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Abstract 

 

Cellular senescence is often defined as an irreversible cell cycle arrest of mitotic 

cells, however post-mitotic cells, including adipocytes and neurones, have also been 

shown to display senescent-like characteristics, such as elevated SA-β-Gal activity 

and increased production of pro-inflammatory cytokines, in response to persistent 

DNA damage. Our group have shown that a persistent DDR can occur at telomeres 

independently of length. We investigated the possibility of telomere dysfunction being 

associated with senescence in a non-rapidly dividing cell type, which is not subject to 

repeated end-replication problem-associated telomere shortening. 

We show that telomere damage can be induced in cardiomyocyte cell lines with X-

irradiation or oxidative stress in the absence of cell division, with live-cell imaging 

revealing the presence of persistent DNA damage foci. Endonuclease-mediated 

telomere-specific double-strand DNA breaks trigger a senescent-like phenotype in 

cardiomyocytes in vitro, including elevated SA-β-Gal activity, p21 expression, 

hypertrophy and decrease of proliferation marker Ki-67.  

We observed an age-dependent increase in telomere dysfunction in both murine and 

human cardiomyocytes, occurring independently of telomere length. Furthermore, 

murine cardiomyocytes in vivo are associated with numerous markers of 

senescence, such as p15, p16 and p21 elevation, along with increased TGF-β 

expression and increased prevalence of senescence-associated distension of 

satellites. 

Increased oxidative stress via MnSOD-/+, Catalase-/-, or MAO-A overexpression 

(resulting in excess H2O2 production), can drive telomere dysfunction in murine 

cardiomyocytes in vivo, which correlates with a decrease in heart function, both of 

which can be rescued with anti-oxidant supplementation.  

Finally, we show that rapamycin, a drug shown to increase lifespan and delay age-

related diseases in numerous organisms, can attenuate the accumulation of TAF in 

murine cardiomyocytes in vivo, and is associated with a decrease in senescence 

markers. 

Our data provide evidence that telomere dysfunction occurs independently of length 

in cardiomyocytes, and is associated with a senescent-like phenotype. 
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1 Introduction 

 

1.1 Introduction to Senescence 

 

Once upon a time, it was believed that human cells had the capability of proliferating 

indefinitely in vitro, given suitable culture conditions, however, this paradigm was 

revised when in 1961 Hayflick and Moorhead showed that human fibroblast cells 

grown in vitro have a limited proliferative capacity (Hayflick and Moorhead, 1961; 

Hayflick, 1965). This was demonstrated by co-culturing young and old fibroblasts and 

observing that the older ones entered an irreversible cell cycle arrest sooner than the 

younger ones, thus showing that proliferation cessation is, contrary to previous 

criticism, not merely an artefact of poor cell culture conditions (Hayflick and 

Moorhead 1961; Hayflick 1965). This observed proliferative cessation is now referred 

to as cellular senescence, however, a universal and concise definition for cellular 

senescence is a much-debated subject, as initially senescence was regarded as a 

state of irreversible growth arrest in somatic cells, however research has emerged 

which argues that even post-mitotic cells can elicit a senescent-like phenotype 

(Minamino et al., 2009; Jurk et al., 2012). Moreover, in addition to cell cycle arrest, 

senescent cells also display various other phenotypic changes, which will be 

discussed in greater detail throughout.   

Physiologically, senescence is thought to act as a tumour suppressor mechanism by 

inhibiting the division of pre-cancerous cells (Serrano et al., 1997; Ramsey and 

Sharpless, 2006), and evidence is emerging which implicates roles for senescent 

cells in various other biological processes, such as wound healing (Jun and Lau, 

2010) and  embryonic development (Rajagopalan and Long, 2012; Muñoz-Espín et 

al., 2013a; Storer et al., 2013). In contrast to this, senescent cells have also been 

linked to contributing to a severe decline in tissue homeostasis (Campisi and d'Adda 

di Fagagna, 2007), driving age-related diseases (Baker et al., 2011), inducing 

paracrine senescence (Hubackova et al., 2012a; Nelson et al., 2012; Acosta et al., 

2013), and even promoting a pro-tumourigenic microenvironment (Alspach et al., 

2013).  Senescence can therefore be considered antagonistically pleiotropic; as a 

mechanism causative of both beneficial and detrimental effects (George, 1957). 
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1.2 Senescence Causes 

 

Senescence can be induced by different factors, which vary dependent on cell and 

tissue type. In this section, I will explain different mechanisms which have been 

implicated in driving cellular senescence. 

 

1.2.1 DNA Damage 

 

DNA damage, in particular double-strand breaks (DSBs), has been shown to trigger 

cellular senescence in various cell lines (Di Leonardo et al., 1994). In response to 

DNA damage, several members of the phosphoinositide-3-kinase-related protein 

kinase (PIKK) family can be activated and subsequently amplify the DNA damage 

signal, allowing downstream effector proteins to take the necessary action in relation 

to halting the cell cycle, the restructuring of chromatin and repairing the DNA damage 

(Rouse, 2002). Furthermore, Ataxia-telangiectasia Mutated (ATM) and DNA-

dependent protein kinase (DNA-PK) mainly respond to double strand breaks, 

whereas Ataxia-telangiectasia and Rad3-related (ATR) is activated by stalled DNA 

replication forks and single-stranded breaks (SSBs) (Falck et al., 2005). The binding 

of these proteins to sites of damage is aided by other proteins, for example, ATR 

binding is mediated by ATRIP (Zou, 2003), whereas DNA-PK recruitment is facilitated 

by the Ku70-Ku80 heterodimer (Tanya and Stephen, 1993).  

Upon a DSB, autophosphorylation occurs on Ser1981 of the ATM dimer, resulting in 

dimer dissociation, which consequently frees the kinase domain of monomeric ATM, 

thus allowing the phosphorylation of downstream substrates containing the ATM 

consensus target sequence (Bakkenist and Kastan, 2003). ATM phosphorylates 

histone H2AX, known as gamma-H2AX (γH2AX), which in turn recruits additional 

ATM to the lesion, thus initiating a positive feedback loop which amplifies the DDR 

signal, which is capable of spreading up to several hundreds of kilobases from the 

break (Rogakou et al., 1999; Meier et al., 2007; Iacovoni et al., 2010). This process is 

facilitated by DDR mediators p53-binding protein 1 (53BP1) and mediator of DNA 

damage checkpoint (MDC1), which facilitate the interaction between ATM and 

γH2AX (Bekker-Jensen et al., 2005; Lou et al., 2006). Independently of ATM 

activation, multiple proteins get recruited to the site of damage, including 53BP1, 
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BRCA1 and the MRN complex (Kastan, 2008). ATM recruitment to double strand 

breaks has been shown to be facilitated by the NBS1 protein of the evolutionary 

conserved Mre11-Rad50-Nbs1 (MRN) complex (Carson et al., 2003). Moreover, 

activated ATM kinase can then phosphorylate substrates such as BRCA1, 53BP1, 

NBS1 and histone H2AX, which can all play a role in the DDR (Fig 1.1) (Kastan, 

2008).  

 

Figure 1-1 Scheme for DDR-induced Signalling Pathway (Kastan, 2008). 
Following a stress-induced DSB, numerous DDR proteins, including 53BP1, BRCA1 
and the MRN-complex (NBS1, Rad50 and Mre11) are recruited to the site of 
damage. ATM becomes phosphorylated and can activate p53 to signal for apoptosis 
of growth arrest, unless the lesion is repaired, and the cell can re-enter the cell cycle.  

 

SSBs elicit binding of the single-stranded DNA-binding protein replication protein 

(RPA), which acts to recruit ATR (Cortez et al., 2001). However, during DSB repair, 

processing of the DSB leads to exposed single-stranded DNA which recruits RPA, 

and thus both ATR and ATM can be present at the same lesion in an ATM-

dependent manner (Jazayeri et al., 2006). Persistence of ATR and ATM above a 

certain threshold can lead to CHK2 phosphorylation by ATM, which can activate key 

cell cycle determinants such as the cell-division cycle 25 (CDC25) phosphatases and 

the tumour suppressor protein p53. Moreover, CDC25 phosphatases are required for 
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progression from G1 to S phase during cell replication, and thus the cell cycle is 

rapidly arrested upon their DDR-induced inactivation (Mailand et al., 2000). This cell 

cycle arrest can be bypassed by overexpression of the cell cycle regulator cyclin-

dependent kinase 1 (CDK1), however this leads to increased DNA damage and 

decreased cell survival following genotoxic stress (Mailand et al., 2000). Activated 

CHK2, and ATM, can phosphorylate p53 at Ser-15 and Ser-20 respectively, which 

dissociates p53 from its negative regulator MDM2, leading to p53 stabilisation and 

transcription of downstream proteins such as the cyclin dependent cell cycle inhibitor 

p21. Subsequently, p21 leads to a stable cell cycle arrest (Di Leonardo et al., 1994; 

Deng et al., 1995; d'Adda di Fagagna et al., 2003; Herbig et al., 2004). In addition, in 

a large number of cell lines, the cyclin-dependent kinase inhibitor p16 is also 

expressed in response to a persistent DDR and thus provides an extra enforcer of 

cell cycle inhibition (Stein et al., 1999; Beauséjour et al., 2003; Jacobs and de Lange, 

2004). However, there is still doubt about the factors responsible for p16 activation, 

since data indicates that p16 is induced during senescence independently from a 

DDR (Herbig et al., 2004). Moreover, the p53-p21 and p16-Rb pathways will be 

discussed in greater depth later on.  

DNA damage occurs frequently from both endogenous and exogenous sources, with 

estimates from mouse and human fibroblasts suggesting that thousands of SSBs and 

around 10 DSBs are generated per cell every day (Lieber, 2010). SSBs are thought 

to be less threatening to genomic integrity per se, however they can form DSBs if 

encountered by the DNA replication machinery during S phase (Kuzminov, 1999). 

DSBs arising during S phase are usually repaired via homologous recombination 

(HR), by using the homologous sister chromatid DNA as a template for efficient repair 

(Saleh-Gohari et al., 2005). DSBs can also occur stochastically due to aberrant 

nuclear enzyme activity, ionising radiation and reactive oxygen species (ROS), and 

are often repaired by non-homologous end joining (NHEJ), a mechanism which 

ligates broken strands in the absence of sister chromatid DNA (Riballo et al., 2004).  

Upon eliciting a DDR, cell-cycle progression is temporary halted until the DNA 

damage has been resolved (Jackson and Bartek, 2009). However, if the DNA 

damage is not resolved or exceeds a certain threshold, cells may initiate senescence 

or apoptosis. Furthermore, due to a basal rate of DNA damage being constantly 

induced and repaired, it is difficult to ascertain the exact thresholds, both numerically 

and temporally, for when the cellular decision is made to enter senescence or 
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undergo apoptosis. Research into DNA damage uses a number of different genotoxic 

agents, for example, neocarzinostatin is a protein-chromophore complex which is a 

very-potent DNA damaging agent and known for its anti-tumour activity, and 

etoposide is a cytotoxic agent which causes DNA damage by inhibiting 

topoisomerase II from re-ligating DNA strands, both of which have been shown to 

increase SA-β-Gal activity in human fibroblasts following exposure (Hewitt et al., 

2012). In addition, less specific DNA damaging agents are used such as ionising 

radiation or hydrogen peroxide (H2O2), which is a strong oxidiser that can cause both 

single and double strand breaks in the DNA, and following H2O2 exposure, human 

fibroblasts have been shown to enter a G1 cell cycle arrest and display elevated SA-

β-Gal activity (Duan et al., 2005). Understanding the threshold for DNA damage-

induced senescence is also made more difficult due to the varying forms of DNA 

damage induced. For example, etoposide-induced DNA damage results in a bimodal 

repair kinetic, with 90% of foci having half-lives of around 2 hours, whereas 10% of 

the foci have half-lives of around 12 hours (Shibata et al., 2011). These observations 

compliment the two-lesion kinetic (TLK) model of DSB, which proposes there are 

simple DSBs which are rapidly repaired, and complex DSBs, which may contain 

additional damage such as base deletions, or strand breaks, and thus take 

significantly longer to repair (Stewart, 2001; Ma et al., 2005).    

 

1.2.2 Telomeres and Replicative Senescence 

 

Genomic DNA in eukaryotic organisms is packaged into chromosomes, which due to 

their linearity have physical ends. However, eukaryotes have evolved complex DNA 

repair machinery which recognise exposed ends of DNA, and elicit a DNA Damage 

Response (DDR) in attempt to repair them, however, early observations revealed that 

the ends of chromosomes were resistant to a DDR and subsequent fusion reactions, 

which would otherwise occur in other broken and exposed regions of the genome 

(McClintock, 1938; McClintock, 1941). Interestingly, it was shown that introduction of 

linear plasmids into eukaryotic cells were unstable and prone to recombination with 

the genome, however, this could be stabilised with the addition of G-rich repeats from 

yeast chromosome ends (Orr-Weaver et al., 1981; Szostak and Blackburn, 1982; 

Shampay et al., 1984). These ends of chromosomes were shown to be distinct from 

genomic DNA in that they consist of a 5’-3’ genetic repeat of code, consisting of the 
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hexamer 5’-TTAGGG-3’ in mammalian species and other variations across most, if 

not all, eukaryotes from yeast to vertebrates (Blackburn, 1991). These repeat 

sequences were coined ‘telomeres’ and were also shown to end with a G-rich 3’ 

single-stranded overhang (Klobutcher et al., 1981; Henderson and Blackburn, 1989). 

In addition, telomeres were also shown to be unique from the rest of the genome by 

associating with a 6-subunit protein complex: TRF1, TRF2, POT1, RAP1, TIN2 and 

POT1 (de Lange, 2005). Both TRF1 and TRF2 contain SANT/Myb-type DNA-binding 

domains (DBD) in their carboxy terminus which recognise and bind to the sequence 

5’-YTAGGGTTR-3’ in double-stranded DNA, and can form homodimers as well as 

high order oligomers, thus providing numerous DBDs for the protein complex to bind 

to large sequences of telomeric DNA (Bianchi et al., 1999; Court et al., 2005; 

Hanaoka et al., 2005). In addition, POT1 also has a DBD with a high affinity for the 

single stranded 5’(T)TAGGGTTAG-3’ sequence found on the 3’ G-rich overhangs on 

telomeres (Lei et al., 2004; Ye et al., 2004). Rap1 associates with TRF2, and both 

TRF1 and TRF2 bind to TIN2, which interacts with the TPP1/POT1 heterodimer, thus 

creating a stable telomere-binding complex, with multiple telomeric DNA binding 

sites, thus allowing the 6-subunit protein complex high specificity and affinity for 

telomeric repeats. Electron microscopy images showed that purified telomeric 

restriction fragments were able to form a lariat-like structure in vitro, thought to be a 

consequence of the invasion and subsequent binding of the 3’ overhang into the 

downstream duplex telomeric DNA (Griffith et al., 1999). The formation of the lariat-

like structure, coined the ‘t-loop’ was shown to be dependent on the telomere-

associated protein TRF2 (Griffith et al., 1999). Moreover, the formation of the t-loop 

provides an elegant mechanism which physically “shelters” the end of the 

chromosome from DDR proteins, and thus the name shelterin was given to the 6-

protein complex which associates with telomeres and facilitates this process (de 

Lange, 2005). However, TRF2 inhibition in both mouse and humans has been shown 

to activate ATM kinase at telomeres (Karlseder et al., 1999; Celli and de Lange, 

2005), which in turn leads to the accumulation of DDR proteins such as MDC1, 

53BP1 and γH2AX at telomeres, resulting in p53 upregulation and a p21-mediated 

G1/S cell cycle arrest (Karlseder et al., 1999; d'Adda di Fagagna et al., 2003; Takai 

et al., 2003). Furthermore, TRF2 inhibition also leads to NHEJ-mediated and end-to-

end chromosome fusions (van Steensel et al., 1998; Smogorzewska et al., 2002; 

Celli and de Lange, 2005). The mechanism for this NHEJ suppression, results from 

TRF2 and its binding partner RAP1 having an inhibitory effect on DNA-PK and 



13 
 

ligase-IV-mediated NHEJ (Bae and Baumann, 2007). Whilst TRF2 inhibition leads to 

an ATM-dependent DDR at telomeres, POT1 deletion results in ATR-dependent DDR 

and phosphorylation of Chk1 (Hockemeyer et al., 2006; Guo et al., 2007), 

highlighting that telomeres are associated with two proteins which independently 

repress the two major DDR pathways, thus differentiating telomeres from internal 

DSBs. Interestingly, dysfunctional telomeres elicit an ATM-dependent DDR in which 

CHK2 is not phosphorylated, which is distinct from ATM-dependent genomic DSBs 

(Cesare et al., 2013). In addition, telomere dysfunction, unlike genomic DSBs, does 

not activate a G2/M checkpoint, but allows mitosis to complete before arresting cells 

in p53-dependent G1 cell cycle arrest (Cesare et al., 2013).  

Telomere dysfunction can also arise as a consequence of telomere attrition, resulting 

from an inability of the telomere sequence to be fully replicated during DNA 

replication. DNA polymerase can only synthesise DNA in the 5’-3’ direction, thus 

resulting in a leading and lagging strand of DNA. The lagging strand requires the 

binding of RNA primers to enable DNA polymerase to bind to and replicate DNA, 

followed by the degradation of the RNA primer and replacement with DNA. However, 

the final attached RNA primer does not have a DNA template behind it, and 

eventually succumbs to degradation, thus resulting in telomere shortening; a 

phenomenon coined the ‘end replication problem’ (Olovnikov, 1971; Watson, 1972). 

It is thought that telomere shortening and associated dysfunction is responsible for 

triggering replicative senescence, and it has been observed that different cell types 

have a reproducible number of times they can divide before entering senescence, 

known as their ‘Hayflick limit’. Moreover, it has been proposed that telomeres reflect 

a cell’s replication history, thus acting as a molecular clock (Harley et al., 1990; 

Harley et al., 1992). However, the end replication problem is only predicted to result 

in a loss of around 20 base pairs per cell division, whereas evidence suggests that 

around 50-200 base pairs of telomere DNA are lost each cell division. Interestingly, it 

has been shown that telomere attrition is accelerated by oxidative stress (von 

Zglinicki et al., 1995; von Zglinicki et al., 2000), and thus telomeres appear not to 

represent merely a tally counter for replication history, but a proxy for their history of 

cellular stress as well.  

Once telomeres reach a critical length, it is thought that steric constraints on the t-

loop structure cause the 3’ overhang to dissociate from its complementary DNA 

strand, thus linearising the telomere, or ‘uncapping’, therefore exposing the physical 
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end of the telomere to the nucleoplasm where it can be recognised as DNA damage 

and lead to p53-dependent cell cycle arrest (Herbig et al., 2004). Moreover, 

dysfunctional telomeres accumulate DDR proteins such as γH2AX, 53BP1, MRE11, 

which subsequently signal through ATM, to p53, which upregulates p21, leading to 

G1 cell cycle arrest (Herbig et al., 2004). Inhibition of ATM results in cells re-entering 

the cell cycle, suggesting that a persistent DDR signal is required for cell cycle arrest 

(Herbig et al., 2004). An on-going DNA damage response at telomeres has been 

shown to contribute to the development of the senescence phenotype (d'Adda di 

Fagagna et al., 2003; Passos et al., 2010). It has been proposed that a threshold of 5 

telomeric DNA damage foci can predict the onset of senescence in human fibroblasts 

(Kaul et al., 2012). Interestingly, if senescence pathways are bypassed, for example 

by p53 inactivation with SV40 transformation, cells can continue to proliferate with 

extremely short telomeres, until the level of telomere erosion causes complete 

telomere de-protection and cells enter a state of crisis, as defined by chromosomal 

fusions and eventually cell death (Counter et al., 1992).  

Germline immortality is dependent upon a telomere maintenance mechanism to 

prevent replicative senescence or crisis occurring as a result of telomere shortening. 

Moreover, eukaryotes evolved a solution to the end-replication-problem, which is 

dependent upon the ribonucleoprotein telomerase. Telomerase is a reverse 

transcriptase, which consists of a catalytic domain, known as Telomerase Reverse 

transcriptase (TERT), which recognises the 3’-OH group at the end of the G-rich 

overhang and elongates the telomeric DNA (Blasco, 2005). Moreover, this elongation 

is made possible by the Telomerase RNA Component (TERC), which also binds to 

the 3’ overhang and creates a template for TERT to add complementary nucleotides 

(Elizabeth, 2001). Telomerase activity is essential for telomere length maintenance in 

human germ and stem cells, and defective telomerase can lead to disease 

pathologies, for example dyskeratosis, in which patients have severely shortened 

telomeres   (Mitchell et al., 1999). Telomerase activity is either absent or negligible in 

other somatic cells, therefore resulting in proliferation-associated telomere shortening 

(Wright et al., 1996; Yui et al., 1998), however, replicative senescence in somatic 

cells can be avoided via ectopic expression of telomerase, which replenishes the 

telomeric DNA and thus maintains the telomeres from reaching a critical length 

(Bodnar et al., 1998b). This was first shown by transfection of both retinal pigment 

epithelial cells and foreskin fibroblasts with the telomerase catalytic subunit; it was 
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observed that the cells were still proliferating when the data was published, having 

already exceeded their Haylflick limit by 20 population doublings. Moreover, they 

showed decreased SA-β-Gal activity and had significantly elongated telomeres 

(Bodnar et al., 1998a). However, upregulated telomerase activity cannot prevent 

genotoxic stress-induced senescence, for example hTERT overexpressing human 

fibroblasts still enter cellular senescence following exposure to high doses of X-

irradiation (Hewitt et al., 2012), and H2O2 treatment has also been shown to induce 

senescence in human fibroblasts independently of telomere length  (Chen et al., 

2001). 

Telomere length maintenance in the germline and stem cell populations is essential 

for the persistent proliferative potential by ensuring telomere lengths are substantial 

enough to prevent uncapping and subsequent cell cycle arrest. However, telomere 

maintenance mechanisms are also hijacked by cancer cells to assist immortality, with 

around 85% of human cancers presenting an upregulation of telomerase activity 

(Shay and Bacchetti, 1997). Almost all other cancer types maintain telomere length 

with a telomerase-independent mechanism known as Alternate Lengthening of 

Telomeres (ALT) (Heaphy et al., 2011). Furthermore, ALT has been shown to rely on 

a recombination event (Dunham et al., 2000), however the exact mechanism for 

telomere elongation requires further research. 

Contrary to the regulation of telomere attrition, mechanisms have also evolved which 

limit telomerase-mediated elongation of telomeres, for example, telomere length in 

many immortalised human cell lines is stable, despite persistent telomerase 

upregulation (van Steensel and de Lange, 1997). Furthermore, different species are 

associated with different telomere lengths (Kipling and Cooke, 1990), which are kept 

constant throughout numerous generations (Wright et al., 1996), suggesting the 

process of telomere elongation is controlled in the germline. Various shelterin 

proteins are involved in telomere elongation regulation; overexpression of TRF1 in 

the HT1080 tumour cell line leads to gradual telomere shortening, and conversely, 

expression of a dominant-negative TRF1 resulted in telomere elongation (van 

Steensel and de Lange, 1997), suggesting that TRF1 acts as a negative regulator of 

telomere elongation. TRF2 has also shown to be a negative regulator of telomere 

elongation, as TRF2 overexpression accelerates telomere shortening, however 

neither TRF1 nor TRF2 overexpression have any effect on telomerase expression 

levels (Smogorzewska and van, 2000). Moreover telomere elongation can be 
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induced by introducing a mutant POT1 with deficient TRF2 binding, however the 

mechanism of this effect is yet to be understood (Kendellen et al., 2009).  

 

1.2.3 Telomere-Associated DNA Damage Foci 

 

Telomere shortening and dysfunction, leading to a persistent DDR and cell cycle 

arrest is well documented in vitro (as discussed above). However, it is not fully 

understood if telomere shortening per se has a pathological effect in vivo. The study 

of telomere dysfunction in mice has largely involved producing telomerase-null mice, 

which lack either functional TERT or TERC activity, and therefore cannot elongate 

telomeres, including the germline, and thus with each successive generation, 

progeny are born with shorter telomeres (Lee et al., 1998; Hande et al., 1999; Karl 

Lenhard et al., 1999). However, the physiological relevance of this is questionable, 

considering that the level of telomere shortening in these models is far greater than 

what would be expected in wild-type mice. Telomerase-null mice lose around 4-5 

kilobases of telomere per generation (Blasco et al., 1997; Rudolph et al., 1999), and 

wild-type mice lose around 15 kilobases of telomeric DNA throughout their lifetime 

(Vera et al., 2012). No significant alterations in lifespan were observed after 

comparing G3 TERC-/- mice to wild-type mice (Rudolph et al., 1999). Considering 

that G3 mice are born with telomere lengths comparable to those found in severely 

aged mice, and G3 mice continue to show telomere shortening throughout their life, 

this would suggest that telomere shortening is not having an effect on lifespan. G6 

TERC-/- mice do display significantly shortened lifespans, but this level of telomere 

shortening cannot be considered physiological (Rudolph et al., 1999), and is more 

akin to a telomerase-defective disease such as dyskeratosis congentia (Mitchell et 

al., 1999).  

Our group observed an age-dependent increase in telomeres co-localising with a 

DDR in murine hepatocytes and enterocytes, however, interestingly, Q-FISH analysis 

revealed that this was occurring independently of telomere length, which contradicted 

the hypothesis that telomere dysfunction is driven purely by attrition and subsequent 

uncapping (Hewitt et al., 2012). Our group and another showed in vitro that SA-β-Gal 

activity could be increased upon treatment with genotoxic stresses, such as X-

irradiation, H2O2 or neocarzinostatin, all of which are known to cause DSBs, and we 
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observed a DDR detectable by γH2AX occurring in both genomic and telomeric DNA 

(Fumagalli et al., 2012; Hewitt et al., 2012). However, with time genomic DDR foci 

are resolved, whereas telomeric DDR remained persistent (Fumagalli et al., 2012; 

Hewitt et al., 2012). Several models were proposed to explain this phenomenon.  It 

has been observed that oxidative damage disrupts the recognition of telomeres by 

TRF1 and TRF2 (Opresko et al., 2005), and thus the observed DDR foci at telomeres 

could occur due to telomere uncapping, however telomeres devoid of TRF2 are 

known to undergo end-to-end fusions (van Steensel et al., 1998) , which we did not 

observe (Hewitt et al., 2012). Another group observed spontaneous DDR foci at 

telomeres in human cancer cells, which retained an abundance of TRF2, yet a DDR 

was present (Cesare et al., 2009). Considering this, another possibility could be that 

genotoxic stress leads to t-loop uncapping, whilst retaining enough TFR2 to inhibit 

NHEJ, without affecting initiation of a DDR. Finally, we proposed that similar to 

genomic DNA, genotoxic stress could lead to physical DSBs within the telomeric 

region which remain persistent due to presence of TRF2 inhibiting a DDR. Moreover, 

an endonuclease-induced DSB next to ectopically expressed TRF2 remained 

persistent, thus suggesting that the inhibitory effect of TRF2 on DNA repair is 

independent of telomeric location and t-loop (Fumagalli et al., 2012).  

To differentiate stress-induced telomere dysfunction from telomere-shortening 

induced dysfunction, we shall herein refer to the varying proposed mechanisms of 

telomere dysfunction as either Telomere-Associated Foci (TAF) or Telomere-Induced 

Foci (TIF) respectively. Furthermore, TIF are thought mainly to arise due to 

uncapping, either as a result of steric constraints on critically short telomeres, or due 

to inhibition of shelterin proteins, whereas TAF have been proposed to arise due to 

physical DSBs within telomeric regions (Hewitt et al., 2012), although further 

research is required to determine DDR signalling varies between TIF and TAF. 
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Figure 1-2. Schematic of Telomere-Associated Foci (TAF). It has been proposed 
that DSBs occurring within telomeres are irreparable due to the inhibitory action of 
the shelterin complex on DNA repair proteins (Hewitt et al., 2012). 

 

To conclude, it would appear that the inhibitory effect of TRF2 on DNA-PK and ligase 

IV prevents healthy telomeres from undergoing NHEJ-mediated end-to-end fusions 

(Smogorzewska et al., 2002; Bae and Baumann, 2007), however, in the context of 

telomere dysfunction independently of length, TRF2 serves to inhibit DNA repair. In 

this context, telomeres can be considered both a molecular clock for telomere 

shortening, as well as a molecular diary for past genotoxic stress due to their 

irreparability.  

 

1.2.4 Oncogene-Induced Senescence 

 

Oncogenes are genes that when are over-expressed or mutated, have the potential 

to turn a normal cell into a cancer cell. Before the concept of oncogene-induced 

senescence (OIS) had arisen, Ras was identified as an oncogene, capable of 

transforming immortalised rat cells once activated (Der et al., 1982; Parada et al., 

1982). However, RAS activation alone was shown not to be capable of transforming 

normal primary embryonic cells, and required additional mutations, such as p53 

inhibition by large T antigen, for transformation to occur (Land et al., 1983). OIS was 

first characterised, when an activated allele of the mitogenic signal transducer RAS 

(H-ras V12), was introduced into human fibroblasts (Serrano et al., 1997). At first, the 
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cells displayed hyper-proliferation however soon displayed an accumulation of p16 

and p53 accompanied with a G1 cell cycle arrest, which could by bypassed by 

inhibition of either of the aforementioned tumour suppressor proteins (Serrano et al., 

1997). These observations show that initiation of cellular senescence is not simply a 

consequence of the number of cell divisions, as oncogenic stimuli can induce 

senescence prematurely. Many cell types have now been shown to acquire a 

senescent phenotype after the aberrant function of various oncogenes, including 

MEK, MOS, RAF and BRAF (Serrano et al., 1997; Zhu et al., 1998; Michaloglou et 

al., 2005).  

There are many proposed models for the mechanism which drives OIS, such as 

hyper-proliferation leading to replication errors and subsequent DDR activation (Di 

Micco et al., 2006), or by altering intra-cellular levels of ROS production which could 

also lead to genotoxic stress (Lee et al., 1999a). Interestingly, OIS can be bypassed 

in mouse cells grown under hypoxic conditions (Lee et al., 1999a). Other research 

has shown that Rb-mediated formation of heterochromatin, leads to suppression of 

E2F target genes and subsequent cellular senescence (Narita et al., 2003). These 

models of OIS induction are not mutually exclusive and it will be important to 

ascertain the relationship between these different mechanisms.  

OIS has recently been observed to occur in vivo in both mice and humans, for 

example, as a barrier to t-cell lymphoma development (Braig et al., 2005), and ras 

positive senescent cells have been shown to exist in pre-malignant tumours, but not 

in malignant, and interestingly inactivation of PTEN specifically in mouse prostate 

leads to invasive prostate cancer (Collado et al., 2005). Therefore OIS appears to 

have a physiological role in tumour suppression in vivo, and is not simply an artefact 

of cell culture, as once thought.   

 

1.3 Senescence Control Pathways 

 

Senescence is often induced and maintained by either the p53 or p16-Rb tumour 

suppressor pathways. These signal transduction cascades can react with one 

another, although they can each stop cell-cycle progression independently. Which of 

these pathways induces senescence appears to be both species-specific and cell-
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specific, although examples exist of senescence induction via alternative pathways 

(Olsen et al., 2002; Michaloglou et al., 2005). 

 

1.3.1 P53-P21  

 

P53 is transcription factor, encoded by the TP53 gene, which is activated in response 

to various stresses, including the overexpression of oncogenes, and DNA damage, 

and is responsible for the regulation of the expression of numerous genes involved in 

processes such as DNA repair, apoptosis and senescence (Harms et al., 2004; 

Green and Chipuk, 2006). P53 has therefore been bestowed with monikers such as 

the ‘guardian of the genome’ (el-Deiry et al., 1993) and the ‘cellular gatekeeper’ 

(Levine, 1997). Classically, the activation of p53 can be described in 3 steps: 

stabilisation of p53 via ATR/ATM-mediated phosphorylation, DNA binding, and the 

activation of target genes by interaction with the transcriptional machinery (Kruse and 

Gu, 2009).  

First discovered in mice, one of the main regulators of p53 is mouse double minute 2 

homolog (MDM2), or HDM2 in humans, an E3 ubiquitin-protein ligase which acts to 

regulate both the activity and expression of p53 in several ways. MDM2 can facilitate 

the nuclear export of p53, thus inhibiting any transcriptional activity (Tao and Levine, 

1999), as well as ubiquitinating p53 for proteosomal degradation (Haupt et al., 1997; 

Kubbutat et al., 1997). MDM2 can also inhibit p53-mediated transactivation by 

binding to and inhibiting the transactivation domain of p53 (Momand et al., 1992). 

MDM2 is itself inhibited by the alternative-reading-frame (ARF) protein (Sherr and 

McCormick, 2002), thus highlighting various regulation points in the p53 pathway. 

Interestingly, the MDM2 gene is a transcriptional target of p53, therefore instigating a 

negative feedback loop which acts to maintain p53 homeostasis (Wu and Levine, 

1997). One mechanism of p53 stabilisation involves in the inhibition of the mdm2-p53 

interaction through N-terminal phosphorylation of Ser15 and Ser20 or Ser18 and 

Ser23, in humans and mice respectively (Kruse and Gu, 2009). These 

phosphorylation reactions are performed by DDR protein kinases such as ATR, ATM, 

DNA-PK, Chk1 and Chk2, in response to cellular stressors such as DNA damage 

(Shieh et al., 1997; Shieh et al., 2000; Appella and Anderson, 2001).  



21 
 

Cellular senescence can be triggered in response to stimuli such as telomere 

dysfunction or DNA damage, which lead to an activated DDR, and the subsequent 

up-regulation of the p53 transcriptional target gene CDKN1A, which encodes cyclin-

dependent kinase inhibitor 1 (p21)  (Brown et al., 1997). P21 contains a PCNA 

binding domain, which allows p21 to compete with PCNA for binding to DNA-

polymerase-δ, therefore physically inhibiting DNA synthesis (Moldovan et al., 2007). 

Another mechanism for p21-mediated cell cycle inhibition is through its CDK-cyclin 

inhibitory domain, which can inhibit various cyclin-dependent kinases (CDKs), in 

particular CDK2, which is responsible for the phosphorylation of retinoblastoma 

protein (pRb), which in turn releases and activates E2F, which is responsible for the 

transcription of numerous cell cycle regulators such as cyclin A, cyclin D1, cyclin E, 

Cdc2 and Cdc25A (Dyson, 1998). However, p21 is not a stalwart maker of 

irreversible cell cycle arrest, as p21 expression is elevated in response to transient 

cell cycle arrest in response to acute DNA damage, however, the exact threshold of 

DNA damage required to trigger the decision to enter cellular senescence remains 

elusive (Barnouin et al., 2002). Interestingly, both telomere dysfunction-induced 

senescence and DNA damage-induced senescence can be evaded through the 

down-regulation or inhibition of either p53 or p21, and likewise, with the inhibition of 

upstream DDR proteins such as CHK2 or ATM (Brown et al., 1997; Gire et al., 2004).  

The p53 pathway acts to halt cell-cycle progression in cells which have endured 

serious DNA damage, thus helping to prevent the possibility of the dissemination of 

potentially oncogenic mutations (Bartkova et al., 2005; Gorgoulis et al., 2005). In fact, 

compromised p53 function, due to mutation of the TP53 gene, is found in around 

50% of all human cancers, and the significant majority of the remaining cancers 

display aberrant function of p53 regulators, for example, the MDM2 gene is amplified 

in at least 7% of TP53 wild-type cancers (Momand et al., 1998; Vousden and Lu, 

2002). In the case of cells which lack or have aberrant p53 function, mitotic 

catastrophe often occurs, therefore acting as another anti-tumour mechanism, 

however a subset of cancer cells overcome this and succeed in surviving through the 

activation of telomerase, or ALT, to stabilise telomere length (Hanahan and 

Weinberg, 2000; Shay and Wright, 2005; Heaphy et al., 2011). 

 

1.3.2 P16-pRb 
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Another important pathway in the induction of senescence is the p16-pRb pathway, 

which can be activated following p53-p21 pathway induction, however, it can also be 

activated independently of p53 (Jacobs and de Lange, 2004). P16 is a tumour 

suppressor protein which inhibits cell cycle progression from G1 to S phase (Agarwal 

et al., 2013). The mechanism of action involves p16 inhibiting the interaction between 

CDK4/6 and cyclin D1, therefore preventing pRb phosphorylation, and inhibiting the 

dissociation and subsequent activation of E2F (Vidal and Koff, 2000). p16 has 

emerged as a good marker for senescence, as it has been observed to accumulate 

in a wide variety of cell lines under multiple senescence-inducing stimuli (Lowe and 

Sherr, 2003; Campisi, 2005). However, elucidating the exact nature of the p16-pRb 

pathway activation will be difficult, as there are not only cell-specific differences, but 

also species-specific differences. Moreover, in response to telomeric disruption, 

mouse fibroblasts will only engage the p53 pathway, whereas human cells will 

engage both the p53 pathway and the p16-pRb pathway (Smogorzewska and de 

Lange, 2002). Interestingly, p53 inhibition can reverse senescent arrest in a variety of 

cell types; however, the phenotype cannot be reversed in cells which have engaged 

the p16-pRb pathway (Beauséjour et al., 2003). Moreover, this irreversible 

proliferation arrest is thought to occur through the generation of SAHFs, which can 

modify the chromatin to repress a number of genes, including E2F target genes 

(Narita et al., 2003). Once a SAHF is developed, the condensed chromatin can be 

maintained in the absence of p16-pRb pathway proteins (Narita et al., 2003), and 

thus may help to explain the irreversibility of p16-pRb-induced senescence.   

Exactly how p16 is expressed in response to senescence-inducing stimuli remains 

unclear, but it is has been suggested to be causative of the observed repression of 

Polycomb INK4a repressors such as CBX7 or BMI1, coinciding with p16-pRb 

induced senescence (Gil et al., 2004; Bracken et al., 2007). What is more, in both 

mice and human fibroblasts, replicative lifespan has been increased via the 

overexpression of CBX7 or BMI1, thus strengthening the idea of the involvement of 

Polycomb INK4a repressors in cellular senescence (Itahana et al., 2003; Gil et al., 

2004). Interestingly, a reduction of p16-pRb signalling results in the stabilisation of 

p53 due to the activation of E2F, which is a transcription factor for ARF which inhibits 

MDM2 and thus prevents the degradation of p53 (Zhang et al., 2006). 
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1.3.3 Role of ROS in Senescence 

 

Atoms or molecules which have unpaired valence electrons are known as free 

radicals, and are highly reactive. Reactive Oxygen Species (ROS) in particular, are 

oxygen-containing chemically reactive molecules, which include free radicals such as 

hydroxyl radical and superoxide anion, as well other oxidisers, for example hydrogen 

peroxide (H2O2). ROS play important physiological roles, for example, as signalling 

molecules in several pathways (D'Autréaux and Toledano, 2007), as well as being 

produced by macrophages and neutrophils to combat microbial pathogens (Dupre-

Crochet et al., 2013). However, molecules and cellular structures can be damaged 

via oxidative stress caused by unregulated ROS levels, which can act in a chain-

reaction caused by a ROS molecule ionising another molecule to stabilise its own 

electron configuration, consequently turning the target into a ROS molecule (Cui et 

al., 2012). In the 1950s, Denham Harman proposed the ‘free radical theory of 

ageing’, which hypothesised that an accumulation of free radical damage over time 

could be driving organismal ageing (Harman, 1956). In eukaryotic cells, the majority 

of intra-cellular ROS are generated as a by-product of mitochondrial oxidative 

phosphorylation, due to leakage of electrons from the electron transport chain (ETC), 

and subsequent reduction of oxygen to form superoxide anion (Quinlan et al., 2013). 

Superoxide anion is not a strong oxidant per se, however it can undergo further 

redox reactions with other molecules to form stronger oxidants such as hydroxyl 

radicals and H2O2. Considering the role of mitochondria in ROS production, Denham 

Harman updated the ‘free radical theory of ageing’, to implicate mitochondria as the 

main drivers of ROS-driven ageing (Harman, 1972). It has subsequently been 

postulated that ROS, produced as a consequence of oxidative phosphorylation, can 

cause mtDNA mutations which lead to deficient oxidative phosphorylation activity, 

which in turn leads to further electron leakage and increased ROS production, 

therefore instigating a positive feedback, or ‘vicious cycle’ (Alexeyev et al., 2004). To 

counteract ROS damage, cells have evolved a number of antioxidant enzymes, for 

example superoxide dismutases (SODs) are a family of metalloenzymes which 

convert superoxide anion into H2O2, which can then be broken down into water and 

oxygen by either catalase or glutathione peroxidases (Fridovich, 1995). To combat 

superoxide anion generated either on the inner side of the inner mitochondrial 

membrane, or in the mitochondrial matrix, a specific form of SOD is expressed in the 
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mitochondrial matrix which contains manganese in the active site (MnSOD) 

(Fridovich, 1995).   

In addition to oxidative phosphorylation, other intra-cellular sources of ROS 

generation include NADPH oxidases (NOX), xanthine oxidase, nitric oxide synthase 

and mono-amine oxidase (MAO-A) (Holmstrom and Finkel, 2014). MAO-A localises 

to the outer mitochondrial membrane and is involved in catalysing the oxidative 

deamination of monoamines, which produces H2O2 as a by-product (Youdim et al., 

2006). ROS can also be generated by extra-cellular sources, for example ionising 

radiation from both X- and γ-rays, originating from either outer-space or decay of 

terrestrial radioactive elements, constantly pass through our body, which generate 

free radicals, usually as a consequence of the ionising particles reacting with cellular 

water (Lieber, 2010). Other sources of ROS include herbicides, pesticides and 

cigarette smoke (Valavanidis et al., 2009).     

Elevated ROS levels have been linked with oncogene-induced- and stress-induced 

senescence and replicative senescence (Saretzki et al., 2003; Ramsey and 

Sharpless, 2006; Passos et al., 2007). Treatment of cells with sub-lethal doses of 

hydrogen peroxide has been shown to induce senescence in human fibroblasts via 

the p53 pathway (Chen et al., 1998). ROS can directly damage DNA, resulting in a 

DDR which may lead to senescence (Chen et al., 1995; Lu and Finkel, 2008a). von 

Zglinicki et al., 1995, first showed that mild oxidative stress leads to accelerated 

telomere shortening (von Zglinicki et al., 1995) suggesting that ROS-driven single 

strand breaks at telomeres could accelerate telomere shortening (von Zglinicki, 

2002). It was later shown that mitochondrial superoxide levels increase with 

replicative age and can also lead to accelerated telomere shortening (Passos et al., 

2007).  Interestingly, mitochondrial superoxide levels can be decreased by the 

overexpression of TERT, independent of telomere length, in human fibroblasts 

exposed to oxidative stress (Ahmed et al., 2008).  This suggests that telomerase can 

have functions in mitochondria independent of its role in the nucleus, however, the 

mechanisms have not yet been elucidated. Furthermore, recent research has shown 

that mitochondrial telomerase leads to less DNA damage in the nucleus, possibly 

due to reduced ROS (Singhapol et al., 2013). 

A comprehensive causal relationship between senescence and ROS remains elusive 

as it has been shown that ROS production can be induced by downstream effectors 
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of the DDR/senescence checkpoint (Polyak et al., 1997; Macip et al., 2002; Macip et 

al., 2003). The DDR protein ATM exists as an inactive dimer, which, in response to 

irradiation, undergoes autophosphorylation resulting in dimer dissociation and the 

initiation of its cellular kinase activity (Bakkenist and Kastan, 2003). However, 

hydrogen peroxide has recently been shown to activate dimeric ATM in the absence 

of DNA damage and suggests that cells have developed an intrinsic mechanism to 

sense ROS (Guo et al., 2010; Perry and Tainer, 2011). ROS levels have been shown 

to increase with replicative senescence and OIS (Furumoto et al., 1998; Lee et al., 

1999b), with the majority being produced from dysfunctional mitochondria (Lu and 

Finkel, 2008a; Moiseeva et al., 2009). It has previously been shown that a positive 

feedback loop involving sustained activation of the checkpoint gene CDKN1A (p21) 

results in both the induction of mitochondrial dysfunction and increased production of 

reactive oxygen species (ROS) via a signalling cascade through GADD45-

MAPK14(p38MAPK)-GRB2-TGFBR2-TGFβ (Passos et al., 2010)(Figure 1-3). 

OIS via expression of V12Ras, has been shown to increase production of 

mitochondrial ROS, and interestingly, human diploid fibroblasts grown in 1% oxygen, 

were unable to undergo Ras-induced OIS (Lee et al., 1999a). Similarly, MEFs were 

shown to accumulate more DNA damage when cultured in 20% compared to 3% 

oxygen, and were resistant to stress-induced senescence when cultured in a hypoxic 

environment (Parrinello et al., 2003). HDFs have been shown to undergo more 

population doublings before entering senescence when cultured in 3% compared to 

20% oxygen (Chen et al., 1995).  
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Figure 1-3. A Stochastic feedback loop model predicts the kinetics of DDR 
growth arrest at the single cell level (Passos et al., 2010). Red and black circles 
represent telomeric and non-telomeric DSBs respectively, which signal to TP53 and 
CDKN1A, resulting in growth arrest. The signalling cascade continues through 
GADD45-MAPK14-TGFβ, resulting in mitochondrial dysfunction and elevated ROS 
production, which in turn causes further DSBs, thus instigating a feedback loop which 
sustains cellular senescence. 

 

1.3.4 mTOR Signalling 

 

All eukaryotic organisms express the target of rapamycin (TOR) signalling pathway 

(known as mTOR in mammalian organisms). Moreover, this pathway is responsible 

for sensing both nutrient and energy abundance to coordinate cellular responses 

such as growth, proliferation, autophagy, protein synthesis and many others (Zoncu 

et al., 2011). The mTOR protein belongs to PIKK family and acts as the catalytic 

subunit in two well described complexes known as mTOR complex 1 (mTORC1) and 

mTORC2, which have a variety of shared and non-shared proteins, for example the 

MTORC1 and MTORC2 complexes can be distinguished by the binding of the 

accessory proteins raptor and rictor respectively (Hara et al., 2002; Sarbassov et al., 

2004). 
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Interestingly, the intervention of dietary restriction, by experimentally reducing the 

amount of food an organism has access to, yet without causing malnutrition, has 

been shown to increase the lifespan of in many organisms from yeast to mammals 

(Mair et al., 2003). Moreover, it would appear that DR acts mainly through the 

inhibition of mTORC1 and experiments have shown that manipulation of nutrient 

sensing pathways has led to a similar increased lifespan in a range of different 

organisms (Zoncu et al., 2011). In fact, experiments performed in yeast and flies, 

involving the genetic down-regulation of mTORC1 pathway components, coupled 

with DR, provided no additive effect on lifespan, thus strengthening this hypothesis 

(Kaeberlein et al., 2005; Bjedov et al., 2010).  

In response to growth stimuli, activated mTORC1 signals to promote protein 

translation and growth and proliferation (Fingar and Blenis, 2004). Rapamycin is a 

drug which inhibits mTORC1 signalling, however does not appear to affect mTORC2 

signalling, a mechanism proposed to act via dissociating raptor from the mTORC1 

complex (Yip et al., 2010). Feeding rapamycin to aged mice has been shown to 

significantly extend lifespan (Harrison et al., 2009). Beneficial effects of mTORC1 

inhibition on cellular ageing may be attributable to a number of factors. Moreover, 

mTORC1 inhibition results in a decrease in protein translation and therefore exerts 

less stress on protein folding systems, thus reducing the number of mis-folded 

protein aggregates (Zoncu et al., 2011). Consequently, research has shown that a 

sustained rapamycin diet in a mouse model for Huntingdon’s disease resulted in the 

reduction of toxic huntingtin aggregates (Brinda et al., 2004). Activated mTORC1 

signalling inhibits autophagy, however rapamycin treatment can counteract this and 

upregulate autophagy, which complements data showing that lifespan extension is 

dependent on autophagy in drosophila and nematodes (Hansen et al., 2008; Bjedov 

et al., 2010). mTOR inhibition has been shown to impact on cellular senescence. 

Recently, it has been shown that rapamycin suppresses replicative senescence in 

rodent embryonic cells (Pospelova et al., 2012) and in oncogene-induced 

senescence (Kolesnichenko et al., 2012). Furthermore, mTORC1 inhibition has been 

shown to suppress the secretion of numerous pro-inflammatory cytokines in 

senescent fibroblasts (Laberge et al., 2015). Moreover, this secretory phenotype is a 

hallmark of senescent cells and has been shown to have detrimental effects on 

surrounding cells (Coppé et al., 2010a), a phenomenon which will be discussed in 

further detail throughout. 
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1.4 Senescence Phenotype 

 

The term senescence traditionally referred to somatic mitotic cells which had 

permanently lost the ability to divide, as opposed to cells that are simply in a 

quiescent state, i.e. those which have the potential to divide, but are currently 

residing in the G0 phase of the cell cycle. More recently, evidence has arisen which 

shows that cellular senescence is induced by very specific signalling programs, and 

besides cell cycle arrest, is associated with other phenotypes such as  apoptosis 

resistance, altered gene expression, a specific secretory phenotype and elevated 

ROS (Campisi and d'Adda di Fagagna, 2007; Coppé et al., 2008). Furthermore, 

these characteristics have also been observed in post-mitotic neurons and 

adipocytes (Minamino et al., 2009; Jurk et al., 2012), suggesting that senescence is 

more multi-faceted than just permanent cell cycle arrest, and that a redefinition of 

senescence may be required. In the following section, I will describe in more details 

characteristics of the senescent phenotype. 

 

1.4.1 Growth Arrest 

 

The quintessential senescent phenotype is the inability of a cell to advance through 

the cell cycle. Despite this arrest, cells still continue to be metabolically active but 

tend to stay locked in the G1 phase of the cell cycle (Di Leonardo et al., 1994; Herbig 

et al., 2004). Moreover, observations have shown cells to arrest in alternate stages of 

the cell cycle, for example G2/M (Wada et al., 2004). The reasons for cells arresting 

at particular phases of the cell cycle are attributable to activation of different cell cycle 

inhibitors, such as p16 and p21 (Herbig et al., 2004). 

 

1.4.2 Apoptosis Resistance 

 

Apoptosis is a mechanism for programmed cell death, followed by the removal and 

degradation of the resultant cellular debris by cells such as phagocytes (Ellis et al., 

1991). Apoptosis plays vital roles in organism development, however, like 
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senescence, it can also act as a mechanism to suppress tumourigenesis in times of 

severe cellular stress (Green and Evan, 2002). Under a particular stress condition, 

one cell type might preferentially senesce, whereas another may apoptose, although 

this decision can be altered by  proteins which are involved in apoptotic signalling, for 

example, caspase inhibition has been shown to switch doxorubicin-induced 

apoptosis to senescence in a neuroblastoma cell line (Rebbaa et al., 2003). Exactly 

how senescent cells manage to evade apoptosis remains unknown, however, both 

the apoptosis and senescence pathways are influenced by the p53 tumour 

suppressor protein and thus the cell’s response to the p53 pathway may be what 

influences the subsequent cell fate (Seluanov et al., 2001).  

 

1.4.3 Altered Gene Expression 

 

Gene expression in senescent cells varies significantly compared to their 

corresponding quiescent and dividing cells, for example, activators and inhibitors of 

the cell cycle are often differentially expressed in senescent cells (Mason et al., 2004; 

Jackson and Pereira-Smith, 2006). Senescent cells commonly express the cyclin-

dependent  kinase inhibitors (CDKI) p16 and p21, which are downstream of the 

retinoblastoma (pRb) and p53 proteins respectively (Campisi, 2001; Braig and 

Schmitt, 2006). Moreover, both pRb and p53 are crucial transcriptional regulators in 

two of the major tumour suppressor pathways often perturbed in cancer (Sherr and 

McCormick, 2002). In addition, senescent cells have also been shown to down-

regulate the expression of proteins that are involved in cell cycle progression (e.g. 

cyclin A, cyclin B, c-FOS, replication dependent histones and PCNA (Seshadri and 

Campisi, 1990; Stein et al., 1991; Pang and Chen, 1994; Narita et al., 2003)). Many 

of the above mentioned genes are not expressed due to their transcription factor E2F 

being silenced by pRb, which is kept in a hypophosphorylated state by p16 and p21. 

Moreover, pRb also has the ability to remodel the chromatin structure into punctate 

structures coined Senescence-Associated Heterochomatin Foci (SAHF), which can 

physically block the transcription machinery from accessing certain E2F target genes 

(Narita et al., 2003). The mechanism for chromatin reorganisation is thought to act 

through the ability of Rb-family members to recruit histone deacetylases (HDACs) to 

E2F-dependent promoters, which consequently results in the deacetylation of 

neighbouring histones. Moreover, this increases the positive charge of the histones, 
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therefore allowing the histone to bind more strongly to the negatively charged DNA, 

thus creating heterochromatin which represses gene expression (Narita et al., 2003).  

In addition, senescent cells also display differentially expressed genes with functions 

other than proliferative arrest. Moreover, research has shown senescent cells to up-

regulate proteins which can be secreted, such as extracellular matrix components, 

growth factors and inflammation factors (Shelton et al., 1999; Yoon et al., 2004; 

Trougakos et al., 2006). Antibody array experiments first showed the upregulation of 

these secretory cytokines in senescent cells and this senescence associated 

secretome is referred to as the Senescence-Associated Secretory Phenotype 

(SASP) and is associated with both stress, replicative and oncogene senescence 

(Coppé et al., 2008). The SASP has been suggested to have beneficial effects via 

the signalling of warning signals to cells in the surrounding microenvironment 

(Kuilman and Peeper, 2009). In addition, another possibility is that the SASP is a 

mechanism to recruit immune cells to clear senescent cells from the tissue (Chien et 

al., 2011), which will be discussed further later on. However, the SASP has also been 

implicated in the transformation of pre-malignant epithelial cells, for example, SASPs 

have been shown to  promote invasiveness and induce an epithelial-mesenchymal 

transition via a paracrine mechanism that relies heavily upon the SASP factors IL-6 

and IL-8 (Coppé et al., 2008).  

 

1.4.4 Senescence Markers 

 

For decades, scientists have been trying to find specific markers for senescent cells, 

which would allow for their specific detection both in vitro and in vivo. Hitherto, the 

search for a truly specific senescence marker has remained elusive, and although 

markers have been found, none are solely capable of identifying the senescent state 

alone (Lawless et al., 2010). By definition, senescent cells do not replicate and 

therefore proliferation markers can be used to identify cells which are not senescent, 

although this still would show false negatives for cells that are in a quiescent state or 

post-mitotic. Currently used proliferation markers include labelled synthetic 

nucleoside analogues which get incorporated into the DNA, for example 3H-thymidine 

or 5-bromodeoxyuridine. Antibodies for replication specific proteins can also be used 

such as Ki-67 and PCNA (Lawless et al., 2010).  
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Senescence-Associated Beta-Galactosidase (SA-β-Gal) was the first marker used to 

specifically detect the difference between a senescent mitotic cell compared to a cell 

that is quiescent or post-mitotic (Dimri et al., 1995). However, SA-β-Gal has been 

shown to be limited by the fact it can be detected in cells which have been cultured at 

confluence for prolonged periods of time (Severino et al., 2000) and thus not fully 

specific to the senescent state. Research has also shown that there is no difference 

in SA-β-Gal activity in either fibroblast cells or skin tissues sections taken from 

donors of different ages, therefore questioning SA-β-Gal as a marker for cellular 

ageing in vivo (Severino et al., 2000). In addition, why senescent cells have 

increased beta-galactosidase activity at pH6 is unknown, however it is believed that 

senescent cells display elevated levels of lysosomal biogenesis and it has been 

shown that cells with defective lysosomal beta-galactosidase do not express SA-β-

Gal even at late passages when the cells have gone through replicative senescence 

(Lee et al., 2006).  

In recent years, p16 has become a commonly used marker of senescence as it has 

been shown to be a principal mediator of senescence (Krishnamurthy et al., 2004), 

however, despite being upregulated in a large number of cell lines undergoing 

senescence, there are examples of p16 being expressed in pre-senescent cells, for 

example WI-38 fibroblasts, and therefore it cannot be considered a universal 

senescence marker (Beauséjour et al., 2003; Itahana et al., 2003). In addition p16 

levels have been shown to increase with age in almost all examined organs  in a 

variety of mice and rats, however, an increase was also observed in post-mitotic 

tissues in the brain and heart, suggesting that p16 as a senescence marker may lack 

specificity (Melk et al., 2003; Krishnamurthy et al., 2004). 

Other markers of senescence, include the presence of Senescence-Associated 

Heterochromatin Foci (SAHF) (Narita et al., 2003), which appear in some but not all 

cell lines, and Senescence-Associated DNA Damage Foci (SDF) (d'Adda di Fagagna 

et al., 2003; Takai et al., 2003). It has recently been observed that both mouse and 

human fibroblasts display an unravelling of centromeric DNA, which has been coined 

senescent-associated distension of satellites (SADs) (Swanson et al., 2013). SADs 

are particularly interesting as a marker for cellular senescence, as they are also 

found in cells from Hutchinson Guilford Progeria patients (Swanson et al., 2013), 

moreover, it will be interesting to see if SADs are present in other senescent cell 

types. Phosphorylated p38MAPK is a novel DDR-independent regulator of the SASP 
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which has been detected in response to various senescence-inducing stimuli in 

human fibroblasts, however p38MAPK can also phosphorylated independently of 

senescence (Freund et al., 2011). 

To conclude, hitherto there is not a marker solely specific to senescent cells, and 

perhaps due to the multifarious phenotype of senescent cells, the identification of a 

single marker may prove difficult, and thus when analysing senescence, it is 

advisable to use a combination of markers. 

 

1.5 Physiological Role of Senescence 

 

Senescence has been traditionally thought of as a mechanism to suppress 

uncontrolled proliferation, thus acting as an important barrier to suppress 

tumourigenesis (Serrano et al., 1997). However, research is emerging which shows 

that senescent cells are involved in a multifarious array of other organismal 

processes such as tissue repair (Krizhanovsky et al., 2008), wound healing (Jun and 

Lau, 2010), and embryonic development (Rajagopalan and Long, 2012; Muñoz-

Espín et al., 2013b; Storer et al., 2013).   

 

1.5.1 Anti-tumour mechanism 

 

We have previously described some of the causes of cellular senescence, including 

DNA damage, telomere dysfunction and OIS, all of which provide proficient 

mechanisms for preventing uncontrollable proliferation in vitro; herein we will discuss 

the evidence for these mechanisms providing a barrier to tumourigenesis in vivo. 

Human nevi are extremely common, and their monoclonality dictates they should be 

considered as pre-malignant lesions, however they are able to stay in a state of cell-

cycle arrest for many decades and rarely undergo tumourigenesis (Robinson et al., 

1998). Interestingly, the vast majority of nevi present oncogenic mutations, most 

commonly BRAFV600E, which would seem contradictory to their quiescent nature, if it 

were not for our understanding of OIS (Pollock et al., 2003). Moreover BRAF is a 

downstream effector of RAS, the first oncogene shown to induce OIS in vitro 
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(Serrano et al., 1997). Furthermore, constitutive activation of BRAFV600E can induce 

cell cycle arrest and increase expression of p16INK4a and SA-β-Gal activity in 

melanocytes in vitro (Michaloglou et al., 2005). Nevi were subsequently analysed for 

detection of senescent markers in vivo, and were shown to display both p16INK4a and 

SA-β-Gal activity in the absence of telomere shortening, thus suggesting that OIS 

can driving cell cycle arrest in vivo (Michaloglou et al., 2005). Contrary to this, 

another study attempted to categorise the difference between benign nevus cells and 

transformed melanocytes in terms of senescence, and found no variation between 

many markers, including γH2AX, p53, p16INK4a, SA-β-Gal, PML bodies, 

heterochromatin foci (DAPI, H3K9Me) and nuclear size (Tran et al., 2012). 

Considering that around 25% of melanomas are either associated with, or arise from 

a pre-existing nevus (Marks et al., 1990; Bevona et al., 2003; Tsao et al., 2003), and 

senescence is considered to be a state of permanent cell cycle arrest, this means 

either not all of the cells present in the nevi are senescent, or OIS-induced nevi cells 

are not permanently arrested, thus questioning if these cells are truly senescent.  

Ras activity has been implicated in driving OIS in other human tumour settings, for 

example senescent cells have been shown to accumulate in neurofibromatosis type 

1 lesions (Courtois-Cox et al., 2006). Neurofibromatosis type 1 is a familial cancer 

syndrome which is prevalent in patients who have a loss-of-function mutation in the 

tumour suppressor neurofibromin 1 (NF1) (Courtois-Cox et al., 2006). Moreover, NF1 

is a negative regulator of Ras activity, and thus a loss-of-function mutation leads to 

hyperactive Ras, resulting in the formation of neurofibromas, a type of neoplastic 

lesion, which are associated with numerous senescence markers (Courtois-Cox et 

al., 2006). Senescent cells have also been observed in other pre-malignant lesions, 

for example biopsies of pre-malignant intraepithelial neoplasia (PIN) and pre-

malignant human colon adenomas, have shown to be associated with senescence 

cells, and it is thought that further mutations are required in order for these benign 

lesions to transform into malignant tumours (Chen et al., 2005; Bartkova et al., 2006; 

Kuilman et al., 2008; Fujita et al., 2009).  

Although senescent cells have been shown to be associated with pre-malignant 

lesions, this correlation does not imply causality in suppression of malignancy. 

However, in many mouse tumour models, for example HRASG12V-induced mammary 

tumours (Sarkisian et al., 2007), BRAFV600E-induced melanomas (Goel et al., 2009), 

BRAFV600E-induced lung tumours (Dankort et al., 2007), genetic deletion of TP53 or 
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CDKN2A, resulted in an attenuation of senescence and development of malignancy, 

therefore providing evidence for a causal link between senescence induction and 

tumour suppression (Dankort et al., 2007; Sarkisian et al., 2007; Goel et al., 2009).  

Unfortunately, patients do succumb to malignant carcinomas, and thus senescence 

is not an infallible natural response, however, some malignant tumour cells are still 

able to be stimulated to enter cellular senescence in vivo (Shay and Roninson, 

2004), and thus the efficacy of many anti-cancer treatments exploit this by targeting 

DNA damage signalling pathways which can induce either senescence or apoptosis, 

thus inhibiting tumour progression (Schmitt et al., 2002; Coppé et al., 2010b). 

Moreover, restoration of p53 function has been shown to result in tumour regression 

in vivo (Ventura et al., 2007; Xue et al., 2007).   

Whilst activation of senescence in pre-malignant and even malignant cells appears to 

be a viable method of intervention for inducing cell cycle arrest in individual cells, 

research suggests that the persistence of senescent cells could be contributing to 

pathological ageing (Baker et al., 2008; Baker et al., 2011) and even driving 

tumourigenesis in neighbouring cells (Pribluda et al., 2013); an issue I will discuss in 

further depth later on.  

 

1.5.2 Development 

 

Cellular senescence and apoptosis are the main cellular responses to damage, and 

can both be activated by common triggers such as oncogenic stress or DNA 

damage, as reviewed in (Campisi and d'Adda di Fagagna, 2007). However, 

apoptosis has long been shown to play important roles in embryogenesis, and in this 

context is referred to as ‘programmed cell death’; a well-known example being the 

death of interdigital webs in the formation of digits in higher vertebrates (Lindsten et 

al., 2000). Research is now emerging which suggests that senescence also plays 

important roles in embryogenesis development (Muñoz-Espín et al., 2013a; Storer et 

al., 2013). Transient accumulation of senescent natural killer (NK) cells have been 

observed during uterine neovascularisation, a key developmental stage which 

involves vascular remodelling to provide a maternal blood supply to embryo 

(Rajagopalan and Long, 2012). In addition, embryonic trophoblast cells were 

observed to secrete HLA-G, which triggers a senescence-like response in nearby NK 
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cells by activating the CD158d receptor, which initiates signalling through DNA-PK, 

Akt and NF-κB, leading to p21 activity, and ultimately resulting in a SASP which 

increases vascular permeability and promotes angiogenesis (Rajagopalan and Long, 

2012). Further studies have shown that mouse embryogenesis appears to rely on 

senescent cells for the remodelling of numerous other tissues, such as the 

endolymphatic sac of the inner ear, the mesonephros (Muñoz-Espín et al., 2013a). 

Moreover, an accumulation of senescent cells has also been shown to be present 

during embryogenesis at the apical ectodermal ridge (AER) and the neural roof plate 

(Storer et al., 2013). Interestingly, p21-/- mice failed to accumulate senescent cells at 

the AER, and showed severe patterning defects in the limbs (Storer et al., 2013). 

These cells shared some similar characteristics to OIS cells, including expression of 

p15, p21 and mediators of the SASP, however varied in that they were not 

associated with a DDR or p16 (Storer et al., 2013). Furthermore, developmental-

associated senescent cells were not associated with IL-6 or IL-8, which have been 

implicated as mediators of senescence reinforcement (Acosta et al., 2008). 

Interestingly, senescent cells in the AER were shown to be cleared by an apoptosis 

and macrophage-mediated phagocytosis, however it remains unknown whether 

these cells underwent apoptosis prior to clearance or if the macrophages induce 

apoptosis (Storer et al., 2013).  

In adults, senescence has also been associated with the natural maturation of 

placental syncytiotrophoblasts (Chuprin et al., 2013) and megakaryocytes 

(Besancenot et al., 2010). Megakaryocyte senescence shares a similar phenotype to 

developmental senescence, in that it is p21-dependent, but devoid of p16 or p53 

upregulation (Besancenot et al., 2010). 

Senescence during development has now been observed across numerous species, 

including quail (Nacher et al., 2006), chicken (Storer et al., 2013), mouse (Muñoz-

Espín et al., 2013a; Storer et al., 2013) and human (Muñoz-Espín et al., 2013a) 

embryos. These observations suggest that developmental senescence could be an 

evolutionary conserved mechanism in embryogenesis across multiple species. 

However, due to a lack of a universal marker for senescence, there is an ongoing 

debate on what actually constitutes senescence, and thus caution has to be taken in 

defining observed phenotypes. Moreover, SA-β-Gal activity has been observed in 

proliferating cells of the visceral endoderm layer of the yolk sack (Huang and Rivera-

Pérez, 2014), thus questioning the specificity of the marker in this context, or 
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highlighting the potential for developmental senescence to be a separate 

phenomenon to, for example OIS thus requiring a distinction in definition.   

  

1.5.3 Wound Healing 

 

Wound healing is a highly co-ordinated process which involves haemostasis, 

inflammation, proliferation and remodelling. Moreover, each of these phases is 

associated with a number of soluble factors, a number of which have been shown to 

associate with the SASP (Tomasek et al., 2002; Midwood et al., 2004). Senescent 

cells have been shown to accumulate at sites of subcutaneous wounding, and it was 

observed that the matricellular protein CCN1, which is highly expressed at sites of 

wound repair, could trigger fibroblast senescence, by inducing a DDR  and activating 

p53 (Jun and Lau, 2010). In addition, CCN1 also activates the ROS generating 

RAC1-NOX1 complex, which induces ROS-dependent p16 activation. Senescent 

cells were shown to be associated with the secretion of anti-fibrotic genes, and a 

knock-in CCN1 mutant showed a lack of senescence accumulation and increased 

fibrosis at sites of wounding. Moreover, fibrosis could be attenuated with topical 

application of CCN1 (Jun and Lau, 2010). To specifically target senescent cells in 

wound healing, the Campisi group developed a p16-3MR transgenic mouse, in which 

the p16INK4a promoter drives the expression of 3MR, a fusion protein consisting of the 

herpes simplex virus-1 thymidine kinase, which induces apoptosis upon ganciclovir 

treatment, conjugated to a red fluorescence protein (RFP) reporter. After wounding 

with a dermal skin punch, an accumulation of RFP positive cells and p16 mRNA, was 

observed, peaking at 6 days and returning to basal levels at 9. In ganciclovir treated 

p16-3MR mice, there was no increase in p16 following wounding, and interestingly, 

the wound took significantly longer to heal (Demaria et al., 2014). These 

observations suggest that senescent cells facilitate the speed of wound healing, 

however are not essential. Several SASP components are shown to be upregulated 

following dermal skin wounding, including CCL5, PAI-1, VEGF and PDGF-A. 

Furthermore, PDGF-A from senescent cells was shown to facilitate wound healing by 

driving myofibroblast differentiation, promoting optimal granulation tissue formation 

(Demaria et al., 2014). 
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1.5.4 Immune Clearance 

 

During embryonic development, senescent cells in the AER and mesonephros 

become surrounded by macrophages at days E13.5-E14.5 (Muñoz-Espín et al., 

2013a; Storer et al., 2013). However, in Cdkn1a-/- mice, this recruitment of 

macrophages to senescent cells does not occur, therefore suggesting a causal role 

for senescent cells driving macrophage recruitment during development (Storer et al., 

2013). 

It is thought that the SASP factors secreted from DNA-damage-induced senescent 

cells can attract phagocytic cells (Xue et al., 2007; Kuilman and Peeper, 2009; 

Campisi, 2013). In the liver, there is evidence for an immune surveillance of 

senescent cells which is mediated by CD4+ T cells (Kang et al., 2011). Moreover, 

transduction of hepatocytes with oncogene Nras (NrasG12V) lead to cellular 

senescence, shown by increased p16, p21 and ERK phosphorylation, in all Nras 

expressing cells, which was associated with immune cell clustering around the 

senescent hepatocytes (Kang et al., 2011). All Nras positive senescent hepatocytes 

were subsequently cleared over the course of 2 months, whereas cell numbers of 

NrasG12V/D38A cells, lacking downstream pathway signalling (Khwaja et al., 1997), 

remained constant. Furthermore, Terminal deoxynucleotidyl transferase dUTP nick 

end labelling (TUNEL) assay revealed that the senescent hepatocytes were not 

being removed by apoptosis (Kang et al., 2011). These data suggest a causal role for 

the immune system in removing senescent cells, further strengthened by the 

observation that among patients with a hepatitis C infection, those with HIV were 

shown to have a greater accumulation of p-16 positive senescent hepatocytes 

compared to immune-competent patients (Kang et al., 2011).  

Despite evidence showing that there is an immune system-mediated clearance of 

senescent cells, an age-dependent increase in senescent cells has been observed in 

numerous tissues across several mammalian species (Dimri et al., 1995; Paradis et 

al., 2001; Melk et al., 2003; Erusalimsky and Kurz, 2005; Jeyapalan et al., 2007). 

There is therefore an age-dependent imbalance between the rate of senescence 

generation and clearance of senescent cells. Evidence has emerged which shows 

that the immune system does mount a response to remove cells which have 

undergone damage-induced senescence, however this mechanism is thought to 

decline with age (Xue et al., 2007; Kang et al., 2011; Hoenicke and Zender, 2012). 
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Furthermore, it has been observed that there is an age-dependent decrease in the 

ability of haematopoetic stem cells (HSCs) to undergo lymphoid differentiation (Wang 

et al., 2011), therefore leading to a decrease T cells, which have been shown to drive 

senescence clearance (Kang et al., 2011). It is therefore tempting to speculate that 

an age-dependent decline in the immune system could allow for senescent cells to 

accumulate as a result of attenuated clearance capabilities, however further is 

required before such hypotheses can be conclusively proven. 

 

1.6 Senescence and Ageing 

 

Contrary to the above described beneficial roles, senescent cells have also been 

implicated in having pathological effects (Baker et al., 2008; Baker et al., 2011). In 

the context of wound healing and embryonic development, the presence of 

senescent cells is only transient (Jun and Lau, 2010; Demaria et al., 2014), however 

persistent senescent cells are thought to accumulate in aged organisms (Dimri et al., 

1995; Paradis et al., 2001; Melk et al., 2003; Erusalimsky and Kurz, 2005; Jeyapalan 

et al., 2007). Moreover, evidence is emerging that chronic persistence of senescent 

cells may contribute to a decline in tissue homeostasis, promote age-related 

diseases, and even contribute to a pro-tumourigenic micro-environment (Alspach et 

al., 2013). 

 

1.6.1 Pro-tumourigenic properties 

 

Senescence has been shown to act as a barrier to uncontrolled proliferation in 

response to various stimuli (Serrano et al., 1997; d'Adda di Fagagna et al., 2003), 

therefore it would seem paradoxical that the same mechanism could act to promote 

tumourigenesis. However, besides cell cycle arrest, one of the fundamental 

senescence traits is the SASP (Coppé et al., 2008), and whilst this may have a 

beneficial role in wound healing (Jun and Lau, 2010; Demaria et al., 2014), where the 

SASP is only acute and transient, it appears that chronic SASP can have detrimental 

effects. Moreover, both senescent mesothelial and fibroblast cells secrete Vascular 

Endothelial Growth Factor (VEGF), which can stimulate endothelial cell migration and 
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invasion (Coppé et al., 2006; Ksiazek et al., 2008). Pre-malignant epithelial cells can 

be stimulated to undergo an epithelial-mesenchymal transition (EMT), leading to an 

invasion of the basement membrane, by prolonged exposure to IL-6 and IL-8, both of 

which are highly upregulated in numerous senescent cell types, (Coppé et al., 2008). 

Invasiveness of tumour cells has been shown to be increased by matrix 

metalloproteinases (MMPs), which are secreted by both senescent keratinocytes and 

fibroblasts (Millis et al., 1992; Kang et al., 2003; Coppé et al., 2010b).   

In vivo, co-injection of keratinocytes with senescent fibroblasts into nude mice, leads 

to a significantly increased rate of tumour formation when compared to co-injection of 

keratinocytes with pre-senescent fibroblasts (Krtolica et al., 2001). In addition, tumour 

formation rate has been shown to be significantly accelerated when senescent cells 

are injected into already malignant cancer cells (Krtolica et al., 2001; Liu and 

Hornsby, 2007; Bhatia et al., 2008; Bartholomew et al., 2009). Evidence therefore 

implicates senescent cells in promoting tumourigenesis in an experimental setting, 

however further research is required to determine if tumourigenesis is promoted by 

naturally occurring senescent cells in vivo. In contrast to the observed pro-

tumourigenic effects, the anti-angiogenic factor maspin has been observed to be 

secreted by senescent keratinocytes (Nickoloff et al., 2004). To add further 

complication, IL-6 and IL-8 have been associated with tumour suppression in human 

colon adenomas, yet implicated in driving tumourigenesis in carcinogen-induced skin 

tumours (Ancrile et al., 2007), therefore implying that there isn’t a universal effect of 

the SASP on the tumourigenic environment, and has varying effects dependent on 

cell and tissue type.  

Interestingly, patients on immunosuppressive therapy, or sufferers from HIV, are 

known to have increased rates of hepatocellular carcinoma, and as discussed 

previously, senescent cells are known to accumulate in the liver of these patients, 

and thus it is interesting to speculate if persistent senescence could be contributing 

to the observed increase in tumourigenesis in this context (Hensel et al., 2011). 

The role of senescent cells in tumourigenesis appears to be multi-faceted, and 

considering cancer is pre-dominantly an age-associated disease, and thus often 

presents past a fertile age, there is little selective pressure to remove deleterious 

effects of senescent cells in aged organisms. This may help to resolve the apparent 

paradox of senescent cells having both anti- and pro-tumourigenic properties, a 
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phenomenon which is consistent with the evolutionary theory of antagonistic 

pleiotropy, which proposes that a biological process may have either detrimental or 

beneficial outcomes depending upon the setting in which the trait is activated 

(George, 1957; Rauser et al., 2006). 

 

1.6.2 Disease 

 

In addition to tumour promotion, senescent cells have been implicated in driving 

other pathological effects, for example, an accumulation of senescent cells has been 

observed in multiple diseases (Martin and Buckwalter, 2003; Erusalimsky and Kurz, 

2005) (Noureddine et al., 2011).  

Ageing is commonly associated with sarcopenia, and evidence is mounting that a 

decline in proliferative potential of muscle stem cells could be driving this age-

associated loss of muscle mass. Moreover, data shows that activated p38 kinase 

leads to an accumulation p16 and increased SA-β-gal activity in muscle stem cells in 

both mice and humans, and inhibition of p38 can attenuate this increase in 

senescence, resulting in improved muscle regeneration after injury (Bernet et al., 

2014; Cosgrove et al., 2014; Sousa-Victor et al., 2014).  

An upregulation of both p16 and p21, as well as an increase in SA-β-Gal activity has 

been observed in various cell types involved in idiopathic pulmonary fibrosis (IPF) 

(Aoshiba et al., 2003; Aoshiba et al., 2013; Hecker et al., 2014). Treatment of mice 

with the DNA-damaging agent bleomycin induces many features of IPF, however, 

this effect can be attenuated when mice are treated with a chemical inhibitor for 

NOX4, a NAPDH-dependent oxidase which generates excessive ROS, as well as 

with the anti-inflammatory rupatadine (Lv et al., 2013; Hecker et al., 2014). 

Furthermore, elevated ROS and inflammation are associated with cellular 

senescence, and inhibition of these attenuates the bleomycin-induced increase in 

p16, p21 as well as subsequent fibrotic damage, thus implying that senescence could 

be involved in driving the pathological IPF (Lv et al., 2013; Hecker et al., 2014). 

If lipid accumulation exceeds a certain threshold in adipocyte tissue, an inflammatory 

response, involving the recruitment of macrophages, occurs which is associated with 

various pathologies such as insulin resistance and liver steatosis (Gregor and 
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Hotamisligil, 2011). It has been observed in adipose tissue of both mice and humans, 

that obesity and the subsequent immune response is associated with an upregulation 

of both p21 and p53, as well as in increase in SA-β-gal activity and SASP activation 

(Minamino et al., 2009; Tchkonia et al., 2010; Markowski et al., 2013). Interestingly, 

adipose-specific deletion of p53 in mice protects against high fat diet-induced insulin 

resistance, reduces the expression of pro-inflammatory cytokines, and ameliorates 

senescent-like changes (Minamino et al., 2009). To compensate for obesity-induced 

insulin resistance, pancreatic β-cells undergo increased proliferation to produce 

excess insulin, however this proliferative response to chronic insulin tolerance cannot 

be sustained, eventually leading to an exhaustion of proliferation, and a decline in β-

cell mass (Sharpless and DePinho, 2007; Donath et al., 2013). Moreover, mice on a 

high fat diet show increased β-cell proliferation compared to control diet mice at 4 

months, however at 12 months, the proliferation rates are actually lower in the mice 

on a high fat diet, which is associated with an increase in SA-β-Gal activity in the β-

cell islets (Sone and Kagawa, 2005).   

Multiple models of how senescent cells might cause age-related tissue decline have 

been proposed (Figure 1-4). In the absence of a compensatory mechanism, if a stem 

cell, or even a non-terminally differentiated cell, were to undergo senescence, this 

would prevent daughter cells being produced and thus hinder the generation of 

proper tissue formation and regeneration leading to a decline in tissue homeostasis 

(Figure 1-4). Cell cycle arrest is a cell-autonomous consequence of senescence, 

however compelling evidence is arising that senescent cells can also elicit a non-cell 

autonomous, or paracrine effect, on neighbouring cells. Interestingly, senescent 

fibroblasts, when cultured next to young fibroblasts, elicit a ‘bystander effect’ which 

causes an increase in DNA damage, and drives cellular senescence in young cells 

(Nelson et al., 2012). It is thought that this effect is driven by ROS mediated by gap 

junction cell to cell contact (Nelson et al., 2012). Other groups have also observed a 

bystander effect, thought to be driven by SASP factors. Moreover, conditioned 

medium taken from either, drug-induced, OIS, or replicative senescence cells was 

able to drive a ROS-generated DDR in bystander cells (Hubackova et al., 2012a). 

Both SASP factors IL-1 and TGFβ were upregulated in senescent cells, and inhibition 

of either the IL1/NFκB or TGFβ/SMAD pathway resulted in an attenuation of both a 

DDR and ROS production in bystander cells (Hubackova et al., 2012a; Acosta et al., 

2013). 
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If the senescent cell bystander effect occurs in vivo, this could potentially drive a 

chain-reaction of senescence-induced-senescence in neighbouring cells, thus 

accelerating the rate of senescent cell generation (Figure 1-4). If immune clearance 

was not able to keep up with increased rate, this could complement observations that 

senescent cells accumulate with age (Dimri et al., 1995; Paradis et al., 2001; Melk et 

al., 2003; Erusalimsky and Kurz, 2005; Jeyapalan et al., 2007). These hypotheses 

are however speculative, and although clustering of 4-HNE positive cells has been 

observed in the hepatocytes, further research is required to elucidate if the bystander 

effect occurs in vivo (Nelson et al., 2012).  

Senescent cells have also been implicated in causing a decline in tissue architecture 

through both extracellular matrix degradation and tissue fibrosis (Figure 1-4). 

Furthermore, the SASP includes several proteases, which have the potential to 

cleave ECM proteins, signalling ligands and membrane-bound receptors, thus 

leading to an aberrant microenvironment (Parrinello et al., 2005; Jean-Philippe et al., 

2008). Senescent cells have also been implicated in driving an EMT in epithelial 

cells, thought to act through secretion of IL-6 and IL-8 SASP factors, which may lead 

to increased tissue fibrosis (Laberge et al., 2012). 

Pathological ageing is associated with chronic inflammation, a process which is 

categorised by lymphocyte and macrophage infiltration, fibrosis and cell death; which 

is thought to drive a number of age-related diseases, such as osteoarthritis, 

atherosclerosis and cancer (Freund et al., 2010). Senescent cells have been shown 

to be present at sites of inflammation in numerous age-related pathologies, which 

has led to speculation that the perhaps the SASP is responsible for inducing chronic 

inflammation via persistent secretion of chemokines, cytokines and pro-inflammatory 

growth factors, known to attract immune cells, such as monocyte chemo-attractant 

proteins (MCPs), macrophage inflammatory proteins (MIPs), as well as IL-1, IL-6, IL-

8 and GROα (Coppé et al., 2008). However, further research is required to ascertain 

whether senescent cells are causative in inducing age-associated chronic 

inflammation.  

Due to the difficulty of creating mouse models devoid of cellular senescence, it is 

hard to distinguish correlation from causality when trying to elucidate the role of 

senescence in disease. Moreover, p16Ink4a and p53 are key effectors in the induction 

of senescence in response to various stresses, however disruption of these genes in 
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mice results in premature death from cancer (Sherr, 2000). Furthermore, p53 is also 

a key mediator of apoptosis, making it challenging to discern the effects of 

senescence specifically (Coppé et al., 2010a; Campisi, 2011; Rodier and Campisi, 

2011). To address this issue, the van Deursen group generated a transgenic mouse 

with a novel transgene, coined INK-ATTACK, in which p16Ink4a expressing cells could 

be eliminated via apoptosis upon drug treatment (Baker et al., 2011). The transgene 

was expressed in the BubR1H/H progeroid mouse background, and it was observed 

that both late-life and life-long clearance of p16Ink4a expressing cells could delay 

several age-related pathologies (Baker et al., 2011). These data provide a causal 

role for senescence promoting age-related diseases, at least in the BubR1 model. 

BubR1H/H mice, develop aneuploidy as a result of levels of the mitotic checkpoint 

protein BubR1, are associated with early onset of several age-related diseases and 

have a short life span (Baker et al., 2004; Hartman et al., 2007; Matsumoto et al., 

2007); it will therefore be important to study the effect of senescent cell clearance in 

the development of age-related pathologies in wild-type mice, to ensure that the 

effects aren’t simply an artefact specific to this model. 
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Figure 1-4. Mechanisms of Tissue and Organ Deterioration by Cellular 
Senescence (van Deursen, 2014). Senescent cells have been implicated in leading 
to impaired tissue homeostasis and regeneration, causing paracrine senescence 
through the secretion of TGFβ and IL-1β, and recruiting immune cells, therefore 
leading to inflammation. Aberrant tissue architecture can develop through senescent 
cells causing ECM degradation. Post-mitotic neurones have also been observed the 
display a senescent-like phenotype.  

 

1.7 Post-Mitotic Senescence 

 

A senescent phenotype has now been observed in scenarios in which the required 

function of senescence is not cell cycle arrest, for example in wound healing and 

embryonic development (Jun and Lau, 2010; Muñoz-Espín et al., 2013a; Storer et al., 

2013; Demaria et al., 2014). It is therefore interesting to consider if post-mitotic cells 

can also develop a senescent-like phenotype, and what the physiological relevance 

of this would be. Interestingly, both adipocytes and neurones have been shown to 
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elicit a senescent-like phenotype in vivo (Minamino et al., 2009; Jurk et al., 2012). An 

age-dependent increase in various senescent markers has been observed in both 

murine purkinje cells and cortical neurones, including γH2AX, activated p38 MAPK, 

4-HNE, IL-6, macro-H2A, auto-fluorescence and SA-β-Gal, with individual cells 

displaying multiple markers (Jurk et al., 2012). Mitotic cells have been shown to 

senescence in response to a sustained DDR (d'Adda di Fagagna et al., 2003; 

Fumagalli et al., 2012; Hewitt et al., 2012), and purkinje cells and cortical neurones 

also showed increased IL-6 production, 4-HNE, and activated p38MAPK, in 

G4TERC-/- mice, which have severe telomere dysfunction, and hence a persistent 

DDR (Karl Lenhard et al., 1999). Interestingly, in G4TERC-/-CDKN1A-/- mice, these 

senescent markers were completely rescued in both purkinje cells and cortical 

neurones, suggesting that the development of a senescent phenotype in these cells 

is dependent upon p21 (Jurk et al., 2012). Adipocytes from both mice fed on a high 

calorie diet and G4TERC-/- mice, have also been shown to have an increased 

production of pro-inflammatory cytokines, including tumour necrosis factor-α (TNF-α) 

and chemokine (C-C motif) ligand-2 (CCL2), as well as increased p53 expression, 

and increased SA-β-Gal activity (Minamino et al., 2009). These markers of 

senescence were shown to be rescued in Trp53+/- mice, therefore showing that the 

activated p53-p21 pathway can induce a senescence-like phenotype in both murine 

neurones and adipocytes (Minamino et al., 2009; Jurk et al., 2012). An upregulation 

of inflammatory cytokines, an increase in SA-β-gal activity and increased p53 was 

also observed in adipocytes from human patients, providing evidence that post-

mitotic senescence is not only a phenomenon unique to murine cells (Minamino et 

al., 2009).  

Hitherto, a substantial categorisation of post-mitotic senescence in vivo has not 

extended beyond adipocytes and neurones (Minamino et al., 2009; Jurk et al., 2012).  

Senescence has been observed in cardiomyocytes in vitro, for example H9C2 rat 

cardiomyocytes, which still retain proliferative potential, have been shown to cease 

proliferation and have increased SA-β-Gal activity, or undergo apoptosis, when 

exposed to low or high doses of oxidative or genotoxic stress respectively 

(Spallarossa et al., 2009; Dong et al., 2013). Induced telomere dysfunction, via 

siRNA-mediated downregulation of TRF2, has also been shown to trigger either 

senescence or apoptosis in a dose-dependent manner in H9C2 cardiomyocytes 

(Spallarossa et al., 2009). It will be important to investigate if cardiomyocyte 



46 
 

senescence also occurs in vivo, and what the physiological relevance of this maybe. 

Moreover, the significance of permanent cell cycle exit of a non-dividing cell type 

would seem to be inconsequential with regard to tissue homeostasis, however, 

evidence is emerging that cardiomyocytes are not entirely post-mitotic. Moreover, 

during development, cardiomyocytes proliferate rapidly, then after birth, heart 

enlargement relies mainly on cell growth, and it was previously thought that all the 

cardiomyocytes a human would ever have are present at birth (Li et al., 1997). 

However, nuclear bomb testing during the Cold War generated an abundance of 

carbon-14, which was subsequently incorporated into living organisms, and patient 

analysis of carbon-14 in DNA from cardiomyocytes, revealed cardiomyocyte DNA 

containing carbon-14, suggesting that new cardiomyocytes had been generated 

(Bergmann et al., 2009). Subsequent research has confirmed these findings, and 

identified that cardiomyocytes themselves are capable of replication, as opposed to a 

stem cell population (Malliaras et al., 2013; Senyo et al., 2013). Despite this evidence 

for cardiomyocyte proliferation, the role of cell cycle arrest is still questionable, as 

adult human cardiomyocyte division is still a relative rare event, with turnover rates 

around 1% per year in 25 year olds, which gradually decreases to around 0.45% per 

year in 75 year olds (Bergmann et al., 2009). Furthermore, evidence suggests that a 

50 year old human is likely to have around 60% of the same cardiomyocytes present 

at birth (Bergmann et al., 2009). However, cardiomyocyte replication is significantly 

increased at sites adjacent to myocardial stress (Malliaras et al., 2013; Senyo et al., 

2013), and thus one could hypothesise that cardiomyocyte senescence could alter 

regenerative ability following myocardial injury. Among patients who have undergone 

radiotherapy treatment for breast cancer, those which were treated for left breast 

cancer have an increased incidence of cardiac disease compared to those treated for 

right breast cancer (Darby et al., 2003; Taylor et al., 2008; Taylor et al., 2009). 

Moreover, the mechanism for this is not understood, however, X-irradiation is known 

to cause senescence in numerous cell types, and it will therefore be important to 

investigate if senescence is occurring and contributing to disease progression. 

As previously described, cell cycle arrest is not the only phenotype of senescence, 

and it will be will be important to understand the physiological relevance of 

senescence even in post-mitotic / non-rapidly dividing cells, such as neurones, 

adipocytes and cardiomyocytes, to determine if they are associated with a SASP, 

and if this is detrimental to surrounding cells. Another important factor will be to 
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understand what drives cellular senescence in cell types which are not affected by 

significant proliferation-associated telomere shortening and thus should not undergo 

canonical replicative senescence. Hitherto, little research has focused on telomere 

damage in post-mitotic cells, perhaps due to the perceived lack of telomere 

dysfunction.   
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1.8 Aims 

 

Telomere dysfunction is a major hallmark of cellular senescence, and DDR foci at 

telomeres have been observed to occur independently of telomere length in murine 

enterocytes and hepatocytes in vivo (Hewitt et al., 2012). A senescent-like phenotype 

has also been observed to occur in post-mitotic adipocytes and neurones in vivo 

(Minamino et al., 2009; Jurk et al., 2012). We aimed to ascertain if telomere 

dysfunction occurred in cardiomyocytes, and if this was associated with cellular 

senescence. The main aims were: 

 Can cardiomyocytes elicit persistent telomere dysfunction in vitro, and if so, 

can this drive cellular senescence? 

 Is there an age-associated increase in telomere dysfunction in cardiomyocytes 

in vivo which is associated with a senescent-like phenotype? 

 Can we modulate telomere dysfunction in cardiomyocytes? 
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2 Chapter 2 - Materials and Methods 
 

2.1 Chemicals and Reagents 

 

Unless stated otherwise, all chemicals were obtained from Sigma-Aldrich Company 

Ltd (Poole, Dorset, UK). 

 

2.2 Buffers and Solutions 

 

All solutions dissolved in deionised water unless otherwise stated. 

 

Solution Components 

PGB-Triton 0.5% Bovine Serum Albumin, 0.25% Gelatin from cold 

water fish skin (SIGMA, G7765) and 0.5% Triton™ X-100 

in PBS. 

TBS-Triton 10mM Tris, 150mM NaCl and 0.25% Triton™ X-100. 

Adjusted to pH7.0 with HCl. 

Cardiomyocyte 

Buffered Salt Buffer 

116mM NaCl, 20mM HEPES, 1mM NaH2PO4, 5.365mM 

KCl and 831nM MgSO4.   

Cardiomyocyte 

Enzyme Solution 

5mM Glucose, 80U mL-1 Collagenase Type 2 

(Worthington, LS004174), 0.25mg mL-1 in CBSB. 

Fibroblast Lysis 

Buffer 

12.5mM Tris pH7.4, 5mM KCl, 0.1mM Spermine, 0.25mM 

Spermidine, 175mM Sucrose and 1 protease inhibitor 

tablet (Roche). 

Chromatin 

Spreading Buffer 

10mM Tris pH7.4, 10mM EDTA, 0.05% SDS and 1M 

NaCl. 

Nuclei Wash Buffer 10mM Tris pH7.4, 15mM NaCl, 60mM KCl, 5mM EDTA 

and 300mM Sucrose. 

2 X SSC 300mM NaCl and 30mM sodium citrate. Adjusted to 

pH7.0 with HCl. 

PNA Wash A 10mM Tris pH7.5 and 70% formamide. 
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PNA Wash B 50mM Tris pH7.5, 150mM NaCl and 0.08% Tween-20. 

Citrate Buffer 10mM Sodium Citrate, Dihydrate. Adjusted to pH6.0 with 

HCl. 

Hybridisation buffer 

for FISH 

70% deionised formamide, 25mM MgCl2, 10mM 

TrispH7.2, 5% blocking reagent (Roche, Welwyn), 4ng 

µL-1 TelC-Cy3/Cy5 PNA probe (C3TA2)3 (Panagene, 

F1002-5/F1003-5) in dH2O. 

Haematoxylin 5g Haematoxylin, 50g Aluminium potassium sulphate, 

0.5g Sodium iodate, 300mL Glycerin, 40mL glacial acetic 

acid, in 700mL dH2O.  

RIPA 150mM NaCl, 1% Triton™ X-100, 0.5% sodium 

deoxycholate, 0.1% SDS and 50mM Tris pH8.0.   

STORM Imaging 

Buffer 

50mM Tris-HCl pH8.0, 10mM NaCl, 100mM MEA,  5 unit 

ml-1 glucose oxidase and 50 unit mL-1 catalase.  

Krebs solution 130mM NaCl, 5.4mM KCl, 1.4mM MgCl2, 0.4mM 

NaH2PO4, 4.2mM HEPES, 10mM glucose, 20mM taurine, 

10mM creatine monohydrate. 

Table 1. Buffers and Solutions  

 

2.3 Cell Culture 

 

2.3.1 Cell lines 

 

Human Cell Lines 

Human embryonic lung MRC5 fibroblasts (ECACC, Salisbury, UK) were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% heat 

inactivated foetal bovine serum (FBS) (Biosera, Ringmer, UK), 100µg ml-1 

streptomycin, 100 units ml-1 penicillin and 2mM l-glutamine, incubated in a humidified 

atmosphere at 37°C with 95% air and 5% CO2. 

Mouse Cell Lines 

Mouse Embryonic Fibroblasts (MEFs), isolated from C57BL/6 mice, were cultured in 

Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 10% heat 
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inactivated foetal bovine serum (FBS) (Biosera, Ringmer, UK), 100µg ml-1 

streptomycin, 100 units ml-1 penicillin and 2mM l-glutamine, incubated in a humidified 

atmosphere at 37°C with 3% O2 and 5% CO2. 

H9C2 rat cardiac-derived myoblasts were a kind gift from Jeanne Mialet-Perez and 

were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM), supplemented with 

10% heat inactivated foetal bovine serum (FBS) (Biosera, Ringmer, UK), 100µg ml-1 

streptomycin, 100 units ml-1 penicillin and 2mM l-glutamine, incubated in a humidified 

atmosphere at 37°C with 95% air and 5% CO2. 

 

2.3.2 Primary Embryonic Mouse Cardiomyocytes  

 

17.5 day old mouse embryos were dissected from pregnant C57/BL6 mice, and all 

embryos were subsequently used without consideration for gender. Under a 

dissecting microscope, the middle of each embryo’s sternum was cut with scissors to 

open the ribcage, and then the hearts were removed with scissors, and placed into 

ice-cold Cardiomyocyte Balanced Salt Buffer (CBSB) (Table 1) in a 15mL centrifuge 

tube. After all hearts were removed, they were transferred onto a 250µL droplet of 

CBSB on a petri dish in class 2 laminar flow cabinet, and were cut into multiple 

fragments each. Heart fragments were then transferred to Cardiomyocyte Enzyme 

Solution (CES) (Table 1), without trypsin, (1mL per embryo) and incubated at 37°C 

for 5 minutes. During incubation, trypsin was added to the remaining CES, to a final 

concentration of 0.25mg mL-1. After incubation*, the tissue fragments were allowed to 

settle, and then the supernatant was transferred to a 15mL centrifuge tube and 

centrifuged at 700g for 5 minutes. The remaining tissue fragments were re-

suspended in CES, with trypsin, (1mL per embryo), and incubated at 37°C for 30 

minutes, whilst gently shaking the tube each 5-10 minutes. The supernatant from the 

centrifuged tube was then aspirated, and the pellet was re-suspended in 1mL of FBS 

and stored at 4°C. After the 30 minute incubation period, the steps from the asterisk 

were repeated 5-6 times, or until the tissue fragments were totally disintegrated. The 

enzyme solution from each step was added to the same 15mL centrifuge tube, with 

fresh FBS added after each centrifugation, with the collection tube stored at 4°C 

throughout. After the final centrifugation, cells were re-suspended in 5mL 

Cardiomyocyte Growth Medium and transferred to a collagen-coated T25 flask and 
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incubated in a humidified atmosphere at 37°C with 95% air and 5% CO2 for 2 hours. 

After incubation, the growth medium was collected from the pre-plating flask and 

transferred to a 15mL centrifuge tube, and topped up with Cardiomyocyte Growth 

Medium, to a total volume of 10mL. Cells were re-suspended and a sample taken for 

counting on a haemocytometer. The cell suspension was then centrifuged at 700g for 

5 minutes at room temperature, the supernatant was aspirated, and then cells were 

re-suspended in Cardiomyocyte Growth Medium to desired concentration, and 

seeded onto collagen-coated culture vessels. Cells were then incubated in a 

humidified atmosphere at 37°C with 95% air and 5% CO2 for 2-3 days to allow 

cardiomyocytes to settle. Growth medium was then aspirated, and cells were washed 

2-3 times with PBS at 37°C before fresh Cardiomyocyte Growth Medium was added.  

 

Mouse Embryonic Cardiomyocytes were cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM), supplemented with 17% Medium 199, 5% heat inactivated foetal 

bovine serum (FBS) (Biosera, Ringmer, UK), 10% Horse serum (SIGMA, H0146), 

100µg ml-1 streptomycin, 100 units ml-1 penicillin and 2mM l-glutamine, incubated in a 

humidified atmosphere at 37°C with 95% air and 5% CO2. 

 

2.3.3 Primary Adult Mouse Cardiomyocytes  

 

Male mice of either 3 or 20 months of age were anaesthetised with 150µL 

pentobarbital and treated with 500 units of heparine. The hearts were then removed 

and assembled with a canula through the aorta for the Langendorff heart assay. The 

hearts were then washed with Krebs solution (Table 1) for 5 minutes, and then 

incubated in digestion solution for 8 minutes. The hearts were then minced into small 

pieces with a pair of surgical scissors, and the fragments were filtered through a 

200µM filter. Liberase activity was then inhibited by adding Krebs solution plus 

12.5µM calcium chloride to the suspension. The cell suspension was then incubated 

for 10 minutes to allow separation of cell types. The supernatant was then discarded, 

and calcium reintroduction was performed by incubating the cells in increasing 

concentrations of calcium chloride (12.5µM, 62µM, 112µM, 212µM, 500µM, 1mM) in 

Krebs solution, and with each increment, the cells were mixed thoroughly and 

incubated at room temperature for 4 minutes. After cell sedimentation, the 
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supernatant was then aspirated. Cardiomyocytes were then seeded onto a laminin-

coated substratum and cultured in M199 culture medium, supplemented with 5% 

heat inactivated foetal bovine serum (FBS) (Biosera, Ringmer, UK), 100µg ml-1 

streptomycin, 100 units ml-1 penicillin, 2µM L-carthinine, 5µM creatine and 5µM 

taurine, incubated in a humidified atmosphere at 37°C with 95% air and 5% CO2. 

Growth medium was then aspirated and replenished after the first 2 hours, and every 

24 hours thereafter. 

 

2.3.4 Cryogenic Storage 

 

Growth medium was aspirated from exponentially growing adherent cells, followed by 

washing with 37°C PBS and then incubated with 37°C trypsin for 3 minutes. The 

trypsin activity was neutralised with the addition of full growth medium to the 

suspension and then cell numbers were counted. The desired number of cells were 

then centrifuged at 150g for 5 minutes. Supernatant was then aspirated, and cells 

were re-suspended in 10% DMSO in foetal calf serum at a concentration of 1 X 106 

cells ml-1. Aliquots of 1mL were then pipetted into cryovials and each transferred to a 

Nalgene™ Cryo freezing container filled with isopropanol. To ensure a slow and 

consistent freezing process, the freezing container was placed at -80°C for 24 hours 

before cryovials were removed and frozen in liquid nitrogen for long-term storage.  

 

2.3.5 Resuscitation of Frozen Cells 

 

Cryovials were removed from liquid nitrogen, and then immediately incubated at 

37°C for 2 minutes. The cells were then transferred to a 75cm2 culture flask 

containing 20mL of 37°C growth medium. After 24 hours, growth medium was 

replenished to remove DMSO and cell debris. 

 

2.3.6 Calculating Cell Density and Population Doublings 

 

To calculate the number of cells within a suspension, 20µL of suspended cell solution 

was transferred to a Fuchs Rosenthal haemocytometer (VWR, International UK). 
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Using an optical microscope (DMIL, Leica Microsystems, UK), the number of cells 

within 8 adjacent squares was then determined, and repeated at 3 random locations 

on the haemocytometer. For each square, only cells within the boundaries, and those 

touching the left or top boundary were counted. The mean number of cells, for every 

8 random squares, was then calculated and multiplied by 1 X 104, to give the density 

of cells per millilitre.  

To calculate the total number of cells in a given suspension, the density of cells (cells 

ml-1) was multiplied by the total volume of suspension (mL). 

To calculate the Population Doubling (PD), both the number of cells seeded, and the 

number of cells harvested is required. The following formula is then applied: PD = X 

+ (ln(N1 / N2))/ln2 

PD = Population Doubling 

X = Previous PD 

N1 = Number of cells seeded 

N2 = Number of cells harvested 

 

2.4 Live Cell Imaging 

 

For live-cell time-lapse microscopy, cells were plated on glass coverslip bottomed 

dishes (Mattek), and incubated for 24 hours to adhere to the glass substratum. 

Images were taken every 10 minutes for the duration of each time-course. Using a 

63X objective (NA=1.4). Z-stacks over 7µm were obtained, using a Zeiss Spinning 

Disk confocal microscope. Cells were incubated at 37°C in a humidified environment 

with air plus 5% CO2.  

 

2.4.1 Foci Dynamic Quantification 

 

DNA damage foci (DDF) from live-cell time-lapse microscopy were tracked using the 

Imaris module ‘ImarisCell’.  



55 
 

 

2.5 T-Loop Detection via STORM 

 

The below protocol is optimised for >1X107 MEFs grown on a 175 cm2 culture flask. 

 

2.5.1 Nuclei Isolation 

 

MEFs were washed twice in PBS at 37°C and then incubated in trypsin at 37°C for 3 

minutes. The trypsin was neutralised in MEF growth medium, cell number was 

determined using a haemocytometer, and then cells were centrifuged at 700g for 5 

minutes. The supernatant was aspirated and cells were washed once in PBS at 4°C. 

Cells were then re-suspended in 4°C Fibroblast Lysis Buffer (Table 1) at a 

concentration of 8 X 106 mL-1 and incubated on ice for 10 minutes. 10% NP-40 was 

added to the cell suspension to a final concentration of 0.2% and gently vortexed. 

The tube was then inverted 3 times and incubated for a further 5 minutes on ice. The 

cell suspension was then centrifuged at 1,000g for 5 minutes at 4°C, the cytoplasmic 

fraction-containing supernatant was discarded, and the remaining nuclei pellet was 

washed once with 4°C Nucleic Wash Buffer (Table 1). 

 

2.5.2 DNA Crosslinking 

 

Nuclei were then re-suspended in 100µg mL-1 trioxsalen in nucleic wash buffer, and 

incubated in a 3cm diameter petri dish placed on ice, in the dark, stirring on an orbital 

shaker at 60RPM, for 5 minutes. The petri dish containing nuclei suspension was 

then exposed to 365nm UV light at 3cm from the light source for 30 minutes whilst 

still placed on ice, and stirring on an orbital shaker at 60RPM. During cross-linking, 

microscope slides, with a glass coverslip fixed on top, were assembled into the 

cytospin apparatus (a glass microscope slide is too thick for STORM imaging, and 

thus cells are centrifuged onto a glass coverslip). After cross-linking, the nuclei 

suspension was pipetted numerous times to remove clumping. The nuclei 

suspension was then centrifuged at 1,000g for 5 minutes at 4°C. The supernatant 

was then aspirated and pellet was washed with 4°C nucleic wash buffer. Nuclei were 
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then counted using a haemocytometer and re-suspended in nucleic wash buffer to a 

final concentration of 10 X 106 mL-1.  

 

2.5.3 Chromatin Spread 

 

Nuclei were diluted 1:10 in 37°C spreading buffer (Table 1), and 100µL of suspension 

was added to each cyto-centrifuge tube and centrifuged at 600RPM for 1 minute. The 

glass coverslip was separated from the microscope slide and were then incubated in 

methanol at -20°C for 10 minutes, followed by incubation in acetone at -20°C for 1 

minute. Coverslips were then washed in PBS and dehydrated through a graded 

ethanol series (70, 95 and 100%), for 3 minutes each. At this point, chromatin 

spreads can be stored in the dark at room temperature for several months.  

 

2.5.4 FISH 

 

Chromatin spreads were rehydrated in PBS for 15 minutes. After rehydration, 

chromatin spreads were dehydrated through a graded ethanol series (70, 95 and 

100%), for 3 minutes each. 10µL FISH hybridisation mix (Table 1) with TelC-Cy5 

PNA prove was added to a glass microscope slide and then the glass coverslip-

bound chromatin spreads were placed on top and incubated at 80°C for 10 minutes. 

After incubation, the chromatin spreads were incubated in a humidified chamber at 

room temperature overnight. The chromatin spreads were then washed in PNA wash 

A (Table 1) (2 X 15 minutes), followed by washes in PNA wash B (Table 1) (3 X 5 

minutes). Chromatin spreads were then rinsed several times in dH2O, dehydrated 

through a graded ethanol series (70, 95 and 100%), for 3 minutes each and left to air 

dry in the dark. 

 

2.5.5 STORM Imaging 

 

Using conventional silicone grease, a hollow Perspex cylinder of 0.5cm in both height 

and diameter was adhered to the glass coverslip so that the perimeter of the cylinder 

was surrounding the chromatin spread. STORM Imaging buffer (Table 1) was then 
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pipetted onto the chromatin spreads, until the level reached the brim of the cylinder, 

and a glass coverslip was placed on top to create an airtight environment.  

Imaging was performed on a Nikon N-STORM imaging system comprising of a 

NikonTi, Andor iXon 887 camera and Nikon Elements acquisition software. dSTORM 

images were captured at a rate of 50 frames per second with a 647nm laser with an 

excitation intensity of 200mW  

 

2.6 Plasmid Expansion and Purification 

 

Plasmid Elution 

Plasmids were received precipitated on filter paper. To elute the plasmid DNA, a 

small section of filter paper was cut out using sterile scissors and then placed into a 

1.5mL micro-centrifuge tube with 20µL of nuclease-free H2O. A sterile pipette tip was 

used to mix the filter paper with the H2O, and then left to rest at room temperature for 

2 minutes.  

High Efficiency Transformation Protocol 

10µL of NEB Stable Competent E.coli cells (from stock) were thawed on ice in a 

1.5mL microcentrifuge tube for 10 minutes. 1-2µL of eluted plasmid DNA (containing 

100pg – 100ng of plasmid DNA) was added to NEB Stable Competent E.coli cells, 

and then gently flicked 5 times to mix cells and DNA (note: do not vortex). The 

mixture was then placed on ice for 30 minutes. After this, the cells were heat shocked 

at 42°C for 30 seconds, followed by being placed on ice for 5 minutes. 500µL of room 

temperature SOC medium was added to the mixture, and then incubated on an 

orbital shaker at 250RPM at 30°C for 60 minutes. Agar selection plates, with the 

necessary antibiotic drug, were warmed at 30°C. After incubation, the cells were 

mixed thoroughly, by flicking and inverting the tube. 50-100µL of cell suspension was 

then streaked onto an agar selection plate, followed by incubation at 30°C for 24 

hours. 

(Alternatively, for previously transformed NEB Stable Competent E.coli cells stored in 

glycerol at -80°C: a sterile pipette was used to transfer cell stocks to 50-100µL of 
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SOC medium. Cell suspension was then was then streaked onto an agar selection 

plate, and incubated at 30°C for 24 hours). 

Plasmid Expansion 

Using a sterile pipette tip, a single NEB Stable Competent E.coli colony was picked 

and placed in 5mL of LB and then incubated shaking horizontally at 30°C for 6 hours. 

The suspension was then transferred to a vented conical flask containing 100mL LB 

plus antibiotic (50ng mL-1 Ampicillin) and incubated on an orbital shaker at 180RPM 

at 30°C for 24 hours. 

Bacterial Glycerol Stock 

2mL of bacterial cell suspension, from previous ‘Plasmid Expansion’ step, was 

transferred to a 15mL centrifuge tube and then centrifuge at 5000g for 10 minutes at 

room temperature. The supernatant was aspirated and the cell pellet was re-

suspended in 1mL of 30% glycerol: 70% LB (v/v) in a cryovial and placed at -80°C for 

long-term storage. 

Plasmid Isolation 

Plasmids were purified from NEB Stable Competent E.coli cells, following plasmid 

expansion, using the PureYield™ Plasmid Midiprep System (Promega). Briefly, 

100mL of LB and NEB Stable Competent E.coli suspension was transferred into two 

50mL centrifuge tubes and centrifuged at 5000g for 10 minutes at room temperature 

(all steps carried out at room temperature). The two pellets were re-suspended in 

3mL of Cell Suspension Solution and pooled together. 3mL of Cell Lysis Solution was 

added, and the mixture was inverted 5 times and incubated for 3 minutes. 5mL of 

neutralisation was added to the mixture and inverted 10 times. The lysate was then 

centrifuged at 15,000g for 15 minutes. A column stack consisting of a blue 

PureYield™ Clearing Column placed on top of a white PureYield™ binding column 

was assembled onto a vacuum pump. The liquid was poured transferred into the 

column stack and a vacuum applied, until all of the liquid had passed through. 5mL of 

Endotoxin Removal Wash was added to the binding column, and a vacuum applied 

until all the solution had been pulled through. 20mL of Column Wash Solution was 

added to the binding column, and a vacuum applied until all the solution had been 

pulled through. A vacuum was applied for 60 seconds to try the binding column, 

followed by removal and placement onto a paper towel to remove excess ethanol. 
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To elute the DNA, the binding column was first placed into a new 50mL centrifuge 

tube. 600µL of nuclease-free water was added to the binding column, and incubated 

for 1 minute. The binding column was then centrifuged at 2,000g for 5 minutes in a 

swinging bucket rotor centrifuge, followed by collection of the filtrate into a new 

1.5mL microcentrifuge tube. 

Assessment of Nucleic Acid Purity and Quantification 

Using the NanoDrop 2000 software, the DNA - Nucleic Acid option was selected. 1µL 

of nuclease-free water was added to the spectrophotometer (Nanodrop 2000, 

Thermo Scientific), and the ‘blank’ option selected to assess background 

fluorescence. 1µL of plasmid DNA solution was added to the spectrophotometer and 

quantified. A 260/280 ratio of near 1.8 was considered to have a satisfactory level of 

DNA purity. 

Isolated Plasmid Storage 

Isolated plasmid solutions were aliquoted into 1.5mL microcentrifuge tubes and 

stored at -20°C. 

 

2.7 Transfection 

 

All reagent amounts for transfection are stipulated in Table 2. H9C2 cells were 

seeded onto glass coverslips 24 hours prior to transfection.  

Equal volumes of Opti-MEM® were added to two 1.5mL microcentrifuge tubes. 

Purified plasmid DNA was then added to one of the microcentrifuge tubes, gently 

vortexed and left to stand at room temperature for 5 minutes. Lipofectamine® 2000 

was then added to the other microcentrifuge tube and gently vortexed. The contents 

of both microcentrifuge tubes were added together, gently vortexed, and left to stand 

at room temperature for 20 minutes. The mixture was then added dropwise to the 

growth medium, whilst gently moving the culture plate in a figure-of-8 motion. Cells 

were then incubated for 24 hours before replenishing the growth medium. 

Vessel Optimem (µL) DNA (µg) Lipofectamine (µL) 

24-well 12.5 0.25 0.75 
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12-well 25 0.5 1.5 

6-well 50 1 3 

Table 2. Transfection Reagents. 

 

2.8 Conditioned Medium 

 

5 X 10^4 adult cardiomyocytes were seeded onto laminin-coated 6 well plates and 

incubated in 2mL of M199 culture medium, supplemented with 5% heat inactivated 

foetal bovine serum (FBS) (Biosera, Ringmer, UK), 100µg ml-1 streptomycin, 100 

units ml-1 penicillin, 2µM L-carthinine, 5µM creatine and 5µM taurine. After two hours, 

the growth medium was aspirated, the cells were washed with 1 X PBS, and cells 

were cultured in the above culture medium minus the foetal bovine serum. After 48 

hours, the conditioned growth medium was collected, and passed through a sterile 

syringe filter with a 0.22µm pore size. The conditioned medium from isolated mouse 

cardiomyocytes was mixed with normal MAF medium at a ratio of 1:1. MAFs were 

then incubated in this conditioned medium, which was replenished every 48 hours, 

for experimentally defined amounts of time.  

 

2.9 EdU Incorporation 

 

For EdU incorporation assays, 50% of growth medium was aspirated from cell 

cultures, and an equal volume replaced with fresh growth medium containing 20µM 

EdU, to ensure a final 10µM EdU concentration. Cells were then cultured in the 

presence of EdU for desired experimental time period, followed by PBS washes (2 X 

5 minutes) at 37°C, then fixation with 2% PFA for 10 minutes (at this point, cells can 

be stored in PBS at 4°C for several months). Cells were then washed twice 3% BSA 

in PBS (2 X 5 minutes) whilst gently stirring on an orbital shaker at 60RPM. The wash 

solution was removed, and cells were permeabilised with 0.5% Triton® X-100 for 20 

minutes at room temperature, gently stirring on an orbital shaker. 

The subsequent EdU detection steps were carried out according to manufacturer’s 

instructions: Click-iT EdU Alexa Fluor Imaging Kit (ThermoFisher Scientific).  
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2.10 Genotoxic Stress 

 

2.10.1 X-Ray Irradiation 

MRC5 fibroblasts were seeded onto 6/12/24 well plates (Corning) and incubated to 

grow overnight. Cells were then exposed to varying levels of irradiation ranging from 

1-50Gy using an X-Ray Irradiator (X-Rad 225, Precision X-Ray INC, N-BRANFORD, 

CT USA). Growth medium was replenished immediately after irradiation. 

2.10.2 Chemical-induced  

 Neocarzinostatin (SIGMA, N9162): Cells were treated with 80 ng ml-1 

neocarzinostatin for 1 hour, followed by 2 X PBS washes at 37°C, then re-

incubated in full growth medium. 

 Hydrogen peroxide (H2O2) (SIGMA, H1009): Cells were treated with 400μM 

H2O2 for 1 hour in serum free medium, followed by PBS washes (2 X 5 

minutes) at 37°C, then re-incubated in full growth medium. 

 Etoposide (SIGMA, E1383): Cells were grown for 10 days in the presence of 

50μM Etoposide with fresh medium and etoposide being added every 3 days. 

2.11 Treatment with Pathway Inhibitors 

 

2.11.1 Inhibition of mTORC1 

 

Cells were treated with 100nM rapamycin in DMSO for varying amounts of time 

depending on experimental design. As a negative control, cells were treated with an 

equal volume of DMSO.  

 

2.12 Knock down by small Interfering RNA 

 

MRC5 cells (PD<25) were seeded onto glass coverslips in 24-well plates, and 

incubated with 500µL growth medium, 24 hours prior to siRNA treatment. 75ng of 

siRNA was diluted in 100µL serum-free medium and briefly mixed by vortexing. 3µL 

HiPerFect Transfection Reagent was added to the mixture and then vortexed for 10 

seconds, followed by incubation at room temperature for 10 minutes. The mixture 
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was then added dropwise to the growth medium, whilst gently moving the culture 

plate in a figure-of-8 motion (this gives a final siRNA concentration of 10nM).  

Knock-down efficiency was performed by western blotting. 

 

2.13 Flow Cytometry 

 

Flow cytometry was carried out using Partec PAS equipment. For calibration 

purposes, fluorescent microspheres were used. For each measurement, 1 X 104 cells 

were analysed. 

 

2.13.1 Mitochondrial Mass 

 

Mitochondrial mass was determined by re-suspending and incubating ~2 X 105 live 

cells with 10μM 10-n-nonyl-acridine orange (NAO) in serum-free DMEM for 10 

minutes at 37°C in darkness. Cells were then centrifuged at 1600 RPM for 2 minutes 

and the supernatant was discarded. Cells were then re-suspended in 3mL serum-

free DMEM and levels of fluorescence were determined via flow cytometry using the 

green fluorescence (FL1) channel. 

 

2.13.2 Reactive Oxygen Species 

 

Mitochondrial superoxide levels were determined using the same protocol as for 

mitochondrial mass, however incubating the live cells in 10μM dihydroethidium 

(ThermoFisher, D-1168) for 30 minutes and then using the red fluorescence (FL3) 

channel for flow cytometry. 

 

2.14 Mice  

2.14.1 Mice Groups and Treatments 

 

Ageing Colony 
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A long established colony of inbred C57/BL6 mice (n=10/group) were fed ad libidum, 

with constant access to water, and culled at 3, 15 or 30 months of age, as described 

in (Wang et al., 2009; Cameron et al., 2011).  

Rapamycin Colony 

C57/BL6 mice were age-matched and randomly split into groups (n=10/group). For 

each group, mice were fed ad libidum on either a control or rapamycin diet from 3 

months of age. A control and rapamycin group were then culled at 6.5 months and 15 

months of age. Mouse feed was purchased from TestDiet: 

 Control diet: 5LG6/122 PPM EUDRAGIT 3/8 #1814831 (5AS0). 

 Encapsulated Rapamycin diet: 5LG6/122 PPM ENCAP RAP 3/8 #1814830 

(5ARZ). 

All mice were monitored weekly. 

MAO-A Colony 

Transgenic pαMHC-MAO-A C57/BL6J mice were generated as described in 

(Villeneuve et al., 2013). Mice were culled at 3 or 5 months of age.  

Formalin-fixed paraffin-embedded mouse heart tissues were provided as a kind gift 

from Dr. Jeanne Mialet-Perez, Claudius Regaud Institute, University Paul Sabatier, 

Toulouse, France. 

Catalase-/- and MnSOD+/- Colonies 

Cryo-frozen mouse heat tissues from Catalase-/- and MnSOD+/- genotype male mice 

between the ages of 17 and 27 months were provided as a kind gift from Dr. Jordan 

Miller, Mayo Clinic, Rochester, US. 

 

2.14.2 Animal Housing 

 

All animal husbandry and experimental procedures were performed in compliance 

with the Animals (Scientific Procedures) Act 1986 (ASPA). Mice were housed in a 

temperature-regulated environment (20±2˚C) with a 12 hour light/dark cycle, with 

lights turned on at 7 am.  
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2.14.3 Mice Tissue Collection and Preparation 

 

All tissues were placed in 10% neutral buffered formalin (VWR, 9713.9010) 

immediately after dissection. After fixation, tissues were dehydrated through a series 

of graded ethanol baths, before being treated with xylene, followed by paraffin 

embedding.  

 

2.15 Human Tissue Collection, Preparation and Ethics 

 

Human heart tissue was obtained from patients undergoing open heart surgery for 

aortic stenosis, with a section of the right atrial appendage being placed in 10% 

neutral buffered formalin (VWR, 9713.9010) immediately after dissection. 

Subsequent processing steps for paraffin embedding were the same as for mouse 

tissue (as described above). Heart surgery was performed by Andrew Owens. 

All tissue samples were obtained under the clause in the Human Tissue act that 

enables anonymised samples to be taken without consent in the context of an 

ethically approved study.  

This study: “The isolation and characterisation of cell lines, including adult stem cells, 

from tissue discarded following cardiothoracic surgery”, was approved by the 

Research Ethics Committee UK, REC reference number: 10/H0908/56. 

 

2.16 Immunocytochemistry 

 

2.16.1 ICC on fixed cells 

 

N.B. All wash steps were carried out stirring on an orbital shaker at 80RPM and all 

antibody incubations steps carried out in an opaque humidifier chamber, unless 

otherwise stated. 

Fixation 
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Cells were grown on sterile coverslips until 50-80% confluency, washed in PBS (2 X 

5 minutes) and then fixed in 2% PFA for 10 minutes at room temperature. Following 

fixation, cells were washed with PBS (2 X 5 minutes).  

At this point, fixed cells can be stored in PBS at 4°C for several months, or at -80°C 

for longer term storage. 

Permeabilisation 

Fixed cells were incubated in PBG-T (Table 1) for 45 minutes, whilst stirring on an 

orbital shaker at 80 RPM. 

Immunofluorescent Staining 

Cells were then incubated with a primary antibody (Table 3) diluted in PBG-T in a 

humidifier chamber overnight at 4°C. After washing in PBG-T (3 X 5 minutes), cells 

were then incubated with a secondary antibody (Table 4) for 1 hour at room 

temperature in the dark. Darkness was achieved by wrapping the culture plates in 

aluminium foil. Cells were then washed in PBS (3 X 5 minutes), and cells were 

mounted on to glass microscope slides with ProLong® Gold Antifade Mountant 

(ThermoFisher, P36930).     

 

Primary Antibodies: 

Target Host Species Supplier, Cat# Dilution 

PCM-1 Rabbit 

Polyclonal 

SIGMA, 

HPA023374 

1:300 

Troponin-C Goat 

 

Abcam, ab30807 1:200 

γH2AX 

(Ser139) 

Rabbit 

Monoclonal 

Cell Signalling, 

#9718 

1:200 

γH2AX 

(Ser139) 

Mouse  

Monoclonal 

Millipore, 05-636 1:2000 

53BP1 Rabbit 

Polyclonal 

Cell Signalling, 

#4937 

1:200 

Ki-67 Rabbit Abcam, 15580 1:250 
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Polyclonal 

FLAG Mouse 

Monoclonal 

SIGMA, F1804 1:1000 

Table 3. Primary Antibodies for ICC on Cells 

 

Secondary Antibodies: 

Target Host Supplier, Cat# Dilution 

anti-Mouse IgG (H+L), 

Alexa Fluor® 488 

Goat 

Polycloncal 

Invitrogen, A-1101 1:4000 

anti-Mouse IgG (H+L), 

Alexa Fluor® 594 

Goat 

Polycloncal 

Invitrogen, A-11005 1:4000 

anti-Mouse IgG (H+L), 

Alexa Fluor® 647 

Goat 

Polycloncal 

Invitrogen, A-21235 1:4000 

anti-Rabbit IgG (H+L), 

Alexa Fluor® 488 

Goat 

Polycloncal 

Invitrogen, A-11008 1:4000 

anti-Rabbit IgG (H+L), 

Alexa Fluor® 594 

Goat 

Polycloncal 

Invitrogen, A-11012 1:4000 

anti-Goat IgG (H+L), Alexa 

Fluor® 647 

Donkey 

Polycloncal 

Invitrogen, A-21447 1:2000 

Table 4. Secondary Antibodies for ICC on Cells 

N.B. All antibodies were dissolved in PBG-T. 

2.16.2 Telomere-FISH on Fixed Cells following ICC 

 

After immunocytochemistry (described above), cells were washed in PBS (2 X 5 

minutes). A fixative of methanol: acetic acid (3:1 respectively) was added for 30 

minutes. Sections were then dehydrated using a cold ethanol gradient of 70%, 90% 

and 100% for 2 minutes each. After air drying, the samples were then incubated in 

PBS at 37°C for 5 minutes, followed by incubation in 4% PFA for 2 minutes. Samples 

were then washed in PBS and dehydrated through an ethanol gradient once more 

(as described previously). Coverslips were then placed onto a glass slide containing 

10μL of hybridisation mix (Table 1) and incubated at 80°C for 10 minutes. Samples 

were then placed into a humidifier chamber and incubated at room temperature for 2 
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hours. Coverslips were then transferred back into the 12 well plate and washed in 

wash buffer (3 X 10 minutes). Cells were then washed in TBS-Tween (0.05%) (Table 

1) (3 X 5 minutes). Samples were then taken through a final ethanol dehydration, air 

dried and then cells were mounted on to glass microscope slides with ProLong® 

Gold Antifade Mountant (ThermoFisher, P36930).     

 

2.16.3 ICC on Paraffin Embedded Mouse and Human Tissue 

 

3µM tissue sections were cut on a microtome, adhered to 4% APES coated slides 

and incubated at 37°C overnight.  

Sections were de-paraffinised by incubating in histoclear (2 X 5 minutes), followed by 

hydration through an ethanol gradient of 100% (2 X 5 minutes), 90% (5 minutes), 

70% (5 minutes) ethanol and then incubated in dH2O (2 X 5 minutes).  

For antigen retrieval, sections were submerged in 0.01M citrate buffer pH6.0 (Table 

1) and then heated with microwaves (800W) until solution was boiling, and then the 

power was reduced (400W) and the solution was simmered for 10 minutes. Sections 

were then left to rest until the citrate buffer reached room temperature, and then they 

were washed twice in distilled water for 5 minutes each. 

 For anti-mouse primary antibodies used on mouse tissue: Sections were 

incubated in M.O.M.™ IgG blocking (Vector Laboraties, MKB-2213) reagent 

diluted 1:25 in TBS-Triton for 1 hour at room temperature. Sections were then 

washed in PBS (2 X 5 minutes) and then incubated in primary antibody (Table 

5), diluted in M.O.M diluents diluted 1:12 in TBS-Triton at 4°C overnight.  

 For all other primary antibodies used on either mouse or human tissue: 

Sections were then incubated in blocking reagent, consisting of normal goat 

serum (NGS) diluted 1:60 in 0.1% BSA in PBS for 30 minutes at room 

temperature. Blocking solution was then tipped off, and sections were 

incubated in primary antibody (Table 5), diluted in blocking reagent, at 4°C 

overnight.  

Sections were then washed in PBS (3 X 5 minutes). 
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 For anti-γH2AX primary antibody: sections were incubated in biotinylated 

secondary antibody (1:200 in blocking serum) (Table 6) for 30 minutes at room 

temperature. Sections were then washed in PBS (3 X 5 minutes) and then 

incubated in avidin DCS (1:500 in PBS) (Table 6) for 30 minutes.  

 For all other primary antibodies: sections were incubated in an Alexa Fluor 

conjugated secondary antibody (1:2000 in blocking serum or M.O.M diluents) 

(Table 6) for 1 hour. 

Sections were then washed in PBS (3 X 5 minutes) and glass coverslips were 

mounted onto the sections with ProLong® Gold Antifade Mountant (ThermoFisher, 

P36930). 

 Primary Antibodies: 

Target Host Species Supplier, Cat# Dilution 

α-Actinin Mouse 

Monoclonal 

SIGMA, A7811 1:200 

γH2AX Rabbit 

Monoclonal 

Cell Signalling, #9718 1:200 

PCM-1 Mouse 

Monoclonal 

Abcam, ab154142 1:200 

TRF2 Mouse 

Monoclonal 

Millipore, 05-521 1:200 

Table 5. Primary Antibodies for ICC on Mouse and Human Tissues 

 

Secondary Antibodies: 

Target Host Supplier, Cat# Dilution 

Anti-Mouse IgG (H+L), 

Alexa Fluor® 647 

Goat 

Polycloncal 

Invitrogen, A-21235 1:2000 

Biotinylated anti-Rabbit IgG 

(H+L) 

Goat Vector Laboratories, 

BA-1000 

1:200 

Fluorescein-labelled Avidin 

DCS 

N/A Vector Laboratories, 

A-2011 

1:500 

Table 6. Secondary Antibodies for ICC on Mouse and Human Tissue 
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2.16.4 Telomere-FISH on Mouse and Human Tissues following ICC 

 

If required and prior to mounting, FISH was coupled with ICC-stained mouse or 

human tissues. 

Sections were incubated in 4% paraformaldehyde in PBS for 20 minutes at room 

temperature, followed by PBS washes (3 X 5 minutes). Sections were then 

dehydrated through an graded ethanol series (70, 90 and 100%), for 3 minutes each 

at -20°C. Sections were allowed to air dry, then 10µL of telomere-FISH hybridisation 

mix (Table 1) was added to the section and a glass coverslip was placed on top. 

Sections were then placed at 80°C for 10 minutes to denature the DNA. Following 

this, sections were incubated in an opaque humidifier chamber at room temperature 

for 2 hours to allow the probe to hybridise. Following incubation, sections were 

washed in 70% formamide in 2 X SSC (1 X 10 minute), 2 X SSC (1 X 10 minute), 

and PBS (3 X 10 minutes). Glass coverslips were then mounted on to the sections 

with ProLong® Gold Antifade Mountant (ThermoFisher, P36930).     

 

2.17 Q-FISH 

 

For Q-FISH analysis of telomere-FISH performed on either fixed cells or tissue 

sections: spinning disk confocal microscopy was used to image Z-stacks through the 

entire nucleus of each cell with Z-depths of 0.1µM with 100X objective (NA=1.4). 

ImageJ software was used to create maximum intensity Z projections, and then the 

oval tool was used to create a circle to measure the integrated density of individual 

telomere signals. 

 

2.18 Immunohistochemistry 

 

2.18.1 IHC on paraffin embedded tissue 

 

Tissue sectioning, deparaffinisation, antigen retrieval, blocking and primary antibody 

incubation were carried out as described above for ICC on tissue sections, except for 
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the addition of an endogenous biotin blocking step. Moreover, prior to incubation with 

primary antibody, sections were incubated in avidin (SP-2001, Vector Laboratories) 

for 15 minutes at room temperature, followed by a PBS wash (1 X 5 minutes), then 

incubated in biotin (SP-2001, Vector Laboratories) for 15 minutes at room 

temperature, followed by a further PBS wash (1 X 5 minutes).  

Following overnight primary antibody (Table 7) incubation at 4°C, sections were 

washed with TBS-T (2 X 5 minutes) and then incubated in biotinylated secondary 

antibody  (1:200 in blocking solution)  (Table 8) for 30 minutes. Sections were then 

washed in TBS-T (2 X 5 minutes), and then endogenous peroxide activity was 

blocked by incubating sections in 0.9% H2O2 in dH2O for 30 minutes at room 

temperature. Following PBS washes (2 X 5 minutes), sections were incubated in 

VECTASTAIN® ABC Reagent (PK-6100, Vector Laboratories) according to 

manufacturer’s instructions. Sections were then washed in PBS (3 X 5 minutes), 

followed by visual detection of peroxidase activity by treating slides with VECTOR 

NovaRED Peroxidase (HRP) substrate according to manufacturer’s instructions.  

Sections were then washed with dH2O (1 X 5 minutes), counterstained with 

haematoxylin for 1-2 minutes, washed with dH2O (2 X 1 minute), incubated in 1% 

acid alcohol for 5 seconds, washed in dH2O (1 X 1 minute), incubated in ammonia 

water for 20 seconds and washed in dH2O (1 X 1 minute). Sections were then 

dehydrated through an ethanol gradient of 90% ethanol (2 X 30 seconds), 100% 

ethanol (2 X 30 seconds) and then incubated in histo-clear (2 X 5 minutes). Glass 

coverslips were then mounted on top of the sections with DPX. 

Target Host Species Supplier, Cat# Dilution 

P21 Rabbit 

Polyclonal 

Abcam, 7960 1:200 

4-HNE Mouse 

Monoclonal 

JaICA, MHN 1:100 

8-OHdG Rabbit 

Polyclonal 

JaICA, MOG 1:100 

Table 7. Primary Antibodies for IHC on Tissues 

 

Target Host Supplier, Cat# Dilution 
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Biotinylated anti-Mouse 

IgG (H+L) 

Horse Vector Laboratories, 

BA-2000 

1:200 

Biotinylated anti-Rabbit 

IgG (H+L) 

Goat Vector Laboratories, 

BA-1000 

1:200 

Table 8. Secondary Antibodies for IHC on Tissues. 

 

2.19 CHIP-PCR 

 

2.19.1 Crosslinked ChIP Assay 

 

Crosslinked ChIP assay was carried out using 25µg crosslinked chromatin prepared 

from 3 or 30 month ground mouse heart tissue as described in (Mann et al., 2010), 

using anti-γH2AX (phospho S139) (Abcam, ab2893) and species and isotype 

matched control ChIP grade IgG (Abcam, ab46540). 

 

2.19.2 Real-time PCR 

 

Real-time PCR for telomeric repeats was performed as described previously 

(Cawthon, 2002), using primers targeted against mouse telomeres (Table 9). 

 

Primer 

Direction 

Primer Sequence 5’ to 3’ 

Forward CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT 

Reverse GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT 

Table 9. Telomere Sequence for RT-PCR for Telomeric Repeats 

 

2.20 Senescence Associated β Galactosidase Activity Assay 

 

2.20.1 SA-β-Gal on Fixed Cells 
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Cellular senescence was determined using the Senescence-Associated β 

Galactosidase assay, as described previously (Dimri et al., 1995). Briefly, cells were 

fixed with 2% paraformaldehyde for 5 minutes at room temperature. Following PBS 

washes (2 X 5 minutes), cells were incubated in SA-β-Gal staining solution (Table 1) 

at 37°C in the dark overnight. Cells were then washed in PBS (3 X 5 minutes) and 

then mounted on to glass microscope slides with ProLong® Gold Antifade Mountant 

(ThermoFisher, P36930).     

Using a Leica DM5500B microscope and a Leica DFC420 camera, random fields 

(20X objective) were imaged and cells were scored either positive or negative for SA-

β Gal staining.  

 

2.21 Telomeric Repeat Amplification Protocol (TRAP) Assay 

 

Whole hearts, flash frozen in liquid nitrogen, were ground to a fine powder using a 

liquid nitrogen-chilled pestle and mortar and stored at -80°C. 

To assess telomerase activity, the TeloTAGGG Telomerase PCR ELISA kit (Roche, 

11854666910) was used according to manufacturer’s instructions.  

 

2.22 Protein Expression Analysis 

 

2.22.1 Protein Extraction 

 

Growth medium was aspirated, and then cells were washed once with 4°C PBS. 

Following aspiration of PBS, 80-100µL of 4°C RIPA buffer (Table 1) and 1X protease 

and phosphatase inhibitors (Thermo Scientific, 78442) were added to the cells, which 

were then scraped with a rubber policeman. Cell lysis solution was then transferred 

to a 1.5mL microcentrifuge tube, pre-chilled on ice, and then either used instantly for 

protein quantification, or placed at -80°C for long term storage.  
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2.22.2 Protein Quantification 

 

Cell lysates were defrosted on ice and then centrifuged at 16,000g for 10 minutes at 

4°C. Protein concentration was determined using the BioRad Protein Assay (Biorad; 

Reagent A, 500-0113; Reagent B, 500-0114; Reagent C, 500-0115) according to 

manufacturer’s instructions. Protein absorbance was then quantified using a 

FLUOstar Omega microplate reader (BMG Labtech), and a regression line, for 

protein concentration estimates, calculated based on absorbance values from known 

BSA protein standards. Protein concentrations were then normalised by mixing 

protein lysates with loading buffer (2X Laemmli buffer (Biorad, 161-0737) and 2-

mercaptoehtanol (SIGMA, M6250) at a ratio of 19:1). Proteins were then denatured 

by incubating in a heating block at 100°C for 5 minutes, and then placed on ice 

temporarily before performing western blotting, or placed at -80°C for long term 

storage.  

 

2.22.3 Western Blot 

 

Gel Electrophoresis  

Ammonium persulphate was diluted in dH2O to a concentration of 100mg mL-1. A 

10mL resolving gel solution was prepared with the required percentage of acrylamide 

(Table 10), and then pipetted into an empty western blot cassette (Invitrogen, 

NC2010 or NC2015), with dH2O gently pipetted on top to level the acrylamide 

solution. Once polymerised, the dH2O was poured off, and 3mL of stacking gel 

solution (Table 10) was pipetted on top of the resolving gel and left to polymerise, 

with a western-blot comb inserted to create the desired number and volume of 

loading wells. Once the stacking gel polymerised, the cassette was loaded into a 

XCell SureLock™ Mini-Cell Electrophoresis System (Invitrogen, EI001) and running 

buffer (Table 1) was poured in until the cassettes were fully submerged. The 

western-blot combs were then removed and protein samples were pipetted into the 

wells, along with Precision Plus Protein™ Dual Colour Standards (Biorad, 1610374), 

for use as a protein molecular weight estimation ladder. Electrophoresis was then 

performed by applying 125V for 90 minutes.  
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1 X Stacking Gel 5ml 5% 8% 10% 12% 15% 

       

Sterile H20 3.4ml     

30% Acrylamide 850ul     

1.5M Tris pH 6.8 1.3ml     

10% SDS 50ul     

10% Ammonium 

Persulphate (w/v in  H20) 50ul     

TEMED 4ul     

            

1 X Resolving Gel 10ml           

      

Protein Size (kDa)  >250 250-120 120-40   40-15  <20 

Sterile H20 6.8ml 5.1ml 4ml 3.3ml 2.3ml 

30% Acrylamide 1.7ml 2.6ml 3.3ml 4ml 5ml 

1.5M Tris pH 8.8 2.5ml 2.5ml 2.5ml 2.5ml 2.5ml 

10% SDS 100ul 100ul 100ul 100ul 100ul 

10% Ammonium 

Persulphate (w/v in H2O) 100uL 100ul 100ul 100ul 100ul 

TEMED 8ul 4ul 4ul 4ul 4ul 

Table 10. Acrylamide gel recipe for western blot 

 

Protein Transfer to PVDF Membrane 

Once electrophoresis had finished, a PVDF membrane (Millipore, IPVH00010) was 

incubated briefly in methanol and then submerged in transfer buffer (Table 1). The 

gel was then placed on top of the PVDF membrane and sandwiched between blotting 

pads (VWR, 732-0594), soaked in transfer buffer (Table 1) and loaded into a Trans-

Blot® SD Semi-Dry Transfer Cell (Biorad) and transferred at 20V for 1 hour.  

Blocking and Antibody Incubation 

Unless otherwise stated, all block and antibody incubations were performed on a 

laboratory rocker set to 12 RPM / ±8° tilt. 
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To block non-specific antibody binding, the membrane was incubated in 5% non-fat 

dry milk and 0.1% Tween® 20 in PBS (PBST-Milk) for 1 hour at room temperature. 

The PBST-Milk blocking solution was removed, and the membrane was incubated in 

primary antibody (Table 11) diluted in PBST-Milk overnight at 4°C. The membrane 

was then washed with dH2O (3 X 5 minutes), and then incubated in secondary 

antibody (Table 12) for 1 hour at room temperature. The membrane was then 

washed in PBS-T (3 X 5 minutes), followed by several rinses in dH2O. 

 

Target Host Species Supplier, Cat# Dilution 

P21 Rabbit 

Monoclonal 

Cell Signalling, #2947 1:1000 

GAPDH Rabbit 

Monoclonal 

Cell Signalling, #5174 1:5000 

Table 11. Primary Antibodies for Western Blot 

 

Target Host 

Species 

Supplier, Cat# Dilution 

anti-rabbit IgG-

Peroxidase  

Goat Sigma, A0545 1:5000 

Table 12. Secondary Antibodies for Western Blot 

 

Chemiluminescent Detection 

Chemiluminescent detection was performed using Clarity™ ECL Western Blot 

Substrate (Bio-rad, 170-5060) according to manufacturer’s instructions, and 

visualised using a Fujifilm Las 1000 Intelligent Darkbox with Luminescent Image 

Reader Las-1000 Software.  

Bands intensity was quantified using ImageJ software, with background subtraction 

and protein-of-interest normalised to a loading control protein. 

 

2.23 Gene Expression Analysis 
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The following gene expression analysis was performed on freshly isolated adult 

mouse cardiomyocytes. 

 

2.23.1 RNA Extraction 

 

RNA extraction was performed using the RNeasy Mini Kit (QIAGEN), according to 

manufacturer’s instructions. 

 

2.23.2 cDNA Synthesis 

 

cDNA was synthesised by reverse transcription of 0.5µg of RNA per reaction, using 

the High-Capacity cDNA Reverse Transcription Kit (ThermoFisher Scientific; 

4368814), according to manufacturer’s instructions.  

 

2.23.3 Real Time Polymerase Chain Reaction (RT-PCR) 

 

20µL Real time PCR reaction mix (10μL Taq polymerase, 2μL SYBR green, 300nM 

forward and reverse primer, 10ng cDNA and deionised H2O to total volume of 20μL) 

was added to each RT-PCR well. The thermocycler conditions were 95°C for 10 

seconds, 65°C for 30 seconds for 45 cycles, followed by an incremental temperature 

increase for melt-curve analysis. Primer sequences are provided below  

 

 

Target Forward Reverse 

P15 AGATCCCAACGCCCTGAAC  CAGTTGGGTTCTGCTCCGT 

P16 CCGAACTCTTTCGGTCGTACCC   CTGCTACGTGAACGTTGCCCA 

TGFb AGGGCTACCATGCCAACTTCT  CCGGGTTGTGTTGGTTGTAGA 
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MAO-A GGAAGCCCGGGATAGAGTTG  TGGGTTGGTCCCACATAAGC 

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA 

Table 13. Primer Sequences for RT-PCR on Isolated Mouse Cardiomyocytes 
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3 External Stress Induces Persistent DNA Damage at Telomeres in 

Cardiomyocytes 

 

Previous studies have shown that telomeric damage in both human and murine 

fibroblasts is irreparable, resulting in a persistent DDR signal; a hallmark of DNA-

damage induced cellular senescence (Fumagalli et al., 2012; Hewitt et al., 2012). 

Interestingly, Q-FISH analysis of telomere length in murine hepatocytes and 

enterocytes revealed an age-dependent increase in telomere damage occurring 

independently of telomere length (Hewitt et al., 2012). These data contradict the 

hypothesis that telomere dysfunction occurs mainly as a result of progressive 

shortening of the telomeres, as a consequence of the end-replication problem; a 

process which is accelerated by oxidative stress-induced single strand breaks during 

replication (von Zglinicki et al., 1995; von Zglinicki et al., 2000), suggesting that an 

additional mechanism may also drive telomere dysfunction. Furthermore, this 

suggests a possibility for persistent telomere dysfunction to occur in post-mitotic and 

non-rapidly dividing cells types, which are not subject to proliferation-associated 

telomere shortening; a prospect of special interest, considering that research has 

shown that post-mitotic adipocytes and neurones can also elicit a senescent-like 

phenotype in vivo (Minamino et al., 2009; Jurk et al., 2012). 

The t-loop structure forms an elegant mechanism for physically sheltering the ends of 

chromosomes from being recognised by the DDR machinery, thus preventing end-to-

end fusions resulting from non-homologous end joining (NHEJ) (Griffith et al., 1999). 

However, research has shown that NHEJ can be inhibited in the absence of t-loop 

formation, providing a RAP1/TRF2 complex is bound to as little as 12-telomeric 

repeats (Bae and Baumann, 2007). Interestingly, overexpression of TRF2 has been 

shown to attenuate single-strand break repair at telomeres (Richter et al., 2007) and 

ectopic localisation of TRF2 next to a double-strand break (DSB) inhibits repair 

(Fumagalli et al., 2012). Our group and another, therefore proposed a model in which 

if a physical double strand break were to occur in a telomeric region, this would be 

irreparable and lead to a persistent DDR (Fumagalli et al., 2012; Hewitt et al., 2012). 

Moreover, this would provide an explanation to our observations of telomere 

dysfunction occurring independently of telomere shortening in vivo (Hewitt et al., 

2012). However, another proposed mechanism for a persistent DDR at telomeres 

independently of telomere length, stipulates that partial TRF2 inhibition could lead to 
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telomere uncapping and a DDR, however still retaining enough TRF2 to inhibit end-

to-end fusions via NHEJ (Cesare et al., 2009).  

Irrespective of the verisimilitude of either proposed theory, and one cannot reject the 

proposition that the two aren’t mutually exclusive, we sought to investigate if post-

mitotic/non-rapidly dividing cell types, which are not subject to proliferation-

associated telomere shortening, could also be associated with persistent telomere 

dysfunction, and if so, does this drive a senescent-like phenotype. To investigate this, 

we used cardiomyocytes as our model, as proliferation is negligible in adult tissue, 

and there are two commonly used in vitro cardiomyocytes models we could utilise, 

namely: E17.5 embryonic mouse cardiomyocytes which retain the ability to contract 

when cultured in vitro and thus are a valuable tool for investigating cardiac diseases, 

and H9C2 rat-derived cardiomyocytes. Hitherto, and to our knowledge, telomere 

dysfunction in cardiomyocytes per se has been overlooked, perhaps because of the 

false assumption that telomere dysfunction is solely a consequence of telomere 

shortening, and thus of little interest in cardiomyocytes.  

Secondly, we also aimed to investigate the nature of genotoxic-stress induced 

telomere damage, to ascertain whether it was a consequence of telomere-uncapping 

or a physical DSB within a telomeric region. 

 

3.1 TAF are Persistent in Mouse Embryonic Fibroblasts following X- 

Irradiation  

 

Our group have previously published that stress-induced DNA damage, via X-

irradiation (IR) or H2O2 treatment in human fibroblasts, leads to both telomeric-

associated DNA damage foci (TAF) and non-telomeric DNA damage foci (non-TAF), 

however, whilst non-TAF are largely repaired, TAF are irreparable (Hewitt et al., 

2012). To begin, we sought to ascertain if we could induce TAF in cardiomyocytes, 

and if so, was this persistent. We isolated E17.5 mouse embryonic cardiomyocytes, 

exposed them to 10Gy IR, and then performed telo-FISH coupled with ICC for 

γH2AX (immuno-FISH) to analyse both TAF and non-TAF at 0, 3, 5 and 10 days 

following IR. The cardiomyocyte isolation procedure produces a heterogeneous 

population of cell types, also including endothelial cells and fibroblasts, so to ensure 

specificity of cardiomyocytes, only cells staining positive for Troponin I were 
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analysed. Our immuno-FISH analysis revealed a significant increase in both TAF and 

non-TAF at 3 days after IR, however, 5 days following IR, the mean number of non-

TAF had significantly decreased compared to the value at 3 days, whereas the 

number of TAF did not significantly change (Figure 3-1A&D). Moreover, from 5 to 10 

days, there was a non-significant (p=0.056) trend towards a decrease in non-TAF, 

whereas the mean number of TAF remained insignificantly changed (Figure 

3-1A&D). We observed a significant enrichment of the percentage of total DDR foci 

which were TAF from day 3 to 5 and day 5 to 10 following IR (Figure 3-1B&D). 

Finally, the percentage of cells positive for TAF remained insignificantly altered for 

each time point from day 3 to 10 following 10Gy IR (Figure 3-1C-D).  
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Figure 3-1. X-Ray irradiation induces persistent TAF in Mouse Embryonic 
Cardiomyocytes. (A) Mean number of both TAF and non-TAF-, (B) Mean 
percentage of DNA damage foci which are TAF-, (C) and percentage of TAF positive 
cells, in troponin-positive mouse embryonic cardiomyocytes at 3, 5 and 10 days 
following X-irradiation with 10Gy. Data are mean ± SEM of n=3. (D) Representative 
images of embryonic cardiomyocytes at days 0, 3, 5 and 10 following X-irradiation 
with 10Gy. Left panel represents troponin-positive embryonic cardiomyocytes 
(troponin – magenta; DAPI - light blue). Middle panel white arrows indicate co-
localisation between DDR, detected as γH2AX foci (green), and telomeres, detected 
using a telomeric-PNA probe (red) in Z projections of 0.1µM slices. Co-localising foci 
are amplified in the right-hand panel (amplified images represent a single Z-plane 
where co-localisation was observed). Scale bars: left panel - 10µM; middle panel 
5µM; right panel 0.5µM. Statistical analysis performed using One Way ANOVA or two 
tailed t test; * P<0.05, NS (Non-Significant) P>0.05. 

 

3.2 TAF are Persistent in H9C2 Cardiomyocytes following X-

Irradiation 

 

To confirm if persistent TAF could be induced in another cell model, we used H9C2 

rat-derived cardiomyocytes. We treated H9C2 cells with 10Gy IR and then performed 
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immuno-FISH analysis for both TAF and non-TAF at 0, 3, and 5 days following IR. 

We observed a significant increase in both TAF and non-TAF at 3 days after IR, 

followed by a non-significant decrease in the number of non-TAF at day 5, however 

the number of TAF did not significantly change from 3 to 5 days (Figure 3-2A). We 

observed a non-significant trend towards an enrichment of the percentage of total 

DDR foci which are TAF from day 3 to 5 following IR (Figure 3-2B). Lastly, the 

percentage of cells positive for TAF remained insignificantly altered from day 3 to 5 

following IR (Figure 3-2C).  

 

 

Figure 3-2. X-Ray irradiation induces persistent TAF in H9C2 Cardiomyocytes. 
(A) Mean number of both TAF and non-TAF-, (B) Mean percentage of DNA damage 
foci which are TAF-, (C) and percentage of TAF positive cells, in H9C2 
cardiomyocytes at 3 and 5 days following X-irradiation with 10Gy. Data are mean ± 
SEM of n=3. Statistical analysis performed using One Way ANOVA or two tailed t 
test; * P<0.05, NS (Non-Significant) P>0.05. 

 

Previously, using a AcGFP-53BP1c fusion protein, coupled with microbead-mediated 

incorporation of the telomere-specific PNA probe, our group were able to track DNA 

Damage Response Foci (DDF) and telomeres simultaneously via live-cell time lapse 
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microscopy (Hewitt et al., 2012). Interestingly, we discovered that all IR-induced DDF 

in Mouse Embryonic Fibroblasts (MEFs), which did not co-localise with telomeres 

were transient and therefore reparable, with a maximum lifespan of less than 3 

hours, whereas around 50% of those DDF co-localising with telomeres survived for 

the entire course of the experiment (>6 hours) and are likely irreparable (Hewitt et al., 

2012). We therefore wanted to ascertain if persistent DDF could be induced in 

cardiomyocytes. In collaboration with Anthony Lagnardo in our laboratory, we 

transfected H9C2 cells with an AcGFP-53BP1c fusion protein, irradiated them with 

10Gy, waited 72 hours and then performed live-cell time-lapse microscopy; imaging 

DDF every 10 minutes for 10 hours. Our data show that after 10Gy IR, the majority of 

DDF are resolved within 8 hours, however around 20% of DDF remain persistent, 

with no significant variations in foci dynamics after this time (Figure 3-3A-B). We also 

tracked DDF in untreated H9C2 cells, and observed that the starting number of DDF 

was significantly lower compared to IR-treated cells (data not shown), and the DDF 

foci present at the start were all resolved within 8 hours (Figure 3-3A-B).  
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Figure 3-3. Live-cell time-lapse microscopy reveals persistent IR-induced DDR 
foci in H9C2 Cells. (A) Representative time-lapse images of H9C2 cells expressing 
AcGFP-53BP1 from 72 hours after 10Gy irradiation at the indicated times (mins). 
Images are maximum intensity projections with a 6.7µM focal depth. Scale bar: 5µM. 
(B) Kaplan-Meyer survival curves for AcGFP-53BP1c DDR foci in H9C2 cells 2 days 
after 10Gy irradiation.  

 

3.3 TAF are Induced Independently of DNA Replication 

 

The H9C2 cardiomyocyte cell line still retain proliferative capability, therefore leaving 

the possibility that observed TAF could be induced as a result of DNA replication 

errors (Kuzminov, 1999). However, cardiomyocyte proliferation in vivo is negligible, 

with data suggesting that less than 1% of the cardiomyocyte population turn over 

annually in young adult humans (Bergmann et al., 2009), and thus we sought to 

determine if TAF could arise independently of DNA replication.  

We incubated H9C2 cells in the presence of a modified thymidine analogue (EdU), 

for 3 hours, followed by irradiation with 10Gy, and then cultured cells for a further 24 

hours in the presence of EdU (Figure 3-4A-C). The prior EdU incubation period 

revealed that H9C2 cells had proliferation potential prior to X-irradiation, however the 

IR treatment significantly decreased the percentage of cells which underwent DNA 

replication during the time course of the experiment (Figure 3-4A-C). We then 

analysed the mean number of TAF in EdU negative cells, and found that the number 

of TAF are significantly increased 24 hours after IR with 10Gy (Figure 3-4D).  

To determine if the length of telomeres affects susceptibility to IR-induced 

dysfunction, we performed Q-FISH analysis, and quantified the intensity of telomeres 

co-localising with a DDR, compared to telomeres not co-localising with a DDR. Our 

data show that, after 10Gy IR, the average length of telomeres co-localising with a 

DDR is significantly higher than telomeres not co-localising with a DDR (Figure 3-4E).  
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Figure 3-4.  TAF are Induced Independently of DNA Replication in X-irradiated 
H9C2 Cells. (A) Schematic illustration showing H9C2 cells were incubated in 10µM 
EdU in normal growth medium for 3 hours, following X-irradiation with 10Gy and 
cultured for a further 24 hours in the presence of 10µM EdU in normal growth 
medium. (B) Mean percentage of EdU positive cells. Data are mean ± SEM of n=3. 
(C) Representative images H9C2 cells 24 hours after X-irradiation with 10Gy (DAPI - 
light blue; EdU - pink). Scale bar: 30µM. (D) Mean number of TAF in EdU negative 
cells, 24 hours after 10Gy IR. Data are mean ± SEM of n=3. (E) Histograms 
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displaying telomere intensity for telomeres co-localising (bottom) or not co-localising 
(top) with γH2AX DDR foci in EdU negative cells (n=3). Red lines represent median 
intensity of > 65 telomeres per condition. Statistical analysis performed using two 
tailed t test; * P<0.05. Mann-Whitney tests show a significant increase in telomere 
intensity in TAF compared to non-TAF P<0.05.  

 

 

Hitherto, the irradiation model has been used as a proof-of-principle for the existence 

and persistence of TAF in both embryonic cardiomyocytes and H9C2 rat-derived 

cardiomyocytes. However, we wanted to ascertain if TAF could be induced, 

irrespective of DNA replication, with a more physiologically relevant model of 

oxidative stress i.e. via hydrogen peroxide exposure. Using the same experimental 

plan from above (Figure 3-4A), instead of X-irradiation, we cultured H9C2 cells in 

EdU for 3 hours, and then exposed them to 10µM H2O2 for 2 hours, followed by a 

further culture in the presence of EdU for 24 hours. Similarly to exposure with 10Gy 

IR, we observed a significant decrease in the percentage of cells which underwent 

DNA replication following treatment with H2O2 (Figure 3-5B). Moreover, the mean 

number of TAF is significantly increased in EdU negative H9C2 cells 24 hours after 

treatment with H2O2 (Figure 3-5C).  
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Figure 3-5. TAF are Induced Independently of DNA Replication in H2O2-treated 
H9C2 Cells. (A) Schematic illustration showing H9C2 cells were incubated in 10µM 
EdU in normal growth medium for 3 hours, followed by X-irradiation with 10Gy and 
cultured for a further 24 hours in the presence of 10µM EdU in normal growth 
medium. (B) Mean percentage of EdU positive cells. Data are mean ± SEM of n=3. 
(C) Mean number of TAF in EdU negative cells, 24 hours after 10Gy IR. Data are 
mean ± SEM of n=3. Statistical analysis performed using two tailed t test; * P<0.05.  

 

3.4 TAF Induce Senescence in vitro 

 

Research has shown that SA-β-Gal activity, an established marker of senescence, 

becomes elevated in H9C2 cardiomyocytes 3 days after exposure with either 

oxidative stress or genotoxic stress (Spallarossa et al., 2009; Dong et al., 2013). Our 

data show that SA-β-Gal activity also becomes elevated in the majority of H9C2 cells, 

3 days following exposure to 10Gy X-irradiation (Figure 3-6A-B). However, these 

interventions cause DNA damage in a non-specific manner, resulting in elevated 

levels of both TAF and non-TAF, both of which have been implicated in driving 

senescence (Nakamura et al., 2008). We sought to determine if DSBs specifically at 

telomeres could induce senescence in cardiomyocytes. To achieve this, we acquired 

a FLAG-tagged expression plasmid (TRF1-FokI), encoding an endonuclease (FokI) 

conjugated to the shelterin component TRF1. FokI non-specifically cleaves DNA 

adjacent to its recognition site (Sugisaki and Kanazawa, 1981), and thus, when 

conjugated to TRF1, FokI can induce DSBs specifically in telomeric DNA. As a 

control, we used a point-mutated expression plasmid (TRF1-FokI-D450A), with a loss 

of function in endonuclease activity. We transfected H9C2 cells with either TRF1-FokI 

or TRF1-FokI-D450A, and cultured them for 4 days. Immuno-FISH analysis revealed 

an induction of both γH2AX DDF and 53BP1 DDF in TRF1-FokI transfected cells, 

with the vast majority of DDF co-localising with telomeres (Figure 3-7A-B). We 

performed Q-FISH to analyse the length of telomeres co-localising with a DDF 

(γH2AX+/53BP1+) compared to those that were not (γH2AX-/53BP1-). Our analysis 

revealed that TRF1-FokI-induced double-strand cleavage of telomeres occurred 

independently of telomere length, as the distribution of telomere length was the same 

for DDF+ telomeres compared to DDF- telomeres, for both γH2AX or 53BP1 DDF 

(Figure 3-7C). 

 



88 
 

 

 

 

 

 

Figure 3-6. X-Irradiation induces Senescence in H9C2 Cardiomyocytes. (A) 
Percentage of SA-β-Gal positive cells in H9C2 cells at 3 days following 10Gy IR. 
Data are for a representative experiment. (B) Representative images of SA-β-Gal 
staining (light blue – DAPI; darker cytoplasmic blue - SA-β-Gal). Scale bar: 30µM. 
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Figure 3-7. TRF1-FokI Fusion Protein Induces Telomere Specific Double Strand 
Breaks. (A) H9C2 cells 4 days following transfection with a FLAG-tagged TRF1-FokI-
D450A (top row) or TRF1-FokI (middle and bottom row) fusion protein (purple – 
FLAG; red – telo-FISH; green – γH2AX or 53BP1). Images are z projections of 0.1µM 
stacks taken with 100X objective. White arrows indicate co-localisation between 
telomeres and γH2AX/53BP1, with co-localising foci amplified in the right panels 
(taken from single z planes where co-localisation was found). Scale bar: 5µM. (B) 
Graphs represent the percentage of γH2AX (left) or 53BP1 (right) foci co-localising 
with telomeres 4 days following transfection with either a TRF1-FokI-D450A or TRF1-
FokI fusion protein. Data are mean ± SEM of n=3. (C) Histograms displaying 
telomere intensity for telomeres co-localising (bottom) or not co-localising (top) with 
γH2AX (left) or 53BP1 (right) DDR foci for H9C2 cells 4 days following transfection 
with TRF1-FokI fusion protein. Red dotted lines represent median > 60 telomeres per 
condition. Statistical analysis performed using two tailed t test; * P<0.05. Mann-
Whitney tests show no significant difference in telomere intensity between TAF and 
non-TAF, with either γH2AX (left) or 53BP1 (right) DDR foci.  

     

Previous research has shown that fibroblasts transfected with a dominant-negative 

TRF2 (TRF2ΔBΔM), elicit a DDR at telomeres and undergo cellular senescence (Takai 

et al., 2003). This model provides insights into the effects of telomere uncapping, but 

hitherto, it is unknown whether DSBs specifically at telomeres can drive cellular 

senescence. Having shown the specificity of the TRF1-FokI fusion protein to induce 

telomere-specific DSBs (Figure 3-7A-B), we transfected H9C2 cells with either TRF1-

FokI or TRF1-FokI-D450A, cultured them for 4 days, and then assessed various 

senescence markers. Our analysis revealed that H9C2 cells expressing the TRF1-

FokI fusion protein had a significantly reduced percentage of cells positive for the 

proliferation marker Ki-67, an increased cell size, and a significant increase in the 

percentage of cells positive for both the cyclin-dependent kinase inhibitor p21, and 

SA-β-Gal activity (Figure 3-8A-E). 
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Figure 3-8. Double Strand Telomeric Breaks Drive Cellular Senescence in H9C2 
Cardiomyocytes. (A) Representative images of senescent markers in H9C2 cells 4 
days following transfection with a either TRF1-FokI-D450A or TRF1-FokI fusion 
protein (purple – FLAG; red – Ki-67; light blue – DAPI; darker cytoplasmic blue – SA-
β-Gal). Scale bars: left panel - 10µM; right panel 20µM. (B) Quantification of mean 
percentage of FLAG-positive cells stained positive for Ki-67. Data are mean ± SEM of 
n=3. (C) Quantification of mean percentage of FLAG-positive cells stained positive 
for p21. Data are mean ± SEM of n=3. (D) Quantification of mean percentage of 
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FLAG-positive cells stained positive for SA-β-Gal activity. Data are mean ±s.e.m of 
n=3. Data are presented as mean of >100 cells representative of 1 experiment. Two 
independent experiments confirmed these findings (not shown). (E) Quantification of 
mean cell size of FLAG-positive cells. Data are mean ± SEM of n=3. Statistical 
analysis performed using two tailed t test; * P<0.05 

 

3.5 Does Genomic Stress Induce Telomere Uncapping? 

 

Telomere dysfunction can be induced via a number of genotoxic stresses (Hewitt et 

al., 2012), however the mechanism for the induction of a DDR at telomeres which are 

not critically short is not yet fully understood. The previous model of endonuclease-

induced telomeric damage provides interesting insights into the effects of DSBs at 

telomeres, but cannot be considered a physiological representation of the induction 

of telomere dysfunction. As previously mentioned, there are two proposed theories 

for the generation of telomere dysfunction in non-critically short telomeres. Our group 

proposed that genomic stress leads to DSBs within telomeric regions, which are 

irreparable and lead to persistent telomere dysfunction (Hewitt et al., 2012). 

Moreover, another group suggested that uncapping of telomeres, which still retain 

enough shelterin proteins to inhibit NHEJ, could elicit a persistent DDR at telomeres 

(Cesare, Kaul et al. 2009). To address this, we utilised the resolving power of super-

resolution fluorescence imaging, specifically: stochastic optical reconstruction 

microscopy (STORM), to visualise t-loop structures  after X-irradiation, a model which 

has shown to induce persistent DDR foci at telomeres (Hewitt et al., 2012).  

To optimise conditions for STORM imaging, we first visualised telomeres of 

proliferating untreated paraformaldehyde-fixed MEF cells. Telomeres were visualised 

using FISH with a telomere-specific PNA probe conjugated to a photo-switchable dye 

(TelC-Cy5). Merged images comparing conventional confocal microscopy against 

STORM imaging show an enhanced resolution of telomere signal with STORM 

imaging (Figure 3-9A).  
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Figure 3-9. STORM Microscopy Enhances Resolution of MEF Telomeres 
compared to Conventional Confocal Microscopy. (A) Untreated MEFs were fixed 
on coverslips, and telomeres were detected using FISH with a telomere specific PNA 
probe conjugated to a photoswitchable dye (TelC-Cy5). Images represent MEF 
telomeres visualised with conventional confocal microscopy and STORM imaging at 
100X objective. Lower panels display an amplification of an area of the above image. 
Scale bar: 0.5µM.  

 

Having optimised experimental conditions for the utilisation of the TelC-CY5 PNA 

probe for use with STORM imaging, we next performed chromatin spreads to 

orientate telomeres in a way which the t-loop can be visualised by STORM imaging. 

We show that the t-loop structure can be visualised with STORM imaging, however 

not with conventional confocal microscopy (Figure 3-10A-B). Previous 

experimentation has shown that conventional confocal microscopy does not have the 

resolving power to visualise the t-loop structure (Doksani et al., 2013). 

We then quantified the percentage of t-loops in telomeres from MEFs which were 

untreated, compared to those which had been treated with 10Gy IR. In untreated 

MEFs, we observed that slightly under 25% of all telomeres presented a t-loop 

structure, and there was no significant difference in the  percentage of telomeres with 

t-loops 3 days following X-irradiation with 10Gy (Figure 3-10C). These data would 
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suggest that telomere dysfunction is not dependent upon t-loop uncapping, although 

there are some experimental caveats which prevent the firm assumption of this 

conclusion, which will be discussed later on.  

 

 

 

Figure 3-10. 10Gy X-Irradiation does not alter the Percentage of t-loops in 
Chromatin Spreads of MEF Nuclei. (A) MEFs were irradiated with 10Gy and 
incubated for 3 days. Nuclei were then isolated, followed by in situ cross-linking with 
psoralen, chromatin spreading, and telomeres were detected by FISH with a 
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telomere specific PNA probe conjugated to a photoswitchable dye (TelC-Cy5), before 
STORM imaging. (B) (Top Panel) Representation of chromatin-spread telomeres 
(green) and DAPI (blue) via conventional confocal microscopy with 100X objective. 
(Bottom Panel) Representation of chromatin-spread telomeres (green) via STORM 
imaging with 100X objective. (D) Percentage of t-loops in 10Gy irradiated MEF cells. 
Data are mean ± SEM of n=3. Statistical analysis performed using two tailed t test; 
NS (Non-significant) P>0.05.    

 

3.6 Discussion 

 

For some time after the discovery of telomeres, an understanding of the mechanism 

which prevented telomeres from undergoing end-to-end fusion remained elusive. 

Research finally emerged which showed that fibroblasts transfected with a dominant-

negative TRF2 became susceptible to end-to-end fusions (van Steensel et al., 1998). 

Soon after, it was discovered that TRF2 could drive the formation of the t-loop 

structure in isolated telomere fragments in vitro, thus physically sheltering the ends of 

telomeres (Griffith et al., 1999). Research then showed that NHEJ in de-protected 

telomeres was dependent on DNA ligase IV (Smogorzewska et al., 2002). More 

recently, it was shown via STORM imaging that TRF2 was essential for the formation 

of t-loops in MEFs in vitro (Doksani et al., 2013). The t-loop therefore provides an 

elegant mechanism to protect the ends of chromosomes from being recognised by 

the DDR machinery, however, evidence is emerging which suggests that the 

mechanisms which protect chromosome ends from being recognised as DNA 

damage, and inhibit end-to-end fusion, could be preventing telomeric DNA repair 

from stochastic DNA damage. Moreover, it was published that cells exposed to X-

irradiation, or other genotoxic stresses such as hydrogen peroxide or 

neocarzinostatin were able to repair non-telomeric DNA damage, however telomere 

damage was irreparable, therefore resulting in a persistent DDR at telomeres (Hewitt 

et al., 2012). Another striking observation was that Q-FISH analysis showed that 

telomere dysfunction in murine enterocytes and hepatocytes was occurring 

independently of telomere length in vivo (Hewitt et al., 2012). A possible explanation 

for this phenomenon has been proposed by our group and another, which suggests 

that a persistent DDR could be elicited at telomeres due to the presence of a physical 

DSB, which remains irreparable due to the inhibitory effect of the shelterin complex 

on the DDR machinery (Fumagalli et al., 2012; Hewitt et al., 2012). This idea is 

supported by data showing that ectopic expression of the shelterin protein TRF2 next 
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to a DSB within non-telomeric DNA leads to an inhibition of repair and a prolonged 

DDR (Fumagalli et al., 2012). However, another proposed models suggest that 

telomere uncapping could be induced in long telomeres due to inhibition of TRF2 

(Cesare et al., 2009), and interestingly, oxidative stress has been shown to disrupt 

the ability of both TRF1 and TRF2 to recognise telomeric DNA (Opresko et al., 2005). 

Furthermore, TRF2 has also been shown to localise to genomic DSB following X-

irradiation (Bradshaw et al., 2005). Together, these data provide evidence that 

oxidative stress can result in a reduction of shelterin components at telomeres, thus 

adding credence to the idea that a DDR at long telomeres could be due to inhibition 

of TRF2 and subsequent uncapping, independently of a DSB. Whilst further research 

is required to fully ascertain the mechanism leading to telomere damage in non-

critically short telomeres, these observations that telomere length-independent 

damage can occur, suggest that telomere dysfunction might also affect non-

proliferative cell types. We sought to ascertain if the phenomenon of telomere 

irreparability was unique to proliferative cells such as fibroblasts, or whether non-

rapidly dividing cells, could also be subject to persistent telomeric damage. To begin, 

we isolated mouse embryonic cardiomyocytes and exposed them to X-irradiation. 

Our data showed that there is an initial increase in both telomeric damage and 

genomic damage following IR, however with time, the majority of genomic damage is 

repaired, yet the telomeric damage remains unaltered, leading to an enrichment of 

the percentage of total damage co-localising with telomeres over time. Furthermore, 

there was no significant change in the percentage of cells positive for TAF over the 

time course of the experiment, suggesting that once a cell acquires a TAF, it is 

persistent. These data confirmed that mouse embryonic cardiomyocyte TAF are also 

persistent upon stress-induced damage, as previously shown in both mouse and 

human fibroblasts (Hewitt et al., 2012). To validate our findings in another cell model, 

we used H9C2 rat-derived cardiomyocytes and performed the same experiment and 

analysis, which revealed similar results; persistent telomeric damage following IR. A 

persistent DDR has previously been shown to activate p21, which in turn causes 

mitochondrial dysfunction and aberrant ROS generation,  which can lead to further 

DNA damage, thus initialising a feedback loop (Passos et al., 2010). Therefore, it 

could be hypothesised that, although TAF persistence over the course of several 

days following IR would imply irreparability, TAF numbers could potentially be 

maintained by a feedback loop resulting in a balanced flux between induction an 

repair, however evidence suggests that only short-lived DDF are generated as a 



97 
 

result of senescence-associated ROS in vitro (Passos et al., 2010). To test this in 

cardiomyocytes, live-cell time-lapse microscopy was used, and H9C2 cells were 

transfected with the fusion protein AcGFP-53BP1c, to allow foci dynamics to be 

tracked in real-time. Our group have previously published, using a AcGFP-53BP1c 

fusion protein, coupled with microbead-mediated incorporation of a fluorescent 

telomere specific PNA probe, that all persistent DDR foci over the course of several 

hours co-localise with telomeres, whereas those DDR foci not co-localising with 

telomeres are transient (Hewitt et al., 2012). We had initially planned to emulate this 

experiment using microbead-mediated incorporation of a PNA probe, however 

sensitivity of the H9C2 cells to the microbeads resulted in considerable cell death. 

We therefore transfected H9C2 cells with AcGFP-53BP1c alone, and tracked DDR 

foci in H9C2 cells, 72 hours after 10Gy IR, every 10 minutes for 10 hours. We 

observed that the majority of DDR foci are resolved within 8 hours, however a repair 

plateau is reached at this point, with around 20% of the foci persistent throughout. 

Our data in fixed cells show that at the same time point of 3 days following 10Gy IR, 

around 15% of DDR foci co-localise with telomeres in H9C2 cells. Our observations 

in both fixed cells and live-cells complement one another to suggest that X-irradiation 

can induce irreparable TAF in H9C2 cardiomyocytes. 

One mechanism for the induction of double strand breaks involves replication errors 

from the DNA replication machinery, when replication forks encounter single strand 

breaks in the genome (Kuzminov, 1999). However, the relevance of this in the 

context of cardiomyocytes in vivo is questionable, as the proliferation rates of 

cardiomyocytes is negligible, with estimates suggesting that 60% of cardiomyocytes 

present in humans at birth, still remain at 50 years of age (Bergmann et al., 2009). 

Furthermore, evidence now suggests that mouse cardiomyocytes can undergo 

proliferation, however estimates suggest the rate to be less than around 4% per year 

in young adult mice, which decreases significantly with age (Malliaras et al., 2013; 

Senyo et al., 2013), therefore suggesting that replication-associated telomere 

shortening is not a major factor in both mouse and human cardiomyocytes. We 

therefore wanted to investigate if TAF could be induced in cardiomyocytes 

independently of DNA replication. Our data show that X-irradiation can induce TAF in 

cardiomyocytes that have not undergone DNA replication, as evident by an increase 

of TAF in cells which did not incorporate the thymidine analogue EdU following IR. X-

irradiation is a useful tool for inducing double strand breaks within the genome, 
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however it cannot be considered a physiologically relevant model. To address this, 

we investigated if TAF could also be induced with H2O2 exposure. One group have 

observed an age-dependent increase in cardiac mitochondrial H2O2 production 

(Judge et al., 2005), thus H2O2 treatment more closely emulates physiological 

endogenous oxidative stress. Our data show, that similarly to IR, TAF can be induced 

independently of replication with H2O2 treatment.  

Telomere dysfunction has previously been shown to play a role in driving cellular 

senescence and apoptosis in H9C2 cardiomyocytes. Moreover, low level TRF2 

down-regulation by siRNA induced cellular senescence, whereas high concentrations 

of TRF2 siRNA led to apoptosis (Spallarossa et al., 2009). TRF2 is the quintessential 

shelterin component in t-loop formation, and thus downregulation will lead to 

uncapping of telomeres and a persistent DDR (Doksani et al., 2013). Telomere 

uncapping, as a consequence of steric constraints on the t-loop structure, seems 

unlikely in cardiomyocytes, so we therefore investigated if physical DSBs within 

telomere regions could induce senescence in these cells. By transfecting cells with 

an expression plasmid encoding a TRF1-FokI fusion protein, we were able to induce 

DSBs specifically in telomeric regions, which resulted in H9C2 cells displaying 

various characteristics of senescence, including elevated SA-β-Gal activity and p21 

expression, increased cell size, and a decrease in the percentage of cells positive for 

the proliferation marker Ki-67. The physiological relevance of permanent cell cycle 

arrest in a cell which is unlikely to ever divide is questionable, however other aspects 

of the senescent-phenotype could potentially be detrimental to the surrounding 

tissue. Moreover, research has shown that senescent cells secrete a number of 

factors which can elicit a bystander effect, capable of inducing DNA damage and 

even senescence on neighbouring cells (Hubackova et al., 2012a; Nelson et al., 

2012; Acosta et al., 2013).  

It will be important to understand the threshold of TAF required for inducing 

senescence, not only in cardiomyocytes, but in other cell types as well. Using the 

transient expression plasmid used for this investigation, one cannot control the 

number of cleavage events induced by the TRF1-FokI fusion protein. To address 

this, future research should focus on cloning the fusion protein into an inducible 

system in which expression can be turned on and off, thus being able to manipulate 

the length of time the fusion protein is expressed for. Our data also showed that the 

percentage of DDF in TRF1-FokI cells which co-localised with telomeres was not 
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100%, and therefore prevents assumptions to be made solely on the telomere-

specific contribution to senescence, especially considering that both telomeric and 

non-telomeric DDF have been shown to contribute to cellular senescence (Nakamura 

et al., 2008). Explanations for the lack of specificity could be due to the endonuclease 

cleaving genomic DNA prior to TRF1 binding to telomeres, or even once bound, 

cleaving genomic DNA which is spatially near. In the latter case, there would be no 

solution other than creating an endonuclease which only cleaved telomeric repeats, 

however, this could also be compromised because the telomere repeat sequence 

has been shown to appear in interstitial chromosomal locations in multiple vertebrate 

species, including humans (Meyne et al., 1990; Weber et al., 1990; Azzalin et al., 

1997; Ruiz-Herrera et al., 2002). However, another explanation could be that the 

TRF1-FokI specifically cleaves telomeres, and the non-telomeric DDF arise due to 

elevated ROS, by a mechanism such as the aforementioned senescence-associated 

feedback loop (Passos et al., 2010), in which case, studying the nature of telomere-

specific dysfunction would require inhibition of the pathway to prevent non-specific 

ROS induced genomic damage, which would paradoxically effect the induction of 

cellular senescence.  

Our data show that the TRF1-FokI fusion protein cleaves telomeres independently of 

telomere length. However interestingly, Q-FISH analysis of telomere length in H9C2 

cells revealed that longer telomeres are more susceptible to IR-induced damage. If 

one assumes that ionising photons are striking the genome stochastically, probability 

suggests that longer telomeres are more likely to endure damage. As previously 

described, the mechanism of stress-induced telomere dysfunction has yet to be 

conclusively elucidated. It is possible that stress-induced DSBs occur and the repair 

is inhibited by the shelterin complex (Hewitt et al., 2012), or alternatively, that stress 

destabilises the t-loop, leading to uncapping and a persistent DDR. Furthermore, 

both may occur independently, or the DDR signal from DSBs could even cause 

uncapping, by a yet unknown mechanism. To investigate this, we utilised the 

resolving power of STORM imaging, to visualise t-loop structures. Initially, we sought 

to couple the chromatin spread technique with immuno-staining for DDR proteins, 

such as γH2AX, to discover whether t-loops could be maintained in the presence of a 

DDR. Alas, we could not couple these two techniques together, potentially due to the 

chromatin isolation procedure leading to the dissociation of DNA-bound proteins. If 

the technique had worked, I would have been able to investigate if a DDR can exist 
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in the presence of a t-loop. Although, if we were to have observed a DDR in the 

presence of t-loops, this would not have proven ipso facto that t-loops can be 

maintained in the presence of double-strand breaks, as DDR signals are known to 

spread up to several megabases (Rogakou et al., 1999; Meier et al., 2007; Iacovoni 

et al., 2010), and thus the physical break could be occurring elsewhere in the 

genome. Contrary to this, if all observed telomeres co-localising with a DDR were 

uncapped, this would provide strong evidence that a DDR induces uncapping.  

Our group have previously published that X-irradiation induces TAF in MEF cells 

(Hewitt et al., 2012). To determine if X-irradiation leads to uncapping, we quantified 

the percentage of t-loops in 10Gy X-irradiated compared to untreated MEFs. Our 

data show that there is no significant difference in the percentage of t-loops after 

10Gy irradiation, suggesting that X-irradiation induces persistent double strand 

breaks in telomeric regions independently of telomere uncapping. Unfortunately, the 

sensitivity of the technique is limited so that such conclusions cannot be asserted. 

Moreover, the procedure requires cross-linking of the DNA with psoralen, which has 

an efficiency of around 1 in 400 base pairs; considering the 3’ overhang is on 

average 100 base pair (McElligott and Wellinger, 1997), this means that only 25% of 

capped telomeres would remain stabilised. Furthermore, previous data from our 

group shows that 10Gy X-irradiation only induces around 5 TAF per nuclei (Hewitt et 

al., 2012), which accounts for just 6.3% of the total telomeres, assuming a total 

telomere count of 80.  Therefore, even if all 5 were truly uncapped, the percentage of 

t-loops would be ((80-5)*0.25)/80= 23.4375%, which compared to 25% is still within 

the margin of standard error, and therefore inconclusive. It would be interesting to 

repeat these experiments in a model of significantly higher telomere dysfunction to 

conclusively elucidate if stress-induced telomere dysfunction is associated with 

destabilisation of the t-loop structure. The TRF1-FokI system could also be utilised to 

determine if t-loops remain stabilised in the presence of a telomeric DSB. This 

distinction could be important considering It has been shown that the downstream 

response pathway for telomere dysfunction is distinct from the genomic DNA damage 

response (Cesare et al., 2013), and thus understanding the distinction between TIF 

and TAF may prove important in the event that the downstream DDR mechanisms 

vary. For example, it has been shown in human fibroblasts that as little as 5 TIF 

predicts the onset of senescence in human fibroblasts (Kaul et al., 2012), however 

this may not be the case for TAF.  
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In summary, our data show that telomere dysfunction can be induced in 

cardiomyocyte cell models, and this damage can arise independently of DNA 

replication. Together, these observations suggest that telomere damage doesn’t 

arise solely as a result of telomere-attrition driven uncapping of the t-loop, and that 

long telomeres are also susceptible to telomere dysfunction. Consequently, this 

suggests that telomere dysfunction can occur in post-mitotic and non-rapidly dividing 

cells which aren’t subject to persistent end-replication associated shortening. Finally, 

we provide evidence that DSBs within telomere regions, regardless of telomere 

capping state, can drive senescence in cardiomyocyte cells in vitro. 
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4 Effect of Ageing on Telomere Dysfunction in Cardiomyocytes in 

vivo 
 

In the previous chapter, we demonstrated that TAF can be generated in 

cardiomyocytes in vitro, and that this telomere dysfunction can occur independently 

of DNA replication. Our group have previously shown TAF accumulate with age in 

mouse hepatocytes and enterocytes in vivo, and that this damage occurs 

independently of telomere length (Hewitt et al., 2012), These observations of TAF 

occurring independently of DNA replication and telomere shortening, made us 

question if a post-mitotic or non-rapidly dividing cell type could also be subject to 

telomere dysfunction in vivo. Hitherto, most studies which link telomeres to cardiac 

ageing analyse telomere shortening rates in circulating leucocytes (Haycock et al., 

2014; Masi et al., 2014). Whilst this provides a good proxy for systemic organismal 

ageing, and often provides significant predictions to cardiac pathology, the method 

remains strictly correlative. We therefore investigated telomere dysfunction 

specifically in cardiomyocytes in vivo.  

For years, it was thought that cardiomyocytes had no proliferation potential at all, and 

the entirety of a mammalian’s cardiomyocyte life-time cell population would be 

present at birth, and thus, the physiological relevance of permanent cell cycle arrest 

would seem insubstantial. However, analysis of carbon-14 levels of cardiomyocyte 

DNA in people exposed to nuclear bomb tests during the Cold War revealed that 

cardiomyocyte renewal occurs in humans (Bergmann et al., 2009). Furthermore, 

evidence shows that the cardiomyocytes themselves, as opposed to a stem-cell 

population, are capable of self-renewal during normal ageing; a process which is 

increased in areas adjacent to myocardial stress (Malliaras et al., 2013; Senyo et al., 

2013). Besides proliferation cessation, senescent cells have also been shown to 

display a Senescence-Associated Secretory Phenotype (SASP), a secretory 

signalling response thought to attract immune cells to clear senescent cells (Coppé 

et al., 2008; Rodier et al., 2009). However, senescence clearance capability is 

thought to deteriorate with the age-associated decline in immune-system function, 

thus resulting in senescent cell persistence and a continuous SASP (Janko, 2008; 

Wang et al., 2011). Furthermore, the SASP has been demonstrated to elicit a 

bystander effect, which can cause DNA damage and even induce cellular 

senescence in neighbouring cells (Kosar et al., 2011; Nelson et al., 2012; Acosta et 
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al., 2013). This is of interest, as evidence now suggests that cellular senescence isn’t 

a phenomenon confined only to proliferative cells. A significant percentage of 

purkinje, cortical, hippocampal and peripheral neurons from aged mice have been 

reported to elicit many features of cellular senescence, namely: high ROS production 

and oxidative damage, activated p38MAPkinase, high levels of DNA damage, 

heterochromatinisation, interleukin IL-6 production and SA-β-Gal activity (Jurk et al., 

2012). Interestingly, these features were highly elevated in late-generation TERC-/- 

mice, suggesting that telomere dysfunction could be driving a senescent-like 

phenotype in these cells. These effects were rescued in TERC-/-CDKN1-/- mice, 

suggesting that telomere dysfunction leads to a senescent-like phenotype via p21 

activation (Jurk et al., 2012). 

In the previous chapter we showed that cardiomyocytes can elicit a persistent DDR 

at telomeres which can drive senescence in vitro, however it is unknown if persistent 

telomere dysfunction occurs in cardiomyocytes in vivo and if they are associated with 

senescence. 

To our knowledge, no studies have looked at telomere dysfunction occurring in 

cardiomyocytes specifically in vivo, and thus the aim was to investigate this, and if 

this is associated with cardiomyocyte cellular senescence. 

 

4.1 X-irradiation Induces TAF in Mouse Cardiomyocytes in vivo 

 

In the previous chapter, we showed that X-irradiation induced TAF were persistent in 

vitro in mouse embryonic cardiomyocytes and H9C2 rat-derived cardiomyocytes. We 

then wanted to investigate if TAF could be induced in cardiomyocytes in vivo and if 

this damage was persistent. 1 month old mice were exposed to 2Gy whole body X-

irradiation, followed by an 11 month recovery period, before culling at 12 months of 

age. We observed a significant increase in the mean number of cardiomyocyte TAF 

in X-irradiated mice compared to the untreated controls (Figure 4-1A-B).  
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Figure 4-1. Whole body X-irradiation Induces TAF in Mouse Cardiomyocytes. 
(A) 1 Month old mice were treated with 2Gy whole body irradiation, followed by a 
recovery period of 11 months before culling at 12 months of age. (B) Mean number 
of TAF in α-actinin positive cardiomyocytes. Data are mean ± SEM of n=3. Statistical 
analysis performed using two tailed t test; * P<0.05.  

 

4.2 TAF Increase in Mice Cardiomyocytes with Age Independently of 

Telomere Length 

 

Telomere dysfunction is considered a biomarker for cellular senescence, and has 

been shown to accumulate with age in various tissues in a range of different 

organisms from mice to primates (Herbig et al., 2006; Hewitt et al., 2012).  Having 

observed that TAF can be induced in mouse cardiomyocytes by X-irradiation, in 

collaboration with Clara Correia-Melo from ours and the von Zglinicki laboratory,  we 

then investigated if TAF could occur in mouse cardiomyocytes in vivo, and if there 

was an age-dependent accumulation of telomere dysfunction. Quantifying only α-

actinin positive cardiomyocytes, we observed an age-dependent increase in both the 

mean number of TAF and the mean percentage of  cardiomyocytes positive for TAF 

(Figure 4-2A-C). However, when we quantified the number of non-TAF, we found no 

significant changes with age (Figure 4-2D-E) To validate the observation that a DDR 

could occur at cardiomyocyte telomeres, in collaboration with Jelena Mann, we 
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performed chromatin-immuno precipitation for γH2AX on whole ground frozen hearts, 

followed by quantitative real-time PCR for the detection of telomeric repeats. We 

observed a non-significant trend towards an enrichment of γH2AX at telomeric 

regions from 3 to 30 months of age (Figure 4-2F). 
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Figure 4-2. TAF Accumulate with Age in Mouse Cardiomyocytes. (A) 
Representative images of γH2AX immuno-FISH in 3 and 30 month old α-actinin 
positive mouse cardiomyocytes (magenta – α-actinin; red – telo-FISH; green – 
γH2AX). Images are z projections of 4.5µM stacks taken with 100X objective. Arrows 
indicate co-localisation between telomeres and γH2AX, with co-localising foci 
amplified in the right panels (taken from single z planes where co-localisation was 
found). Scale bars: left panels: 2.5µM; right smaller panels 0.5µM (B) Mean number 
of TAF – (C) Mean percentage of TAF positive – α-actinin positive cardiomyocytes in 
3, 15 and 30 month old mice. Data are represented as the mean for individual 
animals, with the horizontal line representing group mean. (D) Mean number of non-
TAF – (E) Mean percentage of non-TAF positive – α-actinin positive cardiomyocytes 
in 3, 15 and 30 month old mice. Data are represented as the mean for individual 
animals, with the horizontal line representing group mean. (F) Fold enrichment of 
γH2AX at telomere repeats by real-time PCR. Graph represents fold enrichment of 
γH2AX at telomeric repeats between IgG control, 3 and 30 month whole mouse 
hearts, for 3 independent ChIP experiments. Statistical analysis performed using One 
Way ANOVA; * P<0.05, NS (Non-Significant) P>0.05 

 

Having observed an age-dependent increase in TAF in mouse cardiomyocytes 

(Figure 4-2A-C), we wanted to determine if telomere length or telomerase activity 

were associated with this increase in telomere dysfunction. Using q-FISH analysis, 

we found that there was a slight, but significant, decrease in the mean telomere 

intensity per nucleus of cardiomyocytes from mice aged 3 compared to 30 months 

old (Figure 4-3A). Cardiac-specific adeno-associated virus activation of TERT has 

previously been shown to offer cardiac protection following myocardial infarction, and 

has been associated with longer telomeres and increased numbers of the 

proliferation markers Ki-67 and pH3 (Bär et al., 2014). To assess TERT activity, we 

used liquid nitrogen-frozen, ground whole hearts, and performed TeloTAGGG 

Telomerase PCR ELISA (an extended TRAP assay). Our data show there is no 

significant difference in telomerase activity in whole mouse hearts between 3 and 30 

months of age (Figure 4-3B). However, a caveat to consider is the lack of either a 

negative or positive control for telomerase activity, and thus one cannot rule out the 

possibility that the observed telomerase activity could be below the threshold for 

detection of a positive signal.  

In proliferative tissue, telomere shortening occurs due to the end-replication problem 

coupled with oxidative stress associated attrition (von Zglinicki et al., 1995; von 

Zglinicki et al., 2000). Age-dependent telomere shortening has been reported in 

mouse enterocytes (Flores et al., 2008; Wang et al., 2009), however, another study 

observed an age-dependent increase in telomere dysfunction in enterocytes 
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independently of telomere shortening (Hewitt et al., 2012). We sought to determine if 

the age-dependent increase in telomere dysfunction (Figure 4-2A-C) was associated 

with telomere length. We performed Q-FISH analysis, and quantified the intensity of 

telomeres co-localising with a DDR, compared to telomeres not co-localising with a 

DDR in 30 month old mice. Our data show that there is no significant difference 

between the lengths of telomeres which co-localise with a DDR, compared to those 

that do not (Figure 4-3C). 

 

 

Figure 4-3. TAF Accumulate in Mouse Cardiomyocytes Independently of 
Telomere Length. (A) qFISH analysis comparing mean telomere intensity per nuclei 
of 3 and 30 month mouse cardiomyocytes. >100 nuclei were analysed per condition, 
and data are represented as the mean for individual animals, with the horizontal line 
representing group mean. (B) Quantitative PCR-ELISA TRAP assay comparing 
telomerase activity of 3 and 30 month mouse whole heart lysates. Data are mean ± 
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SEM of n=4. Scale bar: 0.5µM. (C) Representative image of telomere co-localising 
(a) or not (b) with γH2AX foci (red – telomere; green – γH2AX) taken from a single Z 
plane at 100X objective. Adjacent graphs represent quantification of telomere and 
γH2AX signal intensity. Histograms displaying telomere intensity for telomeres co-
localising (bottom) or not co-localising (top) with γH2AX DDR foci. Red dotted lines 
represent median > 100 telomeres per condition. Statistical analysis performed using 
two-tailed t test; * P<0.05, NS (Non-Significant) P>0.05. Mann-Whitney tests show no 
significant difference in telomere intensity between TAF and non-TAF in 30 month old 
mouse cardiomyocytes (P>0.05).  

 

4.3 TAF Accumulate in Human Cardiomyocytes Independently of 

Telomere Length  

 

Having shown an age-dependent accumulation of TAF in mouse cardiomyocytes, 

occurring independently of telomere shortening (Figure 4-2 & Figure 4-3), we then 

wanted to ascertain if human cardiomyocytes were also susceptible to telomere 

dysfunction. We acquired human right atrial appendage tissue from patients 

undergoing surgery for aortic stenosis, and thus the cardiomyocytes from this region 

should not be associated with any disease pathology. Immuno-FISH analysis 

revealed that there is an age-dependent increase in mean number of TAF and 

percentage of TAF positive cells, in pericentriolar material 1 (PCM-1) positive human 

cardiomyocytes (Figure 4-4A-C). We then performed Q-FISH analysis, and quantified 

the intensity of telomeres co-localising with a DDR, compared to telomeres not co-

localising with a DDR in both the 46-65 and 74-82 year old age groups. Our data 

show that there is no significant difference between the lengths of telomeres which 

co-localise with a DDR, compared to those that do not in either of the two age groups 

(Figure 4-4D). 
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Figure 4-4. TAF Accumulate with Age in Human Cardiomyocytes. (A) Mean 
number of TAF – (B) Mean percentage of TAF positive – PCM1-positive human 
cardiomyocytes from 46-65 and 74-82 year old human heart tissue. Data are 
represented as the mean for individual patients, with the horizontal line representing 
group mean. (C) Representative images of γH2AX immuno-FISH in PCM1-positive 
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human cardiomyocytes (blue – DAPI; yellow – PCM1; red – telo-FISH; green – 
γH2AX). Images are z projections of 4.5µM stacks taken with 100X objective. Arrows 
indicate co-localisation between telomeres and γH2AX, with co-localising foci 
amplified in the right panels (taken from single z planes where co-localisation was 
found). Scale bars: left panel - 5µM, middle panel – 2.5µM, right panels – 0.25µM (D) 
Histograms displaying telomere intensity for telomeres co-localising (bottom) or not 
co-localising (top) with γH2AX DDR foci for cardiomyocytes taken from patients 46-
65 (left) and (74-82) years old. Red dotted lines represent median intensity > 45 
telomeres per condition. Mann-Whitney tests show no significant difference in 
telomere intensity between TAF and non-TAF in either, 46-65 or 74-82 year old 
patients (P>0.05). 

 

An intermediate state of telomeres has been proposed in which telomere uncapping 

could occur due to inhibition of TRF2 (Cesare et al., 2009). Furthermore, In vitro, it 

has been shown by STORM imaging that knock down of the shelterin component 

TRF2 results in uncapping of the t-loop (Doksani et al., 2013). We therefore 

investigated if TRF2 abundance varied at dysfunctional telomeres. Firstly, we 

observed that as expected, TRF2 co-localised with telomeres (Figure 4-5A). Next, Q-

FISH analysis, of the mean abundance of TRF2 bound to telomeres co-localising 

with a DDR, compared to the abundance at telomeres not co-localising with a DDR 

revealed no significant differences; TRF2 abundance at human cardiomyocyte 

telomeres is independent of telomere dysfunction (Figure 4-5A-B).   
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Figure 4-5. TAF occur Independently of TRF2 Abundance in Human 
Cardiomyocytes. (A) Representative images of TRF2 immuno-FISH in PCM1-
positive human cardiomyocytes (blue – DAPI; yellow – TRF2; red – telo-FISH; green 
– γH2AX). Images are z projections of 4.5µM stacks taken with 100X objective. Scale 
bar: 0.5µM. (B) Histograms displaying TRF2 fluorescence intensity for TRF2 foci co-
localising with telomeres and either: not co-localising with γH2AX (left) or co-
localising with γH2AX (right) in human cardiomyocytes. Red dotted lines represent 
median intensity > 75 telomeres per condition. Mann-Whitney tests show no 
significant difference in TRF2 intensity between TRF2 abundance at TAF and non-
TAF (P>0.05).  

 

4.4 Cardiomyocytes are Associated with Senescent Markers. 

 

Cellular senescence in vivo has been associated with numerous age-related 

diseases, as reviewed in (Muñoz-Espín and Serrano, 2014). Moreover, drug-induced 

clearance of p16(Ink4a) positive cells delayed age-related disorders in the BubR1 

progeroid, INK-ATTAC,  mouse model (Baker et al., 2011). We sought to investigate 

if there is an age-dependent increase in senescent cells in cardiomyocytes. In 
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collaboration with Damien Maggiorani from the Mialet-Perez group, we isolated 

cardiomyocytes from 3 and 20 months old mice and performed qRT-PCR gene 

expression analysis and found that there is a significant age-dependent increase in 

p15, p16 and TGF-β (Figure 4-6A) 

 

 

Figure 4-6. Senescence-Associated Genes are Upregulated with Age in Mouse 
Cardiomyocytes. (A) Gene expression analysis of senescence markers, by Real-
Time PCR of isolated mouse cardiomyocytes from mice 3 and 20 months of age. 
Data are represented as the mean for individual mice, with the horizontal line 
representing group mean. Statistical analysis performed using two-tailed t test; * 
P<0.05. 

 

Having observed an upregulation of senescent markers at the mRNA level, we 

wanted to investigate if any other markers of senescence were also up-regulated with 

age in cardiomyocytes. In collaboration with Jodie Birch from our laboratory, we 

observed an age dependent increase in p21 protein expression, as quantified by 

percentage of cardiomyocytes staining positive for p21 by IHC (Figure 4-7A-B).  



114 
 

Recent research has shown that centromeric satellite DNA becomes unravelled upon 

the induction of senescence in both mouse and human fibroblasts, a phenomenon 

coined senescence-associated distension of satellites (SADs) (Swanson et al., 

2013). In collaboration with Mikolaj Ogrodnik from both ours and the von Zglinicki 

laboratory, we investigated if SADS also occurred during cardiomyocyte ageing, and 

found an age-dependent increase in SADs events in mouse cardiomyocytes (Figure 

4-7C-E). The lipid peroxidation marker has been shown to associate with various 

senescence markers in murine neurones (Jurk et al., 2012), and we observed that 

there is also an age-dependent increase in 4-HNE positive cardiomyocytes (Figure 

4-7F-G). Cardiac fibrosis has been observed to increase with age in numerous 

species from mice to humans (Burkauskiene et al., 2006; Dai et al., 2009), and thus 

we investigated fibrosis to confirm normal cardiac ageing in our mouse colony, and in 

collaboration with Gavin Richardson, we observed a significant increase in Sirius red 

staining with age (Figure 4-7H). 
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Figure 4-7.  Senescence Markers Increase with Age in Mouse Cardiomyocytes. 
(A) Quantification of the percentage of cardiomyocytes staining positive for p21 by 
IHC. Data are represented as the mean for individual mice, with the horizontal line 
representing group mean. (B) Representative images of p21 IHC in cardiomyocytes 
from mice aged 3 and 30 months (nuclear counter stain – blue; p21 – brown). (C) 
Quantification of the average number of SADS events per cell in mouse 
cardiomyocytes aged 3 and 30 months. Data are mean ± SEM of n=3. Scale bar: 
15µM. (D) Quantification of the mean percentage of SADS positive mouse 
cardiomyocytes aged 3 and 30 months. Data are mean ± SEM of n=3.  (E) 
Representative images of SADS events in 3 and 30 month old mouse 
cardiomyocytes (blue – DAPI; green foci – centromeres). Arrow represents a SADS 
event. Scale bar: 10µM. (F) Mean percentage of 4-HNE positive cardiomyocytes in 3, 
15 and 30 month old mice. Data are represented as the mean for individual animals, 
with the horizontal line representing group mean. (G) Representative images of 4-
HNE IHC in 3, 15 and 30 month old mouse cardiomyocytes (blue – nuclear counter 
stain; brown cytoplasmic staining – 4-HNE). Scale bar: 15µM. (H) Representative 
image of fibrosis via Sirius red staining in mice aged 3 and 30 months (white; 
fibrosis). Scale bar: 50µM. Statistical analysis performed using One way ANOVA or 
two-tailed t test; * P<0.05.  

    

4.5 An Age Dependent Bystander Effect from Mouse Cardiomyocytes  

 

Having shown that there is an age-dependent increase in senescence markers in 

mouse cardiomyocytes in vivo, we wanted to determine if aged cardiomyocytes could 

have a detrimental effect on surrounding cells. Interestingly, we observed that TGF-β 

is significantly upregulated with age in mouse cardiomyocytes (Figure 4-6), and this 

has been shown to be one of the key proteins associated with eliciting a detrimental 

bystander effect in fibroblasts (Acosta et al., 2013). We wanted to determine if aged 

cardiomyocytes could elicit a detrimental bystander effect on neighbouring cells. We 

specifically isolated cardiomyocytes from 3 and 20 month age mice, from the same 

cohort showing an age-dependent increase in senescence markers. We then 

cultured the cardiomyocytes for 48 hours, before collecting conditioned medium from 

them. Following this, we cultured MAFs in conditioned medium from 3 and 20 month 

old mice for 4 days. On the last day, we cultured cells in the presence of the modified 

thymidine analogue EdU for 8 hours and then assessed proliferation levels in this 

time period as measured by EdU incorporation. Our data show that MAFs cultured in 

conditioned medium from cardiomyocytes from 20 month old mice had a significantly 

lower incorporation of EdU, compared to MAFs cultured in conditioned medium 

collected from cardiomyocytes from 3 months old mice (Figure 4-8A-C).  
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Figure 4-8. Conditioned Medium from Old Mouse Cardiomyocytes Reduces 
Proliferation of Fibroblasts. (A) Cardiomyocytes from 3 and 30 month old mice 
were isolated and cultured for 48 hours. Conditioned medium was then collected. 
MAFs were cultured in conditioned medium + normal growth medium (1:1), for 4 
days, with medium replenished after 2 days. Following this, cells were incubated in 
the presence of 10µM EdU before fixation.   (B) Quantification of the mean 
percentage of MAFs positive for EdU incorporation Data are mean ± SEM of n=3 (C) 
Representative images of EdU incorporation from MAFs cultured in conditioned 
medium from cardiomyocytes isolated from 3 or 20 months old mice (blue – DAPI; 
red – EdU). Statistical analysis performed using two-tailed t test; * P<0.05. 

 

4.6 An Age-Dependent Increase in Quad Myocytes TAF 
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Having shown the phenomenon of telomere dysfunction occurring in cardiomyocytes 

in vivo, we wanted to determine if this could also occur in other non-rapidly dividing/ 

post-mitotic cells. Immuno-FISH analysis revealed that there is an age-dependent 

increase in mean number of TAF and percentage of TAF positive cells, in quad 

muscle myocytes from 3 to 15 to 30 months of age (Figure 4-9A-B).  

 

 

Figure 4-9. TAF Accumulate with Age in Mouse Quad Muscle Myocytes. (A) 
Mean number of TAF – (B) Mean percentage of TAF positive in quad muscle 
myocytes in 3, 15 and 30 month old mice. Data are represented as the mean for 
individual animals, with the horizontal line representing group mean. * P value < 0.05. 

 

4.7 Discussion 

 

Following on from our observations that persistent TAF could be induced in 

cardiomyocytes independently of cell division in vitro, we wanted to ascertain if TAF 

could be induced in cardiomyocytes in vivo, and if there was an age-dependent 

association and increase in senescent markers. Cardiomyocytes provide a good 

model for assessing the persistence of damage, as due to negligible proliferation 

(Figure 4-3), damage can rarely be diluted via cell division. To begin, as a proof-of-

principle we used whole body X-irradiation on 1 month old mice, and observed a 

significant increase in the number of TAF after an 11 month recovery period, 

suggesting that the damage is persistent.  Unfortunately, we did not assess a group 

immediately after X-irradiation, to determine if TAF numbers had altered during the 

subsequent 11 month recovery period. Moreover, as discussed for our in vitro data 

for TAF persistence in the previous chapter, unless foci dynamics are constantly 
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monitored in real-time, one cannot conclusively confirm persistence. Furthermore, 

research has shown that persistent DDR results in activation of several downstream 

pathways, which results in mitochondrial dysfunction, and reactive oxygen species 

generation, which in turn causes further DNA damage, thus initialising a feedback 

loop (Passos et al., 2010)(Correia-Melo et al., 2016). However unlikely, it is therefore 

plausible that DDF could constantly be being turned over, whilst retaining a 

consistent number. However, considering our group and others have published that 

TAF are persistent in fibroblasts in vitro (Fumagalli et al., 2012; Hewitt et al., 2012), 

coupled with our observations that TAF are persistent in cardiomyocytes in vitro, an 

interpretation of the X-irradiation data is that TAF which are induced as a direct result 

of ionising radiation are irreparable and persisted for the following 11 months. 

However, live cell time-lapse microscopy in vitro experiments only tracked the 

persistence of TAF for a matter of several hours (Hewitt et al., 2012), and fixed cell 

TAF time course experiments only for several weeks,  and thus the long term 

persistence of TAF in vivo, cannot be conclusively deduced.  

X-irradiation was only used as a proof-of-principle to induce TAF, however, patients 

who have been exposed to excessive ionising radiation have an increased risk of 

developing cardiovascular disease (Adams et al., 2003; Mone et al., 2004; Little, 

2010; Shimizu et al., 2010). This increased risk of heart disease in patients exposed 

to ionising radiation could be due to systemic effects rather than cardio-specific, 

however female patients who have had radiotherapy for left breast cancer, have a 

significantly higher risk of developing cardiovascular disease, compared to those 

patients treated for right breast cancer (Darby et al., 2003; Taylor et al., 2008; Taylor 

et al., 2009). In this context, understanding the nature of ionising radiation induced 

cardiac damage therefore has therapeutic importance.  

Next we showed that there is an age-dependent increase in TAF in both mouse and 

human cardiomyocytes. In addition, we also report an age-dependent increase in 

quad myocyte TAF, therefore confirming the existence of telomere dysfunction in 

another myocyte cell type. The potential mechanisms driving TAF generation in a 

non-rapidly dividing cell type will be discussed further in the next chapter. To confirm 

that we were observing DDR proteins in the telomeric regions, and not merely foci 

spatially close enough to provide false-positives from lack of microscopy resolving 

power, we performed ChIP for γH2AX, followed by RT-PCR specifically for telomeric 

repeats in mouse heart tissue. The methodology used for this experiment used 
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ground whole hearts, and thus all cardiac cell types and not just cardiomyocytes 

were analysed. Nevertheless, this confirmed the presence of a DDR in telomeric 

repeats in cardiac cell types in vivo, however as discussed in the previous chapter, 

the possibility remains that physical damage could have occurred elsewhere in the 

genome, as the γH2AX signal has been shown to be amplified, and can spread for 

several kilobases (Rogakou et al., 1999; Meier et al., 2007; Iacovoni et al., 2010). 

Regardless, we observe a significant age-dependent increase in TAF, whereas non-

TAF remain unaltered with age. This suggests that there is a significant distinction 

between what we observe to be TAF compared to non-TAF. If one were to 

hypothesise that all damage was occurring downstream and not at telomeres 

specifically, the only explanation for this would be that a DDR in telomeric regions is 

less readily resolved compared to the rest of the genome. Or if we assume the 

damage is occurring at telomeres, then there is evidence suggesting that telomere 

damage is irreparable (Fumagalli et al., 2012; Hewitt et al., 2012) and thus TAF 

would be significantly higher than non TAF. In addition, there is also evidence 

showing that guanine triplets, as found in telomeres, are more sensitive to oxidative 

stress-induced damage (Henle et al., 1999; Oikawa et al., 2001); these ideas are not 

mutually exclusive and could both contribute to the observation that TAF are 

significantly increased with age, whereas non-TAF are not. As discussed in the 

previous chapter, the nature of telomere dysfunction still remains elusive, whether 

the observed DDF are a result of uncapping, or a physical break in the DNA. There 

also remains the possibility that the observed telomere DDF are due to telomere 

uncapping, and evidence shows that the recognition of telomeres by TRF1 and TRF2 

is disrupted following oxidative damage (Opresko et al., 2005). However, our analysis 

of TRF2 abundance at telomeres co-localising with a DDR, compared to those which 

are not, would suggest that there is no association between TRF2 abundance and 

incidence of telomere dysfunction, suggesting that ROS-induced TRF2 inhibition-

mediated uncapping is unlikely to be driving telomere dysfunction in human 

cardiomyocytes.  

It has been proposed that an intermediate state of telomeres, which are uncapped 

and signal a DDR, but retain significant shelterin to inhibit NHEJ, are mainly due to 

steric constraints on short telomeres (Cesare et al., 2009). Furthermore, research 

has shown that late generation TERC-/- mice, which have critically short telomeres, 

display decreased cardiomyocyte proliferation, and an increase in cardiac 
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hypertrophy and apoptosis (Leri et al., 2003). Whilst we did not detect any variation in 

telomerase activity between young and old mice, we did observe a slight, but 

significant age-associated decrease in telomere length in cardiomyocytes from 3 

compared to 30 month old mice. Mouse cardiomyocytes have been shown to 

turnover, albeit at rates of less than 4% annually (Malliaras et al., 2013; Senyo et al., 

2013), however this may explain the slight decrease in telomere length we observed. 

Interestingly, telomere length has also been shown to decrease in the neurones of 

patients with Alzheimer’s disease (Franco et al., 2006), thus raising the possibility 

that telomere shortening may possibly occur due to a yet unknown mechanism, 

independent from DNA replication-induced end-replication problem and 

accompanying oxidative stress-accelerated attrition (von Zglinicki et al., 1995; von 

Zglinicki et al., 2000) .Regardless of this, our data suggest that cardiomyocyte 

telomere shortening is not responsible for the age-dependent increase in telomere 

damage, as in both human and mouse cardiomyocytes we observed that telomere 

dysfunction was occurring independently of length, suggesting that uncapping due to 

steric constraints on the t-loop are unlikely to be driving age-associated telomere 

dysfunction.  

As discussed in the previous chapter, the use of telomerase knock out mice, 

produces telomere shortening unlikely to be experienced under physiological 

conditions, and especially in cardiomyocytes,   however if both TAF and TIF are 

shown to activate the same downstream signalling pathways, then it will provide a 

valuable tool for predicting the physiological impact of TAF on cells and tissue. 

Research has shown that post-mitotic adipocytes and neurones can elicit a 

senescence-like phenotype (Minamino et al., 2009; Jurk et al., 2012), including a 

persistent DDR; which has been shown to trigger the SASP in fibroblasts (Rodier et 

al., 2009). However, until now, there has been little evidence suggesting a 

senescent-like phenotype in cardiomyocytes in vivo. P21 has been shown to halt cell 

cycle following DNA damage, and if persistent can activate p38-MAPK upregulation 

which can lead to mitochondrial dysfunction and ROS production, followed by p16 

activation in human fibroblasts (Passos et al., 2010; Freund et al., 2011). Our RT-

PCR and IHC analysis revealed an age-dependent upregulation of p15, p16 and p21 

all of which have been associated with an accumulation during senescence (Alcorta 

et al., 1996; Serrano et al., 1997; Robles and Adami, 1998; Hitomi et al., 2007). TGF-

β is an important SASP component as it has been associated with driving paracrine 
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senescence is neighbouring cells (Acosta et al., 2013). Furthermore, inhibition of 

TGF-β in senescent cells has been shown to attenuate the increase in ROS 

production and DDR activation in bystander cells (Hubackova et al., 2012a). We 

therefore investigated if cardiomyocytes elicited an age-associated bystander effect. 

Isolated cardiomyocytes from adult mice only survive for around 48 hours in cell 

culture, which wouldn’t provide sufficient time to perform bystander experiments. We 

therefore collected conditioned medium from isolated cardiomyocytes within this time 

period and used this to culture MAFs for several days. Our data show that MAFs 

cultured in medium from aged cardiomyocytes have significantly decreased rates of 

proliferation, suggesting cardiomyocytes can also elicit a bystander effect. Due to 

sparsity of conditioned medium, we were unable to perform further experimentation 

into categorising the bystander effect for other markers of senescence. In addition, it 

will also be important to perform the bystander experiments in the presence of 

neutralising antibodies to ascertain which SASP factors are responsible for driving 

paracrine senescence in cardiomyocytes.  

Epigenetic changes have also been shown to be a hallmark of cellular senescence in 

various cell types, for example senescence-associated heterochromatin foci (SAHF) 

appear following senescence and are associated with the stable repression of E2F 

target genes (Narita et al., 2003). However, the use SAHF as a marker for cellular 

senescence is questionable as they appear to be absent from all senescent mouse 

cells and numerous senescent human cell types (Narita et al., 2003; Kennedy et al., 

2010). Another epigenetic modification which has been observed is the unravelling of 

centromeres, known as senescence-association distension of satellites (SADS) 

(Swanson et al., 2013). Interestingly, SADS have been observed to occur in both 

mouse and human senescent cells, and by numerous senescence inducers, 

including both oxidative stress and oncogenic Ras overexpression (Swanson et al., 

2013). Another important finding is that SADS also appear during the induction of 

senescence in cells from patients with Hutchinson Guilford Progeria disease 

(Swanson et al., 2013). Our data show an age-dependent increase in SADS in 

murine cardiomyocytes, and provide another marker to determine a senescent-like 

phenotype in cardiomyocytes in vivo. 

Our analysis also revealed an age-dependent increase in the lipid peroxidation 

marker 4-HNE. Although 4-HNE is not generally considered to be a marker of cellular 

senescence per se, it’s accumulation has been shown to associate with various other 
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senescence markers, including elevated SA-β-Gal activity and increased γH2AX foci 

(Wang et al., 2009; Nelson et al., 2012). 4-HNE can lead to stable 4-HNE protein 

adducts, by covalently modifying lysine, cysteine and histidine residues of proteins, 

which can lead to severe functional impairment of both soluble and membrane 

proteins (Crabb et al., 2002; Negre-Salvayre et al., 2003; Ferrington and Kapphahn, 

2004). Proliferative cells can dilute lipid peroxidation through cell division, however, 

considering the majority of cardiomyocytes present at birth are still present at 50 

years of age (Bergmann et al., 2009), cardiomyocytes can have to endure a lifetime 

of oxidative damage accumulation. For example, post-mitotic cells are prone to 

lipofuscin accumulation (Ulf and Alexei, 2002), therefore understanding the 

mechanisms driving this are of therapeutic importance.  

Using a combination of different cellular senescence markers, we have shown, for 

the first time, that there is an age-dependent accumulation of a senescent phenotype 

specifically in cardiomyocytes in vivo. On a cell-autonomous level, senescence would 

act to prevent cardiomyocyte proliferation, which may seem inconsequential 

considering the low rate of cardiomyocyte proliferation (Bergmann et al., 2009), 

however, cardiomyocyte replication has been shown to increase during times of 

myocardial stress (Senyo et al., 2013), and thus senescence may attenuate the 

ability for cardiac repair after an infarction. Furthermore, our in vitro data show an 

increase in cardiomyocyte hypertrophy after senescence-initiation and cardiomyocyte 

hypertrophy is associated with various cardiomyopathies (Berenji et al., 2005). It will 

be therefore be important to ascertain whether TAF are associated with 

cardiomyocyte hypertrophy in vivo. Although cardiomyocyte hypertrophy is a 

physiological response to exercise, pathological hypertrophy is detrimental, as it is 

not associated with increased pumping, however is associated with myocardial 

fibrosis, which we and others have shown accumulates with age in the heart 

(Lombardi et al., 2003). On a non-cell autonomous level, senescence is associated 

with a SASP, which involves the secretion of pro-inflammatory cytokines, and chronic 

inflammation is a hallmark of pathological ageing, and has been observed in 

cardiomyopathies, such as atherosclerosis (Libby, 2002; Coppé et al., 2008). In 

addition, senescent cells have been shown to elicit a bystander effect in neighbouring 

cells, which can induce DNA damage and further senescence (Hubackova et al., 

2012a; Nelson et al., 2012; Acosta et al., 2013).  
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To conclude, hitherto most studies investigating the role of telomeres in cardiac 

function have been correlative, by comparing telomere length in leucocytes and 

inferring (Masi et al., 2014). We have shown for the first time that there is an age-

dependent increase in telomere damage in both mouse and human cardiomyocytes, 

occurring independently of telomere length. We also observed an age-dependent 

increase in markers of senescence in cardiomyocyte in vivo and signs of aged 

cardiomyocytes being capable of eliciting a bystander effect. Our in vitro data using 

the TRF1-FokI fusion protein provides evidence that TAF trigger the development of 

senescence in cardiomyocyte in vitro, however, in order to truly ascertain if 

cardiomyocyte TAF drive cardiomyocyte senescence in vivo, a similar fusion protein 

would need to be targeted specifically to cardiomyocytes in vivo. Furthermore, to 

assess if cardiomyocyte senescence had an effect on cardiac function, it would then 

be important to couple the cardiomyocyte specific TRF1-FokI model, with a model 

such as the INK-ATTACK transgenic mouse (Baker et al., 2011) , in which senescent 

cardiomyocytes could be specifically removed. However, despite evidence that 

cardiomyocyte proliferation is increased at sites adjacent to myocardial infarction 

(Malliaras et al., 2013; Senyo et al., 2013), it is unknown if replenishment of 

cardiomyocytes would occur following removal of senescent cardiomyocytes, and 

thus if the level of senescent cardiomyocytes were high, this could seriously alter 

tissue homeostasis.  
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5 Effects of Oxidative Stress/Rapamycin on Cardiomyocyte 

Telomere Dysfunction 

 

In the previous chapter, we demonstrated an age-dependent increase in TAF in both 

mouse and human cardiomyocytes. In addition, we saw an age-dependent increase 

in various senescence markers. Interestingly, we observed an age-dependent 

increase in the lipid peroxidation marker 4-HNE, which provides a proxy for the levels 

of oxidative stress endured by the cell (Onorato et al., 1998). Having previously 

shown that oxidative stress could induce telomere damage independently of cell 

division in vitro, and observing there is an age-dependent increase of TAF in non-

rapidly dividing cardiomyocytes, we sought to ascertain if oxidative stress could drive 

telomere dysfunction in vivo. To investigate this, we used several mouse models for 

increased oxidative stress, namely, cardiac-specific overexpression of MAO-A, 

Catalase -/- and MnSOD-/+. 

Finally, ROS levels have been shown to increase following replicative, oncogene- or 

stress-induced senescence (Gabriele et al., 2003; Ramsey and Sharpless, 2006; 

Passos et al., 2007; Lu and Finkel, 2008b). Furthermore, ROS have been implicated 

in contributing to the persistence of cellular senescence, for example, by replenishing 

short-lived DNA damage foci, thus maintaining an ongoing DDR, which activates 

p21, and is thought to activate a signalling cascade, which is thought to lead to 

mitochondrial dysfunction, which causes aberrant ROS production, which in turn 

causes further DNA damage, therefore instigating a feedback loop (Passos et al., 

2010). Interestingly, the mTOR inhibitory drug rapamycin has been shown to reduce 

ROS levels both in vitro and in vivo (Shin et al., 2011) (Miwa et al., 2014a), and can 

increase the lifespan of yeast (Powers et al., 2006; Medvedik et al., 2007), 

nematodes (Robida-Stubbs et al., 2012), fruit flies (Bjedov et al., 2010) and mice 

(Harrison et al., 2009; Anisimov et al., 2011; Miller et al., 2011). mTOR has been 

shown to play important roles in senescence, for example, our group has recently 

published research showing that mTOR phosphorylation following a DDR, leads to 

PGC-1b dependent mitochondrial biogenesis, and that this increase in mitochondrial 

density is responsible for driving many features of the senescent phenotype (Correia-

Melo et al., 2016). Furthermore, inhibition of mTOR by rapamycin has been shown to 

attenuate the increase in the secretion of inflammatory cytokines such as IL1A and 

IL6 by senescent cells  (Laberge et al., 2015). Moreover, mice fed with rapamycin 
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have been shown to release lower levels of hydrogen peroxide from mitochondria in 

both murine brain and liver tissues (Miwa et al., 2014b). 

We therefore investigated if rapamycin treatment could attenuate the senescent 

phenotype in vitro through reducing intra-cellular ROS levels and subsequent DNA 

damage, and finally if a rapamycin supplemented diet could reduce an accumulation 

of TAF with age in mice, and if this was associated with a decrease in a senescent-

like phenotype in cardiomyocytes. 

   

5.1 MAO-A Overexpression Drives TAF in vivo 

 

We have previously shown in vitro that hydrogen peroxide can induce TAF 

independently of cell division. Our data showing accumulation of 4-HNE suggests 

that cardiomyocytes are exposed to high levels of oxidative stress, which 

compliments previous data showing an age-dependent increase in cardiac 

mitochondrial ROS production (Judge et al., 2005). Interestingly, cardiac-specific 

over-expression of the pro-oxidant protein monoamine oxidase-A (MAO-A) results in 

increased oxidative stress in cardiomyocytes and leads to the development of 

cardiomyopathy (Villeneuve et al., 2013). MAO-A is a enzyme which catalyses the 

oxidative deamination of monoamines; producing ammonia, aldehyde and H2O2 as 

by-products (Villeneuve et al., 2013), and MAO-A expression has been observed to 

increase during replicative senescene in human fibroblasts (Passos et al., 2007). RT-

PCR analysis revealed that there is an age-dependent increase in monoamine 

oxidase A (MAO-A) mRNA levels in mouse cardiomyocytes from 3 to 20 months 

(Figure 5-1A).  
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Figure 5-1. An Age-Dependent Increase in MAO-A Expression in Mouse 
Cardiomyocytes. (A) Gene expression analysis of MAO-A by Real-Time PCR of 
isolated mouse cardiomyocytes from 3 and 20 months of age. Data are represented 
as the mean for individual mice, with horizontal line representing group mean. 
Statistical analysis performed using two-tailed t test; * P<0.05. 

 

We investigated if cardiac-specific over-expression of MAO-A could induce TAF in 

mouse cardiomyocytes. Immuno-FISH analysis revealed that cardiac-specific MAO-A 

overexpression can significantly increase the mean number of TAF and percentage 

of TAF positive cells, in mouse cardiomyocytes from mice aged 3 months (Figure 

5-2A-B). This is also associated with a significant increase in the percentage of cells 

positive for 4-HNE, as shown by IHC (Figure 5-2C-D). As previously mentioned, 

MAO-A activity produces by products other than oxidants, for example ammonia and 

aldehyde (Villeneuve et al., 2013), therefore to ascertain if TAF were induced as a 

result of oxidative stress, or by another mechanism, we supplemented the diet of 

MAO-A mice with the antioxidant N-acetylcysteine (NAC). Our subsequent immuno-

FISH analysis revealed that a NAC-supplemented diet significantly reduced both the 

mean number of TAF, and the percentage of TAF positive cardiomyocytes (Figure 

5-2E-F).  

Fractional shortening is a commonly used cardiac functional readout (Villeneuve et 

al., 2013), which represents the percentage of shortening of the left ventricular 

diameter at the end-diastole compared to end-systole. We performed fractional 

shortening analysis and discovered that wild-type mice have significantly higher 
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fractional shortening percentage than MAO-A transgenic mice at 3 months of age 

(Figure 5-2G). Furthermore, supplementing the diet of MAO-A transgenic mice was 

able to rescue the decline in fractional shortening (Figure 5-2H) 

Finally, we performed correlation analysis, comparing both mean number of TAF and 

mean percentage of TAF positive cells, against fractional shortening, irrespective of 

genotype or diet supplementation. Our analysis revealed a significant inverse 

relationship between TAF (both mean and mean percentage of TAF positive cells) 

and heart function (as measured by fractional shortening) (Figure 5-2J). 
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Figure 5-2. MAO-A Overexpression drives TAF generation in mouse 
cardiomyocytes in vivo. (A) Mean number of TAF – (B) Mean percentage of TAF 
positive –  cardiomyocytes from 3 month old WT and MAO-A transgenic mice. Data 
are represented as the mean for individual animals, with the horizontal line 
representing group mean. (C) Mean percentage of 4-HNE positive cardiomyocytes in 
cardiomyocytes from WT and MAO-A transgenic mice. Data are represented as the 
mean for individual animals, with the horizontal line representing group mean (D) 
Representative images of 4-HNE IHC in WT and MAO-A transgenic mice (blue – 
nuclear counter stain; brown cytoplasmic staining – 4-HNE). (E) Mean number of 
TAF – (F) Mean percentage of TAF positive – cardiomyocytes from MAO-A 
transgenic mice supplemented with vehicle (Control) or antioxidant (NAC). Data are 
represented as the mean for individual animals, with the horizontal line representing 
group mean. (G-H) Fractional shortening analysis between (G) Wild-type compared 
to MAO-A transgenic at mice (H) MAO-A transgenic mice supplemented with vehicle 
(Control) or antioxidant (NAC). Data are mean ± SEM of n=3. (I-J) Correlation 
analysis of the mean number of TAF (I) or percentage of TAF positive cells (J) versus 
fractional shortening (%) in both WT and MAO-A mice. Statistical analysis performed 
using two-tailed t test; * P<0.05. Correlations were analysed using Pearson’s 
correlation coefficient; P value <0.05 considered significant. 

 

5.2 A Reduction in MnSOD or Catalase Activity can Drive TAF 

Generation in vivo 

 

Having shown that oxidative stress can drive TAF generation in cardiomyocytes via 

cardiac-specific MAO-A overexpression, we sought to investigate if other mouse 

models of elevated oxidative stress could also induce telomere dysfunction.  

Catalase is an important antioxidant enzyme which catalyses the reaction of 

hydrogen peroxide into water and oxygen. Catalase expression has been shown to 

decrease with age in mouse brain and is associated with an increase in oxidative 

damage (Mo et al., 1995).  Interestingly, over-expression of mitochondrial catalase 

(mCAT) in mice attenuates of H2O2 production, oxidative stress and mitochondrial 

deletions, as well as delaying the development of both cataracts and cardiac 

pathologies, and extending lifespan (Schriner et al., 2005b). Overexpression of 

mCAT can also attenuate the age-dependent development of cardiomyopathies in 

mice which have mutations in in mitochondrial DNA polymerase gamma, which are 

associated with elevated ROS, cardiac fibrosis, hypertrophy and dilatation (Dai et al., 

2010). We therefore wanted to ascertain if oxidative stress caused by aberrant 

catalase expression could also elevate TAF in cardiomyocytes and our immuno-FISH 
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analysis revealed that catalase-/- mice have both a significantly elevated mean 

number of TAF and mean percentage of TAF positive cells (Figure 5-3A-B).  

Superoxide dismutases (SOD) are a family of antioxidant enzymes which catalyse 

the dismutation of superoxide to hydrogen peroxide and oxygen. Manganese 

superoxide (MnSOD) is a SOD which resides within mitochondria, and thus plays an 

important role in the detoxification of reactive oxygen species produced as a by-

product of oxidative phosphorylation. Homozygous mutant mice for MnSOD die 

within a couple of weeks and present multiple pathologies including: metabolic 

acidosis, accumulation of lipid in liver and skeletal muscle, and dilated 

cardiomyopathy (Li et al., 1995). Heterozygous mutants MnSOD-/+ are viable, 

however are associated with an age-dependent elevation in vascular oxidative stress 

(Brown et al., 2007). We used this model to investigate cardiomyocyte TAF 

generation and immuno-FISH analysis revealed that MnSOD-/+ mice have both a 

significantly elevated mean number of TAF and mean percentage of TAF positive 

cells (Figure 5-3C-D).  

 

 

Figure 5-3. Catalase-/- and MnSOD-/+ models of Elevated Oxidative Stress also 
Drive TAF in Cardiomyocytes in vivo. (A) Mean number of TAF – (B) Mean 
percentage of TAF positive –  cardiomyocytes from WT and Catalase -/- transgenic 
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mice. Data are represented as the mean for individual animals, with the horizontal 
line representing group mean. (C) Mean number of TAF – (D) Mean percentage of 
TAF positive – cardiomyocytes from WT and MnSOD-/+ transgenic mice. Data are 
represented as the mean for individual animals, with the horizontal line representing 
group mean. Statistical analysis performed using two-tailed t test; * P<0.05. 

 

5.3 mTOR Inhibition Impacts on ROS and Senescence in Human 

Fibroblasts 

 

Mitochondria have long been implicated in oxidative stress-induced ageing 

phenotypes (Harman, 1972), and interestingly our group have recently published 

research which shows that many features of the senescent phenotype, including pro-

inflammatory cytokine are dependent on increased mitochondrial density through a 

pathway involving mTORC1 phosphorylation (Correia-Melo et al., 2016). 

Furthermore, we show that during senescence, mitochondrial density is increased via 

mTOR activation, which leads to PGC-1b-dependent mitochondrial biogenesis. We 

therefore investigated if mTOR inhibition could attenuate this increase in 

mitochondrial biogenesis and subsequent increases in ROS and cellular senescence 

in cells which had undergone severe genotoxic stress.  For this part of the study, we 

switched from using cardiomyocytes as our model, to human fibroblasts, as 

fibroblasts have a greater proliferation rate in vitro, which allows for an increase in 

experimental scope, as well as displaying a high resistance to apoptosis, thus 

making them ideal for investigating cellular senescence.  

Flow cytometry analysis revealed a dose-dependent increase in mitochondrial mass 

following X-irradiation (Figure 5-4A). Furthermore, correlation analysis showed that 

this X-irradiation dose-dependent increase in mitochondrial mass also correlated with 

numerous senescence markers such as an increase in SA-β-gal activity, an increase 

in p21 expression (by western blot), a decrease in percentage of cells positive for Ki-

67 proliferation marker, and an increase in γH2AX DNA damage foci (Figure 5-4B). 

Kinetic analysis revealed that both mitochondrial mass and ROS levels increase 

significantly until day 2 following X-irradiation with 20Gy, until they form a plateau 

which is continued until the final time point at day 10. When ROS is normalised to 

mitochondrial mass, there is no significant difference following exposure to 20Gy X-

irradiation (Figure 5-4C). 
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Figure 5-4. Mitochondrial mass increases with X-irradiation and is associated 
with Cellular Senescence. (A) Mitochondrial mass 3 days following X-irradiation 
with 0, 5, 10 or 20Gy, as measured by NAO fluorescence via flow cytometry. (B) 
Correlation analysis between mitochondrial mass and SA-β-Gal activity, p21 
expression (measured by western blot), percentage of Ki-67 positive cells and mean 
number of γH2AX foci per cell, following varying doses of X-irradiation. Data are 
mean ± SEM of n=3. (C) Kinetic analysis of mitochondrial mass (as measured by 
NAO fluorescence via flow cytometry), ROS (as measured by DHR fluorescence via 
flow cytometry) and ROS/mitomass, following 20Gy X-irradiation in MRC5 fibroblasts. 
Data are mean ± SEM of n=3. 

 

Next, we wanted to ascertain if the X-irradiation induced increase in mitochondrial 

mass was causative of observed ROS increases, by inhibiting the mitochondrial 

mass increase following X-irradiation. The mechanistic target of rapamycin (mTOR) 
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pathway has been widely associated with playing a key role in mitochondrial 

homeostasis, by affecting mitochondrial biogenesis and mitophagy, and mTORC1 

has specifically been shown to control mitochondrial biogenesis (Morita et al., 2013). 

To begin, we treated MRC5 fibroblasts with different genotoxic stresses, either in the 

presence of a vehicle control (DMSO) or rapamycin, and then quantified 

mitochondrial mass 3 days after. In young proliferating MRC5 cells, rapamycin has 

no effect on mitochondrial mass after treatment for 3 days. In MRC5 cells that have 

undergone genotoxic stress by either X-irradiation, etoposide, neocarzinostatin or 

hydrogen peroxide, the mitochondrial mass becomes significantly increased 3 days 

following treatment. However, if cells are cultured in the presence of rapamycin, there 

was no significant increase in mitochondrial mass, 3 days following treatment with 

any of the genotoxic stress treatments (Figure 5-5A).  

Having shown that rapamycin treatment can abrogate a genotoxic-stress-induced 

increase in mitochondrial mass, we then wanted to ascertain if this had an effect on 

intracellular ROS levels. To detect ROS, we used flow cytometry with the superoxide 

indicator dihydroethidium (DHE), which exhibits blue fluorescence, until it becomes 

oxidised and then exhibits bright red fluorescence. In collaboration with Graeme 

Hewitt from ours and the Korolchuk laboratory, we found that ROS levels are 

significantly increased in MRC5 cells, 3 days following X-irradiation with 20Gy. 

Rapamycin treatment has no effect on ROS levels in untreated MRC5 cells, but 

significantly decreases ROS in X-irradiated cells compared to X-irradiated non-

treated cells (Figure 5-5B). 

To investigate if the decrease in ROS is due to inhibition of mTORC1 and not an off-

target effect of rapamycin, we also performed siRNA to knock-down mTORC1 and 

observe ROS following X-irradiation. Using 2 different siRNAs targeted to mTORC1 

and a scramble siRNA control, our data show that treatment with either mTORC1 

siRNA has no effect on ROS on non-irradiated MRC5 cells, compared to treatment 

with scrambled siRNA. Confirming previous data (Figure 5-5B), we show that X-

irradiation significantly increases ROS levels, however we also show that this 

increase in ROS can be significantly attenuated with both mTORC1 targeted siRNAs 

(Figure 5-5C). 
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Figure 5-5. X-irradiation- induced increases in mitochondrial mass can be 
attenuated with rapamycin treatment. (A) Mitochondrial mass in MRC5 cells 3 
days following genotoxic with either 20Gy X-irradiation, continual etoposide treatment 
(50µM), 1 hour treatment with neocarzinostatin (80ng ml-1), or 1 hour treatment with 
H2O2 (400µM), in the presence of either vehicle control (DMSO) or rapamycin 
(100nM); as measured by NAO fluorescence via flow cytometry. Data are 
representative of 3 independent experiments per condition. (B) Intracellular ROS 
levels in MRC5 fibroblasts, as measured by DHE fluorescence, via flow cytometry, 
with or without rapamycin (100nm) and NAC (2.5mM), 3 days following 20Gy X-
irradiation. Data are mean ± SEM of n=3.  (C) Effect of mTOR knock-down using 
siRNA on ROS measured by DHE fluorescence, 3 days following 20Gy X-irradiation. 
Data are mean ± SEM of n=3. Statistical analysis performed using two-tailed t test; * 
P<0.05. 

 

Having observed that mTOR inhibition, via rapamycin or siRNA treatment, could 

attenuate the appearance of ROS following numerous genotoxic stresses, we sought 

to ascertain if this would have any effect on the development of a senescent 

phenotype. MRC5 fibroblasts were treated with a range of genotoxic stresses, either 
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X-irradiation, etoposide, neocarzinostatin, or H2O2. After 10 days, SA-β-Gal activity 

was significantly elevated after each treatment compared to an untreated control. For 

each treatment, we also cultured cells in the presence of rapamycin, and observed a 

significant reduction in SA-β-Gal activity compared to the vehicle control for each 

condition. The level of SA-β-Gal was still significantly higher than non-treated 

controls for each of the rapamycin-treated genotoxic stress exposed cells (Figure 

5-6A-B). After X-irradiation, p21 levels are significantly increased after 2 days, 

however this could be attenuated with rapamycin treatment (Figure 5-6C).  
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Figure 5-6. mTOR inhibition attenuates genotoxic stress induced senescence. 
(A) Mean percentage of MRC5 cells staining positive for SA-β-Gal activity 10 days 
following genotoxic stress with 20Gy X-irradiation, continual etoposide treatment 
(50µM), 1 hour treatment with neocarzinostatin (80ng ml-1), or 1 hour treatment with 
H2O2 (400µM), in the presence of either vehicle control (DMSO) or rapamycin 
(100nM). Data are mean ± SEM of n=3. (B) Representative SA-β-Gal images 
(Cytoplasmic blue – SA-β-Gal; pink – nucleus). Scale bar: 40µM. (C) p21 expression 
(measured by western blot) in MRC5 cells 1, 2 and 3 days following genotoxic stress 
with 20Gy X-irradiation, continual etoposide treatment (50µM), 1 hour treatment with 
neocarzinostatin (80ng ml-1), or 1 hour treatment with H2O2 (400µM), in the 
presence of either vehicle control (DMSO) or rapamycin (100nM). Data are mean ± 
SEM of n=3. Statistical analysis performed using two-tailed t test; * P<0.05. 

 

 

5.4 mTOR Inhibition Impacts on DDR During Senescence in Human 

Fibroblasts 

 

Having observed that mTOR inhibition could attenuate ROS accumulation after 

senescence-inducing stimuli, we sought to ascertain if this was acting via a DDR. 

Research has shown that both telomeric and non-telomeric foci contribute to the 

initiation of cellular senescence (Nakamura et al., 2008), and ROS have been 

implicated in replenishing short-lived DNA damage foci following senescence 

(Passos et al., 2010). We investigated if rapamycin treatment could attenuate this 

increase in secondary DNA damage foci, and if this was ROS dependent.   

To begin, we treated MRC5 cells with various genotoxic stresses, and cultured them 

for 10 days either in the presence of a vehicle control (DMSO) or rapamycin, before 

performing immuno-FISH to quantify both TAF and non-TAF. Our analysis revealed 

there is a significant increase in both telomeric and non-telomeric DNA damage foci, 

10 days following genotoxic stress with either: X-irradiation, etoposide, 

neocarzinostatin or H2O2, compared to untreated control cells. However, those cells 

cultured in the presence of rapamycin had a significantly reduced mean number of 

non-TAF for each genotoxic stress treatment, whereas the mean number of TAF was 

unaltered (Figure 5-7A-B).  

To test whether the reduction in non-telomeric foci was due to rapamycin 

suppressing ROS generation, in collaboration with Graeme Hewitt from ours and the 

Korolchuk laboratory, we induced genotoxic stress in MRC5 cells with 20Gy X-
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irradiation, and then cultured cells for a further 3 days in presence of rapamycin or 

NAC, or both together. Similar to before (Figure 5-7C), we observed an increase in 

both TAF and non-TAF after X-irradiation, but a decrease in only non-TAF following 

rapamycin treatment. Moreover, we found that NAC treatment alone also reduces the 

number of non-TAF to similar levels as to with rapamycin treatment alone, and 

likewise TAF remain unaffected. Furthermore, when we treat X-irradiated cells with 

both rapamycin and NAC, non-TAF are reduced to the same level as with either 

treatment separately i.e. there is no cumulative effect. To confirm that NAC treatment 

was reducing ROS levels in X-irradiated MRC5 cells; as before, we treated cells with 

20Gy and cultured them for 3 days in the presence of rapamycin or NAC, or both 

together, and then quantified intra-cellular ROS levels using flow cytometry analysis 

of DHE fluorescence. Neither rapamycin, NAC or a combination of the two have any 

significant effect on ROS levels in non-irradiated control cells. Expanding on our data 

showing that rapamycin significantly reduces ROS levels in X-irradiated cells (Figure 

5-5), we also observed that NAC treatment reduced ROS to a similar level (Figure 

5-7D). Moreover, the combination of rapamycin and NAC reduced ROS levels to a 

similar level as with each treatment alone, once again signifying no cumulative effect 

(Figure 5-7E). 

To test whether mTORC1 inhibition impacted on DDF stability, we transfected MRC5 

fibroblasts with an AcGFP-53BP1c fusion protein, which allowed time resolved live-

cell microscopy kinetic tracking of DDF after X-irradiation. In collaboration with Glyn 

Nelson from the von Zglinicki laboratory, we X-irradiated transfected MRC5 cells with 

20Gy, and then cultured them in either a vehicle control (DMSO) or rapamycin, 

before conducting live-cell microscopy 3 days after IR. We observed that short-lived 

53BP1 foci (<15 hours) were significantly reduced in irradiated cells treated with 

rapamycin treatment, but long-lived foci were unaffected (>15h) (Figure 5-7E).  
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Figure 5-7. mTOR Inhibition Reduces Replenishment of Short-lived foci 
following X-irradiation via ROS attenuation. (A) Mean number of TAF and non-
TAF in MRC5 cells, 10 days following genotoxic stress with 20Gy X-irradiation, 
continual etoposide treatment (50µM), 1 hour treatment with neocarzinostatin (80ng 
ml-1), or 1 hour treatment with H2O2 (400µM), in the presence of either vehicle 
control (DMSO) or rapamycin (100nM), data are mean ± SEM of n=3. (B) 
Representative images of γH2AX immuno-FISH in MRC5 fibroblasts 3 days after x-
irradiation with 20Gy, treated with either DMSO or rapamycin. Images are Huygens 
(SVI) deconvolved Z-projections of 3µM stacks taken with a 100X oil objective. White 
arrows indicate co-localisation between γH2AX and telomeric signal, and co-
localising foci are amplified in the right panel (amplified images are from single Z-
planes where co-localisation was found). Graphs represent quantification of γH2AX 
and telomere signals in selected regions of interest (dotted lines). Scale bar: 5µM. 
(C) Mean number of TAF and non-TAF in MRC5 cells, 3 days following X-irradiation 
with 20Gy, in the presence of either vehicle control (DMSO) or rapamycin (100nm) 
and NAC (2.5mM). Data are mean ± SEM of n=3. Scale bar: 5µM. (D) Mean DHE 
fluorescence in MRC5 cells, 3 days following X-irradiation with 20Gy, in the presence 
of either vehicle control (DMSO) or rapamycin (100nm) and NAC (2.5mM). Data are 
mean ± SEM of n=3. (E) Confocal time series of MRC5 expression AcGFP-53BP1c 3 
days after 20Gy X-irradiation at the indicated times (min), with and without rapamycin 
treatment. Images are compressed stacks (maximum intensity projections) with a 
4.5µm focal depth. 53BP1 foci with lifespans of less than 15 hours are labelled in red. 
Representative traces of AcGFP-53BP1c foci in one MRC5 nucleus with (rap) and 
without (DMSO) rapamycin are shown on the right. Each bar represents the track of 
one individual focus recorded for the indicated time interval. Scale bar: 5µM. 
Statistical analysis performed using One way ANOVA or two-tailed t test; * P<0.05. 

 

It has previously been published that a persistent DDR during senescence is involved 

in a feedback loop which drives mitochondrial dysfunction and increased ROS 

production (Passos et al., 2010). Having shown that mTOR inhibition can attenuate 

this increase in ROS and markers of senescence following treatment with 

senescence-inducing stimuli, we wanted to ascertain if these effects were acting 

through this pathway, by inhibiting the DDR. In collaboration with Clara-Correia Melo 

from ours and the von Zglinicki laboratory, we treated MRC5 fibroblasts with 20Gy X-

irradiation, supplemented them with either or both rapamycin and the ATM inhibitor 

Ku55933, 3 days following IR, and then analysed the cells at day 10 post-IR. 

Similarly to rapamycin treatment, ATM inhibition was also shown to inhibit 

senescence-associated increases in mitochondrial mass, however there was no 

cumulative effect when combined (Figure 5-8A-B). Furthermore, our data show that 

separately, both ATM inhibition and mTOR inhibition can attenuate the number of 
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γH2AX foci, decrease SA-β-gal activity, and reduce p21 expression, however, again, 

there is no accumulative effect upon treatment with both (Figure 5-8C-E). 

 

Figure 5-8. An epistatic association between mTOR and ATM inhibition in 
attenuating the development of X-irradiation-induced senescence. (A) A 
schematic illustration showing that proliferating MRC5 fibroblasts were treated with 
20Gy X-irradiation, and treated with either an ATM inhibitor (Ku55933) or rapamycin 
or a combination of both 3 days following IR, and then fixed at day 10 post-IR for 
analysis. (B) Mean mitochondrial mass (NAO fluorescence. Data are mean ± SEM of 
n=3. (C) Mean number of γH2AX foci per cell. Data are mean ± SEM of n=3. (D) 
Mean percentage of SA-β-Gal positive cells. Data are mean ± SEM of n=3. (E) Mean 
p21 expression via western blot. Data are mean ± SEM of n=3. Statistical analysis 
performed using two-tailed t test; * P<0.05. 

 

5.5 mTOR Inhibition Impacts on TAF and ROS in Cardiomyocytes 
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Having shown that mTORC1 inhibition can reduce the accumulation of DNA damage 

which arises from an increase in ROS after exposure to genotoxic stress, we wanted 

to investigate what effect mTORC1 inhibition would have on DNA damage and 

senescence in cardiomyocytes in vivo. Rapamycin supplementation has been shown 

to delay a number of age-related changes in mice, including alterations in tendons, 

endometrium, adrenal glands, liver and heart (Wilkinson et al., 2012), and can extend 

the lifespan of a number of different organisms (Bjedov et al., 2010; Zhang et al., 

2014). We supplemented the diet of male C57BL/6 mice with rapamycin from 3 

months of age, and then culled one group at 6.5 months of age and other at 15 

months. At 6.5 months, there is no difference in either mean number of TAF or the 

mean percentage of TAF positive cardiomyocytes for mice fed on either a control or 

rapamycin diet. We observed a significant increase in both the mean number of TAF 

and the mean percentage of TAF positive cardiomyocytes from 6.5 months to 15 

months of age in the control-fed mice. Moreover, 15 months old mice fed on a 

rapamycin diet had a significantly less mean number of TAF and the mean 

percentage of TAF positive cardiomyocytes compared to their age-matched control-

fed mice (Figure 5-9A-B). Furthermore the TAF levels in cardiomyocytes from 15 

month rapamycin-fed mice were not significantly different to control-fed mice of only 

6.5 months of age (Figure 5-9A-B). Our analysis revealed that there is no significant 

variation in the level of non-TAF in cardiomyocytes between control-fed mice of 6.5 

months and 15 months of age, and a rapamycin diet had no effect on either group 

(Figure 5-9C). Finally, we show that rapamycin treatment attenuates the 

accumulation of the lipid peroxidation marker 4-HNE and the cyclin-dependent kinase 

inhibitor p21 (Figure 5-9D-E). 
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Figure 5-9. Rapamycin supplemented diet reduces age-associated TAF 
accumulation, oxidative stress and senescence markers. (A) Mean number of 
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TAF – (B) Mean percentage of TAF positive – cardiomyocytes in mice aged 6.5 and 
15 months, on either a control or rapamycin supplemented diet. Data are represented 
as the mean for individual animals, with the horizontal line representing group mean. 
(C) Mean number of non-TAF in cardiomyocytes in mice aged 6.5 and 15 months, 
either on either a control or rapamycin supplemented diet. Data are represented as 
the mean for individual animals, with the horizontal line representing group mean. (D-
E) Quantification of the percentage of cardiomyocytes staining positive for 4-HNE (D) 
or p21 (E) by IHC, 15 month old mice fed on either a control or rapamycin 
supplemented diet. Data are represented as the mean for individual patients, with the 
horizontal line representing group mean. Statistical analysis performed using One 
way ANOVA or two-tailed t test; * P<0.05. 

 

5.6 Discussion 

 

ROS are continuously formed in living cells, both via endogenous mechanisms, such 

as oxidative phosphorylation, as well as external sources such as ionising radiation. 

It is estimated that around 0.1%-1% of oxygen used during oxidative phosphorylation 

is converted to superoxide anion (Chance et al., 1979). Moreover, cardiomyocytes 

contain an extremely high mitochondrial density, and thus produce considerable 

amounts of superoxide anion (Kaul et al., 1993). Whilst superoxide is not a strong 

oxidant, and has limited reactivity, it is converted to H2O2 by superoxide dismutase, 

which is a considerably more potent oxidant. ROS have been shown to oxidise 

bases, which can lead to mutation, as well as produce SSB, which if two are in close 

proximity on complementary DNA stands, are thought to generate DSB (Bont, 2004). 

Although ROS are involved in physiological processes, such as cell signalling 

(D'Autréaux and Toledano, 2007), and microbial defence (Dupre-Crochet et al., 

2013), if the level of ROS generation exceeds the rate in which natural antioxidant 

mechanisms can stabilise ROS, then oxidative stress ensues.   

Previously, we have shown that TAF can be induced in vitro by exposing cells to 

oxidative stress, via H2O2 treatment, and this can occur independently of DNA 

replication. Following on from this, we observed that TAF accumulate in vivo, and this 

correlated with an increase in the oxidative stress marker 4-HNE. Mitochondrial ROS 

production has also been shown to increase with age in both the heart (Judge et al., 

2005) and the vascular system of rats (Ungvari et al., 2007). Interestingly, H2O2 

production has been shown to increase in rat hearts with age, which is dependent 

upon increases in MAO-A expression (Maurel et al., 2003). MAO-A catalyses the 

oxidative deamination of monoamines, and produces H2O2 as one of the by-products 
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of this reaction, and cardiac-specific over-expression of MAO-A results in elevated 

ROS leading to increases in DNA oxidation, with mitochondrial DNA especially 

sensitive (Villeneuve et al., 2013). In particular, mitochondrial 8-oxoguanine (8-oxo-

dG) was observed, which during replication can lead to the incorrect pairing of 

adenine with 8-oxo-dG, which upon further DNA replication drives a C to A and G to 

C mutation of the genetic code. Moreover, it has been hypothesised that increased 

mitochondrial mutations lead to an inefficient ETC, which is more prone to electron 

leakage, and ROS generation, which in turn leads to more genetic mutations, 

therefore instigating what has been coined a ‘vicious cycle’ positive feedback loop 

(Alexeyev et al., 2004). Elevated ROS are known to increase lipid peroxidation, and 

our data from the previous chapter show a significant age-dependent increase in 4-

HNE, which has also been shown to be associated with other senescence markers, 

such as γH2AX and SA-β-Gal (Wang et al., 2009; Wang et al., 2010; Nelson et al., 

2012), and is considered to be the most toxic aldehyde formed as a consequence of 

lipid peroxidation (Esterbauer et al., 1991). Interestingly, our gene expression 

analysis in isolated mouse cardiomyocytes revealed an age-dependent up-regulation 

of MAO-A, and thus we wanted to further investigate if ROS could induce TAF in 

vivo. To specifically test the effect of elevated ROS on cardiomyocytes, we acquired 

cardiac tissue from a transgenic mouse model which over-expresses MAO-A 

specifically in cardiomyocytes and analysed TAF. Previous research has shown that 

the levels of MAO-A expression in the cardiomyocyte-specific MAO-A over-

expressing mice are comparable to those found in aged mice, and thus can be 

considered a physiologically relevant model (Villeneuve et al., 2013). Our data show 

that MAO-A overexpression can lead to a significant increase in TAF in mice, which 

as expected, is coupled with an increase in the oxidative stress marker 4-HNE. 

Furthermore, 4-HNE accumulation has previously been shown to be associated 

various senescent markers, including γH2AX and SA-β-Gal (Wang et al., 2009; 

Wang et al., 2010; Nelson et al., 2012). MAO-A is involved in oxidative deamination 

of dietary amines and neurotransmitters, which produce, not only H2O2 as a by-

product, but also ammonia, as well as aldehyde from the corresponding amine 

(Kaludercic et al., 2014). Moreover, to test if the observe TAF increases were ROS-

dependent, we supplemented the drinking water of a MAO-A transgenic mouse 

group with the anti-oxidant N-acetyl-cysteine (NAC), and observed that the increases 

in TAF were attenuated. Unfortunately, we did not have corresponding control 

groups, which were fed on an antioxidant diet, and thus there still remains the 
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possibility the observed decreases were due to attenuation of the age-dependent 

oxidative damage that we have previously observed. It would have also been 

beneficial to have performed 4-HNE staining on the NAC treated mice to observe if 

the anti-oxidant was attenuating the accumulation of oxidative damage with time, 

although once again, the non-transgenic controls would have been beneficial to 

conclude that the changes were not attenuation of physiological age-dependent 

changes, as opposed to MAO-A-dependent effects. Finally, it would be interesting to 

investigate if MAO-A inhibition could attenuate the age-dependent increase in 

cardiomyocyte TAF.  

To further investigate if oxidative stress could lead to telomere dysfunction, we 

analysed TAF in catalase -/- mice. Catalase is responsible for the conversion of H2O2 

into water and oxygen, and in mammalian cells it is mainly localised to the 

peroxisomes, where H2O2 generation from various oxidases is high (van den Bosch 

et al., 1992). Interestingly, catalase has also been discovered to be expressed in 

mouse and rat cardiac mitochondria (Radi et al., 1991; Rindler et al., 2013). In 

response to being fed a high fat diet, cardiac H2O2 levels become elevated, due to 

the increase in fatty acid oxidation required for fat metabolism, and consequently, 

both cardiac mitochondrial catalase content and activity also become elevated 

(Rindler et al., 2013). We observed an increase in telomere dysfunction in 

cardiomyocytes of catalase-/- mice, which compliments both our in vitro data 

providing evidence that H2O2 treatment can induce TAF independently of cell 

division, as well as our in vivo data showing an increase in TAF in MAO-A over-

expressing cardiac tissue. It would be interesting to investigate the relative effects of 

organelle-catalase modulation on TAF, for example mitochondrial-specific 

overexpression of catalase leads to an increase in lifespan and delayed development 

of cardiomyopathy in mice, whereas peroxisomal- or nuclear-specific over-expression 

of catalase had no effect (Schriner et al., 2005a). 

It is thought that an age-dependent reduction in the activity of electron transport 

complexes I and IV in cardiac mitochondria leads to elevated electron leakage and 

thus increased mitochondrial ROS generation (Navarro and Boveris, 2007). 

Interestingly, mice which have a decreased birth weight due to deprived in utero 

nutrition, show increased incidence of cardiovascular disease, which is thought to 

arise due to accelerated ageing caused by elevated oxidative stress. Moreover, by 

supplementing the diet of these mice with coenzyme Q10, an antioxidant and integral 
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ETC component, many of the accelerated ageing phenotypes such as DNA damage, 

telomere shortening, oxidative stress and cellular senescence, were reversed (Tarry-

Adkins et al., 2013), thus further implicating aberrant ROS production in cardiac 

ageing. To ascertain if mitochondrial ROS could be specifically contributing to TAF, 

we acquired hearts from MnSOD-/+ mice and performed TAF analysis. MnSOD is the 

primary superoxide anion scavenger in mitochondria, and MnSOD activity is reduced 

by around 50% in MnSOD-/+ mice, which is accompanied with elevated 

mitochondrial oxidative damage, and an increase in mitochondrial dysfunction, as 

quantified by a decrease in complex I respiration (Van Remmen et al., 2001). Our 

data show that TAF are significantly decreased in MnSOD-/+ mice, thus showing that 

mitochondrial ROS production can lead to telomere dysfunction if MnSOD activity is 

decreased. Furthermore, research has shown that there is an age-dependent 

decrease in cardiac MnSOD protein expression (Lu et al., 2014), which may be a 

contributing factor to the age-dependent increase in TAF in cardiomyocytes.  

Together, these data provide strong evidence that elevated ROS can lead to 

telomere dysfunction in cardiomyocytes in vivo, although the mechanism for this is 

not entirely understood. Cardiomyocyte proliferation is negligible and therefore the 

replication-induced conversion of a SSB to a DSB is unlikely, and thus one 

explanation for the observed increase in TAF is that ROS happens to cause two SSB 

in close proximity to one another so that a DSB is formed (Bont, 2004). The statistical 

likelihood of this would appear low, however data suggests that telomeres are more 

susceptible to oxidative stress-induced SSBs compared to the rest of the genome 

(Petersen et al., 1998), and triple guanine repeats, as found in telomeric DNA, are 

particularly sensitive to oxidative damage (Henle et al., 1999), and it is possible the 

telomere repeat code may have evolved specifically to be more susceptible to 

oxidative damage in order to protect genomic DNA from damage. Furthermore, 

budding yeast telomeres have been shown to often cluster at the nuclear periphery 

(Hediger et al., 2002), and thus are spatially more susceptible to interacting with ROS 

diffusing across the nuclear membrane. However, contrary to this, lymphocyte 

telomeres have been shown to have a higher propensity for a central nuclear 

localisation (Amrichová et al., 2003). Although, research has shown that during post-

mitotic nuclear assembly, HeLa cells telomeres become enriched at the nuclear 

periphery, a process thought to be driven by an interaction between the shelterin 

component RAP1 and the nuclear envelope protein Sun1 (Crabbe et al., 2012). It 
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would be interesting to assess the nuclear localisation of telomeres in 

cardiomyocytes in vivo, and to also investigate if those found near the peripheries are 

more prone to TAF. Moreover, the latter analysis may be flawed in fixed cells if 

cardiomyocyte telomeres have plasticity in their movement, for example in U2OS 

telomeres, live-cell imaging revealed that the majority of telomeres are physically 

constrained to a radius of around 0.5µM, however a significant minority were seen to 

move far greater distances (Molenaar et al., 2003). To address this, it would be 

necessary to perform 3D live-cell imaging, using both a fluorescent DDR and 

telomere marker, with exogenous treatment of a membrane-permeable oxidative 

reagent, and analyse if there is an altered propensity for damage accumulation 

depending upon nuclear localisation.  

It could also be surmised that the occurrence of DSB from the accumulation of SSB 

in times of elevated oxidative stress are not particularly rare occurrences, and are 

even more likely to occur at telomeres, considering it has been shown that UV-

induced telomeric SSBs are less efficiently repaired when located at telomeres (Kruk 

et al., 1995). Moreover, research has shown that X-irradiation-, oxidative stress- and 

genotoxic stress-induced telomere damage is persistent, and likely irreparable 

(Fumagalli et al., 2012; Hewitt et al., 2012). In this instance, telomeres would be 

more susceptible to accumulation of SSB than genomic DNA, due to decreased 

repair capability, resulting in an increased probability of DSBs forming, which once 

formed are irreparable (Fumagalli et al., 2012; Hewitt et al., 2012).   

Finally, another scenario to consider is that ROS do not physically cause TAF, 

however as they are important signalling molecules (D'Autréaux and Toledano, 

2007), their aberrant generation could lead to the activation of cellular pathways 

which cause telomere dysfunction by some unknown mechanism.  

Interestingly, when we collated all of the data from the MAO-A study and performed 

correlation analysis, we found that there was a significant inverse relationship 

between TAF abundance in cardiomyocytes and cardiac function, as measured by 

fractional shortening. From these data, one cannot infer that TAF drive cardiac 

dysfunction, however it would appear that TAF can be used a marker for cardiac 

dysfunction. Considering that telomere damage is thought to be irreparable 

(Fumagalli et al., 2012; Hewitt et al., 2012), and a large number of cardiomyocytes 

present at birth survive until organismal death (Bergmann et al., 2009), 
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cardiomyocyte telomere damage may represent a molecular diary of cardiac stress 

endured throughout the lifetime of an organism. As previously described, in order to 

truly ascertain the effects of TAF in vivo, a cardiomyocyte-specific mouse model such 

as the TRF1-FokI would have to be generated. 

In this and previous chapters, we have provided evidence for ROS driving telomere 

dysfunction in cardiomyocytes both in vitro and in vivo. It has previously been shown 

that ROS levels become elevated as a consequence of cellular senescence, at 

around 2 days following either X-irradiation, or telomere-dependent senescence 

induction via TRF2 inhibition (Passos et al., 2010). Furthermore, this elevation in 

ROS was shown to maintain a flux of short-lived DDF, thus instigating a persistent 

DDR (Passos et al., 2010), one of the key hallmarks of cellular senescence. An 

increase in both mitochondrial mass and ROS have been observed in response to 

oncogenic RAS activation, and thus it is thought that mitochondria-derived ROS 

could be specifically driving this stabilisation of senescence (Passos et al., 2007; 

Moiseeva et al., 2009; Passos et al., 2010). In agreement with these data, 2-4 days 

following either, oxidative- or genotoxic stress-induced senescence in human 

fibroblasts, we observed a dose-dependent increase in mitochondrial mass, which 

was accompanied with an increase in ROS. When mitochondrial mass was 

normalised to ROS, there was no change following IR, suggesting that the increase 

in mitochondrial mass could be responsible for increased ROS production. In addition 

to this, we observed a significant correlation between mitochondrial mass and 

various markers of senescence, including decreased Ki67, increased γH2AX DDF, 

and an elevation of both SA-β-Gal activity and p21 expression. The mechanistic 

target of rapamycin (mTOR) pathway, and specifically activation of mTORC1, has 

been shown to drive mitochondrial biogenesis (Morita et al., 2013). We therefore 

investigated if mTOR was involved in this senescence-associated increase of 

mitochondria, by treating cells with the mTORC1 inhibitor rapamycin. Moreover, we 

found rapamycin treatment to prevent the senescence-associated increase in 

mitochondrial mass following either oxidative- or genotoxic stress. Furthermore, 

mTORC1 inhibition by either rapamycin treatment or siRNA also prevented ROS 

elevation, as measured by DHE, following X-irradiation. Considering this abrogation 

of the senescence-associated ROS increase, we investigated if levels of DNA 

damage and markers of senescence were also affected. We observed that 

continuous rapamycin treatment could decrease both SA-β-Gal activity and p21 
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expression, 10 days following genotoxic or oxidative stress with either X-irradiation, 

etoposide, NCS or H2O2; and interestingly we observed a decrease in the levels of 

non-telomeric DDF, however TAF were insignificantly altered. One explanation for 

this observation could be that rapamycin treatment increases the rate of DNA 

damage repair, which considering that telomeric DDF have been shown to be 

irreparable (Fumagalli et al., 2012; Hewitt et al., 2012), would result in a decrease in 

only non-telomeric DDF, as observed, however evidence suggests that rapamycin 

treatment actually suppresses both homologous recombination and NHEJ by 

impairing the recruitment of Rad51 and BRCA1 to DNA repair foci (Chen et al., 

2011). Another possibility is that rapamycin treatment attenuates the ROS-dependent 

feedback loop shown to replenish short-lived DNA damage foci (Passos et al., 2010), 

and it has previously been published that short-lived foci are non-telomeric (Hewitt et 

al., 2012), thus fitting our data. To test this idea, we supplemented cells with NAC, 

and found a similar decrease in non-TAF following X-irradiation compared to 

rapamycin treatment, however, when both NAC and rapamycin were combined, we 

observed no additive effect, suggesting that rapamycin was reducing non-TAF 

through decreasing the senescence-associated increase in ROS. Additionally, NAC 

and rapamycin treatment had similar effects on ROS levels following X-irradiation, 

with no additive effect when combined. We performed live-cell imaging, using an 

AcGFP-53BP1c fusion protein, to assess the nature of the DDF foci decreased by 

rapamycin treatment following X-irradiation. We observed a decrease in the number 

of short-lived DNA damage foci, and although this experiment was not performed 

with a live-cell telomere marker, we have previously published that short-lived foci do 

not co-localise with telomeres, and considering our data in fixed cells shows only 

non-TAF decreasing, it seems plausible to conclude that rapamycin treatment 

attenuates the senescence-associated secondary ROS-driven short-lived DDF 

(Passos et al., 2010). Furthermore, our data support mTORC1 inhibition to be 

attenuating the senescent phenotype through an abrogation of ROS-driven DDR, as 

when we inhibit the key DDR protein ATM following senescence induction, we 

observe similar effects to rapamycin treatment, such as a decrease in SA-β-Gal 

activity and reduction in DDR, however we observed no accumulative effect when 

both ATM and rapamycin inhibitors are combined.  

It may appear contradictory, that we have previously shown that ROS can induce 

TAF in vivo, yet we only observe an increase in non-TAF as a consequence of 
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secondary ROS generation in vitro. We hypothesised that the DSB in vivo could be 

generated from the accumulation of SSB in close proximity on complementary 

strands. In our in vitro model, we quantified telomere dysfunction at a maximum of 10 

days following senescence-inducing treatments, whereas in our in vivo models, the 

minimum observation period was 3 months, therefore providing significantly longer 

amounts of time for the generation of DSB to occur.   

We have shown there is an age-dependent increase in TAF in cardiomyocytes in 

vivo, that TAF can be induced via oxidative stress in vivo, and that mTORC1 

inhibition can attenuate the development of senescence via decreasing the level of 

ROS and subsequent DNA damage in vitro. We therefore wanted to ascertain if 

mTORC1 inhibition could have an effect on TAF in vivo. By supplementing the diet of 

mice with rapamycin, our data show that mTORC1 inhibition from 3 months of age, 

has no effect on TAF accumulation in mouse cardiomyocytes at 6.5 months of age, 

but can significantly prevent the age-dependent increase in TAF seen between 6.5 

and 15 months of age. Our data also show that rapamycin treatment prevents the 

accumulation of a senescent-phenotype in cardiomyocytes, as quantified by an 

attenuation of the age-associated increase of lipid peroxidation marker 4-HNE, and 

expression of cyclin-dependent kinase inhibitor p21. ROS production has also been 

shown to increase with age in rat hearts (Judge et al., 2005), and our group have 

shown that mice fed on a diet supplemented with rapamycin have decreased 

mitochondrial content, as quantified by mitochondrial volume fraction and mtDNA 

copy number (Correia-Melo et al., 2016). One interpretation could therefore be that 

mTORC1 inhibition attenuates age-dependent mitochondrial mass increases, 

therefore lowering oxidative stress, resulting in less DNA damage, and thus delaying 

the development of senescence. It would therefore seem inconsistent that we did not 

see a decrease in non-TAF, however we always observe greater variation in non-

TAF, likely due to the constant flux of generation and repair (Passos et al., 2010), 

and thus we might not have had a large enough population size to detect any  subtle 

differences. TAF, however, are thought to be irreparable (Fumagalli et al., 2012; 

Hewitt et al., 2012), therefore intrinsically having less variation at any given moment, 

making them a considerably more robust marker for genotoxic stress with time. It has 

been reported that mTORC1 inhibition can improve cardiac function and reduce 

cardiac hypertrophy (Shioi et al., 2003; McMullen et al., 2004). Moreover, 

hypertrophy is a common phenotype of senescent cells (Demidenko and 



152 
 

Blagosklonny, 2009), and we have shown that TAF can induce hypertrophy in 

cardiomyocyte in vitro. An interesting experiment would be to see if rapamycin 

treatment could attenuate TAF-induced hypertrophy in vitro. 

To conclude, our data show as a proof-of-principle, that oxidative stress can increase 

telomere dysfunction in cardiomyocytes, and we have shown in the previous chapter 

that TAF are associated with numerous markers of senescence in cardiomyocytes. 

Furthermore, we show that mTORC1 inhibition, which reduces ROS production, can 

attenuate both increases in TAF and the development of a senescent-like phenotype 

in cardiomyocytes both in vitro and in vivo. It will be important for future research to 

specifically induce DSB at telomeres to determine if TAF are causative, or merely a 

consequence of cardiomyocyte senescence in vivo.  
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6 Conclusions 
 

Since the initial discovery that somatic cells have only a finite replicative capacity 

(Hayflick and Moorhead, 1961; Hayflick, 1965), numerous discoveries have 

contributed to cellular senescence becoming a field of scientific research in its own 

right. Senescence has been shown to be involved in an eclectic mix of physiological 

processes, including embryonic development (Rajagopalan and Long, 2012; Muñoz-

Espín et al., 2013a; Storer et al., 2013), wound healing (Jun and Lau, 2010) and 

tumour suppression (Serrano et al., 1997). Contrary to these beneficial roles, 

senescent cells have been implicated in eliciting a bystander effect which can induce 

paracrine senescence (Hubackova et al., 2012a; Nelson et al., 2012; Acosta et al., 

2013), drive age-related diseases in vivo (Baker et al., 2011) and even produce a 

pro-tumourigenic micro-environment (Alspach et al., 2013). One of the main drivers 

of these detrimental effects is the SASP (Coppé et al., 2008), which is thought to 

signal an immune response for clearance of senescent cells (Xue et al., 2007; Kang 

et al., 2011). However, an accumulation of senescent cells has been observed in 

several tissues across numerous mammalian species (Dimri et al., 1995; Paradis et 

al., 2001; Melk et al., 2003; Erusalimsky and Kurz, 2005; Jeyapalan et al., 2007), 

suggesting there is an age-dependent imbalance between the generation and 

clearance of senescent cells, and/or there are a subset of cellular cells which are 

resistant to clearance. Moreover, persistent senescent cells and thus a chronic SASP 

are what are thought to contribute to age-related pathologies. Interestingly, evidence 

is mounting which suggests that cellular senescence is not a phenomenon pertaining 

to proliferative cells alone, and that post-mitotic cells, including adipocytes and 

neurones, can also elicit a senescent-like phenotype (Minamino et al., 2009; Jurk et 

al., 2012). Although permanent proliferation cessation may seem inconsequential in a 

cell type which does not replicate, it will be important to determine if post-mitotic 

senescent cells are associated with a SASP which may contribute to the pathological 

effects described above.  

Irreversible cell cycle arrest was first observed to occur once cells grown in culture 

reached a specific, and reproducible, number of population doublings, and this 

process was named ‘replicative senescence’ (Hayflick, 1965). The number of times a 

cell can divide before undergoing replication has been coined the ‘Hayflick limit’, and 

this number varies between cell types and species. Telomeres have been heavily 
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implicated in governing the Hayflick limit of a cell, as due to the end-replication 

problem (Olovnikov, 1971; Watson, 1972), telomeres get progressively shorter with 

each cell division, a process which is accelerated by oxidative stress-induced SSBs 

(von Zglinicki et al., 1995; von Zglinicki et al., 2000), until they reach a critical length, 

where the t-loop structure is thought to become ‘uncapped’ and elicit a DNA damage 

response which signals for cell cycle arrest (Griffith et al., 1999). Our group observed 

there is an age-dependent increase in telomeres eliciting a DDR in murine 

enterocytes and hepatocytes in vivo, however remarkably, Q-FISH analysis revealed 

that a DDR was being elicited at telomeres independently of telomere length, and this 

observation was also made by another group in primate neurones (Fumagalli et al., 

2012; Hewitt et al., 2012). These data confounded the dogma that telomere 

dysfunction occurs solely as a result of telomere shortening, and we proposed that 

double strand breaks within telomere regions could be driving this DDR, a 

phenomenon we coined telomere-associated DNA damage foci (TAF) (Hewitt et al., 

2012).  

Considering the aforementioned observations, we questioned whether telomere 

damage could be driving a senescent-like phenotype in a non-rapidly dividing cell 

type, which should not be subject to excessive proliferation-associated telomere 

shortening, and thus would be unlikely to undergo canonical replicative senescence. 

We used cardiomyocytes as our model, as primary embryonic cardiomyocytes can 

be isolated and cultured, and the H9C2 rat cardiomyocyte line are susceptible to 

transfections.    

Our group and another had previously published that telomere damage is irreparable 

in fibroblasts (Fumagalli et al., 2012; Hewitt et al., 2012), which is of interest in 

cardiomyocytes, considering that the majority of cardiomyocytes persist throughout 

the entirety of a human lifespan (Bergmann et al., 2009). We confirmed in two 

separate cell lines that TAF are persistent in murine cardiomyocytes. DSBs can be 

generated at replication forks, due to replication errors when a SSB is encountered 

by the DNA replication machinery (Kuzminov, 1999). Furthermore, cardiomyocytes in 

vivo retain proliferative potential, however, the rates are extremely low (Bergmann et 

al., 2009), and thus DSBs are likely to occur infrequently as a result of replication 

errors. One issue is that our cell lines still retained considerable rates of proliferation, 

and thus the formation of DSBs could have been occurring due to replication errors, 

therefore not providing a physiologically relevant model. To address this, we 
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analysed DSB formation in the presence of a detectable fluorescent nucleoside, 

therefore showing that DSBs could form independently of cell division via oxidative 

stress or X-irradiation. Having observed telomere damage could occur in 

cardiomyocytes in vitro, it was then important to ascertain if telomere damage had an 

effect on cardiomyocytes. Oxidative stress via H2O2 treatment, and X-irradiation, 

although useful as a proof-of-principle for the induction and persistence of telomere 

damage, are not telomere specific, and thus inferences on the specific effect of 

telomere damage cannot be concluded. We therefore induced telomere-specific 

DSBs using a fusion protein of the FokI endonuclease, conjugated to the shelterin 

component TRF1. Our data showed that TAF could induce a senescent-like 

phenotype in cardiomyocytes, as shown by a decrease in proliferation marker Ki67, 

an increase in SA-β-Gal activity, and increased expression of p21. Previous evidence 

suggests, a minimum of 5 dysfunctional telomeres in human fibroblasts are required 

for the cell to enter cellular senescence (Kaul et al., 2012). To address the exact 

threshold of TAF required to induce a senescent phenotype in cardiomyocytes in 

vitro, it will be important to develop an inducible TRF1-FokI fusion protein to create a 

spectra of telomere damage.  

We next observed that there is an age-dependent increase in TAF in both mouse and 

human cardiomyocytes occurring independently of length in vivo. Furthermore, these 

increases in TAF correlated with various markers of senescence including cyclin-

dependent kinase inhibitors and various SASP factors. Of note, IL-6 and TGF-β were 

shown to be upregulated, both of which have been implicated in driving a detrimental 

bystander effect (Hubackova et al., 2012b; Acosta et al., 2013). Furthermore, we 

showed that conditioned medium from isolated adult cardiomyocytes could attenuate 

cell division in mouse fibroblasts, suggesting that cardiomyocytes can also elicit a 

bystander effect. It will be important to follow up these experiments to see if 

cardiomyocytes can induce other characteristics of senescence, and what the key 

drivers of this process are. Although we showed that TAF could specifically induce 

senescence in cardiomyocyte in vitro, the in vivo data is only correlative. It would be 

important to develop a mouse model, such as a cardiomyocyte-specific TRF1-Foki 

fusion protein, to specifically damage cardiomyocytes telomeres.  

Finally, we wanted to ascertain the mechanism in which telomere damage could be 

induced in cardiomyocytes in vivo. We had shown that TAF could be generated in 

cardiomyocytes in vitro via oxidative stress with H2O2 treatment, and interestingly, 
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one of the genes we observed to be upregulated with age in mouse hearts encodes 

the protein MAO-A, which produces H2O2 as a by-product, and has been shown to 

result in an age-dependent increase in H2O2 in rat hearts (Maurel et al., 2003). We 

observed that increased oxidative stress via cardiomyocyte specific MAO-A 

upregulation, or using catalase -/-, or MnSOD+/- mouse models, led to an increase in 

TAF. ROS have previously been shown to contribute to the stability of cellular 

senescence through generation of DDF which maintain a persistent DDR (Passos et 

al., 2010). We showed that the development of senescence, following genotoxic 

stress, could be attenuated by treating cells with rapamycin, which abrogated the 

senescence-associated increase in ROS. Moreover, supplementing the diet of mice 

with rapamycin resulted in an attenuation of age-related oxidative damage, TAF 

accumulation and p21 expression. Previous studies have shown rapamycin to extend 

the lifespan in numerous species (Bjedov et al., 2010; Zhang et al., 2014), and also 

to delay age-related cardiomyopathies, even when supplemented to aged mice for a 

period of just 3 months (Flynn et al., 2013). RNAseq analysis revealed that these 

rapamycin fed mice showed decreases in hypertrophy and inflammation markers, 

both of which are associated with senescence, thus it is possible that rapamycin may 

act to abrogate any existing senescence phenotype through ROS attenuation, whilst 

decreasing the rate of further damage accumulation. Furthermore, rapamycin 

treatment has been shown to reduce hydrogen peroxide release in mouse brain and 

liver, thought to be a result of reducing the abundance of mitochondrial complex I 

matrix subunits (Miwa et al., 2014b). 

To conclude, evidence is mounting that telomere shortening isn’t the only molecular 

phenomenon pertaining to telomere-related ageing (Fumagalli et al., 2012; Hewitt et 

al., 2012). Indeed, animal models exhibiting critically short telomere lengths are not 

physiologically comparable to the natural ageing process, and research across 

several mammalian species observed an inverse relationship between telomere 

length and lifespan (Gomes et al., 2011), which would suggest that short telomeres 

are not an important driver in organismal ageing. We have provided evidence that 

TAF can induce senescence in cardiomyocytes in vitro, that there is an age-

dependent increase in TAF in cardiomyocytes in vivo, which can be generated by 

oxidative stress, and cardiomyocytes display an age-related development of a 

senescent-like phenotype, which is associated with TAF. It will be important in the 

future to generate models which specifically induce telomere damage independently 
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of length in vivo, to truly ascertain if TAF are causative in driving cardiomyocyte 

senescence in vivo, and furthermore, to then develop models which specifically 

reverse the senescent phenotype or remove senescent cells, to assess the role of 

cardiomyocyte senescence in cardiac ageing.  

Finally, our data provide evidence that cardiomyocytes are associated with a 

senescent-like phenotype that this is associated with telomere damage. Although it is 

difficult to deduce causation over correlation with regard to telomere damage and 

cardiomyocyte senescence, it is difficult to argue against TAF emerging as a robust 

biomarker for cardiomyocyte ageing.  

  



158 
 

7 References 

 

Acosta, J., Banito, A., Wuestefeld, T., Georgilis, A., Janich, P., Morton, J., Athineos, 

D., Kang, T.-W., Lasitschka, F., Andrulis, M., Pascual, G., Morris, K., Khan, S., Jin, 

H., Dharmalingam, G., Snijders, A., Carroll, T., Capper, D., Pritchard, C., Inman, G., 

Longerich, T., Sansom, O., Benitah, S., Zender, L. and Gil, J. (2013) 'A complex 

secretory program orchestrated by the inflammasome controls paracrine 

senescence', Nature cell biology, 15(8), pp. 978-990. 

Acosta, J., O'Loghlen, A., Banito, A., Guijarro, M., Augert, A., Raguz, S., Fumagalli, 

M., Da Costa, M., Brown, C., Popov, N., Takatsu, Y., Melamed, J., d'Adda di 

Fagagna, F., Bernard, D., Hernando, E. and Gil, J. (2008) 'Chemokine signaling via 

the CXCR2 receptor reinforces senescence', Cell, 133(6), pp. 1006-1018. 

Adams, M., Hardenbergh, P., Constine, L. and Lipshultz, S. (2003) 'Radiation-

associated cardiovascular disease', Critical reviews in oncology/hematology, 45(1), 

pp. 55-75. 

Agarwal, P., Sandey, M., DeInnocentes, P. and Bird, R. (2013) 'Tumor suppressor 

gene p16/INK4A/CDKN2A-dependent regulation into and out of the cell cycle in a 

spontaneous canine model of breast cancer', Journal of cellular biochemistry, 114(6), 

pp. 1355-1363. 

Ahmed, S., Passos, J., Birket, M., Beckmann, T., Brings, S., Peters, H., Birch-

Machin, M., von Zglinicki, T. and Saretzki, G. (2008) 'Telomerase does not 

counteract telomere shortening but protects mitochondrial function under oxidative 

stress', Journal of cell science, 121(Pt 7), pp. 1046-1053. 

Alcorta, D., Xiong, Y., Phelps, D., Hannon, G., Beach, D. and Barrett, J. (1996) 

'Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative 

senescence of normal human fibroblasts', Proceedings of the National Academy of 

Sciences of the United States of America, 93(24), pp. 13742-13747. 

Alexeyev, M.F., Ledoux, S.P. and Wilson, G.L. (2004) 'Mitochondrial DNA and aging', 

Clin Sci (Lond), 107(4), pp. 355-64. 

Alspach, E., Fu, Y. and Stewart, S. (2013) 'Senescence and the pro-tumorigenic 

stroma', Critical reviews in oncogenesis, 18(6), pp. 549-558. 

Amrichová, J., Lukásová, E., Kozubek, S. and Kozubek, M. (2003) 'Nuclear and 

territorial topography of chromosome telomeres in human lymphocytes', 

Experimental cell research, 289(1), pp. 11-26. 



159 
 

Ancrile, B., Lim, K.-H. and Counter, C. (2007) 'Oncogenic Ras-induced secretion of 

IL6 is required for tumorigenesis', Genes & development, 21(14), pp. 1714-1719. 

Anisimov, V., Zabezhinski, M., Popovich, I., Piskunova, T., Semenchenko, A., 

Tyndyk, M., Yurova, M., Rosenfeld, S. and Blagosklonny, M. (2011) 'Rapamycin 

increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice', 

Cell cycle (Georgetown, Tex.), 10(24), pp. 4230-4236. 

Aoshiba, K., Tsuji, T., Kameyama, S., Itoh, M., Semba, S., Yamaguchi, K. and 

Nakamura, H. (2013) 'Senescence-associated secretory phenotype in a mouse 

model of bleomycin-induced lung injury', Experimental and toxicologic pathology : 

official journal of the Gesellschaft für Toxikologische Pathologie, 65(7-8), pp. 1053-

1062. 

Aoshiba, K., Tsuji, T. and Nagai, A. (2003) 'Bleomycin induces cellular senescence in 

alveolar epithelial cells', The European respiratory journal, 22(3), pp. 436-443. 

Appella, E. and Anderson, C. (2001) 'Post-translational modifications and activation 

of p53 by genotoxic stresses', European journal of biochemistry / FEBS, 268(10), pp. 

2764-2772. 

Azzalin, C., Mucciolo, E., Bertoni, L. and Giulotto, E. (1997) 'Fluorescence in situ 

hybridization with a synthetic (T2AG3)n polynucleotide detects several 

intrachromosomal telomere-like repeats on human chromosomes', Cytogenetics and 

cell genetics, 78(2), pp. 112-115. 

Bae, N. and Baumann, P. (2007) 'A RAP1/TRF2 complex inhibits nonhomologous 

end-joining at human telomeric DNA ends', Molecular cell, 26(3), pp. 323-334. 

Baker, D., Jeganathan, K., Cameron, J., Thompson, M., Juneja, S., Kopecka, A., 

Kumar, R., Jenkins, R., de Groen, P., Roche, P. and van Deursen, J. (2004) 'BubR1 

insufficiency causes early onset of aging-associated phenotypes and infertility in 

mice', Nature genetics, 36(7), pp. 744-749. 

Baker, D., Perez-Terzic, C., Jin, F., Pitel, K., Niederländer, N., Jeganathan, K., 

Yamada, S., Reyes, S., Rowe, L., Hiddinga, H., Eberhardt, N., Terzic, A. and van 

Deursen, J. (2008) 'Opposing roles for p16Ink4a and p19Arf in senescence and 

ageing caused by BubR1 insufficiency', Nature cell biology, 10(7), pp. 825-836. 

Baker, D., Wijshake, T., Tchkonia, T., LeBrasseur, N., Childs, B., van de Sluis, B., 

Kirkland, J. and van Deursen, J. (2011) 'Clearance of p16Ink4a-positive senescent 

cells delays ageing-associated disorders', Nature, 479(7372), pp. 232-236. 



160 
 

Bakkenist, C. and Kastan, M. (2003) 'DNA damage activates ATM through 

intermolecular autophosphorylation and dimer dissociation', Nature, 421(6922), pp. 

499-506. 

Bär, C., Bernardes de Jesus, B., Serrano, R., Tejera, A., Ayuso, E., Jimenez, V., 

Formentini, I., Bobadilla, M., Mizrahi, J., de Martino, A., Gomez, G., Pisano, D., 

Mulero, F., Wollert, K., Bosch, F. and Blasco, M. (2014) 'Telomerase expression 

confers cardioprotection in the adult mouse heart after acute myocardial infarction', 

Nature communications, 5, p. 5863. 

Barnouin, K., Dubuisson, M.L., Child, E.S., Fernandez de Mattos, S., Glassford, J., 

Medema, R.H., Mann, D.J. and Lam, E.W. (2002) 'H2O2 induces a transient multi-

phase cell cycle arrest in mouse fibroblasts through modulating cyclin D and p21Cip1 

expression', J Biol Chem, 277(16), pp. 13761-70. 

Bartholomew, J., Volonte, D. and Galbiati, F. (2009) 'Caveolin-1 regulates the 

antagonistic pleiotropic properties of cellular senescence through a novel Mdm2/p53-

mediated pathway', Cancer research, 69(7), pp. 2878-2886. 

Bartkova, J., Horejsí, Z., Koed, K., Krämer, A., Tort, F., Zieger, K., Guldberg, P., 

Sehested, M., Nesland, J., Lukas, C., Ørntoft, T., Lukas, J. and Bartek, J. (2005) 

'DNA damage response as a candidate anti-cancer barrier in early human 

tumorigenesis', Nature, 434(7035), pp. 864-870. 

Bartkova, J., Rezaei, N., Liontos, M., Karakaidos, P., Kletsas, D., Issaeva, N., 

Vassiliou, L.-V.F., Kolettas, E., Niforou, K., Zoumpourlis, V., Takaoka, M., Nakagawa, 

H., Tort, F., Fugger, K., Johansson, F., Sehested, M., Andersen, C., Dyrskjot, L., 

Ørntoft, T., Lukas, J., Kittas, C., Helleday, T., Halazonetis, T., Bartek, J. and 

Gorgoulis, V. (2006) 'Oncogene-induced senescence is part of the tumorigenesis 

barrier imposed by DNA damage checkpoints', Nature, 444(7119), pp. 633-637. 

Beauséjour, C., Krtolica, A., Galimi, F., Narita, M., Lowe, S., Yaswen, P. and 

Campisi, J. (2003) 'Reversal of human cellular senescence: roles of the p53 and p16 

pathways', The EMBO journal, 22(16), pp. 4212-4222. 

Bekker-Jensen, S., Lukas, C., Melander, F., Bartek, J. and Lukas, J. (2005) 'Dynamic 

assembly and sustained retention of 53BP1 at the sites of DNA damage are 

controlled by Mdc1/NFBD1', The Journal of cell biology, 170(2), pp. 201-211. 

Berenji, K., Drazner, M.H., Rothermel, B.A. and Hill, J.A. (2005) 'Does load-induced 

ventricular hypertrophy progress to systolic heart failure?', Am J Physiol Heart Circ 

Physiol, 289(1), pp. H8-H16. 



161 
 

Bergmann, O., Bhardwaj, R., Bernard, S., Zdunek, S., Barnabé-Heider, F., Walsh, S., 

Zupicich, J., Alkass, K., Buchholz, B., Druid, H., Jovinge, S. and Frisén, J. (2009) 

'Evidence for cardiomyocyte renewal in humans', Science (New York, N.Y.), 

324(5923), pp. 98-102. 

Bernet, J., Doles, J., Hall, J., Kelly Tanaka, K., Carter, T. and Olwin, B. (2014) 'p38 

MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal 

muscle of aged mice', Nature medicine, 20(3), pp. 265-271. 

Besancenot, R., Chaligné, R., Tonetti, C., Pasquier, F., Marty, C., Lécluse, Y., 

Vainchenker, W., Constantinescu, S. and Giraudier, S. (2010) 'A senescence-like 

cell-cycle arrest occurs during megakaryocytic maturation: implications for 

physiological and pathological megakaryocytic proliferation', PLoS biology, 8(9). 

Bevona, C., Goggins, W., Quinn, T., Fullerton, J. and Tsao, H. (2003) 'Cutaneous 

melanomas associated with nevi', Archives of dermatology, 139(12), p. 1620. 

Bhatia, B., Multani, A., Patrawala, L., Chen, X., Calhoun-Davis, T., Zhou, J., 

Schroeder, L., Schneider-Broussard, R., Shen, J., Pathak, S., Chang, S. and Tang, 

D. (2008) 'Evidence that senescent human prostate epithelial cells enhance 

tumorigenicity: cell fusion as a potential mechanism and inhibition by p16INK4a and 

hTERT', International journal of cancer. Journal international du cancer, 122(7), pp. 

1483-1495. 

Bianchi, A., Stansel, R., Fairall, L., Griffith, J., Rhodes, D. and de Lange, T. (1999) 

'TRF1 binds a bipartite telomeric site with extreme spatial flexibility', The EMBO 

journal, 18(20), pp. 5735-5744. 

Bjedov, I., Toivonen, J., Kerr, F., Slack, C., Jacobson, J., Foley, A. and Partridge, L. 

(2010) 'Mechanisms of life span extension by rapamycin in the fruit fly Drosophila 

melanogaster', Cell metabolism, 11(1), pp. 35-46. 

Blackburn, E. (1991) 'Structure and function of telomeres', Nature, 350(6319), pp. 

569-573. 

Blasco, M. (2005) 'Telomeres and human disease: ageing, cancer and beyond', 

Nature reviews. Genetics, 6(8), pp. 611-622. 

Blasco, M.A., Lee, H.W., Hande, M.P., Samper, E., Lansdorp, P.M., DePinho, R.A. 

and Greider, C.W. (1997) 'Telomere shortening and tumor formation by mouse cells 

lacking telomerase RNA', Cell, 91(1), pp. 25-34. 

Bodnar, A., Ouellette, M., Frolkis, M., Holt, S., Chiu, C., Morin, G., Harley, C., Shay, 

J., Lichtsteiner, S. and Wright, W. (1998a) 'Extension of life-span by introduction of 



162 
 

telomerase into normal human cells', Science (New York, N.Y.), 279(5349), pp. 349-

352. 

Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.P., Morin, G.B., Harley, 

C.B., Shay, J.W., Lichtsteiner, S. and Wright, W.E. (1998b) 'Extension of life-span by 

introduction of telomerase into normal human cells', Science, 279(5349), pp. 349-52. 

Bont, R.D. (2004) 'Endogenous DNA damage in humans: a review of quantitative 

data', Mutagenesis, 19. 

Bracken, A., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gargiulo, G., Beekman, 

C., Theilgaard-Mönch, K., Minucci, S., Porse, B., Marine, J.-C., Hansen, K. and Helin, 

K. (2007) 'The Polycomb group proteins bind throughout the INK4A-ARF locus and 

are disassociated in senescent cells', Genes & development, 21(5), pp. 525-530. 

Bradshaw, P., Stavropoulos, D. and Meyn, M. (2005) 'Human telomeric protein TRF2 

associates with genomic double-strand breaks as an early response to DNA 

damage', Nature genetics, 37(2), pp. 193-197. 

Braig, M., Lee, S., Loddenkemper, C., Rudolph, C., Peters, A., Schlegelberger, B., 

Stein, H., Dörken, B., Jenuwein, T. and Schmitt, C. (2005) 'Oncogene-induced 

senescence as an initial barrier in lymphoma development', Nature, 436(7051), pp. 

660-665. 

Braig, M. and Schmitt, C. (2006) 'Oncogene-induced senescence: putting the brakes 

on tumor development', Cancer research, 66(6), pp. 2881-2884. 

Brinda, R., Coralie, V., Zdenek, B., Janet, E.D., Shouqing, L., Lourdes, G.O., 

Francesco, S., Douglas, F.E., Rainer, D., Cahir, J.O.K. and David, C.R. (2004) 

'Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine 

expansions in fly and mouse models of Huntington disease', Nature Genetics, 36. 

Brown, J., Wei, W. and Sedivy, J. (1997) 'Bypass of senescence after disruption of 

p21CIP1/WAF1 gene in normal diploid human fibroblasts', Science (New York, N.Y.), 

277(5327), pp. 831-834. 

Brown, K.A., Didion, S.P., Andresen, J.J. and Faraci, F.M. (2007) 'Effect of aging, 

MnSOD deficiency, and genetic background on endothelial function: evidence for 

MnSOD haploinsufficiency', Arterioscler Thromb Vasc Biol, 27(9), pp. 1941-6. 

Burkauskiene, A., Mackiewicz, Z., Virtanen, I. and Konttinen, Y.T. (2006) 'Age-related 

changes in myocardial nerve and collagen networks of the auricle of the right atrium', 

Acta Cardiol, 61(5), pp. 513-8. 



163 
 

Cameron, K., Golightly, A., Miwa, S., Speakman, J., Boys, R. and von Zglinicki, T. 

(2011) 'Gross energy metabolism in mice under late onset, short term caloric 

restriction', Mechanisms of ageing and development, 132(4), pp. 202-209. 

Campisi, J. (2001) 'Cellular senescence as a tumor-suppressor mechanism', Trends 

in cell biology, 11(11), p. 31. 

Campisi, J. (2005) 'Senescent cells, tumor suppression, and organismal aging: good 

citizens, bad neighbors', Cell, 120(4), pp. 513-522. 

Campisi, J. (2011) 'Cellular senescence: putting the paradoxes in perspective', 

Current opinion in genetics & development, 21(1), pp. 107-112. 

Campisi, J. (2013) 'Aging, cellular senescence, and cancer', Annual review of 

physiology, 75, pp. 685-705. 

Campisi, J. and d'Adda di Fagagna, F. (2007) 'Cellular senescence: when bad things 

happen to good cells', Nature reviews. Molecular cell biology, 8(9), pp. 729-740. 

Carson, C., Schwartz, R., Stracker, T., Lilley, C., Lee, D. and Weitzman, M. (2003) 

'The Mre11 complex is required for ATM activation and the G2/M checkpoint', The 

EMBO journal, 22(24), pp. 6610-6620. 

Cawthon, R. (2002) 'Telomere measurement by quantitative PCR', Nucleic acids 

research, 30(10). 

Celli, G. and de Lange, T. (2005) 'DNA processing is not required for ATM-mediated 

telomere damage response after TRF2 deletion', Nature cell biology, 7(7), pp. 712-

718. 

Cesare, A., Hayashi, M., Crabbe, L. and Karlseder, J. (2013) 'The telomere 

deprotection response is functionally distinct from the genomic DNA damage 

response', Molecular cell, 51(2), pp. 141-155. 

Cesare, A., Kaul, Z., Cohen, S., Napier, C., Pickett, H., Neumann, A. and Reddel, R. 

(2009) 'Spontaneous occurrence of telomeric DNA damage response in the absence 

of chromosome fusions', Nature structural & molecular biology, 16(12), pp. 1244-

1251. 

Chance, B., Sies, H. and Boveris, A. (1979) 'Hydroperoxide metabolism in 

mammalian organs', Physiological reviews, 59(3), pp. 527-605. 

Chen, H., Ma, Z., Vanderwaal, R.P., Feng, Z., Gonzalez-Suarez, I., Wang, S., Zhang, 

J., Roti Roti, J.L. and Gonzalo, S. (2011) 'The mTOR inhibitor rapamycin suppresses 

DNA double-strand break repair', Radiat Res, 175(2), pp. 214-24. 

Chen, Q., Fischer, A., Reagan, J., Yan, L. and Ames, B. (1995) 'Oxidative DNA 

damage and senescence of human diploid fibroblast cells', Proceedings of the 



164 
 

National Academy of Sciences of the United States of America, 92(10), pp. 4337-

4341. 

Chen, Q., Prowse, K., Tu, V., Purdom, S. and Linskens, M. (2001) 'Uncoupling the 

senescent phenotype from telomere shortening in hydrogen peroxide-treated 

fibroblasts', Experimental cell research, 265(2), pp. 294-303. 

Chen, Q.M., Bartholomew, J.C., Campisi, J., Acosta, M., Reagan, J.D. and Ames, 

B.N. (1998) 'Molecular analysis of H2O2-induced senescent-like growth arrest in 

normal human fibroblasts: p53 and Rb control G1 arrest but not cell replication', 

Biochem J, 332 ( Pt 1), pp. 43-50. 

Chen, Z., Trotman, L., Shaffer, D., Lin, H.-K., Dotan, Z., Niki, M., Koutcher, J., Scher, 

H., Ludwig, T., Gerald, W., Cordon-Cardo, C. and Pandolfi, P. (2005) 'Crucial role of 

p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis', 

Nature, 436(7051), pp. 725-730. 

Chien, Y., Scuoppo, C., Wang, X., Fang, X., Balgley, B., Bolden, J., Premsrirut, P., 

Luo, W., Chicas, A., Lee, C., Kogan, S. and Lowe, S. (2011) 'Control of the 

senescence-associated secretory phenotype by NF-κB promotes senescence and 

enhances chemosensitivity', Genes & development, 25(20), pp. 2125-2136. 

Chuprin, A., Gal, H., Biron-Shental, T., Biran, A., Amiel, A., Rozenblatt, S. and 

Krizhanovsky, V. (2013) 'Cell fusion induced by ERVWE1 or measles virus causes 

cellular senescence', Genes & development, 27(21), pp. 2356-2366. 

Collado, M., Gil, J., Efeyan, A., Guerra, C., Schuhmacher, A., Barradas, M., 

Benguría, A., Zaballos, A., Flores, J., Barbacid, M., Beach, D. and Serrano, M. (2005) 

'Tumour biology: senescence in premalignant tumours', Nature, 436(7051), p. 642. 

Coppé, J.-P., Desprez, P.-Y., Krtolica, A. and Campisi, J. (2010a) 'The senescence-

associated secretory phenotype: the dark side of tumor suppression', Annual review 

of pathology, 5, pp. 99-118. 

Coppé, J.-P., Kauser, K., Campisi, J. and Beauséjour, C. (2006) 'Secretion of 

vascular endothelial growth factor by primary human fibroblasts at senescence', The 

Journal of biological chemistry, 281(40), pp. 29568-29574. 

Coppé, J.-P., Patil, C., Rodier, F., Krtolica, A., Beauséjour, C., Parrinello, S., 

Hodgson, J., Chin, K., Desprez, P.-Y. and Campisi, J. (2010b) 'A human-like 

senescence-associated secretory phenotype is conserved in mouse cells dependent 

on physiological oxygen', PLoS ONE, 5(2). 

Coppé, J.-P., Patil, C., Rodier, F., Sun, Y., Muñoz, D., Goldstein, J., Nelson, P., 

Desprez, P.-Y. and Campisi, J. (2008) 'Senescence-associated secretory phenotypes 



165 
 

reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor 

suppressor', PLoS biology, 6(12), pp. 2853-2868. 

Cortez, D., Guntuku, S., Qin, J. and Elledge, S. (2001) 'ATR and ATRIP: partners in 

checkpoint signaling', Science (New York, N.Y.), 294(5547), pp. 1713-1716. 

Cosgrove, B., Gilbert, P., Porpiglia, E., Mourkioti, F., Lee, S., Corbel, S., Llewellyn, 

M., Delp, S. and Blau, H. (2014) 'Rejuvenation of the muscle stem cell population 

restores strength to injured aged muscles', Nature medicine, 20(3), pp. 255-264. 

Counter, C., Avilion, A., LeFeuvre, C., Stewart, N., Greider, C., Harley, C. and 

Bacchetti, S. (1992) 'Telomere shortening associated with chromosome instability is 

arrested in immortal cells which express telomerase activity', The EMBO journal, 

11(5), pp. 1921-1929. 

Court, R., Chapman, L., Fairall, L. and Rhodes, D. (2005) 'How the human telomeric 

proteins TRF1 and TRF2 recognize telomeric DNA: a view from high-resolution 

crystal structures', EMBO reports, 6(1), pp. 39-45. 

Courtois-Cox, S., Genther Williams, S., Reczek, E., Johnson, B., McGillicuddy, L., 

Johannessen, C., Hollstein, P., MacCollin, M. and Cichowski, K. (2006) 'A negative 

feedback signaling network underlies oncogene-induced senescence', Cancer cell, 

10(6), pp. 459-472. 

Crabb, J.W., O'Neil, J., Miyagi, M., West, K. and Hoff, H.F. (2002) 'Hydroxynonenal 

inactivates cathepsin B by forming Michael adducts with active site residues', Protein 

Sci, 11(4), pp. 831-40. 

Crabbe, L., Cesare, A., Kasuboski, J., Fitzpatrick, J. and Karlseder, J. (2012) 'Human 

telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly', 

Cell reports, 2(6), pp. 1521-1529. 

Cui, H., Kong, Y. and Zhang, H. (2012) 'Oxidative stress, mitochondrial dysfunction, 

and aging', J Signal Transduct, 2012, p. 646354. 

d'Adda di Fagagna, F., Reaper, P., Clay-Farrace, L., Fiegler, H., Carr, P., Von 

Zglinicki, T., Saretzki, G., Carter, N. and Jackson, S. (2003) 'A DNA damage 

checkpoint response in telomere-initiated senescence', Nature, 426(6963), pp. 194-

198. 

D'Autréaux, B. and Toledano, M. (2007) 'ROS as signalling molecules: mechanisms 

that generate specificity in ROS homeostasis', Nature reviews. Molecular cell biology, 

8(10), pp. 813-824. 

Dai, D.F., Chen, T., Wanagat, J., Laflamme, M., Marcinek, D.J., Emond, M.J., Ngo, 

C.P., Prolla, T.A. and Rabinovitch, P.S. (2010) 'Age-dependent cardiomyopathy in 



166 
 

mitochondrial mutator mice is attenuated by overexpression of catalase targeted to 

mitochondria', Aging Cell, 9(4), pp. 536-44. 

Dai, D.F., Santana, L.F., Vermulst, M., Tomazela, D.M., Emond, M.J., MacCoss, 

M.J., Gollahon, K., Martin, G.M., Loeb, L.A., Ladiges, W.C. and Rabinovitch, P.S. 

(2009) 'Overexpression of catalase targeted to mitochondria attenuates murine 

cardiac aging', Circulation, 119(21), pp. 2789-97. 

Dankort, D., Filenova, E., Collado, M., Serrano, M., Jones, K. and McMahon, M. 

(2007) 'A new mouse model to explore the initiation, progression, and therapy of 

BRAFV600E-induced lung tumors', Genes & development, 21(4), pp. 379-384. 

Darby, S., McGale, P., Peto, R., Granath, F., Hall, P. and Ekbom, A. (2003) 'Mortality 

from cardiovascular disease more than 10 years after radiotherapy for breast cancer: 

nationwide cohort study of 90 000 Swedish women', BMJ (Clinical research ed.), 

326(7383), pp. 256-257. 

de Lange, T. (2005) 'Shelterin: the protein complex that shapes and safeguards 

human telomeres', Genes & development, 19(18), pp. 2100-2110. 

Demaria, M., Ohtani, N., Youssef, S., Rodier, F., Toussaint, W., Mitchell, J., Laberge, 

R.-M., Vijg, J., Van Steeg, H., Dollé, M., Hoeijmakers, J., de Bruin, A., Hara, E. and 

Campisi, J. (2014) 'An essential role for senescent cells in optimal wound healing 

through secretion of PDGF-AA', Developmental cell, 31(6), pp. 722-733. 

Demidenko, Z. and Blagosklonny, M. (2009) 'Quantifying pharmacologic suppression 

of cellular senescence: prevention of cellular hypertrophy versus preservation of 

proliferative potential', Aging, 1(12), pp. 1008-1016. 

Deng, C., Zhang, P., Harper, J., Elledge, S. and Leder, P. (1995) 'Mice lacking 

p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint 

control', Cell, 82(4), pp. 675-684. 

Der, C., Krontiris, T. and Cooper, G. (1982) 'Transforming genes of human bladder 

and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten 

sarcoma viruses', Proceedings of the National Academy of Sciences of the United 

States of America, 79(11), pp. 3637-3640. 

Di Leonardo, A., Linke, S., Clarkin, K. and Wahl, G. (1994) 'DNA damage triggers a 

prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal 

human fibroblasts', Genes & development, 8(21), pp. 2540-2551. 

Di Micco, R., Fumagalli, M., Cicalese, A., Piccinin, S., Gasparini, P., Luise, C., 

Schurra, C., Garre, M., Nuciforo, P., Bensimon, A., Maestro, R., Pelicci, P. and 



167 
 

d'Adda di Fagagna, F. (2006) 'Oncogene-induced senescence is a DNA damage 

response triggered by DNA hyper-replication', Nature, 444(7119), pp. 638-642. 

Dimri, G., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E., 

Linskens, M., Rubelj, I. and Pereira-Smith, O. (1995) 'A biomarker that identifies 

senescent human cells in culture and in aging skin in vivo', Proceedings of the 

National Academy of Sciences of the United States of America, 92(20), pp. 9363-

9367. 

Doksani, Y., Wu, J., de Lange, T. and Zhuang, X. (2013) 'Super-Resolution 

Fluorescence Imaging of Telomeres Reveals TRF2-Dependent T-loop Formation', 

Cell, 155(2), pp. 345-356. 

Donath, M., Dalmas, É., Sauter, N. and Böni-Schnetzler, M. (2013) 'Inflammation in 

obesity and diabetes: islet dysfunction and therapeutic opportunity', Cell metabolism, 

17(6), pp. 860-872. 

Dong, R., Xu, X., Li, G., Feng, W., Zhao, G., Zhao, J., Wang, D. and Tu, L. (2013) 

'Bradykinin inhibits oxidative stress-induced cardiomyocytes senescence via 

regulating redox state', PLoS ONE, 8(10). 

Duan, J., Duan, J., Zhang, Z. and Tong, T. (2005) 'Irreversible cellular senescence 

induced by prolonged exposure to H2O2 involves DNA-damage-and-repair genes 

and telomere shortening', The International Journal of Biochemistry & Cell Biology, 

37(7), pp. 1407-1420. 

Dunham, M., Neumann, A., Fasching, C. and Reddel, R. (2000) 'Telomere 

maintenance by recombination in human cells', Nature genetics, 26(4), pp. 447-450. 

Dupre-Crochet, S., Erard, M. and Nubetae, O. (2013) 'ROS production in 

phagocytes: why, when, and where?', J Leukoc Biol, 94(4), pp. 657-70. 

Dyson, N. (1998) 'The regulation of E2F by pRB-family proteins', Genes Dev, 12(15), 

pp. 2245-62. 

el-Deiry, W., Tokino, T., Velculescu, V., Levy, D., Parsons, R., Trent, J., Lin, D., 

Mercer, W., Kinzler, K. and Vogelstein, B. (1993) 'WAF1, a potential mediator of p53 

tumor suppression', Cell, 75(4), pp. 817-825. 

Elizabeth, H.B. (2001) 'Switching and Signaling at the Telomere'. 

Ellis, R., Yuan, J. and Horvitz, H. (1991) 'Mechanisms and functions of cell death', 

Annual review of cell biology, 7, pp. 663-698. 

Erusalimsky, J. and Kurz, D. (2005) 'Cellular senescence in vivo: its relevance in 

ageing and cardiovascular disease', Experimental gerontology, 40(8-9), pp. 634-642. 



168 
 

Esterbauer, H., Schaur, R.J. and Zollner, H. (1991) 'Chemistry and biochemistry of 4-

hydroxynonenal, malonaldehyde and related aldehydes', Free Radic Biol Med, 11(1), 

pp. 81-128. 

Falck, J., Coates, J. and Jackson, S. (2005) 'Conserved modes of recruitment of 

ATM, ATR and DNA-PKcs to sites of DNA damage', Nature, 434(7033), pp. 605-611. 

Ferrington, D.A. and Kapphahn, R.J. (2004) 'Catalytic site-specific inhibition of the 

20S proteasome by 4-hydroxynonenal', FEBS Lett, 578(3), pp. 217-23. 

Fingar, D. and Blenis, J. (2004) 'Target of rapamycin (TOR): an integrator of nutrient 

and growth factor signals and coordinator of cell growth and cell cycle progression', 

Oncogene, 23(18), pp. 3151-3171. 

Flores, I., Canela, A., Vera, E., Tejera, A., Cotsarelis, G. and Blasco, M. (2008) 'The 

longest telomeres: a general signature of adult stem cell compartments', Genes & 

development, 22(5), pp. 654-667. 

Flynn, J., O'Leary, M., Zambataro, C., Academia, E., Presley, M., Garrett, B., 

Zykovich, A., Mooney, S., Strong, R., Rosen, C., Kapahi, P., Nelson, M., Kennedy, B. 

and Melov, S. (2013) 'Late-life rapamycin treatment reverses age-related heart 

dysfunction', Aging cell, 12(5), pp. 851-862. 

Franco, S., Blasco, M., Siedlak, S., Harris, P., Moreira, P., Perry, G. and Smith, M. 

(2006) 'Telomeres and telomerase in Alzheimer's disease: epiphenomena or a new 

focus for therapeutic strategy?', Alzheimer's & dementia : the journal of the 

Alzheimer's Association, 2(3), pp. 164-168. 

Freund, A., Orjalo, A., Desprez, P.-Y. and Campisi, J. (2010) 'Inflammatory networks 

during cellular senescence: causes and consequences', Trends in molecular 

medicine, 16(5), pp. 238-246. 

Freund, A., Patil, C. and Campisi, J. (2011) 'p38MAPK is a novel DNA damage 

response-independent regulator of the senescence-associated secretory phenotype', 

The EMBO journal, 30(8), pp. 1536-1548. 

Fridovich, I. (1995) 'Superoxide radical and superoxide dismutases', Annu Rev 

Biochem, 64, pp. 97-112. 

Fujita, K., Mondal, A., Horikawa, I., Nguyen, G., Kumamoto, K., Sohn, J., Bowman, 

E., Mathe, E., Schetter, A., Pine, S., Ji, H., Vojtesek, B., Bourdon, J.-C., Lane, D. and 

Harris, C. (2009) 'p53 isoforms Delta133p53 and p53beta are endogenous regulators 

of replicative cellular senescence', Nature cell biology, 11(9), pp. 1135-1142. 

Fumagalli, M., Rossiello, F., Clerici, M., Barozzi, S., Cittaro, D., Kaplunov, J., Bucci, 

G., Dobreva, M., Matti, V., Beausejour, C., Herbig, U., Longhese, M. and d'Adda di 



169 
 

Fagagna, F. (2012) 'Telomeric DNA damage is irreparable and causes persistent 

DNA-damage-response activation', Nature cell biology, 14(4), pp. 355-365. 

Furumoto, K., Inoue, E., Nagao, N., Hiyama, E. and Miwa, N. (1998) 'Age-dependent 

telomere shortening is slowed down by enrichment of intracellular vitamin C via 

suppression of oxidative stress', Life sciences, 63(11), pp. 935-948. 

Gabriele, S., Michael, P.M. and Thomas von, Z. (2003) 'MitoQ counteracts telomere 

shortening and elongates lifespan of fibroblasts under mild oxidative stress', Aging 

Cell, 2. 

George, C.W. (1957) 'Pleiotropy, Natural Selection, and the Evolution of 

Senescence', Evolution, 11. 

Gil, J., Bernard, D., Martínez, D. and Beach, D. (2004) 'Polycomb CBX7 has a 

unifying role in cellular lifespan', Nature cell biology, 6(1), pp. 67-72. 

Gire, V., Roux, P., Wynford-Thomas, D., Brondello, J.-M. and Dulic, V. (2004) 'DNA 

damage checkpoint kinase Chk2 triggers replicative senescence', The EMBO journal, 

23(13), pp. 2554-2563. 

Goel, V., Ibrahim, N., Jiang, G., Singhal, M., Fee, S., Flotte, T., Westmoreland, S., 

Haluska, F. and Hinds, P. (2009) 'Melanocytic nevus-like hyperplasia and melanoma 

in transgenic BRAFV600E mice', Oncogene, 28(23), pp. 2289-2298. 

Gomes, N., Ryder, O., Houck, M., Charter, S., Walker, W., Forsyth, N., Austad, S., 

Venditti, C., Pagel, M., Shay, J. and Wright, W. (2011) 'Comparative biology of 

mammalian telomeres: hypotheses on ancestral states and the roles of telomeres in 

longevity determination', Aging cell, 10(5), pp. 761-768. 

Gorgoulis, V., Vassiliou, L.-V.F., Karakaidos, P., Zacharatos, P., Kotsinas, A., 

Liloglou, T., Venere, M., Ditullio, R., Kastrinakis, N., Levy, B., Kletsas, D., Yoneta, A., 

Herlyn, M., Kittas, C. and Halazonetis, T. (2005) 'Activation of the DNA damage 

checkpoint and genomic instability in human precancerous lesions', Nature, 

434(7035), pp. 907-913. 

Green, D. and Chipuk, J. (2006) 'p53 and metabolism: Inside the TIGAR', Cell, 

126(1), pp. 30-32. 

Green, D. and Evan, G. (2002) 'A matter of life and death', Cancer cell, 1(1), pp. 19-

30. 

Gregor, M. and Hotamisligil, G. (2011) 'Inflammatory mechanisms in obesity', Annual 

review of immunology, 29, pp. 415-445. 



170 
 

Griffith, J., Comeau, L., Rosenfield, S., Stansel, R., Bianchi, A., Moss, H. and de 

Lange, T. (1999) 'Mammalian telomeres end in a large duplex loop', Cell, 97(4), pp. 

503-514. 

Guo, X., Deng, Y., Lin, Y., Cosme-Blanco, W., Chan, S., He, H., Yuan, G., Brown, E. 

and Chang, S. (2007) 'Dysfunctional telomeres activate an ATM-ATR-dependent 

DNA damage response to suppress tumorigenesis', The EMBO journal, 26(22), pp. 

4709-4719. 

Guo, Z., Kozlov, S., Lavin, M., Person, M. and Paull, T. (2010) 'ATM activation by 

oxidative stress', Science (New York, N.Y.), 330(6003), pp. 517-521. 

Hanahan, D. and Weinberg, R. (2000) 'The hallmarks of cancer', Cell, 100(1), pp. 57-

70. 

Hanaoka, S., Nagadoi, A. and Nishimura, Y. (2005) 'Comparison between TRF2 and 

TRF1 of their telomeric DNA-bound structures and DNA-binding activities', Protein 

science : a publication of the Protein Society, 14(1), pp. 119-130. 

Hande, M.P., Samper, E., Lansdorp, P. and Blasco, M.A. (1999) 'Telomere length 

dynamics and chromosomal instability in cells derived from telomerase null mice', J 

Cell Biol, 144(4), pp. 589-601. 

Hansen, M., Chandra, A., Mitic, L., Onken, B., Driscoll, M. and Kenyon, C. (2008) 'A 

role for autophagy in the extension of lifespan by dietary restriction in C. elegans', 

PLoS genetics, 4(2). 

Hara, K., Maruki, Y., Long, X., Yoshino, K., Oshiro, N., Hidayat, S., Tokunaga, C., 

Avruch, J. and Yonezawa, K. (2002) 'Raptor, a binding partner of target of rapamycin 

(TOR), mediates TOR action', Cell, 110(2), pp. 177-89. 

Harley, C., Futcher, A. and Greider, C. (1990) 'Telomeres shorten during ageing of 

human fibroblasts', Nature, 345(6274), pp. 458-460. 

Harley, C.B., Vaziri, H., Counter, C.M. and Allsopp, R.C. (1992) 'The telomere 

hypothesis of cellular aging', Exp Gerontol, 27(4), pp. 375-82. 

Harman, D. (1956) 'Aging: a theory based on free radical and radiation chemistry', 

Journal of gerontology, 11(3), pp. 298-300. 

Harman, D. (1972) 'The biologic clock: the mitochondria?', J Am Geriatr Soc, 20(4), 

pp. 145-7. 

Harms, K., Nozell, S. and Chen, X. (2004) 'The common and distinct target genes of 

the p53 family transcription factors', Cellular and molecular life sciences : CMLS, 

61(7-8), pp. 822-842. 



171 
 

Harrison, D., Strong, R., Sharp, Z., Nelson, J., Astle, C., Flurkey, K., Nadon, N., 

Wilkinson, J., Frenkel, K., Carter, C., Pahor, M., Javors, M., Fernandez, E. and Miller, 

R. (2009) 'Rapamycin fed late in life extends lifespan in genetically heterogeneous 

mice', Nature, 460(7253), pp. 392-395. 

Hartman, T., Wengenack, T., Poduslo, J. and van Deursen, J. (2007) 'Mutant mice 

with small amounts of BubR1 display accelerated age-related gliosis', Neurobiology 

of aging, 28(6), pp. 921-927. 

Haupt, Y., Maya, R., Kazaz, A. and Oren, M. (1997) 'Mdm2 promotes the rapid 

degradation of p53', Nature, 387(6630), pp. 296-299. 

Haycock, P., Heydon, E., Kaptoge, S., Butterworth, A., Thompson, A. and Willeit, P. 

(2014) 'Leucocyte telomere length and risk of cardiovascular disease: systematic 

review and meta-analysis', BMJ (Clinical research ed.), 349. 

Hayflick, L. (1965) 'THE LIMITED IN VITRO LIFETIME OF HUMAN DIPLOID CELL 

STRAINS', Experimental cell research, 37, pp. 614-636. 

Hayflick, L. and Moorhead, P. (1961) 'The serial cultivation of human diploid cell 

strains', Experimental cell research, 25, pp. 585-621. 

Heaphy, C.M., Subhawong, A.P., Hong, S.M., Goggins, M.G., Montgomery, E.A., 

Gabrielson, E., Netto, G.J., Epstein, J.I., Lotan, T.L., Westra, W.H., Shih Ie, M., 

Iacobuzio-Donahue, C.A., Maitra, A., Li, Q.K., Eberhart, C.G., Taube, J.M., Rakheja, 

D., Kurman, R.J., Wu, T.C., Roden, R.B., Argani, P., De Marzo, A.M., Terracciano, 

L., Torbenson, M. and Meeker, A.K. (2011) 'Prevalence of the alternative lengthening 

of telomeres telomere maintenance mechanism in human cancer subtypes', Am J 

Pathol, 179(4), pp. 1608-15. 

Hecker, L., Logsdon, N., Kurundkar, D., Kurundkar, A., Bernard, K., Hock, T., 

Meldrum, E., Sanders, Y. and Thannickal, V. (2014) 'Reversal of persistent fibrosis in 

aging by targeting Nox4-Nrf2 redox imbalance', Science translational medicine, 

6(231). 

Hediger, F., Neumann, F., Van Houwe, G., Dubrana, K. and Gasser, S. (2002) 'Live 

imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring 

pathways in yeast', Current biology : CB, 12(24), pp. 2076-2089. 

Henderson, E. and Blackburn, E. (1989) 'An overhanging 3' terminus is a conserved 

feature of telomeres', Molecular and cellular biology, 9(1), pp. 345-348. 

Henle, E., Han, Z., Tang, N., Rai, P., Luo, Y. and Linn, S. (1999) 'Sequence-specific 

DNA cleavage by Fe2+-mediated fenton reactions has possible biological 

implications', The Journal of biological chemistry, 274(2), pp. 962-971. 



172 
 

Hensel, M., Goetzenich, A., Lutz, T., Stoehr, A., Moll, A., Rockstroh, J., Hanhoff, N., 

Jäger, H. and Mosthaf, F. (2011) 'HIV and cancer in Germany', Deutsches Ärzteblatt 

international, 108(8), pp. 117-122. 

Herbig, U., Ferreira, M., Condel, L., Carey, D. and Sedivy, J. (2006) 'Cellular 

senescence in aging primates', Science (New York, N.Y.), 311(5765), p. 1257. 

Herbig, U., Jobling, W., Chen, B., Chen, D. and Sedivy, J. (2004) 'Telomere 

shortening triggers senescence of human cells through a pathway involving ATM, 

p53, and p21(CIP1), but not p16(INK4a)', Molecular cell, 14(4), pp. 501-513. 

Hewitt, G., Jurk, D., Marques, F., Correia-Melo, C., Hardy, T., Gackowska, A., 

Anderson, R., Taschuk, M., Mann, J. and Passos, J. (2012) 'Telomeres are favoured 

targets of a persistent DNA damage response in ageing and stress-induced 

senescence', Nature communications, 3, p. 708. 

Hitomi, T., Matsuzaki, Y., Yasuda, S., Kawanaka, M., Yogosawa, S., Koyama, M., 

Tantin, D. and Sakai, T. (2007) 'Oct-1 is involved in the transcriptional repression of 

the p15(INK4b) gene', FEBS letters, 581(6), pp. 1087-1092. 

Hockemeyer, D., Daniels, J.-P., Takai, H. and de Lange, T. (2006) 'Recent expansion 

of the telomeric complex in rodents: Two distinct POT1 proteins protect mouse 

telomeres', Cell, 126(1), pp. 63-77. 

Hoenicke, L. and Zender, L. (2012) 'Immune surveillance of senescent cells--

biological significance in cancer- and non-cancer pathologies', Carcinogenesis, 33(6), 

pp. 1123-1126. 

Holmstrom, K.M. and Finkel, T. (2014) 'Cellular mechanisms and physiological 

consequences of redox-dependent signalling', Nat Rev Mol Cell Biol, 15(6), pp. 411-

21. 

Huang, T. and Rivera-Pérez, J. (2014) 'Senescence-associated β-galactosidase 

activity marks the visceral endoderm of mouse embryos but is not indicative of 

senescence', Genesis (New York, N.Y. : 2000), 52(4), pp. 300-308. 

Hubackova, S., Krejcikova, K., Bartek, J. and Hodny, Z. (2012a) 'IL1- and TGFβ-

Nox4 signaling, oxidative stress and DNA damage response are shared features of 

replicative, oncogene-induced, and drug-induced paracrine 'bystander senescence'', 

Aging, 4(12), pp. 932-951. 

Hubackova, S., Krejcikova, K., Bartek, J. and Hodny, Z. (2012b) 'IL1-and TGFβ-Nox4 

signaling, oxidative stress and DNA damage response are shared features of 

replicative, oncogene-induced, and drug-induced paracrine …', Aging (Albany NY). 



173 
 

Iacovoni, J., Caron, P., Lassadi, I., Nicolas, E., Massip, L., Trouche, D. and Legube, 

G. (2010) 'High-resolution profiling of gammaH2AX around DNA double strand 

breaks in the mammalian genome', The EMBO journal, 29(8), pp. 1446-1457. 

Itahana, K., Zou, Y., Itahana, Y., Martinez, J.-L., Beausejour, C., Jacobs, J., Van 

Lohuizen, M., Band, V., Campisi, J. and Dimri, G. (2003) 'Control of the replicative life 

span of human fibroblasts by p16 and the polycomb protein Bmi-1', Molecular and 

cellular biology, 23(1), pp. 389-401. 

Jackson, J. and Pereira-Smith, O. (2006) 'p53 is preferentially recruited to the 

promoters of growth arrest genes p21 and GADD45 during replicative senescence of 

normal human fibroblasts', Cancer research, 66(17), pp. 8356-8360. 

Jackson, S. and Bartek, J. (2009) 'The DNA-damage response in human biology and 

disease', Nature, 461(7267), pp. 1071-1078. 

Jacobs, J. and de Lange, T. (2004) 'Significant role for p16INK4a in p53-independent 

telomere-directed senescence', Current biology : CB, 14(24), pp. 2302-2308. 

Janko, N.-Ž. (2008) 'Ageing and life-long maintenance of T-cell subsets in the face of 

latent persistent infections', Nature Reviews Immunology, 8. 

Jazayeri, A., Falck, J., Lukas, C., Bartek, J., Smith, G., Lukas, J. and Jackson, S. 

(2006) 'ATM- and cell cycle-dependent regulation of ATR in response to DNA double-

strand breaks', Nature cell biology, 8(1), pp. 37-45. 

Jean-Philippe, C., Christopher, K.P., Francis, R., Yu, S., Denise, P.M., Joshua, G., 

Peter, S.N., Pierre-Yves, D., Judith, C. and Julian, D. (2008) 'Senescence-Associated 

Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS 

and the p53 Tumor Suppressor', PLoS Biology, 6. 

Jeyapalan, J., Ferreira, M., Sedivy, J. and Herbig, U. (2007) 'Accumulation of 

senescent cells in mitotic tissue of aging primates', Mechanisms of ageing and 

development, 128(1), pp. 36-44. 

Judge, S., Jang, Y., Smith, A., Hagen, T. and Leeuwenburgh, C. (2005) 'Age-

associated increases in oxidative stress and antioxidant enzyme activities in cardiac 

interfibrillar mitochondria: implications for the mitochondrial theory of aging', FASEB 

journal : official publication of the Federation of American Societies for Experimental 

Biology, 19(3), pp. 419-421. 

Jun, J.-I. and Lau, L. (2010) 'The matricellular protein CCN1 induces fibroblast 

senescence and restricts fibrosis in cutaneous wound healing', Nature cell biology, 

12(7), pp. 676-685. 



174 
 

Jurk, D., Wang, C., Miwa, S., Maddick, M., Korolchuk, V., Tsolou, A., Gonos, E., 

Thrasivoulou, C., Saffrey, M., Cameron, K. and von Zglinicki, T. (2012) 'Postmitotic 

neurons develop a p21-dependent senescence-like phenotype driven by a DNA 

damage response', Aging cell, 11(6), pp. 996-1004. 

Kaeberlein, M., Powers, R., Steffen, K., Westman, E., Hu, D., Dang, N., Kerr, E., 

Kirkland, K., Fields, S. and Kennedy, B. (2005) 'Regulation of yeast replicative life 

span by TOR and Sch9 in response to nutrients', Science (New York, N.Y.), 

310(5751), pp. 1193-1196. 

Kaludercic, N., Mialet-Perez, J., Paolocci, N., Parini, A. and Di Lisa, F. (2014) 

'Monoamine oxidases as sources of oxidants in the heart', Journal of molecular and 

cellular cardiology, 73, pp. 34-42. 

Kang, M., Kameta, A., Shin, K.-H., Baluda, M., Kim, H.-R. and Park, N.-H. (2003) 

'Senescence-associated genes in normal human oral keratinocytes', Experimental 

cell research, 287(2), pp. 272-281. 

Kang, T.-W., Yevsa, T., Woller, N., Hoenicke, L., Wuestefeld, T., Dauch, D., 

Hohmeyer, A., Gereke, M., Rudalska, R., Potapova, A., Iken, M., Vucur, M., Weiss, 

S., Heikenwalder, M., Khan, S., Gil, J., Bruder, D., Manns, M., Schirmacher, P., 

Tacke, F., Ott, M., Luedde, T., Longerich, T., Kubicka, S. and Zender, L. (2011) 

'Senescence surveillance of pre-malignant hepatocytes limits liver cancer 

development', Nature, 479(7374), pp. 547-551. 

Karl Lenhard, R., Sandy, C., Han-Woong, L., Maria, B., Geoffrey, J.G., Carol, G. and 

Ronald, A.D. (1999) 'Longevity, Stress Response, and Cancer in Aging Telomerase-

Deficient Mice', Cell, 96. 

Karlseder, J., Broccoli, D., Dai, Y., Hardy, S. and de Lange, T. (1999) 'p53- and ATM-

dependent apoptosis induced by telomeres lacking TRF2', Science (New York, N.Y.), 

283(5406), pp. 1321-1325. 

Kastan, M. (2008) 'DNA damage responses: mechanisms and roles in human 

disease: 2007 G.H.A. Clowes Memorial Award Lecture', Molecular cancer research : 

MCR, 6(4), pp. 517-524. 

Kaul, N., Siveski-Iliskovic, N., Hill, M., Slezak, J. and Singal, P.K. (1993) 'Free 

radicals and the heart', J Pharmacol Toxicol Methods, 30(2), pp. 55-67. 

Kaul, Z., Cesare, A., Huschtscha, L., Neumann, A. and Reddel, R. (2012) 'Five 

dysfunctional telomeres predict onset of senescence in human cells', EMBO reports, 

13(1), pp. 52-59. 



175 
 

Kendellen, M., Barrientos, K. and Counter, C. (2009) 'POT1 association with TRF2 

regulates telomere length', Molecular and cellular biology, 29(20), pp. 5611-5619. 

Kennedy, A., McBryan, T., Enders, G., Johnson, F., Zhang, R. and Adams, P. (2010) 

'Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do 

not form robust Senescence Associated Heterochromatin Foci', Cell division, 5, p. 16. 

Khwaja, A., Rodriguez-Viciana, P., Wennström, S., Warne, P. and Downward, J. 

(1997) 'Matrix adhesion and Ras transformation both activate a phosphoinositide 3-

OH kinase and protein kinase B/Akt cellular survival pathway', The EMBO journal, 

16(10), pp. 2783-2793. 

Kipling, D. and Cooke, H.J. (1990) 'Hypervariable ultra-long telomeres in mice', 

Nature, 347(6291), pp. 400-2. 

Klobutcher, L., Swanton, M., Donini, P. and Prescott, D. (1981) 'All gene-sized DNA 

molecules in four species of hypotrichs have the same terminal sequence and an 

unusual 3' terminus', Proceedings of the National Academy of Sciences of the United 

States of America, 78(5), pp. 3015-3019. 

Kolesnichenko, M., Hong, L., Liao, R., Vogt, P. and Sun, P. (2012) 'Attenuation of 

TORC1 signaling delays replicative and oncogenic RAS-induced senescence', Cell 

cycle (Georgetown, Tex.), 11(12), pp. 2391-2401. 

Kosar, M., Bartkova, J., Hubackova, S., Hodny, Z., Lukas, J. and Bartek, J. (2011) 

'Senescence-associated heterochromatin foci are dispensable for cellular 

senescence, occur in a cell type- and insult-dependent manner and follow expression 

of p16(ink4a)', Cell cycle (Georgetown, Tex.), 10(3), pp. 457-468. 

Krishnamurthy, J., Torrice, C., Ramsey, M., Kovalev, G., Al-Regaiey, K., Su, L. and 

Sharpless, N. (2004) 'Ink4a/Arf expression is a biomarker of aging', The Journal of 

clinical investigation, 114(9), pp. 1299-1307. 

Krizhanovsky, V., Yon, M., Dickins, R., Hearn, S., Simon, J., Miething, C., Yee, H., 

Zender, L. and Lowe, S. (2008) 'Senescence of activated stellate cells limits liver 

fibrosis', Cell, 134(4), pp. 657-667. 

Krtolica, A., Parrinello, S., Lockett, S., Desprez, P. and Campisi, J. (2001) 'Senescent 

fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer 

and aging', Proceedings of the National Academy of Sciences of the United States of 

America, 98(21), pp. 12072-12077. 

Kruk, P., Rampino, N. and Bohr, V. (1995) 'DNA damage and repair in telomeres: 

relation to aging', Proceedings of the National Academy of Sciences of the United 

States of America, 92(1), pp. 258-262. 



176 
 

Kruse, J.-P. and Gu, W. (2009) 'Modes of p53 regulation', Cell, 137(4), pp. 609-622. 

Ksiazek, K., Jörres, A. and Witowski, J. (2008) 'Senescence induces a proangiogenic 

switch in human peritoneal mesothelial cells', Rejuvenation research, 11(3), pp. 681-

683. 

Kubbutat, M., Jones, S. and Vousden, K. (1997) 'Regulation of p53 stability by 

Mdm2', Nature, 387(6630), pp. 299-303. 

Kuilman, T., Michaloglou, C., Vredeveld, L., Douma, S., van Doorn, R., Desmet, C., 

Aarden, L., Mooi, W. and Peeper, D. (2008) 'Oncogene-induced senescence relayed 

by an interleukin-dependent inflammatory network', Cell, 133(6), pp. 1019-1031. 

Kuilman, T. and Peeper, D. (2009) 'Senescence-messaging secretome: SMS-ing 

cellular stress', Nature reviews. Cancer, 9(2), pp. 81-94. 

Kuzminov, A. (1999) 'Recombinational repair of DNA damage in Escherichia coli and 

bacteriophage lambda', Microbiology and molecular biology reviews : MMBR, 63(4), 

p. 751. 

Laberge, R.-M., Awad, P., Campisi, J. and Desprez, P.-Y. (2012) 'Epithelial-

mesenchymal transition induced by senescent fibroblasts', Cancer microenvironment 

: official journal of the International Cancer Microenvironment Society, 5(1), pp. 39-

44. 

Laberge, R.-M., Sun, Y., Orjalo, A., Patil, C., Freund, A., Zhou, L., Curran, S., 

Davalos, A., Wilson-Edell, K., Liu, S., Limbad, C., Demaria, M., Li, P., Hubbard, G., 

Ikeno, Y., Javors, M., Desprez, P.-Y., Benz, C., Kapahi, P., Nelson, P. and Campisi, 

J. (2015) 'MTOR regulates the pro-tumorigenic senescence-associated secretory 

phenotype by promoting IL1A translation', Nature cell biology, 17(8), pp. 1049-1061. 

Land, H., Parada, L. and Weinberg, R. (1983) 'Tumorigenic conversion of primary 

embryo fibroblasts requires at least two cooperating oncogenes', Nature, 304(5927), 

pp. 596-602. 

Lawless, C., Wang, C., Jurk, D., Merz, A., Zglinicki, T. and Passos, J. (2010) 

'Quantitative assessment of markers for cell senescence', Experimental gerontology, 

45(10), pp. 772-778. 

Lee, A., Fenster, B., Ito, H., Takeda, K., Bae, N., Hirai, T., Yu, Z., Ferrans, V., 

Howard, B. and Finkel, T. (1999a) 'Ras proteins induce senescence by altering the 

intracellular levels of reactive oxygen species', The Journal of biological chemistry, 

274(12), pp. 7936-7940. 



177 
 

Lee, A., Fenster, B., Ito, H., Takeda, K. and Bae…, N. (1999b) 'Ras proteins induce 

senescence by altering the intracellular levels of reactive oxygen species', Journal of 

Biological …. 

Lee, B., Han, J., Im, J., Morrone, A., Johung, K., Goodwin, E., Kleijer, W., DiMaio, D. 

and Hwang, E. (2006) 'Senescence-associated beta-galactosidase is lysosomal beta-

galactosidase', Aging cell, 5(2), pp. 187-195. 

Lee, H.W., Blasco, M.A., Gottlieb, G.J., Horner, J.W., 2nd, Greider, C.W. and 

DePinho, R.A. (1998) 'Essential role of mouse telomerase in highly proliferative 

organs', Nature, 392(6676), pp. 569-74. 

Lei, M., Podell, E. and Cech, T. (2004) 'Structure of human POT1 bound to telomeric 

single-stranded DNA provides a model for chromosome end-protection', Nature 

structural & molecular biology, 11(12), pp. 1223-1229. 

Leri, A., Franco, S., Zacheo, A., Barlucchi, L., Chimenti, S., Limana, F., Nadal-

Ginard, B., Kajstura, J., Anversa, P. and Blasco, M. (2003) 'Ablation of telomerase 

and telomere loss leads to cardiac dilatation and heart failure associated with p53 

upregulation', The EMBO journal, 22(1), pp. 131-139. 

Levine, A. (1997) 'p53, the cellular gatekeeper for growth and division', Cell, 88(3), 

pp. 323-331. 

Li, F., Wang, X., Bunger, P. and Gerdes, A. (1997) 'Formation of binucleated cardiac 

myocytes in rat heart: I. Role of actin-myosin contractile ring', Journal of molecular 

and cellular cardiology, 29(6), pp. 1541-1551. 

Li, Y., Huang, T., Carlson, E., Melov, S., Ursell, P., Olson, J., Noble, L., Yoshimura, 

M., Berger, C., Chan, P., Wallace, D. and Epstein, C. (1995) 'Dilated cardiomyopathy 

and neonatal lethality in mutant mice lacking manganese superoxide dismutase', 

Nature genetics, 11(4), pp. 376-381. 

Libby, P. (2002) 'Inflammation and Atherosclerosis', Circulation, 105. 

Lieber, M. (2010) 'The mechanism of double-strand DNA break repair by the 

nonhomologous DNA end-joining pathway', Annual review of biochemistry, 79, pp. 

181-211. 

Lindsten, T., Ross, A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., 

Waymire, K.G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V.M., Adelman, 

D.M., Simon, M.C., Ma, A., Golden, J.A., Evan, G., Korsmeyer, S.J., MacGregor, 

G.R. and Thompson, C.B. (2000) 'The combined functions of proapoptotic Bcl-2 

family members bak and bax are essential for normal development of multiple 

tissues', Mol Cell, 6(6), pp. 1389-99. 



178 
 

Little, M. (2010) 'Exposure to radiation and higher risk of circulatory disease', BMJ 

(Clinical research ed.), 340. 

Liu, D. and Hornsby, P. (2007) 'Senescent human fibroblasts increase the early 

growth of xenograft tumors via matrix metalloproteinase secretion', Cancer research, 

67(7), pp. 3117-3126. 

Lombardi, R., Betocchi, S., Losi, M., Tocchetti, C., Aversa, M., Miranda, M., 

D'Alessandro, G., Cacace, A., Ciampi, Q. and Chiariello, M. (2003) 'Myocardial 

collagen turnover in hypertrophic cardiomyopathy', Circulation, 108(12), pp. 1455-

1460. 

Lou, Z., Minter-Dykhouse, K., Franco, S., Gostissa, M., Rivera, M., Celeste, A., 

Manis, J., van Deursen, J., Nussenzweig, A., Paull, T., Alt, F. and Chen, J. (2006) 

'MDC1 maintains genomic stability by participating in the amplification of ATM-

dependent DNA damage signals', Molecular cell, 21(2), pp. 187-200. 

Lowe, S. and Sherr, C. (2003) 'Tumor suppression by Ink4a-Arf: progress and 

puzzles', Current opinion in genetics & development, 13(1), pp. 77-83. 

Lu, T. and Finkel, T. (2008a) 'Free radicals and senescence', Experimental cell 

research, 314(9), pp. 1918-1922. 

Lu, T. and Finkel, T. (2008b) 'Free radicals and senescence', Exp Cell Res, 314(9), 

pp. 1918-22. 

Lu, T.M., Tsai, J.Y., Chen, Y.C., Huang, C.Y., Hsu, H.L., Weng, C.F., Shih, C.C. and 

Hsu, C.P. (2014) 'Downregulation of Sirt1 as aging change in advanced heart failure', 

J Biomed Sci, 21, p. 57. 

Lv, X.-x., Wang, X.-x., Li, K., Wang, Z.-y., Li, Z., Lv, Q., Fu, X.-m. and Hu, Z.-w. 

(2013) 'Rupatadine protects against pulmonary fibrosis by attenuating PAF-mediated 

senescence in rodents', PLoS ONE, 8(7). 

Ma, L., Wagner, J., Rice, J.J., Hu, W., Levine, A.J. and Stolovitzky, G.A. (2005) 'A 

plausible model for the digital response of p53 to DNA damage', Proc Natl Acad Sci 

U S A, 102(40), pp. 14266-71. 

Macip, S., Igarashi, M., Berggren, P., Yu, J., Lee, S. and Aaronson, S. (2003) 

'Influence of induced reactive oxygen species in p53-mediated cell fate decisions', 

Molecular and cellular biology, 23(23), pp. 8576-8585. 

Macip, S., Igarashi, M., Fang, L., Chen, A., Pan, Z.-Q., Lee, S. and Aaronson, S. 

(2002) 'Inhibition of p21-mediated ROS accumulation can rescue p21-induced 

senescence', The EMBO journal, 21(9), pp. 2180-2188. 



179 
 

Mailand, N., Falck, J., Lukas, C., Syljuâsen, R., Welcker, M., Bartek, J. and Lukas, J. 

(2000) 'Rapid destruction of human Cdc25A in response to DNA damage', Science 

(New York, N.Y.), 288(5470), pp. 1425-1429. 

Mair, W., Goymer, P., Pletcher, S. and Partridge, L. (2003) 'Demography of dietary 

restriction and death in Drosophila', Science (New York, N.Y.), 301(5640), pp. 1731-

1733. 

Malliaras, K., Zhang, Y., Seinfeld, J., Galang, G., Tseliou, E., Cheng, K., Sun, B., 

Aminzadeh, M. and Marbán, E. (2013) 'Cardiomyocyte proliferation and progenitor 

cell recruitment underlie therapeutic regeneration after myocardial infarction in the 

adult mouse heart', EMBO molecular medicine, 5(2), pp. 191-209. 

Mann, J., Chu, D., Maxwell, A., Oakley, F., Zhu, N.-L., Tsukamoto, H. and Mann, D. 

(2010) 'MeCP2 controls an epigenetic pathway that promotes myofibroblast 

transdifferentiation and fibrosis', Gastroenterology, 138(2), p. 705. 

Markowski, D., Thies, H., Gottlieb, A., Wenk, H., Wischnewsky, M. and Bullerdiek, J. 

(2013) 'HMGA2 expression in white adipose tissue linking cellular senescence with 

diabetes', Genes & nutrition, 8(5), pp. 449-456. 

Marks, R., Dorevitch, A. and Mason, G. (1990) 'Do all melanomas come from 

"moles"? A study of the histological association between melanocytic naevi and 

melanoma', The Australasian journal of dermatology, 31(2), pp. 77-80. 

Martin, J. and Buckwalter, J. (2003) 'The role of chondrocyte senescence in the 

pathogenesis of osteoarthritis and in limiting cartilage repair', The Journal of bone 

and joint surgery. American volume, 85-A Suppl 2, pp. 106-110. 

Masi, S., D'Aiuto, F., Martin-Ruiz, C., Kahn, T., Wong, A., Ghosh, A., Whincup, P., 

Kuh, D., Hughes, A., von Zglinicki, T., Hardy, R., Deanfield, J., scientific, N. and data 

collection, t. (2014) 'Rate of telomere shortening and cardiovascular damage: a 

longitudinal study in the 1946 British Birth Cohort', European heart journal, 35(46), 

pp. 3296-3303. 

Mason, D., Jackson, T. and Lin, A. (2004) 'Molecular signature of oncogenic ras-

induced senescence', Oncogene, 23(57), pp. 9238-9246. 

Matsumoto, T., Baker, D., d'Uscio, L., Mozammel, G., Katusic, Z. and van Deursen, 

J. (2007) 'Aging-associated vascular phenotype in mutant mice with low levels of 

BubR1', Stroke; a journal of cerebral circulation, 38(3), pp. 1050-1056. 

Maurel, A., Hernandez, C., Kunduzova, O., Bompart, G., Cambon, C., Parini, A. and 

Francés, B. (2003) 'Age-dependent increase in hydrogen peroxide production by 



180 
 

cardiac monoamine oxidase A in rats', American journal of physiology. Heart and 

circulatory physiology, 284(4), p. 7. 

McClintock, B. (1938) 'fusion of broken ends of sister half-chromatids following 

chromatid breakage at meiotic anaphases', University of Missouri, College of 

Agriculture, Agricultural Experiment Station. 

McClintock, B. (1941) 'The Stability of Broken Ends of Chromosomes in Zea Mays', 

Genetics, 26(2), pp. 234-282. 

McElligott, R. and Wellinger, R. (1997) 'The terminal DNA structure of mammalian 

chromosomes', The EMBO journal, 16(12), pp. 3705-3714. 

McMullen, J.R., Sherwood, M.C., Tarnavski, O., Zhang, L., Dorfman, A.L., Shioi, T. 

and Izumo, S. (2004) 'Inhibition of mTOR signaling with rapamycin regresses 

established cardiac hypertrophy induced by pressure overload', Circulation, 109(24), 

pp. 3050-5. 

Medvedik, O., Lamming, D., Kim, K. and Sinclair, D. (2007) 'MSN2 and MSN4 link 

calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces 

cerevisiae', PLoS biology, 5(10). 

Meier, A., Fiegler, H., Muñoz, P., Ellis, P., Rigler, D., Langford, C., Blasco, M., Carter, 

N. and Jackson, S. (2007) 'Spreading of mammalian DNA-damage response factors 

studied by ChIP-chip at damaged telomeres', The EMBO journal, 26(11), pp. 2707-

2718. 

Melk, A., Kittikowit, W., Sandhu, I., Halloran, K., Grimm, P., Schmidt, B. and Halloran, 

P. (2003) 'Cell senescence in rat kidneys in vivo increases with growth and age 

despite lack of telomere shortening', Kidney international, 63(6), pp. 2134-2143. 

Meyne, J., Baker, R., Hobart, H., Hsu, Ryder, O., Ward, O., Wiley, J., Wurster-Hill, 

D., Yates, T. and Moyzis, R. (1990) 'Distribution of non-telomeric sites of the 

(TTAGGG) n telomeric sequence in vertebrate chromosomes', Chromosoma, 99(1), 

pp. 3-10. 

Michaloglou, C., Vredeveld, L., Soengas, M., Denoyelle, C., Kuilman, T., van der 

Horst, C.M.A., Majoor, D., Shay, J., Mooi, W. and Peeper, D. (2005) 'BRAFE600-

associated senescence-like cell cycle arrest of human naevi', Nature, 436(7051), pp. 

720-724. 

Midwood, K., Williams, L. and Schwarzbauer, J. (2004) 'Tissue repair and the 

dynamics of the extracellular matrix', The international journal of biochemistry & cell 

biology, 36(6), pp. 1031-1037. 



181 
 

Miller, R., Harrison, D., Astle, C., Baur, J., Boyd, A., de Cabo, R., Fernandez, E., 

Flurkey, K., Javors, M., Nelson, J., Orihuela, C., Pletcher, S., Sharp, Z., Sinclair, D., 

Starnes, J., Wilkinson, J., Nadon, N. and Strong, R. (2011) 'Rapamycin, but not 

resveratrol or simvastatin, extends life span of genetically heterogeneous mice', The 

journals of gerontology. Series A, Biological sciences and medical sciences, 66(2), 

pp. 191-201. 

Millis, A., Hoyle, M., McCue, H. and Martini, H. (1992) 'Differential expression of 

metalloproteinase and tissue inhibitor of metalloproteinase genes in aged human 

fibroblasts', Experimental cell research, 201(2), pp. 373-379. 

Minamino, T., Orimo, M., Shimizu, I., Kunieda, T., Yokoyama, M., Ito, T., Nojima, A., 

Nabetani, A., Oike, Y., Matsubara, H., Ishikawa, F. and Komuro, I. (2009) 'A crucial 

role for adipose tissue p53 in the regulation of insulin resistance', Nature medicine, 

15(9), pp. 1082-1087. 

Mitchell, J.R., Wood, E. and Collins, K. (1999) 'A telomerase component is defective 

in the human disease dyskeratosis congenita', Nature, 402(6761), pp. 551-5. 

Miwa, S., Jow, H., Baty, K., Johnson, A., Czapiewski, R., Saretzki, G., Treumann, A. 

and von Zglinicki, T. (2014a) 'Low abundance of the matrix arm of complex I in 

mitochondria predicts longevity in mice', Nature communications, 5, p. 3837. 

Miwa, S., Jow, H., Baty, K., Johnson, A., Czapiewski, R., Saretzki, G., Treumann, A. 

and von Zglinicki, T. (2014b) 'Low abundance of the matrix arm of complex I in 

mitochondria predicts longevity in mice', Nat Commun, 5, p. 3837. 

Mo, J.Q., Hom, D.G. and Andersen, J.K. (1995) 'Decreases in protective enzymes 

correlates with increased oxidative damage in the aging mouse brain', Mech Ageing 

Dev, 81(2-3), pp. 73-82. 

Moiseeva, O., Bourdeau, V., Roux, A., Deschênes-Simard, X. and Ferbeyre, G. 

(2009) 'Mitochondrial dysfunction contributes to oncogene-induced senescence', 

Molecular and cellular biology, 29(16), pp. 4495-4507. 

Moldovan, G.-L., Pfander, B. and Jentsch, S. (2007) 'PCNA, the maestro of the 

replication fork', Cell, 129(4), pp. 665-679. 

Molenaar, C., Wiesmeijer, K., Verwoerd, N., Khazen, S., Eils, R., Tanke, H. and 

Dirks, R. (2003) 'Visualizing telomere dynamics in living mammalian cells using PNA 

probes', The EMBO journal, 22(24), pp. 6631-6641. 

Momand, J., Jung, D., Wilczynski, S. and Niland, J. (1998) 'The MDM2 gene 

amplification database', Nucleic acids research, 26(15), pp. 3453-3459. 



182 
 

Momand, J., Zambetti, G., Olson, D., George, D. and Levine, A. (1992) 'The mdm-2 

oncogene product forms a complex with the p53 protein and inhibits p53-mediated 

transactivation', Cell, 69(7), pp. 1237-1245. 

Mone, S., Gillman, M., Miller, T., Herman, E. and Lipshultz, S. (2004) 'Effects of 

environmental exposures on the cardiovascular system: prenatal period through 

adolescence', Pediatrics, 113(4 Suppl), pp. 1058-1069. 

Morita, M., Gravel, S.-P., Chénard, V., Sikström, K., Zheng, L., Alain, T., Gandin, V., 

Avizonis, D., Arguello, M., Zakaria, C., McLaughlan, S., Nouet, Y., Pause, A., Pollak, 

M., Gottlieb, E., Larsson, O., St-Pierre, J., Topisirovic, I. and Sonenberg, N. (2013) 

'mTORC1 controls mitochondrial activity and biogenesis through 4E-BP-dependent 

translational regulation', Cell metabolism, 18(5), pp. 698-711. 

Muñoz-Espín, D., Cañamero, M., Maraver, A., Gómez-López, G., Contreras, J., 

Murillo-Cuesta, S., Rodríguez-Baeza, A., Varela-Nieto, I., Ruberte, J., Collado, M. 

and Serrano, M. (2013a) 'Programmed cell senescence during mammalian 

embryonic development', Cell, 155(5), pp. 1104-1118. 

Muñoz-Espín, D., Cañamero, M., Maraver, A., Gómez-López, G., Contreras, J., 

Murillo-Cuesta, S., Rodríguez-Baeza, A., Varela-Nieto, I., Ruberte, J., Collado, M. 

and Serrano, M. (2013b) 'Programmed Cell Senescence during Mammalian 

Embryonic Development', Cell. 

Muñoz-Espín, D. and Serrano, M. (2014) 'Cellular senescence: from physiology to 

pathology', Nature reviews. Molecular cell biology, 15(7), pp. 482-496. 

Nacher, V., Carretero, A., Navarro, M., Armengol, C., Llombart, C., Rodríguez, A., 

Herrero-Fresneda, I., Ayuso, E. and Ruberte, J. (2006) 'The quail mesonephros: a 

new model for renal senescence?', Journal of vascular research, 43(6), pp. 581-586. 

Nakamura, A., Chiang, Y., Hathcock, K., Horikawa, I., Sedelnikova, O., Hodes, R. 

and Bonner, W. (2008) 'Both telomeric and non-telomeric DNA damage are 

determinants of mammalian cellular senescence', Epigenetics & chromatin, 1(1), p. 6. 

Narita, M., Nũnez, S., Heard, E., Narita, M., Lin, A., Hearn, S., Spector, D., Hannon, 

G. and Lowe, S. (2003) 'Rb-mediated heterochromatin formation and silencing of 

E2F target genes during cellular senescence', Cell, 113(6), pp. 703-716. 

Navarro, A. and Boveris, A. (2007) 'The mitochondrial energy transduction system 

and the aging process', American journal of physiology. Cell physiology, 292(2), p. 

86. 



183 
 

Negre-Salvayre, A., Vieira, O., Escargueil-Blanc, I. and Salvayre, R. (2003) 'Oxidized 

LDL and 4-hydroxynonenal modulate tyrosine kinase receptor activity', Mol Aspects 

Med, 24(4-5), pp. 251-61. 

Nelson, G., Wordsworth, J., Wang, C., Jurk, D., Lawless, C., Martin-Ruiz, C. and von 

Zglinicki, T. (2012) 'A senescent cell bystander effect: senescence-induced 

senescence', Aging cell, 11(2), pp. 345-349. 

Nickoloff, B., Lingen, M., Chang, B.-D., Shen, M., Swift, M., Curry, J., Bacon, P., 

Bodner, B. and Roninson, I. (2004) 'Tumor suppressor maspin is up-regulated during 

keratinocyte senescence, exerting a paracrine antiangiogenic activity', Cancer 

research, 64(9), pp. 2956-2961. 

Noureddine, H., Gary-Bobo, G., Alifano, M., Marcos, E., Saker, M., Vienney, N., 

Amsellem, V., Maitre, B., Chaouat, A., Chouaid, C., Dubois-Rande, J.-L., Damotte, D. 

and Adnot, S. (2011) 'Pulmonary artery smooth muscle cell senescence is a 

pathogenic mechanism for pulmonary hypertension in chronic lung disease', 

Circulation research, 109(5), pp. 543-553. 

Oikawa, S., Tada-Oikawa, S. and Kawanishi, S. (2001) 'Site-specific DNA damage at 

the GGG sequence by UVA involves acceleration of telomere shortening', 

Biochemistry, 40(15), pp. 4763-4768. 

Olovnikov, A. (1971) '[Principle of marginotomy in template synthesis of 

polynucleotides]', Doklady Akademii nauk SSSR, 201(6), pp. 1496-1499. 

Olsen, C., Gardie, B., Yaswen, P. and Stampfer, M. (2002) 'Raf-1-induced growth 

arrest in human mammary epithelial cells is p16-independent and is overcome in 

immortal cells during conversion', Oncogene, 21(41), pp. 6328-6339. 

Onorato, J.M., Thorpe, S.R. and Baynes, J.W. (1998) 'Immunohistochemical and 

ELISA assays for biomarkers of oxidative stress in aging and disease', Ann N Y Acad 

Sci, 854, pp. 277-90. 

Opresko, P., Fan, J., Danzy, S., Wilson, D. and Bohr, V. (2005) 'Oxidative damage in 

telomeric DNA disrupts recognition by TRF1 and TRF2', Nucleic acids research, 

33(4), pp. 1230-1239. 

Orr-Weaver, T., Szostak, J. and Rothstein, R. (1981) 'Yeast transformation: a model 

system for the study of recombination', Proceedings of the National Academy of 

Sciences of the United States of America, 78(10), pp. 6354-6358. 

Pang, J. and Chen, K. (1994) 'Global change of gene expression at late G1/S 

boundary may occur in human IMR-90 diploid fibroblasts during senescence', Journal 

of cellular physiology, 160(3), pp. 531-538. 



184 
 

Parada, L., Tabin, C., Shih, C. and Weinberg, R. (1982) 'Human EJ bladder 

carcinoma oncogene is homologue of Harvey sarcoma virus ras gene', Nature, 

297(5866), pp. 474-478. 

Paradis, V., Youssef, N., Dargère, D., Bâ, N., Bonvoust, F., Deschatrette, J. and 

Bedossa, P. (2001) 'Replicative senescence in normal liver, chronic hepatitis C, and 

hepatocellular carcinomas', Human pathology, 32(3), pp. 327-332. 

Parrinello, S., Coppe, J.-P., Krtolica, A. and Campisi, J. (2005) 'Stromal-epithelial 

interactions in aging and cancer: senescent fibroblasts alter epithelial cell 

differentiation', Journal of cell science, 118(Pt 3), pp. 485-496. 

Parrinello, S., Samper, E., Krtolica, A., Goldstein, J., Melov, S. and Campisi, J. 

(2003) 'Oxygen sensitivity severely limits the replicative lifespan of murine 

fibroblasts', Nature cell biology, 5(8), pp. 741-747. 

Passos, J., Nelson, G., Wang, C., Richter, T., Simillion, C., Proctor, C., Miwa, S., 

Olijslagers, S., Hallinan, J., Wipat, A., Saretzki, G., Rudolph, K., Kirkwood, T. and von 

Zglinicki, T. (2010) 'Feedback between p21 and reactive oxygen production is 

necessary for cell senescence', Molecular systems biology, 6, p. 347. 

Passos, J., Saretzki, G., Ahmed, S., Nelson, G., Richter, T., Peters, H., Wappler, I., 

Birket, M., Harold, G., Schaeuble, K., Birch-Machin, M., Kirkwood, T. and von 

Zglinicki, T. (2007) 'Mitochondrial dysfunction accounts for the stochastic 

heterogeneity in telomere-dependent senescence', PLoS biology, 5(5). 

Perry, J. and Tainer, J. (2011) 'All stressed out without ATM kinase', Science 

signaling, 4(167). 

Petersen, S., Saretzki, G. and von Zglinicki, T. (1998) 'Preferential accumulation of 

single-stranded regions in telomeres of human fibroblasts', Experimental cell 

research, 239(1), pp. 152-160. 

Pollock, P., Harper, U., Hansen, K., Yudt, L., Stark, M., Robbins, C., Moses, T., 

Hostetter, G., Wagner, U., Kakareka, J., Salem, G., Pohida, T., Heenan, P., Duray, 

P., Kallioniemi, O., Hayward, N., Trent, J. and Meltzer, P. (2003) 'High frequency of 

BRAF mutations in nevi', Nature genetics, 33(1), pp. 19-20. 

Polyak, K., Xia, Y., Zweier, J., Kinzler, K. and Vogelstein, B. (1997) 'A model for p53-

induced apoptosis', Nature, 389(6648), pp. 300-305. 

Pospelova, T., Leontieva, O., Bykova, T., Zubova, S., Pospelov, V. and 

Blagosklonny, M. (2012) 'Suppression of replicative senescence by rapamycin in 

rodent embryonic cells', Cell cycle (Georgetown, Tex.), 11(12), pp. 2402-2407. 



185 
 

Powers, R., Kaeberlein, M., Caldwell, S., Kennedy, B. and Fields, S. (2006) 

'Extension of chronological life span in yeast by decreased TOR pathway signaling', 

Genes & development, 20(2), pp. 174-184. 

Pribluda, A., Elyada, E., Wiener, Z., Hamza, H., Goldstein, R.E., Biton, M., Burstain, 

I., Morgenstern, Y., Brachya, G., Billauer, H., Biton, S., Snir-Alkalay, I., Vucic, D., 

Schlereth, K., Mernberger, M., Stiewe, T., Oren, M., Alitalo, K., Pikarsky, E. and Ben-

Neriah, Y. (2013) 'A senescence-inflammatory switch from cancer-inhibitory to 

cancer-promoting mechanism', Cancer Cell, 24(2), pp. 242-56. 

Quinlan, C., Perevoshchikova, I., Hey-Mogensen, M., Orr, A. and Brand, M. (2013) 

'Sites of reactive oxygen species generation by mitochondria oxidizing different 

substrates', Redox biology, 1, pp. 304-312. 

Radi, R., Turrens, J.F., Chang, L.Y., Bush, K.M., Crapo, J.D. and Freeman, B.A. 

(1991) 'Detection of catalase in rat heart mitochondria', J Biol Chem, 266(32), pp. 

22028-34. 

Rajagopalan, S. and Long, E. (2012) 'Cellular senescence induced by CD158d 

reprograms natural killer cells to promote vascular remodeling', Proceedings of the 

National Academy of Sciences of the United States of America, 109(50), pp. 20596-

20601. 

Ramsey, M. and Sharpless, N. (2006) 'ROS as a tumour suppressor?', Nature cell 

biology, 8(11), pp. 1213-1215. 

Rauser, C., Mueller, L. and Rose, M. (2006) 'The evolution of late life', Ageing 

research reviews, 5(1), pp. 14-32. 

Rebbaa, A., Zheng, X., Chou, P. and Mirkin, B. (2003) 'Caspase inhibition switches 

doxorubicin-induced apoptosis to senescence', Oncogene, 22(18), pp. 2805-2811. 

Riballo, E., Kühne, M., Rief, N., Doherty, A., Smith, G., Recio, M.-J., Reis, C., Dahm, 

K., Fricke, A., Krempler, A., Parker, A., Jackson, S., Gennery, A., Jeggo, P. and 

Löbrich, M. (2004) 'A pathway of double-strand break rejoining dependent upon ATM, 

Artemis, and proteins locating to gamma-H2AX foci', Molecular cell, 16(5), pp. 715-

724. 

Richter, T., Saretzki, G., Nelson, G., Melcher, M., Olijslagers, S. and von Zglinicki, T. 

(2007) 'TRF2 overexpression diminishes repair of telomeric single-strand breaks and 

accelerates telomere shortening in human fibroblasts', Mechanisms of ageing and 

development, 128(4), pp. 340-345. 



186 
 

Rindler, P., Plafker, S., Szweda, L. and Kinter, M. (2013) 'High dietary fat selectively 

increases catalase expression within cardiac mitochondria', The Journal of biological 

chemistry, 288(3), pp. 1979-1990. 

Robida-Stubbs, S., Glover-Cutter, K., Lamming, D., Mizunuma, M., Narasimhan, S., 

Neumann-Haefelin, E., Sabatini, D. and Blackwell, T. (2012) 'TOR signaling and 

rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO', Cell 

metabolism, 15(5), pp. 713-724. 

Robinson, W., Lemon, M., Elefanty, A., Harrison-Smith, M., Markham, N. and Norris, 

D. (1998) 'Human acquired naevi are clonal', Melanoma research, 8(6), pp. 499-503. 

Robles, S. and Adami, G. (1998) 'Agents that cause DNA double strand breaks lead 

to p16INK4a enrichment and the premature senescence of normal fibroblasts', 

Oncogene, 16(9), pp. 1113-1123. 

Rodier, F. and Campisi, J. (2011) 'Four faces of cellular senescence', The Journal of 

cell biology, 192(4), pp. 547-556. 

Rodier, F., Coppé, J.-P., Patil, C., Hoeijmakers, W., Muñoz, D., Raza, S., Freund, A., 

Campeau, E., Davalos, A. and Campisi, J. (2009) 'Persistent DNA damage signalling 

triggers senescence-associated inflammatory cytokine secretion', Nature cell biology, 

11(8), pp. 973-979. 

Rogakou, E., Boon, C., Redon, C. and Bonner, W. (1999) 'Megabase chromatin 

domains involved in DNA double-strand breaks in vivo', The Journal of cell biology, 

146(5), pp. 905-916. 

Rouse, J. (2002) 'Interfaces Between the Detection, Signaling, and Repair of DNA 

Damage', Science, 297. 

Rudolph, K.L., Chang, S., Lee, H.W., Blasco, M., Gottlieb, G.J., Greider, C. and 

DePinho, R.A. (1999) 'Longevity, stress response, and cancer in aging telomerase-

deficient mice', Cell, 96(5), pp. 701-12. 

Ruiz-Herrera, A., García, F., Azzalin, C., Giulotto, E., Egozcue, J., Ponsà, M. and 

Garcia, M. (2002) 'Distribution of intrachromosomal telomeric sequences (ITS) on 

Macaca fascicularis (Primates) chromosomes and their implication for chromosome 

evolution', Human genetics, 110(6), pp. 578-586. 

Saleh-Gohari, N., Bryant, H.E., Schultz, N., Parker, K.M., Cassel, T.N. and Helleday, 

T. (2005) 'Spontaneous homologous recombination is induced by collapsed 

replication forks that are caused by endogenous DNA single-strand breaks', Mol Cell 

Biol, 25(16), pp. 7158-69. 



187 
 

Sarbassov, D.D., Ali, S.M., Kim, D.H., Guertin, D.A., Latek, R.R., Erdjument-

Bromage, H., Tempst, P. and Sabatini, D.M. (2004) 'Rictor, a novel binding partner of 

mTOR, defines a rapamycin-insensitive and raptor-independent pathway that 

regulates the cytoskeleton', Curr Biol, 14(14), pp. 1296-302. 

Saretzki, G., Murphy, M.P. and von Zglinicki, T. (2003) 'MitoQ counteracts telomere 

shortening and elongates lifespan of fibroblasts under mild oxidative stress', Aging 

Cell, 2(2), pp. 141-3. 

Sarkisian, C., Keister, B., Stairs, D., Boxer, R., Moody, S. and Chodosh, L. (2007) 

'Dose-dependent oncogene-induced senescence in vivo and its evasion during 

mammary tumorigenesis', Nature cell biology, 9(5), pp. 493-505. 

Schmitt, C., Fridman, J., Yang, M., Lee, S., Baranov, E., Hoffman, R. and Lowe, S. 

(2002) 'A senescence program controlled by p53 and p16INK4a contributes to the 

outcome of cancer therapy', Cell, 109(3), pp. 335-346. 

Schriner, S., Linford, N., Martin, G., Treuting, P., Ogburn, C., Emond, M., Coskun, P., 

Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D. and Rabinovitch, P. (2005a) 

'Extension of murine life span by overexpression of catalase targeted to 

mitochondria', Science (New York, N.Y.), 308(5730), pp. 1909-1911. 

Schriner, S.E., Linford, N.J., Martin, G.M., Treuting, P., Ogburn, C.E., Emond, M., 

Coskun, P.E., Ladiges, W., Wolf, N., Van Remmen, H., Wallace, D.C. and 

Rabinovitch, P.S. (2005b) 'Extension of murine life span by overexpression of 

catalase targeted to mitochondria', Science, 308(5730), pp. 1909-11. 

Seluanov, A., Gorbunova, V., Falcovitz, A., Sigal, A., Milyavsky, M., Zurer, I., Shohat, 

G., Goldfinger, N. and Rotter, V. (2001) 'Change of the death pathway in senescent 

human fibroblasts in response to DNA damage is caused by an inability to stabilize 

p53', Molecular and cellular biology, 21(5), pp. 1552-1564. 

Senyo, S., Steinhauser, M., Pizzimenti, C., Yang, V., Cai, L., Wang, M., Wu, T.-D., 

Guerquin-Kern, J.-L., Lechene, C. and Lee, R. (2013) 'Mammalian heart renewal by 

pre-existing cardiomyocytes', Nature, 493(7432), pp. 433-436. 

Serrano, M., Lin, A., McCurrach, M., Beach, D. and Lowe, S. (1997) 'Oncogenic ras 

provokes premature cell senescence associated with accumulation of p53 and 

p16INK4a', Cell, 88(5), pp. 593-602. 

Seshadri, T. and Campisi, J. (1990) 'Repression of c-fos transcription and an altered 

genetic program in senescent human fibroblasts', Science (New York, N.Y.), 

247(4939), pp. 205-209. 



188 
 

Severino, J., Allen, R., Balin, S., Balin, A. and Cristofalo, V. (2000) 'Is beta-

galactosidase staining a marker of senescence in vitro and in vivo?', Experimental 

cell research, 257(1), pp. 162-171. 

Shampay, J., Szostak, J.W. and Blackburn, E.H. (1984) 'DNA sequences of 

telomeres maintained in yeast', Nature, 310(5973), pp. 154-7. 

Sharpless, N. and DePinho, R. (2007) 'How stem cells age and why this makes us 

grow old', Nature reviews. Molecular cell biology, 8(9), pp. 703-713. 

Shay, J. and Bacchetti, S. (1997) 'A survey of telomerase activity in human cancer', 

European journal of cancer (Oxford, England : 1990), 33(5), pp. 787-791. 

Shay, J. and Roninson, I. (2004) 'Hallmarks of senescence in carcinogenesis and 

cancer therapy', Oncogene, 23(16), pp. 2919-2933. 

Shay, J. and Wright, W. (2005) 'Senescence and immortalization: role of telomeres 

and telomerase', Carcinogenesis, 26(5), pp. 867-874. 

Shelton, D., Chang, E., Whittier, P., Choi, D. and Funk, W. (1999) 'Microarray 

analysis of replicative senescence', Current biology : CB, 9(17), pp. 939-945. 

Sherr, C. (2000) 'The Pezcoller lecture: cancer cell cycles revisited', Cancer 

research, 60(14), pp. 3689-3695. 

Sherr, C. and McCormick, F. (2002) 'The RB and p53 pathways in cancer', Cancer 

cell, 2(2), pp. 103-112. 

Shibata, A., Conrad, S., Birraux, J., Geuting, V., Barton, O., Ismail, A., Kakarougkas, 

A., Meek, K., Taucher-Scholz, G., Lobrich, M. and Jeggo, P.A. (2011) 'Factors 

determining DNA double-strand break repair pathway choice in G2 phase', EMBO J, 

30(6), pp. 1079-92. 

Shieh, S.-Y., Ahn, J., Tamai, K., Taya, Y. and Prives, C. (2000) 'The human 

homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at 

multiple DNA damage-inducible sites', Genes & development, 14(3), pp. 289-300. 

Shieh, S., Ikeda, M., Taya, Y. and Prives, C. (1997) 'DNA damage-induced 

phosphorylation of p53 alleviates inhibition by MDM2', Cell, 91(3), pp. 325-334. 

Shimizu, Y., Kodama, K., Nishi, N., Kasagi, F., Suyama, A., Soda, M., Grant, E., 

Sugiyama, H., Sakata, R., Moriwaki, H., Hayashi, M., Konda, M. and Shore, R. 

(2010) 'Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki 

atomic bomb survivor data, 1950-2003', BMJ (Clinical research ed.), 340. 

Shin, Y.J., Cho, D.Y., Chung, T.Y., Han, S.B., Hyon, J.Y. and Wee, W.R. (2011) 

'Rapamycin reduces reactive oxygen species in cultured human corneal endothelial 

cells', Curr Eye Res, 36(12), pp. 1116-22. 



189 
 

Shioi, T., McMullen, J.R., Tarnavski, O., Converso, K., Sherwood, M.C., Manning, 

W.J. and Izumo, S. (2003) 'Rapamycin attenuates load-induced cardiac hypertrophy 

in mice', Circulation, 107(12), pp. 1664-70. 

Singhapol, C., Pal, D., Czapiewski, R., Porika, M., Nelson, G. and Saretzki, G. (2013) 

'Mitochondrial telomerase protects cancer cells from nuclear DNA damage and 

apoptosis', PLoS ONE, 8(1). 

Smogorzewska, A. and de Lange, T. (2002) 'Different telomere damage signaling 

pathways in human and mouse cells', The EMBO journal, 21(16), pp. 4338-4348. 

Smogorzewska, A., Karlseder, J., Holtgreve-Grez, H., Jauch, A. and de Lange, T. 

(2002) 'DNA ligase IV-dependent NHEJ of deprotected mammalian telomeres in G1 

and G2', Current biology : CB, 12(19), pp. 1635-1644. 

Smogorzewska, A. and van, B. (2000) 'Control of human telomere length by TRF1 

and TRF2', … and cellular biology. 

Sone, H. and Kagawa, Y. (2005) 'Pancreatic beta cell senescence contributes to the 

pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice', Diabetologia, 

48(1), pp. 58-67. 

Sousa-Victor, P., Gutarra, S., García-Prat, L., Rodriguez-Ubreva, J., Ortet, L., Ruiz-

Bonilla, V., Jardí, M., Ballestar, E., González, S., Serrano, A., Perdiguero, E. and 

Muñoz-Cánoves, P. (2014) 'Geriatric muscle stem cells switch reversible quiescence 

into senescence', Nature, 506(7488), pp. 316-321. 

Spallarossa, P., Altieri, P., Aloi, C., Garibaldi, S., Barisione, C., Ghigliotti, G., 

Fugazza, G., Barsotti, A. and Brunelli, C. (2009) 'Doxorubicin induces senescence or 

apoptosis in rat neonatal cardiomyocytes by regulating the expression levels of the 

telomere binding factors 1 and 2', American journal of physiology. Heart and 

circulatory physiology, 297(6), p. 81. 

Stein, G., Drullinger, L., Robetorye, R., Pereira-Smith, O. and Smith, J. (1991) 

'Senescent cells fail to express cdc2, cycA, and cycB in response to mitogen 

stimulation', Proceedings of the National Academy of Sciences of the United States 

of America, 88(24), pp. 11012-11016. 

Stein, G., Drullinger, L., Soulard, A. and Dulić, V. (1999) 'Differential roles for cyclin-

dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and 

differentiation in human fibroblasts', Molecular and cellular biology, 19(3), pp. 2109-

2117. 

Stewart, R.D. (2001) 'Two-lesion kinetic model of double-strand break rejoining and 

cell killing', Radiat Res, 156(4), pp. 365-78. 



190 
 

Storer, M., Mas, A., Robert-Moreno, A., Pecoraro, M., Ortells, M., Di Giacomo, V., 

Yosef, R., Pilpel, N., Krizhanovsky, V., Sharpe, J. and Keyes, W. (2013) 'Senescence 

is a developmental mechanism that contributes to embryonic growth and patterning', 

Cell, 155(5), pp. 1119-1130. 

Sugisaki, H. and Kanazawa, S. (1981) 'New restriction endonucleases from 

Flavobacterium okeanokoites (FokI) and Micrococcus luteus (MluI)', Gene, 16. 

Swanson, E., Manning, B., Zhang, H. and Lawrence, J. (2013) 'Higher-order 

unfolding of satellite heterochromatin is a consistent and early event in cell 

senescence', The Journal of cell biology, 203(6), pp. 929-942. 

Szostak, J.W. and Blackburn, E.H. (1982) 'Cloning yeast telomeres on linear plasmid 

vectors', Cell, 29(1), pp. 245-55. 

Takai, H., Smogorzewska, A. and de Lange, T. (2003) 'DNA damage foci at 

dysfunctional telomeres', Current biology : CB, 13(17), pp. 1549-1556. 

Tanya, M.G. and Stephen, P.J. (1993) 'The DNA-dependent protein kinase: 

Requirement for DNA ends and association with Ku antigen', Cell, 72. 

Tao, W. and Levine, A. (1999) 'Nucleocytoplasmic shuttling of oncoprotein Hdm2 is 

required for Hdm2-mediated degradation of p53', Proceedings of the National 

Academy of Sciences of the United States of America, 96(6), pp. 3077-3080. 

Tarry-Adkins, J., Blackmore, H., Martin-Gronert, M., Fernandez-Twinn, D., 

McConnell, J., Hargreaves, I., Giussani, D. and Ozanne, S. (2013) 'Coenzyme Q10 

prevents accelerated cardiac aging in a rat model of poor maternal nutrition and 

accelerated postnatal growth', Molecular metabolism, 2(4), pp. 480-490. 

Taylor, C., Nisbet, A., McGale, P., Goldman, U., Darby, S., Hall, P. and Gagliardi, G. 

(2009) 'Cardiac doses from Swedish breast cancer radiotherapy since the 1950s', 

Radiotherapy and oncology : journal of the European Society for Therapeutic 

Radiology and Oncology, 90(1), pp. 127-135. 

Taylor, C., Povall, J., McGale, P., Nisbet, A., Dodwell, D., Smith, J. and Darby, S. 

(2008) 'Cardiac dose from tangential breast cancer radiotherapy in the year 2006', 

International journal of radiation oncology, biology, physics, 72(2), pp. 501-507. 

Tchkonia, T., Morbeck, D., Von Zglinicki, T., Van Deursen, J., Lustgarten, J., Scrable, 

H., Khosla, S., Jensen, M. and Kirkland, J. (2010) 'Fat tissue, aging, and cellular 

senescence', Aging cell, 9(5), pp. 667-684. 

Tomasek, J., Gabbiani, G., Hinz, B., Chaponnier, C. and Brown, R. (2002) 

'Myofibroblasts and mechano-regulation of connective tissue remodelling', Nature 

reviews. Molecular cell biology, 3(5), pp. 349-363. 



191 
 

Tran, S.L., Haferkamp, S., Scurr, L.L., Gowrishankar, K., Becker, T.M., Desilva, C., 

Thompson, J.F., Scolyer, R.A., Kefford, R.F. and Rizos, H. (2012) 'Absence of 

distinguishing senescence traits in human melanocytic nevi', J Invest Dermatol, 

132(9), pp. 2226-34. 

Trougakos, I., Saridaki, A., Panayotou, G. and Gonos, E. (2006) 'Identification of 

differentially expressed proteins in senescent human embryonic fibroblasts', 

Mechanisms of ageing and development, 127(1), pp. 88-92. 

Tsao, H., Bevona, C., Goggins, W. and Quinn, T. (2003) 'The transformation rate of 

moles (melanocytic nevi) into cutaneous melanoma: a population-based estimate', 

Archives of dermatology, 139(3), pp. 282-288. 

Ulf, T.B. and Alexei, T. (2002) 'Lipofuscin: mechanisms of age-related accumulation 

and influence on cell function12 1Guest Editor: Rajindar S. Sohal 2This article is part 

of a series of reviews on “Oxidative Stress and Aging.” The full list of papers may be 

found on the homepage of the journal', Free Radical Biology and Medicine, 33. 

Ungvari, Z., Orosz, Z., Labinskyy, N., Rivera, A., Xiangmin, Z., Smith, K. and Csiszar, 

A. (2007) 'Increased mitochondrial H2O2 production promotes endothelial NF-

kappaB activation in aged rat arteries', American journal of physiology. Heart and 

circulatory physiology, 293(1), p. 47. 

Valavanidis, A., Vlachogianni, T. and Fiotakis, K. (2009) 'Tobacco Smoke: 

Involvement of Reactive Oxygen Species and Stable Free Radicals in Mechanisms 

of Oxidative Damage, Carcinogenesis and Synergistic Effects with Other Respirable 

Particles', Int J Environ Res Public Health, 6(2), pp. 445-62. 

van den Bosch, H., Schutgens, R., Wanders, R. and Tager, J. (1992) 'Biochemistry of 

peroxisomes', Annual review of biochemistry, 61, pp. 157-197. 

van Deursen, J. (2014) 'The role of senescent cells in ageing', Nature, 509(7501), pp. 

439-446. 

Van Remmen, H., Williams, M.D., Guo, Z., Estlack, L., Yang, H., Carlson, E.J., 

Epstein, C.J., Huang, T.T. and Richardson, A. (2001) 'Knockout mice heterozygous 

for Sod2 show alterations in cardiac mitochondrial function and apoptosis', Am J 

Physiol Heart Circ Physiol, 281(3), pp. H1422-32. 

van Steensel, B. and de Lange, T. (1997) 'Control of telomere length by the human 

telomeric protein TRF1', Nature, 385(6618), pp. 740-743. 

van Steensel, B., Smogorzewska, A. and de Lange, T. (1998) 'TRF2 protects human 

telomeres from end-to-end fusions', Cell, 92(3), pp. 401-413. 



192 
 

Ventura, A., Kirsch, D., McLaughlin, M., Tuveson, D., Grimm, J., Lintault, L., 

Newman, J., Reczek, E., Weissleder, R. and Jacks, T. (2007) 'Restoration of p53 

function leads to tumour regression in vivo', Nature, 445(7128), pp. 661-665. 

Vera, E., Bernardes de Jesus, B., Foronda, M., Flores, J. and Blasco, M. (2012) 'The 

rate of increase of short telomeres predicts longevity in mammals', Cell reports, 2(4), 

pp. 732-737. 

Vidal, A. and Koff, A. (2000) 'Cell-cycle inhibitors: three families united by a common 

cause', Gene, 247(1-2), pp. 1-15. 

Villeneuve, C., Guilbeau-Frugier, C., Sicard, P., Lairez, O., Ordener, C., Duparc, T., 

De Paulis, D., Couderc, B., Spreux-Varoquaux, O., Tortosa, F., Garnier, A., Knauf, 

C., Valet, P., Borchi, E., Nediani, C., Gharib, A., Ovize, M., Delisle, M.-B., Parini, A. 

and Mialet-Perez, J. (2013) 'p53-PGC-1α pathway mediates oxidative mitochondrial 

damage and cardiomyocyte necrosis induced by monoamine oxidase-A upregulation: 

role in chronic left ventricular dysfunction in mice', Antioxidants & redox signaling, 

18(1), pp. 5-18. 

von Zglinicki, T. (2002) 'Oxidative stress shortens telomeres', Trends in biochemical 

sciences, 27(7), pp. 339-344. 

von Zglinicki, T., Pilger, R. and Sitte, N. (2000) 'Accumulation of single-strand breaks 

is the major cause of telomere shortening in human fibroblasts', Free radical biology 

& medicine, 28(1), pp. 64-74. 

von Zglinicki, T., Saretzki, G., Döcke, W. and Lotze, C. (1995) 'Mild hyperoxia 

shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence?', 

Experimental cell research, 220(1), pp. 186-193. 

Vousden, K. and Lu, X. (2002) 'Live or let die: the cell's response to p53', Nature 

reviews. Cancer, 2(8), pp. 594-604. 

Wada, T., Joza, N., Cheng, H.-y.M., Sasaki, T., Kozieradzki, I., Bachmaier, K., 

Katada, T., Schreiber, M., Wagner, E., Nishina, H. and Penninger, J. (2004) 'MKK7 

couples stress signalling to G2/M cell-cycle progression and cellular senescence', 

Nature cell biology, 6(3), pp. 215-226. 

Wang, C., Jurk, D., Maddick, M., Nelson, G., Martin-Ruiz, C. and von Zglinicki, T. 

(2009) 'DNA damage response and cellular senescence in tissues of aging mice', 

Aging cell, 8(3), pp. 311-323. 

Wang, C., Maddick, M., Miwa, S., Jurk, D., Czapiewski, R., Saretzki, G., Langie, S., 

Godschalk, R., Cameron, K. and von Zglinicki, T. (2010) 'Adult-onset, short-term 

dietary restriction reduces cell senescence in mice', Aging, 2(9), pp. 555-566. 



193 
 

Wang, J., Geiger, H. and Rudolph, K. (2011) 'Immunoaging induced by 

hematopoietic stem cell aging', Current opinion in immunology, 23(4), pp. 532-536. 

Watson, J. (1972) 'Origin of concatemeric T7 DNA', Nature: New biology, 239(94), 

pp. 197-201. 

Weber, B., Collins, C., Robbins, C., Magenis, R., Delaney, A., Gray, J. and Hayden, 

M. (1990) 'Characterization and organization of DNA sequences adjacent to the 

human telomere associated repeat (TTAGGG)n', Nucleic acids research, 18(11), pp. 

3353-3361. 

Wilkinson, J.E., Burmeister, L., Brooks, S.V., Chan, C.C., Friedline, S., Harrison, 

D.E., Hejtmancik, J.F., Nadon, N., Strong, R., Wood, L.K., Woodward, M.A. and 

Miller, R.A. (2012) 'Rapamycin slows aging in mice', Aging Cell, 11(4), pp. 675-82. 

Wright, W., Piatyszek, M., Rainey, W., Byrd, W. and Shay, J. (1996) 'Telomerase 

activity in human germline and embryonic tissues and cells', Developmental genetics, 

18(2), pp. 173-179. 

Wu, L. and Levine, A.J. (1997) 'Differential regulation of the p21/WAF-1 and mdm2 

genes after high-dose UV irradiation: p53-dependent and p53-independent regulation 

of the mdm2 gene', Mol Med, 3(7), pp. 441-51. 

Xue, W., Zender, L., Miething, C., Dickins, R., Hernando, E., Krizhanovsky, V., 

Cordon-Cardo, C. and Lowe, S. (2007) 'Senescence and tumour clearance is 

triggered by p53 restoration in murine liver carcinomas', Nature, 445(7128), pp. 656-

660. 

Ye, J., Hockemeyer, D., Krutchinsky, A., Loayza, D., Hooper, S., Chait, B. and de 

Lange, T. (2004) 'POT1-interacting protein PIP1: a telomere length regulator that 

recruits POT1 to the TIN2/TRF1 complex', Genes & development, 18(14), pp. 1649-

1654. 

Yip, C.K., Murata, K., Walz, T., Sabatini, D.M. and Kang, S.A. (2010) 'Structure of the 

human mTOR complex I and its implications for rapamycin inhibition', Mol Cell, 38(5), 

pp. 768-74. 

Yoon, I., Kim, H., Kim, Y., Song, I.-H., Kim, W., Kim, S., Baek, S.-H., Kim, J. and Kim, 

J.-R. (2004) 'Exploration of replicative senescence-associated genes in human 

dermal fibroblasts by cDNA microarray technology', Experimental gerontology, 39(9), 

pp. 1369-1378. 

Youdim, M., Edmondson, D. and Tipton, K. (2006) 'The therapeutic potential of 

monoamine oxidase inhibitors', Nature reviews. Neuroscience, 7(4), pp. 295-309. 



194 
 

Yui, J., Chiu, C. and Lansdorp, P. (1998) 'Telomerase activity in candidate stem cells 

from fetal liver and adult bone marrow', Blood, 91(9), pp. 3255-3262. 

Zhang, J., Pickering, C.R., Holst, C.R., Gauthier, M.L. and Tlsty, T.D. (2006) 

'p16INK4a modulates p53 in primary human mammary epithelial cells', Cancer Res, 

66(21), pp. 10325-31. 

Zhang, Y., Bokov, A., Gelfond, J., Soto, V., Ikeno, Y., Hubbard, G., Diaz, V., Sloane, 

L., Maslin, K., Treaster, S., Réndon, S., van Remmen, H., Ward, W., Javors, M., 

Richardson, A., Austad, S. and Fischer, K. (2014) 'Rapamycin extends life and health 

in C57BL/6 mice', The journals of gerontology. Series A, Biological sciences and 

medical sciences, 69(2), pp. 119-130. 

Zhu, J., Woods, D., McMahon, M. and Bishop, J. (1998) 'Senescence of human 

fibroblasts induced by oncogenic Raf', Genes & development, 12(19), pp. 2997-3007. 

Zoncu, R., Efeyan, A. and Sabatini, D. (2011) 'mTOR: from growth signal integration 

to cancer, diabetes and ageing', Nature reviews. Molecular cell biology, 12(1), pp. 21-

35. 

Zou, L. (2003) 'Sensing DNA Damage Through ATRIP Recognition of RPA-ssDNA 

Complexes', Science, 300. 

 

 


