcoal in
all directions. However, the gffects of the wind during fires may be negated if extensive
post-fire redistribution by aeolian or fluvial processes occurs, as substantial quantities of
charcoal may be subsequently dispersed in all directions.

Differential dispersal according to particle size plays an important role in
determining dispersal patterns of charcoal particles. Particles are differentially distributed
on the basis of their fall velocities a function of size, mass, shape and surface roughness,
smaller, lighter particles are dispersed more widely than larger ones (Walker, 1971).
However, for analyses of particle size distributions to be of use for determining fire
proximity the differences between the sizes, and thus the fall velocities, of the particles in

each of the size classes need to be marked. At Tulach Hill the differences between the
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mean particle sizes of the geometrically progressive size classes were substantial,
illustrated by the divergence in the proportions of the smallest and larger particles between
nearby and distant fires, even over the rather restrictive distance over which measurements
were taken of only 300 m (Figures 5.7a-5.7f).

In the past large numbers of analysts have adopted ranges of particle size classes
which have not been sufficiently great to resolve differential dispersal processes, the mean
differences in particle size between classes has been so small that all particles are likely to
have been transported very similar distances before deposition. Size classes must be at
least geometrically progressive to ensure that differences between the mean particle sizes

of particles within them are significant and enable any differences in dispersal to be

resolvable.
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5.4.3 Theoretical model of charcoal dispersal during a fire (Figure 5.9)
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The model presented above (Figure 5.9) is based upon the findings of the Tulach
Hill muirburn study and existing theories of microscopic particulate dispersal (Patterson e#
al., 1987, Clark, 1988a). The first model of microscopic charcoal dispersal during biomass
fires to be based directly upon actual charcoal data rather than pollen, sand and dust.

The model is highly simplistic, actual dispersal distances are not estimated and only
three broad, undefined, charcoal particle size classes are presented (Smal/Medium/Large).
Wind dispersal during the fire is assumed to be the dominant mechanism of particulate
diffusion, as suggested by the Tulach Hill data. In drier or more sparsely vegetated
environments post-fire dispersal mechanisms (surface runoff and/or aeolian processes)
may play an important role in particulate redistribution dispersal (Clark, 1983; Patterson et
al., 1987). For the purpose of the model wind direction has been assumed to be constant,
although in real fires it may vary, especially during prolonged fire events, however, during
muirburns which normally burn for less than an hour this assumption holds true. The fire in
the model is represented as a point source, a simplification for the purpose of the model.

Charcoal dispersal is assumed to conform to the distance-decay principle, i.e.
quantity and size of charcoal particles decrease as distance from the fire increases (Byrne
et al., 1977, Patterson et al., 1987), the distance-decay curves used are leptokurtic in
shape as noted at Tulach Hill. Small, medium and large particles are assumed to be
produced in uneven quantities, progressively larger particles are produced in progressively
smaller quantities. Figure 5.9a illustrates this relationship in two dimensions.

Figure 5.9b is a plaq view of the fire event and resultant charcoal taphonomy,
providing a theoretical appreciation of the spatial pattern of charcoal dispersal. The
Gaussian plume model of dispersal, widely adopted for models of other microscopic
particulates (Okubo & Levin, 1989), has been used to provide the best approximation of
probable charcoal dispersal. The majority of charcoal is deposited directly down-wind,
although with increasing distance particles diffuse more widely in a lateral direction. The
histograms below the Gaussian model represent schematic approximations of both particle

abundance and size class distribution for the five locations marked (1-5) on diagrams a &
b.
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Given a constant wind direction throughout the duration of the fire little or no
charcoal is deposited up-wind, Histogram 1. Most of the charcoal is deposited within or
very close to the boundary of the fire, Histogram 2 provides an indication of the size class
distribution of particles for in situ assemblages. With increasing distance down-wind the
differences in fall velocity of different sized particles control particle size distribution.
Relatively close to the fire, Histogram 3, the abundance of particles across the range of
size classes is reduced but the characteristic size class distribution imparted by production-
bias is still discernible. Location 4 lies beyond the limits of dispersal of the largest particles
and thus they are not represented in the sedimentary assemblage, Histogram 4. Likewise
location 5 is beyond the range of both the large and medium sized particles and they are
not represented in the charcoal record, only small particles are found in the sediments at
such long distances.

As the model is based upon data from moorland fires it is most appropriate to

moorland environments, however, the general principles may be more widely applicable.

5.4.4 Post-fire dispersal of charcoal by wind

After a fire a great deal of charcoal remains on the ground surface within and
around the boundaries of the fire. Much of the material, particularly the finer microscopic
fraction, is susceptible to mobilisation by aeolian processes. This is particularly true under
dry conditions where adhesive forces between the charcoal and soil particles are minimal
(Chamberlain, 1975; Foda, 1983).

The processes of saltz;tion, suspension and traction are likely to be the dominant
mechanisms of post-fire charcoal transport by aeolian forces (Clark, 1988a). Green (1981,
1982), Byme et al. (1977), Clark (1988a), Clark et al. (1989), Martin (1994), Mehringer
et al. (1977), Odgaard (1993), Terasmae & Weeks (1979), Swain (1978), Gajewski et al.
(1985) and MacDonald er al. (1991) all believe aeolian dispersal of charcoal to be
predominant over fluvial processes.

Particulates begin to blow when the resultant of the shearing stress, adhesive and
gravitational forces is sufficient to lift individual particles from the ground (Chamberlain,

1975). Pollen slide sized charcoal, 90% of which is 5-20 um in length (Patterson et al.,
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1987), are not readily entrained by turbulence because cohesive forces bind them to each
other and to soil aggregates, however, if they are suspended they can be dispersed widely
(Clark, 1988). Charcoal particles in the 130-150 pum size range are readily lifted by wind
speeds of only about 20 m/s and as wind speeds exceed this threshold the rate of
particulate removal increases rapidly. Larger particles can be picked up by surface winds
but their relatively high mass dictates that they are soon redeposited and are only moved
short distances (Clark, 1988a). Saltation is probably the main process by which medium to
large particles are dispersed, indeed Maltby ef al. (1990) observed substantial movements
of ash and fine peat granules saltating and in suspension in winds following a severe
moorland fire on the North York Moors.

The aeolian processes described above are most effective under dry conditions
because charcoal particles are much heavier when wet and soil surface moisture has a very
high retention capacity (Foda, 1983). Such processes are also only effective on bare soils
and ground surfaces, amongst even sparse vegetation soil particulates rarely blow even in
high winds because the shearing stress on the soil is too low (Chamberlain, 1975). Aeolian
distribution processes are thus only prevalent under dry conditions and for a restricted

period after the fire until vegetation regeneration has occurred.

5.4.5 Post-fire dispersal of charcoal by water

The dispersal of charcoal following fires by fluvial processes has been cited by
many as a major process through which charcoal is redistributed (Swain, 1973; Blong &
Gillespie, 1978; Cwynar, 1973; Clark, 1983; Rummery, 1983; Patterson, 1978), although
others disagree believing its importance to be overstated (Clark, 1988a; Green, 1981;
1982; Byme et al., 1977; Clark et al., 1989; Martin, 1994; Mehringer et al., 1977,
Odgaard, 1993; Terasmae & Weeks, 1979; Swain,--1978; Gajewski et al, 1985;
MacDonald et al., 1991).

There is, however, much debate over the effect that surface fires have upon the
infiltration properties and hence the surface runoff characterstics of soils. Auten (1933)
and Wahlenberg ef al. (1939) found increased infiltration capacities in forest and field soils

following fires, Veihmeyer & Johnson (1944) and Burgy & Scott (1952) found no
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reduction of infiltration in Californian chaparral soils, and Rowe (1941) noted a reduction
of 90-95% in the infiltration capacity of woodland chaparral soils after burning. In
moorland studies, Kinako (1975) found that infiltration on burned plots was ¢.50% greater
than on unburned ones, whilst in contrast, Heyward & Barnett (1934), Heyward (1936),
Surman & Halls (1955), Hanks & Anderson (1957), McMurphy & Anderson (1965),
Mallik (1982) and Mallik et al. (1984) all found substantial decreases in water infiltration
into moorland soils following heather burning. Mallik ef al. (1984) suggested that the
reduced infiltration capacity was due to ash particles on the soil surface clogging the soil
pores in the upper soil layer, their measurements of soil moisture retention properties and
porosity support their view.

The effects of such reduced infiltration capacity could be marked. Moore (1978)
reported an increase in runoff of 60% in a Minnesota lake catchment following a fire, and
both Swanson (1981) and Arnett (1980) observed dramatic increases in soil sediment
loading of streams at peak discharges following fires. Clark (1983) monitored the charcoal
content in water samples from the Wallagaraugh River both before and after a major fire in
its catchment and found that the only time significant quantities of charcoal were washed
into the river was in the first post-fire rainfall event, with the highest concentration at the
beginning of the event. Maltby e al. (1990) also observed considerable erosion of surface
debris by water under storm conditions, erosion from bare surfaces exceeding that under
mature heather stands by at least twenty times. In contrast, however, Imeson (1971) noted
erosion due to solution, eluviation and wind erosion, but surface runoff did not occur even
after heavy rain.

It is clear that there is no unequivocal consensus over the issue of whether biomass
fires reduce the infiltration capacity of soils, and therefore promote increased surface
runoff and possible enhanced erosion. The evidence cited-has, however, been taken from a
wide range of environments with quite different soil and fire characteristics. The majority
of evidence from studies of moorland burning suggests that in the majority of cases
burning may well reduce the infiltration capacity of the surface soils making it more

susceptible to surface wash and erosion (Heyward & Barnett, 1934; Heyward, 1936;
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Surman & Halls, 1955; Hanks & Anderson, 1957, McMurphy & Anderson, 1965; Mallik,
1982; Mallik et al., 1984).

5.4.6 Post-fire charcoal dispersal on moorland

The following discussion provides a summary of the effects and implications of
post-fire dispersal of charcoal on moorland by aeolian and fluvial processes. Widespread,
large-scale, secondary dispersal of charcoal following muirburns is believed to be of
perhaps limited importance in comparison with the initial dispersal of particulates during
the fire. It is accepted that an increase in particulate redistribution and erosion following
disturbance of vegetation cover by fire might be expected since the balance of the
ecosystem is upset (Imeson, 1971), however, the data from Tulach Hill and reviewed
literature suggests that any dispersal occurring is likely to be over relatively short
distances. The extreme weather conditions of the British Isles provide strong potential for
erosion of unprotected, bare ground (McVean & Lockie, 1969), however, only after
particularly high intensity, uncontrolled fires are moorland soils left completely bare and
exposed (Gimingham, 1960; Radley, 1965), controlled muirburns rarely remove all of the
surface vegetation and accumulated litter (Whittaker & Gimingham, 1962). Most
muirburns tend to leave considerable quantities of partially burnt Cal/luna and litter on the
soil surface, and as the soil surface itself is rarely burned erosion from small muirburns
may be relatively restricted.

Kinako and Gimingham (1980) conducted a study to establish the magnitude of
soil and charred particulate losses from muirburns. Movements of ash and small pieces of
charcoal were noted within burnt patches, due mainly to the wind, although fluvial
processes may also have played a minor role. Most of the particulate redistribution was
movement of particles on a very restricted scale within-the burned patch itself, and in a
predominantly down-slope direction. Eroded particles were only moved very short
distances from small muirburns into neighbouring vegetated areas because the moorland
vegetation was very dense (Kinako & Gimingham, 1980). Evans & Moore (1985)
tllustrated the extremely restricted nature of Calluna pollen dispersal within heather

swards, presumably the same is true for microscopic charcoal particles. Charcoal particles
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may be dispersed more widely around large burnt patches as greater winds generate more
energy to entrain, loft and distribute particulates.

Movement of particulates within burnt patches continues until regeneration of
vegetation cover restores stability. This can take between 15-20 months (Kinako and
Gimingham, 1980) and 3-5 years (Radley, 1965) depending upon the severity of the fire
and whether heather regenerates from stem bases or seed. Heather and the dense fabric of
litter and moss which forms beneath it represents an almost impenetrable barrier to
charcoal movement either by aeolian or fluvial processes (Maltby et al., 1990). Charcoal

deposited beneath heather is, therefore, very unlikely to be remobilised and redistributed.

5.5 The lacustrine sediment charcoal record in moorland contexts

The concepts of charcoal taphonomy discussed throughout this chapter can be
used to provide some appreciation of how lakes within moorland catchments record fire
histories. This is of particular importance in this research project as the following two

chapters deal with lacustrine charcoal records from moorland environments.

5.5.1 Charcoal production and the nature of the sediment charcoal record

Muirburns are relatively small, burn for short periods of time, and are typically
distributed widely over moorland catchments. Charcoal is produced in large quantities, but
the total amount of charcoal produced is the sum of many small and scattered sources. On
well managed moors where burning is an annual process, and considering the restricted
resolution available in most lake sedimentary sequences, charcoal production and
deposition might be best practicably considered as continual processes.

Moorland catchments rarely experience single, large-scale fires which burn most of
the catchment separated by prolonged periods of limited fire activity, as is the case with
most environments in which fossil charcoal analyses are conducted. The sediment charcoal
record of lakes in moorland catchments are rather more complex. Individual peaks of
charcoal abundance in moorland sediments are unlikely to represent individual fire events,
however, it may be possible to detect and reconstruct broad changes in the magnitude and

frequency of burning activity within catchments. The limitations imposed by the nature of
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charcoal production, the resolution of the sediment record, and the sampling strategy

employed need to be considered extremely carefully during interpretation.

5.5.2 Charcoal ‘source area’

The concept of ‘source area’ is well established with respect to pollen,
representing the area from which the dominant component of the sedimentary assemblage
is derived (Prentice, 1985; Sugita, 1993; Jackson, 1993). The approximate radius around
the sediment sink from which the charcoal is derived needs to be known before
microscopic charcoal records from a sediment sequence can be effectively interpreted. The
Tulach Hill data suggests that the majority of charcoal entering a moorland lake basin is
likely to have originated from within an approximate radius of 70-80m. A component of
the smaller charcoal particles may be derived from greater distances, especially in larger
lakes with greater capacities for capturing extra-locally or regionally derived charcoal
(Jacobson & Bradshaw, 1981; Clark, 1988a). However, as demonstrated for pollen by
Sugita (1993) the majority of charcoal, in even relatively large diameter lakes, is likely to
have originated from predominantly local sources (See Section 2.3.5).

The Tulach Hill data suggest that for small muirburns on moorland atmospheric
dispersal of charcoal during fires may be the most important means of charcoal transport.
Wind direction during fires is, therefore, a very important factor controlling dispersal and
representation in sediment assemblages, fires very close to a lake may only deposit large
quantities of charcoal directly into the basin if the wind is blowing toward it, little will be
deposited at the site if it is up-wind of the source fire. Large numbers of fires burned under
unfavourable wind conditions may not be represented in the charcoal record despite being
within 70-80m of the lake. As a consequence, despite relatively high charcoal production
in moorland environments, the concentrations of charceal in the sediments of moorland
lakes may be relatively low. Alternatively, a single or a small number of fires burning close
to a lake with favourable wind conditions could deposit substantial quantities of charcoal
in it. It may, therefore, prove very difficult, perhaps even impossible, to reconstruct

anything more than very poorly defined fire histories in such environments.
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Post-fire redistribution of charcoal is believed to be of minimal importance. The
only time that post-fire dispersal is likely to contribute substantial quantities of charcoal to
lakes in moorland catchments, even when the slopes surrounding the lake are fairly steep,
is when fires extend right up to the lake shore. Otherwise the dense heather and litter
around lakes acts as a filter preventing transport of particulates from entering the lake by
either aeolian or surface hydrological processes (Terasmae & Weeks, 1979; Tolonen,
1983). Burnt patches on the lake shore could, however, release substantial amounts of
charcoal into the lake for substantial periods after the fire until the soil surface is stabilised
by vegetation regeneration.

Studies of stream inlet sediments have indicated that particulates can be
transported to lakes by catchment streams (Blong & Gillespie, 1978; Rummery, 1983).
Some charcoal may be deposited in moorland lakes by such processes, especially when
large networks of tributaries exist, or when the areas immediately surrounding streams are
burned. However, inputs of charcoal to streams is likely to be minimal when they are
surrounded by dense vegetation as little charcoal will enter them. Clark (1983) also
indicated that significant amounts of charcoal are only transported in streams during
restricted periods immediately after fire events.

Figure 5.10 is a highly stylised model summarising the hypothesised recruitment of
charcoal into moorland lakes developed from the Tulach Hill data and the available
literature. An approximate 70-80m radius is marked around the lake with a dotted line.
This is the approximate area from within which the majority of charcoal is hypothesised to
be derived (see Section 5.3.2). Some charcoal may enter the lake from fires in the rest of
the catchment given strong winds blowing toward the lake during combustion, although
this component is believed to be relatively insignificant in comparison with that from
within the 70-80m source area. Likewise a very minor component of predominantly small

particles may also be derived from outside the catchment.
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Figure 5.10: Schematic model of the charcoal taphonomy in a moorland lake catchment.

Regional charcoal
input ?

Catchment watershed

Three locations A, B and C have been marked on the diagram as a means of
illustrating the hypothetical importance of inputs of charcoal from different areas of the
catchment. The relative inputs of charcoal from fires at locations A, B and C are
dependent upon the wind strength and direction during the fire. Even in a strong wind
blowing toward the lake it is hypothesised that little charcoal from location C would enter
the lake. In the same wind more charcoal would enter the lake from a fire at location A in
comparison with location B but both could potentially contribute significant quantities of
charcoal. If the wind direction during the fires were away from the lake hardly any
charcoal would be deposited in the lake, even from location A.

The zone marked around the tributary stream represents the theoretical catchment
area of charcoal particulates which it could possibly transfer to the lake. The zone is
restricted to the immediate banks of the stream, because dense vegetation is likely to filter
and retain charcoal particulates preventing them entering the stream from any significant

distance.
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The model presented above is highly simplistic and relates primarily to relatively
small lakes, in homogeneously vegetated (Calluna-dominated), gently undulating,
moorland catchments. It is acknowledged that all sites have unique characteristics and that
the specific fire regimes, dominant dispersal processes, and catchment characteristics of
each individual site studied must be considered carefully before applying the principles of
the model. However, the model does provide a means of summarising the findings of the
Tulach Hill charcoal taphonomy study and provides a basis for estimating source areas of

charcoal deposited on the lake sites used in the following chapters.

5.6 Conclusions
5.6.1 Charcoal production

Moorland fires produce variable quantities of charcoal. The reasons behind this
have not been determined in this study but it is likely that variations in charcoal production
are a function of fuel and fire characteristics, i.e. fuel volume, fuel composition, fuel
condition, fire temperature, fire duration efc. The implications of this for the
palaeoecologist are important as variations in.volumes of charcoal in samples from cores
need not necessarily reflect differences in fire proximity but may be the product of
differential production processes.

Muirburn fires do not produce equal quantities of different sizes of microscopic
charcoal particles. Smaller charcoal particles are produced in significantly greater
quantities than progressively larger ones. These inequalities in production, termed
‘production bias’, have important implications for the interpretation of charcoal records,
especially when the charcoal has been quantified on the basis of particle size with the
intention of using the size class distribution of assemblages as a proxy measure of fire
proximity. Traditionally differentials in the proportions of different sized particles in
charcoal assemblages have been interpreted as being the product of differences in
propensity for dispersal, i.e. charcoal assemblages composed of predominantly small
particles were assumed to be of extra-local or regional origin whilst the presence of larger
particles suggested local origins. Small charcoal particles are more likely to be dispersed

more widely than large ones but the fact that smaller particle are produced in far greater
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quantities than larger ones suggests that even locally produced assemblages will be
dominated by smaller particles. Both ‘production bias’ and ‘dispersal bias’ contribute to

the final form and size class distribution of sediment charcoal assemblages

5.6.2 Dispersal of microscopic charcoal around muirburns

The analyses of charcoal taphonomy on Tulach Hill suggest that charcoal dispersal
around muirburns is relatively restricted. The results from Tulach Hill illustrate that whilst
small numbers of charcoal particulates can be transported up to and possibly beyond 300m
from burns, the vast majority are deposited within a 70-80m radius of source fires. The
implications of these findings for palaeoecologists are that charcoal records in moorland
contexts are likely to reflect histories of local fire activity, although a small component of
any given sediment charcoal assemblage may have extra-local or regional origins a local
fire signal should predominate.

The analyses on Tulach Hill also highlighted the importance of the wind direction
at the time of a fire as an agent of particulate dispersal. The vast majority of charcoal
produced by muirburns was inferred to have been deposited down-wind of source fires,
very little was deposited up-wind or perpendicular to the direction of wind flow. This has
important implications for palaeoecologists utilising sediment charcoal records. The
situation may arise whe;'eby sediment cores from locations in close proximity to but up-
wind of fires may not record them in their fossil charcoal profiles. This concept is not new
to charcoal analysts (e.g. Clark, 1982; Patterson et al., 1987) but the Tulach Hill data
serves to reinforce the possible influence of the wind at the time of a fire as an agent of

charcoal dispersal.
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Chapter 6: Peat Erosion

Abstract

Microscopic charcoal analyses of sediment cores were used to reconstruct long-
term fire histories for seven moorland lake catchments in the UK and Ireland known to
have experienced peat erosion over the past millennium. Redundancy analysis (RDA) was
used to test the relationship between peat erosion histories of the catchments, inferred
from LOI profiles, and the reconstructed fire histories in an attempt to determine whether
catchment burning may have caused the initiation of past erosion events. The results
obtained suggest that burning may have been a significant factor contributing toward

erosion inception at only one of the seven sites studied.

6.1 Introduction

Fire has played an important role in the development and maintenance of the
heather-dominated vegetation of British and Irish moors and blanket bogs over extended
periods of time (Gimingham, 1970). Controlled burning has been practised for many
centuries in order to promote and sustain heather dominance for herbivores, particularly
sheep, deer and grouse (Muirburn Working Party, 1977; Gimingham, 1975). Whilst there
is little evidence to suggest that well controlled periodic buming of vegetation is
deleterious to moorland communities (Gimingham, 1972; DOAS, 1976), uncontrolled fires
can have profound impacts. Ecological studies following large-scale, uncontrolled
contemporary moorland fires have shown that they can have extremely detrimental effects
on vegetation cover, and initiate prolonged episodes of erosion (e.g. Imeson, 1974;
Maltby, 1980; Maltby et al., 1990; Thomas ef al., 1994).

Approximately 8% of the land surface of the British Isles (30% of Scotland) are
peat covered (2.68 M ha) of which the majority is upland blanket peat (Taylor, 1983).
Extensive erosion is a considerable problem in all British and Irish peatland areas, i.e. the
Pennines and Northern Uplands of England (Conway, 1954; Bower, 1960; Tallis, 1964,
1965), Scotland (Stevenson et al., 1990; Grieve ef al. 1994), Northern Ireland and Ireland

(McGreal & Larmour, 1979; Alexander et al., 1985). Peat erosion constitutes a
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considerable problem for upland management and conservation, large tracts of grouse
moor and livestock grazings are being lost, water storage capacities of reservoirs are been
reduced by peat in wash, losses of heather-dominated vegetation have led to a reduction in
flora and fauna characteristic of moorland, and the amenity value of moorland is being
eroded along with the footpaths and scenery (Phillips ef a/., 1981).

There is obviously a great need to identify the processes which initiate the erosion
of peat masses so that long-term management strategies can be formulated (Bradshaw &
McGee, 1988). Investigations seeking to elucidate the timing and causes of peat erosion
events in Britain and Ireland have generally been unable to isolate the specific causes,
however, a number of hypotheses have been outlined: climate change (Conway, 1954;
Tallis, 1965, 1973, 1985, 1987); the development of inherent instability in peat masses
(Bower, 1961, 1972; Alexander et al., 1986); anthropogenic effects such as burning,
grazing, trampling and land drainage (Radley, 1962; Shimwell, 1974; Tallis, 1981, 1987,
Battarbee et al., 1985); air pollution (Ferguson & Lee, 1993; Tallis, 1985); and a
combination of the above factors (Phillips ez al., 1981).

A considerable number of studies cite disturbance by fire as a possible major cause
of peat erosion (e.g. Tallis, 1964; Tallis & Switsur, 1983; Stevenson ef al., 1990). Fire has
great potential for destroying and removing surface vegetation, and as highlighted by
Dunham (1963) ‘where the cover of living vegetation is destroyed, erosion of the
underlying soft peat will inevitably begin’. Stevenson ez al. (1990) in particular stress the
need for extended fire histories from eroded catchments in order to elucidate the possible
relationship between past fire-management of peatlands and their erosion.

The present study was carried out to assesses the extent to which changing burning
regimes in the catchments of seven British and Irish lakes might have caused the initiation
of peat erosion. Palaeoecological analyses of lake sediment cores are used to reconstruct
the erosional and burning histories of the catchments over the recent past (up to 1100
years BP) and multivariate statistical methods are used to assess whether a significant
relationship existed between erosion and burning intensification. Alternative hypotheses of

erosion initiation at the sites are also considered.
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6.2 Outline of methodology
The following methodology was devised in an attempt to determine whether fire
activity in upland moorland catchments had been responsible for initiating erosion of

catchment peats. The rationale for site selection is outlined in Section 3.1.2.

e Short sediment cores (c.80 cm) were extracted from Lough Muck, Blue Lough,
Round Loch of Glenhead, Loch Teanga, Loch Tanna, Loch Na Larach and Llyn
Conwy.

e Percentage loss-on-ignition (LOI) profiles, a proxy measure of peat erosion activity in
the catchment (Bradshaw & McGee, 1988), were derived for each site.

¢ Microscopic charcoal analyses were performed by the method outlined in Chapter 3 to
provide extended catchment fire histories.

e Redundancy analyses (RDA) and Monte Carlo permutation tests (Lotter & Birks,
1993; Korsman ef al., 1994) were used to assess whether catchment fire activity had a

significant effect as a possible cause of peat erosion in the catchments.

6.2.1 Site selection rationale :

The seven UK and Irish lake catchments selected for study were chosen because
they fulfilled a number of important criteria (see Figure 3.2 for the location map and
Section 3.1.2 for summary information on the individual sites). Each has obvious evidence
of either present or past peat erosion in their catchments. All are headwater lakes, chosen
in an attempt to help define the source area of charcoal entering the lake sediments.
Palynological studies have suggested that headwater lakes, with limited drainage
networks, have small pollen source areas and, therefore, sediment records are likely to
reflect local rather than extra-local pollen spectra (Peck, 1973; Bonny, 1976; Jacobson &
Bradshaw; Birks ef al.,, 1990). A similar line of reasoning is adopted for microscopic
charcoal, i.e. that the lake sediment records of the lakes studied should contain charcoal of
a predominantly local origin, and thus provide histories of fire activity within their
respective catchments (see also Chapter 5). The distribution of the sites from N Wales

through to the north of Scotland and into Ireland and Northern Ireland allows some
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assessment of whether regional patterns, both in the timing and possible causes of peat

erosion, exist.

6.2.2 Dating of the sediment cores

Chronologies for the upper sediments of all the cores were constructed using the
2%pp CRS model (Appleby & Oldfield, 1978). Figures 6.1 and 6.2 present the *‘°Pb
age/depth profiles for the seven sites (the chronologies and accumulation rates are
presented in tabular form in Appendix 5). The Round Loch of Glenhead and Loch Teanga
cores were also dated using *C methods (Jones ef al., 1987; Jones et al., 1989). Nineteen
C dates on bulk peat samples were conducted on the Round Loch of Glenhead core and
ten were performed on the Loch Teanga core (Appendix 6).

The dates of the loss on ignition increases which lie below the portions of the cores
dated directly by *'°Pb methods were estimated by extrapolation. It is acknowledged that
such a method is built upon the assumption that accumulation rates have remained
relatively constant over extended periods, but without additional dates further down the
cores it represents the best available method. The *'°Pb derived age/depth profiles for
Lough Muck, Loch Na Larach and Llyn Conwy which show strong, statistically
significant, linear relationships and thus the ?'°Pb chronologies were extrapolated to the
core bases using a simple linear regression model. The #'°Pb chronologies for Blue Lough
and Loch Tanna, however, display exponential age/depth profiles, for these sites
extrapolations were based on the lowermost portions of the curves where significantly
linear relationships exist. The dates estimated in this fashion have potentially large error
margins, with perhaps correspondingly greater errors on progressively earlier dates,
therefore, all dates should be taken as approximations with minimum errors of at least 50
years. -

At Round Loch of Glenhead and Loch Teanga where 'C dates were available in
addition to *'°Pb chronologies the dates of LOI increases were estimated by regression
after amalgamating the two chronologies. At Round Loch of Glenhead, however, a
number of the dates are believed to have been contaminated by older carbon (Stevenson ef

al., 1990) and thus are unreliable. Consequently only the dates from the lower most
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sections of the core, and the youngest dates which appear to be free from older carbon
errors, were used in the age estimations (Stevenson ef al., 1990). The dates estimated in
this manner are again subject to considerable sources of error and thus must be treated

with caution.

6.2.3 Statistical analyses

The possible influence of fire activity as a cause of peat erosion in the catchments
of the seven lake sites studied was assessed by canononical ordination techniques (Birks &
Lotter, 1993; Korsman e? al., 1994). The charcoal data, as proxy measures of
reconstructed fire activity, were used as ‘environmental’ or predictor variables to explain
statistically the catchment erosion records, represented by the reconstructed % LOI
profiles. Detrended canononical correspondence analysis (DCCA) was used to ascertain
whether linear (redundancy analysis; RDA) or unimodal (canononical correspondence
analysis; CCA) ordination methods were appropriate (Hill & Gauch, 1980). The gradient
lengths of the first DCCA axis for all of the LOI profiles were short (<1.6 SD) and so
RDA was used (ter Braak & Prentice, 1988). The statistical significance of the RDA
analyses were assessed by restricted Monte Carlo permutation tests for stratigraphically
ordered data (ter Braak, 1990a), four hundred and ninety-nine permutations were used for
each test (John Birks, pers. comm.). The computer program CANOCO 3.12 (ter Braak,

1990b) was used to perform all calculations and analyses.

6.3 Results
6.3.1 Loss-on-ignition profiles

Loss on ignition (LOI) measurements provide an accurate technique for
determining the organic matter content of sediment (Dean, 1974). LOI measurements of
lake sediments have been used by a number of authors as proxies for catchment peat
erosion (e.g. Bradshaw & McGee, 1988, Stevenson et al., 1990; Stevenson ef al., 1992),
because in unproductive acidic lakes in catchments dominated by blanket peats marked

increases in the % LOI of the lake sediment record are almost certainly due to accelerated
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erosion of surrounding catchment peats (Bradshaw & McGee, 1988: Stevenson ef al.,
1990).

Lake sediment records from all seven of the lakes studied show evidence of
erosion episodes during the past 1100 years (Figure 6.3), and with the exception of Loch
Teanga all have experienced at least one major episode of erosion within the past 700
years. In the Round Loch sediment core LOI values increase abruptly between 49-40 cm
depth (c.1650-1700 AD) from 30% to 50%, a feature seen in a number of other replicate
cores from the loch (Stevenson ef al, 1990). A number of much smaller short-term
erosional events prior to the main episode event appear to be minor in comparison. The
main period of erosion intensification in the Llyn Conwy catchment occurred at a depth of
between 139-133 cm (c.1300-1400 AD), indicated by the increase in LOI values from 30-
50%, in a similar manner to the Round Loch profile. A number of less significant, smaller
scale erosion events occurred both prior to and following the main episode of erosion
intensification. Loch Na Larach experienced several distinct periods of erosion, the two
most marked episodes were initiated between 64-58 cm (c.1550-1600 AD) when LOI
values rose from 15-60% before stabilisation.and then between 52-43 cm (c.1650-1700
AD) when LOI values rose again from 40-85%.

Loch Teanga’s LOI profile exhibits evidence of a complex erosional history
characterised by numerous short episodes of catchment erosion followed by stabilisation
and subsequent renewal of erosion activity. Amongst the numerous peaks in the LOI
record three are of greatest significance, between 89-85 cm (¢.1500-1550 AD) LOI values
rose sharply from 30 to 50% before falling and remaining relatively constant until 56 cm
(c.1700 AD) with renewed erosional activity, the final major erosion event was initiated at
c.34 cm (c.1800 AD). The LOI record from Loch Tanna is much less striking than the
others considered here. The increase in LOI values was.very gradual and even during the
periods of inferred maximum erosion between 39-29 cm (¢.900-1200 AD) and 10-7 cm
(c.1800-1900 AD) LOI values only reach ¢.40%.

The Lough Muck LOI profile is characterised by a gradual increase in erosion
activity between 60 cm (c.1500 AD) (LOI = 25-30%) and 38 cm (c.1700-1750 AD; LOI
= 55%). Following a relatively minor, short erosion episode between ¢.950-1050 AD (75-
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gure 6.3:  Summary diagram of loss-on-ignition profiles from the seven and Irish
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68 cm) LOI values in Blue Lough remained relatively constant suggesting a degree of
stability in the catchment until 45 cm (c.1400 AD) when sustained erostonal activity began
in the catchment. Between 45-39 cm (¢.1400-1500 AD) LOI values increased from 25-
55% and erosion intensified during a second phase with an increase in LOI values from
50-80 % between 31-25 cm (c.1600-1700 AD).

A feature common to all of the LOI profiles is the decline in % LOI values within
the upper few cm (c.1850-1950 AD) of the sediment records. This marked fall in LOI

suggests recent widespread stabilisation of catchment peats.

6.3.2 Charcoal profiles

The charcoal profiles for the seven cores are presented collectively in Figure 6.4.
In this diagram charcoal abundance is taken as an approximate measure of fire activity in
the immediate lake catchment as the majority of microscopic charcoal produced by
moorland fires is believed to be deposited within a hundred metres of parent fires.
Although it is accepted that a small proportion of the charcoal produced may be dispersed
extra-locally or even regionally (Clark, 1988a), the overwhelming proportion of charcoal
in the lake sediment cores sampled is hypothesised to have local origins (Sugita, 1993,
1994) (see Section 2.3.3).

In the Blue Lough sediment core charcoal levels remain relatively low below 56
cm (¢.1200-1250 AD) before catchment burning levels increased gradually through to 38
cm (¢.1500 AD). The period between 35-18 cm (c.1500-1800 AD) has sustained high
charcoal abundance suggesting it was the period of greatest fire activity in the catchment.
Over the past century burning activity fell, although in the last decade fire activity
increased again. At Llyn Conwy prior to 57 cm (¢.1750 AD) charcoal values are low and
fairly constant denoting relatively low levels of catchment burning activity. A period of
moderate intensification of burning activity prevailed between 57-29 cm (c.1750-1900
AD), and post-1900 fire activity (above ¢.29 cm) in the catchment intensified further.

With the exception of a large peak in charcoal abundance at 76 cm (c.1480 AD)
fire activity in the Loch Na Larach catchment prior to ¢.1800-1850 AD was considerably

less intensive than during more recent times. In the Lough Muck catchment fire activity
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Figure 6.4: Summary diagram of microscopic charcoal profiles from the seven UK and

Irish sites studied.
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has been significantly greater in the last couple of centuries (above c.22 cm) than
previously, although the period between 47-30 cm (c.1650-1800 AD) also experienced
increased levels of burning compared with the preceding three centuries. The Round Loch
catchment experienced consistently low levels of fire activity between 90-45 c¢cm (c.400-
1700 AD), between 45-28 cm (c.1700-1800 AD) charcoal levels were marginally but
consistently higher, and in the post-1800 AD period charcoal levels have been much
higher suggesting an increase of fire activity in the catchment.

The Loch Tanna charcoal record is similar to that from the Round Loch, high
charcoal values during the past hundred years (above ¢.7 cm) suggest a high intensity of
fire management, whilst fire activity was relatively low prior to this time, with fire activity
increasing only gradually through the 14th and 15th centuries. The Loch Teanga charcoal
profile exhibits the familiar (present in all but Blue Lough) period of intensive fire activity
in the post-1900 period (above 14 cm), prior to ¢.1900 AD fire activity in the catchment

was less intensive.

6.3.3 Results of the statistical analyses

The results of the redundancy analyses of the biostratigraphical data sets at the
seven sites are presented in Table 6.1 as exact Monte Carlo significance values (499
permutations) (Korsmann et al., 1994).

Blue Lough is the only site at which there is a highly significant relationship
between the charcoal record of catchment fire activity and the LOI record of erosion as
assessed by restricted Monte Carlo permutation tests. At the other six sites no significant
relationship between the charcoal and LOI profiles is shown (p-values = 0.176 - 0.908).
The amount of variance in the LOI data explained by the first canononical axis from the
RDA analyses at the six sites varied greatly. At Blue Lough 59% of the variance was
explained whilst for those sites with no significant relationships between charcoal and LOI

much less variance was explained (0 - 38%).
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Table 6.1: Results of the redundancy analyses and Monte Carlo permutation tests to

determine the effect of catchment fire activity on peat erosion. Entries are percentages of

variance explained by the first canononical axis and significance levels as assessed by

restricted Monte Carlo permutation tests (499 permutations).

Site Predictor % variance in LOI Significance of explained
explained by first variance (p-value)
RDA-axis
Blue Lough Charcoal 59 0.002
Lough Muck Charcoal 38 0.176
Llyn Conwy Charcoal 11 0.604
Loch Na Larach Charcoal 3 0.820
Round Loch of Glenhead Charcoal . 15 0.480
Loch Tanna Charcoal 17 0.348
Loch Teanga Charcoal 0 0.908

6.4 Discussion

6.4.1 Dates of erosion inception

The approximate dates of erosion inception span between ¢.950 AD at Loch Tanna

through to ¢.1800 AD for the latest episode of erosion at Loch Teanga, Figure 6.3 &

Table 6.2.
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Table 6.2: Dates of erosion inception in the seven UK and Irish sites studied.

Site Date of erosion

inception (AD)
Loch Tanna 900
Llyn Conwy 1340
Blue Lough 1380
Loch Teanga 1530
Lough Muck 1550
Loch Na Larach 1560
Blue Lough 1610
Loch Na Larach 1640
Llyn Conwy 1660
Round Loch of Glenhead 1660
Loch Teanga 1690
Loch Teanga 1800

The majority of erosion across the range of sites is concentrated within the 16th
and 17th centuries, the possible reasons for this are discussed in depth in Section 6.4.2.4.
In order to establish how the dates of erosion inception at the seven sites fitted into the
framework found in previous studies the dates of erosion have been compared with those

from other studies in Table 6.3.
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Table 6.3: Approximate dates of erosion inception for selected British and Irish sites. All

sites included have been dated by radiometric methods. The sites are listed by country and

in chronological order of erosion inception within each country.

Approximate date of
Site erosion inception (Years Author
AD unless stated)
Ireland
Arts Lough (Co. Wicklow) 1000 BC Bradshaw & McGee (1988)
Slieveanorra Forest (Co. Antrim) 150 BC McGreal and Larmour (1979)
Lough Nabrackbaddy (Co. Donegal) 450 Bradshaw & McGee (1988)
Blue Lough (N Ireland) 1380 This study
Lough Maam (N Ireland) 1501 Stevenson (1992)
Lough Muck (Co. Donegal) 1550 This study
Blue Lough (N Ireland) 1610 This study
Lough Maam (N Ireland) 1776 Stevenson (1992)
Wicklow Mountains 1850 Bowler & Bradshaw (1985)
Scotland
Lochan Dubh (NW Scotland) 871 Stevenson (1992)
Loch Tanna (Arran) 900 This study
Lochan Dubh (NW Scotland) 1391 Stevenson (1992)
Glen Etive (NW Scotland) 1400 Brazier ef al. (1988)
Glen Feshie (N Scotland) 1500 Brazier & Ballantyne (1989)
Loch Teanga (S Uist) 1530 This study
Loch Na Larach (N Scotland) 1560 This study
Loch Laidon (NW Scotland) 1568 Stevenson (1992)
Loch Na Larach (N Scotland) 1640 This study
Round Loch of Glenhead (SW Scotland) 1660 This study
Loch Teanga (S Uist) 1690 This study
Several sites in the Scottish Highlands 1730 Innes (1983)
Loch Teanga (S Uist) 1800 This study
Lochan Dubh (NW Scotland) 1809 Stevenson (1992)
Loch Chon (NW Scotland) 1826 Stevenson (1992)
England
Howgill Fells (NW England) 1000 Harvey et al. (1981)
Featherbed Moss (N England) 1770 Tallis (1985)
Wales -
Liyn Conwy (N Wales) 1340 This study
Liyn Conwy (N Wales) 1660 This study
Llyn Peris (N Wales) 1750 Dearing et al. (1981)

NB - It is acknowledged that the above list of sites is by no means comprehensive, however, it serves the

intended purpose of placing the study sites in a wider spatial and temporal framework. Large numbers of

additional sites were not used because it was deemed that their methods of dating were questionable.
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The majority of the erosion episodes listed above, 18 of the 26, were initiated
between ¢.1500-1850 AD. This broadly synchronous timing of erosion inception over
such a wide geographical range of sites is extremely interesting and is addressed fully in

Section 6.4.2.4.

6.4.2 The possible causes of erosion
6.4.2.1 Fire activity

Fire has been implicated in a considerable number of palaeoenvironmental studies
seeking to determine the causes of peat erosion, although often with little direct evidence
(e.g. Stevenson & Thompson, 1993; Innes, 1983a, 1983b; Brazier ef al., 1988). The main
reason for this may be that fire has such great potential for causing erosion. The
susceptibility of upland peats to erosion being greatly enhanced by the removal of the
protective vegetation cover, and fires, particularly uncontrolled high temperature/intensity
ones, can initiate prolonged erosional events (e.g. Radley, 1962; Tallis, 1964; Maltby et
al., 1990).

The underlying assumption of the methodology adopted here is that increased fire
activity in a catchment, inferred from increased quantities of microscopic charcoal in the
lake sediments, increases the likelihood of erosion of catchment peats. Whilst it is
accepted that there is not necessarily always a positive and causal relationship between
high levels of fire activity and erosion, i.e. moors managed by intensive, controlled
muirburn can be free of serious and prolonged erosion (Gimingham, 1972), areas of
blanket peat devoid of vegetation following fires are potentially more susceptible to
erosion than unburned areas (Imeson, 1971; Kinako & Gimingham, 1980). Therefore, it is
not unreasonable to hypothesise that the ‘erosion potential’ of a catchment may be related
to the degree of fire activity within it.

The palaeoenvironmental and statistical analyses conducted were designed to
assess the extent to which catchment fire activity may have been responsible for initiating
the past erosion of peats in the seven catchments studied (Figures 6.5 - 6.11). Redundancy

analysis (RDA) and Monte Carlo permutation tests, offer a robust means of determining
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Figure 6.5: Loss-on-ignition and microscopic charcoal profiles for Blue Lough.
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Figure 6.6: Loss-on-ignition and microscopic charcoal profiles for Llyn Conwy.
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Figure 6.7: Loss-on-ignition and microscopic charcoal profiles for Loch Na Larach.
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Figure 6.8: Loss-on-ignition and microscopic charcoal profiles for Lough Muck.

15
20
25
30+
35
c1700AD - —~ |
45
50
554
¢.1500 AD - 601
651
70
754
80
85
90! M———— —_————
20 40 60 500 1000 1500
% (particles/q™"/x10)

c.1850 AD -

Depth (cm

T '

I

162



Figure 6.9: Loss-on-ignition and microscopic charcoal profiles for Round Loch of

Glenhead.
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Figure 6.10: Loss-on-ignition and microscopic charcoal profiles for Loch Tanna.
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Figure 6.11: Loss-on-ignition and microscopic charcoal profiles for Loch Teanga.
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the amount of variation in the erosion record attributable to fire activity and its statistical
significance (Lotter & Birks, 1993; Korsman et al., 1994).

The results of the analyses, presented in Table 6.1, indicate that at only one of the
seven sites, Blue Lough, was there a highly significant relationship (p = 0.002) between
catchment erosion (LOI) and changing catchment burning regime as assessed by restricted
Monte Carlo permutation tests. The analyses suggest that at Blue Lough intensification of
fire activity may have been an important factor contributing to the initiation of erosional
events. These results, however, do not prove that fire activity was solely responsible for
causing erosion, they do, however, provide evidence for evaluating whether it may have
had a contributory role. The roles of all the other possible causes of peat erosion also need
to be assessed before the most important factors could be determined.

At the other six sites catchment burning was not found to be a statistically
significant factor causing or contributing toward erosion inception. The p-values assessed
by Monte Carlo permutation tests are not significant and the percentages of variance in the
LOI profiles explained by the charcoal variable are low. With the exception Lough Muck
(38%) very little of: the variance (<17%) was.explained by the charcoal variable for these
six sites and in the most extreme case, Loch Teanga, none of the variance in the LOI
profile was accounted for by the charcoal index.

In summary, the analyses presented here illustrate that whilst in the case of Blue
Lough burning of catchment vegetation may have been instrumental in causing erosion, at
the other sites despite their long histories of fire management, alternative agents and
processes may have been responsible for initiating erosion. The alternative hypothesised

causes of erosion are discussed below.

6.4.2.2 Atmospheric pollution -

Atmospheric  pollutants, especially sulphur-derived compounds from the
combustion of fossil fuels can adversely affect or even cause the death of Sphagnum spp.
and lichens (Ferguson et al., 1978; Ferguson & Lee, 1979). Tallis (1964) and Chambers ef
al. (1979) believe that atmospheric contaminants have been a possible cause of, or at least

an important contributory factor in the perpetuation of, peat erosion in the Pennines and
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N. Wales. The demise of Sphagna and a subsequent lack of recolonisation of exposed peat
surfaces increases the chances of severe erosion occurring and prolongs its deleterious
effects.

Sulphur compounds have been measured directly in palaeolimnological studies to
provide a direct measure of past atmospheric contamination and acid stress on catchments
(e.g. Nriagu & Coker, 1983; Holdren ef al., 1984; Mitchell ef al, 1985). However,
sulphur sedimentation processes are prone to changes in efficiency as lake conditions
change and sediment records do not always record sulphur input histories accurately
(Nriagu & Soon, 1985; Rudd ef al., 1986; Rippey, 1990). To overcome this problem
alternative strategies have been developed. The trace metal Pb has a depositional history
approximately similar to acidic contaminants and because it is less susceptible to
mobilisation in lacustrine sediments can be used as surrogate measure of the deposition of
atmospheric acidity (Galloway & Likens, 1979; Norton et al., 1981; Wong ef al., 1984,
Battarbee ef al., 1985). Pb is so stable in all but the most acidic environments that it is
customary in studies of this nature to interpret lead profiles in terms of anthropogenic
effects and to ignore or exclude the possibility of a diagenetic contribution (Kemp &
Thomas, 1976).

A large number of studies have illustrated that most lakes in Britain and Ireland
exhibit generally similar histories of pollutant deposition. Lacustrine sedimentary pollutant
levels generally remain low throughout the lower profile until ¢.1800-1850 AD when they
increase markedly up profile, the result of industrial expansion during this period (e.g.
Farmer et al., 1980; Rippey et al., 1982; Jones et al., 1990; Rippey, 1990; Williams,
1991).

The Pb profiles at five of the seven sites analysed (Figure 6.12), Llyn Conwy, Loch
Na Larach, Lough Muck Round Loch and Loch Teanga; conform to that which might be
expected. Generally low and constant levels of Pb show marked enrichment in the upper
profiles post-1800 to 1850 AD. In contrast the Blue Lough and Loch Tanna profiles
exhibit considerable enrichment further down their profiles. In both instances changes in
the sediment constitution were responsible for the pre-industrial enrichment of the

sediments, due to increased influxes of mineral-rich, finer sediments with associated
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higher trace metal burdens from the catchment. The increased lead deposition in the lake is
therefore the result of geomorphic processes in the catchment rather than atmospheric
deposition, and is a consequence of erosion rather than a cause of it (Patrick ezt a/., 1989;
Flower et al., 1990). The two sites still, however, exhibit the characteristic increases in Pb
concentration in their upper sediments as a result of industrially derived atmospheric
contamination

The concentrations of Pb in the cores vary considerably, both in terms of
background levels which are the consequence of local geology, and industrial
contamination which is primarily dependent upon proximity to industrial activity (Farmer
et al., 1980). Peak concentrations in the surficial sediment range between 1068 ug/g in
Lough Muck, an uncharacteristically high value in the context of the rest of the core, to
only 78 ug/g in Loch Na Larach. Loch Na Larach is considerably further from industrial
enterprises than Lough Muck. A feature common to most of the Pb profiles is a general
reduction in pollution levels in the past few decades, this is perhaps due to reduced

industrial emissions at source as a result of increased pollution controls (Williams, 1991).

Acid deposition can be rejected as an important cause of past erosion initiation in
the seven catchments studied because the increases in pollutant deposition experienced at
these sites occurred considerably later than erosion had been initiated, similar conclusions
were reached by Bradshaw & McGee (1988) and Stevenson et al. (1990; 1992). In
addition, the sites have not been subjected to high enough levels of pollution to cause
severe Sphagnum damage. Studies in which atmospheric pollution has been implicated as
a significant cause of Sphagnum spp. loss and damage have been confined to the Peak
District where because of the proximity to major industrial centres the effects were most

severe (Ferguson & Lee, 1983). -

6.4.2.3 Grazing

Studies of sheep grazing on moorland and blanket bog vegetation have highlighted
the importance of grazing in modifying vegetation (e.g. Hunter, 1962; Welch & Rawes,
1966; Rawes & Williams, 1973; Grant ef al., 1976; Hewson, 1977, Welch, 1984; Rawes
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& Hobbs, 1979). Blanket bog is particularly vulnerable to overgrazing, especially in
combination with periodic burning (McVean & Lockie, 1969). Rawes (1983), for
instance, studied changes in the high altitude blanket bog vegetation on Moor House
Nature Reserve and concluded that the role of grazing animals in determining vegetation
community cover and structure has long been underestimated, ‘climate had previously
been considered the main factor controlling the vegetation but the importance of sheep
grazing soon became apparent.’

Heavy grazing preferentially favours the expansion of graminoid species over
Callunetum, and tussock-forming graminoids offer less complete ground cover and,
therefore, less protection from erosion (Eddy et al., 1969; Evans, 1977; Phillips et al.,
1981). Grazing is also influential in prolonging phases of erosion by preventing vegetation
regeneration on bare ground, an extremely important factor necessary for arresting erosive
processes. Sheep preferentially graze the short nutritious vegetation developing on
recently burned areas and grassy areas in heather dominated communities and increase
their potential for erosion (Grant et al., 1976).

Sheep hooves are sharp-edged and exert more than twice as much pressure on the
ground than human feet (Phillips ef al., 1981), well trodden tracks and paths along
contours greatly increase the instability of hill slopes (Shimwell, 1974; Fairbairn, 1963).
‘Sheep scars’ are also a common feature of eroded hill slopes in areas of high stocking
levels (Fairbairn, 1963; Bower, 1961). Initiated as small tears behind irregularities where
sheep shelter from the weather, these initially insignificant disturbances become wider and
deeper as the soil surface is exposed to the elements and further disturbance by sheep.
Ballantyne (1986, 1987) and Ballantyne & Whittington (1987) also attribute some of the
blame for accelerated wind erosion and mass movements on some mountain summits to
disturbance by sheep. -

A considerable number of studies have implicated sheep grazing in the initiation of
specific historic erosion events. The implication of sheep grazing as an agent of erosion in
palaeoenvironmental studies, however, has in most cases been rather ‘speculative’ and has
tended to rely on rather vague coincidences in timing between possible human occupation,

with assumed livestock farming, and erosional events (e.g. Bennett et al., 1990; Harvey et
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.
al., 1981; Dearing et al., 1981). In practice the effects of past grazing are extremely
difficult to estimate using palaeoecological data as there is no direct fossil evidence in
sedimentary sequences. Effects on vegetation communities manifested in the pollen
spectra may be determinable under very high resolution examination, but even then it is
very difficult to differentiate the effects due solely to grazing from those of other factors
such as climate, pollution and burning which are superimposed, often imperceptibly, on
the pollen record.

Modern studies into the effects of variations in stocking levels on Calluna-
dominated upland vegetation have provided guidelines to the approximate sheep densities
which can be sustained before the vegetation is deleteriously affected. Stocking levels
under which Callunetum has been found not to be detrimentally affected are as follows:
<0.62 ewes/ha on areas grazed throughout the year (Jones, 1964); 0.83 ewes/ha with
intense shepherding and grouse management (Wilson, 1979); and 2.18 sheep/ha on
heather moor under summer grazing only (Hewson, 1977). Alternatively, stocking levels
at which deleterious effects have been experienced include the following: under 3.28
sheep/ha heather was almost completely suppressed (Hewson, 1977); grazing of 0.5
sheep/ha on burnt blanket bog suppress heather (Rawes, 1971); and Evans (1977) at Hey
Clough calculated sheep densities of 1.71-1.89 sheep/ha cause the appearance of bare
ground and, therefore, initiate erosion.

Phillips ef al. (1981) warn that such generalised stocking levels must be interpreted
with great caution because heather growing on sub-optimal sites, such as a poorly-drained
or base-rich ones, stands less pressure than plants growing on well-drained peats. Grant &
Hunter (1968) and Sydes & Miller (1988) also stress that stocking rates are a crude and
imperfect, if not meaningless, guide to the likely grazing pressures experienced by a
particular area as they make no allowance for diurnal and seasonal changes in herbivore
distribution, or account of local concentrations of livestock on small areas of good or
sheltered grazing. However, no other guide to grazing pressure is often available (Sydes &
Miller, 1988).

Past stocking densities and their possible impacts in terms of erosion are extremely

difficult to reconstruct over limited, never mind extended, time scales. Approximate
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grazing intensities can be determined using historical documentary evidence, but even
when records are good it is very difficult to ascertain exact stocking levels for catchments
which can prove constructive for detailed analysis. The longest and most accurate grazing
histories are perhaps those that have been derived for areas which were under the control
of Cistercian Monasteries since Mediaeval times. Hughes et al. (1973) were able to
reconstruct an excellent grazing intensity record for an area of North Wales under
Cistercian control from ¢.1300 AD. In ¢.1300 AD stocking levels of sheep were only on
average c.0.12 sheep ha™, levels rose progressively through to ¢.1600 to a level of ¢.0.5
sheep ha™, then sheep populations subsequently rose more dramatically and in 1700 AD
they were c.1.73 sheep ha™, around 1800 = ¢.3 sheep ha’, and in 1877 = 3.95 sheep ha,
however, during the early 20th century levels fell to c.0.9 sheep ha™ in 1920 but rose again
to 2.96 sheep ha™ by 1969. Although the stocking record is as good as could possibly be
reconstructed the authors warn against using the figures in detailed analyses because they
represent a series of approximations, derived from extant historical facts, and ‘cannot be
regarded as satisfactory for statistical inference’ (Hughes et al., 1973).

Sheep have been the main, and in many areas the only, grazing animals in the
uplands of Scotland since the late 18th century (Hobbs & Gimingham, 1987; Ritchie,
1919, 1920). Prior to that, under the shieling management regime, cattle were
predominant on the remote and rough grazings during summer only along with some goats
and sheep (Ritchie, 1919, 1920; Sydes & Miller, 1988). The introduction of commercial
sheep farming breeds, especially the Blackface and the Cheviot, and year-round grazing
occurred shortly after the 1745 revolution and effectively ended the use of the shieling
system (Fenton, 1980; Innes, 1983). Watson (1932) highlights the extent of the expansion
in sheep densities in some areas around this time, e.g. in an area near Callendar in 1770
1,000 sheep were grazed but over the next 20 years the-number increased to 18,000. By
1830 the transition to commercial sheep farming was complete over most of Scotland,
however, between 1850-1880 sheep farming in some regions declined and deer farming
increased due to demand for sporting estates (Innes, 1983). Sheep farming expanded again
at the beginning of World War 1 and has continued through to the present day, with the

Highlands experiencing 3-4 fold increases in stocking densities over the past 50 years
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(Sydes & Miller, 1988, Patrick & Stevenson, 1990; Thompson ef al., 1993). Hobbs &
Gimingham (1987) estimate that current stocking rates of hill sheep in Scotland are
generally in the range 1.2-2.8 sheep/ha.

Commercial sheep farming in Scotland since the late 19th century has frequently
been blamed for the degradation of the landscape. Darling (1968) believed that ‘two
centuries of extractive sheep farming ....... have reduced a rich resource to a state of
desolation’, and whilst Mather (1994) takes a more tempered view he concludes that
‘there is little doubt that the Highland environment has been significantly modified by
sheep farming over the last two hundred years’, however in his mind ‘there is much more
doubt about the nature, pattern and magnitude of that modification’.

In comparison with England, Scotland and Wales relatively little is known about
long-term grazing patterns and intensities in Ireland, although it is believed that sheep
grazing intensities in the majority of Irish catchments generally remained much lower than
in the UK throughout the last 200 years. Sheep populations only expanded significantly in
the mid 1960s and 1970s (O’Toole, 1985).

Has excessive grazing pressure been responsible for the initiation of peat erosion in
the catchments studied? In the Loch Tanna catchment the inception of erosion occurred
¢.900-1000 AD, and although Harvey ef al. (1981) invoked grazing pressures attributable
to Norse settlers during a similar period in the Howgill Fells, it is felt that it is unlikely that
grazing pressures at this time could have been solely responsible for initiating erosion in
this catchment. Round Loch of Glenhead, located in Galloway, SW Scotland may have
fallen within the ranges of early Cistercian pastures, however, even if it did the sheep and
cattle populations ¢.1600 AD are unlikely to have caused major catchment erosion on the
scale recorded. The other Scottish sites in more remote locations are unlikely to have been
subjected to excessively severe grazing regimes prior ta-the establishment of commercial
sheep farming toward the end of the 18th century. Initial phases of erosion in these
catchments all pre-date the onset of commercial sheep farming by considerable margins,
grazing can thus be rejected with a high degree of confidence as the likely cause. In
Ireland erosion in the catchments of Lough Muck and Blue Lough is inferred to have

begun in the 14th and 16th centuries respectively, well before grazing intensities are likely
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to have been sufficiently high to have caused erosion. The Llyn Conwy catchment lies very
close to the boundaries of the grazing ranges of the Cistercian monasteries in N Wales
studied by Hughes et al. (1973). However, with the initial phase of erosion at the site
occurring in the 14th century, before significant expansions in sheep populations, it is
unlikely that grazing played an important role in erosion inception.

It can be concluded, therefore, that sheep grazing is unlikely to have been the
principal agent responsible for the initiation of peat erosion in the catchments studied.
However, grazing may have played a significant role in exacerbating and perpetuating
erosion in more recent times, following its inception in at least some of the catchments

studied.

6.4.2.4 Climate change

Climate is considered to exert a fundamental control on peat erosion (Bower,
1959, 1961, 1962; Moss, 1913; Conway, 1954; Johnson 1957). Not only are the main
agents of erosion climatic, i.e. intense precipitation, wind, frost action and desiccation, but
the prevailing climate dictate rates and characteristics of peat development, and the
general vegetation cover. It is, therefore, understandable that when past erosion episodes
have been coincidental with periods of known climatic severity, climatic factors have been
invoked as possible causes (e.g. Conway, 1954; Tallis, 1965, 1973; McVean & Lockie,
1969; Tomlinson, 1982). The Little Ice Age, characterised by increased climatic severity
and storminess (Lamb, 1977, 1982; Grove, 1988), in particular has been widely associated
with erosional activity (e.g. Brazier & Ballantyne, 1989; Stevenson et al., 1990).

Nine of the twelve major erosion episodes experienced by the catchments studied
were initiated between ¢.1530-1800 AD with five of the seven sites studied, Llyn Conwy
in N Wales, Round Loch of Glenhead in SW Scotland,-Lochs Na Larach and Teanga in
NW Scotland, and Blue Lough in N Ireland, experiencing distinct episodes of erosion
between ¢.1600-1700 AD. The high degree of conformity in timing between erosion
events across such a spatially spread range of sites suggests that climate, rather an
anthropogenically induced cause (i.e. pollution, burning or grazing) may have been

responsible for erosion initiation especially as the timing of the erosion episodes fall within
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the approximate temporal boundaries of the Little Ice Age (c.1550-1850 AD; Lamb, 1977,
1982). Whilst it is tempting to hypothesise a possible climatic cause for the onset of the
erosion at these sites there is, however, no direct indisputable evidence of this in the
palacoecological data available. Ballantyne (1991) warns that such explanations based
upon apparent coincidences in timing are difficult to sustain because of the insufficiently
precise evidence. The Little Ice Age was characterised by great variability in climatic
conditions on both a year-to-year basis and between groups of years from between 6-8
years (Lamb, 1977, 1982), therefore, extremely accurate and well dated
palaeoenvironmental data is needed to correlate erosion records with periods of climatic
severity and mildness within the wider umbrella of predominantly poor conditions of the
Little Ice Age. Unfortunately, sufficiently precise and accurate chronologies are not
available for the sites used in this study, and thus the association between the inception of
erosion and perceived climatic deterioration is relatively weak.

Ballantyne (1991) also points out that climatic interpretations rely heavily upon the
assumption that climatic deterioration is somehow necessarily associated with increased
landscape instability. Whilst it is true that all peat masses would not necessarily have been
de-stabilised by more severe winters and summers, evidence from contemporary studies of
extreme peat erosion episodes suggests that intense rainstorms in both winter and summer
are responsible for initiating the majority of modern erosional episodes, therefore,
suggesting that periods in the past in which such events were more frequent and severe
would have had higher risks of erosion inception (Brazier & Ballantyne, 1989). Indeed,
Morgan (1985) concludes that even under the relatively mild current climatic conditions
British upland blanket peat environments are unstable and that prolonged storms of low
intensity and short-lived intense storms are the most important agents of erosion (Morgan,
1985). It follows, therefore, that during the Little Ice Age, characterised by the coldest
climatic regime since the last major ice age and with an increase in the frequency and
ferocity of intense cyclonic storms over the North Atlantic exceeding the severity of most
of the worst storms of modern times, peatlands are likely to have been more susceptible to
erosion. However, it does not prove that they were responsible for the erosional events

experienced at the seven sites studied.
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Not all of the erosion episodes in the study cores were fell within the approximate
extent of the Little Ice Age event. Erosion in the Loch Tanna catchment is estimated to
have begun ¢.900 AD, considerably before the Little Ice Age. Can a possible climatic
cause be invoked at this site? Lamb (1982) suggests that the 10th century was generally
characterised by a remarkable amount of anticyclonic weather over Britain, giving low
rainfall, rather warm summers and rather cold winters. A general synopsis which fails to
suggest a period of climatic conditions likely to enhance the likelihood of erosion.
However, over the past century, although the prevailing climate of Britain and Ireland has
not been overly extreme, isolated high intensity storms have cause large numbers of
erosional events. It is impossible to ascertain whether erosion at Loch Tanna was caused
by climatic events.

Llyn Conwy and Blue Lough both experienced their initial phases of erosion in the
12th century. The 12th century in Europe is believed to have been characterised by general
cooling following the period of Mediaeval warmth (‘Little Optimum’) which spanned from
¢.800-1300 AD (Lamb, 1982). Runs of extraordinary summers, e.g. between 1313-1321
AD wet summers, springs and autumns brought crop failure and famine to Britain, and the
1320s, 1330s and 1380s were all very warm, dry and ‘droughty’ (Lamb, 1982), and there
will undoubtedly have been at least several intense storms capable of causing erosion.
Again, however, it is impossible to state whether such climatic conditions initiated erosion
at the two sites.

As propounded by Ballantyne (1991), therefore, pending further research the
present evidence for climatic deterioration being responsible for enhancing erosion is

circumstantial and thus any conclusions drawn are to a great degree speculative.

6.5 Conclusions -
The data and analyses presented fail to fully and unequivocally elucidate the causes
of peat erosion at the sites studied. The best estimates of the possible cause of peat

erosion episodes at the sites discussed above are, however, summarised in Table 6.4.
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Table 6.4. Summary of the possible inferred causes of peat erosion in the seven UK and

Irish catchments studied.

Possible causes of erosion inception

Site Date of Fire?  Little Ice Pollution? Grazing?
erosion (AD) Age?
Loch Tanna 900 No No No No?
Llyn Conwy 1340 No No No No?
Blue Lough 1380 Yes? No No No?
Loch Teanga 1530 No Yes? No No?
Lough Muck 1550 No Yes? No No?
Loch Na Larach 1560 No Yes? No No?
Blue Lough 1610 No Yes? No No?
Loch Na Larach 1640 No Yes? No No?
Llyn Conwy 1660 No Yes? No No?
Round Loch of Glenhead 1660 No Yes? No No?
Loch Teanga 1690 No Yes? No No?
Loch Teanga 1800 No Yes? No No?

NB Entries in this table reflect inferences made from-the available information rather than proven facts.

They may, therefore, be subject to change and hence the question marks after many of them.

It is clear is that catchment burning has not been solely or significantly responsible
for initiating widespread erosion at all of the sites studied. Indeed vegetation burning is
only implicated to a statistically significant degree at a single site, Blue Lough. Fire
activity within the catchments of the other sites is believed not to have a major role in
initiating erosion, however, burning of vegetation cover may have helped to perpetuated
and enhanced erosion in these catchments following initial erosion inception by other
factors. Further analyses are needed to assess this possible relationship.

The effects of atmospheric pollution have also been dismissed as a major cause of
erosion initiation at all of the sites, primarily because all of the erosion events pre-date the
nation-wide expansion in industrially derived atmospheric pollution in the mid to late
nineteenth century. The possible influence of sulphur and nitrogen pollution at enhancing

and prolonging erosion in some areas during recent centuries cannot be ignored (Tallis,

177



A

1964, Chambers et al., 1979; Ferguson et al., 1978; Ferguson & Lee, 1979), however, all
of the sites used in this study are in locations sufficiently distant from industrial pollution
sources for the effects of pollutants to be relatively minimal, or at least not significant
enough to cause major vegetation change.

The possible role of grazing as a causative agent of erosion is much more difficult
to assess because of a lack of direct evidence in the palaeo-sediment record. It is felt,
however, that the predominantly early dates of inception of erosion at most of the sites
(i.e. pre-1800 AD) discount the likelihood that increased and excessive grazing pressures
were responsible for causing vegetation instability and erosion in the catchments. Again,
however, because of the important role that sheep play in the perpetuation of erosion in
contemporary moorland their influence cannot be wholly and categorically discounted
with the present data.

The climatic factors, wind, rain, snow and frost are the primary agents of erosion
and the influence of prevailing climatic conditions must be considered a possible key factor
in causing erosion (Bower, 1959, 1960, 1961; Hulme & Blyth, 1985; Maltby et al., 1990).
Unfortunately, it was not possible within the. scope of this project to fully evaluate the
possible role of climatic factors as a possible cause of erosion at the sites studied.
Inadequacies in the dating control of the cores precluded the satisfactory correlation of the
sedimentary LOI records with available decadal-scale climate records (Lamb, 1977). The
relationship between climatic change and erosion could not, therefore, be evaluated
statistically, in a similar manner to that adopted for the charcoal records. However, the
synchronous nature of erosion initiation between the geographically spread sites, and the
predominance of erosion inception during the climatically harsh Little Ice Age (c.1500-
1850 AD), suggests that extreme climatic conditions may have been an important cause of
erosion. Although it is accepted that such evidence is to a degree circumstantial and rather
speculative (Ballantyne, 1991), the current data, which tends to preclude the roles of fire,
atmospheric pollution and grazing, suggests that climatic influences may have been most
important in causing erosion. Obviously, however, further work is needed to validate or

disprove these interpretations.
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Chapter 7: Calluna loss

Abstract

Pollen and microscopic charcoal analyses of sediment cores were used to
reconstruct long-term vegetation and fire histories for seven moorland lake catchments in
the UK and Ireland. In each of the seven catchments Calluna vulgaris cover has declined
considerably over the last 100-250 years. Redundancy analysis (RDA) was used to
examine the statistical relationship between declining Calluna cover and the catchment fire
histories in an attempt to determine whether burning of catchment vegetation may have
caused the onset of Calluna loss. The results obtained suggest that burning may have been
a significant factor contributing toward the decline in Calluna cover at only two of the

seven sites studied.

7.1 Introduction

Britain’s extensive and unique upland heather moorlands represent ecosystems of
international ecological and conservation importance (Thompson ef al., 1993; Ratcliffe &
Thompson, 1988; Webb, 1986). However, increasing numbers of studies have indicated
that such upland areas have suffered considerable losses of Calluna vulgaris-dominated
vegetation since at least the 1940s, and in many instances over much longer periods
(Gimingham, 1977; Anderson & Yalden, 1981; Nature Conservancy Council, 1987;
Stevenson & Thompson, 1993; Hester & Sydes, 1992). Britain is not alone in
experiencing such declines in heather dominated vegetation, Sweden, Denmark, The
Netherlands, Belgium, northern Germany and parts of France have also suffered
considerable losses (Gimingham, 1977). These losses not only threaten considerable
numbers of rare plant communities and bird species, but-also the upland agricultural and
sporting economies dependent upon Calluna-dominated moorland (Usher & Thompson,
1993; Sydes & Miller, 1988).

The extent of the ‘Calluna decline’ throughout Britain has been marked. The Peak
District National Park lost approximately 36% of its heather moorland between 1913 and

1981 (Anderson & Yalden, 1981); between the 1940s and the 1970s Cumbria experienced
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losses of approximately 286 km? (NCC, 1987); over the same period the Borders region
of Scotland lost approximately 20% (368 km?) of heather moorland and 71% of blanket
bog (NCMS, 1991); and similarly the Grampian region lost 26% of it’s heather moorland
between the 1940s-1970s (NCMS, 1988).

The main explanations proposed to account for declines in heather cover are: (1)
afforestation (e.g. Thompson et al., 1988; NCMS, 1988); (2) intensification of grazing
pressure, allied in most instances with poor burning management of the vegetation (e.g.
Anderson & Yalden, 1981; Thompson & Brown, 1992; Marrs & Welch, 1991; Stevenson
& Thompson, 1993); (3) atmospheric pollution and acid deposition (e.g. Van Dam e al.,
1986; Roelofs, 1986); and (4) climate change, e.g. the ‘Little Ice Age’ (Grove, 1988).

Stevenson & Thompson (1993) attempted to evaluate these hypotheses using
palaeoecological techniques, and concluded that Calluna had most probably declined
because of increased grazing pressure and prolonged burning. However, the possible
influence of burning was inferred without direct palaecoenvironmental evidence of fire
activity in the lake catchments studied, and thus their conclusions are somewhat
speculative. The aim of this study is to further evaluate the role of past burning as a
possible cause of Calluna loss in seven UK and Irish catchments using microscopic
charcoal analyses. The alternative hypotheses pertaining to the other possible causes of

Calluna loss outlined above are also considered and discussed.

7.2 Qutline of methodology

The following methodology was devised to assess the possible influence of past
fire activity in moorland catchments as an agent of vegetation modification, and primarily
as a cause of declining Calluna cover.

e Short (¢.80 cm) sediment cores were taken from seven UK and Irish lake sites.

e Vegetation histories were reconstructed by standard palynological methods (Moore et
al, 1991). (Only the Calluna:Gramineae ratios are presented because they are of prime
concern to this study).

s Microscopic charcoal analyses (See Chapter 3 for method) were conducted to

reconstruct catchment fire histories.
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o Redundancy analyses (RDA) and Monte Carlo permutation tests (Lotter and Birks,
1993; Korsman ef al., 1994) were used to determine statistically the extent to which
burning may have been responsible for the decline of Calluna, and the concomitant

increase of graminaceous species, in the catchment vegetation.

7.2.1 Site selection rationale

The seven UK and Irish lake catchments selected for study were chosen because
they fulfilled a number of important criteria (See Figure 3.2 for a location map, and
Section 3.1.2 for summary information on the individual sites). Each catchment is known
to have experienced a significant degree of Calluna loss over the past few centuries
(Stevenson & Thompson, 1993). All are headwater lakes, chosen in an attempt to help
define the source area of charcoal entering the lake sediments, i.e. palynological studies
have suggested that headwater lakes, with limited drainage networks, have small pollen
source areas and, therefore, sediment records are likely to reflect local rather than extra-
local pollen spectra (Peck, 1973; Bonny, 1976; Jacobson & Bradshaw; Birks ef al., 1990).
A similar line of reasoning is adopted for microscopic charcoal, i.e. that the lake sediment
records of the lakes studied should contain charcoal of a predominantly local origin, and
thus provide histories of fire activity within their respective catchments (See also Chapter
5). The distribution of the sites from North Wales through to the north of Scotland and
into Ireland and Northern Ireland allows some assessment of whether regional patterns,

both in the timing and possible causes of declining Calluna cover, exist.

7.2.2 Dating of the sediment cores

Chronologies for the upper sediments of all the cores were constructed using the
20pb CRS model (Appleby & Oldfield, 1978). Figures 6.1 and 6.2 present the 2°Pb
age/depth profiles for the seven sites (the chronologies and accumulation rates are
presented in tabular form in Appendix 6). The Round Loch of Glenhead and Loch Teanga
cores were also dated using 1C methods (Jones et al., 1987, Jones et al., 1989). Nineteen
1C dates on bulk peat samples were conducted on the Round Loch of Glenhead core and

ten were performed on the Loch Teanga core (Appendix 6).
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The dates of the loss on ignition increases which lie below the portions of the cores
dated directly by 2°Pb methods were estimated by extrapolation. It is acknowledged that
such a method is built upon the assumption that accumulation rates have remained
relatively constant over extended periods, but without additional dates further down the
cores it represents the best available method. The *'°Pb derived age/depth profiles for
Lough Muck, Loch Na Larach and Llyn Conwy which show strong, statistically
significant, linear relationships and thus the 2°Pb chronologies were extrapolated to the
core bases using a simple linear regression model. The 2°Pb chronologies for Blue Lough
and Loch Tanna, however, display exponential age/depth profiles, for these sites
extrapolations were based on the lowermost portions of the curves where significantly
linear relationships exist. The dates estimated in this fashion have potentially large error
margins, with perhaps correspondingly greater errors on progressively earlier dates,
therefore, all dates should be taken as approximations with minimum errors of at least +50
years.

At Round Loch of Glenhead and Loch Teanga where *C dates were available in
addition to 2°Pb chronologies the dates of LOI increases were estimated by regression
after amalgamating the two chronologies. At Round Loch of Glenhead, however, a
number of the dates are believed to have been contaminated by older carbon (Stevenson ef
al., 1990) and thus are unreliable. Consequently only the dates from the lower most
sections of the core, and the youngest dates which appear to be free from older carbon
errors, were used in the age estimations (Stevenson ef al., 1990). The dates estimated in
this manner are again subject to considerable sources of error and thus must be treated

with caution and with potentially large errors.

7.2.3 Statistical analyses -

The possible influence of fire activity as a cause of Calluna loss in the catchments
of the seven lake sites studied was assessed by canononical ordination techniques (Birks &
Lotter, 1993; Korsman ef al., 1994). The charcoal data, as proxy measures of
reconstructed fire activity, were used as ‘environmental’ or predictor variables to explain

statistically the Calluna:Gramineae ratios. Detrended canononical correspondence analysis
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(DCCA) was used to ascertain whether linear (redundancy analysis; RDA) or unimodal
(canononical correspondence analysis; CCA) ordination methods were appropriate (Hill &
Gauch, 1980). The gradient lengths of the first DCCA axis for all of the LOI profiles were
short (<1.5 SD) and so RDA was used (ter Braak & Prentice, 1988). The statistical
significance of the RDA analyses were assessed by restricted Monte Carlo permutation
tests for stratigraphically ordered data (ter Braak, 1990a), four hundred and ninety-nine
permutations were used for each test (John Birks, pers. comm.). The computer program

CANOCO 3.12 (ter Braak, 1990b) was used to perform all calculations and analyses.

7.3 Results
7.3.1 Pollen profiles (Calluna:Gramineae ratios)

Figure 7.1 is a composite diagram of the Calluna:Gramineae pollen ratios from all
of the seven sites studied. The Calluna:Gramineae ratio represents an approximate index
of Calluna loss and replacement by graminaceous species (Stevenson & Thompson,
1993). The majority of the Calluna and grass pollen in the samples is believed to have
been derived from the immediate lake catchment, from Calluna-dominated moorland and
blanket bog communities (Evans & Moore, 1984; Sugita, 1993, 1994; Bradshaw, 1994).
The Gramineae counts are believed to represent the sum of the main acid grassland
species, i.e. Molinia caerulea, Agrostis stolonifera, A. canina, Festuca spp. and Nardus
stricta (Stevenson & Thompson, 1993).

All of the Calluna:Gramineae ratio profiles presented (Figure 7.1) have
considerable declines in their upper profiles, and although some experience minor
fluctuations in their lower profiles the most recent declines in the Calluna:Gramineae
ratios are much more marked and persistent and exhibit-little sign of recovery. Loch Na
Larach, Lough Muck, Llyn Conwy and Loch Teanga exhibit declines of between 25-30%,
whilst the declines at Blue Lough, Round Loch of Glenhead and Loch Tanna are more
marked (40-50%). Considerable changes in the relative proportions of Callunetum and

grasses have obviously occurred in the lake catchments.
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A
Table 7.1: Approximate dates of the onset of the Calluna declines at the seven sites

studied. The sites are listed in chronological order of the onset of the Calluna decline.

Site Onset of Calluna decline
(years AD)
Round Loch of Glenhead 1770
Llyn Conwy 1780
Lough Muck 1790
Loch Tanna 1800
Loch Teanga 1810
Blue Lough 1890
Loch Na Larach 1900

The declines of Calluna at Round Loch of Glenhead, Llyn Conwy, Lough Muck,
Loch Tanna and Loch Teanga all began within approximately 40 years of each other,
between ¢.1770-1810 AD. The Calluna:Gramineae declines at Blue Lough and Loch Na

Larach commenced approximately 80-110 years later between ¢.1890-1900 AD.

7.3.2 Charcoal profiles

The charcoal profiles for the seven cores are presented collectively in Figure 6.4.
In this diagram charcoal abundance is taken as an approximate measure of fire activity in
the immediate lake catchment as the majority of microscopic charcoal produced by
moorland fires is believed to be deposited within a hundred metres of parent fires.
Although it is accepted that a small proportion of the charcoal produced may be dispersed
extra-locally or even regionally (Clark, 1988a), the overwhelming proportion of charcoal
in the lake sediment cores sampled is hypothesised to have local origins (Sugita, 1993,
1994) (see Section 2.3.3).

In the Blue Lough sediment core charcoal levels remain relatively low below 56cm

(c.1200-1250 AD) before catchment burning levels increased gradually through to 38 ¢m
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Figure 7.2: Summary diagram of microscopic charcoal profiles from the seven UK and

Irish sites studied.
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(¢.1500 AD). The period between 35-18 cm (c.1500-1800 AD) has sustained high
charcoal abundance suggesting it was the period of greatest fire activity in the catchment.
Over the past century burning activity fell, although in the last decade fire activity
increased again. At Llyn Conwy prior to 57 ¢cm (¢.1750 AD) charcoal values are low and
fairly constant denoting relatively low levels of catchment burning activity. A period of
moderate intensification of burning activity prevailed between 57-29 cm (c.1750-1900
AD), and post-1900 fire activity (above ¢.29 cm) in the catchment intensified further.

With the exception of a large peak in charcoal abundance at 76 cm (c.1480 AD)
fire activity in the Loch Na Larach catchment prior to ¢.1800-1850 AD was considerably
less intensive than during more recent times. In the Lough Muck catchment fire activity
has been significantly greater in the last couple of centuries (above c.22 cm) than
previously, although the period between 47-30 cm (c.1650-1800 AD) also experienced
increased levels of burning compared with the preceding three centuries. The Round Loch
catchment experienced consistently low levels of fire activity between 90-45 cm (c.400-
1700 AD), between 45-28 cm (c.1700-1800 AD) charcoal levels were marginally but
consistently higher,- and in the post-1800 AD period charcoal levels have been much
higher suggesting an increase of fire activity in the catchment.

The Loch Tanna charcoal record is similar to that from the Round Loch, high
charcoal values during the past hundred years (above ¢.7 cm) suggest a high intensity of
fire management, whilst fire activity was relatively low prior to this time, with fire activity
increasing only gradually through the 14th and 15th centuries. The Loch Teanga charcoal
profile exhibits the familiar (present in all but Blue Lough) period of intensive fire activity
in the post-1900 period (above 14 cm), prior to ¢.1900 AD fire activity in the catchment

was less intensive.

7.3.3 Results of statistical analyses
The results of the redundancy analyses of the biostratigraphical data sets at the
seven sites are presented in Table 7.2 as exact Monte Carlo significance values (499

permutations) (Korsmann et al., 1994).
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Table 7.2: Results of the redundancy analyses and Monte Carlo permutation tests to assess
the extent to which catchment fire activity explained Calluna loss. Entries are percentages
of variance explained by the first canononical axis and significance levels as assessed by
restricted Monte Carlo permutation tests (499 permutations).

% variance in

Site Predictor Calluna:Gramineae Significance of
ratio explained by  explained variance (p-

first RDA-axis value)
Blue Lough Charcoal 23 0.400
Lough Muck Charcoal 30 0.060
Llyn Conwy Charcoal 47 0.002
Loch Na Larach Charcoal 24 0.080
Round Loch of Glenhead Charcoal 54 0.002
Loch Tanna Charcoal 0 0.868
Loch Teanga Charcoal 5 0.334

At only two of the sites, Llyn Conwy and Round Loch of Glenhead, were there
highly significant relationships (p = <0.01) between changes in catchment burning
(reconstructed using microscopic charcoal) and the decline of Calluna cover as assessed
by restricted Monte Carlo permutation tests. At Lough Muck and Loch Na Larach the
significance of the explained variance in the Calluna:Gramineae ratios, p = 0.06 and p =
0.08 respectively, were only marginally non-significant at the 95% level, but Loch Teanga,
Loch Tanna and Blue Lough exhibited no significant relationship between the pollen and
charcoal variables.

The percentages of variance in the Calluna:Gramineae ratio profiles explained by
the charcoal indices were greatest at Llyn Conwy (47%) and Round Loch of Glenhead
(54%), i.e. those which displayed statistically significant relationships. At Loch Muck
(30%), Loch Na Larach (24%) and Blue Lough (23%) notable amounts of the variance in

the pollen profiles were accounted for by the charcoal indices, but at Loch Teanga (5%)

189



and Loch Tanna (0%) nominal amounts of variance in the pollen profiles were explained

by the first RDA axis.

7.4 Discussion: The possible causes of the Calluna decline
7.4.1 Fire activity

Controlled periodic burning has been practised for many centuries to maintain
heather dominance in large areas of the British and Irish uplands. If conducted on the
correct temporal rotation it is very effective (Gimingham, 1972), however, inappropriate
periodic burning can adversely affect Calluna-dominated communities in a manner similar
to that caused by grazing (Rawes & Williams, 1973; Miles et al., 1978) and both over-
burning and under-burning can have potentially detrimental effects on Calluna cover
(Miles, 1988; Hester & Sydes, 1992). The ecological consequences of burning alone are,
however, extremely difficult to assess because the effects of grazing activity are an ‘all
pervasive’ presence in UK and Irish moorland areas (Miles, 1978).

A number of studies have sought to determine the effects of fire on Callunetum.
Burning Calluna-dominated stands on mineral soils at 3-6 year intervals have been found
to tend to shift dominance to grasses, especially Deschampsia flexuosa on well drained
soils and Molinia caerulea on poorly drained soils (Miles, 1988). A fire frequency of 6-10
years favours Erica cinerea and E. tetralix, and a rotation of about 10-20 years favours
Calluna (Miles, 1988). On peat, however, a 20-year frequency may favour Eriophorum
vaginatum at the expense of Calluna (Taylor & Marks, 1971; Hobbs, 1984). Such figures
can only be taken as gross generalisations because vaniations in plant productivity can vary
enormously in response to local environmental conditions but they do provide useful
indicators of the possible directions and approximate timescales of change.

Infrequent uncontrolled fires may also bring about succession of grasses at the
expense of Calluna. Intense fires which destroy the upper organic horizons of the soil or
peat may remove not only the stem bases and rhizomes from which Calluna regenerates
after low intensity fires, but also the soil seed bank (Maltby, 1980; Imeson, 1971). Calluna
can eventually re colonise patches of ground bared by intense fire, but sheep grazing tends

to favour the establishment of grasses (Grant & Hunter, 1968). Heather grows from apical
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meristems and so is unable to withstand continued heavy grazing as well as grasses which
grow continually from basal meristems (Philips ez al., 1981; Sydes & Miller, 1988). Sheep
find young heather particularly palatable and graze it heavily in newly colonised areas
following fire (Grant ef al., 1978), and therefore, under continual grazing grasses tend to
gain dominance on intensively burned areas. In the absence of grazing pressure, however,
in most instances Calluna will eventually regain dominance, as demonstrated by large
numbers of exclosure experiments (e.g. Fenton, 1936; Hewson, 1977; Miles et al., 1978;
Rawes & Hobbs, 1979; Rawes, 1983).

The analyses conducted in this study represent an attempt to assess whether
excessive burning of the Calluna dominated catchment vegetation, over an extended
period of several centuries, may have been responsible for the observed declines of
Calluna cover and replacement by graminaceous species. The results of the
palaeoenvironmental (Figures 7.3 - 7.9) and statistical analyses (Section 7.3) suggest that
increased fire activity during the last 200-250 years in the Llyn Conwy and Round Loch of
Glenhead catchments may have been important in promoting the demise of Calluna cover.
The statistically significant relationship between the charcoal and pollen indices, assessed
by RDA and restricted Monte Carlo permutation tests, and the fact that approximately half
of the variance in the Calluna:Gramineae ratio profiles is explained by the charcoal
variables at these sites suggest that the influence of fire on the catchment vegetation may
have been strong. However, ¢.50% of the variance in the vegetation change is not
accounted for by the charcoal variable, and thus a combination of other factors, perhaps
atmospheric pollution, climate change or livestock grazing, may also have contributed to
the Calluna decline.

At Lough Muck and Loch Na Larach the results of the redundancy analyses are
not statistically significant at the 95% level as assessed by Monte Carlo permutation tests,
although marginally so. The Monte Carlo p-values of 0.06 and 0.08 (Table 7.1), and
percentages of variance explained of 30% and 24% respectively, do however, suggest that
increased fire activity during the past 100-200 years may have contributed to some degree
to declining Calluna cover in these catchments. Possible alternative causes of Calluna loss

need to be assessed before the full importance of changing fire regimes on the vegetation
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Figure 7.3: Calluna:Gramineae ratio and microscopic charcoal profiles for Blue Lough.
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Figure 7.4: Calluna:Gramineae ratio and microscopic charcoal profiles for Llyn Conwy.
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Figure 7.5: Calluna:Gramineae ratio and microscopic charcoal profiles for Loch Na

Larach.
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Figure 7.6: Calluna:Gramineae ratio and microscopic charcoal profiles for Lough Muck.
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Figure 7.7: Calluna:Gramineae ratio and microscopic charcoal profiles for Round Loch of

Glenhead.
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Figure 7.8: Calluna:Gramineae ratio and microscopic charcoal profiles for Loch Tanna.
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Figure 7.9: Calluna:Gramineae ratio and microscopic charcoal profiles for Loch Teanga.
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in the catchments can be fully addressed. At Blue Lough, Loch Tanna and Loch Teanga
fire activity does not appear to played an important role in causing the decline of Calluna,
the statistical relationships between fire activity and vegetation change are not significant,

alternative explanations must therefore be sought.

7.4.2 Afforestation

At least 1.1 million ha of former upland moorland in Britain has been afforested
since 1924, a major loss of heather dominated vegetation (Sydes & Miller, 1988). Losses
to forestry have been particularly great in Scotland, where between the 1940s and 1970s
afforestation accounted for approximately 62% of the total reduction in semi-natural
upland vegetation (Tudor & Mackey, 1995). However, whilst afforestation does account
for considerable amounts of Calluna loss on a nation wide scale, in the seven catchments
studied Calluna abundance declined well before the aforementioned expansion in forestry,
and none of the catchments have notable areas of coniferous plantation. In addition
afforestation does not account for the apparent expansion of graminaceous species at the
expense of heather cover. The declines in Calluna cover in these catchments, and over
much of the remainder of Britain and Ireland (Stevenson & Thompson, 1993) are,

therefore, assumed not to be the result of afforestation.

7.4.3 Atmospheric pollution

Anthropogenically derived atmospheric pollution, and acidic pollutants in
particular, have been implicated in the acidification of upland lakes and the decline of
Sphagna and lichens in some upland ecosystems (e.g. Gilbert, 1968; Ferguson et al., 1978;
Battarbee et al., 1985; Battarbee et al., 1988; Battarbee ef al., 1990; Edwards et al,,
1990). The effects of atmospheric contaminants on higher semi-natural terrestrial plant
communities, however, is rather less certain (Ferguson & Lee, 1983; Press et al., 1983,
Lee et al., 1988).

Press et al. (1983) note the decline of heather cover in the Peak District, an area of
extremely high pollutant deposition in the past (Tallis, 1964; Lee & Tallis, 1973), and
suggest that pollution may have played a role in its demise. Unsworth et al. (1988),
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however, suggest that drainage and burning may have been more important in adversely
affecting the growth of Calluna over the same period and that an explanation involving
atmospheric pollution as the sole causal factor could not be reasonably upheld. Chambers
et al. (1979) attributed the onset of a decline in Calluna cover and its replacement by
grasses, particularly Molinia caerulea, in South Wales during the 19th century to acidic
atmospheric pollutant deposition. However, Stevenson & Thompson (1993) express
scepticism over the chronology of events presented, and suggest that although pollution
may have compounded the decline of Calluna that it is unlikely that it caused its inception.
Rather more robust evidence of the potential impact of atmospheric pollution on heathland
vegetation is provided by studies in The Netherlands where the spread of grasses at the
expense of heather has been attributed to nitrogen deposition (Roelofs, 1986; Van
Breemen & van Dijk, 1988).

In The Netherlands, however, the estimated inputs of NH; and NOy, to terrestrial
ecosystems are amongst the highest in the world, and as a consequence grasses (Molinia
caerulea, Deschampsia flexuosa and Festuca ovina) have expanded in heathlands at the
expense of Calluna. vulgaris and Erica tetralix (Van Dam ef al., 1986; Roelofs, 1986).
Van Breemen & van Dijk (1988) suggest that ‘the change of heathlands into grasslands is
undoubtedly caused by an increased availability of nutrients in the soil (De Smidt, 1983;
Roelofs et al., 1984), which in turn is the result of an increased nutrient input from
atmospheric deposition and decreased output due to decreased utilisation of heather’.
Calluna declines relative to grasses under high nitrogen loads because it undergoes
important physiological changes which increase its sensitivity to frost and drought (Heil,
1984), and the increased nutritive value of its leaves encourage attack by the heather
beetle (Lochmaea suturalis) (Brunsting and Heil, 1985; de Smidt, 1995). Mass
development of grasses occurs at nitrogen inputs exceeding 20-30 kg ha™ year (Roelofs,
1986; Soderlund & Granat, 1982; Rodhe & Rood, 1986).

Sulphur dioxide concentrations in British rain have fallen during the last few
decades, however, nitrate pollution has become a more marked problem. The total
deposition rate for nitrogen is currently around 20-30 kg ha™ year! across much of Britain

(Pitcairn ef al., 1991). Even in remote areas, such as north-west Scotland, west Wales and

200



south-west England, wet-deposited nitrogen has increased by about 50% since ¢.1950
(Pitcairn ef al., 1991). In recent decades, nitrogen may have had some impact upon higher
terrestrial plant communities in the British uplands, however, there is not yet any
unequivocal evidence to support this (Lee et a/., 1988). Thompson and Baddeley (1991)
do, however, suggest that in the future British Calluna vulgaris - Eriophorum vaginatum
blanket mire, Calluna vulgaris - Vaccinium myrtillus - Sphagnum capillifolium heath,
Calluna vulgaris - Racomitrium lanuginosum heath, and Calluna vulgaris - Juniperus
communis sp. nana heath communities may be increasingly at risk from atmospheric
pollution.

The evidence reviewed illustrates that atmospherically derived pollutants may have
contributed to compounding Calluna losses and promoting the increase of grasses in areas
of high deposition over recent decades, however, it is extremely unlikely that atmospheric
pollution alone has been responsible for initiating and maintaining the heather declines
experienced in the catchments studied. At most of the sites the onset of the Calluna
declines pre-date the accepted start of extensive industrial pollutant emissions, ¢.1850 AD
(Rippey, 1990; Williams, 1991), and in addition most of the sites are located in regions
relatively remote from the pollutant loads necessary to cause possible significant
vegetation change of the scale noted (i.e. > ¢.20 kg N ha' year™; Williams et al., 1989;
Woodin & Farmer, 1993; Thompson & Baddeley, 1991).

7.4.4 Climate change

Stevenson & Thompson (1993) dismiss the possibility that climatic change may
have been responsible for initiating declines in Calluna cover, because the onset of the
declines generally post-date the most severe climatic conditions of the Little Ice Age
(c.1550-1850; Grove, 1988). Such an argument can be-maintained for Blue Lough and
Loch Na Larach where the Calluna decline did not begin until ¢.1890-1900, however, for
the other five sites such an explanation is rather less readily sustained.

The ‘Winter and Summer severity indices’ produced by Lamb (1977; 1982)
illustrate that the harsh climatic conditions of the Little Ice Age persisted into the mid-19th

century before general, sustained warmth returned to Britain, and it was not until the late-
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1800s to early-1900s that eventual lasting climatic amelioration and stability was reached
(Lamb, 1977; 1982). The onset of the Calluna declines at Round Loch of Glenhead, Llyn
Conwy, Lough Muck, Loch Tanna and Loch Teanga (c.1770-1810 AD) all occur well
within the predominantly colder and wetter conditions of the Little Ice Age.

Calluna vulgaris (L.) Hull is relatively ecologically tolerant to climatic and
topographic controls, a point well illustrated by its current wide ranging distribution, ie.
lowland and upland heaths, moors and bogs, open Pinus, Betula and certain types of
Quercus wood, fixed sand dunes and even partially stabilised scree (Gimingham, 1960).
Calluna is also tolerant of a wide range of temperature and length of growing season, and
to a certain extent water content of soils, although growth is best where the soils are at
least moderately well drained and establishment and growth are much reduced in water-
logged soils. Although extreme frost may adversely affect young plants, the present day
distribution of Calluna into the northern extremity of Norway and Iceland suggest that it
is relatively frost resistant (Gimingham, 1960).

Calluna is a particularly hardy upland species and it is unlikely that the generally
colder climatic conditions of the late-18th and early-19th could have caused the declines
of the species on the scale recorded since this period. The wetter conditions experienced
during this time may have had a widespread detrimental effect on Calluna communities on
bogs and other marginal sites, i.e. Forest & Smith (1975) have shown that a significant
negative relationship exists between the productivity of vascular plants on blanket bog and
increasing wetness, however, such a factor is unlikely to have caused the demise of
Callunetum on the scale witnessed (Stevenson & Thompson, 1993).

Therefore, it can be concluded that it is unlikely that climatic change alone has
been responsible for the decline of Calluna observed in the lake catchments. If climatic
factors were the sole cause of the Calluna decline, why-was the onset not earlier during
the equally, if not more, severe conditions between ¢.1500-1700 AD? And why did the
Calluna declines at all of the sites not occur synchronously? The harsh climatic conditions
of the Little Ice Age (Grove, 1988) may, however, have compounded the effects of other

factors by providing conditions which stressed plant growth.
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7.4.5 Grazing

‘Loss of heather has occurred as a result of overgrazing by sheep’ (Grant &
Armstrong, 1993), a bold statement highlighting the conviction held by the authors that
the impact of sheep grazing on Calluna cover has been indisputable. This view is
supported by large numbers of controlled grazing studies performed throughout the
British uplands: e.g. Rawes & Hobbs (1979); Birnie & Hulme (1990); Grant et al. (1985);
Miles et al. (1978); Welch & Rawes (1966). Such studies indicate consistently that sheep
grazing is a very important factor controlling upland vegetation development and
moorland community structure.

At low densities sheep grazing can increase Calluna cover and shoot production
on both dry heath and blanket bog (Rawes & Williams, 1973; Hewson, 1977), and Rawes
& Hobbs (1979) even suggest that on blanket bog light grazing without burning may be
the optimum management strategy. However, sheep densities in the range of >2.7 sheep
ha on dry heath (Welch, 1984) and 0.4-0.5 sheep ha™ on blanket bog (Welch & Rawes,
1966; Rawes & Hobbs, 1978) are believed to be detrimental to Calluna development and
favour the spread of grasses (Nolan et al., 1995; Fenton, 1933; Heddle & Ogg, 1933).
Such changes in vegetation composition can be very rapid, i.e. Calluna-dominant dwarf-
shrub heath can be succeeded by Agrostis-Festuca grassland in only 2-3 years with heavy
grazing and trampling by livestock (Miles ef al., 1978). The replacement of heather by
grasses, however, i1s not irreversible as studies employing exclosures have illustrated.
Areas of heavily grazed, graminoid dominated moorland when fenced to exclude sheep
can revert back to Calluna dominance in as little as 6-10 years (Fenton, 1936; Hewson,
1977; Miles et al., 1978; Rawes & Hobbs, 1979; Rawes, 1983).

The Calluna declines in the seven catchments studied all post-date the
establishment of commercial sheep farming in Scotland ard Ireland during the mid- to late-
18th century (Fenton, 1980; Innes, 1983; O’Toole, 1985), and the major expansion in
sheep numbers in North Wales during the 17th and 18th centuries (Hughes ef al., 1973).
Whilst such a vague coincidence in timing is no basis on which to suggest a causal
relationship between probable increased grazing pressures and Calluna loss it does at least

suggest that grazing cannot be wholly discounted as a possible contributory factor.
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It is clear, therefore, that with the available data it is impossible to state that
grazing may have caused the vegetation changes experienced, despite the unequivocal
evidence that sheep are capable of producing declines of heather and concomitant increase
in graminoid species (Dalby ef al., 1971; Bakker, 1978, Anderson & Yalden, 1981). The
circumstantial evidence, however, is strong and the possibility cannot be discounted. It
seems likely that grazing by livestock may have made a considerable contribution to at
Jeast perpetuating the phenomenon of Calluna loss over extended periods of time in some
areas, however, unequivocal evidence to support the aspersion that it may have been a

primary cause of Calluna loss is at present lacking.

7.5 Conclusions
The data and analyses presented fail to fully and unequivocally elucidate the causes
of the observed declines in Calluna cover at the sites studied. The best estimates of the

possible causes of Calluna loss at the sites discussed above are summarised in Table 7.3.

Table 7.3: Summary of possible inferred causes of Calluna loss in the seven British and

Irish catchments studied.
Possible causes of the Calluna decline
Site Onset of Calluna  Fire  LittleIce Pollution Grazing
decline (AD) Age

Round Loch of Glenhead 1770 Yes? ? ? ?
Llyn Conwy 1780 Yes? ? ? ?
Lough Muck 1790 No ? ? ?
Loch Tanna 1800 No ? ? ?
Loch Teanga 1810 No - 7 ? ?
Blue Lough 1890 No No ? ?
Loch Na Larach 1900 No No ? ?

The evidence presented and discussed suggests that in some instances high levels

of burning may adversely affect the relative proportions of Calluna and grass cover in
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upland moorland catchments, and that in some UK and Irish regions increased burning of
moorland vegetation may have been an important factor in promoting the decline of
Calluna vulgaris over recent centuries. Fire activity in the Round Loch of Glenhead and
Llyn Conwy catchments was found to be significantly statistically related to the Calluna
decline, suggesting a possible causal link. However, it is also clear that in other areas in
which Calluna has declined equally markedly over the same period increased fire activity
would not appear to have been a major contributory factor or primarily responsible.

Of the alternative hypotheses considered as possible causes contributing to
declining Calluna cover, the available evidence suggests that increased grazing pressures
associated with the intensification of commercial sheep farming in the uplands, may have
been the most important, both as a factor compounding the effects of fire in intensively
burned catchments and possibly as primary cause of Calluna loss in some areas.

The effects of grazing and burning may also have been compounded by other
processes and environmental factors. Atmospheric pollutants, principally sulphur and
nitrogen, may have destabilised plant communities sufficiently to make them increasingly
susceptible in particular to grazing (Sydes & .Miller, 1988). Calluna also has a reduced
tolerance to grazing with increasing age (Grant ef al., 1981), and the continued demise of
Calluna in recent decades may in part be due to a decreased frequency and quality of
muirburn on many moors. Reduced staffing levels on upland estates (Phillips ef al., 1981;
Sydes & Miller, 1988) have led to greater areas of Brifain’s mooriands becormng covered
by leggy, mature heather which has been increasing heavily grazed and only infrequently
burned (Hester & Sydes, 1992). Such areas of moorland are particularly susceptible to
degradation and invasion by grasses (Miles, 1988).

Additional work is needed to further elucidate the relative importance of possible
factors responsible for causing Calluna loss on a national scale. The issue of Calluna loss
and the determination of its causes has been shown to be potentially complex, the work
presented here at least clarifies this point. No single causative agent or process would
appear to have been responsible for causing the observed national decline in Calluna

cover, i.e. in some instances fire activity may be important whilst in others it may not. This
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work also provides a methodology of both palaeoecological techniques and robust
statistical analyses for testing the wider hypotheses necessary to further elucidate the issue.

A similar methodology could be used to determine the relative importance of
atmospheric pollution as a possible cause of Calluna loss, and at sites with satisfactory
chronological control and climatic records the effects of climatic change. Determining the
possible role of grazing, however, is much more potentially problematic. Direct evidence
of grazing pressures is not obtainable from sedimentary sequences and cannot be
reconstructed from historical documentary sources, at least not with the necessary degree

of accuracy for statistical analyses (Hughes e al., 1973; Sydes & Miller, 1988).
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Chapter 8: Conclusions

8.1 Microscopic charcoal analyses of moorland soils

The analyses of microscopic charcoal in moorland soil cores conducted in this study
represent not only an assessment of the practicability of obtaining sufficiently well resolved fire
histories from a potentially problematic sediment medium, but also an unique attempt to
validate the fundamental principles of microscopic charcoal analysis. The reconstruction of fire
histories using microscopic charcoal analyses of locations known to have been burned on
specific dates in the past (determined using aerial photograph analyses) allowed a direct
assessment of the effectiveness and accuracy of the charcoal analysis techniques at identifying
and characterising charcoal assemblages deposited by local fires. Few former studies have

sought to identify the form of fossil charcoal assemblages in such a direct manner.
The main conclusions drawn from this work are as follows:

» Analyses of aerial photographs represent an effective means of reconstructing temporal
and spatial patterns of muirburn on moorland over the post-1940/50 period. GIS
technology provides the most effectual means of analysing spatial information from aerial

photographs for this period of time.

¢ Microscopic charcoal analyses of moorland soil cores can be used to reconstruct extended
fire histories over time-scales of at least several centuries provided suitable soil deposits
are available. The frequency and periodicity of burning for given locations on a moor can

be reconstructed from the fossil microscopic charcoal record within the soil.

o Charcoal assemblages produced by in situ fires can be distinguished from those produced

by nearby ex situ fires on the basis of their particle size class distributions.

o The spherical carbonaceous particle (SCP) record in moorland soil cores can provide a

valuable isochrone for the relative dating of short soil profiles.
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8.2 Taphonomy of microscopic charcoal in moorland contexts

The studies of microscopic charcoal taphonomy from muirburns produced a number of
results which have implications for the interpretation of moorland fire histories, and possibly
wider implications for the study of microscopic charcoal in other environments. The following

points represent the main conclusions of the taphonomy studies:

e Moorland fires do not produce microscopic charcoal of different sizes in equal
proportions. Smaller charcoal particles appear to be produced in significantly greater
quantities than progressively larger ones. Such inequalities in the relative proportions of
charcoal particles produced (‘Production bias’) have important implications for the
interpretation of sediment charcoal assemblages, especially when charcoal particles are
quantified on the basis of their size and the particle size structure of an assemblage is used

to infer proximity to the source fire .

o The vast majority of microscopic charcoal particles produced by small-scale moorland fires
appear to be deposited no further than approximately 70-80 m from the parent fire.
Charcoal source areas for sediment sinks such as lakes in moorland catchments are,

therefore, expected to be relatively small.

o The dispersal of microscopic charcoal particles from small-scale moorland fires is
influenced greatly by the wind direction at the time of the fire. The vast majority of
charcoal produced is dispersed down-wind of the parent fire, little is deposited laterally or

into the wind.

8.3 The possible role of fire in the initiation of peat erosion

The palaeoecological approach adopted to determine whether changing fire regimes in
seven upland lake catchments in the UK and Ireland could have been responsible for causing

peat erosion proved effective. The main conclusions are outlined below:

* At only one of the seven sites studied, Blue Lough (Co. Donegal, Ireland), is it possible to
suggest that moorland burning may have played an important role in initiating catchment
peat erosion. Other factors such as climatic deterioration, atmospheric pollution and
livestock grazing may also have contributed to the initiation and maintenance of erosion,

however, this remains to be formerly tested.
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At the other six UK sites studied, Lough Muck, Llyn Conwy, Loch Na Larach, Round
Loch of Glenhead, Loch Tanna and Loch Teanga, enhanced fire activity was not found to
be significantly statistically related to peat erosion episodes and thus is not believed to
have been a likely cause of erosion initiation. It is hypothesised that harsh climatic
conditions during the Little Ice Age (c.1550-1850 AD; Lamb, 1982; Grove, 1988)
represent the most likely cause of peat erosion in these catchments, however, such a

hypothesis needs much more rigorous testing.

8.4 The possible role of fire in the initiation of the Calluna decline

A palaeoecological hypothesis testing approach was adopted to determine whether fire

activity in seven UK and Irish lake catchments could have been responsible for causing the

long-term declines in Calluna vulgaris cover experienced in each of them over the past 100-

250 years. The conclusions of this work are noted below:

At Llyn Conwy (North Wales) and Round Loch of Glenhead (Galloway, Scotland) the
significant statistical relationships between the reconstructed fire activity and Calluna loss
indices suggest that increased burning of catchment vegetation may have been a factor
responsible for promoting the decline of heather cover. Grazing by livestock, particularly
sheep, may also have been an additional contributory factor though this hypothesis remains

to be further explored.

At Blue Lough, Lough Muck, Loch Na Larach, Loch Tanna and Loch Teanga the onset of
the Calluna decline was not associated with enhanced fire activity. The most likely cause
of Calluna loss and the subsequent expansion of grasses is hypothesised to be overgrazing

by livestock, primarily sheep. This hypothesis, however, needs more rigorous testing

8.5 Suggestions for further research

8.5.1 Microscopic charcoal taphonomy

It is evident from reviewing the microscopic charcoal taphonomy literature that the

subject is relatively poorly understood, and that further experimental work is needed to

improve understanding in this crucial area. The main issues that need addressing, in my view,

include:
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e Determining the relative importance of atmospheric and streamborne inputs of microscopic
charcoal to lake sediments. An issue which has received some study but which has not

been resolved.

e Determining approximate distances over which microscopic charcoal particles of different
sizes may be the dispersed from biomass fires, allowing effective delimitation of ‘source
areas’ for sediment sinks. Existing theory of charcoal particle dispersal has little direct
experimental basis, having been developed to a large degree around theories of particulatés

other than microscopic charcoal.

e An assessment of the effects of differential deposition and focusing of microscopic
charcoal particulates in lake basins, information which could have a potentially profound
influence upon the form of charcoal records in lake sediment sequences and thus their

interpretation.

The work carried out in this study raises a number of issues concerning charcoal
production and dispersal which require additional study in both moorland and wider contexts.
Further work is needed to ascertain the extent to which biomass fires produce differential
quantities of charcoal particulates of varying size. Are smaller particles produced in much
greater quantities than progressively larger ones?, as suggested by the work on Tulach Hill,
and if so what are the implications of such processes for interpreting charcoal assemblages

from sediment profiles.

8.5.2 Microscopic charcoal analysis of moorland soils

Microscopic charcoal analyses of soil profiles have been greatly neglected in
comparison with analyses of peat and lacustrine sediments, due perhaps to the problems
encountered by palynologists working with soils (Dimbleby, 1961, 1985). The analyses of
microscopic charcoal in mor humus moorland soils conducted in this study, however, provide
a potentially useful technique for reconstructing extended local fire histories. Much further

work is needed, however, to refine and develop such analyses to their full potential.

Possible future work in this field could further the characterisation of charcoal

assemblages formed by in situ fires from those produced by nearby ex situ fires using their
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particle size distributions. Assessment of the applicability of fine resolution microscopic

charcoal analyses to other soil systems is also required.

8.5.3 Palaeoecological investigations into the possible causes of peat erosion and Calluna

loss

Peat erosion and Calluna loss are widespread phenomena in UK and Irish moorland
areas and may have been for centuries or even millennia. In this thesis seven sites were studied
in an attempt to determine whether excessive burning of moorland vegetation may have been
responsible for causing erosion of catchment peat and declines in Calluna cover. The results
suggest that increased fire activity may have been important in causing erosion and Calluna
loss in a small number of the catchments studied. In order to assess the influence of possible
alternative causes of peat erosion and Calluna loss, namely climatic change, atmospheric
pollution and over-grazing by livestock, further analyses are required. The palaeoecological
and statistical approach adopted to determine the effect of fire activity could be adapted to

provide a relatively rigorous test of the alternative hypotheses.

An assessment of the causes of peat erosion and Calluna loss by these methods at a
greater number of sites would be advantageous to determine whether regional patterns in the
causes of these phenomena exist. A range of environmental gradients, e.g. climatic, altitudinal
and atmospheric pollution load, could be assessed and may provide valuable information

concerning possible causes and agents of environmental change in moorland environments.
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Appendix 2: Table of charcoal size classes used in previous palaeoecological studies.

Authors & Date

Sites

Charcoal Size Classes

Waddington, JCB (1969)

Rutz Lake, Minnesota, USA

11 size classes (mean area ranging
from 113 um? ..to.. 6188 pmz)

Bradbury, JP & Waddington,

Shagawa Lake, NE

3 size classes (<50, 50-400 & >400

JCB (1973) Minnesota pm’
Swain, AM (1973) Lake of the Clouds, NW 8 size classes (85-760 um? ..t0.. >5830
Minnesota, USA pm?)

Mehringer, PJ, Ao, SF &
Peterson, KL (1977)

Lost Trail Pass Bog,
Montana, USA

8 size classes (100-625 pm? . .to..
>30625 pum?)

Cwynar, LC (1978)

Greenleaf Lake, Ontario,

5 size classes (58-289 um? ..to.. >1733

Canada p,mz)
Swain, AM (1978) Hell’s Kitchen Lake, NC 6 size classes (85-169 pm? ..to.. >845
Wisconsin, USA pm?)
Tolonen, M (1978) Lake Ahvenainen, S Finland | 3 sizze classes (<50, 50-400 & >400
pm?)
Amundson, DC & Wright, HE | Kirchner Marsh, Wolf Creek | 3 size classes (0.5-5, 5-20 & >20 x10-4
(1979) & Lake of the Clouds mm?)

Davis, AM (1979)

Tamarack Creck, Wisconsin

? Size class number and dimensions
not defined

Head, L & Stuart, I-MF (1980)

Aire Basin, SW Victoria
Australia

2 size classes (10-20 & >20 pm in
length)

Swain, AM (1980)

Hug Lake & Lake of the

8 size classes (85-760 pm? ..to.. >5830

Clouds, NW Minnesota m?)
Green, DG (1981) Everitt Lake, Nova Scotia 3 size classes (225-900, 900-3600 &
>3600 pum?)
Green, DG (1982) Everitt Lake, Nova Scotia 3 size classes (225-900, 900-3600 &
>3600 um?)

Battson, RA & Cawker, KB
(1983)

Mashagama Lake, Ontario,
Canada

9 size classes (100-199 pum? ..to..
>2000 pm?)

Tolonen, M (1985)

Palomaki, Paimio, SW
Finland

4 size classes (50-100, 100-200, 200-
400 & >400 um?)

Anderson, RS, Davis, RB,
Miller, NG & Stuckenrath, R
(1986)

Upper Branch Pond, N.
Maine

9 size classes (<180 pm in length) &
11 size classes of sieve washings (>180

pum)

Burney, DA (1987a)

L Kavitaha, Miangola
Swamp & L. Tritrivakely, C
Madagascar

? Size class number and dimensions
not defined

Burney, DA (1987b) Lake Kavitaha, C ? Size class number and dimensions
Madagascar a0t defined

Cwynar, LC (1987) Kirk Lake, North Cascade ? Size class number and dimensions
Range, Canada not defined

Robinson, D (1987) Aukhorn Peat Mounds, ? Size class number and dimensions
Caithness, Scotland not defined

Tolonen, M (1987b) Lake Kankareenjarvi & 4 size classes (50-100, 100-200, 200-
Preitilansuo Bog, SW 400 & >400 pm?2)
Finland
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Appendix 2: continued

Authors & Date

Sites

Charcoal Size Classes

Wein, RW, Burzynski, MP,
Sreenivsa, BA & Tolonen, K

Depres Lake Bog & Regent
Street Bog, New Brunswick,

§ size classes (100-2800, 2800-44400,
44400-135800, 135800-277200 &

(1987) Canada >277200 pm?)
Clark, JS (1988) Deming Lake, NW ? Size classes (<442, 442-884, 884-
Minnesota, USA 1326 pm?, ....)

Robinson, DE & Dickson, JH

Machrie Moor, Arran

? Size class number and dimensions

(1988) not defined
Clark, JS, Merkt, J & Muller, H | Schleinsee, W Germany ? Size classes (<442, 442-884, 884- -
(1989) 1326 pm?, ....)

MacDonald, GM, Larsen, CPS,
Szeicz, IM & Moser, KA
(1991)

Rainbow Lakes region,
Alberta, Canada

3 pollen slide size classes (75-374,
375-2199 & >2199 pm?) & 5
macrofossil size classes (2500-5300
pm?2 ..to.. >40300 pm?)

Sarmaja-Korjonen, K (1991)

Slattmossen, S Finland

7 size classes (25, 65, 160, 225, 320,
450 & 450-3200 um?)

Charman, DJ (1992)

Cross Lochs, Sutherland

2 macrofossil size classes (125-500 &
>500 pum length)

Sarmaja-Korjonen, K (1992)

4 small lakes, S Finland

7 size classes (25, 65, 160, 225, 320,
450 & 450-3200 um?)

Tipping, R, Edmonds, M &
Sheridan, A (1993)

Creag na Caillich, Killin,
Perthshire, Scotland

4 size classes (10-25, 26-50, 51-75 &
>75 pm in length)

Burney, DA, Pigott Burney, L
& MacPhee, RDE (1994)

Laguna Toruguero, Puerto
Rico .

8 size classes (50-99, 100-199, 200-
399, 400-799, 800-1599, 1600-3199,
3200-6399 & 6400-1279 pm?)
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Appendix 3: Troels-Smith sediment descriptions of the mor humus soil cores from
Tulach Hill and five additional Perthshire moorland sites.

The tab!es below contain sediment descriptions for all the soil cores used in this
study. The sediments were described under a low-power binocular microscope using
the method devised by Troels-Smith (1955).

Sh -  Substantia humosa, completely disintegrated organic matter which has no
apparent structure.

Th - Turfa herbacea or moss peat, formed predominantly from underground plant
parts.

Dg - Detritus granosus, fragments of woody and herbaceous plants <2 mm but >0.1
mm in size, mainly above ground material.

Dh - Detritus herbosus, fragments of herbaceous plants >2 mm in size.

Dl -  Detritus lignosus, fragments of wood and bark >2 mm in size.

Ag- Argilla granosa, mineral silt particles between 0.06 and 0.002 mm in size.

Ga - Grana arenosa, fine sand, particles between 0.06 and 0.6 mm in size.

The sediments presented are a mixtures of components, the Troels-Smith
system estimates the relative abundance of components on a 5-point scale:

0 = absent
1 =upto 25%
2=25-50%
3 =50-75%
4=100%
+ = a trace (<12.5%)

Example: Dg2 Dhl Shl DI+ Ag+, would represent a sediment sample composed of
approximately 50% detritus granosus, 25% detritus herbosus, 25% substantia humosa,
a trace of detritus lignosus and a trace of fine silt.

Tulach 1 Tulach 2

0-8 mm Moss & litter 0-26 mm Moss & litter

9-20 mm Dg2 Dhl DIl Sh+ 27-28 mm Tb3 Dgl Dh+

21-24 mm Dg2 Dhl Shl DI+ Ag+ 29-32 mm Dg2 Dhl DI1 Sh+
25-30 mm Sh2 Dgl Agl Dh+ DI+ 33-56 mm Dg2 Sh2 Dh+ DI+
31-76 mm Sh2 Agl Gal Dh+ Dg+ 57-74 mm Dg2 Sh2 Dh+ Ag+
Tulach 3 Tulach 4

0-4 mm Moss & litter 0-5 mm Moss & litter

5-14 mm Dg2 DI1 Dhl Ag+ 6-8 mm Dg3 Dhl DI+

15-24 mm Dg2 Shl Dhl DI+ Ag+ 9-12 mm Dg2 Shl Dhl DI+
25-36 mm Dg2 Sh2 Dh+ Ag+ 13-18 mm Dg2 Sh2 Dh+ DI+
37-40 mm Sh2 Dgl Agl Dh+ Ga+ 19-24 mm Dg2 Sh2 Dh+ DI+ Ag+ Ga+
41-66 mm Sh2 Agl Gal Dg+ Dh+ 25-64 mm Sh2 Dgl Agl Dht+ Ga+
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Tulach §
0-5 mm
6-10 mm
11-26 mm
27-30 mm
31-36 mm
37-66 mm

Tulach 7
0-5 mm
6-13 mm
14-17 mm
18-21 mm
22-29 mm

Tulach 9
0-15 mm
16-20 mm
21-22 mm
23-24 mm
25-32 mm
33-34 mm
35-44

Tulach 11
0-8 mm
9-10 mm
11-18 mm
19-20 mm
21-28 mm

Tulach 13
0-8 mm
9-15 mm
16-17 mm
18-21 mm
22-31 mm

Tulach 15
0-3 mm
4-5 mm
6-10 mm
11-14 mm
15-26 mm

Appendix 3: continued

Moss & litter

Dg2 Dhl Dil

Dg2 Dh1 Shl DI+
Dg2 Dhl Shl DI+ Ag+
Dg2 Sh2 Dh+ DI+ Ag+
Sh2 Dgl Agl Dh+ DI+

Moss & litter

Dg2 Dhi DI1 Ag+ Sh+
Dg2 Dhl Shl Ag+ DI+

Sh2 Dg2 Ag+ DI+ Dh+

Sh3 Dgl Ag+ DI+ Dh+ Ga+

Moss & litter

Dh2 DI2 Dg+

Dh2 DI1 Dgl

Dg2 Dh1 DIl

Dg3' Dhl DI+ Sh+

Dg3 Dhl DI+ Sh+ Ag+
Dg3 Sh IDh+ DI+ Ag+

Moss & litter

Dg3 Dhl DI+ Sh+

Dg3 Shl Dh+ DI+
Dg2 Sh2 Dh+ DI+ Ag+
Sh3 Dgl Dh+ DI+ Ag+

Moss & litter

Dg2 Sh1 Dhl DI+ Ag+ Ga+
Sh2 Dgl Agl Ga+ Dh+ Di+
Sh2 Ag2 Ga+ Dg+ Dh+ DI+
Ag2 Sh1l Gal Dh+

Moss & litter

Dg2 Dhl DIl Ag+
Dg2 Dhl Shl DI+ Ag+
Dg2 Shl Agl Dh+ DI+
Ag2 Dgl Shl Dh+ DI+
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Tualch 6
0-3 mm
4-10 mm
11-12 mm
13-20 mm
21-24 mm

Tulach 8
0-8 mm
9-10 mm
11-15 mm
16-17 mm
18-19 mm
20-31 mm

Tulach 10
0-8 mm
9-28 mm
29-34 mm

Tulach 12
0-9 mm

10-15 mm
16-21 mm
22-27 mm
28-31 mm

Tulach 14
0-3 mm

4-9 mm _
10-17 mm
18-25 mm
26-33 mm

Tulach 16
0-5 mm
6-15 mm
16-22 mm
23-34 mm

Moss & litter
Dg2 DI1 Shl
Sh2 Dgl DI1
Sh3 Agl DI+ Th+ Ga+
Sh3 Agl Th+ Ga+ DI+

Moss & litter

Dg2 Dh2 DI+ Sh+

Dg2 Dhl HI1 Sh+

Dg2 D11 Shl Dh+ Ag+
Dg3 DIl Sh+ Dh+ Ag+
Dg3 Shl DI+ Dh+ Ag+

Moss & litter
Dg2 DI11 Dhl
Dg3 Shl DI+ Dh+

Moss & litter

Dg2 Sh1 Dhl DI+

Dg2 Shl Dhl DI+ Ag+

Sh2 Dgl Agl Dh+ DI+ Ga+
Sh3 Agl Dh+ DI+ Dg+ Ga+

Moss & litter

Dg2 D11 Dhl

Dg2 Dh1 Shl DI+

Dg2 Sh2 Dh+ DI+ Ag+

Sh2 Dgl Agl Dh+ DI+ Ga+

Moss & litter
Dg2 Dhl DIl
Dg2 Dh1 Shl DI+
Dg2 Sh2 Dh+ DI+



Gallow Hill
0-5

6-13
14-28
29-53
54-57
58-65
66-73
74-105
106-113
114-120

Blacklaw Hill
0-11

12-27

28-35

36-121

Auldallan Hill
0-10

11-14

15-35

36-90
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Appendix 3: continued

Tb3 DI1

Sh2 Dgl DIl

Sh3 Dgl DI+ Th+
Sh3 Dgl Th+

Sh3 Dgl Th+ Ag+
Sh3 Agl Th+

Sh3 Agl Ga+ Th+
Sh2 Ag2 Ga+ Th+
Sh3 Agl Th+

Sh3 Agl Ga+ Th+

Tb3 DIl

Sh2 Dgl DI1 Th+
Sh3 Dgl Ag+
Sh3 Agl Dg+

Tb2 TL2
Sh2 Ti1 Thl
Sh3 TI1 Th+
Sh3 Dgl Ti+ Ag+
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Happas Farm
0-5

6-15

16-21

22-36

37-50

51-63

64-68

69-84

Trochry Hill
0-10

11-50

51-67
68-118

Tb3 DI

Sh2 TI1 Agl

Sh3 Agl Th+

Shd Ag+ Th+

Sh3 Dgl Ag+

Sh2 Dgl Agl Ga+
Sh2 Agl Gal Dg+
Sh2 Ag2 Ga+ Dg+

Tb3 Dgl T+
Dg2 TI2
Sh3 Dgl TI+
Sh3 Dgl
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Appendix 4: The frequency and periodicity at which areas of vegetation on Tulach
Hill, Blair Atholl, Perthshire were burned between 1940/50 and 1988.

Approximate dates Area of present No. of modern
of burning (AP date) | vegetation (m?) | vegetation stands
'50 (1950) 353,072 60
'59 678,761 103
'65 323,430 129
'69 420,883 108
76 361,335 76
'80 103,500 43
‘85 459,490 100
'88 9,568 11
'50,'59 240,717 35
'50,'65 70,296 24
'50,'69 24,128 26
'50,'76 31,149 27
'50,'80 15,362 10
'50,'85 5,383 11
'50,'88 1,651 6
'59,'65 94 056 24
'59,'69 84,303 29
'59,'76 © 32,218 22
'59,'80 12,143 10
'59,'85 19,891 15
'59,'88 1,833 6
'65,'69 20,118 23
'65,'76 28,421 24
'65,'80 10,753 9
'65,'85 94,742 34
'65,'88 3,100 5
'69,'76 64,675 39
'69,'80 10,696 18
'69,'85 171,249 63
'69,'88 10,162 6
"76,'80 13,0607 4
"76,'85 35,456 32
'76,'88 347 3
'80,'85 10,856 16
'80,'88 1,495 2
'85,'88 1,535 5
'50,'59,'65 49,909 14
'50,'59,'69 4,119 9
'50,'59,'76 42 029 23
'50,'59,'80 1,827 4
'50,'59,'85 3,800 8
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Appendix 4: continued

Approximate date of | Area of present No. of modern
burning (AP date) vegetation (m?) | vegetation stands
'50,'59,'88 1,422 4
'50,'65,'69 68 1
'50,'65,"76 6,489 5
'50,'65,'80 12,184 8
'50,'65,'85 1,016 1
'50,'65,'88 1,821 3
'50,'69,'76 7,656 8
'50,'69,'80 20 1
'50,'69,'85 3,369 8
'50,'69,'88 170 1
'50,'76,'85 1,014 3
'50,'76,'88 842 5
'50,'80,'85 95 2
'50,'80,'88 138 2
'50,'85,'88 470 2
'59,'65,'69 10,093 6
'59,'65,'76 8,525 9
'59,'65,'80 5,319 10
'59,'65,'85 1,135 4
'59,'65,'88 18 2
'59,'69,'76 2,620 11
'59,'69,'80 753 4
'59,'69,'85 3,257 8
'59,'69,'88 176 1
'59,'76,'85 3,095 9
'59,'76,'88 228 1
'65,'69,'76 4,960 11
'65,'69,'80 454 2
'65,'69,'85 6,492 17
'65,'76,'85 4,539 10
'65,"76,'88 125 1
'65,'80,'85 613 ] 3
'65,'80,'88 96 1
'65,'85,'88 415 1
'69,'76,'80 774 6
'69,'76,'85 11,107 26
'69,'76,'88 1,706 4
'69,'80,'85 1,086 5
'69,'80,'88 532 1
'69,'85,'88 680 5
'76,'80,'85 1,656 5
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Appendix 4: continued

Approximate date of | Area of present No. of modemn

burning (AP date) vegetation (m?) | vegetation stands
"76,'85,'88 845 4
'80,'85,'88 551 1
'50,'59,'65,'69 16 1
'50,'59,'65,'76 12,011 5
'50,'59,'65,'80 9,093 7
'50,'59,'69,'76 2,939 8
'50,'59,'69,'80 879 3
'50,'59,'69,'85 1,579 4
'50,'59,'76,'85 3,116 7
'50,'59,'76,'88 2,550 3
'50,'59,'85,'88 15 1
'50,'65,'76,'88 336 3
'50,'65,'80,'85 308 2
'50,'65,'80,'88 22 1
'50,'65,'85,'88 81 1
'50,'69,'76,'80 5 1
'50,'69,'76,'85 2,705 5
'50,'69,'76,'88 1,257 2
'50,'76,'85,'88 676 4
'59,'65,'69,'76 4,218 2
'59,'65,'69,'85 421 1
'59,'65,'80,'85 129 1
'59,'69,'76,'80 106 1
'59,'69,'76,'85 695 4
'59,'69,'80,'85 127 1
'59,'76,'85,'88 19 1
'65,'69,'76,'85 5,129 5
'65,'76,'85,'88 18 1
'69,'76,'80,'85 680 4
'69,'76,'85,'88 391 2
'69,'80,'85,'88 146 1
'50,'59,'69,'76,'80 1857 1
'50,'59,'69,'76,'85 1,191 6
'50,'59,'69,'76,'88 400 2
'50,'59,'76,'85,'88 577 2
'50,'65,'76,'85,'88 709 1
'50,'69,'76,'85,'88 122 1
'50,'59,'69,'76,'85,'88 100 1
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Appendix 5: #°Pb Chronologies

Round Loch of Glenhead - *'°Pb chronology (CRS Model)

Depth (cm) Date (AD) Age (yr) + Sedimentation rate
(cm yr™)

0.00 1985 0 - -
1.25 1979 6 2 0.191
2.25 1974 11 2 0.179
3.25 1968 17 2 0.125
4.75 1955 30 3 0.112
6.50 1940 45 4 0.124
8.50 1922 63 7 0.146
10.50 1910 75 9 0.146
12.50 1898 87 12 0.146
14.50 1887 98 16 ~0.196
18.50 - 1866 119 . 27 ~0.196

Source Stevenson et al. (1990)

Loch Teanga - *'°Pb chronology (CRS Model)

Depth (cm) Date (AD) Age (y1) + Sedimentation rate
| (cm yr™)
0 1987 0 - -
2.00 1979 8 - 2 0.165
4.00 1966 21 2 0.143
6.00 1952 35 2 0.145
8.00 1938 49 3 0.150
10.00 1925 62 4 0.164
12.00 1912 75 6 0.157
14.00 1902 85 9 0.194
16.00 1891 96 10 0.194
18.00 1881 106 10 0.194
20.00 1870 117 11 0.194
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Appendix 5: continued

Lough Muck - 210Pb chronology (CRS Model)

Depth (cm) Date (AD) Age (yr) + Sedimentation rate
(cm yr)
0 1988 0 - -
1.00 1984 4 2 0.276
3.00 1977 11 2 0.237
5.00 1966 22 2 0.164
7.00 1954 34 2 0.173
9.00 1943 45 2 0.206
11.00 1931 57 3 0.155
13.00 1917 71 3 0.125
17.00 1901 87 5 0.120
15.00 1885 103 8 0.120
19.00 1868 120 11 0.120
21.00 1851 137 ‘ 14 0.120
23.00 1835 153 16 0.120
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Appendix 5: continued

Blue Lough - #°Pb chronology (CRS Model)

Depth (cm) Date (AD) Age (yn) + Sedimentation rate
(cmyr?)
0 1988 0 - -
0.50 1987 1 2 0.391
1.50 1985 3 2 0.323
2.50 1981 7 2 0.254
3.50 1976 12 2 0.195
4.50 1971 17 2 0.268
5.50 1965 23 2 0.145
6.50 1957 31 2 0.136
7.50 1950 38 3 0.133
8.50 1940 48 4 0.106
9.50 - 1930 58 4 0.079
10.50 1915 73 ‘ 7 0.063
11.50 1900 88 11 0.063
12.50 1885 103 14 0.063

264



4

Appendix 5: continued

Loch Tanna - #°Pb chronology (CRS Model)

Depth (cm) Date (AD) Age (yr) + Sedimentation rate
(cm yr)
0 1986 0 - -
0.5 1983 3 2 0.147
1.00 1979 7 2 0.128
1.50 1975 11 2 0.111
2.00 1970 16 2 0.110
2.50 1966 20 2 0.105
3.00 1961 25 2 0.101
3.50 1956 30 2 0.097
4.00 1950 36 2 0.088
4.50 1944 42 2 0.076
5.00 1938 48 3 0.079
5.50 1931 55 ‘ 3 0.080
6.00 1924 62 3 0.063
6.50 1913 73 4 0.048
7.00 1898 88 6 0.036
7.50 1882 104 8 0.023
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Appendix 5: continued

Llyn Conwy - ?'°Pb chronology (CRS Model)

Depth (cm) Date (AD) Age (yr) + Sedimentation rate
(cmyr')
0.00 1987 0 - -
2.00 1980 7 2 0.247
4.00 1972 15 2 0.279
6.00 1965 22 2 0.288
8.00 1959 28 2 0.291
10.00 1952 35 2 0.345
12.00 1946 41 2 0.360
14.00 1941 46 3 0.370
16.00 1935 52 3 0.370
18.00 1929 58 3 0.355
20.00 1923 64 X 4 0316
22.00 1916 71 4 0.276
24.00 1909 78 5 0.237
26.00 1900 87 6 0.212
28.00 1890 97 8 0.205
30.00 1880 107 10 0.205
32.00 1871 116 13 0.205
34.00 1861 . 126 17 0.205
36.00 1851 136 19 0.205
38.00 1842 145 20 0.205
40.00 1832 155 22 0.205
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Appendix 6: Round Loch of Glenhead - **C chronology

Lab. No. Depth (cm) Uncalibrated Calibrated date BP at two sigma*
date (BP)

SRR-2180 37-42 2020+80 2289(1985)1820"
SRR-3258 42-47 144060 1494(1329)1280!
SRR-3259 48-53 1420+60 1410(1313)1270"
SRR-2811 53-58 1350+70 1384(1287)1160"
SRR-3260 61-66 73060 740(678)566"
SRR-3261 68-73 169060 1730(1602,1583,1579)1500"
SRR-2812 75-80 1910+70 2039(1868)1700!
SRR-3262 82-87 2010+70 2129(1959)1840"
SRR-3263 89-94 157060 1600(1503)1340°
SRR-2813 96-101 2550+70 2779(2740)2359
SRR-3264 103-108 1810+60 1880(1729)1576'
SRR-3265 110-115 2720+60 2949(2841,2831,2797)2749%
SRR-2814 120-125 2250570 2359(2323)2072!
SRR-2815 139-144 3970+70 4807(4432)4249*
SRR-2816 153-158 4660<70 5581(5442,5429,5326)50%9°
SRR-2817 168-173 5180+80 6130(5943)5739*
SRR-2818 183-188 6390+80 7439(7282)7169*
SRR-2819 198-203 6890+70 7909(7687)7579*
SRR-2820 208-213 7250+70 8171(8039)7919*
SRR-2821 223-227 9280+80 Too old for calibration

* Dates calibrated to !Stuiver & Pearson (1986); *Pearson & Stuiver (1986); *Pearson et al. (1986); ‘Bidecadel
weighted average of data from Linick ef al., (1985); Stuiver et al. (1986), Kromer ef al. (1986) and Linick et
al. (1986). Source Stevenson ef al. (1990). )

Source: Stevenson ef al. (1990)
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