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Abstract

Stochastic differential equations (SDEs) provide a natural framework for modelling in-

trinsic stochasticity inherent in many continuous-time physical processes. When such

processes are observed in multiple individuals or experimental units, SDE driven mixed-

effects models allow the quantification of both between and within individual variation.

Performing Bayesian inference for such models, using discrete-time data that may be in-

complete and subject to measurement error, is a challenging problem and is the focus of

this thesis.

Since, in general, no closed form expression exists for the transition densities of the SDE

of interest, a widely adopted solution works with the Euler-Maruyama approximation,

by replacing the intractable transition densities with Gaussian approximations. These

approximations can be made arbitrarily accurate by introducing intermediate time-points

between observations. Integrating over the uncertainty associated with the process at these

time-points necessitates the use of computationally intensive algorithms such as Markov

chain Monte Carlo (MCMC).

We extend a recently proposed MCMC scheme to include the SDE driven mixed-effects

framework. Key to the development of an efficient inference scheme is the ability to

generate discrete-time realisations of the latent process between observation times. Such

realisations are typically termed diffusion bridges. By partitioning the SDE into two parts,

one that accounts for nonlinear dynamics in a deterministic way, and another as a residual

stochastic process, we develop a class of novel constructs that bridge the residual process

via a linear approximation. In addition, we adapt a recently proposed construct to a partial

and noisy observation regime. We compare the performance of each new construct with a

number of existing approaches, using three applications: a simple birth-death process, a

Lotka-Volterra model and a model for aphid growth.

We incorporate the best performing bridge construct within an MCMC scheme to de-

termine the posterior distribution of the model parameters. This methodology is then

applied to synthetic data generated from a simple SDE model of orange tree growth, and

real data consisting of observations on aphid numbers recorded under a variety of different

treatment regimes. Finally, we provide a systematic comparison of our approach with an

inference scheme based on a tractable approximation of the SDE, that is, the linear noise

approximation.
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Chapter 1

Introduction

Throughout history, interest has lain in understanding and modelling the dynamics of

systems evolving through time. Instances include (but are not limited to) the growth of

populations, the interactions between certain species, the spread of epidemics and more

recently, intra-cellular processes. Initially the dynamics of these systems were captured

through the use of ordinary differential equations (ODEs); for example, Kermack and

McKendrick (1927) describe the spread of a disease through a population using three

ODEs. These three ODEs model the changes in the number of individuals who are Sus-

ceptible (those who could catch the disease), Infectious (those who have the disease) and

Recovered (those who no longer have the disease). This model is known as the SIR model.

However, the evolution of these systems is not entirely predictable and is subject to ran-

dom variation. The deterministic nature of the ODE description is unable to capture

this random variation and so has proved to be an unsatisfactory means through which to

capture the true dynamics of such systems. Hence an alternative modelling framework is

required, which can account for random behaviour.

A system where the introduction of randomness appears fundamental is the stock market,

specifically the pricing of options and shares. Black and Scholes (1973) and Merton (1973)

developed a framework for the fair pricing of options. Integral to their work was the

idea of stochastic differential equations (SDEs). SDEs consist of both a deterministic and

stochastic part, and capture the dynamics of a system through a solution which fluctu-

ates around the deterministic solution. However, it should be noted that the mean of the

stochastic solution is not the ODE solution. Some application areas and indicative refer-

ences where SDEs have been used include finance (Cox et al., 1985; Bibby and Sørensen,

2001; Chiarella et al., 2009; Kalogeropoulos et al., 2010; Stramer et al., 2010), systems

biology (Golightly and Wilkinson, 2005, 2006, 2008; Finkenstädt et al., 2008; Komorowski

et al., 2009, 2010; Fuchs, 2013; Fearnhead et al., 2014; Golightly et al., 2015), population
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dynamics (Gilioli et al., 2008; Heydari et al., 2014), physics (van Kampen, 1981; Ramshaw,

1985; Tuckwell, 1987), medicine (Walsh, 1981; Fogelson, 1984; Capasso and Morale, 2009),

epidemics (Dargatz, 2007; Allen, 2008; Gray et al., 2011), biology (Leung, 1985), epidemi-

ology (Barbour, 1974; Chen and Bokka, 2005; Alonso et al., 2007), genetics (Fearnhead,

2006; Tian et al., 2007) and traffic control (McNeil, 1973). The solution of an SDE gives

a continuous-time, continuous-valued stochastic process typically referred to as a diffusion

process.

Unfortunately, analytic intractability of SDEs governing most nonlinear multivariate dif-

fusion processes precludes a closed-form expression for the transition densities. Conse-

quently, inferring the parameters of the SDE using observations taken at discrete times is

a challenging problem. Methods to overcome this difficulty include simulated maximum

likelihood estimation (Pedersen, 1995; Durham and Gallant, 2002), closed-form expansion

of the transition density (Aı̈t-Sahalia, 2002, 2008; Picchini et al., 2010; Stramer et al.,

2010; Picchini and Ditlevsen, 2011), exact simulation approaches (Beskos et al., 2006,

2009, 2013; Sermaidis et al., 2013) and Bayesian imputation approaches (Elerian et al.,

2001; Eraker, 2001; Roberts and Stramer, 2001; Golightly and Wilkinson, 2008; Stramer

and Bognar, 2011; Kou et al., 2012; Schauer et al., 2016). The latter method replaces an

intractable transition density with a first order Euler-Maruyama approximation, and uses

data augmentation to limit the discretisation error incurred by the approximation. Whilst

exact algorithms that avoid discretisation error are appealing, they are limited to diffusions

which can be transformed to have unit diffusion coefficient, known as reducible diffusions.

On the other hand, the Bayesian imputation approach has received much attention in the

recent literature due to its wide applicability.

The essential idea of the Bayesian imputation approach is to augment low frequency data

by introducing intermediate time-points between observation times. An Euler-Maruyama

scheme is then applied by approximating the transition densities over the induced dis-

cretisation as Gaussian. Computationally intensive algorithms, such as Markov chain

Monte Carlo (MCMC), are then used to integrate over the uncertainty associated with

the missing/unobserved data. Care must be taken in the design of such schemes due to

1. dependence between the parameters and the latent process;

2. dependence between values of the latent process itself.

The former was first highlighted as a problem by Roberts and Stramer (2001). Techniques

to overcome this issue include the use of a reparameterisation (Roberts and Stramer, 2001;

Golightly and Wilkinson, 2008, 2010) and a particle MCMC method which permits a joint

update of the parameters and latent values (Golightly and Wilkinson, 2011; Picchini,

2014). Overcoming dependence between values of the latent process can be accomplished

2
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by jointly updating latent values in blocks. This requires the ability to sample the diffusion

process (or an approximation thereof) at intermediate times between two fixed values. The

resulting realisation is typically referred to as a diffusion bridge.

Designing diffusion bridge constructs that can be applied in general multivariate set-

tings is a challenging problem and has received much attention in recent literature. The

simplest approach (see, for example, Pedersen (1995)) is based on the forward dynam-

ics of the diffusion process and generates a bridge by sampling recursively from the

Euler-Maruyama approximation of the unconditioned SDE. This myopic approach in-

duces a discontinuity as the discretisation gets finer, and is well known to lead to low

Metropolis-Hastings acceptance rates. The modified diffusion bridge (MDB) construct of

Durham and Gallant (2002) (and the extensions to the partial and noisy observation case

in Golightly and Wilkinson (2008)) pushes the bridge process towards the observation

in a linear way and provides the optimal sampling method when the drift and diffusion

coefficients of the SDE are constant (Stramer and Yan, 2006). However, this construct

does not produce efficient proposals when the process exhibits nonlinear dynamics. Sev-

eral approaches have been proposed to overcome this problem. For example, Lindström

(2012) (see also Fearnhead (2008) for a similar approach) combines the myopic and MDB

approaches, with a tuning parameter governing the precise dynamics of the resulting sam-

pler. Del Moral and Murray (2015) (see also Lin et al. (2010)) use a sequential Monte Carlo

scheme to generate realisations according to the forward dynamics, pushing the resulting

trajectories towards the observation using a sequence of reweighting steps. Schauer et al.

(2016) combine the ideas of Delyon and Hu (2006) and Clark (1990) to obtain a bridge

based on the addition of a guiding term to the drift of the process under consideration.

The guiding term is derived using a tractable approximation of the target process. Meth-

ods that generate continuous sample paths exactly have been proposed by Beskos et al.

(2006) for reducible diffusions. Beskos et al. (2013) use Hybrid Monte Carlo (HMC) on

pathspace to generate SDE sample paths under various observation regimes. For the ap-

plications considered, the authors found reasonable gains in overall efficiency (as measured

by minimum effective sample size per CPU time) over an independence sampler with a

Brownian bridge proposal. However, we note that HMC also requires careful choice of the

tuning parameters (namely the number of steps (and their size) in the leapfrog integrator)

to maximise efficiency.

When repeated measurements on a system of interest are made, differences between indi-

viduals or experimental units can be incorporated through random effects. Quantification

of both system (intrinsic) variation and variation between units leads to a stochastic dif-

ferential mixed-effects model (SDMEM), the natural extension of an SDE. Difficulty in

performing inference for SDEs has resulted in relatively little work on SDMEMs.
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Picchini et al. (2010) propose a procedure for obtaining approximate maximum likelihood

estimates for SDMEM parameters based on a two step approach: they use a closed-form

Hermite expansion (Aı̈t-Sahalia, 2002, 2008) to approximate the transition density, before

using Gaussian quadrature to numerically integrate the conditional likelihood with respect

to the random parameters. As noted by Picchini and Ditlevsen (2011), the approach is,

in practice, limited to a scalar random effect parameter since Gaussian quadrature is in-

creasingly computationally inefficient as the dimension of the random effect parameter

grows. The methodology is extended in Picchini and Ditlevsen (2011) to deal with mul-

tiple random effects. A number of limitations remain however. In particular a reducible

diffusion process is required. Another drawback is that the method cannot account for

measurement error. A promising approach appears to be the use of the extended Kalman

filter (EKF) to provide a tractable approximation to the SDMEM. This has been the focus

of Overgaard et al. (2005), Tornøe et al. (2005) and Berglund et al. (2011). The R package

PSM (Klim et al., 2009) uses the EKF to estimate SDMEMs. Unfortunately, a quantifi-

cation of the effect of using these approximate inferential models appears to be missing

from the literature. Donnet et al. (2010) discuss inference for SDMEMs in a Bayesian

framework, and implement a Gibbs sampler when the SDE (for each experimental unit)

has an explicit solution. When no explicit solution exists they propose to approximate the

diffusion process using the Euler-Maruyama approximation.

1.1 Thesis aims

The aim of this thesis is to provide a framework that permits (simulation-based) Bayesian

inference for a large class of multivariate SDMEMs using discrete-time observations that

may be incomplete (so that only a subset of model components are observed) and sub-

ject to measurement error. We further require our framework to accommodate processes

that exhibit nonlinear dynamics between observation times, as this nonlinearity can be

important when, for example, the process is observed sparsely in time.

As a starting point, we consider the Bayesian imputation approach described above. We

adapt the reparameterisation technique (known as the modified innovation scheme) of

Golightly and Wilkinson (2008, 2010) (see also Stramer and Bognar (2011); Fuchs (2013);

Papaspiliopoulos et al. (2013)) to the SDMEM framework. A key requirement of the

scheme is the ability to sample the latent process between two fixed values. Previous

implementations of the modified innovation scheme have typically focused on the modified

diffusion bridge construct of Durham and Gallant (2002). For the SDMEM considered in

Section 5.2 we find that this construct fails to capture the nonlinear dynamics exhibited

between observation times. We therefore develop a novel class of bridge constructs that
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are computationally and statistically efficient, simple to implement, can be applied in

scenarios where only partial and noisy measurements of the system are available and can

capture nonlinear behaviour.

Finally, we provide a systematic comparison of our approach with an inference scheme

based on a linear noise approximation (LNA) of the SDE. The LNA approximates transi-

tion densities as Gaussian, and when combined with Gaussian measurement error, allows

the latent process to be integrated out analytically. Essentially a forward (Kalman) filter

can be implemented to calculate the marginal likelihood of all parameter values of inter-

est, facilitating a marginal Metropolis-Hastings scheme targeting the marginal parameter

posterior of interest. It should be noted, however, that evaluation of the Gaussian transi-

tion densities under the LNA requires the solution of an ODE system whose order grows

quadratically with the number of components (say d) governed by the SDE. The compu-

tational efficiency of an LNA based inference scheme will therefore depend on d, and on

whether or not the ODE system can be solved analytically.

1.2 Outline of thesis

In the following we outline the subsequent chapters contained within this thesis. Chap-

ter 2 introduces the concept of a diffusion process as the solution to an Itô SDE, including

a specific example of Brownian motion. Brief but fundamental concepts of Itô calculus

are discussed and generalisations to multivariate processes are considered. A short intro-

duction to Bayesian inference and a review of Markov chain Monte Carlo is given. Such

techniques are incredibly useful as they allow for a random sample to be drawn from a

density of interest, which needs only be known up to a constant of proportionality. The

chapter concludes by examining a tractable approximation to an SDE, that is, the linear

noise approximation.

In Chapter 3 we discuss the challenging problem of constructing a diffusion bridge for

a multivariate diffusion. We initially review bridge constructs from existing literature,

before detailing our novel approach which aims to bridge the latent process by bridging

a conditioned residual process. We also offer extensions to the recently proposed guided

proposal of Schauer et al. (2016). We complete the chapter with three examples of increas-

ing difficulty, designed to gauge the statistical efficiency (and demonstrate the associated

properties) of each diffusion bridge. The three examples are, a simple birth-death process,

a Lotka-Volterra model and a model for aphid growth.

Stochastic differential mixed-effects models are presented in Chapter 4 and a Bayesian

inference scheme for SDMEMs is outlined. Each step is outlined in detail and the prob-

lems surrounding parameter inference are considered. The primary issue to overcome is
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intolerable mixing, due to the dependence between the parameters and latent values. We

discuss solutions to this problem, including the modified innovation scheme. Finally within

Chapter 4, we extend the LNA to SDMEMs and detail an inference scheme based on this

tractable approximation.

Chapter 5 details two numerical examples. First, we consider a synthetic dataset generated

from an SDMEM driven by the simple univariate model of orange tree growth presented

in Picchini et al. (2010) and Picchini and Ditlevsen (2011). The ODE system governing

the LNA solution is tractable in this example. Secondly, we fit a model of aphid growth

to both real and synthetic data. The real data are taken from Matis et al. (2008) and

consist of cotton aphid (Aphis gossypii) counts in the Texas High Plains obtained for

three different levels of irrigation water, nitrogen fertiliser and block. This application

is particularly challenging due to the nonlinear drift and diffusion coefficients governing

the SDMEM, and the ability to only observe one of the model components (with error).

Moreover, the ODE system governing the LNA solution is intractable and a numerical

solver must be used. Finally, we compare inferences made under the SDMEM and LNA

using synthetic data generated under four data-poor scenarios.

Conclusions are drawn in Chapter 6 before some areas of possible future work are discussed.
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Chapter 2

Diffusion processes and tractable

approximations

In this chapter we discuss diffusion processes, showing that a sample path of the process

satisfies an Itô SDE. We look at aspects of stochastic calculus before giving a brief outline

of Monte Carlo methods with a view to performing inference for the process governing an

SDE. Furthermore we consider a tractable approximation of the SDE, namely, the linear

noise approximation (LNA). The details within this chapter provide an introduction to

SDEs and stochastic calculus; for a more comprehensive review we refer the reader to

Arnold (1974) and Øksendal (2003).

2.1 Diffusion processes

Initially, let us consider a univariate stochastic process {Xt, t ≥ 0} which is continuous in

time. Given a sequence of times t0 < t1 < · · · < tn, if

P
(
Xtn ≤ x′|Xtn−1 = x,Xtn−2 = xtn−2 , . . . , Xt0 = xt0

)
= P

(
Xtn ≤ x′|Xtn−1 = x

)
,

then the process is a (first order) Markov process, that is, the future states of Xt are

independent of the past states given the present state. For all times 0 ≤ t < t′ < ∞, let

us denote the transition kernel of the process by

P
(
t, x; t′, x′

)
= P

(
Xt′ ≤ x′|Xt = x

)
,

with p(t, x; t′, x′) denoting the associated transition density. As Xt is a Markov process,

the transition density satisfies the Chapman-Kolmogorov equation. Specifically, for times
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t, t∗ and t′, such that t < t∗ < t′,

p(t, x; t′, x′) =

∫ ∞
−∞

p (t, x; t∗, x∗) p
(
t∗, x∗; t′, x′

)
dx∗, (2.1)

that is, the transition density at time t′ is connected to the density at time t via the

intermediate time t∗.

A univariate diffusion process {Xt} with infinitesimal mean α, known as the drift, and

infinitesimal variance β, known as the diffusion coefficient, is defined as a Markov process

satisfying the following for all x ∈ R:

0 = lim
δt→0

1

δt

∫
R
p
(
t, x; t+ δt, x′

) ∣∣x′ − x∣∣κ dx′, ∀ κ > 2, (2.2)

α(x, t) = lim
δt→0

1

δt

∫
R
p
(
t, x; t+ δt, x′

) (
x′ − x

)
dx′, (2.3)

β(x, t) = lim
δt→0

1

δt

∫
R
p
(
t, x; t+ δt, x′

) (
x′ − x

)2
dx′. (2.4)

From (2.2) we have that a large jump has negligible probability over a small time interval,

resulting in a sample path of the process being almost surely continuous.

The above can be represented in terms of the expectation, leading to (2.2)–(2.4) becoming

0 = lim
δt→0

1

δt
E
(
|Xt+δt − x|κ |Xt = x

)
, ∀ κ > 2, (2.5)

α(x, t) = lim
δt→0

1

δt
E (Xt+δt − x|Xt = x), (2.6)

β(x, t) = lim
δt→0

1

δt
E
{

(Xt+δt − x)2 |Xt = x
}
. (2.7)

By combining (2.2)–(2.4) with the Chapman-Kolmogorov equation (2.1), we can derive the

Kolmogorov differential equations for a diffusion process, known as the Kolmogorov for-

ward and backward equations. Let us consider a diffusion process with infinitesimal mean

α(x, t), infinitesimal variance β(x, t) and initial condition Xt = xt = x. The Kolmogorov

backward equation is given by

−∂p (t, x; t′, x′)

∂t
= α(x, t)

∂p (t, x; t′, x′)

∂x
+

1

2
β(x, t)

∂2p (t, x; t′, x′)

∂x2
. (2.8)

This equation describes the dynamics of the diffusion process going ‘backwards’ in time as

it incorporates the prior position of the process (x) at time t. Similarly the Kolmogorov

forward equation describes the dynamics of the diffusion process going ‘forwards’ in time

8
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and is given by

∂p (t, x; t′, x′)

∂t′
= − ∂

∂x′
{
α
(
x′, t′

)
p
(
t, x; t′, x′

)}
+

1

2

∂2

∂x′2
{
β
(
x′, t′

)
p
(
t, x; t′, x′

)}
. (2.9)

This equation is commonly known as the Fokker-Planck equation. The full derivations

of (2.8) and (2.9) can be found in Allen (2010) and Wilkinson (2011). Plainly, for a given

α(·) and β(·), the Kolmogorov equations can be used to determine the transition density

of the diffusion process. Unfortunately, for arbitrary α(·) and β(·), this is rarely possible

analytically.

2.1.1 Brownian motion

In 1827 the Scottish botanist and palaeobotanist Robert Brown discovered Brownian mo-

tion after examining pollen from a plant suspended in water under the lens of a microscope

(Brown, 1828). He noted that minute particles ejected from the pollen grain displayed a

continuous irregular motion. In 1900 the French mathematician Louis Bachelier consid-

ered Brownian motion as a model for stock, mathematically defining Brownian motion in

the process; see Bachelier (1964). The governing laws of Brownian motion were estab-

lished by Albert Einstein (Einstein, 1905). Norbert Wiener (Wiener, 1923) proved the

existence (and provided the construction) of Brownian motion, and it is for this reason

that Brownian motion is also referred to as the Wiener process.

The univariate stochastic process {Wt, t ≥ 0} is defined to be a standard Brownian motion

if Wt ∈ R depends continuously on t and the following assumptions hold:

1. P (W0 = 0) = 1;

2. For all times 0 ≤ t0 < t1 < t2, Wt2 −Wt1 and Wt1 −Wt0 are independent;

3. For all times 0 ≤ t0 < t1, Wt1 −Wt0 ∼ N(0, t1 − t0).

Assumption 2 ensures that standard Brownian motion has independent increments, and

so Wt2 − Wt1 is independent of the past {Wt, t < t1}. Assumption 3 establishes that

standard Brownian motion has stationary increments with Gaussian distributions. Note

that standard Brownian motion is a diffusion process for which α(x, t) = 0 and β(x, t) = 1.

Furthermore, using assumption 3 and that for times 0 ≤ t < t′ <∞, Wt′ = Wt′−Wt+Wt,

gives the conditional distribution Wt′ |Wt = x ∼ N(x, t′ − t).

It clearly follows that the transition density is given by

p
(
t, x; t′, x′

)
=

1√
2π (t′ − t)

exp

{
−1

2

(x′ − x)2

t′ − t

}
.

9
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Figure 2.1: A single skeleton path of standard Brownian motion for three different time-steps.

It is straightforward to show that p(t, x; t′, x′) satisfies the Fokker-Planck equation (2.9).

Using this density we can show that standard Brownian motion satisfies (2.2)–(2.4), via

(2.5)–(2.7). To see this, we begin by noting that ∆Wt = Wt′ −Wt ∼ N(0, t′ − t). From

this we have

E (∆Wt) = 0, E
(
∆W 2

t

)
= t′ − t and E

(
∆W 4

t

)
= 3(t′ − t)2.

Dividing by t′ − t and taking the limit as t′ → t clearly shows that (2.2), (2.3) and (2.4)

are satisfied.

Although generating a full continuous-time realisation is not possible, simulating the pro-

cess at discrete times is effortless. The resulting trajectory is typically referred to as a

skeleton path. For an equally spaced partition of [0, t] given by

0 = τ0 < τ1 < · · · < τm−1 < τm = t,

with ∆τ = τi+1 − τi, i = 0, . . . ,m− 1, recursively sampling from

Wτi+1 |Wτi = xi ∼ N(xi,∆τ)

gives a skeleton path. Figure 2.1 shows a skeleton path of standard Brownian motion for

three different time-steps.

Despite the fact that the sample paths of standard Brownian motion are continuous, Wt

is not differentiable almost everywhere. Thus, integrals of the form∫ t

0
f(s)dWs =

∫ t

0
f(s)

dWs

ds
ds

have no meaning in the Riemann sense. This fact necessitates a definition of a stochastic
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integral. The integral we require is known as the Itô integral and is the subject of the

next section.

2.2 Itô calculus

Kiyoshi Itô extended the methods of classical calculus to stochastic processes (of which

Brownian motion is one), and it is after him that Itô calculus is named.

2.2.1 The Itô integral

Consider a random function f(Xs, s), s ∈ [0, t], which satisfies∫ t

0
E
{
f (Xs, s)

2
}
ds <∞.

For simplicity we will write the function throughout this section as f(s). The Itô integral

can be obtained as follows. First partition [0, t] as

0 = τ0 < τ1 < · · · < τm−1 < τm = t,

with equidistant time-steps ∆τ = τi+1 − τi, i = 0, . . . ,m − 1. It is clear that ∆τ → 0 as

m → ∞. Also let ∆Wτi = Wτi+1 −Wτi , i = 0, . . . ,m − 1. The Itô stochastic integral of

f(s) is then ∫ t

0
f (s) dWs = l.i.m.

m→∞

m−1∑
i=0

f (τi) ∆Wτi , (2.10)

where l.i.m. is the mean-square limit, that is, the stochastic integral is the mean-square

limit of a sequence of partial sums. In contrast to classical calculus the value of the limit

depends upon the selection of points within the partition, here the left endpoint of each

sub-interval is taken. If we set

Fm−1 =

m−1∑
i=0

f (τi) ∆Wτi

and

L =

∫ t

0
f (s) dWs,

11
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then l.i.m.
m→∞

Fm−1 = L implies that

lim
m→∞

E
{

(Fm−1 − L)2
}

= 0.

The stochastic integral (2.10) is obtained by taking the left endpoint of each sub-interval.

If instead we took the midpoint of each sub-interval we would arrive at the Stratonovich

stochastic integral. In the context of this thesis, the Itô stochastic integral is more appro-

priate than the Stratonovich stochastic integral, as Stratonovich calculus does not have the

same direct link to the theory of diffusion processes that Itô calculus possesses. Therefore

from this point on, any stochastic integral will be assumed to be an Itô integral.

For simple functions f(Xs), the Itô integral can be verified directly using (2.10). As an

illustration, consider the case f(Xs) = 1. Thus

∫ t

0
dWs = l.i.m.

m→∞

m−1∑
i=0

∆Wτi

= l.i.m.
m→∞

{
(Wτ1 −Wτ0) + (Wτ2 −Wτ1) + · · ·+ (Wτm −Wτm−1)

}
= l.i.m.

m→∞
(Wτm −Wτ0)

= l.i.m.
m→∞

(Wt −W0)

= Wt −W0

= Wt.

Taking a second function g(s), s ∈ [0, t], which again satisfies∫ t

0
E
{
g (s)2

}
ds <∞,

and the times 0 ≤ t∗ < t, then some of the properties of the Itô integral include

1.

∫ t

0
f(s)dWs =

∫ t∗

0
f(s)dWs +

∫ t

t∗
f(s)dWs.

2.

∫ t

0
{Af(s) + g(s)} dWs = A

∫ t

0
f(s)dWs +

∫ t

0
g(s)dWs, where A is a constant.

3.

∫ t

0
E {f(s)} dWs = 0.

4. E

[{∫ t

0
f(s)dWs

}2
]

= E

{∫ t

0
f(s)2ds

}
.

Property 4 is known as the Itô isometry. A sketch proof of Property 1 can be found in
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Allen (2010), whilst proofs of Properties 2–4 are given in Arnold (1974). The Itô integral

also has the property that it is a martingale: a process whose future expectation is equal

to the current value of the process, regardless of the past.

2.2.2 Stochastic differential equations (SDEs)

An Itô process is a stochastic process {Xt, t ≥ 0}, which satisfies

Xt = X0 +

∫ t

0
α(Xs, s)ds+

∫ t

0

√
β(Xs, s) dWs. (2.11)

Here the process can be expressed as a Riemann integral plus an Itô stochastic integral.

In differential form, we obtain the Itô SDE

dXt = α(Xt, t) dt+
√
β(Xt, t) dWt, (2.12)

where α(Xt, t) is the drift and β(Xt, t) is the diffusion coefficient. Note that an SDE is

reducible if it can be rewritten (via a transformation) to have a unit diffusion coefficient,

that is

dX∗t = α∗(Xt, t) dt+ dWt.

If no such transformation is possible, then the SDE is said to be irreducible.

A pathwise unique solution {Xt} to (2.11) exists, if the drift and diffusion coefficients

(α(Xt, t) and β(Xt, t) respectively) are Lipschitz continuous and the linear growth condi-

tions hold. This requires∣∣∣α (x, t)− α
(
x′, t′

) ∣∣∣+
∣∣∣√β (x, t)−

√
β (x′, t′)

∣∣∣ ≤ A∣∣∣x− x′∣∣∣ (2.13)

and ∣∣∣α (x, t)
∣∣∣2 +

∣∣∣√β (x, t)
∣∣∣2 ≤ B(1 + |x|2

)
, (2.14)

where A and B are positive constants, x, x′ ∈ R and t, t′ ∈ [0,∞) with t < t′. Con-

dition (2.14) along with the addition of E(Xt)
2 < ∞ ensures that Xt will not explode.

Proofs of the above conditions (along with further details) can be found in Kloeden and

Platen (1992) and Øksendal (2003).

Pathwise uniqueness implies that if there are two solutions to (2.11), denoted Xt and X ′t,

with the same initial condition, then

P

(
sup

t∈[0,∞)

∣∣∣∣Xt −X ′t
∣∣∣∣ > 0

)
= 0.

13
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The above means Xt and X ′t are equivalent. Such a pathwise unique solution, {Xt}, to

(2.11) is known as a strong solution. If only the drift and diffusion coefficient are specified

in advance, and it is possible to find a pair of processes (X̃t, W̃t) such that (2.11) is satisfied,

then {X̃t} is known as a weak solution. Naturally a strong solution is a weak solution;

however the converse is not necessarily true. For further discussion of strong and weak

solutions we refer the reader to Øksendal (2003) or Fuchs (2013).

2.2.3 Itô’s formula

Take a diffusion process {Xt, t ≥ 0} which satisfies the SDE (2.12). Let f(x, t) be a real

valued function, once differentiable in t and twice differentiable in x. Let

ft =
∂f

∂t
, fx =

∂f

∂x
and fxx =

∂2f

∂x2

denote the first partial derivative of f with respect to t, and the first two with respect to x.

Itô’s formula then gives the SDE satisfied by the process {Yt, t ≥ 0}, where Yt = f(Xt, t)

as

dYt = ft (Xt, t) dt+ fx (Xt, t) dXt +
1

2
fxx (Xt, t) (dXt)

2 . (2.15)

Hence, Itô’s formula is a method to apply (nonlinear) transformations to SDEs. Equa-

tion (2.15) is the Itô calculus counterpart of the classical calculus chain rule. Note that

the second derivative term is usually referred to as Itô’s correction. When applying Itô’s

formula the following identities are of use:

dt2 = dt dWt = dWt dt = 0 and dW 2
t = dt.

2.3 Example: Ornstein-Uhlenbeck process

Consider a homogeneous diffusion process {Xt, t ≥ 0} satisfying an SDE of the form

dXt = θ1(θ2 −Xt) dt+ θ3 dWt, X0 = x0.

This SDE can be solved by applying Itô’s formula (2.15) with f(x, t) = xeθ1t, giving

dXte
θ1t = θ1θ2e

θ1tdt+ θ3e
θ1tdWt. (2.16)

14
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Integrating both sides of (2.16) between 0 and t gives∫ t

0
dXse

θ1s =

∫ t

0
θ1θ2e

θ1sds+

∫ t

0
θ3e

θ1sdWs

=⇒
[
Xse

θ1s
]t

0
=
[
θ2e

θ1s
]t

0
+ θ3

∫ t

0
eθ1sdWs

=⇒ Xte
θ1t −X0 = θ2e

θ1t − θ2 + θ3

∫ t

0
eθ1sdWs

=⇒ Xt = x0e
−θ1t + θ2

(
1− e−θ1t

)
+ θ3e

−θ1t
∫ t

0
eθ1sdWs.

By linearity and Itô isometry we obtain

Xt|X0 = x0 ∼ N
{
x0e
−θ1t + θ2

(
1− e−θ1t

)
,
θ2

3

2θ1

(
1− e−2θ1t

)}
.

Note that, taking t→∞ gives the stationary distribution

Xt ∼ N
(
θ2,

θ2
3

2θ1

)
.

Figure 2.2 shows ten skeleton paths of the Ornstein-Uhlenbeck process over the interval

[0, 10] for the parameter values θ1 = 0.75, θ2 = 3 and θ3 = 0.5. The skeleton paths are

simulated with a time-step of ∆τ = 0.1, where X0 is a random draw from a N(0, 25)

distribution. The 95% central region of the stationary distribution (Xt ∼ N(3, 1/6)) is

also illustrated in the figure. For this specific parameter choice we note that the skeleton

paths reach the stationary distribution reasonably quickly, with all being inside the 95%

region by time 4.

2.4 Generalisation to multivariate processes

Thus far we have only considered univariate processes. Naturally, many systems of interest

cannot be represented by a univariate process, therefore we must extend the discussions

above to multivariate processes.

Let us now consider a continuous-time d-dimensional Itô process {Xt, t ≥ 0} with

Xt = (X1,t, X2,t, . . . , Xd,t)
′ (where ′ denotes the transpose) and initial condition X0 = x0,

governed by the SDE

dXt = α(Xt, t) dt+
√
β(Xt, t) dWt. (2.17)

Here, α is a d-vector of drift functions, the diffusion coefficient β is a d×d positive definite

matrix with a square root representation
√
β such that

√
β
√
β
′
= β and Wt is a d-vector
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Figure 2.2: Ten skeleton paths of the Ornstein-Uhlenbeck process over [0, 10] with ∆τ = 0.1. The
grey dashed lines indicate the 95% region of the stationary distribution.

of (uncorrelated) standard Brownian motion processes. Equation (2.17) is the natural

extension to the univariate SDE given in (2.12).

Generalising (2.6) gives the infinitesimal means

αi(x, t) = lim
δt→0

1

δt
E (Xi,t+δt − xi|Xt = x), i = 1, . . . , d. (2.18)

Similarly, generalising (2.7) gives the infinitesimal second moments as

βi,j(x, t) = lim
δt→0

1

δt
Cov(Xi,t+δt − xi, Xj,t+δt − xj |Xt = x), i, j = 1, . . . , d. (2.19)

Extending (2.8), we arrive at the multivariate Kolmogorov backward equation

−∂p (t, x; t′, x′)

∂t
=

d∑
i=1

αi(x, t)
∂p (t, x; t′, x′)

∂xi
+

1

2

d∑
i=1

d∑
j=1

βij(x, t)
∂2p (t, x; t′, x′)

∂xi∂xj
, (2.20)

with p(t, x; t′, x′) being the multivariate transition density of Xt. The multivariate Kol-

mogorov forward equation (or multivariate Fokker-Planck equation) is given by

∂p (t, x; t′, x′)

∂t′
= −

d∑
i=1

∂

∂x′i

{
αi
(
x′, t′

)
p
(
t, x; t′, x′

)}
+

1

2

d∑
i=1

d∑
j=1

∂2

∂x′i∂x
′
j

{
βij
(
x′, t′

)
p
(
t, x; t′, x′

)}
.

(2.21)

A (nonlinear) transformation can be applied to (2.17) through the use of the multivariate

Itô formula. Again we take Yt = f(Xt, t), where f(x, t) is a real-valued function, once
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differentiable in t and xi, i = 1, . . . , d. Let

fk,t =
∂fk
∂t

, fk,xi =
∂fk
∂xi

and fk,xixj =
∂2fk
∂xixj

denote the first partial derivative of the kth element of f with respect to t, the first with

respect to xi and the mixed derivative with respect to xi and xj . Thus, the kth component

of {Yt, t ≥ 0} will satisfy the SDE given by

dYk,t = fk,t dt+

d∑
i=1

fk,xi dXi,t +
1

2

d∑
i=1

d∑
j=1

fk,xixj dXi,tdXj,t. (2.22)

In the calculation of the above, the following identities are of use:

dt2 = dt dWi,t = dWi,t dt = 0 and dWi,t dWj,t = δijdt,

where δij is the Kronecker delta.

2.5 Bayesian inference

Consider a diffusion process {Xt, t ≥ 0} parameterised by θ = (θ1, θ2, . . . , θp)
′ and satisfy-

ing an SDE of the form

dXt = α(Xt, t, θ) dt+
√
β(Xt, t, θ) dWt.

Given observations at discrete times, resulting in a dataset D = (xt0 , . . . , xtn)′, the likeli-

hood function is

L(θ|D) =

n−1∏
i=0

p
(
xti+1 |xti , θ

)
,

where, for notational simplicity, p(xti+1 |xti , θ) denotes the transition density ofXti+1 |Xti = xti .

We let the density π(θ) represent our prior knowledge (or beliefs) about θ. Through the

use of Bayes’ theorem we may update these beliefs using the data we observe. Thus, the

posterior density is

π(θ|D) =
π(θ)L(θ|D)∫

θ π(θ)L(θ|D)dθ
, (2.23)

which reflects our updated beliefs about θ after observing data D. The denominator of

(2.23) can be regarded as a constant of proportionality (as it does not depend upon θ),

whence

π(θ|D) ∝ π(θ)L(θ|D), (2.24)
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that is, the posterior is proportional to the product of the prior and the likelihood.

Typically, performing inference for an SDE is complicated by the intractability of the joint

posterior density, π(θ|D). To overcome this, we appeal to standard Monte Carlo methods,

and in particular Markov chain Monte Carlo, which is the subject of the next section.

2.6 Markov chain Monte Carlo (MCMC)

Markov chain Monte Carlo (MCMC) is an approach used to simulate from a specially

constructed Markov chain with stationary distribution π(·). Thus, providing that the

chain has converged, any value sampled will be from the density of interest π(·), here, the

joint posterior density. Additionally, for a multidimensional chain, samples of each com-

ponent will be simulated directly from the marginal density of the respective component.

Let us assume that the distribution of interest is the posterior distribution, with density

π(θ|D) (known as the target distribution). Here, we discuss two fundamental algorithms

to construct these chains, specifically: the Metropolis-Hastings algorithm and the Gibbs

sampler.

2.6.1 The Metropolis-Hastings algorithm

Metropolis et al. (1953) introduced the algorithm which was generalised by Hastings

(1970), hence the name Metropolis-Hastings. Central to Metropolis-Hastings is the idea

of a proposal density, denoted q(·|·), which is some (arbitrary) transition kernel. It can

be advantageous to have a proposal density which is easy to simulate from, however it

need not (necessarily) have π(θ|D) as its stationary distribution. The Metropolis-Hastings

algorithm is then as Algorithm 1.

Step 2 generates a new value of the chain from the proposal density q(θ∗|θ), which in step

4 is either accepted (the chain moves) or rejected (the chain remains where it was). Note,

π(θ|D) enters the acceptance probability as a ratio, and hence it is only necessary to know

π(θ|D) up to a constant of proportionality. Therefore, by (2.24), A (in the acceptance

probability of step 3) can be expressed as

A =
π (θ∗)L (θ∗|D) q (θ|θ∗)
π (θ)L (θ|D) q (θ∗|θ)

.

Given that we have complete freedom in the choice of the proposal density q(·|·), the

natural question is, ‘What choices of q(·|·) might be good, or indeed useful?’ In particular,

a good choice of q(·|·) will lead to a chain which converges rapidly and mixes well; that is,

it moves often and well around the support of π(θ|D). Below we discuss some commonly
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Algorithm 1 The Metropolis-Hastings Algorithm

1. Initialise the iteration counter i = 1 and initialise the chain with

θ(0) =
(
θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
p

)′
, where θ(0) is chosen from somewhere in the support of

π(θ|D).

2. Propose a new value θ∗ using the transition kernel q
(
θ∗|θ(i−1)

)
.

3. Evaluate the acceptance probability min(1,A), where

A =
π (θ∗|D) q (θ|θ∗)
π (θ|D) q (θ∗|θ)

.

4. Set θ(i) = θ∗ with probability min(1,A), otherwise set θ(i) = θ(i−1).

5. Set i = i+ 1 and return to step 2.

used special cases.

A symmetric proposal

Taking a proposal distribution which is symmetric gives

q (θ∗|θ) = q (θ|θ∗) , ∀ θ, θ∗.

In this instance, A simplifies to

A =
π (θ∗|D)

π (θ|D)
,

that is, the acceptance probability does not depend on the proposal density.

Random walk Metropolis

It is possible to use a random walk as the proposal distribution q(·|·) in step 2 of Algo-

rithm 1. In this instance q(·|·) takes the form

θ∗ = θ + ω,

where ω are independent identically distributed random variates known as innovations.

Typically, ω has a Gaussian distribution with zero mean vector. In this instance the

Metropolis-Hastings algorithm is known as a random walk sampler (or random walk

Metropolis).

The variance of the random variates ω will determine the mixing of the chain; too low
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a variance and the chain will explore the space slowly, as many proposed values will be

accepted. Too large a variance and few proposed values will be accepted. Reflecting the

correlation within θ in the covariance structure of ω is an important aspect in ensuring

the chain efficiently explores the space.

If the target distribution is Gaussian, Roberts and Rosenthal (2001) suggest that the

optimal acceptance probability is 0.234. Sherlock and Roberts (2009) extend this result

to elliptically symmetric targets and subsequently Sherlock (2013) gives a general set of

sufficient conditions for which the optimal acceptance probability is 0.234. Gelman et al.

(1996), Roberts et al. (1997) and Roberts and Rosenthal (2001) suggest that the variance

of ω should be given by
2.382 Var (θ|D)

p
,

where Var (θ|D) is the variance matrix of the target distribution π(θ|D). Typically though,

Var (θ|D) will not be available and hence an estimate from one or more pilot runs should

be used.

We note that, for large p, sampling θ∗ from a multivariate Normal distribution may

be expensive. In these instances, an alternative approach is to take the components

of ω = (ω1, . . . , ωp)
′ as independent identically distributed (univariate) Normal random

variates. For example, ωi ∼ N(0, σ2
i ), where

σ2
i =

2.382

p
Var (θi|D) .

The independence sampler

As the name suggests, an independence sampler (or independence chain) proposes a new

value θ∗ independently of the current value θ. Hence, q(θ∗|θ) = g(θ∗) for some density g(·).
Whilst the form of such a proposal may appear to disagree with the Markovian structure

of the chain, both θ and θ∗ feature in the acceptance probability, meaning a proposal still

depends upon the current state, and thus, the Markov property is preserved. Using such

a proposal distribution leads to an acceptance probability min(1,A), where

A =
π (θ∗|D)

π (θ|D)

/
g (θ∗)

g (θ)
.

Clearly, we can increase the acceptance probability by making g(·) and π(·|D) as similar as

possible. It is worth noting that in the context of an independence sampler (and in contra-

diction to the above on random walk Metropolis), the higher the acceptance probability,

the better. Tierney (1994) suggests the avoidance of densities g(·) with thin tails.
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Algorithm 2 Metropolis-Hastings: Componentwise Transitions

1. Initialise the iteration counter i = 1 and initialise the chain with

θ(0) =
(
θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
p

)′
.

2. Gain a new value θ(i) =
(
θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
p

)′
from θ(i−1) using successive generation

from distributions

θ
(i)
1 ∼ π

(
θ1

∣∣∣θ(i−1)
2 , θ

(i−1)
3 , . . . , θ(i−1)

p , D
)

using a Metropolis-Hastings step

with proposal q1

(
θ∗1

∣∣∣θ(i−1)
1

)
θ

(i)
2 ∼ π

(
θ2

∣∣∣θ(i)
1 , θ

(i−1)
3 , . . . , θ(i−1)

p , D
)

using a Metropolis-Hastings step

with proposal q2

(
θ∗2

∣∣∣θ(i−1)
2

)
...

θ(i)
p ∼ π

(
θp

∣∣∣θ(i)
1 , θ

(i)
2 , . . . , θ

(i)
p−1, D

)
using a Metropolis-Hastings step

with proposal qp

(
θ∗p

∣∣∣θ(i−1)
p

)
.

3. Set i = i+ 1 and return to step 2.

Componentwise transitions

In practice, the construction of a suitable proposal density could be difficult. However,

for many problems of interest, it may be possible to sample from the full conditional

distributions for a subset of θ. Let the full conditional distribution for the ith component

of θ be denoted by

π (θi|θ1, θ2, . . . , θi−1, θi+1, . . . , θp, D) = π (θi|θ−i, D) , i = 1, . . . , p.

The algorithm for componentwise transitions is given by Algorithm 2. Note that Algo-

rithm 1 is, in fact, just a special case of Algorithm 2.

If the full conditional distribution for the ith component of θ is available to sample from

directly, the resulting acceptance probability is one: it is for this reason that this method

is also referred to as Metropolis-within-Gibbs. If the full conditional distributions are

completely known and can be sampled from for all components of θ, we obtain the Gibbs

sampler, which is presented in the next section.
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Algorithm 3 The Gibbs Sampler

1. Initialise the iteration counter i = 1 and initialise the chain with

θ(0) =
(
θ

(0)
1 , θ

(0)
2 , . . . , θ

(0)
p

)′
.

2. Gain a new value θ(i) =
(
θ

(i)
1 , θ

(i)
2 , . . . , θ

(i)
p

)′
from θ(i−1) using successive generation

from the full conditional distributions

θ
(i)
1 ∼ π

(
θ1

∣∣∣θ(i−1)
2 , θ

(i−1)
3 , . . . , θ(i−1)

p , D
)

θ
(i)
2 ∼ π

(
θ2

∣∣∣θ(i)
1 , θ

(i−1)
3 , . . . , θ(i−1)

p , D
)

...

θ(i)
p ∼ π

(
θp

∣∣∣θ(i)
1 , θ

(i)
2 , . . . , θ

(i)
p−1, D

)
.

3. Set i = i+ 1 and return to step 2.

2.6.2 Gibbs sampling

The Gibbs sampler (or generically Gibbs sampling) originated in the field of image process-

ing. It was introduced by Geman and Geman (1984) before being generalised and brought

to the interest of the larger statistical community by Gelfand and Smith (1990). In essence

the Gibbs sampler is an MCMC scheme in which the full conditional distributions are used

to form the transition kernel.

Assume that, for all components of θ, the full conditional distributions are available and

can easily be sampled from. The Gibbs sampler is then given by Algorithm 3.

The chain approaches its equilibrium state as the number of iterations increases, and

once the chain has converged, a value of θ(i) is a sample from π(θ|D). Thus the Gibbs

sampler is a way to sample from π(θ|D) when direct sampling is costly, complicated or

indeed impossible, but sampling from π(θi|θ−i, D) is possible. Algorithm 3 is known as

a fixed sweep Gibbs sampler. Whilst other versions of the Gibbs sampler are available,

such as the random scan Gibbs sampler, the fixed sweep is simple to implement, and thus

appealing. For details of other versions of the Gibbs sampler see, for example, Chapter 5

of Gamerman and Lopes (2006).

2.6.3 Blocking

Given that the components of θ can take the form of scalars, vectors or matrices, it can be

useful to block certain components together in multidimensional problems. Such a strategy
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is known as a block update and makes use of multivariate simulation techniques. Blocking

is a strategy used to improve the convergence (and indeed mixing) of the chain, although

it comes at a higher computational cost. As discussed in Gamerman and Lopes (2006) it

is not the case that the larger the block update, the faster the convergence. Indeed for

highly multidimensional problems a large block update is likely to be highly detrimental.

Instead, components of θ should be blocked together such that the correlations between

the blocks is low. Any conditionally independent components should be updated on their

own (a single-block update).

2.6.4 Analysing MCMC output

As mentioned above, a Markov chain Monte Carlo scheme will only give samples from

the target distribution provided convergence has been reached. It is therefore important

to monitor convergence carefully and ensure convergence truly has been reached. As the

number of iterations increases the distribution of the chain, θ(i)|D, tends to the posterior

distribution θ|D, and convergence is reached. Samples obtained before convergence, when

the distribution of the chain is not the posterior are discarded. This number of iterations

is known as the burn-in period. Viewing the trajectory of the chain via a trace plot

can be used to check convergence informally. In this instance we are looking for the

chain to display the same qualitative behaviour after some initial burn-in period. Gelfand

and Smith (1990) (amongst others) suggest a number of informal checks for convergence.

More formal checks for ensuring convergence has been reached have been proposed by, for

example, Heidelberger and Welch (1983), Geweke (1992), Raftery and Lewis (1992, 1996)

and Gelman (1996).

Samples of the MCMC scheme will be dependent, meaning successive draws are auto-

correlated. Autocorrelation at different lag times can be observed via an autocorrelation

plot. If samples are highly correlated then the chains can be thinned; this involves taking

every ith iterate to ensure independence, although this comes at the computational cost

of having to run the chain for longer.

Once a chain has converged, the (suitably thinned) output can be analysed. It is effortless

to compute estimates of summary statistics (or standard statistical measures) such as

marginal means and variances. Joint and marginal distributions can be viewed through

the use of density plots (or histograms).

Unfortunately, (as mentioned previously) for most problems of interest the form of the

SDE will not permit an analytic solution due to the intractability of the transition den-

sity, precluding straightforward inference for the unknown parameters. However, it is

possible to construct a tractable approximation of the SDE, namely, the linear noise
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approximation (LNA), which is the subject of the next section.

2.7 The linear noise approximation (LNA)

The LNA typically refers to an approximation to the solution of the Kolmogorov forward

equation governing the transition probability of a Markov jump process. Specifically, the

Kolmogorov forward equation is approximated by a Fokker-Planck equation with linear

coefficients. The LNA first appeared in Kurtz (1970, 1971), where the technical details

of how the LNA can be used as a functional central limit law for density dependent

processes was presented. In Elf and Ehrenberg (2003), the LNA is considered for multiple

macroscopic examples. Komorowski et al. (2009) discuss the LNA as a method for inferring

kinetic parameters in a stochastic biochemical system. The LNA is used to derive a

dynamic state space model for molecular populations in Finkenstädt et al. (2013). The

accuracy of the LNA is discussed in Ferm et al. (2008) and Wallace et al. (2012). Fearnhead

et al. (2014) also examine the accuracy of the LNA and go on to suggest ways to improve

the accuracy over larger time frames. Golightly and Gillespie (2013) discuss the LNA as

a way to simulate from a stochastic kinetic model and consider a Lotka-Volterra example.

Golightly et al. (2015) implement the LNA in a delayed acceptance particle MCMC scheme

for the parameters governing a stochastic kinetic model as a way to increase computational

efficiency. An alternative derivation for the LNA (to the one given below) is given in

Wallace (2010). For further discussion of the LNA we refer the reader to Wilkinson (2011)

or van Kampen (2007).

Let us now consider the continuous-time d-dimensional homogeneous Itô process {Xt, t ≥ 0}
satisfying the SDE

dXt = α(Xt, θ) dt+ ε
√
β(Xt, θ) dWt, X0 = x0, (2.25)

where ε� 1. As before, α is a d-vector of drift functions, and the diffusion coefficient β is a

d×d positive definite matrix with a square root representation
√
β such that

√
β
√
β
′
= β.

However the drift and diffusion coefficient may now depend upon θ as well as Xt, cf. (2.17).

Again, Wt is a d-vector of (uncorrelated) standard Brownian motion processes. We now

present a derivation of the LNA as a tractable approximation of (2.25).

2.7.1 Derivation of the LNA

As discussed in Fearnhead et al. (2014), the LNA can be derived directly as an approxi-

mation to the solution of an SDE. Since, throughout this thesis we take the SDE as the

inferential model of interest, our derivation closely follows the approach of Fearnhead et al.
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(2014). To begin with, we first partition Xt as

Xt = ηt + εRt, (2.26)

where {ηt, t ≥ 0} is a deterministic process satisfying the ODE

dηt
dt

= α(ηt, θ), η0 = x0 (2.27)

and {Rt, t ≥ 0} is a residual stochastic process. Furthermore, we make the assumption

that ||Xt − ηt|| is O(ε) over a time interval of interest.

As Xt satisfies the SDE given by (2.25), the residual process (Rt) satisfies

dRt =
1

ε
{α(Xt, θ)− α(ηt, θ)} dt+

√
β(Xt, θ) dWt. (2.28)

This SDE will typically be intractable. However a tractable approximation can be obtained

by Taylor expanding α(Xt, θ) and β(Xt, θ) about ηt. Here we obtain

α(ηt + εRt, θ) = α(ηt, θ) + εHtRt + · · ·

and

β(ηt + εRt, θ) = β(ηt, θ) + · · · ,

where Ht is the Jacobian matrix with (i,j)th element

(Ht)i,j =
∂αi(ηt, θ)

∂ηj,t
. (2.29)

Collecting terms of O(ε) gives an SDE satisfied by an approximate residual process

{R̂t, t ≥ 0} of the form

dR̂t = HtR̂t dt+
√
β(ηt, θ) dWt. (2.30)

In the above, we use ε to indicate that the stochastic term in (2.25) is small: essentially

that, the drift term α(Xt, θ) dominates the diffusion coefficient β(Xt, θ), or equivalently

diffusion � drift. However, ε does not feature in the evolution of (2.27) or (2.30). There-

fore, from here on in, we assume ε = 1. Note that, for ηt in equilibrium, (2.30) gives an

Ornstein-Uhlenbeck process for R̂t. We consider the solution of (2.30) in the next section.
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2.7.2 The LNA solution

Provided the initial condition for (2.30) is a fixed point mass (R̂0 = r̂0) or follows a

Gaussian distribution, R̂t is Gaussian for all t > 0. Let us assume that R̂0 ∼ N(r̂0, V̂0).

Furthermore let Pt be the d× d fundamental matrix for the deterministic ODE

dr̂t
dt

= Htr̂t

which satisfies
dPt
dt

= HtPt, P0 = Id, (2.31)

where Id is the d× d identity matrix. Now

d

dt
PtP

−1
t = Pt

dP−1
t

dt
+
dPt
dt
P−1
t = 0.

Therefore, using (2.31) it follows that

dP−1
t

dt
= −P−1

t Ht. (2.32)

Set Ut = P−1
t R̂t. It is clear that U0 = R̂0. We write

dUt = d
(
P−1
t R̂t

)
=
(
dP−1

t

)
R̂t + P−1

t

(
dR̂t

)
.

Using (2.30) and (2.32) gives

dUt =
(
−P−1

t Ht dt
)
R̂t + P−1

t

(
HtR̂t dt+

√
β(ηt, θ) dWt

)
= −P−1

t HtR̂t dt+ P−1
t HtR̂t dt+ P−1

t

√
β(ηt, θ) dWt

= P−1
t

√
β(ηt, θ) dWt.

Hence, we can write

Ut = U0 +

∫ t

0
P−1
s

√
β(ηs, θ) dWs.

Appealing to linearity and Itô isometry we obtain

Ut|U0 ∼ N
{
U0,

∫ t

0
P−1
s β(ηs, θ)

(
P−1
s

)′
ds

}
. (2.33)
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Algorithm 4 LNA

1. Set t = 0. Initialise θ and X0. Set η0 = x0, P0 = Id, r̂0 = x0 − η0 (i.e. a vector of
zeros) and ψ0 = 0 (a d× d matrix with all elements equal to zero).

2. Solve the system of ODEs ((2.27), (2.35) and (2.36)) over (t, t + ∆t] to gain values
of ηt+∆t, Pt+∆t and ψt+∆t.

3. Draw Xt+∆t from a N(ηt+∆t + Pt+∆tr̂t, Pt+∆tψt+∆tP
′
t+∆t) distribution.

4. Set t = t+ ∆t, Pt = Id, r̂t = xt − ηt and ψt = 0.

5. Output t and xt. If t < Tmax return to step 2.

Therefore, for the initial assumption above, that is, R̂0(= U0) ∼ N(r̂0, V̂0), we have that

R̂t|R̂0 = r̂0 ∼ N
(
Ptr̂0, PtψtP

′
t

)
, (2.34)

where

ψt = V̂0 +

∫ t

0
P−1
s β(ηs, θ)

(
P−1
s

)′
ds.

Thus, the SDE (2.30) satisfied by R̂t can be solved analytically, where Pt and ψt satisfy

the ODE system

dPt
dt

= HtPt, P0 = Id, (2.35)

dψt
dt

= P−1
t β (ηt, θ)

(
P−1
t

)′
, ψ0 = V̂0. (2.36)

Hence the approximating distribution of Xt is given by

Xt ∼ N
(
ηt + Ptr̂0, PtψtP

′
t

)
. (2.37)

In the absence of an analytic solution, the system of coupled ODEs ((2.27), (2.35) and

(2.36)) which characterise the LNA, must be solved numerically. Good numerical solvers

that use adaptive time-steps are readily available; see, for example Petzold (1983). Through-

out this thesis if the system of ODEs is required to be numerically solved in R then the

lsoda package will be used. If the system is to be numerically solved in C then we appeal

to the standard ODE solver from the GNU scientific library, namely the explicit embedded

Runge-Kutta-Fehlberg (4, 5) method (see Appendix A.1).

Given (2.37) we can obtain a realisation of Xt (at discrete times) using Algorithm 4.
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Algorithm 5 LNA (with restart)

1. Set t = 0. Initialise θ and X0. Set η0 = x0, P0 = Id and ψ0 = 0 (a d× d matrix with
all elements equal to zero).

2. Solve the system of ODEs ((2.27), (2.35) and (2.36)) over (t, t + ∆t] to gain values
of ηt+∆t, Pt+∆t and ψt+∆t.

3. Draw Xt+∆t from a N(ηt+∆t, Pt+∆tψt+∆tP
′
t+∆t) distribution.

4. Set t = t+ ∆t, ηt = xt, Pt = Id and ψt = 0.

5. Output t and xt. If t < Tmax return to step 2.

2.7.3 Restarting the LNA

Fearnhead et al. (2014) discuss how the accuracy of the LNA can become poor over time

(see also Giagos (2011) for empirical evidence). This is essentially due to the fact that

within the approach of Algorithm 4, the ODE satisfied by ηt is integrated for all time.

Thus it is possible that a significant difference between ηt and the underlying stochastic

process can emerge. It is this difference which causes the accuracy to suffer. As a solution

to alleviate this problem, Fearnhead et al. (2014) propose an approach which restarts

the LNA at each simulation time. This restart is achieved by setting ηt = xt at each

simulation time, and consequently r̂t = 0. Note that r̂t is now zero for all t and therefore

does not feature within the solution. Hence a solution under the LNA is found by solving

the system of coupled ODEs ((2.27), (2.35) and (2.36)) over each interval (t, t+ ∆t] where

ηt = xt, Pt = Id and ψt = 0. The approximating distribution of Xt is now

Xt ∼ N
(
ηt, PtψtP

′
t

)
. (2.38)

The steps to gain a realisation of Xt (at discrete times) incorporating the restart are given

in Algorithm 5.

The form of the LNA given above in ((2.27), (2.35) and (2.36)) is (relatively) computa-

tionally expensive to implement in large inference schemes (see Chapters 4 and 5). This

computational cost is a direct consequence of the number of matrix inverses which need

to be calculated, coupled with the amount of matrix multiplication taking place. Typi-

cally these operations have complexity of approximately O(n3). It is however possible to

construct an equivalent representation of the LNA, which is less computationally intensive.

Note that (2.34) can be written as

R̂t|R̂0 = r̂0 ∼ N (mt, Vt) , (2.39)
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where it is clear from (2.35) that

dmt

dt
= Htmt, m0 = r̂0. (2.40)

The ODE for Vt = PtψtP
′
t can be obtained as

dVt
dt

=
d (PtψtP

′
t)

dt
,

which by the use of the product rule is

dVt
dt

= Pt
d

dt

(
ψtP

′
t

)
+

(
dPt
dt

)
ψtP

′
t

= Pt

{
ψt
dP ′t
dt

+

(
dψt
dt

)
P ′t

}
+HtPtψtP

′
t

= Pt

{
ψtP

′
tH
′
t + P−1

t β (ηt, θ)
(
P−1
t

)′
P ′t

}
+HtPtψtP

′
t

= PtψtP
′
tHt + β (ηt, θ) +HtPtψtP

′
t .

= VtH
′
t + β(ηt, θ, b) +HtVt, V0 = 0. (2.41)

Thus, it is possible to obtain a less computationally intensive solution by solving ((2.27),

(2.40) and (2.41)) as opposed to ((2.27), (2.35) and (2.36)), where now the approximating

distribution of Xt is

Xt ∼ N (ηt +mt, Vt) . (2.42)

Such an idea will play an important role in Chapters 4 and 5.

Unfortunately, as written, (2.42) will suffer from the same issues surrounding accuracy

that were discussed above. As a solution, we again restart the LNA at each simulation

time. Therefore, we set ηt = xt at each simulation time, resulting in mt = 0 for all time.

This renders the ODE (2.40) redundant, and thus no longer needs to be solved. Hence,

implementing the LNA in this way reduces the dimension of the system of coupled ODEs,

improving computational efficiency further still. Whence, a solution under the LNA is

found by solving the ODEs (2.27) and (2.41) over (t, t + ∆t] with ηt = xt and Vt = 0,

where the approximating distribution of Xt is

Xt ∼ N (ηt, Vt) . (2.43)

Algorithm 6 gives the steps to gain a realisation of Xt (at discrete times) for this alternative

representation of the LNA incorporating a restart.
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Algorithm 6 LNA (with restart) II

1. Set t = 0. Initialise θ and X0. Set η0 = x0 and V0 = 0 (a d × d matrix with all
elements equal to zero).

2. Solve the system of ODEs (2.27) and (2.41) over (t, t + ∆t] to gain values of ηt+∆t

and Vt+∆t.

3. Draw Xt+∆t from a N(ηt+∆t, Vt+∆t) distribution.

4. Set t = t+ ∆t, ηt = xt and Vt = 0.

5. Output t and xt. If t < Tmax return to step 2.

2.7.4 Example: Lotka-Volterra model

We now highlight the importance of incorporating the restart by means of an example.

Let us consider a Lotka-Volterra model of predator-prey dynamics for Xt = (X1,t, X2,t)
′,

ordered (prey, predator) at time t. The mass-action SDE representation of the system

dynamics is given by

dXt =

(
θ1X1,t − θ2X1,tX2,t

θ2X1,tX2,t − θ3X2,t

)
dt+

(
θ1X1,t + θ2X1,tX2,t −θ2X1,tX2,t

−θ2X1,tX2,t θ3X2,t + θ2X1,tX2,t

) 1
2

dWt.

(2.44)

Therefore, via ((2.27), (2.35) and (2.36)) the linear noise approximation of (2.44) has

dηt
dt

=

(
θ1η1,t − θ2η1,tη2,t

θ2η1,tη2,t − θ3η2,t

)
,

dPt
dt

=

(
θ1 − θ2η2,t −θ2η1,t

θ2η2,t θ2η1,t − θ3

)
Pt,

dψt
dt

= P−1
t

(
θ1η1,t + θ2η1,tη2,t −θ2η1,tη2,t

−θ2η1,tη2,t θ3η2,t + θ2η1,tη2,t

)(
P−1
t

)′
.

We aim to generate a realisation of Xt through the use of the above algorithms. Note

that the ODE system above is intractable, and we use the R package lsoda to numerically

solve the system in Algorithms 4 and 5.

We follow Boys et al. (2008) and set θ = (θ1, θ2, θ3)′ = (0.5, 0.0025, 0.3)′ with x0 = (71, 79)′.

Figure 2.3 depicts a single realisation of the Lotka-Volterra model from both the LNA

(Algorithm 4) and the LNA with the restart included (Algorithm 5) for a time-step of

∆t = 0.1. Whilst not conclusive, Figure 2.3 hints at the differences which can appear
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over time through the incorporation of the restart. Investigating further, we compare 95%

credible regions for the number of prey and predators from 100K simulations. Figure 2.4

illustrates these credible regions for both Algorithms 4 and 5 (∆t = 0.1), as well as

the credible region for the true underlying stochastic kinetic model (obtained by direct

sampling from the true underlying Markov jump process using the Gillespie algorithm,

see Appendix C). Note that, whilst reactions within the Gillespie algorithm occur in

continuous-time, we collect output every 0.1 to enable direct comparisons between the

methods. It is evident from Figure 2.4 that without the inclusion of the restart, the

LNA becomes ‘out of sync’ with the underlying stochastic process over time. Although

a theoretical justification of the restarted LNA is missing from the literature, empirical

evidence suggests that this approach can work well in practice. Henceforth, within this

thesis, any implementation of the LNA will assume that the restart is included (unless

stated otherwise).
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Figure 2.3: A single realisation of prey (X1) and predator (X2) in the Lotka-Volterra model,
x0 = (71, 79)′ and θ = (0.5, 0.0025, 0.3)′ with time-step ∆t = 0.1. Black: LNA (Algorithm 4).
Red: LNA with restart (Algorithm 5).
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Figure 2.4: Lotka-Volterra model. 95% credible region (dashed line) and mean (solid line) for
numbers of prey (X1) and predator (X2) on a uniform grid of step-size 0.1, x0 = (71, 79)′ and
θ = (0.5, 0.0025, 0.3)′. Black: LNA (Algorithm 4). Red: LNA with restart (Algorithm 5).
Green: True stochastic kinetic model.
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Chapter 3

Bridge constructs for stochastic

differential equations

As mentioned previously within this thesis, the transition densities of a diffusion process

(satisfying an SDE) are likely to be intractable. However it is possible to numerically

approximate these unavailable transition densities (Pedersen, 1995; Elerian et al., 2001;

Eraker, 2001; Roberts and Stramer, 2001). This numerical approach can be seen as a data

augmentation problem, where the simplest implementation augments low-frequency data

by introducing latent values at intermediate time points between observation times. An

Euler-Maruyama scheme is then applied by approximating the transition densities over

the induced discretisation as Gaussian. Integrating over the uncertainty associated with

the latent values typically requires the use of Monte Carlo, coupled with an appropriate

proposal density for generating realisations of the latent values in between the observations.

Such realisations are known as diffusion bridges. The designing of bridge constructs for

irreducible nonlinear multivariate diffusions is a challenging problem and has received

much attention in the recent literature.

Within this chapter we first discuss existing approaches to constructing diffusion bridges.

The modified diffusion bridge of Durham and Gallant (2002) (see also extensions to the

partial and noisy observation case in Golightly and Wilkinson (2008)) pushes the bridge

process towards the observation in a linear way and provides the optimal sampling method

when the drift and diffusion coefficients of the SDE are constant (Stramer and Yan, 2006).

However, this construct does not produce efficient proposals when the process exhibits

nonlinear dynamics. We therefore propose a novel class of bridge constructs that can

capture nonlinear behaviour. Moreover, our approach is computationally and statistically

efficient, simple to implement, and can be applied in scenarios where only partial and

noisy measurements of the system are available. Essentially, the process is partitioned into
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two parts, one that accounts for nonlinear dynamics in a deterministic way, and another

as a residual stochastic process. A bridge construct is obtained for the target process

by applying the modified diffusion bridge sampler to the end-point conditioned residual

process. We consider two implementations of this approach. Firstly, we use a bridge

introduced by Whitaker et al. (2016a) that constructs the residual process by subtracting

the solution of an ordinary differential equation system based on the drift, from the target

process. Secondly, we recognise that the intractable SDE governing the residual process

can be approximated by a tractable process. We therefore extend the first approach by

additionally subtracting the expectation of the approximate residual process and bridging

the remainder with the modified diffusion bridge sampler. In addition, we adapt the

guided proposal proposed by Schauer et al. (2016) to a partial and noisy observation

regime. We conclude this chapter with three examples through which we showcase the

differing properties of each individual bridge construct, whilst also assessing statistical

efficiency by means of empirical acceptance probabilities.

3.1 Sampling a conditioned SDE

As in Chapter 2, let us consider a continuous-time d-dimensional Itô process {Xt, t ≥ 0}
governed by an SDE paramaterised by θ = (θ1, . . . , θp)

′, of the form

dXt = α(Xt, θ) dt+
√
β(Xt, θ) dWt, X0 = x0. (3.1)

For tractability, we make the same assumption as Golightly and Wilkinson (2008, 2011),

Picchini (2014) and Lu et al. (2015) among others, that the process is observed at t = T

according to

YT = F ′XT + εT , εT |Σ
indep∼ N(0,Σ). (3.2)

Here YT is a do-vector, F is a constant d× do matrix and εT is a random do-vector. Note

that this setup allows for only observing a subset of components (do < d). For simplicity

we also assume that the process is known exactly at t = 0. This is the case when a

diffusion process is observed completely and without error. In the case of partial and/or

noisy observations, typically the initial position is an unknown parameter in an MCMC

scheme and a new bridge is created at each iteration conditional on the current parameter

values, so in terms of the bridge, the initial position is effectively known. Without loss of

generality we consider an interval [0, T ], and note that the arguments made within this

chapter are easily scalable to multiple observations (and therefore multiple intervals). The

case of multiple partial and/or noisy observations is discussed in Chapter 4.

Our aim is to generate discrete-time realisations of Xt conditional on x0 and yT . To this
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end, we partition [0, T ] as

0 = τ0 < τ1 < τ2 < · · · < τm−1 < τm = T, (3.3)

giving m intervals of equal length ∆τ = T/m. Since, in general, the form of the SDE in

(3.1) will not permit an analytic solution, we work with the Euler-Maruyama approxima-

tion which gives the change in the process over a small interval of length ∆τ as a Gaussian

random vector, see, for example, Kloeden and Platen (1992). Specifically, we have that

∆Xτk = Xτk+1
−Xτk = α(Xτk , θ) ∆τ +

√
β(Xτk , θ) ∆Wτk , (3.4)

where ∆Wτk ∼ N(0,∆τId). The continuous-time conditioned process is then approxi-

mated by the discrete-time skeleton bridge, with the latent values

x(0,T ] = (xτ1 , . . . , xτm = xT )′

having the (posterior) density

π
(
x(0,T ]|x0, yT , θ,Σ

)
∝ π (yT |xT ,Σ)

m−1∏
k=0

π
(
xτk+1

|xτk , θ
)
, (3.5)

where π(xτk+1
|xτk , θ) = N

(
xτk+1

; xτk + α(xτk , θ)∆τ, β(xτk , θ)∆τ
)

is the transition den-

sity under the Euler-Maruyama approximation, π(yT |xT ,Σ) = N(yT ; F ′xT ,Σ) and

N(·;m,V ) denotes the multivariate Gaussian density with mean vector m and variance

matrix V . In the special case where xT is known (so that yT = xT and F = Id), the latent

values x(0,T ) = (xτ1 , . . . , xτm−1)′ have the density

π
(
x(0,T )|x0, xT , θ

)
∝

m−1∏
k=0

π
(
xτk+1

|xτk , θ
)
. (3.6)

For nonlinear forms of the drift and diffusion coefficients, the products in (3.5) and (3.6)

will be intractable and samples can be generated via computationally intensive algorithms

such as Markov chain Monte Carlo (see Chapter 2) or importance sampling. We focus on

the former but note that in either case, the efficiency of the algorithm will depend on the

proposal mechanism used to generate the bridge. A common approach to constructing an

efficient proposal is to factorise the target in (3.5) as

π
(
x(0,T ]|x0, yT , θ,Σ

)
∝

m−1∏
k=0

π
(
xτk+1

|xτk , yT , θ,Σ
)
. (3.7)

The density in (3.6) can be factorised in a similar manner. This suggests seeking pro-
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posal densities of the form q(xτk+1
|xτk , yT , θ,Σ) which aim to approximate the intractable

constituent densities in (3.7). In what follows, we consider some existing approaches for

generating bridges via approximation of π(xτk+1
|xτk , yT , θ,Σ) before outlining our contri-

bution. For each bridge, the proposal densities take the form

q
(
xτk+1

|xτk , yT , θ,Σ
)

= N
{
xτk+1

; xτk + µ(xτk)∆τ , Ψ(xτk)∆τ
}

(3.8)

and our focus is on the choice of suitable µ(·) and Ψ(·). For simplicity and where possible,

we drop the parameters θ and Σ from the notation as they remain fixed throughout this

chapter.

3.1.1 Myopic simulation

Ignoring the information in the observation yT and simply applying the Euler-Maruyama

approximation (3.4) over each interval of length ∆τ leads to a proposal density of the

form (3.8) with µEM(xτk) = α(xτk) and ΨEM(xτk) = β(xτk). Sampling recursively according

to (3.8) for k = 0, 1, . . . ,m − 1 gives a proposed bridge which we denote by x∗(0,T ]. The

Metropolis-Hastings acceptance probability for a move from x(0,T ] to x∗(0,T ] is

min

{
1 ,

π (yT |x∗T )

π
(
yT |xT

)} .
The simplified structure of the above is achieved as both the target and proposal densi-

ties are of the same form, leading to cancellations in the Metropolis-Hastings acceptance

probability. This strategy is likely to work well provided that the observation yT is not

particularly informative, that is, when the measurement error dominates the intrinsic

stochasticity of the process. However, as tr(Σ) is reduced, the Metropolis-Hastings ac-

ceptance rate decreases. A related approach can be found in Pedersen (1995), where it

is assumed that xT is known. In this case, a move from x(0,T ) to x∗(0,T ) is accepted with

probability

min

{
1 ,

π
(
xT |x∗τm−1

)
π
(
xT |xτm−1

)} ,
which tends to 0 as m→∞ (or equivalently, ∆τ → 0).

3.1.2 Modified diffusion bridge

For known xT , Durham and Gallant (2002) (see also Golightly and Wilkinson (2006))

derive a linear Gaussian approximation of π(xτk+1
|xτk , xT ), leading to a sampler known

as the modified diffusion bridge (MDB). Extensions to the partial and noisy observation
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regime are considered in Golightly and Wilkinson (2008). Initially the joint distribution

of Xτk+1
and YT (conditional on xτk) is approximated before multivariate normal theory

is used to condition on YT .

We approximate the distribution of YT conditional on Xτk+1
via a very crude Euler ap-

proximation, giving

YT |Xτk+1
∼ N

(
F ′
{
Xτk+1

+ α
(
Xτk+1

)
∆k+1

}
, F ′β

(
Xτk+1

)
F∆k+1 + Σ

)
(3.9)

where ∆k+1 = T −τk+1. To obtain a linear Gaussian structure we approximate (3.9) using

the assumption that α and β (the drift and diffusion coefficient) are locally constant. We

therefore estimate α(Xτk+1
) and β(Xτk+1

) by αk = α(xτk) and βk = β(xτk) respectively.

Thus, we obtain

YT |Xτk+1
∼ N

{
F ′
(
Xτk+1

+ αk∆k+1

)
, F ′βkF∆k+1 + Σ

}
. (3.10)

Through the Euler-Maruyama approximation we have that the distribution of Xτk+1
con-

ditional on xτk is

Xτk+1
|xτk ∼ N(xτk + αk∆τ, βk∆τ). (3.11)

Hence, the joint distribution of Xτk+1
and YT (conditional on xτk) is approximated by(

Xτk+1

YT

)∣∣∣∣xτk ∼ N
{(

xτk + αk∆τ

F ′ (xτk + αk∆k)

)
,

(
βk∆τ βkF∆τ

F ′βk∆τ F ′βkF∆k + Σ

)}

where ∆k = T − τk. Conditioning further on YT = yT gives

Xτk+1
|xτk , yT ∼ N {xτk + µMDB (xτk) ∆τ , ΨMDB (xτk) ∆τ}

where

µMDB (xτk) = αk + βkF
(
F ′βkF∆k + Σ

)−1 {
yT − F ′ (xτk + αk∆k)

}
(3.12)

and

ΨMDB (xτk) = βk − βkF
(
F ′βkF∆k + Σ

)−1
F ′βk∆τ. (3.13)

In the case of no measurement error and observation of all components (so that xT is

known), (3.12) and (3.13) become

µ∗MDB (xτk) =
xT − xτk
T − τk

and Ψ∗MDB (xτk) =
T − τk+1

T − τk
βk.
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Connection with continuous-time conditioned processes

Consider the case of no measurement error and full observation of all components. The

SDE satisfied by the conditioned process {Xt, t ∈ [0, T ]}, takes the form

dXt = α̃ (Xt) dt+
√
β (Xt) dWt, X0 = x0, (3.14)

where the drift is

α̃ (Xt) = α (Xt) + β (Xt)∇xt log p (xT |xt) . (3.15)

See, for example, Chapter IV.39 of Rogers and Williams (2000) for a derivation. Note that

p(xT |xt) denotes the (intractable) transition density of the unconditioned process defined

in (3.1). Approximating α(Xt) and β(Xt) in (3.1) by the constants α(xT ) and β(xT ) yields

a process for which p(xT |xt) is tractable. The corresponding conditioned process satisfies

dXt =
XT −Xt

T − t
dt+

√
β(Xt) dWt. (3.16)

Use of (3.16) as a proposal process has been justified by Delyon and Hu (2006) (see also

Stramer and Yan (2006), Marchand (2011) and Papaspiliopoulos et al. (2013)), who show

that the distribution of the target process (conditional on xT ) is absolutely continuous with

respect to the distribution of the solution to (3.16). As discussed by Papaspiliopoulos et al.

(2013), it is impossible to simulate exact (discrete-time) realisations of (3.16) unless β(·)
is constant. They also note that performing a local linearisation of (3.16) according to

Shoji and Ozaki (1998) (see also Shoji (2011)) gives a tractable process with transition

density

q(xτk+1
|xτk , xT ) = N

{
xτk+1

; xτk +
xT − xτk
T − τk

∆τ ,
T − τk+1

T − τk
β (xτk) ∆τ

}
,

that is, the transition density of the modified diffusion bridge discussed in the previous

section. Plainly, taking the Euler-Maruyama approximation of (3.16) yields the MDB

construct, albeit without the time dependent multiplier of βk in the variance. As observed

by Durham and Gallant (2002) and discussed in Papaspiliopoulos and Roberts (2012) and

Papaspiliopoulos et al. (2013), the inclusion of the time dependent multiplier can lead to

improved empirical performance.

Whilst this construct can, in principle, be applied to arbitrary nonlinear multivariate

diffusion processes, the effect of the Gaussian approximation is to guide the bridge towards

the observation in a linear way, unless there is large uncertainty in the observation process.

This effect is exacerbated in the case of no measurement error, in which case the resulting

construct is independent of the drift of the target process (see (3.16)). Consequently, use
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of the MDB as a proposal mechanism (in a Metropolis-Hastings independence sampler) is

likely to result in low acceptance rates unless the drift is of little importance in dictating

the dynamics of the target process between observation times. In other words, the MDB

is likely to be unsatisfactory in situations where realisations of the target SDE (with the

same initial condition) exhibit strong and similar nonlinearity over the inter-observation

time.

3.1.3 Lindström bridge

A bridge construct that combines the myopic sampler with the MDB has been proposed

in Lindström (2012), for the special case of known xT . Lindström’s approach is to use the

insight that it is worse to have a proposal distribution which is too light-tailed than too

heavy-tailed, in the designing of the construct (see Geweke (1989) and Koopman et al.

(2009)). Extending the sampler to the observation scenario in (3.2) is straightforward.

Whereas the MDB approximates the variance of YT |xτk by F ′βkF∆k + Σ, the simplest

version of the Lindström bridge (LB) has that

Var (YT |xτk) ' F ′
{
βk∆k + C (∆k+1)2

}
F + Σ,

where C(∆k+1)2 is the squared bias of XT |xτk+1
using a single Euler-Maruyama time-step

and C is an unknown matrix. By assuming that the squared bias is a fraction γ of the

variance over an interval of length ∆τ , a heuristic choice of C is given by

CHeur =
γβk
∆τ

,

with γ > 0. This particular choice of CHeur ensures that Var(YT |xτk) is a positive definite

matrix. The joint distribution of Xτk+1
and YT (conditional on xτk) is then approximated

by (
Xτk+1

YT

)∣∣∣∣xτk ∼ N
{(

xτk + αk∆τ

F ′ (xτk + αk∆k)

)
,

(
βk∆τ βkF∆τ

F ′βk∆τ F ′βkF∆γ
k + Σ

)}
,

where ∆γ
k = ∆k + γ(∆k+1)2/∆τ . Conditioning further on YT = yT gives

Xτk+1
|xτk , yT ∼ N {xτk + µLB (xτk) ∆τ , ΨLB (xτk) ∆τ}

where

µLB (xτk) = αk + βkF
(
F ′βkF∆γ

k + Σ
)−1 {

yT − F ′ (xτk + αk∆k)
}

(3.17)
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and

ΨLB (xτk) = βk − βkF
(
F ′βkF∆γ

k + Σ
)−1

F ′βk∆τ. (3.18)

In the case of no measurement error and observation of all components, (3.17) and (3.18)

become

µ∗LB (xτk) = wγkµ
∗
MDB (xτk) +

(
1− wγk

)
αk

and

Ψ∗LB (xτk) = wγkΨ∗MDB (xτk) +
(
1− wγk

)
βk,

where

wγk =
(τk+1 − τk) (T − τk)

(τk+1 − τk) (T − τk) + γ (T − τk+1)2 .

The LB can therefore be seen as a convex combination of the MDB and myopic samplers,

with γ = 0 giving the MDB and γ = ∞ giving the myopic approach. In practice, Lind-

ström (2012) suggests that γ ∈ [0.01, 1], given that these values have proved successful in

simulation experiments. Note also that for a fixed γ, if T − τk+1 � ∆τ then wγk ' 0 and

the myopic sampler dominates. However, as τk+1 approaches T , wγk approaches 1 and the

LB is dominated by the MDB.

Whilst the LB attempts to account for nonlinear dynamics by combining the MDB with

the myopic approach, having to specify a model-dependent tuning parameter is unsatis-

factory since different choices of γ will lead to different properties of the proposed bridges.

Moreover, the link between the regularised sampler and the continuous-time conditioned

process is unclear.

3.2 Improved bridge constructs

In this section we describe a novel class of bridge constructs that require no tuning param-

eters, are simple to implement (even when only a subset of components are observed with

Gaussian noise) and can account for nonlinear dynamics driven by the drift. In addition,

we discuss the recently proposed bridging strategy of Schauer et al. (2016) and describe

an implementation method in the case of partial observation with additive Gaussian mea-

surement error.
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3.2.1 Bridges based on residual processes

Suppose that Xt is partitioned as Xt = ζt +Rt where {ζt, t ≥ 0} is a deterministic process

and {Rt, t ≥ 0} is a residual stochastic process, satisfying

dζt = f (ζt) dt, ζ0 = x0,

dRt = {α (Xt)− f (ζt)} dt+
√
β (Xt) dWt, R0 = 0. (3.19)

We then aim to choose ζt (and therefore f(·)) to adequately account for nonlinear dynamics

(so that the drift in (3.19) is approximately constant), and construct the MDB of Sec-

tion 3.1.2 for the residual stochastic process rather than the target process itself. It should

be clear from the discussion in Section 3.1.2 that for known xT , the MDB approximates

the density of Rτk+1
|rτk , rT by

q(rτk+1
|rτk , rT ) = N

{
rτk+1

; rτk +
rT − rτk
T − τk

∆τ ,
T − τk+1

T − τk
β (xτk) ∆τ

}
. (3.20)

In this case, the connection between (3.20) and the intractable continuous-time condi-

tioned residual process can be established by following the arguments of Section 3.1.2. By

approximating the drift and diffusion matrix in (3.19) by the constants α(xT )−f(ζT ) and

β(xT ) gives a process with a tractable transition density. The corresponding conditioned

process then satisfies

dRt =
RT −Rt
T − t

dt+
√
β(Xt) dWt. (3.21)

The density in (3.20) is then obtained by a local linearisation of (3.21).

It remains for us to choose ζt to balance the accuracy and computational efficiency of the

resulting construct. We explore two possible choices in the remainder of this section.

Subtracting the drift

In the simplest approach to account for dynamics based on the drift, we take ζt = ηt and

f(·) = α(·) where

dηt
dt

= α (ηt) , η0 = x0. (3.22)

In other words, we take a deterministic process satisfying the ODE based on the drift, so

that

dRt = {α (Xt)− α (ηt)} dt+
√
β (Xt) dWt, R0 = 0. (3.23)

41



Chapter 3. Bridge constructs for stochastic differential equations

Note that this approach explicitly partitions Xt as Xt = ηt+Rt. This is the same partition

used by Fearnhead et al. (2014) (see also Section 2.7) to derive a tractable approximation

to the intractable transition densities governing Xt, whereas our primary motivation for

this partition is the application of the MDB to the residual process, thus giving a proposal

that is likely to perform well for arbitrarily fine discretisations and explicitly incorporates

the drift of the target SDE. The MDB can be constructed for the residual process by

approximating the joint distribution of Rτk+1
and YT − F ′ηT (conditional on rτk), where

YT − F ′ηT can be seen as a partial and noisy observation of RT since

YT − F ′ηT = F ′RT + εT , εT |Σ ∼ N(0,Σ).

As in Section 3.1.2, we obtain the (approximate) joint distribution(
Rτk+1

YT − F ′ηT

)∣∣∣∣rτk ∼ N
{(

rτk +
(
αk − αηk

)
∆τ

F ′
{
rτk +

(
αk − αηk

)
∆k

}) ,( βk∆τ βkF∆τ

F ′βk∆τ F ′βkF∆k + Σ

)}
,

(3.24)

where αηk = α(ητk) and αk, βk and ∆k are as defined in Section 3.1.2. Note that the

mean in (3.24) uses the tangent αηk at (τk, ητk) to approximate dηt/dt over time intervals

of length ∆τ and ∆k. Since ητk+1
will be available either exactly from the solution of

(3.22) or from the output of a (stiff) ODE solver, we propose to approximate dηt/dt via

the chord between (τk, ητk) and (τk+1, ητk+1
), that is, by

δηk =
ητk+1

− ητk
∆τ

.

Replacing αηk in (3.24) with δηk gives(
Rτk+1

YT − F ′ηT

)∣∣∣∣rτk ∼ N
{(

rτk +
(
αk − δηk

)
∆τ

F ′
{
rτk +

(
αk − δηk

)
∆k

}) ,( βk∆τ βkF∆τ

F ′βk∆τ F ′βkF∆k + Σ

)}
.

(3.25)

Conditioning further on yT − F ′ηT (and using the partition Xt = ηt +Rt) we obtain

Xτk+1
|xτk , yT ∼ N {xτk + µRB (xτk) ∆τ , ΨRB (xτk) ∆τ}

where ΨRB(xτk) = ΨMDB(xτk) and

µRB (xτk) = αk + βkF
(
F ′βkF∆k + Σ

)−1 [
yT − F ′

{
ηT + rτk +

(
αk − δηk

)
∆k

}]
. (3.26)

Note that in the case of known xT , Ψ∗RB(xτk) = Ψ∗MDB(xτk) and (3.26) becomes

µ∗RB (xτk) = δηk +
(xT − xτk)− (ηT − ητk)

T − τk
.
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Xt

t

●

xT

●

x0

xT − ηT = rT

T0

xt = rt + ηt

ODE solution
of ηt

t

Rt

T0

●

rT

●

r0 = 0

Figure 3.1: An illustration of the RB construct. Left: The full bridge. Right: A sample path of
Rt.

The scheme is illustrated in Figure 3.1.

Further subtraction using the linear noise approximation

Whilst the solution of the SDE governing the residual stochastic process in (3.23) is un-

available in closed form, a tractable approximation can be obtained. Therefore, in situ-

ations where ηt fails to adequately capture the target process dynamics, we propose to

further subtract an approximation of the conditional expectation ρt = E(Rt|r0, yT ), which

we denote by ρ̂t = E(R̂t|r0, yT ). Here, {R̂t, t ∈ [0, T ]} is obtained through the linear noise

approximation (LNA) of (3.23) (see Chapter 2).

Recall

dR̂t = HtR̂t dt+
√
β (ηt) dWt,

with ηt satisfying (3.22) and Ht being the Jacobian matrix with (i,j)th element

(Ht)i,j =
∂αi (ηt)

∂ηj,t
.

For a fixed initial condition R̂0 = r̂0, we have from (2.34) that

R̂t|R̂0 = r̂0 ∼ N
(
Ptr̂0 , PtψtP

′
t

)
, (3.27)
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where Pt and ψt satisfy the ODE system

dPt
dt

= HtPt, P0 = Id, (3.28)

dψt
dt

= P−1
t β (ηt)

(
P−1
t

)′
, ψ0 = 0, (3.29)

where ψ0 = 0 is a d× d matrix with all elements equal to zero.

Along with (3.27) we have that

R̂t|R̂s ∼ N
(
Pt|sR̂s , Pt|sψt|sP

′
t|s

)
, (3.30)

where Pt|s and ψt|s are found by integrating (3.28) and (3.29) from s to t with Ps = Id,

ψs = 0, but the ODE for ηt (3.22) is not restarted. Now we can write

R̂t = Pt|sR̂s + εt, εt ∼ N
(

0, Pt|sψt|sP
′
t|s

)
. (3.31)

Hence

E
(
R̂t

)
= Pt|sE

(
R̂s

)
= Pt|sPsR̂0 = PtR̂0, (3.32)

which implies that

Pt|s = PtP
−1
s . (3.33)

Furthermore,

Cov
(
R̂t, R̂s

)
= Cov

(
Pt|sR̂s, R̂s

)
= Pt|sVar

(
R̂s

)
= Pt|sPsψsP

′
s.

Using (3.33) gives

Cov
(
R̂t, R̂s

)
= PtψsP

′
s. (3.34)

A useful identity (which is used in Section 3.2.2) should be noted at this point, and states

that ψt|s = Ps (ψt − ψs)P ′s. From (3.31) we have that

Var
(
R̂t

)
= Pt|sVar

(
R̂s

)
P ′t|s + Var (εt)

= Pt|sPsψsP
′
sP
′
t|s + Pt|sψt|sP

′
t|s.
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Through the use of (3.33) we obtain

Var
(
R̂t

)
= PtψsP

′
t + Pt|sψt|sP

′
t|s.

Hence

PtψtP
′
t = PtψsP

′
t + Pt|sψt|sP

′
t|s

=⇒ Pt|sψt|sP
′
t|s = PtψtP

′
t − PtψsP ′t

= Pt (ψt − ψs)P ′t

=⇒ ψt|s = P−1
t|s Pt (ψt − ψs)P ′t

(
P−1
t|s

)′
,

which via (3.33) gives

ψt|s = Ps (ψt − ψs)P ′s. (3.35)

Through (3.32) and (3.34) we can construct the joint distribution of R̂t and YT − F ′ηT
(conditional on r̂0) as(

R̂t

YT − F ′ηT

)∣∣∣∣r̂0 ∼ N

{(
Ptr̂0

F ′PT r̂0

)
,

(
PtψtP

′
t PtψtP

′
TF

F ′PTψtP
′
t F ′PTψTP

′
TF + Σ

)}
. (3.36)

Conditioning further on yT − F ′ηT and noting that r̂0 = r0 = 0 gives

ρ̂t = E
(
R̂t|r0, yT

)
= PtψtP

′
TF
(
F ′PTψTP

′
TF + Σ

)−1 (
yT − F ′ηT

)
.

Having obtained an explicit closed-form (subject to the solution of (3.22), (3.28) and

(3.29)) approximation of the expected conditioned residual process, we adopt the partition

Xt = ηt + ρ̂t +R−t where {R−t , t ∈ [0, T ]} is the residual stochastic process resulting from

the additional decomposition of Xt. Although the SDE satisfied by R−t will be intractable,

the joint distribution of R−τk+1
and YT −F ′(ηT + ρ̂T ) can be approximated (conditional on

r−τk) by(
R−τk+1

YT − F ′(ηT + ρ̂T )

)∣∣∣∣r−τk ∼ N
{(

r−τk +
(
αk − δηk − δ

ρ
k

)
∆τ

F ′
{
r−τk +

(
αk − δηk − δ

ρ
k

)
∆k

}) ,( βk∆τ βkF∆τ

F ′βk∆τ F ′βkF∆k + Σ

)}
,

where again we use the chord

δρk =
ρ̂τk+1

− ρ̂τk
∆τ
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in preference to the tangent. Hence, conditioning further on YT − F ′(ηT + ρ̂T ) we obtain

Xτk+1
|xτk , yT ∼ N {xτk + µRB− (xτk) ∆τ , ΨRB− (xτk) ∆τ}

where ΨRB−(xτk) = ΨMDB(xτk) and

µRB− (xτk) = αk+βkF
(
F ′βkF∆k + Σ

)−1 [
yT − F ′

{
ηT + ρ̂T + r−τk +

(
αk − δηk − δ

ρ
k

)
∆k

}]
.

(3.37)

Note that in the case of known xT , Ψ∗
RB−(xτk) = Ψ∗MDB(xτk) and (3.37) becomes

µ∗
RB− (xτk) = δηk + δρk +

(xT − xτk)− (ηT − ητk)− (ρ̂T − ρ̂τk)

T − τk
.

3.2.2 Guided proposals

Methods based on guided diffusion processes have been examined by, for example, Clark

(1990), Delyon and Hu (2006), Papaspiliopoulos and Roberts (2012) and Schauer et al.

(2016). For known xT , van der Meulen and Schauer (2015) (see also Schauer et al. (2016))

derive a bridge construct which they term a guided proposal (GP). They take the SDE

satisfied by the conditioned process {Xt, t ∈ [0, T ]} in (3.14) and (3.15) but replace the

intractable p(xT |xt) with the transition density associated with a class of linear processes

{X̂t, t ∈ [0, T ]} satisfying

dX̂t = B(t)X̂t dt+ b(t) dt+
√
σ(t) dWt, X̂0 = x. (3.38)

Here, B(t) and σ(t) are d × d matrices and b(t) is a d-vector. Note that the LNA (see

Sections 2.7 or 3.2.1) satisfies (3.38) with B(t) = Ht, b(t) = α(ηt)−Htηt and σ(t) = β(ηt).

The guided proposal can be extended to the Gaussian additive noise regime in (3.2) by

noting that in this case, the drift in (3.15) becomes

α̃(Xt) = α (Xt) + β (Xt)∇xt log p (yT |xt) . (3.39)

Given a tractable approximation of p(yT |xt), the Euler-Maruyama approximation of (3.14)

can be applied over the discretisation of [0, T ] to give a proposal density of the form (3.8)

with µGP(xτk) = α̃(xτk) and ΨGP(xτk) = βk.

We will approximate p(yT |xt) using the LNA. Using the partition X̂t = ηt + R̂t and

combining the transition density of R̂t in (3.27) with the observation regime defined in

(3.2) gives

p̂ (yT |xt) = N
(
yT ; F ′

{
ηT + PT |t (xt − ηt)

}
, F ′PT |tψT |tP

′
T |tF + Σ

)
,
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where PT |t and ψT |t are found by integrating the ODE system in (3.28) and (3.29) from t

to T with Pt|t = Id and ψt|t = 0. Clearly

log p̂ (yT |xt) = constant− 1

2

[
yT − F ′

{
ηT + PT |t (xt − ηt)

}]′ (
F ′PT |tψT |tP

′
T |tF + Σ

)−1

×
[
yT − F ′

{
ηT + PT |t (xt − ηt)

}]
,

and therefore

∇xt log p̂ (yT |xt) = P ′T |tF
(
F ′PT |tψT |tP

′
T |tF + Σ

)−1 [
yT − F ′

{
ηT + PT |t (xt − ηt)

}]
.

Hence the drift (3.39) becomes

α̃ (Xt) = α (Xt) + β (Xt)P
′
T |tF

(
F ′PT |tψT |tP

′
T |tF + Σ

)−1 [
yT − F ′

{
ηT + PT |t (xt − ηt)

}]
.

(3.40)

Note that a computationally efficient implementation of this approach is obtained by using

the identities PT |t = PTP
−1
t (see (3.33)) and ψT |t = Pt(ψT − ψt)P ′t (see (3.35)). Hence,

the LNA ODEs in (3.22), (3.28) and (3.29) need only be integrated once over the interval

[0, T ]. Unfortunately, we find that this approach does not work well in practice, unless

the total measurement error tr(Σ) is large relative to the infinitesimal variance β(·). Note

that the variance of YT |xt under the LNA is a function of the deterministic process ηt.

If ηt and xt diverge as t is increased, the guiding term in (3.40) will result in an over or

under dispersed proposal mechanism (relative to the target conditioned process) at times

close to T . The problem is exacerbated in the case of no measurement error, where the

discrepancy between xt and ηt can result in a singularity in the guiding term in (3.40)

at time T . This naive approach (henceforth referred to as GP-N) can be alleviated by

integrating the ODE system given by (3.22), (3.28) and (3.29) for each interval [τk, T ],

k = 0, 1, . . . ,m− 1, with ητk = xτk . In this case, the drift (3.39) is given by

α̃ (Xt) = α (Xt) + β (Xt)P
′
T |tF

(
F ′PT |tψT |tP

′
T |tF + Σ

)−1 (
yT − F ′ηT

)
.

Explicitly, we have that ΨGP-N(xτk) = ΨGP(xτk) = βk,

µGP-N (xτk) = αk + βkP
′
T |τkF

(
F ′PT |τkψT |τkP

′
T |τkF + Σ

)−1 [
yT − F ′

{
ηT + PT |τk (xτk − ητk)

}]
and

µGP (xτk) = αk + βkP
′
T |τkF

(
F ′PT |τkψT |τkP

′
T |τkF + Σ

)−1 (
yT − F ′ηT

)
.
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In the special case that xT is known, we have that Ψ∗GP-N(xτk) = Ψ∗GP(xτk) = βk,

µ∗GP-N (xτk) = αk + βkP
′
T |τk

(
PT |τkψT |τkP

′
T |τk

)−1 [
xT −

{
ηT + PT |τk (xτk − ητk)

}]
and

µ∗GP (xτk) = αk + βkP
′
T |τk

(
PT |τkψT |τkP

′
T |τk

)−1
(xT − ηT ) .

The limiting (as ∆τ → 0) form of the acceptance rate in this case can be found in Schauer

et al. (2016), who also remark that a key requirement for absolute continuity of the target

and proposal process is that σ(T ) = β(xT ). For the LNA, we have σ(t) = β(ηt). Again,

we note that the naive implementation of the guided proposal (GP-N) will not meet this

condition in general (when xT is known). Ensuring that σ(t) → β(xT ) as t → T by

integrating (3.22), (3.28) and (3.29) for each τk is likely to be time consuming, unless the

LNA ODE system is tractable. In the case of exact observations only, a computationally

less demanding approach is obtained in van der Meulen and Schauer (2015) by taking

the transition density of (3.38) with B(t) = 0 and σ(t) = β(xT ) to construct the guided

proposal. Setting b(t) = α(ηt) leads to a proposal density for the simplified guided proposal

(GP-S) of the form (3.8) with Ψ∗GP-S(xτk) = βk and

µ∗GP-S (xτk) = αk + βkβ (xT )−1

{
xT − xτk − (ηT − ητk)

T − τk

}
.

Further (example-dependent) methods for constructing guided proposals in the case of

known xT can be found in van der Meulen and Schauer (2015).

Use of the MDB variance

Using the Euler-Maruyama approximation of (3.14) gives the variance of Xτk+1
|xτk , yT

in the guided proposal process as ΨGP(xτk)∆τ = βk∆τ . In Section 3.5 we investigate

the effect of using the variance (3.13) of the modified diffusion bridge construct by taking

ΨGP(xτk) = ΨMDB(xτk). Although in this case, deriving the limiting form of the acceptance

rate under the resulting proposal is problematic, we observe a worthwhile increase in

empirical performance (see Section 3.5). In the case of known xT , use of the MDB variance

in place of βk∆τ comes at almost no additional computational cost. We denote this

diffusion bridge by GP-MDB.

3.3 Computational considerations

For the observation regime in (3.2), where we observe do components, all bridge constructs

(with the exception of the myopic approach) require the inversion of a do × do matrix at
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each intermediate time τk, k = 1, 2 . . . ,m− 1 and for each skeleton bridge required. For

known xT , the proposal densities associated with each construct simplify. In this case,

only the LNA-based residual bridge (RB−) and guided proposal require the inversion of a

d× d matrix at each intermediate time.

The Lindström bridge (LB) and modified diffusion bridge (MDB) have roughly the same

computational cost. The bridges based on residual processes incur an additional computa-

tional cost of having to solve a system of either d (when subtracting ηt) or order d2 (when

further subtracting ρt) coupled ODEs. However, we note that for known x0, the ODE

system need only be solved once, irrespective of the number of skeleton bridges required.

This is also true of the naive and simplified guided proposals. However, we note that

in the case of known xT , the guided proposal requires solving order d2 ODEs over each

interval [τk, T ], k = 0, 1, . . . ,m−1 for each simulated skeleton bridge, in order to maintain

reasonable statistical efficiency (as measured by, for example, the estimated acceptance

rate of a Metropolis-Hastings independence sampler).

3.4 Summary of bridge constructs

All the diffusion bridges discussed above are formed using an Euler-Maruyama approxi-

mation over the partition (3.3), taking the form N
(
xτk+1

; xτk + µ(xτk)∆τ , Ψ(xτk)∆τ
)
, or

indeed µ∗(xτk) and Ψ∗(xτk) in the special case of known xT . Summaries of (µ(xτk),Ψ(xτk))

and (µ∗(xτk),Ψ∗(xτk)) for each construct are presented in Table 3.1 and Table 3.2 respec-

tively. GP-S appears only in Table 3.2 as it applies only in the special case when xT

is known. We note the following definitions, αk = α(xτk), βk = β(xτk), ∆k = T − τk,
∆γ
k = ∆k + γ(∆k+1)2/∆τ ,

δηk =
ητk+1

− ητk
∆τ

, δρk =
ρ̂τk+1

− ρ̂τk
∆τ

and wγk =
(τk+1 − τk) (T − τk)

(τk+1 − τk) (T − τk) + γ (T − τk+1)2 .

3.5 Bridge construct performance

We now compare the accuracy and efficiency of the bridge constructs discussed in the

previous sections, by using them to make proposals inside a Metropolis-Hastings inde-

pendence sampler (see Algorithm 1). We consider three examples: a simple birth-death

model in which the ODEs governing the LNA are tractable, a Lotka-Volterra system in

which the use of numerical solvers are required, and a model of aphid growth inspired by

real data taken from Matis et al. (2008). Generating discrete-time realisations from the

SDE model of aphid growth is particularly challenging due to nonlinear dynamics, and
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Bridge construct µ(xτk)

EM αk

MDB αk + βkF (F ′βkF∆k + Σ)
−1 {yT − F ′ (xτk + αk∆k)}

LB αk + βkF (F ′βkF∆γ
k + Σ)

−1 {yT − F ′ (xτk + αk∆k)}

RB αk + βkF (F ′βkF∆k + Σ)
−1

[yT − F ′ {ηT + rτk + (αk − δηk) ∆k}]

RB− αk + βkF (F ′βkF∆k + Σ)
−1 [

yT − F ′
{
ηT + ρ̂T + r−τk + (αk − δηk − δ

ρ
k) ∆k

}]
GP αk + βkP

′
T |τkF

(
F ′PT |τkψT |τkP

′
T |τkF + Σ

)−1
(yT − F ′ηT )

GP-N αk + βkP
′
T |τkF

(
F ′PT |τkψT |τkP

′
T |τkF + Σ

)−1 [
yT − F ′

{
ηT + PT |τk (xτk − ητk)

}]
GP-MDB αk + βkP

′
T |τkF

(
F ′PT |τkψT |τkP

′
T |τkF + Σ

)−1
(yT − F ′ηT )

Ψ(xτk)

EM βk

MDB βk − βkF (F ′βkF∆k + Σ)
−1
F ′βk∆τ

LB βk − βkF (F ′βkF∆γ
k + Σ)

−1
F ′βk∆τ

RB βk − βkF (F ′βkF∆k + Σ)
−1
F ′βk∆τ

RB− βk − βkF (F ′βkF∆k + Σ)
−1
F ′βk∆τ

GP βk

GP-N βk

GP-MDB βk − βkF (F ′βkF∆k + Σ)
−1
F ′βk∆τ

Table 3.1: Summaries of µ(xτk) and Ψ(xτk).

an observation regime in which only one component is observed and is subject to additive

Gaussian noise.

In what follows, all results are based on 100K iterations of a Metropolis-Hastings indepen-

dence sampler targeting either (3.5) or (3.6), depending on the observation regime. We

measure the statistical efficiency of each bridge via their empirical acceptance probability.

Note that these empirical acceptance probabilities are reasonably accurate, with repeated

implementations of the independence sampler typically leading to only small differences in

the third decimal place. R code for the implementation of the Metropolis-Hastings scheme

can be found at https://github.com/gawhitaker/bridges-apps
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Bridge construct µ∗(xτk) Ψ∗(xτk)

EM αk βk

MDB
xT−xτk
T−τk

T−τk+1

T−τk βk

LB wγk
xT−xτk
T−τk + (1− wγk)αk wγk

T−τk+1

T−τk βk + (1− wγk)βk

RB δηk +
(xT−xτk)−(ηT−ητk)

T−τk
T−τk+1

T−τk βk

RB− δηk + δρk +
(xT−xτk)−(ηT−ητk)−(ρ̂T−ρ̂τk)

T−τk
T−τk+1

T−τk βk

GP αk + βkP
′
T |τk

(
PT |τkψT |τkP

′
T |τk

)−1
(xT − ηT ) βk

GP-N
αk + βkP

′
T |τk

(
PT |τkψT |τkP

′
T |τk

)−1
βk

×
[
xT −

{
ηT + PT |τk (xτk − ητk)

}]
GP-S αk + βkβ (xT )

−1
{
xT−xτk−(ηT−ητk)

T−τk

}
βk

GP-MDB αk + βkP
′
T |τk

(
PT |τkψT |τkP

′
T |τk

)−1
(xT − ηT ) T−τk+1

T−τk βk

Table 3.2: Summaries of µ∗(xτk) and Ψ∗(xτk).

The bridge constructs used in each example, together with their relative computational

cost can be found in Table 3.3. Note that in contrast to Lindström (2012), we found that

γ ∈ [0.001, 0.3] was required in order to find a near-optimal γ. Where LB is used, we only

present results for the value of γ that maximised empirical performance.

3.5.1 Birth-death model

We consider a simple birth-death process with birth rate θ1 and death rate θ2, characterised

by the SDE

dXt = (θ1 − θ2)Xt dt+
√

(θ1 + θ2)Xt dWt, X0 = x0, (3.41)

which can be seen as a degenerate case of a Feller square-root diffusion (Feller, 1952).

Here, Ht = (θ1 − θ2) and the ODE system ((3.22), (3.28) and (3.29)) governing the linear

noise approximation of (3.41) is given by

dηt
dt

= (θ1 − θ2) ηt,

dPt
dt

= (θ1 − θ2)Pt,
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Birth-death Lotka-Volterra Aphid

Myopic Euler-Maruyama (EM) – – 1.0
Modified diffusion bridge (MDB) 1.0 1.0 –
Lindström bridge (LB) 1.1 1.1 –
Residual bridge, subtract ηt (RB) 1.0 1.0 7.3
RB, further subtract ρt (RB−) 1.0 1.0 7.9
Guided proposal (GP) 1.2 30.7 7.1
GP with MDB variance (GP-MDB) 1.3 31.0 7.9
Naive GP (GP-N) 1.2 – –
Simplified GP (GP-S) 1.1 – –

Table 3.3: Example and bridge specific relative CPU cost for 100K iterations of a Metropolis-
Hastings independence sampler. Due to well known poor performance in the case of known xT ,
EM is not implemented for the first two examples. Likewise, due to poor performance, we omit
results based on GP-N and GP-S in the second example, and results based on MDB and LB in the
final example.

dψt
dt

= P−1
t (θ1 + θ2) ηt

(
P−1
t

)′
.

For this model the system of ODEs is tractable, and we obtain ηt = x0e
(θ1−θ2)t, Pt = e(θ1−θ2)t

and

ψt =
(θ1 + θ2)x0

θ1 − θ2

(
1− e−(θ1−θ2)t

)
.

Derivations of these solutions can be found in Appendix B.

In this example we assume that xT is known and to adequately assess the performance of

each bridge construct, we take xT to be either the 5%, 50% or 95% quantile (denoted by

xT,(5), xT,(50) and xT,(95) respectively) of XT |X0 = x0, found by repeatedly applying the

Euler-Maruyama approximation to (3.41) with a small time-step (∆t = 0.01). To allow

for different inter-observation intervals, we take T ∈ {1, 2}. An initial condition of x0 = 50

and parameter values θ = (0.1, 0.8)′ gives (x1,(5), x1,(50), x1,(95)) = (18.49, 24.62, 31.68) and

(x2,(5), x2,(50), x2,(95)) = (6.97, 12.00, 18.35). Note that here, the parameter choice leads to

a moribund system.

Since the ODE system governing the LNA is tractable for this example, there is little

difference in CPU cost between the bridges (see Table 3.3). Therefore, we use statistical

efficiency (as measured by empirical Metropolis-Hastings acceptance probabilities) as a

proxy for overall efficiency of each bridge, with higher probabilities preferred. When there

is a difference in CPU time between the bridges we propose to further assess overall

efficiency via the minimum effective sample size (see Section 3.5.2).
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Figure 3.2: Birth-death model. Empirical acceptance probability against m with xT = xT,(5)
(1st row), xT = xT,(50) (2nd row) and xT = xT,(95) (3rd row). The results are based on 100K
iterations of a Metropolis-Hastings independence sampler. Black: MDB. Brown: LB. Red: RB.
Blue: RB−. Grey: GP-N. Green: GP-S. Purple: GP. Pink: GP-MDB.
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Figure 3.2 shows empirical acceptance probabilities against the number of sub-intervals m

for each bridge and each xT . The empirical acceptance probabilities are also presented in

Tables 3.4 and 3.5 for T = 1 and T = 2 respectively. Figures 3.3 and 3.4 compare 95%

credible regions of the proposal under various bridging strategies with the true conditioned

process (obtained from the output of the Metropolis-Hastings independence sampler). It

is clear from the figures that as T is increased, the MDB fails to adequately account for the

nonlinear behaviour of the conditioned process. Indeed, in terms of empirical acceptance

rate, MDB is outperformed by all other bridges for T = 2. As m is increased so that

the discretisation gets finer, the acceptance rates under all bridges (with the exception of

GP-N) stay roughly constant. For GP-N, the acceptance rates decrease with m when xT

is either the 5% or 95% quantile of XT |X0 = 50. In this case, the variance associated with

the approximate transition density either overestimates (when xT is the 5% quantile) or

underestimates (when xT is the 95% quantile) the true variance at the end-point. For

example, when xT is the 95% quantile, this results (see Figure 3.4) in a ‘tapering in’

of the proposal relative to the true conditioned process. GP-S, GP and LB give similar

performance, although we note that GP-S and LB perform particularly poorly when xT is

the 5% quantile. Moreover, LB requires the specification of a tuning parameter γ and we

found that the acceptance rate was fairly sensitive to the choice of γ. In all scenarios, RB,

RB− and GP-MDB comprehensively outperform all other bridge constructs. When xT is

the median of XT |X0 = 50, we see that RB and RB− (red and blue lines in Figure 3.2)

give near identical performance, with ηt adequately accounting for the observed nonlinear

dynamics. In terms of statistical efficiency, GP-MDB outperforms both RB and RB− in

all scenarios, although the relative difference is small.

3.5.2 Lotka-Volterra model

In this example we consider a Lotka-Volterra model of predator-prey dynamics. We denote

the system state at time t by Xt = (X1,t, X2,t)
′, ordered as prey, predators. The mass-

action SDE representation of system dynamics with initial condition X0 = x0 takes the

form

dXt =

(
θ1X1,t − θ2X1,tX2,t

θ2X1,tX2,t − θ3X2,t

)
dt+

(
θ1X1,t + θ2X1,tX2,t −θ2X1,tX2,t

−θ2X1,tX2,t θ3X2,t + θ2X1,tX2,t

) 1
2

dWt.

(3.42)

The components of θ = (θ1, θ2, θ3)′ can be interpreted as prey reproduction rate, prey

death and predator reproduction rate, and predator death. For this model

Ht =

(
θ1 − θ2η2,t −θ2η1,t

θ2η2,t θ2η1,t − θ3

)
,
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Bridge m = 20 m = 50 m = 100 m = 500 m = 1000

MDB
(0.422) (0.423) (0.413) (0.416) (0.412)
0.552 0.551 0.554 0.553 0.558
[0.652] [0.655] [0.661] [0.658] [0.653]

RB
(0.826) (0.835) (0.835) (0.838) (0.836)
0.916 0.919 0.918 0.921 0.923
[0.885] [0.882] [0.882] [0.882] [0.883]

RB−
(0.884) (0.891) (0.893) (0.895) (0.895)
0.917 0.918 0.921 0.920 0.920
[0.942] [0.946] [0.946] [0.948] [0.947]

GP-N
(0.662) (0.623) (0.593) (0.549) (0.533)
0.656 0.644 0.641 0.636 0.635
[0.633] [0.599] [0.586] [0.551] [0.542]

GP-S
(0.463) (0.478) (0.475) (0.487) (0.480)
0.645 0.640 0.632 0.624 0.626
[0.657] [0.643] [0.638] [0.631] [0.633]

GP
(0.680) (0.662) (0.653) (0.641) (0.641)
0.669 0.659 0.650 0.642 0.641
[0.663] [0.650] [0.645] [0.640] [0.640]

GP-MDB
(0.942) (0.958) (0.962) (0.964) (0.963)
0.939 0.961 0.969 0.975 0.977
[0.958] [0.966] [0.968] [0.970] [0.970]

LB/γ
(0.421/0.0025) (0.416/0.001) (0.408/0.001) (0.388/0.001) (0.358/0.001)

0.737/0.1 0.659/0.1 0.694/0.01 0.705/0.0025 0.695/0.0025
[0.767/0.01] [0.877/0.01] [0.874/0.005] [0.875/0.001] [0.820/0.001]

Table 3.4: Birth-death model. Empirical acceptance probability against m with (x1 = x1,(5)),
x1 = x1,(50) and [x1 = x1,(95)]. The results are based on 100K iterations of a Metropolis-Hastings
independence sampler.

and hence, the ODE system ((3.22), (3.28) and (3.29)) governing the linear noise approx-

imation of (3.42) is

dηt
dt

=

(
θ1η1,t − θ2η1,tη2,t

θ2η1,tη2,t − θ3η2,t

)
,

dPt
dt

=

(
θ1 − θ2η2,t −θ2η1,t

θ2η2,t θ2η1,t − θ3

)
Pt,

dψt
dt

= P−1
t

(
θ1η1,t + θ2η1,tη2,t −θ2η1,tη2,t

−θ2η1,tη2,t θ3η2,t + θ2η1,tη2,t

)(
P−1
t

)′
.
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Bridge m = 20 m = 50 m = 100 m = 500 m = 1000

MDB
(0.095) (0.090) (0.091) (0.084) (0.076)
0.167 0.166 0.176 0.172 0.165
[0.248] [0.245] [0.251] [0.249] [0.252]

RB
(0.714) (0.725) (0.729) (0.725) (0.727)
0.827 0.826 0.827 0.835 0.831
[0.828] [0.815] [0.811] [0.814] [0.813]

RB−
(0.765) (0.774) (0.777) (0.780) (0.781)
0.827 0.827 0.829 0.831 0.831
[0.865] [0.872] [0.876] [0.879] [0.879]

GP-N
(0.662) (0.570) (0.521) (0.430) (0.401)
0.642 0.634 0.626 0.618 0.622
[0.607] [0.546] [0.511] [0.457] [0.434]

GP-S
(0.218) (0.243) (0.243) (0.245) (0.261)
0.609 0.605 0.607 0.598 0.598
[0.631] [0.612] [0.603] [0.595] [0.598]

GP
(0.699) (0.669) (0.653) (0.637) (0.636)
0.672 0.660 0.651 0.645 0.641
[0.666] [0.650] [0.646] [0.634] [0.637]

GP-MDB
(0.829) (0.925) (0.929) (0.930) (0.929)
0.887 0.929 0.943 0.958 0.959
[0.922] [0.943] [0.946] [0.950] [0.953]

LB/γ
(0.254/0.3) (0.209/0.1) (0.177/0.1) (0.183/0.0075) (0.182/0.005)
0.660/0.3 0.623/0.1 0.569/0.1 0.594/0.01 0.590/0.005
[0.789/0.1] [0.753/0.025] [0.707/0.01] [0.751/0.0025] [0.712/0.0025]

Table 3.5: Birth-death model. Empirical acceptance probability against m with (x2 = x2,(5)),
x2 = x2,(50) and [x2 = x2,(95)]. The results are based on 100K iterations of a Metropolis-Hastings
independence sampler.

Note that this ODE system is intractable and we therefore use the R package lsoda to

numerically solve the system when necessary.

Following Boys et al. (2008) we adopt the parameter values θ = (θ1, θ2, θ3)′ = (0.5, 0.0025, 0.3)′

and let x0 = (71, 79)′. We assume that xT is known and generate a number of chal-

lenging scenarios by taking xT as either the 5%, 50% or 95% marginal quantiles of

XT |X0 = (71, 79)′ for T ∈ {1, 2, 3, 4}. These quantiles are shown in Table 3.6 and illus-

trated in Figure 3.5. Note that for this parameter choice, the expectation ofXt|X0 = (71, 79)′

is approximately periodic with a period of around 17.

We fixed the discretisation by taking m = 50, but note no appreciable difference in results

for finer discretisations (for example, m = 1000). In the previous example, GP-N and
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Figure 3.3: Birth-death model. 95% credible region (dashed line) and mean (solid line) of the true
conditioned process (red) and various bridge constructs (black) using xT = x1,(50).
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Figure 3.4: Birth-death model. 95% credible region (dashed line) and mean (solid line) of the true
conditioned process (red) and various bridge constructs (black) using xT = x2,(95).
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T = 1 T = 2 T = 3 T = 4

xT,(5) (82.47,62.78) (107.35,57.95) (142.00,60.02) (185.04,71.23)

xT,(50) (96.82,71.93) (133.35,70.75) (182.64,77.36) (242.08,97.23)

xT,(95) (112.13,81.58) (162.28,84.63) (228.82,97.12) (308.58,128.76)

Table 3.6: Lotka-Volterra model. Quantiles of XT |X0 = (71, 79)′ found by repeatedly simulating
from the Euler-Maruyama approximation of (3.42) with θ = (0.5, 0.0025, 0.3)′.
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Figure 3.5: Lotka-Volterra model. Quantiles of XT |X0 = (71, 79)′ found by repeatedly simulating
from the Euler-Maruyama approximation of (3.42) with θ = (0.5, 0.0025, 0.3)′. The 5%, 50% and
95% quantiles are represented by triangles, circles and diamonds respectively for times t = 1, 2, 3, 4.
Black: Prey (X1,t). Red: Predator (X2,t).

GP-S perform relatively poorly, and so in what follows we omit these bridges from the

results. Note that we include MDB for reference. Figure 3.6 shows empirical acceptance

probabilities against T for each bridge and each xT , with the explicit values also given

in Table 3.7. Figure 3.7 compares 95% credible regions of the proposal under various

bridging strategies with the true conditioned process (obtained from the output of the

Metropolis-Hastings independence sampler).

Unsurprisingly, as T is increased, MDB fails to adequately account for the nonlinear

behaviour of the conditioned process. LB offers a modest improvement (except when

xT = xT,(5)) but is generally outperformed by the other bridge constructs. We found that

as T was increased, LB required larger values of γ, reflecting the need for more weight to be

placed on the myopic component of the construct. As in the previous example, unless xT is

the median of XT |x0, RB is comprehensively outperformed by RB− (see Figure 3.7 for the

effect of increasing T on RB and RB−). However, we see that the acceptance probabilities

are decreasing in T for both constructs. As noted by Fearnhead et al. (2014), the LNA
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Figure 3.6: Lotka-Volterra model. Empirical acceptance probabilities against T . The results are
based on 100K iterations of a Metropolis-Hastings independence sampler. Black: MDB. Brown: LB.
Red: RB. Blue: RB−. Purple: GP. Pink: GP-MDB.

can become poor as T increases, with the implication here being that the approximation

of the expected residual (as used in RB−) degrades with T .

We note that the estimated acceptance probabilities are roughly constant for GP and

(to a lesser extent) GP-MDB, and in terms of statistical efficiency for a fixed number

of iterations, GP-MDB should be preferred over all other algorithms considered in this

chapter. However, the difference in estimated acceptance probabilities between GP-MDB

and RB− is fairly small, even when T = 4; for example, 0.857 vs 0.577 when xT = xT,(5)

and 0.834 vs 0.606 when xT = xT,(50). We also note that a Metropolis-Hastings scheme

that uses RB or RB− is some 30 times faster than a scheme with GP or GP-MDB, since
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the latter require solving the LNA ODE system for each sub-interval [τk, T ] to maintain

reasonable statistical efficiency for a given m. Therefore, we further compare RB, RB−,

GP and GP-MDB by computing the minimum effective sample size (minESS) at time T/2

(where the minimum is over each component of XT/2) divided by CPU cost (in seconds).

We denote this measure of overall efficiency by minESS/sec. The effective sample size

(ESS) is equivalent to the number of independent samples, and is characterised as

ESS =
number of iterations

1 +

∞∑
k=1

ρk

,

where ρk is the lag-k autocorrelation. Table 3.8 shows the minESS/sec for all bridge

constructs considered in this example for xT = x1,(5), xT = x1,(50), xT = x4,(5) and

xT = x4,(50). As T increases the minESS/sec for MDB falls, due to the bridge con-

struct failing to adequately account for the nonlinear dynamics of the conditioned process.

For xT = xT,(50), LB performs reasonably well, however the minESS/sec decreases when

xT = xT,(5). When xT = xT,(5) and T = 1, minESS/sec scales roughly as 1 : 3 : 56 : 83

for GP : GP-MDB : RB : RB−. When T = 4, minESS/sec scales roughly as 1 : 3 : 1 : 17.

Hence, for this example, RB− is to be preferred in terms of overall efficiency, although

the relative difference between RB− and GP-MDB appears to decrease as T is increased,

consistent with the behaviour of the empirical acceptance rates observed in Figure 3.6.

3.5.3 Aphid growth model

Matis et al. (2008) describe a stochastic model for aphid dynamics in terms of population

size (Nt) and cumulative population size (Ct). The diffusion approximation of their model

is given by(
dNt

dCt

)
=

(
θ1Nt − θ2NtCt

θ1Nt

)
dt+

(
θ1Nt + θ2NtCt θ1Nt

θ1Nt θ1Nt

)1/2

dWt (3.43)

where the components of θ = (θ1, θ2)′ characterise the birth and death rate respectively,

and we have initial condition X0 = x0. Matis et al. (2008) also provide a dataset consisting

of cotton aphid counts recorded at times t = 0, 1.14, 2.29, 3.57 and 4.57 weeks, and collected

for 27 different treatment block combinations. The analysis of these data via a stochastic

differential mixed-effects model driven by (3.43) is the focus of Whitaker et al. (2016a)

and the subject of Section 5.2.

Driven by the real data of Matis et al. (2008) and to illustrate the proposed methodology

in a challenging partial observation scenario, we assume that XT cannot be measured
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Bridge T = 1 T = 2 T = 3 T = 4

MDB
(0.669) (0.273) (0.053) (0.010)
0.691 0.231 0.022 0.001
[0.563] [0.089] [0.006] [0.0003]

RB
(0.801) (0.562) (0.296) (0.076)
0.909 0.812 0.712 0.608
[0.742] [0.463] [0.206] [0.037]

RB−
(0.908) (0.811) (0.706) (0.577)
0.907 0.813 0.714 0.606
[0.888] [0.782] [0.672] [0.565]

GP
(0.500) (0.497) (0.494) (0.484)
0.504 0.497 0.489 0.467
[0.502] [0.495] [0.481] [0.460]

GP-MDB
(0.954) (0.924) (0.892) (0.857)
0.971 0.937 0.893 0.834
[0.962] [0.938] [0.896] [0.807]

LB/γ
(0.647/0.001) (0.256/0.001) (0.067/0.001) (0.019/0.1 & 0.2)

0.744/0.01 0.442/0.1 0.338/0.1 0.234/0.2
[0.772/0.01] [0.322/0.01] [0.206/0.1] [0.064/0.1]

Table 3.7: Lotka-Volterra model. Empirical acceptance probabilities against T , with (xT = xT,(5)),
xT = xT,(50) and [xT = xT,(95)]. The results are based on 100K iterations of a Metropolis-Hastings
independence sampler.

exactly. Rather, we observe

YT = F ′XT + εT , εT |Σ ∼ N(0,Σ),

where Σ = σ2 and F = (1, 0)′ so that only noisy observation of the population size NT

is possible, and the cumulative population size CT is not observed at all. We consider

a single treatment-block combination and consider the dynamics of the process over an

observation time interval [2.29, 3.57], over which nonlinear dynamics are typically observed.

We fix θ and x2.29 at their marginal posterior means found by Whitaker et al. (2016a),

that is, at θ = (1.45, 0.0009)′ and x2.29 = (347.55, 398.94)′. We generate various end-

point conditioned scenarios by taking y3.57 to be either the 5%, 50% or 95% quantile

of Y3.57|X2.29 = (347.55, 398.94)′, σ. To investigate the effect of measurement error, we

further take σ ∈ {5, 10, 50}. The resulting quantiles are shown in Table 3.9. For (3.43) we

have that

Ht =

(
θ1 − θ2ηC,t −θ2ηN,t

θ1 0

)
,

62



Chapter 3. Bridge constructs for stochastic differential equations

T = 1

0.0 0.2 0.4 0.6 0.8 1.0

70
75

80
85

X2

Time

T = 4

0 1 2 3 4

60
80

10
0

12
0

X2

Time

0.0 0.2 0.4 0.6 0.8 1.0

70
75

80
85

X2

Time
0 1 2 3 4

60
80

10
0

12
0

X2

Time

γ = 0.01

0.0 0.2 0.4 0.6 0.8 1.0

70
75

80
85

X2

Time

γ = 0.1

0 1 2 3 4

60
80

10
0

12
0

X2

Time

Figure 3.7: Lotka-Volterra model. 95% credible region (dashed line) and mean (solid line) of the
true conditioned predator component X2,t|x0, xT (red) and various bridge constructs (black) using
xT = xT,(95) for RB (1st row), RB− (2nd row) and LB (3rd row).
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Bridge x1,(5) x1,(50) x4,(5) x4,(50)

MDB 20.414 23.782 0.079 0.043
RB 38.319 56.266 0.579 10.907

RB− 56.505 54.713 10.603 14.427
GP 0.679 0.644 0.614 0.571

GP-MDB 2.148 2.203 1.700 1.599
LB 16.903 37.975 0.534 8.036

Table 3.8: Lotka-Volterra model. Minimum ESS/sec at time T/2 for selective end point conditions.
The results are based on 100K iterations of a Metropolis-Hastings independence sampler.

σ = 5 σ = 10 σ = 50

y3.57,(5) 726.75 724.57 762.36

y3.57,(50) 786.09 815.51 774.41

y3.57,(95) 841.82 856.36 910.86

Table 3.9: Aphid growth model. Quantiles of Y3.57|X2.29 = (347.55, 398.94)′ found by repeat-
edly simulating from the Euler-Maruyama approximation of (3.43) with θ = (1.45, 0.0009)′, and
corrupting N3.57 with additive N(0, σ2) noise.

and thus the ODE system governing the linear noise approximation of (3.43) is

dηt
dt

=

(
θ1ηN,t − θ2ηN,tηC,t

θ1ηN,t

)
,

dPt
dt

=

(
θ1 − θ2ηC,t −θ2ηN,t

θ1 0

)
Pt,

dψt
dt

= P−1
t

(
θ1ηN,t + θ2ηN,tηC,t θ1ηN,t

θ1ηN,t θ1ηN,t

)(
P−1
t

)′
.

As with the previous example, the ODE system is intractable and we again use the lsoda

package to numerically solve the system when necessary.

Figure 3.8 shows empirical acceptance probabilities against σ for EM, RB, RB−, GP

and GP-MDB. The associated values are given in Table 3.10. Figure 3.9 compares 95%

credible regions for a selection of bridges with the true conditioned process (obtained from

the output of the independence sampler). All results are based on m = 50 (but note that

no discernible difference in output was obtained for finer discretisations). As illustrated by

both figures, the myopic sampler (EM) performs poorly (in terms of statistical efficiency,

as measured by empirical acceptance probability) when the measurement error variance

is relatively small (σ = 5). For σ = 50, the performance of EM is comparable with the

other bridge constructs. In fact, as σ increases, the bridge constructs coincide with the
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Figure 3.8: Aphid growth model. Empirical acceptance probabilities against σ. The results
are based on 100K iterations of a Metropolis-Hastings independence sampler. Turquoise: EM.
Red: RB. Blue: RB−. Purple: GP. Pink: GP-MDB.

Euler-Maruyama approximation of the target process. The gain in statistical performance

of RB− over RB is clear. Likewise, GP-MDB outperforms GP, although the difference is

very small for σ = 50 and again we note that as σ increases, the variance under GP-MDB,

ΨMDB(xτk), approaches the Euler-Maruyama variance, as used in GP.

The relative computational cost of each scheme can be found in Table 3.3. EM is par-

ticularly cheap to implement, given the simple form of the construct and the Metropolis-

Hastings acceptance probability. However, this approach cannot be recommended in this

example for σ < 10 due to its dire statistical efficiency. The computational cost of RB,

RB−, GP and GP-M is roughly the same, since for the guided proposals, we found that
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Bridge σ = 5 σ = 10 σ = 50

EM
(0.015) (0.033) (0.726)
0.145 0.321 0.782

[0.113] [0.151] [0.445]

RB
(0.622) (0.638) (0.711)
0.635 0.576 0.703

[0.492] [0.453] [0.556]

RB−
(0.621) (0.644) (0.905)
0.730 0.765 0.917

[0.709] [0.712] [0.822]

GP
(0.535) (0.733) (0.960)
0.525 0.728 0.959

[0.511] [0.716] [0.965]

GP-MDB
(0.781) (0.828) (0.968)
0.881 0.902 0.968

[0.885] [0.901] [0.982]

Table 3.10: Aphid growth model. Empirical acceptance probabilities against σ, with
(y3.57 = y3.57,(5)), y3.57 = y3.57,(50) and [y3.57 = y3.57,(95)]. The results are based on 100K
iterations of a Metropolis-Hastings independence sampler.

a naive implementation that only solves the LNA ODEs once, gave no appreciable differ-

ence in empirical acceptance probability as obtained when repeatedly solving the ODE

system for each sub-interval [τk, T ] (as is required in the case of no measurement error).

Consequently, in this example, GP-MDB outperforms RB− in terms of overall efficiency.

3.6 Summary

Within this chapter we have considered the problem of designing bridge constructs for irre-

ducible, nonlinear, multivariate diffusions. We presented a novel class of bridge constructs

which are computationally and statistically efficient (as measured via empirical acceptance

probabilities), and can readily be applied in scenarios where only noisy and partial obser-

vations are available. Our approach was to partition the process into a deterministic part

accounting for forward (nonlinear) dynamics and a residual stochastic process. We then

approximated the intractable end-point conditioned SDE through the use of the modified

diffusion bridge. Moreover, our approach is straightforward to implement. We considered

two variations of the residual SDE:

1. subtraction of a deterministic process based on the drift governing the target process

(RB);
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2. further subtraction of the expected conditioned residual process via the linear noise

approximation (RB−).

Our examples included a scenario in which the LNA system is tractable, and another

where the system must be solved numerically. An example that considers partial and

noisy observation of the process at a future time was also presented.

3.6.1 Choice of residual bridge

We find that for all examples considered, the residual bridge that further subtracts the

LNA mean results in improved statistical efficiency (over the simple implementation based

on the drift subtraction only) at the expense of having to solve a larger ODE system

consisting of order d2 equations (as opposed to just d when using the simpler variant). For

a known initial time-point x0, the ODE system need only be solved once, irrespective of

the number of skeleton bridges required. Taking the Lotka-Volterra diffusion (described in

Section 3.5.2) as an example, overall efficiency (as measured by minimum effective sample

size per second, minESS/sec, at time T/2) of RB− is 1.5 times that of RB when T = 1

and xT is either the 5% or 95% quantile of XT |x0. This factor increases to 17 when T = 4.

However, for unknown x0, as would typically be the case when performing parameter

inference, the ODE solution will be required for each skeleton bridge, and the difference in

computational cost between the two approaches is likely to be important, especially as the

dimension of the state space increases. For the Lotka-Volterra example, the computational

cost for solving the ODE system for each bridge scales as 1 : 2.8 for RB : RB−. Therefore,

the relative difference in minESS/sec would reduce to a factor of roughly 0.5 when T = 1

(so that RB would be preferred) and 6 when T = 4. We therefore anticipate that in

problems where x0 is unknown, the simple residual bridge is to be preferred, unless the

ODE system governing the LNA is tractable, or the dimension d of Xt is relatively small,

say d < 5.

3.6.2 Residual bridge or guided proposal?

We have compared the performance of our approach to several existing bridge constructs

(adapting where necessary to the case of noisy and partial observation). These include

the modified diffusion bridge (Durham and Gallant, 2002), Lindström bridge (Lindström,

2012) and guided proposal (Schauer et al., 2016). Our implementation of the latter uses

the LNA to guide the proposal. We find that a further modification that replaces the

Euler-Maruyama variance with the MDB variance gives a particularly effective bridge,

outperforming all others considered here, in terms of statistical efficiency. We find that for

fixed x0 and noisy observation of xT , an efficient implementation of the guided proposal is
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possible, where the ODE system governing the LNA need only be solved once. In this case,

the guided proposal outperforms both implementations of the residual bridge in terms of

overall efficiency. However, we found that in the case of no measurement error (so that xT

is known exactly), the guided proposal required that the ODEs governing the LNA be re-

integrated for each intermediate time-point and for each skeleton bridge required. Unless

the ODE system can be solved analytically, we find that when combining statistical and

computational efficiency, the guided proposal is outperformed by both implementations of

the residual bridge.

Having discussed how to generate a diffusion bridge, we now look to implement them

within a Bayesian inference scheme.
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Figure 3.9: Aphid growth model. 95% credible region (dashed line) and mean (solid line) of the
true conditioned aphid population component Nt|x2.29, y3.57 (red) and various bridge constructs
(black) using y3.57 = y3.57,(50) for EM (1st row), GP-MDB (2nd row) and RB− (3rd row).
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Chapter 4

Bayesian inference for stochastic

differential mixed-effects models

In the previous chapter we discussed various methods to generate a realisation of the

sample path of an SDE, known as a diffusion bridge. In this chapter we give details of

how to implement these diffusion bridges for a stochastic differential mixed-effects model

(SDMEM) within a Bayesian inference scheme. Furthermore we consider the problems

surrounding parameter inference; namely that naive schemes result in intolerable mixing

as the number of intermediate time points (m) between observation times is increased. The

intolerable mixing is due to the dependence between the latent process and the parameters

entering the diffusion coefficient. To break said dependence we adapt the modified innova-

tion scheme of Golightly and Wilkinson (2008, 2010) (see also Stramer and Bognar (2011);

Fuchs (2013); Papaspiliopoulos et al. (2013)) for SDMEMs. We conclude the chapter by

outlining an inference scheme based on the linear noise approximation of Chapter 2.

4.1 Mixed-effects modelling

A mixed-effects model is a model incorporating both fixed effects and random effects.

Typically the random effects are assumed to be different draws from a common popu-

lation profile. It is advantageous to use this type of model in situations when repeated

measurements are made on the same experimental units, or when measurements are made

on closely related units (usually with the proviso that all units follow the same underlying

model). McCulloch and Searle (2004) and Pinheiro and Bates (2009) discuss the impor-

tance of mixed-effects models, where each subject is assumed to follow the same model (in

our case the same SDE). McCulloch and Searle (2004) discuss linear mixed models before

expanding to generalised linear mixed models and in both cases outline the problems one
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can encounter when performing inference.

It is only relatively recently that SDEs have been combined with mixed-effects models

to give rise to the stochastic differential mixed-effects model. Overgaard et al. (2005)

discuss a scenario where the random effects are independent and distributed according to

a multivariate normal distribution with zero mean. Parameter estimation is performed

via an approximation to the likelihood function. Tornøe et al. (2005) assume the same

structure for the random effects and use an extended Kalman filter (EKF) to estimate

the (constant) diffusion coefficient. Ditlevsen and De Gaetano (2005) derive the likelihood

function for a simple pharmacokinetic example. However, in general, the likelihood func-

tion is not available in closed form. Maximum likelihood estimation is examined in Donnet

and Samson (2008) using the Stochastic Approximation EM algorithm (SAEM), where an

MCMC scheme is used in the simulation step. Donnet et al. (2010) discuss inference for

SDMEMs in a Bayesian framework. They implement a Gibbs sampler when the SDE

(for each subject) has an explicit solution, as is the case in their chicken growth example.

When no explicit solution exists, they propose to approximate the diffusion process using

the Euler-Maruyama approximation.

Picchini et al. (2010) propose a procedure to obtain approximate maximum likelihood

estimates for SDMEM parameters based on a two step approach. Firstly they use a closed-

form Hermite expansion (Aı̈t-Sahalia, 2002, 2008) to approximate the transition density,

before using Gaussian quadrature to numerically integrate the conditional likelihood with

respect to the random parameters. Picchini and Ditlevsen (2011) note that this approach

is, in practice, limited to a scalar random effect parameter since Gaussian quadrature is

increasingly computationally inefficient as the dimension of the random effect parameter

grows. They extend this methodology to deal with multiple random effects. Using this

method has its limitations: for one it may be difficult to gain the transition density using

a closed-form Hermite expansion for SDMEMs where the diffusion is irreducible. Another

drawback is that the method cannot account for measurement error.

Berglund et al. (2011) compare the use of ODEs and SDEs for describing the kinetics

of leucine in blood plasma. Inference is carried out on the SDE parameterisation of the

model using the EKF. The R package PSM (Klim et al., 2009) uses the EKF to estimate

SDMEMs. A related approach can be found in Hey et al. (2015) (see also Featherstone

et al. (2016)) who build a hierarchical model driven by the linear noise approximation,

and apply it for single cell imaging data. Unfortunately, a quantification of the effect of

using an approximate inferential model appears to be missing from the literature. For a

detailed discussion of hierarchical models, which umbrella mixed-effects models, we refer

the reader to Gelman et al. (2013).

In the rest of this chapter we provide a method that permits (simulation-based) Bayesian
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inference for a large class of multivariate SDMEMs. As a starting point, we consider a data

augmentation approach that adopts an Euler-Maruyama approximation of unavailable

transition densities and augments low frequency data with additional time points over

which the approximation is satisfactory. Although a discretisation bias is introduced, this

can be made arbitrarily small (at greater computational expense). Moreover, the approach

is flexible and is not restricted to reducible diffusions. A Bayesian approach then aims

to construct the joint posterior distribution for the parameters and the components of

the latent process. The intractability of the posterior density necessitates simulation

techniques such as Markov chain Monte Carlo. Finally, we detail a competing inference

scheme based on the linear noise approximation.

4.2 Stochastic differential mixed-effects models (SDMEMs)

Let us now consider the case where we have N experimental units randomly chosen

from some population of units, and associated with each unit i is a continuous-time

d-dimensional Itô process {Xi
t , t ≥ 0} governed by the SDE

dXi
t = α

(
Xi
t , θ, b

i
)
dt+

√
β
(
Xi
t , θ, b

i
)
dW i

t , Xi
0 = xi0, i = 1, . . . , N. (4.1)

Here (as previously), α is a d-vector of drift functions, the diffusion coefficient β is a

d× d positive definite matrix with a square root representation
√
β such that

√
β
√
β
′
= β

and W i
t is a d-vector of (uncorrelated) standard Brownian motion processes. The p-vector

parameter θ = (θ1, . . . , θp)
′ is common to all units whereas the q-vectors bi = (bi1, . . . , b

i
q)
′,

i = 1, . . . , N , are unit-specific effects, which may be fixed or random. In the most general

random effects scenario we let π(bi|ψ) denote the joint distribution of bi, parameterised by

the r-vector ψ = (ψ1, . . . , ψr)
′. The model defined by (4.1) allows for differences between

experimental units through different realisations of the Brownian motion paths W i
t and

the random effects bi, accounting for inherent stochasticity within a unit, and variation

between experimental units.

It is habitual to assume that each experimental unit {Xi
t , t ≥ 0} cannot be observed

exactly, but observations yi = (yit0 , y
i
t1 , . . . , y

i
tn)′ are available, and these are condition-

ally independent (given the latent process). Note that we observe the process at times

t = t0, t1, . . . , tn. We link the observations to the latent process via

Y i
t = F ′Xi

t + εt, εt|Σ
indep∼ N(0,Σ), (4.2)

where Y i
t is a do-vector, F is a constant d× do matrix and εt is a random do-vector. Note

that this setup allows for only observing a subset of components (do < d), where do is
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the dimension of the observed components. The aspect of partial observations (subject to

error) is explored further in Section 5.2.

Together (4.1) and (4.2) completely specify the stochastic differential mixed-effects model.

As alluded to previously, for most problems of interest the form of the SDE associated

with each unit will not permit an analytic solution, precluding straightforward inference

for the unknown parameters. We therefore work with the Euler-Maruyama approximation

∆Xi
t ≡ Xi

t+∆t −Xi
t = α

(
Xi
t , θ, b

i
)

∆t+
√
β
(
Xi
t , θ, b

i
)

∆W i
t , (4.3)

where ∆W i
t ∼ N(0, Id∆t) and ∆t is the length of time between observations, assumed

equally spaced for notational simplicity. It is, of course, unlikely that this approximation

will be sufficiently accurate over the intervals between observation times and so we adopt

a data augmentation scheme. Partitioning [tj , tj+1] as

tj = τj,0 < τj,1 < τj,2 < · · · < τj,m−1 < τj,m = tj+1 (4.4)

introduces m− 1 intermediate time points with interval widths of length

∆τ ≡ τj,k+1 − τj,k =
tj+1 − tj

m
, (4.5)

cf. equation (3.3). The Euler-Maruyama approximation (4.3) can then be applied over

each interval of width ∆τ , and the associated discretisation bias can be made arbitrarily

small at the expense of having to impute {Xi
t} at the intermediate times. We adopt the

shorthand notation

xi[tj ,tj+1] ≡ x
i
[j,j+1] =

(
xiτj,0 , x

i
τj,1 , . . . , x

i
τj,m

)′
for the latent process between observation times, associated with unit i. Hence, the

complete latent trajectory associated with unit i is given by

(
xi
)′

=

((
xi[0,1]

)′
,
(
xi(1,2]

)′
, . . . ,

(
xi(n−1,n]

)′)
and we stack all unit-specific trajectories into a matrix x = (x1, . . . , xN ). Likewise the

matrix y = (y1, . . . , yN ) denotes the entire set of observations. Next we focus on how to

perform Bayesian inference for the model quantities x, θ, b = (b1, . . . , bN )′, ψ and Σ.
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4.3 Outlining a Bayesian inference scheme

The joint posterior for the common parameters θ, fixed/random effects b, hyperparameters

ψ, measurement error variance Σ and latent values x is given by

π(θ, ψ,Σ, b, x|y) ∝ π(θ)π(ψ)π(Σ)π(b|ψ)π(x|θ, b)π(y|x,Σ), (4.6)

where π(θ)π(ψ)π(Σ) is the joint prior density ascribed to θ, ψ and Σ. In addition we have

that

π(x|θ, b) =
N∏
i=1

n−1∏
j=0

m−1∏
k=0

π
(
xiτj,k+1

|xiτj,k , θ, b
i
)
, (4.7)

where

π
(
xiτj,k+1

|xiτj,k , θ, b
i
)

= N
{
xiτj,k+1

; xiτj,k + α
(
xiτj,k θ, b

i
)

∆τ, β
(
xiτj,k , θ, b

i
)

∆τ
}

and N(· ; m,V ) denotes the multivariate Gaussian density with mean m and variance V .

Similarly

π(y|x,Σ) =

N∏
i=1

n∏
j=0

π
(
yitj |x

i
tj ,Σ

)
,

where π(yitj |x
i
tj ,Σ) = N(yitj ; xitj ,Σ). Given the intractability of the joint posterior distri-

bution in (4.6) we aim to construct a Markov chain Monte Carlo scheme which generates

realisations from this posterior (see Chapter 2). The form of the SDMEM admits a Gibbs

sampling strategy with blocking that sequentially takes draws from the full conditionals

1. π(x|θ, ψ,Σ, b, y) = π(x|θ,Σ, b, y),

2. π(Σ|θ, ψ, b, x, y) = π(Σ|x, y),

3. π(θ|ψ,Σ, b, x, y) = π(θ|b, x),

4. π(b|θ, ψ,Σ, x, y) = π(b|θ, ψ, x),

5. π(ψ|θ,Σ, b, x, y) = π(ψ|b).

The above scheme can be seen as a data augmentation approach (Tanner and Wong, 1987).

Inference may be performed by alternating steps in which the latent trajectories are simu-

lated conditional on the observations and current values of the parameters, and simulation

of the parameters given the augmented data. Further blocking strategies that exploit the

conditional dependencies between the model parameters and latent trajectories can be

used. For example, in step 1 the latent trajectories can be updated separately for each

experimental unit. Likewise, the unit-specific random effects can be updated separately.
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Where necessary, Metropolis-within-Gibbs updates can be used (see Algorithm 2). We

note that as written, this scheme will mix intolerably poorly as the degree of augmenta-

tion m is increased due to dependence between the latent values x and the parameters

entering the diffusion coefficient (namely θ and b). We refer the reader to Roberts and

Stramer (2001) for a detailed discussion of this problem. A simple mechanism for over-

coming this issue is to update the parameters and latent trajectories jointly (and this has

been considered for SDE models by Stramer and Bognar (2011) and Golightly and Wilkin-

son (2011)). For SDMEMs a joint update of θ, b and x is likely to result in a sampler

with low acceptance rates. We therefore wish to preserve the blocking structure described

above and instead adapt the reparameterisation of Golightly and Wilkinson (2008) to our

problem. In what follows, we describe in detail each step of the Gibbs sampler.

4.4 Path updates

The full conditional density of the latent paths for all experimental units is given by

π(x|θ,Σ, b, y) ∝ π(x|θ, b)π(y|x,Σ) =
N∏
i=1

π
(
xi|θ, bi

)
π
(
yi|xi,Σ

)
,

which suggests a scheme where unit-specific paths are updated separately. In what follows,

therefore, we focus on an updating scheme for a single path, and drop i from the notation,

writing x in place of xi and x[j,j+1] in place of xi[j,j+1]. Since the parameters are fixed

throughout this updating step, we also drop them from the notation for the duration of

this section.

Eraker (2001) suggested that realisations of the latent trajectory are obtained by updating

each column of x in turn, conditional on the proceeding and subsequent columns, that is

an update which updates x ‘one time-point at a time.’ Elerian et al. (2001) showed

how updating via this method leads to poor mixing within the scheme, caused by high

correlation amongst the latent process. They go on to recommend an updating procedure

in which the paths are updated in blocks of random size. It is a related version of this

strategy which we pursue here.

Following Golightly and Wilkinson (2008) we update x in overlapping blocks of size 2m+1.

Consider times tj and tj+2 at which the current values of the latent process are xtj and

xtj+2 . The full conditional density of the latent process over the interval (tj , tj+2) is given

by

π(x(j,j+2)|xtj , ytj+1 , xtj+2) ∝ π(ytj+1 |xtj+1)

j+1∏
l=j

m−1∏
k=0

π(xτl,k+1
|xτl,k), (4.8)
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xtj Xtj+1
xtj+2

ytj ytj+1
ytj+2

m− 1 latent values m− 1 latent values

Propose using q1 Propose using q2

Figure 4.1: Path update illustration over a block of size 2m+ 1.

which is analogous in nature to (3.5). Under the nonlinear structure of the diffusion

process, this full conditional is intractable and so we use a Metropolis-Hastings step to

generate draws from (4.8). We use an independence sampler with a proposal density of

the form

q
(
x(j,j+2)|xtj , ytj+1 , xtj+2

)
= q1

(
x(j,j+1]|xtj , ytj+1

)
q2

(
x(j+1,j+2)|xtj+1 , xtj+2

)
. (4.9)

Figure 4.1 gives an illustration of the updating procedure which can be applied over

intervals (tj , tj+2), j = 0, 1, . . . , n − 2. Determining appropriate forms for q1 and q2

requires the ability to (approximately) generate a discrete-time realisation of a diffusion

process between two time points at which the process is either observed exactly or subject

to Gaussian noise (the subject of Chapter 3).

Hence, q(x(j,j+2)|xtj , ytj+1 , xtj+2) can be formed by taking any bridge construct discussed

in Chapter 3 and simulating a path where

q1(x(j,j+1]|xtj , ytj+1) =

m−1∏
k=0

π̂(xτj,k+1
|xτj,k , ytj+1) (4.10)

and

q2(x(j+1,j+2)|xtj+1 , xtj+2) =
m−2∏
k=0

π̂(xτj+1,k+1
|xτj+1,k

, xtj+2). (4.11)

To elucidate the point, consider the residual bridge (RB) of Section 3.2.1 where we subtract

only the drift. We define the proposal mechanism in (4.9) for generating {Xt, t ∈ [tj , tj+2]}
by taking

π̂(xτj,k+1
|xτj,k , ytj+1) = N

{
xτj,k+1

; xτj,k + µRB(xτj,k)∆τ , ΨRB(xτj,k)∆τ
}
,
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where µRB(xτj,k) and ΨRB(xτj,k) take the form of (3.26) and (3.13) respectively, with

(xτk , ητk , rτk) replaced by (xτj,k , ητj,k , rτj,k) and (yT , ηT ) replaced by (ytj+1 , ηtj+1). Subse-

quently π̂(xτj+1,k+1
|xτj+1,k

, xtj+2) can be sampled using

π̂(xτj+1,k+1
|xτj+1,k

, xtj+2) = N
{
xτj+1,k+1

; xτj+1,k
+ µ∗RB(xτj+1,k

)∆τ , Ψ∗RB(xτj+1,k
)∆τ

}
,

with µ∗RB and Ψ∗RB taking the forms expressed in Section 3.2.1, where T is replaced by tj+2

and τk by τj+1,k.

A proposed move from x(j,j+2) to x∗(j,j+2) is then accepted with the Metropolis-Hastings

acceptance probability min(1,A), where

A =

π
(
ytj+1 |x∗tj+1

) j+1∏
l=j

m−1∏
k=0

π
(
x∗τl,k+1

|x∗τl,k
)

π
(
ytj+1 |xtj+1

) j+1∏
l=j

m−1∏
k=0

π
(
xτl,k+1

|xτl,k
) × q

(
x(j,j+2)|xtj , ytj+1 , xtj+2

)
q
(
x∗(j,j+2)|xtj , ytj+1 , xtj+2

) .

Note that in the above scheme, xt0 and xtn remain fixed. We therefore require two ad-

ditional Metropolis-Hastings steps (such as those described in Golightly and Wilkinson

(2006)) that allow for updating Xt0 and Xtn . Let us initially consider the problem of

updating Xtn .

Take the interval [tn−1, tn], and partition as in (4.4). We make the assumption that xtn−1 is

known and fixed for this update, that is, Xtn−1 = xtn−1 . Our aim is then to update x(n−1,n]

conditional on xtn−1 and ytn . Thus, the proposal density takes the form of q1 (4.10). The

updating procedure is illustrated in Figure 4.2 (and is simply the single interval update

extensively discussed in Chapter 3). A move from x(n−1,n] to x∗(n−1,n] has the acceptance

probability min(1,A), where

A =

π
(
ytn |x∗tn

)m−1∏
k=0

π
(
x∗τn−1,k+1

|x∗τn−1,k

)
π
(
ytn |xtn

)m−1∏
k=0

π
(
xτn−1,k+1

|xτn−1,k

) ×
m−1∏
k=0

π̂
(
xτn−1,k+1

|xτn−1,k
, ytn

)
m−1∏
k=0

π̂
(
x∗τn−1,k+1

|x∗τn−1,k
, ytn

) .

To update the start of the path, that is, to update Xt0 , let us consider the interval [t0, t1],

again partitioned as in (4.4). In contrast to the above where we looked to update Xtn , we

now assume that the right-hand end of the interval is known and fixed, that is, Xt1 = xt1 .

One possible proposal strategy is to draw a candidate x∗t0 from the prior distribution,

and propose the path x∗(0,1) using q2 (4.11) conditional on x∗t0 . However, unless the prior

distribution is particularly informative, this approach is likely to be highly inefficient.

Instead we propose to update Xt0 using a Metropolis-Hastings random walk sampler.
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xtn−1 Xtn

ytn−1 ytn

m− 1 latent values

Propose using q1

Figure 4.2: Path update illustration to update Xtn .

Xt0 xt1

yt0 yt1

m− 1 latent values

Propose using q2

Figure 4.3: Path update illustration to update Xt0 .

Hence, we have that

x∗t0 = xt0 + ω, ω ∼ N(0,Σω).

We then propose x∗(0,1) via q2 (4.11) conditional on x∗t0 . See Figure 4.3 for an illustration.

A move from x[0,1) to x∗[0,1) is then accepted with probability min(1,A), where

A =

π
(
x∗t0

)
π
(
yt0 |x∗t0

)m−1∏
k=0

π
(
x∗τ0,k+1

|x∗τ0,k
)

π
(
xt0

)
π
(
yt0 |xt0

)m−1∏
k=0

π
(
xτ0,k+1

|xτ0,k
) ×

m−2∏
k=0

π̂
(
xτ0,k+1

|xτ0,k , xt1
)

m−2∏
k=0

π̂
(
x∗τ0,k+1

|x∗τ0,k , xt1
) .

For the special case of no measurement error and full observation of all components the

above scheme simplifies dramatically. We no longer require the use of overlapping blocks

of size 2m + 1, and instead we update x using standard blocks of size m + 1. As xtj ,

j = 0, . . . , n is known and fixed, the left and right endpoints of any interval are known and

fixed. Therefore we may update any given block, x(j,j+1), through the use of q2 (4.11);

see Figure 4.4. Note that a separate update for xt0 and xtn is no longer necessary. In

this special case, we sample x using the diffusion bridges characterised by the µ∗(xτj,k)

and Ψ∗(xτj,k) of Chapter 3. A proposed move from x(j,j+1) to x∗(j,j+1) has the associated
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xtj xtj+1

m− 1 latent values

Propose using q2

Figure 4.4: Path update illustration over a block of size m+ 1.

acceptance probability min(1,A), where

A =

m−1∏
k=0

π
(
x∗τj,k+1

|x∗τj,k
)

m−1∏
k=0

π
(
xτj,k+1

|xτj,k
) ×

m−2∏
k=0

π̂
(
xτj,k+1

|xτj,k , xtj+1

)
m−2∏
k=0

π̂
(
x∗τj,k+1

|x∗τj,k , xtj+1

) .

4.5 Parameter updates

In the last section we outlined a strategy to update the latent process x, fulfilling step 1

in the Gibbs sampling strategy of Section 4.3. We now turn our attention to updating the

parameters within the model, that is, steps 2–5 of the presented Gibbs sampling strategy.

The full conditional densities of Σ and ψ are

π(Σ|x, y) ∝ π(Σ)π(y|Σ) and π(ψ|b) ∝ π(ψ)π(b|ψ).

Often, semi-conjugate priors can be specified for Σ and ψ negating the need for Metropolis-

within-Gibbs steps, and updates proceed from their full conditional distribution.

Unfortunately, for the remaining parameters of interest, θ and b = (b1, . . . , bN )′, direct

sampling is generally impossible. Therefore we must again appeal to Metropolis-within-

Gibbs. For θ and b we have

π(θ|b, x) ∝ π(θ)π(x|θ, b) (4.12)

and

π(b|θ, ψ, x) ∝ π(b|ψ)π(x|θ, b) =
N∏
i=1

π
(
bi|ψ

)
π
(
xi|θ, bi

)
, (4.13)

where the last expression suggests unit-specific updates of the components of b. The

method to update θ or a unit-specific bi is identical, and thus, we only detail the update

for θ here.
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We update θ via a random walk proposal with Gaussian innovations (see Chapter 2).

Here, a new value θ∗ is obtained using

θ∗ = θ + ω, ω ∼ N(0,Σω),

where Σω is the covariance matrix of tuning parameters. A proposed θ∗ is then accepted

with the Metropolis-Hastings acceptance probability min(1,A), where

A =
π(θ∗)π(x|θ∗, b)
π(θ)π(x|θ, b)

× q(θ|θ∗)
q(θ∗|θ)

=
π(θ∗)π(x|θ∗, b)
π(θ)π(x|θ, b)

.

The above simplification to the acceptance probability is induced by the symmetric nature

of the proposal distribution, that is

q(θ∗|θ) = q(θ|θ∗) ∝ exp

{
−1

2
(θ∗ − θ)′Σ−1

ω (θ∗ − θ)
}
.

However, for many SDMEMs of interest, we may require that all the components of θ be

non-negative, such that θ ∈ Rp+. In this case, we adopt the transformation

ξ = log θ = (log θ1, . . . , log θp)
′ .

For ease of exposition, let us suppose that our prior beliefs about θ can be represented

by independent distributions for each component θi, i = 1, . . . , p. Whence, the prior

distribution for ξ is

π(ξ) =

p∏
i=1

πθi

(
eξi
)
eξi ,

so that the full conditional density for ξ is given by

π(ξ|b, x) ∝ π (ξ)π
(
x|eξ, b

)
. (4.14)

We sample (4.14) using a Metropolis-Hastings step with proposal

ξ∗ = ξ + ω, ω ∼ N(0,Σω).
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A move to ξ∗ is then accepted with probability min(1,A), where

A =
π (ξ∗)π

(
x|eξ∗ , b

)
π
(
ξ
)
π
(
x|eξ, b

)
=

p∏
i=1

πθi
(
eξ
∗
i
)
θ∗i

p∏
i=1

πθi
(
eξi
)
θi

×
π
(
x|eξ∗ , b

)
π
(
x|eξ, b

) .

The method outlined above updates all components of θ (or ξ) in a single block update.

As mentioned in Chapter 2, this approach is likely to be inefficient. In practice, single

components of θ are updated in turn; or block updates are applied to certain components

of θ, with the blocks chosen to break the correlations within θ. Each block is then updated

subject to the strategy outlined above.

4.5.1 Convergence problems

As mentioned previously, since θ and the components of b enter into the diffusion coefficient

of (4.1), sampling the full conditionals of θ|b, x and b|θ, ψ, x as part of a Gibbs sampler (as

outlined in the MCMC scheme above) will result in a reducible Markov chain as m→∞
(or ∆τ → 0). Typically we might expect to see intolerably poor mixing of the scheme for

m > 5 (Eraker, 2001). This issue was first discussed in Roberts and Stramer (2001), who

highlight the dependence between the quadratic variation of the latent process and the

diffusion coefficient. For a specific interval [tj , tj+1] partitioned as in (4.4) the quadratic

variation (for a given experimental unit i) is given by

〈
xi, xi

〉
[j,j+1]

= lim
m→∞

m−1∑
k=0

(
xiτj,k+1

− xiτj,k
)(

xiτj,k+1
− xiτj,k

)′
=

∫ tj+1

tj

β
(
xiτ , θ, b

i
)
dτ.

(4.15)

The form of (4.15) shows that there is an inherent link between the quadratic variation and

the diffusion coefficient: as soon as xi[j,j+1] is known, θ and bi can be deduced directly from

it using (4.15), and contrariwise, a fixed β(Xi
t , θ, b

i) determines xi. Therefore a scheme

which alternates between updates of x, θ and b will be reducible, as x produces θ and b,

and θ and b determine the quadratic variation of x. Thus, the scheme will not converge

for m→∞. In practice however, m is finite and we see intolerable mixing which worsens

with m.

Shephard and Pitt (1997) found that the use of random blocks to update x (such as those

discussed above in Section 4.4) can aid convergence. However, the dependence between

the latent process and parameters still exists, causing poor mixing as m → ∞ (or as the
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number of observations increases).

Roberts and Stramer (2001) overcome the dependence (in a univariate diffusion setting) by

performing a transformation which leads to an irreducible scheme (even as m→∞). The

transformation is a form of the Lamperti transformation, which is discussed for multivari-

ate diffusions by Picchini and Ditlevsen (2011). If the diffusion in question is reducible then

the Lamperti transformation (for a specific experimental unit, where we again suppress i

to ease notation) is given by

υ (x, θ, b) = (υ1 (x, θ, b) , . . . , υd (x, θ, b))′ ,

such that

∇υ (x, θ, b) = β (x, θ, b)−
1
2 ,

where

∇υ (x, θ, b) =


∂υ1

∂x1
. . .

∂υ1

∂xd
...

. . .
...

∂υd
∂x1

. . .
∂υd
∂xd

 .

Through the use of the multivariate Itô formula (2.22) with Yt = υ (Xt, θ, b), we obtain a

new SDE as

dYt = α∗ (Yt, θ, b) dt+ dWt,

which clearly has unit diffusion coefficient.

Example: Birth-death model

Recall the SDE for a simple birth-death process given in Section 3.5.1

dXt = (θ1 − θ2)Xt dt+
√

(θ1 + θ2)Xt dWt, X0 = x0. (4.16)

The Lamperti transform can be applied to (4.16) by taking

∇υ =
1√

(θ1 + θ2)x
,

which gives that

υ =
2
√
x√

θ1 + θ2
.

83



Chapter 4. Bayesian inference for stochastic differential mixed-effects models

Using Itô’s formula (2.15) with

Yt = f(Xt, θ) =
2
√
Xt√

θ1 + θ2
,

where

ft = 0, fx =
1√

(θ1 + θ2)x
and fxx =

−1

2
√
θ1 + θ2 x3/2

,

we obtain

dYt =

{
(θ1 − θ2)

√
Xt√

θ1 + θ2
−
√
θ1 + θ2

4
√
Xt

}
dt+ dWt.

We note that √
Xt =

√
θ1 + θ2 Yt

2
,

and hence

dYt =

{
(θ1 − θ2)Y 2

t − 1

2Yt

}
dt+ dWt.

In practice however, the above transformation is almost always impossible to apply for

nonlinear multivariate diffusions (Papaspiliopoulos et al., 2003). We also note that time

change transformations and the implementation of particle filters can be used to make

improvements to the convergence of the scheme (see Fuchs (2013) and the references

therein). However, within this thesis, to overcome this problem of dependence we use a

reparameterisation which is outlined in the next section.

4.5.2 Modified innovation scheme

The following reparameterisation (and subsequent updating scheme) should be applica-

ble for any multivariate diffusion, subject to fairly general regularity conditions. The

associated MCMC scheme is computationally efficient and importantly, does not lead to

a reducible scheme as m → ∞. The main assumption is that β(Xi
t , θ, b

i) is invertible.

Note that in the case when β(Xi
t , θ, b

i) is rank-degenerate, the inverse may be found using

the Moore-Penrose generalised inverse, so that the scheme outlined in this section is still

applicable.

The innovation scheme was first outlined in Chib et al. (2004) and exploits the fact that,

given θ and b, under the Euler-Maruyama approximation (4.3) there is a one-to-one rela-

tionship between ∆Xt and ∆Wt: the increments of the process and the increments of the

driving Brownian motion respectively. Here

∆Xi
t = α

(
Xi
t , θ, b

i
)

∆t+
√
β
(
Xi
t , θ, b

i
)

∆W i
t
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and hence

∆W i
t = β

(
Xi
t , θ, b

i
)−1/2 {

∆Xi
t − α

(
Xi
t , θ, b

i
)

∆t
}
.

Moreover, whilst the quadratic variation of X determines θ and b (as m → ∞), the

quadratic variation of the Brownian process is independent of θ and b a priori. Therefore

conditioning on the Brownian increment innovations in a Gibbs update should be effective

in overcoming the dependence problem. The resulting algorithm is known as the innova-

tion scheme. Unfortunately, combining an updated parameter value with the Brownian

increments will not necessarily give an imputed path that is consistent with the obser-

vations. Therefore, Golightly and Wilkinson (2008, 2010) suggest that a diffusion bridge

(such as the modified diffusion bridge of Durham and Gallant (2002), see Section 3.1.2)

be used to determine the innovation process, leading to a modified innovation scheme.

Fuchs (2013) considers the modified innovation scheme in a continuous-time framework.

Adapting the innovation process used by Fuchs to an SDMEM, we have for an interval

[tj , tj+1], an innovation process {Zit , t ∈ [tj , tj+1]} satisfying

dZit = β
(
Xi
t , θ, b

i
)−1/2

(
dXi

t −
xitj+1

−Xi
t

tj+1 − t
dt

)
(4.17)

= β
(
Xi
t , θ, b

i
)−1/2

{
α
(
Xi
t , θ, b

i
)
−
xitj+1

−Xi
t

tj+1 − t

}
dt+ dW i

t ,

with Zitj = 0. Clearly, each process Zi has unit diffusion coefficient and whilst not Brow-

nian motion processes, the probability measures induced by each Zi are absolutely con-

tinuous with respect to Wiener measure. A proof of this result can be found in Fuchs

(2013) as well as a justification for using this form of innovation process as the effective

component in a Gibbs sampler.

The aim is to apply a discretisation of (4.17) between observation times. We therefore

define xio = (xit0 , . . . , x
i
tn)′ to be the current values of the (unit-specific) latent process at

the observation times, and stack all xio values into the matrix xo. Following Golightly and

Wilkinson (2008), we have for k = 0, . . . ,m− 1

Ziτj,k+1
− Ziτj,k = β∗

(
Xi
τj,k
, θ, bi

)−1/2
(
Xi
τj,k+1

−Xi
τj,k
−
xitj+1

−Xi
τj,k

tj+1 − τj,k
∆τ

)
,

where Zτj,0 = 0 and

β∗
(
Xi
τj,k
, θ, bi

)
=
tj+1 − τj,k+1

tj+1 − τj,k
β
(
Xi
τj,k
, θ, bi

)
.

85



Chapter 4. Bayesian inference for stochastic differential mixed-effects models

Now define a function f so that Xi
τj,k

= f(Ziτj,k , θ, b
i) and Ziτj,k = f−1(Xi

τj,k
, θ, bi). Let

ziimp denote the (unit-specific) innovation values over [t0, tn] and stack all ziimp values into

the matrix zimp. Define xiimp and ximp similarly. The modified innovation scheme samples

θ|b, zimp, xo and bi|θ, ψ, ziimp, xio, i = 1, . . . , N . Note that for an updated value of bi, say bi∗,

a new xi∗imp is updated deterministically through xi∗imp = f(zi∗imp, θ, b
i∗). Likewise, for a new

θ∗, a new x∗imp is updated deterministically through xi∗imp = f(zi∗imp, θ
∗, bi), i = 1, . . . , N .

The full conditional density of θ is

π(θ|b, zimp, xo) ∝ π(θ)
N∏
i=1

n−1∏
j=1

[
m−1∏
k=0

π
(
xiτj,k+1

|xiτj,k , θ, b
i
)m−2∏
k=0

J
{
f
(
ziτj,k+1

, θ, bi
)}]

,

(4.18)

where

J
{
f
(
ziτj,k+1

, θ, bi
)}

=
∣∣∣β∗ (xiτj,k , θ, bi)∣∣∣−1/2

is the Jacobian determinant of f . Similarly, the full conditional density of bi, i = 1, . . . , N

is

π
(
bi|θ, ψ, ziimp, xio

)
∝ π

(
bi|ψ

) n−1∏
j=1

[
m−1∏
k=0

π
(
xiτj,k+1

|xiτj,k , θ, b
i
)m−2∏
k=0

J
{
f
(
ziτj,k+1

, θ, bi
)}]

.

(4.19)

Naturally, the full conditionals in (4.18) and (4.19) will typically be intractable, requiring

the use of Metropolis-within-Gibbs updates. Therefore a proposed move from θ to θ∗ is

accepted with probability min(1,A), where

A =
π(θ∗)π{f(z∗imp, θ

∗, b)|θ∗, b}J{f(z∗imp, θ
∗, b)}

π(θ)π{f(zimp, θ, b)|θ, b}J{f(zimp, θ, b)}
.

Similarly, a proposed value bi∗ is accepted with probability min(1,A), where

A =
π
(
bi∗|ψ

)
π
{
f
(
zi∗imp, θ, b

i∗
)
|θ, bi∗

}
J
{
f
(
zi∗imp, θ, b

i∗
)}

π (bi|ψ)π
{
f
(
ziimp, θ, b

i
)
|θ, bi

}
J
{
f
(
ziimp, θ, b

i
)} .

We now explicitly outline the MCMC scheme invoked under the modified innovation

scheme. Recall from Section 4.3, the Gibbs sampling steps

1. π(x|θ, ψ,Σ, b, y) = π(x|θ,Σ, b, y),

2. π(Σ|θ, ψ, b, x, y) = π(Σ|x, y),

3. π(θ|ψ,Σ, b, x, y) = π(θ|b, x),
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4. π(b|θ, ψ,Σ, x, y) = π(b|θ, ψ, x),

5. π(ψ|θ,Σ, b, x, y) = π(ψ|b).

We have discussed above how the implementation of this scheme leads to a reducible

Markov chain. Therefore, we utilise the following Gibbs sampling steps

1. π(z|θ, ψ,Σ, b, y) = π(z|θ,Σ, b, y),

2. π(Σ|θ, ψ, b, x, y) = π(Σ|x, y),

3. π(θ|ψ,Σ, b, zimp, y) = π(θ|b, zimp, xo),

4. π(b|θ, ψ,Σ, zimp, y) = π(b|θ, ψ, zimp, xo),

5. π(ψ|θ,Σ, b, zimp, y) = π(ψ|b).

Note that step 2 of the algorithm remains unchanged as Σ does not feature in the diffusion

coefficient, and it is only those parameters which feature in the diffusion coefficient that

cause the dependence problem to occur.

The updates for Σ and ψ are identical to those presented at the beginning of Section 4.5.

We update θ and b using a Metropolis-Hastings algorithm for the full conditional distri-

butions given above, noting that the use of block updates may again be profitable. This

leaves only the update for z. Given the relationship between z and x, it is sufficient to

update x using the techniques outlined in Section 4.4, before constructing z from x deter-

ministically. A scheme taking this form will be successful in overcoming the dependence

between the latent process and the parameters entering the diffusion coefficient, and hence,

be irreducible as m → ∞. A rigorous justification of this scheme is beyond the scope of

this thesis, however we refer the reader to (Fuchs, 2013, Chapter 7) for further details.

4.6 The linear noise approximation to SDMEMs

We now return to a concept initially introduced in Chapter 2, namely a tractable approx-

imation to an SDE. Here we extend the LNA of Section 2.7 to SDMEMs before outlining

an inference scheme based upon this approximation. Recall that for an SDE of the form

dXt = α(Xt, θ) dt+
√
β(Xt, θ) dWt,

we partition Xt as Xt = ηt +Rt. Replacing Rt with the approximate residual process R̂t,

given by

dR̂t = HtR̂t dt+
√
β(ηt, θ) dWt, (4.20)
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and noting that r̂0 = 0, we obtain Xt|X0 = x0 ∼ N (ηt, Vt), where

dηt
dt

= α(ηt, θ), η0 = x0,

dVt
dt

= VtH
′
t + β(ηt, θ) +HtVt, V0 = 0,

and Ht is the Jacobian matrix with (i,j)th element

(Ht)i,j =
∂αi(ηt, θ)

∂ηj,t
.

The extension of the above to SDMEMs is straighforward. Noting that each {Xi
t , t ≥ 0},

i = 1, . . . , N , follows the same underlying SDE, we partition Xi
t as Xi

t = ηit + Rit, where

ηit and Rit have the same definitions as ηt and Rt given previously. Thus, a solution for

each i, is gained through the ODE system

dηit
dt

= α
(
ηit, θ, b

i
)
, ηi0 = xi0, (4.21)

dV i
t

dt
= V i

t

(
H i
t

)′
+ β

(
ηit, θ, b

i
)

+H i
tV

i
t , V i

0 = 0, (4.22)

where

(H i
t)j,k =

∂αj
(
ηit, θ, b

i
)

∂ηik,t
.

If (4.21) and (4.22) is a tractable system (such that analytic expressions for ηit and V i
t can

be obtained), we note that the forms of each ηit and V i
t will be the same, however they

will be determined by the differing ηit and bi in each instance.

Fearnhead et al. (2014) describe a filtering algorithm for computing the marginal likelihood

π(y|θ, b,Σ) for the Gaussian observation regime (4.2). Here we exploit the computational

efficiency of their approach. The performance of the linear noise approximation of the

SDMEM (4.1) is examined in Chapter 5.

It is worth noting here that the linear form of the SDE (4.20) satisfied by the approxi-

mate residual process (R̂t) coupled with the additive Gaussian observation regime admits

a closed form expression for densities of the form π̂(r̂τj,k+1
|r̂τj,k , ytj+1), suggesting use of

the LNA as a proposal mechanism inside the Bayesian imputation approach of Section 4.4.

Whilst the LNA could in principle be used to directly approximate the conditioned resid-

ual process governed by the SDE in (3.23), we note that the SDEs in (3.23) and (4.20)

have different diffusion coefficients. Consequently, the probability law governing R̂t is not

absolutely continuous with respect to the law of Rt. We therefore do not advocate use of

the LNA in this way.
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4.6.1 Application to SDMEMs

Under the linear noise approximation of (4.1) the marginal posterior for all parameters is

given by

π(θ, ψ,Σ, b|y) ∝ π(θ)π(ψ)π(Σ)π(b|ψ)π(y|θ,Σ, b)

∝ π(θ)π(ψ)π(Σ)

N∏
i=1

π
(
bi|ψ

)
π
(
yi|θ,Σ, bi

)
. (4.23)

This factorisation suggests a Gibbs sampler with blocking that sequentially takes draws

from the full conditionals

1. π(Σ|θ, ψ, b, y) = π(Σ|y),

2. π(θ|ψ,Σ, b, y) = π(θ|b, y),

3. π(b|θ, ψ,Σ, y) = π(b|θ, ψ, y),

4. π(ψ|θ,Σ, b, y) = π(ψ|b),

and uses a Metropolis-Hastings step when a full conditional density is intractable. In-

terest may also lie in the joint posterior π(θ, ψ,Σ, b, x|y) where, since no imputation is

required for the LNA, xi = (xt0 , . . . , xtn)′ and x = (x1, . . . , xN ). Realisations from this

posterior can be obtained using the above Gibbs sampler with an extra step that draws

from π(xi|θ, ψ,Σ, bi, yi) = π(xi|θ,Σ, bi, yi) for i = 1, . . . , N . The method uses a forward

filter, backward sampling (FFBS) algorithm; see West and Harrison (1997) for full details

of a FFBS. Note that the backward sweep requires Cov(Xi
tj+1

, Xi
tj ), which from Chapter 3

we know to be

Cov
(
Xi
tj+1

, Xi
tj

)
= Cov

(
R̂itj+1

, R̂itj

)
= P itj+1

Var
(
R̂itj

)
.

Here P it is a d× d matrix that can be shown to satisfy the ODE

dP it
dt

= H i
tP

i
t , P i0 = Id, (4.24)

cf. equation (2.35).

We now describe how to compute the marginal likelihood π(yi|θ,Σ, bi) for each experi-

mental unit. To ease the notation, consider a single experimental unit and drop i from

the notation. Since the parameters θ, ψ, b and Σ remain fixed throughout the calculation,

we also drop them from the notation where possible. Define y0:j = (yt0 , . . . , ytj )
′. Now

suppose that X0 ∼ N(a,C) a priori. The marginal likelihood π(y|θ,Σ, b) under the LNA
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Algorithm 7 LNA FFBS

1. Forward filter: Initialisation. Compute π(yt0) = N(yt0 ; F ′a , F ′CF + Σ). The
posterior at time t0 = 0 is therefore Xt0 |yt0 ∼ N(a0, C0), where

a0 = a+ CF
(
F ′CF + Σ

)−1 (
yt0 − F ′a

)
C0 = C − CF

(
F ′CF + Σ

)−1
F ′C .

Store the values of a0 and C0.

2. For j = 0, 1, . . . , n− 1,

(a) Prior at tj+1. Initialise the LNA with ηtj = atj , Vtj = Ctj and Ptj = Id.
Integrate the ODEs (4.21), (4.22) and (4.24) forward to tj+1 to obtain ηtj+1 ,
Vtj+1 and Ptj+1 . Hence Xtj+1 |y0:j+1 ∼ N(ηtj+1 , Vtj+1).

(b) One step forecast. Using the observation equation (4.2), we have that

Ytj+1 |y0:j ∼ N
(
F ′ηtj+1 , F

′Vtj+1F + Σ
)
.

Compute the updated marginal likelihood

π(y0:j+1) = π(y0:j)π(ytj+1 |y0:j)

= π(y0:j)N
(
ytj+1 ; F ′ηtj+1 , F

′Vtj+1F + Σ
)
.

(c) Posterior at tj+1. Combining the distributions in (a) and (b) gives the joint
distribution of Xtj+1 and Ytj+1 (conditional on y0:j) as(

Xtj+1

Ytj+1

)
∼ N

{(
ηtj+1

F ′ηtj+1

)
,

(
Vtj+1 Vtj+1F

F ′Vtj+1 F ′Vtj+1F + Σ

)}

and therefore Xtj+1 |y0:j+1 ∼ N(atj+1 , Ctj+1), where

atj+1 = ηtj+1 + Vtj+1F
(
F ′Vtj+1F + Σ

)−1 (
ytj+1 − F ′ηtj+1

)
Ctj+1 = Vtj+1 − Vtj+1F

(
F ′Vtj+1F + Σ

)−1
F ′Vtj+1 .

Store the values of atj+1 , Ctj+1 , ηtj+1 , Vtj+1 and Ptj+1 .

(and, if desired, realisations from π(θ, ψ,Σ, b, x|y)) can be obtained using Algorithm 7. If

the ODE system governing the LNA is not restarted, the forward filter of Algorithm 7 can

be seen as a standard Kalman filter (Kalman, 1960). Note that if no interest lies in the

marginal posterior density of the latent states π(x|θ, ψ,Σ, b, y), then (4.24) need not be

solved and no storage of values is necessary.
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Algorithm 7 continued

Sample π(x|y) using the following backward sampler.

1. Backward sampler: First draw xtn from Xtn |y ∼ N(atn , Ctn).

2. For j = n− 1, n− 2, . . . , 0,

(a) Joint distribution of Xtj and Xtj+1 . Note that Xtj |y0:j ∼ N(atj , Ctj ). The joint
distribution of Xtj and Xtj+1 (conditional on y0:j) is(

Xtj

Xtj+1

)
∼ N

{(
atj
ηtj+1

)
,

(
Ctj CtjP

′
tj+1

Ptj+1Ctj Vtj+1

)}
.

(b) Backward distribution. The distribution of Xtj |Xtj+1 , y0:j is N(âtj , Ĉtj ), where

âtj = atj + CtjP
′
tj+1

V −1
tj+1

(
xtj+1 − ηtj+1

)
,

Ĉtj = Ctj − CtjP ′tj+1
V −1
tj+1

Ptj+1Ctj .

Draw xtj from Xtj |Xtj+1 , y0:j ∼ N(âtj , Ĉtj ).

4.7 Summary

We have introduced the concept of stochastic differential mixed-effects models, before de-

scribing a framework that permits (simulation-based) Bayesian inference for a large class

of multivariate SDMEMs using discrete-time observations, which may be incomplete and

subject to measurement error. We have outlined in detail the steps necessary to imple-

ment both path and parameter updates. By adopting a Bayesian imputation approach,

we have shown how the modified innovation scheme of Golightly and Wilkinson (2008) can

be applied to SDMEMs. This approach overcomes the problematic dependence between

the latent process and any parameters that feature in the diffusion coefficient. The com-

putational cost of such a scheme is determined by the number of imputed points (m− 1)

required between observation times.

We also presented a tractable approximation to the SDMEM, the linear noise approx-

imation, and detailed an inference scheme based upon it, exploiting the computational

efficiency of Fearnhead et al. (2014). The computational efficiency of the LNA is however

linked to the dimension of the SDE driving the SDMEM; for a d-dimensional SDE system,

the LNA requires the solution of a system of order d2 coupled ODEs. Of course, increases

in both computational and overall efficiency can be achieved if the resulting ODE sys-

tem can be solved analytically. If the ODE system governing the LNA is intractable (so

that it must be solved numerically) the computational advantage of using the LNA over

91



Chapter 4. Bayesian inference for stochastic differential mixed-effects models

the imputation approach will be reduced. We note that, as the dimension d of the SDE

increases, the LNA is likely to become infeasible.

Having now outlined two competing inference schemes—a Bayesian imputation approach

incorporating the modified innovation scheme, and a scheme based on the linear noise

approximation—we now assess their respective performances. To that end we implement

both schemes in two examples in the next chapter and compare their performances.
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Numerical examples

We now compare the accuracy and efficiency of our Bayesian imputation approach (cou-

pled with the modified innovation scheme) with an LNA-based solution. Details of both

schemes can be found in the previous chapter. We consider two scenarios: one in which the

ODEs governing the LNA are tractable and one in which a numerical solver is required.

In the first we use synthetic data generated from a simple univariate SDE description of

orange tree growth (Picchini and Ditlevsen, 2011). The second example uses real data

taken from Matis et al. (2008) to fit an SDMEM driven by the bivariate diffusion approx-

imation of a stochastic kinetic model of aphid dynamics; see Appendix C for an outline

of the diffusion approximation of a stochastic kinetic model. The resulting SDMEM is

particularly challenging to fit as both the drift and diffusion functions are nonlinear and

also only one component of the model is observed (with error). Furthermore, we compare

inferences made under the SDMEM and LNA using synthetic data generated under four

data-poor scenarios for the model of aphid dynamics.

5.1 Orange tree growth

The SDMEM developed by Picchini et al. (2010) and Picchini and Ditlevsen (2011) to

model orange tree growth describes the dynamics of the circumference Xi
t (in mm) of

individual trees by

dXi
t =

1

φi1φ
i
2

Xi
t

(
φi1 −Xi

t

)
dt+ σ

√
Xi
t dW

i
t , Xi

0 = xi0, i = 1, . . . , N,

with φi1 ∼ N(φ1, σ
2
φ1

) and φi2 ∼ N(φ2, σ
2
φ2

) independently. Here θ = σ is common to all

trees, the random effects are bi = (φi1, φ
i
2)′, i = 1, . . . , N and the parameter vector govern-

ing the random effects distributions is ψ = (φ1, φ2, σφ1 , σφ2)′. Note that the φi1 can be in-
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Figure 5.1: Synthetic data for the orange tree growth model for the parameter values φ1 = 195,
φ2 = 350, σφ1

= 25, σφ2
= 52.5 and σ = 0.08, with xi0 = 30.

terpreted as asymptotic circumferences and the φi2 as the time between the inflection point

of the model obtained by ignoring stochasticity and the point where Xi
t = φi1/(1 + e−1).

To allow identifiability of all model parameters, we generated 16 observations for the

circumference of N = 100 trees at intervals of 100 days. Following Picchini and Ditlevsen

(2011) we gave each tree the same initial condition (xi0 = 30) and took

(φ1, φ2, σφ1 , σφ2 , σ) = (195, 350, 25, 52.5, 0.08),

which gives random effects distributions φi1 ∼ N(195, 252) and φi2 ∼ N(350, 52.52). The

synthetic data are shown in Figure 5.1. For our analysis of these data we assumed the

parameters to be independent a priori with φ1 and φ2 having weak N(0, 1002) priors, and

1/σ2
φ1

, 1/σ2
φ2

and 1/σ2 having weak gamma Ga(1, 0.01) priors. In this example we assume

there is no measurement error and therefore the target posterior is given by

π(θ, ψ, b|x) ∝ π(θ)π(ψ)π(b|ψ)π(x|θ, b)

∝ π(φ1)π(φ2)π(σφ1)π(σφ2)π(σ)
N∏
i=1

π
(
φi1|φ1, σφ1

) N∏
i=1

π
(
φi2|φ2, σφ2

)
π(x|θ, b).

In the Bayesian imputation approach, π(x|θ, b) is as in (4.7) whereas for the LNA–based

solution

π(x|θ, b) =
N∏
i=1

n−1∏
j=0

N
(
xitj+1

; ηitj+1
, V i

tj+1

)
,
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where, for each interval [tj , tj+1] and each tree i, the ηit and V i
t satisfy the ODE system

dηit
dt

=
1

φi1φ
i
2

ηit
(
φi1 − ηit

)
, ηitj = xitj ,

dV i
t

dt
=

2

φi1φ
i
2

(
φi1 − 2ηit

)
V i
t + σ2ηit, V i

tj = 0.

Fortunately this ODE system can be solved analytically giving

ηit =
Aφi1e

t/φi2

1 +Aet/φ
i
2

V i
t = B

(
1

2
A3φi2e

2t/φi2 + 3A2φi2e
t/φi2 − φi2e−t/φ

i
2 + 3At− 1

2
A3φi2 − 3A2φi2 + φi2

)
,

where

A =
xi0

φi1 − xi0
and B =

σ2Aφi1e
2t/φi2

(1 +Aet/φ
i
2)4

.

This solution is derived in Appendix B.

The MCMC scheme can make use of simple semi-conjugate updates for φ1, φ2, σφ1 and

σφ2 ; see Appendix A.2 for details of these updates. However the remaining parameters (σ

and the bi) require Metropolis-within-Gibbs updates and we have found that componen-

twise normal random walk updates (so-called random walk Metropolis) on the log scale

work particularly well. Also, for the modified innovation scheme, the dynamics of the

SDMEM permit the use of the modified diffusion bridge construct (see Section 3.1.2) to

update the latent trajectories between observation times: the improved bridge constructs

of Section 3.2 are not needed for this example.

The modified innovation scheme requires specification of the level of discretisation m. We

performed several short pilot runs of the scheme with m ∈ {5, 10, 20, 40} and found no

discernible difference in posterior output for m ≥ 10. We therefore took m = 10. The

marginal posterior densities for a selection of parameters using these various levels of

discretisation are illustrated in Figure 5.2. The sample output was also used to estimate

the marginal posterior variances of σ and the bi, and thereby provide sensible innovation

variances in the random walk Metropolis updates. We note that the computational effort

required to find a suitable value of m is typically a small percentage of the total cost of

using the Bayesian imputation approach. This is true for both examples considered within

this chapter. Both the modified innovation scheme and the LNA–based scheme required

a burn in of 500 iterations, a thin of 100 iterates and were run long enough to yield a

sample of approximately 10K independent posterior draws. Figure 5.3 shows the marginal

posterior densities and autocorrelations for the common parameter σ and the parameters
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φ1 φ2 σφ1 σφ2 σ

Imputation
194.229 344.799 24.316 53.219 0.079
(3.509) (10.098) (3.149) (10.410) (0.002)

LNA
194.634 347.631 24.207 53.960 0.079
(4.025) (10.844) (3.154) (10.193) (0.002)

Table 5.1: Marginal posterior means (standard deviations) of the random effects hyper-parameters
(φ1, φ2, σφ1

, σφ2
) and common parameter σ in the orange tree growth SDMEM. The synthetic

data used φ1 = 195, φ2 = 350, σφ1
= 25, σφ2

= 52.5 and σ = 0.08.

governing the random effects distributions. The bivariate marginal posterior densities

for these parameters are illustrated in Figures 5.4 and 5.5. Figures 5.6 and 5.7 show

the marginal posterior densities of five randomly chosen random effects. The marginal

posterior means and standard deviations of (φ1, φ2, σφ1 , σφ2 , σ) are given in Table 5.1.

The figures and table show that both the imputation approach and LNA–based approach

generally give similar output and are consistent with the true values from which the data

were simulated. There are however slight differences in some of the bivariate marginal

posterior densities obtained, see (for example), the density for φ2 and σφ2 in Figure 5.5.

Both schemes were coded in C and run on an Intel Xeon 3.0GHz processor. The modified

innovation scheme took 43504.3 seconds to run whilst the LNA inference scheme took

2483.3 seconds. We use the minimum (over each parameter chain) effective sample size

(minESS) to measure the statistical efficiency of each scheme. The modified innovation

scheme produced a minESS of 7949.0 and the LNA–based approach gave 7820.6. There-

fore, in terms of minESS/sec, using the LNA outperforms the imputation approach in

this example by a factor of approximately 17. It should be noted, however, that for most

nonlinear SDMEMs the ODEs governing the LNA solution will rarely be tractable and

the consequent use of a numerical scheme will degrade its performance.

In the next section we consider an example in which the LNA ODEs are intractable.

5.2 Cotton aphid dynamics

5.2.1 Model and data

Aphids (also known as plant lice or greenfly) are small sap sucking insects which live on

the leaves of plants. As they suck the sap they also secrete honey-dew which forms a

protective cover over the leaf, ultimately resulting in aphid starvation. Matis et al. (2006)

describe a model for aphid dynamics in terms of population size (Nt) and cumulative

population size (Ct). The model is a stochastic birth-death model with linear birth rate

λNt and death rate µNtCt. The key probabilistic laws governing the time-evolution of the
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Figure 5.2: Marginal posterior densities for a selection of the orange tree growth model param-
eters using various levels of discretisation m. Black: m = 5. Red: m = 10. Green: m = 20.
Blue: m = 40. The grey lines indicate the ground truth.

97



Chapter 5. Numerical examples

180 185 190 195 200 205 210

0.
00

0.
04

0.
08

D
en

si
ty

φ1

300 320 340 360 380

0.
00

0.
01

0.
02

0.
03

0.
04

D
en

si
ty

φ2

0.072 0.076 0.080 0.084

0
50

10
0

15
0

20
0

25
0

D
en

si
ty

σ
10 15 20 25 30 35 40

0.
00

0.
04

0.
08

0.
12

D
en

si
ty

σφ1

20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

0.
04

D
en

si
ty

σφ2

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 5.3: Marginal posterior densities for the random effects hyper-parameters (φ1, φ2, σφ1 , σφ2)
and common parameter σ in the orange tree growth SDMEM, together with their (overlayed)
autocorrelation functions. Black: Bayesian imputation. Red: LNA. The grey lines indicate the
ground truth.
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Figure 5.4: Bivariate marginal posterior densities for the random effects hyper-parameters
(φ1, φ2, σφ1

, σφ2
) and common parameter σ in the orange tree growth SDMEM. Black: Bayesian

imputation. Red: LNA. The blue crosses indicate the ground truth.

process over a small interval (t, t+ dt] are

Pr(Nt+dt = nt + 1, Ct+dt = ct + 1 |nt, ct) = λnt dt+ o(dt),

Pr(Nt+dt = nt − 1, Ct+dt = ct |nt, ct) = µntct dt+ o(dt).
(5.1)

The diffusion approximation of the Markov jump process defined by (5.1) is(
dNt

dCt

)
=

(
λNt − µNtCt

λNt

)
dt+

(
λNt + µNtCt λNt

λNt λNt

)1/2

dWt, X0 = x0. (5.2)
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imputation. Red: LNA. The blue crosses indicate the ground truth.
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Figure 5.6: Marginal posterior densities for a random selection of φi1 in the orange tree growth
SDMEM, together with their (overlayed) autocorrelation functions. Black: Bayesian imputation.
Red: LNA. The grey lines indicate the ground truth.
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Figure 5.7: Marginal posterior densities for a random selection of φi2 in the orange tree growth
SDMEM, together with their (overlayed) autocorrelation functions. Black: Bayesian imputation.
Red: LNA. The grey lines indicate the ground truth.
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Figure 5.8: Aphid numbers (Nt) against time (in weeks) taken from Matis et al. (2008). Low
water (1st row), medium water (2nd row) and high water (3rd row). Black crosses: Block 1.
Red circles: Block 2. Green triangles: Block 3.

Matis et al. (2008) also provide a dataset of cotton aphid (Aphis gossypii) counts collected

from three blocks/plots (1/2/3) and using treatments constructed from two factors: wa-

ter irrigation (low/medium/high) and nitrogen (blanket/variable/none). The data were

collected in July 2004 in Lamesa, Texas and consist of five observations of aphid counts

aggregated over twenty randomly chosen leaves in each plot for the twenty-seven treatment-

block combinations. The data were recorded at times t = 0, 1.14, 2.29, 3.57 and 4.57 weeks
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(approximately every 7/8 days). The data are illustrated in Figure 5.8.

We now formulate an appropriate SDMEM model driven by (5.2) for these data and then

fit the model. For notational simplicity, let i, j, k denote the level of water, nitrogen and

block number respectively with i, j, k ∈ {1, 2, 3}, where 1 represents low water/blanket

nitrogen, 2 represents medium water/variable nitrogen and 3 represents high water/zero

nitrogen. Let N ijk
t denote the number of aphids at time t for combination ijk and Cijkt

denote the corresponding cumulative population size. We write Xijk
t = (N ijk

t , Cijkt )′ and

consider the SDMEM

dXijk
t = α

(
Xijk
t , bijk

)
dt+

√
β
(
Xijk
t , bijk

)
dW ijk

t , Xijk
0 = xijk0 , i, j, k ∈ {1, 2, 3},

where

α
(
Xijk
t , bijk

)
=

(
λijkN ijk

t − µijkN ijk
t Cijkt

λijkN ijk
t

)
,

β
(
Xijk
t , bijk

)
=

(
λijkN ijk

t + µijkN ijk
t Cijkt λijkN ijk

t

λijkN ijk
t λijkN ijk

t

)
.

The fixed effects bijk = (λijk, µijk)′ have a standard structure which allows for main factor

and block effects and single factor-block interactions, with

λijk = λ+ λWi + λNj + λBk
+ λWNij + λWBik

+ λNBjk

µijk = µ+ µWi + µNj + µBk
+ µWNij + µWBik

+ µNBjk
.

(5.3)

Also for identifiability we use the corner constraints λW1 = λN1 = λB1 = 0,

λWNij = λWNij (1− κij), λWBik
= λWBik

(1− κik) and λNBjk
= λNBjk

(1− κjk),

where κrs = max(δ1r, δ1s) and δ·· is the Kronecker delta, with equivalent constraints on

the death rates. The interpretation of (5.3) is straightforward. For example, λ111 = λ and

µ111 = µ are the baseline birth and death rates inferred using all 5×33 = 135 observations,

and correspond to the treatment combination low water, blanket nitrogen and block 1.

Likewise, all 5×32 = 45 observations taken from block 2 inform the main effects of block 2

(λB2 and µB2) relative to the baseline.

A related approach can be found in Gillespie and Golightly (2010), where the diffusion

approximation is eschewed in favour of a further approximation via moment closure. Our

approach differs further from theirs by allowing for measurement error and leads to a much

improved predictive fit. The measurement error model is in part motivated by an over-

dispersed Poisson error structure which we then approximate by a Gaussian distribution.
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Specifically, we assume that aphid population size Nt is observed with Gaussian error and

that the error variance is proportional to the latent aphid numbers, giving

Y ijk
t |N

ijk
t , σ

indep∼ N
(
N ijk
t , σ2N ijk

t

)
, t = 0, 1.14, 2.29, 3.57, 4.57. (5.4)

5.2.2 Implementation

Our prior beliefs for 1/σ2 are described by a Ga(a, a) distribution. We found little dif-

ference in results for a ∈ {0.01, 0.1, 1} and so here we report results for a = 1. The prior

for the elements in (5.3) consists of independent components subject to the birth and

death rates for each treatment combination (λijk, µijk) being positive. The baseline rates

λ and µ must be positive and so, following Gillespie and Golightly (2010), we assign weak

U(−10, 10) priors to log λ and logµ and also to the remaining parameters. We also take

a fairly weak N(24, 90) prior for each N ijk
t0

and use a proposal of the form N(Nt0 ,σ2Nt0)

for updates. The cumulative population sizes must be at least as large as their equivalent

population size. However, we do not expect them to be greatly different a priori. We

investigated using a truncated distribution of the form Ct0 |Nt0 ∼ N(Nt0 , d
2
c), Ct0 > Nt0 as

the prior and found that this led to little difference in posterior output for dc ∈ {1, 10, 100}.
We have, therefore, chosen to fix Cijkt0 = N ijk

t0
in our analysis.

The nonlinear form of the observation model (5.4) can be problematic for the modified

innovation scheme. In particular, the proposal mechanism for the path update requires

an observation model that is linear in Nt. Therefore, when proposing from the bridge

construct (RB) in Section 3.2.1 (that is the residual bridge where we subtract only the

drift), we replace Σ in (3.13) and (3.26) with σ2ηN,tj+1 , where ηtj+1 = (ηN,tj+1 , ηC,tj+1)′ is

the solution of (3.22). Since the proposal mechanism is corrected for via the Metropolis-

Hastings step, no additional approximations to the target distribution are needed.

In order to obtain a statistically efficient implementation of the modified innovation

scheme, we investigate the performance of the modified diffusion bridge construct of

Durham and Gallant (2002) (see Section 3.1.2) and the simple residual bridge construct

of Section 3.2.1 (where again we subtract only the drift) in a scenario typical of the real

dataset. We consider the simple residual bridge construct, as opposed to the more sophisti-

cated improved bridge constructs of Chapter 3, due to the nature of the data, that is, a par-

tial and noisy observation regime, which has associated with it additional computational

considerations as discussed in Chapter 3 and Whitaker et al. (2016b). Using the simulation

study of Gillespie and Golightly (2010), we take (λ, µ)′ = (1.75, 0.00095)′, x0 = (28, 28)′

and recursively apply the Euler-Maruyama approximation to give x3.57 = (829.08, 1406.07)′.

We then compare the performance of each bridge construct over the final observation in-

terval [3.57, 4.57] by taking y4.57 as the median of (5.4) with σ = 1. Figure 5.9 shows
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Figure 5.9: 95% credible region (dashed line) and mean (solid line) of the true conditioned aphid
population component Nt|x3.57, y4.57 (red) and two competing bridge constructs (black).

95% credible regions of the true conditioned process Nt|x3.57, y4.57 (found via Monte Carlo

simulation) with 95% credible regions obtained by repeatedly simulating from the modi-

fied diffusion bridge and our improved construct. It is evident that the modified diffusion

bridge fails to adequately account for the nonlinear behaviour of the conditioned process.

Use of each construct as a proposal mechanism inside a Metropolis-Hastings independence

sampler (100K iterations) results in an estimated acceptance rate of 58% for the residual

bridge construct and just 1% for the modified diffusion bridge. It is for these reasons that

the modified diffusion bridge is eschewed in favour of our improved bridge construct when

applying the Bayesian imputation approach.

Finally, fitting the LNA requires the solution of (4.21) and (4.22) where the Jacobian

matrix is

H ijk
t =

(
λijk − µijkηijkC,t −µijkη

ijk
N,t

λijk 0

)
.

Explicitly, the system is given by

dηijkt
dt

=

(
λijkηijkN,t − µijkη

ijk
N,tη

ijk
C,t

λijkηijkN,t

)
, ηijkts = xijkts ,

dV ijk
t

dt
=

(
λijk − µijkηijkC,t −µijkη

ijk
N,t

λijk 0

)
V ijk
t +

(
λijkηijkN,t + µijkηijkN,tη

ijk
C,t λijkηijkN,t

λijkηijkN,t λijkηijkN,t

)

+ V ijk
t

(
λijk − µijkηijkC,t λijk

−µijkηijkN,t 0

)
, V ijk

ts = 0.

In this example, interest also lies in the marginal posterior distribution of the latent states,
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and hence (4.24), which here is

dP ijkt
dt

=

(
λijk − µijkηijkC,t −µijkη

ijk
N,t

λijk 0

)
P ijkt , P ijkts = Id,

also must be solved.

This ODE system is intractable and so our C implementation uses a standard ODE solver

from the GNU scientific library, namely the explicit embedded Runge-Kutta-Fehlberg

(4, 5) method. Note that the tractability of the marginal likelihood under the LNA requires

a linear Gaussian observation model. Therefore, when applying Algorithm 7 of Chapter 4,

we make an approximation to the marginal likelihood calculation by replacing Σ with

σ2ηN,tj+1 .

The form of the prior for σ gives a semi-conjugate update (see Appendix A.3). The

remaining parameters in (5.3) are updated using random walk Metropolis on the pairwise

λ, µ component blocks (λ, µ), (λW2 , µW2), (λW3 , µW3), . . . , (λNB33 , µNB33).

5.2.3 Results

The time between observations is almost but not quite constant and so we have allowed

each interval to have its own discretisation level, m. That said, the interval-specific values

vary very little, and by at most two for the larger m values. Several short pilot runs of

the modified innovation scheme were performed with typical m ∈ {5, 10, 20, 40, 50}. These

gave no discernible difference in posterior output for m ≥ 20 and so we took m = 20.

The sample output was also used to estimate the marginal posterior variances of the λ, µ

component blocks of the parameters in (5.3), to be used in the random walk Metropolis

updates. Both the modified innovation scheme and MCMC scheme under the LNA were

run for 40M iterations with the output thinned by taking every 4Kth iterate to give a final

sample of size 10K.

Figure 5.10 shows the marginal posterior densities of the baseline parameters and the pa-

rameter σ controlling the observation error variance, with the bivariate marginal posterior

densities given in Figure 5.11. A selection of the remaining parameters are displayed in

Figure 5.12. As in Gillespie and Golightly (2010) we find that block 2 plays an important

role. The 95% credible regions for µB2 , the main block 2 death rate, and λNB22 , the

birth rate characterising the interaction with nitrogen, are plausibly non-zero. Whilst the

imputation approach and LNA generally give consistent output, there are some notable

differences. We find, in general, that the LNA tends to underestimate parameter values

(and slightly exaggerates the confidence in these estimates) compared to those obtained

under the modified innovation scheme.
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Figure 5.10: Marginal posterior densities for the baseline parameters and the parameter σ control-
ling the observation error variance of the aphid model. Black: Bayesian imputation. Red: LNA.

We also compared the predictive distributions obtained under each inferential model. The

within sample predictive distribution for the observation process {Yt, t = 0, . . . , 4.57}
can be obtained by integrating over the posterior uncertainty of the latent process and

parameter values in the observation model (5.4). Specifically, given samples {(nijk(l)
t , σ(l)),

l = 1, . . . , L} from the marginal posterior π(nijkt , σ|y), the predictive density at time t can

be estimated by

1

L

L∑
l=1

N

{
yt ; n

ijk(l)
t ,

(
σ(l)
)2
n
ijk(l)
t

}
.

Likewise, for a new experiment repeated under the same conditions, the out-of-sample

predictive distribution for the aphid population size can be determined for each treat-
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Figure 5.11: Bivariate marginal posterior densities for the baseline parameters and the parameter
σ controlling the observation error variance of the aphid model. Black: Bayesian imputation.
Red: LNA.

ment combination. This is estimated by averaging realisations of Nt (obtained by apply-

ing the Euler-Maruyama approximation to (5.2)) over draws from the marginal posterior

π(nijk0 , bijk|y) obtained using either Bayesian imputation or the LNA. Figures 5.13, 5.14

and 5.15 summarise these predictive distributions for a random selection of treatment com-

binations. Both the SDMEM and LNA give a satisfactory fit to the observed data, with

all observations within or close to the central 50% of the distribution, and no observation

outside the equi-tailed 95% credible intervals. As expected, the SDMEM gives a better fit

over the LNA, although there is little difference between the two. There are however no-

ticeable differences in the out-of-sample predictives, especially in the lower credible bound

(in Figure 5.15) suggesting that in some situations, using the inferences made under the
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LNA to predict the outcome of future experiments can give misleading results. These

differences lead us to examine the marginal posterior densities of the treatment-block spe-

cific birth and death rates, λijk and µijk, over whose uncertainty we average. Samples

from these posteriors are straightforward to obtain, using the posterior samples of the

constituent parameters in (5.3). Figure 5.16 shows marginal posterior densities of the

overall birth rates (λijk) associated with the six treatment-block combinations for which

predictives were presented in Figure 5.15. We see distinct differences between posteriors

obtained under the Bayesian imputation approach and the LNA approach. The posteri-

ors displayed are indicative of those obtained for all treatment combinations. Moreover,

similar patterns are evident in the overall death rates (µijk).

We obtained a minESS of 1038.6 under the modified innovation scheme. The LNA,

however, clearly benefits from analytically integrating out the latent process and gave

a minESS of 8907.5. For this example, we found that significant gains in computational

efficiency were possible by performing the parameter updates and, for the modified inno-

vation scheme, the path updates, in parallel. For example, updating λB2 and µB2 involves

calculating a product of likelihoods (or marginal likelihoods for the LNA) over all 32 = 9

treatment combinations that include block 2. These constituent likelihoods can be cal-

culated in parallel. Similarly, for the modified innovation scheme, the treatment specific

path updates can be performed in parallel. Both the modified innovation scheme and

the LNA–based scheme were again coded in C and run on a high performance computing

cluster with 14 cores (made up of Intel Xeon 3.0GHz processors). The modified innovation

scheme took approximately 18 days to run whereas the LNA–based scheme required only

approximately 4.3 days. Note that here the speed advantage of the LNA–based scheme has

reduced, now being roughly 4 times faster than the modified innovation scheme, whereas

in Section 5.1, the LNA was approximately 20 times faster. The intractability of the ODEs

driving the LNA clearly plays a significant role in computational efficiency. In terms of

overall efficiency (as measured by minESS/sec) the LNA–based scheme outperforms the

Bayesian imputation approach by a factor of around 36. These computational advantages

of the LNA must be weighted against the inaccuracies of the resulting posterior and predic-

tive distributions, inaccuracies which can at times be substantial, as will be demonstrated

in the following simulation study.

5.2.4 Simulation study

Following on from the analysis of the real data, we now look further to investigate dif-

ferences between the Bayesian imputation approach and an inference scheme based on

the LNA by considering synthetic data generated from (5.2). For simplicity, we con-

sider a fixed treatment (low water, blanket nitrogen) and three blocks. We therefore
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Figure 5.13: Within sample predictive distributions for the Bayesian imputation approach. The
red crosses indicate the observed values.
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Figure 5.14: Within sample predictive distributions for the LNA. The red crosses indicate the
observed values.

113



Chapter 5. Numerical examples

ijk = 122

0 1 2 3 4

0
50

0
15

00
25

00

Time

Xt

ijk = 133

0 1 2 3 4

0
20

0
60

0
10

00
Time

Xt

ijk = 212

0 1 2 3 4

0
50

0
10

00
15

00

Time

Xt

ijk = 222

0 1 2 3 4

0
50

0
10

00
15

00
20

00
25

00

Time

Xt

ijk = 311

0 1 2 3 4

0
50

0
10

00
15

00

Time

Xt

ijk = 332

0 1 2 3 4

0
50

0
10

00
15

00

Time

Xt

Figure 5.15: Out-of-sample predictive intervals for the aphid population size (N ijk
t ) against time

for a random selection of treatment combinations. The mean is depicted by the solid line with the
dashed representing a 95% credible region. Black: Bayesian imputation. Red: LNA.
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Figure 5.16: Marginal posterior densities for a random selection of the birth rates associated with
specific treatment combinations in the aphid model. Black: Bayesian imputation. Red: LNA.
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write X11k
t = (N11k

t , C11k
t )′ and consider the SDMEM

dX11k
t = α

(
X11k
t , b11k

)
dt+

√
β
(
X11k
t , b11k

)
dW 11k

t , X11k
0 = x11k

0 , k ∈ {1, 2, 3},

where

α
(
X11k
t , b11k

)
=

(
λ11kN11k

t − µ11kN11k
t C11k

t

λ11kN11k
t

)
,

β
(
X11k
t , b11k

)
=

(
λ11kN11k

t + µ11kN11k
t C11k

t λ11kN11k
t

λ11kN11k
t λ11kN11k

t

)
.

The fixed effects b11k = (λ11k, µ11k)′ have a standard structure to incorporate block effects,

with

λ11k = λ+ λBk
and µ11k = µ+ µBk

,

where we again impose the corner constraints λB1 = µB1 = 0 for identifiability purposes.

To mimic the real dataset, we took λ = 1.75, µ = 0.00095, λB2 = −0.1154, λB3 = −0.0225,

µB2 = −0.0004 and µB3 = 0.0002. For each block, we generated five observations

(on a regular grid) by using the Euler-Maruyama approximation with a small time-step

(∆t = 0.001) and an initial condition of x0 = (5, 5)′. This gave observations at times

t = 0, 1, 2, 3 and 4 weeks. To assess the impact of measurement error on the quality of in-

ferences that can be made about each parameter, we corrupted our data via the following

observation model:

Y 11k
t |N11k

t , σ
indep∼ N

(
N11k
t , σ2N11k

t

)
, t = 0, 1, 2, 3, 4.

We then took σ ∈ {0, 0.5, 1, 5} to give four synthetic datasets. We adopt the same prior

specification for the unknown parameters as used in the real data application.

Both the modified innovation scheme (again incorporating the improved bridge construct)

and the LNA-based inference scheme were run long enough to yield a sample of 10K

almost un-autocorrelated posterior draws. For the former, we fixed the discretisation

level by taking m = 20 and note that m > 20 gave little difference in posterior output.

Figures 5.17, 5.18 and 5.19 show the marginal posterior densities of the baseline parameters

(λ and µ) and the measurement error variance (σ). The joint posterior densities of (µ, λ)′

are shown in Figure 5.20. It is evident that when fitting the SDMEM using the Bayesian

imputation approach, the posterior samples obtained are consistent with the ground truth.

This is true to a lesser extent when using the LNA, with the ground truth found in the

tail of the posterior distribution in three out of the four scenarios. In fact, when using

synthetic data with σ < 5, we see substantive differences in posterior output. As was

116



Chapter 5. Numerical examples

1.4 1.6 1.8 2.0 2.2

0
1

2
3

4
D

en
si

ty

λ
0.0007 0.0009 0.0011

0
10

00
30

00
50

00
70

00
D

en
si

ty

µ

Figure 5.17: Marginal posterior densities for the baseline parameters in the aphid simulation study
for the case of no measurement error (σ = 0). Black: Bayesian imputation. Red: LNA. The grey
lines indicate the ground truth.

observed when using real data, the LNA underestimates parameter values compared to

those obtained under the Bayesian imputation scheme. In this case, the LNA provides a

relatively poor approximation to the true posterior distribution.

Increasing σ to 5 (and beyond) gives output from both schemes which is largely in agree-

ment. This is intuitively reasonable, since, as the variance of the measurement process

is increased, the ability of both inference schemes to accurately infer the underlying dy-

namics is diminished. Essentially, the relative difference between the LNA and SDE is

reduced.

5.3 Summary

By considering two applications we have presented a systematic comparison between the

Bayesian imputation approach (coupled with the modified innovation scheme) and the

LNA-based inference scheme. We note that for the two examples considered within this

chapter, we found little difference in the posterior output under the imputation approach

for m ≥ 20.

The ODE system governing the LNA in the orange tree growth example could be solved an-

alytically, resulting in increases to both computational and overall efficiency (as measured

by minimum ESS per second) of around a factor of 20. Moreover, in this first application,

we observed little difference in the accuracy of inferences under both approaches.

Our second application concerned the diffusion approximation of a Markov jump process
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Figure 5.18: Marginal posterior densities for the baseline parameters in the aphid simulation study.
σ = 0.5 (1st row), σ = 1 (2nd row), σ = 5 (3rd row). Black: Bayesian imputation. Red: LNA. The
grey lines indicate the ground truth.
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Figure 5.19: Marginal posterior densities for the parameter σ controlling the observation error
variance in the aphid simulation study. Black: Bayesian imputation. Red: LNA. The grey lines
indicate the ground truth.

description of aphid dynamics. The resulting SDMEM was particularly challenging to fit

due to both the drift and diffusion function being nonlinear, and because only one com-

ponent of the model could be observed (with error). We considered data from Matis et al.

(2008) as well as synthetic data generated under four data-poor scenarios. Here, the ODE

system was intractable, leading to a reduction in the computational advantage of the LNA

over the imputation approach to around a factor of 4. However, there was a clear benefit to

analytically integrating over the latent process using the LNA, as we see an overall increase

in efficiency of around a factor of 36. Prudence must be advised though, as whilst both

the imputation and LNA approaches provided a reasonable fit to the data of Matis et al.

(2008), differences were found between the parameter posteriors. These differences lead to
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Figure 5.20: Bivariate marginal posterior densities for the baseline parameters in the aphid simu-
lation study Black: Bayesian imputation. Red: LNA. The blue cross indicates the ground truth.

differences in the out-of-sample predictive distributions. Further differences between the

LNA and Bayesian imputation approaches were highlighted through the simulation study,

where the most exacerbated differences occurred when there was little or no measurement

error. We therefore advocate caution when predicting the outcome of future experiments

using output from an LNA-based fit.
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Conclusions

The intention of this thesis was to provide a framework for performing (simulation-based)

Bayesian inference on a large class of multivariate SDMEMs, using discrete-time observa-

tions that may be incomplete and subject to measurement error. Furthermore, we required

a method that allowed for observations to be made sparsely in time, and to work well even

when the process of interest exhibits nonlinear dynamics between observation times.

Unfortunately, analytic intractability of SDEs governing most nonlinear multivariate dif-

fusion processes precludes a closed-form expression for the transition densities. Conse-

quently, inferring the parameters of the SDE using observations taken at discrete times

is a challenging problem. We implemented a widely adopted solution, a Bayesian im-

putation approach, which replaces an intractable transition density with a first order

Euler-Maruyama approximation, and uses data augmentation to limit the discretisation

error incurred by the approximation.

The essential idea of the Bayesian imputation approach is to augment low frequency data

by introducing intermediate time-points between observation times. An Euler-Maruyama

scheme is then applied by approximating the transition densities over the induced dis-

cretisation as Gaussian. Computationally intensive algorithms, such as Markov chain

Monte Carlo (MCMC), are then used to integrate over the uncertainty associated with

the missing/unobserved data. Care must be taken in the design of such schemes due to de-

pendence between the parameters and the latent process, and dependence between values

of the latent process itself. The former was first highlighted as a problem by Roberts and

Stramer (2001). To overcome this issue we implemented a reparameterisation (Roberts

and Stramer, 2001; Golightly and Wilkinson, 2008, 2010) and extended a recently proposed

MCMC scheme to include the SDE driven mixed-effects framework.

Key to the development of an efficient inference scheme was the ability to generate discrete-

time realisations of the latent process between observation times, typically termed diffusion
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bridges. We have presented a novel class of bridge constructs that are both computation-

ally and statistically efficient, and can be readily applied in situations where only noisy

and partial observation of the process is possible. Our approach is straightforward to im-

plement and is based on a partition of the process into a deterministic part that accounts

for forward dynamics, and a residual stochastic process. The intractable end-point condi-

tioned residual SDE is then approximated using the modified diffusion bridge of Durham

and Gallant (2002). Through such an approach we ensure any resulting diffusion bridges

inherit the desirable properties of the modified diffusion bridge, along with the limiting (as

∆τ → 0) forms of the Metropolis-Hastings acceptance probabilities. Using three exam-

ples, we investigated the empirical performance of two variants of the residual bridge. The

first constructs the residual SDE by subtraction of a deterministic process based on the

drift governing the target process. The second variant further subtracts the linear noise

approximation of the expected conditioned residual process. We find that the second ap-

proach results in improved statistical efficiency at the expense of having to solve a larger

ODE system consisting of order d2 equations (as opposed to just d when using the simpler

variant). For a known initial time-point x0, the ODE system need only be solved once, ir-

respective of the number of skeleton bridges required. However, for unknown x0, the ODE

solution will be required for each skeleton bridge, and the difference in computational cost

between the two approaches is likely to be important, especially as the dimension of the

state space increases.

In Chapter 3 we compared the performance of our approach to several existing bridge

constructs (adapting where necessary to the case of noisy and partial observation). These

included the modified diffusion bridge (Durham and Gallant, 2002), Lindström bridge

(Lindström, 2012) and guided proposal (Schauer et al., 2016). Our implementation of

the latter used the LNA to guide the proposal. We find that a further modification that

replaces the Euler-Maruyama variance with the modified diffusion bridge variance gave

a particularly effective bridge, outperforming all others considered in terms of statistical

efficiency. However, the guided proposal requires that the ODEs governing the LNA be re-

integrated for each intermediate time-point and for each skeleton bridge required. Unless

the ODE system can be solved analytically, we find that when combining statistical and

computational efficiency, the guided proposal is outperformed by the residual bridge (that

uses the further LNA subtraction).

By adopting a Bayesian imputation approach, we have shown how the modified innovation

scheme of Golightly and Wilkinson (2008), which is necessary for overcoming the problem-

atic dependence between the latent process and any parameters that enter the diffusion

coefficient, can be applied to SDMEMs. The associated techniques introduce m − 1 in-

termediate time points between observations. Chapter 4 gives details of the steps and

methods required to construct a (simulation-based) Bayesian inference scheme using data
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augmentation. The computational cost of the Bayesian imputation scheme is dictated by

the number of imputed points (characterised by m) between observation times. In the

examples considered in this thesis we see little difference in posterior output under the

Bayesian imputation scheme for m ≥ 20.

We also considered a tractable approximation to the SDMEM, the linear noise approxi-

mation, and provided a systematic comparison in Chapter 5 using two applications. The

computational efficiency of the LNA depends on the dimension of the SDE driving the

SDMEM. For a d-dimensional SDE system, the LNA requires the solution of a system of

order d2 coupled ODEs. In our first application, the resulting ODE system can be solved

analytically, leading to increases in both computational and overall efficiency (as measured

by minimum ESS per second) of around a factor of 20. Moreover, we found little difference

in the accuracy of inferences made under the LNA and Bayesian imputation approaches.

In our second application, we fitted the diffusion approximation of a Markov jump process

description of aphid dynamics using data from Matis et al. (2008). In this example, the

ODE system governing the LNA was intractable and the computational advantage of us-

ing the LNA over an imputation approach reduced to around a factor of 4. However, the

benefit of using the LNA to analytically integrate over the latent process was clear, giving

an overall increase in efficiency of around a factor of 36. It is important to note that whilst

the LNA is preferred in terms of overall efficiency for the examples considered here, as the

dimension d of the SDE is increased, the LNA is likely to become infeasible. Moreover,

whilst both the imputation and LNA approaches provided a reasonable fit to the aphid

data, differences were found between the parameter posteriors, leading to differences in the

out-of-sample predictive distributions. A simulation study highlighted further differences

between the LNA and Bayesian imputation approaches. Care must therefore be taken in

predicting the outcome of future experiments when using output from an LNA–based fit.

Our work can be extended in a number of ways. For example, it may be possible to improve

the statistical performance of the residual bridges by replacing the Euler-Maruyama ap-

proximation of the variance of YT |X0 with that obtained under the LNA. This approach

could also be combined with the Lindström sampler to avoid specification of a tuning

parameter. Deriving the limiting forms of the Metropolis-Hastings acceptance rates asso-

ciated with the residual bridges would be problematic due to the time-dependent terms

entering the variance of the constructs. Nevertheless, this merits further research.

Applying the recently proposed particle marginal Metropolis-Hastings (PMMH) scheme

(Andrieu et al., 2010) to SDMEMs is also of interest. This scheme can be used to target the

marginal posterior density of the unit-specific parameters. Essentially a sequential Monte

Carlo scheme (also known as a particle filter) is used to unbiasedly estimate the intractable

marginal likelihood in each step of a Metropolis-Hastings sampler. We anticipate that an
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efficient implementation can be obtained by using the bridge constructs outlined in this

thesis inside an auxiliary particle filter (Pitt et al., 2010). Finally, we note that the

tractability of the LNA can be further exploited to reduce the computational cost of the

PMMH scheme; see recent work on delayed acceptance PMMH (Golightly et al., 2015).
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Miscellaneous

A.1 Runge-Kutta-Fehlberg method

The Runge-Kutta-Fehlberg method, or indeed Fehlberg method, is an embedded method

from the Runge-Kutta family (a collection of algorithms used to numerically solve a system

of ODEs). It was presented in Fehlberg (1969) and is often referred to as the RKF45

method, due to the fact that it is a method of O(h4) with an error estimator of O(h5).

Briefly we explain the Runge-Kutta method. For an unknown function of time yt (which

could be a scalar or vector), with dy/dt = f(yt, t) (where f is a known function) and initial

condition yt0 = y0. Take a step-size h > 0, then for i = 0, 1, . . . we have

yti+h = yti +
h

6
(k1 + 2k2 + 2k3 + k4),

where

k1 = f (yti , ti) ,

k2 = f

(
yti +

h

2
k1, ti +

h

2

)
,

k3 = f

(
yti +

h

2
k2, ti +

h

2

)
,

k4 = f (yti + hk3, ti + h) .

Here yti+h is determined by the present value yti and a weighted average of four increments

(commonly called the RK4 approximation).
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The RK4 method can be generalised to a family of explicit Runge-Kutta methods where

yti+h = yti + h
n∑
j=1

bjkj .

The forms of kj are given by

k1 = f (yti , ti) ,

k2 = f (yti + h(a21k1), ti + c2h) ,

k3 = f (yti + h(a31k1 + a32k2), ti + c3h) ,

...

kn = f (yti + h(an1k1 + an2k2 + · · ·+ an,n−1kn−1), ti + cnh) .

The ajl are known as the Runge-Kutta matrix, whilst the bj and cj are the weights and

nodes respectively. These data are usually arranged in a Butcher tableau which takes the

form

0

c2 a21

c3 a31 a32

...
...

. . .

cn an1 an2 · · · an,n−1

b1 b2 · · · bn

The RKF45 method is an adaptive Runge-Kutta method, which are designed to produce

an estimate of the local truncation error in each step. This estimate of the error is used to

control the step-size h. An adaptive Runge-Kutta method involves the use of two methods,

one of order s and one of order s− 1. Within the lower-order method

y∗ti+h = yti + h
n∑
j=1

b∗jkj ,

where the kj are as given above. The error is given by

eti+h = yti+h − y
∗
ti+h

= h

n∑
j=1

(
bj − b∗j

)
kj .

The error is of O(s). The Butcher tableau is extended to now include the values of b∗j ,

and is given by
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0

c2 a21

c3 a31 a32

...
...

. . .

cn an1 an2 · · · an,n−1

b1 b2 · · · bn

b∗1 b∗2 · · · b∗n

The extended Butcher tableau associated with the RKF45 method is

0
1
4

1
4

3
8

3
32

9
32

12
13

1932
2197

−7200
2197

7296
2197

1 439
216 −8 3680

513
−845
4104

1
2

−8
27 2 −3544

2565
1859
4104

−11
40

16
135 0 6656

12825
28561
56430

−9
50

2
55

25
216 0 1408

2565
2197
4104

−1
5 0

A.2 Semi-conjugate updates for the parameters in the or-

ange tree growth example

Here we give details of the semi-conjugate updates used for the random effects hyper-

parameters (φ1, φ2, σφ1 , σφ2) in the orange tree growth example of Section 5.1. Recall

that

π(θ, ψ, b|x) ∝ π(φ1)π(φ2)π(σφ1)π(σφ2)π(σ)

N∏
i=1

π
(
φi1|φ1, σφ1

) N∏
i=1

π
(
φi2|φ2, σφ2

)
π(x|θ, b),

and that φi1 ∼ N(φ1, σ
2
φ1

) and φi2 ∼ N(φ2, σ
2
φ2

) independently.

A.2.1 Updating σφ1 and σφ2

We begin by considering the update for σφ1 , which we update by considering an update

for ςφ1 = 1/σ2
φ1

, whose prior distribution is assumed to be ςφ1 ∼ Ga(g, h). Thus, the full
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conditional for ςφ1 is given by

π
(
ςφ1 |φ1

1, . . . , φ
N
1 , φ1

)
∝ π(ςφ1)

100∏
i=1

π
(
φi1|φ1, ςφ1

)
∝ ςg−1

φ1
exp (−hςφ1)

100∏
i=1

[
ς

1/2
φ1

exp
{
−
ςφ1
2

(
φi1 − φ1

)2}]
∝ ςg−1

φ1
exp (−hςφ1)ς50

φ1 exp

{
−
ςφ1
2

100∑
i=1

(
φi1 − φ1

)2}

∝ ςg+49
φ1

exp

[
−ςφ1

{
h+

1

2

100∑
i=1

(
φi1 − φ1

)2}]
.

Therefore

ςφ1 |φ1
1, . . . , φ

N
1 , φ1 ∼ Ga

{
g + 50, h+

1

2

100∑
i=1

(
φi1 − φ1

)2}
.

Hence, if ςφ1 has a Ga(1, 0.01) prior, we have that

ςφ1 |φ1
1, . . . , φ

N
1 , φ1 ∼ Ga

{
51, 0.01 +

1

2

100∑
i=1

(
φi1 − φ1

)2}
.

Similarly, if ςφ2 has a Ga(1, 0.01) prior, then

ςφ2 |φ1
2, . . . , φ

N
2 , φ2 ∼ Ga

{
51, 0.01 +

1

2

100∑
i=1

(
φi2 − φ2

)2}
.

Realisations from the above full conditionals can easily be transformed to give draws of

σφ1 and σφ2 .

A.2.2 Updating φ1 and φ2

We now turn our attention to updating φ1. Let us assume the prior distribution of

φ1 ∼ N(b, 1/d). Therefore, the full conditional distribution for φ1 is

π
(
φ1|φ1

1, . . . , φ
N
1 , ςφ1

)
∝ π(φ1)

100∏
i=1

π
(
φi1|φ1, ςφ1

)
∝ exp

{
−d

2
(φ1 − b)2

} 100∏
i=1

exp
{
−
ςφ1
2

(
φi1 − φ1

)2}
∝ exp

{
−d

2
(φ1 − b)2 −

ςφ1
2

100∑
i=1

(
φi1 − φ1

)2}
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∝ exp

{
−d

2

(
φ2

1 − 2bφ1 + b2
)
−
ςφ1
2

(
100∑
i=1

φi
2

1 − 2φ1

100∑
i=1

φi1 + 100φ2
1

)}

∝ exp

{
−d

2

(
φ2

1 − 2bφ1

)
−
ςφ1
2

(
100φ2

1 − 200φ̄1φ1

)}

where φ̄1 =
1

100

100∑
i=1

φi1 is the arithmetic mean of the φi1, i = 1, . . . , 100. Hence

π
(
φ1|φ1

1, . . . , φ
N
1 , ςφ1

)
∝ exp

{
−1

2

(
dφ2

1 − 2dbφ1 + 100ςφ1φ
2
1 − 200ςφ1 φ̄1φ1

)}
∝ exp

[
−1

2

{
(d+ 100ςφ1)φ2

1 −
(
2db+ 200ςφ1 φ̄1

)
φ1

}]
.

On completing the square, this gives

π
(
φ1|φ1

1, . . . , φ
N
1 , ςφ1

)
∝ exp

[
−
d+ 100ςφ1

2

{(
φ1 −

db+ 100ςφ1 φ̄1

d+ 100ςφ1

)2

−
(
db+ 100ςφ1 φ̄1

d+ 100ςφ1

)2
}]

∝ exp

[
−
d+ 100ςφ1

2

{(
φ1 −

db+ 100ςφ1 φ̄1

d+ 100ςφ1

)2
}]

.

Whence

φ1|φ1
1, . . . , φ

N
1 , ςφ1 ∼ N

(
db+ 100ςφ1 φ̄1

d+ 100ςφ1
,

1

d+ 100ςφ1

)
.

Therefore, if φ1 ∼ N(0, 1002) a priori (as is the case in Section 5.1), we obtain

φ1|φ1
1, . . . , φ

N
1 i, ςφ1 ∼ N

(
100ςφ1 φ̄1

0.0001 + 100ςφ1
,

1

0.0001 + 100ςφ1

)
.

Similarly, taking a N(0, 1002) prior distribution for φ2 gives

φ2|φ1
2, . . . , φ

N
2 , ςφ2 ∼ N

(
100ςφ2 φ̄2

0.0001 + 100ςφ2
,

1

0.0001 + 100ςφ2

)
.

A.3 Semi-conjugate update for σ in the cotton aphid dy-

namics example

In this section we outline the steps involved in the semi-conjugate update for σ in the

cotton aphid dynamics example of Section 5.2. As above, in Section A.2.1, we update

σ by considering the update for ς, where ς = 1/σ2. We assume that ς follows the prior

distribution, Ga(g, h). Noting that ς enters only in the prior density and the density of
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the observations (y) given the latent process (x), we obtain

π(ς|y, x) ∝ π(ς)
3∏
i=1

3∏
j=1

3∏
k=1

4∏
l=0

π
(
yijktl |x

ijk
tl
, ς
)

∝ ςg−1 exp (−hς)
3∏
i=1

3∏
j=1

3∏
k=1

4∏
l=0

ς1/2 exp

− ς2
(
yijktl − n

ijk
tl

)2

nijktl




∝ ςg−1 exp (−hς)ς135/2 exp

− ς2
3∑
i=1

3∑
j=1

3∑
k=1

4∑
l=0

(
yijktl − n

ijk
tl

)2

nijktl


∝ ςg+133/2 exp

−ς
h+

1

2

3∑
i=1

3∑
j=1

3∑
k=1

4∑
l=0

(
yijktl − n

ijk
tl

)2

nijktl


.

Therefore

ς|y, x ∼ Ga

g +
135

2
, h+

1

2

3∑
i=1

3∑
j=1

3∑
k=1

4∑
l=0

(
yijktl − n

ijk
tl

)2

nijktl

 .

Thus, if ς follows a Ga(1, 1) prior (as in the final analysis of Section 5.2) we have

ς|y, x ∼ Ga

137

2
, 1 +

1

2

3∑
i=1

3∑
j=1

3∑
k=1

4∑
l=0

(
yijktl − n

ijk
tl

)2

nijktl

 .

Finally, transforming ς gives a sample for σ.
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LNA solutions for certain

tractable systems

Recall that under the LNA we partition Xt as Xt = ηt +Rt, and approximate the distri-

bution of the residual stochastic process Rt as a Gaussian. This gives

Xt|X0 = x0 ∼ N
(
ηt, PtψtP

′
t

)
where ηt, Pt and ψt satisfy the ODE system

dηt
dt

= α (ηt, θ, b) , η0 = x0,

dPt
dt

= HtPt, P0 = Id,

dψt
dt

= P−1
t β (ηt, θ, b)

(
P−1
t

)′
, ψ0 = 0.

Here Ht is the Jacobian matrix with (i,j)th element

(Ht)i,j =
∂αi (ηt, θ, b)

∂ηj,t
.

Furthermore, recall that this ODE system may be equivalently expressed as

dηt
dt

= α (ηt, θ, b) , η0 = x0,

dVt
dt

= HtVt + β (ηt, θ, b) + VtH
′
t, V0 = 0,

where Xt|X0 = x0 ∼ N(ηt, Vt).
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B.1 Birth-death model

A simple birth-death process is characterised by the SDE

dXt = (θ1 − θ2)Xt dt+
√

(θ1 + θ2)Xt dWt, X0 = x0,

and the ODE system ((3.22), (3.28) and (3.29)) governing the linear noise approximation

of the birth-death process is given by

dηt
dt

= (θ1 − θ2) ηt, η0 = x0, (B.1)

dPt
dt

= (θ1 − θ2)Pt, P0 = Id = 1, (B.2)

dψt
dt

= P−1
t (θ1 + θ2) ηt

(
P−1
t

)′
, ψ0 = 0. (B.3)

Let us first consider (B.1). Rearranging we obtain

dηt
ηt

= (θ1 − θ2) dt.

Thus, it follows that log ηt = (θ1 − θ2) t+A, where A is a constant, and so

ηt = Ã exp {(θ1 − θ2) t}.

Noting that at t = 0, η0 = x0 gives Ã = x0. Hence

ηt = x0 exp {(θ1 − θ2) t}. (B.4)

Similarly, solving (B.2) gives

Pt = Ã exp {(θ1 − θ2) t}.

At t = 0, P0 = 1 and consequently Ã = 1. Therefore

Pt = exp {(θ1 − θ2) t}. (B.5)

Substituting (B.4) and (B.5) into (B.3) we get

dψt
dt

= exp {− (θ1 − θ2) t} (θ1 + θ2) ηt exp {− (θ1 − θ2) t}

= exp {−2 (θ1 − θ2) t} (θ1 + θ2)x0 exp {(θ1 − θ2) t}

= (θ1 + θ2)x0 exp {− (θ1 − θ2) t}.
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Hence

ψt =
− (θ1 + θ2)x0

θ1 − θ2
exp {− (θ1 − θ2) t}+A,

where A is a constant. At t = 0, ψ0 = 0 which implies that

A =
(θ1 + θ2)x0

θ1 − θ2
.

It then follows that

ψt =
(θ1 + θ2)x0

θ1 − θ2
[1− exp {− (θ1 − θ2) t}] . (B.6)

Therefore the solution to the LNA for the birth-death model is given by (B.4)–(B.6).

B.2 Orange tree growth model

Recall that each tree in the orange tree growth model is represented by the SDMEM

dXi
t =

1

φi1φ
i
2

Xi
t

(
φi1 −Xi

t

)
dt+ σ

√
Xi
t dW

i
t , Xi

0 = xi0, i = 1, . . . , N.

For each tree i, the ODE system (4.21) and (4.22) governing the linear noise approximation

for this model is

dηit
dt

=
1

φi1φ
i
2

ηit
(
φi1 − ηit

)
, ηitj = xitj , (B.7)

dV i
t

dt
=

2

φi1φ
i
2

(
φi1 − 2ηit

)
V i
t + σ2ηit, V i

tj = 0. (B.8)

As the solution of the ODE system is identical in form for every tree, we henceforth

suppress i from the notation to aid simplicity. Let us begin by solving (B.7). Rearranging

gives
dηt

ηt (φ1 − ηt)
=

dt

φ1φ2
=⇒

∫
dηt

ηt (φ1 − ηt)
=

t

φ1φ2
+A,

where A is a constant. Proceeding using partial fractions we obtain∫ (
1

φ1ηt
+

1

φ2
1 − φ1ηt

)
dηt =

t

φ1φ2
+A

=⇒
log ηt − log

(
φ2

1 − φ1ηt
)

φ1
=

t

φ1φ2
+A
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=⇒ log ηt − log
(
φ2

1 − φ1ηt
)

=
t

φ2
+ Ã

=⇒ ηt
φ2

1 − φ1ηt
= Âet/φ2

=⇒ ηt = Āφ1e
t/φ2 − Āηtet/φ2

=⇒ ηt + Āηte
t/φ2 = Āφ1e

t/φ2

=⇒ ηt

(
1 + Āet/φ2

)
= Āφ1e

t/φ2

=⇒ ηt =
Āφ1e

t/φ2

1 + Āet/φ2
, (B.9)

where Ã, Â and Ā are constants. For this model, at t = 0, η0 = x0. Thus it follows that

x0 =
Āφ1

1 + Ā

=⇒ x0 + x0Ā = Āφ1

=⇒ x0 = Ā(φ1 − x0),

and so

Ā =
x0

φ1 − x0
. (B.10)

We now turn our attention to solving (B.8). We begin by substituting (B.9) into (B.8) to

obtain

dVt
dt

=
2

φ1φ2

(
φ1 −

2Āφ1e
t/φ2

1 + Āet/φ2

)
Vt +

σ2Āφ1e
t/φ2

1 + Āet/φ2

=⇒ dVt
dt
− 2

φ1φ2

(
φ1 −

2Āφ1e
t/φ2

1 + Āet/φ2

)
Vt =

σ2Āφ1e
t/φ2

1 + Āet/φ2
.

A solution to Vt may be obtained through the use of an integrating factor (IF), where

IF = exp

{∫
− 2

φ1φ2

(
φ1 −

2Āφ1e
t/φ2

1 + Āet/φ2

)}
.

Now ∫
− 2

φ1φ2

(
φ1 −

2Āφ1e
t/φ2

1 + Āet/φ2

)
= −

∫
2

φ2
dt+

∫
4Āet/φ2

φ2

(
1 + Āet/φ2

)dt
= − 2t

φ2
+

4Ā

φ2

∫
et/φ2

1 + Āet/φ2
dt.
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Defining q = t/φ2, gives dq/dt = 1/φ2, with dt = φ2dq. Hence

∫
− 2

φ1φ2

(
φ1 −

2Āφ1e
t/φ2

1 + Āet/φ2

)
= − 2t

φ2
+ 4Ā

∫
eq

1 + Āeq
dq.

Furthermore, setting r = 1 + Āeq, gives dr/dq = Āeq and dq = dr/Āeq. Thus

∫
− 2

φ1φ2

(
φ1 −

2Āφ1e
t/φ2

1 + Āet/φ2

)
= − 2t

φ2
+ 4

∫
dr

r

= − 2t

φ2
+ 4 log r

= − 2t

φ2
+ 4 log

(
1 + Āet/φ2

)
.

Therefore

IF = exp

{
− 2t

φ2
+ 4 log

(
1 + Āet/φ2

)}
= e−2t/φ2

(
1 + Āet/φ2

)4
.

Whence

d

dt

{
e−2t/φ2

(
1 + Āet/φ2

)4
Vt

}
= e−2t/φ2

(
1 + Āet/φ2

)4
× σ2Āφ1e

t/φ2

1 + Āet/φ2

=⇒ e−2t/φ2
(

1 + Āet/φ2
)4
Vt = σ2Āφ1

∫ (
1 + Āet/φ2

)3
et/φ2

dt.

If q = et/φ2 , then dq/dt = et/φ2/φ2 and dt = φ2dq/e
t/φ2 . Hence

e−2t/φ2
(

1 + Āet/φ2
)4
Vt = σ2Āφ1φ2

∫ (
1 + Āq

)3
q2

dq.

Now taking r = 1 + Āq, gives dr/dq = Ā, dq = dr/Ā. Thus

e−2t/φ2
(

1 + Āet/φ2
)4
Vt = σ2Ā2φ1φ2

∫
r3

(r − 1)2dr.

Alternatively
r3

(r − 1)2 = r + 2 +
3

r
+

4

r2
+

5

r3
+

6

r4
+ · · · .

Noting the Laurent expansions

1

x− 1
=

1

x
+

1

x2
+

1

x3
+

1

x4
+ · · ·
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and

1

(x− 1)2 =
1

x2
+

2

x3
+

3

x4
+

4

x5
+ · · · ,

it clearly follows that
r3

(r − 1)2 = r + 2 +
3

r − 1
+

1

(r − 1)2 .

From this we write

e−2t/φ2
(

1 + Āet/φ2
)4
Vt = σ2Ā2φ1φ2

∫ {
r + 2 +

3

r − 1
+

1

(r − 1)2

}
dr

= σ2Ā2φ1φ2

{
r2

2
+ 2r + 3 log (r − 1)− 1

r − 1
+B

}
,

where B is a constant, and so

e−2t/φ2
(

1 + Āet/φ2
)4
Vt = σ2Ā2φ1φ2

{(
1 + Āet/φ2

)2
2

+ 2
(

1 + Āet/φ2
)

+3 log
(
Āet/φ2

)
− 1

Āet/φ2

}
+ B̃

= σ2Ā2φ1φ2

(
1 + 2Āet/φ2 + Ā2e2t/φ2

2
+ 2Āet/φ2 +

3t

φ2
− 1

Āet/φ2

)
+ B̂

= σ2Ā2φ1φ2

(
1

2
Ā2e2t/φ2 + 3Āet/φ2 − 1

Āet/φ2
+

3t

φ2

)
+ B̄

= σ2Āφ1

(
1

2
Ā3φ2e

2t/φ2 + 3Ā2φ2e
t/φ2 − φ2e

−t/φ2 + 3Āt

)
+ B̄,

where B̃, B̂ and B̄ are constants. It therefore follows that

Vt =
σ2Āφ1e

2t/φ2
(

1
2Ā

3φ2e
2t/φ2 + 3Ā2φ2e

t/φ2 − φ2e
−t/φ2 + 3Āt

)(
1 + Āet/φ2

)4 +
B̄e2t/φ2(

1 + Āet/φ2
)4 .

At t = 0, V0 = 0, and so

B̄ = −σ2Āφ1

(
1

2
Ā3φ2 + 3Ā2φ2 − φ2

)
.

Therefore

Vt = C

(
1

2
Ā3φ2e

2t/φ2 + 3Ā2φ2e
t/φ2 − φ2e

−t/φ2 + 3Āt− 1

2
Ā3φ2 − 3Ā2φ2 + φ2

)
, (B.11)
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where

C =
σ2Āφ1e

2t/φ2(
1 + Āet/φ2

)4 . (B.12)

Hence the solution of the LNA for a given tree, i, is given by (B.9) and (B.11), via (B.10)

and (B.12).
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The diffusion approximation of

stochastic kinetic models

In this appendix we discuss a Markov jump process representation of a reaction network

as an alternative representation of the systems presented in this thesis, and then outline

the diffusion approximation to such a system.

C.1 Reaction networks

Let us consider a system of (pseudo-) reactions involving d species X1,X2, . . . ,Xd, and r

reactions R1, R2, . . . , Rr. Typically, these reactions are written as

R1 : p11X1 + p12X2 + · · ·+ p1dXd −→ q11X1 + q12X2 + · · ·+ q1dXd
R2 : p21X1 + p22X2 + · · ·+ p2dXd −→ q21X1 + q22X2 + · · ·+ q2dXd

...
...

...

Rr : pr1X1 + pr2X2 + · · ·+ prdXd −→ qr1X1 + qr2X2 + · · ·+ qrdXd,

where Xi,t is the number of species Xi at time t and Xt = (X1,t, X2,t, . . . , Xd,t)
′. Further-

more, we define P to be the matrix with (i,j)th element pij , with an analogous definition

for Q. The matrix P is often referred to as the matrix of reactants, whilst Q is the matrix of

products. This terminology is used as these methods were originally introduced to describe

chemical reactions. In addition, let S be the stoichiometry matrix, where S = (Q − P )′.

The stoichiometry matrix allows for easy identification of the specific species involved in a

specific reaction, along with all the reactions that a specific species is involved with. It is

clear that if the ith reaction, Ri, occurs, we update the state of the system Xt by adding
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the ith column of S to Xt.

Attached to each reaction (under the assumption of mass action kinetics) is a stochastic

rate constant, denoted θi, i = 1, . . . , r, along with an associated hazard function (or

rate law), which we denote hi(x, θi), i = 1, . . . , r. The hazard function of each reaction

represents the probability that the reaction will occur in the interval (t, t+dt] (where dt is

small), conditional on Xt. Thus, the probability of reaction Ri over the interval (t, t+ dt]

is hi(x, θi)dt. Note that, in the absence of any other reactions, the time to reaction Ri is

distributed as an exponential, Exp{hi(x, θi)}, random quantity. It should be clear that

reaction events occur continuously in time. When a reaction occurs, the effect is to change

the system by a discrete amount. The times and types of each reaction event depend only

on the current state of the system, this is the Markov property. Hence, the system is

most naturally represented as a Markov jump process, that is, a continuous-time, discrete

valued stochastic process.

The form of the hazard function, hi(x, θi), is determined by the order of the reaction Ri.

A zeroth-order reaction of the form

Ri : ∅ θi−→ X ,

leads to the hazard, hi(x, θi) = θi. Of course such a reaction is impossible in ‘realistic’

circumstances, as things do not just appear out of thin air. However such a reaction can

be useful for modelling processes such as immigration into a system. More common are

first-order reactions

Ri : Xj
θi−→?

with an associated hazard function hi(x, θi) = θixj , or second-order reactions

Ri : Xj + Xk
θi−→?,

with hi(x, θi) = θixjxk. The above second-order reaction occurs when one of species Xj
encounters one of species Xk whilst moving around randomly, driven by Brownian motion.

Moreover, there is an alternative second-order reaction to the one given above, namely

Ri : 2Xj
θi−→?

In this situation the accompanying hazard is given by hi(x, θi) = θixj(xj − 1)/2.

In general, the hazard function for any reaction is proportional to the product of binomial

coefficients, and hence

hi(x, θi) = θi

d∏
j=1

(
xj,t

pij

)
. (C.1)
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It is (usually) convention to express third-order (and higher) reactions as a combination

of first and second-order reactions. Note that the hazard function (C.1) differs slightly

from the standard mass action rate laws of continuous deterministic modelling, but can

be seen as consistent (up to a constant of proportionality) asymptotically in the high

concentration limit.

C.2 The Gillespie algorithm

For most systems of reasonable complexity, the transition probability mass function as-

sociated with the jump process will be intractable. However it is possible to generate

realisations of the system using the Gillespie algorithm or Gillespie’s direct method (Gille-

spie, 1977). This turns out to be reasonably straightforward. We note that there is an

alternative (but equivalent) algorithm known as the first reaction method (see Gillespie

(1976)), although Gillespie’s direct method is to be preferred as it is typically more effi-

cient.

As discussed above, each reaction Ri has associated with it, the hazard function hi(x, θi).

Hence, it follows that the hazard for any reaction (of any type) occurring is given by

h0(x, θ) ≡
r∑
i=1

hi(x, θi),

where θ = (θ1, . . . , θr)
′. Therefore, the time to the next reaction (of any type) is Exp{h0(x, θ)}.

The probability of the next reaction to occur being Ri is hi(x, θi)/h0(x, θ) (see Wilkinson

(2011) for a proof). Given the time to the next reaction and the reaction type, we may

update Xt, and thus simulation may continue. The specific steps of the Gillespie algorithm

are detailed in Algorithm 8.

Whilst it is possible to ‘speed up’ the Gillespie algorithm, we note that for many sys-

tems of interest the algorithm will still be computationally demanding (as discussed in

Boys et al. (2008)). We therefore eschew exact simulation, in favour of computational

speed, by considering a continuous approximation to the system, namely the diffusion

approximation.

C.3 The diffusion approximation (chemical Langevin equa-

tion)

Whilst other approximations to the system in question are possible, such as the Poisson

time-step method (Gibson and Bruck, 2000) or the τ -leap method (Gillespie, 2001), we
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Algorithm 8 The Gillespie Algorithm

1. Set t = t0 and initialise θ = (θ1, . . . , θr)
′ and xt0 = (x1, . . . , xd)

′.

2. For i = 1, . . . , r, calculate the reaction hazard hi(x, θi) based on the current state x.

3. Calculate the combined reaction hazard, h0(x, θ) ≡
r∑
i=1

hi(x, θi).

4. Simulate the time to the next reaction, t∗, as an Exp{h0(x, θ)} random quantity and
set t = t+ t∗.

5. Simulate the next reaction type, Ri, as a discrete random quantity with probabilities
hi(x, θi)/h0(x, θ), i = 1, . . . , r.

6. Update x according to reaction Ri by setting x = x+S·i, where S·i is the ith column
of S (the stoichiometry matrix).

7. Output x and t. If t < Tmax return to step 2.

continue the theme of this thesis and consider the diffusion approximation (often referred

to as the chemical Langevin equation). Let us consider a sufficiently small time interval,

(t, t+ dt], making the assumption that the hazard functions associated with each reaction

are constant over the interval. It is clear that the number of Ri reactions occurring within

the interval follows a Poisson distribution, independent of all other reaction types. If we

denote the number of occurrences of Ri by Oi, then, providing dt is ‘small’

Oi
approx∼ Po {hi (x, θi) dt} .

We let dOt be the r-vector representing the number of occurrences in the interval of each

reaction type, Ri, that is dOti = Oi. Hence, it follows that the change in Xt (dXt) is given

by SdOt, providing a sufficiently small time-step. From the above we have that

E(dOt) = h(x, θ)dt,

Var(dOt) = diag{h(x, θ)}dt,

with h(x, θ) = (h1(x, θ1), . . . , hr(x, θr))
′ and diag{h(x, θ)} being the matrix with the ele-

ments of h(x, θ) along the leading diagonal, and zeros elsewhere. Whence

dOt = h(Xt, θ) dt+
√

diag{h(Xt, θ)} dWt, (C.2)

where Wt is a r-vector of (uncorrelated) standard Brownian motion processes. The form

of (C.2) is that of an Itô SDE, and is analogous to the SDEs considered within this thesis.
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Noting that dXt = SdOt leads to the diffusion approximation

dXt = Sh(Xt, θ) dt+
√
Sdiag{h(Xt, θ)} dWt, X0 = x0. (C.3)

As written, (C.3) is slightly unconventional, as Wt is typically of a higher dimension than

Xt. We may however write that

Var(dXt) = Sdiag{h(Xt, θ)}S′dt,

giving rise to the SDE

dXt = Sh(Xt, θ) dt+
√
Sdiag{h(Xt, θ)}S′ dWt, X0 = x0, (C.4)

where Wt is now a d-vector of (uncorrelated) standard Brownian motion processes (with

the same dimension as Xt). The SDE in (C.4) is the one most commonly referred to as

the chemical Langevin equation, and characterises the diffusion process which most closely

reflects the dynamics of the attached system (expressed through the reaction network).

In keeping with the notation of this thesis (and to harmonise with the SDE presented in

(3.1)) we note that

α(Xt, θ) = Sh(Xt, θ) and β(Xt, θ) = Sdiag{h(Xt, θ)}S′.

We can then proceed with the methods discussed in this thesis using the standard tech-

niques outlined previously, that is, a realisation of Xt may be obtained through the Euler-

Maruyama approximation.

A more formal derivation of the chemical Langevin equation can be ascertained via the

Fokker-Planck equation (2.21), and we refer the reader to (Gillespie, 1992, 2000) for details.

Further discussion of the diffusion approximation can be found in Allen (2010), Wilkinson

(2011) or Golightly and Gillespie (2013) amongst others.

C.4 Example: Lotka-Volterra model

The Lotka-Volterra model of predator-prey dynamics was previously considered in Sec-

tions 2.7.4 and 3.5.2. It was developed independently by Lotka (1925) and Volterra (1926)
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and is characterised by the three reactions

R1 : X1
θ1→ 2X1

R2 : X1 + X2
θ2→ 2X2

R3 : X2
θ3→ ∅. (C.5)

Clearly the three reactions involve only two species, with X1 representing the prey and X2

the predators. To that end, R1 may be thought of as a prey reproduction, R2 represents

a predator reproduction via a prey death and R3 is a predator death. For the reaction

network in (C.5) we have the stoichiometry matrix

S =

 1 0

−1 1

0 −1

 ,

and through the implementation of (C.1) we obtain the hazard functions

h1(X, θ1) = θ1X1,

h2(X, θ2) = θ2X1X2,

h3(X, θ3) = θ3X2.

Denoting the state of the system at time t by Xt = (X1,t, X2,t)
′, we arrive (using (C.4))

at the SDE

dXt =

(
θ1X1,t − θ2X1,tX2,t

θ2X1,tX2,t − θ3X2,t

)
dt+

(
θ1X1,t + θ2X1,tX2,t −θ2X1,tX2,t

−θ2X1,tX2,t θ3X2,t + θ2X1,tX2,t

) 1
2

dWt,

(C.6)

with initial condition X0 = x0, which is the SDE presented in (3.42).

We obtain realisations of the true discrete stochastic Lotka-Volterra system by means

of the Gillespie algorithm (Algorithm 8), and realisations of the diffusion approximation

(C.6) using the Euler-Maruyama approximation. Figure C.1 depicts a single realisation

of the Lotka-Volterra model from both the true discrete stochastic system and the dif-

fusion approximation. As in Section 3.5.2, we again follow Boys et al. (2008) and set

θ = (θ1, θ2, θ3)′ = (0.5, 0.0025, 0.3)′, with x0 = (71, 79)′. Note that the diffusion approx-

imation is found using the Euler-Maruyama approximation with time-step, ∆t = 0.01.

Figure C.2 compares 95% credible regions for the number of prey and predators in the

Lotka-Volterra model obtained from 100K simulations of the Gillespie algorithm and the

Euler-Maruyama approximation (∆t = 0.01), for the conditions given above. Whilst simu-

lation occurs on a finer grid (or in the case of the Gillespie algorithm, any moment in time),
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output is collated every 0.1 such that the populations of each species may be compared.

We note the remarkable similarities between simulations of the true discrete stochastic

system and the diffusion approximation.
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Figure C.1: A single realisation of prey (X1) and predator (X2) in the Lotka-Volterra model,
x0 = (71, 79)′ and θ = (0.5, 0.0025, 0.3)′. Black: Gillespie algorithm. Red: Diffusion approximation
(Euler-Maruyama, ∆t = 0.01).
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Figure C.2: Lotka-Volterra model. 95% credible region (dashed line) and mean (solid line) for
numbers of prey (X1) and predator (X2) on a uniform grid of step-size 0.1, x0 = (71, 79)′

and θ = (0.5, 0.0025, 0.3)′. Black: Gillespie algorithm. Red: Diffusion approximation (Euler-
Maruyama, ∆t = 0.01).
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