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Abstract

Over the last several decades, reliable communication has received con-

siderable attention in the area of dynamic network configurations and

distributed processing techniques. Traditional secure communications

mainly considered transmission cryptography, which has been developed

in the network layer. However, the nature of wireless transmission in-

troduces various challenges of key distribution and management in es-

tablishing secure communication links. Physical layer security has been

recently recognized as a promising new design paradigm to provide se-

curity in wireless networks in addition to existing conventional crypto-

graphic methods, where the physical layer dynamics of fading channels

are exploited to establish secure wireless links. On the other hand, with

the ever-increasing demand of wireless access users, multi-antenna trans-

mission has been considered as one of effective approaches to improve

the capacity of wireless networks. Multi-antenna transmission applied

in physical layer security has extracted more and more attentions by

exploiting additional degrees of freedom and diversity gains.

In this thesis, different multi-antenna transmit optimization techniques

are developed for physical layer secure transmission. The secrecy rate

optimization problems (i.e., power minimization and secrecy rate max-

imization) are formulated to guarantee the optimal power allocation.

First, transmit optimization for multiple-input single-output (MISO) se-

crecy channels are developed to design secure transmit beamformer that

minimize the transmit power to achieve a target secrecy rate. Besides,

the associated robust scheme with the secrecy rate outage probability

constraint are presented with statistical channel uncertainty, where the

outage probability constraint requires that the achieved secrecy rate

exceeds certain thresholds with a specific probability. Second, multi-

antenna cooperative jammer (CJ) is presented to provide jamming ser-



vices that introduces extra interference to assist a multiple-input multiple-

output (MIMO) secure transmission. Transmit optimization for this CJ-

aided MIMO secrecy channel is designed to achieve an optimal power

allocation. Moreover, secure transmission is achieved when the CJ in-

troduces charges for its jamming service based on the amount of the

interference caused to the eavesdropper, where the Stackelberg game

is proposed to handle, and the Stackelberg equilibrium is analytically

derived. Finally, transmit optimization for MISO secure simultaneous

wireless information and power transfer (SWIPT) is investigated, where

secure transmit beamformer is designed with/without the help of artifi-

cial noise (AN) to maximize the achieved secrecy rate such that satisfy

the transmit power budget and the energy harvesting (EH) constraint.

The performance of all proposed schemes are validated by MATLAB

simulation results.
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Chapter 1

Introduction

Wireless communication techniques have experienced an explosive growth in the

communication industry, capturing more and more attention in terms of research

[1,2]. As such, there are various state-of-the-art applications such as wireless sensor

network (WSN), WIFI, global positioning system (GPS), remote surveillance sys-

tem, smart grids, etc., which are emerging from theoretical research ideas through

to commercialisation. The exponential progress of these applications has driven the

development of wireless electronic devices, such as mobile phones, laptop comput-

ers, etc., which promise a bright future for wireless networks. An increasing number

of wireless customers has resulted into huge demands for the limited spectrum re-

sources available, such that wireless services are becoming overloaded. In order to

meet with these ever-increasing demands, some novel techniques and approaches

need to be developed for future wireless communication networks.

There are three criteria that are associated with such demands: quality of service

(QoS), energy efficiency (EE) and security, which have been widely considered as

the main driving forces for the evolutions of wireless communication networks. Tra-

ditionally, these requirements can be satisfied by increasing the transmission band-

width and the transmit power. However, frequency reuse becomes a novel approach

to serve an increasing number of users within the availability of extreme scarce radio

spectrum. Hence, it will not be always a good solution to increase transmit power

as it will increase the co-channel interference power. In addition, power saving in

cellular networks not only alleviates financial burden to service providers, but also

reduces the emission of the greenhouse gases effectively. Therefore, a better system

design that fully exploits the limited spectral resource is essential.

1



1.1 Wireless Security Motivations

Figure 1.1: Layer protocol

1.1 Wireless Security Motivations

Security, as one of the most important criteria in wireless networks, plays a very sig-

nificant role in wireless communications, ensuring that some important messages are

confidential enough to prevent eavesdropping from unauthorized users. There are

three main reasons leading to the security issues: First of all, wireless channels are

vulnerable to channel jamming, so that an eavesdropper can easily jam and prevent

legitimate users from accessing the network. This threat is more difficult to counter

as it aims at disrupting traffic and not intercepting information. Secondly, an active

attacker can obtain illegal access to the important network resources and bypass se-

cure infrastructures (i.e., firewalls) without the authentication mechanisms. Finally,

eavesdropping can be performed without advanced technological devices due to the

open nature of wireless channels [3]. In principle, even legitimate users in wireless

networks could be considered as potential eavesdroppers [3]. Based on the aforemen-

tioned security issues, solutions can be adopted in different layers. Fig. 1.1 shows

the different layer protocols taken into consideration in wireless communications

and their functions. Channel coding and spread-spectrum modulation techniques

are implemented at the Physical (PHY) layer, and guarantee that all the upper

layers operate in an error-free environment as well as mitigate channel jamming, re-

spectively. In addition, admission control is tackled at the Medium Access Control

(MAC) layer, where authentication mechanisms are implemented to prevent illegal

2



1.1 Wireless Security Motivations

Figure 1.2: Encryption diagram

access and message encryption is implemented at the Application layer [3].

Traditionally, confidential processing is usually achieved in the network layer of

wireless networking, like the widely adopted cryptography [4]. Fig. 1.2 shows a

conventional and simple cryptographic method that is generally implemented by

encrypting the plain message by employing private encryption keys available to the

legitimate user who employs these keys to decrypt this message. It is assumed that

these keys are computationally intractable for the adversary to decrypt if these en-

cryption keys are not available by the adversary. However, the existing cryptographic

methods cannot handle these scenarios due to high computer computational capa-

bilities and cracking of encryption algorithms. Additionally, variety of challenges are

introduced in terms of key distribution and management to establish secure com-

munication links with the nature of wireless transmission [5].

Based on these above challenges, there exists the question of how to solve the

security problem of the eavesdropping at the PHY layer. Unlike cryptography that

the difference is ignored between the received signals at different receivers, physical

layer security is considered by exploiting the difference in the properties of physi-

cal channels to achieve unconditional security. As such, physical layer security is

usually performed by information theory principle, which is currently widely con-

sidered as a stronger notion than computational security. The explosive growth of

wireless applications, coupled with information privacy will indicate a bright future

for physical layer security.

However, with the ever-increasing demand of wireless access users, multi-antenna

transmission has been considered as one of effective approaches to improve the ca-

pacity of wireless networks [6–9]. Multi-antenna transmission techniques can be

applied in physical layer security to bring more degrees of freedom (DoF) and di-

versity gains. Moreover, low complexity transceiver will be designed by employing

3



1.2 Literature Review

convex optimization techniques with and without global channel state information

(CSI). How to achieve the secure communications to satisfy spectral and energy

efficiency in multi-antenna transmission has been a hot research topic in wireless

communication. In this thesis, novel algorithms for the optimal resource allocation

for multi-antenna transceiver will be designed to realize spectral efficient, energy ef-

ficient, and secure communication networks by utilizing mathematical optimization

techniques and game theory.

1.2 Literature Review

In recent years, physical layer security has paid significant attention in establish-

ing reliable wireless links to prevent eavesdropping from illegal customers [10, 11].

Traditionally, secure communications are realized through traditional cryptographic

methods performed in the network layer. However, with the nature of wireless

transmission, various challenges are introduced in terms of key distribution and

management [12]. Physical layer security technique provides a fundamentally dif-

ferent paradigm, compared to conventional cryptographic approaches, in which se-

crecy capacity is achieved by exploiting the physical layer properties of wireless

communication system [13]. The concept of physical layer security was originally

proposed by initially defining wiretap channels in [14], and has recently been recog-

nized as a promising technique to establish secure data transmission between legit-

imate transceivers, which has been developed based on information theory princi-

ple [5,12,15,16]. Recently, secret communication for multi-antenna secrecy channels

has attracted the research community due to the advantage of having additional

DoF and diversity gains, and the achieved secrecy rates are constrained by the in-

formation rates achieved by the eavesdroppers [17,18].

Several approaches and algorithms have been introduced to improve the secrecy

rates, which consists of cooperative beamforming (CB), artificial noise (AN), co-

operative jamming (CJ), and device-to-device (D2D) transmission, etc. [11, 19–32].

Convex optimization techniques have often been employed to design the optimal

transmit beamformer by solving the secrecy rate optimization problems (i.e., power

minimization and secrecy rate maximization) [19]. Relays and jamming nodes are

introduced in the secure network, which have the capability to improve performance

at the legitimate receiver, preventing the eavesdroppers from intercepting the de-
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sired messages intended for the legitimate receivers [23, 33–37]. Moreover, secrecy

rate maximization algorithm has been proposed for multiple-input multiple-output

(MIMO) wiretap channel, which provides the necessary sufficient conditions based

on the optimal input covariance matrix [38], whereas in [39] a full-rank optimal in-

put covariance matrix solution was presented to achieve the secrecy capacity of the

MIMO Gaussian wiretap channel. CB requires relays to forward the signal from the

source to the legitimate user based on the assumption that the direct transmission is

not available. The optimal power allocation in the context of a decode-and-forward

(DF) scheme has been proposed to maximize the sum secrecy rate [20], whereas

in [21] the relay relies on an amplify-and-forward (AF) scheme in a MIMO system,

where the source and relay beamformer have been jointly designed to maximize the

achieved secrecy rate in the cooperative scheme. For MIMO relay networks, the op-

timal power allocation has been derived by exploiting the generalized singular value

decomposition (GSVD)-based secure relaying scheme [22]. AN is also a well-known

technique, which introduces the interference to eavesdroppers by embedding noise

in the desired transmission signal [28,29]. In [28], an isotropic AN scheme has been

designed using an orthogonal projection approach, whereas the spatially selective

AN algorithm is investigated to jointly design transmit beamformer and AN covari-

ance matrix to interfere the eavesdroppers in [29]. CJ is another technique that can

be applied to improve physical layer security [23–26]. For the single-antenna case,

the secrecy rate has been maximized by employing a one-dimensional (1D) search

algorithm [23]. In [24], first-order Taylor series expansion has been applied to ap-

proximate the secrecy capacity for MIMO secrecy channel with a multi-antenna CJ,

which reformulate the non-convex secrecy rate optimization framework to a convex

one, whereas the stochastic geometry approach is appropriate to the networks where

the jammers and the eavesdroppers are deployed randomly [27]. Moreover, game

theory is a promising mathematical tool for decision making and resource allocation

in secure communications [40, 41].

In general, the CSI is assumed to be perfectly available at the transmitter be-

tween the transmitter and the legitimate receiver as well as the eavesdropper. How-

ever, it is not possible that this assumption is always valid with channel estimation

and quantization errors. Without having the CSI at the legitimate transmitter,

it is more challenging for the transmitter to perform optimization. To circumvent

these issues of imperfection, robust optimization techniques have been considered

5
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to incorporate the channel uncertainty [19, 34, 42–48]. The robust optimization

approaches have been applied in physical layer security based on the worst-case

scheme [19,48,49]. The bridge has been built between wiretap channel and cognitive

radio (CR) channel incorporating norm-bounded channel uncertainty [49]. In [19],

the robust transmit covariance matrix has been designed for MISO secrecy chan-

nels with multiple multi-antenna eavesdroppers, and the robust optimization prob-

lem can be relaxed as semidefinite programming (SDP) by exploiting S-Procedure.

In [48], a conservative approximation approach at low SNRs has been proposed for

MIMO secrecy channel, whereas AN-assisted robust techniques has been developed

in [29,47]. In [34], a robust CJ scheme has been proposed for secure channels based

on the worst-case scheme. In addition to the robust secrecy rate optimization, the

outage robust secrecy rate optimization schemes with only statistical knowledge of

channel uncertainty have been considered in [32, 50]. The robust outage secrecy

rate optimization for MIMO secrecy channel has been investigated in [32], where

a Bernstein-type inequality based Taylor approximation was presented to handle

the nonconvex outage secrecy rate constraint, while in [50], the outage probability

minimization problem of a secrecy channel has been developed to satisfy a target

secrecy rate with the assumption that the only distribution of the eavesdropper’s

channel error is available at the legitimate transmitter.

Energy harvesting is employed in fifth-generation (5G) wireless communication

networks to circumvent the issue of energy limitations in mobile devices and im-

prove the energy efficiency of these networks by extracting energy from the external

natural environment (e.g., solar power, wind energy, etc.) [51,52].

Traditionally, energy is directly harvested from external sources without exploit-

ing the resources of the communication network itself. However, when the natural

environment is not able to provide stable energy, wireless mobile receivers have to

find an alternative energy source in the communication network. This source can be

the information-carrying radio-frequency (RF) signal radiated by the fixed transmit-

ters (base stations, hot spots, etc.) [53–55]. In this case, the role of the transmitter

is not only to send the signal to the mobile receivers, but also transfer power that

can be used to charge these receivers’ batteries. Simultaneous wireless information

and power transfer (SWIPT) is a promising paradigm to provide power for commu-

nication devices to mitigate the energy scarcity and extend the lifetime of wireless

networks [53,54].
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Recently, secure communication in SWIPT has been investigated in [56–63].

In [56], the authors have considered a MISO secure SWIPT system. Two opti-

mization problems: 1) secrecy rate maximization of information receiver (IR) with

individual harvested energy constraints of energy receivers (ERs), 2) energy harvest-

ing maximization with a secrecy rate constraint for the IR, have been developed to

guarantee a reliable information transmission to the IR and the target harvested en-

ergy simultaneously transferred to the ERs are satisfied by optimally designing the

beamformer vectors and the power allocation at the legitimate transmitter. In [58],

the authors first addressed the secure communication system with SWIPT when

two types of eavesdroppers (i.e., passive eavesdroppers and potential eavesdroppers)

coexist. A total transmit power minimization problem was formulated to jointly

optimize the transmit beamforming, AN and energy beamforming, achieving secure

communications with a target amount of harvested power by incorporating channel

uncertainties of the idle receivers (potential eavesdroppers). While [59] considered

a multiuser MISO SWIPT system with multi-antenna energy harvesting receivers

(potential eavesdroppers) only, where an energy harvesting maximization problem

is proposed to guarantee secure communications. In addition, the authors have

shown that there always exists a rank-one optimal transmit covariance solution and

proposed one efficient algorithm to construct an equivalent rank-one optimal solu-

tion [56, 59]. However, in [56, 59], the CSI is assumed to be available, or only the

CSI of the potential eavesdropper is unavailable at the transmitter [57,58], for which

there are practical difficulties to obtain the CSI of the link between the transmitter

and the users. Furthermore, robust secure transmission for a MISO SWIPT system

have been proposed without AN [60] and with AN [61], respectively, by incorporat-

ing the channel uncertainties of all channels. In [60–62], semidefinite programming

(SDP) relaxation has been studied to solve the secrecy rate maximization problem,

however, the suboptimal solution has been proposed to guarantee the solution of the

relaxed problem is rank-one [60], whereas in [61,62], the authors have shown the op-

timal solution of the relaxed problem is rank-two, which is not exact to the optimal

condition for the SDP relaxation. In [63], a two-step algorithm with conic reformu-

lation is proposed to circumvent the rank-one solution in the MISO secure SWIPT

system, while a novel SDP relaxation is investigated to guarantee that the relaxed

problem yields rank-one solution in the AN-aided MISO secure SWIPT system. The

optimal resource allocation in the AN-aided secure Orthogonal Frequency-Division

7
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Multiple Access (OFDMA) systems with SWIPT was investigated in [64], where the

weighted sum secrecy rate maximization problem of the IRs subject to minimum

harvested power requirements of individual ERs, and a new frequency-domain AN-

aided OFDMA-based SWIPT to facilitate both secrecy information transmission

and energy transfer to IRs and ERs, respectively.

1.3 Main Contributions and Thesis Outline

1.3.1 Main Contributions

In this section, the main contributions in this thesis are presented, where different

transmit optimization techniques are investigated to improve physical layer secu-

rity. Secrecy rate optimization problems (i.e. power minimization and secrecy rate

maximization) are formulated to design the secure transmit beamformer, achieving

the optimal power allocation by mathematical optimization techniques and game

theory.

Chapter 4 investigates the transmit optimization for MISO secure channels with mul-

tiple multi-antenna eavesdroppers. First, second-order cone programming (SOCP)

reformulation is proposed to relax the power minimization problem. Additionally,

a closed-form solution is derived for a special case with single multi-antenna eaves-

dropper by exploiting Karush-Kuhn-Tucker (KKT) conditions. Besides, the robust

schemes with secrecy rate outage probability constraint are considered incorporat-

ing statistical channel uncertainty, where the outage probability constraint requires

that the achieved secrecy rate exceeds certain thresholds with high probability such

that naturally ensure the desired robustness. Due to nonconvex problem, a two-step

algorithm with two conservative reformulations is proposed to reformulate it into a

convex optimization framework. An initial proof shows the solution to each refor-

mulated problem returns rank-one, which, therefore, guarantees that its solution is

also optimal to the original problem.

Chapter 5 studies CJ-aided transmit optimization for MIMO wiretap channel, where

a multi-antenna CJ is introduced to provide jamming service to introduce the extra

interference to the eavesdropper. Both transmit covariance matrices of the legiti-

mate transmitter and the CJ are designed, alternatively, to obtain the optimal power

allocation for the secrecy rate optimization problems, where first-order Taylor ap-
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proximation is considered to handle the nonconvex secrecy rate constraint. The

robust scheme is formulated by incorporating norm-bounded channel uncertainty.

By exploiting linear matrix transformation, it can be reformulated as convex opti-

mization framework by employing SDP relaxation. Moreover, game theory based

secure transmit optimization is developed when a private CJ is employed which

charges for its jamming service according to the amount of interference caused to

the eavesdropper. This scheme is modelled as a Stackelberg game, where the pri-

vate CJ and the legitimate transmitter are the leader and follower of the game,

respectively, and both of them are to maximize their own revenue functions. For the

proposed game, Stackelberg equilibrium is analytically derived in terms of closed-

form solutions.

Chapter 6 investigates transmit optimization for secure MISO SWIPT system. First,

secure transmit beamformer are designed to maximize the achieved secrecy rate, sub-

jecting to the transmit power and the EH constraint. A two-step algorithm with

conic reformulation is considered to handle the nonconvex secrecy rate constraint,

and first-order Taylor approximation is employed to linearize the EH constraint.

In addition, AN-aided transmit optimization is considered to further improve the

achieved secrecy rate. Secure transmit beamformer and AN are jointly designed.

SDP relaxation based two-level optimization and successive convex approximation

(SCA) are proposed to relax the secrecy rate maximization problem. Besides, it is

shown that the relaxed problem yields a rank-one solution, which, therefore, guar-

antees that its solution is also optimal to the original problem.

1.3.2 Thesis Outline

Chapter 1 outlines the motivations of this thesis and literature review. Chapter

2 provides preliminaries. Chapter 3 introduces some basic concepts of convex op-

timization techniques. Some generic convex problems will be given. Additionally,

the dual principle is provided by the Lagrange dual function, with KKT conditions.

Chapter 4 investigates transmit optimization for MISO secure channel with multiple

multi-antenna eavesdroppers. Chapter 5 investigates transmit optimization for CJ-

aided MIMO secrecy channel, where a multi-antenna CJ is considered to provide the

jamming service to improve secure communication. Chapter 6 investigates transmit

optimization for secure MISO SWIPT system. Chapter 7 draws the conclusions,
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Chapter 2

Preliminaries

This chapter outlines fundamental concepts and results of multi-antenna transmis-

sion and information-theoretical security techniques. First, multi-antenna wireless

communications is studied, which includes multiple-input multiple-output (MIMO)

wireless communications and beamforming techniques. Then the basic information-

theoretical concepts are introduced briefly, which takes a three-node wiretap channel

as an example. Unlike traditional approaches, which handle security at the net-

work layer, physical layer security aims at developing effective secure communication

schemes exploiting the properties of the physical layer, which plays a significant role

in improving security performance from information-theoretical aspects. Finally, the

information-theoretical security for multiple-antenna case will be investigated.

2.1 Multiple-Antenna Wireless Communications

Multiple-antenna transmission has been widely employed to improve the capacity

of wireless networks, which has been investigated in [7, 8]. Both transmitter and

receiver are equipped with multiple antennas in wireless systems, popularly known

as MIMO, has been more attractive than single-input single-output (SISO) over the

past decades with its powerful performance enhancing system capacity [9]. MIMO

technology provides a new paradigm in wireless communication system design, which

offers variety of advantages to satisfy the challenges posed by both the impairments

in the wireless channel and resource constraints [9].
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Figure 2.1: MIMO channel

2.1.1 MIMO Channel and Signal Model

In this section, the property of the MIMO channel is investigated to guarantee

communication algorithms can be designed efficiently. Fig. 2.1 shows a MIMO

system equipped with MT transmit antennas and MR receive antennas, it is assumed

to be frequency-flat fading channel, the MIMO channel at a given time period is

expressed as an MR ×MT matrix

H =


H1,1 · · · H1,MT

...
. . .

...

HMR,1 · · · HMR,MT

 , (2.1)

where Hm,n denotes SISO channel gain between the m-th receive and n-th transmit

antenna pair. In a frequency-flat fading MIMO channel, general MIMO received

signal is expressed as

y =

√
P

MT

Hx + n, (2.2)

where y ∈ CMR×1 represents the received signal vector, x ∈ CMT×1 denotes the

transmitted signal vector, n ∈ CMR×1 is additive white complex Gaussian noise

with E{nnH} = σ2I, and P denotes the total average transmit power. The total

transmit power during a symbol period can be written as the transmit covariance

matrix R = E{xxH} with Tr(R) = P . The signal-to-noise ratio (SNR) per receiver

antenna can be denoted by ρ = P/σ2.
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2.2 Capacity Limits of of Wireless System

2.2.1 Mutual Information and Shannon Capacity

In this section, the backgrounds on Shannon capacity and mutual information will

be introduced, and these ideas are applied to the single-user additive white Gaussian

noise (AWGN) channel. The channel capacity was first proposed by Claude Shannon

in the late 1940s, based on mutual information through the Shannon capacity limits

[65]. The channel capacity, C, is the maximum rate at which secure communication

can be guaranteed without any constraints on the transceiver complexity. It is

shown by Shannon that for any rate R < C, there exist rate R channel codes with

arbitrarily small symbol error probabilities. Thus, for any given rate R < C and

any desired non-zero probability of error Pe, there exists a rate R code to satisfy Pe.

However, such channel codes may have a very long block length, and the encoding

and decoding are extremely complicated. In the following, the precise mathematical

definition of channel capacity will be given.

2.2.2 Mathematical Definition of Capacity

Shannon’s initial work has shown that the channel capacity has been defined as

the maximum rate to realize reliable communication. It can be simply described in

terms of the mutual information between channel input and channel output. The

simple channel model is composed of a random input X, a random output Y , and

a probabilistic relationship between X and Y that is generally characterized by

the conditional probability of Y given X (f(y|x)). The mutual information of a

single-user channel can be defined as follows

I(X;Y ) =

∫
Sx,Sy

f(x, y) log

(
f(x, y)

f(x)f(y)

)
dxdy, (2.3)

where the integral of Sx, Sy denotes the random variables X and Y, respectively,

and f(x), f(x), and f(x, y) denote the probability distribution function (PDF) of

these random variables. The log function is generally with respect to base 2. Mutual

information can be modified by the differential entropy of the channel output and

conditional output as I(X;Y ) = h(Y )−h(Y |X), where h(Y ) = −
∫
Sy

log f(y)dy, and

h(Y |X) = −
∫
Sx,Sy

log f(y|x)dxdy. Shannon have shown that the channel capacity
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is equivalent to the mutual information maximization

C = max
f(x)

I(X;Y ) =

∫
Sx,Sy

f(x, y) log

(
f(x, y)

f(x)f(y)

)
. (2.4)

In this thesis, the time-invariant AWGN channel is considered, thus, the channel

capacity can be expressed with bandwidth B and received SNR γ based on the

assumption that f(x) follows the Gaussian distribution as

C = B log(1 + γ) bps. (2.5)

2.3 Multi-Antenna Beamforming Techniques

In this section, we introduce a signal spatial filtering technique, also known as beam-

forming (beamformer), which can be achieved by combining elements from different

phased angles. Beamforming is employed at the transmitter and receiver sides to

achieve spatial selectivity. In addition, it can improve the transmit/receive gain.

2.3.1 MIMO Beamforming Design

In this subsection, the beamforming technique applied in MIMO system is studied,

where the transmit and receive beamformers are designed jointly in most of existing

works [66–68]. Either the data rate and/or the diversity performance is increased

by employing multiple antennas. Also, multiplexing performance can be achieved

by decomposing MIMO channel matrix into variety of independent sub-channels

to realize different data streams transmission independently. It has the potential to

increase the data rate up to a factor, same as the rank of the MIMO channel matrix,

compared to the single-antenna system [1]. Consider a point-to-point MIMO system,

in which the transmitter and the receiver consists of NT and NR transmit and receive

antennas, respectively. The received signal can be expressed as

y = Hx + n, (2.6)

where y = [y1, ..., yNR
]T , and ynr (nr = 1, ..., NR) is the received signal at nr-th

receive antenna. H ∈ CNR×NT denotes the MIMO channel matrix, and hi,j is the

channel coefficients between the i-th transmit antenna and j-th receive antenna.
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Figure 2.2: Transmit precoding and receiver shaping

x ∈ CNT×1 and n ∈ CNR×1 are the transmitted signal vector and the noise vector,

respectively. Assuming that the channel matrix H is available to both the trans-

mitter and the receiver. The MIMO channel matrix is decomposed by the singular

value decomposition (SVD) as [69]

H = UΣVH , (2.7)

where U ∈ CNR×NR , V ∈ CNT×NT are unitary matrices, and Σ ∈ CNR×NT is a

diagonal matrix with the singular values δi of H. N is the number of nonzero singular

values, which is also known as the rank of H. The singular value satisfies δi =
√
λi,

where λi denotes the i-th eigenvalue of HHH . These sub-channels are achieved using

linear transformation of the input signal and the output signal through transmit

precoding and receive shaping. In transmit precoding, the symbol stream can be

precoded as

x = Vx̄, (2.8)

where x̄ is the transmitted signal stream. While the received signal can be modified

as

ȳ = UHy. (2.9)

Fig. 2.2 shows that both transmit precoding and receiver shaping decompose the

MIMO channel into N number of independent SISO channels as shown in Fig. 2.3,

and the received signal can be expressed as

ȳ = UH(Hx + n) = UHUΣVHVx̄ + UHn = Σx̄ + n̄, (2.10)

where n̄ = UHn. Hence, this MIMO achieves up to N times data rate of an asso-
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Figure 2.3: Parallel decomposition of the MIMO channel

ciated SISO channel. Each channel performance depends on δi. Thus, the transmit

precoding and receiver shaping matrices also known as transmit and receiver beam-

formers. Provided that the MIMO channel matrix is known to the transmitter and

the receiver, the channel capacity of this MIMO system is equivalent to the sum of

capacities of each independent parallel channels.

C = max
pi

N∑
i=1

B log

(
1 +

δ2
i pi
σ2

)
, s.t.

N∑
i=1

pi ≤ P, pi ≥ 0, (2.11)

where P and pi are the total transmit power and power allocated to the i-th inde-

pendent channel, respectively. B, δi and σ2 are the bandwidth, the i-th independent

channel coefficients and the noise power, respectively. By exploiting Karush-Kuhn-

Tucker (KKT) conditions [70], the following relations hold:

αi ≥ 0, (2.12a)

αipi = 0, (2.12b)(
B

1 +
δ2i pi
σ2

)
δ2
i

σ2
+ αi = β, (2.12c)

where αi and β are the dual multipliers of i-th individual power and total power

constraints, respectively. From complementary slackness as in (2.12b) and (2.12c),
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Figure 2.4: Water-filling power allocations.

the optimal power allocation is written in terms of closed-form solution as

p∗i =


[
B
β
− σ2

δ2i

]+

, αi = 0,

0, αi 6= 0.

(2.13)

In addition, the optimal value of β is given by (2.14),

N∑
i=1

max

{
0,

(
B

β
− σ2

δ2
i

)}
= P, (2.14)

which is known as the water-filling solution shown in Fig. 2.4, in which the water-

level is equal to B
β∗

. The parameter β∗ is the optimal value of β, which can be

obtained by solving the equation (2.14).

2.4 Information-theoretical Security

Information-theoretical security is a new paradigm that potentially strengthen the

security of existing systems by introducing a level of information theory principle.

This has been widely considered as a stronger notion than computational security

[3, 5, 12, 17,71].

2.4.1 Information-Theoretical Security

Information-theoretical security, mainly focuses on the secure transmission analysis

based on the information theory principles [72], where this principle was first pro-

18



2.4 Information-theoretical Security

Figure 2.5: Shannon secrecy model

posed in communication theory, which introduced a Shannon secrecy model shown

in Fig. 2.5. In this secrecy model, it consists of the legitimate transmitter (i.e.,

Alice), the legitimate user (i.e., Bob) and the eavesdropper (i.e., Eve). Eve can ac-

cess to the insecure channel and eavesdrops the same messages to Bob by achieving

the cryptogram C, where C is a function of the plaintext M and a secret key K,

generated by key generator and shared by Alice and Bob. According to Shannon’s

definition, this system is perfect if the following equality holds

I(M ;C) = 0,

which implies Eve has no knowledge of M with knowing C [3].

However, Shannon’s secrecy system model leads to the fact that it is assumed

that the channel from Alice to Eve has the same capacity as the channel from Alice

to Bob, since Eve can access to the cryptogram perfectly. Therefore, the key is

employed to guarantee perfect secrecy transmission is to modify Shannons model

such that the Eve cannot achieve the same information as Bob.

Based on this motivation, a novel secrecy system, named wiretap channel, was

initially proposed in [14], and then further developed in [73]. Fig. 2.6 shows a

simple wiretap channel, where Alice transmits the confidential message to Bob,

whereas Eve can access to the messages received by the legitimate receiver. In

[73], a broadcast channel with confidential messages is described (c.f. Fig. 2.7),

where Alice communicates with Bob via a discrete broadcast channel explained by a

discrete input alphabet X, two discrete output alphabets Y and Z, and a probability

transition function pY Z|X(y, z|x). It is assumed that this channel is memoryless,
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Figure 2.6: Simple wiretap channel

thus, the transition probability of a sequence of n symbols is expressed as

p(yn, zn|xn) =
n∏
i=1

pY Z|X(yi, zi|xi) (2.15)

Alice sends a common message S0 to both Bob and Eve as well as a private message

SM to Bob only.

Definition A (2nR0 , 2nRM , n) code for the broadcast channel with confidential mes-

sages consists of the following statements:

• Two message sets S0 = {1, 2, ..., 2nR0} and SM = {1, 2, ..., 2nRM}.

• An encoding function fn : S0 × SM → Xn, which maps each message pair

(s0, sM) ∈ S0 × SM to a codeword xn ∈ Xn.

• Two decoding functions gn : Yn → S0 × SM and hn : Zn → S0, which map an

observation yn to a message pair (ŝ0, ŝM) and an observation zn to a message

s̃0.

The confidential message SM with respect to the eavesdropper is measured by

equivocation rate:
1

n
H(SM |Zn) (2.16)

The rate set (R0, RM , RE) is achieved rate for the broadcast channel with confidential
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Figure 2.7: Broadcast wiretap channel with confidential message

message, if and only if, for any ε > 0, there exists a (2nR0 , 2nRM , n) code such that

P [gn(Yn) 6= (S0, SM) or hn(Zn 6= S0)] < ε,

1

n
H(SM |Zn) ≥ RE − ε.

The above two inequalities represent reliability and secrecy conditions, which are

not a priori obvious that both conditions are satisfied simultaneously. In addition,

the trade-off between reliability and secrecy can be characterized exactly as shown

in the following theorem.

Theorem 2.1 [73, Theorem 1] The closed convex set of achievable rates (R0, RM , RE)

is given as follows:

C = ∪U→V→X→Y Z



0 ≤ RE ≤ RM ,

RE ≤ I(V ;Y |U)− I(V ;Z|U),

R0 +RM ≤ I(V ;Y |U) + min(I(U ;Y ), I(U ;Z)),

0 ≤ R0 ≤ min(I(U ;Y ), I(U ;Z)).

(2.17)

From the above theorem, it is easy to define a metric characterization of the information-

theoretical security for a channel, secrecy capacity of a broadcast channel with con-

fidential messages, which can be defined as the upper bound of all rates RM such

that (0, RM , RM) is achievable. This metric explains the usual channel capacity,

which only considers reliable communications without secrecy constraints. Hence,

the following corollary is considered:

Corollary 2.1 [73, Corollary 2] In a broadcast channel with confidential messages,
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Figure 2.8: Gaussian wiretap channel

the secrecy capacity can be written as

C = max
V→X→Y Z

[I(V ;Y )− I(V ;Z)]. (2.18)

The secrecy capacity can be computed by the Corollary 2.1 for any discrete memo-

ryless channel, and it can also be applied in continuous memoryless channels. The

secrecy capacity is dependent on the channel transition probability only through the

marginal probabilities pY |X(y|x) and pZ|X(z|x). However, it employs the maximiza-

tion to meet a Markov chain condition, which is not practical [3].

2.4.2 Gaussian Wiretap Channel

In this subsection, a simple, practical and useful wiretap channel is considered,

Gaussian wiretap channel, which is described in Fig. 2.8. From this figure, it is

assumed that both main and eavesdropping channels are additive white Gaussian

noise (AWGN) channels with channel gains hS and hE, respectively, whereas the

noise powers of these Gaussian noises NS and NE are denoted by σ2
S and σ2

E, re-

spectively. In addition, assuming that the messages transmitted over the channels

are subject to the average transmit power constraint

1

n

n∑
i=1

E(Xi) ≤ P. (2.19)

Based on these assumptions, the following theorem can be given:
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Theorem 2.2 [12,71,74] The secrecy capacity of the Gaussian wiretap channel is

written as

C =

[
log

(
1 +

hSP

σ2
S

)
− log

(
1 +

hEP

σ2
E

)]+

. (2.20)

Theorem 2.2 confirms that there exists a coding scheme guaranteeing information-

theoretic security, if the legitimate receiver outperforms that of the eavesdropper in

terms of SNR, and the maximum secrecy rate is the difference between the main

channel capacity and the eavesdropping channel capacity.

2.5 Secure Communications for Multiple-Antenna

Transceiver

In this section, secure communications for multiple-antenna cases are studied, where

the transceivers (i.e., transmitter, receiver or/and eavesdropper) are equipped with

multiple antenna. Multi-antenna secure communications have been widely focused

in some existing works [17,18,48,75,76].

2.5.1 Transmit Optimization for MIMO Wiretap Channel

In this subsection, transmit optimization for MIMO wiretap channel is investigated

[48], where a legitimate transmitter establishes a secure communication link with a

legitimate user for data transmission with a multi-antenna eavesdropper. Assuming

that the legitimate transmitter and the legitimate user consists of NT transmit and

NR receive antennas, respectively, whereas the eavesdropper is equipped with NE

receive antennas. The channel coefficients between the legitimate transmitter and

the legitimate receiver as well as the eavesdropper are represented by Hs ∈ CNT×NR

and He ∈ CNT×NE , respectively. The maximum transmit power available at the

legitimate transmitter is denoted by P . The received signal at the legitimate user

is written as

ys = HH
s x + ns, ye = HH

s x + ne, (2.21)

where x ∈ CNT×1 denotes the desired signal intended to the legitimate receiver. The

transmit covariance matrix is defined as Qs = E{xxH}. The noises, ns and ne, are
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2.5 Secure Communications for Multiple-Antenna Transceiver

set to be zero-mean circularly symmetric Gaussian random variables with covari-

ances σ2
sI ∈ CNR×NR and σ2

eI ∈ CNE×NE , respectively. The achievable transmission

rate to the legitimate user and the eavesdropper can be expressed, respectively, as [7]

Rs = log

∣∣∣∣I +
1

σ2
s

HH
s QsHs

∣∣∣∣, Re = log

∣∣∣∣I +
1

σ2
e

HH
e QsHe

∣∣∣∣ (2.22)

Thus, the achieved secrecy rate at the legitimate receiver is written as [18]

R = [Rs −Re]
+, (2.23)

where [x]+ represents max{x, 0}. Two secrecy rate optimization problems: a) power

minimization b) secrecy rate maximization are formulated as follows:

1. Power minimization:

min
Qs�0

Tr(Qs), s.t. R ≥ R̄. (2.24)

2. Secrecy rate maximization:

max
Qs�0

R, s.t. Tr(Qs) ≤ P. (2.25)

Both above problems are not convex in terms of transmit covariance matrix Qs,

and cannot be solved directly. However, this secrecy rate can be linearized based on

Taylor approximation such that both problems can be recast as the convex ones. In

this optimization framework, it is first assumed that global channel state information

(CSI) are perfectly available at the transmitter. This assumption has been widely

used in recent work [19, 76, 77]. Thus, the secrecy rate can be approximated at any

transmit covariance Q̃s as follows:

R ' log

∣∣∣∣I +
1

σ2
s

HH
s QsHs

∣∣∣∣− log

∣∣∣∣I +
1

σ2
e

HH
e Q̃sHe

∣∣∣∣− Tr

[
1

σ2
e

(
I +

1

σ2
e

HH
e Q̃sHe

)−1

HH
e QsHe

]

+ Tr

[
1

σ2
e

(
I +

1

σ2
e

HH
e Q̃sHe

)−1

HH
e Q̃sHe

]
, R̃, (2.26)
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2.5 Secure Communications for Multiple-Antenna Transceiver

It can be easily observed that R̃ is a concave function in terms of Qs. Based on this

approximation, the power minimization problem in (2.24) is modified as

min
Qs�0

Tr(Qs), s.t. R̃ ≥ R̄. (2.27)

In order to solve the problem in (2.27), the following Lagrange dual problem is

written:

max
λ≥0

min
Qs�0

[
Tr(Qs) + λ(R̄− R̃)

]
, (2.28)

where λ is the dual multiplier associated with the secrecy rate constraint. It is easily

shown that the strong duality holds [48], since (2.27) is convex and satisfies Slaters

condition such that the duality gap between (2.27) and (2.28) is zero. Thus, (2.27)

can be handled by finding the optimal solution of the dual problem and updating

the Lagrangian multiplier based on subgradient method [78].

To satisfy the particular achieved secrecy rate, the transmitter will be required a

certain amount of transmission power. In general, the maximum available transmit

power is limited, which leads to the power minimization problem might turn out to

be infeasible. In general, the target secrecy rate needs to be decreased such that

achieves the secrecy rate to satisfy the transmit power budget. In such cases, the

same design will be repeated with a lower target secrecy rate, which is quite difficult

to predict in advance. To circumvent this issue, a more attractive problem formu-

lation is secrecy rate maximization shown in (2.25), where transmit optimization

to maximize the achieved secrecy rate to meet with the transmit power constraint.

It is always possible that this secrecy rate maximization problem can yield a feasi-

ble solution regardless of the maximum available transmission power or the channel

conditions. The secrecy rate maximization problem (2.25) can be solved in a similar

approach to the power minimization problem (2.24).

2.5.2 Robust Secrecy Rate Optimization

In the previous subsection, the secrecy rate optimization problems has been solved

based on the assumption that the transmitter has the perfect CSI of the legiti-

mate user and the eavesdropper. However, it is not possible that this assumption

is always valid due to the channel estimation and quantization errors. Therefore,
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2.5 Secure Communications for Multiple-Antenna Transceiver

robust secrecy rate optimization techniques are proposed by incorporating channel

uncertainty, which can be relaxed as semidefinite programming (SDP) at low SNR

regime [48]. The imperfect CSI was modelled as the deterministic models [48,79–82],

and the statistical models [32,83]. Based on deterministic channel uncertainty mod-

els, S-Procedure is employed to remove the impact of the channel error by refor-

mulating the nonconvex secrecy rate constraint into the linear matrix inequality

(LMI), whereas the robust outage secrecy rate optimization can be solved by us-

ing Bernstein-type inequality to tackle the outage probability constraint based on

statistical channel uncertainty models.
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Chapter 3

Convex Optimization Theory

The utilization of optimization approaches plays a significant role in signal process-

ing and wireless communication [70, 84–86]. An increasing number of problems in

signal processing and communications can be appropriately modelled as constrained

optimization frameworks, which are either naturally convex or can be reformulated

into convex forms by applying some mathematical optimization techniques. Once

one problem has been reformulated into convex form, it can be efficiently solved

by employing interior-point methods [70, 87]. Convex optimization techniques have

brought many conveniences of practical interest in numerical analyses, since a local

optimality is also the global optimum for the convex problems and they are solved

in terms of polynomial time complexity. In addition, the optimal solution of a con-

vex problem can be verified by employing Karush-Kuhn-Tucker (KKT) conditions

and duality gaps. Also, the existing MATLAB software and toolboxes (i.e., Se-

DuMi [88], Yamip [89], and CVX [90]) are used to solve convex problems that make

convex optimization techniques more attractive or applicable in many engineering

applications. However, most of problems are generally not convex, which cannot

be solved directly. Therefore, how to recognize the problems which can be handled

using convex optimization and how to formulate the problem into a convex form are

the key steps in the application of convex optimization techniques. In this section,

the fundamentals of convex optimization techniques will be introduced.
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3.1 Convex Set

3.1 Convex Set

A set S is convex if it can be written as

θy1 + (1− θ)y2 ∈ S, ∀θ ∈ [0 1], and y1, y2 ∈ S. (3.1)

A set can be defined as a convex set if all the points of a line segment are in the

same set, which is constructed by connecting any two points of this line segment

by a straight line. Every affine set is also convex, since it contains the entire line

between any two distinct points in it, and therefore also the line segment between

the points [70].

3.2 Convex Cone

A set S is defined as a cone, or nonnegative homogeneous, if for every y ∈ S and

α ≥ 0, αy ∈ S holds. A set S is a convex cone if it is convex and a cone, and the

following inequality holds for any y1, y2 ∈ S and θ1, θ2 ≥ 0

θ1y1 + θ2y2 ∈ S. (3.2)

Convex cones lead to various forms in some applications, in which the most common

convex cones are given as

1. Nonnegative orthant Rn
+.

2. Second-order cone (SOC): S = {(y, x)|‖x‖ ≤ y}.

3. Positive semidefinite cone: S = {Y|Y is symmctric and X � 0}.

3.3 Convex Function

A function f(x) : Rn → R is convex if domf(x) is a convex set and for all x1,

x2 ∈ domf(x), the following inequality holds:

f(θx1 + (1− θ)x2) ≤ θf(x1) + (1− θ)f(x2), ∀θ ∈ [0 1]. (3.3)
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In other words, f(x) is less than or equal to the value of the linear function agreeing

with f(x) at the end points for any line segment in domf(x). The function f(x) is

concave if −f(x) is convex. If f(x) is continuously differentiable, the convexity of

f(x) is equivalent to

f(y) ≥ f(x) + Of(x)(y − x) (3.4)

In addition, if f(x) is twice continuously differentiable, then the convexity of f(x)

can be given by showing its Hessian matrix is a positive semidefinite (PSD),

∇2f(x) � 0, ∀x ∈ Rn. (3.5)

Therefore, for instance, a linear function is always convex, while a quadratic function

f(x) = xHAx+ bx+ c is convex if and only if A � 0.

3.4 Convex Optimization Problems

A standard convex optimization problem can be written as the following form

min f0(x),

s.t. fi(x) ≤ 0, i = 1, ...,m,

hi(x) = 0, i = 1, ..., p, (3.6)

where x ∈ Rn is the optimization variable, the functions f0, ..., fm : Rn → R are con-

vex functions, and the functions h1, ..., hp are linear functions. In addition, fi(x) ≤ 0,

i = 1, ...,m, are defined as the inequality constraints, and hi(x) = 0, i = 1, ..., p, are

defined as the equality constraints. If there are no constraints, then the problem can

be known as an unconstrained problem. The domain to (3.6) is the set of points,

for which the objective function and the constraints are defined as

D =
m⋂
i=0

domfi ∩
p⋂
i=1

domhi (3.7)

If a point x ∈ D is feasible, then it satisfies all the constraints fi(x) ≤ 0, i = 1, ...,m

and hi(x) = 0, i = 1, ..., p. The optimal solution to (3.6) can be achieved at the
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optimal point x∗ to guarantee the following inequality holds

f0(x∗) ≤ f0(x), ∀x ∈ D. (3.8)

In the following, general forms of the canonical optimization problem formulations

will be given.

3.4.1 Linear Programming

A convex optimization problem can be known as a linear programming (LP), when

the objective and all constraint functions are affine (linear). A general LP can be

written as

min
x

cTx + d,

s.t. Gx � h,

Ax = b, (3.9)

where G ∈ Rm×n and A ∈ Rp×n.

3.4.2 Quadratic Programming

A convex optimization problem can be called quadratic programming (QP) when

the objective function is quadratic (convex) and the constraint functions are affine.

A QP is written as follows:

min
x

xTPx + qTx + r,

s.t. Gx � h,

Ax = b, (3.10)

where P ∈ Sn+, G ∈ Rm×n, and A ∈ Rp×n. In QP, a convex quadratic function is

minimized over a polyhedron. LP is a special case of QP with P = 0 in (3.10).

3.4.3 Quadratically Constrained Quadratic Programming

A convex optimization problem is known as a quadratically constrained quadratic

programming (QCQP), when both objective and all constraint functions are quadratic,
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which can be expressed as follows:

min
x

xTP0x + qT0 x + r0,

s.t. xTPix + qTi x + ri ≤ 0, i = 1, ...,m,

Ax = b, (3.11)

where Pi ∈ Sn+, i = 0, ...,m. In a QCQP, a quadratic convex function is minimized

over a feasible region that is the intersection of ellipsoids with Pi � 0. It is easily

observed that LP is also a special case of QCQP with Pi = 0.

3.4.4 Second-Order Cone Programming

A convex optimization problem is Second-order cone programming (SOCP), in which

its standard form can be defined as

min
x

fTx,

s.t. ‖Aix + bi‖2 ≤ cTi x + di, i = 1, ...,m,

Fx = g, (3.12)

where x ∈ Rn is the optimization variable, Ai ∈ Rni×n, and F ∈ Rp×n. The

constraint ‖Ax + b‖2 ≤ cTx + d, where A ∈ Rk×n, is called as second-order cone

constraint, since it is the same as requiring the affine function (Ax + b, cTx + d)

to lie in the second-order cone in Rk+1. The SOCP (3.12) is equivalent to a QCQP

(which is achieved by squaring each constraints). Similarly, if Ai = 0, i = 1, ...,m,

then the SOCP (3.12) reduces to a (general) LP. SOCP is, however, more general

than QCQP and LP.

3.4.5 Semidefinite Programming

The conic form problem is called a semidefinite programming (SDP), when K is Sk+,

the cone of positive semidefinite k × k matrices, and can be expressed as

min
x

cTx,

s.t. x1F1 + x2F2 + ...+ xnFn + G � 0,

Ax = b, (3.13)
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where G, F1, ...,Fn ∈ Sk, and A ∈ Rp×n. The inequality here is called linear ma-

trix inequality (LMI). If the matrices G, F1, ...,Fn are all diagonal, then the LMI in

(3.13) is equivalent to a set of n linear inequalities, and the SDP (3.13) reduces to LP.

3.4.6 Duality and KKT Conditions

In this subsection, the Lagrange duality is introduced, which is to take (3.6) into

account by combining the objective function with a weighted sum of the constraint

functions. The Lagrange dual problem L : Rn×Rm×Rp → R for the problem (3.6)

can be written as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x), (3.14)

where λi ≥ 0, and νi ≥ 0 are the Lagrange dual multipliers associated with the i-th

inequality fi(x) ≤ 0 and equality hi(x) = 0 constraints, respectively. The objective

function f0(x) in (3.6) is termed the primal objective and the optimization variable x

is called the primal variable. Lagrange dual multipliers λ and ν associated with the

problem (3.14) are also known as the dual variables. The Lagrange dual objective

or the Lagrange dual function g : Rm ×Rp → R is defined as the minimum value of

the Lagrange dual function over x for λ ∈ Rm, ν ∈ Rp:

g(x, λ, ν) = inf
x∈D

L(x, λ, ν) (3.15)

The Lagrange dual function is always concave regardless of whether the original

problem is convex or not, since the dual function is the pointwise infimum of a series

of affine functions of (λ, ν). The dual function g(λ, ν) yields a lower bound on the

optimal value f0(x∗) to (3.6). For any λ � 0 and any ν,

g(λ, ν) ≤ f0(x∗), (3.16)
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For any feasible set (x, λ, ν), the following inequality holds

f0(x)≥ f0(x) +
m∑
i=1

λifi(x) +

p∑
i=1

νihi(x)

≥ inf
y∈D

(
f0(y) +

m∑
i=1

λifi(y) +

p∑
i=1

νihi(y)

)
≥ g(λ, ν), (3.17)

Duality gap is the difference between the primal objective f0(x) and the dual ob-

jective g(λ, ν). When the inequality (3.16) holds with strict inequality, then it is

called a weak duality. If the inequality (3.16) is satisfied with equality, it holds

strong duality between the primal problem and the dual problem. To achieve the

best lower bound of the original problem, the following dual problem can be solved:

max
λ,ν

g(λ, ν),

s.t. λ ≥ 0, (3.18)

The Lagrange dual problem is always a convex problem, since the objective function

in (3.18), which is always a concave function, is maximized with convex constraints.

This always holds regardless of the nature of the primal problem (3.6). The follow-

ing conditions are known as KKT conditions, which confirm the optimality of the

solutions

1. Primal constraints: fi(x) ≤ 0, i = 1, ...,m; hi(x) = 0, i = 1, ..., p.

2. Dual constraints: λ � 0.

3. Complementary slackness: λifi(x) = 0, i = 1, ...,m.

4. Gradient of Lagrange dual function with respect to x:

Of0(x) +
m∑
i=1

λiOfi(x) +

p∑
i=1

νiOhi(x) = 0. (3.19)

For general optimization, the above KKT conditions are necessary conditions for

optimality, but not sufficient conditions. For any optimization problem, if strong

duality holds, then the KKT conditions can be satisfied, but not vice versa. However,

for convex optimization problems, if the KKT conditions hold, then the strong
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duality holds between the primal problem and the dual problem, both of which are

optimal [70].

3.5 Summary

In this chapter, variety of general convex optimization problems have been studied

briefly. These problems can be effectively solved by using interior-point methods.

The concepts of Lagrange duality and KKT conditions have also been investigated.

However, this thesis mainly focus on SOCP and SDP to solve the optimization

problems in physical layer security. More details can be found in [70, 85, 87, 91,

92] about these convex optimization problem formulations, applications of convex

optimization, complexity analysis and interior-point methods.
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Chapter 4

Transmit Optimization for MISO

Secure Communications

This chapter studies transmit optimization for a multiple-input-single-output (MISO)

secrecy channel with multiple multi-antenna eavesdroppers. For this chapter, the

main contributions are given as follows:

• Power Minimization: Power minimization problem is investigated based on

global channel state information (CSI), where a second-order cone program-

ming (SOCP) based reformulation is proposed to design the transmit beam-

former to minimize the transmit power while satisfying the secrecy rate. In

addition, a closed-form solution for single eavesdropper case is derived based

on Karush-Kuhn-Tucker (KKT) conditions.

• Robust Outage Secrecy Rate Optimizations : Robust outage secrecy rate op-

timization techniques are presented incorporating statistical channel uncer-

tainty, where the outage probability constraint requires that the achieved se-

crecy rate exceeds certain thresholds with a specific probability. Due to non-

convex problem, a two-step algorithm with two conservative reformulations

(i.e., Bernstein-type inequality and S-Procedure) is proposed to reformulate it

into a convex optimization framework. It is proved that the solution to each

reformulated problem returns rank-one, which, therefore, guarantees that its

solution is also optimal to the original problem.
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4.1 System Model

A MISO secure channel is considered in this section, where a legitimate transmit-

ter establishes a confidential communications link to a legitimate receiver with K

multi-antenna eavesdroppers. It is assumed that the legitimate transmitter consists

of NT transmit antennas, whereas the legitimate receiver and the k-th eavesdropper

are equipped with single and NE,k receive antennas, respectively. The channel coef-

ficients at the legitimate user and the k-th eavesdropper are denoted by hs ∈ CNT×1

and He,k ∈ CNT×NE,k , respectively. The received signal at the legitimate receiver

and the k-th eavesdropper can be written as

ys = hHs x + ns, ye,k = HH
e,kx + ne,k, k = 1, ..., K,

where x ∈ CNT×1 is the signal vector intended to the legitimate user. In addition,

ns and ne,k are zero-mean additive white Gaussian noises with noise variance σ2
s and

the covariance matrix σ2
e,kI, respectively. The transmit covariance matrix is defined

as Qs = E
{
xxH

}
. The achieved secrecy rate at the legitimate receiver overheard

by the k-th eavesdropper is defined as

Rs,k =

[
log(1 +

1

σ2
s

hHs Qshs)− log

∣∣∣∣∣I +
1

σ2
e,k

HH
e,kQsHe,k

∣∣∣∣∣
]+

, ∀k. (4.1)

4.2 Power Minimization

In this section, transmit optimization for the power minimization problem subject

to the minimum secrecy rate constraint is considered based on the global CSI, which

can be written as

min
Qs�0

Tr (Qs) , s.t. min
k
Rs,k≥R, ∀k, (4.2)

where R is the predefined secrecy rate of the legitimate user. The problem (4.2) is

not convex due to the nonconvex secrecy rate constraint, which, thus, is relaxed by

the following matrix inequality [19,93]:

|I + A| ≥ 1 + Tr(A), (4.3)
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where the equality holds if and only if rank(A) = 1. If Qs is rank-one, the relaxed

problem is equivalent to the original problem (4.2), which can be written as

min
Qs�0

Tr (Qs)

s.t. 1+
1

σ2
s

hHs Qshs ≥ 2R

[
1+Tr

(
1

σ2
e,k

HH
e,kQsHe,k

)]
, ∀k,

rank(Qs) ≤ 1. (4.4)

Problem (4.4) is a standard semidefinite programming (SDP) by ignoring the non-

convex rank-one constraint, and its optimal solution has been shown to be rank-

one [19]. Hence, it is easily verified that the optimal solution to (4.4) is also optimal

to the original problem (4.2), which confirms the tightness of this relaxation. Ac-

cordingly, the following theorem holds:

Theorem 4.1 Due to the rank-one solution to (4.4), Qs can be decomposed as

Qs = wwH , thus, the problem (4.4) can be formulated into a SOCP as follows:

min
w

‖w‖2

s.t.


1
σs

hHs w

2
R
2

σe,k
HH
e,kw(

2R − 1
) 1

2

 �K 0, ∀k. (4.5)

Proof Please refer to Section 4.6.1. �

The problem (4.5) is convex, which can be solved by the interior-point methods [70].

Now, a special scenario is considered by using the following proposition:

Proposition 4.1 For a single eavesdropper scenario, the optimal solution can be

derived as

w∗=
√
p∗v∗, v∗=

v1

‖v1‖2

, p∗=λ∗(2R − 1), λ∗=
1

λmax(
1
σ2
s
hshHs − 2R

σ2
e
HeHH

e )
, (4.6)

where v1 = vmax(
1
σ2
s
hsh

H
s − 2R

σ2
e
HeH

H
e ).

Proof Please refer to Section 4.6.2. �
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4.3 Robust Outage Secrecy Rate Optimization

In the previous section, the power minimization problem has been solved based on

the assumption that the perfect CSI of the legitimate user and the eavesdroppers

can be available at the legitimate transmitter. However, it is not always possible

that the perfect CSI might be available at the legitimate transmitter due to chan-

nel estimation and quantization errors. Robust secrecy rate optimization has been

proposed incorporating channel uncertainty based on the worst case secrecy rate

in [19, 29, 48], where the channel errors were modelled as norm bound. However,

it is not possible that the legitimate transmitter always obtains these error bound

accurately. Therefore, in this section, both robust outage secrecy rate optimization

problems (i.e., robust power minimization and robust outage secrecy rate maximiza-

tion) with outage probability secrecy rate constraint are presented.

4.3.1 Problem Formulation

In this subsection, two robust outage secrecy rate optimization problems (i.e., ro-

bust power minimization and robust outage secrecy rate maximization) with outage

probability secrecy rate constraint are formulated, which are written as

min
Qs�0

Tr(Qs), s.t. Pr

{
min
k
Rs,k ≥ R

}
≥ 1− ρ, ∀k, (4.7a)

and

max
Qs�0

R, s.t. Pr

{
min
k
Rs,k ≥ R

}
≥ 1− ρ, ∀k, Tr(Qs) ≤ P, (4.7b)

The problems (4.7) can be reformulated as

min
Qs�0

Tr(Qs),

s.t. Pr

{
log(1 +

1

σ2
s

hHs Qshs)− log

∣∣∣∣∣I +
1

σ2
e,k

HH
e,kQsHe,k

∣∣∣∣∣ ≥ R

}
≥ 1− ρ, ∀k, (4.8a)
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and

max
Qs�0

R, s.t. Tr(Qs) ≤ P,

Pr

{
log(1 +

1

σ2
s

hHs Qshs)− log

∣∣∣∣∣I +
1

σ2
e,k

HH
e,kQsHe,k

∣∣∣∣∣ ≥ R

}
≥ 1− ρ, ∀k, (4.8b)

where ρ ∈ (0, 1] is the maximum allowable secrecy outage probability for the eaves-

droppers, and P is the maximum available transmit power.

Remark For robust power minimization problem, the legitimate transmitter re-

quires a certain amount of transmit power to satisfy the target secrecy rate within

the required outage probability. However, due to insufficient transmit power or ex-

tremely worse channel conditions of the main channel than the eavesdroppers, the

robust power minimization problem (4.8a) with outage probability secrecy rate con-

straint might turn out to be infeasible. To circumvent this infeasibility issue, the

robust outage secrecy rate maximization problem (4.8b) is considered with outage

probability secrecy rate and transmit power constraints. Similar statement has been

found in [48]. Under the transmit power constraint, what the maximum secrecy rate

R is that can be achieved subject to the (secrecy) outage probability less than 100

ρ % (i.e., 100 ρ %-secrecy outage capacity) [12, 94]. In order to solve (4.8b), a two-

stage algorithm is proposed. In the first stage, for any given R that makes (4.8a)

feasible, the minimized transmit power is achieved by solving it. It is easily observed

that the optimum value of R in (4.8b) monotonically increases with the transmit

power (i.e., Tr(Qs)). In the second stage, R is updated via a bisection search [70,95].

Hence, without loss of generality, the remaining part of this chapter only focuses on

(4.8a), which can be reformulated as a convex optimization framework by employing

Bernstein-type inequality or S-Procedure, though it is non-convex.

4.3.2 Channel Uncertainty Models

In this section, two statistical channel uncertainty models are specifically modelled.

• Partial Channel Uncertainty Model : Here, it is assumed that the legitimate

transmitter has the perfect CSI of the legitimate user, and imperfect CSI of
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the eavesdropper. Accordingly, the channel uncertainty model is given

He,k = H̄e,k + Ee,k, ∀k,

where H̄e,k ∈ CNT×NE,k is the estimated CSI of the k-th eavesdropper, and

vec(Ee,k) ∼ CN(0,Re,k) are the statistical information of channel error at the

k-th eavesdropper, Re,k is a positive semidefinite (PSD) matrix (� 0).

• Full Channel Uncertainty Model : In this case, the imperfect CSI at the legiti-

mate receiver and the eavesdroppers is available at the legitimate transmitter.

The actual channels at the legitimate receiver and the k-th eavesdropper can

be modelled respectively as

hs = h̄s + es, He,k = H̄e,k + Ee,k,∀k,

where h̄s ∈ CNT×1, H̄e,k ∈ CNT×NE,k are the estimated CSI, and es ∼ CN(0,Rs),

vec(Ee,k) ∼ CN(0,Re,k) are the statistical information of channel error at the

legitimate user and the k-th eavesdropper, respectively. In addition, Rs and

Re,k are PSD matrices (i.e., Rs � 0, Re,k � 0).

4.3.3 Robust Power Minimization Based on Partial Channel

Uncertainty

In this subsection, the robust power minimization problem (4.8a) is considered based

on the assumption of imperfect CSI only for the eavesdroppers, where two conserva-

tive reformulations (i.e., Bernstein-type inequality and S-Procedure) are employed

to make the outage probability secrecy rate constraint tractable. This robust opti-

mization problem can be expressed as

min
Qs�0

Tr(Qs)

s.t. Pr

{
log(1 +

1

σ2
s

hHs Qshs)− log

∣∣∣∣∣I +
1

σ2
e,k

HH
e,kQsHe,k

∣∣∣∣∣ ≥ R

}
≥ 1− ρ,

He,k = H̄e,k + Ee,k, vec(Ee,k) ∼ CN(0,Re,k), ∀k. (4.9)

40



4.3 Robust Outage Secrecy Rate Optimization

The above problem is not convex in terms of the outage probability secrecy rate

constraint. By considering the inequality in (4.3), the outage probability secrecy

rate constraint is relaxed as

Pr

{
Tr(HH

e,kQsHe,k) ≤
σ2
e,k

2R
(1 +

1

σ2
s

hHs Qshs)− σ2
e,k

}
≥ 1− ρ, ∀k. (4.10)

The left hand side (LHS) to (4.10) cannot be reformulated in terms of a closed-form

solution. Thus, the reformulation for this outage probability constraint is considered.

From the following matrix identities,

Vec(AXB) = (BT ⊗A)Vec(X), (4.11a)

Tr(ATB) = Vec(A)TVec(B), (4.11b)

(A⊗B)T = AT ⊗BT . (4.11c)

The constraint (4.10) is written as

Pr

{
eHe,k(I⊗Qs)ee,k + 2<{eHe,k(I⊗Qs)h̄e,k}+ h̄He,k(I⊗Qs)h̄e,k ≤ ck

}
≥ 1− ρ, ∀k,

(4.12)

where ck =
σ2
e,k

2R
(1 + 1

σ2
s
hHs Qshs)− σ2

e,k, h̄e,k = vec(H̄e,k) and ee,k = vec(Ee,k). Since

ee,k ∼ CN(0,Re,k), the following transformation is given

ee,k = R
1
2
e,kve,k, (4.13)

where ve,k ∼ CN(0, I). Thus, the constraint (4.12) can be equivalently reformulated

as

Pr

{
vHe,k

[
−R

1
2
e,k(I⊗Qs)R

1
2
e,k

]
ve,k + 2<

(
vHe,k[−R

1
2
e,k(I⊗Qs)h̄e,k]

)
+ [ck − h̄He,k(I⊗Qs)h̄e,k] ≥ 0

}
≥ 1− ρ, ∀k. (4.14)

4.3.3.1 Bernstein-Type Inequality

In order to make the outage probability constraint (4.14) more tractable, the Bernstein-

type inequality is applied and shown in the following lemma.

Lemma 4.1 [96]: For any (A,u, c), where A ∈ CN×N is a complex hermitian
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matrix, u ∈ CN×1, x ∼ CN(0, IN) and ρ ∈ (0, 1], the following inequalities hold:

Pr{xHAx + 2<[xHu] + c ≥ 0} ≥ 1− ρ, (4.15)

⇐



Tr(A)−
√
−2 ln(ρ)w + ln(ρ)y + c ≥ 0∥∥∥∥

 vec(A)
√

2u

∥∥∥∥ ≤ w

yIN + A � 0

(4.16)

where w and y are slack variables. The equalities (4.16) are jointly convex in terms

of A, w and y.

Based on Lemma 4.1, the constraint (4.14) can be reformulated as

Tr

[
R

1
2
e,k(I⊗Qs)R

1
2
e,k

]
+
√
−2 ln(ρ)wk − ln(ρ)yk −

σ2
e,k

2Rσ2
s

Tr[hsh
H
s Qs]

+ h̄He,k(I⊗Qs)h̄e,k ≤ σ2
e,k(

1

2R
− 1), (4.17a)∥∥∥∥[ vec(R

1
2
e,k(I⊗Qs)R

1
2
e,k)

√
2(R

1
2
e,k(I⊗Qs)h̄e,k)

]∥∥∥∥
2

≤ wk, (4.17b)

ykI−R
1
2
e,k(I⊗Qs)R

1
2
e,k � 0, yk≥0, ∀k. (4.17c)

According to (4.17), the robust power minimization (4.9) can be equivalently written

as

min
Qs

Tr(Qs), s.t. (4.17), Qs � 0. (4.18)

The problem (4.18) is convex and can be solved efficiently by using the interior-

point method [90]. In order to guarantee the optimal solution Qs to problem (4.18)

is also optimal to problem (4.9), the following theorem is provided to characterize

the rank-one property of the solution Qs.

Theorem 4.2 Provided that the problem in (4.9) is feasible, the problem (4.18)

returns a rank-one solution based on a restricted (4.17b).

Proof Please refer to Section 4.6.3. �
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4.3.3.2 S-Procedure

In this subsection, another conservative reformulation based on S-Procedure is con-

sidered to handle the outage probability secrecy rate constraint. First, the following

lemma is considered to set the channel uncertainty regions for (4.14).

Lemma 4.2 [83]: Provided a set S ⊂ CN×1 with Pr{v ∈ S} ≥ 1 − ρ such that

∀v ∈ S,vHAv + 2<{vHu}+ c ≥ 0, then

Pr{vHAv + 2<{vHu}+ c ≥ 0} ≥ 1− ρ (4.19)

From Lemma 4.2, given the following deterministic quadratic constraint

vHe,k[−R
1
2
e,k(I⊗Qs)R

1
2
e,k]ve,k + 2<{vHe,k[−R

1
2
e,k(I⊗Qs)h̄e,k]}

+ (ck − h̄He,k(I⊗Qs)h̄e,k) ≥ 0, ∀k, (4.20)

such that ve,k belongs to the following set

S = {ve,k|Pr(vHe,kve,k ≤ γ2
e,k) ≥ 1− ρ},∀k. (4.21)

Since ve,k ∼ CN(0, INE,kNT
), it can be easily shown that ‖ve‖2 is a Chi-square random

variable with degrees of freedom (DoF) 2NE,kNT . The probability of the event

(4.20) with the channel uncertainty regions in (4.21) is 1 − ρ, thus, the channel

uncertainty regions always hold for γe,k =
√

F−1(1−ρ)
2

, where F−1(a) represents the

inverse cumulative distribution function (CDF) of the Chi-square random variable

at a. Thus, the outage probability secrecy rate constraint (4.14) is equivalently

modified as
vHe,k[−R

1
2
e,k(I⊗Qs)R

1
2
e,k]ve,k + 2<{vHe,k[−R

1
2
e,k(I⊗Qs)h̄e,k]}

+(ck − h̄He,k(I⊗Qs)h̄e,k) ≥ 0,

−vHe,kve,k + γ2
e,k ≥ 0.

(4.22)

In order to handle (4.22), the following lemma is given

Lemma 4.3 (S-Procedure) [97]: Let fk(x), k = 1, 2, be defined as

fk(x) = xHAkx + 2<
{
bHk x

}
+ ck, (4.23)
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where Ak = AH
k ∈ Cn×n, bk ∈ Cn×1 and ck ∈ R. The implication f1(x) ≥ 0 =⇒

f2(x) ≥ 0 holds if and only if there exists µ ≥ 0 such that

 A2 b2

bH2 c2

− µ
 A1 b1

bH1 c1

 � 0, (4.24)

provided there exists a point x̃ with f1 (x̃) > 0.

By exploiting S-Procedure in Lemma 4.3, the problem (4.9) can be reformulated as

min
Qs,λk

Tr(Qs) s.t.

 λkI− [R
1
2
e,k(I⊗Qs)R

1
2
e,k] −R

1
2
e,k(I⊗Qs)h̄e,k

−h̄He,k(I⊗Qs)R
1
2
e,k tk − λkγ2

e,k

 � 0,

Qs � 0, λk ≥ 0, ∀k, (4.25)

where tk = ( 1
2R
− 1)σ2

e,k +
σ2
e,k

2Rσ2
s
hHs Qshs − hHe,k(I ⊗ Qs)he,k. The relaxed problem

(4.25) is a standard SDP, and is solved efficiently by using convex optimization

software [90]. Besides, it can be shown that the optimal solution to (4.25) is also

optimal to (4.9) by using the following theorem:

Theorem 4.3 Provided that the problem (4.9) is feasible, the relaxed problem (4.25)

always yield a rank-one solution.

Proof Please refer to Section 4.6.4. �

4.3.4 Robust Power Minimization Based on Full Channel

Uncertainty Model

In the previous section, the robust power minimization problem based on the partial

statistical channel uncertainty model has been investigated. Now, a more challeng-

ing channel uncertainty model is studied with the imperfect CSI of the legitimate

receiver as well as the eavesdroppers. Comparing with the previous channel uncer-

tainty model, it is more difficult to handle the outage probability constraint, since

the channel estimation errors of both the legitimate receiver and the eavesdroppers

44



4.3 Robust Outage Secrecy Rate Optimization

are considered. Accordingly, the problem (4.8a) is written as

min
Qs�0

Tr(Qs), s.t. Pr

{
log

(
1 +

1

σ2
s

(h̄s + es)
HQs(h̄s + es)

)
− log

∣∣∣∣∣I +
1

σ2
e,k

(H̄e,k + Ee,k)
HQs(H̄e,k + Ee,k)

∣∣∣∣∣ ≥ R

}
≥ 1− ρ,

es ∼ CN(0,Rs), vec(Ee,k) ∼ CN(0,Re,k), ∀k. (4.26)

Based on the full channel uncertainty model, (4.26) will be also solved by exploiting

Bernstein-type inequality and S-Procedure to make the outage probability secrecy

rate constraint tractable.

4.3.4.1 Bernstein-Type Inequality

In this subsection, the Bernstein-Type inequality is employed to tackle the out-

age probability secrecy rate constraint in (4.26), which is written by exploiting the

matrix inequalities (4.3) and (4.11) as

Pr

{
1

σ2
s

[
eHs Qses + 2<{eHs Qsh̄s}+ h̄Hs Qsh̄s

]
− 2R

σ2
e,k

[
eHe,k(I⊗Qs)ee,k

+ 2<{eHe,k(I⊗Qs)h̄e,k}+ h̄He,k(I⊗Qs)h̄e,k

]
≥ 2R − 1

}
≥ 1− ρ, ∀k. (4.27)

The above constraint is rewritten in terms of matrix form as

Pr

{
[eHs , e

H
e,k]

[ 1
σ2
s
Qs 0

0 − 2R

σ2
e,k

(I⊗Qs)

]
[eHs , e

H
e,k]

H

+ 2<
{

[eHs , e
H
e,k]

[ 1
σ2
s
Qs 0

0 − 2R

σ2
e,k

(I⊗Qs)

]
[h̄Hs , h̄

H
e,k]

H

}

+ [h̄Hs , h̄
H
e,k]

[ 1
σ2
s
Qs 0

0 − 2R

σ2
e,k

(I⊗Qs)

]
[h̄Hs , h̄

H
e,k]

H ≥ 2R − 1

}
≥ 1− ρ, ∀k. (4.28)

In order to handle the above outage probability constraint by the Bernstein-type

inequality as described in Section 4.3.3.1, the CSI errors of the legitimate receiver

and the eavesdropper are written as es = R
1
2
s vs, and ee,k = R

1
2
e,kve,k, respectively,

where vs ∼ CN(0, INT
) and ve,k ∼ CN(0, INTNe,k

), and set vk = [vHs ,v
H
e,k]

H , ∀k.
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Thus, this outage probability constraint can be reformulated as

Pr

{
vHk Akvk + 2<{vHk uk}+ ck ≥ 0

}
≥ 1− ρ, ∀k, (4.29)

where

Ak =

 1
σ2
s
R

1
2
s QsR

1
2
s 0

0 − 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)R

1
2
e,k

 ,
uk=

 1
σ2
s
R

1
2
s Qs 0

0 − 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)

 [h̄Hs h̄He,k]
H ,

ck = [h̄Hs h̄He,k]

[ 1
σ2
s
Qs 0

0 − 2R

σ2
e,k

(I⊗Qs)

]
[h̄Hs h̄He,k]

H + 1− 2R.

By applying Lemma 4.1, the constraint (4.29) is expressed as

Tr(Ak)−
√
−2 ln(ρ)wk + ln(ρ)yk + ck ≥ 0, (4.30a)∥∥∥∥[ vec(Ak)

√
2uk

]∥∥∥∥
2

≤ wk, (4.30b)

ykI + Ak � 0, yk ≥ 0,∀k. (4.30c)

Thus, replacing the constraints (4.27) with (4.30), the problem (4.26) is reformulated

as

min
Qs�0

Tr(Qs), s.t. (4.30), ∀k. (4.31)

The problem (4.31) is convex, which can be solved by using interior-point methods.

With more complex structure of the problem (4.31), it is more challenging to directly

prove a rank-one solution of Qs. However, the following theorem is provided to

guarantee a rank-one solution to (4.31).

Theorem 4.4 Provided that the problem in (4.26) is feasible, the reformulated prob-

lem (4.31) yields a rank-one solution subject to a restricted (4.30b).

Proof Please refer to Section 4.6.5. �

46



4.3 Robust Outage Secrecy Rate Optimization

4.3.4.2 S-Procedure

In this subsection, S-Procedure based reformulation is considered, where the problem

(4.26) is expressed as

min
Qs�0

Tr(Qs)

s.t. Pr

{
1

σ2
s

(h̄Hs Qsh̄s + 2<{eHs Qsh̄s}+ eHs Qses)−
2R

σ2
e,k

[h̄He,k(I⊗Qs)h̄e,k

+ 2<{ee,k(I⊗Qs)h̄e,k}+ eHe,k(I⊗Qs)ee,k] ≥ 2R − 1

}
≥ 1− ρ, ∀k. (4.32)

In order to tackle the outage probability constraint (4.32), es = R
1
2
s vs and ee,k =

R
1
2
e,kve,k are considered, respectively, where vs ∼ CN(0, INT

) and ve,k ∼ CN(0, INTNE,k
),

and thus (4.32) is reformulated as

min
Qs�0

Tr(Qs)

s.t. Pr

{
1

σ2
s

(vHs R
1
2
s QsR

1
2
s vs+2<{vHs R

1
2
s Qsh̄s}+h̄Hs Qsh̄s)−

2R

σ2
e,k

[vHe,kR
1
2
e,k(I⊗Qs)R

1
2
e,kve,k

+ 2<{vHe,kR
1
2
s (I⊗Qs)h̄e,k}+ h̄He,k(I⊗Qs)h̄e,k]≥2R − 1

}
≥ 1− ρ, ∀k. (4.33)

From [98], the channel uncertainty regions are equivalently defined as follows:

⇒ Rs = {vs : vHs vs ≤ γ2
s}, Re,k = {ve,k : vHe,kve,k ≤ γ2

e,k}, (4.34)

where γs =

√
F−1
s (1−ρ)

2
and γe,k =

√
F−1
e (1−ρ)

2
; F−1

s and F−1
e are the inverse cumula-

tive density function (CDF) of the Chi-squared distributed variables with DoF 2NT

and 2NTNE,k, respectively. Thus, the following problem is given

min
Qs�0

Tr(Qs)

s.t.
1

σ2
s

(vHs R
1
2
s QsR

1
2
s vs+2<{vHs R

1
2
s Qsh̄s}+h̄Hs Qsh̄s)−

2R

σ2
e,k

[vHe,kR
1
2
e,k(I⊗Qs)R

1
2
e,kve,k

+ 2<{vHe,kR
1
2
s (I⊗Qs)h̄e,k}+h̄He,k(I⊗Qs)h̄e,k]≥2R−1,

vHs vs ≤ γ2
s , vHe,kve,k ≤ γ2

e,k, ∀k. (4.35)
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Here, a worst-case optimization framework is considered to reformulate (4.35), which

can be developed as

min
Qs�0,ts≥0,te,k≥0

Tr(Qs), s.t. ts − te,k ≥ 2R − 1,

1

σ2
s

(vHs R
1
2
s QsR

1
2
s vs + 2<{vHs R

1
2
s Qsh̄s}+ h̄Hs Qsh̄s) ≥ ts,

2R

σ2
e,k

[vHe,kR
1
2
e,k(I⊗Qs)R

1
2
e,kve,k + 2<{vHe,kR

1
2
e,k(I⊗Qs)h̄e,k}+ h̄He,k(I⊗Qs)h̄e,k] ≤ te,k,

vHs vs ≤ γ2
s , vHe,kve,k ≤ γ2

e,k, ∀k, (4.36)

where ts > 0 and te,k > 0 are slack variables for the achieved rate of the legiti-

mate receiver and the k-th eavesdropper, respectively. By exploiting S-Procedure in

Lemma 4.3, the problem (4.36) is reformulated as

min
Qs�0

Tr(Qs)

s.t. ts − te,k ≥ 2R − 1, (4.37a)

Ts =

 µsI + 1
σ2
s
R

1
2
s QsR

1
2
s

1
σ2
s
R

1
2
s Qsh̄s

1
σ2
s
h̄Hs QsR

1
2
s

1
σ2
s
h̄Hs Qsh̄s − ts − µsγ2

s ,

 � 0, (4.37b)

Te,k=

µkI− 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)R

1
2
e,k − 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)h̄e,k

− 2R

σ2
e,k

h̄He,k(I⊗Qs)R
1
2
e,k te,k− 2R

σ2
e,k

h̄He,k(I⊗Qs)h̄e,k−µe,kγ2
e,k

�0, (4.37c)

µs ≥ 0, µe,k ≥ 0, ∀k. (4.37d)

The problem (4.37) is a SDP, which can be solved efficiently by interior-point

method, and the following theorem is given to confirm that (4.37) returns a rank-one

solution

Theorem 4.5 The optimal solution to problem (4.37) can be proven to be rank-one

provided that problem (4.26) is feasible.

Proof Please refer to Section 4.6.6.

4.4 Simulation Results

Simulation results are provided to validate the theoretical results to the proposed

schemes in this section. To evaluate the performance of the proposed schemes, the
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system consists of one multi-antenna legitimate transmitter, one single-antenna legit-

imate receiver and three multi-antenna eavesdroppers. Additionally, the legitimate

transmitter is equipped with five antennas (i.e., NT = 5), whereas each eavesdropper

consists of three antennas (i.e., NE,k = 3, ∀k). The maximum available transmit

power is assumed to be 10 dB unless specified. All channel coefficients are generated

using zero-mean circularly symmetric independent and identically distributed (i.i.d)

complex Gaussian random variables, and the noise powers at the legitimate user and

the eavesdroppers are set to be one (i.e., σ2
s = σ2

e,k = 1). The outage probability is

set to be ρ = 0.05.

4.4.1 Power Minimization

First, simulation results are given to confirm the closed-form solution derived in

(4.6), where the power minimization problem is formulated as a SOCP. The transmit

power is achieved by solving the SOCP, the SDP and closed-form expression for five

different random channels as shown in Table 4.1, where the target secrecy rate is set

to be 2 bps/Hz. From this table, it can be observed that the results of these three

schemes are the same, which confirms the closed-form solution and the SOCP.

Channels Closed-form
Convex optimization
SOCP SDP in [19]

Channel 1 1.8081 1.8081 1.8081
Channel 2 1.4943 1.4943 1.4943
Channel 3 1.1292 1.1292 1.1292
Channel 4 0.6896 0.6896 0.6896
Channel 5 1.6659 1.6659 1.6659

Table 4.1: The transmit power for three schemes.

4.4.2 Robust Outage Secrecy Rate Optimization with Par-

tial Channel Uncertainties

In this subsection, the performance of the proposed robust outage secrecy rate opti-

mization is evaluated by exploiting channel uncertainty of the eavesdroppers. Here,

the k-th eavesdropper’s CSI error covariance matrix is assumed to be Re,k = ε2
e,kI,

where ε2
e,k denotes the channel error variance of the k-th eavesdropper. The channel

error variance is set to be ε2
e,k = 0.01 or 0.04 unless specified.

Fig. 4.1 shows the CDF versus the achieved secrecy rate, where the target secrecy
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rate is set to be 1 bps/Hz. It is observed from this result that the Bernstein-type in-

equality scheme can satisfy the outage probability secrecy rate constraint within the

required probability, whereas the S-Procedure scheme has a small proportion of the

achieved secrecy rates that cannot satisfy the outage constraint within the required

probability, since approximately 10 % of the achieved secrecy rates are below the

predefined secrecy rate. Fig. 4.2 represents the achieved secrecy rate with different
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Figure 4.1: The CDF of secrecy rate with partial channel uncertainties.
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Figure 4.2: The secrecy rate with different transmit powers based on partial channel
uncertainties.

transmit powers, where the achieved secrecy rate increases with the transmit power,

50



4.4 Simulation Results

and the Bernstein-type inequality scheme outperforms S-Procedure scheme in terms

of the achieved secrecy rate. The achieved secrecy rate with different error variances
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Figure 4.3: The secrecy rate with different error variances based on partial channel
uncertainties.

(i.e., ε2
e,k) is shown in Fig. 4.3. As seen in this result, the achieved secrecy rates of

both robust proposed schemes and the worst-case scheme decrease with increasing

error variance. Additionally, compared with the worst-case scheme shown in [19],

both robust proposed scheme outperform the worst-case scheme, and Bernstein-type

inequality scheme outperforms S-Procedure scheme.

4.4.3 Robust Outage Secrecy Rate Optimization with Full

Channel Uncertainties

Next, simulation results are provided to evaluate the achieved secrecy rate perfor-

mance based on the full channel uncertainty model, where the imperfect CSI of both

the legitimate user and the eavesdroppers is available at the legitimate transmitter.

The CSI error covariance matrices of the legitimate user and the eavesdropper are

assumed to be Rs = ε2
sI, Re,k = ε2

e,kI, where ε2
s and ε2

e,k represent the channel error

variances of the legitimate user and the k-th eavesdropper, respectively. Here, it is

assumed that the channel error variances as ε2
s = ε2

e,k = 0.01, 0.04 or 0.1.

The CDF versus the achieved secrecy rate is shown in Fig. 4.4, where the target

secrecy rate is assumed to be 1 bps/Hz, and the Bernstein-type inequality scheme
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Figure 4.4: The CDF of secrecy rate with full channel uncertainties.

can satisfy the outage probability secrecy rate constraint since the approximately 5

% of the achieved secrecy rates are below the target secrecy rate. However, the S-

Procedure scheme has approximately 10 % of the achieved secrecy rates that cannot

satisfy the outage probability secrecy rate constraint, which is under the prede-

fined secrecy rate. Fig. 4.5 shows the achieved secrecy rate with different transmit
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Figure 4.5: The secrecy rate with different transmit powers based on full channel
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powers, where the achieved secrecy rate increases with transmit power, and the
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4.5 Summary

Bernstein-type inequality scheme outperforms S-Procedure scheme. The achieved

secrecy rate with different error variances is shown in Fig. 4.6. As seen in this re-

sult, the achieved secrecy rate of both proposed schemes and the worst-case scheme

decrease with error variance. In addition, the Bernstein-type inequality scheme out-

performs the S-Procedure scheme and the worst-case scheme. Besides, the achieved
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Figure 4.6: The secrecy rate with different error variances based on full channel
uncertainties.

secrecy rate versus the number of the eavesdroppers (i.e., K) is plotted in Fig. 4.7.

From this result, the achieved secrecy rate gets decreased as more eavesdroppers

are present. Also, Bernstein-type inequality scheme outperforms the S-Procedure

scheme in terms of the achieved secrecy rate.

4.5 Summary

In this chapter, different transmit optimization techniques for MISO secrecy chan-

nel has been studied. First, the power minimization was formulated into a SOCP

framework for the case of a single legitimate user and multiple eavesdroppers, and

a closed-form solution was derived for the case of only single eavesdropper. Addi-

tionally, robust outage secrecy rate optimization problems with outage probability

secrecy rate constraint have been presented incorporating two statistical channel

uncertainty models. The robust outage secrecy rate optimization problems were
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Figure 4.7: The secrecy rate with different numbers of the eavesdropper based on
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not convex in terms of the outage probability constraint. In order to make it

tractable, a two-step algorithm with both conservative approximation approaches

(i.e., Bernstein-type inequality and S-Procedure) was proposed to handle the out-

age probability constraint. An initial proof shows the solution to each reformulated

problem returns rank-one, which, therefore, guarantees that its solution is also op-

timal to the original problem. Simulation results have been provided to confirm the

performance of the proposed schemes.

4.6 Appendix

4.6.1 Proof of Theorem 4.1

First, due to the rank-one solution of the problem (4.4), it can be written with

Qs = wwH as

min
w
‖w‖2

2

s.t.
1 + 1

σ2
s
wHhsh

H
s w

1 + 1
σ2
e,k

wHHe,kHH
e,kw

≥ 2R,∀k. (4.38)
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Then, the above problem can be written as

min
w
‖w‖2

2

s.t.
2R

σ2
e,k

‖HH
e,kw‖2+(2R − 1)≤ 1

σ2
s

|hHs w|2, ∀k. (4.39)

From the following inequality relation x

y

 �K 0,⇔ ‖y‖2 ≤ x. (4.40)

The problem (4.2) is reformulated as a SOCP as defined in (4.5). This completes

the proof of Theorem 4.1. �

4.6.2 Proof of Proposition 4.1

First, let w =
√
pv, the problem (4.38) for only one eavesdropper can be written as

min
p,v

pvHv, s.t.
vH(I + p

σ2
s
hsh

H
s )v

vH(I + p
σ2
e
HeHH

e )v
≥ 2R, vHv = 1, p ≥ 0. (4.41)

In order to solve the above problem, the Lagrange dual function to (4.38) is consid-

ered, which can be written as,

L(w, λ) = wHw + λ2R(1 +
1

σ2
e

wHHeH
H
e w)− λ(1 +

1

σ2
s

wHhsh
H
s w)

= wH

(
I +

1

σ2
e

λ2RHeH
H
e −

1

σ2
s

λhsh
H
s

)
w + λ

(
2R − 1

)
, (4.42)

where λ ≥ 0 is dual multiplier with the secrecy rate constraint. The corresponding

dual problem is defined as follows:

max
λ

λ
(
2R − 1

)
, s.t. Z , I +

1

σ2
e

λ2RHeH
H
e −

1

σ2
s

λhsh
H
s � 0, λ ≥ 0. (4.43)

In order to show the strong duality between the problem (4.38) and its dual problem,

its Hessian matrix is derived as

∇wwH = I +
1

σ2
e

λ2RHeH
H
e −

1

σ2
s

λhsh
H
s . (4.44)
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The strong duality holds between the primal problem and its dual problem provided

the Hessian is a PSD matrix [99]. This will be satisfied provided that the problem

(4.38) is feasible, which implies that the strong duality holds between (4.38) and

(4.43). Thus, the optimal λ∗ is derived as

λ∗ =
1

λmax(
1
σ2
s
hshHs − 2R

σ2
e
HeHH

e )
. (4.45)

Note that the above equality can be obtained based on the fact Tr(A) ≥ λmax(A).

Thus, the minimum power can be derived as

p∗ = λ∗(2R − 1). (4.46)

In addition, the optimal w lies in the null space of Z, thus

v1 = vmax(
1

σ2
s

hsh
H
s −

2R

σ2
e

HeH
H
e ), v =

v1

‖v1‖2

. (4.47)

This completes the proof of Proposition 4.1. �

4.6.3 Proof of Theorem 4.2

In order to show the rank-one solution to the problem (4.18), the SOCP constraint

(4.17b) can be restrictedly given by

√
‖R

1
2
e,k(I⊗Qs)R

1
2
e,k‖2

F + 2‖R
1
2
e,k(I⊗Qs)h̄e,k‖2≤

√
‖R

1
2
e,k(I⊗Qs)‖2

F (‖R
1
2
e,k‖2

F + 2‖h̄e,k‖2)

≤
√

Tr[(I⊗Qs)(I⊗Qs)H ]
√

Tr2(Re,k) + 2Tr(Re,k)‖h̄e,k‖2 ≤ wk,

⇒ Tr[(I⊗Qs)(I⊗Qs)
H ]l2k ≤ w2

k, (4.48)

where lk =
√

Tr2(Re,k) + 2Tr(Re,k)‖h̄e,k‖2. By exploiting Tr[(A ⊗ B)(C ⊗ D)] =

Tr(AB⊗CD), Tr(A⊗B) = Tr(A)Tr(B) and (A⊗B)T = AT ⊗BT , the following
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relations hold:

l2kNE,kTr(QsQ
H
s ) ≤ w2

k, ⇒ λmax(QsQ
H
s ) ≤ Tr(QsQ

H
s ) ≤ w2

k

l2kNE,k

,

⇒ QsQ
H
s � t2kI, ⇒ Sk =

 tkI Qs

QH
s tkI

 � 0, (4.49)

where t2k =
w2

k

l2kNE,k
. Thus, the constraint (4.49) can be rewritten as the following

linear matrix inequality (LMI)

 tkI 0

0H tkI

�
 I

0

Qs

[
0 −I

]
+

 0

−I

QH
s

[
I 0

]
,

‖Qs‖ ≤ tk.

(4.50)

In order to further reformulate the above LMI, the following lemma is considered:

Lemma 4.4 (Nemirovski lemma) [100]: For a given set of matrices A = AH , B

and C, the following LMI is satisfied:

A � BXC + CHXHB, ‖X‖ ≤ t, (4.51)

if and only if there exists non-negative real numbers a such that A− aCHC −tBH

−tB aI

 � 0. (4.52)

By applying Lemma 4.4 to the LMI in (4.50),

Sk =


 tkI 0

0 tkI

− a1

 0

−I

[ 0 −I
]
−tk

 I

0


−tk

[
I 0

]
a1I

 � 0. (4.53)

From (4.53), it is claimed that constraint (4.49) can be equivalently rewritten with-

out Qs. In order to prove rank-one of the power minimization problem, the La-
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grangian dual function of (4.18) is given in (4.54),

L(Qs,Z, λk,Ck) = Tr(Qs)− Tr(ZQs) +
K∑
k=1

λk

[
Tr[(Re,k + h̄e,kh̄

H
e,k)(I⊗Qs)]

−
σ2
e,k

2Rσ2
s

Tr(hsh
H
s Qs) +

√
−2 ln(ρ)wk − ln(ρ)yk − σ2

e,k(
1

2R
− 1)

]
−

K∑
k=1

Tr

[
Ck

(
ykI−R

1
2
e,k(I⊗Qs)R

1
2
e,k

)]

= Tr(Qs)−Tr(ZQs)+
K∑
k=1

NE,k∑
n=1

λkTr(H
(n,n)
k Qs)−

K∑
k=1

λkσ
2
e,k

2Rσ2
s

Tr(hsh
H
s Qs)

+
K∑
k=1

NE,k∑
n=1

Tr[T
(n,n)
e,k Qs]. (4.54)

where Z, λk and Ck are dual variables associated with Qs, (4.17a) and (4.17c),

respectively. In addition, H
(n,n)
k ∈ HNT×NT

+ and T
(n,n)
e,k ∈ HNT×NT

+ are block subma-

trices of Re,k+h̄e,kh̄
H
e,k and R

1
2
e,kCkR

1
2
e,k, respectively, which are expressed specifically

as follows:

Re,k + h̄e,kh̄
H
e,k =


H

(1,1)
k · · · H

(1,NE,k)

k

...
. . .

...

H
(NE,k,1)

k · · · H
(NE,k,NE,k)

k

 (4.55)

and

R
1
2
e,kCkR

1
2
e,k =


T

(1,1)
e,k · · · T

(1,NE,k)

e,k

...
. . .

...

T
(NE,k,1)

e,k · · · T
(NE,k,NE,k)

e,k

 (4.56)

The following KKT conditions related to the proof are considered

∂L

∂Qs

= 0, (4.57a)

ZQs = 0, (4.57b)

Qs � 0, Z � 0, λk ≥ 0, Ck � 0,∀k. (4.57c)

58



4.6 Appendix

According to the KKT condition in (4.57a),

I− Z +
K∑
k=1

NE,k∑
n=1

λkH
(n,n)
k − thshHs +

K∑
k=1

NE,k∑
n=1

T
(n,n)
e,k = 0, (4.58)

where t =
∑K

k=1

λkσ
2
e,k

2Rσ2
s

. Postmultiplying the two sides of (4.58) by Qs, and based on

(4.57b), the following equality holds

(
I +

K∑
k=1

NE,k∑
n=1

λkH
(n,n)
k +

K∑
k=1

NE,k∑
n=1

T
(n,n)
e,k

)
Qs = thsh

H
s Qs, (4.59)

From (4.59), it is claimed that there is at least one λk, ∀k such that λk > 0,

which is shown by contradiction. If all λk = 0 for ∀k, then t = 0 ⇒
(

I +∑K
k=1

∑NE,k

n=1 T
(n,n)
e,k

)
Qs = 0 (c.f. (4.59)) such that Qs = 0 due to I+

∑K
k=1

∑NE,k

n=1 T
(n,n)
e,k �

0, which implies that the legitimate transmitter does not send any information to

the legitimate receiver. Thus, there exists at least one λk > 0 such that t > 0 holds.

According to (4.59), the following relation of rank holds:

rank(Qs) = rank

[(
I +

K∑
k=1

NE,k∑
n=1

λkH
(n,n)
k +

K∑
k=1

NE,k∑
n=1

T
(n,n)
e,k

)
Qs

]
= rank(thsh

H
s Qs) ≤ min{rank(thsh

H
s ), rank(Qs)} ≤ 1. (4.60)

This completes the proof of Theorem 4.2. �

4.6.4 Proof of Theorem 4.3

In order to show the rank-one solution to (4.25), the first step is to write the dual

function of (4.25) as follows:

L(Qs,Z,Yk) = Tr(Qs)− Tr(ZQs)−
K∑
k=1

Tr(YkAk), (4.61)

where

Ak =

 λkI + [−R
1
2
e,k(I⊗Qs)R

1
2
e,k] −R

1
2
e,k(I⊗Qs)h̄e,k

−h̄He,k(I⊗Qs)R
1
2
e,k tk − λkγ2

e,k

 ,
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in addition, Z and Yk are the dual variables associated with Qs and Ak, respectively.

Then, Ak is rewritten for the convenience of notations.

Ak =

 λkI 0

0 ( 1
2R
− 1)σ2

e,k − λkγ2
e,k

+
σ2
e,k

2Rσ2
s

[
0 hs

]H
Qs

[
0 hs

]
−
[

R
1
2
e,k h̄e,k

]H
(I⊗Qs)

[
R

1
2
e,k h̄e,k

]
. (4.62)

From (4.62), the Lagrangian dual function can be rewritten as (4.63),

L(Qs,Z,Yk)=Tr(Qs)−Tr(ZQs)+
K∑
k=1

Tr

(
Yk

[
R

1
2
e,k h̄e,k

]H
(I⊗Qs)

[
R

1
2
e,k h̄e,k

])

−
K∑
k=1

Tr

(
Yk

λkI 0

0 ( 1
2R
− 1)σ2

e,k−λkγ2
e,k

)− K∑
k=1

σ2
e,k

2Rσ2
s

Tr

(
Yk

[
0 hs

]H
Qs

[
0 hs

])

= Tr(Qs)−Tr(ZQs)+
K∑
k=1

NE,k∑
n=1

Tr

(
S

(n,n)
k Qs

)
−

K∑
k=1

Tr

(
Yk

λkI 0

0 ( 1
2R
− 1)σ2

e,k−λkγ2
e,k

)

−
K∑
k=1

σ2
e,k

2Rσ2
s

Tr

(
Yk

[
0 hs

]H
Qs

[
0 hs

])
, (4.63)

where S
(n,n)
k ∈ HNT

+ is a submatrix of
[
R

1
2
e,k h̄e,k

]
Yk

[
R

1
2
e,k h̄e,k

]H
similar to Ap-

pendix III. Next, the following KKT conditions is employed,

∂L

∂Qs

= I− Z−
[

0 hs

]
T
[

0 hs

]H
+

K∑
k=1

NE,k∑
n=1

S
(n,n)
k = 0,

⇒ I− Z +
K∑
k=1

NE,k∑
n=1

S
(n,n)
k =

[
0 hs

]
T
[

0 hs

]H
, (4.64)

where T=
∑K

k=1

σ2
e,k

2Rσ2
s
Yk. Multiplying Qs by the two sides of (4.64),

(
I +

K∑
k=1

NE,k∑
n=1

S
(n,n)
k

)
Qs =

[
0 hs

]
T
[

0 hs

]H
Qs, (4.65)

From the above equality, it is shown that T 6= 0 by contradiction. If T = 0, then(
I+
∑K

k=1

∑NE,k

n=1 S
(n,n)
k

)
Qs = 0. such that Qs = 0 due to I+

∑K
k=1

∑NE,k

n=1 S
(n,n)
k � 0,

which violates Qs 6= 0 due to R > 0. Thus, it is claimed that T � 0, and the rank-
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one relations hold:

rank(Qs) = rank

((
I +

K∑
k=1

NE,k∑
n=1

S
(n,n)
k

)
Qs

)
= rank

([
0 hs

]
T
[

0 hs

]H
Qs

)
≤ rank(

[
0 hs

]
) ≤ 1, (4.66)

This completes the proof of Theorem 4.3. �

4.6.5 Proof of Theorem 4.4

In order to prove the rank-one solution to (4.31), first, transform this problem into

the following form

min
Qs

Tr(Qs)

s.t.
1

σ2
s

[Tr(h̄sh̄
H
s Qs)+Tr(RsQs)]−

2R

σ2
e,k

Tr[(h̄e,kh̄
H
e,k+Re,k)(I⊗Qs)]+ak≥0, wkI fk

fHk wk

 � 0, ykINT
+

1

σ2
s

R
1
2
s QsR

1
2
s � 0, (4.67a)

ykINTNE,k
− 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)R

1
2
e,k � 0, (4.67b)

where ak = 1− 2R −
√
−2 ln ρwk + ln ρyk, and

fk =


vec

 1
σ2
s
R

1
2
s QsR

1
2
s 0

0 − 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)R

1
2
e,k


√

2

 1
σ2
s
R

1
2
s Qs 0

0 − 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)

[ h̄Hs h̄He,k

]
 . (4.68)

The first constraints in (4.67a) can also be restrictedly modified by using the similar

approach as shown in the proof of Theorem 4.2, whilst the Hermitian matrix in the

second constraint is evidently positive definite as a result of its structure. Then, the
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Lagrange dual function to (4.67) is written

L(Qs,Z, λk,Bk,Ck) = Tr(Qs)− Tr(ZQs)−
K∑
k=1

λk

(
1

σ2
s

[Tr(h̄sh̄
H
s Qs) + Tr(RsQs)]

− 2R

σ2
e,k

Tr[(h̄e,kh̄
H
e,k + Re,k)(I⊗Qs)] + ak

)
−

K∑
k=1

Tr

[
Ck

(
ykINTNE,k

− 2R

σ2
e,k

R
1
2
e,k(I⊗Qs)R

1
2
e,k

)]
, (4.69)

According to the relevant KKT condition,

∂L

∂Qs

=I−
K∑
k=1

λk
σ2
s

h̄sh̄
H
s −

K∑
k=1

λk
σ2
s

Rs+
K∑
k=1

NE,k∑
n=1

λk2
R

σ2
e,k

H
(n,n)
k +

K∑
k=1

NE,k∑
n=1

2R

σ2
e,k

R
(n,n)
k −Z=0,

(4.70)

where H
(n,n)
k ∈ HNT

+ is a block submatrix of he,kh
H
e,k + Re,k, and R

(n,n)
k ∈ HNT

+ is a

block submatrix of R
1
2
e,kCkR

1
2
e,k. Then, setting

T = I +
K∑
k=1

NE,k∑
n=1

2R

σ2
e,k

(
λkH

(n,n)
k + R

(n,n)
k

)
−
( K∑

k=1

λk
σ2
s

)
Rs, (4.71)

the following equality holds:

Z = T−
( K∑

k=1

λk
σ2
s

)
h̄sh̄

H
s . (4.72)

From (4.71), it is easily verified that T � 0 when λk = 0. Thus, only the case of

λk > 0 is considered. By setting v =
∑K

k=1
λk
σ2
s
> 0, one can easily observe that T � 0

and rank(vhsh
H
s ) = 1 from (4.72). Let rank(T) = rT, the following assumption is

considered:

if T � 0, then this implies rT = NT , according to [101, Lemma 5], rank(Z) ≥ NT−1.

It is claimed that rank(Z) 6= NT due to Qs 6= 0. Thus, rank(Z) = NT −1 only when

rank(Qs) = 1 due to the KKT condition ZQs = 0. Therefore, the remaining part is

to show that T � 0. By exploiting [101, Appendix D], it is concluded that T � 0

such that rank(Qs) = 1.

This completes the proof of Theorem 4.4. �
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4.6.6 Proof of Theorem 4.5

In order to show the rank-one solution of the problem in (4.37), Ts and Te,k can be

modified as follows:

Ts = Ξs + VH
s QsVs, (4.73a)

Te,k = Ξe,k −VH
e,k(I⊗Qs)Ve,k, (4.73b)

where

Ξs =

 µsI 0

0 −ts − µsγ2
s ,

 ,Vs =
1

σs

[
R

1
2
s h̄s

]
,

Ξe,k =

 µkI 0

0 te,k − µe,kγ2
e,k

 ,Ve,k =
2

R
2

σe,k

[
R

1
2
e,k h̄e,k

]
.

Then, the Lagrange dual function to problem (4.37) is written by replacing (4.37b)

and (4.37c) with (4.73a) and (4.73b), respectively,

L(Qs,Z,As,Ae,k, νk, λs, λe,k)=Tr(Qs)−Tr(QsZ)− Tr(TsAs)−
K∑
k=1

Tr(Te,kAe,k)

−
K∑
k=1

νk(ts − te,k − 2R + 1)− λsµs −
K∑
k=1

λe,kµe,k, (4.74)

where Z, As, Ae,k, νk, λs and λe,k are dual variables associated with Qs, Ts, Te,k,

µs, µe,k, and (4.37a), respectively. The relevant KKT conditions are considered as

follows:

∂L

∂Qs

= 0, (4.75a)

QsZ = 0, (4.75b)

TsAs = 0, (4.75c)

As � 0,Ae,k � 0,Qs � 0, λs ≥ 0. (4.75d)

From (4.75a),

∂L

∂Qs

= I− Z−VsAsV
H
s +

K∑
k=1

NE,k∑
n=1

S
(n,n)
e,k = 0, (4.76)
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where S
(n,n)
e,k ∈ HNT

+ is a block submatrix of Ve,kAe,kV
H
e,k.

Ve,kAe,kV
H
e,k =


S

(1,1)
e,k · · · S

(1,NE,k)

e,k

...
. . .

...

S
(NE,k,1)

e,k · · · S
(NE,k,NE,k)

e,k

 . (4.77)

By premultiplying Qs by both sides of (4.76),

Qs

(
I +

K∑
k=1

NE,k∑
n=1

S
(n,n)
e,k

)
= QsVsAsV

H
s (4.78)

From the above equality, one can observe the following rank relations,

rank(Qs) = rank

[
Qs

(
I +

K∑
k=1

NE,k∑
n=1

S
(n,n)
e,k

)]
= rank

(
QsVsAsV

H
s

)
. (4.79)

In order to prove rank(Qs) ≤ 1, it will be shown that rank(QsVsAsV
H
s ) ≤ 1 holds.

Due to (4.75c), we postmultiply VH
s by the two sides of this KKT condition,

ΞsAsV
H
s +VH

s QsVsAsV
H
s =0. (4.80)

As a result of the following equalities,

1

σs

[
R

1
2
s 0

]
Ξs = µs

(
Vs−

1

σs

[
0 h̄s

])
,

1

σs

[
R

1
2
s 0

]
VH
s =

1

σ2
s

Rs.

By premultiplying both sides of (4.80) by 1
σs

[
R

1
2
s 0

]
,

µs

(
Vs −

1

σs

[
0 h̄s

])
AsV

H
s +

1

σ2
s

RsQsVsAsV
H
s = 0,

⇒
(
µsI +

1

σ2
s

RsQs

)
VsAsV

H
s =

µs
σs

[
0 h̄s

]
AsV

H
s . (4.81)

Now, the following two scenarios for the equality (4.81) are provided. First, the

scenario when µs = 0 is discussed. From (4.73a),

Ts =

 0 0

0 −ts

+ VH
s QsVs. (4.82)
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Assuming that rank(VH
s QsVs) = rs, it thus straightforwardly follows from (4.82)

that

rank(Ts) ≥ rank(VH
s QsVs)− rank

 0 0

0 ts

 = rs − 1,

⇒ rank(null(Ts))≤NT +1−(rs−1). (4.83)

Assuming that there exists at least one ξ that lies in the null space of VH
s QsVs such

that Q
1
2
s Vsξ = 0. This assumption holds true, since null(VH

s QsVs) is non-empty,

due to rank(VH
s QsVs) < (NT + 1). Pre-multiply ξH and postmultiply ξ on both

sides of (4.82),

ξHTsξ = ξH

0 0

0 −ts

 ξ ≥ 0. (4.84)

It is easily verified that ξHTsξ = 0 due to ts > 0 and therefore,

∀ξ ∈ null(VH
s QsVs)⇒ ξ ∈ null(Ts),

⇒ null(VH
s QsVs) ⊆ null(Ts). (4.85)

According to (4.85),

rank(null(VH
s QsVs)) ≤ rank(null(Ts)),

⇒ rank(null(Ts)) ≥ NT + 1− rs. (4.86)

Combining (4.83) with (4.86),

NT + 1− rs ≤ rank(null(Ts)) ≤ NT + 1− (rs − 1). (4.87)

Since TsAs = 0,

NT + 1− rs ≤ rank(As) ≤ NT + 1− (rs − 1). (4.88)
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Accordingly, As is of the following structure:

As =

NT +1−rs∑
i=1

αiξiξ
H
i + βηηH , (αi > 0,∀i, β ≥ 0). (4.89)

If β = 0, then

QsVsAsV
H
s =Q

1
2
s Q

1
2
s Vs

(NT +1−rs∑
i=1

αiξiξ
H
i

)
VH
s =Q

1
2
s

NT +1−rs∑
i=1

αi

(
Q

1
2
s Vsξiξ

H
i VH

s

)
=0.

(4.90)

Together with (4.79), rank(Qs) = 0 holds, which contradicts to the optimality of

the problem (4.8a). Therefore, β > 0 and

QsVsAsV
H
s = Q

1
2
s Q

1
2
s VH

s

(NT +1−rs∑
i=1

αiξiξ
H
i +βηηH

)
Vs = Q

1
2
s

(
0+βQ

1
2
s Vsηη

HVH
s

)
= βQsVsηη

HVH
s . (4.91)

One can easily observe from (4.91) that rank(QsVsAsV
H
s ) ≤ rank(ηηH) = 1.

Moreover, the case of µs > 0 is provided, since µsI+ 1
σ2
s
RsQs is of full-rank, according

to (4.81),

rank(VsAsV
H
s ) = rank

[
µs
σs

(
µsI +

1

σ2
s

RsQs

)−1 [
0 h̄s

]
VsAsV

H
s

]
≤ rank

([
0 h̄s

])
≤ 1,⇒ rank(QsVsAsV

H
s ) ≤ 1, (4.92)

which completes the proof of Theorem 4.5. �
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Chapter 5

Transmit Optimization for MIMO

Secure Communications with

Cooperative Jammer

In this chapter, transmit optimization for multiple-input multiple-output (MIMO)

secrecy channel is investigated to solve the secrecy rate optimization problems (i.e.,

power minimization and secrecy rate maximization), where a multi-antenna coop-

erative jammer (CJ) is employed to enhance secret communication in the presence

of a multi-antenna eavesdropper. For this secrecy network, the main contributions

are presented as follows:

1. Secrecy rate optimization: First, two secrecy optimization problems, namely,

power minimization and secrecy rate maximization are considered based on

the assumption that the legitimate transmitter perfectly knows the channel

state information (CSI) of the legitimate receiver and the eavesdropper. Both

optimization problems are not jointly convex due to the transmit covariance

matrices of the transmitter and the CJ. To circumvent the non-convexity is-

sues, the transmit covariance matrices of the legitimate transmitter and the CJ

are designed alternatively. For a given transmit covariance matrix at the CJ,

the secrecy rate optimization problems are reformulated into convex ones by

a first-order Taylor approximation. Then, an iterative algorithm to solve both

approximated problems is proposed based on dual problem and subgradient

method.

2. Robust secrecy rate optimization: In the previous optimization problems, it is
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assumed that the transmitters have the perfect CSI of the eavesdropper chan-

nel. However, it is generally difficult that the perfect CSI is available at the

transmitter due to lack of cooperation between the legitimate transmitters and

the eavesdropper as well as the channel estimation errors. In order to incor-

porate the imperfect eavesdropper CSI, robust optimization techniques based

on the worst-case secrecy rates is considered. An alternative optimization

algorithm is proposed, where the transmit covariance matrices of the legiti-

mate transmitter and the CJ are optimally designed, alternatively. It is shown

that the robust secrecy rate maximization problem can be reformulated into

a semidefinite programming (SDP) by exploiting the S-Procedure.

3. Secrecy Rate Maximization based on Game Theory : Finally, the secrecy rate

maximization problem is considered based on game theory, where the jammer

is considered as a private CJ who introduces charges for its jamming service

based on the amount of the interference caused to the eavesdropper. More-

over, the legitimate transmitter ‘pays’ for this jamming service to improve the

achieved secrecy rate. This secrecy rate maximization problem is formulated

as a Stackelberg game, where the private CJ and the transmitter are modelled

as the leader and follower of the game, respectively, both of them try to max-

imize their own revenues. For the proposed game, a Stakelberg equilibrium

is analytically derived where both the transmitter and the private CJ come

to an agreement on the interference requirement at the eavesdropper and the

interference price.

5.1 System Model

In this chapter, a MIMO wiretap channel is considered as shown in Fig. 5.1, where

a multi-antenna transmitter establishes secure communication with a multi-antenna

receiver in the presence of a multi-antenna eavesdropper, and a multi-antenna CJ

assists the secured communication between the legitimate terminals by providing its

jamming service to interfere the eavesdropper. It is assumed that the transmitter

and the CJ consist of with NT and NJ transmit antennas, respectively, whereas

the legitimate receiver and the eavesdropper is equipped with MR and ME receive

antennas, respectively. The channel coefficients between the legitimate transmitter
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Figure 5.1: A MIMO secrecy channel with a CJ in the presence of a multi-antenna
eavesdropper

and the legitimate receiver as well as the eavesdropper are denoted by Hs ∈ CMR×NT

and He ∈ CME×NT , respectively. On the other hand, Hj ∈ CMR×NJ and Hje ∈

CME×NJ represent the channel coefficients between the CJ and the legitimate receiver

as well as the eavesdropper, respectively. The received signals at the legitimate

receiver and the eavesdropper are written as

yr = Hsx1 + Hjx2 + nr, ye = Hex1 + Hjex2 + ne, (5.1)

where x1 ∈ CNT×1 is the signal vector intended for the legitimate user, whereas

x2 ∈ CNJ×1 represents the jamming signal vector. nr ∈ CMR×1 and ne ∈ CME×1 are

the noise vectors at the legitimate receiver and the eavesdropper, and assumed to be

zero-mean circularly symmetric Gaussian random variables with covariance matrices

σ2
rI and σ2

eI, respectively. The transmit covariance matrices of the transmitter and

the CJ are defined as Q1 = E
{
x1x

H
1

}
and Q2 = E

{
x2x

H
2

}
. Thus, the achieved

secrecy rate is written as [18]:

Rsr = [Ir − Ie]
+ =

[
log

∣∣∣I + 1
σ2
r
HsQ1H

H
s + 1

σ2
r
HjQ2H

H
j

∣∣∣∣∣∣I + 1
σ2
r
HjQ2HH

j

∣∣∣
− log

∣∣∣I + 1
σ2
e
HeQ1H

H
e + 1

σ2
e
HjeQ2H

H
je

∣∣∣∣∣∣I + 1
σ2
e
HjeQ2HH

je

∣∣∣
]+

, (5.2)
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where Ir and Ie are the mutual information of the legitimate receiver and the eaves-

dropper, whereas Q1(� 0) and Q2(� 0) are the transmit covariance matrices of the

legitimate user and the CJ, respectively.

5.2 Secrecy Rate Optimizations

In this section, two secrecy rate optimization problems, namely, power minimization

and secrecy rate maximization are formulated. The power minimization problem can

be written as

min
Q1,Q2

Tr(Q1) + Tr(Q2), s.t. Rsr ≥ R̄sr,Q1 � 0, Q2 � 0, (5.3)

where R̄sr is the required secrecy rate. Assume that the legitimate transmitter and

the CJ have perfect CSI (i.e., He and Hje) of the eavesdropper, which can be es-

timated through local oscillator power leakage from the eavesdropper receiver’s RF

frontend [102]. The power minimization problem (5.3) requires a certain amount of

power to satisfy the predefined secrecy rate, however, it might turn out to be infeasi-

ble due to insufficient transmit power. To overcome this infeasibility issue, transmit

optimization is developed to maximize the achieved secrecy rate with the transmit

power constraint. Thus, this secrecy rate maximization problem is expressed as

max
Q1,Q2

Rsr, s.t. Tr(Q1) ≤ P1,Q1 � 0,Tr(Q2) ≤ P2,Q2 � 0, (5.4)

where P1 and P2 are the maximum available transmit power at the legitimate trans-

mitter and the CJ, respectively. Unfortunately, both optimization problems are not

jointly convex in terms of transmit covariance matrices Q1 and Q2, and cannot

be solved directly. Therefore, each original problem can be divided into two sub-

problems and design the transmit covariance matrix of the legitimate transmitter

(i.e., Q1) for a fixed jammer transmit covariance matrix (i.e., Q2). The legitimate

transmit covariance matrix can be optimally designed by a first-order Taylor ap-

proximation, which will be discussed in the following section. On the other hand,

the transmit covariance matrix of the CJ (i.e., Q2) can be optimally designed based

on a null space scheme and CJ maximization method, which will be shown in the

following.
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5.2.1 Null Space Method

In this subsection, a null space scheme is considered, where the CJ transmit covari-

ance matrix is designed to ensure that it lies in the null space of the channel between

the CJ and the legitimate receiver (i.e., Hj). Here, it is assumed that the number

of antennas at the CJ is greater than that of the eavesdropper. Thus the null space

vectors are expressed such that satisfy HjU = 0 as

U =
(
I−HH

j (HjH
H
j )−1Hj

)
HjeD1, (5.5)

where D1 is a diagonal matrix, which controls the power allocation, satisfying the

total transmit power constraint at the CJ. Thus, the rate maximization between the

CJ and the eavesdropper is written as

max
D

log |I + V| , s.t. Tr
(
PHH

jeDHjeP
H
)
≤ P2, D � 0, (5.6)

where D = D2
1, V = 1

σ2
e
HjePHH

jeDHjeP
HHH

je and P = I −HH
j (HjH

H
j )−1Hj. The

problem in (5.6) is convex and easily solved by using interior-point methods [87].

Thus, the CJ transmit covariance matrix can be obtained Q2 = UUH .

5.2.2 Maximizing Cooperative Jammer Rate

In order to introduce more interference to interfere the eavesdropper, the rate be-

tween the CJ and the eavesdropper is maximized while minimizing the interference

to the legitimate receiver. Hence, the jammer transmit covariance matrix Q2 is

optimally designed by maximizing the difference between the jammer-eavesdropper

rate and the jammer-legitimate user rate with the CJ transmit power constraint.

Thus, the optimization problem is formulated as

max
Q2�0

Rj , log

∣∣∣∣I +
1

σ2
e

HjeQ2H
H
je

∣∣∣∣− log

∣∣∣∣I +
1

σ2
r

HjQ2H
H
j

∣∣∣∣ ,
s.t. Tr(Q2) ≤ P2,Q2 � 0. (5.7)

The problem defined in (5.7) is not convex due to the non-convex objective function.

Hence, the objective function is linearized by the first-order Taylor approximation
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[48] at a given Q̃2 as

max
Q2

R̃j , log

∣∣∣∣I +
1

σ2
e

HjeQ2H
H
je

∣∣∣∣− log

∣∣∣∣I +
1

σ2
r

HjQ̃2H
H
j

∣∣∣∣
− Tr

[
1

σ2
r

(
I +

1

σ2
r

HjQ̃2H
H
j

)−1

Hj(Q2 − Q̃2)HH
j

]
s.t. Tr (Q2) ≤ P2, Q2 � 0. (5.8)

The problem (5.8) is easily shown to be convex and hence Q2 can be obtained it-

eratively by solving (5.8). The proposed iterative algorithm for optimizing the CJ

transmit covariance matrix Q2 is summarized in Table 5.1.

The approximated transmit covariance matrix Q̃2 can be updated at each itera-

Table 5.1: Cooperative jammer rate maximization algorithm

1. Initialize: Q̃2 = 0.

2. Repeat

(a) Solve (5.8) to obtain Q∗2 for a given Q̃2.

(b) Update Q̃2 ← Q∗2.

3. Until the required accuracy.

tion by Q∗2, which is obtained from the previous iteration. It is noted that Q2 is

equal to Q∗2 at the convergence of the proposed algorithm, which confirms that the

approximated rate R̃j is equal to the actual rate Rj.

5.2.3 Power Minimization with Secrecy Rate Constraint

In the previous subsections, the CJ transmit covariance matrix Q∗2 has been designed

by employing the null space method and the CJ rate maximization. Here, the

transmit covariance matrix of the legitimate transmitter Q1 is optimally designed

to minimize the transmit power such that it satisfies the achieved secrecy rate. This
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power minimization problem is formulated as

min
Q1�0

Tr(Q1), s.t. Rsr=log

∣∣∣I + 1
σ2
r
HsQ1H

H
s + 1

σ2
r
HjQ

∗
2H

H
j

∣∣∣∣∣∣I + 1
σ2
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H
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∣∣∣
− log

∣∣∣I + 1
σ2
e
HeQ1H

H
e + 1

σ2
e
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∗
2H

H
je

∣∣∣∣∣∣I + 1
σ2
e
HjeQ∗2H

H
je

∣∣∣ ≥R̄sr. (5.9)

The problem (5.9) is not convex due to the non-convex secrecy rate constraint. As

discussed before, this constraint can be linearized by the first-order Taylor approxi-

mation as

Rsr ≈ log
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σ2
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s +
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HjeQ
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+ Tr
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1
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(
I +

1

σ2
e

HeQ̃1H
H
e +

1

σ2
e

HjeQ
∗
2H

H
je

)−1

HeQ̃1H
H
e

]
, R̃sr. (5.10)

The proof is similar to the proof to the problem (5.8). (5.10) is a concave function

in terms of Q1, since the first log term is a concave function and other terms are

either linear function or constant. Thus, the approximated problem is modified as

min
Q1�0

Tr(Q1), s.t. Q1 � 0, R̃sr ≥ R̄sr. (5.11)

One can observe that (5.11) is a convex problem, and can be solved by using interior-

point methods. Now, the Lagrange dual problem to (5.11) is considered, which is

written as

max
λ≥0

min
Q1�0

L(Q1, λ) = Tr(Q1) + λ
(
R̄sr − R̃sr

)
, (5.12)

where λ is the dual multiplier associated with the secrecy rate constraint. Since the

problem (5.11) is convex, which satisfies Slater’s condition, the duality gap between

(5.11) and (5.12) is zero, and the optimal solution to this power minimization prob-

lem can be determined by updating the dual multiplier λ by using the subgradient

method [78]. The solution to (5.11) is dependent on Q̃1, and two initializations are
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5.2 Secrecy Rate Optimizations

Table 5.2: Power minimization algorithm

1. Initialize: λ and Q̃1 = 0 or Q̃1 = QWF.

2. Iteration loop begin

(a) Solve the problem in (5.12) to obtain Q∗1 for a given λ.

(b) Update λ based on the sub-gradient method.

3. Until the required accuracy.

4. Iteration loop end

5. Update Q̃1 ← Q∗1.

6. Until required accuracy.

considered: a) an all zero element matrix (i.e., Q̃1 = 0) and b) a water-filling solu-

tion (i.e., Q̃1 = Q̃WF). Thus, an iterative algorithm is proposed to find the solution

to (5.9), as shown in Table 5.2.

A question may arise with regard to the problem (5.11) on whether the predefined

secrecy rate can be satisfied at the convergence of the algorithm. If Q̃1 and Q1 are

equal, then the approximated rate (R̃sr) at Q̃1 will be equal to the actual secrecy

rate (Rsr), since the fifth and the sixth terms in the right hand side (RHS) of (5.10)

cancel each other, as seen from Fig. 5.2 and Fig. 5.3. Hence, the predefined secrecy

rate is satisfied when the algorithm converges.

5.2.4 Secrecy Rate Maximization with Transmit Power Con-

straint

In the previous section, transmit optimization was performed to minimize the trans-

mit power with the secrecy rate constraint. However, the maximum available trans-

mit power is generally limited such that the power minimization problem might

be infeasible due to insufficient transmit power. In this section, the secrecy rate

maximization problem is considered to avoid the infeasible issue, where Q1 can be

optimally designed for a given Q∗2. This optimization problem is written as

max
Q1�0

Rsr, s.t. Tr(Q1) ≤ P1, Q1 � 0. (5.13)
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5.3 Robust Secrecy Rate Optimization

The problem (5.13) is not convex due to non-convexity of the objective function.

Hence, the problem (5.13) is modified with the approximated rate (5.10) as

max
Q1

R̃sr, s.t. Tr(Q1) ≤ P1, Q1 � 0. (5.14)

The problem (5.14) is convex and can be solved directly. Now, the Lagrange dual

method is considered to find the solution to (5.14). First, the dual function to (5.14)

is written, similar to Section 5.2.3, as follows:

L (Q1, λ,Z) = −R̃sr + λ [Tr(Q1)− P1]− Tr(ZQ1) (5.15)

and the corresponding Lagrange dual problem is expressed as

min
λ≥0

max
Q1�0

[
R̃sr − λ[Tr(Q1)− P1]

]
, (5.16)

where λ is the dual multiplier associated with the transmission power constraint.

The dual problem (5.16) can be solved and the dual variable will be updated based

on the subgradient method. The proposed iterative algorithm is similar to Table 5.2.

It should be noted that Q̃1 is equal to Q1 when the iterative algorithm converges,

which confirms that both the approximated secrecy rate and the achieved secrecy

rate are the same.

5.3 Robust Secrecy Rate Optimization

In this section, robust secrecy rate optimization problems are considered for the same

secrecy network incorporating channel uncertainty. It is assumed that imperfect

CSI of the eavesdropper is available at legitimate transmitter. In the following

subsections, the channel uncertainty will be modelled and the associated robust

schemes will be presented incorporating the channel errors between the legitimate

transmitter and the eavesdropper as well as the CJ and the eavesdropper.

5.3.1 Channel Uncertainty

The imperfect CSI can be modelled based on the deterministic channel model, where

it is assumed that the true channels are centered at the mean of the channels [79].
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5.3 Robust Secrecy Rate Optimization

Hence, the actual channels can be modelled as

H̃e = He + Ee, H̃je = Hje + Eje, (5.17)

where He and Hje represent the channel mean of the corresponding channels, and

Ee, and Eje are the corresponding channel errors. It is assumed that the channel

means can be obtained at the transmitter by channel estimations. These errors are

given by defining the bounds through ellipsoid model as [70]:

ε1 = {Ee : Tr(EeP
−1
e EH

e ) ≤ ε2
e}, ε2 = {Eje : Tr(EjeP

−1
je EH

je) ≤ ε2
je},

where Pe and Pje are known positive definite matrices, which are assumed to be

identity matrices such that the channel errors are considered to be bounded by

Fronbenius norms (||Ee||F ≤ εe and ||Eje||F ≤ εje). εe and εje denote the channel

error bounds.

5.3.2 Robust Power Minimization

In this subsection, the robust power minimization problem is proposed optimally

design transmit covariance matrices of the legitimate transmitter (i.e., Q1) and the

CJ (i.e., Q2) incorporating the channel uncertainty shown in Section 5.3.1. This

robust power minimization problem can be written as

min
Q1�0,Q2�0

Tr(Q1) + Tr(Q2)

s.t. log

∣∣∣I + 1
σ2
r
HsQ1H

H
s + 1

σ2
r
HjQ2H

H
j

∣∣∣∣∣∣I + 1
σ2
r
HjQ2HH

j

∣∣∣
− log

∣∣∣I + 1
σ2
e
H̃eQ1H̃

H
e + 1

σ2
e
H̃jeQ2H̃

H
je

∣∣∣∣∣∣I + 1
σ2
e
H̃jeQ2H̃H

je

∣∣∣ ≥ R̄sr,

H̃e = He + Ee, H̃je = Hje + Eje, ||Ee||F ≤ εe, ||Eje||F ≤ εje. (5.18)

The problem (5.18) is not convex in terms of the secrecy rate constraint. In order

to solve this problem, two sub-problems with Q1 (or Q2) only are considered, and

an alternative optimization algorithm is presented to design Q1 (Q2) for a given

Q2 (Q1), respectively, each of which is reformulated into a SDP by exploiting linear
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5.3 Robust Secrecy Rate Optimization

Table 5.3: Alternative optimization algorithm

1. Initialize: Q2 = 0 or Q2 = QWF; Q̃1 = QWF for approximation.

2. Iteration loop begin

(a) Solve the robust power minimization problem in (5.19) to obtain Q̃∗1 for
a given Q2.

(b) Q1 ← Q̃∗1.

(c) Solve the robust power minimization problem in (5.22) to obtain Q̃∗2 for
a given Q1.

(d) Q2 ← Q̃∗2.

3. Until the required accuracy.

4. Iteration loop end

5. Update Q∗1 ← Q̃1, and Q∗2 ← Q̃2.

matrix transformations.

First, Q2 is assumed to be given to optimally design Q1 by solving the robust power

minimization problem (5.18). By exploiting the first-order Taylor approximation,

(5.18) can be written by linearizing the nonconvex secrecy rate constraint as

min
Q1,µ1,t2

Tr(Q1)

s.t. log

∣∣∣∣I + HsQ1H
H
s + HjQ2H

H
j

∣∣∣∣− t1 − log

∣∣∣∣I +
1

σ2
r

HjQ2H
H
j

∣∣∣∣
+ log

∣∣∣∣I +
1

σ2
e

HjeQ2H
H
je

∣∣∣∣ ≥ R̄sr, µ1I−B1 −(QT
1 ⊗ I)Ta

−aH(QT
1 ⊗ I)∗ −µε2

e − α1 + β1 + t1 − hHe B1he

 � 0,

Q1 � 0, µ1 ≥ 0, t1 ≥ 0, (5.19)
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5.3 Robust Secrecy Rate Optimization

where

α1 = log

∣∣∣∣I + HeQ̃1H
H
e + HjeQ2H

H
je

∣∣∣∣,
β1 = Tr

[(
I + HeQ̃1H

H
e + HjeQ2H

H
je

)−1

HeQ̃1H
H
e

]
,

S1 =

(
I + HeQ̃1H

H
e + HjeQ2H

H
je

)−1

,

B1 = (QT
1 ⊗ I)T (I⊗ S1),he = vec(He), a = vec(S1He).

Proof Please refer to Section 5.7.1. �

Similarly, Q2 is optimized for a given Q1 by solving (5.18), which can be expressed

as

min
Q2,t3,t4

Tr(Q2)

s.t. log

∣∣∣∣I + HsQ1H
H
s + HjQ2H

H
j

∣∣∣∣− log

∣∣∣∣I + HjQ̃2H
H
j

∣∣∣∣
+ Tr

[(
I + HjQ̃2H

H
j

)−1

HjQ̃2H
H
j

]
− Tr

[(
I + HjQ̃2H

H
j

)−1

HjQ2H
H
j

]
+ log(t2)− t3 ≥ R̄sr, (5.20a)

log

∣∣∣∣I + H̃jeQ2H̃
H
je

∣∣∣∣ ≥ log(t2), (5.20b)

α2 − β2 + Tr

[
S2H̃jeQ2H̃

H
je

]
≤ t3, (5.20c)

Q2 � 0, t2 ≥ 0, t3 ≥ 0, (5.20d)

where

α2 = log

∣∣∣∣I + HeQ1H
H
e + HjeQ̃2H

H
je

∣∣∣∣,
β2 = Tr

[(
I + HeQ1H

H
e + HjeQ̃2H

H
je

)−1

HjeQ̃2H
H
je

]
,

S2 =

(
I + HeQ1H

H
e + HjeQ̃2H

H
je

)−1

.
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5.4 Secrecy Rate Optimization Based on Game Theory

The constraints (5.20b) and (5.20c) can be converted into semidefinite constraints

similar to (5.19) as

 λ1I + (QT
2 ⊗ I) (QT

2 ⊗ I)hje

hHje(Q
T
2 ⊗ I) −λ1ε

2
je − t2 + hHje(Q

T
2 ⊗ I)hje + 1

 � 0, (5.21a)

 λ2I−B2 −(QT
2 ⊗ I)Ta1

−aH1 (QT
2 ⊗ I)∗ −λ2ε

2
je − α2 + β2 + t3 − hHjeB2hje

 � 0, (5.21b)

where hje = vec(Hje), a1 = vec(S2Hje) and B2 = (QT
2 ⊗ I)T (I⊗ S2).

Proof Please refer to Section 5.7.2. �

Hence, the problem (5.20) can be reformulated as

min
Q2,λ1,λ2,t2,t3

Tr(Q2), s.t. (5.20a), (5.21a), (5.21b), Q2 � 0,

λ1 ≥ 0, λ2 ≥ 0, t2 ≥ 0, t3 ≥ 0. (5.22)

Both (5.19) and (5.22) are convex problems, each of which can be solved to optimize

Q1 (or Q2) by the proposed alternative optimization algorithm as shown in Table

5.3. The same alternative optimization approach can also be applied in the robust

secrecy rate maximization problem, where the same linear matrix transformations

can also be employed to reformulate this nonconvex problem.

5.4 Secrecy Rate Optimization Based on Game

Theory

In the previous sections, secrecy rate optimization problems have been solved with

the help of a multi-antenna CJ. However, it is not always possible to have our own

CJ to improve the secure communications. Another option is to employ the private

CJ by paying some charges for the jamming service. The private CJ charges for this

jamming service with the amount of interference caused to the eavesdropper. Here,

the main focus is to seek optimal power allocation at the private CJ which determines

the cost needed to be paid by the legitimate transmitter. In this section, the private

CJ is considered to have single antenna for convenience. In the case of multi-antenna
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5.4 Secrecy Rate Optimization Based on Game Theory

at the CJ, the corresponding beamformer will be designed independently so that the

multiple antennas scenario with a fixed beamformer can be formulated into the same

problem as with single antenna.

5.4.1 Stackelberg Game

The achieved secrecy rate at the legitimate receiver is written with single antenna

private CJ as

Rs = log |I +
1

σ2
r

HsQ1H
H
s | − log

∣∣∣∣I + 1
σ2
e
(HeQ1H

H
e + p1ggH)

∣∣∣∣
|I + 1

σ2
e
p1ggH |

, (5.23)

where g is the channel between the private CJ and the eavesdropper and p1 is the

power allocation at the private CJ. The private CJ aims to maximize its revenue

by selling the interference to the legitimate transmitter. This private CJ revenue

function is written as

Uj(p1, µ0) = µ0p1‖g‖2
2, (5.24)

where µ0 is the unit interference price charged by the private CJ to cause the inter-

ference to the eavesdropper. According to the interference requirement at the eaves-

dropper, the interference price should be decided by the private CJ to maximize its

revenue. The optimal price can be achieved by solving the following problem:

Problem (A):

max
µ0

Uj(p1, µ0), s.t. µ0 ≥ 0. (5.25)

In order to compensate for the interference charge from the private CJ, the legit-

imate transmitter pays the CJ service for maintaining secured communication. In

addition, the legitimate transmitter should maximize its revenue by introducing the

interference to improve the achieved secrecy rate at the legitimate user. Thus, the
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5.4 Secrecy Rate Optimization Based on Game Theory

revenue function of the legitimate transmitter can be defined as

UL(Q1, p1) = λ0Rs − µ0p1‖g‖2
2

= λ0

(
log

∣∣∣∣I +
1

σ2
r

HsQ1H
H
s

∣∣∣∣− log

∣∣∣∣I +
1

σ2
e

(HeQ1H
H
e + p1ggH)

∣∣∣∣)
+ λ0 log |I +

1

σ2
e

p1ggH | − µ0p1‖g‖2
2, (5.26)

where λ0 is the unit price for the secrecy rate. Hence, the legitimate transmitter

should design the transmit covariance matrix and decide the interference requirement

to maximize its revenue. This optimization problem is formulated as

Problem (B):

max
Q1,p1

UL(Q1, p1), s.t. Q1 � 0, p1 ≥ 0. (5.27)

Problem (A) and Problem (B) can form a Stackelberg game, where the private CJ

(leader) announces the interference price, then the legitimate transmitter (follower)

decides the amount of interference required at the eavesdropper. The solution of

this game can be achieved by exploiting the Stackelberg equilibrium, where both the

legitimate transmitter and the private CJ come to an agreement on the interference

requirement and the interference price. The deviation of either the legitimate trans-

mitter or the private CJ from the Stackelberg equilibrium will introduce a loss in

their revenues.

5.4.2 Stackelberg Equilibrium

The Stackelberg equilibrium for the proposed game is defined as follows:

Stackelberg equilibrium: Let Q∗1 and p∗1 be the optimal solution for Problem (B),

whereas µ∗0 is the best price for Problem (A). The solutions Q∗1, p∗1 and µ∗0 can be

defined as the Stackelberg equilibrium if the following conditions hold for any set of

Q1, p1 and µ0:

UL(Q∗1, p
∗
1, µ

∗
0) ≥ UL(Q1, p1, µ

∗
0), Uj(Q

∗
1, p
∗
1, µ

∗
0) ≥ Uj(Q

∗
1, p
∗
1, µ0).
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5.4.3 Solution of Proposed Stackelberg Game

According to the definition of Stackelberg equilibrium shown in Section 5.4.2, the

best responses of the follower (the legitimate transmitter) and the leader (the jam-

mer) can be achieved by solving Problem (B) and Problem (A), respectively. Since,

the leader (private CJ) obtains the optimal interference requirement from the le-

gitimate transmitter, the best response of the follower (the legitimate transmitter)

should be derived first in terms of the interference price. For the proposed game,

Stackelberg equilibrium can be derived by solving Problem (B) to obtain p∗1 for a

given Q1, then the best interference price µ∗0 can be achieved by solving Problem

(A).

First, the interference requirement p1 can be obtained for a given Q1 by solving

Problem (B), where the following lemma holds

Lemma 5.1 The problem (5.27) for a given Q1 is a convex problem in terms of p1.

Proof Please refer to Section 5.7.3. �

From Lemma 5.1, the optimal solution p∗1 satisfy the following Karush-Kuhn-Tucker

(KKT) condition:

∂UL(Q1, p1)

∂p1

= 0, λ0Tr[A−1
1 ggH −A−1

2 ggH ]− µ0‖g‖2
2 = 0, (5.28)

where

A1 =

(
I +

p1

σ2
e

ggH
)
, A2 = I +

1

σ2
e

(HeQ1H
H
e + p1ggH).

From the KKT conditions in (5.28), the closed form solution of p1 can be easily

derived as follows:

p∗1 =
− c1+c2

σ2
e

+
√

(c1−c2)2

σ4
e

+ 4λ0c1c2(c1−c2)
µ0‖g‖2

2 c1c2
σ4
e

, (5.29)

where c1 = gHg, c2 = gHA−1g and A = I + 1
σ2
e
HeQ1H

H
e , and the proof is provided

in Section 5.7.4. Then, the best response of the private CJ can be obtained for a

given interference requirement (i.e., p1) by solving the following problem:

max
µ0

Uj(p
∗
1, µ0), s.t. µ0 ≥ 0. (5.30)
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Substituting (5.30) with (5.29), the optimal solution of µ0 can be derived by the

following Lemma:

Lemma 5.2 The problem (5.30) for a fixed Q1 is a convex problem in terms of µ0,

and the optimal solution of µ0 can be expressed as

µ∗0 =
e

x‖g‖2
, (5.31)

where

x = −

d‖g‖2
2a
−

b2‖g‖4

4a2
+

b‖g‖2
2a

√
(b2−d)‖g‖4

4a2

‖g‖2
2a

‖g‖2
4a

= −2(d− b2 − b
√
b2 − d)

= 2
√
b2 − d(

√
b2 − d+ b), (5.32)

where a = c1c2
σ4
e

, b = c1+c2
σ2
e

, d = (c1−c2)2

σ4
e

and e=4λ0c1c2(c1−c2).

Proof Please refer to Section 5.7.4. �

Hence, both revenue functions of the legitimate transmitter and the private CJ

are concave in terms of p1 and µ0, respectively. This confirms that there exists a

Stackelberg equilibrium (p∗1, µ
∗
0) for the proposed Stackelberg game. To achieve this

Stackelberg equilibrium, first, the private CJ announces a relatively low interference

price µ0, for which the legitimate transmitter determines the optimal interference

requirement at the eavesdropper. Then, the private CJ increases the interference

price by a small amount provided its revenue function increases with the interference

price. Otherwise, it will reduce the interference price by a small amount. This pro-

cedure will be carried out until the maximum private CJ revenue is achieved which

is a Stackelberg equilibrium. It is noted that the deviation from this equilibrium will

result in a loss to either the legitimate transmitter or the private CJ.

5.5 Simulation Results

Simulation results are provided to validate the proposed algorithms for the secrecy

network as shown in Section 5.1. It is assumed that the legitimate transmitter and

the CJ consist of four (NT = NJ = 4) antennas whereas the legitimate receiver
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and the eavesdropper are equipped with three (MR = ME = 3) antennas. The

maximum available transmit power at both the legitimate transmitter and the CJ

is set to be 5 W. In the first set of simulations, the channel coefficients (i.e., Hs,

Hj, He and Hje) are assumed to be perfectly known at the transmitter. The noise

covariance matrices at the legitimate receiver and the eavesdropper are set to be

identity matrices.

1 2 3 4 5 6 7 8 9 10
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

Iteration number

T
ra

ns
m

it 
po

w
er

 

 
Jammer rate maximization Q

1
 = 0

Jammer rate maximization  Q
1
 = Q

WF

Null space scheme Q
1
 = 0

Null space scheme Q
1
 = Q

WF

Figure 5.2: Convergence of the transmit power for power minimization.
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5.5.1 Secrecy Rate Optimizations with Perfect CSI

First, the convergence of the power minimization problem is evaluated, where the

target secrecy rate is set to 1 bps/Hz. Fig. 5.2 and Fig. 5.3 show the convergence of

the transmit power and secrecy rate for the power minimization problem based on

the null space scheme and the CJ rate maximization with two initializations of Q̃1

(i.e., zero-element and water-filling). From both results, one can observe that both

the transmit power and the secrecy rate decrease monotonically with every iteration,

and the target secrecy rate can be satisfied when the proposed iterative algorithm

converges. Next, the convergence of the secrecy rate maximization algorithm is

shown in Fig. 5.4, where the result shows that the achieved secrecy rate and the

approximated secrecy rate increase monotonically and are equal at the convergence

of the proposed algorithm. In order to compare the performance of these two sub-

problems (i.e., null space scheme and CJ rate maximization), Fig. 5.5 shows the

variation of the transmit power with different target secrecy rates. From this result,

the CJ rate maximization scheme consumes less power than the null space scheme

for the same target secrecy rate. The difference between both schemes increases

with the target secrecy rate. Additionally, Fig. 5.6 shows the achieved secrecy rates

with different transmit powers for both schemes. As seen in Fig. 5.6, the CJ rate

maximization scheme outperforms the null space scheme.

86



5.5 Simulation Results

5.5.2 Robust Secrecy Rate Optimizations

In this subsection, the performance of the robust scheme is evaluated. The error

bounds are assumed to be ‖Ee‖2 = 0.1 and ‖Eje‖2 = 0.1. First, Table 5.4 shows

that the achieved secrecy rate of the robust power minimization, where the non-

robust scheme can be achieved by solving the power minimization problem with

perfect CSI. It is observed from Table 5.4 that the robust scheme outperforms the

non-robust scheme, implying the non-robust secrecy rate does not satisfy the target

secrecy rate, whereas the robust secrecy rate always satisfies the target rate. Also,

the robust secrecy rate maximization problem with different channels is shown in

Table 5.5, where the robust scheme outperforms the non-robust scheme in terms

of the achieved secrecy rate. Fig. 5.7 and Fig. 5.8 show the achieved secrecy

rates of the robust and non-robust schemes versus transmit power and error bound,

respectively. From both results, it is observed that the performance of the robust

secrecy rate maximization algorithm outperforms the non-robust scheme in terms

of the achieved secrecy rate.

Random channels Robust scheme Non-robust scheme

Channel 1 1.1695 0.9848

Channel 2 1.1445 0.9753

Channel 3 1.1096 0.9966

Channel 4 1.1006 0.9875

Channel 5 1.1131 0.9682

Table 5.4: The comparison of achieved secrecy rates of robust and non-robust power
minimization scheme with target rate R̄s = 1 bps/Hz.

Random channels Robust scheme Non-robust scheme

Channel 1 2.4121 1.8112

Channel 2 3.8684 3.6255

Channel 3 2.3065 1.7519

Channel 4 3.0274 2.9007

Channel 5 1.3999 1.1407

Table 5.5: The comparison of achieved secrecy rates of robust and non-robust secrecy
rate maximization scheme.

5.5.3 Secrecy Rate Optimization based on Game Theory

Finally, the Stackelberg equilibrium to the proposed Stackelberg game is evaluated.

Fig. 5.9 depicts the revenue function of the legitimate transmitter with the inter-

87



5.5 Simulation Results

1 2 3 4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

Transmit power

A
ch

ie
ve

d 
se

cr
ec

y 
ra

te
 

 

 

Robust case − Channel 1
Non−robust case − Channel1 
Robust case − Channel 2
Non−robust case − Channel 2

Figure 5.7: Achieved secrecy rate versus transmit power.
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Figure 5.8: Achieved secrecy rate versus error bound.
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5.6 Summary

ference requirement of p1. From this result, it confirms that this revenue function is

concave in terms of p1, which validates the convexity of the legitimate transmitter

revenue function. The closed-form solution of p∗1 in (5.29) is also verified by this

result. Fig. 5.10 shows the revenue function of the private CJ with different inter-

ference prices (i.e., µ0). As seen from Fig. 5.10, the private CJ revenue function

is concave in terms of µ0, which supports the convexity of the private CJ revenue

function. The optimal µ0 derived in (5.31) is validated by this result. Fig. 5.11

shows the optimal revenue function of the legitimate transmitter for a given µ∗0, and

then a corresponding optimal value p∗1 can be achieved, hence, (p∗1, µ
∗
0) defines the

Stackelberg equilibrium as indicated in Fig. 5.11.
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Figure 5.9: Revenue function of the legitimate transmitter.

5.6 Summary

In this chapter, transmit optimization for a MIMO secure channel with a multi-

antenna CJ in the presence of a multi-antenna eavesdropper. Both secrecy rate

optimization problems (power minimization and secrecy rate maximization) have

been formulated. These original problems are not jointly convex due to the transmit

covariance matrices of the transmitter and the CJ. To circumvent this issue, these

original problems was divided into two sub-problems, where both transmit covari-

ance matrices are optimally designed by the Taylor approximation, separately. In

addition, an iterative algorithm to solve the reformulated problem is proposed based
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Figure 5.11: Optimal revenue function of the legitimate transmitter.
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5.7 Appendix

on dual problem and the subgradient method. Next, the robust secrecy rate opti-

mizations have been studied incorporating the channel uncertainty associated with

the eavesdropper. The robust optimization problem was developed by exploiting

linear matrix transformation. Finally, secrecy rate maximization based on Stackel-

ber game was proposed. This optimization problem was modelled as a Stackelberg

game, and the corresponding equilibrium has been derived. Simulation results have

been provided to demonstrate the benefits of the proposed algorithms.

5.7 Appendix

5.7.1 Proof of Problem (5.19)

Here, the proof for the problem (5.19) is provided, which can be represented using

standard epigraph form as

min
Q1

Tr(Q1),

s.t. log

∣∣∣∣I + HsQ1H
H
s + HjQ2H

H
j

∣∣∣∣− t1 − log

∣∣∣∣I +
1

σ2
r

HjQ2H
H
j

∣∣∣∣
+ log

∣∣∣∣I +
1

σ2
e

HjeQ2H
H
je

∣∣∣∣ ≥ R̄sr,

α− β + Tr[S(He + Ee)Q1(He + Ee)
H ] ≤ t1,

Q1 � 0, t1 ≥ 0, ‖Ee‖2
F ≤ ε2

e, (5.33)

where

α = log

∣∣∣∣I+HeQ̃1H
H
e +HjeQ

∗
2H

H
je

∣∣∣∣, β = Tr

[(
I+HeQ̃1H

H
e +HjeQ2H

H
je

)−1

HeQ̃1H
H
e

]
,

S1 =

(
I + HeQ̃1H

H
e + HjeQ2H

H
je

)−1

.

The above problem is not convex and it is difficult to derive the worst-case secrecy

rate in terms of Ee. The constraint (5.33) can be equivalently modified as

α− β + Tr[S1(He + Ee)Q1(He + Ee)
H ] ≤ t1 ⇐⇒

α− β + hHe B1he + 2<[aH(Q1 ⊗ I)ee] + eHe B1ee ≤ t1, (5.34)
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where

he = vec(He), ee = vec(Ee), a = vec(S1He), B1 = (QT
1 ⊗ I)T (I⊗ S1).

In addition, the constraint eHe ee ≤ ε2
e holds. In order to incorporate the channel

uncertainties in the robust optimization framework (5.33), the following lemma is

considered:

Lemma 5.3 (S-Procedure) [97]: Let fk(x), k = 1, 2, be defined as

fk(x) = xHAkx + 2<
{
bHk x

}
+ ck, (5.35)

where Ak = AH
k ∈ Cn×n, bk ∈ Cn and ck ∈ R. The implication f1(x) ≥ 0 =⇒

f2(x) ≥ 0 holds if and only if there exists µ ≥ 0 such that

 A2 b2

bH2 c2

− µ
 A1 b1

bH1 c1

 � 0, (5.36)

provided there exists a point x̃ with f1 (x̃) > 0.

By exploiting S-Procedure shown in Lemma 5.3, the constraint in (5.34) can be

written as  µ1I−B1 −(QT
1 ⊗ I)Ta

−aH(QT
1 ⊗ I)∗ −µε2

e − α + β + t1 − hHe B1he

 � 0. (5.37)

This completes the proof. �

5.7.2 Proof of Constraint (5.21)

Here, the proof for the reformulation of (5.20b) and (5.20c) is provided, first, the

constraints (5.20b) and (5.20c) are written as follows:

log

∣∣∣∣I + H̃jeQ2H̃
H
je

∣∣∣∣ ≥ log(t2), (5.38a)

α2 − β2 + Tr

[
S2H̃jeQ2H̃

H
je

]
≤ t3. (5.38b)
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For (5.38a), the following matrix inequality is required

|I + A| ≥ 1 + Tr(A), (5.39)

Thus by employing the above inequality, the lower bound of the left hand side (LHS)

of the constraint in (5.38a) can be obtained, and this constraint can be modified as

log
∣∣∣I + H̃jeQ2H̃

H
je

∣∣∣ ≥ log(t2)⇒ log[1 + Tr(H̃jeQ2H̃
H
je)] ≥ log(t2),

⇒ Tr(H̃jeQ2H̃
H
je) ≥ t2 − 1. (5.40)

Besides, from the following matrix identities:

Vec(AXB) = (BT ⊗A)Vec(X), Tr(ATB) = Vec(A)TVec(B),

(A⊗B)T = AT ⊗BT .

The constraint in (5.40) can be expressed as,

eHjeAeje + 2<
[
aH1 Aeje

]
+ hHjeAhje − t2 + 1 ≥ 0,

eHjeeje ≤ ε2
je, (5.41)

where A = QT
2 ⊗ I, hje = vec(Hje), and eje = vec(Eje). Similarly, by exploiting

Lemma 5.3, the constraint (5.38a) is reformulated into the following linear matrix

inequality (LMI):

 λ1I + (QT
2 ⊗ I) (QT

2 ⊗ I)hje

hHje(Q
T
2 ⊗ I) −λ1ε

2
je − t2 + hHje(Q

T
2 ⊗ I)hje + 1

 � 0. (5.42)

Also, the constraint (5.38b) is reformulated into the following LMI:

 λ2I−B2 −(QT
2 ⊗ I)Ta1

−aH1 (QT
2 ⊗ I)∗ −λ2ε

2
je − α2 + β2 + t3 − hHjeB2hje

 � 0, (5.43)

where α2, β2, S2, hje, a1 and B2 are defined in (5.20) and (5.21). This completes

the proof. �
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5.7.3 Proof of Lemma 5.1

The revenue function of the legitimate transmitter is

UL(Q1, p1) = λ0

(
log |A0| − log |I +

1

σ2
e

(HeQ1H
H
e + p1ggH)|

)
+ λ0 log |I +

1

σ2
e

p1ggH | − µ0p1‖g‖2
2, (5.44)

where A0 = I + 1
σ2
r
HsQ1H

H
s . In order to show that the function (5.44) is convex

with respect to p1, its first derivative is considered as follows:

∂UL(Q1, p1)

∂p1

= −λ0
∂

∂p1

(log |I +
1

σ2
e

(HeQ1H
H
e + p1ggH)|)

+ λ0
∂

∂p1

(log |I +
p1

σ2
e

ggH | − µ0p1‖g‖2
2). (5.45)

In order to find the derivative of (5.45), the following matrix identities are required:

∂ ln(det X) = Tr[X−1∂X], ∂ ln(det AZ−1) = Tr[Z−1AZ−1∂Z].

For the term log

∣∣∣∣I + p1
σ2
e
ggH

∣∣∣∣:
First derivative:

∂ log

∣∣∣∣I + p1
σ2
e
ggH

∣∣∣∣
∂p1

= Tr

[(
I +

p1

σ2
e

ggH
)−1

ggH

σ2
e

]
. (5.46)

Second derivative:

∂2 log

∣∣∣∣I + p1
σ2
e
ggH

∣∣∣∣
∂2p1

= −Tr

[
A−1

1

ggH

σ2
e

A−1
1

ggH

σ2
e

]
. (5.47)

Similarly, for the term log

∣∣∣∣I + 1
σ2
e
(HeQ1H

H
e + p1ggH)

∣∣∣∣:
First derivative:

∂

(
log

∣∣∣∣I + 1
σ2
e
(HeQ1H

H
e + p1ggH)

∣∣∣∣)
∂p1

= Tr

[(
I +

1

σ2
e

(HeQ1H
H
e + p1ggH)

)−1
ggH

σ2
e

]
.

(5.48)
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Second derivative:

∂2

(
log

∣∣∣∣I + 1
σ2
e
(HeQ1H

H
e + p1ggH)

∣∣∣∣)
∂2p1

= −Tr

[
A−1

2

ggH

σ2
e

A−1
2

ggH

σ2
e

]
. (5.49)

Thus

∂2UL(Q1, p1)

∂2p1

= Tr

[
A−1

2

g1g
H
1

σ2
e

A−1
2

g1g
H
1

σ2
e

]
− Tr

[
A−1

1

g1g
H
1

σ2
e

A−1
1

g1g
H
1

σ2
e

]
, (5.50)

where

A1 =I +
1

σ2
e

p1ggH ,A2 =I +
1

σ2
e

(
HeQ1H

H
e + p1ggH

)
.

Since the eigenvalues of A−1
2 are smaller than that of A−1

1 , the following holds:

A−1
2 −A−1

1 ≤0, gH(A−1
2 −A−1

1 )g≤0,

gHA−1
2 ggHA−1

2 g≤gHA−1
1 ggHA−1

1 g,

Tr

[
A−1

2

ggH

σ2
e

A−1
2

ggH

σ2
e

]
≤Tr

[
A−1

1

ggH

σ2
e

A−1
1

ggH

σ2
e

]
.

Hence, ∂2UL(Q1,p1)
∂2p1

≤0, which proves that UL(Q1, p1) is a concave function in terms

of p1 for a fixed Q1. This completes the proof. �

5.7.4 Proof of Lemma 5.2

The KKT condition in (5.28) is rewritten as

λ0Tr[A−1
1 ggH −A−1

2 ggH ]− µ0‖g‖2
2 = 0, (5.51)

where A1 and A2 have been defined after (5.28). From the following matrix identity,

(A + bcT )−1 = A−1 − A−1bcTA−1

1 + cTA−1b
, (5.52)

95



5.7 Appendix

A−1
1 and A−1

2 in (5.51) can expressed as follows:

A−1
1 = I−

p1
σ2
e
ggH

1 + p1
σ2
e
gHg

, (5.53a)

A−1
2 = A−1 −

p1
σ2
e
A−1ggHA−1

1 + p1
σ2
e
gHA−1g

, (5.53b)

where A = I + 1
σ2
e
HeQ1H

H
e . Based on (5.53), the KKT condition in (5.51) can be

equivalently modified as

λ0Tr(ggH)− λ0

p1
σ2
e

1 + p1
σ2
e
gHg

Tr(ggHggH)− λ0Tr(A−1ggH)

+ λ0

p1
σ2
e

1 + p1
σ2
e
gHA−1g

Tr(A−1ggHA−1ggH)− µ0‖g‖2 = 0. (5.54)

Setting c1 = gHg, c2 = gHA−1g,

λ0c1

1 + p1
σ2
e
c1

− λ0c2

1 + p1
σ2
e
c2

− µ0‖g‖2 = 0, (5.55)

c1c2

σ4
e

p2
1 +

c1 + c2

σ2
e

p1 +

(
1− λ0(c1 − c2)

µ0‖g‖2

)
= 0, (5.56)

It is easy to show that

√
( c1+c2

σ2
e

)2 − 4 c1c2
σ4
e

[
1− λ0(c1−c2)

µ0‖g‖2

]
≥ 0 by showing c1 − c2 ≥ 0,

which holds if gH(I−A−1)g ≥ 0. Thus, I−A−1 � 0 can be shown as follows:

I−A−1 � 0,⇐ I � A−1 ⇐ Tr(I) ≥ Tr(A−1), (5.57)

Since Tr(A) =
∑NE

i=1 λi and A is positive definite matrix, and λi ≥ 1 represents the

i-th eigenvalue of the matrix A, the i-th eigenvalue of A−1 is 1
λi
≤ 1 holds if λi 6= 0

in terms of λi ≥ 1, which implies Tr(A−1) ≤ Tr(I) = ME. Thus, c1 ≥ c2 holds.

From p1 ≥ 0, the optimal solution of p1 can be derived as

p∗1 =
− c1+c2

σ2
e

+
√

(c1+c2)2

σ4
e

+ 4λ0c1c2(c1−c2)
µ0‖g‖2

2 c1c2
σ4
e

. (5.58)

96



5.7 Appendix

The revenue function of the jammer can be written in terms of µ0 by substituting

p∗1 as

Uj(p
∗
1, µ0) = − b

2a
µ0‖g‖2 +

‖g‖2

2a
µ0

(
d+

4λ0c1c2(c1 − c2)

µ0‖g‖2

) 1
2

, (5.59)

where a = c1c2
σ4
e

, b = c1+c2
σ2
e

and d = (c1−c2)2

σ4
e

. In order to prove the concavity of

the jammer revenue function in terms of interference price, the second derivative of

(5.59) is written with respect to µ0 as follows:

∂Uj
∂µ0

= − b

2a
‖g‖2 +

‖g‖2

2a

(
d+

4λ0c1c2(c1 − c2)

µ0‖g‖2

) 1
2

+
‖g‖2

4a

(
d+

4λ0c1c2(c1 − c2)

µ0‖g‖2

)− 1
2
(
− 4λ0c1c2(c1 − c2)

µ0‖g‖2

)
, (5.60)

∂2Uj
∂2µ0

= −‖g‖
2

4a

[
− 1

2

(
d+

e

µ0‖g‖2

)− 3
2
](
− e

µ2
0‖g‖2

)(
e

‖g‖2

)
≤ 0, (5.61)

where e = 4λ0c1c2(c1 − c2). Since, the second derivative is negative, Problem (A)

is a convex problem in terms of µ0. The optimal solution of µ0 can be derived as

follows:

∂Uj
∂µ0

= 0,⇒ µ∗0 =
e

x‖g‖2
, (5.62)

where

x = −

d‖g‖2
2a
−

b2‖g‖4

4a2
+

b‖g‖2
2a

√
(b2−d)‖g‖4

4a2

‖g‖2
2a

‖g‖2
4a

= 2
√
b2 − d(

√
b2 − d+ b). (5.63)

This completes the proof. �
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Chapter 6

Transmit Optimization for Secure

MISO SWIPT System

This chapter investigates transmit optimization for a multiple-input single-output

(MISO) secure simultaneous wireless information and power transfer (SWIPT) sys-

tem, where transmit beamformer is designed to maximize the achieved secrecy rate

while satisfying the transmit power budget and the energy harvesting (EH) con-

straint. In addition, artificial noise (AN) is employed to play two roles: intercept to

the eavesdroppers and harvest power to the EH receivers. In this chapter, the main

contributions are listed as follows:

1. Transmit optimization for secrecy rate maximization: First, transmit beam-

former is designed for the secrecy rate maximization problem subject to the

transmit power and energy harvesting (EH) constraints, where this optimiza-

tion problem is not convex and cannot be solved directly. In order to circum-

vent this issue, a two-step method is considered, where the secrecy rate max-

imization problem is first decomposed into a sequence of power minimization

problems for a given target secrecy rate, each of which can be reformulated as

a convex optimization framework by using conic matrix transformations and

first-order Taylor approximation. Then, this target secrecy rate is updated via

bisection search. In addition, the associated robust schemes are investigated

by incorporating channel uncertainty. The robust problem can be solved by

exploiting conic matrix transformations.

2. AN-aided transmit optimization for secrecy rate maximization: Transmit beam-

former and AN are jointly designed to maximize the achieved secrecy rate with
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the transmit power and EH constraints. Due to nonconvex problem, first,

the two-level approach is considered, where the inner level problem can be

relaxed by semidefinite programming (SDP) relaxation, the outer level prob-

lem is a single-variable optimization problem, which is solved by using a one-

dimensional (1D) search algorithm. Then, a successive convex approximation

(SCA) based secrecy rate maximization problem is proposed. Moreover, the

associated robust scheme incorporating channel uncertainty is solved by ex-

ploiting linear matrix transformation. Tightness analysis for each relaxation

is provided to show the relaxed problem yields a rank-one solution.

6.1 System Model

In this section, a MISO secured SWIPT channel is considered, where it consists one

multi-antenna legitimate transmitter, one legitimate user, K eavesdroppers and L

energy harvesting (EH) receivers. It is assumed that the transmitter is equipped

with NT transmit antennas, whereas the legitimate user, the eavesdroppers and the

EH receivers each have a single receive antenna. The channel coefficients between

the legitimate transmitter and the legitimate user, the k-th eavesdropper as well as

the l-th EH receiver are denoted by hs ∈ CNT×1, he,k ∈ CNT×1 and hl ∈ CNT×1,

respectively. The noise power at the legitimate user and the eavesdroppers are

assumed to be σ2
s and σ2

e . The received signal at the legitimate user and the k-th

eavesdropper can be written as

ys = hHs ws+ ns, ye,k = hHe,kws+ ne,k, k = 1, ..., K,

where s and w ∈ CNT×1 are the desired signal for the legitimate user (E{s2} = 1) and

the transmit beamformer at the legitimate transmitter, respectively. In addition,

ns ∼ CN(0, σ2
s) and ne,k ∼ CN(0, σ2

e) represent the noise of the legitimate user and

the k-th eavesdropper, respectively. Thus, the achieved secrecy rate at the legitimate

user is expressed as follows:

Rs =

[
log

(
1 +
|hHs w|2

σ2
s

)
−max

k
log

(
1 +
|hHe,kw|2

σ2
e

)]+

,∀k. (6.1)
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The harvested energy at the l-th EH receiver is written as

El = ξl|hHl w|2, ∀l, (6.2)

where ξl ∈ (0, 1] is the energy conversion efficiency of the energy transducers at the

l-th EH receiver that accounts for the loss in the energy transducers for converting

the harvested energy to electrical energy to be stored [101]. For convenience, it is

assumed that ξl = 1, ∀l.

Remark This system model consists of L EH receivers, which harvest power car-

ried by the RF signal without AN or with AN based on a reliable transmission

scenario. These EH receivers sometimes play a “ helper ” role by employing the

harvested power to introduce a jamming signal to confuse the eavesdroppers [103].

However, the efficiency of this harvest-and-jamming policy is dependant on the net-

work topology [104]. In this chapter, the transmit beamformer without or with AN

will be focused to maximize the achieved secrecy rate, satisfying the transmit power

and the EH constraints.

6.2 Transmit Optimization for Secrecy Rate Max-

imization

In this section, secure transmit beamformer is designed for the secrecy rate maxi-

mization subject to the transmit power and the EH constraints. This optimization

problem is written as follows:

max
w

Rs, s.t. ‖w‖2 ≤ P, min
l
El ≥ E, ∀k, l, (6.3)

where P is the maximum available transmit power at the legitimate transmitter,

and E denotes the target harvested energy of the EH receivers. The secrecy rate

maximization problem (6.3) is not convex in terms of the nonconvex secrecy rate

objective function and EH constraint, and cannot be solved directly. Unlike the

existing work [60], where the SDP relaxation is considered to reformulate the secrecy

rate maximization problem, however, it is challenging to yield a rank-one solution

for the relaxed problem. In this section, a conic reformulation for the secrecy rate

maximization problem is proposed to circumvent this issue. First, the problem (6.3)
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6.2 Transmit Optimization for Secrecy Rate Maximization

Table 6.1: Bisection methods

1. Given lower and upper bound of the targeted secrecy rate Rmin and Rmax, and
a desired solution accuracy τ (very small value).

2. Setting R = (Rmin +Rmax)/2.

3. Iteration loop begin

(a) Solve the corresponding power minimization problem in (6.4) using the
relaxation method to obtain the beamformer w.

(b) Compute the transmit power P̃ = ‖w‖2.

(c) If P̃ ≤ P , then Rmin = R; otherwise, Rmax = R.

(d) Until Rmax −Rmin ≤ τ , break.

4. Iteration loop end

5. R is the achieved secrecy rate of the secrecy rate maximization problem, and
w is the corresponding optimal solution.

is decomposed into a sequence of power minimization problems for a target rate

R > 0, each of which can be written as

min
w
‖w‖2, s.t. Rs ≥ R, min

l
El ≥ E, ∀k, l. (6.4)

The optimal solution to (6.3) can be obtained by solving the corresponding power

minimization problem (6.4) with different R, which is reformulated as a convex

optimization framework by using conic matrix transformations. Then, bisection

search is employed to update this target rate R by checking the feasibility of the

power minimization problem [95]. Thus, this algorithm can be summarized in Table

6.1 to solve the secrecy rate maximization problem. In the following, the power

minimization problem (6.4) will be solved.

6.2.1 Power Minimization

Now, the power minimization problem is considered based on the assumption that

the transmitter has perfect channel state information (CSI) of the legitimate user,
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the eavesdroppers and the EH receivers. Thus, the problem (6.4) can be relaxed as

min
w
‖w‖2, s.t. log

(
1 +
|hHs w|2

σ2
s

)
− log

(
1 +
|hHe,kw|2

σ2
e

)
≥ R, ∀k,

|hHl w|2 ≥ E, ∀l. (6.5)

The above problem is not convex in terms of the non-convex secrecy rate and EH

constraints. In order to circumvent the issue, the following lemma is required:

Lemma 6.1 The problem in (6.5) is reformulated into the following form:

min
w,s1

s1, s.t.

 s1

w

 �K 0,

Sk =


1
σs

wHhsI

 2
R
2

σe
wHhe,k

(2R − 1)
1
2


 2

R
2

σe
wHhe,k

(2R − 1)
1
2

H 1
σs

wHhs

 � 0, ∀k,

xl = <{wHhl}, yl = ={wHhl}, ul = [xl yl],

‖u(n)
l ‖

2 + 2
2∑
i=1

u
(n)
l (i)[ul(i)− u

(n)
l (i)] ≥ E, ∀l. (6.6)

Proof Please refer to Section 6.6.1. �

In problem (6.6), the secrecy rate constraint is reformulated into linear matrix in-

equality (LMI), whereas the EH constraint is approximated by a first-order Taylor

approximation, thus (6.6) is a convex problem for a given ul. An initialization value

of the vector ul is randomly generated and can be updated at each iteration. The

algorithm converges when u
(n+1)
l = u

(n)
l holds, and it is guaranteed to converge to a

locally optimal solution (quite close to the globally optimal solution) [105,106].

6.2.2 Robust Power Minimization

In the previous section, the power minimization problem has been solved based on

the assumption that the legitimate transmitter has perfect CSI. However, it is not

always possible to have perfect CSI due to the lack of cooperation as well as channel

estimation and quantization errors. In this section, the robust power minimization

problem is considered by incorporating norm-bounded channel uncertainty.
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6.2.2.1 Channel Uncertainty

In this subsection, it is assumed that the CSI is not available at the legitimate

transmitter. The channel uncertainty are modelled as

hs = h̄s + es,

he,k = h̄e,k + ee,k, ∀k,

hl = h̄l + el, ∀l,

where h̄s, h̄e,k and h̄l denote the estimated channels of the legitimate user, the k-th

eavesdropper and the l-th EH receiver, and es, ee,k and el represent the correspond-

ing channel errors, which are assumed to be bounded as

‖es‖2 = ‖hs − h̄s‖2 ≤ εs, for εs ≥ 0, ,

‖ee,k‖2 = ‖he,k − h̄e,k‖2 ≤ εe,k, for εe,k ≥ 0, ∀k,

‖el‖2 = ‖hl − h̄l‖2 ≤ εl, for εl ≥ 0, ∀l,

where εs, εe,k and εl represent the norm bound of the channel errors.

6.2.2.2 Robust Power Minimization

Now, the robust power minimization problem is written by incorporating the channel

uncertainty as

min
w
‖w‖2,

s.t. min
es

log

(
1 +
|(h̄s + es)

Hw|2

σ2
s

)
−max

ee,k

log

(
1 +
|(h̄e,k + ee,k)

Hw|2

σ2
e

)
≥ R, ∀k,

(6.7a)

min
el

|(h̄l + el)
Hw|2≥E, ∀l. (6.7b)
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The problem (6.7) is not convex due to (6.7a) and (6.7b), and cannot be solved

directly. Thus, the following reformulation of the secrecy rate constraint (6.7a) as



1
σs

(
wHh̄s − εs‖w‖

)
≥
√
t2,[

2
R
2

σe
(h̄e,k + ee,k)

Hw (2R−1)
1
2

] 2
R
2

σe
wH(h̄e,k + ee,k)

(2R − 1)
1
2

 ≤ t2,
(6.8)

The first constraint in (6.8) is modified based on a first-order Taylor approximation

1

σs
<{wHh̄s} −

εs
σs
‖w‖ ≥ f (n)(t2), (6.9)

where f (n)(t2) =

√
t
(n)
2 + 1

2

√
t
(n)
2

(t2 − t
(n)
2 ). The following lemma is considered to

reformulate the second constraint in (6.8) ,

Lemma 6.2 The second constraint in (6.8) can be reformulated as

S̄k =


Sk,1 − λk

[
0 −1

] 0

−1

 −εe,k


2
R
2

σe
wH

0

0


−εe,k

[
2
R
2

σe
wH 0 0

]
λkI

 � 0,∀k. (6.10)

where

Sk,1 =


f (n)(t2)I

 2
R
2

σe
wHh̄e,k

(2R − 1)
1
2


 2

R
2

σe
wHh̄e,k

(2R − 1)
1
2

H f (n)(t2)

 . (6.11)

Proof Please refer to Section 6.6.2. �
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Thus, the robust power minimization problem can be written as

min
s2,w,λk

s2, s.t.

 s2

w

 �K 0,

S̄k(λk, f
(n)(t2)) � 0, ∀k,

1

σs
wHh̄s −

εs
σs
‖w‖ ≥ f (n)(t2),

<{h̄Hl w} ≥ E
1
2 + εl‖w‖2, ={h̄Hl w} = 0, ∀l. (6.12)

The above problem is convex for a given t
(n)
2 at each iteration. Thus, an initialization

of t2 is given to solve the problem in (6.12) by using interior-point method, which

is updated iteratively. It is easily observed that t2 is updated when t
(n+1)
2 = t

(n)
2 ,

which confirms that the algorithm converges.

6.3 AN-aided Transmit Optimization for Secrecy

Rate Maximization

In the previous section, the secrecy rate maximization problem has been solved

to optimize the secure transmit beamformer. In this section, AN-aided transmit

optimization for secrecy rate maximization problem is investigated, where transmit

beamformer and AN are jointly designed to maximize the achieved secrecy rate with

the transmit power and the EH constraints.

6.3.1 Problem Formulation

The secrecy rate maximization problem is formulated subject to the transmit power

and the minimum EH constraints, where the transmit signal can be written as x =

ws+ v, and the secure transmit beamformer (i.e., w) and AN (i.e., v ∼ CN(0,V))

are jointly designed. This optimization problem can be formulated as

max
w,V

min
k
Rs −Re,k,

s.t. ‖w‖2 + Tr(V) ≤ P, [wwH ](i,i) + [V](i,i) ≤ pi, ∀i,

min
l
|hHl w|2 + hHl Vhl ≥ El, ∀l, V � 0, (6.13)
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where [wwH ](i,i) + [V](i,i) (i = 1, ..., NT ) represents each antenna transmit power

constraint, and the mutual information at the legitimate user and k-th eavesdropper

can be written as

Rs = log

(
1 +

hHs wwHhs
hHs Vhs + σ2

s

)
, Re,k = log

(
1 +

hHe,kwwHhe,k

hHe,kVhe,k + σ2
e

)
, ∀k.

The optimization problem (6.13) is not convex and cannot be solved directly. Thus,

two reformulations are proposed to make this problem tractable. Unlike [61], where

it has shown that the relaxed problem returns rank-two. In this section, a novel

SDP relaxation for the secrecy rate maximization is investigated, which shows that

the optimal solution returns rank-one to guarantee the optimal condition. First, the

optimization problem (6.13) is written by defining Qs = wwH as

max
Qs,V

log

(
1 +

hHs Qshs
hHs Vhs + σ2

s

)
−max

k
log

(
1 +

hHe,kQshe,k

hHe,kVhe,k + σ2
e

)
,

s.t. Tr(Qs + V) ≤ P, Tr[Ai(Qs + V)] ≤ pi, ∀i, (6.14a)

hHl (Qs + V)hl ≥ El, ∀l, (6.14b)

Qs � 0,V � 0, (6.14c)

rank(Qs) = 1,

where Ai = aia
H
i is the given antenna design parameters to adjust each antenna

power budget, and ai is a unit i-th vector (i.e., [ai]j = 1 for i = j and [ai]j = 0

for i 6= j). The specific applications of each antenna power constraint have already

been described in [29,101].

6.3.2 Secrecy Rate Maximization

For the secrecy rate maximization problem (6.13), two reformulations to jointly

optimize the transmit beamformer and AN, namely, two-level optimization and SCA

are provided.

6.3.2.1 Two-Level Optimization

In this section, two-level optimization is considered to handle the secrecy rate max-

imization problem (6.14). First, this optimization can be written by introducing a
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slack variable t as

max
Qs,V,t

Rs + log(t),

s.t. log

(
1 +

hHe,kQshe,k

hHe,kVhe,k + σ2
e

)
≤ log(

1

t
), ∀k, (6.15a)

(6.14a), (6.14b), (6.14c), rank(Qs) = 1. (6.15b)

The problem (6.15) is still not convex in terms of the constraint (6.15a), and cannot

be solved directly. Then, this optimization problem can be formulated as a two-level

optimization problem. The outer problem is a single-variable optimization problem

of t, which can be written as

max
t

log(1 + f(t)) + log(t), s.t. tmin ≤ t ≤ 1, (6.16)

where the lower bound tmin can be determined as

t ≥
(

1 +
hHs Qshs

hHs Vhs + σ2
s

)−1

≥
(

1 +
hHs Qshs
σ2
s

)−1

≥
(

1 +
λmax(Qs)‖hs‖2

σ2
s

)−1

≥
(

1 +
Tr(Qs)‖hs‖2

σ2
s

)−1

≥
(

1 +
P‖hs‖2

σ2
s

)−1

= tmin, (6.17)

which can be handled by using 1D search method. The inner problem can be recast

for a given t as follows:

f(t) = max
Qs,V

hHs Qshs
hHs Vhs + σ2

s

,

s.t. (6.15a), (6.14a), (6.14b), (6.14c), (6.18)

rank(Qs) = 1.

It is easily verified that the constraint in (6.15) can be reformulated as

hHe,k

[
Qs − (

1

t
− 1)V

]
he,k ≤ (

1

t
− 1)σ2

e . (6.19)
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Then, (6.18) can be recast for a given t as

f(t) = max
Qs,V

hHs Qshs
hHs Vhs + σ2

s

,

s.t. (6.19), (6.14a), (6.14b), (6.14c), rank(Qs)=1. (6.20)

The problem (6.20) is a quasi-convex problem without the nonconvex rank-one con-

straint, thus the Charnes-Cooper transformation is employed to convert it into a

convex problem by introducing δ so that the following relations hold:

Qs =
Q̄s

δ
, V =

V̄

δ
(6.21)

Thus, the problem (6.20) is relaxed as

f(t) = max
Q̄s,V̄,δ

hHs Q̄shs,

s.t. hHs V̄hs + δσ2
b = 1,

hHe,k

[
Q̄s − (

1

t
− 1)V̄

]
he,k ≤ (

1

t
− 1)δσ2

e ,

Tr(Q̄s + V̄) ≤ δP, Tr[Ai(Q̄s + V̄)] ≤ δpi, ∀i,

hHl (Q̄s + V̄)hl ≥ δEl, ∀l, Q̄s � 0, V̄ � 0. (6.22)

The problem (6.22) is a convex problem, and can be solved efficiently by using

interior-point method [70]. Thus, the optimal solution to (6.20) can be obtained

through (6.21), once (6.22) has been solved.

6.3.2.2 Optimality Conditions for SDP Relaxation

In this subsection, the tightness of the SDP relaxation to (6.20) is investigated. It is

assumed that f(t) is the optimal value to (6.20), which can be achieved by solving

(6.22), resulting in the following inequality,

hHs Qshs
hHs Vhs + σ2

s

≥ f(t)⇒ hHs [Qs − f(t)V]hs ≥ f(t)σ2
s , (6.23)
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Thus, the following power minimization problem is considered

min
Qs,V

Tr(Qs)

s.t. (6.23), (6.19), (6.14a), (6.14b), (6.14c). (6.24)

It is easily verified that the feasible solution to (6.24) is the optimal solution of (6.20)

due to the constraints (6.23), (6.14a), (6.14b), and (6.14c). Thus, the following

theorem is provided to show that the problem (6.24) yields a rank-one solution.

Theorem 6.1 Suppose the problem (6.24) is feasible, there always exists an optimal

solution (Qs, V) to (6.24) such that rank(Qs) = 1.

Proof Please refer to Section 6.6.3. �

From Theorem 6.1, a tightness analysis has been provided such that the problem

(6.20) yields a rank-one solution for all feasible t.

6.3.2.3 Successive Convex Approximation

In this section, SCA is proposed to jointly design secure transmit beamformer and

AN. First, the problem (6.13) can be modified as

min
Qs,V

max
k

(
σ2
e + Tr[he,kh

H
e,k(Qs + V)]

)(
σ2
s + Tr(hsh

H
s V)

)
(
σ2
s + Tr[hshHs (Qs + V)]

)(
σ2
e + Tr(he,khHe,kV)

)
s.t.Tr(Qs + V) ≤ P, Tr[Ai(Qs + V)] ≤ pi, ∀i, (6.25a)

hHl (Qs + V)hl ≥ El, ∀l, (6.25b)

Qs � 0, V � 0, rank(Qs) = 1. (6.25c)

Due to nonconvexity of the problem (6.25), the following exponential variables is

introduced to equivalently convert the objective function

ex0 = σ2
s + Tr[hsh

H
s (Qs + V)], exk = σ2

e + Tr(he,kh
H
e,kV),

eyk = σ2
e + Tr[he,kh

H
e,k(Qs + V)], ey0 =σ2

s + Tr(hsh
H
s V). (6.26)
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Thus, (6.25) can be written by introducing a slack variable τ as

min
Qs,V,x0,y0,xk,yk

τ (6.27a)

s.t. ey0−x0+yk−xk ≤ τ, (6.27b)

σ2
s + Tr[hsh

H
s (Qs + V)] ≥ ex0 , σ2

e + Tr(he,kh
H
e,kV) ≥ exk , (6.27c)

σ2
e + Tr[he,kh

H
e,k(Qs + V)] ≤ eyk , σ2

s + Tr(hsh
H
s V) ≤ ey0 , (6.27d)

(6.25a), (6.25b), (6.25c), ∀k, l, i. (6.27e)

The above problem is not still convex in terms of the constraint (6.27d). Thus, the

Taylor approximation (i.e., ax̂ + ax̂ ln a(x− x̂) ≤ ax) is employed to linearise (6.27d)

as follows:

σ2
e + Tr[he,kh

H
e,k(Qs + V)] ≤ eŷk(yk − ŷk + 1), (6.28a)

σ2
s + Tr(hsh

H
s V) ≤eŷ0(y0 − ŷ0 + 1), (6.28b)

where ŷ0 and ŷk are approximated values such that y0 = ŷ0 and yk = ŷk when

the approximations are tight. Thus, the secrecy rate maximization problem can be

relaxed as

min
Qs,V,x0,y0,xk,yk,τ

τ

s.t. (6.25a), (6.25b), (6.27b), (6.27c), (6.28), ∀k, l, i,

Qs � 0, V � 0, rank(Qs) = 1. (6.29)

The problem (6.29) is convex without the nonconvex rank-one constraint for a given

(ŷ0, ŷk), and can be solved by using an interior-point method. From SCA, the current

optimal solution can be updated iteratively until the constraints (6.27c) and (6.27d)

hold with equality, which implies (6.25) is optimally solved. This SCA algorithm

is outlined in Table 6.2. The optimal solution obtained by the SCA algorithm at

the n-th iteration is assumed to be (Q∗s(n),V∗(n), x∗0(n), y∗0(n), x∗k(n), y∗k(n), τ ∗(n)),

which can achieve a stable point when the SCA algorithm converges [107].

Now, the tightness analysis to (6.27) is considered. It is assumed that (Q∗s,V
∗)

are the optimal solutions to (6.25) that are obtained by solving (6.29) with the

SCA algorithm, and the corresponding slack variables (i.e., x∗0, y
∗
0, x

∗
k, y
∗
k, τ
∗) can be
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Table 6.2: SCA algorithm for the robust secrecy rate maximization problem (6.27).

1. Initialize (Qs[0],V[0]) so that (6.27) is feasible, and given κ as the tolerance
factor for stopping criterion.

2. Iteration loop begin:

(a) Updating (x0[n], xk[n], y0[n], yk[n]) by (6.26).

(b) Solving (6.29) with (x0[n], xk[k], y0[n], yk[n]) to obtain (Qs[n],V[n]).

3. Iteration loop end until stopping criterion |τ(n+ 1)− τ(n)| ≤ κ.

obtained by (6.26) and (6.27b), respectively. Thus, the following power minimization

problem is required:

min
Qs,V

Tr(Qs)

s.t. (6.25a), (6.25b), Qs � 0, V � 0,

σ2
s + Tr[hsh

H
s (Qs + V)] ≥ ex

∗
0 , σ2

e + Tr(he,kh
H
e,kV) ≥ ex

∗
k ,

σ2
e + Tr[he,kh

H
e,k(Qs + V)] ≤ ey

∗
k , σ2

s + Tr(hsh
H
s V) ≤ ey

∗
0 ,

∀k, l, i. (6.30)

It is assumed that the optimal solutions to (6.30) can be denoted as (Q̂s, V̂), which

are the feasible solutions to (6.25) with the objective value τ̂ obtained by substituting

(Q̂s, V̂) into (6.25), and τ̂ ≤ τ ∗ holds, which implies (Q̂s, V̂) is at least the same

optimal solution (Q∗s,V
∗) to (6.25). Thus, provided that the problem (6.30) is

feasible for positive secrecy rates, (6.30) always yield a rank-one solution, and the

proof is similar to that of Theorem 6.1.

6.3.3 Robust Secrecy Rate Maximization

In the previous subsection, the secrecy rate maximization problem has been solved

based on global CSI, however, it is not always possible that the legitimate trans-

mitter has perfect CSI due to lack of cooperation as well as the channel estimation

and quantization errors. In this subsection, the robust secrecy rate maximization

is considered to jointly optimize the transmit beamformer and AN by incorporat-

ing norm-bounded channel uncertainty shown in Section 6.2.2.1. In addition, per-

antenna power constraints is considered, where the Hermitian positive semidefinite
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(PSD) matrix Ai is not available at the legitimate transmitter, thus the true PSD

matrix can be written as

Ai=Āi+∆i, ‖∆i‖F ≤εi, ∀i, (6.31)

where Āi ∈ HNT
+ is the estimated Hermitian PSD matrix, and ∆i is estimated error

of the matrix Āi, which can be modelled as a spherical uncertainty with a norm

bound εi [57].

6.3.3.1 Two-Level Optimization

In this subsection, two-level optimization shown in 6.3.2.1 is considered to solve

the robust secrecy rate maximization, jointly designing secure transmit beamformer

and AN by incorporating the channel uncertainty. Since the outer problem does not

involve the channel uncertainty similar to Section 6.3.2.1, thus, in this subsection,

the inner problem is the main work, which can be written as

f(t) = max
Qs,V

(h̄s + es)
HQs(h̄s + es)

(h̄s + es)HV(h̄s + es) + σ2
s

,

s.t. (h̄e,k + ee,k)
H

[
Qs −

(
1

t
− 1

)
V

]
(h̄e,k + ee,k) ≤ (

1

t
− 1)σ2

e ,

Tr(Qs + V) ≤ P, max
∆i

Tr[(Āi + ∆i)(Qs + V)] ≤ pi,

(h̄l + el)
H(Qs + V)(h̄l + el) ≥ El, ∀l,

Qs � 0,V � 0, rank(Qs) = 1. (6.32)

Due to the nonconvexity of the problem (6.32), this robust secrecy rate maximization

problem can be modified by exploiting S-Procedure as

f(t) = max
Qs,V,λe,k,αl

(h̄s + es)
HQs(h̄s + es)

(h̄s + es)HV(h̄s + es) + σ2
s

,

s.t. Tr(Qs + V) ≤ P, Tr[Āi(Qs + V)] + εi‖Qs + V‖F ≤ pi, ∀i, (6.33a) λe,kI− [Qs − (1
t
− 1)V] −[Qs − (1

t
− 1)V]h̄e,k

−h̄He,k[Qs − (1
t
− 1)V] ck

 � 0, ∀k, (6.33b)

 αlI + (Qs + V) (Qs + V)h̄l

h̄Hl (Qs + V) h̄Hl (Qs + V)h̄l − El − αlε2
l

 � 0, ∀l, (6.33c)

Qs � 0,V � 0, rank(Qs) = 1. (6.33d)
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where ck = −h̄He,k[(Qs− 1
t
−1)V]h̄e,k+(1

t
−1)σ2

e−λe,kε2
e,k. Then, a slack variable τ is

introduced to relax the objective function in (6.33). By exploiting S-Procedure and

Charnes-Cooper transformation, this robust problem can be expressed as

f(t) = max
Q̄s,V̄,λs,µs,λe,k,αl,δ,τ

τ,

s.t.

 λsI + Q̄s Q̄sh̄s

h̄Hs Q̄s h̄Hs Q̄sh̄s − τ − λsε2
s

�0,

 µsI− V̄ −V̄h̄s

−h̄Hs V̄ −h̄Hs V̄h̄s − δσ2
s + 1− µsε2

s

�0,

 λe,kI− [Q̄s − (1
t
− 1)V̄] −[Q̄s − (1

t
− 1)V̄]h̄e,k

−h̄He,k[Q̄s − (1
t
− 1)V̄] c̄k

 � 0,

 αlI + (Q̄s + V̄) (Q̄s + V̄)h̄l

h̄Hl (Q̄s + V̄) h̄Hl (Q̄s + V̄)h̄l − δEl − αlε2
l

 � 0,

Tr[Āi(Q̄s + V̄)] + εi‖Q̄s + V̄‖F ≤ δpi,∀i,

Tr(Q̄s + V̄) ≤ δP, Q̄s � 0, Ṽ � 0, t ≥ 0. (6.34)

where c̄k = −h̄He,k[Q̄s−(1
t
−1)V̄]h̄e,k+δ(1

t
−1)σ2

e−λe,kε2
e,k. Without the nonconvex

rank constraint, (6.34) is convex, and can be solved by using interior-point method.

By solving the problem (6.34), the optimal value f(t)∗ can be written as

(h̄s + es)
HQs(h̄s + es)

(h̄s + es)HV(h̄s + es) + σ2
s

≥ f(t)∗,

⇒ (h̄s + es)
H [Qs − f(t)∗V](h̄s + es) ≥ f(t)∗σ2

s . (6.35)

Thus, the associated power minimization problem is considered as

min
Qs,V,αl,βs,λe,k

Tr(Qs),

s.t. (6.33a)− (6.33c), (6.36a) βsI + [Qs − f(t)∗V] [Qs − f(t)∗V]h̄s

h̄Hs [Qs − f(t)∗V] ds

 � 0, (6.36b)

where ds = h̄Hs [Qs−f(t)∗V]h̄s−f(t)∗σ2
s−βsε2

s. (6.36b) is achieved by employing

S-Procedure. It is easily verified that the feasible solution to (6.36) is optimal for
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(6.33), which is derived from (6.36a) and (6.36b). Thus, the following theorem holds

to show that the optimal solution to (6.33) is rank-one:

Theorem 6.2 Provided that (6.36) is feasible, there always exists an optimal solu-

tion to (6.36) such that rank(Qs) ≤ 1.

Proof Please refer to Section 6.6.4. �

6.3.3.2 Successive Convex Approximation

Now, the SCA reformulation is considered to solve the robust secrecy rate maxi-

mization problem to jointly optimize secure transmit beamformer and AN by in-

corporating channel uncertainty. This robust optimization problem is written as

min
Qs,V

max
k

te,krs
tsre,k

(6.37a)

s.t. Tr(Qs + V) ≤ P, Tr[(Āi + ∆i)(Qs + V)] ≤ pi, ∀i, (6.37b)

(h̄l + el)
H(Qs + V)(h̄l + el) ≥ El, ∀l, (6.37c)

Qs � 0, V � 0, rank(Qs) = 1. (6.37d)

where te,k = σ2
e + (h̄e,k +ee,k)

H(Qs+V)(h̄e,k +ee,k), rs = σ2
s + (h̄s+es)

HV(h̄s+es),

ts = σ2
s + (h̄s + es)

H(Qs + V)(h̄s + es) and re,k = σ2
e + (h̄e,k + ee,k)

HV(h̄e,k + ee,k).

The above problem is convex in terms of (6.37a) and (6.37c). Firs, the exponential

variables are introduced to modified (6.37a) as

ex0 ≤ σ2
s + min

es

(h̄s + es)
H(Qs + V)(h̄s + es), (6.38a)

exk ≤ σ2
e + min

ee,k

(h̄e,k + ee,k)
HV(h̄e,k + ee,k), (6.38b)

eyk ≥ σ2
e + max

ee,k

(h̄e,k + ee,k)
H(Qs + V)(h̄e,k + ee,k), (6.38c)

ey0 ≥ σ2
s + max

es

(h̄s + es)
HV(h̄s + es), (6.38d)
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By employing the slack variables (i.e., τ , us, ue,k, vs, and ve,k) for (6.37a), (6.38a),

(6.38b), (6.38c), and (6.38d), respectively, (6.37) can be reformulated as

min
Ω

τ,

s.t. ey0+yk−x0−xk ≤ τ, (6.37b), (6.37c), (6.37d),

ex0 ≤ σ2
s + us, min

es

(h̄s + es)
H [Qs + V](h̄s + es) ≥ us, (6.39a)

exk ≤ σ2
e + ue,k, min

ee,k

(h̄e,k + ee,k)
HV(h̄e,k + ee,k) ≥ ue,k, (6.39b)

eyk ≥ σ2
e + ve,k, max

ee,k

(h̄e,k + ee,k)
H(Qs + V)(h̄e,k + ee,k) ≤ ve,k, (6.39c)

ey0 ≥ σ2
s + vs, max

es

(h̄s + es)
HV(h̄s + es) ≤ vs, (6.39d)

{Qs,V, es, ee,k, x0, y0, xk, yk, us, ue,k, vs, ve,k} ∈ Ω, ∀k, l, i. (6.39e)

By exploiting S-Procedure and the first-order Taylor approximation, the problem

(6.39a) is written as

min
Ω

τ,

s.t. ey0+yk−x0−xk ≤ τ, ex0 ≤ σ2
s + us, e

xk ≤ σ2
e + ue,k, (6.40a)

eȳk(yk − ȳk + 1) ≥ σ2
e + ve,k, e

ȳ0(y0 − ȳ0 + 1) ≥ σ2
s + vs, (6.40b) λsI + (Qs + V) (Qs + V)h̄s

h̄Hs (Qs + V) h̄Hs (Qs + V)h̄s − us − λsε2
s

�0, (6.40c)

 λe,kI + V Vh̄e,k

h̄He,kV h̄He,kVh̄e,k − ue,k − λe,kε2
e,k

 � 0, (6.40d)

 βe,kI− (Qs + V) −(Qs + V)h̄e,k

−h̄He,k(Qs + V) −h̄He,k(Qs + V)h̄e,k + ve,k − βe,kε2
e,k

 � 0, (6.40e)

 βsI−V −Vh̄s

−h̄Hs V −h̄Hs Vh̄s + vs − βsε2
s

 � 0, (6.40f)

 αlI + (Qs + V) (Qs + V)h̄l

h̄Hl (Qs + V) h̄Hl (Qs + V)h̄l − El − αlε2
l

 � 0, (6.40g)

Tr(Qs + V) ≤ P, Tr[Āi(Qs + V)] + εi‖Qs + V‖F ≤ pi,

{Qs � 0,V � 0, x0, y0, xk, yk, us, ue,k, vs, ve,k,

λs ≥ 0, λe,k ≥ 0, βs ≥ 0, βe,k ≥ 0, αl ≥ 0} ∈ Ω, ∀k, l, i. (6.40h)
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The above problem is convex for a given ȳk and ȳ0 at each iteration, and can be solved

by using the interior-point method to update the solution for the next iteration until

the algorithm converges. Thus the SCA based robust scheme is similar to Table 6.2.

On the other hand, there exists a rank-onel solution to (6.40), and the proof is

similar to that of Theorem 6.2.

6.4 Simulation Results

Simulation results are provided to validate the proposed algorithms. A MISO secrecy

system is considered in the presence of three eavesdroppers and two EH receivers.

The legitimate transmitter is equipped with four transmit antennas (i.e., NT = 4),

whereas the other receivers (i.e., legitimate user, eavesdroppers and EH receivers)

are equipped with a single antenna. It is assumed that the channel coefficients are

modelled as both large-scale fading and small-scale fading. The simplified large-scale

fading model is given by

D = A0

(
d

dr

)−α
, for d ≥ dr, (6.41)

where A0 = 1, d represents the distance between the transmitter and all receivers

(i.e., legitimate user ds, passive eavesdroppers de, and the energy receivers dl), dr

denotes a reference distance set to be 20 meters, and α = 3 is the path loss expo-

nent. The small scale fading channel coefficients are assumed to be Rician fading

with Rician factor 5 dB. Note that for the involved line-of-sight (LOS) component

is modelled as the far-field uniform linear antenna array [108]. In addition, it is

assumed that σ2
s = σ2

e = −40 dBm, and the distances between the transmitter and

the legitimate user, the passive eavesdroppers, as well as the energy receivers are set

to be 100, 50, 25 meters unless specified. The target transmit power is assumed to

be 30 dBm (1w), and the target harvested power is set to be 1mw. All error bounds

(i.e., εs, εe,k and εl) are set to be 0.1 or 0.2 unless specified.

First, the secure transmit beamformer for secrecy rate maximization is evalu-

ated. Fig. 6.1 shows the achieved secrecy rate with different transmit powers, where

it is easily observed that the achieved secrecy rate increases with transmit power,

and the proposed scheme achieves the same performance with the SDP relaxation

based scheme in terms of achieved secrecy rate. In order to improve the security in
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Figure 6.1: Achieved secrecy rate with different transmit powers.
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Figure 6.2: AN assisted achieved secrecy rate with different transmit powers.
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SWIPT system, AN-aided secrecy rate versus transmit power is plotted in Fig. 6.2

based on both reformulations: two-level optimization and SCA. From this result,

one can observe that the secrecy rate of the two proposed schemes increase with

transmit power, and both schemes have a similar performance in terms of secrecy

rate. In addition, the SCA based scheme outperforms two-level optimization scheme

in lower transmit power regime.

Then, the security performance with EH performance is evaluated in Fig. 6.3,
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Figure 6.3: Achieved secrecy rate with target harvested power.

which shows that the achieved secrecy rate versus the target harvested power. One

can be observed from this result that the secrecy rate decreases with the target

harvested power based on perfect and imperfect CSI. Also, we compare our pro-

posed schemes (‘1D’ and ‘SCA’) with the robust schemes (‘1D Benchmark’), 1D

based scheme with Gaussian randomization (‘1D GR’), and two-dimensional search

based scheme (‘2D’) shown in [61], as well as the case without AN (‘NO AN’), in

which the proposed SCA based scheme outperforms our proposed 1D scheme, 1D

Benchmark scheme, 1D GR scheme, and NO AN scheme. The SCA based scheme

has a similar performance to 2D based scheme in terms of secrecy rate. Fig. 6.4

shows the percentage of AN power consumption in the total transmit power P ver-

sus transmit power, which shows that the proportion of AN power consumed to

interfere the eavesdroppers or energy harvesting. It is observed that this proportion
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Figure 6.4: The proportion of AN power consumption versus transmit power.

increases and then declines with the increase in transmit power at lower transmit

power regime, the percentage of consumed AN power should increase which ensures

secure communications and satisfies the EH constraint. When transmit power is high

enough, in order to further increase the secrecy rate required, more power should be

allocated to the message-bearing signals so that the AN power may get decreased.

The scheme without EH receivers has a lower proportion than the scheme with EH

receivers, since the AN is introduced to interfere with the passive eavesdropper only

in the system without EH receiver.

Finally, the achieved secrecy rate and the harvested power versus the distances

between the transmitter and the legitimate user (i.e., ds), as well as the EH receivers

(i.e., dl) are evaluated, respectively. Fig. 6.5 shows the secrecy rate versus ds, where

the achieved secrecy rate decreases with ds. In addition, the SCA based scheme out-

performs the 1D based scheme in terms of the achieved secrecy rate. Fig. 6.6 shows

the EH performance versus dl. From this result, the harvested power decreases with

dl, approaching zero after ds = 40 m.

6.5 Summary

In this chapter, the secrecy rate maximization problem has been investigated for

a MISO SWIPT secure channel in the presence of multiple eavesdroppers and EH
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Figure 6.5: Achieved secrecy rate versus distance between the transmitter and the
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6.6 Appendix

receivers. Transmit beamformer was designed to maximize the achieved secrecy rate

while satisfying the transmit power and the EH constraints. A two-step approach

with SOCP approximation was considered to design secure transmit optimization

for the secrecy rate maximization problem. While AN-aided transmit optimization

was developed to solve this secrecy rate maximization problem by exploiting two-

level optimization and SCA. Furthermore, tightness analyses have been provided to

guarantee the optimal condition for the SDP relaxation.

6.6 Appendix

6.6.1 Proof of Lemma 6.1

In order to prove Lemma 6.1, the secrecy rate constraint in (6.5) is written as

1

σ2
s

|wHhs|2 ≥

 2
R
2

σe
wHhe,k

(2R − 1)
1
2

H  2
R
2

σe
wHhe,k

(2R − 1)
1
2

 (6.42)

Then, the following lemma is required to convert (6.42) as a linear matrix inequality

(LMI)

Lemma 6.3 (Schur complement) [70]: Let X be a complex hermitian matrix,

X = XH =

 A B

BH C

 (6.43)

Thus, S = C − BHA−1B is the Schur complement of A in X, and the following

statements hold:

• X � 0, if and only if A � 0 and S � 0.

• if A � 0 then X � 0 if and only if S � 0.

By exploiting the Schur complement, (6.42) can be reformulated as


1
σs

wHhsI

 2
R
2

σe
wHhe,k

(2R − 1)
1
2


 2

R
2

σe
wHhe,k

(2R − 1)
1
2

H 1
σs

wHhs

 � 0, (6.44)
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In addition, the reformulation of the EH constraint (6.5) is considered. In order to

express this constraint clearly, two variables (i.e., xl ∈ R and yl ∈ R) are introduced

such that this constraint can be equivalently modified as

x2
l + y2

l ≥ E, (6.45a)

xl = <{wHhl}, yl = ={wHhl}, ∀l. (6.45b)

The constraint (6.45b) is convex (linear), whereas (6.45a) is not convex, thus, a

first-order Taylor approximation is considered to obtain the desired upper bound.

Setting ul = [xl yl]
T , gives, x2

l + y2
l = uTl ul. u

(n)
l is the n-th iteration of the vector

ul. Thus, (6.45a) can be approximated as

uTl ul ≈ ‖u(n)
l ‖

2 + 2
2∑
i=1

u
(n)
l (i)[ul(i)− u

(n)
l (i)], (6.46)

where i denotes the i-th element of the vector ul. This completes Lemma 6.1. �

6.6.2 Proof of Lemma 6.2

The second constraint (6.8) can be written by exploiting the Schur complement as

S
′

k =


f (n)(t2)I

 2
R
2

σe
wH(h̄e,k + ee,k)

(2R − 1)
1
2


 2

R
2

σe
wH(h̄e,k + ee,k)

(2R − 1)
1
2

H f (n)(t2)

 � 0, (6.47)

where f (n)(t2) has been defined in (6.9). The the following lemma is given to remove

the impact of the channel uncertainty

Lemma 6.4 [100, 109]: For a given set of matrices A = AH , B and C, the

following linear matrix inequality is satisfied:

A � BXC + CHXHB, ‖X‖ ≤ t, (6.48)
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if and only if there exist non-negative real numbers a such that A− aCHC −tBH

−tB aI

 � 0. (6.49)

By exploiting Lemma 6.4, the constraint (6.47) is written as

Sk �


2
R
2

σe
wH

0

0

 ee,k

[
0 −1

]
+

 0

−1

 eHe,k

[
2
R
2

σe
w 0 0

]
, (6.50)

where

Sk =


f (n)(t2)I

 2
R
2

σe
wHh̄e,k

(2R−1)
1
2


 2

R
2

σe
wHh̄e,k

(2R − 1)
1
2

H f (n)(t2)

 (6.51)

Thus, (6.47) can be reformulated as

S̄k =


Sk − λk

[
0 −1

] 0

−1

 −εe,k


2
R
2

σe
wH

0

0


−εe,k

[
2
R
2

σe
wH 0 0

]
λkI

 � 0,∀k. (6.52)

This completes Lemma 6.2. �
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6.6.3 Proof of Theorem 6.1

In order to show Theorem 6.1, first, the Lagrange dual function to (6.24) can be

written as

L(Qs,V,Y,Z, λ, µ, ηi, νl, τk) = Tr(Qs)− λ
[
Tr[hsh

H
s (Qs − f(t)V)]− σ2

sf(t)

]
+ µ

[
Tr(Qs + V)− P

]
+

NT∑
i=1

ηi

[
Tr[Ai(Qs + V)]− pi

]
−

L∑
l=1

νl

[
Tr[hlh

H
l (Qs + V)]

− El
]

+
K∑
k=1

τk

[
Tr[he,kh

H
e,k(Qs − (t− 1)V)]− (t− 1)σ2

e

]
− Tr(YQs)− Tr(ZV),

(6.53)

where Y ∈ HNT
+ , Z ∈ HNT

+ , λ ∈ R+, µ ∈ R+, ηi ∈ R+, νl ∈ R+, τk ∈ R+ denote the

dual variables of Qs, V, (6.23), (6.14a), (6.14b), and (6.19), respectively. Then, the

related KKT conditions is considered as follows:

∂L

∂Qs

= 0,⇒ Y = I− λhsh
H
s + µI +

NT∑
i=1

ηiAi −
L∑
l=1

νlhlh
H
l +

K∑
k=1

τkhe,kh
H
e,k,

(6.54a)

∂L

∂V
= 0,⇒ Z = λf(t)hsh

H
s + µI +

NT∑
i=1

ηiAi −
L∑
l=1

νlhlh
H
l −

K∑
k=1

τk(t− 1)he,kh
H
e,k,

(6.54b)

QsY = 0,Z � 0, λ ≥ 0, ∀i, l, k. (6.54c)

By subtracting (6.54b) from (6.54a), we have

Y − Z = I− λ(1 + f(t))hsh
H
s +

K∑
k=1

τkthe,kh
H
e,k,

⇒ Y = A− λ(1 + f(t))hsh
H
s , (6.55)

where A = I + Z +
∑K

k=1 τkthe,kh
H
e,k. From (6.55), one can easily observe that A is

positive definite, and rank(A) = NT , whereas rank(Y) = NT or NT − 1. However,

if rank(Y) = NT , then it violates Qs 6= 0. Thus, rank(Y) = NT − 1 always holds,

which implies Qs lies in the null space of Y from (6.54c), thus rank(Qs) = 1. This

completes Theorem 6.1. �
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6.6.4 Proof of Theorem 6.2

The dual function to (6.36) is written as follows:

L(Qs,V,Y,Z, λ, γi,Ts,Te,k,Tl) = Tr(Qs)− Tr(YQs)− Tr(ZV) + λ[Tr(Qs + V)

− P ] +

NT∑
i=1

γi

[
Tr[Āi(Qs + V)] + εi‖Qs + V‖F − pi

]
− Tr(TsA1)

− Tr[TsH
H
s (Qs − f(t)V)Hs]−

K∑
k=1

Tr(Te,kBk) +
K∑
k=1

Tr

[
Te,kH

H
e,k[Qs − (t−1 − 1)V]He,k

]

−
L∑
l=1

Tr(TlCl)−
L∑
l=1

Tr[TlH
H
l (Qs + V)Hl], (6.56)

where Y ∈ HNT
+ , Z ∈ HNT

+ , λ ∈ R+, γi ∈ R+, Ts ∈ HNT +1
+ , Te,k ∈ HNT +1

+ and

Tl ∈ HNT +1
+ are dual variables of Qs, V, (6.33a), (6.33c) and (6.33b), respectively.

In addition,

A1 =

 βsI 0

0H −f(t)σ2
s − βsε2

s

 , Hs =
[

INT
h̄s

]
,

Bk =

 λe,kI 0

0H (t−1 − 1)σ2
e − λe,kε2

e,k

 , He,k =
[

INT
h̄e,k

]
,

Cl =

 αlI 0

0H −El − αlε2
l

 , Hl =
[

INT
h̄l

]
.

The related KKT conditions are considered as follows:

∂L

∂Qs

= 0,⇒ Y = I + λI +

NT∑
i=1

γi[Āi + εi‖Qs + W‖−1
F I]−HsTsH

H
s

+
K∑
k=1

He,kTe,kH
H
e,k −

L∑
l=1

HlTlH
H
l , (6.57a)

∂L

∂V
= 0,⇒ Z = λI +

NT∑
i=1

γi[Āi + εi‖Qs + W‖−1
F I] + f(t)HsTsH

H
s

−
K∑
k=1

(t−1 − 1)He,kTe,kH
H
e,k −

L∑
l=1

HlTlH
H
l , (6.57b)

QsY = 0,Z � 0, ∀i, k, l, (6.57c)

[A1 + HH
s (Qs − f(t)V)Hs]Ts = 0. (6.57d)
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By subtracting (6.57b) from (6.57a), the following equality holds:

Y − Z = I− [1 + f(t)]HsTsH
H
s +

K∑
k=1

t−1He,kTe,kH
H
e,k,

⇒ Y + [1 + f(t)]HsTsH
H
s = I+Z+

K∑
k=1

t−1He,kTe,kH
H
e,k. (6.58)

Premultiply (6.58) by Qs

Qs

(
I + Z +

K∑
k=1

t−1He,kTe,kH
H
e,k

)
= [1 + f(t)]QsHsTsH

H
s . (6.59)

The following rank relation holds:

rank(Qs) = rank

[
Qs

(
I + Z +

K∑
k=1

t−1He,kTe,kH
H
e,k

)]
= rank(QsHsTsH

H
s ) ≤ min{rank(HsTsH

H
s ), rank(Qs)}. (6.60)

Based on the above rank relation, it is necessary to show rank(HsTsH
H
s ) ≤ 1 if we

claim rank(Qs) ≤ 1, thus, the two facts is considered as

[
INT

0
]

HH
s = INT

,[
INT

0
]

A1 = βs

(
Hs −

[
0NT

h̄s

])
.

Premultiply
[

INT
0
]

and postmultiply HH
s by (6.57d), respectively, and applying

the above two equalities, the following relations hold:

βs

(
Hs −

[
0NT

h̄s

])
TsH

H
s + [Qs − f(t)V]HsTsH

H
s = 0,

⇒
(
βsI + [Qs − f(t)V]

)
HsTsH

H
s = βs

[
0NT

h̄s

]
TsH

H
s . (6.61)

Lemma 6.5 If a block hermitian matrix P =

 P1 P2

P3 P4

 � 0, then the main

diagonal matrices P1 and P4 are always PSD matrices [93].

Now, it can be shown that βsI + [Qs − f(t)V] � 0 and is nonsingular, thus

pre(post)multiply by a nonsingular matrix will not change the matrix rank. Thus,

126



6.6 Appendix

the following rank relation holds:

rank(HsTsH
H
s ) = rank

([
0NT

h̄s

]
TsH

H
s

)
≤ rank

([
0NT

h̄s

])
≤ 1. (6.62)

This completes Theorem 6.2. �
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis has investigated various transmit optimization techniques of secrecy

rate optimization problems (power minimization and secrecy rate maximization)

for physical layer security using convex optimization techniques and game theory.

Transmit beamformer has been developed to obtain the optimal power allocation.

The proposed optimization problems were reformulated into convex ones, and associ-

ated robust schemes have been proposed by incorporating different forms of channel

uncertainty models.

In Chapter 4, transmit optimization for a multiple-input single-output (MISO)

secrecy channel has been investigated. Power minimization was first considered

to design the secure transmit beamformer and a second-order cone programming

(SOCP) based reformulation was proposed to solve this problem. In addition, a

closed-form solution of transmit beamformer for the scenario of an eavesdropper was

derived by employing Karush-Kuhn-Tucker (KKT) conditions. Second, the robust

schemes were investigated subject to outage probability secrecy rate constraint by

incorporating two statistical channel uncertainty models. A two-step algorithm with

both conservative reformulations (i.e., Bernstein-type inequality and S-Procedure)

was presented to handle this nonconvex optimization problem. Furthermore, an ini-

tial proof has been proposed to show that the optimal solution to the reformulated

problem was rank-one to guarantee its solution is also optimal to the original prob-

lem.

In Chapter 5, transmit optimization for a multiple-input multiple-output (MIMO)

128



7.2 Future Work

wiretap channel has been studied, where a multi-antenna cooperative jammer (CJ)

was employed to provide the jamming service to improve secure communication.

Power minimization and secrecy rate maximization have also been considered. To

solve these two non-convex problems, the transmit covariance matrices of the le-

gitimate transmitter and the CJ were designed, alternatively. For a given transmit

covariance matrix at the CJ, both problems were handled with a first-order Taylor

approximation. In addition, the robust scheme incorporating channel uncertainty

has been solved by exploiting S-Procedure, which can be formulated into a SDP.

Moreover, game theory based secure transmit optimization has been designed when

a private CJ is employed to introduce charges for its jamming service in terms of

interference and caused to the eavesdropper. This scheme was formulated as a Stack-

elberg game, where the private CJ and the transmitter have been modelled as the

leader and the follower, respectively, and both were to maximize their own revenue

function. For this proposed game, Stackelberg equilibrium has been analytically de-

rived with closed-form solutions.

In Chapter 6, transmit optimization for a MISO secure simultaneous wireless

information power transfer (SWIPT) system has been investigated, where secure

transmit beamformer was developed to maximize the achieved secrecy rate while

satisfying the transmit power budget and the EH constraint. A two-step algorithm

with SOCP reformulation was proposed to handle the nonconvex secrecy rate con-

striant, and first-order Taylor approximation was considered to linearize the EH

constraint. In addition, Secure transmit beamformer and AN were jointly designed,

where a two-level optimization and SCA have been proposed to relax this secrecy

rate maximization problem. Besides, it has been shown that the relaxed problem

yields a rank-one solution, which guarantees that its solution is optimal to the orig-

inal problem.

7.2 Future Work

The potential areas of future research stem from fifth generation (5G) wireless com-

munication networks, which has attracted more and more attention in recent years.

5G denotes the next major phase of mobile telecommunications standards beyond

the current 4G/IMT-Advanced standards, which provide much more than just fast

data speeds on mobile devices, envisioned as the key to providing seamless commu-
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nications. Spectral efficiency (SE), energy efficiency (EE), and security have been

considered for the evolutions of 5G wireless communication networks and can be

achieved by taking full advantage of limited radio spectrum effectively. Therefore,

SE and EE, together with security in 5G wireless communication networks will be

an important and promising topic for future research.

There are a series of key techniques in 5G wireless communications, including:

1. Non-orthogonal multiple access (NOMA) - a shift from conventional telecom-

munication systems relying on interference free assumptions.

2. Massive multiple input and multiple output (MIMO) system - offering excess

degrees of freedom due to the use of hundreds of antennas at a single base

station, an important breakthrough due to recent advances in semiconductor

technologies.

3. Cooperative communications, and full duplex (FD) communication - impor-

tant physical layer solutions for spectrum crunch, a global phenomenon where

mobile communications are always hungry for more bandwidth resource.

4. Millimetre wave communications - a promising enabling technology for future

cellular networks since it operates in the 10-300GHz band, in which more

spectrum can be used for telecommunications

5. Device-to-device (D2D) communications and cognitive radio (CR) - impor-

tant for merging telecommunication networks with mobile internet, internet

of things, etc.

The key techniques of 5G, coupled with existing interests (i.e., physical layer

security and SWIPT), will become more and more attractive in the research of the

future wireless communications. Due to the issue of spectrum scarcity, the system

can be designed for realizing spectral and energy efficient with secure transmission.

Resource allocation algorithms is developed optimally to achieve these requirements.

First, FD system with security and SWIPT can be considered as a promising

area, where the FD base station (BS) employs the PS scheme to harvest power and

decode information from the uplink channel and self-interference (SI) channel with

self-energy recycling. At the same time, the FD BS broadcast their own information

to the user by utilizing the harvested power. The eavesdropper is considered to
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overhear the uplink and downlink transmission simultaneously. Thus, the FD BS

will guarantee the uplink and downlink secrecy rates to satisfy the reliability criteria,

and EH target to the FD BS for uplink transmission and self-energy recycling.

Second, secure energy efficiency (SEE) with SWIPT is another interesting area

that considers the ratio of the secure spectral efficiency (SSE) with the difference

between the total transmit power and the harvested power. The formulated prob-

lem involves a fractional programming, which can be typically solved by employ-

ing Dinkelbach’s algorithm. In addition, according to the property of fractional

programming, the novel reformulation can be proposed based on Charnes-Cooper

transformation and one-dimensional (1D) search. Also, the trade-off between SEE

and SSE can be analysed theoretically and numerically.

Third, CR (or D2D) system with security, where the primary system will share

their spectrum with the CR (or D2D) transceivers, also guarantees secure commu-

nications in the presence of passive eavesdroppers, or even when CR transceivers (or

D2D nodes) are untrusted that overhear the information from the primary system.

In this system, two schemes can be modelled, underlay and cooperative schemes.

The underlay scheme is that the primary transmitter and the secondary transmitter

send information to their dedicated receivers in a spectrum-sharing manner, whereas

for the cooperative scheme, the second user is willing to assist the primary transmis-

sion by employing amplify-and-forward (AF) or decode-and-forward (DF) relaying

to access the channel.

Based on the aforementioned analyses, the key techniques of 5G with the research

works in this thesis are promising to realize the optimal resource allocation for secure

wireless networks.
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