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Abstract 

A push for a more evidence based approach to management has resulted in the 

need for robust evidence of fisheries impacts (or lack thereof), including further 

research into fine-scale impacts of potting for which little evidence is available. The 

present work focusses on the inshore pot fishery in Northumberland, UK.  

Potting effort distribution maps - a combination of fishing vessel sightings recorded 

during routine patrols and fishing effort by the Northumberland Inshore Fisheries and 

Conservation Authority (NIFCA) – showed changes in potting effort across large 

sections of the study area between years (2004 – 2014). Temporal changes in 

fishers’ habitat selection were investigated using recently collected habitat data. 

Space-time clustering suggested fishers were actively targeting habitats of interest. 

Compositional analysis of habitat, showed that fishers preferred rocky habitats over 

sediment habitats when using both EUNIS level 3 and 6 habitat maps. Information on 

habitat use and fishing pressure provided the basis for investigation of long-term 

impacts of parlour potting on epibenthos and habitat within the Berwickshire & North 

Northumberland Coast European Marine Site (BNNC EMS) through analysis of 

historical videographic monitoring data between 2002 – 2011. Analysis of biotope 

change between years (a method recommended for monitoring purposes) showed 

that at the scales investigated here, change had not occurred. Weaknesses of this 

analysis for the use in robust ecological research are discussed. A more detailed 

analysis of community composition and diversity change between years showed that 

there was little evidence of change. However, changes in species composition and 

richness of ‘Faunal and algal crusts on exposed to moderately wave-exposed 

circalittoral rock’ were observed between years, in most models and between fishing 

pressures.  

Finally, quantification of direct impacts through in-situ experimental fishing was 

investigated using a BACI design. The high experimental fishing intensity, in small 

experimental areas, coupled with high levels of sampling and replication, provided 
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robust evidence that current levels of potting are unlikely to have a direct physical 

impact on epibenthos in Faunal and algal crust, and Laminaria spp dominated 

habitats in Northumberland. 
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Chapter 1 . Impacts and Management of Fishing on Habitat and 
Benthic Communities 

1.1. Introduction 

Fishing is an important source of food and livelihoods globally, although management 

of fisheries worldwide has had varying success (Pauly et al., 2002). The traditional 

model of fisheries management focusses on single species bio-economic modelling, 

although this method is increasingly perceived as incomplete (Caddy and Cochrane, 

2001). More recently, habitat quality and health have been recognised as an integral 

part to management of sustainable fish stocks as part of an ecosystem based 

approach to fisheries management (EBFM) (Pikitch et al., 2004; Armstrong and Falk-

Petersen, 2008; Howarth et al., 2011; Salomidi et al., 2012). On temperate reefs – 

some of the most biodiverse and productive habitats in the world - epifauna are key 

ecosystem components (Hiscock and Tyler-Walters, 2006) providing a source of food 

and shelter for other species, including commercially important ones (Lambert et al., 

2011; Howarth et al., 2015). However, a growing number of scientific publications 

provide evidence that long-term changes in marine ecosystems may occur due to 

fishing impacts (Kaiser et al., 1996; MacDonald et al., 1996; Kaiser et al., 2006), 

although knowledge on fishing impacts is still far from complete, especially for static 

gear fisheries (MMO, 2012). 

Information of fishing gear impacts is needed for effective EBFM management. This 

is reflected in European and UK policy and legislation that require an evidence base 

and are changing the way in which marine resources are managed (Woolmer, 2009; 

MMO, 2012). In the UK, the Department for Environment, Food & Rural Affairs 

(Defra) recently revised fisheries management in European Marine Sites 

(EMSs)(MMO, 2012) stating that fishing activities within these protected areas would 

only be allowed if they do not adversely affect site integrity or undermine the 

achievement of conservation objectives (MMO, 2012). Consequently, each current 

fishing activity within EMSs must undergo an Habitat Regulations Assessment (HRA) 

in accordance with Article 6 of the Habitats Directive (Council Directive 92/43/EEC), 

to assess potential impacts on the designated features of each site. In addition, with 

the designation of 27 Marine Conservations Zones (MCZs) across the UK in 2016 

and further sites recommended for designation, activities impacting features for 

which these were designated must be better understood in order to allow effective 

management.  
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This review discusses some of the methods and information required for effective 

implementation of EBFM. Impacts of commonly used fishing gears in the UK on 

benthic communities and habitats will be discussed, with a particular focus on the 

little studied environmental impacts of potting. Scientific publications on direct 

physical impacts of potting and indirect impacts such as ecosystem changes will be 

critically appraised. Assessment methodologies employed to detect marine benthic 

change as part of current monitoring practices will also be reviewed with critical 

appraisal focused on hierarchical classification systems and videography methods. 

Habitat and fishing effort mapping and its uses in management of the marine 

environment will be discussed. Finally, current legislation protecting habitats of 

interest in the UK, the study area and the aims of this research are described. 

 

1.2. Sensitivity of organisms 

Fishing impacts have been extensively studied over the past 20 years due to growing 

concern over the ecological impacts that can arise from the removal or damage of 

benthos and habitat (Shester and Micheli, 2011). Sensitivity of organisms and 

habitats play a crucial role in determining the impacts of fishing.  

Biological and ecological traits of species, as well as the nature of the fishing gear, 

will determine sensitivity to fishing impacts (Roberts et al., 2010; Shester and Micheli, 

2011). Benthic epifauna and flora, and sedentary infauna are not able to avoid fishing 

gears, weights, anchors or ropes and the degree of damage will depend on the 

robustness of the organism. For example, flexible organisms may not be damaged by 

the passage of a trawl whereas brittle and inflexible species such as echinoderms 

may be crushed (MacDonald et al., 1996). Larger species are considered more 

vulnerable than small species to towed gear, as smaller organisms may pass under 

ropes or be pushed out of the way by pressure waves created at the front of towed 

gears (Bergman and van Santbrink, 2000). Body size is also linked to life history, as 

larger organisms are often slower growing, longer living, have a lower reproductive 

output and lower natural mortalities (Roberts et al., 2010). This means that larger 

species’ populations are predicted to be more affected by high fishing mortalities.  

However, the nature of epibenthic communities is predominately determined by their 

surrounding abiotic conditions (Connor et al., 2004) and as such fishing impacts will 

also vary depending on habitat type (Hiscock and Tyler-Walters, 2006). Generally, 
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areas that naturally have high levels of disturbance from wave action, sedimentation 

and currents will be composed of small and robust organisms that will be resistant 

and resilient to disturbances (Kaiser et al., 2006). In contrast, assemblages in stable, 

physically undisturbed habitats, will tend to be structurally more complex, with larger, 

long-lived species that are intolerant to disturbances (Kaiser et al., 2006).  

 

1.3. General fishing gear impacts 

Fishing activities will not always have detectable effects. Impacts to the benthos from 

fishing can range from no or minimal physical damage to major redistribution of 

sediment and high mortality of benthic species (MacDonald et al., 1996). The impacts 

of mobile gear on benthic habitats have been well studied and have been found to 

reduce complexity, species diversity, and productivity (Watling and Norse, 1998; 

Johnson, 2002) (Table 1.1). In contrast, the physical impacts of fishing gear on 

benthic habitats by static gears have been less studied and results from experimental 

work differ (Shester and Micheli, 2011; Coleman et al., 2013). However, the relatively 

simple technology used, the limited area disturbed and the capability for effective 

local governance (Jacquet and Pauly, 2008) are expected to lead to low ecological 

impacts for static gear (Shester and Micheli, 2011) (Table 1.1). 

The lack of research into benthic impacts of static gears may be explained in several 

ways. Firstly, in industrialised parts of the world, large-scale commercial fishing 

vessels often use mobile gears which cover large areas, whereas static gears impact 

smaller areas and are often used in artisanal or small-scale fisheries (Shester and 

Micheli, 2011) (Table 1.1). Thus, mobile gears are viewed as more destructive than 

static gears and are therefore seen as a priority for research (Coleman et al., 2013). 

Secondly, mobile gears are often deployed on soft sediment habitats that can be 

easily sampled for scientific investigation with grabs and corers, whereas static gears 

are often deployed on hard surfaces where scientific sampling techniques can be 

more costly, time consuming and destructive depending on the sampling technique 

used (Davies et al., 2001) (see section 4 for further detail). 
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Table 1.1. Summary of impacts of different fishing gears on habitat and benthic 
communities. 

 

  

GEAR 
TYPE 

DESCRIPTION OF 
GEAR AND FISHING 
TECHNIQUES 

SCALE HABITAT TYPE MAIN IMPACTS  REFERENCES 

 Mobile gear 
Bottom 
trawls 

Vessels drag a weighted 
net over the seafloor 
aiming to catch bottom 
living or feeding species. 
E.g. shrimp, cod, flat fish 
etc. 
 

> Km Predominately soft 
and mixed ground 
(although can be 
used on flat, 
homogenous hard 
ground using a 
“rock hopper” 
(Roberts et al., 
2010)) 

 High levels of bycatch 

 Physical impact on 
seafloor: reduction of 
complexity, diversity, and 
productivity. 

 Physical impact on the 
seafloor depends on 
exposure of habitat to 
abiotic conditions (wave 
action, currents, etc) 

 Impacts over considerable 
distances and areas 

 (Dulvy et al., 
2003) 

 (Watling and 
Norse, 1998) 

 

 (Watling and 
Norse, 1998) 

 
 
 

 (MacDonald et 
al., 1996) 

Dredges Vessels drag a metal 
frame shaped like a 
scoop across the 
seabed. Target species 
include oysters and 
scallops. Dredges may 
have “teeth” under the 
bottom lip of the metal 
frame in order to uproot 
fauna within the 
substrate.  

> Km All ground types. 
Depth of “teeth” 
penetration varies 
with ground type 
(approximately 10 
cm for soft ground, 
2-3 cm for hard 
ground) (Kaiser et 
al., 1996) 

 Same impacts as bottom 
trawl. These are rated as 
having a comparable level 
of disturbance. 

 (Kaiser et al., 
1996) 

 Static gear  
Gill nets Vessels deploy vertical 

panels of netting. There 
are several types of gill 
net that can either fish 
on the seafloor, at the 
surface or are left to 
drift. Target species are 
mainly pelagic finfish 
e.g. Salmon, Cod, 
Grouper 

< Km All habitats (when 
in contact with 
seafloor) although 
predominately on 
hard ground. In 
order to avoid 
conflict with other 
fishers, placement 
of static gear may 
be dictated by the 
use of mobile 
gears in the area 
(Fitzsimmons et 
al., 2011) 

 Some bycatch (although 
there are mixed 
conclusions on the level 
and importance of bycatch 
using gillnets) 

 Conclusions on physical 
impacts are mixed although 
cumulative impacts from 
repeat fishing may be 
significant  

 (D'Agrosa et al., 
2000; Kelleher, 
2005) 

 
 

 (Stephan et al., 
2000; Shester 
and Micheli, 
2011) 

 
 

Potting Pots use bait to attract 
target species into a trap 
or creel. The trap design 
ensures that once the 
target species is inside 
the trap it is difficult to 
escape. Pots, traps or 
creels are deployed onto 
the seafloor in “fleets or 
strings” and held in 
place by weights or 
anchors at each end. 
Target species include 
finfish, lobster, prawns, 
whelks, cuttlefish and 
crabs. 

 < 300m All habitats 
although 
predominately on 
hard ground. 
However, in order 
to avoid conflict 
with other fishers, 
placement of static 
gear may be 
dictated by the use 
of mobile gears in 
the area 

 Very low bycatch 
 

 Physical impacts are 
expected to be low but little 
information is available. 

  (Roberts et al., 
2010) 

 

  (Eno et al., 2001; 
Coleman et al., 
2013) 
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1.4. Impacts of potting on habitat and benthic communities 

Physical impacts of potting have received relatively little attention (Coleman et al., 

2013) even though they are regularly mentioned in official guidance on habitat 

management for nature conservation as being a threat to fragile epibenthic species 

(Jones et al., 2000; Defra, 2013; Eno et al., 2013). Potting may directly impact habitat 

and benthic communities through physical interaction when fishing (Eno et al., 2001) 

and through indirect impacts such as changes of food web structure (Siddon and 

Witman, 2004).  

1.4.1. Nature of potting 

In order to understand the physical impacts that potting may have on the seafloor, a 

more detailed description of the fishing process is needed. Potting methods vary 

between locations in the UK in terms of the materials used for the pot, the number of 

pots used per fleet, pot size and weight, size and weight of the anchor-weight and 

distance between pots (Armstrong N, 2012, pers. comm.). However, the fleet 

configuration and deployment method described below is considered standard fishing 

practice in the UK (Lovewell et al., 1988; Bullimore et al., 2001; Coleman et al., 

2013). Generally, 10-30 baited pots are attached to a ‘mainline’ by 2-3 m lengths of 

rope forming a ‘string’ or ‘fleet’ of gear (Fig 1.1). Traditionally, pots are evenly spaced 

along the mainline every 10 fathoms (~18 m) and anchor-weights are attached at 

each end in order to prevent dragging from wave action or strong currents. Marker 

buoys, which are used to facilitate retrieval, are attached to each end of the fleet with 

a rope length which is usually twice as long as the water depth of the fished site. 

Fleet deployment is initiated by dropping the first buoy-line and anchor-weight into 

the water (Fig 1.1, a). The weight of the anchor and the movement of the vessel in 

the opposite direction along the chosen fishing ground, allows the pots, followed by 

the second anchor-weight and buoy-line, to be pulled overboard (Fig 1.1, a). Once 

pots have been deployed they are left to ‘soak’ (fish) for 1–3 days (Fig 1.1, b). They 

are then ‘hauled’ (retrieved) which is the reverse process. 

Due to water depth, the distance between pots will not be maintained (Fig 1.1, a). 

Anchors and buoys are very secure and are designed to remain static, but the slack 

in the mainline (Fig 1.1, b) allows pots the freedom to move (see section 4.2.2).  
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Fig 1.1. Lateral view diagram of parlour pot fleet deployment (a) and parlour pot fleet 
soaking (during fishing) (b). Note: distances used in this diagram are for illustration 
purposes only and do not necessarily represent real or accurate distances of pots 
underwater. 

1.4.2. Direct impacts 

Direct, physical impacts from the potting gear on the benthic environment can occur 

in three ways (Coleman et al., 2013):  

1) During deployment, potting gear (including parlour pots, end weights and ropes) 

may land on the seafloor and in the process crush or damage epibenthic organisms 

(Eno et al., 2001).  

2) During the fleet soak time, the gear may scrape, abrade and damage the benthos 

due to pot movement (Lewis et al., 2009). Pot movement is most likely to occur due 

to strong tides and, or in combination with, high wave action during storms (Jones et 

al., 2000) (Fig 1.1).  

3) During retrieval, potting gear may drag along the seafloor and damage epibenthos 

as it is being lifted off the seafloor. Snagging of lines, weights and pots on rocks may 

further damage the benthos as stronger forces may be needed to free the gear (Eno 

et al., 2001). Furthermore, if the gear is dragged laterally there will be a greater 

impact on the benthos, although this generally only occurs when high wind, strong 

tides or navigational hazards prevent a direct vertical lift (Eno et al., 2001). However, 

fishers will try and avoid snagging of gear as this greatly increases the risk of wear 

and tear.  

1.4.2.1. Impacts of pot deployment 

Only two studies have examined impacts of pots landing on seafloor (Eno et al., 

2001; Shester and Michelli, 2011). These studies were undertaken in areas where 

potting is common. Evidence of physical impacts from pots landing on presumably 

fragile species (the sea pens Penatula phosphorea, Virgularia mirabilis and 

Funiculina quadrangularis) was investigated by Eno et al. (2001) in Badentarbet Bay 

on the West coast of Scotland. Results showed that the bow wave of the sinking pot 

Pot attached to  
mainline 

Surface marker 

buoy 

Sinker weight 

a) b) 

10 Ftm

< 10 Ftm
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was sufficient to bend sea pens away from the pots just before impact and that once 

the gear had been removed the sea pens righted themselves after 72-144 hours, 

without any noticeable damage. 

Shester and Michelli (2011) examined the physical impacts of pots when landing on 

gorgonian corals (Muricea californica, Eugorgia daniana, Eugorgia ampla, 

Leptogorgia diffusa, and Pacifigorgia sp.) and the Southern Sea palm kelp (Eisenia 

arborea) on rocky reefs in Baja (California Sur, Mexico). Eisenia was able to 

withstand the force of dropped pots with no damage; therefore gorgonian corals were 

focused on as species representing the ‘worst case scenario’. However, only one out 

of the 37 trials observed any damage (less than 1%) to colonies of E. ampla. 

These two studies suggest that deployment of pots on to the seafloor have no, or 

negligible, impacts on epibenthos. However, both these studies only examine a small 

subset of local species perceived to be fragile and their conclusions may not be 

applicable to different epibenthic communities, habitats or locations. 

1.4.2.2. Impacts of pot soak time 

The impacts of pot movement on the seafloor during fleet soak time have been 

investigated briefly by Eno et al. (2001) and in more depth by Lewis et al. (2009). 

Qualitative data from Eno et al. (2001) suggest that pots were normally static on the 

seabed. On occasion, pots dragged along the seafloor when wind and tidal streams 

were strong. In addition, strong tides and large swell were observed to cause the 

lead pot to bounce up and down on the seabed when insufficient line was deployed. 

Although there was pot movement during the soak time, no impacts were detected 

on epifaunal species at any of the sites. However, this study did not quantify pot 

movement and only provided observational data from SCUBA divers (Eno et al. 

2001). 

Lewis et al. (2009) assessed impacts on coral communities due to pot movement on 

the seafloor in the Florida Keys (United States). This three-year study showed that 

winter storms (defined as having winds over 27.8 km.h-1 for more than 2 days) moved 

pots a mean (± SE) distance of 3.63 ± 0.62m, 3.21 ± 0.36m, and 0.73 ± 0.15m at 4m, 

8m and 12m depths respectively. In addition, pots impacted a mean area of 4.66 ± 

0.76m2, 2.88 ± 0.29m2, and 1.06 ± 0.17m2, of seabed (4m, 8m and 12m depths 

respectively). All sessile fauna were identified in this study. Results showed that 

stony coral, octocoral, and sponges were damaged or removed by pot movement. 
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Overall, sessile fauna cover within the impacted areas was reduced by 14%, 10% 

and 6% at 4m, 8m, and 12m depths respectively. 

Lewis et al. (2009) conclusively showed that pot movement occurs due to strong 

winds and big swell, and that pots can damage sessile fauna during soak times. 

Depth plays a key role in the magnitude of potting impacts. At deeper sites, which are 

more sheltered from the effects of wind and waves, pots move less and therefore 

have a lower impact on sessile fauna than shallower sites. However, conclusions 

from this work are of limited applicability to shellfisheries in the UK since it focused on 

coral reefs, in shallow water (4-12m), in tropical storms and using single buoyed pots 

without anchor-weights. In contrast, potting in the UK is undertaken in larger fleets 

(10-30 pots), that are held in place using anchor-weights and are often fished at 

greater depths (often deeper than 20m), although potting also occurs in shallower 

water (primarily in good weather during the summer months) and is dependent on 

target species and other fishing gear use in the area (Turner, 2010)).  
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1.4.2.3. Impacts of hauling pots 

The impacts of pots dragging across the seafloor during hauling have been studied 

by Eno et al. (2001) and Shester and Michelli (2011). Both studies replicated the 

speed and angle of pots being dragged by SCUBA divers. Gorgonian corals showed 

damage (< 5% of the skeleton was impacted) in 40% of trials but the Southern Sea 

palm kelp was not impacted. Neither gorgonian corals nor Southern Sea palm kelp 

were detached from the seafloor in any trials (Shester and Michelli, 2011). Eno et al. 

(2001) also observed very few immediate impacts on epifaunal species from rocky 

substrates in southern England. In Scotland, observations of supposedly sensitive 

species such as sea pens and sea fans showed no signs of impact. In addition, sea 

pens and sea fans which were experimentally detached re-established themselves 

when in contact with muddy substrate.  

1.4.2.4. Evidence of direct impacts from experimental fishing 

The impact of potting on sessile epifauna in rocky habitats has also been studied in 

its entirety rather than its individual components (deployment, soak and hauling) via 

experimental fishing studies. Eno et al. (2001) did not detect any impacts using a 

BACI (before, after, control, impact) method for experimental potting. However, there 

were problems with this study that may have affected the capacity to detect potting 

impacts. Firstly, this was a short-term study with only ten fleet deployments and 

retrievals over a one month period. Secondly, small sample numbers led to issues of 

power in the analysis. Finally, erroneous results may have confounded the analysis 

(Coleman et al., 2013) since certain species appeared to significantly increase in 

abundance in response to the potting treatment although it was concluded that this 

was not possible due to the life-histories of the species concerned (i.e. species that 

were not detected in the initial survey were detected after the one-month experiment. 

However, these species could not have grown within this time period and their 

presence was attributed to sedimentation prior to the experiment.  

This study was not able to recommend maximum potting levels that sessile epifauna 

are able to withstand at a site. Indeed, the cumulative impacts from repeat fishing are 

not well understood and further site-specific studies are required to determine 

optimum fishing levels that satisfy both fishery and conservation interests (Eno et al., 

2001). 

An in-depth study by Coleman et al. (2013) examined direct potting impacts and 

recovery of sessile epifauna in locally fished areas and a protected no-take zone 
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(NTZ) over four years in south west England. Sessile epifaunal assemblages in 

circalittoral reef habitats were expected to change more over time in non-fished areas 

as assemblages are only affected by natural variation compared to fished areas 

which are affected by fishing pressures and natural variation. Comparison of 

assemblages in sites both in fished areas and the NTZ showed there had been no 

change in sessile epifauna composition over four years between these sites. In 

addition, there was no evidence that temporal variation in the abundance of individual 

taxa differed between fished and non-fished areas. However, it could be argued that 

over a long period of time, pot fishing had led to a changed, but stable ecosystem 

state (Eno et al., 2001). This ecosystem state would no longer be impacted by pot 

fishing and may not show any signs of recovery (Hughes et al., 2005). In addition, 

control sites for this study differed in depths (5 – 10 m), exposures (controls were 

more wave exposed than experimental areas) and substrate differences (boulder 

reefs compared to bedrock) compared to experimental sites (Coleman et al., 2012), 

which may have resulted in small scale impacts being overlooked. 

Experimental potting in fished and non-fished locations also showed that epifaunal 

assemblages were not significantly impacted during the four year study. However, 

recovery of habitats exposed to sustained potting impacts could take longer than four 

years (Coleman et al., 2013). Indirect impacts of potting on the ecosystem as a whole 

were out of the scope of these studies, however, a meta-analysis of indirect fishing 

effects, showed that it took a mean of 13.1 ± 2.0 years for impacts to be detected on 

non-targeted species (Babcock et al., 2010). 

1.4.3. Indirect potting impacts 

There is increasing evidence that fisheries are likely to lead to long-term changes in 

marine ecosystems (MacDonald et al., 1996; Kaiser et al., 2006; Sewell et al., 2007). 

Depletion of top predators, such as lobsters, from a local area may have a 

destabilizing effect on the ecosystem through changes in food web dynamics (Eno et 

al., 2001). The indirect impacts of fishing on taxa that occur through cascading 

trophic interactions have been relatively little studied due to the long time-scale 

needed for these studies (Babcock et al., 2010). However, indirect potting impacts, 

from extraction of crab and lobster, can change benthic community structure (Siddon 

and Witman, 2004) highlighting the importance of understanding these trophic 

interactions. 
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Indirect impacts of fishing have been mostly studied in the context of NTZs, as 

protected areas offer good comparisons between impacted (fished) and recovering 

areas (NTZ). Extensive research into the effectiveness of NTZs suggests that highly-

protected marine areas can trigger rapid increases in the abundance, diversity, and 

productivity of marine organisms (Halpern and Warner, 2002; Lubchenco et al., 

2003). In addition, ‘spill over’ into adjacent areas to the NTZ can occur via adult 

migration and larval dispersal, causing increased catches in these areas (Roberts 

and Polunin, 1993).  

Indirect changes in marine reserves only occur if there are direct effects of fishing. 

Therefore if fishing is impacting species abundance and diversity in an area, 

protection from fishing produces an absolute increase in abundance, mean size of 

individuals, or biomass of targeted species. This is not simply a relative change 

compared to fished areas but rather a restoration to a former level (Babcock et al., 

2010). There is strong evidence that lobster populations undergo rapid, large 

increase in the abundance and sizes within NTZs and that spill over of sublegal sized 

lobster occurs in areas adjacent to protected areas (Pande et al., 2008; Barrett et al., 

2009; Hoskin et al., 2011). In addition, crab and lobster species interact strongly with 

other non-target species. Thus, extraction of any crab or lobster species through 

commercial fishing is likely to change benthic community structure (Siddon et al., 

2004). 

Increases in decapod populations, due to protection offered by NTZs in temperate 

reef ecosystems in New Zealand, resulted in a decline of sea urchin populations, and 

of grazing, and the recovery of kelp forests (Babcock et al., 1999). Similar changes of 

natural habitats have also occurred in the Gulf of Maine where harvesting of urchins 

and lobsters increased abundances of macroalgae through changes in prey and 

predator behaviour such as prey switching or multiple predator effects (Siddon et al., 

2004).  

Indirect impacts of potting may play a significant role in abundance and diversity of 

non-target sessile epifauna. However, the long time scale required to detect these 

impacts means that few studies have been conducted. In addition, no studies have 

investigated indirect impacts as they occur but rather have looked at recovery of non-

target species and inferred from these situations how fishing may indirectly impact 

the environment. 
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In summary, fishing impacts vary in function of the sensitivity of organisms and 

fishing type. Mobile gears, which fish on a much larger scale than static gears, have 

been well studied but little information exists on impacts of static fishing gear. Potting 

impacts (direct and indirect) may affect marine assemblages but further work is 

required. The methods used to assess changes in benthic communities, including 

from potential potting impacts, will influence whether impacts are detected. 

 

1.5. Hierarchical classification systems 

Potting impacts on benthic communities are sparsely documented, although the few 

studies have focused on impacts on a small group of locally important species 

perceived as fragile (Eno et al., 2001; Coleman et al., 2013). Results from small-

scale experimental fishing impact studies are difficult to extrapolate to an ecosystem-

wide scale which are ideally required for EBFM (Hiddink et al., 2006; Hinz et al., 

2009). No studies have looked at the direct impact of potting on communities and 

habitats as a whole. Ecological monitoring is often undertaken at this broader EBFM 

scale, resulting in a disconnect between conclusions from peer-reviewed literature 

with those from monitoring and surveillance reports. This section will introduce and 

critically appraise the most widely used habitat monitoring method: hierarchical 

classification systems in order to explore the usefulness of these monitoring methods 

for fishing impact studies. 

Most hierarchical classification systems use the term “biotope” to describe a 

combination of the physical environment (habitat) and its distinctive assemblage of 

species (community assemblage) (Olenin and Ducrotoy, 2006). Habitat is defined 

according to geographical location, physiographic features and the physical and 

chemical environment (including salinity, wave exposure, strength of tidal streams, 

etc.) (Connor et al., 2004). Community is described as ‘‘a group of organisms 

occurring in a particular environment, presumably interacting with each other and 

with the environment, and identifiable by means of ecological survey from other 

groups” (Hiscock and Tyler-Walters, 2006).  

The term biotope is commonly found in recent national and international 

environmental documents due to the increasing reliability of classification systems 

(Connor, 1995; European Environment Agency, 2005). The EU CORINE biotope 

classification was developed in the 1980s but it was very broad and alternatives have 
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since been proposed in order to address this classification’s shortcomings. These 

include national classification systems such as the marine biotope classification in 

the UK (first published by the JNCC in 1997 and revised in 2004) (Connor et al., 

2004), the Zones Nationales d’Intérêt Scientifique, Faunistique et Floristique 

(ZNIEFF) classification in France, (Dauvin et al., 1996) and a regional classification of 

coastal biotopes and their complexes for the Baltic Sea (Nordheim and Boedeker, 

1998). These classification systems are compatible with, and contribute to, a 

European habitat classification system (EUNIS) (Olenin and Ducrotoy, 2006; Roberts 

et al., 2010). 

1.5.1. The marine biotope classification of the United Kingdom 

The UK marine biotope classification was developed through the analysis of 

empirical data sets, the review of other classifications and scientific literature, and in 

collaboration with a wide range of marine scientists and conservation managers 

(Connor et al., 2004).  

Classification systems may describe the marine environment at different spatial 

scales. The UK marine biotope classification is split into six levels (that correspond 

directly with their EUNIS counterparts) ranging from very broad scales (environment, 

Table 1.2) to very small scales (sub-biotopes, Table 1.2). These different scales 

mean that classification of benthic communities is meaningful both for detailed 

scientific application and to the much broader requirements needed for management 

of the marine environment (Connor et al., 2004). 
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Table 1.2. Structure of the UK marine biotope classification (modified from Connor et 
al., 2004). 

Classification 
level 

Name Description 

   

1 Environment Marine, in order to separate the marine environment from the freshwater 

and the terrestrial. 

2 Broad Habitats Large scale habitats such as reefs, mudflats etc. 

3 Main Habitats Habitats of large scale biological definition equivalent to areas of intertidal 

sites designated as Sites of Special Scientific Interest (SSSI). 

4 Biotope 

Complexes 

Groups of biotopes with similar physical and biological characteristics. 

These biotopes usually occur together and provide better mapping and 

management tools due to their broader scale and ease of identification 

through courser survey methods. 

5 Biotopes Areas of a minimum of 25m2 distinguished by their significant dominant 

species or collection of conspicuous species. 

6 Sub-Biotopes These are biotopes defined by less conspicuous species and geographical 

variation or a disturbed/ polluted variation of the natural biotope. 

 

The aim of the classification is to provide a tool to aid the management and 

conservation of marine habitats (JNCC, 2013). Information on marine habitats and 

their associated benthic communities is needed in order to undertake the ecosystem 

based approach to management of the marine environment widely advocated at 

national and international levels (Defra, 2002). 

The UK marine biotope classification is mainly used for surveillance and monitoring 

purposes (Defra, 2005a) as common standards ensure a consistent, integrated, UK-

wide approach (JNCC, 2013). This standardised format allows for comparison 

between locations and studies. For example, journal papers often simply refer to 

fishing impacts on ‘sandy’ habitats. Within the UK biotope classification scheme, this 

could refer to any of the 17 biotopes occurring on sandy sediments. These habitats 

each have distinctive biological assemblages and environmental conditions making 

comparisons between studies error-prone (Roberts et al., 2010).  

The appropriate scale used for ecological work will depend on the aim of the work 

being undertaken and the sampling methods used. For example, broad-scale maps 

for management of SACs on a national scale may only need “main habitats” (Table 

1.2, Level 3), whereas more detailed maps of a smaller area, such as a single SAC, 

may need to use “sub-biotopes” (Table 2, Level 6). Higher levels of the classification 

system require a higher level of biological information which can sometimes be 

problematic. This is especially true in EMSs as these areas can only be sampled with 
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non-destructive techniques in order to preserve the quality of their marine habitats 

and species which are deemed of international importance (Davies et al., 2001). 

Davies et al. (2001) recommend using drop-down video, remotely operated 

underwater vehicle (ROV), diver-operated video or towed video to monitor biotic 

composition of subtidal reefs (Marine Annex I features, Habitats Directive). However, 

these visual monitoring methods are inherently problematic in temperate inshore 

waters due to seasonally poor visibility and may not be suitably sensitive (i.e. 

accurate and precise) for the identification of higher classification levels (i.e. sub-

biotopes) (Saunders et al., 2011) (see section 1.5.3 for further detail). 

The UK marine biotope classification system (Table 1.2) remains the most prevalent 

for monitoring and surveillance due to the easy use of biotopes to describe and map 

the extent and geographical distribution of habitats and biological communities. It 

also allows for changes in habitat distribution and extent over time. Furthermore, the 

relative importance of habitats (or rarity) can be examined on national and regional 

levels, specifically for protected areas (i.e. SACs, SPAs, etc.), which allows 

prioritisation for conservation efforts (Sanderson, 1996; Connor et al., 2004).  

1.5.2. Habitat mapping 

One of the primary uses for the biotope classification system (in addition to providing 

a consistent description of habitat types), is mapping geographical distribution of 

biotopes to aid spatial management of the marine ecosystem (Connor et al., 2004). 

This is achieved by combining biological information (biotope data) with recently 

developed acoustic survey techniques such as acoustic ground discrimination 

systems (AGDS), sidescan sonar systems (SSS) and multi-beam echo sounders 

(MBES) (Lucieer, 2008), to produce thematic seafloor maps that can be used for 

management purposes (MESH, 2008). Salomidi et al. (2012) recommends mapping 

biologically and ecologically important areas (using acoustic and in-situ techniques) 

with their associated human uses and political and legal arrangements. These 

holistic maps are seen as an essential first step towards effective marine spatial 

management (Crowder and Norse, 2008). However, few areas have been mapped in 

Europe due to the high cost and considerable technical knowledge needed for 

adequate acoustic mapping (but see MESH (2008) for European broadscale habitat 

mapping) (Galparsoro et al., 2012). Spatial representations of biotopes are 

particularly useful as they may show changes otherwise not detected using biotope 
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frequency alone, for example by showing changes in extent over time. This is 

particularly important with regards to investigating changes induced by spatially and 

temporally variable anthropogenic impacts such as fishing (Diesing et al., 2009). 

1.5.3. Critical appraisal of marine biotope classification systems 

Although hierarchical classifications are a useful tool for comparable and 

standardised environmental monitoring, there are limitations. In temperate waters, 

only some habitats have conspicuous dominant species (e.g. kelp forests, mussel 

beds, maerl beds). Many habitats support a mosaic of species, none of which is 

particularly dominant (Connor, 1995). This patchiness can significantly vary over time 

with little information available on natural successions of assemblages. There are 

often no distinct boundaries between different biotopes. The gradual transition means 

that attempts to discriminate between biotopes may have variable outcomes (Connor 

et al., 2004). Additionally, some communities may be temporary or transitional and 

represent a stage between two or more ‘stable’ biotopes. This could be due to 

periodic disturbance from abiotic conditions (i.e. winter storms), or biotic conditions 

(i.e. increased grazing during summer). In addition, certain habitats may be so 

variable that the position of a biotope along a gradient cannot be accurately defined 

(Connor, 1995). 

Natural variation and patchiness of benthic communities pose problems when using 

the biotope classification for environmental impact assessment. For example, most 

offshore wind farm developments are proposed for areas of mixed, coarse or mobile 

sediments. Benthic community structure and species population dynamics are 

variable in such environments due to natural environmental fluctuations (Connor et 

al., 2004). At present, there is no adequate way of distinguishing between natural 

variation and an impact except by mapping biotopes and monitoring changes in their 

distribution over time (Ducrotoy, 2010). Extensive monitoring over several years 

would be required to distinguish between these. 

Assessments of fishing impacts on biotopes have received little attention in the 

academic literature. In addition, there is little information on ecological quality and 

sensitivity of biotopes, both of which are needed in order to assess environmental 

impacts. Ecological quality of biotopes is not described in any hierarchical 

classifications due to spatial variability of species composition of biotopes; the 

classification was designed so that biotopes would be broad enough to incorporate 
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some differences in species composition due to differences in local biotic and abiotic 

conditions. However, there have been attempts, using indicator species, to provide a 

biotic index (BENTIX), which describes the sensitivity or tolerance to disturbance for 

use in monitoring (Simboura and Zenetos, 2012). This is specifically aimed at 

achieving Environmental Quality Standards outlined by the EU Water Framework 

Directive. Although the use of biotopes in hierarchical classifications and 

Environmental Quality Standards is aimed at monitoring marine ecosystems, these 

two monitoring systems are very different and are not compatible or easily 

comparable. 

Information on the sensitivity of UK biotopes to various forms of anthropogenic 

disturbance is essential for protection of biodiversity in the UK (Hiscock and Tyler-

Walters, 2006). This has been investigated by the Marine Life Information Network 

(MarLIN). Scientific literature was used to assess species intolerance and 

recoverability from change in human activities or natural events, for key structural or 

functional species within the biotope, species which if lost would change the biotope, 

and/or species important to the function of the community within the biotope. 

However, where information was lacking, recoverability and sensitivity assessments 

were undertaken using qualitative judgments. The intolerance and recoverability 

were then combined to provide a meaningful assessment of the overall sensitivity of 

different biotopes to environmental change (Hiscock and Tyler-Walters, 2006).  

Assessment of intolerance requires a specified level of environmental perturbation. 

This was addressed by the development, through expert consultation and review of 

the literature, of a set of ‘benchmark’ levels of environmental change against which 

sensitivity could be assessed (Hiscock and Tyler-Walters, 2006). The benchmarks 

allow intolerance and sensitivity to be compared against predicted effects of planned 

projects or proposals. 

Although this sensitivity assessment is useful for planning and management of rare 

or at risk biotopes, there are only 75 subtidal biotopes out of a total of 155 that have 

sensitivity information. In addition, biotope importance varies by location; a biotope 

may be deemed important in one location due its rarity but may be common in 

another. Further, biotope sensitivity has only been used to inform management at a 

broad scale and no peer-reviewed literature has yet investigated the usefulness of 

this sensitivity scale for more detailed impact assessments. 
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In summary, the UK marine biotope classification provides a practical way of 

classifying assemblages by habitat type and is mainly used for surveillance and 

monitoring purposes because common standards ensure a consistent, integrated, 

UK wide approach. These classifications can be combined with acoustic data to 

create thematic habitat maps useful for spatial management. Little work has been 

done on assessing fishing impacts on biotopes in the academic literature. Some work 

has been undertaken assessing sensitivity of biotopes to specific impacts but these 

are not exhaustive and may differ regionally. The level at which the classification is 

used for impact studies is important as low classification levels may be too broad and 

high levels may result in patchiness potentially masking change. In turn, the level of 

classification will often be determined by the sampling methods used. 

 

1.6. Methodologies for the assessment of benthic marine environment 

Methods for ecological sampling of the benthic marine environment include dredges, 

grabs and corers for sedimentary habitats and diver transects and sampling, suction 

sampling, epibenthic trawls and videography techniques for rocky or biogenic reefs 

(Davies et al., 2001; Saunders et al., 2011).  

Diver sampling (removal of species for further analysis), suction sampling and 

epibenthic trawls are destructive methods (some more than others) and are therefore 

rarely used for the monitoring in EMSs. Recommended methods for monitoring of 

protected areas are drop-down video, ROV, diver-operated video or towed video 

(Davies et al., 2001) due to the non-destructive nature of these sampling techniques 

(Tkachenko, 2005). Although these methods are favoured for monitoring of protected 

subtidal benthic habitats, they have limitations (as with any ecological sampling 

method) that must be understood in order to effectively use these sampling methods 

(Porter and Meier, 1992). The following section will only describe videography 

methods and then critically appraise these for the use in subtidal reef monitoring. 

1.6.1. Videography as a tool for ecological sampling 

Videography is commonly used for sampling of marine epibenthic organisms (Collie 

et al., 2000a; Houk and Van Woesik, 2006). There are several ways that cameras 

can be used to sample the epibenthos. These include: mounted cameras on ROVs 

(Barry and Baxter, 1992), hand-held cameras operated by SCUBA divers (Harvey et 



19 
 

al., 2002), towed video (usually on submersible sleds), drop-down video (Saunders et 

al., 2011), and point counts, predominately using baited remote underwater video 

(BRUV) or baited underwater video (BUV) cameras (Willis and Babcock, 2000). 

Sampling designs include: transect counts, measurements of size and biomass 

(which can be done using scaled fields of view or stereo video) (Shortis et al., 2009; 

Langlois et al., 2010). Commonly used sampling designs aim to detect spatial and/or 

temporal changes and patterns in community structure by determining abundance 

and distribution of epibenthic organisms (Maliao et al., 2009). However, other 

epibenthic studies determine the abundance of specific organisms or species through 

visual censuses encountered during a transect (Willis and Babcock 2000, Eno et al., 

2001). Videography sampling methods can also be used to identify biotopes 

(hierarchical classification) and allow frequency of biotopes to be analysed (Saunders 

et al., 2011). 

Videography techniques are not limited to sampling the epibenthos. Physical habitat 

data can also be analysed; for example, particle size discrimination of the substratum 

can help determine habitat type (Bullimore et al., 2013). This may eliminate the need 

for grab samples or dredges for this purpose. 

1.6.2. Critical appraisal of videography methods 

Videography is particularly useful for ecological monitoring. Biological communities 

can be surveyed for change over time by repeatedly sampling a location and 

analysing the changes in epibenthos between sampling events (Shortis et al., 2009; 

Saunders et al., 2011). This type of repeat sampling has been successfully used to 

show anthropogenic pressures such as coral bleaching (Riegl et al., 2001) and 

fishing impacts on benthic ecosystems (Collie et al., 2000). In addition, the non-

destructive nature makes this sampling technique ideal for long-term monitoring as 

the study site is not physically altered. Other sampling methods such as trawls, 

dredges, grabs and suction sampling may physically impact or degrade the benthos 

and therefore may introduce a certain amount of sampling bias for future studies 

(Collie et al., 2000a) 

Videography techniques enable data to be rapidly acquired (McDonald et al., 2006). 

This decreases the time required for surveys, allowing larger areas to be sampled in 

the same amount of time but also making this a cheap way of sampling the 

epibenthos. In addition, studies have found a greater likelihood of detecting rare 
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species, as the video footage covers a continuous, large area of the sea floor (Lam et 

al., 2006).  

The attachment of cameras to underwater equipment such as sleds, ROVs and 

protective metal frames means that underwater surveys are not limited by bottom 

time as visual census surveys using SCUBA divers are. Attaching cameras to 

underwater equipment has also allowed sampling at greater depths (Bullimore et al., 

2013) or locations that are difficult or dangerous to dive at (McDonald et al. 2006).  

Camera systems are cost effective in the long-term; the start-up costs can be high, 

but the running costs are usually low (Langlois et al., 2010) and are kept down by the 

fact that cameras need not be deployed by workers with experience in epibenthic 

identification (Saunders et al., 2011). In contrast, underwater visual census (UVC) 

requires trained divers and trained taxonomists for in-situ identification of organisms. 

In addition, a significant advantage of videography over other sampling techniques is 

that a permanent record of the sample can be kept (Lam et al, 2006). This allows 

processing of the data at a later time or reanalysis of footage. The permanent record 

of the visual data is particularly useful for long-term monitoring studies as the images 

can be compared and re-compared if there are changes in the analysis methodology. 

The ease of duplicating and sharing of the data also facilitates collaborative research 

(Lam et al., 2006). 

Videography techniques also have limitations. Video footage is 2-dimensional 

meaning that cryptic species that may shelter under physical structures or benthos 

will not be detected (Saunders et al., 2011) and diversity estimates may be affected. 

Video footage image resolution can be a limiting factor in the identification of small 

and cryptic species (Davies et al., 2001) and in-situ identification by a taxonomist is, 

in the majority of cases, more accurate (Lam et al., 2006). However, digital image 

resolution has vastly improved over the past few years and is expected to be further 

increased with improvement of the technology (Lam et al. 2006). 

Bad weather (due to large swell, currents and high wind speeds) and limited 

underwater visibility (due to high turbidity or low lighting) can reduce the quality of the 

footage, especially in shallow inshore environments where waves and currents more 

easily affect benthic substrate. This may result in sampling not being suitably 

sensitive (i.e. accurate and precise) for the identification of less faithful or smaller 

epibenthic organisms (Saunders et al., 2011). However, the importance of this 
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limitation when deciding upon ecological sampling technique depends on the aim of 

the work. If the survey only requires coarse data then a high level of detail may not 

be needed. For example, results from drop-down video surveys for an environmental 

impact assessment (EIA) baseline study for offshore renewables off Orkney and the 

Pentland Firth (Moore, 2009; Moore, 2010) showed that drop-down imaging systems 

were effective even in wave exposed or strong tidal locations; the data collected was 

sufficient for the identification of characterising species and biotope. Thus, should a 

modification or large change in species composition occur, the drop-down camera 

data provided enough detail to detect potential impacts (Saunders et al., 2011).  

In summary, the benthic marine environment can be sampled using different 

methods and equipment. Videography is the most commonly used non-destructive 

sampling tool. Videography techniques enable quick collection of large amounts of 

data and do not physically impact or degrade the benthos therefore reducing 

sampling bias for future studies. Videographic data also have limitations; samples 

provide lower estimates of species diversity than some other methods and there is a 

reduction in the quality of images when collected during bad weather. Investigation of 

fishing impacts at an ecosystem-wide scale requires an understanding of the benthic 

ecology of the marine environment (hierarchical classifications and sampling 

techniques) but also the distribution of fishing activity and the likely pressures this 

can exert on the ecosystem. 

 

1.7. Fishing effort distribution 

Reliable information on human uses of the marine environment is needed in order to 

understand the interactions between industries and the environment (Eastwood et 

al., 2007; Daw, 2008; Breen et al., 2014). This includes having recent and reliable 

habitat and marine usage spatial data at the appropriate scales (Crowder and Norse, 

2008). Fishing effort distribution is not uniformly distributed across regions (Jennings 

et al., 1999; Jennings et al., 2012) and the footprint (area of habitat interacting with 

the fishing gear), and as such potential impacts, will vary depending on fishing 

methods (Jennings and Lee, 2012; Vanstaen and Breen, 2014). Information on effort 

distribution and habitat selection/use specific to different fisheries is needed in order 

to investigate fishing impacts and focus on areas which may have the highest fishing 

intensities or are occurring on rare or sensitive habitats.  



22 
 

Various methods have been used to describe and map fishing effort. Logbook 

schemes, vessel monitoring schemes (VMS), consultative approaches and aerial, 

land and boat based surveillance are the most widely used to date (Witt and Godley, 

2007; Woolmer, 2009; Breen et al., 2014). This section will discuss current methods 

for fishing effort mapping as well as the current limitations of these data. 

1.7.1. Logbook schemes 

Logbook schemes are the simplest method technologically for recording fishing 

activity and effort (Woolmer, 2009). Fishers will record information such as location, 

time/date, fishing gear/method used and catch description. Logbook schemes vary 

regionally and with vessel size. In the European Union, all vessels >12m are required 

to keep up-to-date logbooks of their operations (recorded every 24-hours) including 

detailed information on catch per species, effort (fishing hours), and location (EC 

Council Regulation No 1224/2009). However, the large spatial scale of the recorded 

information (ICES rectangles, approximately 30 x 60 nautical miles) has meant that 

fishing activity maps derived from these spatial data are often over-aggregated and 

will only be suitable for the most broad-scale marine planning (Woolmer, 2009).  

In addition, many UK shellfisheries vessels fish inshore and are < 10m long. This is 

particularly the case in Northumberland where, between 2003 – 2014, there was a 

mean 70 (± 9)% < 10m fishing vessels in the NIFCA district (see chapter 2) and at 

least 90% of fishing effort is estimated to occur within the 6Nm limit (pers com 

NIFCA). Thus, a large proportion of vessels within the NIFCA district will not have to 

comply with the EU requirement of recording logs every 24-hours. However, Inshore 

Fisheries and Conservation Authorities (IFCAs) operate a variety of permit schemes 

which vary regionally. In Northumberland, fishers are required to submit monthly 

shellfish return forms with information regarding the numbers (and if available the 

weight in kilograms) of lobsters, crabs, velvet crabs, prawns and whelks, types and 

number of fishing gear employed, the area fished (closest port) (NIFCA, 2014). 

Monthly returns alone do not provide enough information to accurately map fishing 

activity, however these provide added effort information that can be incorporated with 

other fishing activity data allowing effort density distribution to be mapped (Turner, 

2010; Turner et al., 2015) (see chapter 2 for further details). 
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1.7.2. Vessel monitoring system 

A vessel monitoring system (VMS) consists of a global positioning satellite (GPS) 

receiver, a satellite transmitter and a power backup (lasting approximately 72-hours) 

that will automatically record the location of the fishing vessel at sea every 2 hours 

(Defra, 2005a; Witt and Godley, 2007). VMS units are required to report 99% of all 

vessel GPS location with an accuracy of at least 500m as well as data on heading 

and speed (Defra, 2005a; Defra, 2005b). Although no information on fishing activity is 

provided by VMS this can be inferred by the movement of the vessel, i.e. a reduced 

cruising speed can indicate trawling (Lambert et al., 2011) or no movement can 

indicate static gear retrieval or deployment (Woolmer, 2009). Due to the large spatial 

scale of fishing data provided by VMS, several studies have accurately mapped 

fishing activity (Nilsson and Ziegler, 2007; Witt and Godley, 2007; Lambert et al., 

2011; Jennings and Lee, 2012). These studies indicated that there is minimal fishing 

activity within 12Nm of the coast, however in reality, this is because VMS is not 

collected for smaller vessels that fish inshore (Breen et al., 2014). Static gears such 

as shellfish pots tend to be fished from smaller vessels (< 10m) located close to 

shore and tend to have patchy distributions (Nielsen et al., 2013). Unless VMS were 

installed on < 10m vessels it would not be an adequate method for mapping fishing 

activity of inshore fisheries. Given the influence of the UK inshore fleet socially and 

economically (shellfish fisheries in the UK contributed 35% of the total 2011 UK 

landings with crab and lobster worth a combined value of £70.2 million (MMO, 

2011)), it is of paramount importance to understand patterns of use for conservation 

and successful marine spatial planning (Eastwood et al., 2007). Successful 

alternative methods for mapping inshore fisheries have used surveillance information 

(sightings at sea). 

1.7.3. Surveillance Information – Aerial or at sea observations 

At-sea observations of fishing vessels are made by fisheries management agencies 

during routine patrols. IFCAs and Marine Management Organisation (MMO) record 

data in the first 6Nm from the coast and the Fisheries Patrol Squadron of the Royal 

Navy outside 6Nm. Ariel surveys are also available from the MMO (Breen et al., 

2014). Recorded information includes vessel name, registration, home port, 

geographic position (GPS location) and observed activity. Observed fishing effort has 

been mapped by Sea Fisheries Committees (Clark, 2008) with further refinements in 
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mapping methods allowing fishing effort to be determined (Turner, 2010; Breen et al., 

2014; Turner et al., 2015). The accuracy of fishing vessel locations and observed 

activity means that data can produce maps with very high resolution (1 x 1km, Turner 

et al., 2015). Sightings were compared to consultation based methodology maps. No 

significant differences were found between methods (Turner, 2010). Both methods 

were deemed to accurately represent fishing activity in the Northumberland IFCA 

district (Turner et al., 2015). 

Successful consultative approaches to mapping fishing activities have also been 

used (Des Clers et al., 2008; Woolmer, 2009; Shepperson et al., 2014; Turner et al., 

2015). These have provided spatial local ecological knowledge (LEK) which is 

increasingly being integrated into management plans. However, consultative 

approaches to mapping fishing activities collect data on a broader scale (areas of 

several km2 used for fishing) whilst sightings data have the potential to shed light on 

smaller scale differences in fishing activities (1km2).  

 

1.8. Thesis outline and study site 

In summary, there are still few studies that investigate whether shellfish potting has 

environment impacts (Coleman et al., 2013). The need for conclusive evidence on 

potting impacts is important due to the sustained growth of the industry and its 

importance nationally (MMO, 2011). Long-term impacts of potting were shown not to 

significantly impact epifauna in a study experimentally potting in fished and non-

fished locations during a four year study (Coleman et al., 2013). However, recovery 

of habitats exposed to sustained potting impacts could take longer than four years 

(Babcock et al., 2010; Coleman et al., 2013). The use of hierarchical classifications 

could provide a standardised and novel method for investigating potting impacts, 

however, the level of classification used will be important in determining the scale of 

impact. Videographic and photographic methods provide cheap, rapid and repeatable 

ways of ecological monitoring, although adverse weather conditions can negatively 

affect data collection and the 2-dimensional nature of the image may reduce diversity 

estimates. This thesis further explores understudied static gear potting impacts as 

part of an evidence based approach to management for protected sites in the UK.  
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1.8.1. European Marine Sites 

There are currently 81 EMSs in the UK (Natural England, 2013). EMS collectively 

describes Special Areas of Conservation (SACs) and Special Protection Areas 

(SPAs) that are covered by tidal waters (Natural England, 2013). SACs and SPAs 

contain animals, plants and habitats that are considered rare, special or threatened 

within Europe. As such SAC features in EMSs are subject to regular condition 

monitoring required under Article 17 of the Habitats Directive, which aims to ensure 

that EMSs continue to be areas of international importance for the quality of their 

marine habitats and species (AONB Partnership and EMS Management Group, 

2009). In order to meet the conservation objectives for EMSs, species and habitat 

monitoring for each SAC is undertaken every six years continually adding evidence 

to databases. Since before designation, some EMSs have been subject to long-term 

monitoring (see ‘Regional Marine Nature Conservation Review (MNCR) Series’ by 

the Joint Nature Conservation Committee (JNCC)). The primary aim of EMSs is to 

maintain the quality of marine habitats and species; however some activities are also 

allowed, including commercial fishing.  

1.8.2. The Berwickshire & North Northumberland Coast European Marine 

Site 

The Berwickshire & North Northumberland Coast European Marine Site (BNNC 

EMS) (Fig 1.2) has been inhabited and exploited for food and trade for centuries. 

Stretching 115km from Alnmouth in North-east England to Fast Castle Head in 

South-east Scotland, it incorporates 635km2 of shoreline and coastal waters. The 

area includes Lindisfarne, St Abbs, the Farne Islands and the Eyemouth voluntary 

marine reserve (AONB Partnership and EMS Management Group, 2009), hosting a 

diverse range of marine ecosystems and habitats including rocky shore line, intertidal 

mudflats, rocky reefs, sea caves and sand beaches (Brazier et al., 1998).  

The BNNC EMS (Fig 1.2) was designated in 2000, in part because of the importance 

of ‘reef’ biotopes (Hartnoll, 1998), and incorporates Special Areas of Conservation 

(SACs) and Special Protection Areas (SPAs) with marine areas that are covered by 

continuously or intermittently tidal waters (Natural England, 2013). BNNC EMS 

habitat monitoring is undertaken every six years (Mercer et al., 2003; Mercer, 2012), 

although even prior to the designation long-term habitat mapping and monitoring was 

undertaken (see (Edwards, 1983; Foster-Smith and Foster-Smith, 1987; Connor, 



26 
 

1989; Holt, 1994; Brazier et al., 1998). Local management aims to ensure that the 

EMS continues to be an area of international importance for the quality of its marine 

habitats and species although fishing is still currently permitted in the BNNC EMS 

(AONB Partnership and EMS Management Group, 2009).  

Seventy eight vessels habitually fish within the Berwickshire and North 

Northumberland Coast European Marine Site (BNNC EMS). Potting, which includes 

using traditional creels and parlour pots, mainly targets European lobster (Homarus 

gammarus), brown crab (Cancer pagurus), velvet crab (Necora puber), and is the 

most used fishing technique (93% of vessels) with some vessels using drift nets 

targeting salmon (<6%) and a very small number of vessels using towed gears 

(<0.2%)(Garside et al., 2003). Indeed, the economic importance of shellfish fisheries 

in the UK has increased (Molfese et al., 2014), particularly over the past 10 years 

(MMO, 2011) due to declines in demersal and pelagic fish landings (Turner et al., 

2009; Molfese et al., 2014). Shellfish fisheries in the UK contributed 35% of the total 

2011 UK landings with crab and lobster worth a combined value of £70.2 million 

(MMO, 2011). Despite this growing importance, they remain relatively lightly 

regulated with shellfishery byelaws conceived and enforced by local Inshore 

Fisheries and Conservation Authorities (IFCAs). 

 

Fig 1.2. Berwickshire and North Northumberland Coast European Marine Site. Towns 
(red dots) and European Marine Site boundaries (black line) are shown. 
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1.8.3. Defra’s revised approach to management of fisheries in European 

Marine Sites 

On August 15th 2012, the Department for Environment, Food and Rural Affairs 

(Defra) announced a revised approach to the management of commercial fishing 

activities within European Marine Sites (EMSs) in England (Defra, 2013). Habitats 

Regulations Assessment (HRA) of each current fishing activity within EMSs with 

respect to its potential impact on conservation features of interest is required. Should 

a likely significant impact occur or be thought to be possible (alone or in combination 

with other plans or projects) an appropriate assessment must be carried out, which 

will also inform on mitigation (management) options that will ensure site integrity is 

maintained. 

Conservation features of interest within EMSs identified as potentially impacted by 

fishing include subtidal reefs, in particular, kelp forest communities and sublittoral 

faunal turf communities (Natural England et al., 2012). Subtidal hard substrata 

support the highest diversity of marine organisms in temperate regions (Hartnoll, 

1998), as many require attachment to a hard surface. Shallow infralittoral zone 

communities (extending down 10-20 m depth) are algal dominated whilst deeper 

circalittoral communities are largely animal dominated (Connor, 1995), due to the 

attenuation of light in the water column. Fishers in the BNNC EMS target these rocky 

habitats due to the high abundances of economically valuable lobsters present 

(NIFCA, 2013, pers. comm.; Galparsoro et al., 2009). These marine communities can 

be affected by fishing activities due to their high species diversity and high 

abundances of long-lived, erect and presumably fragile species (Roberts et al., 

2010).  

The priority and focus for the revised approach to fisheries management in EMSs 

was initially on trawling and other mobile gears on subtidal reef features. 

Investigation into impacts of bottom towed gears within EMSs was being undertaken 

at the time of writing with some previous literature already existing (Sewell et al., 

2007). However, further work is also required to understand lower-level impacts on 

benthic habitats, including subtidal rocky reef, from possibly less destructive static 

gears such as pots and creels as there is little scientific evidence for environmental 

impacts that these may have (Eno et al., 2001; Coleman et al., 2013). 



28 
 

Potting activity is generally assumed to have little physical impact on these hard 

substrate habitats and epibenthos. The few potting impact studies undertaken to date 

have focused on assessing impacts using indicator species perceived to be sensitive 

to potting due to their life history traits, e.g. erect, fragile and sessile species (Eno et 

al., 2001; Shester and Micheli, 2011; Coleman et al., 2013). However, potting may 

alter trophic dynamics through the removal of keystone species incurring ecosystem 

changes (Siddon and Witman, 2004). There is currently a lack of peer-reviewed 

research into long-term in-direct impacts of potting as well as direct potting impacts 

through abrasion and crushing of epibenthos. These are crucial to our understanding 

of pot fisheries interactions with the environment (Siddon and Whitman, 2004). In 

addition, a lack of habitat information and fishing pressure on these is also lacking – 

although often recommended for an ecosystem based approach to management 

(Caveen et al., 2014). 

1.8.4. Aims and objectives 

The aim of this thesis was to examine whether potting activity in the BNNC EMS and 

the wider NIFCA region is likely to impact epibenthos of reef habitats. Firstly, analysis 

of spatial and temporal potting effort and fisher habitat preferences allowed potting 

pressure on various habitats to be investigated. This provided an evidence base for 

the investigation of long-term ecological change in the BNNC EMS (through analysis 

of historical monitoring data between 2002 – 2011), and whether any changes found 

could be attributed to the intensity of shellfish potting activity. Finally, quantification of 

direct impacts through in-situ experimental fishing was investigated.  

The objectives were to: 

1. Investigate decadal spatial and temporal trends in potting effort in the NIFCA 

district (chapter 2) and fisher habitat use (chapter 3).  

2. Investigate the adequacy of using biotope analysis (chapter 4), taxonomic 

composition of species (chapter 5), species richness (chapter 5) and indicator 

species (chapter 5) for detecting ecological change in the BNNC EMS using 

existing data. 

3. Discuss the usefulness of a) frequently used monitoring methods such as 

hierarchical classification systems (Chapter 4) b) videography data (chapter 5) 

c) long-term monitoring data (Chapter 4 and 5) d) photoquadrat data (Chapter 

6) for use in ecological studies. 
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4. Investigate direct impacts of potting through in-situ observation of 

experimental potting in two commonly found rocky habitats in Northumberland 

(Chapter 6). 
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Chapter 2 . Decadal Inshore Fishing Activities in Northumberland: 
Spatial, Temporal Changes 

2.1. Introduction 

In the UK, static gear fisheries are an important component of the fishing industry, 

landing 86,600 tonnes worth £173.6 million per annum and landing 41% of the 

shellfish in 2014 (MMO, 2015). These include high value species such as lobster and 

crab which are primarily caught inshore (defined as coastal waters out to 6Nm) using 

pots or traps (MMO, 2015). As a result, potting has an important socio-economic 

function particularly in inshore fisheries (Turner et al., 2009; Kaiser, 2014). 

The effects of mobile fishing gears on the marine environment have been well 

documented (Kaiser et al., 1996; MacDonald et al., 1996; Collie et al., 1997; Collie et 

al., 2000a; Collie et al., 2000b; Kaiser et al., 2006; Lambert et al., 2011), whereas 

static fishing gears have been assumed to be relatively benign (Eno et al., 2001; 

Lewis et al., 2009; Shester and Micheli, 2011; Coleman et al., 2013). There is limited 

evidence to support the latter (Shester and Micheli, 2011). The need to address this 

information deficit has become increasingly relevant due to the requirements to 

assess the effects of fishing activities in UK designated conservation areas: 

European Marine Sites (EMSs) and Marine Conservation Zones (MCZs). Many of 

these conservation areas are located inshore and are currently subject to static-gear 

fishing (MMO, 2016). Effects on the marine environment of static fishing gears 

requires an understanding of the distribution, frequency and intensity of these 

fisheries (Kaiser, 2014).  

Geographical Information System (GIS) based decision-support tools have been 

successfully used in Australia and the USA to enable managers to model different 

scenarios and Marine Protected Area (MPA) designs that satisfy both conservation 

and socio-economic objectives (Possingham et al., 2000; Ball et al., 2009). Similar 

methods are increasingly being used for designation of protected areas in the UK 

and require accurate fishing activity and effort information (Smith et al., 2009), but to 

date the resolution of these data is inadequate for this purpose. Fishing has the 

largest spatial footprint of human activities in the marine environment (Eastwood et 

al., 2007; Diesing et al., 2013), making it crucial that fishing interactions with marine 

benthos for prediction or mitigation of potential impacts are better understood (Eno et 

al., 2013). 
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To date, research has predominately focused on mapping mobile gear fishing activity 

using VMS (Nilsson and Ziegler, 2007; Stelzenmüller et al., 2008). However, a 

primary limitation of VMS data is that it is only recorded for large vessels (> 12m) and 

as such, inshore fishing fleets which are largely composed of small vessels (< 12m) 

are not well represented by VMS (Breen et al., 2014). This is particularly the case in 

Northumberland where, between 2003 – 2014, a mean 70 (± 9)% < 10m fishing 

vessels in the NIFCA district (see section 2.3.1) and at least 90% of fishing effort 

occurred within the 6Nm limit (NIFCA pers. comm.).  

Alternative approaches to mapping inshore fishing activity, such as surveillance 

methods, have successfully described distribution and intensity of various fishing 

gears, however, only over a single period of time (Breen et al., 2014; Turner et al., 

2015). Fishing spatial patterns can vary over time (Kaiser et al., 2002; Nilsson and 

Ziegler, 2007), the availability of target species, gear and territoriality being important 

drivers (Acheson, 1975; Rijnsdorp et al., 2001; Turner et al., 2012). These inter-

annual variations in fishing activity may make short-term studies inadequate (Lynch, 

2014), yet the spatio-temporal variability must be understood to inform appropriate 

management. This research, building on previous inshore mapping methods, 

investigated spatial-temporal changes of the static gear pot fishery in 

Northumberland. The use of static gears may increase in inshore UK waters (Turner 

et al., 2012) due to declines in the demersal and pelagic fish landings (Turner et al., 

2009; Molfese et al., 2014). In light of the potentially increasing use of static gear, this 

research sought to test the hypothesis that pot fishing effort had increased in 

Northumberland coastal waters (2004 – 2014) and that changes varied in extent and 

magnitude between years. The use of these data for fisheries monitoring and 

management are discussed.  

2.2. Methods 

2.2.1. Observed fishing activity 

Sightings of fishing vessel activity were recorded by NIFCA fishery officers on routine 

patrols and were combined with landings data to estimate and map fishing activity 

between 2004 - 2013. The methodology of combining sightings and landings data 

was developed by Turner (2015), built on previous work (Clark et al., 2008; Des Clers 

et al., 2008; Turner et al., 2009; Turner, 2010; Spencer, 2013) and was adapted for 

this research (Fig 2.1). 
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Fig 2.1. Diagram of GIS processes undertaken to spatially map distribution of potting 
effort densities in Northumberland IFCA district. Raw data (black cylinders), GIS 
mapping procedures (grey boxes) and final potting effort density distribution map (red 
box) are shown.  

2.2.2. Vessel sightings 

Fishing vessel sightings were recorded during routine NIFCA patrols between 2004 

and 2013 (Table 2.1). Vessel name, registration, home port, geographic position and 

observed activity (i.e. hauling or deploying pots, steaming) were recorded. Sightings 

in 2004 – 2013 of potting vessels targeting crab and lobster, and recorded as 

deploying or hauling pots, were mapped as point data using ArcView GIS version 

10.2 (ESRI, 2014) (Fig 2.2). All sightings outside of the NIFCA district boundaries 

were excluded from analysis. Sightings data provide strong confidence of association 

with actual fishing activity because of the direct recording by the NIFCA officers of 

activity such as shooting, hauling or attendance of gear by a fishing vessel. 
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Table 2.1. Shellfish vessel sightings and NIFCA patrol route data. Not available (N/A). 

Year 
Shellfish vessel 
Sightings 

Unique vessels 
observed 

NIFCA patrols 
Patrol routes 
available (%)* 

2004 1159 91 104 90 (87) 

2005 771 81 99 47 (47) 

2006 749 83 86 4 (4.7) 

2007 515 N/A 86 49 (58) 

2008 433 N/A 85 56 (75) 

2009 529 N/A 71 45 (63) 

2010 546 98 72 59 (81) 

2011 539 72 101 79 (78.2) 

2012 496 69 85 84 (98.8) 

2013 479 69 83 71 (85.5) 

2014 490 65 86 76 (88.4) 

* The number of patrol routes (GIS shapefile) which were provided by the NIFCA. Not all patrol routes were available.  

 

Fig 2.2. Example of potting vessel sightings (grey dots) in the NIFCA district (black 
line) during 2012 - 2013. 

 

Patrol effort, i.e. the number of times the NIFCA enforcement vessel went to sea, 

varied between years (Table 2.1). In order to standardise sightings across years 
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(Table 2.2), sightings data were randomly reduced to 71 days for each year (the 

minimum patrol number was 71 in 2009 (Table 2.1)). Examination of the mean 

number of active vessels at each port in the NIFCA district (2004 – 2013) revealed 

that these were largely similar ensuring that sightings were not biased by port size 

within the district during the study period (Fig 2.3).  

Table 2.2. Standardised annual Northumberland potting fleet sightings (2004-2014). 

 

 

 

Fig 2.3.  Mean number of active vessels per port (2004 – 2013) represented by size 
of the red circles. Values noted next to port name.  

Year Standardised Sightings 

2004 905 

2005 578 

2006 672 

2007 478 

2008 378 

2009 509 

2010 532 

2011 451 

2012 452 

2013 431 

2014 443 
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2.2.3. Vessel tracks 

There was a bias in the vessel sightings data due to the patrol vessel being moored 

in the river Tyne resulting in a high number of patrol tracks in the south compared to 

the north of the district (Fig 2.4); there was a higher chance of observing vessels in 

the south compared with the North of the district. The frequency and location of 

fishing vessel sightings will be influenced by the timing and route of the NIFCA 

patrols (Breen et al., 2014; Turner et al., 2015). Thus, sightings were spatially 

adjusted for patrol effort. NIFCA vessel GPS locations were recorded at regular 

intervals during patrols (2004 – 2014) and tracks were georeferenced and displayed 

in ArcGIS as polylines (Fig 2.4). A mean of 73% of patrol routes were available: 699 

out of a total 958 patrols undertaken by the NIFCA between 2004 and 2014 (Table 

2.1). 

 

Fig 2.4. Example of patrol vessel track data for the NIFCA district (2012-2013).  

 

A 3Nm2 grid was created in ArcGIS and superimposed over the NIFCA district (Clark 

et al., 2008; Turner, 2010) (Fig 2.5): if a fishing vessel was within a single 3Nm2 grid 

cell at the same time as the patrol vessel, and visibility was adequate, it is assumed 

that the fishing vessel would be observed and recorded (Turner, 2010) 
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Fig 2.5. 3Nm2 grids in the NIFCA district. 

 

The number of patrol routes falling within each 3Nm2 were counted and a measure of 

patrol effort (PE1) for each cell (the proportion of patrols passing through each cell) 

was calculated (Eq 1) (Turner, 2010): 

Eq 1:   PE1 =  
𝒏

𝑵
  

n is the number of patrols passing through the cell and N the total number of patrols. 

However, some sightings occurred in grids where no patrol vessel tracks were 

recorded. This could either mean that the patrol data were missing or that the 

observation distance of the patrol vessel was greater than assumed (Turner, 2010). 

In order to account for this, a second measure of patrol effort was calculated for each 

grid which assumes that patrol effort decreases linearly with distance from patrol 

routes (PE2, Eq 2): 

Eq 2:   PE2 =
𝑫𝐦𝐚𝐱 − 𝑫𝒈

𝑫𝐦𝐚𝐱 − 𝑫𝒎𝒊𝒏

 

Where the inverse Euclidean distance from the centre of each grid cell to the centre 

of the closest grid cell which contains a patrol route (Dg) is normalised as a proportion 

of the minimum distance from the patrol route to the centre of the grid cell containing 

the patrol route (Dmin) and the maximum distance from the centre of the grid cell 
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containing the patrol route to the centre of the furthest grid cell from it (Dmax) (Turner, 

2010; Spencer, 2013) (Fig 2.6). 

Eq 1 and 2 were combined and used to calculate the overall patrol effort (PE, Eq 3) 

for each grid square. The resulting values positively weighted sightings data in cells 

with low patrol effort and negatively weighted sightings in cells with high patrol effort. 

 Eq 3:  PE = ( 1 − PE1) + (1 − PE2) 

Calculation of PE (Eq 3) is illustrated in Fig 2.6, where PE1 is illustrated by four patrol 

routes (blue lines, N = 4) with example grids showing the number of patrol routes 

passing through them (n = 1 – 3) (Fig 2.6). PE2 illustrated for the red grid cell, uses 

distances (red lines) to the closest grid cell containing a patrol route (Dg), the 

minimum distance from the patrol route to the centre of the grid cell containing the 

patrol route (Dmin) and the maximum distance from the centre of the grid cell 

containing the patrol route to the centre of the farthest grid cell from it (Dmax) (Fig 2.6). 

 

Fig 2.6. Example of parameters used in calculation of patrol effort for 3Nm2 grid cell 
outlined in red. Blue lines represent patrol routes passing through 3Nm2 grids (N =4; n 
=1-3). Red lines represent distances between grid cells and gird cells containing patrol 
routes (from Turner, 2010). 

 

2.2.4. Mapping observed fishing activity 

Sightings data were pooled in 2-year groupings (2006 - 2007; 2008 - 2009; 2010 - 

2011 and 2012 – 2013), due to the limited number of vessel sightings per year, which 
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was in part due to the small number of fishing vessels operating from some ports, 

and the limited number of routine patrols undertaken by NIFCA (Turner et al., 2009). 

Numbers of sightings standardised by patrol effort were similar between two-year 

groupings (Table 2.3). Grouping data into two year intervals may mask annual 

change (Turner et al., 2015), but it allowed longer-term trends to be explored with 

greater confidence. 

Table 2.3. Standardised annual Northumberland potting fleet sightings by group. 

Year Sightings 

2004 – 2005 1483 

2006 – 2007 1150 

2008 – 2009 887 

2010 - 2011 983 

2012 - 2013 926 

 

Adjusted vessel sightings point data were transformed to continuous surface data in 

order to provide information on relative intensity of fishing activity in different areas, 

including areas where samples were not available (De Freitas and Tagliani, 2009). A 

non-parametric kernel density estimation (KDE) method was chosen over other raw 

point data or interpolation methods because it does not assume that fishing activity is 

normally distributed or a continuous spatial coverage (Alessa et al., 2008). 

A KDE raster with cell size 100 x 100m using a quadratic kernel function was 

produced in ArcMap (10.2) (Esri GIS) (Silverman, 1986). A smoothing parameter, 

termed bandwidth, determines the circular area (or kernel) around a given location 

within which data points contribute to the probability estimate and is a critical 

assumption when using KDE (Wand and Jones, 1995; Van Der Veen and Logtmeijer, 

2005). A small bandwidth will result in patchy density distributions resulting in a “ring 

around points effect” (Kie et al., 2010). However, a large bandwidth will result in a 

greater smoothing effect (or a more generalized surface) which risks removing 

meaningful spikes from the original data distribution (Carlos et al., 2010). In this case, 

the data distribution was examined in order to inform choice of bandwidth (Wand and 

Jones, 1995; Kie et al., 2010). The distribution of the density data was unimodal, 

fairly symmetric and did not have large tails. Thus the normal distribution 
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approximation bandwidth estimation method (Silverman, 1986) most closely 

resembled the reference distribution of normally distributed data. However, this 

method, when used with movement data that exhibits clumping in location (as was 

the case here), could result in a bandwidth that is too large, over-smoothing the data 

and creating a utilization area that is inaccurate (Kie et al., 2010). Thus bandwidth 

was reduced to a fixed proportion of 0.8 (Bertrand et al., 1996; Kie and Boroski, 

1996; Kie et al., 2002; Kie et al., 2010) ensuring that detail in the density distribution 

was not lost whilst reducing the "ring around points" phenomenon (Silverman, 1986).  

 

2.2.5. Mapping distribution of potting density  

Percentage volume contours (PVCs), which delineate the smallest area accounting 

for a specific proportion of the probability density distribution (St. Martin and Hall-

Arber, 2008), were created from the potting activity KDEs using the ‘Isopleth’ tool in 

GME (Beyer, 2012). A 70% PVC delineates the area within which there was a 70% 

probability of observing vessels fishing within the district. PVC Polygons of 50, 60, 

70, 80, 90 and 95% were created, uploaded into ArcGIS (v 10.2), clipped to the 

extent of the NIFCA district and area calculated (Turner, 2010; Spencer, 2013). 95% 

was chosen over 100% in order to minimise the influence of possible positional errors 

or mis-identification of vessels, providing a statically robust vessel sightings estimate 

(Turner et al., 2015). 

Shellfish permit holders in Northumberland are legally mandated to provide monthly 

data on vessel home port, landing port, number of pots worked per month, number of 

landings and weight of landings. Monthly shellfish landings data for 2001 – 2014 

were obtained for the NIFCA district. Data were divided into bi-annual groupings 

(2004 - 2005; 2006 - 2007; 2008 - 2009; 2010 - 2011; 2012 - 2013) and number of 

pots worked for each vessel per month over the whole NIFCA district was used to 

calculate fishing effort  (f, number of pots year-1): 

 Eq 4:   Mean Annual f =  
𝚺 𝐩𝐨𝐭𝐬 𝐬𝐞𝐭 𝐩𝐞𝐫 𝐦𝐨𝐧𝐭𝐡 

𝒏 
 

Where n is the number of years. For years 2006 – 2009 fishing effort data were 

missing information for vessels > 10m. These data were collected by the Marine 

Management Organisation (MMO) and have been requested, although at the time of 

writing were not available. The total number of pots deployed between 2006 and 
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2009 were estimated by averaging the proportion (%) of pots fished per year by 

vessels > 10m for years 2010 – 2014. The mean proportion of fished pots by vessels 

> 10m was added to the available data for years 2006 – 2009. Average proportion of 

pots fished by vessels > 10m was 14.3 ± 5.8%. 

In order to calculate annual potting density, 50, 60, 70, 80, 90 and 95% of the mean 

annual fishing effort (Eq 4) was calculated and proportioned to the corresponding 

PVC polygon (Turner, 2010). For example, 50% of annual fishing effort was allocated 

to the 50% PVC with pot density at sea calculated as number of pots km -2 year -1.  

2.2.6. Confidence assessment 

Some areas were infrequently or never patrolled (Fig 2.4), resulting in these areas 

having uncertain or unknown fishing intensity and distribution (Breen et al., 2014). A 

confidence assessment similar to that used by Breen et al. (2014) was undertaken to 

provide a simple measure of uncertainty. The quality of the sightings data was 

considered good with fishing activity recorded using GPS based methods (Breen et 

al., 2014). The frequency of patrol tracks contained within each 3Nm2 grid cell 

(section 2.1.2) was used to produce a confidence classification (Table 2.4).  

Table 2.4. Confidence classification used for the confidence assessment (modified 
from Breen et al., 2014). 

Patrol effort over 1 year Confidence class 

More than once in 2 weeks High 

Less than once in 2 weeks but more than once in 2 months Moderate 

Less than once in 2 months Low 

 

The resulting confidence class for 2004 – 2013 patrols within each 3Nm2 grid cell 

was mapped; 63.3% of the NIFCA district had moderate – high confidence (Fig 2.7). 

Potting effort distribution in areas with low confidence were excluded from the 

analysis.  
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Fig 2.7. Confidence data layer for the NIFCA district annual potting density map (2004 
- 2013). 

2.2.7. Data analysis 

Spatial and temporal trends in fishing effort distribution were investigated in three 

ways. Firstly, temporal trends in fishing effort data for the district (number of pots 

deployed per month) were investigated. Secondly, temporal changes in fishing vessel 

distribution were examined. Finally, these two analyses were combined to investigate 

temporal changes in distribution of fishing effort. By including these three analyses it 

was possible to determine whether changes in fishing effort distribution were driven 

by changes in fishing effort, changes in fishers’ spatial use of the NIFCA district, or a 

combination of the two. 

2.2.7.1. Temporal changes in fishing effort 

Temporal trends in fishing effort were analysed using NIFCA landings data (2001 – 

2014). This included aggregating data on number of permits issued per year, active 

vessel number, total pots worked in the district, median pots deployed per month and 

total pots worked per year. Changes in fishing effort (number of pots fished per 

month) through time were analysed using a linear regression model with number of 

active vessels as a covariate. In order to account for the inherent seasonality a 

harmonic function was included but these covariates were non-significant and it was 

deemed that monthly active vessel number encapsulated seasonality. As discussed 

in section 2.2.5, total number of pots deployed between 2006 and 2009 were 

estimated by adding the average proportion (%) of pots fished per year by vessels > 
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10m for years 2010 – 2014 (14.3 ± 5.8%) to the available < 10m vessel data. In order 

to ensure that these estimates did not affect results, the linear model was also run 

using the lower and higher estimates of number of pots fished by > 10m vessels (8.5 

and 20.1% respectively). Results using the lower and higher estimates did not 

change the overall trend with all variables significant. The Rstudio packages used, 

model code and results using lower and upper estimates of pot number for > 10m 

vessels for 2006 – 2009 are presented in appendix 1. 

2.2.7.2. Spatial-temporal changes in fishing distribution 

In order to highlight differences in space use between years, biannual KDE maps 

were compared using absolute thematic change maps showing pixels with differing 

values (Remmel, 2009). This was undertaken by merging KDEs of vessel sightings in 

ArcGIS for the years concerned (E.g. 2004 – 2005 and 2006 – 2007) and subtracting 

the number of vessel sightings (Number of vessel sightings km-2) from each year – 

this highlighted areas where fishing vessel sightings increased or decreased and by 

how much (Fig 2.8, C).  

 

Fig 2.8. KDE of vessel sightings for the NIFCA district for 2004 – 2005 (fishing 
vessels km -2 year -1) (A); and 2006 – 2007 (fishing vessels km -2 year -1) (B); 
Difference in vessel sightings between 2004 – 2005 and 2006 – 2007 (fishing vessels 
km -2 year -1) (C). 
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2.2.7.3. Spatial-temporal changes in fishing effort 

Spatial-temporal changes in Northumberland shellfishing effort were investigated 

through the comparison of fishing effort distribution maps created in ArcGIS (2004 - 

2005; 2006 - 2007; 2008 – 2009; 2010 - 2011; 2012 - 2013). There are few 

established methods for statistically comparing the distribution of variables with 

numerical values, such as the intensity of fishing activity (Hagen-Zanker 2006). Until 

recently, spatial comparison of maps has been undertaken using ‘cell by cell’ 

methods (Hagen-Zanker, 2006) or through quantification of map similarity whilst 

accounting for spatial structure (Hargrove et al., 2006), including taking into account 

spatial autocorrelation (Hagen‐Zanker, 2009). However, these map comparison 

methods, many of which were primarily developed for accuracy assessment of 

simulated maps, give an indication of similarity but not significance of change. In 

order to highlight long-term trends and significant differences, maps were analysed 

by randomly sampling locations in two maps (i.e. 2004 – 2005 vs 2006 – 2007, 2004 

– 2005 vs 2008 – 2009, etc) and comparing fishing effort values of these locations 

between years. Random samples were permuted using Monte Carlo simulation, a 

novel application of this analysis method. Firstly, fishing effort maps were converted 

to raster format in ArcGIS (pixel sixe 100 x 100m) and imported to RStudio (RStudio, 

2012). Each raster contained 88,604 unique pixels, of which 5000 were randomly 

sampled in each map. The fishing effort value of sampled pixels were compared 

between years using a two-tailed paired t-test. This t-test was permuted (50,000 

times) and mean p-values recorded and t-values graphed in a histogram. The 

number of pixels sampled was decided by running the simulation with different 

sample numbers i.e. 100, 500, 1000, 5000 and 10,000. The range of t-values differed 

between simulations when using lower sample number (100 - 1000) but not with 

higher sample numbers. In order to restrict excessively long running times of the 

model 5000 was deemed an appropriate sample number. Jackson and Somers 

(1989) recommended that a minimum of 10,000 randomizations are undertaken with 

up to 100,000 in critical cases for biological studies. In this case, 50,000 

randomisations was chosen as this was the highest number which did not greatly 

affect the processing time of the simulation. All R code is provided in the appendix. 

If 47,500 t-tests (95% of all permutations) were significant, then it was deemed that 

the compared maps differed. The number of statistically significant t-tests, mean t-
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values and p-values from the permuted t-tests was calculated. All fishing effort maps 

were tested against each other using this method.  

In years where significant differences were found, the two fishing effort maps were 

subtracted providing an absolute thematic change map of pixels with differing values 

using the same methodology described in section 2.2.7.2 (Remmel, 2009). 
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2.3. Results 

2.3.1. Temporal changes in fishing effort 

The number of permits issued, active vessel number, total pots worked in the district, 

median pots deployed per month and total pots worked varied among years (Table 

2.5). 

Table 2.5. Annual Northumberland potting fleet statistics (2001 – 2014). Not available 
(NA). Estimates of total pots worked year -1 used in the linear model for 2006 – 2009 
are shown with the original data or the < 10m vessels for these years shown in 
brackets. 

Year 

Permits 

issued 

Active 

Vessels (% 

active) 

Active 

Vessels < 

10m (%) 

Median pots 

month -1 

Max pots 

worked month -1 

* 

Total pots 

worked year -1 

2001 155 108 (70%) 52 250 32,624 257,450 

2002 151 111 (74%) 54 250 33,087 250,030 

2003 153 117 (76%) 57 250 31,121 242,391 

2004 136 97 (71%) 60 270 28,620 233,642 

2005 130 97 (75%) 60 300 31,433 246,085 

2006 120 61 (51%) NA 300 17,770 
179,365 

(156,925) 

2007 NA 55 NA 300 24,140 
179,538 

(156,802) 

2008 NA 61 NA 335 26,806 
194,651 

(170,299) 

2009 NA 60 NA 360 29,326 
221,687 

(193,952) 

2010 121 52 (43%) 82 400 24,341 186,740 

2011 107 87 (81%) 86 430 43,252 345,086 

2012 114 81 (71%) 85 450 42,666 332,471 

2013 118 89 (84%) 84 400 39,934 354,193 

2014 119 92 (77%) 80 500 41,044 388,575 

* Total pots worked per month: sum of the maximum number of pots deployed per month by each vessel 

Permit numbers (i.e. the number of fishing vessels which have a licence to fish in the 

NIFCA district) decreased steadily from 2001 – 2011 (155 to 107 permits) followed by 

a small increase after which they remained constant (2012 – 2014, 114 -119 permits) 
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(Table 2.5). However, not all fishing vessels with permits fished during the year. 

Active vessels largely follow the decrease and increase in permit number, with the 

proportion of active fishing vessels in the NIFCA district remaining relatively constant 

between ca. 70 – 80%, except for a particularly low number of active vessels in 2010 

(only 43% of vessels with permits were active) (Table 2.5). The proportion of the 

active <10m fishing vessels consistently increased, peaking in 2011 (86%) followed 

by a slight decrease from 2012 to 2014 (Table 2.5).  

The median number of pots deployed per vessel doubled from 2001 to 2014 (Table 

2.5). The total number of pots fished per year in the district generally increased over 

time from 2001 to 2014 (Table 2.5 and Fig 2.9). Total number of pots fished per year 

between 2001 and 2006 declined, with a small increase between 2007 and 2010 

followed by a much larger increase from 2010 to 2014 (Table 2.5).  

 

Fig 2.9. Monthly number of pots fished in the NIFCA district (2001 – 2014). Upper 
and lower estimates of the number of pots fished year -1 for vessels >10m (2006 – 
2009) are shown in the grey box. 

 

Fishing effort per month declined between 2001 and 2007, increased between 2008 

and 2010, and increased substantially from 2010 to 2014 (Fig 2.9). A negative 

binomial model provided the best fit to the data as there was evidence of 

overdispersion in number of pots fished per month (Fig 2.10). Since total numbers of 

pots deployed between 2006 and 2009 were estimated by adding the average 

proportion of pots fished per year of 10-12m vessels for years 2004 – 2006 and 2010 
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– 2014 (14.3 ± 5.8%) to the available < 10m vessel data, the linear model was run 

using lower and higher estimates of number of pots fished by > 10m vessels (8.5 and 

20.1% respectively). Results using the lower and higher estimates did not change the 

overall trend with all variables significant (results available in appendix 1).The 

number of active fishing vessels accounted for a large proportion of the observed 

variance in the number of pots fished (including seasonality) (active vessels fishing 

per month, z-value = 18.3, p < 0.0001). The number of active vessels fishing 

accounted for a monthly increase of 1.1 pots fished per additional active vessel. Time 

(month) was also highly significant (months, z-value = 17.4, p < 0.0001) with a 

predicted increase of 1.01 pots fished per month. Cumulative increases and 

decreases are shown by the line of best fit modelled from the regression coefficients 

obtained from the model in (Table 2.6).  

 

Fig 2.10. Monthly number of pots fished in the NIFCA district (2001 – 2014) with a 
line of best fit (black line and 95% confidence interval (grey polygon) modelled from 
the regression coefficients obtained in the negative binomial regression analysis.  
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Table 2.6. Regression coefficients, standard errors, t - value, and p-values 
significance for each variable using a negative binomial regression model.  

 Estimate Std Error z - value p- value 

Intercept 8.6 0.07 126.6 < 0.0001 

Months 0.005 0.0005 17.4 < 0.0001 

Active vessels 0.01 0.002 18.3 < 0.0001 

 

Crab and lobster landings data were available as part of the NIFCA fishery data. 

However, CPUE was not calculated here due to the uncertainties associated with this 

metric in the Northumberland pot fishery; the size of pots (i.e. volumes of pot) and the 

number of fleet hauls were not known and therefore would have resulted in uncertain 

and potentially inaccurate estimates of effort required for the calculation of CPUE.  
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2.3.2. Spatial-temporal changes in fishing distribution 

Kernel density estimations of fishing vessel sightings provided a smooth continuous 

surface which represent the predicted number of vessels likely to occur per km2 per 

year (Fig 2.11).  

 

Fig 2.11. KDE of vessel sightings (vessel sightings km -2) in areas with moderate - 
high confidence for years: 2004 – 2005; 2006 – 2007; 2008 – 2009; 2010 – 2011; 
2012 – 2013 and 2004 - 2013. 

 

Vessel sightings (number of vessel sightings km -2 year -1) had similar ranges 

between years (min 0, max 7 – 9) (Fig 2.11). These were largely concentrated close 

to shore for all years with variable sightings further off shore (Fig 2.11). 
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Fig 2.12. Changes in fish vessel sightings (km -2 year -1) in areas with moderate - 
high confidence between years. A) 2004 – 2005; 2006 – 2007 B) 2006 - 2007; 2008 
– 2009 C) 2008 – 2009; 2010 – 2011 D) 2010 – 2011; 2012 – 2013. 

 

The majority of differences in vessel sightings between years were small 

(approximately 95% of vessel sightings ranged from -1 to 1 sightings km -2 year -1) 

(Fig 2.12). Overall there was decline in sightings in the north of the NIFCA district, 

especially in the 2004 – 2009 period. The most variable changes both positive and 

negative were observed close to shore (Fig 2.12). For larger areas, predominantly 

further off shore, differences were negligible: vessel sightings were similar between 

years, varying between -0.5 and 0.5 sightings km -2 year -1 (shown in grey, Fig 2.12). 

Cumulative changes in fishing vessel sightings (2004 – 2013) showed a clear trend 

(Fig 2.13). Over the study period, vessel sightings changed little over the vast 

majority of areas (716km2, 80.5% of the area ranged from -0.25 to 0.25 sightings km -

2 year -1 shown in grey, Fig 2.13). Inshore vessel sightings increased in the Southern 

(Cullercoats – Blyth) and middle sections of the NIFCA district (Amble – Craster). 

There were also notable decreases in vessel sightings, close to shore between 

Newbiggin and Amble and a large area in the north east of the district (from Craster 

to Seahouses). Although decreases (< -0.25km -2 sightings year -1) in fishing vessel 

sightings occurred over a larger area compared to increases (> 0.25 sightings km -2 



51 
 

year -1) (134km2 compared to 39km2), these were smaller (decreases ranged from -

0.25 to - 0.87 whereas increases ranged from 0.25 – 1.8 sightings km -2 year -1) (Fig 

2.13). 

 

Fig 2.13. Changes in KDE of fishing vessel sightings (km -2 year -1) in areas with 
moderate - high confidence between 2004 – 2013. 

 

2.3.3. Spatial-temporal changes in fishing effort 

Fishing effort distribution significantly differed among all two-year periods (Table 2.7). 

Fishing effort decreased between 2004 - 2005 and 2006 - 2007 over large areas (Fig 

2.14, positive t-value in Table 2.7). Fishing effort increased in many areas between 

2006 – 2013 (Fig 2.14, negative t-value Table 2.7), particularly close to the shore. 

Differences in distribution between fishing effort maps also reflect these results (Fig 

2.15, Fig 2.16) but highlight the variability between years with areas increasing in 

fishing effort in some years and decreasing in others (Fig 2.15).  
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Fig 2.14. Distribution of fishing effort (number of pots km -2 year -1) in areas with 
moderate - high confidence for years: 2004 – 2005; 2006 – 2007; 2008 – 2009; 2010 
– 2011; 2012 – 2013.  
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Table 2.7. Mean t-value and p-value of Monte Carlo simulated bi-annual comparison 
of fishing effort distribution maps (2004 – 2005; 2006 – 2007; 2008 – 2009; 2010 – 
2011; 2012 – 2013). 

Years compared Number of significant 

t-tests  

Mean t-value Mean p - value 

2004 - 2005 vs 

2006 -2007 

50,000 36.1 < 0.0001 

2006 - 2007 vs 

2008 -2009 

50,000 -35.2 < 0.0001 

2008 - 2009 vs 

2010 -2011 

50,000 -39.4 < 0.0001 

2010 - 2011 vs 

2012 -2013 

50,000 -19.2 < 0.0001 

 

Once again, a clearer trend emerged in absolute changes of thematic maps when 

examining changes occurring over the decade. Cumulative yearly changes (2004 – 

2013) showed areas further from shore had either stable or decreasing fishing effort 

with a large majority of inshore areas increasing in fishing effort (Fig 2.16). The 

maximum increase in fishing effort is much larger than the maximum decrease in 

fishing effort: increases of up to a 1150 pots km -2 year -1 compared to decreases of 

450 pots km -2 year -1 (Fig 2.16). 
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Fig 2.15. Changes in distribution of fishing pressure (number of pots km-2 year-1) in 
areas with moderate - high confidence between years. A) 2004 – 2005; 2006 – 2007 
B) 2006 - 2007; 2008 – 2009 C) 2008 – 2009; 2010 – 2011 D) 2010 – 2011; 2012 – 
2013.  

 

Fig 2.16. Changes in distribution of fishing effort (number of pots km -2 year -1) in 
areas with moderate - high confidence between 2004 – 2013. 
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2.4. Discussion 

Similarly to previous research (Breen et al., 2014, Turner et al., 2015), our results 

show that existing datasets collected through routine fisheries patrols can be used to 

accurately map shellfishing effort, highlighting viable alternatives to VMS monitoring 

for smaller vessel inshore fisheries. Mapping of the pot fishery and other static gear 

fisheries, are likely to be accurate because the recorded sightings are for locations 

where deploying or hauling of gear occurs. This analysis built on previous work but in 

addition now evaluates temporal and spatial changes in a local fishery at very high 

resolution for the first time. These temporal and spatial changes in fishing effort in the 

Northumberland pot fishery between 2004 and 2013 are discussed here in reference 

to marine spatial management. 

2.4.1. Temporal changes in fishing effort 

Fishing effort (number of pots at sea per month) increased in Northumberland 

between 2001 and 2014 (Fig 2.10). Changes in fleet composition or fishers’ 

behaviour may explain increases in effort, although available information is largely 

anecdotal and further work is recommended. The proportion of vessels < 10m in the 

NIFCA district has steadily increased over time (Table 2.5). These smaller vessels 

are not subject to as much legislation as vessels > 10m and have cheaper fishing 

vessel licenses. Furthermore, between 2001 – 2014 there was increased uptake by 

local fishers of improved fishing technology, including GPS and echosounder, better 

vessel layouts and more efficient and powerful engines, allowing them to fish a 

greater number of pots per month and target more specific areas or habitats (NIFCA, 

pers. comm.). This increase in efficiency may explain the doubling in median pots 

deployed per vessel between 2001 and 2014 (Table 2.5) which in turn is contributing 

to the large yearly increases in pots fished over the same period (Fig 2.10).  

Another possible explanation for this increase in effort is that in the face of low 

abundance of target species, fishers increased effort in order to maintain levels of 

catch or moved focal area. However, landings per unit effort for both lobster (Telsnig, 

2013) and crab also increased between 2001 and 2014 (NIFCA, pers. comm.). It 

seems that the abundances of target species were sufficient to allow a sustained 

increase in effort over the 10 year period although it is unclear whether overall stock 

abundances increased or decreased in Northumberland.   
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A clear increase in fishing effort (number of pots at sea per month) has occurred in 

the district between 2001 and 2014. This is partially explained by changes in fleet 

composition and behaviour, although drivers of change remain largely anecdotal. 

Further stakeholder engagement is recommended to further investigate these 

drivers.  

2.4.2. Temporal changes in potting vessel distribution 

Variability in locations of fishing vessel sightings between bi-annual maps were 

reduced when grouped across all years, revealing that distribution of vessels 

changed relatively little across the study period (Fig 2.13). Variability in fishing vessel 

locations may be due to true differences in fishers’ distribution between years or an 

incomplete representation of vessel sightings (see section 2.4.5 for further details on 

assumptions and potential sources of error of mapping techniques). However, over a 

decade, potting distribution in the NIFCA district remained relatively constant with 

areas close to shore used consistently through time but with more variable use in 

areas further offshore. In addition, there was a slight increase in concentration over 

time of fishing vessel sightings in areas close to shore (Fig 2.13). The increased 

sightings close to shore may tentatively be related to the increase in small boats 

within the fleet and increasing fuel prices although further evidence is required to 

state this with confidence. In a Greek fishery, small < 9m vessels’ average travel time 

to fishing locations was much lower than that of fishing vessels > 15m (Tzanatos et 

al., 2006); smaller vessels were more likely to fish closer to shore than larger vessels 

(FAO, 2005). In addition, volatile fuel prices affected fishing behaviour in the UK with 

fishing occurring closer to port and reduced exploratory fishing (Abernethy et al., 

2010).  

2.4.3. Temporal changes in potting effort distribution 

Changes in fishing effort distribution between years (section 2.3.3) were found across 

large sections of the study area, highlighting the high inter-annual variability of fishing 

effort over time at a regional scale (Lynch, 2014). This further highlights the 

usefulness of monitoring fisheries over long-time periods as ‘snap shots’ of the 

fishery may lead to under or over estimates of fishing effort (Lynch, 2014). Increases 

were concentrated close to the shore, particularly around the larger ports of the 

district. Decreases in areas, or areas that showed little or no change were in the 

offshore sections of the district. Increases in fishing effort inshore are likely to be 
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heavily determined by the steady increase in overall pots fished from 2008 – 2014 

(section 2.3.1) in combination with the slight concentration of fishing vessels 

sightings inshore (section 2.3.2). The trend of increasing fishing effort close to shore 

is consistent with the change in fleet composition (increases in <10m fishing vessels) 

and fishing behaviour (increased in median pots fished per vessel) discussed in 

previous sections. 

The interannual variability of the Northumberland shellfishery highlights the 

importance of long-term monitoring. The increase in fishing pressure across the 

district but particularly inshore over the course of a decade means that further 

monitoring will inform conservation and fisheries management. This research 

reinforces the usefulness of combining effort data with fishing spatial distribution. 

Cumulative changes in fishing effort distribution provided greater detail on temporal 

trends than either analysis of fishing effort data (section 2.3.1) or vessel distributions 

independently (section 2.3.2), for example demonstrating that fishing effort did not 

increase uniformly across the district but has become highly concentrated inshore, 

especially from 2010 – 2013.  

2.4.4. Temporal fishing effort distribution for management of the marine 

environment  

Commercial fishing activities are often reported at very large scales (e.g. ICES 

rectangles, approximately 30 x 60Nm) (Brehme et al., 2015). These data rarely 

accurately reflect the heterogeneity of ocean activities (Brehme et al., 2015) and only 

allow the broadest of fishery-habitat interactions to be examined. Finer resolution of 

fishing activity has been repeatedly highlighted as priority for future research (Breen 

et al., 2014; Campbell et al., 2014; Brehme et al., 2015) as a prerequisite for the 

assessment and management of fisheries impacts on the seabed and of their 

interactions with other industries or MPAs (Crowder and Norse, 2008; Stewart et al., 

2010), and to help reduce conflict between competing marine sectors (Katsanevakis 

et al., 2011). However, the peripatetic nature of fisheries has been a significant 

obstacle to mapping their usage of the marine environment (Stewart et al., 2010), 

although some of these difficulties are being addressed through the successful use of 

VMS for > 12m fishing vessels and through modelling of activities using sightings at 

sea for smaller inshore fisheries (Breen et al., 2014; Vanstaen and Breen, 2014; 

Turner et al., 2015). The work presented here provided predictions of potting 
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activities at a resolution of 1km2, a much finer resolution than for other similar fishing 

activity mapping research (6km2 – 50km2; Breen et al., 2014; Brehme et al., 2015). 

Without maps of fine-scale spatial fishing effort, important localised changes and 

habitat sensitivities may be overlooked. The present study demonstrated that fishing 

effort did not increase uniformly across the district over time but became highly 

concentrated inshore, especially from 2010 – 2013. From a socio-economic 

perspective, potting may therefore be more vulnerable to changes in legislation (e.g. 

area closures) in the busy inshore marine environment where competing demands 

exist between larger numbers of users and where conflicts between different 

stakeholder groups occur (Dalton et al., 2010). The more accurately activities can be 

mapped in these areas, the greater the ability of policy makers to reduce conflict and 

develop successful marine spatial plans (Dalton et al., 2010).  

Although fishing distribution maps are increasingly proposed for marine spatial 

management, temporal distribution of fishing effort has often been neglected 

(Brehme et al., 2015). This study highlights the high inter-annual variability of fishing 

effort over time at a regional scale and usefulness of monitoring fisheries over long 

time-periods (Lynch, 2014). The lobster fishery in Maine changed over time 

depending on fishers’ responses to market forces (Steneck et al., 2011), informal 

rules amongst fishers (Acheson and Brewer, 2003; Brewer, 2010), lobster population 

responses to changes in oceanographic conditions (Steneck and Wilson, 2001; Incze 

et al., 2006; Holland, 2011; Zhang et al., 2011) and to harvesting practices within the 

fishery (Acheson, 1988; Acheson and Brewer, 2003; Brewer, 2010). Fishers in 

Northumberland are likely to respond to similar drivers and changes in fishing 

behaviour (Turner et al., 2015) and therefore for accurate management decisions, 

temporal patterns must also be understood.  

The Northumberland shellfishery has the highest potting vessel sightings per unit 

effort of the UK (Vanstaen and Breen, 2014). The available data would make it well 

suited as a case study on the effects of area closures and other types of 

management. However, in order to fully understand the implications of fisheries 

spatial management, fisheries – habitat interactions must be understood (chapter 3). 

2.4.5. Critical appraisal of data and models used 

The accuracy and validity of the data underpinning the model will determine the 

accuracy of the outputs. Sources of error may be introduced by assumptions made, 
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as discussed in the following section. These can be visualised in the flow chart of the 

modelled process in Fig 2.17. Red arrows indicate where potential errors in data or 

assumptions may negatively affect model outputs (Fig 2.17). 

 

 

Fig 2.17. Diagram of GIS processes undertaken to spatially map distribution of 
potting effort densities in Northumberland IFCA district. Raw data (black cylinders), 
GIS mapping procedures (grey boxes) and final potting effort density distribution map 
(black box) are shown. Red arrows show indicating sections where errors in data or 
assumptions may negatively affect model outputs. 

 

Elements of the raw data used in this research were collected opportunistically. For 

example, vessel sightings at sea were collected during routine enforcement patrols. 

Similarly, the number of patrols conducted each year were driven by NIFCA 

requirements. Caveats in this data included missing GPS coordinate data for some 

patrol routes and incomplete sightings for all active fishing vessels in the district. A 

proportion of patrol routes were lost for all years (Table 2.1). Reasons for this are 

unknown. 

In addition, not all active fishing vessels were sighted during routine patrols - the 

number of active fishing vessels in the district (Table 2.5) is always greater than the 

number of different fishing vessels sighted at sea (Table 2.1). This may be due to the 

timing of the NIFCA patrols which generally occurred between 8 am and 4 pm 

(dependant on tides), whereas potting routinely occurs in the early hours of the 

morning (leaving port at 2am returning for 12am). Thus, a certain amount of fishing 

activity will not be recorded during routine patrols. However, other studies have used 

similar sightings from enforcement patrols to successfully map fishing activity 

(Woolmer, 2009; Breen et al., 2014; Vanstaen and Breen, 2014; Turner et al., 2015). 
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In addition, the use of weighting and standardisation of vessel sightings ensured the 

model was robust to differences in patrol effort between years; patrol effort data were 

standardised between years (section 2.2.2), weighting of individual vessel sightings 

dependant on likelihood of observation (section 2.2.3) and a confidence layer of the 

district based on patrol routes was created (section 2.2.3). 

Monthly shellfish landings data for 2001 – 2014 included vessel home port, landing 

port, number of pots worked per month, number of landings and weight of landings 

for all permit holders even if no fishing was undertaken during the month. However, 

as with other data collected from stakeholder participatory studies, the accuracy of 

this data relies on the truthfulness or accuracy of the fishers’ submitting these permit 

return forms. In this case the author has no reason to doubt the accuracy of the 

collected data and there is no obvious motivation for fishers to lie (Brehme et al., 

2015).  

Predicting the number of vessels that are likely to be sighted in a given area per year 

through interpolation between actual vessel sightings (creation of KDEs, Fig 2.8) will 

always result in uncertainties. However, the bi-annual grouping of sightings was felt 

to provide an adequate density of vessel sightings for accurate predictions. In 

addition, methods used for bandwidth selection of the KDEs, a critical assumption for 

the prediction of values between actual vessel sightings, followed recommendations 

for the best available methodology, proving to be robust in several ecological studies 

(Bertrand et al., 1996; Kie and Boroski, 1996; Kie et al., 2002; Kie et al., 2010). 

Many methods for map comparison exist and the choice of appropriate methodology 

will be determined by the nature of the maps (i.e. the type of data used to create 

these) and the aims of the research (Foody, 2007). As the approach used will 

determine which differences or similarities are observed and what may be missed by 

the analysis, awareness of the pros and cons of map comparison methods is 

important (Foody, 2007). Qualitative comparison of spatial maps - presenting maps 

side by side and stating that these look similar or dissimilar - is common because 

quantification of similarity between two spatial patterns can be difficult (Rose et al., 

2009). However, pixel based map comparisons have recently grown in application 

with methods such as the Kappa statistic, which compare the partial distribution of 

variables in terms of their presence or absence, or other categorical classifications 

(Hagen-Zanker 2006; Ban et al., 2009). However, there are fewer established 

methods for statistically comparing the distribution of variables with numerical values, 
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such as the intensity of fishing activity (Hagen-Zanker 2006). Until recently, spatial 

comparison of maps has been undertaken using ‘cell by cell’ methods (Hagen-

Zanker, 2006) or through quantification of map similarity whilst accounting for spatial 

structure (Hargrove et al., 2006), including taking into account spatial autocorrelation 

(Hagen‐Zanker, 2009). However, these map comparison methods, many of which 

were primarily developed for accuracy assessment of simulated maps, give an 

indication of similarity but not significance of change. Furthermore, for optimal results, 

the maps used in the analyses must have the same classes, in terms of number and 

meaning (Haack and Rafter, 2006). Northumberland inshore fishing effort is highly 

variable, spatially and temporally; inshore fishing practices have to adapt quickly to 

many socio-economic factors, for example, fluctuation in fuel costs, catch levels and 

weather (Abernethy et al., 2007; Daw, 2008). This resulted in different map classes 

between years. Even when standardised across maps using a fuzzy approach (a 

potential source of error (Fritz and See, 2005)), high dissimilarity was found between 

years, providing little information that could not already be described by visually 

examining fishing effort maps. In this research issues of non-normal distribution of 

mapped data, spatial autocorrelation and statistical power related to many map 

comparison analysis (Hagen-Zanker, 2006; Hagen‐Zanker, 2009) were overcome 

through the use of random point selection and large number of permutations in the 

Monte Carlo analysis for the detection of change between fishing effort distribution 

maps. 

2.5. Concluding remarks 

Fishing effort has increased significantly across the majority of areas in 

Northumberland with particularly large increases inshore, attributable tentatively to 

changes in local vessels, but evidence remains largely anecdotal and further work to 

investigate social drivers behind changes in effort is recommended. Results from this 

work are applicable for management locally, and can be replicated using routinely 

collected fisheries enforcement data for other parts of the UK. Distribution of fishing 

effort is integral for management of fisheries by providing information on areas that 

may be especially susceptible to fishing impacts, as well as informing selection of 

areas best suited for protection, by accommodating both conservation and socio-

economic goals.  
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Chapter 3 . Decadal Inshore Fishing Activities in Northumberland: 
Spatial, Temporal Changes of Habitat Usage 

3.1. Introduction 

Seabed habitats and their associated communities are predominately determined by 

their ambient abiotic conditions (Connor et al., 2004) (i.e. substratum, depth, 

exposure to wave action/tidal currents, salinity, topography, geology, oxygenation 

and scour/turbidity). In addition to natural environmental conditions, the physical 

interaction of fishing gears on the seafloor may exert  further pressure on benthic 

communities (Nielsen et al., 2013). Fishing  is not uniformly distributed across 

regions (Jennings et al., 1999; Jennings et al., 2012) and the footprint of gear on the 

seafloor will vary depending on the fishing method (Vanstaen and Silva, 2010; 

Jennings et al., 2012). Sensitivity of habitats to fishing impacts will be determined by 

the intensity, frequency and extent of natural disturbance to which the habitat and its 

associated species are subject to (Kaiser, 2014). For example, in high-energy 

environments fishing disturbances may have minimal effects compared to natural 

disturbance (Kulbicki et al., 2007; Sciberras et al., 2013). However, there are many 

examples where fishing disturbances have caused long-lasting changes in the 

marine environment (see Kaiser et al. (2006) for meta-analysis of fishing impacts).  

Mobile-gear fishing activities can impact biodiversity or alter habitat either directly 

(through physical disturbance) or indirectly (through changes in food web dynamics) 

(Kaiser et al., 2006; Armstrong and Falk-Petersen, 2008; Babcock et al., 2010), but 

little is known about spatial distribution and intensity of static-gear fishing activities 

affecting the seafloor (Breen et al., 2014). Assessments of full impacts of a fishery 

require basic data on the conservation status (i.e. health quality and status) of 

individual habitats and species, as well as data for fine-scale distributions of ongoing 

fishing activities (Pedersen et al., 2009; Eno et al., 2013).  

To date, research world-wide has predominately focused on mapping mobile gear 

fishing activity using VMS and overlaying this information on existing broadscale 

habitat datasets (Nilsson and Ziegler, 2007; Stelzenmüller et al., 2008). However, a 

primary limitation of VMS data is that it is only recorded for large vessels (> 12m) and 

as such, inshore fishing fleets which are largely composed of small vessels (< 12m) 

are not well represented by VMS (Breen et al., 2014). Research has provided a 

broadscale snapshot (5 x 5km) of mobile gear fishing habitat use for a single year 

(Nilsson and Ziegler, 2007; Lambert et al., 2011) thus not accounting for change over 
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time in fisheries uses of habitats. Fishing spatial patterns have been shown to vary 

over time (chapter 2) (Kaiser et al., 2002; Nilsson and Ziegler, 2007), the availability 

of target species, gear and fishers’ territoriality being important drivers (Acheson, 

1975; Rijnsdorp et al., 2001; Turner et al., 2012). The inter-annual variability of 

fishing means short-term studies are inadequate to fully inform appropriate 

management (Lynch, 2014), yet the spatio-temporal variability of fishing effort must 

be understood. Some temporal trends are known for large vessels (> 18m) over 

broadscale marine landscapes (Connor et al., 2006) at 2 x 2Nm resolution 

(Stelzenmüller et al., 2008), but at a finer scale, significant gaps remain in habitat use 

by smaller vessels (Caveen et al., 2014). The need to address this information deficit 

has become increasingly relevant due to implementation of new management 

measures in European Marine Sites (EMSs) and Marine Conservation Zones (MCZs) 

in England, with many of these areas located inshore where a large portion of the 

fishery uses smaller vessels (< 12m). However, it is debatable whether these 

management measures are currently being underpinned by robust science while 

lacking detailed information on fisheries-habitat interactions (Caveen et al., 2014). 

The Northumberland fishery (Fig 2.7) is a mixed fishery (Garside et al., 2003), with 

the majority of Northumberland fishers targeting crustacea: European lobster 

(Homarus gammarus), velvet crab (Necora puber) and edible crab (Cancer pagurus) 

using baited pots (or traps). These shellfish species use habitats differently; their 

distributions, movements and abundances are influenced by habitat type, quality and 

location (Galparsoro et al., 2009; Geraldi et al., 2009; Skerritt et al., 2015). Lobster 

(H. gammarus) and velvet crab (N. puber) are found predominantly on shallow rocky 

ground although lobster can also be found at 60m or deeper (Wilson, 2008; 

Galparsoro et al., 2009). The edible crab (C. pagurus) is found in all habitat types but 

probably prefers coarse sediment and offshore muddy sand (Neal and Wilson, 2008). 

Thus fishermen are likely to be selective for habitat when targeting different shellfish 

species. Fishing with mobile gear varies inter-annually in extent and in habitat 

selection (Jennings et al., 2012; Diesing et al., 2013), but no comparable studies of 

fishing with static potting gear are apparent. These may differ, for example, due to 

fishers’ territorial behaviours (Turner et al., 2012). Spatial clustering of fishers in 

specific habitats can indicate productive areas (i.e. high catches of target species) 

and over time can indicate the persistence of these favourable fishing conditions.  
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Information on the distribution of potentially sensitive habitats, or those most 

vulnerable to inshore fishing activities, are crucial so that these can be afforded an 

adequate degree of protection (Eno et al., 2013; Kaiser, 2014). However, further 

information is required to better understand the ways Northumberland’s small scale 

(< 10m) inshore fishery uses habitat in order to support effective management. In 

particular, accurate fishing vessel positioning data, over adequate time scales is 

needed to quantify variability in fishing activity and fine-scale and accurate habitat 

maps are required. Building on chapter 2, where fishers’ spatial fishing pressure was 

investigated over a decade, this research explores temporal changes in fishers’ 

habitat use (2004 – 2014), providing evidence that would be of use for fisheries and 

conservation management. This research sought to test the hypothesis that fishers 

were selective when targeting habitats (hypothesis 1), specifically that fishers 

targeted rocky habitats over other habitats (hypothesis 2) in order to catch high value 

lobster (Wilson, 2008; Galparsoro et al., 2009). This is achieved using routine patrol 

vessel sightings in combination with high resolution broadscale (EUNIS level 3) and 

fine scale (EUNIS level 5) habitat maps, providing a case study for the assessment of 

other inshore fisheries. The scale needed for management of fisheries – habitat 

interactions (broadscale and fine-scale habitat maps) was also explored. 

3.2. Methods 

3.2.1. Habitat distribution 

Reliable and up-to date habitat maps were not available for the whole NIFCA district. 

However, the new Coquet to St Mary’s Marine Conservation Zone (hereafter CQSM 

MCZ) (Fig 3.1), was surveyed in 2014 using high resolution multibeam echosounder 

(MBES) (1m resolution) coupled with multi-gear groundtruthing to map habitats 

considered for conservation (see Fitzsimmons et al. (2015). 
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Fig 3.1. Location of the Coquet to St Mary’s MCZ (red line) within the NIFCA district 
(black line). Ports are labelled (red dots).  

 

EUNIS level 3 (broadscale habitats) were produced as part of the evidence base for 

the CQSM MCZ (Fitzsimmons et al., 2015) (Fig 3.3). This level of classification had 

the advantage of reducing erroneous habitat classification and had a high MESH 

confidence score (84) (overall accuracy of 86% and a ‘moderate’ Kappa score of 

0.41 as defined by Landis and Koch (1977)) (Lightfoot, unpublished). EUNIS level 3-

6 maps were produced for areas classified as rocky substrate as part of on-going 

research at Newcastle University (overall accuracy of 51% and a Kappa score of 

0.26 ('fair')(Lightfoot, unpublished)(Fig 3.4). Higher EUNIS levels of classification of 

sediment habitats were not attempted due to the lower-level of groundtruthed 

biological information available for these habitats and the lack of an adequate 

physical environmental dataset (only backscatter, bathymetry, slope and derivatives 

of these were available) (Galparsoro et al., 2013). Very shallow inshore areas were 

not surveyed as the MCZ would only be designated for circalittoral features (Fig 3.3, 

Fig 3.4).  

The UK biotope classification system describes the marine environment at different 

spatial scales and is split into six levels (see chapter 1 for full description) ranging 

from very broad spatial scales (environment, Fig 3.2) to very small spatial scales 

(sub-biotopes, Fig 3.2). Individual levels can be combined (in hierarchical order) to 
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the level desired (Fig 3.2). For example, CR.MCR.EcCr.FaAlCr.Pom has 5 levels 

(marine biotope) and would be described as ‘Faunal and algal crusts with 

Pomatoceros triqueter and sparse Alcyonium digitatum on exposed to moderately 

wave-exposed circalittoral rock’. EUNIS classification used in the MCZ habitat maps 

was translated into the UK biotope classification system because these were used 

throughout this thesis and are directly comparable (Chapter 1). 
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Fig 3.2. Hierarchical classification of habitats and biological assemblages commonly found in the Berwickshire North 
Northumberland Coast European Marine Site. Classification codes are shown in bold followed by a brief description. 

EUNIS level 1 2 3 4 5 6

UK biotope 

classification
Environment Broad Habitats Main Habitats Biotope Complexes Biotopes Sub-Biotopes

SS (sublittoral 

sediment)

SCS (Sublittoral coarse sediment 

(unstable cobbles and pebbles, 

gravels and coarse sands)

CCS (Circalittoral coarse 

sediment)

SSA (Sublittoral sands and muddy 

sands)

IFiSa (Infralittoral fine 

sand)

Ft (Laminaria hyperborea  forest 

and foliose red seaweeds)

Lhyp (Laminaria hyperborea 

and foliose red seaweeds )

GzFt (Grazed Laminaria 

hyperborea  forest with coralline 

crusts )

Pk (Laminaria hyperborea park 

and foliose red seaweeds)

Marine IR (Infralittoral rock)
MIR (Moderate energy infralittoral 

rock)

KR (Kelp and red 

seaweeds)

GzPk (Grazed Laminaria 

hyperborea  park with coralline 

crusts)

Lhyp.T (Laminaria hyperborea 

on tide-swept, infralittoral rock)

Ft (Laminaria hyperborea  forest, 

foliose red seaweeds and a 

diverse fauna)

T.Pk (Laminaria hyperborea  park 

with hydroids, bryozoans and 

sponges)

Adig (Alcyonium digitatum, 

Pomatoceros triqueter , algal and 

bryozoan crusts)

FaAlCr (Faunal and algal 

crusts)

Pom (Faunal and algal crusts with 

Pomatoceros triqueter and sparse 

Alcyonium digitatum)

CR (circalittoral rock)
MCR (Moderate energy 

circalittoral rock)

EcCR (Echinoderms and 

crustose communities)

Bri (Brittlestars on faunal and algal 

encrusted)

Flu (Flustra foliacea  on slightly 

scoured silty circalittoral rock)

UrtScr (Urticina felina  and 

sand-tolerant fauna)

CarSp (Caryophyllia smithii , 

sponges and crustose 

communities)
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Fitzsimmons et al. (2015) identified three broadscale habitats types (EUNIS level 3) 

within the CQSM MCZ (Fig 3.3). ‘Moderate energy circalittoral rock’ (CR.MCR) which 

occurs on exposed to moderately wave-exposed circalittoral (below the photic zone) 

bedrock and boulders, subject to moderately strong and weak tidal streams. This 

habitat type contains a broad range of biological subtypes, from echinoderms and 

crustose communities to Sabellaria reefs and mussel beds (European Environment 

Agency, 2005). ‘Sublittoral sand’ (SS.SSa) consists of clean medium to fine sands on 

open coasts, offshore or in marine inlets. These habitats are subject to some wave 

action and tidal currents which may restrict the silt and clay content to less than 15%. 

This habitat is characterised by a range of taxa including polychaetes, bivalve 

molluscs and amphipod crustaceans (European Environment Agency, 2005). 

‘Sublittoral mud’ (SS.SMu) consists of mud and cohesive sandy mud and can be 

found from the extreme lower shore to offshore, circalittoral habitats. This habitat is 

predominantly found in stable deeper/offshore areas where the reduced influence of 

wave action and/or tidal streams allows fine sediments to settle. Such habitats are 

often dominated by polychaetes and echinoderms, in particular brittlestars such as 

Amphiura spp (European Environment Agency, 2005). Area (km2) and proportion 

were calculated for each EUNIS level 3 habitat present in the CQSM MCZ in ArcGIS 

(Table 3.1). 

Table 3.1. Area and proportion of EUNIS level 3 habitats in the CQSM MCZ. 

 
Area (km2) Proportion 

CR.MCR 64.13 0.39 

SS.SSa 51.76 0.32 

SS.SMu 47 0.29 
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Fig 3.3. Broadscale habitat map (EUNIS Level 3) of the CQSM MCZ (modified from 
Fitzsimmons et al., 2015).  

 

Three broadscale habitats, 1 biotope and 3 sub-biotope classifications (EUNIS level 

3 - 6) were identified within the higher classification mapping of the CQSM MCZ (Fig 

3.4). Broadscale habitats were CR.MCR, SS.SSa and SS.SMu (described in previous 

section). More in-depth biological classifications (EUNIS level 5 - 6) included ‘Faunal 

and algal crusts on expose to moderately wave-exposed circalittoral rock’, 

(CR.MCR.EcCr.FaAlCr, abbreviated as FaAlCr), ‘Flustra foliacea on slightly scoured 

silty circalittoral rock’ (CR.MCR.EcCr.FaAlCr.Flu abbreviated as FaAlCr.Flu), 

‘Alcyonium digitatum, Pomatoceros triqueter, algal and bryozoan crusts on wave-

exposed circalittoral rock’ (CR.MCR.EcCr.FaAlCr.ADig, abbreviated as FaAlCr.ADig) 

and ‘Faunal and algal crusts with Pomatoceros triqueter and sparse Alcyonium 

digitatum on exposed to moderately wave-exposed circalittoral rock’ 

(CR.MCR.EcCr.FaAlCr.Pom, abbreviated as FaAlCr.Pom). Full descriptions of 

species assemblages are available from Connor et al. (2004). All rocky reef biotopes 

identified were sub-categories of CR.MCR and therefore share the same broad 

physical environmental characteristics (Fig 3.2). As would be expected, small scale 

heterogeneous distribution of biotopes and sub-biotopes (EUNIS level 5 - 6) occurred 

(Fig 3.4) (Connor et al., 2004). Area (km2) and proportion of habitats are shown in 

Table 3.2. 
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Table 3.2. Area and proportion of EUNIS level 3 - 6 habitats in the CQSM MCZ. 

 
Area (km2) Proportion 

CR.MCR 9.25 0.06 

SS.SSa 51.76 0.32 

SS.SMu 47.00 0.29 

CR.MCR.EcCr.FaAlCr 25.61 0.16 

CR.MCR.EcCr.FaAlCr.ADig 17.55 0.11 

CR.MCR.EcCr.FaAlCr.Bri 0.60 0.01 

CR.MCR.EcCr.FaAlCr.Pom 4.12 0.03 

CR.MCR.EcCr.FaAlCr.Flu 4.95 0.03 

 

Fig 3.4. EUNIS level 3 - 5 habitat map of the CQSM MCZ (from Lightfoot, 
unpublished) 
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3.2.2. Observed potting activity 

Potting vessel sightings (chapter 2) were extracted for the CQSM MCZ area and 

mapped as point data using ArcView GIS version 10.2 (ESRI, 2014) (Fig 3.5). Two 

year groupings were used for the fishing vessel distribution analysis as data from a 

single year were too sparse to accurately map. Temporal fishing effort distribution 

maps (chapter 2) were combined with habitat data (section 3.2.1) in ArcView GIS (v 

10.2) and changes over time examined. 

 

 Fig 3.5. Potting vessel sightings (2004 – 2005, black dots; 2006 -2007, grey dots; 
2008 – 2009, red dots; 2010 – 2011, green dots; 2012 – 2013, blue dots) in the 
CQSM MCZ (black line). 

Year 
Shellfish vessel 
Sightings 

2004 - 2005 531 

2006 -2007 343 

2008 - 2009 318 

2010 – 2011 378 

2012 - 2013 422 
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3.2.3. Analysis of fishers spatial distribution 

The presence of spatial clustering of fishing vessel sightings for each year group 

(2004 – 2005; 2006 – 2007; 2008 – 2009; 2010 – 2011; 2012 – 2013) within the 

CQSM MCZ was investigated using Ripley’s K function (Ripley, 1977; Ripley, 1979) 

including an isotropic edge correction function (Ohser, 1983; Ripley, 1991) in the 

Spatstat package (Baddeley and Turner, 2005) in R (v 0.98.1103) (R Core Team, 

2013). The K function 𝐾̂(h) describes characteristics of the point processes at many 

distance scales (h) (Dixon, 2002). The numbers of fishing vessel sightings were 

tested for complete spatial randomness (i.e. testing whether fishing vessel sightings 

were distributed in a homogenous Poisson process) using the associated 𝐿̂(h) metric. 

This is easier to use in practice, as variance is approximately constant where spatial 

randomness is complete (Dixon, 2002). 𝐿̂(h) was plotted against h with values of zero 

suggesting spatial randomness and peaks in positive values suggesting clustering 

(Budge et al., 2014). Formal assessment of significance of observed peaks was 

investigated through the calculation of upper and lower envelopes of 𝐿̂(h) under 

complete spatial randomness by 500 independent Monte Carlo simulations. 𝐿̂(h) of 

fishers sightings greater than these simulation envelopes indicated significant 

clustering (Bailey and Gatrell, 1995; Budge et al., 2014). Maximum distance h was 

selected by (𝐴 / 2)1/2 where A is the area (km2) of the study region in order to avoid 

over inflated edge effects (Dixon, 2002) – in this case maximum h was 6 km. All R 

code used is available in appendix 2. 

3.2.4. Analysis of fishers’ space-time distribution 

Fishing is a dynamic process where spatial distributions change over time due to 

factors such as catch levels, fuel costs, management measures and territorial 

behaviour (Abernethy et al., 2007). It is important to investigate whether observed 

spatial clustering patterns change over time in order to provide information, and allow 

monitoring of, productive fishing grounds or preferred habitats (Bailey and Gatrell, 

1995). K function space – time cluster analysis was undertaken to investigate if 

space-time interactions were present in fishing vessel sightings in the CQSM CMZ 

between 2004 – 2013, using the Splancs R package (Rowlingson and Diggle, 2013). 

The bivariate space-time K function 𝐾̂(h,t) is defined as the expected number of 

fishing vessel sightings within distance h and time interval t, scaled by the number of 

fishing vessels sightings expected if complete spatial randomness is assumed, per 
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unit area and time (Bailey and Gatrell, 1995). If space and time do not interact then 

𝐾̂(h,t) is just the product of the two K functions: 𝐾̂(h) and 𝐾̂(t) (Bailey and Gatrell, 

1995). Thus a test for space-time interaction is based on the observed differences of: 

𝐷̂(ℎ, 𝑡) =  𝐾̂(ℎ, 𝑡) − 𝐾̂(ℎ) ∗ 𝐾̂(𝑡) 

 𝐷̂(ℎ, 𝑡) values were plotted against distance and time in a three dimensional plot with 

values above zero indicating space – time clustering (Bailey and Gatrell, 1995). To 

test for significance, 500 simulations were performed, where n fishing vessel 

sightings were randomly labelled with the observed n time markers. Where the actual 

𝐷̂(ℎ, 𝑡) distribution was larger than 95% of the simulated values, it was taken as 

evidence of space-time interactions (Bailey and Gatrell, 1995).  

To visualize these analyses, SaTScan software v 8.0 (Kulldorff et al., 2009) was used 

to plot contours of space-time clusters in ArcGIS. Clusters of potting vessel sightings 

were detected using a Monte-Carlo space-time permutation scan statistic (Kulldorff et 

al., 2005). This detects spatial and temporal groupings of events by centering a time-

space cylinder on each event in the dataset (i.e. GPS location of potting vessel 

sighting) (Kulldorff, 2015). The diameter of the cylinder defines the geographical area 

of the cluster whilst its height defines time (in this case the number of years). This 

results in many overlapping cylinders which are assessed for significance by 

comparing the observed number of potting vessel sightings within the cylinder to the 

simulated expected number of observations (999 Monte Carlo permutations) 

(Kulldorff et al., 2005; Webb et al., 2008). Specifically, clusters which persisted 

through all years were examined further. 

3.2.5. Analysis of fishers’ habitat use 

Compositional analysis (Aebischer et al., 1993) of fishers’ habitat use was 

undertaken by investigating the relationship between observed and expected potting 

use of each categorical habitat type in the CQSM MCZ (under the null assumption 

that habitat is used proportionally to availability) using 500 randomisation tests for 

annual groupings of potting vessel sightings using the adehabitatHS package 

(Calenge, 2006) in R. The significance of habitat selection was tested using a Wilks 

lambda and a ranking matrix was constructed. The ranking matrix indicated whether 

the habitat type was used significantly more or less than expected for each yearly 

fishing vessel sightings value, and ranking of habitat selection by fishing vessels and 
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year in order of preference was displayed (Calenge, 2006). The extent of the CQSM 

MCZ polygon outline was selected as fishing vessel home range (available habitat, 

second order habitat selection (Johnson, 1980)).  

In order to further explore differences in habitat use between years an eigenanalysis 

of selection ratios was undertaken (Calenge and Dufour, 2006). This method 

undertakes an additive linear partitioning of the White and Garrott statistic (White and 

Garrott, 1990), so that the difference between habitat use and availability is 

maximized on the first factorial axes (Calenge and Dufour, 2006). 

3.3. Results 

3.3.1. Fishers’ distribution in space 

There was significant aggregation of potting vessel sightings in the CQSM MCZ for 

all years (Fig 3.6). Measures of spatial aggregation (L) were all larger than the 95% 

confidence envelopes of the simulated spatially random points from 0 – 5500m. 

Clustering patterns for all bi-annual potting vessel sightings were similar. L for 2004 – 

2005, 2010 – 2011 and 2012 – 2013 reached a peak at 2500 m compared to 2006 -

2007 and 2008 – 2009 which reached maximum clustering at closer distances (1500 

and 2250m respectively) (Fig 3.6).  

 

Fig 3.6. Estimated number of fishers’ sightings within distance (m) for years 2004 – 
2005 (grey), 2006 -2007 (red), 2008 – 2009 (blue), 2010 – 2011 (yellow) and 2012 – 
2013(green). Broken lines indicate the simulation envelopes above which significant 
clustering occurs.  
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3.3.2. Fishers’ distribution in space-time 

Given spatial clustering of fishing vessel sightings up to a distance of 5500m, spatial 

clustering over time was also investigated (Fig 3.7, A). The space-time K-function 

showed evidence of significant clustering of fishing vessel sightings at distances of 0 

– 6000m over 6 year periods (time 1 - 3 in Fig 3.7, A) – with the peak at 5700 m over 

a 4 year period (Fig 3.7, A). Smaller yet still significant clustering at distances of 2000 

– 3200 m over the 10 year period was also detected (Fig 3.7, A). The Monte Carlo 

significance test statistic (15 x 107) was significantly larger than the randomly 

generated permutations (Fig 3.7, B). 

 

 

Fig 3.7. Space–time clustering of fishers’ vessel sightings using K-function tests. 
Three-dimensional plot of the D(s,t) function (A). High values on the z axis indicate 
there is greater aggregation of fishing within the given spatial and temporal 
separation than would be expected if there were no clustering. Monte Carlo 
significance test of a space–time interaction (B). The bold line indicates the data 
statistic, which is larger than that of the 95% of the Monte Carlo samples, indicating 
significant space–time clustering.  

 

SaTScan space-time permutation scan statistic showed evidence of potting vessel sightings aggregation 

with 19 significant clusters identified (all clusters highly significant, Table 3.3). These clusters varied in 

location, time, cluster size and duration (Table 3.3). The location, size and duration of fishing vessel 

sightings clusters in the CQSM MCZ which persisted through the majority of years were displayed in Fig 

3.8. Seven clusters, located close to ports, showed evidence of consistent use by fishers over the course 

of a decade (Fig 3.8) and when compared visually with vessel sightings data match very closely (Fig 3.5). 

Other clusters were omitted from the map as these were either overlapping and/or occurred over fewer 

years. 
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Fig 3.8. Significant SaTScan space-time clusters (open circles of approximate radius, 
p-value < 0.05) in the CQSM MCZ. Numbers refer to cluster rank, with 1 being the 
most likely. Clusters that persisted through time are presented: 2006 – 2013 (red 
circles) and 2004 – 2013 (blue circles). A list of all other space – time clustering is 
presented in Table 3.3. Inset graphs show the ratio of observed versus expected 
potting vessel sightings over time in numbered clusters. Black lines represent ratio 
within the cluster and dashed lines represent ratio outside the cluster. 
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Table 3.3. Significant space–time clusters of potting vessels from the CQSM MCZ 
from 2004 - 2013 identified by SaTScan. Clusters are ordered by significance.  

Cluster 

number 

Radius 

(km) 

Start 

year 

End 

year 
p-value 

Observed 

potting vessels 

Expected 

potting vessels 

Latitude of 

centroids  

Longitude of 

centroids 

1 3.35 2004 2013 < 0.001 478 149.39 55.05541 -1.44754 

2 3.53 2004 2013 < 0.001 597 306.13 55.073161 -1.400307 

3 1.41 2004 2013 < 0.001 171 41.30 55.194841 -1.477033 

4 3.99 2004 2013 < 0.001 516 263.85 55.091357 -1.447045 

5 1.00 2006 2013 < 0.001 95 12.84 55.334386 -1.53826 

6 2.82 2006 2013 < 0.001 332 147.11 55.320906 -1.538417 

7 3.53 2004 2013 < 0.001 341 157.89 55.212848 -1.484656 

8 1.41 2006 2013 < 0.001 104 26.24 55.127374 -1.462231 

9 2.54 2004 2013 < 0.001 222 101.74 55.181293 -1.461506 

10 2.82 2004 2007 < 0.001 130 53.01 55.181492 -1.508619 

11 1.50 2006 2013 < 0.001 114 44.10 55.127475 -1.485756 

12 2.06 2008 2011 < 0.001 127 58.90 55.347866 -1.538103 

13 1.00 2004 2007 < 0.001 26 3.99 55.289131 -1.460047 

14 0.71 2004 2013 < 0.001 37 8.50 55.244366 -1.499979 

15 1.58 2004 2007 < 0.001 38 9.57 55.280144 -1.460168 

16 3.99 2010 2013 0.006 117 61.20 55.046043 -1.369407 

17 3.15 2008 2011 0.006 117 65.88 55.339022 -1.577625 

18 2.55 2010 2013 0.007 80 42.14 55.140819 -1.454206 

19 1.80 2004 2013 0.011 188 128.09 55.298349 -1.515052 
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3.3.3. Fishers’ habitat use over time of EUNIS level 3 habitats 

EUNIS level 3 habitat within temporally persistent SaTScan space-time clusters 

showed fishers targeted circalittoral rock (51km2 within significant clusters) over both 

subtidal sand and subtidal mud which had similarly lower values (7.59 and 7.91km2 

respectively) (Fig 3.9). Formal testing of habitat use by potting vessels within the 

CQSM MCZ using compositional analysis confirmed potting vessel selection of rock 

over other substrata (Table 3.4). 

 

Fig 3.9. Significant temporally persistent SaTScan space-time clusters (2006 – 2013, 
red circles; 2004 – 2013, blue circles) overlaid on EUNIS level 3 habitat 
classifications of the CQSM MCZ. Inset table shows area (km2) for habitat 
classifications in each space –time cluster. 

Cluster 

number

Circalittoral 

rock (km2)

Subtidal 

sand (km2)

Subtidal 

mud (km2)

2 27.2 0.75 3

3 2.5 0.47 0.16

6 7.36 0.46 2.3

9 4.1 2.9 0.26

11 2.2 1.3 0.7

14 0.7 0.29 0.1

19 6.95 1.42 1.39

Total 51.01 7.59 7.91
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Table 3.4. Proportion (%) of available and observed use of Eunis level 3 habitats for 
potting vessel sightings in the CQSM MCZ over 10 years. 

Year 

CR.MCR SS.SSi SS.SMu 

Available (%) Used (%) Available (%) Used (%) Available (%) Used (%) 

2004 39 71.2 32 16.2 29 12.5 

2005 39 64.3 32 11.8 29 23.7 

2006 39 57.0 32 16.3 29 26.6 

2007 39 68.2 32 14.5 29 17.2 

2008 39 75.2 32 15.6 29 9.4 

2009 39 70.1 32 15.8 29 14.0 

2010 39 75.8 32 15.3 29 8.7 

2011 39 69.6 32 15.1 29 15.1 

2012 39 68.0 32 21.8 29 10.1 

2013 39 74.0 32 14.4 29 11.5 

 

For all years, potting vessel sightings differed among substrate types (Lambda = 

0.0152; p = 0.004), with vessels showing a significant preference for moderate 

energy circalittoral rock habitat and avoidance of both sublittoral sand and sublittoral 

mud habitats (p-value < 0.05). Fishing vessels tended to target sublittoral sand over 

sublittoral mud habitats, although these differences were not significant. The factorial 

analysis showed all year groups following a similar pattern with strong selection for 

rock over other substrata (Fig 3.10). 
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Fig 3.10. Habitat type loadings on the first two factorial axes and results of the 
eigenanalysis of selection ratios for habitat selection of potting vessels for ten years 
(2004 – 2013, labelled 1 - 10) on Eunis level 3 habitat variables. 

 

3.3.4. Fishers’ habitat use over time of EUNIS level 3-6 habitats 

At a finer scale habitat level (EUNIS level 3 – 6), potting vessel sightings also differed 

among substrate types in all years (Lambda = 0.0157; p-value = 0.002). Fishers 

showed a significant preference for all rocky habitats over both sublittoral sand and 

mud habitats (Table 3.5, Fig 3.11). Fisher’s preference of specific rocky habitats 

varied although all EUNIS level 5-6 rocky habitats were targeted over the broader 

classified CR.MCR habitat (Table 3.5). In addition, FaAlCr.Flu habitat was clearly 

selected over other rocky habitats (Table 3.5). FaAlCr was also preferred over other 

habitats (with the exception of FaAlCr.Flu and a non-significant preference over 

FaAlCr.ADig and FaAlCr.Pom) (Table 3.5). 
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Table 3.5. Fishers’ EUNIS level 5 habitat preference matrix. The order of listed 
habitats in the first column are ranked from most preferred at the top to least 
preferred at the bottom. + indicates preference, - indicates avoidance, grey cells are 
significant selectivity (p < 0.05).  

 FaAlCr.Flu FaAlCr FaAlCr.ADig FaAlCr.Pom CR.MCR SS.SSa SS.SMu 

FaAlCr.Flu 0 + + + + + + 

FaAlCr - 0 + + + + + 

FaAlCr.ADig - - 0 + + + + 

FaAlCr.Pom - - - 0 + + + 

CR.MCR - - - - 0 + + 

SS.SSa - - - - - 0 + 

SS.SMu - - - - - - 0 

Eigenanalysis of selection ratios for habitat selection of potting vessels showed that 

in 2004 fishers targeted FaAlCr.ADig over other habitats (Fig 3.11). Fishers in all 

other years (2005 – 2013) targeted FaAlCr, FaAlCr.Pom and FaAlCr.Flu over other 

habitats (Fig 3.11). Overall, habitat preference between years were similar with tight 

grouping in the eigenanalysis of selection ratios, with the exception of 2004 habitat 

selections (Fig 3.11), and small variations between years in the proportion of 

observed habitat use (Table 3.6). 

 

 

Fig 3.11. Habitat type loadings on the first two factorial axes and results of the 
eigenanalysis of selection ratios for habitat selection of potting vessels for ten years 
(2004 – 2013, labelled 1 - 10) on Eunis level 5 habitat variables 
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Table 3.6. Proportion (%) of available and observed use of EUNIS level 5 habitats for potting vessel sightings in the CQSM MCZ 
over 10 years. 

 

 

Year 

CR.MCR SS.SSa SS.SMu FaAlCr FaAlCr.ADig FaAlCr.Pom FaAlCr.Flu 

Available 

(%) 

Used 

(%) 

Available 

(%) 

Used 

(%) 

Available 

(%) 

Used 

(%) 

Available 

(%) 

Used 

(%) 

Available 

(%) 

Used 

(%) 

Available 

(%) 

Used 

(%) 

Available 

(%) 

Used 

(%) 

2004 6 5.6 32 11.5 29 8.9 16 21.3 11 43.6 3 4.9 3 3.9 

2005 6 10.1 32 12.3 29 24.6 16 30.4 11 11.6 3 4.3 3 5.8 

2006 6 6.1 32 16.6 29 27.1 16 24.3 11 15.5 3 4.4 3 5.5 

2007 6 7.4 32 14.9 29 17.6 16 37.8 11 11.5 3 2.7 3 8.1 

2008 6 4.3 32 15.7 29 9.6 16 34.8 11 20.9 3 4.3 3 9.6 

2009 6 13.4 32 15.9 29 14 16 25.6 11 19.5 3 5.5 3 6.1 

2010 6 3.4 32 15.7 29 9 16 38.2 11 19.7 3 5.1 3 8.4 

2011 6 6.4 32 15.4 29 15.4 16 34 11 16 3 4.5 3 7.7 

2012 6 7.1 32 22 29 10.1 16 29.8 11 20.8 3 4.8 3 5.4 

2013 6 7.9 32 14.9 29 11.9 16 32.7 11 15.8 3 7.4 3 8.9 
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3.3.5. Changes in habitat potting pressure 

Potting pressure (pots fished km-2 year-1) in the NIFCA district increased over the 

period 2004 – 2013 (chapter 2), especially in areas close to shore such as the CQSM 

MCZ (Fig 3.12). Unfished areas decreased in extent over this time. 

 

Fig 3.12. Distribution of fishing effort (number of pots km-2 year-1) in the CQSM MCZ 
for years: 2004 – 2005; 2006 – 2007; 2008 – 2009; 2010 – 2011; 2012 – 2013.  
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Across all years the lowest fishing pressures were on sand and mud habitats 

(SS.SSa and SS.SMu, respectively) followed by CR.MCR (Table 3.7 and Table 3.8). 

FaAlCr.Pom and FaAlCr.Flu habitats had the highest fishing pressure across all 

years (Table 3.8). Potting pressure more than doubled on each habitat between 2004 

and 2013 (EUNIS levels 3- 5, Table 3.7 and Table 3.8) but the proportion of total pots 

deployed on each habitat remained constant, with only slight increases or decreases 

between years (Table 3.7 and Table 3.8). Between 2004 - 2013 fishers consistently 

targeted the same habitats each year and with increasing potting effort. 
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Table 3.7. Mean potting pressure (number of pots km -2 year -1) per habitat (EUNIS level 3) and proportion of pots deployed in the 
CQSM MCZ. 

 

Table 3.8. Mean potting pressure (number of pots km -2 year -1) per habitat (EUNIS level 3 - 5) and proportion of pots deployed in 
the CQSM MCZ. 

 
2004 – 2005 2006 – 2007 2008 – 2009 2010 – 2011 2012 – 2013 

 
Potting 

pressure 

Proportion of 

pots  

Potting 

pressure 

Proportion of 

pots  

Potting 

pressure 

Proportion of 

pots  

Potting 

pressure 

Proportion of 

pots  

Potting 

pressure 

Proportion of 

pots  

CR.MCR 406.1 0.14 342.4 0.14 549.1 0.15 747.5 0.14 1034.6 0.14 

SS.SSa 377.4 0.13 286.8 0.12 414.2 0.12 642.4 0.12 898.5 0.12 

SS.SMu 319.5 0.11 275.7 0.11 327.9 0.09 521.8 0.10 649.8 0.09 

FaAlCr 468.3 0.16 372.2 0.15 573.0 0.16 828.9 0.16 1160.8 0.16 

FaAlCr.ADig 416.9 0.14 347.8 0.14 552.3 0.15 753.1 0.14 1043.6 0.14 

FaAlCr.Pom 504.0 0.17 390.8 0.16 582.8 0.16 868.7 0.17 1226.1 0.17 

FaAlCr.Flu 491.3 0.16 388.1 0.16 594.0 0.17 867.7 0.17 1228.5 0.17 

 2004 – 2005 2006 – 2007 2008 – 2009 2010 – 2011 2012 – 2013 

 
Potting 

pressure 

Proportion of 

pots 

Potting 

pressure 

Proportion of 

pots 

Potting 

pressure 

Proportion of 

pots 

Potting 

pressure 

Proportion of 

pots 

Potting 

pressure 

Proportion of 

pots 

CR.MCR 448.0 0.45 363.2 0.46 565.9 0.50 800.3 0.47 1117.4 0.48 

SS.SSa 377.4 0.31 286.8 0.29 414.2 0.29 642.4 0.30 898.5 0.31 

SS.SMu 319.5 0.24 275.7 0.25 327.9 0.21 521.8 0.22 649.8 0.21 
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3.4. Discussion 

Fishers’ space-time distribution analysis showed clustering occurred in 

Northumberland between 2004 and 2013 and targeted rocky over sediment habitats. 

In this section the implications of observed spatial clustering and habitat selection 

over a decade are discussed in relation to management, and recommendations 

made on the scale of mapped habitat hierarchical classification for future use.  

3.4.1. Fishers’ space and space – time clustering  

Fishers clustered in space and time at various distances across all years. They were 

not randomly distributed in the CQSM MCZ but actively targeting specific areas of the 

seabed. Since fishers target unseen prey, decisions of fishing location are based on 

knowledge from previous catches, observation of competitor distributions, 

environmental hazards, technological limitations and perceptions of other constraints 

(FAO, 2005; Abernethy et al., 2007). Catches per trap of target shellfish species vary 

depending on habitat type (Miller, 1989; Geraldi et al., 2009; Skerritt, 2014) and as 

such, it is expected that fishers will target seabed habitats that provide the most 

profitable catches. The Ideal Free Distribution theory (IFD) predicts that the 

distribution of foraging organisms (in this case fishers) between sites will match the 

distribution of resources (Fretwell and Lucas, 1969; Kennedy and Gray, 1993; Gillis, 

2003; Rijnsdorp et al., 2011). It assumes that organisms are free to enter and use the 

area, ideally distribute themselves to maximise foraging efficiency and will have a 

perfect knowledge of the resource profitabilities (Kennedy and Gray, 1993). Although 

this ecological theory is intuitive, by application to fishers, experimental results have 

shown key assumptions of the ideal free distribution theory for site selection were 

rarely met (Abernethy et al., 2007). This was attributed to imperfect fisher knowledge 

resulting in selection of areas without the greatest rewards (Abernethy et al., 2007) 

and/or not all fishers seeking to maximise profit by increasing fishing pressure with 

increasing resources (Swain and Wade, 2003; Abernethy et al., 2007). In addition, 

fishers were not free to distribute themselves among habitats as groups of fishers are 

territorial, and there are other physical constraints (i.e. boat size, distance from port, 

etc.) (Abernethy et al., 2007). In Northumberland, fishers have local ecological 

knowledge that is underpinned by historic information as well as widespread use of 

acoustic and positioning technology which may allow targeting at a broad habitat 

level (i.e. rock, sand and mud). It is not known whether fishers have knowledge of 
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community composition (EUNIS level 4 -6) although this seems unlikely. Thus 

fishermen do not have a perfect knowledge of the resource profitabilities. In addition, 

territoriality which has been widely documented in shellfisheries both internationally 

(Acheson, 1988) and locally (Turner et al., 2012) means fishers’ distribution is neither 

‘ideal’ nor ‘free’ within the NIFCA district (Turner et al., 2012).  

Temporal clustering between 2000 – 3200m occurred across the 10 year-period (Fig 

3.7) with yearly peaks in clustering also occurring at this range (Fig 3.6). Landing 

ports in the study area (an indication of territory size (Turner, 2010)) were a mean of 

6250m apart – a larger distance than the observed clustering – and may therefore 

only in part explain distances between clusters. It is proposed here that fisher 

distribution in Northumberland is likely to be governed by a combination of fisher 

behaviour targeting areas with high catches and within their given territories. The 

exact influence of each of these factors in the final distribution of temporally 

persistent clustering is difficult to elucidate with ecological data alone. Social drivers 

would need to be investigated to fully understand fisher behaviour and distribution. In 

addition, the question also remains whether fishers are targeting specific habitats or 

are simply persistently targeting areas that have high catches, regardless of the 

underlying seabed habitat. This will be further discussed in the following section. 

3.4.2. Fishers’ habitat use  

At a broad scale, fishers in the CQSM MCZ showed a preference for rocky habitats 

over sediment habitats (Table 3.4) and at a finer scale showed preference for Flustra 

foliacea on slightly scoured silty circalittoral rock (FaAlCr.Flu) and Faunal and algal 

crusts on exposed to moderately wave-exposed circalittoral rock (FaAlCr) habitats 

over other rocky habitats (Table 3.5). This assumes that the distribution and extent of 

habitats predicted from data collected in 2014 are representative of the seabed 

throughout 2004 - 2013, but in this moderate energy environment at circalittoral 

depths, major changes in the distribution of substrata and broad community types are 

unlikely. Whether fishing grounds are chosen depending on fishers’ knowledge of 

habitat, ‘following’ catch of target species or a combination of both is unknown. In 

addition, there is little information on how fishers perceive subtidal habitats; whether 

they have estimates on the hardness (i.e. hard and soft ground), based on sonar or 

gear deployment, or whether they have knowledge about the biology in these 
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habitats, through historical knowledge and observation of epibenthic species caught 

in the mesh of the pots. 

It is likely that fishers know seafloor hardness from historical experience and/or 

sonar. Therefore, fishermen may be targeting habitat type at a broadscale level. At a 

fine scale, it is unlikely that fishers are targeting specific biological communities but 

rather targeting areas which have the highest catch. Potting in Northumberland is a 

mixed fishery and it is not clear which species were targeted. The inshore location of 

the MCZ and fishers’ active preference for rocky substrate suggests they were 

targeting high value European lobster (Galparsoro et al., 2009; Turner et al., 2012), 

although brown and velvet crab species may still be caught in relatively large 

numbers as by-catch. Separating effort for each species requires further data with 

either more detailed landings forms, fishing vessel on-board observations of catch or 

social surveys of fishers.  

Habitat preference at both classification levels varied very little between 2004 - 2013 

(Fig 3.10 and Fig 3.11), albeit with increasing fishing pressure over time (Table 3.7, 

Table 3.8). Although fishing pressures were similar between rocky habitats, 

differences in biological communities provided by higher classification levels may 

help prediction or testing of, and subsequently management of various anthropogenic 

impacts. Potting impacts on various habitats and at different classification levels are 

explored in chapters 4, 5 and 6. However, for currently designated MCZs or EMSs 

evidence is needed for ‘features of interest’ at broad scales (EUNIS level 3). 

Fishing pressure increased across the MCZ (Fig 3.12). Repeat potting in areas over 

the course of the decade may have negatively affected epibenthos, either through 

direct or indirect impacts (Eno et al., 2001; Coleman et al., 2013). As potting has 

persisted in locations over time, indirect habitat effects (i.e. changes to habitat 

through species removal, trophic cascades, or unstable food webs) may also occur 

(Babcock et al., 1999; Siddon and Witman, 2004; Babcock et al., 2010) (see chapter 

4 and 5). Potting effort levels that impact the benthos require further information on 

interactions of the pot with benthos (see chapter 6). Further evidence is required, 

namely, larger sample size of spatial habitat data over time (chapter 4 and 5). These 

issues are of particular importance in the UK with the recent protection of rocky reef 

habitats as features of conservation interest in EMSs; this has particular implications 

for management, which is explored in later chapters. 
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Although this work focusses on Northumberland, generalisations can be made. The 

shallow inshore habitats observed are representative of many other inshore areas in 

the UK and Europe in terms of habitat composition and diversity. This is especially 

true for the East coast of Scotland and England (Brazier et al., 1998). However, due 

to the inshore nature of the study area, deeper habitats further offshore are not 

represented - a large portion of the habitat types available for shellfish potting. 

Fishers targeting offshore areas may have fishing strategies which vary depending 

on the target species and fishing equipment and may result in very different 

clustering and habitat use. Anecdotal evidence suggests that fishers may show 

preference for targeting sediment habitat further offshore in order to target high crab 

landings (NIFCA pers. comm.). Investigation into fishers’ habitat use for areas further 

offshore are recommended.  

3.4.3. Management considerations  

The high resolution habitat maps (1m) allowed distribution of fishers to be examined 

on a fine scale. Furthermore, the resolution allowed classification up to EUNIS level 6 

for which a minimum scale of 5 x 5m is recommended (i.e. low resolution maps may 

have more than one biotope across each pixel, thus increasing uncertainty in 

mapped outputs). Results of temporal fisher-habitat interactions presented here had 

finer spatial and biological resolution than previous studies (Nilsson and Ziegler, 

2007; Stelzenmüller et al., 2008; Lambert et al., 2011), as well as providing a 

quantified estimate of fishers’ historical use of an MCZ - evidence which is often 

lacking during the stakeholder engagement process when consulting on designations 

(Caveen et al., 2014). There were, however, some limitations with the data and 

resulting maps. Namely, four habitats which were infrequently observed in the ground 

truthed data (sublittoral coarse sediment and sublittoral mixed sediments at EUNIS 

level 3 and Sabellaria spinulosa encrusted circalittoral rock and Brittlestars on faunal 

and algal encrusted exposed to moderately wave-exposed circalittoral rock at EUNIS 

level 6) were excluded from OBIA models used to create the habitat maps as the low 

sample number resulted in a low confidence for distribution of these habitats 

(Lightfoot, unpublished). In addition, shallow waters (< 7m depth) were not surveyed 

in the MCZ CQSM as these were too shallow for the research vessel to safely 

sample in (Fitzsimmons et al., 2015). Therefore, kelp dominated habitats were not 

included in maps – areas which are heavily targeted by fishers in the summer months 

(chapter 6) and where important habitat selection is likely to have taken place.  



91 
 

Different levels of EUNIS classification resulted in different (although consistent) 

results for fisher-habitat interactions. This has implications for the use of these data 

in spatial marine management. Carrying out analyses using broad habitat 

classification at EUNIS level 3 had the advantage of having higher accuracy than the 

EUNIS level 3 - 6 map, although the latter provided greater biological resolution 

which is particularly useful for the location and potential conservation of species of 

interest (Caveen et al., 2014). This level of biological detail is often recommended in 

the literature in order to inform EBFM (Cogan et al., 2009). However, currently 

management measures are focused on a broader scale (EUNIS level 3) 

(Fitzsimmons et al., 2015). The relatively low accuracy of the of the EUNIS level 3-6 

map is largely due to the topographic, hydrographic and biological homogeneity of 

the study site. The biological communities present are similar in composition and 

ecological requirements, and grade into one another rather than having abrupt 

boundaries. These methods of analysing fisheries-habitat interactions hold great 

potential for wider application, particularly in areas of greater spatial heterogeneity 

where the prediction of biological communities from acoustic data can be achieved 

with higher accuracy (Hill et al., 2014; Sotheran et al., 2014).  

Successful implementation of MPAs have been questioned due to the incomplete 

knowledge of benthic assemblages, of fishing gear-habitat interactions and of fisher 

displacement from fishing restrictions (Caveen et al., 2014). The present research 

has helped fill some of these knowledge gaps for the newly designated CQSM MCZ. 

Several authors have questioned the validity of using broadscale habitat maps 

(EUNIS level 3) for management since these contain insufficient detail to support 

robust planning; specific taxa only being introduced from level 4 (Cogan et al., 2009; 

Caveen et al., 2014). Level 3 - 6 habitat maps showed that fishers (potentially 

inadvertently) were selective in their use of biological communities. Potting impacts 

may be different between these different biological communities (Eno et al., 2013). It 

is recommended that maps predicting the distribution of biological communities 

coupled with usage information are used for EBFM in order to allow adaptive 

management (Eno et al., 2013). These spatial assessments will be particularly useful 

for prioritising protection of the most vulnerable or biologically important habitats (Eno 

et al., 2013). However, the impact of closures on fishers’ distribution and fishing effort 

is not well understood. 
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Results from this research suggest that fishers distribute themselves within their 

territories according to habitat type. This has implications for fisher redistribution due 

to fisheries closures – an aspect of marine spatial planning that has not been 

investigated for inshore fisheries in the UK to date. The effects of fishery closures will 

be gear specific (Campbell et al., 2014) and displacement of pot fishers by areal 

closures may have greater impact than that of mobile gear users because potting is 

highly localised (Campbell et al., 2014; Guenther et al., 2015; Turner et al., 2015). 

When fishery closures are enforced, spillover is frequently assumed to occur 

(McClanahan and Mangi, 2000). This assumes that the increase in target species 

abundance within the MPA will cause migration of individuals outside the closed area 

(Hoskin et al., 2011) and that the displaced adjacent fisheries will focus fishing effort 

along the edges of the MPA as catches will be highest there (Guenther et al., 2015). 

However, these models do not incorporate habitat specific fishing effort, habitat type 

or heterogeneity, or limits imposed by fishing methods/gear. For example, fishers 

showed preferences for rocky habitats over softer sediment habitats (Fig 3.10 and 

Fig 3.11). Thus habitat may not be suitable for the target species of the displaced 

fishers if these differ between the open and closed fisheries areas. In addition, fixed-

gear fisheries where pots are set, soaked, pulled and reset in the same location 

results in areas that are “marked” or occupied, and stop other fisherman fishing in the 

same location. This has resulted in high levels of territoriality amongst pot fishers 

(Acheson, 1975; Turner et al., 2012). Displacement of potting effort may increase 

disputes, the effects and severity of which will largely be determined by a priori 

territorial distributions and habitat quality (Guenther et al., 2015). After inshore fishing 

closures in California, USA, lobster fishermen targeted areas based on competition 

with other fishers and habitat quality (i.e. catch) rather than targeting areas close to 

MPA borders (Guenther et al., 2015). 771.9km2 (54.9% of the NIFCA district) are 

currently designated as MPAs (CQSM MCZ and Berwickshire North Northumberland 

Coast EMS), including the heavily fished inshore areas (Fig 3.12). Any future 

changes in management of these MPAs could lead to displacement of fishing activity. 

This is currently poorly understood, but the ability to predict socio-economic, as well 

as environmental, outcomes of management measures is crucial to sustainable 

marine management. Multicriteria decision support tools such as Marxan are 

increasingly used to combine a variety of spatially explicit selection criteria in a GIS 

for marine spatial planning purposes (Baban and Parry, 2001; Villa et al., 2002; 

Lieberknecht et al., 2004; Bruce and Eliot, 2006; Prest et al., 2007). These tools 
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primarily focus on the distribution of the natural resources important to the 

development of conservation value, often ignoring fishing distribution data which can 

minimise environmental and economic costs of areal closures by displacement 

(Dinmore et al., 2003; Lieberknecht et al., 2004; Richardson et al., 2006; Campbell et 

al., 2014) resulting in wider acceptance, cost-effective and politically feasible 

protected areas (Richardson et al., 2006; Campbell et al., 2014). Although results of 

this research provide a crucial step towards a better understanding of long term 

fishing effort and spatial distribution in Northumberland, potentially enabling a 

predictive capacity for Marxan type modelling, a lack of access to cumulative uses, 

socio-economic information and habitat data outside the CQSM MCZ raises scientific 

and socio-economic concerns about the underpinning of marine spatial management 

decisions (Campbell et al., 2014). 

In addition, to being useful in MPA planning, fisheries – habitat interaction information 

can be used for monitoring and predicting anthropogenic impacts. This approach was 

successfully used to explore possible impacts of fishing gears, used at different 

intensities, over different habitats across Welsh waters (Eno et al., 2013). However, 

distribution of fishing intensities was not available, changes over time were not 

investigated and seabed sensitivities to fishing gears were informed by expert 

opinion and not quantified data. Temporal fishing intensity distributions (chapter 2 - 

fishing pressure) and habitat interactions (current chapter), provided crucial 

information for the investigation of long-term (chapters 4 and 5) and short-term 

potting impacts (chapter 6). 

3.5. Concluding remarks  

Fisher distribution was not random and temporal clustering was observed. Pot 

fishermen are unlikely to conform to the Ideal free distribution hypothesis due to 

constraints of territoriality. Distances between clusters suggested fishermen may be 

targeting specific areas with high catches within their territories. Fishers were shown 

to consistently prefer rocky habitats over sediment habitats at both a broadscale and 

fine scale classification level across all study years. Fishing pressures were similar 

between rocky habitats but increased over time. Fisheries – habitat information is 

recommended for the implementation of successful spatial management, for 

example, in order to fully understand and predict the effects of closures of fisher 

displacement. Although broadscale habitats are currently used for management, 
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fishers’ interaction with fine scale habitats are particularly important when predicting 

differences in biological communities. This can allow prediction of (or testing of) and 

subsequently management of various anthropogenic impacts. Potting impacts on 

various habitats and at different classification levels are explored in chapters 4, 5 and 

6. 
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Chapter 4 . Long-Term Potting Intensity Effects on Biotopes and 
Species Composition and Richness 

4.1. Introduction 

There is growing evidence that long-term changes in marine ecosystems may occur 

due to fishing impacts (Kaiser et al., 1996; MacDonald et al., 1996; Kaiser et al., 

2006). As part of the continued focus of UK fisheries management for an evidence 

based approach (Marine and Coastal Access Act, 2009), Defra revised their 

approach to management of commercial fisheries in European Marine Sites (EMSs), 

now known as the fishing in MPAs project, which considers the potential impacts of 

fishing activities via Habitats Regulations Assessments on the designated features of 

each site (MMO, 2012). Fishing activities will only be allowed if they do not adversely 

affect site integrity.  

Potting activity is generally assumed to have little physical impact on hard substrate 

habitats and epibenthos. The few potting impact studies undertaken to date have 

focused on assessing impacts using indicator species perceived to be sensitive to 

potting due to their life history traits (erect, fragile and sessile) (Eno et al., 2001; 

Shester and Micheli, 2011; Coleman et al., 2013). However, potting may alter trophic 

dynamics through the removal of keystone species incurring ecosystem changes 

(Siddon and Witman, 2004). No peer-reviewed research into long-term indirect 

impacts of potting has been conducted to-date, but these are crucial to 

understanding pot fisheries interactions with the environment (Siddon and Whitman, 

2004). 

The Berwickshire & North Northumberland Coast European marine site (BNNC EMS) 

(Fig 4.1) incorporates 635 km2 of shoreline and coastal waters. The area includes 

Lindisfarne, St Abbs, the Farne Islands and the Eyemouth voluntary marine reserve 

(AONB Partnership and EMS Management Group, 2009), hosting a diverse range of 

marine ecosystems and habitats including rocky shore, intertidal mudflats and sand 

beaches, rocky reefs, sea caves and shallow bays and inlets (Brazier et al., 1998). 

Monitoring reports of the BNNC EMS (Edwards, 1983; Foster-Smith and Foster-

Smith, 1987; Connor, 1989; Holt, 1994; Brazier et al., 1998; Mercer et al., 2003; 

Mercer, 2012) provide information in the form of habitat and their associated 

biological assemblages, and in later years used the UK biotope classification system. 

Although methods of classification have changed, these reports have similar levels of 
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information on habitat and species, with changes mainly in the increased accuracy of 

sample location in more recent reports. Common biotopes have persisted within the 

BNNC EMS (Mercer, 2012). Although epibenthic communities are influenced by 

biotic factors (recruitment, competition, predation, etc.), their overall character is 

predominately determined by their ambient abiotic conditions (Connor et al., 2004). A 

key feature of the biotope classification is that it takes into account abiotic factors 

including: substratum, depth, exposure to wave action/tidal currents, salinity, 

topography, geology, oxygenation and scour/turbidity. Therefore biotope 

classifications provide added information on individual abiotic factors – eliminating 

the need for collecting explanatory environmental variables. In addition, biotopes and 

species richness are often the only data available from long-term EMS monitoring 

surveillance work. However, little work has been done on assessing impacts on 

biotopes in the academic literature. This provides an opportunity to assess whether 

data collected as part of routine marine monitoring and surveillance can be used to 

investigate long-term, chronic changes in ecosystems and whether these are linked 

to anthropogenic impacts. 

This chapter aims to investigate biotope changes in the BNNC EMS over a ten year 

period, using previously collected condition monitoring data from 2002 and 2011 

(Mercer et al., 2003; Mercer 2012), and to investigate the possibility that these 

changes are related to the intensity of shellfish potting activity. Data were extracted 

from previously collected video monitoring footage and grouped into biotopes. Using 

a frequency analysis of biotopes it was hypothesised that the number, composition 

and range of biotopes would differ between 2002/03 and 2011 (Moore and Bunker, 

2001; Saunders et al., 2011) (hypothesis 1). In addition, temporal changes in the 

number, composition and range of biotopes were hypothesised to be related to the 

intensity of shellfish potting activity (hypothesis 2). Results are discussed in light of 

the hierarchical classification system used, since these are the most frequently used 

monitoring method. This approach is then critically appraised. 
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4.2. Methods 

4.2.1. Site selection 

Three transect corridors, distributed in the southern half of the Berwickshire North 

Northumberland Coast (BNNC) European Marine Site (EMS), were selected by 

Natural England in 2002 (formerly English Nature), and surveyed using drop-down 

cameras in 2002/03 (Fig 4.1, a) and again in 2011 (Fig 4.1, b) as part of the regular 

condition monitoring required under the terms of the Habitats Directive (Council 

Directive 92/43/EEC). 

Fig 4.1. Berwickshire and North Northumberland Coast European Marine Site (black 
line) with a) 2002/3 corridor transects for the drop-down camera survey points b) 
2011 corridor transects for the drop-down camera survey points. 

 

4.2.2. Sampling protocol 

In the original surveys, 2002/03 video fieldwork was undertaken during the weeks of 

2nd - 7th August 2002, 30th August to 4th September 2002 and 4th - 18th June 2003. 

Field work in 2011 was undertaken between 23rd August and 22nd November 2011 

(Mercer, 2012). Transect corridors were stratified by depth (0-10m, 10-20m and 

20m+), each of which was randomly sampled using drop-down video (approximate 

tows of 100m) a maximum of 15 times. Fewer tows were performed if there was little 
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variation in habitat and biotope (Mercer et al., 2003). The drop-down video 

equipment and full methodology are described by Mercer et al. (2003) and Mercer 

(2012). 

4.2.3. Data analysis 

Prior analysis of this monitoring data was undertaken at a broad scale, for the 

purposes of Natural England condition monitoring. Biotopes were identified across 

the 100m tows and change between years was described by comparing biotope 

composition in transect corridors using only expert judgement (Mercer, 2012). This 

study reanalysed the data, using frequency counts of biotopes, to allow statistical 

analysis of change between years. This permitted investigation into the possibility 

that changes are related to the intensity of shellfish potting activity (described in 

chapter 2).  

For the purposes of this study the video footage of the 100m tows was randomly 

sampled every 10–30 seconds (mean sampling time 17.2s, mean samples per tow = 

9.1). When the video footage was paused the image was blurred due to the 

movement of the camera and low display resolution. Therefore, 2-second samples 

were used to identify substrate and species. When random samples did not yield 

usable footage, i.e. if bottom substrate was not visible, the next random time 

generated was used. Video footage from three transects was analysed for this 

project (Dunstanburgh, Boulmer and Farne Islands). The original monitoring reports 

(Mercer et al., 2002; Mercer, 2012) used five transect corridors but the two most 

northern transects (Marshall Meadows and St Abbs) were not used because fishing 

pressure maps were more detailed and reliable in the South of the NIFCA district 

(see chapter 2). A total of 1724 samples were generated from 189 video tows.  

Species present were recorded to the lowest taxonomic level using up-to-date 

identification manuals (Cornelius, 1995; Hayward and Ryland, 1995; Foster-Smith 

and Foster-Smith, 2000), online resources (MarLIN), and expert advice (Foster-

Smith, J., pers comm. 2013). Biotope classifications were then assigned using 

identified species with the aid of ‘The Marine Habitat Classification for Britain and 

Ireland, Version 04.05’ (Connor et al., 2004). Due to a lack of scale on the video 

footage, abundance and semi-quantitative scales (SACFOR) could not be used to 

inform the assignment of biotopes. Expert judgement was therefore used for biotope 

identification. This could be problematic when identifying certain biotopes at a finer 
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scale from a single still image (e.g. determining between urchin grazed and ungrazed 

Laminaria spp dominated biotopes). In addition, samples were frequently disrupted 

as the camera rotated away from the benthos, either due to water movement or 

through contact with objects on the seabed; sampling times therefore varied to 

account for this. This approach accounts for the need for a biotope to be assessed at 

a scale of at least 5 x 5m (Connor et al., 2004) (a single static frame shows < 2 x 2m) 

as well as allowing time for identification of more cryptic species (i.e. if the camera 

rested on the seafloor, smaller species such as barnacles, small hydroids and 

encrusting bryozoan could be identified). 

The maintenance of the number and range of biotopes was investigated between the 

years, focussing on the persistence of dominating community assemblages through 

the analysis of biotope frequency. The Wilcoxon signed rank test (non-parametric) 

was used with individual biotope frequencies from the two survey years treated as 

matched pairs (Moore and Bunker, 2005).  

The sampling effort required to observe maximum biotope richness was investigated 

by producing an asymptotic sampling effort curve in Sigmaplot (v11). The Boulmer 

and Farne Island transects were chosen as they represent areas with low and high 

biotope richness respectively. Randomly selected biotopes for each sampling period 

in the Boulmer and Farne Island transect were counted to estimate biotope richness. 

This was repeated 15 times for each sampling event in order to take into account 

different biotope richness combinations. Mean biotope richness for any given 

sampling effort was then calculated using a second degree polynomial line of best fit. 
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4.3. Results 

4.3.1. Biotope richness 

Biotope richness was the same between survey periods for the Boulmer transect 

(Table 4.1). There were small differences in biotope composition between years 

although these were primarily due to sediment biotopes that are not easily identifiable 

using videographic methods. Overall, biotope composition and richness in the 

Boulmer transect were similar between survey periods, despite sample number (n) 

being higher in 2002/03 (Table 4.1).  

Biotope richness for the Dunstanburgh transect was higher in 2002/03 than in 2011 

for both classification levels (Table 4.1). However, n was also higher in 2002/03 than 

in 2011. Biotope composition and richness was similar between Boulmer and 

Dunstanburgh transects. 

Biotope richness at the Farnes was higher in 2011 than in 2002/03 (Table 4.1), and 

was higher than in Boulmer and Dunstanburgh transects. Biotope richness of 

circalittoral biotopes was identical in both survey periods, differences being 

predominately driven by infralittoral biotopes found solely in 2011 (Table 4.1). At 

biotope classification level 5 (Table 4.1) this difference remains obvious; several 

infralittoral biotopes were found solely in 2011.  

Biotope richness and composition was similar when classifying biotopes to level 6 or 

to level 5 for all transects (Table 4.1), albeit biotope richness was much lower in the 

latter. This was due to a high number of sub-biotopes identified for Laminaria spp 

dominated biotopes (IR.MIR.KR.Lhyp abbreviated to Lhyp) and Faunal and algal 

crust dominated biotopes (CR.MCR.EcCr.FaAlCr abbreviated to FaAlCr). 
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Table 4.1. Biotope and sub-biotope composition and standardised frequency data 
from two survey periods (2002/03 and 2011) for the Boulmer, Dunstanburgh and 
Farne Island transects. Cells highlighted in grey represent biotopes that were found 
solely in one survey period. 

Transect Sub biotope 2002/03 2011  Biotope 2002/03 2011 
  Count Count   Count Count 

Boulmer IR.MIR.KR.Lhyp.Ft 6.1 7.5  IR.MIR.KR.Lhyp 12.2 17.5 
 IR.MIR.KR.Lhyp.Pk 2.0 5.0     

 IR.MIR.KR.Lhyp.GzPk 4.1 5.0     

 CR.MCR.EcCr.FaAlCr 30.6 27.5  CR.MCR.EcCr.FaAlCr 55.1 50.0 
 CR.MCR.EcCr.FaAlCr.Adig 6.1 0.0  CR.MCR.CSab.Sspi 2.0 2.5 
 CR.MCR.EcCr.FaAlCr.Flu 16.3 10.0  SS.SCS.CCS 10.2 5.0 
 CR.MCR.EcCr.FaAlCr.Pom 2.0 10.0  SS.Smu.CSaMu 10.2 0.0 
 CR.MCR.EcCr.FaAlCr.Sec 0.0 2.5  SS.SBR.PoR.SspiMx 10.2 0.0 
 CR.MCR.CSab.Sspi 2.0 2.5  SS.SMX.CMx 0.0 10.0 
 SS.SBR.PoR.SspiMx 10.2 0.0  SS.SSA.CFiSa 0.0 15.0 
 SS.SCS.CCS 10.2 5.0     

 SS.Smu.CSaMu 10.2 0.0     

 SS.SMX.CMx 0.0 10.0     

 SS.SSA.CFiSa 0.0 15.0     
        

Biotope richness  11 11   6 6 

n  49 40   49 40 
        

Dunstanburgh IR.MIR.KR.Lhyp.Ft 4.5 5.1  IR.MIR.KR.Lhyp 18.2 7.7 
 IR.MIR.KR.Lhyp.Pk 2.3 0.0  IR.MIR.KR.XFoR 2.3 0.0 
 IR.MIR.KR.Lhyp.GzPk 11.4 2.6     

 IR.MIR.KR.XFoR 2.3 0.0     

 CR.MCR.EcCr.FaAlCr 31.8 46.2  CR.MCR.EcCr.FaAlCr 59.1 71.8 
 CR.MCR.EcCr.FaAlCr.Adig 2.3 0.0  CR.MCR.EcCr.CarSp 2.3 0.0 
 CR.MCR.EcCr.FaAlCr.Flu 15.9 10.3  CR.MCR.EcCR.UrtScr 0.0 2.6 
 CR.MCR.EcCr.FaAlCr.Pom 6.8 12.8  CR.HCR.Xfa.SpNemAdia 2.3 0.0 
 CR.MCR.EcCR.FaAlCr.Bri 2.3 2.6  SS.SBR.PoR.SspiMx 4.5 0.0 
 CR.MCR.EcCr.CarSp.Bri 2.3 0.0  SS.SCS.CCS 9.1 10.3 
 CR.MCR.EcCR.UrtScr 0.0 2.6  SS.SCS.CCS.Pom 2.3 7.7 
 CR.HCR.Xfa.SpNemAdia 2.3 0.0     

 SS.SBR.PoR.SspiMx 4.5 0.0     

 SS.SCS.CCS 9.1 10.3     

 SS.SCS.CCS.Pom 2.3 7.7     
        

Biotope richness  14 9   8 5 

n  44 39   44 39 
        

Farne Islands IR.MIR.KR.Lhyp.Ft 9.1 0.0  IR.MIR.KR.Lhyp 25.0 9.5 
 IR.MIR.KR.Lhyp.GzFt 2.3 2.4  IR.MIR.KR.LhypT 4.5 4.8 
 IR.MIR.KR.Lhyp.GzPk 4.5 4.8  IR.MIR.Ksed.DesFilR 0.0 2.4 
 IR.MIR.KR.Lhyp.Pk 9.1 2.4  IR.MIR.Ksed.XKScrR 0.0 2.4 
 IR.MIR.KR.LhypT.Ft 2.3 2.4  IR.MIR.KT.XKTX 0.0 2.4 
 IR.MIR.KR.LhypT.Pk 2.3 2.4  IR.HIR.Ksed.LsacSac 0.0 2.4 
 IR.MIR.Ksed.DesFilR 0.0 2.4  SS.SCS.ICS 0.0 2.4 
 IR.MIR.Ksed.XKScrR 0.0 2.4  SS.SSA.IFiSa 2.3 2.4 
 IR.MIR.KT.XKTX 0.0 2.4     

 IR.HIR.Ksed.LsacSac 0.0 2.4     

 SS.SCS.ICS 0.0 2.4     

 SS.SSA.IFiSa 2.3 2.4     

 CR.MCR.EcCr.FaAlCr 20.5 2.4  CR.MCR.EcCr.FaAlCr 59.1 59.5 
 CR.MCR.EcCR.FaAlCr.Adig 9.1 16.7  SS.SCS.CCS 6.8 7.1 
 CR.MCR.EcCr.FaAlCr.Pom 13.6 26.2  SS.SCS.CCS.PomB 2.3 4.8 
 CR.MCR.EcCR.FaAlCr.Bri 15.9 14.3     

 SS.SCS.CCS 6.8 7.1     

 SS.SCS.CCS.PomB 2.3 4.8     
        

Biotope richness  14 9   8 5 

n  44 39   44 39 
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4.3.2. Biotope frequency occurrence  

Lhyp and FaAlCr biotopes and sub-biotopes dominated composition of all transects. 

These had similar frequencies of occurrence between sampling periods across all 

transects (Table 4.1). FaAlCr was the dominant biotope in all transects, in both 

survey periods and at both classification levels (Table 4.1). Biotope composition and 

frequency occurrence were similar between Dunstanburgh and Boulmer transects. 

Differences in biotope composition between years were driven by the low frequency 

occurrence of less dominant biotopes (< 10 in 100 samples) with many found 

uniquely in a single sampling year (Table 4.1). The Farne Islands transect differed 

slightly in biotope composition to both Boulmer and Dunstanburgh transects, with a 

greater diversity in infralittoral biotopes. However, similarly to other transects, Farne 

Island biotope composition was similar between years with differences in biotope 

richness between years driven by the low frequency occurrence of biotopes (< 3 in 

100 samples) found uniquely in a single year (IR.MIR.Ksed.DesFilR, 

IR.MIR.Ksed.XKScrR, IR.MIR.KT.XKTX, IR.HIR.Ksed.LsacSac and SS.SCS.ICS). 

There was no evident pattern in frequency occurrence of FaAlCr and Lhyp biotopes 

between years in any transects, with some increasing and others decreasing (Table 

4.1). Classification to level 5 accentuated the dominance of Lhyp biotopes and 

FaAlCr biotopes for both survey periods across all transects. At level 5 other biotopes 

were less frequently recorded. 

Individual biotope frequencies were not significantly different between survey years 

(treated as matched pairs) for sub-biotopes classified to level 6 or biotopes classified 

to level 5 for: Boulmer (Wilcoxon signed rank test, w=208, p=0.505 and w=69, 

p=0.554 respectively); Dunstanburgh (Wilcoxon signed rank test, w=258.5, p=0.556 

and w=93.5, p=0.674 respectively); Farne Islands (Wilcoxon signed rank test, 

w=327.5, p=0.834 and w=108.5, p=0.674 respectively). As no changes in biotopes 

were observed between years fishing pressure as cause of biotope change was not 

investigated. 
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4.4. Discussion 

4.4.1. Change in biotope composition and richness between years 

Biotope richness varied slightly between years and between transects. Biotope 

composition (including frequency counts) was similar between years (highly non-

significant Wilcoxon signed rank test) and between transects. Despite the uneven 

sampling effort between time periods (Table 4.1) the null-results were conservative 

as only uncommon biotopes with low frequency counts of less than 5 per 100 differed 

between time periods. These biotopes were not representative of the area as a whole 

and arguably could have been excluded from the analysis further reducing 

differences between years. 

The number and range of biotopes was similar between transects with only minor 

differences between the Farne Islands and both Boulmer and Dunstanburgh 

transects. This difference was expected, as the Northern sites of the EMS have been 

described as particularly diverse due to being subject to low sedimentation and high 

water flow (Birkett et al., 1998; Hartnoll, 1998). The non-significant fluctuations in 

frequency counts of biotopes between years can be attributed to natural variability. 

Long-term studies from the Swedish west coast have shown regular annual and 

seasonal fluctuations in circalittoral and infralittoral biotopes (Lundälv and Christie, 

1986). In general, the number and range of biotopes was maintained between years 

through the persistence of a few biotopes, particularly infralittoral kelp (Lhyp) and 

circalittoral faunal and algal crust (FaAlCr) biotopes (rejection of hypothesis 1). As no 

changes in biotopes were observed between years fishing pressure as cause of 

biotope change was not investigated (rejection of hypothesis 2). 

Both the maintenance of the number and range of biotopes are deemed important 

when investigating environmental change (Saunders et al., 2011). However, one of 

the primary uses for the biotope classification system (in addition to providing a 

consistent description of habitat types), is mapping geographical distribution of 

biotopes to aid spatial management of marine ecosystems (Connor et al., 2004; 

Crowder and Norse, 2008; Salomidi et al., 2012). Spatial representations of biotopes 

are particularly useful as they may show changes that otherwise are not detected 

using biotope frequency alone. This is particularly important with regards to 

investigating changes induced by spatially variable anthropogenic impacts such as 
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fishing (Diesing et al., 2009), but a lack of acoustic data for large areas of the EMS 

meant that the geographical distribution of biotopes could not be mapped. 

The investigation of biotope richness and persistence of dominant biotopes between 

years is a simple analysis both in terms of the data required and in the analysis of the 

data. However, in this particular case, conclusions that can be drawn from this data 

are limited due to the broad nature of biotope analysis and the low number of 

sampling years (2002/03 and 2011). These issues are further discussed in the 

following sections.  

4.4.2. Sampling effort for biotope richness 

Biotope richness increased rapidly as number of samples increased following a 

negative exponential curve until a plateau was reached (Fig 4.2, a and b). Sampling 

effort curves differed as expected between transects with differing biotope richness. 

For the Boulmer transect, with relatively low biotope richness (max 11) this rapidly 

increased up to 10 samples and started to plateau at approximately 25 samples (Fig 

4.2, a). In contrast, the Farne Island transect with high biotope richness (max 17) 

increased more slowly at lower sampling efforts and did not fully plateau even at the 

maximum number of samples (n = 40) (Fig 4.2, b). 

Theoretical biotope richness (samples 40 – 60) for the Boulmer transects (Fig 4.2, a) 

showed that there was no predicted increase in biotope richness with increased 

sampling effort. Thus the sampling protocol employed for the Boulmer transect 

adequately estimated the number of biotopes in the area in 2002. Fewer samples 

would have been sufficient for the task; only 25 compared to the 42 samples 

collected were needed. However, the theoretical biotope richness (samples 40 – 60) 

for the Farne Island transects (Fig 4.2, b) showed that estimates of biotope richness 

may increase with increased sampling effort. This suggests that the sampling 

undertaken for this study may not have adequately sampled the maximum number of 

biotopes in the area in 2011.  

Although biotope richness is an important metric used to determine ecological health 

of an area (JNCC, 2013), the frequency of occurrence of biotopes is also important; it 

permits investigation of the persistence of dominating community assemblages 

(Saunders et al., 2009). Depending on the nature of work and the time and funds 

available it may not be necessary to find the maximum biotope richness of the area. 

For example, previous monitoring reports from BNNC EMS did not aim to maintain 
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specific biotope richness but rather to maintain the persistence of dominant 

communities (Mercer et al., 2003; Mercer 2012). The increased sampling that may be 

necessary in order to sample the maximum biotope richness may be costly and add 

little value to the study as high temporal and spatial sampling effort would be 

necessary to distinguish between natural variance in biotope composition and 

variance due to anthropogenic impacts. There are evidently no published condition 

monitoring programmes that specifically use maximum or maintenance of biotope 

richness as evidence of change, although this is mentioned as one of several 

recommended methods for condition monitoring (Davies et al., 2001; Saunders et al., 

2011). However, as monitoring methods change and classification systems evolve 

biotope richness may be the only data that can be accurately extracted from 

historical records. 
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Fig 4.2. a) Boulmer transects (2002) and b) Farne Island transect (2011) biotope richness sampling effort curve (black line) 95% 
prediction band shown in red band and 95% confidence band shown in blue. 
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4.4.3. Scale of biotope identification 

Potting impacts on benthic communities are sparsely documented. The few studies 

that exist have focused on impacts on a small group of locally important species 

perceived as fragile (Coleman et al., 2013). No studies have looked at the impact of 

potting on communities and habitats as a whole. However, ecological monitoring, 

using biotopes is often undertaken at this broader scale, resulting in discrepancies 

between conclusions from peer-reviewed literature and those from monitoring and 

surveillance reports (Olenin and Ducrotoy, 2006). This section will critically appraise 

the use of hierarchical classification systems for use in robust scientific investigation. 

The UK biotope classification has the advantage of integrating the surrounding 

abiotic conditions within the classification system. However, hierarchical 

classifications may also pose problems, specifically with regards to scale. The 

appropriate identification level used for ecological work will depend on the aim of that 

work and the sampling methods used (Connor et al., 2004). For example, broad 

scale maps for management of SACs on a national scale may only need ‘main 

habitats’ (EUNIS level 3), for example the CQSM MCZ (Fitzsimmons et al., 2015). 

Whereas biological descriptions of a smaller area, such as single transects, may 

need to use ‘sub-biotopes’ (level 6). Level 5 (biotope) and level 6 (sub-biotope) 

scales were used for this analysis. Scale and accuracy of habitat maps for 

management is critically appraised in chapter 3. 

Working with level 5 data requires much less effort than level 6 both in the field and 

during the identification process (Holt and Sanderson, 2001); it is consequently 

cheaper and less time consuming than level 6 (Moore and Bunker, 2001). However, 

a large difference in recorded biotope richness occurred between these two scales, 

as the multitude of Lamanaria biotopes (6 sub-biotopes) and faunal and algal crust 

biotopes (6 sub-biotopes) fall into only 2 groups (IR.MIR.KR.Lhyp and 

CR.MCR.EcCr.FaAlCr, respectively) (Table 4.1). Further, the reduction in biological 

information means that impacts may not be detected (see chapter 6). Unless very 

large-scale changes are expected, then increased biological information is usually 

necessary to detect change (Davies et al., 2001).  

Fraschetti et al. (2008; 2011) concluded that marine community classification 

systems in Europe over the past 50 years are either too vague, focussing primarily 

on broad scale geological features, or too detailed, too fine scale definition of 
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biodiversity at species levels, which is often biased towards the plant component in 

the infralittoral. In particular, Fraschetti et al. (2008) warn against overcomplicating 

classification levels, stating that ‘species intra-biotope natural variability can in fact 

cause a misleading qualitative interpretation of small-scale biodiversity’ (Fraschetti et 

al., 2008). Only some habitats have conspicuous dominant species (e.g. kelp forests, 

mussel beds, maerl beds), but many support a mosaic of less dominant species 

(Connor, 1995). This fine-scale spatial variation (patchiness) can significantly vary 

over time. Infralittoral areas tend to be more predictable whereas circalittoral rock 

tends to be a mosaic of different species patches (Hartnoll, 1998), but little 

information is available on natural successions of community assemblages in the 

North Sea (this is further discussed in chapter 3). Results suggest that classification 

at the biotope scale (level 5) may be most appropriate for research purposes, as 

poorly understood natural changes in sub-biotopes (level 6) may result in increased 

variation and may prevent detection of impacts. Sub-biotope patchiness resulted in 

several levels of the classification system being used simultaneously in this research. 

Direct comparison of biotopes that are linked, for example: CR.MCR.EcCR.FaAlCr 

(biotope) and CR.MCR.EcCR.FaAlCr.Flu (sub-biotope belonging to the latter) may 

not be adequate. However, the nature of the classification system makes this very 

difficult to avoid.  

There are often no distinct boundaries between biotopes. Gradual transitions 

between two biotopes mean that classification may have variable outcomes due to 

observer bias (Connor et al., 2004). Additionally, some communities may be 

temporary or transitional and represent a stage between two or more ‘stable’ 

biotopes (Sutherland, 1974). This could be due to periodic abiotic or biotic 

disturbance e.g. winter storms or increased grazing during summer. In addition, 

certain habitats, for example FaAlCr sub-biotopes, may be so variable that the 

position of a biotope along a gradient cannot be accurately defined (Connor, 1995). 

In most rocky reef habitats, substratum space is fully occupied, and the availability of 

space is a controlling resource. Depending on availability of free space and which 

species are recruiting, different species assemblages can develop under the same 

physicochemical conditions (Sebens, 1985). In this research, when sampling 

boundaries between biotopes or biotopes in a state of transition, biotopes were 

conservatively identified to a lower level. For example, distinction between 

CR.MCR.EcCR.FaAlCr.Flu and CR.MCR.EcCR.FaAlCr.Adig where neither Flustra 

nor Alcyonium dominated, were both classified at a lower level 
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(CR.MCR.EcCR.FaAlCr). Although this is a conservative approach, the loss of 

accuracy (being unable to identify samples at a higher biotope level), may make 

detection of impacts difficult.  

Conclusions from this work are similar when using either biotopes (level 5) or sub-

biotopes (level 6) with no change detected between years. However, the use of 

biotope data for low-level fishing impact studies remains problematic and a null result 

in this case may be due to methodological issues rather than a lack of change. Use 

of a broader biological classification (e.g. level 5) is only likely to detect larger 

impacts which is less useful when investigating small-scale impacts of static gears, 

although results indicating change may be more robust as small-scale natural 

variability is already largely accounted for. In contrast, the use of a more detailed 

biological classification (level 6) may result in detection of smaller scale impacts, but 

much larger data sets are required to allow for natural spatial and temporal variability 

as little information exists for UK habitats (Hartnoll, 1998). For the investigation of 

small-scale fishing impacts, such as potting, the use of a biotope classification 

system alone is not recommended. However, a biotope based approach may provide 

a useful overview and help identify particular habitats or species as worthy of further 

research.  

4.5. Concluding remarks 

Biotopes cannot be used in all ecological studies and the limitations of the 

classification system must be understood. There are issues related to simplifying 

multivariate data sets into univariate data sets (further discussed in chapter 5) 

resulting in a loss of detail in the data which therefore increases variability, in turn 

affecting the detection of impacts on species (Clarke and Warwick, 2001). 

Variation of species within biotopes and frequency of biotope occurrence are 

expected under natural marine environmental conditions (Fraschetti et al., 2008). At 

two scales (transect level and area wide) biotopes have scarcely changed, however, 

this is a simplistic method for investigating ecological health of an area; it does not 

allow changes in species abundances, diversity or composition for each biotope to be 

taken into account. Ecological quality of biotopes was not assessed using this 

method. The maintenance of quality of features of interest is likely to be a critical 

aspect of future monitoring programmes as part of Defra’s revised approach to 

fisheries management in EMSs. However, this has not been considered in condition 
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monitoring to date. Biotope classifications are relevant for examining geographical 

and distributional differences between years (i.e. chapter 3), but in order to 

investigate biotope health, further work is required on species diversity and 

abundance levels (chapter 5) which may be a more sensitive indicator of change, 

enabling small-scale impacts to be detected. 
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Chapter 5 . Long-Term Potting Intensity Effects on Species 
Composition and Richness. 

5.1. Introduction 

The recent drive to maintain global biodiversity through protection and preservation 

of the marine environment has resulted in an increased need for data on impacts of 

human activities in the marine environment (Heslenfeld and Enserink, 2008). The 

Berwickshire North Northumberland Coast (BNNC) Special Area of Conservation 

(SAC), part of the BNNC European Marine Site (EMS) has been repeatedly surveyed 

as part of regular SAC condition monitoring (Mercer et al., 2003; Mercer, 2012), and 

long-term habitat mapping and monitoring (Edwards, 1983; Foster-Smith and Foster-

Smith, 1987; Connor, 1989; Holt, 1994; Brazier et al., 1998). However, these surveys 

were designed to report on habitats and biotopes in the area over time from before 

designation of the SAC, and as part of condition monitoring, rather than a focused 

study on impacts affecting habitats and biotopes. They may not provide appropriate 

data to support the evidence-needs required as part of Defra’s revised approach to 

commercial fishing within European Marine Sites (EMSs) (Chapter 4). In line with the 

UK’s agreement to adhere to a precautionary approach (EU Habitats Directive, 

Council Directive 92/43/EEC), current fishing activities in the BNNC EMS will only be 

allowed to continue if empirical evidence can show that these fishing activities do not 

adversely impact SAC and SPA features (MMO, 2012). As part of Defra’s “revised 

approach” interactions of fishing gear with marine features of SACs and SPAs were 

assessed on a Red (highest risk), Amber, Green and Blue (lowest risk) scale of 

likelihood of damage to the feature to determine types of management of activities 

required (MMO, 2012). Northumberland IFCA introduced a byelaw prohibiting the use 

of mobile fishing gear within the English section of the Berwickshire & North 

Northumberland Coast Special Area of Conservation (SAC) on 1 January 2014, as 

there was evidence that mobile fishing gear were likely to impact Annex 1 rocky reef 

habitats (NIFCA, 2014). 

Less destructive fishing methods such as potting will also require monitoring and 

investigation of impacts. Currently colour coded in amber in the Draft Fisheries in 

EMS Populated Matrix (2013), impacts are poorly understood at present and 

supporting evidence is lacking (Eno et al., 2001; Coleman et al., 2013). Previous 

chapters found no evidence of changes in biotope composition attributable to potting 

impacts, or between years, using a conventional condition monitoring biotope based 
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approach (Moore and Bunker, 2001; Saunders et al., 2011). Methods for detection of 

lower-level impacts from potting must be improved as part of Defra’s “revised 

approach”. Previously discussed methods include analyses of indicator / sensitive 

species (Eno et al., 2001; Shester and Michelli, 2011, Hiscock and Tyler-Walters, 

2006) and community composition (Coleman et al., 2013).  

Analyses using indicator species compare change over time in particular species that 

are thought to be vulnerable to impacts (Shester and Michelli, 2011). In the case of 

potting, the focus would be on displacement, abrasion and physical disturbance from 

direct interaction with pots (Eno et al., 2001), in which case, sessile, erect and brittle 

species are thought to be the most appropriate indicators of change (Eno et al., 

2013). However, these species lists are often only available and valid for small 

geographical areas (Coleman et al., 2013) and selection is based on expert opinion 

rather than observed potting impacts (Eno et al., 2013).  

Analyses using community assemblages compare all the species identified and their 

proportions between sites (Coleman et al., 2013). Exact number of species, level of 

species identification and accuracy of abundance will depend on the method used to 

collect the data (see Chapter 1, for review of methodologies). For measurement of 

change due to potting impacts, the use of community assemblages over indicator 

species may be beneficial since species sensitivity to the relatively low degree of 

force associated with static gear is scarcely known (Coleman et al, 2013). 

Considering the whole assemblage may allow impacts on unexpected species to be 

detected (Clarke and Warwick, 2001). 

This chapter seeks evidence of finer scale potting impacts on benthic features of 

interest. Species compositions, indicator species and species richness are 

reanalysed from monitoring data gathered in 2002 and 2012. This has the potential to 

facilitate the development of protocols needed for the detection of small-scale 

impacts, which would otherwise require extensive costly fieldwork. Use of this long-

term monitoring data may provide a unique opportunity to investigate whether 

ecological condition monitoring data, analysed in novel ways, is sufficiently accurate 

and precise for robust scientific investigations. To achieve this, several metrics for the 

detection of small-scale impacts were further explored.  

This chapter aimed to investigate changes in benthic community composition within 

biotopes in the BNNC EMS between two sampling periods and whether relationships 
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existed between biotic changes and potting pressure. Drop-down video data 

collected for regular condition monitoring (2002/03 and 2011) were again employed 

(chapter 4). It was hypothesized that changes undetectable using biotope 

classification alone could be detected using species presence/absence data 

(hypothesis 1). This was investigated by analysing change of: taxonomic composition 

of assemblages, species diversity and ecologically important species between years 

in three transects (Fig 5.1). Community assemblage data from transects were pooled 

and change across the whole BNNC EMS area explored. It was also hypothesized 

that relationships existed between biotic changes and potting pressure (hypothesis 

2). This was tested by investigating the effects of potting pressure (chapter 2) on the 

change in benthic community structure of individual biotopes across the EMS 

between years (2002/03 – 2011).  

5.2. Methods 

5.2.1. Sampling protocol 

Methods for site selection, videographic sampling and selection of video data are 

detailed in chapter 4 (sections 4.2.1 and 4.2.2 respectively). In summary, within each 

of three transects corridors identified by Natural England, three depth ranges were 

selected and up to fifteen 100m tows of a drop-down video camera recorded in each 

(Fig 5.1). Footage from each tow was randomly sampled every ~10 – 30 seconds, 

generating 1724 discrete samples (2-second clips) from 189 video tows. Species 

present were recorded to the lowest taxonomic level using identification manuals 

(e.g. Cornelius (1995); Hayward and Ryland (1995); Foster-Smith and Foster-Smith 

(2000)) and online resources (MarLIN).  Expert advice was sought where necessary 

(J Foster-Smith, pers comm. 2013). Lack of scale on the drop-down camera 

precluded collection of abundance data from the footage, so species 

presence/absence data were used exclusively to describe communities. A biotope 

class (minimum level 5) was assigned to each sample (Connor et al., 2004) following 

the methodology outlined in chapter 4. This was taken to encapsulate the relevant 

range of abiotic factors, and the biotope classification was used instead of individual 

abiotic factors in the analysis. 

Although not integrated into the classification system, water visibility may affect the 

species that are identifiable from the videographic imagery (Mercer et al., 2003). Low 

visibility may result in smaller or cryptic species being recorded less frequently in 
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video footage or not at all (Moore and Bunker, 2001). The influence of visibility was 

tested using subjective scales (1 – 3) of water turbidity (where 1 was clear and 3 was 

highly turbid), light levels (where 1 was high and 3 was low levels of light) and 

camera movement (where 1 was a stationary camera and 3 was ≥ 2m camera 

travel). This 27 point scale of visibility (turbidity x light levels x distance travelled by 

the camera) was then categorised into 6 levels for ease of analysis. Underwater 

visibility enhancing hardware (Lynn-hawk) was used to filter out turbidity. Although 

footage with and without the visibility enhancing hardware did not differ in number of 

species identified, it was subjectively felt by observers to contribute to the ‘ease’ of 

species identification, therefore increasing efficiency and potentially reducing 

identification error.  

To assess the ecological stability of individual biotopes, analysis of change between 

years (2002/03 and 2011) using full taxonomic composition, sensitive species and 

species richness of biotopes was undertaken at individual transect level. Transect 

data were then pooled and BNNC EMS area-wide change was investigated. Area-

wide data also allowed fishing pressure to be investigated as a factor affecting 

change between 2002/03 and 2012. 

5.2.2. Taxonomic composition of assemblages 

Exploratory statistics including multivariate analysis (cluster dendograms, multi-

dimensional scaling (MDS) plots and SIMPROF) and SIMPER were conducted using 

PRIMER (v.6). The Jaccard similarity measure was used for species 

presence/absence data. 

Change in species presence/absence within individual transect corridors between 

2002/03 - 2011 was investigated using a mixed model in PERMANOVA (v. 1.0.5) 

(type III sum of squares, under a reduced model with 9999 permutations) following a 

3 factor design with interaction (visibility as a random factor with 6 levels, biotope as 

a random factor with 11 levels and year as a fixed factor: 2002 and 2011). Interaction 

terms ‘visibility * year’ and ‘visibility * biotope * year’ were removed from the model by 

pooling as they had negative estimates of components’ variations for all transect 

corridors (Anderson et al., 2008). Biotopes on soft sediments rely on infauna for 

identification and were excluded from the analysis as the video footage did not 

provide enough biological information. Tests of homogeneity of dispersion 

(PERMDISP routine in PERMANOVA) were used to test the null hypothesis of no 
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difference in dispersion among a priori groups. Confounding effects of dispersion 

among groups were investigated using principal coordinate (PCO) analysis of the 

centroids for presence/absence survey data grouped according to biotope and year 

in PERMANOVA (v. 1.0.5). 

Change in species presence/absence across all transect corridors (BNNC EMS area-

wide data) between years was investigated using a mixed model in PERMANOVA (v. 

1.0.5) (type III sum of squares, under a reduced model with 9999 permutations) 

following a 3 factor design with interaction (visibility as a random factor with 6 levels, 

biotope as a random factor with 20 levels and year as a fixed factor: 2002 and 2011). 

As with individual transects, soft sediment biotopes were excluded from the analysis, 

tests of homogeneity of dispersion (PERMDISP routine in PERMANOVA) were used 

to test the null hypothesis of no difference in dispersion among a priori groups and 

confounding effects of dispersion among groups were investigated using principal 

coordinate analysis (PCO). 

Simper analysis (PRIMER, v.6) was undertaken for both transect level and BNNC 

EMS area-wide analysis to compare each species’ presence/absence between years 

(SIMPER on species grouped by biotope with factor year). 

5.2.3. Fishing pressure 

Northumberland potting effort distribution (chapter 2) was categorised into 2 levels for 

use in a species presence/absence mixed model (low = 0 – 226 and high = 227 – 

770 pots month-1 km-2) using the natural breaks (jenks) function in ARC ESRI GIS (v. 

10.0) (Fig 5.1). Since video data were obtained during 2 seasons (summer and 

autumn), annual fishing pressure was used to remove seasonal effects of changing 

fishing effort (Fig 5.1). 
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Fig 5.1. Drop-down camera sites at the Farne Island (B), Dunstanburgh (C) and 
Boulmer (D) transect corridors within the Berwickshire and North Northumberland 
Coast (A) European Marine Site (black line) in 2003 (green points) and 2011 (red 
crosses)). Potting intensity categorised into two levels (low, light blue; high, dark 
blue; No data, white).  

It was not possible to test the effect of potting pressure on species presence/absence 

between years on individual transects due to low biotope numbers in each fishing 

pressure. For example, across the Dunstanburgh transect, biotopes of interest were 

only present in areas of low potting intensity and therefore could not be compared to 

the same biotopes in areas of high fishing pressure within the same transect (Fig 

5.1). Therefore, the effect of potting pressure on species presence/absence between 

years was investigated using BNNC EMS area-wide data, with a mixed model in 

PERMANOVA (type III sum of squares, under a reduced model with 999 

permutations) following a 4 factor design with interaction (fishing pressure as a 

random factor with 2 levels, visibility as a random factor with 6 levels, biotope as a 

random factor with 20 levels and years as a fixed factor with 2 levels: 2002 and 

2011). Interaction terms ‘Year * Fishing’, ‘Visibility * Fishing’ and ‘Visibility * Year * 

A) B) Farne Island transect

C) Dunstanburgh transect

D) Boulmer transect
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Fishing’ were removed from the model by pooling as they had negative estimates of 

components variations. PERMDISP was also used to test the null hypothesis of no 

difference in dispersion among a priori groups. Confounding effects of dispersion 

among groups was investigated using PCO of the centroids for presence/absence 

survey data grouped according to biotope and year in PERMANOVA (v. 1.0.5). 

5.2.4. Species diversity 

Species richness (S) per discrete video sample was chosen as the diversity metric, 

due to the lack of abundance data (Clarke and Warwick, 2001). Data were not 

normally distributed (even following Log transformation), so were analysed using 

semi-parametric techniques in PERMANOVA (v. 1.0.5). A Bray-Curtis resemblance 

matrix of untransformed S values was used in a mixed model. Differences in S, 

grouped by biotope, between years and fishing pressure were tested using 

PERMANOVA (v. 1.0.5) (type III sum of squares, under a reduced model with 9999 

permutations) following a 3 factor design with interaction (biotope as a random factor 

with 11 levels, year as a fixed factor: 2002 and 2011 and fishing pressure as a 

random factor with 2 levels: low = 0 – 240 and high = 241 – 770 pots km-2 year-1). 

Factor ‘Visibility’ was excluded from the analysis as this factor and all its interaction 

terms were non-significant (p > 0.15) with negative or very low estimates of 

components of variation. 

5.2.5. Sensitive species 

Information on important species of biotopes in transects were obtained from the 

Marine Life Information Network website (MarLIN, 2012). Change or loss of these 

species can be taken to indicate deterioration of biotope health (Tyler-Walters et al., 

2001). Descriptions of species roles and selection criteria are described in Table 5.1. 

Important species and descriptions of their roles for each biotope are provided in 

Appendix 3. Differences in presence/absence of chosen important species, grouped 

by biotope, between years was tested using PERMANOVA (v. 1.0.5) (type III sum of 

squares, under a reduced model with 9999 permutations) following a 2 factor design 

with interaction (biotope as a random factor with 11 levels and year as a fixed factor; 

2002 and 2011). However, results using a reduced species list were similar to those 

using the full species list (described in section 5.2.2) therefore further analyses using 

only sensitive species were not undertaken.  
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Table 5.1. Categorisation of species indicative of biotope sensitivity (MarLIN, 2012) 

Rank Selection criteria 

Key structural The species provides a distinct habitat that supports an associated community. 

Loss/degradation of this species population would result in loss/degradation of the 

associated community. 

Key functional The species maintains community structure and function through interactions with 

other members of that community (for example, predation, grazing, competition). 

Loss/degradation of this species population would result in rapid, cascading 

changes in the community. 

Important characterizing The species is/are characteristic of the biotope (dominant, highly faithful and 

frequent) and are important for the classification of that biotope. Loss/degradation 

of these species populations could result in loss of that biotope. 

Important structural The species positively interacts with the key or characterizing species and is 

important for their viability. Loss/degradation of these species would likely reduce 

the viability of the key or characterizing species. For example, these species may 

prey on parasites, epiphytes or disease organisms of the key or characterizing 

species. 

Important functional The species is/are the dominant source of organic matter or primary production 

within the ecosystem. Loss/ degradation of these species could result in changes 

in the community function and structure. 

Important other Additional species that do not fall under the above criteria but where present 

knowledge of the ecology of the community suggests they may affect the 

sensitivity of the community. 

 

5.3. Results 

5.3.1. Taxonomic composition of assemblages 

Non-metric multi-dimensional scaling plots showed species presence/absence survey 

data, grouped according to biotope, for three transects (Farne Island, Dunstanburgh 

and Boulmer) (Fig 5.2). Species presences differed between circalittoral and 

infralittoral rock on all transects (Fig 5.2). Species show grouping by biotope, 

although there was variability within all groups. Biotope groupings showed less 

variability for the Farne Island transect data (including lower stress values, Fig 5.2, A) 

than the Dunstanburgh (Fig 5.2, B) and Boulmer (Fig 5.2, C) transect data. In all 

locations the biotope FaAlCr was particularly variable.  

 



119 
 

 

Fig 5.2. Two dimensional non-metric multi-dimensional scaling plot of species 
presence/absence survey data grouped according to biotope (A) Farne Island (2D 
stress = 0.13); B) Dunstanburgh (2D stress = 0.12); C) Boulmer (2D stress = 0.08)). 
Triangles represent circalittoral rock with medium tide/wave exposure. Crosses 
represent infralittoral rock with medium tide/wave exposure. Circles represent 
circalittoral rock with high tide/wave exposure. 

A) 

B) 

C) 
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5.3.2. Dunstanburgh taxonomic composition of assemblages 

For the Dunstanburgh transect (Fig 5.2, C) all factors and interaction terms in the 

model were significant except year (Table 5.2). Factor ‘Biotope’ explaining the most 

variation, with others explaining much less variation (Table 5.2). The overall 

proportion of variation explained by the model was approximately 40%. 

Table 5.2. PERMANOVA results with estimates of components variation for the 
Dunstanburgh transect. Interaction terms ‘Visibility * Biotope * Year’ and ‘Visibility * 
Year’ were not included in the model (pooled) due to negative estimates of 
components of variation.  

Terms P (perm) 
Estimates of components 

of variation 

Percentage contribution to total 

variation (%) 

Visibility 0.0307 99.787 2.34 

Biotope 0.0001 1283.70 30.06 

Year 0.077 122.35 2.87 

Visibility * Biotope 0.0004 104.18 2.44 

Biotope * Year 0.0001 174.87 4.10 

Residuals 2484.90 58.20 

 

Post-hoc testing of ‘Biotope * Year’ showed that species assemblages grouped by 

biotope differed between years (all, p < 0.015) except for biotope 

CR.MCR.EcCR.FaAlCr.Bri, p = 0.115 (Table 5.3). Only 6 biotopes were present in 

both 2003 and 2011 for comparison: FaAlCr, FaAlCr.Bri, FaAlCr.Pom, FaAlCr.flu, 

Lhyp.GzPk, Lhyp.Ft (Table 5.3). However, pairwise comparison of ‘Biotope * Year’ 

using PERMDISP were significant for all biotopes except for IR.MIR.KR.Lhyp.Ft (p = 

0.14) and IR.MIR.KR.Lhyp.GzPk (p = 0.666) suggesting dispersion effects may be 

confounding the PERMANOVA results (Table 5.3).  
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Table 5.3. Pairwise comparisons for PERMANOVA and PERMDISP routines of 
‘Biotope * Year’ for factor year. Dunstanburgh transect.  

Biotope PERMANOVA result (indicates 

potential location effect) 

PERMDISP result 

(indicates dispersion effect) 

CR.MCR.EcCr.FaAlCr Significant Significant 

CR.MCR.EcCR.FaAlCr.Bri Not Significant Significant 

CR.MCR.EcCR.FaAlCr.Pom Significant Significant 

CR.MCR.EcCR.FaAlCr.Flu Significant Significant 

IR.MIR.KR.Lhyp.GzPk Significant Not Significant 

IR.MIR.KR.Lhyp.Ft Significant Not Significant 

 

A difference in species assemblages was detected between 2002 and 2011 within 

biotopes IR.MIR.KR.Lhyp.GzPk and IR.MIR.KR.Lhyp.Ft. This difference was not 

confounded by dispersion effects. It is unclear whether species differed between 

2002 and 2011 within biotopes CR.MCR.EcCr.FaAlCr, CR.MCR.EcCR.FaAlCr.Pom 

and CR.MCR.EcCR.FaAlCr.Flu because dispersion effects were detected.  

PCO showed centroid values for species composition grouped by biotope were not 

well separated between years except for the IR.MIR.KR.Lhyp.GzPk biotope (Fig 5.3), 

indicating that differences in species compositions (for biotopes 

CR.MCR.EcCr.FaAlCr, CR.MCR.EcCR.FaAlCr.Pom and CR.MCR.EcCR.FaAlCr.Flu) 

between years detected by the PERMANOVA routine were more likely to be 

dispersion and not location effects.  
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Fig 5.3. Principal coordinate analysis (PCO) of the centroids for presence/absence 
survey data grouped according to biotope and year for the Dunstanburgh transect. 
Circalittoral rock with medium tide exposure (triangles) and infralittoral rock with 
medium tide/wave exposure (squares) are grouped by year (2011 samples have a 
colour filling and 2002/03 samples lack a colour filling). 

 

SIMPER analysis for biotopes that showed significant species change between 

years, unconfounded by dispersion effects (Table 5.3) are shown in Table 5.4 

(IR.MIR.KR.Lhyp.Ft) and Table 5.5 (IR.MIR.KR.Lhyp.GzPk).  

Average species composition similarity between samples of IR.MIR.KR.Lhyp.GzPk 

was 41.9% in 2002 (n = 56) and 18.1% in 2011 (n = 8) indicating that samples from 

2011 were more variable in species composition than those in 2002. The average 

similarity of species composition between years was very low at 26.2%. Large 

differences between years were driven by Echinus esculentus and Laminaria 

hyperborea (29% cumulative contribution to dissimilarity between years (Table 5.4)). 

Smaller differences in average presence between years included smaller sessile 

species. 
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Table 5.4. Species contributing more than 5% towards the SIMPER dissimilarity (%) 
of IR.MIR.KR.Lhyp.GzPk between years at the Dunstanburgh transect. 

Species 

 

2002/03 2011  

Average 

presence 

Average 

presence 

Average 

dissimilarity 

Percent 

contribution to 

dissimilarity 

Cumulative 

percent 

contribution 

Echinus 

esculentus 
0.77 0.38 10.57 14.32 14.32 

Laminaria 

hyperborea 
0.54 0 10.52 14.26 28.58 

Balanus spp 0.57 0.5 8.96 12.14 40.71 

Hydroid 0.43 0.25 7.66 10.38 51.09 

Pomatoceros 

triqueter 
0.36 0.25 7.57 10.26 61.35 

Corallinaceae 0.23 0.38 7.19 9.74 71.08 

Foliose red alga 0.09 0.13 3.68 5 76.07 

 

Average species composition similarity between samples of IR.MIR.KR.Lhyp.Ft was 

higher (59.2% in 2002, n=22) (52% in 2011, n = 20) than IR.MIR.KR.Lhyp.GzPk. 

Average similarity of species composition between years was 51.8%. In 

IR.MIR.KR.Lhyp.Ft, 62% of the cumulative contribution difference between years 

were driven by differences in average presence of five epiphytes (Membranoptera 

alata, Electra pilosa, Membranipora membranacea, Obelia sp. and Plocamium 

sp.)(Table 5.5).  
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Table 5.5. Species contributing more than 5% towards the SIMPER dissimilarity (%) 
of IR.MIR.KR.Lhyp.Ft between years at the Dunstanburgh transect. 

Species 

2002/03 2011  

Average 

presence 

Average 

presence 

Average 

dissimilarity 

Percent 

contribution to 

dissimilarity 

Cumulative 

percent 

contribution 

Membranoptera 

alata 
0.32 0.45 10.15 21.05 21.05 

Electra pilosa 0.41 0.2 7.58 15.72 36.76 

Plocamium spp 0.41 0 5.96 12.37 49.13 

Membranipora 

membranacea 
0.27 0 3.51 7.28 56.41 

Obelia spp 0.14 0 3.03 6.29 62.7 

Echinus 

esculentus 
0.09 0.1 2.94 6.1 68.8 

Ceramium spp 0 0.15 2.79 5.8 74.59 

Delesseria 

sanguinea 
0 0.15 2.45 5.09 79.68 

 

5.3.3. Boulmer taxonomic composition of assemblages 

For the Boulmer transect (Fig 5.2, D) not all factors and interaction terms were 

significant in the PERMANOVA mixed model (Table 5.6). Species composition for 

factor ‘Year’ and interaction term ‘Biotope * Year’ did not differ (p > 0.1). Factor 

‘Biotope’ explained the most variation (Table 5.6), the overall amount of variation 

explained being ≈ 45%. Interaction term ‘Biotope * Year’ was non-significant (p = 

0.124) making post-hoc testing unnecessary.  

Table 5.6. PERMANOVA results with estimates of components variation for the 
Boulmer transect. Interaction terms ‘Visibility * Biotope * Year’ and ‘Visibility * Year’ 
were removed from the model by pooling as they had negative estimates of 
components variations.  

Terms 
P 

(perm) 

Estimates of components of 

variation 

Percentage contribution to total 

variation (%) 

Visibility 0.0241 21.823 0.54 

Biotope 0.0001 1536.6 38.36 

Year 0.3667 22.998 0.57 

Visibility * 

Biotope 
0.0002 116.41 2.91 

Biotope * Year 0.1239 126.06 3.15 

Residuals 2181.4 54.46 

 



125 
 

5.3.4. Farne Islands taxonomic composition of assemblages 

For the Farne Island transect (Fig 5.2, B) significant differences in species 

composition were only detected between the factor ‘Biotope’ and interaction term 

‘Visibility * Biotope’, with factor ‘Biotope’ explaining the most variation, other factors 

explaining little (Table 5.7). Overall variation explained by the model (~60%) was 

highest for this transect. The interaction term ‘Biotope * Year’ was again non-

significant (p = 0.1125), and no post-hoc testing was required.  

Table 5.7. PERMANOVA results with estimates of components variation for Farne 
Islands transect. Interaction terms ‘Visibility * Biotope * Year’ and ‘Visibility * Year’ 
were removed from the model by pooling as they had negative estimates of 
components variations.  

Terms P (perm) 
Estimates of components of 

variation 

Percentage contribution to total 

variation (%) 

Visibility 0.2403 25.23 0.72 

Biotope 0.0001 1593.70 45.75 

Year 0.4251 55.93 1.61 

Visibility * Biotope 0.0001 232.50 6.67 

Biotope * Year 0.1125 190.81 5.48 

Residuals 1385.70 39.77 

 

5.3.5. BNNC EMS area-wide taxonomic composition of assemblages 

Grouping of species by factor ‘Biotope’ (Fig 5.4) and a clear division between 

circalittoral and infralittoral classifications was observed (Fig 5.4). Groupings of 

samples by biotope were more variable than in any individual transect corridor (Fig 

5.2), suggesting spatial-scale effects within biotopes, particularly 

CR.MCR.EcCr.FaAlCr, IR.MIR.KR.Lhyp.GzPk and CR.MCR.EcCr.FaAlCr. Flu. 
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Fig 5.4. Two dimensional non-metric multi-dimensional scaling plot of species 
presence/absence survey data grouped according to biotope (all transects). 
Triangles represent Circalittoral rock with medium tide exposure. Crosses represent 
infralittoral rock with medium tide/wave exposure. Squares represent infralittoral rock 
with high sediment loads. Dashed black line shows approximate separation of 
infralittoral and circalittoral habitats. 2D stress = 0.14. 

 

Factor ‘Biotope’ explained the most variation (Table 5.8) and overall variation 

explained by the model was ≈ 43%, lower than for Boulmer and Farne Islands 

transect data. The interaction term ‘Biotope * Year’ was non-significant (p = 0.106) 

therefore no further post-hoc testing was undertaken. The estimates of components 

of variation for factors included in the overall model (Table 5.8) were positive and 

much greater than zero, suggesting that the non-significant p-values were robust 

(Anderson et al., 2008). 

Table 5.8. PERMANOVA results with estimates of components variation for all 

transects (Farne Island, Dunstanburgh and Boulmer). Interaction terms ‘Visibility * 

Biotope * Year’ and ‘Visibility * Year’ were removed from the model by pooling as 

they had negative estimates of components variations. 

Terms P (perm) 
Estimates of components of 

variation 

Percentage contribution to total 

variation (%) 

Visibility 0.121 28.5 0.8 

Biotope 0.001 1347.3 35.6 

Year 0.037 30.2 0.8 

Biotope * Year 0.106 52.6 1.4 

Visibility * Biotope 0.001 142.9 3.8 

Residuals 2178.5 57.6 
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5.3.6. Change in taxonomic composition of assemblages with fishing 

intensity 

Potential effects of fishing pressure on taxonomic composition of assemblages were 

investigated using the BNNC EMS area-wide data. In addition, this model allowed 

investigation into whether the addition of factor ‘Fishing pressure’ explained a higher 

amount of variation (Table 5.9).  

The null hypothesis that fishing pressure does not affect species composition 

between years was investigated and only results that are directly relevant to the 

investigation of that hypothesis are shown in Table 5.9. No other interaction terms 

(‘Visibility * Biotope’, ‘Visibility * Year’, ‘Biotope * Fishing’, ‘Visibility * Biotope * Year’ 

and ‘Visibility * Year * Biotope * Fishing’) were significant (all p > 0.14). 

Table 5.9. PERMANOVA results with estimates of components variation for all 
transects (Farne Island, Dunstanburgh and Boulmer) including fishing pressure. 
Interaction terms ‘Year * Fishing’, ‘Visibility * Fishing’ and ‘Visibility * Year * Fishing’ 
were removed from the model by pooling as they had negative estimates of 
components variations. 

Terms 
P 

(perm) 

Estimates of components of 

variation 

Percentage contribution to total 

variation (%) 

Visibility 0.127 34.7 0.865164 

Biotope 0.001 1234.1 30.76942 

Year 0.14 110.0 2.742595 

Fishing pressure 0.216 24.3 0.605864 

Biotope * Year 0.917 229.7 5.727037 

Biotope * Year * Fishing 

pressure 
0.142 310.7 7.746584 

Residuals 2067.3 51.54333 

 

P-values and variation explained by the factors ‘Visibility’, ‘Biotope’, and ‘Year’ 

differed from those of individual transects and BNNC EMS area-wide models. 

‘Biotope’ still explained the most variation while factor ‘Fishing pressure’ explained 

negligible variation in the model (0.6%) (Table 5.9). Overall variation explained by the 

model was 48.5%, higher than the BNNC EMS area-wide model without fishing 

(Table 5.8).  

Interaction term ‘Biotope * Year’ was highly non-significant (p = 0.917). However, 

post-hoc testing was undertaken in order to examine if changes in species 

composition of specific biotopes occurred. Pair-wise testing of ‘Biotope * Year’ for 
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factor year showed that species assemblages only differed in biotope 

CR.MCR.EcCR.FaAlCr (p = 0.01) which was not affected by dispersion effects 

(PERMDISP, p = 0.16). All other biotopes had p > 0.17. Interaction term ‘Biotope * 

Year * Fishing pressure’ was also not significant (p = 0.142). No further post-hoc 

testing was required.  

5.3.7. Change in Species richness (S) between years and fishing pressures 

There were no differences in species richness (S) between years, except for biotope 

IR.MIR.KR.LhypT.Pk (Table 5.10). No obvious pattern in S across biotopes was 

observed (Fig 5.5), athough Laminaria spp dominated biotopes (Lhyp) had slightly 

higher S than faunal and algal crust circalittoral rock (FaAlCr). 

 

 

Fig 5.5. Mean S grouped by biotope in different years (2003; light grey and 2011; 
dark grey). Significant differences of S between years (for the same biotope) are 
shown with * symbol. 

 

S differed between fishing pressures levels in three of the 10 biotopes tested 

(CR.MCR.EcCr.FaAlCr, CR.MCR.EcCR.FaAlCr.Bri and CR.MCR.EcCR.FaAlCr.Flu) 

(Table 5.10). Dispersion effects were not detected, confirming that these were 

location effects. S was higher at low fishing pressures within biotopes in all biotopes 

except CR.MCR.EcCR.FaAlCr.Bri (Fig 5.6). 

Year * 



129 
 

The S of Laminaria dominated biotopes (Lhyp) did not differ with fishing pressure. 

Three out of the five faunal and algal crust circalittoral rock (FaAlCr) biotopes differed 

with fishing pressure, FaAlCr and FaAlCr.Bri diversity being reduced, and FaAlCr.Flu 

enhanced, at the highest level of fishing pressure.  
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Table 5.10. Species number (S) PERMANOVA table of results grouped by biotope for factors ‘Fishing Pressure’ and ‘Year’. 
Significant results are shown in grey shaded cells. 

 FaAlCr FaAlCr.Bri FaAlCr.Adig FaAlCr.Pom FaAlCr.Flu Lhyp.GzPk Lhyp.Ft Lhyp.Pk LhypT.Ft LhypT.Pk 

‘Year’ 0.55 0.914 0.33 0.26 0.33 0.14 0.34 0.27 0.086 0.026 

‘Fishing pressure’ < 0.01 < 0.01 0.20 0.08 < 0.01 0.16 0.18 0.46 No test 0.71 

‘Year * Fishing pressure’ < 0.01 < 0.01 0.34 0.14 0.13 0.18 0.54 0.58 No test No test 



131 
 

 

 

  

Fig 5.6. Mean species number (S) grouped by biotope for low (light grey) and high 
(dark grey) fishing pressures. Significant differences of S between fishing pressures 
(for the same biotope) are shown with * symbol. 

 

The interaction term ‘Year * Fishing pressure’ was significant for S in biotopes 

CR.MCR.EcCr.FaAlCr, CR.MCR.EcCR.FaAlCr.Bri and post-hoc testing showed that 

S at low fishing pressure (Fig 5.7) differed between years (p < 0.006) for both 

CR.MCR.EcCr.FaAlCr, CR.MCR.EcCR.FaAlCr.Bri. However, S at high fishing 

pressures (black columns in Fig 5.7) did not differ between years (p > 0.158) for both 

CR.MCR.EcCr.FaAlCr, CR.MCR.EcCR.FaAlCr.Bri. The S of both 

CR.MCR.EcCr.FaAlCr, CR.MCR.EcCR.FaAlCr.Bri differed between fishing pressures 

in 2003 (p < 0.001) but did not in 2011 (p > 0.247). 
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Fig 5.7. Mean S for each year (2003 and 2011) at low (light grey) and high (dark grey) 
fishing pressures. A) Biotope CR.MCR.EcCr.FaAlCr B) Biotope 
CR.MCR.EcCR.FaAlCr.Bri. 

 

5.4. Discussion 

This section discusses the usefulness of BNNC EMS data in investigating potential 

potting impacts. Observed changes in taxonomic composition of assemblages 

between years, both within individual transects and more broadly, across the BNNC 

EMS were discussed. Effects of fishing intensity on any change detected and results 

regarding change in species diversity and ecologically important species were 

explored. Finally, the use of monitoring data for this research was critically appraised. 

5.4.1. Change in taxonomic composition of assemblages between years 

As would be expected, for individual transect data the factor ‘Biotope’ explained the 

most variation in models. Other factors and interaction terms differed between 

transects (Table 5.2, Table 5.6, Table 5.7) but had low explanatory power overall. 

The amount of variation explained by individual transect models varied 

(Dunstanburgh ~ 41%, Boulmer ~ 45% and Farnes ~ 60%). The Farne Island’s 

model best explained the species and biotopes observed in the transect surveys. 

Other studies investigating epibenthic community structure explained similar levels of 

overall variation. In the Belgian North Sea 40.5% of the variation was driven by site 

specific conditions, such as distance to shore, depth, substrate, salinity and 

temperature (De Backer et al., 2010). Here too, the low level of variation captured 

and the large scale of the study area mean that the impacts of human activities (if 

any) may not be discernible among natural variations (De Backer et al., 2010).  

Overall results indicate no changes in species composition of biotopes in the BNNC 

EMS across the study period; the interaction term ‘Biotope * Year’ being non-

significant for all transects except Dunstanburgh. Therefore changes in species 
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composition and patterns of presence/absence in specific species within biotopes 

between years could not be investigated with any certainty. However, post-hoc 

testing was undertaken to inform future research. Biotopes which showed differences 

in species composition between years and for more than two transects are 

summarised in Table 5.11. 

Table 5.11. Biotopes with significant differences in species composition between 
years for all transects. Grey cells show results that are influenced by dispersion and 
perhaps (although not necessarily) a location effect as well.  

Dunstanburgh transect Boulmer transect Farne Island transect 

IR.MIR.KR.Lhyp.GzPk Non-significant IR.MIR.KR.Lhyp.GzPk 

CR.MCR.EcCr.FaAlCr CR.MCR.EcCr.FaAlCr CR.MCR.EcCr.FaAlCr 

IR.MIR.KR.Lhyp.Ft IR.MIR.KR.Lhyp.Ft Non-significant 

CR.MCR.EcCR.FaAlCr.Flu CR.MCR.EcCR.FaAlCr.Flu Non-significant 

 

The only biotope that showed change in species composition between years across 

all three transects was CR.MCR.EcCr.FaAlCr, although dispersion effects were 

detected in samples from Dunstanburgh (Table 5.11). This suggests that community 

assemblages across the BNNC EMS scarcely changed overall between 2002 and 

2011. 

For the two biotopes where differences in species compositions between years were 

detected in at least 2 transects, and were not confounded by dispersion effects 

(IR.MIR.KR.Lhyp.GzPk and CR.MCR.EcCr.FaAlCr – see Table 5.11), SIMPER 

showed that similar species contributed to differences between years. The level of 

influence and changes in the frequency of species presence did not show any 

patterns between transects. The random nature of the observed change makes 

identifying cause difficult (Clarke, 1993) but suggests location differences, most 

probably linked to natural variation, differences in visibility or local scale impacts not 

quantified in this research (Clarke and Warwick, 2001).  

As discussed in chapter 4, natural variation in species composition of biotopes is very 

difficult to quantify. No work to date has quantified natural variability of either Faunal 

and Algal crusts (FaAlCr) or grazed Laminaria spp parks (GzPk) (Birkett et al., 1998; 

Hartnoll, 1998). However, FaAlCr is a particularly variable biotope in terms of 

assemblage structure (Fig 5.2) and GzPk is by definition a transitional state, making 
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differences in species assemblages between areas or years highly likely (Connor, 

1995). 

The present video data were collected in different seasons: the 2002 in early – mid 

August, whereas 2011 data were collected in mid – late October. Seasonal variations 

within individual biotopes also differ by location and inter-annually, albeit not 

quantified in any way in the UK biotope classification (Connor et al., 2004; Sundblad 

et al., 2013). However, seasonality is understood to have a major role in species 

composition and diversity (Connor et al., 2004). It is expected that species richness 

will increase within reef habitats at the height of the summer due to the growth of 

ephemeral species and reach a low point during winter (Dring and Dring, 1991; 

Dayton et al., 1998; Connor et al., 2004). Using the data available, there is no way of 

quantifying the difference that sampling in different seasons may have had on 

species composition results. This was not an issue for monitoring, where the 

maintenance of characteristic biotopes was required and seasonal variation in 

species composition was not taken into account (chapter 4). Large differences in 

visibility are observed between years, believed to be commensurate with change in 

season. Lower visibility is apparent on all video samples from autumn 2011 

compared to summer 2002. This is discussed further in section 5.4.6. Any 

conclusions derived from model results presented here should be treated with 

caution as inter-annual effects are likely confounded by seasonality.  

Some evidence suggests that species composition may have changed between 

years within biotope CR.MCR.EcCr.FaAlCr. Significant differences were observed for 

all transects except Dunstanburgh, which may be confounded by dispersion effects. 

This is a surprising result because the species assemblages were particularly 

variable spatially (MDS plots, Fig 5.2) making changes difficult to detect. High 

variability can be explained in several ways. Firstly, in the hierarchical classification 

system, FaAlCr is not the most detailed level (biotope rather than sub-biotope), and 

is therefore found over a wide range of depths (10m - 50m). This results in individual 

samples being exposed to different light levels, turbidity and water movement (wave 

and current), all of which can affect species composition (Connor et al., 2004). Much 

of the similarity across samples was driven by 5 species (Alcyonium digitatum, 

Flustra foliacea, Pomatoceros triqueter, Echinus esculentus and brittlestar spp 

(SIMPER analyses)). These easily identifiable species are found in the majority of 

biotopes in the BNNC EMS, occurring in all locations, with varying degrees of 
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abundance, and could explain the perceived similarity of FaAlCr species composition 

with other biotopes. Secondly, a degree of error is associated with conservative 

identification of biotopes (Davies et al., 2001). For example, biotopes identified as 

FaAlCr may in reality be FaAlCr.Adig. However, this is necessary where identification 

cannot be made with certainty, e.g. due to poor quality data (high sediment levels 

and poor visibility) (Foster-Smith, pers comm. 2013). Due to the high inherent 

variability in species composition within the more coarsely described FaAlCr biotope 

it is unusual that change was detected. Given the lack of specific patterns in species 

presence frequency and contribution between years, further investigation into 

potential change in species between years is required for this biotope. 

5.4.2. BNNC EMS area wide data  

In the area wide (BNNC EMS) model the wider spread of data observed in an MDS 

(Fig 5.4) compared to individual transects (Fig 5.2) suggests that small scale spatial 

effects may occur in species composition of biotopes CR.MCR.EcCr.FaAlCr, 

IR.MIR.KR.Lhyp.GzPk and CR.MCR.EcCr.FaAlCr.Flu (Fig 5.2). The greater 

variability in the area-wide data may reduce the possibility of detecting differences 

between years. The overall model explained less of the variation than two of the 

three transects (Boulmer and Farne Island) although factors and interaction terms of 

the overall model have similar percentage contributions to total variation compared to 

individual transects. In addition, p-values for factors and interaction terms of the 

BNNC EMS area-wide model differ compared to individual transect models, with 

higher p-values in the area wide model. For example, species composition differed 

with factor ‘Visibility’ at Boulmer and Dunstanburgh, but not in the overall model. 

The choice of the spatial scale used to monitor and investigate marine community 

change over time is important (Jones et al., 2000) (chapter 4). This research has 

shown that there are differences in species composition of biotopes at relatively small 

scales (between transects). Models using individual transects explained more of the 

variability and revealed potential differences in community composition between 

years (Dunstanburgh transect) compared to models using the area-wide data.  
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5.4.3. Change in taxonomic composition of assemblages with fishing 

pressure 

The BNNC EMS area-wide model investigated species community change between 

years. It explained a low overall variation using three factors (‘Visibility’, ‘Biotope ‘and 

‘Year’). A higher overall explained variation may be achieved by integrating further 

factors that affect species composition in to the model (Anderson et al., 2008; De 

Backer et al., 2010). Factor ‘Fishing pressure’ was included in the model to 

investigate if: 1) Potting pressure affected species composition of biotopes between 

years; 2) The addition of this factor increased the amount of overall variation in 

species composition explained by the model. There is no evidence that fishing 

pressure affects species composition. The inclusion of factor ‘Fishing pressure’ 

increased the variation explained by the model from approximately 43% to 48.5%. 

This increase was mainly attributable to interaction term ‘Biotope * Year * Fishing 

pressure’ explaining approximately 7.7% of the variability in the model (Table 5.9). 

Other variables and interaction terms only changed by small amounts.  

Although interaction term ‘Biotope * Year’ was not significant, some post-hoc testing 

was undertaken to examine whether changes in species composition of specific 

biotopes across the EMS were similar to those seen in individual transects. Although 

the BNNC EMS area-wide model examines 13 biotopes for differences in species 

composition between years compared to 6 –8 biotopes for individual transect models, 

the inclusion of factor ‘Fishing Pressure’ reduced the number of biotopes in which 

species composition changes were detected between years compared to individual 

transect models. With the inclusion of factor ‘Fishing Pressure’, only biotope 

CR.MCR.EcCR.FaAlCr exhibited altered species assemblages between years. Even 

over large spatial scales and with the inclusion of fishing pressure as a factor, 

biotope CR.MCR.EcCR.FaAlCr had significantly differing species composition 

between years. Although caution should be used when interpreting these results, as 

only two time periods were sampled and abundance data was lacking (see section 

5.4.6), temporal change is likely here. Further investigation into this biotope and its 

associated species to determine specific links to fishing pressure are recommended.  
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5.4.4. Change in species richness between years and fishing pressures 

Very little evidence indicated that species richness (S) within biotopes differed 

between years. Differences were only detected in IR.MIR.KR.LhypT.Pk (Table 5.10), 

where replication was low (2002 n = 7 and 2011 n = 8).  

In three out of ten biotopes, species richness differed between fishing pressure 

levels. Greater replication in each of these biotopes (n = 43–264) and lack of 

observed dispersion effects suggest this is a robust result. Nine out of the ten 

biotopes had higher species richness at low fishing pressures compared to the same 

biotopes at higher fishing pressures (Fig 5.6) although not all of these differences 

were significant. The only exception was biotope CR.MCR.EcCR.FaAlCr.Bri where 

low species richness in areas of high fishing pressure suggests that fishing may 

affect assemblage structure. However, these conclusions are speculative as further 

information is required; several fishing pressures levels, increased replication, 

investigation into spatial effects and more temporal data are all required to increase 

the reliability of any future work.  

The intermediate disturbance hypothesis states that (Connell, 1978; Huston, 1979) 

both higher and lower species richness can exist under higher levels of disturbance 

(Townsend et al., 1997). However, without extensive temporal sampling it is very 

difficult to determine the starting point of the community in relation to existing stress 

levels (Clarke and Warwick, 2001). In this case, higher species richness at lower 

fishing pressures seems logical, as these areas would be subject to lower amounts of 

disturbance. Differences in species richness with fishing pressure were only found in 

faunal and algal crust circalittoral rock (FaAlCr) biotopes: 3 out of 5 differed 

significantly, with a 4th only marginally non-significant (Fig 5.6). No differences in 

species richness were found in any of the five infralittoral Laminaria spp dominated 

(Lhyp) biotopes. Results indicate that biotopes most likely to be impacted by fishing 

pressure are deeper, faunal and algal crusts as opposed to shallower Laminaria spp 

biotopes. Deeper habitats in low energy systems generally have slower growing, 

relatively stable communities, but when damaged they are slow to recover original 

complexity (Hartnoll, 1998). These assemblages may be less able to withstand 

disturbances compared to those characterised by faster growing species found in the 

infralittoral zone (Connor, 1995; MacDonald et al., 1996; Hartnoll, 1998). In general, 

longevity of species and community stability are believed to increase with depth, 
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though data to support this are limited (Lundälv, 1985). Shallower habitats can be 

subject to harsher environment conditions such as increased wave action, tidal 

currents, sedimentation etc. compared to deeper habitats in the same area (Birkett et 

al., 1998; Connor et al., 2004)). 

Both patchy areas of rock/sediment and more homogeneous rocky reef habitats may 

be classified as the same biotope (e.g. CR.MCR.EcCR.FaAlCr), they may host very 

different densities of lobster and crabs, and levels of species diversity. It is not known 

which habitats support the highest abundances of lobster and crab. However, habitat 

complexity and high species diversity are often believed to strongly influence 

successful settlement and recruitment (Eggleston et al., 1999), therefore overall 

abundances of crab and lobster (Hartnoll, 1998; Hovel and Lipcius, 2001). Whether 

differences in biodiversity with different fishing pressures are a result of potting 

impacts or rather a result of variability in catchability within biotopes is not known. 

Longer time-series data would be required to determine between these.  

Interaction term ‘Year * Fishing pressure’ was significant for biotopes 

CR.MCR.EcCr.FaAlCr and CR.MCR.EcCR.FaAlCr.Bri, however no clear pattern in S 

between years at different fishing pressures was observed (Fig 5.7). The low number 

of biotopes affected and the limited temporal data do not confirm whether potting 

pressure impacts the environment or not. Work has highlighted methods required for 

future research and areas for further investigation. Similarly to the investigation into 

species composition, S of biotope CR.MCR.EcCr.FaAlCr differed when tested using 

various factors and interactions terms. The consistency of change found within this 

biotope for both species composition and S merits further investigation (chapter 6).  

5.4.5. Change in ecologically important species (reduced species list) 

Analyses using indicator species compares change over time in particular species 

that are thought to be vulnerable to impacts. The species used in the reduced list of 

the present study were chosen since a loss or change in these could potentially 

indicate biotope sensitivity and were based on published studies of mobile fishing 

gear impacts (Hiscock and Tyler-Walters, 2006). A reduced species list may be more 

cost effective as the fewer biological data needed means increased samples can be 

collected compared to collection of full species list data (Sundblad et al., 2013). 

Further, the choice of selected species for such a list will be dependent on the impact 

assessed (MacDonald et al., 1996; Hiscock and Tyler-Walters, 2006) and can 
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provide a focused approach, including for small scale impacts such as potting 

impacts (Eno et al., 2001; Shester and Micheli, 2011). The reduced list used here 

produced similar results to the full species composition data. Specific to our null 

hypothesis, interaction term ‘Biotope * Year’ being non-significant for all transects 

shows that there has been no change in species indicative of biotope health within 

biotopes between years. This conclusion is slightly different to the previous section: 

there has been no change in species composition of biotope between years. There 

appears to have been no deterioration in ‘biotope health’ between 2002 and 2011 but 

we cannot make any conclusions on the state of health of these biotopes throughout 

this time. I.e. biotopes may be in a ‘healthy’ or indeed ‘unhealthy’ state but in either 

case there is no evidence to suggest that these have changed between years.  

Although the ecologically important species showed no differences from the full 

species list, using a reduced species list has the potential to reduce cost, effort, time 

and increase sampling efficiency, i.e. more samples can be obtained in the same 

time for the same cost as using a full species list. Deciding between using a reduced 

species list and a full species list for scientific studies, should include weighing up the 

level of biological detail needed for the study, and the number of replicates / power 

needed to provide robust evidence (Davies et al., 2001). Previous studies have used 

reduced species lists, using presumed sensitive species specific to potting impacts 

(Eno et al., 2001; Sheridan et al., 2003; Coleman et al., 2012). However, these lists 

are often only applicable to specific geographic areas and no change in abundance 

of these sensitive species were detected (Eno et al., 2001; Coleman et al., 2012).  

The reduced species list used here was based on biotope sensitivity to a single 

dredging event (MarLIN, 2012), the force of which is on a much greater scale than 

that of potting (MarLIN, 2012). Thus, this reduced species list may not include 

species sensitive to specific potting impacts and therefore impacts may not be 

detected. Direct experimental observation of potting impacts on epibenthos would 

provide a more robust list of impacted species for investigation into the long-term 

impacts of potting (Dayton et al., 1998) (chapter 6). As with the use of the full species 

list, there may be methodological issues with drop-down camera data (see section 

5.4.7) that may hinder the detection of change. 
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5.4.6. Comparison of the effectiveness of methods for determining change 

All methods used in this research to determine ecological change between years 

show similar patterns; some change in species composition or richness was 

measured for each factor explored, but this was not consistent across biotopes 

(rejection of hypothesis 1). Differences in significant factors between models 

preclude the possibility of identifying the cause for any observed impact (rejection of 

hypothesis 2). Overall, there was little evidence that biotopes have changed between 

years in terms of species richness, full or reduced species composition. Biotope 

CR.MCR.EcCr.FaAlCr, which had the most samples (n = 264), and was not affected 

by dispersion effects in most cases, suggests that further investigation would be 

beneficial, as consistent differences were demonstrated throughout. Species 

richness provided the most robust evidence, but evenness was not measured due to 

the lack of abundance data; diversity (H’) and dominance might have provided 

increased information on environmental stress and trends in environmental change 

(Clarke and Warwick, 2001). 

5.4.7. Adequacy of monitoring data for scientific investigation 

Overall, no consistent potting impacts were found. This is attributable largely to 

limitations of the monitoring data, which include a lack of scale on the video, 

hierarchical classification used (chapter 1 and 4), issues with seasonality and 

inconsistencies of the quality and visibility of the video data. These are further 

discussed below.  

5.4.7.1. Lack of scale on the videographic data 

Estimates of scale were not needed for the ecological monitoring program of the 

BNNC EMS as only the analysis of biotope frequency and composition (chapter 4) 

was required to ensure that conservation requirements were met through the 

maintenance of features of interest and by confirming that no large scale changes 

had occurred (Davies et al., 2001; Saunders et al., 2011). However, in order to 

investigate smaller scale impacts, detailed hypotheses and in-depth biological 

information are required.  

Specifically for this research, the lack of scale available in the video data resulted in a 

loss of spatial and ecological resolution in the analysis. The presence/absence of 

species can result in certain biotopes looking identical on paper whereas in reality 
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they may be very different. For example, kelp forests and kelp parks, both of which 

can be grazed or not, are characterised by similar species (Laminaria hyperborea, 

urchins and foliose red algae). Whereas the ungrazed kelp forest has dense L. 

hyperborea, low abundance of urchins and an understory of red algae, a grazed kelp 

park will only have very sparse L. hyperborea and red algae and a high abundance of 

urchins (Fig 5.8). The exaggerated similarity of Laminaria spp biotopes is highlighted 

in the MDS plots of section 5.3.1 (Fig 5.2) where biotopes show high levels of 

similarity to each other (shown by grouping of samples).  

 

Fig 5.8. Photographs (at different scales) used to illustrate the differences in 
abundance of characterising species of A) kelp forest and B) grazed kelp park. 
(images from Paul Brazier, JNCC). 

 

The lack of abundance data means that analysis of species composition change of 

biotopes between years, using only presence/absence, will only be detected if there 

is a consistent loss of species. Changes in species of this magnitude would only be 

likely to occur due to large disturbances occurring at a wide spatial scale such as 

trawling impacts (Kaiser et al., 2000). Lack of abundance data also limits the 

statistical tests available to investigate subtle changes, and it may place too much 

emphasis on rare species (Clarke, 1993). This may increase variability and mask real 

impacts. Indeed, removal of rarer species is recommended for multivariate species 

assemblage analyses using abundance data (Clarke and Warwick, 2001). 

Determination of which species were rare and should be excluded from the analysis 

was not possible here, due to the lack of scale on video images. Future studies using 

drop-down cameras should have means of obtaining reliable abundance data in 

order to be able to provide evidence of lower-level impacts (Sotheran et al., 2004). 

More recent habitat condition monitoring are collecting abundance data using 

videographic methods in order to improve accuracy of analysis (CEFAS, 2012; 

B A 
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Fitzsimmons et al., 2015). For management purposes, changes in abundance may 

allow possible impacts to be identified and appropriate measures to be implemented 

in time to allow recovery to healthy levels.  

The identification of biotopes from drop-down video data relies heavily on 

identification of characterising species. Cryptic species will not be detected 

(Saunders et al., 2011) and in-situ identification by a taxonomist is often more 

accurate (Lam et al., 2006). This is an important limitation associated with using 

videographic methods, and when coupled with the lack of abundance estimates, 

objective identification of biotopes is made more difficult. Defining physical biotope 

features (boulders, cobbles, particle size, etc.) could not be estimated furthering the 

subjective nature of biotope identification (Bullimore et al., 2013). 

5.4.7.2. Seasonality and annual issues  

Detection of trends and changes in ecosystems requires a robust benchmark. This 

must be detailed enough to allow distinction between natural and anthropogenic 

changes (Dayton et al., 1998; Lindenmayer and Likens, 2009). The monitoring data 

used in this research were collected in the summer of 2002 (with some Farne Island 

transect data in summer 2003) and in the autumn of 2011. This adds elements of 

both annual variation for the Farne Island transect 2002/03 data and seasonal 

variation between all the data from 2002 and 2011. These data cannot be used to 

distinguish between seasonal variation and other factors or impacts. The less 

stringent scientific requirements of monitoring data mean this may not necessarily be 

an issue for surveillance or monitoring. However, for the purposes of more in-depth 

scientific investigations, seasonality issues would need to be clarified in order to infer 

any causality to any change detected.  

Due to centuries of fishing before designation in 2000, the BNNC EMS may already 

be a heavily modified marine environment. Undocumented removal of megafauna 

through fishing means there is little understanding of what the pristine natural 

community may have been like, and such a baseline cannot be established. The 

ability to separate anthropogenic impacts from natural ecosystem dynamics is 

therefore severely compromised (Dayton et al., 1998).  

Extensive baseline data are needed to distinguish between natural and 

anthropogenic change (Lindenmayer and Likens, 2009; De Backer et al., 2010). For 

this work data from only two years separated by a decade were available making any 
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detected changes difficult to attribute to either natural annual variation or 

anthropogenic impacts. The appropriate number of yearly sampling events needed to 

detect a change will vary depending on the scale of the impact and natural variations 

within community assemblages studied (Dayton et al., 1998). The exact number of 

samples can only be determined after a preliminary study (Hartnoll, 1998). Results 

from this work do not provide abundance data, rendering this impossible. 

5.5. Concluding remarks 

Very little evidence of change in species composition or species richness of biotopes 

between years was found (rejection of hypothesis 1). It was not possible to effectively 

investigate the role of fishing pressure on community change (rejection of hypothesis 

2). However, changes in species composition and richness of biotope FaAlCr were 

observed between years in most models and between fishing pressure levels. 

Further research could be beneficial. Issues with the data available reduced the 

robustness of results and conclusions. Abundance data and increased sampling 

across years and seasons are necessary to effectively determine whether any 

change in species composition or richness detected are a result of anthropogenic 

causes or natural variation. Results from this research suggest that on the scale of 

the BNNC EMS, which may already be in an altered state from millennia of fishing, 

small-scale potting impacts on epibenthic assemblages may not be detectable 

against the background of natural variability (De Backer et al., 2010). This suggests 

that anthropogenic impacts are not pushing the ecosystem outside natural limits. 

However, to unravel the long term impacts, sliding community baselines and small 

scale impacts, more detailed studies with increased temporal sampling is required 

(Dayton et al., 1998; De Backer et al., 2010). In-situ observations of direct potting 

impacts through experimental fishing will provide further information on some of 

these issues and are discussed in chapter 6. 
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Chapter 6 . Direct Potting Impacts on Common Reef Habitats in the 
Berwickshire North Northumberland Coast European Marine Site 

6.1. Introduction 

Habitat quality and health are integral to management of sustainable fish stocks as 

part of an ecosystem based approach to fisheries management (EBFM) (Pikitch et 

al., 2004; Armstrong and Falk-Petersen, 2008; Salomidi et al., 2012). On temperate 

reefs epifauna are key ecosystem components (Hiscock and Tyler-Walters, 2006) 

providing a source of food and shelter for other species, including commercially 

important ones (Lambert et al., 2011). Effects of high-impact mobile fishing gears on 

habitat and benthos have been well documented; epifauna are sensitive to both 

direct (physical disturbance) and indirect (changes of food web structure) fishing 

impacts (Kaiser et al., 1996; MacDonald et al., 1996; Collie et al., 1997; Collie et al., 

2000a; Collie et al., 2000b; Kaiser et al., 2006; Lambert et al., 2011). In contrast, 

physical impacts of static fishing gear such as baited pots on benthic habitats have 

been less studied and are debated (Eno et al., 2001; Lewis et al., 2009; Shester and 

Micheli, 2011; Coleman et al., 2013) although further information is required for 

management (MMO, 2012; Defra, 2013). The present research aims to investigate 

direct potting impacts on epibenthos of common reef habitats using marine protected 

areas in the North East of England as a case study (BNNC EMS and CQSM MCZ, 

Fig 6.1, A). 

Chapters 4 and 5 investigated the adequacy of using previously collected monitoring 

data to detect ecological change in the BNNC EMS between 2002/03 – 2012 and 

whether any changes found could be attributed to potting impacts. Although there 

was little evidence of potting impacts, this could be due to methodological issues 

(see chapter 4 and 5) and observations of direct impacts in situ through experimental 

fishing were recommended.  

Previous potting impact studies did not find evidence that potting impacted habitat or 

epibenthos, however these studies also had limitations. Eno et al. (2001) conducted 

experimental fishing in the South West of England, but the low replication and 

analytical methods used reduced statistical power and led to other issues (Eno et al., 

2001; Coleman et al., 2013). For example, certain species appeared to significantly 

increase in abundance in response to the potting treatment although these species 

could not have settled and grown within the time period and their presence was 
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attributed to sedimentation prior to the experiment (Eno et al., 2001). Comparison of 

circalittoral assemblages in sites both in fished areas and a protected no-take zone 

(NTZ) in south west England showed there had been no change in sessile epifauna 

composition over four years between these sites (Coleman et al., 2013). However, 

one of the major difficulties with assessing the localised impacts of potting is the 

small physical footprint of pots (≈ 1m2). Interactions between the seafloor and potting 

gear occur on a small scale compared to the large area that the potting gear covers 

(fleet of 12 pots ≈ 800m2). The low sample size compared to the large experimental 

area, coupled with control sites differing in depths (5 – 10m), exposures (controls 

more wave exposed than experimental areas) and substrate differences (boulder 

reefs compared to bedrock) compared to experimental sites (Coleman et al., 2012), 

meant that small scale impacts may have been overlooked. No studies to date have 

tried to control for habitat differences when examining direct potting impacts. This 

may be particularly important in order to detect low-level small-scale impacts. Expert 

knowledge on sensitivities of specific habitats to fishing, including potting, suggests 

that certain reef habitats such as ‘Rock with erect and branching species’, ‘Rock with 

low lying fast growing faunal turf’ and ‘Shallow subtidal rock with kelp’ are sensitive to 

high levels of potting activity (Eno et al., 2013), although experimental evidence is 

required to confirm this is the case.  

The few studies of direct potting impacts have only been conducted in circalittoral 

habitats. Depth may play a significant role in pot movement in the spiny lobster 

(Panulirus argus) fishery in Florida, single pots impacted a greater area of benthos in 

shallow water compared to deep water due to increased wave action (Lewis et al., 

2009). The present research focuses on impacts on shallower infralittoral and 

circalittoral habitats, as these may be more susceptible to damage due to increased 

wave action. It aimed to experimentally fish pots in specific habitats with control sites 

in close proximity with indistinguishable environmental conditions. It also aimed to 

address issues of statistical power with high-density SCUBA diver sampling using a 

replicated symmetrical BACI experimental design. This allowed cumulative impacts to 

be investigated in a robust and controlled manner. 

Based on recommendations from chapter 5, two subtidal habitats within the BNNC 

EMS (Mercer et al., 2003; Mercer, 2012) were selected for investigation: ‘Faunal and 

algal crusts on exposed to moderately wave-exposed circalittoral rock’ (abbreviated 

as FaAlCr) and Laminaria hyperborea park with foliose red seaweeds on moderately 
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exposed lower infralittoral rock (abbreviated as Lhyp.Pk). These habitats, which are 

commonly found across Europe and the UK (Connor et al., 2006; MESH, 2008), have 

been identified as important within the BNNC EMS (Regulation 33(2) advice, English 

Nature & Scottish Natural Heritage 2000), as they are characterised by erect and 

presumably fragile species, likely to be impacted by even low levels of disturbance 

(Roberts et al., 2010). There is some evidence that species composition and species 

richness of FaAlCr may have changed between 2002/03 – 2011 (chapter 5). In 

addition, Lhyp.Pk has high biodiversity (including erect species) and high biomass 

(Connor, 1989; Connor et al., 2004) and may be particularly prone to impact due to 

higher levels of wave action that could result in underwater pot movement and 

abrasion (Lewis et al., 2009). 

It was hypothesized that abundances of the erect and potentially fragile species 

would decline due to physical abrasion from pot fishing with increases in bare rock 

and greater percentage cover of encrusting species (hypothesis 1). For mobile gear, 

benthos of lightly fished areas has greater abundances, especially of erect fauna and 

flora, higher biomass and larger individuals compared to intensely fished sites (Collie 

et al., 1997; Collie et al., 2000b; Kaiser et al., 2002; Lambert et al., 2011); thus here, 

historically lightly fished sites were expected to be more sensitive to fishing impacts. 

Potting pressure for the NIFCA district was modelled using a combination of vessel 

sightings and landings data (chapter 2) and experimental sites within both historically 

intensively and lightly fished areas (herein referred to as intensively and lightly fished 

sites respectively) were subjected to the same amount of experimental potting. It was 

hypothesized that lightly fished areas would have greater abundances of erect long-

living species (hypothesis 2), and that these would exhibit greater change over time 

in assemblage structure than intensively fished areas (hypothesis 3).  

6.2. Methods 

6.2.1. GIS layers and site selection 

The focused nature of the experimental work in terms of habitat type, sampling 

method and fishing pressure required appropriate site selection. This was undertaken 

in two stages. The first stage was the geographical mapping of individual selection 

criteria (depth, bottom substrate hardness, fishing pressure and habitats) which were 

combined in a GIS to enable querying and selection of areas with the desired 

attributes. The second stage, consisted of ground truthing the selected areas to 
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finalise experimental areas using Scuba and expert knowledge to select habitat type 

and to avoid conflict with commercial fishing practices.  

Bathymetry and hardness layers were created for the whole of the Northumberland 

inshore fisheries district using Olex data (2012 – 2014) from the NIFCA patrol vessel 

the St Oswald (Fig 6.1, C and D). The Olex system collects data from the ships’ 

echosounder and GPS which it uses to provide an estimate of depth and seabed 

hardness for individual points. Over time, with the accumulation of data, these maps 

provide detail which far exceeds official paper charts (OLEX, 2014). Data were 

extracted from the Olex system and uploaded as a shapefile in Esri ArcGIS (v. 10.1). 

This point feature consisting of X, Y coordinates, depth (m) and substrate hardness 

(%) was used to produce a kernel density distribution which produces a continuous 

surface in a GIS. Kernel density distribution function was used to produce estimates 

of depth and substrate hardness (Fig 6.1, C and D). The smoothing factor determines 

the area around a given location within which data points contribute to the probability 

estimate (Wand and Jones, 1995; Van Der Veen and Logtmeijer, 2005). The 

distance (or search radius) of the smoothing factor was chosen as the mean distance 

between all points. 
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Fig 6.1. Location of Northumberland in Great Britain (A). Location of Berwickshire 
and North Northumberland Coast European Marine Site and the Coquet to St Mary’s 
recommended MCZ within the NIFCA district (B). Bathymetry (depth below chart 
datum, m) (C). Olex Seafloor hardness (percent hardness) (D). Spatial distribution of 
mean summer fishing effort (2012 – 2013) (number of pots month-1 km -2) (E). Spatial 
extent of areas matching broad selection criteria (red: < 16m, > 35% hardness, high 
fishing pressure; yellow: < 16m, > 35% hardness, low fishing pressure) (F). Final 
sites for experimental potting of Lhyp.Pk in intensively fished areas (insert i), FaAlCr 
in intensively fished areas (insert ii) and lightly fished areas (insert iii). 

 

Summer fishing effort maps for 2012-2013 were produced for the NIFCA district 

following methods described in chapter 2. Fishing effort was divided into three 

categories for ease of use, using the natural jenks function (Esri ArcGIS v. 10.1): low 

(0 – 139 pots month-1 km -2), medium (140 – 187 pots month-1 km -2) and high (188 – 

265 pots month-1 km -2) fishing pressure (Fig 6.1, E).  

Individual GIS layers were combined, subjected to selection rules, and highlighted 

areas assessed using expert knowledge. Due to the restrictions associated with 

scuba diving in terms of depth and bottom time available, sites were restricted to 

shallower than 16m depth. After discussion with NIFCA fisheries officers and 
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skippers of the Newcastle University research vessel, a conservative value of 

hardness attributed to rocky reefs was determined as any area with percent hardness 

> 35%. Sites with medium fishing pressure (140 – 186 pots month-1 km -2) were 

excluded. Areas matching the selection criteria are shown in Fig 6.1, F.  

Finally, areas matching the broad scale selection criteria were further refined by 

selecting areas with appropriate habitats (FaAlCr and Lhyp.Pk) using previous 

ecological monitoring data (Edwards, 1983; Foster-Smith and Foster-Smith, 1987; 

Connor, 1989; Holt, 1994; Brazier et al., 1998; Mercer et al., 2003; Mercer, 2012) and 

more recent CEFAS habitat maps (CEFAS, 2012). A small selection of areas were 

ground truthed prior to experimental deployment of fishing gear. Final site selection is 

shown in Fig 6.1, F. Areas large enough for experimental potting were not found for 

Lhyp.Pk in lightly fished areas. It is thought that this is because kelp dominated 

habitats are all heavily fished during the summer months (NIFCA, pers comm.).   

6.2.2. Design and layout of experimental fishing 

Potting impacts were investigated by experimentally fishing and monitoring impacts 

over time using Scuba diving and photoquadrats. Three sites were selected for each 

fishing pressure (acting as replicates) (Fig 6.2) at similar depths and distances from 

each other (Van Rein et al., 2012) . FaAlCr sites were sampled during July – 

September 2014 and Lhyp.Pk sites were sampled during July – August 2015. 

Fig 6.2. Diagram of the experimental design for biotopes FaAlCr and Lhyp.Pk. 
Summer fishing pressure; low = 0 –139 and high = 187 - 265 pots month-1 km2. Sites 
within habitats had similar depths. Lhyp.Pk from Paul Brazier. 
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Experimental sites comprised two areas: a 25 x 10m impact area and a smaller 5 x 

10m control area (Fig 6.3). These were delimited by anchor weights on the East and 

West sides of the site and located at the surface by marker buoys (Fig 6.3). 

Experimental sites were orientated in line with the tide which flows North to South.  

A balanced BACI design (Before-After Control-Impact, Smith (2006)) was used. 

Scuba divers, using 625cm2 photoquadrats (25 x 25cm) collected 120 samples at 

each site, sampling epibenthos and habitat type and providing a baseline of the area 

(Fig 6.3)(further detail on sampling methods in section 6.2.3). Following baseline 

sampling, a single standard steel framed parlour pot (0.66 x 0.46 x 0.38m with 10mm 

steel frame) attached on a 3m leg, tethered to a mainline maintained in place using 

two anchor weights, was left to soak in the impact areas of each site for a minimum 

of 24 hours (FaAlCr mean soak time : 71hrs 50mins (intensively fished areas) 64hrs 

53mins (lightly fished areas) and Lhyp.Pk mean soak time: 168hrs 32mins 

(intensively fished areas)) (Fig 6.3) and then hauled against the tide (North ↔ South), 

following local commercial practice, by Newcastle University research vessel, The 

Princess Royal, the NIFCA patrol vessel, St Oswald or by hand from the dive RIB 

Arktos if water depth was < 10m. The experimental area was resampled, a further 

120 photoquadrats being collected per site. Soaking, sampling and hauling were 

repeated a total of three times for each site. 

 

Fig 6.3. Diagram of example study site (Impact area (25 x 10m) and a control area 
(green line and squares, 5 x 10m) showing randomly distributed sample areas (grey 
squares, 0.625m2 each), ≈ 20kg anchor weights (red circles), tape measures used for 
transects (dotted black line) and experimental potting fleet: 20kg weights (black 
circle), rope (blue lines) and parlour pot (red rectangle).  
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The fishing pressure of this experimental study was much higher than that of lightly 

and intensively fished areas in 2012-2013 (Table 6.1). The maximum number of pots 

at sea month-1 km-2 for lightly and intensively fished areas (Fig 6.1, E) were multiplied 

by the number of hauls per month to provide an estimate of fishing pressure (pot 

hauls month-1 km-2). No data was available for the number of hauls in the region, so it 

was assumed that pots were hauled every day - a very conservative assumption 

because poor weather conditions will often prevent fishers hauling pots for at least 

some days in each month.  

Table 6.1. The estimated maximum number of pots in the sea per month per km-2 
(Fig 1), the number of hauls per month (estimated conservatively) and fishing 
pressure (pot hauls month-1 km-2) in lightly and intensively fished areas in 
Northumberland compared to the experimental fishing undertaken.  

 
Maximum number of pots in 

the sea month-1 km-2 

Number of hauls 

month-1  

Fishing pressure (pot 

hauls month-1 km-2) 

Lightly fished 139 30 4170 

Intensively fished 265 30 7950 

Experimental 

fishing 
10,000 3 30,000 

 

6.2.3. In-situ sampling 

In-situ sampling was undertaken by Scuba divers using a 625cm2 photoquadrat (25 x 

25cm) (Canon Powershot s120, Ikelite underwater housing and a Sea&Sea YS-02 

Underwater Strobe) (Fig 6.5, A) enabling sampling to be taken at the positional 

accuracy and selectivity needed for his type of in-depth study (Sayer, 2007). Diving 

was planned for slack water as recommended by Holt and Sanderson (2001, Section 

3-3) and followed standard UK Diving at Work Regulations (1997). The use of the 

small photoquadrat (25 x 25cm) resulted in high resolution imagery of the 625cm2 

area and the short focal length (40cm) reduced the negative influence that water 

column turbidity would have on species identification (Leujak and Ormond, 2007). 

The simple deployment and ease of operation meant that in-situ task loading was 

minimised, thus increasing sampling replication for a given bottom time (Van Rein et 

al., 2012). 

Transects were deployed 2.5m South and North of the anchor weights respectively 

(dotted black line, Fig 6.3). Photoquadrat sampling was undertaken haphazardly on 

both sides of the tape measure up to 2.5m away once every metre resulting in a total 
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of 50 photographs collected per transect. A further 20 quadrats were sampled in the 

control area in the same manner (Fig 6.3). Due to the spatial heterogeneity of 

temperate subtidal rocky reef habitats (Birkett et al., 1998; Hartnoll, 1998; Van Rein 

et al., 2012) a large number of small sized quadrats were deemed to provide a 

greater accuracy, precision and efficiency when describing communities compared to 

fewer large quadrats (Sayer and Poonian, 2007). As the small quadrat size did not 

allow for easy sampling of kelp abundance (Laminaria hyperborea, > 50cm), a crucial 

element of Lhyp.Pk community composition and structure, kelp abundance was 

recorded in a 1m2 area on either side of transects every 5m. 

6.2.4. Data extraction 

In order to maintain efficient sampling, communities were treated as two-dimensional 

(Meese and Tomich, 1992; Van Rein et al., 2011). Benthos from the images collected 

from FaAlCr habitats were identified and recorded to the lowest taxonomic level 

using up-to-date identification manuals (Cornelius, 1995; Hayward and Ryland, 1995; 

Bunker et al., 2012; Wood, 2013b; Wood, 2013a) and expert knowledge. Epibenthos 

from the images collected from Lhyp.Pk habitats was identified to broad benthic 

categories of coarse taxonomic resolution to represent their structural role within the 

community. This was due to difficultly identifying individuals to species level (partially 

obstructed by shadows from, or overlapping algae) as well as the need for 

microscopic equipment for identification of many algal species. The groups selected 

(Van Rein et al., 2012) were: red foliose algae > 1cm height above the substratum, 

non-red foliose algae > 1cm height above the substratum, red algal turf <1cm height 

above the substratum, non-red algal turf < 1cm height above the substratum, 

encrusting algae, mixed hydrozoan/bryozoan turf <1cm, feather hydroids and 

encrusting bryozoans. 

Benthos which could not be identified because it was too far away (e.g. in a crevice) 

or too dark was excluded from the analysis. Mobile species were also excluded from 

the analysis. Percentage cover was recorded using a point method (Aronson et al., 

1994), which is time efficient, unbiased by observers, and is more sensitive to 

changes in community composition than visual estimation and frequency occurrence 

methods (Aronson et al., 1994; Drummond and Connell, 2005; Van Rein et al., 

2012). Images were overlaid with 100 evenly placed points (Drummond and Connell, 

2005), using photoQuad (v1.0) (Trygonis and Sini, 2012), the epibenthos under each 
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point was identified and represented 1% of the image area (or 6.25cm2) (Fig 6.5, b). 

Species abundances from a random sample of 20 images from each habitat were 

recorded using the point intercept method by a second experienced ecologist and 

species abundances were cross verified to the original abundances estimates. All 

cross verified images did not significantly differ in abundance or species composition 

between researchers. 

6.2.5. Data analysis 

The location of the pot or anchor weight along the transect was recorded during 

every dive. The data for the site were divided into 5 sections (north-south) along the 

transect (every 5m) (Fig 6.4). For each site, images from a 10 x 10m area, which had 

experienced maximum impact, were used for analysis. Data pre fishing, termed 

‘Baseline’ data (B) were compared to the same areas after fishing, termed ‘Impact’ 

(I). To ensure any changes detected were potting impacts and not natural variation, 

data for control sites were analysed before and after (referred to as Control Baseline 

(CB) and Control Impact (CI) data, respectively). The spatial scale used for this 

experimental work was purposely small-scale in order to investigate any impacts with 

a high degree of accuracy. Experimental fishing studies provide useful insights into 

direct impacts, and relative severity of these as well as investigating habitat – fishing 

gear interactions (Kaiser et al., 2006; Hinz et al., 2009). However, results from small-

scale experimental fishing impact studies are difficult to extrapolate to an ecosystem-

wide scale which are ideally required for EBFM (Hiddink et al., 2006; Hinz et al., 

2009). However, due to the limited research on potting impacts to date, robust and 

focused experimental evidence is first required (Eno et al., 2001; Gray et al., 2006). 
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Fig 6.4. Diagram of example study site (Impact area (25 x 10m) and a control area 
(green line and squares, 5 x 10m) showing randomly distributed sample areas (grey 
squares, 0.25 x 0.25m2 each), ≈ 20kg anchor weights (red circles), tape measures 
used for transects (dotted black line). Impact zones (red line, every 5m) are shown. 

 

A total of 920 images were analysed (40 images for each B, I, CB and CI per site) for 

both high and low fished FaAlCr areas and 460 images were analysed (40 images for 

each B, I, CB and CI per site) for high fished Lhyp.Pk areas. Benthic community data 

were square root transformed to reduce dominance of common taxa (Martin et al., 

2012) and Bray Curtis similarity matrices produced. Exploratory statistics including 

multivariate analysis (cluster dendograms and multi-dimensional scaling plots) were 

conducted using PRIMER (v.6).  

Differences in community data were explored between experimental treatments 

‘Baseline’ – ‘Control Baseline’, ‘Baseline – Impact’, ‘Control Baseline’ – ‘Control 

Impact’ and ‘Impact’ – ‘Control Impact’ using mixed models in PERMANOVA (v. 

1.0.5) (type III sum of squares, under a reduced model with 999 permutations) 

following a 2 factor design with interaction (site as a random factor with 3 levels: site 

1, 2, 3, and treatment type as a fixed factor with 2 levels: B – CB, B – I, CB – CI, I -CI) 

for FaAlCr and Lhyp.Pk habitats. Tests of homogeneity of dispersion (PERMDISP 

routine in PERMANOVA) were used to test the null hypothesis of no difference in 

dispersion among a priori groups. Post-hoc analysis using the pairwise function in 

PERMANOVA (v. 1.0.5) investigated which factor levels were responsible for 

significant interactions (type III sum of squares, under a reduced model with 999 

permutations).  
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The components of variation were estimated to provide a measure of the multivariate 

variability between factors within data sets (Anderson et al., 2008; Martin et al., 2012; 

Van Rein et al., 2012). Due to the use of Bray-Curtis similarity matrices, the 

estimates of components of variation can be directly interpreted as percentage 

dissimilarity of conditions within experimental factors (Anderson et al., 2008). 

Variability associated with factor ‘site’ indicates general spatial variability, that 

associated with factors B – CB, B – I, CB – CI, I -CI indicates temporal variability and 

that associated with ‘Residuals’ indicates more specifically the residual variability 

among replicate photoquad samples (Anderson et al., 2008). 

To visualize multivariate patterns, principal coordinate analysis (PCO) was used 

(PERMANOVA v. 1.0.5) because the variation explained by the axes of all plots was 

high, these were able to capture the high-dimensional structure adequately and thus 

provide a closer reflection of the resemblance values used in the partitioning 

methods for PERMANOVA than a non-metric MDS plot (Anderson et al., 2008). 

There were too many samples to visually examine differences in assemblages 

between treatments B, I, CB and CI in a single ordination (n = 480) therefore centroids 

of each treatment and site were produced and plotted using PCO (Terlizzi et al., 

2005). 

Similarity of percentage analysis (SIMPER, Clarke (1993)) was used to identify the 

percentage similarity that benthos contributed to the measure of Bray-Curtis 

Similarity for treatments (B – I and CI – CB). This analysis allowed identification of 

benthos that were most important in differentiating between treatments. Benthos 

were selected as important if they contributed to > 10% dissimilarity and if the 

dissimilarity/standard deviation ratio was > 1 (an indicator of consistency in 

contribution to dissimilarity across samples) (Terlizzi et al., 2005; Clarkre, 1993). 

A total of 72 kelp abundance recordings were obtained from Lhyp.Pk habitats. 

Differences in kelp abundance between treatments were tested for significance in 

PERMANOVA v. 1.0.5 (type III sum of squares, under a reduced model with 999 

permutations) following a 2 factor design with interaction (site as a random factor with 

3 levels: site 1, 2, 3, and treatment type as a fixed factor with 2 levels: B – CB, B – I, 

CB – CI, I –CI).  
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6.3. Results 

6.3.1. Site features 

Intensively and lightly fished FaAlCr sites were on hard rocky substrates which had 

similar assemblages dominated by faunal (e.g. encrusting bryozoan, Spirobranchus 

spp and short hydroid turf) and algal (Corallinaceae) crusts (Fig 6.5, B and C). Sites 

tended to have a grazed appearance, potentially due to the abundance of Echinus 

esculentus (Connor et al., 2004). Erect species such as Alcyonium digitatum and 

other feather hydroids were frequently encountered (Fig 6.7, A and B). There were 

some differences in assemblages between intensively and lightly fished areas. 

Generally, the intensively fished sites, which were slightly shallower (ca 12m chart 

datum compared to ca 13.5m chart datum for lightly fished sites), had low 

abundances of fleshy erect red algae (Fig 6.7, A and B). Intensively fished sites also 

had a greater diversity of Cnidaria (Tubularia indivisa and Caryophyllia smithii) and 

Chordata (Ciona intestinalis and Clavellina lepadiformis). All differences in 

assemblages were for species with low abundance (Fig 6.7, A and B). 
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Fig 6.5. Photoquadrat with camera housing and strobes (A). Photoquadrats of typical 
species from lightly fished FaAlCr sites (B), intensively fished FaAlCr sites (C) and 
intensively fished Lhyp.Pk sites (D).  

 

The kelp dominated Lhyp.Pk habitat (Connor et al., 2004) was only sampled in 

intensively fished areas at depths of between 3.5 - 4m (chart datum). Sites were 

found on hard rocky substrates and were dominated by erect species such as sparse 

kelp (Laminaria hyperborea and Saccharina latissimi) with a dense turf of foliose red 

seaweeds (Callophyllis laciniata, Plocamium cartilagineum, Delesseria sanguinea, 

Hypoglossum hypoglossoides and Phycodrys rubens) as well as coralline crusts and 

faunal crusts (bryozoans and hydroids, Spirobranchus spp and Balanus spp) (Fig 

6.7, C). Feather hydroids and sponges were also frequently encountered although in 

low abundances (Fig 6.7, C).  

6.3.2. Multivariate analysis of potting impacts 

The same overall changes were observed in percentage benthos cover between 

BACI treatments in different habitats and fishing pressures. The non-significant 

A B

C D
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interaction Site x B - CB indicated assemblages did not differ between Baseline 

versus Control treatments at all sites (post hoc test all p > 0.179) for all habitats and 

fishing pressures (all p > 0.072, Table 6.2). Thus any changes detected between B 

and I that were not mirrored in the controls (CB - CI) could be judged to be due 

experimental pot fishing. 

There was a significant interaction between Site x B - I for all habitats and fishing 

pressures (all p > 0.002, Table 6.2). Post hoc testing confirmed assemblages differed 

between Baseline and Impact at all sites (all p < 0.048) none of which were affected 

by dispersion (all p > 0.06) for FaAlCr and Lhyp.Pk intensively fished habitats. 

Dispersion was detected for FaAlCr lightly fished habitats (p < 0.014). Assemblages 

also differed between CB – CI at all sites for all habitats and fishing pressures (all p < 

0.049, Table 6.2, no dispersion effects, all p > 0.094). However, assemblages did not 

differ between I – CI at any sites for all habitats and fishing pressures (all, p > 0.145, 

Table 6.2) indicating that temporal change in community composition between B - I is 

not attributed to potting impacts. 

As dispersion effects were detected for FaAlCr low fished habitats it is unclear 

whether differences detected were due to location or dispersion difference (Anderson 

et al., 2008). In order to investigate this further, the PCO centroids of the multivariate 

data were used to examine the direction and magnitude of changes in assemblages 

between treatments (Fig 6.6). 
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Table 6.2. PERMANOVA based on the Bray-Curtis similarity (square root 
transformed) of multivariate data collected in intensively fished, lightly fished FaAlCr 
and intensively fished Lhyp.Pk areas (999 permutations per test). Highlighted grey 
cells show significant p-values. Results are shown for treatments B (baseline), I 
(impact), CB (control baseline) and CI (control impact). 

Habitat Treatment 
Source of 
variation 

df SS MS Pseudo F p 
Estimates of 

components of 
variation 

FaAlCr B - CB Site 2 19170 9585.1 17.061 0.001 11.3 

intensively   Site x B - CB 2 2018.5 1009.3 1.797 0.072 3.5 

fished  Residuals 206 1115730 561.8   23.7 

 B - I Site 2 13724 6862.1 14.121 0.001 9.2 

  Site x B - I 2 6562.3 3281.2 6.752 0.001 8.6 

  Residuals 221 107390 485.93   22.0 

 CB – CI Site 2 15200 7599.9 13.125 0.001 9.7 

  Site x CB - CI 2 3837.7 1918.8 3.3139 0.005 6.0 

  Residuals  125650 579.03   24.0 

 I – CI Site 2 17899 8949.4 15.304 0.001 10.2 

  Site x I - CI 2 1812 906.01 1.5493 0.145 2.8 

  Residuals  135670 584.79   24.1 

FaAlCr B - CB Site 2 2832.1 1416 5.9586 0.001 3.8 

lightly   Site x B - CB 2 585.88 292.94 1.2327 0.305 1.6 

fished  Residuals 239 56797 237.65   15.4 

 B - I Site 2 5235.4 2617.7 11.272 0.001 5.4 

  Site x B - I 2 2439.1 1219.5 5.2515 0.001 4.9 

  Residuals 237 55038 232.23   15.2 

 CB – CI Site 2 4168.5 2084.3 9.6399 0.001 4.9 

  Site x CB - CI 2 2005.2 1002.6 4.6371 0.001 4.5 

  Residuals 230 49728 216.21   14.7 

 I – CI Site 2 9065.2 4532.6 21.89 0.001 7.5 

  Site x I - CI 2 285.44 142.72 0.68926 0.7 1.3 

  Residuals 228 47211 207.07   14.4 

Lhyp.Pk B - CB Site 2 20 828 10 414 6.2 0.001 10.9 

intensively   Site x B - CB 2 5 296 3 447 1.6 0.139 5.1 

fished  Residuals 218 36 8260 1 689   41.1 

 B - I Site 2 10 875 5 437 3.2 0.002 7.6 

  Site x B - I 2 10 220 5 109 3.0 0.007 10.3 

  Residuals 195 32 7830 1 681   41.0 

 CB – CI Site 2 26 518 13 259 10.0 0.001 13.2 

  Site x CB - CI 2 4 092 4 046 2.8 0.045 4.6 

  Residuals 206 273 120 1 326   36.4 

 I – CI Site 2 21 381 10 691 8.4 0.001 12.3 

  Site x I - CI 2 3 391 1 695 1.3 0.238 3.7 

 

For all habitats and fishing pressures, changes in multivariate space between 

treatments were similar. B and CB samples show clustering by site as do I and CI (Fig 

6.6, A,B and C). The direction and distance between B and I resembled those seen 

between CB and CI at individual sites (Fig 6.6, A,B and C) reinforcing PERMANOVA 
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results (Table 6.2) that community assemblages changed in similar ways in the 

experimental and control areas suggesting experimental potting impacts were not 

responsible. 
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Fig 6.6. Principal coordinate analysis (PCO) of square root transformed percentage 
cover survey data grouped according to treatment and site for FaAlCr with high 
fishing pressure (A), low fishing pressure (B) and Lhyp.Pk with high fishing pressure 
(C). Lines show the direction of change in assemblage structure between B and I, 
and between CB and CI. 
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6.3.3. Species composition 

There were only small differences in overall abundance of individual species between 

treatments in FaAlCr and Lhyp.Pk (Fig 6.7, A, B and C). Samples from intensively 

and lightly fished FaAlCr habitats had high cover of faunal and algal turf (often 

covered in silt), Spirobranchus spp, bare rock and gravel (Fig 6.7, A and B). Still 

frequently occurring but with lower percentage cover were encrusting algae and 

encrusting bryozoans (Fig 6.7, A and B). All other species were much less frequent. 

Samples from intensively fished Lhyp.Pk had high cover of red algae turf (< 1cm), red 

algae (> 1cm), non-red algae (> 1cm) and short faunal (hydroid, bryozoan) turf often 

covered in silt (Fig 6.7, C). Frequently occurring but with lower percentage cover 

were encrusting algae, encrusting bryozoan, bare rock and Spirobranchus spp (Fig 

6.7, C). All other species were much less frequent (Fig 6.7, C). 

Species percentage cover data did not differ greatly pre- and post experimental 

fishing in either the experimental area or the control areas (Fig 6.7, A, B and C). 

Individual species’ contributions to significant differences between treatments at site 

level using SIMPER showed the benthos components which were consistent 

indicators (i.e. contributed more than 10% of the dissimilarity for all sites and 

dissimilarity/standard deviation ratio > 1 (Terlizzi et al., 2005; Clarkre, 1993)) were 

the same for each site within habitats and contributed to the differences between 

treatments in similar ways (see appendix 4). No pattern in the benthos between 

treatments was consistent with those predicted by potting impacts. These results are 

consistent with the earlier broader analysis showing that B-I and CB-CI differ in similar 

ways due to either natural variation or habitat heterogeneity. 
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Fig 6.7. Square root transformed percentage cover of benthos from B (dark grey 

columns), CB (white column), I (light grey) and CI (white) experimental areas in 

intensively fished (A), lightly fished (B) FaAlCr and intensively fished Lhyp.Pk (C) 
habitats.

A

B

C
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6.3.4. Kelp abundance 

Kelp abundance (Laminaria hyperborea and Saccharina latissimi > 50cm) was highly 

variable (Fig 6.8) with no differences found between sites (all p > 0.08) or treatments 

(all p > 0.17).  

Fig 6.8. Mean in-situ kelp abundance (m2) across three Lhyp.Pk sites at different 
experimental treatments. Grey boxes decreasing in shade represent baseline, Impact 
1 and Impact 2, respectively. White boxes represent samples from controls for each 
previous treatment. 

 

6.4. Discussion 

Evidence from experimental fieldwork of direct impacts of potting on benthic 

communities in two different habitats with different fishing pressures will be discussed 

in the following sections. Robustness, sensitivity and explained variation of the 

analysis will be explored.  

6.4.1. Direct impacts of potting on epibenthos in Northumberland 

Similarly to previous research into potting impacts in the UK (Eno et al., 2001; 

Coleman et al., 2013), abundance of erect species did not decline with physical 

abrasion from pot fishing (rejection of hypothesis 1). This was the case in both 

intensively and lightly fished FaAlCr and intensively fished Lhyp.Pk habitats, although 

a shift in community composition was found but attributed to natural change 

(rejection of hypothesis 3), when considering controls. Repeated potting, over the 

course of four weeks was conducted in a small area (10 x 10m) at each site, 

equating to a fishing pressure of 30,000 pots hauled km -2 year -1, an unrealistically 

high fishing pressure, compared to even the highest recorded fishing pressure in the 
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NIFCA district of 1330 pots hauled km -2 year -1 in 2014 (chapter 2). The physical 

footprints of static gears such as shellfish pots are much smaller than mobile gears 

such as trawls and dredges (Nielsen et al., 2013). Indeed, it is very unlikely, due to 

small size of the pot footprint on the seafloor, that pots fished commercially would 

land, soak and be hauled, in the same location in successive fishing trips (Eno et al., 

2001).  

Although the fishing method used in this research was not typical of commercial 

fishing practices - a single pot, tethered to two weights, compared to a commercial 

gear setup of a fleet of 10 or more pots tethered to two weights - it was chosen due 

to the requirement to accurately place the pot in a small study area, allowing a large 

number of replicates to be sampled over a small distance, providing high statistical 

power. In addition, due to the use of two 20kg weights and pot in a small 

experimental area, this fishing method was deemed to be more likely to impact the 

seafloor than commercial fishing methods. Overall, with the intensity of fishing and 

potting gear layout, this experiment has far exceeded the limit of maximum likely 

impact from commercial potting over a short period of time (1 – 2 months), however 

previous work did not detect long-term impacts (Coleman et al., 2013). 

Erect species found in intensively and lightly fished FaAlCr and intensively fished 

Lhyp.Pk habitats, such as Laminaria hyperborea, red and brown algae > 1 cm, 

Delessaria sanguinea, Flustra foliacea, Alcyonium digitatum and Feather hydroids 

(e.g. Nemertesia ramosa) are all expected to recover within several months (6 – 36) 

from the mechanical interference, crushing, physical blows against, or rubbing and 

erosion of a single passage of a standard scallop dredge landing on or being 

dragged across the organism (Jackson, 2004; Tyler-Walters, 2006; Tyler-Walters and 

Ballerstedt, 2007; Budd, 2008). Thus, it is likely that given the spaced out nature of 

repeat potting in any give location by commercial fishers, and the lower-level of 

impact from potting compared to scallop dredging (Thrush and Dayton, 2002; 

Coleman et al., 2013; Eno et al., 2013), these species are unlikely to be severely 

damaged even at the high potting pressures shown here or are expected to recover 

between fishing events. Encrusting and smaller species such as encrusting 

bryozoans, sponges, Balanus spp and Spirobranchus spp, are unlikely to be 

damaged by pots, their shape and size indicating these organisms can withstand 

physical disturbance and abrasion. Thus, it is unlikely, given the lack of evidence of 

short-term direct impacts that longer-term direct potting impacts occur in these 
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habitats. However, rocky reef habitats in Northumberland may already be in a 

degraded state due to decades of fishing (Scheffer et al., 2001; Nyström et al., 2012; 

Caveen et al., 2014) and current potting impacts may not be detectable. The species 

composition of habitats in intensively fished FaAlCr areas, which were dominated by 

short mixed faunal and algal crust, with few large slower-growing erect fauna and 

flora, suggests harsh physical conditions (Hartnoll, 1998). Whether these physical 

conditions are due to long-term potting, environmental conditions, other impacts or a 

combination of these is unclear. However, local knowledge of the area indicates that 

abundant sediment, which could cause scour damage to species, and high energy 

environment from waves and currents (even in summer) are likely to, at least in part, 

contribute to determining the species composition of the area. Lightly fished FaAlCr 

habitats were also composed of hardy benthic species further suggesting that 

environmental conditions may be driving assemblage structure in these areas. 

Overall, intensively fished FaAlCr areas had a greater overall diversity and higher 

abundance of large erect species than low fished areas (Fig 6.7), in contrast to the 

earlier prediction from areas impacted by trawling (Collie et al., 1997; Collie et al., 

2000b; Kaiser et al., 2002; Lambert et al., 2011), that sites with high fishing pressure 

would already be degraded compared to sites with low fishing pressure: lower 

species richness, lower abundance, smaller individuals or less abundant erect and/or 

slow growing species (rejection of hypothesis 2). In this case, there is no evidence 

that differences in community composition between intensively and lightly fished 

habitats is due to potting. However, as the biotope ‘Faunal and algal crusts on 

exposed to moderately wave-exposed circalittoral rock’ has somewhat variable 

community composition even between areas separated by only hundreds of metres 

(chapter 5), conclusions on the ‘health’ of these biotopes and historic impacts of 

potting would require much larger samples over a greater spatial extent. Investigation 

of the interplay between environmental variables and anthropogenic uses in the 

resultant community composition using predictive modelling (similar to Lambert et al. 

(2011)) would be useful in future. 

Visual observations of changes in species distribution or impacted areas made 

during data collection are not always reflected in analyses, either because small 

impacted areas are not sampled (i.e. because of random sampling), or because 

small-scale changes may not be detected by analytical models. Throughout this 

fieldwork no observations were made during dive surveys that indicated potting was 

having any abrasive action on, or removal of, benthos. Algal species were observed 
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as bending under the weight of the pot (similar to Eno et al. (2001) on seapens), 

rather than being abraded or removed. In addition, pots did not move throughout the 

duration of the SCUBA dives (approx. 1 hour) suggesting that pot movement does 

not occur during slack tides.  

Laminaria hyperborea (> 50cm) provides habitat and substratum for many 

organisms, with high biodiversity recorded in kelp habitats (Birkett et al., 1998). A 

loss of this species from the habitat could result in loss or degradation of the 

associated community (Tyler-Walters, 2007), as well as potentially changing the 

classification of the biotope. Here potting did not affect kelp abundance (Fig 6.8), 

however, recordings of kelp abundance were variable within transects and between 

treatments (Fig 6.8). This variability in kelp abundance, albeit expected due to the 

dynamic nature of these habitats where competition for light, space and food results 

in a species rich but patchy distribution patterns of flora and fauna (Jones et al., 

2000), may be masking small changes in abundance due to potting impacts. 

However, it is clear that potting impacts on epibenthic assemblages cannot be 

detected, even with high sample numbers, against the background of natural 

variability, suggesting that these impacts are not pushing the ecosystem outside 

natural limits (De Backer et al., 2010).  

6.4.2. Limitations of the experimental design 

Potting impacts were investigated on the two most frequently occurring biotopes in 

Northumberland (chapter 4). FaAlCr and Lhyp biotopes were recorded a mean 60% 

and 17% frequency occurrence using a stratified random sampling methodology 

across the Northumberland fishing district (Mercer, 2012). In addition, FaAlCr 

habitats are actively targeted by fishers over other habitats (chapter 3). These 

habitats are deemed good experimental habitats and to be representative of local 

fishing practices, as well as being present across many parts of Europe (MESH, 

2008). However, rarer habitats with smaller spatial extents may be more sensitive to 

potting impacts, for example Sabellaria spinulosa habitats which are present in 

Northumberland in small areas, are thought to be sensitive to fishing (Holt et al., 

1995; Vorberg, 2000; Roberts et al., 2010; Eno et al., 2013). In the region, these 

habitats are also much more difficult to locate and may not be large enough to allow 

experimental potting.  
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This research sought to examine whether potting impacts were greater (or more 

detectable) in shallower habitats, which may be subject to higher wave action (Lewis 

et al., 2009). There was no evidence that shallower habitats in Northumberland were 

more sensitive to potting impacts even though all habitats at all fishing pressures 

were subject to sustained periods of bad weather (swell > 1.5m over > 7 days). In 

addition, pots left in shallow water during bad weather did not follow commercial 

practice as fishers move fleets of pots to deeper water areas in order to avoid 

damage to their fishing gear (Turner et al., 2012; Coleman et al., 2013), and as such 

habitats sampled in this research are rarely fished in winter and spring (chapter 2). 

This study, with high levels of potting effort, maximising possible damage 

demonstrated that there was no detectable impact. 

6.4.3. Accuracy of epibenthic community sampling 

Community data extracted from images must be accurate and robust for results and 

conclusions from this research to be valid. Two of the most commonly used methods 

for collecting quantitative epibenthic data (spatially and for abundance estimates) for 

monitoring and impact assessment are in-situ quadrat recording and photoquadrats 

which are processed at a later date (Davies et al., 2001; Sayer, 2007; Van Rein et 

al., 2011; Moore et al., 2015). The advantages and limitations photoquadrats used for 

this research will be compared to in-situ quadrat recording in the following section. 

In circalittoral habitats approximately half as many species were identified from 

photoquadrat samples compared to in-situ records of the same quadrat (Moore et al., 

2015) (average taxa recorded per quadrat 15.4 in-situ, 9.3 photoquadrat). Although 

large distinctive species (Delessaria sanguinea, Flustra foliacea, Clavellina 

lepadiformis, Alcyonium digitatum) were consistently recorded between in-situ and 

photoquadrat methods, smaller inconspicuous species were consistently under-

recorded in photoquadrat samples (Moore et al., 2015). This is presumably because 

of the static nature of the image resulting in smaller species being obscured by larger 

species or due to the quality of photographs (i.e. limited resolution, inadequate 

illuminations and/or blur) (Moore et al., 2015). Under-recorded species tended to be 

cryptic (situated in crevices/cracks or undersides of boulders) (Moore et al., 2015). 

Encrusting bryozoans, sponges, algae and barnacles were frequently recorded in the 

current study although species level identification was often not possible due to the 

resolution of the imagery. Photoquadrat images from this research were consistently 
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good quality, with image enhancement in Digital Photo Professional (v 3.14) allowing 

species to be more easily identified, although it is likely that smaller cryptic species 

were still under-recorded. However, a consistently low number of identified small 

inconspicuous species was unlikely to affect the results of this research as these 

species were unlikely to be affected by abrasive potting impacts if larger more 

exposed individuals were not. 

Although fewer species are recorded in photoquadrats, estimates of species 

abundance and species number are more consistent between observers than those 

from in-situ sampling (higher Bray-Curtis similarity by approximately 10%) (Moore et 

al., 2015). This is because more time is available for the identification and accurate 

abundance estimate (i.e. availability of identification manuals and time to examine 

the image) in turn lowering the number of misidentifications. In addition, a point 

intercept method for image analysis was chosen for this research as it is time efficient 

(taking half the time of other frequency based methods (Van Rein et al., 2012)), 

unbiased by observers (Aronson et al., 1994; Drummond and Connell, 2005) and is 

more sensitive to changes in community composition than visual estimation and 

frequency occurrence methods (Van Rein et al., 2012) further increasing accuracy of 

recorded species abundance. In order to check the quality and accuracy of species 

identification in this research, species abundances recorded from 20 images using 

the point intercept method were compared to those estimated by a second 

experienced ecologist. No significant differences were found between abundance 

estimates or the number of species identified.  

The primary advantage of photoquadrat sampling is the increased number of 

samples that can be taken at each site compared to in-situ recording. In circalittoral 

surveys at 20m depth, community data from 2 - 3 quadrats were obtained per 

surveyor per dive compared to 30 photoquadrat images (Moore et al., 2015). In this 

research, which was at shallower depth (ca 6 – 14m), 120 images were obtained per 

dive. This high sample number resulted in a comprehensive coverage of sites as well 

as increased power for the statistical analysis. 

6.4.4. Adequacy of PERMANOVA routine 

Samples between treatments were very similar (high Bray-Curtis similarities) for data 

from FaAlCr intensively and lightly fished areas (Table 6.2). This is also reflected in 

the PERMANOVA model in the form of very low estimates of components of 
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variation. These suggest there was very little variation in assemblages within the 

experimental period (Table 6.2). Samples between treatments for intensively fished 

Lhyp.Pk habitats were less similar than FaAlCr samples, reflected in higher estimates 

of components of variation suggesting there was variation in assemblages within the 

experimental period (Table 6.2).  

The greatest variation in assemblages in both habitats in intensively and lightly fished 

areas was the residual variability among replicate photoquadrats (estimates of 

components of variation for Residuals, Table 6.2). Samples were still very similar for 

FaAlCr intensively and lightly fished areas, sharing a high number of species with 

one another (76 – 78%, for FaAlCr intensively fished areas, 84.6 – 85.6% for FaAlCr 

lightly fished areas) but were more variable for Lhyp.Pk intensively fished areas (40.9 

– 60% similarity between samples). Over and above this variation, significant 

interaction terms Site x B-I and Site x CB-CI had low estimates of components of 

variation of 8.7 and 6.0 respectively for intensively fished FaAlCr areas, even lower 

estimates of components of variation of 4.9 and 4.5 for lightly fished FaAlCr areas 

and 7.6 and 13.2 estimates of components of variation for intensively fished Lhyp.Pk 

areas, suggesting temporal differences (B-I and CB-CI) only contributed a small 

amount towards dissimilarity and variation in the model.  

In summary, the robust (balanced) BACI design, analysed using the PERMANOVA 

routine, resulted in small changes in community composition over time being 

detected for all sites. This sensitive model allowed conclusions on experimental 

potting impacts on faunal and algal crust habitats, during summer months to be made 

with a high degree of confidence. 

6.5. Concluding remarks 

There was no evidence that experimental potting produced short-term direct impacts 

on the epibenthos of intensively and lightly fished rocky FaAlCr or Lhyp.Pk habitats 

over a range of weather conditions (swell: 0 – 2.5 m; tidal current: 0 – 1.3 km.h-1; 

wind: 0 – 53 km.h-1). Given, the lack of evidence of direct potting impacts, the quick 

recovery of dominant and characteristic benthic species in both FaAlCr and Lhyp.Pk 

habitats and the intensity of fishing in the NIFCA district (i.e. pots are unlikely to 

interact with the same individuals of the benthic community repeatedly over short 

periods of time), it is also unlikely that long-term (chronic) direct potting impacts occur 

in these habitats in Northumberland. However, these habitats may already be 
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degraded due to decades of fishing and therefore conclusions only apply to the 

current state of habitats. No conclusions are made with regards to the sustainability 

of the current exploitation levels of target species stock or any in-direct effects of 

potting on habitats and ecosystems in Northumberland.  Using results from this study 

for other temperate locations with similar habitats, assessing fishing effort may be 

sufficient to determine whether potting impacts are likely to occur. Results from this 

work are widely applicable to other areas of the UK and Europe due to the focus on 

potential impacts on abundant and commonly distributed European benthos.   



172 
 

Chapter 7 . Northumberland Inshore Potting Impacts: Synthesis and 
Recommendations 

7.1. Introduction 

Habitat quality and health has been recognised as an integral part to management of 

sustainable fish stocks (Pikitch et al., 2004; Armstrong and Falk-Petersen, 2008; 

Salomidi et al., 2012). Epifauna which live on rocky reefs are key ecosystem 

components (Hiscock and Tyler-Walters, 2006) but may be impacted by fishing 

(Lambert et al., 2011). There is a large body of knowledge for mobile fisheries but 

little information for the impacts of static gears, including the nationally and locally 

important trap fishery (Coleman et al., 2013). Using designated marine protected 

areas in Northumberland as a case study, this research has shown spatial and 

temporal trends in fishing effort and habitat preferences of potting in Northumberland 

(2004 – 2014) (chapters 2 and 3). These data are key components of effective EBFM 

(Crowder and Norse, 2008), and allowed potential potting impacts in areas of interest 

or of particular vulnerability to be investigated. Chapters 4 and 5 discussed the need 

for robust data for impact assessments of fishing gears by using previously collected 

monitoring data. Although results from these chapters add to the evidence base, for 

the purposes of management these data are incomplete, due to: a lack of abundance 

data; few temporal data; the high variability of species composition used to classify 

biotopes (UK Biotope classification, Connor et al., 2004) potentially masking changes 

between years; and a lack of in-depth, localised, baseline knowledge of the area. 

These issues were addressed in chapter 6 where direct impacts of experimental 

potting were observed in situ, following a carefully designed methodology. The high 

fishing intensity in small experimental areas coupled with high levels of sampling and 

replication, provided robust evidence that current levels of potting are unlikely to have 

a direct physical impact on epibenthos in faunal and algal crust, and Laminaria spp 

dominated habitats in Northumberland coastal waters. No differences were found in 

benthic community assemblage structure between areas which were previously 

fished at different intensities, although conclusions on current levels of stock or 

indirect effects of fishing were not within the scope of this research. This final chapter 

aims to summarise key findings, outlining the management implications of these and 

providing recommendations for future studies investigating similarly fine-scale 

impacts.  
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7.2. Implications for management of changes in fishing effort distribution 

and habitat use over time 

Changes in fishing effort distribution between years were found across large sections 

of the study area between years (chapter 2), highlighting the high inter-annual 

variability of fishing effort over time at a regional scale (Lynch, 2014). This further 

highlights the usefulness of monitoring fisheries over long-time periods because 

‘snap shots’ of the fishery may lead to under or over estimates of chronic fishing 

effort (Lynch, 2014). Increases were concentrated close to the shore, particularly 

around the larger ports of the district, presumably to target high value lobster. 

Results from this research reinforce the usefulness of combining landings data with 

fishing spatial distribution. Cumulative changes in fishing effort distribution provided 

greater detail on temporal trends than either analysis of fishing effort data (chapter 2, 

section 3.1) or vessel distributions independently (chapter 2, section 3.2). For 

example, these data demonstrated that fishing effort did not increase uniformly 

across the district but has become highly concentrated inshore, especially from 2010 

– 2013. These maps highlight areas which may be damaged due to repeated high 

fishing efforts or may be sensitive to impacts (Eno et al., 2013). For example, the 

inshore of the study area were prioritised for research of physical impacts of fishing 

on the seafloor (chapter 6).  

The high resolution (1km2) maps allowed temporal trends of inshore potting to be 

investigated in detail. Although VMS provides more detailed information on vessel 

movement (i.e. VMS units are required to report 99% of all vessel GPS locations with 

an accuracy of at least 500m as well as data on heading and speed (Defra, 2005c; 

Defra, 2005b)), the tendency for inshore shellfish fleets to be composed of small 

vessels (< 10m, which don’t gather VMS data) operating close to shore, means 

fishing activity of such vessels is not indicated (Breen et al., 2014). This is particularly 

the case in Northumberland, where a mean of 70 (± 9) % < 10m fishing vessels 

operated annually in the NIFCA district between 2004 – 2013. The methods used to 

map fishing effort could be readily applied to other parts of the UK, where the 

sightings and effort data used are also routinely collected by fisheries enforcement 

agencies.  

Further long-term monitoring of inshore fishing effort is recommended because 

fishing effort trends were shown to change between years (chapter 2). Little 
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information on the drivers for changes in fishing pressure are available for the UK or 

specifically for Northumberland. Further social research conducted through key 

informant interviews would allow drivers to be explored in greater depth, and is 

recommended. 

The increase in potting effort, specifically inshore, shows the importance of 

understanding potential impacts on epibenthos. Results from this research provided 

estimates of fishing effort, allowing both estimates for district wide differences in 

species assemblages to be investigated (chapter 4 and 5) as well as focused 

assessments of experimental potting impacts (chapter 6). 

Assessments of full impacts of a fishery require basic data that describes the health, 

quality and status of individual habitats and species, as well as data for fine-scale 

distributions of ongoing fishing activities (Pedersen et al., 2009; Eno et al., 2013). 

Building on results from chapter 2, which provided information on potting density, 

chapter 3 elucidated temporal changes in fishers’ habitat selection at different 

classification scales (EUNIS level 3 – 6), with data resolution of 1m2. Space-time 

clustering was found for fishers operating in the CQSM MCZ, suggesting that these 

were actively targeting habitats of interest. Compositional analysis of habitat showed 

that fishers preferred rocky habitats over sediment habitats when using both EUNIS 

level 3 and 6 habitat maps, although fishing effort (pots fished year -1 km -2) was 

similar between rocky habitats at EUNIS level 5-6. 

The combination of fishing effort and habitat-use data over time is necessary in order 

to investigate fine-scale potting impacts (Chapter 4, 5 and 6), as well as providing 

data which can underpin evidence based EBFM. Results from this research suggest 

that fishers distribute themselves within their territories (Turner et al., 2012) according 

to habitat type. This has implications for fisher redistribution due to fisheries closures 

– an aspect of marine spatial planning that has not been investigated for inshore 

fisheries in the UK to date. This may in part be due to the lack of available in-depth 

cross-disciplinary data i.e. reliable habitat and temporal fishing distributions. The 

effects of fishery closures due to offshore development or marine protected areas will 

be gear specific (Campbell et al., 2014). The impact of displacement of pot fishers 

due to areal closures, may be greater than those attributed to mobile gear users 

because potting is so highly localised (Campbell et al., 2014; Guenther et al., 2015; 

Turner et al., 2015), further demonstrated by this research through persistent use of 

inshore areas over the course of a decade (chapter 2). When fishery closures are 
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enforced, spillover is frequently assumed to occur (McClanahan and Mangi, 2000; 

Howarth et al., 2011). This assumes that the increase in target species abundance 

within the MPA will cause migration of target individuals outside the closed area 

(Hoskin et al., 2011; Howarth et al., 2015) and that the displaced adjacent fisheries 

will focus fishing effort along the edges of the MPA as catches will be highest there, a 

phenomenon called “fishing the line” (Guenther et al., 2015). However, such models 

do not incorporate habitat specific fishing type and effort, habitat type, heterogeneity 

of the underlying habitat, or the limits imposed by fishing methods/gear. For example, 

pot fishers target rocky habitat over softer sediment habitats (chapter 3) presumably 

to target lobster (Turner et al., 2009). Thus habitat outside theoretical closed areas 

may not be suitable for the displaced fishers if rocky reefs are preferentially selected 

for closure. In addition, fixed-gear fisheries where pots are set, soaked, pulled and 

reset in the same location results in areas that are “marked” or occupied, and stop 

other fisherman fishing in the same location. This has resulted in high levels of 

territoriality amongst pot fishers (Acheson, 1975; Turner et al., 2012). Displacement 

of potting effort may increase disputes, the effects and severity of which, will largely 

be determined by a priori territorial distributions and habitat quality (Guenther et al., 

2015). After fishing closures in inshore areas in California (USA), lobster fishermen 

targeted areas based on competition with other fishers and habitat quality (i.e. catch), 

rather than targeting areas close to MPA borders (Guenther et al., 2015). Potting is 

currently permitted in the two large protected areas in the NIFCA district: CSQM MCZ 

and BNNC EMS. These areas are the most heavily fished inshore areas (chapter 2) 

and is therefore crucial to understand how any future management could affect 

fishers’ displacement in Northumberland. Multicriteria decision analysis tools such as 

Marxan are increasingly used to combine a variety of different spatially explicit 

selection criteria in a GIS for marine reserve planning and renewable energy 

developments (Baban and Parry, 2001; Villa et al., 2002; Lieberknecht et al., 2004; 

Bruce and Eliot, 2006; Prest et al., 2007). These tools primarily focus on the 

distribution of the natural resources important for development or conservation 

purposes, often ignoring fishing distribution data which can minimise environmental 

and economic costs of area closures by displacement (Dinmore et al., 2003; 

Lieberknecht et al., 2004; Richardson et al., 2006; Campbell et al., 2014), resulting in 

wider acceptance, cost-effective and politically feasible protected areas (Richardson 

et al., 2006; Campbell et al., 2014). Although results of this research provide a crucial 

step towards a better understanding of long-term fishing effort and spatial distribution 
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in Northumberland, potentially enabling a predictive capacity for Marxan type 

modelling, a lack of access to cumulative uses, socio-economic information and 

habitat data outside the CQSM MCZ raises scientific and socio-economic concerns 

about the underpinning of marine spatial management decisions (Campbell et al., 

2014). These data would be particularly important for further investigation of closure 

effects in the NIFCA district as potting is the most important inshore fishery in 

Northumberland; highest potting vessel sightings per unit effort in England and Wales 

(Vanstaen and Breen, 2014). 

7.3. Pragmatically detecting ecological change over time to support 

monitoring. 

7.3.1. Biotope analysis 

The number and range of biotopes observed in this study was maintained between 

years through the persistence of few, heavily dominating biotopes, namely infralittoral 

kelp (Lhyp) and circalittoral faunal and algal crust (FaAlCr) biotopes with only non-

significant differences of rare (low frequency counts) biotopes. Although the 

investigation of biotope richness and persistence of dominant biotopes between 

years suggests that ecosystem health was maintained throughout the BNNC EMS, it 

is a simple analysis both in terms of the data required and the statistical analysis 

used (Davies et al., 2001; Saunders et al., 2011). In this particular case, conclusions 

that can be drawn from this data are limited due to the broad nature of biotope 

analysis and the low number of sampling years (2002/03 and 2011). 

This type of data however, may be better suited for use in mapping geographic 

extent of biotopes (chapter 3). This allows the limited biological information 

(temporally and spatially) available for this research to be combined with acoustic 

data (AGDS, SSS or MBES) and mapped (Lucieer, 2008). Specifically this would 

allow further information to be gathered on specific biotopes that may be increasing / 

decreasing spatially as well as investigate potential causality of any changes 

(Crowder and Norse, 2008). Use of habitat maps combined with information on their 

associated human uses and political and legal arrangements are recommended as a 

more holistic approach to monitoring spatial change in marine ecosystems (Salomidi 

et al., 2012) specifically for anthropogenic activities that vary in spatial scale such as 

fishing (Diesing et al., 2009) (chapters 2 and 3). 
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7.3.2. Sample number and scale of biotope analysis 

Biotope analysis can be undertaken at different scales ranging from very broad 

habitat description (level 2) to sub-biotope (level 6). Conclusions in this report are 

similar when using either biotopes (level 5) or sub-biotopes (level 6) with no change 

detected between years. However, the use of biotope data for low-level fishing 

impact studies remains problematic and a null result in this case may be due to 

methodological issues rather than a lack of biotope change between years. The use 

of a broader biological classification level (e.g. level 5), although only likely to detect 

spatially and ecologically extensive impacts, results indicating change may be more 

robust as small scale fluctuations of natural variability are already largely taken into 

account. In contrast, the use of a more detailed biological classification level (level 6) 

may result in detection of smaller scale impacts, however, in order to discount the 

effects of natural variability in biotopes, much larger data sets are required both 

spatially and temporally and little information exists for UK habitats (Hartnoll, 1998).  

Although conclusions on biotope change were not possible due to the limited 

temporal data, sampling effort was sufficient to allow robust, albeit simple, statistical 

analysis. In addition, biotope richness curves showed that biotope sampling for the 

Boulmer transect was more than adequate (chapter 4). In contrast, sampling the 

Farnes Island transect may not fully represent biotope richness. Future sampling 

effort applied could be adjusted depending on biotope richness in a similar way to 

that already routinely done for assessments of species richness (Gotelli and Colwell, 

2001). Sampling effort curves produced after preliminary sampling would enable 

researchers to estimate the number of samples required in different areas, saving 

money and providing appropriate results during a monitoring campaign (Gotelli and 

Colwell, 2001). The use of biotope richness as a method of detecting change, 

although relatively broad, may still be an important metric for investigation of long-

term ecosystem changes because these may be the only data that can be extracted 

from older records, thus providing adequate temporal sampling. However, results 

from this research suggest that for investigation of small-scale impacts such as those 

expected from potting, changes in biotope richness would not be precise enough to 

detect impacts. 

Overall, for investigation into small-scale fishing impacts, such as potting, the use of 

a biotope classification system alone is not recommended. This broad scale does not 

allow changes in abundance, species diversity or species composition for each 
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biotope to be taken into account. Ecological quality of biotopes within the BNNC EMS 

has not been assessed using this method. The maintenance in quality of features of 

interest is likely to be a critical aspect of future monitoring programmes as part of 

DEFRA’s revised approach to fisheries management in EMSs. However, previous 

methods used in EMS condition monitoring do not allow this to be investigated. 

However, the use of biotopes may provide a useful overview that can help focus on 

particular habitats or species affected as part of a wider program of research. 

Detection of change within biotopes was further explored in chapter 5 and 

conclusions are discussed below. 

7.3.3. Change in taxonomic composition, species richness and indicator 

species between years. 

Overall, there was very little evidence to suggest that taxonomic composition of 

assemblages, species richness or sensitive species of rocky reefs in the BNNC EMS 

changed between 2002/03 -2011, in spite of increasing fishing pressure. However, 

across all analyses the level of uncertainty was high, with increased spatial and 

temporal sampling required (see chapter 5). Specifically, the high number of samples 

required due to the complexity of the model (3-5 factors) meant that only the most 

commonly found biotopes had adequate sample sizes for robust testing. There is 

some evidence that species composition and richness of FaAlCr, the most commonly 

identified biotope in the study, may have changed between 2002/03 – 2011, but it 

was unclear, whether this was natural variation or change due to anthropogenic 

impacts. Further work is required to establish levels of natural annual and seasonal 

variation within this biotope. Understanding the magnitude and direction of natural 

variation, which can be cyclical and linear, is crucial for effective monitoring of the 

marine environment (Davies et al., 2001) and increased research in this field has 

been encouraged previously (Hartnoll, 1998; Nordheim and Boedeker, 1998), 

although evidence remains sparse. 
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Fig 7.1. Attribute target value over time (Diagram modified from Davies, 2001). 
Hypothetical example of estimates of target value (dashed line) and target value 
(solid line) based on the number of available samples. 

 

Fig 7.1 shows a hypothetical example of how an attribute's target value, defined as 

an aspect of the feature of interest, e.g kelp abundance, which is used to infer 

condition of the target feature, may be refined over time (Davies et al., 2001). If the 

target value fluctuates (i.e. has high variability), successive surveillance cycles 

enable a more accurate determination of the confidence limits (dashed line) and 

hence the target value (solid line) (Fig 7.1). The target value may initially be located 

at the upper confidence limit and therefore be inaccurate, with subsequent data 

collection resulting in a substantial decrease in its final value (Fig 7.1). This example 

taken from monitoring guidelines highlights the importance of adequate temporal 

sampling and requirement of an understanding of yearly variability. It should be noted 

that in this example, attribute target value is a univariate measure and multivariate 

measurements (i.e. taxonomic community assemblages) will be more complex as the 

direction and magnitude of change for each target value may change in different 

ways. A recent approach to monitoring whole ecosystems uses ‘trajectories in 

ecosystem state space’ with change visualized as Euclidean distance (Tett et al., 

2013) (Fig 7.2). However, this novel approach is underpinned by having long term 

data with appropriate sampling. At present monitoring data for the BNNC EMS do not 

allow this type of analysis. 
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Fig 7.2. Changes in the northern North Sea, 1958–2008, plotted in a state space 
defined by the breeding success of kittiwakes (y-axis), abundance of copepods 
Calanus spp (x-axis), and simulated annual primary production (z-axis) (Tett et al., 
2013). 

The same differences were found between analyses using taxonomic composition of 

assemblages and sensitive species, thus a reduced species list using indicator 

species may be advantageous due to the lowered cost of sampling and effort in 

identification. Devising a list of sensitive species for each biotope specifically for pot 

fishing would allow quicker more focused surveys to be conducted. This may allow 

more samples to be acquired and processed during surveys, increasing their 

statistical robustness (Dayton et al., 1998; Hartnoll, 1998). However, unexpected 

changes to other species may occur which may be overlooked if only a reduced 

species list is being monitored (Coleman et al., 2013) (chapter 6). 

Further, the scale at which changes in taxonomic composition of assemblages of 

biotopes were investigated here, i.e. at transect or area level, altered results, 

suggesting biotope composition variability between transects. The BNNC EMS area-

wide model did not have as many significant differences as individual transect 

models suggesting area-wide models may be masking impacts or change. Therefore, 

although greater sampling effort and increased analytical time is required, using 

individual transect data to investigate even large changes is recommended as area-

wide data may mask potential impacts or change. For investigation into fine-scale 

potting impacts, transect level (~ 25km2) may still be too broad. Indeed, rigorous 

investigation into ecosystem impacts of potting (Coleman et al., 2013) may not have 
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found any evidence of impact due to the similarly large scale at which these were 

undertaken. Investigation over smaller spatial scales, such as permanent transects, 

similar to those used by Eno et al. (2001), may be more adequate and is explored in 

chapter 6. 

7.3.4. Attributing change to fishing pressure 

Fishing pressure is not continuous throughout the BNNC EMS (chapter 2). Finding 

the optimum levels of potting that crab and lobster populations and the habitat can 

support is a key requirement for management purposes (Eno et al., 2001; CEFAS, 

2014). In this research, using historic monitoring data, there was no evidence that 

different potting intensities had any effect on floral and faunal community composition 

of rocky reefs in the BNNC EMS between 2002/03 – 2011. Some evidence of 

differences in species richness (S) in biotopes FaAlCr and FaAlCr.Bri at different 

fishing pressures was gained but no obvious pattern was apparent and results were 

inconclusive due to low temporal replication. In order to explore this question fully, 

robust evidence of change is needed requiring increased spatial and temporal 

sampling (chapter 5). In addition, in order to incorporate fishing pressures as a factor 

in the model, additional replicates in each biotope at different fishing pressures are 

required (Fig 7.3). 

 

Fig 7.3. Schematic diagram of example sample number for each biotope with year 
and fishing pressure as factors. 
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The addition of factors and the number of levels these would have requires an 

increased number of samples to have the same explanatory power (Fig 7.3). For 

example, 3 levels of fishing pressure as opposed to 2 shown would result in n = 16 

for each level. Using historic monitoring data, this was not a problem for the most 

abundant biotopes (i.e FaAlCr (n > 250) and Lhyp.Ft (n > 100)) but many biotopes 

sampled less frequently (Chapter 4) did not have enough samples to run robust tests 

even at a BNNC EMS area-wide level i.e. combining all transect data. This illustrates 

the need for careful planning and knowledge of the data requirements for statistical 

tests needed to investigate the effects of fishing pressure on habitat and species 

composition. The simple metric of species richness suggested that some changes 

were detected between years and fishing pressures. This merits further investigation 

which could easily be investigated as part of a more focused investigation into direct 

impacts. 

As illustrated in previous sections, large datasets are needed to investigate long-term 

changes in biotopes and attribute these to fishing pressure (Lambert et al., 2011). 

Alternatively potting effects on biotopes could be investigated by examining direct 

impacts of pots in situ (chapter 6).  
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7.4. Adequacy of monitoring data for scientific investigation 

Results from chapter 4 and 5 add to the evidence base, but for the purposes of 

management these historic monitoring data are incomplete due to the lack of 

abundance data, inconsistent seasonal sampling and poor visibility, which resulted in 

a less detailed analysis and low confidence in results preventing robust conclusions. 

Abundance data are a prerequisite for detailed ecological analyses of this kind 

(Carbines and Cole, 2009). It is therefore recommended that the use of monitoring 

data for such work is inadequate unless abundance estimates are possible. 

Encouragingly, development in this methodology and a reduction in price of the 

hardware has resulted in more recent monitoring frequently including methods to 

estimate abundance (CEFAS, 2012). 

Due to issues associated with samples taken from different seasons (summer 2002 

and autumn 2011) and the low amount of annual sampling, this data cannot be used 

to determine conclusively if anthropogenic change has occurred in the BNNC EMS. 

However, monitoring data may be useful in order to investigate areas which warrant 

particular interest or further work. This type of exploratory work is cost efficient 

because the data already exist and could result in more focused studies. This can 

also include learning valuable lessons on videographic methods and avoiding pitfalls 

in data analysis. For example the present work highlighted differences in FaAlCr 

between years which warranted further investigation (chapter 6). 

The effect of visibility on species and biotope identification requires a revised method 

to produce more robust results. This would include devising a visibility scale based 

on the measurement of visibility for the biotope as a whole, for example, by recording 

percentage of time in minutes / seconds that substrate is identifiable. In addition, 

other factors such as light levels and turbidity would ideally also be taken into 

account. It should be noted that camera pitch, roll and speed of movement is related 

to the camera setup. A larger and heavier camera, such as that used by CEFAS 

(2012), would be much more stable and travel more slowly than the smaller camera 

system used for this research. However, logistical issues arise from using larger, 

heavier, camera systems such as the need for winches and larger boats to operate 

these systems which often cannot operate in shallower water (< 10m deep). The 

selection of a drop-down video system will rely on cost, vessel equipment and size. 
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Although costly at approximately USD 100,000 the underwater camera system 

described by Rosenkranz et al. (2008) is an example of best available equipment. 

7.5. Observation of direct potting impacts on common reef habitats 

Direct potting impacts on epibenthos were investigated through observation of 

experimental fishing in faunal and algal crust (FaAlCr) and Laminaria hyperborea 

(Lhyp.Pk) dominated habitats which had been subjected to known fishing effort over 

the course of 10 years (chapter 2), allowing effects of historical fishing pressure to be 

taken into account in the impact analysis. The lack of statistical power for detecting 

impacts of potting gear which has a small physical footprint (≈ 1m2) in comparison to 

the large deployment area (≈ 200m2), were overcome through fishing of a single pot 

tethered to two weights in a small experimental area (10 x 10m), allowing high 

sampling of photoquadrats (120 images per transect) and replication.  

Similarly to previous research into potting impacts, no effects were detected in this 

research (Eno et al., 2001; Coleman et al., 2013). There was no evidence of 

abundance of erect and presumably fragile species (Roberts et al., 2010) decreasing 

due to physical abrasion from pot fishing. This was the case in both high and low 

fished FaAlCr and high fished Lhyp.Pk habitats; a shift in community composition 

was found but this was attributed to natural change. Overall, the high fished FaAlCr 

habitat had a greater overall diversity and higher abundance of large erect species 

compared to low fished sites, contrary to the earlier prediction that, similarly to areas 

impacted by trawling (Collie et al., 1997; Collie et al., 2000; Kaiser et al., 2002; 

Lambert et al., 2011), sites with high fishing pressure would already be degraded 

compared to sites with low fishing pressure (i.e. lower species diversity, lower 

abundance, smaller individuals or less abundant erect and/or slow growing species).  

As with all ecological studies not all possible conditions and habitats were 

investigated. Limitations of the experimental design included: short experimental 

period (pots were only fished over the course of a summer month), although 

unseasonal weather conditions were experienced throughout fieldwork (swell: 0 – 

2.5m; tidal current: 0 – 1.3km h-1; wind: 0 – 53km h-1) thus increasing the likelihood of 

pot movement and damage (Lewis et al., 2009); potting impacts were only 

investigated on two common habitats, other habitats may be more sensitive (e.g. 

Sabellaria spinulosa biogenic reefs) although these may be difficult to locate (chapter 

3); depth restrictions due to the use of scuba for sampling and the need to collect 
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high sample numbers resulted in only shallow sites selected for study, deeper 

habitats may react differently to potting impacts, although fragile habitats in deeper 

water have already been investigated by Eno et al. (2001) in different locations in the 

UK with no damage detected; only impacts in summer were monitored, impacts may 

be greater in winter due to more adverse weather (Lewis et al., 2009), however, poor 

visibility in the water associated with adverse weather makes this difficult to assess 

(Van Rein et al., 2011). 

In summary, given the lack of evidence of direct potting impacts, the quick recovery 

of dominant and characteristic benthic species in both FaAlCr and Lhyp.Pk habitats 

and the intensity of fishing in the NIFCA district (i.e. pots are unlikely to interact with 

the same individuals of the benthic community repeatedly over short periods of time), 

it is unlikely that short-term direct potting impacts occur in habitats with similar 

community composition.  

7.6. Power analysis of potting impacts and future research 

Determining ecologically significant impacts, in the context of legislation, is often a 

complex question, and little guidance on how this can be done is available (IEEM, 

2006). Many protected areas in the UK allow activities within their limits provided that 

these activities do not adversely affect site integrity or undermine the achievement of 

conservation objectives (MMO, 2012). Site integrity is defined as “the coherence of 

its ecological structure and function, across its whole area, that enables it to sustain 

the habitat, complex of habitats and/or the levels of populations of the species for 

which it was classified” (Department for Communities and Local Government, 2005). 

Integrity can be measured in several ways, one of which is the average level of 

populations that would be considered 'acceptably characteristic of the site or 

ecosystem' (Department for Communities and Local Government, 2005). However, 

the exact level of potting impacts at which the reduction of abundance of populations 

is deemed as affecting site integrity is not known. Power analysis of epibenthic 

abundance data from experimental fishing on common habitats in the BNNC EMS 

(chapter 6) allows exploration into the number of samples needed to detect a given 

potting effect size on abundance for aid in developing future monitoring programs. 

Power analysis, a useful prospective planning tool for designing experimental 

studies, can provide appropriate sample size to be determined: large enough to allow 

robust conclusions to be made whilst small enough to avoid potentially wasting 
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resources with excess sampling (Ryan, 2013). Prospective power analysis is not 

available for multivariate data. However, univariate power analysis on a reduced 

species (i.e. sensitive species or species of interest) list can provide evidence on 

detection of a given effect size of potting impacts. Comparison of univariate and 

multivariate data for the use in detection of fine scale impacts is here discussed as 

well as the usefulness of a reduced species (i.e. indicator species) for detection of 

fine scale impacts.  

7.6.1. Power analysis methods 

Abundance of individual characterising (Faunal and algal crust, encrusting algae, 

Spirobranchus spp) and sensitive species (Clavellina lepadiformis, Alcyonium 

digitatum, Feather hydroid and Sabellaria spp) were extracted from the combined B 

and CB data for all high and low fished FaAlCr sites (chapter 6). Characterising 

species are defined as a “species characteristic of the biotope (dominant, highly 

faithful and frequent) which are important for the classification of that biotope” 

(Hiscock and Tyler-Walters, 2006). These species are important as a loss or 

degradation could result in community shift and loss of biotope (Tyler-Walters, 2002). 

Species sensitive to potting were chosen due to being erect, and/or easily snapped 

or shattered upon impact and long-lived (Eno et al., 2001; Roberts et al., 2010). 

Sensitive species are important in maintaining healthy ecosystems that remain 

resilient to environmental pressures (Tyler-Walters, 2002).  

Mean, standard deviation and effect size (i.e. 20, 10, 5% difference in mean 

abundance) were calculated for each species’ abundance. Data for all benthos were 

arcsine transformed (Crawley, 2005) but was not normally distributed (with the 

exception of the very abundant faunal and algal crust). The lack of normality was not 

deemed to be due to low sample size (n = 102 – 125). This meant any analysis of 

univariate data (single species) would be undertaken using non-parametric methods, 

in this case a Mann–Whitney U test (Ryan, 2013). Non-parametric tests are less 

powerful than the equivalent parametric test, with the Asymptotic relative efficiency 

(ARE) ratio describing the difference in power (Serfling, 2011; Ryan, 2013). The ARE 

of the Mann–Whitney U test relative to the t-test cannot be less than 0.864 

regardless of the distribution (Conover, 1980). This equates to Mann–Whitney U test 

requiring an increase in sample size of 15.7% (1/0.864 = 1.157) to ensure adequate 

power. All estimate sample size calculations were undertaken in RStudio (v. 
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0.97.237) using standard deviation and effect size calculated from collected data and 

power (1 – beta) set to 0.8 (Cohen, 1988). Resulting sample number was then 

increased by 15.7% in order to account for the difference in power between 

parametric and non-parametric models. 

7.6.2. Power analysis results  

Univariate two-sample tests of individual benthic cover did not differ between 

baseline (B and BC) and impact (I and BI) (all species p > 0.05, Mann-Whitney). Only 

the most common characterising benthos (mean cover > 8%), namely, faunal and 

algal crust (in high and low fished areas), encrusting algae (in high fished areas), 

bare rock (low fished areas) and Spirobranchus spp (low fished areas), showed that 

any changes in abundance of 10% or more would likely be detected with the amount 

of sampling undertaken for this experimental work (n = 102 – 125). Less abundant 

sensitive species required much larger sample sizes to detect any changes in 

abundance (Table 7.1 and Table 7.2); very rare species such as Sabellaria spp 

required a predicted 5555 samples to detect a 20% change in percentage cover 

(Table 7.2).  
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Table 7.1. Sample number required to detect a change of 20%, 10% and 5% in mean 
abundance (N = 102) of characterising species and sensitive species (highlighted in 
grey) for sites with high fishing pressure. 

 Benthos Mean (% cover) 
Standard 
deviation 

Abundance 
change 

Sample 
Number 

Faunal and algal crust 74.08 19.73 20% 16 

   10% 57 

   5% 220 

Encrusting algae 8.78 10.35 20% 119 

   10% 470 

   5% 1873 

Bare rock 5.75 7.48 20% 180 

   10% 714 

   5% 2851 

Spirobranchus spp 5.77 10.15 20% 356 

   10% 1416 

   5% 5649 

Clavellina lepadiformis 0.66 2.05 20% 1075 

   10% 4294 

   5% 17268 

Feather hydroid 1.19 4.71 20% 1900 

   10% 7595 

   5% 29654 

Alcyonium digitatum 0.06 0.42 20% 1737 

   10% 6943 

   5% 27627 
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Table 7.2. Sample number required to detect a change of 20%, 10% and 5% in mean 
abundance (N = 124) of characterising species and sensitive species (highlighted in 
grey) for sites with low fishing pressure. 

Benthos Mean (% cover) 
Standard 
deviation 

Abundance 
change 

Sample 
Number 

Faunal and algal crust 43.62 14.25 20% 3 

   10% 41 

   5% 159 

Encrusting algae 1.65 2.41 20% 326 

   10% 1298 

   5% 5189 

Bare rock 15.98 7.40 20% 20 

   10% 71 

   5% 278 

Spirobranchus spp 23.05 9.69 20% 19 

   10% 68 

   5% 264 

Gravel 5.48 5.06 20% 129 

   10% 512 

   5% 2022 

Alcyonium digitatum 0.24 1.10 20% 1577 

   10% 6680 

   5% 23828 

Sabellaria spp. 0.28 2.70 20% 5555 

   10% 22212 

   5% 74653 

Feather hydroid 1.39 5.77 20% 1776 

   10% 7098 

   5% 28384 

 

7.6.3. Usefulness of reduced species lists 

Univariate testing of species data raises important considerations with regards to 

sample size and statistical methods for monitoring and impact assessment. Firstly, 

the univariate Mann-Whitney test was less sensitive for detecting change than the 

multivariate approach used in chapter 6 as no differences were found between 

treatments for any species when using the univariate model. In addition, it is 

estimated that even for the most abundant species in this study, the number of 

samples collected would only allow changes in abundance of > 10% to be detected. 

Whether changes in abundance of 10% for these species would be deemed as 

affecting site integrity is not known. For future work, it is recommended that the more 
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powerful permutation multivariate tests are used for investigation into small scale 

changes (Terlizzi et al., 2005).  

A reduced species list using indicator species may be advantageous due to the 

lowered cost of sampling and effort in identification; devising a list of sensitive 

species for each biotope specifically for pot fishing would allow quicker surveys, more 

samples to be acquired and processed during surveys and increased statistical 

robustness (Dayton et al., 1998; Hartnoll, 1998). However, unexpected changes to 

other species may occur which may be overlooked if only a reduced species list is 

being monitored (Coleman et al., 2013). In addition, when using univariate tests, 

selecting species which are deemed important (i.e. characterising or sensitive) must 

be decided beforehand. As there is no evidence in this study (or others, Eno et al., 

2001; Coleman et al., 2013) that any of the sampled species are sensitive to potting 

impacts, univariate testing will be less useful than multivariate testing for change 

detection. Creating a sensitive species list for monitoring potting impacts was 

attempted in prior research (Eno et al., 2001; Coleman et al., 2013), however, these 

species will only be valid for local areas surrounding the experimental site as species 

composition and abundance can vary greatly within the UK. For example, 

infrequently encountered species in one location may be abundant in others. In 

addition, further information on the level of impacts which would cause the loss of site 

integrity is needed if any small scale impacts are found in future; for the present work 

this aspect was not investigated as no impacts were detected.  

7.7. Concluding remarks 

Previous research has focused on large-scale mobile gear seabed impacts and has 

resulted in significant knowledge gaps with regards to smaller-scale static gear 

impacts such as those possible from potting. The gap in evidence is particularly 

problematic as it is a prerequisite for monitoring that ensures the sustainability of 

inshore fisheries. Further, with the increasing protection afforded to important 

habitats such as reefs, it is important to understand any impacts that fishing may 

have on these crucial habitats. This research has provided evidence required for 

appropriate assessment of potting in Northumberland with methods that could be 

adapted for other locations in Europe and the UK with similar habitats. Following this, 

pre-existing monitoring data could be used for a secondary purpose: the investigation 

of long-term potting impacts, and as such produce evidence as to whether potting 
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impacts habitat and epibenthos, therefore avoiding costly new data collection. 

However, results from this research suggest that for investigation into small-scale 

potting impacts, condition monitoring data have limitations. Although little evidence of 

potting impacts were detected on biotopes (chapter 4), taxonomic community 

assemblages, sensitive species or species richness (chapter 5), these results are not 

robust due to the data used having a lack of abundance estimates, inconsistent 

seasonal sampling and poor visibility. Furthermore, this research has highlighted that 

natural variability of biotopes and communities varies significantly spatially and 

temporally within the BNNC EMS. As such, increased sampling would be required in 

order to adequately investigate the complicated interactions between species change 

in different habitats and under different fishing pressures.  

Recommendations derived from this work and from scientific literature enabled a 

more focused approach to fishing impacts on commonly found habitats in 

Northumberland to be taken. The influence of historical fishing pressure was 

assessed, as well as cumulative impacts of experimental fishing using a robust BACI 

design with adequate sample size and replication. In line with previous studies (Eno 

et al. 2001; Coleman et al., 2013), these results suggest that potting is unlikely to 

directly impact epibenthos; no conclusions are made with regards to the sustainability 

of the stock or indirect impacts of potting.  

Overall, this research has highlighted the need for further monitoring of spatial fishing 

effort and habitat use in order to inform on-going changes to management – although 

it is thought that at current potting levels, impacts are very unlikely to affect “site 

integrity”. In addition, previous monitoring methods are likely to be ineffective in all 

but the largest impact detection – data collection that allows a multivariate approach 

is recommended for future monitoring work. 
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Appendices 

Appendix 1 

Code used in Rstudio: 

Changes in fishing effort over time 

Code of the negative binomial regression model using estimates of 14.3% extra fishing 

effort attributable to vessels >10m between 2006 – 2009 

library(AER) 

library(MASS) 

 

R_GLM <- read.csv("~/PhD/GIS/FISHING_PRESSURE/Landings/R_GLM.csv") 

 

pot <- R_GLM$pots 

ContMonth <-R_GLM$month 

active <-R_GLM$active.vessels 

n <- length(ContMonth) 

 

Model<- glm.nb(pot~ ContMonth + active, data=R_GLM) 

summary(Model2) 

plot(Model2) 

 

#plot data with line of best fit from coefficients of the model 

pred.month1 <- seq(1, 168, 1) 

pred.pot1 <- predict(Model, list(wt = pred.month1), type = "response", se.fit=TRUE) 

LL1 <- pred.pot1$fit - 1.96 * pred.pot1$se.fit 

UL1 <- pred.pot1$fit + 1.96 * pred.pot1$se.fit 

 

plot(pot ~ ContMonth, xlab = "Months", ylab = "Number of Pots Fished", ylim=c(0, 

40000)) 

lines (pred.month, LL1) 

lines (pred.month, UL1) 

polygon(c(ContMonth, rev(ContMonth)),c(UL1, rev(LL1)), col = rgb(0,0,0,0.25), border 

= NA) 

lines (pred.month1, pred.pot1$fit) 

 

 

Code and results of the negative binomial regression model using lower estimate of 

8.5% for 2006 – 2009  

R_GLM_lower <- 

read.csv("~/PhD/GIS/FISHING_PRESSURE/Landings/R_GLM_lower.csv") 
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pot.l <- R_GLM_lower$Pots 

ContMonth <-R_GLM$month 

active <-R_GLM$active.vessels 

n <- length(ContMonth) 

 

Model<- glm.nb(pot.l~ ContMonth + active, data=R_GLM) 

summary(Model) 

 

Regression coefficients, standard errors, t - value, and p-values significance for each 
variable using a negative binomial regression model with lower estimates for 2006 – 
2009 pots fished..  

 Estimate Std Error z - value p- value 

Intercept 8.5 0.07 124.4 < 0.0001 

Months 0.005 0.0002 17.91 < 0.0001 

Active vessels 0.012 0.0006 19.62 < 0.0001 

 

Code and results of the negative binomial regression model using upper 

estimate of 20.1% for 2006 – 2009 

R_GLM_upper <- 

read.csv("~/PhD/GIS/FISHING_PRESSURE/Landings/R_GLM_upper.csv") 

pot.u <- R_GLM_upper$Pots 

ContMonth <-R_GLM$month 

active <-R_GLM$active.vessels 

n <- length(ContMonth) 

 

Model<- glm.nb(pot.u~ ContMonth + active, data=R_GLM) 

summary(Model) 

 

Regression coefficients, standard errors, t - value, and p-values significance for each 
variable using a negative binomial regression model with lower estimates for 2006 – 
2009 pots fished..  

 Estimate Std Error z - value p- value 

Intercept 8.6 0.07 124.6 < 0.0001 

Months 0.005 0.0003 16.15 < 0.0001 

Active vessels 0.010 0.0007 16.1 < 0.0001 

 

Changes in fishing effort distribution over time. 

library(raster) 

library(rgdal) 
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r1 <- raster("raster_fishing_pressure_map_year1") 

r2 <- raster("raster_fishing_pressure_map_year2") 

g1 <- sampleRegular(r1, 5e5, cells=TRUE, sp=TRUE) 

g2 <- sampleRegular(r2, 5e5, cells=TRUE, sp=TRUE) 

 

g1.data <-na.omit(g1) 

g2.data <-na.omit(g2) 

 

totreps <- 50000 

samplesize <- 5000 

 

out <- vector(length=totreps) 

for (rep in 1:totreps) { 

 sample.rows <- sample(1:NROW(g1.data), size=samplesize, replace=FALSE) 

 data1.tmp <- g1.data[sample.rows,] 

 data2.tmp <- g2.data[sample.rows,] 

 ttest <- t.test(data1.tmp[,2], data2.tmp[,2], paired=TRUE) 

 out[rep] <- ttest$statistic 

} 

hist(out, xlim=c(-5,25), xlab="t - value", main=NULL) 

abline(v=qt(0.05, samplesize-1), col="red") 

print(length(out[out>qt(0.05, samplesize-1)])) 

 

Appendix 2 

R code: 

# Fishers' sightings spatial clustering and habitat use 

# Author Fabrice Stephenson 

# Modified from: EFB AFB spatial Clustering by Aileen Mill 

# Date: 23th Jun 2015 

 

library(splancs) 

library(sp) 

library(rgdal) 

 

#read in data 

p <- readOGR(“~Habitat", layer="CQSM_MCZ") 

plot(p) 

poly.gon<- getpoly()  

plot(poly.gon) 
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pts.all <- read.csv(“~Sightings.csv", header=T, na.strings="*") 

pts.1 <- read.csv("~Sightings.1.csv", header=T, na.strings="*") 

pts.2 <- read.csv("~Sightings.2.csv", header=T, na.strings="*") 

pts.3 <- read.csv("~Sightings.3.csv", header=T, na.strings="*") 

pts.4 <- read.csv("~Sightings.4.csv", header=T, na.strings="*") 

pts.5 <- read.csv("~Sightings.5.csv", header=T, na.strings="*") 

scale.spat <- seq(0, 11000, by=250) 

#year 1 

pts.sp1 <- cbind(pts.1$X, pts.1$Y) 

khat.obs1 <- khat(pts=pts.sp1, poly=as.matrix(poly.gon), s=scale.spat) 

#simulation envelope year 1 

V.khat <- Kenv.csr(nptg=500, poly=as.matrix(poly.gon), nsim=500, s=scale.spat) 

khat.sp1 <- data.frame(khat.obs1, lower=V.khat$lower, upper=V.khat$upper) 

rand.L1 <- sqrt(khat.sp1/pi) - scale.spat 

#plot output of year 1 

plot(scale.spat, rand.L1$khat.obs1, xlim=range(0,10000), ylim=range(rand.L5), 
xlab="Distance (m)", ylab="L value", type="l", col="Grey", lwd=2) 

lines(scale.spat, rand.L1$upper, lty=2) 

lines(scale.spat, rand.L1$lower, lty=2) 

peak <- scale.spat[which.max(rand.L1$khat.obs1)] 

print(peak) 

#year 2 

pts.sp2 <- cbind(pts.2$X, pts.2$Y) 

khat.obs2 <- khat(pts=pts.sp2, poly=as.matrix(poly.gon), s=scale.spat) 

#simulation envelope year 2 

khat.sp2 <- data.frame(khat.obs2, lower=V.khat$lower, upper=V.khat$upper) 

rand.L2 <- sqrt(khat.sp2/pi) - scale.spat 

#plot output 

plot(scale.spat, rand.L2$khat.obs2, xlim=range(scale.spat), ylim=range(rand.L2), 
type="l", col="green2", lwd=2, ann=FALSE) 

lines(scale.spat, rand.L2$upper, lty=2) 

lines(scale.spat, rand.L2$lower, lty=2) 

peak <- scale.spat[which.max(rand.L2$khat.obs2)] 

print(peak) 

#year 3 

pts.sp3 <- cbind(pts.3$X, pts.3$Y) 

khat.obs3 <- khat(pts=pts.sp3, poly=as.matrix(poly.gon), s=scale.spat) 



196 
 

#simulation envelope year 3 

khat.sp3 <- data.frame(khat.obs3, lower=V.khat$lower, upper=V.khat$upper) 

rand.L3 <- sqrt(khat.sp3/pi) - scale.spat 

#plot output 

plot(scale.spat, rand.L3$khat.obs3, xlim=range(scale.spat), ylim=range(rand.L3), 
type="l", col="green2", lwd=2, ann=FALSE) 

lines(scale.spat, rand.L3$upper, lty=2) 

lines(scale.spat, rand.L3$lower, lty=2) 

peak <- scale.spat[which.max(rand.L3$khat.obs3)] 

print(peak) 

#Year 4 

pts.sp4 <- cbind(pts.4$X, pts.4$Y) 

khat.obs4 <- khat(pts=pts.sp4, poly=as.matrix(poly.gon), s=scale.spat) 

#simulation envelope year 4 

khat.sp4 <- data.frame(khat.obs4, lower=V.khat$lower, upper=V.khat$upper) 

rand.L4 <- sqrt(khat.sp4/pi) - scale.spat 

 

#plot output 

plot(scale.spat, rand.L4$khat.obs4, xlim=range(scale.spat), ylim=range(rand.L4), 
type="l", col="grey2", lwd=2) 

lines(scale.spat, rand.L4$upper, lty=2) 

lines(scale.spat, rand.L4$lower, lty=2) 

peak <- scale.spat[which.max(rand.L4$khat.obs4)] 

print(peak) 

#year 5 

pts.sp5 <- cbind(pts.5$X, pts.5$Y) 

khat.obs5 <- khat(pts=pts.sp5, poly=as.matrix(poly.gon), s=scale.spat) 

#simulation envelope year 5 

khat.sp5 <- data.frame(khat.obs5, lower=V.khat$lower, upper=V.khat$upper) 

rand.L5 <- sqrt(khat.sp5/pi) - scale.spat 

#plot output 

plot(scale.spat, rand.L5$khat.obs5, xlim=range(scale.spat), ylim=range(rand.L5), 
type="l", col="green2", lwd=2, ann=FALSE) 

lines(scale.spat, rand.L5$upper, lty=2) 

lines(scale.spat, rand.L5$lower, lty=2) 

peak <- scale.spat[which.max(rand.L5$khat.obs5)] 

print(peak) 
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#plot output of all years on single graph 

plot(scale.spat, rand.L1$khat.obs1, xlim=range(0,9000), ylim=range(rand.L5), 
xlab="Distance (m)", ylab="Measure of Spatial Aggregation, L", type="l", col="Grey5", 
lwd=2) 

lines(scale.spat, rand.L5$khat.obs5, col="green3", lwd=2) 

lines(scale.spat, rand.L2$khat.obs2, col="red3", lwd=2) 

lines(scale.spat, rand.L3$khat.obs3, col="Blue3", lwd=2) 

lines(scale.spat, rand.L4$khat.obs4, col="Yellow3", lwd=2) 

lines(scale.spat, rand.L1$upper, lty=2) 

lines(scale.spat, rand.L1$lower, lty=2) 

 

#temporal clustering 

pts.all <- read.csv("~Sightings.csv", header=T, na.strings="*") 

pts.sp <- cbind(pts.all$X, pts.all$Y) 

pts.tm <- pts.all$Year 

 

scale.spat <- seq(0, 10000, by=250) 

scale.time <- seq(1,5, by=5) 

 

rand.kh <- stkhat (pts=pts.sp, times=pts.tm, poly=as.matrix(poly.gon), 
c(1,5),seq(0,10000,250),seq(1,5,1)) 

rand.se <- stsecal(pts=pts.sp, times=pts.tm, poly=as.matrix(poly.gon), 
c(1,5),seq(0,10000,250),seq(1,5,1)) 

rand.mc <- stmctest(pts=pts.sp, times=pts.tm, poly=as.matrix(poly.gon), 
c(1,5),seq(0,10000,250),seq(1,5,1),nsim =500 ,quiet=FALSE) 

stdiagn<- stdiagn(pts=pts.sp, rand.kh, rand.se, rand.mc) 
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Appendix 3 

Information on species important to communities within different biotopes was 

obtained from the Marine Life Information Network (MarLIN). Change or loss of these 

species would indicate a deterioration of biotope health. Information on sensitivity of 

biotopes, including species selected and rationale are shown below.  

Biotope: CR.MCR.EcCr.FaAlCr.Pom 

Species name Community 

importance 

Description of community importance 

Echinus esculentus Key functional Biotope has intense urchin grazing. Loss of species would 

result in major changes in the community. i.e. shift to 

Alcyonium or Metridium dominated communities. 

Alcyonium digitatum Important characterizing Important characterizing species since it occurs in most 

records of the biotope 

Lithophyllum 

incrustans 

Important other Included to represent the encrusting coralline algae 

characteristic of the biotope 

Pomatoceros triqueter Important other Characteristic faunal crusts 

 

Biotope: CR.MCR.EcCr.FaAlCr 

Species name Community 

importance 

Description of community importance 

Echinus esculentus Key functional Urchin grazing (although less than FaAlCr.Pom). 

Responsible for keeping species richness relatively low. 

Alcyonium digitatum Important characterizing Important characterizing and structural species and is 

included to represent the sensitivity of large epifauna. 

Lithophyllum 

incrustans 

Important other Included to represent the encrusting coralline algae 

characteristic of the biotope 

Nemertesia spp, 

Thuiaria thuja 

Important other Characteristic robust hydroids present in biotope 

Flustra foliacea Important other Characteristic faunal species 

Pomatoceros triqueter Important other Characteristic faunal crusts 
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Biotope: CR.MCR.EcCr.FaAlCr.Adig 

Species name Community 

importance 

Description of community importance 

Echinus esculentus Key functional Urchin grazing (although less than FaAlCr.Pom). 

Responsible for keeping species richness relatively low. 

Alcyonium digitatum Important characterizing Important characterizing and structural species and is 

included to represent the sensitivity of large epifauna. 

Lithophyllum 

incrustans 

Important other Included to represent the encrusting coralline algae 

characteristic of the biotope 

Pomatoceros triqueter Important other Characteristic faunal crusts 

 

Biotope: CR.MCR.EcCr.FaAlCr.Bri 

Species name Community 

importance 

Description of community importance 

Ophiothrix fragilis, 

Ophiocomina nigra, 

Ophiura albida 

Key structural May form dense beds providing habitat for other species 

and a food source for commonly found starfish 

Asterias rubens Important Functional Predation upon Brittlestar beds may control abundance 

although Asterias rubens is commonly found in this 

biotope. 

Alcyonium digitatum Important characterizing Important characterizing species since it occurs in most 

records of the biotope 

Abietinaria abietina, 

Thuiaria thuja 

Important characterizing Only robust hydroids able to tolerate the significant 

'smothering' effect from the dense `mat' of brittlestars. 

 

Biotope: CR.MCR.EcCr.FaAlCr.Flu 

Species name Community 

importance 

Description of community importance 

Echinus esculentus Key functional Urchin grazing (although less than FaAlCr.Pom). 

Responsible for keeping species richness relatively low. 
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Flustra foliacea Key structural Provides a habitat for species and is characteristic of this 

biotope (if lost would result in loss of the biotope as 

described). 

Alcyonium digitatum Important characterizing Important characterizing and structural species and is 

included to represent the sensitivity of large epifauna. 

Nemertesia sp., 

Thuiaria thuja 

Important characterizing Included to represent clumps of hydroids that occur in this 

biotope. Although, loss of a single species may not be 

detrimental, loss of the bryozoan/ hydroid turf would result 

in degradation of the community, and potentially loss of 

the biotope as described. 

Pomatoceros triqueter Important other Characteristic faunal crusts 

 

Biotope: IR.MIR.KR.Lhyp.Ft 

Species name Community 

importance 

Description of community importance 

Laminaria hyperborea Key structural Provides the major biological structure to the biotope. 

Provides substratum for numerous species and is the 

major source of primary production in this community, 

either directly or in the form of drift (broken off) algae. If 

lost, the biotope would cease to be Lhyp.Ft. 

Echinus esculentus Key functional High densities of urchin grazing can result in loss of kelp 

('urchin barrens'). The presence of this biotope is partly 

reliant on low or no populations of sea urchins. Although 

their grazing may prevent dominance by any one species 

of understorey algae, resulting in a more species rich 

epifauna/flora. 

Delesseria sanguinea, 

Palmaria palmata, 

Plocamium sp. 

Important characterizing Representative of the red foliose algae that survive in the 

biotope 

 

Biotope: IR.MIR.KR.Lhyp.Pk 

Species name Community 

importance 

Description of community importance 

Laminaria hyperborea Key structural Provides the major biological structure to the biotope. 

Although is less dense in Lhyp.Pk. Provides substratum 
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for numerous species and is the major source of primary 

production in this community, either directly or in the form 

of drift (broken off) algae. If lost, the biotope would cease 

to be Lhyp.Pk. 

Echinus esculentus Key functional High densities of urchin grazing can result in loss of kelp 

and red algae ('urchin barrens'). The presence of this 

biotope is partly reliant on low populations of sea urchins. 

Although their grazing may prevent dominance by any one 

species of understorey algae, resulting in a more species 

rich epifauna/flora. 

Alcyonium digitatum Important other Important characterizing and structural species. 

Delesseria sanguinea, 

Palmaria palmata, 

Plocamium sp. 

Important characterizing Representative of the red foliose algae that survive in the 

biotope 

Lithophyllum 

incrustans 

Important characterizing Is visually dominant on the rock 

 

Biotope: IR.MIR.KR.Lhyp.GzPk 

Species name Community 

importance 

Description of community importance 

Laminaria hyperborea Key structural Although less dense than Lhyp.Pk the kelp in this biotope 

still provides the major biological structure to the biotope. 

The kelp stipes may or may not be grazed. In the most 

extremely grazed areas, the stipes are also devoid of 

seaweeds. More usually, however, the stipes offers a 

refuge from grazing, and are characterised by dense turfs 

of red seaweeds, 

Echinus esculentus Key functional This biotope often has (or has recently had) high densities 

of urchins, which, through grazing, have substantially 

altered the community structure by removing most 

of the seaweeds and leaving only coralline crusts on the 

rock. 

Alcyonium digitatum Important other Important characterizing and structural species and is 

included to represent the sensitivity of large epifauna. 

Delesseria sanguinea, 

Palmaria palmata, 

Important characterizing Representative of the red foliose algae that survive in the 

biotope (although at lower densities than Lhyp.Pk) 



202 
 

Plocamium sp. 

Lithophyllum 

incrustans 

Important characterizing Is visually dominant on the rock 

Pomatoceros triqueter Important characterizing Is visually dominant on the rock and represents the barren 

nature of the substrate in this biotope. 

 

Biotope: IR.MIR.KR.LhypT.Ft 

Species name Community 

importance 

Description of community importance 

Laminaria hyperborea Key structural Provides the major biological structure to the biotope. 

Provides substratum for numerous species and is the 

major source of primary production in this community, 

either directly or in the form of drift (broken off) algae. If 

lost, the biotope would cease to be LhypT.Ft. 

Echinus esculentus Key functional High densities of urchin grazing can result in loss of kelp 

('urchin barrens'). The presence of this biotope is partly 

reliant on low or no populations of sea urchins. Although 

their grazing may prevent dominance by any one species 

of understorey algae, resulting in a more species rich 

epifauna/flora. 

Delesseria sanguinea, 

Palmaria palmata, 

Plocamium sp. 

Important characterizing Representative of the red foliose algae that survive in the 

biotope 

Membranoptera 

Alata, Obelia 

Geniculate, 

Membranipora 

membranacea 

Important characterizing Holdfast and stipe fauna is a particularly species rich part 

of the biotope. These species have been suggested as 

specifically associated with holdfasts and stipes and 

therefore critical to the identity of this biotope. 

 

Biotope: IR.MIR.KR.LhypT.Pk 

Species name Community 

importance 

Description of community importance 

Laminaria hyperborea Key structural Provides the major biological structure to the biotope. 

Although is less dense than LhypT.Ft. Provides 
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substratum for numerous species and is the major source 

of primary production in this community, either directly or 

in the form of drift (broken off) algae. If lost, the biotope 

would cease to be LhypT.Pk. 

Echinus esculentus Key functional High densities of urchin grazing can result in loss of kelp 

and red algae ('urchin barrens'). The presence of this 

biotope is partly reliant on low populations of sea urchins. 

Although their grazing may prevent dominance by any one 

species of understorey algae, resulting in a more species 

rich epifauna/flora. 

Alcyonium digitatum Important other Important characterizing and structural species and is 

included to represent the sensitivity of large epifauna. 

Delesseria sanguinea, 

Palmaria palmata, 

Plocamium sp. 

Important characterizing Representative of the red foliose algae that survive in the 

biotope 

Membranoptera 

Alata, Obelia 

Geniculate, 

Membranipora 

membranacea 

Important characterizing Holdfast and stipe fauna is a particularly species rich part 

of the biotope. These species have been suggested as 

specifically associated with holdfasts and stipes and 

therefore critical to the identity of this biotope. 

Lithophyllum 

incrustans 

Important characterizing Is visually dominant on the rock 
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Appendix 4 

Intensively fished FaAlCr  

Contributions of individual species to significant differences detected between 

treatments on a site level, showed similarities between sites for all treatments 

(SIMPER, Table A.1). 

Table A.1. Mean benthic cover contributing more than 10% to Bray-Curtis 
dissimilarity between treatments (SIMPER), in order of contribution for high fished 
FaAlCr habitats. Only consistent indicator benthic cover was used. Difference in 
abundance between treatments are shown. Mean dissimilarity in samples between 
B-I and CB-CI are shown for sites. Grey cells indicate difference in direction of mean 
abundance. 

Site Species 
B I  CB CI  

Av.Abund Av.Abund ± Av.Abund Av.Abund Av.Abund ± Av.Abund 

Site 1 
Spirobranchus 

spp 
2.28 6.35 4.07 2.86 8.29 5.44 

 Bare rock 5.11 5.95 0.85 3.39 4.49 1.11 

 Encrusting 
algae 

4.28 5.81 1.52 3.13 3.31 0.18 

 Faunal algal 
turf 

73.10 63.84 -9.26 66.10 63.52 -2.58 

  Dissimilarity (%) 31.2 Dissimilarity (%) 36 

Site 2 
Encrusting 

algae 
2.13 2.76 0.62 1.93 2.96 1.03 

 Bare rock 1.39 0.81 -0.58 1.49 2.13 0.64 

 Spirobranchus 
spp 

0.35 1.00 0.65 0.20 1.10 0.90 

 Faunal algal 
turf 

86.12 82.63 -3.49 86.86 82.45 -4.42 

  Dissimilarity (%) 27.8 Dissimilarity (%) 27.5 

Site 3 
Spirobranchus 

spp 
5.15 1.96 -3.19 3.28 3.46 0.18 

 Encrusting 
algae 

12.60 4.84 -7.76 8.76 5.29 -3.47 

 Bare rock 3.84 1.54 -2.30 4.93 6.50 1.57 

 Faunal algal 
turf 

60.37 76.56 16.19 64.80 64.96 0.16 

  Dissimilarity (%) 32.3 Dissimilarity (%) 36.2 

 

Benthos which were consistent indicators and contributed more than 10% of the 

dissimilarity for all sites were similar between treatments although varied in order of 

contribution between sites (Encrusting algae (red, brown, pink), Spirobranchus spp, 

Bare rock and Faunal algal turf) (Table A.1). Faunal algal turf displayed the largest 

differences in mean benthos percentage cover between B-I and CB-CI although these 

were not consistent across sites, ranging from increases of 16.19 % (B-I, site 3, 

Table A.1) to decreases of 9.26% (B-I, site 1, Table A.1). Other benthos differed by 

lower percentage cover between B-I and CB-CI ( < 7.8%, Table A.1). 
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A comparison of changes in mean percentage cover of benthos between B-I and CB-

CI showed that these were also similar between treatments with only three mean 

abundances differing in direction between treatments (show in grey in Table A.1, 

Bare rock, site 2; Spirobranchus spp, site 3; Bare rock, site 3). There is no pattern in 

increase/decrease of taxon between treatments that are consistent throughout sites 

with those predicted by potting impacts. These results are consistent with the earlier 

broader analysis showing that B-I and CB-CI differ in similar ways. 

Lightly fished FaAlCr  

SIMPER analysis, undertaken to investigate in more detail contributions of individual 

benthos to significant differences detected between treatments on a site level, 

showed similarities between sites for all treatments (Table A.2.). 

Table A.2. Mean percentage benthic cover contributing more than 10% to Bray-Curtis 
dissimilarity between treatments (SIMPER) for low fished FaAlCr habitats. Only 
consistent indicator benthic cover was used. Difference in abundance between 
treatments are shown. Mean dissimilarity in samples between B-I and CB-CI are 
shown by sites. Grey cells indicate difference in direction of mean abundance. 

Site Species 
B I  CB CI  

Av.Abund Av.Abund ± Av.Abund Av.Abund Av.Abund ± Av.Abund 

Site 1 
Gravel (stone or 

shell) 
2.72 7.78 5.06 2.07 7.84 5.7 

 Spirobranchus spp 18.83 25.2 6.36 20.34 27.14 6.8 

 Faunal algal turf 49.98 38.93 -11.04 47.33 33.40 -13.92 

 Bare rock 13.24 13.98 0.73 13.76 12.60 -1.16 

 Encrusting algae 0.7 0.79 0.08 0.72 0.65 -0.06 

 Feather hydroid 0.44 0.03 -0.41 N/a N/a N/a 

  Disimilarity (%) 21.7 Disimilarity (%) 22.89 

Site 2 
Gravel (stone or 

shell) 
3.64 11.35 7.7 6.96 10.04 3.07 

 Encrusting bryozoan 0.01 3.42 3.41 0.06 2.13 2.06 

 Encrusting algae 0.43 4.57 4.1 0.81 3.24 2.43 

 Faunal algal turf 42.51 29.16 -13.34 31.58 31.24 -0.33 

 Bare rock 14.21 9.48 -4.72 13.32 9.73 -3.58 

 Spirobranchus spp 26.62 28.19 1.5 24.50 27.98 3.48 

  Disimilarity (%) 25.3 Disimilarity (%) 20.24 

Site 3 
Gravel (stone or 

shell) 
4.08 15.92 11.83 3.45 15.36 11.90 

 Spirobranchus spp 21.06 30.14 9.07 20.16 30.03 9.87 

 Faunal algal turf 36.12 26.31 -9.8 37.33 25.6 -11.72 

 Bare rock 17.30 17.22 -0.08 14.89 16.16 1.26 

 Encrusting algae 0.79 0.73 -0.05 0.33 1.14 0.80 

 Encrusting bryozoan N/a N/a N/a 0.05 0.14 0.08 

  Disimilarity (%) 22.4 Disimilarity (%) 21.96 

 



206 
 

Benthos that contributed more than 10% of the dissimilarity (consistently) between 

treatments, at all sites included: Gravel (stone or shell), Spirobranchus spp, 

Encrusting algae, Faunal and algal turf and Bare rock (Table A.2.). The largest 

increase in mean benthos percentage cover was gravel between B-I at site 3 (11.9%, 

Table A.2.) with the largest decrease found in short silty faunal algal turf between CB-

CI at site 1 (13.9%, Table A.2.). Other benthos (Spirobranchus spp Encrusting algae, 

Feather hydroid, Encrusting bryozoan) differed by lower percentage cover between 

B-I and CB-CI (< 9.8%, Table A.2.). In general, benthos increased or decreased 

consistently across sites (Table A.2.), however, differences were not in line with 

those predicted by potting impacts (i.e. although Faunal and algal turf decreased, the 

increase of Spirobranchus spp and decrease Bare rock are not consistent).  

A comparison of changes in mean percentage cover of benthos between B-I and CB-

CI showed that these were also similar between treatments with only small scale 

differences in mean abundances on six occasions (highlighted grey in Table A.2.). 

This equates to differences in mean percentage cover between B-I and CB-CI ranging 

from 0.23 to -0.21%. There were minimal differences in direction between 

experimental and control sites consistent with the earlier broader analysis showing 

that B-I and CB-CI differ in similar ways. 
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Intensively fished Lhyp.Pk 

Contributions of individual species to significant differences detected between 

treatments on a site level, showed similarities between sites for all treatments 

(SIMPER, Table A.3.). 

Table A.3. Mean benthic cover contributing more than 10% to Bray-Curtis 
dissimilarity between treatments (SIMPER), in order of contribution. Only consistent 
indicator benthic cover was used. Difference in abundance between treatments are 
shown. Mean dissimilarity in samples between B-I and CB-CI are shown sites. Grey 
cells indicate difference in direction of mean abundance. 

Site Species 
B I  CB CI  

Av.Abund Av.Abund ± Av.Abund Av.Abund Av.Abund ± Av.Abund 

Site 1 
Non-red algae 

(> 1 cm) 
7.29 7.29 0 4 7.84 3.84 

 Red algae (> 1 
cm) 

5.76 14.44 8.68 0.25 4.84 4.59 

 Short silty 
faunal turf 

10.89 16.81 5.92 18.49 25 6.51 

 Bare rock 4.41 4.84 0.43 4.41 7.84 3.43 

 
Red algae turf 

(< 1 cm) 
3.61 11.56 7.95 7.84 7.84 0 

 Encrusting 
algae 

2.56 1.96 -0.6 2.89 2.56 -0.33 

  Dissimilarity (%) 60.1 Dissimilarity (%) 58.6 

Site 2 
Non-red algae 

(> 1 cm) 
12.96 33.64 20.68 10.89 17.64 6.75 

 Short silty 
faunal turf 

17.64 3.61 -14.03 19.36 5.29 -14.07 

 Red algae (> 1 
cm) 

5.76 12.96 7.2 5.76 13.69 7.93 

 
Red algae turf 

(< 1 cm) 
7.84 4.84 -3 14.44 9.61 -4.83 

 Encrusting 
algae 

4.41 3.61 -0.8 6.25 6.25 0 

  Dissimilarity (%) 57.2 Dissimilarity (%) 51.6 

Site 3 
Non-red algae 

(> 1 cm) 
14.44 24.01 9.57 19.36 15.21 -4.15 

 Red algae (> 1 
cm) 

7.84 20.25 12.41 12.96 24.01 11.05 

 Red algae turf 
(< 1 cm) 

12.25 5.76 -6.49 17.64 10.89 -6.75 

 Bare rock 1.69 4 2.31 2.25 3.61 1.36 

 Short silty 
faunal turf 

14.44 6.76 -7.68 13.69 7.29 -6.4 

  Dissimilarity (%) 50.5 Dissimilarity (%) 40.0 

 

Benthos which were consistent indicators and contributed more than 10% of the 

dissimilarity for all sites were similar between treatments (Non-red algae (> 1cm), 

Red algae (> 1cm), Short silty faunal turf, Bare rock Red algae turf (< 1cm) and 

Encrusting algae)( Table A.3.). The largest increase in mean benthos percentage 

cover was non red algae ( > 1cm) between B-I at site 2 (20.68%, Table A.3.) with the 

largest decrease found in short silty faunal algal turf between CB-CI at site 2 (14.07%, 
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Table A.3.). Non- red algae (> 1cm) and Red algae (> 1cm) differed consistently in 

mean benthos percentage cover between B-I and CB-CI across all sites with mean 

increases of 0 - 9.57% (Table A.3.). Other benthos differed less consistently between 

sites but similarly between treatments B-I and CB-CI in individual sites. Comparison of 

changes in mean percentage cover of benthos between B-I and CB-CI showed that 

these were also similar between treatments with only Non-red algae (> 1cm), site 3 

differing in direction of change. There is no pattern in increase/decrease of taxon 

between treatments that are consistent throughout sites with those predicted by 

potting impacts. The increase in Red algae (> 1 cm) and Non- red algae (> 1cm) 

between B – I and CB-CI is consistent with either natural variation or habitat 

heterogeneity. These results are consistent with the earlier broader analysis showing 

that B-I and CB-CI differ in similar ways. 
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