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ABSTRACT 

The purpose of this project was to propose and validate a stochastic rainfall time 

series model for the UK, where the model is to be applied to the design of sewer 

systems. 

After reviewing the literature, the Neyman-Scott Rectangular Pulses model was 

selected as being potentially suitable for the project. Some mathematical properties 
for the model were derived, and used to fit the model to 10 years of hourly rainfall 

time series. The model performed well, and so could be used with reasonable 

confidence for the remaining part of the project. 

A full investigation was carried out to find an optimum combination of historical 

rainfall statistics to be used to fit the model to hourly rainfall time series. A method 

of fitting the model to daily rainfall time series was also required. It was found that 

the hourly rainfall statistics used to fit the model to the hourly rainfall time series 

could successfully be predicted from daily rainfall statistics. 

Regression equations were developed so that the mean and variance of the 

maximum daily rainfalls could be predicted using the parameters of the model. 
These regression equations were included in the fitting procedure when the model 

showed a poor fit to the historical daily maxima, so that the model was then able to 

closely match the historical maxima. 

The model was fitted to rainfall data taken from 112 sites scattered throughout the 

UK. The parameters of the model were regressed on site characteristics (e. g. 
altitude, distance from coast, etc), so that the model could be used to generate 
hourly rainfall time series at sites lacking in data. 

Finally, a method of disaggregating the generated hourly rainfall time series to 5 

minutely time series was developed and tested. 
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PREFATORY NOTES z 

Some parts of Chapter 3 and Appendix A have recently been 

published in Water Resources Research (see Cowpertwait, 1991). 

After the above paper was published and thesis first submitted, an 

error was noticed in Chapter 3, Section 3.3. The error was in 

expression (3.6), which previously read: 

Pt (h) = (1 e-ßt + e-ß 
( t+h)) (1 -P (e-pt - e-'1t) / (n-ß) ) 

X exp µß (e fit 
e nt) (rl-ß) - ue-fit + pe-ß (t+h) (3.6) 

This has been replaced by: 

Pt (h) = e-ß(t+h) +1- (ne-ßt - ße-1 't) / (n-ß) 

x exp 
f-pp(e-pt 

-e nt)/(n-ß) ue-ßt + pe-p( 
t+h) (3.6) 

The correct version ispresented in the thesis. However, the 

incorrect expression above did appear in many of the programs used 

for the project. Therefore, comparisons were needed to see whether 

the consequences of this error would have any practical effect on 

the results. These comparisons showed that this error could be 

neglected for the work described in this thesis (details of the 

comparisons made are provided in Appendix K). 



CHAPTER 1 
INTRODUCTION AND BACKGROUND TO THE PROBLEK 

1.1 RAINFALL TIME SERIES FOR STORM OVERFLOW ASSESSMENT 

In designing a sewer system, an engineer requires a rainfall input 

for the model of the 'system. Using historical '`rainfall data, a 

'design' storm can be constructed for a given return-period °(see, 

for, example, Arnell et al (1984), -for-some mathematical details-on 

design' storms). Traditionally, -drainage engineers have used design 

storms to design new sewer systems. However, the Sewerage 

Rehabilitation, Manual (1986) recognises that sewerage capital 

expenditure is now directed towards upgrading existing sewer 

systems, -and consequently there is a need to understand the 

overall performance of the existing system. 

Most sewer systems use Storm Sewage Overflows (SSOs). These divert 

sewage to local rivers when the system becomes overloaded due to 

heavy rainfall. SSOs may operate many times each year. Therefore, 

when the overall impact of pollution on the receiving river is 

under investigation, the use of design storms of long return 

periods is unsuitable. Furthermore, design storms are 

inappropriate when'antecedent conditions within an existing sewer 

system need to be modelled. For example, the pollution impact (due 

to a storm) on the receiving river may be worse if the storm 

follows a dry period, when low river flows offer reduced dilution 

and pollutant concentrations are high due to in-sewer deposition. 
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Motivated by the inadequacies of" the design storm approach, 

Henderson (1986) developed two Time Series Rainfalls (TSRs) for 

the UK. Rainfall stations were grouped according towhether they 

lied to the East or West of a dividing line proposed by Wigley et 

al (1984). For each region 'typical' minutely. TSRs were selected 

for each month, ' using data taken from the sites . 
lying in the 

region. The selected monthly TSRs were concatenated to produce a 

typical year of minutely"TSR for each - region. 'Thus the, engineer 

could select one of the two'TSRs depending on the location of the 

site under investigation-'(either,; East or ° West). ý` Henderson's 

typical years of TSRs needed'improvement for two main reasons:, 

i) TSRs of more than 1 years duration are required to evaluate a 

sewer systems performance -under more - extreme rainfall events, 

allowing for antecedent rainfall. 

ii) The TSRs for each region are not accurate enough for many 

sites (particularly Northern` sites)-, asýthey - were developed from 

only two or three stations per ' region, all lying in the south of 

England. 

The purpose of this project is to improve upon the typical years 

of TSRs by developing a regionalised stochastic rainfall model 

that can be used to generate minutely, rainfall time series for 

more than one year for any location in the UR-. 
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1.2 THE DATABASE OF RAINFALL STATIONS 

Before the project began, some rainfall data were already 

available on the mainframe computers at Newcastle University and 

the Water Research Centre (WRc), Swindon, UK. Other data were 

bought from the Meteorological Office, Bracknell, UK. 

Hourly data were chosen from urban areas, that were not already 

covered by the available data. This seemed appropriate for the 

hourly data as they are more expensive than daily data (about 24 

times the cost of daily data), and the stochastic rainfall model 

was going to be used mainly in urban areas. 

The remaining daily data were sampled from a Meteorological Office 

catalogue of rainfall stations. A random sampling. procedure was 

adopted to avoid systematic bias which could effect the results of 

the regionalisation procedure, which is discussed in Chapter 6. 

One station was selected randomly from each page of the catalogue, 

except those pages which had stations in the N-E and S-W of the UK 

- these areas were already covered by data held at Newcastle 

University. This procedure seemed appropriate as i) the 

Meteorological Office catalogue is ordered geographically so that 

a good spatial coverage of station data was anticipated, and ii) 

the number of pages in the catalogue was approximately equal to 

the number of daily station data that could be afforded. 

If areas of the UK were not covered by the sampled stations, a 

station was subjectively chosen within each such area. To 

compensate, a previously selected station had to be removed. This 
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was achieved by choosing an area well covered, and then randomly 

deleting a selected station from this area. The complete database 

of rainfall station data used for the project is listed below in 

Table 1.1, and Figure 1.1 shows the location of the stations on a 

map of the UK. 

Table 1.1 

Rainfall Stations used for the Project 

Station 
Number 

Station 
Name 

Type Yrs Alt(m) East 
Grid 

North 
Grid 

No. on 
Figure 1.1 

1525 Howick Hall D 92 34 4246 6177 1 (NU) 

5349 Cockle Park D 73 99 4200 5912 2 (NU) 

10057 Bellingham D 21 258 3808 5911 3 

15812 Haydon Bridge D 19 82 3839 5605 4 

19121 Newcastle D 21 78 4240 5647 5 

22164 Tunstall Res D 75 221 4064 5407 6 (NU) 

24724 Durham D 25 102 4267 5415 7 

28106 Hury Res D 39 261 3967 5193 8 (NU) 

43941 Dalton Holme D 25 34 4965 4452 9 

55659 Thirsk D 19 35 4438 4818 10 

64718 Askham Bryan D 25 32 4551 4477 11 

76203 Farnley Hall D 25 123 4246 4324 12 

81698 Ingbirchworth D 25 260 4213 4056 13 

82759 Norton Less D 25 90 4348 3836 14 

91196 Codsall D 25 125 3870 3028 15 

* 101202 Hollinsclough D 24 291 4066 3666 16 

108124 Bakewell D 21 149 4206 3692 17 

115306 Blackbrook Res D 90 107 4456 3178 18 (NU) 

119914 Barnstone D 24 32 4736 3349 19 

123815 Bevercotes D 21 24 4696 3735 20 

131736 Scawby Hall D 25 24 4968 4057 21 

142319 Hackthorne Hall D 25 32 4992 3825 22 

161255 Thorpe Malsor D 23 107 4830 2795 23 
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166114 Weston St Mary D 20 3 5275 3184 24 
174566 Cardington D 25 29 5061 2463 25 

191591 Southerly D 25 0 5612 2932 26 

215823 Ormesby D 25 7 6468 3152 27 

225557 Cock Station D 22 55 5964 2364 28 

232671 Writtle D 25 35 5677 2066 29 

238055 Langton Gdns D 25 27 5537 1875 30 

240202 Luton D 25 137 5064 2217 31 

252556 Buckland D 24 92 4342 1981 32 

261604 Dancersend D 19 198 4906 2089 33 

269756 Wolverton D 18 94 4560 1596 34 

275443 Cippenham D 25 22 4948 1794 35 

275574 Windsor D 90 21 4979 1754 36 

283875 West Byfleet D 23 27 5031 1613 37 

287196 Merton D 25 15 5240 1688 38 

289129 Greenwich D 25 7 5387 1776 39 

297340 East Farleigh D 25 9 5735 1535 40 

306250 Stonegate D 22 70 5652 1288 41 

321314 Cobnor House D 25 4 4792 1023 42 

324462 West Tisted D 19 180 4650 1293 43 

336376 Boscombe Down D 25 126 4172 1403 44 

348847 Dorchester D 25 95 3684 905 45 

352316 Forde Abbey D 64 70 3359 1051 46 

354295 Feniton Court D 58 67 3109 994 47 

354864 Exmouth D 79 66 3027 819 48 

355363 Exeter Airport D 47 32 3001 933 49 

356262 Honeymead D 48 381 2797 1392 50 

388933 Okehampton D 26 372 2585 928 51 

403490 Durleigh Res D 25 14 3275 1363 52 

407349 Rodney Stoke D 25 40 3488 1501 53 
417634 Barrow Gurney D 25 91 3537 1679 54 
435388 Weston Park D 25 113 3806 3108 55 
448545 Rugby D 25 117 4507 2749 56 
455775 Bretforton Manor D 21 40 4092 2438 57 

* 477662 Tafolog D 20 274 3277 2297 58 
490228 Pontypridd D 23 101 3072 1906 59 
497134 Swansea D 25 10 2642 1923 60 
501684 Llandovery D 25 69 2765 2353 61 
508283 Orielton Field D 24 60 1953 1991 62 

(NU) 

(NU) 

(NU) 

(NU) 

(NU) 

(NU) 
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519580 Trawscoed D 25 63 2674 2736 63 

549265 Mount Pleasant D 25 153 3256 3663 64 

550167 Crosshill Res D 20 65 3280 3843 65 

557448 Appleton Res D 21 30 3602 3845 66 

561463 Cold Greave D 22 255 3967 4124 67 

562991 Heaton Park D 25 99 3826 4043 68 

565151 Nether Alderley D 21 100 3845 3765 69 

575383 Great Harwood D 25 204 3722 4327 70 

587408 Ferry House D 25 44 3390 4956 71 

588702 Poaka Beck Res D 90 156 3240 4781 72 (NU) 

604039 Geltsdale D 25 229 3575 5537 73 

623619 Maxwelton House D 22 107 2820 5896 74 

656041 Shotts Res D 27 247 2880 6613 75 

660285 Abbotsinch D 22 5 2480 6667 76 

795076 Fasnaktle D 25 80 2314 8288 77 

805389 Inverness D 25 4 2668 8462 78 

840573 Old Meldrum D 14 110 3809 8275 79 

859107 Dundee D 25 45 3422 7318 80 

876839 Cardney House D 25 107 3051 7452 81 

888816 Pitreavie D 25 40 3117- 6848 82 

893230 Argaty D 21 76 2739 7032 83 

902952 Samuelston D 25 64 3486 6711 84 

914568 Hawick D 25 96 3512 6156 85 

968133 Belfast D 25 5 9380 5250 86 

969771 Tullynacross D 25 23 9282 5800 87 

1584 Boulmer H 12 23 4253 6142 88 (WRC) 

2245 Leeming H 8 32 4306 4890 89 

4913 Filton H 7 59 3600 1805 90 

9142 Aldergrove H 7 68 1450 5300 91 

96893 Elmdon H 10 98 4167 2841 92 

117626 Watnall H 10 117 4503 3456 93 

174062 Bedford H 7 85 5049 2597 94 

221992 Wattisham H 10 89 6026 2514 95 

* 235389 Basildon H 8 12 5737 1907 96 (WRC) 

* 236428 Shoeburyness H 7 2 5961 1878 97 (WRC) 

301114 Manston H 20 44 6335 1666 98 (WRC) 

346474 Hurn H 14 10 4117 978 99 

355363 Exeter H 10 32 3001 933 100 (WRC) 

433710 Shawbury H 10 72 3553 3220 101 
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547371 Moel-Y-Croes H 5 263 3194 3699 102 (WRC) 

564419 Ringway H 10 75 3821 3849 103 

577267 Blackpool H 10 10 3316 4316 104 (WRC) 

606336 Carlisle H 7 26 3384 5603 105 

841496 Dyce H 7 65 3877 8127 106 

885313 Leuchars H 7 10 3468 7209 107 

899407 Turnhouse H 10 35 3159 6739 108 

* 18536 Chopwell Wood M 5 136 4136 5580 109 (NU) 

* 32821 Harpington Hill M 6 90 4336 5267 110 (NU) 

**125842 Finningley M 15 10 4659 3989 111 (NU) 

246690 Hampstead M 35 137 5262 1863 112 (NU) 

260991 Abingdon M -32 69 4479 1991 113 (WRC) 

271432 Farnborough M 31 69 4867 1544 114 (WRC) 
309038 Hastings M 9 45 5809 1094 115 (WRC) 

309902 Herstmonceaux M 6 18 5645 1099 116 (WRC) 

383478 St Mawgan M 10 103 1873 642 117 (NU) 

492325 Rhoose M 18 65 3066 1678 118 (NU) 

* 567423 Aigburth M 8 12 '3384 3852 119 (WRC) 
660628 East Kilbride M 3 178 2638 6535 120 (NU) 

Key: - 

*=incomplete, **=corrupt,,, 

D=daily, H=hourly, M=minutely, 

NU = data held at Newcastle University, WRC = data held at WRc. 

N. B. The incomplete data (i. e. data containing many missing 

values) or the corrupt data were not used in the Project. Most of 

the data contained some missing values, which were usually taken 

as zero (see Appendix H for a discussion of the treatment of the 

missing values). 
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1.3 LAYOUT OF THE THESIS 

This Section describes the overall layout of the thesis. 

Chapter 2 contains a literature review on some of the most recent 

developments in rainfall time series modelling. From the review, 

the most promising model is identified, though judgement on the 

suitability of the model is reserved until the results of a 

preliminary analysis are obtained in 'Chapter 3. Chapter 2 also 

contains a review of recent literature that identifies homogeneous 

rainfall regions for the UK. From this review, some regions were 

selected as being suitable for the future sampling requirements of 

the project. 

In Chapter 3 some theoretical properties for the model are 

developed, and an initial investigation into the performance of 

the selected stochastic model is carried out. The results in 

Chapter 3 showed that the selected model was worth persisting with 

for the remainder of the project. 

There are many ways of fitting the selected stochastic rainfall 

model to historical hourly rainfall data. The purpose of Chapter 4 

is to find an optimum fitting procedure for the model by choosing 

the best combination of historical statistics to estimate the 

parameters of the model. 

To produce a regionalised model use must be made of the available 

daily rainfall data, which are less expensive and more readily 

available than hourly data. The purpose of Chapter 5 is to find a 
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suitable way of fitting the model to daily data. The Chapter 

concludes by fitting the stochastic rainfall model to five long 

records of daily data, and comparing the extremes generated by the 

model with those of the historical records. 

The aim in Chapter 6 is to develop a regionalised stochastic 

rainfall model. In Chapter 6 the parameters of the stochastic 

model are estimated for each station-month, and these estimates 

are then regressed on site characteristics (e. g. altitude), so 

that the model can be used at sites lacking rainfall data. 

In Chapter 7a method of disaggregating hourly rainfall data into 

minutely data is proposed and tested. 

Finally, some overall conclusions and directions for future 

research are given in Chapter 8. 

9 



Figure 1.1 
Rainfall Stations used for the Project 
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CHAPTER 2 
LITERATURE REVIEW 

2.1 INTRODUCTION 

Rainfall is the result of complex atmospheric processes. Attempts 

have been made to model these processes deterministically, using a 

knowledge of atmospheric physics. However, the physics are not 

completely understood, so that deterministic rainfall models tend 

to be of 'little practical---value, particularly in engineering 

design problems (see Cho (1985), and Cho and Chan (1987)). This 

has lead modellers'to treating rainfall as a stochastic process. 

With the rapid development of computing science and technology in 

the last decade, the potential for assessing and comparing 

stochastic rainfall models has greatly increased. Much work on the 

theoretical development of rainfall models has been completed, 

although more work is needed on model assessment and validation. 

Stochastic rainfall models can be divided into four classes: 

1) Temporal/single site Models. These model rainfall at a single 

site, without attempting to spatially distribute the rainfall over 

a catchment area. 

2) Spatial/Field Models. These model the distribution of rainfall 

over a large spatial area, without attempting to model the 

rainfall time series for periods exceeding the storm duration. 

They are usually based on data taken from raingauges scattered 
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throughout the area in which'' the rain is to be modelled. The 

distribution of the rain between gauges is inferred using the 

spatial model. 

3) Mult-site models. These model rainfall at more than one site 

using data taken from gauges at, the sites. They, -do-not attempt to 

infer rainfall patterns between sites. 

4) Spatial- temporal"Models. -These model both the rainfall time 

series for long periods, and the spatial distribution of the 

rainfall over a catchment area. 

The purpose of this project is to produce a stochastic rainfall 

time series model for the UK. Therefore, attention is focused'on 

(1)=above, i. e the temporal modelling of rainfall. 
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2.2 SOME SIMPLE STOCHASTIC MODELS -, 

The models described in this Section have lead the way to the 

development of-more complex stochastic rainfall models. 

Temporal rainfall can be described by two sequences ofd random 

variables. The first sequence models the occurrence of rainfall 

events within-successive time intervals, and the second sequence 

associates rainfall depths with each rainfall occurrence. 

2.2.1 A simple Binomial model for rainfall occurrences 

First consider a sequence of random variables: Y1, Y2, ... ' Yn, 

where Yi denotes the rainfall depth on the ith day. Note, any 

discrete increment, other than days, could be used (e. g. hours or 

minutes), but it makes easier reading to fix on some particular 

increment. 

Now let the sequence {Xi) be defined by: 

Xi =1 if Yi ) 0 

X = 0 if Y = 0 
i i 

i. e. Xi =1 if ith day is wet, 

and Xi =0 if ith day is dry, 

n 
and let Nn =E Xi be the number of wet days in the n day sequence. 
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Perhaps the simplest stochastic model is that which assumes the x 

are independent and identically distributed random variables with 

pr{Xi = 11 =p and pr{Xi = 01 =-1-p =q 

It then follows that N is a Binomial B(n, p) random variable, i. e n 

pr{Nn = k) =( n_) pk (1-P) "-k (0 sks n] 

For applications of this model the reader is referred to Smith an 

Schreiber (1973). 

The Binomial process has not been used extensively for rainfal 

modelling. However, its continuous time counterpart, the Poisso 

Process, has received much attention. 

2.2.2 A simple Poisson model for rainfall occurrences 

Let N(t) denote the number of rainfall occurrences in th 

continuous time interval (O, t), where the rainfall events ar 

assumed to be point occurrences. Then, under the assumption tha 

rainfall occurrences follow a Poisson Process with rate X, 

pr(N(t) = k} = (1t)ke-)t/k! [k = 0,1,2, ... ] 

For an application of the Poisson Process to modelling rainfal 

the reader is ` referred to Todorovic and Yevjevich (1969) 

Todorovic' and Woolhiser (1976), Eagleson (1978), o: 

Rodriguez-Iturbe et al (1984). 
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2.2.3 A simple Markov Chain model for rainfall occurrences 

The main drawback with the above two models is the assumption that 

rainfall occurrences are independent events. Since this assumption 

cannot usually be retained (e. g. see Kavvas and Delleur (1975), or 

Todorovic and Woolhiser (1976)), a more popular approach has been 

to model the occurrence process {Xi) with Markov chains. The 

probabilistic structure of a Markov chain is*completely determined 

by its transition matrix and an initial probability distribution 

(e. g. see Feller (1968)). Let the transition matrix be denoted by: 

qo po 

ql P1 

where: po = pr(Xi = 1IXi_1 = 0), P1 = pr{Xi = 11X1_1 = 1), 

qo= 1- p0, ql =1- pi [1 = 1,2, ... ]. 

i. e. p0 is the probability that the ith day is wet given the 

(i-1)th day is dry, etc. 

An expression for pr(Nn = k) was found by Gabriel (1959). 

The transition probabilities for the Markov chain rainfall model 

can be estimated using the equivalent proportions taken from the 

historical rainfall data. For example, to estimate pi, the 

proportion of wet days with the previous day wet could be used. 

Alternatively, the historical wet/dry spell sequences could be 

used (refer to Waymire and Gupta (1981) for details). 
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For applications of this model the reader is referred to Gabriel 

and Neumann (1962), Smith and Scheiber (1963), and Todorovic and 

Woolhiser (1976). 

2.2.4 Modelling the depth of rain 

Given that a rainfall event occurs, the depth of rainfall can then 

be modelled. In the discrete case, perhaps the simplest approach 

is to assume that the depth of rain on wet days is independent of 

the depths on previous days and follows an Exponential 

distribution (e. g. see Todorovic and Woolhiser (1976)). In the 

continuous case, the simplest approach may be to associate an 

instantaneous depth of rain with each rainfall occurrence, where 

the depths of rain are again assumed to be independent Exponential 

random variables (e. g. see Rodriguez-Iturbe et al (1984)). In the 

discrete case, the parameter of the Exponential distribution can 

be obtained by the Method of Moments, using the mean depth of rain 

on wet days. In the continuous case, the aggregated properties of 

the model are needed because rainfall data are usually only 

available as historical records of discrete time series. These 

aggregated properties have been found for the simple Poisson model 

of occurrences with an Exponential distribution for the depth of 

rain (see Rodriguez-Iturbe et al (1984) and Parzen (1967) - this 

model is discussed in more detail in Section 2.4 of this Chapter). 

If the Exponential distribution provides a poor fit to the depth 

process, a more complex distribution (e. g. the Gamma or Weibull) 

can be used (e. g. see Eagleson (1978)). Again, the method of 

moments could be used in the fitting procedure. 
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2.2.5 Summary 

In summary, two approaches have been used for representing 

rainfall time series: 

(i) The Discrete Time Series approach, in which a discete time 

increment (e. g. a day or an hour) is used for the time series 

model. Typically, a Markov chain is fitted to the sequence of wet 

and dry spells, together with some distribution for the amount of 

rain captured in the wet intervals. 

(ii) The Point Process approach, which uses a continuous time 

model for the occurrence of the rainfall events, and associates 

some random amount of rain with each event. 

Recent advances using these two approaches will now be considered. 

For other reviews on rainfall modelling, the reader is referred to 

Foufoula-Georgiou and Georgakakos (1988), or Waymire and Gupta 

(1981). 
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2.3 A REVIEW OF SOME RECENT DISCRETE TIME SERIES MODELS 

Stern and Coe (1984) used a model with Markov chains fitted to the 

occurrence of rainy days, and a Gamma distribution fitted to the 

amount of rain captured on wet days. To take account of seasonal 

effects curves were fitted to the transition probabilities 

throughout the year. The mean of the Gamma distribution was also 

allowed to depend on whether rain had occurred on previous days, 

and the necessity of this was checked using standard statistical 

tests. Depending on the result of these tests, for a given site 

the model used between 20 and 50 parameters with seasonal effects 

taken into account. Examples of the performance of the model were 

given, using data taken from a 53 year record in Morogoro, 

Tanzania, and a 37 year record taken from Irbid, Jordan. The 

performance of the model was shown to be good for the intended 

application, which was agricultural planning. 

Foufoula-Georgiou and Lettenmaier (1987) developed and used the 

Markov Renewal Model of daily rainfall occurrences, with a mixed 

Exponential distribution for the amount of rain captured on wet 

days. They used 2 Geometric distributions to model the 

inter-arrival times (in number of days) of the rainfall events. 

Events were classified as either primary or secondary, where a 

primary event corresponded to the arrival of a front, and a 

secondary event corresponded to the occurrence of rainfall within 

the same frontal system. The model thus exhibits clustering as a 

result of this dependence structure. The model uses 4 parameters 

for the occurrence process and then an additional 3 for the depth 

process, before seasonal effects are taken into account. They 

tested the model using 15 years of daily data taken from 
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Snoqualmie Falls, Washington, by comparing plots of various 

statistics. They also compared the Method of Moments with the 

Maximum Likelihood Method for estimating the parameters of the 

model and deduced that the latter gave better results. The data 

were divided into 5 seasons and the parameters were estimated for 

each season using the maximum likelihood method. A comparison was 

made between the model values and the actual values of the mean 

and standard deviations of the daily totals for each season. A 

good fit was evident, although no formal statistical tests were 

made. 

Smith (1987) developed the Markov Bernoulli Model for daily 

rainfall occurrences, which is a generalisation of Markov chains 

and Bernoulli trial point processes. This occurrence model uses 9 

parameters, and includes a seasonal structure. The Maximum 

Likelihood method was recommended for parameter estimation. The 

model was compared with standard Markov chain and Bernoulli models 

using 10 years of daily data taken from Washington, DC. By 

classifying a day as 'wet' if more than a threshold of 0.1 inch of 

rain fell on the day, the model was shown to be preferrable to the 

standard Markov chain and Bernouilli trial models. For large 

thresholds (1 inch) the Bernoulli trial model was found to provide 

the best fit, and for small thresholds (0.01 inch) a Markov chain 

model gave the best fit. It was concluded that the choice of model 

should depend upon the intended application. 
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2.4 RECENT POINT PROCESS MODELS 

In this section several point process models will be considered. 

It will be found helpful if some of the models are defined prior 

to the discussion. 

2.4.1 The Poisson White Noise model. 

Rainfall occurrences are assumed to occur in continuous time 

according to a Poisson process. The depth of rain, associated with 

each rainfall occurrence, is a random variable, and is assumed to 

occur as an instantaneous 'burst'. Depths are aggregated to 

intervals which match historical records, for the purpose of 

parameter estimation. Expressions for the second order moments of 

these aggregated depths are well known in the literature (see 

Parzen (1967), or Rodriguez-Iturbe et al (1984)). 

2.4.2 The Poisson Rectangular Pulses model 

In the literature this model is sometimes referred to as the 

Rectangular Pulses (Markovian) model. The model assumes that 

rainfall events arrive according to a Poisson process and that 

each rainfall event has a random duration and intensity associated 

with it. The intensity is assumed to be constant throughout the 

duration of the rainfall event. The intensity and duration are 

often taken to be Exponentially distributed. 
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2.4.3 The Neyman-Scott White Noise model 

The Neyman-Scott (N-S) point process was first used by Neyman 

(1939) in entomology and bacteriology population growth modelling, 

and subsequently used by Neyman and Scott (1958) to model the 

spatial variation of galaxies in the Universe. Kavvas and Delleur 

(1975) first used the model for representing rainfall events. They 

derived the probability generating function for the occurrence 

process, and fitted the model to daily rainfall sequences in 

Indiana. More recently, the second order moments of the aggregated 

process have been found (Rodriguez-Iturbe et al (1984)). The N-S 

White Noise model assumes that, with any rainfall event, there 

exists some generating mechanism, often called the STORM ORIGIN, 

from which rain cells arise. The generating mechanism could be 

regarded as passing fronts or some other criteria for convective 

storms. It is assumed that the storm origins arrive according to a 

Poisson process, and that the number of cells associated with each 

origin is a random variable. Furthermore, the waiting times for 

the rain cells, after the storm origin, are independent and 

identically distributed random variables (usually Exponential). 

With each cell is associated an instantaneous rainfall burst of 

random depth. 

2.4.4 The Neyman-Scott Rectangular Pulses model 

The model definition is as for the N-S White Noise model with the 

exception that each rain cell has a random duration and intensity 

associated with it, instead of instantaneous depths of rain. The 

second order moments for the aggregated process have been found by 
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Rodriguez-Iturbe et al (1987a), under the following assumptions: 

i) the waiting times after the storm origin for the cell origins 

are independent (of other cell and storm origins) Exponential 

random variables, and ii) the cell durations are independent 

Exponential random variables. 

2.4.5 The Bartlett-Lewis Rectangular Pulses model 

The Bartlett-Lewis (B-L) Rectangular Pulses model is similar to 

the N-S Rectangular Pulses model. Storm origins arrive according 

to a Poisson process, and a random number of rain cells are 

associated with each origin. The duration of the storm is a random 

variable with some probability density function, usually 

Exponential. Cells are then generated between the origin and the 

end of the storm, with the time interval between cell origins 

following some continuous probability distribution, e. g. 

Exponential. The duration and intensity of the cells are 

independent of all other cells and storm origins. Rodriguez-Iturbe 

et al (1987a) derived the second order moments of the aggregated 

process, and an expression for the probability of an arbitrary 

interval being dry. 

2.4.6 Discussion and comparison of various Point Processes 

Cox and Isham (1980) outlined the general theory of point 

processes. Their book includes a discussion of cluster point 

processes, such as the N-S and B-L models. 
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Waymire and Gupta (1981) provided a mathematical summary of the 

theory of Point Processes, with emphasis given to the probability 

generating functional (a generalisation of the probability 

generating function - see Cox and Isham (1980) for details) of the 

counting process of rainfall occurrences. Using the probability 

generating functional for the N-S model, they derived, in a more 

direct manner, some of the results found by Kavvas and Delleur 

(1975). 

Rodriguez-Iturbe et al (1984) compared the Poisson White Noise 

model, the Poisson Rectangular Pulses model, and the N-S White 

Noise model. Their main interest was in comparing the performance 

of the models at the hourly and daily levels of aggregation. 

Equations were derived for the aggregated processes and were used 

to fit the models to 27 years of data taken from Denver over a1 

month period (May 15 to June 16), and 11 years of data taken from 

Agua Fria for the months of April and September. For each model, 

comparisons were made between parameters estimated at the hourly 

level and parameters estimated at the daily level. It was clear 

that the parameters estimated for the N-S model at the hourly 

level were close to the parameter estimates at the daily level, 

which was not observed for the other two models. The correlograms 

for the N-S and Poisson Rectangular Pulses models were also given. 

From these it could be seen that both of these models fitted well 

at the daily level, but only the N-S model fitted well at thI 

hourly level. 

Valdes et al (1985) compared the same three models with a 

spatial-temporal model proposed by Waymire et al (1984). The 

purpose was to test the feasibilty of approximating a 
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spatial-temporal process, i. e. rainfall, with a simple stochastic 

time series models. They found that only the N-S White Noise model 

preserved the average storm duration and the average depth of rain 

captured over the duration of a single storm. They also performed 

an extreme value analysis by fitting a Gumbel distribution to the 

extremes at the hourly and daily level for the Poisson Rectangular 

Pulses model, the N-S White Noise models, and the spatial-temporal 

model. It was found that neither model adequately reproduced the 

extreme values obtained from the spatial-temporal model, the N-S 

White Noise model underestimating the extremes when fitted at the 

hourly level, and over estimating the extremes when fitted at the 

daily level (the Poisson Rectangular Pulses model behaved in an 

opposite way, with a poorer fit). 

Perhaps motivated by the inadequacies of the N-S White Noise 

model, Rodriguez-Iturbe et al (1987a) developed the N-S and 

Bartlett-Lewis (B-L) Rectangular Pulses cluster models for 

representing rainfall. In their paper the aggregated second order 

moments were derived for each of the models. In addition, some 

further properties were found for the B-L model, for example, the 

probability of an arbitrary interval being dry. 

Rodriguez-Iturbe et al (1987b) presented a detailed empirical 

analysis of rainfall data taken from Denver, Colorado. They 

compared the performance of the Poisson-Rectangular Pulses, and 

the N-S and B-L Rectangular Pulses cluster models. Their paper 

showed that the N-S and B-L models were able to preserve rainfall 

statistics at various levels of aggregation (from 1 hour to 24 

hours). The extreme values (up to return periods of about 20 

years) for the models were plotted on Gumbel probability paper 
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against the return period, and these plots compared favourably 

with the equivalent plot for the historical data. The 

probabilities of zero rain were also compared for 1,6,12, and 24 

hour time intervals. At first sight the cluster models (N-S and 

B-L) appeared to over estimate the probability for the larger 

intervals. However, an improvement was found when the threshold 

for a dry historical interval was increased from zero to a small 

upper bound, so that an interval was classified as dry if the 

amount of rain captured in the interval fell below the threshold. 

No difference in the performance of the N-S and B-L model was 

found. The Poisson Rectangular Pulses model had a much poorer fit 

to the historical data than the cluster models. 

To improve the fit of the N-S model to the historical proportion 

of dry days, Entekhabi et al (1989) proposed a modified N-S model 

by allowing the cell duration to vary for each storm according to 

a Gamma distribution (which introduced an additional parameter 

into the model). They found that the proportion of dry days given 

by the modified N-S model compared favourably to the historical 

records. 



2.5 OTHER RAINFALL MODELS 

Swartenbroekx (1987) wrote a document on applying the 

"Point-Rainfall Generator" (Marien and Vandewiele, 1986) on a 

mainframe computer. The model presented was able to generate 

rainfall time series for intervals from 10 minutes upwards. The 

model used 19 parameters when seasonalised to 2 seasons: summer 

and winter. It was found that the amount of data available (13.5 

years) was insufficient to build a model with more refined 

seasonality. The model was shown to compare favourably with 

extreme value statistics for return periods of up to 100 years. 

Other statistics were not compared, because the purpose of the 

model was to simulate severe storm conditions. 

Ormsbee (1989) proposed two rainfall disaggregation models. The 

first model disaggregates historical hourly rainfall time series 

to discrete time series of 20 minute intervals, and the second 

model disaggregates hourly time series to discrete time series of 

intervals for any chosen length from 1 to 30 minutes. The 

performance of the second model was assessed by comparing the 

predicted peak discharge flows (from a watershed) when using the 

model with the observed flows, and with flows predicted by 

assuming a Uniform distribution of rainfall over the hour. The 

disaggregation model showed an improvement when compared with the 

Uniform model, but under estimated peak flows when compared with 

the historical data. 

Acreman (1990) developed a model to generate hourly rainfall data 

for Farnborough, UK. The historical rainfall time series were 

divided into wet and dry spells, and the Exponential and Pareto 
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distributions (respectively) were fitted to the spell lengths. In 

addition, a Gamma distribution was fitted to the total volume of 

rain captured in the wet spells. The model had two seasons (Summer 

and Winter) and 22 parameters. Some of the model parameters were 

dependent on the season, and others were constant throughout the 

year. Using the model, data were simulated, and the mean simulated 

monthly totals were compared with the mean historical monthly 

totals. The results showed that the simulated monthly totals were 

consistently greater than the historical monthly totals for 

December to April, and consistently less than the historical 

totals for July to October. This model could possibly be improved 

by introducing more than two seasons. However, when fitting a 

wet/dry spell model, it is desirable to have as few seasons as 

possible to reduce the problem of the spells over-lapping the 

seasons, and small numbers of spells (e. g. wet spells in summer 

seasons) which leads to high sampling variability. A further 

problem with modelling wet/dry spells is the ambiguous definition 

of a wet/dry spell. For example, should a long sequence of wet 

hours with one central dry hour be treated as one or two events? 

Various definitions of spell lengths are available in the 

literature (e. g. see Yen and Chow (1980), or Restrepo and Eagleson 

(1982)), but any definition is likely to be subjective in some 

way. 
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2.6 THE CHOICE OF RAINFALL TIME SERIES MODEL 

The rainfall model required must be able to generate rainfall time 

series from about 5 minute intervals upwards. There are two 

approaches which could be taken: 

i) A model could be fitted to daily rainfall time series and the 

generated daily rainfall data disaggregated empirically to the 

required level. The choice of model would probably be a Markov 

Renewal model, as developed by Foufoula-Georgiou and Lettenmair 

(1987), or some other Markov chain type model, such as the one 

developed by Stern and Coe (1984). However, in the literature, 

only one model (Hershenhorn and Woolhiser (1987)), which was 

developed empirically for daily data located in the USA, could be 

found on disaggregating daily rainfall time series, and so this 

approach was not favoured. 

ii) A continuous time model could be fitted to hourly rainfall 

data. The required stochastic time serie's could then be obtained 

by aggregation, if higher than hourly time steps are required. As 

hourly rainfall models have been tested in the literature, at 

various levels of aggregation, this approach was favoured. If the 

continuous time model failed to perform well at increments less 

than 1 hour, the hourly series would need to be disaggregated, and 

for this a model such as the one developed by Ormsbee (1989) could 

be used (see Chapter 7). 
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The model selected was the Neyman-Scott Rectangular Pulses Cluster 

model, as developed by Rodriguez-Iturbe et al (1987a). This model 

seemed the most promising for the following reasons: 

(a) The model was shown to preserve historical rainfall statistics 

at various levels of aggregation. This included extreme values up 

to return periods of about 20 years (see Rodriguez-Iturbe et al 

(1987b)). 

(b) The model requires only 5 parameters to be estimated, for all 

levels of aggregation of the hourly time series. To simplify the 

regionalisation of the model, it seemed important that the model 

should have as few parameters as possible. 

(c) The model has a realistic physical structure, i. e. the 

incorporation of rain cells which are known to exist in actual 

rainfall events (e. g. see Amoroch'o and Wu, 1976, or Shaw, 1982). 

This makes interpretation of the parameters-of the model easier. 

(d) The Neyman-Scott model (White Noise or Rectangular Pulses) 

performed better than (or as well as) other rainfall models in the 

literature. 

The Bartlett-Lewis Rectangular Pulses model also satisfies (a)-(c) 

above, and no difference in the performance of the two models has 

yet been found. However, the Neyman-Scott model has appeared in 

the literature on rainfall modelling since 1975 (Kavvas and 

Delleur, 1975), and has been presented in many more hydrology 

journals. Although the extra attention given to the Neyman-Scott 

model may not be fully justified, it does provide some support for 

choosing the Neyman-Scott model in preference to the 

Bartlett-Lewis model. 
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The literature on, rainfall modelling contains only a few papers on 

fitting hourly rainfall models to data, and no papers were found 

on fitting-. the N-S model throughout the year. Therefore, judgement 

on the ýsuitability - of the N-S model was' reserved until some 

further work in fitting the model had been completed. The reasons 

listed above provided sufficient motivation to test the 

performance of the model against historical rainfall data. 

2.7 THE REGIONAL VARIATION OF RAINFALL IN THE UK 

2.7.1 Introduction 

The stochastic model must be capable of generating rainfall time 

series at any location in the UK. It was anticipated that the 

model parameters would be linked to certain regions of the country 

as well as criteria, e. g. altitude, within each region. The 

purpose in this Section was to decide upon an appropriate division 

of the UK into homogeneous precipitation regions. 

The selected regions could also be used as strata for sampling 

schemes. The need for the sampling schemes will become more 

apparent in subsequent Chapters. For the present, note that there 

are many rainfall station data available for the analyses (listed 

in Table 1.1), and so at times it will be found convenient to take 

a sample of these. A stratified sampling scheme based on 

precipitation regions would ensure a good spatial coverage of 

station data. 
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Two papers (Wigley et al (1984), and, Gregory, (1975)) and one 

report (Dales and Reed (1989)) are considered to determine whether 

the regions described therein are suitable for the project. The 

two papers are reviewed in some depth and Principle Component 

Analysis, which is used in both papers, is judged to be 

satisfactory as a method for grouping the rainfall stations. 

2.7.2 Summary of the papers 

Dales and Reed (1989) used Wiltshire's G-Point statistical test, 

applied to annual 1-day maxima, to adapt initial regions similar 

to those given by Jackson and Larke (1975). The final choice 

divided the country into 11 homogeneous regions based on at least 

40 years of data for each of 401 rainfall stations. It was noted 

that the G-Point test still produced significant values for 2 of 

the regions (at the 5% and 1% levels). By looking at the values of 

the test statistic it could be seen that many of the values were 

nearly significant and some were significant at the 10% level. 

However, the G-Point statistical test involves folding the 

distribution, which amplifies differences, and is therefore likely 

to be highly sensitive. 

The regions proposed by Dales and Reed (1989) were judged to be 

unsuitable for the project for the following reasons: 

(i) The statistics being considered (annual 1-day maxima) probably 

did not cover general regional differences in rainfall. In 

particular, the altitude of the rainfall station was not taken 

into consideration in the statistical tests. This means that the 
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inferred regions were likely to be a result of regional 

differences in rainfall patterns which could be attributed to the 

altitude of the stations within the region, rather than more 

general rainfall patterns rainfall (e. g. frequency of events in 

the region, etc. ). 

(ii) The regions were selected prior to the statistical tests, and 

so other regions not considered could have been 'better'. 

(iii) Many of the results for the statistical tests were 

significant or almost significant. 

Gregory (1975) considered various methods of dividing the UK into 

homogeneous regions using a 70 year record (1881-1950) of annual 

rainfall data taken from 50 stations. Four approaches were taken: 

(i) A graphical method, which involved plotting 10-year running 

means and (subjectively) drawing regions. In conclusion, Gregory 

stated that "Regional coherence was apparent, and possible simple 

circulation causes could be inferred, although full interpretation 

of boundaries was neither obvious nor clear". Thus, these regions 

were not selected, because the method seemed too subjective, and 

failed to produce physically identifiable boundaries. 

(ii) A linkage analysis was carried out between all possible pairs 

of stations over the 70 year record. This approach produced 

regions which appeared to have some physical interpretation, for 

example a division across the Pennines. However, it appeared that 

some of the boundaries for the regions could have no objective 

basis, because of lacking station data 
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(iii) Principle component analysis (PCA). Gregory produced 5 

regions based on a PCA. The regions were based on the loadings on 

the first and second principle components, which accounted for - 

about 63% of the variance in the data. Gregory found that the 

sites could be grouped into 5 catagories: 

(A) Stations for which component I was major (i. e. accounted for 

more variance than the other components), but was not dominant, 

and component II was negative. 

(B) Stations for which component I was dominant (i. e. comprised of 

over 50% of the variance for that site, with a loading greater 

than 0.7), and component II was negative. 

(C) Stations for which component I was dominant, and component II 

was positive. 

(D) Stations for which component I was major, and component II was 

positive. 

(E) Stations for which component II was major, and component I was 

positive. 

These 5 groups of stations were seen to occupy regionally discrete 

units, although some of the boundaries for the regions must have 

been subjective because of lacking station data. 

{iv) Factor Analysis. Gregory also rotated the solution of the PCA 

in order to maximise the loadings on as many stations as possible. 

This essentially meant that Gregory treated the principle 
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components as factors in a factor analysis (FA). The new 'factors' 

that appeared were not the principle components, and have no 

obvious interpretation. Gregory stated that "... the PCA results 

were used (despite some theoretical objections)", of which the 

"objections" may be this lack of interpretation. Many 

statisticians regard FA as inappropriate for most practical 

problems. For example, Chatfield and Collins (1980) list a page of 

drawbacks on FA, as well as many critical quotations on the 

method, and finally end with the remark: "... we recommend that FA 

should not be used in most practical situations". 

Wigley et al (1984) used a PCA on 55 stations, mainly located in 

Great Britain, for the 110 year period 1861-1970. They based their 

choice of homogeneous regions on contour maps of the loadings on 

the first four principle components for annual and seasonal data. 

These maps suggested that the UK could be divided into 5 

homogeneous regions (see figure 2.1). 

They then selected a station from each of the regions and 

found the correlation between the annual totals of the selected 

station and the remaining stations. Contour maps of the 

correlations were drawn. From these maps it was evident (although 

not suprising) that the selected stations had high correlations 

with stations lying in the same region. 
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Wigley et al's PCA was preferred to Gregory's PCA for the 

following reasons: 

a) Their rainfall stations gave a better spatial coverage of the 

UK. 

b) They considered longer time periods (110 year records compared 

with 70 year records). 

c) They considered the loadings on more principle components (four 

compared with two). 

d) They performed a separate PCA for monthly, seasonal, and annual 

data (Gregory only considered annual data). 

Therefore, the regions proposed by Wigley, et al (1984) were chosen 

for the project. It should be mentioned that any method involving 

the drawing of boundaries on maps is likely to be subjective in 

some way. However, the regions selected do seem physically 

realistic (e. g. there is an NE/NW division which corresponds to 

the well known 'rain shadow' effect of the Pennines) and can 

easily be classified (as North-East, North-West, Central, 

Southern, and South-West (see Figure 2.1)). 
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Figure 2.1 
Homogeneous Regions proposed by Wigley et al (1984) 
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CHAPTER 3 

AN INVESTIGATION OF THE 
NEYMAN-SCOTT RECTANGULAR PULSES RAINFALL MODEL 

3.1 INTRODUCTION 

This Chapter extends the Neyman-Scott Rectangular Pulses cluster 

model for simulating rainfall time series. Several important 

properties have previously been found for the model, for example, 

the expectation and variance of the amount of rain captured in an 

arbitrary time interval (Rodriguez-Iturbe et al (1987a)). In this 

Chapter, some further properties for the model are derived, e. g. 

the probability of an arbitrary interval of any chosen length 

being dry. In applications this is a desirable property to have, 

and is often used in fitting stochastic rainfall models to 

historical data. 

As a preliminary investigation, the model is fitted to 10 years of 

hourly data taken from Blackpool, UK. The results indicate that 

the performance of the model is good, so that the model can be 

used with confidence for the remainder of the project. 
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3.2 DEFINITION OF THE MODEL 

It is assumed that with any rainfall event there exists a 

generating mechanism, called the STORM ORIGIN, which may be 

passing fronts or some other criteria for convective storms, from 

which RAIN CELLS arise. 

Furthermore it is assumed that: 

(i) the storm origins arrive according to a Poisson process with 

rate parameter X (per hour), 

(ii) each storm origin generates a random number C of rain cells. 

To ensure at least one rain cell follows any given storm origin, 

C-1 will be distributed as a Poisson random variable, with v as 

the mean number of cells per storm (i. e. E(C-i) = Var(C-1) = v-1). 

(iii) the waiting time after the storm origin of each rain cell is 

exponentially distributed with parameter ß (per hour), 

(iv) the duration of each rain cell is exponentially distributed 

with parameter 9 (per hour), 

M the intensity (in mm per hour) of each rain cell is constant 

throughout its duration and is exponentially distributed with 

parameter E (hour per mm). 

(vi) the total intensity at any instant in time is the sum of the 

intensities due to all active cells at that instant. 
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(vii) the intensity, duration and the waiting time after the storm 

origin of any rain cell are independent of each other and other 

rain cells. 

The parameters of the model can be summarised by: 

1/a = mean time between storm origins, 

1/ß = mean waiting time for cells after the storm origin, 

v= mean number of rain cells per storm, 

1/ri = mean cell duration and 

1/E = mean cell intensity. 

A schematic of the model is given in Figure 3.1. 
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Storm origins arrive according to a Poisson Process 

Time 

Each origin generates a random number of rain cells 
with cell origins at * 

Time 

The intensity and duration of each rain cell follow exponential 
distributions - the intensity is constant throughout the duration 

iLo. 
Cl) 
c 
a) . -. 
c 

Time 

The total intensity at any point in time is the sum of the intensities 
of all active rain cells at that point 

.? tN U) c 

c 

12 

Time 

Figure 3.1 A Schematic of the Neyman-Scott Model 
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3.3 THE PROBABILITY THAT AN ARBITRARY INTERVAL IS DRY 

Initially consider a single storm, ignoring the effects of any 

other storm (i. e. cells due to other storms). The storm origin 

will be taken at time zero and arbitrary time intervals [t, t+h7 

after the storm origin will be analysed (so t, h > 0). 

pr(k cell origins in [t, t+h] I C=n) =rk 
)pk 

(1_p)n-k if k5n, 

=0 if k>n, 

where p= p(t, t+h) = pr(a cell arrives in [t, t+h]) 

t+hedt 
= e- e-ß(t+h) - 

St 

(N. B. p is a function of t and t+h - the brackets will sometimes 

be omitted for ease of notation) 

Hence, 

pr(k cell origins in [t, t+h]) 
w_O( k) pk (1_p)n-k pr(C=n) 

n=k J 

= µk-1pk (p-pp+k) e '/k! (3.1) 

by taking C-1 distributed Poisson with mean p. (For convenience, 

v-1, in part (ii) of the model definition, is taken as µ). 

An immediate consequence of (3.1) is: 

pr(no cell origins in [t, t+h]) 

_ (1 - e-ßt + e-O( 
t+h)) 

exp(-pe-ßt+ pe-O( 
t+h)1 (3.2) 

- 41 - 



Let FW(x) denote the distribution function of the waiting time W 

after t for cells with origins in [t, t+h], i. e. let FW(x) be the 

probability that a cell has its origin in [t, t+x] given that the 

cell origin lies in [t, t+h]. Then Fw(x) is given by: 

FW (x) = e-ßt- e-ß(t+x) 

e-Pt- e-ß(t+h) 

(for xs h) (3.3) 

Now if D is the duration of any given cell, D is distributed 

exp(rI) , i. e. fD(x) = Tje-T'x . Hence the waiting time after t 

for the end of the rain cell is W+D, and thus the density of S= 

W+D is the convolution fW * fD, where fW= dFW/dx. The density 

S(x) of S is: 

fs(x) = 
ßn(e-pX - e-n') 

if 0sxsh, 

(n-ß)(1-e-Ph) 

7(e(n-ß)h - 1) e-Tlx 

(1-e-ph) 

From equation (3.4), 

P (e-pt- e-rat pr (S > t) = 
fIlD f(x)dx = 

t (TI-ß) (1-e-Pt) 

and pr(Sst) =1- pr(S>t) = a, say. 

if x>h (3.4) 
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Thus, pr(no rain in [t, t+h]) 

CD n 

_EE pr(k cell origins in (O, t) and all k cells terminate 

n`1 k`O before t, and n-k cell origins in (t+h, cD)I C=n) pr(C=n) 

nn1 -ßt k-ß(t+h)(n-k) k n-i -µ _k) (1 -e)eaµe /(n-1)! 
nal ka0 

IID 

c(-I 

n 
e-ý e-ßn(t+h) 

k [«(1 
- e-ßt) eP(t+h) 

k 

n=1 
1 

k=O 

= e-N 
[1+a(1-e -ßt)eß( t+h) ) 

e-ß(t+h) 

X exp 
r 

pe-ß 
(t+h) 

+ {lac (1 - e-ßt) 
) 

=( e-ß 
(t+h) 

+1- (rle-ßt - ße rlt) / (n-ß) 
) 

x exp 
( 

-Nß (e-ßt -e 
nt) / (n-ß) - Me-pt + pe-ß 

(t+h) ) 
(3.6) 

Now consider the general case. An arbitrary interval of length h 

is dry if it is dry due to storm origins in the interval and it is 

dry due to storm origins preceeding the interval. Consider a large 

interval of length L preceeding the interval of length h. Divide 

this large interval into n smaller subintervals of length St: 

i: n-1 n-2 ..... 210 
( n. St=L ) 

St St 
..... 

St St St 
L F- h -º 

The probability that a storm origin arrives in an interval of 

length St is XSt + o(St). Interval h is dry, due to subinterval i 

of L, either if no storm origin is in i, with probability 1- abt 
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+o (St) , or a storm origin is in i, with probability X6t +o (6t) , 

AND there is no rain in h due to the storm origin in interval i. 

The probability of no rain in h due to a storm origin in interval 

i is Pi6t(h) (from (3.6)). 

Hence the probability that h is dry due to storms in L is: 

lim I (1 - X5t + X6tp0 (h)) x (1 - XSt + X6tp6t (h)) x.. 
St-)o 

... X (1 - XSt + ? 5tp(n-1)St(h)) 
J 

Therefore the probability that h is dry due to all storms 

preceeding h is given by: 

n-i 
lim lim fl (1 - XSt + XStpiSt (h) ) 

St-. O L40D i=0 

( co l 
= exp I-Xf [1 -0 pt (h) ] dt J lJ 

(3.7) 

Now divide the interval h into n smaller intervals of length 5t. 

Interval h will be dry due to storms arriving in h with 

probability: 

tim 
1 

(1 - Abt + XStpO((n-1)St)) x (1 - XSt + AStpý((n-2)St)) x .. St-40 

... X(- xst + AStp0 (St)) x (1 - aat + Xatpo (o) ) 
n-1 

= lim fi (1 - XSt + XStp0(iät)) 
St-O i=0 
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(h} 
= exp I-Xf [1 - p0(t)] dt 

l0J 

( 
= exp 

hI-af 
[1 - e-ßt exp{-p + pe-ßt}] dt 

l0 

= exp 
[- 

Ah 
.+ 

X(1 - expi-p + ue-Ph l) / (ßµ) ) (3.8) 

So the probability that an arbitrary interval of length h is dry, 

4(h) say, is given by: 

Ch) = exp I -Th + (1 - exp(-p + pe-ph }) -X 
J(i. 

- pt (h) l dt J l pp 0 

(3.9) 

Hence P(24) represents the proportion of dry days as predicted by 

the model. This is used to fit the model in Section 3.4. 

Some further mathematical expressions for the Neyman-Scott 

Rectangular Pulses model (e. g. an approximation to 4(h) of 

equation (3.9)) were found and are given in Appendix A. These 

expressions may be of some use in future research. However, they 

were not needed in this project, and so the details of their 

development are omitted from this Chapter. 
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3.4 FITTING THE MODEL 

3.4.1 Parameter estimation procedure 

A detailed investigation into ways of estimating the parameters of 

the model will be given in the next Chapter. The purpose in this 

Chapter was to develop and test the model, and to decide on the 

suitability of the model for the remainder of the project. 

Consequently, only one parameter estimation procedure was 

considered, a procedure which seemed to make the most use of the 

available theoretical expressions. 

The parameter estimation procedure used the following equations 

derived by Rodriguez-Iturbe et al (1987a), as well as expression 

(3.9) of the previous Section. 

E(Yh)) = Xji h/OJE) (3.10) 

Var(Y(h) x(,? - 1) [ß3A1 (h) - r3 B1 (h) l+4X pc Al (h) (3.11) 

ß2 17 
3 (ß2 r2) 

2 
T) 

3 

Cov(Yih), y! h)) 
= a(N2 - 1)[ß3A2(h, k) - n3B2(h, k)l + 4Xp A2(h, k) 

ß E2 n3 (ß2 - r? 
2) ý2 r3 

(3.12) 

where: -- 

y(h) = total rainfall in interval i of length h, 

Pc = E(C) = the mean no. of cells per storm, 

Al(h)B nh 

A2(h, k) = 2(1 - e-"h)2 e-gh(k-1), B2(h, k) = 2(1 - e-ß)2e-ßh(k-1) 
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It will sometimes be found convenient to adopt the following 

notation: 

p(h) = E(Yih)) 

7(h) = Var(Y(h)) . 

p(h, k) = Cov(YihYi+k)/Var(Yih)) - the autocorrelation function, 

The parameter estimation procedure was based on minimising a sum 

of squares, where the squared terms were differences between 

selected functions of the model parameters and the equivalent 

historical statistics taken from the rainfall data. With this kind 

of procedure more than 5 equations for the 5 unknown parameters 

can be selected, in an attempt to fit many more of the historical 

statistics. Ideally the selected sum of squares would give a 

minimum of zero, but in practice this puts too much demand on the 

model so that a value close to zero has to be accepted. The model 

functions selected for the minimisation procedure are given below, 

where the expected amount of rain captured in 1 hour as predicted 

by the model was substituted in equations (3.11) and (3.12), the 

purpose being to reduce the number of parameters requiring 

estimation within the procedure. The squared terms within the 

procedure were weighted to ensure that large valued historical 

statistics did not dominate the procedure. 

Model functions used in minimisation procedure: 

i) 4(24), ii) 7(1), iii) 7(6), iv) y(24), v) p(l, l), vi) p(6,1), 

and vii) p(24,1). 
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The sum of squared differences between the above functions and 

their equivalent historical values were minimised using a 

quasi-Newton based algorithm (NAG routine E04JAF). The parameters 

were estimated for each month using 10 years of hourly data taken 

from Blackpool, UK. 

To illustrate the order of magnitude of the parameter estimates, 

the values obtained for a summer and winter month are shown in 

Table 3.1 below, from which it can be seen that the parameter 

estimates seem physically realistic and are of a similar order of 

magnitude to those obtained by Rodriguez-Iturbe et al (1987b). 

Table 3.1 

Parameter Estimates for January and July 

aßn PC 

hr-1 hr-1 hr-1 cells/storm hr/mm 

January 0.0149 0.0540 1.03 9.40 1.19 

July 0.0136 0.0998 1.51 3.59 0.506 
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3.4.2 The Model's performance 

For each month 10 years of hourly data were simulated using the 

model. The differences between historical and simulated statistics 

were calculated, standardised and plotted (see Figures 3.2 - 3.6). 

To interpret the plots note that each is given a label which 

refers to the statistic being tested. For each month this 

statistic is found for both the historical and simulated series, 

and the mean values calculated over the 10 year period. Lines are 

drawn on the plots to indicate the approximate location of the 5% 

significance level under a standard t-test. For example, in Figure 

3.2, the label is monthly totals, so that the points plotted are 

the values of the t-statistics found by taking the difference in 

the mean monthly totals of the historical and simulated time 

series and dividing by an estimate of the standard error. 

Most values lie within the bounds and vary about the zero line 

indicating that the model is performing well (Figures 3.2-3.6). 

The difference between the historical and simulated hourly 

autocorrelations for June is probably statistically significant. 

However, overall the model seems to be performing well and so this 

problem will not be considered here. 

49 



Monthly Totals 
4 

3- 

5% Level 
2 

H 

FMAMJJASOND 
Month 

Figure 3.2 

Proportion of Dry Days 

W 

4 

3 

5% Level 
2 

-2 

JFMAMJJAsVNu 
Month 

Figure 3.3 

(H = Historical value, S= Simulated value, 

SE = estimate of standard error) 

- 50 - 



Hourly Variances 

w 

s 
5% Level 

Y 

a 

a 

JFMAMJJAS0N0 
MCI 11 

Figure 3.4(a) 

Hourly Autocorrelations at Lag 1 

Ui 

S 

t 

t 

0 

_i 

s 

4 

Level 

JFMAMJJASOND 

March 

Figure 3.4(b) 

I 

W 
o 

a 

i 

a 

Hourly Maxima 

JFYAYJJ"tnun 

Figure 3.4(c) 



Six-Hourly Variances 
4 

3 

2 

Ui 
o 

4 

a 

5% Level 

FYAYJJAS0N0 

Figure 3.5(a) 

Six-Hourly Autocorrelation at Lag I 

w 

5% Level 
2 

JFMAMJJASONO 

Math 

Figure 3.5(b) 

Six-Hourly Maxima 

W 

a 5% Level 

JfMAMJJASONO 
Ma th 

Figure 3.5(c) 

- 52 - 



Daily Variances 
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CHAPTER 4 

FITTING THE NEYMAN-SCOTT RECTANGULAR PULSES MODEL 
TO HOURLY RAINFALL TIME SERIES 

4.1 INTRODUCTION 

In the previous Chapter the first two moments, that is the mean, 

variance and autocovariance, of the aggregated Neyman-Scott (N-S) 

Rectangular Pulses model were given, so that a suitable method of 

parameter estimation could be based on the Method of Moments. 

The Method of Moments involves equating observed. moments, for 

example the sample mean, with their equivalent in the population, 

which are theoretical functions of the model parameters. With the 

N-S Rectangular Pulses Model there are 5 unknown parameters to be 

estimated from the rainfall data. Five model functions could be 

selected and equated to their equivalent historical statistics 

estimated from the rainfall data, and these equations solved as a 

set of simultaneous equations. Alternatively, a sum of squared 

terms could be minimised, where each term consists of a difference 

between the theoretical function of the model parameters and the 

equivalent historical sample statistic. The two methods should 

produce equivalent parameter estimates when the least squares 

method uses the same five model functions/historical statistics as 

the simultaneous equations. However, the least squares method has 

the advantage of being able to use more model functions/historical 

statistics to estimate the parameters, so that the model may be 

able to match more of the historical statistics. The number of 

historical statistics that the model can match is an indication of 

how good the model is. Naturally there will be a limit to this 

number, but by using the least squares method, historical and 

- 54 - 



model statistics of importance can be made as close as possible, 

so that the parameter estimates under this method will give more 

than 5 model statistics that are almost equal to their historical 

equivalents, rather than 5 model statistics that are exactly equal 

to their historical equivalents (which would be the result of 

solving 5 simultaneous equations, assuming an exact solution 

existed). 

In this Chapter a suitable way of fitting the Neyman-Scott 

Rectangular Pulses model to historical hourly data is sought. One 

approach to this problem would be to select historical statistics 

that are of practical importance and to use a sum of squares to 

measure how well the model fits the selected historical statistics 

when using different combinations of statistics/model functions in 

the fitting procedure. This approach is particularly suitable when 

all model functions of importance are known. However, a less 

formal approach was adopted in this Chapter because some 

comparisons (e. g. dry spell sequences) could only be made after 

simulation. Furthermore, initially, not all model functions of 

importance were known (e. g. the transition probabilities were 

derived after the first simulation study (Section 4.4.5)). To 

begin with, it was thought that the autocorrelation function could 

be used in the fitting procedure to ensure that the model captured 

the dependency inherent in historical rainfall events. However, 

this function was found to be inappropriate when modelling summer 

dry spell sequences, which needed to be modelled for the intended 

application, and so an alternative was sought by deriving 

transition probabilities for wet/dry spells. For convenience, 

these transition probabilities are derived in the next Section so 

that they can be included with the other model functions. 
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4.2 NOTATION AND MODEL FUNCTIONS 

The following notation will be used for the functions of the model 

parameters: 

u(h) = mean of h hourly time series, 

7(h) = variance of h hourly time series, 

7(h, r) = lag t autocovariance of h hourly time series, 

p(h, r) = lag t autocorrelation of h hourly time series, 

O(h) = proportion of dry intervals for h hourly time series, 

Owju(h) = proportion of wet h hourly intervals with previous h 

hourly interval wet (called wet given wet transition probability), 

ODID(h) = proportion of dry h hourly intervals with previous h 

hourly interval dry (called dry given dry transition probability). 

Expressions for p(h), 7(h) and i(h, x) in terms of the parameters 

of the Neyman-Scott Rectangular Pulses Model were derived by 

Rodriguez-Iturbe et al (1987a), and are given below: 

µ(h) = E(Yih)) = Xpcp h/n (4.1) 

For i=0, 

7(h) = Var(Y(hl) = 117-3(rnh -1+e 
r7h) 12pcE(X2) + 

E (C2-C) NXß2/ (ß2-q 2I- X(ßh -1+ e-1) E (C2-C) N2/(ß(ß2-rl 2) } 

(4.2) 

For zi1, 

) -reh 2 -rl (ýr-1)h 2 chi (h) 7(h, r) = Cov(Yi , Yi+Z = Ät7-3(1 -e)e (Nc E(X) + 

1E (C2-C) 2p2/(ß2_172), 
e-ßh) 

2e-ß(2-1) h ?E (C2-C) )} 2/ { ß(ß2-n2 
22 Px 

(4.3) 

where Yih) = total rainfall (in mm) in interval i of length h, X= 

cell intensity (in mm per hour), and C= the number of cells per 

storm. Following Chapter 3, C-1 will be distributed as a Poisson 
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random variable with E(C) = µc =P and E(C2-C) = P2-1 in equations 

(4.1)-(4.3) above. [Note also that E(X) = µX = 1/c, and E(X2) _ 

2/E2 in the above equations when the cell intensity follows an 

Exponential distribution with parameter E]. 

An expression for 0(h) was derived in Chapter 3, and is given 

below: 

4(h) = exp I- Ah +1 (1 - exp(1 -v+ (v-1)e- }) 
l ß(v-1) l 

-A J0 [1-ph(t)]dt I (4.4) 

where: 

Ph (t) =( e-ß(t+h) +1- (ne-ßt - ße-nt) / (n-R) 
) 

X exp 
C 

-pp (e-pt -e 
rlt)/(n-ß) 

- pet + gie-ß(t+h) 
1. 

Expressions for the transition probabilities 4DID(h) and 41u1 
W(h) 

have not previously been given. However, they follow immediately 

from equation (4.4) as the following shows. 

Consider an interval of length 2h (in hours) denoted by [0,2h]. 

Pr([0,2h] dry} = $(2h) 

Pr([O, h] dry) = Pr([h, 2h] dry) = 0(h) 

* 0DID(h) = Pr{ [h, 2h] dry I [O, h] dryl = $(2h)/¢(h) (4.5) 

Now Pr([O, h] or [h, 2h] wett = Pr([0,2h] wet) =1- $(2h) 

Also Pr{[O, h] or [h, 2h] wett 

= Pr[[O, h] wet) + Pr{[h, 2h] wet) - Pr{[O, h] wet and [h, 2h] wet] 

=1- 0(h) +1- $(h) - Pr([O, h] wet and [h, 2h] wett 

=2- 24(h) - Pr{[O, h] wet and [h, 2h] wet! 
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4 Pr{[O, h] wet and [h, 2h] wett =2- 2P(h) -1+ 0(2h) 

=1- 20(h) + '(2h) 

Owiw(h) = Pr([h, 2h] wetl[O, h] wet} =1- 
2'(h) + $(2h) (4.6) 
1- 0(h) 

For an h hourly rainfall time series (either historical or 

simulated), the following notation will be used: 

Mh = mean, 
Vh = variance, 
ACVh = lag 1 autocovariance, 
ACh = lag 1 autocorrelation, 

PDh = proportion of dry intervals, 

WWh = proportion of wet intervals preceded by a wet interval, 

DDh = proportion of dry intervals preceded by a dry interval. 

For example, PD24 is the proportion of dry days found in the 

(historical or simulated) rainfall time series record, and M24 and 

V24 are the mean and variance respectively of the amount of rain 

captured in a day. 

For the purpose of defining the parameter estimation procedure 

(Section 4.3) it is convenient to define the following two sets: 

1) the set of model functions: F= Ip(1) , 7(h) , p(h, 1) , OwIw (h) , 
0DID (h) , 4(h) :h=1,3,6,12,241 , 

2) the set of rainfall time series statistics: 

{M1, Vh, ACh, WWh, DDh, PDh :h=1,3,6,12,24). 

The following points may be noted concerning the above sets: 

i) there is a one to one correspondence between F and K given by: 

p(1) -' Ml, 7(h) i Vh, p(h, 1) i ACh, 4WI 
w(h) -. WWh, 0DID(h) i DDh, 
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$(h) - PDh, i. e. each model function has an equivalent statistic, 

which can be found using historical rainfall time series data, 

ii) N(F) = N(K) = 26, 

iii) members of the above sets will be selected for the purpose of 

fitting and testing the model. Other model functions/statistics 

could be included as members of the sets. However, the members 

given above are a reasonable choice given that hourly and daily 

data are available and the model is required to match h hourly 

historical rainfall time series for h between 1 and 24 hours 

(subsets of the above were also used by Rodriguez-Iturbe et al 

(1987b) to fit the Neyman-Scott and Bartlett-Lewis Rectangular 

Pulses Models to historical rainfall data from Denver, Colorado). 

4.3 THE PARAMETER ESTIMATION PROCEDURE 

4.3.1 Definition 

Let fi = fi EF be a selected model function and let 

ki E QC be the equivalent statistic taken from the historical 

rainfall record. Note that ki is an estimate of a population value 

ki, i. e. it is assumed that the statistic ki comes from a 

population in which the historical time series is one realisation. 

Different letters (f and k) are used to reflect the possibility 

11 

ki E QC be the equivalent statistic taken from the historical 

rainfall record. Note that ki is an estimate of a population value 

ki, i. e. it is assumed that the statistic ki comes from a 

population in which the historical time series is one realisation. 

that there may be some inadequacy in the model due to ki lying in 

an infeasible region of fi, i. e. there may be no solution to 

fi(1, ß, 17, V, 9) = k.. 

Suppose m (s26) such functions and estimates are selected. Then 

the parameter estimation procedure is defined by: 
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m 
Minimise: S= (1 - fi/ki)2 (4.7) 

i=1 

Subject to: lb(X) =0<X< ub(a) , lb(ß) =0<ß< ub(ß) , 

lb (17) =0<r< ub(r1) , lb (v) =1<v< ub(v) , 

lb (Z) =0<Z< ub(Z), 

where the lb(. ) and ub(. ) are lower and upper bounds respectively 

(these are required later in this Chapter), and ki ý 0. 

A suitable FORTRAN routine available for minimising S is provided 

by the Numerical Algorithms Group (NAG), and is called E04JAF. NAG 

provide several routines to find local minimums, but the routine 

selected is one of the few routines that enable the user to set 

upper and lower bounds on the parameters. As all the parameters 

for the N-S model must be positive it is essential to be able to 

put lower bounds on the parameters. The need for the upper bounds 

appears later in this Chapter. 

Note that, in the parameter estimation procedure (4.7), a ratio 

between model function and historical statistic is used. This 

ensures that large historical statistics do not dominate the 

procedure. However, for the squared term containing the historical 

hourly mean, a weighting of 10 is applied to ensure that the 

historical hourly mean is almost matched exactly by the model, so 

that, on average, the volume of rain generated by the model is 

about the same as that in the historical data. 

The purpose in this chapter is to find suitable functions fi EF 

and equivalent statistics ki E for the parameter estimation 

procedure (4.7), so that the parameter estimates generated by 

(4.7) can be used with the rainfall model to simulate hourly 
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rainfall time series that match historical rainfall time series of 

any increment from 1 hour upwards. 

4.3.2 Method of fitting the model and calculation of historical 

statistics 

Initially the model will be fitted month by month, and statistics 

for each month used in the parameter estimation procedure, i. e. to 

begin with the model will have 60 parameters in total, 5 for each 

month. This number could possibly be reduced in later Chapters if, 

for example, it is possible to fix one or more parameters 

seasonally or throughout the year without detriment to the model's 

goodness of fit. 

Suppose there are N years of historical rainfall time series data. 

To estimate historical moments of order 2 (e. g. Vl or AC1) for one 

of the months, the sample values from the rainfall data for the 

month will be used using the overall sample mean, i. e. the sample 

mean of all the h hourly values for the month in the N year 

period. To illustrate, suppose we wish to estimate the parameters 

of the model for January, using Mi, Vi, V24, AC1, AC24 and PD24 in 

(4.7). Then, in order to calculate V1 from the historical rainfall 

time series, the following would be used: 

N 31X24 

V1 = (Yij -2/ (N x 31 x 24 

i=1j=1 

where 

N 31X24 

yij / (N x 31 x 24) 

i1j=1 
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and yi j= amount of rain captured in interval j, year i, where 

i=1,..., N. With the autocorrelations a mean value over the total 

number of years will be used in order to avoid a carry over of the 

last hour in one January to the first hour in the next January of 

the following year. So in order to calculate the lag 1 

autocovariance (ACV1) of the historical hourly rainfall time 

series, the following would be used: 

N 31x24-1 

ACV1 =[ (Yij - Y)(Yij+1 - Y) / (31 x 24 - 1) 
]/N, 

is1js1 

where again y is an estimate of the overall population mean. 

4.3.3 Assessing the solution and testing the performance of the 

model 

Clearly it would be desirable if the minimum of S in (4.7) was 

equal to zero. However, in practice, when more than 5 functions 

are used (m>5 in (4.7)), this puts too much demand on the model so 

that a value close to zero has to be accepted. The question 

remains as to what value of S is acceptable. 

AAAAA 

Let the solution to (4.7) be v, ). Note that if S is much 
AAAAA I\ 

greater than zero then Ifi (a, ß, r1, v, E) - ki i >> 0 for some (or all) 
AAA Iý AA 

i=1,... , in. Now If- ki I is the error in term i. 

Hence the absolute percentage error will be: 

100 x 

AAAAAA 

- k11 
A 

k. 
i 

Therefore after solving (4.7) the percentage error in each term 

can be found and a decision made as to whether the error is 
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acceptable or not. This will depend on the sampling variability of 

the rainfall data, which is discussed at the end of this Section. 

Using the above parameter estimation procedure the parameters can 

be estimated for the model at any given site for which data are 

available, and rainfall time series can then be generated for that 

site. Statistics can be extracted from both the historical and 

simulated time series and compared. The statistics to be used to 

assess the performance of the model will be: (i) the monthly 

totals T, (ii) the variance of 1,6,12, and 24 hourly time series 

(Vi, V6, V12, V24), (iii) lag 1 autocorrelations of 1,6,12, and 

24 hourly time series (AC1, AC6, AC12, AC24), (iv) the maximum 

amount of rain per month per year for 1,6,12, and 24 hourly time 

increments, and (v) the proportion of dry days PD24. This choice 

of statistics is frequently used in the literature (see for 

example Rodriguez-Iturbe et al (1987b)). To some extent this 

choice is subjective, but on the other hand it is difficult to see 

why other time series increments would provide a better base on 

which to assess the performance of the model. In addition 

frequency plots of dry spell durations (in days) will be used to 

compare the historical and simulated time series. 

For each year the statistics will be extracted from each month for 

both the historical and simulated time series. Assuming that 

monthly historical statistics are independent from one year to the 

next, t-tests will be used to test whether the simulated 

statistics are significantly different from the historical values. 

To illustrate, suppose the statistic under comparison is monthly 

total T. The monthly totals will be found for each year for all 

months for both the historical and simulated rainfall time series. 

Let Tij and Tij (i = 1, ..., N= total years; j=1, ..., 12) 
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denote the monthly total for month j year i for the historical and 

simulated time series respectively. Let Tjh) and T18) be the mean 

monthly totals over the N year period, and let Sj be a pooled 

estimate of the variance. Then 

,, 
(h)_ , ý, (s) 
3 

tj = (J = 1, .... 12) 

s1 
-2/ 

N 

follows a t-distribution with 2N -2 degrees of freedom. Strictly 

speaking using the pooled variance S2 assumes that Var(Tij)) = 

Var(TiHowever, initially it will be found convenient to 

ignore the possibility of unequal variances and use tj to compare 

the simulated statistics with their equivalent historical 

statistics, without reading too much into significance levels. 

4.3.4 The sampling variability to be expected in rainfall data 

To obtain an estimate of the sampling variability to be expected 

in a rainfall record, the longest records (Poaka Beck (90 years), 

Exmouth (70 years), Windsor (90 years), Blackbrook (90 years) and 

Howick Hall (90 years)) from each of the 'Wigley' regions of 

Chapter 2 (Figure 2.1) were divided into 10 year periods. For each 

station-month (a total of 12x5) in each period some key daily 

statistics (daily means, daily variances, proportion of dry days, 

wet and, given wet transition probabilities) were found, and the 

mean and standard deviations of the key statistics (over the 

periods) evaluated for each station-month. For example, for each 

of the 9 periods of 10 years of data for Windsor-January the 

proportion of dry days were found, and the mean and standard 

deviation of these 9 estimates of the proportion of dry days also 
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found. The standard deviations were divided by the means to obtain 

the coefficient of variation (CV) for each key statistic for each 

station-month. For each key statistic the mean CV (over all the 

station-months) was found, and these values are given in Table 4.1 

below, together with an estimate of the mean CV for a 20 year 

record (= mean CV for 10 year record + /2). 

Table 4.1 

Estimates of the coefficient of variation 
for each key daily statistic for 10 and 20 year records 

Key statistic Mean CV SE of Mean Estimate of Mean 
(for a 10 (for a 10 CV for a 20 year 
year record) year record) record 

M24 16% 0.5 11% 

V24 31% 1.22% 

PD24 12% 0.5 8.5% 

WW24 8.2% 0.3 5.8% 

Table 4.1 gives a rough guide to the error that will be acceptable 

when fitting the model (i. e. whether the percentage error of 

Section 4.3.3 is acceptable). For example, with a 20 year record 

of rainfall data we should require the percentage error between 

the historical daily variance and the daily variance predicted by 

the model to be less than 22% for most of the parameter sets 

generated by (4.7) (about 70% of the parameter sets obtained from 

the fitting procedure (4.7) will be required to predict a daily 

variance (which is a function of the model parameters) that is 

within 22% of the historical daily variance that was used in the 

fitting procedure). 
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4.4 ASSESSING THE DISTRIBUTION FOR THE CELL INTENSITY 

4.4.1 Using no specified distribution for the cell intensity 

It can be seen in equations (4.1) - (4.3) that the cell intensity 

X has no specified distribution. We are therefore free to choose a 

distribution for X. A distribution frequently used for rainfall 

intensity is the Exponential distribution. This distribution has 

the advantage over other distributions of only having a single 

parameter ý, in which case µX = 1/E and E(X2) = 2/E2 in equations 

(4.1) - (4.3). 

Before using the Exponential distribution it is worth considering 

how well the model fits with no specified distribution for the 

cell intensity, i. e. treating Nx and E(X2) as parameters in the 

fitting procedure (4.7). If the result of not specifying a 

distribution showed a much better fit than using an Exponential 

distribution, other distributions (e. g. Gamma or Weibull) could 

then be selected and tested against each other and the 

distribution giving the best fit used to model the cell intensity. 

4.4.2 The statistics extracted from the Manston data set 

The Manston (in Kent) data set is suitable for carrying out an 

initial investigation on fitting the model as it is a long (20 

year) hourly record with no missing values. 

A program was written to break this data set into 12 files 

corresponding to months. A further program was written to extract 

the statistics to be used in fitting the model from the monthly 

files. The results of running this program (i. e. the statistics to 

be used in fitting) are given in Table 4.2. 
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Table 4.2 

Estimates of statistics to be used to fit the model 

(taken from the Manston data set) 

Month Mi vi AC1 V6 AC6 V24 AC24 PD24 
(mm) (mm2) (mm2) (mm2) 

Jan 0.063 0.082 0.54 1.2 0.23 7.5 0.08 0.52 
Feb 0.052 0.068 0.49 1.0 0.33 6.5 0.25 0.58 
Mar 0.054 0.071 0.54 1.2 0.27 7.4 0.19 0.57 
Apr 0.055 0.082 0.55 1.4 0.27 7.9 0.13 0.60 
May 0.056 0.120 0.43 1.7 0.19 8.1 0.11 0.60 
Jun 0.062 0.174 0.39 2.3 0.30 14. 0.27 0.68 
Jul 0.061 0.204 0.46 3.1 0.34 21. 0.09 0.70 
Aug 0.067 0.386 0.33 4.5 0.32 36. 0.07 0.71 
Sep 0.093 0.530 0.47 9.1 0.51 61. 0.25 0.64 
Oct 0.080 0.208 0.46 3.1 0.37 21. 0.32 0.62 
Nov 0.088 0.153 0.55 2.4 0.34 17. 0.15 0.54 
Dec 0.066 0.097 0.54 1.6 0.27 9.5 0.07 0.56 
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4.4.3 The results of using no specified distribution for the cell 

intensity 

The results of using the statistics in Table 4.2 in the parameter 

estimation procedure are given in Tables 4.3a and 4.3b. Table 4.3a 

gives the parameter estimates obtained, and Table 4.3b gives the 

absolute (i. e. positive valued) percentage error in using these 

parameters in the model equations. The means (over months and over 

statistics) are also given in Table 4.3b as they give an 

indication of where the model is failing to match the historical 

statistics. For example, looking at the means in the right hand 

column it can be seen that the mean value for August (10%) is 

greater than all the other mean values in that column which 

indicates that the poorest fit is in August, or more generally in 

the summer. Similarly, the worst fit in the historical statistics 

is indicated by looking at the bottom row of means (in this case 

the variance of the 6 hourly time series). 

- 68 - 



Table 4.3 

The results of not fixing a distribution 
for the cell intensity 

(a) 
The parameter estimates (generated using (4.7)) 

Month x 
hour-' 

ß 
hour-' 

Ti 1 hour- 
v E(X) 

mm/hour 
Var(X) 

(mm/hour)2 

Jan 0.0230 0.182 1.25 2.97 1.14 0.568 

Feb 0.0078 0.066 1.59 27.4 0.39 0.530 

Mar 0.0104 0.075 1.15 9.47 0.63 0.671 

Apr 0.0120 0.127 1.22 10.7 0.53 0.680 

May 0.0149 0.107 1.64 3.26 1.87 2.69 

Jun 0.0050 0.055 2.13 19.6 1.37 4.23 

Jul 0.0047 0.219 3.17 583. 0.07 0.33 
Aug 0.0038 0.288 99.6 200. 8.66 0.665 

Sep 0.0025 0.086 2.22 0.13 0.052 0.389 

Oct 0.0047 0.054 1.85 73.4 0.427 1.37 

Nov 0.0112 0.131 1.55 74.1 0.164 0.306 

Dec 0.0133 0.285 1.98 323. 0.030 0.048 

(b) 

Percentage errors (between model and historical statistics) 

Month Ml V1 AC1 V6 AC6 V24 AC24 PD24 mean 

Jan 0.0 2.8 1.9 3.0 2.1 6.4 0.3 0.0 2.1 
Feb 0.0 0.8 0.6 6.0 1.8 4.7 0.5 0.0 1.8 
Mar 0.0 4.6 3.5 3.7 1.3 1.3 0.0 0.0 1.8 
Apr 0.0 2.3 1.7 4.6 0.1 2.0 0.3 0.0 1.4 
May 0.0 3.8 2.2 8.6 0.4 3.8 0.3 0.0 2.4 
Jun 0.0 0.2 0.2 5.9 2.0 5.0 0.5 0.0 1.7 
Jul 

- 
0.0 0.8 0.4 0.2 5.5 5.0 3.9 13. 3.6 

Aug 0.1 1.8 1.5 12. 16. 19. 11. 22. 10. 
Sep 0.1 1.7 0.8 12. 17. 3.6 2.1 22. 7.3 
Oct 0.0 0.7 0.3 5.3 2.7 5.4 0.6 0.0 1.9 
Nov 0.0 0.9 0.6 2.3 1.5 3.4 0.3 0.0 1.1 
Dec 0.0 2.5 2.1 1.7 3.1 3.2 2.6 2.9 2.3 

Mean 0.0 1.9 1.3 5.4 4.5 5.2 1.9 4.9 3.2 
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4.4.4 Using an Exponential distribution for the cell intensity 

Tables 4.4a and 4.4b give the results of using the statistics in 

Table 4.2 in the parameter estimation procedure, where now the 

functions (equations (4.1) - (4.3)) use an Exponential 

distribution for the cell intensity X. 

It can be seen in Table 4.4a that some of the parameter estimates 

(E and n for August, and P for November) are much different in 

magnitude than the same parameter estimates for other months. This 

may cause problems when trying to seasonalise the. model, so, to 

overcome this, bounds were placed on and and the 

parameters re-estimated, the results being given in Tables 4.5a 

and 4.5b. 

It can be seen in Table 4.5a that the parameter estimates seem 

physically realistic, and exhibit some seasonal variation (e. g. in 

X- the rate of storm arrival). With the possible exception of the 

proportion of dry days, the improvement in fit obtained by using 

no specified distribution on cell intensity (Table 4.3) does not 

seem to out weigh the advantage of using the Exponential 

distribution (Table 4.5), which uses only 1 parameter. Hence the 

Exponential distribution will be used to model the cell intensity. 
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Table 4.4 

The results for an Exponential distribution 
for the cell intensity 

(with no upper bounds in the fitting procedure (4.7)) 

(a) 
The parameter estimates 

Month X 
hour1 

ß 
hour1 

n1 
hour 

v 1/E 
mm / hour 

Jan 0.0218 0.191 1.30 4.55 0.82 

Feb 0.0080 0.063 1.55 11.4 0.87 

Mar 0.0106 0.073 1.13 6.82 0.84 

Apr 0.0125 0.122 1.17 5.76 0.91 

May 0.0147 0.108 1.65 3.75 1.66 

Jun 0.0050 0.055 2.12 11.9 2.23 

Jul 0.0047 0.225 3.51 19.0 2.42 

Aug 0.0038 0.290 463. 20.6 392. 

Sep 0.0024 0.091 2.67 26.7 3.86 

Oct 0.0048 0.051 1.80 16.5 1.81 

Nov 0.0071 0.007 0.49 6.71 0.90 

Dec 0.0164 0.248 1.41 6.81 0.83 

(b) 
Absolute percentage errors 

Month M1 V1 AC1 V6 AC6 V24 AC24 PD24 mean 

Jan 0.0 3.2 1.1 3.3 4.2 5.6 0.4 0.4 2.5 

Feb 0.1 0.1 0.9 7.3 5.0 1.9 0.1 8.2 3.0 

Mar 0.0 4.1 4.0 4.2 0.4 2.3 0.2 3.3 2.3 

Apr 0.0 1.8 2.5 5.0 2.5 0.8 0.2 3.9 2.1 

May 0.0 4.0 2.0 8.3 0.4 4.2 0.4 1.6 2.6 

Jun 0.0 0.0 0.2 6.3 3.0 4.1 0.3 4.3 2.3 

Jul 0.1 0.4 0.2 0.0 4.4 4.9 2.7 22. 4.4 

Aug 0.1 2.2 2.0 12. 16. 19. 11. 26. 11. 

Sep 0.2 4.1 1.6 12. 12. 5.7 0.6 39. 9.4 

Oct 0.1 1.4 0.2 6.9 5.8 2.3 0.1 12. 3.6 
Nov 0.0 8.9 34. 13. 23. 7.1 3.8 24. 14. 
Dec 0.1 2.8 5.3 3.0 9.9 6.0 4.5 9.4 5.1 

Mean 0.1 2.7 4.5 6.8 7.3 5.4 2.0 13. 5.2 
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Table 4.5 

The results for an Exponential distribution 
for cell intensity 

(with lb(ß) = 0.05, ub(n) = ub(ý) = 4.0 in (4.7)) 

(a) 

The parameter estimates 

Month x 
-1 hour 

ß 
-i hour 

n 
hour 

v 1/E 
mm / hour 

Jan 0.0218 0.191 1.30 4.55 0.82 

Feb 0.0080 0.063 1.55 11.4 0.87 

Mar 0.0106 0.073 1.13 6.82 0.84 

Apr 0.0125 0.122 1.17 5.76 0.91 

May 0.0147 0.108 1.65 3.75 1.66 

Jun 0.0050 0.055 2.12 11.9 2.23 

Jul 0.0047 0.225 3.51 19.0 2.42 

Aug 0.0047 0.264 3.22 11.5 4.00 

Sep 0.0024 0.091 2.67 26.7 3.86 

Oct 0.0048 0.051 1.80 16.5 1.81 

Nov 0.0124 0.121 1.38 9.62 1.02 

Dec 0.0164 0.248 1.41 6.81 0.83 

(b) 

Absolute Percentage Errors 

Month Mi V1 AC1 V6 AC6 V24 AC24 PD24 mean 

Jan 0.0 3.2 1.1 3.3 4.2 5.6 0.4 0.4 2.5 

Feb 0.1 0.1 0.9 7.3 5.0 1.9 0.1 8.2 3.0 

Mar 0.0 4.1 4.0 4.2 0.4 2.3 0.2 3.3 2.3 

Apr 0.0 1.8 2.5 5.0 2.5 0.8 0.2 3.9 2.1 

May 0.0 4.0 2.0 8.3 0.4 4.2 0.4 1.6 2.6 

Jun 0.0 0.0 0.2 6.3 3.0 4.1 0.3 4.3 2.3 

Jul 0.1 0.4 0.2 0.0 4.4 4.9 2.7 22. 4.4 

Aug 0.3 11. 27. 4.9 21. 25. 12. 22. 16. 

Sep 0.2 4.1 1.6 12. 12. 5.7 0.6 39. 9.4 

Oct 0.1 1.4 0.2 6.9 5.8 2.3 0.1 12. 3.6 
Nov 0.1 0.1 1.8 0.0 5.2 7.8 1.9 11. 3.5 
Dec 0.1 2.8 5.3 3.0 9.9 6.0 4.5 9.4 5.1 

Mean 0.1 2.7 3.9 5.1 6.2 5.9 1.9 12. 4.7 
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4.4.5 Simulating rainfall time series using an Exponential 

distribution for the cell intensity 

A simulation program (see Appendix B) was written to simulate 

hourly rainfall time series using the Neyman-Scott Rectangular 

Pulses model. Using the parameter estimates in Table 4.5a the 

simulation program was used to generate 20 years of hourly data. A 

further program was written to enable the historical and simulated 

time series to be compared and tested using the t-tests described 

in Section 4.3.3. For each statistic under comparison, the 

t-ratios were plotted against the month (see Figures 4.1 - 4.11 

for some selected examples and Appendix C for all the plots). 

To compare dry spell sequences another program was written and the 

results of running this program for the months of July, August and 

September are given in* Figure 4.12 (the results for the other 

months are given in Appendix C). The frequency given in the plots 

is obtained by counting over a fixed period in time (in this case 

20 years) instead of a standardised number of dry days. The 

comparison is made in this way because the engineer is interested 

in the return period of, say, a dry spell of over 25 days, when 

considerable bacteria will have built up within a sewage system. 

Furthermore, lower bounds (lb) are also used to define 'dry' days, 

i. e. a day is said to be dry if less than lb millimetres of rain 

fell (these bounds ensure that small traces of rainfall, sometimes 

found in historical records, count as dry days). 
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T-Tests for Monthly Totals 
(Manston data set) 
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Figure 4.1 

T-Tests for Hourly Variances 
(Manston data set) 
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T-Tests for Hourly Autocorrelations 
(Manston data set) 
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Figure 4.3 

T-Tests for Hourly Maxima 
(Manston data set) 
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Figure 4.4 
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T-Tests for Daily Variances 
(Manston data set) 
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Figure 4.5 

T-Tests for Daily Autocorrelations 
(Manston data set) 
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Figure 4.6 
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T-Tests for Daily Maxima 
(Manton data set) 
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Figure 4.7 

T-Tests for Proportion of Dry Days 
(Manston data set, äb = 0.1mm) 
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Figure 4.8 
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T-Tests for the Proportion of Dry Days 
(Manton data set, Ib =1 mm) 
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T-Tests for the Proportion of Dry Days 
(Manston Data Set, lb = 3mm) 
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Figure 4.11 
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4.4.6 Conclusions 

In Appendix C it can be seen that most of the t-ratios vary 

naturally about the zero line indicating that, overall, the model 

is performing well. With so many tests being made the occasional 

significant result is expected, like, for example, the hourly 

maxima for May (see Figure 4.4). In fact, about 1 in 20 

significant results at the 5% level (which is approximately 

indicated by the two lines at ±2 in the Figures) are expected for 

those tests which are independent. 

Figure 4.8 shows that the model is tending to over-estimate the 

proportion of dry days (where a day is defined to be dry if less 

than 0.2mm of rain fell), particularly in the summer months. The 

problem looks less drastic if the bound (lb) for a dry day is set 

at 1,2, or 3mm (Figures 4.9 - 4.11). Although the 3mm bound gives 

acceptable results for the statistical tests, from a practical 

point of view if 3mm of rain fell in a short space of time (which 

may happen in the summer months) there may be considerable runoff 

to a sewage system. Hence the results are regarded as practically 

and statistically significant, and so an improvement will be 

sought. 

The model is also showing a poor fit to summer dry spell sequences 

(Figure 4.12), particularly to short dry spells. This again may 

have practical implications with regard to bacterial build up in 

sewage systems over summer dry spells, and so an improvement is 

-,, 
clearly necessary. 
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4.5 AN ATTEMPT TO IMPROVE THE MODEL'S FIT TO DRY SPELLS 

4.5.1 A seasonal model 

The model's fit to the daily dry 

the daily transition probabilities 

h= 24 hours) are used in the fi 

introducing these probabilities 

increases the number of percentage 

in assessing the model's fit to 

spell sequences may improve if 

(equations (4.5) and (4.6) with 

tting procedure (4.7). However, 

into the fitting procedure 

errors that need to be examined 

the historical statistics. To 

reduce this number a seasonal model will be adopted. The initial 

seasonal model proposed is not meant to be the best possible 

choice of seasonal model, and indeed it will be found that the 

seasonal model does not satisfactorily describe the seasonal 

variation in the historical data. The proposed initial seasonal 

model is based on the historical mean monthly totals. The seasonal 

effect s, (j = 1,..., 12) for the historical time series of monthly 

totals is given by: 

NN 12 

s= Ti /N-EETl, / (12XN) (4.8) 
j 

i=1 ý i=1 j=1 j 

where Tij = monthly total for month j, year i. 

A plot of the seasonal effect for the Manston data set is given in 

Figure 4.13, from which it seems reasonable to group the months 

into four seasons in the following way: 

Season 1 (Winter) : Dec, Jan; 

Season 2 (Spring) : Feb, Mar, Apr, May; 

Season 3 (Summer) : Jun, Jul, Aug; 

Season 4 (Autumn) : Sep, Oct, Nov. 
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4.5.2 Determining an optimum combination of historical statistics 

for the fitting procedure 

Some statistics that might be used to fit the model are given in 

Table 4.6. Tables 4.7b - 4.15b give the percentage errors on these 

statistics when using a subset of these statistics in the fitting 

procedure (4.7), and Tables 4.7a - 4.15a give the parameter 

estimates obtained when using this subset (asterisked in Tables 

4.7b - 4.15b). 

In Table 4.7 it can be seen that the percentage . error in the 

model's fit to WW24 is about 27% for season 3. This Season was 

poorly matched by the model in Section 4.4 and so the fitting 

procedure was repeated with WW24 included. Other historical 

statistics that were poorly matched were: WW6, WW12, AC12, AC24, 

and PD24. *WW6 will be used in the fitting procedure as it may be 

of practical importance, with reference to storm durations. It was 

anticipated that using WW24 and WW6 in fitting would preserve 

WW12, but this was not the case (see below). 

In Table 4.8 it can be seen that WW24 is matched well, but that 

WW12 needs to be used in the fitting procedure. Some statistics, 

for example PD24 and WW6, that are being used in the fitting 

procedure are still not being preserved by the model, but an 

improvement will be found later as other statistics are introduced 

(or remöved) from the fitting procedure. 

When WW12 is introduced in the fitting procedure (see Table 4.9), 

an improvement in the model's fit to WW12 can be seen, although 

this is at the expense of the model's fit to some of the other 

historical statistics, for example AC6. 
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Table 4.6 

Statistics taken from the Manston Data Set 

Season 

Statistic 1234 

M1 0.064 0.054 0.063 0.087 

Vi 0.090 0.086 0.256 0.296 

AC1 0.540 0.493 0.372 0.483 

PD1 0.890 0.910 0.940 0.900 

DD1 0.957 0.964 0.976 
. 

0.963 

WW1 0.653 0.639 0.619 0.668 

V3 0.529 0.483 1.204 1.668 

AC3 0.361 0.355 0.336 0.468 

PD3 0.819 0.849 0.898 0.838 

DD3 0.902 0.917 0.944 0.916 

WW3 0.559 0.534 0.507 0.564 

V6 1.417 1.321 3.306 4.839 

AC6 0.248 0.254 0.321 0.452 

PD6 0.736 0.777 0.846 0.770 

DD6 0.836 0.859 0.904 0.860 

WW6 0.543 0.508 0.472 0.535 

V12 3.577 3.297 8.774 13.51 
AC12 0.148 0.158 0.257 0.311 
PD12 0.666 0.716 0.795 0.708 

DD12 0.750 0.792 0.850 0.802 

WW12 0.504 0.477 0.414 0.522 
V24 8.479 7.472 23.66 32.71 
AC24 0.071 0.161 0.109 0.242 

PD24 0.542 0.585 0.696 0.601 
DD24 0.629 0.697 0.772 0.709 
WW24 0.564 0.571 0.476 0.569 
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Table 4.7 

Using M1, V1, AC1, V6, AC6, V24, PD24, and DD24 in the 
fitting procedure (4.7) 

(a) 
Parameter estimates 

Season X (h-1) (h-l) TI (h-1) v (mmh-I) 

1 0.0188 0.159 1.22 4.91 0.85 

2 0.0136 0.130 1.43 5.49 1.05 

3 0.0041 0.085 2.41 11.4 3.29 

4 0.0051 0.092 1.96 16.1 2.13 

(b) 
Absolute: percentage errors 

Statistic 1 2 
Season 

3 4 mean 

M1 * 0.4 0.7 1.3 3.1 1.4 

V1 * 2.8 2.7 1.2 3.0 2.4 

PD1 1.1 0.4 1.3 2.5 1.3 

DD1 0.4 0.5 0.2 0.9 0.5 

WWl 0.1 4.1 9.2 0.8 3.5 

AC1 * 3.6 3.2 1.1 0.1 2.0 

V6 * 1.1 5.6 1.6 11. 4.9 

PD6 0.5 0.2 4.3 9.3 3.6 

DD6 3.7 3.9 5.7 10. 5.9 

WW6 17. 23. 41. 35. 29. 

AC6 * 1.9 3.6 3.0 16. 6.1 

V12 2.6 5.8 2.8 12. 5.8 

PD12 2.6 3.1 9.3 20. 8.8 

DD12 9.6 8.2 11. 20. 12. 

WW12 15. 18. 47. 29. 27. 

AC12 14. 20. 13. 6.0 13. 

V24 3.9 1.1 6.9 3.5 3.9 

PD24 * 0.3 3.9 16. 29. 12. 

DD24 * 4.9 4.1 18. 29. 14. 

WW24 4.9 0.8 27. 14. 12. 

AC24 30. 30. 88. 9.9 40. 

Mean 5.8 6.8 15. 13. 10. 

*= used in fitting 
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Table 4.8 

Using Ml, V1, AC1, V6, AC6, WW6, V24, PD24, WW24, and DD24 in the 
fitting procedure (4.7) 

(a) 
Parameter estimates 

Season X (h-1) ß (h-1) r' (h-1) v (mmh-i) 

1 0.0185 0.247 1.29 5.51 0.81 

2 0.0150 0.159 1.32 4.47 1.06 

3 0.0064 0.162 2.27 6.79 3.33 

4 0.0068 0.128 1.65 9.81 2.18 

(b) 
Absolute percentage errors 

Season 
Statistic 1234 mean 

Mi * 0.6 0.8 0.4 1.8 0.9 

Vi * 4.0 5.3 6.6 3.4 4.8 

PD1 0.2 0.2 1.7 3.3 1.4 

DD1 0.5 0.1 0.5 1.2 0.5 

WW1 6.2 3.0 7.4 1.7 4.6 

AC1 * 6.1 7.5 5.9 5.8 6.3 

V6 * 2.8 1.1 3.7 5.3 3.2 

PD6 4.0 1.5 5.3 10. 5.3 

DD6 5.9 3.9 5.3 9.6 6.2 

WW6 * 15. 17. 29. 26. 22. 

AC6 * 6.9 11. 24. 31. 18. 

V12 0.3 2.8 2.7 11. 4.2 

PD12 1.8 1.7 6.6 13. 5.8 

DD12 6.5 4.2 8.5 14. 8.3 

WW12 15. 23. 37. 24. 25. 

AC12 9.9 1.0 31. 22. 16. 

V24 * 4.1 0.6 15. 8.5 7.1 

PD24 * 0.1 0.8 12. 21. 8.7 

DD24 * 2.1 0.1 11. 19. 8.2 

WW24 * 2.4 1.4 3.3 2.6 2.4 

AC24 9.5 46. 10. 41. 27. 

Mean 4.9 6.3 11. 13. 8.8 

*= used in fitting 
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Table 4.9 

Using M1, V1, AC1, V6, AC6, WW6, WW12, V24, PD24, WW24, and DD24 
in the fitting procedure (4.7) 

(a) 
Parameter estimates 

Season a (h-1) ß (h-1) rj (h-1) v 1(mmh-1) 

1 0.0188 0.284 1.28 5.52 0.79 

2 0.0164 0.211 1.30 4.19 1.02 

3 0.0080 0.191 2.03 4.92 3.28 

4 0.0084 0.135 1.35 6.55 2.17 

(b) 
Absolute percentage errors 

Statistic 1 2 
Season 

3 4 mean 

ml * 0.7 0.9 0.3 1.5 0.8 
Vi * 3.9 5.4 8.6 5.4 5.8 
PD1 0.0 0.4 1.8 3.6 1.4 
DD1 0.7 0.2 0.5 1.1 0.6 
WW1 8.2 0.2 9.5 4.0 5.5 
AC1 * 8.1 10. 9.7 12. 9.9 
V6 * 4.0 0.7 4.8 2.9 3.1 
PD6 5.1 2.6 4.9 9.8 5.6 
DD6 6.0 4.0 4.4 8.4 5.7 
WW6 * 12. 14. 18. 18. 16. 
AC6 * 11. 16. 35. 40. 26. 
V12 0.6 2.1 4.7 12. 4.7 
PD12 2.9 0.5 5.3 11. 5.0 
DD12 6.2 3.2 6.5 12. 6.9 

WW12 * 11. 15. 24. 17. 17. 
AC12 18. 16. 45. 34. 29. 
V24 * 4.9 2.1 19. 12. 9.6 
PD24 * 0.7 0.5 8.9 17. 6.9 
DD24 * 1.3 3.1 6.8 15. 6.6 
WW24 * 0.1 4.2 4.9 1.9 2.8 
AC24 20. 59. 32. 51. 40. 

Mean 6.0 7.6 12. 14. 9.9 

*= used in fitting 
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In Table 4.10 hourly statistics are omitted from the fitting 

procedure (with the exception of M1, which can be found from 

monthly (or seasonal) totals). It is clear that there is an 

improvement in the model's fit to 6,12 and 24 hourly historical 

statistics, but this is at the expense of the model's fit to the 

historical hourly statistics. At some stage it must be decided if 

the improvement is great enough to warrant fitting the model using 

h hourly historical statistics, where h is greater than 1 hour, 

and then disaggregating simulated h hourly time series data to 

obtain time series of smaller time steps. After some further 

experiments on the statistics to be used in 
-fitting, 

the 

performance of a3 hourly time series model (i. e. a model fitted 

using h hourly historical statistics where hk3 hours) will be 

assessed. 

Having found a considerable improvement in Table 4.10, the lag 1 

autocorrelations for the 12 and 24 hourly time series are 

re-introduced into the fitting procedure to see whether their 

presence is detrimental to the model's fit to 6,12, or 24 hourly 

statistics (Table 4.11). Looking at Table 4.11 there appears to be 

no major change to the model's fit to the h (26) hourly 

statistics. 

In Table 4.12 hourly statistics are re-introduced in the fitting 

procedure so that an objective comparison can be made with Table 

4.11. Table 4.12 shows that it is the presence of the 1 hourly 

statistics in the fitting procedure that throws out the model's 

fit to other h (26) hourly statistics of importance, for example 

PD24 for Seasons 3 and 4. 
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Table 4.10 

Using M1, V6, AC6, WW6, WW12, V24, PD24, WW24, and DD24 in the 
fitting procedure (4.7) 

(a) 
Parameter estimates 

Season a (h-1) ß (h-1) ri (h-1) v (mmh'1) 

1 0.0213 0.595 0.56 4.28 0.40 
2 0.0196 0.290 0.66 2.89 0.63 
3 0.0160 11.15 0.31 1.32 0.95 
4 0.0103 0.028 0.27 2.13 1.07 

(b) 
Absolute percentage errors 

Statistic 1 2 
Season 

3 4 mean 

M1 * 0.1 0.7 1.1 0.8 0.7 
Vi 22. 18. 43. 39. 31. 
PD1 1.5 1.0 1.3 0.7 1.1 
DD1 2.0 0.8 - 0.9 1.9 1.4 
WW1 27. 16. 29. 22. 23. 
AC1 44. 46. 116. 76. 70. 

V6 * 3.7 2.0 2.7 6.0 3.6 

PD6 6.3 2.4 1.3 7.3 4.3 

DD6 5.3 3.0 0.5 5.0 3.4 
WW6 * 4.4 8.1 3.7 1.1 4.3 

AC6 * 0.9 1.2 8.6 3.2 3.5 
V12 2.8 2.3 4.4 3.2 3.2 
PD12 3.4 1.6 2.1 5.4 3.1 
DD12 3.2 0.3 2.9 4.1 2.6 
WW12 * 0.5 4.8 6.4 2.0 3.4 
AC12 25. 20. 33. 14. 23. 
V24 * 3.6 1.6 9.2 - 1.4 4.0 
PD24 -* 1.7 5.0 7.8 3.6 4.5 
DD24 * 4.7 10. 12. 3.3 7.5 
WW24 * 3.7 7.1 10. 1.8 5.6 
AC24 29. 64. 29. 27. 37. 

Mean 9.2 10. 15. 11. 11. 

*= used in fitting 
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Table 4.11 

Using M1, V6, AC6, WW6, WW12, AC12, V24, PD24, WW24, DD24, 
and AC24 in the fitting procedure (4.7) 

(a) 
Parameter estimates 

Season A (h-1) ß (h-1) rl (h-1) v V 1(mmh'1) 

1 0.0204 0.225 0.76 3.56 0.66 
2 0.0055 0.006 0.49 6.98 0.70 
3 0.0118 0.098 0.38 1.65 1.23 
4 0.0064 0.018 0.24 3.34 1.00 

(b) 
Absolute percentage errors 

Statistic 1 2 
Season 

3 4 mean 

M1 * 2.1 0.2 0.0 0.8 0.8 
Vi 8.0 23. 41. 42. 28. 
PD1 0.7 1.5 0.2 0.6 0.8 
DD1 0.8 1.2 0.9 2.0 1.2 
WWl 12. 9.6 24. 24. 17. 
AC1 27. 49. 111. 78. 67. 
V6 * 7.1 1.1 4.3 8.2 5.2 
PD6 3.4 5.4 2.9 8.0 4.9 
DD6 4.5 2.6 2.0 6.1 3.8 
WW6 * 9.8 9.5 1.5 6.7 6.8 
AC6 * 2.9 1.2 11. 3.6 4.6 
V12 6.5 0.3 6.5 3.4 4.2 
PD12 0.1 0.8 1.0 7.2 2.3 
DD12 3.9 2.1 1.3 6.7 3.5 
WW12 * 12. 5.8 5.0 4.5 6.8 
AC12 * 3.9 2.8 20. 4.2 7.6 
V24 * 2.7 2.2 4.7 3.6 3.3 
PD24 * 4.4 0.3 0.8 8.0 3.4 
DD24 * 2.6 4.6 2.7 9.9 5.0 
WW24 * 3.3 8.6 6.5 4.1 5.6 
AC24 * 3.1 6.9 5.5 14. 7.3 

Mean 5.7 6.6 12. 12. 9.0 

*= used in fitting 
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Table 4.12 

Using Ml, Vi, AC1, V6, AC6, WW6, WW12, AC12, V24, PD24, Ww24, 
DD24, and AC24 in the fitting procedure (4.7) 

(a) 
Parameter estimates 

Season X (h-1). ß (h-1) r) (h-t) 0 (mmh-1) 

1 0.0185 0.218 1.18 4.86 0.84 

2 0.0136 0.063 0.97 3.42 1.09 

3 0.0062 0.140 2.05 6.19 3.34 

4 0.0055 0.070 1.35 9.64 2.25 

(b) 
Absolute percentage errors 

Season 
Statistic 1234 mean 

M1 * 1.5 3.2 0.6 0.8 1.5 
V1 * 4.6 6.4 8.3 4.9 6.0 
PD1 0.0 0.9 1.8 3.5 1.6 
DD1 0.4 0.1 0.5 0.9 0.5 
WW1 4.4 6.8 9.9 7.0 7.1 
AC1 * 8.0 18. 8.9 9.5 11. 

V6 * 4.3 4.2 5.4 4.7 4.6 

PD6 3.6 0.3 5.2 9.1 4.6 

DD6 5.4 0.7 5.1 8.7 5.0 

WW6 * 14. 2.5 26. 23. 16. 

AC6 * 5.6 20. 25. 33. 21. 

V12 2.0 0.5 1.5 11. 3.7 

PD12 1.0 5.8 6.3 11. 6.0 

DD12 6.3 0.9 8.4 14. 7.4 

WW12 * 16. 23. 38. 30. 27. 

AC12 * 4.6 10. 28. 7.2 12. 

V24 * 1.8 4.1 13. 5.2 6.1 

PD24 * 1.1 7.9 12. 19. 10. 
DD24 * 2.0 0.1 11. 22. 8.9 
WW24 * 3.8 13. 6.6 16. 9.9 
AC24 * 1.5 12. 0.3 8.3 5.5 

Mean 4.3 6.7 11. 12. 8.4 

*= used in fitting 
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Table 4.13 is given to show that using just 1 and 24 hourly 

statistics in the fitting procedure produces poor results in the 

model's fit to historical 6 and 12 hourly statistics (see, for 

example, WW6 and WW12) 

Tables 4.10 and 4.11 have shown that the model can be made to fit 

h (ý--6) hourly statistics reasonably well, with most percentage 

errors less than 10. Table 4.14 shows the results of introducing 3 

hourly statistics into the fitting procedure. It can be seen that 

introducing these statistics is at the expense of the model's fit 

to some of the 12 and 24 hourly statistics, for example WW12, 

although the results do seem quite good. To see if the results can 

be improved the lag 1 autocorrelations for the 12 and 24 hourly 

time series are removed from the fitting procedure and the results 

are shown in Table 4.15, an improvement being evident in, for 

example, PD24, WW24, and DD24. 
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Table 4.13 

Using Ml, V1, AC1, V24, PD24, WW24, and DD24 in the 
fitting procedure (4.7) 

(a) 
Parameter estimates 

Season A (h-1) ß (h-1) r) (h-1) v (mmh-1) 

"1 0.0180 0.245 1.41 6.19 0.82 
2 0.0142 0.175 1.55 5.71 1.04 
3 0.0063 0.168 2.41 7.24 3.38 
4 0.0112 0.107 1.23 4.02 2.40 

(b) 
Absolute percentage errors 

Statistic 1 2 
Season 

3 4 mean 

M1 * 0.1 0.2 0.9 1.0 0.6 
V1 * 3.8 2.4 7.0 9.7 5.7 
PD1 0.4 0.3 1.7 3.7 1.5 
DD1 0.4 0.2 0.5 0.7 0.5 
WW1 6.5 1.1 6.4 13. 6.6 
AC1 * 3.4 2.0 4.0 9.6 4.7 
V6 1.2 5.7 4.1 4.5 3.9 
PD6 3.9 1.4 5.4 7.2 4.5 
DD6 6.2 4.8 5.4 5.2 5.4 
WW6 17. 23. 30. 3.7 18. 
AC6 4.8 5.3 22. 52. 21. 
V12 0.8 6.2 2.0 17. 6.4 
PD12 1.9 0.9 6.9 5.5 3.8 
DD12 7.2 5.6 8.7 6.8 7.0 
WW12 16. 26. 37. 10. 22. 
AC12 7.3 4.5 31. 44. 21. 
V24 * 

- 
4.9 3.6 14. 19. 10. 

PD24 * 0.6 1.3 13. 6.3 5.2 
DD24 * 3.4 1.9 11. 7.1 5.9 
WW24 * 2.9 1.2 2.9 0.8 1.9 
AC24 6.8 46. 11. 52. 29. 

Mean 5.0 6.8 11. 13. 8.9 

*= used in fitting 
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Table 4.14 

Using Ml, V3, AC3, V6, AC6, WW6, WW12, AC12, V24, PD24, WW24, 
DD24, and AC24 in the fitting procedure (4.7) 

(a) Parameter estimates 
Season X (h-1) ß (h-1) n (h-1) v C 1(mmh-I) 

1 0.0199 0.216 0.90 3.89 0.73 
2 0.0053 0.007 0.57 7.45 0.78 
3 0.0095 0.092 0.61 2.42 1.66 
4 0.0053 0.022 0.35 4.72 1.23 

(b) Absolute percentage errors 

Season 
Statistic 1234 mean 

M1 * 2.1 0.5 0.7 0.7 1.0 
V1 3.1 16. 26. - -30. 19. 
PD1 0.4 1.8 0.8 1.9 1.2 
DD1 0.6 1.0 0.7 1.8 1.0 

WW1 8.0 5.5 11. 17. 10. 

AC1 20. 43. 86. 68. 54. 

V3 * 3.2 1.0 4.3 7.5 4.0 

PD3 0.8 3.6 1.9 5.2 2.9 

DD3 2.1 1.4 1.3 3.5 2.1 

WW3 12. 8.6 3.2 8.7 8.2 

AC3 * 4.1 13. 24. 21. 16. 

V6 * 6.0 1.4 7.7 0.0 3.8 

PD6 3.3 5.1 3.3 8.6 5.1 
DD6 4.6 2.2 2.4 6.1 3.8 
WW6 * 11. 11. 2.4 4.0 6.9 
AC6 * 1.9 9.2 18. 15. 11. 
V12 4.4 0.0 2.6 0.9 2.0 
PD12 0.2 0.1 1.8 7.8 2.5 
DD12 4.5 2.0 3.2 8.2 4.5 
WW12 * 14. 7.8 16. 9.5 12. 
AC12 * 4.4 1.9 32. 16. 14. 
V24 * 0.6 1.9 11. 3.3 4.1 
PD24 * 3.8 1.1 1.9 10. 4.2 
DD24 * 1.3 5.4 2.3 14. 5.9 

WW24 * 4.1 11. 2.4 11. 7.2 

AC24 * 1.9 3.8 3.3 10. 4.7 

Mean 4.7 6.1 10. 11. 8.1 
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Table 4.15 
Using M1, V3, AC3, V6, AC6, WW6, WW12, V24, PD24, WW24, DD24 

and AC24 in the fitting procedure (4.7) 

(a) Parameter estimates 
Season a (h-1) ß (h-t) rl (h t) v -t (=h- I) 

1 0.02028 0.3189 0.9160 4.495 0.6400 
2 0.01843 0.2353 0.8306 3.126 0.7714 
3 0.01097 0.1137 0.6536 2.193 1.7132 
4 0.01160 0.0611 0.3831 2.269 1.2780 

(b) Absolute percentage errors 

Season 
Statistic 1234 mean 

Mi * 1.0 1.4 0.4 1.0 0.9 
V1 5.5 9.2 24. 27. 17. 
PD1 0.4 0.2 0.8 1.9 0.9 

DD1 1.0 0.5 0.6 1.7 1.0 
WW1 14. 9.2 8.8 15. 12. 
AC1 23. 34. 82. 65. 51. 
V3 * 2.3 2.3 5.3 5.2 3.8 
PD3 1.6 0.8 1.8 4.9 2.3 

DD3 3.0 1.6 1.1 3.1 2.2 
WW3 17. 11. 0.6 5.4 8.5 
AC3 * 6.2 6.0 18. 16. 12. 
V6 * 5.6 3.0 7.2 0.9 4.2 

PD6 5.1 2.5 3.0 7.9 4.6 
DD6 5.4 3.2 1.9 5.1 3.9 
WW6 * 9.0 9.1 1.0 1.2 5.1 
AC6 * 8.2 8.9 23. 21. 15. 
V12 2.7 1.7 0.8 1.9 1.8 
PD12 2.3 1.3 1.0 6.1 2.7 
DD12 4.4 0.9 2.0 5.0 3.1 
WW12 * 6.6 8.6 10. 0.1 6.4 
AC12 " , 22. 19. 38. 28. 27. 
V24 * 3.4 1.2 13. 0.8 4.7 
PD24 * 1.6 3.6 0.0 5.2 2.6 
DD24 * 2.3 7.8 0.8 4.5 3.8 
WW24 * 0.8 5.9 2.5 2.5 2.9 
AC24 * 25. 62. 13. 39. 35. 

Mean 6.9 8.2 10. 11. 8.9 
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4.5.4 Testing the performance of a3 hourly time series model 

Using the parameter estimates given in Table 4.15a rainfall time 

series were simulated using the simulation program (Appendix B). 

The t-tests were carried out in the same way as in Section 4.4, 

with the addition of tests on 3 hourly statistics. The results of 

of some selected examples of the t-tests are given in Figures 4.14 

- 4.23 (the results for all the t-tests are given in Appendix D). 

A substantial improvement in the model's fit to the historical 

proportion of dry days is evident in Figures 4.22 and 4.23 

(compare with Figures 4.8 and 4.9 respectively). 
_. 

As might be anticipated many of the 1 hourly statistics are not 

preserved by the model, particularly the lag 1 hourly 

autocorrelations (Figure 4.16). Also the month of November is 

consistently incorrectly matched by the model. This is almost 

certainly due to non-stationarities present within the seasons of 

the model. Looking at Figures 4.25 and 4.26 the presence of 

non-stationarities is evident in season 3 (Sep, Oct, Nov) where 

clearly September has a much greater variance in the daily time 

series than both October and November, which leads to 

over-estimation of the variance, and consequently the maxima, for 

these two months. 

Looking at Figure 4.20 it can be seen that the model matches the 

lag 1 daily autocorrelations of the historical time series (with 

the exception of November), within sampling error. This is of 

particular interest as they were not used in the fitting 

procedure, and suggests that perhaps a better procedure may be to 

omit autocorrelations from the parameter estimation procedure, and 
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use transition probabilities instead. This will be considered in 

the next Section. 

The main interest in this Section was to see whether the 

introduction of WW24 and DD24 in the fitting procedure improved 

the model's fit to the daily historical dry spell sequences. 

Figure 4.24 shows the dry spell frequency plot for July, August 

and September (the plots for the other months are given in 

Appendix D), from which it is clear that the model is now 

performing well. 
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T-Tests for Monthly Totals 
(Manston data using seasonal model) 
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T-Tests for Hourly Autocorrelations 
(Marston Data using a seasonal mode() 
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Figure 4.16 

T-Tests for Hourly Maxima 
(Manston data using seasonal model) 
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Figure 4.17 
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T-Tests for 12 Hourly Maxima 
(Manton data using seasonal model) 
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Figure 4.18 

T-Tests for Daily Variances 
(Mansion data using seasonal model) 
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Figure 4.19 
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T-Tests for Daily Autocorrelations 
(Manton data using seasonal model) 
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Figure 4.20 
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T-Tests for the Proportion of Dry Days 
(Manston Data, using the seasonal model, b= 02mm) 
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4.6 AN IMPROVED HOURLY TIME SERIES MODEL 

4.6.1 A further assessment of the statistics to be used in fitting 

the model 

In Section 4.5 many different combinations of statistics were 

considered for use in the parameter estimation procedure (4.7), 

and consequently a simplified seasonal model was found convenient 

for the comparisons. In this Section the simplified seasonal model 

will be abandoned as (i) less combinations of statistics will need 

to be considered in fitting the model, and (ii) non-stationarities 

were found within season 3. In Chapter 6a revised 

seasonal/regional model will be developed. 

In Section 4.5 it was also found that the lag 1 autocorrelations 

of the historical 12 and 24 hourly time series were matched 

(within sampling error) by the model, even though they were not 

used in the fitting procedure. In this Section we explore the 

possibility of excluding all autocorrelations from the fitting 

procedure, and using the transition probabilities as an 

alternative (equations (4.5) and (4.6)). 

Before dispensing with the seasonal model it is worth comparing 

the results of not using autocorrelations in the fitting procedure 

with those obtained in the previous Section. Comparing the 

percentage errors obtained in Table 4.16 with those obtained in 

Table 4.9(b), it can be seen that using WW1 and WW6 instead of AC1 

and AC6, in the fitting procedure improves the model's fit to the 

daily statistics, particularly for seasons 3 and 4. As might be 

expected the model no longer matches the overall value of AC1, but 

this will no longer be of concern as the historical 

autocorrelations are going to be excluded from the fitting 

procedure. 
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Table 4.16 

Absolute percentage errors 

when using M1, V1, WW1, V6, WW6, V12, WW12, V24, PD24, DD24, 

and WW24 in the parameter estimation procedure 

Season 
Statistic 1234 mean 

M1 * 1.2 1.0 0.1 1.1 0.9 
V1 * 4.2 2.5 5.8 3.3 3.9 
PD1 0.4 0.5 1.5 3.5 1.5 
DD1 0.9 0.5 0.5 1.3 0.8 
WWl * 9.2 4.1 2.9 0.4 4.2 

AC1 13. 21. 57. 41. 33. 
V3 6.6 8.0 19. 12. 11. 
PD3 2.2 1.5 2.4 5.9 3.0 
DD3 2.8 1.7 1.0 2.6 2.0 
WW3 13. 8.4 7.5 7.1 8.9 
AC3 6.9 9.4 8.5 16. 10. 
V6 * 6.3 4.4 13. 7.1 7.7 
PD6 5.5 3.2 3.6 8.4 5.2 
DD6 4.9 3.2 2.0 4.8 3.7 
WW6 * 5.1 5.8 4.3 5.5 5.2 
AC6 20. 23. 38. 44. 31'. 
V12 * 0.9 0.2 2.2 4.0 1.8 
PD12 2.2 0.7, 1.6 6.3 2.7 
DD12 3.3 0.4 2.3 5.4 2.8 
WW12 * 3.3 4.2 8.5 1.0 4.3 
AC12 33. 33. 47. 43. 39. 
V24 * 6.4 2.3 14. 6.6 7.3 
PD24 * 2.7 3.4 0.8 5.7 3.2 
DD24 * 4.4 8.9 0.6 5.1 4.7 
WW24 * 1.6 8.1 4.8 2.3 4.2 
AC24 35. 69. 26. 49. 45. 

Mean 7.5 8.7 11. 11. 9.5 
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The seasonal model will now be abandoned and comparisons made on a 

monthly basis. The percentage errors for each month and each 

statistic will be considered without taking the absolute value, so 

that a negative percentage error will imply the model is 

under-estimating the historical statistic and a positive 

percentage error will imply the model is over-estimating the 

historical statistic. It should be mentioned that by fitting the 

model on a monthly basis, it is being assumed that the monthly 

data are independent from one month to the next, which seems a 

reasonable assumption for rainfall data (this assumption is 

examined more closely in Appendix J). 

Table 4.17 gives the percentage errors when fitting the model 

using only daily historical statistics (V24, PD24, DD24, WW24, and 

M24/24 = M1) in the fitting procedure. As might be anticipated, 

the model fails to match many of the historical statistics at 

smaller time steps, e. g. the historical hourly variances. Hence, 

when it comes to fitting the model to an historical record of 

daily data (i. e. if there are no hourly data available), it may be 

better to use an estimate of the hourly statistics needed in the 

fitting procedure rather than using only the daily statistics. 

Table 4.18 gives the percentage errors when using the daily 

statistics, and the variances and wet given wet transition 

probabilities of the 1,3,6, and 12 hourly time series in the 

fitting procedure. Comparing Table 4.18 with Table 4.17 an 

improvement in the model's fit to the historical variances and wet 

given wet transition probabilities is evident, so that it is 

advisable to use these historical statistics in the fitting 

procedure. 
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In Table 4.19 the 1,3,6, and 12 hourly historical wet given wet 

transition probabilities have been omitted from the fitting 

procedure. In this Table it is evident that the historical hourly 

wet given wet transition probability (WW1) is still reasonably 

well matched by the model despite it being omitted from the 

fitting procedure. This suggests that, when fitting the model to 

daily data, an estimate of the historical WW1 may not be required. 

It is also evident that the model tends to over-estimate the wet 

given wet transition probabilities and under-estimate the lag 1 

autocorrelations for the 3,6, and 12 hourly historical time 

series. This suggests that both the within storm variability and 

storm durations (of less than 1 day) will be slightly greater on 

average for the data generated by the model than the data of the 

historical record. However, this difference is unlikely to be of 

practical significance as the historical hourly and daily 

transition probabilities are nearly matched by the model. Hence, 

if only daily data are available, estimates of the 1,3,6, and 12 

hourly wet given wet transition probabilities may not be required. 

In conclusion, the fitting procedure for hourly rainfall data will 

use the historical hourly mean (Ml) and the historical 1,3,6, 

and 12 hourly variances and transition probabilities (V1, V3, V6, 

V12, WW1, WW3, WW6, WW12) along with the historical daily 

statistics (v24, PD24, WW24, DD24). However, if only daily data 

are available, estimates of the 1,3,6, and 12 hourly wet given 

wet transition probabilities (WW1, WW3, WW6, WW12) could probably 

be left out of the fitting procedure without much detriment to the 

performance of the model. 
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Table 4.17 

Percentage errors when using only the daily statistics 

in the fitting procedure 

Month 

JFMAMJJAS0ND 

* M1 000000012000 

V1 8 11 23 4 -20 -13 2 -38 -34 4 36 19 

PD1 011 -1 -1 0113231 

DD1 100 -0 00112111 

WW1 50 -3 193 10 27 20 -3 - -2 5 

AC1 6 16 33 34 56 49 143 72 35 88 

V3 8 17 17 3 -12 4 26 7 -13 19 38 17 

PD3 121 -1 -1 0336353 

DD3 322111124133 

WW3 15 10 8 13 19 13 -9 12 10 -3 2 10 

AC3 1 -23 -21 -18 20 10 -12 89 8 -10 -19 -18 
V6 12 11 10 -2 -12 8 21 20 -10 15 34 11 

PD6 43311246 10 577 

DD6 654443146375 

WW6 17 18 11 20 22 19 -18 -1 -6 071 

AC6 1 -30 -19 -7 15 -22 -36 5 -28 -36 -41 -27 
V12 11 11 2 -4 -10 71 25 -13 5 21 3 
PD12 1 -0 -1 -0 -2 126 11 144 

DD12 854632267353 

WW12 20 23 16 25 25 15 3 10 -9 10 2 -2 
AC12 -12 -44 -20 24 70 -44 -21 -40 -33 -39 -54 -31 

* V24 0000000 -4 -9 000 
* PD24 -0 0 -0 100 -0 9 13 0 -0 -0 
* DD24 0 -0 0 -1 -0 -0 06 10 -0 00 
* WW24 

-0 0 -0 1 -0 00 -3 -7 0 -1 -1 
AC24 -23 -68 -53 -25 -37 -73 -7 122 -33 -64 -64 -26 

*= used in fitting, 

- implies the model under-estimates the historical statistic, 

+ implies the model over-estimates the historical statistic. 
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Table 4.18 

Percentage errors when using variances, transition 

probabilities and daily statistics in the fitting procedure 

JFMAMJJAS0ND 

* M1 -2 -2 -2 -2 -1 -1 -0 12 -1 -3 -2 
* Vi 4 -0 010 -6 -6 -18 -6 -7 -1 2 

PD1 11 -0 -0 10124210 
DD1 11000 -0 112111 

* WW1 95541 -4 11 15 -0 -76 
AC1 10 27 23 17 23 44 45 83 48 39 23 19 

* V3 6 11 7647 13 16 9997 
PD3 321010237332 

DD3 321110124122 

* WW3 10 76422 -1 -6 -2 078 

AC3 -6 -19 -2 -13 -2 -7 -14 7 -22 -5 -2 -8 
* V6 8663 -0 78 10 27 12 4 

PD6 64213145 11 444 

DD6 542221237353 

* WW6 374516 -6 -4 -5 2 10 2 

AC6 -24 -39 -14 -18 -17 -38 -35 -41 -49 -35 -33 -18 
* V12 23 -0 -1 -4 3 -9 2 -9 -2 3 -1 

PD12 1 -2 -4 -2 -1 -2 14 13 -0 00 

DD12 3 -0 -1 0 -1 -1 24 10 211 

* WW12 5798339 14 -0 842 

AC12 -45 -61 -25 -8 8 -58 -22 -60 -42 -42 -52 -18 
* V24 -12 -10 -3 -1 3 -8 -10 -26 -7 -7 -14 -3 
* PD24 -5 -6 -7 -6 -3 -5 05 18 -2 -7 -6 
* DD24 -9 -12 -8 -11 -8 -7 -1 3 14 -3 -6 -3 
* WW24 -4 -5 -1 -5 -8 -4 -4 -9 -3 -3 45 

AC24 -53 -80 -58 -48 -62 -80 -26 31 -36 -69 -63 -9 

*= used in fitting, 

- implies the model under-estimates the historical statistic, 

+ implies the model over-estimates the historical statistic. 
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Table 4.19 

Percentage errors when using the variances 

and daily statistics in the fitting procedure 

JFMAMJJAS0ND 

* Mi -0 000000120 -0 -0 

* V1 -0 -2 -2 -1 0 -1 -11 -1 -7 -4 -4 -2 

PD1 -1 -0 -1 -1 001241 -0 -0 
DD1 00000 -0 112011 

WW1 6574 -2 -5 14 -2 6 -2- 9 13 

AC1 3 16 19 10 16 19 50 -12 51 26 20 21 

* V3 -1 43212 11 59644 

PD3 -0 0 -0 -1 10247212 

DD3 322111234233 

WW3 20 19 18 14 7 16 5 36 -4 8 17 17 

AC3 3 -17 -1 -13 -2 -8 -7 15 -20 -9 1 -2 

* V6 302 -1 -3 2823483 

PD6 32212247 11 446 

DD6 765434376585 

WW6 23 26 17 20 13 26 1 46 -11 13 24 7 

AC6 9 -22 -3 -5 -3 -24 -27 -3 -49 -28 -22 -13 

* V12 32 -2 -2 -4 1 -7 4 -9 -4 2 -1 
PD12 0 -1 -1 0 -1 12 10 13 223 

DD12 9756244 11 8674 

WW12 26 29 19 24 19 20 19 58 -7 18 16 3 

AC12 -2 -37 -11 24 50 -43 -8 -31 -47 -30 -38 -18 
* V24 -5 -6 -2 26 -5 -7 -18 -8 -6 -12 -3 
* PD24 -0 101 -0 23 19 16 4 -0 0 

* DD24 221 -1 -2 23 15 11 A52 

* WW24 2310 -2 215 -9 262 

AC24 -13 -65 -50 -26 -43 -72 -9 89 -44 -62 -50 -12 

*= used in fitting, 

- implies the model under-estimates the historical statistic, 

+ implies the model over-estimates the historical statistic. 
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4.6.2 The t-tests 

Using the parameter estimates in Table 4.20 below, 20 years of 

hourly rainfall data were simulated using the simulation program 

(Appendix B). As with the previous Section, t-ratios were plotted 

against the month (some selected plots are given in Figures 4.27 - 

4.36 and the complete set of plots are provided in Appendix E). 

From these plots it is evident that the overall performance of the 

model is good. 

Table 4.20 

Parameter estimates obtained when using V1, V3, V6, V12, V24, 

WW1, WW3, WW6, WW12, WW24, DD24, PD24 in the fitting procedure 

Month A (h-1) ß (h-1) ' rl (h-1) vE (h/mm) 

Jan 0.0242 0.4546 1.2041 4.2445 1.3882 
Feb 0.0206 0.2795 0.9567 3.1822 1.3572 
Mar 0.0189 0.1413 0.7312 2.6734 1.3117 
Apr 0.0182 0.1986 0.8258 2.9188 1.1790 
May 0.0192 0.2847 1.2637 2.6089 0.7196 

Jun 0.0143 0.2199 1.1270 2.9734 0.6129 
Jul 0.0117 0.1514 0.6868 1.9997 0.5582 
Aug 0.0085 0.1055 0.8883 2.4030 0.3424 
Sep 0.0055 0.0500 0.6088 3.5915 0.3397 
Oct 0.0135 0.1306 0.8447 3.5659 0.7181 
Nov 0.0226 0.2781 0.7768 3.2201 1.0969 

Dec 0.0202 0.2338 0.8911 3.4145 1.1941 

Many of the statistics for the month of June were found to be 

significant in the tests. However, with so many t-tests being 

performed one would expect 1 in 20 significant values (out of 

those tests that are independent) at the 5% level even if the 

model fitted the historical data perfectly. In the case of June, 
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the monthly total t-ratio was close to the 5% level. This value 

almost certainly occurred by chance, because in the fitting 

procedure the model is made to match the historical 1 hourly means 

(M1) almost exactly (and hence match the historical monthly 

totals). With the h hourly simulated means being consistently less 

than their historical equivalents, it follows that the simulated 

variance and maxima will probably also be consistently less than 

their historical equivalents. This highlights the importance of 

matching the historical hourly mean, M1, almost exactly in the 

fitting procedure (4.7). 

Figure 4.29 provides evidence to suggest that the model tends to 

overestimate the lag 1 hourly autocorrelations. This was not 

surprising as AC1 was omitted from the fitting procedure. However, 

the differences between the historical and simulated lag 1 hourly 

autocorrelations are unlikely to be of practical significance, 

because the largest mean difference (H -S in the plots of the 

t-ratios) was close to zero (-0.15 for October (see Figure E. 29 in 

Appendix E) - correlations of magnitude less than 0.2 were 

regarded as not practically significant). 

4.6.3 The dry spells and proportion of dry days 

The frequency plot of the dry spell sequences for July, August and 

September is given in Figure 4.37 (the plots for the other months 

are provided in Appendix E). Comparing Figure 4.37 with Figure 

4.12, it is evident that using the daily transition probabilities 

in the fitting procedure improves the model's fit to the 

historical dry spells. Furthermore, by comparing Figures 4.35 and 
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4.36 with Figures 4.8 and 4.9 respectively, it is evident that 

there is an improvement in the model's fit to the historical 

proportion of dry days. 

4.6.4 An extreme value for August 

Some difficulty occurred with the month of August where the model 

consistently under-estimated the mean variance and mean maxima of 

all the historical h hourly rainfall time series, as well as the 

standard deviation of the h hourly variances and maxima (see 

Figures E. 27 - E. 60 in Appendix E). To find the reason for this, 

the maxima were plotted on a histogram (see Figure 4.39), from 

which it can be seen that in distribution the model's fit to the 

historical data is quite good. There was, however, one historical 

value (46.1mm) which was much greater than all the others, and it 

seemed likely that this value would make the historical variances 

and maxima greater than the simulated variances and maxima for 

August. This very unusual value probably has a high return period, 

so at this stage the results will not be regarded as significant. 

The extreme values will be considered in more detail in Chapter 5, 

where the model will be fitted to the five longest records of 

historical daily rainfall data. 
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Figure 4.27 

T-Tests for Hourly Variances 
(Manton Data Set) 
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Figure 4.28 

H= Historical value, S= Simulated value, 
SE = Standard Error 
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T-Tests for Hourly Maxima 
(Manton Data Set) 
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T-Tests for 24 Hourly Variances 
(Manston Data Set) 
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Figure 4.31 

T-Tests for 12 hourly Maxima 
(Manston Data Set) 
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T-Tests for 24 hourly Maxima 
(Manston Data Set) 
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Figure 4.34 
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T-Tests for the Proportion of Dry Days 
(Manston Data et, lb = 0.2mm) 
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Figure 4.35 
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4.7 SOME FURTHER WORK IN MODEL VALIDATION 

To some extent the model has been validated in the process of 

developing the fitting procedure. For example, comparisons have 

been made between historical and simulated statistics that were 

not used to fit the model (e. g. the mean and standard deviations 

of the maximum h hourly rainfalls (for h=1,3,6,12, and 24)). 

In this Section, some more comparisons are made between historical 

and simulated statistics that were not used in the fitting 

procedure. 

4.7.1 The proportions of hourly rainfalls exceeding certain 
bounds 

For each month of both the simulated and historical hourly 

rainfall time series the proportion of rainfall exceeding bounds 

between 0 and 10mm were found for each year. The means and 

standard deviations of these values were found for both the 

historical and simulated time series, and plotted against the 

month (see Figures 4.40 - 4.53). 

From Figures 4.42 - 4.53 it is evident that the model follows the 

mean and standard deviations of the historical proportions of 

rainfall greater than lmm, 2mm, 3mm, 4mm, 5mm and 10mm closely 

(probably within sampling error). However, in Figures 4.40 and 

4.41 it is evident that the model tends to under-estimate the mean 

and standard deviation of the historical proportion of wet hours 

(i. e. hours with rainfall greater than 0mm). A possible 
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explanation for this is that the model does not generate very 

light rainfall (i. e. drizzle), which would be recorded in the 

historical rainfall record. Drizzle is unlikely to be of 

importance in the designing of a sewage system, as it can easily 

be lost through evaporation, and so, overall, the results are 

regarded as satisfactory. 

4.7.2 Time series plots of daily rainfall data 

Figures 4.54 - 4.57 were prepared to illustrate visually the 

historical and simulated daily time series. January and July were 

selected to be representative of Winter and Summer respectively. 

For the historical and simulated time series the months for each 

year were concatenated to form a 20 year record of Januarys and 

Julys. Note that the order in which the years appear should. be 

ignored, because, for example, the simulated January time series 

for year 1 is not meant to represent the historical January time 

series for year 1 (the overall simulated January series, however, 

is meant to represent the overall historical January series). 

The simulated time series (Figures 4.55 and 4.57) compare 

favourably with their corresponding historical time series 

(Figures 4.54 and 4.56 respectively), with the exception that the 

simulated January series has more extreme values (i. e. daily 

rainfall exceeding 20mm) than the historical January series. No 

conclusions will be drawn about the extreme values (i. e. whether 

more extreme values occurred for the model by chance) in this 

Chapter as a more complete extreme value analysis of the model 

will be presented in the next Chapter when the model will be 

fitted to the longest records of daily data. 
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4.8 TESTING THE PARAMETER ESTIMATION PROCEDURE ON OTHER STATIONS 

From Sections 4.6 and 4.7 it is clear that model is performing 

well. However, the model has only been fitted to one data set 

(Manston), and so it now becomes necessary to test the performance 

of the model on other data sets. 

Using the fitting procedure defined in the previous Sections the 

parameters were estimated for hourly rainfall stations scattered 

throughout the UK (see Figure 4.58). The percentage errors in the 

model statistics when using these parameter estimates are given in 

Tables 4.21-4.29, from which it is clear that the model is 

matching the historical rainfall statistics, probably within the 

sampling variability of the historical data (compare the 

percentage errors in Tables 4.21 - 4.29 with those of Table 4.1). 
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Figure 4.58 
Hourly Rainfall Stations used to Test the 
Parameter Estimation Procedure 
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Table 4.21 
Percentage Errors for Blackpool Month 

Stats i F M A M J 
---- 

J 
----- 

A 
----- 

S 
---- 

0 
------ 

N 
----- 

D 
---- ------ 

Ml 
---- 

-3 
------ 

-3 
---- 

-3 
----- 

-3 
----- 

-1 
-- 

3 -0 -1 -1 0 -3 -2 
V1 4 1 1 4 3 -10 -2 -1 -4 -2 1 -1 
PD1 -1 -2 -1 -0 -0 4 1 1 1 1 -1 -1 
DD1 ý- 0 -1 0 1 0 1 0 0 0 2 -0 1 
WW1 4 0 6 10 5 -13 0 2 0 12 1 10 
V3 4 7 10 10 4 -11 5 6 7 9 5 11 
PD3 -1 -4 -0 1 1 7 2 1 2 5 -2 1 
DD3 3 -0 2 

.2 
1 3 1 1 1 3 1 3 

WW3 11 11 9 11 8 -9 -1 1 -2 0 8 7 
V6 11 11 9 11 8 -9 -1 1 -2 0 8 7 
PD6 3 4 6 8 3 1 -1 2 5 4 0 6 
DD6 3 -5 2 2 2 10 4 2 2 8 -0 5 
WW6 8 1 5 2 3 5 3 2 4 5 6 5 
V12 13 14 10 7 6 -7 3 4 7 -2 13 3 
PD12 1 1 -1 -3 -1 1 -4 -6 -1 0 -0 -7 
DD12 -2 -9 -2 -3 -0 9 0 -1 -2 - -6 -0 -3 
WW12 2 -1 6 -1 1 6 1 3 3 6 5 3 
V24 2 3 -4 -5 -3 3 2 3 -1 -16 6 -3 
PD24 -7 -13 -4 -9 -4 11 -2 -2 -2 1 -6 -5 
DD24 -5 -13 -7 -15 -14 10 -3 -7 -5 3 -6 1 
WW24 2 -4 0 -5 -13 -5 

- - 
-3 

------ 
-4 

---- 
-1 

----- 
3 

------ 
0 

---- 
2 

---- ------ 
Max 

---- 
13 

----- 
14 

----- 
10 

----- 
11 

----- 
8 

-- - 
11 5 6 7 12 13 

- 
11 

Min -7 -13 -7 -15 -14 -13 -4 -7 -5 -16 -6 -7 

- implies the model is under-estimating the statistic 
+ implies the model is over-estimating the statistic 

I 
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Table 4.22 
Percentage Errors for Ringway (Manchester) 

Stats J 

Mi -3 
Vi 3 
PD1 -1 
DD1 0 
WW1 6 
V3 5 
PD3 -1 
DD3 2 
WW3 8 
V6 4 
PD6 1 
DD6 7 
WW6 14 
V12 2 
PD12 2 
DD12 7 
WW12 7 
V24 -1 
PD24 -7 
DD24 -5 
WW24 2 

Max 14 
Min -7 

- implies 
+ implies 

I 

F 

-3 
-0 
-0 

0 
5 
5 

-0 
0 
3 

10 
0 
1 
7 

-0 
-4 

1 
14 
-4 

-10 
-10 

-1 

14 
-10 

M 

-3 
3 

-3 
-1 

5 
6 

-3 
2 

13 
7 

-1 
5 

12 

-2 
-3 

6 
11 
-3 
-5 
-5 

0 

13 
-5 

the model 
the model 

Month 

A M 
---- 

J 
---- 

J 
---- 

A 
----- 

S 
------ 

0 
---- 

N 
--- 

D 
------ 

-2 
- 

-2 -0 -1 4 -3 
-- 

-2 
-- 

-2 
---- 

-1 
2 1 -1 -8 -10 0 2 0 1 

-1 1 2 1 5 -0 1 -1 -0 
0 0 1 0 2 0 1 1 1 
7 3 -2 -9 0 5 3 10 8 
9 7 -1 4 4 9 4 10 7 
0 2 4 1 9 0 1 0 2 
1 2 1 1 4 0 2 1 2 

.7 6 -3 1 -12 2 4 4 5 
3 5 4 2 -1 2 -1 2 6 
1 3 5 3 14 1 3 1 4 
2 3 4 3 7 1 4 3 5 
5 6 3 3 -13 5 6 5 5 

-2 -3 -4 3 -4 -3 -2 -3 -4 
-2 1 2 1 15 -5 2 -2 0 

0 2 3 4 12 2 9 6 3 
9 2 5 9 -2 19 - -8 12 4 

-3 -3 2 0 -14 5 5 -0 -4 
-5 -6 1 -2 22 -6 -4 -6 -4 

-10 -4 -6 -6 15 -13 -5 -4 0 
-6 3 -8 -9 -9 -4 

---- 
-1 

----- 
0 

----- 
3 

----- ------ 
9 

---- 
7 

----- 
5 

---- 
9 

----- 
22 

-- 
19 9 12 8 

-10 -6 -8 -9 -14 -13 -5 -6 -4 
------------------- 
is under-estimating 

----- 
the 

----------- 
statistic 

----- ----- 

is over-estimating the s tatistic 
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Table 4.23 
Percentage Errors for Elmdon (Birmingham) Month 

Stats i F M A M J J A S 0 
----- 

N 
------ 

D 
---- ------ 

M1 
---- 

-3 
------ 

-2 
----- 

-4 
----- 

-2 
---- 

-2 
----- 

-2 
----- 

0 
----- 

2 
----- 

-3 -3 -4 -3 
Vi 2 -0 5 1 -3 -1 -5 -12 -1 -1 3 -0 
PD1 1 -1 -1 -1 1 0 1 3 0 -0 1 -2 
DD1 1 1 1 1 0 1 0 1 0 1 1 0 
WW1 13 il 9 10 -4 5 -4 -7 5 11 9 9 
V3 8 8 9 9 7 10 4 3 7 14 11 12 
PD3 3 -1 0 0 1 1 2 4 0 1 3 -1 
DD3 2 -0 3 1 1 1 1 1 -0 1 3 1 
WW3 3 2 15 

.3 
6 5 -4 -10 -3 4 10 7 

V6 8 7 8 8 10 9 -6 6 2 7 6 7 
PD6 5 -1 3 1 2 2 4 6 -0 2 7 -0 
DD6 5 1 7 3 3 2 3 3 1 3 7 3 
WW6 5 11 13 10 11 6 7 -3 7 6 8 10 
V12 -5 4 -2 0 -1 -4 2 -0 -0 -6 6 2 
PD12 4 -3 3 -1 1 0 3 7 -3 0 6 -2 
DD12 9 -0 11 2 2 2 2 8 1 7 12 4 
WW12 11 6 10 10 6 7 -0 10 10 -1-7 14 13 
V24 -0 -9 -6 -8 -5 -10 3 -8 3 -3 -11 -8 
PD24 -8 -10 -5 -8 -6 -4 -2 11 -11 -8 -9 -7 
DD24 -7 -7 -9 -8 -8 -3 -3 3 -9 -9 -15 -7 
WW24 
---- 

2 5 -2 2 
- 

0 
--- - 

2 
----- 

-6 -12 -1 -3 -7 4 
-- 

Max 
---- 

13 
------ 

11 
----- 

15 
--- 

10 
- 

11 10 
----- 

7 
----- 

11 
----- 

10 
----- 

17 
----- 

14 
----- 

13 
Min -8 -10 -9 -8 -8 -10 -6 -12 -11 -9 -15 -8 

- implies the model is under-estimating the statistic 
+ implies the model is over-estimating the statistic 
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Table 4.24 
Percentage Errors for Exeter 

Month 

Stats 
----- 

i F M A M J J 
-- 

A 
--- 

S 
- 

0 
--- 

N D 
- 

M1 
---- 

-0 
----- 

-1 
----- 

-2 
------ 

-1 
---- 

-1 
----- 

-1 
---- 

0 
- 

-0 
---- 

0 
-- 

-1 
----- 

0 
----- 

0 
V1 1 1 4 -2 -2 -7 -7 -3 -6 -2 1 0 
PD1 2 -0 0 0 1 1 0 1 2 2 2 2 
DD1 1 1 1 -0 0 0 0 1 0 1 2 2 
WW1 4 8 6 -4 -0 3 -6 8 -3 1 13 12 
V3 3 5 5 3 8 13 3 9 5 5 8 5 
PD3 5 1 2 -0 1 1 1 1 3 4 5 5 
DD3 2 1 3 0 1 1 0 1 1 2 3 2 
WW3 -4 1 7 3 4 -2 -5 -1 -5 1 -1 -2 
V6 -4 1 -3 .3 2 3 0 1 4 5 -0 1 
PD6 6 2 5 1 3 2 1 2 4 7 8 7 
DD6 5 3 5 1 2 2 1 1 3 6 4 5 
WW6 4 4 6 9 4 4 -3 -7 4 5 -5 -1 
V12 1 -4 -0 8 -6 -2 1 -9 -8 2 -4 -2 
PD12 4 -0 -0 -4 -1 -2 -1 -0 2 4 3 3 
DD12 5 2 2 -2 1 1 1 1 3 6 3 4 
WW12 3 3 5 7 7 10 16 10 5 9 2 2 
V24 1 0 3 -6 4 -6 3 0 2 - --6 -10 -8 
PD24 -1 -3 -4 -8 -5 -6 -3 -1 2 -1 2 2 
DD24 -1 -2 -4 -14 -7 -6 -6 -1 -3 -6 3 2 
WW24 
------ 

-2 
-- 

-0 2 -12 -2 -5 -20 -5 -5 -2 2 -1 

Max 
--- 
6 

----- 
8 

---- 
7 

------ 
9 

----- 
8 

---- 
13 

------ 
16 

----- 
10 

---- 
5 

----- 
9 

----- 
13 

----- 
12 

Min -4 -4 -4 -14 -7 -7 -20 -9 -8 -6 -10 -8 

- implies the model is under-estimating the statistic 
+ implies the model is over-estimating the statistic 



Table 4.25 
Percentage Errors for Hurn Month 
Stat 
------ 

i 
--- 

F M A M J 
----- 

J 
----- 

A 
----- 

S 
----- 

0 
----- 

N 
----- 

D 

Mi 
- 

-3 
------ 

-3 
---- 

-3 
----- 

-2 
----- 

-3 2 -0 0 -1 -2 -3 
----- 

-3 
vi 1 4 6 -1 0 -7 -8 -9 -1 3 1 3 
PD1 -0 -1 -1 -0 -0 3 2 2 1 -0 -0 0 
DD1 1 0 1 0 0 1 1 1 1 1 1 1 
WWl 7 8 10 2 5 -10 1 -2 7 7 9 5 
V3 7 6 7 8 12 -8 13 8 8 6 10 3 
PD3 1 -1 1 0 1 .5 3 3 2 1 1 1 
DD3 1 -0 4 0 1 2 2 1 1 2 2 2 
WW3 3 4 15 0 4 -10 -1 -2 -1 6 8 8 
V6 7 -1 2 1 8 -9 12 9 11 2 11 6 
PD6 1 -1 4 -0 1 7 5 4 3 3 3 4 
DD6 3 2 6 1 3 4 3 2 3 4 5 6 
WW6 10 14 9 9 15 -1 4 -1 6 6 10 12 
V12 2 0 -1 -1 0 -1 -6 -8 -7 -0 -1 3 
PD12 2 -2 3 -1 -0 9 6 4 3 1 2 3 
DD12 7 -0 7 1 1 6 5 5 5 

. 
6. 8 6 

WW12 il 3 6 9 6 0 1 8 8 9 14 7 
V24 -4 5 -1 3 -10 13 -19 -4 -6 -1 -8 -3 
PD24 -8 -15 -5 -9 -9 10 2 1 -5 -6 -12 -7 
DD24 -6 -10 -7 -12 -13 4 3 -1 -5 -4 -8 -6 
WW24 
------ 

2 
---- 

5 
- 

0 -1 -3 -12 
-- 

3 
-- 

-6 -0 1 
- 

2 
----- 

2 
- 

Max 11 
----- 

14 
---- 

15 
----- 

9 
----- 

15 
--- 

13 
- -- 

13 
----- 

9 
----- 

11 
---- 

9 14 
---- 

12 
Min -8 -15 -7 -12 -13 -12 -19 -9 -7 -6 -12 -7 

- implies the model is under-estimating the statistic 
+ implies the model is over-estimating the statistic 
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Table 4.26 

Percentage Errors for Mänston (in Kent) Month 

Stats J F M A M 
------ 

J 
---- 

J 
---- 

A 
----- 

S 
------ 

0 
----- 

N 
---- - 

D 
---- ----- 

M1 
----- 

-2 
---- 

-2 
------ 

-3 
----- 

-2 -1 -1 -0 1 2 -1 
- 

-3 -2 
V1 4 1 1 1 1 -5 -6 -18 -7 -6 0 3 
PD1 1 1 -0 -0 1 0 1 2 4 1 1 0 
DD1 1 1 0 0 0 -0 1 1 2 1 1 1 
WW1 10 6 4 4 1 -5 10 -0 5 -1 7 6 
V3 6 11 7 6 4 7 13 15 9 9 10 7 
PD3 3 2 0 0 1 0 2 3 7 2 2 1 
DD3 3 2 1 1 1 0 1 1 4 1 3 2 
WW3 11 8 6 5 4 3 -1 -7 -2 1 9 9 
V6 8 6 6 "3 -0 7 8 10 2 7 12 4 
PD6 6 4 1 1 3 1 3 4 11 4 4 4 
DD6 5 4 2 2 2 1 2 3 6 3 5 3 
WW6 3 7 5 6 1 7 -6 -4 -5 3 11 3 
V12 2 3 0 -1 -3 3 -8 3 -9 -2 3 -1 
PD12 2 -2 -4 -2 -2 -2 1 3 13 -0 0 0 
DD12 3 -0 -1 0 -1 -1 1 4 9 2 2 1 
WW12 4 7 10 8 2 2 9 14 -0 8 3 3 
V24 -12 -11 -2 -1 3 -7 -9 -25 -7 -7 -15 -3 
PD24 -4 -6 -8 -6 -4 -6 -1 4 17 -2 -7 -6 
DD24 -9 -12 -8 -12 -9 -8 -2 2 14 -4 -6 -3 
WW24 -4 -5 -0 -6 -8 

------ 
-4 

---- 
-4 

---- 
-10 

----- 
-3 

------ 
-3 

----- 
3 

------ 
5 
-- ----- 

Max 
----- 

11 
---- 

11 
------ 

10 
----- 

8 4 7 13 15 17 9 12 
-- 

9 
Min -12 -12 -8 -12 -9 -8 -9 -25 -9 -7 -15 -6 
---------- 
- implies 

---- 
the 

------ 
model 

------------------- 
is under-estimating 

----- 
the 

----------- 
statistic 

----- ----- 

+ implies the model is over-estimating the s tatist ic 

- 144 - 



Table 4.27 
Percentage Erro rs for Wat tisham (Ea st A nglia) 

Month 
Stats 
----- 

J 
- --- 

F 
---- 

M A M 
----- 

J 

---- 
J 

---- 
A 

------ 
S 

- 
0 
-- - 

N D 

Ml 
- 

-4 
- 

-4 
----- 

-5 
----- 

-5 
- 

-3 -1 -1 -0 
---- 

-2 
- - 

-1 
----- 

-4 
----- 

-5 
Vi 5 3 6 2 4 -6 -2 -10 -1 -6 2 8 
PD1 1 -1 -1 -2 -1 1 1 2 1 2 2 1 
DD1 1 0 0 -1 0 -0 1 1 1 1 1 2 
WW1 11 5 9 0 7 -11 5 -0 5 3 4 18 
V3 11 11 6 8 9 -2 11 13 12 12 10 11 
PD3 3 -1 -0 -4 -0 1 2 2 2 3 3 5 
DD3 5 1 2 -0 1 2 1 1 2 2 3 5 
WW3 15 11 13 13 10 12 1 -5 6 -2 8 16 
V6 6 0 8 .6 3 -2 12 6 6 3 2 10 
PD6 7 1 2 -4 0 4 3 3 5 4 6 11 
DD6 9 2 7 2 1 3 3 2 2 4 6 9 
WW6 12 9 16 18 6 3 4 2 -7 5 6 2 
V12 0 3 2 8 -2 4 1 -2 -0 -1 -2 1 
PD12 1 -6 -4 -9 -3 -0 -1 1 -1 0 -4 -2 
DD12 5 -2 4 -3 -1 -2 1 2 2 1 -1 1 
WW12 5 11 15 8 7 -1 7 7 17 2 12 9 
V24 -6 0 -2 -1 -2 7 -23 -12 -12 -5 4 -10 
PD24 -7 -14 -9 -16 -8 -4 -4 -0 -7 -5 -11 -11 
DD24 -10 -13 -14 -10 -10 -19 -2 -3 -9 -3 -11 -6 
WW24 
----- 

4 
---- 

2 -1 7 0 -20 2 -8 -10 1 
---- 

1 
----- 

15 

Max 
- 

15 
----- 

11 
----- 

16 
----- 

18 
------ 

10 
---- 

12 
---- 

12 
------ 

13 
----- 

17 
- 

12 12 
----- 

18 
Min 
----- 

-10 
- 

-14 -14 -16 -10 -20 -23 -12 -12 -6 -11 -11 
---- 

- implies 
----- 
the m 

----- 
odel 

----------- 
is under-es 

---- 
tima 

---- 
ting 

---------------- 
the statistic 

----- ----- 

+ implies the m odel is over-est imat ing the statistic 
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Table 4.28 

Percentage errors for Dyce 
Month 

Stats 
----- 

J F 
----- 

M 
- 

A M 
-- 

J 
--- 

J 
---- 

A 
----- 

S 
--- - 

0 
- 

N D 
- 

Ml 
--- 

-0 
- 

-2 
---- 

-2 
------ 

0 
-- - 

-2 
- 

-1 -1 -0 
-- 
-2 

---- 
-1 

------ 
1 

---- 
-2 

Vi -2 2 2 2 -2 2 -1 -2 1 0 -5 7 
PD1 0 0 -0 2 -0 2 2 2 -0 1 2 1 
DD1 3 1 2 2 1 1 1 1 1 1 2 2 
WW1 20 10 12 8 12 6 0 -2 10 5 11 16 
V3 10 6 7 1 9 4 4 2 7 7 7 5 
PD3 6 3 3 5 2 4 3 5 1 3 6 4 
DD3 4 2 3 2 1 2 2 3 1 2 2 3 
WW3 6 4 6 -4 1 4 -1 3 3 3 -4 5 
V6 6 9 5 -3 6 7 -2 4 9 -1 4 -1 
PD6 11 5 6 8 3 6 6 8 2 4 9 7 
DD6 5 5 6 5 2 4 6 6 4 5 4 6 
WW6 -4 4 5 -5 0 0 6 2 6 3 -4 2 
V12 -8 -1 -2 -2 -5 -2 3 -4 -7 -3 -2 -6 
PD12 2 -1 2 4 -4 1 1 5 -0 2 1 2 
DD12 0 6 4 4 0 4 2 4 4 2 2 5 
WW12 -2 15 4 -2 12 8 2 1 8 -0 1 6 
V24 -6 -9 -3 -1 -0 -6 -0 1 -4 -2 -10 3 
PD24 -2 -3 -5 1 -4 -2 -3 -0 -4 -2 4 -5 
DD24 3 -5 -1 4 -5 -8 -3 -3 -2 -1 3 -3 
WW24 
------ 

5 
--- 

-1 5 5 0 -5 1 -2 2 -1 -0 2 

Max 20 
------- 

15 
---- 

12 
------ 

8 
----- 

12 
----- 

8 
--- 

6 
----- 

8 
------ 

10 
----- 

7 
------ 

11 
---- 

16 
Min 
------ 

-8 
---- 

-9 -5 -5 -5 -8 -3 -4 -7 -3 -10 -6 

- impl ies 
---------- 
the model 

------------------- 
is under-estimating 

----- 
the 

----------- 
statistic 

------ ---- 

+ impl ies the model is over-estimating the s tatistic 
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Table 4.29 

Percentage Errors for Aldergrove (Northern Ireland) 
Month 

Stats 
---- 

J F 
- 

M A M 

---- 

J 
----- 

J 
- -- 

A 
----- 

S 
---- 

0 
- 

N D 

-- 
Ml 

--- 
-3 

---- -- 
-4 

--- 
-2 

------ 
-0 

- 
-0 -2 

- 
1 -1 

-- 
-2 

----- 
-0 

---- 
-3 

----- 
-3 

Vi 7 5 1 -3 -9 6 -10 3 1 3 6 9 
PD1 -1 -1 -1 0 2 0 4 1 0 1 -1 0 
DD1 1 1 1 2 0 1 1 1 1 2 1 2 
WW1 8 15 8 21 -13 11 -11 10 12 13 15 16 
V3 3 11 9 13 -2 5 -3 9 10 4 11 6 
PD3 1 -0 -0 3 2 2 6 3 3 4 1 4 
DD3 3 2 1 2 2 2 3 3 2 3 2 6 
WW3 9 11 4 3 7 5 -7 5 1 1 5 20 
V6 -4 9 4 10 3 -2 -6 -5 6 5 -1 1 
PD6 5 1 3 6 4 3 10 7 6 9 3 9 
DD6 9 4 7 4 3 2 8 5 5 7 4 13 
WW6 7 11 8 1 3 2 2 -0 4 1 7 14 
V12 3 -4 -4 -3 1 -5 -2 -3 2 -1 -4 -4 
PD12 5 -1 3 4 4 2 7 4 4 6 3 11 
DD12 8 2 15 5 3 2 6 7 9 12 6 5 
WW12 2 8 9 4 -2 1 -1 3 13 8 6 -10 
V24 4 -6 -3 -23 6 4 11 1 -13 -1-4 -1 -0 
PD24 -7 -11 -3 0 -0 -5 6 -3 -1 4 -7 -4 
DD24 -1 -7 -1 0 -11 -5 -6 -1 -4 -4 -3 -18 
WW24 
------ 

3 10 0 1 -13 4 -13 4 2 
- 

-3 
------ 

5 -11 

Max 
---- 

9 
------ 

15 
---- 

15 
----- 

21 
------ 

7 
---- 

11 
---- 

11 
----- 

10 
----- 

13 13 
---- 

15 
----- 

20 
Min 
------ 

-7 
- 

-11 -4 -23 -13 -5 -13 -5 -13 -14 -7 -18 

- impl 
--- 

ies 
---------- 
the model 

----- 
is un 

---------- 
der-estima 

---- 
ting 

----- 
the 

------ 
statis 

----- 
tic 

----- ----- 

+ impl ies the model is ov er--estimat ing the s tatist ic 
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4.9 CONCLUSIONS AND SUMMARY 

The purpose of this Chapter was to find a suitable way to estimate 

the parameters for the rainfall model. Experiments were performed 

to test how well the model fitted the historical statistics. It 

was found that the daily transition probabilities were more 

suitable than autocorrelations within the fitting procedure, as 

they improved the model's fit to the historical dry spell 

sequences. 

To further validate the model, comparisons were made_between other 

simulated and historical statistics that were not used in the 

fitting procedure. For example, the historical and simulated mean 

and standard deviations of the maxima compared favourably, as did 

the simulated and historical mean and standard deviations of the 

proportion of hourly rainfalls above 1mm. However, the simulated 

and historical mean and standard deviations of the proportions of 

hourly rainfalls above Omm did not compare so well, suggesting 

that the simulated data contained less light rainfall than the 

historical data. It was decided that this was unlikely to be of 

practical importance in simulating the hydraulic behavior of storm 

sewer systems. 

In summary, the parameter estimation procedure for hourly rainfall 

data uses the following historical statistics: i) the mean of the 

hourly rainfall time series, ii) the variance of the h hourly time 

series (h=1,3,6,12,24), iii) the wet given wet transition 

probabilities of the h hourly time series (h=1,3,6,12,24), iv) the 

proportion of dry days, v) the daily dry given dry transition 

probability. 
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CHAPTER 5 
FITTING THE MODEL TO DAILY RAINFALL TIME SERIES 

5.1 INTRODUCTION 

The purpose in this chapter is to find a suitable method of 

fitting the stochastic model to stations where only daily data are 

available. This is clearly desirable as most rainfall data are 

only available as daily time series records. Hence in order to 

propose a suitable regional and seasonal stochastic rainfall model 

use must be made of the many daily rainfall records . available. 

The Chapter concludes by fitting the model to the five longest 

records of daily rainfall data, and comparing the extremes 

generated by the model with those of the historical records. 

5.2 THE STATISTICS USED IN FITTING 

Recall from Chapter 4 that the historical statistics used to fit 

the model to the hourly rainfall data of each month were: 

i) The variances of 1,3,6,12, and 24 hourly time series 

(denoted V1, V3, V6, V12, and V24 respectively). 

ii) The'wet given wet and dry given dry transition probabilities 

from the daily time series. 

iii) The proportion of dry days. 
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Also included in the fitting procedure for hourly data were the 

wet given wet transition probabilities from the 1,3,6, and 12 

hourly historical time series (WW1, WW3, WW6, and WW12), but, as 

mentioned in Section 4.6.1, their inclusion is unlikely to be of 

practical benefit when fitting the model to daily rainfall data 

(as the historical WW1 was closely matched by the model even when 

omitted from the fitting procedure). 

5.3 SOME PRELIMINARY INVESTIGATIONS 

Given some daily rainfall data it would be convenient if the 1,3, 

6, and 12 hourly variances (V1, V3, V6 and V12) could be reliably 

predicted for each month, as these variances were shown to be 

needed in the fitting procedure for hourly data. A linear 

regression model based on the daily variances may be suitable 

(this idea came by noticing that the plots of the t-ratios for the 

variances had similar shapes for different levels of aggregation 

(e. g. compare Figures C. 2, C. 5, C. 8 and C. 11)). To see whether 

this would work a random sample of 2 stations was taken from each 

of the homogeneous regions found by Wigley et al (1984) (see 

Figure 5.1). The method of selecting the stations for each region 

was as follows: 

i) The stations within the region were listed. 

ii) For each station a random number (between 0 and 1) was 

generated. 

iii) The stations with the highest two random numbers were 

selected for that region. 
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Two further stations were subjectively chosen, one from the 

North-East region (Dyce) and the other from the North-West region 

(Aldergrove), as these two stations were located away from the 

other stations in the same region (e. g. Aldergrove is located in 

Northern Ireland, whereas the other stations in the North-West 

region are located on the same land mass, i. e. England and 

Scotland). 

For each member of the random sample, the hourly variances from 

each month were plotted against their corresponding daily 

variances (see Figures 5.2-5.13). From these Figures two 

conclusions were drawn. First a linear regression model of the 

form y=a+ ßx seemed appropriate for most of the stations, and 

secondly the variances of the residuals (about such a line) looked 

as if they could not be regarded as equal for all stations (e. g. 

compare Leuchars with East Kilbride). Hence any method of 

clustering these stations into suitable groups should not include 

the assumption of homogeneity of variance. For this reason some 

theoretical derivations are given below which add to statistical 

theory on Cluster Analysis. 
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Figure 5.1 
Hourly Rainfall Stations used for Regression Analysis 
(showing homogeneous regions proposed by Wigley et al (1984). 

and sampled stations (ringed)) 

1 Hampstead 
2 Bedford 
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4 Shawbury 
5 Hastings 
6 Wattisham 
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o 
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- 152 - 



0.32 

0.3 

0.28 

4126 

0.24 

n 0.22 

0.2 

0.18 

£ 0.16 

0.14 

0.12 

0.1 

0.08 

0.06 

Scatter Plot for Abingdon TSR 

-`1 

6 10 14 18 22 26 30 

Daily Variance / sq mm 

Scatter Plot for Hastings TSR 
a3a 
0.32 " 

063- 

M28 

E als ., 
Cy. 0.2a 
is " 0.22 

a2 
" 

0. ia 

ale ' 

2 Q14 
" 

0.12 

0.1 
 1 0.08 

  
0.06 

B 10 14 18 22 26 30 34 
Daily Variance I sq mm 

Scatter Plot for Exeter TSR 
LUD 
0.34 

0.32 

a3 

E 0.28 
IE0; 

0.18 

a16 

0.14 

0.12 

' 0.1 

Q08 

a 

aI 

Fig. 5.2 

Fig. 5.3 

m0 

U 

U 

UU 

a Fig. 5.4 

U 

5 15 25 35 45 
Daily Variance / sq mm 

- 153 - 



Scatter Plot for Rhoose TSR 
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5.4 CLUSTERING STATISTICS UNDER HETEROGENEITY OF VARIANCE 

5.4.1 Introduction 

The problem of testing the equality of population means under 

heterogeneity of variance is not new. The case of 2 population 

means (the Behrens-Fisher Problem) has been extensively researched 

(see, for example, Fisher (1935), Welch (1947), Aspin (1948) and 

Cox and Jaber (1990)). For the case of more than 2 population 

means, the problem is less well researched, but Welch (1951), 

James (1951), and Jaber (1984), offer statistics on which the test 

can be based. In this Section the Welch (1951) statistic for 

testing the equality of T population means under heterogeneity of 

variance is extended to the case of partitioning the means into 

non-overlapping homogeneous groups. Methods are available for 

partitioning population means when homogeneity of variance can be 

assumed (or the ratios of the population variances are known) and 

for this case the reader is referred to Calinski and Corsten 

(1985), Cox and Spjotvoll (1982) or Scott and Knott (1974). 

5.4.2 An Extension of Welch's Statistic 

Let ai (i = 1, ..., T) be statistical quantities normally and 

independently distributed with means µi and variances ai, where 

the Ci are known constants but nothing is known about µi and ai . 

Suppose that the data provide estimates si of the of which are 

distributed respectively as XZV2/f , where f is the number of 

degrees of freedom of Xi. Suppose further that the si are 

distributed independently of each other and of all the ai. The 
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first consideration will be the hypothesis H0: Ni P 

(i=1,2,..., T), i. e. that all the population means are equal. 

If this hypothesis is rejected alternative hypotheses of the form: 

H: µi = /1 (i) (i E I1) . Ni =p {i E I2) ."--. Ni = µ(n) (i E I) . 

will be considered, i. e. that the population means can be 

partitioned into n groups of sizes II1(, 1121 , ... ,I In I 

respectively, where I1, I2, ..., In are mutually exclusive and 

exhaustive subsets of 11,2, ..., TI. This is the problem of 

cluster analysis under non-homogeneity of variance, of which 

little is known in the literature. In this Section Welch's result 

will be extended to cover the problem of clustering the population 

means into groups. 

The results in this Section could be used in several different 

contexts. For example the ai may be the sample means from T 

different normal populations, whose true means and variances are 

p and ai respectively, where, in this case, C, = 1/(ith sample 

size). Alternatively the ai could be the constant (or slope) 

parameters for T regression models, where the ai are normally 

distributed with means p1 and variances ai , where again is a 

known constant from regression theory. 

Welch (1951) considers the statistic E wi(ai- a)2, where wi = 

C is i 2, 
and a is the weighted average (E w is i) 

/E w1. Clearly 

Welch's statistic is measuring the overall departure of the ai 

from this weighted average taking into consideration the sample 

variances associated with the ai. The cumulant-generating function 
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K(t) to order 1/f 
i of wi (ai- a) Z is given by: 

W 

K(t) 2(T-l)ln(1-2t) + 12t(1-2t)-1+ 3t2(1-2t)-2}f (1- 1)2} 
Wi 

(5.1) 

(Welch (1951) equation (19)), where wi = C-1v-2 (the population 

equivalent to w1). 

The cumulant-generating function for G= (vi- 1+ A/v2)F, where F 

is distributed as F (vl- 1, v2) , can also be found to order 1/v2 and 

is given by: 

KG(t) _- 
2(v1-1)1n(1-2t) 

+ 
! (A+ 2v1- 2)t(1-2t)-1+ 

iv2-1)t2(1-2t)-2 

2 v2 

(Welch (1951) equation (24)) (5.2) 

Hence (5.1) and (5.2) are equivalent if: 

T=v 
I 

O 
(A + 2v1- 2) /v2 =2f (1 - 

i) 2 

tiE wi 

and 

(v1 1) 
=3E1 (1 - 

wig z 
v2 t 

fi Ewi 

i. e. if: 

3E1 (1 - 
i) 2 (5.3a) 

2 (T2- 1) ifiE wi 

and 

= 
2(T-2) 1 Wi) 1 (5.3b) A/v2 - (T+1) 

E fi (1 -Ew 

i 

(Welch (1951) equation (26)) 
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Hence wi(a a)2/(T-1 + A/u2) is approximately distributed as E 

F(T-1, v2), where v2 and A are given in equations (5.3a) and (5.3b) 

respectively. 

In order to extend Welch's result to the more general case of 

partitioning the population means into non-overlapping groups, 

consider the statistic Pi given by: 

P= wi (a, - ai) 2 where aj= (ý wiai) /E wi, 
tý ýj Ij 

so that the summations are taken over all values in group j 

(j=1,2,..., n). For convenience the set symbol Ii may be dropped 

and the summation written as E. Let nj = 11 
11 

be the number of 
(J) 

means in group j (for j=1,..., n). 

The cumulant-generating function K (t) of Pi follows immediately 

from (5.1) and is given by: 

2 (nj- 1) ln(1-2t) + 

I2t(1 - 2t) -1 + 3t2(1 - 2t) -21 {E 1 (1 i) 2j 
(J) iEw 

(j)i 
(5.4) 

Hence the cumulant-generating function of P=EE wi(a aj2 
j=1 (j) 

n 
=EPj = Kp(t), say, is given by: 

J. 1 

KP(t) _ Ki(t) _-2 (T - n) In (1-2t) + [2t(1 - 2t)-1 + 

.1 
3t2(1 - 2t) -2] EEf (1- 

w1) 2 
Jul (j) 1Z 01 

(5.5) 
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Now (5.5) is equivalent to (5.2) if: 

vl =T-n+1 

1/v2 =3EnEf (1 - 
wi) 2/ i (T-n) (T-n+2) 1 (5.6a) 

J=1 (j) 

(j) 

and 

1 (1 - 
ßi)2 

(5.6b) A/v 2(T-n-1) n 

2 (T-n+2) 
j_i (j) 

fi E G) i 

Hence using (5.6a) and (5.6b) we have: 

n 

EE wi (a, - a 
j) 

2/ (T-n) 

jai (j) 

1+ 2 (T-n-1) n1 
t1 - 

ý")1) 2 
(T-n) (T-n+2) 

3ýI 
(j) 

= W, say, is approximately 
distributed as F T-n, v2 

(5.7a) 

3EE1 (1 - 
ßi)2 

where v-1 = 
j=1 (j) IE wi 

2(j) 

(T - n) (T -n+ 2) 

(5.7b) 

The W statistic (5.7a) can be used to partition the population 

means into non-overlapping groups without assuming homogeneity of 

variance. In the next Section W will be used to group the 

regression parameters for each station into non-overlapping 

groups. 
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5.5 REGRESSING THE HOURLY VARIANCE ON THE DAILY VARIANCE 

Let x1 and yij be the daily and hourly variances (respectively) 

for month j (=1,..., 12), station i (=1,..., 27). For each rainfall 

station a linear regression model of the form: 

yij= ai+ ßix 
j j+ c 

was fitted using the method of least squares, where it was assumed 

that the Elj are independent Normal random variables with constant 

variance ai for each station (an analysis of the residuals appears 

later in this Chapter). 

The hypothesis a2 = a2 = ... = c2? was tested using the statistic: 

T^ 

(r - 2)a, T 
x2 = (Tri - 2T) In iii-E (ri - 2) In Qi 

Tr 
I- 

2T 
JJ i=i 

where in this case T= total number of stations = 27, r. = number 

of observations for station i (which was 12 for each station). 

This statistic is in common use in hydrology (e. g. see Holder 

(1985)) and is approximately xT1. The value taken by x2 was 97.3 

which is significant at the 0.1% level. 

Although the hypothesis of homogeneity of variance was rejected, a 

standard ANOVA for regression was performed, so that some 

comparisons could be made between the results of hypotheses tests 

under the standard ANOVA and the results of hypotheses tests when 

using the W statistic of the previous Section. The results of 
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calculating the relevant sums of squares for the ANOVA are given 

in Table 5.1. 

Table 5.1 A Standard ANOVA for Regression Analysis 

Source SS df MS F 0.1% level 

Overall 1.95 1 1.95 1091 11. 
Regression 

Difference 0.115 26 0.00441 2.47 2.1 
in intercepts 

Difference 0.139 26 0.00534 2.99- 2.1 
in gradients 

Residual 0.482 270 0.00178 

Total 2.68 323 

In a regression analysis of this type the following hypotheses are 

of interest: 

i) the hypothesis ai =a (i=1,..., 27), i. e. all the intercepts are 

equal, 

ii) the hypothesis ßi =ß (i=1,..., 27), i. e. all the gradients are 

equal, and 

iii) the hypothesis of no linear relationship. 

Using Table 1 each of the above would be rejected at the 0.1% 

level. However, using the W statistic (equation (5.7a)) gives: 

WI = 1.2 " F26, 
la under (i), and 

W2 = 3.7 " F26,112 under (ii) above, 

so that hypothesis (i) could be retained (F 
26,16 

(10%) 1.8)" 
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For convenience, the common intercept a, was estimated by the mean 

value, i. e. a= 
2=1 ai/T. The parameters ßi were then 

re-estimated for each station using the revised model: 

Y, i = Yi j-a= 
RiXi 

j+ Ei j- 

The values of the estimates of ßi were then ordered and are shown 

in Figure 5.14. 

The hypothesis H0: ßi =p (i=1,..., 27) was again tested using the 

W statistic, which gave the value W=4.9 - F26,97 under Ho, and so 

Ho is rejected at the 0.1% level. 

Having rejected Ho some groupings suggested by Figure 5.14 were 
1 

tested. The first partition tested was 

H: ßi = ß(z) (i=1,..., 22); ßi = ß(2) (i=23,..., 27) 

For this grouping W=1.76 -F 
26,96 under H. This result is just 

significant at the 5% level. However, this hypothesis was retained 

for two reasons: a) the differences within each of these groups 

were probably not of much practical significance, and b) it could 

be seen in Figure 5.1 that this choice of groups gave stations 

that fall naturally into homogeneous regions, i. e. one group 

corresponds to the rainfall stations in England, Wales, and 

Northern Ireland, and the other group corresponds-to stations in 

I It should be mentioned that using the data to suggest possible 
groupings is not entirely satisfactory from a statistical point of 
view. However, this approach was adopted to find the smallest 
number of groups that could be regarded as homogeneous (which 

would reduce the problem, for engineers with sites near a 
boundary, of having to choose between regions). Regions could have 
been selected, prior to the statistical tests, based on physical 
grounds but this may have lead to a large number of regions due to 

the highly variable physical topography of the British landscape. 
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Scotland (together with Boulmer in the far north east of England). 

As it may be convenient to pool the Boulmer station (number 23) 

with the rest of the stations in England a further test was made: 

H: ßi = PM (i=1,..., 23); ßi = ß(2) (i=24,25,26,27) 

was tested using the *W statistic, and the result was W=2.44 

F 
26,96 under H. This was rejected at the 0.1% level, so that 

Boulmer was included with the rainfall stations in Scotland. The 

homogeneous regions for the regression models are shown in Figure 

5.15. 

A further test of the significance of this region was made by 

introducing an explanatory variable (N), which 'explained' the 

regions A and B, into a regression model for all the 

station-months, and testing the significance of this variable, 

i. e. the following regression model was fitted by the method of 

least squares: 

yi3 = ao +aIxIj+ a2Ni j+ Ci j, 

where xij is the daily variance for month j (=1, ..., 12) station 

i (=1, ..., 27), yid is the corresponding hourly variance, and Nij 

is 1 if the ith station is in region B or 0 if the ith station is 

in region A. 

Table 5.2 gives the least squares estimates of the parameters ao, 

al, and a2 of the above regression model, and the standard errors 

of these estimates. In addition, a t-ratio is given to test the 

null hypothesis that the explanatory variable has no effect, i. e. 

to test H0: ai =0 (i=0,1,2). 
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Table 5.2 

The regression parameter estimates 
with a regional explanatory variable included 

Regression Least squares Standard t-ratio 
parameter estimate error 

ao 0.04281 0.00539 8.0 

al 0.00798 0.00025 31. 

a2 -0.04111 0.00647 -6.4 

to. 
1% = 3.7 

From Table 5.2 it was evident that the effect of the regional 

variable N (corresponding to regression parameter a2) is highly 

significant, and so the choice of the homogeneous regions A and B 

was retained. Furthermore, the coefficient of variation (= 

estimate of residual standard deviation + mean of hourly 

variances) was 25%, which compared favourably to the coefficient 

of variation for the hourly variances in the Manston data set 

(which was 22% when averaged over the months), so that the 

residual variation could mainly be attributed to sampling 

variability rather than model inadequacy. It should perhaps be 

mentioned that the daily variances are also subject to sampling 

variability - the coefficient of variation for these lying 

somewhere between 20% and 30% for a 10 to 20 year record (refer 

back to Section 4.3.4 of Chapter 4 for the method by which the 

coefficients of variation were found). 

It is worth noting that a similar choice of homogeneous regions 

was made in the Flood Studies Report (1975, Volume 2, Section 

1.5), where two regions were proposed: i) Scotland and Northern 

Ireland and ii) England and Wales. 
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Gradients obtained for Regression Analysis on each Station 
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Figure 5.14 
Gradients for the regression analysis 

with 1 standard deviation shown either side 
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Figure 5.15 
Homogeneous regions A and B 

found in cluster analysis 
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5.6 REGRESSING V3, V6, AND V12 ON THE DAILY VARIANCE 

Pooling the rainfall stations into the two groups suggested by the 

above analysis, and re-estimating a and ß for each group, gave the 

regression models shown in Figures 5.16 to 5.19. The fitted lines 

had the following equations: 

The hourly regression model (Figure 5.16): 

Region A (R2 = 76%): Vi = 0.03159 + 0.008597 V24 (5.8a) 

Region B (R2 = 83%): V1 = 0.03734 + 0.006205 V24 (5.8b) 

The 3 hourly regression model (Figure 5.17): 

Region A (R2 = 88%): V3 = 0.1415 + 0.04931 V24 (5.9a) 

2 Region B (R = 90%): V3 = 0.1055 + 0.04524 V24 (5.9b) 

The 6 hourly regression model (Figure 5.18): 

Region A (R2 = 93%): V6 = 0.2899 + 0.1426 V24 (5.10a) 

2 Region B (R = 94%): V6 = 0.01200 + 0.1493 V24 (5.10b) 

The 12 hourly regression model (Figure 5.19): 

Region A (R2 = 96%): V12 = 0.4655 + 0.3874 V24 - (5.11a) 

Region B (R = 97%): V12 = -0.1582 + 0.4174 V24 (5.11b) 2 

To assess the validity of the above regression models a closer 

look at the residuals was needed. 
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Regressing the Hourly Variance on the Daily Variance 

(Region A) 

u zu 40 60 80 
Daily Variance / sq mm 

(Qeninn 01 

Daily variance / sq mm 

Figure 5.16 
Regression plots for the hourly variance 

for regions A and B 
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Regressing the 3 Hourly Variance on the Daily Variance 
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Figure 5.17 
Regression plots for the 3 hourly variances 

for regions A and B 
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Regressing the 6 Hourly Variance on the Daily Variance 
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Figure 5.18 
Regression plots for the 6 hourly variances 

for regions A and B 
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legressing the 12 Hourly Variances on the Daily Variances 
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Figure 5.19 
Regression plots for the 12 hourly variances 

for regions A and B 
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5.7 AN ANALYSIS OF THE RESIDUALS 

Plots of the residuals of the 1 hourly variances against the 

months and predicted variances are given in Figures 5.20 and 5.21. 

In Figure 5.21 it can be seen that there is no obvious dependency 

of the residuals on the predicted values. This implies that the 

results of the statistical tests are unlikely to be misleading. 

However, it was evident from Figure 5.20 that the residuals had 

some dependency on the month, which suggested that it might be 

worth including some harmonic as an explanatory variable. It was 

thought that the inclusion of a sine/cosine wave of 1 cycle per 

year (the first harmonic) in the regression model would probably 

remove the seasonal variation in the residuals. To include the 

first harmonic in the regression model, assume that the h hourly 

variances Vh are given by: 

Vh = ao + a1V24 + a2cos(2nt/12) + a3sin(2nt/12) +E 

where t=1,2, ..., 12 (1 = Jan, 2= Feb, etc), h=1,3,6,12. 

The parameters ai of the above regression models were estimated by 

the method of least squares for both regions. Figures 5.22 and 

5.23 show the 'improved' residual plots for the 1 hourly 

variances, and Table 5.3 shows the increase in R2 for all h hourly 

variances. Standard t-tests were performed to test the hypotheses 

that the coefficients of the harmonic terms were zero. These 

hypotheses were all rejected at the 5% level for at least one of 

the harmonic terms in each regression model. However, as the 

increase in R2 is only very slight (see Table 5.3), the inclusion 

of the harmonic terms is unlikely to be of much practical benefit. 

- 174 - 



Hence, the first regression models which do not include harmonic 

terms are preferred because of their simplicity. For users 

requiring the slight improvement in accuracy offered by the more 

complex harmonic regression models, the parameter estimates ai for 

the models are provided in Table 5.4. 
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Table 5.3 

Improvement in R2 obtained by 

introducing the first harmonic 

Region Dependent 

variable 

R2 excluding 

harmonic 

R2 including 

harmonic 

A Vi 0.76 0.81 

A V3 0.88 0.90 

A V6 0.93 0.94 

A V12 0.96 0.96 

B V1 0.83 0.91 

B V3 0.90 -0.93 

B V6 0.94 0.95 

B V12 0.97 0.97 

Table 5.4 

Parameter Estimates for the regression models 

with the first harmonic included 

Coeff of Independent Variables 

Region Dependent Constant V24 cos(nt/6) sin(7ct/6) 

Variable a0 al a2 a3 

A V1 0.047200 0.007731 -0.02413 -0.02258 
A V3 0.197625 0.046193 -0.06445 -0.08043 
A V6 0.420248 0.135363 -0.09569 -0.18519 
A V12 0.653956 0.376970 -0.15207 -0.26817 
B V1 0.044442 0.005852 -0.01705 -0.02604 
B V3 0.136823 0.043685 -0.07216 -0.11308 
B V6 0.072124 0.146325 -0.12098 -0.20635 
B V12 -0.15761 0.417416 -0.33580 -0.20346 
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Residual Plot against Month 
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Residual Plot against Predicted Hourly Variance 
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Residual Plot against Predicted Hourly Variance 
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5.8 AN EXTREME VALUE ANALYSIS OF THE NEYMAN-SCOTT RAINFALL MODEL 

5.8.1 Introduction 

In the previous Sections, a method of fitting the Neyman-Scott 

model to daily rainfall data was given. In this Section the model 

is fitted to the longest daily records available in each of the 

'Wigley' regions. Data are then simulated for January and July in 

each region, and maximum daily totals for historical and simulated 

data compared. The results of this Section show that the model has 

a tendency to under-estimate extreme values, mainly for return 

periods in excess of 10 years. However, this under-estimation may 

be compensated for by simulating for a longer period. A rough 

guide to the length of this period is given. 

5.8.2 The Gumbel distribution 

An analysis of extremes often involves fitting the Gumbel 

distribution to the data, or plotting the data on Gumbel 

probability paper. In this Section some properties of the 

distribution are reviewed. These properties can be found in the 

Flood Studies Report (1975). 

The Gumbel Distribution has two parameters: -i) a location 

parameter u, and ii) a shape parameter a. 

If X is a Gumbel (a, u) variate, then X has pdf: 

fx W= a-1 exp(-a-1(x-u) - e-a 
1 (x-u) 1 (5.12) 
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The distribution function FX(x) of X is given by: 

FX(x) = exp(-ea-1(x-u)} 

The mean and variance of X are: 

E (X) =u+ a7 

Var (X) = n2a2/6 

where 7 is Euler's constant (7 = 0.5772 to 4 d. p. ). 

The standardised variate Y is related to X by: 

Y= (X - u) /a 

The variate Y has pdf: 

fy(y) = exp{-y - e-') 

The distribution function of Y is: 

FY(Y) = expf-e-'J 

i. e. Y is a Gumbel (0,1) variate. 

Let the return period for Y be T years. Then, 

Y= -In(-ln(1-T-1)) 

(see Flood Studies Report (1975), Section 1.2.4) 
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4X=u-a ln(-ln(1-T-1) ) (5.20) 

Let there be N years of daily rainfall data. Let (xi) be the 

ordered sequence of maximum daily rainfall for each year, so 

xlsx2s .., sxN. The xi may be plotted against the standardised 

variates y using: 

yi = -ln(-in F1), (5.21) 

where Fi = (i - 0.44)/(N + 0.12) (due to Gringorten (1963)). 

If the xi follow a Gumbel distribution then the (x1, yi) should lie 

on a straight line (from equation (5.16)). Deviations from a 

straight line indicate that some other distribution may be more 

appropriate. However, if only the last few points deviate from a 

straight line, then there is unlikely to be sufficient evidence 

against assuming a Gumbel distribution because of high sampling 

variability as i approaches N. 

5.8.3 An analysis of maximum daily rainfalls 

The longest record of data from each 'Wigley' region were selected 

for the analysis (see Table 5.5). For each of these stations the 

parameters of the Neyman-Scott model were estimated for January 

and July using the parameter estimation procedure of Chapter 4 

with estimates of the 1,3,6, and 12 hourly variances given by 

equations (5.8) - (5.11) (see Table 5.6 for the parameter 

estimates). Data were simulated for each of these stations (the 
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number of years of simulated data was equal to the number of years 

of historical data). The maximum daily rainfall for each year was 

found for both historical and simulated time series. These maxima 

were ordered and then plotted against the standardised Gumbel 

variate (see Figures 5.24 - 5.28). 

Figures 5.24 - 5.28 show that the model tends to under-estimate 

the very extreme values. However, when re-designing an existing 

sewage system, the day to day performance of the system is more 

important than the performance of the system under extreme events 

(Henderson (1986)), and so the model is not regarded as inadequate 

for its intended purpose. If an engineer is interested in the 

performance of a sewage system under very extreme events (e. g. 

storms with return periods exceeding 10 years), then there are 

three choices available. 

Firstly, the engineer can use the traditional design storm 

approach, where a storm profile is found from the historical data 

for a given return period (e. g. see Arnell et al (1984)). This 

approach does have its drawbacks (as pointed out in Chapter 1), 

but may still be useful in modelling extreme rainfall events. 

Secondly, the model's fit to the historical maximum daily 

rainfalls may improve if an expression for the mean and variance 

of the maxima were included in the parameter estimation procedure 

(equation (4.7)) when fitting the model. However, the mean and 

variance of the maximum amount of rain captured in a day are not 

available as functions of the model parameters. An attempt to find 

these functions has proved too difficult mathematically (some 

workings towards these are given in Appendix A). An alternative 
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approach is to use regression techniques to attempt to find the 

functions empirically. This approach is addressed in Section 

5.8.5. 

Thirdly, the engineer could simulate data for a longer period 

using the stochastic model. If this choice is made, the engineer 

will need some guide as to the number of years of simulated data 

that corresponds to the historical data, i. e. we need to determine 

how many years of simulated data are needed in order to obtain the 

same proportion of heavy storms, on average, as an historical 

record. This is approach is considered in the next Section. 

0 
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Table 5.5 

Long Daily Records used in Analysis 

Station 
Number 

Station 
Name 

Years of 
Data 

Altitude 
m 

East 
Grid 

North 
Grid 

Region 

1525 Howick Hall 92 34 4246 6177 NE 

115306 Blackbrook 90 107 4456 3178 C 

588702 Poaka Beck 90 156 3240 4781 NW 

275574 Windsor 90 21 4979 1754 S 
354864 Exmouth 74 66 3027 - 819 W 

Table 5.6 

Parameter Estimates for January and July 

Station Month x ß Ti v E 

1525 January 0.0185 0.1275 0.828 4.60 1.294 

July 0.0163 0.1007 0.512 2.83 0.986 

115306 January 0.0173 0.1796 1.432 6.78 0.976 

July 0.0127 0.1299 0.853 3.57 0.640 

588702 January 0.0200 0.1023 1.181 8.16 0.840 

July 0.0181 0.1167 0.890 4.92 0.670 

275574' January 0.0183 0.1325 1.215 4.90 0.974 

July 0.0115 0.1149 0.973 4.32 0.692 

354864 January 0.0171 0.0854 0.958 5.22 0.843 

July 0.0091 0.0599 0.745 3.22 0.553 
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Extreme Value Plot of Daily Rainfalls for Poaka Beck 
January 

(a) 

Return period 
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Figure 5.24 
Extreme value plots for Poaka Beck (North-West region) 
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Extreme Value Plot of Daily Rainfalls for Howick Hall 
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Figure 5.25 
Extreme value plot for Howick Hall (North-East region) 
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Extreme Value Plot of Daily Rainfalls for Blackbrook 
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Figure 5.26 
Extreme value plot for Blackbrook (Central region) 

6 
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Extreme Value Plot of Daily Rainfalls for Windsor 
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Figure 5.27 
Extreme value plots for Windsor (Southern region) 
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Extreme Value Plot of Daily Rainfalls for Exmouth 
January 

(a) 

Return period 
5 10 20 50 100 200 

0" 
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(b) 

Figure 5.28 
Extreme value plots for Exmouth (South-West region) 
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5.8.4 Using the model to simulate for a longer period to capture 

the extreme rainfall events 

Figures 5.24 - 5.28 show that the plotted points for both the 

historical and simulated data lie approximately on a straight 

line, allowing for the large sampling variability of the end 

points. It therefore seems reasonable to assume that the data come 

from Gumbel distributions. 

The parameters (a, u) of the assumed Gumbel distributions were 

estimated by the Method of Moments by equating the observed mean 

and variances of the daily maxima with their equivalent in the 

population (equations (5.14) and (5.15) respectively). The Gumbel 

parameter estimates for both the historical and simulated maxima 

are given in Table 5.7 (denoted u, uH and as, us respectively). 
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Table 5.7 

Gumbel Parameter Estimates 

Station Month 

uH 

Gumbel Parameter Estimate 

aH us as 

Poaka Beck January 18.0 7.65 19.6 7.08 

Poaka Beck July 19.8 10.0 21.6 9.61 

Windsor January 10.0 4.95 11.0 4.89 

Windsor July 12.1 7.65 12.2 6.33 

Blackbrook January 10.9 5.09 11.5 3.78 

Blackbrook July 12.5 10.3 14.1 6.11 

Howick January 10.3 5.16 7.8 3.95 

Howick July 14.6 8.32 15.1 10.76 

Exmouth January 13.7 6.66 14.0 6.15 

Exmouth July 12.7 11.0 11.3 8.00 
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Suppose there are N. years of historical rainfall data. Of 

interest is the number of years N. of simulated rainfall data, 

where the probability of storms with high return periods being 

found in N. is the same as the probability of storms with high 

return periods being found in the historical data (where N. is 

likely to be greater than NH because the model has a tendency to 

under-estimate the extremes), i. e. we need to find N. such that: 

pr{at least one storm of return period >T years in NS} _ 

pr{at least one storm of return period >T years in NH1, 

for a range of (high) T values and typical NH values. 

Values of NS for different values of NH and T would give the 

engineer a rough guide as to how many years of simulated rainfall 

data are equivalent to historical data of record lengths NH. Let 

the historical maximum corresponding to storms of return period T 

be xH, so that 

XH = uH - aH In (-ln (1-T-1)) , (5.22) 

from equation (5.20), assuming Gumbel distributions for the 

maximum daily rainfalls. Hence, the probability pH of obtaining a 

storm with return period exceeding T years in one year of 

historical data is given by: 

pH = pr{XH > xH) =1- FX (x1) =1- expf-exp{a-1(x1 - uH)II, 
H 

using equations (5.13) and (5.22). Also, the probability Ps of 

obtaining a storm of historical return period exceeding T years in 
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one year of simulated rainfall data is given by: 

PS = pr (XS > xH} =1- Fx (x 
H) 

=1- exp (-exp f cr 
1 (xH - us) }}, 

S 

Thus the probabilities of there being at least one storm of return 

period in excess of T years in the historical and simulated data 

(of record lengths NH. and N. respectively) are: 

1- (1-pH)H and 1- (1-ps)NS respectively (assuming the data are 

independent from one year to the next). 

Therefore, the required record length for the simulated data can 

be obtained by solving: 

1- (1-P 
H) 

NH 
= 1- (1-ps) 

N 

xo NS = NH ln(1-pH)/ln(1-ps) (5.23) 

The values NS were found for historical storms of return periods 

5,10, and 20 years, and historical record lengths of 10,20, and 

30 years (see Table 5.8). From Table 5.8 it was evident that, on 

average, the record length of the simulated data should be about 

1.4 times the historical record length to obtain the right 

proportion storms with return periods in excess of 5 years, and 

about 1.8 and 2.3 times the historical record length to obtain the 

right proportion of storms with return periods in excess of 10 and 

20 years respectively. However, the standard deviations of the Ns 

values are large, so these multiples (1.4,1.8, and 2.3 times the 

historical length) can only be taken as rough guides. 

- 193 - 



Table 5.8 

Simulated record lengths N. equivalent to historical 

record lengths NH 

Historcal record lengths NH 

5 10 20 5 10 20 5 10 20 

Return periods: 

Station Mth T> 20 yrs T> 10 yrs T>5 years 
EEi 

Poaka Jan 5.1 10.2 20.3 4.8 9.6 19.2 4.5 9.1 18.1 

Poaka Jul 4.7 9.5 18.9 4.6 9.2 18.3 4.4 8.9 17.7 

Windsor Jan 4.2 8.5 16.9 4.2 8.4 16.8 4.2 8.3 16.7 

Windsor Jul 9.3 18.6 37.1 7.8 15.6 31.2 6.5 13.0 25.9 

Blackbrk Jan 11.8 23.5 47.1 9.2 18.4 36.7 7.1 14.2 28.3 

Blackbrk Jul 29.4 58.7 117.4 17.9 35.8 71.6 10.7 21.4 42.7 

Howick Jan 23.2 46.5 93.0 18.7 37.3 74.6 14.8 29.7 59.3 

Howick Jul 2.4 4.9 9.8 2.9 5.8 11.5 3.4 6.8 13.7 

Exmouth Jan 6.1 12.2 24.5 5.8 11.5 23.0 5.4 10.8 21.7 

Exmouth Jul 18.2 36.5 72.9 13.9 27.9 55.7 10.5 21.0 42.1 

Mean 11.4 22.9 45.8 9.0 17.9 35.9 7.2 14.3 28.6 

SD 9.2 18.4 36.7 5.8 11.7 23.3 3.7 7.4 14.8 
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5.8.5 An attempt to improve the model's fit to the historical 

maximum daily rainfalls using a regression model 

The results of this Section summarise the work of Quinn (1991), 

for which the author of this thesis was the supervisor. 

The model's fit to the historical maximum daily rainfalls may 

improve if an expression for the mean and variance of the maxima 

were included in the parameter estimation procedure (equation 

(4.7)) when fitting the model. However, the mean and variance of 

the maximum amount of rain captured in a day are not available as 

functions of the model parameters. An attempt to find these 

functions has proved too difficult mathematically (some workings 

are given in Appendix A). An alternative approach is to use 

regression techniques to attempt to find the functions 

empirically. 

Rainfall data were simulated (for 90 years ) using the simulation 

program (Appendix B) for 88 different combinations of model 

parameters (these combinations were chosen to give a good spread 

of the mean and variances of the maxima - see Quinn (1991) for 

details). For each of the 88 simulations the maximum daily 

rainfalls were found for each year, and the mean and variance of 

these maxima evaluated. The correlation matrix for the model 

parameters and the mean (p) and variance (a2) of the maxima was 

found and is given in Table 5.9. 
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Table 5.9 

Correlation matrix for model parameters 

and mean and variance of the maximum daily rainfalls 

u QZ ß TI N 1ýý 

p 1.00 0.77 0.25 -0.08 -0.37 -0.03 0.66 

Q2 0.77 1.00 0.04 -0.05 -0.54 -0.35 0.82 

From Table 5.9 it is evident that I and ß show the least 

correlations with the other variables, and so may not be needed 

when predicting p and a2 (this will be checked more formally later 

in this Section). In contrast, of the model parameters, 1/E 

mean cell intensity) shows the highest correlation with p and a2 

and so will probably be needed when predicting p and a2. Table 5.9 

also shows that p and a2 are correlated to each other (a 

correlation of 0.77). For this reason the problem is best set up 

as a multivariate regression problem, where the dependent 

variables p and a2 are treated as the coefficients of a dependent 

vector (as oppose to performing two separate multiple regressions 

on each of p and a2), i. e. we will assume that: 

I 

- 196 - 



1 

xli 
a0 a1 a an x2i 

2 
cri bo b1 b2 ... bn 

xni 

i. e. a+ax+ax+ 01 li 2 2i 
+ anxni + X11 

2 
and ai = bo + bixli + b2x21 +,,, + bnxni + e21 

e it 
+ 

c 
21 

(5.24a) 

(5.24b) 

where pi and a are the mean and variance of the maxima for the 

ith simulation (i = 1, ..., 88), sli and ¬21 are the residuals due 

to the sampling error in estimating pi and vi respectively, and 

xj1 is a product of the model parameters for the ith simulation. 

To reduce the number of combinations possible for the xji, only 

products of order 2 will be considered, i. e. 

Xýi E tx. N. E. XF', I TIP XV. Xer j3rj0 
YV, NS, 77p, TIE, Vb. 

22222 

for j=1, ..., n, and xji#xki for all j#k. The 

significance of an explanatory variable xji will be tested using 

Wilk's lambda (A) (details of which can be found Krzanowski 

(1990)). The number of terms n appearing in equations (5.24a and 

5.24b) will thus be the number of explanatory variables found to 

be significant using this test statistic. 

The regression models given in equations (5.24a and 5.24b) were 

fitted by the Method of Least Squares. However, it was found that 

the variance of the residuals tended to increase as the predicted 
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values increased (see Quinn (1991)). Hence, the natural logarithm 

of the mean and variance of the maxima was used in equations 

(5.24a and 5.24b), i. e. we now assume that: 

ln(Ni) = a0 + aIx11 + a2x21 + ... + anxni + eii (5.25a) 

and ln(oi) = bo + blxli + b2xZi +,,, + bnxni + e2i (5.25b) 2 

(N. B. log transformations of hydrological data are frequently used 

in regression problems when the variance of the residuals fails to 

be constant (e. g. see Holder, 1985)) 

Although it was anticipated that products of the explanatory 

variables would be required in the final form of the regression 

equation (5.25), the first regression model fitted for the 

transformed data did not include any such products, i. e. the first 

model fitted only included the model parameters (A, ß, p, v, t) as 

explanatory variables so that n=5 in equation (5.25). The 

purpose behind this was to see if any of the parameters (and hence 

products of the parameters) could be left out of the regression 

model. Wilk's A was used to test the significance of each of the 

five explanatory variables (see Table 5.10). 

From Table 5.10 it is evident that each of the variables ß, rl, v, 

and E are going to be useful in predicting p and a2. However, the 

F-ratio for the explanatory variable X is not significant at the 

15% level, and so X could be left out of the regression model. 

Leaving 7. out of the regression model reduces the number of 

explanatory variables that need to be considered, i. e. we need 

only consider the following terms: ß, Ti, v, E, Rn. ßv. ßE, fI)' ng' 
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2222 
vE, ß, r1 , v, and , so that 

Xji E (ßi 17, Vi Er P17, PV, PE, 110, rJEr VE, ß? 172 V2 E2}- 

The parameters of the regression models (5.25a, 5.25b) were 

re-estimated (by the Method of Least Squares) where now all terms 

and products (except those involving X) were included. The results 

of performing multivariate tests on these explanatory variables 

are given in Table 5.11. 

From Table 5.11 it can be seen that the smallest F-ratio (which 

was 1.32 for the explanatory variable v2) fails to be significant 

at the 15% level, and so V2 will be left out of the regression 

model. 

The parameters of the regression model were again re-estimated, 

where now the regression model excludes the variable v2. The 

significance of each explanatory variable was again tested using 

Wilk's A and the results of these tests are given in Table 5.12. 

From this Table it is evident that the smallest F-ratio (which was 

1.79 for ßv) is not significant at the 15% level, so that ßv will 

be left out of the regression model. 

The parameters of the 

where now the regressic 

PP. The significance of 

using Wilk's A and the 

5.13. From this Table 

(which was 2.24 for ß) 

regression model were again re-estimated, 

)n model excludes both the variables v2 and 

each explanatory variable was again tested 

results of these tests are- given in Table 

it is evident that the smallest F-ratio 

is significant at the 15% level, so that 

all terms will remain in the regression model. The parameters 

estimates for the regression model, equations 5.25a and 5.25b, are 

given in Tables 5.14a and 5.14b respectively. 
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Table 5.10 

Multivariate tests for the explanatory variables 

used in the first regression model 

Explanatory 
variable 

Wilk's A F-ratio Pr >F 

a 0.957 1.80 0.17 

0.908 4.11 0.02 

TI 0.384 65.09 0.00 

V 0.431 53.52 0.00 

1/E 0.190 172.31 0.00 

Table 5.11 

Multivariate tests on all explanatory variables 

and products up to order 2 

Explanatory Wilk's A F-ratio Pr >F 
variable 

ß 0.953 1.78 0.175 

n 0.722 13.86 0.000 

0.815 8.19 0.001 

0.814 8.23 0.001 
ßn 0.908 3.66 0.031 

ßv 0.926 2.88 0.063 
ß/ 0.804 8.75 0.000 

TIP 0.912 3.48 0.036 

n/E 0.886 4.62 0.013 

v/E 0.935 2.51 0.089 

'ß2 0.601 23.88 0.000 

ti e 0.824 7.70 0.001 

u2 0.965 1.32 0.273 

1/EZ 0.877 5.05 0.009 
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Table 5.12 

Multivariate tests on explanatory variables 

where v2 has been left out of the model 

Explanatory 
variable 

Wilk's A F-ratio Pr >F 

ß 0.952 1.84 0.166 

TI 0.703 15.41 0.000 

V 0.808 8.66 0". 000 

1/E 0.813 8.39 0.001 
ßTI 0.919 3.22 0.046 
Po 0.953 1.79 0.174 

WE 0.810 8.55 0.001 

TIP 0.864 5.76 0.005 

r/E 0.887 4.66 0.013 

v/E 0.937 2.45 0.094 
ß2 0.604 23.91 0.000 

r) 2 0.817 8.18 0.001 
i/E2 0.893 4.38 0.016 
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Table 5.13 

Multivariate tests on explanatory variables 

where v2 and ßv have been left out of the model 

Explanatory Wilk's A F-ratio Pr >F 
variable 

ß 0.943 2.24 0.114 

Ti 0.676 17.77 "0.000 
v 0.794 9.58 "0: 000 

1/E 0.778 10.56 0.000 
ßr1 0.933 2.65 0.077 

ß/E 0.803 9.09 0.000 

tjv 0.856 6.23 0.003 

rl/E 0.890 4.56 0.014 

v/E 0.939 2.39 0.099 
p2 0.576 27.29 0.000 
n2 0.823 7.97 0.001 

1/EZ 0.865 5.80 0.005 
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Table 5.14a 

Regression parameter estimates for dependent variable ln(p) 

Explanatory 
variable 

Parameter 
estimate 

Standard 
error 

Constant 3.3140 0.3109 

ß -4.9787 2.5371 

-3.6510 0.6577 

0.5337 0.1239 

1/E -0.1334 0.2344 
PT) 3.5308 1.6475 

WE 4.1780 0.9783 

nv -0.2024 0.0585 

n/E 0.7934 0.2618 

v/E -0.0998 0.0454 
ß2 -8.7195 1.2358 

n2 0.9952 0.2976 
1/E2 -0.0128 0.0498 

2 R= 92%, CV = 3.1% 

a 
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Table 5.14b 

Regression parameter estimates for dependent variable ln(a2) 

Explanatory 
variable 

Parameter 
estimate 

Standard 
error 

Constant 2.8013 0.7324 

P 3.9187 5.9762 

n -4.2610 1.5493 

V 0.3755 0.2918 

1/c 2.4986 0.5522 

ßri -2.7134 3.8808 

ß/R 1.8338 2.3045 

riv -0.1530 0.1379 

n/E 0.0063 0.6167 

v/E -0.0268 0.1069 
ß2 -8.5777 2.9109 

92 1.7607 0.7011 

1/92 -0.4024 0.1174 

2 R= 93%, CV = 4.9% 
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Equations (5.25a) and (5.25b) were included in the parameter 

estimation procedure (4.7), where the parameters of the regression 

equations (5.25a) and (5.25b) are given in Tables 5.14a and 5.14b 

respectively. As an attempt is being made to simulate extreme 

rainfall events using the stochastic model, the squared terms 

containing the regression equations were both given a weight of 

100 in the fitting procedure (4.7). Using this revised fitting 

procedure, the parameters of the Neyman-Scott Rectangular Pulses 

model were re-estimated for January and July for each of the long 

records of daily data (see Tables 5.15). In addition, the 

percentage errors between the historical and model statistics 

(which are functions of the model parameters) were found and are 

given in Table 5.16, from which it can be seen that the regression 

equations are matching the historical mean and variance of the 

maxima almost exactly (as expected). Furthermore, the model is 

also matching the other historical statistics used in the fitting 

procedure (so that the regression equations are unlikely to reduce 

the performance of the model in other ways (e. g. in the model's 

fit to the historical dry spell sequences)). 

Data were then simulated for each of these stations using the 

parameter estimates in Table 5.15 (the number of years of 

simulated data was equal to the number of years of historical 

data). The maximum daily rainfalls for each year were found for 

both the historical and simulated time series. These maxima were 

ordered and then plotted against the standardised Gumbel variate 

(see Figures 5.29 - 5.33). 
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From Figure 5.29 - 5.33 it is evident that using the regression 

model (for the mean and variance of the maximum daily rainfalls) 

in the fitting procedure has improved the model's fit to the 

historical extreme values for most of the stations (e. g. compare 

Figures 5.31 with 5.26). However, for some station-months, where 

previously the model closely matched the historical maxima (e. g. 

Poaka Beck - July, Figure 5.24b), there is now more discrepancy 

between the historical and simulated maxima (compare Figure 5.24b 

with 5.29b). Therefore, it may be better to include the regression 

model in the fitting procedure only for the station-months where 

the model is failing to match the historical extremes. 
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Table 5.15 

Parameter Estimates for January and July 

using the regression model in the fitting procedure 

Station Month xßnvE 

1525 January 0.0133 0.0615 1.1537 5.6377 0.8237 

July 0.0096 0.0500 0.8090 4.6269 0.6171 

115306 January 0.0158 0.1434 1.7258 7.7702 0.8416 

July 0.0194 0.2498 0.6245 1.4267 0.5784 

588702 January 0.0144 0.0602 1.3780 11.3792 0.7218 

July 0.0099 0.0500 1.1422 9.3752 0.5453 

275574 January 0.0129 0.0762 1.3602 6.9279 0.8699 

July 0.0089 0.0500 0.8720 3.9516 0.5710 

354864 January 0.0124 0.0521 1.1932 7.4178 0.6992 

July 0.0191 0.2764 0.5989 1.1916 0.5574 

Table 5.16 

Percentage errors between model and historical statistics 

Statistic 

Station mth Ml Vi V3 V6 V12 V24 PD24 WW24 DD24 LNM LNV 

1525 Jan -1 4 7 1 -3 0 1 11 11 0 -0 
Jul -3 2 13 9 3 1 8 10 14 0 -1 

115306 Jan 0 3 1 -3 -3 -1 1 6 4 0 -0 
Jul -8 2 21 21 13 3 -4 -16 -13 -0 -1 

588702 Jan 0 4 3 -3 -4 1 0 7 11 0 -0 
Jul -0 5 7 0 -3 -1 5 14 19 0 -1 

275574 Jan -0 3 3 -2 -3 4 4 10 12 -0 -0 

Jul -5 7 16 11 3 2 2 8 4 1 -1 

354864 Jan -0 6 7 -1 -5 -3 1 7 9 0 -0 

Jul -4 -3 16 17 9 -1 -5 -26 -18 -0 -1 

LNM, LNV = log of mean and variance of maximum daily rainfall 

respectively. 
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Figure 5.29 
Extreme value plots for Poaka Beck 

using the regression model in the fitting procedure 
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Figure 5.30 
Extreme value plots for Howick Hall 

using the regression model in the fitting procedure 
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Extreme Value Plot of Daily Rainfalls for Blackbrook 
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Figure 5.31 
Extreme value plots for Blackbrook 

using the regression model in the fitting procedure 
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Figure 5.32 
Extreme value plots for Windsor 

using the regression model in the fitting procedure 

- 211 



Extreme Value Plot of Daily Rainfalls for Exmouth 
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Figure 5.33 
Extreme value plots for Exmouth 

using the regression model in the fitting procedure 
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CHAPTER 6 
A REGIONALISED STOCHASTIC RAINFALL MODEL FOR THE UK 

6.1 INTRODUCTION 

The purpose of this Chapter is to find a regional/seasonal model 

that can be used to predict the parameters for the Neyman-Scott 

rainfall model at locations where rainfall data do not exist or 

are unavailable. An obvious approach to this problem is to attempt 

to regress the parameters of the model on location dependent 

variables that are likely to influence rainfall (e. g. altitude, 

distance from coast, etc). To allow for seasonal variation in the 

parameters harmonics can also be included in the regression model. 

The parameters for the regression model will be estimated using a 

weighted least squares approach, where the weights will be equal 

to the number of years of rainfall data that were used to estimate 

the Neyman-Scott model parameters (such weights produce the best 

linear unbiased estimates for the parameters of the regression 

model). 

For each month at each station the parameters of the Neyman-Scott 

model were estimated using the methods described in Chapters 4 and 

5. It was found that 3 stations (out of 112) had one month in 

which the parameter estimates were of much greater magnitude than 

the typical parameter estimates obtained for the other 

station-months. These observations were not used in the analysis 

as they would unduly influence the least squares estimates 
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in the regression analyses that follow. The total number of 

observations is therefore 12 x 112 -3= 1341. It was thought that 

these outlying observations were unlikely to reflect model 

inadequacy, but were probably a result of the minimisation 

procedure failing to reach a more typical local minimum, i. e. it 

was thought that the model could realise the same rainfall 

statistics with different parameter sets but that most of the time 

the parameter sets produced were of similar magnitude). To see 

whether this was the case the parameters for these station-months 

were estimated using the final regression model obtained in this 

Chapter, and the results are given in Appendix F. 

6.2 THE EXPLANATORY VARIABLES 

The following variables were thought to be suitable for describing 

the regional variation of rainfall: 

1) Altitude (A) in mX10, 

2) North O/S Grid Reference (N) in kmxlO, 

3) East/West effect (W), 

4) Distance from Coast (C). 

For each rainfall station A and N were known. For the East/West 

effect (W) the East-West dividing line found by Wigley et al 

(1984) (see Figure 6.1) was used (W was 1 if the station was in 

the west, otherwise W was zero). This dividing line seemed a good 

criterion on which to base an East/West effect as it corresponds 

to the well known 'rain shadow' effect of, for example, the 

Pennines. 
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Figure 6.1 
East/West Effect (W) 
(Using a dividing line proposed by Wigley et al (1984)) 

4y 
n° 

ý0 
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- 215 - 



The distance from the coast (C) for each station was found by 

first measuring the distance D (in mm) on the O/S map used for 

this study, and then using the equation: 

C=1+ trunc (D/10) 

i. e. C=1,2,3, ... 

(6.1) 

The variable C was used instead of D as no greater accuracy in 

'Distance from coast' could be justified because the measurement 

of D was sometimes ambiguous (e. g. for station lying near an 

estuary). 

To describe the seasonal effect the five harmonics (H1 - H5) given 

below were used: 

Hi = AIcos(2nt/12) + BIsin(2nt/12), 

H2 = A2cos(4nt/12) + B2sin(4nt/12), 

H3 = A3cos(6nt/12) + B3sin(6nt/12), 

H4 = A4cos(8nt/12) + B4sin(8nt/12), 

H5 = A5cos(10nt/12) + B5sin(iOnt/12), 

where t=1,2, ..., 12 (1 = Jan, 2= Feb, ..., 12 = Dec), so that 

H1 corresponds to 1 cycle per year, H2 to 2 cycles per year, etc. 

It will somestimes be found convenient to denote the cosine and 

sine components of H1 as Cl and Si respectively, the cosine and 

sine components of H2 as C2 and S2 respectively, etc. 

It was anticipated that not all of the harmonics would be needed 

in the final form of the regression model, but this was not the 

case as the contribution of each harmonic was found to be 

statistically significant (as is shown further on in this 

Chapter), suggesting a complex seasonal pattern. 
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6.3 A MULTIVARIATE REGRESSION PROBLEM 

For each month of each station the parameters of the model were 

estimated using the methods described in the previous two 

Chapters. These parameter estimates together with the explanatory 

variables A, N, W, C, H1 - H5 were recorded in a data base. The 

number of stations used in the analysis was 112 (a few stations 

were omitted from the analysis because of incomplete or corrupt 

records) giving a total of 112 x 12 = 1344 observations. Three 

outlying observations were removed reducing the total to 1341 

observations. The total number of explanatory variables was 14 (A, 

N, W, C, H1 - H5, counting 2 per harmonic), the number of model 

parameters is 5 (1, P, Ti, P, E) , which gives a total of 19 

variables in the regression model (so the complete data matrix has 

1341 rows and 19 columns). In the least squares regression 

estimation procedures that follow each observation will be 

weighted by the number of years of data used to obtain that 

observation (thus producing the best linear unbiased estimates for 

the regression parameters). 

One approach to the regression problem may be to perform a 

multiple regression analysis on each parameter separately. 

However, approaching the problem in this way would only be 

suitable if the parameters were uncorrelated random variables, 

with no relationship existing between them. To -see whether the 

parameters were correlated the correlation matrix for the 

parameters estimates was found and is shown in Table 6.1. 
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Table 6.1 

Correlation matrix for the parameter estimates 

/ 

a 
A 

ß 
A 

T) 
A 

v 
A 

x 1.0000 0.1790 -0.0504 -0.0075 0.5526 

0.1790 1.0000 0.5149 0.2254 0.2745 

rj -0.0504 0.5149 1.0000 0.6314 -0.1204 

v -0.0075 0.2254 0.6314 1.0000 0.0686 

0.5526 0.2745 -0.1204 0.0686 1.0000 

From the correlation matrix it can be seen that each row (or 

column) has at least one correlation exceeding 0.5 which is a 

significant correlation both practically and statistically. Hence 

a multiple regression approach that ignores the interaction 

between the parameters is unsuitable. Therefore the problem is 

best set up as a multivariate regression analysis. Letting Y be 

the 1341x5 matrix of parameter estimates, X be the 1341x15 matrix 

of observed explanatory variables (together with a column of 1's), 

y be the matrix of regression parameters, and E be the error 

matrix, then we assume: 

Y=Xy+e 

Alternatively the regression model may be written as: 

E(a, ß, rl, v, 9) _ (1, A, N, W, C, Cl, ... ) 

7x1 7131 

7XA 7ßA 

7XN 7ßN 

7xw 
. 

(6.2) 

(6.3) 
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where the 7's are the regression parameters. Note that the 

parameter estimates (y) obtained by the method of least squares 

applied to the multivariate problem are identical to the estimates 

that would be obtained with 5 separate multiple regression 

analyses on each model parameter (see, for example Krzanowski 

(1990)). Multivariate regression differs from multiple regression 

in the statistical tests on the explanatory variables that usually 

follow. In particular, in multivariate regression an explanatory 

variable is either in the model or out, whereas in multiple 

regression an explanatory variable may be in the regression model 

for one of the rainfall model's parameters and may be out of the 

regression model for another. In the multivariate regression 

problem the significance of an explanatory variable is tested by 

setting up null hypotheses of the form: 

HO ' 77xx = lßx = 7r7x = 7vx = 7tx = 0, 

where x is the explanatory variable (i. e. x=A, N, W, etc). 

In testing the significance of the ith harmonic the following 

hypothesis would be used: 

HO' lac 
i= 

7ßc 
i= 

7rIc 
i= uc i= 

7Ec 
i= 

7as 
i= 

7ßs 
1= 

7rIs 
i= 

7us 
i= 

Its 
i= 

0' 

i. e. both the sine and cosine coefficients must be tested for each 

parameter simultaneously. 

The hypotheses described above will be tested using Wilks' Lambda 

(A) - the details of this statistic are omitted as they are 

readily available in most texts on Multivariate Analysis (e. g. 

Krzanowski (1990)) 
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6.4 FITTING THE MULTIVARIATE MODEL 

The first model fitted was that described by (6.3) with all 5 

harmonics included and no interaction terms included. The 

objective here is to dispense with as many terms as possible 

before considering interactions, thus reducing the number of 

interactions needing consideration. However, no terms could be 

removed from the model as the following analyses show. 

Table 6.2 gives the results of an analysis of variance treating 

each dependent variable separately, i. e. the significance of 5 

independent multiple regressions are tested separately. The 

F-ratios obtained in this Table are highly significant, from which 

we conclude that the choice of explanatory variables will give 

some success in predicting the parameters of the model. 

To test the significance of each explanatory variable Wilks' 

Lambda (A) will be used. Table 6.3 gives the results of using this 

test statistic on each of the regional explanatory variables, and 

Table 6.4 gives the results for each of the seasonal (harmonic) 

variables. All the F-ratios in these Tables are highly significant 

indicating that all the explanatory variables could remain in the 

model. 
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Table 6.2 

Analysis of variance for multiple regression 

treating each model parameter separately 

Parameter F Value Prob>F R-Squared 

k 142.108 0.0001 60% 

ß 22.384 0.0001 19% 

Ti 30.874 0.0001 25% 

v 45.197 0.0001 32% 

89.985 0.0001 49% 

Table 6.3 

Multivariate Statistical Tests using Wilks' A 

on regional variables 

Variable Wilks' A F Pr >F 

A 0.7911 69.8 0.0001 

N 0.5833 188.8 0.0001 

W 0.6944 116.3 0.0001 

C 0.9524 13.2 0.0001 

Table 6.4 

Multivariate Statistical Tests using Wilks' A 

on seasonal variables 

Variable Wilks' A F Pr >F 

H1 0.2917 225.2 0.0000 

H2 0.8996 14.4 0.0001 

H3 0.9323 9.4 0.0001 

H4 0.9686 4.3 0.0001 

H5 0.9469 7.3 0.0001 
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6.5 FITTING THE REGRESSION MODEL WITH INTERACTIVE TERMS 

As previously pointed out it will be necessary to consider 

interactions between terms. The total number of explanatory 

variables is 14, which means there are a total of 14X13/2 = 91 

interactions. Interactions between the harmonic terms will not 

need to be considered (as two harmonics multiplied together will 

be equivalent to some other harmonic), and therefore the number of 

interactions needing consideration reduces to 91 - 10x9/2 = 46. 

The squares of the regional variables A, N, and C will also be 

considered. Note that W2 =W (as W takes the values 0 or 1 only), 

and so only W needs to be included. Thus the total number of terms 

of order 2 for consideration in the regression model is 46 +3= 

49. 

The strategy for choosing which of these terms to include in the 

multivariate model was as follows. Five independent multiple 

regressions analyses on each of the model parameters were 

performed separately using a FORWARD model selection criterion. 

This selection criterion made the following steps: 

1) The residual sum of squares R1 was found for the multiple 

regression model which included only the 14 terms of order 1. 

2) The residual sum of squares R was found for-each of the 49 

multiple regression models that had all terms of order 1 plus one 

term of order 2. 

3) The difference in the residual sum of squares obtained in 1) 

and 2) divided by the residual mean square obtained in 2) gave an 
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F statistic from which the improvement in the models fit could be 

judged, i. e. 

(R1 - R)/(R/(1341-15-1)) F1,1341-15-1 

4) If the largest of the 49 F-ratios in 3) was significant at the 

1% level, then the term of order 2 was included in the model. (The 

data set was large so that terms significant at the 5% or 10% 

level were unlikely to be of practical significance). 

5) Steps 1) to 4) were repeated with the significant term of order 

2 included in step 1). The process continued until there were no 

F-ratios in step 4) significant at the 1% level. 

The following terms of order 2 appeared in at least one of the 

FORWARD selected multiple regression models after the above 5 

steps had been completed: 

2Z, Z A, NC, CW, AC, AN, NW, NH1, NH2, NH4, CH4, Will, WH2, and WH4, 

where NH1 = NC1 + NS1, NH2 = NC2 + NS2, etc (each harmonic 

interaction was jointly tested). This gives a total of 21 terms of 

order 2 for consideration in the multivariate model (counting 2 

for each harmonic interaction). 

Using all terms of order 2 with the 14 terms of order 1 the 

parameters (7) for the multivariate model were estimated using the 

method of least squares. A multivariate test was then carried out 

on those terms (of order 2) that did not appear in any of the 

multiple regression models after step 5) above, the purpose being 
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to see whether these terms could be dismissed from the 

multivariate model. The results are given in Table 6.5, from which 

it was decided to retain the null hypothesis, i. e. the remaining 

terms of order 2 did not significantly (at the 1% level) improve 

the multivariate model. 

The parameters of the model were then re-estimated using only 

those terms of order 2 (as well as all the terms of order 1) in 

the FORWARD selected multivariate model. Multivariate tests were 

then performed on the interactive terms appearing in this model, 

the results being given in Table 6.6. From this Table it can be 

seen that the F-ratio for the interactive terms CH4, NH4, and AC 

are not significant at the 1% level, so that at least one of these 

terms could be removed from the model. To see whether more than 

one of these terms could be removed joint multivariate F-tests 

were performed, and the results are given in Table 6.7. From this 

Table it can be seen that CH4 and AC could be removed from the 

model and NH4 could be retained, giving a total of 32 explanatory 

variables in the multivariate regression model. 
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Table 6.5 

Multivariate Test on Variables not selected for FORWARD models 

Wilks' AF Pr >F 

0.87 1.25 0.0260 

Table 6.6 

Multivariate tests for variables selected in the FORWARD Model 

Variable Wilks' AF Pr >F 

AA 0.98 4.2 0.0008 

NN 0.83 52. 0.0001 

CC 0.94 16. 0.0001 

CW 0.97 6.9 0.0001 

AN 0.96 11. 0.0001 

NW 0.96 10. 0.0001 

AC 0.99 2.2 0.0539 

NH1 0.92 12. 0.0001 

NH2 0.97 3.9 0.0001 

NH4 0.98 2.2 0.0169 

WH1 0.86 . 01 21. 0.0001 

WH2 0.98 2.3 0.0099 

WH4 0.98 2.5 0.0052 

CH4 0.99 0.99 0.4529 

Table 6.7 
Joint Multivariate tests for variables 

selected in the FORWARD Model 

Variable Wilks' A F Pr >F 

NH4, CH4 0.97 1.7 0.0207 

NH4, CH4, AC 0.97 1.8 0.0068 

CH4, AC 0.98 1.4 0.1459 
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Using the 32 explanatory variables the parameters (7) of the 

multivariate model were estimated using the Gentleman-Givens 

Method which reduces numerical inaccuracies caused by inverting a 

large data matrix. Tables 6.8 - 6.12 give estimates of these 7 for 

each of the dependent variables (i. e. Neyman-Scott model 

parameters). The P-Values in Tables 6.8 - 6.12 are the values 

obtained under the null hypotheses that the explanatory variable 

is not needed in the multiple regression model. Although it would 

not be appropriate to use this test in building the multivariate 

model, it is useful in determining which explanatory variables are 

explaining most of the variation in the dependent variables. 

Table 6.13 gives the results of an analysis of variance for the 

separate multiple regression on each dependent variable, and the 

R2 values for each dependent variable. To reflect the multivariate 

nature of the model, the R2 values for the mean daily rainfall 

p(24) and the proportion of dry days $(24) are also shown in this 

Table. These values give an overall indication of the performance 

of the regional model. It can be seen that the model has more 

success in predicting the proportion of dry days than the mean 

daily rainfall. To see this visually, a random sample of 2 daily 

stations was drawn from each of the Wigley regions and the mean 

daily rainfall and proportion of dry days plotted using the 

parameter estimates given by the regression model and the 

estimates obtained from the data (Figures 6.2-6.11). As the total 

number of station-months was large (about 1341), the effect on the 

regression estimates of any individual station-month is going to 

be negligible, so that the plots give some indication of the 

predictive capability of the multivariate regression model on 

sites not used in the analysis. 
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Table 6.8 

Parameter Estimates for ) 

Explanatory Parameter 
Variable Estimate 

Standard 
Error P-Value 

CONSTANT 0.0138742271 0.000386627 0.0001 

A -0.0000292872 0.000034466 0.3956 

N 0.0012379447 0.000151387 0.0001 

W -0.0015956772 0.000350915 0.0001 

C -0.0004467139 0.000048667 0.0001 

Cl 0.0031267775 0.000187706 0.0001 

Si 0.0020259476 0.000187767 0.0001 

C2 0.0013255149 0.000187643 _ . 0.0001 

S2 -0.0007516314 0.000187827 0.0001 

C3 0.0006667431 0.000082061 0.0001 

S3 0.0001296318 0.000082124 0.1147 

C4 -0.0009089374 0.000187642 0.0001 

S4 -0.0007417884 0.000187830 0.0001 

C5 -0.0002951170 0.000082109 0.0003 

S5 0.0006067482 0.000082077 0.0001 

AN 0.0000160326 0.000004359 0.0002 

NW 0.0000949378 0.000073960 0.1995 

NC1 0.0000207914 0.000041344 0.6151 
NS1 -0.0003689149 0.000041413 0.0001 
NC2 -0.0001568978 0.000041325 0.0002 
NS2 0.0000973809 0.000041432 0.0189 
NC4 0.0001575037 0.000041324 0.0001 
NS4 0.0000622454 0.000041433 0.1333 
WC 0.0002205185 0.000046188 0.0001 
WC1 -0.0004591073 0.000175230 0.0089 
WS1 -0.0011349163 0.000175038 0.0001 
WC2 -0.0000058556 0.000175032 0.9733 

WS2 0.0001576206 0.000175235 0.3686 

WC4 0.0006306925 0.000175031 0.0003 

WS4 0.0004905837 0.000175236 0.0052 

AA 0.0000014634 0.000000797 0.0665 

NN -0.0000965985 0.000016677 0.0001 

CC 0.0000180567 0.000002370 0.0001 
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Table 6.9 

Parameter Estimates for ß 

Explanatory 
Variable 

Parameter 
Estimate 

Standard 
Error P-Value 

INTERCEPT 0.1664563853 0.008288596 0.0001 

A 0.0013254115 0.000738884 0.0731 

N -0.0057692188 0.003245468 0.0757 

W -0.0603957698 0.007522989 0.0001 

C 0.0006293085 0.001043339 0.5465 

Cl 0.0216544008 0.004024086 0.0001 

Si 0.0103808886 0.004025385 0.0100 

C2 0.0121702678 0.004022737 0.0025 

S2 0.0060989181 0.004026679 0.1301 

C3 0.0018784352 0.001759247 0.2858 

S3 0.0034074486 0.001760597 0.0532 

C4 -0.0181397093 0.004022717 0.0001 

S4 -0.0070715730 0.004026738 0.0793 

C5 0.0007158923 0.001760269 0.6843 

S5 0.0004736784 0.001759593 0.7878 

AN -0.0003826584 0.000093450 0.0001 

NW 0.0087625467 0.001585570 0.0001 

NC1 -0.0009945873 0.000886346 0.2620 

NS1 -0.0010565827 0.000887823 0.2342 

NC2 -0.0009539141 0.000885925 0.2818 

NS2 -0.0002045539 0.000888217 0.8179 

NC4 0.0029845048 0.000885916 0.0008 

NS4 0.0004729344 0.000888245 0.5945 

WC 0.0002024421 0.000990194 0.8380 

WC1 -0.0262030553 0.003756615 0.0001 

WS1 0.0006542113 0.003752505 0.8616 

WC2 -0.0051184911 0.003752368 0.1728 

WS2 -0.0070270555 0.003756731 0.0616 

WC4 0.0071888144 0.003752361 0.0556 

WS4 0.0042380513 0.003756754 0.2595 

AA -0.0000425965 0.000017085 0.0128 

NN 0.0002211374 0.000357524 0.5363 

CC -0.0000264315 0.000050803 0.6030 
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Table 6.10 
Parameter Estimates for r 

Explanatory Parameter Standard 
Variable Estimate Error P-Value 

INTERCEPT 1.120781681 0.071061474 0.0001 
A 0.001122746 0.006334746 0.8594 
N 0.037355428 0.027824708 0.1797 
W -0.079393790 0.064497615 0.2186 

C 0.022420413 0.008944962 0.0123 

Cl 0.150732113 0.034500109 0.0001 

Si 0.280044997 0.034511246 0.0001 
C2 -0.039089942 0.034488542 0.2572 
S2 0.092941634 0.034522342 0.0072 
C3 -0.038824199 0.015082734 0.0102 
S3 0.062421691 0.015094311 0.0001 
C4 -0.092888714 0.034488372 0.0072 
S4 0.001687004 0.034522851 0.9610 
C5 0.003297514 0.015091492 0.8271 
S5 -0.029093928 0.015085703 0.0540 
AN -0.001751140 0.000801182 0.0290 
NW 0.060569855 0.013593727 0.0001 
NC1 -0.017020874 0.007599003 0.0253 
NS1 -0.011488820 0.007611661 0.1314 
NC2 0.005205398 0.007595394 0.4933 
NS2 -0.013968988 0.007615043 0.0668 
NC4 0.010698779 0.007595314 0.1592 
NS4 -0.002184500 0.007615283 0.7743 
WC -0.015619471 0.008489328 0.0660 
WC1 -0.099408399 0.032206977 0.0021 
WS1 -0.075281177 0.032171735 0.0194 
WC2 0.027058274 0.032170565 0.4005 
WS2 -0.108030490 0.032207965 0.0008 
WC4 -0.002374633 0.032170499 0.9412 
WS4 -0.014673041 0.032208163 0.6488 
AA 0.000011514 0.000146472 0.9374 
NN -0.012427648 0.003065201 0.0001 

CC -0.000772811 0.000435556 0.0762 
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Table 6.11 

Parameter Estimates for v 

Explanatory Parameter 
Variable Estimate 

Standard 
Error P-Value 

INTERCEPT 4.4617138085 0.333521676 0.0001 

A 0.1156717318 0.029731654 0.0001 

N -0.4410410415 0.130593169 0.0008 

W 1.4487384049 0.302714701 0.0001 

C 0.2774578297 0.041982507 0.0001 

Cl 0.7672839854 0.161923664 0.0001 

Si 1.1945645510 0.161975933 0.0001 

C2 -0.2909719128 0.161869374 0.0-725 

S2 0.0983670842 0.162028013 0.5439 

C3 -0.2369340718 0.070789677 0.0008 
S3 0.3310028941 0.070844014 0.0001 
C4 -0.0872899688 0.161868577 0.5898 

S4 0.0791741048 0.162030401 0.6252 

C5 -0.0213272179 0.070830781 0.7634 
S5 -0.0645265515 0.070803613 0.3623 
AN -0.0145270328 0.003760285 0.0001 
NW 0.3601488366 0.063801136 0.0001 
NC1 -0.0605166565 0.035665346 0.0900 
NS1 -0.0754167745 0.035724757 0.0350 
NC2 0.0851412034 0.035648409 0.0171 
NS2 -0.0284699587 0.035740632 0.4258 
NC4 0.0019231660 0.035648033 0.9570 
NS4 -0.0338355615 0.035741759 0.3440 
WC -0.1607952261 0.039844022 0.0001 
WC1 0.2802085898 0.151161020 0.0640 
WS1 -0.0698251335 0.150995616 0.6438 
WC2 -0.0501882673 0.150990125 0.7396 
WS2 -0.5056188060 0.151165658 0.0008 
WC4 -0.1999628607 0.150989815 0.1856 
WS4 -0.2975571048 0.151166588 0.0492 
AA -0.0014028702 0.000687455 0.0415 

NN 0.0435101503 0.014386288 0.0025 

CC -0.0113508555 0.002044251 0.00 
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Table 6.12 

Parameter Estimates for 

Explanatory Parameter 
Variable Estimate 

Standard 
Error P-Value 

INTERCEPT 0.9064980664 0.028879845 0.0001 

A 0.0003350582 0.002574482 0.8965 

N -0.0733628953 0.011308142 0.0001 

W -0.1240940733 0.026212250 0.0001 

C -0.0025967725 0.003635291 0.4752 

Cl 0.1443043564 0.014021069 0.0001 

Si 0.1858651591 0.014025595 0.0001 

C2 -0.0006757560 0.014016368 0. -9616 
S2 -0.0347332583 0.014030104 0.0134 

C3 0.0106345485 0.006129721 0.0830 

S3 0.0078405869 0.006134426 0.2014 

C4 -0.0203850421 0.014016299 0.1461 

S4 -0.0036819550 0.014030311 0.7930 

C5 -0.0068851990 0.006133280 0.2618 

S5 0.0091117818 0.006130928 0.1375 

AN 0.0003634532 0.000325605 0.2645 

NW 0.0093026815 0.005524579 0.0924 

NC1 0.0004740334 0.003088284 0.8780 

NS1 -0.0171389596 0.003093429 0.0001 
NC2 0.0049464228 0.003086817 0.1093 
NS2 0.0043278022 0.003094803 0.1622 
NC4 0.0040753978 0.003086785 0.1870 
NS4 -0.0020420496 0.003094901 0.5095 
WC 0.0053914199 0.003450118 0.1184 
WC1 -0.0888451903 0.013089125 0.0001 
WS1 -0.0429460020 0.013074802 0.0010 

WC2 -0.0046091109 0.013074327 0,7245 

WS2 -0.0067888701 0.013089526 0.6041 

WC4 0.0003232054 0.013074300 0.9803 

WS4 0.0078137957 0.013089607 0.5506 

AA -0.0001229886 0.000059527 0.0390 

NN 0.0150149053 0.001245718 0.0001 

CC 0.0002258862 0.000177013 0.2021 
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Table 6.13 

Analysis of Variance 

for the final regression model 

Dependent 
Variable F Value Pr >F R-Squared 

82.6 0.0001 67% 

ß 14.3 0.0001 26% 

rý 17.1 0.0001 29% 

24.5 0.0001 37% 

54.2 0.0001 57% 

p(24) - - 58% 

0(24) - - 72% 

Note: In the above Table, µ(24) and 4(24) are the daily mean and 

proportion of-dry days respectively given by the N-S model (recall 

from Chapter 4 that they are functions of the N-S model 

parameters. 
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6.6 AN ANALYSIS OF THE RESIDUALS 

Figures 6.12 - 6.16 give plots of the predicted N-S parameter 

value against the residual value. The plots indicate a slightly 

skewed distribution for the residual values. As there were so many 

station-months (a total of 1341) used in the analysis, it was 

concluded that the statistical tests were almost certainly giving 

valid results despite the slight skew in the residual 

distributions. 

Some further plots of the residuals were made to see if, for 

example, the residuals depended on the North O/S Grid Reference. 

These plots are given in Appendix G, from which it could be seen 

that there was no obvious dependency of the residuals on location 

or time of year. 

Lack of fit in one of the model parameters may be compensated for 

in another model parameter. The multivariate regression model 

given takes into account the correlation between the parameters of 

the model. The most straightforward way of testing the 

multivariate nature of the model was to select some key model 

expressions and evaluate these expressions with the actual 

parameter estimates based on the site data and the predicted 

parameter estimates given by the regression model, and then find 

the difference (i. e. residual = actual - predicted) in these 

values. The key expressions selected were the expected amount of 

rainfall captured in a day, denoted M24, the proportion of dry 

days, denoted PD24, and the variance of the amount of rain 

captured in a day, denoted V24. The percentage errors (100 X 

(actual - predicted)/actual) in these expressions were plotted 
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against altitude, North Grid Reference, distance from coast, and 

month (see Appendix G). These plots indicated that there was no 

dependency of the percentage errors on location or time of year. 
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6.7 USING HISTORICAL DATA WITH THE MULTIVARIATE MODEL 

At some sites rainfall data could be purchased or may already be 

available, in which case it would be preferable to use these data, 

together with the multivariate regression model, to estimate the 

parameters of the stochastic rainfall model. The engineer applying 

the stochastic model will need a guide to the accuracy of the 

regionalised parameter estimates compared to parameter estimates 

that could be obtained from historical data. This would enable an 

appropriate weighted parameter estimate to be evaluated using both 

parameter estimates given by the data and the regression model. 

Suppose data for a particular month of the year are available from 

a long record (mn years) of historical daily rainfall. Divide 

these mit years, for the chosen month, into n groups consisting of 

that monthly record from m consecutive years. Let fib be the value 

of a model function, for example the proportion of dry days $(24), 

for the jth year in the ith group (j = 1, ..., m; i=1, ..., n). 

Such a value is obtained by first estimating the model parameters 

using data from the jth year in the ith group, and then 

substituting these parameter estimates into the model function. 

Let E (f 
i j) = p, Var (f 

i j) = a2, and assume the fIj are independent. 

Let fi = fij/m be the mean value for the ith group, so that 

2 Var (f 
i) = a/m . 

Now the Var(f 
i) can also be estimated from: i (f 

i- 
f) Z/ (n-1) 

where fi is an estimate of the statistic using the m years of data 

in the ith group (i = 1, ..., n), and f is the sample mean of all 

these n estimates. Hence a2 can be estimated from: 

mE i(fi - 
2/(n-1). Note that fi is not exactly-the same as f 

because fi is estimated using all m years of data, whereas fl is 

an average over the m years. However, this difference is only 

slight and so has been ignored in the above treatment. 

Four long records of daily rainfall data were selected from 

different regions of the country (the sites were located in 
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Exmouth (South-West), Poaka Beck (North-West), Howick Hall 

(North-East) and Windsor (South)). These records were divided into 

n 10-year groups (where n=7 for Exmouth and n=9 for the other 

stations). The parameters of the model were estimated for each of 
these 10-year groups for the months of January and July, the daily 

mean p(24) and proportion of dry days x(24) calculated, and o2 

found for both statistics. 

As a separate exercise, the variances of the residuals of the 

regression model were estimated for both the daily mean and the 

proportion of dry days. Let s2 denote this variance estimate (for 

either the daily mean or proportion of dry days), and let t be the 

number of years of data to be bought. Then, the estimate of the 

daily mean (or proportion of dry days) obtained using the 

regression model is equivalent to the estimate from t years of 
data if s2 = a2/t. 

The t year values were found for January and July for each of the 
long records, and are shown in Table 6.14. On average, the 

accuracy in using the regression model is equivalent to using 
about 18 years of historical data to estimate the proportion of 
dry days, and equivalent to using about 5 years of historical 
daily data to estimate the daily mean. As monthly rainfall data 

are published regularly (Meteorological Office Monthly Weather 
Report), it may he advisable to use the regionalised model 
together with the published data. If the published monthly data 

are used, an adjustment in one or more of the model parameters 
would be needed. An obvious choice for this adjustment is E 
(=1/mean cell intensity), because the proportion of dry days and 

wet/dry spell lengths do not depend on this parameter. The 

parameter could be adjusted as follows. 

Suppose the historical daily mean (obtained from the published 

monthly data) is denoted m, and the regionalised parameter 

estimates (obtained from the regression model) are n, 

Then an estimate for E using the daily mean is given by: = 24 

/ (n m). Here it has been assumed that in is obtained using data 

of record length much greater than 5 years (otherwise a weighted 

average would be preferable). 
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Using the above estimate for E for each of the long records, the t 

year values were found for the variances 7(l), 7(6) and 7(24) for 

both January and July (see Table 6.15). The mean and standard 
deviation of all the t year values in Table 6.15 were 19.4 and 
10.1 respectively, which suggests that, on average, the regression 

model is equivalent to using about 20 years of historical daily 

data. 

The regression model provides parameter estimates for the 

stochastic model that have a similar standard error to the 

parameter estimates obtained from fitting the model to about 20 

years of daily data. The regression model was based on parameter 

estimates from 112 sites with typical record lengths of about 25 

years. This suggests that the uncertainty in- the parameter 

estimates from the regression model is more due to sampling 

variability of the rainfall data than to localised climatic 
anomalies (the former has a standard deviation of about twice the 
latter). If site data are available, it would be appropriate to 

combine parameter estimates made from these data with estimates 
from the regression model. Suppose daily site data are available 
for N years, then the best weighted average of the two parameter 
estimates is 

WI 
site 

* W2f 
reg' 

AA 

where f 
site , and f 

reg 
are the parameter estimates based on site 

data and the regression model respectively, wi + w2 = 1, and w2 = 
20w1/N. 

In practice, purchase of 20 years of site data could only be 

expected to reduce the standard deviation of the parameter 

estimate by a factor of about 1/12 and, unless such data are 
freely available or there is reason to suspect a micro-climate, it 

would be more financially expedient to rely on the regression 

model. Even if the variation about the regression line is due to 

localised climatic anomalies, the weights would still be 

appropriate unless there is a particular reason to suspect a 

micro-climate for the specific site of interest. 
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Table 6.14 

The number of years t of historical data 

needed to improve the estimates of the daily mean p(24) 

and the proportion of dry days 4(24) 

Station Month t years 

p(24) 4(24) 

Windsor January 2.4 24.6 

July 6.4 27.7 

Poaka Beck January 10.1 11.5 

July 3.3 1.5 

Howick Hall January 5.9 23.2 

July 2.3 13.9 

Exmouth January 7.0 12.9 

July 5.2 25.7 

Mean 5.3 17.6 

SD 2.7 9.1 

Table 6.15 

The number of years t of historical data 

needed to improve the estimates of the variances 7(24), 
y(6), and 7(1), and the proportion of dry days P(24) 

using mean monthly totals to estimate E 

Station Month t years 

4(24) 7(24) 7(6) 7(1) 

Windsor January 24.6 35.6 24.0 21.3 

July 27.7 14.4 11.6 7.7 

Poaka Beck January 11.5 38.9 27.1 20.3 

July 1.5 20.8 18.8 11.8 

Howick Hall January 23.2 11.9 10.7 6.9 

July 13.9 26.5 24.3 15.1 

Exmouth January 12.9 15.1 8.7 7.9 

July 25.7 40.0 41.3 20.1 

Mean 17.6 25.4 20.8 13.9 

SD 9.1 11.5 10.8 6.1 

Overall mean = 19.4, overall SD = 10.1. 
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6.8 SOME FURTHER TESTS FOR THE REGIONAL MODEL 

Some further tests were made by re-estimating the regression 

parameters with five records of hourly rainfall data excluded from 

the data matrix (so the total number of observations used was 1341 

- 5x12 = 1281). The purpose here was to see how well the model 

fitted sites that do'not have data (this was also discussed on 

p226, where 2 sites were randomly selected from each 'Wigley' 

region). The sites selected were: Farnborough, Manston, Rhoose, 

Ringway and Turnhouse. These sites were chosen because they had 

the longest records for different regions of the country. Using 

the re-estimated regression parameters the Neyman-Scott model 

parameters X, ß, v, and n were estimated for these sites. The 

Neyman-Scott model parameter E was estimated using the estimates 

for X, ß, v, n and the mean rainfall for each month, which was 

obtained using the site data (the mean rainfall for each month 

could also have been obtained from the Meteorological Office, 

Bracknell, UK, or by calculation using their Monthly Weather 

Report or Rainfall (which contains monthly totals for a large 

number of sites scattered throughout the UK)). Comparisons were 

then made between historical statistics at the sites and their 

equivalent statistic predicted using the regression estimates 

(together with the Neyman-Scott model functions). The following 

statistics were selected for the comparisons, which were made on a 

monthly basis: (i) the hourly variance, (ii) the- daily variance, 

(iii) the proportion of dry days, and (iv) the dry given dry 

transition probability. The comparisons were made by plotting the 

historical and predicted values against the montn. row 

convenience, these plots are presented in Appendix G with the 

other Figures for this Chapter (see Figures G. 42 - G. 61)" 
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Looking through Figures G. 42 - G. 61 it can be seen that the 

regionalised model follows the historical statistics reasonably 

well. In particular, it can be seen that the regional model 

follows the historical hourly variances quite closely for most 

station-months, which provides some additional support for 

regressing the hourly variance on the daily variance (Chapter 5) 

as most of the stations (about 80%) in the regionalisation 

procedure had daily records and therefore used this regression. 

However, some differences are apparent (e. g. the variances for 

Manston-September - Figure G. 47), which are unlikely to be due to 

the sampling variability of the rainfall data (e. g. the percentage 

difference between the predicted and historical daily variance for 

Mans ton-September was about 60% and the coefficient of variation 

for the daily variance of a 20 year record is about 22% (Table 4.1 

of Chapter 4) , so that such a difference is unlikely to occur by 

chance. The question remains as to whether such differences will 

have any practical consequences from the engineering sewer design 

viewpoint (this issue is addressed in Chapter 8, Section 8.3, 

where some recommendations are described so that the model can be 

further validated for its intended application). 

- 252b - 



CHAPTER 7 
A DISAGGREGATION MODEL FOR UK HOURLY DATA 

7.1 INTRODUCTION 

The stochastic rainfall model generates raincells that have a 

rectangular shape (because the intensity of the rain is constant 

throughout the cell duration), which is physically unrealistic. To 

overcome this and thereby introduce more realistic storm profiles 

with greater 'within cell' variability, a disaggregation model for 

hourly rainfall time series is proposed and 
_developed. 

The 

proposed disaggregation model is similar to that used by Ormsbee 

(1989), with the exception that the depth of rain per pulse burst 

is a parameter of the model. The model is fitted to 28 years of 

minute data taken from Farnborough, UK, and tested on 16 years of 

data from Rhoose, UK. The model performs well, and so can be used 

with some confidence at other locations. 

7.2 DEFINITION OF DISAGGREGATION MODEL 

The reader is referred to Chapter 2 for a non-mathematical review 

of Ormsbee's paper. In this Section, Ormsbee's 'Continuous 

Stochastic Disaggregation Model' will be reviewed. 

Rainfall is assumed to occur in discrete pulses of amount S. In 

Ormsbee's paper 6 is taken to be 0.01 inches. The disaggregation 

model that we shall use, will be identical to that used by 

Ormsbee, with the exception that 6 will be a parameter of the 

model. 
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Consider a sequence of 3 hours. Let x= depth of rain in Ist hour, 

y= depth in central hour, and z= depth in 3rd hour. The purpose 

of the model is to distribute the central depth of rain, over the 

hour, based on a knowledge of x, y, and z. Let f(t) be the 

probability density function (pdf) for the time of occurrence of a 

single rainfall pulse in the central hour. The pdf is assumed to 

be composed of two line segments as shown in Figure 7.1. The pdf 

represented by these lines may be written: 

f (t) =k -'(x - (x - y) t/t*) 0st< t* (7.1a) 

f(t) = k-1(y - (y - z)(t - t*)/(60 - t*)) t*st -S'60 (7.1b) 

(Ormsbee (1989) equation 16) 

where t* is the point where the line segments meet (see 

Figure 7.1), and k is a constant to be determined by integration. 

Using 

j0t(t) dt =1 gives: 

k= 30(y + z) - t*(z - x)/2 (7.2) 

The distribution function follows as: 

F(t) = xt/k - (x - y)t2/(2kt*) [0 st< t*] (7.3a) 

F(t) _ (y + x)t*/(2k) + y(t - t*)/k - 

(y - z) (t - t*) 2/ (2k (60 - t*)) [t* sts 60] (7.3b) 
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Therefore, the pdf for a particular hour is dependent only on the 

rainfall depths in the 3 hour sequence and the time parameter t*. 

Application of equation (7.1), to each of four different types of 

hourly rainfall sequences, produces a variety of pdfs as shown in 

Figure 7.2. The parameter t* may also be expressed in terms of the 

hourly depths for each type of sequence (see Figure 7.2) using: 

Type 1: 

t= 60 (x - y) / (x - z) 

Type 2: 

t= 60(y - x)/(z - x) 

Type 3: 

t= 60(x - y)/(x +z- 2y) 

Type 4: 

t'ý = 60(y - x)/(2y -x- z) 

(Ormsbee (1989) equations (19)-(23)). 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

Ormsbee developed equations (7.4)-(7.7) empirically after an 

examination of the mean distribution functions for the four 

different types of sequences for several historical records. Using 

equations (7.3)-(7.7) allows the distribution function to change 

from hour to hour, which is likely to reflect the changing 

dependency of rainfall within different hourly sequences. 
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i 
Figure 7.1 

Example shape of the pdf for the disaggregation model 

Type 1 

Subpattern (a) 

Subpattern (a) 

Type 2 

Type 3 

Subpattern (b) 

Type 4 

Subpattern (b) 

Figure 7.2 
Example pdf shapes for different rainfall sequences 
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The steps involved in the disaggregation process can be summarised 

as follows (assuming 5 has been estimated): 

i) Determine the type of sequence (as represented in Figure 7.2). 

ii) Disaggregate the central hour into T time intervals of m 

minutes, where T= 60/m, and m= desired disaggregation time 

interval (e. g. 1 or 5 minutes). 

iii) Determine the probability associated with ith time interval 

(where i=1, ..., T) using equations (7.3) - (7.7), and the 

following relationship: 

pr[pulse in ith interval] = F(im) - F((i-1)m) (7.8) 

iv) Disaggregate the total depth of rain (y) in the central hour 

into N pulses of 6 mm, where N= y/S. 

v) Assign each rainfall pulse (one at a time) to one of the T time 

intervals using the probabilities developed in step (iii) and a 

sequence of N Uniform (0,1) random numbers. 

vi) Continue this process until all hours have been disaggregated. 
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7.3 FITTING THE DISAGGREGATION MODEL TO THE FARNBOROUGH DATA SET 

In the previous Chapters it was found that the variances of the h 

hourly time series (h = 1,3,6,12, and 24) were needed in the 

fitting procedure. It therefore seems reasonable to fit the 

disaggregation model using the variance of the 5 minutely time 

series. As no expression is available for the 5 minutely variance 

in terms of 6, the optimum value of 6 has to be found iteratively. 

The method of estimating 6 for any given month was as follows: 

a) The historical 5 minutely variances were estimated for each 

year, and the mean of these estimates used to estimate the 

'overall' historical 5 minutely variance. 

b) The minute data were aggregated to obtain an hourly historical 

time series. 

c) The hourly time series was disaggregated into fourteen 5 

minutely time series using 14 different values for ö (0.01,0.05, 

0.1,0.2, ..., 1.0,1.5,2.0 mm) and the mean model 5 minutely 

variances found for each of these series. 

d) The model 5 minutely variances for each of these series were 

compared to the overall historical 5 minutely variance obtained in 

(a). 

e) The two model 5 minutely variances that were closest to the 

historical 5 minutely variance were selected. Using these two 

variances and their corresponding S values, an estimate S of 

optimum pulse depth was obtained by linear interpolation. 
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Table 7.1 gives the model 5 minutely variances and 6 values for 

all months of the Farnborough data set, and Table 7.2 gives the S 

estimates obtained by linear interpolation. These estimates are 

plotted for each month in Figure 7.3, together with a fitted curve 

through the points. The values of 6 obtained from the fitted curve 

(Sr) were preferred to the point estimates 6 because of the large 

sampling variability of some of the point estimates (e. g. the 

historical 5 minutely variances for July have a standard error of 

the mean of 0.0015). The fitted curve was obtained by regressing 

the point estimates on the first two harmonics, i. e. 

8t= a0 + aIcos(2nt/12) + a2sin(2nt/12) + a3cos(4nt/12) 

+ a4sin(4nt/12) 

where t=1,2, ..., 12 (1 a Jan, 2a Feb, etc), Sr = fitted 

value, and the ai are found by the method of least squares. The 

fitted Sr are given in Table 7.2. 

Using the fitted values Sr, the historical 5 minutely variances 

were compared to the model variances (which had to be interpolated 

- the values are given in Table 7.2), and plotted in Figure 7.4. 

As expected, the model follows the historical 5 minutely variances 

within sampling variability. 

The heaviest storms in January and July of the first 3 years in 

the Farnborough data set were selected to determine whether the 

disaggregation model gave a realistic storm profile (some time 

series plots are given in Appendix V. It could be seen that the 

disaggregated storm profiles tended to show a greater amount of 

'within storm' variability than the original storm profiles (see 

Appendix V. In order to 'smooth' the disaggregated 5 minutely 
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Table 7.1 

5 Minutely Variances for each Disaggregation Model 

Month 
6/mm 1123456 

0.01 0.00095 0.00078 0.00067 0.00083 0.00127 0.00114 
0.05 0.00120 0.00099 0.00085 0.00103 0.00149 0.00134 

0.1 0.00151 0.00126 0.00109 0.00128 0.00178 0.00157 
0.2 0.00216 0. -00181 0.00156 0.00182 0.00238 0.00209 
0.3 0.00282 0.00235 0.00202 0.00228 0.00300 0.00260 
0.4 0.00341 0.00289 0.00256 0.00285 0.00352 0.00306 
0.5 0.00409 0.00345 0.00299 0.00329 0.00409 0.00360 
0.6 0.00456 0.00394 0.00336 0.00369 0.00468 0.00405 

Cont. 

Month -- 
, S/mm 1789 10 11 12 

0.01 0.00280 0.00219 0.00174 0.00191 0.00176 0.00121 
0.05 0.00302 0.00245 0.00199 0.00218 0.00207 0.00149 

0.1 0.00330 0.00278 0.00233 0.00252 0.00250 0.00182 
0.2 0.00400 0.00347 0.00299 0.00317 0.00338 0.00252 
0.3 0.00448 0.00421 0.00369 0.00383 0.00423 0.00328 
0.4 0.00514 0.00491 0.00438 0.00461 0.00514 0.00396 
0.5 0.00582 0.00561 0.00500 0.00529 0.00590 0.00460 
0.6 0.00647 0.00630 0.00583 0.00601 0.00670 0.00534 

Table 7.2 

Interpolated and fitted S 

Month Historical Interpolated fitted Model 

variance S Sr Variance* 
(sq mm) (mm) (mm) (sq mm) 

1 0.00131 0.067741 0.071746 0.001334 
2 0.00098 0.048095 0.060135 0.001044 
3 0.00098 0.077083 0.057787 0.000887 
4 0.00132 0.107407 0.096279 0.001261 
5 0.00227 0.181666 0.185377 0.002292 
6" 0.00214 0.209803 0.290339 0.002550 
7 0.00569 0.480882 0.352093 0.004823 
8 0.00409 0.283783 0.334013 0.004448 
9 0.00295 0.193939 0.251811 0.003352 

10 0.00333 0.224242 0.158461 0.002900 
11 0.00240 0.088372 0.099055 0.002491 
12 0.00164 0.072727 0.078643 0.001679 

* Interpolated 
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Pulse Depth for Disaggregation Model 
Farnborough Data (28 years) 
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time series, a moving average of the disaggregated series could be 

used. To avoid over 'smoothing' the series a moving average 

process of order 1 was used, so that if the disaggregated time 

series is denoted by iz. i, then the 'smoothed' disaggregated 

series is given by IziI, where zi = (z 
i_1 

+ zi + z1+1)/3. Some 

time series plots for this series are also given in Appendix I, 

from which it can be seen that the 'smooth' disaggregated series 

gives a more realistic storm profile. 

7.4 TESTING THE MODEL ON THE RHOOSE DATA SET 

Only a few sites available for the project had minute data. In 

order to test the disaggregation model, it is desirable to use a 

data set from another region. Only two sites were available in a 

region outside the Southern 'Wigley' Region: Rhoose (16 years) and 

St Mawgan (10 years) - both located in the South-West. The Rhoose 

data set was selected because it was a longer record. 

The historical 5 minutely variances were found for each year and 

each calender month for the Rhoose data set, and the mean and 

standard deviation of these variances found for each month (see 

Table 7.3). The minute data were then aggregated to form an hourly 

rainfall time series. Using the fitted Sf (in Table 7.2), the 

hourly time series were disaggregated, and the model 5 minutely 

variances found for each month and each year. The mean and 

standard deviations for these variances were also found (see Table 

7.3) and plotted with the historical values obtained from the 

original 5 minutely series (see Figures 7.5 and 7.6). From the 

Figures it is evident that the disaggregation model is following 

the historical mean and standard deviations of the 5 minutely 

variances reasonably well. 
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Standard t- and F-tests were performed to see if the values were 

significantly different (see Table 7.3). Three of the tests showed 

values that were significant at the 5% level (e. g. F-test for 

December, t-test for September). However, the model seems to be 

following the seasonal trends in the data (Figures 7.5 and 7.6), 

and so these significant results did not cause concern. Perhaps a 

more complex disaggregation model, incorporating a regional 

structure, could be developed and tested. However, with the small 

number of sites with minute data available, this was not possible. 

Even if the data were available, and a regional disaggregation 

model developed, it is unlikely that such a model would improve 

the results sufficiently to make a practical difference (from an 

urban drainage viewpoint). 

Table 7.3 
Statistics for 5 minutely variances 

for the Rhoose data set 

Month 

Historical 
Mean, 
sq mm 

Model 
Mean, 
sq mm 

Historical 
SD, 
sq mm 

Model 
SD, 
sq mm F-ratio t-ratio 

1 0.002006 0.001819 0.001275 0.001106 1.328831 -0.62605 
2 0.00129 0.001175 0.001166 0.001029 1.282392 -0.41819 
3 0.001075 0.001026 0.000594 0.000589 1.014981 -0.32928 
4 0.001356 0.001492 0.000884 0.000741 1.421087 0.66764 
5 0.002596 0.002834 0.004092 0.002957 1.914801 0.26676 
6 0.003042 0.003821 0.002529 0.002371 1.137436 1.27144 
7 0.005106 0.005671 0.006100 0.004121 2.191103 0.43366 
8 0-. 004831 0.005905 0.004500 0.004376 1.057381 0.96710 
9 0.004091 0.002777 0.002523 0.001791 1.984640 -2.40118 

10 0.004236 0.003915 0.003398 0.002787 1.485864 -0.41425 
11 0.003216 0.002840 0.002353 0.001473 2.552268 -0.76514 
12 0.003019 0.002541 0.002140 0.001203 3.160639 -1.10003 

tS% = 2.1, F = 2.4. 5% 
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CHAPTER 8 
SUMMARY AND CONCLUSIONS 

8.1 SUMMARY 

The purpose of this project was to propose and validate a 

regionalised stochastic rainfall time series model for the UK, 

where the model is to be applied to the design/upgrading of sewer 

systems. 

The literature on time series modelling of rainfall was reviewed, 

and the Neyman-Scott Rectangular Pulses rainfall model was 

identified as being potentially suitable for the project. An 

expression for the probability of an arbitrary interval being dry 

was derived for the Neyman-Scott Rectangular Pulses model, which 

was then used, together with expressions found by Rodriguez-Iturbe 

et al (1987a), to fit the model to historical hourly rainfall data 

taken from a site in Blackpool. Hourly rainfall data were then 

simulated using a computer program (Appendix B) for the model. 

Statistics were extracted from the historical and simulated 

rainfall time series and compared. The results of these 

comparisons showed that the performance of the model was good, so 

that the model could be used with reasonable confidence for the 

remaining part of the project. 

An investigation was carried out to find an optimum fitting 

procedure for the selected stochastic rainfall model. This 

investigation revealed that the summer dry spell sequences were 

poorly matched by the model, when the historical daily lag 1 
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autocorrelations for each month were included in the fitting 

procedure. However, when the historical autocorrelations were 

omitted from the fitting procedure and the transition 

probabilities used as an alternative, the model's fit to the 

historical summer dry spell sequences showed considerable 

improvement. Furthermore, the model was able to match (within 

sampling variability)' the historical lag 1 autocorrelations for 

each month even though these had been omitted from the fitting 

procedure. 

To further validate the model, comparisons were made between other 

simulated and historical statistics that were not used in the 

fitting procedure. For example, the historical and simulated mean 

and standard deviations of the maxima (of the 1,3,6,12, and 24 

hourly time series) compared favourably, as did the simulated and 

historical mean and standard deviations of the proportion of 

hourly rainfalls above 1mm. However, the simulated and historical 

mean and standard deviations of the proportions of hourly 

rainfalls above 0mm did not compare so well, suggesting that the 

simulated data contained less light rainfall than the historical 

data. It was decided that this was unlikely to be of practical 

importance in simulating the hydraulic behavior of storm sewer 

systems. 

Two fitting procedures were recommended (where the model is fitted 

one month at a time): 

1) For hourly rainfall data the recommended fitting procedure used 

the following monthly historical statistics to fit the model: i) 

the mean of the hourly time series, ii) the variances of the 1,3, 
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6,12, and 24 hourly time series, iii) the wet given wet 

transition probabilities of the 1,3,6,12, and 24 hourly time 

series, iv) the proportion of dry days, and v) the dry given dry 

transition probability of the daily time series. 

2) For daily rainfall data the recommended fitting procedure used 

the following monthly historical statistics to fit the model: i) 

the daily mean, ii) the wet given wet and dry given dry transition 

probabilities of the daily time series, iii) the proportion of dry 

days, and iv) the daily variance. In addition, estimates for the 

1,3,6, and 12 hourly historical variances were recommended for 

use in the fitting procedure. These estimates were obtained in the 

following way. 

Hourly rainfall stations were sampled from each of the regions 

proposed by Wigley et al (1984). For the sampled stations the 

hourly variances were plotted against the corresponding daily 

variances. From these plots two conclusions were drawn: 

i) for each station a regression equation of the form: 

y'j = ai + ßixij + ciJ 

could be used to predict the hourly variance given the daily 

variance (where yij and xij are the hourly and-daily variances 

(respectively) for the jth month of the ith station, and eij is 

the residual for the jth month of the ith station), and 

ii) the variances of the residuals about such a line were 

substantially different for each plot. Therefore, any method of 
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grouping the rainfall stations by the coefficients of the 

regression equations should not include the assumption of 

homogeneity of variance for the regression parameters. Hence, some 

further developments in Cluster Analysis were made and the W 

statistic proposed. This statistic could be used to group 

population means (e. g. the parameters of the regression models) 

into non-overlapping groups, without the requirement that the 

population variances are equal. 

The W statistic was used to test the hypothesis that the constants 

ai for the regression models for each station were equal, i. e. the 

hypothesis Ho: ai =a (for all i) was tested. This hypothesis was 

retained, and the regression model for each station revised, with 

the constant taken to be the mean of the constants for each 

station, i. e. for each station the following model was fitted: 

yii = cx + ßixi 
j+ ci j, 

where ä is the mean of the a The W statistic was then used to 

test hypotheses that the ßi could be partitioned into 

non-overlapping groups suggested by the geographical location of 

the rainfall stations. It was found that the ßi could be taken as 

constant within two non-overlapping groups: one group which 

corresponded to stations lying in Scotland and the far North-East 

of England and the other group which corresponded to stations 

lying in England, Wales and Northern Ireland. The hourly rainfall 

stations were then pooled into the 2 groups and the parameters of 

the regression models were re-estimated for each group. This gave 

two regression equations for the hourly variances. Similarly, by 

using the same two groups, regression equations were developed to 
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enable the 3,6, and 12 hourly variances to be predicted from the 

daily variances. 

The Neyman-Scott Rectangular Pulses rainfall model was fitted to 

the five longest records available for the project, where each 

station was located in one of the 'Wigley' regions. The following 

monthly historical statistics were used to fit the model: i) the 

daily mean, ii) the wet given wet and dry given dry transition 

probabilities of the daily time series, iii) the proportion of dry 

days, and iv) the daily variance. in addition, the regression 

estimates for the 1,3,6, and 12 hourly historical variances were 

also used in the fitting procedure. For each station rainfall data 

were simulated for January and July. The historical and simulated 

maximum daily rainfalls for each year were found and plotted 

against the standardised Gumbel variate. These plots suggested 

that the model had a tendency to under-estimate the extreme 

rainfall events (particularly events with return periods in excess 

of 10 years). Regression equations were developed so that the mean 

and variances of the simulated maxima could be predicted given the 

Neyman-Scott model parameters. These regression equations were 

then included in the fitting procedure and the Neyman-Scott model 

parameters re-estimated for each station. Rainfall data were 

simulated for January and July using the revised parameter sets. 

The historical and (revised) simulated maximum daily rainfalls for 

each year were found and plotted against the standardised Gumbel 

variate. These plots were compared to the original plots. For the 

station-months where the simulated maxima had originally failed to 

match the historical maxima, it was evident that the model was now 

able to match the historical maxima (within sampling variability). 

However, for one station-month the revised simulated maxima gave a 
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poorer fit to the historical maxima (which on the original plots 

had been well matched by the model). This suggested that the 

regression model for the mean and variances of the maximum daily 

rainf alls should only be used in the fitting procedure when the 

model fails to match the historical extremes. 

The stochastic rainfall model was fitted to the remaining daily 

data. The historical statistics used in the fitting procedure for 

each station-month were: i) the daily mean, ii) the wet given wet 

and dry given dry transition probabilities of the daily time 

series, iii) the proportion of dry days, and -iv) the daily 

variance. Furthermore, the regression estimates for the 1,3,6, 

and 12 hourly historical variances were also used in the fitting 

procedure. 

The parameters for all station-months were then regressed on site 

characteristics (e. g. altitude, distance from coast, etc) so that 

the parameters of the Neyman-Scott rainfall model could be 

estimated at sites lacking rainfall data. On average, the accuracy 

of the parameter estimates obtained from the regression model was 

equivalent to using 20 years of daily data to estimate the model 

parameters (assuming the mean monthly totals are known for the 

site). However, the standard deviation of this average value was 

quite large, which implied that the regression model may sometimes 

give much poorer estimates of the Neyman-Scott model parameters 

than would be obtained if the model was fitted-to 20 years of 

daily data. Conversely, if rainfall data are available at a site, 

the engineer may need to buy more than 20 years of daily data in 

order to be confident that the parameter estimates obtained when 

fitting the model to the bought daily data are better than those 

of the regression model. 
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The hourly rainfall time series generated by the computer program 

for the rainfall model will sometimes need to be disaggregated to 

5 minutely time series, which are sometimes used as input to sewer 

system design programs (such as WASSP-SIM). The proposed 

disaggregation model is similar to the disaggregation model used 

by Ormsbee (1989), with the exception that the depth of rain per 

pulse is taken to be a parameter of the model. The parameter of 

the disaggregation model was estimated for each month of the 

Farnborough data set (28 years of minutely data). Using these 

parameter estimates, the disaggregation model was tested and shown 

to perform well on the longest record of minutely data in another 

precipitation region (Rhoose, 16 years). Due to the lack of 

available minutely rainfall data, it was not possible to test the 

model on any sites located in the North of Great Britain. However, 

most of the regional variation in rainfall can probably be found 

in hourly or daily time series, and so this should not cause 

concern. 
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8.2 CONCLUSIONS 

1) The Neyman-Scott Rectangular Pulses model may be used with 

confidence to generate rainfall time series in the UK. For its 

intended application, discrepancies between historical and 

simulated rainfall should be checked to see whether they are of 

practical significance for the drainage engineer engaged in sewer 

system modelling (see Section 8.3). 

2) When fitting the model to historical rainfall time series, it 

is preferable to use a procedure which minimises a sum of squares, 

rather than solving a set of simultaneous equations, where the 

squared terms are the difference between historical statistics and 

the equivalent function of the model parameters. 

3) When fitting the model to historical rainfall time series 

(either hourly or daily), the model should be fitted on a monthly 

basis, i. e. the parameters of the model estimated for each month 

of the record. 

4) When fitting the model to historical rainfall time series 

(either hourly or daily), the mean rainfall (for each month) 

should be used in the fitting procedure. 

5) When fitting the model to historical rainfall time series 

(either hourly or daily), the daily transition probabilities (both 

wet given wet and dry given dry) should be used in the fitting 

procedure. 
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6) When fitting the model to historical hourly rainfall time 

series, the 1,3,6,12, and 24 hourly variances and the 1,3,6, 

12, and 24 hourly wet given wet transition probabilities should be 

used in the fitting procedure. 

7) When fitting the model to historical daily rainfall time 

series, it is advisable to use an estimate of the historical 1,3, 

6, and 12 hourly variances in the fitting procedure. 

8) When estimating the historical 1,3,6, and 12 hourly 

variances, it is advisable to use regression equations based on 

the 24 hourly variances. It is recommended that different 

regression equations are used for 2 different regions of the UK 

(Scotland/far North-East of England and England/Wales/Northern 

Ireland). 

9) If the model is required to match extreme values found in an 

historical record of daily rainfall data, then the model should be' 

fitted to the data using the recommended procedures described 

above, and the maximum daily rainfalls between the historical and 

simulated data compared on Gumbel probability paper. If the model 

shows a tendency to under-estimate the historical maximum daily 

rainfalls, then the regression equation for the mean and variance 

of the maximum daily rainfalls should be included in the fitting 

procedure. 
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10) For applications to sites with no data, the parameters of the 

Neyman-Scott Rectangular Pulses model can be estimated using the 

multivariate (regionalised) regression model based on site 

characteristics. The following points should be' noted concerning 

the regionalised model: 

a) On average, the standard error of the parameter estimates 

obtained from the multivariate (regionalised) regression 

model is equal to the standard error of the parameter 

estimates that would be obtained when fitting the model to 

about 20 years of historical daily rainfall time series taken 

from the site (assuming mean monthly totals are used in the 

fitting procedure). 

b) If historical rainfall time series (either. hourly or 

daily) are to be used at the site to fit the stochastic 

rainfall model, then a weighted average between the 

parameters estimated using the site data and the parameters 

estimated from the regionalised regression model should be 

used. 

11) If required 5 minutely rainfall time series can be generated 

by disaggregating the simulated hourly rainfall time series. A 

parameter for the depth (in mm) of a pulse of rain was required 

when fitting the disaggregation model to the variances of the 5 

minutely time series for each month of the Farnborough data set. 

This parameter was shown to vary seasonally. Using the same 

estimates of this parameter for each month, the disaggregation 

model can be used with reasonable confidence at other sites 

located in the UK. 
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8.3 DIRECTIONS FOR FUTURE RESEARCH 

8.3.1 Testing the model using a sewer system simulation program 

Before the model can be used with confidence for its intended 

application, it should be checked by running simulated rainfall 

time series through 'a sewer system model (such as WASSP-SIM), 

because discrepancies, which cannot always be attributed to 

chance, between historical and simulated data sometimes occur. 

There are three questions which need to be answered before the 

model can be used with confidence for upgrading UK sewer systems: 

1) How well does the Neyman-Scott Rectangular Pulses model 

perform for its intended application when fitted to site data. 

2) How well does the regionalised version of the Neyman-Scott 

model perform? 

3) How well does the disaggregation model perform? 

Perhaps the most efficient and reliable approach would be to 

attempt to answer all three questions with one testing strategy. 

If the model fails the testing strategy the questions could then 

be answered one by one to identify weak areas of model 

performance. One possible testing strategy is now discussed and a 

less expensive alternative considered afterwards. 
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To answer (3) minute data are required. To answer (2) historical 

rainfall records of greater than 20 years duration (Section 6.7) 

would be needed at several sites known to have overflow problems. 

The three questions could then be answered by simulating 5 

minutely rainfall data (for more than 20 years) using the 

regionalised stochastic model, together with the disaggregation 

model, for the sites with known overflow problems. The procedures 

used by drainage engineers for inputing rainfall time series to 

sewer system modelst could then be applied to both the simulated 

and historical time series. The spills predicted using the 

historical series could then be compared to those predicted using 

the simulated series, and a decision made as to whether the 

difference (in spill volumes) is of practical significance for the 

engineer involved in upgrading a sewer system. This exercise 

should be performed on several sites with known overflow problems, 

so that any tendencies for the model to over- or under-estimate 

spill volumes could be found. In addition, the sites should be 

selected from several regions of the country to take account of 

different rainfall patterns for different locations. 

If a tendency for the model to over- or under-estimate spill 

volumes is found, then measures can be taken to compensate. One 

such measure would be in the sampling procedure (Section 8.3.2), 

where rainfall events may be selected for input to the design 

program. When upgrading an existing sewer system, a common 

approach is to remove the most extreme events from the rainfall 

record, so that the day to day performance of the system can be 

assessed. If the model is found to under-estimate the spill 

1This 
may mean that the sampling procedures discussed in the next 

Section would need to be developed before the testing strategy can 

take place. 
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volumes (which is more likely than over-estimation (Section 

5.8.3)), then less of the extreme events should be removed to 

compensate. Obviously this would depend on how much, if at all, 

the model under-estimates the spill volumes. 

The testing strategy, described above, requires several long 

historical records of-minute data, and so may prove too expensive 

if these data have to be bought. A less expensive strategy would 

be to test the disaggregation model first, and then, if the model 

passes this test, use the disaggregation model to disaggregate 

both historical and simulated hourly time series- so that the 

testing strategy above can be carried out. The disaggregation 

model could be tested as follows: 

i) Select a site with known overflow problems, for which 

historical 5 minutely data are available. 

ii) Aggregate the 5 minutely data to form an hourly rainfall time 

series. 

iii) Using the disaggregation model, disaggregate the aggregated 

hourly rainfall time series to form a series of disaggregated 5 

minutely data. 

iv) Compare the spill volumes predicted using the disaggregated 

series with those predicted using the historical 5 minutely 

series. 

v) Decide whether the difference in spill volumes is of practical 

significance for the engineer engaged in upgrading sewer systems. 

vi) Repeat the above for several sites with known overflow 

problems. 
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For this test, a long record is not required but several sites 

should be considered. 

8.3.2 A sampling procedure 

Running rainfall time series through a sewer system simulation 

program, such as WASSP-SIM, is expensive on computing resources. 

Therefore, procedures need to be developed, so that the most 

significant rainfall events can be sampled from the generated time 

series. One approach would be to classify events according to 

length of dry spell (preceding the event), depth, and duration of 

event, and then use those events which are of most practical 

significance in the design program (see Henderson (1986) for a 

similar procedure). 

8.3.3 Further research on using the Neyman-Scott Rectangular 

Pulses model to generate extreme events 

In Chapter 5, Section 5.8.3, the model showed a tendency to 

under-estimate the extreme events, mainly for return periods in 

excess of 10 years. A solution to this problem was proposed by 

regressing the mean and variance of the simulated maxima on the 

model parameters and then including these regression equations in 

the fitting procedure, when the model showed a poor fit to the 

historical maxima. An alternative approach may be to allow the 

cell intensity to follow a distribution (e. g. the Gamma 

distribution) that has a longer 'tail' than the exponential 

distribution, and is thus likely to lead to more extreme events 

when simulating data using the model. This would require no 
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further theoretical developments of the model, and would not 

require the fitting procedure to be adapted. This approach was not 

adopted in this thesis as parameter parsimony was required, mainly 

for the regionalisation procedure, and a distribution (such as the 

Gamma distribution) would introduce a further parameter into the 

model. 

8.3.4 Generalising the model as a spatial-temporal process 

The purpose of this project was to produce a stochastic rainfall 

time series model for the UK. Therefore, attention was focused on 

the temporal modelling of rainfall. However, it is also desirable, 

in engineering design problems, to model the spatial variation of 

the rainfall over a catchment area, because the concentration of 

rainfall in some locations can lead to high local run-off (e. g. 

see Wilson et al (1979), Hamlin (1983), Nicks (1982), or Hilly and 

Eagleson (1988)). Therefore, further research is needed to 

generalise the time series model to a spatial-temporal model. 

One approach may be to use a spatial (field) model (e. g. the 

Modified Turning Bands Model (Mellor, 1991)), and condition this 

model on the temporal time series model, i. e. generate rainfall 

time series using the temporal stochastic model and, when storms 

occur, distribute the rainfall over the catchment area using the 

spatial model. 

An alternative approach may be to follow Breckling (1989) and use 

a 'directional' time series model. Breckling (1989) successfully 

applied a directional time series model to wind data taken from 

Fremantle, Western Australia. Further work could be carried out to 

see whether such a model could be successfully used for UK 

rainfall data. 
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APPENDIX A: SOME FURTHER THEORETICAL DEVELOPMENTS 

In this Section, some results are derived for single storms under 

the Neyman-Scott model. Therefore, as cells from one storm may 

overlap another storm, the results are not applicable in 

estimating the parameters of the model. However, they may be 

useful for future developments of the model. 

Of interest is the location (relative to storm origin) of the most 

intense part of the storm. To find this, consider a single cell 

following a storm origin, 
_ 

pr(cell active at time t) =ft ße-pu e-n(t-u) du 
0 

-rat ( 
n1 

(n-P) uJt 
= ße l -P 

e0 

= ße-rlt 
(e (fii) t-1) 

=ß (e-ßt -e nt) (n-ß) 

= A(t), say. 

The most intense part of the storm is most likely to occur where 

most of the rain cells occur. This will be the value of t which 

maximises A(t). Therefore, we proceed as follows: 

11 
A (t) = 13(-Pe-pt + rte-nt) / (t7-ß) =0 is ße-Pt = rle-rlt 

t=1 ln(ri/ß) =t- the most likely location of cell n-ß max 

activity relative to the storm origin. 

Hence; the probability of a rain cell being active at tmax 1$ 

given by: 

Amax A(tmax) TI/ (o-P) 
1 T, - 

ýf ý 

A-1 

(A. 1) 



Now, let N be the number of cells generated from the storm origin, 

and assume N-i is Poisson with mean p=v-1. Also let Nmax be 

the number of cells active at tmax* 

Pr (Nmax =kI N=n) _ 
(k , 

Amax (1-Amax) n-k (ksn) , 
(A. 2) 

i. e. NmaxIN=n - B(n, Amax)' 

Therefore, 

pr(Nmax = k) =-- 

pr(k cells active at tmax) E (k , 
Amax (i-Amax)n-k pr(N=n) 

n=k 

CD ( 
k) Amax (1-Amax)n-k Nn-1 e-1 / (n-1)! 

nýk 

E(k, Amax (1-Amax)n-k un-1 e-ý / (n-1)! 
n=k 

- Amk 
ax pk-1 exp (-max y (p (1-Amax) + k]/k! 

- (pA 
max)k exp(-pAmax1 (1 - Amax + k/p]/k! (A. 3) 

The expectation and variance of the number of cells active at tmax 

can be derived using the results: 

E(Nmax I N=n) =n Amax, and 

E(N2 I N=n) =n Amax (1 Amax) + (n Amax2 
max 

(which are obtained from NmaxIN=n " B(n'Amax )) 

(A. 4) 

(A. 5) 
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Using (A. 4), 

CD 
E(Nmax) =Zn Amax pr(N=n) 

n=1 

- Amax CD n µn-1 e-0 / (n-1)! 
n=1 

= Amax e-P (n+i) un / n! 
n=0 

= Amax (p + 1) 

Amax' 

as might be anticipated. -- 

Similarly, using (A. 5), 

(A. 6) 

22 E(N )E E(N I N=n) pr(N=n) 
m ax n=1 max 

=A (1 A ) e-u n 
max max n=1 

2 CD 
CD n2 pn-1/(n-1)! + e-N A 

m ax n=1 

= PA (1 A ) + e-ýi 
2 (D 2 E (n + 1) un/n! A 

max max max n=0 

= PA (1 A ) 2 
OD 

2 E (n + 2n + 1) Nn/n! +eA 
max max max n=0 

= VA (1 A ) 2 [N(u+1)ep + 2peu + eu] +eNA 
max max m ax 

= vA (1 A ) + Am2 
ax 

[N2 + 3N + 1] 
max max 

= 'A (1 ) A 
2 [p2 +v- 1] +A 

max max max 

_ (A 2 ) + 'A 
2 A 

max max max 

2 
Hence, Var(Nmaxý PAmax Amax' 

(A. 7) 
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Now let X. be the intensity of ith cell that is active at tmax 

(i=1,2,..., Nmax), and Imax be the total intensity at tmax. Then, 

N 
max 

Imax = 
iý1 

Xi 

k 
E(Imax I Nmax = k) = E( Xi) =k E(X 

i=1 

Therefore, 

N 
E(I) = 

k=OE(ImaxINmax 
k) pr(Nmax = k) 

N 
_Ek pr(Nmax = k)/E 

k=0 

=E (%ax) /ý lAmaxý 

- 
r1/ (TI-ß) 

E 
(nJ 

(using (A. 8)) 

(A. 9) 

Now let Xi = duration of ith rain cell, and Yi = intensity of ith 

rain cell ti = 1,2, ..., N). 

Let Vi = total volume of rain falling due to ith cell, 

so Vi = XiYi, and let V= Vi = total volume of rain falling due 

to storm. 

Under the model the Xi are iid exp(n), and the Yi are lid exp(E). 

Hence, 

E(V1) = E(XiY1) = E(Xi)E(Y1) = and 

E(V2) = E(X2)E(Y2) = 4/(11 292) 4 Var(V1) = 3/(J2Z2) . 

= k/i. (A. 8) 
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Therefore, 

E(VIN=n) = n/ (TIE) , and 

E(V2IN=n) = E((V1 + V2 + ... + Vnl2) 

_ E(VZ) + E(V)E(V .) 
i1i; Ij 

i 3 

= 4n/(q 2E2) 
+ 2n(n-1)/(T72E2) 

= 2n(n + 1)/-(n 2E2 )l 

and, Var(VIN=n) = n(n + 2)/(n2E2). 

Hence, 

OD CD n-1 -u+l 
, E(V) En pr{N=n}/(r) =En (v-1) e/ ((n-1)! r) 

n=1 n=1 
and, assuming N-1 is Poisson with mean v-1, this gives 

E(V) _ (r! )-1 e-v+l E (n+l) (v-1)n/n! 
n=0 

- (tlV -1 e-v+l v ev-1 

= v/ (rit ) 

E(V2) _mE 2n(n + 1) (u-1)n-le-u+] ((n-1) ! rj 
2E 2I 

n=0 

= (2p (P-1) +6 (v-1) + 4) (tjE)-2 

= 2(1,2 + 2v - 1) (TIE) -2 

Therefore, 

Var(V) =2 (v2 + 2v - 1) (rat)-2 _ v2(nt)-2 

= (v2 + 4v - 2) (ri)-2 

(A. 10) 

(A. 11) 
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APPENDIX B: 

A SIMULATION PROGRAM FOR THE NEYMAN-SCOTT RECTANGULAR PULSES MODEL 

(WRITTEN IN PASCAL). 

PROGRAM TimeSeries (input, output, data, randomdata, parset); 

{This program simulates hourly rainfall time series using the 

Neyman-Scott Rectangular Pulses Model. References are made to 

Chapter 31 

{exit} LABEL 999; 

CONST maxstorms (per month) = 30; maxcells {per storm) = 40; 

maxmins = 53280 {the maximum time in minutes in which 

storms will arise); 
maxyears (the maximum number of years that can be 

simulated) = 100; 

maxhours = 888 (the maximum time in hours); 

correction [in days] =6 (The correction allows for some 

over-lap of storms from one month to the next); 

TYPE whole = O.. maxint; storms = O.. maxstorms; months = 1.. 12; 

cells = O.. maxcells; hours = O.. maxhours; minutes = 
O.. maxmins; years = l.. maxyears; 

VAR xl, x2, x3, x4, x5 (model parameters) : longreal; 
daysinmonth [the total number of days in the month], 
nlines [loop variable for number of lines written to 

output file], 

laststormorigin {the time at which the last storm origin 
occurs): whole; 
laststorm (the number of storm origins occurring in a month] 

: storms; 

month : months; year [loop variable], totalyears {the 

number of years of simulated data specified by the user) 

: years; 
totalhours (the total number of hours in which storm origins 

can arise = number of hours in month + number of hours 

in correction} : hours; 
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totalmins [the total number of minutes in which storms can 

arise = total number of minutes in month + number of minutes 
in correction}, 

previousnmins [the number of minutes in the preceeding month) 

: minutes; 
[see Model Definition, Chapter 3, for meaning of terms such 

as storm origin, cells, etc] 

stormorigin : ARRAY [storms] OF whole; 

totalcells : ARRAY [storms] OF cells; 

cellbegin, cellend : ARRAY [storms, cells] OF whole; 

cellintensity : ARRAY [storms, cells] OF longreal; 

celiduration : whole; 
hour (hourly rainfall time series) : ARRAY [hours] OF 

longreal; 

minute [minutely rainfall time series] : ARRAY [minutes] OF 

longreal; 

randomnum {a uniform random number between 0 and 1 read from 

random. dat}, 

zero {0.00... 1 : longreal; 

data [the output file of simulated hourly rainfall time 

series], 

parset [the file containing the parameter estimates for a 
month}, 

randomdata [the file of random numbers] : text; 

PROCEDURE ReadParameters; 

(Model parameters discussed in Section 3.2 of Chapter 3) 
{xl = lambda, x2 = beta, x3 = eta, x4 = nu, x5 = xi) 

BEGIN 

reset'(parset); 

read (parset, xl, x2, x3, x4, x5); 

xl := 60 / x1; 

[the mean waiting time in minutes between two adjacent 

storm origins] 

x2 := 60 / x2; 
(the mean waiting time after the storm origin 
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for the beginning of a rain cell} 

x3 := 60 / x3; 
{the mean cell duration) 

x4 := x4 - 1; 
(the mean number of cells per storm - 1. The -1 ensures that 

at least one rain cell follows a storm origin - see Model 

Definition, Section 3.2, Chapter 31 

x5 :=1/ (x5*60) 
(the mean cell intensity in mm per minute) 

END (PROCEDURE); 

FUNCTION NegExp (mean : longreal) : longreal; 
_ 

(generates an Exponential random variable) 

BEGIN 

read (randomdata, randomnum); 
NegExp := -mean * In (randomnum) 

END {FUNCTION); 

FUNCTION Poisson (mean : longreal) : integer; 

(generates a Poisson random variable} 

VAR sum : real; count : whole; 

BEGIN 

sum :=0; 

count :=0; 

REPEAT 

sum := sum + NegExp (1); 

count := count +1 

UNTIL sum > mean; 

Poisson := count -1 
END (FUNCTION}; 
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PROCEDURE CellError; 

[if this happens maxcells, in the CONST declaration statement, 

may need to be increased] 

BEGIN 

writeln; 

writeln (' 

writeln (' 

writeln (' 

writeln (' 

writeln (' 

writeln; 

GOTO 999 

END; 

****************************** '); 

* ERROR 

* total cells > maxcells 

* program aborted 

****************************** '); 

PROCEDURE WriteStorms; 

[writes the rainfall data for the month to the output file] 

LABEL 98; 

VAR 

nhours {total hours in the month), h {loop variable), hl (loop 

starting point), h2 {loop end point) : hours; 

nmins {total minutes in the month}, m {loop variable): minutes; 

cell [loop variable] : cells; storm {loop variable} : storms; 

ml {loop starting point} , m2 (loop end point) : whole; 

BEGIN 

nhours := daysinmonth * 24; 

nmins := 60 * nhours; 

{The difference between nhours and totalhours, and nmins and 

totalmins may need to be clarified. nhours or nmins are the 

total number of hours or minutes (respectively) in the 

month (e. g. 31*24 or 31*24*60). totalhours or totalmins 

are the total number of hours or minutes in which rainfall 

are generated, which equals nhours (or nmins) + correction 

(in hours or minutes) (e. g. 31x24+6x24 or 3lx24x60+6x24x60)} 
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FOR m :=1 to totalmins DO minute [m] :=0; 
[the minute time series starts with zero values throughout, 

and rainfall due to the rain cells are added to these values) 

FOR storm :=1 to laststorm DO 

FOR cell :=1 to totalcells [storm] DO 

BEGIN 

ml := cellbegin [storm, cell]; 

m2 := cellend [storm, cell]; 
IF (ml > totalmins) OR (m2 > totalmins) THEN GOTO 98; 

[Exit to 98 would occur when a storm near the end of the 

month lasted longer than the correction time of 6 

days - this unlikely for the parameter estimates obtained 
for the UK rainfall data of this project] -- 

FOR m := ml to m2 DO 

minute [m] := minute [m] + cellintensity [storm, cell]; 
{the cell intensities are constant throughout the cell 
durations - refer to Model Definition, Chapter 31 

98: 

END; 

FOR h :=1 to totalhours DO 

[converts the minutely time series to an hourly time series! 
BEGIN 

ml :=h* 60 - 59; 

m2 :=h* 60; 
FOR m := ml to m2 DO hour [h] := hour [h] + minute [m] 

END; 

nlines :=0; 
REPEAT 

(writes the hourly data to TSR_1H. SIM, with 12 values per 
line) 

nlines := nlines + 1; 

hi := nlines * 12 - 11; 

h2 := nlines * 12; 
FOR h := h1 to h2 DO 

write (data, hour [h]: 6: 2); 

writeln (data) 

UNTIL nlines = nhours DIV 12; 

FOR h :=1 to correction * 24 DO 
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{this allows for the possibility of storms from one month 

carrying over to the next month} 
hour [h] := hour [nhours + h]; 

FOR h := correction * 24 +1 to totalhours DO 

hour [h] :=0 
END; 

PROCEDURE GenerateStorms; 

{Generates storms on a monthly basis} 

LABEL 99; 

VAR i, j, k {loop variables}, cellno {the random number of 
raincells generated} : whole; nmins {number of minutes in the 

month} : minutes; 

BEGIN 

nmins := daysinmonth * 24 * 60; 

FOR i :=1 to maxstorms DO 

[the loop will be exited when a storm origin occurs after 
the last day in the month} 

BEGIN 

IF i=1 

THEN 

stormorigin [i] := laststormorigin - previousnmins 
[when year = month =1 this is zero. Otherwise it is the 
time at which the first storm origin occurs] 

ELSE 

stormorigin (ii := stormorigin [i - 1] + 

round (NegExp (xl)); 

(the time between adjacent storms is Exponential - see 
model definition, Chapter 3) 

IF stormorigin [i] > nmins THEN 

BEGIN 

laststorm :=i-1; 
{Storms will be generated up to, and including the 

(i - 1)th storm) 
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laststormorigin := stormorigin [i]; 

previousnmins := nmins; 
(the number of minutes in the month, which on the next 
iteration is the number of minutes in the previous month) 

(laststormorigin - previousnmins gives the position at 

which the first storm origin appears in the following 

month) 

GOTO 99; 

END; 

cellno := Poisson (x4) + 1; 

[the number of cells generated -1 is random 

and follows a Poisson distribution] 

IF cellno > maxcells THEN CellError; 

totalcells [i] := cellno; 
(stores the number of cells generated for ith storm) 

FOR j :=1 to totalcells [i] DO 

BEGIN 

cellbegin [i, j] := stormorigin [i] + round (NegExp (x2)); 

(starting time in minutes of jth cell of ith storm) 

cellduration := round (NegExp (x3)); 

cellend [i, j] := cellbegin [i, j] + cellduration - 1; 
(end time of jth cell for ith storm) 
cellintensity [i, j] := NegExp (x5) 

(intensity in mm per minute of jth cell of ith storm) 
END; 

END; 

99 : WriteStorms 
END [PROCEDURE); 

BEGIN {MAIN} 

zero :=0; 

assign (data, 'tsr_lh. sim'); 
rewrite (data); 

assign (randomdata, 'random. dat'); 

reset (randomdata); 

writeln; 

writeln 
('This program simulates hourly rainfall time series, '); 
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writeln 

('for all months over a number of years given by the user. '); 

writeln ('Uniform random numbers are read from: RANDOM. DAT'); 

writeln ('Parameter estimates are read from: ???. PAR'); 

writeln ('Hourly data are written to: TSR_1H. SIM'); 

writeln; 

write ('Enter the number of years of data required: '); 

readln (totalyears); 

writeln; 

writeln 
('Please wait. Simulating ', totalyears: l, ' years of data... '); 

writeln; 

writeln ('Years done: - 
FOR year :=1 to totalyears DO 

BEGIN 

FOR month :=1 to 12 DO 

BEGIN 

CASE month OF 

1: BEGIN 

totaihours := 31 * 24 + correction * 24; 

daysinmonth := 31; 
IF year =1 THEN 

(January, year 1, begins with a storm} 

BEGIN 

laststormorigin := daysinmonth * 24 * 60; 

previousnmins := laststormorigin 

END; 

IF year =1 
THEN 

assign (parset, 'jan. par') 
ELSE 

close (parset, true); 

assign (parset, 'jan. par') 
' END; 

2 BEGIN 

totalhours := 28 * 24 + correction * 24; 
daysinmonth := 28; 

close (parset, true); 

assign (parset, 'feb. par') 

END; 
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3 BEGIN 

totalhours := 31 * 24 + correction * 24; 

daysinmonth := 31; 

close (parset, true); 

assign (parset, 'mar. par') 

END; 

4: BEGIN 

totalhours := 30 * 24 + correction * 24; 

daysinmonth := 30; 

close (parset, true); 

assign (parset, 'apr. par') 

END; 
5: BEGIN 

totalhours := 31 * 24 + correction *. 24; 

daysinmonth := 31; 

close (parset, true); 

assign (parset, 'may. par') 

END; 

6: BEGIN 

totalhours := 30 * 24 + correction * 24; 

daysinmonth 30; 

close (parset, true); 

assign (parset, 'jun. par') 

END; 

7 BEGIN 

totalhours := 31 * 24 + correction * 24; 

daysinmonth := 31; 

close (parset, true); 

assign (parset, 'jul. par') 

END; 

8: BEGIN 

totalhours := 31 * 24 + correction * 24; 

daysinmonth := 31; 

close (parset, true); 

assign (parset, 'aug. par') 

END; 

9: BEGIN 

totalhours := 30 * 24 + correction * 24; 

daysinmonth := 30; 

close (parset, true); 

B-9 



assign (parset, 'sep. par' 
END; 

10 : BEGIN 

totalhours := 31 * 24 + correction * 24; 

daysinmonth := 31; 

close (parset, true); 

assign (parset, 'oct. par') 

END; 

11 : BEGIN 

totalhours := 30 * 24 + correction * 24; 

daysinmonth := 30; 

close (parset, true); 

assign (parset, 'nov. par') 

-- END; 

12 : BEGIN 

totalhours := 31 * 24 + correction * 24; 

daysinmonth 31; 

close (parset, true); 

assign (parset, 'dec. par') 

END 

END {CASE); 

totalmins := totalhours * 60; 

ReadParameters; 

GenerateStorms 

END; 

if year mod 10 -1=0 then writeln; 

write (year: 1, 

END; 

999: 

END (MAINZ. 
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T-Tests for Hourly Variances 
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T -Tests for Hourly Autocorrelations 
(Marston data set) 
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T-Tests for Hourly Maxima 
(Manston data set) 
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T-Tests for 6 Hourly Variances 
(Manston data set) 
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T-Tests for 6 Hourly Maxima 
(Marston data set) 
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T-Tests for 12 Hourly Variances 
(Manston data set) 
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T-Tests for 12 Hourly Maxima 
(Manston data set) 
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T-Tests for Daily Autocorrelations 
(Manston data set) 
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T-Tests for Proportion of Dry Days 
(Maztston data set, b=0.1 mm) 
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T-Tests for the Proportion of Dry Days 
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T-Tests for the Proportion of Dry Days 
(Marston Data Set lb = 3mm) 
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T-Tests for Monthly Totals 
(Manston data using seasonal model) 
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T-Tests for Hourly Variances 
(Manton data using seasonal model) 
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T-Tests for 6 Hourly Variances 
(Manston data using seasonal model) 
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T-Tests for 6 Hourly Autocorrelations 
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T-Tests for 6 Hourly Maxima 
(Manston data using seasonal model) 
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T-Tests for 12 Hourly Variances 
(Manston data using seasonal model) 
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T -Tests for 12 Hourly Maxima 
(Manston data using seasonal model) 

W 
N 

N 

s 

5 

4 

3 

2 

1" 

0 

-1 

-2 

-3 

-4 

-5 

-6 

M 

J F M A M J J A S 0 NC 

Month 

Figure D. 13 

T-Tests for Daily Variances 
(Marston data using seasonal model) 
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T-Tests for Daily Autocorrelations 
(Manston data using seasonal model) 

W 
N 

Cf) 
z .r 

6 

5 

4 

3 

2 

1 

0 

-1 

-2 

-3 

-4 

-5 

-6 

4 7 16/ 

J F M A M J J A S O N C 
Month 

Figure D. 15 

T-Tests for Daily Maxima 
(Manston data using seasonal modes 
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T-Tests for 3 Hourly Autocorrelations 
(Manston Data Set) 

6 
5 

43 
-ý 

cW 
an l-- 

_ 
/ý\ 

\ 

-2 

3I 

-4 
-1 I 

-5 y 

-6 
f1 

JFMAMJJAS0ND 

Month 

Figure E. 6 

E- 3 

JFMAMJJAS0N D" 
Month 



W 

v 

Ui 

v 

T -Tests for 3 Hourly Maxima 
(Manston Data Set) 

6 

.I 

3I 
2 

-1 

-2 

-3 I 

-6 
I 

JFMAMJJAS0ND 
Month 

Figure E. 7 
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T-Tests for 12 hourly Autocorrelations 
(Marston Data Set) 
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Comparison of Mean Hourly Variances 
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APPENDIX F: A CLOSER LOOK AT THE 3 OBSERVATIONS EXCLUDED FROM THE 

MULTIVARIATE (REGIONAL) REGRESSION ANALYSIS 

Table F. 1 gives the range of parameter estimates for the 

observations used in the multivariate regression analysis of 

Chapter 6, and Table F. 2 gives the parameter estimates of the 3 

observations that were excluded from the analysis. Comparing these 

Tables it is clear that the excluded observations have parameter 

estimates well outside the range of the parameter estimates used 

in the analyses. Table F. 2 also includes the predicted parameter 

estimates obtained using the multivariate regression model, and as 

might be expected some of the predicted parameter estimates are 

substantially different from the actual estimates. To see whether 

these differences constitute an overall difference in rainfall, 

some key expressions were evaluated and are shown in Table F. 3 

[Note that this Table also contains the value of the statistic 

extracted from the rainfall data]. 

From the plots of Appendix G (Figures G. 26 - G. 41) it is clear 

that the percentage errors obtained for observations 2 and 3 are 

fairly typical of other percentage errors for observations 

included in the regression analysis. However, observation 1 does 

have large percentage errors in predicted values, so that one 

might expect this observation to come from a short rainfall 

record. However, this was not the case as this observation came 

from 25 years of daily rainfall data taken from Inverness, 

suggesting that the regionalised model would be inadequate for 

this station-month. This inadequacy could be due to the station 

lying in a region that is influenced by micro-climates. Under such 

circumstances it would be better to fit the stochastic model to 

daily data taken from the site under investigation. 
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Table F. 1 

Range of Values for Parameter Estimates 

(Excluding 'outlying' observations) 

Parameter: X ß n v E 

hr-1 hr-1 hr-1 cells/ hr/mm 
storm 

Maximum 0.0320 0.5511 16.03 19.79 3.213 

Minimum 0.0057 0.0500 0.2794 1.415 0.1008 

Table F. 2 

Parameter Estimates for Excluded Observations 

Observation x ß n v E Source 

1 0.0125 0.249 506. 0.00693 11.9 Datat 

1 0.0160 0.141 0.802 1.44 5.12 Predicted 

2 0.0175 395. 0.458 0.442 1.00 Datat 

2 0.0106 0.118 1.00 0.585 4.67 Predicted 

3 0.0152 410. 0.489 0.463 1.00 Datat 

3 0.0105 0.113 0.987 0.578 3.87 Predicted* 

*= predicted using the multivariate (regional) regression model. 

t= parameter estimates obtained by fitting the model to the data. 
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Table F. 3 

Evaluated Key Expressions 

Observation p(24) 7(24) 4(24) Source 

t 
1 1.02. 4.03 0.641 Data 

1 1.71 (68%) 10.8 (168%) 0.576 (10%) Predicted* 

1 1.02 4.32 0.651 Historical 

t 
2 2.07 37.2 0.658 Data 

2 2.03 (2%) 23.5 (37%) 0.684 (-4%) Predicted 

2 2.07 52.7 0.649 Historical 

3 1.62 26.2 0.694 Datat 

3 1.71 (6%) 18.5 (29%) 0.702 (1%) Predicted 

3 1.61 37.6 0.681 Historical 

(Absolute percentage errors are shown in brackets, p(24) = mean of 

24 hourly time series, 7(24) = variance of 24 hourly time series, 

4(24) = proportion of dry days (µ, y, and 0 are functions of the 

model parameters)). 

* = predicted using the multivariate (regional) regression model. 

t= parameter estimates obtained by fitting the model to the data. 
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Comparison of Hourly Variances 
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Comparison of Proportion of Dry Days 
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Comparison of Hourly Variances 
Rhoose (18 years) 
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Comparison of Hourly Variances 
Ringway (10 years) 
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APPENDIX H: TREATMENT OF MISSING VALUES 

Rainfall data almost always contains missing values. As the data 

set was large (a total of 120 rainfall stations) and many of the 

computer programs written for the project had to be used on all 

the stations, it was found convenient to keep the number of years 

of data for a station the same for each month. 

For the hourly/minutely data; if there were many missing values 

for a month, the data for that month were deleted from the station 

record. Consequently the record length (in years) would be reduced 

by one for that station. If there were many missing values for 

another month, different from the previous month, then the data 

for that month were replaced by data from the same month of the 

deleted year. If only a few data were missing in a month, then 

these values were taken as zero. This approach was adopted (as 

opposed to taking an average) because the missing values tended to 

occur in sequences (rather than isolated values). The approach had 

no effect on the development of the fitting procedure because the 

Manston data set had no missing values (p66). Furthermore, the 

effect of this approach on the regionalisation procedure could be 

neglected because less than 1%1 of the hourly data were replaced 

by zeros, and most (about 80%) of the data used in the 

regionalisation procedure came from daily rainfall stations. 

For the daily data; if, for one of the years, the data for a month 

were missing, the whole data set was scanned to find the same 

month (in a different year) with a monthly total close to the 

month with missing values, and the data from this month were then 

used to replace the missing data. The data for the year would be 
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deleted (i. e. the record length reduced by one) if there were many 

months in the year with missing values. If only a few data were 

missing in a month then these values were taken as zero. In 

addition, traces were also taken as zero. N. B. less than 0.01%2 of 

the missing daily values were replaced by zero, so that the effect 

of this approach on the regionalisation procedure could be 

neglected. 

Finally, for programming convenience, the data for leap years were 

ignored (so that February always had 28 days). 

IThis 
estimate was obtained by selecting a station-month 

(Blackpool -January) that had a large number of missing values, 

when compared with other station-months. 

2This 
estimate of 0.01* was obtained by taking a random sample of 

20 daily stations and counting the number of times missing values 

were replaced by zero. This happened on 13 occasions, which gives 

a percentage of 100.13/25.20.365 = 0.007*, which was rounded to 

0.01*. 
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APPENDIX J: CORRELOGRAMS OF MONTHLY MEAN DAILY RAINFALLS AND 

RESIDUAL SERIES 

In the fitting procedure for the model, it has been assumed that 

the parameter estimates for a month do not need to be conditioned 

on previous monthly totals, i. e. it is assumed that the rainfall 

for one month does not affect the rainfall for other months. To 

investigate this, the mean daily rainfalls were found for each 

year-month of the 5 longest records of daily data. This produced 5 

time series of monthly mean daily rainfalls. For each series, the 

overall mean daily rainfall for each month was subtracted from 

each of the monthly mean daily rainfalls and the correlogram for 

the residual series found. These correlograms are shown in Figures 

J1 - J5, from which it is clear that each residual series is 

uncorrelated. To make a comparison with one of the original series 

of monthly mean daily rainfalls, a correlogram is given for Poaka 

Beck (Figure J6), from which it can be seen that there is strong 

evidence of a seasonal autocorrelation pattern. 

Mathematical summary: Consider one of the five stations, of record 

length 90 years, say. Let z ij 
be the mean daily rainfall for year 

i, month j (where i= 1, ..., 90 and j = 1, . .., 12), i. e. let 

{zijI be the time series of monthly mean daily rainfalls. The 

residual time series (zij) is given by: 

' 
90 

zi j=z ij - 
iýlzij 

/90 

The correlograms (Figures J1 - J5) suggest that the residual 

series for each station are not significantly autocorrelated. 
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Correlogram after removing Monthly Mean Daily Rainfalls 
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APPENDIX K: THE EFFECT OF THE ERROR IN EXPRESSION (3.6) 

After the thesis first submitted, an error was noticed in 

Chapter 3, Section 3.3. The error was in expression (3.6), which 

previously read: 

Pt (h) = (1 - e-ßt + e-p( 
t+h)) (1 - ß(e-pt -e 

nt) / (fiß) ) 

X exp 
f-pp 

(e-pt -e 
nt)/(n-ß) 

- pet + pe-ß(t+h) (3.6) 

This has been replaced by: 

pt (h) = e-ß(t+h) +1- (ne-ßt - ße nt) / (n-ß) 

x exp -µß(e-pt - e-nt)/(fl-ß) - pet + pe-p( 
t+h) (3.6) 

The incorrect expression above appeared in many of the programs 

used for the project. Therefore, comparisons were needed to see 

whether the consequences of this error would have any practical 

effect on the results presented in the thesis. 

Expression (3.6) is needed in the expression for the probability 

that an arbitrary interval is dry (equations (3.9) and (4.4)) and 

is also needed in calculating the transition probabilities 

(equations (4.5) and (4.6)). In testing whether this error has any 

effect on the results described in this thesis, two levels of 

aggregation are considered: i) hourly and ii) daily. The effect of 

the error on the hourly level of aggregation can be assessed by 

evaluating $(1) and $(2) (equation (4.4)) using both the correct 
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and incorrect version of (3.6), as these are used to calculate 

0DID 1) and 4wlw(1) (see equations (4.5) and (4.6)). Similarly, 

the effect of the error on the daily level of aggregation can be 

assessed by evaluating 4(24) and $(48). These expressions were all 

evaluated for the 1341 parameter estimates used in the project, 

and the difference between the incorrect and correct value found. 

Figures K. 1 - K. 4 show frequency plots of these differences, where 

the notation PDh has been adopted for the proportion of dry 

intervals for a level of aggregation of h hours (evaluated using 

Looking through Figures K. 1 - K. 4 it can be seen that the effect 

of this error is at worst going to be in the third decimal place. 

Suppose we take 0.003 as the worst difference, and consider the 

smallest proportion of dry days in the Manston data set, which was 

0.52 for January (see Table 4.2 of Chapter 4), then the worst 

percentage error is about 1% (when rounded up). Now the 

coefficient of variation for the proportion of dry days in a 

10-year record is about 12% (see Table 4.1 of Chapter 4), which 

implies that the error is comparable to the sampling variability 

in a ION-year record of rainfall data, where 1= 12//N, i. e. a 

1440-year record. The greatest station record length used in this 

project was 90 years. Hence, the effect of the error is regarded 

as small compared to the sampling variability of the rainfall data 

used in"the project, and so can be neglected when interpreting the 

results in the thesis. 
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Frequency Plot of Errors in PD1 
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Frequency Plot of Errors in PD24 
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