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Abstract 

Switched mode DC-DC converters exhibit a variety of complex behaviours in power 

electronics systems, such as sudden changes in operating region, bifurcation and 

chaotic operation. These unexpected random-like behaviours lead the converter to 

function outside of the normal periodic operation, increasing the potential to generate 

electromagnetic interference degrading conversion efficiency and in the worst-case 

scenario a loss of control leading to catastrophic failure. 

The rapidly growing market for switched mode power DC-DC converters demands 

more functionality at lower cost. In order to achieve this, DC-DC converters must 

operate reliably at all load conditions including boundary conditions. Over the last 

decade researchers have focused on these boundary conditions as well as nonlinear 

phenomena in power switching converters, leading to different theoretical and 

analytical approaches. However, the most interesting results are based on abstract 

mathematical forms, which cannot be directly applied to the design of practical 

systems for industrial applications.   

In this thesis, an analytic methodology for DC-DC converters is used to fully 

determine the inherent nonlinear dynamics. System stability can be indicated by the 

derived Monodromy matrix which includes comprehensive information concerning 

converter parameters and the control loop. This methodology can be applied in 

further stability analysis, such as of the influence of parasitic parameters or the effect 

of constant power load, and can furthermore be extended to interleaved operating 

converters to study the interaction effect of switching operations. From this analysis, 

advanced control algorithms are also developed to guarantee the satisfactory 

performance of the converter, avoiding nonlinear behaviours such as fast- and slow-

scale bifurcations. The numerical and analytical results validate the theoretical 

analysis, and experimental results with an interleaved boost converter verify the 

effectiveness of the proposed approach.  

 

Keywords- Nonlinear Analysis, Stability, Bifurcation, DC-DC Boost Converters, 

Monodromy Matrix  
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1 Introduction 

1.1 Background 

Power electronics is an application-oriented discipline that copes with the conversion 

and control of electrical power, which is applied in many areas such as commercial, 

residential, telecommunications, transportation, aerospace and utility applications. 

After more than four decades of technological evolution, power electronics is now 

one of the most significant branches in the field of electrical engineering. Key drivers 

of this evolution were improvements in power semiconductor technologies, control 

methods, packaging techniques and circuit topologies. In power electronics systems, 

a power converter is designed in order to match the input requirements with the 

output requirements. Thus power converters are able to transform AC input values 

into DC output values in a controlled manner or vice versa. They can also be 

designed to change AC to AC and DC to DC as illustrated in Figure 1.1. 

 

Figure 1.1 Types of power converters 

However, although DC-DC converters are widely used in many applications, most of 

them have been designed without the consideration of switching actions. DC-DC 

converters are inherently nonlinear and piecewise smooth systems which show a 

variety of nonlinear phenomena such as bifurcation that can lead to sub-harmonics 

and chaos when circuit parameters are varied. Thus can lead to challenges for power 

electronics engineers to deal with these complex behaviours in the course of product 

design. Without thorough knowledge of existing circuits, experience-based trial-and-

error procedures are often applied in practical applications to guarantee that the 

circuits work in the expected operating region [1]. As a result, circuit designs and the 
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components and parameters used are adjusted accordingly to fulfil given criteria 

based on lessons learned from the past rather applying an appropriate systematic 

design methedology.  

1.2 Nonlinear phenomena in power switching converters 

 
Figure 1.2 General requirements of high-performance power DC-DC converters 

The general requirements of high-performance DC-DC converters are shown in 

Figure 1.2. Expected features are described as low cost, low output voltage ripple 

and low overshoot, low susceptibility, fast dynamic response, high conversion 

efficiency and stability. Among these features, system stability is essential in power 

converter design, and determines whether the converters can run reliably. Due to the 

inherent switching action of the circuit, there is a periodic oscillation around a 

predefined value in the steady-state operating point of any DC-DC converter. 

However, when a converter operates in an unexpected mode such as bifurcation or 

chaotic mode, the amplitudes of voltage and current will vary dramatically, 

accompanying an increase in losses which consequently results in efficiency deficits. 

In addition, it is highly likely that electromagnetic interference (EMI) will arise, causing 

the converter to malfunction and in the worst case can cause the complete loss of the 

converter. Hence, gaining full knowledge of the stability of DC-DC converters will 

guarantee satisfactory performance. 

A typical DC-DC converter is comprised of power switches, passive components, 
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diodes and control circuits. Normally, in order to regulate the output of the converter 

and achieve the required conversion, the switches and other components are utilized 

to chop and restructure the electric power, and these are controlled by control 

circuits. In the process of the operational analysis of the converter, even though each 

subinterval of operation can be characterized by a linear circuit, the switching action 

itself makes the converter model a highly nonlinear system which is much harder to 

solve analytically than with linear circuits. Conventionally, most power electronics 

practitioners employ the linearized averaging technique for the analysis of power 

converters using the framework of linear systems theory, and thus discontinuities 

introduced by the switching action of the circuit are ignored. In fact, the switching 

action is strongly related to the system’s fast scale stability. Because of a lack of 

knowledge on the nonlinearities caused by switching, some converter components 

which are chosen to guarantee the stable operation of the system are significantly 

oversized, giving a larger, more expensive and less efficient product.  

Nonlinearities of power electronics circuits have attracted considerable research 

attention. Fundamental research work on the nonlinear phenomena of power 

electronics commenced approximately from the late 1980’s. After Brockett and Wood 

[2] first described the phenomena of bifurcation and chaos in a controlled DC-DC 

buck converter in 1984, Hamill et al [3] extended their work in a more detailed study 

of this nonlinear phenomena using an iterative mapping approach [4], where the 

chaotic operation of the buck converter was demonstrated by simulation and 

validated in experiments. Krein and Bass [5] reported on the nonlinear behaviour of 

unboundedness, chattering and chaos in a simple power electronics circuit. Since 

then, much interest has been directed to the investigation of complex phenomena 

observed in power electronics [6, 7]. In 1994, Tse [8] described the nonlinear 

dynamics of simple feedback boost converters operating in discontinuous mode, 

exhibiting a typical period-doubling route to chaos under specific operating 

conditions. Fossas and Olivar [9] studied the dynamics of the buck converter 

analytically in detail, identifying the topology of its chaotic attractor and investigating 

the evolution of trajectories when close to the attractors. Banerjee [10] reported the 

coexisting attractors in voltage mode controlled buck converters, and Di Bernardo 

[11, 12] explained the transitions of sudden jumps from periodic solutions to chaos 

due to border collisions rather than standard bifurcations such as "period-doubling" 
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and "saddle-node". 

Many researchers have extended this research field from simple basic DC-DC 

converters, such as buck [13-15], boost [16-18], buck-boost [19-21], and Cuk 

converters [22-24] to forward [25, 26] and parallel connected converters [27-29]; from 

AC-DC power factor converters [30-32] and resonant converters [33, 34] to DC-AC 

inverters [35-37] and interleaved converters [38-40]. These studies report a variety of 

complex behaviours such as bifurcation, chaos, attractors, and border collisions. 

Some mechanisms causing these nonlinear phenomena have been examined, and 

the evaluation of dynamic behaviour has been studied when some circuit parameters 

are varied.  

1.3 Previous work on nonlinear analysis in power switching converters 

To study and analyse the inherent stability of these power converters, prominent 

stability analysis techniques for DC-DC converters are illustrated in Figure 1.3. The 

state-space averaging technique [27, 28, 41, 42] is widely used by converter 

designers to estimate the stability and dynamic behaviour of power converters. In this 

method, the actual nonlinear system is linearized around a steady-state operating 

point to yield a linear model. This gives a simple and accurate model at slow 

timescale, but fails to predict nonlinear behaviour at a fast timescale. Nonlinear 

behaviours can be generally classified into two categories at slow and fast 

timescales. Slow timescale means that the dynamic behaviour investigated is much 

slower than the switching frequency, whereas fast timescale means that the dynamic 

behaviour investigated is around the switching frequency. For example, fast 

timescale instability refers to nonlinear phenomena such as period-doubling 

bifurcation and slow timescale instability includes nonlinear behaviour such as Hopf 

bifurcation. The conventional averaging methodology was extended in frequency-

dependent averaged models [43] by taking into account the effect of fast-scale 

dynamics. A multi-frequency averaging approach [44-46] was then proposed to 

improve the conventional state-space averaging models, modelling the dynamic 

behaviour of pulse width modulation (PWM) controlled DC–DC converters by 

applying and expanding the frequency-selective averaging method [47]. An analysis 

method based on the Krylov-Bogoliubov-Mitropolsky (KBM) algorithm [48] was 

developed to recover the ripple components of state variables from the averaged 

model.  
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However, even such improved models cannot describe chaotic dynamics completely 

and effectively. To address fast-scale nonlinearities, discrete nonlinear modelling is 

the most widely used approach. Nonlinear map-based modelling [4, 11, 12, 35, 49-

51] developed from sampled-data modelling [52-54] in the early stages applies an 

iterative map for the analysis of system stability which is obtained by sampling the 

state variables of the converter synchronously with PWM clock signals. This method 

is commonly referred to as the Poincaré map method and the maps generated can 

be classified into stroboscopic, S-switching and the A-switching maps according to 

the different samplings moment. Stability is indicated by the eigenvalues of the fixed 

point of the Jacobian of the map, even though in some cases the map itself cannot 

be derived in close-form because of the transcendental form of the system’s 

equations. Hence the map has to be obtained numerically.  

 
Figure 1.3 Stability analysis techniques for power switching converters 

Other alternative approaches such as Floquet theory [18, 55-57], Lyapunov-based 

methods [58-63] and the trajectory sensitivity approach [64] have been applied 

effectively for the nonlinear analysis of power converters. Specifically, the evolution of 

perturbation is studied directly in Floquet theory to predict system stability, by deriving 

the absolute value of the eigenvalues of the complete-cycle solution matrices. In 

Lyapunov-based methods, piecewise-linear Lyapunov functions are searched for and 

constructed to describe system stability. For the trajectory sensitivity approach, 

systems are linearized around a nominal trajectory rather than around an equilibrium 
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point and stability can be determined by observing the change in a trajectory due to 

small initial or parameter variations. There also have some combined approaches 

developed from state-space averaging and discrete modelling. Examples of these 

methods are the design-oriented ripple-based approach [65-67]; Takagi–Sugeno (TS) 

fuzzy model-based approach [68] and system-poles approach [69]. Apart from the 

aforementioned approaches, other individual methods, such as the symbolic 

approach [70, 71] and energy balance model [72], have been proposed to analyse 

the nonlinearities of switching power converters. A recent review paper on stability 

analysis methods for switching mode power converters has summarised some 

approaches presented [73]. 

1.4 Previous nonlinear control methods in power switching converters 

Based on the above methodologies, various control techniques are proposed to 

tackle nonlinear behaviours, and these can be classified into two categories: 

feedback-based and non-feedback based techniques. In the former group, in order to 

achieve stable control, a small time-dependent perturbation is tailored to make the 

system operation change from unstable periodic orbits (UPOs) to targeted periodic 

orbits. The first well-known chaos control method was proposed by Ott et al [74], 

named the Ott-Grebogi-Yorke (OGY) approach. One advantage of this method is that 

a priori analytical knowledge of the system dynamics is not required, which makes it 

easier to implement. Then, Pyragas [58, 75] presented an extended delay feedback 

control technique to stabilise the UPOs in dynamic systems over a large domain of 

parameters. Some further extended studies of those approaches have also been 

published [76, 77]. Batlle et al [78] introduced the time-delay stabilization approach 

for the buck converter for the first time. After that, an alternative chaos controlling 

approach, called the linear Time Delayed Feedback Control (TDFC) method, was 

proposed to stabilize the UPOs in the field of nonlinear dynamics [79-82]. In this 

method, the information of the current state and prior one-period state is used to 

generate signals for the stabilizing control algorithm. This technique has been further 

studied [83-85], and washout filter-aided feedback control [86-88] was proposed to 

address the Hopf bifurcation of dynamic systems. The benefits, limitations and 

extensions of this method have been summarised in [89]. Other filter-based non-

invasive methods for the control of chaos in power converters have also been 

proposed [15, 90, 91]. Apart from the aforementioned control methods, a self-stable 
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chaos-control method [92], predictive control [93], frequency-domain approach [94], 

two-parameter chaotic control [14], and a chaotic particle swarm optimization (PSO) 

algorithm [95] have been proposed to eliminate bifurcations and chaotic behaviour in 

various switching DC-DC converters. 

 
Figure 1.4 Control of nonlinearities in power switching converters 

In the non-feedback category, the control target is not set at the particular desired 

operating state, whereas the chaotic system can be converted to any periodic orbit. 

Resonant parametric perturbation [96-98] is one of the most popular methods. In this 

approach, some parameters at appropriate frequencies and amplitude are normally 

perturbed to induce the system to stay in stable periodic regions, converting the 

system dynamic to a periodic orbit. Other examples of this type of method include the 

ramp compensation approach [99-102],fuzzy logic control [103] and weak periodic 

perturbation [104]. Compared to feedback-based methods, no online monitoring and 

processing are required in a non-feedback approach, which makes it easy to 

implement and suitable for specific practical applications. 

Chaotic operation is usually undesirable in switching DC-DC converters because it 

may cause EMI and additional power losses due to the higher current and voltage 

ripples. However, some researchers believe that chaotic behaviours are not always 

harmful; they may have benefits for power converters in some cases, including even 
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to reduce EMI. The methods of chaos-based pulse width modulation [105], random 

modulation [106], and soft switching combined with chaotic mapping [107] have been 

proposed for the EMI reduction, and are displayed in Figure 1.4. It is shown that, at 

some chaotic modes, the converter fulfils Electromagnetic Compatible (EMC) 

standards without adding any filters [108, 109]. This concept of the ‘‘anti-control of 

chaos” has attracted increasing attention in recent years due to its potentially wide 

application. 

1.5 Objectives  

The phenomena of bifurcation and chaos are ubiquitous in circuits and systems of 

power electronics. In such systems, when some selected parameters (input, output 

rate and load condition, etc) change, the system tends to produce nonlinear 

behaviours, such as period-doubling bifurcation, Hopf bifurcation, coexisting 

attractors and boundary collision. The study of power electronic systems in terms of 

the bifurcation behaviour recognition is already relatively mature so far. Many studies 

have reported various bifurcation behaviours and revealed the inherent theoretical 

parameters and causes and effects of bifurcation. In recent years, researchers have 

begun to explore potential applications of the complex behaviour existing in power 

electronic systems in the field of industrial power electronics. One research interest is 

to apply the current research outcomes to cope with the bifurcation behaviour of 

practical power electronic systems. However, the most interesting results for 

bifurcation behaviour is basically based on abstract mathematical forms, which 

cannot be directly and effectively applied to the design of practical systems for 

industrial application. Thus relatively intuitional and design-oriented approaches are 

needed in the future study and research work. 

The work in this thesis focuses on the stability analysis and control of fast timescale 

nonlinear behaviour in DC-DC switching converters, aiming to increase the 

knowledge of nonlinear modelling and to fill gaps in theoretical research and practical 

application. The nonlinear analysis method based on Monodromy matrix is utilized in 

this research, which enables a deeper understanding of boundary operation 

conditions to be gained. It helps in the development of new control methods that can 

be applied to address instability issues. Furthermore, this design-oriented method 

provides an alternative useful design concept from the perspective of fast-scale 
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stability, which shows its potentials in practical applications.  

1.6 Contribution to knowledge 

The main original contributions of this research work are as follows: 

● The Monodromy matrix-based nonlinear analysis method is applied for the first 

time to investigate the influence of parasitic parameters on the fast-scale 

stability and to study DC-DC converters with constant power load with different 

operation modes and control algorithms. 

● A nonlinear analysis method is developed to study the higher order topology with 

more complex control algorithms such as in interleaved boost converters, which 

fully reveals the interaction effect of switching operations on system stability. 

● A new mixed signal technique is proposed to achieve digital peak current 

control, which is successfully implemented in the test platform. The 

experimental results demonstrate the effectiveness of the proposed approach 

for the nonlinear analysis of power switching converters. 

● Two effective control methods: a real time cycle to cycle variable slope 

compensation control and an improved quadratic curve slope compensation 

control are developed based on the knowledge of the derived Monodromy 

matrix to control the nonlinearity of DC-DC converters. 

● A control method is proposed for the first time to stabilise the nonlinear 

behaviour of boost DC-DC converters with reduced inductance. 

Most of the above outcomes have been published in the following papers: 

[1] Haimeng Wu, Volker Pickert, Damian Giaouris, "Nonlinear analysis and control 

for an interleaved boost converter based on the Monodromy matrix" Energy Conver-

sion Congress and Exposition (ECCE) 2014, IEEE, Pittsburgh, USA,2014 

[2] Haimeng Wu, Volker Pickert "Stability analysis and control of nonlinear phe-

nomena in bidirectional boost converter based on the Monodromy matrix" Applied 

Power Electronics Conference and Exposition (APEC) 2014, IEEE, Page(s): 2822-

2827, 2014. 

[3] Haimeng Wu, Volker Pickert, Simon Lambert, Xiang Lu "Nonlinear analysis of 

boost converters with constant power loads at different modes of operation" The 8th 

IET International Conference on Power Electronics, Machines and Drives 2016, 

Glasgow, UK,2016 (Accepted) 
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1.7 Overview of the thesis 

This thesis analyses the stability of DC-DC converters and control of nonlinear 

behaviour using the Monodromy matrix. The research starts from single phase boost 

converters with consideration given to parasitic parameters. Then work is extended to 

boost converters with constant power load. Based on the research findings from prior 

work, further research is carried out with interleaved boost converter. The theoretical 

study is presented in detail and is validated numerically and experimentally.  

The thesis is structured as follows: 

Chapter 2 presents general knowledge concerning the nonlinear dynamics of 

systems and methods for the analysis of power switching converters, including 

identification approaches and modelling strategies. In addition, the fundamental 

principles of the Monodromy matrix-based method are illustrated and the 

characterization of nonlinear systems behaviour in terms of various measurable 

properties is discussed.  

In chapter 3, the proposed method is employed in a study of the influence of external 

and parasitic parameters on system stability in a bidirectional boost converter 

applying peak current control. Furthermore, based on knowledge of the Monodromy 

matrix of the system, a new control algorithm is proposed to address nonlinear 

phenomena and to expand the range of stable operation.  

Chapter 4 demonstrates that this method of nonlinear analysis is effective in the 

stability analysis of power switching converters with constant power load and different 

operational modes and control algorithms. Theoretical and simulation-based analyse 

of a single phase boost converter with constant power load are presented in this 

chapter.  

In chapter 5, an analysis is conducted of interleaved boost converters, which have a 

higher order topology and more complex interleaving operation compared with 

single-phase converters. The Monodromy matrix is employed to fully determine the 

understanding of the inherent nonlinear dynamics of these converters, and especially 

for the interaction effect of switching operations. The derivation of the Monodromy 

matrix at different operational conditions and a study of the control loop are 

presented and illustrated accordingly. 
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Chapter 6 proposes a new mixed signal technique for digital peak current control, 

which contains a DSP controller with an external high performance waveform 

generator. The design of hardware and corresponding software of the test system is 

described in detail, and experimental results demonstrate that this system works 

effectively for the nonlinear analysis of power switching converters. 

In chapter 7, the influence of slope amplitude at conventional fixed slope 

compensation and sinewave compensation is studied theoretically and 

experimentally. A real-time cycle to cycle variable slope compensation (VSC) control 

method and improved quadratic curve slope compensation (QCSC) control are 

proposed to control the nonlinearity of DC-DC converters and to guarantee that 

converter operation remains stable, avoiding fast- and slow-scale bifurcations. 

Furthermore, a case study of reduced inductance in interleaved boost converters 

shows the potential of the used nonlinear analysis method in practical applications. 

Finally, the conclusions of the study and recommendations for future research to 

extend the current findings are discussed in the chapter 8. 
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2 Overview of nonlinear dynamical analysis for 

power switching converters 

This chapter presents general background knowledge concerning power electronics 

systems, including description methods in dynamical systems and modelling 

strategies. Stability analysis approaches based on equilibrium points and periodic 

solution are discussed and in particular the conventional Poincaré map approach and 

Monodromy matrix based method from Filippov’s theory are demonstrated in detail. 

Moreover, the nonlinear system behaviour and the characterization of systems in 

terms of some measurable properties are discussed at the end of this chapter. 

2.1 Description of power electronics system 

Most power electronics systems are hybrid dynamic systems that exhibit both 

continuous and discrete characteristics to some extent. For example, during the 

switching event of a power switch, the power electronics system experiences a 

discrete change whereas before and after the switching event the circuit operates in 

continuous modes. In continuous-time systems, differential equations are commonly 

used to express the evolution of the system, and the system variables are real 

numbers that vary continuously in time. In contrast, in discrete-time systems, iterated 

maps or difference equations are usually employed to describe the system behaviour. 

The evolution of systems is represented at a set of discrete times and the effects of 

continuous evolution are expressed as discrete jumps from one system state to 

another. Power electronics systems can also be identified as piecewise-smooth 

dynamical systems (or non-smooth dynamical systems) according to the appropriate 

mathematical definition and representation, since they are discontinuous systems 

described by differential equations with discontinuities at the right-hand side. 

In mathematics, a linear system is defined as a general deterministic system that can 

be described by an identity linear map (also called a linear transformation or linear 

function). It satisfies the properties of homogeneity and additivity that are called the 

superposition principle [110]. Power electronics systems, however, belong to the 

group of nonlinear systems and therefore do not satisfy this superposition principle. 

Specifically, there is no directly proportional relationship between the output of a 
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nonlinear system and its input. 

A dynamical system can be classified as an autonomous or non-autonomous system 

according to whether or not it is independent of time. If the system equations are 

time-independent, the system is referred to as an autonomous system; otherwise, it 

is non-autonomous. 

2.2 Power switching converters 

 
(a)                                                                (b)  

  

(c) 
Figure 2.1 Power electronics systems 

(a) Diagram of a power converter system (b) voltage-mode and current-mode control 
(c) Typical elementary non-isolated DC-DC power switching converters 

Power switching converters normally consist of power switches, diodes and passive 

components such as capacitors, inductors and transformers, and convert the 

electrical power from the power supplies to various loads. Power circuits operate by 

toggling among a set of circuit topologies at subintervals, due to the actions of active 

power switches. Feedback controls such as voltage-mode or current-mode control 

(as shown in Figure 2.1(b)) are usually employed in system to regulate the duty cycle 
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of switches, so as to achieve the required power output. A typical diagram of the 

structure of a power converter system is shown in Figure 2.1 (a); and the topologies 

of the elementary non-isolated DC-DC power switching converters, the buck, boost, 

buck-boost, Cuk and SEPIC converters, are illustrated in Figure 2.1 (c). 

In power switching converters, the voltage across capacitors, currents through 

inductors and other time-dependent parameters are generally used as state variables 

to represent the system. External periodic clock signals are commonly required for 

pulse width modulation (PWM) in power electronics systems, which lead the state 

variables to be functions of the switching frequency; hence, most power electronics 

systems are non-autonomous dynamical systems. 

2.3 Modelling approaches for power switching converters 

In many practical engineering applications, physical systems are often modelled and 

simplified as linear systems, approximated by linear equations. Therefore, classical 

automatic control theory can be employed for system analysis. 

 

 

Figure 2.2 Procedural diagram of the state-space averaging approach 

The general procedural diagram of the state-space averaging approach is illustrated 

in Figure 2.2. The state equations of the system are employed to obtain the steady-

state expressions through the process of averaging and perturbation. The system is 

linearized at this steady-state operating point to generate the transfer functions which 

( )
( ( ), )

d t
t t

dt


x
xf

ˆ ( ) ˆˆ(X ( ), )
d t

t D d
dt

  
x

xf

( )
( ( ), )

d t
t d

dt


x
xf

X ( )f D

ˆ ( ) ˆˆ( ( ), )
d t

t D d
dt

 
x

xf

ˆˆ ( ) ( )t dx f



Chapter 2 Overview of nonlinear dynamical analysis for power switching converters 
 

15 
 
 

represent the small-signal behaviour of the system. Hence the stability of the system 

can be analysed using the Bode magnitude and phase plot in the frequency domain. 

As we know, most systems are inherently nonlinear in nature, and the nonlinear 

equations of a system are always difficult to solve. Although the process of 

linearization makes the study of these systems more efficient and easier, the 

investigation of some of the nonlinear phenomena which are hidden by linearization 

is not possible. In power electronics circuits, switching components (such as power 

switches and diodes), nonlinear inductors or transformers, and nonlinear components 

in control circuits can be sources of nonlinearity [111]. Active switches are operated in 

turn-on and turn-off states in response to feedback signals depending on the state 

variables. The diodes are operated as passive switches with highly nonlinear v-i 

characteristics. The nonlinear properties of transformers and choke inductors bring 

potential unwanted nonlinearity into practical applications. In addition, the 

comparators, amplifiers and digital controllers involved in control circuits are also 

nonlinear components which produce further issues of nonlinearity. 

The following differential equation is commonly used to describe a continuous-time 

dynamical system. 

 
( )

( ) ( ( ), , )
d t

t t t
dt

 
x

x x f
                                   (2.1) 

where 1 2 3( ) ( , , ) RT n
nt x x x x x  are the system variables (state vectors), and all state 

variables constitute state space Rn ; 1 2 3( , , )T
nf f f f f refers to the connecting 

function; and μ is a vector of the parameters. For the initial condition 0 0( )t x x , the 

vector field f can produce an n-dimension flow of the dynamical system 0( ) ( , )t x tx , 

which is the solution of the system. The differential equation for the general solution 

of system can be expressed as follows: 

 0 0( ) ( , ) ( )t x t tx x  (2.2) 

where 0( , )x t is the fundamental solution matrix, describing the evolution of system 

variables related to the initial conditions. For a discrete-time dynamical system, the 

following expression can be employed to describe the relationship of the system 

state with regard to the discrete time: 



Chapter 2 Overview of nonlinear dynamical analysis for power switching converters
 

16 
 
 

 ( 1) ( ( ), )n g n n x x  (2.3)  

where 1 2 3(n) ( , , ) RT n
n n n nnx x x x x   represents the state variables at time of tn 

(n=1,2, ) and function 1 2 3( , , )T
ng g g g g  maps the relationship between the 

current state x(n) and the next state x(n+1). 

2.4 Stability of the equilibrium points solution 

In Lyapunov’s stability theory [110], the stability of a dynamical system can be studied 

near to a point of equilibrium, which is a constant solution to the system’s differential 

equations in mathematics. The dynamical behaviour of a given system can be 

studied by computing the trajectory of variables from initial conditions, according to 

equation 2.1 or 2.3. If the system is linear, the equation 2.1 could be expressed in the 

following form: 

 x Ax + Bu  (2.4) 

where A and B are time-dependent matrices which relate to the system parameters, 

and u represents the external input of the system. When the magnitude of x equals 

0, the points of the system are named as equilibrium points or fixed points. From 

equation 2.4, we can see that the term Bu can shift the position of the equilibrium 

points. The state matrix A determines the stability of these equilibrium points; in other 

words, the stability of the system can be indicated by the eigenvalues and 

eigenvector of matrix A. The eigenvalues can be obtained by solving the following 

equation: 

 | A I |= 0  (2.5) 

In nonlinear systems there can be more than one equilibrium point, since the 

behaviour of the vector field may be displayed differently for the different part of the 

state space. In order to study the stability of a nonlinear system, the concept of small 

perturbation injection is applied. Specifically, the fixed point is defined as stable when 

the trajectory converges back after adding a small perturbation to the original system. 

The local properties of the system are investigated by its linearization around the 

fixed points.  

It can be assumed that a general nonlinear dynamical system is described by the 

following expression:  
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 ( ) ( ( ))t tx x f  (2.6) 

For the given initial condition 0 0( )t x x  and an equilibrium state

1 2 3( ) , ,
T

nt x x x x       x  , the system can be linearized at the equilibrium point x* 

using the following equation: 
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 (2.7) 

where 1 1 1 2 2 2, , n n nx x x x x x x x x            

This can also be written in the form of  

 ( ) ( ) ) ( )t t t   x A(x x  (2.8) 

Here ( ) ( ) ( )t t t   x x x  is the small perturbation near the equilibrium points, and 

the matrix ( ) , )t tA(x  is called the Jacobian matrix, containing calculation of the 

numerical values of the partial derivatives at the fixed points. The stability of the 

system can be studied using the eigenvalues of this Jacobian matrix. This 

representation of the dynamical system is widely used in the field of engineering, 

since the nominal operating point of most systems is generally located at an 

equilibrium point. A simple workable model can then be obtained by employing this 

linear approximation when the perturbation is small enough. For these linear 

systems, closed-form solutions can be found, but in nonlinear systems the properties 

of the whole vector cannot be studied by simply breaking it up into linear regions and 

then adding them up to gain the whole. Thus, the closed-form solutions are not 

available, and numerical approaches must be employed.   

2.5 Stability of the periodic solution 

To study the stability of dynamical system in the periodic orbit, the Poincaré map 

approach [19], Floquet theory [20] and Trajectory sensitivity [21] method are possible 

solutions, which are similar to some extent in investigating the evolution of system 

perturbation. 
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2.5.1 Poincaré map approach 

The Poincaré map approach is a discrete mapping method invented by Henri 

Poincaré, describing the system in the form of discrete sampling rather than in a 

continuous-time manner. Specifically, it studies the periodic orbit of the system by 

placing a surface called the Poincaré section, which converts the continuous-time 

orbit into discrete observations as shown in Figure 2.3 [1, 111] .  

 

Figure 2.3 Poincaré map of a time-dependent non-autonomous system with T period 

Assuming that a time-dependent non-autonomous system has an external forcing 

function of period T, and the vector field is smooth (differentiable everywhere) in its 

domain; the solution of the system can be represented as follows given the initial 

condition x0: 

 
0

0
0 0 0( ) ( ( , ), )

t T

t
t T d   


   x x xf  (2.9) 

A certain lower-dimensional subspace of the system state space, named the 

Poincaré section, can be placed to obtain stroboscope maps at intervals of T as 

illustrated in Fig. 2.3. The Poincaré map is the intersection of a periodic orbit in the 

state space with this Poincaré section. Hence the representation of this periodic 

continuous-time system can be transformed into a description of a discrete-time 

system of one dimension smaller. The evolution of the system in state space can 

then be described as a map form represented by equation 2.3. The fixed point x0 of 

the Poincaré map is a periodic steady-state solution in continuous-time system [4], 

and the Jacobian matrix at its fixed point can be used to investigate the stability of 

this map, which describes the original continuous-time system. The detailed 

derivation can be found in Appendix 1. 


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2.5.2 Trajectory sensitivity 

 

Figure 2.4 Diagram of Trajectory sensitivity approach 

The principle of the trajectory sensitivity approach is as follows: 

Assume there is a system that has a generic initial value:  

 
0 0( ) ( , , ) 0 0

( )
( ( ), ) | , ( )x t t t x

dx t
f x t t x t x

dt  
 (2.10) 

Then according to the theory of trajectory sensitivity, the stability of the system can 

be analysed using the solution 0 0( , , )t t x  by adding a small perturbation   and 

observing its evolution as illustrated in Figure 2.4. The solution from equation 2.10 

reveals the relationship between this perturbation 0 0( , , )t t x and the original one 

which can be proved as follows: 

 
0 0

0 0 0 0 0 0 0 0 0
0

( , , )
( , , ) ( , , ) ( , ) ( , , )

t t x
t t x t t x t t t t x

x

  
     

  (2.11) 

where 0( , )t t  represents the state transition matrix (STM) of equation 2.11. The 

system is stable when the perturbation tends to zero when t→∞. For a periodic orbit 

with a period of T, the following equation can be proved  

 0 0 0 0 0 0 0 0( , , ) ( , ) ( , , )kkT t t x T t t t t x        (2.12) 

where 0 0( , )T t t  is termed the Mondromy matrix, which is the state transition matrix 

over the entire period T. This equation can be written in the following form: 

 1
0 0 0 0 0 0( , , ) ( , , )kkT t t x E E t t x       (2.13) 

where E is the eigenmatrix of the fundamental solution of the periodic system for one 

complete cycle. The stability of the system can be identified by the magnitudes of the 

eigenvalues of this fundamental solution. More detailed derivation of trajectory 

Original 
trajectory

Perturbed 
trajectory

Perturbation

0 0 0( , , )t t x  

0 0 0 0( , , )x t t x
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0 0( , , )t t x  
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sensitivity approach can be found in Appendix 2. 

2.5.3 Floquet theory 

 

Figure 2.5 Periodic solution and its perturbed solution 

In Floquet theory, a similar conclusion can be obtained to that of the trajectory 

sensitivity approach. As shown in Figure 2.5, it is assumed that a given system has 

an initial condition 0( )tx  at time t0, and it is perturbed to 
0( )tx , such that the initial 

perturbation is 
0 0 0( ) ( ) ( )t t t  x x x . After the evolution of the original trajectory and the 

perturbed trajectory during time t, the perturbation at the end of the period can be 

related to the initial perturbation by 

 0 0( ) ( )t T t   x Φ x  (2.14) 

where Φ is called the state transition matrix (STM), which is a function of the initial 

state and time. For any power converter, the ON and OFF state of the switches 

makes the system to evolve through different linear time-invariant (LTI) subsystems, 

Therefore, for each subsystem, the STM can be obtained by the expression when the 

initial conditions are given. 

 0( )t te  AΦ  (2.15) 

where A is the state matrix that appears in the state equation x Ax +Bu . 

2.5.4 Filippov’s method 

In smooth systems, the fundamental matrix can be used to map the perturbation from 

the initial condition to the end of the period. Nevertheless, the vector field of a power 

electronics system is piecewise smooth and the vector field is discontinuous at the 
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switching instant, which means that the aforementioned methodologies cannot be 

utilized directly for stability analysis. As a result, some information representing the 

switching event needs to be introduced to fully describe the dynamic behaviour of the 

system. 

 

 

Figure 2.6 Concept of the Filippov method with Saltation matrix 

With the assumption that there is no jump in the state vector at switching instants, the 

Filippov method can be applied in the study of this discontinuous vector field, 

calculating the evolution of vectors during the interval of [t∑-, t∑+]. The concept of this 

approach is illustrated in Figure 2.6, and it describes the behaviour of a perturbation 

crossing the switching surface ∑. Assuming that there is an initial perturbation ∆x(t0) 

at time of t0, it then evolves to ∆x(t∑-), starting to cross the switching manifold at time 

of t∑-. After time (t∑+, t∑-), it comes out of the switching surface and becomes ∆x(t∑+). 

The saltation matrix S is used to map the perturbation before and after the switching 

manifold as follows[112].  

 ( ) ( )t t   x S x  (2.16) 

 
( ) T

T

f f
h

f
t

 




 





n
S I

n
 (2.17) 

where I is the identity matrix of the same order of state variables; h contains 

information of the switching condition; n represents the normal vector to the switching 

surface; and f∑− and f∑+  are the differential equations before and after the switching 

instant. The detailed derivation for the saltation matrix S can be found in Appendix 3.  

Hence the fundamental solution of a periodic system for one complete cycle, which is 

named the Monodromy matrix, can be represented as follows: 



n

0( )tX

( )tX

( )tX
( )tX
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 0 0 0 0( , ) ( , ) S ( , )t t T t t T t t        M   (2.18) 

where Ф(t0,t∑-) and Ф(t∑+,t0+T) are the state transition matrices in the time intervals of 

[t0,t∑-] and [t∑-,t0+T] respectively. 

2.6 Nonlinear behaviours of dynamical systems 

Power electronics systems are classified as deterministic systems where the 

evolution of system variables is fully determined by the differential equations which 

represent them. In other words, the future state of the system is completely 

determined by the given initial conditions. Some systems could have many 

equilibrium solutions or they may not have any steady-state solutions, depending on 

the initial state. For a case where the equilibrium solutions are confined to a 

particular region of state space, this is also called an attractor; and it can take the 

form of a fixed point, limit cycle or periodic orbit, or chaotic attractor and quasi-

periodic orbit [1]. If a system becomes unstable and is attracted to another 

equilibrium solution with the variation of the system’s parameters, the behaviour can 

be regarded as bifurcation. Thus, in general, bifurcation is a phenomenon describing 

systems which produce a sudden qualitative or topological change when a small 

change is made to system parameter. This behaviour can be observed in both 

continuous and discrete dynamical systems. In power electronics systems, the 

converters are commonly designed for steady-state operation with specific output 

ripples. However, the operating mode can be changed substantially when parameters 

such as input voltage or load vary.  

Chaos in a dynamical system refers to a particular aperiodic and random-like 

behaviour which is highly sensitive to initial conditions [113]. It is commonly known as 

a butterfly effect where small differences in initial conditions yield widely diverging 

outcomes, resulting in large differences in a later state. When the system is in a 

chaotic state, its trajectory is unpredictable in the long term. Although the properties 

of being random and impossible to predict, there are some feasible approaches to 

investigate the chaos. The study of routes to chaos, which attempts to describe the 

evaluation of chaotic behaviour through a series of bifurcations, is one of the most 

effective ways to do this [114].  

In power electronics systems, the converters are generally designed in the region of 
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periodic operation. Any nonlinear behaviour such as bifurcations or chaos may 

increase the potential for EMI issues and the power conversion efficiency of the 

system may degrade. Hence the prediction of the bifurcation point given variation in 

the system’s parameters should be a practical and effective way to analyse the 

system’s stability. A more detailed stability analysis of DC-DC switching converters is 

presented in the following chapters.  

2.7 Characterization of dynamical systems 

 

Figure 2.7 Typical characterization of dynamical system 

The differential equations produced for power electronics converters in the form of 

continuous or discrete time can be solved either numerically or analytically. 

Computer-aided software or specialized simulation tools are employed in the 

numerical nonlinear analysis method, which describes the operation of power 

converters in terms of state equations or a component-based circuit model 

respectively. These methods are powerful and effective in demonstrating and 

investigating the nonlinear behaviour of power converters, while the settings of the 
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simulation environment may dramatically affect the results. Hence, experimentation 

and theoretical analysis are needed to verify the simulation results. In contrast, 

analytical methods employ analytical expressions to represent the characteristics of 

the power converters which exhibit definite relationships among system parameters. 

However, the complexity of practical circuits often requires approximate treatments to 

some extent in the process of modelling, which can reduce accuracy. Therefore, both 

methods are normally combined in the analysis of power converters in terms of 

practical implementation. The typical characterization of dynamical systems in terms 

of analytical, numerical and experimental approaches is summarized in Figure 2.7. 

The following discussion considers the measurable properties in the group of 

numerical methods.  

2.7.1 Capture of complex behaviour 

 

Figure 2.8 Different sampling mode for sampled-data maps under voltage-mode control 

Switching maps are commonly used in stability analysis to characterize a dynamical 

system, including A-switching, S-switching and stroboscopic maps, according to the 

different sampling events as shown in Figure 2.8 [50]. The specific patterns of maps 

can be generated from sampling the state at time instants, exhibiting the system’s 

behaviour under different sampling modes. Among these methods, the stroboscopic 

sampling approach is most widely used in the periodically driven systems (such as 

fixed-frequency switching converters) to reveal the periodicity of the system. If the 

sampled data remains at a constant value, this indicates that the waveform is 

periodic and its period is equal to the sampling period; whereas if the sampled data 

cycles through N values, this demonstrates that the waveform is periodic and its 

Stroboscopic

S-switching

A-switching

tn tn+1 tn+2

tk tk+1 tk+2

tm tm+1 tm+2

t

vc(t)
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period equals to N-time sampling period, However, if the sampled data exhibit no 

clear pattern, the system may be in a quasi-periodic or chaotic state. 

The phase portrait is a geometric representation of the equilibrium solution for a 

dynamical system; and it especially refers to the projection of a trajectory from a 

higher order dimension to a 2-dimension phase plan. Switching maps, phase 

portraits and Poincaré sections are three widely used formats to record and 

demonstrate the properties of system with fixed parameters.  

For a system with varying parameters, the bifurcation diagram is a graphical 

representation method generally used to study the nonlinear phenomena. In this 

approach, a chosen parameter is varied and plotted along one of the axes and the 

monitoring state variables are sampled and plotted as discrete points on the other 

axis. If there is only one point corresponding to that parameter, the system is 

operating in period-1; if there are two points, it is in the state of period-2; if there are a 

large amount of points which can be observed in response to the variation of that 

parameter, the system is in a chaotic state. A typical bifurcation diagram is illustrated 

in Figure 2.9. 

 

Figure 2.9 Typical bifurcation diagram 

2.7.2 Jacobian matrix 

For a continuous-time dynamical system given equation 2.1, the real parts of the 

eigenvalues indicate the stability of the fixed points. With the variation of parameter 

μ, the Jacobian matrix and its eigenvalues will change accordingly; the fixed point will 

be stable if the real parts of all the eigenvalues are negative. Different types of 

bifurcations will occur depending on where the eigenvalues cross the unit circle. 

Figure 2.10 gives the three typical types evolution of the locus of eigenvalues in 
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continuous time systems and the corresponding names of bifurcation are shown 

below. 

 
(A)                                                  (B)                                            (C)  

Figure 2.10 Evolution of the locus of eigenvalues in continuous-time dynamical systems 

(A) Pitchfork, (B) Saddle-node, (C) Hopf bifurcation 

A) Pitchfork bifurcation: the eigenvalues cross the imaginary axis on the real axis 

B) Saddle-node bifurcation: the eigenvalues touch the imaginary axis from the 

positive and negative direction on the real axis. 

C) Hopf bifurcation: the eigenvalues cross the imaginary line from the left-hand plane 

to the right-hand plane off the real line. 

When it comes to a discrete-time system given equation 2.3, the eigenvalues of the 

Jacobian matrix can be applied to predict the stability of the fixed points as well. If all 

the eigenvalues have magnitudes less than unity, the fixed points will be stable. 

Bifurcation phenomena can be classified into three typical types according to the 

behaviour of eigenvalues when some parameters vary, as illustrated in Figure 2.11. 

According to the mode of crossing the unit circle, there are three typical bifurcations 

as follows: 

A) Period-doubling bifurcation: one of the eigenvalues is equal to -1, and it is placed 

at the unit circle on the negative real line. 

B) Saddle-node bifurcation: one of the eigenvalues equals 1, and it reaches the unit 

circle on the positive real line. 

C) Neimark bifurcation: the modulus of a complex conjugate pair of eigenvalues 

equals 1, and they touch the unit circle away from the real and imaginary lines. 
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(A)                                            (B)                                               (C)  

Figure 2.11 Evolution of the locus of eigenvalues in discrete-time dynamical systems 

(A) Period-doubling, (B) Saddle-node, (C) Neimark 

2.7.3 Lyapunov exponent  

The Lyapunov exponent is one of the indicators available for evaluating the stability 

of a dynamical system [1, 102, 115]. It is a quantity that characterizes the rate of 

separation for very close trajectories. Specifically, suppose that two trajectories have 

an initial separation of ε0, and it expands or contracts exponentially with respect to 

time given by the expression below: 

 0( ) tt e   (2.19) 

 
Figure 2.12 Bifurcation diagram and corresponding calculated average Lyapunov exponent 

The behaviour of a dynamical system can be predicted from the calculated values of 

λ. If λ>0, the separation is expanding and two trajectories diverge exponentially in 
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time; otherwise, if λ<0, the separation is contracting and it will tend towards 0 in the 

long run. The Nth order system has N Lyapunov exponents. The system will be 

unstable or chaotic if it has at least one positive Lyapunov exponent. The definition 

and calculation of maximal and average Lyapunov exponents are discussed 

elsewhere [1, 111]. However, the iterative equations of the system need to be derived 

in order to calculate the Lyapunov exponent; and the derivation process is relatively 

complex and the appropriate approximation treatment of a nonlinear system must be 

implemented. Figure 2.12 shows an example of a bifurcation diagram and the 

corresponding calculated average Lyapunov exponent for the system given below: 

 1 (1 )n n nx x x    (2.20) 

2.7.4 Other measurable properties 

The power spectrum can be used as a feasible method to demonstrate the operating 

state of a system in terms of the frequency domain [26, 116]. The feature of a 

continuous wide band frequency spectrum is a significant characteristic for a chaotic 

system, but it’s only a necessary condition for indicating the attributes of the system 

since random noise has the same feature. For a periodic operating system, the 

power spectrum will exhibit some peak signals related to the switching frequency, 

which contains the information about the system state. Entropy can be introduced to 

quantify the complex state of DC-DC switching converters [71, 117]. The switching 

instant and topological structural symbolic sequence is transformed into a decimal 

symbolic sequence and the calculated values of entropy represent the complexity of 

system state. This is an alternative way to the Lyapunov exponent without deriving 

the close-form iterative equation of the system. 

2.7.5 Monodromy matrix 

A Monodromy matrix is the fundamental solution for a periodic system for one 

complete cycle, which is theoretical foundation for the method of stability analysis 

adopted in this thesis. The derivation of the Mondromy matrix for a piecewise smooth 

system has been shown in section 2.5.4. The comprehensive information about the 

system is included in this matrix, and the influence of system parameters on system 

stability can be studied effectively and thoroughly. Further analysis of boost DC-DC 

converters based on this Monodromy matrix is presented in the following chapters. 
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3 Stability analysis and control of single phase  

DC-DC boost converters with resistive load 

This chapter discusses the stability analysis and control of single phase DC-DC 

boost converters with resistive load. The theoretical analysis starts from a simple 

boost converter with peak current control, which exhibits the typical nonlinear 

phenomena in operation. The detailed derivation of the transition and saltation matrix 

is presented to obtain the Monodromy matrix that contains comprehensive 

information used to determine the system’s stability. In addition, this Monodromy 

matrix-based method is applied in the analysis of a bidirectional DC-DC converter for 

the first time to demonstrate the influence of external and parasitic parameters. 

Finally, a new control algorithm can be developed to improve the system’s 

performance by controlling the nonlinear behaviour and extending the region of 

stable operation. 

3.1 Simple boost converter 

The monodromy matrix based method combines the concept of Floquet theory and 

Fillipov’s method that are illustrated in detail at Chapter 2. A general procedure of 

nonlinear analysis of a simple boost converter using this method is presented as an 

example in this section. The circuit of a simple boost converter is shown in Figure 

3.1(a). Active power switches are operating in the ON and OFF states to achieve the 

expected power conversion as illustrated in Figure 3.1 (b). The system is toggled 

between two subintervals in a complete cycle. For each subinterval, state variables 

evolve continuously in a smooth trajectory, and thus the system is regarded as linear 

time-invariant (LTI) and can be described by a linear state equation in the form of 

equation 2.4. Figure 3.1 indicates the phase portrait orbit of output voltage and 

inductor current, where the solution of each subsystem can be represented by the 

STM Фon(0.dT) and Фoff(dT.T). If the inductor current iL and capacitor voltage vc are 

chosen as state variables, the state equations can be expressed as follows, when the 

switch is ON: 
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c c

iL

dv v

dt RC
Vdi

dt L

  

 
  (3.1) 

 

(a) 

 
(b)                                                                 (c) 

Figure 3.1 (a) Topology of the boost converter;  
(b) two operation states of boost converter;  

(c) phase portrait orbit of output voltage and inductor current 

Similarly, when the switch is off, the state equations can be obtained as: 

 

c L c

i cL

dv i R v

dt RC
V vdi

dt L

 
  


 (3.2) 

If the state vector x is used to express the above equations 3.1 and 3.2, the state 

equations can be rewritten in the form of the following equations: 
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( , )
( )

( , )
on

off

f t
t

f t

 
   

on off

off off

x A x B u
x

x A x B u


  (3.3) 

where ܠ ൌ ሺݔଵ,  .ଶሻ and x1 is the capacitor voltage vc, and x2 is the inductor current iLݔ

Thus, the state matrices for the ON and OFF periods are: 

 
1

0

0 0
RC

  
 
 

onA  (3.4) 

 

1 1

1
0

RC C

L

  
  
   

offA   (3.5) 

 

0 0

1
0

L

 
  
 
 

on offB B  (3.6) 

 0

iV

 
  
 

u   (3.7) 

The right-hand sides of the state equations are obtained as: 

 

1

on
i

x

RCf
V

L

  
  
 
  

  (3.8) 

 

2 1

1
off

i

x R x

RCf
V x

L

 
 

  
 

  

 (3.9) 

During the first subinterval, the solution of the system is:  

 

( )

0
( ) ( ) d

( ) ( ) ( )

on on
dTdT dT

on on

dT e 0 e

0 dT 0 0 dT

  

 
A A

onx x B u

, x ,   (3.10) 

For the second subinterval, the state vector can be obtained by: 

 

(1 ) ( )

(1 )
( ) ( ) d

( ) ( ) ( )

off off
Td T T

d T

off on

T e dT e

dT T dT dT,T

  


 

 

A A

offx x B u

, x   (3.11) 

The transition matrix is given by the matrix exponential, hence: 
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 (1 )

(0, )

( , )

on

off

dTt
on

d T

off

dT e e

dT T e 

  




AA

A

Φ

Φ   (3.12) 

Substituting x(dT) with equation 3.10 yields: 

 ( ) (0, ) ( ) ( )T T 0 0 T x x ,   (3.13) 

where 

 
(0, ) ( ) ( )

(0, ) ( ) ( ) ( )

off on

off on on

T dT T 0 dT

T dT T 0 dT dT,T

 
   

, ,

, ,

  

      (3.14) 

For a periodic solution, x(0) equals x(T), and thus x(0) can be given by the following 

expression: 

 1( ) [ (0, )] ( )0 T 0 T  x I ,   (3.15) 

Here I is the identity matrix which has the same order as the system matrix A. It is 

noted that a nonsingular condition of the inverted matrix 1[ (0, )]T I  must be 

satisfied to obtain a valid solution. The duty cycle can be calculated numerically from 

the switching conditions according to the control algorithm. 

3.2 Peak current control with slope compensation  

As shown in Figure 3.1(c), the orbit of the phase portrait is not smooth at the 

switching instant, and in order to obtain full information about the periodic orbit, the 

external conditions causing the switching action need to be taken into account.  For 

example, a boost converter under peak current control with slope compensation is 

illustrated in Figure 3.2(a). 

 

(a) 
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(b) 
Figure 3.2 Boost converter under peak-current control with slope compensation: 
(a) topology and control diagram (b) operation principle of slope compensation 

The operational principle of the slope compensation has two switching events in one 

clock period as shown in Figure 3.2 (b). One happens at the beginning of each cycle, 

another occurs at the time when the inductor current iL is equal to the reference 

current. If the slope of the compensation ramp is mc in a clock period and the 

amplitude of this slope at the end of each clock is represented as ac, the current 

reference evolves at: , [0, ]ref cI m t t T  . The switching condition can be defined as  

( , ) 0h x t   and can be expressed as: 

 1( , ) (t) 0ref c Lh x t I m t i   
 (3.16) 

Substituting equation 3.10 into 3.16, the equation can be rewritten in the following 

form: 

 ( )
1 on0
( , ) ( ( ) B d ) 0on on

dTdT dT
ref c Lh x t I a d e i 0 e      A A u  (3.17) 

By employing equation 3.17, this nonlinear equation can be solved to obtain the 

value of the duty cycle d, and then the state vector in the steady state and state 

transition matrices can be calculated accordingly, which corresponds to the location 

of the periodic orbit of the continuous system. As mentioned in the last chapter, the 

information of the switching instant is not contained in the state transition matrices. 

From Fillipov’s method, the saltation matrix should be derived to describe the 

behaviour of the switching event. The normal vector is expressed as: 

 
1 1

2 2

/ 0

/ 1

h x

h x

    
        

n  (3.18) 

The partial differential equation of the switching function is: 

o

v(t)

iL(t)

Iref

-mc

dT
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 1
c

hh
m

t t


 

 
 (3.19) 

By substituting the expression 3.19 and by adding vector fields before and after the 

switching and the normal vector into the expression of the saltation matrix, the 

following is obtained:  

1

( )( )
( )

TT
off on

T T
on

f ff f
dT

h h
f f

t t

 




   

 
 
 

nn
S I I

n n

1 12 1 1 2

1 11 1

1 ( )( ) 1 ( )

0 1 ( )( ) 0 1 ( )

i c i c

i i i c i c

V a V ax R x x x

RC RC L T C L T
V x V V a V ax

L L L T L L T

 

 

        
    

             

 (3.20) 

 
The second saltation matrix S2 is related to the switching event from the off-to-on 

state at the initial instant of every clock cycle, which means that the rising edge of the 

ramp causes the term 2 ( , )h x t

t




 in equation 2.17 to be infinity. Hence S2(T) turns out to 

be an identity matrix. 

 ( )T 2S I  (3.21) 

For a whole period T, the Monodromy matrix is expressed as: 

 ( ) ( , ) ( ) ( , 0)cycle off onT dT T dT dT   2 1Φ S Φ S Φ  (3.22) 

The Monodromy matrix relates the evolution of the perturbation from the beginning to 

the end of the clock period:  

 ( ) ( , 0) (0)T T  cycleX Φ X  (3.23) 

Perturbations will die down and the system will be stable when all the eigenvalues of 

the Monodromy matrix are located in the unit circle. 

Simulation results of the boost converter with peak current control are illustrated in 

Figure 3.3 to show the nonlinear phenomena in power converter circuits. The 

parameters of the circuit are set as follows: Vi=5V, L=1.5mH, C=10μF, R=40Ω, 

f=10kHz and mc=0. The controller has no slope compensation in this case and the 

current reference level is changed gradually from 0.1A to 0.8A in steps. During the 

steady state, the values of output voltage and corresponding current reference are 

recorded in every switching period. With these settings a bifurcation diagram of 

output voltage and current reference is produced and shown as Figure 3.3(a). The 
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related waveforms of output voltage and phase portrait are shown in Figure 3.3(b).  

 
(a) 

 
(b) 

Figure 3.3 Nonlinear phenomena in boost converter under peak-current control: 
(a) bifurcation diagram of output voltage under different current references; 

(b) waveforms of output voltage and phase portrait. 
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From Figure 3.3, it is clear that the system changes from a stable state to period–

doubling bifurcation state, and finally moves into a chaotic state. When the amplitude 

of compensation ramp at the end of each period is set to 0.05, a new bifurcation 

diagram evolves, as illustrated in Figure 3.4(a). Compared with Figure 3.3(a), it is 

evident that the range of stability has increased from 0.494A to 0.679A, providing a 

demonstration that the added slope compensation extends the stable range. 

 
(a) 

 
(b) 

Figure 3.4 Simulation results with slope compensation (ac=0.05): 
(a) bifurcation diagram of boost converter under peak-current with slope compensation; 

(b) locus of eigenvalue of Monodromy matrix under different current reference 

In addition, the calculated eigenvalues of the Monodromy matrix show that when Iref 

equals 0.67A, one of the eigenvalues is nearly equal to -1. This demonstrates that 

the original stable system becomes unstable and a double-periodic orbit is starting to 

emerge. Therefore, there is a good agreement between the locus of eigenvalues 
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based on the analytical calculation and the bifurcation diagram from a component 

model-based simulation. Inspecting the movement of eigenvalues when the chosen 

parameters vary enables us to obtain stability information, such as the occurrence of 

bifurcations and the boundaries of operating regions. 

3.3 Peak current control with voltage feedback 

     
(a) 

 
(b)                                                                 (c) 

Figure 3.5 (a) Diagram of converter under conventional peak current control with voltage 
feedback (b) state of S1 is on, S2 is off (c) state of S1 is off, S2 is on 

In the previous analysis, the switching elements in the circuit are considered to be 

ideal; switches are regarded as short circuits when they are on and open circuits 

when they are off. So far, the effect of parasitic elements such as the resistances of 

the inductor and capacitor are commonly ignored to simplify the procedure of the 

analysis. However, in a realistic model, these neglected factors may have a 

significant influence on the stability of DC-DC converters, and few studies can be 

found which focus on the investigation of the relationships between parasitic 

parameters and system stability in power switching converters [16, 118]. The adopted 
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analytic approach based on Monodromy matrix can be used not only to investigate 

the fundamental parameters, but also allows the study of parasitic elements which 

influence the stability of the circuit. The following section shows the first time that 

Monodromy matrix is applied in analysis of the bidirectional boost converter 

considering some parasitic parameters. 

The diagram of a bidirectional boost converter under cascaded control, which 

consists of inner peak current loop and outer voltage feedback loop is shown in 

Figure 3.5(a). The parasitic parameters of the components are taken into account as 

illustrated in Figure 3.5(b). The parameters Ki and Kp represent the gains of the 

(Proportional and Integral) PI controller; Kvc and Kil are the gains of signals from a 

practical sampled output voltage vc and inductor current iL to the controller 

respectively; Rs1 and Rs2 are the conduction resistance of the switches, and RL and 

Rc are equivalent series resistances the of inductor and capacitor respectively. The 

inductor current iL, capacitor voltage vc and the output of the integrator in the 

feedback loop vip are chosen as state variables. S1 and S2 operate in a 

complementary way using PWM control, wherein S1 is on and S2 is OFF or vice 

versa. When the switch S1 is ON, the state equations can be expressed as: 
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When the switch is off, the state equations are obtained as: 
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 (3.25) 

By replacing vc, iL, vip with the state vector x1, x2, x3 the, the linear vector fields before 

and after switching are: 
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Thus, the state matrices for these two subintervals are shown in the following: 
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On-to-off switching events occur when the output of the PI controller equals the value 

of inductor current iL. Therefore, the switching condition can be defined as 
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( , ) 0h x t  , where: 
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Hence, the normal vector to the switching manifold and the rate of change are  
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By applying equation 2.17, the saltation matrix can be calculated as follows  
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Here, 
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S1t is the saltation matrix related to the ON-to-OFF switching event of S1; and matrix 

S2t is related to the off-to-on switching event at the initial instant of every clock cycle, 

which leads the rising edge of the ramp causes the term of h/t in equation 2.17 to 

be infinite. Therefore S2t turns out to be the identity matrix.  

 t 2S I  (3.38) 

Furthermore, the state transition matrices are given by the exponential matrix: 
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(3.39)
 

  2 (1 )
2

d Te  AΦ   (3.40) 

The Monodromy matrix M can be calculated by the following expression: 

 1 2cycle t t    1 2M Φ Φ S Φ S  (3.41) 

This matrix contains all of the comprehensive information about system input and 

load conditions, the parameters of the converter and the coefficients of the control 

loop, therefore the influence of any system parameters on system stability can be 

analysed using this matrix. 

3.4 Simulation verification 

 
Figure 3.6 Procedure for calculating the Monodromy matrix. 

The procedure for calculating the Monodromy matrix is shown in Figure 3.6. The two 

vector fields before and after the switching instant contain the information needed to 

calculate the state transition matrices. When the system is running until the steady 

state, the values of state vectors X(t0), X(t0+dT) and the duty cycle d can be obtained, 

and then these values are fed into the expressions of the saltation matrix and state 

transition matrices respectively for the calculation of the Monodromy matrix. 

In order to verify the effectiveness of the proposed approach and the designed 

controller, the circuit based on a Simulink model is built and tested as shown in 

Figure 3.7, which is the equivalent circuit to represent the state-space equations of 

the DC-DC converters. Numerical and analytical calculations in Matlab are 

implemented to crosscheck the simulation results. The specifications of parameters 

are shown as follows: Vi=250~400V, Vout=600V, L=50~200μH, C=250μF, R=6Ω, 

f=20kHz, Ki=200, Kp=1, Kvc=1/120, KiL=1/120, Vref=5V, Rl=0.05Ω, Rc=0.01Ω, 

Pout=60kW. 
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Figure 3.7 Simulink model of the bidirectional boost converter in Matlab 

As mentioned above, the presented Monodromy matrix that contains system 

parameters can be used to study and predict the stability of the system. The 

bifurcation diagram of the input voltage and voltages at different inductance levels is 

illustrated in Figure 3.8(a). It shows that, with the increase of inductance value, the 

bifurcation phenomenon occurs from the point where Vin equals 300V when the value 

of inductance is 50µH to the point of which Vin equals 268V when the value of 

inductance is 150µH. There is no bifurcation phenomenon when the value of 

inductance is equal to 200µH within the input voltage range of 250V to 310V, which 

indicates a stable system. 

In other words, the stable range of the system is improved by increasing the 

inductance value. In Figure 3.8(b), it is noted that eigenvalues 2 and 3 changed 

slightly at the variation of input voltage. Because they are relevant with the voltage of 

output capacitor and the output of integer respectively, which demonstrates that they 

are inconsequential in determining the fast-scale stability of the system and only the 

associated eigenvalue 1 is strongly related to the system’s stability.  
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(a) 

 

(b) 

Figure 3.8 (a) Bifurcation diagram of input voltage and output voltage at different inductance; 
(b) corresponding locus of eigenvalues when Vin=300~310V 

Figure 3.9 shows the bifurcation diagram of input and output voltage at different 

parasitic parameters such as the equivalent series resistance (ESR) of the inductor 

and of the output capacitor. With the condition of setting the values of inductor ESR 

from 0Ω to 0.3Ω with steps of 0.1Ω, the bifurcation point of the input voltage is varied 

from 282V to 287V. Similarly, by setting the ESR of the output capacitor from 0Ω to 

0.15Ω in steps of 0.05Ω, the system exhibits bifurcation point varying from 272V to 

279V. It is evident that the parasitic parameters affect the fast-scale stability of DC-

DC converter to some extent, depending on the specific values of parasitics. 
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(a) 

 

(b) 

Figure 3.9 Bifurcation diagram of input and output voltage at different parasitics: 
(a) different equivalent series resistance (ESR) of inductor 

(b) different ESR of output capacitor 

3.5 Controller design 

The theoretical analysis of boost converters with voltage feedback control has been 

presented above. It is well known that the system will lose stability when some circuit 

parameters are varying, and thus the information about the stable operation range is 

expected from the circuit designer. Another concern in the design of DC-DC 

converters is the investigation of the control of converters so that they operate in a 



Chapter 3 Stability analysis and control of single phase DC-DC boost converters with resistive load
 

45 
 
 

stable period-1 over a wide range of input parameters as that is what is expected. 

The controller should also be relatively simple and easy to implement in practical 

applications. 

The adopted Monodromy approach using the location of eigenvalues cannot only 

predict the unstable point, but also indicates the stabile margin for a given system. In 

addition, based on the derived matrix, new stabilisation control schemes can be 

developed to improve the performance of an objective system. In the following 

section, the concept and implementation of a proposed controller design is presented  

As the stability of the system is governed by the eigenvalues of saltation matrix over 

a complete period, the principle of this control method is to force them to remain 

within the unit circle for a wider range of input parameters. By studying the 

expression 2.17 of the saltation matrix, it can be noticed that this matrix can be 

influenced by smooth vector fields before and after the switching (f- and f+) or the 

switching manifold (∂h/∂x and ∂h/∂t). Since the vector fields relate to the physical 

parameters of the converter, this implies that we cannot change them for a given 

system. But it is possible to alter the switching manifold(s) either by adding an 

external time-varying signal to alter the term ∂h/∂t or by adding a signal that is a 

function of a state variable (output voltage or inductor current) to alter the term ∂h/∂x.  

3.5.1 Variable periodical slope compensation method 
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(b) 

Figure 3.10 (a) Diagram of the supervising controller 
(b) proposed variable periodical slope compensation method 

 

By altering various coefficients in the Monodromy matrix, the stability of the system 

will be influenced correspondingly. Based on this concept, the variable periodical 

slope compensation method is proposed as illustrated in Figure 3.10. By adding a 

variable slope signal to the switching manifold h, the time derivative of the switching 

manifold (∂h/∂t) term is changed and then the switching manifold becomes: 

 1 1 3 2( , ) ( ) cx
p ref

a t
h x t K x V x x

T
    

 (3.42) 

where acx represents the corresponding amplitude of the variable ramp. There is no 

effect on its normal vector, but compared to conventional PI control the ∂h/∂t changes 

from 0 to: 

 
cxah

t T


 

  (3.43) 

Specifically, it changes the original σ into σ+acx/T. By modifying the parameter acx in 

the Monodromy matrix according to the different input conditions, the eigenvalues 

can be located at any chosen location within the unit circle which indicates a stable 

period-1 operation. The proposed method can keep the magnitude of the eigenvalues 

exactly the same for different input voltages. For the controller design, the 

relationship between the input voltage and the required value of acx must be 

obtained.  

Therefore, the following nonlinear transcendental equation should be solved 

numerically: | ( (0, ))|eig T RM . Here R is the radius of the circle on which the 

eigenvalues of the Monodromy matrix lie. Figure 3.11 illustrates the input voltage and 

the ac required in order to place the eigenvalues on a circle whose radius is 0.85. 
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Based on these values, a second order polynomial expression can be created: 

 5 2 12.782 10 2.333 10 79.33cx cx in inm T a V V           (3.44) 

This is drawn as the solid blue line in Figure 3.11. 

 
Figure 3.11 Polyfit curve and calculated values of mcx vs. input voltage 

3.5.2 Simulation results 

A supervising controller is designed based on the derived Monodromy matrix 

according to the approach presented in Chapter 2. The bifurcation point of the 

original system without supervising control can be indicated by the locus of 

eigenvalues of the Monodromy matrix in Figure 3.12. When the input voltage is equal 

to 318V, the system jumps into the period of bifurcation in Figure 3.12(a); meanwhile, 

one of the corresponding eigenvalues reaches the border of the unit circle in Figure 

3.12(b), which means that the system becomes unstable at this moment. 

 
(a) 
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(b) 

Figure 3.12 (a) Bifurcation diagram of output voltage vs. input voltage without supervising 
control; 

(b) corresponding locus of eigenvalues of the Monodromy matrix at different input voltages. 

 
(a) 

 
(b) 

Figure 3.13  (a) Bifurcation diagram of output voltage vs. input voltage with supervising 
control; 

(b) corresponding locus of eigenvalues of Monodromy matrix at different input voltages. 
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In contrast, Figure 3.13(a) shows the diagram of output voltage vs. input voltage in 

the system with supervising control, which demonstrates that the system can remain 

stable within the whole range of input voltages from 250V to 400V. The 

corresponding locus of eigenvalues of the Monodromy matrix in Figure 3.13(b) 

indicates that the related eigenvalues are located at the expected places with a 

certain stability margin as set. 

Figure 3.14 shows the influence of inductance L on system stability. By applying the 

supervising controller the system can remain stable when the inductance L is larger 

than 140μH as illustrated in Figure 3.14(b); however, without the supervising control, 

the system exhibits an unstable state with the variation of inductance L from 20μH to 

500μH as shown in Figure 3.14(a). From the simulation results above, it is evident 

that the supervising controller extends the stable range of the original system, and it 

can also be used to set the stable margin. 

 

(a) 

 
(b) 

Figure 3.14 (a) Output voltage vs. inductance L without supervising control; 
(b) output voltage vs. inductance L with supervising control (Vin=250V) 
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3.6 Summary  

The stability of boost converters under peak current control with slope compensation 

is analysed by using the Monodromy matrix. Simulation results show the nonlinear 

phenomena in the boost converter and demonstrate the effectiveness of the 

Monodromy matrix for bifurcation prediction. This study presents the influence of 

parasitic parameters to system stability theoretically and numerically. In addition, the 

analysis of the boost converter under peak-current control with voltage control is 

presented to verify that the proposed approach can be applied in various 

conventional control methods. Furthermore, based on the expression of the saltation 

matrices, advanced control methods can be proposed to extend the stable range 

under the given parameters. 
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4 Nonlinear analysis and control of boost 

converters with constant power loads 

This chapter presents the nonlinear analysis of a boost converter with constant 

power load (CPL). The characteristics of CPL and the boundary conditions of 

operation between the continuous conduction mode (CCM) and discontinuous 

conduction mode (DCM) are discussed and analysed. For the first time, the 

Monodromy matrix has been applied to the converters with CPL at these two 

conduction modes and the corresponding findings are compared with each other. 

Analytical and numerical results are presented for both peak current and averaged 

current cascaded controllers.  

4.1 Background 

The study on the nonlinear phenomena of single phase DC-DC boost converters with 

resistive load has been presented in the last chapter. The analysis on this typical 

type of load is significant in most cases but not the only application. With the 

development of power electronics technology power distribution systems based on 

power electronics converters are becoming more and more increasingly common in 

applications such as smart grids, automotive systems, aircraft and ships. In these 

muti-converter systems, the downstream DC-DC converters, DC-AC inverters and 

motor drives tightly regulate their outputs, exhibiting the characteristics of negative 

impedance. A large amount of research work has been conducted to analyse and 

overcome the potential instability caused by the CPL [119-131]. System transfer 

functions of the simple buck and boost converter with CPL in different conduction 

modes (CCM and DCM) and control modes (voltage and current mode control) have 

been derived to investigate the system stability in [119, 126, 129]. The controllability 

of the non-isolated DC-DC Converters with CPL has also been analysed in [130]. In 

order to analyse, control, and stabilize automotive converters with CPL, a large-

signal analysis of a buck converter loaded by a CPL and the corresponding design of 

a feedback strategy has been carried out in [121, 124, 132]. Based on a large-signal 

model of the boost converter, the local behaviour around the operation point and its 

basin of attraction can be defined in [120] . A phase plane analysis and the attraction 

region have been presented to demonstrate system stability and a reduced order 
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large signal model for a step-down cascaded system with CPL set up based on 

Lyapunov stability theory [128, 131, 133].  

 

These stability analysis methods published in the literature can be categorized in two 

types: small signal methods based on state-space averaging models, and large 

signal approaches based on nonlinear models. In the small signal category, system 

stability is studied around the system’s operating point using a linearized model. 

Classical linear analysis tools can then be effectively employed which are widely 

used and familiar to most application engineers. Nevertheless, some effects caused 

by the nonlinear components are ignored in these approaches, which limit their 

domain of validity. For large signal analysis techniques, the objectives and a 

simplified hypothesis of CPL usually determine the level of the complexity of the 

models. Large-signal phase plane analysis and Lyapunov-based stability analysis 

methods are often employed to estimate the domain of attraction of the system 

operating point. Compared to the small signal linear methods, these approaches are 

less intuitive but more flexible in terms of validity.  

In spite of the availability of the stability analysis methods mentioned above, most 

publications present results concerning the stability of DC-DC converters with a 

conventional resistive load [17, 22, 56]. In this chapter, the adopted nonlinear 

analysis based on the Monodromy matrix is employed for the first time to 

demonstrate the feasibility of fast-scale stability analysis for a boost converter with 

CPL. 

4.2 Characteristics of CPLs 

In general, there are three typical types of loads in the system. One type is constant 

voltage loads, which operate at a constant voltage at the terminal. The second kind 

can be constant current loads, which is delivered certain current from the feeder 

converter. The other group is the CPL, which requires constant power from the 

feeder converter, and the system permits a certain range of voltage fluctuations at 

the terminal. For example, the battery is a constant power load when it is switched to 

constant current charging mode. Figure 4.1 shows a diagram of a renewable power 

distribution generation system, which employs the sources of PV and a wind turbine. 

In this system, when the DC-AC inverter drives a motor to tightly regulate the 

constant speed, the subsystem of the inverter and motor can be regarded as a 
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constant power load (Figure 4.2). Another example is the subsystem of the DC-DC 

converter controlling the output voltage as shown in Figure 4.2. 

 
Figure 4.1 Diagram of renewable power distribution generation system 

The characteristics of a constant power load and a conventional resistive load are 

demonstrated in Figure 4.3. In a CPL, power is constant and can be represented by 

the product of voltage and the current of the load. Therefore, if the voltage across a 

CPL is increasing, the corresponding current through it is decreasing and vice versa. 

In the steady state, the CPL operates at the equilibrium operating point around the 

output voltage of the feeder converter. This can produce a destabilizing effect on this 

feeder converter to which the CPL is connected [119].  

 
Figure 4.2 Typical DC-AC inverter and DC-DC voltage regulator present a constant power load 

characteristic to the system 

Specifically, in spite of the feature of instantaneous positive impedance (V/I > 0), the 
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incremental impedance of CPL is always negative (dV/dI < 0), which is different when 

compared to the positive impedance of the typical resistive load. This characteristic of 

negative impedance might affect the stability of distributed power generation 

systems. Therefore, this demonstrates the limitations of classical linear control 

methods and effective stabilizing control approaches are proposed to ensure large-

signal stability. 

0
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Figure 4.3 Characteristics of constant power load and conventional resistive load 

4.3 Operation of boost converter with constant power load 

When the voltage ripple of the output capacitor is neglected, the inductor voltage and 

capacitor current are given by: 

10 st D T   1 1 2( ) sD T t D D T      1 2( ) s sD D T t T     
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   

(4.3) 

There are two subintervals in the CCM operation, as illustrated in Figure 4.4 (b) and 

three subintervals in the DCM operation as shown in Figure 4.4.(b). With the 

assumption of the energy conversion ratio μ, the average input can be represented 

by P/μVi. The peak value Ip is equal to the slope multiplied by the length of the first 

subinterval D1Ts, and if half of the peak current is less than the average input current, 

the system is operating in the CCM mode,  
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

 (4.4) 

By applying the principle of inductor volt-second balance, the following is obtained 

 (1 ) ( ) 0i i cDTV D T V V     (4.5) 

Thus, 

 
(1 )i

c

V
D

V
 

 (4.6) 

    

(a)  

 

(b)                                                             (c) 

Figure 4.4 (a) Operation states of bidirectional boost converter with CPLs; 
(b) Key waveforms in CCM operation; (c) Key waveforms in DCM operation 

By substituting D into equation 4.4, the output power P needs to satisfy the following 

expression for CCM operation: 

vL(t)

PWM

iL(t)

t
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s
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 (4.7) 

For the given parameters, the power boundary curve between the CCM and DCM 

can be drawn as shown in Figure 4.5: 

In the DCM operation, employing the principles of volt-second balance and capacitor 

charge balance at the steady state, the following expressions can be obtained: 

 

1 2

1

1 2 2

( )

0

( )+ (0)=0

=
s s

s s

i i c
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ch dchD T
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 (4.8) 

 
Figure 4.5 Example of power boundary curve between CCM and DCM (µ=1) 

The charge input to the capacitor must be equal to the charge output in one period at 

the steady state. The charging current ich(t) works at the second subintervals and the 

discharging current idch(t) exists over the whole period. Hence, the following 

equations can be obtained: 
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dch s
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P
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
    (4.9) 

The solution for the duty cycle yields: 
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The substitution of D2 into the second equation leads to the expression for duty cycle 

D1: 
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Hence the expression of duty cycle D at the different operation modes can be ob-

tained: 
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For the given parameters, the duty cycle under the different operation modes can be 

illustrated as shown in Figure 4.6: 

 

(a)  
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(b)  

Figure 4.6 Example of duty cycle in CCM and DCM operation: (a) CCM operation 
(b) DCM operation 

4.4 Calculation of the Monodromy matrix 

 

Figure 4.7 Boost converter with constant power load with close loop control 

As discussed in the previous chapters, a DC-DC boost converter with the resistive 

load is a nonlinear system that can be described as an LTI system when the switch is 

in the on and off state. For a DC-DC boost converter powering a CPL the state 

matrices are not independent of time, and thus it becomes a linear time variant (LTV) 

system. Because of the nonlinear characteristics of CPL, the analytical expressions 

of the state transition matrices cannot be derived from the differential equations in the 

closed form. Based on the observation of the calculation results from the state 
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transition matrices, the voltage ripple slightly affects the fast-scale instability of the 

system, and thus the approximation method of neglecting the output ripple voltage 

could be employed to transform the original system to the LTI system. Consequently, 

the characteristic of constant power load is changed as a constant current load in the 

following analysis. 

A diagram of a bidirectional boost converter loaded by CPL with peak current control 

and voltage feedback is illustrated in Figure 4.7. Kp and Ki represent the coefficients 

of the proportion and integrator; Kvc and Kil are the gains, which are from the sampled 

values of output voltage vc and the inductor current iL to the signals fed to the 

controller. As discussed at section of 3.4 in the last chapter, although the integrator in 

the feedback path introduces only an extra dimension in the state matrices, its 

associated eigenvalues have a slight effect in deciding the fast-scale stability of the 

system. The duty cycle of the switches is determined by the output of the integrator, 

and hence it needs to be considered when computing the instants of switching. Three 

state vectors x1, x2, x3 are used to represent the capacitor voltage vc, the inductor 

current iL , and the output of the integrator in the feedback loop vip respectively. The 

switches S1 and S2 are operating complementarily with the PWM control algorithm 

and thus the corresponding differential equations and the approximated linear vector 

fields are given as follows according to the different operational conditions:  
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The state matrices for every subinterval are given in the following: 
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 (4.24) 

From the diagram of the control algorithm displayed in Figure 4.7, the switching 

action of S1 that changing from the on state to the off state happens when signal viL is 

equal to vcon. In other words, it is the moment that the inductor current equals the 

output value of the PI controller. This switching event exists in both CCM and DCM 

operation as shown in Figure 4.8. 
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Figure 4.8 Phase portrait of inductor current and output voltage in CCM (left) and DCM 

operation (right). 

If the switching condition is defined as hଶሺx, tሻ, it is specified as follows: 

  2 1 3 2( , ) ( )p ref vc c iLh x t K V K x x m t K x      (4.25) 

Hence, its normal vector can be obtained as:  
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And its rate of change is given by: 
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The other terms involved in equation 2.17 can be expressed as follows:  
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Hence the saltation matrix St2 can be obtained as: 
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As mentioned in chapter 3, the periodical clock signals make the corresponding 

saltation matrix an identity matrix, and thus both the first saltation matrix in the CCM 

and DCM operation are given as identity matrices. If the third switching function is 

defined as h3(x,t), the following is obtained 

 3 2( , ) 0h x t x   (4.31) 

Thus : 
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and:  
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By applying the following equations, the Mondromy matrix M, which is the state 

transition matrix of the whole clock period, can be calculated:  

 
1 1 2 2

1 1 2 2 3 3
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t t

t t t
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M S Φ S Φ

M S Φ S Φ S Φ
 (4.37) 

4.5 Simulation results 

4.5.1 CCM operation 

The bifurcation diagram of the boost converter with constant power load at the 

different input voltages in CCM operation is shown in Figure 4.9(a). It can be seen 

that the bifurcation happens at the condition when the input voltage equals 308V, and 

the associated eigenvalues (eigenvalue 1) move to the unit circle along the negative 

real line as illustrated in Figure 4.9(b), which demonstrates that the system will exhibit 

the period-doubling bifurcation beyond this point. 

  
(a) 
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(b) 

Figure 4.9 (a) Bifurcation diagram of boost converter with constant power load (50kW) in CCM 
operation 

(b) Corresponding plotted eigenvalues of Monodromy matrix 

Compared with this, the eigenvalues related to the state vectors of the output voltage 

and integrator (eigenvalue 2 and 3) see a slight change under the condition of 

varying input voltages. It turns out that they are not the strong relevant elements for 

fast-scale instability. 

 

Figure 4.10 The waveform of output capacitor Vc and its power spectrum 

The waveforms of output voltage vc and the corresponding power spectrum under 
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three different input voltages are shown in Figure 4.10. The bottom row of the figure 

shows that the system is operating in the expected stable period-1 and the related 

curve of power spectrum demonstrates that the switching frequency is operating at 

20kHz. The middle row of the figure illustrates the system changing to operate in 

period-2 when the input voltage is varied from 310V to 300V. The associated power 

spectrum shows that the frequency of the maximum components in the measured 

waveforms varies from 20kHz to 10kHz. In the top figure, the waveform exhibits 

random-like behaviour; and the corresponding power spectrum indicates that the 

system is operating in a chaotic state.  

 
(a) 

 
(b) 

Figure 4.11 The comparison of waveforms of inductor current and output voltage in period-1 
and period 2: (a) inductor current (b) output voltage 

A comparison of voltage and current ripples in period-1 and period 2 is illustrated in 

Figure 4.11. This figure shows that both the voltage and current ripples nearly double 

in scale when changing from period-1 to period-2. Thus, although the period-2 is a 

kind of stable operation mode, it should be inhibited in practical applications. In 

addition, these ripples can become much larger when entering the chaotic state. 

Consequently, increased ripples cause not only higher losses across components, 
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but also produce potential EMI issues. 

 
(a) 

 
(b) 

Figure 4.12 (a) Bifurcation diagram of boost converter with CPL at different output voltages 
(b) Corresponding eigenvalues of Monodromy matrix 

In some specific applications, the systems are permitted a degree of voltage 

fluctuation at the output terminals. The bifurcation diagram of a boost converter with 

the different output voltage levels at the same load conditions is shown in Figure 4.12 

(a). The output voltage is set at 480V, 520V, 560V, 600V at 50kW constant power 

load. The simulation results show that the bifurcation point varies from the input 

voltage of 248V to 308V accordingly. By setting the range of the input voltage from 

310V to 320V, the calculated eigenvalues at the different output voltages are plotted 

in the diagram of the unit circle as illustrated in Figure 4.12 (b). 
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It is evident that eigenvalue 1 plays the most significant role in determining the fast-

scale stability of the system. In contrast, eigenvalues 2 and 3 do not change 

dramatically during the variation of the different outputs. Moreover, the information of 

the stable margin can be obtained from the diagram generated, which can be 

employed for parameter evaluation and the optimal design of the DC-DC converters. 

4.5.2 DCM operation 

 

(a) 

 
(b) 

Figure 4.13(a) Output performance of boost converter with CPLs in DCM operation 
(b) Corresponding eigenvalues of Monodromy matrix 

Figure 4.13 presents the system performance in DCM operation. According to the 

boundary curve between the CCM and DCM in Figure 4.5, the output power is set to 

4kW to guarantee that converter operates in the DCM mode, under the conditions of 

the input voltages varying from 250V to 310V. Compared with the bifurcation diagram 
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of the boost converter operating in the CCM mode, the system remains in the stable 

period-1 within this input range at the same given conditions. It can be seen that 

eigenvalue 1 comes out of zero under all inputs, since it is related to the inductor 

current which goes to zero at the end of every switching period. 

It should be noted that the other eigenvalues show only a little change at the variation 

of the external parameters, which implies that the system is relatively more stable in 

the DCM operation than in the CCM operation from the perspective of fast-scale 

stability. 

4.6 Averaged current control with voltage feedback 

The cascaded control algorithm consisting of inner averaged current and outer 

voltage loop is widely used in many industrial applications and is illustrated in Figure 

4.14. The approach of the averaging and small signal perturbation is employed to 

obtain the system transfer functions at the steady-state operating point. The gains of 

the PI-controller can be calculated by specifying the damping factor and natural 

frequency of the system. This is an effective method for the optimized design of 

converters in terms of dynamical responses in the slow-scale frequency domain but it 

cannot be used to study the fast-scale performance of the system. The following 

section adopts the presented nonlinear method of analysis to investigate the 

performance of the boost converter with CPL under the cascaded control algorithm. 

 

Figure 4.14 Diagram of cascaded control algorithm 

The inductor current iL, capacitor voltage vc and the output of the integrator in the 

feedback loop vip are chosen as state variables. When the switch is ON, the state 

equations can be expressed as: 
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When the switch is OFF, the state equations are obtained as follows: 
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If the state vector x is used to represent the above equations, the right-hand side 

state equations are expressed as: 
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 (4.41) 

 

where x1 is the capacitor voltage vc, x2 is the inductor current iL. and x3 and x4 are the 

outputs of the integrator in the outer and inner feedback loops vip1 and vip2 respective-

ly. Thus, the state matrices for the ON and OFF periods are given as:  
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The control signal obtained from the output of the PI controller is expressed as 

 2 3 1 1 2 4(( ( )) )con p p ref vc iLv K x K V K x K x x      (4.46) 

This is used for comparison with the produced triangular signal to generate the PWM 

signals. Therefore, the switching condition can be defined as hଵሺx, tሻ ൌ 0, where: 
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V t
h x t K x K V K x K x x

T


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 (4.47) 

Hence, its normal vector and the rate of change are given by: 
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The other terms in calculating the saltation matrix can be obtained as follows: 

             

2 1 2 2 2 2 2 2

2 1 1 2 1 2 1 1( )

0 0 0 0

0 0 0 0

P P vc P iL P

P P vc P iL PT
off on

K K K x K K x K x x

C C C C
K K K x K K x K x x

f f
L L L L

   
 
     
 
 
  

n   (4.50) 
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(4.51) 

 Substituting these results into the expression of the saltation matrix S1, we obtain: 
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S  (4.52) 

The specification of simulation parameters is given in Table 4.1. 

Table 4.1 Specification of simulation parameters 

parameters value parameters value 

Input voltage （V） 250~400 Frequency （kHz） 20 

Output voltage （V） 600 KiL 1/100 

Power rating （kW） 50 Kp1 0.5 

Inductance （uH） 200 Ki1 500 

Output capacitance (uF) 500 Kp2 5 

Kvc 1/120 Ki2 200 

A diagram of plotted eigenvalues under the cascaded control method is presented in 

Figure 4.15. Compared with the bifurcation diagram of the boost converter under the 

peak current control in Figure 4.9(a), it is clear that, for the same given system 

parameters and input conditions, the system can remain stable and no bifurcation 

phenomena occur under averaged current control with voltage feedback. All the 

eigenvalues are located at the right hand side of unit circle and moving towards the 

centre of the circle with increasing of input voltage, which indicates that the system is 

becoming more stable and exhibiting the same trend as the results from peak current 

control. Furthermore, this also proves that the system is hardly prone at all to the 
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fast-scale instability under the averaged current control with voltage feedback control 

algorithm, compared with peak current control. However, although averaged current 

based controllers are commonly used in practical applications due to its 

characteristics to stability, peak current control is still popular in applications that 

require fast dynamic responds speed.  

 
Figure 4.15 The eigenvalues of boost converter with CPLs under cascaded control 

 

4.7 Summary 

In this chapter, the nonlinear analysis method based on the Monodromy matrix is 

applied to the boost converter with CPL. Characteristic of the constant power load is 

transformed as a constant current load by using approximation method. This relevant 

investigation has not been reported before and is seen as a contribution to 

knowledge. The influence of the characteristics of the CPL on system stability in 

different operation modes (CCM and DCM) is fully studied. Based on the novel work 

two fundamental observations have been made. First results show that the system is 

relatively more stable in DCM operation than in CCM operation from the point of view 

of fast-scale stability. Second a comparison of peak current and averaged current 

cascaded control reveals that averaged current based controllers are very stable 

controller types under CPL. 
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5 Nonlinear analysis and control of interleaved 

boost converters  

This chapter presents a nonlinear analysis of interleaved boost converters. 

Compared with single phase boost converters, interleaved type converters bring the 

advantages of reduced input current ripples and requiring less inductance levels. In 

this chapter, the interaction effect of the interleaved switching operation on the 

stability of the system is successfully investigated. The derivation of the Monodromy 

matrix at the different operational conditions is presented in detail and the study of 

the control loop is illustrated accordingly. Finally, the simulation results verify the 

theoretical analysis. To the knowledge of the author the full use of the Monodromy 

matrix applied to the interleaved boost converters is here reported for the first time. 

5.1 Background 

The study of the stability analysis and control of the nonlinear phenomena of the 

single-phase boost converters with different types of loads has been presented in 

previous chapters. Compared with single-phase boost converters, for the given 

inductance and load conditions, the current ripples to the power supply can be 

significantly reduced by using the interleaved boost converters. Figure 5.1 

demonstrates the relationship between the percentage of ripple current to averaged 

current and duty cycle in the single-stage and the interleaved boost converters 

respectively. It shows that the percentage of ripple current in the interleaved boost 

converters is nearly half of that in the single phase converter, given the same 

operational range of the duty cycle. Because of this merit, interleaved boost 

converters have been widely used in recent years in renewable energy powered 

systems, such as fuel cells [134], PV power generation [135] and thermoelectric 

generator systems [136]. 

With the development of control techniques in power electronics, many effective 

control algorithms have been proposed to meet the demands of different applications. 

But most of the controllers are designed to regulate and control the system’s dynamic 

behaviour based on the state-space averaging technique [137]. In this method, the 

actual nonlinear system is linearized around a steady-state operating point to yield a 
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linear model. A simple and accurate model at slow timescale can then be obtained, 

but it fails to predict nonlinear behaviour at a fast timescale. All power converters are 

inherently nonlinear and piecewise smooth systems because of the utilization of the 

nonlinear components such as switches and diodes. As a result, a variety of 

nonlinear phenomena such as bifurcation and chaos can be observed in the 

operation of power converters, which adversely affect their performance [138-140]. 

To study and reveal these fast-scale nonlinearities, the control methods mentioned in 

the first chapter, such as the nonlinear map-based methods [17], discrete-time 

modelling approaches [111, 139] and other individual control approaches [56, 65] are 

proposed in the literatures. Based on these discrete nonlinear modelling approaches, 

various control techniques [68, 94, 96, 141] are proposed to tackle these nonlinear 

behaviours and improve system performance. 

 

Figure 5.1 Percentage of ripple current to averaged current vs. duty cycle d in single-stage 
boost converter (upper) and interleaved boost converter (lower) 

The Poincaré map [1, 17] approach is one of the most common and popular methods 

for studying the stability of the power converter systems. In this method, the 

eigenvalues of the Jacobian of the map computed at a fixed point are used to 

indicate the system stability; while the transcendental form of the system’s equations 

mean that the Jacobian matrix cannot always be derived in the closed form. Other 

alternative approaches such as Floquet theory [56] and the trajectory sensitivity 

approach [64] can be applied effectively to the nonlinear analysis of power 

converters. The adopted methodology has previously been used with single-stage 

DC-DC converters [141], but now it can be expanded to apply to interleaved boost 

converters, which have a more complex topology and control sequence. In this 
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chapter, by applying Floquet theory and Filippov’s method, the Monodromy matrix is 

presented to further study the interaction effect of the switching operation on the 

system’s behaviour. All the comprehensive system information is introduced in the 

derivation of the Monodromy and saltation matrices, and the influence of various 

parameters on overall system stability can be investigated intuitively. The simulation 

results show the effectiveness of this method. 

5.2 Matrix derivation 

    

(a)  

   

 (b) 
Figure 5.2 (a) Topology of interleaved boost converter 

(b) diagram of control strategy for interleaved boost converter 

The topology of a interleaved boost converter and the diagram of a control strategy 

for it are shown in Figure 5.2, Ki and Kp represent the gains of the PI controller; Kvc 

and Kil are the gain of signals from the practical sampled output voltage vc and 

inductor current iLi to the controller respectively. The inductor current iL1 , iL2, 

capacitor voltage vc and the output of the integrator in the feedback loop vip are 

chosen as the state variables. S1 and S2 are the switches employing the interleaved 

PWM control technique, which means that there is a 180 degree phase shift between 
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them as demonstrated in Figure 5.3(a). 

The key waveforms of the converter in the steady state operation (when d>0.5) are 

illustrated in Figure 5.3. It can be seen that there are four subintervals in one period. 

The actions of on and off switches make the system evolve through different LTI 

subsystems, and therefore each subsystem can be described by a linear state space 

equation:  

 x Ax + Bu  (5.1) 

The state transition matrix can be represented as Φ1~ Φ4, which is a function of the 

initial state and time in term of the state matrix A that appears in the state equation. B 

is the matrix related to the external input conditions.  

 

(a)  

         

 (b) 

Figure 5.3 (a) Key operation waveforms in steady state (d>0.5) 
(b) diagram of derivation of Monodromy matrix  

The concept of Floquet theory (combined with Fillipov method) is to deduce the 

stability of a periodic solution by linearizing the system around the whole periodic 

0( )tX
0( )t T X
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orbit. This can be obtained by calculating the state transition matrices before and 

after each switching and the saltation matrix that describes the behaviours of the 

solution during switching. The diagram of derivation of the Monodromy matrix is 

shown in Figure 5.3(b).   

The system states at different switching sequences can be described by the following 

state equations: 

 

1 2

2 2 1 2

3 3 1 2

4 4 1 2

x E S and S on

x E S on and S off
x
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 
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1 1A B

A B

A B

A B



①

②

③

④

  (5.2) 

When the switches S1 and S2 are ON, the state equations can be expressed as: 

 c cdv v

dt RC
  (5.3) 

 1

1

iL Vdi

dt L
  (5.4) 

 2

2

iL Vdi
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

 
(5.5)
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K K v V

dt
   (5.6) 

When the switch S1 is ON and S2 is OFF, the state equations are: 

 2c L cdv i R v

dt RC


  (5.7)
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1
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dt L
  (5.8) 
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  ( )ip
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dv
K K v V

dt
   (5.10) 

When the switch S1 is OFF and S2 is ON, the state equations are: 
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When the switch S1 and S2 are OFF, the state equations are obtained as: 

 1 2( )c L L cdv i i R v

dt RC

 
  (5.15) 
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 ( )ipi
I vc c ref

dv
K K v V

dt
    (5.18) 

The state equations above can be represented using vector “x”. Where x1 is the 

capacitor voltage vc, x2 is the inductor current iL, and x3 the output of the integrator in 

the feedback loop vip, and the right-hand side state equations are expressed as: 
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Thus, the corresponding state matrices for these four subintervals are shown in the 

following: 
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According to the control strategy of peak current control, the switching transients 

occur at the beginning of each switching period and the moment when the value of 

inductor current iLi equals the reference signal. Therefore, the switching conditions 

from the ON to OFF state can be expressed as ݄௜ሺx, ሻݐ ൌ 0 (i=1,2),where 

 ( , ) ( )i p ref vc c ip iL Lih x t K V K v v K i      (5.29) 

Hence, its normal vector can be given by:  
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The saltation matrices S23 and S41 turn out to be identity matrices, since they are re-

lated to the switching event from the OFF state to the ON state for S1 and S2 at the 

initial instant of every clock cycle respectively, which means that the rising edge of 

the ramp causes the term of /h t   in equation 2.17 to be infinity.  
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When the duty cycle d is bigger than 0.5, the system states evolve from the following 

sequence as illustrated in Figure 5.3(a):  

①→③→①→②	

The other relevant terms in the saltation matrix can be calculated as:  
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Substituting these into the expression of the saltation matrix S12a can be obtained as 

follows: 
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Similarly, the saltation matrix S34a can be derived as: 
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Figure 5.4 Key operation waveforms in steady state (d<0.5) 

When duty cycle d is less than 0.5, the evolution of system states can be expressed 

in the following sequence: 

②→④→③→ ④ 

Figure 5.4 presents the key operation waveforms in steady state at this condition. 

The saltation matrices S12b and S34b can be calculated as follows: 
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where  

 
2 1

1

( )
( )P vc iL i

p I ref vc c

K K x R x K V
s K V K v

RC L

 
     (5.38) 

 
0a

h
s

t


 
  (5.39) 

For the interleaved control algorithm, the time of each subinterval can be represented 

in terms of d and T. The state transition matrices are given by the matrix exponential, 

hence 

 1 Tdte e  AA
1Φ  (5.40) 

 2 (0.5 )Tdte e   AA
2Φ   (5.41) 

 3 Tdte e  AA
3Φ  (5.42) 

 4 (0.5 )Tdte e   AA
4Φ  (5.43) 

Thus, the Monodromy matrix M as illustrated in Figure 5.3(b) can be calculated by 

the following expression: 

 1 12 2 23 3 34 4 41cycle        M Φ Φ S Φ S Φ S Φ S  (5.44) 

This contains all of the information about the system input and load conditions, the 

parameters of the converter and the coefficients of the control loop, and therefore the 

influence of any system parameter on system stability can be analysed using this 

matrix. 

5.3 Study on the control loop  

   
(a) 
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(b) 

Figure 5.5 (a) Diagram of conventional peak current control with slope compensation; 
(b) illustration of slope compensation in interleaved boost converters 

The diagram of peak current control with slope compensation is illustrated in Figure 

5.5(a). Slope compensation is widely adopted in many different kinds of converters 

employing peak current mode control to avoid unstable phenomenon when the duty 

cycle d is bigger than 0.5. However, the influence of the slope parameter mc cannot 

be investigated theoretically in most state-space averaging-based methods. In this 

Monodromy matrix approach, the slope parameter mc can be introduced in the 

derived saltation matrices S12 and S34 and ac represents its amplitude at the end of 

each period. Specifically, it changes the switching manifold as shown in Figure 5.5(b) 

and then the switching condition becomes: 

 ( , ) ( )i p ref vc c ip c iL Lih x t K V K v v m t K i      (5.45) 

The term /h t   changes from 0 to the expression below: 

 c

h
m

t





 (5.46) 

By choosing the proper parameter mc in the new Monodromy matrix, the eigenvalues 

of this Monodromy matrix can be placed within the unit circle which make stable 

period-1 operation in that case.  

5.4 Simulation Verifications 

The specification of simulation parameters is shown as follows: Vi=80V~125V, 

Vout=240V, L=L1=L2=200μH, C=20μF, R=28.8Ω, f=100kHz, Ki=500, Kp=5, Kvc=5/240, 

KiL=1/4, Vref=5V. Pout=2kW. 

 

o

-mc

dT TimeT

viL1(t)

vco(t)

viL2(t)
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(a)                                                                          (b) 

 
(c)                                                                                (d) 

Figure 5.6 (a) (b) Waveforms of output voltage and inductor current at time domain and the 
corresponding phase portrait in period-1 (stable state); (c) (d) the waveforms in chaotic state 

The waveforms of the output voltage and inductor current in the time domain and the 

corresponding phase portrait in the stable steady state are presented in Figure 5.6(a) 

and (b). With the variation of some parameters, the system may operate in the 

chaotic state as shown in Figure 5.6(c) and (d). We can see that the ripples of 

voltage and current increase dramatically in chaotic operation, which causes more 

losses and degrades the performance of the converter. The Monodromy matrix can 

be calculated numerically in Matlab/Simulink. The codes that show the process of 

calculation according to the theoretical derivation are presented in Appendix 5. 

The bifurcation points of the system at different input voltages can be indicated by the 

locus of the eigenvalues in the Monodromy matrix. Setting the amplitude of the slope 

ac to 0.3, the system jumps out of the stable period-1 when the input voltage is less 

than 118V as shown in Figure 5.7(a); meanwhile, one of the corresponding 

eigenvalues reaches the border of the unit circle in Figure 5.7(b), which means that 
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the system becomes unstable at this moment.  
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(d) 

Figure 5.7 (a)~(d) Bifurcation diagram and corresponding locus of eigenvalues at ac=0.3&0.5 

In contrast, when ac is set to 0.5, the system can remain stable when the input 

voltage is bigger than 97V as illustrated in Figure 5.7 (c). The corresponding locus of 

the eigenvalues in Figure 5.7(d) indicates the extended range of the input voltage, 

which can make system stable at the given conditions. 
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 (b) 

Figure 5.8 (a) Bifurcation diagram at different inductance L and slope ac (3-D) 
(b) X-Y view 

In order to further study the relationship between system stability and parameters 

such as inductance L and slope amplitude ac, the bifurcation diagram at the different 

values of L and ac is demonstrated in Figure 5.8 (a) and (b). It shows that the system 

becomes more stable with an increase in inductance L and amplitude ac. The 

Monodromy matrix can be expressed as a function in terms of ac and L:  

 ( , )cM a LM   (5.47) 

The border curve of the stable operating region can be calculated using the derived 

Monodromy matrix, which provides the design guidance for the given system.  

5.5  Summary 

Interleaved boost converters have the advantages of reducing the ripple current, 

compared to single phase converters. In this chapter, the method of analysis based 

on Monodromy matrix is extended to the investigation of a higher-order topology with 

an interleaving control sequence. The complete derivation of the Monodromy matrix 

for an interleaved boost converter at the different operation conditions is presented in 

this study. All of the circuit parameters and control coefficients can be included in the 

matrix obtained, which enables us to effectively investigate the influences of different 

input and load conditions or other parameters on system performance. The simula-

tion results validate the effectiveness of this method. 
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6 Design and implementation of mixed-signal 

controller-based test system  

This chapter provides an overview of techniques for peak current control, including 

traditional analogue techniques, fully digital and mixed-signal techniques. The 

features of the three main types of techniques are presented for comparison and the 

latest peak digital current control algorithms are reviewed and discussed. A new 

mixed signal technique containing a DSP controller with an external high 

performance waveform generator is proposed and demonstrated. This proposed 

controller does not only has the flexibility to change control algorithms quickly due to 

changes in coding, but also retains the unique characteristic of a real time cycle-by-

cycle current limiter allowing quantisation errors to be offset which are common in 

digital comparators. The design of the hardware and software is presented and test 

results show that the new proposed controller works effectively. Finally, for the first 

time, the Monodromy matrices of the interleaved boost converter using digital peak 

current method are derived and corresponding simulation and experimental results 

are used to verify the analysis. 

6.1 Introduction 

The control algorithm employed in the previous chapters is mainly focused on the 

technique of peak current mode (PCM) control. This is a widely used current mode 

control (CMC) method for switching power converters, offering a number of benefits 

such as inherent cycle-by cycle current limiting, good current sharing of paralleled 

converters, and better load regulation compared to voltage mode control [142-144]. 

As illustrated in Figure 6.1, the inductor current linearly increases when the switch 

turns on at the initial instant of one switching period and the switch turns off when the 

instantaneous inductor current reaches the reference level. However, converters 

controlled by PCM suffer from subharmonic oscillations in CCM operation, exhibiting 

period-doubling bifurcation. DC-DC converters will lose stable operation from period-

1 to period-2, when the duty cycle exceeds 50%. This phenomenon can be explained 

using a graphical approach as shown in Figure 6.1(a). Assuming that there is a 

current perturbation ∆iL(0) at the initial instant of one clock period, the value of this 

perturbation at the end of the switching period can be expressed by the following 
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equation: 

 2

1

(T) (0)L L

m
i i

m
     (6.1) 

Here m1 and m2 represent the slopes of inductor current when the switch is on and 

off respectively. This perturbation will be amplified and subharmonic oscillation will 

occur if the value of m2 is larger than the value of m1. It can be proven that this 

phenomenon happens when duty cycle is bigger than 0.5. To address this issue and 

regain stability, the approach of slope compensation is commonly applied as shown 

in Figure 6.1(b). The following expression can be derived using peak current control 

with conventional slope compensation [142]: 

 2

1

(T) (0)ca
L L

ca

m m
i i

m m
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 (6.2)  
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 (b) 

Figure 6.1 (a) Peak current control without slope compensation 

(b) Peak current control with conventional slope compensation 
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For stable operation, following relations must be satisfied: 

 
2

1

1ca

ca

m m

m m





  (6.3) 

and the required slope of compensation ramp can be obtained as: 

 2 1

1
( )

2cam m m   (6.4) 

In boost converters, m2 and m1 can be calculated by the following expressions: 

 
1
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in

c in

V
m

L
V V

m
L

 
  


 (6.5) 

Equation 6.4 only shows the minimum value of the slope required to cope with the 

subharmonic oscillations; however, it cannot give the information about how the input 

and output voltages, inductance and other system parameters affect the stable 

margin of a system. By contrast, a Monodromy matrix-based approach can provide 

better insight for slope compensation. It can not only be applied in the analysis of 

conventional saw-tooth type compensation but can also be used in developing other 

types of compensation, as shown in the next chapter. 

6.2 Overview of implementation for peak current control 

Until recently, most practical applications still employed analogue implementations 

due to cost considerations. The typical analogue PCM controller is illustrated in 

Figure 6.2. In this circuit, a network of analogue operational amplifiers, capacitors 

and resistors is utilized to constitute the compensator. An internal voltage source is 

generated to mimic a current compensation ramp. Thanks to the evolution of low-

cost, high performance digital signal processors (DSP) and other microcontrollers, 

the digital control of power switching converters is gradually demonstrating its 

advantages compared to analogue counterparts. Digital controllers feature improved 

reliability, greater design flexibility, and low sensitivity to environmental conditions. 

These attributes bring digital controllers closer to sophisticated and enhanced control 

methods such as adaptive and advanced nonlinear control to enhance the 

converter’s static and dynamic performance. Therefore, digital peak current control 

has attracted the interests of many engineers and recent research is showing 

promising results [144-146]. 
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Figure 6.2 Analogue peak current mode (PCM) control 

According to the principle of peak current control, the duty cycle is determined by the 

moment when the inductor current reaches a threshold value. The threshold value is 

mostly generated by the addition of the outer voltage control loop and a ramp 

generator signal. In digital control, the instantaneous waveform of inductor current is 

digitalized by high-speed analogue-to-digital converters (ADCs), while without 

appropriate means to accurately measure current at the desired point, the controller 

has to constantly monitor the inductor current during the PWM cycle in order to 

capture the moment when the inductor current reaches the reference signals. 

However, given the rapidly varying changes in inductor current, this concept of 

implementation using a full digital platform is difficult to realize and requires extremely 

high sampling and conversion rates of ADCs and high performance processors, 

especially when the power device switching frequency exceeds a few hundreds of 

kHz. A field programmable gate array (FPGA)-based implementation of digital peak 

current control has been proposed to achieve the digitalization. Two 10-bit differential 

pipeline ADCs are employed for sampling the error voltage and the inductor current. 

A compensating ramp is added with the sampled inductor current, which is 

implemented using a counter-based digital pulse-width-modulator (DPWM). However, 

this is not cost-effective and achieves low execution times since the converted results 

need to be compared with the reference signal after each conversion. Additionally, 

the staircase effect generated by the digitally compensating ramp may lead to sub-

harmonic oscillations [145]. 

To avoid the need to sample the inductor current constantly during the switching 

period, a feasible alternative to the fully digital peak current solution is to use mixed 
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signal microcontrollers containing analogue comparators. Thereby the discrete 

threshold value is converted into an analogue voltage by an internal digital-to-

analogue converter (DAC), to represent the current threshold level for the on-chip 

comparator as shown in Figure 6.3. Some relevant products have appeared in the 

markets (e.g. PIC, dsPIC, Piccolo) [147, 148] and a number of digital peak current 

control algorithms have been implemented based on these types of microcontrollers 

[143, 144, 146]. 

 

Figure 6.3 Digital peak current control by mixed signal microcontroller 

6.3 Implementation of the mixed controller 

As discussed above, although the analogue controller will certainly be more cost-

effective than a digital solution in simple and low-cost DC-DC converter applications, 

in more complex systems that require advanced control features the digital controller 

is the better choice. The solution proposed in this thesis employs a DSP controller 

with an external high performance waveform generator, which has more flexibility in 

applying various control algorithms and allowing real-time comparisons of the 

inductor current to achieve real-time cycle-by-cycle current limiting. Control 

commands are sent at each switching period via an SPI communication interface. 

This is similar to the mixed-signal implementation in which the voltage controller 

utilizes digital implementation and the current loop remains in the analogue domain, 

but it provides more efficient configuration, since the processor only needs to send 

control commands to the waveform generator and the remaining processing 

capability of processor can be used to handle other computing task. Moreover, this 

external independent high-frequency waveform generator offers better resolution, 

and flexible compensation signal generation.  
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6.3.1 Hardware implementation 

 
Figure 6.4 Interleaved boost converter with the diagram of digital peak current control 

The interleaved boost converter with digital peak current control is illustrated in 

Figure 6.4. A Texas Instruments TMS320F28335 based-DSP controller is used as the 

core processor to achieve the functions of voltage signal sampling, digital 

proportional-integral-derivative (DPID) and sending commands to the external 

waveform generator AD9106 to produce the current reference. The analogue 

interface board is designed for PWM signal generation with comparator and RS flip-

flop chips as shown in  

Figure 6.5. Two continious time inductor currents are sampled and scaled by Hall 

current sensors, and the signals are fed into the postive pins of the comparators to 

be compared with the output of the waveform generation board. Because of the 

interleaved configuration, the ripples of output voltage are at twice  the switching 

frequency. Thus the sampling frequency of output voltage should be set as twice per 

period, which can be accomplished in the programming. 

The TI f28335-based digital signal controller (DSC) is employed as the main 

controller. It is has many useful peripheral modules, including a general purpose 
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input and output (GPIO) module, an enhanced pulse width modulator (ePWM), a 

built-in ADC Module and serial peripheral interface (SPI) to name a few. Its flexibility 

of configuration and programmability make it popular in applications with power 

switching converters using digital control solutions. With the employment of the 

software Code Composer Studio (CCS), programs can be developed to serve many 

functions, meeting the demands of various advanced control algorithms such as the 

supervisory controller which plays a key role in this work and is discussed later in the 

thesis.   

 
Figure 6.5 PWM generation board 

 
Figure 6.6 AD9106 evaluation board 
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The AD9106 evaluation board is a high-performance DAC integrating on-chip pattern 

memory, which can be used to generate complex waveforms with a direct digital 

synthesizer (DDS). Figure 6.6 shows a photograph of the board. Its internal static 

random-access memory (SRAM) provides the function of direct waveform generation 

based on stored data, with flexible gain and offset adjustments. In addition, an 

internal pattern control state machine allows the user to program the start delay and 

end time of the pattern. Configuration can be achieved via SPI communication with 

the master processor. Figure 6.7(a) shows a photograph of the SPI interface from the 

processor and Figure 6.7(b) demonstrates an example of captured waveforms of SPI 

communication. The waveforms from top to bottom are signals for chip selection, 

command words, the data clock and switching clock. 

 

(a) 

 
 (b) 

Figure 6.7 (a) SPI interface 
(b) Operational waveforms of SPI communication 

All of the components mentioned above were assembled into a power case for safety 

and a photograph of the full prototype is given in Figure 6.8. The whole test system 
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contains a front control and display panel, auxilary power supply and relays, an 

interleaved boost converter with an analogue PWM generation board, the DSP 

controller and waveform generation board. 

 
Figure 6.8 Photograph of prototype 

6.3.2 Software implementation 

Figure 6.9 presents the flow charts of programmed codes. The program starts with 

the initialisation code, which includes variable definition and configurations for all 

relevant registers. Then the program executes the Labview data exchange loop. The 

function of this loop is to continuously communicate with the Labview user control 

panel via the RS232 interface, receiving commands from the user and sending back 

the sampled data to the control panel. For each switching period, the code is set to 

jump into the subfunction of the interrupt service routine (ISR) which contains the 

ADC sampling, implementation of Digital PI and updating the output of external 

waveform generators. The present sampled values after ADC conversion are fed into 

the subfunction of the control algorithm block. This block achieves the functions of 

the calculation of the digital PI for current reference and the proper values of the 

compensation ramp to guarantee the stable operation of the converter. Main codes 

programmed in the DSP controller is attached in Appendix 5. Part of the user’s 

Labview control panel is shown in Figure 6.10. States of input and output voltages, 

two inductor currents and calculated values of digital PID are monitored and 

displayed in this panel. Some parameters can be adjusted manually to change the 
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operation conditions of the converter. 

 

Figure 6.9 Flow charts of program 

 
Figure 6.10 Part of the user’s control panel in Labview 

In order to reconstruct the bifurcation diagram, the output voltage and inductor 

currents are continuously sampled for 30 switching periods for each given 

operational condition, and the sampling results are transferred and generated as a 
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date file which is stored in the user’s laptop. The process of sampled data collection 

is controlled by the acquire and save button as illustrated in Figure 6.11(a), and the 

corresponding diagram of graphical programming to achieve this function is 

presented in Figure 6.11(b). 

 
(a) 

 
Figure 6.11 (a) Function block of data acquire and save 

(b) Corresponding diagram of graphical programming 

6.4 Experimental results 

The interleaved boost converter used has the following specifications: Vin=14V, 

Vout=42V, Po=200W, fs=50kHz, and L1=L2=150μH. Figure 6.12(a) shows the two 

current references Vcom1 and Vcom2 generated from the AD9106 with a slope 

amplitude of ac=0.1. In addition, the figure shows the two clock signals Vclock1 and 

Vclock2 with a 180 degrees phase shift both feeding RS flip-flops. The corresponding 

waveforms of the output voltage Vout, two inductor currents iL1, iL2, PWM drive signals 

Vg1,Vg2 and swtiching clocks are presented in Figure 6.12(b). All of the waveforms 

demonstrate that the system is in stable operation of period-1 under the given 



Chapter 6 Design and implementation of mixed-signal controller-based test system
 

100 
 
 

conditions.  

.  
(a) 

 
 (b) 

Figure 6.12 (a) Current references Vcom1 and Vcom2 and corresponding clock signals 

(2) Waveforms at ac=0.1 

 
(a) 
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(b) 

Figure 6.13 (a) Current references Vcom1 and Vcom2 and corresponding clock signals 

(2) Waveforms at ac=0.01 

In contrast, when the amplitude of the compensation slope is set to ac=0.01, as 

illutrated in Figure 6.13(a), the system becomes unstable, operating in chaotic mode 

which can be seen in Figure 6.13(b).  

 

6.5 Digital controller 
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Figure 6.14 Diagram of the analogue PID controller 

An analogue PID controller in the continuous time domain is illustrated in Figure 6.14. 

The output of the ideal PID controller u(t) can be expressed as: 

 
0

1
( ) ( ( ) ( ) ( ))

t

p d
i

d
u t K e t e d T e t

T dt
      (6.6) 

where  
 ( ) ( ( ) )vc c refe t K v t V   (6.7) 

Here e(t) is the error signal, Kp is the proportional coefficient, Ti and Td represent 

integral time and derivative time respectively.  



Chapter 6 Design and implementation of mixed-signal controller-based test system
 

102 
 
 

By applying Laplace transforms to equation 6.6, the relations of output voltage and 

error in the s domain can be expressed as: 

 
(s) 1 1

(s) (1 )
(s) p d p i d

i

V
D K T s K K K s

E T s s
        (6.8) 

Here, Ki and Kd are the integral and derivative coefficient respectively in the s- 

domain. In digital systems, the discrete sampling method is used to digitalize the 

original analogue system. The expression of PID control can be transformed from the 

s-domain into the z-domain as follows: 
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where Ts is the sampling time and KI and KD are the integral and derivative 

coefficients respectively in the z-domain. The difference equation can be obtained 

from equation 6.9: 
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Thus, the output of a digitalised incremental PID control algorithm is: 
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( ) ( 1) ( ) ( 1) ( ) ( ) ( 2 ) ( 1) ( 2)p I D p D Du k u k u k u k K K K e k K K e k K e k             
(6.13) 

For the digital PI controller, the expression can be simplified to:  

 
( ) ( 1) ( ) ( 1) ( ) ( ) ( 1)p I pu k u k u k u k K K e k K e k        

 (6.14) 

From the programming point of view, the current output voltage u(k) can be 

expressed by the previous calculated output voltage u(k-1), current error e(k) and 

previous error e(k-1). For simulation in Matlab/Simulink, the diagram of incremental 

PI control is illustrated in Figure 6.15. 
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Figure 6.15 Diagram of incremental PI control in Matlab/Simulink 

6.6 Monodromy matrix applied in digital control 

In digital control, the effect of sampling and zero-order hold changes the derivation of 

the Monodromy matrix compared to the Monodromy matrix describing analogue 

control. For example, the original expression of PI output vipi in analogue control 

relates to the instantaneous output voltage vc as shown below:  

 ( )ipi
I ref vc c

dv
K V K v

dt
   (6.15) 

In digital control, the output voltage vc is sampled and therefore constant for one 

switching period. Thus, vc is replaced with Vcs and Vipi in digital control can be ob-

tained as: 

 ( )ipi I vc cs ref sV K K V V T   (6.16) 

The sampled value of Vcs depends on the ADC sampling time. Sampling mostly 

occurs at the beginning of the switching period after a slight delay, in order to avoid 

sampling the noise signals which take place in the switching instants. The control 

voltage obtained from the output of the PI controller is then obtained as follows: 

 ( ) ( )con p ref vc c I ref vc cc s ssv K V K m t K V K V TV      (6.17) 

This can be simplified as 

 ( )( )con p I cs f vc csrev K K T V VK m t     (6.18) 
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Figure 6.16The sampling points and switching conditions 

Since the output of PI vipi is not related to the instantaneous value in digital control, 

capacitor voltage vc and the two inductor currents iL1 and iL2 are chosen as state 

vectors, represented by variables x1,x2,x3 respectively. In the peak current control 

algorithm, the switches of the DC-DC converter will turn off when the outputs of the 

PI controller vcon1 and vcon2 equal the values of the inductor current x2 and x3, which is 

illustrated in Figure 6.16. Therefore, when the duty cycle d is bigger than 0.5, the 

switching functions can be defined as hሺx, tሻ and these are displayed in equations 

6.19 and 6.20 below: 

 12 3( , ) ( )( )p I s r csef vc c iLVh x t K K T V K m t K x      (6.19) 

 34 2( , ) ( )( ) ( )
2p I s re csf vc c iL

T
h x t K K T V K m t K xV       (6.20) 

 And:                              

 34 12
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Its normal vector and the rate of change are given by  

 
1 1

2 2

3 3

/ 0

/ 0

/ iL

h x

h x

h x K

    
         
        

12n  (6.22) 

 
1 1

2 2

3 3

/ 0

/

/ 0
iL

h x

h x K

h x

    
          
       

34n    (6.23) 

The Saltation matrices S12a and S34a can be obtained as: 
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 23 41a a S S I  (6.28) 

6.7 Peak current control and voltage feedback control 

Figure 6.17 shows the bifurcation diagram of one phase inductor current at different 

current references. It is reconstructed from the sampled data of 32 consecutive 

switching periods under about 45 different given current references. From the figure, 

it can be seen that, when the amplitude of the compensation slope is set as ac=0.01, 

the inductor current experiences three different operational states from period-1, 

period-2 to the chaotic state during the increase of input current reference. 

Bifurcation behaviour occurs when the current reference is equal to 1.15. Figure 6.18 

demonstrates the key operational waveforms of the DC-DC converter, which are the 
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output voltage, inductor current fast Fourier transform (FFT) curve, current reference 

and gate drive signals from top to bottom. 

 
Figure 6.17 Bifurcation diagram of input current under different current reference (ac=0.01) 

Figure 6.18(a) presents the waveforms when Iref is equal to 1and the converter is in a 

stable operation of period-1.The FFT spectrum curve shows a maximum high 

frequency amplitude at 50kHz. This is the same frequency as the switching 

frequency. When the current reference is increased to Iref=1.2, the converter exhibits 

the behaviour of period-2 as illustrated in Figure 6.18(b). In this state, the duty cycle 

of the gate drive repeats between two alternate different values and the 

corresponding FFT spectrum shows the frequency of the measured inductor current 

to become 25kHz, which is half of the switching frequency. Chaotic behaviour occurs 

when the reference current is bigger than 1.4, which is indicated by the non-periodic 

duty cycle and corresponding FFT spectrum curve shown in Figure 6.18(c). 

 
(a)  
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(b)  

 
(c)  

Figure 6.18 Key operational waveforms of converter at different states: (a) period-1 (b) period-2 
(c) chaotic state 

Figure 6.19 demonstrates the bifurcation diagram of the inductor current at a different 

ac which equals 0.1. It can be seen that the range of the stable period-1 is extended 

compared with that in Figure 6.17, and the bifurcation point is increased to 1.4. 

Likewise, the region of period-2 is changed and extended to a wider range. In 

addition, the operation of period-3 occurs when the current reference exceeds 1.75, 

which cannot be found at all in Figure 6.18(a). From the experimental results, it is 

evident that the small change in the magnitude of the compensation slope brings 

about the large influence on the operation of the converter. In order to verify the 

effectiveness of the simulation, the converter was tested with the conditions shown in 

Table 4.1. The outer voltage close loop with digital PI and inner current loop were 

employed in the simulation, and the same control algorithm was implemented in the 

DSP control for the comparison. 



Chapter 6 Design and implementation of mixed-signal controller-based test system
 

108 
 
 

 
Figure 6.19 Bifurcation diagram of input current under different current reference (ac=0.1) 

Table 6.1 Specifications of testing conditions 

Parameters Value Parameters Value 

Input voltage （V） 5~18, Frequency （kHz） 50 

Output voltage （V） 24, KiL 1/8.5 

Power rating （W） 60 Kp1 0.5 

Inductance （uH） 150 Ki1 2000 

Output capacitance (uF) 40 ac 0.05 

Kvc 1/120   

Figure 6.20(a) shows the bifurcation diagram of output voltage vc and inductor 

current iL1 in simulation at different input voltages. In contrast, the corresponding 

experimental results are displayed in Figure 6.20(b). It can be seen that they are 

quite close but with some differences in terms of profile and bifurcation point. The 

main difference is caused by the varying steps of input voltage in the experiment and 

the constant step setting in the simulation. The simulation results are from the ideal 

model-based calculation, and thus the sampled points generated for constant values 

are exactly located at one point. In contrast, errors in the experimental results are 

caused by the sampling resolution and quantization effect, and thus the constant 

values to sample will be transferred as values with some errors in the DSP controller. 

The errors are also related to settings of the zero-order hold and capture window in 

relevant registers, and this is normally set within a certain acceptable range to 

guarantee accuracy. In general, the simulation results are reliable enough so as to be 

used to facilitate the practical circuit design. 
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(a) 

 
 (b) 

Figure 6.20 Bifurcation diagram of output voltage and inductor current in simulation at different 
input voltages: (a) simulation results (b) experimental results 

Figure 6.21 shows the performance of interleaved boost converter at different input 

voltages. When the input voltage Vin is set at 17 volts, the waveforms indicate that 

the system is in the stable operation of period-1 as illustrated in Figure 6.21 (a). Until 

the input voltage is reduced to the bifurcation point when Vin equals 10.5 volts, the 

converter exhibits the behaviour of period doubling bifurcation in the operation of pe-

riod-2, where the switching frequency is still 50kHz as in period-1 but the frequency 

of the inductor current becomes half of the switching frequency as shown in Figure 

6.21(b). 

When Vin is set from 10.5V to 10V, the converter is in another period-2 mode, and the 

switching frequency is changed to 25kHz as displayed in Figure 6.21(c). According to 

the bifurcation diagram illustrated in Figure 6.20, the converter will exhibit chaotic 
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behaviour when Vin is less than 7.5V. Figure 6.21(d) presents the waveforms of the 

converter when Vin equals 6.5V, and the FFT spectrum curve indicates that the 

converter is operating in the chaotic state. 

 
(a) 

 

(b) 

 
(c) 
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 (d) 

Figure 6.21 Key operational waveforms at different input voltages: (a) Vin=17V (b) Vin=10.5V (c) 
Vin=10V (d) Vin=6.5V 

6.8 Summary 

A new mixed signal technique is proposed to achieve digital peak current control. 

Experimental results demonstrate that the test system works effectively, and can be 

used for the nonlinear analysis and control of DC-DC converters. In addition, a 

derivation of Monodromy matrices of the interleaved boost converter under digital 

peak current control is presented for the first time, and this is also validated 

numerically and experimentally.  
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7 Control of nonlinear behaviour and applications 

This chapter tackles the control of nonlinear behaviour in power switching converters, 

especially focusing on digital slope compensation. Some control algorithms for 

current mode control in digital implementations that have been proposed in recent 

years are compared and discussed. The influence of slope amplitude in conventional 

fixed slope compensation and sinewave compensation is investigated theoretically 

and by experiments. Based on knowledge of the derived Monodromy matrix, a real 

time cycle to cycle variable slope compensation control method is proposed to 

control the nonlinearity in DC-DC converters. Moreover, an improved quadratic curve 

slope compensation (QCSC) control is proposed in this chapter, which can use a 

smaller amplitude of slope but provides a much better compensation effect compared 

to conventional slope compensation. Experimental results verify the effectiveness of 

the proposed methods. Finally, a case study of reduced inductance in an interleaved 

boost converter is presented to demonstrate the potential application of the proposed 

nonlinear analysis and control method. 

7.1 Introduction 

The final section of the previous chapter demonstrated the nonlinear behaviour of 

DC-DC switching converter under peak current mode control. As summarised in the 

chapter 1 in this thesis, various feedback and non-feedback control techniques have 

been proposed to eliminate undesired nonlinear phenomena in converters. They can 

be applied to different applications, meeting the demand to control nonlinearity but 

involving various advantages and disadvantages. However, some of them are highly 

dependent on the mathematical model used and therefore cannot easily be 

implemented in practical circuits. Among the proposed methods, ramp compensation 

is the most well-known approach and is widely applied in industrial applications. 

Some mature commercial analogue controllers with internal or external ramp 

compensation are available on the market. Nevertheless, due to the lack of a 

thorough understanding of the operation of converters, the compensated magnitude 

of the ramp is only set as a constant value in most of the practical applications, which 

is based on experience rather than analysis. In recent years, a few digital controllers 

with ramp compensation module using a built-in analogue comparator have emerged 
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[147, 148]. 

Since the development of digital controllers in power converters, many relevant 

control algorithms have been proposed to achieve current mode control. A predictive 

peak current control method has been presented [149] in which the inductor current 

is pre-calculated using knowledge of inductance. Inductor current and output voltage 

are sampled once per cycle and used to predict the desired comparator switch-off 

threshold. Another digital peak current technique introduces the calculation of the 

duty cycle of the next switching period by solving the instant at which the sampled 

current becomes equal to the compensated current reference from the outer voltage 

loop [150]. A technique of cycle-by-cycle duty ratio computation in real time has also 

been presented [151]. A time-to-digital converter translates information of the last 

duty ratio into digital code, and then reconstructs the next duty ratio by using a 

moving average filter. However, all of these methods predict future values of the duty 

cycle by employing a mathematical model, and these cannot be regarded as true 

examples of peak current mode control since the inherent characteristics of a real-

time cycle-by-cycle current limiting ability are lost [152].  

 

Figure 7.1 Adaptive digital slope compensation 

In order to address the problem of excessive compensation and to improve the 

performance of peak current control, a piecewise linear slope compensation has 

been presented in [142]. The optimum value of slope over a wide range of duty cycle 

is here achieved by adding additional analogue circuitry. An adaptive digital slope 

compensation algorithm was then proposed to achieve optimal slope compensation 

over a wide operating range [143]. The structure of this digital control is shown in 

Figure 7.1. The sampled signals of input and output voltages and the minimum value 



Chapter 7 Control of nonlinear behaviour and applications
 

114 
 
 

of the input current are required to generate the adequate threshold as reference for 

the inductor current. The appropriate amplitude of the slope is calculated according to 

a formula based on the type of converter.  

However, despite the great effort over the last decade devoted to the implementation 

of and advanced algorithms for digital peak current control, the influence of 

compensation slope and digital control for the fast-scale stability issues of systems 

has not been thoroughly investigated. Knowledge of how slope compensation affects 

the system’s stability and achieves a suitable stable margin cannot be studied 

effectively with the methods described so far, and in any case their only purpose is to 

limit oscillation. Moreover, according to the research findings presented in Chapter 3, 

the system stability in peak current control is strongly related to the rate of the slope 

itself, and not only to the absolute offset value of the reference current [143]. Thus 

the adopted Monodromy matrix-based nonlinear analysis method can be an effective 

tool for the full analysis of the influence of the compensated slope amplitude, and it 

also can provide the knowledge about the inherent characteristics of peak current 

control with slope compensation. 

7.2  Conventional fixed slope compensation control 

The interleaved boost converter with the specifications shown in Table 6.1 was 

utilized to investigate the conventional fixed slope compensation control. The 

influence of different amplitudes of compensation slope mc, is demonstrated in Figure 

7.2. The input voltage is set at 6V, and amplitude ac is set from 0.1 to 0.25 with steps 

of 0.05. Figure 7.2(a) shows that the converter operates in the chaotic state when ac 

equals 0.1; and when ac is changed to 0.15, then the FFT spectrum indicates that the 

converter is operating in period-4 mode, with a fundamental frequency of 12.5kHz 

which is a quarter of period-1. The operation of the converter moves to period-2 when 

ac is set to 0.20, and stable operation in period-1 occurs when ac is decreased to -

0.25. The key operational waveforms are presented in Figure 7.2. It is evident that 

the values of the slope compensation dramatically affect the stability of converters 

operation and a larger amplitude (ac) of compensation ramp can increase the stability 

of the system.  
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(a) 

 

(b)  

 

(c)  
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 (d) 

Figure 7.2 Key operational waveforms at different values of compensation amplitude ac: (a) 
ac=0.10; (b) ac=0.15; (c) ac=0.20; (d) ac=0.25 

Figure 7.3 presents a bifurcation diagram of output voltage and inductor current with 

conditions of different input voltages and slope compensations mc. The graphs are 

reconstructed based on the sampled and stored data, which are from the file 

generated using Labview. It is clear that the bifurcation points vary at different values 

of ac, exhibiting linear and non-linear relationships.  

 

 
(a)  
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 (b)  

Figure 7.3 Bifurcation diagram of inductor current and output voltage at different input 
voltages and ac by employing conventional slope compensation (L=75μH): (a) output voltage; 

(b) inductor current 

 

 

Figure 7.4 Locus of eigenvalues using conventional slope compensation when ac=0.20 

In order to compare the experimental results with the theoretical analysis, the 

practical parameters are used as input to the codes debugged in the Matlab. This can 

produce the locus of eigenvalues using slope compensation when ac equals 0.20, 
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which is illustrated in Figure 7.4. It demonstrates that the converter will lose stability 

when input voltage is less than 7V, in contrast, the boundary value is 7.5V according 

to the experimental results shown in Figure 7.3. Thus, it proves that the calculated 

eigenvalues can be utilized to predict the operation boundary.  

7.3 Real-time cycle-to-cycle variable slope compensation control 

In order to control nonlinear behaviour and improve the performance of converters, 

an approach named real-time cycle-by-cycle variable slope compensation (VSC) is 

proposed in this section, which is based on knowledge of Monodromy matrix. The 

concepts and principles of this method are presented in section 3.5.1. As illustrated 

in Figure 7.5, the upper waveforms are two current references added by variable 

slope compensations with a 180 degree shift, which are generated by the 

programmable DAC, and the bottom waveforms are the corresponding clock signals. 

The amplitudes of the slopes are programmed to increase with given step, 

demonstrating the ability of cycle-by-cycle slope control. 

 
Figure 7.5 Variable slope compensation 

Figure 7.6 presents the effect of the proposed method on the control of nonlinearity in 

converters. The waveforms of the output voltage, inductor current, feedback control 

signals and gate drives are displayed from the top to the bottom. Figure 7.6 (a) and 

(b) show the moments where the system loses stability from stable operation of 

period-1 to the chaotic state in Figure 7.5.(a) and to the period-2 state in Figure 7.5 

(b). By employing VSC, the system can be kept in stable operation at certain 

operating conditions; in contrast, when the controller is switched to use conventional 
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fixed slope control, the converter loses stability immediately at one cycle time. 

Similarly, the system can regain stability by switching to the proposed method within 

a few cycles. Compared to the stable state, it can also be seen that the ripples of 

output voltage and inductor current increase markedly when the converter is in the 

unstable chaotic state.  

 
(a) 

 
 (b) 

Figure 7.6 Control of nonlinearity in converters by employing cycle by cycle variable slope 
compensation: (a) period-1 state to chaotic state; (b) period-1 state to period-2 

As discussed in Chapter 5, the eigenvalues in the Monodromy matrix can be used to 

predict the bifurcation points of the system at different input voltages and values of 

slope compensation. The locus of eigenvalues can indicate the margin of the stable 

range at different levels of variation in system parameters or external input and 

output conditions. In other words, if a specific margin is set, the corresponding 

compensation slope can be calculated by the given parameters. Here, if the 

eigenvalues are placed at the radius of 0.5 in the unit circle, for example, the 
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following nonlinear transcendental equation can be obtained which should be solved 

numerically:  

 | ( (0, ))| 0.5eig T M  (7.1) 

The relationship of input voltage and the required mc can be given in the form of a 

third order polynomial expression:  

 
5 3 4 2 32.098 10 7.832 10 5.5 10 0.2561c in in inm T V V V              (7.2) 

 

Figure 7.7 Polyfit curve and calculated values of mc vs. input voltage  

Figure 7.7 shows the polynomial fitting curve and the calculated values of ac at 

different input voltages for the given radius of 0.5. Thus, in digital VSC, the 

amplitudes of the compensation slope are calculated from the input voltages 

according to the expression above. 

 
(a) 
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(b) 

Figure 7.8 (a) Comparison of conventional fixed slope compensation and proposed method 
under digital control; 

(b) calculated values of mc and offset in digital controller. 

A comparison of conventional fixed slope compensation and the proposed method 

under digital control is presented in Figure 7.8(a). It can be seen that bifurcation 

occurs when the input voltage is around 12 volts with conventional fixed slope 

compensation; in contrast, the converter remains stable over the whole range of input 

voltage from 6 to 18 volts when employing VCS. Figure 7.8(b) demonstrates the 

calculated values of mc and the offset in the operation at different input voltages. With 

a linear increase in the ramp mc, the offset falls exponentially.  

7.4 Sinewave compensation control 

 
Figure 7.9 Diagram of peak current control with sinewave compensation at different duty 

cycles 
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Besides conventional slope compensation, some other studies propose the use of 

sinewave compensation. For example, a comparison of a non-smooth bifurcation in a 

ramp-controlled and sinewave-controlled buck converter is discussed in [101].  

However, the generation of this type of compensation and synchronisation between 

signals is hard to implement without employing high-performance DAC. Thus, 

previous studies are only based on simulation results, and some discussions merely 

focus on descriptions of phenomena rather than investigating their inherent 

mechanisms. In addition, previous work has not determined the relationship between 

compensation effects and the duty cycle. By applying the Monodromy matrix-based 

method adopted here, more detailed knowledge of this compensation can be gained, 

which can be verified by experimental results. 

 
Figure 7.10 Movement track of corresponding eigenvalues with slope compensation 

The switching condition of peak current control with sinewave compensation can be 

expressed as:  

 (x, t) ( (1 sin( t)) )p ref m vc c iL Lh K V a K V K i     ( 7.3) 

As discussed in previous chapters, the derivative of switching conditions with respect 

to time affects the terms of the saltation matrix, which is strongly related to the 

stability of the system. It can be expressed as follows: 
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According to equation 7.4, the derivative is dependent on the duty cycle d and the 

amplitude of the sinewave am. A diagram of peak current control with sinewave 
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compensation at different duty cycles is shown in Figure 7.9. It can be seen that the 

values of /h t   are less than 0 when the duty cycle is in the range of 0.25 to 0.75. 

Compared to the original system without compensation, stability is improved under 

this operational condition according to the calculation of eigenvalues. How the slope 

compensation affects the stability of system is illustrated in Figure 7.10. It shows the 

movement track of the corresponding eigenvalues with slope compensation. The 

locus of eigenvalues will move towards the core of the unit circle when the values of 

/h t   are negative, which results in a wider stable operational range. Similarly, 

system stability will decrease when d is less than 0.25 or larger than 0.75. Since 

values of /h t   are bigger than 0 and this results in the movement of eigenvalues 

towards -1 along the negative axis, as shown in Figure 7.10. For the given value of 

slope, when the duty cycle equals 0.5, this provides the best compensation effect in 

improving the system stability. 

 

Figure 7.11 Locus of eigenvalues using sinewave slope compensation (am = 0.18) 

A bifurcation diagram of voltage and current under peak current control with 

sinewave compensation (SWC) is illustrated in Figure 7.12. The value of am is set 

from 0.05 to 0.20 with steps of 0.05, and the bifurcation points are varied from 9.5V 

to 7.0V input accordingly. It can be noted that the curve of am equals 0.20 is different 

from all of the other curves. At am=0.20 another bifurcation occurs when the input 

voltage is increased above 18V. Because the duty cycle becomes less than 0.25, the 

larger amplitude leads to a negative compensation effect, which decreases the 
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stability of the original system. The locus of eigenvalues using SWC control (am 

=0.18) is shown in Figure 7.11, which is calculated and generated in Matlab. In this 

figure, the movement of the eigenvalues is indicated by arrows, and it shows that the 

system will exhibit bifurcations when input voltage is less than 7V or bigger than 

19.5V. This result is very close to the experimental outcome when ma equals 0.2. 

Therefore, the Monodromy matrix-based analysis method provides knowledge of how 

the duty cycle relates to system stability with sinewave compensation. 

 
(a) 

 
 (b) 

Figure 7.12 Bifurcation diagram of inductor current and output voltage at different input 
voltages and am when employing sinewave compensation (L=75μH): 

 (a) output voltage; (b) inductor current 
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Figure 7.13 presents the operational waveforms of the converter under peak current 

control with sinewave compensation when am equals 0.2. The converter is operating 

in stable period-1 when the input voltage is set at 8.5 volts, which can be seen in 

Figure 7.13(a); Figure 7.13(b) and (c) show the converter in the operation of period-2 

when the input voltages equal 7.5V and 18V respectively. Similarly, the amplitude of 

the sinewave can be set cycle-by-cycle to achieve an advanced control algorithm 

based on the Monodromy matrix as illustrated in Figure 7.14 . Besides, a method of 

varying-phase sinusoid injections is presented in Appendix 4, in which the 

appropriate phase of the sinusoid can be chosen in each clock cycle, to make the 

zero crossing coincide with the nominal steady-state switching instant. 

 
(a) 

 
(b) 
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 (c)  

Figure 7.13 Key operational waveforms at different input voltages by using SWC control: 
(a) Vin=8.5V; (b) Vin=7.5V; (c) Vin=18V 

 
Figure 7.14 Variable amplitude of sinewave compensation 

7.5 Improved quadratic curve slope compensation (QCSC) control 

 

Figure 7.15 Proposed improved quadratic curve slope compensation 

As discussed in the previous section, the bigger the amplitude of mc in conventional 
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slope compensation, the better is the effect on improving the stability of the DC-DC 

converter. This is particularly true for cases of high voltage conversion ratios (which 

also means high duty cycles) where a bigger amplitude of mc is required. However, 

the amplitude of mc has its limitations. Specifically, the bigger amplitude of 

compensation slope mc can degrade the dynamical response and the average output 

current will be limited due to the reduced current reference input which is driven by 

slope compensation [99]. As shown in Figure 7.15, for conventional slope 

compensation, if the amplitude of mc is high enough, the values of peak current will 

be restrained far away from the offset value, which is illustrated as the waveform 

coloured in red. This offset value is determined by the output of the PI controller and 

its maximum value is limited by the waveform generator. To overcome this problem a 

new improved quadratic curve slope compensator (QCSC) is proposed in this 

section. The compensation slope is not a constant ramp but is constructed as a 

quadratic curve with regards with time t coloured in blue.  

Employing this new compensation method, the switching condition and the derivative 

of switching conditions with respect to time becomes: 

 2(x, t) ( 1 ) (t/T )p ref vc c m s iL Lh K V K V a K i     (7.5) 
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The term /h t   becomes the expression that relates to the duty cycle d and 

amplitude am, which is different from the expression that only relates to the amplitude 

of slope mc in conventional slope compensation. When the duty cycle is less than 

0.5, only a small slope or even no compensation is required to guarantee the 

system’s stability; but compensation is required for any duty cycle value over 0.5. 

Compared to conventional slope compensation, this can provide the same 

compensation effect when the following equation is applied: 

 2 / /m s c sa d T a T    (7.7) 

It turns out that when the duty cycle is bigger than 0.5, the required am is less than ac, 

and it is approaching half of ac with increasing values of duty cycle. For instance, 

when the duty cycle is 0.75 and the calculated value of ac equals 0.15, the required 

am is obtained as 0.1 according to equation 7.7. The comparison of QCSC method 

and conventional slope compensation is shown in Figure 7.16, which demonstrates 

that the system loses stability from period-1 to period-2 when the control algorithm is 
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switched from the QCSC method to conventional slope compensation. In addition, it 

is evident that the amplitude required (am=0.1) is nearly 33% less than conventional 

method in this case (ac=0.15 is required for period-1 operation).  

 
Figure 7.16 Comparison of QCSC method and conventional slope compensation 

Figure 7.17 demonstrates the compensation effect of the proposed method. When 

the value of am is set at 0.15, the bifurcation point occurs at input voltage equalling 

6V. This gives similar compensation results as conventional slope compensation with 

an ac equals 0.25 as shown in Figure 7.3. When am is set at 0.20, the converter 

becomes stable over the whole input range from 6 to 18V. Figure 7.19 shows the 

operational waveforms when the input voltage equals 6V, 12V and 18V respectively. 

The figure proves that smaller slope amplitudes are required to yield better effects on 

compensation. This is the achievement of the new proposed control method.  

 
(a) 
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 (b) 

Figure 7.17 Bifurcation diagram of inductor current and output voltage at different input 
voltages and mc when employing QCSC control (L=75μH): 

(a) output voltage;  (b) inductor current 

 

Figure 7.18 Locus of eigenvalues using QCSC control (am = 0.2) 

Figure 7.18 shows the locus of eigenvalues using QCSC control when am equals 

0.2, and the margin of stable operation for the input conditions given can be indicated 

by this diagram. 
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(a) 

 
(b) 

 
 (c) 

Figure 7.19 Key operational waveforms at different input voltages by using QCSC control: 

(a) Vin=18V; (b) Vin=12V; (c) Vin=6V 
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7.6 Application for reduced inductance  

The aforementioned practical work demonstrates the analysis and control of 

nonlinear behaviour for interleaved boost converters by applying the Monodromy 

matrix. This section focuses on the application of the Monodromy matrix in order to 

reduce the size of the converters.  

Energy crises and low-carbon environmental requirements are leading more 

countries to invest a great deal of research funding in the development of the next 

generation of low-carbon vehicles. Therefore, the Hybrid Electric Vehicle (HEV) and 

Electric Vehicle (EV) have attracted the worldwide attention to the use of 

environmentally-friendly cars which are seen as clean. However, delivering the 

technology required to decarbonize road transport is a global challenge, and there 

are some key barriers to bringing EVs to the mass market. Two key issues are cost 

and power density.  

Power electronics technologies play a significant role in the development of EVs. 

Many on-board converter systems, which are utilized as the interface among energy 

source storage elements and the traction machine, use a complicated, heavy, 

expensive and non-optimized solution. However, without in-depth knowledge, there is 

no appropriate way to further optimize and upgrade power electronics systems. To 

solve these issues and achieve compact, integrated and high-efficiency power 

conversion, more constructive basic research needs to be carried out. One of the 

challenges is to investigate appropriate approaches to reducing the size of DC-DC 

converters without increasing frequency. 

 
Figure 7.20 Volume distribution of typical non-isolated dc-dc converters 
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Normally, passive components such as inductors, transformers, and input and output 

filters represent 30%~40% of the mass of a power converter. Figure 7.20 shows the 

volume distribution of a typical non-isolated DC-DC converter. This shows that the 

inductor accounts for 25%~35% of the whole converter mass. Therefore, reducing 

the size of inductors is of great significance to achieve higher power density. Some 

feasible methods exist to address this issue, as shown in Figure 7.21. The most 

common way in reducing the size of the converter is by increasing the switching 

frequency, which is always inversely proportional to the required inductance. 

However, the switching and iron losses rise dramatically with increasing frequency. 

Meanwhile, faster active components, and advanced magnetic materials and control 

methods should be developed to satisfy the requirement of high frequency 

applications.  

Without increasing frequency, there are still many possible approaches to reduce the 

size of magnetic components, and these can be classified into four categories using: 

state of the art materials; interleaved configuration; flexible inductor techniques; and 

improved control strategies, (see Figure 7.21). Different techniques can be applied in 

different types of converters, depending on the requirements of specific applications, 

and some techniques can also be adopted individually or in combination to achieve 

desired results. 

 
Figure 7.21 Present feasible methods to reduce the size of magnetic components 

Nevertheless, most of the approaches are confined to a particular application. For 

instance: the new amorphous metal and silicon steel material is only used in low-
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medium frequency converters [153]; integrated techniques can be applied only in low 

power application [154]; additional components are required to implement 

reconfiguration, which increases the complexity and adds extra losses [155, 156]; 

some techniques can only be utilized in particular converters [157, 158]. Therefore, in 

order to reduce the size of converters, one of the best solutions is to find a general 

control method applicable to a variety of converters without increasing frequency and 

circuit complexity. This thesis develops a control method that is addressing fast-scale 

instability phenomena, and the derived Mondomoy matrix contains comprehensive 

information about system parameters. Thus it has the potential to be used for stability 

analysis and advanced control of DC-DC converters applying reduced inductor 

values. 

 
(a)                                                           (b) 

Figure 7.22 (a) Diagram of the proposed control method; (b) Locus of eigenvalues using the 
proposed method 

The basic concept in employing the proposed method is illustrated in Figure 7.22. By 

using the conventional averaging method, the influence of a reduced inductor on fast-

scale stability cannot be analysed, and the given system will lose stability to some 

extent when inductance is reduced. The most common solution to this is to utilize a 

bigger choke with higher inductance to guarantee stability, at the expense of cost and 

weight. In contrast, the proposed method takes information about the switching 

instant into account; and the impact of reduced inductance can be compensated for 

by manipulating the derived Saltation matrix S. Specifically, the original system will 

lose stability with the reduced inductance L, and the eigenvalue of Monodromy matrix 

moves outside of unit circle as shown in Figure 7.22(b). In order to regain system to 

be stable at the condition of inductance reduced, the compensation in the controller 

is implemented using the proposed method as illustrated in Figure 7.22(a). 

Information of input voltage, output voltage and inductor current are fed into the 
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advanced controller to generate the control signal and the terms of Monodromy 

matrix are affected accordingly. As a result, the corresponding eigenvalues are 

relocated within the unit circle, which means the new system remains stable using 

the proposed controller.  

 
Figure 7.23 Comparison of two different inductors (75µH&150µH) 

In order to study the influence of reduced inductance on the system’s stability, two 

inductors with different inductances were designed for testing in experiments, as 

shown in Figure 7.23. Using a 150μH inductor, the bifurcation diagram of output 

voltage and inductor current at different slopes are presented in Figure 7.24 (a) and 

(b) separately. 

 
(a) 
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 (b) 

Figure 7.24 Bifurcation diagram of inductor current and output voltage at different input 
voltages: (a) output voltage; (b) inductor current 

 
Figure 7.25 Locus of eigenvalues using conventional slope compensation (ac=0.1,L=150 μH) 

Compared to the results when employing 75μH inductors in section 7.2, it can be 

seen that the bifurcations points have changed significantly. For instance, when the 

amplitude ac is 0.10, the bifurcation point is changed to 6.5V input from the 10.5V 

input when inductance equals 75μH. This indicates that the stable operational range 
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has been extended with the increase in inductance. The corresponding locus of 

eigenvalues using 150 μH inductor is calculated and generated in the Matlab as 

shown in Figure 7.25, which shows a good agreement between experimental and 

theoretical analysis. 

Figure 7.26 presents the operational waveforms of the converter when input voltage 

equals 6V. If the original system is designed to use a 150μH inductor with a fixed ac 

equals 0.15, the system is in stable operation of period-1 as shown in Figure 7.26(a). 

When the inductance is reduced to 75μH at the same given operational conditions, 

the system will lose stability as illustrated in Figure 7.26(b). In order to regain stable 

operation, the amplitude of ramp can be changed to 0.25 as shown in Figure 7.26(c).  

 
(a) 

 
(b) 
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(c) 

Figure 7.26 Key operational waveforms of the converter using different inductors at the same 
input voltage: (a) ac=0.15, L=150µH; (b) ac=0.15, L=75µH; (c) ac=0.25, L=75µH 

It is clear that the system remains in stable operation despite reduced inductance, 

when the compensating parameter is changed. The specific compensating value of 

mc can be calculated using information from the Monodromy matrix. Therefore, the 

experimental results verify the concept of reducing the size of converters by using 

developed control methodology without increasing frequency. 

7.7 Summary 

In order to control the nonlinear behaviour of DC-DC converters, several control 

algorithms for current mode control in digital implementations are proposed and 

developed using the knowledge of the Monodromy matrix. In addition, a deeper 

understanding in the behaviour of the system, such as how system’s stable operation 

is lost, can be gained by employing the adopted nonlinear analysis method, and it 

also provides a new perspective on control laws of designing the appropriate 

controllers to address the nonlinearities in DC-DC converters. This chapter 

introduced two new control laws: variable slope compensation and quadratic curve 

slope compensation. Finally, a successful application of a boost converter operating 

at reduced inductances has been demonstrated in this chapter. 
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8 Conclusion and future work 

8.1 Conclusion 

 
In this thesis, a nonlinear analytic methodology based on the Monodromy matrix has 

been employed for the stability analysis and control of DC-DC converters. This 

derived matrix contains all the circuit parameters and control coefficients, and this 

enables system performance with different input and output parameter to be 

evaluated. Specific derivations of the Monodromy matrix have been presented in the 

thesis. In addition, based on the knowledge gained from the Monodromy matrix, new 

advanced control techniques have been proposed and developed to improve the 

stability performance of DC-DC converters. The new proposed schemes allow DC-

DC converters to operate at extended input voltage ranges, and the techniques 

proposed here can be applied to other switching converters such as interleaved or 

multiphase converters. Moreover, the proposed control algorithm has been 

implemented in a mixed-signal digital controller to maximise the impact of the control 

parameters. This approach has not been previously reported. Finally, the Monodromy 

matrix was also applied to help with the reduction of the inductor size of DC-DC 

converters. Simulation and experimental results have validated the theoretical 

analysis and the effectiveness of the methods developed. 

The periodic solution for bidirectional DC-DC boost converters with current mode 

control is presented analytically and validated numerically. Parasitic elements such 

as resistance of the inductor and capacitor are considered in the derivation of the 

Monodromy matrix, which is proven to affect the fast-scale stability of converters to 

some extent at the given operation conditions. Quantitative analysis of this influence 

was carried out numerically using the derived matrix.   

The adopted analytical method is then applied to the boost converter with constant 

power loads (CPL). Characteristic of CPL is transformed to constant current using 

approximation method in the analysis and the stability of system is fully unfolded 

analytically and numerically in the examples of boost converters employing CCM and 

DCM operation modes. The results show that the system is relatively more stable 

during DCM than in CCM operation from the perspective of fast-scale stability. In 
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addition, cascading with outer voltage loop, the comparison of inner peak current 

mode control and averaged current control is presented using the locus of 

eigenvalues. The results prove that the system is less prone to the fast-scale 

instability under the averaged current control algorithm compared to peak current 

control. 

The thesis also shows for the first time that the nonlinear analysis of interleaved 

boost converters demonstrates that the Monodromy matrix-based method can be 

successfully applied in higher order switching converters with interleaved operation. 

The switching events are treated independently and the interaction effect of 

interleaving on the stability of the system is introduced into the procedure of matrices 

derivation. The theoretical analysis is verified by the simulation results, and the 

numerical results of the interleaved boost converter are validated by experimental 

outcomes from the prototype, which is controlled by the proposed mixed signal 

controller. The new implementation of the digital controller does not only exhibit 

flexibility in implementing various control algorithms quickly, but also retains the 

inherent characteristics of real-time cycle-by-cycle current limiting experienced using 

analogue comparators. It works effectively to capture the variety of nonlinear 

phenomena exhibited by the interleaved converter. 

Based on the information in the derived Monodromy matrix, several control 

algorithms for current mode control in digital implementations are proposed and 

developed to enhance system performance. It has been shown that the adopted 

nonlinear analysis method can not only provide valuable insights into the behaviour 

of the system, including revealing how its stable operation is lost, but also a new 

perspective is developed on the design of control laws to cope with nonlinear 

behaviour in DC-DC converters. Two new control laws were developed: variable 

slope compensation and quadratic curve slope compensation. The thesis ends with a 

study of reduced inductances in boost converters using the analytical work 

developed which have a wide practical application. 

8.2 Future work 

Based on the work presented in this thesis, some potential further research areas 

can be suggested as follows. The methods described here can be applied to the 

nonlinear analysis of other types of non-isolated or isolated converters with higher 
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order. For example, how to develop the Monodromy matrix including the 

nonlinearities of transformers. In addition, based on the new control laws established 

how many other control techniques can be generated with the proposed methods? 

For example, the relationship between switching conditions and different control 

algorithms, and corresponding changes in the Monodromy matrix can be studied. In 

terms of the practical implementation at the test bench, the existing platform can be 

enhanced in order to achieve more functions and to make it universal for the testing 

other types of converters at different power ratings. Finally, the visualization of the 

stability of systems with comprehensive information about all the system parameters 

and external conditions can be developed to aid product design. 
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Appendix 1 

 
By differentiating equation 2.8 with respect to x0, this Jacobian matrix can be 

obtained from the following expression:   
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where I is the identity matrix with the same order as the state variables and the term 

0( , )A x  is shown as follows: 

 
0

0
0

( ( , ), )
( , )

( , )

  
 





x

A x
x

f

  (A1.2) 

The following differential equation can be derived by differentiating equation A1.1 with 

respect to time:  
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The Jacobian matrix can be calculated from solving the equation above. 

The following expression can be obtained by perturbing around this fixed point, 
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Hence the stability of the fixed point of the Poincaré map, which represents the 

original periodic smooth system, can be studied using the eigenvalues of this 

obtained Jacobian matrix. 
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Appendix 2 
 
 Assume that there is a system which has a generic initial value:  
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Then, according to the theory of trajectory sensitivity, the system’s stability can be 

analysed using the solution 0 0( , , )t t x  by adding a small perturbation and observing 

its evolution. In addition, by employing the linearization approach of the Taylor series 

around the periodic orbit, the following equation can be obtained: 
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Since the perturbation is small enough, the higher order terms can be neglected. 

Here: 

 0 0 0 0 0 0 0 0 0( , , ) ( , , ) ( , , )t t x t t x t t x         (A2.3) 

 0 0 0 0 0 0( , , ) ( , , ) ( , , )t t x t t x t t x        (A2.4) 

The solution to equation A2.2 reveals the relationship between the perturbation

0 0( , , )t t x and the original one at time t0, which is written as follows: 

 
0 0

0 0 0 0 0 0 0 0 0
0

( , , )
( , , ) ( , , ) ( , ) ( , , )

t t x
t t x t t x t t t t x

x

  
    


  (A2.5) 

where 0( , )t t  represents the state transition matrix of the system. This system can be 

regarded as stable if the perturbation tends to zero when t→∞. For a periodic orbit 

with a period of T, the following equation can be proved: 

 0 0 0 0 0 0 0 0( , , ) ( , ) ( , , )kkT t t x T t t t t x       (A2.6) 

where 0 0( , )T t t  is named as the Mondromy matrix, which is the state transition matrix 

over a whole period T. This equation can be written in the following form: 

   1
0 0 0 0 0 0( , , ) ( , , )kkT t t x E E t t x       (A2.7) 

where E is the eigenmatrix of this Monodromy matrix. The stability of the system can 

be determined from the magnitudes of the eigenvalues of the Monodromy matrix (al-

so named the Floquet multipliers).  
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Appendix 3 

The theory of Filippov provides a generalised definition of system solutions with 

switching behaviour [56, 112, 159]. Such systems can be described as: 
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where ( ( ), )f t t x  and ( ( ), )f t t x   represent the smooth vector fields before and after 

switching respectively. V- and V+ are two different regions in state space and the 

switching manifold Σ separates them as shown in Figure A3.1 

 

Figure.A3.1 Solution of nonsmooth system and its perturbed solution 

In smooth systems, the evaluation of perturbation from the initial condition to the end 

of the period can be mapped by the fundamental matrix. In nonsmooth systems, 

however, the switching instant makes the vector field discontinuous. As a result, the 

fundamental matrix breaks down and the information of the switching instant needs 

to be taken into account. The relations of perturbation vectors ( )tx  and ( )tx  

which are before and after the switching respectively, can be described using the 

saltation matrix 

 ( ) ( )t t   x S x  (A3.2) 

The following equations can be obtained: 
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t  represents the time difference before and after the switching instant, which is 

small enough. By employing Taylor series expansion, the relationship of the state 

vectors can be expressed as follows: 

 ( ) ( ) ( )t t t t f t       x x x    (A3.4) 

 ( ) ( ) ( )t t t t f t       x x x  (A3.5) 

By substituting equations A3.4, A3.5 into equation A3.3, the following is obtained: 
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Switching conditions satisfy the following relationship: 

 
( ), ) 0

( ), ) 0

h( t t

h( t t
 

 


 

x

x
 (A3.7) 

Also using the Taylor series expansion on h(x(t),t), an expression can be derived in 

terms of t : 

 

0

( ), ) ( ) ( ) , )

( ), ) m ( ( ) ) 0T

h( t t h( t t f t t t

= h( t t t t f t

 

 
     

   

   

    

x x x

x n x




  (A3.8) 
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Here, n represents the normal to the switching manifold. The expression for t can 

be obtained as: 

 
( )T

T

t
t

f m
 




 


n x

n
 (A3.11) 



 Appendix 3

 

156 
 
 

Substituting equations A3.8, A3.9 and A3.10 into equation A3.11, the relationship 

between the perturbations vectors before and after the switching is shown as follows: 
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Comparing equations A3.2 and A3.12, the saltation matrix can be written as: 
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Appendix 4 
Method for varying-phase sinusoid injections  

A diagram of the supervising controller is given in Figure.A4.1.The main concept of 

the proposed varying-phase sinusoid injection method is to change the term of 

/h t   in equation 2.7 from 0 to a controllable variable, by introducing the sinusoid 

signal to the reference Vref. The expression of the new reference Vref becomes: 

 ' (1 sin( t ))ref refV V a      (A4.1)  

Now the expression of /h t  is changed as follows: 

 
' cos( t )p ref
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K V a

t
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 
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 (A4.2)  

By choosing the proper parameter “a” in the new Monodromy matrix, the eigenvalues 

of this matrix are located within the unit circle which indicates a stable period-1 

operation. In order to achieve only a minimal influence of the switching instant on the 

normal operation of the converter, the term of the sine should be small enough. 

  

(a) 

  
(b) 

Figure.A4.1 (a) Diagram of supervising controller; 
(b) illustration of varying-phase sinusoid injection method 



'
refV

sin( t )ia   2i id  
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Hence, the appropriate phase of the sinusoid   can be chosen in each clock cycle, 

which makes the zero crossing coincide with the nominal steady-state switching 

instant. Specifically,   can be set as -2πd in this case. But since /h t   contains 

the cosine term which attains a maximum value at the switching instant, this alters 

the Monodromy matrix significantly to stabilize the system. The illustration of this 

varying-phase sinusoid injection method is shown in Figure. A4.1. 

The specification of simulation parameters is shown as follows: Vi=250V~400V, 

Vout=600V, L1=L2=200μH, C=250μF, R=6Ω, f=20kHz, a=-0.05, Ki=200, Kp=1, 

Kvc=1/120, KiL=1/120, Vref=5V. Pout=60kW. The diagram of the corresponding control 

algorithm in Matlab/Simulink is illustrated in Figure A4.2. 

 
Figure A4.2. Diagram of corresponding control algorithm in Matlab/Simulink  

The bifurcation diagram and corresponding locus of eigenvalues with conventional 

peak current control are presented in Figure A4.3 (a) and (b). The bifurcation point of 

the original system without supervising control can be indicated by the locus of 

eigenvalues of the Monodromy matrix. When the input voltage equals 329.5V, the 

system jumps into the period of bifurcation as shown in Figure A4.3 (a); meanwhile, 

one of the corresponding eigenvalues reaches the border of unit circle in Figure A4.3 

(b), which means that the system becomes unstable. In contrast, Figure A4.3 (c) 

shows the diagram of output voltage vs. input voltage in the system with supervising 

control, which demonstrates that the system can remain stable within the whole 

range of input voltage from 250V to 400V. The corresponding locus of eigenvalues of 

the Monodromy matrix in Figure A4.3 (d) indicates that the related eigenvalues are 

located within the unit circle and they are varying on a certain track with different 

input voltages. 

Therefore, this proves that the proposed control method extends the stable operating 
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region effectively. In addition, the evolution of inductor currents at the condition of Vin 

equals 329.7V with time is illustrated in Figure A4.4, which is the pattern produced in 

the process. It shows the behaviour of inductor current around the bifurcation point 

and that the system is changing from the stable period-1 to other periods.  

 
   (a)             

 

 
  (b) 

     
(c)  
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 (d) 
 

Figure A4.3 (a)~(b) Bifurcation diagram and corresponding locus of eigenvalues  
without supervising control; 

 (c)~(d) output voltage and corresponding locus of eigenvalues with supervising control 

 
        (a)                                                                                        

 
 (b) 

Figure A4.4 (a)~(b) Behaviour of the bifurcation point (a) 3-D (b) x-z view
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Appendix 5 
 
1. Main codes in the DSP controller 
 
The program starts with the initialisation codes in the main function, which are used 

for the setting of a variable definition and appropriate configurations for the relevant 

registers, such as system clocks, peripheral interrupt expansion (PIE), GPIO, ePWM 

and ADC. Then the program executes the Labview data exchange loop. The function 

of this loop is to continuously communicate with the Labview user control panel via 

the RS232 interface, receiving the commands from the user and sending back 

sampled data to the control panel. The time of each action of communication can be 

set in Labview. For each switching period, the code is set to jump into the subfunction 

of interrupt service routine (ISR), named ‘interrupt void ISREPwm1_Zero(void)’. This 

is used to achieve the functions of ADC sampling, the implementation of Digital PID 

and updating the output of external waveform generators. 

 
int main(void) 
 
{ 
// system initialize: pll clock:100M;hispcp=1 100m/2; lospcp=2 100m/4;periferals clock enabled 
    InitSysCtrl(); 
// Initialise the pins for the SCI-A port (RS232). 
    InitSciaGpio(); 
// Init the pins for the SPI-A port (DAC). 
   InitSpiaGpio(); 
 
//EPwm initialize 
    InitEPwm1Gpio(); 
    InitEPwm2Gpio(); 
    InitEPwm3Gpio(); 
    InitEPwm6Gpio(); 
 
// Initialise GPIO (gate drives, external trip zone control, DAC and test points) 
       gpio_init(); 
 
// Clear all interrupts and initialize PIE vector table: 
// Disable CPU interrupts 
    DINT; 
// Initialize the PIE control registers to their default state. 
    InitPieCtrl(); 
// Disable CPU interrupts and clear all CPU interrupt flags: 
   IER = 0x0000; 
   IFR = 0x0000; 
//initialize Pie interrupts and enable pie 
    InitPieVectTable(); 
 
//user defined interrupt initialize 
    EALLOW; 
    PieVectTable.TINT0 = &cpu_timer0_isr;     //Cpu timer0 interrupt 
    PieVectTable.EPWM1_INT=&ISREPwm1_Zero;  //EPwm1 counter underflow interrupt 
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//      PieVectTable.EPWM2_INT=&ISREPwm2_Zero;    //EPwm2 counter underflow interrupt 
    PieVectTable.EPWM6_INT=&ISREPwm6_Zero; 
    EDIS; 
    //CPU timer0 initialize 
    InitCpuTimers(); 
// Configure CPU-Timer 0 to interrupt every msecond: 
// 150MHz CPU Freq, 4.5m second Period (in uSeconds) 
    ConfigCpuTimer(&CpuTimer0, 100, 3000); 
// These function is in DSP2833x_CupTimers.h file 
    StartCpuTimer0(); 
 
//ADC initialize 
    InitAdc(); 
 
//ADC setup 
   SetupAdc(); 
   EALLOW; 
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 0;   // ePWM TBCLK stopped 
   EDIS; 
 
// Here we configure 
   InitEPwmMods(); 
   EPwm6Regs.CMPA.half.CMPA =EPwm6_Compare; 
   EPwm3Regs.CMPA.half.CMPA =EPwm3_Compare; 
   EPwm2Regs.CMPA.half.CMPA =EPwm2_Compare; 
   EPwm1Regs.CMPA.half.CMPA =EPwm1_Compare; 
 
 
   EALLOW; 
   SysCtrlRegs.PCLKCR0.bit.TBCLKSYNC = 1;   // All enabled ePWMs synchronised with rising edge 
of TBCLK 
   EDIS; 
// Set up SPI for DAC 
   spi_fifo_init();   // Initialize the Spi FIFO 
   spi_init();        // init SPI 
 
//       InitFlash(); 
 
   scia_fifo_init();       // Initialise the SCI FIFO 
   scia_echoback_init();  // Initialise SCI for echoback 
 
   LoopCount = 0;           // Set LabVIEW data transfer counter to zero 
   ErrorCount = 0; 
   i=0;                 // Set RS232 character counter to zero 
 
   IncPIDVar(&VoltLoopPID,VLoop_P,VLoop_I,VLoop_D); // Initial parameter calculation 
 
   GpioDataRegs.GPBSET.bit.GPIO62 = 1;    //GPIO62 is connected with Trigger pin, high, trigger off 
   init_AD9106_EBZ (); 
   DELAY_US(2); 
   GpioDataRegs.GPBCLEAR.bit.GPIO62 = 1;    //Low, trigger on 
   DELAY_US(10); 
 
   GpioDataRegs.GPBSET.bit.GPIO32 = 1;   // DISABLE PWM 
 
   //enable interrupts: Cpu timer int1.7 ; epwm1 int3.1 epwm2 int3.2 
   EnableInterrupts(); 
 
// Main loop for the communications with LabVIEW 
   for(;;) 
    { 



 Appendix 5 
 

163 
 
 

        i=0;     
        do { 
            // Wait for incoming character from RS232 port 
                while(SciaRegs.SCIFFRX.bit.RXFFST !=1) {timer_flag++; }     // wait for XRDY =1 for empty 
state 
            ReceivedChar = SciaRegs.SCIRXBUF.all;       // Get character 
            temp = ReceivedChar & 0xFF;                 // strip off the error bits 
            letter[i]=temp; 
            i++; 
        }while(temp != '\n'); 
 
        // Get incoming parameters from LabVIEW GUI 
        nc = 
sscanf(letter,"%d %d %d %d %d %d %d %d %d %d",&par1,&par2,&par3,&par4,&par5,&par6,&par7,
&par8,&par9,&par10); 
            update_panel(); //update the display of front panel of Labview 
            transfer_data();// transfer the stored data of output voltage to Labview 
            LoopCount++;        // Count LabVIEW data transfer cycles 
    } 
 
 
interrupt void ISREPwm1_Zero(void) 
{ 
 
        signal_gen_control (RAMUPDATE,0x0001); 
        signal_gen_control (PAT_STATUS,0x0001); 
 
         AdcRegs.ADCTRL2.bit.RST_SEQ1 = 1;    // Reset SEQ1/SEQ - instantaneous reset 
(RST_SEQ1 bit doesn't stay at 1) 
         AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1;    // Allows SEQ1/SEQ to be started by ePWM1SOCA 
trigger 
        Adc_Inquire(); 
        Current_iL1    = B0;     //from ADCINA0 
        Current_iL2    = B1;     //from ADCINB0 
        Voltage_Input  = B2;     //from ADCINA1 
        Voltage_Output = B3;     //from ADCINB1 
 
            s1[datacount]= B0; 
            datacount++; 
          if (datacount==32) 
             datacount=0; 
 
          s2[datacount2]= B3; 
              datacount2++; 
          if (datacount2==32) 
             datacount2=0; 
 
        phase_offset=0; 
 
        signal_gen_control (START_ADDR2,0x2ee0); //0x2ee0 
        signal_gen_control (STOP_ADDR2,0x8ca0); //0xfff0 final address 1500points 0x8ca0 
 
 
        EPwm1Regs.CMPA.half.CMPA =par2; 
        EPwm3Regs.CMPA.half.CMPA =par2; 
        EPwm6Regs.CMPA.half.CMPA =par3; 
 
//      adjust the phase shift between PWM clock signal and conpensated waveform 
        EALLOW; 
        EPwm1Regs.TBPHS.half.TBPHS = 0;            // Phase is 0 
        EPwm3Regs.TBPHS.half.TBPHS = (int)(par9); 
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        if((int)par9<=1499) 
        EPwm6Regs.TBPHS.half.TBPHS = (int)(par9+1500); 
        else if ((int)par9>1499) 
        EPwm6Regs.TBPHS.half.TBPHS = (int)(par9-1500); 
 
         EDIS; 
 
    ISR_count1++; 
 
    PWM2_flag++; 
  if (PWM2_flag==20000)   // 
    { 
    PWM2_flag=0; 
    EPwm2_Compare+=10; 
    } 
  if (EPwm2_Compare>=1400) 
    EPwm2_Compare=10; 
 
    dutycycle=EPwm1Regs.CMPA.half.CMPA; 
 
    EPwm1Regs.ETCLR.bit.INT=1;      
    PieCtrlRegs.PIEACK.all=PIEACK_GROUP3; 
 
 
    if(par8&0x0004) 
     GpioDataRegs.GPBCLEAR.bit.GPIO32 = 1;    //TRIP ON, DISABLE PWM 
    else 
      GpioDataRegs.GPBSET.bit.GPIO32 = 1;    //TRIP OFF, ENABLE PWM 
 
      if(par8&0x0005) 
        gain=4000-B2*15;   //if yes, gain is calculated by input voltage 
        else 
        gain=par7; //if no the value of gain is set by sliding bar step-up bottom 
     if (gain<=0) 
       gain=0; 
 
         Vout_Ref=(int)(par10*21); 
        V_loop_return=VoltLoopControlArith(Vout_Ref,Voltage_Output); 
 
         T0_count = CpuTimer0Regs.TIM.half.LSW; // Latch lower 16-bits of timer0 
} 
 
void signal_gen_control (int16 addr,int16 command) 
{ 
 
GpioDataRegs.GPACLEAR.bit.GPIO12 = 1; 
SpiaRegs.SPITXBUF=addr;                       //  Register address 
 
SpiaRegs.SPITXBUF=command;               // Register command 
 
DELAY_US(1.2); //1.5 
GpioDataRegs.GPASET.bit.GPIO12 = 1;    //Pulse CS high disable 
 
} 
 
void update_panel(void) 
{ 
    Uint16 nc1;                 // sprintf error code 
    static char sbuf[100];      // output string for sprintf 
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    nc1 = 
sprintf(sbuf,"%u %u %u %u %lu %lu %lu %d %u %d\r\0",B2,B3,B0,B1,LoopCount,ISR_count1,ISR_co
unt2,offset,dutycycle,T0_count); 
    scia_msg(sbuf); 
 
} 
 
void transfer_data(void) 
 
{ 
    int dx; 
    int ii=0; 
    int jj=0; 
    Uint16 nc;                        // sprintf error code 
    static char sbuf[100];      // output string for sprintf 
 
    for (ii=0;ii<=32;ii++) 
    { 
        dx=s1[ii]; 
        nc = sprintf(sbuf,"%d \r\0", dx); 
        scia_msg(sbuf); 
    } 
 
    for (jj=0;jj<32;jj++) 
    { 
        dx=s2[jj]; 
        nc = sprintf(sbuf,"%d \r\0", dx); 
        scia_msg(sbuf); 
    } 
 
    dx=s2[32]; 
    nc = sprintf(sbuf,"%d \r\n\0", dx); 
    scia_msg(sbuf); 
} 
 
2. Calculation of Monodromy matrix in Matlab 
 
The Monodromy matrix can be calculated numerically in Matlab/Simulink. The 

following codes show the process of calculation according to the theoretical 

derivation presented.  

 

% Initialisation 
clc, clear, cnt=1; 
syms d a phia;  
syms tau x0_1 x0_2 x0_3 x01 x0 x0_4 
x0=[x0_1; x0_2; x0_3; x0_4]; 
Vin=100; L1=200e-6; L2=200e-6;C=20e-6; R=57.6/2; T=10e-6;Ki=500;Kp=5;Kil=1/4;Kvc=5/240;mc=-
0.3; 
 iL10=0; iL20=0;Vc0=0; Vp0=0;Vref1=5;a1=0; 
 
A_on_on=[-1/R/C 0 0 0; 0 0 0 0 ; 0 0 0 0 ; Ki*Kvc 0 0 0]; 
A_on_off=[-1/R/C 0 1/C 0;0 0 0 0;-1/L2 0 0 0;Ki*Kvc 0 0 0]; 
A_off_on=[-1/R/C 1/C 0 0 ;-1/L1 0 0 0;0 0 0 0;Ki*Kvc 0 0 0]; 
A_off_off=[-1/R/C 1/C 1/C 0;-1/L1 0 0 0;-1/L2 0 0 0;Ki*Kvc 0 0 0]; 
Ba=[ 0 0 0 0; 0 0 1/L1 0; 0 0 1/L2 0;0 0 0 -Ki];% Bb=Ba;Bc=Bb;Bd=Bc; 
Ua=[0; 0; Vin;Vref1*(1+a1*sin(4*pi*tau/T-4*pi*d))]; 
Ub=[0; 0; Vin;Vref1]; 
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Vin1=80:1:125; 
hold on; 
for ii=38:42 
% ************************************************* 
Vin=Vin1(ii); 
sim('Interleaved_close_loop_supervision_control_slope_compensation');  
 
iL100=iL1n(end-2,2); 
iL200=iL2n(end-2,2); 
Vc00=Vc1(end-2,2); 
int00=Int(end-2,2); 
  
x00=[Vc00;iL100;iL200;int00]; 
  
%duty cycle calculation 
duty=Dutycycle1(end-1,1)/T; 
  
B1=Ba;U=Ua; 
 
if duty<0.5 
    %%%%%%%%% When d<0.5; 
    A1=A_on_off; A2=A_off_off;A3=A_off_on;A4=A_off_off; 
    phi1=expm(A1*d*T); phi2=expm(A2*0.5*(1-2*d)*T); 
    phi3=expm(A3*d*T); phi4=expm(A4*0.5*(1-2*d)*T); 
  
    I1=int(expm(A1*(d*T-tau))*B1*U,tau,0,d*T); 
    I2=int(expm(A2*(0.5*T-tau))*B1*U,tau,d*T,0.5*T); 
    I3=int(expm(A3*((0.5+d)*T-tau))*B1*U,tau,0.5*T,(0.5+d)*T); 
    I4=int(expm(A4*(T-tau))*B1*U,tau,(0.5+d)*T,T); 
     
else if duty>0.5 
    %%%%%%%%%%% When d>0.5 
    A1=A_on_on; A2=A_on_off; A3=A_on_on; A4=A_off_on; 
     
    phi1=expm(A1*0.5*(2*d-1)*T); phi2=expm(A2*(1-d)*T); 
    phi3=expm(A3*0.5*(2*d-1)*T); phi4=expm(A4*(1-d)*T); 
  
    I1=int(expm(A1*(0.5*(2*d-1)*T-tau))*B1*U,tau,0,0.5*(2*d-1)*T); 
    I2=int(expm(A2*(0.5*T-tau))*B1*U,tau,0.5*(2*d-1)*T,0.5*T); 
    I3=int(expm(A3*(d*T-tau))*B1*U,tau,0.5*T,d*T); 
    I4=int(expm(A4*(T-tau))*B1*U,tau,d*T,T); 
     
    else if duty==0.5 
     %%%%%%%%%%% When d=0.5         
    %A1=A_on_off; A2=A_off_on;A3=A_on_off;A4=A_off_on;         
        end 
    end 
end 
  
 %------------------------------------- 
x1=phi1*x0+I1; 
x2=phi2*x1+I2; 
x3=phi3*x2+I3; 
x4=phi4*x3+I4; 
  
x1=subs(x1,[d,x0_1,x0_2,x0_3,x0_4],[duty,Vc00,iL100,iL200,int00]); 
x2=subs(x2,[d,x0_1,x0_2,x0_3,x0_4],[duty,Vc00,iL100,iL200,int00]); 
x3=subs(x3,[d,x0_1,x0_2,x0_3,x0_4],[duty,Vc00,iL100,iL200,int00]); 
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x4=subs(x4,[d,x0_1,x0_2,x0_3,x0_4],[duty,Vc00,iL100,iL200,int00]); 
  
phi1=subs(phi1,d,duty); phi2=subs(phi2,d,duty); 
phi3=subs(phi3,d,duty); phi4=subs(phi4,d,duty); 
  
if duty<0.5 
    %%%%%%%%% When d<0.5; 
    
    spa=-Kp*Kvc*(x1(3)*R-x1(1))/R/C-Kil*Vin/L1+Ki*(Vref1-Kvc*x1(1)); 
    spb=-Kp*Kvc*(x3(2)*R-x3(1))/R/C-Kil*Vin/L2+Ki*(Vref1-Kvc*x3(1)); 
     sa=mc/T; 
  
     S12=[1-Kp*Kvc*x1(2)/C/(spa+sa) -Kil*x1(2)/C/(spa+sa) 0 x1(2)/C/(spa+sa); 
     Kp*Kvc*x1(1)/L1/(spa+sa) 1+Kil*x1(1)/L1/(spa+sa) 0 -x1(1)/L1/(spa+sa); 
     0 0 1 0;  
     0 0 0 1]; 
  
     S34=[1-Kp*Kvc*x3(3)/C/(spb+sa) 0 -Kil*x3(3)/C/(spb+sa) x3(3)/C/(spb+sa); 
    0 1 0 0; 
    Kp*Kvc*x3(1)/L2/(spb+sa) 0 1+Kil*x3(1)/L2/(spb+sa) -x3(1)/L2/(spb+sa); 
    0 0 0 1]; 
      
    M=phi2*S12*phi1*phi4*S34*phi3; 
    eig(M) 
     
else if duty>0.5 
    %%%%%%%%%%% When d>0.5 
  
    spa=Kp*Kvc*x1(1)/R/C-Kil*Vin/L1+Ki*(Vref1-Kvc*x1(1)); 
    spb=Kp*Kvc*x3(1)/R/C-Kil*Vin/L2+Ki*(Vref1-Kvc*x3(1)); 
     
   sa=mc/T; 
     
     S12=[1-Kp*Kvc*x1(3)/C/(spb+sa) 0 -Kil*x1(3)/C/(spb+sa) x1(3)/C/(spb+sa); 
     0 1 0 0; 
     Kp*Kvc*x1(1)/L2/(spb+sa) 0 1+Kil*x1(1)/L2/(spb+sa) -x1(1)/L2/(spb+sa); 
     0 0 0 1]; 
  
     S34=[1-Kp*Kvc*x3(2)/C/(spa+sa) -Kil*x3(2)/C/(spa+sa) 0 x3(2)/C/(spa+sa); 
     Kp*Kvc*x3(1)/L1/(spa+sa) 1+Kil*x3(1)/L1/(spa+sa) 0 -x3(1)/L1/(spa+sa); 
     0 0 1 0;  
     0 0 0 1]; 
       M=phi2*S12*phi1*phi4*S34*phi3; 
    eig(M) 
     
    else if duty==0.5 
     %%%%%%%%%%% When d=0.5         
    A1=A_on_off; A2=A_off_on;A3=A_on_off;A4=A_off_on;         
        end 
    end 
end 
  
 plot(real(eig(M)),imag(eig(M)),'o','MarkerSize',10,'color','g'); 
  
 end 
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Figure A5.1 User interface panel in Labview 



 Appendix 5 
 

169 
 
 

 
Figure A5.1 shows the complete user interface panel in Labview. This panel is used 

to monitor and display the sampled variables and the calculated values of digital PID. 

The operational conditions of the converter can be changed manually using the 

relevant control buttons. By using the button for data collection, the sampling results 

are transferred and generated as a date file which is stored in the user’s laptop.  

 
(a) 

 
(b) 

Figure A5.2 Diagram of simulation blocks in Matlab/Simulink: (a) main circuit of interleaved 
boost converter; (b) corresponding control blocks of peak current controller 

The main circuit of the interleaved boost converter and its corresponding control 

blocks of the peak current controller are illustrated in Figure A5.2. 
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A photograph of the prototype of the interleaved boost converter is presented in 

Figure A5.3 and the tested conversion results of employed voltage and current Hall 

sensors are illustrated in Figure A5.4. Both graphs demonstrate excellent linear 

performance at various input signals. 

 
Figure A5.3 Prototype of the interleaved boost converter 

 

 
(a) voltage Hall sensor 

 
 (b) current Hall sensors 

Figure A5.4 Tested conversion results of voltage and current Hall sensors 
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Figure A5.5 TI f28335 based Digital Signal Controller (DSC) 

Figure A5.5 presents the TI f28335 based Digital Signal Controller, which is used in 

the testing bench. 

 


