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Abstract 

Heineken faces on-going business challenges due to the frequently increasing 

demand to attain more rigid production, sustainable, and financial targets. 

There are many factors which influence their ability to meet these targets 

within their production processes. One significant area which is often 

overlooked in industry is the limiting aspects within their cleaning in place 

(CIP) systems which includes; i) production down time, ii) cleaning costs, iii) 

effluent costs, and iv) quality control.  

This thesis details the work done in three projects completed by the research 

engineer for the EngD with Newcastle University in collaboration with 

Heineken.  The aims of the projects were to benchmark the CIP costs within 

Bulmers fermentation area, to optimise the detergent cleaning phase of the 

CIP process for fermentation vessels, and to develop a predictive model to 

determine the theoretical end point of a cleaning process. The thesis also 

details business benefits which have been seen from the EngD. 

The research engineer has spent 3.5 years of the EngD working on site at 

Bulmers on the projects by i) collecting extensive data and site knowledge, ii) 

performing bench scale experiments, iii) analysis of results, and iv) on site 

verification of findings. The rest of the time was spent at Newcastle University 

for the taught section of the EngD, or performing pilot scale trials on the ZEAL 

pilot plant at Birmingham University.  

Based on the outcomes of the projects, the work done may be implemented to 

optimise the detergent CIP step, reduce chemical and water consumption, 

reduce effluent costs and reduce production down time. The predictive model 

may also be further developed for implementation on site to provide cost 

benefits in the same aspects of site cleaning. The overall implementation is 

predicted to save more than £2,000,000 per annum for Bulmers with the 

opportunity to be extended and provide comparable savings for all Heineken 

sites. 
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Introduction 

Project Outline 

The overall aim of the EngD project is to improve and optimise the current 

cleaning-in-place systems which are in use at the Heineken sites. There are 

three key stages to the EngD project, which has been segmented into a 

portfolio of smaller, more manageable projects. These projects are as follows: 

1. Benchmarking the Process 

2. Optimisation of Cleaning Detergents 

3. Cleaning Predictive Model 

This will involve performing a review of the current systems in place and their 

effectiveness in order to benchmark the process capabilities, which will later 

enable future improvements and benefits to be quantified.  

The optimisation of the cleaning detergents involves a detailed study of the 

use of cleaning detergents within Heineken’s CIP systems with respect to 

their effectiveness of cleaning and the science behind their degradation. 

Based on the knowledge gained from this, it will be possible to optimise the 

detergent cleaning steps and provide Heineken with a cost saving and 

improved cleaning confidence. 

The cleaning predictive model involves developing an advanced control 

system for CIP sets to predict the end point of cleans. This will be done by 

considering various online data measurements to determine which methods 

give the best information as to how clean the equipment is. Control algorithms 

using data fusion techniques will be developed to combine multiple sources of 

online data to give the optimum prediction of ‘clean’. Confidence intervals of 

these predictions will be analysed and tested via industrial case studies to 

ensure a sufficient sensitivity of assessment. The next steps will involve 

investigating the transferability between different process types (e.g. cider, 

beer, etc.) to ensure that the system is useful for all Heineken sites.  

Ultimately a business plan and design for the implementation of these projects 

to be utilised on site in conjunction with their current software and process 
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systems should be developed in order to provide Heineken with greater 

benefits. 

The outcome of the successful EngD will be to reduce clean times, ensure 

that every clean is sufficiently completed, reduce water, chemical and energy 

consumption, effluent volumes, and reduce production down time. Overall this 

will substantially reduce the CIP costs for Heineken on a global scale. 

To progress the experimental phases of the project, an experimental road 

map was required. Due to industrial supervision availability, the site location 

was predetermined as Bulmers, however, the objective of all the projects was 

to benefit all of the factories. Bulmers is a cider only site, but occasional 

access is also available for John Smith’s; an ale and lager site. 

Worst case scenario fouling was required for each project, to ensure that the 

minimum required cleaning is achieved through experimentation. Optimisation 

for soils with lower cleaning requirements can be attained after transferability 

between sites and soils is verified. 

Beer bottoms from John Smith’s and lees from Bulmers were the worst case 

scenario soils from their respective sites. Please see the compositions of each 

in appendices 1 and 2. Cider lees (pH 2) was more acidic than beer bottoms 

(pH 4), which made it easier to clean. Due to this, beer bottoms were the 

fouling of choice for all projects. See table 1 which represents the road map of 

the three projects, the fouling used on each, the trial equipment, area, and 

application locations for each. 
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Table 1: Project Road Map for Fouling, Equipment, Trial Area, and Application of 
Results Areas 
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Background Setting 

Heineken are international, market leaders in brewing, and own many famous 

and successful brands of lagers, ales, and ciders e.g. Heineken, Fosters, 

Bulmers, John Smith’s, Newcastle Brown Ale, Strongbow, and many more.  

The majority of this project was based in Bulmers in Hereford, so knowledge 

of the cider production process is of great importance. However, knowledge of 

brewing ales and lagers was also important in order to understand the 

transferability of the project work between different sites, products, and 

countries. For the scope of this thesis, the production process of cider making 

has been detailed, along with an overview of a comparison to lager/ale 

brewing processes which are relevant to the content of these projects. This 

allows transferability opportunities to be assessed. 

Cider Production 

The overall cider production key process steps are summarised in figure 1. 

 

Figure 1: Cider Making Process Steps 
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Cider is made from apples (dependent on Heineken product, a specified mix 

of bittersweet and culinary apples), or pear cider can be made using fresh 

pears. Bulmers have their own bittersweet apple orchards which are used in 

their cider production. 

Apples are unloaded from tankers into pits, and the buoyancy of the apples is 

utilised by passing water through the pits to transport the apples to a conveyor 

belt. The apples are observed by operators, and any large foreign objects are 

removed to prevent later problems with blocking of plant equipment, prior to 

washing the apples using automated sprays on the conveyor belt.  

The apples are milled, where they are ground into a pulp. Enzymes are added 

to the pulp to depectinise the mixture. These enzymes hydrolyse pectins 

present within the pulp, to smaller, more soluble compounds. This produces a 

fruit mash of a lower viscosity which reduces the difficulty of extracting fruit 

juice from the mash.  

The next stage is to pass the mash through the Bucher process which 

mechanically presses the resulting mash, to squeeze out a cloudy fruit juice of 

approximately 10 to 15 brix (brix is a measure of sucrose present in an 

aqueous solution). Remaining solids and pomace are also separated from the 

mix at this stage. 

The fruit juice is then evaporated under a partial vacuum (to reduce energy 

requirements for heating) at 70oC to 80oC. This reduces the water content of 

the fruit juice which will then increase the overall sugar content to 70 to 72 

brix. The resulting juice is very viscous and consists of sucrose, fructose, 

glucose and maltose. It also contains tannins which gives it a dark brown 

appearance. The apple concentrate then goes to storage until it is required for 

cider production, or sold and transported via tanker. Due to the high sugar 

content of the apple concentrate, it can be stored at ambient conditions for 

long periods of time (up to five years) without affecting the quality. 

To produce cider, the sugars present within the apple concentrate must be 

fermented with yeast to yield ethanol, and carbon dioxide as a by-product. 

See equation 1.  
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C6H12O6 → 2C2H5OH + 2CO2        

Equation 1: Conversion of Glucose to Alcohol 

The concentrate sugars alone will only ferment to approximately 6-6.5 % ABV 

(alcohol content), so glucose is added in addition to the concentrate to 

produce an alcohol content of approximately 12-13 % ABV. In addition to that, 

nutrients are added to promote yeast growth throughout the fermentation 

process. Fermentation takes place over a period of around two weeks (time 

varies depending on product requirements) until the specific gravity reaches a 

minimum, and so the alcohol content reaches a maximum. See figure 2.  

 

Figure 2: Graph of Specific Gravity and Alcohol Content vs. Time 

During the first twenty four hours, fermentation is aerobic, where oxygen is 

used to facilitate the growth of yeast. After that, there is no remaining oxygen, 

so the yeast respires anaerobically. The yeast eventually dies when there is 

no remaining sugar, or the alcohol content is too high, or a combination of the 

two. After fermentation is completed, the cider is left to mature for 

approximately four days to ensure that the yeast is dead. The yeast is mostly 
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removed when the fermentation vessel is drained due to the angle at the 

bottom of the vessel. The alcohol yield is usually around 93 %. The remaining 

7 % is accounted for by yeast growth and glycerol which is another potential 

by-product of the process. 

The cider produced is of a very cloudy appearance. To achieve the desired 

quality of Heineken cider, the next stage is to filter the cider to ensure that it is 

clear. Initially filtration is performed using cross flow filters at ambient 

temperature, where the cider is pumped through the filters at right angles to 

the filter to reduce the initial turbidity. The cider is then chilled to 0 to 2oC as 

turbidity tends to increase as temperature is decreased. This is due to the 

solubility of the particulates (usually tannins) decreasing, and so crystallising 

on chilling. The chilled cider then flows through Orion sheet filters to remove 

the remaining haze. The product is now bright cider. 

Bright cider contains a very small quantity of sugar (as the majority is 

fermented to alcohol), has a high alcohol content (for cider), and is very bitter 

in taste at this stage. The next stage of the process is to blend the cider by 

adding water, flavourings, and colour to meet the Heineken specification of 

the relevant cider product. Additives include sulphur dioxide (to preserve the 

cider), malic acid (to regulate the pH level), fructose, caramel, saccharin, and 

apple concentrate (to provide sweet flavours), aromas and essence (to 

provide colours and perfumes), de-aerated water (to reduce the alcohol 

content), and carbon dioxide (to add effervescence to the product). 

At this stage, the product is tested offline to ensure that all measurable 

specifications are met in the analytical laboratory, and also in the sensory 

laboratory where a team of trained, experienced tasters ensure that the 

product tastes, smells, and appears as it should. If specifications are not met, 

then adjustments are made to rectify this. Once the product is satisfactory it is 

pasteurised (to ensure that no microbial growth will occur), packaged, and 

ready for consumption. 

Brewing begins with a completely different process of converting malt to wort 

to be fermented. This process varies depending on the type of beer/lager and 

characteristics of the drink that you are trying to achieve. The fermentation 
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process onwards is very similar to the cider making process, including 

maturation, filtration, blending if required, pasteurisation and packaging. The 

content of the EngD projects are mostly based around fermentation vessels 

and generic cleaning of multiple types of equipment and types of 

brewery/cider fouling. This means that the scope of this EngD will be relevant 

to both brewing and cider making. 

The production processes of all of Heineken’s drinks are very important to the 

final product quality and running of the business. Production efficiency has a 

direct impact on bottom line costs, which will influence the overall profit 

margins and affect all aspects of the business. The quality of the production 

processes also directly affects the quality of the final product. Without this 

quality, sales volumes and market segments will not be reached which will 

also have a significant impact on business profits and operation. 

Through ensuring that production efficiency is optimised and quality standards 

are adhered to, a strategy to increase production unit profitability will be 

possible. This can directly improve overall business growth, by increasing 

profit margins and enabling capacity increase to aid meeting the increasing 

capacity which Heineken requires. This is due to their new range of innovative 

flavoured beers and ciders which are being developed and produced. A factor 

which has an extensive impact on both product quality and production 

efficiency is cleaning in place (CIP). 
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CIP 

Product quality is extremely important to Heineken. An important feature 

which is often overlooked by members of the public is the cleaning of the 

production process. Producing a product which is consumable by humans 

poses a risk as microbial organisms within the food may infiltrate microbial 

growth, leading to product contamination, which may result in food poisoning 

for the consumer. It is essential to ensure that all equipment used in 

production is sufficiently clean before and after every batch is produced. If not, 

microbial growth may begin to occur which will require increased cleaning 

efforts. In addition it may go unnoticed and contaminate products, resulting in 

a major cost impact on the company, in addition to the impact on sales 

volumes due to negative publicity. 

The current CIP systems have high costs which are associated with lengthy 

cleaning times (resulting in production down time and further costs), more CIP 

effluent requiring treatment than is necessary, and high quantities of water 

and electricity consumption. Sometimes cleaning requirements can vary 

despite being on the same cleaning setting and equipment; e.g. there may be 

product changeover and one product requires a more vigorous clean than the 

other. Where the cleaning parameters may meet the requirements of one 

batch, it may not be sufficient to clean another batch. In such a scenario it is 

unknown if the clean was not sufficient until after the clean has finished, so 

cleans may require repetition, resulting in further cost implications. 

Environmental targets from the Government are also continuously increasing 

in rigidity; so effluent, water, and electricity consumption should be reduced 

wherever possible.   

Some direct problems arising with CIP include; i) the level of cleanliness of 

the equipment is unknown before or during the clean, as conductivity is not an 

indicative measurement of this, ii) formation of sodium carbonate in the 

caustic solution, which reduces the cleaning power and is very difficult to 

detect using the online conductivity meter. This problem causes excessive 

dumping of the chemicals if a cautious policy is adopted, which is expensive. 

This can sometimes result in chemical cleans which are not within 

specification being performed, if the caustic levels have fallen below the 
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control limits. iii) There is uncertainty about the effectiveness of the cleans 

provided by different types of spray heads in vessels, iv) tanks, filters, and 

heat exchangers are more complex than ordinary pipe work is to clean. 

ZEAL 

Zero Emissions and Cleaning (ZEAL) is a consortium of companies that 

formed in 2005 with a mutual interest in the benefits of the optimisation and 

reduction of common challenges with CIP. It was funded by the UK 

Technology Strategy Board, and the partners involved included; Heineken 

UK, Newcastle University, Imperial College London, Bruker Optics, University 

of Birmingham, Unilever, GSK, Ecolab, Cadbury, Alfa Laval, and GEA. 

Further detail of the work carried out by the consortium is discussed in the 

literature review. Some of the physical outcomes of ZEAL included: a pilot 

scale cleaning plant, a bench scale cleaning rig, a benchmarking tool, 

identification of the potential of using particle density/count/size online for 

cleaning measurements as well as various other tools and activities. Each of 

the mentioned outcomes is used within this EngD project. Further details of 

how they were implemented are given in the relevant materials and methods 

section in each chapter of this thesis. 

ZEAL is now finished, however, it is anticipated that a ZEAL 2 group will be 

continuing to develop the work done on CIP, and this EngD will be a key 

contribution to ZEAL 2 by considering various aspects of tank cleaning, 

chemical action on soils, and cleaning data integration and modelling. 
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Original Contributions to Literature 

Throughout this EngD project, my key scientific deliverables are: 

1. Taking a benchmarking strategy, modifying and adapting it to be 

applicable in industrial brewing, and to consider the transferability 

between breweries and varying product types. 

2. Developing scientific understanding of the cleaning process, and the 

impact of cleaning detergents and their degradation in order to quantify 

the cleaning efficacy. 

3. Identifying a measurement system for monitoring the cleaning process, 

and a method to use this set of different measurements to best effect. 

4. Optimisation of the cleaning strategy within the industrial environment, 

balancing costs against benefits, and taking into account the industrial 

constraints. 

5. Developing robust, experimental, lab scale cleaning trials that 

overcame operational challenges and produced repeatable and 

reproducible results.  
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Chapter 1. Business Benefits of the EngD 

By utilising an EngD research engineer to perform their research, Heineken 

as a business have benefited with respect to cost and quality of work 

produced. Research engineers recruited are required to have a minimum of a 

2:1 degree in a relevant discipline, along with being assessed on practical 

experience within their field. The research engineer is considered to be of a 

high graduate calibre, and can be taken on by the company at a cost of 

£8,000 per annum (over four years). A graduate salary for the 2014 intake at 

Heineken is £28,500. This, significantly lower annual cost (circa £20,500 less) 

also includes support from two academic experts in the field, access to state 

of the art research facilities, access to wider relevant research groups within 

academia and industry, and further funding or research from the government 

and academic institutions.   

To estimate the financial benefits Heineken have received; the following 

assumptions have been made: 

 Two Heineken supervisors at any one time for a total of five days per 

year each, at a cost to the company of £100 per hour per person. This 

equates to £8,000 per year. 

 All assumed cost saving opportunities were implemented at the end of 

the four year EngD research period. 

Costs are as follows: 

£8,000 per year on EngD student 

£8,000 per year on supervision 

Over 4 years, £64,000 invested 

Savings realised (excluding capital outlay): 

£2,000,000 per annum from year 5 

% ROI: 3,125% 
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%ROI from physical recommendations: 1500% 

The EngD research engineer is able to benefit the company by being present 

on site for approximately 75% of the time, throughout the four years of the 

doctoral course. This enables the student to develop and utilise good process 

knowledge to benefit the overall project work. By completely submersing the 

research engineer within industry, they are also able to build networks 

throughout the company and with suppliers to further benefit the project and 

exchange useful information. All of this provides an ability to work more 

effectively to maximise the output from the research engineer, and so 

maximise return on investment. 

The research engineer is able to focus around 90% of their research time to 

working on the specific research problems on a macro level within the scope 

of the EngD project. This would be an unrealistic time to expect a graduate or 

employee of the company to invest in these areas, which makes developing 

solutions and improvements difficult without sufficient time and people 

resources invested into the problem. By enabling these areas to be 

investigated in such detail, outcomes that would not otherwise have been 

achieved for the company have been reached without any additional 

manpower investment costs. 

In addition to the research involved within the EngD, there are alternative 

activities which the research engineer is able to participate in for no additional 

cost to the business, but will add value to the business activities. The cost of 

time spent on additional business activities is approximately 28% of the cost 

of time spent by a current graduate (or an even smaller percentage of the cost 

spent by a current experienced employee). If the total time spent on these 

activities were to be recorded, there would be a significant, visible saving to 

the company. A list of activities which the research engineer has been 

involved with/completed is shown below: 

 Report of faulty carbon dioxide mains valve found 

 Attending weekly micro meetings and providing input to solutions 
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 Bench scale experiment performed to recommend deep clean used on 

fermentation vessels for tannins 

 Report of leaking pump found 

 Report of failed gasket found 

 Input on project for minimising micro issues in fermentation vessels 

 Recommendations to minimise carbonate formation in the caustic for 

fermentation vessels 

 Calculation of specific utility costs for CIP 

 Providing flow rates and information on water consumption 

 Identified faulty pressure gauge 

 Input with general problem solving 

 Assisted with modification of the tank CIP cleaning routes to minimise 

the impact of interrupted cleaning head spray patterns and ensure full 

cleaning coverage of tank and mains associated. 

 Assisted with the identification of the CIP routes for the CBRT process 

tanks. 

 Assisted with the identification of an incorrectly installed valve on a 

heat exchanger (showing open when closed) 

 Identification of low flow rates and pressures on the fermentation 

vessel CIPs which would result in lower cleaning capabilities due to the 

Toftejorg cleaning head requirements. 

 Established how the Corning machine worked to identify dissolved 

carbon dioxide to assist with an investigation on the lines as to why the 

levels were too low on a shift. It was discovered that an operator had 

not been testing the levels and tried to blame the machine for needing 

calibration. 

 Completed four tasting exams with marks between 80 and 100%. Now 

sit on the tasting panel weekly to assist with quality testing. 

 Spoke at the 125th Anniversary for Bulmers 

 Fixed a conductivity probe in the lab. 

 Provided flow information to assist with the installation of the centrifuge 

and the pump. 
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 Acquired software for obtaining data from the flow meter to be used by 

everyone on site. 

 Calculations to determine why the fermentation cleans were gaining 

heat energy. It was due to the exothermic reaction between carbon 

dioxide and sodium hydroxide. 

 Calculations of expected pressure drops within pipes from the CIP 

supply to the tops of the fermentation vessels. 

 Verification of the pH calculations used by Diversey to identify the 

quantities of sodium hydroxide and sodium carbonate. 

 Assisted team members with the use of Microsoft Office to use various 

functions to complete their work more efficiently. 
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Chapter 2. Literature Review 

2.1 Introduction  

The objectives of this chapter are to review the literature around relevant 

subject areas in relation to the scope of this EngD project. Subject areas of 

interest are: 

 Food and drink cleaning classifications 

 Process benchmarking 

 Equipment cleaning 

 Cleaning chemicals 

 Online monitoring and predictive models of cleaning 

The literature review intends to summarise key literature throughout the 

research phases of the EngD, and highlight the research path moving 

forward.  

The initial stages of this project came from previous work which was 

completed by the ZEAL consortium; a research group which specialises in 

food, drink and consumer product cleaning-in-place. Some of the literature 

which was developed by the ZEAL consortium has been discussed 

throughout this review. 

The ZEAL consortium have performed extensive work on CIP cleaning theory, 

optimisation, modelling of deposit removal, correlations between process 

variables and cleaning, data fusion of online measurements, predictive 

modelling of clean end point, product recovery, and soil characterisation. The 

overall objective of this work was to develop new/improved technologies and 

methodologies to reduce CIP costs, chemical usage, effluent and product 

waste, utility consumption, and cleaning times. 

Heineken and Newcastle University were both contributing members to the 

literature developed by ZEAL. Several improvement opportunities and further 

research questions were exposed. A collaborative EngD project between 

Newcastle University and Heineken was formed as a result of this. 
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2.2 Cleaning and Fouling Classification 

Palabiyak et al (2014) emphasised that production efficiency and 

sustainability are both important necessities in a modern, manufacturing, 

multiproduct plant. CIP plays a large part in both production efficiency and 

sustainability. Wilson (2005) and Fryer and Asteridaou (2009) all highlight that 

ineffective CIP can have a detrimental effect on product quality, which is a 

threat to any food and drink business due to the impact of quality on company 

reputation and sales as a result. It is essential to ensure that the CIP set is 

achieving the cleaning level which is required for maximum product quality 

and production efficiency. 

Burfoot and Middleton (2009) have discussed that CIP sets can have high 

environmental impacts and demands on water, energy, and waste treatment. 

Hien et al (2008) estimate that the brewing sector alone was using 

approximately 3.9-6.3m3 of water for every m3 of beer processed in 2008. 

Palmowski et al (2005) suggested that approximately 50% of sodium found in 

food and drink trade waste originates from CIP processes. Thus optimisation 

of CIP processes to minimise environmental demands is necessary for the 

future sustainability of the food and drink industry. 

2.2.1 Classification of Fouling and Cleaning Requirements 

It is important to have an understanding the types of fouling which needs to be 

cleaned, how their properties vary, and how to ensure that the correct 

cleaning mechanisms and chemicals will be applied. Changani et al (1997) 

identified that the fouling conditions in a process will dictate the required 

cleaning conditions.  

Fryer and Asteriadou (2009) investigated soils which had previously been 

researched as part of ZEAL and classified them as soil types with their 

respective cleaning mechanisms. This encompassed information around their 

cleaning fluid flow rate, dissolution rates, and rheology. A cleaning map was 

developed to illustrate how the different soils’ cleaning mechanisms vary in a 

soil complexity vs. cleaning mechanism diagram. See figure 3.  
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Figure 3: Soil Complexity vs. Type of Cleaning Fluid (Fryer and Asteriadou 2009) 

The intension of Fryer and Asteriadou’s work was to benefit the wider industry 

in developing solutions to cleaning challenges. The concept of the cleaning 

map was a development from Epstein’s 5 x 5 fouling mechanism matrix 

(1981). The cleaning map shows a graph of problem clusters, where these 

clusters are typed and classified based on their cleaning requirements and 

mechanisms. The graph is intended to be qualitative and not quantitative for 

the purpose of simplicity, as scale up rules will vary for all different 

mechanisms. 

This work has shown a distinct relationship between identified, grouped soil 

types and the cleaning mechanisms and chemicals which will be required. 

This will be useful for determining cleaning requirements throughout the 

project, as well as enabling transferability of the cleaning improvements and 

optimisation for other types of soil considered. 

Goode et al (2010) performed investigations on the cleaning of brewery yeast 

slurry. It is a type 2 soil which can be cleaned mostly using a water rinse, but 
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requires chemical cleaning to completely remove the soil. Goode et al also 

demonstrated that dried on brewery foam is a type 3 soil, which requires a hot 

chemical clean to completely remove the soil. Rao (1999) showed that type 2 

soil cleaning is dependent on temperature and cleaning time. Christian (2004) 

and Aziz (2008) have both demonstrated that type 3 soils cannot be removed 

without chemical cleaning detergen, regardless of the cleaning flow rate which 

is used. Goode, Rao, Christian, and Aziz have all verified the information from 

Fryer and Asteriadou (2009) with regards to cleaning these soils. 

This knowledge is useful around the cleaning of brewery soils, and will also 

assist with the selection of fouling type when experimental work will be 

performed and realistic brewery fouling representation will be required. The 

work also compliments the theory of the work of Fryer and Asteriadou (2009), 

as the findings can be fitted to the cleaning map which they developed.  

2.2.2 Cleaning Theory 

It is important to have an understanding of fundamental cleaning behaviours 

in a brewing or food and drink CIP system. This will enable process areas for 

investigation to be targeted more efficiently, and educated process changes to 

be made with an appreciation for the probable effects of those changes. 

Goode et al (2010) investigated cleaning mechanisms of yeast slurry in CIP 

sets for Heineken. Goode’s work consisted of optimisation of water rinse and 

chemical wash conditions by varying cleaning fluid flow rates and 

temperatures, as well as the classification of two of the key fouling types 

found with a Heineken brewery. The validation of clean was based on visual 

inspection. This showed that increasing flow rates reduces cleaning times, 

and increasing cleaning temperatures assists in the dissolution of soils, 

however, once the temperature exceeds 50oC, the elasticity of the soil is 

increased which also increases the cleaning difficulty of the soil. The 

methodology used for simulating the yeast slurry cleaning in an industrial 

setting proved to be representative of theoretical industrial expectations.  

Goode et al (2013) performed an extensive literature review on fouling and 

cleaning classification in the food and beverage industry. This work included 
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discussions on; the effects of cleaning temperature, Reynolds number, 

cleaning fluid shear stress, and cleaning flow rate on cleaning time and 

effectiveness.  

Goode et al demonstrated that increasing shear stress was shown to reduce 

cleaning time. Temperature and shear stress have varied effects on fouling 

removal. Increasing the shear stress and the cleaning temperature were 

shown to have more impact on cleaning time reduction than increasing the 

cleaning chemical concentration.  

By increasing the cleaning temperature, it was possible to reduce the 

chemical concentrations required when cleaning type 2 and 3 deposits. This 

identified that by increasing the awareness of the cleaning process, it is 

possible to use cleaning monitoring methods for optimization purposes. 

The knowledge from Goode et al’s literature review will be useful for 

understanding cleaning theories. An interesting point which was discussed 

was the effect of cleaning shear stress on cleaning effectiveness and time. 

This should be investigated further. 

Buchwald (1973) demonstrated that the energy required for the adhesion 

forces between the soil and the surface must be smaller than the energy 

required to transport the soil away, for suitable cleaning to occur. Liu et al 

(2002) demonstrated similarly, the pulling force required to remove the soil 

layer.  

Liu et al (2006) went on to investigate types of industrial soils and their 

characteristics. Tomato paste (a soil with cohesive properties similar to those 

of yeast slurry) was modelled based on shear force of cleaning fluid to clean 

both baked on and unbaked fouling samples. Experiments were performed by 

fouling discs with the industrial soil, and implementing these discs in trials on 

a cleaning rig which was developed as part of ZEAL at the University of 

Birmingham. Liu demonstrated that increased surface roughness reduced the 

ability to clean the tomato paste from the surface. The variation in results 

between the baked and unbaked samples was also shown, with the baked on 

samples being more difficult to clean. 
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Guillemot et al (2006) backed up the theory of Lui et al (2006) by 

demonstrating the effects of shear force by rinsing saccharomyces cerevisiae 

cells from stainless steel surfaces with varied roughness. Increased shear 

stress and surface smoothness were both shown to reduce cleaning times. 

These pieces of work identify the importance of cleaning parameter impact on 

the output quality of the clean, and also highlight the necessity to control 

these cleaning parameters at their optimal settings. There has also been 

much useful information discussed concerning brewery cleaning which will be 

useful to draw upon. 

2.2.3 Key Factors to Consider for Cleaning 

Palmowski et al (2005) performed a review of the current technology in the 

food and drink industry. A typical CIP cycle was demonstrated as being much 

the same as a Heineken CIP cycle, with acid, detergent, and water rinse 

steps. Goode et al (2013) discussed how cleaning regimes are usually kept 

confidential within plants, and are tailored to the individual plant requirements. 

CIP steps are often fixed steps which are determined semi-empirically within 

the industry. It was identified by Palmowski et al, that there are other 

chemicals available which may replace the traditional chemicals which are 

used in detergents (such as those mentioned in the Australian Standards 

(2001)). This should be considered when reviewing the cleaning chemicals 

used in place at Heineken. 

The key factors identified to be considered for cleaning by Palmowski et al 

were: cleaning contact times, mass transfer and cleaning chemical 

transportation, cleaning temperature, turbulence, soil type, chemical type, and 

chemical concentration. All of these factors have been expanded upon 

throughout this literature review; however they should be investigated or at 

least accounted for throughout the EngD project portfolio. 

Palmowski et al identified several methods of lowering CIP costs to a 

business through optimisation and process developments. These methods 

included: optimisation between the use of CIP recycling systems and single 

use systems, option cost evaluation based on process parameters and their 
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associated costs, and engagement and training for process operators to 

improve operational efficiency. Palmowski et al’s key identification was that 

there was no single answer to optimising the process, and that each plant has 

different requirements and priorities for process variables. 

This will be important to take into consideration when considering optimisation 

in the EngD project investigations. 

2.3 Process Benchmarking 

The first stage of the project will be to benchmark the process in order to gain 

baseline data on consumable consumption and business costs. This will also 

enable opportunities of high levels of consumption and costs to be identified 

and prioritised for improvement and optimisation within the scope of the EngD 

project. 

Ahmad and Benson (1999) have carried out substantial work on 

benchmarking in the process industries. Their work looks into the 

opportunities of improving process performance and competitiveness of plant 

by benchmarking against best practice methods throughout the world. The 

book draws upon their experience of over 200 plants, along with tried and 

tested measurements and standards which can be utilised. The authors have 

claimed that their methods will increase production output, reduce stock, and 

reduce both fixed and variable process costs, with minimal capital 

expenditure. The book content includes information around: 

 How to measure process performance and gather benchmarking data 

on customer service and warranty, company assets (e.g. overall 

equipment effectiveness (OEE), production rate, quality rate, technical 

availability), operational excellence, and people management (e.g. 

absenteeism, safety). 

 How to calculate improvement opportunities from the benchmarked 

data, by quantifying areas of “hidden plant” where operation is lost 

through inefficient use of capacity or processing time, managing fixed 

and variable costs, managing stock turnaround, and calculating 

performance gaps from these improvement opportunities. 
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 Measurement of performance by metrics and quality models such as 

the industrial ISO standards. 

 Methods of statistical review of the performance indicators and 

performance gaps. 

Goode (2010) made use of a benchmarking tool which was developed as part 

of ZEAL. In addition to this, Goode discussed use of knowledge gained from 

the work of Benson and McCabe (2004), in order to produce a cost benefit 

analysis of opportunities for process improvement at the Tadcaster Brewery 

(a Heineken brewery which Goode has performed research on process 

developments). 

The work Goode et al and the ZEAL tool will be used and enhanced for the 

project. The learning from this can be benchmarked against the results of the 

Bulmers factory benchmarking due to the similarities in processes. The 

differences between cider making and brewing using Heineken methods may 

also be highlighted at this stage. The knowledge from the work of Ahmed and 

Benson will be useful in enhancing the benchmarking tool to fit the Bulmers 

process, without losing sight of the benchmarking fundamentals and industrial 

standards.  

2.4 Equipment cleaning 

Goode et al (2013) discussed that fouling in the food and drink industry is 

unavoidable due to the nature of industrial processing. A key area of 

consideration for CIP in brewing is the challenges faced with the equipment 

cleaning itself. This can include; the complexity of the geometries of the 

equipment to be cleaned, the types of cleaning heads which are used when 

cleaning tanks, and the properties of the cleaning fluid which is used to clean 

the equipment. 

Prosek et al (2005) investigated cleaning a sample of soiled pipes containing 

bends and valves using ethanol as a detergent. Prosek constructed various 

designs of stainless steel pipe and filled them with model solution 

representing Dermal ‘Product A’. The product was rinsed with ethanol and 

rinsing solutions, then analysed by gas chromatography. It was shown that 
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cleaning difficulty increases with complexity of the pipe, where valves are 

approximately four times more difficult to clean than pipe bends. The 

contribution of the impact on cleaning by the valves and bends was shown to 

be cumulative. A model to predict cleaning around bends and valves was 

developed as a result of this work, by implementing the use of novel bend and 

valve factors. Prosek stated that a new model would be required to be 

developed and tailored for use on any other plant. 

Prosek et al also discussed the difficulty of measuring cleaning on an 

industrial scale due to the nature of plant equipment and that it is not easy to 

disassemble.  

Jensen et al (2007) investigated flow variation in different equipment 

geometries. Their results indicated that greater flow rates give a greater 

removal rate. They also demonstrated that there are some areas within a T 

piece which are not contacted by turbulent flow due to a dead leg effect. 

These areas are more difficult to clean, and the difficult points within the dead 

leg are not affected by increasing the flow rate. 

Both Prosek and Jensen et al have demonstrated how cleaning can vary with 

the complexity of equipment geometries. Their work will be important in 

defining the way the experimental phases of the project are considered, and 

how these results are scaled from a smaller, less complex arrangement of 

pipework to a complex industrial scale scenario. 

Kohler (2014) investigated the cleaning performance of moving, impinging jets 

when cleaning Xantham gum, by considering cleaning rate, efficiency, and 

cost. Kohler demonstrated that increasing jet speed, decreased the width of 

the path of the cleaning jet, and so the total cleaning surface area per unit of 

time. This has also been shown by Morrison and Thorpe (2002). The best 

hydraulic energy performance was shown to have a small nozzle, a low 

pressure, but a high jet speed. The fastest cleaning time has a high jet speed 

and nozzle diameter. Kohler discussed that there is no simple optimisation 

strategy, and that optimisation must be based on priority being given to the 

preferred performance indicators for the cleaning scenario. The overall 
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outcome showed that some sacrifice must be made for either cleaning time or 

cost. 

Benezech et al (2002) and Tamine (2008) have demonstrated the importance 

of cleaning with the correct pressures and flow patterns when using dynamic 

cleaning heads to achieve effective results. Mabrouki et al (2000), Burfoot and 

Middleton (2009), and Burfoot et al (2009) have all demonstrated that high 

pressure jets are effective for cleaning biofilms and stubborn soils, however 

the removal of these soils also has a necessity for detergent cleaning. 

Demilly et al (2006) investigated the effects of shear stress for the cleaning 

removal of yeast cells from stainless steel surfaces. Etched steel was quicker 

to clean than polished. Demilly et al showed that there was a threshold shear 

stress, which when exceeded, removed all yeast cells.  

This work has shown the importance of the set-up of dynamic cleaning heads 

and their suitability to stubborn brewery soils and biofilms. It has also 

demonstrated how cleaning heads are important when developing a cleaning 

optimisation strategy. This knowledge should be considered when 

investigating the industrial cleaning equipment on site and developing tailored 

cleaning optimisation recommendations for Heineken. This will also be 

required to take into consideration when developing bench scale experimental 

rigs with results to be used for industrial scale up. 

2.5 Cleaning Chemicals 

A key area which was identified as an area with significant costs within the 

CIP benchmarking was the use of cleaning chemicals. In particular, the use of 

sodium hydroxide as a detergent and the excessive quantities which are 

degraded and require replacement due to residual carbon dioxide which is 

present in the fermentation vessels. 

Previous work has been performed on the optimisation of both acid and alkali 

rinses. Bremer et al (2006) has investigated the optimisation of alkali 

concentration along with flow velocity and cleaning chemical temperature 

which has demonstrated the importance of the detergent quality on the 

cleaning end result. 
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Goode et al (2010) has investigated the removal of yeast cells in a brewing 

environment with sodium hydroxide as a detergent. Goode et al showed that 

increasing temperature and cleaning flow rate decreased the cleaning times, 

as well as ensuring that sufficient detergent was present. 

Hikita et al (1976) performed extensive research into the absorption of carbon 

dioxide into aqueous sodium hydroxide and sodium carbonate and 

bicarbonate solutions. Hikita’s experiments were analysed based on the 

penetration theory for gas absorption. Hikita showed that there is a two-step 

reaction which occurs when CO2 is added to NaOH (shown below).  

2NaOH (aq) + CO2 (g) → Na2CO3 (aq) + H2O (l)     

Equation 2: Reaction between sodium hydroxide and carbon dioxide 

CO2 + OH- ↔ HCO3
-      (K1=3.2x107 l.mol-1)  

Equation 3: Reaction between carbon dioxide and hydroxide ion 

HCO3
-+OH- ↔ CO3

2- + H2O    (K2=3.5x103 l.mol-1)  

Equation 4: Reaction between bicarbonate and hydroxide ions 

Note that equations 3 and 4 are both equilibrium reactions and form part of 

step 2. Hikita proved that when CO2 is absorbed into strong NaOH solutions, 

the chemistry will exhibit the behaviour of an irreversible second order 

reaction and only equation 2 will be required to model this behaviour. Hikita’s 

experiments which demonstrated this involved NaOH solutions with 

concentrations between 0.5%w/v and 2.0%w/v. 

Mahmoudkhani (2009) researched into the capturing of CO2 from air by the 

use of NaOH or KOH. This paper was written from an environmental 

perspective with a view to develop carbon capture and storage techniques. 

Mahmoudkhani developed a novel method to remove CO3
2- from OH- 

solutions. This was through the investigation of scrubbing techniques. 

Mahmoudkhani showed practically, that caustisation of Na2CO3 to NaOH and 

CaCO3 was possible to generate lime mud and regenerate NaOH after it had 

been used to absorb CO2.  
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Zeman (2007) investigated capturing CO2 from the environment by separating 

it from atmospheric emissions through the scrubbing of ambient air. Zeman 

looked in further detail at the thermodynamic feasibility of the air capturing 

process as well as into long term CO2 storage with CaCO3. This work 

demonstrated the absorption rate and that it is limited by the available quantity 

of CO2 within the system. This work was verified using the previous work done 

by Hikita et al (1976). An energy balance was performed to estimate the 

energy consumption in this process and the chemistry can be seen in 

equations 5 and 6. 

2𝑁𝑎𝑂𝐻 + 𝐶𝑂2 → 𝑁𝑎2𝐶𝑂3 + 𝐻2𝑂                                               ∆𝐻° = −109.4𝑘𝐽/𝑚𝑜𝑙 

Equation 5: Reaction between sodium hydroxide and carbon dioxide 

𝑁𝑎2𝐶𝑂3 + 𝐶𝑎(𝑂𝐻)2 → 2𝑁𝑎𝑂𝐻 + 𝐶𝑎𝐶𝑂3                                  ∆𝐻° = −5.3𝑘𝐽/𝑚𝑜𝑙  

Equation 6: Reaction between sodium carbonate and calcium hydroxide 

This literature shows that there is scope for process improvement and 

optimisation of fermentation vessel CIP in a brewing environment. This will 

require investigation of the true impact of chemical degradation with sodium 

bicarbonate as well as the impact of other process variable factors such as 

temperature and cleaning flow rate. The theory demonstrated by Hikita et al 

(1976) will be a useful information source in understanding the chemical 

interactions throughout the CIP process. Mahmoudkhani and Zemen also 

demonstrated how carbon dioxide can be easily captured from the 

atmosphere by NaOH. They both also suggest potential methods of 

recovering the NaOH from the carbonate solutions, which would make an 

interesting point for future work to uncover further potential savings within a 

brewery. 

2.6 Process Monitoring and Control 

Some of the key findings from the ZEAL project work were that measuring 

and modeling of cleaning could be a valuable technique for process 

optimisation. Due to this, a review of work around measurements, modeling, 

and predictive cleaning was performed. 
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2.6.1 Measuring 

Prosek et al (2005) discussed traditional cleaning measurements which 

typically involved equipment swabbing and taking rinse solution samples, and 

how this is not necessarily representative of the whole process, only providing 

offline data of the cleaning results after the clean has taken place.  

Responses to this data can only be reactive, and does not enable proactive 

improvements to be made. 

With regards to measuring cleaning, Schluber (1970) and Bode et al (2007) 

both discussed measuring a continuous cleaning rate of mass per unit area. 

There are various techniques which can be used for measuring real-time 

cleaning, but as Ali et al (2014) discussed; a purpose built measurement 

device is required.  

Van Asselt et al (2002) performed a study on the online monitoring of CIP in a 

dairy evaporator. Van Asselt et al also developed a device for monitoring 

cleaning efficiency, instead of using potentially, unnecessarily long, fixed 

cleaning times whilst monitoring the cleaning offline. The investigation was 

carried out on an industrial dairy process, using conductivity, turbidity, and 

calcium to analyse the fouling level. Van Asselt et al showed that real-time 

monitoring of a cleaning process is possible, however; further investigation 

around the robustness and detection of the fouling is required to ensure 

system reliability. The device considered offline analysis of fouling removal 

against online, cleaning parameter measurement. 

Results showed that conductivity has proven useful for identifying cleaning 

phase separation, and providing an indication of chemical concentration. 

Protein removal by the use of detergent cleaning and mineral removal by the 

use of acid cleaning was discussed, as well as the impact of temperature, 

chemical concentration, flow rate, and cleaning time on cleaning efficiency. 

Monitoring of fouling removal was shown to provide more relevant information 

on cleaning efficiency, of which turbidity and calcium were good measurement 

indicators. Turbidity exhibited sensitivity to foam which impacted on some of 

the online turbidity readings.  



37 
 

Fickak et al (2011) and Van Asselt et al (2002) have both presented the uses 

of turbidity and conductivity for monitoring CIP. Van Asselt et al (2002) also 

demonstrated that non-product such as cleaning detergent and air bubbles 

may give rise to misleading data. 

Van Asselt et al’s work has shown a difference in the benefits between offline 

and online measurements.  This work has also verified that turbidity and 

conductivity can be suitable measures for real-time CIP monitoring, however 

care will need to be taken to ensure that misleading data due to non-product 

is accounted for. 

Pereira et al (2008) used controlled nanovibrations to detect clean end point 

under varying cleaning conditions for shampoo. A mechatronic surface sensor 

was used to measure the mass of residual shampoo and provide real time 

cleaning curves. A new monitoring method was developed as a result of this 

work, based on the effects attachment and detachment of deposits has on the 

vibration properties of the monitored surface. This system requires that cells 

are zeroed before use. The experiments were also performed on a small 

scale. 

Pereira’s work has shown another method in which cleaning monitoring can 

be used for the method of directly predicting cleaning end point. The same 

principles can be used from Pereira’s work to develop cleaning curves and 

produce predictive models from other methods of CIP monitoring. This work 

also emphasises the importance of equipment calibration when working with 

real-time monitoring equipment. 

Wilson (2005) investigated cleaning optimisation based on monitoring and 

validation of the clean. Wilson developed a model of the factors to be 

considered when establishing plant cleaning methods, and the importance of 

linking cleaning effectiveness to the nature of the fouling to develop optimal 

CIP operating conditions was discussed. Cleaning design requirements and 

the practicality of achieving these in reality was also highlighted in this work, 

as well as creating better designs by improving physical understanding of 

cleaning.  
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Wilson performed a case study investigation on cleaning whey protein and 

developed a mechanistic cleaning model of this. Challenges associated with 

monitoring of cleaning were discussed, such as the uncertainty of the 

resulting cleanliness of the equipment and how good a representation of the 

clean the monitoring actually is. Finally, Wilson completed a review of 

cleaning measurement techniques along with their respective benefits and 

issues. 

Wilson has demonstrated how CIP monitoring may be used for process 

optimisation, and also verifies the work of Changani et al (1997) by discussing 

the importance of linking cleaning to fouling conditions.  

This work highlights the risk in model predictive cleaning where there is a 

remaining uncertainty of the final cleaning result, as well as of the modelling 

representation of the overall clean. This information must all be taken into 

account when investigating model predictive cleaning throughout the project. 

Discussions throughout the ZEAL consortium identified the possibility of using 

particle count as a method of monitoring clean. A company called “Particle 

Measuring Technologies” (PMT) became involved and were able to provide 

access to a state of the art, online particle counter. Xu (2013) and 

Verhaverbeke and Pagliaro (2000) have both demonstrated how particle 

count has been a useful measuring technology for air cleaning and cleaning in 

the semiconductor device manufacturing respectively. Hendricks (2006) has 

shown how particle count has previously been used to measure the quantity 

of clay particles present in water in the US offline for quality purposes.  

This knowledge, combined with the state of the art equipment from (PMT) 

gives rise to an exciting opportunity to monitor real-time particle count for CIP 

measurement purposes.  

Clauberg and Marciniak (2009) performed work on offline particle count, and 

have shown that different size particles scatter light differently to give variation 

in readings from the measuring device. This is important to take into account 

due to the variable nature of the fouling removal which will be encountered in 

a CIP process.   
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2.6.2 Modelling 

Leilievre et al (2002) modelled the removal kinetics of Bacillus spores in CIP. 

This was carried out to establish the criteria which affect cleaning 

performances of unheated parts of a plant with bacteria soiling. A small scale 

pilot plant was used with test pipe dimensions of 15cm length and 2.3cm 

internal diameter. The test pipes were cleaned in series. Sodium hydroxide 

was shown to induce an adhesion strength decrease in spores. Data 

modelling of this investigation was not possible due to variability of the results 

and uncertainty that the equipment was clean once the CIP was completed. 

Leilievre has demonstrated that modelling can be used to visualise removal 

kinetics of CIP on a pilot plant using varying concentrations of sodium 

hydroxide detergent concentrations. This proves that a CIP model can be 

produced, but emphasises the uncertainty which can arise in the results 

without effective measurement.  

Cole et al (2010) experimented in detail with toothpaste on the cleaning rig at 

Birmingham University, and on the pilot scale cleaning plant at the University. 

Both the rig and the plant were outcomes of the ZEAL project. Cole showed 

that turbidity and conductivity were suitable online measurements to provide 

information about the level of cleanliness of the plant. Cole also demonstrated 

that toothpaste cleaning happened in two stages; core removal of the soil, and 

film removal from the surface of the pipes. Variation of the length of fouled 

pipe did not show any significant variation in cleaning time which illustrated 

that pipe length had no impact on the cleaning capabilities of the system as 

there was uniform fouling removal throughout. Shear stress was identified to 

have a strong correlation with cleaning, as did Reynolds number of the 

cleaning fluid with a derived, dimensionless, cleaning time.  

Cole et al’s work was part of the ZEAL consortium, and was completed on the 

same pilot plant which will be utilized for this EngD project. This makes Cole’s 

experimental techniques extremely valuable for the development of this 

project. Cole also uses turbidity and conductivity to model cleaning, as does 

Fickak et al (2011) and Van Asselt et al (2002). The demonstration of the 

phases of cleaning, and the effects of varying pipe length will be helpful in 
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understanding the cleaning process involved in this project. The work on 

relating cleaning shear stress and cleaning time verifies the theories of 

Guillemot et al (2006), Liu et al (2006), and Demilly et al (2006). Shear stress 

is an important investigation factor to consider in this project. 

2.6.3 Predicting 

Yang et al (2008) underlined the importance of the use of forecasting models 

for CIP optimisation, and that data captured throughout real-time monitoring 

could be utilised to predict the end point of cleaning processes, without over 

or under cleaning the equipment. 

This is a key statement which justifies the ZEAL guided direction of an EngD 

project down the predictive cleaning model route. 

Yu et al (2010) developed a data fusion algorithm for the tracking of an 

industrial fermentation process using process control variables and NIR 

spectroscopic data to predict offline glucose concentration measurements as 

part of ZEAL. Yu considered two methods, using sequential modelling and 

weighted multivariate calibration. Partial least squares (PLS) calibration 

models were produced for the spectroscopy data and process data. 

Optimisation based on weightings of models and weightings of individual 

variables were considered for minimising the root mean square error of cross 

validation (RMSECV). The sequential model provided a 50% improvement 

from the spectroscopic process data, whilst the weighting of variables to 

optimise and develop the algorithm provided further improvement again.  

Yu’s work has demonstrated the possibility of a real-time prediction model on 

an industrial bio-process to predict off-line measurements of product. This 

shows that the statistical techniques used by Yu can be applied to a process 

and manipulated to benefit and optimise a process effectively. This will be 

important to consider techniques such as this when considering the predictive 

model development for the EngD. 

Durr (2002) developed a mathematical model of cleaning kinetics and 

performed an appraisal of a modeling approach on the cleaning kinetics of a 

dairy production heat exchanger by Durr and Grabhoff (1999). Durr discussed 
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a life time distribution of soil removal against the model, including the different 

phases of model removal steps, and demonstrated how it can be fitted to the 

model. Durr’s work provides a mathematical reference for studying, analysing, 

and improving a CIP process.  

The application of statistical analysis to a specific CIP process shows that 

other statistical modeling work which has been reviewed has the potential to 

be transferred to a CIP process. This is a positive indication of the 

development of the EngD project work. 

Wilson (2014) investigated the cleaning of food layers of dried Xanthan gum 

with ZnS particles. A mathematical model was developed for cleaning, by 

moving vertical jets of cleaning fluid. This was complimentary to the work of 

Kohler et al (2014) on cleaning the same soil, and gave the same results. 

These are discussed in more detail in the equipment cleaning subsection of 

the literature review, based on the information provided on cleaning with 

dynamic heads. Predictions of observed cleaning were able to be made 

based upon the model. This also enabled the effects of the process 

parameters to be captured with quantitative descriptions of the behaviours 

observed on the moving jets. 

Wilson’s work demonstrates the possibility of using a predictive model on a 

more complex CIP scenario, using dynamic cleaning heads. Heineken also 

uses dynamic cleaning heads throughout the business. This work will provide 

further useful information for the EngD project, and further understanding has 

been provided on relevant CIP process behaviours. 

2.7 Conclusions 

The following conclusions and implications for the scope of the research 

within this EngD have been drawn from this literature review: 

 Cleaning and Fouling Classification 

o CIP optimisation is essential to reduce business costs, and for 

the improvement of product quality, production efficiency, 

environmental impact and sustainability of the industry 
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o Fryer and Asteriadou (2009)’s cleaning map will be useful for 

understanding cleaning requirements for Heineken and the 

transferability of cleaning across different soils 

o Goode has provided much brewery cleaning knowledge which 

will be useful for the understanding the cleaning theory for the 

project development, and for representative fouling selection for 

the experimental stages of the project. 

o Rough surfaces are more difficult to clean than smooth surfaces 

o Fouling which has been dried or baked on is more difficult to 

clean 

o Increasing cleaning shear stress, temperature (up to 50oC) 

reduces cleaning time 

o Cleaning contact times, mass transfer and cleaning chemical 

transportation, cleaning temperature, turbulence, soil type, 

chemical type, and chemical concentration should all be 

considered as parameters which could impact upon the overall 

cleaning effectiveness throughout the project 

 Process Benchmarking 

o Benchmarking techniques have successfully been utilised and 

implemented within Heineken and other closely related 

industries 

o A benchmarking tool was developed as a result of the ZEAL 

consortium work 

o These techniques and tool can be applied and developed to 

enhance them for use within this EngD project 

 Equipment Cleaning 

o Higher cleaning flow rates can reduce cleaning time 

o Turbulent flow is necessary for effective cleaning, but can be 

inconsistent throughout complex geometries such as t pieces 

o Scaling modelling from small scale to industrial scale will be a  

challenge 

o Dynamic jet cleaning optimisation is not simple. Factors to be 

considered include; flow pressure, flow speed, nozzle diameter 
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o Jet cleaning optimisation will affect cleaning jet impact surface 

area and cleaning time 

o A sacrifice for cleaning time or cost will have to be made 

throughout jet cleaning optimisation 

o Replication of cleaning head behaviours will be required for 

completion of project experimental work 

 Cleaning Chemicals 

o Alternative cleaning detergents can be considered from sodium 

hydroxide 

o Detergent quality is important for the end cleaning result 

o Sufficient detergent concentration is essential for ensuring 

effective cleaning of brewery soils 

o The two step theory on carbonate formation is important to 

understand NaOH degradation.  

o Further understanding of NaOH degradation will be required 

through investigation 

o There is a potential to investigate recovery methods of NaOH 

after degradation with CO2. 

 Process Monitoring and Control 

o Offline measurements enable an operator to react to poor 

cleaning, but not be proactive and avoid a completely ineffective 

clean from occurring.  

o Benefits of real-time online monitoring of CIP have been shown 

o Turbidity and conductivity have been previously used as real-

time measurement systems for CIP. 

o Care should be taken when monitoring a process to ensure that 

misleading data is not affecting the results, and that measuring 

devices are working effectively. 

o Predictive model development is possible from alternative real-

time measurement devices with the correct application of 

statistical modelling theory 

o Calibration of instruments for real-time monitoring is essential 
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o There is a risk of uncertainty in model predictive cleaning due to 

the inability to visualise the cleaning until it is completed 

o Particle counting is a potentially suitable real-time cleaning 

measurement system 

o Particle count measurement is size dependant and particle sizes 

in CIP will be variable which may impact on reliability 

o Mathematical modelling is possible to view cleaning kinetics 

o Soil removal stages in CIP have been identified 

o The ZEAL pilot plant and experimental techniques from Cole will 

be useful for the project 

o Linear pipe length variation shows no impact on cleaning 

consistency throughout 

o Transferability and application of statistical modelling techniques 

is possible for developing predictive models in different types of 

industry 
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Chapter 3. Benchmarking 

3.1 Problem Statement 

Plant cleaning costs are not typically monitored in any great detail with 

respect to specific equipment and process areas. Benchmarking of a process 

in detail may provide additional information about individual clean types and 

their associated costs. This may then give rise to the identification of potential 

areas where modifications could be put in place to optimise the process and 

provide further cost benefits. The main focus of this chapter is to discuss and 

determine the CIP costs associated with the fermentation area of Bulmers, 

where the majority of the project has been completed. 

3.2 The Benchmarking Tool 

The benchmarking tool was an outcome from the ZEAL consortium. The tool 

was developed for the purpose of calculating base CIP costs for a variety of 

bioprocessing companies. The tool takes into account many aspects of the 

running and cleaning of a plant, including; costs, flow rates, utility 

consumption, effluent production, operational procedures, frequencies of 

cleans, and management views and techniques. This makes the tool ideal for 

use within this project for considering the base CIP costs and also comparing 

them to estimated cost benefits from later proposals as outcomes of the 

project. The tool has been used previously on the John Smith’s brewery at 

Tadcaster by Goode (2010) as part of the ZEAL project work.  

The results from this project and the tool have been used throughout other 

projects within this EngD portfolio, for the estimation of potential cost benefits 

on implementation. 
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3.3 Plant Cleaning Description 

The Bulmers site is split into two main segments; cider production and 

packaging. Cider production is also split into two sections; fermentation and 

process. Due to the size of the site and the areas of investigation of the 

project, the benchmarking work will be focussed on the fermentation area of 

the cider production side.  

The fermentation area is cleaned with one CIP set. This set consists of a 

water tank, a dilute sodium hydroxide tank, and a dilute nitric acid tank. The 

three tanks are all connected to a CIP supply pump which pumps the cleaning 

fluid through a steam heat exchanger, to the equipment which is being 

cleaned, and is then returned and recirculated through its respective dilute 

tank (except in the case of the water, which all goes directly to drain). This is 

shown in figure 4. 

 

Figure 4: Print Out of CIP SCADA Mimic 

The equipment within the fermentation area of the site consists of large 

fermentation and maturation vessels, mains pipes of various lengths and 

diameters, a pasteuriser, and some smaller vessels (e.g. yeast pitching 

vessel, juice buffer tank, etc.). 
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3.4 Project Deliverables 

Based on the plant cleaning description and knowledge of its operation, the 

key deliverables of this project were identified: 

 Identify and source effective measurement procedures to retrieve 

detailed CIP process information. 

 Provide costs of CIP within the fermentation and process areas of 

Bulmers. 

 Provide detailed cost breakdowns of CIP for individual equipment types 

within these areas. 

 Identify CIP areas of non-value added time for potential savings 

proposals. 

 Use benchmarked costs to provide estimated cost benefits for 

proposals for projects completed to be throughout the EngD. 

3.5 Methodology 

The benchmarking tool has been developed as a Microsoft Excel 

spreadsheet. For the fermentation area, there are challenges involved in 

obtaining the necessary data and information to populate the tool. 

There are no fixed flow meters on site, so a non-intrusive flow meter was 

required to obtain flow data for the different types of cleans. Data on the 

parameters and frequencies of clean types was required to be extracted from 

the SCADA control system and SAP database on site as well as additional 

local knowledge and hand written records from the operators. It was essential 

to monitor cleans carefully, to understand the process well and take note of 

changes and intermediate steps which may not be recorded e.g. when the 

process is being recycled or drained.  

It was necessary to liaise with many people within and outside the company to 

gather information on management views, business operations, and external 

resources such as chemical costs. 

There are no fixed methods of measuring steam or electricity being used, so 

the kilowatt ratings of the pumps have been collected, and the electricity used 

was calculated based upon measured operating times of the equipment per 
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clean. Steam calculations were required as there is no direct measure of 

steam usage on the CIP set. These were performed based upon the heat 

transfer requirements to increase the temperature of the cleaning liquid by a 

known quantity over a known time. The methodology used for these 

calculations can be seen in appendix 3. 

3.6 Results and Discussion 

The flow rates for the cleaning of the different equipment types, times, thermal 

energy requirements and electrical energy requirements were determined. 

Flow diagrams for the main types of cleans can be seen in appendix 4. The 

cleaning times were put directly into the benchmarking tool along with the 

electrical energy requirements. The table for thermal energy requirements 

may be seen in appendix 5. The following flow diagram (figure 5) is an 

example of a large fermentation vessel clean which can be used to describe 

what is happening in the clean. The diagram may be seen on a larger scale in 

appendix 4. 

 

Figure 5: Flow Diagram for CIP of a Large Fermentation Vessel 
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On commencing a clean from the SCADA control interface, there are several 

minutes of no flow. This is due to the dilute caustic and acid tanks being made 

up to the required conductivity specifications to clean effectively. The 

fermentation vessel clean is then divided into two main sections; the first 

cleaning the pipework around the side racking and cooling loop of the vessel, 

and the second being the vessel itself. See figure 6. 

 

Figure 6: Schematic of FV647 Cleaning Routing 

The flow rate of the pipework is much higher than that of the vessel due to the 

pressure drop in pumping the fluid up to a height of 20m when cleaning the 

tank itself, and also from the back pressure of cleaning through the cleaning 

head. 

The clean begins with a 10 minute water rinse being sent directly to drain via 

the vessel mains only. This is followed by a 30 minute caustic rinse by the 

mains only, which is recirculated via the dilute caustic tank. Throughout this 

step, the clean goes into hold multiple times (due to conductivity levels 

dropping below specification). These hold times may be seen on the cleaning 

diagram in figure 5 at each point the flow rate drops to (or near) 0 hl.h-1 
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between times of 10 minutes and 60 minutes. The total time spent in hold per 

clean may be totalled and shown as a percentage of cleaning down time.  

The vessel mains pipework cleans then follows with another water rinse, an 

acid rinse then a final water rinse before going on to the same cleaning 

sequence but for the vessel clean itself. See figure 5 at approximately 145 

minutes, where the cleaning flow rate changes from approximately 47m3.h-1 to 

30m3.h-1.  Once this vessel sequence is completed, there is a final 3 minute 

water rinse for both the mains and the vessel respectively. Each water rinse 

step goes completely to drain and the acid/caustic steps are all recirculated 

via their respective tanks. Changeover times between the cleaning steps may 

be seen at the points where the flow rate has dropped to zero. 

The benchmarking tool spread sheet with populated information and results 

may be seen in electronic appendix 1. With respect to the chemical 

consumption, the chemicals have been divided into the bulk acid, bulk caustic, 

and softened well water which is used to make up the dilute solutions. The 

quantity used per clean has then been calculated as the total cost to make up 

a tank, divided by the average number of cleans which has been used per 

tank. A titration is performed every morning on samples from the caustic and 

acid tanks to ensure that it is on specification and aligns with the information 

provided by the conductivity probe. The dilute caustic tank is typically emptied 

and refilled daily. From further experimentation in chapter 4 it has been shown 

that after one fermentation vessel clean, the dilute caustic will be off 

specification. The benchmarking costs have been based on the dilute tank 

being dropped daily on the CIP system and procedures in place at the time of 

the benchmarking project (Autumn 2012). 

The results show that the fermentation area typically has approximately 53 

cleans per week, and 2760 per year. Downtime costs have not been included 

at this stage, as the plant is not currently running at full capacity. The purpose 

of this investigation was to observe the plant cleaning in the fermentation area 

along with its associated costs.  

Table 2 shows the weekly and annual costs spent on utilities for the whole 

fermentation area. 
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Table 2: Utility Costs for Fermentation Area 

 Weekly (£) Annual (£) 

Water 750 39,000 

Electricity 54 2,800 

Thermal Energy 33 1,740 

Total 840 43,700 

 

The water costs are based solely on towns water. The softened well water 

costs are included in the chemical costs as it is only used for making up of the 

dilute chemical tanks. The electricity and thermal energy costs are low as the 

two supply pumps are low kW ratings. There has been a new boiler house 

implemented on site which is running at 90% efficiency, resulting in improved 

thermal energy costs. Thermal energy costs could be reduced further by 

lowering the cleaning temperatures of the heated cleans and lagging the 

outdoor pipework, particularly through the winter months where heat losses 

would be greater due to the lower external temperatures. 

Water rinses are all sent directly to drain. Final rinse water could be collected 

and used as pre rinse water for the next clean. This would save approximately 

one third of the water costs (£13,000 per annum). If the fermentation area 

building capacity will allow, then this would be a recommendation for 

implementation.  

The net present value (NPV) over a ten year period has been calculated to 

show the cost benefit of making the change. The calculation is based on the 

assumption that the tank will cost £48,400 including installation, see appendix 

6 for the tank cost calculation. Once the tank has been installed, it is also 

assumed that there will be no operational costs (other than those covered by 

general site maintenance). The NPV is £34,000 with a payback time of 

approximately 5 years. See appendix 7 for the NPV calculation. The quota 

used by Heineken typically requires that the payback time will be less than 

one year. As this is greater than one year, it will not be recommended to be 
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put forward with immediate effect; however it will be a recommendation to be 

included when a new CIP set is installed.  

The total cleaning chemical costs for the fermentation area are £3,200 per 

week and £166,500 per annum. Table 3 shows how these costs are divided 

per chemical. 

Table 3: Chemical Costs for Fermentation Area 

Chemical % total cost Chemical Cost  per Week 

(£) 

Chemical Cost  per Annum 

(£) 

Bulk 

Caustic 

63.4 2,020 104,900 

Bulk Acid 33.8 1,080 56,300 

Soft Water 2.3 74 3,830 

  

Softened water is a small percentage of the total chemical costs, with bulk 

caustic being the greatest at around £105,000 per year. Chapter 4 discusses 

an investigation which has been completed to reduce this bulk caustic cost by 

approximately 56% which will be a saving of around £59,000 per year. This 

investigation was performed as a direct outcome from the results of the 

benchmarking work, due to the identified costs and down times associated 

with the caustic cleaning steps of fermentation vessels. 

Effluent treatment works out to be approximately £3 per week, and £157 per 

annum. This is a small cost, but would be reduced by reducing the water and 

chemical consumption. If the recommendation to recycle the final rinse water 

were put in place, this would reduce the volume of water to effluent by 33%. 
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Figure 7: Pie Chart of Cost Distribution for Fermentation Area 

Figure 7 has been taken from the results of the tool in electronic appendix 1. 

From this, it can be seen that 79% of cleaning costs are based on chemical 

consumption and 19% from water consumption based on an average clean. 

Individual breakdowns of cleans per equipment type may be seen directly in 

the tool (electronic appendix 1). These are the two key areas which cost 

reduction should be focussed on to give the greatest impact. The total 

cleaning cost per week is £4050 and £210,500 per annum, based on utilities, 

water and chemical consumption alone. If all of the recommendations 

mentioned were implemented (recycling of water and reduction of caustic 

usage), then this cost could be reduced by around £72,000 per year. 

Fermentation vessels are the greatest cost per unit clean at approximately 

£100 each. This is based on the assumptions given in this investigation 

(where the caustic tank is replaced with fresh caustic daily and used for all of 

the cleans in a given day). These results emphasise that cost reductions of 

the fermentation vessel cleans and the use of cleaning chemicals should be a 

key area for investigation. 
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3.7 Conclusions 

The following conclusions have been drawn from this investigation: 

 Fermentation vessel cleaning hold times typically add 25% of non-

value added time on to total cleaning times. 

 The fermentation area has approximately 2760 cleans per year. 

 Water consumption is the greatest factor of the total utility 

consumption. 

 Water consumption and effluent costs could be reduced by collecting 

the final rinse water and using that for the pre rinse water of the next 

clean. This is a key recommendation to be included in the 

implementation of a new CIP set on site. 

 Bulk caustic accounts for approximately 63% of cleaning chemical 

costs. 

 Water and chemical costs account for 98% of the total cleaning costs 

and should be key areas for investigation/improvement. 

 Fermentation vessels are the most expensive clean types in the 

fermentation area at Bulmers, costing £100 per clean and should be a 

key area for investigation. 

 The recommendations as a result of this investigation will result in an 

estimated saving of £72,000 per year, subject to implementation. 

3.8 Recommendations 

The following recommendations have been drawn from this investigation: 

 Complete benchmarking around the rest of the Bulmers site and other 

Heineken sites to identify key areas for investigation and cost reduction 

for the scope of future sight project work. 

 Collect the final rinse water to use as the pre rinse water of the 

following clean when installing a new CIP set. 

 Implement the suggested method of bulk caustic use reduction from 

chapter 4 to save money on chemical cleaning and fermentation vessel 

cleaning which are the largest identified costs from this project. 

 Investigate further methods of reducing non value added cleaning time 

throughout the whole process to improve production efficiency. These 
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will be useful in the implementation of a new CIP set to improve the 

overall CIP process efficiency. Some examples of reducing this time 

are to use larger pipework for draining of vessels to enable this to be 

completed more quickly without the use of further resources and costs. 
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Chapter 4. Optimisation of Carbonate in Caustic 

4.1 Problem Statement 

Effective equipment cleaning in the brewing industry is essential to achieve 

the correct end product quality, with respect to taste, appearance, and health 

and safety legislation. Factors which are important when considering cleaning 

are production efficiency, cost, environmental impact and cleaning efficacy. 

Bulmers uses sodium hydroxide as a cleaning detergent throughout their CIP 

process. Sodium hydroxide is known to effectively clean brewery/cider soils, 

however; sodium hydroxide reacts readily with carbon dioxide to form sodium 

carbonate which results in chemical degradation and reduced cleaning 

efficacy. Fermentation vessels are typically full of carbon dioxide and the 

quantitative impact on the overall cleaning due to this is uncertain.  

The level of sodium hydroxide and sodium carbonate is measured online in 

the process by using a conductivity probe to estimate the concentrations 

present and is used to determine whether immediate dosing with more 

sodium hydroxide is required. It is uncertain how accurate this method is at 

predicting the state of the detergent and just how close to the pre-requisite 

specifications the detergent concentration actually is. 

The business drivers behind this study relate to operational aspects of the CIP 

policy and its consequences. The current CIP set up and pre-requisite 

specifications results in frequent replacementof the detergent and multiple 

occurrences of the process being held due to sodium hydroxide dosing. This 

costs large amounts of money through chemical usage and down time, and as 

a consequence, affects production efficiency. Excessive chemical waste 

increases the environmental impact of chemicals going to drain, as well as 

increasing water and utility consumption due to increased clean times. 

Vessels are potentially not being cleaned properly due to ineffective cleaning 

detergent use, which will also give rise to possible microbial contamination 

and vessel staining. This is undesirable for a consumable product.  

The intention of this project is to determine the impact of sodium carbonate 

formation on the cleaning efficacy of sodium hydroxide and to investigate if 
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the pre-requisite specifications are suitable. Online indications of the 

detergent quality will be investigated and any potential optimisation of the 

current CIP set up determined. Costs benefits of all proposals will also be 

included. 

4.2 Background Knowledge 

4.2.1 Chemical Reactions 

When glucose is fermented to form alcohol, carbon dioxide is produced as a 

by-product. 

𝐶6𝐻12𝑂6  → 2𝐶2𝐻5𝑂𝐻 + 2𝐶𝑂2 

Equation 7: Conversion of Glucose to Alcohol and Carbon Dioxide   
      

Once the fermentation vessel has been emptied, residual carbon dioxide 

which filled the head space of the vessel throughout the fermentation is left in 

the bottom of the vessel. During the detergent cleaning phase, aqueous 

sodium hydroxide reacts with this carbon dioxide to form sodium carbonate 

and water. See equation 8.  

2NaOH (aq) + CO2 (g) → Na2CO3 (aq) + H2O (l) 

Equation 8: Absorption of Carbon Dioxide into Sodium Hydroxide   
       

Based on the work of Hikita et al (1976), it is a reasonable assumption to base 

the experimentation on equation 8.  

As carbonate ions are formed, so the quantity of hydroxide ions is reduced, 

thus reducing the cleaning efficacy. The level of cleaning efficacy reduction is 

unknown. 

4.2.2 Conductivity Measurements 

Currently, the concentration of sodium hydroxide and sodium carbonate 

present in the CIP cleaning detergent is estimated by the use of an online 

conductivity probe on the CIP return main which delivers cleaning chemicals 

in recirculation back to the dilute storage tank. When the conductivity drops 

below 60 mS, the clean is put on hold so that more sodium hydroxide may be 
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added and the conductivity increased to above 60 mS. Sodium carbonate is 

also conductive, so with high levels of sodium carbonate the conductivity 

reading may give a “false reading” as to how much sodium hydroxide is 

present as the system bases the estimation on sodium hydroxide alone. This 

potentially means that cleans may be continued with under specification levels 

of sodium hydroxide and over specification levels of sodium carbonate. 

4.2.3 Titrations 

The operators check the chemical composition of the detergent every 24 

hours. The check is performed by titrating a sample from the dilute sodium 

hydroxide tank against hydrochloric acid and monitoring the volumes of HCl 

required to change the colour indicators of phenolphthalein and bromothymol 

blue from purple to colourless and blue to yellow respectively. See appendix 

8. 

The set method provided by the cleaning company; Johnson Diversey (now 

Sealed Air) for the operators to follow has been verified as part of this project. 

This was to ensure that the method was appropriate for the use of testing the 

concentrations of the samples prepared as part of this investigation as well as 

for the samples taken on site. See appendices 8 and 9 for the methodology 

and verification.  

4.3 Current CIP Set Up 

The fermentation vessels are cleaned with one CIP set. This set consists of a 

water tank, a dilute sodium hydroxide tank, and a dilute nitric acid tank. The 

three tanks are all connected to a single CIP supply pump, which pumps the 

cleaning fluid through a steam heat exchanger to the equipment being 

cleaned, and then returns and recirculates back through its respective dilute 

tank (except in the case of the water, which all goes directly to drain). See 

figure 8. 
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Figure 8: CIP SCADA Mimic 

On the CIP return there is a conductivity probe which is used to monitor the 

detergent/acid concentrations. If the conductivity goes out of the expected 

range throughout either of these cleaning steps, then the clean will go into 

hold (the supply pump and measure of time is paused) and the dilute tank will 

be dosed with concentrated detergent/acid until the conductivity switch on that 

respective tank shows that the correct conductivity is present. This means that 

cleaning times are often greater than the specified parameters, due to the 

additional cumulative amount of time when the CIP system is in hold. The 

dilute sodium hydroxide tank is emptied and refilled approximately every day, 

and the dilute nitric acid tank is emptied and refilled approximately once a 

fortnight. 
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4.4 Project Objectives 

The objectives of the project are: 

1. Investigate the maximum quantity of sodium carbonate which may be 

formed in the sodium hydroxide solution used for cleaning-in-place 

before the cleaning efficacy is reduced sufficiently that it can no longer 

clean effectively. 

2. Verify these findings using plant data. 

3. Compare the actual carbonate formation rate with the theoretical 

carbonate formation rate using plant data, and also quantify the 

benefits (if any) of using a fan for carbon dioxide removal during 

cleaning. 

4. Consider offline measurements for the potential application of a 

predictive model for determining the end point of the use of the sodium 

hydroxide cleaning detergent based on the determined specifications. 

5. To calculate baseline cleaning-in-place costs and estimate the potential 

savings of the proposed solutions. 

6. To recommend the optimal cleaning method for cider and beer 

fermentation vessels based on cleaning times, chemical consumption, 

environmental impact and cost. 

4.5 Methodology 

4.5.1 Fouling 

In order to investigate cleaning parameters, it was necessary to replicate 

realistic conditions of fouled brewery equipment. When attempting fouling 

methods, it was difficult to replicate cider fouling which required no more than 

a cold water clean to become visually clean. This would not have been 

appropriate for the purpose of this investigation. Beer bottoms from John 

Smith’s brewery were used to provide a worst case scenario (See 

composition in appendix 2). Cold water alone would not clean beer bottoms, 

but a sodium hydroxide solution of the current site cleaning pre-requisite 

concentration was sufficient. Beer bottoms consists of the bulk of the proteins 

and some viable yeast slurry from beer fermentations, with filter powder 

(protein complex) to aid in the filtration process before the beer product goes 
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on to the blending stage. The purpose of this investigation is solely to 

investigate the carbonate formation and measurement of the cleaning 

chemicals. The point of the worst case scenario fouling selection will ensure 

that as long as the caustic can clean the brewery soils, then the cleaning can 

be optimised for the caustic usage. 

Stainless steel 316 coupons of 5cm squares, cut from the same sheet of 

metal, were fouled by placing 5g of post filtered beer bottoms onto the 

coupons and spreading evenly across the surface area. The beer bottoms 

were left to completely dry on naturally over a period of at least two days. See 

figure 9.  

 

Figure 9: 5cmx5cm Fouled Coupon for Use on Bench Scale Cleaning Rig to Replicate 

Brewery Cleaning Scenario 

4.5.2 Equipment 

In addition to fouled equipment, it was also essential to develop bench top 

experimental equipment to perform trials in a safe and controlled environment 

before scaling up the experiments to an industrial scale. 

A bench scale cleaning rig was designed to perform the experiments for this 

investigation on a realistic simulation of the actual fermentation CIP process. 

The rig consisted of a cuboidal, plastic tank with a capacity of approximately 

20l. Within the tank was a stainless steel hook, approximately halfway up one 

of the tank walls. A 4l pool of cleaning solution (made up manually of NaOH, 

Na2CO3, and towns water) sits in the bottom of the tank, and a continuous 

sample is drawn from the bottom of the tank and recirculated back into the top 
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of the tank through peristaltic tubing and a hose nozzle which directed the 

solution towards the hook in the tank. The manually made up cleaning 

solutions may later be compared with the supplier made caustic when 

performing the site verification for any cleaning differences. Fouled coupons 

may be suspended on this hook for each experimental run to be cleaned by 

the varied solutions. The recirculation loop consists of a small centrifugal 

pump which pumps the cleaning solution through a three way valve and 

another line of peristaltic tubing which is directed back into the pool of 

cleaning solution in the bottom of the tank. This valve acts as a by-pass valve 

to enable control of the flow rate of the cleaning fluid through the hose nozzle. 

See figure 10. 

 

Figure 10: Bench Scale Cleaning Rig 

The hose nozzle is sprayed directly onto the top of the fouled coupon to form 

a waterfall type effect over the coupon with a shear force of at least 3 mPa 

(the same as that in a large scale fermenter on site (Jensen, 2012)). The 

design calculations for the mini rig to ensure that this specification could be 

met can be seen in appendix 10. The materials of the rig are Perspex, 

peristaltic tubing, copper, and stainless steel. All of which are sufficient for the 

use of dilute caustic (UK Copper Board, 2012).There is a bypass valve which 



63 
 

enables the flow to the nozzle to be varied. The top of the tank is made of 

clear Perspex, which enables the operator to see the coupon at all times and 

monitor the stage at which the coupon becomes visually clean.  

4.5.3 Experimental Design 

Solutions of sodium hydroxide and sodium carbonate at different strengths 

and mixtures were made up and used to clean consistently fouled beer 

bottom stained coupons. The sodium hydroxide strengths ranged between 0 

and 2% w/v as the site currently uses 1.5%. Sodium carbonate strengths vary 

between 0 and 12% w/v (Current site limit is 4%). There were a total of 90 

experimental runs; consisting of triplicates of each of the combinations seen in 

table 4. This makes up a full factorial experimental design. 
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Table 4: Experimental Design for Carbonate in Caustic Work 

Flow Rate 
(ml.s-1) 

NaOH (% 
w/v) 

Na2CO3 (% 
w/v) 

50 0 0 

50 0 2 

50 0 4 

50 0 8 

50 0 12 

50 1 0 

50 1 2 

50 1 4 

50 1 8 

50 1 12 

50 2 0 

50 2 2 

50 2 4 

50 2 8 

50 2 12 

100 0 0 

100 0 2 

100 0 4 

100 0 8 

100 0 12 

100 1 0 

100 1 2 

100 1 4 

100 1 8 

100 1 12 

100 2 0 

100 2 2 

100 2 4 

100 2 8 

100 2 12 

 

4.5.4 Experimental Procedures 

The standard operating procedure for the bench scale cleaning rig may be 

seen in appendix 11. After each experimental run the fouled coupon and 

cleaning solution is replaced, and the equipment rinsed through with towns 



65 
 

water before adding the next cleaning solution. The clean must be monitored 

at all times throughout each experimental run using the Perspex lid at the top 

of the rig. The cleaning times may then be recorded using a stopwatch to 

measure the point that the coupon appears to be visually clean. Visually clean 

has been selected as the acceptable clean level as in a real CIP on site, there 

will be a sanitation step after the detergent step to ensure that the equipment 

is cleaned for microbial growth to an acceptable standard and water rinse 

stages after these steps. 

For each experimental run, samples of the cleaning solution were taken 

before and after the experiment. This was to perform titrations to verify that 

the correct cleaning solution had been made up and to take offline 

measurements of each sample of the pH, conductivity and turbidity for the 

online measurements section of this investigation. 

4.5.5 Health and Safety 

The risk assessment for the experiments and use of the mini rig may be seen 

in appendix 12. When performing the experiments, it was mandatory to wear 

the correct PPE; this included safety goggles, gloves, and a dust mask when 

weighing out the solid forms of sodium carbonate and sodium hydroxide. 

4.5.6 Stakeholder Overview 

If benefits from this study were sufficient, on completion of the project it would 

be desirable to arrange for implementation of the outcomes and have the 

greatest impact. In order to do this a stakeholder overview was developed to 

identify the key stakeholders within Heineken UK and Heineken NV for the 

global outreach. Once completed, the outcomes were be presented and 

distributed to these key stakeholders. See figure 11. 
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Figure 11: Stakeholder Overview for Carbonate in Caustic Work 

4.6 Results and Discussion 

4.6.1 Maximum Carbonate Value 

The overall experimental results can be seen in the spread sheet in electronic 

appendix 2. To determine the maximum carbonate value which could be used 

it was necessary to consider the concentrations of sodium hydroxide and 

sodium carbonate, the cleaning flow rate, and the time taken for the coupon to 

reach a visually clean standard. No coupon was cleaned for longer than 10 

minutes, as no area within the fermentation vessel would receive direct spray 

coverage for that period within a clean. Therefore, if the coupon did not 

appear clean within 10 minutes, it was assumed that this solution and flow 

rate did not clean. 

As there were a large quantity of different combinations with the three input 

variables, a main effects plot of the individual variables and how cleaning 
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responds to their variation individually is shown in figure 12.

 

Figure 12: Main Effects Plot for Caustic Results Showing the Individual Effects of Flow, 

NaOH Concentration, and Na2CO3 Concentration on Mean Cleaning Time 

It is possible to see from figure 12 that cleaning time is reduced with a higher 

flow rate, sodium hydroxide up to 1% w/v reduces cleaning time, but after this 

does not reduce time any further, and sodium carbonate appears to improve 

cleaning up to 2% w/v, but gradually increases cleaning time up to 8%, and 

the increases cleaning time rapidly between 8 and 12 %.  

Increasing flow rate improved cleaning as would be expected due to the 

increased shear effect of a greater force being applied to the fouling by the 

liquid. Higher sodium hydroxide concentration improved cleaning also as 

would be expected, due to the increasing of chemical strength initially. This 

does not make an improvement with concentrations of greater than 1% w/v. 

This is verified with results from cleaning trials performed by Johnson 

Diversey (Edwards, 2011) on the detergency and effectiveness of sodium 

hydroxide with varying concentration. The graph of their result on this may be 

seen in figure 63 in appendix 13. This is due to the pH influence of sodium 
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hydroxide with logarithmic behaviours, meaning there is an initial rapid 

improvement followed by a gradual improvement in cleaning above 

concentrations of 1% w/v. The sodium carbonate results are the most 

interesting results given the lack of information in previous literature. The data 

appears to suggest that sodium carbonate assists in cleaning at around 2 to 

4% w/v and begins to inhibit the cleaning process after this. When cleaning 

with sodium carbonate without sodium hydroxide, the solutions were only 

effective up to 4% with a high flow rate. Physical appearances of the coupon, 

with high levels of sodium carbonate that did not clean sufficiently, with a thin 

film across the coupon may be seen in figure 13.  

 

Figure 13: Photo of 5cmx5cm Coupon with Thin Film Remaining on Surface after Clean 

This film could be easily rinsed off under a cold tap (implying a final water 

rinse would remove it in a plant cleaning scenario), and if left to dry, appeared 

as a thin white powder cake across the coupons surface (see figure 14).  
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Figure 14: Photo of 5cmx5cm Coupons with Dried on White Powder Cake 

This suggests that the cleaning is inhibited with high concentrations of sodium 

carbonate due to levels of saturation of the solution. The underlying reasons 

are outside the scope of this study, but it is a strong recommendation for 

future work. 

To analyse the data, the software package Minitab was used to develop a 

general linear model based on the randomised design of experiments which 

was input into the software. The initial input variables were sodium hydroxide 

concentration, sodium carbonate concentration, and flow rate with the 

response variable of time. Below are the results of the model:  
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Based on the P values of this model, the sodium hydroxide concentrations 

and flow rate variables do not interact with each other to impact on the final 

result. This is not as would be expected based upon the initial screening of 

the data when considering the main interactions. The overall model has a 

good R2 value, which would imply that it is a good fit to the data, and a 

reasonably low standard deviation, given the nature of the variability of the 

results. Before considering the unusual observations and the removal of the 

variables which did not interact it was necessary to review the residuals plots 

General Linear Model: time versus naoh, na2co3, flow  

Factor  Type   Levels  Values 

naoh    fixed       3  0, 1, 2 

na2co3  fixed       5  0, 2, 4, 8, 12 

flow    fixed       2  50, 100 

 

Analysis of Variance for time, using Adjusted SS for Tests 

 

Source            DF   Seq SS   Adj SS  Adj MS      F      P 

naoh               2  1684330  1710291  855146  99.70  0.000 

na2co3             4   819759   757397  189349  22.08  0.000 

flow               1   639387   559023  559023  65.18  0.000 

naoh*na2co3        8   376732   403764   50471   5.88  0.000 

naoh*flow          2     6190    10239    5119   0.60  0.554 

na2co3*flow        4   245942   260036   65009   7.58  0.000 

naoh*na2co3*flow   8   382499   382499   47812   5.57  0.000 

Error             51   437417   437417    8577 

Total             80  4592255 

 

S = 92.6110   R-Sq = 90.47%   R-Sq(adj) = 85.06% 

 

Unusual Observations for time 

 

Obs     time      Fit  SE Fit  Residual  St Resid 

  7  150.000  450.000  53.469  -300.000     -3.97 R 

 13  156.000  452.000  53.469  -296.000     -3.91 R 

 38  420.000  212.667  53.469   207.333      2.74 R 

 40   60.000  212.667  53.469  -152.667     -2.02 R 

 66  420.000  247.333  53.469   172.667      2.28 R 

 

R denotes an observation with a large standardized residual. 
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of the data to this model. 

 

Figure 15: Residuals Plots to show the Normality, Distribution, and Residuals for Fitted 

Values and Observation Order for Cleaning Time 

It can be seen in figure 15 that the model fit could be improved. The data does 

not demonstrate a good fit to the normal probability plot and the versus fits 

and versus order graphs show that the variability is not good due to the large 

cluster of points with a zero residual around similar observation points as well 

as variability appearing to increase with time (with the exception of a few 

unusual observations). The model was recreated, but this time taking logs of 

time as the response variable. This was in an attempt to transform the data to 

provide a more linear normal probability plot. Logs were used due to the 

logarithmic nature of pH which is expected to influence the results of the 

model. The results of this model are shown below: 
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Taking logs of time results in an improvement in the model. All of the input 

variables interact and effect the final cleaning result (as would be expected), 

and the R2 value is still high with a low standard deviation compared to the 

size of unusual observations. 

The unusual observations were cross checked against the results in the 

spread sheet and were shown to be points where the solution used to clean 

had varied slightly from the intended solution. When draining the equipment 

after use using a gravitational syphoning technique, 500 ml of residual 

General Linear Model: logtime versus naoh, na2co3, flow  

Factor  Type   Levels  Values 

naoh    fixed       3  0, 1, 2 

na2co3  fixed       5  0, 2, 4, 8, 12 

flow    fixed       2  50, 100 

 

Analysis of Variance for logtime, using Adjusted SS for Tests 

 

Source            DF    Seq SS   Adj SS   Adj MS      F      P 

naoh               2   5.37452  5.46621  2.73310  71.24  0.000 

na2co3             4   2.44629  2.22187  0.55547  14.48  0.000 

flow               1   3.71272  3.25156  3.25156  84.75  0.000 

naoh*na2co3        8   0.89648  0.97867  0.12233   3.19  0.005 

naoh*flow          2   0.25837  0.28359  0.14179   3.70  0.032 

na2co3*flow        4   0.63988  0.65237  0.16309   4.25  0.005 

naoh*na2co3*flow   8   0.96100  0.96100  0.12012   3.13  0.006 

Error             51   1.95668  1.95668  0.03837 

Total             80  16.24594 

 

S = 0.195873   R-Sq = 87.96%   R-Sq(adj) = 81.11% 

 

Unusual Observations for logtime 

 

Obs  logtime      Fit   SE Fit  Residual  St Resid 

  7  2.17609  2.57746  0.11309  -0.40137     -2.51 R 

 13  2.19312  2.58314  0.11309  -0.39002     -2.44 R 

 38  2.62325  2.20002  0.11309   0.42323      2.65 R 

 40  1.77815  2.20002  0.11309  -0.42187     -2.64 R 

 

R denotes an observation with a large standardized residual. 
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solution would remain in the pipes of the system. Between each fresh run, the 

whole system would be flushed with water and drained again, but there was 

the potential for trace diluted amounts of the previous solution to remain in the 

system and mix with the solution for the next run. Due to this, some runs may 

be seen where the cleaning is not as expected, but on titrating the solution 

after the investigation there were slightly higher levels of one or both of the 

chemical concentrations which would affect the results. Figure 16 shows the 

residual plots of the model using the logs of time. 

 

Figure 16: Residuals Plots to show the Normality, Distribution, and Residuals for Fitted 

Values and Observation Order for the Log of Cleaning Time  

Figure 16 shows that the data has a better fit to the model based on the 

normal probability plot. The versus fits plot and the histogram also show much 

better variability and frequency distribution.  
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Figure 17: Probability Plot for the Residuals of the Log of Cleaning Time with 95% 

Confidence Intervals 

Figure 17 shows the probability plot for the model and the fit of the data. This 

also shows that the model is a good fit, and that there are no outliers of 

concern within the results. Some points sit just on the edge of the95% 

confidence intervals, but these are the same points that were identified as 

unusual observations. These points will be left in the dataset to ensure that 

the model is not over fitted. 
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Figure 18: Scatterplot of the Residuals of the Log of Cleaning Time against 

Experimental Run Order 

Figure 18 shows the residuals for the log of time plotted against the 

randomised experimental run order. Compared to the versus order residuals 

plot in figure 16, it can be seen that the variability with run is better than with 

observation order. This is due to the way that the data has been entered into 

Minitab. The observational orders entered are shown in increasing numbers of 

concentrations and flow rates, so poor variability would be expected. In terms 

of the experimental run order versus residuals, there are a few areas where 

variability is not as great, but on cross checking these points with the results 

spread sheet it could be seen that these are points with two very similar/same 

consecutive runs. 
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Figure 19: Interaction Plot to Show how Data Means for Cleaning Time Varies with 

Simultaneous Variations in Flow Rate, NaOH Concentration, and Na2CO3 Concentration 

Figure 19 shows the overall interactions between the input variables with each 

other and their results on the cleaning time. It can be seen from these results 

that no sodium hydroxide present generally will not clean, but does clean 

slowly with 2 – 4% sodium carbonate. 1 -2% sodium hydroxide will clean well 

unless the sodium carbonate level is greater than 9%. However, sodium 

carbonate levels present at 12% will still clean with a sufficiently high flow 

rate. The results also show that there is a strong dependency of cleaning 

ability with the flow rate. From this it can be determined that sodium hydroxide 

should be at least 1% w/v and sodium carbonate should not be greater than 

8% carbonate to ensure that a sufficient clean will occur. Figures 20 and 21 

reiterate this point. 



77 
 

 

Figure 20: Contour Plot Showing Effects of Varying Concentrations of NaOH and 

Na2CO3 on Cleaning Time 

Figure 20 shows the contour plot for sodium hydroxide and sodium carbonate 

based on time. The blue areas are the areas which cleaned well. The limits of 

1% sodium hydroxide and 9% sodium carbonate are clearly defined within 

these limits. The section between 2 and 4% sodium carbonate also shows 

that slight cleaning power of sodium carbonate alone. This section is in a 

lighter shade of blue which shows that although it does clean at this strength 

without sodium hydroxide presence, it will not be sufficient to clean the 

fermentation vessel effectively as the overall time per unit area of vessel 

required to clean will be longer. 
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Figure 21: Surface Plot Showing Effects of Varying NaOH and Na2CO3 Concentrations 

on Cleaning Time 

Figure 21 shows the surface plot of the sodium hydroxide and sodium 

carbonate strengths against time and again illustrates the limit of 1% sodium 

hydroxide and 9% sodium carbonate before cleaning times are significantly 

increased. 

4.6.2 Offline Measurements 

Offline detergent measurements were considered to investigate further 

potential methods to develop a new online measurement and control system 

to improve and optimise the current CIP detergent cleaning step. 

When considering the offline measurements, pH and conductivity both 

appeared to give much information, but the turbidity results were unclear (see 

electronic appendix 2). Due to the type of turbidity analytical device used to 

analyse the turbidity offline, the results were inconsistent based upon the time 

taken for the liquid to completely settle in its sample bottle before taking the 

measurement. Due to the nature of the work in the Bulmers analytical 

laboratory, it was not feasible to spend long periods of time waiting for 90 
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samples to settle out (with only one bottle) as the equipment was also needed 

for the day to day work. Based on this, the results are not useful for further 

analysis. 

The pH and conductivity results however have different natures to each other 

based upon the technologies involved. This resulted in the most suitable form 

of analysis being to develop two separate models to analyse both responses 

and draw together the results once both analyses have been performed. 

4.6.3 Conductivity 

The conductivity results may be seen in the spread sheet in electronic 

appendix 2. The conductivity results were analysed in Minitab using a general 

linear model. This time, sodium hydroxide and sodium carbonate were the 

input variables and conductivity was the response variable. The variables 

were put in as part of a design of experiments for analysis. The results of this 

model are shown below: 
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The results show that all of the variables interact to affect the final results (as 

would be expected based on the theory that site currently bases their online 

conductivity measurements on).  The R2 value is high, implying a good fit to 

the model, and there are three unusual observations with residuals 2 to 6 

times as large as the standard deviation which is relatively small. Figure 22 

shows the residual plots for the model. 

General Linear Model: Con versus NaOH, Na2CO3  

Factor  Type   Levels  Values 

NaOH    fixed       3  0, 1, 2 

Na2CO3  fixed       5  0, 2, 4, 8, 12 

 

Analysis of Variance for Con, using Adjusted SS for Tests 

 

Source       DF    Seq SS   Adj SS   Adj MS      F      P 

NaOH          2   4203.23  3992.61  1996.31  77.34  0.000 

Na2CO3        4   3257.09  3306.38   826.59  32.03  0.000 

NaOH*Na2CO3   8   1466.77  1466.77   183.35   7.10  0.000 

Error        74   1909.97  1909.97    25.81 

Total        88  10837.06 

 

S = 5.08040   R-Sq = 82.38%   R-Sq(adj) = 79.04% 

 

Unusual Observations for Con 

 

Obs      Con      Fit  SE Fit  Residual  St Resid 

 54  48.1000  38.0200  2.0741   10.0800      2.17 R 

 60   2.1000  31.5333  2.0741  -29.4333     -6.35 R 

 61  41.5000  31.5333  2.0741    9.9667      2.15 R 

 

R denotes an observation with a large standardized residual. 
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Figure 22: Residuals Plots to show the Normality, Distribution, and Residuals for Fitted 

Values and Observation Order for Conductivity 

The results show that the data is a reasonably good fit to the model, with the 

exception of one outlier. The versus fits and order graphs show a large level 

of heteroskedastic behaviour. A number of other models were attempted, 

taking logs of the conductivity and 10 to the power of, but these models did 

not fit as well as the standard conductivity model. By cross checking the small 

clusters of data points on the versus fits graph with the results spread sheet, it 

was possible to see, that they are clusters of solution group types. E.g. the 

first small cluster is water, the second is water with 2% sodium carbonate. It 

would appear that the heteroskedastic variation is due to the nature of the 

measurements of conductivity and the groupings of the solution types used in 

the experiments. 
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Figure 23: Probability Plot for the Residuals of the Log of Cleaning Time with 95% 

Confidence Intervals 

Continuing with the analysis of the conductivity model, figure 23 shows the 

probability plots for the standard residuals. The model does appear to fit well 

within the boundaries with the exception of one major outlier and some 

smaller ones. The major outlier was crosschecked against the spread sheet in 

electronic appendix 2 (run 1), and the conductivity reading for this run was 

different to most of the readings. The conductivity probe had not been used 

for some time before this investigation, so it is likely that there was some 

residue on the plates within the probe that may have impacted upon this 

result. The probe was cleaned and calibrated after this.  
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Figure 24: Interaction Plot to Show how Data Means for Conductivity Varies with 

Variations in NaOH and Na2CO3 Concentrations 

Figure 24 shows the interaction plot for sodium hydroxide, sodium carbonate 

and conductivity. It can be seen that 1% sodium hydroxide gives a 

conductivity reading which is the same as that of approximately 5% sodium 

carbonate. Due to this, it is possible that readings from the conductivity probe 

will give a false sense of security with cleaning chemical specifications based 

on the current cleaning system set up. Readings of both under specification 

sodium hydroxide values, and over specification sodium carbonate values 

would be recognised as sufficient based on the current conductivity 

monitoring system (e.g. 0% NaOH and 12% Na2CO2).  Based on the 

conclusions of section 4.6.1 on the cleaning chemical limits required, the 

conductivity should be at least 60mS for sodium hydroxide alone, and not 

greater than 80 for sodium hydroxide and sodium carbonate. There could 

however be a reading of 80mS with 12% carbonate and also a reading of 

above 60mS with no sodium hydroxide and more than 9% sodium carbonate. 

It is known from this investigation that neither of these solution types will clean 
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effectively so site has potentially had extended periods of time where their 

fermentation vessels have not been cleaned effectively. 

4.6.4 pH 

The results for the pH may be seen in the electronic appendix 2. The results 

were analysed in Minitab using a general linear model. Sodium hydroxide and 

sodium carbonate were the input variables and pH was the response variable. 

The variables were put in as part of a design of experiments for analysis. The 

results of this model are shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

The results show that all of the variables interact to affect the pH results. This 

is as expected due to the basic properties of both chemicals in solution. The 

R2 value is high and the standard deviation is low with four unusual 

observations. The residual plots for the model can be seen in figure 25. 

General Linear Model: pH versus NaOH, Na2CO3  

Factor  Type   Levels  Values 

NaOH    fixed       3  0, 1, 2 

Na2CO3  fixed       5  0, 2, 4, 8, 12 

 

Analysis of Variance for pH, using Adjusted SS for Tests 

 

Source       DF    Seq SS   Adj SS   Adj MS      F      P 

NaOH          2   74.4073  72.8419  36.4210  94.28  0.000 

Na2CO3        4   10.6120  10.7238   2.6809   6.94  0.000 

NaOH*Na2CO3   8   15.3647  15.3647   1.9206   4.97  0.000 

Error        74   28.5852  28.5852   0.3863 

Total        88  128.9692 

 

S = 0.621520   R-Sq = 77.84%   R-Sq(adj) = 73.64% 

 

Unusual Observations for pH 

 

Obs       pH     Fit  SE Fit  Residual  St Resid 

  2   6.9300  9.7150  0.2537   -2.7850     -4.91 R 

  3  12.2300  9.7150  0.2537    2.5150      4.43 R 

  4   6.9500  9.7150  0.2537   -2.7650     -4.87 R 

  6  11.8000  9.7150  0.2537    2.0850      3.67 R 

 

R denotes an observation with a large standardized residual. 
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Figure 25: Residuals Plots to show the Normality, Distribution, and Residuals for Fitted 

Values and Observation Order for pH 

Figure 25 shows that the data does not fit to the model well at all. The data 

barely touches the normal probability plot, and the variability decreased 

almost exponentially with time. Looking at the shape of the graphs and 

considering the knowledge of the relationship between hydrogen ions 

concentration and pH, a model of the H+ ions was investigated. This was done 

by taking 10 to the power of the pH. The results from this model are shown 

below: 
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The results show that initially, the P value for sodium hydroxide and sodium 

carbonate combined should not be included as it is too high. On removal of 

this factor, the results were as follows: 
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These results show that both sodium hydroxide and sodium carbonate 

individually are important, as well as the R2 value being good with a low 

standard deviation relative to the size of the results. The residual plots for this 

model can be seen in figure 26. 

 

General Linear Model: H+ ions versus NaOH, Na2CO3  

Factor  Type   Levels  Values 

NaOH    fixed       3  0, 1, 2 

Na2CO3  fixed       5  0, 2, 4, 8, 12 

 

Analysis of Variance for H+ ions, using Adjusted SS for Tests 

 

Source  DF       Seq SS       Adj SS       Adj MS       F      P 

NaOH     2  2.25491E+28  2.24665E+28  1.12332E+28  230.68  0.000 

Na2CO3   4  6.78128E+26  6.78128E+26  1.69532E+26    3.48  0.011 

Error   82  3.99316E+27  3.99316E+27  4.86971E+25 

Total   88  2.72204E+28 

 

S = 6.978331E+12   R-Sq = 85.33%   R-Sq(adj) = 84.26% 

 

Unusual Observations for H+ ions 

 

Obs      H+ ions          Fit       SE Fit      Residual  St Resid 

 69  2.69153E+13  4.15610E+13  1.94784E+12  -1.46457E+13     -2.19 R 

 71  5.75440E+13  4.15610E+13  1.94784E+12   1.59830E+13      2.39 R 

 85  5.24807E+13  3.79466E+13  1.94784E+12   1.45341E+13      2.17 R 

 

R denotes an observation with a large standardized residual. 
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Figure 26: Residuals Plots to show the Normality, Distribution, and Residuals for Fitted 

Values and Observation Order for H
+
 Ions  

The results show that the model appears to be a good fit based on the normal 

probability plot and the data fit on there, and the frequency distribution on the 

histogram. The versus fits and versus order need to be considered in more 

depth.  
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Figure 27: Scatterplot to Show Variability BetweenResiduals of H
+
 Ions and Fitted 

Values of H
+
 Ions 

Figure 27 shows that the variability on the standard residuals versus fits graph 

is good on the right hand side of the graph. When cross checking the data 

points on the left hand side which do not quite fit with the rest of the data 

against the results spread sheet, it is possible to see that these are water 

samples and low sodium carbonate samples with no sodium hydroxide in. 

Due to this the concentration of H+ ions will be significantly lower than all of 

the other solutions containing sodium hydroxide and high levels of sodium 

carbonate. This behaviour of the results is believed to be due to the 

logarithmic nature of pH measurements. 
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Figure 28: Scatterplot to Show Variability of Standard Residuals of H+ Ions against 

Experimental Run Order 

Figure 28 shows the variability of residuals against experimental run order. It 

can be seen that the variability of the model overall is good, with some 

exceptions. E.g. runs 4, 5 and 6 do not show good variability, but when 

checking them with the results spread sheet, they are all water solutions 

which happened to be run consecutively by chance. This also explains some 

of the behaviour exhibited by the data points in figure 27. 
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Figure 29: Probability Plot for the Residuals of H+ Ions with 95% Confidence Intervals 

Figure 29 shows the probability plot for the residuals of the H+ ions. The graph 

shows that the data fits well within the 95% confidence intervals for the model 

with no outliers.  
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Figure 30: Interaction Plot to Show how Data Means for pH Varies with Variations in 

NaOH and Na2CO3 Concentrations 

Figure 30 shows the interaction plots for sodium hydroxide and sodium 

carbonate and their results on pH. It can be seen that samples of only water 

will have a pH of less than 10. Some have pH values of as high as 10 due to 

residual solutions in the reactor. Solutions of sodium carbonate alone will 

have a pH of approximately 12, regardless of concentration. Likewise with 

sodium hydroxide, it will have a pH of around 13.5. pH is slightly higher as 

sodium hydroxide concentration is increased, but not by more than 0.2. When 

combined solutions of sodium hydroxide and sodium carbonate are present 

with more than 1% sodium hydroxide, sodium hydroxide appears to dominate 

the overall pH, resulting in a pH of around 13.5.  

Based on the results for the chemical composition requirements found in 

section 4.6.1, the pH value should be greater than 13. This will be useful 

information, as when sodium hydroxide levels are low, but sodium carbonate 

levels are high, the pH probe will be able to identify this as the pH will drop to 

around 12, whilst the conductivity readings are still within their limits. When 

the conductivity rises to greater than 80 mS, it will then be apparent that 
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although the sodium hydroxide may be within the correct limits, the sodium 

carbonate is now too high to enable the solution to clean effectively. 

4.6.5 pH and Conductivity 

To conclude from sections 4.6.3.1 and 4.6.4.2, the conductivity value should 

be greater than 60 and less than 80 mS, and the pH should be greater than 

13.  

Samples were taken from a fermentation vessel clean (FV611) at five minute 

intervals to verify this. A table of the results from this clean may be seen in 

table 10 in appendix 14. There are two samples taken at 30 minutes as one is 

from the end of the mains clean, and the other is the initial sample from the 

vessel clean where some making up of the dilute tank would have occurred in 

between those times. Figures 31, 32 and 33 show the chemical 

concentrations, the conductivities, and pH values respectively.

 

Figure 31: Graph of Caustic and Carbonate Concentrations during Fermentation Vessel 

611 on Current CIP Setup 
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Figure 31 shows that based on current site limits, the sodium hydroxide was 

off specification of 1.3% after 35 minutes, resulting in 30 minutes of cleaning 

without sufficient sodium hydroxide. The sodium carbonate exceeded the 4% 

limit after 35 minutes, again resulting in 30 minutes of off specification 

cleaning. If the new limits were in place the sodium carbonate would have 

been within the limits of 9% w/v throughout the entire clean. Based on current 

limits the dilute tank should have been replaced half way through, but based 

on new limits the tank could have been dosed by small amounts throughout 

the last 30 minutes and would have been acceptable for at least one more 

equipment clean afterwards, provided that it is not a fermentation vessel or 

any other equipment with a high level of residual carbon dioxide present. 

  

Figure 32: Conductivity Values of Of Fermentation Vessel 611 CIP Samples (Measured 

Offline) against Cleaning Time 

Figure 32 shows that the conductivity remained in specification (greater than 

60mS) throughout the whole clean. It can be seen from figure 31 that this was 

not the case. This confirms the claim that conductivity alone is not a suitable 

measure of the chemical state under these high carbon dioxide conditions, as 

it has not identified that the cleaning is not sufficient. It must be noted that the 

conductivity probe in line has slightly different readings to the offline 

measurements as it will be calibrated differently and taken at different places 

within the recirculation loop, but overall both measurements fundamentally 
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show the same information. However, the in line measurements would have 

been crossing the 60mS limit, for the system dosing to occur as the 

measurement drops below 60mS. 

 

Figure 33: pH Values of Fermentation Vessel 611 CIP Samples (Measured Offline) 

against Cleaning Time 

Figure 33 shows that the pH did not go off specification until 35 minutes. At 

this point the concentration of sodium hydroxide was 1.26% and the sodium 

carbonate was 4.07% based on a hand titration. After this point the sodium 

hydroxide continued to exhibit a generally falling trend and increase in small 

amounts (with dosing) until the end of the clean where it reached 0.9%. It did 

not exceed 1.26% at any point after 35 minutes.  

These three figures have illustrated a real industrial cleaning example from 

Bulmers, and how the pH and conductivity may be used to gain a clear 

confirmation that the cleaning detergent in use is on specification and 

cleaning the vessel effectively. 

The behaviour of the cleaning with caustic from the supplier in an industrial 

scenario demonstrates that there is no significant variation in results from the 

manually made up solutions. This is because the additives in the supplier 

provided caustic are sequestrants, which are solely present to prevent 

calcium carbonate scale build up on the tank walls as a result of hard water 
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(Edwards, 2016). The thin film built up on the experimental coupons may have 

been scale build up as a result of using towns water without sequestrants in 

the caustic solution. 

This on site verification also verifies that using beer bottoms to foul for the 

experiments has had no impact on the investigation of the carbonate rate 

formation and cleaning detergent behaviours in this aspect, as they have 

been replicated on cider soils.  

4.6.6 Titration Accuracy 

When performing titrations, the method stated in appendix 8 is used. The 

method includes a dilution factor, which may impact on the overall results of 

the titration. The standard method involves a sample of 2.5ml, but the method 

used for titration of the 90 experimental samples in a reasonable time frame 

used samples of 0.25ml. This increases titration error by tenfold from this 

alone and this is why the titrations used to verify the experimental solutions 

are only used as a guide in analysis, and are not relied upon for the results.  

The titration itself also involves an element of human error based on 

perception of the colour indicators and reaction time to close the burette tap 

once the colour change has occurred. There is a ±0.05ml error on the reading 

of the burette scale.  

Based on the titration theory used in appendix 9, the colour change points for 

both indicators are over a large pH range, this also provides scope for a large 

error in titration result, particularly if the reaction time to close the burette was 

slow, so the acid present for the following indicator is already in excess which 

may give a lower sodium carbonate value than is present.  

4.6.7 Cost Analysis 

Benchmarking the CIP costs of the overall fermentation area at Bulmers has 

been discussed in chapter 3, including a breakdown of the chemical costs. To 

calculate the cost benefits of this project, it has been necessary to look into 

the benchmarking for a fermentation vessel in more detail and the 

fermentation vessel specific benchmarking spread sheet can be found in 
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electronic appendix 3 and the improved version with the optimisation included 

in electronic appendix 4. 

It has been identified that the typical hold time based on sodium hydroxide 

cleaning steps is 50 minutes. By optimising the cleaning set up, it will be 

possible to completely remove this hold time, so this has been incorporated 

into the calculation by considering capacity and down time costs (assuming 

the plant was running at full capacity).  

Thermal costs have been excluded from this section as there are no heated 

vessel cleans. Acid costs have also been excluded as the modifications 

suggested in this project will not affect the acid step times or consumptions.  

Based on all of the fermentation vessel cleans monitored, the sodium 

carbonate value always increases by more than 4%. If the dilute caustic were 

to be titrated by an operator immediately after a fermentation vessel clean, the 

procedure should be to make up a fresh dilute caustic tank. It has been 

assumed that each fermentation vessel clean uses one dilute caustic tank, as 

if these changes are not put in place, the monitoring of the sodium carbonate 

should be increased so as to avoid completing more cleans off specification. 

Based on these assumptions, and the monitoring of large fermentation vessel 

cleans, the following information has been deduced: 

There are typically 5 large fermentation vessel cleans per week, so 260 in a 

year. Based on downtime costs of £68.61/min (Orton, 2012).  

Utility costs work out to be around £290 per week, and chemical costs are 

approximately £2735 per week, with an effluent cost of £2 per week. This 

results in a total weekly cost of £3000 (not including down time) and £600 per 

clean. The weekly lost production capacity due to cleaning is around 

£122,500 or £6,370,000 per annum. See figure 34 where down time accounts 

for 98% of chemical costs, and cleaning chemicals account for 2% (not 

including acid costs). 
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Figure 34: Pie Chart of Cost Distribution for Fermentation Vessel Cleans 

If 50 minutes of downtime were removed per clean (based on optimisation of 

the CIP detergent steps and removal of the average hold time of 50 minutes), 

that would save 250 minutes per week and 13,000 minutes per year (more 

than 9 days). This would save £17,000 of downtime per week or £900,000 per 

annum. This makes no change to the percentage distribution between 

chemical costs and down time, due to the high volume of down time costs. 

This only accounts for the removal of the downtime. In Chapter 3 it was 

shown that the whole of the fermentation area was spending approximately 

£105,000 on cleaning with bulk caustic. If the new limits of this investigation 

are put in place, then that sodium hydroxide will effectively last twice as long 

(assuming specifications are currently being adhered to). This would result in 

a cost saving on chemicals of approximately £59,000 per annum.  

The project recommendations will free up approximately 250 minutes per 

week of fermentation time (assuming full plant capacity). Based on this, the 

capital cost which would be involved in purchasing and installing a tank which 

could be used for the same volume of production would be £330,000. See 

appendix 15 for calculation. 
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Overall, by removing downtime, increasing plant capacity, and modifying the 

chemical limits (excluding capital expenditure), the plant will save around 

£959,000 per annum plus a capital saving of £330,000 (15% of total large FV 

annual CIP costs).  

Effluent will also be reduced with the new strategy, reducing the volume of 

dilute caustic which is sent to drain by 56%. This will also reduce the COD 

levels within the effluent. 

In addition to these quantified savings, there will also be an added level of 

confidence that the equipment is being cleaned by effective detergent at all. 

The cost implications of failed micro batches and reworking costs would show 

a greater cost benefit, but this is not a straightforward calculation as there are 

many other factors which could also affect the micro scores.  

The net present value (NPV) over a ten year period has been calculated to 

show the cost benefit of implementing these project recommendations. The 

calculation is based on the assumption that the new instrumentation, 

pipework, automation and installation will cost £30,000, see appendix 16 for 

the cost breakdown. Annual operational costs are assumed to be £1000, 

mainly to maintain the instrumentation. The NPV is £6,480,000 with a 

payback time of approximately 2 weeks. See appendix 17 for the NPV 

calculation. The quota used by Heineken typically requires that the payback 

time will be less than one year, therefore this project is highly recommended 

for implementation.  

The NPV calculation includes costs based on down time and assuming the 

plant is running on full capacity. If these costs were to be excluded, and only 

the direct savings on chemicals to be considered, then the NPV is £365,000 

with a payback time of approximately 7 months. See appendix 18. Although 

this value is significantly smaller, it still meets Heineken’s standard to be 

recommended for implementation. 



100 
 

4.6.8 CIP Structure Observations 

4.6.8.1 General CIP Structure 

The CIP for the detergent step works by opening the dilute tank, and pumping 

it off to the equipment then back to the CIP return. The fluid is sent directly to 

drain until the conductivity probe on the CIP return shows that there is sodium 

hydroxide present. At this point, the sodium hydroxide is recirculated through 

the dilute caustic tank and the drain closed. As shown in figure 35. 

 

Figure 35: Print Out of CIP SCADA Mimic 

The detergent step runs for 30 minutes recirculating via the mains on the side 

of a fermentation vessel (see figure 36), then later for 30 minutes via the 

vessel itself. 
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Figure 36: Diagram of Fermentation Vessel and Mains Set Up 

If the conductivity on the CIP return line drops below 60 mS, the process goes 

into hold. This means that the CIP supply pump is turned off and the 

concentrated sodium hydroxide from the bulk tank is pumped into the dilute 

tank until the conductivity shown on the dilute tank is up to specification.  On 

completion of each detergent step, the remaining detergent is pumped back 

into the dilute tank until the conductivity probe reads that water is in the line 

and not sodium hydroxide. 

4.6.8.2 Carbonate Formation Rate 

Appendix 19 shows the calculation of the carbonate formation rate based on 

samples taken from a fermentation vessel at fixed intervals throughout the 

clean. One of the potential outcomes of this project was to optimise the 

amount of time which is spent sending the sodium hydroxide to drain before 

recirculating via the dilute caustic tank with the objective of “mopping up” 

residual carbon dioxide from the vessel. The calculations have shown that it 

would take at least 28 full vessel cleans to remove all of the carbon dioxide 
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from a large vessel. This would not be cost effective or feasible based on time 

and resources. 

Based on the stoichiometry of the chemistry of the formation of sodium 

carbonate, if dosing did not happen throughout a clean (i.e. fresh sodium 

hydroxide was not added to replenish the detergent after the formation of 

sodium carbonate), then no more than 2.25% w/v of sodium carbonate would 

be formed and sodium hydroxide would drop rapidly to 0% and cleaning 

would not be effective. A fermentation vessel clean was monitored with a 

system override to stop any additional dosing which confirms this theory. See 

figure 37. 

 

Figure 37: Graph of Concentrations of NaOH and Na2CO3  with Cleaning Time 

throughout Fermentation Vessel Clean Without Additional NaOH Dosing 

In order to achieve the suggested chemical limits, the tank should be made up 

to 1.1% as it currently is, and controlled by monitoring pH and conductivity to 

ensure that the caustic does not drop below 1.1% w/v (1.1 instead of 1.0 to 

allow for error and system delays, but ensuring that sufficient caustic is 

present), and the sodium carbonate does not exceed 9% w/v. 
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4.6.8.3 Draining 

When cleaning, water is consistently sent to the drain and not collected at any 

point. This was discussed in the benchmarking project, and has scope for the 

potential to save some money but is outside the remit of this particular project. 

When the sodium hydroxide is dosed throughout a clean; if the dilute tank was 

already full, then there will be too much dilute sodium hydroxide to be 

returned to the tank at the end of the clean. Due to this, the system has been 

observed draining sodium hydroxide once the tank is full at the end of a 

detergent cleaning step. This drained sodium hydroxide will potentially be on 

specification and drain times have been observed as taking as long as 5 

minutes to remove the residual sodium hydroxide at a flow rate of 470hl/h 

which results in a total of approximately 40 hl going to drain. Based on the 

figures calculated in the Benchmarking project (£0.01 per litre of made up 

solution, this provides an additional cost of around £40 which is equivalent to 

half a full dilute caustic tank (at 80hl working volume). This has not been 

included in the overall cost analysis as it was only observed on some cleans. 

The project recommendations will avoid the requirement to unnecessarily 

drain dilute caustic which is in within specification. 

4.6.8.4 Hold Times 

It has been noted that when the pipes connected to the fermentation vessels 

are being cleaned, the detergent step goes into hold every 3 minutes. The 

main vessel cleans typically go into hold every 2 minutes. Overall this results 

in an average hold time of 50 minutes per clean. This alone accounts for 

approximately 20% of non-value added cleaning time of fermentation vessels, 

which also limits processing capacity significantly over a year and indicates 

inefficient production. 

4.6.8.5 Spray Pattern Interruptions 

Each of the fermentation vessels contains a Toftejorg rotary spray jet cleaning 

head. These types of cleaning head are heavily dependent on continuous flow 

at sufficient flow rate and pressure to ensure that full coverage of the spray 

pattern is achieved and so should ensure that the vessel is sufficiently 

cleaned all over. 
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An experiment was performed by sitting on top a fermentation vessel whilst it 

was being cleaned and monitoring the movements of the cleaning head. Each 

time the clean went into hold, the spray head was paused, but some 

movement continued with what would have had insufficient pressure and flow 

to clean the full surface area of the tank covered by that movement. It is 

uncertain how much of the spray pattern coverage would be missed and what 

the overall impact of this would be, but it is likely that it will have a negative 

effect on the vessel cleaning and goes against the cleaning head 

manufacturer recommendations. 

A recommendation for a future research project is to investigate what the 

impact of the spray pattern interruptions is. Removing hold times will prevent 

these interruptions from occurring in the meantime, and will also reduce the 

impact of wear and tear on the CIP supply pump from continuously stopping 

and starting with a large flow rate. 

4.7 Conclusions 

The following conclusions have been formed as a result of this investigation: 

 Sodium hydroxide cleans effectively at values from 1% w/v but 

cleaning effectiveness does not increase at values greater than this. 

 Manually made up sodium hydroxide and supplier sodium hydroxide 

containing sequestrants of gluconates and phosphonates showed no 

significant variation in cleaning results. 

 Sodium carbonate cleans slightly at values of 2-4% w/v but not 

sufficiently to be used to cleaning brewery soils alone.  

 Sodium carbonate appears to assist sodium hydroxide with cleaning 

between 2 and 4% w/v but at values greater than that it appears to 

have an inhibiting effect on cleaning abilities. 

 Sodium carbonate appears to prevent effective cleaning at values 

greater than 9% w/v. 

 The limits to clean effectively should be >1.1% w/v sodium hydroxide 

and <9%w/v sodium carbonate. 
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 Conductivity alone is not a good measure of the level of sodium 

hydroxide and sodium carbonate present and false readings may occur 

from the current set up. 

 Conductivity and pH together provide a good source of information on 

the levels of sodium hydroxide and sodium carbonate present, as well 

as increased confidence that sufficient cleans are being performed. 

 The pH and conductivity readings for the new chemical limits should be 

>pH 13 and >60mS but <80mS respectively. 

 Site data has verified the pH and conductivity theory developed from 

this investigation. 

 Implementation of the results of this project will save around £959,000 

per annum in operational costs, and £330,000 in capital. 

 Improvements to the system can be made by removing hold times to 

reduce impact on the pump and cleaning head spray pattern 

interruptions. 

 There is too much residual carbon dioxide to remove with a sacrificial 

sodium hydroxide step per clean. 

 Dosing is required throughout a clean to reach levels of more than 

2.25% sodium carbonate. 

 The cheapest solution would be to completely eliminate carbon dioxide 

from the equation or use an alternative detergent which is not 

degraded by carbon dioxide. 

4.8 Recommendations 

4.8.6 Changes to Chemical Limits  

The sodium carbonate limit should be increased to 9% w/v and it can be 

ensured that effective cleans are maintained and a saving of £59,000 per 

annum would be made. 

4.8.7 Set Up Modifications and Control 

To optimise the set up so that hold times can be reduced, a pH probe should 

be put online near to the conductivity probe on the CIP return. On changeover 

from the pre-rinse step to the detergent step, the caustic should be able to 

flow around the equipment and back through the return to drain (as it currently 
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does), until the conductivity and pH show that it is on specification. Then the 

drain may be closed and also the dilute tank should be closed at the top, so 

that the detergent is recirculating through the loop around the tank. See figure 

38. 

 

Figure 38: Schematic of Optimised CIP set up 

This cleaning procedure should be controlled by the use of the conductivity 

and pH probes to ensure that the detergent remains within the specifications 

which have been determined based on the work completed throughout this 

chapter. This can be done by the use of continuous online control via the 

SCADA, ensuring that the caustic is maintained at 1.1% w/v and the sodium 

carbonate does not exceed 9% w/v. An additional line from the bulk caustic 

tank to the mains pipework which recirculates around the dilute tanks will be 

required. When caustic is required to be dosed to maintain the caustic 

concentration, the bulk caustic can be added directly to this line (whilst 

monitoring the flow so that the volume added to the line is known).  

The concentration of sodium carbonate present may be monitored by the use 

of an algorithm which calculates the quantity of sodium carbonate which has 

been formed, based on the initial concentrations of sodium carbonate and 

caustic present at the start of the cleaning step, the volume of concentrated 
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caustic which has been added throughout the step, and the stoichiometry of 

the chemical reaction which is taking place.  

Once the recirculating detergent has reached the maximum of 9% sodium 

carbonate, then the drain valve should be opened and the recirculation loop 

refilled with fresh dilute caustic from the dilute caustic tank. The valve at the 

bottom of the dilute caustic tank should remain open throughout the entire 

detergent cycle, so that once the drain has opened; fresh dilute caustic will be 

drawn immediately to replace the missing fluid. Equally if there is an 

imbalance (which is highly likely) between the CIP supply pump and the 

scavenge pump at the bottom of the fermentation vessel, then there will not 

be an issue with the CIP supply pump running dry as the dilute tank will 

effectively behave like a large dead leg. 

This set up will result in the removal of hold times, avoid contamination of 

fresh dilute sodium hydroxide with sodium carbonate, reduce cleaning head 

spray pattern interruptions, reduce fresh caustic going to drain at the end of a 

detergent cycle, reduce the load on the CIP supply pump from stopping and 

starting continuously, and reduce the dependency on offline titrations. 

All other fermentation area cleans should be performed as normal (with the 

current CIP equipment and control set up), but with the increased sodium 

carbonate limit. 

4.8.8 Future Work 

The following key areas are recommended for future work as an outcome of 

this investigation: 

 Future work for this project involves implementation of the outcomes on 

site to provide savings to Heineken. This can be done by using the 

stakeholder overview to achieve the most efficient impact. The work 

may potentially be implemented on other Heineken sites to provide 

further savings to the company. 

 Saturation points of sodium hydroxide and sodium carbonate combined 

will be an interesting recommendation for future work to determine if 
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there is a relationship between this and cleaning efficacy of the 

detergent. 

 Investigate the impact of Toftejorg spray head interruptions throughout 

cleaning procedures to quantify the inhibition to the ability of cleaning 

the complete surface area with the standard that has been set out by 

the cleaning head manufacturers. 

 Investigate alternative methods of elimination of carbon dioxide or 

alternative cleaning detergents which will not react with carbon dioxide 

for a long term cost effective solution. One option for this includes 

purging the fermentation vessels with nitrogen to remove residual 

carbon dioxide. On the installation of a brand new CIP set, these would 

be the more cost effective options by removing the root cause of the 

carbonation formation. 

 Investigate the possibility of capturing regenerating the sodium 

hydroxide for recycling, and the carbon dioxide to be recycled in the 

bottling plant. 
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Chapter 5. Cleaning Predictive Model 

5.1 Problem Statement 

CIP in industry often results in high levels of operational costs for food and 

drink companies. Associated with these costs are long cleaning times; which 

results in further costs associated with down time, further effluent treatment, 

increased water and energy consumption, and additional cleaning chemicals. 

In addition to this is an uncertainty as to how effectively the equipment has 

been cleaned once the CIP is completed, based on cleans being performed 

with fixed time, flow rate, temperature and chemical concentration. Fixing 

these parameters does not allow account to be taken of any process or 

product variability which will occur on a process of this nature. 

Online monitoring is often neglected where CIP processes are concerned, as 

it is often seen as not adding value to a manufacturing process. Due to this, 

essential information and data is often not available. Throughout the CIP 

processes, exact cleaning strength, flow rates, and pressures are mostly 

unknown, which increases the uncertainty of the effectiveness of the clean as 

there is no evidence that the specifications for the fixed cleaning parameters 

have been adhered to.  Due to this uncertainty, companies often over 

compensate with their cleaning parameter specifications to ensure that the 

equipment can be assumed to be clean. This results in additional expense to 

the company and it is highly likely that the equipment is being over cleaned. 

This represents an inefficient process. 

5.2 Background knowledge 

The justification for the critical research path of the EngD project was an 

outcome of the work of the ZEAL consortium. The key objectives of the 

Consortium were to improve and optimise CIP systems for the partner 

companies involved. The ZEAL pilot plant will be used for the majority of data 

collection for the predictive model work, and it was also used for much data 

collection on soils from products of other companies within the consortium.  

Much work was done by the ZEAL partners on predictive modelling of the end 

point of clean, which proved to be successful. This has prompted the 
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development of a predictive model control for clean end point as part of this 

EngD project for Heineken, with a view to; minimise production down time, 

reduce chemical, water and energy consumption, and also to reduce effluent 

production, given that generic procedures are employed. The outcome of this 

project could potentially benefit other industries as well as brewing within the 

food and drink, and consumer products industries.  

The work done by ZEAL includes the study of various food and drink process 

soils and quantifications of the level of cleaning required to sufficiently clean 

these soils to an acceptable level (Fryer and Asteridaou, 2009). This work 

includes investigations of cleaning brewery soils during studies on smaller 

scale experiments (Goode et al, 2010), which will provide an indication of the 

results which can theoretically be expected when cleaning these soils on a 

larger scale. 

The previous ZEAL work has provided useful information from the pilot plant 

with the instrumentation in place. This instrumentation includes turbidity, 

conductivity, flow rate, NIR, and temperature. This will also be useful to 

provide an indication of results which can be expected. Investigations were 

also performed where cleaning progression was monitored offline using 

particle counts. This proved to be a useful study which provided much 

additional information about the cleaning process. Due to this, an online 

particle counter has been acquired to investigate the benefits of incorporating 

this to develop a cleaning predictive model. 

The control system will implement predictive modelling to data taken from the 

various online measurements of clean. The methodologies incorporate a 

combination of data fusion and data mining techniques with multivariate 

statistical methods to provide improved knowledge of the process and to 

develop a predictive model. 

5.3 Current Operations 

Bulmers’ CIP currently consists of a towns water pre-rinse, a sodium 

hydroxide detergent rinse, another towns water rinse, a nitric acid sanitation 

step, and a final towns water rinse before commencing with production. 

Depending on the equipment being cleaned, the water and detergents can be 
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heated to a maximum of 50oC. Cold cleans are used wherever possible to 

minimise cleaning costs and environmental impact. Acid stages are all 

performed cold due to health and safety requirements. All tanks are cleaned 

cold due to undersized anti-vac valves. Without these valves, transferring 

from a hot water clean to a cold acid clean would result in a vacuum effect 

within the vessel which would result in physical damage and deformation to 

the tanks. 

Cleans are run over empirically determined fixed time parameters for each 

stage dependent on the equipment to be cleaned. Assumptions are made that 

the cleaning time for each step is sufficient to complete the clean properly. 

Initial trial and error experimentation was performed to determine the length of 

the cleaning time parameters. The equipment is checked regularly for 

microbial contamination to ensure that there is no microbial growth 

accumulating. 

The process is controlled using a SCADA interface. Monitoring is performed 

with the use of flow switches (to ensure flow is present), thermocouples (for 

temperature monitoring), conductivity probes (to monitor the chemicals and 

concentrations present whilst in CIP), and level alarms (to ensure that there is 

no pooling in the bottoms of the tanks). Automated process control is used for 

the pump flow rates, the opening and closing of automated valves, 

temperature of cleaning fluid, and chemical dosing due to conductivity 

requirements. 

Cleaning confidence is based on empirical results and weekly micro scores 

based on routine testing. Microbial growth often does not show up in the 

weekly scored until the growth has built up sufficiently that it has caused a 

contamination issue throughout the equipment. Due to this and the inability to 

physically and visually monitor the results of each CIP process, there is 

always a level of uncertainty as to whether each clean has thoroughly cleaned 

the equipment. The level of process monitoring also restricts the ability to 

measure specific cleaning costs as there is no direct measure of flow rate, 

steam usage, energy usage, and chemical waste production.  
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5.4 Project Objectives 

The objectives of the project were to: 

 Replicate a realistic cleaning scenario with soils representative of those 

which are commonly found in a brewery. 

 Develop an effective SOP and experimental design to maximise the 

output of the investigation. 

 Determine which online measurements are useful and suitable for the 

online monitoring of CIP. 

 Collect sufficient experimental data to develop a predictive model 

based on least squares methods with the optimal online sensors. 

 Validate the model and determine the transferability between products 

and equipment types. 

 Trial a risk based optimisation strategy prototype  with scale up of the 

design to be implemented on site 

 Develop a control interface with current Heineken process control 

software 

 Perform final testing of the developed protocols 

5.5 Methodology 

5.5.1 Fouling 

Achieving consistency of fouling was a time constraint to the project.  The 

fouling used was required to represent the fouling which can be found on 

Heineken sites after production has been completed. This fouling does not 

come off easily with cold water, and beer soils would be considered to be a 

type two soil complexity (Goode et al, 2010). Beer bottoms were used from 

the John Smith’s Brewery in Tadcaster. The beer bottoms are a result of 

finings being added to a maturation vessel after fermentation has been 

completed. This causes all of the proteins and yeast to accumulate and sink 

to the bottom of the vessel. This resulting slurry is then taken and pressed to 

extract any remaining alcohol from it for re-working into the process to 

minimise waste. The remaining pressed bottoms then goes to a waste slurry 

tank to await removal for recycling into yeast extract food products as another 

waste minimisation process. The composition of these beer bottoms can be 



113 
 

seen in appendix 2. It is this remaining pressed bottoms slurry which has 

proven to give suitable fouling under worst case scenario cleaning conditions. 

The worst case scenario soil has been selected to get an idea of the most 

complex cleaning scenario. Once a model has been developed for predicting 

these clean types, further work can be performed to ensure that the model 

can be developed to predict cleaning end point for other Heineken soil types. 

Stainless steel 316l pipes of 2 inch diameter and 1m length were required to 

be fouled consistently and throughout the entire internal surface area of the 

pipes. This was to ensure repeatability of results and comparability when 

cleaning conditions are changed. To enable this, a rotational device was 

developed to ensure that the inner surface of the pipe could be completely 

and evenly fouled with a fixed quantity of beer bottoms. Multiple pipes were 

fouled in advance of cleaning trials to ensure that the pipes were dried 

sufficiently before performing the cleaning experiments. 

A domestic fan was placed at the end of the open ended pipes to blow 

ambient air across the inner surface area of the pipe and enable the water to 

evaporate at an increased rate. A standard operating procedure for the use of 

the rotational device has been developed to ensure the consistent fouling of 

each pipe, and can be found in appendix 21. 

5.5.2 Equipment 

Experiments were performed on a pilot plant at Birmingham University for 

improving cleaning in place research and associated processes. The plant is 

designed to be flexible to suit a variety of companies within the ZEAL 

consortium to perform research on various soils, instruments, configurations 

of pipework, and equipment.  

For the Heineken predictive model experiments, a 1m long, fouled, stainless 

steel pipe of 2 inch diameter was used in the test section area. Chemical 

solutions were made up from Diversey supplied sodium hydroxide solutions 

(containing sequestrants in addition to sodium hydroxide. See MSDS in 

appendix 20) in one of the water tanks shown (also referred to as tank 23 

throughout this section of the thesis), and the plant configuration was set to 



114 
 

recirculate the fluid via T23, rather than going to drain. A diagram of the pilot 

plant can be seen in figure 39 taken from Martin et al (2013). 

 

Figure 39: Birmingham University Pilot Plant (Martin et al, 2013) 

Note that the configuration is set up for the trials in Martin et al’s investigation 

in the diagram, and is for illustrative purposes of the idea of the plant only, 

and not the experimental configuration of the predictive cleaning model 

investigation. 

The process pumps were capable of delivering flows in the range of 0 - 3.5 

m.s-1 in 2 inch diameter pipe. Cleaning could be carried out at temperatures 

from ambient up to 80oC. The two water storage tanks have volumes of 

0.75m3  

The heat exchanger in place is for recirculating cleaning solutions from T23 

until they are heated to the desired cleaning temperature, before recirculating 
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around the test section pipework for fixed time periods, and the test section 

monitored for cleanliness after. 

There are 21 test section pipes which will be pre-fouled in advance. These 

pipes will be connected into the pilot plant using tri-clover clamps and o rings, 

and cleaned with varied parameters as specified in the given experimental 

designs. Data is then recorded from the instrumentation in place onto the 

laptop used to control the pilot plant whilst each pipe is cleaned. This data is 

saved and taken with a USB stick at the end of the experimental trials.  

The instrumentation to be used includes; turbidity probes, conductivity probes, 

temperature probes, flow meters, and a particle counter.  Due to there being 

less available test section pipes than experimental runs per visit to the pilot 

plant, and the cost implications involved with purchasing more pipes, 

necessitated pipes which are used during the early stages of the trials to be 

re-fouled during the rest of the trials. 

5.5.3 Experimental Design 

Experimental designs include variations of cleaning temperature, chemical 

concentration and flow rates to be investigated. On the first attempt of 

obtaining experimental data from the pilot plant, there were issues with; 

reaching the turbidity probe saturation point, foaming of caustic on 

recirculation, and air bubbles in the system which affected the cleaning flow 

rate. The operating procedures had to be trialled, and modifications made 

where necessary to tackle these challenges. The detailed, improved standard 

operating procedures for each of the variables to be investigated can be seen 

in appendices 22, 23 and 24. Further explanations of selections and 

modifications to the procedures are discussed in section 5.6 with the first sets 

of experimental results obtained. 

The experimental design for the following set of trials included two different 

levels of fouling, four different flow rates, and four different levels of chemical 

concentration. The design may be seen in appendix 28. 
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5.5.4 Experimental Procedures 

The standard operating procedure (SOP) for the rotational fouling device may 

be seen in appendix 21. This is consistent for every pipe that is fouled, 

although the volume of fouling inserted into the pipe may vary depending on 

the required volume within the experimental design. 

The SOPs for the pilot plant experimental runs may be seen in appendices 

22, 23, and 24. There are three separate SOPs depending on the 

requirements of the runs to be performed and the experimental design. The 

SOPs cover a run at ambient temperature with no chemicals, a heated run, 

and a run which requires chemical cleaning solution to be made up. These 

runs are repeated as required until the experiments are complete, and the 

shutdown procedures on the SOPs are followed. 

After each experimental run the pipes were visually inspected for visible levels 

of cleanliness. Visually clean has been selected as the acceptable clean level 

as in a real CIP on site, as there will be a sanitation step after the detergent 

step to ensure that the equipment is cleaned for microbial growth to an 

acceptable standard and water rinse stages after these steps. If there was a 

light residue or obviously loose particles remaining, the pipe was assumed to 

be clean based on the fact that there would always be a water flush after the 

detergent step which would remove any of these loose particles. Photographs 

were taken after each run to provide evidence for the level of cleanliness 

achieved for monitoring and analysis of the results. 

Throughout each experimental run, samples of the cleaning solution were 

taken before and after. This was to perform titrations to verify that the correct 

strength of cleaning solution had been made up and to take offline 

measurements of the particle counts to verify the online particle count 

readings. 

5.5.5 Health and Safety 

The risk assessment for the fouling device and for the experiments performed 

on the pilot plant, along with student assistant safety briefs may be seen in 

appendices 25, 26 and 27 respectively .When performing the experiments, it 

was mandatory to wear the correct PPE; this included safety goggles, gloves, 
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and a lab coat at all times when they plant was in operation. When handling 

concentrated caustic to make up the cleaning solutions, a visor and protective 

apron was required, in addition to the standard PPE. 

5.5.6 Stakeholder Overview 

It is essential to identify key stakeholders early on to ensure maximum 

awareness and support of the project, which speeds up the process of 

completion, and benefits the project by having a greater network of help 

available when challenges arise.  On completion of the final project it is 

desirable to arrange for implementation of the outcomes and achieve the 

greatest impact with minimum effort required. The stakeholder overview 

enables the outcomes to be presented and distributed effectively. See figure 

40.  

 

Figure 40: Stakeholder Overview for Cleaning Predictive Model Investigation 

The overview shows that contacts in all UK sites for Heineken as well UK 

quality and global headquarters have a vested interest in utilising the 
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outcomes of the project. There are also several suppliers who are involved to 

benefit themselves with the knowledge gained from the investigation, as well 

as providing us with the necessary materials and equipment to carry out the 

trials. In addition to this, there are two academic institutions, a research 

council, and a special interest research group involved. Together, all of these 

stakeholders are essential to the success of this project and the future 

implementation to achieve cost benefits. 

5.6 Preliminary Experimental Data Analysis 

The trials investigated the removal of thick (300 ml) beer bottoms fouling with 

cleaning solutions of different sodium hydroxide concentrations and flow 

rates. These experiments were critical to the success of the project, to 

perform the preliminary data analysis and gain an improved understanding of 

the process and interactions between process variables. These experiments 

were also important for developing the experimental and standard operating 

procedures to enable more effective trials whilst progressing through the 

project.  

Four days were spent gathering experimental data at the pilot plant. The 

instrumentation used provided data on turbidity, conductivity, temperature, 

flow and time. 

The initial experiments were performed over days one and two, and were 

carried out using route 5A which is a recirculation loop which is pumped 

around the test section only, not via any of the tanks or to drain. The system 

was filled by sending the contents of tank 23 to drain via the test section with 

a clean pipe in the test section. Then stopping, draining the system enough 

that the test section pipe was empty, and replacing the pipe with a fouled one.   

The first set of results and observations are shown in table 5 below. Flow 

rates were varied between 10, 12, and 14 m3/h, and caustic solution strengths 

were varied between 0, 0.75, and 1.5% w/w. “Max Turb Time” refers to the 

time taken for the turbidity to reach the maximum value for that experimental 

run.  
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Table 5: Set 1 of Preliminary Trial Results 

Day Run Temp 
(
o
C) 

NaOH 
Conc 
(% 
w/w) 

Flow 
Rate 
(m

3
/h) 

Repeat Max 
Turbidity 
(FTU) 

Max 
Turb 
Time 
(s)  

Total 
Time 
(s) 

Comments 

1 1 20 0 14 1 520 200 363 Not clean but 
incorrect flow 
rate. Thick 
deposit trail 
remaining. 

1 2 20 0 14 2 540 250 337 Clean. 

1 3 20 0 14 3 530 45 187 Not clean. 
Thick deposit 
trail 
remaining. 
System 
primed from 
this run on. 

1 4 20 0.75 14 1 550 45 135 Clean with 
suds 
remaining. 
Clean after 
manual rinse. 

1 5 20 0.75 12 1 545 30 132 Clean. 

1 6 20 0.75 10 1 550 40 121 Not clean. 
Fouling layer 
remaining on 
half of pipe. 

1 7 20 1.5 10 1 550 40 79 Almost clean 
with some 
residue. 

1 8 20 1.5 12 1 550 25 120 Still very dirty. 

1 9 20 1.5 14 1 535 35 129 Clean. Heavy 
fouling to 
begin with. 

2 10 20 1.5 14 2 550 35 121 Still very dirty. 

2 11 20 1.5 12 2 550 35 124 Still very dirty. 

2 12 20 1.5 14 3 550 55 309 Still dirty, 
even with 
longer 
cleaning time. 

2 13 20 0 14 4 550 65 335 Clean. 

2 14 20 1.5 14 3 190 ? 300 Clean. 
Recirculation 
through tank 
23 from this 
run. 

2 15 20 1.5 14 4 190 ? 308 Clean. Tank 
mixed whilst 
cleaning 
which 
increased 
foaming. 

 

The turbidity initially appeared to increase and decrease in a plug type fashion 

and then eventually level out at a maximum turbidity. This could also be seen 
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through the clear section of the pilot plant where large lumps of fouling would 

appear to pass until eventually the water all looked consistently dirty. This is 

as would be expected when the liquid was being recycled around the dirty test 

section piece until it was mixed with nowhere to drain. See figure 41 which 

shows the turbidity readings of run 1 and illustrates this point. 

 

Figure 41: Turbidity v Time for run 1 of Experimental Set 1 of Results on the Pilot Plant 

The first run did not clean the test section pipe, and after the second run it 

became apparent that the flow rate was not reaching the specified 14 m3/h 

until very late on in the clean. See figure 42 which shows the flow profile of 

run 2. 
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Figure 42: Flow Rates for Run 1 of Experimental Set 1 of Results on the Pilot Plant 

During the first two runs, the pump was operating very loudly, so it is believed 

that there was sufficient air within the system to cause cavitation in the pump 

and not enough liquid for the correct flow rate to be achieved.  From run 3 

onwards, the system was then primed by topping up the pipework with the 

fouled test section piece in place, up to the top until no air bubbles were 

present. This was necessary to reduce potential damage to the pump by 

cavitation as well as to achieve the correct flow rates for the experiments. 

Figure 43 shows the flow profile for run 3, and that priming the test section 

was successful in achieving the correct flow rate within a shorter time. 
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Figure 43: Flow Rates for Run 3 of Experimental Set 1 of Results on the Pilot Plant 

With the air removed from the system, the turbidity appeared to level out 

much faster with less of a plug effect, other than in the initial few seconds of 

the clean. See figure 44 of the turbidities of run 3. 

 

Figure 44: Turbidity for Run 3 of Experimental Set 1 of Results on the Pilot Plant 

The next run used caustic at 0.75 % w/w. The test section at the end was full 

of caustic suds, but by performing a manual rinse on the pipe at the sink using 

a measuring jug, the suds easily washed away. A typical plant cleaning 
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scenario would end in a final water rinse which would be drained. At this point 

it was decided that the best representation of the cleaning would be to lightly 

rinse through the pipe after each experimental run which will also account for 

any caustic suds or residue remaining due to the recycling of dirty water 

rather than a fouled pipe.  

Figure 45 shows the turbidity for run 4 using the caustic. It shows that the 

turbidity values rise much more quickly, and no plug effect could be seen. 

This could be due to the fact that the saturation point of the turbidity probe is 

at 550 FTU. 

 

Figure 45: Turbidity for Run 4 of Experimental Set 1 of Results on the Pilot Plant 

All runs with caustic showed the same turbidity behaviour as run 4 for the 

remainder of day 1. 

On day two, additional pipes were required to be re-fouled to perform more 

experiments as there were only 21 pipes fouled in advance. A fan was used 

overnight to increase the drying speed and ensure that all fouled pipes were 

dry. This does imply that pipes fouled from day 2 onwards were potentially 

fouled more heavily than those which were fouled in advance. The pipes also 

appeared to be more difficult to clean based on the comments for day 2 runs 

than from the first set of experiments, which would back up the theory of 

heavier fouling due to the fan. This will cause variation in the results, although 
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the clean times were not consistent for each experimental run, which will also 

have impacted upon the results. 

The turbidities of the cleans on day 2 behaved in the same way as those on 

day 1, but looking at the results, it became apparent at this stage that the 

probe saturation point was at approximately 550 FTU. This also appeared to 

be a point at which information about what was happening with the turbidity 

during the clean would be most helpful. A method to avoid this happening was 

required, so the last two runs of day two were done using route 9 which 

recirculates liquid from tank 23, via the test section, and back into tank 23. 

The idea was that having a larger body of fluid to recirculate would reduce the 

concentration of fouling per unit volume, and so increase the overall turbidity 

at a slower rate. Priming of the test section was no longer required for this 

cleaning method as the pressure from the head of the tank would ensure that 

air bubbles in the system would be minimised. 

Figure 46 of the turbidities of run 14 shows that the maximum turbidity 

reached throughout the clean was much lower at approximately 195 FTU. 

This provided more information about what was happening with the turbidity of 

the clean, however, the turbidity appeared to behave very differently to the 

previous experimental runs. It would be expected that the turbidity should 

continue to level out as the fouling becomes mixed into the overall body of 

fluid. A potential explanation of the increased turbidity spikes is due to 

foaming of the caustic as it is recirculated into the tank and bubbles as it 

drops from the pipe to the liquid level of the tank. 
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Figure 46: Turbidity for Run 14 of Experimental Set 1 of Results on the Pilot Plant 

Run 15 behaved in the same way as run 14, with mixing of the tank performed 

in an attempt to minimise the caustic foaming, but this had the opposite effect. 

After the modifications to improve the standard operating procedure were 

made, it was decided to develop a new experimental plan with a further three 

sets of results. The first set were completed over the remainder of day two, 

and varied flow rates between 10, 12 and 14 m3/h, with no caustic and at 

ambient temperature. Each flow rate was done in triplicate and over a 

consistent time of five minutes to improve the accuracy of results. The 

turbidity at the start of each experimental run was then recorded so that the 

change in turbidity after each run could be monitored. Table 6 shows the 

observations made for the second set of experiments. 
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Table 6: Set 2 of Preliminary Experimental Results 

Day Run Temp 
(
o
C) 

NaOH 
Conc  
(% 
w/w) 

Flow 
Rate 
(m

3
/h) 

Repeat Max 
Turb 
(FTU
) 

Start 
Turb 
(FTU) 

Level 
Time 
(s)  

Total 
Time 
(s) 

Comments 

2 1 20 0 10 1 35 0 75 315 Clean. All runs 
cleaned for 5 
minutes after this 
run. 

2 2 20 0 12 1 52 9.8 ? 333 Clean. 

2 3 20 0 14 1 84 23.2 100 301 Clean. 

2 4 20 0 10 2 100 38.5 95 300 Not clean. Heavily 
fouled to begin. 

2 5 20 0 12 2 120 51.7 70 301 Clean. 

2 6 20 0 14 2 213 64.9 80 348 Clean after manual 
rinse. Heavily 
fouled to begin. 

2 7 20 0 10 3 350 105.0 110 300 Not clean. Large 
fouling deposits 
remaining. 

2 8 20 0 12 3 250 133.9 60 300 Clean. 

2 9 20 0 14 3 350 151.5 165 301 Clean. Final 
turbidity 214 FTU. 

 

One batch of a known volume of liquid in tank 23 was used for each 

experimental set, which consisted of 9 runs. The liquid level in tank 23 was 

also filled to be higher than the inlet pipe on the recirculation loop in an 

attempt to minimise foaming during experiments. 

The turbidity of run 1 of the second set of experiments may be seen in figure 

47. The turbidity now appears to increase rapidly to a peak, then rapidly drop 

and level out at a higher value than the starting turbidity. It is believed that the 

peak is the initial plug where the bulk of the fouling is removed in the first 

minute of the experiment, and the drop and levelling out due to the mixing of 

the fouling in the tank with the larger body of fluid. 
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Figure 47: Turbidity for Run 1 of Experimental Set 2 of Results on the Pilot Plant 

All experimental runs from the second set of experiments exhibited the same 

behaviour which implies that this method has improved repeatability, except 

for that of run 2 which can be seen in figure 48 below: 

 

Figure 48: Turbidity for Run 2 of Experimental Set 2 of Results on the Pilot Plant 

The initial plug part of the behaviour was still observed, however, the turbidity 

did not level out within the time of the experiment. The pipe cleaned on this 

run was noted as being more heavily fouled than others at the start, so 

potentially it took longer to clean, but the pipe was clean at the end of the run.  

0

5

10

15

20

25

30

35

40

1

1
7

3
3

4
9

6
5

8
1

9
7

1
1

3

1
2

9

1
4

5

1
6

1

1
7

7

1
9

3

2
0

9

2
2

5

2
4

1

2
5

7

2
7

3

2
8

9

3
0

5

Turbidity (FTU) 

Time (secs) 

0

10

20

30

40

50

60

1

1
8

3
5

5
2

6
9

8
6

1
0

3

1
2

0

1
3

7

1
5

4

1
7

1

1
8

8

2
0

5

2
2

2

2
3

9

2
5

6

2
7

3

2
9

0

3
0

7

3
2

4

Turbidity (FTU) 

Time (secs) 



128 
 

The pipes cleaned for runs 4 and 10 did not clean, but they were also noted 

as being heavily fouled, as was the pipe used for run 6 which did clean. Run 6 

had a higher flow rate which would be expected to clean better. Run 7 was 

not heavily fouled and did not clean, but it was on the slowest flow rate which 

would also be expected not to clean as well. There does not appear to be an 

obvious relationship between the turbidity behaviour and the cleaning time at 

this stage, but as times are fixed, it is difficult to confirm this.  An experimental 

plan with varied times over controlled parameters would be useful to further 

analyse these results. 

It is unknown how the suspended fouling within the liquid affects its cleaning 

capabilities. Towards the end of an experimental set, as the starting turbidity 

increases, the cleaning fluid will have more fouling dissolved in it, which may 

impact upon how well it will perform at cleaning. Therefore, pipes cleaned 

later in a succession of experimental runs using the same batch of cleaning 

detergent, may be worse cleaned as a result of the increased quantity of 

suspended solids within the detergent. This needs to be monitored carefully in 

future experiments. 

The third set of experiments was performed on day three, varying the same 

flow rates with no caustic at 30 oC. The observations made for experimental 

set 3 can be seen in table 7. 
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Table 7: Set 3 of Preliminary Experimental Results 

Day Run Temp 
(
o
C) 

NaOH 
Conc  
(% 
w/w) 

Flow 
Rate 
(m

3
/h) 

Repeat Max 
Turb 
(FTU
) 

Start 
Turb 
(FTU) 

Level 
Time 
(s)  

Total 
Time 
(s) 

Comments 

3 1 30 0 10 1 37 0 120 306 Not clean. Thick 
residue remaining. 

3 2 30 0 12 1 87 10.0 150 301 Not clean. More 
residue remaining 
than run 1. 

3 3 30 0 14 1 120 31.8 120 301 Cleaner than run 1 
and two with large 
deposits. 

3 4 30 0 12 2 255 65.0 160 301 Some residual dirt. 
Heavy, inconsistent 
fouling to begin. 

3 5 30 0 14 2 312 115.5 150 301 Almost clean after 
manual rinse. 

3 6 30 0 10 2 364 140.9 190 301 Bottom half of pipe 
clean, residue 
remaining on top. 

3 7 30 0 14 3 448 226.4 60 301 Bottom half of pipe 
clean, residue 
remaining on top. 

3 8 30 0 10 3 445 342.6 110 304 Clean. Matlab error 
meant cleaning 
went on for longer. 

3 9 30 0 12 3 500 380.2 180 301 Clean.  

 

The turbidities began by showing similar behaviour as those for the second 

set of experiments. See figure 49 for run 1 of set 3. The only difference is that 

the drop from the peak of the maximum turbidity is more gradual for the 

turbidity to level out. 
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Figure 49: Turbidity for Run 1 of Experimental Set 3 of Results on the Pilot Plant 

As the number of experimental runs increased, the maximum turbidity peak 

became less prominent, and the turbidity also did not appear to drop much 

below the maximum towards the end of the experimental run. See figure 50 

for run 9 of set 3. 

 

Figure 50: Turbidity for Run 9 of Experimental Set 3 of Results on the Pilot Plant 

The maximum turbidities recorded for the third set of experiments were much 

higher than those recorded for the second set with ambient water. It is 
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believed that this is due to the higher temperature of the water increasing the 

solubility of the fouling within, therefore resulting in a cloudier appearing liquid. 

The pipes cleaned on day three were much more difficult to clean. This could 

be partly due to the pipes having a longer exposure time to the fan for drying, 

and potentially producing heavier fouling again, but also could be due to the 

cleaning water having more fouling dissolved within it, impacting on its ability 

to clean more pipes.  

Due to the pipes not having a sufficient amount of time on the rotatory device 

to dry, but continuing to be fully dried with the fan once removed from the 

rotary device, much of the fouling is dried with a thicker layer at the bottom of 

the pipe. See figure 51. 

 

Figure 51: Illustration of Fouling Distribution in 2 inch Diameter Pipes without 

Rotational Device Used until Fouling Fully Dried 

After observing that the fouling was forming in this way, care was taken to 

ensure that the line of worst fouling was placed at the bottom part of test 

section, and if any deposits remained it could be noted if they were from this 

thicker fouling as they would be in the same location of the pipe at the end of 

the clean.  
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Runs 6 and 10, were clean on the bottom half of the pipe, but not on the top 

(see figure 52) which is interesting as the worst fouling was placed at the 

bottom. This could imply that fully developed turbulent flow was not reached 

on these experimental runs, although the flow data does not appear to exhibit 

differences to the other runs. These runs were also of the highest flow rate, 

and no observations were made of cavitation being heard from the pump. 

 

Figure 52: 2 inch Diameter Pipe with Top Half not cleaned after Experimental Cleaning 

Run 

On run 8 there was a Java runtime error which caused Matlab to crash, so an 

emergency stop was required to switch off the pump, but some of the valves 

failed to close. This resulted in the pressure from the head of the tank 

continuing to push liquid through the test section to drain until the drain could 

be closed manually which meant that run would have been exposed to a 

longer cleaning time than the data recorded.   

Overall, the third set of experiments generally showed that a higher flow rate 

cleans better, and that warmer water does not appear to clean as well as 

ambient water on a recirculation system. 

The fourth set of experiments were performed on day four, with the same flow 

rates varied at ambient temperature with 1 % w/w caustic solution. The fouled 

pipes would also have had a longer time of exposure to the fan for drying, so 

cleaning was expected to be more difficult. The observations made can be 

seen in table 8. 
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Table 8: Set 4 of Preliminary Experimental Results 

Day Run Temp 
(
o
C) 

NaOH 
Conc  
(% 
w/w) 

Flow 
Rate 
(m

3
/h) 

Repeat Max 
Turb 
(FTU
) 

Start 
Turb 
(FTU) 

Level 
Time 
(s)  

Total 
Time 
(s) 

Comments 

4 1 20 1 10 1 27 0 180 300 Not clean. Thick 
trail residue along 
bottom. 

4 2 20 1 12 1 54 5.1 150 300 Not clean. Deposits 
remaining on 
bottom. 

4 3 20 1 14 1 81 6.1 125 300 As run 2. Cleans 
run for 10 minutes 
after this run. 

4 4 20 1 14 2 94 15.8 220 599 Clean after manual 
rinse. 

4 5 20 1 10 2 80 25.5 160 606 Almost clean. Two 
small deposits 
remaining. 

4 6 20 1 12 2 80 37.7 200 601 Clean with the 
exception of one 
deposit. Matlab 
error meant clean 
ran for longer. 

4 7 20 1 12 3 172 49.5 125 601 Mostly clean with 
slight residue. 

4 8 20 1 14 3 301 76.1 100 600 Clean after manual 
rinse. 

4 9 20 1 10 3 260 108.9 130 600 Clean with some 
small deposits. 

 

After first two experimental runs, the pipes were not completely clean, so it 

was decided to increase the cleaning times to 10 minutes for this final set of 

experiments to see how this effected the cleans. 

Most of the pipes were cleaned, but with deposits of fouling remaining on 

bottom. This is believed to be more of an issue due to the inconsistent fouling 

trails which were left at the bottom of the pipes, as the rest of the pipes were 

clean. See figure 53.  
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Figure 53: 2 inch Diameter Pipe with Thick Deposit Trail Remaining after Clean 

The turbidity behaviour appeared to be the same as that observed with 

experimental set 2, with a rapid maximum peak, then a rapid drop and the 

turbidity levelling out for the remainder of the clean. See figure 54 for run 9 of 

set 4.  

 

Figure 54: Turbidity for Run 9 of Experimental Set 4 of Results on the Pilot Plant 

Experimental set four showed that caustic appears to clean better than water, 

which is as would be expected although the runs did have longer cleaning 

times. These results cannot be relied upon quantitatively, due to this variation 

in cleaning time (as it was supposed to be fixed the same as the other 

experimental runs), however; qualitatively, they do give an indication of what 

to expect in future. The maximum turbidity for caustic at the end of the set of 
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experiments was lower than for hot and cold water which would be expected 

as it would create the least soluble solution of the three cleaning liquids. 

By the end of the experimental trials, the standard operating procedure of the 

pilot plant for this soil had been improved, as well as the fouling methods to 

produce consistently fouled pipes. The final sets of experiments were also 

showing good repeatability. 

5.7 Detailed Experimental Data Analysis 

5.7.1 Further Trial Information 

Following on from the trials completed for the preliminary data analysis, 

further trials were required to broaden the depth of information on the 

available process variable parameters and to increase the range of 

information with the use of an online particle counter. The same experimental 

method can be seen in the SOP which was developed as a result of the first 

trials, but with the additional use of the particle counter which is run alongside 

the equipment.  

Three further sets of trials were performed over two separate periods. The 

first set was over two weeks in July 2013, with the first use and set of data 

from the online particle counter. The latter two sets of trials were performed in 

spring and summer 2014, however both sets of trials were unsuccessful so 

the data collected was not sufficient to be used within the detailed 

experimental analysis. The experimental design for this data may be seen in 

appendix 28. 

The trials in spring 2014 were unsuccessful due to a technical issue with the 

particle counter. The self-help and supplier instructions were followed in an 

attempt to rectify the issues, but these attempts were unsuccessful. There 

were also issues with data storage on the particle counter using a flash card 

and card reader. Neither the particle counter nor data storage methods were 

sufficiently robust for continuous industrial use. The particle counter user 

interface is complex and awkward to use. This would not be suitable for use in 

an industrial application by a process operator. There is an opportunity for 

improvement to the device by the supplying company. Further details of the 
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operational observations of the particle counter are discussed later in this 

chapter. The trials were stopped early, and the particle counter returned for 

repair. 

The trials in summer 2014 were intended to capture information with 

variations in cleaning temperature. These trials were unsuccessful due to 

maintenance issues with the steam supply at Birmingham University. Due to 

this, there was no feasible, cost/time effective manner to heat the cleaning 

chemical tanks up to the required temperatures. These trials were also 

stopped early as a result of this. Unfortunately, there was no further 

experimental trial time remaining on the engineering doctorate at this point. 

However, there was sufficient data captured in the July 2013 trials to progress 

with the project. 

5.7.2 Data Mining of Results 

The analysis of the July 2013 trials was performed by Tait et al (2013). Tait 

investigated data mining methodologies and developed a method to make 

modelling predictions for the end point of a cleaning step based on 

multivariate statistical process control (mSPC). This method took into account 

the batch nature of data collection from the process. Tait’s techniques have 

been incorporated into the report to develop the model predictive control, and 

the results of the data mining methodologies have been used to investigate 

further into the industrial application of the model, and to develop a base cost 

benefit analysis and novel conclusions, based on the use of a tool of this 

nature for cleaning in place monitoring. This section of the report will briefly 

outline the work which was done by Tait, to complete the description of the 

project investigation. 

The data collected was used to characterise two key progressive stages of 

fouling removal during a cleaning process. These steps involved bulk removal 

of the initial fouling, followed by residual removal of the remaining fouling until 

the process equipment is cleaned. 

 Pre-screening and pre-treatment techniques were used to maximise the 

value of the output from the data. Techniques considered included methods to 
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account for missing data, determination of outliers, and filtering of noise from 

the response variables. 

The results of the trials in July 2013 showed that there is a bivariate 

relationship between the input variables. This relationship showed that NaOH 

is less effective with higher flow rates, than when the flow is slower, which 

enables greater residence time for the NaOH to have a cleaning effect on the 

fouled equipment. Data from the particle counter was shown to be more 

informative than other data alone based on the distinctive correlation between 

particle count within the cleaning solution and level of equipment fouling 

remaining. This is what was expected based on previous trials and 

information provided from previous work undertaken in the ZEAL consortium. 

The definition of the bulk and residual soil characteristics were able to be 

incorporated into the data analysis by combining the information from 

recorded data with basic cleaning mechanism knowledge. A two parameter 

curved fitting model which defines the relationship between these two fouling 

removal characteristics may be seen in equation 9: 

𝑃𝑓 = 𝑃𝑎𝑣𝑔 [1 − (
𝑡

𝑇
)

𝑐𝑏

] [1 − 𝑐𝑟 (
𝑡

𝑇
)

2

] 

Equation 9: Two Parameter Curved Fitting Model 

Where: 

Pf is the value of fitted curve at time t 

cb > 2 is the initial bulk removal parameter 

0 < cr < 1 is the residual clean parameter 

Pavg is the average cumulative particle count over the last 10 data points 

t is cleaning time 

T is cleaning temperature 

An ideal clean would comprise of a large bulk removal parameter and a small 

residual cleaning parameter. 
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Based on the results of the trials, it would appear that increasing the flow rate 

has the greatest impact on the bulk fouling removal, whereas NaOH 

concentration had a lower impact on this. NaOH did however require a 

minimum of 0.5% w/w concentration to clean effectively. This justifies the 

claims made in chapter 4 for the determination of the minimum NaOH 

concentration required to clean. This also verifies that there is no significant 

variation in cleaning results when using supplier made up NaOH solution with 

sequestrants, and manually made up NaOH solutions. 

The optimal conditions to provide the best results, when accounting for the 

available cleaning parameters, were to have a cb >> 2 and a cr → 0. Cost 

implications to achieve these parameters must also be accounted for, so an 

optimisation is required to maximise cleaning, but reduce cleaning costs, 

without negatively effecting cleaning. 

The particle counter data may be used to provide a strong indication of the 

cleaning end point. Based on the process being in recirculation, the total 

particle count will cumulatively increase until a fixed point has been reached. 

It is at this point that there are no further particles being removed from the 

equipment fouling and adding to the particles present in the cleaning solution. 

Observing the data, there was some variability and a slow gradual increase in 

particle count once the fixed point has been reached. This is believed to be 

due to the recirculation of the fluid and turbulence causing further breakup of 

the particles in the cleaning solution, which will then show as an increase in 

quantity of particles, despite not having an increase in mass or volume of 

particles present in the solution. 

There is one potential issue with this method of monitoring, as there is no way 

of knowing if there are fouling particles remaining adhered to the equipment 

surface. The only way to improve confidence of using this method is to gather 

further data on trials on different equipment and sites, and to monitor how 

clean the equipment is after cleaning, and after varied times of cleaning once 

the maximum particle count of the cleaning solution has been reached. This is 

not particularly feasible in practice, although the theory behind the predictive 
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cleaning is interesting and holds great potential for industrial benefit, if a more 

robust monitoring and measurement system were applied. 

5.8 Industrial Application of Results 

Application of the predictive model with a user friendly control interface will 

enable an effective process cost optimisation to be performed on a clean by 

clean basis. This continuous optimisation process will minimise the cleaning 

time of individual equipment, whilst ensuring that quality requirements and 

effective cleaning is maintained. As a result of this, costs for down time, 

cleaning time, chemical, water, energy, and effluent will be reduced. The 

environmental impact of the factory will also be reduced as a result of 

reducing energy consumption and chemicals going to effluent. 

If this were to be developed into a marketable product, this would allow 

companies to clean their equipment with improved confidence in the quality of 

their cleaning. This will also remove the guesswork from empirical 

determination of cleaning process parameters. There is a high level of risk 

around these methods due to the uncertainty that the equipment is being 

cleaned effectively. It will not be apparent that cleaning parameters are 

insufficient until a microbial contamination issue arises; which results in further 

costs, product losses/reworks, and down time for maintenance/deep cleaning 

with stronger chemicals to resolve the issue. 

To develop a product which is suitable for industrial requirements; there are 

some initial needs which require addressing. The particle counter itself is not 

sufficiently robust for industrial application. There were several issues which 

occurred within the relatively small sample of experimental trials. These 

issues were related to the internals of the equipment becoming blocked, and 

also saturation levels of the device being reached. An appropriate device 

cleaning/maintenance method requires developing to prevent reoccurrence of 

this. The device also needs to be appropriately sized for the size and quantity 

of particles which will be passing through it, in addition to ensuring that it is fit 

for purpose when considering the abrasive nature and concentrations of the 

chemicals which flow through it. The device is currently operated at 10ml.min-1 

which is far too low when considering industrial flows at Bulmers of 
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approximately 7hl/min-1. The attachments to the equipment for sampling need 

to be adapted to account for the pressure within the system and instil 

confidence in the operator that they will remain securely attached throughout 

the process operation, as there were several times when the connection failed 

in the pilot scale trials. Flow control of the sample stream is essential to 

ensure accuracy of the readings; this is another item which needs more 

simple operation. 

The user interface of the particle counter requires significant attention from 

the operator when the trial is running. This is not an effective way to operate a 

plant as it is not difficult to make a mistake, and will require a lot of time to 

operate, potentially resulting in an increased requirement of manpower. The 

manpower costs and increased process difficulty will decrease the overall 

benefits from the product. Development of an online control interface which is 

compatible with the current SCADA operating system will resolve this. Data 

storage should be achieved with a current, efficient storage method. Flash 

cards have a small capacity, and are susceptible to physical damage which 

will also result in inefficient processing. 

Although the product will improve confidence of cleaning for companies when 

in operation, before this can be developed, it is essential to ensure that there 

is confidence that the predictions are correct. This can be realised by 

collecting significantly more data on this; performing further pilot trials which 

account for additional fouling and temperature variation, as well as full 

industrial scale trials over several different sites, producing multiple products. 

Once the challenges have been addressed, and sufficient data and trials have 

been performed, a prototype product may be developed and tested rigorously 

through industrial scale site trials. A marketable product with potentially large 

scale cost benefits for the brewing industry (as well as the wider food and 

drink and consumer goods markets) may be created. The cost to bring this to 

market and implement throughout customer sites could be significantly less 

than the cost benefits made to the companies. There is a potential to take this 

product to market as a separate business venture with a significant return on 
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investment, dependent on the use/sale of the intellectual property which has 

been produced.  

Further technology developments once the product has been developed will 

be required in order to ensure compatibility with the wider markets. This could 

be built into a business plan for future investment as the business grows, so 

as to reduce the market risk. This is all pre-emptive planning based on the 

assumption that the product development will be successful, the challenges 

can be reduced significantly enough to minimise the impact upon the overall 

product, the target market will want the product, and that the financial benefits 

will be great enough to result in sustainable business growth. 

5.9 Cost Benefit Analysis 

It has not been possible to develop a detailed cost benefit analysis on this 

investigation due to the fact that there have been no site trials or prototype 

testing. Without these trials, it is not possible to quantify the magnitude of 

savings. 

It is, however, necessary to quantify the benefits of this investigation before 

moving forward with further research, trials, and potential industrial application 

and product development. A theoretical example, based on site knowledge 

and experience has been developed to give an overview of the potential 

savings to be made. The example compares the costs, flow rates, and 

consumptions which were used throughout the benchmarking project in the 

early phases of the EngD. This will maintain consistency between results, 

although inflation and cost increases by suppliers may vary the predicted 

savings from this report. 

The example includes a one minute time saving per cleaning step. Based on 

these results, an approximation of the benefits to be obtained may be made. 

Unfortunately, no further detail into these savings can be provided as the 

times to be saved are unpredictable without any site trials in place.  

The initial benchmarking work that was done including downtime costs may 

be seen in detail in electronic appendix 1. The case study with one minute 

saving per cleaning step may be seen in detail in electronic appendix 5. 
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These may then be crosschecked against each other to quantify the 

theoretical benefits of the case study. It has been assumed that the 

relationships between thermal energy, water, chemicals, and electrical usage 

all individually have a linear relationship between their respective 

consumptions and cleaning time. 

It can be seen that a reduction of just one minute per cleaning step on each 

piece of equipment will save a total of £18,400 per week or an average of £7 

per clean. This equates to an approximate total of £1,000,000 per annum with 

a 4% saving on utilities, 11% on chemicals, and a 4% saving on down time. 

The potential savings for this project are very high based on this small 

example case study. In addition to the cost savings, the reduced cleaning 

times will also result in an increased plant capacity which also has a cost 

benefit. This is also very difficult to calculate without further knowledge of the 

actual cleaning times to be saved. 

These numbers represent the potential benefits which may be large numbers. 

Unfortunately, they cannot be used to estimate realistic savings without 

further site trials and prototype testing. However, they do indicate that each 

site could expect a great cost benefit, and that continuation to progress with 

this project is worthwhile. 

5.10 Summary of Experimental Conclusions 

The following conclusions have been formed as a result of this investigation: 

With regards to the fouling procedures: 

 The consistency of fouling for the completed experiments was poor, 

and makes the overall results unreliable. It is essential that fouling 

is as consistent as possible for future experiments. These 

experiments also need to be repeated with consistent fouling. 

 A fan blowing ambient air though the pipe on the rotary device will 

speed up drying of the fouling, and enable fouling consistency to be 

improved. 
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With regards to the use of the equipment and the experimental procedures: 

 Air in the cleaning system causes pump cavitation which effects the 

cleaning flow rate and cleaning abilities of the system. Cleaning by 

recirculating through the supply tank or priming the pilot plant by 

topping up the pipework to remove all air bubbles resolves this. 

 Caustic suds and light residues of fouling may remain in the test 

section which can be rinsed away easily with a manual rinse after 

runs. This is representative of a final rinse on a real plant cleaning 

scenario. 

 The Ecolab turbidity probe saturation level is at 550 FTU. This is the 

point of interest when the cleaning is recirculated via the test 

section alone, so a more suitable cleaning route is to recirculate the 

liquid via tank 23 with a larger overall body of fluid. 

 The standardisation of pipe fouling and operating procedures 

improves the repeatability of results 

 

With regards to the experimental results of the investigation: 

 Turbidity increases rapidly as cleaning commences and the first 

plug of fouling and cleaning liquid passes the probe. The turbidity 

then rapidly drops, and levels out at a consistent rate. There is not 

yet enough evidence to link this behaviour to the state of 

cleanliness and time taken to clean the pipe.  

 Longer cleaning times and stronger caustic solution strengths give 

better cleaning results. 

 Higher temperatures improve solubility of fouling which increases 

the turbidity of the cleaning solution at a faster rate. More dissolved 

fouling potentially affects the cleaning abilities of the fluid. 

 Using a predictive model to determine the end point of clean is 

possible with the use of multivariate curve fitting. 

 There are two progressive cleaning stages of fouling removal which 

have been identified. 
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 Sodium hydroxide is less effective as a cleaning detergent when the 

cleaning flow rate is higher. This is believed to be due to the 

reduced residence time of cleaning detergent per unit surface area 

which gives the chemical less time to break down the residual 

fouling on the pipe surface. 

 A two parameter curved fitting model may be used to define the 

relationship between the two identified fouling removal 

characteristics. 

 An ideal cleaning scenario will consist of a large bulk removal 

parameter and a small residual cleaning parameter. 

 Cleaning flow rate has the greatest impact on bulk fouling removal. 

 The minimum NaOH concentration required to clean this soil type 

effectively is 0.5% w/w. This confirms the theory which was 

established in Chapter 4 around the investigation of the maximum 

carbonate and minimum carbonate strengths required. 

 Sequestrants provide no additional cleaning benefit to the detergent 

effects of NaOH.  

 Optimisation of individual cleaning processes is required to 

maximise the cleaning effects and efficiency, whilst remaining cost 

effective. 

With regards to the use of the particle counter for the predictive model: 

 Particle count is an effective monitoring system for determining is 

the removal rate of fouling. This could be combined with information 

from other measurements to determine how clean equipment is 

throughout the cleaning process 

 The particle counter used for the experiments is currently not robust 

enough for industrial application 

 The control interface for the particle counter needs to be more 

simple and user friendly for process operators 

 The breaking up of fouling particles which have already removed 

and are in recirculation can impact upon the results of the particle 

counter readings, because it measures only count and does not 
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relate to total mass of particles in solution. This can be accounted 

for mathematically in the monitoring and control process. 

 There is uncertainty within the system as to the quantity of particles 

which may remain adhered to the equipment surface after a fixed 

period with constant particles. This can be rectified by obtaining 

further empirical data and performing trials to improve the 

confidence in the system. 

 Once the uncertainty around particles remaining in equipment has 

been resolved, this process will improve confidence in cleaning 

ability of equipment and reduce the likelihood of microbial 

contamination outbreak. 

With regards to potential business developments as an outcome of the 

project: 

 Improvement and development of a future marketable product could 

be possible 

 The completion of this investigation and development into a site 

compatible product could reduce environmental impact for 

companies as well as associated cleaning costs by optimising the 

cleaning times. 

 The successful development of this product on site could result in a 

marketable product which could be modified slightly for customers 

outside of the brewing industry in food and drink, consumer goods 

and potentially other industries.  

 Further technological and market research would be required to 

develop the marketable product, and an agreement for the use of 

the intellectual property would need to be reached.  

 An improved cost benefit analysis is required in further 

investigation, and to develop a business plan 

 A simple investigation into the cost savings to be made showed that 

these savings could be substantial, however much further work is 

required to verify this. 
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5.11 Recommendations for Future Experimental Work 

This project requires further investigation for determination of effectiveness 

and benefits to justify industrial application. Once sufficient justification has 

been developed, work should be done towards implementation to achieve the 

cleaning and cost benefits. 

Further investigation points include: 

 Collection of experimental data on the pilot plant to include heated 

cleans at varying temperatures ranging from ambient to 50oC, which 

can then be incorporated into the predictive model to account for the 

effect of temperature on fouling removal 

 Collection of experimental data on the pilot plant to include different 

brewery fouling types from across the Heineken product ranges to 

account for product and site variability, which can also be incorporated 

into the predictive model. This should include cider lees, lager brands, 

cider brands, and ale brands. This will allow the model to be 

transferred to different products, or additional product specific models 

to be developed 

 Trials on the pilot plant to develop a method with increased confidence 

that the end result is clean. This will require investigation into additional 

measurement methods and verification steps. The methods and steps 

should consider practicality and scale for application in an industrial 

environment. 

 Site trials for improved confidence in the scaled up site design, by 

installing the measurement devices on site and recording data for 

analysis and verification offline 

 Development of a user interface to be applied on site for operators to 

control as part of the CIP process. This could be done using a 

graphical user interface on a programme such as Matlab. Ultimately 

this user interface will need to be compatible with SCADA 

 Development into a useable product which could potentially have some 

commercial viability for other companies within the food and drink 

industry, and possibly into other industries which use CIP 
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Chapter 6. Thesis Conclusions 

Product quality is of great importance to the business, and when not properly 

sustained, can have a major impact on the success of a food and drinks 

manufacturer. By utilising an engineering doctorate student for a relatively low 

cost to perform research, companies may gain a substantial return on 

investment with a short payback time. In doing this, the company also 

provides the research engineer with the opportunity to gain sufficient industrial 

experience. This will enable them to add value to the company as an 

employee immediately after graduating with the EngD, should they choose to 

recruit them into the business. 

The use of the benchmarking tool after specific tailoring to meet process 

requirements of an individual site is a powerful tool. It will enable industrialists 

to define and measure their cleaning process inputs, allow analysis of their 

process, implement improvements with quantifiable benefits, and achieve 

enhanced process control. The tool fundamentally provides an opportunity to 

model key process cost and waste contributors so that improvements may be 

focussed on the areas which will offer the greatest benefits. The 

benchmarking which was completed within the scope of this EngD project 

identified a quick win saving of £13,000 per annum. 

The investigation around degradation of sodium hydroxide as a cleaning 

detergent has resulted in the identification of some clearly defined cleaning 

requirements. These specifications can be utilised practically with immediate 

effect to ensure that effective detergent cleaning is taking place at all times 

with an improved level of confidence. This work also demonstrated that the 

current detergent cleaning control and measurement system on site is not 

adequate in the existing conditions, and offers a cost effective alternative. 

Implementation of these findings on one site will provide cost savings for the 

company of £959,000 per annum in operational costs and £330,000 in capital 

due to increased capacity from freed up production time. 

The project for the development of the cleaning predictive model saw an 

innovative method for replicating brewery fouling developed which enabled 
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consistency, as well as reproducibility and repeatability of experimental 

conditions. This is extremely important when developing a mathematical 

model from results which are influenced by variability of this nature.  An 

experimental procedure was developed to ensure repeatability of a variable 

natured set-up of process equipment and also to remove inconstant 

conditions such as air in the system, reaching measurement probe saturation 

points, and cleaning of the residual fouling within the recirculation loop. 

The experimental results verified the cleaning limits which were provided by 

the chemical degradation investigation. This is in addition to showing other 

relationships between the cleaning parameters and fouling removal steps 

which confirm that a predictive model for the cleaning end point is possible to 

develop. A cleaning model can also be used with a cost optimisation to 

provide the optimal cleaning effectiveness for the lowest operational costs. 

The use of a particle counter for monitoring a cleaning process proved to be 

effective; however, the limited robustness and availability of online particle 

counters conclude that this is currently not appropriate for industrial use. With 

some improvement work on this equipment, this would be a key factor in the 

development of an industrial functional predictive model.  

There is an element of risk involved in the predictive model at present, as 

there is a lack in confidence that the cleaning end point has been reached. 

This requires further experimental work which is discussed in the future work 

section to reduce this risk and improve the effectiveness of the model. 

The development of a low risk, operative, predictive model would yield a 

potentially globally marketable product which could provide cost, production, 

quality, and environmental benefits for companies within the food and drink 

industry. To enable this, IP ownership must be negotiated, and a detailed cost 

benefit analysis completed to develop a robust business plan and ensure that 

return on investment is sufficient. 
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Chapter 7. Recommendations for Future Work 

Benchmarking should always be used in industry regardless of 

company/sector. This will enable industrialists to identify potential process 

improvements and provide a measurement system in order to quantify the 

benefits of any process changes. Recommended process changes should be 

implemented to achieve the already identified benefits around the areas of 

recovering and recycling CIP rinse water, and optimising the sodium 

hydroxide detergent steps to reduce waste and improve cleaning capabilities. 

All learning from this work and previous process knowledge and research 

should be considered when developing new CIP sets for current expanding 

and future developing sites. 

The sodium hydroxide investigation may be taken further to determine the 

relationship between sodium hydroxide and sodium carbonate and the effects 

on their cleaning efficacies when mixed together in varied volumes. It would 

also be interesting to find their saturation points in solution and monitoring 

how this affects cleaning capabilities within the cleaning solution when either 

of their respective saturation points is achieved. An understanding of the 

impact of interrupting the Toftejorg cleaning heads mid cycle would be 

beneficial and provide an incentive to avoid these interruptions in future if it is 

proven that they are as negatively impacting on the process cleaning 

capabilities as it is believed and stated by the cleaning head suppliers. This 

would involve setting up a small scale tank cleaning rig and monitoring the 

impact when interrupting cleaning with a suitably sized cleaning head. The 

most beneficial area to investigate around sodium hydroxide cleaning would 

be to find a way to remove the root cause of the problem. This could involve 

either cleaning with a detergent that does not react with carbon dioxide, or 

finding an effective method to remove residual carbon dioxide from the tanks. 

The cleaning predictive model needs significant further development before it 

is ready to be implemented on site. This will involve pushing the boundaries of 

the experimental design by including additional variable parameters, such as 

temperatures and different levels and types of fouling. Scaled up site trials are 

required to be completed, and a user friendly interface which is compatible 
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with the current site control software must be developed. The successful 

completion of this work could result in a marketable product which could gain 

substantial return on investment with the development of a robust business 

plan.  

Other interesting areas of investigation which are relevant to this EngD project 

are: 

 The impact of cleaning complex geometries and how they will affect the 

output of the predictive model. 

 The efficacy of acid sanitisers for cleaning process equipment. 

 Tank cleaning and the effect that this has on the output of the 

predictive model.  

 A study of the optimal type of cleaning spray head based on cost and 

cleaning effectiveness. 

 A detailed study into alternative cleaning chemicals which may be used 

more cost effectively, particularly those which do not degrade with 

exposure to carbon dioxide. 

 An investigation of purging equipment with nitrogen to remove carbon 

dioxide before the sodium hydroxide detergent cleaning step is 

performed. 

 An investigation into regenerating sodium hydroxide and carbon 

dioxide from sodium carbonate to recycle them both into the cleaning 

detergent and bottling plant respectively. 
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Appendices 

Appendix 1 – Composition of Cider Lees  

 

The following details have been taken from Heineken NV records of lab 

analysis on cider lees (Welten, 2010) 

Aluminium  28 mg/kg 

Calcium   210 mg/kg 

Iron    17 mg/kg 

Magnesium  66 mg/kg 

Potassium  730 mg/kg 

Phosphorous  1200 mg/kg 

Phosphate (PO4) 3800 mg/kg 

Phosphate (P2O5) 2800 mg/kg 

Sodium  85 mg/kg 

Sulphur  310 mg/kg 

Sulphate  920 mg/kg 

Nitrate   7.1 mg/kg 

Ash Residue  500-550oC 0.54% m/m 

Moisture  83.9 m/m 

Chloride  <0.020% m/m 

Protein  5.40% m/m 

Total Fat  0.72% m/m 

Carbohydrates 9.4% m/m 

Energetic Value 279 kJ/100g 

Energetic Value 66.4 kcal/100g 

Solids   11.5% 

Fibre, alcohol, organic acids, and polyols have not been taken into account. 

The energetic value has been calculated from hydrocarbons, fat, and protein.  
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Appendix 2 – Composition of Beer Bottoms 

 

The following composition details have been taken from three separate 

analyses provided by Bryant (2016), Swuste (2016), and King (2016) 

“The maturation tank bottoms at Tadcaster are a variable mix of the following 

from highest to lowest content; 

 

Yeast/isinglass complex- mostly ale but some lager. Isinglass is added at 1 

pint to barrel (3.5 millilitres per litre). 

Auxiliary finings/protein complex - auxiliary is added to green beer ex 

fermenter at 0.5 pint per barrel (1.75mls per litre) 

Silica hydrogel/protein complex - silica hydrogel is added at 44 grams per litre 

to green beer ex fermenter). 

 

Isinglass is pure collagen (a protein complex), auxiliary finings at Tadcaster is 

polymerised alginate based and silica hydrogel is formed from polymerised 

silica monomers. 

 

The yeast is mainly viable unlike that of cider yeast lees.” Bryant (2016) 

 

Solids 25% w/v  

Swuste (2016) 

 

Chloride (mg/l)  119 

Sulphate (mg/l)  274 

Magnesium (mg/l)  25.7 

Potassium (mg/l)  47.3 

Sodium (mg/l)  108 

Zinc (mg/l)   40 

King (2016) 
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Appendix 3 – Heat Transfer CIP Calculations 

Firsty, the energy to heat the CIP fluid stream can be calculated by using: 

𝑞𝐶𝐼𝑃 = �̇�𝑡𝑐𝑃𝑑𝑇   (Engineering Toolbox, 2012) 

Where, 

𝑞𝐶𝐼𝑃 = energy required to heat the CIP fluid (kJ/kg) 

�̇� = mass flow rate of liquid (kg/s) 

𝑡 = time taken for temperature change to occur (s) 

𝑐𝑃 = specific heat capacity of water (4.18 kJ/kg/K) 

𝑑𝑇= change in temperature (K) 

The mass flow rate can be measured, the specific heat capacity can be 

assumed to be that of water, the change in temperature can be read from the 

SCADA, and the total time to reach the higher temperature recorded. 

The energy required to heat the CIP stream can be assumed to be equal to 

the energy used from the steam. 

𝑞𝐶𝐼𝑃 = 𝑞𝑠𝑡𝑒𝑎𝑚 

The mass flow rate of the steam can be calculated by using: 

�̇�𝑠𝑡𝑒𝑎𝑚 =
𝑞𝑠𝑡𝑒𝑎𝑚

ℎ𝑒
 

Where ℎ𝑒 is the specific evaporation enthalpy for steam which can be found 

using steam tables with the known steam pressure. 

Once the mass flow rate of steam is known, the time spent heating the CIP 

fluid can be used to calculate the total quantity of steam. 
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Appendix 4 – Fermentation Area CIP Flow Diagrams 

The following figures are the flow diagrams for the main cost group types of the fermentation area: 
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Figure 55: Flow Diagram for Large Fermentation Vessel Clean 

Figure 55 represents the typical flows of a large fermentation vessel clean. This graph is discussed in more detail in section 2.6 

within the report. 
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Figure 56: Flow Diagram for small tank CIP 

Figure 56 represents the typical flows of the DP mixing tank clean. This clean did not include a caustic step, the gaps with no flow, 

represent the intermediate down time between swapping between cleaning steps, and the tall spikes represent increased flows 

though mains cleaning without the back pressure of the DP tank. 
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Figure 57: Flow Diagram of High Flow Mains Clean 

Figure 57 represents a mains clean on the high flow rate pump. The flow rates are reasonably consistent and the changeover 

between cleaning steps is small as there is no requirement to wait for vessel draining of pools which accumulate in the bottom of 

the cone. 
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Figure 58: Flow Diagram of Low Flow Mains Clean 

Figure 58 represents a mains clean on the low flow rate pump. Again, the flow rates are reasonably consistent and the changeover 

between cleaning steps is small as there is no requirement to wait for vessel draining of pools which accumulate in the bottom of 

the cone. There is one short hold period during the first rinse – it is likely that this is due to the mains being outside and not lagged. 
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The clean is a heated clean and if the temperature drops below the specification it is put in hold until the temperature is reached 

again. In winter this can cause problems with clean times on these mains. 
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Figure 59: Flow Diagram of Pasteuriser Clean 

Figure 59 shows a typical pasteuriser clean. The flow rates are consistent much like with the mains clean, but the cleaning 

temperature on this equipment is 70oC. This makes it more difficult to reach and maintain the cleaning temperature and so hold 

times can be more of an issue here as can be seen with all of the extended periods of time with no flow
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Appendix 5 – Fermentation CIP Thermal Energy Requirements 

Table 9 shows the calculated thermal energy requirements of the fermentation 

area heated cleans based on the theory provided in appendix 3. 

Table 9: Thermal Energy Requirements for Fermentation Area Heated Cleans 

Equipment Water 
rinse 
time (s) 

Caustic 
cycle 
time (s) 

Energy 
required 
(kJ) 

Thermal 
Energy 
Usage 
kWh 

Transfer 
Mains 

600 660 2350 5.33 

Maturation 
Vessel Fill 
Main 

600 720 784 1.62 

Bottoms 
Blender 
Mains 

1200 1152 870 0.57 

Pasteuriser 1200 828 2682 2.35 

Fresh Fruit 
Racking 
Lees Main 

600 1152 609 0.71 

Micro Filter 
Lees Main 

1200 600 1218 1.35 

Yeast 
Propagation 
Main 

1200 1200 976 0.61 

Lactic Acid 
Main 

1200 600 976 1.08 

Glucose 
Unloading 

1200 639 2195 2.34 

Culinary 
Concentrate 
Unloading 

1200 900 1218 0.99 

Bittersweet 
concentrate 
mains 

2400 1152 2437 0.70 

Bittersweet 
unloading 

2400 1152 2437 0.70 

North 
Planet Fill 
Mains 

2400 756 3722 1.35 

 

The calculations are based on the assumption that all water is required to be 

heated to the specified temperatures, and the caustic tank is required to be 

heated until the whole tank has been heated. Then it is assumed that the 

caustic tank will not lose its heat for the remainder   
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Appendix 6 – Capital Cost Calculation for CIP Water Sacrificial Tank 

   

cost 

   using 4300 hl tank as 

example 4300 hl 

 £  

335,000  

   

 

100 

 

 £    

35,072  (scaled to actual size) 

 

Civ/Inst/Eng 38% 

 £    

13,327  

   

 

Total 

 

 £    

48,400  

    

Estimations based on knowledge from experienced capital project industrialist 

within Heineken (Swuste, 2013). 
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Appendix 7 – NPV H20 

 

Opco revenue 13,000 £/Annum

years

Process costs 0 1 2 3 4 5 6 7 8 9 10

Total investment costs £  * 1000 48

Total operational cost £  * 1000 0 1 1 1 1 1 1 1 1 1 1

Total cost £  * 1000 48 1 1 1 1 1 1 1 1 1 1

Costs benefits

Opco Revenue £  * 1000 13 13 13 13 13 13 13 13 13 13

Total benefits £  * 1000 -48 13 13 13 13 13 13 13 13 13 13

 

Net result £  * 1000 -48 12 12 12 12 12 12 12 12 12 12

WACC 7.7

discounted cash flows -48.0 11.1 10.3 9.6 8.9 8.3 7.7 7.1 6.6 6.2 5.7

NPV is sum DCF 33.6

Operational NPV 82

NPV £  * 1000 34
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Appendix 8 – Diversey Sodium Hydroxide and Sodium Carbonate 

Titrations 

The Diversey titration method (Diversey, 2011) is as follows: 

1. Take a 2.5ml sample of solution. 

2. Add three drops of phenolphthalein. 

3. Titrate using 0.1M hydrochloric acid until colour change from purple to 

colourless. 

4. Add three drops of bromothymol blue. 

5. Titrate using 0.1M hydrochloric acid until colour change from blue to yellow. 

6. The strength of sodium carbonate (%w/v) = (titre2 – titre 1) x 0.464 

7. The strength of sodium hydroxide (%w/v) = (2 x titre 1 – titre 2) x 0.160 

Target: 

1.5% NaOH ± 0.2 

<4% Na2CO3 
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Appendix 9 – Titration Method Verification 

To verify the titration method in place, it was necessary to derive the method 

from basic principles. The product of the strength of acid present and the 

volume of acid present is equal to the product of the strength of base present 

and the volume of base present. 

MacidVacid = MbaseVbase        

  (1) 

Substituting in from the values known in appendix 8, 

0.1 x Vacid = Mbase x 2.5        

  (2) 

There are potentially two bases present (sodium hydroxide and sodium 

carbonate. To distiunguish between the two, two indicators are used; 

phenolphthalein and bromothymol blue.  

Phenolphthalein (C20H14O4) colour changes between the pH of 8.2 and 10. 

Titrating to this value will give an approximation of the quantity of hydrochloric 

acid required to neutralise the sodium hydroxide present and form sodium 

chloride (equation 3). Bromothymol blue (C27H28Br2O5S) colour changes 

between the pH of 6 and 7.6. This will then provide an indication of the 

remaining acid required to completely neutralise all of the remaining bases by 

first converting sodium carbonate to sodium bicarbonate and sodium chloride 

(equation 4), and then the remaining sodium bicarbonate to sodium chloride 

(equation 5). The first titration value of the hydrochloric acid volume will be 

known as T1, and the second as T2 and will include the total volume of acid 

required to neutralise the whole solution (the difference between T1 and T2 is 

the volume required for the second half of the titration).  

HCl + NaOH →NaCl + H2O       

  (3) 

HCl + Na2CO3 → NaCl + NaHCO3      

   (4) 
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HCl + NaHCO3 → NaCl + H2CO3       

  (5) 

The difference between the two titrations shows the salt formed (at a ratio of 

1:1 in each titration with HCl). This then provides the ratio of sodium 

hydroxide and sodium carbonate. 

The acid and base balance with both sodium hydroxide and sodium carbonate 

becomes: 

MacidVacid = MNaOHVNaOH + MNa2CO3VNa2CO3     

   (6) 

MNa2CO3 = (MHCl x VHCl)/VNa2CO3       

  (7) 

Substituting in the known values 

MNa2CO3 = 0.1 (T2 – T1)/2.5       

  (8) 

Then convert the strength of sodium carbonate into a percentage by 

multiplying through by the molar mass of sodium carbonate (106). 

% Na2CO3 = (MNa2CO3 x 106)/10       

  (9) 

%Na2CO3 = 0.1 (T2 – T1)/2.5 x 106/10      

  (10) 

%Na2CO3 = (T2 – T1) x 0.424 

Similarly with sodium hydroxide 

MNaOH = (MHCl x VHCl)/VNaOH       

  (11) 

As the titration for the sodium hydroxide also includes the titration for the 

sodium carbonate, this must be accounted for in the equation. 
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MNaOH = 0.1T1/2.5 – MNa2CO3        

  (12) 

MNaOH = 0.1T1/2.5 – 0.1(T2 – T1)/2.5 = 0.1/2.5 x (2T1 – T2)   

  (13) 

Then this must be converted to a percentage by multiplying through by the 

molar mass of sodium hydroxide (40). 

%NaOH = 0.1/2.5 x (2T1 – T2) x 40/10       

  (14) 

%NaOH = (2T1 – T2) x 0.160 
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Appendix 10 – Mini Cleaning Rig Design Calculation 

The cleaning requirements of the mini cleaning rig were that the shear force 

over the foul coupon was equivalent to 3 mPa. The flow rate and height of the 

liquid stream were calculated as follows: 

𝜏(𝑦) = 𝜇
𝑑𝑢

𝑑𝑦
   (Engineering Toolbox, 2012) 

Where 

𝜏 = Shear force of the liquid (Pa) 

𝜇 = kinematic viscosity of water (1.002 x 10-3 N.s/m2) 

𝑑𝑢 = change in velocity of the liquid being fired at the tank wall (m/s) 

𝑑𝑦= distance between the point where the liquid hits the wall and the bottom 

of the fouled coupon (m) 

 

Figure 60: Diagram of Liquid Direction for Shear Force Calculation 

This equation is integrated to give: 

∫ 𝜏

𝑦1

𝑦2

𝑑𝑦 = ∫ 𝜇

𝑢1

𝑢2

𝑑𝑢 
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It can be assumed that the velocity of the fluid when it hits the cell wall is 0, 

and the bottom of the fouled coupon is 0 to give the height required above the 

coupon. 

𝜏[𝑦1 − 0] = 𝜇[𝑢1 − 0] 

The maximum height above the coupon is 17 cm, so substituting that into the 

equation allows the initial fluid velocity to be calculated: 

3 × 10−3[(17 × 10−2) − 0] = 1.002 × 10−3𝑢1 

𝑢1 = 0.509 m/s 

The cross sectional area of the nozzle can be calculated knowing that the 

diameter is 5 mm. This can then be used to calculate the minimum volumetric 

flow rate required:  

𝐴 =
𝜋(5×10−3)2

4
= 1.963 × 10−5 m2 

𝑣 = 𝐴𝑢1 = 1.963 × 10−5 × 0.509 = 4.712 × 10−6  m3/s 

𝑣 = 10 ml/s 
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Appendix 11 – Mini Cleaning Rig Standard Operating Procedure 

1. While performing experiments, ensure that gloves and safety goggles 

are worn at all times when dealing with caustic. 

2. Set the tank up ensuring that the bottom of the tank is higher than the 

height of the pump, and that all pipes are connected correctly in the 

configuration which can be seen in figure 61.  

 

Figure 61: Diagram of Mini Cleaning Rig 

3. Ensure the pump casing is on to protect the pump from any water 

splashes which may occur, and plug pump into 240V mains supply, but 

do not switch on. 

4. Fill the tank with 4 litres of towns water. 

5. Switch on the pump by the mains supply to recirculate, but have the 

hose nozzle pointing directly into a measuring cylinder above the open 

tank. Use a stop watch and adjust the hose nozzle and bypass valve 

until a flow rate of 50 or 100 ml/s is reached. This will require two 

people. 

6. Put the nozzle in position in the fitting on the tank wall and run the 

pump to ensure that liquid hits tank wall just above the place where the 

fouled coupon will be suspended. 

7. Drain the tank by removing nozzle and holding your thumb over the 

end of it. Point the nozzle into a large beaker (>4l) at a level where the 

top of the beaker is lower than the bottom of the tank. Remove your 



178 
 

thumb from the hose nozzle and allow the tank contents to drain into 

the beaker. 

8. Make up 4l of solution of the required strength, but put in enough 

caustic/carbonate for a 4.5 l solution, as 0.5 l will be remaining in the 

pipes and pump.  

9. Pour the solution carefully into the tank and run the pump for a few 

seconds to mix it with the water in the system. 

10. Place a fouled coupon on the hook on the wall, and suspend another 

within the solution. 

11. Place the clear lid on the top of the tank, then start the stopwatch and 

pump. 

12. Monitor the time taken to clean both coupons visually. 

13. Drain the system. 

14. Flush the system with water and drain. 

15. Repeat from points 8 to 14 if more experiments are to be performed. 

16. When experiments are completed and system has been flushed with 

water and drained, unplug the pump and put equipment away. 
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Appendix 12 – Mini Cleaning Rig Risk Assessment 

 

Figure 62: Mini Cleaning Rig Risk Assessment 
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2. BURNS/  

SCALDS 3. FIRE 6. NOISE 
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Splash proof pump 
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2 Electrical pump E
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3
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if leakage/spillage
E
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2 3 6 L No
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and bare skin covered

2 2 4 L Yes

4
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E C V
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4 3 12 M Alert

User should use wet floor 
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5
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centrifugal pump
E
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0 - - 0 - -

Current Controls

S L R S L R

6 0 - - 0 - -

7 0 - - 0 - -

8 0 - - 0 - -

9 0 - - 0 - -

10 0 - - 0 - -

Heineken UK Risk Assessment

Residual RiskCurrent Risk
Persons at Risk  
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C = Contractors 
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ID 

No Rating

Action 
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Site: Heineken UK Hereford, Bulmers HP Ltd.                                                                                   Department  Analytical Lab                                                                   

Task/Process:  Operation of Bench Scale Cleaning Rig                                                                                                                                                                             
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ID 
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8. ELECTRICAL

15. WORKING AT 

HEIGHT

16. MANUAL 
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S= Severity    L = Likelihood R = Risk Rating
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Site:                                                                                    

20. LIFTING 

EQUIPMENT

Assessed by: Date:
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Appendix 13 – Diversey NaOH Cleaning Effectiveness Graph 

 

Figure 63: Graph of Cleaning Effects of NaOH (Edwards, 2011) 

Figure 63 (Edwards, 2011), is the graph from the work Diversey has 

completed on the cleaning detergent and germicidal effects of sodium 

hydroxide with varying concentration. It can be seen that the detergent effects 

in this work closely match that done in this report in section 4.6.1 where the 

cleaning detergent effect does not improve by much with concentrations 

greater than 1%. 
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Appendix 14 – FV611 pH and Conductivity Verification Results 

Table 10 shows the results from monitoring fermentation vessel 611 to verify 

the conductivity and pH values at set intervals against the model developed in 

section 4.6. These results are discussed in more detail in section 4.6.2. 

Table 10: Results of pH and Conductivity Values for FV611 Clean 

Sample 
Time 
(mins) 

NaOH 
conc (% 
w/v) 

Na2CO3 
conc (% 
w/v) 

pH (actual) Conductivity 
(mS) 
(actual) 

0 1.50 1.87 13.01 31.9 

5 1.35 2.37 13.10 32.4 

10 1.23 2.54 13.09 32.3 

15 1.42 2.59 13.12 32.5 

20 1.33 3.05 13.11 32.5 

25 1.46 2.93 13.11 32.9 

30 1.41 3.35 13.12 33.2 

30 1.28 3.43 13.11 32.7 

35 1.26 4.07 13.03 32.9 

40 0.99 4.79 13.02 33.0 

45 1.15 5.05 12.92 32.6 

50 0.86 5.98 12.92 32.9 

55 1.20 5.72 12.81 32.6 

60 0.78 6.49 12.66 32.3 

65 0.90 6.44 12.80 32.8 
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Appendix 15 – Capital Cost Calculation for Tank with same Volume as 

Realised Capacity 

       

       Time saved 

 

250 min 

   Time in working week Quantity 10080 min] Volumes 

  Large Tank 11 8000 

 

88000 hl 

 Small Tank 4 2700 

 

10800 hl 

 

    

98800 hl 

 

   

Total 2450.397 hl 

 

       

       

   

cost 

   using 4300 hl tank as 

example 4300 hl 

 £  

335,000  

   

 

2450.396825 

 

 £  

239,059  (scaled to actual size) 

 

Civ/Inst/Eng 38% 

 £    

90,843  

   

 

Total 

 

 £  329,902  

   

       

       Estimations based on knowledge from experienced capital project industrialist 

within Heineken, Swuste (2013). 
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Appendix 16 – Estimated Installation Costs for Carbonate Benefits 

Realisation 

Automation £5,000 

Piping  

 

£12,000 

pH probes £13,000 

 

Estimations based on knowledge from experienced capital project industrialist 

within Heineken, Swuste (2013). 
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Appendix 17 – Net Present Value Calculations for Carbonate in Caustic Benefits with Downtime Saving Opportunities 

 

 
  

Opco revenue 959000 £/Annum

years

Process costs 0 1 2 3 4 5 6 7 8 9 10

Total investment costs £  * 1000 30

Total operational cost £  * 1000 1 1 1 1 1 1 1 1 1 1

Total cost £  * 1000 30 1 1 1 1 1 1 1 1 1 1

Costs benefits

Opco Revenue £  * 1000 959 959 959 959 959 959 959 959 959 959

Total benefits £  * 1000 -30 959 959 959 959 959 959 959 959 959 959

 

Net result £  * 1000 -30 958 958 958 958 958 958 958 958 958 958

WACC 7.7

discounted cash flows -30.0 889.5 825.9 766.9 712.0 661.1 613.9 570.0 529.2 491.4 456.3

NPV is sum DCF 6486.2

Operational NPV 6516

NPV £  * 1000 6,486
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Appendix 18 – Net Present Value Calculations for Carbonate in Caustic Benefits with Consumable Cost Savings Only 

 
 
Opco revenue 59,000 £/Annum

years

Process costs 0 1 2 3 4 5 6 7 8 9 10

Total investment costs £  * 1000 30

Total operational cost £  * 1000 1 1 1 1 1 1 1 1 1 1

Total cost £  * 1000 30 1 1 1 1 1 1 1 1 1 1

Costs benefits

Opco Revenue £  * 1000 59 59 59 59 59 59 59 59 59 59

Total benefits £  * 1000 -30 59 59 59 59 59 59 59 59 59 59

 

Net result £  * 1000 -30 58 58 58 58 58 58 58 58 58 58

WACC 7.7

discounted cash flows -30.0 53.9 50.0 46.4 43.1 40.0 37.2 34.5 32.0 29.7 27.6

NPV is sum DCF 364.5

Operational NPV 395

NPV £  * 1000 365
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Appendix 19 – Sodium Carbonate Rate Formation Calculation 

A clean was monitored on a large fermentation vessel at Bulmers, and based on the 

current CIP setup, the carbonate formation rate was monitored (including with 

dosing). 

The volume of the dilute caustic tank is 10,000l, filled to a working capacity of 80% 

(800l). Based on monitoring the flow rate and time of a small fermentation vessel 

clean, the volume of dilute sodium hydroxide which passes through the vessel is 

27,000l. Therefore it can be assumed that the whole dilute tank passes through the 

vessel 3.4 times. 

If sodium hydroxide starts at 1.7%, then 

1.7 x 8000 = 13600g NaOH 

13600/40 = 340 moles NaOH 

Based on ratio from 

2NaOH + CO2 → Na2CO3 + H2O 

170 moles of Na2CO3 formed 

170 moles of CO2 used, so around 38hl CO2 used. 

Assuming head space of fermentation vessel was completely full of CO2 and all of 

that remains in the vessel after it has been emptied and the head space was 15%, 

then  

15% of 7000 = 1050hl CO2  

If 38hl CO2 mopped up per dilute tank, then 28 full cleans required to mop up all CO2 
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Appendix 20 – MSDS for Diversey Spektak G 

 

Date: 08/08/08  

Revision No: 1  

Page 1 of 2  

SAFETY DATA SHEET  

1. 

IDENTIFICATION OF THE SUBSTANCE / PREPARATION AND O 

F THE COMPANY / UNDERTAKING  

Diversey E 

astern and Central  

A 

frica 

Limited  

Kaptagat Road, Loresho PO Box 41939, 00100 GPO Nair 

obi Tel +254 20 4224000 Fax +254 20 4224888  

SPECKTAK G VC1  

Clearance Code  

Prof Cleaning/maintenance product for Food & Beverage Industries  

Product Code  

DL10398  

MSDS 1850 

2. 

COMPOSITION / INFORMATION ON INGREDIENTS  

CAS No  

EINECS No  



188 
 

1310-73-2  

215-185-5  

Sodium Hydroxide  

C: R35  

15-30%  

3. 

HAZARDS IDENTIFICATION  

C  

- Corrosive  

4. 

FIRST AID MEASURES  

Eyes :  

Wash immediately with copious amounts of water and obtain medical attention  

Inhalation :  

Remove from source of exposure. Obtain medical attention if symptoms develop. In case of unconsciousness 

bring patient into stable side  

position for transport 

Skin :  

Wash skin immediately and thoroughly with water. Remove contaminated clothing. Obtain medical attention if 

symptoms develop  

Ingestion :  

Remove material from mouth. Drink one or two glasses of water or milk and obtain medical attention without 

delay 

5. 

FIRE FIGHTING MEASURES  

Suitable Extinguishing Media 

– CO2,xtinguishing powder or water jet>Fight larger fires with water jet or alcohol resistant foam  

Protective Equipment 

- No special measures required  
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6. 

ACCIDENTAL RELEASE MEASURES  

Protection of Personnel 

-Wear suitable protective clothing, gloves and eye/face protection  

Environmental Precautions 

-Dilute with plenty of water  

Method of Disposal 

-Ensure adequate ventilation. Collect Mechanically. Dispose off the collected material according to regulations. 

Use neutralizing Agent  

7. 

HANDLING & STORAGE  

Safe Handling- 

Use common rules for working with chemicals  

Explosions and fires 

-No special measures required.  

Storage 

-According to local Legislation  

8. 

EXPOSURE CONTROL / PERSONAL PROTECTION  

Hand :  

Chemical –resistant protective gloves made of butyl or nitrile rubber  

Eyes :  

Wear tight fitting Safety Glasses  

Skin :  

Avoid contact with skin  

:  

: 08/08/2008  

Revision Number: 1  
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Page 2 of 2  

Respiration :  

Personal Protection is not normally required.  

9. 

PHYSICAL & CHEMICAL PROPERTIES  

Appearance :  

Clear pale yellow Liquid 

Odour :  

Characteristic  

pH :  

>12.5 

Solubility :  

Fully Miscible in water  

Density :  

1.47g/cm3 

10. 

STABILITY & REACTIVITY  

Thermal Decomposition 

-No decomposition if used according to specificatio 

ns  

Dangerous Reactions 

-Reacts with Acids  

Hazardous Decomposition Products 

-None Known  

11. 

TOXICOLOGICAL INFORMATION  

Eyes :  

Causes Severe or permanent Damage  
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Skin :  

Causes Severe Burns  

Inhalation :  

Severe Irritant, may cause pulmonary oedema  

Ingestion :  

Causes Severe Burns .Ingestion will lead to a stron 

g caustic effect on mouth and throat and to the da 

nger of perforation of esophagus  

and stomach  

12. 

ECOLOGICAL INFORMATION  

When used for its intended purpose this product sho 

uld not cause adverse effects in the environment.  

13. 

DISPOSAL CONSIDERATIONS  

Product Recommendation 

-Dispose off observing official regulations  

Uncleaned Packaging  

Recommendation 

-Dispose of observing official regulations.  

Recommended Cleaning Agent 

-Water, if necessary with cleaning agent  

14. 

TRANSPORT INFORMATION  

EEC Regulation :  

C, CORROSIVE, Contains Sodium Hydroxide 

IMDG/UN :  

Sodium Hydroxide UN 1824 PG 11 
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RID/ADR :  

8 corrosive substances 

ICAO/IATA :  

Class 8 

15. 

REGULATORY INFORMATION  

Hazard symbol :  

C, CORROSIVE, Contains Sodium Hydroxide  

Risk phrases :  

R35 

Causes Severe Burns 

Safety phrases :  

S26  

In case of contact with eyes, rinse immediately 

with plenty of water and seek medical advice  

S28 

After contact with skin, wash immediately with plen 

ty of water. 

S36/37/39 

Wear suitable protective clothing, gloves and eye/f 

ace protection. 

S45  

In case of accident or if you feel unwell, seek 

medical advice immediately (show the label where p 

ossible).  
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Appendix 21 – Rotational Fouling Device Standard Operating Procedure 

1. Ensure device is plugged in to 240V mains supply. 

2. Place o ring and blank end cap on the end of the pipe to be fouled and secure 

with a tri-clover clamp. 

3. Stand the pipe up so that the blanked end is on the floor. 

4. Measure 400 ml of well mixed beer bottoms and pour into pipe. 

5. Cover open end of pipe and move gently from side to side and rotate slightly 

to distribute the fouling within the pipe. 

6. Place o ring and end cap with a hole on the open end of the pipe and secure 

with a tri-clover clamp. 

7. Open the safety case of the rotational device and carefully lower the pipe onto 

the rollers of the device with the end with a hole facing away from the motor 

(keeping horizontal to avoid spillage of bottoms through the hole). 

8. Unscrew the tri-clover clamp on the end with the blank end cap, remove the 

clamp, but hold the end cap in place with your finger. 

9. Remove the end cap, but not the o ring, and slide the pipe quickly into 

position with the o ring between the pipe and the fitting for connection on the 

device. Hold this securely in place with one hand (to stop the fouling from 

pouring out) whilst placing the tri-clover clamp in place with the other, and 

then securing.  

10. Close the safety case of the device, and ensure that the motor settings are set 

to “off” and low rpm. 

11. Enable the device by pressing the green button. The light will show green if 

the device is ready to be used. If the green light does not show, and the safety 

case is not shut, then there is a fault with the device.  

12. Move the switch to the “on” position, and then slowly increase the rpm to 

roughly 10 rpm. 

13. Place the fan at the end of the device so that it is facing down the pipe 

towards the motor.  

14. Switch on the fan to its highest setting and leave the pipe to foul for 2 hours 

(time to be confirmed). 

15. If at any point the safety case is opened during operation, the device will 

automatically cut out. If this happens, then the device may be restarted by 

closing the safety case, and repeating from point 10. 
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16. When fouling is complete, switch off the fan, and also the device by pressing 

the red button.  

17. Open the safety case and remove the tri-clover clamp which is closest to the 

motor. 

18. The dry, fouled pipe may now be removed and all o rings and end caps 

removed. 

19. If the device is not going to be used again, switch off the device at the mains 

supply, ensure it is cleaned to avoid any microbial growth from the fouling, 

close the safety case and put away. 
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Appendix 22 – Pilot Plant Standard Operating Procedure at Ambient 

Temperature with No Caustic 

1. Fill tank 23 from tank 21 using route 4a – ensure level is above filling inlet 

pipe (for good mixing and to minimise foaming) and is approximately 55 cm, 

measure with tape measure (so particulate concentration and NaOH strength 

can be calculated). 

2. Half fill tank 22 from tank 21 using route 8a so that this water may be used for 

flushing the system later on. 

3. Ensure plant is configured correctly with clean 1 m pipe in place in test 

section. Run tank 23 to drain via test section using route 4c to fill pipes with 

fluid (only specified liquid will come into contact with test section then – not 

previous fluid).   

4. Drain test section using bucket at point near pump so that there is no liquid 

remaining in test section piece. 

5. Remove clean 1 m length of pipe from test section and replace with readily 

fouled 1 m length pipe. Ensure that if there is any point where fouling is 

thicker (e.g. where settled at bottom of pipe), that it is placed in the test 

section so it remains at the bottom of the pipe. Also check that the end of the 

pipe is not fouled so that it prevents proper connection with the o ring to the 

rest of the plant to avoid leakage. 

6. Record turbidity reading from Kemtrak turbidity probe and take a sample of 

the tank water. 

7. Return content of bucket to tank 23. 

8. Run the pilot plant on a recirculation via tank 23 using route 9 for 10 minutes. 

This will enable the pipe in the test section to be cleaned and the increase of 

particles in a known volume to be calculated. One tank should be used to 

clean one set of experiments (e.g. constant NaOH concentration and 

temperature, but varied flows in triplicate), provided that turbidity readings on 

the Kemtrak probe are well below saturation which is known to be 550 FTU. If 

this is exceeded, a fresh tank should be made by draining tank 23 without test 

section using route 8c until empty and cleaning with hosepipe whilst draining, 

then flushing system using tank 22 on route 7, and then continuing from point 

1 without re-filling tank 22 unless it is empty). 
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9. After the run is complete, drain the test section using the bucket near the 

pump. Take a sample from this water for particle count analysis offline. 

10. Remove the pipe and assess cleanliness. 

11. Replace pipe with new pre-fouled pipe for next run. 

12. Repeat points 5 to 9 until all experimental runs in the given set have been 

completed.  

13. Replace clean pipe in test section. Run tank 23 to drain without test section 

using route 8c until empty, cleaning with hosepipe whilst flushing. Then flush 

test section using tank 22 on route 7. 

14. Fill tank 23 from tank 21 using route 4a so that this will not need to be done at 

the start of the next set of experiments. 

15. Half fill tank 22 from tank 21 using route 8a so that this will not need to be 

done at the start of the next set of experiments. 

16. Switch off pilot plant if end of the day.  
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Appendix 23 – Pilot Plant Standard Operating Procedure at Ambient 

Temperature with Caustic 

1. Fill tank 23 from tank 21 using route 4a – ensure level is above filling inlet 

pipe (for good mixing and to minimise NaOH foaming) and is approximately 

55 cm, measure with tape measure (so particulate concentration and NaOH 

strength can be calculated. 

2. Half fill tank 22 from tank 21 using route 8a so that this water may be used for 

flushing the system later on. 

3. From the measured height of the liquid, calculate the total volume of water in 

tank 23. 

4. Use this value to calculate the required dosing volume of NaOH. Add this 

volume to the tank using the plastic container with a lid whilst getting into 

position, wearing gloves and safety goggles. Mix the tank well. 

5. Ensure plant is configured correctly with clean 1 m pipe in place in test 

section. Run tank 23 to drain via test section using route 4c to fill pipes with 

fluid (only specified liquid will come into contact with test section then – not 

previous fluid).  

6. Drain test section using bucket at point near pump so that there is no liquid 

remaining in test section piece. 

7. Remove clean 1 m length of pipe from test section and replace with readily 

fouled 1 m length pipe. Ensure that if there is any point where fouling is 

thicker (e.g. where settled at bottom of pipe), that it is placed in the test 

section so it remains at the bottom of the pipe. Also check that the end of the 

pipe is not fouled so that it prevents proper connection to the rest of the plant 

to avoid leakage. 

8. Record turbidity reading from Kemtrak turbidity probe and take a sample of 

the tank water. 

9. Return content of bucket to tank 23. 

10. Run the pilot plant on a recirculation via tank 23 using route 9 for 5 minutes or 

until readings level off at a maximum value. This will enable the pipe in the 

test section to be cleaned and the increase of particles in a known volume to 

be calculated. One tank should be used to clean one set of experiments (e.g. 

constant NaOH concentration and temperature, but varied flows in triplicate 

(provided that turbidity readings on the Kemtrak probe are well below 
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saturation which is known to be 550 FTU. If this is exceeded, a fresh tank 

should be made by draining tank 23 without test section using route 8c until 

empty and cleaning with hosepipe whilst draining, then flushing system using 

tank 22 on route 7, and then continuing from point 1 without re-filling tank 22 

unless it is empty). 

11. After the run is complete, drain the test section using the bucket near the 

pump. Take a sample from this water for particle count analysis offline and 

titrations to verify NaOH concentration. 

12. Remove the pipe and assess cleanliness. 

13. Replace pipe with new pre-fouled pipe for next run. 

14. Repeat points 5 to 9 until all experimental runs in the given set have been 

completed.  

15. Replace clean pipe in test section. Run tank 23 to drain without test section 

using route 8c until empty, cleaning with hosepipe whilst flushing. Then flush 

test section using tank 22 on route 7. 

16. Fill tank 23 from tank 21 using route 4a so that this will not need to be done at 

the start of the next set of experiments. 

17. Half fill tank 22 from tank 21 using route 8a so that this will not need to be 

done at the start of the next set of experiments. 

18. Switch off pilot plant if end of the day.  
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Appendix 24 – Pilot Plant Standard Operating Procedure for Heated Cleaning 

1. Fill tank 23 from tank 21 using route 4a – ensure level is above filling inlet 

pipe (for good mixing, and to minimise foaming) and is approximately 55 cm, 

measure with tape measure (so particulate concentration and NaOH strength 

can be calculated. 

2. Half fill tank 22 from tank 21 using route 8a so that this water may be used for 

flushing the system later on. 

3. Heat tank 23 without the test section to the desired temperature. 

4. Ensure that the manual steam valve is opened for heating, and closed again 

when not heating. 

5. Ensure plant is configured correctly with clean 1 m pipe in place in test 

section. Run tank 23 to drain via test section using route 4c to fill pipes with 

fluid (only specified liquid will come into contact with test section then – not 

previous fluid).  

6. Drain test section using bucket at point near pump so that there is no liquid 

remaining in test section piece. 

7. Remove clean 1 m length of pipe from test section and replace with readily 

fouled 1 m length pipe. Ensure that if there is any point where fouling is 

thicker (e.g. where settled at bottom of pipe), that it is placed in the test 

section so it remains at the bottom of the pipe. Also check that the end of the 

pipe is not fouled so that it prevents proper connection to the rest of the plant 

to avoid leakage. 

8. Record turbidity reading from Kemtrak turbidity probe and take a sample of 

the tank water. 

9. Return content of bucket to tank 23. 

10. Run the pilot plant on a recirculation via tank 23 using route 9 for 5 minutes or 

until readings level off at a maximum value. This will enable the pipe in the 

test section to be cleaned and the increase of particles in a known volume to 

be calculated. One tank should be used to clean one set of experiments (e.g. 

constant NaOH concentration and temperature, but varied flows in triplicate 

(provided that turbidity readings on the Kemtrak probe are well below 

saturation which is known to be 550 FTU. If this is exceeded, a fresh tank 

should be made by draining tank 23 without test section using route 8c until 

empty and cleaning with hosepipe whilst draining, then flushing system using 
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tank 22 on route 7, and then continuing from point 1 without re-filling tank 22 

unless it is empty). 

11. After the run is complete, drain the test section using the bucket near the 

pump again. Take a sample from this water for particle count analysis offline. 

12. Remove the pipe and assess cleanliness. 

13. Replace pipe with new pre-fouled pipe for next run. 

14. Repeat points 5 to 9 until all experimental runs in the given set have been 

completed.  

15. Replace clean pipe in test section. Run tank 23 to drain without test section 

using route 8c until empty, cleaning with hosepipe whilst flushing. Then flush 

test section using tank 22 on route 7. 

16. Fill tank 23 from tank 21 using route 4a so that this will not need to be done at 

the start of the next set of experiments. 

17. Half fill tank 22 from tank 21 using route 8a so that this will not need to be 

done at the start of the next set of experiments. 

18. Switch off pilot plant if end of the day and double check that manual steam 

valve is closed.  
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Appendix 25 – Risk Assessment for Rotational Fouling Device 

 

Figure 64: Risk Assessment for Rotational Fouling Device 
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Appendix 26 – Risk Assessment for Pilot Plant Experiments 

 
Figure 65: Risk Assessment for Pilot Plant Trials 
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Appendix 27 – Safety Brief for Pilot Plant Experiment Assistants 

Introduction 

The pilot plant trials in Birmingham are part of a project for Heineken for optimising 

their cleaning-in-place (CIP) procedures. The CIP pilot plant will be used to clean 

test section pipes which have been fouled with beer/cider fouling which is typically 

found in the plant after production.  

The pilot plant will be monitoring these cleans using online measurements (particle 

count, turbidity, conductivity, flow, temperature, etc.). The cleaning parameters of 

detergent temperature, chemical strength and flow rate will be varied so that the 

effects of varying the parameters can be determined.  

Cleans on site are currently based on cleaning the equipment for fixed periods of 

time which are known to clean the equipment fully. The data collected from these 

experiments will be used to develop a predictive model which may be implemented 

within the Heineken CIP systems to optimise their cleaning times and improve the 

confidence of their cleans. This will result in reduced cleaning times and associated 

costs of chemicals, water usage, effluent, utilities, etc.  

SOPs 

Standard operating procedures for the pilot plant in three different phases have been 

provided to give a general idea of the tasks which will be taking place. You do not 

need to learn these, it is just for your information and training will be provided on the 

arrival. 

Health and Safety 

A risk assessment has also been provided in a separate document, but the key risks 

you need to be aware of are highlighted below. 

Key Risks 

Chemicals 

We will be handling sodium hydroxide solutions of up to 40%w/v. This will burn you 

or worse if you get it on your skin so extra care has to be taken. The solutions in the 

plant will not be greater than 2% maximum which is unlikely to harm you but care 

must still be taken. Lab coats and safety goggles should be worn at all times whilst 
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the plant is in operation. Gloves must be worn to handle the pipework and 

equipment.  

Prior to making a batch of solution, concentrated sodium hydroxide must be added to 

the tank. A fit for purpose dosing rig has been put in for this to remove the need for 

human contact and reduce the risk. Whilst connecting the dosing system to the 

drum, the operator should be wearing nylon gloves and apron, protective footwear 

and a visor in addition to the lab coat. 

If an accident should happen, the sodium hydroxide must be rinsed off with cold 

water immediately and medical attention sought from a first aider in the chemical 

engineering building. There is a shower and eye bath next to the pilot plant. It is 

important to keep the walkway to this clear at all times. These will be shown to you 

on your first day. 

Manual Handling 

The chemical drums are approximately 30kg and outside of the manual handling 

limits. A sack barrow will be used to lower these drums from the van, with two people 

working together to lower the drum onto the wheels on the ground. The drums may 

then be wheeled inside with no need to lift them at all. 

Slips, trips and falls 

Care must be taken to ensure that all walkways are cleared to avoid trips, and wet 

floors are mopped up immediately. Bags and personal belongings must be tucked 

away from the walkways. 

PPE 

You will need to bring your own lab coat and safety goggles. Everything else will be 

provided. 

 Safety goggles 

 Lab coats 

 Gloves 

 Visor and apron if handling concentrated caustic 

What You Need 
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 Old clothes and comfy shoes 

 Lab coat and safety goggles 

 Learn as you go so no need to spend lots of time preparing 
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Appendix 28 – Experimental Design for Predictive Model Cleaning Trials 

The experimental design for the later cleaning predictive model trials at the 

Birmingham Pilot plant is as follows: 

Full fouling (300ml beer bottoms evenly coated and dried on with the rotational 

device and a fan). 

Table 11: Experimental Design for Detailed Predictive Model Experiments (Heavy Fouling) 

Flow Rate 

(m3.h-1) 

NaOH Concentration (%w/v) 

0 0.5 0.75 1.0 

10 1 2 5 2 

12 0 2 5 2 

14 0 2 5 2 

16 2 4 4 2 

 

Intermediate fouling (40ml beer bottoms evenly coated and dried on with the 

rotational device and a fan). 

Table 12: Experimental Design for Detailed Predictive Model Experiments (Intermediate 
Fouling) 

Flow Rate 

(m3.h-1) 

NaOH Concentration (%w/v) 

0.5 1 

10 2 2 

12 2 2 

14 2 3 

16 3 2 

 

The values were selected based on time constraints of the experimental trials, 

prioritising runs which were of more interest to the investigation. This includes runs 

at the boundaries of the experimental design to ensure that the optimal cleans were 

selected within those boundaries. 

 


