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Abstract: 

Cardiac catheterizations are an essential procedure in the management of patients 

with congenital and acquired heart conditions. However, associated radiation doses 

are often high, raising concerns over potentially increased cancer risks. Neither the 

radiation doses, nor the associated risks, have been adequately investigated in 

young people undergoing these procedures.  

A cohort was established of around 13,500 patients aged under 22 years who have 

undergone cardiac catheterizations in England. Organ doses were estimated based 

on a dosimetry system utilising data from Monte Carlo simulations. Doses were 

highest for the lungs (median: 17.6 millisieverts, mSv) and heart (13.6 mSv), while 

doses to bone marrow (2.6 mSv) and the thyroid (0.7 mSv) were relatively low. 

Radiation doses have fallen by a factor of up to ten during the study period. The 

results were compared to equivalent figures derived from physical measurements. 

Uncertainties in dose estimates were calculated. These were around ±30%, though 

were potentially much higher for breast dose. 

The risk of cancer in relation to estimated doses was calculated using BEIR VII risk 

models. For examinations conducted using modern equipment, these risks are 

around 1 in 1700. A small epidemiological analysis was performed, suggesting a 

nearly threefold increased risk of cancer in the cohort, compared to the general UK 

population. There are a number of reasons to suggest that this increase was primarily 

not related to radiation exposure, most notably the large impact of transplantation and 

likely associated immunosuppressant use. Despite the high cancer incidence, the 

overall survival in the cohort was high, at around 91% after 30 years.  

Conclusion: The study provides the first large scale estimation of organ doses from 

cardiac catheterizations among this age group. Rates of cancer among this patient 

group are high, although this is appears to be mostly due to factors other than 

radiation exposure. 
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1: Introduction 

This study examines the radiation doses and associated risks from cardiac 

catheterizations. These are procedures used for diagnosing and treating congenital 

and acquired heart conditions using a wire-like tube threaded through blood vessels 

under the guidance of a type of x-ray imaging called fluoroscopy. The procedure is an 

essential part of the management of congenital heart disease [1, 2]. The ability to 

diagnose and treat various congenital heart conditions using cardiac catheterizations 

comes at the price of a relatively high radiation exposure, which is associated with an 

increased lifetime risk of developing cancer [3]. However, epidemiological evidence 

of the cancer risks from cardiac catheterizations is limited to a few small, inconclusive 

studies [4-6]. Risk estimates are currently based on age-adjusted models derived 

from studies of Japanese atomic bomb survivors [7], suggesting a lifetime risk of 

cancer mortality from paediatric cardiac catheterization procedures of around 0.08% 

[8] (1 in 1250). The recent findings of increased risk of leukaemia following CT scans 

in childhood [9] are compatible with these estimates. However, along with a large 

scope for dose variation from one procedure to the next [10, 11], cardiac 

catheterizations result in a unique energy deposition pattern, with a high dose being 

delivered to a small volume. The transferability of risk estimates derived from CT or 

atomic bomb survivors may, therefore, be unreliable.  

Faced with this uncertainty, researchers have turned to biodosimetric methods in 

which DNA damage is directly assessed from blood samples acquired following 

exposures [12-14]. These results indicate that the risks may be considerably higher 

than thought – around 0.4% [12]. This finding emphasises the need for a direct 

epidemiological assessment of the cancer risks specifically from cardiac 

catheterizations. Such an approach requires the following components; (1) 

establishing a well-characterised cohort of patients who have undergone cardiac 

catheterization procedures, (2) determination of the radiation doses these patients 

have received and (3) long-term follow-up of the cohort to assess cancer incidence 

and establish a dose/risk relationship. The rationale for focusing specifically on young 

patients is that the relatively low incidence of cancer in young people combined with 

the relative lack of confounding factors of cancer in this age range allows a greater 

statistical power in epidemiological analysis and longer follow-up time available for 

study. Furthermore, young patients with congenital heart conditions often undergo 

multiple procedures, resulting in potentially large cumulative doses. Information on 
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radiation doses from paediatric cardiac catheterizations is currently limited (previous 

research is reviewed in Chapter 2). 

The following sections introduce the basic principles of fluoroscopy, before describing 

the application of this type of x-ray imaging in cardiology. Finally, a brief summary of 

the current knowledge of the risks from low dose exposure to x-rays is provided. 

 

1.1: Fluoroscopy 

Fluoroscopy is an x-ray imaging system, developed soon after the discovery of x-rays 

by Röntgen in 1895 [15], that produces immediately viewable, dynamic, movie-like 

images [16]. This contrasts with general radiography (i.e. ‘normal’ x-ray imaging) in 

which a static image is recorded on film, which must be processed before viewing. As 

the dose per single image or ‘frame’ (akin to the frame of a movie reel) is relatively 

low, fluoroscopy is useful for situations in which simple verification of position is 

required without the need for high image quality. Such applications include 

orthopaedic surgery (alignment of screws and nails etc.), barium studies and the 

positioning of intravascular catheters. Most fluoroscopy systems also allow higher 

quality ‘cine acquisition’ imaging. The use of the word 'cine' harks back to the olden 

days where images were recorded on rolls of cine film for later viewing, although 

modern imaging systems record the images digitally. Acquisitions usually involve 

administration of iodine-based contrast agent (i.e. ‘x-ray dye’) which increases the 

attenuation properties of blood, increasing contrast between enhanced vessels and 

surrounding soft tissues. Other contrast agents, such as barium, may also be used, 

though not intravenously. Non-acquisition fluoroscopy is not usually permanently 

recorded, although modern equipment often features a ‘fluoro-grab’ function in which 

fluoroscopic images can be recorded. Despite this capability, the vast majority of 

recorded images are acquisitions and most fluoroscopic images are essentially lost 

forever once the procedure ends. 

Fluorescent materials absorb x-ray photons before re-emitting the absorbed energy 

as new photons at visible light wavelengths. Briefly, this process occurs when an 

orbiting electron of the fluorescent material is excited by a secondary electron 

liberated by an x-ray, elevating it to the conduction band. The electron becomes 

trapped in the forbidden gap, before returning to a lower energy level, emitting a 

photon of visible light [17]. These visible light emissions from the fluorescent layer 
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can be viewed by the human eye as an image, although under normal x-ray fluence 

the intensity of light emitted is still quite low, producing an unacceptably dim image 

[17]. Modern fluoroscopy systems (post 1950s) utilise a sort of night-vision scope 

called an image intensifier to amplify this signal (Figure 1.1). Light photons emitted by 

the fluorescent layer strike a photocathode releasing electrons, which are accelerated 

by a 25-30 kV electric field onto an output screen where they are again converted into 

photons of visible light. The efficiency of the photocathode is around 10% [18], with 

around 300 electrons being released for a 60 keV incident x-ray photon. Further 

intensity gain is achieved by the demagnification of the image [18], as the output 

screen is around ten times smaller than the input screen. Under ‘magnification mode’ 

a larger output window size is used, meaning greater x-ray fluence is required to 

maintain the same signal strength [19]. Output from the image intensifer can be 

recorded by a video camera and immediately displayed on a television monitor. 

Alternatively, images may be recorded digitally, or on x-ray film to produce a 

permanent record. 

The most commonly used fluorescent material is caesium iodide (CsI), arranged in 

closely packed needle-like crystal columns that function as ‘light pipes’ to channel 

fluorescence photons towards the photocathode without divergence [16]. This allows 

a relatively thick CsI crystal to be used without compromising spatial resolution. 

Furthermore, the k-edges of 36.0 keV (Cs) and 33.2 keV (I) correspond to typical 

photon energies used in diagnostic imaging [17], resulting in a high fractional 

absorption of x-rays (η≈0.85) [20] and high quantum detective efficiency (DQE). For 

each 60 keV x-ray photon absorbed, around 3000 violet light photos of 420 nm 

wavelength (≈ 3 eV) are emitted [16].  
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Figure 1.1: Main features of an image intensifier. Figure credit: author 

 

In recent years, image intensifiers have begun to be replaced by digital, or ‘flat panel’ 

detectors (FPD). FPDs have also replaced film-screen and (to a certain extent) 

computed radiography (CR) detection methods in general radiography. In this sense 

the distinction between fluoroscopy and general radiography has become somewhat 

blurred. There are two types of FPD; ‘Indirect conversion’ digital detectors are 

comprised of a CsI fluorescent layer backed by an integrated active matrix array 

(AMA) of hydrogenated amorphous silicon (a-Si:H) [18] (Figure 1.2). Light photons 

emitted by the CsI layer release charge carriers (electrons or holes) in the a-Si:H 

layer which are stored in local capacitors and in turn read sequentially [20]. In ‘direct 

conversion’ digital detectors, x-ray photons are converted to electrons by an 

amorphous selenium (a-Se) photoconductive layer, backed by an integrated a-Si 

AMA layer. Direct conversion detectors allow improved spatial resolution compared to 

indirect conversion detectors, as measured by the modulation transfer function 

(MTF). However, with a relatively low k-edge of 13 keV, a-Se detectors have a poorer 

fractional absorption of x-rays (η≈0.6), meaning the dose efficiency, defined by the 

DQE, is lower [20]. 
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Figure 1.2: Cross section of indirect conversion digital detectors. Figure credit: author 

 

FPDs have a more uniform response across the detector area than image intensifier-

based systems, with no distortion and minimal veiling glare [19, 21, 22]. The impact 

of FPDs on radiation doses is difficult to determine, with research suggesting no 

impact, reduced doses [21, 22] and increased doses, compared to image intensifiers. 

The methodology of such studies invariably involves comparison of entire systems, of 

which the detector is just one component. If the x-ray tube, collimator, table, filtration 

and generator are also different, changes to dose indicators, such as kerma area 

product (PKA, defined in Chapter 2) should not be attributed to the detector alone. 

Patient dose for a given value of PKA is strongly dependent on beam energy (see 

Chapter 4). Therefore a ‘dose reduction’, as represented by reduced PKA, may not 

indicate a true change to patient dose if beam energy has changed between systems.  

In most modern fluoroscopy systems, the detector and x-ray tube are joined together 

in a ‘C-arm’ configuration (actually it looks more like a ‘G’ or 'Ω') (Figure 1.3), with 

separate monitors providing real-time image display. Most systems have two such C-

arms; one frontal (anterior-posterior, or AP) and one lateral. This so-called ‘bi-plane’ 

arrangement allows rapid switching between frontal and lateral imaging without the 

need to rotate the C-arm. Each C-arm, whether single or bi-plane, can be rotated 

around the patient and angled in the cranial-caudal direction to provide an almost 

limitless range of imaging angles known as projections. A collimation device is 

attached to the x-ray tube. This allows the size of the x-ray field to be adjusted. In 
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most cases, the field is rectangular, though older machines have circular or octagonal 

collimation. An ionisation chamber may also be fitted to the x-ray tube. This collects 

charged produce from ionisation of air by the x-ray beam, allowing the calculation of 

kerma area product. This is described in more detail later. 

 

 

Figure 1.3: A biplane fluoroscopy machine (Siemens Axiom Artis BC). The device pointing in 

from the left is the lateral x-ray tube, while the device facing this, on the right, is the lateral 

image intensifier. The frontal x-ray tube is obscured from view, underneath the table. Photo 

credit: Author 

 

Fluoroscopic equipment is manufactured by a number of companies, including 

General Electric, Siemens, Philips, Toshiba and Shimadzu. In this study, the large 

majority of machines were made by Philips and Siemens, with the latter dominating in 

the last ten years. Various configurations of Siemens Axiom Artis equipment were 

used for a large proportion of more recently acquired data. The letters following the 

name ‘Artis’ provide more details on the equipment; d=digital (flat panel) detectors, 

F=floor mounted, B=Biplane, C=cardiology [23]. In all cases, an antiscatter grid is 

fitted to the entrance surface of the detector and can easily be removed.  

Fluoroscopic equipment has evolved considerably over recent decades. It is possible 

to define three generations of machines based on detector type, beam energy and 
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other factors. In this study, data on procedures carried out using different machines 

will be analysed separately to explore the impact of technological factors on doses. 

1st generation: Image intensifier detectors, fixed aluminium filtration, fixed antiscatter 

grid. Limited control of frame rates. E.g. Siemens BICOR and Angioscop.  

2nd generation: Image intensifier detectors, fixed aluminium and copper filtration, fixed 

grid. Limited control of frame rates. E.g. Siemens BICOR Plus, BICOR TOP, Philips 

Integris H3000/5000.  

3rd generation: Usually flat panel detectors, aluminium and variable copper filtration, 

removable grid, large range of frame rates and program settings. E.g. Siemens Axiom 

Artis/Artis Zee. 

 

1:2 Cardiac Fluoroscopy 

Cardiac catheterizations are a fluoroscopically guided procedure used for diagnosing 

and treating various congenital (i.e. those present at birth) or acquired heart 

conditions. Intravascular catheters are thin, wire-like tubes inserted into the body via 

blood vessels and used in the diagnosis and treatment of a range of conditions. The 

catheter is advanced from an entry point in a peripheral blood vessel - usually the 

femoral or radial artery - to the region of interest under fluoroscopic x-ray guidance. 

Once the heart has been catheterised, iodine based contrast agent can be directly 

injected into the heart. The relatively high atomic number of iodine (Z=53) increases 

attenuation (particularly by photoelectric absorption) of enhanced blood relative to 

surrounding tissues, thus increasing subject contrast. In fluoroscopy, the greyscale is 

usually reversed, with respect to radiography, meaning attenuating structures such as 

contrast enhanced vessels and bone appear relatively dark. 

Catheterization of the chambers or blood vessels of the heart, known as cardiac 

catheterization was first conducted by Werner Forßmann on himself in 1929 [22]. The 

procedure allows a range of diagnostic and therapeutic procedures to be carried out, 

including coronary angiography, physiological measurements, angioplasty, and 

closure of septal defects. An overview of the most common cardiac catheterization 

procedures is provided below: 

Coronary Angiography: Visualisation of the coronary circulation requires localised 

administration of contrast agent using a catheter. Pathology identified, such as 

vascular stenosis, may be treated by balloon inflation and/or stent insertion, known 
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collectively as percutaneous coronary intervention (PCI) [24]. Patients receiving a 

heart transplant are at risk of an accelerated form of coronary artery disease called 

coronary allograft vasculopathy, which can progress without clinical symptoms [25]. 

Consequently, transplant patients often undergo regular (i.e. yearly) coronary 

angiography. 

Heart Biopsy:  In endomyocardial heart biopsy (EMBx) procedures, a piece of tissue 

from the right ventricle of the heart is removed using a catheter with jaws called a 

bioptome [26]. EMBx procedures are usually carried out to assess for signs of 

rejection in recipients of heart transplants and are often combined with coronary 

angiography procedures. In contrast to most other procedures, the catheter is usually 

inserted via the jugular vein [26]. 

Patent Ductus Arteriosus (PDA) occlusion: The ductus arteriosus is a shortcut 

between the pulmonary artery and the arch of the aorta (Figure 1.4) that normally 

closes at birth. A failure of closure may be treated by trans-catheter delivery of a coil 

or mesh ‘Amplatzer’ device [27]. The procedure is highly effective, with few 

complications [28] 

Atrial Septal Defect (ASD) closure: An ASD is a shortcut between the right and left 

atria (Figure 1.4), allowing oxygenated blood to flow directly to the right side of heart, 

thus bypassing the systemic circulation. ASDs may lead to right ventricular 

hypertrophy, paradoxical emboli and heart failure. Closure of ASDs may be achieved 

by surgery or trans-catheter implantation of an umbrella-like occlusion device. This 

procedure was first carried out by King and Mills in 1976 [29] and has been shown to 

have a similar success rate to surgery, though with a lower complication rate (7.2% 

verses 24%) and shorter hospital stay [30]. Some ASDs are ‘fenestrated’ and 

comprised of several holes in the septum. ASDs may be created deliberately 

(iatrogenic) to relieve symptoms of transposition of the great arteries (TGA) [1]. This 

procedure, called an atrial septostomy, was first performed by Rashkind et al in 1966 

[31] and provides immediate relief from the symptoms of TGA until an switch 

operation is performed. 

Coarctation repair: A coarctation of the aorta (COA) is a narrowing of the aorta in the 

region of the ductus arteriosus (arch of aorta area). It may be treated by endovascular 

balloon inflation or stent insertion [32-35]. Coarctations sometimes return (re-

coarctation), requiring further treatment. The procedure is also used to treat 

coarctations developing post-operatively [1]. 
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Electrophysiology studies (EPS) and Radiofrequency ablation (RFA): EPS 

procedures are used to investigate the electrical conduction pathways in the heart 

and can be used to locate the source of cardiac arrhythmias. These arrhythmias, 

such as that caused by Wolff-Parkinson-White (WPW) syndrome, can then be treated 

using radiofrequency ablation, first used in the late 1980s [30].  A current is passed 

through a catheter placed in contact with a region of myocardium suspected as being 

the source of the arrhythmia, causing thermal damage of the tissue [24]. 

Valvuloplasty: In cases where the aortic valve (AV) or pulmonary valve (PV) is 

narrowed (stenosis), a balloon may be inflated to improve blood flow. Balloon 

valvotomy of pulmonary stenosis was first performed in 1982 by Kan and colleagues 

[36] and is considered a safe and effective method of relieving obstruction, with a 

single procedure providing relief for decades or even a lifetime [1]. Aortic 

valvuloplasty was first performed in 1984 by Lababidi et al [37]. The procedure is 

considered more dangerous and less effective than pulmonary valvuloplasty [1]. 

Pulmonary artery angioplasty: Narrowed pulmonary arteries can be made more 

patent through balloon inflation and stent insertion. The procedure was first 

performed by Lock and colleagues in 1981 on newborn lambs [38] before being used 

in humans in 1983 [39]. The procedure is commonly employed in patients with 

Tetralogy of Fallot (a condition involving four distinct pathologies of the heart), and 

while usually effective, may occasionally result in haemodynamic instability or 

vascular rupture. Mortality has been reported at 0.2% [1]. 

Pacemaker insertions:  

Not strictly a catheterization, fluoroscopy is also used to guide the implantation of the 

wires for pacemakers. Beginning in 1970, many patients were given plutonium (238Pu) 

powered pacemakers, designed to reduce or eliminate the need for power source 

replacement [40]. These pacemakers were cost effective and relatively free of 

complications [41, 42], though are now unnecessary due to improvements in battery 

life.  
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Figure 1.4: Catheterisation of the heart (left) and a schematic diagram of the heart (right). 

AV=aortic valve, PV=pulmonary valve. Figure credit: author 

 

1.3: Risks from x-rays 

X-rays are a form of electromagnetic radiation, sufficiently energetic to cause 

ionisation of atoms or molecules [43] (a more complete description can be found in 

Appendix 1). Ionisation within cells may lead to breakage of DNA, either directly or 

indirectly via hydrolysis and subsequent oxidative stressing by reactive oxygen 

species [16]. DNA damage may result in cell killing or cell mutation. The former is 

only significant when occurring to a sufficient extent to cause a noticeable tissue 

deficit known as a 'tissue reaction' [44]. A well-known tissue reaction, familiar to 

millions of British holidaymakers, is sunburn - a radiation injury caused by ultraviolet 

radiation. X-rays may also cause sunburn (or erythema), along with injuries to deeper 

lying tissues, although the doses required for these effects (>2 Gray) are much larger 

than those typical of diagnostic imaging (<50 milligray) [16]. 

In contrast to cell killing, a single mutated cell may, theoretically, undergo malignant 

transformation, leading to the later development of cancer [45, 46]. For over sixty 

years, the preferred model for describing the relationship between radiation dose and 

associated risk has remained the linear-no-threshold (LNT) model [3, 44, 47]. This 

assumes two things; firstly that there is no threshold dose below which there is no risk 

of developing cancer, and secondly that the risk increases in linear proportion to 

dose. The LNT model was originally ‘conceived’ to describe hereditary effects of 
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radiation following research by Muller and Mott-Smith on fruit flies in the 1920s [48]. 

Muller campaigned for decades for the LNT model to be adopted as the underlying 

principle of radiation protection, finally convincing the United States National 

Academy of Sciences in 1955 [49]. Although the early concerns of hereditary effects 

of radiation were later found to be overly pessimistic [50], the LNT model became the 

preferred choice to describe the induction of cancer in exposed individuals. 

An analogy for the LNT relationship is the lottery; a single ticket is all it takes to win 

the jackpot. This may be very unlikely but the ‘risk’ of winning increases linearly with 

the number of tickets bought (Figure 1.5). Also the size of the jackpot does not 

increase with the number of tickets bought (this isn’t strictly true as each ticket adds 

to the jackpot fund, but buying ten tickets instead of one certainly would not give you 

a ten times larger prize).  

 

Figure 1.5: The Linear-no-threshold model describing the relationship between radiation 

dose and cancer, and between lottery tickets and ‘risk’ of winning the jackpot. Figure credit: 

author 

 

The chances of winning the lottery jackpot seem trivially small – about 1:45 million. 

Yet since 1994 about 3700 people in Britain have struck it lucky [51], by virtue of the 

huge number of people playing. The same logic can be applied in radiation 

protection; Even though the risks of developing cancer from radiation exposures may 

appear trivially small to an individual (typically ranging from 1 in 1000 to 1 in 1 million 

for diagnostic dose levels [52]), a non-trivial cancer burden on society may be 

expected if sufficiently large numbers of people are exposed. In 2004, the number of 

excess cancer cases induced by diagnostic medical radiation procedures in the UK 
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was estimated to be around 700 [53]. This figure was based on the assumption that 

the LNT model correctly describes the dose-risk relationship between radiation and 

cancer. However, this assumption is difficult to prove. 

Radiation induced cancers are not histologically distinct from those associated with 

numerous other risk factors [3] – smoking, diet, lifestyle, genetic factors, viruses etc. 

Excess cancers in populations exposed to radiation can be difficult to detect above 

background variation. Currently, the best available evidence of the cancer risks from 

low doses of radiation – the cohort of survivors of the nuclear bombings of Hiroshima 

and Nagasaki – can only detect a significant excess risk above doses of around 100-

200 millisieverts (mSv) [7], where an approximately linear relationship is seen. The 

magnitude of excess risk at dose levels typical of medical diagnostic and 

interventional examinations (below around 50 mSv) can only be estimated by 

downward extrapolation, assuming a linear-no-threshold relationship. This practice 

remains controversial [46, 54-57] and other models have been advocated (Figure 

1.6). The ‘hormesis’ model, a popular subject of the journal Dose Response, 

assumes exposure to low doses decreases cancer incidence compared to 

background levels. The ‘bi-modal’ model proposed by Busby [58] relates more to 

internal exposures from radioactive substances and assumes that small doses are 

especially dangerous. The ‘threshold’ model, supported by the French Academy of 

Sciences [59] implies that cellular defence mechanisms successfully eliminate risk at 

low doses, meaning that radiation doses typical of normal background levels or 

diagnostic medical exposures carry no or negligible risk. 

 

Figure 1.6: Alternative models to LNT (solid line) include threshold (dot-dash), and hormesis 

(dashes). Figure credit: author 
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This uncertainty is unfortunate as the central principle of radiation protection – that of 

justification – involves weighing up the potential risks from radiation exposures 

against the diagnostic or therapeutic benefit for the patient [52, 60]. The uncertainty in 

the magnitude of risks from low dose exposures to ionising radiation is relevant to all 

forms of medical radiation exposures, including cardiac catheterizations.  

 

1.4: Study rationale 

Cardiac catheterizations undoubtedly play a vital role in the management of 

congenital and acquired heart conditions. Because these procedures involve often 

lengthy exposure to x-rays, there are concerns over the potential for long term health 

effects, most notably an excess risk of developing cancer. Currently, information on 

the radiation doses from cardiac catheterizations is limited and risks can only be 

estimated by extrapolation of the known risks at higher doses. Uncertainties in the 

magnitude of doses and associated risks result in difficulty in justification and 

optimisation of all medical radiation studies, including cardiac catheterizations. The 

study aim was to estimate radiation doses from these procedures based on data 

recorded at the time of the examination, then estimate the risks using existing risk 

models and epidemiological analysis.  

 

The aims of the PhD were as follows; 

1. Estimate the radiation doses from x-ray guided cardiac catheterizations 

conducted on children and young adults with congenital heart disease. 

2. Estimate the risk of cancer in relation to these doses. 

 

Objectives:  

 

1. Establish a cohort of people with congenital heart disease who have 

undergone cardiac catheterizations. 

2. Produce a dosimetry system capable of estimation of organ doses from details 

recorded at the time of examinations. 

3. Estimate radiation associated cancer risks using existing risk models. 

4. Conduct a direct epidemiological analysis of these risks by matching cohort 

members with cancer registry data. 
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1.5: Structure of thesis 

The following chapter will be a literature review of evidence of the effects of low 

doses of ionising radiation and the doses likely to be delivered from cardiac 

catheterizations. Later chapter will discuss the establishment of a retrospective 

cohort, dose estimation, risk estimation and epidemiological analysis. Each of these 

four chapters will be subdivided into methods, results and discussion, thus making 

them like self-contained studies. This organisation was an alternative to putting 

methods for each type of analysis in the same place, followed by the results for each 

type etc.  
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Chapter 2: Literature review 

A review was conducted of previously published research in two main areas; (1) 

existing knowledge of the radiation doses from cardiac catheterizations in children 

and young adults, including evaluations of various methodologies for estimating 

organ doses and effective dose, and (2) epidemiological studies assessing the 

potential cancer risks following exposures to ionising radiation. The search 

methodologies used are described separately for each of these areas. 

 

2.1: Dosimetry 

The following sections describe the various measures of radiation dose referred to in 

this study, before reviewing previously published data on doses specific to x-ray 

guided cardiac catheterizations. 

 

2.1.1: Measures of radiation dose 

Information was primarily obtained from the International Commission on Radiation 

Units and measurements (ICRU) [61, 62], along with textbooks on diagnostic imaging 

and radiotherapy physics [16, 43]. Measures of radiation dose include absorbed dose 

(D), equivalent dose (H), effective dose (E) and kerma (K). Different measures 

(particularly equivalent and effective) are often simply described as ‘dose’ or have the 

same units, which can lead to confusion [63]. Almost all previously published 

assessments of doses in cardiac catheterizations are based on kerma area product 

(PKA), also known as dose area product (DAP), and fluoroscopic screening time. Both 

should be regarded as ‘dose indicators’ rather than as a true measure of absorbed 

dose to patient organs.  

Absorbed dose: The fundamental measure of the biological effect of ionising radiation 

is the absorbed dose (D), which is defined as the mean energy imparted [by ionising 

radiation] (𝑑𝐸̅) to mass dm of material: 

𝐷 =
𝑑𝐸̅

𝑑𝑚
 

Equation 2.1 

The SI unit of absorbed dose is the gray (Gy) defined as one joule (J) of energy 

absorbed per kilogram of material. The older unit of the ‘rad’ represents 100 ergs per 

gram [43], therefore 1 Gy = 100 rad, or 1 rad = 10-2 Gy or 1 cGy. Absorbed dose can 
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be related to the average mass absorption coefficient (𝜇̅en/ρ) and the energy fluence 

(ψ): 

𝐷 =  ψ ∙ (
𝜇̅𝑒𝑛

ρ
) 

Equation 2.2 

Absorbed dose, as a point measurement (denoted by the derivative notation), is 

suitable for describing localised (i.e. partial organ or cell-level) exposures such as 

tumour dose in radiotherapy or in vitro experiments. It may be used to estimate 

stochastic risk provided the amount and type of tissue involved is defined. Localised 

diagnostic dose levels are typically in the 0-50 mGy range [64]. At a dose of 1 mGy, 

each cell nucleus is crossed by an average of 1 secondary electron track [65]. The 

mean dose (Dm) to a specific organ or tissue of mass mt can be defined as: 

𝐷𝑚 =
1

𝑚𝑡
∙ ∫ 𝐷 ∙ 𝑑𝑚

𝑚𝑡

 

Equation 2.3 

Equivalent dose: The absorbed dose required to produce a certain biological 

endpoint varies between different types of radiation, such as photons, neutrons or 

alpha particles [66]. This is taken into account by the equivalent dose (H), which is 

defined as the mean dose to organ T by radiation type R (DT,R), multiplied by a 

weighting factor wR designed to takes into account varying biological effectiveness of 

the radiation type. For photons and electrons, the value of wR is 1, while for protons it 

is 2 and for alpha particles or fission products it is 20. For exposures involving 

multiple radiation types, the equivalent dose is defined as the sum of each 

contribution: 

𝐻𝑇 = ∑𝑊𝑅 ∙ 𝐷𝑇,𝑅

𝑇

 

Equation 2.4 

Or, combined with equation 2.3, above: 

𝐻𝑇 = ∑𝑊𝑅 ∙ (
1

𝑚𝑇
∙ ∫ 𝐷 ∙ 𝑑𝑚

𝑚𝑇

)

𝑇,𝑅𝑇

 

Equation 2.5 
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Note that the earlier measure of ‘dose equivalent’ is not organ averaged. Equivalent 

dose is designed for estimation of stochastic risks from radiation exposures. As dose 

is averaged over the whole organ; equivalent dose is not suitable for evaluation of 

acute radiation effects or tumour dose in radiotherapy. In the case of estimation of 

stochastic effects, assuming a linear dose response, this averaging out should make 

no difference as the total energy imparted remains the same. Equivalent dose will be 

used to describe organ doses in this thesis, rather than ‘mean absorbed dose’ in 

gray. Although the units of equivalent dose (sieverts) are the same as for effective 

dose (described below), the distinction between these two measures will always be 

made clear.  

Effective dose: It is difficult to compare the stochastic risk from localised exposures of 

different parts of the body (e.g. a chest x-ray compared to a CT scan of the head), or 

to compare exposures of the same body part but with different exposure patterns 

(e.g. a cardiac CT scan with a cardiac nuclear medicine scan). One way to avoid this 

problem is to simply average out a localised dose over the whole body. The problem 

of the 'mean whole body dose' approach is that the stochastic risk of cancer induction 

varies from one tissue to another. The effective dose (E) is designed to account for 

this variation by the application of specific weighting factors for each tissue (WT). 

Effective dose is defined as the sum of the equivalent dose to each organ (HT) 

multiplied by its respective tissue weighting factor (wT). 

𝐸 = ∑𝐻𝑇 ∙ 𝑤𝑇 

Equation 2.6 

Weighting factors are calculated by the International Commission on Radiological 

Protection (ICRP) [44], based on the risk of cancer induction for each organ and 

adjusted for associated lethality, quality of life and years of life lost (Table 2.1). 

Organs that are remote from the site of irradiation will only receive a small equivalent 

dose (mainly due to scattering) and therefore contribute little to the effective dose, 

even if the weighting factor for that organ is high. Effective dose is used to estimate 

stochastic risks for populations, rather than individuals. 
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Organ/tissue 
ICRP 60 

[67] 
ICRP 103 

[44] 

Bone marrow 0.12 0.12 

Lungs 0.12 0.12 

Colon 0.12 0.12 

Stomach 0.12 0.12 

Breasts 0.05 0.12 
Thyroid 0.05 0.04 

Liver 0.05 0.04 

Oesophagus 0.05 0.04 

Bladder 0.05 0.04 

Salivary Glands - 0.01 

Brain - 0.01 

Skin 0.01 0.01 

Bone surface 0.01 0.01 

Remainder 0.05 0.12 

Gonads 0.20 0.08 

Total 1.0 1.0 

 

Table 2.1: Effective dose tissue weighting factors. 

 

Kerma: The kerma, or KERMA (Kinetic Energy Released per unit MAss), not to be 

confused with korma (a lightly spiced, coconut-based curry), is the sum of the initial 

kinetic energies of secondary electrons liberated by uncharged ionising radiation 

(dEtr) in material of mass dm [43].  

𝐾 =
𝑑𝐸𝑡𝑟

𝑑𝑚
 

Equation 2.7 

Like absorbed dose, kerma is measured in gray and the two measures can closely 

approximate each other. The energy transfer coefficient (𝜇̅tr) defines the fraction of 

photon energy transferred to secondary electrons, in the form of kinetic energy, per 

unit thickness of material [43]. Kerma can be calculated from this figure, divided by 

the material’s density (i.e. the mass energy transfer coefficient, 𝜇̅tr/ρ) and the photon 

energy fluence (ψ): 

𝐾 = ψ ∙ (
𝜇̅𝑡𝑟

ρ
) 

Equation 2.8 

Comparing this to the equivalent calculation for absorbed dose (Equation 2.2), it can 

be shown that: 
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(
𝜇̅𝑒𝑛

ρ
) = (

𝜇̅𝑡𝑟

ρ
) (1 − 𝑔̅) 

Equation 2.9 

Where g is the fraction of energy lost to radiative processes. For photon radiation 

under 1 MeV,  g is less than 0.4% [68], thus at diagnostic energy levels (usually <100 

keV), the numerical values of kerma and absorbed dose are approximately the same. 

Differences between kerma and absorbed dose are shown in Figure 2.1. 

 

Figure 2.1: X-rays (dashed lines) liberate secondary electrons (continuous lines) both inside 
and outside the volume of interest. The electron contributing track 1 is released outside the 

volume, thus does not contribute to the kerma, but imparts some of it’s energy within the 
volume, thus contributing to absorbed dose. Electron 3 is released inside the volume, thus 

does contribute to kerma, though imparts some of its energy outside the volume. Figure credit: 

author 

 

Kerma can be divided into collision kerma (Kcol) and radiative kerma (Krad). The 

former results from soft and hard collisions with atoms, while the latter includes 

losses due to Bremsstrahlung interactions and electron/positron pair annihilation [69]. 

The latter process cannot occur when photon energies are below 1.02 MeV (i.e. twice 

the rest mass of an electron/positron), while Bremsstrahlung emissions are relatively 

unimportant in materials with a low atomic number, being proportional to Z2 [43]. Thus 

at diagnostic photon energies, Kcol is the dominant component of total kerma. 

 

Dose indicators: 

All measures of dose thus far described are time consuming or impossible to 

measure in vivo, requiring some form of dose measuring device to be placed on or 

within the patient. None are routinely measured in clinical practice, or are readily 
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available for historic examinations. Kerma area product, given the symbol PKA  by 

ICRU [70] (or KAP), is approximately equal to absorbed dose in air multiplied by 

beam area in a plane perpendicular to the beam central axis. PKA is either measured 

by a large area transmission ionisation chamber fitted to the exit port of the x-ray 

tube, or alternatively, estimated based on exposure factors. PKA has the advantage of 

being routinely recorded for almost all general radiographic and fluoroscopic x-ray 

exposures. The following section describes the principles of physical acquisition of 

PKA, before outlining the relationship with patient dose. 

Ionisation of air molecules occurs along the tracks of electrons liberated by x-ray 

photons passing through the chamber. Positive and negative ions move toward their 

respective collecting plates, producing a current measured by an electrometer (Figure 

2.2). Under the assumption of electronic equilibrium (see figure 1), the exposure (X) 

can be calculated. This is defined by ICRU as dQ/dm, where dQ is the absolute value 

of the total charge of ions of one sign produced in [dry] air when all electrons and 

positrons liberated or created by photons in air of mass dm are completely stopped in 

air [62]. Exposure is measured in Coulombs per kilogram (C/kg), though the older unit 

of the Röntgen (R) is sometimes encountered, where 1 R = 2.58 x10-4 C/kg.  

 

Figure 2.2: Electrons liberated by x-ray photons generate ion pairs, which are collected by 
positively and negatively charged plates. For charged particle equilibrium to occur, collected 
ion pairs created by electrons liberated outside the volume (solid circle) must equal those not 
collected, created by electrons liberated within the volume (dashed circle). Figure credit: author 

 

The exposure area product (EAP), measured in R·cm2, is approximately equal to 

exposure multiplied by area irradiated (A) defined by the collimators. As beam 
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intensity is uneven (e.g. due to the anode heel effect), EAP is more properly defined 

as the integral of X with respect to area: 

𝐸𝐴𝑃 = ∬𝑋(𝑥, 𝑦)
𝐴

𝑑𝑥 𝑑𝑦 

≈ 𝑋 ∙ 𝐴 

Equation 2.10 

The most recent estimate of the mean energy required to produce a single ion pair in 

air (𝑊̅) is 33.97 electronvolts (eV) [71], or 5.442 x 10-18 J. The average energy to 

produce one unit of charge, in Coulombs, is defined as (𝑊̅/𝑒) 𝐽/𝐶, where e is the 

charge of a single electron (1.602 x 10-19 C). Therefore: 

(
𝑊̅

𝑒
) = (

33.97(𝑒𝑉/𝑖𝑜𝑛 𝑝𝑎𝑖𝑟) ∙ 1.602 x 10−19(𝐽/𝑒𝑉)

1.602 x 10−19 (𝐽/𝑖𝑜𝑛 𝑝𝑎𝑖𝑟)
) [8] 

= 33.97 J/C 

Equation 2.11 

By multiplying the exposure (in C/kg) by this figure, the energy released by the x-ray 

beam per unit mass of air (i.e the air kerma) can be determined. As radiative losses 

(i.e. due to Bremsstrahlung interactions) are not accounted for, the result is more 

accurately described as air collision kerma (Kcol,air): 

𝐾𝑐𝑜𝑙,𝑎𝑖𝑟 = 𝑋 ∙ (
𝑊̅

𝑒
) 

= 𝑋 ∙ 33.97 

Equation 2.12 

Kerma area product, or rather collision kerma area product, is the integral of air 

collision kerma with respect to area: 

𝑃𝐾𝐴 = ∬𝐾𝑐𝑜𝑙,𝑎𝑖𝑟(𝑥, 𝑦)𝑑𝑥 𝑑𝑦
𝐴

 

≈ 𝐾𝑎𝑖𝑟 ∙ 𝐴 

Equation 2.13 

The units of PKA are Gy·cm2. Smaller doses are often quoted as cGy·cm2, mGy·cm2, 

or μGy·m2. Some authors quote doses in R·cm2, which can be converted to Gy·cm2 

by multiplying by 8.764 x10-3 (i.e. the product of 2.58 x10-4 (C/kg)/R and 33.97 J/C). 

The absorbed dose in air (Dair) can be defined as follows: 



22 
 

𝐷𝑎𝑖𝑟 = 𝐾𝑐𝑜𝑙,𝑎𝑖𝑟 ∙ (1 − 𝑔) 

Equation 2.14 

As mentioned previously, g is the fraction of energy lost to radiative processes.  As 

this fraction is very small at diagnostic energy levels, collision air kerma can 

reasonably be considered approximately equal to absorbed dose in air. PKA and dose 

area product (DAP) are essentially the same thing, although in reality it is the former 

that is actually being measured. 

Kerma area product is almost independent of distance from the source. This can 

easily be appreciated by considering that area is proportional to the square of 

distance (d) from the source (A ∝ d2), while x-ray intensity (I) is inversely proportional 

to the square of distance (I ∝ 1/d2). The product of both should therefore be constant, 

though, in reality, scattered and extrafocal radiation result in a small level of distance 

dependence [72]. 

It is important to understand that PKA is an indicator or patient dose rather than an 

absolute measure in itself. The relationship between PKA and patient dose is strongly 

dependent on a range of parameters, in particular beam energy, projection angle and 

patient size (this relationship is explored in depth in the Chapter 4). Comparison of 

PKA figures acquired using different equipment, patient sizes or examination types 

requires caution. Still, useful observations can be made from such dose indicators 

that will have important implications for studies of doses and associated risks. 

 

Calibration and uncertainty: 

PKA meters must be regularly calibrated to national standards. Quoted allowable 

uncertainties range from 7% [73] to 35% [74]. The International Electrotechnical 

Commission (IEC) recommend a combined uncertainty of 25% for PKA and air kerma 

measurements [75]. The International Atomic Energy Agency (IAEA) [76] describe 

the following calibration process, consisting of two steps; (1) measuring the air kerma 

at a distance dr from the focus (i.e. the part of the anode acting as the x-ray source), 

and (2) moving the device to a second position, downstream from a circular or square 

lead aperture with a known diameter at a distance da from the focus. The calibration 

factor, NPKA,Q is then defined as: 
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𝑁𝑃𝐾𝐴,𝑄
= 

𝐾𝐴(𝑑𝑟/𝑑𝑎)2

𝑀𝐾𝐴𝑃𝑘𝑇𝑃
𝐾𝐴𝑃  

Equation 2.15 

Where MKAP is the reading obtained by the meter [76]. An alternative ‘tandem’ method 

has been described by Pöyry et al [77] and Toroi et al [78] in which both the field PKA 

meter to be calibrated and the reference meter are placed in the beam together.  

 

Air Kerma: 

The air kerma (Kair) at a particular distance from the source can be calculated by 

simply dividing PKA by the beam area at that distance. This provides a method of 

estimating patient skin dose using PKA, without resorting to the placement of dose 

measuring devices on the patient’s skin. The location of the skin is estimated using 

the methodology of the IEC [79], who define the ‘international reference point’ as 

being at a location along the central axis of the x-ray beam 15 cm above (i.e. 

‘upstream’ from) the isocentre between source and detector [74]. However, to provide 

a true estimate of entrance skin dose (ESD), the backscattering of x-rays and 

secondary electrons from deeper lying tissues must be taken into account, in the form 

of a backscatter factor (BSF). The BSF, defined as the ratio of air kerma at the patient 

surface to the air kerma at the same distance in the absence of the patient, increases 

with beam quality, field size and (slightly) focus-skin distance [70], typically ranging 

from 1.3 to 1.5 for a 25 x 25 cm field [80]. 

Even if accounting for backscatter, skin dose estimates provide no information on the 

distribution of dose over the patient’s skin [74]. The beam is rarely in a fixed position 

throughout the procedure [81], meaning energy is imparted over a wider area of skin 

than suggested by the beam area.  

 

2.1.2: Previously published data on doses 

A previous review was published by Neofotistou in 2001 [10] of reported doses from 

adult and paediatric cardiac catheterizations. A large number of new studies have 

been published since this review and the figures quoted by Neofotistou can 

considered to be unreliable (for example, the author misquoted figures from two out 

of the three studies in which paediatric doses were reported). A new review of 

published doses was therefore required. This served a number of purposes; (1) 



24 
 

assess the magnitude and variation in doses, (2) identify factors affecting doses, and 

(3) evaluate the potential to estimate organ doses from the information likely to be 

obtainable from participating hospitals.  

Literature on doses was identified by searching Medline and Pubmed. Search terms 

were 'cardi*', 'catheteri*', 'fluoroscop*', 'dos*', 'paediatric', 'pediatric' and 'child*'. The 

reference list of identified papers was searched for further relevant publications. Most 

of these studies focus specifically on either childhood or adult exposures, with 

average age of patients in the latter group typically over 60 years. Some studies 

focus on all patients with congenital heart disease (CHD). These tend to be 

predominantly children, though studies may also include some patients followed into 

adulthood [82, 83]. Forty seven studies were initially identified as being relevant. Five 

studies reported methodologies for calculating organs doses or effective dose, rather 

than doses from clinical examinations [84-88]. Two studies focussed on risks but 

provided no information on doses [89, 90]. Forty studies were identified in which 

doses were reported.  

A summary of reported dose indicators is provided in table 2.2. A number of 

observations stand out. Firstly, average PKA is seen to vary with procedure type; 

figures were typically highest for right ventricular outflow tract (RVOT) dilatation and 

lowest for atrial septal defect (ASD) occlusions and endomyocardial heart biopsies. 

Secondly, there is a strong trend of increasing PKA with increasing patient size (either 

mass or age); this is unsurprising given the increased x-ray output required to 

maintain the same intensity at the detector as attenuator thickness increases, and 

also the increased beam area required to include the region of interest. Thirdly, an 

enormous variation in PKA is seen between different studies; for example, there is a 

more than 50-fold variation in median PKA for interventional procedures in studies by 

Ait Ali et al [13] and Smith et al [22].  

Regarding the third observation, there are a number of possible explanations. Firstly, 

the ages of patients vary between studies. Given the tenfold or more increase in 

examination PKA between newborns and young adults, a small difference in the 

average age of study subjects could explain a sizeable difference in average PKA. Yet 

large variations are seen even where data are stratified by patient age or mass. 

Interestingly, there is a tendency for PKA to explode upwards to very high values (over 

80 Gy·cm²) for larger patient sizes in some studies (e.g. Verghese [82], Glatz [91], 
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Ghelani [83]), but not in others (e.g. Barnaoui [92], McFadden [93], Martinez [94]), 

where the increases in PKA with patient size are relatively restrained. 

A second reason for variation in PKA is that studies may include a different mix of 

procedure types. If a particular hospital specialises in complex procedures such as 

valve replacements, this could result in an unusually high average PKA where data for 

all procedure types are presented together. However, large discrepancies remain, 

even where studies are stratified by procedure type. For example, a 10-60 fold 

variation in median PKA for ASD occlusions was seen between studies led by 

Barnaoui [92], and Verghese [82], depending on age group. The screening times of 

the latter study are longer, but to a much smaller extent than the increase in PKA.  

A third explanation for PKA variation relates to equipment differences. This includes 

not only the model of fluoroscopic equipment used, (e.g. Siemens Axiom Artis, Philips 

Integris etc.), but also includes the way the machine is set up, including frame rates, 

dose rate and antiscatter grid usage. Here, the desire to reduce radiation doses 

conflicts with the desire to obtain satisfactory image quality [95]. The signal-to-noise 

ratio (SNR) quantifies the ‘graininess’ of the image by relating useful signal to random 

quantum fluctuations in photon fluence [96]. Photon counting statistics conform to a 

Poisson distribution [95], meaning variance (σ²) is equal to the square root of photon 

count (N). Thus SNR is N/√N, which simplifies to √N [16]. At this superficial level, 

‘image quality’ is subject to a law of diminishing returns – to increase SNR by a factor 

of 2, photon fluence, and hence patient dose, would need to be increased by a factor 

of 22. This relationship does not take into account the ability of the imaging system to 

process useful signal and noise – a characteristic described by the system’s ‘detective 

quantum efficiency’ (DQE) – essentially a frequency dependent measure of image 

quality per unit dose [16, 97]. The DQE, and the related measure of ‘effective DQE’ 

(eDQE) take into account a range of other factors in addition to photon count, 

including handling of electronic noise, focal spot size and control of scattered 

radiation [97]. Post-acquisition image processing techniques, such as recursive 

filtering, may also improve image quality for a given dose [98, 99]. Thus, increased 

image quality does not necessarily come at the expense of increased dose [96].  
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Study (Collection date) Subjects 
Median 
age/weight 

Age/weight 
range 

Median FT (mins) 
[IQR] 

Median DAP (Gy·cm²) 
[IQR] Mean DAP (Gy·cm²) [SD] 

Median DAP per unit 
weight (Gy·cm²/kg) 
[IQR] 

Combined diagnostic               

Campbell (1997)(MD 1)* 18   
4m - 20y 

4.4 [R: 1.4-28.2] 5.22 [R: 0-22.84] 7.25 [7.75]   

Campbell (1997) (MD 2)* 26   5.4 [R: 2.4-42.2] 2.31 [R: 0.62-6.34] 2.64 [1.57]   

Schultz (published 2003) §§ 18       4.45   

Bacher (published 2005) (0.2 mm Cu) ** 15 2.4 y 0.1-8.8 y 4.9 [R: 0.5-14.5] 5.48 [R: 1.14-14.61]     

Bacher (published 2005) (0.4 mm Cu) ** 13 1.3 y 0.1-9.2 y 3.9 [R: 1.6-33.2] 3.37 [R: 0.96-13.99]     

Martinez (2007) 58 

  <1 y     1.9 [0.3] $$$   

  1-5 y     4.2 [0.9] $$$   

  5-10 y     4.2 [0.9] $$$   

  10-16 y     8.6 [2.7] $$$   

Al Haj (2000-2002) 60   0-12 y     7.77 [14.3]   

Dragusin (>2005) 

9   1–30 d 11 [ 18, 6] 2.7 [ 2.3, 4.1]     

27   1-12 m 6 [ 4, 11] 2.5 [ 1.2, 5.4]     

19   1-3 y 10 [ 8, 14] 5.1 [ 3.1, 8]     

24   3-5 y 8 [ 5.25, 14] 5.8 [ 2.9, 9.4]     

34   5-10 y 8 [ 5.75, 10.5] 7.1 [ 4.4, 12.3]     

13   10-15 y 5 [ 3, 16.5] 9.9 [ 3.5, 16.6]     

Beels (published 2009) 17 1.77 y 0-11.8 y 8.3 [R: 0.6-27.4] 5.55 [R: 0.7-16.6]     

Yakoumakis (published 2009) 42   1 d-14 y         

Karambatsakidou(1999-2004) 139 

  0-0.5 y     3.7 [2.6]   

  0.5-2.5 y     6.0 [5.8]   

  2.5-7.5 y     7.6 [9.5]   

  7.5-12.5 y     15.9 [12.9]   

  12.5-18 y     37.9 [52.3]   

Onnasch (1998-2003) 1106 11.0 kg 1.7-115 kg       0.28 [75%: 0.5] 

Ait Ali (2007) 13 0.7 y 0.4-11 y   14 [12, 28] 20.85 [16.9]   

Gherardi (2008-2009) 210   0-15.6 y 7.5 [R: 0.3-55] 3.2 [R: 0.2-21.0]     

Watson (2009-2010) 50   0-18 y 16 12.00 [R: 3-143]     

Watson (2009-2010) ## 23   <1 y         

El Sayed (published 2012) 46 4.17 y       3.78 [2.5]   

Verghese (2005-2009) 

242   <1 y 26 7.43 [4.33, 14.43]     

134   1-4 y 26 13.99 [8.52, 22.22]     

85   5-9 y 20 16.47 [9.04, 24.94]     

130   10-15 y 19 34.15 [15.84, 60.29]     

212   >16 y 25 82.84 [34.31, 184.02]     
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Ubeda (published 2012) 

76   <1 y   1.0 $$$ 1.1 $$$   

80   1-5 y   1.5 $$$ 1.8 $$$   

39   5-10 y   2.2 $$$ 2.8 $$$   

30   10-16 y   7.9 $$$ 9.0 $$$   

225   0-16 y   1.5 $$$ 2.7 $$$   

Ubeda (published 2012) (normal) 35         1.8 $$$   

Ubeda (published 2012) (complex) 45         3.5 $$$   

McFadden (published 2013) 159   0.1-15.3 y [4.6, 11.5] [1.40, 5.87] 2.94 $   

Glatz (2009-2013) 671 

  < 5 kg 15 [ 9, 23] 2.24 [ 1.16, 3.49]     

  5-12.5 kg 16 [ 11, 26] 4.18 [ 2.72, 6.63]     

  12.5-25 kg 13 [ 9, 20] 9.45 [ 5.75, 15.52]     

  25-45 kg 14 [ 8, 22] 27.22 [ 15.63, 42.90]     

  45-65 kg 14 [ 10, 25] 55.95 [ 34.32, 90.71)     

  >65 kg 16 [ 10, 21] 89.59 [ 49.19, 147.84]     

  All   15 [ 10, 23] 6.12 [ 2.72, 23.3]     

Barnaoui (2010-2011) 

93   <6.5 kg 7 [R: 0.3-45] 2 [R: 0.3-8.1] 2.7 [2]   

58   6.5-14.5 kg 6 [R: 0.3-25] 2 [R: 0.02-11.5] 2.9 [2.8]   

61   14.5-25.5 kg 4.5 [R: 1-23] 2.6 [R: 0.37-14.2] 3.9 [3.3]   

47   25.4-43.5 kg 5.4 [R: 1-25] 5.8 [R: 0.7-16.6] 6.3 [4.3]   

29   >43.5 kg 7.5 [R: 2.5-45] 12.8 [R: 3.4-37.5] 16.4 [10.8]   

Kobayashi (2008-2013) 

510 3.6 kg < 5 kg 14 [ 8, 22] 2.28 [ 1.22, 4.20]     

1429 9.5 kg 5-20 kg 14 [ 9, 20] 5.40 [ 2.86, 9.57]     

498 27.4 kg 20-45 kg 12 [ 7, 17] 14.49 [ 6.74, 26.74]     

314 58 kg 45-80 kg 11 [ 7, 18] 40.06 [ 15.69, 81.68]     

76 92 kg >80 kg 12 [ 7, 19] 103.47 [ 28.11, 158.74]     

2827   All <18 y 13 [75%: 20]     0.59 [75% 1.05] 

Borik (2007-2014) 1224   Children 11 [R: 0-181] 4.75 [R: 0.01-338.18]   0.39 [R: 0-92.98] 

Ubeda (2011-2013) 200 

  0-16 y 9.9 [75%: 15.8] 1.5 [75%: 2.9] $$$ 2.7 0.1 [75%: 0.16] $$$ 

  0-1 y [75%: 17.1] [75%: 1.17] $$$     

  1-5 y [75%: 14.9] [75%: 1.74] $$$     

  5-10 y [75%: 19.1] [75%: 2.83] $$$     

  10-16 y [75%: 17.4] [75%: 7.74] $$$     

Corredoira (2009-2013) ### 

34   0-1 y   1.80 [0.92, 4.10] 2.75   

47   1-5 y   4.67 [2.84, 10.44] 6.17   

25   5-10 y   6.03 [3.12, 14.48] 17.4   

45   10-16 y   15.56 [3.23, 29.56] 24.93   

21   16-20 y   25.44 [7.43, 53.34] 34.07   

172   All <20 y   5.26 [2.31, 16.16] 15.44   
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Heart biopsy  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

Verghese (2005-2009) 

30   <1 y 8 1.69 [ 0.99, 2.82]     

112   1-4 y 7 2.66 [ 1.45, 4.84]     

105   5-9 y 7 6.38 [ 2.89, 11.98]     

224   10-15 y 8 15.14 [ 8.39, 31.10]     

283   >16 y 8 18.53 [ 8.52, 39.05]     

Glatz (2009-2013) (Right Heart ± biopsy) 301 

  5-12.5 kg 9 [ 6, 18] 2.10 [ 0.89, 3.43]     

  12.5-25 kg 7 [ 5, 12] 4.84 [ 2.67, 9.90]     

  25-45 kg 7 [ 5, 15] 9.68 [ 4.64, 19.05]     

  45-65 kg 8 [ 5, 12] 17.71 [ 8.75, 32.04]     

  >65 kg 7 [ 5, 11] 30.02 [ 12.67, 49.21]     

  All < 22 y 7.8 [5-14] 9.00 [3.43, 20.87]     

Kobayashi (2008-2013) 

4 4.2 kg < 5 kg 7 [ 5: 10] 1.13 [ 0.51, 1.73]     

394 14.8 kg 5-20 kg 8 [ 4, 12] 3.91 [ 0.97, 10.63]     

425 31.1 kg 20-45 kg 7 [ 4, 12] 7.56 [ 1.66, 24.07]     

293 54.7 kg 45-80 kg 6 [ 3 :10] 13.41 [ 1.80, 48.96]     

56 91.3 kg >80 kg 4 [2, 8] 7.95 [ 3.12, 40.95]     

1172   All <18 y 7 [75%: 11]     0.26 [75%: 0.79] 

Borik (2007-2014) 710     5 [R: 2-28] 27.89 (sic) [R: 0.1-83.43]   0.1 [R: 0.01-1.08] 

Sutton (2011-2012) 45     3.7 [R: 1.2-9] 0.16 [R: 0.04–1.45]     

 

Coronary angiography  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

Tsapaki (2007) 
18 

  0-1 y 9.4 [R: 3.4-11.1] 1.9 [R: 0.1-3.2]     

  1-10 y 3.1 [R: 1.1-6.6] 1.15 [R: 0.1-10.7]     

  >10 y 4.1 [R: 2.4-21.1] 4.1 [R: 0.7-36.7]     

18   All 4.0 [R: 1.1-21.2] 2.1 [R: 0.1-36.7]     

Glatz (2009-2013) 179 

  12.5-25 kg 14 [ 11, 19] 12.35 [ 8.54, 24.43]     

  25-45 kg 15 [ 11, 20] 26.98 [ 17.59, 40.61]     

  45-65 kg 15 [ 11, 20] 54.76 [ 36.61, 80.82]     

  >65 kg 16 [ 13, 21] 89.77 [ 71.26, 112.43)     

  All 15 [ 11, 20] 31.80 [ 16.83, 63.50]     
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PDA occlusion  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

El Sayed (published 2012) 18         10   

Schultz (published 2003) §§ 12         18.8 

Verghese (2005-2009) 
61   1-4 y 17 8.00 [5.58, 14.30] 9 [8]   

20   >16 y 34 110.18 [56.51, 271.45]     

Al Haj (2000-2002) 41   0-13 y     23.21 [10.1]   

Glatz (2009-2013) 92 

  5-12.5 kg 10.5 [8, 13] 2.63 [1.78, 3.53]     

  12.5-25 kg 9 [8, 15] 5.56 [3.52, 9.85]     

  All 11 [9, 16] 3.52 [2.29, 7.09]     

Bacher (published 2005)               

Onnasch (1995-2003) 165           mean=0.35 [75%: 0.37] 

Smith (2005-2009) 140   <18 y 6 [ 4, 9] 1.52 [ 0.78, 2.52]     

Yakoumakis (published 2009) 10   4.8 m - 13 y         

Yakoumakis (published 2013) & 16   7-11 y   9.5 [R: 7.8-11.2] 9.5 [0.1]   

Barnaoui (2010-2011) 

23   <6.5 kg 6.5 [R: 2-23.4] 2.1 [R: 1-7.1] 2.8 [1.8]   

85   6.5-14.5 kg 3 [R: 0.5-20] 1.4 [R: 0.39-9.7] 1.9 [1.4]   

29   14.5-25.5 kg 3 [R: 1.3-17] 2.8 [R: 0.3-7.5] 3.1 [2]   

8   25.4-43.5 kg 3 [R: 2-9.3] 4.3 [R: 0.8-11.2] 5.3 [3.9]   

6   >43.5 kg 2 [R: 1-4.5] 10.8 [R: 0.6-20.1] 11.5 [7]   

98   All 3 [0.5, 23.4] 1.8 [R: 0.3-20.1] 2.8 [2.9]   

Ghelani (2009-2013) § 

130   <1 y 15 [75%: 21] 5 [75%: 8]     

294   1-4 y 10 [75%: 16] 7 [75%: 12]     

60   5-9 y 11 [75%: 15] 13 [75%: 22]     

38   10-15 y 12 [75%: 17] 33 [75%: 85]     

25   >15 y 24 [75%: 33] 96 [75%: 151]     

Kobayashi (2008-2013) (coils) 283   All <18 y 8 [75%: 13]     0.31 [75%: 0.53] 

Kobayashi (2008-2013) (device) 467   All <18 y 11 [75%: 16]     0.42 [75%: 0.71] 

Song (published 2014) 20 2.1 y  0.5-7 y 5.67 [R: 2.1-33.0] 6.47 [R: 1.29-90.01] 13.71 [20.21] Mean=0.62 

Borik (2007-2014) 

266   Children 8 [R: 3-92] 2.54 [R: 0.38-181.31]   0.18 [R: 0.04-2.51] 

87   0-10 kg   1.37 [R: 0.38-18.93]   0.19 [R: 0.05-2.08] 

122   10-20 kg   2.45 [0.48, 12.38]   0.17 [R: 0.04-0.86] 

34   20-30 kg   4.11 [R: 0.91-19.48]   0.17 [R: 0.04-0.91] 

25   >30 kg   20.87 [R: 2.94-181.31]   0.37 [R: 0.07-2.51] 

Keiller (2012-2013) 52         3.19 [R: 1.87-10.52]   

Ubeda (published 2012) (coils) 20         1.5 $$$   

Ubeda (published 2012) (device) 117         2.1 $$$   

Ubeda (2011-2013) (coils) 42     6.0 [75%: 9.1] 0.6 [75%: 1.2] $$$ 0.9 $$$   

Ubeda (2011-2013) (device) 84     9.8 [75%: 13.6] 1.0 [75%: 1.9] $$$ 1.7 $$$   
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ASD and PFO occlusion  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

Bacher (published 2005)               

Onnasch (1995-2003) (ASD) 259           mean=0.42 [75%: 0.50] 

Onnasch (1995-2003) (PFO) 21           mean=0.23 [75%: 0.30] 

Yakoumakis (published 2009) 15   1.5-18 y         

El Sayed (2012) 15         10 [10]   

Verghese (2005-2009) 

29   1-4 y 30 21.97 [ 16.14, 30.48]     

40   5-9 y 31 28.16 [ 14.31, 39.78]     

27   10-15 y 34 74.92 [ 44.19, 105.82]     

99   > 16 y 28 98.71 [60.97, 153.41]     

Smith (2005-2009)  49 (114?)   <18 y 8 [ 4, 14] 2.82 [ 1.28, 4.93]     

Yakoumakis (published 2013) & 19   6-11 y   40.3 [R: 17.3-58.3] 39.9 [1.2]   

Glatz (2009-2013) 97 

  5-12.5 kg 16 [ 11, 24] 5.03 [ 2.97, 6.61]     

  12.5-25 kg 14 [ 12, 22] 7.28 [ 4.80, 9.32]     

  25-45 kg 24 [ 12, 31] 16.21 [ 11.87, 24.33]     

  45-65 kg 18 [ 12, 27] 30.63 [ 14.33, 43.53]     

  >65 kg 17 [ 13, 27] 58.93 [ 33.79, 107.01]     

  All    15 [12, 25] 10.38 [6.29, 28.78]     

Barnaoui (2010-2011) 

4   6.5-14.5 kg 5.6 [R: 0.6-7] 1.8 [R: 0.1-3] 1.7 [1.2]   

25   14.5-25.5 kg 1 [R: 0.8-7] 0.7 [R: 0.1-2.9] 0.8 [0.6]   

13   25.4-43.5 kg 1.5 [R: 0.5-20] 1.1 [R: 0.4-6.8] 2 [2.2]   

12   >43.5 kg 2.5 [R: 1-11] 2.8 [R: 1-15] 4.5 [4.4]   

54   All 1.8 [0.5-20] 0.9 [0.1-15] 2 [2.7]   

Ghelani (2009-2013) § 

219   1-4 y 18 [75%: 27] 9 [75%: 17]     

180   5-9 y 16 [75%: 24] 14 [75%: 25]     

127   10-15 y 17 [75%: 27] 39 [75%: 67]     

194   >15 y 20 [75%: 31] 89 [75%: 204]     

Kobayashi (2008-2013) 568   All <18 y 15 [75%: 23]     0.41 [75: 0.71] 

Song (published 2014) 17 4.9 y 2.0-18 y 6.55 [R: 4.1-54.1] 4.85 [R: 1.70-21.21] 10.71 [8.35] Mean=0.33 

Borik (2007-2014) 

345   Children 8 [R: 2-95] 5.04 [R: 0.34-244.56]   0.21 [R: 0.02-3.67] 

6   0-10 kg   2.91 [R: 1.78-8.82]   0.31 [R: 0.22-0.89] 

141   10-20 kg   2.83 [R: 0.34-42.68]   0.16 [R: 0.02-2.13] 

80   20-30 kg   4.71 [R: 1.93-29.87]   0.22 [R: 0.08-1.36] 

118   >30 kg   12.70 [R: 1.93-244.56]   0.23 [R: 0.06-3.69] 

Ubeda (published 2012) 9         4.3 $$$   

Keiller (2012-2013) 19         4.95 [R: 2.08-33.23]   

Haas (2012-2013) 19 30 kg   6.9 [ 4.6, 9.0] 6.78 [ 3.52, 10.15] 10.48 [14.45] 0.16 [ 0.11, 0.39] 

Haas (2013) 31 26 kg   5.5 [ 3.8, 9.3] 1.12 [ 0.68, 3.67] 2.84 [3.51] 0.04 [ 0.03, 0.07] 
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Aorta dilatation / coarctation repair  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

Al Haj (2000-2002) 24   0-13 y     11.35 [24.3]   

Yakoumakis (published 2009) 10   2 m - 12 y         

El Sayed (published 2012) 6         42.5 [18.18]   

Smith (2005-2009) (balloon) 9     8 [ 5, 11] 2.37 [ 1.44, 5.42]     

Smith (2005-2009) (stent) 21     12 [ 9, 14] 27.10 [ 9.98, 50.12]     

Verghese (2005-2009) 
42   <1 y 34 12.98 [ 8.27, 22.92]     

34   >16 y 36 123.02 [78.54, 258.73]     

Glatz (2009-2013) 86 

  < 5 kg 18 [14, 20] 2.73 [ 2.02, 3.84]     

  5-12.5 kg 18 [14, 24] 4.34 [ 2.53, 6.90]     

  All   19 [14, 24] 4.84 [2.61, 17.70]     

Ghelani (2009-2013) § 

202   <1 y 21 [75%: 32] 7 [75%: 14]     

36   1-4 y 23 [75%: 35] 20 [75%: 30]     

38   5-9 y 22 [75%: 33] 41 [75%: 65]     

79   10-15 y 20 [75%: 26] 96 [75%: 170]     

93   >15 y 24 [75%: 36] 200 [75%: 340]     

Ubeda (published 2012) 70         2.2 $$$   

Kobayashi (2008-2013) (angioplasty) 182   All <18 y 15 [75%: 21]     0.66 [75%: 1.07] 

Kobayashi (2008-2013) (stent) 112   All <18 y 16 [75%: 23]     0.90 [75%: 1.59] 

Borik (2007-2014) (angioplasty) 120     11 [R: 4-66] 4.79 [R: 0.35-194.65]   0.43 [R: 0.07-4.47] 

Borik (2007-2014) (stent) 52     15 [R: 7-65] 32.92 [R: 1.49-291.54]   0.80 [R: 0.13-4.48] 

 

Aortic Valvuloplasty  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

Smith (2005-2009) 30     21 [ 16, 28] 2.35 [ 0.90, 7.28]     

Verghese (2005-2009) 43   <1 y 30 9.57 [6.29, 15.24]     

Glatz (2009-2013) 26   All 30 [ 22, 32] 11.18 [ 4.70, 63.42]     

Ghelani (2009-2013) § 

155   <1 y 25 [75%: 34] 7 [75%: 11]     

27   1-4 y 21 [75%: 33] 19 [75%: 37]     

22   5-9 y 22 [75%: 30] 21 [75%: 28]     

65   10-15 y 28 [75%: 36] 93 [75%: 137]     

27   >15 y 23 [75%: 39] 116 [75%: 187]     

Kobayashi (2008-2013) 138   All <18 y 18 [75%: 26]     0.80 [75%: 1.27] 
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Borik (2007-2014) 

138   Children 13 [R: 4-61] 3.4 [R: 0.14-110.91]   0.42 [R: 0.08-2.11] 

72   0-10 kg   1.45 [R: 0.14-7.09]   0.31 [R: 0.08-1.25] 

20   10-20 kg   0.48 [R: 0.05-19.55]   0.42 [R: 0.09-1.28] 

7   20-30 kg   14.72 [R: 7.38-32.22]   0.57 [R: 0.26-1.41] 

39   >30 kg   44.54 [R: 8.05-110.91]   0.77 [R: 0.24-2.11] 

Ubeda (published 2012) 30         2.0 $$$   

Ubeda (2011-2013) 13     11.0 [75%: 13.5] 0.6 [75%: 2.3] $$$ 2.6 $$$   

 

Pulmonary valvuloplasty  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

Al Haj (2000-2002) 44   0-13 y     9.96 [15.1]   

Yakoumakis (published 2009) 11   3.6 m - 8.5 y         

Smith (2005-2009) 63   <18 y 11 [ 8, 18] 1.23 [ 0.57, 2.03]     

Verghese (2005-2009) 86   <1 y 28 7.97 [4.59, 13.55]     

Glatz (2009-2013) 75 

  <5 kg 19 [ 12, 30] 2.41 [ 1.65, 3.10]     

  5-12.5 kg 24 [ 16, 32] 4.71 [ 3.13, 7.06]     

  All  19 [12, 30] 4.05 [2.33, 14.34]     

Ghelani (2009-2013) § 

303   <1 y 21 [75%: 35] 4 [75%: 9]     

64   1-4 y 19 [75%: 30] 10  [75%: 18]     

24   5-9 y 13 [75% 20] 16  [75%: 23]     

35   10-15 y 15 [75% 22] 44  [75%: 98]     

35   >15 y 28 [75% 42] 198  [75%: 448]     

Kobayashi (2008-2013) 342   All <18 y 14 [75%: 20]     0.56 [75%: 0.95] 

Borik (2007-2014) 

286   Children 15 [R: 1-131] 1.63 [R: 0.22-188.47]   0.28 [R: 0.01-3.45] 

216   0-10 kg   1.14 [R: 0.22-12.22]   0.27 [R: 0.06-3.44] 

40   10-20 kg   3.56 [R: 0.91-40.39]   0.24 [R: 0.08-3.11] 

9   20-30 kg   7.48 [R: 5.49-11.56]   0.34 [R: 0.22-0.42] 

22   >30 kg   50.90 [R: 0.87-188.47]   0.99 [R: 0.01-3.45] 

Song (published 2014) 16 4.8 y / 18 kg   9.8 [R: 5.1-21.0] 6.20 [R: 3.80-10.68] 7.11 [3.01]   

Ubeda (published 2012) 61         1.2 $$$   

Ubeda (2011-2013) 29     12.4 [75%: 17.0] 0.6 [75%: 0.9] $$$ 0.9 $$$   
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Combined interventional  Subjects Med age/weight  Range  Median FT  Median PKA  Mean PKA  Median PKA/kg 

Bacher (published 2005) (0.2 mm Cu) ** 16 2 y 0.2-10 y   4.72 [R: 2.82-20.44]     

Bacher (published 2005) (0.4 mm Cu) ** 16 2 y 0.3-7.8 y   2.72 [R: 0.41-18]     

Martinez (published 2007) 79 

  <1 y     2.4 [0.4] $$$   

  1-5 y     4.4 [0.8] $$$   

  5-10 y     8.6 [1.9] $$$   

  10-16 y     17.8 [3.7] $$$   

Dragusin (after 2005) 

12   1–30 d 16.5 [ 13.5, 24.3] 4.8 [ 2.5, 6.5]     

49   1-12 m 12 [ 9, 25] 5.9 [ 3.7, 9.2]     

29   1-3 y 16 [ 9.5, 24.5] 7.5 [ 5, 12.5]     

14   3-5 y 18 [ 10.75, 33.5] 9.5 [ 5, 22.2]     

31   5-10 y 21 [ 14, 26] 17.1 [ 9.7, 27]     

12   10-15 y 20 [ 16, 39.75] 46.8 [ 28.7, 74.4]     

Beels (published 2009) 32 0.69 y 0-10.8 y   2.7 [R: 0.1-31.7]     

Karambatsakidou (1999-2004) 110 

  0-0.5 y     3.2 [4.1]   

  0.5-2.5 y     2.6 [5.1]   

  2.5-7.5 y     7.8 [11.8]   

  7.5-12.5 y     10.0 [9.7]   

  12.5-18 y     34.2 [38.9]   

Onnasch (1998-2003) 883 13.8 kg 1.5-108 kg       0.35 [75%: 0.66] 

Ait Ali (2007) 5 14 y 0.3-16 y 24 [R: 13-26] 93 [64, 99] 109 [100.0]   

El Sayed (published 2012) 61 7.84 y 0–22 y     13.24 [15.4]   

Smith (2000-2005) (old) *** 444 2.19 y 0-17.9 y   8.0 [R: 0.1-156.0]     

Smith (2005-2009) (new) *** 312 2.06 y 0-17.9 y   1.76 [R: 0.03-125.15]     

McFadden (published 2013) 195   0-16 y [5.1, 15.4] [1.37, 7.15] 3.13 $   

Glatz (2009-2013) 816 

  < 5 kg 19 [ 12, 32] 2.58 [ 1.71, 3.67]     

  5-12.5 kg 26 [ 14.5, 41] 6.56 [ 3.46, 13.80)     

  12.5-25 kg 24 [ 13, 44] 12.96 [ 6.34, 31.28]     

  25-45 kg 38 [ 24, 59] 65.86 [ 2.43, 96.93)     

  45-65 kg 24 [ 16, 45] 85.14 [ 35.20–144.04)     

  >65 kg 36 [ 19, 51] 158.41 [ 87.58, 389.69)     

  All 25 [ 14–43] 10.51 [ 3.71, 43.15]     

Kobayashi (2008-2013) 

680   < 5 kg 18 [11,  31] 2.78 [ 1.18, 6.10]     

2231   5-20 kg 19 [ 11, 32] 7.37 [ 3.36, 15.41]     

767   20-45 kg 19 [ 11, 31] 19.22 [ 8.37, 37.80]     

500   45-80 kg 19 [ 12, 31] 54.62 [ 23.70, 104.18]     

90   >80 kg 20 [ 12, 34] 116.00 [ 65.09, 202.25)     

4268   All <18 y 19 [75%: 32]     0.72 [75%: 1.51] 
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Ubeda (published 2012) 

74   <1 y   0.9 $$$ 1.2 $$$   

123   1-5 y   1.4 $$$ 1.7 $$$   

58   5-10 y   1.9 $$$ 2.6 $$$   

64   10-16 y   4.5 $$$ 7.1 $$$   

319   0-16 y   1.7 $$$ 2.9 $$$   

Ubeda (2011-2013) 317 

  0-16 y 12.6 [75%: 20.6] 1.2 [75%: 2.5] $$$ 2.4 $$$ 0.09 [75%: 0.17] $$$ 

  0-1 y [75% 22.7] [75%: 1.11] $$$     

  1-5 y [75% 20.6] [75%: 1.90] $$$     

  5-10 y [75% 16.9] [75%: 3.22] $$$     

  10-16 y [75% 23.1] [75%: 8.68] $$$     

Corredoira (2009-2013) ### 

92   0-1 y   1.91 [1.19, 3.14] 3.19   

158   1-5 y   2.57 [0.86, 7.53] 4.92   

118   5-10 y   6.09 [2.25, 14.18] 11.52   

176   10-16 y   11.99 [3.77, 27.55] 21.94   

40   16-20 y   39.74 [17.87, 91.12] 57.06   

584   All <20 y   4.87 [1.60, 15.05] 14.68   

 

Table 2.1: Summary of dose indicators (kerma area product and screening time) for reviewed studies. 

 

Notes: * Results given for two different operators, ** study conducted using two different levels of copper filtration, *** data presented for two equipment 

types, $ geometric mean, $$$ figures reduced to account for table attenuation, # doses presented in chart form only, ## subset of above group, ### study 

included cone beam CT elements for 38 diagnostic and 71 interventional procedures, & Organ doses for PDA, VSD and ASD occlusions calculated using 0, 10 

and 10 year old phantoms, respectively, § Sample sizes are for DAP. The sample of examinations used for air kerma was smaller, presumably as not all 

procedures had an air kerma figure recorded, §§ It is not clear if the figures are median or mean.        
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Fryback and Thornbury [100] and Thornbury [101] propose six stages of efficacy of 

diagnostic imaging; these are (1) Technical capacity, (2) Diagnostic accuracy, (3) 

Diagnostic impact, (4) Therapeutic impact, (5) Patient outcomes, and (6) Societal 

outcomes. Barrett et al [95] state that the majority of research tends to focus on stage 

2. There is insufficient evidence to determine whether higher radiation doses are 

associated with improved patient or societal outcomes (e.g. survival, quality of life, 

employment or burden on healthcare services). Although most papers investigating 

radiation doses from cardiac catheterizations make some mention of image quality, 

there is little to suggest a conscious decision to increase radiation doses in order to 

improve patient outcome. Higher doses are rarely acknowledged, partly because 

‘comparison with previous research’ analyses tend to be limited to a handful of 

studies.  

Returning to the question of why PKA varies so much between different published 

studies, a fourth potential explanation is measurement uncertainty and careless 

recording or reporting of dose indicators. It was noted that around half of reviewed 

publications make no mention of calibration of dose measuring equipment. Recorded 

PKA figures are subject to a typical uncertainty of ±15%, even when regularly 

calibrated to national standards. For uncalibrated dosemeters, this uncertainty may 

be sizably higher, though never to the extent of explaining a tenfold variation in 

doses. Confusion between units, for example between μGy·m2 and mGy·cm2, could 

certainly explain a tenfold variation in doses. Smith et al [22] for example, quote PKA 

in the nonsensical units of “mGy/cm2”, giving the impression of extraordinarily low 

doses, assuming units should be mGy·cm². The correct units of measurement of 

μGy·m2 were obtained by consulting with medical physics staff at the same hospital 

(who were unaware the study had been conducted) (Ian Honey, 2013, personal 

communication). Borik et al [102] misquote the results of Smith by a factor of 10, 

leading to the incorrect conclusion that their own PKA figures were lower. 

There is no clear trend in PKA or screening time with study date. If anything, reported 

PKA figures are higher in more recently published data, although this observation 

involves comparison between studies rather than comparison of different eras at the 

same centre. Onnasch and colleagues [103] found a decrease in PKA per patient 

mass with the replacement of a Siemens Bicor/Digitron with a Philips Integris 

5000BH system (0.618 verses 0.278 Gy·cm2 kg-1). This change involved a reduction 



36 
 

in frame rate from 50 s-1 to 12.5-25 s-1 and the use of additional copper filtration. A 

greater than fourfold reduction in PKA was reported in the previously mentioned study 

by Smith et al [22] following the installation of new equipment.  Again, the newer 

machine was able to use a lower frame rate (typically 7.5-15 s-1). This reduction in 

the fluoroscopic or acquisition frame rate can be associated with a proportional 

reduction in dose [104], without sacrificing SNR. In many cases, frame rates are 

dictated by the heart rate of the individual undergoing the procedure, which for 

children can often exceed 100 beats per minute (BPM). Overall, there does appear to 

be a trend of reduced frame rates in more recent publications. Quoted fluoroscopic 

frame rates were typically 12.5 s-1, though rates of up to 50 s-1 were reported. 

From the above discussion it is apparent that a wide, and largely unacknowledged 

gulf in doses, as represented by PKA, exists between different centres. In particular, a 

number of large studies with sample sizes of several thousand examinations have 

reported unexpectedly large PKA figures in recent years. Most such studies are based 

in the United States, though it should be noted that other American studies have 

reported very low doses [105, 106], while some European studies have reported very 

high doses [13, 107]. A common mistake made by authors is to conduct only a 

limited comparison of their own data with previous research, often incorrectly 

reaching the conclusion that their doses are satisfyingly low. Studies reporting high 

PKA also tend to have large sample sizes, thus could argue that their figures 

represent a true picture of the radiation doses from these procedures, with lower 

doses being explainable by small sample sizes and publication bias (i.e. authors 

more likely to report doses if they are low). 

 

2.1.3: Derivation of organ doses and effective dose from PKA 

Kerma area product is a dose indicator, somewhat akin to the number of bullets fired 

from a gun. It provides no implicit information on how x-rays interact with the patient. 

This limitation is rarely acknowledged in publications, with PKA often simply referred 

to as 'dose'. PKA can however be used to provide estimates patient dose, including 

effective dose (E) and equivalent dose to individual organs (H). These are derived 

using E/PKA or H/PKA conversion factors calculated using either Monte Carlo (MC) 

computer simulations [86, 87, 108] or physical measurements in human tissue 

equivalent phantoms [84] (Figure 2.3). These phantoms are described in Chapters 4 
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and 7. Estimation of effective dose from entrance surface dose measurements has 

been found to be less reliable [109].  

 

 

Figure 2.3: An anthropomorphic phantom used for physical methods dosimetry, and a 

mathematical phantom used for Monte Carlo simulations (PCXMC 2.0). Photo credit: author 

 

A summary of E/PKA conversion factors is given in Tables 2.3 and 2.4. The most 

basic derivations of PKA are simple one-size-fits-all, age and mass independent 

conversion factors to relate total examination PKA to effective dose. Such simple 

estimates, used in both adult and paediatric studies [13, 110], should be avoided as it 

can be shown that effective dose is strongly dependent on patient age or mass [108]. 

In general, effective dose per unit PKA decreases with increasing patient age [86, 92], 

presumably due to a smaller proportion of patient tissues being close to the beam 

entrance. Consequently, where PKA values were converted to effective dose, the 

trend of increased ‘dose’ with age was less pronounced or even reversed, with the 

highest effective doses sometimes occurring in infants [111]. 
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Onnasch [103] 
PA+Lat 

combined $ * 

Barnaoui [92] 
PA/lateral $$  

Karambatsakidou 
[112] PA/PA+Lat 

combined $  

Schmidt [86] 
PA/Lat $ 

Axelsson  [84] 
PA/LAT $  

Beam energy 
65 kV,  

3.0 mm Al 

70 kV, 3.0 
mm Al, 0.3 

mm Cu 

60-85 kV, 
6 mm Al, 0.4/0.2 

mm Cu 

65 kV,  
3.0 mm Al ** 

58-70 kV, 
3.0 mm Al 

Methodology 
Derived from 
Schmidt [86] 

PCXMC v2.0 
Modified from 
Schmidt [86] 

PCXMC v1.3 
Physical 

measurements 

P
a

ti
e

n
t 

a
g

e
 (

y
e

a
rs

) 0 3.09 (3.4 kg) 3.5/3.5 3.7/3.7 2.05/2.34 - 

1 1.03 (9.2 kg) 2.1/1.6 1.9/1.9 0.82/1.16 1.8/1.4 

5 0.49 (19.0 kg) 1.05/1.3 1.0/1.0 0.42/0.64 0.9/.07 

10 0.29 (32.4 kg) 0.65/0.8 0.6/0.7 0.24/0.38 - 

15 0.17 (56.3 kg) 0.35/0.4 0.4/0.4 0.13/0.22 - 

30 0.13 (73.2 kg) - - 0.10/0.16 - 

 

Table 2.3: E/PKA conversion factors reported in different studies. Note: $ = ICRP 60 effective 
dose tissue weighting factors, $$ = ICRP 103. *The estimates for the Onnasch model are 

based on average weight at each age category, shown in brackets. 

 

 

 

 

Glatz [91] 
PA/lateral $$  

Onnasch PA+Lat 
combined $ * 

Beam energy Not stated 65 kV, 3mm Al 

Methodology PCXMC v2.0 
Derived from 
Schmidt [86] 

P
a

ti
e

n
t 

m
a

s
s
 

(k
g

) 

<5 2.07/2.25 3.09 (3.4 kg) 

5-12.5 0.91/1.04 1.06 (8.75 kg) 

12.5-25 0.68/0.89 0.49 (18.8 kg) 

25-45 0.47/0.60 0.26 (35 kg) 

45-65 0.21/0.24 0.17 (55 kg) 

>65 0.18/0.16 0.13 (73.2 kg) 

 

Table 2.4: E/PKA conversion factor stratified by mass. Note: $ = ICRP 60 effective dose 
tissue weighting factors, $$ = ICRP 103. *figures based on specified mass 

 

Dose estimates derived from PKA must therefore take patient size (age or mass) into 

account. This was done by Schmidt et al [86], who used Monte Carlo simulations 

(PCXMC v1.5) to produce tables of E/PKA conversion factors for individual projections 

and six different patient sizes, along with a separate table of relative adjustments to 

account for beam energy.  No conversion factors were calculated for estimation of 

individual organ doses. The paper, published in 2000, provides beam energy 
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corrections that, while appropriate for fluoroscopic equipment of that era, are 

inadequate for modern equipment in which a greater thickness of added filtration is 

generally used. The data calculated by Schmidt were used by Onnasch and 

colleagues [103] to calculate a remarkably simple E/PKA conversion factor of 9.26 * 

(PKA/kg). This figure, subsequently used by other studies [113, 114] is based on the 

mean of Schmidt’s conversion factors for frontal (PA) and left lateral projections, and 

beam energy defined by a tube potential of 65 kV and 3 mm Aluminium filtration. 

These parameters represent a much lower beam energy than is used for equipment 

used in the last 10 years. Consequently, the E/PKA conversion factor developed by 

Onnasch will result in underestimates of effective dose (this will be investigated in 

the Chapter 4). Karambatsakidou et al [112] also use the data calculated by Schmidt 

to produce their own set of E/PKA conversion factors based on the mean of seven 

different projections using the frontal x-ray tube. A separate conversion factor was 

used for the lateral tube output. A beam energy correction was applied, based on 

values recorded for clinical examinations. Effective dose estimates obtained using 

these conversion factors were compared with those obtained from reconstructions of 

examinations using Monte Carlo simulations and detailed, exam specific, beam 

angle and beam energy data. The agreement between these two methodologies was 

high, with variation less than 10% for 48 out of 52 examinations. This is encouraging 

as it suggests dose estimates based on limited data are comparable to those with 

detailed data.  

More recently, Barnaoui et al [92] used Monte Carlo simulations (PCXMC v2.0) to 

produce a set of E/PKA conversion factors for two beam projections (PA and left 

lateral), based on a beam energy more representative of modern equipment (70 kV, 

3 mm of Aluminium and 0.3 mm of Copper). These conversion factors are similar to 

those of Karambatsakidou et al [112]. It is noted that effective dose estimates by 

Barnaoui used the tissue weighting factors from ICRP 103, rather than ICRP 60. The 

weighting factor for the breasts was increased in the more recent report from 0.08 to 

0.12. Furthermore, the heart was included in the ‘other’ tissues category. 

Consequently, effective dose estimates using ICRP 103 weighting factors are greater 

than those using ICRP 60 by between 10 and 16% depending on patient size [112]. 

The previously mentioned study by Glatz et al [91] also estimated effective doses, 

again using PCXMC V2.0 Monte Carlo simulations. These E/PKA conversion factors 
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were lower than those calculated by other studies. The assumed beam energy and 

field sizes were not stated, making comparison difficult.  

Two studies led by Yakoumakis were reviewed [107, 115], with the latter study 

reporting considerably higher effective doses (almost ten times higher for ASD 

occlusions), despite the same equipment being used. It should be noted that the 

methodology of these studies was not the same, with the former estimating effective 

dose based on surface dose measurements and the latter using PKA. The latter study 

also estimated organ doses, although the actual conversion factors used were not 

stated. 

Conversion factors to relate equivalent PKA to organ doses (H/PKA) were developed 

by Axelsson et al [84] for a number of different projection angles. The methodology 

used by Axelsson was different to that used by the studies describe above, in that 

they used physical dose measurements in anthropomorphic phantoms rather than 

Monte Carlo computer simulations. Unfortunately, the range of beam angles (six) and 

phantom sizes (two) was very narrow, and no corrections for variable beam energy 

were investigated. A recent study by Kawasaki et al [116] calculated organ doses 

and effective dose for two beam angles (PA and lateral) and two patient sizes (0 and 

1 years). While the equipment was a modern, 3rd generation machine (Philips Allura 

9), the range of beam angles and patients sizes was overly limited. Other H/PKA 

conversion factors were developed by Stern et al [87] and Streulens et al [88] using 

MC simulations, though only for adult patients. 

None of the previously developed E/PKA or H/PKA conversion factors described above 

are adequate for the purposes of this study, due to (1) the narrow range of patient 

sizes studied, (2) the lack of organ dose estimates, and (3) the limited range of beam 

energies studied. A new dosimetry system needs to be developed in which organ 

doses can be rapidly estimated for a large number of cohort members based on 

limited data recorded at the time of the examination and held within hospital clinical 

records. Ideally, examination data can be fed directly into the dosimetry system, i.e. 

in the form of a spreadsheet, with dose estimates outputted in a readily analysable 

form. The dosimetry system needs to be able to estimate doses for a large range of 

patient sizes, from prematurely born babies to adults, and for a large range of beam 

energies. Information on examination type also needs to be incorporated, as this will 

affect the likely beam angles used.  
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2.1.4: Biodosimetry 

As an alternative to physical dose measurements, a number of studies have 

investigated the biological impact of medical radiation by measuring DNA damage 

itself. The initial response to a DNA double strand break is the phosphorylation of 

histone variant H2AX, to form ‘γ -H2AX’ [117, 118]. Foci of γ-H2AX can be detected 

using an antibody specific to this phosphorylated form of H2AX and 

immunofluorescence techniques. This technique has the advantage of allowing 

detection of DNA damage occurring at much lower doses than other techniques 

[118], including those relevant to diagnostic imaging. A number of studies have been 

conducted in which blood samples taken from patients following medical irradiation 

are analysed using γ-H2AX techniques. Beels and co-workers [12] compared risk 

estimates based on organ doses calculated using patient specific MC simulation with 

estimates based on γ-H2AX foci in peripheral blood T lymphocytes obtained before 

and immediately following diagnostic catheterization procedures of 48 paediatric 

subjects. In that study, a supralinear relationship between dose and γ-H2AX foci was 

found, implying the same dose response for DNA double strand break induction. 

This, the authors argued, suggests an under-estimation of the cancer risks by linear 

extrapolation using the linear no-threshold (LNT) model by a factor of four. A similar 

supralinear dose response was reported by Ojima et al [119] following in vitro 

irradiation of normal human fibroblasts to doses from 1.2 to 200 mGy. The authors 

attributed this pattern to the influence of gap-junction mediated bystander signalling 

between cells, as pre-treatment with lindane (an inhibiter of gap-junction 

communication) produced a linear dose response. 

Geisel and colleagues [14] found a significant increase in γ-H2AX foci (representing 

0.29±0.18 DSBs per lymphocyte) following adult diagnostic conventional coronary 

catheterizations (CCA) and cardiac CT procedures (n=56 for each modality). After 24 

hours however, DSB numbers had returned to background levels. A significant 

correlation was found between dose and γ-H2AX foci for both CCA (r=0.862, 

P<0.001) and CT (r=0.951, P<0.001). The authors estimated that this level of 

biological effect was 1.8 times greater than predicted from effective dose, though the 

dose-response did not appear to exhibit the supralinear relationship noted by Beels 

[12]. In another study by Ait-Ali et al [13], a significant increase in micronucleus levels 

compared to baseline levels was found following diagnostic (11‰ vs 7‰, n=13) and 
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therapeutic procedures (9‰ vs 5‰, n=5), though without any apparent relationship 

with DAP (r=0.1, p=0.74). 

While interesting, these findings need to be interpreted with caution. Beels’s finding 

of ‘hypersensitivity’ refers to the early endpoint of DSB induction, rather than later 

endpoints of cell-killing or cancer induction. The suggestion that a supralinear dose 

response for DSBs also implies the same relationship for diagnosable cancer may be 

overly pessimistic.  Research by Rothkamm [117] and later by Collis [120] and 

Grudzenski [121] suggests that DNA repair efficiency is reduced at low doses and 

possibly absent below around 5 mGy. When cultures were allowed to proliferate, 

damaged cells appeared to be eliminated. In this sense, ‘hypersensitivity’ may 

indicate excess cell-killing rather than cancer risk. Unfortunately Beels did not 

investigate persistence of γ-H2AX foci at later times following irradiation, thus 

allowing damage response to be assessed.  

The suggestion by Beels [12] and Andreassi [122] that cancer risks determined 

through direct analysis DNA damage were four times higher than 'expected' is also 

dubious, given that 'expected' risks are based on observational studies, albeit ones 

that lack statistical power at low doses. If, as Andreassi [122] suggests, the 

supralinear DNA damage relationship detected by Beels is due to the impact of 

'bystander' effects, in which irradiated cells influence their neighbours by means of 

the release of various genotoxic factors into the surrounding medium, why should 

such effects be specific to cardiac catheterizations? Surely if bystander effects do 

indeed play a role in cancer development following radiation exposure, such effects 

would have occurred following the exposures from which 'expected' risks are based, 

including studies of nuclear bombing survivors. There is currently no suggestion that 

bystander effects only occur at low doses, with some research even suggesting the 

reverse [123]. 

  

2.1.5: Summary of dosimetry review 

The published data on radiation doses from paediatric cardiac catheterizations 

suggests a wide variation, not only from one hospital or procedure type to the next, 

but also within individual hospitals and for the same procedure. This strongly 

suggests that the use of non-individualised ‘typical’ doses will be insufficient for an 

epidemiological analysis of the cancer risks. A patient and examination-type specific 
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system of dosimetry therefore needs to be attempted. Research suggests that an 

individualised estimation of organ doses based on limited examination data is 

plausible, though this needs to be investigated further. Biodosimetry studies have 

suggested that the risk from exposures may be higher than expected, but this is 

based on the early end-point of DNA damage and not cancer itself. To study this 

latter endpoint in relation to human exposures, epidemiological analysis is required. 

A review of relevant studies will be described next. 

 

2.2: Epidemiology 

Epidemiological analysis of populations exposed to elevated levels of ionising 

radiation have the advantage of allowing assessment of the final outcome of cancer 

rather than a single endpoint such as DSB induction. A large number of 

epidemiological studies have been conducted. However, none of these provide 

conclusive evidence of risks at dose levels below 50-100 mGy. Some could be 

interpreted as suggesting high risks at low doses [124], some low [125], while others 

are consistent with decreased risks compared to spontaneous incidence (hormesis) 

[126]. The results of the same studies can be shown to be consistent with seemingly 

opposing viewpoints. Doss [127], for example, uses the data from the atomic 

bombing survivors’ study (discussed below) to provide evidence of hormesis by 

adjusting background rates, while other authors have used the same study as 

evidence in support of the linear no threshold model [46]. 

Epidemiological analysis requires some form of dose estimation, although the 

standard of such estimates varies considerably, from individualised estimates to 

average doses applied across the whole study population or sub-groups (e.g. 

geographical areas) [128]. Studies with individualised dose estimated were 

preferred, to so-called ‘ecological’ studies with non-individualised estimates.   

The primary sources for the epidemiology literature review were the reports of the 

National Academy of Sciences Committee on the Biological Effects of Ionising 

Radiation (BEIR VII) [3], United Nations Scientific Committee on the Effects of 

Atomic Radiation (UNSCEAR) [45, 129] and International Commission for 

Radiological Protection (ICRP) [44]. The reference lists for these reports were 

searched for relevant publications. Papers identified using PubMed as citing and 
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cited by these papers were also obtained. Review papers investigating the risks from 

low dose exposures were also obtained [46, 54, 55, 130] and the reference lists 

searched.  

 

2.2.1: The Life Span Study 

The most informative study of the long-term cancer risk from exposures to ionising 

radiation remains the cohort of Japanese survivors of the nuclear bombings of 

Hiroshima and Nagasaki in 1945, known as the Life Span Study (LSS). The bombs 

dropped on both cities were fission weapons, but had different designs. The 

Nagasaki bomb, known as the “Fat Man”, used a sub-critical core of plutonium-239 

(239Pu) surrounded by conventional explosives, which when detonated produced an 

inward pressure on the core causing it to turn supercritical. The Hiroshima bomb, 

known as the “Little Boy”, used a sub critical hollow “bullet” of Uranium-235 (235U) 

which was propelled down an artillery barrel by conventional explosives into a 

second “target” of 235U, again causing super-criticality. The resulting fission process 

resulted in the conversion of around 1 g and 0.6 g of mass into energy by the 

Nagasaki and Hiroshima bombs respectively - equivalent to 21,000 and 16,000 tons 

of TNT [131]. This is easily appreciated using Einstein's relation, E=mc2, where 1 g of 

mass is shown to be equivalent to roughly 90 trillion joules. 

Radiation doses to inhabitants of the cities were largely due to release of a flash of 

so-called ‘prompt radiation’ - gamma photons and neutrons from the fission process 

itself. This was followed by around 5 seconds of ‘delayed’ radiation due to further 

fission of radioactive products in the fireball [132]. In both cases, the intensity of 

radiation decreased with distance from the epicentre due to divergence according to 

the inverse square law, and atmospheric scattering and absorption. Further, more 

minor, sources of radiation exposure were due to neutron activation of ground and 

building materials (absorbing neutrons and becoming radioactive) and ‘fallout’, i.e. 

unexploded uranium, plutonium or fission products settling to the Earth. Around 90% 

of radiation exposure was due to photons and 10% due to neutrons. 

The Lifespan study has the advantage of individualised dose estimates [133], 

although these have evolved considerably since 1945. The first meaningful estimates 

were calculated in 1957 and known as T57D (T standing for tentative), followed by a 

second in 1965 (T65D), a third in 1986 (DS86) and a fourth in 2002 (DS02) [132]. 
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Both the total dose at a given distance, and the relative proportions of this dose due 

to photons and neutrons have changed with successive iterations. Clearly, the 

situation of survivors had the potential to change considerably during the 5 seconds 

of primary radiation exposure. Once standing houses were blown down, thus altering 

the shielding characteristics for someone inside. People were knocked over or spun 

around, changing their orientation relative to the epicentre. To improve dose 

estimates, replicas of typical Japanese houses were exposed to nuclear explosions 

in the Nevada desert [132]. 

The LSS includes 86,611 individuals of both sexes and all ages exposed to a wide 

range of doses, with a mean whole body dose of 0.2 Gy [46], with 74,440 (79%) 

receiving less than 0.1 Gy [7]. Increased incidence has been detected for solid 

cancers (ERR=0.42 Sv-1 95% CI: 0.32, 0.53) and leukaemia (ERR=3.1 Sv-1 95% CI: 

1.8, 4.3). These estimates of risk per sievert (equivalent dose), based on the most 

recent dosimetry system (DS02) were around 8% lower than those based on the 

previous dosimetry system (DS86) [134]. The dose response for solid tumours is 

consistent with linearity without threshold, though Preston and colleagues [134] 

detected a significant upward curvature in the first report since the DS02 dosimetry 

was implemented. In the most recent analysis, the lowest dose range in which a 

significantly increased ERR for solid cancers was observed was 0 – 0.2 Sv [7], 

though an earlier report by Preston et al found a significant increase for cancer 

mortality in the 0-0.125 Sv range [135]. A linear-quadratic model provides the best fit 

for leukaemia incidence and mortality [130, 133]. 

In addition to the lack of statistical power to detect cancer risks below around 100-

200 mSv, there are a number of other limitations of the LSS. Firstly, as background 

incidence rates vary considerably between populations and ethnic groups, the ability 

to transfer risk estimates derived from a very homogenous Japanese sample to other 

populations is problematic [45]. As a large proportion of the male population of Japan 

was conscripted into the army at the time of the bombings, the populations of 

Hiroshima and Nagasaki had a relatively large proportion of females. Risk estimates 

per sievert are dependent on the radiobiological effectiveness (RBE) weighting factor 

applied to neutrons, which is set at 10. Suggestions have been made that the RBE 

should be higher [59], leading to correspondingly increased dose estimates and 

reduced risk per unit dose. For example, in an analysis of the LSS data, Kellerer et al 
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[136] detected a significantly increased risk estimate for organs located closer to the 

body surface with a neutron RBE of up to 100. Furthermore, the energy of gamma 

ray photons originating from the nuclear bomb blasts was relatively high compared to 

those of diagnostic x-rays (typically 30-100 keV). The radiobiological effectiveness of 

low energy photons is thought to be higher [137, 138], meaning risk per unit dose 

may be correspondingly higher also. 

 

2.2.2: Environmental and occupational exposures 

Populations and workforces exposed to elevated radiation levels represent an 

alternative opportunity to study cancer risks from exposures. Theoretically, a large 

dose protracted over a long period of time can be viewed as a succession of 

infinitesimally small exposures. If observed, elevated cancer risks in such 

populations would not be consistent with the concept of a low dose threshold below 

which there is no risk. 

Cardis et al [139] conducted a pooled analysis of mortality among 407,391 nuclear 

workers from 15 countries, exposed to an average cumulative dose of 19.4 mSv. A 

significantly raised ERR of 0.97 Sv-1 was found for all cancers except leukaemia 

(95% CI: 0.14, 1.97), while a non-significantly raised ERR for leukaemia was found 

(1.93 Sv-1, 95% CI: <0, 8.47). The study has drawn comment concerning the 

potential confounding effect of smoking and the unusually high ERR among 

Canadian workers [140, 141]. A reanalysis of the Canadian data was conducted by 

Zablotska et al [142], finding a much greater solid cancer ERR among workers 

employed between 1956 and 1964 (7.78 Sv-1, 95% CI: 1.88, 19.5) than for those 

employed after 1964 (-1.20 Sv-1, 95% CI: -1.47, 2.39). Excluding the Canadian data 

from the 15-country study, the ERR for solid cancers is reduced to 0.58 Sv-1 (95% CI: 

-01.0, 1.39) [143], which is reasonably close to the linear ERR mortality estimate 

from the LSS of 0.32 Sv-1 [130]. A significant increase in mortality for leukaemia was 

found by Muirhead and colleagues [144](ERR Sv-1 = 1.71, 95% CI: 0.06, 4.29) 

among 174,500 UK nuclear workers. The mortality ERR for all malignancies except 

leukaemia was also raised (0.28 Gy-1 95% CI: 0.02, 0.56). A more recent study was 

conducted by Leuraud et al [145] on a subset of the 15-country study, focusing on 

308,297 radiation-monitored workers in the UK, USA, France, receiving a mean 

yearly bone marrow dose of 1.1 mGy. Mortality was significantly raised for leukaemia 
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(ERR=2.96 Gy-1, 95 CI: 1.17, 5.21), but not for non-Hodgkin lymphoma (ERR=0.47 

Gy-1, 95% CI: -0.76, 2.03). This same group of workers was subject to a further study 

by Richardson et al [146] examining cancer mortality for all sites except leukaemia. A 

significantly elevated risk was found (ERR=0.48 Gy-1, 95% CI: 0.2, 0.79). This risk is 

50% lower than reported in the above-mentioned study by Cardis et al [143], though 

still a little higher than that of the LSS (0.32 Sv-1). These studies suggest an 

association between radiation and excess risk of cancer persisting at low doses, 

especially for leukaemia. However these studies all focused on adults, and may be 

biased to some extent by a ‘healthy worker effect’. The results may be more relevant 

to the cardiologists, nurses and radiographers conducting cardiac catheterizations, 

rather than the patients themselves. 

Residents of a number of areas exposed to elevated radiation levels as a result of 

natural radioactivity or industrial pollution have also been studied. A significantly 

increased ERR for solid cancer mortality of 0.61 Gy-1 (95% CI: 0.04, 1.27) was 

observed among people residing in the Techa River region of Russia between 1950 

and 1960 [147]. There was a suggestion that ERR increased with increasing age at 

first exposure (p=0.05) and attained age (p=0.10). A similar finding was reported in a 

study by Bauer et al [148] of residents of the Semipalatinsk region of Kazakhstan, 

who were exposed to radiation from nuclear weapons testing fallout. For all solid 

cancers, an ERR of 1.77 Sv-1 was reported (95% CI: 1.35, 2.27). Chen et al [126] 

studied residents of the Yangiang region in Southern China who receive an 

estimated yearly effective dose of 6.4 mSv from elevated background radiation 

levels. No increase in cancer mortality was detected, compared to a control area 

where residents received a mean yearly effective dose of 2.4 mSv (relative risk= 

0.99, 95% CI: 0.87, 1.14). In particular, relative risks were less than unity for a 

number of cancer sites previously linked to radiation exposure, including the lungs, 

stomach, breasts and thyroid.  

Kendall and colleagues [149] matched 27,447 children living in Great Britain who 

developed cancer with 36,793 cancer-free controls. Radiation doses were estimated 

based on the mother’s residence at the time of the child’s birth and a national survey 

of natural background radiation levels [150]. For leukaemia, a significantly raised 

relative risk of 1.12 per mSv cumulative bone marrow dose from gamma radiation 

was found (95% CI: 1.03, 1.22). Relative risk increased monotonically with 
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increasing bone marrow dose, becoming significantly raised above around 4 mGy. 

The trend was driven by lymphoid leukaemia (RR=1.13, 95% CI: 1.02, 1.24), with 

lower risks for myeloid leukaemia (RR=1.05, 95% CI: 0.87, 1.28). For all cancers 

except leukaemia, the ERR was non-significantly negative up to cumulative doses of 

around 12 mGy (Figure 2.4). Lest this be interpreted as evidence of hormesis, it 

should be noted that these doses were protracted, thus if a hormesis effect or low 

dose threshold does exist, it is likely to be in the region of a few nanosieverts. A 

similar study, based in Switzerland, was conducted by Spycher et al [151], involving 

2,093,660 children aged under 16 years. A significant increase in incidence was 

found for all cancers combined (hazard ratio (HR) = 1.64, 95% CI:1.13, 2.37) and 

leukaemia (HR= 2.04, 95% CI: 1.11, 3.74) for children residing in areas with 

background dose rates of greater than 200 nSv per hour (≈1.75 mSv per year) 

compared to less than 100 (≈0.88 mSv per year). The negative risks for moderate 

dose rates found in the UK study described above were not seen in the Swiss study. 

No corresponding increase was found for lymphoma (HR=0.91, 95% CI: 0.29, 2.86). 

Both the UK and Swiss studies are consistent with the ‘no-threshold’ component of 

the LNT model, at least for leukaemia.  
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Figure 2.4: Relative risk of leukaemia and all other cancers in relation to cumulative 

background dose. Reprinted by permission from Macmillan Publishers Ltd: Leukaemia, 

Kendall et al [146], copyright 2013 

 

 

2.2.3: Medical exposure studies 

Well over a hundred studies have been published investigating the cancer risk from 

radiation administered for medical diagnosis or treatment [3]. Such studies have the 

advantages of reasonably well defined exposure characteristics (i.e. dose, site of 

irradiation), relevance of low-energy and low linear energy transfer (LET) radiation, 

and medical records with long term follow-up. Medical exposures also typically 

produce a highly non-uniform dose distribution [130], in contrast to the whole-body 

doses from the Japanese atomic bomb exposures. The major disadvantage of 
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medical radiation studies is that of 'confounding by indication' [45]. Medical 

exposures should be carried out for a reason, such as illness or injury, which itself 

may be associated with increased long-term cancer risk. In other words, it is not clear 

if observed effects are due to the radiation itself or the need for radiation. 

Confounding by indication cannot be eliminated through large sample sizes. The 

association between the number of examinations of a particular type conducted and 

the number other examinations (e.g. fluoroscopy, nuclear medicine) or interventions 

including brain surgery could also influence results.    

A small number of studies have attempted to directly assess the cancer risks from 

cardiac catheterizations. Modan et al [6] reviewed 674 Israeli children who underwent 

these procedures between 1950 and 1970. Dose records were unavailable for 90% 

of cohort members. A standardised incidence ratio (SIR) of 2.3 (95% CI: 1.2, 4.1), 

based on 11 cases compared to 4.75 expected, including 4 lymphomas and 3 

melanomas. At least six of the tumours occurred in locations remote from the heart 

(testis, prostate, bladder, inguinal lymph nodes and melanomas of the groin and 

lower limb). The location of the others was not clear, either. A further interesting 

feature was that all cancers occurred in males, who represented 56% of the cohort. 

The results are unusual, though with such a small sample size, they could easily be 

attributed to chance. Spengler et al [4] conducted a retrospective cohort study on 

4861 children receiving cardiac catheterisations between 1946 and 1968 in Ontario, 

Canada. After 13 years of follow-up, 5 cancer deaths were observed compared to 4.8 

expected. A further study using the same cohort (reduced to 3915 members due 

exclusions of subjects living outside the study area) by McLaughlin et al [5] reported 

a standardised mortality ratio (SMR) of 1.2 (90% CI: 0.6, 2.3) based on 7 cancer 

deaths verses 5.7 expected, and SIR of 0.75 (0.3, 1.2) based on 13 cancer cases 

observed verses 17.3 expected. Again, a number of cancers were reported in sites 

remote from the heart including the tongue, testis (two cases), prostate, ovary, 

cervix, colon and brain. The small sample sizes, limited dosimetric information and 

lack of dose response analysis of these studies limits the ability to draw conclusions. 

Several studies have been conducted focusing on two cohorts of patients 

(Massachusetts, USA and Canada) treated with fluoroscopically guided 

pneumothorax therapy for tuberculosis (TB). These treatments were conducted 2 or 

3 times per month for around 2 years, resulting in mean cumulative doses of around 
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0.8 – 1 Gy to the lungs and 0.54 – 0.96 Gy to the breasts. Exposures were similar to 

cardiac fluoroscopy in terms of dose rate, photon energy and patient position 

(predominantly posterior-anterior). A significant increase in breast cancer incidence 

and mortality among both cohorts has been reported [152-155].  

Despite the lungs receiving a particularly high dose, lung cancer mortality was not 

raised for the exposed group in either Massachusetts (SMR = 0.8 for both male and 

female) [154] or Canada (Relative risk=1.00, 95% CI: 0.94, 1.07) [156] – findings 

grossly inconsistent with the seven-fold increase predicted by Gofman and Tamplin 

based on estimated doses [157]. There are a number of possible explanations for 

these findings; (1) bias due to smoking, (2) modification of risk by TB, or (3) 

fractionation of large doses reduces or eliminates risk. The final point is plausible, 

though inconsistent with evidence of nuclear workers [139] or underground miners in 

which increased lung cancer risk has been associated with chronic, highly 

fractionated exposures. In the former case, a significant increase in lung cancer 

mortality (ERR = 1.8 Sv-1 95% CI: 0.26, 4.01) was reported, though the authors state 

that a confounding effect due to smoking “may be partly but not entirely responsible” 

for the figure.  

The only study to evaluate all cancer sites among TB patients was conducted by 

Davis and colleagues using the Massachusetts cohort  [154]. No overall increase in 

cancer mortality was detected – the SMR was increased for some sites but not for 

others. These patterns are often reversed when male and female data are compared. 

The SMR was non-significantly raised for female leukaemia (1.4, based on 9 cases) 

but not for male (1.0, based on 8 cases). It is therefore extremely difficult to draw 

conclusions from the TB fluoroscopy data that are applicable to cardiac fluoroscopy. 

Patients suffering from the spinal deformity scoliosis are subjected to frequent 

radiological investigations to monitor curvature. Ronckers and colleagues [158] 

studied 3010 women examined an average of 26.8 times between 1912 and 1945, 

receiving a mean breast dose of 120 mGy (range = 0.05 – 1110 mGy).  Based on a 

median follow-up of 35.5 years, a borderline significant ERR of 2.86 (P= 0.058) for 

breast cancer was detected. A significantly higher risk was reported for women with 

first or second degree relatives diagnosed with breast cancer (ERR = 8.37 P=0.03). 

Raised risk was only apparent for patients receiving a cumulative breast dose of 

greater than 200 mGy (mean dose per fraction of 7.46 mGy). No other cancer sites 
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were investigated. This is unfortunate as the dose levels and site of irradiation are 

reasonably similar to cardiac catheterizations. 

Weiss and colleagues [125] studied 14,556 patients treated between 1935 and 1957 

with radiotherapy for ankylosing spondylitis (an inflammatory spinal disorder). The 

mean whole body dose was high (2.64 Gy), with the greatest localised doses to the 

spine. The average follow up was 25 years. Cancer mortality for all sites was 

significantly increased (ERR= 0.18 Gy-1) between 5 and 24.9 years after treatment, 

with risks decreasing beyond 25 years (ERR=0.11 Gy-1). A significant dose response 

was seen for cancers of the oesophagus, colon, pancreas, bones and connective 

tissues, prostate, bladder and kidney, along with non-Hodgkin’s lymphoma, multiple 

myeloma and leukaemia. A small increase in lung cancer mortality was detected 

(ERR=0.09 Gy-1, 95% CI: 0.03, 0.15), while stomach cancer mortality was non-

significantly decreased (ERR= -0.004, 95% CI: -0.05, 0.05). The lack of increased 

breast cancer risk (ERR=0.08 Gy-1 95% CI: -0.30, 0.65) may possibly be due to 

hormonal changes induced by the high dose to the ovaries [3]. The high doses limit 

the relevance of this study to cardiac catheterizations, although the limited effect on 

lung and stomach cancer is intriguing.  

Hildreth and co-workers [159] compared extrathyroid tumour risk in 2856 infants 

therapeutically irradiated for enlarged thymus between 1926 and 1957 with 5053 

unexposed siblings. A significant increase in incidence of malignant tumours of the 

skin and breast was noted (RR=2.0), along with benign tumours of the bone, nervous 

system, salivary glands, skin, and breast (RR=2.2). Further studies by Shore et al 

focused specifically on thyroid tumours among 2657 exposed individuals and 4833 

unexposed siblings [160-162]. Thyroid doses ranged from 0.03 to over 8 Gy, with 

62% receiving under 0.5 Gy. A significant increase was found for malignant tumours 

(ERR=10.0 Gy-1 95% CI: 5, 23) and benign adenomas (ERR=6.3 Gy-1 95% CI: 3.7, 

11.2), with excess risk persisting for at least 40-45 years post-irradiation. Dose 

response was linear for malignant tumours and for adenomas up to 6 Gy, after which 

a downward curvature was seen. Although the doses were relatively high and 

location of irradiation more superior, these findings have relevance to cardiac 

catheterizations and demonstrate the sensitivity of the thyroid to cancer induction in 

childhood. 
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2.2.4: Computed tomography studies 

Computed tomography (CT) is a diagnostic examination in which axial cross-

sectional images are produced by reconstruction of attenuation data obtained from 

multiple angles around the patient [163]. Based on existing knowledge, the effective 

dose for cardiac or chest CT (1-8 mSv [111, 164-167]) is similar, albeit somewhat 

lower, to that of cardiac catheterizations (2-12 mSv [91, 111, 164]), although the 

pattern of dose distribution is not the same. In CT, the beam rotates around the 

patient resulting in a relatively uniform dose distribution, while in cardiac 

catheterizations, exposures may involve only a single beam angle, focused in the 

same place, resulting in more uneven dose distribution to large organs such as the 

lungs. In addition, the peak tube potential used in CT (120 – 140 kVp) is higher than 

fluoroscopy (typically 60-80 kVp).  

To date, five epidemiological studies have been conducted examining the excess 

cancer risks following CT scans in young people. Pearce et al [9] conducted a 

retrospective observational study of nearly 180,000 children and adolescents 

scanned by CT between 1985 and 2002. After around 15 years of follow-up, a 

significant association between radiation dose and incidence of leukaemia (ERR=36 

Gy-1 95% CI: 5, 120) and brain tumours (ERR=23 Gy-1, 95% CI: 10, 49) was detected 

(in relation to red bone marrow and brain doses, respectively). The authors quote 

equivalent figures from the LSS of 45 Sv-1 for leukaemia (95% CI: 16, 188) and 6.1 

Sv-1 for brain tumours (95% CI: 0.1, 63.9) in the 0-19 years age group, suggesting 

the study findings are very similar to the LSS for leukaemia and four times higher for 

brain tumours. However the CT study ERR for leukaemia includes myelodysplastic 

syndrome (MDS), which is not generally regarded as a form of leukaemia [168] and 

not included in the LSS risk estimate. Excluding MDS from the CT study results, the 

ERR is reduced to less than half that of the LSS at 19 Sv-1 and no longer statistically 

significant. Even including MDS, risks for leukaemia were lower than reported in the 

previously mentioned study by Kendal et al [149] in relation to natural background 

radiation. Pearce et al found the risk of brain tumours to increase with increasing age 

at exposure, ranging from 5 Gy-1 at 0-5 years to 41 Gy-1 after 15 years. This finding, 

while not unprecedented, contrasts with the LSS [169] and studies of children 

irradiated for tinea capitis [170] and skin haemangioma [171] in which the reverse 

pattern was suggested. There was a suggestion that females were at a greater risk 
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than males of brain tumours following CT scans (ERR of 28, verses 16, p=0.085). 

Again, the reverse pattern was observed among the LSS cohort (p=0.02) [169]. 

As stated above, the ERR estimates derived by Pearce et al were higher than those 

of the LSS by a factor of around four. The LSS figures are themselves higher, by a 

factor of between five and ten, those derived from studies of brain tumours following 

radiotherapy for previous cancer in childhood [172]. These studies provide limited 

evidence of excess risk of brain tumours below doses of around 10 Gy [173-175]. A 

systematic review of benign second tumours by Kutsenko et al [176] found 

significantly raised incidence only where the primary tumour was of the brain, ‘other 

central nervous system’, thyroid and acute lymphoblastic leukaemia (all sites in 

which cranial radiotherapy is used). The association is stronger for meningioma, in 

which a reasonably linear dose response is seen, compared to glioma [129, 174]. 

Pearce et al [9] suggest a mean absorbed dose to the brain from CT scans of around 

60 mGy in childhood could triple the risk of brain tumours. This increase in risk is 

comparable to that following radiotherapy doses of over 10 Gy [172]. 

The UK CT study, and others following, was reviewed by Walsh et al [177] and Boice 

[178] who both raise concerns over the potential for confounding by indication, as 

well as the combining of MDS with leukaemia. No effort was made to identify 

subjects with diseases such as neurofibromatosis or tuberous sclerosis, both of 

which are an indication for CT and a major risk factor for brain tumour development 

[179, 180]. A recent study by Meulepas et al [181] estimated the confounding bias 

introduced by various cancer predisposing conditions. The study concludes that 

relative risks for leukaemia are not meaningfully confounded by such conditions, 

while brain tumour risks may be overestimated due to tuberous sclerosis.  

Following the UK CT study by Pearce et al [9], Mathews et al [124] conducted a data 

linkage analysis of 680,211 Australian patients receiving CT scans at ages 19 or 

under, between 1985 and 2005, compared to 10,259,569 unexposed individuals. 

With a mean follow-up duration of 9.3 years, cancer incidence in the exposed group 

was 24% greater than in the unexposed group (incidence rate ratio (IRR) = 1.24, 

95% CI: 1.20, 1.29 for all cancers). This increase, the authors state, is ‘mostly due to 

irradiation’. Increases in almost all sites of cancer were found, including those with 

limited previous association with radiation, such as Hodgkin's lymphoma and 

melanoma [182, 183], but no increase was found for breast cancer (IRR = 0.99) and 
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lymphoid leukaemia (0.96), both of which are strongly associated with radiation [45, 

178].  IRR figures were also calculated based on the number of years since first 

exposure. These were 1.35, 1.25, 1.14 and 1.24 for 1-4, 5-9, 10-14 and >15 years 

since the first scan respectively. This pattern of a large excess of cancers occurring 

soon after exposure, followed by a decrease is not consistent with the findings of the 

LSS or studies of second cancers following radiotherapy, in which a median latency 

between exposure and cancer diagnosis of around 20 is typically seen [184] [185]. 

The decision to use a latency period of only 1 year for solid tumours is not 

adequately justified and lacks biological plausibility. Again, no effort was made to 

remove potential confounding diseases. 

Huang and colleagues [186] studied cancer incidence ascertained from insurance 

records among 24,418 subjects undergoing CT scans of the head while aged under 

18 years between 1998 and 2006 in Taiwan, compared to 97,668 unexposed 

individuals. For all cancer types combined, no significant increase was seen among 

the exposed cohort (hazard ratio = 1.29, 95% CI 0.90-1.85). A significant increase in 

brain tumours was found (HR=2.56, 95% CI 1.44-4.54), based on 19 cases, of which 

14 were benign. A significant trend of increased brain tumour risk with scan 

frequency was noted, though based on an extremely limited number of cases (a 

single case in the 3 or more scans group). Radiation doses were not estimated. 

Furthermore, the authors did not include non-head CT exposures in their analysis. 

However, unlike the studies by Pearce and Mathews described above, the 

Taiwanese CT study team have at least attempted to address the issue of 

confounding by indication by excluding patients with certain conditions. The 

exclusions are somewhat inexhaustive though; not including tuberous sclerosis, 

ataxia telangiectasia or Li Fraumeni syndrome. This, combined with the small sample 

size and short latency period of 2 years (based on limited evidence not specific to 

brain tumours) renders the Huang study of limited value. 

Journy et al [187] investigated cancer incidence among 67,274 children who 

underwent CT scans before the age of 10 in France between 2000 and 2010. As with 

the Taiwanese study, Journy et al attempted to address the issue of confounding by 

indication by identifying patients with known cancer predisposing conditions. The 

study is limited by the very short median follow-up time of 4 years, though has the 

advantage over the Huang study [186] of providing dose estimates based on 
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examination protocols. The results presented by Journy are difficult to interpret. 

While apparently suggesting a decrease in ERR after adjusting for predisposing 

conditions, the ERR for children without such conditions appears to be higher than 

the unadjusted ERR for the whole cohort, while the ERR for children with 

predisposing conditions is close to zero. This, argue and Cardis and Bosch de Basea 

[188] and Muirhead [189] , implies the ERR is modified by predisposing factors rather 

than confounded. Furthermore, the study acquired data from specialist hospitals, 

where the rate of underlying predisposing conditions was relatively high [189]. 

Krille et al [190] conducted a study investigating cancer incidence among 44,584 

German children exposed to 71,073 CT scans between 1980 and 2010. Again, 

efforts were made to exclude subjects with conditions predisposing for cancer or 

those examined for suspected cancer. Non-significantly raised incidence of 

leukaemia (SIR = 1.72, 95 % CI: 0.89, 3.01) and CNS tumours (SIR=1.35, 95% CI: 

0.54, 2.78) was found. A significant risk for all cancers combined was observed 

(SIR=1.54, 95% CI: 1.05, 2.19), based on 31 observed cases verses 20.1 expected. 

This increase was driven to some extent by an increase in lymphoma (SIR=1.85, 

95% CI: 0.68, 4.02). A dose response was obtained by calculating the hazard ratio 

(HR). A significantly increased HR was found for brain tumours (1.008 per mGy, 95% 

CI: 1.004, 1.013), but not for leukaemia (HR=1.009 mGy-1, 95% CI: 0.981, 1.037) and 

for all tumours combined (HR=0.986 mGy-1, 95% CI: 0.944, 1.030). 

Most recently, a re-examination of the UK CT study was conducted by Berrington de 

González et al [191], who analysed pathology reports, radiologist reports and 

comments written in the radiology information system (RIS) to identify predisposing 

conditions and pre-existing tumours. Previously unreported cancers were found to 

have the largest impact, resulting in a reduction in ERR for brain tumours by 50% 

and for leukaemia by 15%. Pre-disposing conditions were not associated with a 

decrease in ERR as they did not appear to be related to CT exposure.  
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ERR per Gy (95% CI) 

Study Brain tumours Leukaemia 

Life Span study * 6 (0, 64) 45 (16, 188) 

Pearce [9] 23 (10, 49) 
19 (-12, 79)  

36 (5, 120) $ 

Berrington [191]  excluding 
previous cancers. 

10 (2, 26) 20 (-11, 29) $ 

Berrington [191]  excluding PFs 27 (10, 65) 34 (5, 129) 

Mathews [124] 21 (14, 29) 35 (0, 77) 

Journy [187] (unadjusted for PF) 22 (-16, 61) 57 (-79, 193) 

Journy [187] (adjusted for PF) 12 (-13, 37) 47 (-65, 159) 

 

Table 2.5: Summary of elevated relative risk (ERR) for brain tumours and leukaemia 
(excluding myelodysplastic syndrome) for 5 CT studies. * Figures reported by Pearce et al 

[9]. $ including myelodysplastic syndrome, PF=predisposing factor. 

 

2.2.5: In Utero exposures 

Prior to 1956, many pregnant mothers were examined by x-ray pelvimetry for 

obstetric planning purposes. This procedure was restricted following concerns of 

hereditary effects in the offspring of the irradiated foetus [192]. Although such risks 

appear to have been overly pessimistic, the abandonment of pelvimetry was later 

associated with a significant decrease in childhood cancer in the following years 

[193] in the Oxford Study of Childhood Cancers. Based on an estimation of doses per 

image and the total number of images acquired during pregnancy, the mortality ERR 

was estimated by Mole [192] as 0.038 per mGy (95% CI: 0.007, 0.079) and Bithell as 

0.051 mGy-1 (95% CI: 0.028, 0.076). The latter estimate is influenced by an upturn in 

RR beyond 1967, which Doll and Wakeford [193] argue is likely to be artificial.  The 

authors calculate an EAR of 6% Gy-1; though acknowledge uncertainty in the exact 

value. A later study by Wakeford and Little [194] revised this figure to 8% Gy-1. 

The results of the Oxford study have been used as evidence in support of linearity of 

dose response as low as 10 mGy [46], having the advantages of x-ray energies 

relevant to diagnostic imaging and the lack of confounding by indication issues (i.e. 

the unborn child was not being treated for a pre-existing condition). Nonetheless, the 

risk estimates are dependent on non-individualised reconstructions of doses 

delivered decades earlier, resulting in significant uncertainty. Furthermore, the 

findings are not consistent with those of the LSS in which no significant increase in 
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childhood cancer was detected among 753 subjects receiving in utero exposures of 

over 10 mGy [193]. A more recent study of 8000 offspring of pregnant workers of the 

Mayak nuclear weapons facility in Russia, receiving a mean dose of 54.5 mGy [195] 

found no significant increase in solid cancers (ERR= -0.1 Gy-1, 95% CI: <-0.1, 4.1) or 

leukaemia (ERR= -0.8 Gy-1, 95% CI: <-0.8, 46.9) in offspring. 

It is interesting that an increase in almost all cancer sites was detected in the Oxford 

study, including those cancers not normally induced by radiation [193]. The different 

level of cell proliferation, immune system development and level of gap-junction 

intercellular communication in embryonic tissues should limit the applicability of the 

Oxford findings to the wider population [59].  

 

2.2.6: The effect of age 

Age at exposure modifies the risk of radiation induced cancer and will have an 

important bearing on the current study. For all sites combined, a pattern of 

decreasing risk with increasing age at exposure is generally assumed [3, 44]. Such 

assumptions, while having reasonable evidential support, have become something of 

a cliché, forming part of the standard preamble of almost all published papers on 

paediatric imaging and radiation doses. In reality, evidence of the effect of age at 

exposure on radiation induced cancer risk is far from conclusive. More recent 

analysis of the LSS data suggests the possibility of a ‘U’-shaped relationship, with 

risks initially falling with age at exposure, before rising in middle age [169]. Analysis 

between individual cancer sites lacks statistical power [196], though there is a 

suggestion that for some sites, the risk of radiation induced cancer is higher among 

adults than previously supposed [197]. Confidence intervals are wide, however, and 

cannot be narrowed as data collection for individuals exposed in middle age is 

complete (i.e. all have now died) [198]. 

Other epidemiological studies, studies of nuclear industry workers have failed to find 

any modifying effect of age at exposure [9, 139, 148]. Analyses of cancer mortality 

among residents of the Techa River and Semipalatinsk regions suggests an increase 

in risk with increased age at exposure [147, 148]. The most recent analysis by the 

United Nations Scientific Committee on Atomic Radiation (UNSCEAR) [129] 

concludes that children are at a greater risk than adults for 25% of tumour types, 



59 
 

including thyroid cancer and leukaemia,  at the same risk as adults for 15% of tumour 

types, including liver cancer, and at a lower risk for 10% of tumour types, including 

lung cancer. For 20% of tumour types, including oesophageal cancer, the data are 

insufficient to draw conclusions [129].  

It appears that most radiation induced cancers develop at ages at which they would 

normally be expected to occur in the general population [132]. For example, where 

children receive radiotherapy for primary cancer, second cancers developing in the 

following years (i.e. where the patient is still a child or young adult) tend to be other 

‘childhood’ cancers, such as sarcomas, leukaemia and brain tumours [185, 199]. 

With longer follow-up, breast and colon second cancers develop [200, 201]. Only 

where follow-up times are sufficient to include cohort members who have reached 

around 40 years, are ‘adult’ second cancers such as lung and stomach found. 

Among the atomic bombing survivors, excess cases of lung, stomach, breast and 

liver cancer were close to zero at 35 years, rising to maximum levels at age 80 or 

above [135, 169]. While there is a suggestion that the latency period between 

exposure and cancer diagnosis is reduced at high doses [45], there is little evidence 

that radiation can somehow ‘force’ the early development in children of tumours 

normally associated with adulthood. Cancers of many of the most heavily irradiated 

sites from cardiac catheterizations (lungs, oesophagus, stomach and liver) are 

exceptionally rare before 30 years of age, with incidence rates generally less than 1 

case per 100,000, per year [202, 203]. This presents an important challenge for an 

epidemiological analysis; in order to detect the cancers most likely to be induced by 

cardiac catheterizations, the follow-up time would need to be long. With short follow-

up times (i.e. less than 20 years), observed cancers are all likely to be those normally 

occurring in childhood, notably leukaemia and lymphoma. 

 

2.2.7: Summary of epidemiology review 

Previous attempts at epidemiological assessment of the cancer risks from cardiac 

catheterizations lack sufficient statistical power and have limited or non-existent 

dosimetry. Currently, risks from these procedures can only be estimated based on 

the findings from studies of other exposures, most notably the Life Span Study. The 

applicability of these findings to cardiac catheterizations is debateable as the doses 

and exposure patterns are different. There is therefore a need for a direct 
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epidemiological analysis of radiation associated cancer risks among patients 

undergoing these procedures. There are however a number of significant challenges, 

in particular the issue of confounding by indication and the long follow-up time 

required to detect the cancers most likely to be induced. 

 

2.3: Conclusion 

Previously published assessments of the radiation doses from cardiac 

catheterizations in young people are inadequate, being mainly restricted to simple 

surveys of kerma area product, with little or no assessment of dose to the patient. 

Studies have suggested that estimation of patient dose using PKA is possible, though 

this needs to be explored in greater detail. Epidemiological evidence of the cancer 

risks at low doses remains inconclusive. The uncertainty in both the radiation doses 

and associated risks from cardiac catheterizations is problematic in terms of 

justification and optimisation. This necessitates further research. 
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Chapter 3: Analysis of Cohort Data: 

The following chapter describes the establishment of a retrospective cohort of 

children and young adults who have undergone x-ray guided cardiac catheterizations 

in the UK, along with an analysis of data received from participating hospitals. These 

data included kerma area product (PKA), fluoroscopic screening time (ST) and air 

kerma (skin dose estimates). Such dose indicators have limited usefulness in risk 

estimation or epidemiological analysis, though offer the opportunity for comparison 

with previously published research and can be used to evaluate and explain variation 

in doses between hospitals and to set so-called ‘reference doses’. The estimation of 

organ doses and associated cancer risks using these data will be covered in later 

chapters.  

 

3.1: Research Governance 

A favourable ethical opinion was gained for the study from the National Research 

Ethics Service (NRES) Committee North East - Newcastle & North Tyneside 2 ethics 

committee (10/H0907/47). In addition, Confidentiality Advisory Group (CAG) 

approval for obtaining patient identifiable data without individual patient consent was 

obtained (ECC 7-04(j)/2010). Each committee was provided with yearly updates of 

study status. Where data were obtained from hospitals, local Research and 

Development (R&D) department approval was also obtained. Cohort members were 

assigned an anonymous identification code. After these were assigned, the dataset 

containing patient names was stored in a relational database that could only be 

accessed from within the Sir James Spence Institute at Newcastle University. 

Analysis was conducted on anonymised data wherever possible. The study was 

retrospective in nature, extending from 2014 to as far back as data were recorded. 

Once data were acquired from a participating hospital, collection at that site was 

terminated.  

 

3.2: Data collection methodology 

The cohort was created by identifying all the hospitals in the UK carrying out cardiac 

catheterizations on children and young adults. These procedures are performed on 

adults at most hospitals throughout the United Kingdom. However, procedures on 

children and young adults are limited to 14 centres, carrying out between 100 and 



62 
 

500 procedures per year [2] (Table 3.1). Some of these are dedicated children’s 

hospitals while others are general hospitals. All hospitals were contacted by the 

author, except for two hospitals in which prior agreement to supply data had been 

obtained. Various strategies were used. A list of e-mail addresses of local medical 

physicists was obtained and these staff contacted. Job advertisements for 

catheterization laboratory staff were searched for possible contacts. Collaborators 

already involved in the study where in some cases able to identify staff at other 

hospitals who could help. R&D approval to obtain data was obtained from 7 

hospitals. At the time of writing, 6 hospitals had provided data. These were 

reasonably well distributed throughout England (Figure 3.1), giving representation for 

Southern, Midlands and Northern regions. One further hospital had agreed to 

participate but has not yet sent any data (though cooperation has been maintained). 

To be eligible for inclusion in the cohort, subjects needed to be aged under 22 years 

at the time of the first recorded examination. Procedures conducted after the patient 

reached 22 years were retained, though were not analysed in this study. Patients 

undergoing Hickman or PICC (Peripherally Inserted Central Catheter) line insertions 

or pericardial effusion drainage, in the absence of other cardiac catheterizations, 

were excluded. These procedures were not regarded as true cardiac 

catheterizations, and, in the case of PICC and Hickman insertions, often signify 

existing malignancy as they are used for chemotherapy administration or marrow 

transplants [204, 205]. Patients with congenital heart conditions who reach adulthood 

may continue to be cared for by paediatric cardiologists and may undergo 

catheterizations in children’s hospitals. Consequently, data obtained from paediatric 

hospitals often contained a small number of records for patients examined as adults.  
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Hospital: Contacted Replied 
R&D approval 

obtained 
Data 

obtained 

Great Ormond Street Hospital, London * Yes Yes Yes Yes 

Alder Hey Children’s Hospital, Liverpool* Yes Yes Yes Yes 

Glenfield Hospital, Leicester Yes Yes Yes Yes 

Evelina Children’s Hospital, London * Yes Yes Yes Yes 

Freeman Hospital, Newcastle-upon-Tyne Yes Yes Yes Yes 

John Radcliffe Hospital, Oxford  Yes Yes Yes Yes 

Birmingham Children's Hospital * Yes Yes Yes Awaiting 

Manchester Royal Infirmary Yes Yes Failed   

Leeds General Hospital Yes Yes - declined 
 

  

Glasgow Hospital for Sick Children * Yes Yes Applied   

Southampton General Hospital Yes No response     

The Bristol Royal Hospital for Children * Yes Yes Lost contact   

Royal Brompton and Harefield Hospital Yes No response     

Royal Belfast Hospital for Sick Children * Yes Yes Lost contact   
 

Table 3.1: Data acquisition status for 14 UK hospitals carrying out cardiac catheterizations in 
children and young adults. * Specialist children's hospitals. 

 

Figure 3.1: Location of hospitals providing data (yellow) and centres from which no data 

were obtained at the time of writing (red). Figure credit: author 

 

The data provided by participating hospitals were variable. Some centres recorded 

examination details in paper logbooks, while others recorded it electronically. A 

description of the data available at each participating hospital is provided below. A 

summary is provided in Table 3.2. Note that the total number of patients in the cohort 

is smaller than the sum of individual hospitals, as some patients underwent 
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procedures at more than one hospital. Table 3.3 shows details of equipment used at 

each hospital. All machines were biplane. These details will be explored in much 

greater detail in the ‘supporting information’ chapter. From the remainder of this 

thesis, all hospitals will be anonymized, and will be referred to as Hospitals 1-6. 

Fluoroscopic equipment was confirmed with local medical physics staff to have 

undergone at least yearly quality assurance (QA) testing, including PKA measuring 

device calibration. QA reports were obtained for machines, where available. 

 

Hospital 1 

Hospital 1 provided by far the largest amount of data in the study (36% of 

examinations). Data were recorded in paper form in multiple log books, which 

extended back as far as 1994. The logbooks were transcribed at Newcastle 

University. Procedures were carried out in several different laboratories, often with 

different equipment. Post 2002, recorded details were relatively extensive, including 

bi-plane PKA, estimated skin doses and clinical details including indications for the 

procedures (i.e. why it was being carried out). For examinations conducted in lab 1 

between 1994 and 2000, the recording of PKA was sporadic, quoted for 32% of 

procedures. Between 2000 and 2002, only screening time was recorded.  

Hospital 2 

Data were obtained for procedures carried out between 2004 and 2013. During this 

time period, two machines were used – a Philips Integris BH3000 up to 2008 and a 

Siemens Artis Zee after this date. Data were not available prior to 2004. Boxes of 

cine film from procedures as far back as the late 1960s were located, each 

containing the patient name and screening time, but no PKA or procedure type. These 

data were not acquired due to the limited information content and time required for 

gathering. More recent examinations up to 2004 were recorded on CDs, with dose 

information written on the CD packaging. Unfortunately, in a bid to save space, these 

CDs were transferred to large spools and all packaging was discarded without the 

information being recorded. Examination details were recorded in paper log books. 

On agreement with the named local collaborator and local R&D team, data from 

these were obtained by photographing each page of the book at Hospital 2 and 

transcribing these photographs at Newcastle University. The fluoroscopy equipment 

used at Hospital 2 reports doses as bi-plane PKA figures, but these were only 
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recorded in logbooks as total PKA (i.e. frontal and lateral beams combined). Hospital 

2 records the beam angles used for each examination along with short, free-text 

descriptions of procedure type and the clinical details of the patient.  

Hospital 3: 

Data were available from 2004 onwards and in electronic form. Doses were recorded 

as total PKA figures. Procedure types were recorded in good detail and secondary 

procedure types (i.e. a second exam done at the same time) were also recorded. 

Patient age, height and mass were also recorded.  

Hospital 4 

The data obtained from the Hospital 4 were unusual in that dose indicators were not 

recorded on the Radiology Information System (RIS). A download of RIS data for 

procedures carried out since 1991 was obtained, along with a separate file 

containing dose indicators recorded using a monitoring system developed by the 

local medical physics department from 1993 to 2014. PKA figures were adjusted by a 

calibration factor and for table attenuation. Unfortunately a large number of 

procedures recorded in the RIS data (n=4728) were not present in the dose file 

(n=1769). Dose details were only obtained for patients under age 16 years. 

Furthermore, the procedure types were found to be vague. Most procedures (75%) 

were simply listed in the dose file as ‘A.PAE’. It was observed that radiographers 

tended to use this procedure code for virtually all cardiac catheterizations, regardless 

of what the actual procedure type was. In the RIS file, most procedures were simply 

listed as an ‘angiocardiogram’. PKA, where recorded was in the form of biplane 

figures for 70% of procedures. The remainder were recorded as a single total figure.  

Dose data were recorded sporadically. In particular, between 2006 and 2011, PKA 

was recorded for only 26 out of 984 (2.6%) procedures. 

Hospital 5: 

Data were obtained from the Radiology Information System (RIS) in electronic form 

and included total examination PKA figures and screening time. Patient mass or 

height were not recorded. Procedure type was reasonably detailed, though lacked 

clinical details. There were 130 entries in which it appeared that the patient had 

undergone two identical examinations on the same day, both with the same 

screening time, but different PKA. Where dose figures were identical, the second 
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entry was assumed this was a duplicate entry and removed. Where the figures were 

different, they were combined to produce a single procedure. 

 

Hospital 6 

Data were recorded in log books at Hospital 6, but unfortunately these were 

discarded some years prior to the study. Procedures carried out after May 2006 were 

recorded electronically and details were obtained in an Excel file. Data included 

patient age, but not height or mass. Only the patient’s surname was included, which 

limited the usefulness of the Hospital 6 data for cancer registry matching. 

 

Hospital (date range) 
[laboratory number] 

No. of 
exams 

No. Of 
patients 

% with PKA 

 (with 
biplane PKA) 

% with  
ST 

% with 
Mass 

% with 
Height Age 

Exam 
type 

Clinical 
info 

Hospital 1 (1994-00) [1] 2067 

4753 

32% (30%) 98% 96% 0% Yes Yes Yes 

Hospital 1 (1999-02) [2] 1040 96% (96%) 97% 98% 95% Yes Yes Yes 

Hospital 1 (2000-02) [1] 183 0% (0%) 100% 71% 14% Yes Yes Yes 

Hospital 1 (2002-08) [1] 3196 97% (97%) 98% 98% 85% Yes Yes Yes 

Hospital 1 (2007-10) [4] 725  98% (98%) 99% 91% 68% Yes Yes Yes 

Hospital 2 (2004-08) 1640 
3655 

92% (0%) 91% 87% 0% Yes Yes Yes 

Hospital 2 (2008-13) 2012 90% (0%) 91% 93% 0% Yes Yes Yes 

Hospital 3 (2008-13) 1407 
1611 

94% (0%) 94% 99% 81% Yes Yes No 

Hospital 3 (2004-08) 842 94% (0%) 92% 100% 86% Yes Yes No 

Hospital 4 (1991-03) 2666 
2983 

46% (37%) 45% 41% 40% Yes Yes  No 

Hospital 4 (2003-14) 2863 19% (9%) 19% 17% 17% Yes Yes No 

Hospital 5 (2005-13) 737 674 97% (0%) 94% 0% 0% Yes Yes No 

Hospital 6 (2006-13) 356 313 58% (0%) 60% 13% 10% Yes Yes No 

Total: 19734 13,564 67% (33%) 
       

Table 3.2: Summary of data acquired from participating hospitals. Note that many hospitals 
replaced equipment during the data collection period at least once. These separate ‘eras’ are 

recorded as separate lines in the table. ST= screening time. 
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Hospital (date range) 
[laboratory number] 

Manufacturer and 
model 

Antiscatter 
Grid 

Tube 
potential 

(kVp) 
Filtration 

Frame 
rates (s-1) 

Detector 
type 

Hospital 1 (1994-2000) 
[lab 1] 

Siemens BICOR 
Biplane 

Fixed Unknown Al 
Cont (f) 

30-60 (a) 
II 

Hospital 1  (1999-2002) 
[lab 2] 

Toshiba Infinix CX 
Biplane 

Fixed 50-125 Al+? 
25-30 (f) 
25-30 (a) 

II 

Hospital 1  (2000-2002) 
[lab 1] 

Unknown Unknown Unknown Unknown Unknown Unknown 

Hospital 1  (2000-2008) 
[lab 1] 

Siemens Axiom 
Artis BC Biplane 

>10 kg 58-125 Al + Cu 
10-15 (f) 

15 (a) 
II 

Hospital 1  (2007-2010) 
[lab 4] 

Siemens Axiom 
Artis dBC Biplane 

>10 kg 58-125 Al + Cu 
10-15 (f) 

15 (a) 
FPD 

Hospital 2 (2004-2008) 
Philips Integris 

BH3000 
Always Unknown Al + Cu Unknown II 

Hospital 2 (2008-2013) 
Siemens Artis Zee 

Biplane 
Always 58-125 Al + Cu 

10-15 (f) 
30 (a) 

FPD 

Hospital 3 (2004 - 2013) 
Siemens HICOR 

Biplane 
Fixed Unknown Al + Cu 

10 (f) 
30 (a) 

II 

Hospital 3 (2004-2008) 
Siemens Axiom 

Artis dFC Biplane 
>10 kg 58-125 Al + Cu 

12.5 (f) 
30 (a) 

FPD 

Hospital 4 (1991-2003) 
Siemens  

Coroskop C Biplane 
Fixed Unknown Al Unknown II 

Hospital 4 (2003-2014) 
Siemens Axiom 
Artis BC Biplane 

>10 kg 58-125 Al + Cu 
7.5 (f) 

15-30 (a) 
II 

Hospital 5 (2005-2013) 
Siemens Axiom 

Artis Biplane 
Unknown 58-125 Al + Cu 

7.5-15 (f) 
? (a) 

FPD 

Hospital 6 (2006-2013) 
Siemens Axiom 

Artis dBC Biplane 
Unknown 58-125 Al + Cu Unknown FPD 

 

Table 3.3: Equipment used at participating hospitals. Note: II=image intensifier, FPD=flat 
panel detectors, Cu=copper, Al=aluminium, f=fluoroscopy, a=acquisitions. 

 

3.3: Data checking procedure 

For all cohort data, a systematic process was used to detect, and correct where 

appropriate, data entry errors. This process was especially important for data 

extracted from log books. 

1.  Where PKA was reported as biplane figures as well as a ‘total’ PKA, the frontal and 

lateral figures were added to check if it matched the ‘total’ quoted in log book. The 

radiographer calculates the total PKA figure through mental arithmetic. The sum of 

frontal and lateral figures was considered more reliable and used in cases of 

discrepancies (57 entries at Hospital 1). 

2. Estimated skin dose is calculated by dividing PKA by beam area. The PKA should 

always be higher than skin dose, otherwise the field size would be smaller than 1 
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cm2. Skin doses were higher than PKA in 41 cases (all at Hospital 1), where it was 

assumed the respective figures had been entered into the wrong columns. 

3. Body mass index (BMI) was calculated, where mass and height were recorded. 

This is defined as: 

𝑀𝑎𝑠𝑠 (𝑘𝑔)

𝐻𝑒𝑖𝑔ℎ𝑡2(𝑚)
 

Individuals with a BMI of over 35, defined by the World Health Organisation as being 

‘obese class II’ [206] (severely obese) were investigated. In most cases, a typing 

error was responsible, typically a missing decimal point. In 28 cases, the mass and 

height appeared to have been written the wrong way round. Units of height varied 

between centimetres and metres. After corrections, where possible, 19 patient mass 

entries were considered unreliable and deleted. A record of the quoted figure was 

recorded in the comments column. In all of these cases, a reliable patient age was 

recorded. 

4. Divide total PKA by screening time. A very high dose per unit screening time may 

be due to the patient being obese. The PKA/time figure was therefore divided by 

patient mass. In 13 cases, the PKA/min/kg was considered unusually high or low. 

5. Calculate age by subtracting date of birth from date of examination. Negative ages 

were investigated. After corrections, where possible, 5 patients had unresolved 

negative ages. 

6. Plot the date of examination against entry number as entered in the log book.  The 

examination dates should increase steadily. Any outliers suggest the date was 

entered incorrectly. Exams were always presented in chronological order. For 

missing examination dates, a date was assigned based on that of the previous 

examination. 

7. Where biplane PKA and skin doses are provided, calculate the ratio between PA 

and lateral PKA and between PA and lateral skin dose. The ratios should be 

approximately the same.   This process was not always possible for procedures with 

low doses. The skin dose from Hospital 1 was recorded in integer units of mGy, with 

doses less than 1 mGy being recorded as 0. 
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All discrepancies were first highlighted in red in the database and investigated 

further. In some cases, the problem could be corrected. The most common problems 

were transcription errors. In many cases, details had been written in the wrong 

columns (e.g. a height of 3 cm and a mass of 40 kg). These were corrected and a 

note made of the original data entry. Unresolved discrepancies were mostly due to 

illegible handwriting.   

 

3.4: Data analysis methodology 

Data were obtained for 20,078 procedures carried out for which a valid procedure 

type was available. Kerma area product was recorded for 13,654 of these 

procedures. Data obtained for procedures carried out at the same hospital but using 

different equipment were analysed separately (i.e. the same date ranges shown in 

Table 3.). These different ‘eras’ corresponded with the three generations of 

fluoroscopic equipment outlined in the Introduction chapter (section 1.1). All 

statistical analysis was carried out using MATLAB (versions 2011a and 2013a, 

Mathworks, Natick, USA) using anonymised data (only age, mass, dose indicators 

and anonymous ID number). A MATLAB function was written that automatically sorts 

the data into different procedure type categories, stratifies by patient age or mass 

and produces summary statistics. The results are automatically saved as an Excel 

file for viewing.  Each examination was numerically coded into four overall 

categories: 

1. Diagnostic: All procedures in which the aim was to find out what is wrong with 

the patient or to monitor a condition, but without any form of therapeutic 

intervention. 

2. Interventional: All procedures that involve “doing something” to the heart or 

surrounding vessels with the aim of changing heart function. This includes 

stent insertion, balloon dilatation, closure of anomalous ducts or vessels, or 

ablation. The interventional category includes procedures with both diagnostic 

and therapeutic elements and attempts at intervention that failed. 

3. Pacemaker procedures, including wire and battery replacements. 

4. Other: All other procedures involving cardiac fluoroscopy. This included 

biopsies and those procedures difficult to categorise as either diagnostic or 

interventional. 
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The above groups were then sub-divided into more specific procedure types:  

1. Atrial septal defect (ASD) occlusion 

2. Patent ductus arteriosus (PDA) occlusion 

3. Pulmonary valve (PV) angioplasty 

4. Aortic valve (AV) angioplasty 

5. Pulmonary artery (PA) angioplasty 

6. Coarctation (COA) angioplasty 

7. Electrophysiology studies (EPS) with or without radiofrequency ablation (RFA) 

8. Endomyocardial biopsy (EMBx) 

9. Coronary angiography 

10. Valve replacements 

11. Pulmonary vascular resistance (PVR) studies. 

12. Pacemaker procedures 

13. Atrial septostomy 

14. Unspecified valve angioplasty (PV or AV) 

15. Right ventricular outflow tract (RVOT) angioplasty 

0. Unspecified or other procedure types not listed above. 

Descriptions of these procedures can be found in the Introduction chapter. The final 

procedure type ‘0’ included procedures rarely carried out, such as collateral 

embolization or ventricular septal defect (VSD) occlusion. The procedure types 

provided by hospitals were sometimes too vague to categorize the procedure. This 

was the case for 1323 procedures carried out at the Hospital 4, listed simply as 

‘A.PAE’. These procedures were also classed as type 0. Note that certain 

procedures, such as valve replacements and heart biopsies are typically only carried 

out at certain specialist hospitals. 

The coding system also included a separate column to indicate multiple procedures 

being carried out during the same catheterization. In many cases these were 

relatively minor procedures such as insertion of a central venous catheter. These 

were coded as ‘1’ and included in the analysis of doses for individual procedure 

types. Where two distinct, non-minor procedure types were carried out, such as ASD 

occlusion and valve angioplasty, these were coded as ‘2’ and excluded from analysis 

of individual procedure types but included in the broader interventional or diagnostic 

groups.  
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Cohort data were analysed by total PKA, screening time, patient mass and age, PKA 

per kilogram (PKA/kg) and by broad exam category and specific procedure type. Bi-

plane PKA and skin dose figures were analysed where recorded. Data were stratified 

by mass using the same groups as Glatz et al [91]. Age was stratified using the same 

groups as Kobayashi et al [207] and Verghese et al [82] with the addition of an extra 

16-18 years group. Examinations with zero doses were excluded from the analysis, 

as were examinations in which data were considered unreliable, mostly due to 

difficult handwriting (n=29). A Lilliefors test [208] was applied to determine whether 

PKA data were normally distributed. Data were not found to be normally distributed for 

any of the hospitals from which data were acquired, and were always right skewed. 

Therefore median and interquartile range statistics were chosen as the primary 

representation of PKA data. 

 

3.5: Results 

Tables 3.4 to 3.6 present mean PKA, along with median PKA, screening time and 

(where available) skin doses and the percentage of total PKA originating from the 

frontal (PA) output, for all procedure types combined, stratified by age, presented for 

each hospital and equipment era separately. Skin dose is recorded in both frontal 

and lateral planes. The figures reported here are the median of whichever figure was 

the highest in each examination, rather than the median of both planes combined (a 

common, though ultimately unhelpful practice). Tables 3.7 and 3.8 show median PKA 

for different procedure types for all patient ages combined, again separately for 

different hospitals and eras. Categories in which fewer than ten procedures were 

carried out are not shown. More detailed tables with stratification by both mass and 

procedure type are provided in the appendix, along with equivalent tables stratified 

by mass. The following sections discuss various elements of the data separately. 
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Hospital, era 
Dose indicator 

Patient age range 

H
O

SP
IT

A
L 

1
 

 1
9

9
4

 -
 2

0
0

0
 

<1 y 1-5 y 5-10 y 10-16 y 16-18 y >18 y All 

Median PKA [IQR] 12.2 [7 : 18.7] 23.7 [14.9 : 35.9] 35.6 [21.1 : 61.8] 69.9 [28.1 : 117] 105 [64.3 : 179.7] 112.8 [77.6 : 150.3] 26.8 [13.1 : 61.9] 

Mean PKA [St Dev] 15.8 [14.1] 29.7 [23] 47.2 [40] 94.5 [101.5] 137.6 [107.7] 125.8 [91.1] 50.5 [67.9] 

Median PKA/kg [IQR] 2.35 [1.49 : 3.89] 2.02 [1.27 : 3.04] 1.7 [1.1 : 2.57] 1.8 [0.9 : 2.68] 2.19 [1.3 : 3.26] 1.82 [1.35 : 2.38] 2 [1.24 : 3.07] 

Median % PA [IQR] 71% [64 : 78] 67% [57 : 75] 62% [50 : 68] 61% [50 : 70] 60% [49 : 70] 62% [49 : 73] 66% [55 : 74] 

Median skin dose [IQR] n/a n/a n/a n/a n/a n/a n/a 

Screening time [IQR] 17.4 [11 : 25.9] 19.5 [12.4 : 29.7] 18.9 [11.9 : 29.7] 20.1 [9.8 : 34] 18.7 [13.3 : 30.6] 19.9 [12.6 : 25.7] 18.9 [11.6 : 29.7] 

n 166 179 124 111 32 29 641 

H
O

SP
IT

A
L 

1
 

 1
9

9
9

 -
 2

0
0

1
 

Median PKA [IQR] 4.4 [2.4 : 7.8] 9.1 [5.2 : 16.4] 13.7 [7.5 : 26.8] 26.6 [11.6 : 57.5] 43.2 [24.3 : 102.4] 95 [47.7 : 126.5] 10.3 [5 : 25.5] 

Mean PKA [St Dev] 7.3 [10] 15.7 [29.2] 20.5 [23.3] 45.2 [53.1] 63.9 [55.7] 89.5 [48.1] 23.9 [38.1] 

Median PKA/kg [IQR] 0.87 [0.44 : 1.55] 0.76 [0.41 : 1.34] 0.66 [0.34 : 1.11] 0.65 [0.31 : 1.24] 0.87 [0.46 : 1.7] 1.44 [1.01 : 1.92] 0.76 [0.39 : 1.32] 

Median % PA [IQR] 68% [56 : 78] 68% [53 : 81] 65% [49 : 81] 71% [50 : 100] 67% [56 : 85] 78% [52 : 82] 68% [53 : 82] 

Median skin dose [IQR] n/a n/a n/a n/a n/a n/a n/a 

Screening time [IQR] 10.9 [5.7 : 18.2] 12.9 [6.6 : 19.9] 10.2 [5.3 : 15.7] 10.8 [6.3 : 19.4] 12.9 [7.2 : 21.8] 17.5 [11.1 : 27] 11.3 [6.2 : 19.2] 

n 248 291 184 214 44 12 993 

H
O

SP
IT

A
L 

1
 

 2
0

0
2

-2
0

0
8

 

Median PKA [IQR] 0.8 [0.5 : 1.5] 1.2 [0.5 : 2.4] 2.2 [0.9 : 4.7] 5 [2 : 12.3] 7.8 [2.9 : 16.9] 8.2 [3.8 : 28.8] 2.1 [0.8 : 5.9] 

Mean PKA [St Dev] 1.2 [1.1] 1.9 [2] 3.8 [5.1] 9.7 [12.9] 12.8 [14.7] 23.1 [45.3] 5.8 [11.4] 

Median PKA/kg [IQR] 0.16 [0.09 : 0.29] 0.1 [0.04 : 0.21] 0.1 [0.04 : 0.2] 0.12 [0.05 : 0.26] 0.15 [0.06 : 0.29] 0.14 [0.08 : 0.46] 0.12 [0.05 : 0.25] 

Median % PA [IQR] 55% [41 : 68] 58% [38 : 80] 59% [37 : 88] 53% [35 : 83] 49% [32 : 79] 53% [38 : 82] 55% [37 : 79] 

Median skin dose [IQR] 15 [9 : 27] 16 [8 : 30] 24 [11 : 49] 46 [22 : 109] 75 [29 : 138] 72 [39 : 215] 26 [12 : 61] 

Screening time [IQR] 11.1 [7.3 : 18.5] 10.2 [6.1 : 18.3] 10.4 [6.2 : 19.4] 10.3 [6.1 : 18] 10.2 [5.4 : 17.3] 12.7 [7.5 : 22.7] 10.4 [6.2 : 18.4] 

n 502 737 549 969 233 49 3039 

H
O

SP
IT

A
L 

1
 

 2
0

0
7

-2
0

1
0

 

Median PKA [IQR] 0.6 [0.4 : 0.9] 1.2 [0.6 : 2.3] 2.3 [1 : 5.8] 9.8 [3.6 : 19.2] 10.1 [3.3 : 26.5] 10.8 [3.5 : 24.2] 2.1 [0.8 : 8.3] 

Mean PKA [St Dev] 1 [1.8] 1.9 [2.1] 6.5 [18.2] 17.7 [23.8] 18.5 [23.3] 17.6 [24.5] 8.7 [18.3] 

Median PKA/kg [IQR] 0.1 [0.06 : 0.18] 0.09 [0.05 : 0.2] 0.1 [0.05 : 0.24] 0.19 [0.09 : 0.38] 0.17 [0.06 : 0.44] 0.21 [0.07 : 0.59] 0.12 [0.06 : 0.26] 

Median % PA [IQR] 59% [45 : 69] 70% [49% : 83%] 65% [40 : 80] 57% [43 : 75] 68% [55 : 84] 85% [61 : 99] 62% [46 : 78] 

Median skin dose [IQR] 11 [7 : 18] 17 [9 : 31] 28 [12 : 64] 78 [38 : 161] 93 [27 : 186] 98 [32 : 176] 26 [11 : 79] 

Screening time [IQR] 8.3 [5.5 : 14.2] 10.1 [5.5 : 17] 10.5 [5.4 : 18.3] 10.6 [6.9 : 20.1] 10.1 [5.3 : 19.6] 10.6 [5.6 : 30] 10.1 [6.1 : 17.5] 

n 129 170 135 196 67 5 702 
 

Table 3.4: Summary statistics for all procedures combined at Hospital 1, for 4 eras of data collection. PKA is quoted in Gy·cm², skin doses are 
quoted in mGy. 
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Hospital, era Dose indicator 
Patient age range 

<1 y 1-5 y 5-10 y 10-16 y 16-18 y >18 y All 

H
o

sp
it

al
 3

  

2
0

0
4

-2
0

0
8

 Median PKA [IQR] 3 [1.7 : 5.3] 5.1 [2.9 : 8.5] 6.5 [2.7 : 13] 8.9 [3.6 : 19.4] 9.4 [4.8 : 19.2] 18.5 [5.3 : 33] 4.8 [2.4 : 9.9] 

Mean PKA [St Dev] 4.3 [4.4] 6.5 [5.5] 9.7 [9.7] 16.3 [20.8] 13 [13.1] 22.9 [21.1] 9.1 [12.7] 

Median PKA/kg [IQR] 0.52 [0.34 : 0.95] 0.39 [0.24 : 0.7] 0.26 [0.12 : 0.54] 0.19 [0.07 : 0.43] 0.15 [0.08 : 0.31] 0.26 [0.08 : 0.63] 0.36 [0.18 : 0.67] 

Screening time [IQR] 12.4 [7.4 : 18.9] 12.5 [8.1 : 20.6] 13.2 [7.1 : 23] 18.6 [12.8 : 28.7] 13.5 [6.2 : 20] 11.5 [6.8 : 21.5] 13.5 [7.9 : 22.1] 

n 245 193 97 122 40 40 737 

H
o

sp
it

al
 3

  

2
0

0
8

-2
0

1
3

 Median PKA [IQR] 0.8 [0.5 : 1.4] 1.6 [0.9 : 3.2] 2.7 [1.4 : 6.9] 7.5 [3 : 15.2] 6.9 [2.1 : 16.9] 19.1 [7 : 35.9] 2.1 [0.8 : 6.6] 

Mean PKA [St Dev] 1.3 [1.8] 2.7 [3.3] 7 [17.9] 12.2 [14.5] 15.3 [23.8] 34.6 [49.2] 7.4 [18] 

Median PKA/kg [IQR] 0.14 [0.08 : 0.25] 0.14 [0.08 : 0.25] 0.13 [0.06 : 0.26] 0.15 [0.07 : 0.33] 0.1 [0.04 : 0.29] 0.29 [0.1 : 0.51] 0.14 [0.07 : 0.29] 

Screening time [IQR] 10.8 [7.3 : 18.3] 10.7 [6.6 : 18.4] 12 [7.7 : 18.2] 14.7 [8.6 : 25] 12.9 [7.8 : 21.2] 14.3 [8.7 : 24] 11.8 [7.5 : 19.9] 

n 345 354 185 247 87 71 1289 

H
o

sp
it

al
 2

 

2
0

0
4

-2
0

0
8

 Median PKA [IQR] 3.6 [1.9 : 6.4] 6.2 [3.7 : 11.6] 9.1 [4.4 : 16.6] 16.4 [7.4 : 34.1] 23.2 [10.7 : 46.3] 5.6 [2.7 : 32.1] 6.7 [3.2 : 15.6] 

Mean PKA [St Dev] 6.7 [11.3] 9.7 [11.1] 13.7 [15] 25 [28.9] 54.3 [163.9] 16.8 [19.8] 14.8 [42] 

Median PKA/kg [IQR] 0.62 [0.37 : 1.3] 0.5 [0.31 : 0.95] 0.42 [0.2 : 0.8] 0.4 [0.19 : 0.73] 0.49 [0.23 : 0.75] 0.1 [0.04 : 0.56] 0.5 [0.28 : 0.95] 

Screening time [IQR] 9.2 [5.6 : 14.2] 9.1 [6.1 : 14.5] 10.1 [5.5 : 18.2] 10.1 [6 : 17.1] 12.5 [7.3 : 17.2] 2.4 [1.1 : 12.4] 9.6 [5.8 : 15.6] 

n 407 469 249 280 77 8 1490 

H
o

sp
it

al
 2

 

2
0

0
8

-2
0

1
3

 Median PKA [IQR] 2.3 [1 : 4.1] 3.8 [2.5 : 6.9] 6.5 [3.6 : 11.4] 14.7 [6.6 : 29.9] 14 [6.2 : 29.7] 7.4 [2.6 : 11.8] 4.7 [2.4 : 10.7] 

Mean PKA [St Dev] 3.3 [4] 5.6 [5.5] 9 [8.5] 21.6 [21.1] 23.4 [27.4] 11.4 [13.4] 9.6 [14.3] 

Median PKA/kg [IQR] 0.42 [0.24 : 0.79] 0.34 [0.21 : 0.57] 0.32 [0.17 : 0.51] 0.33 [0.16 : 0.62] 0.24 [0.11 : 0.54] 0.13 [0.04 : 0.19] 0.35 [0.19 : 0.61] 

Screening time [IQR] 8 [4.8 : 14.5] 7.1 [4.9 : 12.3] 7.6 [4.6 : 11.9] 10.3 [6.1 : 17.1] 9.9 [7 : 19.2] 5.4 [4 : 11.4] 8.2 [5 : 14] 

n 476 607 250 374 81 15 1803 

 

Table 3.5: Summary statistics for all procedures combined at Hospitals 2 and 3, for two eras of data collection. PKA is quoted in Gy·cm². 
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Hospital, era Dose indicator 
Patient age range 

<1 y 1-5 y 5-10 y 10-16 y 16-18 y >18 y All 

H
o

sp
it

al
 4

 

 1
9

9
3

-2
0

0
3

 

Median PKA [IQR] 3.2 [1.8 : 5.4] 5 [2.8 : 8.8] 8.4 [4.3 : 14.7] 16.2 [7.8 : 35.9] 18.4 [6.5 : 32.6] -  6.4 [3.1 : 13.7] 

Mean PKA [St Dev] 5.3 [8.5] 7.2 [7.6] 12.8 [15] 26.2 [27.4] 23.5 [19.5] -  12.5 [17.9] 

Median PKA/kg [IQR] 0.64 [0.39 : 1.07] 0.47 [0.24 : 0.79] 0.41 [0.21 : 0.68] 0.42 [0.22 : 0.8] 0.36 [0.14 : 0.63] -  0.49 [0.25 : 0.84] 

Median % PA [IQR] 0.71 [0.6 : 0.86] 0.69 [0.54 : 0.89] 0.68 [0.46 : 2] 0.66 [0.5 : 0.94] 0.71 [0.51 : 0.93]  - 0.69 [0.53 : 0.92] 

Screening time [IQR] 9.9 [5 : 16.3] 9.4 [5.6 : 16] 11 [5.8 : 20] 14.5 [7 : 26.2] 12.5 [5.1 : 24.1]  - 10.9 [5.9 : 19.2] 

n 275 394 255 271 30 0 1225 

H
o

sp
it

al
 4

 

 2
0

0
3

-2
0

1
4

 

Median PKA [IQR] 0.5 [0.3 : 1.1] 1.4 [0.7 : 2.5] 2.2 [1 : 4.7] 7.6 [4.3 : 11.6] 7.6 [4.9 : 9.6] -  1.7 [0.6 : 4.7] 

Mean PKA [St Dev] 1.4 [4.4] 2.3 [3.8] 4 [5.7] 10.9 [12.9] 7.1 [3.3] -  4.2 [7.9] 

Median PKA/kg [IQR] 0.1 [0.05 : 0.18] 0.11 [0.07 : 0.2] 0.11 [0.05 : 0.17] 0.16 [0.1 : 0.23] 0.16 [0.12 : 0.19] -  0.12 [0.07 : 0.2] 

Median % PA [IQR] 0.51 [0.44 : 0.65] 0.56 [0.38 : 0.68] 0.52 [0.41 : 0.65] 0.56 [0.43 : 0.91] 1 [1 : 1] -  0.54 [0.43 : 0.69] 

Screening time [IQR] 10.8 [5.2 : 18.6] 10.4 [6 : 18] 9.1 [6 : 13.7] 10 [7.3 : 16] 7.1 [5.3 : 13.7] -  10.1 [6 : 16.8] 

n 145 164 116 110 9 0 544 

H
o

sp
it

al
 5

 

 2
0

0
5

-2
0

1
3

 

Median PKA [IQR] 0.8 [0.4 : 1.5] 1.5 [0.7 : 3.8] 1.4 [0.4 : 5.7] 2 [0.6 : 11.3] 2.6 [0.9 : 10.4] 3.96 [0.98 : 48.77] 1.3 [0.5 : 3.9] 

Mean PKA [St Dev] 1.4 [2] 3.7 [5.5] 6.4 [16] 13.7 [45.9] 8.9 [17.8] 32.09 [46.08] 6.9 [24.9] 

Screening time [IQR] 11.5 [6.5 : 22.5] 8.6 [4.7 : 17.2] 10.1 [5.8 : 24.5] 15.5 [8.2 : 23.4] 16.8 [9.2 : 31.6] 15.4 [7.9 : 27.47] 11.7 [6.5 : 22.6] 

n 161 167 93 130 41 20 612 

H
o

sp
it

al
 6

 

2
0

0
6

-2
0

1
3

 

Median PKA [IQR] 0.7 [0.4 : 1.1] 0.9 [0.6 : 1.8] 1.5 [0.7 : 3] 3.4 [1.4 : 8.4] 1.2 [0.3 : 3.7] 3.53 [1.64 : 5.52] 1.2 [0.6 : 2.9] 

Mean PKA [St Dev] 0.9 [0.9] 1.5 [1.4] 2.2 [2] 9.8 [18.4] 7.4 [27.7] 7.39 [17.17] 3.5 [11.8] 

Screening time [IQR] 10.2 [6.2 : 17.2] 9.5 [7.3 : 15.9] 12.6 [8.7 : 16.5] 9.3 [3 : 18.1] 7.5 [3.2 : 10.1] 10.15 [6.44 : 14.11] 10.1 [6.4 : 16.2] 

n 91 116 41 39 26 47 360 
 

Table 3.6: Summary statistics for all procedures combined at Hospitals 4, 5 and 6. PKA is quoted in Gy·cm². 
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Procedure 
Hospital and data collection period 

Hospital 1 94-00 Hospital 1 99-01 Hospital 1 02-08 Hospital 1 07-10 Hospital 3 04-08 Hospital 3 08-13 

Other 26 [13 : 55.5] 14.3 [6 : 28.5] 1.5 [0.4 : 3.9] 1.4 [0.7 : 4.8] - - 

Interventional 27.1 [13.8 : 54.2] 7.6 [3.7 : 18.4] 1.7 [0.7 : 5.8] 2.2 [0.7 : 9.7] 4.7 [2.5 : 9.8] 2.2 [0.8 : 8.3] 

Diagnostic 68.9 [22.3 : 132.6] 11.6 [6.3 : 29.4] 3.2 [1.5 : 7.4] 2.8 [1 : 8.3] 5.1 [2.8 : 10] 1.9 [0.9 : 5] 

ASD occlusion - 6.3 [2.7 : 21.9] 0.8 [0.5 : 1.7] 1.3 [0.4 : 4.1] 5.3 [2.1 : 8] 3.2 [1.3 : 8.9] 

PDA occlusion 27.1 [14.4 : 45] 6.2 [3.4 : 12] 0.8 [0.5 : 1.3] 0.7 [0.5 : 1.3] 3.4 [2.5 : 5.3] 1.1 [0.6 : 2.2] 

PV plasty 16.9 [13.2 : 27.2] 6 [2.8 : 10.7] 1 [0.6 : 2] 0.8 [0.5 : 2] 3.4 [2.1 : 7.1] 0.7 [0.4 : 1.2] 

AV plasty - 6.9 [4.3 : 21.6] 1.2 [0.7 : 4.6] 4 [0.6 : 13.1] 5.2 [1.5 : 7.4] 2 [0.6 : 6.2] 

PA plasty 34.1 [26.9 : 154.9] 19.4 [8.3 : 40.6] 4.7 [2 : 9.2] 4.6 [1.8 : 8.8] 11.1 [8.3 : 28.5] 7.2 [3 : 13.8] 

COA repair - 7.8 [5.1 : 26.4] 1.7 [0.7 : 3.4] 3.7 [0.5 : 10.6] 3.5 [2 : 10.1] 6.4 [1.2 : 24.3] 

EPS/RFA 70.6 [46.8 : 147.4] 77.8 [24.1 : 144.8] 3.3 [1.2 : 7.3] 3.5 [1.6 : 9] 4.3 [2 : 9.2] 3.6 [1.7 : 7.1] 

Biopsy 5.5 [3 : 32.4] 5.4 [1.7 : 10.9] 0.7 [0.3 : 1.8] 1.2 [0.7 : 3.3] - - 

Coronaries 100.7 [62.9 : 149.2] 17.1 [9.7 : 33.6] 4.8 [2.5 : 11.1] 5.4 [1.9 : 11.9] - - 

PVR/Pressures - - 1.3 [0.4 : 3.7] 1.4 [0.6 : 5.4] - - 

Valve replace - - - 37.9 [27 : 77.4] - - 

Pacemaker 18.5 [8.8 : 51.8] - 1.6 [0.8 : 2.9] - 2.6 [1.4 : 11.8] 0.7 [0.3 : 2] 

Septostomy 3.5 [2.8 : 7] 2.1 [0.8 : 28.9] 2.1 [0.9 : 7.9] - - - 

 

Table 3.7: Median PKA [interquartile range] for individual procedure types for all patient sizes combined, for different eras at Hospitals 1 and 3. 
Note, ‘plasty’ can refer to ballooning and/or stent insertion. Only figures where at least 10 procedures were conducted are presented. 
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Procedure 
Hospital and data collection period 

Hospital 2 04-08 Hospital 2 08-13 Hospital 4 93-03 Hospital 4 03-14 Hospital 5 05-13 Hospital 6 06-13 

Other 6.6 [3.1 : 14.6] 5.5 [2.5 : 10.8] 6.3 [3.2 : 13.5] 1.3 [0.6 : 3.2] 0.6 [0.2 : 2] 0.9 [0.5 : 2.4] 

Interventional 7.2 [3.6 : 16.7] 4.3 [2.3 : 10.9] 6.8 [2.6 : 16.1] 1.1 [0.5 : 2.6] 1.3 [0.6 : 3.9] 1.2 [0.6 : 2.7] 

Diagnostic 5 [2.4 : 14] 5.8 [3 : 10.5] 8.3 [6.3 : 19.3] 4.8 [2.7 : 9.3] 2.6 [0.9 : 8.5] 1.5 [0.7 : 3.4] 

ASD occlusion 6.9 [4.8 : 14] 4.4 [2.7 : 8.4] - - 1.5 [0.7 : 3.8] 0.5 [0.5 : 1] 

PDA occlusion 6.2 [3.8 : 11.1] 3.2 [2.4 : 4.8] - - 1.1 [0.6 : 2.2] 0.4 [0.4 : 0.8] 

PV plasty 4.5 [2.5 : 8.6] 2.7 [1.7 : 4.7] - - - - 

AV plasty 7.9 [3.3 : 30.5] 2.1 [1.1 : 5] - - - - 

PA plasty 17.8 [7 : 28.8] 11.5 [5.9 : 21.8] - - - - 

COA repair 6.2 [2.9 : 16.4] 3.2 [2.5 : 6.2] - - 6.1 [1 : 27.7] - 

EPS/RFA 16.7 [9 : 30.5] 12 [5.3 : 27] 17.4 [7.7 : 42.7] - 1.1 [0.5 : 2.2] 1.6 [0.9 : 3.5] 

Biopsy - - - - - - 

Coronaries - - 9.8 [6.5 : 17.3] 4.8 [2.7 : 9.3] 2.3 [0.6 : 14.3] 2.1 [0.9 : 4.2] 

PVR/Pressures - 8.7 [3 : 11.4] - - - - 

Valve replace - - - - - - 

Pacemaker 3 [2.2 : 11.7] 2.2 [1 : 6.1] - - 0.3 [0.2 : 0.5] - 

Septostomy 1.2 [0.6 : 4.6] 0.4 [0.2 : 1] - - 0.3 [0.2 : 1.5] - 
 

Table 3.8: Median PKA [interquartile range] for individual procedure types for all patient sizes combined, for different eras at Hospitals 2, 4, 5 and 
6 Only figures where at least 10 procedures were conducted are presented. 
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3.5.1: Kerma area product 

PKA was generally in the range 0 to 20 Gy·cm², though occasionally reached 100 

Gy·cm² or higher, particularly for older procedures. Four procedures had a PKA of 

greater than 500 Gy·cm², with two being over 1000 Gy·cm². In one of these, the 

patient was a large 18 year old female (93 kg). The other was for an average sized 

17 year old female (51 kg) undergoing a procedure with 53.1 minutes of fluoroscopic 

screening. For the most recently conducted examinations using 3rd generation 

equipment, the median PKA across all patient sizes and procedure types ranged from 

1.2 to 4.7 Gy·cm² depending on the hospital - a near fourfold variation. Restricting to 

procedure conducted using Siemens Axiom Artis machines (all hospitals except 

Hospital 2), this range was reduced to 1.2 to 2.1 Gy·cm² – a less than two fold 

variation. PKA was almost always positively correlated with patient mass. Spearman's 

rank correlations are shown in Table 3.9 for most recent era procedures conducted at 

the four hospitals with the largest sample sizes. Exceptions tended to only occur 

where only a limited number of procedures were included in a particular category, 

such as ‘other’ procedures at Hospital 3, or if procedures were only carried out over a 

limited range of ages, such as electrophysiology studies (EPS) at Hospital 2. 

Median PKA varied between procedure types, tending to be highest for ballooning 

and/or stenting of the pulmonary arteries and (more recently) trans-catheter valve 

replacement. The lowest doses were for atrial septostomies and closures of patent 

ductus arteriosus (PDA) and atrial septal defect (ASD).  

The ranking of procedures by PKA was not the same at different hospitals, or even at 

the same hospitals for different eras. For example, among the most regularly 

conducted procedures, aortic valve (AV) angioplasty procedures had the lowest 

median PKA at Hospital 2 (2008-2013 data) but the highest at Hospital 1 (2007-2010). 

The exception in this variation in ranking was for pulmonary artery angioplasty 

procedures, which were consistently among the highest doses. Where carried out, 

endomyocardial biopsies were usually associated with low doses when carried out in 

isolation. At least 10% of coronary angiography procedures also included a heart 

biopsy as part of a yearly transplant review examination. Coronary angiography is 

increasingly performed with intravascular ultrasound (IVUS), which is regarded as 

the most sensitive imaging modality in the detection of coronary allograft 

vasculopathy [209]. 
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  Hospital 1, 2002-2008 Hospital 2, 2008-2013 Hospital 3, 2008-2013 Hospital 4, 2003-2011 

Procedure type: 
Mass and 

PKA 
Mass 

and ST 
PKA/kg 

and age 
Mass 

and PKA 
Mass 

and ST 
PKA/kg 

and age 
Mass 

and PKA 
Mass 

and ST 
PKA/kg 

and age 
Mass 

and PKA 
Mass 

and ST 
PKA/kg 

and age 

Other 
0.47 

p=<0.01 
-0.03 

p=0.38 
-0.02 

p=0.45 
0.43 

p=<0.01 
-0.10 

p=0.07 
-0.26 

p=<0.01 
0.03 

p=0.23 
-0.23 

p=0.05 
-0.21 

p=0.08    

Combined 
interventional 

0.64 
p=<0.01 

0.12 
p=<0.01 

0.06 
p=0.02 

0.63 
p=<0.01 

0.16 
p=<0.01 

-0.12 
p=<0.01 

0.76 
p=<0.01 

0.10 
p=0.01 

0.29 
p=<0.01 

0.45 
p=<0.01 

-0.07 
p=0.54 

-0.08 
p=0.48 

Combined diagnostic 
0.72 

p=<0.01 
-0.14 

p=<0.01 
-0.0 

p=0.85 
0.61 

p=<0.01 
-0.08 

p=0.16 
-0.15 

p=<0.01 
0.71 

p=<0.01 
0.00 

p=0.97 
0.14 

p=<0.01 
0.67 

p=<0.01 
-0.37 

p=<0.01 
-0.24 

p=<0.01 

ASD occlusion 
0.57 

p=<0.01 
0.04 

p=0.61 
0.12 

p=0.11 
0.51 

p=<0.01 
-0.02 

p=0.82 
-0.06 

p=0.56 
0.73 

p=<0.01 
0.10 

p=0.28 
0.37 

p=<0.01    

PDA occlusion 
0.39 

p=<0.01 
-0.01 

p=0.78 
-0.30 

p=<0.01 
0.31 

p=<0.01 
-0.09 

p=0.11 
-0.36 

p=<0.01 
0.61 

p=<0.01 
0.02 

p=0.77 
0.12 

p=0.13    

Pulmonary 
valvuloplasty 

0.67 
p=<0.01 

0.04 
p=0.63 

-0.08 
p=0.37 

0.34 
p=<0.01 

-0.26 
p=<0.01 

-0.36 
p=<0.01 

0.61 
p=<0.01 

-0.09 
p=0.46 

0.10 
p=0.40    

Aortic  
valvuloplasty 

0.81 
p=<0.01 

-0.00 
p=0.97 

-0.10 
p=0.44 

0.79 
p=<0.01 

0.28 
p=0.03 

0.14 
p=0.30 

0.92 
p=<0.01 

0.28 
p=0.05 

0.49 
p=<0.01    

Pulmonary artery 
angioplasty 

0.69 
p=<0.01 

-0.06 
p=49 

0.00 
p=0.94 

0.62 
p=<0.01 

0.13 
p=0.14 

-0.10 
p=0.23 

0.76 
p=<0.01 

-0.03 
p=0.78 

0.29 
p=<0.01    

Coarctation repair 
0.80 

p=<0.01 
0.00 

p=0.95 
-0.10 

p=0.46 
0.78 

p=<0.01 
0.07 

p=0.6 
-0.32 

p=0.02 
0.85 

p=<0.01 
0.05 

p=0.69 
0.53 

p=<0.01    

EPS ± ablation 
0.43 

p=<0.01 
-0.02 

p=0.75 
0.05 

p=0.45 
0.35 

p=<0.01 
0.10 

p=0.12 
-0.15 

p=0.01       

Heart biopsy 
0.67 

p=<0.01 
-0.07 

p=0.17 
0.15 

p=0.005          

Coronary angiography 
0.79 

p=<0.01 
0.07 

p=0.11 
0.25 

p=<0.01       
0.85 

p=<0.01 
-0.01 

p=0.93 
0.15 

p=0.21 

 

Table 3.9: Correlation between PKA and other parameters for most recent era data at four hospitals. Note the 2002-2008 data at Hospital1 were 
preferred to 2007-2010 data due to much larger sample size. ST=screening time 
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As mentioned previously, PKA was not normally distributed and exhibited a right-

skewed distribution, with a large number of procedures delivering a PKA and a small 

number of procedures delivering very high PKA (i.e. over 100 Gy·cm²). The 

distribution was investigated in greater detail for the 2002-2007 data collected at 

Hospital 1, by plotting percentiles in 1% intervals on a log scale (Figure 3.2). The 

relative ranking of PKA between procedure types was shown to be reasonably 

constant across the range of percentiles. 

 

 

Figure 3.2: Distribution of doses for various procedure types at Hospital 1 (2002-2008 data) 

 

The most striking feature of Tables 3.4 to 3.8 is the fall in PKA with successive ‘eras’, 

at hospitals where equipment was replaced during the study period. In all but one 

case, these falls were significant (Wilcoxon test for all procedure types combined 

p=<0.01). The exception was between 2002-2008 and 2007-2010 eras at Hospital 1 

(p=0.116). These represented two catheterization laboratories, both equipped with 

Siemens Axiom Artis machines. The machine in Lab 1 (02-08 data) was equipped 

with image intensifier (II) detectors, while Lab 4 (07-10 data) had flat panel detectors 

(FPDs). The median PKA for all procedure types combined is identical for the II and 

FPD machines (2.1 Gy·cm²), while the corresponding figures for interventional 

procedures were significantly higher in the FPD equipped Lab 4 (1.66 verses 2.40 

Gy·cm², Wilcoxon test: p=0.03). When this was analysed further, it was found that a 

large proportion of procedures carried out using the FPD equipped machine were 
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high-dose valve replacements. For 2007, 38% of interventional procedures in the 

FPD lab were valve replacements, while very few of these procedures were done in 

the II lab. Carrying out the same analysis, but excluding valve replacement 

procedures, the apparent increase in interventional PKA associated with the FPD 

machine disappeared and there was no significant difference in PKA associated with 

the transition between II and FPD (p=0.22).  

Further analysis of the fall in PKA with study date was conducted by calculating 

median PKA by year of procedure. This was conducted for all procedure types 

combined, as the number of individual procedure types carried out in a particular 

year was often small. These results suggest that PKA tended to fall suddenly upon 

installation of new equipment, though there was also some suggestion of a fall in PKA 

within eras as well. These patterns are shown in Figures 3.3 to 3.5 for Hospitals 1, 2 

and 3, respectively. Analysis of PKA by year was difficult for the Hospital 4 data due to 

the sporadic nature of data recording. New equipment was installed in 2003, but 

doses were recorded for hardly any procedures until 2011, while procedures carried 

out at Hospitals 5 and 6 were conducted on a single piece of equipment. PKA 

fluctuated quite wildly between 1994 and 1997 at Hospital 1, increasing from around 

21 Gy·cm² to nearly 40 Gy·cm² between 1995 and 1996, before falling. The reasons 

for this are unclear and there was no corresponding pattern for screening times (also 

shown in the same figure), though these figures unexpectedly increased themselves 

in 1999 before falling in 2000. 
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Figure 3.3: Median PKA and screening times (ST) for all procedures combined by year, at 

Hospital 1, between 1994 and 2010. Only years in which figures for more than 50 

procedures were carried out are shown. 

 

 

Figure 3.4: Median PKA and screening times (ST) for all procedures combined by year, at 

Hospital 2, between 2004 and 2013. 
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Figure 3.5: Median PKA and screening times (ST) for all procedures combined by year, at 
Hospital 3, between 2004 and 2013 

 

For all procedures, the percentage of PKA originating from the frontal (PA), x-ray tube, 

recorded at Hospital 1, was around 60%. This figure varied with data collection era, 

being 66% between 1994 and 2000 (lab 1), 68% between 1999 and 2001 (lab 2) and 

55% between 2002 and 2008 (lab 1). A similar fall in this proportion was seen at the 

Hospital 4 Hospital, from 69% between 1993 and 2003, to 54% after 2003. A small 

but statistically significant negative correlation was found between total dose and the 

percentage of this figure originating from the frontal x-ray tube (across all procedure 

types at Hospital 1, Spearman’s r= -0.12, p=<0.01). In other words, where doses are 

high, laterally orientated projections tend to be more responsible than frontally 

orientated projections. 

 

3.5.2: Fluoroscopic screening time 

As with PKA, the distribution of screening times was right skewed (Figure 3.6). The 

large majority of procedures had screening times below around 30 minutes, while a 

small number of procedures involved lengthy screening, extending to one hour or 

more. For the most recently acquired data, median screening times for all procedure 
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types and patient sizes combined occupied a reasonably narrow range, from 8.2 to 

11.8 minutes. As with PKA, there was a tendency for screening times to fall between 

successive eras. This pattern was found for all hospitals with different equipment 

eras and was seen for almost all individual procedure types. As seen in Figures 3.3 

to 3.5, screening time has tended to fall more steadily, without the pronounced falls 

occurring with the installation of new equipment, seen for PKA. At Hospital 1, a 

significant fall in screening time was seen between 2001 and 2002 corresponding to 

changing equipment (Wilcoxon test p=0.0001). An unexplained spike in median 

screening times was seen at Hospital 1 in 1999, before times fell in 2000 to below 

pre-1998 levels. 

In contrast to PKA, correlation between mass and screening time for individual 

procedure types tended to be weak (range was -0.37 to +0.28) though occasionally 

significant (Table 3.9), especially for overall procedure categories (diagnostic, 

interventional and other). These correlations were both positive and negative, and 

not consistent between hospitals. The overall impression was a lack of strong 

relationship between patient size and fluoroscopic screening time. Less variation in 

median screening times – generally by a factor of no more than two - was found 

between different hospitals than for PKA. Screening time was relatively poorly 

correlated with median doses at different hospitals. In fact, the hospital with the 

highest median doses for the most recent data (Hospital 2) had the shortest median 

screening times. 
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Figure 3.6: Histogram of screening times (all procedures combined), at Hospital 1, 2002-08 
 

3.5.3: Skin Dose estimates 

Estimated skin doses (i.e. air kerma) were available for 3640 examinations 

conducted at Hospital 1. These figures were generally in the range 0-200 mGy, with 

a median for all procedure types and patient ages combined of 26 mGy. Skin dose 

estimates in any one plane exceeded 1000 mGy in six examinations, and 2000 mGy 

in one examination. No skin doses were recorded for procedures conducted on older 

generation equipment, meaning it was not possible to assess trends with time. Like 

PKA, skin doses increased with patient mass/age (correlation coefficients were +0.89 

and +0.91 for interventional and diagnostic procedures respectively for 2002-2008 

data). This upward trend with age was smaller than that for PKA, increasing by a 

factor of around 10 from the smallest to the largest patient size groups for skin dose, 

compared to around 20 for PKA. 

 

3.5.4: PKA normalised by mass 

Patient mass was recorded for most examinations at Hospitals 1 to 4, but not 

Hospitals 5 or 6. Where PKA was divided by patient mass (PKA/kg), the median of this 

figure was found to vary with age/mass category. The nature of this pattern varied 

between hospitals or different eras at the same hospital. In some cases PKA/kg was 

seen to steadily increase or decrease, while in others a U-shaped or bimodal pattern 
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was observed (Figure 3.7). The correlation between PKA/kg and mass category 

tended to be either strongly negative or strongly positive, for example, -0.92 between 

2004 and 2008 for all procedures combined at Hospital 3, and +0.93 between 2008 

and 2013 at the same hospital. It was found that in addition to replacing fluoroscopic 

equipment in 2008, a new policy of omitting the antiscatter grid for patients less than 

10 kg was implemented. Similar patterns were observed for both procedure 

categories (diagnostic or interventional) and individual procedure types, although 

analysis of the latter is often hindered by small sample sizes. A similar situation was 

found for other hospitals. Where antiscatter grids were used for all patient sizes, 

PKA/m was highest in the 0-1 year age group and tended to be negatively correlated 

with patient age. Where antiscatter grids were omitted for small patients, PKA/m 

tended to increase with patient size or display a lop-sided ‘U’ or ‘J’ shaped pattern. 

Where PKA/kg figures were further normalised by screening time (Figure 3.8), i.e. 

(PKA/kg)/min, the above patterns become even more pronounced. A clear distinction 

was seen between datasets depending on grid usage.   

  

 

Figure 3.7: PKA normalised by mass for two different eras at three hospitals. 
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Figure 3.8: PKA/kg further normalised by screening time (per minute) 

 

3.3.5: Number of procedures per patient 

A function was written in MATLAB to identify patients undergoing multiple 

procedures on different dates (i.e. not including situations in which a patient has two 

or more procedure types during the same catheterizations on the same day). Across 

the whole cohort, the mean number of procedures per patient was 1.5 (median=1). 

As with PKA, the distribution was right skewed. The majority (75.8%) of patients 

underwent a single recorded examination during the study period, while 13.6% 

underwent two procedures. 79 patients (0.6%) underwent 10 or more procedures. All 

but one of these patients were examined at Hospitals 1 and 4, which are the two 

centres carrying out paediatric heart transplants in the UK [210]. The maximum 

number of procedures recorded for a single patient was 38. Figure 3.9 shows the 

percentage of patients undergoing a particular number of procedures, separated into 

transplant (Hospitals 1 and 4) and non-transplant hospitals (all others). The mean 

number of procedures per patient during the study period was 1.7 at transplant 

hospitals and 1.3 at non-transplant hospitals. For the latter group, a large majority of 

patients (82.4%) underwent a single recorded procedure. This analysis is limited by 

the follow-up period of the study, which was considerably longer for Hospital 4 and 

Hospital 1 than other hospitals. Calculations were repeated for patients born within 
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the study period, though the results were virtually unchanged, with a mean number of 

procedures per patient of 1.5 (1.6 and 1.3 for transplant and non-transplant hospitals 

respectively). 

 

 

Figure 3.9: Number of examinations per patient. Data are presented for the whole cohort. 

 

3.5.6: Clinical history and indication for procedure 

The reason for carrying out the cardiac catheterization procedure was recorded at 

Hospitals 1 and 2 (7973 examinations). Clinical information was searched for the 

following terms; transplant (Tx, HTx), Down’s syndrome (Trisomy 21), Tetralogy of 

Fallot (TOF, T4), transposition of the great arteries (TGA), hypoplastic left or right 

heart syndrome (HLH, HLHS, HRH, HRHS) Norwood procedure (surgery carried out 

for hypoplastic left heart), Fontan procedure (surgery for patients with a single 

ventricle) and valve atresias (pulmonary, aortic, tricuspid or mitral). The first two of 

these conditions are associated with known increased risk of cancer [211, 212], while 

the remainder (as well as transplantation) are associated with significantly decreased 
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survival [213-216]. These conditions are not mutually exclusive, with some patients 

suffering from more than one condition. The most common combinations were 

transplant and Tetralogy of Fallot (13 patients) and Tetralogy with Down syndrome (8 

patients). 

The percentage of examinations carried out on patients with these conditions differed 

between the two hospitals (Table 3.10). In particular, Hospital 1 carried out a much 

greater number of examinations on transplant patients (23% of total procedures). 

The mean number of procedures carried out for these indication groups was 

calculated. This figure was higher for transplant patients (4.1) compared to others 

(1.3 to 2.2). Patients with Down’s syndrome usually only underwent a single 

catheterization. It should be noted that there are a number of shortcomings of the 

above analysis. Firstly, only two participating hospitals record information on 

indications. Secondly, there is a reliance on the radiographer noting such details in 

examination records – the absence of the search terms in the comments column does 

not imply the patient does not have the conditions searched for, simply that they 

were not recorded. Consequently, the figures in Table 3.10 are likely underestimates 

of the presence of these conditions among cohort members. Again, this will have 

implications for epidemiological analysis. 

 

Hospital 1 Hospital 2 Both 

Condition n % patients n % patients n % patients 

Heart transplant 456 9.4% 14 0.5% 471 6.0% 

Tetralogy of Fallot 231 4.8% 121 4.0% 352 4.5% 

TGA 222 4.6% 242 8.0% 464 5.9% 

Down syndrome 26 0.5% 56 1.8% 82 1.0% 

Norwood procedure 25 0.5% 23 0.8% 48 0.6% 

Fontan procedure 47 1.0% 68 2.2% 115 1.5% 

Hypoplastic left heart 21 0.4% 25 0.8% 46 0.6% 

Hypoplastic right heart 9 0.2% 37 1.2% 46 0.6% 

Pulmonary atresia 141 2.9% 74 2.4% 215 2.7% 

Tricuspid atresia 19 0.4% 27 0.9% 46 0.6% 

Mitral atresia 5 0.1% 4 0.1% 9 0.1% 

Aortic atresia 1 0.0% 0 0.0% 1 0.0% 

Table 3.10: Indication for procedures at Hospital 1 and Hospital 2. Percentages represent 

the proportion of patients at the respective hospital with each condition. TGA = Transposition 

[of the] Great Arteries. 
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3.5.7: Imaging mode 

Fluoroscopic imaging may be in the form of high quality 'cine' acquisitions or non-

acquisition fluoroscopy. PKA is recorded separately for these imaging modes at 

Hospital 2 between 2004 and 2008, allowing the respective proportions to be 

analysed. This information was later utilised in the estimation of organ doses from 

PKA. Overall, the mean proportion of PKA from fluoroscopy was 0.82 (median = 0.85). 

This proportion was higher for interventional (median=0.86) rather than diagnostic 

procedures (0.68). Individual interventions, such as ASD or PDA occlusions tended 

to utilise reasonably similar proportions of acquisition imaging (Table 3.11). For RFA 

and EPS procedures, the total PKA was usually entirely from non-acquisition 

fluoroscopy. A small, but significant, positive correlation was found between total 

examination PKA and the percentage of this figure originating from fluoroscopy rather 

than cine acquisitions (Spearman’s r=0.17, p<0.01).  

 

 

Proportion of total PKA from 
fluoroscopy 

Procedure type: Median [IQR] Mean [SD] 

All interventional 0.86 [0.77-0.96] 0.84 [0.15] 

All diagnostic 0.68 [0.53-0.80] 0.68 [0.21] 

Other 0.67 [0.55-0.81] 0.67 [0.19] 

ASD occlusion 0.98 [0.94-1.00] 0.95 [0.08] 

PDA occlusion 0.83 [0.75-0.89] 0.80 [0.12] 

AV plasty 0.85 [0.78-0.91] 0.84 [0.10] 

PV plasty 0.85 [0.78-0.90] 0.81 [0.15] 

PA plasty 0.82 [0.71-0.86] 0.82 [0.13] 

COA procedures 0.78 [0.64-0.87] 0.74 [0.17] 

EPS ± RFA 1.00 [1.00-1.00] 0.97 [0.09] 

 

Table 3.11: Proportion of PKA from fluoroscopy at Hospital 2. IQR = interquartile range, SD = 

standard deviation. 

 

3.5.8: Beam angle 

Beam angles were also recorded at Hospital 2, for acquisitions only. These data will 

be utilised in greater detail in the ‘supporting information’ chapter and will be 

analysed here with respect to PKA. The majority of acquisitions were in the 

posteroanterior (48%) or lateral projections (35%), with the remainder made up 

mainly of left/right anterior oblique (both 3%) and other unspecified oblique views. 
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Table 3.12 shows the Spearman's rank correlation between PKA and the percentage 

of acquisitions in a particular projection, per examination. Analysis was carried out 

for both total PKA and that resulting from acquisition exposures only. In each case, 

PKA was normalised by mass to reduce (but not eliminate, see above) the impact of 

patient size. No strong correlations between usage of particular beam projections 

and PKA/kg were found (r ranged from -0.34 to +0.22). There was a tendency for 

usage of the PA projection to be negatively correlated with dose and oblique 

projections to be positively correlated, although neither of these observations was 

consistent between different procedure types. Also shown in Table 3.12, a positive 

correlation was always present between PKA/kg and the number of cine acquisitions. 

This was expected, though not inevitable as a single acquisition can still result in a 

large dose if lengthy. The direction of correlation was almost always consistent 

between acquisition PKA/kg and total PKA/kg verses number of acquisitions or 

percentage usage of different projections. In the former case, positive associations 

tended to be greater and more significant. 

 

  

No. of 
acquisitions 

% in 
PA 

% in 
Lateral 

% in 
RAO 

% in 
LAO 

% in 
RAO/CR 

% in 
LAO/CR 

% in 
Long 
Axis 

PDA 
occlusion 

Acquisition 
PKA/mass 

0.62** -0.20* -0.13 0.18** 0.07 
      

Total PKA/mass 0.49** -0.24** -0.02 0.22** 0.09       

ASD 
occlusion 

Acquisition 
PKA/mass 

0.38** -0.34** 0.12 0.2 0.1 
      

Total PKA/mass 0.16 -0.06 0.04 0.11 0.08       

Coarctation 
angioplasty 

Acquisition 
PKA/mass 

0.51** 0.09 -0.35* 0.01 0.05 
      

Total PKA/mass 0.43** 0.13 -0.18 0.06 -0.09       

Pulmonary 
artery 
angioplasty 

Acquisition 
PKA/mass 

0.57** 0.07 0.15 0.09 -0.15 0.08 0.05 
  

Total PKA/mass 0.49** 0.18 0.19 0.06 -0.07 0.10 0.03   

Pulmonary 
valve 
angioplasty 

Acquisition 
PKA/mass 

0.40** -0.1 -0.26** 0.22* 0.11 0.16 0.21* 
  

Total PKA/mass 0.23* -0.03 0 0.20* 0.08 -0.08 0.08   

Aortic valve 
angioplasty 

Acquisition 
PKA/mass 

0.44** -0.25 -0.13 0.15 
      

0.37* 

Total PKA/mass 0.21 0.02 -0.25 -0.04       0.24 

 

Table 3.12: Correlations between dose (either total or that arising from cine acquisitions 
only) and the number of acquisitions or proportion of acquisition PKA in different projections. 

** Significant to 0.01 level, * significant to 0.05 level. 

 

3.5.9: Operating cardiologist 

The cardiologists and radiographers conducting the examination were recorded at 

Hospital 1. Variation in PKA and screening time according to the involvement of 
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different staff was investigated using a Kruskal-Wallis test for five of the most 

common procedure types. A Spearman’s rank test was also performed to identify any 

correlation between dose/screening time and the number of procedures carried out 

for each operator. In both cases, PKA was normalised by mass to reduce the impact 

of variation in patient size on the results. For most examinations, more than one staff 

member was listed and it was not known who was actually at the controls. The 

results were characterised by mainly null findings. A significant difference in PKA was 

found for cardiologists for coronary angiography (p=0.03) and PDA occlusions 

(p=0.02), and for ASD occlusions for radiographers (p=0.03).  A significant negative 

correlation was found between the number of coronary angiography procedures 

carried out by each operator and PKA (Spearman’s r=-0.17, p=<0.01). No other 

significant correlations of this type were found. 

 

3.6: Discussion 

The most significant finding of the analysis of PKA and screening times was the fall in 

these dose indicators with time. For PKA, these falls tended to be associated with the 

installation of new equipment. The decrease was particularly pronounced at Hospital 

1 between the 1994-2000 and 2002-2008 eras, where a fall in median PKA by a factor 

of around 20 was seen for all procedures combined. A more moderate decrease was 

seen between the 2004-2008 and 2008-2013 eras at Hospital 2 (1.42 fold) and 

Hospital 3 (2.5), though older, pre-2000 data were not available at these hospitals. 

There was some suggestion of a decrease in PKA within individual eras, along with a 

more steady decrease in screening times, as might be expected due to increased 

experience and technique refinement. This variation was relatively small, however, 

and not monotonic. Only a limited analysis of the variation in dose indicators between 

operators at a given hospital was possible. These results suggest inter-operator 

variation has a relatively minor impact on doses. The overall impression was that 

technological factors were the driving force behind the decline in dose indicators with 

time. 

Technological factors include (1) improved detective quantum efficiency of detectors, 

(2) use of a different beam spectrum including the use of extra copper filtration, (3) 

ability to reduce frame rates for acquisitions and fluoroscopic imaging, (4) ability to 

remove antiscatter grids, (5) more dose efficient digital image processing techniques, 
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and (6) other features such as ‘last frame hold’ and lung shuttering. Referring to point 

2, while the use of extra copper filtration is an effective dose reduction technique 

without impacting image quality [8, 217-219], the patient dose per unit PKA is higher 

as beam quality is increased (see Monte Carlo results chapter for more details). 

Consequently, the magnitude of decrease in patient dose may be exaggerated where 

doses are represented by PKA only. Lung shuttering takes into account the reduced 

density of the lungs compared to the mediastinum, by inserting aluminium filters to 

modulate the intensity of the x-ray beam and reduce lung dose. The impact of lung 

shuttering on PKA is difficult to judge as usage is not recorded in examination details. 

Improved image processing includes techniques such as recursive filtering or 

‘temporal filtering’ [99], in which signal-to-noise ratio is improved by a weighted 

combination of the signal from previous frames. Alternatively, signals can be 

deconstructed into frequency bands called a ‘Laplacian Pyramid’ and filtered 

separately [99].  

The introduction of digital flat panel detectors (FPDs) is associated with a number of 

advantages, including reduced geometric distortion, greater dynamic range, smaller 

physical size and improved dose efficiency [98, 220]. The latter point is controversial, 

with some studies finding little or mixed evidence of any advantage [21, 221]. 

Comparison requires caution, as FPDs are usually installed as part of a complete 

replacement of fluoroscopic equipment, including x-ray tube, generator, control panel 

and image processing software. Thus the fall in doses between eras at Hospitals 2 

and 3, though associated with replacement of image intensifiers (IIs) with FPDs, 

should not be solely attributed to a difference in detectors. Median PKA was similar at 

Hospital 1 for ostensibly the same machine type, equipped with II detectors (2002-

2008) and FPDs (2007-2010). Hospital 4, while continuing to use image intensifiers 

(as of 2015), delivered doses that are very similar to those of hospitals using FPDs. 

The conclusion by Davies et al [221] that FPDs do not confer “an automatic 

improvement in image quality or dose efficiency” is supported by the current study, at 

least for doses. 

Antiscatter grids are used to reduce the impact of Compton scattering, and the 

associated reduction of image contrast, by selectively attenuating x-rays not traveling 

perpendicular to the grid septa [16]. This improvement in image quality comes at the 

expense of increased dose. As attenuator thickness increases, the amount of 



93 
 

material traversed by the beam, and thus opportunities for scattering, also increases. 

Conversely, for ‘small’ patients, the amount of scattering is often considered 

sufficiently minor to allow removal of the grid, resulting in a significant increase in 

dose efficiency [222, 223]. The definition of ‘small’ is open to debate. Partridge et al 

[224] recommend “that the gridless imaging should be the default technique for 

adults and children and in most installations”. This conclusion appears to have been 

reached based on a rather limited range of procedure types and a subjective 

assessment of image quality. Tapiovaara and colleagues [217] reported improved 

dose efficiency where the grid was removed for the smallest patient size studied (3 

years) but not for larger patients (10 and 15 years). The usage/omission of an 

antiscatter grid should only impact on doses for patients below 5 years of age (i.e. 

small patients where grids are removed), though lower PKA, PKA/kg and (PKA/kg)/min 

figures are seen beyond these ages. This suggests grid usage patterns are not solely 

responsible for variation in these figures between hospitals. Participating hospitals in 

this study tended to report grid removal for patients under ‘around 10 kg’, though 

admitted often omitting them for larger patients (McLaren C, personal communication 

2014). Thus the reduction in PKA and PKA/kg associated with grid removal may not be 

restricted only to the smallest patients. 

The variation in PKA between individual procedure types was expected as different 

procedures have different levels of complexity and involve the use of different beam 

angles. Furthermore, some procedures such as atrial septostomy and ASD closure 

involve the combined use of fluoroscopy and trans-oesophageal echo (TOE) 

ultrasound [225, 226], and tend to deliver lower doses. In fact, most atrial 

septostomies conducted at Hospital 3 where done entirely under TOE guidance with 

no x-ray exposure. The procedures associated with the highest doses were valve 

replacements, although this procedure is carried out infrequently. Despite the high 

doses, the procedure is a relatively complication-free alternative to surgery in 

patients with pulmonary valve regurgitation [227]. At most hospitals, median PKA 

figures for ‘interventional’ procedures were lower than those for ‘diagnostic’. In some 

previous studies, the reverse was found [91, 103, 113, 207]. However, while 

grouping procedures into such large categories is statistically convenient, it is 

ultimately arbitrary and unhelpful. For example, stenting of the coronary arteries 

would have a lot more in common with a purely diagnostic visualisation of the same 

vessels than with other interventional procedures such as ASD occlusion. 
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Furthermore, the individual procedure types included within each category are not 

the same at each hospital. Coronary angiography (diagnostic), for example, is 

usually only carried out at hospitals specialising in heart transplants. Valve 

replacements (interventional) were only regularly conducted at Hospital 1.  It might 

be expected that the relative ranking of procedure types by PKA would be fairly 

constant between centres, i.e. the procedures associated with the lowest doses at 

one hospital would be the lowest at all the others as well.  This pattern was not 

observed however - even at the same hospital over multiple eras. The reasons for 

this are not clear, though possibly related to local expertise and technique 

preferences.  

A trend of increasing average PKA with increased patient size or mass was seen for 

almost all procedure types at all hospitals. This finding was consistent with previous 

research [82, 91, 92, 207, 228]. The increase in PKA with patient size can be 

explained by (1) increased patient thickness requires a greater x-ray output to 

produce the same exposure at the detector, and (2) a larger beam area is required to 

cover the cardiac region as the patient grows.   

For all procedures combined, there was a near fourfold variation in median PKA 

between different hospitals. This variation is smaller than that suggested by previous 

research (see literature review), where a greater than tenfold variation was seen. The 

reasons why there is a smaller variation within the UK this are unclear. 

Standardisation of training for cardiologists is a potential factor, although concerns 

have been raised over the lack of formal training courses for these staff [229]. 

Monitoring of dose indicators is carried out by Public Health England, for the 

purposes of setting reference doses (discussed later). The sharing of such 

information could potentially help to standardise dose levels between centres, 

however, paediatric cardiac catheterizations are not included within published reports 

[230, 231]. Interestingly, no association between PKA and the number of procedures 

carried out at a particular hospital was found.  In fact the lowest doses were recorded 

at Hospital 6, which carried out the fewest procedures.  

Normalising PKA by patient mass has previously been advocated in several studies 

[103, 207] as a way a standardising dose reporting and setting of reference levels. 

Kobayashi et al [4] suggest that “growth dependent variation in PKA is successfully 

eliminated by normalizing PKA by body weight”. This conclusion appears to be based 
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on the lack of strong correlation between PKA/kg and patient age (r ranging from -

0.079 to 0.014). This finding was not replicated in the current study, where PKA/kg 

was found to vary with patient age in a number of distinctive patterns depending on 

equipment type and, it seems, antiscatter grid usage. It should be noted that the data 

described by Kobayashi were acquired from 16 hospitals, encompassing a range of 

equipment types. These were combined together to produce a single dataset of 8267 

procedures. Each machine type may respond to changes in patient size differently, 

while some hospitals may omit an antiscatter grid for small patients with others 

keeping it in. The lack of an overall pattern when data have been combined into a 

single sample is perhaps unsurprising. Combining data from multiple hospitals may 

produce large sample sizes, but an inevitable consequence is the blurring out of 

patterns and loss of useful information. Furthermore, in their claim that that 

normalising PKA by body weight eliminates variation in PKA with age, Kobayashi and 

colleagues [207] appear to have made the mistake of assuming the lack of 

correlation between two datasets implies there is no relationship. This is not 

necessarily true - a U-shaped relationship results in a correlation coefficient of zero, 

either for Spearman’s or Pearson’s methods. Correlation coefficients should not be 

used alone to determine if PKA/kg is somehow independent of patient size. The 

measure of PKA/kg is indeed a useful indicator of dose, reducing the impact of patient 

size but not eliminating it. The findings of the current study thus do not support the 

recommendation by Kobayashi et al that PKA/kg is suitable for establishing reference 

levels, at least not in isolation and not as single figure for all patient sizes. Further 

discussion of reference levels is provided below. 

The majority of patients in the cohort underwent a single procedure. This finding was 

replicated when analysis was restricted to patients born within the study period. This 

has positive implications for epidemiological analysis as it suggests the possibility of 

missing procedures is relatively small. Data on clinical conditions were limited to only 

two hospitals, although a certain degree of inferences can be made from the 

examination type alone. For example, a patient undergoing closure of a ventricular 

septal defect must be suffering from this anomaly. There is, however, no guarantee 

that this condition was isolated and not part of a wider disease pattern such as 

Tetralogy of Fallot. Information on clinical conditions will also have a significant 

bearing on future epidemiological analysis of this or similar cohorts. Patients with 

HLH or those undergoing transplants or Norwood procedures have reduced life 



96 
 

expectancies [89, 211, 232], while transplant and Down syndrome patients are at an 

increased risk of developing lymphoma and leukaemia, respectively [211, 212, 233]. 

The analysis of skin dose estimates was limited to examinations conducted at 

Hospital 1 after 2002. These figure suggest the risk of acute skin injuries, thought to 

occur following localised doses of above 2 Gray [16, 44, 234, 235], is extremely small 

for paediatric cardiac catheterizations carried out using modern equipment. Only a 

single patient received a skin dose in any one plane of greater than 2 Gy for a single 

procedure. Skin doses were not recorded for procedures conducted prior to 2002, for 

which PKA was higher by a factor of up to 20. The use of copper filtration in modern 

equipment has the effect of almost entirely removing low energy photons (<30 keV) 

from the x-ray beam and reducing skin dose by 58% (based on 0.35 mm Cu) [236]. 

Thus skin doses for older equipment in which no copper filtration is used may be 

higher than suggested by the ratio of PKA. Skin dose estimates are subject to 

considerable uncertainties relating to the distance from the source at which the 

patient’s entrance skin surface is expected to be found (i.e. the ‘international 

reference point’). The beam area varies according to the square of the distance from 

the source, thus a 10% error in estimation of the location of the reference point 

equates to a greater than 20% error in skin dose. 

 

3.6.1: Comparison with previous publications 

Previous publications reporting PKA and screening times from paediatric cardiac 

catheterizations were discussed in the literature review. These figures will now be re-

examined in the light of the data from the current study. It should be again 

emphasised that comparison of dose indicators with previous studies is difficult as 

each study involves a different equipment types, range of patient sizes and 

procedure types. Recent era data from Hospitals 1 (2002-2008), 2 and 3 were 

preferred in these comparisons, due to the large sample sizes and detailed 

examination type information (lest this be interpreted as ‘cherry picking’ in order to 

provide more favourable comparisons with other studies, it should be noted that 

doses at Hospitals 4, 5 and 6 Hospitals were lower – see Tables 3.7 and 3.8). 

The majority of previously published data are for procedures conducted in the last 10 

years with little data with which to compare early era doses at Hospital 1 and 

Hospital 4. The doses from between 1994 and 2001 at Hospital 1 were compatible 
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with those quoted by Boothroyd et al in 1997 [228] (presented for frontal tube output 

only) but much higher than those reported by Rassow et al [108] for data acquired 

from 1994 to 1996. For both diagnostic and interventional categories, recent era PKA 

figures were compatible with the results of studies led by Martinez  [94], Dragusin 

[237] and McFadden [93] when adjusted for age, and with Barnaoui et al [92] for 

diagnostic, ASD occlusion and PDA occlusion procedures. Where normalised by 

mass, PKA figures were higher than those presented by Ubeda et al [223] by a factor 

ranging from 1.3 to 3.5 (The PKA figures presented in Ubeda’s study, based in Chile, 

are exceptionally low, compared to almost all previous research). These 

investigations were relatively small, with sample sizes of no more than a few hundred 

procedures.   

A number of large studies have been recently published in which stratification of PKA 

by age or mass for individual procedure types was sufficient to allow meaningful 

comparisons. Firstly, Verghese et al [2] reported PKA and air kerma for 3365 

procedures conducted at Boston Children’s Hospital using Siemens Axiom Artis units 

with flat panel detectors. Given the modern equipment, one would expect the 

reported PKA figures to be comparable to those of the current study. Instead they are 

considerably higher. For diagnostic procedures, the median PKA reported by 

Verghese et al was higher than equivalent figures at Hospital 1 (2002-2008 data) by 

a factor of 5.1 to 8.8 depending on age range. For individual procedure types, the 

discrepancy is larger. For example, the median PKA quoted by Verghese et al for 

ASD occlusions is higher than that recorded at Hospital 1 by a factor of between 34 

and 40. It is noted that quoted doses also include those acquired before the 

implementation of the new radiation protection policy, where PKA was reduced by a 

factor ranging from 4 to 52%. Fluoroscopic screening times were longer than those of 

the current study by a factor of around 2; insufficient to explain the much greater PKA.  

Glatz and colleagues [1] reported PKA for 2265 procedures carried out at Philadelphia 

Children’s Hospital, using a Siemens Artis Zee unit between 2009 and 2011. Again, 

despite a range of effective dose reducing measures being implemented, including 

reduced frame rates and antiscatter grid removal where appropriate, the quoted PKA 

figures were much higher than those of the current study. For all procedure types 

combined, the median PKA quoted by Glatz et al was higher than equivalent figures 

for the most recent era in the current study by a factor of between 1.6 and 6.3 
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depending on hospital. For individual procedure types, the discrepancy in PKA was 

even greater, being higher for ASD occlusions by a factor of up 20 compared to the 

current study. As with Verghese, the screening times are longer, but by an 

insufficient extent to explain the discrepancy in doses.  

A recent study by Ghelani et al [83] in which data from 2713 examinations were 

acquired from 7 American centres, reported median PKA and air kerma levels higher 

still than Verghese or Glatz (two of the included centres were Philadelphia and 

Boston Children’s Hospitals). The median PKA for ASD occlusions in the 10-15 year 

age category was 93 Gycm2, compared to 2.0 at Hospital 1 between 2002 and 2008. 

For all ages, ASD doses were higher than those of the current study by a factor 

ranging from 4.7 to 24.7 depending on hospital. The discrepancies for other 

procedures were somewhat smaller, with median PKA figures reported by Ghelani 

being higher by a factor of 2.2 to 9.2 for PDA occlusions, 6.8 to 10.1 for aortic 

valvuloplasty, 5.0 to 16.8 for coarctation repair and 2.6 to 10.1 for pulmonary 

valvuloplasty, depending on hospital. Again, screening times were approximately 

twice as long as those of the current study. 

The previously mentioned study by Kobayashi et al [4] acquired data from 16 centres 

giving a sample of 8267 procedures. No analysis of variation between each of the 

participating centres or equipment types was performed. The procedure specific 

PKA/kg figures reported by in the study were higher than those of the current study 

using modern equipment by a factor of 2.2 to 6 for combined interventional 

procedures, 1.3 to 3.7 for diagnostic procedures, 2.0 to 10.3 for ASD occlusions, 2.5 

to 5.3 for aortic valvuloplasty and 1.3 to 4.7 for pulmonary valvuloplasty, depending 

on hospital. Another, more recent study by Borik et al [102], acquired data on 5196 

cases conducted at the Toronto Hospital for Sick Children. Doses, as represented by 

PKA and PKA/kg where closer to those of the current study, being broadly similar to 

figures recorded at Hospital 2 after 2008, but higher than equivalent figures at 

Hospitals 1 and 3.  

Few studies have been conducted with which skin dose estimates can be compared. 

Frustratingly, most authors have combined figures from both imaging planes into a 

single ‘cumulative air kerma’ figure. In such cases, it can be assumed that the 

maximum skin dose in any single plane can be no less than 50% of the cumulative 

figure. Skin doses reported in the previously mentioned study by Glatz et al [91] were 
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higher than those of the current study by a similar factor to their PKA figures. Single 

plane doses of greater than 2000 mGy occurred in 4.3% of interventional procedures 

overall. For patients over 65 kg, these levels were exceeded in 32.9% of all 

interventional procedures and 58% of PA angioplasty procedures. The skin doses 

reported by Verghese and colleagues [82] were also greater than those of the current 

study by a similar factor to PKA. For patients over age 16, the median cumulative skin 

doses for ‘distal R or L angioplasty or stent’, ‘RVOT dilatation and or stent’ and ‘Prox 

R or L angioplasty and or stent’ were 4.52 Gy (IQR: 2.94, 8.48), 4.55 (1.96, 5.54) and 

4.84 Gy (3.08, 5.51) respectively. For these procedures, the ‘median maximum’ dose 

(i.e. the median of whichever plane delivered the highest skin dose) must be at least 

2.25 Gy, thus over the supposed threshold for observable skin reactions [234]. The 

authors do not comment on the frequency of skin injuries at the study hospital. The 

skin doses reported by Sawdy et al [238] for 1310 procedures carried out over a 3 

year period are especially difficult to interpret. It is not clear what the units of 

measurement are – data presented in tables are written in the unit of ‘R’, which 

presumably means Roentgen (a unit of exposure often recorded by older 

equipment), while the text refers to the same figures in ‘mGy’. Nor is it clear if figures 

are combined for both planes, or are the maximum of both (as in this study). The 

authors report that 15 patients received radiation burns during the study period. Skin 

injuries were the first recorded adverse effects of exposure to ionising radiation, 

reported within 6 months of the discovery of x-rays in 1895 [16]. The findings of the 

current study suggest that acute skin reactions from cardiac catheterizations carried 

out using modern equipment are extremely unlikely in children, at least in the UK. 

Skin cancer, however, appears inducible by radiation, albeit mostly in less dangerous 

forms such as basal cell carcinoma, rather than malignant melanoma [45]. It is 

important, therefore, that epidemiological analyses of cancer risks following cardiac 

catheterizations include the identification of skin cancers. 

In the literature review, it was speculated that the high doses reported in recent 

studies led by Glatz [91], Verghese [82], Ghelani [83] and Kobayashi [207] could be a 

true representation of doses from modern cardiac catheterizations, and that the low 

doses of other studies could be explained by small sample sizes and publication bias 

(only publishing if doses are low). The findings of the current study, presented in this 

chapter, ought to suggest otherwise. While it is tempting to speculate that mistakes 

have been made in quoting PKA data, for example confusing mGy·cm² with µGy·m², it 
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is unlikely that four large studies could have made the same mistake. If the PKA 

figures quoted in the above mentioned studies were to be reduced by a factor of 10, 

they would become inexplicably low. The units of measurement were confirmed 

individually for all six hospitals in the current study and were consistent. The 

discrepancy in doses, as represented by PKA, is almost certainly real. However, it is 

not possible to claim that high doses are ‘too high’ – that would imply a proven net 

disadvantage, with the radiation-associated detriment (i.e. increased risk of cancer) 

outweighing the improved image quality associated with higher doses.  

 

3.7: Limitations and uncertainties 

The most important limitation of the data described in this chapter is the variable 

quality from one hospital to the next. Most notably, a large proportion of examinations 

conducted at the Hospital 4 lacked any form of dose indicator and lacked sufficient 

information on procedure type. This has implications for dose estimation as knowing 

the procedure type allows the likely beam angles used to be predicted. Procedure 

type information is also useful for epidemiological analysis as it allows inferences on 

confounding factors and survival rates.  

The number of patients without sufficient personal details to allow cancer registry 

matching (full name, date of birth, or NHS number) is also a concern. Much of the 

cohort (i.e. from Hospitals 1 and 2) was established from handwritten records, rather 

than computer-based RIS records. A number of spelling discrepancies were only 

identified because the patient had multiple entries. For patients examined only once, 

the risk of misspelled names is increased. Such cohort members, if they have indeed 

developed a tumour, may not be identified as such by the cancer registry. This could 

potentially lead to an under-ascertainment of cancer incidence in this patient group. 

Data obtained electronically may also include data entry errors – it is just as easy to 

enter data into the wrong column (e.g. mixing up PKA and ST) or to place a decimal 

point in the wrong place. 

Kerma area product is typically subject to an uncertainty of ±15% where regularly 

calibrated. All PKA meters were subjected to regular quality assurance (QA) testing. 

Calibration factors were applied to PKA data where provided. The spike in PKA in 1996 

at Hospital 1 (Figure 3.) could potentially be due to measurement error, although this 

is impossible to confirm or rule out. A calibration factor for the lateral tube (1.13) was 
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provided for 1995 but not 1996. The reliability of older data is an important concern 

for future epidemiological analysis. 

The automatic gathering of examination data for the purpose of national audits has 

been discussed [239, 240]. This is, in principle, a very attractive prospect, but 

requires rigorous attention to quality assurance. The automatic archiving of dose 

indicators, including 'structured dose reports' recorded by most modern fluoroscopic 

equipment, could be valuable in radiation protection and (providing sufficient details 

are recorded) epidemiological research, while also reducing the workload for 

radiographers. The latter point may not necessarily be a good thing though; manual 

recording of dose indicators may help to enforce a culture of awareness of radiation 

doses among radiography staff. 

3.8: Reference levels 

Mention must be made of so called ‘reference’ levels. These are often referred to as 

‘diagnostic reference levels’ (DRLs) [241], although their applicability need not be 

restricted to purely diagnostic procedures. Reference levels are supposed to 

represent typical doses for a particular procedure, usually defined using median or 

third quartile doses obtained from audits of PKA, skin dose, fluoroscopy time or (in 

CT), dose length product. In particular, reference levels should serve as an 

investigation level where these figures are being consistently exceeded. The above 

discussion of the large variation in PKA between published studies ought to illustrate 

the danger of failing to compare local dose indicators with those delivered elsewhere. 

Ironically, many of the studies reporting the highest PKA levels had the specific 

objective of setting reference levels themselves [83, 207]. This undermines the 

usefulness of the reference level concept. The setting of local reference doses that 

would be considered exceptionally high elsewhere provides little incentive for 

optimisation. 

Most reference levels are based on PKA, usually referred to in publications simply as 

‘dose’, with little or no appreciation for what this figure actually represents. As 

described in Chapter 2, PKA is derived from the charge produced in a known mass of 

air as the x-ray beam passes through, and thus represents dose (or more specifically 

collision air kerma) in air – not to the patient. Although PKA can indeed be related to 

patient dose (this will be exploited extensively in this study), this relationship is highly 

variable, depending on conditions including patient size, beam angle and beam 



102 
 

energy. Equal PKA figures may equate to greatly different patient doses. So what’s 

the use of reference levels based on something so tentatively related to patient dose 

as PKA? Without efforts to stratify PKA-based reference levels by patient size, exam 

type (and hence likely beam angles) and equipment type (defining beam energy) 

these figures are of limited usefulness. If such variables are accounted for, then the 

result will be a large number of different reference levels. This may be an unattractive 

prospect for those who like to keep radiation protection simple, but the alternative of 

one-size-fits-all reference levels for all procedure types combined would be of little 

value and could potentially be misleading. The use of PKA stratified by mass for 

reference levels is advocated as a solution by Kobayashi et al [207] and Onnasch et 

al [103], though as  demonstrated above, PKA/kg is not constant across the range of 

patient sizes studied. Therefore normalising PKA by mass does not eliminate the 

need for any form of patient size stratification of reference levels. The PKA data 

presented in this thesis may be used as the basis for the establishment of reference 

levels, but only in the fully stratified, procedure specific form presented in the 

appendix. Any form of ‘averaging out’ to produce simplified reference levels is not 

recommended.  

 

3.9: Conclusion 

A cohort was established from data on around 13,500 patients undergoing around 

20,000 procedures at six hospitals in the UK. The quality of these data were variable. 

In particular, a large number of procedures conducted at the Hospital 4 Hospital had 

no dose indicator recorded. 

Doses, as represented by PKA, screening times and skin doses have decreased over 

the timeframe of data collection. This appears to be mainly due to equipment related 

factors. The figures collected in this study were low compared to several recently 

published American surveys. Variation in PKA was seen between individual centres 

providing data, although the magnitude of this variation is somewhat less that 

suggested in previous publications.  

It should again be emphasised that PKA and screening time are only indicators of 

patient dose. For a more thorough analysis, including cumulative doses over multiple 

procedures and the associated risks, it is necessary to estimate organ doses. The 

following chapters describe the use of Monte Carlo computer simulations to establish 
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the relationship between PKA and organ doses over a range of beam angles and x-

ray energies, and the use of this information to construct a dosimetry system for rapid 

dose calculation for cohort members. Further chapters describe the use of estimated 

organ doses for assessment of long term risks of cancer. 
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Chapter 4: Computational Dosimetry: 

The following chapters describe the process of using kerma area product (PKA) 

(defined in Chapter 2), recorded for cardiac catheterizations, to estimate patient 

dose. The dosimetric modelling process was comprised of four components, each of 

which are covered in separate chapters: 

1. A systematic analysis of the relationship between kerma area product (PKA) 

and organ doses using Monte Carlo simulations, for a large range of beam 

angles, beam energies and patient sizes (this chapter) 

2. A process for utilising the above data for calculation of doses for cohort 

members based on available examination data (Chapter 5). 

3. Collection of supporting data on beam angles and beam energy used in 

clinical practice for use in dose models (Chapter 6). 

4. Verification of computer simulated doses using physical dosimetry (Chapter 

7). 

Monte Carlo (MC) computer simulations were chosen as the primary method of dose 

estimation due to the ability to rapidly calculate doses to multiple organs over a broad 

range of exposure conditions. Thousands of possible combinations of beam angle, 

patient size and x-ray energy were investigated, therefore accounting for each 

combination using physical measurements would be extremely time consuming.  

When estimating dose to organs based on limited data recorded at the time of the 

examination (i.e. procedure type, patient age/mass and PKA only), the uncertainty in 

dose estimates due to deviations from expected beam angles or energy needed to 

be estimated. Part of the dosimetric modelling process was to determine the 

sensitivity of organ doses to small changes to these factors. A further aim was to 

determine if correction factors to adjust organ doses could be applied as a single 

scaling factor or would need to be a continuous function of other factors (e.g. beam 

rotation).  

4.1: Monte Carlo Methodology 

Monte Carlo (MC) simulations are based on computer modelling of multiple random 

interactions between x-ray photons and matter [242], to produce the photon 

equivalent of flipping a coin a great many times (the name Monte Carlo refers to the 

region of Monaco and reflects the stochastical nature of gambling). Instead of heads 
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or tails, photon trajectories are modelled according to the known laws of physics, 

including photoelectric absorption, Compton scattering and Rayleigh scattering. The 

number of photon trajectories simulated can be variable, ranging from 103 to 108 [16]. 

In this study, the software used for Monte Carlo computer simulations was PCXMC 

version 2.0 [242]. This is a commercial code developed especially for calculating 

doses from diagnostic medical exposures with photon energies of 150 keV and 

below. PCXMC uses phantoms representing various ages (new born, 1, 5, 10, 15 

and 30 years (Figure 4.1), modified from the phantom originally reported by Cristy 

and Eckerman [243]. Modifications include the addition of an oesophagus and 

improved alignment of the head and neck region [242]. The phantoms are 

hermaphrodites. It is not possible to produce gender specific dose calculations (other 

than simply omitting breast dose). Characteristics of each phantom are given in 

Table 4.1. The crude nature of the Cristy phantom is widely acknowledged [244].  

 

 

Figure 4.1: 5-year old mathematical phantom used in PCXMC 2.0. The right hand image is 

displayed as if looking down from above, achieved by using maximum caudal beam 

angulation and removing head organs. Figure credit: author annotated PCXMC screengrab. 
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Phantom 
size 

Mass (kg) 
Height 
(cm) 

Trunk height 
(cm) 

Trunk 
thickness (cm) 

Newborn 3.0 50.9 21.6 9.8 

1 Year 9.2 74.4 30.7 13 

5 Years 19.0 109.1 40.8 15 

10 Years 32.4 139.8 50.8 16.8 

15 Years 56.3 168.1 63.1 19.6 
Adult 73.2 178.6 70 20 

 

Table 4.1: Phantom characteristics in PCXMC 2.0. Data obtained from Tapiovaara and 

Siiskonen [242] 

 

PCXMC has been used extensively in diagnostic medical radiation dosimetry, 

including for estimation of doses from cardiac catheterizations [85, 86, 91, 92, 107]. 

The results of such simulations in PCXMC show good agreement with the general 

purpose Monte Carlo code MCNP, while the former is considerably more convenient 

to use [85]. Good agreement has also been found between PCXMC and the results 

of Stern et al [87] for coronary angiography examinations [245], and with the results 

of Hart et al [246] for a range of x-ray energies and examinations, including chest 

imaging [245, 247]. Brady [248] found that agreement between computational and 

physical measurements of effective dose from CT scans was higher for PCXMC than 

for other programs, including those specifically designed for CT dose estimation. 

PCXMC calculates doses to 29 different organs and tissues along with effective dose 

using ICRP 60 [67] and ICRP 103 [44] weighting factors. Organ doses are presented 

as the mean dose to the whole tissue and are thus numerically identical to the 

equivalent dose (H) for that organ. This includes dose to the skin; it is not possible to 

calculate localised skin doses for the irradiated area in PCXMC, nor is it possible to 

calculate ‘partial’ organ doses, such as unilateral breast or lung doses. Only doses to 

active bone marrow, breasts, heart, lungs, lymph nodes, oesophagus, liver, stomach 

and thyroid were utilised in the dosimetry system, along with effective dose (ICRP 

103 factors) and mean absorbed dose to the whole body. Although other organs 

such as the bladder, colon and salivary glands are susceptible to radiation induced 

cancer [45], these organs are well outside the exposed area and thus receive little 

radiation dose. Other organs such as the uterus are of little interest in an 

epidemiological study of low radiation doses. Incorporating additional organs into the 

dosimetry system (described in Chapter 5) is especially time consuming, as each 

requires its own separate set of corrections for beam energy. These organs were not 
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analysed separately in this study, although the doses were incorporated into effective 

dose. 

Lymph nodes are not themselves simulated in PCXMC phantoms. Instead, lymph 

node dose is calculated by a weighted sum of doses to other tissues using the 

following relationship [242]: 

𝐷𝑙𝑦𝑚𝑝ℎ 𝑛𝑜𝑑𝑒 = 𝐷𝑠𝑚𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑒 + 0.13 ∙ 𝐷𝑒𝑥𝑡𝑟𝑎𝑡ℎ𝑜𝑟𝑎𝑐𝑖𝑐 𝑎𝑖𝑟𝑤𝑎𝑦𝑠 + 0.08 ∙ 𝐷𝑠𝑎𝑙𝑖𝑣𝑎𝑟𝑦 𝑔𝑙𝑎𝑛𝑑𝑠 + 0.05

∙ 𝐷𝑡ℎ𝑦𝑟𝑜𝑖𝑑 + 0.04 ∙ 𝐷𝑜𝑒𝑠𝑜𝑝ℎ𝑎𝑔𝑢𝑠 + 0.03 ∙ 𝐷𝑠𝑡𝑜𝑚𝑎𝑐ℎ + 0.15 ∙ 𝐷𝑝𝑎𝑛𝑐𝑟𝑒𝑎𝑠 + 0.10

∙ 𝐷𝑔𝑎𝑙𝑙 𝑏𝑙𝑎𝑑𝑑𝑒𝑟 + 0.07 ∙ 𝐷𝑙𝑢𝑛𝑔𝑠 + 0.05 ∙ 𝐷𝑡𝑜𝑡𝑎𝑙 𝑏𝑜𝑑𝑦 + 0.04 ∙ 𝐷ℎ𝑒𝑎𝑟𝑡 + 0.01

∙ 𝐷𝑡𝑒𝑠𝑡𝑒𝑠 

Equation 4.1 

 

Neither the thymus nor active bone marrow or the spleen are included in the above 

equation. Although not considered to be ‘nodes’, these tissues are regarded primary 

organs of the lymphatic system [249]. It is unclear what the impact of these 

assumptions in lymph node locations is. Currently, evidence of an association 

between lymphoma and radiation exposure is limited [7, 45]  and it is not possible to 

determine which tissues need to be irradiated to induce this disease (if indeed this is 

possible). 

PCXMC does not allow circular or irregularly shaped x-ray fields and cannot be used 

to assess the impact of beam equalising filters such as lung ‘shutters’ designed to 

adjust for the lower density of the lungs compared to the mediastinum. Nor does 

PCXMC allow organ density to be changed, meaning it is not possible to examine the 

impact of contrast enhancement on doses. This is not a trivial matter. Research 

suggests organ doses from CT scans can vary by 10-100% depending on contrast 

agent administration, due to the effect on tissue density [250, 251]. The issue of 

contrast agents is also discussed in the ‘Future Research’ chapter. 

Aside from featuring pre-set ‘standard’ phantoms representing different age groups, 

PCXMC allows the height and mass (i.e. weight) of these phantoms to be adjusted 

over a limitless range. To account for increased mass, the program adopts a 

cosmological inflation model in which all organs expand like balloons, visceral organs 

and bones alike (Figure 4.2). This approach is unsupported by evidence and has no 

basis in reality. Some level of pathological enlargement of some viscera can occur 

(e.g. cardiomegaly, hepatomegaly or emphysema) and rare conditions in which bone 
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enlargement occurs also exist (e.g. Paget’s disease), but never in the manner 

suggested by PCXMC. The primary reasons for altered mass for a given height are 

the variable deposition of adipose tissue (fat) and muscle size, neither of which is 

modelled in PCXMC. Given this limitation, the majority of analysis was restricted to 

the standard, pre-set phantom sizes based on average heights, weight and thickness 

of the general population. 

 

Figure 4.2: Standard 5 year old phantom (left), adjusted to have a greater and smaller mass 

for a given height. Note the unrealistic expansion or contraction of bones, especially the 

skull. Figure credit: author created screengrabs 

 

PCXMC can be operated automatically using a macro code in Microsoft Excel (2010 

edition, Microsoft Corporation, Redmond, Washington). The ‘Autocalc’ macro [252] 

allows relevant parameters such as patient and beam characteristics to be inputted 

in an Excel worksheet. A particular combination of parameters can simply be copied 

and pasted as multiple rows in the workbook to produce a large number of 

simulations in which a single parameter, such as beam angle or energy, is adjusted 

one step at a time. This is ideal for simulation of doses over a large range of beam 

angles and energies. The initial autocalc macro code restricts simulations to a 16° 

anode angle, copper and aluminium filtration and 20,000 photons per simulation, but 

these parameters can be changed by editing the macro script. 

For effective dose and equivalent dose to most organs, simulation errors were found 

to decrease with increasing phantom age (Figure 4.3). These errors were generally 

less than 3% for effective dose and doses to certain tissues such as bone marrow 

and lymph nodes and heart (Figure 4.4). Errors were much higher for tissues 

receiving relatively low doses due to being located well outside the irradiated field, 
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such as the thyroid (up to 80%) and testicles (up to 100%). Thyroid dose errors 

increased with increasing phantom age (Figure 4.5). This is most likely to be due to 

increased distance from the irradiated field and hence lower dose due to scattered 

radiation.  

Dose errors for tissues lying deep to the entrance surface, such as the breasts in 

postero-anterior (PA) beam projections, were higher than those for tissues lying 

close to the entrance surface. As these tissues are of interest in risk modelling and 

epidemiological analysis, measures to reduce large errors were investigated. It was 

found that increasing the input dose simply resulted in a linear scaling of calculated 

organ doses and did not affect estimated error. Increasing the number of simulated 

photon interactions does result in a decrease in error (Figures 4.3 to 4.6), but also 

increases the simulation time (2, 7, 15 and 150 seconds per simulation for 10, 50 and 

100 thousand and 1 million photons respectively). Figures 4.3 to 4.5 also show the 

doses for each photon count. These figures are almost identical at a given phantom 

size for the heart, in which errors are below 3%. However a large variation in breast 

and thyroid dose is apparent depending on the number of photons used in the 

simulation. 

The autocalc macro defaults to simulation for all photon energies, up to 150 keV. 

Simulation time can be reduced by editing the macro to restrict simulated photons to 

match the tube potentials being investigated. A maximum mean error of 3% for 

effective dose and 10% for breast dose could be achieved using 40,000 photons for 

phantoms adult, 15 and 10 year old patients, while 50,000 photons were sufficient for 

the 5 year and 1 year phantoms. For the neonate phantom, 100,000 photons were 

used. These simulations were used for initial investigations on the effects of changes 

to various parameters. For the final dosimetry system (described in Chapter 5), a set 

of ‘reference’ data based on single beam energy combination was used. For the 

reference data, a lower level of error was desired, and simulations were run using 1 

million photons (50 times the pre-set level). These simulations took over two weeks 

to complete, running day and night. The result was simulation errors being reduced 

to generally less than 1%. 

 



110 
 

 

Figure 4.3: Breast dose simulation errors at each phantom age for different number of 

simulated photons. 

 

 

 

Figure 4.4: Heart dose simulation errors at each phantom age for different number of 

simulated photons. 
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Figure 4.5: Thyroid dose simulation errors at each phantom age for different number of 

simulated photons. 

 

 

 

Figure 4.6: Thyroid dose as a function of beam angle for 0 year phantom at 70 kVp and 0.2 

mm Cu for simulations using 100,000 and 1 million photons (mean errors of 10.1 and 2.5%, 

respectively). The latter simulations were used as reference data. 

 

It is easy to accidently calculate and input doses calculated from previous 

simulations. To avoid this possibility, each simulation was given a unique 

identification number, and simulation files were deleted after doses were calculated 

and inputted into Excel spreadsheets. 
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The input dose for simulations was always in the form of kerma area product, set at 

1000 mGy·cm2 (1 Gy·cm2), meaning that the results were always presented as 

equivalent organ doses (in mSv) per unit PKA (PCXMC uses the units of ‘mean organ 

dose’ in mGy). Changes to the following parameters were investigated: 

 Beam angle in both rotational (around the patient) and cranio-caudal (head to 

foot) directions 

 Central ray location 

 Field size (collimation) 

 Focus-skin distance (FSD) – the distance between the x-ray source and the 

patient. 

 Beam energy (tube potential and filtration) 

 Patient size (the six phantom sizes in Table 4.1) 

Initially, the x, y and z beam coordinates were adjusted to ensure that the heart was 

in the centre of the irradiated field for all angles. Beam area was set to include the 

entire heart and a small surrounding region (Figure 4.7). The arms were omitted from 

the phantom for all projections (in clinical practice, the arms are elevated above the 

head to avoid obscuring the heart in the lateral projection). The focus-skin distance 

was initially set at 80 cm. PCXMC uses a default anode angle of 16°. This was 

changed to 12°, based on manufacturer’s specifications for fluoroscopy equipment 

from used equipment vendors [253]. In particular, an anode angle of 12° is used for 

Siemens Axiom Artis units, which were the most commonly used fluoroscopic 

machine at participating hospitals. The impact of using different anode angles was 

also investigated. 

For this thesis, the beam angle (or projection angle) terminology described in 

Appendix 1 will be used. A ‘posteroanterior’ (PA) beam projection is one that enters 

the back and exits the front, an ‘anteroposterior’ (AP) beam is the reverse of this. In 

bi-plane machine, both PA and AP projection utilise the frontal x-ray tube. A ‘left 

lateral’ beam enters the right hand side and exits the left. These correspond to 

rotational beam angles of 90°, 270° and 180° respectively in PCXMC. A distinction is 

made between ‘PA orientated projections’, meaning beam angles that are 

approximately in the PA projection, and ‘straight PA’ which means exactly PA and 

achieved with a vertical beam which the patient supine. A similar distinction is made 

between ‘laterally orientated’ and ‘straight lateral’ projections. It should also be noted 
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that cardiologists often refer to the PA projection as ‘AP’ [86]. This convention will not 

be used in this thesis.  

 

Figure 4.7: The exposed region for new-born child in PA projection (90°). The lungs are not 

shown. The dark green feature below the heart is the stomach, the white bars represent the 

ribs and spine, while the light green shape above the heart is the thymus. Figure credit: 

author created screengrab 

 

Rotational beam angle was investigated as a function of full 360° rotation around the 

patient in 5° intervals, resulting in a set of 72 Monte Carlo simulations. Each of these 

sets was repeated at different cranio-caudal beam angulations ranging from 55° 

caudal to 55° cranial (also in 5° intervals). Greater angulations in either direction 

were not calculated, as the head or pelvis is projected over the heart rendering the 

image clinically useless. The combination of rotation around the patient and cranio-

caudal angulations produced 1656 simulations representing a near complete range 

of possible beam angles. This ‘full projection set’ was the starting point from which all 

other changes to parameters were investigated.  

To investigate the impact of changes to beam energy, peak tube potential in kilovolts 

(kVp) was varied from 50 to 100 kVp at 10 kVp intervals. The typical range in clinical 

practice was around 58-90 kVp (see Chapter 6: Supporting Data). Aluminium 

filtration was kept constant at 2.5 mm, while copper (Cu) filtration was set at 0, 0.1, 

0.2, 0.3, 0.6 and 0.9 mm for each tube potential interval. Thus 36 different 

combinations of beam energy were investigated. The impact of beam energy on 

organ doses was calculated for all 1656 projection angles to determine whether 

conversion factors needed to be projection specific or could be applied as a single 

figure regardless of beam angle.  
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The effect of variation in patient size was investigated by calculating doses for the 6 

different pre-set phantoms listed in Table 4.1. For each of these phantom sizes, 

doses were calculated for the full set of 1656 projection angles and 36 different beam 

energy combinations. This resulted in a total of 1656 * 36 * 6 = 357,696 different MC 

simulations. Further investigation of the effect of patient size was difficult due to the 

unrealistic manner in which PCXMC handles changes to mass for a given height. If 

the mass is increased, the heart size is also increased, meaning the beam area must 

be adjusted to include the same region. Nonetheless, some separate simulations 

were carried out to assess the potential effect of under- or overweight patient 

characteristics on dose estimates. Phantom mass was adjusted to approximate 5th 

and 95th percentiles of body mass index (BMI) obtained from the Royal College of 

Paediatrics and Child Head (RCPCH) [254]. BMI is not used for children below 2 

years, so for phantoms representing new born and 1 year, the 5th and 95th percentiles 

of mass were used. The beam area was collimated to the heart border following each 

size adjustment. This process was repeated for both straight PA and left lateral beam 

projections. 

To investigate the effects of changes to focus-skin distance (FSD), central ray 

location and field size, a reduced set of beam angles were used, with intervals in the 

cranio-caudal direction increased to 10°. Beam energy was restricted to a central 

value of 70 kV and 0.2 mm Cu filtration, and extreme values of 50 kV/0.0 mm Cu and 

100 kV/0.9 mm Cu. All investigations were carried out using each of the 6 pre-set 

phantom sizes. 

Changes to field size were investigated by increasing or decreasing the height and 

width of the field in 1 cm intervals. The relative impact of this 1 cm increase would be 

larger for smaller patients (i.e. it would cover a greater proportion of the body), so 

extra simulations were run at ±0.5 cm for the new born phantom. In addition, a 

separate set of large field simulations were carried out designed to include most of 

the lungs. Such large field sizes are used in clinical practice to visualise the 

pulmonary circulation. In these cases, the central ray location was positioned slightly 

superior to the heart to include the aortic arch and avoid inclusion of the liver and 

stomach within the primary field. 

Focus-skin distance was adjusted over the range of 40-120 cm in 20 cm intervals 

using the standard field size. The impact of variation in the location of the x-ray beam 
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central ray was investigated by adjusting x, y and z coordinates in 2 cm intervals until 

the heart was no longer included within the primary field. This process was repeated 

for a limited range of beam angles. 

 

4.2: Results 

4.2.1: Beam angle 

The influence of beam angle on dose was seen to vary considerably between 

different organs, which are discussed individually below.  Note that situs solitis is 

assumed (organs in their normal positions). Some patients may have unusual organ 

arrangements including dextrocardia (right sided heart) [249] and situs inversus (all 

organs are on the opposite side of the body to normal).  

The figures showing the effect of beam angle throughout this chapter are presented 

for over the full range of rotational beam angles, but at a reduced range of cranio-

caudal angles to improve clarity. All figures are for a phantom representing a 15 year 

old individual (56.3 kg). The patterns shown are generally similar for other phantom 

sizes. Any significant differences are described. 

 

Bone Marrow: 

Active bone marrow (ABM) is contained within long bones (arms and legs) and the 

axial skeleton (spine, ribs, skull, and sternum) [255], which is predominantly 

posteriorly located. In the phantoms used in PCXMC, ABM is uniformly distributed 

through the matrix of bones [247], rather than being located in the medullary canal or 

sandwiched between two layers of compact bone as occurs in reality [255]. The 

distribution of ABM throughout the skeleton, according to data presented by Cristy  

[256], is taken into account. Equivalent dose to active bone marrow (ABM) (i.e. 

averaged over all ABM in the body) was found to be higher for PA orientated 

projections (Figure 4.8). Two peaks in ABM dose either side of the straight PA 

projection were noted in the results of simulations for phantoms representing 0, 1 

and 5 year old individuals (see Figure 4.31 later in chapter), and can be explained by 

greater inclusion of one scapula (shoulder blade) within the primary beam. These 

peaks are not seen for 10 year, 15 year and adult phantoms, because the scapulae 

are so widely spaced that they are not included within the primary beam unless the 
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field size is especially large (see field size results, later). Compared to other tissue 

types, ABM dose shows relatively little variation with beam angle in the cranio-caudal 

direction. 

 

 

Figure 4.8: Bone marrow dose per unit PKA as a function of beam angle. 

 

Breasts: 

Breast doses are calculated by PCXMC as the mean of both breasts and it is not 

possible to determine these doses individually. In contrast to ABM dose, breast dose 

was found to be much higher for AP orientated projections than PA, owing to the 

more anterior location of the breasts (Figure 4.9).  The large dip in breast dose 

occurring for straight AP projections occurs because the beam passes in between 

the right and left breasts, excluding both from the primary beam. The transition in 

breast dose between AP and PA projections is considerably more abrupt than is 

seen for ABM dose. This is particularly striking between rotational beam angles of 

165° and 195° and 345° to 15°, between which breast dose increases by a factor of 

13 (56 kg phantom). Breast dose is also sensitive to changes in cranio-caudal beam 

angulation, being highest where little such angulation is present. 
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Figure 4.9: Breast dose per unit PKA as a function of beam angle.  Note the pronounced ‘cliff’ 

in breast dose between around 170 to 190°. 

 

At certain ages, a pronounced ‘spike’ in breast dose was seen at rotational beam 

angles of around 195-210° (i.e. approximately laterally orientated with some rotation 

towards the anterior), with a smaller spike at around 350-355° (Figure 4.10). These 

features were present over the full range of beam angulations in the cranio-caudal 

direction. The spikes were only noted for simulations using 0 and 10 year old 

phantoms. Simulation errors were excluded as the cause because the spikes were 

still present when simulations were run at 1 million photons, where breast dose 

errors were less than 1% (i.e. a lot less than the size of the spike). It was noted that 

at the specified beam location coordinates, the irradiated field extended beyond the 

anterior chest wall. The coordinates of the x-ray beam were adjusted, decreasing the 

y coordinate so that the beam no longer included the anterior chest wall (Figure 

4.11). This was found to eliminate the dose spike. It should be noted, however, that 

beam angles orientated in the 195-210° range are never seen in clinical practice 

(these beam angles are described in the ‘Supporting Information’ chapter, later), 

therefore the ‘spike’ was of little consequence in dose estimations for clinical 
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examinations. The impact of inclusion of the chest wall in the primary beam will be 

explored further in section 4.2.4. 

 

 

Figure 4.10: Breast dose for 10 year phantom size (32.4 kg) as a function of beam angle, 

showing spikes. 

 

 

Figure 4.11: Anatomy inclusion at three different y coordinates by beam central ray. The thin 

blue line on the right hand side of each image delineates the beam edge. The projection of 

one breast outside the chest wall (blue circle) appears to be the cause of the dose spikes. 

Image credit: author screengrabs 
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Heart: 

The heart is an anterior lying organ, found slightly to the left of the midline. 

Consequently, heart dose is higher for AP orientated projections (between around 

220-300° in PCXMC) and higher for right lateral than left lateral projections (Figure 

4.12). In clinical practice, it is common to use beam projections in which the heart is 

closest to the detector to reduce magnification distortion and geometric unsharpness 

(i.e. PA and left lateral projections). This means the heart is shielded to some extent 

by other organs and dose is often lower than the lungs or breasts, despite the organ 

being located entirely within the irradiated field. For almost all rotational angles, dose 

to the heart was found to be greater where no cranial or caudal beam angulation was 

present. This is because cranio-caudal angulation increases the thickness of 

preceding tissue traversed by the beam before the heart is reached. 

 

 

Figure 4.12: Heart dose per unit PKA as a function of beam angle. 

 

Liver: 

The liver lies inferior to the heart and is predominantly located on the right hand side 

of the body [249]. Consequently, liver dose is highest in the left lateral projection. 

Liver dose was found to be especially sensitive to changes in cranio-caudal 

angulation compared to other organs (Figure 4.13). A particularly striking feature of 
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Figure 4.13 is the peak in liver dose occurring with cranial angulation and a rotational 

angle between 130-200°, in which case the beam passes through the liver before 

reaching the heart. Such beam angles are rarely used in clinical practice, however. 

 

Figure 4.13: Liver dose per unit PKA as a function of beam angle. 

 

Lymph nodes: 

As the organs used to estimate dose to this tissue are spread around the body, 

lymph node dose shows relatively little variation with beam angle compared to other 

tissues (Figure 4.14). Caudally orientated beam projections resulted in lower doses 

per unit PKA than cranially orientated beams. Dose per unit PKA is generally low and 

comparable to that for bone marrow. It was noted earlier that neither active bone 

marrow nor the thymus are included in lymph node dose calculations in PCXMC, 

despite both being regarded as principle organs of the lymphatic system [249]. The 

thymus is located in the anterior and superior mediastinum, close to the heart, 

though sometimes extending superiorly as far as the thyroid [249] (seen in Figure 4.1 

as the light green feature). The organ thus lies within the primary beam during 

cardiac catheterizations. The importance of the thymus in radiocarcinogenesis is 

currently unknown, however.  



121 
 

 

 

Figure 4.14: Lymph node dose per unit PKA as a function of beam angle. 

 

Lungs: 

Pronounced dips in lung dose per unit PKA were seen for straight PA and AP 

orientated projections in which exclusion of the lungs from the primary field is 

greatest (Figure 4.15). Overall, doses were higher in PA orientated projections, as a 

greater volume of the lungs is found in the posterior half of the body. Dose in left-

laterally orientated projections was higher than for right laterals as the right lung is 

larger due to the presence of the heart on the left.  Like the heart, doses were also 

higher for beams in which no cranial or caudal angulation was present. Lung doses 

were generally among the highest of all organ doses, regardless of projection angle.  
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Figure 4.15: Lung dose per unit PKA as a function of beam angle. 

 

Oesophagus: 

The oesophagus is fairly centrally located, found anterior to the spine and posterior 

to the heart. It is within or close to the primary beam in most projection angles, 

though is always shielded to some extent by other organs. This shielding effect 

increases where cranio-caudal beam angulation is applied (Figure 4.16). In PCXMC, 

the oesophagus is modelled as being exactly central and directly anterior to the 

spine. In reality, the oesophagus may deviate to one side [257], in which the 

shielding provided by the spine for PA-orientated projections would be less. Thus 

oesophagus dose may be underestimated by PCXMC. 
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Figure 4.16: Oesophagus dose per unit PKA as a function of beam angle. 

 

Stomach: 

Like the liver, the stomach is located inferior to the heart and thus receives greater 

doses in cranially orientated projections (Figure 4.17). In contrast to the liver, 

stomach dose is higher in right lateral projections, owing to its predominantly left 

sided location. The stomach is approximately ‘J’ shaped in humans, however its size 

and shape is highly variable, tending to increase in the cranio-caudal dimension and 

decrease in the anterior-posterior dimension with increasing ponderal index (a 

measure of how ‘lean’ a person is) [258]. Tall, thin people have tall, thin stomachs. 

This variation is not reflected in the PCXMC mathematical phantoms, in which the 

stomach is modelled as an ovoid (dark blue in Figure 4.1). However, the pattern of 

higher stomach doses with cranial beam angulation should still be valid.  
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Figure 4.17: Stomach dose per unit PKA as a function of beam angle. 

 

Thyroid: 

The thyroid gland is located anterior to the trachea and superior to the sternal notch 

and should not be included in the primary radiation field in normal practice (although 

one study found cases where this did sometimes occur [259]). Consequently, thyroid 

dose is low, and almost entirely due to scattered radiation (extrafocal and leakage 

radiation are not simulated in PCXMC but are accounted for in physical 

measurements, described in a later chapter). Doses were found to be highest with 

large levels of cranial beam angulation (Figure 4.18), where the thyroid is closest to 

the primary field. Where the beam is angled cranially, thyroid dose is highest in 

laterally orientated projections, while for caudal beam angles dose is highest in AP 

and right posterior oblique orientated projections (Figure 4.19) 
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Figure 4.18: Thyroid dose per unit PKA as a function of beam angle. 

 

 

 

Figure 4.19: Beam projections at which thyroid dose is highest (1 year old phantom). The 

position of the thyroid is shown (the green feature under the head). Image credit: author 

generated PCXMC screengrab 

 

Gonads: 

The testes and ovaries are located well outside the primary radiation field for cardiac 

catheterizations and receive minimal scattered dose. Where femoral catheterization 

is used, the pelvic area may be briefly imaged for catheter guidance, although this 
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should not be necessary for most patients [259]. Calculated doses were almost zero, 

even for the most caudally angulated beam projections (i.e. those in which the 

gonads would be closest to the primary field). 

 

Effective dose: 

The effective dose (E) is strongly influenced by breast dose, owing to the proximity of 

the breasts to the irradiated field and the high tissue weighting factor (0.12 in ICRP 

103 [44]). This can be appreciated by comparing Figure 4.9 and Figure 4.20 – the 

shape of the two curves is similar, though variation in effective dose with beam angle 

is less pronounced than for breast dose. Overall, there is a tendency for effective 

dose to be higher in more anteriorly orientated projections than posterior. As with the 

heart and lungs, effective dose per unit PKA is higher where no craniocaudal 

angulation is present. With large levels of cranial or caudal angulation, the variation 

in effective dose with rotational beam angle was found to be reduced. It should also 

be noted that effective dose is higher by around 20% for cardiac exposures where 

ICRP 103 [44] weighting factors are used as opposed to ICRP 60 [67]. This is 

principally due to the increased weighting for the breasts (0.12 instead of 0.05) and 

the inclusion of the heart into the ‘other’ tissue category. 
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Figure 4.20: Effective dose per unit PKA as a function of beam angle. Note the presence of 

the ‘cliff’ between170 to 190° and the dip between 220 and 290°, also seen for breast dose. 

 

Average absorbed dose: 

The average absorbed dose to the whole body was also calculated. This was done to 

allow comparison with effective dose (which could also be considered a form of 

‘whole body’ radiation dose measurement) and for use in risk models. Unlike 

effective dose or doses to individual organs, average absorbed dose was virtually 

independent of beam angle in either direction (Figure 4.21). Average absorbed dose 

was lower than effective dose by an average factor of around 1.8 across all beam 

angles and patient sizes. For beam angles commonly used in cardiac 

catheterizations, this factor is slightly reduced to around 1.7 (see Chapter 8). The 

difference between effective and average whole body dose illustrates the impact of 

the high density of radiosensitive organs in proximity to the heart. If such calculations 

are repeated for exposures of the extremities, the average absorbed dose is found to 

be higher than effective dose (for example, for a knee radiograph, the average 

absorbed dose calculated by PCXMC is higher than effective dose by a factor of 18). 

By multiplying the average absorbed dose by phantom mass, the total energy 

imparted to the body, in Joules (J) can be estimated. The energy imparted per unit 

PKA increases slightly as phantom size is increased from 3.4 to 73.2 kg (0 to 30 
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years), ranging from 8.0 to 13.1 mJ  at 70 kV and 0.2 mm Cu, as a greater proportion 

of the beam is attenuated with greater material thickness.  

 

 

Figure 4.21: Average absorbed dose per unit PKA as a function of beam angle 

 

4.2.2: Beam energy 

Doses to all organs per unit PKA were found to increase with increasing beam energy. 

This pattern can be characterised in different ways; by considering individual 

parameters affecting beam energy separately (i.e. tube potential, filtration and anode 

angle) or by using a single figure in which beam quality is characterised by the 

thickness of a given material required to reduce beam intensity by 50% - the so-

called half-value layer (HVL), usually given in millimetres of aluminium (Al). The 

former measure is more informative while the latter is more convenient. In this study, 

HVL was calculated using SpekCalc [260], a commercially available program utilising 

Monte Carlo data calculated by Poludniowski and Evans [261, 262]. This allows 

calculation of beam spectra and associated half value layer from a range of 

parameters including tube potential, anode angle and thickness filters of various 

materials including air, aluminium and copper. The HVL methodology has a number 

of limitations. The same HVL can be achieved using very different parameters 
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(Figure 4.22). For example, a 1st HVL of around 3.5 mm Al is achieved using a tube 

potential of 110 kV with 2.5 mm Al filtration, and also using 40 kV, 2.5 mm Al and 0.9 

mm copper filtration. The 2nd HVLs (i.e. the thickness reducing intensity by a further 

50%) for these two situations are very different, at 5.75 and 3.62 mm respectively. 

The low kV situation results in a beam spectrum lacking the high kV ‘tail’ and is 

entirely due to Bremsstrahlung, with no characteristic emissions. As the patient is not 

made from aluminium, the characterisation of x-ray beams according to their 

interactions with aluminium is an approximation and can lead to errors in dose 

estimation (see Section 5.2). 

When characterising by kV and filtration separately, the increase in organ dose with 

beam energy follows a pattern well described by a logarithmic or 3rd order polynomial 

(Figure 4.23). The rate of increase declines as beam energy is increased. The 

marginal increase in organ dose per unit PKA is especially large with initial addition of 

copper filtration (i.e. increased from zero to 0.1 or 0.2 mm). The effect of varying 

anode angle was generally small, with dose per unit PKA increasing by little more 

than 1% for each degree decrease in angle. The effect of beam energy on dose 

varied between organs (Figure 4.24), being greater for the thyroid, stomach and liver 

– tissues located mostly, or entirely, outside the primary field of irradiation - than for 

more evenly distributed organs such as bone marrow or the lungs. The implication of 

this finding is that corrections to adjust doses for beam energy must be organ 

specific. It was also found that the impact of changes to beam energy also increased 

with increasing phantom size. Examples of the ratio in dose between different beam 

energies are shown in Table 4.2. This implies that energy corrections must also take 

patient size into account.  
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Figure 4.22: Using half value layer (HVL) to describe beam energy. Colours represent HVL 
in millimetres of aluminium as a function of tube potential and added copper filtration 

(assuming 2.5 mm Al filtration). 

 

 

Figure 4.23: Bone marrow dose as a function of beam quality for various combinations of 

tube potential and added copper filtration. The phantom size is 10 years and beam angle is 

straight PA. Third order polynomial trend lines have been fitted. 
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Figure 4.24: The ratio in dose to different organs between high and low beam energy levels, 

represented by tube potential. Phantom size = 56 kg (15 years), beam angle is straight PA. 

 

 Dose ratio 

Phantom 
size (kg) 

Bone 
marrow 

Breasts Lungs 

3.4 1.89 1.30 1.18 

9.2 2.34 1.48 1.27 

19.0 2.35 1.90 1.35 

32.4 2.50 2.19 1.41 

56.3 2.49 2.32 1.59 

73.2 2.59 2.38 1.62 

 

Table 4.2: Ratio between dose at 100 kV/0.9 mm Cu and 70 kV/0.2 mm Cu for bone marrow, 
breasts and lungs for each phantom size. Beam angle is straight PA. 

 

The variation in dose with beam energy was also seen to be dependent on beam 

angle. This is best visualised by plotting the ratio between two beam quality values 

as a function of beam angle (Figure 4.25). The variation is greater for more unevenly 

distributed tissues (e.g. breasts and heart), i.e. these organs are found towards one 

side of the body (the anterior) rather than being evenly spread throughout the torso. 

In the case of characterising by HVL, the variation in dose can also be described by a 

polynomial equation, although the closeness of fit is not precise (Figure 4.26). The 
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data points appear to be scattered around the polynomial in a seemingly random 

way, albeit with greater deviation as HVL is reduced towards 1.7 mm Al 

(corresponding to 50 kV, 2.5 mm Al and 0.0 mm Cu filtration). This distribution was 

explored in greater detail by plotting dose against HVL, while labelling data points 

according to filtration level. This showed that the distribution followed a more 

predictable ‘saw-tooth’ pattern (Figure 4.27). It was also noted that deviation of data 

points from the polynomial increased with increasing phantom size.  

The average absorbed dose to the whole body increases with increasing beam 

energy, but the proportion of the beam absorbed correspondingly decreases (Figure 

4.28). The rates of these changes vary with patient size; the rate of increase in 

average absorbed dose with beam energy increases with increasing patient size 

(Figure 4.29), while the decrease in the fraction of beam energy absorbed by the 

patient decreases with increasing patient size (Figure 4.30). 

 

 

Figure 4.25: Ratio between dose at 100 kVp and 50 kVp (0.0 mm Cu filtration) as a function 
of beam angle for different tissues. Phantom size is 15 years. 
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Figure 4.26: Bone marrow dose as a function of half value layer for 6 phantom sizes. Third 
order polynomial trend lines have been fitted. 

 

Figure 4.27: Bone marrow dose as a function of HVL (10 year, 32.4 kg phantom) with 
different filtration levels displayed in different colours. Successive points for each colour 

represent different tube potentials, ranging from 50 to 100 kVp in 10 kVp intervals. 
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Figure 4.28: Variation in average absorbed dose to the whole body and the percentage of 

beam energy absorbed by the patient 

 

 

Figure 4.29: Variation in average absorbed dose to whole body with beam energy defined by 

tube potential, for 6 phantom sizes. Figures are presented relative to dose at 50 kV. Beam 

angle is 90°, with no cranio-caudal angulation applied (straight PA). 
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Figure 4.30: Variation in the fraction of beam energy absorbed with tube potential, for 6 
phantom sizes. 

 

4.2.3: Phantom size 

Dose per unit PKA was seen to decrease with increasing phantom size. This pattern 

was seen for all organs and beam angles. This is demonstrated in Figure 3.31, in 

which the variation in bone marrow dose with rotational beam angle is shown for 

each of the 6 simulated phantom sizes. Note that the shape of the curves for each 

patient size is approximately the same, although some details vary, such as the 

‘horns’ on the peak for smaller phantom sizes (described earlier) 
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Figure 4.31: Bone marrow dose as a function of beam angle at different simulated mass 

levels. 

 

There are a number of explanations for this pattern. X-rays are attenuated by tissues 

in a manner described by Beer’s law [16], in which intensity (I) is reduced 

exponentially with increasing thickness (t) of material traversed: 

𝐼 = 𝐼0𝑒
−𝜇𝑡 

Equation 4.16 

Where I0 is the initial intensity and µ is the linear attenuation coefficient. Thus, if a 

greater thickness of tissue is traversed before an organ is reached by the x-ray 

beam, the intensity will be lower. This can be seen in Figure 4.32 where distance A’ 

is shorter than distance A. Consequently, the intensity of radiation at tissues lying 

close to the surface are higher than those at greater depth. Effectively, for smaller 

patients, organs lie closer to the surface and thus receive a greater intensity of 

radiation. As organ size increases, the mean intensity of radiation traversing it 

decreases. For organs lying partially or wholly outside the irradiated field, such as the 

stomach or thyroid, the distance between the organ and the field edge decreases 

with decreasing patient/phantom size. This is demonstrated in Figure 4.32, in which 

distance between the field edge and the out-of-field organ (B) is greater than the 

equivalent distance for the smaller patient (B’). The intensity of scattered radiation 
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reaching such out-of-field tissues would decrease with increasing distance (though 

not strictly according to the inverse-square-law, due to anisotropy of scatter).  

 

 

 

 

 

 

 

 

 

Figure 4.32: Effect of patient size on organ doses. Entirely in-field (red), partially in-field 

(blue) and entirely out-of-field organs (green) are shown. Figure credit: author 

 

The relationship between dose and patient size was investigated by plotting effective 

dose and organ doses obtained at two different beam angles (90° and 180°, ie. PA 

and lateral) against mass using SPSS (Version 19, IBM).The beam energy was set 

at 70 kV and 0.2 mm Cu. Different curves were then fitted (figures 4.33 and 4.34). 

The closeness of fit for each curve varied between tissue types, although some 

general observations were apparent. It was found that an exponential curve provided 

a reasonable fit for masses greater than around 10 kg but tended to underestimate 

dose below this level. R2 varied from 0.79 to 0.96. A logarithmic curve provided better 

estimation of doses for low masses, but underestimated doses for masses above 

around 50 kg (even predicting negative doses in some cases). R2 ranged from 0.90 

to 0.95. A power law relationship was found to produce the best overall fit across the 

full range of masses and did not predict negative doses. R² ranged from 0.93 to 0.99. 

Despite all three curve fits being statistically significant for all organs and beam 

angles tested, for the purposes of this study the closeness of fit was often less than 

satisfactory. This was to cause difficulties later when an attempt at applying a 

correction factor for patient mass was made (see Section 5.3 in Chapter 5). 

B 

A 

A’ 
B’ 

Large patient 

Small patient 

X-ray beam 
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Figure 4.33: Simulated active bone marrow (ABM) dose, in millisieverts (y-axis), as a 

function of phantom mass with three models fitted (logarithmic, power and exponential). 

Beam angle = 180 degrees (straight left lateral). 
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Figure 4.34: Breast dose (y-axis) in mSv, as a function of mass with logarithmic, power law 

and exponential curves fitted. Beam angle = 180 degrees (straight left lateral). 

 

The values of the coefficient and exponent of the power law relationship describing 

variation in dose with patient mass were recorded as the beam quality was adjusted. 

Both were found to vary (Table 4.3) albeit in a well behaved manner and describable 

using a simple logarithmic relationship (Figure 4.35). In theory, this means that a 

conversion factor to adjust doses calculated at one patient size to any other size 

could be designed in which beam quality is accounted for. In general, the relative 

increase in organ dose with increased beam quality was greater as phantom size 

was increased. 
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Tube 
potential: 

0.0 mm Cu 0.1 mm Cu 0.2 mm Cu 0.3 mm Cu 0.6 mm Cu 0.9 mm Cu 

a b a b a b a b a b a b 

50 kVp 31.24 -1.04 28.52 -1.01 27.25 -0.99 26.38 -0.97 24.87 -0.95 24.05 -0.94 

60 kVp 28.51 -1.00 25.84 -0.97 24.51 -0.95 23.63 -0.94 22.12 -0.91 21.30 -0.90 

70 kVp 26.45 -0.98 23.87 -0.94 22.59 -0.92 21.76 -0.91 20.33 -0.89 19.57 -0.87 

80 kVp 24.71 -0.95 22.31 -0.92 21.13 -0.90 20.37 -0.89 19.09 -0.87 18.42 -0.85 

90 kVp 23.85 -0.94 21.18 -0.90 20.12 -0.88 19.44 -0.87 18.31 -0.85 17.72 -0.84 

100 kVp 22.37 -0.92 20.37 -0.89 19.42 -0.87 18.80 -0.86 16.42 -0.84 16.03 -0.83 

 

Table 4.3: Values of coefficient (a) and exponent (b) of conversion factor to adjust effective 

dose at 56 kg (15 years) to any other mass, as the level of copper (Cu) filtration and tube 

potential are adjusted. 

 

 

Figure 4.35: Plot of values from table 4.3 at 0.1 mm Cu filtration with log trend lines fitted. 

 

The fraction of total beam energy absorbed increases with phantom size, ranging 

from 44.7% for the new born phantom, to 68.7% for the 30 year old phantom (70 kV 

and 0.2 mm added Cu filtration). 

Analysis of the variation of dose due to changes in mass for a given height is 

hindered by the unrealistic phantom used in PCXMC. A few interesting observations 

could be made, however. In almost all cases, organ doses were seen to increase as 

phantom mass was reduced while height was kept constant, and decrease as mass 

was increased (Table 4.4). This variation in dose was generally around ±20% with 
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one standard deviation in BMI or mass. There was no clear relationship between this 

variation and phantom size. In some cases, thyroid dose was decreased for the 

smaller phantom BMI and increased for the larger BMI. Presumably this is because 

thyroid dose is entirely due to scatter originating from primary radiation field, 

therefore increasing the volume of material irradiated would increase opportunities 

for scatter.  

The implication is that obese patients would receive lower organ doses per unit PKA 

than asthenic patients. Due to the limitations of the computational phantoms used in 

PCXMC, these findings were not incorporated into central dose estimates or 

associated uncertainties. Further investigation is required, ideally using patient 

specific phantoms derived from cross sectional imaging. This would require different 

Monte Carlo software (e.g. MCNP or GEANT) as PCXMC can only utilise the inbuilt 

phantoms based on the Christy model. 
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Phantom 
age 

(mass) 
Projection Size change 

Effective 
dose 

Bone 
marrow 

Breasts Heart Lungs 
Lymph 
nodes 

Oesoph Thyroid Liver Stomach 
Mean 
Dose 

0
 y

e
a

rs
  

(3
.4

 k
g

) PA 
-1 SD # 20% 14% 53% 25% 18% 16% 16% 4% 11% 12% 16% 

+1 SD # -16% -13% -31% -23% -17% -15% -16% 4% -9% -5% -14% 

Lateral 
-1 SD # 41% 17% 69% 17% 17% 14% 48% -13% 1% 6% 15% 

+1 SD # -26% -14% -40% -19% -15% -14% -8% -4% -4% -8% -14% 

1
 y

e
a

r 
 

(9
.2

 k
g

) PA 
-1 SD # 21% 17% 21% 34% 22% 22% 26% 1% 14% 12% 19% 

+1 SD # -17% -12% -40% -23% -16% -15% -19% 13% -13% -14% -13% 

Lateral 
-1 SD # 36% 19% 77% 26% 20% 18% 12% 4% 5% 16% 18% 

+1 SD # -12% -43% 85% -59% -52% -56% -58% -62% -46% -59% -54% 

5
 y

e
a

rs
 

(1
9

.0
 k

g
) 

PA 
-1 SD 27% 18% 102% 33% 23% 21% 26% -12% 15% 17% 19% 

+1 SD -18% -10% -29% -22% -20% -17% -17% -26% -14% -13% -13% 

Lateral 
-1 SD 24% 18% 32% 30% 19% 20% 19% -16% 7% 21% 19% 

+1 SD 36% -11% 131% -20% -21% -19% -26% -13% -7% -12% -15% 

1
0

 y
e

a
rs

 

(3
2

.4
 k

g
) 

PA 
-1 SD 17% 13% 16% 24% 18% 18% 22% 9% 13% 11% 14% 

+1 SD -25% -18% -50% -34% -24% -24% -24% 6% -22% -25% -20% 

Lateral 
-1 SD 12% 13% 3% 23% 16% 17% 22% -12% 5% 25% 14% 

+1 SD -28% -20% -56% -31% -16% -17% 24% -32% -10% -24% -19% 

1
5

 y
e

a
rs

 

(5
6

.3
) PA 

-1 SD 20% 17% 38% 35% 18% 22% 26% -31% 19% 15% 17% 

+1 SD -23% -18% -41% -34% -25% -24% -24% -29% -21% -20% -19% 

Lateral 
-1 SD 17% 15% 17% 31% 17% 19% 13% -22% 7% 26% 17% 

+1 SD -26% -18% -41% -31% -18% -21% -12% 6% -9% -25% -19% 

 

Table 4.4: Percentage variation in dose associated with adjusting phantom body mass index (BMI) by 1 standard deviation. # for 1 year and 

new born phantoms, mass is used rather than BMI. 
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4.2.6: Field size 

PKA approximates the absorbed dose to air multiplied by beam area [70]. If PKA 

remains constant, an increase in field size must be matched by a decrease in dose. 

Most organs considered in this study are located partly within the irradiated field. For 

these organs, along with effective dose and average whole body dose, increasing 

field size increases the volume of the tissue within the field, but decreases dose to 

that volume. Theoretically, the result is invariance of organ dose per unit PKA with 

field size. In reality, due to the irregular shape of organs, organ doses do indeed vary 

with field size. This relationship was found to be complex, varying between different 

organs and beam angles. The overarching pattern is that increasing or decreasing 

field size depreciates or intensifies the variation in dose with beam angle, 

respectively. This can be seen in Figure 4.36, in which effective dose as a function of 

rotational beam angle is shown for three different field sizes (the 11x11 cm field is 

the same as that in Figure 4.20). Note that the variation is less pronounced for the 

largest field size – the ‘cliff’ between rotational angles of 160 and 190° has become a 

gentle hill. In this case, effective dose per unit PKA in the left lateral projection would 

be overestimated if the field size was underestimated.  

Of the organs considered in this study, only the heart is entirely included within the 

irradiated field. In this case, the situation is relatively straightforward - as field size is 

increased, heart dose per unit PKA decreases Figure 4.37. For tissues lying entirely 

outside the primary beam, increasing the field size has the effect of decreasing the 

distance between the tissue and the field edge, and thus increases dose. Of the 

organs of interest in this study, only the thyroid gland is entirely out-of-field. A clear 

increase in thyroid dose was only seen for the largest field size, with moderate 

increases in field size having a negligible effect (Figure 4.38). Overall, field size has 

an important impact on organ doses calculated from PKA and needs to be taken into 

account in dose estimations and associated uncertainty analysis. 
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Figure 4.36: Effect of variation in field size on effective dose (15 year phantom). 

 

 

 

Figure 4.37: Effect of field size on heart dose (15 year phantom). 
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Figure 4.38: Effect of field size on thyroid dose (new born phantom) 

 

4.2.4: Central ray location 

In clinical practice, variation in central ray location is generally in the superior-inferior 

direction. Procedures involving the pulmonary trunk or the arch of the aorta tend to 

be centred a little higher than other procedures. Left to right translation is very 

limited. Occasionally, imaging of the left upper lobe area of the lungs is carried out 

during pacemaker insertions to check box position. For the lateral projection the 

beam centring point is also determined by the height of the table in relation to the x-

ray beam central axis. Raising the table causes posterior translation of the central 

ray, while lowering the table results in anterior translation. Variation in organ doses 

as central ray location was adjusted was consistent with the anatomical distribution 

of respective tissues. Oesophageal dose was relatively insensitive to anterior-

superior translation, while thyroid dose was found to increase sharply with 

increasingly superior beam centring. Conversely, stomach and liver doses increased 

sharply as the central ray was shifted inferiorly.  

A fall of 89% in breast dose was seen in the lateral projection as the central ray was 

adjusted in the anterior-posterior direction, i.e. toward the front or back, defined by 

table height, relative to the patient, falling from around 5.5 to less than 1.0 mSv per 

unit PKA with a translation of only 2 cm (10 year phantom). This pattern is 

demonstrated in Figure 4.39 for two different field sizes. Where the field size was 
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increased, the variation in breast dose was smaller and the point of transition from 

high to low dose shifted in the positive y-axis direction (i.e. toward the back). 

According to these simulations, using an admittedly crude mathematical phantom, if 

the anterior chest wall is included within the primary field for laterally orientated 

projections, breast dose is very high. If it is excluded from the primary field, breast 

dose is close to that obtained in the PA projection. For other organs, the variation in 

dose with anterior-posterior translation in the lateral projection was reasonably small, 

generally varying by 20% or less. Images from a sample of 30 cardiac 

catheterizations conducted at Hospital 4 were reviewed and the level of inclusion of 

the anterior chest wall in the lateral projection was noted. In 20% of examinations, 

the anterior chest wall was entirely excluded from the exposed area, in 23% it was 

fully visible, while in the majority of cases (57%), the chest wall was partially visible. 

The exposed area in the majority of examinations was equivalent to positions 3 or 4 

in Figure 4.39 (y-axis positions of -3.5 and -1.5 cm), thus corresponding to high or 

low breast doses.  

Variation in breast dose in the lateral projection was further investigated by 

simulating the variation in dose with rotational beam angle with different 

combinations of field size and central ray position. In two cases, the field size was 

narrowed to completely exclude the anterior chest wall from the irradiated field. In 

one of these situations, the central ray was also translated posteriorly by 1 cm. This 

resulted in exclusion of a small part of the apex of the heart, though was still clinically 

plausible as the major vessels would be included within the field. In all four cases, 

the same pattern of a rapid rise in breast dose as the beam is rotated between into 

the lateral projection was seen (Figure 4.40). However, the angle at which breast 

dose begin to rise varied, occurring at greater angles for the ‘chest wall excluded’ 

situations. For an angle of 180° (i.e. a ‘straight left lateral’), this resulted in a greater 

than 3-fold difference in breast dose between these four situations. It can be seen 

from Figure 4.40 that breast dose in the left lateral projection can be as low at that in 

the straight PA projection, depending on the combination of central ray location and 

field size.  
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Figure 4.39: Variation in breast dose with central ray location. Simulated radiographs are 

shown for each corresponding position as beam is translated along the y-axis (anterior-

posterior direction) from front to back.  

 

 
 

Figure 4.40: Breast dose as a function of beam angle (15 year old phantom) for different field 
sizes and central ray positions. The grey bar represents the left lateral projection. The PA 

projection is at 90°. 
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4.2.5: Focus-skin distance 

Changes to the focus-skin distance (FSD), which is the distance between the x-ray 

source (i.e. the anode) and the patient’s entrance surface, had relatively little impact 

on organ doses per unit PKA. There was a small trend of reduced doses at shorter 

FSDs, although within the range of distances likely to be used in clinical practice (60-

100 cm), these differences were almost negligible. The same pattern was seen for 

both beam qualities extremes, though a slightly larger variation in dose with FSD was 

seen at 100 kV and 0.9 mm Cu compared to 50 kV and 0.0 mm Cu. For example, the 

mean variation between bone marrow dose at the shortest and longest FSDs was 

3.8% and 3.0% respectively. The variation in dose with FSD was lowest for the bone 

marrow (Figure 4.41) and highest for the heart (Figure 4.42). Increasing FSD is 

frequently listed among optimisation techniques in diagnostic imaging [263] and 

interventional fluoroscopy and can result in a modest reduction in effective dose 

[264]. The results described above should not be compared to such research as they 

represent dose per unit PKA, rather than per se. Overall, a central value of FSD (80 

cm) should suffice for dose estimations based on PKA.  

 

  

Figure 4.41: Bone marrow dose as a function of rotational beam angle at different focus-skin 
distances. 
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Figure 4.42: Heart dose as a function of rotational beam angle at different focus-skin 

distances. 

 

4.3: Comparison with previous research 

The previously published effective dose per unit PKA (E/PKA) conversion factors 

summarised in the literature review were compared to those of the current study 

(Table 4.5). Conversion factors were similar to those of Barnaoui et al [92] and 

Karambatsakidou et al [112], though higher by a factor of around 2 than those of 

Schmidt et al [86] and Onnasch et al [103]. This difference is consistent with the 

effect of beam energy on dose per unit PKA, as these latter two studies used relatively 

low energies for calculations. The E/PKA conversion factors quoted by Barnaoui et al 

are higher than those of the current study for the PA projection, but lower for the left 

lateral projection. The field sizes used by Barnaoui – a potential explanation for this 

variation - were not stated. It should be noted that four of the previous studies 

described here also used PCXMC Monte Carlo simulations to calculate E/PKA 

conversion factors. The figures reported by Kawasaki et al [116] were based on 

physical measurements. These figures are close to those of the current study for the 

1 year phantom, but lower for the new born. The lateral/PA E/PKA ratio is similar, 

albeit slightly higher, than calculated in the current study. 
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Onnasch et al 
PA+Lat 

combined $ 

Barnaoui et al 
PA/lateral $$ 

Karambat-sakidou 
et al PA+Lat 
combined $ 

Schmidt et al 
PA/lateral $ 

Kawasaki et al 
PA/Lateral $$ 

This study 
PA/lateral $$ 

Beam energy 65 kV, 3mm Al 
70 kV, 3.0 mm 
Al, 0.3 mm Cu 

 
65 kV, 3mm 

Al 
70-73 kV, 1 mm 
Al, 0.4 mm Cu 

70 kV, 3.0 mm 
Al, 0.3 mm Cu 

P
h

a
n

to
m

 a
g

e
 (

y
e

a
rs

) 0 3.09 3.5/3.5 3.7 2.05/2.34 2.2/4.0 3.5/5.28 

1 1.03 2.1/1.6 1.9 0.82/1.16 1.4/2.7 1.60/2.62 

5 0.49 1.05/1.3 1.0 0.42/0.64  0.84/1.69 

10 0.29 0.65/0.8 0.6 0.24/0.38  0.49/1.11 

15 0.17 0.35/0.4 0.4 0.13/0.22  0.26/0.48 

30 0.13 - - 0.10/0.16  0.20/0.39 

 

Table 4.5: Comparison of effective dose per unit PKA conversion factors, between this and 

previous publications. Note: $=ICRP 60 weighting factors, $$=ICRP 103. 

 

The only authors to use an alternative Monte Carlo code were Streulens et al [88], 

who used MCNP-X (v2.5.0), along with two voxel phantoms based on cross sectional 

images, known as ‘Laura’ and ‘Golem’ [265]. This allowed doses to be calculated 

separately for males and females (not possible using PCXMC). The analysis was 

restricted to adults, with no paediatric phantoms used. Simulations were conducted 

using a range of beam energies, represented by HVL, from 2.5 to 11.5 mm, allowing 

detailed comparison of the calculated effect of x-ray energy on doses. The overall 

pattern is the same for both studies, i.e. dose per unit PKA increases with increasing 

energy, tending to level off above around 9 mm Al. There is a close agreement in the 

magnitude of this variation in the PA projection (0-13%), though not for the left lateral 

projection, in which Streulen’s data suggest a 15-45% greater increase in dose per 

millimetre increase in HVL. Despite this, estimated effective dose for the lateral 

projection in the current study was higher by 38%, while for the PA projection, figures 

varied by around 2% (Figure 4.43). Streulens et al calculated doses to individual 

organs, as well as effective dose. There is no overall pattern of agreement between 

studies; heart dose per unit PKA was higher in Streulens’s paper, while breast dose 

was lower. The overall agreement was approximately ±30%.   
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Figure 4.43: Effective dose per unit PKA for two projections, calculated over a range of beam 

energies, by the current study and by Streulens et al. 

 

4.4: Conclusion 

The relationship between kerma area product and patient dose was found to vary 

sufficiently with beam angle, beam energy, phantom size and field size that these 

parameters need to be taken into account in dose estimations derived from PKA. 

Although a measure of patient size is usually recorded for clinical examinations (e.g. 

height, mass, age), details of beam angle and energy are not routinely recorded. 

These parameters must therefore be estimated, based on examination type and 

equipment type and uncertainty in these estimates must be taken into account. A 

somewhat smaller impact was found for changes in focus-skin distance, and anode 

angle. The largest variation in dose for a given value of PKA was for the breasts in the 

lateral projection. Even small changes to beam angle, field size or central ray 

location can result in a large difference in dose. 
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Chapter 5: Dosimetry system development 

The Monte Carlo simulation data described in Chapter 4 were represented in a large 

number of table matrices describing simulations done at 1656 discrete values of 

beam angle, 36 beam energy combinations and six different phantom sizes. 

Essentially, these are conversion factors, representing organ doses per unit PKA 

(H/PKA). Similar tabulated conversion factors have been previously published [84, 86, 

88], albeit over a more limited range of conditions. This chapter describes the 

incorporation of Monte Carlo data into a MATLAB-based dosimetry system, called 

‘Cardiodose’, capable of rapid estimation of individual organ doses for large cohorts 

by picking the right conversion factor. There are two reasons why this dosimetry 

system was developed, as opposed to running individual Monte Carlo simulations for 

each examination for cohort members: (1) MC simulations are slow to set up and 

execute, and (2) PCXMC is a relatively expensive piece of software that can only be 

installed on one computer. A dosimetry system that utilises MC data, but does not 

require doing new simulations would not require a PCXMC licence, improving 

accessibility. Future versions of the dosimetry system can be written as self-

executable files, not requiring MATLAB either. Ultimately, the development of 

Cardiodose paid dividends, as the dose estimation process needed to be repeated 

several times during the study as new data were obtained. 

The Cardiodose function was designed to be able to estimate organ doses for any 

specified projection angle, x-ray beam energy or patient size. If beam angle or 

energy data were not available, then some way of estimating these parameters 

based on examination and equipment type was needed. The gathering of data on 

beam energy and projection angles used in clinical practice is described in Chapter 

6: Supporting information.  

 

5.1: Beam angle 

Conversion factors to relate PKA to organ doses were stored in the form of tables with 

23 rows and 72 columns. The rows represented cranio-caudal angles from 55° 

caudal to 55° cranial, in 5° intervals, while the columns represented rotational angles, 

ranging from 0 to 360°, also in 5° intervals. A simple linear scaling approach was 

used to convert the specified beam angle to the correct table row/column number. 

For specified beam angles between the 5° intervals, a linear interpolation approach 
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was used. This is relatively straightforward and has the advantages of computational 

simplicity and fidelity to the original simulated data. The main disadvantages of linear 

interpolation are the large volume of data required (all of it) and the problem of high 

simulation errors for certain tissues resulting in noisy data. The latter problem could 

be addressed by running MC simulations with a greater photon count, although this 

is even more time consuming.  

An alternative to the above approach involved encoding the 23x72 tables as 

polynomial equations. A polynomial describes a function (i.e. organ dose as a 

function of beam angle) as the sum of a number of ‘building blocks’, each raised to a 

non-negative integer power and multiplied by a coefficient [266]. The degree of the 

polynomial (n) is represented by the building block raised to the highest power. 

𝐷 = 𝑐𝑛𝑥𝑛 + 𝑐𝑛−1𝑥
𝑛−1 + ⋯+ 𝑐2𝑥

2 + 𝑐1𝑥
1 + 𝑐0𝑥

0 

Equation 5.17 

In theory, even complex functions can be described by a polynomial equation, 

although the number of degrees required may be large – in this case between 8 and 

20 (Figure 5.1). The polynomial method has the advantage of smoothing out noisy 

data, reducing the need to run lengthy simulations.  Additionally, even complicated 

polynomials require much less file-space than tables. Although the idea of describing 

a large table of numbers in a single equation is rather elegant, there are several 

significant problems with the polynomial approach. Firstly, the beam angle in two 

directions must be accounted for (rotational and cradio-caudal). It is possible to 

create a 2-dimensional surface polynomial, although this is significantly more 

complex and would require so many elements it would eliminate any advantages of 

reduced data storage. Secondly, the evaluation of polynomials is computationally 

slower than linear interpolation, increasing the time to estimate doses for a large 

number of examinations. A third problem was the difficulty in applying further 

correction factors to adjust for beam quality and patient size. It was principally for this 

latter problem that the polynomial method was abandoned in favour of linear 

interpolation. 
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Figure 5.1: Variation in dose with beam angle can be described using a polynomial 
equation. Circles represent data from Monte Carlo simulations at discrete beam 

angle intervals. 

 

For each examination type, the range of beam angles used was encoded in an n by 4 

matrix for incorporation into the dosimetry system, where n represents the number of 

different beam angles used. An example is shown below:  

[
90 0 0.5 𝑡
180 0 0.4 0
120 10 0.1 𝑡

] 

The first and second columns represent the rotational and cranio-caudal beam 

angles respectively. The third column represents the proportion of the total PKA spent 

in each projection. This could be adjusted to match projections used at different 

hospitals. The fourth column was added as a later modification and allows reduction 

of dose by a particular specified factor. This was used to correct for attenuation for 

the presence of the x-ray table (t). The estimation of this ‘table reduction factor’ is 

described in section 6.2.6. 

Each procedure type was given its own beam angle matrix. The values used in the 

matrix were based on data described in the following chapter on supporting 

information. The matrices are stored in the MATLAB function code and can easily be 

edited (see third page of appendix 4; matrices are written on a single line, with 

semicolons separating each row of the matrix, and commas separating the columns). 
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5.2: Beam energy 

The dosimetry system needed to take beam energy into account. As with projection 

angle, the simplest option would be to linearly interpolate between the simulated 

energy levels to produce a dose estimate at any specified beam quality. Again, this 

has the disadvantage of requiring a huge volume of data to be incorporated into the 

dosimetry system – 36 big tables of data, each about 60 kilobytes in size, for each 

phantom size and each organ type. A second approach involves starting with dose at 

a single ‘reference’ beam quality and applying a conversion factor to adjust for any 

other beam quality. The advantages of this approach include reduced data storage 

requirements, and that simulations at the ‘reference’ beam quality could be run using 

a very large number of photons, leading to reduced simulation errors and less noisy 

data. This approach also allows different field sizes to be incorporated as different 

sets of ‘reference’ data. A further advantage is that correction factors could be 

designed to account for other beam quality parameters (i.e. not just tube potential 

and copper filtration). A number of immediate questions arise: (1) how should beam 

quality be described?  (2) What should the ‘reference’ quality be? (3) Could a single 

conversion factor be applied for all beam angles, or would it need to vary with beam 

angle? These questions are addressed in the following sections. 

 

5.2.1: Half value layer encoding 

Even if inherent filtration is assumed to be fixed, accounting for both added filtration 

and kVp results in complicated conversions. For example, dose variation with added 

filtration is also dependent on kVp and vice versa. As with beam angle, the 

combination of kVp and filtration can be treated as a surface and described by a 

multi-variable polynomial equation. However, if other factors such as voltage ripple 

and inherent filtration were also taken into account, then these conversions would 

become extremely complex. As mentioned in the Computational Dosimetry chapter 

(section 4.2.2), beam energy can also be described by half value layer (HVL). This 

addresses the above problem by describing beam quality as a single figure that 

allows all influencing factors to be taken into account.  

The reference HVL was set at 4.8 mm Al, corresponding to 70 kV, 2.5 mm Al and 0.2 

mm Cu filtration. This ansatz was chosen simply because it represented a relatively 

central beam quality from which to convert to other beam energies (values seen in 



156 
 

clinical practice appeared to range from around 3 to 6.5 mm Al – see Chapter 6). The 

errors associated with correction to other beam energies were calculated as the 

reference HVL was adjusted from 1.78 to 9.99 mm Al (where errors were defined as 

a deviation from values obtained from doing an individual Monte Carlo simulation). 

Such errors were indeed minimal at 4.8 mm, though this is to some extent immaterial 

when beam angle specific energy conversions are applied, in which errors are 

consistently very small. The HVL conversion factor was applied in the form of a 4th 

order, single variable polynomial equation. 

 

5.2.2: Beam angle dependence 

As seen in the Computational Dosimetry chapter (section 4.2.2), the effect of beam 

energy varied quite strongly with phantom size and organ type, therefore correction 

factors needed to be specific to each. In previous Monte Carlo based attempts at 

dosimetry for cardiac catheterizations by Schmidt et al [86] and Streulens et al [88], 

different conversion factors were used to adjust for beam quality for each of the 

beam angles represented. In general, beam quality correction factors for organs that 

are fairly evenly or symmetrically distributed such as the lungs, lymph nodes or bone 

marrow, are relatively insensitive to changes to beam angle. For organs that are 

more localised on one aspect of the body such as the heart and breasts, the 

correction factor is considerably more sensitive to beam angle.  

Three approaches were investigated: 

1. A single conversion factor polynomial for all 1656 beam angles based on the 

mean value of conversion factors across these angles. 

2. A partially beam-angle-specific conversion factor, with a separate polynomial 

for each of the 23 different cranio-caudal beam angles, but each one of these 

averaged over the range of rotational beam angles (or vice versa). 

3. Fully beam angle specific conversion factors, with a separate polynomial for 

each of the 1655 different simulated beam angles. 

The first and second approaches were found to result in large deviations from the 

results of individual simulations with the specified beam energy, especially for the 

heart and breasts. The fully beam angle specific approach was considerably more 

accurate (Figure 5.2).  The computational time required to calculate dose to a 
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particular organ was found to be identical for all three methods (0.012 s). The size of 

the correction factor files was 1 kilobyte (kB) for the first approach, 6kB for approach 

two, and 367 kB for approach three. The files are much bigger, but there is no 

tremendous burden associated with having beam angle specific energy corrections. 

It would be desirable to have a simple dosimetry system, but ultimately accuracy (in 

terms of fidelity to the original Monte Carlo simulation data) is the most important 

consideration. Therefore the beam angle specific approach was adopted for all 

organs. 

As shown in Figure 5.2, the beam angle specific correction approach still results in a 

small level of ‘error’ in the sense of a difference between doses calculated by the 

dosimetry system and those obtained from doing individual MC simulations. This 

error is due to the use of half value layer to describe beam energy as opposed to 

using separate kV and filtration figures. Struelens et al [88] claim that dose estimates 

derived from the ‘HVL method’ deviate a maximum of 5% from those derived from 

the exact spectrum. This is encouraging, though a separate analysis was conducted 

to confirm this. 

 

Figure 5.2: Different approaches to beam energy correction for heart dose. 
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A function was written in MATLAB to compare doses calculated using each of the 36 

separate kVp and Cu combinations with those calculated using corresponding HVLs. 

This process was carried out across the full range of beam angles in the rotational 

direction (0-355° in 5 degree intervals) and 11 cranio-caudal beam angles (-50°, to 

+50° in 10° intervals) and for each phantom size and for each organ type. The errors 

resulting from the use of HVL as opposed to separate kV and Cu figures decreases 

with increasing HVL and increases with increasing phantom size. An example of 

these errors is shown in Figure 5.3, for bone marrow dose. The largest errors of over 

10% occur for high kV/low Cu combinations for 56.3 and 73.2 kg phantoms. For 

HVLs of greater than 5.5 mm, errors are generally less than 5%. Such errors were 

considered an acceptable price to pay for the computational simplicity and greater 

flexibility of the HVL approach. 

 

Figure 5.3: Dosimetry system ‘errors’ as a function of HVL for bone marrow dose 
(mean across all rotational beam angles, 0 degree cranio-caudal rotation). 

 

5.3: Patient size 

The dosimetry system also needed to be able to adjust for variable patient size. The 

relationship between dose and patient size can be assessed by age, mass (weight), 
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height, or body mass index (BMI). Age and mass data were available for nearly all 

patients in the cohort, but height information (and therefore ability to calculate BMI) 

was only recorded at a limited number of centres. Characterising patients by age 

would need to assume they were of ‘normal’ size (i.e. close to the 50th centile on 

growth charts) and not under or overweight. Secondly, problems arise when 

accounting for prematurely born patients who effectively have a negative age. This is 

not a problem when characterising by mass, which can be lower than 1 kg for 

extreme low birth weight (ELBW) neonates [254, 267, 268]. Clearly the same body 

mass can be achieved by being tall and asthenic or being short and sthenic, meaning 

mass characterisation could still be potentially inaccurate.  

As discussed in the Computational Dosimetry chapter (section 4.2.3), a power law 

was found to provide the best description of the relationship between dose and 

phantom size. It was found that the coefficient (a) and exponent (b) of this 

relationship varied with beam quality. In principle, a conversion factor (cfm) based on 

this power law could be applied to the dose estimate at a particular ‘reference mass’ 

to allow conversion to dose at any other specified mass, providing that a and b were 

themselves a function of beam quality, i.e. 𝑐𝑓𝑚 = 𝑎 ∙ 𝑚𝑏. This beam quality adjusted 

power law correction factor was investigated by comparing actual simulated doses at 

a particular mass with those estimated using the correction factor. Large errors were 

found (Figure 5.4), principally because the values of a and b also varied with beam 

angle. Effectively, the curve representing dose as function of beam angle changes 

shape as mass is varied. To address this problem, separate power law conversion 

factors for each possible beam angle were calculated. This approach was also found 

to be inadequate, mostly due to the imperfect fit of the power law curve to actual 

data. A further modification of the power law, in the form 𝑐𝑓𝑚 = 𝑎 ∙ 𝑚𝑏+𝑐 was also 

investigated but this tended to significantly underestimate doses at large masses. If 

mass is not available then patient age would need to be used to represent patient 

size. Using the power law correction, the dose tends to infinity as patient age 

approaches zero. 

Because of these errors, the conversion factor approach to adjusting for patient size 

was abandoned and replaced by interpolation between the discrete simulated mass 

levels. This approach has the advantages of simplicity and the avoidance of gross 

errors, though predictions of negative doses for larges masses still occur. Different 
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methods of interpolation were investigated; linear interpolation, power law 

interpolation, and a modified power law of the form 𝑎𝑏+𝑐. An example of these 

methods is shown in Figure 5.5 for bone marrow. Clearly the modified power law 

method provides a very poor fit to simulated values. The simple power law provides a 

good fit to simulated data below 30 kg, but begins to underestimate dose beyond this 

level. All size-adjustment models predict doses that continually fall, beyond the 

largest simulated patient size of 73.2 kg (30 years). This results in the prediction of 

negative doses for especially large patients (i.e. above 100 kg). To avoid this, no 

further adjustment for patient size was applied for patient masses of 80 kg or more. 

 

Figure 5.4: Actual simulated effective dose at 1 year (9 kg) (green) plotted against estimated 
effective dose calculated by conversion from dose polynomial at 10 years (32 kg) using 

beam quality specific power law (blue). 
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Figure 5.5: Various interpolation methods to obtain doses between simulated values. 

 

5.4: Field size 

Different field sizes were incorporated as different sets of ‘reference data’. This 

allowed more accurate dose estimation for examinations in which the pulmonary 

vessels need to be visualised (many examinations including pulmonary artery 

stenting, valvuloplasty, PDA occlusions and various diagnostic procedures). The only 

limitation of including extra field sizes was that energy corrections were calculated for 

the ‘standard’ field size, rather than for other sizes. Upon investigation, it was found 

that there is indeed a small field size dependence on energy corrections, though the 

errors associated with using a single energy correction for all field sizes was 

relatively small compared with not correcting for field size at all. Thus three extra field 

sizes were added, representing 1 cm and 2 cm larger fields and a ‘large’ field in 

which the whole thorax was included. 

 

5.5: Further modifications 

The Cardiodose function was modified several times during the study. The first 

version used the polynomial approach to selecting beam angles and non-beam-

angle-specific energy corrections. The second version replaced the polynomials with 
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linear interpolation, while the third added beam-angle-specific energy corrections. 

The ability to calculate doses based on age if no mass was recorded was added. 

Extra organs were gradually added during development as well as different field 

sizes. All field sizes use the same energy corrections as the ‘standard’ field size. A 

further modification was to utilise biplane PKA figures, where available. Initially, the 

Cardiodose function had a separate piece of code to calculate the dose to each 

organ. At first, the methods used for energy corrections were not the same for each 

organ (i.e. some were beam angle specific, others were not). Once these were 

standardised, a single for loop was created to calculate dose to all organs. This did 

not significantly affect the speed of the function (0.143, verses 0.148 seconds per 

line) but did reduce the length of code by around 50% and reduce the number of files 

needed. 

 

5.6: Summary of dosimetry system 

Cohort data is inputted in the form of an Excel file containing anonymous ID number, 

PKA (either total or separate frontal and lateral figures), mass (or age if not available), 

examination type, field size, beam energy (defined by HVL) and (if known) precise 

beam angles. The Cardiodose function estimates doses to organs through the 

following process: 

1. Dose per unit PKA at the desired beam angle is obtained by linear interpolation 

between conversion factors at 5° intervals. This process is done for each of the 

simulated patient sizes, to give 6 figures representing dose per unit PKA at the 

specified beam angle for a beam energy of 4.8 mm Al. If beam angles are not 

specified, these are estimated based on examination type. This process is covered in 

the next chapter. 

2. Apply the beam energy correction factor based on the HVL polynomial to each of 

the 6 figures calculated in step 1, to adjust for beam energies other than 4.8 mm Al. 

The process of determining the correct HVL to use is also described in the next 

chapter.  

3. Linear interpolation between doses at the 6 patient sizes to give dose per unit PKA 

at the specified mass. If mass isn’t specified, patient age is used instead (again, 

using linear interpolation). 



163 
 

4. Multiply this figure by the PKA for specified beam angle. If the beam passes 

through the table, a transmission factor is applied, unless this is already accounted 

for. 

5. Repeat for all beam angles used in the examination. The total examination dose is 

obtained as the sum of doses from different beam angles. 

6. Repeat steps 1-5 for each organ. 

The only ‘errors’ (in the sense that results differed from those obtained from running 

an individual PCXMC simulation using the same parameters) were due to the use of 

HVL to describe beam quality as opposed to the exact spectrum.  

 

5.7: Conclusion 

A dosimetry system was developed that utilises Monte Carlo simulations to provide 

rapid organ dose estimates based on limited data recorded at the time of the 

examination. The dosimetry system requires information on beam angles and beam 

energy used in clinical practice to be incorporated. The gathering of these data will 

be described in the next chapter.  
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Chapter 6: Supporting Data for Dosimetry System 

The dosimetry system described in the previous chapter requires information on 

projection angles and beam energy used for clinical examinations of cohort 

members. Unfortunately, such information is difficult to acquire and is rarely reported 

in published studies, or quoted too imprecisely. For example, Streulens et al [88] 

state that beam energy used in cardiac fluoroscopy, as represented by half value 

layer,  is between 2.5 and 11.5 mm Al – a range encompassing practically every 

possible combination of exposure factors. This chapter is concerned with the 

gathering of relevant information, estimating the central values of beam energy and 

projection angles, analysis of how reliable these estimates are, and analysis of how 

variation from expected values may affect calculated organ doses. The methodology, 

results and discussion of the beam energy analysis will be presented first, followed 

by the same for projection angles.  

 

6.1: Beam energy 

The energy of x-ray photons used in fluoroscopy (or any other form of x-ray imaging) 

is defined by a number of parameters described below:  

Peak tube potential: Measured in kilovolts (kV). Defines the maximum kinetic energy 

of electrons, in kiloelectronvolts (keV) arriving at the anode and thus available for 

conversion into radiant energy of x-ray photons [43]. All fluoroscopic equipment 

allows tube potential to be varied. Usually, the machine adjusts kV, along with tube 

current, automatically to reflect attenuator thickness in order to maintain an 

approximately constant signal-to-noise ratio [16]. 

Filtration: Both added and inherent filtration (i.e. the x-ray tube housing) is designed 

to selectively absorb low energy x-rays, resulting in a ‘hardening’ of the x-ray beam 

and an increase in mean photon energy. Aluminium filtration (Al, Z=13) is usually 

kept constant and designed to ensure a minimum thickness of 2.5 mm in order to 

remove very low energy photons. In modern machines, additional copper (Cu, Z=29) 

filtration is used. The thickness of copper is sometimes varied automatically, tending 

to decrease as tube potential is increased [269]. In other machines, added filtration is 

maintained at a constant level determined by program mode. For Siemens 

equipment, the capability of variable filtration, known as “CAREfilter” and first 
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introduced in 1994, is utilised for all “Artis” equipment (Axiom and Zee) [270].  Other 

filtration materials are employed by Toshiba and Shimadzu, including Gold (Au, 

Z=79) and Tantalum (Ta, Z=73) [271]. Older machines tend to lack the capability of 

variable filtration, though allow still tube potential to be adjusted. 

Voltage waveform: X-ray tubes utilise an alternating current. A rectifier is used to 

ensure voltage at the anode stays positive with respect to the cathode, avoiding 

electrons bombarding the cathode during the reverse cycle [43]. Voltage is never 

constant, however, tending to ‘ripple’ in a manner dependent on the method of 

rectification. Ripple ranges from 100% for a single phase, self-rectified generator, 

down to less than 10% for 3-phase/12 pulse or high frequency inverter generators 

[16]. All the equipment used for examinations in this study used high frequency 

generators. The impact of voltage ripple on beam energy was considered negligible.    

Anode angle: Average photon energy increases slightly as anode angle is 

decreased, presumably as photons generated within a narrow-angle anode must 

pass through a greater thickness of tungsten before exiting. For example, the HVL 

(half value layer) calculated using SpekCalc (described in section 4.2.2), was 2.13, 

2.07, 2.04, 2.01, and 1.98 mm Al at 8, 10, 12, 14 and 16° respectively (60 kV, 2.5 

mm Al). Where the beam is heavily filtered, the impact of anode angle on beam 

energy is negligible. Despite this, information on anode angle is readily available 

from manufacturers’ specifications, therefore can easily be incorporated into beam 

energy estimates. The impact of anode angle was briefly discussed in Chapter 4 

(section 4.2.2). 

A number of sources of information on the beam energies used in cardiac 

catheterizations were investigated. Firstly, patent applications [272], used equipment 

vendors such as medwow.com [253] and sales brochures [270] provide some details 

on the anode angle, generator type, tube potential range and filtration, though no 

details on the actual thickness of attenuator at which values change. Secondly, an 

American Association of Physics in Medicine task group (AAPM 125) [271] 

conducted a study investigating automatic fluoroscopic controls, though for a limited 

range of machines (one per manufacturer). The data provided on exposure 

conditions were insufficient and there is no guarantee that the machines tested by 

the AAPM group were set up in the same way as those used for examination of 

cohort members. The group did not investigate both acquisitions and fluoroscopic 
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exposures (in fact it is unclear which of these imaging modes was used). Likewise, a 

study by Li [269] provides some information concerning the operation of a single 

machine (Siemens Axiom Artis dBA) but no others. A third source of information was 

quality assurance (QA) reports, authored by local medical physics staff around the 

UK and obtained with the cohort data. These reports generally focus on 

characteristics such as threshold contrast detail, comparison of nominal and 

measured kV, image distortion and dose rate. Tests of the variation in output with 

attenuator thickness (usually sheets of copper), where reported, were insufficiently 

detailed. 

More information was required for the purposes of this study. Two approaches were 

used; (1) An experimental method in which machine response to variable 

thicknesses of water equivalent material was investigated, and (2) obtaining data 

recorded for clinical examinations, in the form of structured dose reports or image 

metadata. Analysis of variation of kV, Cu and associated HVL was carried out for 

both patient age and mass (structured dose reports) and PMMA thickness 

(experimental measurements). Information on older equipment was gathered from 

previously published research, especially that relating to paediatric cardiac 

catheterizations. 

It should be noted that even with these data, uncertainties still exist. The kVp and 

filtration values chosen by the machine depend on user-selected program mode 

(different settings designed to optimise for various examination types and patient 

sizes). These program modes may be changed by users or with software upgrades 

during the lifetime of the machine and were not always the same at different 

hospitals. Furthermore, x-ray output may vary over the lifetime of the tube with anode 

wear. 

 

6.1.1: Methodology 

The following sections describe the methodology for physical measurements and 

obtaining data from structured dose reports and image metadata. In both cases, 

filtration and tube potential were combined to produce a single HVL using Spekcalc. 

A description of this software, along with the advantages and limitations of the HVL 

method are given in Chapter 4. 
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1. Physical measurements: 

The response of fluoroscopic equipment to changing patient size was experimentally 

investigated using a methodology similar to the previously mentioned AAPM report 

[271] (Figure 6.1). Sheets of polymethylmethacrylate (PMMA, i.e. plexiglass) water 

equivalent material were used to simulate a patient of varying thickness (the density 

of PMMA is 1.18 g/cm3). The equipment types investigated were: 

1. Siemens Axiom Artis BC biplane unit with image intensifier detectors.  

2. Siemens Artis Zee biplane with flat panel detectors 

The c-arm was positioned in the vertical orientation with the x-ray tube pointing 

upwards (i.e. typical of a PA projection). The table top was positioned to be 15 cm 

below the isocentre of the beam. The table cushion was left in place. Slabs of PMMA 

material were added in 2 cm intervals up to a maximum of 26 cm. At each thickness, 

fluoroscopic, and then digital acquisition exposures were initiated and maintained 

until a steady value of tube potential and added filtration was reached (about 3 

seconds). The value of both figures was recorded. When the maximum thickness of 

PMMA was reached, the process was reversed, with slabs being removed one by 

one. This was to determine if the same filtration and tube potential values were used 

for the same PMMA thickness depending on whether the thickness had increased or 

decreased to that level. Anecdotal evidence suggested they would not be the same. 

Both gridded and non-gridded conditions were evaluated along with different field 

sizes and imaging modes.  
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Figure 6.1: Experimental set up for physical measurements. Figure credit: author 

 

2. Structured dose reports and PACS images: 

A second methodology involved obtaining details on tube potential and filtration 

recorded for cardiac catheterizations carried out in clinical practice. Since 2009, 

Siemens fluoroscopic equipment automatically records a ‘CAREreport’ [270], which 

includes details of dose (PKA and, sometimes, skin dose), beam angle, field size, 

frame rate, tube potential and added copper filtration for each digital acquisition. 

More limited details are recorded for fluoroscopy - doses are reported for each bi-

plane output but not for individual beam angles. The Axiom Artis records kV but not 

filtration, while the Artis Zee records neither, regrettably. Program mode is not 

recorded in dose reports. In addition to structured dose reports, information on tube 

potential and program mode could be obtained from images stored on the PACS 

network. This information was easier to obtain, but lacked details of added filtration 

used for examinations, and patient mass.  

 

6.1.2: Results 

Results are discussed below, first for the physical measurements (presented 

separately for the two machines studied), followed by the results of the dose report 

analysis. 
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Physical measurements - Axiom Artis: For acquisitions (Figure 6.2) an increase in 

tube potential with PMMA thickness was found. This increase was relatively steady 

and monotonic, ranging from 60 to over 90 kV. Added Cu filtration correspondingly 

decreased from 0.9 to 0.0 mm. For fluoroscopic exposures (Figure 6.3) this variation 

occurred in a more stepwise manner, with tube potential remaining below 60 kV up to 

a thickness of14 cm of PMMA before increasing to 66 kV at 16 cm. When the 

experiment was reversed, the 66 kV potential was maintained down to 12 cm PMMA 

thickness. Only three values of copper filtration were used for fluoroscopy - 0.3, 0.6 

and 0.9 mm. Again there was a mismatch between results obtained for increasing 

and decreasing PMMA thickness, with 0.9 mm Cu being maintained to a greater 

thickness during the increase phase. 

Where potential and filtration values were converted into a single HVL figure, a fall in 

HVL with increasing PMMA thickness was seen for acquisitions (Figure 6.4), but not 

for fluoroscopy. In the former case, the fall takes on a zigzag form, though could be 

reasonably approximated by a linear model. The highest value of HVL recorded was 

6.3 mm Al, which occurred for cine-acquisitions at the smallest PMMA thickness (60 

kV, 0.9 mm Cu) and for fluoroscopy between 14 and 20 cm of PMMA (66 kV, 0.6 mm 

Cu). The HVL for fluoroscopy remained above 6 mm Al up to a thickness of 22 cm 

and never dropped below 5.0 mm Al. The lowest HVL was 3.0 mm Al, which 

occurred for acquisitions at 22 cm of PMMA (82 kV, 0.0 mm Cu). The mean HVL 

across all thicknesses was 4.7 mm for acquisitions and 6.0 mm for fluoroscopy. 

A weighted sum of both fluoroscopy and acquisition exposures was also calculated 

(Figure 6.4). Where the proportion of fluoroscopy was high (over 90%), the HVL was 

almost constant at around 6 mm Al, from 2 to 20 cm of PMMA, before falling to 

around 5.0 mm. This change was associated with the machine switching from 0.6 to 

0.3 mm of Cu filtration for fluoroscopy. As the proportion of fluoroscopy is decreased, 

the HVL begins to fall with increased PMMA, though even for a fluoroscopy 

proportion of 70% the HVL did not fall below 5.6 mm for thicknesses less than 20 cm. 
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Figure 6.2: Copper filtration and tube potential as a function of PMMA thickness for 
acquisitions. Values acquired while increasing or decreasing PMMA thickness are shown 

 

 

Figure 6.3: Copper filtration and tube potential as a function of PMMA thickness for 
fluoroscopy. 
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Figure 6.4: Filtration and potential combined as single half value layer figure (increasing 
PMMA thickness) along with three different weighted sums of fluoroscopy and acquisitions. 

 

When the field size was decreased from 22 cm to 13 cm, tube potential and filtration 

changed more rapidly with increasing PMMA thickness (Figure 6.5), though the 

overall HVL was approximately the same between field sizes. When the antiscatter 

grid was omitted, the machine became relatively insensitive to changes in attenuator 

thickness, maintaining values of 58 kV and 0.9 mm Cu for most thicknesses of 

PMMA. 
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Figure 6.5: Variation in fluoroscopic tube potential and added filtration for two different field 
sizes. 

 

Physical measurements - Artis Zee: In contrast to the Axiom Artis, the Zee adjusts 

fluoroscopic tube potential while usually maintaining a constant value of added 

copper filtration, which depends on the imaging mode. Three imaging modes are 

available, “FL card”, “FL – card” and “FL + card”. At Hospital 2, these modes 

correspond to added copper filtration of 0.2, 0.3 (0.6 for patients above 70 kg) and 

0.1 mm respectively (D .Smith, Personal Communication). The machine defaults to 

“FL – card”, though the radiographer can switch to other modes to improve image 

quality if needed. At Hospital 4, these values were set at 0.6, 0.9 and 0.3 mm 

respectively.  

As with the Axiom Artis, the tube potential was found to increase with attenuator 

thickness, but reached a plateau after which it usually remained constant (Figure 

6.6). Where fluoroscopic kV and Cu values were converted into a single HVL figure, 

the pattern was the same as that for kV, reaching a plateau value and then remaining 

constant (Figure 6.7). Depending on imaging mode, HVL ranged from 3.1 to 8.6 mm 

Al, based on the Cu filtration at the Hospital 4. 

Changing frame rates for a given program did not impact the way in which the 

machine adjusts kV and Cu with attenuator thickness. Increasing magnification 

resulted in a slightly greater kV for a given thickness of PMMA, reaching the plateau 



173 
 

value at a lower thickness. This is an interesting finding given that the Zee uses flat 

panel detectors (FPDs), rather than image intensifiers. In the latter case, decreasing 

the field size results in decreased minification gain, meaning output must be adjusted 

to maintain signal-to-noise ratio [98]. For FPDs, magnification can be achieved 

without the need to adjust exposure factors, though as noted by Nickoloff, 

manufacturers do tend to utilise greater photon fluence for smaller field sizes to 

compensate for the perceived reduction in SNR [98]. 

Only tube potential was recorded for acquisitions. As with fluoroscopic exposures, kV 

increased with PMMA thickness up to a plateau value and then remained constant. 

The lack of data on filtration prevented the calculation of HVL for acquisitions.  

 

 

Figure 6.6: Variation in fluoroscopic tube potential with PMMA attenuator thickness for 
Siemens Artis Zee machine. 
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Figure 6.7: Variation in fluoroscopic HVL with PMMA thickness for three different imaging 
modes. Data for the ‘FL-card’ are shown with and without an antiscatter grid fitted. 

 

Results: Structured dose reports and PACS images 

For Hospital 4, dose reports from 49 examinations were obtained, comprising a total 

of 387 acquisitions. These reports are not automatically sent to PACS and could only 

be accessed from the machine console in the catheterization laboratory. In addition 

to these, information for 169 examinations comprising 1307 acquisitions and stored 

sequences of fluoroscopy (known as ‘fluoro grabs’) was obtained from images stored 

on the PACS network. This gave a total of 218 examinations comprising 1694 

acquisitions and fluoro grabs. These procedures were all conducted on the same 

Axiom Artis machine as used for the physical measurements described above. For 

Hospital 2 (Artis Zee, flat panel detectors), dose reports for 64 examinations 

comprising 324 acquisitions were obtained. Reports are sent to PACS and include 

patient age but not mass. Procedure type was recorded, but was found to be 

inaccurate.  

 

Axiom Artis machine at Hospital 4: For acquisitions, filtration (dose reports only) 

again ranged from 0.0 to 0.9 mm Cu, while tube potential ranged from 60 to 125 kV. 

Most acquisitions were at two frame rates – 15 and 30 per second. At Hospital 4, the 

latter frame rate was reserved almost exclusively for digital subtraction angiography 

(DSA) runs. Across all angles, the mean thickness of added copper filtration was a 
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little higher for DSA compared to non-DSA acquisitions (0.19 verses 0.14 mm, 

p<0.01), with tube potential being correspondingly lower (67.5 verses 72.0, p<0.01). 

A relatively large proportion of the non-DSA acquisitions were in oblique projections, 

however. Where tube potential was compared for the same projection, mean kV was 

almost identical (e.g. 66.5 verses 66.3 for PA). The relationship between tube 

potential and patient age was best analysed by considering different beam 

projections separately. In each case, a general trend of increased kV with increasing 

patient age was seen (Figure 6.8), although variation in kV was larger between 

different projection angles than between ages for the same angle. Data for patients 

above 15 years was limited, therefore were combined into a single group. 

 

 

Figure 6.8: Variation in mean tube potential with patient age for different beam angles. Error 
bars represent ± 1 standard deviation for the ‘all angles’ group. RAO/LAO = right/left anterior 

oblique. 

  

Analysis of HVL requires information on both tube potential and filtration. The latter 

figures were not recorded on PACS images, which greatly limits the sample of 

examinations from which overall beam energy can be analysed. To address this, the 

results of the experimental methodology previously described were combined with 
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the dose reports to provide estimates of filtration for examinations where it was not 

recorded. From the dose reports, a range of tube potential values were seen for each 

Cu thickness. A starting point for estimating the potential at which filtration changes 

was midway between the mean kV values for each Cu thickness (red markers in 

Figure 6.9. These figures were compared to corresponding figures derived from 

experimental methods, using the mean of both increasing and decreasing PMMA 

thickness phases (black markers in Figure 6.9). The agreement between these two 

methods was very high, with variation no greater than 1.3%. Taking the mean of the 

two methodologies yields estimated tube potentials above which added filtration of 

0.0, 0.1, 0.2, 0.3 and 0.6 mm Cu is selected as 80, 68, 66, 64 and 61 kV respectively. 

Tube potentials of less than 61 kV were assumed to be associated with 0.9 mm Cu. 

This allows filtration and HVL to be estimated in cases where only the tube potential 

was known and increases the sample of procedures from which beam energy can be 

inferred from 49 to 218 examinations. 

 

 

Figure 6.9: Tube potential ranges for different levels of added copper filtration derived from 
structured dose reports. Up/down bars represent the range of tube potentials at which a 

particular thickness of copper filtration was associated. 

 

The results of these estimates are shown in Figure 6.10. It is evident that there is 

less variation in HVL between different beam angle projections than was apparent for 
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tube potential (Figure 6.8). This is due to the corresponding decrease in added 

copper filtration at higher tube potentials, thus restraining overall HVL to a 

reasonably narrow range of values (4-5 mm Al). Interestingly, HVL for the PA 

projection tended to be higher than for other angles, despite the tube potential 

generally being lower. The lowest HVL recorded was 2.7 mm Al. This minimum 

occurred for an oblique projection during a coronary angiography examination of a 9 

year old patient. The highest value was 6.7 mm Al, occurring during a biopsy 

procedure on a 5-year old patient. 

 

 

Figure 6.10: Half value layer for different beam angles derived from tube potential recorded 
in dose reports and PACS images, and estimated added filtration. Error bars represent ± 1 

standard deviation for the ‘all beam angles’ data. RAO/LAO = right/left anterior oblique. 

 

Fluoroscopic exposures were usually found to be at 7.5 frames per second and in 

one of two modes; ‘fluoro low’ or ‘fluro normal’, with the latter offering greater image 

quality. Across all beam angles, the mean tube potential for fluoroscopy was 

significantly lower than for acquisitions (63.3 verses 70.0 kV, p<0.01). Analysis of 

fluoroscopic exposures by specific beam projection was limited to comparison 

between frontal and lateral biplane outputs, with tube potential being significantly 

higher for the latter (64.9 verses 62.0 kV, p<0.01). These mean kV figures are 

somewhat misleading however; the majority (75%) of fluoroscopic exposures for 
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patients under 15 years are at one of two values - 58 or 66 kV, with few values in 

between. These two potentials were combined with 0.9 and 0.6 mm added Cu 

filtration respectively, both yielding a similar HVL (6.1 and 6.3 mm Al). For patients 

older than 15 years, there is evidence of increased use of tube potentials of 68 kV, 

with either 0.3 or 0.6 mm Cu (corresponding HVLs of 5.4 and 6.5 mm Al 

respectively). Tube potentials of 70 kV or more were also recorded, though there is 

little data from which to determine the filtration thickness at these potentials.  

 

Siemens Artis Zee machine at Hospital 2: For most acquisitions, the Artis Zee was 

found to use 0.1, 0.2 or 0.3 mm of copper filtration. No acquisitions were found in 

which either less than 0.1 mm or greater than 0.6 mm was used. For all projection 

angles combined, tube potential generally ranged from 61 to 72 kV. There was a 

trend of increasing kV with increased patient age, though without the corresponding 

decrease in Cu seen with Axiom Artis equipment. Acquisitions were at three frame 

rates – 7.5, 15 and 30 per second. Across all ages and beam angles, the mean 

thickness of copper for these frame rates was 0.35, 0.25 and 0.13 mm respectively. 

When this pattern was explored in greater detail by stratifying by age, the same 

pattern was observed. Judging from the results of physical measurements, however, 

it is the imaging mode associated with the frame rate (which was not recorded in 

dose reports), rather than the frame rate per se that is responsible for this variation.  

Where kV and Cu figures were combined to produce a single HVL for acquisition 

data, the mean value across all beam angles and patient sizes was 4.5 mm Al, 

ranging from 3.6 to 7.1 mm. In contrast to the Axiom Artis, there was a tendency of 

HVL to rise with increasing patient beyond 10 years (Figure 6.11), presumably due to 

the maintenance of a single value of copper filtration thickness as tube potential is 

increased. There were insufficient data available to analyse variation in beam energy 

with projection angle beyond PA, lateral and combined oblique angles. As with the 

Axiom Artis, HVL tended to be higher in the PA projection than oblique or lateral 

projections. The apparent wide variation in HVL with beam angle for patients aged 

over 15 years should be interpreted with caution as the sample of acquisitions was 

small for this group (5 oblique. 7 PA and 11 lateral). Due to the maintenance of at 

least 0.1 mm added copper filtration, the Artis Zee tends to avoid HVLs of less than 

3.6 mm Al.  
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Figure 6.11: Siemens Artis Zee: Half value layer (mm Al) for acquisitions for different patient 
age ranges. Error bars represent ± one standard deviation for all angles. 

 

6.1.3: Beam energy for older equipment 

Although the majority of the examinations in the study were conducted using 

Siemens Axiom Artis or Artis Zee equipment, other, older machines were also used, 

such as the Philips Integris, Toshiba Infinix CB and Siemens BICOR (biomedical 

imaging core) or HIcor. These machines did not record structured dose reports and 

were not available for carrying out physical measurements on. Some technical 

details were found on websites selling used equipment, such as medwow.com [253]. 

Further information could be gathered from previous publications. A summary of 

these details is provided in Table 6.1 

In most cases, information on filtration and tube potential is very limited or entirely 

absent. The most detailed account of the latter is provided by Rassow et al [108] for 

a Siemens Angioskop biplane fluoroscopy system, in which kV values for different 

beam angles were recorded for both acquisitions and non-acquisition fluoroscopy, 

with and without zoom. An ‘effective voltage’ was calculated as a weighted average 

of these different modes for a range of different patient ages. For the frontal output, 

the effective voltage ranged from 54.5 kV (0-0.02 years) to 67.0 kV (15-21 years), 

while for the lateral output, the equivalent figures ranged from 63.6 to 83.5 kV. Using 
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the quoted total filtration of 2.5 mm Al, this range of 54.5 to 83.5 kV corresponds to a 

half-value-layer of 1.9 to 3.1 mm Al. 

The most commonly reported filtration values for Philips Integris machines (either 

3000 or 5000) is 1.5 mm Al plus either 0.2 or 0.4 mm Cu. Trianni et al [21] report the 

use of 0.1 mm Cu where fluoroscopy is restricted to 12.5 pulses s-1 and 0.0 mm for 

25 pulses s-1. Over a range of tube potentials 60 to 80 kV, this corresponds to a HVL 

of between 4.0 and 5.0 mm Al. The Siemens Coroskop TOP utilises the CAREfilter 

system of variable copper filtration, while the earlier Coroskop C Hicor does not 

[273]. The Bicor TOP is described by Yakoumakis et al [107] as using 3.5 mm Al plus 

0.22 mm Cu filtration, and a tube potential of between 55 and 70 kV. This 

corresponds to a HVL of between approximately 4.2 and 5.5 mm Al. The Bicor Plus 

machine is described by Al Haj et al (2008) as having an overall HVL of 3.5 mm Al, 

although it is unclear how this was measured.  
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Study (publication year) Equipment: Filtration: Tube potential (kV) 

Calkins (1991) [274] Siemens Angioscop D Not stated 70-109 

Schueler (1994) [275] GE Fluoricon 300 HVL=3.2 mm Al @ 80 kVp >60-70, up to 120 

Ross (1997) [276] Siemens HICOR Not stated Not stated 

Boothroyd (1997) [228] Siemens BICOR Biplane. Not stated Not stated 

Broadhead (1997) [277] 

Siemens Coroskop C 
Biplane 

3 mm (Al?) assumed 80 ± 4 assumed 
Philips Polydiagnost C2 
(monplane?) 

Axelsson (1999) [84] Philips Optimus 2000 3.00 mm Al 67 (a), 58-70 (f) 

Rassow (2000) [108] 
Siemens ANGIOSCOP bi-
plane and SIRECON II 

2.5 mm Al Not stated 

Kuon (2003) [278] Philips Integris H3000 1.5 mm Al, 0.4 mm Cu Not stated 

Bacher (2005) [8] 
Philips Integris BH5000 
biplane 

1.5 mm Al + 0.2 mm Cu Not stated 

1.5 mm Al + 0.4 mm Cu Not stated 

Trianni (2005) [21] Philips Integris 3000 
0.1 mm Cu (12.5 p/s), 0.0 mm 
(25 p/s) 

Not stated 

Onnasch (2007) [103] 

Siemens biplane 
BICOR/Digitron, 50 fps. 

Not stated Not stated 

Philips biplane DCI/LARC 
system. 

Not stated Not stated 

Dec 1997 Philips Integris 
5000BH, 12.5, 25 or 50 fps 

≈1.5 mm Al, 0.2/0.4 mm Cu Not stated 

Al Haj (2008) [279] 

Siemens BICOR plus 
biplane (COA dilitation, PV, 
PDA occlusion, diag). 

Not stated. Beam HVL=3.5 mm 
Al 

80 (f), 66 (a) 

GE bi-plane (septostomy, 
embolisation and RFA 

Not stated 80 (f), 70 (a) 

Beels (2009) [12] 
Philips Integris BH5000 
biplane 

1.5 mm Al, 0.4 mm Cu Not stated 

Karambatsakidou (2009 
and 2013) [112] [107] 

Philips Integris H 5000C 
6 mm Al + 0.4 mm Cu (f), and 6 
mm Al + 0.2/0.04 mm Cu (a) 

65-70 (f), 60-65 (a) 

Yakoumakis (2009) [115] Siemens BICOR TOP II 3.5 mmAl + 0.22 mm Cu 55-70 

Ait Ali (2010) [13] 
Philips Integris H5000C 
monoplane 

Not stated Not stated 

Chida (2010) [280] Siemens BICOR Plus. ? + auto 0.1/0.2 mm Cu 70 kVp 

Watson 2012 [167] 
Philips Integris BH5000 
biplane 

Not stated Not stated 

McFadden (2013) [281] 
Siemens BICOR TOP 
biplane 

2.5 mm Al Not stated 

 

Table 6.1: Tube potential and filtration details of older generation equipment quoted in 

previous publications of doses from cardiac catheterisations 
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6.1.4: Discussion (Beam energy) 

Beam energy was found to be variable, not only between different fluoroscopic 

equipment manufacturers and models, but for the same machine under different 

conditions, such as imaging mode, field size and frame rates. Some general patterns 

can be observed, although a degree of uncertainty will still exist. The most suitable 

approach was therefore to estimate a central beam energy value and set associated 

uncertainty limits. Structured dose reports were considered to provide the most 

reliable source of data on tube potential used for fluoroscopic imaging, and both tube 

potential and added filtration for acquisitions. Physical measurements were used as 

the source of information on fluoroscopic filtration. As the typical x-ray energies used 

in these two acquisition modes is different, the value (or values) of HVL used in 

organ dose estimates must take into account the proportion of total PKA as 

fluoroscopy and acquisitions. Hospital specific fluoroscopy proportions were used 

where such information was available (i.e. Hospitals 2 and 4). The beam energy 

values used for dose estimates are described below for different equipment types: 

 

Artis Zee: There was insufficient evidence of variation in x-ray energy with beam 

angle to warrant the definition of projection-specific HVL estimates. Based on 

structured dose reports from Hospital 2, the mean proportion of total PKA originating 

from fluoroscopy (pf) across all procedure types was 0.75 (this compares to 0.82 for 

2004-2008 data user older equipment). For diagnostic and interventional procedures, 

pf was 0.67 and 0.77 respectively. There are insufficient data to allow further 

stratification of pf by procedure type, though for electrophysiology studies (EPS) and 

pacemaker insertions, a pf of 0.95 was considered appropriate. The HVL values used 

for dose estimates at Hospital 2 are shown in Table 6.2,  and assume the use of “FL – 

card” mode with 0.3 mm Cu applied for all fluoroscopic imaging  and 0.6 mm Cu for 

patients over 70 kg. The lower and upper HVL limits, were based on 5th and 95th 

percentiles of values for acquisitions. The upper limit for patients over 10 years was 

fixed at 7.1 mm. 
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Patient size in 
years (kg) 

Intervention  
(pf = 0.77) 

Diagnostic  
(pf = 0.67) 

EPS, Pacemakers  
(pf = 0.95) 

<1 (<9.2) 5.2 [4.6 : 6.1] 5.1 [4.3 : 5.9] 5.4 

1-5 (9.2-19) 5.5 [5.0 : 6.5] 5.3 [4.5 : 6.1] 5.8 

5-10 (19-32.4) 5.7 [5.5 : 6.5] 5.5 [4.7 : 6.3] 6.1 

10-15 (32.4-56.3) 5.9 [5.5 : 7.1] 5.7 [5.3 : 7.1] 6.1 

>15 (>56.3) 6.0 [5.0 : 7.1] 5.9 [4.9 : 7.1] 6.2 

>70 y (>70 kg) 7.7 [5.2 : 8.2] 7.4 [5.1 : 8.2] 8.2 

Mean (all sizes) 5.7 5.5 5.9 
 

Table 6.2: Assumed half value layers (mm Al) used to estimate doses for procedures carried 

out using Siemens Artis Zee equipment at Hospital 2. 

 

Siemens Axiom Artis: Again, there appears to be little basis for beam angle specific 

HVL estimates. Values for all angles combined, with associated uncertainty limits 

were deemed sufficient. The majority of fluoroscopic exposures were at either 58 kV 

(0.9 mm Cu) or 66 kV (0.6 mm Cu), yielding HVLs of 6.0 and 6.2 mm Al respectively. 

The higher tube potentials seen for larger patients may yield a higher or lower HVL 

depending on the filtration applied, data on which was rather limited. There is 

reasonable justification in utilising a patient size independent HVL for fluoroscopy of 

6.1 mm Al, at least up to 15 years and probably beyond.  

Overall HVL figures calculated as a weighted sum of fluoroscopic and acquisition 

components are shown in Table 6.3 for proportions of fluoroscopy ranging from 0 (i.e. 

entirely acquisitions) to 1.0 (entirely fluoroscopy). Where hospital specific data on Pf 

was available, these were utilised. From structured dose reports at Hospital 4, the 

mean proportion of total examination PKA from fluoroscopy was 0.41 for all 

examination types combined, and 0.49 and 0.36 for interventional and diagnostic 

procedure categories respectively. For EPS, biopsy and pacemaker insertion 

procedures, the proportion PKA from fluoroscopy was set at 0.95. The assumed half 

value layers used for dose estimations using Siemens Axiom Artis machines, taking 

into account uncertainty in HVL for acquisitions and fluoroscopy, along with 

uncertainty in the proportions of total PKA in these two operating modes are given in 

Table 6.4. Uncertainties were based on 5th and 95th percentiles of HVL, calculated at 

-0.8 mm and +1.1 mm. The same values were used for all patient sizes as there was 

little suggestion of variation with age or mass.  
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Proportion of total output as fluoroscopy 

Patient size in years (kg) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

<1 (<9.2) 4.6 4.7 4.9 5.0 5.2 5.3 5.5 5.6 5.8 5.9 6.1 

1-5 (9.2-19) 4.4 4.5 4.7 4.9 5.1 5.2 5.4 5.6 5.8 5.9 6.1 

5-10 (19-32.4) 4.2 4.4 4.6 4.8 5.0 5.2 5.3 5.5 5.7 5.9 6.1 

10-15 (32.4-56.3) 4.0 4.2 4.4 4.6 4.9 5.1 5.3 5.5 5.7 5.9 6.1 

>15 (>56.3) 3.9 4.1 4.3 4.6 4.8 5.0 5.2 5.4 5.7 5.9 6.1 

 

Table 6.3: Central estimates of half value layer (mm Al) for different patient sizes and various 

proportions of fluoroscopy for Siemens Axiom Artis equipment. 

 

  Procedure type 

Patient size in years (kg) Interventional Diagnostic EPS, Pacemakers 

<1 (<9.2) 5.3 [4.5 : 6.3] 5.1 [4.3 : 6.2] 6 [4.6 : 6.3] 

1-5 (9.2-19) 5.2 [4.4 : 6.3] 5.0 [4.2 : 6.1] 6 [4.6 : 6.3] 

5-10 (19-32.4) 5.2 [4.4 : 6.3] 4.9 [4.1 : 6.0] 6 [4.4 : 6.3] 

10-15 (32.4-56.3) 5.1 [4.3 : 6.2] 4.8 [4.0 : 5.9] 6 [4.4 : 6.3] 

>15 (>56.3) 5.0 [4.2 : 6.1] 4.7 [3.9 : 5.8] 6 [4.4 : 6.3] 
 

Table 6.4: Assumed half value layers (mm Al) used to estimate doses for procedures carried 

out using Siemens Axiom Artis equipment. The figures in square brackets represent upper 

and lower uncertainty limits. 

 

The effect of the upper and lower beam energy uncertainty limits, expressed as 

percentages, are shown in Table 6.5 for each organ type and each patient. 

Uncertainty was seen to vary between organs, being highest for the stomach and 

thyroid, and lowest for the lungs and active bone marrow. Uncertainties also 

increased with increasing patient size and varied with beam angle. The figures in 

Table 6.6 represent the mean uncertainty over a range of beam angles from straight 

PA to left lateral in 30° intervals. The uncertainty for all organs and patient sizes was 

±12.5%. 

Siemens BICOR / BICOR Plus / HICOR/ Coroskop: A central HVL value of 4.8 mm 

was chosen, based on 65 kV and 0.22 mm Cu and 3.5 mm Al filtration. The lower 

uncertainty limit was set at 3.5 mm Al, based on the lowest reported tube potential of 

60 kV and no copper filtration. The upper limit was set at 5.9 mm Al, assuming 

maintenance of 0.22 mm Cu, and the maximum reported tube potential of 80 kV. 

There are few details available from which to estimate HVL for the older generation 

BICOR machine used at Hospital 1 prior to 2000 (i.e. not the more recent BICOR 

Plus or TOP machines), although copper filtration did not appear to be used.  The 
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central HVL was set at 3.0 mm Al, assuming a central tube potential of 75 kV, 3.5 

mm Al filtration and no copper. The lower limit of 2.0 mm Al assumed a reduced 

aluminium filtration of 2.5 mm and a potential of 60 kV. The upper limit was set at 4.0 

mm Al. The upper limit was based on a potential of 100 kV, with 3.5 mm Al filtration. 

A HVL of 3.0 mm was also used for the Siemens Coroskop C used at Hospital 4 until 

2003, based on the limited description of the machine in a paper by Broadhead et al 

[277]. For the purposes of effective dose estimation, the authors assumed 3 mm of 

aluminium filtration and a tube potential of around 80 kV. The same upper and lower 

HVL limits were used as for the BICOR machine described above.  

Percentage variations in dose due to HVL uncertainties for 2nd and 1st generation 

equipment are shown in Tables 6.6 and 6.7 respectively. 
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Patient age 
(mass) Uncertainty 

Effective 
dose ABM Breasts Heart Lungs Lymph Oesophagus Thyroid Liver Stomach 

Average 
dose 

<1 y (<9.2 
kg) 

Lower -8% -8% -9% -9% -6% -9% -10% -13% -9% -12% -7% 

Upper 8% 8% 10% 9% 5% 9% 10% 15% 9% 13% 7% 

1-5 y (9.2-
19 kg) 

Lower -9% -10% -8% -12% -8% -11% -12% -17% -11% -15% -9% 

Upper 10% 12% 7% 14% 8% 14% 15% 23% 13% 19% 10% 

5-10 y (19-
32 kg) 

Lower -10% -11% -8% -14% -9% -13% -14% -19% -13% -17% -10% 

Upper 12% 13% 10% 17% 10% 16% 18% 24% 16% 22% 11% 

10-15 y 
(32-56 kg) 

Lower -10% -12% -7% -15% -10% -15% -17% -20% -15% -18% -11% 

Upper 13% 15% 10% 19% 12% 19% 23% 28% 19% 25% 13% 

15-18 y 
(>56 kg) 

Lower -13% -13% -10% -18% -13% -16% -18% -24% -18% -22% -12% 

Upper 17% 16% 12% 24% 15% 22% 26% 38% 24% 33% 14% 

>18 y (>70 
kg) 

Upper -13% -13% -10% -18% -13% -17% -19% -23% -17% -21% -12% 

Lower 17% 17% 12% 25% 16% 23% 28% 39% 24% 31% 15% 

 

Table 6.5: Percentage uncertainties for Siemens Axiom Artis equipment, based on 5th and 95th percentiles of HVL. 

 

Patient age 
(mass) Uncertainty 

Effective 
dose ABM Breasts Heart Lungs Lymph Oesophagus Thyroid Liver Stomach 

Average 
dose 

<1 y (<9.2 
kg) 

Upper -30% -31% -27% -38% -27% -36% -39% -46% -37% -45% -29% 

Lower 11% 10% 13% 12% 7% 12% 13% 19% 12% 16% 9% 

1-5 y (9.2-
19 kg) 

Upper 12% 14% 9% 16% 10% 15% 17% 26% 15% 22% 11% 

Lower -35% -37% -29% -44% -33% -42% -45% -52% -42% -52% -35% 

5-10 y (19-
32 kg) 

Upper 13% 15% 11% 19% 11% 18% 20% 28% 18% 24% 13% 

Lower -39% -39% -34% -49% -36% -45% -50% -64% -46% -55% -37% 

10-15 y 
(32-56 kg) 

Upper 14% 16% 10% 21% 13% 20% 24% 30% 21% 27% 14% 

Lower -34% -41% -19% -50% -39% -48% -52% -60% -50% -58% -38% 

15-18 y 
(>56 kg) 

Upper 18% 17% 13% 25% 16% 23% 27% 40% 25% 34% 15% 

Lower -43% -41% -34% -54% -43% -50% -55% -64% -54% -60% -39% 

>18 y (>70 
kg) 

Upper 18% 18% 12% 26% 17% 24% 29% 40% 25% 32% 15% 

Lower -43% -42% -33% -54% -44% -51% -56% -62% -52% -59% -39% 

Table 6.6: Percentage uncertainties for 2nd generation equipment (Philips Integris, Toshiba Infinix CB, Siemens Bicor plus/Hicor) based on uncertainty in HVL 
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Patient age 
(mass) Uncertainty 

Effective 
dose ABM Breasts Heart Lungs Lymph Oesophagus Thyroid Liver Stomach 

Average 
dose 

<1 y (<9.2 
kg) 

Upper -20% -23% -12% -30% -20% -28% -31% -35% -29% -35% -22% 

Lower 17% 18% 16% 23% 15% 22% 24% 32% 23% 30% 17% 

1-5 y (9-19 
kg) 

Upper -24% -27% -15% -34% -25% -32% -36% -37% -32% -40% -26% 

Lower 21% 23% 17% 30% 19% 27% 30% 38% 27% 38% 21% 

5-10 y (19-
32 kg) 

Upper -30% -29% -28% -38% -28% -35% -39% -58% -35% -44% -27% 

Lower 24% 25% 20% 34% 22% 31% 36% 56% 32% 42% 23% 

10-15 y 
(32-56 kg) 

Upper -23% -30% -9% -39% -30% -36% -38% -48% -39% -48% -28% 

Lower 20% 27% 10% 36% 25% 33% 38% 50% 35% 46% 24% 

15-18 y 
(>56 kg) 

Upper -32% -30% -24% -42% -33% -38% -42% -47% -42% -46% -28% 

Lower 28% 26% 20% 40% 28% 36% 42% 56% 40% 49% 24% 

>18 y (>70 
kg) 

Upper -32% -31% -24% -42% -34% -39% -44% -57% -40% -47% -29% 

Lower 28% 27% 20% 41% 29% 37% 43% 49% 38% 47% 24% 

 

Table 6.7: Percentage uncertainties for 1st generation equipment (Siemens Bicor and Coroskop) based on uncertainty in HVL. 
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Philips Integris: Again, information is limited to a few previous publications (Table 

6.1). A central HVL of 4.8 mm Al was selected, corresponding to a tube potential of 

70 kV, fixed aluminium filtration of 1.5 mm Al and copper filtration of 0.3 mm (i.e. 

halfway between the commonly used values of 0.2 and 0.4 mm). A lower HVL 

uncertainty limit of 3.3 mm Al was used, based on 60 kV and 0.1 mm Cu. The upper 

HVL uncertainty was set at 6.3 mm Al, based on 0.4 mm of Cu and 80 kV. This range 

in HVL is thus the largest of all equipment types studied. 

Toshiba Infinix CB: Tube potential was recorded for 50 procedures conducted using 

this machine at Hospital 1 between 1999 and 2001. The mean potential was 76 kV 

(range: 70 to 88). The anode angle was stated to be 8° by a used equipment vendor 

[253], but the filtration was unknown. A central HVL of 4.8 mm was again used for 

this machine, being typical of equipment of this era, with the same uncertainty limits 

as the Philips Integris (3.3 to 6.3 mm). 

 

6.1.5: Limitations of beam energy analysis 

Only an image intensifier equipped Siemens Axiom Artis was studied, while in reality 

both image intensifier and flat panel equipped machines are used in practice. It is 

unclear if the beam energy characteristics differ between the two detector types. 

Irrespective of detector type, scope for variation in beam energy exists for otherwise 

identical machines depending on setup and software upgrades. This is illustrated by 

the large difference in copper filtration thickness used for Siemens Artis Zee 

machines at Hospitals 2 and 4. The sample of examinations for which structured 

dose reports were obtained was quite small. Unfortunately, obtaining these reports 

was very time consuming. Future research could make use of automatic recording of 

imaging metadata.   

Comparison of these findings with previous research is challenging. The previously 

mentioned AAPM report [271] provides limited details of imaging parameters, 

therefore it is difficult to determine equivalency of findings. A pattern of decreasing 

copper filtration and increasing tube potential with greater attenuator thickness was 

found in both the current and AAPM studies, although the thicknesses of PMMA at 

which these changes occur was not the same. The AAPM team noted an increase in 

tube potential from 58 to 66 kV with associated decrease in copper filtration from 0.9 
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to 0.6 at 7.6 cm of PMMA, while for the current study, this combination was not used 

until 16 cm was reached. The AAPM reports also suggests the use of 0.3 mm of 

copper occurs at a smaller thickness of PMMA (18 cm) than was found in the current 

study (22 cm). These variations support the comments above concerning uncertainty 

in beam energy due to differences in protocols and software upgrades. 

 

6.2: Beam angles 

As with beam energy, previously published information on the beam angles used for 

cardiac catheterizations is limited. The following sections describe attempts to gather 

information on beam angles used in clinical practice along with the impact of 

uncertainty in beam angle on dose estimates. A description of the terminology used 

for describing x-ray beam angles is given in the appendix.  

 

6.2.1: Methodology 

Four sources of information on beam angles were used: 

1. Projection angle questionnaire: 

The first investigation involved simply asking specialised cardiac radiographers 

which beam projections they used. A questionnaire was sent to radiographers 

working at participating hospitals, enquiring about typical beam angles used for 

various procedure types.  

2. Logbook records: 

The beam angles used for each procedure were recorded at Hospital 2 from 2004 

onwards. These were only recorded for acquisitions and not for non-acquisition 

fluoroscopy. In many cases, acquisitions are carried out in two beam angles 

simultaneously using the frontal and lateral x-ray tube. This allows iodinated contrast 

agent (which is osmotoxic and can cause renal damage and allergic reactions) to be 

injected as sparingly as possible. 

3. Structured dose reports and PACS images: 

As well as recording tube potential and added filtration, the structured dose reports 

recorded by Siemens equipment also records beam angles. As with the angles 

recorded in log books at Hospital 2, only acquisition beam angles are listed. Images 
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stored on the PACS network display the same beam angle information as dose 

reports. The procedure names listed on PACS are often rather vague - many are 

entered under the non-specific name of “congenital anomaly study” - meaning it was 

difficult to search the PACS archive for specific procedure types. Consequently, a 

greater sample of procedures was obtainable for some procedures than for others. 

4. Biplane kerma area product: 

Hospitals 1 and 4 record PKA as separate figures for frontal and lateral x-ray tube 

outputs. This allows some information on beam projections to be inferred, including 

the proportion of total PKA in each angle. 

Along with information on the beam angles used for different procedures, information 

on the proportion of the total examination dose originating from each of these angles 

is also required. This is relatively straightforward for examinations in which only 

straight PA and straight left lateral projections tend to be used; the proportions can 

be derived from the Biplane PKA data described above. The situation is more 

complex for examinations in which two or more projections involve the same x-ray 

tube (mainly pulmonary artery and coronary angiography procedures). Structured 

dose reports can help, but only provide information for acquisitions, not fluoroscopy.  

 

6.2.2: Results 

Data obtained on beam angles will now be presented separately for each of the four 

methodologies described above: 

Beam quality questionnaire. 

The compiled results of the beam angle questionnaire are shown in Table 6.8. 

Unfortunately, there are a lot of gaps. In some cases the hospitals sent their own 

departmental protocols for various imaging procedures rather than filling out the 

questionnaire. Although this information was still useful, comparison between 

hospitals was difficult. Reported projections for aortic and pulmonary valvuloplasty, 

pulmonary vascular resistance (PVR) studies and atrial septostomy procedures were 

consistent (PA and lateral), as were those for electrophysiology studies (EPS), 

although the level of left anterior oblique angulation varied from 30 to 50°. Other 

differences including reported usage of a small level of oblique angulation for 

coarctation repairs and PDA closures. Reported coronary angiography beam angles 
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have been colour coded for easier comparison. All hospitals reported use of a 30° 

right anterior oblique (RAO) projection, a left anterior oblique (LAO) beam and a LAO 

beam with caudal angulation. The lateral projection was reported at Hospitals 2 and 

3 but not at Hospital 4. The level of angulation varied between centres. It should be 

noted that coronary angiographies and endomyocardial heart biopsies are only 

regularly conducted at Hospitals 1 and 4, where transplant procedures are carried 

out.  

Hospital: 4 4 2 3 1 

Source: Radiographer Cardiologist Protocol Protocol Radiographer 

Coronary 
angiography 

RAO 20, 
CR 40,  
RAO 20/CAU 40,  
LAO 50/CAU 30,  
RAO 30,  
LAO 30 

 

LAO 30/CAU 
40,  
Lateral,  
RAO 30,  
LAO 60 

LAO 30/CAU 
40, RAO 30, 
RAO 30/CAU 
25, LAO 60/CR 
25, 
LAO 60 
Lateral 
PA 

AP Plane: 
RAO 30 
CAU 10 
 
Lateral plane: 
LAO 45 
CR 20 
LAO 60 

PDA closure 
PA,  
Lateral 

RAO 30,  
Lateral   

RAO 25, 
Lateral 

ASD closure 
PA,  
Lateral    

PA, 
Lateral 

AV angioplasty 
PA,  
Lateral    

PA, 
Lateral 

PV angioplasty 
PA,  
Lateral  

PA,  
Lateral  

PA, 
Lateral 

Heart biopsy PA 
   

PA, 
Lateral 

PA angioplasty 
 

PA,  
Lateral 

LAO 25/CR 25 
 

LAO 40/CR40 
Lateral/CAU 
10 

EPS 
RAO 30, 
LAO 50 

RAO 30, 
LAO 30  

RAO 30, 
LAO 45 

PA 

PVR 
PA,  
Lateral    

PA 
Lateral 

Atrial 
septostomy 

PA,  
Lateral    

PA, 
Lateral 

Pacemaker PA 
   

PA, RAO 30, 
LAO 30 

Coarctation 
repair 

PA,  
Lateral 

PA,  
Lateral   

LAO 15,  
Lateral 

Any others 
 

LAO 30, 
Lateral (arch 
aortogram) 

   

 

Table 6.8: Beam angles reported by staff at participating hospitals. Angles separated by a '/' 

represent both rotational and cranio-caudal angulation together for the same projection. 
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Logbook records of beam angles: 

Where all procedure types were analysed as a whole, 48% of acquisitions were listed 

as being in the PA projection, while 35% were in the left lateral projection. The 

remainder were various combinations of oblique beam angles, including right anterior 

oblique (3%) and left anterior oblique (3%). These proportions varied between 

procedure types (Figure 6.12). The majority of ASD occlusions, electrophysiology 

studies (EPS), radiofrequency ablations (RFA), and pacemaker procedures involved 

acquisitions only the PA projection. Procedures involving angioplasty of coarctations 

and pulmonary or aortic valve stenosis usually used PA and lateral projections only. 

More complex combinations of beam angles were used for angioplasty of the 

pulmonary arteries. These were usually anterior oblique angles with around 25° 

cranial angulation.  

 

 

Figure 6.12: Proportion usage of different imaging projections for acquisitions. CR=cranial, 
OBL=oblique, ‘Sit up’ and ‘Long Axis’ views are a combination of oblique and lateral 

projections 
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Structured dose reports and PACS images: 

Hospital 2: Details of 64 complete examinations comprising 324 acquisitions were 

recorded. Of all acquisitions, 85 were straight PA projections (26.2% of total), 147 

were left laterals (45.4%), while 77 were oblique (28.4%). The proportion of 

acquisitions recorded in structured dose reports as being in either PA or lateral 

projections (71.6%) was lower than recorded in the logbooks (83%). Of all complete 

examinations recorded, 25 (39%) involved only PA, left lateral or both PA and lateral 

projections only. A further 6 examinations (9%) involved a single acquisition in an 

oblique projection with all other acquisitions in PA or lateral. All other examinations 

involved at least 2 acquisitions in an oblique projection. Analysis of the beam angles 

used for different examination types is difficult as the sample size is relatively small 

for individual procedures. For all diagnostic procedures combined, (111 acquisitions 

in total), 36 projections were PA (32.4%), 48 were lateral (43.2%) and 27 were 

oblique (24.3%). For combined Interventional procedures (178 acquisitions), 43 were 

PA (24.7%), 83 were lateral (46.6%) and 52 were oblique (29.2%). For three 

examinations of the pulmonary arteries, 5% of acquisitions were in the PA, projection 

were 43% lateral and 52% were oblique projections, typically with around 25° cranial 

and 25° left anterior oblique angulation. These angles are consistent with those 

reported in the questionnaires, although the proportion of acquisition in the PA 

projection is lower than suggested by logbook records. 

 

Hospital 4: Dose reports for 49 examinations conducted using Siemens Axiom Artis 

machines were collected, along with details from 169 examinations stored on the 

PACS network. Figure 6.13 shows the proportion of acquisitions in various beam 

angles for nine of the most commonly conducted examinations, along with broad 

diagnostic, interventional and ‘other’ categories. There are a number of differences in 

these proportions to those shown in Figure 6.12, derived from logbook records of 

beam angles at Hospital 2. The main observation was the relatively lower use of the 

straight PA projection at the Hospital 4 and greater use of oblique projections. This 

was especially apparent for ASD occlusions in which PA projections were usually 

modified with a small right anterior oblique angle (around 10°), along with 

considerably greater usage of the left lateral projection. The use of the RAO and left 

lateral projections for PDA occlusions were consistent with the angles reported by 
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the cardiologist but not the radiographer (who stated PA and lateral). The projections 

used for aortic and pulmonary valvuloplasty were consistent with those of the 

questionnaire and Hospital 2 logbook records. 

In terms of beam angles, coronary angiographies are relatively unusual procedures 

and deserve special attention. Straight PA and lateral projections tend to be avoided 

in favour of various oblique projections. In most cases, the procedure is purely 

diagnostic, with only one acquisition carried out in each projection angle. This 

contrasts with most other examination types in which one or two projections are 

favoured for the whole examination. Beam angle data was analysed from PACS 

images and structured dose reports for 40 coronary angiography procedures 

conducted at the Hospital 4. Ten different projections were identified; these were 

various combinations of right or left anterior oblique angles, with or without cranial or 

caudal angulation, plus occasional use of straight PA and left lateral projections 

(Figure 6.14). The most common of these, used in 90% of examinations, was a left 

anterior oblique angle with no cranial or caudal angulation (Figure 6.15). The straight 

left lateral projection was avoided in all but one examination. Dose (as represented 

by PKA) was fairly evenly distributed between different projections. 
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Figure 6.13: Beam angles obtained from structured dose reports and PACS images at 
Hospital 4 

 
 

 

Figure 6.14: Percentage of examination PKA originating from different projections for 
coronary angiography at Hospital 4. 
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Figure 6.15: Percentage of coronary angiography examinations in which a particular 
projection is used. 
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Figure 6.16: Proportion of total PKA from the frontal x-ray tube for different procedures at 
Hospital 1 from 1994 to 2010. Error bars represent one standard deviation. 
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obtained using two different methodologies at two different hospitals. The largest 

differences are for pressure studies and EPS procedures. Is these cases, the reason 

for the discrepancy appears to be that these procedure generally do not involve 
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acquisitions (the same logic would also apply to pacemaker insertions, although the 

agreement between acquisitions and total PKA is very high in this case).  

A further source of biplane information at Hospital 2 was the 64 structured dose 

reports obtained for procedures conducted between 2011 and 2014. Based on this 

source, the mean proportion of total PKA for all procedures combined from the frontal 

x-ray tube was 0.75 (0.88 for fluoroscopy and 0.53 for acquisitions). This proportion 

is higher than previously discussed figures derived from other sources, though the 

sample size was small and the procedure mix relatively limited. 

 

 

Figure 6.17: Proportion of total PKA from the frontal tube at Hospital 1 compared to proportion 
of the number of acquisitions using the frontal tube at Hospital 2 (2004-2008). Data are 

presented for 3 procedure categories, plus nine common individual procedures. 

 

6.2.3: Discussion (beam angles) 

The four methodologies used to establish projection angles each have their own 

strengths and limitations. Structured dose reports and PACS images provide details 

of the exact beam angles used for acquisitions and the relative proportions of such, 

but lack information on the angles used for fluoroscopic exposures. Biplane PKA 

figures include fluoroscopy, but provide little information on angles other than 

whether the frontal or lateral x-ray tube was used. Questionnaires provide some 
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information on the variation in projections between centres but provide no 

information on the relative proportions of different angles. Lastly, logbook records of 

acquisition beam angles have the advantage of offering a very large sample size, but 

provide only a crude approximation of relative proportions. 

A number of observations can be made. Firstly, the projections used vary between 

different procedure types. This was not unexpected as different beam angles are 

required to demonstrate different anatomical features such as heart chambers, 

vessels and valves. In some cases, more than one projection may be used to 

visualise a particular structure, giving scope for variation in beam angles between 

different hospitals or (potentially) between different cardiologists at the same 

hospital. As with beam energy, a degree of uncertainty in projection angles is 

unavoidable. This uncertainty will be quantified later in this chapter. 

Analysis of structured dose reports suggests that a greater proportion of acquisitions 

have some form of oblique angulation than is suggested by questionnaire results and 

angles recorded in logbooks. One explanation is that a PA projection with a small 

amount of oblique angulation may be casually referred to as ‘PA’. This appears to be 

the case for ASD occlusions, in which the use of a 15° LAO angulation was 

acknowledged as “pretty much standard practice to bring the atrial septum into 

profile” (S. Charlton, personal communication) by the same radiographer who listed 

the projections as being ‘PA and Lateral’ in the questionnaire. Both Hospitals 2 and 4 

reported the use of oblique beam angles for EPS and ablation procedures, even 

though the majority of these examinations appeared to only involve the PA projection 

according to information recorded in logbooks. This could be explained by the fact 

that these procedures rarely involve acquisitions, meaning the figures recorded in 

logbooks (which are for acquisitions only) may not represent the angles in which the 

majority of irradiation occurred. 

There was some scope for hospital specific beam angle combinations. This was 

more appropriate for hospitals in which good quality information on beam angles was 

obtained (Hospitals 1,2 and 4). In particular, the much greater use of the lateral 

projection for ASD occlusions at the Hospital 4 ought to be taken into account. 

Unfortunately, due to the limited examination type details recorded at this hospital, it 

was not possible to identify which procedures were ASD occlusions. Variation in 

coronary angiography beam angles was also seen between Hospitals 1 and 4. 
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However, this difference was based on radiographer reported angles, with no 

structured dose reports at Hospital 1 with which to compare.  

A further hospital specific modification was the use of a 15° LAO angulation for 

coarctation repairs at Hospital 1, rather than straight PA. It can also be implied from 

Figure 6.17 that the relative usage of PA and lateral projections in pulmonary/aortic 

valvuloplasty and coarctation repair procedures varies somewhat between Hospitals 

1 and 2. This may be true, although the methodologies used to determine the 

proportions shown in Figure 6. are different - biplane PKA for Hospital 1 and number 

of acquisitions for Hospital 2. The former may be considered more reliable as the 

number of acquisitions allow only limited inference of actual dose in any particular 

beam angle and does not include fluoroscopy.  

 

6.2.4: Beam angles used for dose estimation 

There are a number of cardiac catheterizations that are difficult to define as any 

particular procedure type. For these ‘unspecific cardiac catheterizations’,  the most 

realistic starting point when estimating likely beam angles would be a combination of 

straight PA and straight left lateral projections in proportions of 0.6 and 0.4 

respectively. These are by far the most commonly used projection angles and the 

proportions are consistent with data from biplane PKA records and acquisition beam 

angles recorded for individual examinations. This configuration can be encoded in 

the following matrix used in cardiodose: 

[
90 0 0.6 𝑡
180 0 0.4 0

] 

For example, for a total examination PKA of 2.0 Gy·cm², 1.2 Gy·cm² would be applied 

in a beam angle of 90° (straight PA) and 0.8 Gy·cm² would be applied in a beam 

angle of 180° (straight left lateral). The ‘t’ in the matrix means the table attenuation 

factor is applied for the first projection (PA) but not the second (lateral) Only the 

frontal output is modified by a table attenuation correction. The same beam angle 

matrix is also appropriate for coarctation angioplasty and pulmonary/aortic 

valvuloplasty procedures. Other examination types are listed below.  

Pulmonary artery angioplasty – aside from coronary angiography, these procedures 

involve the most complex arrangement of beam angles. The matrix used is based on 
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beam angles reported by radiographers in proportions suggested by structured dose 

reports. The proportion for the left lateral beam (180°) is based on biplane PKA data. 

[

90 0 0.25 𝑡
180 0 0.4 0
115 −25 0.25 𝑡
65 −25 0.1 𝑡

] 

ASD occlusion - these predominantly involve the PA projection, with or without 

around 10° of right or left anterior oblique angulation. A small contribution from the 

left lateral projections was added, based on biplane data and acquisition beam 

angles: 

[
90 0 0.93 𝑡
180 0 0.07 0

] 

ASD occlusion (Hospital 4): 

[
90 0 ? 𝑡
180 0 ? 0

] 

PDA occlusion – this procedure usually involves PA and left lateral projections, 

although the small use of a right anterior oblique projection is also taken into 

account: 

[
90 0 0.3 𝑡
180 0 0.6 0
60 0 0.1 𝑡

] 

Pulmonary and aortic valvuloplasty, coarctation repair – Almost all procedures utilised 

the PA and lateral projections only. The respective proportions of these angles were 

based on biplane PKA data recorded at Hospital 1. These proportions were different 

from those suggested by the analysis of beam angles recorded in Hospital 2 

logbooks (Figure 6.12) although these latter data were considered less reliable, 

being based solely on the number of acquisitions rather than PKA.  

Pulmonary valvuloplasty: 

[
90 0 0.60 𝑡
180 0 0.40 0

] 

Aortic valvuloplasty: 

[
90 0 0.65 𝑡
180 0 0.35 0

] 
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Coarctation repair: 

[
90 0 0.55 𝑡
180 0 0.45 0

] 

Coarctation repair (Hospital 4) – the use of a small left anterior oblique projection is 

accounted for: 

[
105 0 0.55 𝑡
180 0 0.45 0

] 

Coronary angiography:  Angles were based on structured dose reports at Hospital 4, 

for the 5 most commonly used angles: 

 

[
 
 
 
 
70 −40 0.2 𝑡
70 40 0.2 𝑡
140 30 0.2 𝑡
50 0 0.2 𝑡
130 0 0.2 𝑡]

 
 
 
 

 

Endomyocardial biopsy – Most imaging is done in the straight PA projection, though 

72% of these procedures involved a small contribution of PKA from the left lateral 

projection. The majority of biopsies were conducted at Hospital 4 in which biplane 

information was recorded. In these cases, the proportions in the PA and lateral 

projections were as given by biplane figures. The following matrix was used in the 

absence of these data: 

[
90 0 0.89 𝑡
180 0 0.11 0

] 

Electrophysiology study (EPS) - this matrix was largely based on radiographer 

reported beam angles and proportions based on biplane PKA data: 

[
60 0 0.5 𝑡
40 0 0.5 0

] 

Pressures and pulmonary vascular resistance studies and atrial septostomy – 

proportions based on biplane PKA data: 

[
90 0 0.75 𝑡
180 0 0.25 0

] 
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Trans-catheter pulmonary valve replacement: Based on radiographer reported beam 

angles. Proportions based on biplane PKA data: 

[
90 0 0.65 𝑡
180 0 0.35 0

] 

 

6.2.5: Errors and uncertainties 

Estimating the uncertainty in organ dose calculations based on variation in beam 

angles from those expected is challenging. The overall uncertainty encompasses 

variation in the angles themselves and their respective proportions. The situation is 

relatively simple for pulmonary and aortic valvuloplasty, valve replacement, 

coarctation repair, biopsies and pressure studies, which usually involve straight PA 

and straight left lateral projections. The usage of other beam angles in these 

procedures was considered negligible. Thus the uncertainty analysis needs only to 

focus on the variation in proportion between PA and lateral projections. Uncertainty 

in this proportion was initially based on two standard deviations, though this 

methodology was abandoned and replaced with 5th and 95th percentiles to allow 

calculation of separate upper and lower uncertainties and avoid situations in which 

lower uncertainty limits were greater than 100% (implying negative doses). PA/lateral 

proportions were obtained from bi-plane PKA figures recorded at Hospital 1 between 

1994 and 2010. Total examination doses were calculated with the PA/lateral 

proportions set at median, 5th and 95th percentile values. The difference in resulting 

dose to each organ between median and 5th/95th percentile proportions was 

calculated as a percentage figure. These figures are shown in Table 6.9 for 

pulmonary and aortic valvuloplasty, valve replacement, coarctation repair, biopsies 

and pressure studies combined. Uncertainties for individual procedures can be found 

in Appendix 4. As expected, uncertainties are highest for the breasts and relatively 

low for the lungs and lymph nodes. Uncertainties increase with increasing patient 

size and vary between the different procedure types. Where biplane PKA figures are 

recorded for a given procedure, the uncertainties in Table 6.9 are essentially reduced 

to zero. Thus the rather high beam angle uncertainties for endomyocardial biopsies 

are immaterial as these procedures were all conducted at hospitals in which biplane 

figures were recorded (Hospitals 1 and 4). 
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For other procedure types in which usage of more than two beam angles was 

recorded, a different process was used. Multiple procedures for each examination 

type were reconstructed using the beam angles recorded in structured dose reports 

and the doses calculated using cardiodose. All other parameters, including total 

examination PKA, patient size and beam energy were kept constant. Total 

examination doses for each organ were obtained by summing the doses from the 

individual beam angles comprising the reconstructed procedure. Any variation in 

these doses was due to variation in beam angles and their associated proportions. 

Uncertainties were defined using the 5th and 95th percentiles of these figures and 

expressed as a percentage variation from the median. This process was repeated for 

six different patient sizes. The uncertainties for ‘other’ or unspecified examinations 

were calculated from the mean values of uncertainties for all procedures for which 

uncertainties were calculated. These uncertainties are shown in Table 6.10, for 

coronary angiography, PDA/ASD occlusions and pulmonary angioplasty combined. 

Uncertainties for breast dose require special consideration.  In the Computational 

Dosimetry chapter, it was demonstrated that depending on the combination of beam 

angle, field size and central ray position, breast dose in the lateral projection may be 

as low as that in the PA projection, or several times higher. For central dose 

estimates, the latter situation has been assumed, while the former must be regarded 

as clinically plausible (and desirable) and needed to be accounted for in uncertainty 

limits. Thus the lower limit for breast dose was set to be no higher than would be 

obtained if the entire procedure was conducted in the PA projection. 

 

6.2.6: Table Reduction factor 

For many projections, the x-ray table and mattress attenuate the x-ray beam before it 

reaches the patient. The only hospital known to apply a correction factor to ‘raw’ PKA 

data (i.e. as quoted by the equipment) to account for table attenuation is Hospital 4. 

For all other hospitals, it was assumed that no such factor was applied. Previous 

studies by Ubeda et al [282] and Martinez et al [94] have quoted transmission factors 

due to table and mattress attenuation of 0.81 and 0.82, respectively, i.e. reduction in 

beam intensity by 19% and 18%. Used equipment vendors [253] usually quote table 

attenuation, in terms of aluminium equivalence, at 1 mm. Beer’s law was used to 

calculate the reduction in beam intensity, using quoted mass attenuation coefficients 
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of 0.37, 0.57 and 1.13 cm3/g at 50, 40 and 30 keV and a density of 2.7 g/cm3 [16] (i.e. 

linear attenuation coefficients of 1.0, 1.5 and 3.1 cm3, respectively). This yielded 

transmission factors of 0.90, 0.86 and 0.74 for 50, 40 and 30 keV beams, 

respectively. The mean of these three figures was 0.83, thus very close to the 

transmission factors quoted by Ubeda et al [282] and Martinez et al [94].  If the x-ray 

beam is angulated (i.e. not perpendicular to the table), the thickness of material 

traversed by the beam will be increased. The relative increase in thickness can be 

determined as 1 / cos θ, where θ is the angulation away from perpendicular. The 

maximum oblique angulation was 40° (2π/9). This results in an increase in thickness 

of material traversed of 31% and an increase in table attenuation by 5.4%. The 

average transmission factor for angles ranging from 0° (i.e. perpendicular to the 

table) to 40° for the three x-ray energies was 0.81. This figure was used for organ 

dose calculations for all projections except straight left lateral. Most table surfaces 

are flat. The table used in Siemens Artis Zee systems is slightly concave, though by 

an insufficient extent to influence the above calculations. 

 

6.3: Conclusion 

Information was gathered on the beam energy and projection angles used for cardiac 

catheterizations in clinical practice. Central values of these parameters were 

estimated from a range of sources, with structured dose reports being considered the 

most reliable. It is acknowledged that considerable uncertainty exists in these values. 

These uncertainties have been estimated from available data. The following chapter 

presents estimates of organ doses calculated using the ‘Cardiodose’ dosimetry 

system, utilising the information presented in this chapter. 
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Age range 
(mass) 

Uncertainty 
Effective 

dose 
Bone 

marrow Breasts Heart Lungs 
Lymph 
nodes Oesophagus Thyroid Liver Stomach 

Average 
dose 

<1 years 
(<9.2 kg) 

Upper 6% 14% 30% 11% 3% 0% 2% 5% 20% 3% 3% 

Lower -3% -20% -18% -7% -3% 0% -2% -4% -14% -3% -4% 

1-5 years 
(9.2-19 kg) 

Upper 11% 11% 39% 16% 1% 3% 7% 5% 30% 4% 1% 

Lower -7% -15% -24% -11% -1% -2% -5% -3% -19% -5% -2% 

5-10 years 
(19-32.4 kg) 

Upper 14% 10% 52% 10% 3% 1% 2% 10% 32% 8% 2% 

Lower -9% -15% -31% -7% -1% -1% -1% -7% -21% -11% -3% 

10-15 years 
(32.4-56.3 kg) 

Upper 18% 14% 67% 7% 2% 2% 1% 7% 31% 10% 4% 

Lower -11% -19% -40% -4% -1% -2% -2% -5% -20% -14% -6% 

15-18 years 
 (>56.3 kg) 

Upper 15% 14% 78% 4% 5% 3% 7% 13% 35% 14% 3% 

Lower -9% -20% -47% -2% -2% -3% -9% -8% -23% -19% -4% 

>18 years 
(>70 kg) 

Upper 16% 14% 86% 4% 6% 5% 12% 8% 35% 19% 4% 

Lower -10% -21% -51% -6% -3% -6% -16% -4% -23% -26% -5% 

 

Table 6.9: Upper and lower percentage uncertainties in organ dose due to variation in the proportion of PA and lateral projections. Figures are 

the average for Pulmonary/aortic valvuloplasty, coarctation repair, atrial septostomy, valve implantation and biospies.  
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Age range 
(mass) 

Uncertainty 
Effective 

dose 
Bone 

marrow 
Breasts Heart Lungs 

Lymph 
nodes 

Oesophagus Thyroid Liver Stomach 
Average 

dose 

<1 years 
(<9.2 kg) 

Upper 10% 19% 37% 9% 6% 5% 7% 10% 25% 15% 3% 

Lower -11% -22% -37% -13% -3% -4% -7% -9% -15% -15% -3% 

1-5 years 
(9.2-19 kg) 

Upper 12% 15% 47% 14% 7% 5% 7% 10% 29% 12% 1% 

Lower -13% -16% -38% -18% -6% -7% -8% -9% -20% -14% -1% 

5-10 years 
(19-32.4 kg) 

Upper 16% 14% 53% 11% 10% 5% 5% 11% 32% 15% 2% 

Lower -17% -15% -42% -17% -10% -8% -6% -12% -22% -16% -1% 

10-15 years 
(32.4-56.3 kg) 

Upper 18% 18% 49% 13% 9% 7% 8% 11% 35% 21% 4% 

Lower -18% -21% -44% -15% -11% -6% -7% -13% -23% -22% -3% 

15-18 years 
 (>56.3 kg) 

Upper 13% 19% 44% 15% 12% 8% 9% 16% 41% 28% 2% 

Lower -16% -21% -43% -16% -18% -10% -9% -18% -27% -27% -2% 

>18 years 
(>70 kg) 

Upper 13% 20% 44% 17% 13% 9% 13% 18% 40% 32% 3% 

Lower -15% -21% -44% -13% -17% -7% -14% -20% -27% -36% -2% 
 

Table 6.10: Upper and lower uncertainties for coronary angiography, PDA occlusions, ASD occlusions, and Pulmonary angioplasty 
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Chapter 7: Physical dosimetry 

This chapter describes the attempt to verify the findings of the previously described 

Monte Carlo simulations and Cardiodose dosimetry system using the alternative 

methodology of physical measurements conducted with anthropomorphic phantoms 

and thermoluminescent dosemeters (TLDs). Anthropomorphic phantoms are 

mannequins made from materials with similar x-ray interaction properties to human 

tissues [283]. They are designed to appear approximately similar to a living person 

when x-rayed, and usually have the capability to be disassembled to allow small 

dose measuring devices to be placed inside. A more detailed description of the 

phantoms used in this study, along with a description of thermoluminescent 

dosimetry is provided below. 

 

7.1: Methodology 

Physical measurements were conducted using ‘ATOM’ anthropomorphic phantoms 

manufactured by CIRS (Norfolk, Virginia, USA) [284] (Figure 7.1). Five different 

phantom sizes were available, representing new-born, 1 year, 5 year, 10 year and 15 

year old individuals. Conveniently, these are the same paediatric patient ages 

represented in PCXMC. ATOM phantoms are made from tissue equivalent epoxy 

resin, with no human remains [284] (some phantoms utilise a real human skeleton). 

The bone density varies with phantom size, from 1.41 to 1.6 g/cm3 (electron density; 

4.606 x1023 to 5.030 x 1023/cm3). Human bones comprise an outer layer of dense 

cortical bone surrounding an inner core of spongy, trabecular bone [255]. ATOM 

bones are solid with a uniform density equal to the average of trabecular and cortical 

bone to simplify calculations and eliminate air voids [284]. The density of the lungs is 

0.2 g/cm3. All other soft tissue organs were of identical density (1.055 g/cm3) [284]. 

This uniformity caused problems when positioning the phantoms as the heart was 

simply the space between the lungs and above the abdomen, and thus difficult to 

locate. Table 7.1 compares the characteristics of ATOM and PCXMC Monte Carlo 

phantoms. The phantoms are split into a number of 25 mm thick axial slices allowing 

them to be disassembled (Figure 7.1). Most slices are drilled with holes allowing 

dose measuring devices such as TLDs or metal oxide semiconductor field effect 

transistors (MOSFETs) to be placed inside. Most of the phantom sizes did not have 

holes drilled in positions representing the heart. Furthermore, only the new born and 
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1 year phantoms had arms and legs. The remaining phantoms only featured a torso 

(down to the proximal femora) and a head.  

 

 

Figure 7.1: Disassembled 1 year ATOM phantom, showing numbered holes in which TLDs 
can be placed. The arms can also be disassembled. Photo: author 

 

 

Characteristic Phantom New born 1 year 5 years 10 years 15 years 

Total height 
(cm) 

ATOM 51.0 75.0 110.0 140.0   

PCXMC 2.0 50.9 74.4 109.1 139.8 168.1 

Total body 
mass (kg) 

ATOM 3.5 10.0 19.0 32.0   

PCXMC 2.0 3.4 9.2 19.0 32.4 56.3 

Torso width 
(cm) 

ATOM 10.5 14.0 17.0 20.0   

PCXMC 2.0 10.9 15.1 19.6 23.8 29.7 

Torso thickness 
(cm) 

ATOM 9.0 12.0 14.0 17.0   

PCXMC 2.0 9.8 13.0 15.0 16.8 19.6 

Soft tissue 
Density (g/cm³) 

ATOM 1.06 1.06 1.06 1.06  1.06 

PCXMC 2.0 1.04 1.04 1.04 1.04 1.04 

Bone Density 
(g/cm³) 

ATOM 1.4 1.5 1.5 1.6  1.6 

PCXMC 2.0 1.22 1.4 1.4 1.4 1.4 

Lung Density 
(g/cm³) 

ATOM * 0.21 0.21 0.21 0.21  0.21 

PCXMC 2.0 0.30 0.30 0.30 0.30 0.30 
 

Table 7.1 Comparison of phantom characteristics for ATOM anthropomorphic phantoms and 

PCXMC Monte Carlo phantoms. * Lung density for ATOM phantoms is based on inhalation. 
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Thermoluminescent dosemeters are conceptually similar to the phosphor-based 

luminous paint on watch dials, in which radiant energy from visible light is absorbed, 

trapped, and re-emitted later as new visible light photons. TLDs used in x-ray 

dosimetry typically utilise a crystal of lithium fluoride (LiF) rather than phosphor. 

Incident x-ray photons provide energy to elevate electrons from the valance band to 

the forbidden gap whereupon they become stuck in ‘traps’ caused by the addition of 

impurities into the crystal. Excited electrons remain trapped until provided with 

sufficient energy in the form of heating (around 300°C) to escape the electron traps 

and reach the conduction band [43], after which they return to the valance band, 

accompanied by the emission of a visible light photon (direct transition from traps to 

the valance band is forbidden). The intensity of visible light photons emitted following 

heating is related to the absorbed dose to the TLD. The heating can be in the form of 

contact with a strip of hot metal, lasers/focused infrared bulbs or hot gas [285]. A 

controlled increase in heating during the reading process empties electron traps of 

increasing depth, producing a characteristic ‘glow curve’, measured using a 

photomultiplier tube [16]. 

The TLDs used were lithium fluoride, doped with magnesium and titanium 

(LiF:Mg,Ti) (Thermo Electron Corporation, Solon, OH). The effective atomic number 

of LiF (8.2) is comparable to that of soft tissue (7.4) [43], meaning x-ray interaction 

properties are reasonably similar. The electron traps are sufficiently deep to reduce 

spontaneous emptying at room temperatures to negligible levels [16]. TLDs have the 

advantages of small size, re-usability, low cost, and reasonably linear response to 

radiation at diagnostic dose levels and photon energies. TLDs are fiddly and 

extremely time consuming to use. The whole process of loading a phantom with 

TLDs, exposing, removing the TLDs and reading them can typically take 2 days. 

Before measurements could be made, the TLDs needed to be calibrated. The entire 

batch of TLDs were calibrated twice, once at the beginning of the study, and a 

second calibration after the first phase of exposures (see Exposures section below). 

The calibration procedure produces a conversion factor for each TLD to convert the 

measured signal to absorbed dose in milligray. To begin, all TLDs were annealed 

using a dedicated oven (Model TLD-28, Pickstone Ovens, Thetford, Norfolk, UK) set 

at 400°, for 12 hours after which they were allowed to cool, undisturbed, for a further 
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36 hours. The annealing process empties electron traps of residual signal from 

previous irradiations or background exposure [285].  

Following annealing, the TLDs were placed in individual heat sealed bags and 

attached to a jig designed to allow irradiation of TLDs equidistant from the radiation 

source (Figures 7.2 and 7.3). The source used to irradiate the TLDs was Caesium-

137 (137Cs), which decays by β- emission to barium-137 (137Ba). Around 90% of the 

time, 137Cs decays to a metastable state (137mBa), followed by the emission of a 

gamma-ray of 661.6 keV [16]. In the remainder, 137Cs decays directly to 137Ba with no 

metastable state. The source was handled with a set of special tongs to maintain 

distance from the handler, and the time spent with the source was kept to a minimum 

once it was unshielded. The source was placed in the centre of the calibration jig so 

as to be equidistant from the TLDs. For the first calibration, this achieved using tape 

stretched across the jig (Figure 7.). The TLDs were irradiated with the 137Cs source 

for 4 Hours 30 minutes, 42 seconds, giving a mean total dose to each TLD of 11.11 

mGy.  

 

 

Figure 7.2: Diagram of TLD calibration setup shown in Figure 7.3. Figure credit: author 
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Figure 7.3: TLD calibration jig as used for the first calibration. Note the tape method of 
finding the centre of the jig. Photo: author 

 

After exposure, TLDs were read to produce calibration factors. Each TLD chip 

responds slightly differently, therefore the calibration factor was specific to each 

numbered chip. Following calibration, all TLDs were annealed again before usage in 

dosimetry, using the same annealing protocol as the first time. Reading was carried 

out using a HARSHAW 5500 TLD reader (Thermo Electron Corporation, Solon, OH) 

[286], which uses hot nitrogen gas heating. The photomultiplier tubes of the reader 

are cooled, using cold liquid nitrogen. TLDs were read in batches of 50 at a time, with 

each batch taking around 35 minutes to read. 

Errors in the TLD calibration process came from a number of sources. Firstly, the 

TLDs were not exactly equidistant from the source. The vertical spread of TLDs on 

the calibration apparatus was around ±1.5 cm. This results in a variation in the 

distance from the source of ±0.12% (Pythagoras): 

𝐸𝑟𝑟𝑜𝑟 = (
√302 ± 1.52

30
) − 1 

Secondly, the site of the source was found to be not exactly in the centre of the 

circle, varying from 29 to 31 cm. As beam intensity from a point source is proportional 

to the inverse square of distance from that source, this small variation in distance 

from 30 cm would result in a variation in intensity of around ±6.7%. 
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For the second calibration, a number of changes were made to reduce these 

uncertainties. Firstly, the tape method of finding the centre of the calibration jig was 

replaced by an aluminium pole, which reduced variation in distance between the 

source and TLDs. Secondly, the vertical spread of TLDs on the calibration jig was 

reduced to around 1 cm. Where the results of the first and second calibrations were 

compared, the mean absolute variation in calibration factor was 5% (median = 4%), 

with 1% of calibration factors varying by greater than 20%, 8% varying by greater 

than 10%, 39% varying by greater than 5% and 87% varying by more than 1%. The 

largest variation was 268% although this TLD was never used in any phantom 

irradiations. The mean and median signed variation in calibration factor between first 

and second calibrations were +0.4 and +1.1% respectively, therefore there was little 

evidence of a systematic difference. 

 

7.1.1: Exposures 

TLDs were placed in all the holes representing the lungs, heart, stomach, liver, bone 

marrow, thyroid and breasts, using tweezers. A single TLD was placed in each hole. 

The organs represented by each hole in each phantom slice were determined from 

the manufacturers’ loading schemes. The number or holes representing each organ 

generally increased with phantom size, from new born to 15 years - Lungs (15-33 

holes), Bone marrow (49-67), oesophagus (2-4), liver (7-21), stomach (6-11), breasts 

(2 for all sizes), thyroid (2-4), heart (8-11). 

Phantom exposures were split into two phases. The first phase involved exposing 

each of the five phantoms, separately, in two projection angles - straight 

posteroanterior (PA) and straight left lateral. The second phase focused on a single 

phantom size (10 years) and involved exposures in 7 projection angles ranging from 

PA to lateral in 10 to 25° intervals, along with a further exposure in the PA projection 

at a lower beam energy. 

For the first phase, exposures were carried out using a Siemens Axiom Artis BC 

biplane unit at Hospital 4, with image intensifier detectors (Figure 7.4). The machine 

undergoes routine quality assurance (QA) testing every 12 months. A general use 

‘native’ cardiac paediatric imaging protocol was used (30 frames per second for 

acquisitions). An antiscatter grid was fitted. The c-arm was positioned and the beam 

collimated to the region of interest by a specialist cardiac radiographer. This is rather 
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difficult due to the crude anatomy of the ATOM phantoms. Finding the heart, which is 

simply the gap between the lungs, is challenging compared to PCXMC, in which 

organs have been thoughtfully colour coded. The positioning process was guided by 

fluoroscopy rather than cine-acquisitions. The dose from this initial positioning was 

generally less than 0.01 Gy·cm2 and regarded as negligible. The image intensifier 

was positioned as close as possible to the patient. The source-to-skin distance 

(SSD) was kept at approximately 80 cm. 

The phantom was exposed in a single beam projection to a particular value of PKA 

which depended on phantom size: 1, 2, 5, 10 and 15 Gy·cm2 for new born, 1, 5, 10 

and 15 year old phantoms respectively. These values were chosen based on the 

organ dose per unit PKA derived from Monte Carlo simulations and designed to 

ensure a mean dose to the lungs and heart of at least 10 mGy. A remainder of 10 

TLDs were saved to represent background exposures. The average doses recorded 

by these background TLDs were subtracted from the values recorded by TLDs 

placed in the phantoms. Following exposures, the phantoms were disassembled and 

the TLDs read (see below). The tube potential, added copper filtration and 

cumulative kerma area product were recorded.  

This process was repeated in the second beam projection. Dose estimations for 

complete examinations could be reconstructed from these data by adding doses from 

each projection in a particular combination. By obtaining results in individual 

projections separately, the results could easily be compared to the results of Monte 

Carlo simulations.  

 



215 
 

 

Figure 7.4: Position of new born phantom for the left lateral position. The arms are raised 
above the head as would be the case in clinical imaging. The bag over the x-ray tube is for 
infection control. An antiscatter grid (the black disk) is fitted to the image intensifier. Photo: 

author. 

 

For the second phase, exposures were carried out using a Philips BV300 mobile c-

arm fluoroscopy machine located in the regional medical physics department at the 

Hospital 4. This machine undergoes quality assurance testing every 12 months. 

Unlike the Siemens Axiom Artis, this Philips BV300 utilises circular x-ray fields. A 

PTW (Freiburg, Germany) M2 Diamentor was attached for PKA measurements and 

was calibrated at the time of the exposures. The c-arm had no proper attachment for 

a PKA meter, meaning the device needed to be strapped on (Figure 7.5). For these 

exposures, the phantom was stood vertically, supported by a table. The phantom 

itself was rotated for each projection angle rather than the c-arm, which was 

maintained in the same position. Exposures were carried out in seven projections 

ranging from straight PA to straight left lateral (rotational angles 90° to 180° in 

PCXMC terminology). Cranio-caudal angulation was fixed at 0°. A PKA of 10 Gy·cm2 

was delivered for each exposure. Unlike the Axiom Artis machine, tube potential 

could be set manually and was fixed at 70 kV for all exposures investigating the 

effect of beam angle. The overall HVL of 4.8 mm Al was obtained from QA reports for 

this machine. This figure is the same as the central value used in Cardiodose. 
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The process was extremely time consuming, therefore dose to a more limited range 

of organs was calculated. These were the lungs, heart, oesophagus, breasts and 

thyroid (i.e. organs in the thoracic region). A second exposure in the straight PA 

projection was carried out using a tube potential of 60 kV to investigate the impact of 

beam energy on dose per unit PKA.  

 

 

Figure 7.5: Setup for exposures using Philips BV300 mobile C-arm unit. Note the kerma area 
product meter strapped to the x-ray tube. Photo: author 

 

7.1.2: TLD reading 

The same HARSHAW 5500 TLD reader was used for TLD reading following 

exposures as was used following calibration. TLDs were read approximately the 

same length of time following exposures as they were following calibration exposures 

(as there were many TLDs to process, there was clearly a spread of reading times 

and there were numerous interruptions). Organ doses were calculated as the mean 

reading for all TLDs representing each tissue. For active bone marrow dose, a 

different approach was needed as the distribution of this tissue is uneven and varies 

with age. Information on age-specific bone marrow distribution was obtained from a 

paper by Cristy [256] (PCXMC Monte Carlo software uses the same approach). 

These proportions are summarised in Table 7.2. The mean TLD reading representing 

each of these regions of bone marrow was calculated before being multiplied by the 
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respective proportion from the Cristy data. The equivalent bone marrow dose (i.e. the 

average over the whole body) was calculated as the sum of these figures. Not all of 

the regions in Table 7.2 were simulated in the ATOM phantoms. The larger 

phantoms (5 years and above) did not have arms, or legs below the proximal femur. 

Dose values for these bones were assigned based on whichever bone containing 

TLDs was the closest (e.g. mandible = cervical vertebrae). 

 

 

Age (years) 

Region: 0 1 5 10 15 25 40 

Cranium 27 25.1 15.9 11.6 9.2 7.7 7.6 

Mandible 2.5 2.4 1.6 1.1 0.9 0.8 0.8 

Scapulae 2.7 2.7 2.7 2.9 3.3 2.9 2.8 

Clavicles 0.8 0.8  0.9 0.9 1 0.8 0.8 

Sternum 0 0.8 1.7 2.1 2.7 3 3.1 

Ribs 9.2 8.9 8.8 10.9 13.6 15.2 16.1 

Cervical vertebrae 3.4 2.8 2.2 2.7 3.3 3.7 3.9 

Thoracic vertebrae 8.3 8.4 8.9 10.9 13.7 15.3 16.1 

Lumbar vertebrae 2.4 4.3 6.8 8.4 10.5 11.7 12.3 

Sacrum 0.1 2.4 5.5 6.7 8.4 9.4 9.9 

Os coxae 9.2 11.1 13.1 15.6 18.5 19.5 17.5 

Femora, upper half 3.7 4.1 6.8 9.4 9.2 7.4 6.7 

Femora, lower half 3.7 3.9 6.3 6.1 2 0 0 

Tibiae, fibulae, patellae 8.0 8.7 9 5.5 0 0 0 

Ankle and foot bones 8.3 4.7 2.5 0 0 0 0 

Humeri, upper half 2.3 2.4 2.4 2.5 3.1 2.5 2.3 

Humeri, lower half 2.3 2.3 2.2 1.6 0.7 0 0 

Ulnae and radii 2.5 2.5 2 1.1 0 0 0 

Wrist and hand bones 3.6 1.9  0.9 0 0 0 0 
 

Table 7.2: Percentage distribution of active bone marrow as a function of age. Figures 

obtained from Cristy [253]. Note: ‘Os Coxae’ are the bones of the hip and pelvis. 

 

7.2 Results 

7.2.1: Phase 1 

The mean TLD readings per unit PKA for each organ are presented for PA and left 

lateral projections for each phantom size in Tables 7.3 and 7.4. In each case, 

equivalent figures calculated using Cardiodose are provided for comparison. Some 
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organ doses could not be calculated - on two occasions, the phantom’s head fell off 

during transporting resulting in the loss of TLDs representing the thyroid.    

The highest doses were for the lungs, oesophagus, heart and breasts. Doses to the 

thyroid, stomach and bone marrow were relatively low. Overall, organ doses 

calculated using physical measurements were higher than those estimated by Monte 

Carlo simulations. For the PA projection, the level of agreement between the two 

methodologies is reasonably high. Agreement was highest for the lungs, oesophagus 

and stomach and lowest for the liver and breasts. There is little suggestion of an 

association between phantom size and agreement between physical and Monte 

Carlo methods. For the left lateral projection, the doses calculated by physical 

measurements were higher than those of the Monte Carlo counterparts by an 

average factor of around 2.2. This discrepancy varied between organs, being highest 

for the liver and oesophagus and lowest for the breasts. Discrepancies were present 

across all ages – there is no suggestion of a closer match for smaller or larger 

phantom sizes. As with Monte Carlo simulations, organ doses per unit PKA decreased 

with increasing phantom size, except for the breasts in which the dose for the 1 year 

phantom was higher than for the new born. Again, a power law relationship tended to 

provide the best fit for this relationship. 

 

Phantom 
size (y) Methodology 

Organ 

ABM Breasts Heart Lungs Oesophagus Thyroid Liver Stomach 

0 
Physical 2.60 4.17 9.10 13.13 10.71 1.71 1.56 2.76 

Cardiodose 2.31 8.29 9.56 13.40 10.38 1.01 2.87 2.47 

1 
Physical 1.35 4.26 n/a 8.56 6.28 0.40 0.99 1.83 

Cardiodose 1.05 3.36 4.15 6.42 4.35 0.38 1.57 1.37 

5 
Physical 0.63 - n/a 4.03 2.67 - 0.30 0.30 

Cardiodose 0.53 1.37 2.12 3.32 2.14 0.12 0.69 0.59 

10 
Physical 0.43 1.23 1.66 2.35 1.20 0.07 0.83 0.34 

Cardiodose 0.46 0.82 1.49 2.17 1.19 0.05 0.41 0.33 

15 
Physical 0.44 0.51 n/a 1.49 0.81 0.05 0.42 0.15 

Cardiodose 0.35 0.25 0.77 1.33 0.80 0.02 0.22 0.15 
 

Table 7.3: Organ doses (in mSv) per unit PKA calculated for the PA projection by physical 
methods compared to those estimated using Monte Carlo computer simulations. 
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Phantom 
size (y) Methodology 

Organ 

ABM Breasts Heart Lungs Oesophagus Thyroid Liver Stomach 

0 
Physical 2.45 4.83 30.71 24.29 19.26 2.01 14.13 7.33 

Cardiodose 1.00 20.50 15.20 11.60 7.90 1.00 3.50 1.80 

1 
Physical 1.11 9.32 n/a 14.09 17.65 0.45 1.51 3.15 

Cardiodose 0.55 10.00 n/a 6.05 4.15 0.35 2.05 0.80 

5 
Physical 0.83 - n/a 8.15 6.99 0.20 1.29 0.64 

Cardiodose 0.30 7.30 n/a 3.98 2.66 0.14 1.36 0.39 

10 
Physical 0.78 5.81 3.99 3.78 2.22 0.16 2.34 0.26 

Cardiodose 0.22 5.27 2.46 2.34 1.18 0.07 0.76 0.21 

15 
Physical 0.38 0.46 n/a 2.37 1.23 0.06 1.94 0.14 

Cardiodose 0.15 1.77 n/a 1.30 0.52 0.02 0.52 0.06 
 

Table 7.4: Organ doses (mSv) per unit PKA calculated for the left lateral projection by 
physical methods compared to those estimated using Monte Carlo computer simulations. 

 

7.2.2: Phase 2 

Mean TLD readings for each projection angle and organ are given in Table 7.5 along 

with corresponding figures estimate using Cardiodose. A greater level of agreement 

was found between TLD readings and cardiodose estimates for phase 2 

measurements than phase 1. In particular, the discrepancy between doses in the left 

lateral projection was considerably smaller. The mean dose across all beam angles 

was higher for physical measurements by 22%, 8% and 12% for the lungs, heart and 

oesophagus respectively. A poor agreement was found across most beam angles for 

breast dose. The sharp rise in breast dose predicted to occur around the left lateral 

projection by Monte Carlo simulations was not seen for physical measurements. 

Thyroid dose was around 100% higher for physical measurements, although the 

absolute difference was not large (i.e. both methodologies yielded small doses).  
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Rotational beam angle (degrees) 

Organ Methodology 90 (PA) 115 130 145 155 170 180 (Lat) 

Lungs 
Physical 2.75 2.81 2.88 2.80 2.44 2.48 2.63 

Cardiodose 1.78 2.22 2.45 2.72 2.77 2.57 2.29 

Heart 
Physical 1.36 1.51 1.52 1.72 2.15 2.22 2.54 

Cardiodose 1.72 1.63 1.92 1.94 2.04 2.23 2.24 

Oesophagus 
Physical 1.17 0.90 1.17 1.42 1.21 1.32 1.37 

Cardiodose 1.22 1.32 1.32 1.40 1.31 1.14 1.06 

Breasts 
Physical 1.39 0.57 0.49 -  0.70 0.90 0.92 

Cardiodose 0.56 0.27 0.28 0.34 0.45 2.94 5.48 

Thyroid 
Physical 0.09 0.13 0.12  - 0.08 0.08 0.08 

Cardiodose 0.04 0.05 0.06 0.06 0.06 0.06 0.06 
 

Table 7.5: Doses per unit PKA for five organs (in mSv) and various projection angles obtained 

from physical measurements, compared to estimates obtained using the cardiodose function 

based on Monte Carlo simulations. 

 

Organ doses per unit PKA at 60 kV were lower than at 70 kV by 15%, 17%, 32%, 12% 

and 38% for the lungs, heart, oesophagus, breasts and thyroid respectively, 

compared to equivalent dose reductions of 9%, 13%, 14%, 12% and 16% calculated 

using Cardiodose.  

 

7.3: Discussion 

A number of discrepancies were found between physical measurements and Monte 

Carlo simulation based Cardiodose, although these varied between the two phases 

of measurements. Most notably, a large difference was found between cardiodose 

and physical measurements for the lateral projection where the Siemens Axiom Artis 

machine was used, but not when using the Philips BV300. There are a number of 

possible explanations; (1) differences in phantom density, (2) differences in phantom 

dimensions, i.e. width and thickness, (3) the discrete locations of TLDs within 

physical phantoms, and (4) measurement and calibration errors.  

The density of soft tissues and bones are similar for PCXMC and ATOM phantoms 

(see Table 7.1 at the beginning of the chapter), except for the new born model, in 

which bone density is around 13% lower in PCXMC. Lung density, however, is 

significantly different, being around 43% higher in PCXMC. The effect of this 

difference in density was investigated analytically, by considering the reduction in x-
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ray intensity (I) from its initial value (I0) as it passes through an attenuator of 

thickness x, approximated by Beer’s law: 

𝐼 = 𝐼0𝑒
−𝜇𝑥 

Where µ is the linear attenuation coefficient, which is dependent on material and 

photon energy. The mean intensity through an attenuator of thickness t is therefore: 

𝐼 ̅ =
1

𝑡
∫ 𝐼0𝑒

−𝜇𝑥
𝑡

0

𝑑𝑥 

= 𝐼0
1

𝑡
(
1

𝜇
−

𝑒−𝜇𝑡

𝜇
) 

Where µ is the linear attenuation coefficient, which is dependent on material and 

photon energy. A mass attenuation coefficient (µ/ρ)  for ICRU-44 lung tissue of 0.227 

cm2 g-1 at  50 keV, quoted by the Physical Measurement Laboratory [287] was used. 

The linear attenuation coefficient was therefore obtained by multiplying this by the 

respective lung density values. Three lung densities were analysed based on the 

values used in PCXMC (0.3 g cm-2), standard ATOM phantoms with inspiration lung 

density (0.21 g cm-2), and ATOM phantoms with expiration lung density (0.5 g cm-2). 

X-ray intensity relative to the initial unattenuated level as a function of lung thickness 

is shown in Figure 7.6, revealing a difference in attenuation patterns between 

different lung densities. Note that the attenuation curve for the PCXMC lung density 

lies approximately midway between the ATOM inspiration and expiration density 

curves. If the lung density is lower, then the x-ray beam will undergo less attenuation 

before reaching TLD locations in the lungs and other tissues. The resulting higher x-

ray intensity at TLD positions would result in higher recorded doses. However, to 

account for a 100% increase in dose, the beam would need to traverse around 30 cm 

of lung tissue. The thickness of lung tissue traversed in the phantoms considered in 

this study was considerably less than 30 cm, especially for the new born phantom, in 

which the heart may be reached by the beam following the traversal of only around 2-

3 cm of lung tissue. In this case, the intensity of radiation reaching the heart would be 

higher by little more than 10% for the low density lungs used in physical phantoms. 

Thus differences in lung density are unlikely to account for the large discrepancy in 

doses between MC and physical methodologies. 
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Figure 7.6: Attenuation of a mono-energetic (50 keV) x-ray beam through lung tissues of 
three different densities – 0.21, 0.3 and 0.5 g cm-3, representing different levels of inspiration. 

 

Aside from the difference in lung density, the ATOM phantoms, while having similar 

anterior-posterior thorax dimensions to the equivalent PCXMC mathematical 

phantoms, have somewhat narrower thoracic width (Table 7.1, again). This is 

especially the case for the 5 and 10 year old phantoms, in which the ATOM 

phantoms are 13% and 16% narrower respectively. The mean intensity to a given 

tissue decreases as the tissue thickness is increased. Based on the same Beer’s law 

relationship above, the difference in mean x-ray intensity between thicknesses t and 

t’ were calculated as follows: 

% 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
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Based on the difference is phantom widths, mean x-ray intensity should be higher for 

the narrower ATOM phantoms by between 3% and 15% depending on phantom size.  

Variation in liver and stomach doses between physical and Monte Carlo 

methodologies may be related to the shape of the lungs represented in respective 

phantoms. In PCXMC, the diaphragm is flat (Figure 7.7). This happens to people 
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who have smoked for decades and have developed emphysema [288]. In normal, 

healthy individuals, the diaphragm is dome shaped, both in the sagittal and coronal 

planes [249]. The diaphragm does flatten during inspiration, but never to the extent 

shown in Figure 7.7. A more realistic lung shape is used in the ATOM 

anthropomorphic phantoms, with some TLD locations representing the liver and 

stomach being found superior to the lung bases. As the liver extends upwards to a 

greater degree in the ATOM phantoms, it would be expected that measured doses 

would be higher for cardiac imaging.  

 

 

Figure 7.7: The unrealistic relationship between the lungs and the liver in PCXMC 2.0. Image 
credit: author generated PCXMC screengrabs 

 

TLD calibration was only performed at a single energy (661 keV), and not repeated at 

photon energies more relevant to cardiac fluoroscopy (i.e. 30-100 keV). Brady [248] 

compared TLD calibration factors obtained using a linear accelerator at 6 MV with 

those obtained using a Therapax S3 SXRT superficial radiotherapy unit at 120 kV 

and 1.1 mm Al and 0.3 mm Cu filtration (HVL=8.1 mm Al). On average, the latter 

calibration factors were higher by 4.2%. Other general uncertainties in TLD dosimetry 

must also be considered. Nunn et al [289] found TLD response as a function of 

photon energy to differ from Monte Carlo simulations by up to 13%, due to 

complications in solid state physics of TLD materials. Harris et al [290] studied 

linearity of dose response for LiF:Mg:Ti (used in this study) and LiF:Mg:Cu:P TLD 

crystals. Although some departure from linearity was found, this occurred at large 

doses, approaching 5% at 400 cGy.  
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None of the variations in phantom dimensions and density and TLD calibration errors 

and uncertainties  discussed above offers a satisfactory explanation for differences in 

recorded dose between computational and physical methodologies, either in isolation 

or when combined. Nor do these variations explain the difference in agreement of 

physical measurements with Monte Carlo results between the two phases of 

phantom exposures. The two machines used for physical measurements differ in a 

number of ways, including beam energy (Axiom Artis is higher) and field shape 

(BV300 fields are circular), though neither of these factors explain why the large 

discrepancies were found in the lateral projection only. The Axiom Artis used in the 

first phase of physical measurements is a biplane machine, while the Philips BV300 

is not. Biplane machines have one capability not shared by single plane units – they 

can irradiate in two different projections at the same time. An unexpectedly large 

dose recorded for exposures in the lateral projection could be explained if the 

machine was also irradiating in the frontal plane. In fact, if the PA and lateral dose 

estimates derived using cardiodose are combined, the agreement with the lateral 

physical measurements using the Axiom Artis becomes close. The double-exposure 

problem would not have occurred for PA projection measurements as the lateral tube 

was always fully retracted. 

 

7.3.1: Comparison with previous research 

Three other studies using physical measurements were compared. Firstly, Axelsson 

and colleagues [84] calculated organ doses for two different paediatric phantom 

sizes (1 and 5 years) and for 10 different beam angles, including straight PA and left 

lateral. Exposures were carried out using relatively old equipment (Philips Optimus 

2000, Eindhoven, Netherlands), with a total filtration of 3.0 mm Al and a tube 

potential ranging from 58 to 70 kVp. Doses were measured using thermoluminescent 

dosemeters. In a second, more recent study, Barnaoui et al [92] calculated doses to 

the breasts, lungs, thyroid and oesophagus for 5 cardiac catheterizations, by 

reconstructing them using CIRS ATOM family phantoms. Doses were again 

measured using TLDs. For two of the reconstructions, multiple beam angles were 

used and it was not possible to determine the contribution to total organ dose from 

each projection. For the remaining three – two using the PA projection, and one using 

the left lateral projection, the results could be compared with those of the current 
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study. Finally, Kawasaki et al [116] calculated organ doses using 0 and 1 year CIRS 

ATOM phantoms, silver activated phosphate glass dosemeters and Philips Allura 9 

fluoroscopy equipment , in two projection (PA and lateral).   

The results of these studies, converted to organ dose per unit PKA, are presented in 

Table 7.6, along with equivalent physical measurements from the current study. 

There is a greater level of agreement between the figures presented by Axelsson et 

al and those of the current study for the PA projection. Differences in beam energy 

would explain the degree to which doses for the 1 year phantom are higher in the 

current study (50-100%), but not for the 5 year phantom, in which there is an 

unexpectedly close agreement between the two studies. Discrepancies in liver and 

stomach doses are presumably due to different levels of collimation and beam 

centring. Doses for the lateral projection were generally much higher in the current 

study, by a factor greater than could be explained by beam energy alone. Dose to the 

oesophagus was 3.7 and 4.7 times higher in the current study for the 1 and 5 years 

phantoms respectively. This discrepancy is consistent with the earlier theory that 

doses for the lateral projection in the current study are overestimates due to 

exposure in two planes. The figures calculated by Barnaoui et al [92] were based on 

the same equipment as used in the current study, thus ought be more comparable. 

Doses per unit PKA are generally lower than those of the current study, however, 

most notably for the breasts. Only Kawasaki et al calculated organ doses for the new 

born phantom size. With the exception of the thyroid, doses were lower than those of 

the current study for both projections. This is despite the involvement of higher beam 

energy (HVL=6.4-6.7 mm Al). The overall patterns of higher doses for the lateral 

projection and lower doses with increasing phantom size were consistent, however. 
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Posteroanterior Left lateral 

Age Organ Axelsson Barnauoi Kawasaki This study Axelsson Barnauoi Kawasaki This study 

0
 y

e
ar

s 

ABM     1.7 2.6     1.8 2.5 

Breasts   
 

4.0 4.7   
 

11.8 4.8 

Lungs   
 

6.0 13.1   
 

9.8 24.3 

Oesophagus   
 

6.0 10.7   
 

11.2 19.3 

Thyroid   
 

4.9 1.7   
 

4 2.0 

Liver   
 

0.9 1.6   
 

2.2 14.1 

Stomach     0.7 2.8     1.3 7.3 

1
 y

e
ar

 

ABM 0.8   0.9 1.4 1.1   1.1 1.1 

Breasts 1.6 1.7 2.9 4.3 3.8 
 

9.4 9.3 

Lungs 6.3 5.5 4.4 8.6 8.5 
 

6.6 14.1 

Oesophagus 3.1 4.4 3.6 6.3 3.7 
 

6.9 17.7 

Thyroid 0.2 0.5 1.9 0.4 0.3 
 

2.3 0.5 

Liver 0.7 
 

0.7 1.0 2.6 
 

0.9 1.5 

Stomach 2.6   0.6 1.8 4.1   0.6 3.2 

5
 y

e
ar

s 

ABM 0.8     0.6 0.4     0.8 

Breasts 1.8 
  

  3.7 1.3 
 

17.0 

Lungs 4.1 
  

4.3 2.3 4.7 
 

8.1 

Oesophagus 2.6 
  

2.7 1.9 3.2 
 

7.0 

Thyroid 0.3 
  

  0.3 0.6 
 

0.61 

Liver 0.4 
  

0.3 0.6 
  

1.3 

Stomach 0.2     0.3 0.1     0.6 

1
5

 y
e

ar
s 

ABM       0.4         

Breasts   0.1 
 

0.5   
  

  

Lungs   0.4 
 

1.5   
  

  

Oesophagus   0.6 
 

0.8   
  

  

Thyroid   0.1 
 

0.1   
  

  

Liver   
  

0.4   
  

  

Stomach       0.2         
 

Table 7.6: Organ doses, in mSv, per unit PKA calculated using physical measurements in 

three previous studies, compared to the current. 

 

7.4: Partial organ doses 

The organ doses presented in this chapter represent the mean for the whole organ. 

However, energy would not be expected to be imparted evenly within large organs; 

the heart is in the left lower portion of the chest, therefore the left lower lobe of the 

lungs would be expected to receive a higher dose than other lobes, the distal 

oesophagus would receive a higher dose than the proximal, and the fundus of the 

stomach would receive a higher dose than the pylorus. The results of Monte Carlo 

simulations in PCXMC are always presented as mean organ doses and cannot be 

expressed as partial organ doses. Physical measurements in phantoms do not have 

this restriction, thus allow doses to be characterised in greater detail. 
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According to the linear no threshold (LNT) model describing the supposed 

relationship between radiation dose and associated risk of cancer, uneven dose 

distribution is immaterial – one lung receiving a mean dose of 10 mGy would result in 

the same risk as both lungs receiving 5 mGy each (assuming they are of equal size). 

The introduction of the concept of a ‘dose and dose rate effectiveness factor’ 

(DDREF) – a reduction in risks, typically by a factor of 1.5 or 2.0 [3, 44], where doses 

are less than 200 mGy or delivered at a low dose rate – could be interpreted as an 

admission that some level of non-linearity exists. If the left lung receives a dose of 

250 mGy, while the right receives 50 mGy, then the equivalent lung dose would be 

150 mSv and no DDREF would be applied, despite the left lung receiving more than 

200 mGy. From an epidemiological perspective, partial organ dosimetry may allow 

alternative insights into the cancer risks from exposures. The uneven dose 

distribution within large organs should be matched by an uneven distribution of 

associated excess cancers. For example, if the dose to the left lower lobe of the 

lungs is consistently higher than for other lobes, then associated excess cases of 

lung cancer would be expected to occur more frequently in the left lower lobe than 

other lobes.  

ATOM phantoms do not have delineated ‘lobes’ of the lungs, though it is 

straightforward to analyse dose separately for left and right lungs, as well and left 

and right breasts. The results of this analysis (Table 7.7), for phase 1 figures, show 

that the left lung receives a higher dose than the right in the PA projection, while the 

situation is reversed for the left lateral projection with the right lung receiving a 

considerably higher dose. The right/left lung dose ratio increases with phantom size 

for the lateral projection, ranging from 2.2 at 0 years to 10.1 at 15 years. For 

examinations in which a 50/50 proportion of PA and lateral projections is used, the 

right lung would receive a higher dose than the left, by a factor ranging from 1.6 to 

5.4.  

These patterns were similar for breast dose. The right breast receives a considerably 

higher dose than the left in the lateral projection. Left and right breast doses were 

almost identical in the PA projection for the 1 and 15 year phantoms, while the left 

breast received almost twice the dose of the right for the 10 year phantom. 
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Lungs Breasts 

Phantom 
size 

Projection 
R/L 

ratio 
Mean R/L 

ratio 
R/L 

ratio 
Mean R/L 

ratio 

0 years 
PA 0.97 

1.59 
n/a 

n/a 
Lat 2.22 2.61 

1 year 
PA 0.92 

2.00 
0.99 

2.18 
Lat 3.08 3.37 

5 years 
PA 0.57 

1.93 
n/a 

n/a 
Lat 3.29 8.65 

10 years 
PA 0.63 

2.98 
0.57 

4.47 
Lat 5.33 8.36 

15 years 
PA 0.79 

5.43 
1.09 

3.19 
Lat 10.06 5.30 

 

Table 7.7: Comparison of doses to left and right lungs and breasts 

 

Dose to the lungs was also analysed on a slice-by-slice basis. As would be expected, 

given the inferior location of the heart in the chest, dose increases towards the lung 

bases and decreases towards the apices. The ratio between apical and basal lung 

dose tended to be greater for the lateral projection, reaching a value of more than 11 

in some cases (Figure 7.8). There was a small suggestion of a greater apex/base 

ratio with increasing phantom size, though the steepest gradient was found for the 10 

year phantom. 

 

Figure 7.8: Variation in lung dose with slice, relative to dose at the apex. 
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7.5: Conclusion 

The aim of this chapter was to verify the results of computational dosimetry (i.e. 

Monte Carlo simulations). This was only partially achieved. The results of the 

physical measurements were in reasonable agreement with MC-based Cardiodose 

in the PA projection, but were much higher in the lateral projection. A number of 

explanations are possible, including anatomical variation (differences in the size, 

shape and density of organs) and experimental error. The unusually high doses 

recorded for the left lateral projection using the biplane Siemens Axiom Artis were 

not replicated using the single plane Philips BV300. A likely explanation is that the 

phantoms were in fact irradiated using both imaging planes, resulting in 

approximately twice the anticipated dose. 
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Chapter 8: Organ doses 

With the ‘Cardiodose’ dosimetry system and supporting information on beam angles 

and x-ray energy in hand, organ doses could be estimated for cohort members using 

details recorded at the time of the examination. This chapter presents the results of 

such organ dose estimates, before comparing these figures to previous research and 

assessing uncertainties.  

 

8.1: Methodology 

Equivalent doses to the breasts, lungs, oesophagus, thyroid, stomach, liver, bone 

marrow and heart, along with effective dose and mean whole body dose were 

estimated for 14,934 examinations where patient age (n=14,775) or mass 

(n=13,382), dose indicators (kerma area product or screening time) and examination 

type were recorded. Only data obtained from Hospital 1 had usable biplane PKA 

figures. Those recorded at Hospital 4 were not considered reliable and only total PKA 

(e.g. frontal and lateral combined) was utilised. 

There were 1385 procedures conducted at Hospital 1 before 2000 where PKA was not 

recorded, but where screening time (ST) and patient mass or age were. Various 

methodologies for estimating PKA in these cases were investigated. Two linear 

models were calculated based on the median PKA, where it was recorded in this era, 

per minute screening time, per kilogram body mass (PKA/ST/kg), or per year of age 

(PKA/ST/age). These models were calculated for different age ranges (Figure 8.1) 

and polynomials fitted, to provide alternative models. The four models were applied 

to situations in which PKA was recorded, allowing the difference between actual and 

estimated PKA to be determined.  
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Figure 8.1: Relationship between PKA/ST/kg and PKA/ST/age and patient size. The age model 

was restricted to beyond 1 year. Below this age, the model rises rapidly, tending to infinity as 

age approaches zero. 

 

The median absolute errors were 39%, 47%, 35% and 41% for the linear mass, 

linear age, polynomial mass and polynomial age models, respectively. The 

respective 95th percentiles for these errors were 133%, 223%, 147% and 166%. Both 

age models resulted in extremely large errors below 1 year, while for the mass 

polynomial model, errors for patients below 10 kg were similar to other ages. The 

mass polynomial was the preferred approach, although for 27 examinations in which 

mass was not recorded, the age polynomial model was used. The estimation of 

doses from screening time results in the introduction of large uncertainties, though 

was still preferable to simply assigning average doses to these examinations. This 

approach was unavoidable for a large number of procedures conducted Hospital 4, 

and will be described in section 8.5 of this chapter. 

Cardiodose produces breast dose estimates for all patients, regardless of gender. All 

male patients in the cohort were identified and breast doses for these examinations 

were deleted. All breast doses were removed for patients examined at Hospital 6 as 

it was not possible to determine gender (neither sex nor Christian name were 

recorded). As with the raw PKA data, a MATLAB function was written to organise the 

output from Cardiodose to provide age, mass and procedure type stratification. 

Where patients underwent multiple procedures during the data collection period, 

these doses were added together to produce cumulative organ doses in addition to 
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individual examination doses. The total energy imparted to the patient, in millijoules 

(mJ), was calculated by multiplying the mean whole body dose by the patient mass. 

 

8.2: Results 

A summary of organ doses for all procedure types and from all hospitals combined is 

given in Table 8.1, stratified by both patient mass and age. More examinations are 

included in the age stratified data, and these figures are somewhat lower than where 

mass stratification is applied. These differences are due to the inclusion of 

examinations conducted at Hospitals 5 and 6, which not only lacked records of 

patient mass, but which also delivered generally low doses. Table 8.2 shows these 

data stratified by hospital and data collection era, but without mass stratification. 

More comprehensive tables with breakdown by procedure type and patient age are 

presented in appendix 3.  

Across the whole cohort, where patient age was recorded, and excluding procedures 

with zero dose, the median effective dose was 5.0 mSv. The median effective dose 

was a little higher for males (5.3 mSv) compared to females (4.7). As with PKA and 

screening times, organ doses were right skewed, with mean doses being almost 

twice as high as median (10.2 and 8.9 mSv for males and females respectively). The 

distribution of effective dose is shown in Figure 8.2, which is stratified by procedure 

type (unspecified procedures are not included). Figures 8.3 and 8.4 show this 

distribution in greater detail for low dose and high dose regions respectively. The 

median cumulative effective dose, for the whole cohort, was 6.2 mSv, and 8.2, 20.6, 

11.8, 8.8, 18.7, 19.2, 14.8 and 16.6 mSv for patients identified as having a history of 

transplantation, Tetralogy of Fallot, transposition of the great arteries, Down 

syndrome, Norwood procedure, Fontan procedure, hypoplastic ventricles and valve 

atresia, respectively. 

A more detailed analysis was conducted of the procedures with especially high or 

low doses. There were 279 procedures delivering an effective dose of less than 0.2 

mSv, of which 65 were pacemaker insertions/revisions, 50 were electrophysiology 

studies (EPS), 44 were heart biopsies and 80 were unspecified cardiac 

catheterizations. The large majority (91%) of these procedures were carried out 

using 3rd generation fluoroscopy machines. There were 898 procedures with an 

effective dose of less than 0.5 mSv; 105 pacemakers, 95 ASD occlusions, 156 
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EPS/ablations, 188 Biopsies and 213 unspecified. Again, 91% were carried out using 

3rd generation equipment. There were 100 procedures delivering an effective dose of 

more than 100 mSv, 95 of which involved 1st and 2nd generation equipment. The 

majority of these procedures (n=63) were unspecified cardiac catheterizations. 

Fourteen procedures delivered an estimated effective dose of over 200 mSv.  

The organs receiving the highest doses were the lungs (median for whole cohort 

=15.5 mSv), heart (11.8 mSv) and oesophagus (10.1 mSv). Estimated breast doses 

were high in examinations involving laterally orientated projections, but were low 

where these projections tended to be avoided. This was the case for a number of 

common procedure types including pacemaker insertions, biopsies (PA projection 

only), coronary angiography and EPS procedures. Doses to bone marrow and lymph 

nodes were relatively low at 2.3 and 3.0 mSv, respectively. For more recently 

acquired data, bone marrow doses were around 1 mSv. Thyroid doses were 

especially low and rarely exceeded 1 mSv for recent examinations.  

The relationship between dose and patient size (age or mass) varied between 

organs. In general, the relationship is similar to that for PKA normalised by mass, 

tending to display a lop-sided ‘U’ shaped pattern overall (Figure 8.5). For those 

hospitals that omit antiscatter grids for small patients, organ doses tended to 

increase with increasing patient size. Dose to the thyroid and breasts were almost 

always seen to decrease with increasing patient size (Figure 8.6). The average 

absorbed dose to the body was also found to decrease with increasing patient size, 

while the total energy imparted increased (Figure 8.7). On average, the effective 

dose was higher than the mean whole body dose by a factor of 1.73 (standard 

deviation = 0.22, 5th/95th percentiles = 1.16/2.17).  

Many of the patterns evident from analysis of organ doses are similar to those for 

PKA. A fall in organ doses between successive data collection eras is apparent, 

although the magnitude of organ dose reduction is somewhat less than that for PKA. 

For example, median effective dose was seen to fall by a factor of around 10 

between 1994-2000 and 2002-2008 eras at Hospital 1 (Table 8.2), compared to a 

reduction by a factor of around 20 for PKA.  
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Patient mass range (kg) 

 
<5 5-12.5 12.5-25 25-45 45-65 >65 All 

Effective dose 5.7 [2.1 : 15.3] 6.2 [2.5 : 14.3] 5.5 [2 : 13.3] 5 [1.7 : 12.3] 5 [1.9 : 12.2] 5 [1.9 : 13] 5.6 [2.1 : 13.5] 

Bone marrow 2.3 [0.9 : 6.2] 2.3 [0.9 : 5.4] 2.2 [0.9 : 5.1] 2.6 [1 : 6.4] 3.6 [1.4 : 8.3] 5 [1.9 : 11.3] 2.6 [1 : 6.2] 

Breasts 13.8 [5.3 : 37.3] 16 [6.3 : 36.6] 13.7 [4.5 : 33.5] 11.2 [2.2 : 33.9] 9.7 [1.6 : 28.3] 6.5 [1.3 : 26.2] 13.2 [4.1 : 33.6] 

Heart 13.7 [5.3 : 36.1] 14.4 [5.7 : 31.9] 12.3 [4.7 : 28.4] 11.5 [4.5 : 27.5] 12.1 [4.9 : 26.9] 13.3 [5.2 : 28.5] 13 [5.1 : 29.7] 

Lungs 16.9 [6.3 : 46.6] 18.2 [7.2 : 42.4] 16.6 [6.3 : 40.2] 15.3 [5.5 : 37.4] 17.3 [6.7 : 40.4] 16.9 [6.5 : 39.8] 17 [6.5 : 41.1] 

Lymph 3.5 [1.3 : 9] 3.8 [1.5 : 8.5] 3.3 [1.3 : 7.6] 2.8 [1.1 : 6.6] 2.9 [1.1 : 6.5] 3 [1.2 : 6.7] 3.3 [1.3 : 7.6] 

Oesophagus 13.3 [5.1 : 33.6] 13 [5.2 : 29] 10.8 [4.2 : 25] 8.7 [3.3 : 20.1] 9.5 [3.9 : 20.8] 10.6 [4.2 : 22.9] 11.1 [4.3 : 25.6] 

Thyroid 1.2 [0.5 : 3.1] 1.1 [0.4 : 2.3] 0.7 [0.3 : 1.5] 0.4 [0.2 : 0.9] 0.3 [0.1 : 0.7] 0.2 [0.1 : 0.4] 0.6 [0.2 : 1.5] 

Liver 4.9 [1.9 : 12.6] 6.2 [2.5 : 13.8] 5.5 [1.9 : 12.5] 4.1 [1.3 : 10.4] 4.1 [1.3 : 10.4] 4.4 [1.5 : 11.3] 5.2 [1.8 : 12.2] 

Stomach 2.8 [1.1 : 7.1] 3.1 [1.2 : 6.7] 2.5 [1 : 5.5] 1.9 [0.7 : 4.2] 1.5 [0.6 : 3.3] 1.6 [0.6 : 3.4] 2.3 [0.9 : 5.3] 

n 1453 3759 3327 2095 1772 777 13183 
 

 

Patient age range (years) 

 
<1 1-5 5-10 10-16 16-18 18-22 All 

Effective dose 5.5 [2.1 : 13.1] 5.3 [2.1 : 12.9] 5 [1.6 : 12.3] 4.5 [1.5 : 11.2] 4 [1.3 : 10.7] 5.2 [1.5 : 15.6] 5 [1.8 : 12.3] 

Bone marrow 2.1 [0.8 : 5.1] 2 [0.8 : 4.8] 2.1 [0.8 : 5.2] 3 [1.1 : 7.1] 3.3 [1.2 : 7.9] 4.7 [1.3 : 12.2] 2.3 [0.9 : 5.8] 

Breasts 13.4 [5.3 : 32.4] 13.8 [5.2 : 33.6] 11.6 [3.1 : 30.5] 9.1 [1.6 : 28.1] 6 [1 : 24.4] 6.4 [1.9 : 35.1] 11.8 [3.5 : 31.1] 

Heart 12.9 [5.1 : 30.5] 12.1 [4.9 : 28.2] 11.2 [4 : 26.8] 11 [4.2 : 25.3] 10.2 [3.6 : 23.5] 12.2 [3.9 : 32] 11.8 [4.5 : 27.7] 

Lungs 16.2 [6.1 : 38.9] 15.8 [6.2 : 38.5] 15.1 [5.2 : 37.2] 14.8 [5.4 : 35.9] 13.5 [4.7 : 34.3] 17.6 [5.2 : 51.1] 15.5 [5.7 : 37.7] 

Lymph 3.3 [1.3 : 7.8] 3.2 [1.3 : 7.6] 2.9 [1 : 7] 2.6 [1 : 6] 2.4 [0.9 : 5.7] 3 [0.9 : 8.3] 3 [1.1 : 7.1] 

Oesophagus 12.1 [4.7 : 28.5] 10.7 [4.3 : 25.2] 9.4 [3.3 : 22.4] 8.4 [3.2 : 19.3] 8.1 [2.9 : 18.3] 9.8 [3.2 : 26.8] 10.1 [3.9 : 23.7] 

Thyroid 1.1 [0.4 : 2.5] 0.8 [0.3 : 1.8] 0.5 [0.2 : 1.2] 0.3 [0.1 : 0.7] 0.2 [0.1 : 0.5] 0.2 [0.1 : 0.7] 0.6 [0.2 : 1.4] 

Liver 5 [1.9 : 11.6] 5.6 [2.1 : 12.9] 4.6 [1.4 : 11.2] 3.8 [1.2 : 9.6] 3.3 [0.9 : 9.5] 4.5 [1.1 : 13.3] 4.7 [1.6 : 11.3] 

Stomach 2.7 [1 : 6.2] 2.5 [1 : 5.9] 2.1 [0.8 : 4.9] 1.5 [0.6 : 3.5] 1.3 [0.5 : 2.9] 1.6 [0.5 : 4.3] 2.1 [0.8 : 4.9] 

n 3584 4164 2414 3261 819 375 14617 

 

Table 8.1: Median estimated organ doses, in millisieverts [interquartile range] for whole cohort and all procedure types combined. The upper 
table presents figures stratified by mass, while the lower table presents figures stratified by age. 
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Organ Hospital 1 94-00 Hospital 1 99-01 Hospital 1 02-08 Hospital 1 07-10 Hospital 2 04-08 Hospital 2 08-13 

Effective dose 22.3 [13.6 : 35.7] 11.9 [6.2 : 21.7] 1.9 [0.8 : 4.2] 2 [1 : 4.4] 8.2 [4.6 : 14] 6.5 [3.5 : 11.4] 

Bone marrow 10.3 [6.3 : 16.7] 5.8 [2.9 : 10.8] 1 [0.4 : 2.1] 1 [0.5 : 2.6] 3.5 [2 : 6.1] 2.7 [1.5 : 4.8] 

Breasts 56 [26.3 : 96.5] 26 [11.3 : 49.3] 3.2 [1 : 9.7] 3.6 [1.4 : 10.4] 21.7 [11.1 : 37.9] 17.2 [8.8 : 30.1] 

Heart 45.8 [28.4 : 73.3] 27.8 [14.4 : 49.3] 4.9 [2.2 : 10.3] 5 [2.5 : 10.9] 18.7 [10.7 : 31.3] 15.4 [8.4 : 26.8] 

Lungs 70.2 [43.4 : 112.1] 37.3 [19.7 : 67.7] 6.1 [2.6 : 13] 6.2 [3.1 : 14.1] 24.6 [14.2 : 41.9] 19.2 [10.5 : 33.6] 

Lymph 12.1 [7.4 : 19.7] 7.3 [3.9 : 13] 1.2 [0.5 : 2.6] 1.3 [0.6 : 2.6] 4.7 [2.7 : 7.9] 3.8 [2.1 : 6.6] 

Oesophagus 38.9 [23.5 : 64.1] 24.6 [12.9 : 42.9] 4.2 [1.8 : 8.6] 4.3 [2.2 : 8.8] 16 [9.3 : 27.1] 13.3 [7.2 : 22.9] 

Thyroid 2.1 [1 : 3.9] 1.5 [0.7 : 2.8] 0.2 [0.1 : 0.5] 0.3 [0.1 : 0.5] 1 [0.5 : 1.8] 0.9 [0.4 : 1.6] 

Liver 18.4 [10.5 : 30.4] 10.7 [5.3 : 19.8] 1.7 [0.7 : 3.8] 1.8 [0.8 : 4.1] 7.9 [4.3 : 13.5] 6.6 [3.4 : 11.3] 

Stomach 7.9 [4.6 : 13.4] 5.6 [2.9 : 10.1] 0.9 [0.4 : 1.9] 0.9 [0.5 : 1.9] 3.3 [1.9 : 5.8] 2.8 [1.4 : 4.9] 

n 2137 1039 3204 719 1615 1992 

       Organ Hospital 3 04-08 Hospital 3 08-13 Hospital 4 93-03 Hospital 4 03-13 Hospital 6 06-13 Hospital 5 05-13 

Effective dose 6 [3 : 11.1] 2.4 [1.3 : 4.9] 7.4 [4 : 12.7] 2.7 [1.5 : 5] 1.4 [0.7 : 2.6] 1.7 [0.6 : 4.6] 

Bone marrow 2.5 [1.4 : 4.7] 1.1 [0.6 : 2.4] 3.1 [1.7 : 5.6] 1.3 [0.6 : 2.3] 0.7 [0.3 : 1.1] 0.7 [0.3 : 2.1] 

Breasts 15.9 [6.4 : 30.1] 5.9 [2.3 : 12.8] 20.3 [10.9 : 35.4] 7 [3.9 : 12.9] 3.5 [1.9 : 6.8] 4.3 [1.5 : 11.8] 

Heart 14.2 [7.4 : 25.8] 6.2 [3.2 : 11.5] 15.2 [7.8 : 25.5] 6.4 [3.5 : 11.8] 3.2 [1.6 : 6] 4.1 [1.5 : 11.2] 

Lungs 18.2 [9.5 : 32.9] 7.6 [4 : 15.3] 23.2 [12.4 : 39.4] 8.3 [4.6 : 15.3] 4.1 [2.2 : 7.8] 5.1 [1.9 : 14.2] 

Lymph 3.5 [1.8 : 6.4] 1.5 [0.8 : 2.8] 4.1 [2.1 : 6.9] 1.6 [0.9 : 2.9] 0.8 [0.4 : 1.6] 1 [0.4 : 2.8] 

Oesophagus 12.5 [6.3 : 22] 5.2 [2.7 : 9.7] 13 [6.8 : 22] 5.4 [3.1 : 10] 2.8 [1.4 : 5.3] 3.6 [1.2 : 9.9] 

Thyroid 0.8 [0.3 : 1.6] 0.3 [0.1 : 0.6] 0.7 [0.3 : 1.4] 0.4 [0.2 : 0.7] 0.2 [0.1 : 0.4] 0.2 [0.1 : 0.7] 

Liver 5.9 [2.7 : 10.9] 2.4 [1.2 : 4.8] 6.3 [3.3 : 10.7] 2.5 [1.4 : 4.6] 1.3 [0.7 : 2.6] 1.6 [0.6 : 4.8] 

Stomach 2.7 [1.3 : 4.8] 1.1 [0.6 : 2] 2.7 [1.4 : 4.7] 1.1 [0.7 : 2.2] 0.6 [0.3 : 1.2] 0.7 [0.2 : 2] 

n 842 1407 817 496 354 738 
 

Table 8.2: Median organ doses in millisieverts [interquartile range] for all procedures and patient sizes combined, stratified by hospital and data 
collection era. 
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Figure 8.2: Distribution of effective doses, stratified by procedure type. 

 

 

Figure 8.3: Distribution of effective doses in the 0-3.0 mSv range 
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Figure 8.4: Distribution of effective doses between 20 and 100 mSv. 

 

 

 

Figure 8.5: Median and mean effective dose for all procedure types combined, as a function 
of patient mass, for examinations conducted using Siemens Axiom Artis or Artis Zee 

machines. 
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Figure 8.6: Median and mean thyroid dose for all procedure types combined, as a function of 
patient mass, for examinations conducted using Siemens Axiom Artis or Artis Zee machines. 

 

 

 

Figure 8.1: Total energy imparted in millijoules for all procedure types combined, as a 
function of patient mass, for examinations conducted using Siemens Axiom Artis or Artis Zee 

machines. 

 

8.3: Discussion 

The finding that the breasts, oesophagus, heart and lungs receive the highest doses 

from cardiac catheterizations is unsurprising considering the thoracic location of the 

field of primary irradiation. The doses to these organs were very high for procedures 
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conducted before 2000 at Hospital 1, though have fallen to reasonably low levels 

with the installation of new equipment. 

Cancers of the lungs and breasts have previously been strongly associated with 

radiation exposure [7, 139, 158, 291], with oesophageal cancer appearing to be more 

moderately inducible [7, 45]. While there is currently no evidence of the ability of 

radiation to induce cardiac tumours, there is evidence of an association between 

radiation exposure and other cardiovascular disease [3]. From an epidemiological 

perspective however, searching for evidence of heart disease among patients treated 

for heart disease is likely to be especially challenging. The relatively low doses to 

active bone marrow and the thyroid gland are significant findings as radiation 

exposure to both tissues is strongly associated with cancer development, especially 

in children [7, 292-294].  

The relationship between patient size and organ doses is noteworthy. In Chapter 3 

(section 3.5.1), it was noted that PKA is positively correlated with patient size (mass or 

age). The relationship between organ doses and patient size is more complex and 

was seen to vary between organs and the era in which the examination was 

conducted. The upturn in dose as patient size is reduced below around 10 kg 

(approximately 1 year) possibly suggests overexposure of small patients and a 

failure of equipment to properly adjust exposure factors to match attenuator 

thickness. The use of antiscatter grids for all patient ages was associated with a 

pattern of highest doses among the smallest patient sizes. Further research is 

warranted to determine if doses for these patients can be reduced without 

compromising image quality. The fall in thyroid dose with increasing patient size is 

most likely due to the increasing distance between the thyroid and the primary 

irradiation field. Effective dose was always higher than the average absorbed dose to 

the whole body. This is to be expected given the high density of organs with large 

effective dose tissue weighting factors in the chest region.   

The effective doses for paediatric cardiac catheterizations carried out in the last 10 

years were somewhat higher than those for cardiac computed tomography (CT) 

(Table 8.3). For example, Gherardi et al [111] estimate a median effective dose for 

paediatric cardiac CT of 1.7 mSv (IQR 0.8 : 2.4), while the equivalent figure 

calculated by Watson et al [167] was 0.74 mSv (range: 0.43–15.31). Doses from 

cardiac CT depend on the techniques used for gating (matching scan acquisition to 
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heart rhythm), tending to be lower for prospectively gated rather than retrospectively 

gated scans [165, 166]. Lee and co-workers [166] used a 1-year old ATOM 

anthropomorphic phantom and thermoluminescent dosemeters to calculate organ 

doses delivered by both 64 and 256 slice CT using different gating techniques (Table 

8.3). Typical effective doses for cardiac CT of 1-3, 2-6 and 0.2-1.0 mSv were 

reported by Goo [165] for high pitch dual source scanning, retrospective gating and 

prospective gating protocols respectively. Thus there is a sizeable variation in quoted 

doses for cardiac CT depending on equipment and imaging protocol, although this 

variation appears smaller than that evidence for cardiac catheterization doses. As 

with fluoroscopy, there has been a fall in CT doses over the last two decades. 

Reasons for this include improved detectors, more dose efficient reconstruction 

algorithms and slice-by-slice exposure modulation (varying x-ray output to match 

local anatomy). Despite the potential to deliver lower doses, CT provides limited 

capability to conduct therapeutic intervention such as ballooning, stenting or duct 

closure.  

 

64 slice scanner 256 slice scanner 

Organ NG RGH NG RGH PGA 

ABM 1.67 5.27 2.4 7.5 1.17 

Breast 2.34 7.35 3.6 10.74 2.04 

Lung 2.26 7.5 3.16 10.66 1.8 

Oesophagus 2.18 7.21 3.13 11.29 1.96 

Thyroid 2.54 7.76 4 13.5 2.03 

Liver 1.37 4.28 2.47 5.6 0.52 

Stomach 2.15 6.47 2.6 9.95 1.39 

Effective 1.49 4.66 2.15 6.87 1.12 
 

Table 8.3: Organ doses (in mSv) for cardiac CT reported by Lee et al [166]. NG = non-gated, 

RGH = retrospective gated helical, PGH = prospectively gated helical. Both 64 and 256 slice 

machines are models of Philips Brilliance scanner (Philips Healthcare, Cleveland, OH, USA). 

 

 

8.3.1: Comparison with previous research 

At the time of writing, very few assessments of organ doses from paediatric cardiac 

catheterizations have been carried out. A larger number of studies have estimated 

effective dose [8, 12, 13, 91, 92, 103, 108, 113], though, as noted in the literature 

review, many of these assessments were based on highly simplistic E/PKA 
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conversion factors with little or no x-ray energy or beam angle adjustment. The often 

quoted E/PKA conversion factor calculated by Onnasch et al in 2007 [103] based on 

PKA normalised by mass, of 9.26 * (PKA/kg) was re-examined in the light of the 

estimated effective doses calculated in the current study. For examinations 

conducted using 3rd generation equipment (Siemens Axiom Artis or Artis Zee), the 

effective dose per PKA per kilogram was calculated for 7202 examinations of all 

types. The mean E per PKA/kg conversion factor was calculated as 20.7 (standard 

deviation = ±3.2) – more than twice the value of the coefficient reported by Onnasch. 

This difference is consistent with the use of higher beam energies than were 

assumed in the 2007 study. Although simplistic, the E/PKA conversion factor quoted 

by Onnasch offers the opportunity to provide rapid estimates of doses for a sample of 

examinations of mixed type where variation in beam angles is averaged out. The 

methodology was easily expanded to include figures for individual organs. These 

conversion factors are given in Table 8.4. They should be regarded as being 

unsuitable for dose estimation for individual procedures in which particular beam 

angle combinations are used. 

 

Conversion factor 

Organ Mean [SD] Median [IQR] 

Bone marrow 11.0 [4.9] 9.0 [7.7 : 14.0] 

Breasts 46.1 [15.8] 48.5 [35.7 : 56.4] 

Heart 53.7 [19.2] 48.9 [44.2 : 56.6] 

Lungs 65.2 [14.7] 65.0 [57.6 : 70.9] 

Lymph nodes 13 [2.8] 12.8 [11.8 : 14.0] 

Oesophagus 43.2 [8.2] 42.7 [39.5 : 45.9] 

Thyroid 2.6 [0.9] 2.7 [1.8 : 3.3] 

Liver 17.3 [5.3] 17.9 [12.9 : 21.6] 

Stomach 11.1 [4.4] 10.2 [8.5 : 11.4] 

Effective dose 20.7 [3.2] 21.1 [19.3 : 22.9] 

Mean Dose 11.9 [2.2] 11.9 [10.8 : 13.1] 
 

Table 8.4: Conversion factors in the form of effective dose or organ dose (in mSv) per PKA 

per kilogram body mass. Note: SD=standard deviation, IQR=interquartile range. 

 

Organ doses for three procedure types (occlusion of ASD, PDA and ventricular-

septal defect, VSD) were estimated by Yakoumakis and colleagues [107], using 

PCXMC V2.0. Very high mean effective doses of 40, 22 and 17 mSv were reported 

for ASD, PDA and VSD occlusions respectively. Where age matched, these doses 

are higher than those of the earliest data in the current study and higher than recent 
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era doses by a factor of almost 60. To further investigate, the doses for each 

procedure type were calculated in Cardiodose using the same patient size and total 

examination PKA reported by Yakoumakis et al, with beam angles, field size and x-ray 

energy being set at the same values as used in this study. VSD occlusions are not 

modelled in this study (the procedure is rarely carried out in the UK), therefore the 

‘unspecified’ examination category was applied. This results of this comparison are 

shown in Table 8.5. There are a number of surprisingly large discrepancies between 

the two sets of figures, most notably for thyroid dose. Organ doses calculated by 

cardiodose were higher than those of Yakoumakis for PDA occlusions, and generally 

lower for ASD or VSD occlusions. The difference in dose estimates between 

Cardiodose and Yakoumakis are difficult to explain. The field sizes are similar 

between studies, as are the x-ray energies. The projection angles reported by 

Yakoumakis are difficult to interpret, though any variation is unlikely to be sufficient to 

explain the variation in doses. The study by Yakoumakis is the only one to provide 

breast dose estimates higher than those of the current study. 

 

   
Organ   

Procedure Study PKA ABM Breasts Heart Liver Lungs Stomach Thyroid Effective 

ASD 
occlusion 
(10 years) 

Yakoumakis 
39.9 

9.9 141.1 146.8 40.8 63.7 50.6 4.1 40.0 

Cardiodose 16.8 38.8 55.7 16.4 81.4 11.4 1.9 22.7 

VSD 
occlusion 
(10 years) 

Yakoumakis 
17.5 

5.2 61.7 67.6 24.2 35.7 29.9 5.6 22.0 

Cardiodose 6.0 35.7 26.2 10.3 35.8 4.2 0.9 12.0 

PDA 
occlusion 

(new 
born) 

Yakoumakis 

9.5 

4.3 60.7 57.0 19.0 26.6 23.8 1.5 17.0 

Cardiodose 13.8 106.0 101.9 35.8 108.1 19.4 8.9 39.1 

 

Table 8.5: Organ doses (in mSv) calculated by Yakoumakis et al, compared to those 

calculated using Cardiodose for the same examination type, patient size and total 

examination PKA. 

 

Doses to the lungs, oesophagus, thyroid and breasts were estimated by Barnaoui et 

al [92]  for 5 examinations by reconstructing the procedures using CIRS ATOM 

anthropomorphic phantoms. These results were compared to the physical 

measurements obtained in the current study in the preceding chapter. Further 

comparison was made by calculating doses for each of the 5 examinations 
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reconstructed by Barnaoui et al, using Cardiodose. The results of this comparison 

are presented in Table 8.6 and show a number of striking discrepancies. There is 

little suggestion of a systematic difference, except for thyroid dose, which is higher 

for all procedures in the Barnaoui study. The largest discrepancies were for the PDA 

occlusion procedure, particularly for the breasts and lungs which were 1217% and 

357% higher, respectively, in the current study. For one procedure – a pulmonary 

valvuloplasty on a new born baby - the recorded thyroid dose was especially high (37 

mSv), based on a PKA of 6.09 Gy·cm2. This could only have occurred if the beam was 

collimated such that the thyroid was entirely within the primary field. Another unusual 

finding was a higher dose to the oesophagus for a PDA occlusion, than for the lungs 

(3.7 verses 2.2 mGy).  

 

  
Organ 

Examination Study Breasts Lungs Oesophagus Thyroid 

PA angioplasty?  
(10 kg) 

Cardiodose 9.0 9.0 6.2 0.5 

Barnaoui 4.2 13.3 10.6 1.3 

Coronaries and 
biopsy (32 kg) 

Cardiodose 2.6 19.7 12.1 0.9 

Barnaoui 21.0 42.7 26.0 1.0 

PV plasty and 
VSD occlusion 

(3.5 kg) 

Cardiodose 60.1 72.7 57.3 5.5 

Barnaoui 33.0 61.0 53.8 37.0 

ASD occlusion  
(55 kg) 

Cardiodose 2.1 7.4 4.1 0.1 

Barnaoui 4.0 14.6 10.0 2.0 

PDA occlusion  
(19 kg) 

Cardiodose 10.5 10.0 6.6 0.4 

Barnaoui 0.8 2.2 3.7 0.7 
 

Table 8.6: Organ doses (in mSv) calculated by Barnaoui et al [91] for five examinations, 

compared to doses calculated using Cardiodose using the same reported PKA, patient mass 

and examination type. 

 

Keiller and Martin [295] estimated dose to the heart from 250 cardiac catheterization 

procedures (PDA and ASD occlusions, Radiofrequency ablations, ‘balloon 

angioplasty’ and ‘cardiac catheter and angiography’) conducted between 2012 and 

2013 on patients aged 1 to 11 years. Heart dose was calculated from PKA using 

PCXMC V2.0 for ‘typical procedures’ and for the ‘highest dose’ for each examination 

type. It appears therefore that dose was not calculated for each individual procedure, 

but rather single simulations were conducted using average and maximum PKA. 

Table 8.7 compares Keiller and Martin’s results with those of the current study 

(Hospital 1 2002-2008). The former doses are considerably higher.   This is primarily 

due to the higher PKA, though heart dose per unit PKA is also higher, especially for 
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ASD occlusions. The main reasons for this difference appear to be a lower mean 

patient mass in the Keiller and Martin study and different beam energy (a Philips 

Allura Xper was used, with relatively heavy filtration and high kV, giving a half value 

layer of around 6.8 mm Al). The beam angles used are generally similar to those of 

the current study. Comparisons were not made for the ‘cardiac catheter and 

angiography’ and ‘balloon angioplasty’ procedures as it is not clear what these 

procedures actually are (many disparate procedures involve balloon angioplasty of 

some sort, and virtually all procedures involve angiography). 

 

Procedure type Study 
Mean PKA 
(Gy cm²) 

Heart dose 
(mGy) 

Mass 
(kg) 

H/PKA 

CC + 
Angiography 

Keiller and Martin 5.7 43 8.2 7.5 

Hospital 1 (02-08) - - - - 

PDA occlusion 
Keiller and Martin 3.2 31 11.8 9.7 

Hospital 1 (02-08) 1.8 6.7 14.1 5.6 

Radiofrequency 
ablation 

Keiller and Martin 4.3 13 46 3.0 

Hospital 1 (02-08) 10.1 19.9 53.0 2.5 

Balloon 
angioplasty 

Keiller and Martin 10.6 43 18.4 4.1 

Hospital 1 (02-08) - - - - 

ASD occlusion 
Keiller and Martin 5.0 23 21 4.6 

Hospital 1 (02-08) 4.4 7.4 28.6 2.3 

 

Table 8.7: Mean heart doses estimated by Keiller and Martin, compared to equivalent figures 

for the current study at Hospital 1 2002-2008. Note: CC+A is ‘cardiac catheter + 

angiography’. 

 

The above comparison with previous studies reveals large differences in dose 

estimates, though these are not systematic, i.e. doses from the current study are not 

consistently higher or lower. Variation in dose estimates reaffirms the need for 

uncertainties stemming from variation in beam energy, projection angle and other 

factors from expected values to be incorporated into dose estimates and subsequent 

risk modelling. This process is described below. 

 

8.4: Uncertainty modelling 

An assessment of the uncertainty in dose estimates is essential, especially in the 

case of estimating cardiac catheterization doses using limited data recorded at the 

time of the examination. Estimated doses are calculated from the product of PKA and 

a conversion factor to relate this figure to organ doses (CFT). The overall uncertainty 
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in dose estimates (δD) can be calculated by adding in quadrature the uncertainty of 

PKA measurements (δPKA) and uncertainty in the conversion factor (δCFT): 

𝛿𝐷 =  |𝐷|√(
𝛿𝑃𝐾𝐴

𝑃𝐾𝐴
)
2

+ (
𝛿𝐶𝐹𝑇

𝐶𝐹𝑇
)
2

 

The denominators in the above equation represent the recorded value of PKA and the 

central estimate of the conversion factor, whereas the numerators are the uncertainty 

of each. The value of δPKA was assumed to be fixed at ±15%: 

𝛿𝐷 =  |𝐷|√(15%)2 + (
𝛿𝐶𝐹𝑇

𝐶𝐹𝑇
)
2

 

By adding in quadrature, the total uncertainty is dominated by the largest individual 

component (which is usually δCFT), meaning δPKA makes little contribution. The 

uncertainty in CFT (the T stands for total) comprises the uncertainty in projection 

angle (δp) beam energy (δE), field size (δfs) and ‘anatomical variation’ (δa):  

𝛿𝐶𝐹𝑇 = |𝐶𝐹𝑇|√(
𝛿𝑝

𝑎
)
2

+ (
𝛿𝐸

𝐸
)
2

+ (
𝛿𝑓𝑠

𝑓𝑠
)

2

+ (
𝛿𝑎

𝑚
)
2

 

The value of δE and δp are based on the 5th and 95th percentiles of dose per unit PKA 

over the range of energies and projection angles seen in clinical practice. These 

figures were defined in the supporting information chapter. As stated previously, 

where biplane PKA figures are recorded, δp is effectively reduced to zero for 

procedures involving only two projection angles such as valvuloplasty or pressure 

studies. The field size uncertainty was obtained by calculating doses using each of 

the 3 simulated field sizes used in cardiodose. In many cases, the field size used in 

dose estimations resulted in either the highest or lowest dose of the three sizes 

available. Consequently, the field size uncertainty usually only affected either the 

upper or lower uncertainty limit in isolation, rather than both. 

The value of δa – the uncertainty due to ‘anatomical variation’ is not only potentially 

the largest but also the most difficult uncertainty to quantify. It encompasses variation 

in the size, shape and density of cohort members from the PCXMC phantoms used 

in dose calculations. This includes variation in lung density due to different levels of 
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inspiration and the potential change in organ density due to contrast agent 

administration.  

The potential impact of lung density was apparent in the results of physical 

measurements, in which doses were higher than predicted by Monte Carlo 

simulations. Obtaining estimates of human lung density values is difficult as few 

published data exist. Woodard [296] quotes a single figure of 260 kg m-3 (0.26 g cm-

3) for inspiratory lung density. Van Dyk et al [297] used computed tomography 

images to calculate mean inspiratory and expiratory lung densities of 0.36 and 0.20 g 

cm-3 respectively at 5 years of age. The mean of these two values is 0.28 g cm-3. The 

authors found an inverse linear relationship between age and lung density, with 

respective values at 80 years being 0.22 and 0.16 g cm-3. A similar finding of 

decreased lung density with age was reached by Long and colleagues [298], who 

found an approximately 35% difference in mean Hounsfield Unit between inspiratory 

and expiratory breathing phases in children (-835 and -616 HU respectively).  Further 

research by Brown et al [299] suggests that following termination of primary growth 

of new alveoli between 2 and 8 years of age, further ‘growth’ of the lungs is achieved 

by enlarging existing alveoli, leading to a gradual decline in lung density with age. 

Lung density in both Monte Carlo and physical phantoms is fixed. Larger lungs are 

simply modelled by more lung tissue, rather than the same amount of lung tissue 

expanded to fill a larger volume, as seems to occur in reality [299]. PCXMC V2.0 

assumes a single lung density of 0.3 g cm-3, which appears to be designed to reflect 

a central level of inspiration. Adult ‘RANDO’ phantoms (The Phantom Laboratory, 

Salem, New York) have lung density of 0.32 g cm-3 designed to “closely [mimic] the 

density of lungs in a median respiratory state” [300], while ICRU-44 lung tissue 

substitute has a density of 0.26 g cm-3 [301]. As previously stated, ATOM phantoms 

are based on an inspiration density of 0.21 g cm-3, with expiration lung densities of 

0.50 g cm-3 being available on special request. 

Usually, cardiac catheterizations in children are carried out under general 

anaesthetic, with breathing controlled via a ventilator through an endotracheal tube 

[302]. During fluoroscopic exposures, the patient is allowed to breathe normally, 

therefore radiation exposures would be distributed over a range of lung densities 

from full inspiration to full expiration. During acquisitions, the anaesthetist can switch 

the ventilator off to reduce movement and improve image quality (S. Charlton, 
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personal communication). Thus for fluoroscopy at least, the ‘central’ lung density 

value of PCXMC appears more appropriate than the inspiration lung density of 

ATOM phantoms. 

Even where patient age and breathing phase are fixed, lung density varies with 

location, being higher towards the posterior or hilum (location of the primary 

pulmonary arteries and veins) [298]. Blood makes up around 43% of lung mass 

[296]. If iodinated contrast agent has been administered, the density, and hence 

attenuating property of lung tissue will correspondingly increase. The impact of 

contrast agents on organ density and calculated doses has been studied with respect 

to radiotherapy [303-305], though little research has been carried out on the impact 

of dose estimation for diagnostic imaging. There is, therefore, insufficient information 

available to account for the impact of contrast agent administration in organ dose 

uncertainties. 

Other research has focussed on the impact of more general changes in phantom size 

and shape between phantoms and organ doses.  Zanki and colleagues [306] 

compared doses calculated using seven different adult phantom models (Adam, Eva, 

Golem, Donna, Helga, Irene, Frank, Visible Human and Voxelman) incorporated into 

Monte Carlo simulations. Variation in calculated doses for the breasts, lungs, 

oesophagus, thyroid, stomach and bone marrow were up to 30% “for those directions 

of photon incidence where the organ is located at a shallower depth” and 30-100% 

for “photon beam directions from which the organs are averted” [306]. Variation 

between models was related to photon energy, being highest below 30 keV and 

relatively low beyond 200 keV. A further study by Johnson et al [307] assessed 

variation in organ doses from adult cardiac catheterizations, calculated by Monte 

Carlo simulations (MCNPX 2.6.0) for 27 phantoms constructed using contour 

mapped CT images of real patients, compared to size-matched UF reference 

phantoms. The authors estimate a variability in dose calculations due to variation in 

organ size and location of 35-45%. Such errors can be reduced through the 

incorporation of contour mapped patient specific phantoms, especially in the case of 

organ attenuation, in which errors can be reduced by 20-60% [307]. However this 

approach is unthinkable for dose estimation in a cohort of thousands of patients. 

Obtaining cross sectional images is exceptionally time consuming and requires 

considerable cooperation from collaborating hospitals. Furthermore, such images 
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would need to be acquired at a similar age as cardiac catheterizations were carried 

out.  

As such, dose estimation errors due to ‘anatomical variation’ ought to be accepted as 

unavoidable uncertainties and combined with uncertainties from other sources. 

Central dose estimates could be improved through more realistic phantom anatomy. 

Based on the previously discussed findings of Johnson et al [307], a potential value 

for δa is around 50%, which when combined with other uncertainties results in a total 

figure for δD of around ±60%, rising to ±80% where only screening time is recorded. 

These uncertainties are large, though considerably smaller than would be present 

without any form of examination specific dose indicator being incorporated, i.e. 

simply assigning an average dose for each procedure type. The figure for δa was 

considered too speculative to incorporate into dose estimates for the current study, 

however. Consequently, the doses presented in this thesis include all uncertainties 

except for those owing to anatomical variation. Examples are given in Table 8.8 for 

the ‘unspecified’ procedure category, in which errors represent the mean of those for 

all defined procedure types. Across all patient sizes, these errors are approximately 

±25%. Combined uncertainties, stratified by patient size and procedure type are 

shown in Appendix 4. 

In this discussion, individual sources or error have been largely treated as being 

independent of each other. This can be partly justified by the relatively small impact 

of projection angle on overall beam energy represented by HVL (Section 6.1.2, 

Figures 6.10 and 6.11). In reality, it is likely that the variation in beam energy is 

principally due to anatomical variation, i.e. differences in organ size, shape and 

density affect the level of beam attenuation, causing the machine to respond by 

adjusting tube potential and filtration accordingly. Furthermore, PKA measurement 

uncertainties may be influenced, to some extent, by beam energy. Uncertainty in the 

table transmission factor should also be considered. In particular, a single figure was 

used, rather than equipment/vendor specific factors. Some level of variation would be 

expected. The transmission factor is dependent on beam angle, though this variation 

was found to be quite small (see section 6.2.6). A more detailed analysis of the 

relationship between uncertainties is beyond the capabilities of the PCXMC Monte 

Carlo code and its crude phantoms and will be left as the subject of future research.  
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Patient age 
(mass) Limit 

Effective 
dose ABM Breasts Heart Lungs Lymph Oesophagus Thyroid Liver Stomach 

Average 
dose 

<1 y (<9.2 kg) 
Upper 19% 24% 41% 34% 17% 17% 18% 20% 32% 22% 17% 

Lower -18% -24% -35% -20% -16% -17% -19% -21% -32% -27% -17% 

1-5 y (9.2-19 
kg) 

Upper 21% 22% 42% 30% 17% 19% 23% 25% 40% 24% 17% 

Lower -20% -22% -40% -24% -17% -19% -20% -25% -28% -26% -17% 

5-10 y (19-32.4 
kg) 

Upper 25% 23% 59% 41% 18% 20% 24% 24% 44% 27% 19% 

Lower -22% -22% -47% -24% -18% -20% -21% -24% -34% -31% -18% 

10-15 y (32.4-
56.3 kg) 

Upper 26% 26% 64% 37% 19% 21% 24% 27% 49% 31% 19% 

Lower -23% -26% -56% -24% -19% -21% -22% -27% -37% -35% -19% 

15-18 y (>56.3 
kg) 

Upper 24% 28% 66% 42% 20% 22% 28% 31% 58% 37% 20% 

Lower -24% -26% -63% -26% -22% -23% -25% -33% -47% -42% -19% 

>18 y (>70 kg) 
Upper 25% 28% 70% 41% 21% 23% 28% 30% 61% 40% 20% 

Lower -24% -26% -65% -26% -22% -23% -28% -32% -42% -47% -19% 

 

Table 8.8: Overall uncertainties (not including those due to anatomical variation) for ‘unspecified’ procedures. ABM = active bone marrow. 
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8.4.1: Comparison of dose estimates based on detailed and limited data 

To further investigate the accuracy of dose estimations, figures produced using 

Cardiodose and limited data (mass, single-plane PKA and examination type only) 

were compared to those produced by reconstructing 44 examinations conducted at 

Hospital 4 for which structure dose reports, containing beam angles, tube potential 

and added filtration, were available. Fluoroscopic exposures are only recorded in 

structured dose reports as the total PKA from frontal and lateral tubes, rather than in 

the form of individual beam angles. The beam angles used for fluoroscopy were 

assumed to be the same as those used for acquisitions. The proportion of 

fluoroscopic PKA in each beam angle was estimated from the respective proportions 

for acquisitions. Thus dose estimated obtained from ‘detailed’ data are still subject to 

uncertainties.  

This analysis reveals reasonably good agreement between dose estimates obtained 

from limited and detailed examination data (Figure 8.8). The latter figures generally 

are within the upper and lower uncertainty limits for the former. For some organs, the 

detailed dose estimate is marginally outside the upper uncertainty limit. The median 

absolute error was 11%, while the median signed error was -8%, indicating a small 

systematic underestimation of doses by Cardiodose. The largest error in effective 

dose for a single examination was -37%. This finding that dose estimates obtained 

using limited examination data can be reasonable approximations of those using 

detailed data is consistent with that of Karambatsakidou et al [112], where the mean 

deviation in estimated effective dose between detailed and limited data 

methodologies was 5%. 
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Figure 8.8: Comparison of doses calculated using detailed beam angle data from structured 
dose reports with estimates derived from limited data using Cardiodose. Figures for each 

organ represent the mean dose for the sample of 44 examinations. 

 

8.5: Estimation of missing doses 

As noted in chapter 3, around 70% of procedures conducted at Hospital 4 had no 

recorded dose indicator (neither PKA nor even screening time). This presented a 

problem for the epidemiological analysis, considering patients examined at the 

Hospital 4 contributed around 23% of the total cohort (i.e. approximately 16% of the 

cohort had no dose estimates based on recorded data). The only option available 

was to estimate these missing doses from data where PKA was recorded. This is 

unsatisfactory, given the potential for enormous variation in doses from one 

procedure to the next. However, there was no alternative, other than to exclude these 

patients from the study. Comparable studies investigating the risks from CT scans 

have adopted a similar approach, using average doses for groups of scan types, 

adjusted for patient age and exposure era [9, 124, 187, 190]. 

The only individual procedure types in which a sufficiently large sample of 

examinations was available was for coronary angiographies (both 1993-2003 and 

>2003), and PDA occlusions (>2003 only). Missing doses were estimated based on 

the median figures for these groups. For all other procedures, estimated doses were 

based on the figures in Table 8.2, for each era. No patient size stratification was 
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applied, as there was little suggestion of a variation in organ doses with age at 

Hospital 4 (see age stratified organ dose tables in Appendix 3). There is a suggestion 

of an increase in coronary angiography dose with patient size, although this was not 

found to be significant (p=0.39) and the number of procedures in each size category 

was quite small. 

 All procedures Coronary angiography PDA occlusion 

Organ 93-03 Mar-13 93-03 Mar-13 Mar-13 

Effective dose 7.4 [4 : 12.7] 2.7 [1.5 : 5] 8.5 [4.8 : 12.2] 3.4 [2 : 5.2] 2.7 [1.9 : 4.2] 

Bone marrow 3.1 [1.7 : 5.6] 1.3 [0.6 : 2.3] 3.8 [2.6 : 7.9] 2 [1.2 : 3] 0.9 [0.7 : 1.4] 

Breasts 20.3 [10.9 : 35.4] 7 [3.9 : 12.9] 21.3 [14.8 : 32.5] 9.3 [5.2 : 14.7] 7.4 [5.2 : 12.3] 

Heart 15.2 [7.8 : 25.5] 6.4 [3.5 : 11.8] 17.4 [9.8 : 26.6] 8.6 [4.8 : 13.2] 6.3 [4.8 : 9.7] 

Lungs 23.2 [12.4 : 39.4] 8.3 [4.6 : 15.3] 24 [14.1 : 41.8] 10.6 [5.8 : 15.9] 7.6 [5.4 : 12.1] 

Lymph 4.1 [2.1 : 6.9] 1.6 [0.9 : 2.9] 3.8 [2.1 : 6.1] 1.8 [1 : 2.9] 1.6 [1.1 : 2.4] 

Oesophagus 13 [6.8 : 22] 5.4 [3.1 : 10] 12 [7.1 : 20.5] 6.7 [3.8 : 9.9] 5.4 [3.8 : 7.9] 

Thyroid 0.7 [0.3 : 1.4] 0.4 [0.2 : 0.7] 0.4 [0.2 : 0.7] 0.3 [0.2 : 0.4] 0.4 [0.2 : 0.6] 

Liver 6.3 [3.3 : 10.7] 2.5 [1.4 : 4.6] 5.6 [3.1 : 9.1] 2.7 [1.6 : 4.3] 3 [1.9 : 4.6] 

Stomach 2.7 [1.4 : 4.7] 1.1 [0.7 : 2.2] 1.5 [0.7 : 2.5] 0.9 [0.5 : 1.5] 1.3 [0.8 : 1.9] 

n 817 496 19 69 18 

 

Table 8.8: Estimated organ doses (in mSv) for examinations at the Hospital 4, where PKA 

was not recorded. 
 

8.6: Conclusion 

Organ doses have been estimated for around 14,500 procedures. The organs 

receiving the highest doses are the lungs, heart, oesophagus and breasts. Doses to 

bone marrow, lymph nodes and the thyroid gland are relatively low. Organ doses 

have fallen significantly during the period of data collection, in a similar manner to the 

dose indicators presented in Chapter 3. The doses from cardiac catheterizations are 

similar to those for computed tomography, albeit slightly higher. The estimates 

presented in this chapter are subject to uncertainties due to variation in beam angle 

and x-ray energy from expected values. Further uncertainties are introduced by 

‘anatomical variation’ – differences in organ size, shape and arrangement from that 

assumed in the phantoms used in Monte Carlo simulations and physical 

measurements. While the former uncertainties can be quantified and used to 

produce upper and lower uncertainty limits on dose estimates, uncertainties due to 

anatomical variation are difficult to determine without using patient specific 

phantoms. Based on previous research, however, such uncertainties may be around 
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±50%. The following chapter utilises organ doses to estimate excess cancer risks 

using existing risk models, derived mainly from survivors of the nuclear bombings of 

Hiroshima and Nagasaki. 
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Chapter 9: Risk projection 

The organ doses presented in the previous chapter can be used to estimate the 

lifetime risk of radiation induced cancer using models derived from previous studies 

of radiation exposures. The projection approach has the advantage of allowing risk 

estimation for small cohort sizes where epidemiological analysis would lack sufficient 

statistical power, or where follow-up time is limited. The largest source of data for risk 

models remains the cohort of survivors of the nuclear bombings of Hiroshima and 

Nagasaki [135, 308], though models may also incorporate data from other studies 

including pooled analyses of studies of thyroid [294] and breast cancer [309]. As 

discussed in the literature review, most epidemiological studies to date lack sufficient 

statistical power to detect excess cancer risks below doses of around 100 mSv, 

meaning risk estimation below this level can only be achieved through downwards 

extrapolation, assuming a linear-no-threshold (LNT) relationship between dose and 

risk.  

The process of risk estimation has two stages: (1) calculation of excess relative risk 

(ERR) or excess absolute risk (EAR) in relation to a given dose, age at exposure, sex 

and attained age in the ‘study’ population, then (2) to transport these risks to a 

‘reference’ population in terms of the lifetime attributable risk (LAR) of disease in 

relation to dose [310]. The ERR is equal to the rate of disease in the exposed 

population divided by the rate in the unexposed population, minus 1 [3]. Thus the 

ERR assumes cancer increases in proportion to the baseline rate [16]. However, the 

baseline rate varies from one population to another, depending on geographical 

location and ethnic group. Stomach cancer, for example, is more common in Japan 

than in America or Europe, while lung and breast cancer are less common in Japan 

[133]. Thus the application of ERR models derived from exposures in one such 

population (i.e. Japan) to other populations (i.e. UK) requires caution. The EAR 

represents the rate of incidence or mortality of the disease in the exposed population 

minus the corresponding rate in the unexposed population. This model assumes 

excess cancer is independent of baseline levels [16] and is thus better suited to 

application in populations differing from that from which the model was calculated 

[49] (e.g. European instead of Japanese). 

A modification to the LNT model known as a ‘dose and dose rate effectiveness factor’ 

(DDREF) has been recommended by a number of organisations [3, 44, 45]. This 
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reduction in risks by a variable factor is applied where dose rates are below 0.1 

mGy/min (regardless of total dose) or where the total dose is less than 200 mGy [45]. 

Such requirements were met for around 98% of examinations in the current study. 

Application of a DDREF effectively results in two linear slopes, one for low doses and 

one for high doses, and has remained unpopular with authors arguing for threshold 

or hormesis models [311]. Calculated values of DDREF have ranged from 1 to 35 

depending on biological end points [49], though values in the range 1.5 to 2.0 are 

typical in cancer risk estimation from low doses [3, 44]. 

 

9.1: Risk projection theory 

The simplest approach to risk estimation is to use sex- and age-at-exposure 

averaged ‘nominal risk coefficients’, calculated by the International Commission for 

Radiological Protection (ICRP). For the general population, these are 5.5% per 

sievert for cancer and 0.2% for heritable effects [44]. For example, for an effective 

dose of 10 mSv, the cancer risk would be 0.0055% or approximately 1 in 2000. This 

risk model is for a ‘reference person’ – a hermaphrodite of no particular age. It is not 

designed to be applied to real patients of defined age and sex [312, 313], rather 

being designed for use in optimisation and radiation protection planning purposes 

(e.g. shielding requirements). There are a number of reasons why this is the case. 

Firstly, the tissue weighting factors used to calculate effective dose are age 

independent, despite the risk of cancer induction varying with age in a different 

manor for different tissues [196, 197]. Secondly, risk estimates and weighting factors 

are sex-averaged, despite the risk of radiation induced cancer being strongly sex 

dependent (risks are higher for females) [44]. Thirdly, the effective dose for a male 

patient would assume he had breasts. This is especially significant for cardiac 

imaging as breast dose has such a large impact on effective dose. Removing the 

impact of the breasts from calculated effective dose for males would require all the 

remaining weighting factors to be re-calculated. Effective dose should not be used for 

individualised risk modelling, although various authors have done this [8, 13, 89]. 

These studies will be discussed later in this chapter. 

Appropriate risk estimation for individuals utilises age, sex and organ specific risk 

models. The Committee to Assess Health Risks from Exposure to Low Levels of 

Ionizing Radiation report on the Biological Effects of Ionizing Radiation (BEIR) 2006 
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report (BEIR VII phase 2) [3] describes models for estimating the ERR and EAR of 

cancer for a person of a given age following exposure to a given dose of radiation. 

Risks can be calculated for all solid cancers combined, or for certain individual 

cancer sites. Separate models are provided for leukaemia, in which a linear-

quadratic dose response is assumed, based on epidemiological data [7]. 

The ‘all solid cancers’ model is based on the concept of ‘mean colon dose’ as a 

measure of radiation dose to the body. This is based on the whole-body nature of 

exposure following the nuclear bombings, as opposed to the highly localised 

exposures from cardiac catheterizations, where mean colon dose is lower than the 

mean whole body dose by a factor of around 5. Using mean colon dose as the 

primary measure of radiation dose from these procedures would result in large 

underestimates of risk. 

For solid cancer sites, including lung, stomach and liver, the general form of the 

model for a given equivalent dose D, in Sieverts (Sv) is the following: 

𝐸𝑅𝑅 = 𝛽𝑆 ∙ 𝐷 ∙ exp (𝛾 ∙ 𝑒∗) ∙ (
𝑎

60
)
𝜂

 

Equation 9.18 

The variable βS is the ERR for exposure at age 30 years and attained age of 60 

years, and is organ and sex-dependent. The parameters to the right of D are 

designed to adjust this figure to other exposure ages and to adjust for attained age. 

The parameter e represents age at exposure, 𝑒∗is (e-30)/10 for ages below 30 and 

zero above this age, while a represents the attained age. Organ-specific values of βS 

for males and females along with those of the age at exposure adjustment coefficient 

γ and attained age exponent η are given in table 9.1.   
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Cancer Site β male (95% CI) β female (95% CI) γ η  
Stomach 0.21 (0.11, 0.40) 0.48 (0.31, 0.73) -0.30 -1.4 

Colon 0.63 (0.37, 1.1) 0.43 (0.19, 0.96) -0.30 -1.4 

Liver 0.32 (0.16, 0.64) 0.32 (0.10, 1.0) -0.30 -1.4 

Lung 0.32 (0.15, 0.70) 1.40 (0.94, 2.1) -0.30 -1.4 

Breast - 0.51 (0.28, 0.83) 0 -2 

Prostate 0.12 (<0, 0.69) - -0.30 -1.4 

Uterus - 0.055 (<0, 0.22) -0.30 -1.4 

Ovary - 0.38 (0.10, 1.4) -0.30 -1.4 

Bladder 0.50 (0.18, 1.4) 1.65 (0.69, 4.0) -0.30 -1.4 

Other solid 0.27 (0.15, 0.50) 0.45 (0.27, 0.75) -0.30 -2.8 (-4.1, -1.5) 

Thyroid 0.53 (0.14, 2.0) 1.05 (0.28, 3.9) -0.83 0 

All solid cancers 0.33 (0.24, 0.47) 0.57 (0.44, 0.74) -0.30 1.4 (-2.2, -0.7) 

 

Table 9.1: Parameter values for incidence ERR model defined by the BEIR VII committee 

 

The effect of the negative value of γ in the exponential term is that ERR estimates 

decrease with increasing age at exposure. The factor 𝑒∗causes risk estimates to 

decrease until age 30, at which point they become constant. The evidential support 

for this feature of the model is limited. For all cancer sites combined, the risk does 

appear to decrease with increasing age at exposure [169, 314]. However, it is 

unclear if this pattern applies to individual sites. Most notably, there is reasonably 

strong evidence that the risk of lung cancer does not fall with age and may in fact 

increase [197, 314]. For this reason, the modelling process for lung cancer was 

repeated with the exponential term removed, meaning risks for all ages at exposure 

were equal to those at age 30 years. The same approach could be applied to other 

sites, although the evidence of the modifying effect of age on oesophageal and 

stomach cancer risks is inconclusive [129]. 

The negative value of the exponent of attained age (relative to age 60), η, results in 

decreasing ERR estimates with increasing attained age, consistent with 

epidemiological data [7]. For thyroid cancer, the zero value of η means that the ERR 

is dependent only on age at exposure and not attained age [315] (i.e. the attained 

age term remains constant at 1). The model for the elevated absolute risk (EAR) 

takes the same form as the ERR model and is based on absolute risk per 10,000 

person years at age 30 [3]. Values for the various parameters for the EAR model are 

given in Table 9.2. 

The BEIR VII committee prefer a separate model for breast cancer, based on that 

developed by Preston and colleagues [309], defined for the relative risk model as: 
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𝐸𝑅𝑅 𝑝𝑒𝑟 𝑆𝑣 = 𝛽(
𝑎

60
)2 

Equation 9.19 

While the absolute risk model is defined as: 

𝐸𝐴𝑅 𝑝𝑒𝑟 𝑆𝑣 = 9.9 exp (−0.05 ∙ (𝑒 − 25)) ∙ (𝑎/50)𝜂 

Equation 9.20 

Where a is the attained age and e is the age at exposure. The exponent η is equal to 

3.5 for attained ages of less than 50, and 1.0 thereafter.  

There is no EAR model for thyroid cancer. The ERR model for this site is based on a 

pooled analysis conducted by Ron et al [294], and is defined as: 

𝐸𝑅𝑅 𝑝𝑒𝑟 𝑆𝑣 = 𝛽 ∙ exp [−0.083(𝑒 − 30)] 

Equation 9.21 

Where β is 0.53 for males and 1.05 for females.  

The model for leukaemia was obtained from the BEIR VII report [3] as follows: 

𝐸𝐴𝑅 𝑜𝑟 𝐸𝑅𝑅 𝑝𝑒𝑟 𝑆𝑣 =  𝛽𝑆(𝐷 + 𝜃 ∙ 𝐷2) ∙ 𝑒𝑥𝑝[𝛾 ∙ 𝑒∗ + 𝛿 ∙ 𝑙𝑜𝑔(𝑡/25) + 𝜙 ∙ 𝑒∗ ∙ 𝑙𝑜𝑔(𝑡/25)] 

Equation 9.22 

Where ϕ, δ and θ are fitting parameters. This model has a linear quadratic form, as 

opposed to purely linear for other sites. The quadratic term is omitted for chronic 

exposures [315] (i.e. a purely linear dose response is assumed), though was kept in 

for this analysis as all exposures were considered acute. 
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Cancer Site β male (95% CI) β female (95% CI γ η 
Stomach 4.9 (2.7, 8.9) 4.9 (3.2, 7.3) -0.41 2.8 

Colon 3.2 (1.8, 5.6) 1.6 (0.8, 3.2) -0.41 2.8 

Liver 2.2 (1.9, 5.3) 1.0 (0.4, 2.5) -0.41 4.1 (1,9, 6.4) 

Lung 2.3 (1.1, 5.0) 3.4 (2.3, 4.9) -0.41 5.2 (3.8, 6.6) 

Breast - 9.9 (7.1, 14)* -0.41 
3.5 (<30 years) 
1.1 (>30 years) 

Prostate 0.11 (<0, 1.0) - -0.41 2.8 

Uterus - 1.2 (<0, 2.6) -0.41 2.8 

Ovary - 0.70 (0.2, 2.1) -0.41 2.8 

Bladder 1.2 (0.4, 3.7) 0.75 (0.3, 1.7) -0.41 6.0 (3.1, 9.0) 

Other solid 6.2 (3.8, 10.0) 4.8 (3.2, 10.0) -0.41 2.8 

Thyroid - - -0.41 - 

All solid cancers 22 (15, 30) 28 (22, 36) -0.41 2.8 (2.15, 3.41) 

 

Table 9.2: Parameter values for incidence EAR model defined by BEIR VII committee.           

* Figures based on an erratum after publication of report. 

 

These BEIR VII risk models have been extensively critiqued by Calabrese and 

O’Connor [49], in particular highlighting the considerable difference in risk estimates 

derived using ERR and EAR methods. Kellerer et al [310] note that “radiation-risk 

estimates tend to be scrutinized to a level that is out of balance with their inherent 

degree of uncertainty”, though noting later that such uncertainties should not justify a 

lack of rigour in risk modelling.  

 

9.1.1: Risk Transport 

The ERR or EAR figures described above can be used to estimate the 'lifetime 

attributable risk' (LAR) of cancer from radiation exposure. Such estimates must take 

into account the probability of reaching a particular age, and, for ERR transport, 

background cancer rates. The LAR based on relative risk transport is defined by 

Kellerer et al [310] as:  

𝐿𝐴𝑅(𝐷, 𝑒, 𝑠) = ∫ 𝐸𝑅𝑅(𝐷, 𝑎, 𝑒, 𝑠) ∙ 𝑚(𝑎, 𝑠) ∙
𝑆(𝑎, 𝑠)

𝑆(𝑒, 𝑠)
𝑑𝑎

𝑎𝑚𝑎𝑥

𝑒+𝐿

 

Equation 9.23 

This represents the sum of age-specific risks taking into account the probability of 

surviving to that age [315]. The parameter m(a,s) represents the sex specific 

spontaneous incidence rate as a function of age. S(a,s) represents the “survival 

function”, which is the probability at birth, to reach age a, while the ratio S(a,s)/S(e,s) 
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represents the conditional probability of someone alive at age e of reaching age a 

[310]. Thus, at the time of exposure, the ratio S(a,s)/S(e,s) is equal to 1 and 

decreases with each successive year. In the case of LAR, S(a,s) represents the 

survival of an unexposed rather than exposed population, unlike the otherwise 

similar risk transport concept of ‘risk of exposure influenced death’ (REID), favoured 

by UNSCEAR. For doses below 0.1 Sv, the LAR and REID methods yield virtually 

the same results [3], while at 1 Sv, REID yields figures around 10% lower [310]. As 

doses in this study were almost always below 0.2 Sv, either figure could be used, 

although LAR was adopted as it is computationally simpler. The parameter L in the 

lower limit of integration represents the latency period for cancer development 

following radiation exposure. A value of L of five years was used in this study for 

solid cancers, and 2 years for leukaemia. These values are consistent with 

epidemiological studies [45], including the Life Span study.  

In reality, each parameter is obtained at discrete intervals (i.e. per year or per 

decade), thus the integral form of this calculation reduces to a simple summation: 

𝐿𝐴𝑅(𝑒) ≈ ∑ 𝐸𝑅𝑅𝑖 ∙ 𝑚𝑖 ∙
𝑆𝑖

𝑆𝑒

100

𝑖=𝑒+𝐿

 

Equation 9.24 

The second form of LAR is based on absolute risk transport and uses EAR rather 

than ERR. The absolute risk transport LAR can be defined by the BEIR VII 

committee [3] as: 

𝐿𝐴𝑅(𝐷, 𝑒, 𝑎) = 𝑀(𝐷, 𝑒, 𝑎, 𝑠) ∙
𝑆(𝑎, 𝑠)

𝑆(𝑒, 𝑠)
 

Equation 9.25 

Where M(D,e,a,s) is the EAR resulting from dose D at age a exposure age e and sex 

s. Integrating this between the exposure age (plus the latency period, L) and amax 

(taken to be 100 years, as before), yields the overall lifetime attributable risk: 

𝐿𝐴𝑅(𝑒) = ∫ 𝑀(𝐷, 𝑒, 𝑎, 𝑠) ∙
𝑆(𝑎, 𝑠)

𝑆(𝑒, 𝑠)

𝑎𝑚𝑎𝑥

𝑒+𝐿

𝑑𝑎 

Equation 9.26 

Again, this reduces to a simple summation: 
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𝐿𝐴𝑅(𝑒) ≈ ∑ 𝐸𝐴𝑅𝑖 ∙
𝑆𝑖

𝑆𝑒

100

𝑖=𝑒+𝐿

 

Equation 9.27  

The key difference between this and the relative risk transport of LAR is the absence 

of the background rate, m(a,s), in calculations, thus avoiding the problem of 

sensitivity of risk estimates on regional variation in background rates. 

 

9.2: Methodology 

Lifetime attributable risk of cancer incidence was calculated for all examinations for 

which organ dose estimates, based on recorded dose indicators, were available. 

LAR was not calculated for examinations conducted at Hospital 4 for which no dose 

indicators were recorded. A function was written in MATLAB that allows rapid 

calculation of LAR using data outputted by the Cardiodose dosimetry system. 

Estimates for EAR and ERR for cancers of the lungs, stomach, liver, breast, thyroid 

(ERR only) and all solid cancers combined, excluding thyroid and non-melanoma 

skin cancer, were based on the previously described models presented in the BEIR 

VII report [3] (Tables 9.1 and 9.2, earlier in this chapter). Fitting parameters for 

oesophageal cancer (not included in the BEIR VII report) were obtained from a paper 

by Berrington de González et al [315] describing ‘RadRat’ - a non-commercial web-

based risk estimation tool developed by the US National Cancer Institute (NCI). This 

program allows cancer risks to be estimated from a given dose at a given age, using 

BEIR VII models. For both ERR and EAR methodologies, a DDREF of 1.5 was 

applied in all cases where organ doses were less than 200 mSv. A DDREF was not 

applied for leukaemia risk estimates as the reduced risk at low doses is already 

accounted for in the linear-quadratic model used for that site. 

Figures for the survival function, S(a), for England and Wales were obtained from the 

Office for National Statistics (ONS) [316]  (Figure 9.2). These figures were available 

for males and females and presented for birth years of 1975, 2000 and 2010. The 

figures for 2000 were chosen as they represent a relatively central value of birth 

dates in the study cohort. These survival functions were for the general population, 

rather than people with congenital heart disease (CHD) who may have reduced life 

expectancy. The impact of an overestimation of survival is an overestimation of 
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radiation induced cancer risks. However, obtaining an equivalent S(a) function for 

CHD patients is challenging, as survival has only been studied up to 15-25 years of 

age, so far [214, 317]. The most complete source of information of survival of 

children born with congenital defects in the UK is that by Tennant et al [213], 

published in 2010 and based on data from the North of England. Survival to 20 years 

is quoted for a range of congenital heart conditions, including tetralogy of Fallot 

(TOF) and ventricular septal defect (VSD), as well as all CHD conditions combined 

(Figure 9.2) Another study was conducted by Olsen and colleagues [317] examining 

survival to 25 years for Danish children with CHD, again, for individual conditions 

along with all CHD conditions combined (Figure 9.2). These survival rates are 

considerably lower than the UK study at age 1 year (80%, rather than 92%), though 

the rate of change beyond this age is similar. The date range in the Danish study 

(1977 to 2005) was wider than that of the UK study (1985 to 2003)  

These limited data were used to estimate lifetime survival functions for people with 

CHD beyond 20-25 years. Two approaches were considered. The first involved 

simply reducing the ONS survival function by a factor equal to the difference at the 

last age for which CHD survival is known. For the Tennant et al data [213], CHD 

survival is around 10% lower than background at 20 years, therefore survival beyond 

20 years was extrapolated by reducing the ONS rate by 10%. The difference 

between background and CHD survival is not constant, however, tending to widen 

slightly with increasing age. The second approach involved establishing the 

relationship between CHD and background survival, fitting a linear model (Figure 

9.1), then using this model to adjust ONS rates for survival beyond 20 years. The 

effect of the modified extrapolation was a reduction in estimated survival. This 

methodology is admittedly fairly crude, therefore risk estimates obtained using all 3 

survival functions (ONS and 2 extrapolated CHD) will be presented. Furthermore, the 

estimated CHD survival functions are for all CHD conditions combined, when in 

reality survival varies between CHD subtypes [213, 317]. This should be unimportant 

where radiation associated cancer risks are calculated for the whole cohort, but 

would result in either over- or underestimation of risks for patients with specific 

conditions. This is especially so for patients undergoing transplants or with 

hypoplastic ventricles, in which survival is further reduced [211]. 



263 
 

 

Figure 9.1: Linear models describing relationship between survival for CHD and background 

UK rates (ONS) 

 

 

Figure 9.2: Extrapolated survival curves for people with congenital heart disease, based on 
data from two studies. 

 

Returning to Equation 9.23 used to calculate LAR, cancer incidence rates, m(a,s), for 

different regions of the UK population were obtained from Cancer Research UK 

[202]. These figures represent UK-wide rates, based on data from the Office for 
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National Statistics (England), Welsh Cancer Intelligence and Surveillance, 

Information Services Division Scotland and the Northern Ireland Cancer Registry. 

The dates of data provision for these registries were July 2013, May 2013, June 2013 

and June 2013, respectively. 

The results of the EAR and ERR transport methods were combined to produce a 

weighted sum, in linear space. These proportions, obtained from the BEIR VII 

committee report [3] and Berrington de Gonzalez et al [315] were 0.3 (EAR) and 0.7 

(ERR) for stomach, liver, oesophagus and the ‘all solid cancers’ groups, while for 

lung cancer, these proportions were reversed. No weighting was applied for breast 

(EAR only) and thyroid cancer (ERR only).  

 

9.3: Results 

Summaries of median estimated lifetime attributable risks using EAR and ERR 

transport methodologies are shown in Tables 9.3 and 9.4 for male and female 

patients respectively. Each table presents risks calculated using three different 

survival functions; UK general population rates (ONS) and CHD survival rates based 

on the data presented by Tennant et al [213] and Olsen et al [317]. These figures 

represent all procedure types and all hospitals and data collection eras combined. 

LAR based on relative risk transport was higher for lung and oesophageal cancer, 

leukaemia and the ‘all solid cancers’ group, while for cancers of the liver, stomach 

and breasts, the absolute risk transport method resulted in higher estimated LAR. 

Tables 9.5 and 9.6 present LAR estimates based on the weighted sum of EAR and 

ERR transports, for males and females, respectively. From now on, all analysis will 

focus on the weighted sum of these two transports, unless stated. The figures for the 

‘all solid cancers’ group are based on the mean whole body dose and the ‘all solid 

cancers’ BEIR VII risk coefficients from Tables 9.1 and 9.2, while the ‘summed solid’ 

group is the sum of individual risks for individual sites, excluding leukaemia. The 'all 

solid cancers' LAR was lower than the 'summed solid' LAR for females by around 

58%. For males, the central values for the ‘all solid’ and ‘summed solid’ groups were 

very similar, although the confidence intervals were more widely spaced for the latter. 

The ‘summed solid’ group includes thyroid cancer, while the ‘all solid’ model does 

not. The contribution from this site is minimal, however. 
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Estimated solid cancer risks were dominated by lung and breast cancer, with 

relatively small contributions from cancers of the oesophagus, stomach, liver or 

thyroid. Leukaemia risks were the fourth highest among individual sites, after 

oesophageal cancer. Estimated thyroid cancer risks were especially small, with 

central figures being close to zero. Omitting the exponential term from the BEIR VII 

models results in a reduction in lung cancer risks by a factor of around 2 for the ERR 

transport and almost 3 for the EAR transport. The overall effect of omitting the 

exponential term is a 40% and 29% reduction in the ‘summed solid’ cancer risk for 

males and females respectively. 

The median LAR for all sites combined was higher for females than for males by a 

factor of 3.3. Excluding breast cancer from the analysis, female summed LAR 

remained higher than for males by a reduced factor of around 1.7. The difference 

between the ‘all solid cancers’ estimate and the ‘summed solid’ figure was also 

greater for females than males. 

 

 

EAR transport ERR transport 

Organ ONS S(a) Tennant S(a) Olsen S(a) ONS S(a) Tennant S(a) Olsen S(a) 

Lung 38 [18 : 82] 34 [16 : 75] 30 [14 : 66] 54 [26 : 119] 50 [23 : 109] 44 [21 : 96] 

Lung* 14 [7 : 31] 13 [6 : 29] 11 [5 : 25] 21 [10 : 45] 19 [9 : 42] 17 [8 : 37] 

Stomach 8 [4 : 14] 7 [4 : 13] 6 [4 : 12] 1 [1 : 2] 1 [0 : 2] 1 [0 : 1] 

Liver 9 [8 : 22] 8 [7 : 20] 7 [6 : 18] 2 [1 : 4] 2 [1 : 4] 2 [1 : 3] 

Oesophagus 7 [1 : 16] 6 [1 : 15] 6 [1 : 13] 13 [0 : 29] 12 [0 : 27] 11 [0 : 24] 

Breast n/a n/a n/a n/a n/a n/a 

Thyroid n/a n/a n/a 1 [0 : 3] 1 [0 : 2] 1 [0 : 2] 

Leukaemia 8 [1 : 19] 8 [0 : 18] 8 [0 : 17] 4 [0 : 9] 4 [0 : 9] 3 [0 : 8] 

All 49 [33 : 66] 45 [30 : 61] 40 [27 : 54] 74 [54 : 105] 68 [49 : 97] 61 [44 : 87] 
 

Table 9.3: Median estimated LAR per 100,000 for all procedure types combined, for males. 

*figures produced using modified model omitting age adjustment. Figures in brackets 

represent 95% confidence intervals of risk estimates. Data are for all procedure types 

combined. 
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EAR transport ERR transport 

Organ ONS S(a) Tennant S(a) Olsen S(a) ONS S(a) Tennant S(a) Olsen S(a) 

Lung 65 [44 : 93] 59 [40 : 85] 51 [35 : 74] 163 [109 : 244] 149 [100 : 224] 133 [89 : 199] 

Lung* 25 [17 : 36] 22 [15 : 32] 20 [13 : 28] 62 [42 : 93] 57 [38 : 86] 51 [34 : 76] 

Stomach 9 [6 : 13] 8 [5 : 12] 7 [5 : 10] 1 [1 : 2] 1 [1 : 1] 1 [1 : 1] 

Liver 5 [2 : 12] 4 [2 : 11] 4 [1 : 9] 1 [0 : 3] 1 [0 : 3] 1 [0 : 2] 

Oesophagus 1 [0 : 5] 1 [0 : 5] 1 [0 : 4] 9 [0 : 33] 8 [0 : 30] 7 [0 : 27] 

Breast 93 [67 : 132] 86 [61 : 121] 77 [55 : 108] 59 [32 : 96] 55 [30 : 90] 50 [28 : 82] 

Thyroid n/a n/a n/a 1 [0 : 4] 1 [0 : 4] 1 [0 : 4] 

Leukaemia 4 [0 : 9] 4 [0 : 9] 4 [0 : 8] 4 [0 : 9] 3 [0 : 8] 3 [0 : 8] 

All 65 [51 : 84] 60 [47 : 77] 53 [42 : 68] 111 [85 : 144] 103 [79 : 133] 93 [72 : 120] 
 

Table 9.4: Median estimated LAR per 100,000 for all procedure types combined, for females. 

*figures produced using modified model omitting age adjustment. 

 

 

 

Survival function 

Organ ONS Tennant Olsen 

Lung 43 [20 : 93] 39 [19 : 85] 34 [16 : 75] 

Lung* 16 [8 : 36] 15 [7 : 32] 13 [6 : 29] 

Stomach 3 [2 : 6] 3 [2 : 5] 2 [1 : 5] 

Liver 4 [3 : 9] 4 [3 : 9] 3 [2 : 8] 

Oesophagus 11 [0 : 25] 10 [0 : 23] 9 [0 : 21] 

Breast n/a n/a n/a 

Thyroid 1 [0 : 3] 1 [0 : 2] 1 [0 : 2] 

Leukaemia 5 [0 : 12] 5 [0 : 11] 5 [0 : 11] 

All 66 [47 : 93] 61 [44 : 86] 55 [39 : 77] 

Summed solid 62 [25 : 136] 57 [24 : 124] 49 [19 : 111] 

Summed solid* 35 [13 : 79] 33 [12 : 71] 28 [9 : 65] 
 

Table 9.5: Median estimated LAR (per 100,000) for all procedure types combined, for males, 

based on the weighted sum of EAR and ERR transports. *figures produced using modified 

model omitting age adjustment. 
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Survival function 

Organ ONS Tennant Olsen 

Lung 94 [63 : 138] 86 [58 : 126] 76 [51 : 111] 

Lung* 36 [24 : 53] 33 [22 : 48] 29 [19 : 42] 

Stomach 3 [2 : 5] 3 [2 : 4] 3 [2 : 4] 

Liver 2 [1 : 6] 2 [1 : 5] 2 [1 : 4] 

Oesophagus 7 [0 : 25] 6 [0 : 23] 5 [0 : 20] 

Breast 93 [67 : 132] 86 [61 : 121] 77 [55 : 108] 

Thyroid 1 [0 : 4] 1 [0 : 4] 1 [0 : 4] 

Leukaemia 4 [0 : 9] 4 [0 : 8] 3 [0 : 8] 

All 97 [75 : 126] 90 [70 : 116] 81 [63 : 105] 

Summed solid 200 [133 : 310] 184 [122 : 283] 164 [109 : 251] 

Summed solid* 142 [94 : 225] 131 [86 : 205] 117 [77 : 182] 
 

Table 9.6: Median estimated LAR (per 100,000) for all procedure types combined, for 

females, based on the weighted sum of EAR and ERR transports. *figures produced using 

modified model omitting age adjustment. 

 

Comparison of the data in Tables 9.3 to 9.6 shows a reduction in estimated LAR 

where survival functions based on populations with congenital heart disease are 

used. The effect is relatively small, being around 8% lower where the figures based 

on UK CHD survival reported by Tennant et al [213] are used, and around 18% lower 

using the Danish CHD survival reported by Olsen [317]. 

Table 9.7 shows median LAR for procedures conducted using 3rd generation 

(Siemens Axiom Artis and Artis Zee) machines compared to those conducted on 

older 2nd and 3rd generation machines. These figures utilise ONS survival rates and 

standard BEIR VII risk models (i.e. retaining the age adjustment for lung cancer). 

Overall, there has been a fall of around 77% in estimated risk per examination 

between these eras. Table 9.8 shows median LAR for summed solid cancers and 

leukaemia, stratified by procedure type. Data are presented for 3rd generation 

equipment. Again, patterns are similar to those for PKA or organ doses. The highest 

risks were for pulmonary valve replacements with overall estimated cancer risks of 

213 per 100,000 (1 in 469) for males, and 746 (1 in 134) for females. Corresponding 

figures for ASD occlusions were 16 (1 in 6250) and 47 (1 in 2127) for males and 

females respectively. These figures were based on ONS survival statistics. More 
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accurate estimations would require survival functions specific to each specific 

condition. 

 

Sex and equipment era 

Organ Male 1st, 2nd  Male 3rd  Female 1st, 2nd Female 3rd  

Lung 101 [48 : 220] 22 [10 : 47] 233 [157 : 344] 53 [36 : 78] 

Stomach 7 [4 : 13] 2 [1 : 3] 8 [5 : 12] 2 [1 : 3] 

Liver 9 [7 : 21] 2 [2 : 5] 5 [2 : 13] 1 [0 : 3] 

Oesophagus 25 [1 : 57] 6 [0 : 14] 15 [0 : 58] 4 [0 : 15] 

Breast n/a n/a 229 [164 : 324] 51 [36 : 72] 

Thyroid 2 [0 : 6] 0 [0 : 1] 3 [1 : 11] 1 [0 : 3] 

Leukaemia 12 [1 : 28] 3 [0 : 6] 9 [1 : 21] 2 [0 : 5] 

All solid 156 [112 : 220] 34 [25 : 49] 237 [184 : 307] 55 [43 : 71] 

Summed solid 144 [60 : 317] 32 [13 : 70] 493 [329 : 762] 112 [73 : 174] 
 

Table 9.7: Median LAR (weighted sum of EAR and ERR transports) for two generations of 

equipment: 3rd (Siemens Axiom Artis/Artis Zee) and 1st and 2nd (Siemens HIcor/BIcor, 

Philips Integris and Toshiba Infinix). Figures in brackets represent 95% confidence intervals. 

 

 

 

Males Females 

Procedure: Leukaemia Summed solid Leukaemia Summed solid 

ASD Occlusion 1 [0 : 3] 15 [6 : 33] 1 [0 : 3] 48 [33 : 78] 

PDA occlusion 2 [0 : 5] 35 [13 : 74] 2 [0 : 4] 144 [98 : 224] 

Pulm valvuloplasty 4 [0 : 10] 54 [21 : 118] 3 [0 : 6] 151 [101 : 233] 

Aortic valvuloplasty 4 [0 : 8] 42 [16 : 89] 3 [0 : 7] 177 [118 : 274] 

PA angioplasty 5 [0 : 11] 71 [29 : 157] 3 [0 : 7] 258 [173 : 396] 

COA angioplasty 5 [0 : 11] 53 [21 : 117] 3 [0 : 8] 199 [134 : 306] 

EPS/RFA 2 [0 : 5] 21 [8 : 45] 2 [0 : 4] 49 [30 : 76] 

EMBx 1 [0 : 1] 5 [2 : 13] 0 [0 : 1] 16 [10 : 25] 

Coronaries 3 [0 : 6] 24 [10 : 52] 3 [0 : 6] 63 [39 : 103] 

PVR/pressures 1 [0 : 3] 15 [6 : 33] 1 [0 : 2] 41 [28 : 65] 

Valve replacement 17 [1 : 39] 196 [83 : 431] 10 [1 : 24] 736 [501 : 1114] 

Pacemaker 0 [0 : 1] 1 [1 : 4] 0 [0 : 1] 7 [4 : 13] 

Atrial septostomy 1 [0 : 3] 13 [5 : 27] 1 [0 : 3] 72 [46 : 112] 
 

Table 9.8: Median LAR (weighted sum of EAR and ERR transports) for 3rd generation 

equipment (Siemens Axiom Artis/Artis Zee), stratified by procedure type. Figures in brackets 

represent 95% confidence intervals. 

 

As with PKA and organ doses, LAR displayed a right skewed distribution, with the 

majority of procedures associated with a risk of below 200 per 100,000 (i.e. 1 in 500). 
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Figure 9.3 shows this distribution for the whole cohort and for all procedure types. 

Fourteen examinations resulted in an estimated LAR of 10,000 or more (i.e. 1 in 10), 

all of which involved female patients. The mean heart dose in these 14 cases was 

746 mGy, while the mean age at exposure was 2.9 years.  

Where cumulative LAR was calculated, the median across the whole cohort was 229 

per 100,000 (IQR: 82, 592), or about 1 in 436 (1220, 169) for cancers of the lung, 

stomach, liver, oesophagus, thyroid, breast and leukaemia combined. There was a 

suggestion of a positive correlation between median combined LAR, and the number 

of procedures conducted (Spearman’s r=0.61, p=0.06). Despite this, of the patients 

with the five highest cumulative combined LAR estimates (all female), three 

underwent a single catheterization, typically at an early age. The maximum 

cumulative LAR was 33,727 per 100,000, or about 1 in 3.  

 

Figure 9.3: Distribution of estimated lifetime attributable risk of cancer incidence 
across the whole cohort, for all procedure types. 

 

9.4: Discussion 

Many of the patterns in the risk modelling results mirror those for organ doses. This 

was expected due to the linear relationship assumed between dose and risk. The 

finding that the highest estimated risks were for the breasts and lungs was expected 

given that both organs receive relatively high doses and that both appear to be 

sensitive to radiation induced cancer [45, 139, 291]. Although the thyroid gland is 
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also considered radiosensitive [45, 294], the low doses received by this organ result 

in very low estimated risk of thyroid cancer. Risks were not estimated for lymphoma 

as no EAR or ERR models are available. Nor were risks estimated for cancers of 

organs for which no doses were calculated, including the colon, bladder, brain or 

salivary glands. These organs, although apparently susceptible to radiation induced 

cancer [9, 45, 53], were sufficiently far from the irradiated field that doses and 

associated risks were assumed to be negligible. 

The higher LAR for female patients reflects both the higher risk per unit dose for 

stomach, lung and thyroid cancer, and the inclusion of breast cancer in the total LAR 

for females. There is some association between radiation and male breast cancer, 

but this is limited [318]. Difference in dose between males and females does not 

appear to be a factor in the discrepancy in LAR. Mean effective doses were 

approximately the same for male and female cohort members, while median effective 

dose was 15% higher for males. Previous studies led by Johnson [89], Ait Ali [13] 

and Beels [12] reported female/male LAR ratios of around 2, 2.4 and 2.7 respectively 

(these papers are discussed in greater depth below). The larger male/female 

difference in the current study is most likely due to the use of organ doses to 

calculate LAR, rather than effective dose. The potentially high risk of breast cancer 

highlights the importance of radiation protection techniques to reduce breast dose, 

such as close collimation and use of lung shuttering where appropriate [104]. 

Avoidance of laterally orientated beam projections may also reduce breast dose, 

although choice of projections is largely dictated by procedure type. 

Across the whole cohort, the combined estimated LAR from cardiac catheterizations 

for leukaemia and lung, breast, stomach, liver, oesophageal and thyroid cancer was 

approximately 1 in 1500 and 1 in 500 for males and females respectively, using UK 

ONS survival rates and retaining the age modifier in BEIR VII models. For recent 

examinations conducted using modern equipment, equivalent figures are 1 in 2900 

and 1 in 900 for males and females respectively. Where accounting for reduced 

survival of people with congenital heart disease, these risks were reduced by 

between 10 and 25%. These latter risks were estimated using alternative survival 

functions. An alternative methodology involves adjusting the upper limit of integration 

(amax) in equations 9.6 and 9.9, allowing the risk of cancer to be estimated up to a 

particular number of years following exposure. This may be more suitable for 
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conditions in which survival is especially reduced, such as hypoplastic ventricles 

[215] or transplantation [211]. LAR as a function of amax has a sigmoid form (Figure 

9.4), rising steeply between 40 and 70 years before levelling off. Thus reducing amax 

to 80 years results in a small decrease in LAR of around 10%. Reducing amax to 50 

years, leads to a decrease in LAR by 63%. Patients with a hypoplastic left heart 

(where the left ventricle fails to develop properly) are not expected to survive beyond 

their teens [215]. Setting amax to 20 years results in a decrease in LAR of around 95% 

relative to risks estimated using an amax of 100 years.  Figures 9.5 and 9.6 show 

estimated LAR for coronary angiography examinations, based on median dose for 3rd 

generation equipment, as amax is adjusted from 5 to 75 years from the age at 

exposure. Note that the risks at 5 years post exposure are entirely due to leukaemia 

(which has a 2 year latency period). 

 

Figure 9.4: Lifetime attributable risk of cancer from cardiac catheterizations 
conducted on children who underwent Norwood procedures, as a function of attained 

age. Error bars represent 95% confidence intervals of risk. 
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Figure 9.5: LAR as a function of aMAX (upper limit of integration in Equations 9.23 and 9.26) 
for coronary angiography examinations at six ages at exposure. Data are for male patients. 

 

 

Figure 9.6 LAR as a function of aMAX for coronary angiography examinations at six ages at 
exposure. Data are for female patients. 

  

As with other medical radiation exposures, these risks must be placed in the context 

of the potential benefits of the diagnostic information provided and the therapeutic 

benefits of trans-catheter interventions. Radiation protection involves both 

justification and optimisation [60, 104]. The former is related to decision of whether or 

not to go ahead with the exposure or nor, based on net benefit to the patient. If the 
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procedure is considered justified, the process of optimisation seeks to reduce doses 

to as low as reasonable practicable (ALARP) [16, 104]. The issue of the compromise 

between radiation dose and image quality has been discussed previously and will be 

discussed again, later.  

 

9.4.1: Uncertainties in risk estimates 

There are a number of sources of uncertainty in risk estimates derived from the 

modelling approach. The uncertainty in the value of ERR and EAR risk coefficients is 

reflected in 95% confidence intervals incorporated into these estimates. A linear 

relationship between radiation dose and excess risk is assumed, with no threshold 

dose below which there is no risk.  This approach remains controversial [58, 59, 

311]. There is currently insufficient evidence to confirm or refute alternative 

proposals. The risks estimated using data derived from nuclear bombing survivors’ 

data tend to be higher than those obtained from studies of children treated with 

radiotherapy [172] though lower than that suggested by recent studies of children 

undergoing computed tomography scans [9, 124].  

The usage and associated value of the ‘dose and dose rate effectiveness factor’ 

(DDREF) is also controversial [59]. Models presented in ICRP 103 [44] utilise a 

DDREF of 2.0, while those developed by the UNSCEAR 2006 committee [45] use a 

linear quadratic model, in which a DDREF is implicit (i.e. the models effectively have 

a DDREF of 1.0). In this study, a factor of 1.5 was applied. Changing this to 2.0 

results in a reduction in LAR by 25%. The use of a single DDREF for all cancer sites 

is a generalisation without adequate evidential support. In particular, in some studies, 

the risk of breast cancer does not appear to be reduced for fractionated exposures, 

compared to single acute exposures [158, 314]. Brenner [137] argues that the 

apparent lack of effect of fractionation in studies of patients receiving fluoroscopically 

guided pneumothorax therapy for tuberculosis is due to the increased radiobiological 

effectiveness (RBE) of low energy x-ray photos [138, 319]. The energy of 

fluoroscopic x-rays used in cardiac catheterizations is strongly dependent on 

filtration. The almost complete removal of photons below around 30 keV with around 

0.2 mm of copper and 2.5 mm of aluminium filtration would result in a lower RBE 

than apparent from studies of fluoroscopic exposures used for TB pneumothorax 

therapy [154]. It is possible, therefore, that risks for breast cancer have been 
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underestimated in cases where filtration was lower. Furthermore, recent studies of 

cancer mortality in nuclear workers [139, 145, 146] and other occupationally exposed 

groups do not suggest a reduction in risk for protracted exposures, implying a 

DDREF or 1.0 or less [320].  

The decision to use BEIR VII risk models, as opposed to others developed by the 

ICRP [44] or UNSCEAR [45] was arbitrary. There is currently little to suggest that any 

one model provides more accurate estimates of the risks at low doses. The 

differences in LAR estimates obtained using EAR and ERR transports are consistent 

with those previously reported [49, 321]. The decision to apply either multiplicative or 

additive transports or the weightings in the combined approach is also arbitrary and 

lacks common consensus [321]. The ICRP 103 risk models use equal ERR/EAR 

weightings for liver and stomach cancer and a purely additive model for leukaemia 

[44], while the current study, the BEIR VII committee [3] and the online risk 

calculation tool RadRat [322] all utilise 70/30 weightings for all three sites. Wakeford 

and Little [321] note that when using BEIR VII risk models, the difference in 

leukaemia risk estimates between EAR and ERR transports are small, but very large 

when using the alternative risk models reported in the 2006 UNSCEAR report [45]. 

Fortunately, the contribution of cancers in which EAR and ERR transports differ 

substantially to overall cancer risks from cardiac catheterizations (stomach and liver 

in particular) is relatively small.   

The BEIR VII risk models assume a monotonically decreasing risk of radiation 

induced cancer with increasing age at exposure, up to 30 years. As previously 

mentioned, evidence in support of such an assumption is mixed [129, 196, 197], 

most notably for organs exposed during cardiac catheterizations, such as the lungs 

and oesophagus. This is unfortunate given the impact that the exponential age 

modification term from Equation 9.18 has on estimated risks, as demonstrated by the 

large reduction in LAR for lung cancer following its omission. The lack of evidence 

supporting the higher risks among children for lung cancer suggests that these 

modified figures may be more realistic. For the ICRP 103 risk models, lung cancer 

risk increases with age at exposure by 17% per decade for the ERR approach and 

1% for the EAR approach [44]. 

Risk estimates based on relative risk transport are also affected by regional variation 

in background rates. The estimates presented in this study are based on UK-wide 
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rates and may differ from those obtained using rates specific to the region of 

residence of individual patients. Regional rates are published by the International 

Agency for Research on Cancer (IARC) [203]. There is relatively little geographical 

variation in breast cancer incidence throughout the UK (Figure 9.7), though large 

differences are apparent for lung cancer (Figure 9.8). It should be noted, however, 

that the hospital at which procedures are carried out does not necessarily represent 

the location of residence of the patient. There are no hospitals carrying out paediatric 

cardiac catheterizations in Wales, for example, meaning Welsh patients must travel 

to English hospitals such as Alder Hey for these procedures. A similar issue could 

arise due to differences in ethnicity, which can affect background risk of cancer [323-

325]. The impact of variation in the survival function is somewhat smaller, with risks 

being around 25% lower based on the more pessimistic figures quoted by Olsen and 

colleagues [317]. 

Finally, risk estimation must also take into account the uncertainty in dose estimates 

described in Chapter 8. The largest potential uncertainties are for breast dose, due to 

the difficulty in predicting the inclusion of breast tissue within the primary beam. As 

discussed in Chapters 4 and 8, this study has assumed a large increase in breast 

dose for laterally orientated projections. Thus the breast cancer risks estimated in 

this chapter may be overly pessimistic.  
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Figure 9.7: Female breast cancer incidence from four different UK regions. Data obtained 

from IARC [200] 

 

 

Figure 9.8: Lung cancer incidence for four different UK regions. Data obtained from IARC 
[203] and Cancer Research UK [202]. 

 

 

9.4.2: Implications for epidemiological analysis 

The risk estimates for leukaemia and thyroid cancer; the malignancies best suited to 
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with a relatively short follow-up time, are small. Based on an average UK background 

incidence rate in the 0-29 year age group of 33 per million people, per year, for 

leukaemia and 12 for thyroid cancer [202], the expected number of background 

cases of these two malignancies over a 10 year study period, for a sample of 13,000 

subjects, is around 6. The expected number of radiation induced cancers in the same 

cohort, over the same time period, in the study cohort, was calculated by adjusting 

the upper limits of integration (amax) in Equation 9.23 from 100 to the number of years 

of follow up. This resulted in a mean ‘study period attributable risk’ of 7.2 and 1.8 per 

100,000 for leukaemia and thyroid cancer respectively (95% CI: 0.6, 17.1 and 0.5, 

6.6). Thus, the expected number of radiation induced leukaemia and thyroid cancer 

cases combined during the study period is 1.17 (95% CI: 0.1, 3.1). Restricting 

analysis to recently conducted examinations in which doses are relatively low, the 

number of expected radiation-induced leukaemia and thyroid cancer cases is 0.3 

(95% CI: 0.1, 0.8).  

A significant increase in leukaemia or thyroid cancer incidence in the study cohort 

was not expected, based on excess risks predicted by the modelling approach. For 

other cancer sites, including lung, oesophagus and breast, a longer follow up time is 

required to enable cohort members to reach the ages at which such diseases 

become relatively common. 

 

9.4.3: Comparison with previous research 

A number of previous studies have estimated lifetime attributable risk of cancer from 

cardiac catheterizations in children. Ait Ali et al [13] estimated LAR for 59 patients 

undergoing 1548 x-ray procedures, including catheterizations, CT and chest 

radiographs. For male patients receiving a median cumulative effective dose of 7.1 

mSv, the estimated median LAR of cancer incidence was 1 in 804, while for female 

patients receiving a median effective dose of 9.4 mSv, the median LAR was 1 in 331. 

The quoted cumulative effective doses do not appear to correspond to the sum of 

doses for each procedure type. The methodology states that effective doses for 

catheterizations were estimated using the E/PKA conversion factor of 1.2 

mSv/Gy·cm2, which based on the quoted median PKA of 20 Gy·cm2, ought to result in 

effective doses for catheterizations alone of around 24 mSv. Moreover, the 

methodology for LAR estimation is unclear, appearing to involve using BEIR VII risk 
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models to estimate risks from effective dose, rather than individual organ doses. 

Such a methodology is regarded as improper [326], for the reasons outlined earlier in 

the chapter, though deserves further analysis. The LAR estimates obtained using the 

‘All solid cancers’ risk coefficients in Tables 9.1 and 9.2, and the mean whole body 

dose, were 58% lower for females than corresponding estimates obtained by 

summing LAR for individual sites obtained using respective organ doses, but almost 

identical for males. Based on the earlier finding that effective dose is, on average, 

higher than mean whole body dose by a factor of 1.7 (see Chapter 8, section 8.2), 

using effective dose rather than mean whole body dose with the ‘All solid cancers’ 

risk coefficients results in a higher LAR than that obtained by summing risks for 

individual sites by a factor of 1.7 for males, but brings these figures closer for 

females (28% lower rather than 58%). Thus, for analyses with both sexes combined, 

the use of effective dose in BEIR VII risk models results in a crudely similar risk 

estimate to that obtained using the ‘proper’ methodology. 

Johnson et al [89] estimated LAR for 337 children aged under 6 years, undergoing 

13,932 procedures, giving a median cumulative effective dose of 2.7 mSv (range 0.1-

76.9 mSv). The majority (72%) of exposures were chest radiographs, delivering 

effective doses of less than 0.03 mSv each. As with the study by Ait Ali et al [13], the 

authors chose to apply effective dose to BEIR VII risk models rather than use 

individual organ doses. For patients undergoing transplant and Norwood procedures, 

a separate ‘short term’ risk estimation was conducted to account for shorter life 

expectancy. This used an ERR of 0.035 mSv-1 derived from the epidemiological 

analysis of CT-associated risks performed by Mathews et al [124], background 

cancer rates for US adolescents (15-19 years) and assumed exposure at 5 years. 

The rationale for using this separate ERR, as opposed to using a different survival 

function, or value of amax is not made clear. The decision to use the ERR from the 

Mathews study is also questionable. As noted in the literature review, this analysis 

has drawn criticism, in particular related to the issue of confounding by indication 

[129, 177, 178]. Using an upwardly biased ERR for patients with shortened life 

expectancy would achieve the opposite effect to that desired. In reality, shorter life 

expectancy would mean less time to develop radiation induced cancers and hence 

lower risk, not higher. Whatever the thinking, the median estimated LAR for the 

whole cohort was 65 cases per 100,000, or 1 in 1538. For the Norwood and 

Transplant groups, these figures were 799 and 1677 respectively (1 in 125 and 1 in 
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60), based on median cumulative effective doses of 63.8 and 28.9 mSv respectively. 

The LAR estimates for the latter group are high, but then so are the dose estimates 

for cardiac catheterizations (effective dose of 13.8 and 9.1 mSv for interventional and 

diagnostic procedures respectively), based on physical measurements in 

anthropomorphic phantoms.  

Beels et al [12] estimated LAR for 49 patients aged from 0 to 11.8 years. Unlike Ait 

Ali et al [13] and Johnson et al [89], Beels used organ doses, calculated from Monte 

Carlo simulations (MCNP-X 2.5.0) rather than effective dose. The authors report 

median estimated LAR figures of 0.076% and 0.205% for males and females 

respectively (1 in 1316 and 1 in 488). The organ doses used for these estimates 

were not stated. The median effective dose, based on ICRP 103 weighting factors, 

was 6.4 mSv, ranging from 0.5 to 53.4 mSv. 

Yakoumakis et al [107] used the risk of exposure–induced death (REID) estimation 

tool built in to PCXMC v2.0. This utilises BEIR VII risk models and organ doses 

transferred from Monte Carlo simulations in the same program. The model uses 

three sets of background cancer rates; Euro-American, Asian and Finnish, although it 

is not clear which were used in this case. Aside from calculating REID as opposed to 

LAR, the upper limits of integration (i.e. amax) are set at 120, rather than 100. 

Yakoumakis’s team estimated risks for 53 cardiac catheterizations carried out on 

patients aged 3 months to 11 years. The median REID estimates for ASD, VSD and 

PDA occlusions were 0.110%, 0.126% and 0.067% respectively (i.e.1 in 909, 794 

and 1493). These risk estimates are quite low, considering the exceptionally high 

calculated doses (effective dose = 40, 22 and 17 mSv for ASD, VSD and PDA 

occlusions respectively). The discrepancy in the relative magnitudes of dose and 

REID between procedure types is striking, but not commented on by the authors.  

A number of older studies utilising simpler risk estimation methodologies are also 

worthy of mention. Bacher and colleagues [8] estimated a median risk of cancer 

mortality for 60 cardiac catheterizations conducted on patients aged  under 10 years 

of 0.08% (1 in 1250). These figures were derived by multiplying the effective dose, 

calculated using MCNP4b2 Monte Carlo code, by risk factors quoted in ICRP 60 [67] 

of 13%/Sv for boys and 16%/Sv for girls. These estimates are similar to those of 

Yakoumakis et al [107] despite the effective doses being 5-10 times lower (these 

were 4.6 and 6.0 mSv for ‘low dose’ and ‘standard’ techniques respectively). The 
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results of Bacher et al should be interpreted with caution, given the simplicity of the 

risk estimation methodology, which assumes all exposure to have occurred at 10 

years. A similar analysis appears to have been performed by Martinez et al [94], who 

arrive at a figure – which is presumably the LAR, though not explicitly stated as such - 

of 0.07% (1 in 1429) for fatal cancer, based on an estimated effective dose of 5 mSv 

for 137 patients aged up to 16 years. It is unclear how this estimate of effective dose 

was derived. The use of cancer mortality in the above studies, rather than incidence, 

is a further limitation. Although survival of lung and oesophageal cancer remains 

poor [327], the survival of leukaemia and breast cancer is now sufficiently high [328-

330], that risk estimates based on mortality may underestimate the burden 

associated with radiation exposures. 

A final comparison was made between LAR estimates calculated by the current 

author, those of the BEIR VII committee presented in Tables 12D-1 and 12D-2 of the 

BEIR VII report [3] and those produced by the RadRat online risk estimation tool 

developed by the National Cancer Institute (NCI) [315, 322]. The results of this 

comparison are presented in Table 9.9. The goal was primarily to identify potential 

errors in the LAR estimation process. All three sources utilise the same BEIR VII 

models previously described. The BEIR VII example tables and RadRat are based 

on US background rates and survival curves, rather than UK rates in this study. LAR 

estimates calculated by the current author are close to those of the BEIR VII report, 

while those calculated by RadRat are much higher than both. 
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Male Female 

Age Study Lung Stomach Liver Leukaemia Thyroid Lung Stomach Liver Leukaemia Thyroid Breast 

0 y 

This 322 182 105 401 192 787 221 61 335 346 1224 

BEIR VII 314 76 61 237 115 733 101 28 185 634 1171 

RadRat 523 272 175 377 297 1220 328 98 332 1650 1810 

5 y 

This 267 150 86 245 128 657 182 50 202 251 953 

BEIR VII 261 65 50 149 76 608 85 23 112 419 914 

RadRat 438 225 146 181 198 1020 271 81 149 1100 1420 

10 y 

This 222 123 71 179 83 549 150 41 151 165 742 

BEIR VII 216 55 43 120 50 504 72 20 86 275 712 

RadRat 364 184 120 138 130 856 222 45 106 723 1110 

15 y 

This 184 101 59 145 54 459 123 34 127 107 578 

BEIR VII 180 46 36 105 33 417 61 16 76 178 553 

RadRat 302 151 100 116 86 716 182 55 90 470 859 

20 y 

This 154 83 49 125 34 384 101 28 113 68 448 

BEIR VII 149 40 30 96 21 346 52 14 71 113 429 

RadRat 252 123 82 104 56 600 149 45 82 299 664 

30 y 

This 107 56 34 97 13 270 67 19 93 25 265 

BEIR VII 105 28 22 84 9 242 36 10 63 41 253 

RadRat 176 81 56 92 23 421 98 31 72 112 387 
 

Table 9.9: Comparison of three lifetime attributable risk estimates, calculated for an acute 
exposure of 100 mSv. 

 

9.5: Conclusions 

Risk modelling suggests a median lifetime attributable risk of radiation induced 

cancer from cardiac catheterizations across the whole cohort of around 1 in 1500 

and 1 in 500 for males and females respectively. For more recently conducted 

procedures with lower doses, these risks fall to around 1 in 2900 and 1 in 900 

respectively. These relatively low excess cancer risks ought not to be detectable by 

epidemiological analysis unless the sample size is especially large, or follow-up time 

sufficiently long to include breast and lung cancers. The following chapter will 

discuss the results of matching cohort members to cancer registry data to provide 

direct epidemiological assessment of cancer risks following cardiac catheterizations. 
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Chapter 10: Epidemiology 

Excess cancer risks estimated using existing risk models are subject to large 

uncertainties in the shape of the relationship between radiation dose and cancer. An 

epidemiological analysis, using empirical data, has the benefit of allowing direct 

assessment of cancer risks, though has the disadvantages of sensitivity to sample 

size and confounding factors. The following chapter describes an epidemiological 

analysis of around 13,000 cohort members. This should be seen as a pilot study, 

with the aim of evaluating the possibility of a larger scale study involving patients 

from more UK hospitals and, potentially, a pooled analysis with European studies 

[331]. Two analyses were carried out; (1) an overall assessment of cancer incidence 

in the study cohort, and (2) an assessment of the potential impact of radiation doses 

on these cancer risks. The latter analysis focused only on cancers developing more 

than 5 years following the first recorded catheterization (2 years for leukaemia). 

 

10.1: Methods 

Details of cancer diagnosis and deaths were obtained by linking the cohort with the 

National Health Service Central Register (NHSCR). This holds records of everyone 

in Great Britain registered with a general practitioner, and is continuously updated 

with details of cancer incidence from regional registries, along with births, deaths, 

marriages and names changes [9]. Some of the 13,564 patients in the cohort could 

not be matched. Patients at Hospital 6 (n=337) had no Christian name, while 48 

patients at other hospitals had no date of birth and 125 were over 22 years at the 

time of the first procedure (these latter patients were not included in organ dose 

estimations). A further 222 patients had procedures not considered to be true cardiac 

catheterizations, including pericardiocentesis and PICC/Hickman insertions. Finally 

78 patients were excluded because it was unclear what equipment was used, making 

dose estimation too unreliable. This left 12,754 patients, contributing 191,865 person 

years on the 1st of February 2014. The mean patient age on this date was 15.1 years 

(median = 14.7). 7,562 patients were born within the data collection period at the 

hospital at which they were first examined. These patients contributed 78,835 person 

years and had a mean follow-up of 10.4 years (median = 9.3). Details of the cohort 

are shown in Table 10.1. 
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Characteristic Whole cohort Transplant Cases 

Male 6335 (50%) 374 (51%) 63 (49%) 

Female 5685 (45%) 335 (46%) 62 (48%) 

Unknown 733 (6%) 21 (3%) 4 (3%) 

Total 12753 730 129 

Born within study period 5295 306 35 

Mean age 01/02/2014 15.1 years 13.4 years 23.3 

Born <1980 248 (2%) 59 (8%) 13 (10%) 

Born 1980-1989 1557 (12%) 203 (28%) 53 (41%) 

Born 1990-2009 4831 (38%) 307 (42%) 42 (33%) 

Born 2000-2009 4985 (39%) 144 (20%) 21 (16%) 

Born >2010 1132 (9%) 17 (2%) 0 (0%) 

Mean age at first procedure 6 years 5.1 years 11.3 

1 procedure 9663 (76%) 229 (30%) 65 (50%) 

2 procedures 1747 (14%) 121 (16%) 18 (14%) 

3 procedures 621 (5%) 77 (10%) 8 (6%) 

4 procedures 261 (2%) 56 (7%) 7 (5%) 

5 procedures 154 (1%) 61 (8%) 6 (5%) 

>5 procedures 326 (3%) 220 (29%) 26 (20%) 

 

Table 10.1: Details of the cohort 

 

The standardised incidence ratio (SIR) was calculated as the ratio of observed to 

expected cases. The expected number of cases was calculated as follows: the sex 

adjusted average risk of cancer, per 100,000, was obtained for each year, from birth 

up to the age of the patient on the 1st of February 2014. The mean of these yearly 

risks was calculated, and this figure multiplied by the patient’s age on the 1st of 

February 2014. If the patient died prior to this date, risks were calculated up to the 

age at which the patient died. The sum of risks for cohort members was then divided 

by 100,000 to obtain the expected number of cancer cases. Expected cancer 

incidence rates were obtained from Cancer Research UK [202]. As explained in 

Chapter 9, these figures represent UK-wide rates, combining 2013 data from the 

English, Scottish, Welsh and Northern Irish cancer registries. Confidence intervals 

for SIR were calculated using the method described by Vandenbroucke [332], 

defined as (√𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 1)
2
 for the lower limit of observed cases, 

and (√𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 + 1 + 1)
2
 for the upper limit.  
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Information on potentially confounding conditions was determined from clinical 

details, where recorded (Hospitals 1 and 2 only), cause of death if the patient had 

died, and examination type. Conditions searched for were Down syndrome (trisomy 

21), axaxia telangiectasia, Li Fraumeni syndrome, organ transplantation and 

neurofibromatosis.  Patients were considered to have a history consistent with heart 

transplant if they had undergone coronary angiography and/or endomyocardial heart 

biopsies, unless stated as having Kawasaki's disease (the other common indication 

for this procedure in young people). 

Survival was calculated for cohort members using the Kaplan Meier method, defined 

for n individuals and d deaths in each time interval i as: 

𝑆̂(𝑡) = ∏
𝑛𝑡𝑖 − 𝑑𝑡𝑖

𝑛𝑡𝑖
𝑡𝑖<𝑡

 

Analysis was censored at 40 years of age as data beyond this age was too sparse 

(39 cohort members (0.3%) had reached this age).  

The number of person-years contributed by the cohort to a range of cumulative 

cardiac dose categories (<5, 5-20, 20-40, 40-80, 80-100, 100-120, 120-140, 140-

160, 160-180 and 180-200 mSv) was calculated. Person years were contributed after 

5 years following each exposure, to take into account the latency period of radiation 

induced cancers. A dose response analysis was conducted by dividing the number of 

cases occurring in each cumulative dose category by the respective number of 

person years. Relative risk was calculated with respect to the lowest dose category 

(<5 mSv). Excess relative risks (ERR) was calculated as the relative risk, minus one. 

 

 

10.2: Results 

A total of 141 tumours were identified among eligible patients. The mean age at first 

procedure among these patients was 11.3 years, compared to 6.0 years for the 

cohort overall. Nine cohort members were diagnosed with 2 tumours. In 7 of these, 

the second event was of similar histology to the first, suggesting that the second was 

simply a reclassification or a transition rather than a second primary malignancy. 

Excluding these left 133 cases, of which 24 were classified as benign, ‘borderline 
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malignancy’ or non-melanoma skin cancers. These were not included in SIR 

calculations. However, three benign or borderline malignant brain tumours were 

classed as malignant tumours and included in SIR calculations. Of the 109 malignant 

events, 12 were classified as ‘in situ carcinoma’. The majority of tumours were of the 

haematopoietic and lymphoid tissues, including leukaemia and lymphoma (Table 

10.2). Among haematological tumours, including borderline malignancies, there were 

4 cases of myelodysplastic syndrome (D46, 3 borderline, 1 malignant), 3 

Polycythaemia Vera (D45, borderline) and 1 acute panmyelosis with myelofibrosis 

(C94.4, malignant). The remainder (n=30) were malignant leukaemias, 14 of which 

were acute myeloid leukaemia (AML), while 9 were acute lymphoblastic leukaemia 

(ALL). Of the 43 lymphatic tumours, 10 were lymphoproliferative diseases (all 

classed as borderline malignancies), 7 were Hodgkin lymphomas and 22 were non-

Hodgkin lymphomas (NHL), including 15 classified as diffuse large B-cell 

lymphomas. Of the 20 tumours classified as carcinomas, 11 were of the cervix or 

exocervix, all but one of which were in situ carcinomas. Of the remaining carcinomas, 

4 were of the skin (3 basal cell and 1 squamous cell). One papillary adenocarcinoma 

of the thyroid and one renal cell carcinoma were identified. Among the remaining 

malignancies were a number of embryonic cancers including 4 each of Wilm's 

tumours and neuroblastomas, and one hepatoblastoma. 

The expected number of malignancies, excluding non-melanoma skin cancer, was 

calculated as 36.64. The standardised incidence ratio, based on 109 observed 

malignancies, was 2.97 (95% CI: 2.43, 3.60) (Table 10.3). This figure represents the 

overall cancer incidence in the cohort, irrespective of radiation exposure. The overall 

SIR was higher for patients first examined between 2000 and 2010 (3.20, 95% CI: 

2.41, 4.17) than for those first examined between 1990 and 1999 (2.78, 95% CI: 

2.00, 3.75). For leukaemia, the SIR was 4.30 (95% CI: 2.87, 6.18) based on 30 cases 

verses 6.98 expected, while for lymphoma it was 5.92 (95% CI: 4.04, 8.38) based on 

33 cases verses 5.57 expected. Incidence was significantly raised for cervical cancer 

(SIR=9.32), but not brain tumours (0.64). The SIR was greater at hospitals carrying 

out transplants (3.24, 95% CI: 2.60, 3.99) compared to non-transplant hospitals, 

where SIR was still significantly raised (1.90, 95% CI: 1.09, 3.07). Sixty eight patients 

developing a malignancy or borderline malignancy (51%) had a clinical history 

consistent with organ transplantation. Where transplant patients were removed from 

the analysis, the overall cohort SIR for all malignancies was reduced to 1.67 [95% CI: 
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1.25, 2.18]. For leukaemia, SIR was reduced to 2.16 [95% CI: 1.16, 3.67], and for 

lymphoma, SIR was reduced to 1.60 [95% CI: 0.67, 3.19]. Transplant patients 

underwent more examinations (4.27 per patient) than non-transplant (1.35) and 

received a higher cumulative dose (median effective dose of 11.2 mSv, compared to 

7.7 mSv) (see Chapter 8, section 8.2). The SIR for all sites, where transplant patients 

were excluded, was slightly higher for patients first examined between 2000 and 

2010 (1.62, 95% CI: 1.05, 2.40) than for those first examined between 1990 and 

1999 (1.57, 95% CI: 9.97, 2.40). 

 

Classification Total Borderline/Benign Malignant 

Leukaemia 35 5 30 

Lymphoma 43 10 33 

Carcinoma 20 4 16 

Sarcoma 10 1 9 

Neuroblastoma 4 0 4 

Wilms tumour 4 0 4 

Brain 5 5* 

Germ cell 2 0 2 

Others 10 4 6 

Total 133 24 109 

 

Table 10.2: Classification of 169 malignancies and borderline malignancies diagnosed 

among cohort members. Note *three benign or borderline malignant brain tumours were 

included as ‘malignancies’ for the purpose of SIR calculations. 

 

 
Cancer type Expected Observed SIR [95% CI] 

Whole 
cohort 

All 37.04 109 2.94 [2.41, 3.56] 

Leukaemia 6.98 30 4.3 [2.87, 6.18] 

Lymphoma 5.57 33 5.92 [4.04, 8.38] 

CNS 7.87 5 0.64 [0.19, 1.51] 
Cervical 1.18 11 9.32 [4.55, 16.89] 

Excluding 
transplant 
patients 

All 32.94 55 1.67 [1.25, 2.18] 

Leukaemia 6.47 14 2.16 [1.16, 3.67] 

Lymphoma 5.01 8 1.6 [0.67, 3.19] 

CNS 7.22 3 0.42 [0.07, 1.25] 

Cervical 1.01 10 9.9 [4.63, 18.45] 

 

Table 10.3: Observed and expected cancer cases and associated standardised incidence 

ratio (SIR), for the whole cohort and after excluding patients with a history of transplant. 
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Of the 41 tumours with a clearly defined location (Table 10.4), the majority (n=25) 

were in the abdominal and pelvic region, driven by the 11 cervical carcinomas, 4 

neuroblastomas and 4 Wilm's tumours (kidneys). Four malignancies were listed as 

being in the thoracic region – one peripheral primitive neuroectodermal tumour 

(pPNET) of the pleura, two ganglioneuroblastomas and one rhabdomyosarcoma. 

There were no tumours of the lung, breasts, stomach, heart or oesophagus. A further 

3 tumours, one melanoma, one synovial sarcoma and one basal cell skin carcinoma, 

had locations simply listed as ‘trunk’, meaning chest or abdomen (or both).  

 

Location Total Borderline Malignant 

Head 5 0 4 

Neck 2 0 2 

Upper limbs 2 0 2 

Thorax 4 0 4 

Trunk 3 0 3 

Abdominal/pelvic 25 2 23 

Lower limbs 0 0 0 

 

Table 10.4: Location of tumours where defined. 

 

One cancer was diagnosed among patients with transposition of the great arteries, 

verses 1.09 expected. One cancer was diagnosed among patients with Down 

syndrome (leukaemia), verses 0.18 expected. No malignancies were diagnosed 

among patients identified as having Tetralogy of Fallot (1.03 expected), Hypoplastic 

left or right ventricles (0.14 expected), or having undergone Norwood or Fontan 

procedures (0.06 and 0.37 expected, respectively). The latter operation is associated 

with liver disease, including hepatocellular carcinoma [333], though no such tumours 

were identified among this group, or the cohort as a whole. One tumour was 

diagnosed in a patient identified as having neurofibromatosis. No cases of tuberous 

sclerosis, ataxia telangiectasia or Li Fraumeni syndrome were identified. 

 

Association with radiation exposure:  

Almost half of the cases (45%, n=61) were diagnosed before the date of the first 

recorded catheterization for that patient (maximum of 17.9 years prior). This does not 

necessarily imply the tumour could not be associated with a catheterization - 5499 
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patients were born before the earliest recorded procedure at their respective hospital, 

therefore could have undergone procedures not included within the study. 

Considering only patients born within the data collection period, 35 developed a 

malignancy (n=29, SIR=2.59, 95% CI: 1.72, 3.75) or borderline malignancy (n=6). Of 

these, 17 cases (49%) were still diagnosed before the first recorded catheterization – 

a similar proportion to the cohort as a whole. 

Forty nine patients in the total cohort developed a malignancy (n=36) or borderline 

malignancy (n=13, including 3 basal cell carcinomas) at least 5 years after the first 

recorded procedure (solid cancers and lymphoma) or 2 years after the first procedure 

(leukaemia) (Table 10.5). Of these, 23 (52%) had a history consistent with transplant. 

None had Down syndrome, tetralogy of Fallot, transposition or had undergone 

Norwood procedures. The median age at first recorded procedure was 13.3 years 

(interquartile range: 6.7, 15.9 years), while the mean age was 11.7 years (standard 

deviation: 6.2 years). The expected number of malignancies developing between 5 

years since the first recorded procedure and the 1st of February 2014 was 16.87. The 

SIR was 2.13 (95% CI: 1.48, 2.97). Fifty five percent of patients (n=27) developing a 

tumour after the minimum latency period were male. 

 

Site Total Borderline Malignant 

Leukaemia 8 3 5 

Lymphoma 18 6 12 

Carcinoma 15 6* 9 

Sarcoma 1 0 1 

Neuroblastoma 0 0 0 

Wilms tumour 0 0 0 

CNS 3 0 3 

Germ cell 2 0 2 

Others 2 1 1 

Total 49 10 39 

 

Table 10.5: Cases developing at least 5 years (solid tumours) or 2 years (leukaemia) 

following the first recorded procedure. *Note – includes 3 basal cell carcinomas. 

 

Of the 49 patients developing a malignancy or borderline malignancy after the 

minimum latency period, 38 were born before the earliest date of data collection at 

their respective hospital. These patients may have undergone further 
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catheterizations not captured by the study, thus cumulative dose estimates may be 

underestimates. In Chapter 3 (section 3.3.5), it was found that the mean number of 

procedures per patient was 1.5, with this figure remaining unchanged when analysis 

was restricted to patients born within the study period. Considering only patients born 

within the data collection period, 11 developed a malignancy (n=9) or borderline 

malignancy (n=2) after the minimum latency period, verses 4.33 malignancies 

expected. Five of these 11 patients (45%) had a history consistent with transplant. 

The SIR, excluding borderline cases, was 2.08 (95% CI: 0.92, 4.00). Thus, the 

standardised incidence ratios for the overall cohort (2.94), those developing 

malignancies after the minimum latency period (2.13) and the subset of this latter 

group who were born within the study period (2.08) are reasonably similar. Only the 

final figure is non-significantly raised. Likewise, the percentage of cases developing 

in transplant patients is similar in all three analyses - around 50%. As for the cohort 

as a whole, the SIR was higher for patients first examined between 2000 and 2010 

(3.21, 95% CI: 1.88, 5.31) than between 1990 and 2000 (2.31, 95% CI: 1.49, 3.42). 

Evidence of an association with radiation exposure is strengthened by a dose 

response - a proportionality between dose and excess risk. Only exposures occurring 

more than 5 years (solid cancers) or 2 years (leukaemia) prior to cancer diagnosis 

contributed toward cumulative dose. A summary of these doses for the 36 patients 

developing malignancies, not including non-melanoma skin cancer is shown in Table 

10.6. 

 
Median cumulative dose [IQR] 

Organ Cases after latency period Non-cases 

Bone marrow 5.8 [5.3 : 12.1] 3.8 [1.8 : 8.1] 

Breasts 28.9 [19.9 : 64] 16.6 [6 : 41.8] 
Heart 34.2 [24.9 : 61.5] 21.1 [10.2 : 43.1] 

Lungs 42.3 [34.1 : 81.5] 26.5 [13.6 : 56.7] 

Lymph nodes 8.9 [6.5 : 15.9] 5.4 [2.7 : 10.5] 

Oesophagus 32.4 [21.3 : 53] 19.3 [8.9 : 36.4] 

Thyroid 2.1 [1.3 : 3.3] 1 [0.5 : 2.2] 

Liver 13 [10.9 : 22.9] 7.5 [3.7 : 16.9] 

Stomach 7.6 [5 : 11.2] 4.1 [2.1 : 7.7] 

Whole body 8 [6 : 15.2] 5 [2.5 : 9.9] 

Effective dose 14.4 [11.2 : 25.4] 8.7 [4.4 : 18.7] 
 

Table 10.6. Median cumulative doses for cohort members developing malignancies after the 
minimum latency period of 5 years (solid tumours) or 2 years (leukaemia), compared to 

equivalent figures for non-cases. Borderline malignancies not included). 
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A plot of SIR against cumulative cardiac dose is shown in Figure 10.1 and 

demonstrates little suggestion of a pattern of increasing risk with increasing dose (p 

for trend = 0.48). SIR was significantly elevated for the 5-40 and 40-80 mSv dose 

categories, but not for any others. With the exception of the largest dose category, 

the percentage of cases developing in patients receiving a heart transplant, steadily 

increased, ranging from 0% for patients receiving less than 5 mSv to 100% for 

patients receiving 120-160 mSv (Figure 10.1). There were few cases among patients 

receiving especially high doses. Of the 191 patients receiving an estimated 

cumulative cardiac dose of over 250 mSv, none developed a malignancy after the 

latency period. 

 

Figure 10.1: Variation in standardized incidence ratio (SIR) with cumulative cardiac dose. 
Percentages represent the proportion of cases among transplant recipients. 

 

The risk of developing a tumour (malignant or borderline/benign, after the latency 

period) for different cumulative cardiac dose ranges relative to less than 5 mSv was 

calculated. There is a suggestion of a pattern of increasing risk with increasing dose, 

especially in the 0-120 mSv range, albeit with very wide confidence intervals (Figure 

10.2). Where transplant patients are removed from the analysis, this pattern was 

replaced by an apparently negative relationship. It should also be noted that many of 

the cases were of organs remote from the site of irradiation, most notably the 10 
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cervical cancer cases. Thus this suggestion of a ‘dose response’ should be 

interpreted with caution. 

 

Figure 10.2: Relative risk of developing a malignant tumour in relation to cumulative cardiac 
dose. 

 

 

Figure 10.3: Trend following removal of cases developing in patients receiving a 
transplanted organ. 
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This analysis does not include radiation exposures from other forms of medical 

imaging (general radiography, computed tomography and nuclear medicine). 

Information from these procedures was not obtained from participating hospitals as 

part of this study. Data on CT scans in the UK were gathered as part of a separate 

study [9]. Linkage was performed between the cardiac and CT cohorts to identify 

patients who have undergone both cardiac catheterizations and CT scans. Members 

of both cohorts were assigned non-anonymous identification codes based on the 

combination of name and date of birth (anonymous ID numbers were then derived 

from these). Patients with the same non-anonymous ID code were assumed to be 

the same person. Potentially, two distinct patients could have the same name and 

date of birth. Although unlikely, this could result in matching errors. Overall, 1848 

patients in the cardiac cohort were identified as having undergone at least one CT 

scan (14% of the total cohort). Of the 131 patients in the cardiac cohort developing a 

tumour, 70 (53%) had undergone at least one CT scan. Among the 49 patients 

developing a tumour after the minimum latency period, 23 have received at least one 

CT scan.  

 

10.2.1: Survival of cohort members 

Analysis of survival is largely outside the scope of this thesis. Details of cause of 

death were primarily analysed to obtain information on confounding conditions. 

Childhood mortality is a highly sensitive issue [334-336], therefore comparison of 

death rates between participating hospitals was avoided and only overall details 

described. In total, 1060 patients were recorded as having died. For 76% of these 

(n=805), the primary cause of death was listed as being cardiac related or due to 

congenital disease of the heart or blood vessels. Other causes included cystic 

fibrosis (n=20), infections (n=10), complications of surgery (n=10) or neoplasm 

(n=23). Thirty five patients who died had Down syndrome while 30 had Tetralogy of 

Fallot. Of 132 patients developing a tumour, 36 (27%) are recorded as having died. 

For these patients, the median number of years between cancer diagnosis and death 

was 1.8 years (range: 0 to 35 years).  

The calculated Kaplan Meier survival function is shown in Figure 10.4. Survival fell 

rapidly in the first and second years of life, with 361 and 105 deaths respectively, 
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before levelling off. At 40 years, the survival was just under 92%, compared to 98% 

in the general UK population. 

 

 
 

Figure 10.3: Kaplan Meier survival function for entire cohort, censored at 40 years. 
ONS=Office for National Statistics. 

 

10.3: Discussion 

Two findings are particularly striking; the significantly raised incidence of 

malignancies among cohort members compared to the general population and the 

large impact of organ transplantation on the results. Addressing the first point, the 

finding of elevated cancer incidence among people with heart disease is not 

unprecedented. In a recent study by Lee et al [337] focusing on 31,961 Taiwanese 

patients of all ages with CHD between 1998 and 2006, an overall SIR of 1.45 was 

found (95% CI: 1.25, 1.67). Around half of these patients had undergone a 

catheterization procedure (48.9%) while 18.9% had undergone a CT scan. The most 

common cancers were haematological (SIR=4.04) or of the CNS (3.51). In contrast 

to the current study, the number of cervical cancers was smaller than expected (8 

observed verses 15.1 expected) while brain tumour incidence was increased (14 

observed verses 4 expected). Lymphomas were not analysed separately. Heart 

transplants are carried out in Taiwan [338], though it is unclear how many patients in 

Lee’s analysis had undergone this procedure. The SIR in the Taiwanese study is 
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similar to the equivalent figure in the current study where transplant patients are 

excluded (1.35). 

Bjørge et al [233] studied cancer incidence among children born with a range of 

congenital defects in Scandinavia. The SIR associated with malformations of the 

heart and blood vessels was slightly raised in Sweden (1.2, 95% CI: 1.0, 1.6) and 

Norway (1.2, 95% CI: 0.7, 2.0). Carozza et al [339] studied 115,686 patients with 

congenital abnormalities born in Texas between 1996 and 2005, among whom 239 

cancer cases were diagnosed. Half of the cases in this group were leukaemia (n=74) 

and 15% were of the central nervous system (n=23), while only 3% (n=4) were 

lymphomas. The incident rate ratio (IRR) was 3.50 (95% CI: 2.81, 4.31). Fisher and 

his colleagues [340] analysed 222 patients in California with various birth defects, 

who developed cancer. Of these, 69 cancers developed in patients with 

malformations of the heart or circulatory system. Hazard ratios were significantly 

raised, ranging from 3.36 to 4.28. Thus cancer incidence is comparable, albeit 

somewhat higher among the current cohort than has been suggested in previous 

research. It should be noted that the current cohort was established from patients 

undergoing cardiac catheterizations, rather, as with the above mentioned studies, 

from registers of congenital malformations. 

The increased cancer risk among patients undergoing organ transplantation is well 

known [341], including among childhood recipients [211]. For example, Engels and 

colleagues studied cancer incidence among solid organ transplant recipients in the 

United States, using data from the US Scientific Registry of Transplant Recipients 

(1987-2008) and 13 regional cancer registries. For all ages, a significantly raised SIR 

of 2.10 was found (95% CI: 2.06, 2.14), while for non-Hodgkin lymphoma this figure 

was 7.79 (95% CI: 6.89, 8.79) [341]. The rate of malignancies in children receiving 

heart transplants recorded by the International Society for Heart and Lung 

Transplantation (ISHLT) is approximately 1% per year of survival, with the majority of 

these cases being lymphomas [211]. Consistent with the used of immunosuppressive 

agents, malignancies following organ transplantation tend to be virus-related, 

including lymphoma, certain skin cancers and cervical cancer [342, 343]. Most 

notably, there is a strong association between transplantation, Epstein-Barr virus and 

post-transplant lymphoproliferative disease (PTLD) [344, 345]. In this study, the 

impact of transplantation was especially pronounced for lymphoma, with the SIR 
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falling from 5.36 to 1.33 when transplant patients were removed from the analysis. 

This is an important finding, of relevance to studies examining the potential risks from 

other medical exposures, including CT scans. An infectious aetiology has long been 

suspected for leukaemia [346], although the exact infection/mechanism is yet to be 

identified. The effect of removing transplant patients from the analysis was smaller 

than for lymphoma, with the SIR falling from 4.07 to 1.92 and remaining significantly 

raised. Eleven cases of cervical cancer were identified among cohort members in the 

current study, though only one of these patients appeared to have undergone a 

transplant. This possibly suggests under-ascertainment of transplantation among the 

cohort. The identification of transplantation and other potentially confounding 

conditions was based principally on clinical details and death records. The former 

were only recorded at two hospitals, while the latter were only available for the cohort 

members that died. The limitations of this incomplete ascertainment of such 

confounding conditions is acknowledged, although the quality and completeness of 

this information is similar, if not better than for studies investigating the risks following 

CT scans [187, 190, 191]. For example, the German CT study by Krille et al [190] 

used the diagnosis of lymphoproliferative disease to identify cases developing in 

transplant recipients. This may be unreliable, considering that many of the cases 

among this group in the current study were B-cell lymphomas, rather than 

lymphoproliferative disease. 

The number of thyroid cancers (a single case) was very small, though expected 

given the limited sample size and low radiation dose to the thyroid. The absence of 

any cancers of the lung and oesophagus was also expected given the relatively short 

follow-up period. There is some evidence of relatively early onset (i.e. under age 35 

years) of breast cancer among young people exposed to radiation [129], although no 

suggestion that the disease can be induced in childhood. Only 189 female cohort 

members had reached the age of 35 by February 1st 2014, therefore the complete 

lack of breast cancer cases should not be regarded as a surprising finding at this 

stage of follow-up. Given the potentially high localised skin doses, potentially 

reaching several Gray, the small number of skin cancers (especially basal cell 

carcinoma) was surprising.  

More than half of the patients developing a tumour after the minimum latency period 

were male. The risk estimates described in Chapter 9 using existing risk models 
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suggested females were around three times more likely to develop radiation induced 

cancer. However, this gender difference was driven by the impact of breast cancer 

and the higher risk coefficients for lung cancer in females. Thus a difference in risk 

by gender ought not to be apparent at this early stage of follow up where lung and 

breast cancer have not had sufficient time to develop.  

Limitations of the cohort were discussed in Section 3.7. In particular, misspelling of 

names and dates of birth could potentially lead to under ascertainment of cancer 

rates in the study group. The overall cohort SIR was somewhat higher at hospitals 

who had provided data in electronic format (3.33) compared to those who provided 

hand-written log books (2.81), although this comparison ought to be interpreted with 

caution as these two groups may involve different patient characteristics and doses. 

A reanalysis of the first UK CT study [9] by Berrington-de-González et al [191] found 

a number of brain tumours, apparently occurring at least 5 years following the first 

CT scan, were in fact present at the time of the first scan. This suggests cancer 

registry matching may not be as reliable as could be hoped for. 

 

10.4: Conclusion 

Patients undergoing cardiac catheterizations for congenital heart disease are at a 

significantly increased risk of developing cancer, although it appears that this 

increase is mostly unrelated to radiation exposure. Future epidemiological analysis of 

cancer risks following cardiac catheterizations requires rigorous attention to clinical 

history, most notably transplantation. Ideally, linkage with both transplant and 

congenital anomaly registries, such as the British Isles Network of Congenital 

Anomaly Registers (BINOCAR) [347], should be carried out. 
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Chapter 11: Discussion 

Summary of main findings: 

This study has established a cohort of around 13,500 patients aged under 22 years 

who have undergone cardiac catheterizations in the UK, comprising around 20,000 

individual procedures. The doses from these procedures, as represented by kerma 

area product (PKA), have fallen by a factor up to twenty during the study period, and 

appear to be relatively low compared to equivalent figures quoted in recent large 

studies based in the United States. Effective dose and equivalent doses to individual 

organs were estimated based on a dosimetry system utilising data from Monte Carlo 

simulations. The results were compared to equivalent figures derived from physical 

measurements and previous publications. A number of discrepancies were found, 

which appear to be due to a combination of experimental error and differences in 

phantom anatomy. Uncertainties in dose estimates were also calculated. These are 

generally around ±30%, though do not account for uncertainties due to anatomical 

variation, which are difficult to quantify. The risk of cancer in relation to estimated 

doses was calculated based on BEIR VII risk models, suggesting an approximate 

risk of developing cancer of 1 in 1000, per examination, for the overall cohort. For 

examinations conducted using modern equipment, these risks are reduced to around 

1 in 1700, due to lower doses. Estimated risks were higher for females than males by 

a factor of around 3. This is due to the impact of breast cancer and higher risk per 

unit dose for other tissues. A number of modifications to the BEIR VII models were 

investigated, to account for the reduced survival of people with heart disease, and 

the uncertain relationship between risk and age at exposure. A small epidemiological 

analysis was performed, suggesting an almost threefold increased risk of cancer in 

the cohort, compared to the general UK population. There are a number of reasons 

to suggest that this increase was primarily not related to radiation exposure, most 

notably the large impact of transplantation and associated immunosuppressant use. 

Despite the high cancer incidence, the overall survival in the cohort was high, at 

around 91% after 30 years.  

 

Radiation doses: 

The radiation doses from cardiac catheterizations are higher than those of general 

radiography (i.e. ‘normal’ x-rays), approximately similar to CT and nuclear medicine 
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[52, 111, 164], and much lower than radiotherapy. The variation in doses from one 

procedure to the next is higher for cardiac catheterizations, with some procedures 

delivering organ doses of several hundred mSv. The use of CT as an alternative to 

cardiac catheterizations could result in an underestimation of collective doses to 

cohort members. Johnson et al [89] estimate proportional contributions to collective 

effective dose of 35.2, 20.5 and 6.8%, for interventional and diagnostic 

catheterizations and gated cardiac CT, respectively, based on respective doses per 

examination of 13.77, 9.10 and 18.28 mSv. These figures are based on an unusually 

high estimated CT dose relative to catheterizations, compared to that suggested by 

previous research [111, 167]. Potentially, the contribution to collective dose may be 

lower than 6.8%, therefore. Ait Ali et al [13], recorded 7 CT chest examinations 

carried out among their cohort of 59 patients, compared to 55 and 40 diagnostic and 

interventional catheterizations, respectively. Again, this suggests that 

catheterizations are the dominant source of medical radiation exposure in this patient 

group. The current study is being run alongside a larger study investigating the risks 

from CT scans [9], for which data on scans carried out at most UK hospitals are 

available. Future epidemiology-based risk estimates should incorporate these data. 

The large fall in doses over the study period appears to be mainly due to 

technological factors, including improved detector efficiency, ability to remove 

antiscatter grids, greater control over frame rates, use of added copper filtration and 

improved image processing. However, a large variation is also apparent for the same 

equipment, even when corrected for patient size and procedure type. An especially 

pronounced variation was apparent between the dose indicators presented in the 

current study and those of several large, multi-centre American studies [82, 83, 91, 

207], where doses appeared to be higher by a factor of between 2 and over 50, 

depending on procedure type. This was made clear in a paper from this thesis 

published in the British Journal of Radiology [348]. It is noted that these American 

studies formed part of multi-centre collaborations on cardiac outcomes, including 

radiation protection, namely the CCISC (Congenital Cardiovascular Interventional 

Study Consortium) and C3PO (Congenital Cardiac Catheterization Project on 

Outcomes). The fact that radiation doses are so much higher in spite of such 

initiatives is puzzling. The authors of these studies appear to be unaware of the 

discrepancies in doses, tending to conduct only limited comparisons with previous 

research.  
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Higher doses are not without benefits, however. Increased photon fluence is 

associated with improved image quality. It is currently unclear if such gains in image 

quality necessarily lead to better patient outcomes [95], such as increased survival or 

lower complication rates. Until such information is available, it is not possible to claim 

high doses are ‘too high’ – that would require proof of improved patient outcomes due 

to improved image quality failing to offset the increased risk of radiation induced 

cancer. This is an exceptionally difficult issue to research, partly because the cancer 

risks are uncertain, but also due to the difficulty in quantifying patient outcomes. The 

high survival rates among members of the UK cohort described in this study does not 

suggest any overt burden caused by the use of low radiation doses.    

One of the most interesting findings of the current study was the large increase in 

breast dose calculated using Monte Carlo simulations, as the beam is rotated 

towards laterally orientated projections, or where the central ray location is translated 

in the anterior-posterior direction. This ‘cliff’ in breast dose was present for all 

phantom sizes, and to some extent, for different field sizes. Previously published 

estimates of breast dose or effective dose per unit PKA did not exhibit this feature [88, 

92], nor did physical measurements using anthropomorphic phantoms. However, 

none of these previous studies appear to have investigated the same range of beam 

angles and field sizes of the current study and may have restricted their analyses to 

somewhat idealized conditions, i.e. close collimation, deliberately excluding the 

breasts from the primary field. Clearly, there is scope for large variation in breast 

dose depending on beam angle, centring point and field size, relating to the 

exclusion or inclusion of the breasts (in particular the glandular tissues) within the 

primary beam. It is very difficult to assess from clinical images whether the breasts 

were included within the primary beam or not. The size and shape of the breasts is 

also variable and cannot be predicted from patient size (i.e. BMI) alone. The major 

implication is that breast dose estimates are subject to much larger uncertainties 

than for other tissues. Techniques for limiting the size of the irradiated field in the 

lateral projection should be employed, where possible, including collimation and ‘lung 

shuttering’. It is recommended that the anterior chest wall should always be excluded 

from the primary field of irradiation. The use of lead or lead-free shielding materials to 

reduce breast dose is unlikely to be practical, as the region of interest would be 

obscured in other projections. 
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A further important finding was the potential impact of antiscatter grid usage on 

patient dose. This was associated with a striking difference in the variation in either 

organ doses, or PKA per kilogram, between hospitals depending on grid usage. 

Hospitals claiming to selectively remove grids, report doing so only for small patients 

below around 10 kg (approximately less than 1 year). However, the pattern of 

relatively lower doses for smaller patients extended well above 10 kg. This could be 

potentially explained by radiographers removing grids for larger patients, where they 

see this as appropriate, though it is likely that other factors are involved. Patterns of 

antiscatter grid usage are variable within the UK. McFadden et al [281] report that 

27% of UK hospitals remove grids - 18% for patients under 10 kg, and 9% for ‘small 

children’. The removal of grids for patients below around 10 kg is supported by 

evidence from a number of studies [217, 222]. The extension of this practice beyond 

such small patient sizes is more limited [224]. For examinations in which image 

quality is of less importance, grid removal may be warranted for all patients. Further 

research in this area would be beneficial.  

Organ dose estimates are affected by the phantom models - either physical or 

computational - upon which they are based. The mathematical phantoms used in 

PCXMX 2.0 are rather crude. In particular, changes to phantom mass for a given 

height are not adequately modelled - all organs inflate like a balloon. Some patients 

in the cohort are obese, with body mass indices of up to 40.0. In these cases, 

attenuation of the beam by adipose tissue would have the effect of reducing beam 

intensity before more radiosensitive organs such as the lungs are reached. Although 

x-ray output, and hence kerma area product, would increase in response to a greater 

patient thickness, it would be expected that organ doses per unit PKA would be lower. 

A study investigating the effect of obesity on doses from CT found a 59% decrease in 

dose for deep lying organs for obese patients (BMI up to 46.4) compared to normal 

sized patients (BMI of 23.5) [349]. There are two problems that need to be addressed 

when attempting to correct for changes to body habitus; (1) the level of attenuation 

provided by adipose tissue, and (2) the distribution of adipose tissue in the body. The 

first problem is relatively easy to overcome. The attenuation coefficient (µ) of fat can 

easily be obtained from published data [16] or derived from Hounsfield Units from 

computed tomography (CT) images. From these values, an estimated reduction in 

beam intensity per unit thickness of adipose tissue could be calculated analytically. 

The second problem is considerably more difficult to address; the thickness of 
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adipose tissue traversed by the beam needs to be determined. Little information on 

the distribution of fat around the body is available. Again, CT images may provide the 

best source of information. 

Organ dose estimates may also be affected by the administration of iodinated 

contrast agents. These are designed to increase the attenuation of blood relative to 

surrounding tissues, thereby increasing subject contrast. The impact of contrast 

agents on organ doses should not be underestimated. Blood vessels perfuse tissues; 

they branch into successively smaller arteries and arterioles and capillaries, before 

regrouping as veins, returning blood to the heart. Almost all tissues have an 

extensive vascular network (cartilage is avascular). Blood makes up around 60% of 

the mass of the heart and 43% of the lungs [296]. With the exception of the brain, the 

whole organ should thus be perfused by contrast agent containing blood following 

administration (the blood-brain barrier prevents enhancement of the brain in healthy 

individuals). This would have the effect of increasing x-ray attenuation by organs 

compared to that simulated by both Monte Carlo simulations and anthropomorphic 

phantoms in which non contrast enhanced organ densities are assumed. The thorax 

is the location for the largest arteries and veins in the body as well as the heart itself, 

therefore the impact of contrast agent administration on dose estimates may be 

especially important for cardiac catheterizations. The impact of contrast 

administration would vary between procedures types; almost no effect for 

electrophysiology studies where contrast is rarely used, small for coronary 

angiography (the coronary vessels are relatively small) but potentially large for 

investigations including the right side of the heart and pulmonary vessels. Contrast 

agents are very rarely used during fluoroscopic imaging and are mostly restricted to 

acquisitions.  

Correcting for contrast agent administration is even more challenging than for body 

fat. Neither PCXMC Monte Carlo software, nor ATOM anthropomorphic phantoms 

allow adjustment of the attenuating properties of organs. Furthermore, although 

whole organs may experience enhancement, this effect is often highly uneven, with 

greater enhancement occurring where blood vessel density is highest. The heart 

itself could reasonably be modelled as a single homogenous volume subject to 

uniform enhancement, but the blood vessel density in the lungs varies from 

tremendously high around the hilum to fairly low around the lung periphery. 
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The ideal solution to the issue of both contrast agents and fat distribution is the use 

of voxel phantoms derived from CT images. These could be specific to the patient for 

whom dose from a cardiac catheterization is to be calculated. However, such 

phantoms would represent a single level of contrast agent enhancement and a single 

level of lung inflation (CT scans are usually acquired on inspiration). The density and 

shape of organs may not necessarily reflect the respective density and shape during 

fluoroscopic exposures. Voxel phantoms of a range of patients, or patient specific 

voxel phantoms would improve central dose estimates and narrow, but not eliminate, 

associated uncertainties.  

This study did not assess doses to the operator in cardiac catheterizations (i.e. 

cardiologists, radiologists, nurses and radiographers). The risk of cancer and 

cataracts among operators should not be underestimated [350], especially 

considering recent findings of studies of nuclear workers suggesting risks are higher 

than previously supposed at low doses [145, 146]. To some extent, operator dose is 

related to patient dose [229]. Thus the fall in patient dose found in this study should 

have been accompanied by a corresponding fall in operator dose. 

 

 

Associated risks: 

Cardiac catheterizations are a vital procedure in the treatment and management of 

acquired and congenital heart diseases. In many cases, the procedure may be 

lifesaving. In others, quality of life may be significantly improved. Cardiac 

catheterizations are a proven alternative to surgery [2], with similar success rates 

and reduced complications [1]. The increased lifetime risk of developing cancer 

needs to be placed in the context of these benefits. The reduced survival of children 

with certain heart conditions is also an important factor in risk estimation. Some 

children, most notably those with a hypoplastic left heart, are unlikely to survive 

beyond their teens [214, 215], thus have limited time to develop radiation induced 

cancers. The fact that the lungs, stomach, oesophagus, liver and breasts receive the 

highest radiation doses from cardiac catheterizations is particularly significant in this 

sense, as cancers of these organs are all ‘adult’ diseases, tending to occur beyond 

30 or 40 years [202]. There is reasonably strong evidence that radiation induced 

cancers develop at the ages at which they normally occur (i.e. in an unexposed 
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population) [132]. Second cancers developing after radiotherapy for primary cancer 

in childhood tend to be other cancers normally occurring in childhood such as 

sarcomas, brain tumours or leukaemia, unless the follow-up time is long [199, 351]. 

Excess cancers of the lungs, stomach and oesophagus among atomic bombing 

survivors did not appear below attained ages of 35 years [169]. Unless patients are 

likely to survive to at least this age, the risk of radiation induced cancer may be very 

small and restricted mainly to leukaemia, regardless of how high the doses are. This 

does not excuse poor radiation protection, however. For many heart conditions, 

including isolated pulmonary valve stenosis, atrial septal defect or Wolf-Parkinson-

White syndrome, survival now approaches that of the general population [213, 214]. 

The reduction of radiation doses in these patients is especially important. It is 

pleasing, therefore, that doses for trans-catheter treatment of these conditions has 

fallen considerably over the last two decades, with the estimated lifetime risk of 

cancer being generally less than 1 in 1000. There is still scope for further dose 

reductions, however, such as the increased use of ultrasound or magnetic resonance 

imaging guidance [2].  

Although the epidemiological analysis was small and likely underpowered (in terms 

of ability to detect radiation induced excess cancers, at least), the work done in 

establishing the dosimetry system, including gathering data on projection angles and 

beam energy used in clinical practice, prepares the ground for further research. A 

number of studies are ongoing to assess the long term risks of diagnostic x-ray 

exposures [352-355]. These studies mostly focus on computed tomography (CT), 

with only one other – the French ‘Coccinelle’ cohort [331, 355] – focusing on cardiac 

catheterizations. Both the current and French studies have relatively small sample 

sizes (13,500 and 10,000 respectively), thus limiting statistical power. More 

European-based studies may follow, allowing the pooling of data.  

Studies of people undergoing cardiac catheterizations have a number of advantages 

for radiation epidemiology. Firstly, individualised dose estimation is possible using 

data recorded at the time of the examination (i.e. PKA). More complete versions of the 

structured dose reports used in this study, which include details on all exposure 

events including non-acquisition fluoroscopy are now available [356]. Utilisation of 

these data could improve central dose estimates by improving information on beam 

angles and energy used in clinical practice and provide improved information on 
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uncertainties. Such information may be difficult to acquire for large volumes of 

patients, and are not available for older examinations (i.e. pre-2011). Automatic 

recording of structured dose reports in a form suitable for retrospective dose 

reconstructions would be desirable and has been implemented for CT [357]. No 

epidemiological studies of cancer risks following CT scans published so far [9, 124, 

186, 187, 190] have utilised this methodology, instead using average dose values 

adjusted for patient size and date of examination. A second advantage is the wide 

range of doses delivered, per procedure. This allows the relationship between 

radiation dose and cancer risk to be determined (i.e. a ‘dose response’). This is 

preferable to simply using the number of procedures as a surrogate for radiation 

dose. A third advantage is the relatively homogenous patient group compared to 

those undergoing CT scans. This potentially means confounding factors are easier to 

identify and control for. Unlike CT, cardiac catheterizations are not used in the 

diagnosis and screening of cancer.  

A number of disadvantages of epidemiological studies of these patients must also be 

acknowledged. Firstly, estimating the radiation doses from cardiac catheterizations is 

difficult, with large uncertainties. These uncertainties, as indicated by the variation in 

dose estimates between different studies, appear to be larger than for CT [248]. 

Incorporation of uncertainties into epidemiological analysis is complex, though the 

approach used by Lee et al [358], in a study investigating the risks from CT scans, 

could also be applied to cardiac catheterizations. Shared and unshared errors among 

catheterizations with the same attributes (patient age, equipment type, year, etc.) 

could be accounted for using a 2 dimensional Monte Carlo (2DMC) approach. 

Probability density functions (PDFs) could be calculated for scan parameters, based 

on a sample of examinations with structured dose reports [358]. These could be used 

to produce multiple realizations of cumulative doses for each cohort member. The 

concept of multiple dose realizations has been used previously in ‘ecological’ 

analyses, such as the study of thyroid cancer incidence among residents of the 

Semipalatinsk region of Kazakhstan [359] where dose estimates are highly 

uncertain. 
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Such uncertainty analysis is hindered by the variable availability of dose indicators 

over the study period. Much more complete information is available for beam energy 

and projection angles for recently conducted examinations, where structured dose 

reports are available. Thus, the increased uncertainty in dose estimates for older 

examinations should be taken into account. This is partly reflected in the current 

study in the wider uncertainty limits for beam energy for older equipment. 

Secondly, while there may be a narrower range of confounding factors, the impact of 

these conditions appears to be especially severe. Even a small number of transplant 

patients in a cohort may result in greatly increased risk of cancer. It is essential 

therefore that such patients are identified. Although a range of methodologies were 

utilised in this study (clinical details, examination type, cause of death), it is possible 

that some transplant cases were missed. Linkage with a transplant registry may be 

the best solution, although no previous radiation epidemiology studies have achieved 

this. An alternative source of information is the National Institute for Cardiovascular 

Outcomes Research (NICOR) [360], who hold data on cardiac catheterizations 

carried out at all 13 paediatric cardiology centres in the UK, or the British and Irish 

Network of Congenital Anomaly Researchers (BINOCAR) [347], who hold registers 

of congenital diseases throughout most of the UK and Ireland. This would allow 

identification of conditions such as Down syndrome or neurofibromatosis.  

Analysis of cancer by individual site may also provide evidence of potential 

confounding effects. In particular, the large incidence of cervical cancer, a disease 

not normally associated with radiation exposure [45], and other diseases remote from 

the site of irradiation, raises suspicions of confounding effects. It may also be 

possible to take advantage of knowledge of the location of tumours within large 

organs. For example, the distal oesophagus and lower lobes of the lungs receive 

higher doses than the proximal oesophagus or upper lung lobes. Likewise, the right 

breast receives a higher dose than the left. A higher proportion of tumours in the 

regions of these organs receiving the higher dose may strengthen the association 

with radiation exposure. No known condition predisposes individual specifically to 

right sided breast cancer or lower lobe lung cancer. 

A third difficulty is the smaller number of cardiac catheterizations carried out 

compared to CT, which limits sample size. A collaboration with NICOR represents 

the best opportunity for expanding the study. Even acquiring data from all hospitals 
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carrying out these procedures in the UK over the last 10-15 years, the sample size is 

unlikely to exceed around 30,000 patients. Doses have decreased to low levels in 

recent years, at least in the UK, lowering risks and reducing statistical power for a 

given sample size. Thus multinational collaboration may be essential to achieve 

further progress. 

Patients receiving the highest doses tended to be examined earlier in the study 

period, using older equipment, thus accruing a greater number of years of follow-up, 

compared to recently examined patients receiving smaller doses. Despite this, even 

accounting for transplantation, the SIR was higher for patients examined in more 

recent years, with little suggestion of lower statistical power (i.e. in terms of the width 

of confidence intervals). This unusual finding reinforces the impression that higher 

cancer rates in this patient group are due to factors other than radiation exposure. 

Ongoing research investigating the long term cancer risks from ionising radiation, 

including the above mentioned medical studies, updates of the Life Span Study, and 

analysis of occupational and background exposures, will enable risk models such as 

those described in the BEIR VII report to be refined. This risk projection approach, 

free from the limitations of small sample sizes, remains the most viable method of 

calculating excess cancer risks from cardiac catheterizations.  
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Appendix 1: 

Nature of x-rays: 

X-rays, like visible light, are a form of electromagnetic radiation (ER) and can be 

described to a layperson as a different colour of light, not visible to the human eye. X-

rays generally behave in similar ways to other forms of ER, such as infrared or 

microwaves, though the energy is sufficiently high to cause ionisation of atoms and 

molecules, including DNA molecules and water. It is this property that means that x-

rays are potentially harmful to human health [3]. X-rays are a form of indirectly 

ionising radiation. They transfer energy to a so-called secondary electron, which, 

depending on the amount of energy it receives, may have sufficient energy to cause 

hundreds or thousands of further, direct, ionisations via Coulombic interactions with 

other electrons.  

The nature of electromagnetic radiation was predicted by Maxwell, building on the 

work of Faraday, Ampere and others. Maxwell developed equations demonstrating 

that a time varying magnetic field (𝐵⃗ ) produces a circulating electric field (𝐸⃗ ) [361]: 

∇⃗⃗  X E⃗⃗ =  −
𝜕𝐵⃗ 

𝜕𝑡
 

And that a circulating magnetic field is produced by an electric current or a time 

varying electric field [361]: 

∇⃗⃗  X 𝐵⃗⃗  ⃗ = 𝜇0 (𝐽 + 𝜀0

𝜕𝐸⃗ 

𝜕𝑡
) 

Where the vector 𝐽   is the current density, μ0 is the magnetic permeability of free 

space and ε0 is the electric permittivity of free space. Thus the electric and magnetic 

fields sustain each other, allowing a disturbance to propagate as a wave, without the 

need for any medium, or ‘aether’. The electric and magnetic components of ER are 

each described by a wave equation, which can be derived from the above using the 

Divergence theorem and Stoke's theorem [361]. In three dimensions, the 

electromagnetic wave equations for electric and magnetic components respectively, 

are: 

∇2E⃗⃗ = μ0ε0

∂2E⃗⃗ 

∂t2
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∇2B⃗⃗ = μ0ε0

∂2B⃗⃗ 

∂t2
 

[362] 

Along with other forms of ER, x-rays have properties of both waves and particles. 

The energy of a particle of ER, known as a photon, is given by hf, where h is Plank’s 

constant and f is the frequency (s-1). Photons belong to the class of particles known 

as Bosons, thus do not obey the Pauli Exclusion Principle (i.e. they ‘pile on’). They 

have a rest mass of zero and propagate at the speed of light (3x108 ms-1). 

 

Exposure factors: 

Radiation doses from cardiac catheterizations are modified by a range of factors, 

many of which also impact image quality. The term ‘exposure factors’ is generally 

used to describe the peak tube potential, measured in kilovolts (kV), and tube 

current, measured in milliamps (mA). The latter parameter determines x-ray intensity 

in a similar way to a dimmer switch for a lightbulb. The peak tube potential defines 

the maximum kinetic energy (E, in Joules, J) of electrons as they arrive at the anode:  

𝐸 = 𝑒 ∙ 𝑉 

Where e is the charge of a single electron (1.602 x 10-19 C). X-rays are produced by 

two mechanisms; (1) Bremsstrahlung, and (2) characteristic interactions. In the 

former, an electron is deflected off course and decelerated (Bremsstrahlung is 

German for ‘Breaking radiation’) by the Coulombic field of target material nuclei, as 

predicted by Maxwell’s general theory of electromagnetic radiation [43]. The strength 

of this field is proportional to Z/r2, (where Z is the atomic number and r is the 

proximity of the electron to the nucleus). A portion of the electron’s kinetic energy is 

lost and radiated away as electromagnetic radiation. The proportion of kinetic energy 

radiated as EM is dependent on the proximity of the electron to the nucleus, up to a 

maximum of nearly 100% for a direct hit. As accelerating potential is increased, a 

greater proportion of input energy is converted to x-rays as opposed to heat, such 

that: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 = 9 x 10−10 ∙ 𝑉 ∙ 𝑍 
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[16]. Where V is the accelerating potential and Z is the target material atomic 

number. For a tungsten anode (Z=74), the efficiency ranges from 3.33 x 10-3 at 50 

kV, to 5.33 x 10-3 at 80 kV. Alongside increased production efficiency, high-energy x-

rays are more likely to pass through the tube filtration (both added and inherent). 

Thus increasing tube potential increases both the energy of x-rays produced and 

also the intensity.  

With regard to the second process of x-ray production - characteristic emissions - the 

K-edge for tungsten is 73.9 keV [16]. For tube potentials below 74 kV, x-ray output is 

essentially entirely due to Bremsstrahlung. Due to the impact of inherent (i.e. the 

tube housing materials) and added filtration of at least 2.5 mm Al equivalent, photons 

below around 15 keV are entirely removed from the beam [16] and thus play no role 

in patient interactions. This is desirable, and indeed mandatory, as such low energy 

photons would add to patient skin dose while contributing nothing to image formation 

[16]. With further filtration, often with copper (Cu), higher energy photons are 

removed from the beam, restricting the spectrum to 30 keV or above.  
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Projection terminology 

The beam angles used in x-ray imaging are known as projections, and are described 

by a particular vocabulary, which will be described here: 

 

For example, the heart is deep to the skin, while the wrist is distal to the elbow, the 

knee is proximal to the ankle. The words Cranial and caudal (literally towards the tail) 

refer to the direction of the beam from source to detector.  

The diagram below shows rotational beam angle notation as used in PCXMC, 

Cardiodose and in Figures showing variation in dose with beam angle in Chapter 4. 

The arrows denote the direction the x-rays travel in. Thus a 90° rotational angle 

denotes x-rays entering the posterior and exiting the anterior of the patient, i.e. a 

posterior-anterior (PA) projection. 
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AP=anterior-posterior, LPO=left posterior oblique, RPO=right posterior oblique, 

RAO=right anterior oblique, LAO=left anterior oblique. The diagram below shows 

angulation in the cranio-caudal direction. In PCXMC, negative cranio-caudal 

angulation refers to what is widely regarded as ‘cranial’ angulation, though in 

PCXMC, this is referred to as ‘caudal x-ray tube’. Likewise, what is widely referred to 

as ‘caudal angulation’ is called ‘cranial x-ray tube’ in PCXMC. This discrepancy has 

been accounted for in dose calculations. 

 

 

Rotational and cranio-caudal beam angulations can be combined. For example, the 

‘LAO 40, CAU 25’ projection, used in coronary angiography implies a rotational angle 

of 130° (i.e. 90° plus 40°), combined with 25° degrees of angulation in the caudal 

direction (i.e. +25° in PCXMC and Cardiodose).  
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