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Abstract 

 
The accumulation of DNA damage has long been thought to contribute to both 

cellular and organismal ageing. The catabolic degradation process autophagy has 

also been implicated in the ageing process, as an age-dependent functional decline 

has been reported in many organisms. Moreover, interventions known to delay 

ageing such as dietary restriction and rapamycin treatment have been shown to 

require active autophagy. Recent studies have suggested a role for autophagy in the 

DNA damage response as well as DNA damage repair; however the mechanisms 

are still poorly understood. In this thesis we set out to understand how autophagy 

can influence DNA repair. We will also investigate how cross-talk between these 

processes is relevant to the ageing process. Firstly, we show that cells lacking 

autophagy have an impaired DNA damage repair kinetic, as measured by the 

resolution of DNA damage foci (DDF). Importantly, these differences were shown to 

be dependent on the intracellular levels of autophagy adaptor protein p62. It was 

recently shown that p62 shuttles rapidly between cytoplasmic and nuclear 

compartments. However, the role of p62 in the nucleus is still relatively unknown. 

Mechanistically, we show that both the PB1 and UBA domain of p62 are required for 

its effect on DNA damage repair. Furthermore we show p62 is recruited to DDF in 

response to DNA damage induction. Next, we show p62 interacts with the 

cytoskeletal protein FLNA and DNA damage protein RAD15 within the nucleus 

facilitating their proteasomal degradation. Both FLNA and RAD51 have previously 

been suggested to influence DNA repair via the homologous recombination pathway. 

Cells lacking p62 have higher nuclear levels of RAD51 and FLNA. Importantly these 

high levels correspond with an increased formation and resolution of RAD51 foci 

following induction of DNA damage, suggestive of an increase in DNA repair via the 

homologous recombination pathway. Finally, we observed an increase in co-

localisation of p62 with the marker of DDF H2A.X in mouse liver during ageing. 

Additionally, we found that life-long dietary restriction, an intervention known to 

extend lifespan in mice, prevented the age-dependent increase in frequencies of 

p62-H2A.X foci. We propose that p62 plays a novel and important role in DNA 

damage repair and hypothesise that declining autophagy or dysregulation of p62 can 

contribute to organismal ageing.
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1. Chapter 1. Introduction 

1. 1.1 DNA Damage Response (DDR) 

 

DNA damage repair is essential for the safeguarding of genomic integrity. The 

importance of understanding these processes was acknowledged this year by the 

award of the Nobel Prize in chemistry to Tomas Lindahl, Paul Modrich and Aziz 

Sancar for their study of DNA damage repair at the molecular level. 

DNA can be damaged by a number of extrinsic damaging agents such as; 

ultra-violet radiation (UV), Ionizing radiation (IR) and chemical compounds as well as 

intrinsic sources of damage such as mistakes in replication and oxidative damage 

that occurs due to free radicals generated as part of normal metabolism. It is 

estimated that on average a cell experiences 19200 DNA lesions per day (Saul and 

Ames, 1986). In order to maintain genomic integrity cells must possess effective 

mechanisms for detecting and repairing this DNA damage.  

Single stranded DNA (ssDNA), as well as double strand breaks (DSBs) are 

potent activators of the DDR. Specialised sensing complexes recognize this 

damage. The Mre11 complex (MRN) made from Mre11/Rad50/Nbs1 in mammals 

senses and processes DSBs and ataxia-telangiectasia and Rad3 related (ATR), ATR 

interacting protein (ATRIP), Replication protein A (RPA), Rad9/Rad1/Hus1, 

Rad17/RSR are all involved in sensing single stranded DNA. These sensors, in turn, 

recruit large Phosphoinositide Kinase-Related Kinases (PIKKs) ATR and ataxia-

telangiectasia (ATM) to the site of damage (Shiloh, 2006). Recruitment of these 

kinases causes the local phosphorylation of histone H2A.X (Figure 1-1).  

At DSBs the ATM mediated phosphorylation of Histone 2AX (H2A.X) to 

Phosphorylated H2A.X (H2A.X) then sets up a positive feedback loop, which 

recruits more ATM to the DNA damage lesion. This recruitment of yet more ATM 

causes H2A.X to spread along the chromatin 1-2Mb from the site of the lesion 

(Bewersdorf et al., 2006). The recruitment of ATM to H2A.X is facilitated by DDR 

mediators; mediator of DNA-Damage checkpoint 1 (MDC1) and p53 binding protein1 

(53BP1) (Wang et al., 2002). The establishment of this feedback loop and the 

spreading of H2A.X acts to amplify the signal and aids in the recruitment of ATM 

and other DDR proteins (Figure 1-1).  
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At SSBs single stranded DNA is bound by replication protein A (RPA) which 

signals the recruitment of ATR (Cortez et al., 2001). ATR activity is further boosted 

by the heterotrimeric 9–1–1 complex (RAD9, RAD1 and HUS1) and topoisomerase-

II-binding protein 1 (TOPBP1) (Weiss et al., 2002, Kumagai et al., 2006). 

Downstream of TOPBP, Claspin leads to activation of Chk1 (Liu et al., 2006).  

Activation of ATM/ATR above a certain threshold is required to activate 

checkpoint kinase 2 (CHK2) (Buscemi et al., 2004). CHK2, once activated, can freely 

diffuse through the nucleoplasm and phosphorylate further DDR protein substrates 

(Lukas et al., 2003). Similarly to CHK2, checkpoint kinase 1 (CHK1) is also 

phosphorylated by ATM and ATR and diffuses through the nucleus also spreading 

DDR signalling (Bekker-Jensen et al., 2006).Therefore DSBs favour activation of 

ATM/Chk2 and SSBs favour activation of ATR/Chk1. However, the processing of 

DSBs during S or G2 phases of the cell cycle can result in the generation of ssDNA 

and ATR activation (Jazayeri et al., 2006). 

Ultimately activation of the DDR leads to the enforcement of cell-cycle 

checkpoints through multiple signalling pathways such as p53 and cell division cycle 

25 (CDC25) phosphatase. DNA damage induces an inactivation of CDC25 that 

causes rapid cell-cycle arrest as activity of these phosphatases are required for cell 

division (Mailand et al., 2000). p53 is induced more slowly following activation of a 

DDR and leads to an increase in transcription of the cyclin dependent kinase 

inhibitor p21. Increased expression of p21 leads to a stable cell cycle arrest (Deng et 

al., 1995).  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&amp;cmd=Retrieve&amp;dopt=full_report&amp;list_uids=11073
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Figure 1-1: Schematic representation of the DDR. DSBs are sensed by the 

MRE11 RAD50-NBS1 (MRN) complex, this leads to the recruitment of the apical 

protein kinase ATM. ATM is phosphorylated and then goes on to phosphorylate 

H2A.X to H2A.X at the site of damage. H2A.X is recognised by MDC1 which leads 

to further recruitment of the MRN complex and amplification of ATM phosphorylation. 

This amplification step leads to the spreading of H2A.X many base pairs from the 

site of damage. This causes an increase in the number of DDR factors such as 

53BP1 at the site of damage which orchestrate repair. Exposure of single-stranded 

DNA leads to recruitment of RPA. Following this, ATR and its binding partner ATRIP 

are recruited and ATR activity can be increased by additional ATR targets, such as 

the RAD9–HUS1–RAD1 and RAD17–RFC complexes. ATR activity can also be 

boosted by DNA topoisomerase 2-binding protein (TOPDP1) and Claspin. Activation 

of ATM and ATR leads to phosphorylation of CHK1 and CHK2, which, through 

downstream effectors such as p53 and CDC25, leads to cell cycle arrest, 

senescence or apoptosis. Adapted from (d'Adda di Fagagna, 2008). 
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The spreading of H2A.X many megabases from the initial site of DNA damage acts 

as a platform to attract and hold a large number of DDR proteins (Downey and 

Durocher, 2006). This protein recruitment leads to the formation of nuclear foci 

known as DNA damage foci (DDF). These DDF contain multiple copies of the same 

proteins and show similarities in both structure and function to DNA replication 

factories. These replication factories are thought to serve to ensure the optimal use 

of nuclear space and available replication enzymes to allow accurate replication 

(Hozák and Cook, 1994).  It was previously believed that individual DDF could merge 

(Aten et al., 2004), however, more recent studies employing live-cell imaging indicate 

that DNA damage foci are positionally stable (Soutoglou et al., 2007). It is now 

thought that the combination of multiple DSBs in shared foci could lead to mistakes 

in ligation and unwanted fusion events and that keeping these lesions positionally 

separate is in fact advantageous (d'Adda di Fagagna, 2008). Hence, one DNA 

damage focus is formed per damage lesion and, like replication sites, it is thought to 

optimise protein interactions and enzymatic activity, which aid in the coordination 

and amplification of DNA damage signalling. Interestingly, it has even been shown 

that the artificial colocalisation of DDR proteins alone is sufficient to activate DNA 

damage checkpoints in the absence of actual DNA damage (Bonilla et al., 2008).  

 Following the repair of DNA lesions, DDF are disassembled. This is due 

primarily to the activity of dedicated phosphatases that dephosphorylate H2A.X as 

well as chromatin remodelling (Downey and Durocher, 2006). This means that DNA 

lesions that are quickly repaired give rise to small transient foci, whereas DNA 

damage that is less efficiently repaired causes larger long-lived foci (Passos et al., 

2010).  

Activation of a DDR and cell-cycle arrest can result in a number of different 

cell fates. This is dependent on the severity, type and location of the DNA damage 

as well as the cell-type. The primary aim of the DDR is to repair DNA damage and 

allow cells to progress back into the cell-cycle. If the damage persists then the 

chronic activation of a DDR can lead to apoptosis (programmed cell death) or 

cellular senescence. The mechanism that determines the cellular “decision” between 

these two cell fates is not yet fully understood. 
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1.2.1 Double Strand Break Repair 

 

There are two main pathways in eukaryotic cells that mediate double strand 

break repair: non-homologous end-joining (NHEJ) and homologous recombination 

(HR). NHEJ is active through the whole cell-cycle whereas HR is only active during 

the S and G2 phases when sister chromatids can be used as a template for repair.     

  

1.2.2 Homologous Recombination (HR)  

 

Homologous recombination is an important process that is required for 

genome maintenance as generally it performs an error-free mode of repair. In the 

absence of HR, cells must rely on the more error-prone DNA repair pathway NHEJ 

which can lead to increased mutations and rearrangements potentially leading to 

genome instability. Key components of HR such as BRCA2 and RAD51C are known 

tumor suppressors, with inactivating mutations leading to increased genomic 

instability (Golmard et al., 2013, Wooster et al., 1995). HR is also an important 

mechanism required for the restart of stalled replication forks during S phase 

(Budzowska and Kanaar, 2009, Woodbine et al., 2014). 

The initial step of HR, DNA resection, involves processing of DSBs to a 3′ 

overhanging tail. In yeast, this processing appears to require the MRX complex (Cao 

et al., 1990). Defects in this complex lead to sensitivity to IR, but the repair of “blunt” 

DSBs such as those caused by HO-endonuclease is not affected (Li and Heyer, 

2008). MRX and Sae2 initiate HR by performing short range resection (a few 

hundred nucleotides) (Mimitou and Symington, 2008), then both the 5′-3′ 

exonuclease Exo1 and DNA2 perform long range resection (two or more kilobases) 

(Zhu et al., 2008). The mammalian homolog of Sae2, CtIP has been implicated in 

DSB resection, although the exact mechanisms are still not understood. However, 

inactivation of CtIP has been shown to be mortal to cells and reduce RAD51 foci 

formation as well as HR (Nakamura et al., 2010). Following resection, ssDNA is then 

coated by the single-strand binding protein complex RPA (San Filippo et al., 2008). 

This is followed by the replacement of RPA with RAD51, a process catalysed by 

recombination mediator proteins such as BRCA1/2, resulting in RAD51 presynaptic 

nucleofilament formation (Yang et al., 2005). RAD51 is an ATP-hydrolysing protein 
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that has a high affinity for ssDNA in the ATP-bound state and is released from DNA 

following ATP hydrolysis (Petalcorin et al., 2006). BRCA2 not only recruits RAD51 

but also stabilises the resulting RAD51 nucleofilament through inhibition of RAD51 

ATP hydrolysis (Jensen et al., 2010). The RAD51 filament is responsible for 

homology search as well as catalysis of strand invasion. This leads to the formation 

of a displacement loop (D loop) once RAD51 is removed by helicases such as HELQ 

and RAD54 (Solinger et al., 2002, Ward et al., 2010). The D loop undergoes 

extension mediated by DNA polymerases such as: DNA polymerase delta (Li et al., 

2009), POLN (Moldovan et al., 2010) and eta (McIlwraith et al., 2005). Finally, these 

HR structures are processed leading to the resolution of the DSB.  
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Figure 1-2: Schematic representation of HR. HR is initiated by the formation of 

long 3ʹ single-stranded DNA (ssDNA) stretches. The DNA end-resection is complex 

and highly regulated and requires the activity of several nucleases such as: CtBP-

interacting protein (CtIP), Bloom’s syndrome helicase (BLM), exonuclease 1 (EXO1), 

DNA replication ATP-dependent helicase (DNA2) and the MRN (MRE11–RAD50–

NBS1) complex. RPA then binds to ssDNA, a key step in HR is the removal of RPA 

and its replacement with RAD51 to form a RAD51–ssDNA nucleofilament. This is 

mediated by breast cancer 1 (BRCA1), BRCA2 and RAD51 paralogues; however the 

exact mechanisms are not yet fully understood. This RAD51–ssDNA nucleofilament 

searches for homologous sequence and then undergoes strand invasion and 

displacement D-loop formation. DNA synthesis is initiated within the D-loop to 

replace DNA proximal to the break site. 
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1.2.3 Non-Homologous End Joining (NHEJ)  

 
Non-Homologous end-joining (NHEJ) is a pathway responsible for the repair 

of double stand breaks. It is named “non-homologous” because unlike homologous 

recombination, described above, NHEJ does not require a homologous template and 

DNA ends are directly joined by DNA Ligases, although short regions of homology, 

known as microhomologies, are often used to align DNA ends.    

NHEJ begins with the binding of the Ku70/80 heterodimer to an exposed DNA 

end (Weterings and van Gent, 2004). The Ku70/80 heterodimer forms a ring that 

encircles DNA, fitting to the spiral structure of DNA, positioning DNA ends in the 

correct phase to facilitate end-joining (Walker et al., 2001). The Ku70/80 heterodimer 

then recruits the DNA-dependent protein kinase (DNA-PKCS), activating its protein 

kinase activity (Smith and Jackson, 1999). Upon activation, the major function for 

this kinase is the regulation of NHEJ by autophosphorylation of DNA-PKCS (Chan et 

al., 2002). This autophosphorylation occurs following juxtaposition of DNA ends and 

facilitates proper access to DNA ends for other NHEJ proteins (Meek et al., 2007). 

Compatible ends are now able to be joined directly by the ligase IV/XRCC4 complex. 

This reaction is mediated by the interaction between XLF and XRCC4 (Ahnesorg et 

al., 2006).  

In many cases, DNA ends are not compatible and require processing before 

they can be ligated. DNA damaging agents such as IR lead to a number of complex 

lesions containing damaged bases and/or deoxyribose sugars. NHEJ is therefore 

able to incorporate DNA polymerases, nucleases, polynucleotide kinase and other 

enzymes to process ends to allow ligation by the ligase IV/XRCC4 complex.  

One such nuclease is Artemis, originally discovered as a gene commonly 

mutated in radiosensitive T-B- severe combined immunodeficiency (SCID) patients 

(Moshous et al., 2001). Artemis was implicated in V(D)J recombination, a process 

required for Immunoglobulin (Ig) and T cell receptor (TCR) diversity,  via its role in 

opening hairpin structures that result from RAG1/2 cleavage at recombination signal 

sequences (Ma et al., 2002). Cells lacking Artemis show considerable 

radiosensitivity (Riballo et al., 2004, Wang et al., 2005); similarly, cells from Artemis 

knockout mice show significant chromosomal abnormalities (Rooney et al., 2002). 

Artemis is unable to process all non-ligatable ends, as such other enzymes have 

been implicated in DNA-end processing in NHEJ such as PNPKP, an enzyme with 
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5′‐DNA kinase and 3′‐DNA phosphatase activities (Karimi-Busheri et al., 1999). 

PNPKP has been shown to interact with XRCC4 and facilitate end processing and 

disruption of this interaction has been shown to lead to increased radiosensitivity 

(Koch et al., 2004). Tyrosyl-DNA phosphodiesterase (TDP1) is another key enzyme 

involved in end-processing, specifically in response to damage caused by 

topoisomerase I. This is due to its ability to remove covalently bound tyrosyl-

phosphates and polypeptides that can result from a failure of topoisomerases to 

ligate reaction intermediates (Pommier et al., 2014). TDP1 is able to process a wide 

range of substrates such as: 3′ phosphoglycolate, chain terminating nucleosides and 

alkylated nucleosides leaving a 3′ phosphate. Cells lacking TDP1 are therefore 

sensitive to damaging agents that produce DSBs with 3′ phosphoglycolate such as 

alkylating agents, and calicheamicin (Pommier et al., 2014, Murai et al., 2012, 

Inamdar et al., 2002, Interthal et al., 2005). Mutations in TDP1 have been shown to 

result in the neurodegenerative disorder spinocerebellar ataxia with axonal 

neuropathy (SCAN1) (Takashima et al., 2002). 

NHEJ is not only involved in the repair of DSBs that are generated by 

exogenous and endogenous stress, it is also involved in the ligation of breaks 

generated during V(D)J recombination. This process takes place during B and T-cell 

differentiation and gives rise to antigen specific receptors (Jung et al., 2006). 

Immunoglobulin (Ig) and T Cell Receptor (TCR) genes contain variable (V), Diversity 

(D) and Joining (J) segments that are joined by NHEJ to form a mature V(D)J exon 

in B and T cells, respectively (Schatz, 2004). DSBs are created between 

Recombination Signal Sequences (RSSs) and coding DNA by RAG1 and 

RAG2 proteins (McBlane et al., 1995). This creates blunt DNA ends with a hairpin 

structure that require NHEJ for their successful repair (van Gent et al., 1996). 

Mutations of genes involved in NHEJ lead to SCID due to an inability to execute 

V(D)J (Woodbine et al., 2014). 
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Figure 1-3: Schematic representation of NHEJ. NHEJ is initiated by the rapid 

recruitment and binding of the Ku70-Ku80 heterodimer to DNA ends at the DSB (de 

Vries et al., 1989). This is followed by the recruitment of DNA-dependent protein 

kinase catalytic subunit (DNA-PKcs), an ATM-related kinase, where it is activated by 

binding and stabilizing DNA ends keeping them in close proximity, as well as recruit 

end-processing factors such as: polynucleotide kinase/phosphatase (PNKP), Artemis, 

AP endonuclease 1 (APE1) and tyrosyl–DNA phosphodiesterase 1 (TDP1). These 

processing factors prepare DNA ends for re-ligation by the X-ray repair cross-

complementing protein 4 (XRCC4)–XRCC4-like factor (XLF)–DNA ligase 4 (LIG4) 

complex.  
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1.3 Ageing and Cellular Senescence 

1.3.1 Cellular Senescence 

 
  

Cellular senescence is defined as an irreversible cell-cycle arrest and is associated 

with a number of phenotypic changes (Campisi and d'Adda di Fagagna, 2007). It 

was first described in 1961 by Leonard Hayflick and Paul Moorhead (Hayflick and 

Moorhead, 1961) who demonstrated that human fibroblasts were only able to 

undergo a finite number of cell divisions before arresting irreversibly when grown in 

cell culture. This was predicted theoretically by Alexi Olovnikov and James Watson 

that a progressive shortening of telomeres was responsible for “Hayflick’s Limit 

(Watson, 1972, Olovnikov, 1971). It took a number of years to confirm experimentally 

that telomeres did in fact shorten with successive replication (Harley et al., 1990). 

However, it was still unclear if telomere shortening played a functional role in the 

induction of senescence, as their shortening could merely be associated with the 

induction of senescence. This question was answered when it was shown that over-

expression of telomerase, an enzyme able to maintain telomere length was able to 

bypass senescence and resulted in cellular immortalisation (Bodnar et al., 1998). 

 Telomere shortening is thought to be caused by what is known as the end-

replication problem, a phenomenon caused by the DNA replication machinery, 

specifically DNA polymerase’ inability to synthesise in a 3’-5’ direction. This means 

the 5’ strand or lagging strand of DNA is replicated in small sections in a 5’-3’ 

direction. These sections are known as Okazaki fragments and are joined together to 

form a complementary strand by DNA ligase (Ogawa and Okazaki, 1980). 

Replication of the lagging strand requires the binding of an RNA primer to facilitate 

the binding of DNA polymerase. The final RNA primer does not have a DNA 

template and so is unable to be replicated, leading to a loss of around 50-200Bp per 

replication (de-Lange.T, 2006). The actual rate of attrition seen at telomeres in 

fibroblasts that reach senescence is a lot greater than what can be accounted for by 

the end-replication problem alone, suggesting that other factors may contribute to 

telomere shortening (Levy et al., 1992). 

Human skin fibroblasts reach replicative senescence with an average telomere 

length of around 6-8kb (Allsopp et al., 1992), however senescent cells often contain 
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one or more extremely short telomeres (Hemann et al., 2001). It is thought that it is 

these extremely short telomeres that are responsible for the onset of senescence. 

The exact mechanism by which shortened telomeres induce senescence is not yet 

fully understood, however it has been suggested that telomere shortening leads to a 

disruption of the T-Loop (uncapping),exposing the DNA ends (Aubert and Lansdorp, 

2008). This then leads to an activation of a DDR and induction of senescence 

(d'Adda di Fagagna et al., 2003) (Herbig et al., 2004). The threshold of DNA damage 

required to activate this checkpoint is a matter of intense debate with some groups 

showing that cells are able to reach senescence with as many as 5 dysfunctional 

telomeres (Kaul et al., 2012) (Meier et al., 2007) with others showing senescent cells that 

contain just one DNA damage focusi (Herbig et al., 2006). 

 Originally it was suggested that telomeres could serve as a counting 

mechanism within cells that would allow a finite number of replications, however a 

set time or threshold for telomere length to induce senescence has not been found 

(Von Zglinicki, 2001). This, coupled with the large amount of heterogeneity in 

telomere length between cells in the same culture (Lansdorp et al., 1996) and the 

presence of senescent cells in cultures that have undergone a low number of 

divisions, suggests that telomere length is not just dictated by the number of 

divisions a cell has undergone (Martin-Ruiz et al., 2004). 

 It has been shown that telomeric DNA is especially sensitive to SSBs caused 

by reactive oxygen species (ROS), and that ROS leads to accelerated telomere 

shortening in replicating cells (von Zglinicki et al., 1995).It was later shown that 

mitochondrial superoxide levels increase with age and contribute to telomere 

shortening (Passos et al., 2007). Interestingly, overexpression of TERT (the catalytic 

subunit of telomerase) reduces mitochondrial superoxide levels independently of 

telomere length. It was shown that TERT migrates to mitochondria and it is thought 

to protect mtDNA, however the mechanisms are not entirely understood (Ahmed et 

al., 2008). It is now thought that the end-replication problem, as well as this 

stochastic damage, contributes to telomere shortening. It has been suggested that 

telomeres may act as a sentinel to oxidative stress, becoming shorter and preventing 

cells that have been exposed to high levels of potentially mutagenic factors from 

replicating (Martin-Ruiz et al., 2004).  

Recently it has been shown in work carried out by our group and Fabrizio 

d’Adda di Fagagna’s group that telomeres are more sensitive to DNA damage and 
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that this damage is irreparable (Hewitt et al., 2012, Fumagalli et al., 2012).  We also 

have shown that telomeres acquire damage independently of length or telomerase 

activity showing that is its not only telomere length that is important to the 

development of senescence. The exact mechanism by which DSB at telomeres are 

irreparable is unknown however studies have indicated that telomere binding 

proteins such as TRF2 and RAP1 have inhibitory effects on non-homologous end 

joining (NHEJ).Thus, telomeres can elicit a permanent DDR resulting in cell cycle 

arrest and induction of senescence (Hewitt et al., 2012, Cesare et al., 2009, 

Fumagalli et al., 2012). 

 As mentioned previously, activation of DDR can often lead to cellular 

senescence. It has been shown in many cell types that induction of high levels of 

DNA damage, particularly DSBs, leads to senescence (Di Leonardo et al., 1994). 

Induction of senescence via the DDR depends heavily on the tumour suppressor 

p53, which itself activates the cyclin-dependent kinase inhibitor p21 leading to a 

block in cell-cycle progression (Di Leonardo et al., 1994, Herbig et al., 2004, d'Adda 

di Fagagna et al., 2003).  Additionally the cyclin-dependent kinase inhibitor p16 has 

been shown to act downstream of the DDR to activate senescence in many cell 

types (Beausejour et al., 2003, Jacobs and de Lange, 2004, Stein et al., 1999). It has 

however also been suggested that p16 may also be upregulated independently of 

DNA damage (Herbig et al., 2004). 

Oncogene induced senescence (OIS) has also been shown to associate with 

the activation of a DDR as a result of hyper-replication (Di Micco et al., 2011, Suram 

et al., 2012, Di Micco et al., 2006). Oncogenes are genes that when aberrantly 

expressed have the potential to transform host cells into a tumour cell. The activation 

of various oncogenes has been shown to induce senescence in a number of different 

cell types, for example over-expression of RAS, RAF and BRAF have all been 

shown to induce senescence (Serrano et al., 1997, Zhu et al., 1998, Chrysiis et al., 

2005). Interestingly it has been shown that a DDR even in the absence of actual 

DNA damage is able to lead to induction of cellular senescence, a term the 

Blagosklonny group name a “Pseudo-DNA damage response” (Pospelova et al., 

2009). 

While the link between increased levels of DSBs and ageing have been well 

explored, changes in the activity and efficiency of double strand break repair are less 

well understood. The importance of DNA damage repair in the ageing process is 
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highlighted by a number of progeria syndromes where defects in genes involved in 

repair result in an accelerated ageing phenotype such as: Ataxia telangiectasia 

(Shiloh, 2001), Werner’s syndrome (Epstein et al., 1966), and mice deficient for 

Ku80 (Didier et al., 2012), DNA–PKcs (Espejel et al., 2004) and ERCC1 (Weeda et 

al., 1997). Assessing changes in DNA repair pathways is complicated by the 

changing rate of DSB generation as well as changes that occur in proliferative 

capacity with age. As mentioned previously, HR is predominantly active during S and 

G2/M phase where sister chromatids are available (Mao et al., 2008). Senescence is 

characterised by an abrupt and preeminent loss of proliferative capacity, which was 

initially thought to be in G1. Recently it was shown that a large percentage of 

senescent cells up to 60% are arrested in G2 (Mao et al., 2012a). This makes 

assessing changes in DNA damage repair as a cause or consequence of 

senescence induction particularly difficult. Early studies looking in normal human 

lymphocytes indicate an age dependent decline in DNA repair in response to X-ray 

irradiation as measured by Comet assay (Mayer et al., 1989, Singh et al., 1990). 

Assessment of damage using this technique does not allow you to asses specific 

repair mechanisms. Interestingly, it has been observed that senescent cells have a 

reduced efficiency and accuracy in NHEJ (Seluanov et al., 2004). Importantly, this 

decline in NHEJ was also observed in pre-senescent cells suggesting that it is not 

just a consequence of senescence induction. It has also been observed that NHEJ 

declines with age in mice (Vaidya et al., 2014). Work from the same group has also 

found a noted decline in HR with progressing population doublings in fibroblasts. 

This was accompanied by a decline in key components of the HR pathway such as 

RAD51, RAD51C RAD52 and CtIP. Importantly, this result was not attributed to 

changes in the cell cycle occurring with progressive PD (Mao et al., 2012b). This 

study also found that HR could be stimulated by expression of SIRT6 in middle-aged 

and pre-senescent cells. Taken together these data suggest that age dependent 

changes in DNA repair could well be a driver of the senescent phenotype and 

provide a potential therapeutic target to prevent age dependent decline in genome 

stability that is associated with many aspects of the ageing phenotype.  
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1.3.2 Senescence and Ageing 

 
Despite having been the focus of many studies, reaching back over 5 

decades, the existence of cellular senescence in vivo and its possible contribution to 

organismal ageing have been the subject of much debate (Ben-Porath and 

Weinberg, 2005). However, there have been several studies in the past decade that 

demonstrate an important role for senescence in vivo. Many studies have suggested 

that senescence plays an important role as a tumour suppressor (Braig et al., 2005, 

Chen et al., 2005, Collado et al., 2005, Michaloglou et al., 2005). However, there is 

now mounting evidence suggesting that senescence may also promote 

tumorigenesis (Krtolica et al., 2001, Dilley et al., 2003, Parrinello et al., 2005, Yang 

et al., 2006). This is thought to be as a result of the secretion of a number of pro-

inflammatory factors known as the senescence associated secretory phenotype 

(SASP) (Coppe et al., 2008). It is also believed that senescent cells contribute to an 

age-dependent decline in tissue function (Campisi and d'Adda di Fagagna, 2007).  

It was shown in 2006 by Herbig et al that the number of cells containing 

telomere-induced foci (TIF), a well-established senescence marker, increased in the 

skin of baboons with age (Herbig et al., 2006). Similar observations have been made 

in mice in a variety of tissues (Krishnamurthy et al., 2004, Wang et al., 2009, Hewitt 

et al., 2012). Cells bearing senescent markers have also been observed in the 

context of age-related diseases such as diabetes (Sone and Kagawa, 2005) and 

atherosclerosis (Minamino and Komuro, 2007). Although interesting, these data only 

demonstrate a correlation between the accumulation of senescence and age and 

age-related disease. They do not shown how causally senescence is involved in 

ageing. 

Recently the group led by Jan van Deursen attempted to address whether 

senescence was playing a causal role in the ageing process. To do this they created 

a mouse strain where the removal p16Ink4a-positive cells could be induced with 

drug treatment. This was done in the BubR1 progeroid background, a mouse model 

where improper chromosomal segregation leads to a progeroid phenotype. Using 

this model the group was able to show a delay in age-related pathology in the eye, 

adipose and skeletal tissues when p16Ink4a-positive cells were cleared (Baker et al., 

2011). This is an exciting observation and suggests a causal role of senescent cells 
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in the progression of ageing as well as age related disease. Next it is important to 

confirm these results in the context of normal ageing.  

 

1.4 The Ubiquitin Proteasome System 

 

Regulation of protein hemostasis has been heavily implicated in both DNA 

repair and ageing. The ubiquitin proteasome system (UPS) is the principle 

mechanism of protein degradation in the nucleus and cytosol. This chapter will 

introduce the key processes involved in protein degradation via the UPS as well as 

describe its known function in DNA repair pathways and the ageing process. 

In 2004 Avram Hershko, Aaron Ciechanover and Irwin Rose received the 

Nobel prize in chemistry for their work in discovering the ubiquitin-proteasome 

system (UPS) reviewed in (Herrmann et al., 2007). The exact mechanisms by which 

proteolysis was occurring remained unknown until key experiments revealed the 

majority of protein degradation was occurring independently of the lysosomal 

compartment and required  adenosine triphosphate (ATP) reviewed in (Ciechanover, 

2009). Interestingly, it was shown that proteolysis needs at least two constituents: 

one with protease activity and the other a 8.5-kDa heat-stable protein. These 

components were later recognized as the proteasome and ubiquitin, respectively 

(Arrigo et al., 1988, Waxman et al., 1987).  

The UPS is active in both the cytoplasm and nucleus and is responsible for 

the degradation of short-lived, soluble proteins. The UPS is thought to be 

responsible for the degradation of around 90% of nuclear and cytoplasmic proteins. 

Tagging of target proteins with ubiquitin serves to make the protein degradation via 

the UPS highly selective. Through the tight regulation of protein levels, the UPS has 

been shown to regulate a plethora of cellular processes such as: protein 

homeostasis, cell-cycle, signal transduction, DNA repair and many more (Glickman 

and Ciechanover, 2002). 
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Figure 1-4: Schematic representation of the ubiquitination cascade and the 

proteasome. (A) The proteasome: composed of the catalytic 20S core particle (CP) 

and the 19S regulatory particle (RP). (B) The ubiquitination cascade: involving 

enzymes E1 (ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzyme), E3 

(ubiquitin-ligase). A series of ubiquitination events tag substrates with polyubiquitin 

chains, selectively targeting them for degradation via the UPS. Figure adapted from 

(Hewitt et al., 2015).  

  



Chapter1. Introduction 
 

19 

1.4.1 Ubiquitin-dependent protein targeting 

 

Proteins are targeted for degradation via the proteasome by the tagging of 

ubiquitin to lysine residues. This process is mediated by a series of enzymatic 

reactions involving E1, E2 and E3 enzymes that activate, transfer and conjugate 

ubiquitin respectively (Jentsch, 1992). It has been shown that the labelling of a 

protein substrate with one ubiquitin molecule at one or many lysine residues (mono-

ubiquitylation) is insufficient to mediate targeting to the UPS for degradation. Instead, 

multiple rounds of ubiquitylation of the same lysine residue occur, leading to a poly-

ubiquitylated substrate and successful targeting of the substrate to the UPS for 

degradation  (Thrower et al., 2000). 

This process of polyubiquitination gives the UPS an externally high degree of 

specificity. The numerous E1 enzymes present in mammalian cells can interact with 

all known E2 enzymes. E2 enzymes, however, can only act with a subset of E3 

enzymes. Moreover, E3 enzymes have to interact directly with protein substrates in 

order to perform ubiquitin conjugation, a step which confers further specificity as 

each E3 enzyme is only able to interact with a limited number of substrates (David et 

al., 2011).Ubiquitin contains numerous lysine residues on positions 6, 11, 27, 31, 33, 

48 and 63 that are susceptible to self-ubiquitylation reactions. The ability of ubiquitin 

to self-oligomerise via different linkages further contributes to the complexity and 

diversity conferred by tagging of protein substrates with polyubiquitin chains. 

Polyubiquitin chains comprised of four or more ubiquitin molecules have been 

identified as a robust signal to target substrates to the proteasome (Thrower et al., 

2000). Poly-ubiquitylation mediated by K11, K29 and K63 linkages have all been 

shown to mediate proteasomeal targeting of protein substrates (Thrower et al., 

2000). Interestingly, K11 ubiquitin linkage appears to be particularly important in 

regulating the turnover of proteins that regulate the cell cycle (Jin et al., 2008). 
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1.4.2 The molecular architecture of the proteasome 

 

The transport of polyubiquitinated substrates to the proteasome are as yet, 

poorly understood. The 26S proteasome is a large ATP-dependent protease 

complex made from two main components, the catalytic 20S core particle (CP) and 

the 19S regulatory particle (RP). Entry of ubiqutinated substrates to the CP is 

controlled by the RP. Upon entry to the CP proteins are subjected to cleavage 

reactions that result in the degradation of substrates to oligopeptides that are 

released into the cyto or nucleoplasm (Peters et al., 1993).     

The CP comprises a total of 28 subunits that are arranged in a barrel- like 

structure that is made from four ring structures, containing seven subunits per ring. 

The two outermost rings are made up from α-subunits while the two innermost rings 

are made from β subunits (Figure 1-4B). These outer α-rings are thought to serve as 

a gate controlling the entry of protein substrates into the inner chamber formed by 

the β-rings. It is within this catalytic chamber that trypsin, caspase and chymotrypsin-

like catalytic reactions degrade proteins (Heinemeyer et al., 1997). Different subunit 

compositions of the β-ring inner chamber confer further specificity of the proteolytic 

activity of the UPS (Nandi et al., 2006). 

Entry of ubiquitylated proteins into the CP is controlled by the RP which 

regulates the opening and closing of the α-ring structures, acting as a gate to the CP. 

The RP is formed from 19 subunits arranged to form lid and base structures. The 

base is formed from 4 non-ATPase and 6 ATPase subunits (referred to as Rpn 1-2, 

10 and 12 and Rpt 1-6, respectively) . This ATPase activity is required to provide 

energy required for the de-ubiquitylation and protein unfolding required to facilitate 

entry of protein substrates into the 20S CP (Nandi et al., 2006). 
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1.4.3 DNA damage and the UPS 

 

 The controlled recruitment, retention and disassembly of proteins at the site of 

damaged DNA are essential for the correct execution of DNA repair pathways. The 

link between DNA damage repair and the UPS was first suggested when Jentsch et 

al showed that the DNA repair gene Rad6 in Saccharomyces cerevisiae encoded a 

ubiquitin-conjugating enzyme (Jentsch et al., 1987). Since then the study of the UPS 

in the context of many DNA repair pathways has expanded massively. In keeping 

with the focus of this thesis, the role of the UPS in DSB repair will be reviewed 

below. 

Crosslinking and CHIP analysis have shown the presences of subunits of the 

26s proteasome at DSBs, suggesting that proteolysis is occurring alongside DSB 

repair (Krogan et al., 2004). Components of both NHEJ and HR have been shown to 

interact with the proteasome, such as DNA polymerase IV (Pol4) and Rad52 (Tseng 

and Tomkinson, 2002, Krogan et al., 2004). In yeast, HR protein Rad52 has been 

shown to associate with Sem, a component of the 19s proteasome. Following 

knockout of Rad52 the recruitment of Sem1 to DSBs is reduced. Furthermore, 

knockout of Sem1 in yeast capable of only HR or NHEJ, but not both, conferred 

impaired cell growth suggesting that Sem1 and the proteasome are required for the 

successful repair of DSBs by HR (Krogan et al., 2004). Interestingly, the human 

homolog of yeast Sem1 Deleted in Split hand/Split foot 1 (DSS1), is also part of the 

human 19s proteasome and implicated in HR through its interaction with Brca2 

(Marston et al., 1999). Similar to the knockout of BRCA2 (Yuan et al., 1999b), 

knockdown of DSS1 significantly reduces HR in human cells, inhibition of the 

proteasome result in a smaller reduction on HR, suggesting DSS1 has a role in HR 

beyond proteolysis (Kristensen et al., 2010). 

 HR appears to be more reliant on proteasome activity than NHEJ. 

Gudmundsdottir et al observed that treatment with the proteasome inhibitor 

Epoxomicin in an ES cell line lead to a shift towards the error-prone single-strand 

annealing pathway from the error-free gene conversion pathway in the repair of 

repetitive elements (Gudmundsdottir et al., 2007). Similarly it has been observed that 

inhibition of the proteasome with MG132 and LC caused a reduction in HR-

dependent DSB repair and only had a modest effect on NHEJ (Murakawa et al., 

2007). Moreover Ku-70 deficient cells that have impaired NHEJ show reduced repair 
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kinetics in response to X-Ray induced DSBs when the proteasome is inhibited with 

MG132 treatment. Treatment of Hela cells with MG132 inhibits the formation of 

RAD51 foci and Brca1 foci in response to X-ray irradiation suggesting that the 

proteasome is involved in the early stages of HR, prior to the formation of the Brca2-

DSS1 complex (Murakawa et al., 2007). 

 Due to the need for the controlled assembly and degradation of protein 

complexes in order to execute successful DNA damage repair programs it is 

unsurprising that proteasomal degradation has been shown to be integral to many 

stages of this process.  
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1.4.3 UPS and Ageing  

 

 The accumulation of damaged and misfolded proteins is well documented 

during the ageing process. This loss of protein homeostasis has been suggested to 

effect the ageing process directly, as well as influence many age associated 

diseases (Lopez-Otin et al., 2013). The UPS is a key component of the proteostasis 

network that has been shown to decline in function with age. This dysfunction has 

been shown to occur at a number of levels such as a decreased expression of 

proteasomal subunits(Wooten et al., 2000), aberrant proteasome 

composition(Ferrington et al., 2005),  proteasome disassembly (Ferrington et al., 

2005) or inactivation via interaction with protein aggregates (Grune et al., 2004). This 

can set up a catastrophic cycle where reduced proteostasis results in increased 

aggregate formation which in turn can inhibit proteasomal degradation further.  This 

cycle was highlighted recently in a study by Andersson et al where they showed by 

enhancing protein disaggregation they could restore functional proteasome activity in 

aged yeast (Andersson et al., 2013). 

 A decline in proteasome function has been observed in many mammalian  cell 

types and tissues (Bulteau et al., 2000, Carrard et al., 2003, Chondrogianni et al., 

2003, Petropoulos et al., 2000, Wagner and Margolis, 1995, Bardag-Gorce et al., 

1999, Bulteau et al., 2002, Conconi et al., 1996, Husom et al., 2004, Keller et al., 

2000, Shibatani et al., 1996). Interestingly, a decline in proteasome function is also a 

common feature of cellular senescence (Chondrogianni et al., 2003). Furthermore, 

treatment of fibroblasts with proteasome inhibitors leads to a shortened replicative 

life span and the induction of s senescent like phenotype (Torres et al., 2006). In 

addition, transgenic mice with reduced proteasomal chymotrypsin-like activity have a 

reduced lifespan and exhibit a premature ageing phenotype as well as enhanced 

age-related metabolic disorders such as obesity and fat accumulation in hepatic cells 

(Tomaru et al., 2012).    

 Notably, there have been several reports that proteasome activity correlates 

with longevity in long lived animals such as the naked mole rat (Perez et al., 2009) 

and the giant clam (Ungvari et al., 2013). Interestingly, proteasome activity is also 

increased in particularly long lived humans. A study by Chondrogianni et al found 

that the levels of several proteasomal subunits, as well as proteasomal activity in 
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fibroblasts derived from centenarians was comparable to younger, rather than older 

control donors (Chondrogianni et al., 2000). 

 The link between proteasome activity and longevity has been further 

strengthened by studies taking a genetic approach. For example, ectopic expression 

of 19S proteasome subunits has been shown to extend lifespan in model organisms 

such as D. melanogaster and C. elegans. Overexpression of Rpn11 reduces the 

age-dependent reduction of 26S/30S proteasome activity and leads to an extension 

of lifespan in D. melanogaster. Additionally, increased Rpn11 levels are able to 

suppress expanded PolyQ-induced progressive neurodegeneration (Tonoki et al., 

2009). Similarly, In C. elegans overexpression of Rpn6 confers protection against 

toxic aggregates in PolyQ-disease models and extends lifespan under conditions of 

proteotoxic stress   (Vilchez et al., 2012). Interestingly, overexpression of the 20S 

proteasome subunit β5 in human fibroblasts leads to increased numbers of 

proteasomes and confers resistance to oxidative stress, delaying the onset of 

cellular senescence (Chondrogianni et al., 2005). Similarly, overexpression of 

another protein involved in proteasome assembly, the proteasome chaperone 

POMP, increases proteasome activity and protects against oxidative stress in human 

fibroblasts (Chondrogianni and Gonos, 2007).  

 Increasing evidence suggests that the functional decline of the proteasome 

and accumulation of damaged proteins are indeed determinants of the ageing 

process. Long-lived individuals (centenarians), as well as long lived model 

organisms positively correlate with increased functional proteasome activity. 

Moreover, genetic manipulations that enhance proteasome activity not only confer 

resistance to proteotoxicity and oxidative stress, they also extend lifespan.  These 

data, taken together, indicate that proteasomal activity plays a key role in stress 

resistance, DNA damage repair, cellular senescence and organismal ageing.  
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1.5 Autophagy 

 

 Like the UPS, autophagy is a cellular degradation pathway that has been 

closely linked to the maintenance of cellular homeostasis. Autophagy has also been 

implicated in stress resistance, DNA damage repair, cellular and organismal ageing. 

Autophagy translates from the Greek “Auto” meaning oneself and “Phagy” meaning 

to eat and describes catabolic cellular degradation pathways involving delivery of 

cargo to lysosomes. There are three main described autophagic pathways present in 

eukaryotic cells shown in Figure 1-5. These include: microautophagy (direct 

engulfment and degradation of portions of the cytoplasm via invagination of the 

lysosome (Mijaljica et al., 2011), chaperone-mediated autophagy (direct 

translocation of targeted proteins containing the KFERQ motif into the lysosome via 

the LAMP-2A receptor) and macroautophagy (formation of a double membrane 

around cytoplasmic proteins and organelles which seals to form organelles known as 

autophagosomes). These autophagosomes are then trafficked to lysosomes where 

they fuse to deliver their cargo for degradation by lysosomal enzymes (Bejarano and 

Cuervo, 2010). Since the discovery of autophagy-related (ATG) proteins in yeast, the 

machinery of autophagy has been dissected in great detail. A key breakthrough in 

understanding of the molecular machinery came from genetic studies in yeast in 

which 35 ATG genes have been identified. These are genes that are essential 

canonical autophagosome formation (Nakatogawa et al., 2009). 
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Figure 1-5: Schematic diagram of the three main forms of autophagy in 

mammalian cells. (A) Formation of double membrane vesicles that then travel along 

microtubules and fuse with the lysosome (Macroautophagy). (B) Invagination of the 

lysosomal membrane to engulf regions of the cytoplasm (Microautophagy). (C) 

Selective uptake of proteins containing KFERQ motif across the lysosomal 

membrane via LAMP-2A mediated by chaperones Hsc70 and LysHsc-70 

(Chaperone Mediated Autophagy) Abbreviations: hsc70: heat-shock cognate protein 

of 70 KDa, LAMP-2A: lysosome associate membrane protein type 2A. Figure 

adapted from (Hewitt et al., 2015).  
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1.5.1 Chaperone-mediated autophagy 

 

 Unlike the other forms of autophagy, CMA is an exclusively selective 

degradation process. As the name may suggest, CMA is aided by a protein 

chaperone called heat shock cognate protein (hsc70). The interaction of hsc70 with 

cytosolic protein substrates is mediated by a consensus pentapeptide motif KFERQ 

found in all CMA-targeted proteins (Figure 1C). Hsc70 alone or in complex with a 

protein substrate is able to bind to a plethora of co-chaperones through interactions 

that are thought to participate in specific substrate recognition, substrate delivery, 

protein unfolding and the final protein translocation across the lysosomal membrane. 

Delivery of the protein substrate to the lysosome is facilitated by binding to the 

cytosolic tail of the transmembrane protein, lysosomal-associated membrane protein 

2A (Lamp-2A). The substrate protein is then unfolded and transported into the lumen 

of the lysosome via a poorly understood mechanism. Following translocation the 

substrate is rapidly degraded by hydrolytic enzymes (Ravikumar et al., 2010). 

 The mechanisms that regulate CMA activation, substrate recognition, 

transport and translocation are not well understood. Evidence suggests, however, 

that regulation of LAMP-2A expression levels is particularly important for efficient 

CMA and indeed the level of lysosome-associated LAMP-2A directly correlates with 

CMA activity. Thus, induction of CMA by oxidative stress has been shown to induce 

LAMP-2A transcription and in CMA-activating conditions the protein half-life of 

LAMP-2A increases, thus enhancing the CMA response. In addition, during 

prolonged CMA activation, LAMP-2A can be transported from the lysosomal 

membrane into the matrix but can seemingly be retrieved from an intact pool of 

LAMP-2A and reinserted back into the lysosomal membrane, again ensuring a 

robust maintenance of CMA response (Cuervo and Dice, 2000b). 

  Interestingly, while only approximately 25 proteins have been identified as 

substrates for CMA, the targeting motif, KFERQ is relatively common in cytosolic 

proteins (approximately 30%). Proteins that have been confirmed to be CMA 

substrates participate in a range of cellular processes including glycolysis, 

transcription and proteasome-based protein degradation. CMA is therefore an 

important participant in the general turnover of proteins required to maintain cellular 

homeostasis. 
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1.5.2 Microautophagy 

 

Direct delivery of cytoplasmic contents, either by lysosomal membrane 

invagination or protrusion is referred to as microautophagy (Figure 1-5B). The 

specific regulatory mechanisms are poorly understood in mammalian cells but 

seminal work in yeast indicates that microautophagy can mediate degradation of 

cytoplasmic contents via both non-selective and selective mechanisms, reviewed in 

(Mijaljica et al., 2011). Indeed, direct lysosomal-engulfment of mitochondria and 

nuclear fragments have been observed in yeast and are referred to as 

micromitophagy (Li et al., 2012b) and micronucleophagy (Boya and Codogno, 2012), 

respectively. Since little is known about any specific regulators of microautophagy, 

the primary tool for investigating this process is electron microscopy, limiting the 

scope for experimentation. Despite this, the process of microautophagy was 

characterised to occur via five main steps: 1) invagination of the lysosomal 

membrane, 2) vesicle formation, 3) vesicle expansion, 4) vesicle scission and 5) 

vesicle degradation (Li et al., 2012b). Due to the poorly defined molecular 

mechanisms in mammalian cells microautophagy will not be discussed further in this 

chapter except to say that, in yeast models at least, it shares some key upstream 

regulators with macroautophagy including the autophagy-related Atg proteins and 

the potent negative regulator, target of rapamycin (TOR) (Li et al., 2012b). Future 

work will undoubtedly unravel the current mystery that is microautophagy and of 

particular interest will be to identify how common upstream regulators are able to 

influence multiple protein degradation pathways.  

 

1.5.3 Macroautophagy 

 

Macroautophagy is an evolutionarily conserved catabolic process involving the 

formation of double-membrane vesicles (autophagosomes) that engulf cellular 

macromolecules and organelles, which are finally transported along microtubules 

leading to fusion with lysosomes and degradation of their contents (Figure 1-6). It is 

responsible for what is often referred to as bulk degradation; it has the broadest 

range of substrates and is by far the best studied of all three autophagic pathways, 

often being referred to simply as autophagy. Macroautophagy occurs in all cells at 
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basal albeit varying levels and these basal levels are often reflective of cellular 

function and energy demands. The most well-known regulator of macroautophagy is 

the serine/threonine kinase mTOR as part of the macromolecular complex (in 

mammals called mTORC1), which is activated in nutrient-rich, low cellular stress 

conditions and promotes protein translation and cell growth. In these growth-

promoting conditions macroautophagy is largely suppressed. Cellular starvation 

(amino acids and growth factors), in addition to many other cellular stressors such as 

hypoxia and DNA damage, can lead to the inactivation of mTORC1 and 

subsequently activate macroautophagy. This up-regulation of autophagy facilitates 

the removal of unwanted or damaged cellular components and proteins freeing 

molecular building blocks and energy for other cellular processes.  
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1.5.4 Autophagic Machinery 

 
 
 
 
 
 
 
 
 

 

Figure 1-6: Schematic diagram of macroautophagy: Macroautophagy involves 

the sequestration of cytoplasmic contents, such as lipids, organelles and proteins 

into a double-membrane-bound organelle. These structures are called 

autophagosomes and they are transported along the microtubule network towards 

the perinuclear, lysosome-rich microtubule organising centre (MTOC). 

Autophagosomes fuse with lysosomes in a Rab7- and SNARE-dependent manner 

and deliver their contents for hydrolytic degradation. Macroautophagy induction is 

regulated by a number of autophagy related proteins and protein complexes which 

interact sequentially orchestrating the proper initiation, elongation and maturation of 

autophagosomes. Figure adapted from (Carroll et al., 2013). 
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The formation of phagophores (the precursor to autophagosomes) requires 

two protein complexes the Beclin1/Vps34 complex and the ATG1 (or ULK1) 

complex. The ULK1 complex is negatively regulated by mTOR (Jung et al., 2009), 

this is the major regulatory signal for autophagosome formation and will be 

discussed in further detail later in this chapter.  The origin of the autophagosomal 

membrane component is not fully known, however it is likely to come from either 

endoplasmic reticulum, mitochondria, Golgi or the cell membrane (Tooze and 

Yoshimori, 2010). 

The elongation of the double membrane structure, a crucial stage in 

autophagosome formation, involves two ubiquitination like reactions. Firstly, Atg7 

conjugates Atg12 to Atg5, these conjugates then interact non-covalently with Atg16 

to form a complex. The Atg12-Atg5-Atg16 complex associates with phagophores 

during autophagosome formation but dissociates at its completion. The role of this 

protein complex is not yet fully understood, however it is necessary for normal 

autophagosome formation (Lin et al., 2007). Genetic knockout of Atg5 leads to a 

complete abolition of autophagy, however the autophagic machinery is able to 

function even when Atg5-Atg12 conjugate levels are reduced by 90% (Hosokawa et 

al., 2007) indicating that only very low levels of Atg5-Atg12 are required for 

autophagy. Secondly, microtubule-associated protein 1 light chain 3 (LC3) is 

conjugated to the lipid phosphatidylethanolamine (PE) in the phagophore membrane 

by Atg7 and Atg3. Here it is converted from its soluble form LC3-I to its 

autophagosome associated form LC3-II (Yang and Klionsky, 2010).  Detection of 

LC3-II by microscopy or western blotting is often used to measure cellular autophagy 

(Mizushima et al., 2010). Phagophores then elongate and engulf cytoplasmic cargo. 

Following the formation of these LC3-II-positive vesicles (autophagosomes) they are 

trafficked along microtubules towards the late endosome or lysosome. Upon meeting 

the lysosome the two structures fuse and the autophagic cargo is delivered for 

degradation (Mizushima, 2007).  
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1.5.5 Selective Autophagy 

 

Macroautophagy was originally thought to be a non-specific bulk degradation 

pathway, however there is now strong evidence which suggests that autophagy can, 

in fact, be highly specific (reviewed in (Reggiori et al., 2012)). Autophagy has been 

shown to be involved in the selective turnover of many organelles including the 

endoplasmic reticulum (ER) (reticulophagy), peroxisomes (pexophagy), parts of the 

nucleus (nucleophagy), pathogens (xenophagy), protein aggregates (aggrephagy), 

ribosomes (ribophagy) and mitochondria (mitophagy) (Klionsky et al., 2007). This 

quality control role of autophagy requires that it is able to distinguish between 

functional and dysfunctional substrates. The molecular mechanisms underlying this 

substrate selection is relatively unknown. Similarly to the UPS, Ubiquitylation has 

been shown to play a role in this specificity by acting as a signal for selective 

autophagy (Kraft et al., 2010). 
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1.5.6 Regulation of Autophagy 

 

Given the large number of stimuli able to modulate autophagy it is 

unsurprising that numerous signalling pathways are involved in its regulation. One of 

the most important regulators of autophagy is the mTOR pathway.  

 

1.5.6 mTOR pathway 

 

 The mTOR pathway regulates a number of cellular functions such as cell 

growth, protein translation, lipid biogenesis, DNA synthesis, mitochondrial biogenesis 

and autophagy (Wullschleger et al., 2006). mTOR is an atypical serine/threonine 

kinase that exists in functional complexes: mTOR complex 1 (mTORC1) made up 

from the mTOR catalytic domain, regulatory associated protein of mTOR (raptor), G 

protein β-subunit-like protein (GβL), proline-rich Akt substrate of 40 kDa (PRAS40). 

mTORC1 is rapamycin sensitive and is the branch of the mTOR pathway resposible 

for the regulation of autophagy (Levine and Kroemer, 2009). mTOR complex 2 

(mTORC2) is composed of mTOR, rapamycin-sensitive companion of mTOR (rictor), 

GβL, SAPK-interacting protein 1(SIN1) and protein observed with rictor (PROTOR). 

mTORC2 is not believed to be a direct regulator of autophagy (Jung et al., 2010). 
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Figure 1-7: mTOR regulation of autophagy. The  phosphatidylinositol 3-kinase 

(PI3K)/mTOR pathway is activated by the binding of insulin or growth factors to cell 

surface receptors. Activated PI3K converts Phosphatidylinositol 4,5-bisphosphate 

(PIP2)  to Phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which recruits and 

activates Akt. Akt then inactivates TSC1/2 leading to activation of Rheb and 

mTORC1.  AMPK senses changes in the adenosine triphosphate (ATP)/ adenosine 

monophosphate (AMP) ratio and directly phosphorylates tuberous sclerosis 1 

(TSC1) tuberous sclerosis 2 (TSC2) activating it, which results in inactivation of 

mTORC1. Amino acids can activate mTORC1 via Rag GTPases and Rheb and 

supress autophagy. mTORC1 suppresses autophagy via phosphorylation-dependent 

inhibition of ULK1 and Atg13. Inhibition of mTORC1, such as that caused by 

rapamycin or starvation, leads to dissociation of mTORC1 from the ULK1-Atg13-200 

kDa FAK-family interacting protein (FIP200) complex resulting in a 

dephosphorylation-dependent activation of autophagy. 
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There are many different cellular signals that converge to modulate the 

mTORC1 pathway such as glucose, energy status, amino acids, growth factors and 

different forms of stress (Sarbassov et al., 2005). Amino acids and growth factors 

activate mTORC1 via Rag GTPases, these bind raptor and target mTOR to cellular 

compartments that contain its activator, small GTPase Rheb (Sancak et al., 2008). 

Further light was shone on this process when it was shown that amino acids induce 

recruitment of mTORC1 to lysosomal membranes via a trimetric complex known as 

Ragulator. This recruitment places mTORC1 in close proximity to membrane bound 

Rag GTPases with the Ragulator acting as a docking site, allowing the activation of 

mTOR via Rheb (Sancak et al., 2010). It has also been suggested that constitutive 

targeting mTORC1 to the lysosomal membrane eliminates sensitivity to amino acids 

(Sancak et al., 2010). This highlights this translocation event as an essential part in 

the regulation of mTORC1 by amino acids. 

Recently the autophagy adaptor protein p62 has been shown to be an integral 

part of the mTORC1 complex and is necessary to mediate amino acid signaling. p62 

interacts with mTOR and raptor in an amino acid dependent manner. Additionally, 

p62 is able to bind Rag proteins favoring the formation of the active Rag 

heterodimer. p62 co-localises with Rags at the lysosme and has been shown to be 

required for targeting mTORC1 to the lysosome membrane (Duran et al., 2011). 

The Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) pathway is a 

major signalling cascade that feeds into mTORC1. Class 1a PI3K is activated by the 

binding of insulin and growth factors to cell surface receptors. Following this, the 

regulatory subunit facilitates activation of the p110 catalytic subunit by direct 

interaction with phosphotyrosine residues of activated receptors. Once activated, 

PI3K converts the plasma membrane lipid phosphatidylinositol-4,5-bisphosphate 

(PIP2) to phosphatidylinositol-3,4,5-trisphosphate (PIP3), wherein pleckstrin 

homology (PH) domain proteins such as AKT and phosphoinositide-dependent 

kinase 1 (PDK1) are recruited to the plasma membrane (Cantley, 2002). Activation 

of PI3K leads to the recruitment and activation of AKT which in turn phosphylates 

and deactivates TSC2. TSC2 inhibits mTOR through Rheb (Ras homolog enriched in 

brain). Once TSC2 is inactivated, Rheb is maintained in its GTP-bound state leading 

to the activation of mTOR (LoPiccolo et al., 2008). 

MTORC1 can also act as a sensor for changes in cellular energy via AMP-

activated kinase  (AMPK) (Meijer and Codogno, 2006). AMPK senses changes in the 
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ratio between ATP and AMP and directly phosphorylates TSC2 facilitating the 

subsequent additional phosphorylation by glycogen synthase kinase 3 (GSK-3) 

resulting in an inhibition of mTORC1 signaling (Inoki et al., 2006).   

 Activation of mTORC1 leads to phosphorylation of two downstream effectors: 

p70 S6 Kinase (p70S6K) and translation initiation factor 4E binding protein-1 

(4EBP1) at Thr389/Thr421/Ser424 and Thr37/Thr46, respectively (Han et al., 1995). 

This phosphorylation leads to activation of cell growth and protein translation. The 

activity of mTORC1 can be inhibited by rapamycin, an antibiotic originating from 

Streptomyces hygroscopicus. In mammalian cells rapamycin exerts its effect by 

forming a complex with the immunophilin FK506-binding protein of 12 kDa 

(FKBP12). This stabilises the mTOR-raptor interaction and inhibits mTOR kinase 

activity (Kim et al., 2002). Neither p70s6K or 4EBP1 are directly involved in the 

regulation of autophagy, which will be expanded upon on the following section. 

1.5.7 mTOR regulation of autophagy 

 

Activation of mTORC1 is the main negative regulator of autophagy 

(Sarbassov et al., 2005) (Figure 1-7). Inhibition of mTORC1 by rapamycin is a potent 

inducer of autophagy. Nutrient deprivation also activates autophagy via stabilisation 

of the mTOR-raptor complex. This activation is thought to serve to recycle 

intracellular components and provide an alternative source of amino acids 

(Ravikumar et al., 2010). The importance of the up-regulation of autophagy as an 

alternative means of supplying cellular energy is highlighted in Atg5 -/- mice. Mice 

lacking Atg5 are autophagy deficient and are unable to survive the neonatal 

starvation period and die shortly after birth (Kuma et al., 2004). Atg5 -/- mice are only 

able to survive early embryogenesis due to maternally inherited Atg5. Eliminating 

maternal Atg5 protein with oocyte-specific Atg5-knockout results in embryonic 

lethality (Tsukamoto et al., 2008). The exact mechanism for which autophagy is 

required is not yet understood, however it has been suggested that it could be 

needed to meet the high demand for amino acids required for protein synthesis at 

this early stage in embryogenesis (Tsukamoto et al., 2008).  

  

Experiments initially carried out in yeast began to shine light onto the 

mechanisms linking TOR signalling to autophagy. It is thought that Atg1 and the 
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Atg1-Atg13-Atg17 complex act downstream of TOR to regulate autophagosome 

formation (Kamada et al., 2000). More recently studies have identified some of the 

key molecular components acting downstream of mTORC1 in the regulation of 

autophagy in mammalian cells. Similar to yeast, the ULK1/2-Atg13-FIP200 complex 

is involved in the initiation of autophagy downstream of mTORC1 (Jung et al., 2009).  

Under nutrient rich conditions autophagy is inhibited by direct interaction of mTOR 

with the ULK1/2-Atg13-FIP200 complex and mTORC1 dependent phosphorylation of 

Atg13 and ULK1, which results in a reduction in kinase activity. Conversely, following 

starvation, mTOR dissociates from the complex resulting in a reduction of mTOR 

dependent phosprolyation of Atg13 and ULK1. This causes a dephosphorylation-

dependent increase in kinase activity of ULK1 resulting in ULK1 mediated 

phosphorylation of Atg13 and FIP200 leading to an induction of autophagy (Jung et 

al., 2010, Kim et al., 2011, Egan et al., 2011).  

 

 1.5.8 mTOR-independent regulation of autophagy  

 

 The first study to show mTOR independent regulation of autophagy was 

published by Sakar et al in 2005, where they show that autophagy is negatively 

regulated by intracellular inositol and inositol 1,4,5-trisphosphate (IP3) levels (Sarkar 

et al., 2005). This pathway is initiated by G protein coupled receptor activation of 

phosopholipase C (PLC), this hydrolyzes PIP2 to form IP3 and diacylglycerol (DAG) 

(Berridge, 1987). IP3 is then able to bind to its receptors (IP3R) on the endoplasmic 

reticulum (ER), causing the release of stored calcium, activating a large number of 

cellular responses (Berridge et al., 2003). Autophagy can be induced by a number of 

inositol-lowering agents, this activation is dependent on downstream levels of IP3 as 

pharmacological interventions that raise levels of IP3 such as myo-inositol or an 

inhibitor of prolyl oligopeptidase prevent the induction of autophagy (Sarkar et al., 

2005). Moreover, direct reduction of IP3 such as that caused by over-expression of 

cytosolic IP3 kinase A, which phosphorylates IP3 to inositol 1,3,4,5-tetrakisphosphate 

(IP4), induces autophagy (Williams et al., 2008). IP3R has been shown to regulate 

the Beclin 1 complex and Xestospongin B, an IP3R antagonist, disrupts the 

interaction of Beclin 1 and IP3R/Bcl-2 complex causing the induction of autophagy 

(Vicencio et al., 2009)  
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1.5.9 Regulation of autophagy by ROS 

  

Aberrant levels of reactive oxygen species (ROS) are a common intracellular 

stress that leads to the induction of autophagy.  Starvation, a potent inducer of 

autophagy, has been shown to increase ROS in an PI3K-dependent manner, whilst 

treatment with antioxidants reduces the ability of starvation to induce autophagy 

(Scherz-Shouval et al., 2007). ROS has been suggested to affect autophagy directly 

through interaction with Atg4. It has been shown that oxidation of a conserved 

cysteine residue in  position 81 of Atg4 inhibits its catalytic activity preventing the 

cleavage of LC3 from the autophagosomal membrane thus promoting lipidation of 

LC3 and inducing autophagy (Scherz-Shouval et al., 2007). Interestingly the down 

regulation of ROS with antioxidants causes a down regulation of basal autophagy, 

consistent with ROS playing a positive regulatory role on autophagy (Scherz-

Shouval and Elazar, 2011)   
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1.5.10  Autophagy Adaptor Proteins 

 

Targeting of substrates for selective degradation via autophagy usually 

requires specific cargo-recognising adaptor molecules. These adaptor molecules 

serve to couple substrates with LC3 in pre-autophagosomal membranes.  There are 

a number of different adaptor molecules involved in the targeting of different 

substrates, however common to all is the ability to interact with ubiquitinated 

substrates and  LC3 (Johansen and Lamark, 2011).  

1.5.10.1 p62 

 

p62 also known as sequestosome 1 (SQSTM1), A170 or ZIP is a 

multifunctional protein induced in response to a number of cellular stresses. It serves 

as an autophagy adaptor selectively targeting polyubiquitinated proteins for 

degradation (Pankiv et al., 2007). It has also been shown to shuttle ubiquitinated 

substrates for degradation via the proteasome (Seibenhener et al., 2004), thus, 

playing a central role in cellular protein homeostasis. p62 has also been shown to act 

as part of many signalling pathways (Sanz et al., 1999, Sanz et al., 2000a, Joung et 

al., 1996). Mutations, the sqtsm1 (p62) gene have been linked to a number of 

diseases, such as: Paget’s disease of bone (Laurin et al., 2002, Hocking et al., 

2002), familial and sporadic ALS (Teyssou et al., 2013). Interestingly recent research 

has shown dysregulation of p62 is common in many age-related pathologies such as 

neurodegeneration and cancer.  

Structure  

sqtsm1 (p62) gene is highly conserved among vertebrates. The human 

sqtsm1 (p62) gene is located on chromosome 5q35 and is comprised of 16Kb of 

genomic DNA. Sqtsm1 contains 8 exons that encode a 440 amino acid protein. 

There are two protein isoforms of p62 arising from three mRNA variants. Protein 

isoform1 (440aa) is encoded by transcript variant 1 while protein isoform2 (356aa) is 

encoded by transcripts variant 2 and 3 which have the same coding sequence which 

lacks a portion of the 5’coding region compared to transcript variant 1 resulting in a 

slightly shorter N terminus in isoform2 compared to isoform1. Transcript variants 2 

and 3 only differ slightly in their 5’UTR. Differences in the function and expression of 

these isoforms are not yet fully understood but are beginning to be investigated. A 
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recent paper from the Handa Laboratory suggests that Isoform1 is protective against 

oxidative stress while Isoform2 is transcriptionally active it is translationally inactive.    

(Wang et al., 2014). p62 has many conserved  domains that mediate its multiple 

cellular functions (NCBIGeneID:8878) (Figure 1-1-8). 
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Figure 1-1-8: Schematic representation of domain structure of p62: p62 consists 

of: an N-terminal Phox and Bem1 (PB1) domain (which mediates interaction with: 

protein kinases (aPKC, MEK5, MEKK3), NBR1 and oligomerisation), a zinc finger 

(ZnF) domain (which mediates interaction with RIP1), a (TRAF6) binding (TB) 

domain, two nuclear localization signals (NLS) and one Nuclear Export Signal (NES) 

(which mediate shuttling of p62 in and out of the nucleus), LC3 interacting region 

(LIR), KEAP1-interacting region (KIR) and a Ubiquitin Association (UBA) domain 

responsible for binding to ubiquitin. 

  



Chapter1. Introduction 
 

42 

The N-terminal Phox and Bem1 (PB1) domain (aa 20–102) allows p62 to 

interact with other PB1 containing proteins as well as to oligomerise (Lamark et al., 

2003). The PB1 domain of p62 mediates interactions of p62 with several protein 

kinases such as atypical protein kinase C (aPKC) (Joung et al., 1996) and the MAPK 

kinase MEK5 (Lamark et al., 2003)-one of the ways in which p62 participates in 

signal transduction cascades. Moreover, PB1-mediated oligomerisation has been 

shown to be central to the role of p62 in the selective degradation of protein 

substrates via autophagy (Itakura and Mizushima, 2011, Pankiv et al., 2007). p62 

has also been shown to interact with the autophagy adaptor NBR1 via its PB1 

domain (Kirkin et al., 2009).  

The C-terminal Ubiquitin Association (UBA) domain (aa 389–434) is 

necessary for p62 to bind to ubiquitinated proteins and organelles (Seibenhener et 

al., 2004, Vadlamudi et al., 1996, Geisler et al., 2010). The UBA functional domain is 

a motif of 45 amino acids which is conserved among proteins with the ability to bind 

to ubiquitin (Ub) (Hofmann and Bucher, 1996). The structure of the UBA has been 

elucidated using nuclear magnetic resonance and shows a compact three-helix 

bundle, with a hydrophobic surface on one side which is the proposed site for its 

interaction with Ub (Dieckmann et al., 1998, Bertolaet et al., 2001). p62 has an 

increased affinity for lysine 63 (K63) poly-ubiquitin chains over other forms of 

ubiquitination (Seibenhener et al., 2004). K63 linkage is believed to promote the 

formation of protein inclusions as well as target them for degradation predominantly 

via autophagy (Tan et al., 2008). This view however has been challenged by the 

Layfield laboratory where K63 affinity was not observed. Instead they observe 

equivalent affinity of p62 for K63 and K48 poly-ubiquitin chains (Long et al., 2008). 

The affinity of p62 for ubiquitin can be modulated by the phosphorylation of the UBA 

on Ser-403 by Casein Kinase II (CK2), increasing its binding to poly-ubiquitin and 

promoting the formation of p62 inclusion bodies. These p62-rich inclusion bodies or 

“sequestosomes” have been proposed to serve as signalling hubs and can be 

cleared by autophagy (Matsumoto et al., 2011).  

p62 contains a zinc finger (ZnF) domain (aa 122–167) that primarily facilitates 

the involvement of p62 in a number of cytoplasmic signalling cascades. The ZZ 

domain is necessary for the binding of p62 to the receptor-interacting protein 1 

(RIP1) kinase in the TNF receptor (TNF-R) complex. This binding allows the 

signalling of TNF-R through protein kinase C (PKC) and the activation of nuclear 
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factor-kappaB (NFB) (Sanz et al., 1999). Aside from mediating the role of p62 in a 

number of cytoplasmic signalling cascades the ZZ domain has also been implicated 

in the association of p62 with a number of transcription factors in the nucleus such 

as the chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) 

(Marcus et al., 1996) and has been suggested to stimulate transcription through the 

SV40 enhancer (Rachubinski et al., 1999) 

p62 binds to TRAF6 via the TNFα receptor-associated factor 6 (TRAF6) 

binding (TB) domain. This p62-TRAF6 interaction is required for NFB signalling 

from the interleukin 1 receptor (IL-1R) (Sanz et al., 2000b) and nerve growth 

factor  receptor (NGF-R) (Wooten et al., 2000). Following stimulation, p62 binds 

TRAF6 via its TB domain and aPKC via its PB1 domain, serving as a scaffold that 

brings these proteins into close spatial proximity which facilitates kinase activation. 

The presence of two nuclear localization signals (NLS) and one Nuclear 

Export Signal (NES) was first reported by Pankiv et al. (Pankiv et al., 2010). They 

observed that p62 shuttles rapidly between the cytoplasm and the nucleus and that 

upon inhibition of nuclear export p62 lead to an accumulation of polyubiquitinated 

proteins in promyelocytic leukemia (PML) bodies. They also observed that nuclear 

p62 contributed to the formation of proteasome-containing degradative 

compartments (Pankiv et al., 2010). It was also previously suggested that p62 may 

enter the nucleus by binding other NLS containing proteins such as aPKC (Geetha 

and Wooten, 2002), The authors infer the presence of a NES signal as p62 

accumulates in the nucleus in response to inhibition of exportin 1 with Leptomycin B 

treatment. They also claim that p62 does not contain its own NLS. In light of more 

recent work by Pankiv et al. it may be necessary further study whether p62 is able to 

enter the nucleus bound to another NLS containing protein, independently of its own 

NLS domain.     

 The LC3 interacting region (LIR) (aa 321–342) facilitates the interaction 

between p62 and LC3, a key component of the autophagosome membrane. This 

domain is key to the function of p62 as an autophagy adaptor protein, and is required 

for the degradation of p62, by autophagy (Pankiv et al., 2007). Interestingly, it has 

been shown that p62 is still able to localise to the nucleation point of 

autophagosomal membranes in the absence of the LIR domain. This interaction has 

instead been shown to be dependent on the PB1 domain and oligomerisation 
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(Itakura and Mizushima, 2011). It is however possible that this occurs due to PB1 

dependent interactions with other LIR domains containing proteins such as NRB1.   

The Kelch-like ECH-associated protein (Keap1) interacting region (KIR) (aa 

346–355) mediates the association of p62 with Keap1 (Jain et al., 2010, Komatsu et 

al., 2010, Lau et al., 2010). The binding of p62 to Keap1 occurs on a site essential 

for Keap1 to bind nuclear factor (erythroid 2)-like 2 (Nrf2). This binding interrupts the 

repressor function of Keap1 on Nrf2 leading to its activation. Although the affinity of 

p62 for Keap1 is lower than that of Nrf2 (Komatsu et al., 2010), inhibition of 

autophagy and over expression of p62 have both been shown to sequester Keap1 

leading to the activation of Nrf2 (Jain et al., 2010, Komatsu et al., 2010). The ability 

of p62 to bind and sequester Keap1 also requires the PB1 domain and the ability of 

p62 to form oligomers (Jain et al., 2010). 

 

1.5.10.2 Regulation of intracellular levels of p62  

 

Transcriptional regulation 

 

Nrf2 is one of the main players in the transcriptional regulation of p62. Nrf2 is 

a member of basic leucine zipper (bZIP) family of transcription factors. Nrf2 is a key 

regulator of the antioxidant response and upon increased oxidative stress 

translocates to the nucleus where it binds to the antioxidant-responsive element 

(ARE motif) located in the p62 promoter to induce expression of p62 mRNA (Jain et 

al., 2010). p62 is a positive regulator of Nrf2 and this sets up a positive feedback 

loop in which p62, through activation of Nrf2, is able to drive its own transcription 

(Jain et al., 2010). Additionally, analysis of the 5’-flanking region of the p62 promoter 

has revealed binding sites for numerous transcription factors, such as NF-κB, Ets-1 

AP-1, and SP-1 (Vadlamudi and Shin, 1998). Expression of p62 has indeed been 

shown in response to transcription other than that induced from Nrf2 with p62 

expression increasing very rapidly (30 mins - 2 hours) in response to stimuli such as 

calcium, interleukin 3 (IL-3) and phorbol 12-myristate 13-acetate (PMA) (Lee et al., 

1998).  Interestingly, RAS-transformed fibroblasts have been shown to have high 

levels of p62 mRNA expression, which is reduced upon invalidation of the AP-1 
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binding site present upstream on the p62 promoter. These findings suggest that p62 

is regulated at the transcriptional level by the Ras/MEK/ERK1/2 pathway via the AP-

1 domain in its promoter (Duran et al., 2008). p62 has also been shown to be 

transcriptionally regulated downstream on JNK/c-Jun pathway in chronic 

myelogenous leukemia (CML) cells (Puissant and Auberger, 2010, Puissant et al., 

2010). The exact molecular mechanism, however, by which the JNK/c-Jun pathway 

elicits this effect on p62 transcription is still unknown.  

  

Post translational regulation  

 

As mentioned previously, p62 is a substrate for degradation by autophagy via 

its LIR domain-mediated interaction with the autophagosomal membrane (Pankiv et 

al., 2007). As a result, the intracellular levels of p62 can be greatly influenced by 

changes in autophagic flux. Thus, pro-autophagic stimuli such as starvation, hypoxia 

and treatment with autophagy inducing drugs lead to a decrease in intracellular p62. 

Similarly, inhibition of autophagy leads to an accumulation of p62. As such, 

intracellular levels of p62 are often used in the assessment of autophagic flux 

(Klionsky et al., 2012). Similarly, p62 has been shown to be a proteasomal substrate 

(Seibenhener et al., 2004) and so stimuli that modulate proteasomal activity could 

also influence intracellular levels of p62. 

 

1.5.10.3 p62 as a Signalling Molecule 

  

p62 was initially identified as an interacting partner of Lck-tyrosine kinase and 

atypical protein kinase C (αPKC) (Joung et al., 1996, Puls et al., 1997). Following its 

identification, p62 has been shown to participate in a number of signalling pathways. 

p62 has been show to serve as a scaffold where its function is to bring together two 

or more components of a signaling pathway for example the ZZ domain of p62 binds 

active RIP1 kinase and PB1 domain binds protein kinase C λ/ι (PKC λ/ι) in TNF-R 

signalling. Thus, upon stimulation of TNF-R p62, PKC λ/ι and RIP1 form a complex 

facilitating NFB activation. Disruption of the ZZ domain or reduced p62 expression 

is sufficient to impair TNFα-mediated NFkB activation (Sanz et al., 1999). p62 plays 
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a similar scaffold role in activation of  NFkB downstream of interleukin-1β receptor 

(IL-1βR) (Sanz et al., 2000b) and the nerve growth factor receptors TrkA and p75NTR 

(Wooten et al., 2000). Here p62 binds to the ubiquitin ligase TRAF6 via its TB 

domain along with interleukin-1 receptor-associated kinase (IRAK). PKC λ/ι is then 

recruited to this complex where it binds to the PB1 domain of p62 and is 

phosphorylation by IRAK leading to its activation (Sanz et al., 2000b, Mamidipudi et 

al., 2002). p62 plays further roles in IL-1β and NGF signal transduction aside from 

acting as a scaffold, with the UBA domain and PB1 domain of p62 having been 

shown to be necessary for the oligomerisation and self-ubiquitination of TRAF6 

(Wooten et al., 2005). Moreover, p62 has been shown to act as a link between two 

NGF receptors, TrkA and p75NTR. The formation of this bridge facilitates the 

ubiquitination of TrkA via TRAF6, a process required for both receptor internalisation 

(Geetha et al., 2005) as well as turnover via the proteasome (Geetha et al., 2008). 

Unsurprisingly, it has been shown that in IL-1 signalling intracellular levels of p62 can 

modulate signal intensity through IL-1βR. As a result, increased degradation of p62 

via the proteasome or autophagy lead to a dampening in IL-1 signalling causing an 

anti-inflammatory effect. This mechanism was first identified in Atg16L1-/- cells. Lee 

et al discovered that Atg16L1 is able to modulate levels of p62 via the proteasome 

and autophagy. Atg16L1 is essential for neddylation of Cul-3 (Cullin 3) and its 

activation. The Cul-3 complex has E3 ubiquitin ligase activity responsible for 

targeting p62 for proteasomal degradation. Therefore knock-out of Atg16L1 leads to 

a build up of p62 as a result of decreased autophagy and reduced degradation via 

the proteasome (Lee et al., 2012b). As well as impacting on IL-1 signalling the 

interaction of p62 with Cul-3 has been shown to stimulate the extrinsic apoptosis 

pathway. Here active Cul-3 is recruited to the death-inducing signalling complex 

(DISC) where it facilitates that addition of poly-Ub chains to caspase 8. Next, p62 

facilitates aggregation of Ub-tagged caspase-8 leading to its auto-catalytic cleavage 

and activation (Jin et al., 2009).  

p62 has also been implicated in amino acid sensing through mTOR. This is 

mediated through interaction of p62 with raptor, a key component of the mTORC1 

complex, enabling its translocation to the lysosome (Duran et al., 2011). This is 

thought to facilitate interaction of mTOR with the Rag family of small GTPases 

(Sancak et al., 2010). It has been shown that TRAF6 is also important to this 

process. TRAF6 is involved in recruiting mTORC1 to the lysosome and mediates the 
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K63-linked ubiquitination of the mTOR subunit of the complex allowing optimal 

activation by amino acids (Linares et al., 2013). Knockdown of TRAF6, similar to p62 

reduced proliferation and transformation-rate in cancer cells as well as increasing 

autophagic flux. This could be rescued by the expression of a constitutively active 

RagB mutant. Thus, p62 acts as a scaffold upstream of Rag proteins specifically 

regulating components involved in mTORC1 signalling (Linares et al., 2013, Duran et 

al., 2011). Recently, it was shown that phosphorylation of p62 at T269/S272 is 

critical to amino acid sensing through mTORC1 (Linares et al., 2015). The authors 

report that p62 is phosphorylatedvia a cascade that includes MEK3/6 and p38 and 

requires interaction with MEKK3 via its PB1 domain. This phosphorylation proceeds 

the recruitment of TRAF6 and the ubiquitination and activation of mTOR described 

previously (Linares et al., 2013). Importantly, mTORC1 can be activated through a 

number of different inputs. Amino acid sensing is the only known input to require p62 

and so activation via insulin for instance can occur independently of p62 status 

(Duran et al., 2011).  

p62 has been shown to activate an anti-oxidant response via its interaction 

with the Keap1-Nrf2 pathway (Komatsu et al., 2010). The Keap1-Nrf2 pathway is one 

of the major cellular antioxidant pathways (Itoh et al., 1999). Keap1 is a  negative 

regulator of the antioxidant response element through its interaction with 

transcription factor Nrf2 (Itoh et al., 1999). In physiological conditions Nrf2 is 

sequestered in the cytoplasm via a strong noncovalent interaction with Keap1 

homodimers. Keap1 then recruits Cul-3 leading to the ubiquitination of Nrf2 and its 

degradation by the proteasome (Cullinan et al., 2004, Furukawa and Xiong, 2005). 

Under oxidative conditions Keap1 is oxidised and undergoes a conformational 

change inhibiting its interaction with Nrf2, thereby inhibiting its degradation 

(Wakabayashi et al., 2004). This allows free Nrf2 to enter the nucleus where it is able 

to activate the transcription of a number of genes involved in ROS scavenging, DNA 

repair and mitochondrial function (Motohashi and Yamamoto, 2004). 

p62 can lead to the activation of Nrf2 in the absence of oxidative stress. Here, 

p62 binds to Keap1 via its KIR domain preventing its inhibitory effect on Nrf2 (Lau et 

al., 2010). This interaction with p62 has also been shown to lead to the degradation 

of Keap1 via autophagy (Fan et al., 2010). The interaction between p62 and Keap1 

is much weaker than that between Keap1 and Nrf2, therefore it has been suggested 

that p62 will only affect this pathway when it reaches supraphysiological levels, such 
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as those that occur due to inhibition of autophagy. Interestingly, there is a small 

portion of Keap1 that is constitutively bound by p62 (Copple et al., 2010) suggesting 

that there may be other influences such as post-translational changes to either p62 

or Keap1 that may regulate this process (Bitto et al., 2014). 

All of these findings show that p62 plays a role in multiple signalling pathways 

placing it at the heart of the maintenance of cellular homeostasis.   

1.5.10.4 p62 and Protein Homeostasis 

 

One of the most studied cellular functions of p62 is its role in protein 

homeostasis.  This is a function that came to light with the discovery of its UBA 

domain (Seibenhener et al., 2004, Vadlamudi et al., 1996). p62 has been shown to 

facilitate the selective autophagy of proteins (Pankiv et al., 2007), organelles (Geisler 

et al., 2010) and bacteria (Zheng et al., 2009). These substrates are usually targeted 

for autophagy through tagging with with poly-ubiquitin chains (K63 or K27 

linkages) and association with the UBA domain of p62. These p62 bound substrates 

then form aggregates mediated by oligomerisation of p62 with other molecules of 

p62, or other PB1 domain-containing proteins. These p62-substrate aggregates are 

referred to as sequestosomes and are targeted to autophagosomes via the LIR 

domain of p62, where they are degraded (Pankiv et al., 2007). As well as facilitating 

the formation of aggregates, p62 is also able to bind to pre-existing protein inclusions 

such as mutant huntingtin aggregates (Bjorkoy et al., 2005). The formation of these 

inclusions is greatly enhanced by phosphorylation of UBA domain on serine 403, a 

modification that increases the affinity of p62 for polyubiquitin linkages (Matsumoto 

et al., 2011). The ability of p62 to form oligomers is essential for its ability to target 

aggregates to the initiation point of the autophagosomal membranes, a process 

essential for efficient engulfment of these substrates (Itakura and Mizushima, 2011). 

These data suggest that p62 plays more than just an adaptor function, linking 

substrates to the autophagosomal membrane and places it as an active player in the 

autophagy process (Komatsu et al., 2007). As well as being able to target 

ubiquitinated substrates for degradation via autophagy, p62 has also been shown to 

facilitate the autophagic clearance of non ubiquitinated aggregates via interaction 

with is PB1 domain (Watanabe and Tanaka, 2011).     
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As well as its role in autophagy p62 has been implicated in targeting 

ubiquitinated proteins to the proteasomal degradation pathway. Selection of which 

degradation pathway is chosen is thought to depend on posttranslational 

modification such as ubiquitin linkage. Interestingly, p62 is able to interact with the 

proteasome via its PB1 domain and knockdown of p62 can impair the degradation of 

proteasomal substrates (Seibenhener et al., 2004, Pankiv et al., 2010, Geetha et al., 

2008). Furthermore, p62 contains two PEST sequences and is itself target for 

proteasomal degradation via Cul-3 mediated ubiquitination (Lee et al., 2012b). 

Interestingly, levels of p62 appear to play an important role in regulation of 

proteasomal degradation with reduction (Seibenhener et al., 2004) or an 

accumulation (Korolchuk et al., 2009) of p62 leading to an impairment of 

proteasomal degradation. This apparent dual role in the regulation of proteasomal 

degradation is dependent on intracellular levels of p62, while single molecules of p62 

are able to bind to proteasomal substrates and target them for degradation, when 

levels of p62 increase beyond a certain threshold, large oligomers begin to form and 

proteasomal substrates become sequestered within them. These aggregates are 

themselves too large to be degraded via the proteasome, however, it has been 

suggested that the formation of aggregates comprised of p62 and proteasomal 

substrates, may be a route by which proteins classically regarded as substrates of 

the proteasome become targets for  degradation by autophagy (Bitto et al., 2014).  

1.5.10.5 p62 and the DDR 

 

As discussed above, autophagy has been shown to affect DNA damage 

response and repair. One of the hypothesized mechanisms is through its regulation 

of cellular levels of p62. Thus, Bae and Guan have shown that in addition to a 

marked increase in p62 levels inhibition of autophagy (through the knock-out of 

FIP200) results in impaired repair of DNA damage induced by IR, Camptothecin and 

Etoposide (Bae and Guan, 2011). Knockdown of p62 in cells lacking FIP200 with 

shRNA restored DNA damage repair in response to CPT as measured by H2A.x 

foci. Moreover, p62 knock-down also rescued cell survival. Similarly, p62 knock-

down partially rescued cell viability and DNA repair in response to IR- and 

Etoposide-induced damage (Bae and Guan, 2011). It has also been suggested that 

the increased levels of ROS seen in autophagy deficient cells may mediate 
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increased levels of DNA damage (Mathew et al., 2007b). However, treatment with 

the antioxidant NAC did not rescue deficient DNA damage repair in FIP200 KO 

MEFs compared to wild-type (Bae and Guan, 2011). These results suggest that the 

effect of autophagy knockdown on DNA damage repair is at least in part due to 

increased levels of p62 and can occur independently of ROS. However, the exact 

mechanism by which p62 can affect DNA damage repair is not yet understood. 

Although p62 is mainly located in the cytoplasm, the discovery of nuclear-

cytoplasmic shuttling along with interaction between p62 and PML bodies within the 

nucleus (Pankiv et al., 2010) could provide an interesting avenue of research when 

trying to elucidate its role in the DDR. PML bodies have been implicated in DNA 

damage especially the orchestration of homologous recombination (Yeung et al., 

2012).   

1.5.10.6 p62 in Disease   

Cancer 

 
As described above p62 is involved in several signalling pathways including 

NFB and Ras/Raf/MAPK and mTOR. These are signalling pathways that are 

commonly modified during tumour transformation and help promote proliferation 

migration and invasion of tumour cells. This, combined with the role of p62 in the 

regulation of autophagy (Duran et al., 2011), place p62 as a potential player 

in carcinogenesis. However, the exact contribution of p62 in tumour progression is 

still poorly understood, this is in part due to its wide range on cellular functions and 

depends on its involvement in pro-oncogenic signalling coupled with its role in both 

pro and anti-tumorigenic autophagy.  

The transformation of cells requires them to reprogram metabolic pathways to 

escape cell death and acquire new invasive properties. Autophagy has long been 

known to be dysregulated during carcinogenesis (Mathew et al., 2007a). Yet, the 

exact role for autophagy in this process is still poorly understood with autophagy 

having been reported to have both pro and anti-tumorigenic activity. During the 

initiation of tumour growth autophagy helps cancer cells overcome metabolic stress, 

protecting against low O2 and nutrients that occur due to reduced perfusion in the 

absence of vascularization (Degenhardt et al., 2006). Therefore, in the early stages 

of tumour development it is thought autophagy plays a pro-tumorigenic role. 
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However, during the later stages of tumour development loss of autophagy is 

thought to lead to increased levels of ROS as well as damaged organelles which, in 

turn, results in an increase in the rate of DNA mutations and loss of genome stability 

(Mathew et al., 2007b). Furthermore, this decreased autophagy leads to an increase 

in intracellular p62. 

Accumulation of p62 has been seen in many different cancer types such 

as non-small-cell lung carcinoma (NSCLC) (Inoue et al., 2012) and breast cancer 

(Thompson et al., 2003). Levels of p62 have also been shown to correlate with a 

poor prognosis (Inoue et al., 2012) or increased severity (Rolland et al., 2007) of 

cancer in a clinical context. p62 is able to influence tumour progression 

independently from its role in autophagy. As described previously, p62 plays a role in 

a number of signalling pathways. Many of these interactions have been shown to be 

key to the role of p62 in cancer development and progression. Increased synthesis 

of p62, as a result of NF-B activation downstream of constitutive Ras activation, has 

been observed in ductal pancreatic adenocarcinoma cells. Here, p62 through its 

interaction with TRAF6, serves to amplify Ras activation setting up a positive 

feedback loop (Ling et al., 2012). Similar p62-dependent activation of NF-B 

signalling has been observed in lung cancer, Here this activation is thought to elicit 

an antioxidant response leading to inhibition of deleterious ROS (Duran et al., 2008). 

Interestingly, high levels of p62 and related MAPK activation have been observed in 

a subset of aggressive glioblastoma, with inhibition of p62 leading to a reduction in 

mortality and invasiveness of tumour cells (Galavotti et al., 2013). 

p62 has also been observed to play a pro-tumorigenic role through its 

activation of the mTOR pathway (Duran et al., 2011). Knock-down of p62 using 

shRNA has been shown to inhibit the growth of tumour cells with hyper-activated 

mTOR (Duran et al., 2011). p62 has also been shown to be necessary for the 

development of tumours in Tsc2+/- mice (Parkhitko et al., 2011). Similarly, 

knockdown of p62 lead to increased survival in mice injected with (TSC2-/-) MEFs 

(Parkhitko et al., 2011). These results highlight the activation of mTOR via p62 as a 

key pro-tumorigenic event. 

There are also data suggesting that p62 may play a tumour suppressive 

function in some contexts, particularly during mitosis (Linares et al., 2011). Here, 

they show that phosphorylation of p62 by cyclin-dependent kinase 1 (CDK1) at T269 
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and S272 is an important regulator of levels cyclin B1 and CDK1 activity which are 

necessary to properly control entry and exit from Mitosis. Lack of this 

phosphorylation leads to a more rapid exit from mitosis, resulting in increased 

proliferation and tumorigenesis following Ras-induced transformation (Linares et al., 

2011).  

Taken together these studies highlight the importance of p62 during cancer 

development, with p62 playing an apparent dual role in tumorigeneses, both 

dependent and independent of its role in autophagy. Further understanding of the 

involvement of both p62 and autophagy in the context of tumorigenesis will no doubt 

provide novel avenues for drug development and cancer treatment.    

 

Neurodegeneration 

 

Neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s 

disease (PD) and Huntington’s disease (HD) are characterized by the buildup of 

protein aggregates in the brain. Different proteins are responsible for the aggregates 

seen in each disease but the presence of p62 associated with these aggregates is a 

common feature of many proteinopathies (Kuusisto et al., 2001). The presence of 

p62 in these aggregates was originally believed to be required for their formation 

(Kuusisto et al., 2002). However, more recently, p62 has been shown to associate 

with protein inclusions following their formation (Bjorkoy et al., 2005) , in the case of 

AD, p62 is responsible for the degradation of Tau via the proteasome (Babu et al., 

2005). In agreement with p62 playing a protective role in AD, mice lacking p62 show 

many AD associated characteristics such as age-associated accumulation of K63-

tagged tau, neuronal cell death, increased anxiety and reduced short term memory 

(Ramesh Babu et al., 2008). Interestingly, levels of p62 are reduced in AD brains 

compared to control. This is thought to occur due to oxidative damage to the 

promoter region of p62 (Du et al., 2009a), a process which has been shown to 

increase with age and is a common feature of many neurodegenerative diseases 

(Du et al., 2009b). 

Both oxidative stress and mitochondrial dysfunction are common features of 

neurodegenerative diseases (Lin and Beal, 2006) particularly in PD (Geisler et al., 

2010, Narendra et al., 2008). p62 has been suggested to play a role in the 
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maintenance of mitochondrial homeostasis, (Geisler et al., 2010, Narendra et al., 

2010) as well as antioxidant defense through its role in the Keap1-NRF2 pathway 

(Lau et al., 2010). A loss of p62 has been shown to correlate with a reduction in Nrf2 

activity in neurons of those affected by neurodegeneration (Ramsey et al., 2007). 

Interestingly, an Nfe2l2 haplotype that confers increased transcriptional activity of 

Nrf2 appears to have a protective effect against the development of PD (von Otter et 

al., 2010). Similarly, expression of Nrf2 in a Drosophila melanogaster model of PD 

protects against neurodegeneration (Barone et al., 2011). These data show that p62 

can have a protective effect on neurodegeneration both through its role in the 

clearance of pathogenic protein aggregates as well as its role in maintenance of 

mitochondrial homeostasis and antioxidant defence.  
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1.5.11 Autophagy and Apoptosis 

 

 The connection between autophagy and apoptosis and other forms of 

cell death is a growing area of research. Autophagy and apoptosis are regulated by 

common stimuli and signalling pathways (Figure 1-9). 

 

Figure 1-9: Crosstalk between apoptosis and autophagy. Autophagy and 

apoptosis are controlled by overlapping signalling pathways and show a degree of 

mutual inhibition. Sustained induction of apoptosis leads to a caspase 8 mediated 

cleavage of Beclin 1 generation N and C fragments inhibiting their ability to induce 

autophagy. The C-terminal fragment translocates to mitochondria sensitizing the cell 

to pro-apoptotic signals. Although caspase-mediated cleavage of Atg5 and Beclin 1 

has an inhibitory effect on autophagy, caspase 3-mediated cleavage of Atg 4D 

generates a fragment with increased autophagic activity. Autophagy can also inhibit 

apoptosis by degrading active caspase 8.  
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As described earlier, Beclin1 is essential for the formation of autophagic 

vesicles Beclin1 is known to interact with Bcl-2, a key regulator of apoptosis as well 

as another anti-apoptotic protein from the Bcl family, Bcl-xL, Bcl-2/Bcl-xL not only 

inhibits apoptosis by binding pro-apoptotic proteins Bax and Bak, it also plays a role 

in the inhibition of autophagy through the binding of Beclin 1 (Pattingre et al., 2005). 

This interaction was shown to occur via the Bcl-2 homology 3 (BH3-only ) domain on 

Beclin 1 (Feng et al., 2007). Conversely it has been shown that disruption of the 

interaction between Beclin 1 at the BH3 domain and Bcl-2 leads to an induction of 

autophagy (Maiuri et al., 2007). Activation of c-Jun N-terminal kinase 1 (JNK1) has 

been shown to phosphorylate Bcl-2 and cause it to dissociate from Beclin1, 

highlighting another mechanism by wich stress can activate autophagy (Wei et al., 

2008). Despite BH3- only proteins of the Bcl-2 family being well know inducers of 

autophagy and apoptosis, Beclin 1, which contains this domain, does not activate 

apoptosis even when overexpressed and autophagy is active (Boya and Kroemer, 

2009). Instead, Beclin 1 has been shown to offer cytoprotection to several apoptotic 

stimuli including starvation, suggesting an anti-apoptotic role for Beclin 1 (Boya and 

Kroemer, 2009).  

Caspases are cysteine aspartyl proteases that play a pivotal role in the 

execution of apoptotic cell death. Activated caspases cleave a large number of 

proteins usually resulting in inactivation through removal of regulatory domains (Yi 

and Yuan, 2009). Interestingly, caspases can cleave Beclin 1 during sustained 

exposure to pro-apoptotic stimuli, resulting in a loss of its pro-autophagic capacity 

(Wirawan et al., 2010) Atg5 and Atg4D can also be cleaved by caspases in response 

to apoptosis, the cleavage product of Atg5 is thought to interact with Bcl-2 proteins at 

mitochondria and help to induce cell death by apoptosis (Yousefi et al., 2006).  

Unlike cleavage of Atg5 and Beclin 1 that inhibits autophagy, cleavage of Atg4D 

generates a fragment that increases autophagic activity. This fragment has, 

however, been shown to have a cytotoxic effect independent from activation of 

autophagy thought to correlate with its recruitment to mitochondria (Betin and Lane, 

2009).  Thus, caspase-mediated cleavage of the autophagy components Atg5, 

Atg4D and Beclin 1 may serve to amplify the apoptotic programme through the 

mitochondrial pathway. 
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Recent work has identified Atg12, an essential autophagy protein, as a 

potential point of cross-talk between autophagy and apoptosis. In work by Rubinstein 

et al it was shown that Atg12 is a positive mediator of apoptosis, with knockdown of 

Atg12 leading to an inhibition of Bax activation and cytochrome c release. 

Additionally, it was shown that over-expression of Atg12 reduced the anti-apoptotic 

activity of Mcl-1 (Rubinstein et al., 2011). The cross-talk between autophagy and 

apoptosis highlights the importance of autophagy in determining cell-fate in response 

to stress. 

1.5.12 Autophagy and the DDR 

 

Despite autophagy being a cytoplasmic process and DNA damage occurring 

in the nucleus, there is a growing body of evidence suggesting a link between the 

two processes. It has been observed that activation of autophagy occurs following 

the induction of DNA damage by a number of different of genotoxic agents 

(Katayama et al., 2007, Abedin et al., 2007, Yao et al., 2003). Autophagy has been 

shown to play a cytoprotective role in response to DNA damage, with inhibition 

leading to increased cell death (Liu et al., 2015, Elliott and Reiners, 2008, Apel et al., 

2008, Amaravadi et al., 2007). Furthermore, inhibition of autophagy has been shown 

to lead to increased genome instability (Zhao et al., 2012, Katayama et al., 2007) 

suggesting a cytoprotectective role for autophagy in response to DNA damage. 

Conversely, the activation of autophagy in response to DNA damage has also been 

show to lead to cell death when canonical apoptosis pathways are impaired (Kim et 

al., 2005, Assuncao Guimaraes and Linden, 2004). The exact role of autophagy in 

the DDR is still not fully understood however has been a great area of interest in 

recent years. 

 

Activation of autophagy following DNA damage 

 

 The exact mechanisms by which autophagy is activated in response to DNA 

damage are still being debated. It has been shown that autophagy is activated in a 

PARP-1 dependent manner following DNA damage induced by doxorubicin (Munoz-

Gamez et al., 2009). The enzyme PARP-1 (poly [ADP-ribose] polymerase 1) is 

activated in response to DNA damage. This enzyme converts β-nicotinamide 
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adenine dinucleotide (NAD+) into polymers of poly(ADP ribose) and plays a role in 

nuclear homeostasis. Once hyper-activated in response to DNA damage, PARP-1 

causes depletion in NAD+ and ATP, eventually leading to energy crisis and cell 

death (Ha and Snyder, 1999). Here it has been suggested that autophagy is 

activated in response to reduced intracellular ATP and serves a protective function 

against energy stress. Indeed, inhibition of autophagy in this context has been 

shown to lead to increased cell death (Munoz-Gamez et al., 2009, Huang and Shen, 

2009).  

Another means by which autophagy has been shown to be activated 

downstream of a DDR is through p53 (Crighton et al., 2006, Kang et al., 2009, Feng 

et al., 2005). The exact mechanism of p53-dependent activation of autophagy is not 

fully understood. It has been shown to be independent of the transcriptional activity 

of p53: through AMPK and TSC1/2 activation leading to long term inhibition of 

mTORC1 (Feng et al., 2005). As well as dependent on the transcriptional activity of 

p53:  through p53 mediated expression damage-regulated autophagy modulator 

(DRAM) encoded lysosomal protein that leads to increased autopahgy (Crighton et 

al., 2006). Additionally, autophagy has also been shown to be induced in response to 

expression of tumour suppressor ARF in both a p53-dependent and p53-

independent manner (Abida and Gu, 2008). Although activation of p53 can induce 

autophagy it has also been shown that p53 can also have an inhibitory effect on 

autophagy (Tasdemir et al., 2008). Autophagy has also been how to be activated 

downstream of phosphorylated ATM, a key step in the initiation of the DDR. Here 

ATM activates TSC2 via AMPK to inhibit mTORC1 and activates autophagy 

(Alexander et al., 2010). These results highlight p53 as a bilateral regulator of 

autophagy. It has been suggested that activation of autophagy in response to low 

levels of DNA damage may assist in DNA repair through the degradation of 

damaged proteins and organelles by freeing cellular energy to be used in the repair 

process. However, on the flip side of this if the damage is too severe or is unable to 

be repaired then the prolonged activation of autophagy may help to accelerate cell 

death in a p53-dependent manner (Crighton et al., 2006).  
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Autophagy and DNA repair  

 

More recently it has been suggested that autophagy may have a more direct 

effect on DNA damage repair. There have been results showing that inhibition of 

autophagy leads to a decreased repair capacity in response to DNA damage agents 

(Bae and Guan, 2011, Liu et al., 2015). In the paper by Bae and Guan, autophagy is 

inhibited by the genetic knock out of 200 kDa FAK-family interacting 

protein (FIP200), an essential component of the mammalian autophagy machinery 

leading to a reduced DNA damage repair capacity. The exact mechanism  is not 

explored however they do suggest that it is in part due to increased levels of p62 

found in autophagy compromised cells and independent of increased levels of ROS 

(Bae and Guan, 2011). More recently a paper from Kevin Ryan’s group in Glasgow 

showed that loss of autophagy through an inducible knock-out of Atg7 leads 

specifically to an inhibition of homologous recombination through the enhanced 

proteasomal degradation of checkpoint kinase 1 (Chk1) (Liu et al., 2015). They 

report that cells lacking autophagy have a higher proteasome activity that results in a 

reduction in both phosphorylated and total levels of Chk1. Downstream analysis of 

homologous recombination via quantification of RAD51 foci or using the reporter 

plasmid described in (Pierce et al., 1999) show a reduction in this repair pathway in 

cells lacking autophagy.       

1.5.13 Autophagy and Senescence 

  

Autophagy and senescence are both activated in response to various cell stressors 

such as radiation, chemotherapy and oxidative stress (Katayama et al., 2007, Yao et 

al., 2003, von Zglinicki et al., 2005).  The relationship between the two, however, is 

poorly understood with some reports suggesting a direct involvement of autophagy in 

the progression of senescence (Young et al., 2009) and others suggesting that 

inhibition of autophagy is a key driver of senescence (Kang et al., 2011). 

 A number of papers have provided data to suggest a collateral induction of 

senescence and autophagy. An increase in autophagosomes and senescence-

associated β-galactosidase (Sen-β-Gal) activity has been observed in ageing 

fibroblasts (Gerland et al., 2003). Markers for both autophagy and senescence have 

been observed in the bile ducts of patients with primary biliary cirrhosis, along with 
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biliary epithelial cells in mice treated with DNA damaging agents such as hydrogen 

peroxide and Etoposide, senescent endothelial cells as well as senescent human 

dental pulp (Sasaki et al., 2012, Sasaki et al., 2010, Patschan et al., 2008, Li et al., 

2012a). These observations however are merely correlative and do not address the 

question whether autophagy and senescence are linked or interdependent 

responses. 

 One of the first studies carried out to test a potential direct relationship 

between autophagy and senescence was carried out by Young et al in human 

fibroblasts (Young et al., 2009). Here the authors suggest that oncogene-induced 

senescence could be dependent on the activation of autophagy as pharmacological 

and genetic interference with autophagy caused suppression in senescence. 

However, the conclusion from this work is that inhibition of autophagy delays but 

does not abrogate senescence, with senescence eventually achieving identical 

levels in cells with and without autophagy. Moreover, the authors also showed that 

inhibition of autophagy could not rescue the development of senescence supporting 

the idea that autophagy can accelerate oncogene induced senescence in fibroblasts, 

but once initiated the development of senescence is independent of autophagy.  The 

mechanism by which increased autophagy could accelerate senescence is not yet 

understood. It has been suggested that the up-regulation of autophagy could provide 

the cell with a supply of energy in anticipation of the permanent cell cycle arrest seen 

in senescence (Gewirtz, 2013). 

 Other studies have also reported a decrease in senescence with the inhibition 

of autophagy (Singh et al., 2012, Mosieniak et al., 2012). Similarly, others report an 

increase in autophagy with the induction of senescence (Maddodi et al., 2010, 

Capparelli et al., 2012), however it has yet to be conclusively proven that the two are 

functionally connected.  

Both autophagy and senescence are believed to serve cytoprotective 

functions in response to stress.  Autophagy and senescence are regulated by 

overlapping signalling pathways such as p53 and mTOR. This makes the study of 

the role of autophagy in senescence difficult as interventions intended to modulate 

autophagy could have a direct effect on senescence itself. One challenge is that the 

suppression of autophagy in cells undergoing senescence causes an increase in the 

population of apoptotic cells and so what appears to be an increase in the 
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percentage of senescent cells is actually due to cell loss through apoptosis 

(Thorburn, 2008). 

 

1.5.14 Autophagy and Ageing 

 

It has been well documented that there are age-associated changes in 

autophagy pathways. This is due to many factors, such as an increased load of 

damaged and misfolded proteins, as well as dysfunctional organelles (Martinez-

Vicente et al., 2005). These changes are believed to occur due to an increase in 

oxidative stress, as well as changes in regulatory factors. Age-related decline in 

macroautophagy and CMA activity has been observed (Cuervo and Dice, 2000a, 

Vittorini et al., 1999). It is thought that this decreased activity in both of these 

degradation pathways could contribute, at least in part, to the accumulation of 

damaged proteins and organelles and help contribute to a loss of homeostasis and 

aberrant stress responses in ageing cells. 

 

Age-dependent Changes in Autophagy Pathways 

  

 Changes in macroautophagy with age are accompanied by a number of 

morphological changes to the lysosomal system. These include an expansion of the 

cellular acidic compartment, an accumulation of autophagic vacuoles and a build-up 

of undegraded material in the lumen of the lysosome known as lipofuscin (Cuervo 

and Dice, 2000b). A decline in autophagy with age has been previously observed 

and has been suggested to contribute to cellular ageing (Terman, 1995, Vittorini et 

al., 1999, Lipinski et al., 2010).  

In contrast to macroautophagy, there have been no age-associated 

morphological changes in the subset of lysosomes able to perform CMA (Cuervo 

and Dice, 2000c). Functional analyses, however, have shown that both substrate 

binding and translocation across the lysosomal membrane is greatly impaired in 

lysosomes taken both from organs from aged animals and senescent cells. These 

functional changes in the CMA pathway have been attributed to an age-dependent 

decrease in LAMP-2A on lysosomal membranes (Cuervo and Dice, 2000a). This 

gradual decline in LAMP-2A levels begins at middle age, although the decline in 
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function is temporarily offset by an increase in the number of lysosomes recruited to 

perform CMA. This compensatory increase in the number of lysosomes containing 

Hsc70 is only transient and, eventually, a functional decline in CMA becomes 

apparent (Cuervo and Dice, 2000a).  

 This age related reduction on LAMP-2A is not caused by a reduction in 

transcription, synthesis or the lysosomal trafficking of LAMP-2A. Instead it is thought 

to be caused by a reduction of the stability of LAMP-2A in the lipid membrane of the 

lysosome. The exact mechanisms underlying this drop in stability are unclear, 

however, changes in the lipid composition of the lysosomal membrane have been 

observed with age (Rodriguez-Navarro et al., 2012). It is possible that this disrupts 

the dynamics of LAMP-2A within this system and could contribute to the reduced 

levels of this receptor seen in old lysosomes. 

 Additional work is required in order to fully elucidate the changes that occur in 

autophagy with age. There is increasing evidence that manipulation of autophagy 

can have an impact on longevity, as well as have beneficial effects on many age 

associate pathologies.  

Manipulation of Autophagy Impacts on Lifespan 
 
 Many studies designed to investigate mechanisms which impact on ageing 

and longevity, have identified pathways that modulate autophagy. One of the first 

identified and reproducible interventions able to extend lifespan was calorie 

restriction (CR). The life-span promoting effects of CR are evolutionary conserved 

and have been observed in yeast, worms (C. elegans), flies (D. melanogaster) and 

rodents (Fontana et al., 2010). The increase in lifespan seen with CR is, at least, in 

part, due to autophagy as deletion or mutation of autophagy proteins inhibits the life 

span extension seen in CR (Rubinsztein et al., 2011, Hansen et al., 2008). 

Treatments that activate autophagy, such as rapamycin and resveratrol, have also 

been shown to increase lifespan (Wood et al., 2004, Harrison et al., 2009). Similarly, 

interventions that down-regulate autophagy have been shown to have a negative 

effect on longevity and lead to an accelerated ageing phenotype (Hansen et al., 

2008). Interestingly, it has been shown that short term DR, an intervention 

associated with life span extension, causes an increase in the turnover of 

mitochondria (Miwa et al., 2008). It was recently shown that overexpression of Atg5 

in mice leads to an increase in autophagy and extension of lifespan. Moreover, 
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MEFs isolated from these Atg5 transgenic mice showed a marked resistance to 

oxidative stress-induced cell death. This resistance was reduced when autophagy 

was inhibited with either 3-MA or Baf (Pyo et al., 2013). These data suggest that an 

up-regulation of autophagy or prevention of its decline could decrease the 

accumulation of damaged macromolecules and organelles and improve longevity. 

1.6 Dietary Restriction as a modulator of longevity 

Dietary restriction (DR), reduced calorie intake without causing malnutrition, 

was first shown to extend lifespan almost 80 years ago (McCay et al., 1989, 

McDonald and Ramsey, 2010) since then it has been shown to extend lifespan in 

many model organisms (Guarente and Kenyon, 2000) as well as reduce the 

progression of age-associated diseases, reviewed in (Masoro, 2002) . These factors 

led DR to be one of the most commonly studied interventions when trying to uncover 

the mechanisms of organismal ageing. The exact mechanisms by which DR elicits 

this effect on lifespan are not yet fully understood, however, it is well known that DR 

reduces the accumulation of oxidatively damaged molecules that occurs with age in 

rodents reviewed in (Walsh et al., 2014). This effect could be down to a reduction in 

the rate at which ROS is generated in animals under DR (Miwa et al., 2014, Sanz et 

al., 2005) or an increase in the activity of protective pathways such as antioxidant 

defenses (Walsh et al., 2014) and repair pathways (Haley-Zitlin and Richardson, 

1993). Interestingly, even animals subjected to short term DR show lower levels of 

DNA damage as measured by H2A.X foci compared to AL (Ad-Libitum) (Wang et al., 

2010). DR has also been shown to reduce the levels of damaged proteins in mice 

and rats (Sohal et al., 1994, Aksenova et al., 1998, Youngman et al., 1992). 

Moreover, life extension by DR has been shown to require autophagy (Rubinsztein 

et al., 2011, Jia and Levine, 2007). In mice DR has been shown to activate 

autophagy (Bergamini et al., 2003)  through the activation of either AMPK or 

SIRT1 (Kim et al., 2011) as well as increase expression of proteasome 26S subunit, 

ATPase 3 (Psmc3) proteasome regulatory particle base subunit (Rpt5), a subunit of 

the 19s proteasome, as well as proteasome activator proteasome activator subunit 1 

(PSME1) (Lee et al., 1999). Taken together,  these data show correlations between 

DR and a reduction in various forms of cellular damage, however we are still yet to 

fully understand the exact contribution of these changes to increasing longevity.   
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1.7 Aims 

 
Although autophagy has been shown to be an important determinant of longevity, 

the mechanisms by which autophagy is involved in the ageing process have not yet 

been fully identified. Recent studies have suggested a role for autophagy in the DNA 

damage response and repair; however the underlying processes are not yet 

understood. The general aim of this thesis is to understand the role of autophagy in 

DNA damage repair and to test if crosstalk between these two processes is a feature 

of normal ageing. 

 
 

Specific aims 

 
1.To investigate the role of autophagy in DNA damage repair. 

 

2.To investigate the role of the autophagy adaptor p62 in DNA damage repair.  

 

3.To investigate the contribution of interactions between p62 and DNA damage 

during ageing. 
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2. Chapter 2. Material and Methods 

2.1 Materials 

2.1.1 Cell lines  

 

Prokaryotic cell lines 
 

α-select GOLD Efficiency chemically competent cells (Bioline #BIO-85027) 

were used for non-lentivirus constructs. NEB Stable competent E.coli (High 

Efficiency) (New England BioLabs #C3040) were used for lentivirus constructs. 

Eukaryotic cell lines 
 

Human cell lines 

Human embryonic lung MRC5 fibroblasts and HeLa cells were obtained from 

ECACC (European Collection of Cell Cultures) (Salisbury, UK) and HEK 293FT were 

purchased from Life Technologies #R700-07). 

Mouse cell lines 

p62 knock-out p62-/- and wild type p62+/+ mouse embryonic fibroblasts (MEFs) 

(Komatsu et al., 2007) were kindly provided by Dr. Eiji Warabi of the University of 

Tsukuba. Autophagy-related protein 5 (Atg5)-deficient Atg5−/− and wild-type Atg5+/+ 

MEFs (Kuma et al., 2004) and M5-7 MEFs (Hosokawa et al., 2007) were kindly 

provided by Dr Noboru Mizushima (Tokyo Medical and Dental University). The M5-7 

cell line is a cell line derived from Atg5−/− MEFs, here Atg5−/− MEFs have been 

coupled with a Tet-off system, allowing an inducible knock out of Atg5 when Dox is 

present. M5-7s have the benefit over Atg5−/− MEFs as they allow the study of acute 

autophagy knock out. This is advantageous as cells have less time to adapt to the 

lack of autophagy and as the cells are the same at the beginning of an experiment 

there is less impact of clonal differences between cells with and without autophagy.  

 

  



Chapter 2. Materials and Methods 
 

64 

Cloning 

 

For lentiviral expression full length wild type FLAG-tagged p62 was subcloned into 

the pLENTI6/V5-DEST vector using EcoRI and XhoI (NEB). Briefly, FLAG-p62 and 

pLENTI6/V5-DEST vector were digested with EcoRI and XhoI prior to gel purification 

(QIAquik GEL Extraction Kit (Qiagen)). The vector was dephosphorylated by calf 

intestinal alkaline phosphatase (Fermentas) and the ligation with FLAG-p62 was 

carried out using T4 DNA Ligase (New England BioLabs). Cloning was performed by 

Gisela Otten (Newcastle University). 

mCherry-53BP1c for lentiviral expression was carried out as follows: a 2.7 kb C-

terminal portion of 53BP1 (53BP1c), was excised from pAcGFP-53BP1c (Nelson et 

al., 2009) using BamHI and XhoI and ligated into pENTR2B (Invitrogen) to create 

pENTR2B-53BP1c. The sequence for mCherry fluorescent protein was amplified via 

PCR from pRSETB-mCherry (Shaner et al., 2004), incorporating SalI sites at both 

ends and a 5 amino acid linker at the 3' end. This product was ligated into 

pENTR2B-53BP1c SalI site in frame 5' of 53BP1c. A correct, sequence verified clone 

was then recombined into pLenti6-UbC/V5-DEST using LR Clonase following the 

manufacturer's instructions (Invitrogen) to produce pLenti6-mCherry-53BP1c. 

Cloning was performed by Dr James Wordsworth (Newcastle University).  
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2.1.2 Antibodies 

Table 2.1: Primary antibodies for Immunofluorescence on cells 

    Primary  antibodies  

Protein Host Dilution Reference/Manufacturer 

p62 Guinea pig 1:200 Progen #GP-62-C 

53BP1 Rabbit 1:200 CST #4937 

p62 Rabbit 1:1000 MBL #PM045 

Rad51 Rabbit 1:1000 Millipore #ABE257 

p62 Mouse 1:1000 BD Laboratories #610832 

 

 

  

http://thesaurus.com/browse/manufacturer
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Table 2.2: Secondary antibodies for Immunofluorescence on cells 

 

Secondary antibodies 

     

Protein Species Host Dilution Reference/Manufacturer 

Anti-mouse 

Fluorescein-

conjugated 

AlexaFluor 488 

Mouse Goat 1:4000 A21042 -Invitrogen  

Anti-mouse 

Fluorescein-

conjugated 

AlexaFluor 594 

Mouse Goat 1:4000 A21044 - Invitrogen 

Anti-mouse 

Fluorescein-

conjugated 

AlexaFluor 647 

Mouse Goat 1:4000 A21238 - Invitrogen 

Anti-rabbit 

Fluorescein-

conjugated 

secondary 

antibody 

AlexaFluor 488 

Rabbit Goat 1:4000 A21212 - Invitrogen 

Anti-rabbit 

Fluorescein-

conjugated 

AlexaFluor 594 

Rabbit Goat 1:4000 A21213 - Invitrogen 

Anti-rabbit 

Fluorescein-

conjugated 

AlexaFluor 647 

Rabbit Goat 1:2000 A21244 - Invitrogen 

 

  

http://thesaurus.com/browse/manufacturer
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Table 2.3: Primary antibodies for Western Blotting 

 

Primary antibodies for Western Blotting 

     

Protein Host Dilution Reference/Manufacturer 

Atg5  Rabbit  1:1000 Sigma #A0856 

CHD4  Rabbit  1:1000 Active Motif #39290 

Chk1  Rabbit  1:500 CST #2360 

FLAG M2  Mouse  1:2000 Sigma #F1804 

GAPDH   Rabbit 1:10000 CST #5174 

GFP Chicken 1:2000 Abcam #ab13970   

LC3B   Rabbit  1:1000 CST #3868  

p21   Rabbit  1:1000 CST #2947 

p53 Rabbit  1:1000 CST #9282 

p62  Guinea pig   1:1000 Progen #GP-62-C 

PARP   Rabbit  1:1000 CST #9284 

p-Chk1 

(Ser345)  Rabbit  1:1000 CST #2348 

p-p53 (Ser15)  Rabbit  1:1000 CST #9284  

Filamin A Rabbit 1:1000 CST #4762 

RAD51 Rabbit 1:1000 Millipore #ABE257 

 

  

http://thesaurus.com/browse/manufacturer


Chapter 2. Materials and Methods 
 

68 

Table 2.4:  Secondary antibodies for Western Blotting 

 

Secondary antibodies for Western Blotting 

     

Protein Species Host Dilution Reference/Manufacturer 

Goat anti-

rabbit IgG -

HRP 

conjugated 

Rabbit Goat 1:5000 A0545 - Sigma  

Goat anti-

mouse IgG -

HRP 

conjugated 

Mouse Goat 1:5000 A2554 - Sigma  

Rabbit  anti-

Guinea Pig 

IgG -HRP 

conjugated 

Guinea 

Pig 
Rabbit 1:2500 P 0141 - Dako 

Goat anti-

chicken IgG -

HRP 

conjugated 

Chicken Goat 1:5000 ab97135 Abcam 

 

 

  

http://thesaurus.com/browse/manufacturer
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Table 2.5: Primary antibodies for Immunostainings on Mouse Tissues 

Primary antibodies 

     

Protein Species Host Dilution Reference/Manufacturer 

γ-H2A.X(Ser139) 
Human 

Mouse 
Rabbit 1:200 #9718 - CST 

p62 
Human 

Mouse 

Guinea 

Pig 
1:100 #GP-62-C – Progen 

 

 

Table 2.6: Secondary antibodies for Immunostainings on Mouse Tissues 

Secondary antibodies 

     

Protein Species Host Dilution Reference/Manufacturer 

Anti-guinea pig 

Fluorescein-

conjugated 

secondary antibody 

AlexaFluor 594 

Guinea 

pig 
Goat 1:2000 A11076 - Invitrogen 

Anti-rabbit Vectastain 

(biotinylated) 
Rabbit Goat 1:4000 PK4001 –Vector lab 

Fluorescein Avidin 

DCS 
  1:500 

A-2011 - Vector 

Laboratories 
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2.1.3 Cell Culture  

 
Table 2.7:  Reagents for Cell Culture 

     

Reagent Manufacturer Reference  

Trypsin-EDTA Solution  Sigma   T3924 

Penicillin-Streptomycin Sigma   P4333 

Mycoalert Detection Kit Lonza LT07-218 

L-Glutamine Solution  Sigma   G7513 

Dulbecco’S Modified Eagle’S Medium 
(DMEM) 

Sigma   D5796 

Dimethyl Sulfoxide (DMSO) Sigma   D2650 

20 X PBS New England Bio 9808 

10% Heat Inactivated Foetal Bovine Serum  BioSera NA 

 
  



Chapter 2. Materials and Methods 
 

71 

Table 2.8: Cell Treatments 

     

Reagent Manufacturer Reference  

Bafilomycin A1  Enzo  BML-CM110-0100 

Blasticidine Sigma   15202 

Etoposide  Sigma   E1383 

G418 Sigma   A1720 

Leptomycin B  Cell Signalling  9676 

Polybrene  Sigma   107689 

Puromycin 
ThermoFisher 

Scientific 
 A11138 

Rapamycin Sigma   R8781 

Tetracycline hydrochloride Sigma   079K1498 

Z-Leu-Leu-Leu-al (MG132) Sigma   C2211 
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Table 2.9: Cell Culture Consumables 

     

Reagent Manufacturer Reference  

 CryoTube Vials 
ThermoFisher 

Scientific 
377267 

0.6ml 'Crystal Clear' Microcentrifuge Tube, 
2 x 500 

Star labs E1405-0600 

1.5 microcentrifuge tubes  Star labs S1615-5500 

12-well plate Fisher TKB-100-110R 

15ml Centrifuge Tube, Conical (Sterile), 
Loose 

Star labs E1415-0200 

175cm² TC treated flask with filter cap Greiner-Bio one 661175 

2.0ml 'Crystal Clear' Microcentrifuge Tube, 
1 x 500 

Star labs E1420-2000 

24 well plates Fisher TKB-100-115H 

50ml Centrifuge Tube, Conical (Sterile), 
Loose 

Star labs E1450-0200 

6-well plates Fisher 11825275 

75cm2 TC treated flask with filter cap Greiner-Bio one 658175 

Acrodisc® Minispike syringe filters Sigma   Z260444-1PAK 

Acryl Aquaclean 
WAK-Chemie 
Medical GmbH 

WAK-AQA-250-50L 

Bijou sample container, plain label Sigma   Z645346-700EA 

Cell culture dish treated with vents sterile 
polystyrene non-pyrogenic 

ThermoFisher 
Scientific 

10075371 

Coverglass 13mm/0.16mm VWR 631-0150 

glass pasteur pipettes 230mm VWR 612-1702 

serological pipettes 10ml Sarstedt 86.1254.001 

serological pipettes 25ml Sarstedt 86.1685.001 

serological pipettes 5ml Sarstedt 86.1253.001 
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2.1.4 Plasmid Prep  

 
Table 2.10: Plasmid Prep Reagents 

     

Reagent Manufacturer Reference  

Agarose 
ThermoFisher 

Scientific 
BP1356-500 

Alpha-Select Bronze Efficiency Bioline BIO-85025 

Ampicillin Sigma   A5354 

Burner Bunsen Natural Gas 13mm SLS BUR3000 

Cell culture dish treated with vents sterile 
polystyrene non-pyrogenic 

ThermoFisher 
Scientific 

10075371 

Glass spreaders Sigma  S4522-6EA 

Kanamycin  Sigma  K0254 

LB Agar Miller 
ThermoFisher 

Scientific 
10734724 

LB Broth Miller Powder 
ThermoFisher 

Scientific 
10638013 

Molecular Grade RNase-free water 
ThermoFisher 

Scientific 
B-003000-WB-100 

NEB stable competent E.coli (high 
efficiency) 

New England Bio C3040H 

peqGREEN Peqlab 37-5000 

PureYield™ Plasmid Midiprep System Promega A2492 

S.O.C. Medium 
ThermoFisher 

Scientific 
15544-034 
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2.1.5 Transfections 

Table 2.11:  Transfection Reagents 

     

Reagent Manufacturer Reference  

Lipofectamine™ 2000 Transfection Reagent  
ThermoFisher 

Scientific 
11668019 

OptiMEM 
ThermoFisher 

Scientific 
11058021 
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2.1.6 Lentiviral Vectors 

Table 2.12: Plasmid Lentiviral Vectors 

    

        

Insert 
Expression 

Vector 
Packging 
Vectors 

Packaging 
Cells 

Selection 
Selection 

conc 
Maintenance 

conc 
Target 
Cells 

FLAG-p62 pLenti6 

3rd Gen 
(GAG pLP1, 

VSV-
pLP/VSVG, 
REV pLP2) 

HEK293FT blasticidin 8 μg/ml 4 μg/ml 
p62

-/-
 

MEFs 

mCherry-
53BP1 

pLenti6 

3rd Gen 
(GAG pLP1, 

VSV-
pLP/VSVG, 
REV pLP2) 

HEK293FT blasticidin none none 
p62

+/+
  

p62
-/- 

MEFs 

Empty pLenti6 

3rd Gen 
(GAG pLP1, 

VSV-
pLP/VSVG, 
REV pLP2) 

HEK293FT blasticidin 8 μg/ml 4 μg/ml 
p62

-/-
 

MEFs 

Atg5 
shRNA 2 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin none none MRC5 

Atg5 
shRNA 3 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin none none MRC5 

Atg5 
shRNA 4 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin none  none MRC5 

Atg5 
shRNA 5 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin none none MRC5 

GFP 
shRNA 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin 2μg/ml 0.5μg/ml MRC5 

p62 
shRNA 3 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin 2μg/ml 0.5μg/ml MRC5 

p62 
shRNA 4 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin 2μg/ml 0.5μg/ml MRC5 

p62 
shRNA 5 

pLKO-puro 
2nd Gen 
(VSV-G 
HIV-1) 

HEK293FT puromycin 2μg/ml 0.5μg/ml MRC5 
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2.1.7 Plasmids  

 

pEGFP-p62, pEGFP-PB1p62, pEGFP- -ΔUBAp62 constructs 

were previously published (Bjorkoy et al., 2005, Pankiv et al., 2010, Lamark et al., 

2003). FLAG-p62 was kindly provided by Robert Layfield (University of Nottingham, 

Nottingham, UK) (Najat et al., 2009). pLKO-puro GFP was kindly provided by Dr 

Simon Wilkinson (Edinburgh Cancer Research Centre, University of Edinburgh). 

mCherry-53BP1 was kindly provided by Dr Glyn Nelson (Newcastle University, 

Newcastle) pG-AcGFP-53BP1c  has been described previously (Nelson et al., 2009). 

Filamin A-GFP was kindly provided Dr Aragay (Institut de Biologia Molecular de 

Barcelona) 

 

2.1.8 siRNA  

Table 2.13: siRNA 

ON-TARGETplus SMARTpool siRNA from Dharmacon 

     

Protein siRNA Reference/Manufacturer 

Non-targeting 
ON-TARGETplus Non-Targeting 

control pool siRNA 

# D-001810-10 Dharmacon 

 

p62 
ON-TARGETplusSqstm1 

siRNA 

L-047628-01-0005- 

Dharmacon 

FLNA ON-TARGETplusFlna siRNA 
L-058520-01-0005 - 

Dharmacon 

 

  

http://thesaurus.com/browse/manufacturer
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2.1.9 Cell fractionation  

Table 2.14: Cell Fractionation Reagents  

     

Reagent Manufacturer Reference  

20 x PBS New England Bio 9808 

Calcium chloride 1M solution Sigma   21115 

IGEPAL® CA-630 (NP40) Sigma   I3021 

Magnesium chloride 1M solution 
ThermoFisher 

Scientific 
AM9530G 

Phosphatase inhibitor cocktail 100X  
ThermoFisher 

Scientific 
1861280 

polyoxyethylene sorbitan (Tween-20) Sigma   93774 

Sodium chloride Sigma   S7653 

Trisma base Sigma   T1503 

Triton X-100  Sigma   T8787 

4x Laemmli Buffer   

20% SDS solution 
ThermoFisher 

Scientific 
AM9820 

Bromophenol Blue Sigma   B0126 

Glycerol Sigma   G5516 

β-mercaptoethanol (BME) Sigma   M3148 
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2.1.10 Immunofluorescence  

 
Table 2.15: immunofluorescence in Cells Reagents 

     

Reagent Manufacturer Reference  

20 x PBS New England Bio 9808 

Bovine Serum Albumin Sigma   5482 

Gelatin from cold water fish skin Sigma   G7041 

Microscope slide ground edges, twin frosted 
ThermoFisher 

Scientific 
FB58628 

Prolong Gold 
ThermoFisher 

Scientific 
P36935 

 

 

Table 2.16: immunofluorescence in Tissues Reagents 

     

Reagent Manufacturer Reference  

CyStain UV Ploidy (DAPI) Partec 05-5001  

Ethanol 
ThermoFisher 

Scientific 
 E/0650DF/17 

Histoclear 
National 

Diagnostics 
HS-200 

Microscope slide ground edges, twin frosted 
ThermoFisher 

Scientific 
FB58628 

Normal Goat Serum Blocking Solution Vector Lab S-1000 

Trisodium citrate  Sigma   S1804 

Vectashield mounting medium  Vector Lab H-1200 
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2.1.11 Immunoblotting  

 

Table 2.16: Materials for Western Blotting 

     

Reagent Manufacturer Reference  

N,N,N’,N’-Tetramethylethylenediamine 
(TEMED)  

Sigma   T9281 

20x PBS New England Bio 9808 

20% SDS solution 
ThermoFisher 

Scientific 
AM9820 

2xLaemmli buffer Biorad 1610737 

Acrylamide-Bis acrilamide Severn Biotech 20-2100-10  

Ammonium persulphate (APS) Sigma   A3678 

Bovine serum albumin (BSA) Sigma   A2153 

Clarity western ECL substrate Biorad 170-5061 

DC Protein Assay Kit  Biorad 500-0112 

Gel loading tips Starlabs 1022 0600 

Glycine Sigma   G8898 

Immobilon-P polyvinylidene difluoride 
(PVDF) 0.45µM membrane  

Milipore IPVH00010 

Marvel non-fat dry milk powder  Asda NA 

Methanol Sigma   32213 

Phosphatase inhibitor cocktail 100X  
ThermoFisher 

Scientific 
1861280 

Polyoxyethylene sorbitan (Tween-20) Sigma   93774 

Ponceaux  Sigma   P2395 

Precision Plus Protein™ Dual Color 
Standards 

Biorad 610374 
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Restore# PLUS Western Blot Stripping 
Buffer 

ThermoFisher 
Scientific 

46430 

Thick blotting paper  VWR 732-0594 

Trisma base Sigma   T1503 

β-mercaptoethanol (BME) Sigma   M3148 

Triton X-100  Sigma   T8787 

4x Laemmli Buffer   

20% SDS solution 
ThermoFisher 

Scientific 
AM9820 

β-mercaptoethanol (BME) Sigma   M3148 

Glycerol Sigma   G5516 

Bromophenol Blue Sigma   B0126 

 
  



Chapter 2. Materials and Methods 
 

81 

2.1.12 Comet Assay  

 

Table 2.17: Reagents for Comet Assay 

     

Reagent Manufacturer Reference  

10x TBE  
ThermoFisher 

Scientific 
AM9863 

20x PBS New England Bio 9808 

Agarose Sigma   A0169 

Agarose, low gelling temperature Sigma   A9414 

Dimethyl sulfoxide Sigma   D8418 

Ethylenediaminetetraacetic acid (EDTA) Sigma   E6758 

Sodium chloride Sigma   S7653 

Sodium hydroxide Sigma   795429 

Superfrost™ Plus Adhesion Slides 
ThermoFisher 

Scientific 
10143352 

SYBR® Gold Nucleic Acid Gel Stain 
ThermoFisher 

Scientific 
S-11494 

Trisma base Sigma   T1503 

Triton X-100  Sigma   T8787 
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2.1.13 Immunoprecipitation  

 

Table 2.18: Reagents for immunoprecipitation 

     

Reagent Manufacturer Reference  

Buffer 
  

Triton X-100  Sigma   T8787 

Trisma base Sigma   T1503 

Sodium chloride Sigma   S7653 

Polyoxyethylene sorbitan (Tween-20) Sigma   93774 

Magnesium chloride 1M solution 
ThermoFisher 

Scientific 
AM9530G 

Calcium chloride 1M solution Sigma   21115 

Beads   

ANTI-FLAG M2 Affinity Gel Sigma   A2220 

Anti-FLAG M2 Magnetic Beads Sigma   M8823 

Recombinant protein A Sepharose  Generon PC-A5 

Gel-stain   

Sodium thiosulfate Sigma   13481 

Sodium carbonate Sigma   451614 

Silver nitrate Sigma   209139 

GelCode Blue stain reagent 
ThermoFisher 

Scientific 
10608494 

Formaldehyde solution Sigma   F8775 

Acetic acid Sigma   320099 
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2.2 Methods 

2.2.1 Cell Culture 

 

All cells were grown in DMEM (Dulbecco’s Modified Eagle’s Medium, Sigma) 

supplemented with 10% heat-inactivated FCS (Foetal Calf Serum, Biosera), 5% 

penicillin/streptomycin (Invitrogen) and 2 mM L-glutamine (Sigma) in a humidified 

atmosphere containing 5% CO2 at 37°C. Autophagy was abolished in M5-7 MEFs by 

treating with 1 μg/ml tetracycline for at least four days. HEK293FT were maintained 

in 500 µg/ml G418 (Sigma #A1720) prior to transfection.  

2.2.1.2 Cryogenic storage 

 

Exponentially growing adherent cells were trypsinised (when at ~70% confluence)  

with Trypsin-EDTA (Sigma).Trypsin was neutralized with the addition of pre-warmed 

media and cells centrifuged at 150g for 3 minutes at room temperature. The 

supernatant was removed and cells were re-suspended in Foetal Calf Serum (FCS) 

containing 10% (v/v) dimethyl sulfoxide (DMSO) at a density of 1x106 cells/ml. Cell 

suspension was immediately transferred to cryo-vials in one ml aliquots (containing 

1x106 cells) and placed in a Mr. FrostyTM Cryo freezing container filled with 

isopropanol (Thermo Scientific). Cells were placed @ -80°C for 24h to allow slow 

freezing, before being transferred to liquid nitrogen for long term storage. 

 

2.2.1.3 Resuscitation of frozen cells 

 
Cryo-vials containing cell suspension were removed from liquid nitrogen and 

placed in a water bath @ 37°C to thaw (1-2min). Thawed cell suspension was 

immediately added to pre-warmed media and seeded. Cell culture media was 

replaced 24h following to remove DMSO and cell debris.  

2.2.1.4 Calculating cell density and population doublings 

 
Cell concentration was calculated using a Fuchs Rosenthal haemocytometer 

(VWR International, UK) where 20 µL of trypsinised cells suspension was analysed 

under a standard microscope (DMIL, Leica Microsystems, UK). The average of three 

counts of 8 squares is equivalent to the number of cells x104/mL. This allowed the 
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calculation of the total number of cells by multiplying the volume of cell suspension 

(mL) with the cell concentration (cells/mL). For human primary cell lines the 

population doubling (PD) was calculated using the following equation: PD)=X+Ln( 

N1/N2)/Ln2 

 

where, PD = population doublings 

  X   = previous PD 

N1 = number of cells harvested 

N2 = number of cells seeded 

 

For immortalised cell lines cells were tracked by recording the dilution factor 

and the number of passages.  
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2.2.2 Over-expression Vectors 

2.2.2.1 Bacterial Transformation  

 

All bacterial transformations for transiently expressed plasmids were performed 

using α-select GOLD Efficiency chemically competent cells (Bioline, #BIO-85027) 

according to supplier’s instructions. Briefly,  10 µL of cells were thawed on wet ice. 2 

µL of DNA solution was added and cells were mixed and incubated for 30 min on wet 

ice. Tubes were placed at 37°C for 30 seconds and then incubated on wet ice for a 

further 2 min. Transformation reactions were then diluted in 500 µL SOC medium 

(Invitrogen, 15544-034). SOC Medium: 2% Tryptone, 0.5% Yeast Extract, 0.4% 

glucose, 10mM NaCl, 2.5mM KCl, 10mM MgCl2 & 10mM MgSO4. Tubes were then 

incubated at 37°C for 1h while shaking. Cells were then spread on agar selection 

plates containing lysogeny broth (LB) medium plus ampicillin/kanamycin.Plates were 

incubated overnight at 37°C. Individual colonies were then grown overnight in 100mL 

selective LB. DNA was purified using PureYield Plasmid Midiprep System (Promega, 

#A2492) as described by manufacturer. 

 

Bacteria transformations for lentiviral plasmids was performed in NEB stable 

Competent E. coli (High Efficiency)(New England BioLabs, #C3040H) 

Transformation process was as above although overnight incubation at 37°C was 

replaced with incubation at 30°C for 24 hours. DNA was purified using PureYeild 

Plasmid Midiprep System (Promega, #A2492). 

 
Transformed bacteria stocks  
 

Glycerol stocks were made from 500μL LB containing transformed bacteria mixed 

with 500μl 80% glycerol, then snap frozen in liquid nitrogen and stored at -80oC.  

2.2.2.2 Transfection and Transduction Protocols  

 
Transfection 

Cells were transfected using polyethylenimine (PEI) as described in (Segura et al., 

2010) or Lipofectamine 2000 (Life Technologies #11668) according to the 

manufacturer’s protocols for 24h prior to lysis or fixation. 
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Transduction 

Lentivirus particles were generated in HEK293FT following the manufacturer's 

protocol (Life Technologies). HEK293FT cells were seeded in antibiotic-free medium 

supplemented with 0.1 mM MEM non-essential amino acids (Invitrogen) and then co-

transfected with lentiviral expression vectors and 2nd or 3rd generation packaging 

system plasmids. After 24 hours, media was replaced with fresh media without 

antibiotics. 48 hours after transfection, viral transduction was performed by 

transferring media from HEK293FT cells 70% confluent in the presence of 6 μg/ml 

Polybrene (Sigma). Media containing virus was replaced after 24 hours with fresh 

media containing antibiotic for selection of transduced cells. Media was replaced 

every 2-3 days for 10-12 days by keeping the antibiotic selection. Transduced MEFs 

were then maintained in lower levels of selection antibiotic until seeding for 

experimental purposes. 
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2.2.3 Induction of DNA Damage 

 

2.2.3.1 X-Ray Irradiation 

 
 DNA damage was induced using X-ray irradiation (X-Rad 225, 

Precision X-Ray INC, N-BRANFORD, CT USA) with doses as indicated (0.25-20Gy). 

Media was changed immediately after irradiation to prevent further damage form 

residual free radical generated by IR. 

 

2.2.3.2 Etoposide 

 
 DNA damage was also induced using the topoisomerase inhibitor 

Etoposide. Cells were treated with doses and times as indicated (0.01-1µM). Media 

containing Etoposide was then removed, cells were washed with warm PBS and 

media was replenished. Cells were then left to recover for time indicated.    
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2.2.4 Treatments of cells in tissue culture: 

2.2.4.1 Rapamycin 

 
mTORC1 inhibition was used as a means to stimulate autophagy. mTORC1 

was inhibited by treating cells with 100nM Rapamycin (Sigma, #R8681)  immediately 

after irradiation.  

2.2.4.2 Bafilomycin A1 

 

Autophagic flux was inhibited by treatment with Bafilomycin A1 (Enzo, #BML-

CM110-0100) at 100-400nM as indicated, for 440 min, or the duration of the 

experiment as indicated. 

2.2.4.3 Leptomycin B 

 
Cells were incubated with 20nM Leptomycin B (CST, #9676) for 1-4 hours as 

indicated to inhibit nuclear protein export. 

2.2.4.4 MG132 

 

Proteasomal inhibition was achieved by treatment of 10μM MG132 (Sigma, 

#C2211) for 4 hours. 

2.2.4.5 N-Acetyl-Cysteine (NAC) 

 
Cell were treated with 5µM NAC immediately after X-Ray Irradiation 

2.2.5 Knock down by small interfering RNA 

 
Cells were transiently transfected with ON-TARGETplus SMARTpool siRNA 

against mouse p62 (#18412), FLNA (L-012579-02) and non-targeting SMARTpool 

siRNA (D-001810-04) purchased from Dharmacon. Final siRNA concentrations of 

100nM were used for 96 hours for silencing and transfections were carried out using 

Lipofectamine 2000 (Life Technologies, #11668) as per company instructions. 

Knockdown efficiency was measured by western blot analysis. 
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2.2.6 Mice 

 

2.2.6.1 Mice Groups, Treatments and Housing 

 
All mice were inbred C57BL/6 (Harlan, Blackthorn UK). Mice were housed in same-

sex cages in groups of 4 to 6 (56 × 38 × 18 cm, North Kent Plastics, Kent, UK) and 

individually identified by an ear notch. Mice were housed at 20 ± 2°C under a 12 h 

light/12 h dark photoperiod with lights on at 7.00 am. The diet used was standard 

rodent pelleted chow (CRM (P); Special Diets Services, Witham, UK) for ad libitum 

(AL)-fed mice and the same diet, but as smaller pellets were offered to dietary 

restricted (DR) mice. DR mice were offered 60% of AL intake (calculated based on 

average food intake in 90 control AL mice between 5 and 12 months of age) as one 

ration at 9.30 am daily. All mice were fed AL until 3 months of age and then split into 

AL or DR groups, matched for body mass and food intake.  

 

2.2.6.2 Mouse tissue collection and preparation 

 
Tissues were collected during necropsy and fixed with 4% formaldehyde 

aqueous solution (VWR; Cat. Number 9713.9010) and paraffin embedded for 

histochemical analysis. Parts of the tissues were also snap-frozen in liquid nitrogen 

and stored at -80oC for biochemical analysis. 

 

2.2.6.3 Tissues provided by collaborators 

 
Paraffin embedded tissue sections of the small intestine from AhCre; APC f/wt 

mice ages 27weeks were kindly provided by Masashi Narita (Cancer research UK 

Cambridge Institute) 
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2.2.7 Cell fractionation 

 
Cellular fractionation was carried out as in (Suzuki et al., 2010).  Briefly, 6x105 cells 

were seeded on 10 cm dishes 48 hours prior to collection. Cells were washed in ice-

cold PBS, scrapped in 1 ml ice-cold PBS and centrifuged for 10 seconds at 13,000 

rpm at 4˚C. The supernatant was aspirated and cells were resuspended (triturated 5 

times) in 1 ml ice-cold 0.1% NP40 in PBS. 200 µL was collected in a fresh tube 

(whole cell sample). Samples were centrifuged again for 10 seconds at 13,000 rpm 

at 4˚C and supernatant, which represents the cytoplasmic fraction, was collected in a 

fresh tube. The pellet was resuspended (triturated once) in 1 ml ice-cold 0.1% NP40 

in PBS. Samples were centrifuged for 10 seconds at 13,000 rpm at 4˚C, supernatant 

was discarded and the nuclear pellet was processed as described below.  

For Immunoblot: Whole cell samples and cytoplasmic fractions were mixed 3:1 with 

4x Laemmli sample buffer, sonicated using a microprobe for five seconds on ice and 

boiled at 100°C for 5 minutes in the presence of 2.5% β-ME (beta mercaptoethanol). 

Nuclear pellets were resuspended in 200 µL 1x Laemmli sample buffer, sonicated 

using a microprobe for 5 seconds on ice and boiled at 100°C for 5 minutes in the 

presence of 2.5% β-ME then centrifuged for 10 minutes at 13,000 rpm at 4˚C and 

transferred to a new tube. 

For immunoprecipitation: The nuclear pellets were resuspended in 200 µL IP buffer 

(50 mM Tris, pH 7.5, 150 mM NaCl, 2 mM MgCl2, 1 mM CaCl2, 0.1% Tween 20, 

0.5% Triton-X100 and 2x Halt Protease & Phosphatase inhibitor cocktail (Thermo 

Scientific, #1861280)). The samples were sonicated using a microprobe for 5 

seconds centrifuged for 10 minutes at 13,000 rpm at 4˚C and transferred to a new 

tube. Immunoprecipitation was performed as described below.  
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2.2.8 Live cell imaging 

 
p62-/- and p62+/+ MEFs, stably expressing mCherry-53BP1c  were seeded on a 35 

mm glass bottomed dish (IWAKI) 48 hours prior to treatment. Cells were irradiated 

with 0.25 Gy X-Ray irradiation and immediately transferred to the heated, XLmulti S1 

humidified stage (95% air, 5% CO2) of a Zeiss CellObsever spinning disk confocal 

for imaging.  Images were captured using a 561 nm laser and 40 × 1.3NA objective 

(Zeiss) driven by Axiovision software (v4.8.1, Zeiss, Cambridge, UK). Z-stacks 

encompassing the entire cell were taken every 10 minutes for 8 hours. Foci were 

tracked using Cell/Vesicle function in Imaris (Bitplane, Oxford Instruments). 
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2.2.9 Immunostainings 

 

2.2.9.1 Immunofluorescence staining on fixed cells 

 
Fixation 

Cells grown in coverslips were fixed in 500µL of 2% formaldehyde in PBS 

(VWR, 9713.9010) for 8 minutes at room temperature. Paraformaldehyde was 

removed and cells were washed twice with PBS. Coverslips were stored in PBS at 

4oC (short term) or -80oC (long term). Cells were defrosted/washed once in PBS 

before beginning staining procedure. 

 

Permeabilisation 

Cells were incubated for 45 minutes at room temperature with 500µL PBG-

Triton (0.2% cold water fish gelatine, 0.5% BSA and 0.5% Triton in PBS). 

 

Immunofluorescence staining 

Cells were incubated for 45 minutes in primary antibody (diluted in PBG –

Triton) with gentle agitation or overnight at 4oC without gentle agitation. Cells were 

washed twice with PBG-Triton for 5 minutes. Cells were incubated for 45 minutes 

with fluorophore-conjugated secondary antibody (1/2000) diluted in PBG–Triton and 

then washed three times with PBS for 5 minutes. Cells were washed 3 times in PBS 

before mounting cells on slides using ProLong® Gold Antifade Mountant with DAP 

(ThermoFisher Scietific, P36935) 

 

2.2.9.2 Immunostainings on paraffin embedded tissues 

 

Dewax and Hydration 

Paraffin tissue sections of 3µm thickness were deparaffinised by incubating 

for 10 minutes in Histoclear (National Diagnostics; Cat. Number HS-200) X2 and 

rehydrated in graded concentration of ethanol solutions: 100% (2x 5 minutes), 90% 

(5 minutes), 70% (5 minutes) and H2O (10 minutes). 
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Antigen Retrieval  

Antigens were retrieved by incubating tissues sections in 0.01M citrate buffer 

pH6.0 (29.41g of trisodium citrate in 1L of distilled water, pH6.0) in the microwave: 

high power (800W) for 5 minutes until boiling followed by 10 minutes at medium 

power (400W). Tissue sections were cooled by incubating for 20 minutes on wet ice. 

Tissue sections were then washed twice in H2O for 10 minutes. 

 

Immunofluorescence staining 

Tissue sections were incubated in blocking buffer (goat IgG, #S1000, Vector Lab) for 

30-60 minutes at room temperature. Tissue sections were further blocked with 

Avidin/Biotin (Vector Lab, # SP-2001) for 15 minutes. Primary antibody (rabbit 

H2A.X 1:200 in blocking buffer, CST, #9718) was applied overnight at 4°C. Slides 

were washed three times with PBS and incubated for 30 minutes with secondary 

antibody (Vector Lab, #PK-4001). Sections were washed three times with PBS and 

incubated with Fluorescein Avidin DCS (1:500 in PBS, Vector Lab, #A-2011) for 20 

minutes. Sections were washed three times with PBS and incubated for 30 minutes 

with blocking buffer. Second primary antibody (guinea pig p62 1:100 in blocking 

buffer, Progen, #GP-62-C) was applied overnight at 4°C (note antibodies were 

incubated sequentially). Slides were washed three times with PBS and incubated for 

30 minutes with secondary antibody (anti guinea pig Alexa Fluor® 594 1:2000, 

Molecular Probes #A-11076 ). Sections were stained with DAPI for 5-10 minutes and 

mounted in Vectashield mounting medium (Vector Lab, # H-1200).  

2.2.9.3 Microscopy 

 

Cells were imaged with a Leica DM 5500B Widefield Microscope through an HCX PL 

APO 100x/1.40-0.70 or oil HCX PL APO 40x/1.25 oil objective using a Leica DFC 

360 FX camera. Alternatively, for co-localisation and live cell imaging analyses, 

images were captured using a Zeiss CellObsever spinning disk confocal microscope 

equipped with: CSUX1 spinning disk confocal head (Yokogawa), and Quant EM 

CCD (Photometrics), using a 405, 488 and 561 nm lasers and 63× 1.4NA objective 

(Zeiss) driven by Axiovision software (v4.8.1, Zeiss, Cambridge, UK). 
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2.2.10 Protein expression analysis 

 

2.2.10.1 Protein Extraction 

 
Cells were washed with ice cold PBS and then lysed with ice cold 

Radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 1% NP40, 0.5% 

NaDoC, 0.1% SDS, 50 mM Tris pH 7.4 and 1x phosphatase and protease inhibitors 

cocktail (Thermo Scientific, 78442) by scraping using a rubber cell scraper. Samples 

were then collected into 1.5 mL microcentrifuge tubes and immediately stored at -

80oC (alternatively samples could be immediately used for protein quantification and 

further analysis). 

 

2.2.10.2 Protein quantification 

 

Cell lysates were defrosted on wet ice before being centrifuged for 10 minutes at 

16,000g at 4oC. Protein quantification was performed using a colorimetric Bio-Rad 

DC Protein Assay (Bio-Rad; Reagent A Cat. Number 500-0113, Reagent B Cat. 

Number 500-0114, Reagent S Cat. Number 500-0115) according to the 

manufacturer’s instructions. Absorbance was measured using a Fluostar Omega 

plate reader (BMG Labtech) Protein concentration of each sample was calculated 

and normalised by mixing adjusted volumes of protein lysate and loading buffer [950 

µL of 2xLaemmli buffer (Bio-Rad; Cat. Number 161-0737) plus 50 µL of β-

mercaptoethanol (Sigma, M6250) or (4x Laemmli 8% SDS, 40% glycerol, 240mM 

Tris pH6.8, 10% β-mercaptoethanol). Protein denaturation was achieved by 

incubating samples at 100°C for 5 minutes. Samples were immediately placed on ice 

after denaturation. At this stage denatured samples were either stored at -20oC or 

used immediately for western blotting. 
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2.2.10.3 Western blotting 

 

Electrophoresis 

Acrylamide gels were prepared as following:  

 

1. A resolving gel was prepared according to size of the proteins of interest and 

poured into a cassette (Invitrogen, NC2015 or NC2010). 1ml of water was 

added on top of gel to insure a straight edge (see Table 3.6 for gel preparation)  

5% gels: > 250 kDa 

8% gels: 250-120 kDa 

10% gels: 120-40 kDa 

12% gels: 40-15 kDa 

15% gels: < 20 kDa 

  

2. After the resolving gel has polymerised, a 5% acrylamide staking gel was 

prepared, poured into the cassette and allowed to polymerize (see Table 

2.19 for gel preparation). 

3. Gels were placed in a XCell SureLockTM Mini-Cell Electrophoresis System 

(Invitrogen) and Tris-Glycine running buffer (250µM Tris, 1.92mM Glycine 

and 0.1% SDS) was added. Samples were loaded into wells along with a 

Protein standard (Bio-Rad, 161-0374) and electrophoresis was performed 

at 120V, 35mA for 90 minutes. 

 

Table 2.19:  Acrylamide gels for Western Blotting analysis 

1Gel  5% 8% 10% 12% 15% Stacking 

Sterile H2O 6.8ml 5.1ml 4ml 3.3ml 2.3ml 3.4ml 

30% Acrylamide 1.7ml 2.6ml 3.3ml 4ml 5ml 830ul 

1.5M Tris pH 8.8 (1M Tris 
pH 6.8 (Stacking)) 

2.5ml 2.5ml 2.5ml 2.5ml 2.5ml 630ul 

10% SDS 100ul 100ul 100ul 100ul 100ul 50ul 

10% Ammonium 
Persulphate 

100ul 100ul 100ul 100ul 100ul 50ul 

TEMED 8ul 4ul 4ul 4ul 4ul 5ul 
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Protein transfer to membrane 

 

Following electrophoresis gels were removed from cassettes and Proteins were 

transferred to a 0.45 µm polyvinylidene difluoride (PVDF) membrane (Millipore, 

IPVH00010). Between transfer pads (VWR, 732-0594) soaked in transfer buffer 

(250µM Tris, 1.92mM Glycine). Transfer was performed using the Trans-Blot® SD 

Semi-Dry Transfer Cell (BioRad) at 17 volts for 45-60min. The membrane was then 

stained with Ponceaux (Sigma, P2395) solution (0.5% Ponceaux and 5 % Acetic 

Acid in H2O) for detection of protein bands to check transfer and allow trimming and 

cutting of the membrane prior to antibody incubation. 

 
Immunoblotting 

 
Following transfer membranes were washed one in PBS then incubated for 1 

hour in blocking buffer (5% Fat free dry Milk (Marvel) in 0.05% PBS-Tween) at room 

temperature on a shaker. The membrane was the incubated overnight at 4oC while 

shaking gently in primary antibody diluted in 5% Milk in 0.05% PBS-Tween (5% BSA 

in 0.05% PBS-Tween for antibodies against phosphorylated proteins). Membrane 

was washed 3 times in PBS before incubation with the secondary antibody diluted in 

5% Milk in 0.05% PBS-Tween for 1 hour at room temperature while shaking gently. 

Membranes were washed 3 times with PBS followed by a 3 minutes wash in 0.05% 

PBS-Tween at room temperature while shaking gently, before a final 3 washes in 

PBS. 

 

 Chemiluminescence and evaluation 

Blots were incubated in ClarityTM Western ECL substrate (Bio-Rad, 170-5060) for 5 

minutes. The blot was visualised using Fuji film Intelligent Dark box II and Image 

Reader Las-4000 Software. Protein standard was used to confirm protein of interest 

by size comparison. ImageJ analysis software was used to quantify the integrated 

density of signal on the blot. Densitometry quantification of the protein of interest of 

calculated after Background subtraction and normalisation to a loading control. 
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2.2.11 Comet Assay 

 
Comet assay (single cell gel electrophoresis) is a method for analysing DNA 

strand breaks in eukaryotic cells. Cells are embedded in an agarose gel on top of 

microscope slides. These gels are then lysed in buffer containing detergent and a 

high salt concentration. This results in the formation of nucleoids of supercoiled 

DNA. Slides are then subjected to electrophoresis and DNA is stained and visualised 

by fluorescent microscopy. DNA Loops that contain breaks are able to migrate from 

the nucleoid toward the anode giving rise to a comet like appearance. The intensity 

of the comet “tail” relative the “head” (nucleoid body) reflects the number of breaks. 

 

Figure 2-1: Example of a Comet assay image. Area under the graph (green) is the 

comet head, orange is the comet tail  

 

Cells were trypsinised and centrifuged at 1600rpm, supernatant was removed 

and cells were resuspended in 500μl 10% DMSO in FBS. Cells were then frozen at -

80°C in in a Mr. FrostyTM Cryo freezing container filled with isopropanol (Thermo 

Scientific, #5100-0001). Cells were placed at -80°C and allowed to slow freeze, cells 

were then removed and stored at -80°C until required. Cells were defrosted on wet 

ice then washed in cold PBS and centrifuged at 4°C at 1600rpm for 5 mins. 

Supernatant was removed and cells were resuspended in 0.7% LMP agarose at 

37°C to a concentration of 2 x 105
 cells/ml. 70μl of cell/agarose mix was placed on 

slides coated in 1% agarose between a cover-slip, care was taken to avoid bubbles. 

Slides were then placed at 4°C for 10 mins to allow the gel to set. Cover slips were 

removed and the slides were placed in lysis buffer (2.5M NaCl, 100nM EDTA, 10nM 

Tris, 250nM NaOH 10% DMSO, 1% Triton X-100) for 1h at 4°C. Slides were then 

washed twice in cold PBS.  
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Alkaline Comet 

Slides were places for 40 mins in alkaline buffer (300mM NaOH, 1mM EDTA) 

at 4°C to denature DNA. Samples were subjected to electrophoresis for 30 minutes 

at 25V at 4°C in alkaline buffer. 

 

Neutral Comet  

Samples were subjected to electrophoresis for 30 minutes at 25V at 4°C in 

Tris-borate EDTA (TBE) buffer.  

 

Visualisation 

After slides were washed 2x in cold PBS, 500μl of 1000x Sybr Gold 

(Invitrogen) in TBE buffer was added to each gel and slides were incubated for 40 

mins in a dark humid chamber. Slides were washed 2x in MilliQ water and allowed to 

dry. Samples were imaged using an Olympus BX51 widefield microscope with 

Olympus UPlanFL 20x/0.50 air objective. Comets were scored using Comet assay IV 

(Perceptive Instruments Ltd., Haverhill, Suffolk, United Kingdom). Each experiment 

was run on 2 separate gels and an average reading for the two gels was quantified. 

2.2.12 Immunoprecipitation 

 

Cells were seeded 6×105 in a 10 cm dish and transfected as described above 24 

hours later. Following another 24 hours, nuclear fractions were prepared as 

described above. 

For FLAG-tagged protein: lysates were incubated with pre-washed and equilibrated 

anti-FLAG M2 magnetic beads (Sigma Aldrich, #M8823) for two hours at 4°C with 

constant rotation. Beads were washed twice with lysis buffer and the pulled-down 

protein was eluted from the beads by incubation with 25 µl 0.2 M glycine-HCl, pH 

2.5, for 10 minutes at room temperature. Eluent was neutralised by the addition of 

2.5 µl Tris-HCl, pH 8.8. The samples were then mixed with sample buffer and boiled 

at 100°C for five minutes in the presence of 2.5% β-ME before being subjected to 

SDS-PAGE and immunoblot. 

For GFP-tagged protein: lysates were incubated with 3 µl anti-GFP rabbit serum (Life 

Technologies, #A-6455) for one hour at 4°C with constant rotation. Lysates were 

then incubated with 20 µl pre-washed Protein A Sepharose beads (Generon, #PC-
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A5) for 1 hour at 4°C with constant rotation. Beads were then washed twice in IP 

buffer, mixed with sample buffer and boiled at 100°C for 5 minutes in the presence of 

2.5% β-ME. Samples were centrifuged for 10 minutes at 13,000 rpm at 4°C and 

transferred to a new tube. Samples were then subjected to SDS-PAGE and 

immunoblot. 
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2.2.13 Mass Spectrometry 

 
Immunoprecipitation was carried out as described above. Gel was then stained using 

Coomassie and bands present in IP and absent in control were excised. Excised 

bands were digested in-gel and the resulting tryptic peptides analysed by LC-MSMS 

using an Orbitrap XL (Themo Scientific) coupled to a nanoAcquity (Waters). MSMS 

data was acquired in a top 6 DDA fashion and raw files were processed in Proteome 

Discover v1.4 using the Sequest search engine against a Uniprot human database 

(downloaded 030314, 68,710 entries). CAM cysteine was set as a fixed modification 

with oxidised methionine and deamidated asparagine/glutamine as potential variable 

modifications. FDR calculations were performed using Percolator with peptides 

filtered to 0.01 FDR. Mass spectrometry analyses were performed by Dr. Robin 

Antrobus at Cambridge Institute for Medical Research. 

2.2.14 Statistical analyses 

 
Two-tailed, paired or unpaired Student’s t-tests were carried out on experimental 

data from at least three individual experiments using Excel. A one-way Anova was 

used for multiple comparisons between groups using Sigma Plot. 

 

2.2.15 Ethics statement 

 
Ethical approval was granted by the LERC Newcastle University, UK. The 

work was licensed by the UK Home Office (PPL 60/3864) and complied with the 

guiding principles for the care and use of laboratory animals. 
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3. Chapter 3. The Effects of Autophagy on DNA Damage Repair 

 

Autophagy is known to play a central role in cellular homeostasis, with 

impaired autophagy being implicated in many human diseases (Levine and Kroemer, 

2008).  Autophagy has been shown to be a potent tumor suppressor, with autophagy 

defects being common in many forms of cancer (Gozuacik and Kimchi, 2004, Kung 

et al., 2011). However, the exact mechanisms by which autophagy confers 

protection against transformation are still unclear. Autophagy defects have been 

shown to lead to genomic instability (Karantza-Wadsworth et al., 2007) and inhibition 

of autophagy has previously been suggested to suppress DNA repair (Liu et al., 

2015, Bae and Guan, 2011, Robert et al., 2011). In this chapter I further explore the 

link between autophagy and the ability of cells to repair DNA. 
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3.1 Cells Lacking Autophagy Have a Decreased DNA Repair Capacity 

 

To investigate the effect of autophagy on DNA repair, DNA damage was 

induced in Atg5−/ − and Atg5+/+ MEFs using 1Gy of X-Ray irradiation. Atg5 is part of 

the Atg5-12/Atg16L1 complex that is essential for the formation of autophagosomes.  

Atg5−/− MEFs are unable to form autophagosomes, rendering these cells autophagy 

deficient (Figure 3-1). Similarly, M5-7 MEFs are a cell line where the knockdown of 

Atg5 is under the control of a tetracycline promoter (Tet). The advantage of an 

inducible knock-down cell system is that it reduces clonal differences between cell 

lines and the period where cells are able to adapt to the lack of autophagy.  DNA 

damage was assessed using immunostaining for 53BP1 across a 480 minute time 

course.  It was found that Atg5-/- MEFs show a reduced rate of repair, judged by an 

increased number of 53BP1 foci at later time points, compared to Atg5+/+  

(autophagy competent) MEFs (Figure 3-2A-B). Similarly, M5-7 MEFs treated with Tet 

to abolish expression of Atg5, showed a reduced repair capacity compared to non-

treated controls (Figure 3-2C-D). The differences in M5-7 MEFs shown in (Figure 

3-2C) are less pronounced than those seen in the Atg5 MEFs shown in (Figure 3-2B). 

The reason for this difference is not clear, however M5-7 –Tet cells showed reduced 

basal levels of both LC3 and the Atg5-Atg12 complex compared to Atg5+/+   (Figure 

3-2 E). This suggests a slight suppression of autophagy even in the absence of 

Tetracycline treatment and could explain the larger differences seen in the Atg5 cell 

lines compared to the M5-7 cells. This could be a result of antibiotics present in the 

FCS used in the culture media. Overall, these results indicate that MEFs lacking 

autophagy show a slower recovery from X-ray induced DNA damage, suggesting a 

possible role for autophagy in the DDR. 
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Figure 3-1: Deletion of Atg5 leads to a loss of autophagy. (A) Schematic 

representation of the initiation of autophagy, showing that loss of Atg5 results in a 

loss of functioning autophagy. (B) Representative western blot showing Atg5/12 and 

LC3 II levels in Atg5+/+ and Atg5-/- MEFs treated with and without 400nM Bafilomycin 

A1 for 440 min prior to collection. 
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Figure 3-2: Cells lacking autophagy have a reduced repair capacity in 

response to X-Ray irradiation. Representative images (A) and quantification (B) of 

the mean number of 53BP1 foci in Atg5+/+ and Atg5-/- MEFs 0-480 minutes after 1Gy 

X-Ray irradiation. (C-D) M5-7 MEFs were treated with tetracycline (Tet) to induce 

knock-out of Atg5. Mean number of 53BP1 foci was quantified (C). Representative 

images of 53BP1 foci 0-480 minutes after 1Gy X-Ray irradiation are shown in (D). 

Representative western blot showing Atg5/12 and LC3 II levels in Atg5+/+, Atg5-/- and 

M5-7 MEFs with and without Tetracycline (Tet). Scale bar 10 µm; n=3; Error bars 

represent S.E.M. 
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In addition to DNA damage, X-Ray irradiation induces damage to other 

cellular components such as proteins and lipids (Carugo and Djinovic Carugo, 2005). 

Having shown that cells lacking autophagy show an increased sensitivity to X-Ray 

induced DNA damage it was important to confirm that these effects were DNA 

damage specific and not due the accumulation of a different type of cellular damage.  

This is especially important in light of the role of autophagy in the recycling of many 

damaged proteins and macromolecules.  In order to investigate this, Etoposide was 

used to induce DNA damage.  Etoposide induces double strand breaks via the 

inhibition of topoisomerases (Pommier et al., 2010), these are enzymes that cleave 

DNA to allow the rearrangements required for sufficient access of the transcription 

machinery. Their inhibition results in the enzyme being held at the site of cleavage 

resulting in improper resolution and generation of double strand breaks (DSB).  

Here, Atg5−/ − and Atg5+/+ MEFs were treated with 1µM Etoposide for 120 

minutes. Cells were either fixed immediately after treatment or washed and allowed 

to recover for 300 min, then were fixed and stained with antibody against 53BP1 

( Figure 3-3A). Results shown in  Figure 3-3B indicate that treatment with Etoposide 

induced similar levels of damage in Atg5+/+ and Atg5-/- MEFs. However, following 5 

hours recovery Atg5-/- MEFs showed significantly more DNA damage. These results 

confirm that cells lacking autophagy are indeed more sensitive to DNA damage. 
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 Figure 3-3: Cells lacking autophagy have a reduced repair capacity in 

response Etoposide. DNA damage was induced in Atg5+/+ and Atg5-/- MEFs by 120 

minute incubation with Etoposide and, where indicated, followed by a 300 minute 

recovery period. Representative images are shown in (A) and the mean number of 

53BP1 foci was quantified (B). Scale bar 10 µm; n=3; Error bars represent S.E.M; 

NS: not significant, * p<0.05, ** p<0.01, *** p<0.001. 
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3.2 The effect of autophagy on the DDR is independent of ROS  

 

Cells lacking autophagy have been shown to have higher levels of ROS. 

These are a group of reactive molecules including: superoxide anion (O2
•−), hydroxyl 

radical (OH•) and hydrogen peroxide (H2O2) that are generated as part of normal 

oxygen metabolism, primarily in mitochondria. Autophagy is involved in the 

degradation of mitochondria (mitophagy), and inhibition of autophagy has been 

shown to contribute to an increase in both dysfunctional mitochondria and ROS (Pua 

et al., 2009). ROS play an important role as signalling molecules in the cell. 

However, if levels of ROS are elevated they can lead to oxidative stress, causing 

damage to proteins, lipids and DNA. For this reason, it was important to assess the 

potential contribution of ROS in the differences in 53BP1 foci kinetics seen between 

Atg5+/+ and Atg5-/- MEFs.  

To test whether the increase in DNA damage seen in cells lacking autophagy 

was ROS dependent, Atg5+/+ and Atg5-/- MEFs were exposed to 1Gy of X-ray 

irradiation, treated with and without antioxidant N-acetyl-cysteine (NAC) and fixed 

every hour for 8h following IR. Cells were then stained with antibody against 53BP1 

and DDF quantified by microscopy. Results shown in Figure 3-4 indicate that 

treatment with NAC had no effect on the number of DNA damage foci in Atg5+/+ and 

Atg5-/- MEFs following 1Gy IR. The concentration of 5mM NAC has however, been 

shown to reduce ROS in response to the higher dose of 10Gy in these cells (Correia-

Melo, 2014). These data suggest that the differences seen in Atg5+/+ and Atg5-/- 

MEFs are not ROS dependent, however it still remains for us to measure ROS in this 

system.  
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Figure 3-4: Treatment with NAC does not rescue DNA damage phenotype. 

Quantification of the mean number of 53BP1 foci in Atg5+/+ and Atg5-/- MEFs with and 

without 5mM NAC 0-480 min after 1Gy X-Ray irradiation. n=3; Error bars represent 

S.E.M. 
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3.3 The effect of Atg5 knock-out on DDR is independent of other lysosomal 

degradation pathways 

 It has been recently suggested the CMA may be involved in the regulation of 

DNA damage repair through the selective degradation of Chk1 (Park et al., 2015). It 

has also been suggested that autophagy is able to occur in the absence of Atg5 

(Nishida et al., 2009). It was therefore important for us to assess if there was any 

additive effect of other lysosomal degradation pathways in DNA damage repair in 

Atg5-/- MEFs. Here, lysosomal degradation was inhibited (Figure 3-5A) with treatment 

of Atg5-/- MEFs with 400nM Bafilomycin A1 (Baf) (Yamamoto et al., 1998). Atg5-/- 

MEFs were exposed to 1Gy of X-ray irradiation, treated with and without Baf and 

fixed every hour for 8h following IR. Cells were then stained with an antibody against 

53BP1 and DDF quantified by microscopy. Quantification shown in (Figure 3-5B) 

indicates that block of lysosomal degradation with Baf had no further effect on DNA 

damage repair in Atg5-/- MEFs. These data suggest that CMA as well as Atg5/7 

independent autophagy have no effect on DNA damage repair following low dose IR.  
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Figure 3-5: Block of lysosomal degradation with Baf has no further effect on 

DNA damage than genetic knockout of autophagy in Atg5-/- MEFs. (A) 

Schematic representation of the action of Bafilomycin A1 which inhibits V-H 

ATPases present in the lysosomal membrane leading to deacidification and an 

inhibition of the fusion of autophagosomes. (B) Quantification of the mean number 

of 53BP1 foci Atg5-/- MEFs with and without 400nM Baf 0-480 min after 1Gy X-Ray 

irradiation. n=3; Error bars represent S.E.M. 
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3.4 Knockdown of p62 rescues Decrease in DNA Repair Capacity in Autophagy 

Deficient Cells 

 

Assuming that ROS is not responsible for increased levels of DNA damage in 

autophagy null cells, we decided to look at autophagy adaptor proteins as a potential 

link between these two spatially separate cellular processes. The autophagy adaptor 

protein p62 has previously been suggested to play a role in DNA damage repair 

(Bae and Guan, 2011). In order to further understand the extent of the contribution of 

p62 to the differences seen in DNA damage between autophagy deficient MEFs, p62 

was knocked down using siRNA in Atg5+/+ and Atg5-/- MEFs expressing a 53BP1-

GFP reporter.  Cells were then exposed to 1Gy of X-Ray irradiation and fixed at 5 

and 300 minutes following IR as well as non-IR control. Cells were stained with 

antibody against p62 and 53BP1 foci were analysed by microscopy (Figure 3-6A). 

The knockdown efficiency was tested by immunoblot for p62 as shown in Figure 

3-6B. Data in (Figure 3-6C) show that knockdown of p62 rescues the increased DDF 

seen in Atg5-/- MEFs as well as reduces the number of DDF at 5h following IR in 

Atg5+/+ MEFs. These results suggest that differences in DDF in autophagy deficient 

cells are dependent on p62. 
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Figure 3-6: Knockdown of p62 in autophagy deficient cells rescues the delay in 

DNA damage repair. Atg5+/+ and Atg5-/- MEFs treated with control or p62 siRNA 5 

and 300 min after 1Gy X-Ray irradiation. (A-C) Representative images of GFP-

53BP1 foci are shown in (A). Blot showing scrambled control (Sc) and p62 siRNA in 

Atg5+/+ and Atg5-/- MEFs (B). Quantification of the mean number of GFP-53BP1 (C). 

Scale bar 10 µm; n=3; Error bars represent S.E.M; NS: not significant, * p<0.05, ** 

p<0.01, *** p<0.001.    
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3.6 The effect of knockdown of Atg5 on DDR Downstream Signalling 

 

Having established that cells with compromised autophagy have a slower 

DNA damage repair kinetic compared to those without, as measured by 53BP1 foci 

(Figure 3-2 &  Figure 3-3), I investigated whether downstream DNA damage 

signalling was being affected as a result of autophagy inhibition. For this, it was 

necessary to knock down Atg5 in primary cells, as downstream signalling is possibly 

disrupted in Atg5-/- MEFs as a result of the SV40 immortalisation process (Boichuk et 

al., 2010). Here, MRC5 human fibroblasts were transduced with shRNA against Atg5 

as a means of inhibiting autophagy. The Atg5 knockdown efficiency of cell lines 

derived from chosen virus titre is shown in (Figure 3-7A) following 2 cell passages (to 

allow cells to recover from transduction), indicating successful Atg5 knockdown by 

shRNA#1 and 5. These results indicate a modest effect on LC3II levels; this is in 

agreement with the observation made in (Hosokawa et al., 2007) that only very low 

levels of Atg5 are required for functional autophagy. Next, we wanted to investigate 

the effect of Atg5 knockdown on signalling downstream of a DDR. Here, MRC5 

human fibroblasts that are stably expressing shRNA against Atg5 were exposed to 

1Gy of X-Ray irradiation and collected at time points 5min-8h following IR.  Samples 

were then run on SDS-PAGE electrophoresis and immunoblot analysis was carried 

out for PARP, p62, p-p53, p21, p16 and loading control GAPDH. Results shown in 

Figure 3-7B indicate an increase in p62 in cells expressing shRNA against Atg5. 

Similarly, there was also a trend for an increase in p-p53 and p21 expression in Atg5 

shRNA expressing cells. These results are consistent with data shown previously 

indicating that impaired autophagy impacts on DDF repair kinetics (Figure 3-2& 

Figure 3-3). As it was planned to assess senescence in these Atg5 shRNA-

expressing cells, they were not subject to Puromycin selection so that an accurate 

record of population doubling could be kept. Comparison of the levels of LC3II with 

and without Bafilomycin A1 treatment allows gauging of the basal rate of autophagic 

flux. Results shown in Figure 3-7C indicate that Atg5 shRNA is in fact having little 

effect of autophagic flux following successive cell passages, suggesting that 

expression of shRNA had been lost. Another attempt was made to generate these 

cell lines using higher virus titres with the hope of achieving a greater knockdown of 

autophagy. Interestingly, cells expressing Atg5 shRNA in this instance ceased to 
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proliferate following transduction which precluded follow up experiments.  It is 

possible that inhibition of autophagy has led to a premature induction of senescence 

in these cells as previously reported in (Kang et al., 2011).  
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Figure 3-7: Downstream DDR in MRC5 fibroblasts transduced with shRNA 

against Atg5. Western blots (A) showing Atg5-12, LC3 II and loading control 

GAPDH in chosen virus volume (2ml Virus media in a total of 4ml). Western blots (B) 

showing PARP, p62, p-p53, p21, p16 and loading control GAPDH in MRC5 

fibroblasts transduced with GFP-shRNA (control) of Atg5 shRNA as indicated 

following 1Gy X-ray irradiation at time points 5min-8h. Western blots (C) showing 

p62, LC3 II and loading control GAPDH in chosen virus volume (2ml Virus media in a 

total of 4ml) with and without 4h 400nM Bafilomycin A1 treatment.  
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3.6 Discussion 

 

 Despite several recent studies that explore the role of autophagy in the DDR 

few have directly tested the role of autophagy on DNA damage repair (Liu et al., 

2015, Bae and Guan, 2011, Robert et al., 2011). Liu et al conclude that there is no 

difference in the rate of DNA repair between autophagy compromised and wt cells 

(Liu et al., 2015). Here, autophagy is abolished through inducible knock out of Atg7. 

DNA damage is measured by immunofluorescence analysis of H2A.X before, 1 h 

and 8 h after 10Gy ionizing radiation. In this work, the authors report the complete 

resolution of H2A.X foci 8h following 10Gy irradiation. Our group and others have 

observed an average of 30 DDF in MEFs at 1 day following 10 Gy X-ray irradiation 

(Hewitt et al., 2012, Rodier et al., 2011), as well as foci that persist up to 10 days 

following IR. The striking difference between the numbers observed in the study from 

Liu et al and ours suggests a relatively low sensitivity in the assay used by others to 

detect DNA damage foci.H2A.X is also measured by western blot from whole cells 

lysed in RIPA buffer. Data from our group (not shown) indicates that samples from 

MRC5 human fibroblasts lysed in RIPA buffer before or 1h, 6h, and 12h following 

exposure to 20Gy X-Ray irradiation are positive for H2A.X only at 1h and 6h but not 

12h. When compared to analysis of DNA damage foci at the same time points 

(Hewitt et al., 2012, Passos et al., 2010) it can be seen that measurements of DDR 

using western blotting is extremely insensitive. DNA damage is also measured by 

Comet assay and data is presented as % of cells with Comet tail.  Again, the authors 

report no significant differences between the levels of DNA damage between ATG7 

null and wt MEFs following, in this instance, treatment with Etoposide. Quantification 

of Comet assay as % of cells with Comet tail is a very crude analysis and results 

show low levels of damage. This, again, suggests inadequate sensitivity in this 

analysis. Authors then go on to report increased proteasome activity in ATG7 null 

MEFs, which results in increased degradation of Chk1, resulting in an inhibition of 

homologous recombination. They also measure NHEJ using reporter plasmids 

described in (Seluanov et al., 2004) and report no difference between ATG7 null and 

wt MEFs. Taken together, it is surprising that an inhibition of HR and no change in 

NHEJ does not lead to a difference in levels of double strand break repair in cells 

lacking autophagy and further point to a lack of sensitivity in the methods used to 
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assess damage. Authors do report an increased level of DNA damage in cells 

lacking autophagy when NHEJ is inhibited at 4h and 8h following treatment with 

Etoposide, as measured by COMET assay (Liu et al., 2015).  

Contrary to the study from Liu et al 2015, Bae and colleagues describe that 

inhibition of autophagy by FIP200 deletion impairs DNA damage repair (Liu et al., 

2015). In this study, similarly to Liu et al, high doses of DNA damaging drugs or 

10Gy of irradiation is used to induce damage. Damage is assessed by COMET 

assay, immunostaining and western blot for H2A.X (Bae and Guan, 2011). The 

difference between both studies could be due to a more sensitive analysis of DNA 

damage carried out by Bae et al. In their study the authors detected H2A.X positive 

cells using higher magnification at 24h following 10Gy IR in FIP200 deleted cells. 

They are also able to detect a much more robust induction of H2A.X, as measured 

by western blot. This could be a result of different sample preparation. Here, cells 

were lysed directly in boiling sample buffer, giving a more complete lysis, which is 

especially important when trying to assess hard-to-extract histones and preserves 

phosphorylation. It should be noted that 10Gy IR is sufficient to cause cell death as 

concluded by this study (Bae and Guan, 2011) and others (Jo et al., 2015). Similarly 

Liu et al used 10Gy IR to induce DNA damage, however they report a much reduced 

induction of cell death (Liu et al., 2015). Induction of apoptosis can lead to false 

positive results when using Comet assay to assess DNA damage induction as 

shown by (Choucroun et al., 2001). There are a number of mechanisms by which 

apoptotic cells would appear to have increased DNA damage, as measured by % of 

tail vs head. It is known that DNA intercalators that are commonly used to visualise 

Comets such as ethidium bromide and syber gold also recognise RNA (Tuma et al., 

1999). As apoptosis is an active process leading to changes in protein synthesis 

(Clemens et al., 2000), it is possible that changes in levels of mRNA in these cells 

could lead to incorrect  scoring of Comet tails. Moreover, the chromatin degradation 

occurring at the beginning of apoptosis (Walker et al., 1995) could lead to further 

migration of stretched DNA into the Comet tail. Comet tails may result due to nuclear 

blebbing and the formation of micronuclei that are also common to apoptotic cells. 

Interestingly, work done by our group and others has suggested a role for autophagy 

in the degradation of micronuclei (Ivanov et al., 2013, Rello-Varona et al., 2012). We 

have also seen that 10Gy of irradiation is sufficient to lead to the generation of 
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micronuclei in Atg5-/- MEFs, presenting another potential confound when using 

Comet assay to assess autophagy dependent differences in DNA repair using high 

doses of IR. Contrary to a potential overestimation of DNA damage seen using 

Comet assay, cell death can lead to an underestimation of DNA damage when using 

markers such as H2A.X measured by microscopy. This is because cells that contain 

higher level of DNA damage are eliminated from your analysis, as they detach during 

the fixation and staining process.  

Autophagy status has been heavily implicated in cell survival and execution of 

cell death pathways (Marino et al., 2014), therefore the use of DNA damaging agents 

at doses able of inducing cell death is inappropriate to elucidate the effect of 

autophagy on the kinetics of DNA damage repair itself. 

As well as inducing cell death, 10Gy X-ray irradiation is also able to induce 

cellular senescence in MEFs (Hewitt et al., 2012). This induction of senescence is 

associated with the presence of long lived DNA damage foci (Hewitt et al., 2012, 

Rodier et al., 2011, Fumagalli et al., 2012), as well as the constant generation and 

repair of transient DNA that arise due to mitochondrial ROS generation (Passos et 

al., 2010). The role of autophagy in mitochondrial turnover (Lee et al., 2012a) could 

indeed influence DNA damage in this context, independent of any role in DNA 

damage repair. Consistently, knockout of Atg7 in the hematopoietic system of mice 

resulted in an accumulation of mitochondria, ROS generation and DNA damage 

(Mortensen et al., 2011). Similarly, hepatocytes from Atg5 mosaic knockout mice 

show increased numbers of swollen mitochondria as well as DNA damage 

(Takamura et al., 2011). This makes the study of direct effects of autophagy on DNA 

damage repair extremely challenging in using these models. Interestingly, autophagy 

status may influence the execution of the senescent phenotype (Gewirtz, 2013) 

presenting the problem that differences seen in DNA damage may result from the 

effect of autophagy on the senescence process rather than DNA damage repair 

itself. 

It is possible that the effect of autophagy in processes such as cell death and 

senescence are mediated, in part, by changes in DNA damage repair. However in 

this thesis to avoid the possible confounding influences of these processes, DNA 

damage repair was studied in the context of low level damage induction.  
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Results presented in this chapter show that cells lacking autophagy due to 

knockout of ATG5 show an impaired repair kinetics of 53BP1 foci compared to wt 

cells when exposed to 1Gy of irradiation.  As discussed, M5-7 MEFs were used to 

help confirm that this result was due to the absence of autophagy and not due to 

clonal differences between MEFs derived from separate animals. It should be noted 

that these cells must be cultured for 4 days in the presence of Tet to completely 

abolish autophagy. This is because only very low levels of Atg5 are required for 

basal autophagy (Hosokawa et al., 2007). It would be interesting to study the effect 

of an acute inhibition of autophagy in the context of DNA damage as both Atg5-/- and 

M5-7 MEFs cells have impair autophagy prior to induction of DNA damage. This is 

something that will be discussed further in the coming chapters.  

Whole cell X-ray irradiation leads to the damage of many cellular components 

such as lipids, proteins and DNA. As we are hoping to assess the effect of 

autophagy, a protein degradation pathway, on DNA repair capacity. It is important to 

account for the possibility that differences in foci repair kinetics between Atg5+/+ and 

Atg5-/- MEFs may arise due to differences in the clearance of other cellular damage 

other than DNA damage, which may itself influence DNA repair processes. 

Therefore, damage induced by the topoisomerase inhibitor Etoposide was also 

assessed. These results indicated that, similar to X-ray IR, cells lacking autophagy 

had a reduced repair capacity compared to wild type cells. These data suggest that 

the differences seen in DDF following induction of DNA damage result from 

differences between Atg5+/+ or Atg5-/- MEFs in DNA repair pathways and not as a 

result of damage to other cellular macromolecules. 

Data presented above suggest that the differences in DNA damage foci repair 

kinetics following 1Gy X-ray irradiation are not dependent on ROS as treatment with 

5mM NAC had no significant effect on repair kinetics in Atg5+/+ or Atg5-/- MEFs. It 

should be noted, however, that levels of intracellular ROS were not assessed in this 

experiment. Nevertheless, treatment of fibroblasts with 2.5mM NAC has previously 

been shown to be sufficient to reduce levels of ROS following 20Gy X-Ray IR  as 

well as in Atg5+/+ or Atg5-/- MEFs following 10Gy X-Ray IR (Correia-Melo, 2014). 

Therefore, it could be expected that this treatment would be sufficient to supress 

ROS in response to 1Gy IR, however further studies would be required to confirm 

these assumptions. 
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Recently, it was suggested that CMA may play a role on DNA damage repair 

(Park et al., 2015). In this paper, similar to those published by 2 other groups (Liu et 

al., 2015b, Bae and Guan, 2011a) high levels of DNA damaging agents were used 

and reduced cell viability was observed, again leading to possible confounding 

effects when assesing DNA damage. The authors propose that CMA is responsible 

for the regulated degradation of Chk1, concluding that inhibition of CMA leads to an 

accumuation of Chk1 in the nucleus resulting in a prolonged cell cycle arrest and 

DNA damage response (Park et al., 2015). For that reason, it was important to 

assess the potential role of CMA on DNA repair in our system. My results indicate 

that inhibition of lysosomal degradation, inclusive of CMA, by treatment with 

Bafilomycin A1 lead to no further change in DNA damage foci kinetics. These data 

suggest that CMA is not having an effect on DNA damage repair in response to low 

level radiation. It is possible that CMA is inhibited in Atg5-/- MEFs and so treatmennt 

with Bafilomycin A1 had no further effect, however inhibition of macroautophagy by 

Atg5 knockdown has in fact been shown to lead to an increase in the activity of CMA 

(Wang et al., 2008). Although unlikely, further investigation would be required to rule 

out the effects of CMA in this process.   

There have also been studies that show an Atg5/7-independent alternative 

macroautophagy pathway (Nishida et al., 2009). Here, authors describe the 

formation of autophagosomes that are devoid of the classical autophagosome 

marker LC3 II that are generated in a Rab9-dependent manner in both Atg5-/- and 

Atg7-/- MEFs (Nishida et al., 2009). It is possible that this pathway could be 

upregulated in Atg5-/- MEFs and influencing DNA damage repair. This possibility was 

ruled out along with the contribution of CMA as treatments with Bafilomycin A1 in 

Atg5-/- MEFs had no effect on the rate of DNA damage repair, suggesting that other 

lysosomal degradation pathways such as Atg5/7-independent autophagy were not 

important in this context.  

It should also be noted that Atg5 has been shown to be involved in a number 

of processes independently of its function in autophagy such as: immunity to 

intracellular pathogens in macrophages via its role in recruiting IFN-γ-inducible p47 

GTPase IIGP1 (Irga6) to the vacuole membrane (Zhao et al., 2008) and late 

endosome and lysosome biogenesis (Peng et al., 2014).  Atg5 has also recently 

been shown to play an important role in the induction of mitotic catastrophe through 
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its interaction with survivin, thereby inhibiting the correct formation of the 

chromosome passenger complex (Simon and Friis, 2014) (Maskey et al., 2013). This 

effect of Atg5 occurs in the nucleus and is independent of autophagy. This mitotic 

catastrophe was induced in response to sub-lethal treatment with anti-cancer drugs 

such as: Etoposide and cystplatin for 24-48 hrs. It is possible that this role for Atg5 

could lead to confounding results when studying the role of autophagy in DDR using 

Atg5 KO as a means of autophagy ablation. However, Simon and Friis suggest that 

the effect of Atg5 on mitotic catastrophe occurs independently of DNA damage 

(Simon and Friis, 2014). The induction of mitotic catastrophe is less likely to be 

relevant when using more acute treatments (2h to induce DNA damage). Moreover, 

it would be expected that increased mitotic catastrophe would lead to an increase in 

DNA damage in Atg5+/+ MEFs. Although my data suggests a link between inhibition 

of autophagy to a decreased repair of DNA damage foci, further experiments should 

be conducted using another genetic approach to inhibit autophagy such as knockout 

of Atg7 when assessing DNA damage repair in response to 1Gy X-ray IR. Indeed, 

another reason for the discrepancy with Liu et al is that they have used an Atg7 KO 

while in our experiments we used an Atg5 KO. 
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4. Chapter 4. Phenotypic characterisation of the role of p62 in the DDR 

 

In the previous chapter, we demonstrated that cells lacking autophagy have a 

reduced clearance of 53BP1 foci following induction of damage by both X-ray 

irradiation and Etoposide treatment (Figure 3-2& Figure 3-3). These data are in 

agreement with (Bae and Guan, 2011). It has previously been observed by our group 

(Korolchuk group, unpublished data) and others that cells lacking autophagy have 

higher levels of reactive oxygen species, especially when cells are exposed to 

extrinsic stressors (Sun et al., 2013, Kurihara et al., 2012). Reactive oxygen species 

have long been known to induce DNA damage (Kurihara et al., 2012). However our 

data indicate that treatment with NAC, a potent antioxidant, had little effect on 53BP1 

foci kinetics in our experimental system, suggesting that ROS were not responsible 

for autophagy-dependent differences in DDF kinetics. Previous studies have 

suggested a link between the accumulation of p62 in autophagy compromised cells 

and an increase in DNA damage (Bae and Guan, 2011). Results shown in the 

previous chapter show that siRNA knockdown of p62 in both autophagy 

compromised and wt cells does indeed lead to a reduction in 53BP1 foci. Similarly, 

inhibition of autophagy in primary fibroblasts lead to increased expression of p62 and 

increased levels of p21 and p-p53 following X-ray irradiation. These data suggest a 

possible link between p62 and DNA damage repair. The aim of this next chapter is to 

further investigate the role of p62 in DNA damage repair.  
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4.1 p62-/- MEFs show a decreased number of DDF following Induction of DNA 

damage 

 

To assess the role of p62 in the DDR p62+/+ and p62-/- MEFs were irradiated 

with 1Gy of X-ray irradiation and fixed every hour for 8h following IR. Cells were then 

stained with antibody against 53BP1 and DDF quantified by microscopy. p62 levels 

were assessed by immunoblotting (Figure 4-1A) and loss of p62 in p62-/-  MEFs 

confirmed. Results shown in Figure 4-1B-C indicate that p62-/- MEFs have a reduced 

number of DDF compared to p62+/+ MEFs. These results suggest a possible negative 

role for p62 in the repair of DNA damage. In order to further understand DNA 

damage foci dynamics live-cell imaging was performed in p62+/+ and p62-/- MEFs 

stably expressing mCherry-53BP1 following 0.25Gy X-Ray irradiation, allowing the 

tracking of individual foci lifespan. A lower dose of 0.25Gy was used instead of 1Gy 

like previous experiments to facilitate the accurate tracking of individual foci. Results 

shown in Figure 4-1D-E indicate that p62-/- MEFs have an increased rate of foci 

resolution compared to p62+/+ MEFs. These data support those seen in fixed cells 

and also help distinguish between foci that are generated by the initial dose of 

irradiation from those that occur at later time points due to the formation of new 

DSBs. 
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Figure 4-1: Cells lacking p62 have a faster DNA damage repair kinetic. (A) 

Representative immunoblot showing p62 and GAPDH in p62-/- and p62+/+ MEFs. (B-

C) p62-/- and p62+/+ MEFs stably expressing mCherry-53BP1 were exposed to 

0.25Gy X-ray irradiation and 53BP1 foci kinetics were monitored by live cell imaging 

for 300 min. Representative images are shown in (B), the nucleus is marked by 

dotted white border. (C) Kaplan-Meier plot showing the survival of individual 53BP1 

foci in p62-/- and p62+/+ MEFs following irradiation. Note that 0.25Gy was used to 

induce low frequency of DDF and facilitate accurate tracking of foci P=0.003. 

Representative images (D) and quantification (E) of the mean number of 53BP1 foci 

in p62-/- and p62+/+ MEFs 0-480 min after 1Gy X-Ray irradiation. Scale bar 10 µm; 

n=3; Error bars represent S.E.M; NS: not significant, * p<0.05, ** p<0.01, *** 

p<0.001.    
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Having shown that knockout of p62 results in an increased rate of DNA repair 

in live and fixed cells following X-Ray induced DNA damage, I wanted next to 

confirm this result using an alternative, more specific means of inducing DNA 

damage. Here, p62+/+ and p62-/- MEFs were treated with 1µM Etoposide for 120 min. 

Cells were either fixed immediately after treatment or washed and allowed to recover 

for 300 min, then were fixed and stained with antibody against 53BP1 (Figure 4-2A). 

Results shown in (Figure 4-2B) indicate that treatment with Etoposide induced 

similar levels of damage in p62+/+ and p62-/- MEFs. However, following 300 min 

recovery, p62+/+ MEFs showed significantly more DNA damage. These results 

confirm that cells lacking p62 repair DNA damage faster. 
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Figure 4-2: Cells lacking p62 have an increased repair capacity in response 

Etoposide. DNA damage was induced in p62-/- and p62+/+ MEFs by 120 min 

incubation with Etoposide and, where indicated, followed by a 300 min recovery 

period. Representative images are shown in (A) and the mean number of 53BP1 foci 

was quantified (B). Scale bar 10 µm; n=3; Error bars represent S.E.M; NS: not 

significant, * p<0.05, ** p<0.01, *** p<0.001. 
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Next, in order to answer whether the differences in DNA damage seen in 

p62+/+ and p62-/- MEFs were dependent on autophagy, p62+/+ and p62-/- MEFs were 

treated with Baf rendering cells autophagy deficient. p62+/+ and p62-/- MEFs were 

pre-treated with 100µM Baf for 180 min in order to block autophagy and allow 

sufficient accumulation of p62. Cells were then exposed to 1Gy of X-Ray irradiation 

and cell lysates were collected at 5 min and 300 min following IR as well as non-IR 

control. The block of autophagy was confirmed by immunoblotting for LC3 (Figure 

4-3A) as well as p62 (Figure 4-3B). These results confirm an accumulation of both 

LC3II and p62 following treatment with Baf in p62+/+ MEFs and LC3II in p62-/- MEFs 

indicating a block in autophagy. 
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Figure 4-3: The effect of Bafilomycin A1 treatment on autophagy.  Immunoblot 

analyses showing the levels of LC3 (A) and p62 (B) in p62+/+ and p62-/- MEFs 

following treatment with 100M Bafilomycin A1 following 1Gy X-Ray irradiation as 

shown. n=3; Error bars represent S.E.M.   
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Following confirmation of autophagy inhibition (Figure 4-3) as above, p62+/+ 

and p62-/- MEFs were pre-treated with 100µM Baf for 180 min. Cells were then 

exposed to 1Gy of X-Ray irradiation and fixed at 5 min and 300 min following IR as 

well as non-IR control. Cells were stained with antibody against 53BP1 and DDF 

were analysed by microscopy (Figure 4-4A-B). 

Here, inhibition of autophagy with Baf causes an increase in 53BP1 foci 300 

minutes following 1Gy X-Ray irradiation in p62+/+ but not p62-/- MEFs (Figure 4-4B), 

indicating that decreased repair capacity seen in autophagy-compromised cells is 

dependent on p62. 
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Figure 4-4: Inhibition of autophagy with Bafilomycin A1 treatment affects DNA 

damage repair in a p62-dependent manner. Representative images (A) and 

quantification (B) of the mean number of 53BP1 foci in p62-/- and p62+/+ MEFs 5 min 

and 300 min following 1Gy X-Ray irradiation and treatment with 100M Bafilomycin 

A1. Scale bar 10 µm; n=3; Error bars represent S.E.M; NS: not significant, * p<0.05, 

** p<0.01, *** p<0.001. 
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4.2 Reintroduction of p62 returns frequency of DDF to wild type level 

 

Having established that p62-/- MEFs have a reduced number of DDF following 

IR compared to their wt counterparts (Figure 4-1A-E) and (Figure 4-2A-B), I 

determined the effect of reintroducing p62 on DDR as differences between p62+/+ 

and p62-/- MEFs could be partly due to clonal differences independent of p62.  

Here p62+/+ and p62-/- MEFs were transfected with p62-GFP or GFP empty 

vector (control). Cells were then exposed to 1Gy of X-Ray irradiation and then fixed 

at 5h following IR as well as a non-IR control. Cells were stained with antibody 

against 53BP1 and DDF analysed by microscopy (Figure 4-5A-B). Results shown in 

Figure 4-5B demonstrate that re-introduction of GFP-p62 in p62-/- MEFs increases 

the number of 53BP1 foci back to the levels seen in p62+/+ transfected with GFP-

control. Overexpression of GFP-p62 in p62+/+ MEFs also significantly increased the 

number of 53BP1 foci 300 min following irradiation (Figure 4-5B). These results 

show that differences in DNA damage foci seen between p62+/+ and p62-/- MEFs are 

indeed dependent on p62. 
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Figure 4-5: The effect of overexpression or reintroduction of GFP-p62 into 

p62+/+ and p62-/-  MEFs. Representative images (A) and quantification (B) of 53BP1 

foci 300 min after irradiation of p62-/- and p62+/+ MEFs transfected overnight with 

GFP-control or GFP-p62. Scale bar 10 µm. n=3; Error bars represent S.E.M; NS: not 

significant, * p<0.05, ** p<0.01, *** p<0.001. 
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4.3 p62-/- MEFs show a decreased number of DSBs but not SSBs following 

induction of DNA damage 

  

Data shown in (Figure 4-1A-E) and (Figure 4-2A-B) indicate that cells lacking 

p62 have a quicker resolution of 53BP1 foci following induction of DNA damage than 

wild-types with both X-Ray irradiation and Etoposide treatment, respectively. 

Although 53BP1 has been shown to aggregate at DSBs and quantification of DNA 

damage foci is thought to serve as a good approximation for the number of DSBs 

(Panier and Boulton, 2014) the measurement of DNA damage foci is not a direct 

measure of DNA damage lesions. This can be done using the Comet assay. The 

general principle is that neutral Comet can be used to detect DSBs in cells while 

alkaline Comet may be used to detect both DSBs and SSBs. This will be discussed 

further later in this chapter. 
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 In order to assess the role of p62 on DNA single stranded lesions, an alkaline 

Comet assay was performed on p62+/+, p62-/- and p62-/-+FLAG-p62 cell lines 

following Etoposide treatment for 120 min. Cells were either collected immediately 

after treatment or washed and allowed to recover for 300 min. The p62-/-+FLAG-p62 

cell line was generated as it allows to separate the effect of p62 knock out from any 

clonal differences that may be present between p62+/+ and p62-/- MEFs. 

The Immunoblot shown in Figure 4-6A shows the successful reintroduction of 

p62 in the p62-/-+FLAG-p62 cell line, however it must be noted that the expression 

levels of p62 are markedly lower than in p62+/+ MEFs.  Results presented in Figure 

4-6B-C show a significant induction of DNA damage following Etoposide of around 

80% tail intensity in all cell lines. These data indicate that there is no difference in 

damage induction in p62+/+, p62-/- and p62-/-+FLAG-p62 cell lines in response to 

Etoposide treatment. Results shown in (Figure 4-6B-C) show equivalent levels of 

DNA damage around 40% tail intensity in all cell lines at 300 min following Etoposide 

treatment suggesting that there is no difference in resolution of DNA damage in 

p62+/+, p62-/- and p62-/-+FLAG-p62 cell lines in alkaline conditions.  
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Figure 4-6: Measurement of SSBs in p62+/+, p62-/- and p62-/-+FLAG-p62 MEFs 

using alkaline Comet assay. (A) Immunoblot analyses showing the levels of p62 in 

p62+/+, p62-/- and p62-/-+FLAG-p62 cell lines. Note that transgenic FLAG-p62 is 

expressed at lower levels than endogenous protein. (B-C) p62+/+, p62-/- and p62-/-

+FLAG-p62 following the induction of DNA damage with Etoposide for 120 min either 

followed with or without a 300 min recovery period (in the absence of Etoposide). 

Representative images of alkaline Comet analysis shown in (B) whilst % tail intensity 

is quantified in (C). Scale bar 40 µm. n=3; Error bars represent S.E.M; NS: not 

significant, * p<0.05, ** p<0.01, *** p<0.001. 

  



Chapter 4. Phenotypic characterisation of the role of p62 in the DDR  
 

136 
 

In order to assess DSBs more specifically, neutral Comet assay was 

performed on p62+/+, p62-/- and p62-/-+FLAG-p62 cell lines following Etoposide 

treatment for 120 min. Cells were either collected immediately after treatment or 

washed and allowed to recover for 300 min. 

Results shown in Figure 4-7A-B (like in Figure 4-6B-C) show a significant 

induction of DNA damage following Etoposide of around 35% tail intensity in all cell 

lines that there is no difference in induction of double stranded DNA damage in 

p62+/+ and p62-/- MEFs in response to Etoposide treatment. Results shown in Figure 

4-7B indicate a significantly reduced tail intensity of around 17% in p62-/- MEFs 

compared to 30% in p62+/+ MEFs, at 300 min following Etoposide treatment, 

indicating like 53BP1 foci shown in Figure 4-1A-E and Figure 4-2A-B that there is 

increased resolution of DSBs in p62-/- compared to p62+/+ MEFs. Interestingly, there 

is also increased tail intensity in p62-/-+FLAG-p62 MEFs when compared to p62-/- 

MEFs, however the difference is not statistically significant. This is likely due to the 

relatively low levels of p62 expression seen in p62-/-+FLAG-p62 MEFs when 

compared to p62+/+ MEFs (Figure 4-6A). 
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Figure 4-7: Measurement of DSBs in p62+/+, p62-/- and p62-/-+FLAG-p62 MEFs 

using neutral Comet assay. (A-B) p62+/+, p62-/- and p62-/-+FLAG-p62 following the 

induction of DNA damage with Etoposide for 120 min either followed with or without 

a 300 min recovery period (in the absence of Etoposide). Representative images of 

neutral Comet analysis shown in (A) and % tail intensity is quantified in (B). Scale 

bar 40 µm. n=3; Error bars represent S.E.M; NS: not significant, * p<0.05, ** p<0.01, 

*** p<0.001. 
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4.4 The Effect of p62 Knockdown on DDR Downstream Signalling 

 

Having established that cells lacking p62 have an increased DNA damage 

repair kinetic compared to wild type cells, as measured by 53BP1 Foci and neutral 

Comet (Figure 4-1&Figure 4-5), I intended to investigate the impact of p62 on 

downstream DNA damage signalling. For this it was necessary to knock down p62 in 

primary cells as downstream signalling is possibly disrupted in p62+/+ and p62-/-  

MEFs as a result of the SV40 immortalisation process (Boichuk et al., 2010). Here, 

MRC5 human fibroblasts were transduced with shRNA for p62.  Optimisation of 

shRNA transduction is shown in Figure 4-8. Lentivirus containing shRNA #s 3,4 and 

5 was produced in HEK293FT cells and used at virus titres of 1,2,and 4ml of viral 

media in a total of 4ml. Knockdown of p62 is shown in Figure 4-8A-B and normalised 

to GFP shRNA (control) (Figure 4-8B). It can be seen from Figure 4-8A-B that 

transduction with p62 shRNA lead to a 70-80% knockdown of p62 at the optimal 

virus titre of 2ml of viral media in a total of 4ml, as measured by immunoblot. The 

p62 knockdown efficiency of cell lines derived from chosen virus titre is shown in 

Figure 4-8C and quantified in Figure 4-8D following 2 cell passages (to allow cells to 

recover from transduction) indicating successful selection and maintenance for p62 

shRNA expressing cells. 
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Figure 4-8: Optimisation of p62 shRNA transduction in MRC5 fibroblasts. (A) 

Western blots and quantification showing p62 and loading control GAPDH for 

different Virus titres 1, 2 and 4ml of viral media in a total of 4ml. (B) Quantification 

from (A) normalised to GFP control shRNA. Western blots (C) and quantification (D) 

showing p62 and loading control GAPDH in p62 shRNA stable cell lines. 
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Following the successful generation of p62 shRNA-expressing cell lines, next 

we wanted to investigate the effect of p62 knockdown on the downstream DDR. 

Here, MRC5 human fibroblasts that are stably expressing shRNA against p62 were 

exposed to 1Gy of X-Ray irradiation and collected at time points 5min-8h following IR.  

Samples were then run on SDS page electrophoresis and immunoblot analysis was 

carried out for p53, p62, p-p53, p21, p-Chk1, Chk1 and loading control GAPDH.  

Western blots shown in Figure 4-9A indicate successful knockdown of p62, and also 

indicate that levels of p62 are unchanged across the 8h time course following IR.  

Quantification shown in Figure 4-9B show a trend for p62 shRNA-expressing cells to 

have reduced levels of p21 2h and 5h following 1 Gy IR, however these differences 

are not statistically significant. Similarly, induction of p-p53 is reduced in p62 shRNA-

expressing cells but, again, results are not statistically significant. There were no 

differences between cells with and without p62 shRNA when comparing pChk1 and 

total Chk1 levels following IR (Figure 4-9D-E). It would be interesting to repeat these 

experiments using a higher dose of IR in order to ascertain if there are any p62-

dependent differences in downstream DDR. 
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Figure 4-9: Downstream DDR in MRC5 fibroblasts transduced with shRNA 

against p62.  Representative western blots (A) showing p62, p53, p-p53, p21, Chk1, 

p-Chk1 and loading control GAPDH in MRC5 fibroblasts transduced with GFP-

shRNA (control) of p62 shRNA as indicated following 1Gy X-ray irradiation at time 

points 5min-8h. Quantification of p21 is shown in (B), p-p53/p53 in (C), p-Chk1 in (D) 
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and total Chk1 in (E). n=3; Error bars represent S.E.M.. Done in collaboration with Dr 

Bernadette Carol. 

4.7 Discussion 

 

While previous studies, as well as the previous chapter, have suggested that 

p62 may mediate autophagy dependent differences in DNA damage repair (Bae and 

Guan, 2011), the role of p62 in the DNA damage response has not been well 

characterized (Yu et al., 2011).  Here, for the first time, we show a p62-dependent 

effect on DNA damage repair in cells with active autophagy. p62 has previously been 

shown to mediate increased tumorigenesis in response to loss of autophagy. In a 

study from the White group they describe that induction of metabolic stress in cells 

lacking autophagy leads to increased expression of endoplasmic reticulum (ER), 

accumulation of damaged mitochondria, p62, ROS and genomic instability. They 

attribute this effect of increased tumorigenesis in the absence of autophagy to 

increased levels of p62, as overexpression of p62 in the same cell model leads to 

increased tumor volume following mouse xenograft experiments. It is possible that in 

the absence of autophagy increased levels of ROS could, in turn, lead to the 

induction p62 expression. This p62 overexpression could then contribute to 

additional ROS generation, leading to genome instability (Mathew et al., 2009). It 

should be noted that the lack of p62 has also been associated with an increase in 

ROS, this time through inhibition of NF-B (Duran et al., 2008). This inhibition of NF-

κB is in contrast to that reported in (Sanz et al., 2000a), where small p62 puncta are 

proposed to serve as signalling hubs leading to NF-B activation. It is possible that 

large aggregates actually lead to the sequestration of key proteins involved in 

signalling, leading to an inhibition of the pathway. Taken together, these data 

suggest that intracellular levels of p62 play an important role in the modulation of 

ROS. However, the exact influence appears to be cell type and context specific.  

Nonetheless, variances in ROS could well be influencing the differences seen 

in DNA damage foci repair kinetics in fixed cells. DDF kinetics was followed in live 

cells. For this, cell lines were generated where p62-/- and p62+/+ MEFs stably express 

mCherry-53BP1. This has the added advantage of allowing the analysis of the 

lifespan of individual foci. It has previously been reported that DNA damage foci that 
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arise due to ROS are transient in nature (Passos et al., 2010). Here we were able to 

visualise secondary DNA damage foci that appear independently of those generated 

by the initial induction of DNA damage using 0.25Gy X-Ray irradiation. There was no 

difference between p62-/- and p62+/+ MEFs in the appearance of these secondary 

DNA damage foci, suggesting that ROS generated DNA damage foci were not the 

reason for the differences seen in DDF repair kinetics.  

Although it has been suggested that p62 may mediate autophagy-dependent 

differences in DNA damage repair (Bae and Guan, 2011), the effect of p62 on DNA 

damage has not previously been described independently of autophagy.  Results in 

this chapter indicate that autophagy inhibition is having no effect on DNA damage 

repair in the absence of p62. These data also indicate that increased levels of p62 

do not require active autophagy to affect DDF repair.  The lack of effect on DNA 

damage foci at 5h following 1Gy IR in p62-/- MEFs with Bafilomycin A1 treatment is in 

agreement with data from the previous chapter suggesting that other lysosomal 

degradation pathways are not influencing DNA damage repair kinetics following low 

dose IR. These data suggest that the CMA mediated degradation of Chk1 that was 

observed by the Cuervo lab (Park et al., 2015) may only influence the repair of DNA 

damage induced by higher doses of IR. 

Re-introduction of p62 in p62-/- MEFs and overexpression in p62+/+ MEFs lead 

to an increase in 53BP1 foci 300 minutes following 1Gy X-Ray IR. These data show 

that differences seen between p62+/+ and p62-/- MEFs were indeed dependent on 

p62 and not due to clonal differences in MEFs derived from different animals. 

Overexpression of p62 at super physiological levels leads to the formation of large 

cytoplasmic aggregates; these aggregates are able to sequester a number of 

proteins leading to a loss in their function (Donaldson et al., 2003). In an attempt to 

prevent the formation of these aggregates and try to achieve ubiquitous low level 

expression of GFP-p62 the construct was co-transfected with pcDNA (empty control 

plasmid) in order to dilute its expression. Cells were also chosen that did not have 

massive cytoplasmic aggregates when performing analysis of 53BP1 foci. It can be 

seen that despite efforts to reduce expression levels, as well as select low 

expressing cells p62 aggregates are still present as a result of overexpression. This 

is a major limitation when trying to study p62 using mammalian expression vectors. 

This problem could be avoided by generating cell lines that stably express p62 using 
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lentiviral transduction. Using this approach, one is able to transduce cells using 

different virus titres, then select and expand clones with the desired expression level. 

Newly developed knock-in technology such as CRISPR/Cas now allows the addition 

of tagged and mutated proteins in place of the wt version, allowing a far more 

physiological control of transcription and expression. The most recent advances in 

this technology allow for the creation of cell lines without the need for the selection of 

successfully altered cells with antibiotics (Zhu et al., 2015). This need for selection 

and subsequent loss of a percentage of the cell population has been a major limiting 

factor when using GM modification in primary cells, especially when studying 

processes such as senescence where accurately tracking the number of population 

doublings is essential. In order to achieve more physiological levels of expression 

cell lines were produced using lentiviral transduction of FLAG-p62 and control 

plasmid in p62-/- MEFs. It should be noted that when compared to p62+/+ MEFs the 

level of p62 expression in p62-/-+FLAG-p62 was lower. The cell line would have to be 

generated again using a higher virus titer to have comparable levels of p62 to wt 

MEFs.   

Data presented so far have shown comparison of DDF repair kinetics 

following DNA damage induction using fixed and live-cell microscopy. The 

measurement of DNA damage foci has been shown to correlate well with the number 

of DNA lesions; however it is not a direct measure. This is of particular importance 

as both autophagy and p62 are heavily involved in protein turnover. p62 has also 

been shown to serve as a scaffold protein (Ciuffa et al., 2015, Johansen and Lamark, 

2011). Therefore, differences in DNA damage foci may arise due to differences in 

protein degradation and foci disassembly potentially uncoupling the link between 

numbers of DNA damage foci as an accurate measure of DNA lesions. It was 

therefore important to assess the effect of p62 of  DNA lesions directly. This was 

done using both alkaline and neutral Comet assay. Results show that p62 has no 

effect of DNA lesions when assessed by alkaline Comet assay. This is a method that 

is believed to assess both single and double stranded DNA lesions as the alkaline 

conditions not only unwind DNA but also separate DNA stands (Singh et al., 1988), 

allowing both DSBs and SSBs to migrate with electrophoresis. Interestingly, when 

using neutral Comet, cells lacking p62 had a faster resolution of damage as 

measured by % DNA in the tail. Neutral Comet has been suggested to measure 
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predominantly double strand breaks as in neutral conditions it is only DNA containing 

DSBs that are able to migrate with SSBs being held in the head on the Comet by 

intact complementary strands (Olive et al., 1991). The specificity of this technique for 

DSBs can be verified by treating cells with hydrogen peroxide which has been shown 

to create 1000-fold or more SSBs compared to DSBs (Olive and Johnston, 1997). 

However, the specificity of neutral Comet as a measure of just DSBs is lacking when 

assessing low levels of damage, as both SSBs and DSBs have been shown to relax 

the super coiled structure of DNA held within nucleoids, the protein and membrane-

depleted nuclear bodies that result following lysis (Ostling and Johanson, 1984). This 

relaxation has been proposed to mediate the migration of DNA into a Comet tail 

within the electric field applied even in neutral conditions. The contribution of 

supercoil relaxation is outweighed by DSB migration at higher levels of damage and 

this assay has been shown to measure DSBs over a range of 50-10000 breaks per 

cell (Olive and Banath, 2006). Therefore, in order to achieve higher sensitivity when 

assessing DSBs a higher concentration of Etoposide was used in these experiments, 

10µM instead of 1 µM.  Assuming that following 10µM Etoposide treatment neutral 

Comet is an accurate measure of DSBs, these results indicate that p62 is affecting 

DSB repair directly. These results reinforce the hypothesis that differences in DDF 

seen in previous experiments arise due to different levels of DSBs and not just as a 

result in aberrant or impaired foci turnover. The lack of difference seen in the alkaline 

Comet could result as the number of SSBs present is sufficient to mask any 

difference in the number of DSBs that can be visualized using this technique. This 

would be consistent with the finding that Etoposide treatment induces predominantly 

SSBs (Muslimovic et al., 2009).  
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5. Chapter 5. Mechanistic Analysis of the role of p62 in the DDR 

  

 In the previous chapter we established that cells lacking p62 have 

increased DNA repair capacity as measured by kinetics of 53BP1 foci and Comet 

assay following X-ray irradiation. It is not yet known how p62 is able to influence the 

DDR. p62 is primarily a cytoplasmic protein but, as discussed previously, it contains 

both NLS and NES domains which mediate its transport in and out of the nucleus 

(Pankiv et al., 2010). Moreover, it has been shown to interact with PML bodies which 

contain DDR proteins such as BLM/WRN DNA helicases, MRN and DNA 

topoisomerase II binding protein (TopBP1) (Lallemand-Breitenbach and de The, 

2010). On the other hand p62 may interact with proteins in the cytoplasm to elicit its 

effect on the DDR. It is possible that p62 may have an effect on DNA damage 

resolution via its role as a scaffold protein, signal transduction or protein degradation. 

In this following chapter we aim to establish how p62 is able to influence DNA 

damage repair mechanistically.  
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5.1 Both PB1 and UB1 Protein Domains are required for p62 to impact on DNA 

Damage Repair 

 

p62 has multiple functional domains that are responsible for its cellular 

functions. Having established a role for p62 in DNA damage repair I aimed to identify 

the functional domains involved in the process. Here, p62-/- MEFs were transfected 

with GFP empty vector (control), wt p62-GFP or p62 mutants lacking either the PB1 

domain responsible for protein oligomerisation (ΔPB1), the UBA domain involved in 

binding to ubiquitylated substrates (ΔUBA), or the nuclear export signal (ΔNES). The 

domain structure for these constructs is shown in Figure 5-1A. Cells were then 

exposed to 1Gy of X-Ray irradiation and then fixed at 300 min following IR as well as 

non-IR control. Cells were stained with an antibody against 53BP1 and DDF 

analysed by microscopy (Figure 5-1B-C). Representative images shown in Figure 

5-1B indicate the distinctive expression pattern for each of these constructs.  ΔNES 

p62 is expressed almost exclusively in the nucleus as it is no longer transported out 

of the nucleus via nuclear transporter exportin 1. ΔUBA p62 lacks the cytoplasmic 

puncta of the wt protein due to its inability to bind to ubiquitylated substrates. ΔPB1 

p62, similar to ΔUBA p62, has a diffuse cytoplasmic appearance, this time due to its 

inability to form oligomers.  Results shown in Figure 5-1B demonstrate that re-

introduction of wt p62 into p62-/- MEFs increases the number of 53BP1 foci similar to 

results shown in Figure 4-5. Data shown in Figure 5-1B indicate that both ΔUBA and 

ΔPB1 mutants fail to increase levels of 53BP1 foci to the same extent as wt p62, 

suggesting that both of these domains are important for the effect p62 has on DNA 

damage repair. Interestingly, p62-/- MEFs expressing ΔNES-p62 show similar levels 

of 53BP1 foci 300 minutes following IR as those expressing wt p62, meaning that the 

NES domain is dispensable. These results suggest that p62 does not need to be 

shuttled from the nucleus into the cytoplasm to have an effect on this process 

(Figure 5-1B). 
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Figure 5-1:PB1 and UBA domains of p62 are required for a p62 mediated effect 

on DDR (A) Schematic representation of the domain structure of p62 constructs. Key 

structural domains are marked:  UBA: ubiquitin-associated domain; PB1: Phox and 

Bem1p domain; ZnF: ZZ type zinc finger domain; NES: Nuclear export signal; 

NLS1/2: Nuclear localisation signal. Quantification (B) and representative images (C) 

of 53BP1 foci in p62-/- MEFs overexpressing the indicated GFP-tagged p62 mutants 

300 minutes after irradiation. Scale bar 10 µm. n=3; Error bars represent S.E.M; NS: 

not significant, * p<0.05, ** p<0.01, *** p<0.001. 
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5.2 p62 co-localises with DNA Damage foci in vitro  

  

Although p62 is known to shuttle in and out of the nucleus (Pankiv et al., 

2010), little is known about its nuclear role. It was reported in Pankiv et al that upon 

inhibition of nuclear export via either treatment with Leptomycin B or deletion of the 

NES sequence, p62 forms distinctive nuclear puncta (Pankiv et al., 2010). Previous 

results (Figure 5-1B-C) indicate that both the PB1 and UBA domains of p62 are 

important for its role in 53BP1 foci repair, both of which are involved in protein-

protein interactions. In order to further understand the role of p62 on 53BP1 foci 

dynamics we decided to investigate interaction between p62 and DNA damage foci. 

Here, MRC5 human fibroblasts exposed to 1Gy of X-Ray irradiation, as well 

as non-irradiated controls, were treated with and without Leptomycin B for 1h prior to 

fixation in order to block nuclear export of p62. Cells were then stained with 

antibodies against 53BP1 and p62, both DDF and p62 puncta were analysed by 

microscopy.  Representative images shown in Figure 5-2A indicate, consistent with 

previously published work (Pankiv et al., 2010), that block of nuclear export using 

Leptomycin B results in the formation of nuclear p62 puncta. Results shown in Figure 

5-2B show an elevated number of p62 puncta in cells without Leptomycin B, 300 

minutes following IR, indicating an induction of foci formation in response to DNA 

damage. Cells treated with Leptomycin B show now significant increase in the 

number of p62 foci following IR (Figure 5-2B). This is likely due to p62 being at a 

maximal level in the nucleus with Leptomycin B treatment alone. Results shown in 

Figure 5-2C demonstrate that there is an induction of 53BP1 foci in cells treated with 

and without Leptomycin B 300 minutes following IR, and there is a slight increase in 

those treated with Leptomycin B versus control. Interestingly, data shown in Figure 

5-2D demonstrate that p62 co-localises with 53BP1 foci. Unsurprisingly, treatment of 

Leptomycin B increases the number of p62 foci and therefore co-localisation is 

increased. Taken together these results suggest that induction of irradiation can 

induce the formation of p62 foci within the nucleus and these foci are able to interact 

with proteins within DDF.   
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Figure 5-2: p62 interacts with DNA damage foci. (A-D) The colocalisation of p62 

and 53BP1 was analysed in human fibroblasts (MRC5) exposed to irradiation (IR) for 

0 and 5 hours in the absence or presence of Leptomycin B (Lepto B) as indicated. 

Representative images are shown in (A) and the mean number of p62 (B), 53BP1 

(C) and p62-53BP1 co-localisation (D) foci were quantified. Scale bars 10 µm; Data 

are mean for ≥30 cells. 
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5.3 p62 Interacts with members of the DDR CHD4 and filamin A 

 

Having observed that p62 and DDF co-localise following induction of DNA 

damage by X-Ray irradiation, I then aimed to understand which proteins p62 was 

interacting with. Here, Hela cells were transfected with FLAG-p62, exposed to 1Gy 

X-ray irradiation and treated with Leptomycin B as indicated (Figure 5-3). Nuclear 

fractionation was carried out and the resulting nuclear fractions were subjected to 

immunoprecipitation using M2-FLAG beads. Samples were then separated by gel 

electrophoresis and stained using Coomassie blue (Figure 5-3). A band of 

approximately 250kDa, marked by a red box in Figure 5-3, was evident specifically in 

the nuclei from IR/Leptomycin B treated cells. This band was excised and sent for 

mass spectrometry analysis.  
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 Figure 5-3: Identification of nuclear p62 interactors.  HeLa cells were transfected 

with FLAG-p62 overnight and treated as indicated (either non-irradiated or irradiated, 

in the presence or absence of Leptomycin B). Cells were subjected to 

immunoprecipitation with anti-FLAG antibody. The band indicated by a red box was 

identified as being present in association with p62 following irradiation.  
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5.4 Interaction of p62 with CHD4 does not mediate its effect on DDR 

  

Results shown in Figure 5-3 indicate that p62 interacts with a number of 

proteins in response DNA damage. One of these proteins, CHD4, has been shown 

to be involved in the multiple stages of the DNA damage response. CHD4 is 

recruited to the site of damage and its depletion has been linked to reduced DNA 

damage-induced histone ubiquitylation, reduced recruitment of BRCA1 and RNF168 

(Larsen et al., 2010, Smeenk et al., 2010). CHD4 has also been shown to affect the 

repair of DSBs (Polo et al., 2010, Pan et al., 2012). Interestingly, CHD4 has been 

shown to be recruited to the site of damage by PARP (Chou et al., 2010). PARP is a 

known interactor of p62 (Korolchuk Laboratory, unpublished data) and it is also 

closely involved in the DNA damage response. CHD4 and PARP are therefore 

attractive candidates to study when trying to understand a p62- meditated effect on 

DNA repair.  In order to confirm the interaction between p62 and CHD4 

immunoprecipitation of p62 was performed in the nuclear fraction p62-/-+FLAG-p62 

MEFs that have been exposed to 1Gy of X-ray irradiation and treated with 

Leptomycin B as indicated (Figure 5-4A). Immunoblotting was performed for both 

CDH4 and PARP (Figure 5-4A). It can be seen that p62 interacts with the cleaved 

form of PARP independently of IR-induced DNA damage. Interestingly, upon 

inhibition of nuclear export with Leptomycin B, p62 is able to interact with the full-

length protein, and there appears to be a reduction in the binding of cleaved PARP 

to p62. Results in Figure 5-4A show that p62 also interacts with CHD4, confirming 

the results seen in the mass spectrometry analysis in Figure 5-3. Next, I wanted to 

investigate which functional domains were responsible for this interaction. Having 

already found that both the PB1 and UBA domain were needed for p62 to have an 

effect on DNA damage repair, I hypothesized that these domains could be 

responsible for the interaction of p62 with CHD4. To investigate this, p62-/- MEFs 

were transfected with HA-CDH4 and either GFP empty vector (control), wt p62-GFP 

or p62 mutants lacking either the PB1 domain (ΔPB1), the UBA domain (ΔUBA) or 

the nuclear export signal (ΔNES). The domain structure for these contracts is shown 

in Figure 5-4B. Immunoprecipitation against GFP was performed followed by 

immunoblot analysis for both HA tag and PARP. Results shown in (Figure 5-4C) 
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indicate that CHD4 is able to interact with all p62 constructs. When coupled with the 

data showing that both the PB1 domain and UBA domain are required for the effect 

of p62 on DNA damage (Figure 5-1B) these data suggest that the interaction 

between p62 and CHD4 is not what is mediating this effect of p62 on DNA damage 

repair. Interestingly, both wt p62 and ΔNES p62 interact with PARP while PB1 and 

UBA domain mutants do not. Similar to the results shown with Leptomycin B 

treatment in Figure 5-4A, when p62 expression is restricted to the nucleus by the 

deletion of the export signal, it binds preferentially to full-length PARP instead of the 

cleaved form of the protein.      
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Figure 5-4 : Interaction  of p62 with CHD4 (A) p62-/- MEFs stably expressing 

FLAG-p62 (p62-/-+FLAG-p62) were irradiated where indicated and 60 min later 

nuclear fractions were subjected to anti-FLAG IP. The interaction of FLAG-p62 with 

endogenous CDH4 and PARP was detected by immunoblotting. (B) Schematic 

representation of the domain structure of p62 constructs. Key structural domains are 

marked:  UBA: ubiquitin-associated domain; PB1: Phox and Bem1p domain; ZnF: ZZ 

type zinc finger domain; NES: Nuclear export signal; NLS1/2: Nuclear localisation 

signal. (C) p62-/- MEFs transfected with GFP-p62 constructs as indicated and HA-

CDH4 were irradiated where indicated and 60 min later nuclear fractions were 

subjected to GFP IP. The interaction of GFP-p62 with HA-CDH4 and endogenous 

PARP was detected by immunoblotting. GFP-p62 construct expression in the 

cytoplasmic fraction was detected by immunoblotting as indicated.  
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5.5 p62-dependent proteasomal degradation of Filamin A (FLNA) and RAD51 

regulates DNA repair 

  

Having ruled out the interaction of p62 with CHD4 as a requirement for the 

differences seen in DNA damage resolution in short time-course experiments 

following low doses of IR, I decided to investigate Filamin A (FLNA), the second hit 

from the mass spectrometry analysis. FLNA has previously been shown to be 

involved in DNA repair, specifically through interaction with BRCA1 and 2 and 

recruitment of RAD51 in the HR repair pathway (Velkova et al., 2010, Yue et al., 

2012, Yue et al., 2009). Firstly, I set out to confirm the interaction between FLNA and 

p62. Here, p62-/-+FLAG-p62 MEFs or p62-/- MEFs were irradiated as indicated 

(Figure 5-5). Nuclear fractions were then subjected to p62 immunoprecipitation and 

the resulting IP analysed by immunoblotting for FLNA, RAD51 and Lamin B1 

(loading control). Results shown in Figure 5-5 indicate that both FLNA and RAD51 

interact with p62 in response to X-Ray irradiation. 
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Figure 5-5: Immunoprecipitation of nuclear p62 and FLNA. (A) p62-/- MEFs, 

stably expressing FLAG-p62 (p62-/-+FLAG-p62) were irradiated where indicated and 

60 min later nuclear fractions were subjected to anti-FLAG IP. The interaction of 

FLAG-p62 with endogenous FLNA and RAD51 was detected by immunoblotting. (B) 

Hela cells transfected with GFP-FLNA were irradiated, where indicated, and 60 min 

later nuclear fractions were subjected to anti-GFP IP. The interaction of GFP-FLNA 

with endogenous p62 and RAD51 was detected by immunoblotting.  
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Having established that p62 and FLNA do indeed interact in response to DNA 

damage, next I investigated any differences in the levels of FLNA and RAD51 in  

p62-/- and p62-/-+FLAG-p62 MEFs. Here, cells were exposed to 1Gy X-Ray irradiation 

and collected at time points 5-480 min following IR. Nuclear fractionation was 

performed and the resulting nuclear and cytoplasmic fractions were analyzed by 

immunoblotting for FLNA, RAD51 and either Lamin B1 or tubulin as a loading control 

(Figure 5-6A-B). Quantifications shown in Figure 5-6C-D show that cells lacking p62 

have higher levels of both FLNA and RAD51 in the nuclear fraction. Interestingly, no 

difference in the cytoplasmic levels of FLNA and RAD51 was found in p62-/- and p62-

/-+FLAG-p62 MEFs (Figure 5-6B).     
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Figure 5-6: Nuclear and cytoplasmic levels of FLNA and RAD51. p62-/- and p62-/-

+FLAG-p62 MEFs were irradiated with 1Gy and subjected to cellular fractionation at 

the time points indicated. Nuclear (A) and cytoplasmic (B) fractions were analysed 

for FLNA, RAD51 and Lamin B1 as a loading control. Quantification is shown in (C-

D). n=2; Error bars represent S.D. 
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Having extablished that p62 was causing a reduction in nuclear levels of both 

FLNA and RAD51, I next investigated the mechanisms involved.  As previously 

mentioned, p62 is involved in targeting proteins for degradation by both the 

proteasome and autophagy. Having established that the effect of p62 on DNA 

damage repair was independent of its role in autophagic degradation (Figure 4-4A-B), 

I investigated whether this p62-dependent difference in nuclear levels of FLNA and 

RAD51 was dependent on proteasomal degradation.  Although previous results 

shown in Figure 5-1 suggest that p62 is able to affect DNA damage repair 

independently of its role in the cytoplasm, it is still possible that p62 is responsible for 

transporting FLNA and RAD51 to the proteasome within the nucleus. To answer 

these questions, p62-/- and p62-/-+FLAG-p62 MEFs were pre-treated with MG132, a 

potent proteasomal inhibitor, or Leptomycin B to inhibit nuclear export, for 3h and 

were then exposed to 1Gy of X-Ray irradiation. Cells were treated for a further 1h 

with MG132 or Leptomycin B and collected. Following nuclear fractionation the 

nuclear fraction was analyzed by immunoblotting for FLNA, RAD51 and Lamin B1 as 

a loading control.  Results shown in (Figure 5-7A-C) indicate that treatment with 

MG132 ablates p62-dependent differences in both FLNA and RAD51 indicating that 

these differences are dependent on p62-mediated degradation via the proteasome. 

In keeping with previous results (Figure 5-1) treatment with Leptomycin B did not 

affect p62-dependent differences in FLNA and RAD51. Taken together, these data 

suggest that p62 is able to mediate the degradation of FLNA via the proteasome and 

this is occurring in the nucleus.   
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Figure 5-7: p62-mediated proteasomal degradation of FLNA and RAD51. p62-/- 

and p62-/-+FLAG-p62 MEFs were pre-incubated with MG132 or Leptomycin B where 

indicated for 3h. Cells were irradiated and incubated in the presence of MG132 or 

Leptomycin B for further 60 min. Nuclear fractions were analysed for FLNA and 

RAD51 levels (A) and quantified relative to Lamin B1 (B,C). n=3; Error bars 

represent S.E.M; NS: not significant, * p<0.05, ** p<0.01, *** p<0.001. 
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Next, having established that p62 was responsible for the nuclear degradation 

of FLNA, I aimed to investigate the role of FLNA in DNA damage repair. It has been 

previously reported that cells with reduced levels of FLNA show a reduced formation 

of RAD51 foci, which is responsible for the reduced ability of these cells to perform 

HR (Yue et al., 2009). In order to investigate if similar mechanisms were responsible 

for the differences in DNA damage repair seen between p62-/- and p62-/-+FLAG-p62 

MEFs, I knocked down FLNA using siRNA and exposed MEFs to 1Gy of X-Ray 

irradiation. Cells were then fixed at time points 60-480 min following IR and stained 

with an antibody against RAD51. The number of RAD51 foci per cell was then 

analysed by microscopy. Western blot analysis shown in Figure 5-8A indicate 

successful knockdown of FLNA in whole cells, cytoplasmic and nuclear fractions. 

Data shown in Figure 5-8B-C indicate that cells lacking p62 show a greater induction 

of RAD51 foci following X-Ray irradiation compared to wt cells and knockdown of 

FLNA reduces the number of RAD51 foci in both p62-/- and p62-/-+FLAG-p62 MEFs. 

These data are in agreement with those shown by others (Yue et al., 2009), where 

knockdown of FLNA has been shown to result in a reduction of RAD51 foci following 

DNA damage. The authors also relate this knockdown of FLNA to a reduced ability 

of cells to perform HR.  
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Figure 5-8: The effect of FLNA knockdown on RAD51 foci kinetics in p62-/- and 

p62-/-+FLAG-p62 MEFs.  p62-/- and p62-/-+FLAG-p62 MEFs treated with control or 

FLNA siRNA and subjected to 1Gy X-Ray irradiation and collected at time points 60-

480 min following IR as indicated (A-C) Blot showing scrambled control (Sc) and 

FLNA siRNA in p62-/- and p62-/-+FLAG-p62 MEFs in nuclear (Nuc), cytoplasmic 

(CYTO) and whole cell fractions (WC) (A). Representative images of RAD51 foci are 

shown in (B). Quantification of the mean number of RAD51 foci with statistical 

comparison is shown in (C). n=3; Error bars represent S.E.M; NS: not significant, * 

p<0.05, ** p<0.01, *** p<0.001. 
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Having established that levels of FLNA impacted on RAD51 foci induction 

following X-Ray irradiation, a process previously shown to be indicative of HR (Li and 

Heyer, 2008), I next aimed to assess the effect of FLNA knockdown on 53BP1 foci 

repair.  Here, p62-/- and p62-/-+FLAG-p62 MEFs cells were transfected with FLNA 

siRNA and exposed to 1Gy of X-Ray irradiation. Cells were then fixed 300 minutes 

following IR and stained with an antibody against 53BP1. The number of RAD51 foci 

per cell was then analysed by microscopy. Data shown in Figure 5-9A-B indicate that 

knockdown of FLNA results in a reduced ability of p62-/- MEFs to repair 53BP1 foci 

compared to Scrambled siRNA control similar to that seen in p62-/-+FLAG-p62 MEFs. 

These data support the idea that increased levels of FLNA in p62-/- MEFs result in an 

increase in HR which is able to repair DSBs more readily.  
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Figure 5-9: The effect of FLNA knockdown on 53BP1 foci kinetics in p62-/- and 

p62-/-+FLAG-p62 MEFs.  p62-/- and p62-/-+FLAG-p62 MEFs treated with control or 

FLNA siRNA and subjected to 1Gy X-Ray irradiation and collected at 300 min 

following IR as indicated (A-B). Representative images of 53BP1 foci are shown in 

(A). Quantification of the mean number of 53BP1 foci is shown in (B). n=3; Error bars 

represent S.E.M; NS: not significant, * p<0.05, ** p<0.01, *** p<0.001. 
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5.5 Discussion 

 

The previous chapter characterized the role of p62 in DNA damage repair; 

this is to our knowledge the first work reporting a role for p62 in DNA damage repair 

independent of its role in autophagy. p62 is a multifunctional protein comprised of 

many functional domains. Understanding which of these domains are required for 

p62 to illicit an effect on DNA damage repair can help shed light on how this is 

functionally occurring. Data presented above show cells expressing p62 with a 

deletion of the PB1 or UBA domain have a reduced number of 53BP1 foci 300 min 

following 1Gy X-ray IR, implying that both of these domains are required for p62 to 

influence DNA damage repair. 

 The PB1 domain is essential for interaction of p62 with other PB1 containing 

proteins as well as self-oligomerization (Lamark et al., 2003). This has been shown 

to be central to its role in mediating the selective degradation of proteins via 

autophagy (Itakura and Mizushima, 2011, Pankiv et al., 2007, Wurzer et al., 2015, 

Ciuffa et al., 2015). The PB1 domain has been shown to interact with Rpt1, a subunit 

of the 26S proteasome allowing p62 to serve as a shuttling factor, targeting 

polyubiquitylated proteins bound by the UBA domain for proteasome degradation 

(Seibenhener et al., 2004). Interaction of p62 via its PB1 domain has also been 

shown to mediate its involvement in many signalling cascades (Joung et al., 1996, 

Lamark et al., 2003). The involvement of the PB1 domain in this process suggests 

that p62 could be involved in DNA damage repair via scaffolding, signalling or 

degradation processes. The UBA domain is required for the interaction between p62 

and ubiquitylated targets, mediating degradation via both autophagy and the 

proteasome (Seibenhener et al., 2004, Vadlamudi et al., 1996, Geisler et al., 2010). 

Taken together the involvement of both of these domains suggests that p62 may be 

influencing DNA damage repair through its role in protein degradation, signalling or 

scaffold formation. Deletion of each of these domains only had a partial effect 

therefore it would be interesting to assess if deletion of both of these domains 

simultaneously was able to cancel the effect of p62 on DNA damage repair.   

Interestingly, p62 lacking the NES domain had the same effect on the number 

of 53BP1 foci as wild type p62. This additional piece to the puzzle suggests that the 

action of p62 in this process is occurring in the nucleus, indicating that the 
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cytoplasmic process of autophagy degradation is not involved, beyond modulating 

levels of p62 itself. Having eliminated the role of autophagy, the involvement of both 

the PB1 and UBA domains of p62 suggest that p62 may be eliciting an effect on 

DNA damage repair via scaffold function, signalling or proteasomal degradation in 

the nucleus.  

Previous work by Pankiv at al has described a role for p62 in coordinating the 

recruitment of proteasomes to nuclear aggregates. They also note that p62 mediates 

the accumulation of polyubiquitylated proteins at PML bodies when nuclear export is 

inhibited (Pankiv et al., 2010). PML bodies are known to co-localize with DDF as well 

as play a role in their processing (Xu et al., 2003, Varadaraj et al., 2007, Munch et al., 

2014, Boichuk et al., 2011). This p62-dependent recruitment of proteasomes to PML 

bodies or DDF may well mediate the differences in DDF repair kinetics seen in p62-/- 

and p62-/- MEFs. Interestingly, we found that p62 co-localizes with a fraction of DDF 

following 1Gy X-ray IR and the percentage of co-localization was increased following 

inhibition of nuclear export with Leptomycin B. Further investigation is required to 

understand if these p62 nuclear puncta are recruited to PML as well as subunits of 

the 20S proteasome, as was observed by the Johansen lab (Pankiv et al., 2010).  

Together, these data suggest that p62 is interacting with proteins within DDF. It 

would be interesting to analyse the importance of both the PB1 domain and UBA 

domain in mediating this localization of p62 to DDF.  It would help to elucidate if this 

localisation to DDF is indeed important for the function of p62 in DNA damage repair. 

Interestingly, the recruitment of different proteasomal subunits has been 

shown to play an important role in DNA damage foci kinetics (Tsolou et al., 2012), as 

well as the choice of DNA repair pathway (Gudmundsdottir et al., 2007). 

Proteasomal subunit Rpn7 has been shown to co-localize with long lived DNA 

damage foci and is suggested to stabilize DNA damage foci, preventing premature 

resolution. Knock down of Rpn7 was shown to increase the resolution of DDF 

(Tsolou et al., 2012).  Moreover, Rpn7 has been shown to interact with BRCA2, a 

key component of HR and inhibition of the proteasome has been shown to inhibit HR 

in favor of more error prone repair pathways (Gudmundsdottir et al., 2007, Krogan et 

al., 2004, Murakawa et al., 2007). p62 has been shown to interact with several 

proteasomal subunits such as Rpt1 (Babu et al., 2005) and S5a (Seibenhener et al., 

2004).  It is an interesting possibility that p62 may be influencing DNA damage repair 
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via recruitment or both 19S and 20S proteasomal subunits to DNA damage foci. p62 

mediated recruitment of the 20S proteasome could facilitate turnover of DNA 

damage proteins, while recruitment of 19S subunits could confer foci stability  such 

as was shown with Rpn7 (Tsolou et al., 2012).     

Following the observation of p62 localizing to DDF, mass spectrometry 

analysis identified CHD4 and FLNA as interacting partners of p62 within the nucleus 

in response to DNA damage. The chromodomain-helicase-DNA-binding 3/4 (CHD3/4) 

proteins were originally identified as autoantigens in the connective tissue disease 

dermatomyositis, which is associated with in increased risk of malignancy (Ge et al., 

1995, Seelig et al., 1995, Brehm et al., 2000). CHD proteins belong to the SNF2 

superfamily of ATPases, which, through ATP hydrolysis, remodel nucleosome 

structure (Eisen et al., 1995, Seelig et al., 1996). In particular, the ATPase/helicase 

domain of CHD4 has been shown to facilitate the mobility of nucleosomes along 

DNA (Wang and Zhang, 2001).  

CHD4 is a key component of the nucleosome re-modelling and deacetylation 

(NuRD) complex. The NuRD complex couples chromatin remodeling activity (CHD4) 

and deacetylation activity (histone deacetylase 1/2 (HDAC1/2) (Wade et al., 1998, 

Zhang et al., 1998, Tong et al., 1998). The primary function of NuRD is the 

remodeling of chromatin to inhibit transcription (Lai and Wade, 2011). It has been 

shown that NuRD plays an important role in DNA damage repair as well as cell cycle 

progression. It has also been shown that both CHD4 and HDC1 interact with ATR 

(Schmidt and Schreiber, 1999). More recently, it was demonstrated that CHD4 is in 

fact phosphorylated by ATR and ATM (Matsuoka et al., 2007, Mu et al., 2007) and its 

expression increases upon exposure to UV irradiation (Burd et al., 2008). These data 

are suggestive of a role for NuRD and CHD4 in the DDR. A number of studies have 

now identified that depletion of CDH4 in mammalian cells leads to an increase in 

markers of replication stress, spontaneous DNA damage as well as hypersensitivity 

to ionizing radiation (Luijsterburg et al., 2012, Larsen et al., 2010, Sims and Wade, 

2011).   

The mechanisms by which CHD4 is influencing DDR and DNA repair are 

beginning to be elucidated. Recently, it has been shown that CHD4 is recruited to 

sites of DNA damage by two distinct mechanisms (Luijsterburg et al., 2012, Polo et 
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al., 2010). First, it was suggested that CHD4 was recruited to DNA damage via 

interaction with poly(ADP-ribosyl)ated proteins, such as PARP1 (Polo et al., 2010). 

This interaction, in turn, leads to the recruitment of NuRD components HDAC1 and 

MTA2. Treatment with PARP inhibitors prevented the accumulation of CHD4/NuRD 

at sites of DNA damage. Interestingly, while this study showed that CHD4 is 

phosphorylated by ATM, as previously observed, it does not seem to influence its 

function in the DDR (Polo et al., 2010). The second proposed mechanism for 

recruitment of CHD4 to the site of DNA damage is via interaction with RNF8 

(Luijsterburg et al., 2012). RNF8 is recruited to DNA damage via interaction with 

MDC1, which itself is recruited to γH2A.X during the initial activation of a DDR. 

Following recruitment to RNF8, CDH4 is proposed to mediate chromatin relaxation, 

stimulating the ubiquitin ligase activity of RNF8 and RNF168 resulting in the 

formation of ubiquitin conjugates (Luijsterburg et al., 2012). The ubiquitylation activity 

of RNF8/RNF168 serves as an amplification step in the DDR promoting the 

recruitment of downstream DNA-damage repair proteins (Smeenk et al., 2010). 

Knockdown of CHD4 was shown to reduce ubiquitylation as well as RNF168 and 

BRCA1 accumulation at DSBs highlighting the importance of CHD4 in amplification 

of the DDR downstream of RNF8. Interestingly, the tethering of RNF8 to chromatin 

was shown to bypass CHD4 recruitment suggesting that CHD4-mediated chromatin 

remodelling facilitates access of RNF8 to DNA damage sites allowing the assembly 

of downstream checkpoint and repair proteins (Luijsterburg et al., 2012). Notably, 

expression of a CHD4 mutant lacking helicase activity was unable to rescue the 

effect of depletion on DDR, highlighting the importance of the chromatin remodelling 

activity of CHD4 in its role in the DDR (Smeenk et al., 2010).  Interestingly, reduced 

levels of some NuRD components were reported in Hutchinson–Gilford progeria 

syndrome, a disease associated with premature ageing. Similarly, NuRD expression 

was reduced as a consequence of normal ageing. Higher levels of DNA damage 

marker γH2A.X were observed in aged cells as well as following knockdown of 

NuRD components such as metastasis-associated protein 3 (MTA3), HDAC1 and 

CHD4 (Pegoraro et al., 2009).  

These data indicate a role of CHD4 and the NuRD complex in the DDR as 

well as organismal ageing. Therefore, the interaction between p62 and CHD4 could 

be a potential mechanism by which p62 is influencing DNA damage repair. As 
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PARP1 is a known interactor of p62 (Korolchuk Laboratory, unpublished data), 

playing a role in the recruitment of CHD4 to the sites of DNA damage (Polo et al., 

2010), we hypothesized that it could take part in the interaction between p62 and 

CHD4 in response to DNA damage induction. 

PARP1 is activated in response to DNA damage and catalyses poly(ADP-

ribosylation) of a number of proteins (Satoh and Lindahl, 1992). Activation of PARP 

has been shown to mediate the increased access of DNA repair enzymes and 

transcription factors to chromatin (Satoh and Lindahl, 1992). PARP1 has been 

shown to play a crucial role in DNA damage repair as well as cell death. It has been 

reasoned that in response to high levels of DNA damage, high levels of PARP 

activity lead to the depletion of cellular levels of NAD+ and ATP. This can lead to 

energy collapse and cell death. Recently it has been suggested that PARP1-

dependent energy collapse was not dependent on NAD+ depletion, instead it occurs 

due to inhibition of glycolysis through inhibition of hexokinase (Andrabi et al., 2014). 

It has been shown that in response to high levels of PARP activation it is cleaved by 

caspase 3 and 7 (Cohen, 1997) resulting in separation of the DNA binding domain, 

contained in a 24KDa fragment, from the catalytic domain within a 89KDa fragment 

(Cohen, 1997). The remaining 24KDa fragment is still able to bind damaged DNA, 

however lacks catalytic activity. Therefore, this inactive 24KDa fragment competes 

for binding with remaining full length PARP setting up a negative feedback reducing 

PARP activity and NAD+ and ATP consumption (Yung and Satoh, 2001). The 

cleavage of PARP has been suggested to facilitate cellular disassembly during 

apoptosis and its cleavage serves as a marker of active apoptosis (Oliver et al., 

1998). 

In this chapter we show that p62 and CHD4 interact, however their interaction 

is not increased upon induction of DNA damage. Moreover, CHD4 was shown to 

interact with PB1 and UBA p62 mutants. Both of these constructs were shown to 

be required for p62 to illicit an effect on DNA damage repair. Interestingly, PARP1 

also co-immunoprecipitated with p62 and, like CHD4, this interaction showed no 

dependence on the induction of DNA damage. These data suggest that the 

interaction between CHD4 and p62 is not responsible for the effect of p62 on DNA 

damage repair. Further work is required in order to understand the cellular processes 

in which this interaction is important.  Full-length p62 was shown to interact 
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predominantly with the cleaved form of PARP whilst, strikingly, NES p62 is shown 

to interact mainly with full length PARP. Similarly, blocking nuclear export on p62 

with Leptomycin B treatment resulted in an increased interaction with full length 

PARP. These data suggest that cytoplasmic p62 may play an active role in PARP 

cleavage.  Interestingly, it has been suggested that autophagy may be involved in 

PARP cleavage; specifically through an interaction with LC3 and p62 as inhibition of 

autophagy results in a reduction of PARP cleavage and double silencing of LC3 and 

p62 resulted in a complete suppression of PARP cleavage (Zhang et al., 2011). 

Notably, PARP1 has been shown to activate autophagy in response to DNA damage 

(Munoz-Gamez et al., 2009), as well as nutrient deprivation (Rodriguez-Vargas et al., 

2012), and oxidative stress (Huang et al., 2008). Interaction with p62 and 

subsequent degradation of PARP1 may serve as a negative feedback loop 

regulating PARP-dependent autophagy. 

 The cytoskeletal protein Filamin A (FLNA) was first suggested to be involved 

in DNA damage repair following identification of its interaction with BRCA2 (Yuan 

and Shen, 2001). Furthermore, it was noted that the melanoma cell line M2 was 

more sensitive to several genotoxic agents such as: gamma irradiation, bleomycin, 

and ultraviolet-C light due to the lack of FLNA (Yuan and Shen, 2001). Later, the 

same group found that FLNA deficiency leads to an 8h delay in recovery from G2 

arrest in response to ionizing radiation (Meng et al., 2004). Following these 

observations, Yue and colleagues reported that FLNA plays a role in HR through its 

interaction with BRCA2 and recruitment of RAD51 (Yue et al., 2009). FLNA has also 

been shown to interact with BRCA1, with cells lacking FLNA showing reduced 

formation of BRCA1 and RAD51 foci in response to IR. Interestingly, FLNA was also 

reported to interact with other components of the HR pathways DNA-PKcs and Ku86 

in a BRCA1-independent manner (Velkova et al., 2010). Recently FLNA was also 

found to interact with ssDNA-binding proteins RPA1-3 (Marechal et al., 2014). Taken 

together, these data suggest a role for FLNA in the early stages of HR. Interestingly, 

levels of FLNA have been shown to negatively correlate with drug sensitivity in 

melanoma cells in response to both Bleomycin and Cisplatin  (Yue et al., 2012). 

 Work presented in this chapter shows that both FLNA and RAD51 co-

immunoprecipitate with p62 in response to X-ray irradiation-induced DNA damage. 

Similarly, both p62 and RAD51 co-immunoprecipitate with FLNA in the reverse 
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experiment.  Next, data is presented showing a significant reduction of both FLNA 

and RAD51 in the nuclear fraction of p62-/-+FLAG-p62 compared to p62-/- MEFs. 

These data suggest that interaction with p62 is involved in modulating nuclear levels 

of FLNA and RAD51.  

As discussed previously, increased levels of both RAD51 and FLNA have 

been shown to enhance DNA repair through the HR pathway. It has, however, been 

shown that elevated levels of RAD51 in some circumstances can lead to hyper-

recombination and genome instability (Richardson et al., 2004). Importantly, these 

data indicate that expression levels of these proteins are equivalent, however p62-/- 

MEFs show an increased nuclear distribution. The nuclear redistribution of RAD51 is 

a key component of the cellular response to DNA damage. Interestingly, both 

BRCA2-dependent (Davies et al., 2001, Yuan et al., 1999a) and -independent (Yu et 

al., 2003, Tarsounas et al., 0000, Lee et al., 2009) mechanisms of RAD51 nuclear 

redistribution have been observed. Depletion of ATM, ATR and CHK1 has been 

shown to reduce the nuclear re-localization of RAD51 (Jeyasekharan et al., 2013). 

There are a number of possible mechanisms by which p62 could influence the 

nuclear levels of these proteins. p62 has been shown to promote the turnover of 

proteins through both the proteasomal and autophagy degradation pathways (Pankiv 

et al., 2010). Degradation, via either pathway, would result in a p62-dependent 

reduction in protein levels. p62 has also been shown to shuttle rapidly between the 

nucleus and cytoplasm (Pankiv et al., 2010). It is possible that through this process 

p62 could mediate the nuclear export of its binding partners. Additionally, p62 

expression is associated with the formation of cytoplasmic aggregates. 

Sequestration of proteins within these aggregates has been shown to influence a 

number of cellular processes (Donaldson et al., 2003, Korolchuk et al., 2009). 

Therefore, p62 could be reducing the nuclear levels of RAD51 and FLNA through 

their cytoplasmic sequestration.  

Since there is no marked increase in cytoplasmic levels of both FLNA and 

RAD51 in p62-/-+FLAG-p62 compared with p62-/- MEFs, it is unlikely that p62 is 

inhibiting the nuclear transport of these proteins through cytoplasmic sequestration. 

It should be noted, however, that the method of nuclear fractionation employed in 

this study results in around 5 times enrichment of the nuclear fraction compared to 
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cytoplasmic (Suzuki et al., 2010).  Therefore, comparison between these two cellular 

fractions should not be used to directly assess cellular distribution as a percentage of 

total protein.  The method does, however, allow the relative comparison of each 

fraction between different cell types. 

 Next, data is presented showing that inhibition of proteasomal degradation 

using MG132 cancelled differences in the nuclear levels of RAD51 and FLNA 

suggesting that p62 is involved in orchestrating the proteasomal degradation of 

these proteins. Interestingly, inhibition of nuclear export using Leptomycin B resulted 

in increased nuclear levels of RAD51 and FLNA in p62-/-+FLAG-p62 and p62-/- MEFs 

but did not cancel the differences between them. This suggests that the nuclear 

export of proteins via exportin 1 can alter nuclear levels of both RAD51 and FLNA, 

however, this is not required to mediate p62-dependent differences.  These data 

suggest that p62 is influencing levels of RAD51 and FLNA exclusively through 

nuclear degradation via the proteasome. These data are in agreement with the 

previous observation that neither nuclear export of p62 or autophagy are required for 

its influence on DDF repair kinetics. 

While increased nuclear levels of RAD51 in cells lacking p62 is suggestive of 

increased ability to perform HR, it is not clear if this excess of RAD51 was indeed 

functioning in HR. Immunofluorescence analysis confirmed that increased nuclear 

levels of RAD51 seen in p62-/- MEFs corresponded with an increased number of 

RAD51 foci following IR. These data suggest that the increased levels of RAD51 do 

indeed correlate with increased HR activity.  While RAD51 foci have been shown to 

correlate with HR activity (Raderschall et al., 1999), it is not a direct measure. 

Further analysis is needed to confirm that increased levels of nuclear RAD51 in p62-/- 

MEFs facilitate an increase in HR-mediated DNA repair. This could be done using 

GFP reporter plasmids like those described in (Mao et al., 2008). It would also be of 

interest to assess genomic stability in p62-/- MEFs as it is still not clear if increased 

HR in the context of p62 knock-out would be cytoprotective or if it would, in fact, lead 

to increased genome instability as has been observed with RAD51 overexpression 

(Richardson et al., 2004) . 

We have shown that p62 interacts with both FLNA and RAD51 which appears 

to influence the nuclear levels of both via proteasomal degradation.  It is not clear if 
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p62 is facilitating the degradation of one or both of these proteins. It has previously 

been shown that nuclear levels of FLNA are able to influence levels of RAD51 (Yue 

et al., 2009). Data presented in this chapter show that knockdown of FLNA using 

siRNA resulted in a reduction in RAD51 foci formation in response to X-Ray IR in 

p62-/-+FLAG-p62 and p62-/- MEFs, consistent with previous reports (Yue et al., 2009).  

It is therefore possible that nuclear levels of RAD51 are reduced in p62-/-+FLAG-p62 

MEFs as a result of reduced levels of FLNA. Interestingly, FLNA knockdown caused 

a reduction in RAD51 foci in p62-/- MEFs to those below observed in p62-/-+FLAG-

p62 cells. This reduction in RAD51 foci corresponded with an increase in 53BP1 foci 

to similar level seen in p62-/-+FLAG-p62. These data suggest that the effect of p62 

on DNA damage repair could well be mediated by the proteasomal degradation of 

FLNA within the nucleus. 

Further work is required to understand the role of autophagy on nuclear levels 

of RAD51 and FLNA. It is tempting to hypothesize that autophagy, and subsequent 

increase in p62 levels, would lead to an enhancement of the proteasomal 

degradation of RAD51 and FLNA within the nucleus. However, it is important to 

consider cross-talk between these two pathways as it has previously been shown 

that inhibition of autophagy can also inhibit proteasomal degradation in a p62-

dependent manner (Korolchuk et al., 2009). Nuclear levels of RAD51 and FLNA, as 

well as the contribution of proteasomal degradation, would need to be assessed in 

the context of autophagy inhibition in order to link the p62-dependent decrease in 

DDF repair kinetic observed in chapter 3 with the mechanism proposed here. 
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6. Chapter 6. Interaction between p62 and the DDR during 

Organismal Ageing  

 

In the previous chapters, we have identified that autophagy inhibition was able 

to reduce DNA repair capacity in a p62-dependent manner in vitro.  In this chapter, 

we hypothesise that the p62-dependent effect on DNA damage repair observed in 

vitro may also exist in vivo, specifically in the context of cellular ageing.  

6.1 Levels of p62 in the Nucleus Increase with Age and are reduced with DR. 

  

Dietary restriction is an intervention known to increase lifespan in an 

autophagy-dependent manner in a number of model organisms (Morselli et al., 2010, 

Rubinsztein et al., 2011, Jia and Levine, 2007). Dietary restriction has also been 

shown to reduce age-dependent increase in DNA damage (Wang et al., 2010). We 

hypothesise that increased level of autophagy in DR mice could be affecting DNA 

damage repair in a p62-dependent manner, similar to in vitro data shown in previous 

chapters. In order to investigate age-dependent changes in p62, liver tissues from 

C57BL/6 mice of 3, 15 and 24 months age, either fed ad libitum (AL) or dietary 

restricted (DR, 60% of AL), were stained with an antibody against p62.  The numbers 

of cells containing nuclear p62 puncta were quantified by microscopy. Cells that are 

positive for p62 puncta are marked in white in Figure 6-1, quantification is shown in 

(Figure 6-1B).  Results shown in Figure 6-1A-B demonstrate an age-dependent 

increase in nuclei positive for p62 puncta.  Interestingly, DR mice show no significant 

increase in p62-positive nuclei compared to AL mice (Figure 6-1B).    
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Figure 6-1: Nuclear foci of p62 increase with age in mouse hepatocytes and are 

decreased by DR.  Representative images of hepatocytes from 3, 15 and 24 month 

old male C57BL/6 wild type mice maintained on ad libitum (AL) or DR. Sections were 

immunostained with an antibody against p62. p62 positive nuclei are indicated in 

white (A) and quantified in (B). A higher magnification of a p62 positive nucleus is 

shown with arrowheads pointing to p62 foci. Scale bars represent 80µm; n=3; Error 

bars represent S.E.M* p<0.05, ** p<0.01, *** p<0.001. Done in collaboration with Dr 

Diana Jurk and Mikolaj Ogrodnik. 
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6.2 Co-Localisation of p62 with DDF increases with age and is reduced with 

DR. 

 

Having established there was an age-dependent increase in nuclear p62 we 

then set out to establish what role this may be having on the DDR. In previous 

chapters we have shown that p62 co-localizes with DDF in vitro. To test if that is 

true in vivo, liver tissues from 3, 15 and 24 months old C57BL/6 mice on AL or DR 

diets were stained with antibodies against p62 and DNA damage marker H2A.X. 

p62 and H2A.X foci were then analysed using microscopy. Results shown in Figure 

6-2A-B indicate an age-dependent increase in the number of nuclear p62 foci that 

was suppressed by DR, similar to results shown in Figure 6-1B. Further to an age-

associated increase in p62 foci, there was a similar increase in the number of 

H2A.X foci (Figure 6-1C). This age-dependent increase in DDF was also 

suppressed by DR, in agreement with data published earlier (Wang et al., 2010). 

Interestingly, there was also an age-dependent increase in the number of co-

localization events between p62 and H2A.X foci (Figure 6-2D). Next, I wanted to 

ascertain whether recruitment of p62 to DDF was common to different tissue types. 

Here, intestinal tissues from AhCre; APC f/wt mice were stained with antibodies 

against p62 and DNA damage marker H2A.X. p62 and H2A.X foci were then 

analysed using microscopy. Images shown in Figure 6-1D indicate that p62 is 

recruited to DDF in enterocytes in a fashion similar to that seen previously in 

hepatocytes in vivo (Figure 6-1C) and fibroblast in vitro (Figure 5-2D). These data 

indicate that p62 is dynamically recruited to DDF. Furthermore, clearance of nuclear 

p62 foci following DR correlates with the reduction of DDF suggesting a role of p62 

in mediating the effect of autophagy on DNA repair in vivo.  
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Figure 6-2: The interaction of p62 with DDF in mouse hepatocytes increases 

with age and is decreased by DR. (A) Representative images of hepatocytes from 

young (3 months old) and old (24 months old) male C57BL/6 wild-type mice 

maintained on ad libitum (AL) diet. Sections were immunostained with antibodies 

against p62 and H2A.X. The mean number of p62 (B), H2A.X (C) and p62-H2A.X 

colocalisation (D) foci were quantified in hepatocyte sections from mice maintained 

on AL or dietary-restricted (DR) diets. (E) Representative images of enterocytes from 

male C57BL/6 wild type mice. Sections were immunostained with antibodies against 

p62 and H2A.X. Arrowheads in the zoomed merged image  indicate points of co-

localisation. Scale bar 10 µm.  Scale bars 10 µm; n=3; Error bars represent S.E.M. 

Done in collaboration with Dr Diana Jurk and Mikloaj Ogrodnik. 
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6.3 Discussion 

Data presented in this chapter show an age-dependent increase in the 

formation of nuclear p62 puncta. The presence of p62 nuclear aggregates has 

previously been observed in several proteinopathies (Nagaoka et al., 2004, Kuusisto 

et al., 2003, Pikkarainen et al., 2008). Although these are age-related pathologies, 

nuclear p62 inclusions have not yet been studied in the context of ageing. This age 

dependent increase was reduced in mice undergoing dietary restriction. It is tempting 

to speculate that this age-dependent increase in p62 occurs due to an age-

dependent decrease in autophagy as previously observed (Terman, 1995, Vittorini et 

al., 1999). Dietary restriction is an intervention that is well known to activate 

autophagy. In fact is has been shown that autophagy activity is required for the 

ability of DR to extend life span (Jia and Levine, 2007, Rubinsztein et al., 2011). It 

could also be postulated that the reduction in nuclear p62 foci seen in DR mice is a 

result of activated autophagy. Similarly, dietary restriction has been shown to result 

in the upregulation of components of the 20S and 19S proteasome (Lee et al., 1999). 

As p62 has been shown to be a substrate for proteasomal degradation, an increase 

in this pathway could also result in reduced levels of p62 (Lee et al., 2012b, 

Seibenhener et al., 2004). These hypotheses would of course need to be tested 

experimentally. Alternatively, nuclear levels of p62 could be altered by changes in 

the rate of nuclear import and export. It was shown by Pankiv et al. that 

phosphorylation of p62 at serine-266, threonine-269 and serine-272 residues 

regulates the nuclear-cytoplasmic shuttling of p62 (Pankiv et al., 2010). It would be 

interesting to test the phosphorylation status of p62 in the context of ageing as well 

as with DR to assess whether this was responsible for the age-dependent changes 

in nuclear p62 observed here. Our previous data suggest an increase in the number 

of nuclear p62 foci in response to DNA damage. Data presented in this chapter and 

in previous studies have shown an age-dependent increase in DNA damage foci 

(Wang et al., 2010). It is therefore possible that p62 is shuttled to the nucleus in 

response to increased levels of DNA damage seen with age. Similarly, data shown 

here indicate that DR leads to a reduced level of DNA damage and so the reduction 

in p62 foci could be a result of decreased DNA damage (Wang et al., 2010). Further 
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work is needed to understand the mechanisms driving this age-dependent increase 

of nuclear p62.  

Interestingly, we show that p62 and DNA damage foci co-localise in 

hepatocytes from aged animals. This co-localisation is reduced in animals under DR. 

Moreover levels of nuclear p62 and p62-DDF co-localisation correlate with an 

increase in the number of DDF. These data suggest that p62 may be playing a role 

in DNA damage in vivo. As discussed previously, the co-localisation between DDF 

and p62 was observed in vitro. Further analysis identified an interaction between p62 

and RAD51 and FLNA. An attempt was made to assess the co-localisation of p62 

and RAD51 in vivo, however immunofluorescence staining for RAD51 was 

unsuccessful in tissue. Further work is required to understand the exact role of the 

interaction between p62 and DDF in the context of ageing. A tempting hypothesis is 

that increased levels of nuclear p62 occur with age as a result of declining protein 

homeostasis. Increased p62 then has an inhibitory effect in DNA damage repair via 

homologous recombination through its proteasomal depredation of RAD51 and 

FLNA. The resulting increase in DNA damage may then contribute to a progression 

of the ageing phenotype through activation of cellular senescence. This could be one 

mechanism by which interventions that activate autophagy such as rapamycin 

treatment and dietary restriction influence DNA damage accumulation and longevity. 
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7. Conclusions 

 
The accumulation of misfolded and damaged proteins is a hallmark of ageing and 

age-related diseases. This has been attributed to both an increase in the formation 

of damaged proteins due to ROS and errors in translation, as well as a gradual age-

related decline in cellular proteolytic pathways. Autophagy has long been in the 

spotlight as a modulator of longevity; however the exact mechanisms by which this is 

mediated are not yet fully understood. Similarly, the accumulation of DNA damage 

has been suggested as a causal factor in organismal ageing. Again, an increase in 

the rate of generation of DNA damage as well as a decline in the ability a cell to 

resolve this damage have been observed in ageing. Data in this thesis identify a 

novel link between autophagy and DNA repair via HR through its control of 

intracellular levels of p62. This observation provides a potential link between the 

gradual decline in autophagy and DNA repair capacity that occurs with age. This 

interaction could have far reaching influence on a number of age-associated 

phenotypes and pathologies.  

Interestingly, the Gorbunova lab has observed a decline in functional HR in 

human fibroblast with progressive population doublings and the initiation of cellular 

senescence. This was accompanied by a decline in proteins from the HR pathway 

such as RAD51, RAD51L and RAD52. This decline could be halted by the 

expression of SIRT6 (Mao et al., 2012b). Interestingly expression of SIRT6 has been 

shown to be a potent activator of autophagy. Moreover, it has been observed that 

autophagy is required for the anti-senescence effects of SIRT6 overexpression 

(Takasaka et al., 2014). It is therefore possible that this decline in HR occurs via p62 

mediated degradation of RAD51 as observed in this thesis. Thus, activation of 

autophagy would lead to reduced levels of p62 inhibiting the proteasome-mediated 

degradation of RAD51 and resulting in reinstated levels of RAD51 and HR activity. It 

would be interesting to assess the effect of both p62 knockdown and activation of 

autophagy, via a SIRT6 independent mechanism, on HR in this context to test the 

relevance of this newly discovered mechanism in this system. 

The accumulation of p62-positive nuclear inclusions is common in a number of 

proteinopathies (Nagaoka et al., 2004, Kuusisto et al., 2003, Pikkarainen et al., 

2008). This role for p62 as an inhibitor of HR could provide another mechanism by 
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which these pathologies lead to cell death and disease progression. Investigation of 

the relative efficacy of DNA damage repair pathways in the context of 

proteinopathies could provide further mechanistic insight into these pathologies.   

Interestingly, mutations in the UBA domain of p62 are a common feature of familial 

and sporadic ALS (Teyssou et al., 2013) as well as Paget’s disease (Laurin et al., 

2002, Hocking et al., 2002). Here we identify the UBA domain of p62 as a functional 

domain required for its effect on DNA damage. It would therefore be interesting to 

test the relevance of these observations in the context of these diseases.   

Lastly, although not the focus of this thesis, both DNA damage and autophagy 

have been shown to play central roles in cancer development. Indeed, the role of 

both of these processes in cancer is multifactorial and highly context-dependent. 

Autophagy has been suggested as a tumour survivor mechanism when tumour cells 

undergo metabolic and therapeutic stresses (Degenhardt et al., 2006)  However 

many studies have suggested a role for autophagy in tumour suppression (Mathew 

et al., 2007b, Mathew et al., 2009). Genomic instability is a hallmark of cancer and 

results from the combined effect of DNA damage, tumour specific DNA repair 

defects as well as impaired cell cycle checkpoints. Although a central part of cancer 

progression, genetic instability has also provided many therapeutic opportunities in 

cancer treatment. The identification of novel mechanisms of crosstalk between 

autophagy and DNA damage repair will aid our understanding of these complex 

processes and present further therapeutic opportunities. The ability of autophagy to 

influence HR-mediated repair, could offer some way to explain its apparent duel role 

in cancer progression. An increase in HR activity could mediate cell survival in 

tumour cells with increased autophagy in response to therapeutic stress. Conversely, 

an activation of this process prior to transformation could infer a reduced 

accumulation of DNA damage serving as a tumour suppressor mechanism.  It is 

important to note that genome instability has not been assessed in this context. It is 

possible that a reduction in p62-mediated RAD51 degradation could lead to hyper-

recombination and increased genome instability. Nonetheless, both of these 

possibilities would be relevant in the context of cancer progression.  
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Schematic representation of proposed mechanism: (A) In response to DNA 

damage p62 interacts with FLNA within the nucleus, targeting it for degradation via 

the proteasome. Reduced levels of FLNA lead to a reduced recruitment of RAD51 to 

the site of damage. We propose this results in a reduced activity of the HR repair 

pathway. (B) Cellular levels of p62 are modulated by autophagy; therefore inhibition 

of autophagy leads to increased levels of p62. We suggest that this mechanisms 

links autophagy status as a modulator of HR-mediated DNA repair. 

 



References 

184 
 

References  
 
ABEDIN, M. J., WANG, D., MCDONNELL, M. A., LEHMANN, U. & KELEKAR, A. 2007. 

Autophagy delays apoptotic death in breast cancer cells following DNA damage. Cell 
Death Differ, 14, 500-10. 

ABIDA, W. M. & GU, W. 2008. p53-Dependent and p53-independent activation of autophagy 
by ARF. Cancer Res, 68, 352-7. 

AHMED, S., PASSOS, J. F., BIRKET, M. J., BECKMANN, T., BRINGS, S., PETERS, H., BIRCH-
MACHIN, M. A., VON ZGLINICKI, T. & SARETZKI, G. 2008. Telomerase does not 
counteract telomere shortening but protects mitochondrial function under oxidative 
stress. Journal of Cell Science, 121, 1046-1053. 

AHNESORG, P., SMITH, P. & JACKSON, S. P. 2006. XLF interacts with the XRCC4-DNA ligase IV 
complex to promote DNA nonhomologous end-joining. Cell, 124, 301-13. 

AKSENOVA, M. V., AKSENOV, M. Y., CARNEY, J. M. & BUTTERFIELD, D. A. 1998. Protein 
oxidation and enzyme activity decline in old brown Norway rats are reduced by 
dietary restriction. Mech Ageing Dev, 100, 157-68. 

ALEXANDER, A., CAI, S. L., KIM, J., NANEZ, A., SAHIN, M., MACLEAN, K. H., INOKI, K., GUAN, 
K. L., SHEN, J., PERSON, M. D., KUSEWITT, D., MILLS, G. B., KASTAN, M. B. & WALKER, 
C. L. 2010. ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to 
ROS. Proc Natl Acad Sci U S A, 107, 4153-8. 

ALLSOPP, R. C., VAZIRI, H., PATTERSON, C., GOLDSTEIN, S., YOUNGLAI, E. V., FUTCHER, A. B., 
GREIDER, C. W. & HARLEY, C. B. 1992. Telomere length predicts replicative capacity 
of human fibroblasts. Proceedings of the National Academy of Sciences of the United 
States of America, 89, 10114-10118. 

AMARAVADI, R. K., YU, D., LUM, J. J., BUI, T., CHRISTOPHOROU, M. A., EVAN, G. I., THOMAS-
TIKHONENKO, A. & THOMPSON, C. B. 2007. Autophagy inhibition enhances therapy-
induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest, 117, 326-36. 

ANDERSSON, V., HANZEN, S., LIU, B., MOLIN, M. & NYSTROM, T. 2013. Enhancing protein 
disaggregation restores proteasome activity in aged cells. Aging (Albany NY), 5, 802-
12. 

ANDRABI, S. A., UMANAH, G. K., CHANG, C., STEVENS, D. A., KARUPPAGOUNDER, S. S., 
GAGNE, J. P., POIRIER, G. G., DAWSON, V. L. & DAWSON, T. M. 2014. Poly(ADP-
ribose) polymerase-dependent energy depletion occurs through inhibition of 
glycolysis. Proc Natl Acad Sci U S A, 111, 10209-14. 

APEL, A., HERR, I., SCHWARZ, H., RODEMANN, H. P. & MAYER, A. 2008. Blocked autophagy 
sensitizes resistant carcinoma cells to radiation therapy. Cancer Res, 68, 1485-94. 

ARRIGO, A. P., TANAKA, K., GOLDBERG, A. L. & WELCH, W. J. 1988. Identity of the 19S 
'prosome' particle with the large multifunctional protease complex of mammalian 
cells (the proteasome). Nature, 331, 192-4. 

ASSUNCAO GUIMARAES, C. & LINDEN, R. 2004. Programmed cell deaths. Apoptosis and 
alternative deathstyles. Eur J Biochem, 271, 1638-50. 

ATEN, J. A., STAP, J., KRAWCZYK, P. M., VAN OVEN, C. H., HOEBE, R. A., ESSERS, J. & KANAAR, 
R. 2004. Dynamics of DNA Double-Strand Breaks Revealed by Clustering of Damaged 
Chromosome Domains. Science, 303, 92-95. 

AUBERT, G. & LANSDORP, P. M. 2008. Telomeres and Aging. Physiological Reviews, 88, 557-
579. 



References 

185 
 

BABU, J. R., GEETHA, T. & WOOTEN, M. W. 2005. Sequestosome 1/p62 shuttles 
polyubiquitinated tau for proteasomal degradation. J Neurochem, 94, 192-203. 

BAE, H. & GUAN, J.-L. 2011. Suppression of autophagy by FIP200 deletion impairs DNA 
damage repair and increases cell death upon treatments with anti-cancer agents. 
Molecular Cancer Research. 

BAKER, D., WIJSHAKE, T., TCHKONIA, T., LEBRASSEUR, N., CHILDS, B., VAN DE SLUIS, B., 
KIRKLAND, J. & VAN DEURSEN, J. 2011. Clearance of p16Ink4a-positive senescent 
cells delays ageing-associated disorders. Nature, 479, 232-236. 

BARDAG-GORCE, F., FAROUT, L., VEYRAT-DUREBEX, C., BRIAND, Y. & BRIAND, M. 1999. 
Changes in 20S proteasome activity during ageing of the LOU rat. Mol Biol Rep, 26, 
89-93. 

BARONE, M. C., SYKIOTIS, G. P. & BOHMANN, D. 2011. Genetic activation of Nrf2 signaling is 
sufficient to ameliorate neurodegenerative phenotypes in a Drosophila model of 
Parkinson's disease. Dis Model Mech, 4, 701-7. 

BEAUSEJOUR, C. M., KRTOLICA, A., GALIMI, F., NARITA, M., LOWE, S. W., YASWEN, P. & 
CAMPISI, J. 2003. Reversal of human cellular senescence: roles of the p53 and p16 
pathways. EMBO J, 22, 4212-4222. 

BEJARANO, E. & CUERVO, A. M. 2010. Chaperone-Mediated Autophagy. Proceedings of the 
American Thoracic Society, 7, 29-39. 

BEKKER-JENSEN, S., LUKAS, C., KITAGAWA, R., MELANDER, F., KASTAN, M. B., BARTEK, J. & 
LUKAS, J. 2006. Spatial organization of the mammalian genome surveillance 
machinery in response to DNA strand breaks. The Journal of Cell Biology, 173, 195-
206. 

BEN-PORATH, I. & WEINBERG, R. A. 2005. The signals and pathways activating cellular 
senescence. Int J Biochem Cell Biol, 37, 961-76. 

BERGAMINI, E., CAVALLINI, G., DONATI, A. & GORI, Z. 2003. The anti-ageing effects of caloric 
restriction may involve stimulation of macroautophagy and lysosomal degradation, 
and can be intensified pharmacologically. Biomed Pharmacother, 57, 203-8. 

BERRIDGE, M. J. 1987. INOSITOL TRISPHOSPHATE AND DIACYLGLYCEROL - 2 INTERACTING 
2ND MESSENGERS. Annual Review of Biochemistry, 56, 159-193. 

BERRIDGE, M. J., BOOTMAN, M. D. & RODERICK, H. L. 2003. Calcium signalling: dynamics, 
homeostasis and remodelling. Nat Rev Mol Cell Biol, 4, 517-529. 

BERTOLAET, B. L., CLARKE, D. J., WOLFF, M., WATSON, M. H., HENZE, M., DIVITA, G. & REED, 
S. I. 2001. UBA domains of DNA damage-inducible proteins interact with ubiquitin. 
Nature Structural Biology, 8, 417-422. 

BETIN, V. M. S. & LANE, J. D. 2009. Caspase cleavage of Atg4D stimulates GABARAP-L1 
processing and triggers mitochondrial targeting and apoptosis. Journal of Cell 
Science, 122, 2554-2566. 

BEWERSDORF, J. R., BENNETT, B. T. & KNIGHT, K. L. 2006. H2AX chromatin structures and 
their response to DNA damage revealed by 4Pi microscopy. Proceedings of the 
National Academy of Sciences, 103, 18137-18142. 

BITTO, A., LERNER, C. A., NACARELLI, T., CROWE, E., TORRES, C. & SELL, C. 2014. 
P62/SQSTM1 at the interface of aging, autophagy, and disease. Age (Dordr), 36, 
9626. 

BJORKOY, G., LAMARK, T., BRECH, A., OUTZEN, H., PERANDER, M., OVERVATN, A., 
STENMARK, H. & JOHANSEN, T. 2005. p62/SQSTM1 forms protein aggregates 



References 

186 
 

degraded by autophagy and has a protective effect on huntingtin-induced cell death. 
J Cell Biol, 171, 603-14. 

BODNAR, A. G., OUELLETTE, M., FROLKIS, M., HOLT, S. E., CHIU, C. P., MORIN, G. B., HARLEY, 
C. B., SHAY, J. W., LICHTSTEINER, S. & WRIGHT, W. E. 1998. Extension of life-span by 
introduction of telomerase into normal human cells. Science, 279, 349-52. 

BOICHUK, S., HU, L., HEIN, J. & GJOERUP, O. V. 2010. Multiple DNA Damage Signaling and 
Repair Pathways Deregulated by Simian Virus 40 Large T Antigen. Journal of Virology, 
84, 8007-8020. 

BOICHUK, S., HU, L., MAKIELSKI, K., PANDOLFI, P. P. & GJOERUP, O. V. 2011. Functional 
Connection between Rad51 and PML in Homology-Directed Repair. PLoS ONE, 6, 
e25814. 

BONILLA, C. Y., MELO, J. A. & TOCZYSKI, D. P. 2008. Colocalization of Sensors Is Sufficient to 
Activate the DNA Damage Checkpoint in the Absence of Damage. Molecular Cell, 30, 
267-276. 

BOYA, P. & CODOGNO, P. 2012. Micronucleophagy: a new mechanism to protect against 
chromosomal instability? Cell Cycle, 11, 645-6. 

BOYA, P. & KROEMER, G. 2009. Beclin 1: a BH3-only protein that fails to induce apoptosis. 
Oncogene, 28, 2125-2127. 

BRAIG, M., LEE, S., LODDENKEMPER, C., RUDOLPH, C., PETERS, A. H., SCHLEGELBERGER, B., 
STEIN, H., DORKEN, B., JENUWEIN, T. & SCHMITT, C. A. 2005. Oncogene-induced 
senescence as an initial barrier in lymphoma development. Nature, 436, 660-5. 

BREHM, A., LANGST, G., KEHLE, J., CLAPIER, C. R., IMHOF, A., EBERHARTER, A., MULLER, J. & 
BECKER, P. B. 2000. dMi-2 and ISWI chromatin remodelling factors have distinct 
nucleosome binding and mobilization properties. Embo j, 19, 4332-41. 

BUDZOWSKA, M. & KANAAR, R. 2009. Mechanisms of dealing with DNA damage-induced 
replication problems. Cell Biochem Biophys, 53, 17-31. 

BULTEAU, A. L., PETROPOULOS, I. & FRIGUET, B. 2000. Age-related alterations of 
proteasome structure and function in aging epidermis. Exp Gerontol, 35, 767-77. 

BULTEAU, A. L., SZWEDA, L. I. & FRIGUET, B. 2002. Age-dependent declines in proteasome 
activity in the heart. Arch Biochem Biophys, 397, 298-304. 

BURD, C. J., KINYAMU, H. K., MILLER, F. W. & ARCHER, T. K. 2008. UV radiation regulates Mi-
2 through protein translation and stability. J Biol Chem, 283, 34976-82. 

BUSCEMI, G., PEREGO, P., CARENINI, N., NAKANISHI, M., CHESSA, L., CHEN, J., KHANNA, K. & 
DELIA, D. 2004. Activation of ATM and Chk2 kinases in relation to the amount of DNA 
strand breaks. Oncogene, 23, 7691-7700. 

CAMPISI, J. & D'ADDA DI FAGAGNA, F. 2007. Cellular senescence: when bad things happen 
to good cells. Nat Rev Mol Cell Biol, 8, 729-740. 

CANTLEY, L. C. 2002. The Phosphoinositide 3-Kinase Pathway. Science, 296, 1655-1657. 
CAO, L., ALANI, E. & KLECKNER, N. 1990. A pathway for generation and processing of double-

strand breaks during meiotic recombination in S. cerevisiae. Cell, 61, 1089-101. 
CAPPARELLI, C., CHIAVARINA, B., WHITAKER-MENEZES, D., PESTELL, T. G., PESTELL, R. G., 

HULIT, J., ANDO, S., HOWELL, A., MARTINEZ-OUTSCHOORN, U. E., SOTGIA, F. & 
LISANTI, M. P. 2012. CDK inhibitors (p16/p19/p21) induce senescence and autophagy 
in cancer-associated fibroblasts, "fueling" tumor growth via paracrine interactions, 
without an increase in neo-angiogenesis. Cell Cycle, 11, 3599-610. 



References 

187 
 

CARRARD, G., DIEU, M., RAES, M., TOUSSAINT, O. & FRIGUET, B. 2003. Impact of ageing on 
proteasome structure and function in human lymphocytes. Int J Biochem Cell Biol, 
35, 728-39. 

CARROLL, B., HEWITT, G. & KOROLCHUK, V. I. 2013. Autophagy and ageing: implications for 
age-related neurodegenerative diseases. Essays Biochem, 55, 119-31. 

CARUGO, O. & DJINOVIC CARUGO, K. 2005. When X-rays modify the protein structure: 
radiation damage at work. Trends Biochem Sci, 30, 213-9. 

CESARE, A. J., KAUL, Z., COHEN, S. B., NAPIER, C. E., PICKETT, H. A., NEUMANN, A. A. & 
REDDEL, R. R. 2009. Spontaneous occurrence of telomeric DNA damage response in 
the absence of chromosome fusions. Nat Struct Mol Biol, 16, 1244-1251. 

CHAN, D. W., CHEN, B. P., PRITHIVIRAJSINGH, S., KURIMASA, A., STORY, M. D., QIN, J. & 
CHEN, D. J. 2002. Autophosphorylation of the DNA-dependent protein kinase 
catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev, 
16, 2333-8. 

CHEN, Z., TROTMAN, L. C., SHAFFER, D., LIN, H. K., DOTAN, Z. A., NIKI, M., KOUTCHER, J. A., 
SCHER, H. I., LUDWIG, T., GERALD, W., CORDON-CARDO, C. & PANDOLFI, P. P. 2005. 
Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient 
tumorigenesis. Nature, 436, 725-30. 

CHONDROGIANNI, N. & GONOS, E. S. 2007. Overexpression of hUMP1/POMP proteasome 
accessory protein enhances proteasome-mediated antioxidant defence. Exp 
Gerontol, 42, 899-903. 

CHONDROGIANNI, N., PETROPOULOS, I., FRANCESCHI, C., FRIGUET, B. & GONOS, E. S. 2000. 
Fibroblast cultures from healthy centenarians have an active proteasome. Exp 
Gerontol, 35, 721-8. 

CHONDROGIANNI, N., STRATFORD, F. L., TROUGAKOS, I. P., FRIGUET, B., RIVETT, A. J. & 
GONOS, E. S. 2003. Central role of the proteasome in senescence and survival of 
human fibroblasts: induction of a senescence-like phenotype upon its inhibition and 
resistance to stress upon its activation. J Biol Chem, 278, 28026-37. 

CHONDROGIANNI, N., TZAVELAS, C., PEMBERTON, A. J., NEZIS, I. P., RIVETT, A. J. & GONOS, 
E. S. 2005. Overexpression of proteasome beta5 assembled subunit increases the 
amount of proteasome and confers ameliorated response to oxidative stress and 
higher survival rates. J Biol Chem, 280, 11840-50. 

CHOU, D. M., ADAMSON, B., DEPHOURE, N. E., TAN, X., NOTTKE, A. C., HUROV, K. E., GYGI, S. 
P., COLAIACOVO, M. P. & ELLEDGE, S. J. 2010. A chromatin localization screen reveals 
poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD 
complexes to sites of DNA damage. Proc Natl Acad Sci U S A, 107, 18475-80. 

CHOUCROUN, P., GILLET, D., DORANGE, G., SAWICKI, B. & DEWITTE, J. D. 2001. Comet assay 
and early apoptosis. Mutation Research/Fundamental and Molecular Mechanisms of 
Mutagenesis, 478, 89-96. 

CHRYSIIS, M., LIESBETH, C. W. V., MARIA, S. S., CHRISTOPHE, D., THOMAS, K., CHANTAL, M. 
A. M. V. D. H., DONNÉ, M. M., JERRY, W. S., WOLTER, J. M. & DANIEL, S. P. 2005. 
BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436, 
720-724. 

CIECHANOVER, A. 2009. Tracing the history of the ubiquitin proteolytic system: the 
pioneering article. Biochem Biophys Res Commun, 387, 1-10. 



References 

188 
 

CIUFFA, R., LAMARK, T., TARAFDER, A. K., GUESDON, A., RYBINA, S., HAGEN, W. J., 
JOHANSEN, T. & SACHSE, C. 2015. The selective autophagy receptor p62 forms a 
flexible filamentous helical scaffold. Cell Rep, 11, 748-58. 

CLEMENS, M. J., BUSHELL, M., JEFFREY, I. W., PAIN, V. M. & MORLEY, S. J. 2000. Translation 
initiation factor modifications and the regulation of protein synthesis in apoptotic 
cells. Cell death and differentiation, 7, 603-615. 

COHEN, G. M. 1997. Caspases: the executioners of apoptosis. Biochemical Journal, 326, 1-
16. 

COLLADO, M., GIL, J., EFEYAN, A., GUERRA, C., SCHUHMACHER, A. J., BARRADAS, M., 
BENGURIA, A., ZABALLOS, A., FLORES, J. M., BARBACID, M., BEACH, D. & SERRANO, 
M. 2005. Tumour biology: senescence in premalignant tumours. Nature, 436, 642. 

CONCONI, M., SZWEDA, L. I., LEVINE, R. L., STADTMAN, E. R. & FRIGUET, B. 1996. Age-
related decline of rat liver multicatalytic proteinase activity and protection from 
oxidative inactivation by heat-shock protein 90. Arch Biochem Biophys, 331, 232-40. 

COPPE, J. P., PATIL, C. K., RODIER, F., SUN, Y., MUNOZ, D. P., GOLDSTEIN, J., NELSON, P. S., 
DESPREZ, P. Y. & CAMPISI, J. 2008. Senescence-associated secretory phenotypes 
reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor 
suppressor. PLoS Biol, 6, 2853-68. 

COPPLE, I. M., LISTER, A., OBENG, A. D., KITTERINGHAM, N. R., JENKINS, R. E., LAYFIELD, R., 
FOSTER, B. J., GOLDRING, C. E. & PARK, B. K. 2010. Physical and functional interaction 
of sequestosome 1 with Keap1 regulates the Keap1-Nrf2 cell defense pathway. J Biol 
Chem, 285, 16782-8. 

CORREIA-MELO, C. 2014. Interactions between mitochondria and inflammatory factors 
during cellular senescence. 

CORTEZ, D., GUNTUKU, S., QIN, J. & ELLEDGE, S. J. 2001. ATR and ATRIP: partners in 
checkpoint signaling. Science, 294, 1713-6. 

CRIGHTON, D., WILKINSON, S., O'PREY, J., SYED, N., SMITH, P., HARRISON, P. R., GASCO, M., 
GARRONE, O., CROOK, T. & RYAN, K. M. 2006. DRAM, a p53-induced modulator of 
autophagy, is critical for apoptosis. Cell, 126, 121-34. 

CUERVO, A. M. & DICE, J. F. 2000a. Age-related Decline in Chaperone-mediated Autophagy. 
Journal of Biological Chemistry, 275, 31505-31513. 

CUERVO, A. M. & DICE, J. F. 2000b. When lysosomes get old☆. Experimental Gerontology, 

35, 119-131. 
CULLINAN, S. B., GORDAN, J. D., JIN, J., HARPER, J. W. & DIEHL, J. A. 2004. The Keap1-BTB 

protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress 
sensing by a Cul3-Keap1 ligase. Mol Cell Biol, 24, 8477-86. 

D'ADDA DI FAGAGNA, F. 2008. Living on a break: cellular senescence as a DNA-damage 
response. Nat Rev Cancer, 8, 512-522. 

D'ADDA DI FAGAGNA, F., REAPER, P. M., CLAY-FARRACE, L., FIEGLER, H., CARR, P., VON 
ZGLINICKI, T., SARETZKI, G., CARTER, N. P. & JACKSON, S. P. 2003. A DNA damage 
checkpoint response in telomere-initiated senescence. Nature, 426, 194-8. 

DAVID, Y., TERNETTE, N., EDELMANN, M. J., ZIV, T., GAYER, B., SERTCHOOK, R., DADON, Y., 
KESSLER, B. M. & NAVON, A. 2011. E3 ligases determine ubiquitination site and 
conjugate type by enforcing specificity on E2 enzymes. J Biol Chem, 286, 44104-15. 

DAVIES, A. A., MASSON, J.-Y., MCILWRAITH, M. J., STASIAK, A. Z., STASIAK, A., 
VENKITARAMAN, A. R. & WEST, S. C. 2001. Role of BRCA2 in Control of the RAD51 
Recombination and DNA Repair Protein. Molecular Cell, 7, 273-282. 



References 

189 
 

DE VRIES, E., VAN DRIEL, W., BERGSMA, W. G., ARNBERG, A. C. & VAN DER VLIET, P. C. 1989. 
HeLa nuclear protein recognizing DNA termini and translocating on DNA forming a 
regular DNA-multimeric protein complex. Journal of molecular biology, 208, 65-78. 

DE-LANGE.T 2006. Telomeres, New York, Cold Spring Harbour Laboratory Press. 
DEGENHARDT, K., MATHEW, R., BEAUDOIN, B., BRAY, K., ANDERSON, D., CHEN, G., 

MUKHERJEE, C., SHI, Y., GELINAS, C., FAN, Y., NELSON, D. A., JIN, S. & WHITE, E. 2006. 
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and 
tumorigenesis. Cancer Cell, 10, 51-64. 

DENG, C., ZHANG, P., WADE HARPER, J., ELLEDGE, S. J. & LEDER, P. 1995. Mice Lacking 
p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint 
control. Cell, 82, 675-684. 

DI LEONARDO, A., LINKE, S. P., CLARKIN, K. & WAHL, G. M. 1994. DNA damage triggers a 
prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal 
human fibroblasts. Genes Dev, 8, 2540-51. 

DI MICCO, R., FUMAGALLI, M., CICALESE, A., PICCININ, S., GASPARINI, P., LUISE, C., 
SCHURRA, C., GARRE, M., GIOVANNI NUCIFORO, P., BENSIMON, A., MAESTRO, R., 
GIUSEPPE PELICCI, P. & D/'ADDA DI FAGAGNA, F. 2006. Oncogene-induced 
senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 
444, 638-642. 

DI MICCO, R., SULLI, G., DOBREVA, M., LIONTOS, M., BOTRUGNO, O. A., GARGIULO, G., DAL 
ZUFFO, R., MATTI, V., D'ARIO, G., MONTANI, E., MERCURIO, C., HAHN, W. C., 
GORGOULIS, V., MINUCCI, S. & D'ADDA DI FAGAGNA, F. 2011. Interplay between 
oncogene-induced DNA damage response and heterochromatin in senescence and 
cancer. Nat Cell Biol, 13, 292-302. 

DIDIER, N., HOURDE, C., AMTHOR, H., MARAZZI, G. & SASSOON, D. 2012. Loss of a single 
allele for Ku80 leads to progenitor dysfunction and accelerated aging in skeletal 
muscle. EMBO Mol Med, 4, 910-23. 

DIECKMANN, T., WITHERS-WARD, E. S., JAROSINSKI, M. A., LIU, C. F., CHEN, I. S. Y. & 
FEIGON, J. 1998. Structure of a human DNA repair protein UBA domain that interacts 
with HIV-1 Vpr. Nature Structural Biology, 5, 1042-1047. 

DILLEY, T. K., BOWDEN, G. T. & CHEN, Q. M. 2003. Novel mechanisms of sublethal oxidant 
toxicity: induction of premature senescence in human fibroblasts confers tumor 
promoter activity. Exp Cell Res, 290, 38-48. 

DONALDSON, K. M., LI, W., CHING, K. A., BATALOV, S., TSAI, C. C. & JOAZEIRO, C. A. 2003. 
Ubiquitin-mediated sequestration of normal cellular proteins into polyglutamine 
aggregates. Proc Natl Acad Sci U S A, 100, 8892-7. 

DOWNEY, M. & DUROCHER, D. 2006. &gamma;H2AX as a Checkpoint Maintenance Signal. 
Cell Cycle, 5, 1376-1381. 

DU, Y., WOOTEN, M. C., GEARING, M. & WOOTEN, M. W. 2009a. Age-associated oxidative 
damage to the p62 promoter: implications for Alzheimer disease. Free Radic Biol 
Med, 46, 492-501. 

DU, Y., WOOTEN, M. C. & WOOTEN, M. W. 2009b. Oxidative damage to the promoter region 
of SQSTM1/p62 is common to neurodegenerative disease. Neurobiol Dis, 35, 302-10. 

DURAN, A., AMANCHY, R., LINARES, J. F., JOSHI, J., ABU-BAKER, S., POROLLO, A., HANSEN, 
M., MOSCAT, J. & DIAZ-MECO, M. T. 2011. p62 is a key regulator of nutrient sensing 
in the mTORC1 pathway. Mol Cell, 44, 134-46. 



References 

190 
 

DURAN, A., LINARES, J. F., GALVEZ, A. S., WIKENHEISER, K., FLORES, J. M., DIAZ-MECO, M. T. 
& MOSCAT, J. 2008. The signaling adaptor p62 is an important NF-kappaB mediator 
in tumorigenesis. Cancer Cell, 13, 343-54. 

EGAN, D. F., SHACKELFORD, D. B., MIHAYLOVA, M. M., GELINO, S., KOHNZ, R. A., MAIR, W., 
VASQUEZ, D. S., JOSHI, A., GWINN, D. M., TAYLOR, R., ASARA, J. M., FITZPATRICK, J., 
DILLIN, A., VIOLLET, B., KUNDU, M., HANSEN, M. & SHAW, R. J. 2011. 
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy 
sensing to mitophagy. Science, 331, 456-61. 

EISEN, J. A., SWEDER, K. S. & HANAWALT, P. C. 1995. Evolution of the SNF2 family of 
proteins: subfamilies with distinct sequences and functions. Nucleic Acids Research, 
23, 2715-2723. 

ELLIOTT, A. & REINERS, J. J., JR. 2008. Suppression of autophagy enhances the cytotoxicity of 
the DNA-damaging aromatic amine p-anilinoaniline. Toxicol Appl Pharmacol, 232, 
169-79. 

EPSTEIN, C. J., MARTIN, G. M., SCHULTZ, A. L. & MOTULSKY, A. G. 1966. Werner's syndrome 
a review of its symptomatology, natural history, pathologic features, genetics and 
relationship to the natural aging process. Medicine (Baltimore), 45, 177-221. 

ESPEJEL, S., MARTIN, M., KLATT, P., MARTIN-CABALLERO, J., FLORES, J. M. & BLASCO, M. A. 
2004. Shorter telomeres, accelerated ageing and increased lymphoma in DNA-PKcs-
deficient mice. EMBO Rep, 5, 503-9. 

FAN, W., TANG, Z., CHEN, D., MOUGHON, D., DING, X., CHEN, S., ZHU, M. & ZHONG, Q. 
2010. Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. 
Autophagy, 6, 614-21. 

FENG, W., HUANG, S., WU, H. & ZHANG, M. 2007. Molecular Basis of Bcl-xL’s Target 
Recognition Versatility Revealed by the Structure of Bcl-xL in Complex with the BH3 
Domain of Beclin-1. Journal of Molecular Biology, 372, 223-235. 

FENG, Z., ZHANG, H., LEVINE, A. J. & JIN, S. 2005. The coordinate regulation of the p53 and 
mTOR pathways in cells. Proc Natl Acad Sci U S A, 102, 8204-9. 

FERRINGTON, D. A., HUSOM, A. D. & THOMPSON, L. V. 2005. Altered proteasome structure, 
function, and oxidation in aged muscle. Faseb j, 19, 644-6. 

FONTANA, L., PARTRIDGE, L. & LONGO, V. D. 2010. Extending healthy life span--from yeast 
to humans. Science, 328, 321-6. 

FUMAGALLI, M., ROSSIELLO, F., CLERICI, M., BAROZZI, S., CITTARO, D., KAPLUNOV, J., BUCCI, 
G., DOBREVA, M., MATTI, V., BEAUSEJOUR, C., HERBIG, U., LONGHESE, M. & D'ADDA 
DI FAGAGNA, F. 2012. Telomeric DNA damage is irreparable and causes persistent 
DNA-damage-response activation. Nature cell biology, 14, 355-365. 

FURUKAWA, M. & XIONG, Y. 2005. BTB protein Keap1 targets antioxidant transcription 
factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol, 25, 162-71. 

GALAVOTTI, S., BARTESAGHI, S., FACCENDA, D., SHAKED-RABI, M., SANZONE, S., MCEVOY, 
A., DINSDALE, D., CONDORELLI, F., BRANDNER, S., CAMPANELLA, M., GROSE, R., 
JONES, C. & SALOMONI, P. 2013. The autophagy-associated factors DRAM1 and p62 
regulate cell migration and invasion in glioblastoma stem cells. Oncogene, 32, 699-
712. 

GE, Q., NILASENA, D. S., O'BRIEN, C. A., FRANK, M. B. & TARGOFF, I. N. 1995. Molecular 
analysis of a major antigenic region of the 240-kD protein of Mi-2 autoantigen. J Clin 
Invest, 96, 1730-7. 



References 

191 
 

GEETHA, T., JIANG, J. & WOOTEN, M. W. 2005. Lysine 63 polyubiquitination of the nerve 
growth factor receptor TrkA directs internalization and signaling. Mol Cell, 20, 301-
12. 

GEETHA, T., SEIBENHENER, M. L., CHEN, L., MADURA, K. & WOOTEN, M. W. 2008. p62 serves 
as a shuttling factor for TrkA interaction with the proteasome. Biochem Biophys Res 
Commun, 374, 33-7. 

GEETHA, T. & WOOTEN, M. W. 2002. Structure and functional properties of the ubiquitin 
binding protein p62. FEBS Letters, 512, 19-24. 

GEISLER, S., HOLMSTROM, K. M., SKUJAT, D., FIESEL, F. C., ROTHFUSS, O. C., KAHLE, P. J. & 
SPRINGER, W. 2010. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and 
p62/SQSTM1. Nat Cell Biol, 12, 119-131. 

GERLAND, L.-M., PEYROL, S., LALLEMAND, C., BRANCHE, R., MAGAUD, J.-P. & FFRENCH, M. 
2003. Association of increased autophagic inclusions labeled for β-galactosidase with 
fibroblastic aging. Experimental Gerontology, 38, 887-895. 

GEWIRTZ, D. A. 2013. Autophagy and senescence: a partnership in search of definition. 
Autophagy, 9, 808-12. 

GLICKMAN, M. H. & CIECHANOVER, A. 2002. The ubiquitin-proteasome proteolytic pathway: 
destruction for the sake of construction. Physiol Rev, 82, 373-428. 

GOLMARD, L., CAUX-MONCOUTIER, V., DAVY, G., AL AGEELI, E., POIROT, B., TIRAPO, C., 
MICHAUX, D., BARBAROUX, C., D'ENGHIEN, C. D., NICOLAS, A., CASTERA, L., SASTRE-
GARAU, X., STERN, M. H., HOUDAYER, C. & STOPPA-LYONNET, D. 2013. Germline 
mutation in the RAD51B gene confers predisposition to breast cancer. BMC Cancer, 
13, 484. 

GOZUACIK, D. & KIMCHI, A. 2004. Autophagy as a cell death and tumor suppressor 
mechanism. Oncogene, 23, 2891-2906. 

GRUNE, T., JUNG, T., MERKER, K. & DAVIES, K. J. 2004. Decreased proteolysis caused by 
protein aggregates, inclusion bodies, plaques, lipofuscin, ceroid, and 'aggresomes' 
during oxidative stress, aging, and disease. Int J Biochem Cell Biol, 36, 2519-30. 

GUARENTE, L. & KENYON, C. 2000. Genetic pathways that regulate ageing in model 
organisms. Nature, 408, 255-62. 

GUDMUNDSDOTTIR, K., LORD, C. J. & ASHWORTH, A. 2007. The proteasome is involved in 
determining differential utilization of double-strand break repair pathways. 
Oncogene, 26, 7601-6. 

HA, H. C. & SNYDER, S. H. 1999. Poly(ADP-ribose) polymerase is a mediator of necrotic cell 
death by ATP depletion. Proc Natl Acad Sci U S A, 96, 13978-82. 

HALEY-ZITLIN, V. & RICHARDSON, A. 1993. Effect of dietary restriction on DNA repair and 
DNA damage. Mutat Res, 295, 237-45. 

HAN, J.-W., PEARSON, R. B., DENNIS, P. B. & THOMAS, G. 1995. Rapamycin, Wortmannin, 
and the Methylxanthine SQ20006 Inactivate p70 by Inducing Dephosphorylation of 
the Same Subset of Sites. Journal of Biological Chemistry, 270, 21396-21403. 

HANSEN, M., CHANDRA, A., MITIC, L. L., ONKEN, B., DRISCOLL, M. & KENYON, C. 2008. A role 
for autophagy in the extension of lifespan by dietary restriction in C. elegans. PLoS 
Genet, 4, e24. 

HARLEY, C. B., FUTCHER, A. B. & GREIDER, C. W. 1990. Telomeres shorten during ageing of 
human fibroblasts. Nature, 345, 458-460. 

HARRISON, D. E., STRONG, R., SHARP, Z. D., NELSON, J. F., ASTLE, C. M., FLURKEY, K., 
NADON, N. L., WILKINSON, J. E., FRENKEL, K., CARTER, C. S., PAHOR, M., JAVORS, M. 



References 

192 
 

A., FERNANDEZ, E. & MILLER, R. A. 2009. Rapamycin fed late in life extends lifespan 
in genetically heterogeneous mice. Nature, 460, 392-395. 

HAYFLICK, L. & MOORHEAD, P. S. 1961. The serial cultivation of human diploid cell strains. 
Experimental Cell Research, 25, 585-621. 

HEINEMEYER, W., FISCHER, M., KRIMMER, T., STACHON, U. & WOLF, D. H. 1997. The active 
sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor 
processing. J Biol Chem, 272, 25200-9. 

HEMANN, M. T., STRONG, M. A., HAO, L.-Y. & GREIDER, C. W. 2001. The Shortest Telomere, 
Not Average Telomere Length, Is Critical for Cell Viability and Chromosome Stability. 
Cell, 107, 67-77. 

HERBIG, U., FERREIRA, M., CONDEL, L., CAREY, D. & SEDIVY, J. M. 2006. Cellular Senescence 
in Aging Primates. Science, 311, 1257-1257. 

HERBIG, U., JOBLING, W. A., CHEN, B. P., CHEN, D. J. & SEDIVY, J. M. 2004. Telomere 
shortening triggers senescence of human cells through a pathway involving ATM, 
p53, and p21(CIP1), but not p16(INK4a). Mol Cell, 14, 501-13. 

HERRMANN, J., LERMAN, L. O. & LERMAN, A. 2007. Ubiquitin and ubiquitin-like proteins in 
protein regulation. Circ Res, 100, 1276-91. 

HEWITT, G., CARROLL, B. & KOROLCHUK, V. I. 2015. Chapter 5 - Mechanisms of Cross-Talk 
between Intracellular Protein Degradation Pathways. In: HAYAT, M. A. (ed.) 
Autophagy: Cancer, Other Pathologies, Inflammation, Immunity, Infection, and 
Aging. Amsterdam: Academic Press. 

HEWITT, G., JURK, D., MARQUES, F. D., CORREIA-MELO, C., HARDY, T., GACKOWSKA, A., 
ANDERSON, R., TASCHUK, M., MANN, J. & PASSOS, J. F. 2012. Telomeres are 
favoured targets of a persistent DNA damage response in ageing and stress-induced 
senescence. Nat Commun, 3, 708. 

HOCKING, L. J., LUCAS, G. J. A., DAROSZEWSKA, A., MANGION, J., OLAVESEN, M., CUNDY, T., 
NICHOLSON, G. C., WARD, L., BENNETT, S. T., WUYTS, W., VAN HUL, W. & RALSTON, 
S. H. 2002. Domain-specific mutations in sequestosome 1 (SQSTM1) cause familial 
and sporadic Paget's disease. Human Molecular Genetics, 11, 2735-2739. 

HOFMANN, K. & BUCHER, P. 1996. The UBA domain: a sequence motif present in multiple 
enzyme classes of the ubiquitination pathway. Trends Biochem Sci, 21, 172-3. 

HOSOKAWA, N., HARA, Y. & MIZUSHIMA, N. 2007. Generation of cell lines with tetracycline-
regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett, 581, 
2623-9. 

HOZÁK, P. & COOK, P. R. 1994. Replication factories. Trends in Cell Biology, 4, 48-52. 
HUANG, Q. & SHEN, H. M. 2009. To die or to live: the dual role of poly(ADP-ribose) 

polymerase-1 in autophagy and necrosis under oxidative stress and DNA damage. 
Autophagy, 5, 273-6. 

HUANG, Q., WU, Y. T., TAN, H. L., ONG, C. N. & SHEN, H. M. 2008. A novel function of 
poly(ADP-ribose) polymerase-1 in modulation of autophagy and necrosis under 
oxidative stress. Cell Death Differ, 16, 264-277. 

HUSOM, A. D., PETERS, E. A., KOLLING, E. A., FUGERE, N. A., THOMPSON, L. V. & 
FERRINGTON, D. A. 2004. Altered proteasome function and subunit composition in 
aged muscle. Arch Biochem Biophys, 421, 67-76. 

INAMDAR, K. V., POULIOT, J. J., ZHOU, T., LEES-MILLER, S. P., RASOULI-NIA, A. & POVIRK, L. 
F. 2002. Conversion of phosphoglycolate to phosphate termini on 3' overhangs of 



References 

193 
 

DNA double strand breaks by the human tyrosyl-DNA phosphodiesterase hTdp1. J 
Biol Chem, 277, 27162-8. 

INOKI, K., OUYANG, H., ZHU, T., LINDVALL, C., WANG, Y., ZHANG, X., YANG, Q., BENNETT, C., 
HARADA, Y., STANKUNAS, K., WANG, C. Y., HE, X., MACDOUGALD, O. A., YOU, M., 
WILLIAMS, B. O. & GUAN, K. L. 2006. TSC2 integrates Wnt and energy signals via a 
coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell, 126, 
955-68. 

INOUE, D., SUZUKI, T., MITSUISHI, Y., MIKI, Y., SUZUKI, S., SUGAWARA, S., WATANABE, M., 
SAKURADA, A., ENDO, C., URUNO, A., SASANO, H., NAKAGAWA, T., SATOH, K., 
TANAKA, N., KUBO, H., MOTOHASHI, H. & YAMAMOTO, M. 2012. Accumulation of 
p62/SQSTM1 is associated with poor prognosis in patients with lung 
adenocarcinoma. Cancer Sci, 103, 760-6. 

INTERTHAL, H., CHEN, H. J. & CHAMPOUX, J. J. 2005. Human Tdp1 cleaves a broad spectrum 
of substrates, including phosphoamide linkages. J Biol Chem, 280, 36518-28. 

ITAKURA, E. & MIZUSHIMA, N. 2011. p62 Targeting to the autophagosome formation site 
requires self-oligomerization but not LC3 binding. J Cell Biol, 192, 17-27. 

ITOH, K., WAKABAYASHI, N., KATOH, Y., ISHII, T., IGARASHI, K., ENGEL, J. D. & YAMAMOTO, 
M. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by 
Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev, 13, 76-86. 

IVANOV, A., PAWLIKOWSKI, J., MANOHARAN, I., VAN TUYN, J., NELSON, D. M., RAI, T. S., 
SHAH, P. P., HEWITT, G., KOROLCHUK, V. I., PASSOS, J. F., WU, H., BERGER, S. L. & 
ADAMS, P. D. 2013. Lysosome-mediated processing of chromatin in senescence. The 
Journal of Cell Biology, 202, 129-143. 

JACOBS, J. J. & DE LANGE, T. 2004. Significant role for p16INK4a in p53-independent 
telomere-directed senescence. Curr Biol, 14, 2302-8. 

JAIN, A., LAMARK, T., SJOTTEM, E., LARSEN, K. B., AWUH, J. A., OVERVATN, A., MCMAHON, 
M., HAYES, J. D. & JOHANSEN, T. 2010. p62/SQSTM1 is a target gene for transcription 
factor NRF2 and creates a positive feedback loop by inducing antioxidant response 
element-driven gene transcription. J Biol Chem, 285, 22576-91. 

JAZAYERI, A., FALCK, J., LUKAS, C., BARTEK, J., SMITH, G. C. M., LUKAS, J. & JACKSON, S. P. 
2006. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-
strand breaks. Nat Cell Biol, 8, 37-45. 

JENSEN, R. B., CARREIRA, A. & KOWALCZYKOWSKI, S. C. 2010. Purified human BRCA2 
stimulates RAD51-mediated recombination. Nature, 467, 678-83. 

JENTSCH, S. 1992. The ubiquitin-conjugation system. Annu Rev Genet, 26, 179-207. 
JENTSCH, S., MCGRATH, J. P. & VARSHAVSKY, A. 1987. The yeast DNA repair gene RAD6 

encodes a ubiquitin-conjugating enzyme. Nature, 329, 131-4. 
JEYASEKHARAN, A. D., LIU, Y., HATTORI, H., PISUPATI, V., JONSDOTTIR, A. B., RAJENDRA, E., 

LEE, M., SUNDARAMOORTHY, E., SCHLACHTER, S., KAMINSKI, C. F., OFIR-ROSENFELD, 
Y., SATO, K., SAVILL, J., AYOUB, N. & VENKITARAMAN, A. R. 2013. A cancer-
associated BRCA2 mutation reveals masked nuclear export signals controlling 
localization. Nat Struct Mol Biol, 20, 1191-1198. 

JIA, K. & LEVINE, B. 2007. Autophagy is required for dietary restriction-mediated life span 
extension in C. elegans. Autophagy, 3, 597-9. 

JIN, L., WILLIAMSON, A., BANERJEE, S., PHILIPP, I. & RAPE, M. 2008. Mechanism of ubiquitin-
chain formation by the human anaphase-promoting complex. Cell, 133, 653-65. 



References 

194 
 

JIN, Z., LI, Y., PITTI, R., LAWRENCE, D., PHAM, V. C., LILL, J. R. & ASHKENAZI, A. 2009. Cullin3-
based polyubiquitination and p62-dependent aggregation of caspase-8 mediate 
extrinsic apoptosis signaling. Cell, 137, 721-35. 

JO, G. H., GLER, O., CHWAE, Y.-J., YOO, H., LEE, S. H., PARK, J. B., KIM, Y.-J., KIM, J. H. & 
GWAK, H.-S. 2015. Radiation-Induced Autophagy Contributes to Cell Death and 
Induces Apoptosis Partly in Malignant Glioma Cells. Cancer Res Treat, 47, 221-241. 

JOHANSEN, T. & LAMARK, T. 2011. Selective autophagy mediated by autophagic adapter 
proteins. Autophagy, 7, 279-296. 

JOUNG, I., STROMINGER, J. L. & SHIN, J. 1996. Molecular cloning of a phosphotyrosine-
independent ligand of the p56lck SH2 domain. Proceedings of the National Academy 
of Sciences, 93, 5991-5995. 

JUNG, C. H., JUN, C. B., RO, S.-H., KIM, Y.-M., OTTO, N. M., CAO, J., KUNDU, M. & KIM, D.-H. 
2009. ULK-Atg13-FIP200 Complexes Mediate mTOR Signaling to the Autophagy 
Machinery. Molecular Biology of the Cell, 20, 1992-2003. 

JUNG, C. H., RO, S.-H., CAO, J., OTTO, N. M. & KIM, D.-H. 2010. mTOR regulation of 
autophagy. FEBS Letters, 584, 1287-1295. 

JUNG, D., GIALLOURAKIS, C., MOSTOSLAVSKY, R. & ALT, F. W. 2006. Mechanism and control 
of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev 
Immunol, 24, 541-70. 

KAMADA, Y., FUNAKOSHI, T., SHINTANI, T., NAGANO, K., OHSUMI, M. & OHSUMI, Y. 2000. 
Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex. The 
Journal of Cell Biology, 150, 1507-1513. 

KANG, H. T., LEE, K. B., KIM, S. Y., CHOI, H. R. & PARK, S. C. 2011. Autophagy impairment 
induces premature senescence in primary human fibroblasts. PLoS One, 6, e23367. 

KANG, K. B., ZHU, C., YONG, S. K., GAO, Q. & WONG, M. C. 2009. Enhanced sensitivity of 
celecoxib in human glioblastoma cells: Induction of DNA damage leading to p53-
dependent G1 cell cycle arrest and autophagy. Mol Cancer, 8, 66. 

KARANTZA-WADSWORTH, V., PATEL, S., KRAVCHUK, O., CHEN, G., MATHEW, R., JIN, S. & 
WHITE, E. 2007. Autophagy mitigates metabolic stress and genome damage in 
mammary tumorigenesis. Genes Dev, 21, 1621-35. 

KARIMI-BUSHERI, F., DALY, G., ROBINS, P., CANAS, B., PAPPIN, D. J., SGOUROS, J., MILLER, G. 
G., FAKHRAI, H., DAVIS, E. M., LE BEAU, M. M. & WEINFELD, M. 1999. Molecular 
characterization of a human DNA kinase. J Biol Chem, 274, 24187-94. 

KATAYAMA, M., KAWAGUCHI, T., BERGER, M. S. & PIEPER, R. O. 2007. DNA damaging agent-
induced autophagy produces a cytoprotective adenosine triphosphate surge in 
malignant glioma cells. Cell Death Differ, 14, 548-58. 

KAUL, Z., CESARE, A. J., HUSCHTSCHA, L. I., NEUMANN, A. A. & REDDEL, R. R. 2012. Five 
dysfunctional telomeres predict onset of senescence in human cells. EMBO Rep, 13, 
52-59. 

KELLER, J. N., HANNI, K. B. & MARKESBERY, W. R. 2000. Possible involvement of proteasome 
inhibition in aging: implications for oxidative stress. Mech Ageing Dev, 113, 61-70. 

KIM, D. H., SARBASSOV, D. D., ALI, S. M., KING, J. E., LATEK, R. R., ERDJUMENT-BROMAGE, 
H., TEMPST, P. & SABATINI, D. M. 2002. mTOR interacts with raptor to form a 
nutrient-sensitive complex that signals to the cell growth machinery. Cell, 110, 163-
75. 

KIM, J., KUNDU, M., VIOLLET, B. & GUAN, K. L. 2011. AMPK and mTOR regulate autophagy 
through direct phosphorylation of Ulk1. Nat Cell Biol, 13, 132-41. 



References 

195 
 

KIM, R., EMI, M. & TANABE, K. 2005. Caspase-dependent and -independent cell death 
pathways after DNA damage (Review). Oncol Rep, 14, 595-9. 

KIRKIN, V., LAMARK, T., SOU, Y. S., BJORKOY, G., NUNN, J. L., BRUUN, J. A., SHVETS, E., 
MCEWAN, D. G., CLAUSEN, T. H., WILD, P., BILUSIC, I., THEURILLAT, J. P., OVERVATN, 
A., ISHII, T., ELAZAR, Z., KOMATSU, M., DIKIC, I. & JOHANSEN, T. 2009. A role for 
NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 33, 505-
16. 

KLIONSKY, D. J., ABDALLA, F. C., ABELIOVICH, H., ABRAHAM, R. T., ACEVEDO-AROZENA, A., 
ADELI, K., AGHOLME, L., AGNELLO, M., AGOSTINIS, P., AGUIRRE-GHISO, J. A., AHN, H. 
J., AIT-MOHAMED, O., AIT-SI-ALI, S., AKEMATSU, T., AKIRA, S., AL-YOUNES, H. M., AL-
ZEER, M. A., ALBERT, M. L., ALBIN, R. L., ALEGRE-ABARRATEGUI, J., ALEO, M. F., 
ALIREZAEI, M., ALMASAN, A., ALMONTE-BECERRIL, M., AMANO, A., AMARAVADI, R., 
AMARNATH, S., AMER, A. O., ANDRIEU-ABADIE, N., ANANTHARAM, V., ANN, D. K., 
ANOOPKUMAR-DUKIE, S., AOKI, H., APOSTOLOVA, N., ARANCIA, G., ARIS, J. P., 
ASANUMA, K., ASARE, N. Y., ASHIDA, H., ASKANAS, V., ASKEW, D. S., AUBERGER, P., 
BABA, M., BACKUES, S. K., BAEHRECKE, E. H., BAHR, B. A., BAI, X. Y., BAILLY, Y., 
BAIOCCHI, R., BALDINI, G., BALDUINI, W., BALLABIO, A., BAMBER, B. A., BAMPTON, E. 
T., BANHEGYI, G., BARTHOLOMEW, C. R., BASSHAM, D. C., BAST, R. C., JR., BATOKO, 
H., BAY, B. H., BEAU, I., BECHET, D. M., BEGLEY, T. J., BEHL, C., BEHRENDS, C., BEKRI, 
S., BELLAIRE, B., BENDALL, L. J., BENETTI, L., BERLIOCCHI, L., BERNARDI, H., 
BERNASSOLA, F., BESTEIRO, S., BHATIA-KISSOVA, I., BI, X., BIARD-PIECHACZYK, M., 
BLUM, J. S., BOISE, L. H., BONALDO, P., BOONE, D. L., BORNHAUSER, B. C., 
BORTOLUCI, K. R., BOSSIS, I., BOST, F., BOURQUIN, J. P., BOYA, P., BOYER-GUITTAUT, 
M., BOZHKOV, P. V., BRADY, N. R., BRANCOLINI, C., BRECH, A., BRENMAN, J. E., 
BRENNAND, A., BRESNICK, E. H., BREST, P., BRIDGES, D., BRISTOL, M. L., BROOKES, P. 
S., BROWN, E. J., BRUMELL, J. H., et al. 2012. Guidelines for the use and 
interpretation of assays for monitoring autophagy. Autophagy, 8, 445-544. 

KLIONSKY, D. J., CUERVO, A. M., DUNN, W. A., LEVINE, B., VAN DER KLEI, I. J. & SEGLEN, P. O. 
2007. How Shall I Eat Thee? Autophagy, 3, 413-416. 

KOCH, C. A., AGYEI, R., GALICIA, S., METALNIKOV, P., O'DONNELL, P., STAROSTINE, A., 
WEINFELD, M. & DUROCHER, D. 2004. Xrcc4 physically links DNA end processing by 
polynucleotide kinase to DNA ligation by DNA ligase IV. EMBO J, 23, 3874-85. 

KOMATSU, M., KUROKAWA, H., WAGURI, S., TAGUCHI, K., KOBAYASHI, A., ICHIMURA, Y., 
SOU, Y. S., UENO, I., SAKAMOTO, A., TONG, K. I., KIM, M., NISHITO, Y., IEMURA, S., 
NATSUME, T., UENO, T., KOMINAMI, E., MOTOHASHI, H., TANAKA, K. & YAMAMOTO, 
M. 2010. The selective autophagy substrate p62 activates the stress responsive 
transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12, 213-23. 

KOMATSU, M., WAGURI, S., KOIKE, M., SOU, Y. S., UENO, T., HARA, T., MIZUSHIMA, N., 
IWATA, J., EZAKI, J., MURATA, S., HAMAZAKI, J., NISHITO, Y., IEMURA, S., NATSUME, 
T., YANAGAWA, T., UWAYAMA, J., WARABI, E., YOSHIDA, H., ISHII, T., KOBAYASHI, A., 
YAMAMOTO, M., YUE, Z., UCHIYAMA, Y., KOMINAMI, E. & TANAKA, K. 2007. 
Homeostatic levels of p62 control cytoplasmic inclusion body formation in 
autophagy-deficient mice. Cell, 131, 1149-63. 

KOROLCHUK, V. I., MANSILLA, A., MENZIES, F. M. & RUBINSZTEIN, D. C. 2009. Autophagy 
inhibition compromises degradation of ubiquitin-proteasome pathway substrates. 
Mol Cell, 33, 517-27. 



References 

196 
 

KRAFT, C., PETER, M. & HOFMANN, K. 2010. Selective autophagy: ubiquitin-mediated 
recognition and beyond. Nat Cell Biol, 12, 836-841. 

KRISHNAMURTHY, J., TORRICE, C., RAMSEY, M., KOVALEV, G., AL-REGAIEY, K., SU, L. & 
SHARPLESS, N. 2004. Ink4a/Arf expression is a biomarker of aging. The Journal of 
clinical investigation, 114, 1299-1307. 

KRISTENSEN, C. N., BYSTOL, K. M., LI, B., SERRANO, L. & BRENNEMAN, M. A. 2010. Depletion 
of DSS1 protein disables homologous recombinational repair in human cells. Mutat 
Res, 694, 60-4. 

KROGAN, N. J., LAM, M. H., FILLINGHAM, J., KEOGH, M. C., GEBBIA, M., LI, J., DATTA, N., 
CAGNEY, G., BURATOWSKI, S., EMILI, A. & GREENBLATT, J. F. 2004. Proteasome 
involvement in the repair of DNA double-strand breaks. Mol Cell, 16, 1027-34. 

KRTOLICA, A., PARRINELLO, S., LOCKETT, S., DESPREZ, P. Y. & CAMPISI, J. 2001. Senescent 
fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer 
and aging. Proc Natl Acad Sci U S A, 98, 12072-7. 

KUMA, A., HATANO, M., MATSUI, M., YAMAMOTO, A., NAKAYA, H., YOSHIMORI, T., 
OHSUMI, Y., TOKUHISA, T. & MIZUSHIMA, N. 2004. The role of autophagy during the 
early neonatal starvation period. Nature, 432, 1032-6. 

KUMAGAI, A., LEE, J., YOO, H. Y. & DUNPHY, W. G. 2006. TopBP1 activates the ATR-ATRIP 
complex. Cell, 124, 943-55. 

KUNG, C. P., BUDINA, A., BALABURSKI, G., BERGENSTOCK, M. K. & MURPHY, M. 2011. 
Autophagy in tumor suppression and cancer therapy. Crit Rev Eukaryot Gene Expr, 
21, 71-100. 

KURIHARA, Y., KANKI, T., AOKI, Y., HIROTA, Y., SAIGUSA, T., UCHIUMI, T. & KANG, D. 2012. 
Mitophagy plays an essential role in reducing mitochondrial production of reactive 
oxygen species and mutation of mitochondrial DNA by maintaining mitochondrial 
quantity and quality in yeast. J Biol Chem, 287, 3265-72. 

KUUSISTO, E., PARKKINEN, L. & ALAFUZOFF, I. 2003. Morphogenesis of Lewy Bodies: 
Dissimilar Incorporation of α‐Synuclein, Ubiquitin, and p62. Journal of 
Neuropathology & Experimental Neurology, 62, 1241-1253. 

KUUSISTO, E., SALMINEN, A. & ALAFUZOFF, I. 2001. Ubiquitin-binding protein p62 is present 
in neuronal and glial inclusions in human tauopathies and synucleinopathies. 
Neuroreport, 12, 2085-90. 

KUUSISTO, E., SALMINEN, A. & ALAFUZOFF, I. 2002. Early accumulation of p62 in 
neurofibrillary tangles in Alzheimer's disease: possible role in tangle formation. 
Neuropathol Appl Neurobiol, 28, 228-37. 

LAI, A. Y. & WADE, P. A. 2011. Cancer biology and NuRD: a multifaceted chromatin 
remodelling complex. Nat Rev Cancer, 11, 588-596. 

LALLEMAND-BREITENBACH, V. & DE THE, H. 2010. PML nuclear bodies. Cold Spring Harb 
Perspect Biol, 2, a000661. 

LAMARK, T., PERANDER, M., OUTZEN, H., KRISTIANSEN, K., ØVERVATN, A., MICHAELSEN, E., 
BJØRKØY, G. & JOHANSEN, T. 2003. Interaction Codes within the Family of 
Mammalian Phox and Bem1p Domain-containing Proteins. Journal of Biological 
Chemistry, 278, 34568-34581. 

LANSDORP, P. M., VERWOERD, N. P., VAN DE RIJKE, F. M., DRAGOWSKA, V., LITTLE, M. T., 
DIRKS, R. W., RAAP, A. K. & TANKE, H. J. 1996. Heterogeneity in telomere length of 
human chromosomes. Human Molecular Genetics, 5, 685-691. 



References 

197 
 

LARSEN, D. H., POINSIGNON, C., GUDJONSSON, T., DINANT, C., PAYNE, M. R., HARI, F. J., 
RENDTLEW DANIELSEN, J. M., MENARD, P., SAND, J. C., STUCKI, M., LUKAS, C., 
BARTEK, J., ANDERSEN, J. S. & LUKAS, J. 2010. The chromatin-remodeling factor 
CHD4 coordinates signaling and repair after DNA damage. J Cell Biol, 190, 731-40. 

LAU, A., WANG, X. J., ZHAO, F., VILLENEUVE, N. F., WU, T., JIANG, T., SUN, Z., WHITE, E. & 
ZHANG, D. D. 2010. A noncanonical mechanism of Nrf2 activation by autophagy 
deficiency: direct interaction between Keap1 and p62. Mol Cell Biol, 30, 3275-85. 

LAURIN, N., BROWN, J. P., MORISSETTE, J. & RAYMOND, V. 2002. Recurrent mutation of the 
gene encoding sequestosome 1 (SQSTM1/p62) in Paget disease of bone. Am J Hum 
Genet, 70, 1582-8. 

LEE, C. K., KLOPP, R. G., WEINDRUCH, R. & PROLLA, T. A. 1999. Gene expression profile of 
aging and its retardation by caloric restriction. Science, 285, 1390-3. 

LEE, J., GIORDANO, S. & ZHANG, J. 2012a. Autophagy, mitochondria and oxidative stress: 
cross-talk and redox signalling. Biochem J, 441, 523-40. 

LEE, J., KIM, H. R., QUINLEY, C., KIM, J., GONZALEZ-NAVAJAS, J., XAVIER, R. & RAZ, E. 2012b. 
Autophagy suppresses interleukin-1beta (IL-1beta) signaling by activation of p62 
degradation via lysosomal and proteasomal pathways. J Biol Chem, 287, 4033-40. 

LEE, S. A., ROQUES, C., MAGWOOD, A. C., MASSON, J.-Y. & BAKER, M. D. 2009. Recovery of 
deficient homologous recombination in Brca2-depleted mouse cells by wild-type 
Rad51 expression. DNA Repair, 8, 170-181. 

LEE, Y. H., KO, J., JOUNG, I., KIM, J. H. & SHIN, J. 1998. Immediate early response of the p62 
gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett, 
438, 297-300. 

LEVINE, B. & KROEMER, G. 2008. Autophagy in the Pathogenesis of Disease. Cell, 132, 27-42. 
LEVINE, B. & KROEMER, G. 2009. Autophagy in aging, disease and death: the true identity of 

a cell death impostor. Cell Death Differ, 16, 1-2. 
LEVY, M. Z., ALLSOPP, R. C., FUTCHER, A. B., GREIDER, C. W. & HARLEY, C. B. 1992. Telomere 

end-replication problem and cell aging. Journal of Molecular Biology, 225, 951-960. 
LI, L., ZHU, Y. Q., JIANG, L. & PENG, W. 2012a. Increased autophagic activity in senescent 

human dental pulp cells. International Endodontic Journal, 45, 1074-1079. 
LI, W. W., LI, J. & BAO, J. K. 2012b. Microautophagy: lesser-known self-eating. Cell Mol Life 

Sci, 69, 1125-36. 
LI, X. & HEYER, W. D. 2008. Homologous recombination in DNA repair and DNA damage 

tolerance. Cell Res, 18, 99-113. 
LI, X., STITH, C. M., BURGERS, P. M. & HEYER, W. D. 2009. PCNA is required for initiation of 

recombination-associated DNA synthesis by DNA polymerase delta. Mol Cell, 36, 
704-13. 

LIN, J., JIN, R., ZHANG, B., YANG, P. X., CHEN, H., BAI, Y. X., XIE, Y., HUANG, C. & HUANG, J. 
2007. Characterization of a novel effect of hPinX1 on hTERT nucleolar localization. 
Biochem Biophys Res Commun, 353, 946-52. 

LIN, M. T. & BEAL, M. F. 2006. Mitochondrial dysfunction and oxidative stress in 
neurodegenerative diseases. Nature, 443, 787-95. 

LINARES, J. F., AMANCHY, R., GREIS, K., DIAZ-MECO, M. T. & MOSCAT, J. 2011. 
Phosphorylation of p62 by cdk1 controls the timely transit of cells through mitosis 
and tumor cell proliferation. Mol Cell Biol, 31, 105-17. 



References 

198 
 

LINARES, J. F., DURAN, A., REINA-CAMPOS, M., AZA-BLANC, P., CAMPOS, A., MOSCAT, J. & 
DIAZ-MECO, M. T. 2015. Amino Acid Activation of mTORC1 by a PB1-Domain-Driven 
Kinase Complex Cascade. Cell Rep, 12, 1339-52. 

LINARES, J. F., DURAN, A., YAJIMA, T., PASPARAKIS, M., MOSCAT, J. & DIAZ-MECO, M. T. 
2013. K63 polyubiquitination and activation of mTOR by the p62-TRAF6 complex in 
nutrient-activated cells. Mol Cell, 51, 283-96. 

LING, J., KANG, Y., ZHAO, R., XIA, Q., LEE, D. F., CHANG, Z., LI, J., PENG, B., FLEMING, J. B., 
WANG, H., LIU, J., LEMISCHKA, I. R., HUNG, M. C. & CHIAO, P. J. 2012. KrasG12D-
induced IKK2/beta/NF-kappaB activation by IL-1alpha and p62 feedforward loops is 
required for development of pancreatic ductal adenocarcinoma. Cancer Cell, 21, 105-
20. 

LIPINSKI, M. M., ZHENG, B., LU, T., YAN, Z., PY, B. F., NG, A., XAVIER, R. J., LI, C., YANKNER, B. 
A., SCHERZER, C. R. & YUAN, J. 2010. Genome-wide analysis reveals mechanisms 
modulating autophagy in normal brain aging and in Alzheimer's disease. Proc Natl 
Acad Sci U S A, 107, 14164-9. 

LIU, E. Y., XU, N., O'PREY, J., LAO, L. Y., JOSHI, S., LONG, J. S., O'PREY, M., CROFT, D. R., 
BEAUMATIN, F., BAUDOT, A. D., MRSCHTIK, M., ROSENFELDT, M., ZHANG, Y., 
GILLESPIE, D. A. & RYAN, K. M. 2015. Loss of autophagy causes a synthetic lethal 
deficiency in DNA repair. Proc Natl Acad Sci U S A, 112, 773-8. 

LIU, S., BEKKER-JENSEN, S., MAILAND, N., LUKAS, C., BARTEK, J. & LUKAS, J. 2006. Claspin 
operates downstream of TopBP1 to direct ATR signaling towards Chk1 activation. 
Mol Cell Biol, 26, 6056-64. 

LONG, J., GALLAGHER, T. R. A., CAVEY, J. R., SHEPPARD, P. W., RALSTON, S. H., LAYFIELD, R. 
& SEARLE, M. S. 2008. Ubiquitin Recognition by the Ubiquitin-associated Domain of 
p62 Involves a Novel Conformational Switch. Journal of Biological Chemistry, 283, 
5427-5440. 

LOPEZ-OTIN, C., BLASCO, M. A., PARTRIDGE, L., SERRANO, M. & KROEMER, G. 2013. The 
hallmarks of aging. Cell, 153, 1194-217. 

LOPICCOLO, J., BLUMENTHAL, G. M., BERNSTEIN, W. B. & DENNIS, P. A. 2008. Targeting the 
PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug 
Resist Updat, 11, 32-50. 

LUIJSTERBURG, M. S., ACS, K., ACKERMANN, L., WIEGANT, W. W., BEKKER-JENSEN, S., 
LARSEN, D. H., KHANNA, K. K., VAN ATTIKUM, H., MAILAND, N. & DANTUMA, N. P. 
2012. A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order 
chromatin structure. Embo j, 31, 2511-27. 

LUKAS, C., FALCK, J., BARTKOVA, J., BARTEK, J. & LUKAS, J. 2003. Distinct spatiotemporal 
dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell 
Biol, 5, 255-260. 

MA, Y., PANNICKE, U., SCHWARZ, K. & LIEBER, M. R. 2002. Hairpin opening and overhang 
processing by an Artemis/DNA-dependent protein kinase complex in 
nonhomologous end joining and V(D)J recombination. Cell, 108, 781-94. 

MADDODI, N., HUANG, W., HAVIGHURST, T., KIM, K., LONGLEY, B. J. & SETALURI, V. 2010. 
Induction of Autophagy and Inhibition of Melanoma Growth In Vitro and In Vivo by 
Hyperactivation of Oncogenic BRAF. J Invest Dermatol, 130, 1657-1667. 

MAILAND, N., FALCK, J., LUKAS, C., SYLJUÅSEN, R. G., WELCKER, M., BARTEK, J. & LUKAS, J. 
2000. Rapid Destruction of Human Cdc25A in Response to DNA Damage. Science, 
288, 1425-1429. 



References 

199 
 

MAIURI, M. C., LE TOUMELIN, G., CRIOLLO, A., RAIN, J. C., GAUTIER, F., JUIN, P., TASDEMIR, 
E., PIERRON, G., TROULINAKI, K., TAVERNARAKIS, N., HICKMAN, J. A., GENESTE, O. & 
KROEMER, G. 2007. Functional and physical interaction between Bcl-X(L) and a BH3-
like domain in Beclin-1. EMBO J, 26, 2527-39. 

MAMIDIPUDI, V., LI, X. & WOOTEN, M. W. 2002. Identification of interleukin 1 receptor-
associated kinase as a conserved component in the p75-neurotrophin receptor 
activation of nuclear factor-kappa B. J Biol Chem, 277, 28010-8. 

MAO, Z., BOZZELLA, M., SELUANOV, A. & GORBUNOVA, V. 2008. DNA repair by 
nonhomologous end joining and homologous recombination during cell cycle in 
human cells. Cell Cycle, 7, 2902-6. 

MAO, Z., KE, Z., GORBUNOVA, V. & SELUANOV, A. 2012a. Replicatively senescent cells are 
arrested in G1 and G2 phases. Aging (Albany NY), 4, 431-5. 

MAO, Z., TIAN, X., VAN METER, M., KE, Z., GORBUNOVA, V. & SELUANOV, A. 2012b. Sirtuin 6 
(SIRT6) rescues the decline of homologous recombination repair during replicative 
senescence. Proc Natl Acad Sci U S A, 109, 11800-5. 

MARCUS, S. L., WINROW, C. J., CAPONE, J. P. & RACHUBINSKI, R. A. 1996. A p56(lck) ligand 
serves as a coactivator of an orphan nuclear hormone receptor. J Biol Chem, 271, 
27197-200. 

MARECHAL, A., LI, J. M., JI, X. Y., WU, C. S., YAZINSKI, S. A., NGUYEN, H. D., LIU, S., JIMENEZ, 
A. E., JIN, J. & ZOU, L. 2014. PRP19 transforms into a sensor of RPA-ssDNA after DNA 
damage and drives ATR activation via a ubiquitin-mediated circuitry. Mol Cell, 53, 
235-46. 

MARINO, G., NISO-SANTANO, M., BAEHRECKE, E. H. & KROEMER, G. 2014. Self-
consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 15, 
81-94. 

MARSTON, N. J., RICHARDS, W. J., HUGHES, D., BERTWISTLE, D., MARSHALL, C. J. & 
ASHWORTH, A. 1999. Interaction between the product of the breast cancer 
susceptibility gene BRCA2 and DSS1, a protein functionally conserved from yeast to 
mammals. Mol Cell Biol, 19, 4633-42. 

MARTIN-RUIZ, C., SARETZKI, G., PETRIE, J., LADHOFF, J., JEYAPALAN, J., WEI, W., SEDIVY, J. & 
VON ZGLINICKI, T. 2004. Stochastic Variation in Telomere Shortening Rate Causes 
Heterogeneity of Human Fibroblast Replicative Life Span. Journal of Biological 
Chemistry, 279, 17826-17833. 

MARTINEZ-VICENTE, M., SOVAK, G. & CUERVO, A. M. 2005. Protein degradation and aging. 
Experimental Gerontology, 40, 622-633. 

MASKEY, D., YOUSEFI, S., SCHMID, I., ZLOBEC, I., PERREN, A., FRIIS, R. & SIMON, H. U. 2013. 
ATG5 is induced by DNA-damaging agents and promotes mitotic catastrophe 
independent of autophagy. Nat Commun, 4, 2130. 

MASORO, E. J. 2002. Chapter 5 - Age-associated diseases. In: MASORO, E. J. (ed.) Caloric 
Restriction. Amsterdam: Elsevier. 

MATHEW, R., KARANTZA-WADSWORTH, V. & WHITE, E. 2007a. Role of autophagy in cancer. 
Nat Rev Cancer, 7, 961-967. 

MATHEW, R., KARP, C. M., BEAUDOIN, B., VUONG, N., CHEN, G., CHEN, H. Y., BRAY, K., 
REDDY, A., BHANOT, G., GELINAS, C., DIPAOLA, R. S., KARANTZA-WADSWORTH, V. & 
WHITE, E. 2009. Autophagy suppresses tumorigenesis through elimination of p62. 
Cell, 137, 1062-75. 



References 

200 
 

MATHEW, R., KONGARA, S., BEAUDOIN, B., KARP, C. M., BRAY, K., DEGENHARDT, K., CHEN, 
G., JIN, S. & WHITE, E. 2007b. Autophagy suppresses tumor progression by limiting 
chromosomal instability. Genes Dev, 21, 1367-81. 

MATSUMOTO, G., WADA, K., OKUNO, M., KUROSAWA, M. & NUKINA, N. 2011. Serine 403 
phosphorylation of p62/SQSTM1 regulates selective autophagic clearance of 
ubiquitinated proteins. Mol Cell, 44, 279-89. 

MATSUOKA, S., BALLIF, B. A., SMOGORZEWSKA, A., MCDONALD, E. R., 3RD, HUROV, K. E., 
LUO, J., BAKALARSKI, C. E., ZHAO, Z., SOLIMINI, N., LERENTHAL, Y., SHILOH, Y., GYGI, 
S. P. & ELLEDGE, S. J. 2007. ATM and ATR substrate analysis reveals extensive protein 
networks responsive to DNA damage. Science, 316, 1160-6. 

MAYER, P. J., LANGE, C. S., BRADLEY, M. O. & NICHOLS, W. W. 1989. Age-dependent decline 
in rejoining of X-ray-induced DNA double-strand breaks in normal human 
lymphocytes. Mutat Res, 219, 95-100. 

MCBLANE, J. F., VAN GENT, D. C., RAMSDEN, D. A., ROMEO, C., CUOMO, C. A., GELLERT, M. 
& OETTINGER, M. A. 1995. Cleavage at a V(D)J recombination signal requires only 
RAG1 and RAG2 proteins and occurs in two steps. Cell, 83, 387-95. 

MCCAY, C. M., CROWELL, M. F. & MAYNARD, L. A. 1989. The effect of retarded growth upon 
the length of life span and upon the ultimate body size. 1935. Nutrition, 5, 155-71; 
discussion 172. 

MCDONALD, R. B. & RAMSEY, J. J. 2010. Honoring Clive McCay and 75 years of calorie 
restriction research. J Nutr, 140, 1205-10. 

MCILWRAITH, M. J., VAISMAN, A., LIU, Y., FANNING, E., WOODGATE, R. & WEST, S. C. 2005. 
Human DNA polymerase eta promotes DNA synthesis from strand invasion 
intermediates of homologous recombination. Mol Cell, 20, 783-92. 

MEEK, K., DOUGLAS, P., CUI, X., DING, Q. & LEES-MILLER, S. P. 2007. trans 
Autophosphorylation at DNA-dependent protein kinase's two major 
autophosphorylation site clusters facilitates end processing but not end joining. Mol 
Cell Biol, 27, 3881-90. 

MEIER, A., FIEGLER, H., M≈©OZ, P., ELLIS, P., RIGLER, D., LANGFORD, C., BLASCO, M. A., 
CARTER, N. & JACKSON, S. P. 2007. Spreading of mammalian DNA-damage response 
factors studied by ChIP-chip at damaged telomeres. EMBO Journal, 26, 2707-2718. 

MEIJER, A. J. & CODOGNO, P. 2006. Signalling and autophagy regulation in health, aging and 
disease. Molecular Aspects of Medicine, 27, 411-425. 

MENG, X., YUAN, Y., MAESTAS, A. & SHEN, Z. 2004. Recovery from DNA damage-induced G2 
arrest requires actin-binding protein filamin-A/actin-binding protein 280. J Biol 
Chem, 279, 6098-105. 

MICHALOGLOU, C., VREDEVELD, L. C., SOENGAS, M. S., DENOYELLE, C., KUILMAN, T., VAN 
DER HORST, C. M., MAJOOR, D. M., SHAY, J. W., MOOI, W. J. & PEEPER, D. S. 2005. 
BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436, 
720-4. 

MIJALJICA, D., PRESCOTT, M. & DEVENISH, R. J. 2011. Microautophagy in mammalian cells: 
Revisiting a 40-year-old conundrum<br />. Autophagy, 7, 673-682. 

MIMITOU, E. P. & SYMINGTON, L. S. 2008. Sae2, Exo1 and Sgs1 collaborate in DNA double-
strand break processing. Nature, 455, 770-4. 

MINAMINO, T. & KOMURO, I. 2007. Vascular cell senescence: contribution to 
atherosclerosis. Circulation Research, 100, 15-26. 



References 

201 
 

MIWA, S., JOW, H., BATY, K., JOHNSON, A., CZAPIEWSKI, R., SARETZKI, G., TREUMANN, A. & 
VON ZGLINICKI, T. 2014. Low abundance of the matrix arm of complex I in 
mitochondria predicts longevity in mice. Nat Commun, 5. 

MIWA, S., LAWLESS, C. & VON ZGLINICKI, T. 2008. Mitochondrial turnover in liver is fast in 
vivo and is accelerated by dietary restriction: application of a simple dynamic model. 
Aging Cell, 7, 920-923. 

MIZUSHIMA, N. 2007. Autophagy: process and function. Genes & Development, 21, 2861-
2873. 

MIZUSHIMA, N., YOSHIMORI, T. & LEVINE, B. 2010. Methods in Mammalian Autophagy 
Research. Cell, 140, 313-326. 

MOLDOVAN, G. L., MADHAVAN, M. V., MIRCHANDANI, K. D., MCCAFFREY, R. M., 
VINCIGUERRA, P. & D'ANDREA, A. D. 2010. DNA polymerase POLN participates in 
cross-link repair and homologous recombination. Mol Cell Biol, 30, 1088-96. 

MORSELLI, E., MAIURI, M. C., MARKAKI, M., MEGALOU, E., PASPARAKI, A., PALIKARAS, K., 
CRIOLLO, A., GALLUZZI, L., MALIK, S. A., VITALE, I., MICHAUD, M., MADEO, F., 
TAVERNARAKIS, N. & KROEMER, G. 2010. Caloric restriction and resveratrol promote 
longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis, 1, 
e10. 

MORTENSEN, M., SOILLEUX, E. J., DJORDJEVIC, G., TRIPP, R., LUTTEROPP, M., SADIGHI-AKHA, 
E., STRANKS, A. J., GLANVILLE, J., KNIGHT, S., W. JACOBSEN, S.-E., KRANC, K. R. & 
SIMON, A. K. 2011. The autophagy protein Atg7 is essential for hematopoietic stem 
cell maintenance. The Journal of Experimental Medicine, 208, 455-467. 

MOSHOUS, D., CALLEBAUT, I., DE CHASSEVAL, R., CORNEO, B., CAVAZZANA-CALVO, M., LE 
DEIST, F., TEZCAN, I., SANAL, O., BERTRAND, Y., PHILIPPE, N., FISCHER, A. & DE 
VILLARTAY, J. P. 2001. Artemis, a novel DNA double-strand break repair/V(D)J 
recombination protein, is mutated in human severe combined immune deficiency. 
Cell, 105, 177-86. 

MOSIENIAK, G., ADAMOWICZ, M., ALSTER, O., JASKOWIAK, H., SZCZEPANKIEWICZ, A. A., 
WILCZYNSKI, G. M., CIECHOMSKA, I. A. & SIKORA, E. 2012. Curcumin induces 
permanent growth arrest of human colon cancer cells: Link between senescence and 
autophagy. Mechanisms of Ageing and Development, 133, 444-455. 

MOTOHASHI, H. & YAMAMOTO, M. 2004. Nrf2–Keap1 defines a physiologically important 
stress response mechanism. Trends in Molecular Medicine, 10, 549-557. 

MU, J. J., WANG, Y., LUO, H., LENG, M., ZHANG, J., YANG, T., BESUSSO, D., JUNG, S. Y. & QIN, 
J. 2007. A proteomic analysis of ataxia telangiectasia-mutated (ATM)/ATM-Rad3-
related (ATR) substrates identifies the ubiquitin-proteasome system as a regulator 
for DNA damage checkpoints. J Biol Chem, 282, 17330-4. 

MUNCH, S., WEIDTKAMP-PETERS, S., KLEMENT, K., GRIGARAVICIUS, P., MONAJEMBASHI, S., 
SALOMONI, P., PANDOLFI, P. P., WEISSHART, K. & HEMMERICH, P. 2014. The tumor 
suppressor PML specifically accumulates at RPA/Rad51-containing DNA damage 
repair foci but is nonessential for DNA damage-induced fibroblast senescence. Mol 
Cell Biol, 34, 1733-46. 

MUNOZ-GAMEZ, J. A., RODRIGUEZ-VARGAS, J. M., QUILES-PEREZ, R., AGUILAR-QUESADA, R., 
MARTIN-OLIVA, D., DE MURCIA, G., MENISSIER DE MURCIA, J., ALMENDROS, A., RUIZ 
DE ALMODOVAR, M. & OLIVER, F. J. 2009. PARP-1 is involved in autophagy induced 
by DNA damage. Autophagy, 5, 61-74. 



References 

202 
 

MURAI, J., HUANG, S. Y., DAS, B. B., DEXHEIMER, T. S., TAKEDA, S. & POMMIER, Y. 2012. 
Tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs DNA damage induced by 
topoisomerases I and II and base alkylation in vertebrate cells. J Biol Chem, 287, 
12848-57. 

MURAKAWA, Y., SONODA, E., BARBER, L. J., ZENG, W., YOKOMORI, K., KIMURA, H., NIIMI, A., 
LEHMANN, A., ZHAO, G. Y., HOCHEGGER, H., BOULTON, S. J. & TAKEDA, S. 2007. 
Inhibitors of the proteasome suppress homologous DNA recombination in 
mammalian cells. Cancer Res, 67, 8536-43. 

MUSLIMOVIC, A., NYSTROM, S., GAO, Y. & HAMMARSTEN, O. 2009. Numerical analysis of 
etoposide induced DNA breaks. PLoS One, 4, e5859. 

NAGAOKA, U., KIM, K., JANA, N. R., DOI, H., MARUYAMA, M., MITSUI, K., OYAMA, F. & 
NUKINA, N. 2004. Increased expression of p62 in expanded polyglutamine-
expressing cells and its association with polyglutamine inclusions. Journal of 
Neurochemistry, 91, 57-68. 

NAJAT, D., GARNER, T., HAGEN, T., SHAW, B., SHEPPARD, P. W., FALCHETTI, A., MARINI, F., 
BRANDI, M. L., LONG, J. E., CAVEY, J. R., SEARLE, M. S. & LAYFIELD, R. 2009. 
Characterization of a non-UBA domain missense mutation of sequestosome 1 
(SQSTM1) in Paget's disease of bone. J Bone Miner Res, 24, 632-42. 

NAKAMURA, K., KOGAME, T., OSHIUMI, H., SHINOHARA, A., SUMITOMO, Y., AGAMA, K., 
POMMIER, Y., TSUTSUI, K. M., TSUTSUI, K., HARTSUIKER, E., OGI, T., TAKEDA, S. & 
TANIGUCHI, Y. 2010. Collaborative action of Brca1 and CtIP in elimination of covalent 
modifications from double-strand breaks to facilitate subsequent break repair. PLoS 
Genet, 6, e1000828. 

NAKATOGAWA, H., SUZUKI, K., KAMADA, Y. & OHSUMI, Y. 2009. Dynamics and diversity in 
autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol, 10, 458-67. 

NANDI, D., TAHILIANI, P., KUMAR, A. & CHANDU, D. 2006. The ubiquitin-proteasome 
system. Journal of Biosciences, 31, 137-155. 

NARENDRA, D., KANE, L. A., HAUSER, D. N., FEARNLEY, I. M. & YOULE, R. J. 2010. 
p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not 
mitophagy; VDAC1 is dispensable for both. Autophagy, 6, 1090-106. 

NARENDRA, D., TANAKA, A., SUEN, D. F. & YOULE, R. J. 2008. Parkin is recruited selectively 
to impaired mitochondria and promotes their autophagy. J Cell Biol, 183, 795-803. 

NCBIGENEID:8878. SQSTM1 sequestosome 1 [ Homo sapiens (human) ] [Online]. Available: 
http://www.ncbi.nlm.nih.gov/gene/8878 [Accessed]. 

NELSON, G., BUHMANN, M. & VON ZGLINICKI, T. 2009. DNA damage foci in mitosis are 
devoid of 53BP1. Cell Cycle, 8, 3379-3383. 

NISHIDA, Y., ARAKAWA, S., FUJITANI, K., YAMAGUCHI, H., MIZUTA, T., KANASEKI, T., 
KOMATSU, M., OTSU, K., TSUJIMOTO, Y. & SHIMIZU, S. 2009. Discovery of Atg5/Atg7-
independent alternative macroautophagy. Nature, 461, 654-658. 

OGAWA, T. & OKAZAKI, T. 1980. Discontinuous DNA replication. Annual Review of 
Biochemistry, 49, 421-457. 

OLIVE, P. L. & BANATH, J. P. 2006. The comet assay: a method to measure DNA damage in 
individual cells. Nat. Protocols, 1, 23-29. 

OLIVE, P. L. & JOHNSTON, P. J. 1997. DNA damage from oxidants: influence of lesion 
complexity and chromatin organization. Oncol Res, 9, 287-94. 

OLIVE, P. L., WLODEK, D. & BANATH, J. P. 1991. DNA double-strand breaks measured in 
individual cells subjected to gel electrophoresis. Cancer Res, 51, 4671-6. 

http://www.ncbi.nlm.nih.gov/gene/8878


References 

203 
 

OLIVER, F. J., DE LA RUBIA, G., ROLLI, V., RUIZ-RUIZ, M. C., DE MURCIA, G. & MURCIA, J. M. 
1998. Importance of poly(ADP-ribose) polymerase and its cleavage in apoptosis. 
Lesson from an uncleavable mutant. J Biol Chem, 273, 33533-9. 

OLOVNIKOV, A. M. 1971. [Principle of marginotomy in template synthesis of 
polynucleotides]. Dokl Akad Nauk SSSR, 201, 1496-9. 

OSTLING, O. & JOHANSON, K. J. 1984. Microelectrophoretic study of radiation-induced DNA 
damages in individual mammalian cells. Biochem Biophys Res Commun, 123, 291-8. 

PAN, M. R., HSIEH, H. J., DAI, H., HUNG, W. C., LI, K., PENG, G. & LIN, S. Y. 2012. 
Chromodomain helicase DNA-binding protein 4 (CHD4) regulates homologous 
recombination DNA repair, and its deficiency sensitizes cells to poly(ADP-ribose) 
polymerase (PARP) inhibitor treatment. J Biol Chem, 287, 6764-72. 

PANIER, S. & BOULTON, S. J. 2014. Double-strand break repair: 53BP1 comes into focus. Nat 
Rev Mol Cell Biol, 15, 7-18. 

PANKIV, S., CLAUSEN, T. H., LAMARK, T., BRECH, A., BRUUN, J. A., OUTZEN, H., OVERVATN, 
A., BJORKOY, G. & JOHANSEN, T. 2007. p62/SQSTM1 binds directly to Atg8/LC3 to 
facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 
282, 24131-45. 

PANKIV, S., LAMARK, T., BRUUN, J. A., OVERVATN, A., BJORKOY, G. & JOHANSEN, T. 2010. 
Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear 
polyubiquitinated proteins to promyelocytic leukemia bodies. J Biol Chem, 285, 
5941-53. 

PARK, C., SUH, Y. & CUERVO, A. M. 2015. Regulated degradation of Chk1 by chaperone-
mediated autophagy in response to DNA damage. 6, 6823. 

PARKHITKO, A., MYACHINA, F., MORRISON, T. A., HINDI, K. M., AURICCHIO, N., 
KARBOWNICZEK, M., WU, J. J., FINKEL, T., KWIATKOWSKI, D. J., YU, J. J. & HENSKE, E. 
P. 2011. Tumorigenesis in tuberous sclerosis complex is autophagy and 
p62/sequestosome 1 (SQSTM1)-dependent. Proc Natl Acad Sci U S A, 108, 12455-60. 

PARRINELLO, S., COPPE, J. P., KRTOLICA, A. & CAMPISI, J. 2005. Stromal-epithelial 
interactions in aging and cancer: senescent fibroblasts alter epithelial cell 
differentiation. J Cell Sci, 118, 485-96. 

PASSOS, J. F., NELSON, G., WANG, C., RICHTER, T., SIMILLION, C., PROCTOR, C. J., MIWA, S., 
OLIJSLAGERS, S., HALLINAN, J., WIPAT, A., SARETZKI, G., RUDOLPH, K. L., KIRKWOOD, 
T. B. & VON ZGLINICKI, T. 2010. Feedback between p21 and reactive oxygen 
production is necessary for cell senescence. Mol Syst Biol, 6, 347. 

PASSOS, J. F., SARETZKI, G., AHMED, S., NELSON, G., RICHTER, T., PETERS, H., WAPPLER, I., 
BIRKET, M. J., HAROLD, G., SCHAEUBLE, K., BIRCH-MACHIN, M. A., KIRKWOOD, T. B. 
& VON ZGLINICKI, T. 2007. Mitochondrial dysfunction accounts for the stochastic 
heterogeneity in telomere-dependent senescence. PLoS Biol, 5, e110. 

PATSCHAN, S., CHEN, J., POLOTSKAIA, A., MENDELEV, N., CHENG, J., PATSCHAN, D. & 
GOLIGORSKY, M. S. 2008. Lipid mediators of autophagy in stress-induced premature 
senescence of endothelial cells. American Journal of Physiology - Heart and 
Circulatory Physiology, 294, H1119-H1129. 

PATTINGRE, S., TASSA, A., QU, X., GARUTI, R., LIANG, X. H., MIZUSHIMA, N., PACKER, M., 
SCHNEIDER, M. D. & LEVINE, B. 2005. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-
Dependent Autophagy. Cell, 122, 927-939. 



References 

204 
 

PEGORARO, G., KUBBEN, N., WICKERT, U., GOHLER, H., HOFFMANN, K. & MISTELI, T. 2009. 
Ageing-related chromatin defects through loss of the NURD complex. Nat Cell Biol, 
11, 1261-7. 

PENG, J., ZHANG, R., CUI, Y., LIU, H., ZHAO, X., HUANG, L., HU, M., YUAN, X., MA, B., MA, X., 
TAKASHI, U., MASAAKI, K., LIANG, X. & YU, L. 2014. Atg5 regulates late endosome 
and lysosome biogenesis. Science China Life Sciences, 57, 59-68. 

PEREZ, V. I., BUFFENSTEIN, R., MASAMSETTI, V., LEONARD, S., SALMON, A. B., MELE, J., 
ANDZIAK, B., YANG, T., EDREY, Y., FRIGUET, B., WARD, W., RICHARDSON, A. & 
CHAUDHURI, A. 2009. Protein stability and resistance to oxidative stress are 
determinants of longevity in the longest-living rodent, the naked mole-rat. Proc Natl 
Acad Sci U S A, 106, 3059-64. 

PETALCORIN, M. I., SANDALL, J., WIGLEY, D. B. & BOULTON, S. J. 2006. CeBRC-2 stimulates 
D-loop formation by RAD-51 and promotes DNA single-strand annealing. J Mol Biol, 
361, 231-42. 

PETERS, J.-M., CEJKA, Z., HARRIS, J. R., KLEINSCHMIDT, J. A. & BAUMEISTER, W. 1993. 
Structural Features of the 26 S Proteasome Complex. Journal of Molecular Biology, 
234, 932-937. 

PETROPOULOS, I., CONCONI, M., WANG, X., HOENEL, B., BREGEGERE, F., MILNER, Y. & 
FRIGUET, B. 2000. Increase of oxidatively modified protein is associated with a 
decrease of proteasome activity and content in aging epidermal cells. J Gerontol A 
Biol Sci Med Sci, 55, B220-7. 

PIERCE, A. J., JOHNSON, R. D., THOMPSON, L. H. & JASIN, M. 1999. XRCC3 promotes 
homology-directed repair of DNA damage in mammalian cells. Genes Dev, 13, 2633-
8. 

PIKKARAINEN, M., HARTIKAINEN, P. & ALAFUZOFF, I. 2008. Neuropathologic Features of 
Frontotemporal Lobar Degeneration With Ubiquitin-Positive Inclusions Visualized 
With Ubiquitin-Binding Protein p62 Immunohistochemistry. Journal of 
Neuropathology & Experimental Neurology, 67, 280-298. 

POLO, S. E., KAIDI, A., BASKCOMB, L., GALANTY, Y. & JACKSON, S. P. 2010. Regulation of 
DNA-damage responses and cell-cycle progression by the chromatin remodelling 
factor CHD4. EMBO J, 29, 3130-9. 

POMMIER, Y., HUANG, S. Y., GAO, R., DAS, B. B., MURAI, J. & MARCHAND, C. 2014. Tyrosyl-
DNA-phosphodiesterases (TDP1 and TDP2). DNA Repair (Amst), 19, 114-29. 

POMMIER, Y., LEO, E., ZHANG, H. & MARCHAND, C. 2010. DNA topoisomerases and their 
poisoning by anticancer and antibacterial drugs. Chem Biol, 17, 421-33. 

POSPELOVA, T. V., DEMIDENKO, Z. N., BUKREEVA, E. I., POSPELOV, V. A., GUDKOV, A. V. & 
BLAGOSKLONNY, M. V. 2009. Pseudo-DNA damage response in senescent cells. Cell 
Cycle, 8, 4112-8. 

PUA, H. H., GUO, J., KOMATSU, M. & HE, Y.-W. 2009. Autophagy Is Essential for 
Mitochondrial Clearance in Mature T Lymphocytes. The Journal of Immunology, 182, 
4046-4055. 

PUISSANT, A. & AUBERGER, P. 2010. AMPK- and p62/SQSTM1-dependent autophagy 
mediate resveratrol-induced cell death in chronic myelogenous leukemia. 
Autophagy, 6, 655-7. 

PUISSANT, A., ROBERT, G., FENOUILLE, N., LUCIANO, F., CASSUTO, J. P., RAYNAUD, S. & 
AUBERGER, P. 2010. Resveratrol promotes autophagic cell death in chronic 



References 

205 
 

myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK 
activation. Cancer Res, 70, 1042-52. 

PULS, A., SCHMIDT, S., GRAWE, F. & STABEL, S. 1997. Interaction of protein kinase C ζ with 
ZIP, a novel protein kinase C-binding protein. Proceedings of the National Academy 
of Sciences, 94, 6191-6196. 

PYO, J. O., YOO, S. M., AHN, H. H., NAH, J., HONG, S. H., KAM, T. I., JUNG, S. & JUNG, Y. K. 
2013. Overexpression of Atg5 in mice activates autophagy and extends lifespan. Nat 
Commun, 4, 2300. 

RACHUBINSKI, R. A., MARCUS, S. L. & CAPONE, J. P. 1999. The p56(lck)-interacting protein 
p62 stimulates transcription via the SV40 enhancer. J Biol Chem, 274, 18278-84. 

RADERSCHALL, E., GOLUB, E. I. & HAAF, T. 1999. Nuclear foci of mammalian recombination 
proteins are located at single-stranded DNA regions formed after DNA damage. 
Proceedings of the National Academy of Sciences, 96, 1921-1926. 

RAMESH BABU, J., LAMAR SEIBENHENER, M., PENG, J., STROM, A. L., KEMPPAINEN, R., COX, 
N., ZHU, H., WOOTEN, M. C., DIAZ-MECO, M. T., MOSCAT, J. & WOOTEN, M. W. 
2008. Genetic inactivation of p62 leads to accumulation of hyperphosphorylated tau 
and neurodegeneration. J Neurochem, 106, 107-20. 

RAMSEY, C. P., GLASS, C. A., MONTGOMERY, M. B., LINDL, K. A., RITSON, G. P., CHIA, L. A., 
HAMILTON, R. L., CHU, C. T. & JORDAN-SCIUTTO, K. L. 2007. Expression of Nrf2 in 
neurodegenerative diseases. J Neuropathol Exp Neurol, 66, 75-85. 

RAVIKUMAR, B., SARKAR, S., DAVIES, J. E., FUTTER, M., GARCIA-ARENCIBIA, M., GREEN-
THOMPSON, Z. W., JIMENEZ-SANCHEZ, M., KOROLCHUK, V. I., LICHTENBERG, M., 
LUO, S., MASSEY, D. C. O., MENZIES, F. M., MOREAU, K., NARAYANAN, U., RENNA, 
M., SIDDIQI, F. H., UNDERWOOD, B. R., WINSLOW, A. R. & RUBINSZTEIN, D. C. 2010. 
Regulation of Mammalian Autophagy in Physiology and Pathophysiology. 
Physiological Reviews, 90, 1383-1435. 

REGGIORI, F., KOMATSU, M., FINLEY, K. & SIMONSEN, A. 2012. Selective Types of 
Autophagy. International Journal of Cell Biology, 2012, 2. 

RELLO-VARONA, S., LISSA, D., SHEN, S., NISO-SANTANO, M., SENOVILLA, L., MARINO, G., 
VITALE, I., JEMAA, M., HARPER, F., PIERRON, G., CASTEDO, M. & KROEMER, G. 2012. 
Autophagic removal of micronuclei. Cell Cycle, 11, 170-6. 

RIBALLO, E., KUHNE, M., RIEF, N., DOHERTY, A., SMITH, G. C., RECIO, M. J., REIS, C., DAHM, 
K., FRICKE, A., KREMPLER, A., PARKER, A. R., JACKSON, S. P., GENNERY, A., JEGGO, P. 
A. & LOBRICH, M. 2004. A pathway of double-strand break rejoining dependent upon 
ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell, 16, 715-24. 

RICHARDSON, C., STARK, J. M., OMMUNDSEN, M. & JASIN, M. 2004. Rad51 overexpression 
promotes alternative double-strand break repair pathways and genome instability. 
Oncogene, 23, 546-553. 

ROBERT, T., VANOLI, F., CHIOLO, I., SHUBASSI, G., BERNSTEIN, K. A., ROTHSTEIN, R., 
BOTRUGNO, O. A., PARAZZOLI, D., OLDANI, A., MINUCCI, S. & FOIANI, M. 2011. 
HDACs link the DNA damage response, processing of double-strand breaks and 
autophagy. Nature, 471, 74-79. 

RODIER, F., MUNOZ, D. P., TEACHENOR, R., CHU, V., LE, O., BHAUMIK, D., COPPE, J. P., 
CAMPEAU, E., BEAUSEJOUR, C. M., KIM, S. H., DAVALOS, A. R. & CAMPISI, J. 2011. 
DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence 
growth arrest and inflammatory cytokine secretion. J Cell Sci, 124, 68-81. 



References 

206 
 

RODRIGUEZ-NAVARRO, J. A., KAUSHIK, S., KOGA, H., DALL'ARMI, C., SHUI, G., WENK, M. R., 
DI PAOLO, G. & CUERVO, A. M. 2012. Inhibitory effect of dietary lipids on chaperone-
mediated autophagy. Proceedings of the National Academy of Sciences, 109, E705–
E714. 

RODRIGUEZ-VARGAS, J. M., RUIZ-MAGANA, M. J., RUIZ-RUIZ, C., MAJUELOS-MELGUIZO, J., 
PERALTA-LEAL, A., RODRIGUEZ, M. I., MUNOZ-GAMEZ, J. A., DE ALMODOVAR, M. R., 
SILES, E., RIVAS, A. L., JAATTELA, M. & OLIVER, F. J. 2012. ROS-induced DNA damage 
and PARP-1 are required for optimal induction of starvation-induced autophagy. Cell 
Res, 22, 1181-98. 

ROLLAND, P., MADJD, Z., DURRANT, L., ELLIS, I. O., LAYFIELD, R. & SPENDLOVE, I. 2007. The 
ubiquitin-binding protein p62 is expressed in breast cancers showing features of 
aggressive disease. Endocr Relat Cancer, 14, 73-80. 

ROONEY, S., SEKIGUCHI, J., ZHU, C., CHENG, H. L., MANIS, J., WHITLOW, S., DEVIDO, J., FOY, 
D., CHAUDHURI, J., LOMBARD, D. & ALT, F. W. 2002. Leaky Scid phenotype 
associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol 
Cell, 10, 1379-90. 

RUBINSTEIN, ASSAF D., EISENSTEIN, M., BER, Y., BIALIK, S. & KIMCHI, A. 2011. The 
Autophagy Protein Atg12 Associates with Antiapoptotic Bcl-2 Family Members to 
Promote Mitochondrial Apoptosis. Molecular Cell, 44, 698-709. 

RUBINSZTEIN, D. C., MARINO, G. & KROEMER, G. 2011. Autophagy and aging. Cell, 146, 682-
95. 

SAN FILIPPO, J., SUNG, P. & KLEIN, H. 2008. Mechanism of eukaryotic homologous 
recombination. Annu Rev Biochem, 77, 229-57. 

SANCAK, Y., BAR-PELED, L., ZONCU, R., MARKHARD, A. L., NADA, S. & SABATINI, D. M. 2010. 
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for 
its activation by amino acids. Cell, 141, 290-303. 

SANCAK, Y., PETERSON, T. R., SHAUL, Y. D., LINDQUIST, R. A., THOREEN, C. C., BAR-PELED, L. 
& SABATINI, D. M. 2008. The Rag GTPases Bind Raptor and Mediate Amino Acid 
Signaling to mTORC1. Science, 320, 1496-1501. 

SANZ, A., GREDILLA, R., PAMPLONA, R., PORTERO-OTIN, M., VARA, E., TRESGUERRES, J. A. & 
BARJA, G. 2005. Effect of insulin and growth hormone on rat heart and liver oxidative 
stress in control and caloric restricted animals. Biogerontology, 6, 15-26. 

SANZ, L., DIAZ-MECO, M. T., NAKANO, H. & MOSCAT, J. 2000a. The atypical PKC-interacting 
protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J, 19, 
1576-86. 

SANZ, L., DIAZ‐MECO, M. T., NAKANO, H. & MOSCAT, J. 2000b. The atypical PKC‐interacting 
protein p62 channels NF‐κB activation by the IL‐1–TRAF6 pathway. 

SANZ, L., SANCHEZ, P., LALLENA, M. J., DIAZ‐MECO, M. T. & MOSCAT, J. 1999. The 
interaction of p62 with RIP links the atypical PKCs to NF‐κB activation. 

SARBASSOV, D. D., ALI, S. M. & SABATINI, D. M. 2005. Growing roles for the mTOR pathway. 
Current Opinion in Cell Biology, 17, 596-603. 

SARKAR, S., FLOTO, R. A., BERGER, Z., IMARISIO, S., CORDENIER, A., PASCO, M., COOK, L. J. & 
RUBINSZTEIN, D. C. 2005. Lithium induces autophagy by inhibiting inositol 
monophosphatase. The Journal of Cell Biology, 170, 1101-1111. 

SASAKI, M., MIYAKOSHI, M., SATO, Y. & NAKANUMA, Y. 2010. Autophagy mediates the 
process of cellular senescence characterizing bile duct damages in primary biliary 
cirrhosis. Lab Invest, 90, 835-843. 



References 

207 
 

SASAKI, M., MIYAKOSHI, M., SATO, Y. & NAKANUMA, Y. 2012. Autophagy May Precede 
Cellular Senescence of Bile Ductular Cells in Ductular Reaction in Primary Biliary 
Cirrhosis. Digestive Diseases and Sciences, 57, 660-666. 

SATOH, M. S. & LINDAHL, T. 1992. Role of poly(ADP-ribose) formation in DNA repair. Nature, 
356, 356-8. 

SAUL, R. L. & AMES, B. N. 1986. Background levels of DNA damage in the population. Basic 
life sciences, 38, 529-535. 

SCHATZ, D. G. 2004. V(D)J recombination. Immunol Rev, 200, 5-11. 
SCHERZ-SHOUVAL, R. & ELAZAR, Z. 2011. Regulation of autophagy by ROS: physiology and 

pathology. Trends Biochem Sci, 36, 30-8. 
SCHERZ-SHOUVAL, R., SHVETS, E., FASS, E., SHORER, H., GIL, L. & ELAZAR, Z. 2007. Reactive 

oxygen species are essential for autophagy and specifically regulate the activity of 
Atg4. EMBO J, 26, 1749-1760. 

SCHMIDT, D. R. & SCHREIBER, S. L. 1999. Molecular association between ATR and two 
components of the nucleosome remodeling and deacetylating complex, HDAC2 and 
CHD4. Biochemistry, 38, 14711-7. 

SEELIG, H. P., MOOSBRUGGER, I., EHRFELD, H., FINK, T., RENZ, M. & GENTH, E. 1995. The 
major dermatomyositis-specific Mi-2 autoantigen is a presumed helicase involved in 
transcriptional activation. Arthritis Rheum, 38, 1389-99. 

SEELIG, H. P., RENZ, M., TARGOFF, I. N., GE, Q. & FRANK, M. B. 1996. Two forms of the major 
antigenic protein of the dermatomyositis-specific Mi-2 autoantigen. Arthritis & 
Rheumatism, 39, 1769-1771. 

SEGURA, M. M., GARNIER, A., DUROCHER, Y., ANSORGE, S. & KAMEN, A. 2010. New protocol 
for lentiviral vector mass production. Methods Mol Biol, 614, 39-52. 

SEIBENHENER, M. L., BABU, J. R., GEETHA, T., WONG, H. C., KRISHNA, N. R. & WOOTEN, M. 
W. 2004. Sequestosome 1/p62 Is a Polyubiquitin Chain Binding Protein Involved in 
Ubiquitin Proteasome Degradation. Molecular and Cellular Biology, 24, 8055-8068. 

SELUANOV, A., MITTELMAN, D., PEREIRA-SMITH, O. M., WILSON, J. H. & GORBUNOVA, V. 
2004. DNA end joining becomes less efficient and more error-prone during cellular 
senescence. Proc Natl Acad Sci U S A, 101, 7624-9. 

SERRANO, M., LIN, A., MCCURRACH, M., BEACH, D. & LOWE, S. 1997. Oncogenic ras 
provokes premature cell senescence associated with accumulation of p53 and 
p16INK4a. Cell, 88, 593-602. 

SHIBATANI, T., NAZIR, M. & WARD, W. F. 1996. Alteration of rat liver 20S proteasome 
activities by age and food restriction. J Gerontol A Biol Sci Med Sci, 51, B316-22. 

SHILOH, Y. 2001. ATM and ATR: networking cellular responses to DNA damage. Current 
Opinion in Genetics & Development, 11, 71-77. 

SHILOH, Y. 2006. The ATM-mediated DNA-damage response: taking shape. Trends in 
Biochemical Sciences, 31, 402-410. 

SIMON, H. U. & FRIIS, R. 2014. ATG5: a distinct role in the nucleus. Autophagy, 10, 176-7. 
SIMS, J. K. & WADE, P. A. 2011. Mi-2/NuRD complex function is required for normal S phase 

progression and assembly of pericentric heterochromatin. Mol Biol Cell, 22, 3094-
102. 

SINGH, K., MATSUYAMA, S., DRAZBA, J. A. & ALMASAN, A. 2012. Autophagy-dependent 
senescence in response to DNA damage and chronic apoptotic stress. Autophagy, 8, 
236-251. 



References 

208 
 

SINGH, N. P., DANNER, D. B., TICE, R. R., BRANT, L. & SCHNEIDER, E. L. 1990. DNA damage 
and repair with age in individual human lymphocytes. Mutat Res, 237, 123-30. 

SINGH, N. P., MCCOY, M. T., TICE, R. R. & SCHNEIDER, E. L. 1988. A simple technique for 
quantitation of low levels of DNA damage in individual cells. Experimental Cell 
Research, 175, 184-191. 

SMEENK, G., WIEGANT, W. W., VROLIJK, H., SOLARI, A. P., PASTINK, A. & VAN ATTIKUM, H. 
2010. The NuRD chromatin-remodeling complex regulates signaling and repair of 
DNA damage. J Cell Biol, 190, 741-9. 

SMITH, G. C. & JACKSON, S. P. 1999. The DNA-dependent protein kinase. Genes Dev, 13, 
916-34. 

SOHAL, R. S., KU, H. H., AGARWAL, S., FORSTER, M. J. & LAL, H. 1994. Oxidative damage, 
mitochondrial oxidant generation and antioxidant defenses during aging and in 
response to food restriction in the mouse. Mech Ageing Dev, 74, 121-33. 

SOLINGER, J. A., KIIANITSA, K. & HEYER, W. D. 2002. Rad54, a Swi2/Snf2-like 
recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol Cell, 10, 
1175-88. 

SONE, H. & KAGAWA, Y. 2005. Pancreatic beta cell senescence contributes to the 
pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice. Diabetologia, 
48, 58-67. 

SOUTOGLOU, E., DORN, J. F., SENGUPTA, K., JASIN, M., NUSSENZWEIG, A., RIED, T., 
DANUSER, G. & MISTELI, T. 2007. Positional stability of single double-strand breaks in 
mammalian cells. Nat Cell Biol, 9, 675-682. 

STEIN, G. H., DRULLINGER, L. F., SOULARD, A. & DULIC, V. 1999. Differential roles for cyclin-
dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and 
differentiation in human fibroblasts. Mol Cell Biol, 19, 2109-17. 

SUN, K., XIE, X., LIU, Y., HAN, Z., ZHAO, X., CAI, N., ZHANG, S., SONG, J. & WEI, L. 2013. 
Autophagy lessens ischemic liver injury by reducing oxidative damage. Cell Biosci, 3, 
26. 

SURAM, A., KAPLUNOV, J., PATEL, P. L., RUAN, H., CERUTTI, A., BOCCARDI, V., FUMAGALLI, 
M., DI MICCO, R., MIRANI, N., GURUNG, R. L., HANDE, M. P., D'ADDA DI FAGAGNA, F. 
& HERBIG, U. 2012. Oncogene-induced telomere dysfunction enforces cellular 
senescence in human cancer precursor lesions. Embo j, 31, 2839-51. 

SUZUKI, K., BOSE, P., LEONG-QUONG, R. Y., FUJITA, D. J. & RIABOWOL, K. 2010. REAP: A two 
minute cell fractionation method. BMC Res Notes, 3, 294. 

TAKAMURA, A., KOMATSU, M., HARA, T., SAKAMOTO, A., KISHI, C., WAGURI, S., EISHI, Y., 
HINO, O., TANAKA, K. & MIZUSHIMA, N. 2011. Autophagy-deficient mice develop 
multiple liver tumors. Genes & Development, 25, 795-800. 

TAKASAKA, N., ARAYA, J., HARA, H., ITO, S., KOBAYASHI, K., KURITA, Y., WAKUI, H., YOSHII, 
Y., YUMINO, Y., FUJII, S., MINAGAWA, S., TSURUSHIGE, C., KOJIMA, J., NUMATA, T., 
SHIMIZU, K., KAWAISHI, M., KANEKO, Y., KAMIYA, N., HIRANO, J., ODAKA, M., 
MORIKAWA, T., NISHIMURA, S. L., NAKAYAMA, K. & KUWANO, K. 2014. Autophagy 
induction by SIRT6 through attenuation of insulin-like growth factor signaling is 
involved in the regulation of human bronchial epithelial cell senescence. J Immunol, 
192, 958-68. 

TAKASHIMA, H., BOERKOEL, C. F., JOHN, J., SAIFI, G. M., SALIH, M. A., ARMSTRONG, D., 
MAO, Y., QUIOCHO, F. A., ROA, B. B., NAKAGAWA, M., STOCKTON, D. W. & LUPSKI, J. 
R. 2002. Mutation of TDP1, encoding a topoisomerase I-dependent DNA damage 



References 

209 
 

repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet, 32, 267-
72. 

TAN, J. M., WONG, E. S., KIRKPATRICK, D. S., PLETNIKOVA, O., KO, H. S., TAY, S. P., HO, M. 
W., TRONCOSO, J., GYGI, S. P., LEE, M. K., DAWSON, V. L., DAWSON, T. M. & LIM, K. 
L. 2008. Lysine 63-linked ubiquitination promotes the formation and autophagic 
clearance of protein inclusions associated with neurodegenerative diseases. Hum 
Mol Genet, 17, 431-9. 

TARSOUNAS, M., DAVIES, D. & WEST, S. C. 0000. BRCA2-dependent and independent 
formation of RAD51 nuclear foci. Oncogene, 22, 1115-1123. 

TASDEMIR, E., MAIURI, M. C., GALLUZZI, L., VITALE, I., DJAVAHERI-MERGNY, M., D'AMELIO, 
M., CRIOLLO, A., MORSELLI, E., ZHU, C., HARPER, F., NANNMARK, U., SAMARA, C., 
PINTON, P., VICENCIO, J. M., CARNUCCIO, R., MOLL, U. M., MADEO, F., PATERLINI-
BRECHOT, P., RIZZUTO, R., SZABADKAI, G., PIERRON, G., BLOMGREN, K., 
TAVERNARAKIS, N., CODOGNO, P., CECCONI, F. & KROEMER, G. 2008. Regulation of 
autophagy by cytoplasmic p53. Nat Cell Biol, 10, 676-687. 

TERMAN, A. 1995. The effect of age on formation and elimination of autophagic vacuoles in 
mouse hepatocytes. Gerontology, 41 Suppl 2, 319-26. 

TEYSSOU, E., TAKEDA, T., LEBON, V., BOILLEE, S., DOUKOURE, B., BATAILLON, G., 
SAZDOVITCH, V., CAZENEUVE, C., MEININGER, V., LEGUERN, E., SALACHAS, F., 
SEILHEAN, D. & MILLECAMPS, S. 2013. Mutations in SQSTM1 encoding p62 in 
amyotrophic lateral sclerosis: genetics and neuropathology. Acta Neuropathol, 125, 
511-22. 

THOMPSON, H. G., HARRIS, J. W., WOLD, B. J., LIN, F. & BRODY, J. P. 2003. p62 
overexpression in breast tumors and regulation by prostate-derived Ets factor in 
breast cancer cells. Oncogene, 22, 2322-33. 

THORBURN, A. 2008. Apoptosis and autophagy: regulatory connections between two 
supposedly different processes. Apoptosis, 13, 1-9. 

THROWER, J. S., HOFFMAN, L., RECHSTEINER, M. & PICKART, C. M. 2000. Recognition of the 
polyubiquitin proteolytic signal. EMBO Journal, 19, 94-102. 

TOMARU, U., TAKAHASHI, S., ISHIZU, A., MIYATAKE, Y., GOHDA, A., SUZUKI, S., ONO, A., 
OHARA, J., BABA, T., MURATA, S., TANAKA, K. & KASAHARA, M. 2012. Decreased 
proteasomal activity causes age-related phenotypes and promotes the development 
of metabolic abnormalities. Am J Pathol, 180, 963-72. 

TONG, J. K., HASSIG, C. A., SCHNITZLER, G. R., KINGSTON, R. E. & SCHREIBER, S. L. 1998. 
Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. 
Nature, 395, 917-21. 

TONOKI, A., KURANAGA, E., TOMIOKA, T., HAMAZAKI, J., MURATA, S., TANAKA, K. & MIURA, 
M. 2009. Genetic evidence linking age-dependent attenuation of the 26S 
proteasome with the aging process. Mol Cell Biol, 29, 1095-106. 

TOOZE, S. A. & YOSHIMORI, T. 2010. The origin of the autophagosomal membrane. Nat Cell 
Biol, 12, 831-835. 

TORRES, C., LEWIS, L. & CRISTOFALO, V. J. 2006. Proteasome inhibitors shorten replicative 
life span and induce a senescent-like phenotype of human fibroblasts. J Cell Physiol, 
207, 845-53. 

TSENG, H. M. & TOMKINSON, A. E. 2002. A physical and functional interaction between 
yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end 
joining. J Biol Chem, 277, 45630-7. 



References 

210 
 

TSOLOU, A., NELSON, G., TRACHANA, V., CHONDROGIANNI, N., SARETZKI, G., VON 
ZGLINICKI, T. & GONOS, E. S. 2012. The 19S proteasome subunit Rpn7 stabilizes DNA 
damage foci upon genotoxic insult. IUBMB Life, 64, 432-42. 

TSUKAMOTO, S., KUMA, A., MURAKAMI, M., KISHI, C., YAMAMOTO, A. & MIZUSHIMA, N. 
2008. Autophagy is essential for preimplantation development of mouse embryos. 
Science, 321, 117-20. 

TUMA, R. S., BEAUDET, M. P., JIN, X., JONES, L. J., CHEUNG, C.-Y., YUE, S. & SINGER, V. L. 
1999. Characterization of SYBR Gold Nucleic Acid Gel Stain: A Dye Optimized for Use 
with 300-nm Ultraviolet Transilluminators. Analytical Biochemistry, 268, 278-288. 

UNGVARI, Z., CSISZAR, A., SOSNOWSKA, D., PHILIPP, E. E., CAMPBELL, C. M., MCQUARY, P. 
R., CHOW, T. T., COELHO, M., DIDIER, E. S., GELINO, S., HOLMBECK, M. A., KIM, I., 
LEVY, E., SONNTAG, W. E., WHITBY, P. W., AUSTAD, S. N. & RIDGWAY, I. 2013. 
Testing predictions of the oxidative stress hypothesis of aging using a novel 
invertebrate model of longevity: the giant clam (Tridacna derasa). J Gerontol A Biol 
Sci Med Sci, 68, 359-67. 

VADLAMUDI, R. K., JOUNG, I., STROMINGER, J. L. & SHIN, J. 1996. p62, a phosphotyrosine-
independent ligand of the SH2 domain of p56lck, belongs to a new class of ubiquitin-
binding proteins. J Biol Chem, 271, 20235-7. 

VADLAMUDI, R. K. & SHIN, J. 1998. Genomic structure and promoter analysis of the p62 
gene encoding a non-proteasomal multiubiquitin chain binding protein. FEBS Lett, 
435, 138-42. 

VAIDYA, A., MAO, Z., TIAN, X., SPENCER, B., SELUANOV, A. & GORBUNOVA, V. 2014. Knock-
in reporter mice demonstrate that DNA repair by non-homologous end joining 
declines with age. PLoS Genet, 10, e1004511. 

VAN GENT, D. C., RAMSDEN, D. A. & GELLERT, M. 1996. The RAG1 and RAG2 proteins 
establish the 12/23 rule in V(D)J recombination. Cell, 85, 107-13. 

VARADARAJ, A., DOVEY, C. L., LAREDJ, L., FERGUSON, B., ALEXANDER, C. E., LUBBEN, N., 
WYLLIE, A. H. & RICH, T. 2007. Evidence for the receipt of DNA damage stimuli by 
PML nuclear domains. J Pathol, 211, 471-80. 

VELKOVA, A., CARVALHO, M. A., JOHNSON, J. O., TAVTIGIAN, S. V. & MONTEIRO, A. N. 2010. 
Identification of Filamin A as a BRCA1-interacting protein required for efficient DNA 
repair. Cell Cycle, 9, 1421-33. 

VICENCIO, J. M., ORTIZ, C., CRIOLLO, A., JONES, A. W. E., KEPP, O., GALLUZZI, L., JOZA, N., 
VITALE, I., MORSELLI, E., TAILLER, M., CASTEDO, M., MAIURI, M. C., MOLGO, J., 
SZABADKAI, G., LAVANDERO, S. & KROEMER, G. 2009. The inositol 1,4,5-
trisphosphate receptor regulates autophagy through its interaction with Beclin 1. 
Cell Death Differ, 16, 1006-1017. 

VILCHEZ, D., MORANTTE, I., LIU, Z., DOUGLAS, P. M., MERKWIRTH, C., RODRIGUES, A. P., 
MANNING, G. & DILLIN, A. 2012. RPN-6 determines C. elegans longevity under 
proteotoxic stress conditions. Nature, 489, 263-8. 

VITTORINI, S., PARADISO, C., DONATI, A., CAVALLINI, G., MASINI, M., GORI, Z., POLLERA, M. 
& BERGAMINI, E. 1999. The age-related accumulation of protein carbonyl in rat liver 
correlates with the age-related decline in liver proteolytic activities. J Gerontol A Biol 
Sci Med Sci, 54, B318-23. 

VON OTTER, M., LANDGREN, S., NILSSON, S., CELOJEVIC, D., BERGSTROM, P., HAKANSSON, 
A., NISSBRANDT, H., DROZDZIK, M., BIALECKA, M., KURZAWSKI, M., BLENNOW, K., 



References 

211 
 

NILSSON, M., HAMMARSTEN, O. & ZETTERBERG, H. 2010. Association of Nrf2-
encoding NFE2L2 haplotypes with Parkinson's disease. BMC Med Genet, 11, 36. 

VON ZGLINICKI, T. 2001. Telomeres and replicative senescence: Is it only length that counts? 
Cancer Letters, 168, 111-116. 

VON ZGLINICKI, T., SARETZKI, G., DÖCKE, W. & LOTZE, C. 1995. Mild Hyperoxia Shortens 
Telomeres and Inhibits Proliferation of Fibroblasts: A Model for Senescence? 
Experimental Cell Research, 220, 186-193. 

VON ZGLINICKI, T., SARETZKI, G., LADHOFF, J., D'ADDA DI FAGAGNA, F. & JACKSON, S. P. 
2005. Human cell senescence as a DNA damage response. Mech Ageing Dev, 126, 
111-7. 

WADE, P. A., JONES, P. L., VERMAAK, D. & WOLFFE, A. P. 1998. A multiple subunit Mi-2 
histone deacetylase from Xenopus laevis cofractionates with an associated Snf2 
superfamily ATPase. Curr Biol, 8, 843-6. 

WAGNER, B. J. & MARGOLIS, J. W. 1995. Age-dependent association of isolated bovine lens 
multicatalytic proteinase complex (proteasome) with heat-shock protein 90, an 
endogenous inhibitor. Arch Biochem Biophys, 323, 455-62. 

WAKABAYASHI, N., DINKOVA-KOSTOVA, A. T., HOLTZCLAW, W. D., KANG, M. I., KOBAYASHI, 
A., YAMAMOTO, M., KENSLER, T. W. & TALALAY, P. 2004. Protection against 
electrophile and oxidant stress by induction of the phase 2 response: fate of 
cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci U S A, 101, 
2040-5. 

WALKER, J. R., CORPINA, R. A. & GOLDBERG, J. 2001. Structure of the Ku heterodimer bound 
to DNA and its implications for double-strand break repair. Nature, 412, 607-14. 

WALKER, P. R., PANDEY, S. & SIKORSKA, M. 1995. Degradation of chromatin in apoptotic 
cells. Cell Death Differ, 2, 97-104. 

WALSH, M. E., SHI, Y. & VAN REMMEN, H. 2014. The effects of dietary restriction on 
oxidative stress in rodents. Free Radic Biol Med, 66, 88-99. 

WANG, B., MATSUOKA, S., CARPENTER, P. B. & ELLEDGE, S. J. 2002. 53BP1, a Mediator of 
the DNA Damage Checkpoint. Science, 298, 1435-1438. 

WANG, C., JURK, D., MADDICK, M., NELSON, G., MARTIN-RUIZ, C. & VON ZGLINICKI, T. 2009. 
DNA damage response and cellular senescence in tissues of aging mice. Aging Cell, 8, 
311-323. 

WANG, C., MADDICK, M., MIWA, S., JURK, D., CZAPIEWSKI, R., SARETZKI, G., LANGIE, S. A., 
GODSCHALK, R. W., CAMERON, K. & VON ZGLINICKI, T. 2010. Adult-onset, short-term 
dietary restriction reduces cell senescence in mice. Aging (Albany NY), 2, 555-66. 

WANG, H. B. & ZHANG, Y. 2001. Mi2, an auto-antigen for dermatomyositis, is an ATP-
dependent nucleosome remodeling factor. Nucleic Acids Res, 29, 2517-21. 

WANG, J., PLUTH, J. M., COOPER, P. K., COWAN, M. J., CHEN, D. J. & YANNONE, S. M. 2005. 
Artemis deficiency confers a DNA double-strand break repair defect and Artemis 
phosphorylation status is altered by DNA damage and cell cycle progression. DNA 
Repair (Amst), 4, 556-70. 

WANG, L., CANO, M. & HANDA, J. T. 2014. p62 provides dual cytoprotection against 
oxidative stress in the retinal pigment epithelium. Biochimica et Biophysica Acta 
(BBA) - Molecular Cell Research, 1843, 1248-1258. 

WANG, Y., SINGH, R., MASSEY, A. C., KANE, S. S., KAUSHIK, S., GRANT, T., XIANG, Y., CUERVO, 
A. M. & CZAJA, M. J. 2008. Loss of Macroautophagy Promotes or Prevents Fibroblast 



References 

212 
 

Apoptosis Depending on the Death Stimulus. Journal of Biological Chemistry, 283, 
4766-4777. 

WARD, J. D., MUZZINI, D. M., PETALCORIN, M. I., MARTINEZ-PEREZ, E., MARTIN, J. S., 
PLEVANI, P., CASSATA, G., MARINI, F. & BOULTON, S. J. 2010. Overlapping 
mechanisms promote postsynaptic RAD-51 filament disassembly during meiotic 
double-strand break repair. Mol Cell, 37, 259-72. 

WATANABE, Y. & TANAKA, M. 2011. p62/SQSTM1 in autophagic clearance of a non-
ubiquitylated substrate. J Cell Sci, 124, 2692-701. 

WATSON, J. D. 1972. Origin of concatemeric T7 DNA. Nat New Biol, 239, 197-201. 
WAXMAN, L., FAGAN, J. M. & GOLDBERG, A. L. 1987. Demonstration of two distinct high 

molecular weight proteases in rabbit reticulocytes, one of which degrades ubiquitin 
conjugates. J Biol Chem, 262, 2451-7. 

WEEDA, G., DONKER, I., DE WIT, J., MORREAU, H., JANSSENS, R., VISSERS, C. J., NIGG, A., 
VAN STEEG, H., BOOTSMA, D. & HOEIJMAKERS, J. H. J. 1997. Disruption of mouse 
ERCC1 results in a novel repair syndrome with growth failure, nuclear abnormalities 
and senescence. Current Biology, 7, 427-439. 

WEI, Y., PATTINGRE, S., SINHA, S., BASSIK, M. & LEVINE, B. 2008. JNK1-Mediated 
Phosphorylation of Bcl-2 Regulates Starvation-Induced Autophagy. Molecular Cell, 
30, 678-688. 

WEISS, R. S., MATSUOKA, S., ELLEDGE, S. J. & LEDER, P. 2002. Hus1 acts upstream of chk1 in 
a mammalian DNA damage response pathway. Curr Biol, 12, 73-7. 

WETERINGS, E. & VAN GENT, D. C. 2004. The mechanism of non-homologous end-joining: a 
synopsis of synapsis. DNA Repair (Amst), 3, 1425-35. 

WILLIAMS, A., SARKAR, S., CUDDON, P., TTOFI, E. K., SAIKI, S., SIDDIQI, F. H., JAHREISS, L., 
FLEMING, A., PASK, D., GOLDSMITH, P., O'KANE, C. J., FLOTO, R. A. & RUBINSZTEIN, 
D. C. 2008. Novel targets for Huntington's disease in an mTOR-independent 
autophagy pathway. Nat Chem Biol, 4, 295-305. 

WIRAWAN, E., VANDE WALLE, L., KERSSE, K., CORNELIS, S., CLAERHOUT, S., 
VANOVERBERGHE, I., ROELANDT, R., DE RYCKE, R., VERSPURTEN, J., DECLERCQ, W., 
AGOSTINIS, P., VANDEN BERGHE, T., LIPPENS, S. & VANDENABEELE, P. 2010. 
Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and 
enhances apoptosis by promoting the release of proapoptotic factors from 
mitochondria. Cell Death and Dis, 1, e18. 

WOOD, J. G., ROGINA, B., LAVU, S., HOWITZ, K., HELFAND, S. L., TATAR, M. & SINCLAIR, D. 
2004. Sirtuin activators mimic caloric restriction and delay ageing in metazoans. 
Nature, 430, 686-689. 

WOODBINE, L., GENNERY, A. R. & JEGGO, P. A. 2014. The clinical impact of deficiency in DNA 
non-homologous end-joining. DNA Repair (Amst), 16, 84-96. 

WOOSTER, R., BIGNELL, G., LANCASTER, J., SWIFT, S., SEAL, S., MANGION, J., COLLINS, N., 
GREGORY, S., GUMBS, C. & MICKLEM, G. 1995. Identification of the breast cancer 
susceptibility gene BRCA2. Nature, 378, 789-92. 

WOOTEN, M. W., GEETHA, T., SEIBENHENER, M. L., BABU, J. R., DIAZ-MECO, M. T. & 
MOSCAT, J. 2005. The p62 scaffold regulates nerve growth factor-induced NF-kappaB 
activation by influencing TRAF6 polyubiquitination. J Biol Chem, 280, 35625-9. 

WOOTEN, M. W., SEIBENHENER, M. L., NEIDIGH, K. B. W. & VANDENPLAS, M. L. 2000. 
Mapping of Atypical Protein Kinase C within the Nerve Growth Factor Signaling 



References 

213 
 

Cascade: Relationship to Differentiation and Survival of PC12 Cells. Molecular and 
Cellular Biology, 20, 4494-4504. 

WULLSCHLEGER, S., LOEWITH, R. & HALL, M. N. 2006. TOR Signaling in Growth and 
Metabolism. Cell, 124, 471-484. 

WURZER, B., ZAFFAGNINI, G., FRACCHIOLLA, D., TURCO, E., ABERT, C., ROMANOV, J. & 
MARTENS, S. 2015. Oligomerization of p62 allows for selection of ubiquitinated 
cargo and isolation membrane during selective autophagy. eLife. 

XU, Z. X., TIMANOVA-ATANASOVA, A., ZHAO, R. X. & CHANG, K. S. 2003. PML colocalizes 
with and stabilizes the DNA damage response protein TopBP1. Mol Cell Biol, 23, 
4247-56. 

YAMAMOTO, A., TAGAWA, Y., YOSHIMORI, T., MORIYAMA, Y., MASAKI, R. & TASHIRO, Y. 
1998. Bafilomycin A1 prevents maturation of autophagic vacuoles by inhibiting 
fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E 
cells. Cell Struct Funct, 23, 33-42. 

YANG, G., ROSEN, D. G., ZHANG, Z., BAST, R. C., JR., MILLS, G. B., COLACINO, J. A., 
MERCADO-URIBE, I. & LIU, J. 2006. The chemokine growth-regulated oncogene 1 
(Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian 
tumorigenesis. Proc Natl Acad Sci U S A, 103, 16472-7. 

YANG, H., LI, Q., FAN, J., HOLLOMAN, W. K. & PAVLETICH, N. P. 2005. The BRCA2 homologue 
Brh2 nucleates RAD51 filament formation at a dsDNA-ssDNA junction. Nature, 433, 
653-657. 

YANG, Z. & KLIONSKY, D. J. 2010. Mammalian autophagy: core molecular machinery and 
signaling regulation. Current Opinion in Cell Biology, 22, 124-131. 

YAO, K. C., KOMATA, T., KONDO, Y., KANZAWA, T., KONDO, S. & GERMANO, I. M. 2003. 
Molecular response of human glioblastoma multiforme cells to ionizing radiation: 
cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, 
and autophagy. J Neurosurg, 98, 378-84. 

YEUNG, P. L., DENISSOVA, N. G., NASELLO, C., HAKHVERDYAN, Z., CHEN, J. D. & 
BRENNEMAN, M. A. 2012. Promyelocytic leukemia nuclear bodies support a late step 
in DNA double-strand break repair by homologous recombination. J Cell Biochem, 
113, 1787-99. 

YI, C. H. & YUAN, J. 2009. The Jekyll and Hyde functions of caspases. Dev Cell, 16, 21-34. 
YOUNG, A. R., NARITA, M., FERREIRA, M., KIRSCHNER, K., SADAIE, M., DAROT, J. F., TAVARE, 

S., ARAKAWA, S., SHIMIZU, S., WATT, F. M. & NARITA, M. 2009. Autophagy mediates 
the mitotic senescence transition. Genes Dev, 23, 798-803. 

YOUNGMAN, L. D., PARK, J. Y. & AMES, B. N. 1992. Protein oxidation associated with aging is 
reduced by dietary restriction of protein or calories. Proc Natl Acad Sci U S A, 89, 
9112-6. 

YOUSEFI, S., PEROZZO, R., SCHMID, I., ZIEMIECKI, A., SCHAFFNER, T., SCAPOZZA, L., 
BRUNNER, T. & SIMON, H.-U. 2006. Calpain-mediated cleavage of Atg5 switches 
autophagy to apoptosis. Nat Cell Biol, 8, 1124-1132. 

YU, D. S., SONODA, E., TAKEDA, S., HUANG, C. L. H., PELLEGRINI, L., BLUNDELL, T. L. & 
VENKITARAMAN, A. R. 2003. Dynamic Control of Rad51 Recombinase by Self-
Association and Interaction with BRCA2. Molecular Cell, 12, 1029-1041. 

YU, H., SU, J., XU, Y., KANG, J., LI, H., ZHANG, L., YI, H., XIANG, X., LIU, F. & SUN, L. 2011. 
p62/SQSTM1 involved in cisplatin resistance in human ovarian cancer cells by 
clearing ubiquitinated proteins. Eur J Cancer, 47, 1585-94. 



References 

214 
 

YUAN, S.-S. F., LEE, S.-Y., CHEN, G., SONG, M., TOMLINSON, G. E. & LEE, E. Y. H. P. 1999a. 
BRCA2 Is Required for Ionizing Radiation-induced Assembly of Rad51 Complex in 
Vivo. Cancer Research, 59, 3547-3551. 

YUAN, S. S., LEE, S. Y., CHEN, G., SONG, M., TOMLINSON, G. E. & LEE, E. Y. 1999b. BRCA2 is 
required for ionizing radiation-induced assembly of Rad51 complex in vivo. Cancer 
Res, 59, 3547-51. 

YUAN, Y. & SHEN, Z. 2001. Interaction with BRCA2 suggests a role for filamin-1 (hsFLNa) in 
DNA damage response. J Biol Chem, 276, 48318-24. 

YUE, J., LU, H., LIU, J., BERWICK, M. & SHEN, Z. 2012. Filamin-A as a marker and target for 
DNA damage based cancer therapy. DNA Repair (Amst), 11, 192-200. 

YUE, J., WANG, Q., LU, H., BRENNEMAN, M., FAN, F. & SHEN, Z. 2009. The cytoskeleton 
protein filamin-A is required for an efficient recombinational DNA double strand 
break repair. Cancer Res, 69, 7978-85. 

YUNG, T. M. & SATOH, M. S. 2001. Functional competition between poly(ADP-ribose) 
polymerase and its 24-kDa apoptotic fragment in DNA repair and transcription. J Biol 
Chem, 276, 11279-86. 

ZHANG, N., CHEN, Y., JIANG, R., LI, E., CHEN, X., XI, Z., GUO, Y., LIU, X., ZHOU, Y., CHE, Y. & 
JIANG, X. 2011. PARP and RIP 1 are required for autophagy induced by 11'-
deoxyverticillin A, which precedes caspase-dependent apoptosis. Autophagy, 7, 598-
612. 

ZHANG, Y., LEROY, G., SEELIG, H. P., LANE, W. S. & REINBERG, D. 1998. The dermatomyositis-
specific autoantigen Mi2 is a component of a complex containing histone 
deacetylase and nucleosome remodeling activities. Cell, 95, 279-89. 

ZHAO, Z., FUX, B., GOODWIN, M., DUNAY, I. R., STRONG, D., MILLER, B. C., CADWELL, K., 
DELGADO, M. A., PONPUAK, M., GREEN, K. G., SCHMIDT, R. E., MIZUSHIMA, N., 
DERETIC, V., SIBLEY, L. D. & VIRGIN, H. W. 2008. Autophagosome-Independent 
Essential Function for the Autophagy Protein Atg5 in Cellular Immunity to 
Intracellular Pathogens. Cell Host & Microbe, 4, 458-469. 

ZHAO, Z., NI, D., GHOZALLI, I., PIROOZ, S. D., MA, B. & LIANG, C. 2012. UVRAG: at the 
crossroad of autophagy and genomic stability. Autophagy, 8, 1392-3. 

ZHENG, Y. T., SHAHNAZARI, S., BRECH, A., LAMARK, T., JOHANSEN, T. & BRUMELL, J. H. 2009. 
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy 
pathway. J Immunol, 183, 5909-16. 

ZHU, J., WOODS, D., MCMAHON, M. & BISHOP, J. M. 1998. Senescence of human fibroblasts 
induced by oncogenic Raf. Genes & Development, 12, 2997-3007. 

ZHU, Z., CHUNG, W. H., SHIM, E. Y., LEE, S. E. & IRA, G. 2008. Sgs1 helicase and two 
nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell, 134, 981-94. 

ZHU, Z., VERMA, N., GONZALEZ, F., SHI, Z. D. & HUANGFU, D. 2015. A CRISPR/Cas-Mediated 
Selection-free Knockin Strategy in Human Embryonic Stem Cells. Stem Cell Reports, 
4, 1103-11. 

 


