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Abstract

Computing Science, Synthetic Biology and Nanotechnology are converging. Synthetic Bi-

ology and Nanotechnology compose the “hardware” platform, whilst Computing Science

formulates the logic, data storage and processing pipelines in order to create complex yet

controlled behaviour at the nanoscale.

Although much work has been done on information processing at the nanoscale via in vivo

constructs, e.g. logic gates in various organisms, relatively little has been done on imple-

menting data structure, a fundamental building block for computation.

This dissertation proposes and investigates methods to implement data structures by em-

ploying biological molecules via both a Synthetic Biology and a Nanotechnological ap-

proach. A data structure implemented at the nanoscale could help to substantially increase

the complexity of behaviours that could be programmed and embedded in living cells or at

the interface between living cells and other nano-substrates, with potential applications in

intelligent drug factories and delivery nanosystems, biosensors, and environmental cleaning

bionanotechnologies.

This work explores the possibility of implementing via DNA constructs, both in vitro and in

vivo, "list-like" data structure that can potentially hold an unlimited number of items. This

has not been achieved before. Thus, the text describes designs and test prototypes.

Firstly, this thesis focuses on an in vitro approach. This is achieved through a DNA-based

machinery implementing a signal recorder based on DNA strand displacement reactions.

Such DNA architecture can in principle implement a stack machine, capable of storing data

providing a dynamic temporary memory capable of pushing and popping data-items en-

coded in DNA nanostructures (called DNA "bricks”). The "list-like" data is thus represented

by a growing (or shrinking) chain of DNA bricks.
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Secondly, I introduce a potential design and initial experiments for an in vivo approach pre-

senting, a synthetic genetic circuit designed to record and accumulate extracellular signals

digitally within a "tape" DNA molecule inside a living cell. The core is based on the engi-

neering of the self-splicing group II retrotransposon Ll.LtrB of Lactococcus lactis.

Together, these two in vitro and in vivo routes expand our knowledge in the context of

molecular memory devices and the biological operations we can compute.
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Chapter 1

Introduction

This chapter includes an introduction on the importance of my research, the motivation be-

hind, objectives and contributions to the topic. My research questions have been addressed

at the interface between Computing Science, Nanotechnology and Synthetic Biology, to

investigate routes for in vitro and in vivo data storage. Besides, I will include a brief de-

scription of the thesis structure and outline, providing a focus on the way that the research

tasks have been carried out.

1.1 Background and Motivation

When we think about data storage, our minds naturally envision disks, electronic microchips

and other technologies that have only existed for less than a century. Over the last few

decades, there have been great leaps in data storage media, as we have moved from floppy

disks to CDs (which could store many floppy discs worth of data), to DVD, Blu-ray disks

and beyond. The technology sector is always endeavouring to improve the next generation

of data storage.

Nature has employed biochemical data storage for billions of years to encode the complexity

of life, with enough dynamism to support the process of biological evolution. This data

storage is realised by the famous deoxyribonucleic acid (DNA) molecule and has proven to

be a medium that is highly stable, resilient, capable of replication and long-term information

storage [1]. Furthermore, with regard to data density, DNA that encodes the entire human
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genome fits within a single biological cell.

Digital data storage (DDS) [2] represents a method to store data in a steady and stable way

on a storage device, providing a location and a memory for data content. Both computational

and genetic data storage are analogous in nature; DNA is a digital storage medium that is

quaternary instead of binary. The exponential growth of digital data means researchers

are continuously searching for a stable and durable archiving solution. DNA enables a

theoretical storage capacity maximum of two bits per nucleotide or 455 exabytes per gram

of single-stranded DNA [3]. Another reason to use the "double helix" as storage media is

its inherent stability governed by specific hydrogen bonding patterns as well as a natural

"backup" of genetic information from DNA strand complementarity. In the scientific state-

of-the-art, there is evidence that DNA is an optimal substrate to support both technological

applications in vitro and in vivo.

Going forward, macromolecules represent an important opportunity for advances in data

storage capability, allowing complex molecular architectures to act as an information device

with the ability to change configuration and switch between states in response to a signal

[4, 5].

Furthermore, controllable devices can be crafted using molecular units, with addressable

input and readable output [6]. Achieving these goals would give one the resources to build

efficient and reliable molecular memory storage in the vision of a DNA "tape". This DNA

media would be far more compact and robust whilst having significantly greater storage ca-

pability than its antiquated electromagnetic predecessor. Despite all these advantages, data

access speed still remains a disadvantage. A magnetic tape takes just few seconds to read the

stored informations, whereas storing data using DNA has a high cost in terms of retrieving

the information stored (e.g., sequencing). But still DNA is very remarkable in terms of ca-

pability. But crucially, the ultimate aim of achieving reliable data structures with DNA (and

RNA) is to be able to implement complex computations in vivo or at the interface between

living and non-living matter that could process information based on previously stored data

states (something that has not yet been achieved to any meaningful level).

Biological implementation of primitive data structure models demands biological self-organization,

and required controllable and predictable behaviours, achieved either in vivo or in vitro via

manipulating macromolecules.
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1.2 Aims and Scope

My overarching goal in this dissertation is to advance the state of the art in molecular data

structures. This goal is translated into four objectives:

I Designing a "list-like" prototype for implementing an in vitro data structure. As a

demonstrator, I will use a stack data structure.

II Designing a "list-like" prototype for implementing a structure for in vivo operations.

As a demonstrator, I will use a tape data structure.

III Engineering both prototypes in the laboratory.

IV Testing and assessing limitations of the design in objective I and objective II

This thesis presents different methodologies to investigate two different routes for DNA data

storage structures. In computer science, a list data structure is an ordered sequence of items,

that allows to store,access and change elements. To work towards these goals, I present a

list-like DNA data storage structures (allows to store but not to change and access any ele-

ment), where one is in the form of a stack, for the in vitro approach and the second one is in

the form of a tape, for an in vivo application.

The objective of this thesis is to introduce an original and feasible in vitro & in vivo prototype

for DNA digital data storage. The first avenue explored in this work investigates the in vitro

implementation of a DNA architecture designed to implement a stack machine. This is

a design where kinetics and thermodynamics (tuned by the usage of a genetic algorithm)

play a key role in the performance of a dynamic DNA memory, implemented via strand

displacement [7]. The second route describes an innovative in vivo approach where the

central mechanism of the genetic network is based on TargeTron technology [8][9], that can

in principle hold an unlimited "list-like" data structure within a DNA molecule.
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1.3 Main Contribution

The work presented in this thesis contributes to the EPSRC funded synthetic biology project:

“AUDACIOUS: Towards a Universal Biological-Cell Operating System” (EP/J004111/1).

As part of this research work, this dissertation contributes to the area of Computing Sci-

ence, Synthetic Biology, DNA computing and Nanotechnology, pointing to a novel thinking

and routes towards in vitro and in vivo data storage. The interdisciplinary nature of this

study contributes to expand knowledge and learning how to critically compare and com-

bine approaches that can require different standards, identify problems, propose solutions,

integrate literature, theoretical analysis, data analysis and drawing possible further research

directions.

Specific contributions:

1. Design, implementation, testing and functional demonstration of an in vitro stack data

structure.

2. Design, implementation and testing of an in vivo prototype tape data structure

3. New biological and nanotechnological materials and methods for others to replicate

and expand this work.

This is a highly interdisciplinary work where I have conducted all the experimental work

in its entirety. The specification of the stack data structure was done collaboratively with J.

Kozyra who also contributed the computational analysis of the in vitro DNA data structure.

Both directions presented in this scientific study can be seen as a critical and deep analysis

into design methodologies and solutions directly addressing the rigorous optimization of

flexible bio-constructs used as the basis for a versatile data storage system. This has resulted

in the following papers being submitted:

• Annunziata Lopiccolo, Harold Fellermann, Jerzy Kozyra, Natalio Krasnogor “In Vitro

implementation of stack data structure based on DNA strand displacement". In-

ternational Conference on Unconventional Computation and Natural Computation

(UCNC), Manchester, UK, July 11-15 2016.
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• Ben Shirt Ediss, Harold Fellermann, Annunziata Lopiccolo, Natalio Krasnogor “DNA

Stack Recorder: In-Silico Insights into an In-Vitro Implementation". Submitted to

the 22nd International Conference on DNA Computing and Molecular Programming,

Munich, Germany, September 4-8, at Ludwig-Maximilians-Universität (LMU).

• Harold Fellermann, Annunziata Lopiccolo, Jerzy Kozyra, Ben Shirt-Ediss, Natalio

Krasnogor "A DNA-Based Signal Recorded Studied In Vitro and Simulation".2016

Conference on Systems Chemistry SYSCHEM’16, Valtice, Check Republic.

• Jerzy Kozyra, Alessandro Ceccarelli, Annunziata Lopiccolo, Jing-Ying Gu, Harold

Fellermann, Ulrich Stimming, and Natalio Krasnogor. "Designing uniquely address-

able bio-orthogonal synthetic scaffolds for DNA and RNA origami". (submitted)

1.4 Thesis Structure

The thesis is divided into five parts. Part I includes this and Chapter 2- “Background and

State of the Art”. It provides an overview of DNA Nanotechnology, where molecular pro-

gramming achieved via DNA hybridization and DNA strand displacement are described.

Moreover, this chapter presents an extended literature of Synthetic Biology and its usage of

recombinases and a retrotransposon systems to implement new classes of synthetic circuits.

Part II includes:

Chapter 3 -"Specification and Design of an In Vitro DNA Stack Data Structure": firstly in-

troduces the concept of a stack data structure, and, secondly reviews the in vitro approach,

with a detailed description of the design, specifications and rationale behind them. Further-

more, it presents a full illustration and explanation of all the operations that the prototype

can compute.

Chapter 4 - "Specification and Design of an In Vivo DNA Tape Data Structure": presents

the in vivo approach, with a high-level description of the prototype circuit implementing

the tape data structure, a more detailed explanation of the system components, design and

specification of each bio-part and limitations of the approach and technologies involved. It

concludes Part II.
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Part III includes:

Chapter 5 -"Engineering of an In Vitro DNA Stack Data Structure" demonstrates the im-

plementation of an in vitro DNA stack data structure via Hybridization and DNA Strand

Displacement Cascades.

Chapter 6 -"Engineering of an In Vivo DNA Tape Data Structure" describes the in vivo, in

vitro and in silico methods used the implementation of a tape data structure via a site-specific

recombination approach. It concludes Part II.

Part IV includes:

Chapter 7 -" Characterization and Result of an In Vitro DNA Stack Data Structure" : presents

the results obtained toward the final implementation of an in vitro DNA stack data structure.

All the results have been obtained via the methods described in Chapter 5.

Chapter 8 -"Characterization and Result of an In Vivo DNA Tape Data Structure": presents

the results obtained toward the preliminary implementation of an in vivo DNA tape data

structure. All the results have been obtained via the methods described in Chapter 6 and

conclude Part III.

Part V includes:

Chapter 9 -"Discussion and Conclusions": offers a discussion of the results obtained via the

in vitro and in vivo approaches. It integrates and synthesizes the conclusions of this work.

Chapter 10 -" Future Research Directions ": offers a glimpse of possible future avenues of

research derived from this work.
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Chapter 2

Background and State of the Art

This chapter offers a detailed review of the literature, in both state of the art Nanotech-

nology and Synthetic Biology. It contains an overview of the main technologies and their

recent applications. Additionally, it will fully describe the technologies that will be used to

implement the stack and the tape data structures, presented in Part II.

2.1 Introduction

Creation of novel biological systems requires a deep understanding and insight into the oper-

ating principles that govern living organisms [10]. Innovation in DNA nanotechnology and

synthetic biology aims to understand and expanding those principles. These disciplines are

important because they also impinge on other areas such as production of biofuels, bioma-

terials, bioremediation and biomedicine [11]. Both are a platform for wholly new biological

scenarios to emerge. They provide an in vitro and in vivo design space to build new biolog-

ical functions and systems otherwise not found in nature.

2.2 DNA: Structure, Functionality and Operations

Biological systems are described as biochemical "machines", processing a genetic instruc-

tion encoded in the deoxyribonucleic acid (DNA) code, to the ultimate aim of replicate
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themselves [12]. This molecule is a member of the nucleic acid family, which appears un-

der the form of a polymer, where the "deoxyribose" is the principal sugar. This polymer

contains two strands running in opposite directions and made of building blocks called nu-

cleotides, which will intertwine to form a double helix. If we imagine unwinding the double

helix, the strands chemical structure will appear as a repeating unit of nucleotides, where

each nucleotide is made up of three components: a five carbon sugar, a phosphate group and

one of four possible nitrogenous bases (adenine [A], guanine [B], thymine [T] and cytosine

[C]) (Fig. 2.1) [13][14]

Phosphate Sugar Base 

.

Figure 2.1: The nucleotide chemical structure. Image taken from [13] showing the three
components of a nucleotide with thymine base.

The most common double helix conformation is known as B-DNA form, where one base

pairs measures 0.34 nm and one turn of the helix, corresponds to 3.4 nm [15] as schematic

represented in Fig 2.2.

Although nucleotides come together through covalent bonds in the backbone, the two DNA

strands interact through non-covalent hydrogen bonds between the bases. Each base form

9



Chapter 2: Background and State of the Art

Figure 2.2: DNA double helix B-Form.(Image taken from Power Point and annotated). In
the B-Helical structure there are two repeating and alternating spaces, the major and minor
grooves. One base pairs measures 0.34 nm, whereas one turn of helix, corresponds to 3.4
nm (10 base pairs).

multiple hydrogen bonds with its complementary one on the opposite strand and with high

specificity of base pairing (A-T, two hydrogen bonds, and G-C, three hydrogen bonds). Nu-

cleotides attach to each other in the DNA strand by phosphodiester bonds. The phosphate

group of one nucleotide binds to the 3’oxygen of the neighbouring nucleotide. Thus, the

sugar and phosphate group make up the DNA backbone. The carbon number of the sugar is

the key to describe the directionality of the DNA strand 5’→ 3’. Looking within the sugar

there is an intrinsic orientation difference between the two strands. On the top strand the 5’

carbon of each sugar is on the left and 3’ carbon is on the right. The opposite is true for

the bottom strand. Reading left to right, makes the top strand orientation 5’→ 3’, and the

bottom strand orientation 3’→ 5’. The double helix structure is highly regular. Each turn

of the helix measures approximately 10 base pairs. In addition to the hydrogen bonding be-

tween the bases, a phenomena known as DNA stacking, contributes to stabilizes the double

helix structure [16]. The pi-clouds electrons of the aromatic rings of the base pairs, have an

hydrophobic nature and interact via hydrophobic bounding, thus creating a pile, a "stack" of

nucleobases [16, 17]. The geometry regularity of the helical structure forms two repeating

and alternating spaces, called the major and minor grooves (Fig 2.2). These grooves act as

a base pairs recognition and binding sites for proteins. They are not equal in terms of size

and functionality. In the minor groove the sugar protrudes out from the base pairs with an

10



Chapter 2: Background and State of the Art

angle of 120◦, whereas in the main grooves it does with an angle of 220◦. The difference

in the pattern and narrow angles, is crucial for proteins to recognise the DNA to bind. The

minor grooves are less accessible to accommodate protein amino acidic chains, and a mi-

nority of non-sequence specific proteins can unwind a small tract of the double helix and

bind to the minor groove. On the other side, the the major groove is more accessible to

the majority of the proteins, that are instead sequence specific. The weak nature of DNA

hydrogen bounds make possible to separate the two strands, and this process is known as

"denaturation". When the hydrogen bonds break, the double helix is able to dissociate. The

dissociation can be induced by heating a DNA solution and this will break the double helix

structure. The breaking of the hydrogen bounds and helices dissociation is a process known

as "DNA melting". The DNA melting occurs at specific temperature, called "melting tem-

perature" (Tm), defined as the temperature at which half of the dissociation will happen.

This process can be monitored by the amount of UV light absorbed by a DNA molecule,

which increases with the helices dissociation. On the other side, decreasing the tempera-

ture of a DNA solution containing two separated strands, will re-associate or "hybridize"

the strands, this process is known as "annealing". Another important reaction, is the "DNA

ligation". A ligase protein is responsible for the formation of covalent bonds between adja-

cent fragments of DNA. Ligation, in molecular cloning represent the technique that allows

to incorporate a DNA fragment (insert) into a plasmid (vector). The reaction catalyses the

formation of a phosphodiester bond between the 5’ phosphate (P) and 3’ hydroxil (OH) ad-

jacent groups. Going forward, the elongation of the DNA, is instead, performed by the DNA

polymerase, an enzyme that is able to "add" nucleotides. This protein is responsible for the

DNA replication. It requires a single stranded DNA (ssDNA) as template, nucleotides as

building blocks and a short existing sequence called primer, that is bound to the template

and will initiate the extension. To remove nucleotides, the DNA nucleases, are instead,

able to cleave one nucleotide at the time and degrade in an orientated specific manner, the

DNA strands. Restriction enzymes of class II, have instead the capability of cutting DNA

sequences in specific sites, breaking phosphodiester bond and generating overhangs called

sticky ends or blunt ends, if the molecule ends with paired or unpaired nucleotides.
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2.2.1 DNA vs RNA

The RNA molecule presents the ribose as sugar backbone, thus, it is a ribonucleic acid.

This molecule express the information contained in the DNA, playing the important mes-

senger rule. The step that converts the DNA in messanger RNA (mRNA) is well known as

transcription that will lead to the translation of the information into an actual protein. The

thymine base, is substituted in RNA with uracil (U), meaning that every adenine base will

be read as a uracil.

2.3 DNA Nanotechnology Overview

Watson and Crick nucleic acid double helix predictability, has been completely revolution-

ary for DNA nanotechnology, in the past 20 years, leading the scenario for a broad range of

nanomachines such as switches, circuits, 2D-3D DNA origami folding [18] [19], novel DNA

geometrical objects [20] and ultimately, towards DNA programmability [21]. Behind the

DNA complementarity (A-T and G-C), exists an intrinsically algorithmic nature that makes

DNA a valuable molecular kit to assemble molecular circuits at a nanoscale level, with DNA

nanostructures as a way to design complex (possibly dynamical) structures. Structural DNA

nanotechnology, takes advantage of DNA complementarity, relying on the hydrogen bound-

ing of the DNA hybridization [22] as a fundamental mechanism operating at the molecular

level. Sequence design marks the crucial first step to engineer DNA nanocircuits [23]

The idea started to became popular in 1982 when [24] Seeman et al, introduced the concept

that nucleic acids can associate to form junctions capable to covalently engineer 3D nucleic

acids structures [25] [26] [27].

But roots of this novel approach are back in 1959, when an American physicist, Richard

Feynman had the intuition that building "sub-microscopic" computers was possible and that

50 atoms were capable to store one bit of information [28]. But it was only in 1994 that an

American Computer Scientist, Leonard Adleman [29] used DNA double helix predictability

to compute and perform the first experiment in the subject.

Adelman’s experiment was a proof-of-principle study, consisting in designing a given n-

vertex graph, and solving the Hamiltonian Path problem [30] (Fig 2.3 Panel A and B). The
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problem was testing all the possible paths from vertex "0" to vertex "6" according to an

established set of rules, to find the only combination visiting each vertex just one time.

The experiment, marked a new wave of doing computation and an initial excitement for

nanoscale assembling and computation.

Figure 2.3: Hamiltonian Path problem. (Top image taken from [29]) showing the direct
graph and the path that goes from vertex "0" to vertex "6", and stops only once in each vertex.
Bottom: example of vertex and distances between vertexes encoded in DNA sequences with
direction 5’→3’

The nanotechnology community is widely attracted by the DNA in the form of a single-

strand, which is a crucial intermediate in many cellular processes (e.g., replication, tran-
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scription and recombination of DNA) [31]. A single stranded DNA molecule, has the phys-

ical property of folding into a secondary structure, creating loops which provides a wide

range of functionalities e.g., protecting the ssDNA from the degrading nucleases activity

[32]. A ssDNA is considered as very flexible and dynamic structure free from hydrogen

bounds [33], although molecular stacking has to be taken into account, since it has been

observed in ssDNA non containing secondary structures, at temperatures below 10◦C [34].

In Table 2.1 is listed a range of software currently available to predict ssDNA and RNA

secondary structures.

Software Specifications

Vienna Fold [35] Predicts a secondary structure from a single sequence
M-fold [36] web server for nucleic acid folding and hybridization prediction
NUPACK [37] Analysis and design of nucleic acid systems.
oxDNA [38, 39] Coarse-grained DNA model.

Table 2.1: Popular DNA/RNA secondary structure prediction software

2.3.1 DNA Nanotechnologies used in this study

DNA nanotechnology is successfully becoming a practical platform for implementing in

vitro nanoscale structures exploiting the capabilities of kinetic and binding rates, where

DNA sequences are decisive for a successful hybridization.

Hybridization is followed by component assembly and double stranded "sticky ends" (over-

hanging ends) can be used to link the sugar phosphate residue of a nearby DNA duplex

molecule. This mechanism will tightly lock the structure, with covalent bonds and high

affinity, thus, sticking the individual DNA pieces in a stable and dynamic structure.

Along the side of DNA hybridization, DNA strand displacement (also known as "Toehold

mediated strand displacement") [7] has made possible the implementation of kinetically con-

trolled DNA systems (e.g, DNA gate architecture [40] [41], DNA transport device inspired

by microtubulis [42] and a molecular engine [43]), and DNA-fuelled molecular machines

made of DNA, where DNA is used as "fuel" and structural material [44]. Reactions involved

in both hybridization and displacement have the advantage of being enzyme-free and the

molecular species are represented by DNA strands [45]. Limitations of the technology are

represented by the possible interference between molecules in the system. Sequences have
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to be designed carefully to prevent undesired interactions.

DNA strand displacement reaction rate is controlled via a single strand overhang (henceforth

"toehold") exchange that has been proved to be much slower than DNA hybridization [46–

48], thus, representing another limitation. Toehold stability, represents another bottleneck

for an efficient displacement where mismatches, composition and length of the sequences

involved can significantly affect the reaction rate constant [49].

2.3.1.1 DNA hybridization

DNA hybridization is a well known mechanism that leads to the association of two random-

coil single-stranded DNA covalently bound in a DNA duplex (Fig.2.4). The phenomena was

introduced in 1963 and described as system where a phase called "nucleation" is followed

by a second stage called "zippering". [50].

DNA nucleation is the initial process where two random-coil single-stranded DNA (ssDNA),

are recruited in an order of milliseconds, and few base pairs will bind together [51], while

searching for the correct complementary one. The base pairs will not immediately find the

complementary ones, and there is a phase of attaching and detaching before achieving an

equilibrium and the correct assembly. Models described by a coarse-grained DNA model,

called "oxDNA" [38] demonstrated that high temperature can decrease the efficiency of the

process and decrease the rate constant [39] .

The "zippering", is that phase that will follow the nucleation, and has a very fast progression.

Hybridization reaction has been widely used in the scenario of nanotechnologies, because of

its strong non covalent bound, extremely crucial in important molecular events (e.g., DNA

repair).

DNA hybridization, is a thermodynamically well known strand association, and the rate

constant strongly increase with temperature, salt concentration [52], [16] [53] and depends

on pH, length and composition of the sequences[53] [16]. The kinetics of duplex formation

was explored using the temperature jump technique [52], and classified as a second order.

Sequences with a high percentage of GC content can slower the helix dissociation from six

to eight order of magnitude and enthalpies of activation are about 25 to 50 kcal/mole [52].

Duplex stability is much better understood than duplex reactivity. Two main ingredients
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control the stability of the DNA double helix: i) base pairing, and, ii) base stacking. Looking

closely at the thermodynamic of the DNA duplex, stability does not directly depend on base

pairing. As a matter of fact, the aromatic rings of the base pairs show a coplanar alignment

of the π orbital [16] which is sequence dependent [54]. Kinetics of DNA hybridization is

still not completely resolved, and thus remains particularly arduous to control.

Figure 2.4: Stages of DNA hybridization. (Image taken from [39]). Schematic of the hy-
bridization process and hybridization rates, (a-e) represents the stages of the hybridization,
from the nucleation to the zippering. (f) Hybridization rate depending on Temperature.

2.3.1.2 DNA Strand displacement

A Toehold mediated strand displacement or DNA strand displacement reaction (SDR), is a

mechanism mediated by the toehold (short overhang domain) that will allow a DNA duplex

to receive a new single strand DNA, called "invader" strand. The toehold can hybridize

with the "invader" strand, thus, progressively releasing and replacing the originally bound

strand through a process known as "three-way branch migration" [55], leading to a toehold-

mediated DNA strand displacement [46] where the original hybridized "incumbent" strand

will be pushed apart. The toehold mediated reaction is an elegant example of how an orthog-

onal reactions can support complex behaviours without the usage of enzyme and at room

temperature. The hybridization is determined by the length of the toehold [7]. The crucial

steps of the process are (i) the Toehold binding, (ii) the branch migration and finally (iii) the

strand displacement. A Schematic of the species involved is represented in Fig.2.5.

(i) Toehold binding: thermodynamically downhill, either reversible or irreversible.

The toehold is activated via hybridization. The sequence is typically 4-20 nucleotides. The

effect of the toehold length has been reported by Yurke at al., [7] as a limiting factor for

the kinetic of the displacement. The longer the toehold, the higher the biomolecular rate

constant, which can differ over six orders of magnitude. The toehold binding with the
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"invader strand" can be reversible, depending on sequence composition and length it can be

more prone to dissociate or to continue the reaction toward the displacement. The incumbent

strand is a region that is complementary to the target strand, but also to the "invader". Thus,

the "incumbent" strand and the "invader" strand can hybridize (Fig.2.5). It is important that

the reaction is set in a chronological order, to provide control and programmability. Studies

also demonstrate that there is a rate at which the incumbent can dissociate from the target

strand [7].

Figure 2.5: DNA strand displacement molecular species. A brief description of the molec-
ular species involved during the hybridization, branch migration and displacement reactions.
Sequences indicated with an apex are complementary to the correspondent ones. Black lines
indicate the branch migration domains (b, b’). Red dotted lines indicates toeholds domains
(c, c’). Blue line overhang sequence does not participate in the reactions (a).

(ii) Branch migration: thermodynamically neutral, random walk, reversible.

Both "invader" and "incumbent" strand are provided with a branch migration domain that

will ultimately promote the strands exchange. At this point of the reaction, the "incumbent"

and the "invader" will compete to bind the target, exchanging base pairs with it. The branch

point will slowly proceed back and forth (the movement will occur at the same rate), and

this action has been described as a random walk [56].

The reaction is thermodynamically favourite by the toehold binding, thus promoting the re-

action forward. The presence of mismatches at different positions along the branch migra-

tion domain can affect the displacement reaction, and this could not be completed. Despite

researchers demonstrating how length and mismatches can be fundamental parameters and

kinetic rate can exponentially depend on them [47], it remains still very challenging to quan-
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titatively predict the kinetic constant from toehold sequence. Rate constant for 1 nucleotide

toehold and a 20 nucleotides branch is on the order of 106 M-1 s-1 [47].

(iii) Strand displacement: thermodynamically downhill, irreversible.

Eventually, after the branch migration is complete, the incumbent strand will be totally dis-

placed, whereas the invader will bind the target strand with a fully Watson-Crick hydrogen

bonding. An overview of the strand displacement process is described in Fig. 2.6.

Along this line, the method represent a powerful tool for high level molecular programming

and computer based simulation.
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Figure 2.6: DNA strand displacement cascade. A brief description of DNA strand dis-
placement cascade. The first step of the process is represented by the (i) Toehold Binding,
followed by the (ii) Branch Migration, and the completion of the (iii) displacement.
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2.3.1.3 Applications and State of the Art

Recent applications of laboratory-scale DNA computing (Table 2.2) includes examples of

finite automaton [57], autonomous DNA programmable modules that can control the levels

of messanger RNA in vitro [58], DNA Boolean networks based on catalytic nucleic acids

(DNAzymes) systems [59] [60], and the implementation of a finite state machine where

DNA sequences represents state and transition rules triggered by a clock signal which allows

parallel operation [61]. These works demonstrate that DNA not only represents a promising

material to solve computational problems, as demonstrated by Adelman et al, [29], but also

a novel platform to built DNA compilers [62] and implement Boolean logic gates [63] [64].

Moreover, it provides a novel computational answer to chemical reaction networks (CRNs),

but also a way to expand the complexity of CRNs molecular components to a DNA polymer

level [45] and built smart DNA XOR gates networks with autonomous behaviours [40]. In

the CRNs design proposed by Qian et al in 2011, they employ reversible interactions to

directly implement a reversible-stack data structure and switch the device from one config-

uration into another via strand displacement cascades, using a combination of three single

strands. The majority of the work done so far has been about information processing and

thus there is a lack of data structures and hence the relevance, importance and novelty of

this dissertation.
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MACHINE OPERATION SYSTEM AND RE-
ACTIONS

Programmable finite automaton [57] Software and inputs encoded by ds-
DNA. Usage of restriction enzymes,
DNA hybridization, ligation

In vitro modular DNA automaton [58] Usage of ssDNA and DNA Hy-
bridization to control mRNA levels

Libraries of DNAzyme subunits [59] DNA based computational platform.
For assembly of logic gates and half
adder .

"MAYA" molecular automaton [59],[60] A computational approach to build
deoxyribozyme Boolean network of
23 molecular logic gates.

Efficient Turing-universal computation with DNA polymers [45] Design of a strand displacement cas-
cades for addition and removal of
monomers from the end of a DNA
polymer.

A clocked finite state machine [61] States, transition rules and input rep-
resented by ssDNA.

This work: A DNA stack machine [65] Based on DNA hybridization, DNA
strand displacement and ssDNA data
and operations.

Table 2.2: Recent nanotechnological approaches implemented via DNA Hybridization
and/or DNA Strand Displacement.

2.4 Synthetic Biology Overview

The term “synthetic biology” (SB) was used in 1979 by a biologist from the University of

Freiburg, Barbara Hobom, in an article for a german newspaper, Frankfurter Allgemeine

Zeitung [66]. Hobom used the expression as synonym of bioengineering, referring to the

concept of bacteria genetically engineered via recombinant DNA technology. Later on, syn-

thetic biology became associated with the idea of "redesigning" life. This would be realised

through the synthesis of organic molecules that mimic natural ones (such as enzymes) [67],

engineering-driven novel applications, de novo DNA synthesis for artificial gene networks

[68], and computational redesign to reprogram signalling pathways [69]. The field started

to become an increasingly inclusive concept [70, 71], with a different approach from clas-

sical genetic engineering, embracing both system design and system fabrication. In [72],

"Ten Grand Challenges" were presented for the Synthetic Biology community, which are

still relevant today and likely to remain so for many years to come, namely:

1. Reaching a consensus on synthetic and streamlined genomes
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2. Cooking from scratch (bottom-up)

3. Learning from nature: naturally evolved reduced minimal genomes

4. Refine and make reality the notion of biological chassis

5. Manufacturing engineered biosystems

6. Overcoming physical and chemical constraints

7. From models to cells and back

8. Replication and reproduction

9. Towards an integrated design strategy of synthetic organisms

10. Coupling scientific development and public opinion information

There has also been an effort to guarantee "plug and play" adaptability via implementation

and use of standard biological parts [73].

The area lies at the interface of a variety of disciplines ranging from biology through chem-

istry, physics, computer science, mathematics and engineering [67], thus representing a mul-

tidisciplinary area of biological research, employing the expertise of a range of fields. It is a

rapidly growing platform for the design and manufacture of non-natural biological systems

with the grand aim of allowing cells to carry out functions designed by scientists, where, a

deep understanding of transcription networks, networks motifs and signal processing rep-

resents the key to synthesize novel biological networks to implement novel functionalities

(e.g.,"genetic memory" and circuits acting as cellular event counters).

The discipline builds a deep understanding of biological systems with conceptual in silico

tools using the descriptive language of Computer Science (e.g. Models, Simulation, Evo-

lutionary Design & Optimization) to address old questions and challenges with approaches

inspired by traditional engineering disciplines (Fig. 2.7).

These novel bio-systems could potentially be programmable computing devices, encoding

genetic circuits that function like their electronic counterparts (e.g., logic gates, oscillators

and pulse generators) and genetic programs to be executed by introducing data into live cells

to be processed.
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Figure 2.7: The design–build–test–learn cycle of Synthetic Biology.. Source: Royal
Academy of Engineer, 2009 Report: "Synthetic Biology, scope applications and implica-
tions.
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2.4.1 DNA recombinant technologies used in synthetic biology

To work towards Synthetic Biology goals and ultimately engineering bacteria, recombinant

DNA technologies, offer a wide range of molecular tools. In the early 1970s, the advent of

genetic engineering using recombinant DNA technology revolutionized molecular biology

[74]. DNA cloning technology made use of restriction enzymes, to recognize and cleave

specific sequences on a DNA strand breaking phosphodiester bonds [75], and DNA ligase

allowing the ligation of DNA fragments into specific vectors. Soon after, in 1983 the advent

of another technology, the polymerase chain reaction (PCR), [76] marked new extended

possibilities, capable to amplify a specific region of a DNA strand, with the usage of two

primers that are complementary to the 3’ ends of each of the sense and anti-sense strand of

the DNA target. In 2003, 20 years after the revolutionary PCR, The J. Craig Venter Institute

(JCVI) assembled in a unprecedented amount of time (14 days) a synthetic genome. The

assembling was used to complete the 5386 bp genome of a φX174 Bacteriophage from

synthetic oligonucleotides [77]. Since then, a variety of new assembly and genome editing

methods were released and nowadays routinely used in molecular biology laboratories [78].

The most promising is represented by the CRISPR/CAS9 genome editing system [79]. The

system introduces a break in dsDNA targeting a specific chromosome site recognised via

a guide RNA (gRNA) that matches a 20nt sequence on the chromosome, flanked by an

adjacent domain (PAM sequence). The DNA cleavage produces a blunt cut and is than

repaired via homologous recombination. The system is a promising and attractive genome

editing platform.

Therefore, usage of recombinant DNA technologies represents a powerful platform to ad-

vance in the synthetic biology research. Recombination systems from yeast and bacterio-

phage have been applied to experiments targeting suitable chromosomal positions, promot-

ing expression cassettes exchange, inversion and translocation. Saccaromyces Cerevisiae

FLP/FRT and bacteripohage P1 CRE/lox systems have been used for synthetic biology pur-

poses [80] [81]. They are widely used because of their ability to mediate both integration and

excision at exact sites of the genome. These systems also have site-specific recombination

(SSR) which avoids the random insertion of genes into the chromosome.
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2.4.1.1 Cell-based genetic memory

More sophisticated designs have aimed to build logic systems with a temporary memory,

through the usage of recombinant DNA technologies. Synthetic Biologist researches have

tried to implement genetic memories circuits, but few advances were achieved in the last 5

years with various degrees of success. First steps were taken in 2008 when a “double inver-

sion recombination switch” memory system encoding its state in DNA using an invertase-

based system was capable of ‘"flipping" a DNA region to turn on and off specific genes [82].

In 2009, Friedland et. al., [83] took significant steps to build genetic counters that lead to

the expression of desired proteins after processing input signals, including the "Riboregu-

lated Transcriptional Cascade" (RTC) counter and the“Single Invertase Memory Module”

(SIMM). But it is only in 2010, that Bioengineers of Stanford University have implemented

a rewritable digital data storage using DNA: called the "RAD" module [84]. This rewritable

DNA-based memory module can reliably store digital information in living cells and could

be used to track cell division and differentiation events in studies of ageing and cancer. The

module is a recombinase addressable device, that can flip the DNA fragments. It uses a

serine integrase and excisionase recombinase and chemical inputs to set or reset operations,

and activate the transcription of specific DNA fragments respectively corresponding to “1”

or “0” of a binary alphabet for 1 bit of memory. But expanding the capacity of the system

represent a big limitation in terms of controllability, to get 8-bit of memory, for instance,

the counter would require 256 input pulses and 16 recombinases, thus making the system

very unstable and difficult to control. In 2014, a platform called SCRIBE (Synthetic Cellu-

lar Recorders Integrating Biological Events) was released for analogue, rewritable, cellular

recording by generating single-stranded DNA (ssDNA) [85]. The circuit is able to convert

genomic DNA into a living tape that can store information into a cell population in the

presence of a specific signal (e.g., a small molecule), an mRNA containing a specific target

with a point mutation sequence is produced, a reverse transcriptase, recognise the sequence

and partially reverse transcribe the mRNA, creating an hybrid cDNA/mRNA moelcule (ms-

DNA). Specific proteins will bind the msDNA and target a sequence on the genome and

catalyse a site specific recombination. After cell division, one of the daughter cells contains

the msDNA and will pass the information to the next generation. The disadvantage is that

the frequency of recombination is very low so just a small number of cells will undergo the
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recombination.

In these works the memory capacity and scalability represents a crucial aspect for the stor-

age of information in living cells. The usage of a combination of promoters could in theory

make these systems more controllable but still with unlimited capacity. This is the aim of

the in vivo tape prototype, presented chapter 4. The system core, uses a novel retrotranspo-

son technology, called Targetron, which could potentially implement an unlimited capacity.

This could represents a new advance in the storage of digital information in living cells pro-

viding an opportunity to make "biology easier to engineer". Recombination systems and

usage of the described circuits are listed in Table 2.3

CIRCUIT RECOMBINATION SYSTEM AND USAGE

Double inversion recombination switch [82] fim and hin invertase systems. Permits the inversion of spe-
cific chromosomal segments.

RTC counter [83] T7 RNA polymerase. Riboregulators with a stem-loop
structure. Count brief arabinose pulses.

SIMM [83] Recombinase Cre and flp. Synthetic circuits to maintain
genetic memory of low-frequency events.

RAD [84] Bacteriophage integrase and excisionase system.
Rewritable memory module to track cell division.

SCRIBE [85] Expression of ssDNAs from engineered retrons that use
a reverse transcriptase protein to produce hybrid RNA-
ssDNA molecules.

This work: An in vivo Tape Data Structure Based on intron II technology and integrase system. Stores
and accumulates digital information in living cell.

Table 2.3: Main features of systems representing advances in molecular circuits

2.4.2 Molecular Biology technologies used in this study

The in vivo tape prototype, presented chapter 4, is based on an Intron II technology and inte-

grase system with the aim of storing and accumulating digital information in living cell. The

following subsections provide a detailed overview and applications of both technologies.

2.4.2.1 TargetTron Technology

The TargeTron gene knockout system from Sigma Aldrich R© allows for the knocking out of

bacterial genes by insertion of group II introns. The system is based on a specific ribozyme,

comprising by the mobile group II intron from Ll.LtrB from Lactococcus lactis, and it
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operates via a site-specific retroelement that can invade a cognate sequence [8][9]. Two

key features of group II introns are the intron RNA and the LtrA intron encoding protein

(IEP). To direct the group II intron to disrupt a specific gene, the RNA portion of the intron

must be mutated in three specific regions, denoted as exon binding sites EBS2, EBS1, and

σ (complementary DNA target sequences are the intron binding sites IBS1, IBS2, and σ ’)

involved in the base pairing and located in two different RNA stem loops, denoted as d1 and

d3, showed in Fig 2.8 [86].

The intron RNA and the LtrA protein are transcribed into a single transcript, the intron RNA

is encoded at the 5’ end, while the IEP is at the 3’ end. The IEP is a protein which provides

for four functions, a maturation function for intron RNA splicing, a DNA binding activity

for target site, an endonuclease activity and reverse transcriptase activity [8]. Following

translation of the LtrA protein, the next step is the maturation activity of the LtrA protein.

After translation, this protein binds the unspliced intron, and promotes the formation of the

active ribozyme, which is essential for the intron splicing.

Additionally the IEP, reverse transcriptase activity will reverse transcribe the mature intron

and insert it as cDNA into the target site. Upon intron splicing, the LtrA will form a ri-

bonucleoprotein complex (RNP) with the excised Ll.LtrB intron lariat, thus mediating the

mobility of the intron . The intron RNA and the intron-encoded protein (LtrA) recognise

the DNA target and perform the reverse splicing into the intron insertion site (IS) in the

target DNA, following in ligation of the 3’ end of the intron RNA to the 5’ end of the 3’

exon DNA. The IEP cleave the bottom strand, and reverse transcribes the intron RNA. After,

the intron cDNA is connected to the 5’ exon. This mechanism is known as "retrohoming

of intron II" is followed by degradation of the intron and second-strand synthesis (Fig.2.9)

A stable intron insertion is born to disrupt the target; this disruption is permanent, specific

and stable. The targetron gene knockout system from Sigma Aldrich provides an efficient,

specific and permanent method to generate gene knockouts [87] [88]

The mutation occurs into a 350 bp DNA fragment by using oligonucleotides that target the

intron to the gene of interest. These oligonucleotides are generated using the TargeTron

algorithm [89][90]Frazier et al. [8][87]. After multiple round of PCR, the mutated intron

PCR template is purified, cut and ligated into the TargeTron expression vector (Protocols

and Specifications are provided by Sigma Aldrich R©) and inserted into the host cell ei-
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Figure 2.8: TargetTron Technology. Top: Tertiary structure of the ribozyme and RNA
loops involved in the targeting process (EBS1, EBS2 and σ ). The green loop represents
the portion transcribing the LtrA protein. Bottom: LtrA protein (green) and EBS sites
targeting the correspondent IBS sequences. Image adapted from the Targetron website
(http://www.targetrons.com)
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Figure 2.9: Retrohoming of intron II. Adapted from the Targetron website
(http://www.targetrons.com)
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ther chemically or by electroporation. Utility of this technology has been demonstrated for

prokaryotic genetic engineering, systems biology and functional genomics approaches, e.g

ClosTron system, which allows the directed construction of stable mutants in Clostridium

species using a bacterial group II intron [91] [92] [88] TargeTron technology has been con-

firmed for use in prokaryotic genomes, to establish mutants (e.g. ClosTron system, which

allows the directed construction of stable mutants in Clostridium species) [91].
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2.4.2.2 φC31 Integrase and related recombination systems

Specific site recombinase (SSR) based approaches are becoming attractive methods since

they enables a specific integration in defined sites. Systems like Cre from Bacteriophage

P1, and FLP/FRT system adapted from yeast [93], catalyze recombination reaction as ex-

cision, inversion and DNA translocation. Both systems can catalyze a trans event related

to the insertion of circular DNA into the genome with the consequent creation of two cis-

positioned sites which are substrate for the excisionase [94]. Both systems do not show an

efficient selection-free identification of insertion [93] [94] and recently φC31 from Strep-

tomyces seems to be ideal for the insertion in mammalian genome [94]. The Streptomyces

φC31 derived integrase, has been widely studied and it belongs to the to serine recombinase

family. This family of recombinase catalyze the recombination event, recognizing specific

sequences known as attB and attP [94], chosen as candidate in the Tape System presented

in this study. The recombination event produce hybrid sites (attL and attR). These new se-

quences cannot be recognized by the integrase. The FLP/FRP and Cre-loxP systems can

be considered as a first generation of specific site recombinase (SSR) systems used as re-

combinase based technology, and based on them, many genetic tools have been designed in

the last 20 years [95]. A second generation, can be considered the RMCE technique, which

permits a fast modification of a defined chromosomal locus through targeted integration of

transgenes [93].

2.5 Conclusions

This chapter highlighted the advances in Nanotechnology via DNA Hybridization and DNA

strand Displacement, and in Synthetic Biology via recombination systems. The next part

(Part II) of this dissertation, will focus on the design and specifications of the in vitro and in

vivo prototypes. Firstly, chapter 3, will describe the hybridization and displacement reaction

cascades, implementing the in vitro stack data structure. Secondly, chapter 4 will describe

the in vivo tape design and specification using the SSR-based approaches via TargetTron

and φC31 Integrase systems.
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Chapter 3

Specification and Design of an In Vitro

DNA Stack Data Structure

This chapter introduces the design and specifications of a DNA stack data structure, oper-

ating via building blocks called "bricks". The bricks will interact via DNA hybridization

and DNA strand displacement, methods introduced in the previous chapter (chapter 2). A

coarse-grained DNA model was used to model the tertiary structure of the stack prototype.

3.1 Introduction

I propose a prototype of a DNA stack data structure that implements a stack machine and

represents a dynamic memory. A stack is an abstract data structure that serves as a linear

collection of elements, with two principal operations: push adds an element to the stack,

and pop removes the most recently added element that was not yet removed. Formally, this

is achieved through the interface

push : stack× element−→ stack

pop : stack−→ stack× element
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with the invariant

pop(push(stack,element)) = stack,element

e.g.,

push(d,abc) = abcd

pop(abcd) = d,abc

with the invariant

pop(push(d, abc) = abc,d

to guarantee last-in-first-out operation. Further common but non-essential operations such

as peek (return the last element without removal) and empty (return true if the stack experi-

enced at least as many pop as push operations) are not provided in this prototype implemen-

tation.

Fully implementing this data type in DNA requires molecular realizations of the assembled

stack, all potential elements, as well as the push and pop operations. This is achieved by

associating each data element and each operation with a single-stranded DNA (ssDNA) with

partial secondary structures. Those strands are called "bricks", schematic representation is

shown in Fig.3.1.

Table 3.1 lists the nucleotide sequences of all domains designed by my collaborator Jerzy

Kozyra with a genetic algorithm [65].

domain sequence length domain sequence length
a TCTCCC 6 hLy GCACGCTCGAGCTCGTATCGCAGTA 25
b GCCA 4 kx,ky CTCTAATCAC 10
c GCACACACTTC 11 kLy CATCCCTATA 10
d ACACCACTTC 10 lx, ly AGACAAAAAA 10
e GGGAGACCAA 10 lLy ATTTTTTTCC 10
f CGGCGG 6 x/y AGACCGCTAAA/ATACTGCTTTA 11
g CTGCC 5 m TATGACTGCAA 11

hx,hy ATTAGTAGGT 10 Ly ATACTGCTTTA 11

Table 3.1: Sequence specification of domains in the design. The ssDNA strand sequences
has been divided into domains. Sequences are indicated in 5’→3’ direction.
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Figure 3.1: Schematic of the different bricks involved in the DNA stack.(a-c) bricks involved
in the data storage cycle. (d-e) bricks involved in the reading cycle. (f) non essential brick
in the stack operations. Domains are specified by letters, where the apex implies comple-
mentary domains, e.g.: a’ is complementary to a. Different letters e.g. a and b are implied
to be non-complementary. Arrows indicate 5’→3’ direction.
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The stack data structure is built from bricks via hybridization of complementary DNA do-

mains. More precisely, the stack forms a double-stranded DNA (dsDNA) assembly with

essentially no single-stranded regions but one active toehold domain, that offers an entry for

operation. Data bricks form the top strand and push bricks form the bottom strand of this

dsDNA assembly. To prevent runaway processes (uncontrolled elongation of the stack) that

might occur when adding bricks in realistic concentrations, the device to toggle between two

states in all modes of operation referred as data state and operator state. When the stack is

in data state, it will accept a single data brick. Upon binding this data element, the device

toggles into the operator state in which it cannot further interact with data bricks, but instead

awaits a new operator brick such as push. Again, only a single operator brick is accepted,

and by interacting with it, the stack toggles back into the data state.

The design differs from the one proposed by Qian et al. in several important aspects:

1. all data and operations were implemented as single DNA strands, whereas Qian et al.

employ bricks of up to three DNA strands.

2. The assembled DNA stack is entirely double-stranded and does not feature any dan-

gling single-stranded overhangs, which is used by Qian et al. in 2010, to store the

actual data elements.

3. Instead, in this design data is encoded in internal secondary structure motifs in the

double strand, namely in hairpin loops that form holiday junctions.

4. The stack modes of operation are based on DNA interactions that are effectively irre-

versible at the operating temperature. Qian et al.’s design, in contrast, employs only

reversible interactions and relies on detailed balance to drive the device from one con-

figuration into another.

The stack prototype take these design decisions, in order to minimize the amount of re-

quired distinct DNA sequences and to obtain maximally robust modes of operation, espe-

cially when envisioning ultimate in vivo applications.
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3.1.1 Data and Operator Brick Design

The DNA data structure device operates with six distinct DNA bricks (Fig.3.1) and is able

to store combinations of two different signals, encoded by two types of data elements. Two

further bricks are added for experimental analysis.

• Start: data brick designating the beginning of the stack data structure. It features

a toehold domain for interaction with push and a hairpin motif at the 5’ end. This

hairpin undergoes branch migration with a complementary hairpin in push but is oth-

erwise not functional in the current design. The 3’ end can be biotynilated for further

functionalization.

• Push: operator brick to initiate subsequent signal data storage. The brick contains

the complementary toehold for interaction with start, a hairpin motif complementary

to the one in start, a second hairpin that does not participate in branch migration

and exists for structural reasons, and two toehold domains, one on each side of the

structural hairpin, to bind write bricks.

• Write: data bricks that can be stored in the stack data structure. These bricks contain

two toehold domains complementary to the push toeholds, a structural hairpin that

does not undergo branch migration, plus the same toehold domain and 5’ hairpin that

form the start brick. Toehold domains and branch migration hairpins are identical

for all types of write bricks. Thus, they can only differ in their structural hairpin

motif. Since these hairpins do not participate in hybridization or branch migration,

they can be functionalized to host any desired functionality such as recognition sites

for DNA binding proteins. Spacing and spatial arrangement of these data loops can

be controlled by altering the length of toehold domains.

Two different types of write bricks, denoted as write-X/Y and write-Ly, were em-

ployed. Write-Ly features a longer hairpin stem than write-X/Y (twenty-five base pairs

against ten base pairs) and has a different sequence in its stem loop. Whereas all other

hairpins in the design employ shortest possible stable loops, the structural loop of

write bricks contains a significantly longer single-stranded loop domain.
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• Read: operator brick that removes the rightmost write operation. The brick is the

complement of all toehold domains used in write’s. Notably, it does not contain any

domains that interact with the structural hairpin of write bricks.

• Pop: data brick that undoes the rightmost push operation. This brick is the exact

complement of push

• Report: non-essential bricks for experimental analysis. Report bricks do not partici-

pate directly in the operations of the stack. Instead, they interact with the data domains

of structural hairpins in the write bricks. Reporters can be added to the device in any

configuration since their binding sites in the data hairpins are always accessible and

since they do not interfere with the operating modes of the device.

Domain sizes have been chosen with the following objectives: toeholds are long

enough to span a single helical turn when hybridized with their complements (10

nt) which should promote irreversible hybridization. Hairpin loops that participate in

branch migration are long enough to promote stable stems (6 base pair stems with 4-5

nt loops) but short enough to obtain quick branch migration times. The single-stranded

loop domains of write bricks is long enough (31 nt) to prevent steric restrictions to hy-

bridization with complementary reports. The structural hairpin loop of write bricks

together with the unpaired domain of report are long enough to accommodate 5 nm

and 10 nm diameter nanoparticles in close vicinity to the device.

3.1.2 Modes of Operation

DNA hybridization, branch migration and strand displacement are the three processes gov-

erning all involved DNA interactions. All reactions are energetically downhill, driven by the

binding energy of the closing toehold domains.

3.1.2.1 Data Storage

A schematic of the Data Storage process is shown in Fig.3.2. Starting from an empty stack

(Fig.3.2 (a)), which is represented by the start brick, the device is toggled into its data state
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by providing a push operator (Fig.3.2 (b)). The start-push interaction begins by irreversibly

binding toehold c and continues via branch migration among the two complementary aba’

domains (Fig.3.2 (c,d)). The stack (Fig.3.2 (d)) is now in its data state, where a single open

toehold region (d’e’) can recruit a write brick (Fig.3.2 (e)). The write will partially hybridise

with the d’e’ push toeholds, thus toggling the stack back into its operator state (Fig.3.2 (f)).

In this state, the stack exposes the same toehold-hairpin interface that characterises the start

brick, which allows the device to undergo subsequent rounds of data storage .

Note that the assembled stack is essentially double-stranded with a single exposed toehold

domain. Because the structural hairpins of neither the push nor the write participate in

branch migration, the stack will form holiday junctions for each stored data element. As

data specific domains are encoded in the loop regions of this holiday junction, the data

storage cycle is independent on the actual written data.

c a

a'
b

c
a a'

b

b'

aa'
d'c'

g'

ff'
e'

c a a'b

b' aa' d'c'

g'

ff'
e'

b'

aa'
d'c'

g'

ff'
e'

c a a'b

b' aa' d'c'

g'

ff'
e'

c a

a'
b

d e
hh'
lk

x

c a

a'
b

d e
hh'
lk

x

start

push

write-X

(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.2: Schematic of the data storage process.

3.1.2.2 Reading

While data storage proceeds from left to right in the schematic Fig. 3.2, reading will proceed

from right to left, thereby undoing any data stored in the last-in first-out manner required by
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Figure 3.3: Schematic of the reading process.

the stack specification. A schematic of the data storage is shown in Fig. 3.3.

Assuming the stack in operator state (f), providing a read brick (g) will peel off the last

stored write brick (h), thereby toggling the device back into the data state (h). This reaction

proceeds in two steps: first, the read brick hybridizes to the stack at its unique exposed c

domain. Secondly, the dangling d′e′ domains of the read brick initiates a three-way branch

migration with the d′e′ domains of the adjacent push brick against the domains of the write

brick, until the push strand is completely displaced. Note that the data hairpin of the write

brick does not participate in the branch migration. This ensures that a unique read brick can

interact with any write brick, ensuring that data elements can be read from the stack without

a need to know which information has been stored. The resulting read-write complex (h)

is completely double stranded and will not participate in further DNA interactions. In its

data state (h), the stack can either be extended again with another data element by switching

to the data storage operation, or reading can be completed by toggling the stack back into

its operator state. The latter is done by providing a pop brick (j) that will interact with and

peel off the exposed push brick. Analogue to the previous reaction, pop-push interactions

are composed of their initial irreversible toehold hybridization, subsequent branch migration

and eventual strand displacement. Again, the resulting push-pop complex (k) is completely

double-stranded and will not participate in further DNA interactions. Strictly speaking,

this implementation of the reading cycle violates the stack invariant: while data storage and
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subsequent reading of a single data element leaves the stack invariant, the data element itself

has been altered as it is now hybridized with a read strand. This could be easily amended by

extending the read brick with an additional domain that does not interact with any domain

present in this design. This would introduce an active toehold into the currently inactive

read-write complex. An additional DNA brick, which is completely complementary to this

extended read, could then be introduced in order to displace the read brick from the write

brick, bringing the latter back into its single-stranded, active configuration. As the emphasis

of this work is on signal data storage, for which reactivation of the read-write complex is

not required, I have not followed this extension of the design.
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brick domains

start a′bac

push c′a′b′ad′ f ′g′ f e′

writei a′bacehl xi kh′d

read d′e′c′

pop e f ′g f da′bac

reporti mxi or x′im

domain length [nt] domain length [nt]
a,a′ 6 g,g′ 5
b,b′ 4 h,h′ 10
c,c′ 11 k 10
d,d′ 10 l 10
e,e′ 10 xi,x′i 11
f , f ′ 6 m 11

Table 3.2: Specification of domains in the design. The ssDNA strand sequences has been
divided into domains. Domains are specified by letters, where the apex implies complemen-
tary domains, e.g.: a is complementary to a’.

3.2 Reporter Strands and Biotin Functionalization

Data bricks can be functionalized to host many desired functionality. In this study, report

strands were 5’biotinylated via a 2.6 nm tetra-ethyleneglycol (TEG) spacer. These report

bricks were functionalized with streptavidin coated gold nanoparticles of different diameters

(10 nm for report-X and 5 nm for report-Y), which allows for easy recognition using trans-

mission electron microscopy (TEM). The estimation of the tertiary structure of the chain has

been provided by my collaborators Dr. Harold Fellermann and Jerzy Kozyra from some sim-

ple considerations: Assuming A-DNA conformation (raise 0.24 nm/bp, rotation 33.6◦/bp)

signal hairpins are separated by about 11 nm and lie in a 139◦ degree turn. The signal hair-

pin is orthogonal and 2.4 nm long. The biotin is separated from the signal binding site by

a to 2.6 nm spacer-TEG (tetra-ethyleneglycol,15 atom). It has been added to the 3’-ends of

the start brick, in order to attach it to streptavidin coated surfaces, if necessary. Assuming

B-DNA conformation (raise 0.34 nm/bp, rotation 35.9◦/bp) signal hairpins are separated by
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about 15 nm and lie in a 247◦ degree turn (-112.70). The signal hairpin is orthogonal and

2.4 nm long. Fig.3.4 (left) shows a schematic of this estimated structure. However, oxDNA

simulations [96] of a single start-push-write complex indicate that the assembled chain does

not necessarily extend straight forward but might instead turn in an angle at the holiday

junctions (Fig. 3.4 right).

Figure 3.4: 3D B-Conformation assembled structure.Representative predicted image of
X-Y-X-Y-X-Y Where reporter X has been attached to a 10 nm gold nanoparticle and re-
porter Y to a 5 nm gold nanopartcle.

3.3 Conclusion

This design contributes to the art of designing a DNA data structure using DNA hybridiza-

tion and DNA strand displacement cascades. The architecture implements a stack data struc-

ture with push and pop operations and allows for DNA data storage of multiple signal types.

Currently the lack of laboratory scale implementation of data structures are lacking, hence

the relevance, importance and novelty of this dissertation. Part III, chapter 5, will introduce

the experimental methods used for the implementation of the DNA stack data structure in

the laboratory.
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Chapter 4

Specification and Design of an In Vivo

DNA Tape Data Structure

This chapter describes the design and the specifications of a prototype for a tape data struc-

ture in vivo which could enable adding and storing inputs in a plasmid that can then be

analysed afterwards. Sequencing of the tape plasmid after the recorder bacteria is exposed

to the signals could reveal the information stored in a temporal order. The circuit is de-

signed in order to perform tasks sequentially under the control of two recombinase systems

(TargetTron and φ31 Integrase) which were presented in chapter 2.

4.1 Introduction

The implementation of the tape requires the assembling of a synthetic gene network and

the usage of a "blank" plasmid, recognition sequences (attR) in principle capable to accept

and store one event. The gene network is induced by an external signal (as to avoid run-

off events), and upon storing one event, the plasmid switches into a locked state in which

it cannot further accept and store a second signal, unless is re-setted, thus, another bit of

information can be accepted and the tape can be extended. The tape device presents a three-

module design, where each module accomplishes a specific task: signal detection (Module

I) data storage (Module II) and, system reset (Module III):

1. Module I: includes a repressor gene, which will maintain the circuit in a standby
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state. This module represent an interface element that allows an external signal (a

chemical inducer) to switch the state of the system ON and OFF. It is detects the

external inducer and initiates the transcription of Module II (circuit ON).

2. Module II: includes a recombinase gene (henceforth, retrotransposon) responsible

for the translation of a multifunctional protein that promotes the tape extension i.e.

implementing the actual data storage.

3. Module III: includes a second recombinase (henceforth, integrase) and hold its standby

state until a second external input activates the transcription of the integrase, respon-

sible for the tape reset.

This is schematically shown in Fig.4.1

   Module II
Retrotransposon
  Transcription 

  LtrA translation and 
      attR targeting  

    Module III
   Standby Mode

Arabinose

    Module I
  Standby Mode   IPTG

Signal storage

    Module I
    Activation

S
ig

na
l d

et
ec

tio
n

    Module III
      activation

S
ystem

 R
eset

Tape extension

Figure 4.1: Schematic representation of the tape recorder modules. Module I detects
an external inducer represented by the IPTG signal. Module II represents the core for the
signal storage transcribing the a self-splicing retrotrasposon, that targets and extends the
tape plasmid. Module III resets the system.

45



Chapter 4: Specification and Design of An In Vivo DNA Tape Data Structure

4.2 Tape Implementation

The recorder is a synthetic system which, upon detection of a signal (operated by Module

I), for example isopropyl beta D thiogalactopyranoside (IPTG) can store the event in a DNA

plasmid tape. Unlike other designs for in vivo data storage (e.g, [84, 85]) the presented tape

is not limited to a small fixed number of bits of information and can grow arbitrarily large.

In the current prototype I am only considering the storage of one event type, representing a

unary alphabet, as the modification of the system to binary or even larger order alphabets

(e.g. representing different events types) is trivial. The circuit is designed in order to per-

form sequentially different tasks and the control is mediated via the induction of specific

genes transcribing either a self-splicing retrotransposon to record the signal of interest or a

gene encoding a site-specific recombinase to reset the system. As briefly mentioned in the

previous section, the whole system is constituted of three components. Each step is exe-

cuted by a functional module to accomplish a specific function and carrying specific genes

and promoters, specifically:

1. Module I: comprises the lacI gene and the pTac promoter. Its task is to detect the ex-

tracellular signal, IPTG (Fig.4.2). The module is flanked by SacI and NotI restriction

enzymes cutting sites.

Figure 4.2: Schematic representation of Module I. The Module detects an external inducer
represented by the IPTG signal.

2. Module II: carries the trimethoprim (Tp) antibiotic dhfR gene and a non functional

pyrF (henceforth indicated as pyrF*) genes, as well as the engineered Ll.LtrB retro-

transposon based on the TargetTron system, [89][8][87] (see chapter 2, section 2.4.2)

which will target and disrupt a recognition sequences, referred as attR, on the "blank"
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plasmid. This retro-transposition is the central mechanism of the circuit and is es-

sential for the system, because it permits to run once and then become locked in a

stationary but reversible state, making the Module II the core of the recording mech-

anism. (Fig.4.3).

Figure 4.3: Schematic representation of Module II. The module represents the core for the
signal storage transcribing a self-splicing retrotrasposon, that targets and extends the tape
plasmid. The engineered targeTron is flanked by the Upstream and Downstream sequences
of the LtrB intron II (grey rectangles) and NotI and SpeI restriction enzymes flank the entire
module, comprising the LtrA protein.

3. Module III: carries the AraC protein and int-φC31, and represent the necessary el-

ement to reset and reconstruct the disrupted attR sequence. In this way the system

returns to standby and a new signal can be recorded attR target site, on the target plas-

mid. (Fig.4.4).

Figure 4.4: Schematic representation of Module III. The Module resets the system and is
flanked by SpeI and XhoI restriction enzymes sites.

A schematic representation of the entire circuit assembled is shown in Fig.4.5.
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Figure 4.5: Schematic representation of the entire tape circuit assembled. Full map of
tape including the restrictions sites used for its construction. The entire tape system is 9
kilobases (kb)

4.2.1 Intron re-tareting

The exon recognition sequences (ESB) on the Ll.LtrB intron II (Chapter 2, section 2.4.2.1)

were re-targeted introducing a suitable and cognate intron recognition sequences (attR) on

the target plasmid from the bacteriophage φC31 [97]. The intron recognition sequences was

designed using the attB and attP sequences (Chapter 2, section 2.4.2.2) and an online tool

implementing the Perutka Algorithm [90], the same algorithm used for the ClosTron intron

design for gene knock-out in Clostridium [98]. Once the attR is recognised by the intron II,

the Module II (excluding the LtrA gene) is inserted in the target plasmid disrupting the attR

(Fig.4.6). At this point, the plasmid will not be accessible to store another signal and will

have instead the attB and attP sequences.

retrotransposon : attR−→ attB× attP

The φC31 site specific recombinase recognises the specific sequence attB and attP on the

target plasmid and irreversibly recombines them, to reset the plasmid and rebuild the attR,

as shown in Fig.4.7:

Integrase : attB× attP−→ attR

A schematic of the accumulation of the signal is shown in Fig.4.8:

48



Chapter 4: Specification and Design of An In Vivo DNA Tape Data Structure

Figure 4.6: Retrotransposon attR targeting. Left: attR sequence on the target plasmid.
Right: The retrotransposase is produced and the remaining RNA folds into a retrotransposon
which target the attR site on the target plasmid and inserts the Module II carrying attB (green
rectangle) and attP (red rectangle). The system is now locked.

Figure 4.7: Integrase attB and attP targeting. The int-φC31 recombinase controlled by
the arabinose promoter (Para) induce the integrase to recombine attB and attP to reconstruct
attR site.

49



Chapter 4: Specification and Design of An In Vivo DNA Tape Data Structure

Figure 4.8: Accumulation of the signal. Left: the int-φC31 reconstruct the attR site. The
system is now unlocked and can accept a second signal. Centre: representation of the
accumulation of the signal (red flag) after 3 cycles of recording. Right:a schematic of the
target plasmid with signal accumulation.

4.3 Tape Operations

The tape system is designed to function in growing E. coli ∆pyrF cells undergoing cycles

formed by three consecutive steps: (i) standby mode, (ii) signal detection and recording and

(iii) system reset to standby mode.

4.3.1 Standby mode

The Tape data structure system incorporates the tac promoter which is a hybrid between

the strong trp and the inducible lac promoters [99]. In standby mode, Ptac is repressed by

the LacI protein and transcription of the engineered tape Ll.LtrB retrotransposon directly at-

tached to it does not occur. Approximately 0.9-kb downstream of the transcription initiation

point of the Module II Ll.LtrB retrotransposon [100], a dihydrofolate reductase gene (dhfR)

constitutively transcribed from its own promoter confers resistance to the cells to trimetho-

prim (TpR). Trimethoprim acts by interfering with the action of the dihydrofolate reductase

gene naturally encoded by the E. coli chromosome, inhibiting synthesis of tetrahydrofolic

acid, which is an essential precursor in the de novo synthesis of the intermediate thymi-

dine monophosphate (dTMP), precursor of DNA metabolite thymidine triphosphate. The

dihydrofolate reductase gene dhfR present in the tape is however insensitive to trimetho-

prim, allowing for the selection of cells carrying it. Transcription of the remaining part

of the tape Ll.LtrB from the TpR promoter does not generate a functional retrotransposon

as it requires the upstream 0.9-kb to be fully functional. Immediately downstream of the
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dhfR gene lies in the opposite orientation the pyrF* gene, constitutively transcribed from

its own promoter. The pyrF* gene does not code for a functional protein as it is inter-

rupted by a self-splicing group I intron that has been oriented so that it only excises itself

when transcribed in the opposite orientation to this gene. A functional pyrF gene codes for

orotidine-5’-phosphate decarboxylase, an essential enzyme for pyrimidine biosynthesis and

prototrophy. As the host carrying the tape system is by design a ∆pyrF mutant, cells car-

rying the tape Ll.LtrB retrotransposon in standby mode are not only uracil auxotrophs, but

also resistant to the metabolic poison 5-fluoroorotic acid (5-fluorouracil-6-carboxylic acid

monohydrate; 5-FOA) which would be otherwise converted by functional PyrF enzymes

into toxic analogues of 5-fluorouracil. Thus, E. coli ∆pyrF cells carrying the tape system in

standby mode have been designed to be selectable on minimal medium in the presence of

5-FOA and trimethoprim.

4.3.2 Signal detection and recording

Addition of the inducer IPTG inactivates the LacI repressor. IPTG binds LacI, inducing a

conformational change that prevents it from binding DNA and allowing transcription from

the tac promoter to proceed. Thus, upon detection of this signal the tape Ll.LtrB retrotrans-

poson is transcribed into RNA, including the regions encompassing the dhfR and pyrF*

genes. Transcription of the pyrF* genes in this orientation causes its group I self-splicing

intron to excise, thus generating an RNA sequence corresponding to a functional pyrF gene

but on the wrong strand to be coding for a protein. Further downstream of pyrF the IPTG-

induced transcript then encodes the LtrA retrotransposase which is produced. This multi-

function protein will then perform several tasks with the tape Ll.LtrB RNA transcript which

will itself fold into a ribozyme cofactor. Notably, by a process named retrohoming these

two components will (1) splice the part corresponding to ltrA out of the transcript, (2) bind

to a specific DNA target sequence (attR), (3) convert the processed transcript into cDNA

by reverse transcription and (4) integrate the cDNA into the target sequence, irreversibly

disrupting it (4.6). The part that integrates into the target sequence as double-stranded DNA

includes the dhfR and the now functional pyrF genes flanked by remains of the tape Ll.LtrB

RNA transcript. Hence, cells having successfully responded to the IPTG and recorded that

signal in such a way can be selected on minimal medium in the presence of trimethoprim and
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in the abscence of uracil. As an initial setup and to facilitate analysis and troubleshooting of

the system, it was decided that the target would be carried by pACYC184, a low-copy num-

ber plasmid, moderately unstable cloning vector that confers resistance to chloramphenicol

[101].

4.3.3 System reset to standby mode

The attR target sequence has been disrupted and the system is now locked, thus implying

that no additional signals can be recorded. To reset it, a mechanism to (1) excise the dhfR

and pyrF genes flanked by remains of the retrotransposon and (2) reconstitute a new tar-

get sequence was incorportated. This is accomplished in a single step by (1) flanking the

dhfR and pyrF genes by site-specific recombination sites (SSRS) and (2) making the SSRS

that results after recombination the target of the tape Ll.LtrB retrotransposon [86] (Fig.4.7).

After searching for SSRS that could be amenable to targeting by Ll.LtrB retrohoming [97],

attR from bacteriophage φC31 was found to be the best if not the only suitable candidate.

Therefore, to allow the system that was locked after the signal detection and recording to be

reset, the dhfR and pyrF genes were made to be flanked by attBφC31 and attPφC31 respec-

tively, and attRφC31 was cloned in pACYC184 [101] to constitute the recording plasmid,

with the necessary modifications for adequate Ll.LtrB function. Finally, the gene encoding

the φC31 recombinase was then placed under an arabinose-inducible pAra promoter accom-

panied by the araC [102] repressor gene. To reset the system, cells are therefore exposed

to arabinose which will induce the φC31 recombinase and excise the dhfR and pyrF genes

from the recording plasmid, rendering the cells again auxotroph for uracil and resistant to 5-

FOA. Flanking the dhfR and pyrF* genes in the tape system by attBφC31 and attPφC31 and

inducing the φC31 recombinase will also cause unwanted recombinations, e.g. between the

attB/attP sites present in the chromosomal part of the system, or between the sites present

in the chromosome and the plasmid. However, none of these unwanted recombinations will

end up causing uracil auxotrophy and resistance to 5-FOA, allowing to select only the cells

having performed the desired operation. Selection by the trimethoprime resistance gene

dhfR in the chromosome further guarantees the maintenance of the chromosomal element of

the system.
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4.4 Conclusions

Currently there are no computational modelling platforms available to simulate complex

next generation of synthetic circuits based on the heavy use of the rewriting of the genetic

structure of the synthetic device via, e.g. retrotransposons, such as the one I specified and

designed here. The available platforms can model transcription and translation processes but

not complex recombination events. Thus, this represents an issue in modelling the re-writing

by the core of the tape and represents a future opportunity for computational Synthetic

Biology research. The engineering and characterization of this system will be discussed

in Part III, chapter 6 and Part IV, chapter 8 of this dissertation. This work represents the

primary steps on the specification and design for a potential in vivo tape data structure.
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Chapter 5

Engineering of an In Vitro DNA Stack

Data Structure

This chapter offers a complete overview of all the methodologies used to engineer and im-

plement the in vitro DNA data stack prototype. The usage of a novel electrophoresis method

will be introduced and the limitations and advantages discussed. Furthermore, Transmis-

sion Electron Microscopy was used to image the final product and the application of the

Molecular Beacons was begun to be explored.

5.1 Implementation of the DNA "Bricks"

The DNA Stack implementation is achieved through ssDNA bricks encoding data and oper-

ations:

• Start: data brick designating the beginning of the stack data structure.

• Push: operator brick to initiate subsequent signal data storage within the stack.

• Write: data bricks that can be stored within the stack.

• Pop: data brick that undoes the rightmost push operation.

• Read: operator brick that removes the rightmost write operation.
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All the bricks are provided with toeholds domains which should promote irreversible hy-

bridization and hairpin loops long enough to promote stable stems but also short enough to

be easily accessible and obtain a fast branch migration.

The bricks nucleotide sequences for the data and operations were provided by my collab-

orators Dr. Harold Fellermann and Jerzy Kozyra (Table 5.1). Nucleotide sequences were

obtained with a custom-made genetic algorithm implemented with the open-source genetic

programming framework inspyred [103–106]. In the algorithm, genotypes consist of can-

didate primary sequences for all domains of the design. The fitness of an individual is

evaluated based on two factors: desired secondary structure and binding energies. Bricks

sequences folding, design and structure were tested using the Vienna RNA secondary struc-

ture program RNAcofold [107, 108] with DNA interaction parameters. Energy landscapes

were calculated with the oxDNA tool [46].
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bricks Sequence (5’→3’) Purification

start GGGAGAGCCATCTCCCGCACACACTTC - [Bio] PAGE

SmaI-start GGGAGAGCCATCTCCCGCACACACTTC

GCGAACCCGGGGCTC - [Bio] PAGE

SmaI [Bio] - GAGCCCCGGGTTCGC PAGE

SwaI-start GGGAGAGCCATCTCCCGCACACACTTCCCGACATTTAAATCAGC - [Bio] PAGE

SwaI [Bio] - GCTGATTTAAATGTCGG PAGE

push GAAGTGTGTGCGGGAGATGGCTCTCCCGAAGTGGTGTCCGCC PAGE

GGGCAGCGGCGGTTGGTCTCCC

write_x GGGAGAGCCATCTCCCGCACACACTTCGGGAGACCAAATTAGTAGGTAGAC PAGE

AAAAAAAGACCGCTAAACTCTAATCACACCTACTAATACACCACTTC

write_y GGGAGAGCCATCTCCCGCACACACTTCGGGAGACCAAATTAGTAGGTAGAC PAGE

AAAAAAATACTGCTTTACTCTAATCACACCTACTAATACACCACTTC

Long write γ GGGAGAGCCATCTCCCGCACACACTTCGGGAGACCAAGCACGCTCGAGCTC PAGE

GTATCGCAGTAATTTTTTTCCATACTGCTTTACATCCCTATATACTGCGAT

ACGAGCTCGAGCGTGCACACCACTTC

read GAAGTGGTGTTTGGTCTCCCGAAGTGTGTGC PAGE

pop GGGAGACCAACCGCCGCTGCCCGGCGGACACCACTTCGGGAGAGCCATCTC PAGE

CCGCACACACTTC

report_x [Bio] - TATGACTGCAATTTAGCGGTCT PAGE

report_y [Bio] - TATGACTGCAATAAAGCAGTAT PAGE

start 5’ GGGAGAGCCATCTCCCGCACACACTTC - Cy3 - 3’ RP-HPLC

push 5’ [BHQ-2] - GAAGTGTGTGCGGGAGATGGCTCTCCCGAAGTGGTGTCCGC-

CGGGCAGCGGCGGTTGGTCTCCC 3’

RP-HPLC

Anti-Start 5’ GGGAGATGGCTCTCCC -[BHQ-2] - 3’ RP-HPLC

Start 5’ - [Cy3] - GGGAGAGCCATCTCCCGCACACACTTC 3’ RP-HPLC

Table 5.1: Bricks sequences set used in this study. For domains specifications see Table 3.1
Chapter 3.
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5.1.1 Experimental Manipulation of DNA

DNA bricks were requested on a 100µM synthesis scale, and provided by Eurogentec (Bel-

gium), with a standard desalting procedure or a required denaturing polyacrylamide gel

electrophoresis (PAGE) purification for bricks longer than 50 nucleotides and/or any 3’, 5’

modification. Streptavidin coated gold nanoparticles of 10 and 5 nm diameter were supplied

by Life Technologies (Alexa Fluor 488 streptavidin), while 20 nm colloidal gold conjugate

was provided by Sigma Aldrich. Samples and stock solutions were stored at -20◦C. Standard

molecular biology procedures were used [109]. Reactions have been set in a chronological

order to limit events of unspecific hybridization. (initially, start and push brick are mixed

together and successively signal is added and left to react with the hybridized start-push

complex).

The DNA stack was prepared using aliquots of 200 nM of each brick. DNA samples were

dissolved in a total volume of 20µL of nuclease free water and 50 mM Potassium Acetate,

20 mM Tris-acetate, 10 mM Magnesium Acetate, pH 7.9 buffer at room temperature (25
◦C) and incubated for 10 minutes if not otherwise specified. The mixture was shaken at

300 revolutions per minute in an Eppendorf Thermomixer Comfort set at 25◦C. Agarose gel

electrophoresis was carried out in a 2% agarose gel in 1x Tris-Acetate-EDTA buffer (TAE).

5.1.2 On-chip electrophoresis

In order to obtain quantitative and qualitative measurements of the DNA stack data structure

the usage of a capillary electrophoresis has been instrumental. The Agilent 2100 Bioana-

lyzer system provides size, quantification and quality control of nucleic acids on a single

platform. Macromolecules are separated in a linear polymer gel according to their charge

and molecular weight by applying a high voltage to sample solutions. The kit used was the

DNA "High Sensitivity Chip" provided by Agilent Technology and adhered manufacturer

protocols. The kit provides a dye that fluoresces upon intercalation with dsDNA and to a

lesser extent with ssDNA. The system can load up to 11 samples which can be run concur-

rently on a disposable chip within 30 minutes. The aliquot required is just 1 µl, added at

the very last step of the protocol. A volume of 9µl Gel-dye mixture is used to fill the wells

before the sample is added. Pressure is applied with a disposable 1-mL syringe to let the
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gel-dye matrix enter in the chip microchannels (Fig.5.1).

Figure 5.1: Agilent DNA chip.Panel A shows a standard DNA High Sensitivity chip. Panel
B shows the chip microchannels. Taken from Agilent user Manual

The kit provides lower and higher markers (35bp and 10.000bp) which the software uses to

align sample solutions with a DNA ladder of known composition that is run in a separate

lane. The ladder range is 50-7000 bp. The software displays samples gel-like images and

electropherograms. The electropherogram plots the raw data as arbitrary fluorescents units

displayed against either time (seconds) or migration of the fragments (base pairs). Back-

ground fluorescence will also be included in the plot that will show the samples as peaks in

between the markers (Fig. 5.2).

Figure 5.2: Agilent Electropherogram plot. Typical Electropherogram resulting from Ag-
ilent 2100 Bioanalyzer software. Taken from Agilent user Manual
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The raw data is measured and displayed in the form of an electropherogram that plots the

arbitrary fluorescents units displayed against either time (seconds) or migration of the frag-

ments (base pairs). Background fluorescence will also be included in the plot. The data will

include measurements about the following features:

• Aligned Migration Time: This is measured in seconds. The software detects the

DNA fragments’ migration time according to their size. The migration of small sam-

ples is faster than bigger ones, as it happens in a standard agarose electrophoresis

gel.

Differences in sample structure can affect the pattern of time migration, and the same

samples can exhibit a different time migration.

• Fragment Size: the kit provides a size quantification of the DNA samples in base

pairs (bp) units. High sensitivity kit DNA size range is 50 – 7000 bp. Quantification

is restricted when working with ssDNA samples, ssDNA-dsDNA hybrids structures,

and the presence of secondary structures (e.g., hairpin stem and loops).

• Area under the peak: The area for each recognised peak is only calculated if this is

aligned with the ladder.

• Mass Concentration: nucleic acid concentration is measured in ng/µL. The software

initially calculates the concentration of the lower and upper marker in order to set in-

ternal standards and align them with the ladder. The curve under the peak is calculated

and the relationship between area, concentration and markers will permit the estima-

tion of each sample concentration. The first peak found will correspond to the lower

marker, whilst the last peak found will be assigned to the upper marker. After this, the

other peak concentrations can be estimated.

If unexpected peaks are shown in the electropherogram, and the marks have been set

in an incorrect way, one can manually choose a peak to use as a reference marker.

• Molar Concentration:

Molarity =
Concentration×106

660×Size
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It is measured in nanomoles per liter (nmol/L) and it is calculated by combining size

and concentration measurements. The software assumes that the molecular weight of

each singular base pair is 660 ng/nmol.

Agilent Bioanalyzer 2100 technology was chosen in order to achieve a good quality gel-like

image and to generate a detailed plot (electropherogram) with peaks correspondent to the

sample involved.

It is possible to go from the peaks shown in the electropherogram to the actual quantification

(expressed as molarity) involved in the reactions.

5.1.2.1 Technology limitations

In this study the Agilent High sensitivity DNA kit was used to assay the samples. Due to the

complex secondary structures and ssDNA-dsDNA ratio of our bricks set, the kit does limit

a quantitative analysis, but offers a significant approach towards an advanced qualitative

analysis. The measurements successfully discriminate the migration times of almost all

strands (disregarding report strands) with significant differences. Only start and read cannot

be reliably differentiated. As expected, shorter oligomers register with shorter migration

times. Striking discrepancies between the known brick sizes and the sizes derived by the

software from comparison to the ladder might be attributed to two reasons: firstly, short

oligomers such as start, read and report are well below the detection limit of the high

sensitivity kit, which can resolve dsDNA fragments between 50 - 7000 base pairs in length,

with an accuracy of ±10% from 50 to 600 bp and ± 20% from 600 to 7000 bp (according

to manufacturer specifications). Secondly, the reported deviations might lie in the fact that

our bricks contain extensive secondary structures that might affect their motility in the gel

matrix. A similar discrepancy is observed in the derived molarity values. This is partly due

to the fact that molarity calculation is based on the base pair estimation and will thus suffer

from the issues described before, partly because our bricks contain extensive ssDNA regions

which interact differently with the fluorescent dye than dsDNA (for which the analysis kit

has been designed). Going further, could be possible to explore RNA chips and reagents.

However, this is not something that Agilent has validated thus is not possible to know how

accurate the quantification would be.
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5.1.3 Imaging

Gold nanoparticles have been used in this study to label the reporters ssDNA (carrying

biotin). They bind the signals internally forming Au-DNA conjugates, which can be im-

aged (as black dots) using TEM. These widespread particles represent an advantage to flu-

orophores, for their combination of optical, chemical and electrical properties. They are

capable of both absorbing and scattering visible and near infrared light [110].

Samples were examined using a Philips CM 100 Compustage (FEI) Transmission Electron

Microscope and digital images were collected using an AMT CCD camera (Deben) pro-

vided by the Electron Microscopy Research Services at Newcastle University. A volume of

5µL sample was applied on glow discharge grids preliminary washed with 0.5 mM Mag-

nesium chloride to change the hydrophilic surface charge orientation. Moreover, sample

were tested with and without the usage of a staning agent (2% aqueous Uranyl Acetate) or

magnesium. In order to detect more than one signal/report at the same time and the stack

starting point, biotin-TEG labeled strands were attached to colloidal AuNPs streptavidin

coated of 5, 10 and 20 nm size provided by Life Technologies and Sigma Aldrich, at room

temperature and then stored at 4◦C protected from light. Gold nanoparticles were chosen to

be reporters for their strong electron density, a characteristic that makes them favourable for

TEM microscopes imaging. They are detected black spots on the grid surface [111].

5.1.4 Molecular Beacons design and experiment

Molecular Beacons Cy3/BHQ-2 (Table 5.2) were used in this study to further investigate the

hybridization of the start and push complex using an additional anti-start brick. The modi-

fied bricks were provided by Eurogentec where Cy3 in 5’ is incorporated directly during the

synthesis process, as Amidite whereas Cy3 in 3’ is coupled manually through a C6 amino

linker.

The hybridization reaction was monitored over time by directly labelling the start, anti-start

(Fig.5.3, left) and the push brick with a Cy3 fluorophore or a BHQ-2 quencher, as showed

in Fig.5.3, right. The fluorescence data were used to determine the rate constants for the

hybridization process. The 96-Well Microplate Greiner F-Bottom uses black microplates

with a volume of 50 µl to reduce background autofluorescence. Unused wells were filled
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with the reaction buffer sample in triplicate Tecan Sapphire2 Spectrophotometer (Tecan), at

485 nm excitation and 510 nm emission, 5 nm slits, gain = 90 V. The experiment has been

designed such that the quencher will absorb the excitation energy from the fluorophore. This

means it will not show any fluorescence unless the complex is displaced.

Figure 5.3: Molecular beacons oxDNA simulation. Left: In blue is shown the start, with
the Fluorophore (F) at the 3’end, and in red the anti-start, with the Quencher (Q) at the 5’
end. Right: In blue is shown the start, with the Quencher (Q) at the 3’end, and in red the
push, with the Fluorophore (F) at the 5’ end .

Fluoropher/Quencher Excitation - Emission [nm] Quenching range [nm]
Cy3/BH2-Q 550-570 550-650

Table 5.2: Molecular Beacons used in this study.

5.2 Conclusions

All the methods discussed above will be used for the final characterisation and quantification

of the stack prototype, and is discussed in the dedicated Chapter in Part IV of this thesis

(chapter 7). The next chapter of this thesis will introduce the experimental methods used for

the in vivo tape data structure implementation.

63



Chapter 6

Engineering of an In Vivo DNA Tape

Data Structure

This chapter presents experimental procedures performed to build and implement the in vivo

DNA tape data recorder. It describes the standard molecular biology and microbiology pro-

cedures (e.g, agarose gel electrophoresis, PCR, enzymatic digestion, bacterial transforma-

tion) that were used to characterise and analyse the correct assembling and implementation

of the recorder.

6.1 DNA Implementation of the in Vivo Tape Data Struc-

ture

The tape system was designed to be hosted and replicate within a bacterial platform. Dur-

ing the testing of the system, a variety of Escherichia coli bacterial same line strains, for

plasmids maintenance and tape replication, have been used, as well as, primers to perform

PCR screening or troubleshoot defects in the tape sequence. The following sections present

a description of growth conditions, assays and parameters used for the strains, the plasmids,

oligonucleotides sequences and usage.
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6.1.1 Strains, plasmids and oligonucleotides used in this study

Bacterial strains are shown in table 6.1. They were grown in Luria Broth (LB media) or

minimal media (M9 media) at 37◦C overnight with shaking at 250 rpm or left static on agar

plates. The ∆pyrF strains were grown with uracil supplementation in LB media at 20µg/mL.

The Escherichia coli strains with pKD46-RecApa recombineering vectors (recombinogenic

engineering) [112] were grown at 30◦C to prevent loss of vector [113]. All of the strains

carrying the recorder tape system were grown in the presence of glucose to cause catabo-

lite repression [114]. This reinforces the repressive action of LacI, in order to avoid spu-

rious induction of the system. The following antibiotics were added to the media when

required: carbenicillin (100µg/mL); chloramphenicol (20µg/mL); gentamicin (20µg/mL);

kanamycin (25µg/mL); tetracycline (25µg/mL); nalidixic acid (15 µg/mL) and trimetho-

prim (100 µg/mL). The bacterial glycerol stocks were prepared with 0.5 mL of overnight

bacterial culture in a sterile tube with 0.5 mL of sterile glycerol added, and subsequently

stored at - 80◦C. The plasmids used in this study are listed in Table 6.2. Maps and se-

quences of each vector are shown in Appendix A. The primers sequences used in this study

are listed in Table 6.3. Primers Tn7L and Tn7R were designed by Choi et. al.,[115]; primers

attTn7-1 and attTn7-2 were designed by Schweizer et.al., [116]. Plasmids and primers were

always stored at -20◦C.

Strains Description

Escherichia Coli
DH5α F- φ80lacZ∆15 ∆(lacZYA-argF)U169 deoR ∆recA1 endA1 hsdR17(rk-

, mk +) phoA supE44 thi-1 gyrA96 relA1 λ - [117].
TLoST01 DH5α ∆lacI ∆sdiA ∆pyrF, grown at 30◦C. Origin of replication: R101.

TcR or GmR .
TLoST02 TLoST01:: tape .
Tape 2.0 JW1273:: Tape (with Module I repaired). The strain implements the

tape recorder (chapter 4, Fig. 4.5)
CC118(λpir) λpir strain for cloning miniTn7::Tape [118].
S17-1(λpir) TpR, SmR, recA, thi, pro, hsdR-M+RP4: 2-Tc:Mu: Km Tn7 λpir.Strain

for maintaining and conjugating R6K replicons [119]
BW25113 F-, ∆(araD-araB)567, ∆lacZ4787::rrnB-3, λ -, rph-1, ∆(rhaD-rhaB)568,

hsdR51 [120] [121].
JW1273 E. coli BW25113 derivative ∆pyrF789::KmR [121]

Table 6.1: Strains used in this study. Strains indicated as λpir contains the pir gene neces-
sary for the cloning and propagation of plasmids with R6K origin of replication. Knocked
out genes are indicted as ∆.
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Plasmid Description

pKD46-RecApa Thermosensitive plasmid, provides transiently the RecA recombinase.
pTNS2 helper plasmid pTNS2 for the transposition of miniTn7 elements, pro-

vides Tn7-specific transposase genes.
pACYC184 Cloning vector, CmR, TcR, p15A origin of replication, low copy num-

ber.
pACYC184::attR CmR, this plasmid is the target "blank" recorder. AttR is formed by

annealing oligonucleotides AttR-F and AttR-R and ligating into pA-
CYC184 cut with BamHI and SphI (disrupts TcR)

pBluescript II KS Cloning vector, ColE1 replicon, CbR, ApR, lacZ, allowing selection via
blue-white screening.

pBSTape Tape system (SacI-XhoI) cloned in pBluescript, ApR
pUC18R6K-mini-Tn7 Cloning vector, R6K replicon, TcR, propagated only in λpir strain con-

tains the pir gene.
pTape-01 Tape system (SacI-XhoI) in miniTn7 delivery plasmid (pUC18R6K-

mini-Tn7),TcR, ApR, R6K origin of replication

Table 6.2: Plasmids used in this study

Oligos Sequence (5’→3’)

PyrFcF TTCTTCCCGCGCTGTTAC
PyrFcR CGCTGTAAAGAGGCGTTGA
Tn7L ATTAGCTTACGACGCTACACCC
Tn7R CACAGCATAACTGGACTGATTTC
attTn7-1 GATGCTGGTGGCGAAGCTGTC
attTn7-2 GATGACGGTTTGTCACATGGAG
AttR F GATCCTCGAGTGAGGTGTAGAA

CGCGCCCGGGGAGCCCAAAGG
TTACCCCAGTTGGGGCACGGCATG

AttR R CCGTGCCCCAACTGGGGTAACCTT
TGGGCTCCCCGGGCGCGTTCTACA
CCTCACTCGAG

ModI R GCGGCCGCTGTGGAATTGTGAGCGC
TCACAATTCCACACATTATACGAGCCG

ModI F AACGAAAGGCTCAGTCGAAA

Table 6.3: Primers used in this study
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6.1.2 Media and growth conditions

It is known that E. coli DH5α exhibits inferior growth in minimal media (M9) compared to

other E. coli strains [122] resulting from unknown accumulated mutations of the purB gene,

involved in the de novo purine nucleotide pathway. For this reason the M9 minimal medium

used was improved by adding adenine. M9 basic salts were autoclaved and used with the fol-

lowing working concentrations: potassium phosphate monobasic (KH2PO4) 3g/L, sodium

phosphate dibasic (Na2HPO4) 6g/L, ammonium chloride (NH4Cl) 1g/L and sodium chlo-

ride (NaCl) 0.5g/L. Glucose was used as the carbon source and the media was supplemented

with 100 mg/L D-Ca panthenate, 100 mg/L Choline c-hloride, 200 mg/L i-Inositol, 100

mg/L Pyridoxine-HCl, 10 mg/L Riboflavin, 100 mg/L Thiamine-HCl,2 mM Magnesium

sulfate (MgSO4) and casaminoacids 1%. Bacteria were grown in M9 media optimized at

37◦C overnight with shaking at 250 rpm or left static on agar plates.

6.1.3 5-FOA Medium

This assay is used as a screening method to identify strains that carry a deleted pyrF gene.

This gene encodes for an essential enzyme in the pyrimidine biosynthetic pathway. Cells

that lack this activity can grow by uracil supplementation on minimal medium, which can

be converted to uridine 5’-monophosphate (UMP) through a salvage pathway. 5-FOA is

converted to 5-fluorouracil (5-FU), by orotidylate decarboxylase. 5-FU is uracyl highly toxic

analogue as shown in Fig.6.1. Cells that lack the enzyme encoded by pyrF are no longer

sensitive to 5’-fluorootic acid (FOA) [123], which provides a powerful counter-selection for

the loss of the gene. For the preparation of 5-FOA medium, 20 g of agar was autoclaved

in 750 ml of water for molecular biology usage. The following reagents were added to a

flask containing 250 ml of water: ammonium sulphate ((NH4)2SO4) 5.0 g; Yeast Nitrogen

without amino acid 1.7 g; Dextrose 20 g; 5-FOA 1.0 g. The mix was filter sterilized with

a sterile 0.22 µm filter. Both solutions were put in a water bath at 50◦C for 1h. When the

solutions are both completely melted the reagent mix containing 5-FOA was added to the

agar and poured into sterile plastic petri dishes. These were subsequently dried in a laminar

flow hood for 30 minutes and eventually stored at 4◦ (if not used directly afterwards).
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Figure 6.1: Schematic representation of the 5-FOA conversion pathway.

6.1.4 Growth assays

Agrobacterium (AB) minimal medium, RPMI-1640 medium supplied by Sigma Aldrich and

M9 minimal medium were used in this study for comparing growth response of E. coli uracil

auxotroph strains. The media was supplemented with a glucose and vitamins mixture. Three

colonies for each strain used as samples were inoculated in a 5 mL culture of LB media and

incubated at 37◦C in a falcon tube overnight. Cells were collected by centrifugation at 4000

rpm for 5 minutes and washed with phosphate buffered saline (PBS). The washing step

was repeated twice and the culture was then resuspended in 5 mL of PBS. Afterwards, the

samples were transferred into 5 mL of each minimal media to a final concentration to a final

optical density of 0.01 (O.D at 600 nm) and incubated at 37◦C. The optical densities were

measured at 24h, 48h and 72h. All the experiments were conducted in triplicate and each

essay was repeated at least three times.

6.1.5 Chromosomal insertion of mini-Tn7 constructs in E. coli

The pTape-01 suicide delivery vector was co-transformed with pTNS2 helper plasmid en-

coding for the transposases necessary for the chromosomial insertion. Cells were made

electrocompetent using glycerol and used promptly or kept at -80◦C until usage in aliquots
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of 50µl. Cells were electroporated with 50 ng of mini-Tn7 and 50 ng of pTNS2 helper

plasmid and then transferred into a 0.2 cm electroporation cuvette. BIO-RAD MicroPulser

program “EC 2” was used for administering the electric shocks. Cells were recovered in

950 ml of LB medium and incubated at 37◦C with shaking 1h 30’. 100 µl of culture was

plated in LB with tetracycline (25µg/mL) and incubated overnight at 37◦C. Colonies were

counted and screened the next day.

6.1.6 Population dynamics

A population dynamics test has been used in this study to determine the recorder sponta-

neous reversion frequency to trimethoprim sensitive (TmS) or pyrF+. The recorder strain

was grown for 24h to stationary phase in 5 ml of selective M9 liquid media at 37◦C with

shaking at 200 rpm. At day 1, the previous culture was inoculated in a falcon tube with

a fresh 5 ml dose of non selective M9 liquid media at 37◦C with shaking to obtain a one

million fold dilution (dilution step). 200 µl of the dilution was plated onto M9 non-selective

agar plates and grown for 24h at 37◦C with the aim of generating 100 individual colonies

(plating step). At day 2, the one million fold dilution step was repeated starting from the

previous culture and the same aliquot was inoculated again in 5 ml of non selective M9

liquid media at 37◦C with shaking. The plating step was then repeated. All the colonies

obtained were picked and screened onto selective and non-selective media in order to deter-

mine the percentages of a reverting subpopulation within a population. The entire process

was repeated for 5 days (Fig.6.2). This method was used in all population dynamics tests

described in this study in order to measure the recorder strain population dynamics under

different conditions.
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Figure 6.2: Basic model of dynamic population experiment The red curve represents the
overnight culture to stationary phase. The culture was diluted to one million fold.

6.1.7 Molecular Manipulation of DNA

Standard molecular biology procedures were used for the implementation of the tape. Low

copy number plasmids were prepared using the Plasmid Midi Kit (QIAGEN) and Plasmid

Midi Kits For Large Scale Purification of High quality Plasmid DNA (Thermo Scientific

GeneJETTM). High copy number plasmids were prepared with QIAprep Mini Kit (QIA-

GEN) and Plasmid Mini kit (Thermo Scientific GeneJETTM). Chromosome extractions

were performed with Wizard R© Genomic DNA Purification Kit (Promega). Gel purifica-

tions were performed using the DNA gel extraction kit (Zymogen Zymoclean Gel DNA

Recovery Kit). We followed the supplier’s protocol for every kit.

For restriction enzyme digestions DNA samples were dissolved in total volumes of 20µL,

using the manufacturer’s recommended 10x digestion buffer (Promega). Samples were in-

cubated with restriction enzymes at 37◦C for 1.5h using 10-20µL of DNA solution.

Ligation reactions were performed by estimating the vector and insert concentrations using

2µL of T4 DNA ligase Promega and 2µL of ligase buffer 10X up to 20µl of nuclease free

water. In order to check the ligation, controls were included.

Polymerase chain reactions (PCRs) of bacterial chromosomal DNA or plasmids were per-

formed with GoTaq polymerase (Promega) according to the manufacturer’s manual. Primers

were designed manually or using Primer3 software [124] and were synthesized by Sigma

Aldrich or Eurofins. For colony PCR bacterial colonies were first diluted in 80µl of water

and heated for 10 minutes at 96◦C. Afterwards, 1µl of the sample was added to the PCR

mixture. The PCR programme started with an initial denaturation of 5 minutes at 95◦C.
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Annealing was performed at 55◦C for 1 minute and elongation at 72◦C for 1 minute. The

whole process was carried out for 33 cycles, ending with a final elongation step at 72◦C

for 5 minutes. Agarose gel electrophoresis was carried out in a 0.7% agarose gel in 1x

Tris-Acetate-EDTA buffer (TAE). Electrocompetent cells were prepared using glycerol or

sucrose [109]. The competent cells were used directly; otherwise these were kept at -80◦C

until usage. The transformation was made by electroporation using BIO-RAD MicroPulser.

Competent cells of E.coli DH5α [125], CC118(λpir)[118], S17-1(λpir) [119], BW25113

[120], [121] and JW1273 [121] were routinely used for cloning. DH5α and S17-1(λpir)

were used to maintain the construct pBS::Tape.

6.1.8 Bioinformatic analysis

To further validate any problem in the tape sequence, I used the Reciprocal Best Hits (RBH)

method. Alignments of the entire tape sequence were run against all the biological parts

used to build the system.

6.1.9 IPTG induction

A colony of Tape-2.0, was picked from a fresh plate and growth overnight in 5 ml LB and

in presence of two antibiotics: trimethoprim and kanamycin. The strain was induced with

IPTG at a concentration of 0 mM (negative control), 0.5 mM, 1 mM, 2 mM and 4 mM and

incubated at 37◦C for 1.5, 3, 6, 8h and overnight ( 12h). For this assay, all cultures were

grown at 37◦C in a 50 mL tube with shaking at 250 rpm. In all experiments, the overnight

culture was diluted 1:1000 (to 0.01 O.D) in M9 and grown for about 6-8 hours until an O.D

of 0.6.

6.2 Conclusions

All the methods outlined above will be used for the final characterisation of the tape proto-

type. This is discussed in the dedicated Chapter in Part IV of this thesis (chapter 8).

71



Part IV

72



Chapter 7

Characterization and Results of an In

Vitro DNA Stack Data Structure

In this chapter, the experimental results of the operation performed by the in vitro DNA stack

data structure are presented. Experiments were performed using both standard molecular bi-

ology procedures (agarose gel electrophoresis) and a sensitive DNA quantification method

(capillary electrophoresis). The structure was visualized with a Transmission Electron Mi-

croscope. Finally, the usage of molecular beacons was explored as a method to potentially

investigate further. The presented results from the laboratory scale implementation confirm

that the predicted DNA stack data structure prototype forms the final expected product.

7.1 Agarose Gel Electrophoresis

This section presents experiments conducted with agarose gel electrophoresis, aimed at the

characterization of the ssDNA concentration for the stack assembly, validation of data stor-

age and reading out cycles

7.1.1 Characterization of the bricks concentration

Agarose gel electrophoresis was used to determine the minimal concentration of DNA bricks

necessary to carry on the assembling of the DNA stack data structure. The experiment has
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been run on agarose gel, starting from a concentration of 50 nM for each brick and gradually

increasing up to 250 nM. The minimal concentration detected was 200 nM and was used as

reference in all the experiments described in this chapter, if not otherwise specified. A

representative result is shown in Fig. 7.1.

Figure 7.1: Agarose gel Electrophoresis. Electrophoresis gel showing results for a different
range of concentration. In lane M is showed the NEB Low Molecular Weight DNA Ladder.
Lane 1 to 5 show the push brick at a concentration of 50 nmol, 100 nmol, 150 nmol, 200
nmol, 250 nmol; (panel B) In lane M, NEB Low Molecular Weight DNA Ladder.
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7.1.2 Data storage experiments

7.1.2.1 DNA stack data storage of One Signal: Start-Push-Write X

Agarose gel was also critical to first prove the progressive elongation and shrinkage of the

DNA stack data structure during the pushing and popping operations. The electric field

moves the charged bricks through the agarose matrix according to their size, and, when they

hybridize correctly, is clearly visible a delayed electrophoresis mobility of the assembled

components during the pushing step, occurring via progressive elongation (Fig:7.2).

Figure 7.2: Agarose gel Elechtrophoresis. (panel A) In lane M is showed the NEB Low
Molecular Weight DNA Ladder. Lane 1 shows the start (27nt) brick at a concentration of
200 nmol; In Lane 2 push (64 nt) brick was added and reacted with the start, forming a
complex of roughly 91 bp. (panel B) In lane M, NEB Low Molecular Weight DNA Ladder.
Lane 1: lane 1: start (27nt); lane 2 start+push (91 nt); lane 3 start-push-write x roughly
(189 nt). Agarose gel 2%.
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7.1.2.2 DNA stack data storage of eight write X signals

In Fig 7.3, the experiment consisted in the recording of eight write X. Although the gel

presents smears background, it is possible to observe the elongation of the stack, and a

slower mobility of the assembled ssDNA.

Figure 7.3: Agarose Gel Electrophoresis of the data storage process Lane M = NEB
1Kb ladder. Lane 1=SPXPX (2 Signals, 351 bp); Lane2=SPXPXPXPX (4 Signals, 675 bp);
Lane 3=SPXPXPXPXPXPX (6 Signals, 999 bp) ; Lane 4=SPXPXPXPXPXPXPXPX (8
signals, 1.323 bp) ; Data obtained from four parallel experiments. On top of the Gel image,
a schematic representation of the bricks involved in the 8 signals stack data storage.
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7.1.3 Reading Out Experiments

In Fig 7.4, the experiment consisted in the data storage of three write signals and the reading

out of two signals. It is easy to see that after a progressive elongation, follows a faster bands

migration, when the DNA stack data structure is subject to shrinkage (reading). Smears in

the gel suggests the presence of intermediates species and/or a possible unspecific bricks

hybridization.

Figure 7.4: Electrophoresis gel showing the pushing and popping products. In lane M is
showed the NEB Low Molecular Weight DNA Ladder. Lane 1 to 5 show the data structure
and the implementation of the pushing operation: lane 1: start (27nt); lane 2 start+push
(91 nt); lane 3 start+push+signal (189 nt); lane 4 start+push+signal+push (253 nt); lane 5
start+push+signal+push+signal (351 nt). Lane 6 and 7 show the popping operation:lane 6
goes back to start+push+signal+push (253 nt), peeling off the last signal exposed and in
lane 7 goes back to start+push+signal (189 nt), peeling off the last push exposed. Strand
concentration 200 nM, agarose gel 2%. On top of the Gel image, a schematic explanatory
representation of the bricks involved.
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7.2 Capillary Electrophoresis

This section presents experiments conducted with capillary electrophoresis, aimed at the

characterization of the ssDNA concentration, calibration of the bricks and validation of data

storage and reading out cycles

7.2.1 Characterization of the bricks concentration

An additional investigation for the characterization of the concentration was run by capillary

electrophoresis (with the commercial Agilent 2100 BioAnalyzer) used as a more precise and

sensitive system detection than the standard agarose gel. The instrument was able to detect

samples down to 25 nM. A representative result conducted on the start brick is shown in

Fig. 7.5.

Figure 7.5: On-chip electrophoresis start concentrations. Agilent 2100 Bioanalyzer com-
parison tool, has been used to facilitate the analysis of the bands detected from each sample
concentrations provided to the instrument. Below 25 nM the machine, seems to not detect
the ssDNA bricks samples.

7.2.2 Single Brick Calibration

Capillary electrophoresis measurements were performed for all individual bricks in order to

determine the response of the Agilent 2100 Bioanalyzer High Sensitivity DNA Assay for
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our non-standard DNA. All bricks where provided in 200 nM concentrations. Electrophero-

grams always detected a single clear peak per brick as showed in Fig 7.6 and 7.7. Table 7.1

summarizes for each brick its known size, the measured migration time and fluorescence

area under the peak, as well as the calculated size and molarity derived by the instrument

software from comparison to the reference ladder. Averages and standard deviations were

calculated from at least three independent measurements.

Figure 7.6: Data Storage cycle Single Brick Calibration Profile.
Right:Electropherograms for each of the bricks involved in the data storage cycle.
Each one shows a unique profile. Left: brick model by oxDNA
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Figure 7.7: Reading cycle: Single Brick Calibration Profile. Right: Electropherograms
for each of the bricks involved in the reading cycle. Each one shows a unique profile. Left:
brick model by oxDNA

measured derived
brick size[nt] time [s] area [FU] size [bp] molarity [nM]]

start (S) 27 45.22±0.92 94.6±61.23 51±7.6 34.80±15.92
push (P) 64 46.81±0.76 74.4±39.2 64±6.9 8.08±0.174

write-X (X) 98 53.27±0.34 55.93±39.65 128±3.78 5.961±0.473
write-Y (Y) 98 53.45±0.32 55.8±36.65 129±3.04 6,296±0.629

write-Ly (Ly) 128 55.35±0.06 5.27±1.15 147±0.8 0.845±0.221
report-X (Rx) 22 44.81±0.81 248.5±60.57 47±6.4 78.25±16.81
report-Y (Ry) 22 45.18±1.02 241.3±84.49 47±11.3 86.44±12.77

read (R) 31 44.61±0.35 73.85±15.76 46±2.82 31.67±1.21
pop (Q) 64 47.89±0.28 28.13±25.4 74±3.4 6.602±6.78

Table 7.1: Calibration results (given as averages and standard deviation) for all individual
strands provided in 200 nM concentrations.

7.3 Reaction Time Estimation

To determine kinetic rates for the different strand interactions, the effect of varying reaction

times was investigated . This has been done by running on-chip electrophoresis measure-

ments of start-push solutions as well as sequentially prepared start-push-write solutions

with 5 to 240 minutes reaction time. From this section onwards, the quantitative analysis of

each experiment is summarised in tables. Each column header indicates the single brick or
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the bricks involved in the reaction. If the column header contains a "+ brick" e.g., + SP", this

indicates that the mentioned bricks were added to the same test tube of the previous colum-

n/reaction. The first column always contains "start 100%", meaning that the start is alone

and not reacting with any brick in solution, until the next one is added. The row header,

on the other hand identifies all the species recognised in the electropheragram (peaks), for

each reaction (column). Each cell represents the intersection point between a column and

row header and contains the molarity or the area registered for the specie indicated in the

row header, when the total start (100%) reacts with the next brick provided, specified in the

column header.

7.3.1 start-push

In Fig.7.8, for start-push, were not obtained significant differences, even for a reaction time

of only 5 minutes: the electropherograms show a single dominant peak that was associate

with start-push. According to molarity estimates of the Bioanalyzer software, the reaction

runs into 80-90% completion as showed in Table 7.2, indicates the experiment reaction time

in minutes and the bricks reacting with the start. However, limitations of the instrument

with regard to single stranded DNA with a partial secondary structure apply, hence, were

took in consideration the percentage of the total Area measured by the software (Table 7.3)

Figure 7.8: Capillary electrophoresis of the start-push reaction time. Data obtained from
five parallel experiments starting from a reaction time of 240 to 5 minutes from Lane 1 to 5.

-
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5 [min] 10 [min] 20 [min] 40 [min] 60 [min] 120 [min] 240 [min]
S P P P P P P P

S 100% 6.51% 7.94 9.75% 10.10% 4.89% - % 8.88%
P 6.93% 8.03% 7.87% 8.15% 8.10% 8.48% 10.94%
SP 84% 84.03% 82.38% 81.75% 84.69% 92% 77.5%
Undefined 2.18% - - - 2.31% - 1.96%

100% 100% 100% 100% 100% 100% 100%

Table 7.2: Percentage of the total Molarity. Molarity, of each species recognized for each
individual experiment, derived from the Molarity values measurements of start-push by the
Agilent Software.

5 [min] 10 [min] 20 [min] 40 [min] 60 [min] 120 [min] 240 [min]
S P P P P P P P

S 100% 4.2% 5.1% 6.4% 6.7% 3.1% - 5.6%
P 6.1% 6.9% 7% 7.4% 7% 7.4% 9.2%
SP 85.3% 88% 86.6% 85.9% 85.4% 92.6% 80.4%
Undefined 4.4% - - - 4.5% - 4.8%

100% 100% 100% 100% 100% 100% 100%

Table 7.3: Percentage of the total Area. The table shows the percentage of the total area,
of each species recognized for each individual experiment, as calculated for start-push by
the Agilent software.

7.3.2 start-push-write X

For start-push-write, in Fig.7.9, it is possible to see that the branch migration reaction of the

write association does not equilibrate within 5 minutes and it takes at least 10 minutes for

the reaction to equilibrate. According to the molarity detected by the Agilent Software, was

found that after 5 minutes only between 30-40% of start-push complexes were extended by

the write bricks. (Table 7.4). Molarities value has to be taken with consideration, due to

an instrument underestimation of molarities values. The percentage of the total Area (Ta-

ble7.5), shows instead a more accurate value, since it is calculated using arbitrary fluorescent

units (FU) and the area under the curve

Henceforth, for all the experiments presented in this chapter were taken in consideration the

percentage of the total Area. A comparison of the Area, for measurements of start-push

solutions and start-push-write solutions with 5 to 240 minutes reaction time is showed in

the histograms in Fig.7.10.
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Figure 7.9: Capillary electrophoresis of the start-push-write reaction time. Data obtained
from five parallel experiments starting from a reaction time of 5 to 240 minutes from Lane
1 to 5.

5 [min] 10 [min] 20 [min] 40 [min] 60 [min] 120 [min] 240 [min]
S PX PX PX PX PX PX PX

S 100% 7.15% 15.44% 12.66% 16.60% 12.43% 6.90% 4.45%
P 6.33% 5.22% - 4.95% - 6.21% -
X - 5.48% - 4.35% - - 11.35%
SP 77.18% 38.02% 52.40% 36.97% 43.42% 58.82% 43.17%
SPX 9.34% 31.48% 33.96% 34.33% 41.92% 27.47% 27.35%
SPXP - 2.61% 0.97% 1.30% 1.40% 0.60% 3.23%
SPXPX - 1.70% - 1.49% 0.84% - 5.33%
Undefined - - - - - - 5.12%

100% 100% 100% 100% 100% 100% 100%

Table 7.4: Percentage of the total Molarity. The table shows the percentage of the to-
tal Molarity, of each species recognized for each individual experiment, derived from the
Molarity values measurements of start-push-write by the Agilent Software .

5 [min] 10 [min] 20 [min] 40 [min] 60 [min] 120 [min] 240 [min]
S PX PX PX PX PX PX PX

S 100% 4.1% 6% 5.2% 6.4% 4.5% 3% 1.8%
P 4.9% 2.6% - 2.5% - 3.7% -
X - 5.3% - 4.2% - - 7.2%
SP 67.7% 22.1% 32.5% 21.7% 23.9% 40% 20.8%
SPX 23.3% 52% 59.8% 56.7% 65.5% 51.7% 41.1%
SPXP - 6% 2.5% 3.1% 3.2% 1.6% 6.4%
SPXPX - 6% - 5.4% 2.9% - 15.9%
Undefined - - - - - - 6.2%

100% 100% 100% 100% 100% 100% 100%

Table 7.5: Percentage of the total Area. The table shows the percentage of the total area, of
each species recognized for each individual experiment, as calculated for start-push-write
by the Agilent software.
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Figure 7.10: A comparison of the Areas, for measurements with 5 to 240 minutes re-
action time. Left:Bar graph of the start-push-write data obtained from the measured Area.
Right: Same bars representation for the extended start-push over time.

7.4 DNA Stack Data Storage Experiment

7.4.1 Data storage differences between write X - write Y and write Ly

In Fig 7.11 was performed a data storage with write X and write Ly signals and analysed

the effects on the chain length and time migration. Experiments were run in six parallel

eppendorf tubes. In the first two lanes, addition of write-X and write-Y brick respectively is

followed by the appearance of clear peaks correspondent to 1 signal data storage in the elec-

tropherogram (43.7% and 54.3% of the total fluorescence and a migration time of roughly

59 seconds). In the third lane, it was stored one signal using the write Ly which accounts for

the 37% of total fluorescence and migrates at 63 seconds, slower than an SPX/SPY stack.

In Lane 4 (SPXPY) the gel corresponds to the storage of two signals where only about the

8.3% of the total fluorescence, accounts as the second signal stored and a 10% still corre-

spond to the first signal (SPX). In this kind of situation it was not possible to distinguish

between X and Y. The substitution of a write Y with a write Ly as a second signal, in lane

5 leads to the appearance of a 24.4% that was interpreted as a SPLy. It was noticed that the

same peak does appear as 14.9% in lane 3. It was identified the peak in lane 3 as a PXP

complex which migrates at the same time of SPLy, thus the 24.4% of the total fluorescence

appearing in lane might more likely be due for the two species. Only the 6.6% of the total

accounts as SPXPLy or an PXPXP. In Lane 6 finally two signals Ly (SPLyPLy) were stored.

A well defined peak at about 81s migration time might correspond to the desired product, al-

though corresponding to only the 8.8% of the total fluorescence. Lane peaks indicate clearly
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a difference between write Y and write Ly and the fluorescence of undefined complexes do

not exceed the 7% of the total.

Figure 7.11: Capillary electrophoresis for one and two signals using write X, write Y and
write Ly. Data obtained from six parallel experiments. Lane 1= SPX and Lane 2 = SPY;
In Lane 3, SPLy is visible as a higher strong band. Lane 4 shows a two signal stored using
write Xand write Y. In Lane 5, the two signals are represented by X and Ly, whereas in Lane
6 the signals are given by Ly and Ly. Letter "Z" indicates either write X or Y.

Lane1 Lane 2 Lane3 Lane 4 Lane 5 Lane 6
S PX PY PLy PXPY PXPLy PLyPLy

S 100% 4.6% 4.4% - 2.6% - -
P 3.8% 2.4% - - - -
Z 2.2% - - 5.7% 2.2% -
Ly - - - 2.3% -
SP 30.4% 25.7% 59.5% 22.4% 27.9% 36.8%
PZ - - - 4.9% 4.5% -
SPZ 43.7% 54.3% - 10.8% 27.3% -
PZP/SPLy 4.8% 3.5% 37.1% 14.9% 24.4% 54.5
PZPZ/PLyP - - 0.2% 4.8% 2.3% -
SPZP 5.7% 4.6% - 6.7% - -
SPZPZ/SPZPY 4.8% 5.1% - 8.3% 4.8% -
SPLyPLy - - 3.2% - - 8.8%
PZPZP/SPZPLY - - - 6.9% 6.6% -
SPZPZPZ - - - 2.7% - -
Undefined - - - 7% - -

100% 100% 100% 100% 100% 100%

Table 7.6: Percentage of the total Area. The table shows the percentage of the total area,
of each species recognized in the capillary electrophoresis in Fig.7.11 for each individual
experiment, as calculated by the Agilent software. Letter "Z" indicates either write X or Y.
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7.4.2 DNA stack data storage of five signals "X-X-X-LY-X"

To probe the performance of the data storage (push) cycle, it was performed experiments in

which were sequentially stored five signals (X ,X ,X ,Y,X) onto the growing stack. Experi-

ments were run in five parallel eppendorf tubes and stopped at different steps in the protocol.

Gel-like images of the Bioanalyzer output is shown in Figure 7.12. Table 7.7 quantifies the

relative size of each peak by calculating the relative area under the fluorescence curve.

Figure 7.12: Capillary electrophoresis of the data storage process. Lane 1=SPX;
Lane2=SPXPX; Lane 3=SPXPXPX; Lane 4=SPXPXPXPY; Lane 5=SPXPXPXPYPX.
Data obtained from five parallel experiments.

For the first three stored signals, addition of each write-X brick is accompanied by the ap-

pearance of a new clear peak in the spectrum: after addition of the first write-X brick this

peak (start-push-write-X complex, or SPX) accounts for more than 58% of the total fluores-

cence. Lane 2 shows the appearance of a second peak (SPXPX) that corresponds to the two

signals. However, this second peak accounts for only about 22% of the total fluorescence,

whereas almost 40% still correspond to the first signal (SPX). The situation repeats in the

third lane, where the correct complex (SPXPXPX) accounts for slightly more than 17% of

the fluorescence, the second signal peak (SPXPX) for about 30% and the first peak still for

about 23%.

The addition of write-Y in lane 4 leads to the appearance of several new peaks, which was
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Lane1 Lane 2 Lane3 Lane 4 Lane 5
S +PX +PX +PX +PY +PX

S 100% 17.5% 7.1% 1.8% 3.9% 2.2%
P – 1.5% 1.4% – – 0.5%
X – 3.6% – 1.9% – 0.6%
Y – – – – 1.3% 3.6%
PX – – – – 2.3% 3.4%
SP – 13.9% 10.8% 5% 3.2% 4.8%
SPX – 58.2% 39.5% 23.3% 24.3% 13.1%
SPXP – 1.5% 6.8% 7% 8% 9.2%
SPXPX – 1.2% 22.3% 29.8% 27.3% 22.4%
SPXPY – – – – 7.8% 6.2%
SPXPXP – 2.6% 4.5% 4.5% – –
SPXPXPX – – 5.6% 17.6% 11.6% 11.5%
SPXPYPX – – – – 4.6% 5.5%
SPXPXPXPX - - - 3.7% 2.6% 4.8%
Undefined – – 2% 5.4% 3.1% 12.2
Total 100% 100% 100% 100% 100% 100%

Table 7.7: Percentage of the total Area. The table shows the percentage of the total area,
of each species recognized for each individual experiment, as calculated by the Agilent
software.

identified as SPY, SPXPY, and SPXPXPY. A very faint peak at about 98 s migration time

might correspond to the desired SPXPXPXPY, but the signal is too weak to be properly

identified by the analysis software. Lane 5 essentially shows the same peaks as lane 4, with

peak sizes changing as expected: peaks from complexes ending in a write-Y brick become

smaller, whereas the corresponding complexes with added write-X become proportionally

larger.

In all lanes faint higher peaks indicate that there is a very small potential for run-away

processes to create complexes with more signals than the provided ones. Yet, in all cases,

the fluorescence of all these longer bands combined does not exceed 10% of the total.
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7.4.3 Reading out of five signals "X ,Ly,Ly,Ly,X"

Next, were performed experiments to test the reading/popping cycle of the DNA stack. In

this experiment, five signals (X ,Ly,Ly,Ly,X) where pushed onto the stack and subsequently

removed by adding read (R) and pop (Q) bricks in molarities equal to the start, push and

write bricks (200 nM) and waiting time 240 minutes between each R and Q. Figure 7.13

shows the gel-like images and table 7.8 the correspondent percentage of the fluorescence for

each experiment.

Lanes 1 through 5 reconfirm the working of the data storage cycle with the same observa-

tions than for the experiment of the last section: each added write brick generates a new

peak in the spectrum with very little evidence for run-away processes and persistence of

peaks that indicate intermediate complexes.

Lane 6 to 9 shows the response of the device after provision of 200 nM read (R) and pop (Q),

to trigger four readout cycle, starting from the last signal X stored in lane 5 (X ,Ly,Ly,Ly,X).

Lane 10 and 11 show the response after the provision of 200 nM read (R) and pop (Q),

to trigger one readout cycle starting from a sample taken at a stage where only 4 signals

were stored, corresponding to lane 4 (X ,Ly,Ly,Ly). Lane 12 and 13 shows the response

after the provision of 200 nM read (R) and pop (Q), to trigger one readout cycle starting

from a sample taken at a stage where only 3 signals were stored, corresponding to lane

3 (X ,Ly,Ly). From lane 6 to 13, newly created push-pop as well as read-write complexes

result in the appearance of three new peaks at around 47.42(QP), 52.22(RX), and 57.39 (RY)

seconds. The push-pop (QP) complexes account for more values from the 33.6% to the 68%

of the fluorescence, whereas start-write-X (RX) and start-write-Ly(RLy) account for 2.8

to 16.8% and 3.7 to 20.5% respectively. Peaks associated with the different stack states

SPXPLyPLy SPXPLyPXPLyPX, ... SPLyPLy, SPXPLy, and SPLy decrease accordingly.

For the second readout cycles there is an increase of read-write(RX or RLy), and the push-

pop (QP) peaks simultaneously reduces intensities of the corresponding stack complexes.

Noteworthily, after reading out the five stored signals, 11.5% of the fluorescence results

from the start-push complex whereas peaks of stacks that still contain stored information

only register with 17.2, 9.9, 27, 13.1, 9.3 and 5.4%.
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Figure 7.13: Capillary electrophoresis of the data storage and reading of three signals. Data
storage: Lane 1=SPX [1(a)]; Lane2=SPXPLy [2(b)]; Lane 3=SPXPLyPX [3(c)] ; Lane
4=SPXPLyPXPLy [4(d)]; ; Lane 5=SPXPLyPXPLyPX [5(e)]. Reading: Lanes 6 to 9, pop-
ping of 4 signals from sample 5(e) = SPXPLyPXPLyPX - RQRQRQRQ; Lanes 10 to 11,
popping of 4 signals from sample 4(d) =SPXPLyPXPLy+RQRQ; Lanes 12 to 13, popping
of 2 signal from sample 3(c) =SPXPLyPX + RQRQ.

7.4.4 Optimization of the reading out

Lanes 1 through 5 reconfirm the working of the data storage cycle with the same observa-

tions than for the experiment of the data storage section. Here it was showed the response

of the device after provision of push at each cycle. The popping was optimized using half

of the concentration (100 nM for each R and Q)
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Figure 7.14: Capillary electrophoresis of the data storage and reading of three signals.
data storage: Lane 1=SPX; Lane2=SPXPY; Lane 3=SPXPYPY. Reading: Lane 4=SPX-
PYPY+RQ; Lane 5=SPXPYPY+RQRQ.

Lane1 Lane 2 Lane3 Lane 4 Lane 5 Lane 6 Lane 7 Lane 8 Lane 9
S +PX +P +X +P +X +R +Q +R +Q

S 100% 11.2% 2.2% 4.9% - 2% 1.7% 1.9% 1.5% 2.6%
P - - - - 0% - - - -
X 4.3% 6.5% 3.8% 6% 4.2% 4.6% 4.2% 4% 1.7%
SP 40.8% 52.5% 13.6% 33.9% 19.9% 18.2% 7.9% 16% 12.4%
SPX 31.1% 5% 33.7% 0% 16.1% 16.2% 19.1% 8.7% 9.1%
SPXP 10.6% 25.8% 11.8% 36% 19.3% 15.8% 9% 14.9% 8%
SPXPX 2% 4% 22.6% 7.5% 19.8% 20.7% 20.8% 12.8% 11.7%
SPXPXP 4% 3.9% 14.1% 9% 8% 4.8% 7.5% 4%
SPXPXPX 5.7% 0% 5.7% 6.1% 6.8% 3.5% 3.8%
SPXPXPXP 2.5 2.3% 2.2% 1.1% 2.1% 1.4%
SPXPXPXPX 1.7% 2.6% 1.9% 1.5% 1.2%
RX 3.9% 2% 7.4% 7.5%
QP 20.5% 20.1% 36.6%

100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 7.9: The table shows the percentage of the total area, of each species recognised for
each individual experiment, as calculated by the Agilent software, when half of the Q and R
are provided (100 nM)

91



Chapter 7: Characterization and Results of An In Vitro DNA Stack Data Structure

7.5 Molecular Beacons

In this study I propose a preliminary example of the usage of the indodicarbocyanine, Cy5

and Black Hole Quencher-2, BHQ-2 to monitor the start-push hybridization reaction over

time by directly labelling the bricks with the molecular beacons. It was achieved with a

16 nt long sequence ( henceforth anti-start or AS),labelled at the 3’ with BHQ-2, designed

in order to be partially complementary to the start brick. The experiment were performed

using a The 96-Well Microplate, as described in chapter 5, section 5.1.5.

7.5.0.1 Hybridization

In Fig.7.15 results show the analysis conducted using a 5’ [BHQ-2]-push-3’ and 5’start-

[Cy3]-3’. Measurements show a very low FU signal for all the reaction set. The experiment

confirms the start and push hybridization although the estimation of the reaction time still

remains very unclear (Fig.7.16).

Figure 7.15: Start-Push Molecular beacons oxDNA simulation. In blue is shown the
start, with the Quencher (Q) at the 3’end, and in red the push, with the Fluorophore (F) at
the 5’ end.
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Figure 7.16: Molecular Beacons measurements for 5’-BHQ-2-push-3’ and 5’-Cy3-start-
3’.The assay was carried out the including control measurements for 5’-BHQ-2-push-3’
(blue line) and 5’-Cy3-start - 3’(green line), as shown in the first plot. Second plot on the
right displays results until 500 FU: 200 nM S + 200 nM P (dark red); 100 nM S + 100 nM P
(light green); 50 nM S + 50 nM P (purple); 25 nM S + 25 nM P (orange); 12,5 nM S + 12,5
nM P(light blue). In the last graph, results are displayed up to 500 FU and loaded as follow:
100 nM S + 200 nM P (light green); 100 nM S + 50 nM P (purple); 200 nM S + 100 nM P
(red); 50 nM S + 100 nM P (orange). Samples were run straight after their preparation.

93



Chapter 7: Characterization and Results of An In Vitro DNA Stack Data Structure

7.5.0.2 Strand Displacement

The experiment in Fig 7.17. Samples were samples with a variety of molar concentrations to

improve our knowledges of concentration vs reaction time. Plate reader FU measurements

indicates that no fluorescence is detected when the anti-start is used alone. The 5’start-

[Cy3]-3’, on the other side is detected with high FU signal, as expected. The assay was

carried out mixing in a eppendorf tube anti-start and start, and the push brick afterwards.

Results are shown in Fig.7.18. Measurements clearly show a highest FU signal for 200

nM concentration respect to the usage of 50 nM. The expectation is that the AS hybridize

with the start c domain and no fluorescence is detected, due to the action of the quenching

molecule BHQ-2. Addition of the push should in principle separate and displace the AS, so

as soon as the Cy3 is not quenched by fluorescence is detected.

Figure 7.17: Antistart-Start Molecular beacons oxDNA simulation. In blue is shown the
start, with the Fluorophore (F) at the 3’end, and in red the anti-start, with the Quencher (Q)
at the 5’ end.

The experiments are just a preliminary example of the usage of molecular beacons. It is

important to better understand the time of degradation of the Cy3, since studies suggests

that the degradation occurs nearly three times more rapidly when oligomers are externally

labelled. Thus, in further works the design could be improved with an internal labelling of
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Figure 7.18: Molecular Beacons measurements for 5’-Anti-Start BHQ-2-3’ and 5’-Cy3-
start-3’. The graphs reports on the y axis the Fluorescent unit and on the x axis the time
in minutes. The assay was carried out the including control measurements for 5’-Anti-
Start BHQ-2-3’ (blue line) and 5’-Cy3-start-3’(green line), as shown in the first plot. In the
second plot on the right, measurements were carried out as follow: 200 nM AS + 200 nM S
(240 minutes reaction) and 200 nM unlabelled push (purple);100 nM AS+ 100 nM S (240
minutes reaction) and 100 nM unlabelled push (red); 100 nM AS+ 100 nM S (240 minutes
reaction) and 50 nM unlabelled push (light blue); 50 nM AS + 50 nM S (240 minutes
reaction) and 50 nM unlabelled push (orange); 50 nM AS + 50 nM S (240 minutes reaction)
and 100 nM unlabelled push (light purple). In the last graph experiments are represented by
200 nM AS + 200 nM S (120 minutes reaction) and 200 nM unlabelled push (purple); 200
nM AS+ 200 nM S (60 minutes reaction) and 200 nM unlabelled push (light purple); 200
nM AS+ 200 nM S (60 minutes reaction) and 200 nM unlabelled push (orange).
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the samples, to better track the branch migration walk.

7.6 Imaging

For additional confirmation of the data storage within the stack, the assembled nanodevice

was imaged using transmission electron microscopy (TEM). For this purpose, assembled

chains were mixed with report strands that, in turn, are decorated with 10 and 20 nm gold

nanoparticles. Reporters associate with their respective write bricks at any position in the

assembled stack. Nanoparticles appear in TEM images as black dots that can be easily

distinguished and classified.

Samples were examined using a Philips CM 100 Compustage (FEI) TEM and digital images

were collected using an AMT CCD camera (Deben) provided by the Electron Microscopy

Research Services at Newcastle University. A volume of 5µL sample was applied on glow

discharge grids preliminary washed with 0.5 mM magnesium chloride to change the hy-

drophilic surface charge orientation.

Samples were prepared as described in the dedicated section in chapter 5, with and without

the usage of a staining agent. Results are not significantly different under the presence of

Uranyl Acetate as showed in Fig. 7.19.
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Figure 7.19: TEM sample with and without Uranyl Acetate. In Panel A) are shown TEM
images produced using staning agent, whereas in Panel B) gold particles are perfectly visible
without the need of staining. Scale 100 nm and 500 nm

.
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Figure 7.20: Top: TEM image, scale 100 nm. High Magnification. left: 3D B-
Conformation assembled structure. Representative image of x-x-y-x-x Where report-x has
been attached to a 10 nm gold nanoparticle and report-y to a 5 nm gold nanopartcle (A-B).
Right: oxDNA simulations of a single start-push-write complex (C).

In Fig.7.20, the original experiment consists of the data storage of five signals "X-Y-X-X-

X". OxDNA simulations [96] (Fig. 7.20, right) indicate that the assembled stack does not

necessarily extend straight forward but might instead contain a kink at each signal-push

holiday junction. Fig. 7.20 (top) shows TEM results from an experiment where five signals

(X ,Y,X ,X ,X) have been recorded. The image show a stack with just one extra write-X on

the left side of the recorder, resulting in a stack with six signals (X ,X ,Y,X ,X ,X). The image

shows a separation of 15-20 nm between the nanoparticles with a zig-zag configuration

predicted by the simulations.

The image shows a separation of 15-20 nm between the nanoparticles as estimated in the

3D conformation (Fig 7.20 left). Moreover the zig-zag alignment confirms the geometric

prediction of our oxDNA simulations (Fig 7.20, right).

In Fig.7.21 a representative TEM images of Au-conjugated bio-bricks assembled with alter-
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nate X and Y signals respectively attached to a 10 nm and 5 nm gold nanobeads.

Figure 7.21: High-magnification Au-conjugated TEM image. The image shows Au-
conjugated bio-bricks assembled with alternate x and y signals (x-y-x-y-x), five signals
stored). Simultaneous use of 5 nm and 10 nm Au gold nanoparticles has been used re-
spectively to image the x and the y signal. Reporter bricks has been used to bind the signal.
The image also shows the predicted 3D structure pattern that has been confirmed with the
imaging. Scale 100 nm.

In Fig.7.22, the original experiment consists of the data storage of ten signals "20 Au- X-Y-

Y-Y-X-Y-X-X-Y-X" with the start attached to a 20 nm gold nanoparticle, X and Y respec-

tively to a 5 and a 10 nm gold nanoparticle. It was possible to recognize different stack, and

especially in Fig.7.23 (bottom) a stack starting exactly with a 20 Au attached to a 20-Au-X-

Y-Y-Y.
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Figure 7.22: Imaging DNA Data Stack Storage. Representative TEM images of Au-
conjugated. The original experiments consists of data storage of 10 signals 20-Au-
XYYYXYXXYX. Was possible to find representative images of data storage, but not in
the X- Y order that the experiment was set. The images give an idea of how the DNA stack
data structure is visualized at the TEM
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Figure 7.23: TEM image of a 20 nm Au particle binding the start bio-brick. The start
brick has been attached to a 20 nm gold nanopartcle to facilitate the visualization of the
beginning of the chain. Scale 500 nm.TEM image of 10 signals stored. 10 signals (x-y-y-y-
x-y-x-x-x-y-x). The beginning of the chain is marked by a 20 nm Au gold nanoparticle. The
assembling does not show exactly the one proposed in the experiment, but it does suggest a
very close structure. Scale 100 nm.
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7.7 Preventing Runaway Process

In order to prevent an uncontrolled elongation of the stack through previously unattached

bricks present in the solution (henceforth, runaway process), I explored the possibility of in-

troducing a washing step in the protocol. The washing was performed with (i) Hydrophilic

Streptavidin 2 µm diameter Magnetic beads provided by New England Biolab and (ii) a

size-selection filtering via Amicon-Ultra 0.5 Centrifugal Filter Unit devices with 100 KDa

cut off. Both were used as instructed by the provided supplier protocols. The magnetic

nanobeads are covalently conjugate to streptavidin, in order to strongly bind the biotinylated

ligand. The start brick was incubated with magnetic beads as instructed in the provided sup-

plier protocol. A magnetic rack was used for the separations of the unattached biotynilated

bricks. To release the stack, I explored the usage of two different versions of the start brick,

modified by introduction of a SmaI and a SwaI restriction enzymes site, sequences are listed

in table 5.1. These enzymes have been used for their ability to work at 25◦C (approximately

room temperature). The digestion reaction was carried out in the test tube containing the

magnetic beads and the samples. The provided enzymes buffer was used as for the reaction,

and left the mixture reacting for 2h. Amicon Centrifugal Filters for DNA were also used to

attempt the filtration of the unattached bricks. The average weight of one base pair is 650

Daltons [126]. Conversion of our bricks and complexes into Daltons have been listed in

Tables 7.10. I used either a 10 or a 20 nm gold nanoparticles to grant the filtration.

Brick Size [KDa]
Start 17.5
Push 41.6
Start-push 59.1
Write X/Y 63.7
Write LY 83.2
Start-Push-Write X/Y 122.8
Start-Push-Write LY 142.3

Table 7.10: Bricks nucleotide size converted in Dalton units.

7.7.0.1 Limitations of the washing step

Preliminary results showed that the proposed methods did not produce enough yield to be

detected by the agarose gel and on chip electrophoresis, suggesting that these washing meth-
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ods are not applicable. A potential explanation may be that both enzymes do not cut within

the restriction sites, thus the DNA stack is not released. This is possibly due to lack of space

between the beads and the restriction site. On the other side, the recovery rate using Ami-

con filters was also not detectable, possibly due to the fact that the majority of start bricks

bound to a 10 or 20 nm gold nanoparticle presumably get stuck in the filter. It is possible

that gold is progressively blocking the membrane until eventually it is not functioning at its

MWCO (100 KDa). The washing step represents a desired but not necessary condition for

the prototype implementation, thus although was not possible to prevent the uncontrolled

elongation of the stack, it has been still successfully possible to implement and observe the

operations a laboratory scale level.

7.8 Conclusions

The stack data structure characterization shows the capacity of the molecular device to store

a sequence of events encoded via the use of DNA single strands. Although the protocols

need to be improved for a better yield, the prototype is a viable mechanism to read and write

information from the device and ensures robust operations over multiple rounds.
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Chapter 8

Characterization and Results of an In

Vivo DNA Tape Data Structure

This chapter presents experimental results of the phenotypic characterization of the strains

used as platforms for the tape data structure, using standard microbiology and molecular

biology techniques. The tape was initially cloned in a low copy plasmid and successfully

inserted into the E.coli chromosome. Due to the nature of the recombinase system, it is

difficult to control, and thus the final tape data structure remains very difficult to achieve in

the laboratory setting.

8.1 Phenotypic Characterization of ∆PyrF Strains

The laboratory workhorse strain E. coli DH5 was modified to become a strain platform to

host the tape system. It was achieved by deleting the pyrF gene, to render the strain aux-

otroph for pyrimidines, required as a selection and counter-selection marked in this system.

The next subsections, introduce the phenotipic characterization of ∆pyrF strains (TLoST01

and TLoST02, chapter 5 section Table 5.5)

8.1.0.1 Antibiotic sensivity

In previous work while me and my supervisor team were at Nottingham (where this disser-

tation work started) EPSRC grant EP/HO24905/1 The Logistic of Small Things - A Cross
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Disciplinary Feasibility Account, (TLoST), unpublished, DH5α was genetically modified

to knock out the lacI gene encoding the lac operon repressor [127] as well as the pyrF

gene encoding for orotidine -5’-phosphate decarboxylase [128] and the sdiA gene encoding

a transcriptional regulator of the LuxR family. The strains TLoST01, TLoST02 did not grow

in the presence of tetracycline or gentamicine antibiotics, therefore not exhibiting the phe-

notypes that they should. The strain TLoST02, was also unable to grow under the presence

of trimethoprim resulting sensitive to the such antibiotic, suggesting that it probably do not

includes the tape system.

8.1.0.2 Uracil auxotrophy

The pyrF gene encodes for orotidine-5’-phosphate decarboxylase, an essential enzyme in

the pyrimidine biosynthetic pathway which deletion confers uracil auxotrophy [123] . E.

coli strains with this gene knocked-out should not grow in the absence of uracil in minimal

medium. In order to verify the deletion of pyrF in the strains TLoST01/pKD46RecAPa, and

TLoST02, were grown on solid minimal media (M9) in the presence and absence of uracil.

Results after 24 hours and 48 hours incubaton, at 37◦C are shown in the 8.1 and 8.2.

U - U
DH5α(control) - -

TLoST01/pKD46RecAPa - -
TLoST02 - -

Table 8.1: Results after 24 hours shown that TLoST01/pKD46RecAPa, TLoST02 did not
grow under the presence and absence of uracil. DH5α was used as control

U - U
DH5α(control) + +

TLoST01/pKD46RecAPa + +
TLoST02 + +

Table 8.2: Results after 48 hours shown that TLoST01/ pKD46RecAPa, TLoST02 grew
under the presence and absence of uracil. DH5α was used as control.

E. coli DH5α exhibits inferior growth phenotype, especially in minimal media (M9) com-

pared to other E. coli strains. Strains which present a mutated purB gene need a supple-

mentation of adenine [122].Results after 24 hours and 48 hours incubaton with and without
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adenine, at 37◦C are shown in the 8.3 and 8.4. Both strains were grown again on solid agar

under the presence and absence of uracil and adenine. Results after 24 hours of incubation,

at 37◦C are shown in table 8.5.

A - A
DH5α(control) - -

TLoST01/pKD46RecAPa - -
TLoST02 - -

Table 8.3: Results after 24 hours shown that TLoST01/pKD46RecAPa, TLoST02 did not
grow under the presence and absence of adenine. DH5α was used as control

A - A
DH5α(control) + +

TLoST01/pKD46RecAPa + +
TLoST02 + +

Table 8.4: Results after 48 hours shown that TLoST01/ pKD46RecAPa, TLoST02 grew
under the presence and absence of adenine. DH5α was used as control.

U- + A - U - + A U + A
DH5α(control) + + +

TLoST01/pKD46RecAPa + + +
TLoST02 + + +

Table 8.5: Results after adenine supplementation shown that the strains
TLoST01/pKD46RecAPa, DH5α , TLoST02 grown in the presence and absence of
both uracil and adenine. DH5α was used as control.

8.1.0.3 5-Fluoroorotic Acid (5-FOA) selection for ∆pyrF strains

5-Fluoroorotic Acid (5-FOA) has been used as selective agent. A functional pyrF gene en-

codes for orotidylate decarboxylase, (involved in uracyl biosynthesis). 5-FOA is converted

to 5-fluorouracil (5-FU), by orotidylate decarboxylase. 5-FU is uracyl highly toxic analogue.

E. coli DH5α does not grow in presence of 5-FOA. Test conducted on TLoST01/pKD46RecAPa,

and TLoST02 show that both strains are sensitive to 5-FOA, confirming that the strains do

not carry the tape system. Results are shown in table 8.6
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5-FOA- 5-FOA
DH5α(control) + -

TLoST01/pKD46RecAPa + -
TLoST02 + -

Table 8.6: Results after 24 hours shown that TLoST01/ pKD46RecAPa, TLoST02 do not
grow under the presence of 5-FOA. DH5α was used as control.

8.1.0.4 pyrF gene amplification

Primers pyrFcF and pyrFcR were used to amplify the pyrF gene in order to verify their

presence in the strains TLoST01/pKD46RecAPa, TLoST02. The experiment was performed

in order to compare the PCR results with the ones performed in M9 media. As shown in Fig.

8.1 a PCR product for pyrF could be amplified, confirming that the strain was not correctly

knocked out.

Figure 8.1: Agarose gel electrophoresis showing PCR product of pyrF gene amplifica-
tion. In lane 1 is the DNA 1kb ladder from Promega, used to determine the band size of the
amplified fragments. In lane 2 is a clear PCR product, amplified from DH5α . Lanes 2 and
lane 3 show respectively the products amplified from the strains TLoST01/pKD46RecAPa
and TLoST02

8.2 Characterization of PBluescript::Tape

In previous work, the tape system has been cloned in the pBluescript vector to produce

pBluescript::Tape. Further analysis of characterization has been performed, to check the
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presence of the tape system in the plasmid, by antibiotic sensitivity assay,restriction analysis

and sequencing.

8.2.0.1 Antibiotic sensivity

The plasmid contains the bla gene, encoding for beta-lactamase that confers resistance to

ampicillin. The DH5α strain has been transformed by electroporation with the plasmid and

grown on solid agar with carbenicillin 100 µg/mL.

8.2.0.2 Restriction analysis

pBluescript::Tape DNA was extracted and digested with XhoI and SacI to release and verify

the 9-kb Tape fragment that should be present and the 2.9-kb pBluescript backbone. Elec-

trophoresis gel of the digestion showed, in several occasions, abnormal clones as shown in

Fig 8.2.

Figure 8.2: Electrophoresis gel showing the digested pBluescript :: Tape. 500 ng of
DNA were loaded in lanes 1 and 2. In Lane M is showed the Promega 1Kb ladder. Lane
2: Digestion with SacI/XhoI, normal pattern Lane 3 Digestion with SacI/XhoI, abnormal
pattern.
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8.2.0.3 Sequencing

Extremities of the insert present in pBluescript::Tape showing the expected digestion pattern

was sequenced with universal primers T3 and T7 and were analyzed using SeqMan Pro

sequence assembly programme (Fig 8.3).

Figure 8.3: Sequencing analysis. Results shows that Tape ends were free of error
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8.3 Bioinformatic Analysis

The original Tape sequence was synthesised by GeneArt TM Gene Synthesis. The sequence

annotation was provided in the Artemis table format [129]. To further validate any defect

in the system sequence, I identified all the system components using NCBI’s Blast. The

analysis revealed the absence of the lacO (AATTGTGAGCGGATAACAATT ) in the whole

sequence, a short DNA fragment up-stream of the promoter for LacI repressor which binding

is very crucial, the system will not work without this operator in the sequence. The correct

Tape full sequence annotation is provided in the Appendix A.

8.3.1 Module I repair

In this work I propose a strategy to repair the module I. The original Tape system design

(EPSRC project EP/J004111/1 “The Logistic of small things, unpublished) has been found

lacking the lactose operator (lacO) site.The system will not work without these operators in

sequences. LacO wild type has been improved in a tight bind version, named "symmetric

lacO", consisting of 15 bais pair segment from the half of the natural operator sequence

[130]. Primers Mod1R Containing pTac – lacOsym -NotI, and Mod1F were used to amplify

the Module I from a previous version of minitn7::bmx received at the beginning of the

project. PCR product was cloned into the Thermo Scientific CloneJET TM PCR Cloning

Kit and sequencing and enzymatic digestion confirmed that the module was successfully

repaired as shown in Fig 8.4.

8.4 Construction and Characterization of PTape01

To insert the tape system in the E.coli chromosome was used a delivery plasmid based on

the Tn7 transposition. Firstly, I performed the cloning of the tape in the miniT7 delivery

plasmid. Growth conditions for the strain carrying the miniTn7::Tape (pTape01), was opti-

mized. The last step, consists of the insertion of the tape in the chromosome of E.coli and an

analysis of the cell population dynamic. Finally, preliminary results are shown using IPTG

to induce the system.
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Figure 8.4: Module I Containing pTac – lacOsym -NotI.Panel A) M: 1kb NEB lad-
der;Lane 1: Module I + lacO PCR product 1.5 Kb. Panel B) M: 1kb NEB ladder;Lane 1:
pJet vector :: Module I + lacO PCR product 1.5 Kb Lane 2: pJET1.2/blunt Cloning Vector
vector without insert used as control. Panel C) M: 1kb NEB ladder; Lane 1: pJET1.2::lacO
digested with SacI/NotI

8.4.1 Cloning and transformation

The Tape system lacking of the lacOsym was cloned in the mini-Tn7 delivery plasmid

(pTape01) and then repaired with the right module I. Both insert and vector were digested

with SacI/XhoI. E. coli CC118(λpir) was used as bacterial host. Transformants were se-

lected in LB agar plates with trimethoprim 160µg/mL and tetracycline 25µg/mL The plas-

mid was extracted and digested with SacI/XhoI in order to verify the ligation (Fig 8.5).

Figure 8.5: Electrophoresis gel showing the digested pTape01. 500 ng of DNA were
loaded in lanes 1 and 2. In Lane M is shown the Promega 1Kb ladder. Lane 1:
PUC18R6K::Tape not digested. Lane 2: PUC18R6K:: Tape digested with SacI/XhoI,
with the corresponding bands of Tape 9kb and PUC18R6K::TcR of 5.2 Kb; map of
PUC18R6K::TcR miniTn7 delivery plasmid with the Tape .
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8.4.1.1 Antibiotic concentration

Antibiotic concentration essay was performed to define the amount of trimetroprim antibi-

otic which could inhibit the visible growth of the host cell after overnight incubation. Results

shows that Tape keep on growing with concentration until 160 µg/mL.

8.4.2 Optimization of media

E. coli DH5α and E. coli BW25113 were used as positive control, whilst E. coli JW1273

was used as the negative control. Optimization of the media was performed for growing

the E. coli ∆pyrF cells carrying the Tape system selectable in the presence of 5-FOA and

trimethoprim. Tape strains were grown in minimal media (M9 media) supplemented with

MgSO4 (2mM), casaminoacids and vitamins. Tape carries a pyrF gene, knocked-out to

render the strain auxotroph for pyrimidines, required as a selection and counter-selection

marker in this system. E. coli strains with this gene knocked-out should not grow in the

absence of uracil in minimal medium.

In Fig 8.7 results after 24 hours at 37◦C and in Fig 8.8 with and without uracil supplemen-

tation.

LB, RPMI, AB and M9 media were chosen for minimal media optimization experiments

due to their common use in molecular biology.
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Figure 8.6: Growth comparison in different defined media at 37◦C.Growth comparisons
between strains DH5α (blue bar), JW1273 (pyrF-, red bar), and BW25113 (wt, green bar).
In LB growth is visible after 24h with a Max O.D of 2.2. In RPMI growth is visible after
24h with a Max O.D of 0.7. In M9 media supplemented with vitamins mixture growth is
visible after 24h with a Max O.D of 1,7

Figure 8.7: Growth comparison between RPMI, M9 and M9 +vitamins. E.coli BW25113
growth comparison between RPMI media M9 media and M9 supplemented with vitamins
mixture, at 37◦C. In RPMI growth is visible after 24h with a Max O.D of 0.7. In M9 media
not supplemented with vitamins mixture growth is visible after 24h with a Max O.D of 0.03.
In M9 media supplemented with vitamins mixture growth is visible after 24h with a Max
O.D of 1,7
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Figure 8.8: Growth comparisons between JW1273 (pyrF-) in M9 + vitamins medium,
with and without uracil supplementation. Strain pyrF- are not able to grow without
uracil supplementation (red bar). Different range of uracil were used to detect the suitable
concentration (blue bars) necessary for strain lacking of pyrF activity. Results show that
growth is visible with a concentration of at least 10µg/ml of uracil.

8.4.3 Chromosome insertion of pTape01 in E. coli

Colony PCR was performed to confirm the insertion of mini-Tn7 in the chromosome of E.

coli (Fig 8.9 ) .The mini-Tn7 element should be inserted downstream the glmS gene and

upstream the pstS gene, with a specific orientation [115].

114



Chapter 8: Characterization and Results of An In Vivo DNA Tape Data Structure

Figure 8.9: Electrophoresis gel showing the PCR products using primers Tn7R/attTn7-
1. .(panel A) and primers Tn7L/attTn7-2 (B) In Lane M is showed the Promega 1Kb ladder.
Lane 1 to 6: JW1273::Tape colonies were used as samples. Lane 7: DH5α::Tn7 as positive
control. Lane 8: JW1273 as negative control.
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8.4.4 Tape01 Population dynamics

Instability of the system can be due: a) accidental excision between attB and attP as con-

sequence of a spurious expression of the integrase which provoke loss of trimetoprim re-

sistance; b) spurious transcription from the tac promoter, followed by spurious retrotran-

scription into non-specific target which provoke loss uracil auxotrophicity. Therefore it is

necessary estimate the percentage of colonies spontaneously reverse to trimetoprim sensi-

tive (TmS) or pyrF+, in M9 minimal medium in standby conditions (Fig 8.10 panel A and

C) and by adding 1mM arabinose as inducer (Fig 8.10 panel B and D). M9 media with

trimetoprim 100 µg/mL was used for the estimation of antibiotic loss while M9 media with

uracil 20 µg/mL was used for the estimation of auxotrophicity loss.
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Figure 8.10: (A) Trimethoprim resistance loss in M9 media: accidental excision between
attB and attP can be detected by the loss of Trimethoprim resistance. The curves shows the
percentage of colonies trimetoprim sensitive (TmS) after 100 cell division in standby. (B)
Trimethoprim resistance loss in M9 media + 1mM arabinose. (C) auxotrophicity loss in
M9 media: retrotranscription into non-specific target can be detected by the loss of Uracil
auxotrophicity. The curve shows the percentage of colonies pyrF+ after 100 cell division
(D) Uracil auxotrophicity loss in M9 media + 1mM arabinose .
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8.4.5 Recording of one event

During this study a strategy has been designed in order to verify the recording of one event

(1bit).

Tape 2.0 strain has been induced with IPTG 0 mM 0.5 mM, 1 mM, 2 mM and 4 mM and

incubated for 1.5 h, 3 h, 6 h, 8h and overnight ( 12h), has showed in Table 8.7.

0 mM 0.5 Mm 1 mM 2 mM 4 mM
1.5 h - 2 - - -
3 h 10 - - - -
6 h 5 9 - - 1
8 h - - - 2 -

12 h 3 3 - - -

Table 8.7: Results after IPTG induction.

8.5 Conclusions

The tape system characterization results show that it is very unstable and not easy to con-

trol, therefore making the full implementation very challenging. I have however stably in-

troduced into the chromosome the tape data structure and future optimisation of the various

devices components might render the device more controllable. This chapter concludes Part

IV of this thesis.
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Discussion and Conclusions

The objective of the approaches presented in this dissertation, is to produce a DNA data

structure, that can be in principle programmed and embedded in living cells, offering multi-

ple applications in bio and nanotechnologies. My target is to advance the state of the art of

designing biological embedded data structures implemented at the nanoscale level. Toward

my goals I presented:

1. an in vitro "list-like" represented by a DNA stack data structure. The work present

the design, engineering and characterization of the prototype of a stack machine that

offers control via DNA hybridization and DNA strand displacement

2. an in vivo "list-like" represented by a DNA tape data structure. The work presents the

design, engineering and preliminary characterization of the prototype moving the first

steps towards an in vivo implementation of a tape data structure that exhibits control

via site specific recombination.

3. identification of limitations and solutions of DNA data structure designs.

The next sections provides a discussion and conclusion of the contents introduced in the

previous chapters, for the two routes presented in this dissertation.
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9.1 Evaluation of the DNA Stack Data Structure

This dissertation presents a design and experimental evidence for the working of an in-vitro

signal data storage based on DNA strand assembly and displacement. The prototype imple-

ments a stack data structure with push and pop operations and allows for storing two signal

types with the usage of DNA oligonucleotides, indicated as "bricks". The implementation

requires the usage of standard simple reagents, but the characterization requires the usage

of sophisticated equipments.

9.1.1 Limitation of the quantitative analysis

Experiments revealed a decreasing of the mobility when the stack is elongated during the

data storage cycle, and a faster band migration when the opposite is true during the reading

cycle, in both agarose and capillary electrophoresis. Because we employ single stranded

DNA with a partial secondary structure, the electrophoresis analysis software does not cor-

rectly detect molecular concentrations, which prevents us from gaining a precise quanti-

tative picture of the involved processes. The DNA High sensivity kit, can quantify with

high affinity dsDNA. Discrepancies between the known brick sizes and the sizes derived

by the software from comparison to the ladder might be attributed to two reasons: firstly,

short bricks such as start, read and report are well below the detection limit of the High

sensitivity kit, which can resolve ssDNA fragments between 50 -7000 base pairs in length,

with an accuracy of ±10% from 50 to 600 bp and ± 20% from 600 to 7000 bp (according

to manufacturer specifications). Secondly, the reported deviations might lie in the fact that

our bricks contain extensive secondary structures that might affect their motility in the gel

matrix. Despite some limitations, it is possible to observe that the data storage cycle works

with relatively high fidelity. However it is difficult to quantify the molar yield due to the

changing secondary structures of the DNA bricks. Nonetheless, capillary electrophoresis

and TEM imaging indicate that the nanodevice is able to store at least three consecutive

signals and does not suffer from problematic runaway processes. However, after storing

several signals, electrophoresis analysis indicates that the device is not only present in the

desired final state, but also in several intermediate recording states. Because of the limits

of experimental quantification, we can currently not offer a satisfying explanation for these
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intermediate peaks. This currently impacts the readout cycle, as the pop operation inter-

acts with all present stacks and thus returns a superposition of recorded signals. While this

is contrary to the intended working, such a superposition might also have advantages, as

it might allow one to reverse engineer the composition and order of recorded information

from a single electrophoresis read out. Other issues that could quite explain the difference in

fluorescence could be: pipetting differences and eventually sample storage and temperature

that could lead to a difference in signal strength and a consequent over or under estimation

when the software tries to normalize the values.

9.1.2 Imaging limitation of the DNA stack data structure

The ssDNA bricks have been conjugated with gold for the TEM measurements. Note that

the particle can have geometric variations, that I confirmed with some measurements taken

from the image analysis software, to verify the particle size and distances. Some images

are clearly distinguishable and other look like gold agglomerates, limiting the capacity of

distinctly recognise the stack data structure. The work contributes to nanotechnology by

proposing a novel design of a nanoscale architecture, assembled via DNA hybridization

and displacement cascades where irreversible reactions make possible to write and read

information from the nanodevice.

9.2 Evaluation of a Tape Data Structure

In the in vivo approach, the goal requires the usage of a novel system based on the usage

of an an Intron II and φ31 integrase. The implementation required the usage of standard

reagents, and standard microbiology and molecular biology techniques.

9.2.1 Strains phenotype characterization

The strains TLoST01/pKD46RecAPa and TLoST02 were grown in the presence of tetra-

cycline and gentamycine antibiotics, separately. The experiment was performed in order

to determine which miniTn7 vector was used to make this construct, because it was not
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specified. The strain resulted sensitive to both antibiotics. TLoST02 resulted sensitive to

trimethroprim and these results indicate that these strains could not be used. pyrF, is a gene

encoding for orotidine-5’-phosphate decarboxylase (EC 4.1.1.23). This enzyme carries out

an essential step in the pyrimidine biosynthetic pathway. Cells that lack this activity can

grow by uracil supplementation on minimal medium, which can be converted to uridine 5’-

monophosphate (UMP) through a salvage pathway. Cells that lack the enzyme encoded by

pyrF are no longer sensitive to 5’-fluorootic acid (FOA) [123], which provides a powerful

counter-selection for the loss of the gene.

9.2.2 Minimal Media Optimization

It is known that E. coli DH5α exhibits inferior growth in minimal media (M9) compared to

other E. coli strains [122]. Inferior growth rates in this strain have resulted from unknown ac-

cumulated mutations during its development process. Strains which present a mutated purB

gene need a supplementation of adenine [122] This gene catalyzes two reactions in de novo

purine nucleotide pathway. In E. coli there are two pathways for conversion of adenine into

guanine nucleotides, both involving the intermediary formation of inosine monophosphate

(IMP). The major pathway involves conversion of adenine into hypoxanthine in three steps

via adenosine and inosine, with subsequent phosphoribosylation of hypoxanthine to IMP.

The minor pathway involves formation of ATP, which is converted via the histidine path-

way to the purine intermediate 5-amino-4-imidazolecarboxamide ribonucleotide and sub-

sequently to IMP. For this reason the M9 minimal medium used was improved by adding

adenine and experiments showed after the 24 hours a restoration of growth. Comparison

between optimized and traditional minimal media demonstrates that vitamins supplementa-

tion permit to increase the O.D after 24h growth, whilst a poor growth is observed after 48h

using the traditional media composition.

9.2.3 pyrF strains characterization

Strains previously developed were grown on solid minimal media (M9) in the presence and

absence of uracil to verify the deletion of pyrF gene within the chromosome. Results after

24 hours and 48 hours were dissimilar. Results show that the pyrF gene was probably not
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deleted because strains did not stop to grow when uracil was omitted. PCR was performed

to verify the presence of pyrF gene and DH5α was used as control. The reaction produced

a band of 738 bp product in both pyrF mutants. These results indicate that the strains were

not lacking a pyrF gene. An E. coli strain carrying the tape system cloned in the pBluescript

vector containing the ampicillin resistance was sucessfully grown on carbenicillin.

9.2.4 Instability of the system

Restriction analysis of pBluescript::tape plasmids with SacI and XhoI was performed in or-

der to release the tape 9kb insert from the vector to verify it. In more than a few occasions,

abnormal clones were detected. Electrophoresis analysis showed a more intense fluores-

cence in the 2.9 kb band corresponing to the pBluescript backbone than the 9kb band of the

tape, probably due to a recombination event. Such results strongly suggest that the system

is unstable, and has a tendency to recombine in undesired ways. In the tape system the int-

φC31 recombinase is controlled by the arabinose promoter (Para). In absence of arabinose,

the AraC repressor protein is produced and binds as a dimer to the Para promoter, forming

a loop that prevents the RNA polymerase from binding [102]. Expression of AraC can po-

tentially direct transcription from the Para promoter, leading to the expression of int-φC31

recombinase. This can promote abnormal recombination events to occur in the system, caus-

ing unwanted alterations. This effect is more significant especially when the tape is cloned

into pBluescript, since it is a high copy number plasmid and makes the probabilities of the

recombinase being produced higher. In order to avoid undesirable recombination events, the

cells containing the tape system were grown in medium supplemented with glucose. This

results in carbon source catabolite repression (CCR) [131]. The most efficient carbon source

for E. coli is glucose, therefore the cells will use this sugar rather than other less efficient

carbohydrates. Utilization of glucose causes reduction in the intracellular levels of cAMP,

and this in turns reduces the fortuitous induction of the Ptac and Para promoters by the

cAMP receptor protein (CAP). In this case, the presence of glucose is expected to tighten

the expression from Para. A clone showing the expected pattern in the electrophoresis was

purified, and the extremities of the insert in pBluescript sequenced. This confirmed the au-

theticity of the pBluescript::tape plasmid of this particular clone, which was then stored as

a stock at -80◦C
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9.2.5 Insertion of the tape system into the Escherichia coli chromosome

E. coli CC118 (λpir) was used as intermediate host for the plasmid pTape01 with the

tetracycline cassette and trimethoprim resistance conferred by the synthetic insert, because

pUC18R6KT-miniTn7T is R6K a replicon [115], and thus they can only replicate in λpir

strains. An important goal achieved is represented by the transposition of the tape element

into E. coli which represents an essential step. Experiments have been performed to pro-

mote the transposition of the mini-Tn7 element containing the tape system in the E. coli

chromosome, co-transforming the strain with the pTNS2 plasmid, encoding the Tn7 trans-

posase genes. PCR was performed to verify the presence of tape insertion in the strain E.

coli JW1273 where pyrF gene is already knocked out. Each pair of primers produced a spe-

cific amplification of a fragment of the predicted size respectively of 286bp from the couple

Tn7R/attTn7-1 and 714bp obtained by using Tn7L/attTn7-2. E. coli BW25113 was used as

negative control, and it clearly does not show the amplification of those fragments.

9.2.6 Tape dynamic population

The tape dynamic population was checked by calculating the colony forming units (cfu)

spontaneously reverting to pyrF+, after spread in M9 minimal medium lacking uracil in

standby condition and adding arabinose. The gene coding integrase φ31 is actively tran-

scribed once the arabinose is added. Instability of the system can be due: a) accidental

excision between attB and attP as consequence of a spurious expression of the integrase;

b) spurious transcription from the Tac promoter, followed by spurious retrotranscription

into non-specific target. Arabinose increase the frequency of undesired recombination. The

Perutka alghoritm has been used to re-target the transposon and generate the attR target

sequence. The attR site is present in the target plasmid but it has three substitutions with re-

spect to a true attR site. The third substitution is unexpected, likely due to a PCR error, and

there are no evidence if these substitutions can affect the efficiency of the retrotransposition.
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9.2.7 Intron re-targeting

An enzymatic digestion of all the clones containing the plasmid was performed after the

recording experiment to verify the 900 bp insertion in the disrupted attR site. The selection

is necessary to identify the required phenotype capable to store information. It was not

possible to identify any clone carrying the insertion. One of the possibilities is that the

intron is not targeting the attR sequence, due to two reasons:

1. The Ll.LtrB promotes the RNA splicing of the catalitical RNA structure. To do so

it needs the presence of magnesium. Although E.coli cellular environment should

provide its presence, the exon binding sites (EBS) and intron binding sites (IBS) se-

quences can interact creating cross links [132], disturbing the retrotransposon stability.

The mutate EBS, in this way cannot recognise the attR sequence on the tape plasmid.

In order to obtain the targeting of the attR sequence on plasmid, the intron has to

correctly fold into its tertiary structure.

2. Although there is no need for a perfect attR site in the target plasmid to assess the

first retrotransposition, to troubleshoot the system is more likely needed a design of a

completely optimal target for the existing retrotransposon. To do this, it is important

a full understanding of the constraints that define a good "Perutka score" (after the

paper by Perutka et al. 2004) and reverse-engineer the perfect target sequence.
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Future Research Directions

10.1 A DNA Stack Data Structure

10.1.1 Optimization of the Design

The work carried out in this thesis has revealed many promising results from a very first

design of the bricks set, but also let me suggest some optimizations of the design for the

next results:

1. optimize the start brick, using a longer sequence. The brick is a 27 nucleotide string

that is detected as a roughly 50 base pairs fragment via capillary electrphoresis, due to

the ladder limitations. The usage of a longer start could lead towards a more precise

estimation and detection of the brick, with the advantage of improving the interpreta-

tion of the electrophoresis output, without changing the functionality.

2. signal bricks contain a hairpin loop that does not participate in the strand displacement

or hybridization. These hairpins can host any desired functionality for experimental

detection, such as reporter binding motifs. Vienna Fold simulation [108] shows the

stem structure of the write with the hairpin loop binding the reporter, as expected. On

the other hand OxDNA simulations [96] revealed that report bricks have difficulties

to associate with their respective write (Fig.10.1), due to the double helix formation of

the loop domain despite sequence non-complementary. The model shows that those
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domains can hybridize, although they are not exactly complementary. This will just

leave the x domain in the form of a single strand, which does represent just a small

subset of the hairpin. The report complementary domain x’ will bind but the limited

hairpin space could promote a reversible binding and not the expected irreversible one.

Having a longer h and l hairpin domains could reduce this unexpected hybridization

reaction between the two domains and obtain the desired irreversible write-reporter

binding. If oxDNA prediction, is actually the most accurate one, the scarce report

binding could quite well explain the difficulty to find presence of structures when

looking at the TEM.

Figure 10.1: oxDNA reporter binding prediction of double helix formation of the loop do-
main between non-complementary sequences. Start(blue),Push(green),Write(red), Reporter
(purple).

10.1.2 Optimization of the reading

The reading cycle concentrations need to be optimized, to prevent runaway processes. Using

a concentration of 200 nM (as for the Data storage cycle), seems to dramatically pop ele-

ments from the stack. When using half of the concentration, is possible to follow the reading

cycle, looking at new species or intermediates, under the form of capillary electrophoresis

peaks. To choose the ideal concentration for read and pop, it is required either a quantitative

characterization of the results or alternatively a robust prevention of runaway processes.
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10.1.3 Optimization of the quantitative analysis

Also, the molecular beacons could represent a more powerful method to follow the hy-

bridization and the displacement. In ref [133] has been found that Cy3 photo-degradation

occurs nearly three times more rapidly for externally labelled oligonucleotides. Thus, one

of the possibilities is represented by the internal labelling of the bricks hairpin, thus mon-

itoring the branch migration, e.g, labelling the start b domain (hairpin) and the push b’

domain (hairpin), respectively with a quencher and a fluoropher. Thus, the fluorescence

should decrease whilst the branch migration proceeds. Additionally the plan is to improve

experimental analysis methods using different capillary electrophoresis analysis kits (such

as RNA assay kits). Better experimental quantification will allow us to calibrate compu-

tational models that will in turn help us increase our understanding of the fidelity of the

device. Alternatively it could be possible to introduce a washing step, to reduce the surplus

bio-bricks, using a streptavidin surface to attach the stack and release it via strand displace-

ment (e.g., designing a start releaser).

10.1.4 In vivo implementation

Ultimately, the goal is to move forward into an in vivo implementation. For a Universal con-

struction and explore the stack backbone as programmable scaffold for large-scale assembly

of DNA origamis, and ideally achieving Universal computing with the designs of multiple

simultaneous stacks and signals that can be written and read multiple times. Alternatively,

the device could be used to programmatically and reversibly arrange matter such as lipo-

somes [134, 135] or DNA origami on the nanoscale. The design is based on ssDNA bricks,

and the entire data structure could, in principle, be expressed in vivo by a living cell as an

RNA data structure and post-transcriptionally controlled. All strands (except of start and

record) have already been designed to start with a sequence that encodes a promoter. As the

data storage happens in a double-stranded fashion rather than in dangling single strands, an

in vivo realization is likely to suffer less from enzymatic attack. Also, bricks have been de-

signed with washing through RNAse in mind. A dangling strand would thus be susceptible

to 3’→ 5’ RNAse digestion since this design meets the requirements.
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10.2 A Tape Data Structure

10.2.1 Testing the system limits

The results presented in this thesis indicate that it is necessary to test the limits of the system,

control of levels and timings of recombinase expression, recording capabilities and number

of inputs able to be recorded. It could be also very useful to test the tape without the reset

module carrying the araC used just for the resetting. Fortunately, the system was designed

since the beginning with plenty of unique restriction sites all over the sequence, so that

replacing or removing a module should be fairly easy to do. As modelling in synthetic

biology represent an approach to optimize the synthetic systems and make their functions

and usage more predictable, a version of the tape modelling could be developed, but there is

a lack of tools that permit to model retrotransposons.

10.2.2 Gene fusion plasmid

The usage of a repressor with the attR, could lead to engineer an attR reporter. The idea is

to create a hybrid gene formed from the attR sequence and a repressor (e.g Cro from E.coli

[136]). The gene is controlled by a Promoter (Px) and the transcription starts from the AUG

start codon, proceeding until the TGA stop codon. In this condition the repressor is tran-

scribed and translated and will bind a sequence upstream the chosen reporter e.g, antibiotic,

light reporter or a fluorescence protein. When the attR is disrupted by the insertion of the

stored bit of information, as a result, it can occur the transcription and translation of the

reporter, as the repressor will not be transcribed (Fig.10.2)
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Figure 10.2: Gene fusion reporter idea for a new tape plasmid.

10.2.3 Methods to verify the data storage

Tape strains able to record 1 bit can be selected with 5-FOA and uracil, or alternatively

with a plasmid PCR to verify the 900 bp insertion in the disrupted attR site. The selection

is necessary to identify the required phenotype capable to store information. A similar

experiment needs to be run for the resetting of the system using arabinose.

10.2.4 Tape platform optimization

E. coli JW1273 has been chosen as potential synthetic biology platform. In order to avoid

any potential interference with the tape system, the lacI gene encoding for the lac repressor

in Lac Operon could be knocked out, although this is not an essential requirement. On the

contrary, it may end up being beneficial to have additional copies of this repressor gene.

Other strains or even organisms are not excluded to be tested as alternative platforms. Once

the recording experiment will be successful will be important to understand after how many

generations the long-term memory is maintained, expecting a performance at least of 100
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cells division [137].
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Appendix

A.1 Kit, Reagents, Equipments and Software

All Kit, reagents, equipments and software used for the the engineering and characterization

of the presented prototypes are listed in Tables A.1, A.2, A.3, A.4.

Kit Supplier

Zymoclean Gel DNA Recovery Kit Zymo Research
QIAquick Gel Extraction Kit Quiagen
Escherichia coli 5-alpha Competent E. coli (High Efficiency) NEB
Plasmid Miniprep Kit Quiagen
Quiagen Plasmid Purification Quiagen
CloneJET PCR Cloning Thermo Fisher Scientific
DNA High Sensivity Kit Agilent Technology
Amicon Ultra-0.5 mL Centrifugal Filters for DNA Amicon

Table A.1: Kits used in this study
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Reagents Supplier

potassium phosphate monobasic (KH2PO4) Sigma Aldrich
ammonium chloride (NH4Cl) Sigma Aldrich
ammonium sulphate ((NH4)2SO4) Sigma Aldrich
Yeast Nitrogen without amino acid Sigma Aldrich
5-FOA Sigma Aldrich
RPMI-1640 medium Sigma Aldrich
sodium chloride (NaCl) Sigma Aldrich
Glycerol Sigma Aldrich
Sucrose Sigma Aldrich
Dextrose Sigma Aldrich
D-Ca panthenate Sigma Aldrich
Choline c-hloride Sigma Aldrich
i-Inositol Sigma Aldrich
Pyridoxine-HCl Sigma Aldrich
Riboflavin Sigma Aldrich
Thiamine-HCl Sigma Aldrich
Magnesium sulfate (MgSO4) Sigma Aldrich
casaminoacids Sigma Aldrich
T4 DNA ligase Promega
Nuclease free water Sigma Aldrich
GoTaq polymerase Promega
Deoxynucleotide (dNTP) Solution Mix NEB
UltraPure TAE Buffer, 10X Invitrogen

Table A.2: Reagents used in this study

Equipments Supplier

Thermomixer Comfort Eppendorf
T3000 Thermocycler Peltier technology
Thermocycler 48 Sensoquest
Horizontal Electrophoresis Systems BIO-RAD
2100 Bioanalyzer Agilent Technology
MicroPulser BIO-RAD
CM-100 Compustage (FEI) Transmission Electron Microscope Philips
AMT CCD camera Deben

Table A.3: Equipments used in this study

Software Description

Primer3 web interface for primer design
Agilent Technologies 2100
Bioanalyser - 2100 Expert v.B02.08.SI1648 (SR3) web interface for Agilent Bioanalyser data.

Table A.4: Software used in this study
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A.2 DNA Stack Data Structure Assembly

Protocol Example Using 6 write (X-Y-X-Y-X-Y) in a 20 µL reaction, and 200 nM bricks

from a 10 µM stock

Eppendorf tube: X-Y-X-Y-X-Y

1. nuclease free water 17.6 µL

2. Add START 0.4 µL

3. shaking 10 minute 300 rpm

4. Add PUSH 0.4 µL

5. shaking 10 minute 300 rpm

6. Add WRITE X 0.4 µL

7. shaking 10 minute 300 rpm

8. Add PUSH 0.4 µL

9. shaking 10 minute 300 rpm

10. Add WRITE Y 0.4 µL

11. shaking 10 minute 300 rpm

12. Add PUSH 0.4 µL

13. shaking 10 minute 300 rpm

14. Add WRITE X 0.4 µL

15. shaking 10 minute 300 rpm

16. Add PUSH 0.4 µL

17. shaking 10 minute 300 rpm

18. Add WRITE Y 0.4 µL
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19. shaking 10 minute 300 rpm

20. Add PUSH 0.4 µL

21. shaking 10 minute 300 rpm

22. Add WRITE X 0.4 µL item shaking 10 minute 300 rpm

23. Add WRITE Y 0.4 µL

24. shaking 10 minute 300 rpm
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A.3 Plasmids Maps

All plasmid maps used for the the engineering and characterization of the in vivo prototype

are presented in Figures A.1, A.2, A.3, A.4, A.5.

Figure A.1: Thermosensitive plasmid, provides transiently the RecA recombinase necessary
for some transposition events, like the insertion of mini-Tn7 constructs in the chromosome.
Image taken from [138].
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Figure A.2: Helper plasmid pTNS2 for the transposition of miniTn7 elements, provides
Tn7-specific transposase genes. Image taken from www.addgene.org/vector-database/.
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Figure A.3: pACYC184 cloning vector, CmR, TcR, p15A origin of replication, low copy
number. Image taken from www.addgene.org/vector-database/.
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Figure A.4: miniTn7 delivery plasmid (pUC18R6K-mini-Tn7),TcR, ApR, R6K origin of
replication.
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Figure A.5: pBluescript II KS cloning vector, ColE1 replicon, CbR, ApR, lacZ, allowing
selection via blue-white screening. Image taken from www.addgene.org/vector-database/.
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A.4 Tape Complete Sequence Annotation

Position Functional part Sequence

1-6 misc_binding (SacI

restriction site)

GAGCTC

8-52 transcriptional terminator AATAATAAAAAAGCCGGATTAATAATCTGGCTTTTTATATTCTCT

57-1139 CDS (Lac Repressor)

TCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA

TTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTATT

GGGCGCCAGGGTGGTTTTTCTTTTCACCAGTGAGACGGGCAAC

AGCTGATTGCCCTTCACCGCCTGGCCCTGAGAGAGTTGCAGCA

AGCGGTCCACGCTGGTTTGCCCCAGCAGGCGAAAATCCTGTTT

GATGGTGGTTAACGGCGGGATATAACATGAGCTGTCTTCGGTA

TCGTCGTATCCCACTACCGAGATATCCGCACCAACGCGCAGCC

CGGACTCGGTAATGGCGCGCATTGCGCCCAGCGCCATCTGATC

GTTGGCAACCAGCATCGCAGTGGGAACGATGCCCTCATTCAGC

ATTTGCATGGTTTGTTGAAAACCGGACATGGCACTCCAGTCGC

CTTCCCGTTCCGCTATCGGCTGAATTTGATTGCGAGTGAGATA

TTTATGCCAGCCAGCCAGACGCAGACGCGCCGAGACAGAACTT

AATGGGCCCGCTAACAGCGCGATTTGCTGGTGACCCAATGCGA

CCAGATGCTCCACGCCCAGTCGCGTACCGTCTTCATGGGAGAA

AATAATACTGTTGATGGGTGTCTGGTCAGAGACATCAAGAAAT

AACGCCGGAACATTAGTGCAGGCAGCTTCCACAGCAATGGCAT

CCTGGTCATCCAGCGGATAGTTAATGATCAGCCCACTGACGCG

TTGCGCGAGAAGATTGTGCACCGCCGCTTTACAGGCTTCGACG

CCGCTTCGTTCTACCATCGACACCACCACGCTGGCACCCAGTT

GATCGGCGCGAGATTTAATCGCCGCGACAATTTGCGACGGCGC

GTGCAGGGCCAGACTGGAGGTGGCAACGCCAATCAGCAACGAC

TGTTTGCCCGCCAGTTGTTGTGCCACGCGGTTGGGAATGTAAT

TCAGCTCCGCCATCGCCGCTTCCACTTTTTCCCGCGTTTTCGC

AGAAACGTGGCTGGCCTGGTTCACCACGCGGGAAACGGTCTGA

TAAGAGACACCGGCATACTCTGCGACATCGTATAACGTTACTG

GTTTCAT

1451-1479 pTac promoter TTGACAATTAATCATCGGCTCGTATAATG

1483 start of transcription from

pTac promoter

G
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1481 –

1491

NotI restriction site GCGGCCGC

1492-2099 upstream ltrB intron retar-

geted for attR

AAAAAAGCTTATAATTATCCTTACGGGGCGCCCAAGTGCGC

CCAGATAGGGTGTTAAGTCAAGTAGTTTAAGGTACTACTCT

GTAAGATAACACAGAAAACAGCCAACCTAACCGAAAAGCGA

AAGCTGATACGGGAACAGAGCACGGTTGGAAAGCGATGAGT

TACCTAAAGACAATCGGGTACGACTGAGTCGCAATGTTAAT

CAGATATAAGGTATAAGTTGTGTTTACTGAACGCAAGTTTC

TAATTTCGGTTCCCCGTCGATAGAGGAAAGTGTCTGAAACC

TCTAGTACAAAGAAAGGTAAGTTACTTTGGGCGACTTATCT

GTTATCACCACATTTGTACAATCTGTAGGAGAACCTATGGG

AACGAAACGAAAGCGATGCCGAGAATCTGAATTTACCAAGA

CTTAACACTAACTGGGGATACCCTAAACAAGAATGCCTAAT

AGAAAGGAGGAAAAAGGCTATAGCACTAGAGCTTGAAAATC

TTGCAAGGGTACGGAGTACTCGTAGTAGTCTGAGAAGGGTA

ACGCCCTTTACATGGCAAAGGGGTACAGTTATTGTGTACTA

AAATTAAAAATTGATTAGGGAGGAAAACCTCAAA

2218-2223 SphI restriction site GCATGC

2225-2280 attB site TCGAGTGAGGTGGAGTACGCGCCCGGGGAGCCCAAGGGCA

CGCCCTGGCACCCGCA

2283-2288 BglII restriction site AGATCT

2304-2331 dhfr promoter TAACCCTGATAAATGCTTCAATAATATT

2337-2342 RBS AGGAGG

2349-2585 CDS (trimethoprim gene)

ATGGAACGAAGTAGCAATGAAGTCAGTAATCCAGTTGCTG

GCAATTTTGTATTCCCATCGAACGCCACGTTTGGTATGGG

AGATCGCGTGCGCAAGAAATCCGGCGCCGCCTGGCAAGGT

CAGATTGTCGGGTGGTACTGCACAAATTTGACCCCCGAAG

GCTACGCCGTCGAGTCTGAGGCTCACCCAGGCTCAGTACA

GATTTATCCTGTTGCGGCGCTTGAACGCATCAACTGA

2590-3218 CDS (downstream pyrF

exon)

TCATGCACTCCGCTGTAAAGAGGCGTTGATCGCTTTCAG

CGTCTGCGCTGGATCTACCGATTGCGTTACCGGGCGACC

AATCACCATATAATCAACACCAGCCGACAACGCCTGTTC
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TGGCGTCATAATGCGGCGCTGGTCACCAGCTTCACTCCC

CTGCGGACGAATGCCCGGCGTAACCAGTTTGAACTCCTG

ACCGAATACCTGTTTAAAGCGCACAGCTTCCTGAGCAGA

ACACACCACACCATCAAGGCCACATTTTTGCGTCAGTGC

CGCCAGACGTTCTGCATAATCTGCAGGTGACAGTGTCAT

GCCAAGATCGACCAGGTCGCTGGCTTCCATGCTGGTCAA

CACTGTCACAGCAATCAAAAGCGGTGCATCTTTGCCAAA

CGGAACCAGTGCCTCACGCGCTGCGGTCATCATACGCGC

CCCACCAGAGGCATGAACATTCACCATCCACACGCCTAA

GTCAGCTGCAGCAGCGACAGCGTGCGCTGCAGTGTTGGG

GATATCGTGGAATTTCAGGTCAAGAAAGATATCAAAACC

ACGCTGTTGAAGTTCGCGCACAAACTGTGGCCCAAACAA

TGTAAACATCTCTTTGCCGACCTTCAGACGACAATCTCT

TGGGT

3219-3611 td group I intron

TAATTGAGGCCTGAGTATAAGGTGACTTATACTTGTAAT

CTATCTAAACGGGGAACCTCTCTAGTAGACAATCCCGTG

CTAAATTGTAGGACTGCCCTTTAATAAATACTTCTATAT

TTAAAGAGGTATTTATGAAAAGCGGAATTTATCAGATTA

AAAATACTTTCTCTAGAGAAAATTTCGTCTGGATTAGTT

ACTTATCGTGTAAAATCTGATAAATGGAATTGGTTCTAC

ATAAATGCCTAACGACTATCCCTTTGGGGAGTAGGGTCA

AGTGACTCGAAACGATAGACAACTTGCTTTAACAAGTTG

GAGATATAGTCTGCTCTGCATGGTGACATGCAGCTGGAT

ATAATTCCGGGGTAAGATTAACGACCTTATCTGAACATA

ATG

3612-

3720

CDS (upstream pyrF

exon)

CTATCTTGTCGACAAAGGCCAGCGCGTCATCACGATTAT

GATAATCAAGGGCAACAACCACAGGAGAATTCGTAACAG

CGCGGGAAGAAGATGAAGCAGTTAACGTCAT

3727-3732 RBS CCTCCT

3745-3776 promoter - rrnB p2 pro-

moter (core promoter)

ATTATAGGGAGTTATTCCGGCCTGACAAGAGA

3782-3789 AscI restriction site GGCGCGCC

3790-

3844

attP site

CTAGACCCTACGCCCCCAACTGAGAGAACTCA
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AAGGTTACCCCAGTTGGGGCACG

3845-3850 AatII restriction site GACGTC

3851-3971 PCR tag site 1 GATTACACATTACAGATTACA

3872-3879 SbfI restriction site CCTGCAGG

3880-3998 intron (downstream ltrB

intron)

ATTTTTACGAACGAACAATAACAGAGCCGTATA

CTCCGAGAGGGGTACGTACGGTTCCCGAAGAGG

GTGGTGCAAACCAGTCACAGTAATGTGAACAAG

GCGGTACCTCCCTACTTCA

3999-4008 exon (3’ exon site) CATATCATTT

4012-4017 SacII restriction site CCGCGG

4018-4023 RBS AGGAGG

4030-5829 CDS (ltrA)

ATGAAACCAACAATGGCAATTTTAGAAAGAATC

AGTAAAAATTCACAAGAAAATATAGACGAAGTT

TTTACAAGACTTTATCGTTATCTTTTACGTCCA

GATATTTATTACGTGGCGTATCAAAATTTATAT

TCCAATAAAGGAGCTTCCACAAAAGGAATATTA

GATGATACAGCGGATGGCTTTAGTGAAGAAAAA

ATAAAAAAGATTATTCAATCTTTAAAAGACGGA

ACTTACTATCCTCAACCTGTACGAAGAATGTAT

ATTGCAAAAAAGAATTCTAAAAAGATGAGACCT

TTAGGAATTCCAACTTTCACAGATAAATTGATC

CAAGAAGCTGTGAGAATAATTCTTGAATCTATC

TATGAACCGGTATTCGAAGATGTGTCTCACGGT

TTTAGACCTCAACGAAGCTGTCACACAGCTTTG

AAAACAATCAAAAGAGAGTTTGGCGGCGCAAGA

TGGTTTGTGGAGGGAGATATAAAAGGCTGCTTC

GATAATATAGACCACGTTACACTCATTGGACTC

ATCAATCTTAAAATCAAAGATATGAAAATGAGC

CAATTGATTTATAAATTTCTAAAAGCAGGTTAT

CTGGAAAACTGGCAGTATCACAAAACTTACAGC

GGAACACCTCAAGGTGGAATTCTATCTCCTCTT

TTGGCCAACATCTATCTTCATGAATTGGATAAG

TTTGTTTTACAACTCAAAATGAAGTTTGACCGA

GAAAGTCCAGAAAGAATAACACCTGAATATCGG

GAACTTCACAATGAGATAAAAAGAATTTCTCAC
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CGTCTCAAGAAGTTGGAGGGTGAAGAAAAAGCT

AAAGTTCTTTTAGAATATCAAGAAAAACGTAAA

AGATTACCCACACTCCCCTGTACCTCACAGACA

AATAAAGTATTGAAATACGTCCGGTATGCGGAC

GACTTCATTATCTCTGTTAAAGGAAGCAAAGAG

GACTGTCAATGGATAAAAGAACAATTAAAACTT

TTTATTCATAACAAGCTAAAAATGGAATTGAGT

GAAGAAAAAACACTCATCACACATAGCAGTCAA

CCCGCTCGTTTTCTGGGATATGATATACGAGTA

AGGAGAAGTGGAACGATAAAACGATCTGGTAAA

GTCAAAAAGAGAACACTCAATGGGAGTGTAGAA

CTCCTTATTCCTCTTCAAGACAAAATTCGTCAA

TTTATTTTTGACAAGAAAATAGCTATCCAAAAG

AAAGATAGCTCATGGTTTCCAGTTCACAGGAAA

TATCTTATTCGTTCAACAGACTTAGAAATCATC

ACAATTTATAATTCTGAATTAAGAGGGATTTGT

AATTACTACGGTCTAGCAAGTAATTTTAACCAG

CTCAATTATTTTGCTTATCTTATGGAATACAGC

TGTCTAAAAACGATAGCCTCCAAACATAAGGGA

ACACTTTCAAAAACCATTTCCATGTTTAAAGAT

GGAAGTGGTTCGTGGGGCATCCCGTATGAGATA

AAGCAAGGTAAGCAGCGCCGTTATTTTGCAAAT

TTTAGTGAATGTAAATCCCCTTATCAATTTACG

GATGAGATAAGTCAAGCTCCTGTATTGTATGGC

TATGCCCGGAATACTCTTGAAAACAGGTTAAAA

GCTAAATGTTGTGAATTATGTGGAACATCTGAT

GAAAATACTTCCTATGAAATTCACCATGTCAAT

AAGGTCAAAAATCTTAAAGGCAAAGAAAAATGG

GAAATGGCAATGATAGCGAAACAACGTAAAACT

CTTGTTGTATGCTTTCATTGTCATCGTCACGTG

ATTCATAAACACAAGTGA

5830-5835 SpeI restriction site ACTAGT

5838-5869 terminator (Bidirec-

tional Rho independent

transcriptional terminator)

AGTCAAAAGCCTCCGGTCGGAGGCTTTTGACT

5872-7989 CDS (phiC31 recombi-

nase)

CTACGCCGCTACGTCTTCCGTGCCGTCCTGGGC
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GTCGTCTTCGTCGTCGTCGGTCGGCGGCTTCGC

CCACGTGATCGAAGCGCGCTTCTCGATGGGCGT

TCCCTGCCCCCTGCCCGTAGTCGACTTCGTGAC

AACGATCTTGTCTACGAAGAGCCCGACGAACAC

GCGCTTGTCGTCTACTGACGCGCGCCCCCACCA

CGACTTAGGGCCGGTCGGGTCAGCGTCGGCGTC

TTCGGGGAACCATTGGTCAAGGGGAAGCTTCGG

GGCTTCGGCGGCTTCAAGTTCGGCAAGCCGCTC

TTCCGCCCCTTGCTGCCGGAGCGTCAGCGCTGC

CTGTTGCTTCCGGAAGTGCTTCCTGCCAACGGG

TCCGTCGTACGCGCCTGCCGCGCGGTCTTCGTA

CAGCTCTTCAAGGGCGTTCAGGGCGTCGGCGCG

CTCCGCAACAAGGTTCGCCCGTTCGCCGCTCTT

CTCAGGCGCCTCAGTGAGCTTGCCGAAGCGTCG

GGCGGCTTCCCACAGAAGCGCCAACGTCTCTTC

GTCGCCTTCGGCGTGCCTGATCTTGTTGAAGAT

GCGTTCCGCAACGAACTTGTCGAGTGCCGCCAT

GCTGACGTTGCACGTGCCTTCGTGCTGCCCAGG

TGCGGACGGGTCGACCACCTTCCGGCGACGGCA

GCGGTAAGAGTCCTTGATCGATTCTTCCCCGCG

CTTCGAAGTCATGACGGCGCCACACTCGCAGTA

CAGCTTGTCCATGGCGGACAGAATGGCTTGCCC

CCGGGAAAGCCCCTTGCCGCGCCCCCTGCCGTC

CAACCACGCCTGAAGCTCATACCACTCAGCGGG

CTCGATGATCGGTCCGCAATCAAGCTCGACCGG

CCGGAGCGTGATCGGGTCGCGCTGAATGCGGTA

ACCCTCAATCTTCGTGGTCGGCGTGCCGTCCGG

CTTCTTCTTGTAGATCACCTCAGCGGCGAAGCC

CGCAATACGCGGGTCCCGAAGGATTCGCATAAC

GGTTGCCGGGTCCCAGGCGCTTGAAGCGGTCTT

CTTCCCAATCGTCTCGCCCCGGGTCGGCACGGC

GTCAGCGTCCATGCGCTTACAAAGCCCCGTGAT

GCTGCCCGGGTGAATGGCGGCTTGACTGCCCGG

CTTGAAGGGAAGGTGTTTGTGCGTCTTGATCTC

ACGCCACCACCACCGGATTACGTCGGGCTCGAA

CTCGAAGGGTCCGGTAAGGGGAGTGGTCGAGTG

CGCAAGCTTGTTGATGACGACATTGACCATTCG

GCCGTTGCGCGTGATCTCCTTCGTCTCCGAAAC
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AAGCTCGAAGCCGTAAGGCGCCTTCCCGCCGAC

GTACCCGCCCAATTCGCGCTGAAGGTTCTTCGT

GTCGAGAATCTTCGCCGACTTCAGCGAAGATTC

TTTGTGCGACGCGTCGAGCCGCATAATCAGGTG

AATCAGGTCCATGACGTTTCCCTGCCGGAAGAC

GCCTTCCTGAGTGGAAACAATCGTCACGCCCAG

GGCGAGCAATTCCGAGACAATCGGAATCGCGTC

CATGACCTTCAGGCGCGAGAAGCGCGACACGTC

ATAGACAATGATCATGTTGAGCCGCCCGGCGCG

GCATTCGTTCAGGATGCGTTCGAACTCCGGGCG

CTCCGCCGTCCCGAACGCCGACGTGCCCGGCGC

TTCGCTGAAATGCCCGACGAACCTGAACCGGCC

CCCGTCGCGCTCGACTTCGCGCTGAAGGTCGGC

CGCCTTGTCTTCGTTGGCGCTACGCTGTGTCGC

TGGGCTTGCTGCGCTCGAATTCTCGCGCTCGCG

CGACTGACGGTCGTAAGCACCCGCGTACGTGTC

CAC

7696-7701 RBS CCTCCT

7728-7755 araBAD promoter ACAGTAGAGAGTTGCGATAAAAAGCGTC

7754-7792 operator I2 + I1 sites TCAGGTAGGATCCGCTAATCTTATGGATAAAAATGCTAT

7788-7801 CAP site GCTATGGCATAGCA

7823 –

7844

operator 1(o1) site ATCAATGTGGACTTTTCTGCCG

7852 –

7880

promoter AGACACTTTTGTTACGCGTTTTTGTCATG

7985 –

8002

operator 2(o2) site ATATGGACAATTGGTTTC

8031-

8909

CDS (arabinose repressor

araC)

ATGGCTGAAGCGCAAAATGATCCCCTGCTGCCG

GGATACTCGTTTAATGCCCATCTGGTGGCGGGT

TTAACGCCGATTGAGGCCAACGGTTATCTCGAT

TTTTTTATCGACCGACCGCTGGGAATGAAAGGT

TATATTCTCAATCTCACCATTCGCGGTCAGGGG

GTGGTGAAAAATCAGGGACGAGAATTTGTTTGC

CGACCGGGTGATATTTTGCTGTTCCCGCCAGGA

GAGATTCATCACTACGGTCGTCATCCGGAGGCT

CGCGAATGGTATCACCAGTGGGTTTACTTTCGT
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CCGCGCGCCTACTGGCATGAATGGCTTAACTGG

CCGTCAATATTTGCCAATACGGGGTTCTTTCGC

CCGGATGAAGCGCACCAGCCGCATTTCAGCGAC

CTGTTTGGGCAAATCATTAACGCCGGGCAAGGG

GAAGGGCGCTATTCGGAGCTGCTGGCGATAAAT

CTGCTTGAGCAATTGTTACTGCGGCGCATGGAA

GCGATTAACGAGTCGCTCCATCCACCGATGGAT

AATCGGGTACGCGAGGCTTGTCAGTACATCAGC

GATCACCTGGCAGACAGCAATTTTGATATCGCC

AGCGTCGCACAGCATGTTTGCTTGTCGCCGTCG

CGTCTGTCACATCTTTTCCGCCAGCAGTTAGGG

ATTAGCGTCTTAAGCTGGCGCGAGGACCAACG

TATCAGCCAGGCGAAGCTGCTTTTGAGCACCAC

CCGGATGCCTATCGCCACCGTCGGTCGCAATGT

TGGTTTTGACGATCAACTCTATTTCTCGCGGGT

ATTTAAAAAATGCACCGGGGCCAGCCCGAGCGA

GTTCCGTGCCGGTTGTGAAGAAAAAGTGAATGA

TGTAGCCGTCAAGTTGTCATAA

8912-8957 transcriptional terminator

AGAGAATATAAAAAGCCAGATTATTAATCCGGC

TTTTTTATTATTT

8958-8963 Xho restriction site CTCGAG

Table A.5: Tape sequence full annotation.
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