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Abstract

Phylogenetics focuses on learning about evolutionary relationships between species. These

relationships can be represented by phylogenetic trees, where similar species are grouped

together as sharing a recent common ancestor. The common ancestor of all the species of

the tree is the root of the tree. The root is fundamental to the biological interpretation of

the tree, providing a critical reference point for polarising ancestor-descendant relation-

ships and determining the order in which key traits evolved along the tree (Embley and

Martin, 2006). Despite its importance, most models of sequence evolution are unable to

infer the root of a phylogenetic tree. They are based on homogeneous continuous time

Markov processes (CTMPs) that are assumed to be stationary and time-reversible, with

the mathematical consequence that the likelihood of a tree does not depend on where it

is rooted. As a result, the root of the tree cannot be inferred as part of the analysis.

Other methods which are generally used to root evolutionary trees can be problematic.

For example, the outgroup rooting method is susceptible to a long-branch attraction arte-

fact. Paralogue rooting requires pairs of paralogous genes which underwent an ancient

gene duplication event to be present in all species being analysed, and the number of such

genes is limited.

In this thesis we explore an alternative model-based approach, adopting a substitution

model in which changing the root position changes the likelihood of the tree. We explore

the effect of relaxing reversibility and stationarity assumptions and allowing the position

of the root to be another unknown quantity in the model. We propose two hierarchical

non-reversible models which are centred on a reversible model but perturbed to allow non-

reversibility. The models differ in the degree of structure imposed on the perturbations. We

also explore non-stationary models, and the combination of relaxing both the reversibility

and the stationarity assumptions.

The analysis is performed in the Bayesian framework using Markov chain Monte Carlo

methods. We illustrate the performance of the models in analyses of simulated datasets

using two types of topological priors. We also investigate the effect of different topologies

and branch lengths on the inference. Our results illustrate the usefulness of modelling non-

reversibility and non-stationarity for root inference, and also demonstrate the sensitivity

of the analysis to topological priors. We then apply the models to real biological datasets,

the radiation of polyploid yeasts and the radiation of primates, for which there is a robust

biological opinion about the root position. Finally we apply the models to an open question

in biology: rooting the ribosomal tree of life.
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Chapter 1

Introduction

1.1 Molecular phylogenetics

The aim of molecular phylogenetics is to learn about the evolutionary relationships amongst

a collection of species using protein or DNA sequences. The main assumption of phyloge-

netics is that the evolution of life on earth can by represented in the form of a bifurcating

tree (phylogenetic tree, or phylogeny). A tree is a connected acyclic graph with the leaves

(tips, or external vertices) of the tree representing the extant species. The number of

edges connected to a vertex is called the degree of the vertex. In a bifurcating tree, all

the internal nodes have degree 3 (apart from the root vertex which has degree 2), while

the leaves have degree 1. Each edge in the tree represents the period of time over which

point mutations accumulate and each bifurcation (vertex) represents a speciation event.

The branching pattern of a tree is called the topology.

Trees might be either rooted or unrooted. A rooted phylogenetic tree has a special

vertex which is denoted the root and it represents the most recent common ancestor

(MRCA) of all species in the tree. Unrooted trees lack any information about ancestry

between the vertices (Figure 1.1). The trees are reconstructed from the alignment of

homologous sequences (sequences related to each other by a common ancestor). We assume

that each column of the alignment (a site of the alignment) has originated from the same

nucleotide of the MRCA (Figure 1.2). A group of species that evolved from the same most

recent ancestor is called a monophyletic group, or a clade. A group of species that evolved

from different most recent ancestors is called a paraphyletic group (Figure 1.3).

1.2 Motivating example: the tree of life

The tree of life, or the universal tree describes the evolutionary relationships between all

living organisms. The early attempts to infer the tree of life based on molecular data

clearly showed three distinct clusters corresponding to the Bacteria, the Archaea and the
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Figure 1.1: Rooted and unrooted 5-species trees. The tree on panel (a) represents a rooted version
of the unrooted tree on panel (b).
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Figure 1.3: An illustration of a monophyletic group (clade) and a paraphyletic group on a phylo-
genetic tree.

Eukaryota (eukaryotes). These three groups appeared to have branched from the common

ancestor at about the same time (Woese & Fox, 1977). The Archaea was subdivided into

two domains: Euryarchaeota (encompassing the methanogens and their phenotypically di-

verse relatives) and Crenarchaeota, also called eocytes (comprising extremely thermophilic

Archaea). The analysis of small subunit ribosomal RNA molecules showed that the eu-

karyotes and the Archaea is a monophyletic group, suggesting a three domains structure

of the tree of life (Woese, 1990). However, the structural similarity in ribosomes between

the eocytes and the eukaryotes suggested that these two groups are more closely related to

each other than to the other Archaea (Lake et al., 1984). This finding gave rise to the eo-

cyte hypothesis whereby the eukaryotic lineage has originated from within a paraphyletic

Archaea as a sister group to the eocytes. In its modern formulation the eocyte hypothe-

sis implies that the closest relatives of the eukaryotes are the TACK superphylum which

includes recently discovered relatives of the eocytes (Guy & Ettema, 2011; Kelly et al.,

2011; Williams et al., 2013) (Figure 1.4). Even though the three-domains hypothesis is

the dominant paradigm, there is increasing support for the eocyte hypothesis from recent

published studies (Embley & Martin, 2006; Cox et al., 2008; Williams et al., 2012, 2013;

Heaps et al., 2014; Spang et al., 2015). The root of the tree of life is also a highly debated

issue in biology. While widely agreed opinion places the root on the branch leading to the

Bacteria, a few studies have suggested that the root is within the Bacteria (Lake et al.,

2009; Skophammer et al., 2007; Heaps et al., 2014), or within the eukaryotes (Brinkmann

& Philippe, 1999; Philippe & Forterre, 1999).

3



Chapter 1. Introduction

Figure 1.4: Two competing hypothesis about the tree of life, from Williams et al. (2013). Panel
(a) depicts a three-domains tree of life, where monophyletic Archaea (blue background) share
a common ancestor with the eukaryotes. Panel (b) represent the alternative eocyte hypothesis
whereby the eukaryotes have originated from within the paraphyletic Archaea (blue background)
and are more closely related to the TACK superphylum.

1.3 Rooting a phylogenetic tree

A root of a phylogenetic tree is a key component of phylogenetic inference, providing a

point of reference for investigating fundamental biological questions about the evolution

of species, such as polarising ancestor/descendant relationships and ancestral state re-

construction. In this section we will review current methods used to root phylogenetic

trees.

1.3.1 Outgroup rooting

This method uses an outgroup which is one or more taxa known to lie outside of the

clade for which the root is being investigated (the ingroup). According to this method, an

unrooted tree for a data set comprising sequences from both the ingroup and the outgroup

is constructed. The branch connecting the ingroup and the outgroup becomes the root of

the tree for the species of interest (Figure 1.5) (Penny, 1976; Huelsenbeck et al., 2002). For

example, Cannarozzi et al. (2007) used the opossum as an outgroup in order to determine

the evolutionary relationships between human, dog and mouse (Figure 1.6).

However, this approach can be problematic if the outgroup is only distantly related

to the ingroup, because the long branch leading to the outgroup can induce phylogenetic

artefacts such as long branch attraction (LBA), whereby long branches tend to group

together on a tree irrespective of their true evolutionary relationships. Thus, the long

branch leading to the outgroup can potentially interfere with the inference of ingroup

relationships and the root position (Felsenstein, 1978; Holland et al., 2003; Bergsten, 2005).

Another drawback of outgroup rooting has been observed when the ingroup and outgroup
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(a) Unrooted tree including the ingroup and the
outgroup. The root is placed on the branch
connecting the ingroup to the outgroup.

A

B

C

D

E

root

(b) Tree rooted by the outgroup method.

Figure 1.5: Outgroup rooting of species A, B, C, D and E.
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Figure 1.6: An illustration of an outgroup rooting of human, dog and mouse using the opossum
as an outgroup (Cannarozzi et al., 2007). The tree in the centre of the figure is an unrooted tree
of human, dog and mouse. Trees A, B and C represent three possible evolutionary relationships
between human, dog and mouse using opossum as an outgroup.
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Figure 1.7: Midpoint rooting of a 4-taxon tree. The distance between the species A and C is
0.36 + 0.4 + 0.16 = 0.92 which is the maximum pairwise distance. Thus the root is placed at the
distance 0.96/2 = 0.46 from both A and C (at the internal node).

taxa differ substantially in nucleotide or amino acid composition: the position of the root

of the ingroup becomes unstable, depending on the model used to infer the tree (Tarŕıo

et al., 2000; Foster, 2004). Outgroup rooting is also difficult to apply to the question of

rooting trees of species for which no obvious outgroup is available, for instance for rooting

the universal tree (Iwabe et al., 1989; Brown & Doolittle, 1995; Hashimoto & Hasegawa,

1996; Baldauf, 1996).

1.3.2 Midpoint rooting

Midpoint rooting (Farris, 1972) is useful in situations where no outgroups are available

(Sanderson & Shaffer, 2002). According to this method, the root is placed at a point

on the tree halfway between the two most distant species. The pairwise distances of all

the species on the tree are calculated, and the root is placed on the middle of the path

connecting the two species having the biggest pairwise distance (Figure 1.7). Midpoint

rooting was tested across multiple studies and it has displayed a high success rate of

inferring roots of phylogenetic trees (Hess & Russo, 2013). However, this method requires

that the most divergent species on the tree evolve at the same rate (Tarŕıo et al., 2000;

Huelsenbeck et al., 2002), and this assumption is often not credible.

1.3.3 Rooting by gene duplication

This method has been used to root the universal tree of life, for which no outgroup species

exists. The method makes use of paralogous genes (genes which have originated as a result
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of a duplication event). The strategy is to use pairs of paralogous genes which underwent

a gene duplication in the last universal common ancestor prior to the divergence of the

three domains of life: Archaea, Bacteria and eukaryotes. As a result of the duplication

each one of the species has two copies of the gene (paralogues), and the trees constructed

from both copies are similar, therefore the trees can act as an outgroup to each other.

An unrooted tree from both paralogues is constructed, and then rooted on the branch

connecting the two duplicates (Figure 1.8). Paralogue rooting studies of the tree of life

were consistent in placing the root of the tree of life on a branch separating the Bacteria

from the eukaryotes and the Archaea (Gogarten et al., 1989; Iwabe et al., 1989; Brown &

Doolittle, 1995; Hashimoto & Hasegawa, 1996; Baldauf, 1996).

E

B

A

E

B

A

Gene duplication

Gene 1

Gene 2

Figure 1.8: Rooting the tree of life by a gene duplication event. Genes 1 and 2 represent a pair
of paralogues which originated by a duplication prior to the divergence of the three domains of
life: Archaea (A), Bacteria (B) and eukaryotes (E). The tree constructed from both paralogues
comprises two similar sub-trees which act as an outgroup to each other, therefore the root is placed
on a branch connecting the two sub-trees.

However, the validity of gene duplication rooting has been questioned on various as-

pects. One of them is detection of anciently duplicated genes. It is difficult to unambigu-

ously establish for any given gene that a duplication took place. The number of genes

to which this technique can be applied is also limited. An additional issue is the possi-

bility of artefacts of phylogenetic reconstruction, of which the most important is the long

branch attraction (LBA). For example, it has been been suggested that the bacterial root-

ing of the tree of life is an LBA artefact since the bacterial sequences were determined to

have evolved faster than the archaeal and the eukaryotic ones (Philippe & Forterre, 1999;

7
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Zhaxybayeva et al., 2005).

1.3.4 Indel rooting

This method roots trees based on the pattern of indels. “Indel” is a term for the insertion

or the deletion of nucleotides (one term is used for both phenomena because it is often

difficult to establish whether an insertion or a deletion took place). The process of indel

rooting works by excluding the root from regions of the tree using a parsimony method

(a method that requires the fewest evolutionary changes to explain the differences among

the observed sequences). For every possible root position the number of indels needed to

produce the observed pattern is calculated. The placement of the root is then defined such

that it corresponds to the minimum score of indels.

Indel rooting utilises two paralogous genes. If the indel under analysis is present in

only one gene then most parsimoniously the root is excluded from the region containing

the indel (Lake et al., 2007). The logic of indel rooting is illustrated in Figure 1.9. The

top two sequences of Gene 1 contain an insertion (highlighted), whereas the bottom three

sequences of Gene 1 and all the sequences of Gene 2 lack the insertion. The tree on the

right side of the figure is rooted within the highlighted clade, while the tree on the left

side is rooted outside of the highlighted clade. The rooting of the tree on the left side of

the figure requires only an insertion to produce the observed indel pattern. The rooting

of the tree on the right side of the figure requires two changes: an insertion somewhere

between the two genes, and a deletion on the branch leading from the highlighted clade

to the other species on the tree for Gene 1. Thus, the root of the illustrated tree is most

parsimoniously placed outside of the highlighted region (root 1) (Lake et al., 2009).

Interestingly, the result of indel based rooting of the universal tree disagrees with the

paralogue rooting result. Indel analyses of different proteins excluded all positions of the

root from the tree of life except for the branch between actinobacteria and clostridia,

thus placing the root within the Bacteria (Lake et al., 2009). Another indel analysis also

supports the bacterial rooting (Skophammer et al., 2007), however, the support is given

to a few different positions of the root within the Bacteria.

1.3.5 Molecular clock rooting

Molecular clock rooting is based on a molecular clock assumption which asserts that the

rate of sequence evolution is constant over time. Under this assumption the expected

distance between sequences increases linearly with their time of divergence (more tech-

nical explanation will be provided later in this section). However, the assumption of a

single constant molecular clock is too simplistic, because the rates of molecular evolution

can vary significantly. For example, it has been found that the rate of molecular evolu-
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Aligned sequences

Gene 1insertion

insertion

deletion

Gene 2

ROOT 1 ROOT 2

1 insertion 1 insertion + 1 deletion 

Figure 1.9: Process of indel rooting illustrated for two alternative rootings, using two paralogous
genes. In the centre of the figure, the top two sequences of Gene 1 contain an insertion (highlighted),
whereas the bottom three sequences of Gene 1 and all the sequences of Gene 2 lack the insertion.
The trees on the left and the right sides of the figure represent two different rooted trees that relate
the sequences. The tree on the right is rooted through the highlighted region corresponding to
those sequences that contain the insert, and the tree on the left is rooted outside of the highlighted
region. The right tree is less parsimonious than the left tree, indicating that the root of the tree
cannot be placed within the highlighted region (Lake et al., 2009).

tion between the ribulose-1,5-bisphosphate carboxylase (rbcL) gene sequences among seed

plants (Bosquet et al., 1992), between a variety of mitochondrial and nuclear genes in

mammalian lineages (Bromham et al., 1996) and birds (Mooers & Harvey, 1994) exhibit

substantial variation. The performance of this method has been shown to deteriorate as

the substitution process deviated from the clock assumption (Huelsenbeck et al., 2002).

There are also methods that relax the clock assumption allowing for limited variation

of the rates of molecular evolution. Relaxed-clock-rooting has been found to be able to

correctly identify the root of the tree even when the clock criterion was violated (Renner,

2008), and it has therefore been suggested that relaxed clock rooting can be used even

when the substitution process is not strictly clock-like (Renner, 2008; Huelsenbeck et al.,

2002). However, the molecular clock assumptions might not be appropriate for distantly

related species because their overall rates of molecular evolution might evolve over time

(Kumar, 2005).
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1.3.6 Model-based approaches

An alternative, but perhaps under-explored, approach to rooting trees is to take a model-

based approach, adopting a substitution model in which changing the root position changes

the likelihood of the tree. Focusing on homogeneous CTMPs, it is helpful to distinguish

between the ideas of stationarity, reversibility and homogeneity. We say that a model is

homogeneous if it can be characterised by a single instantaneous rate matrix which applies

to the whole tree. A homogeneous model is termed reversible if the rate matrix can be

factorised into a symmetric matrix of exchangeability parameters and a diagonal matrix

of stationary probabilities. Similarly we call a rate matrix reversible if it permits such a

factorisation. Finally a CTMP is stationary if the probability of being in each state (e.g.

each nucleotide for DNA) does not change over time and the probabilities of transitioning

between states over some time interval depend only on the size of that interval and not on

its position in time. It follows that all non-stationary models are also non-homogeneous,

although the converse need not be true. Models in which one or more of these assumptions

is violated can give rise to likelihood functions that depend on the position of the root.

For most models that allow root inference, the focus has been on relaxing the as-

sumption of homogeneity, typically assigning different reversible rate matrices to different

parts of the tree. Generally, these models are non-stationary and allow variation in the

theoretical stationary distribution across the tree. Some also allow variation in the ex-

changeability parameters (Dutheil & Boussau, 2008) although these are often fixed over

all branches. For example, Yang & Roberts (1995) assigned common exchangeabilities

but a different composition vector to each edge of the tree. Heaps et al. (2014) fitted a

similar model in a Bayesian framework, but adopted a prior over composition vectors that

allowed information to be shared between branches. Whilst biologically persuasive, such

non-homogeneous models are, however, highly parameterised and efforts have been made

to seek more parsimonious representations. Yang & Roberts (1995) and Foster (2004) both

considered models in which composition vectors are applied to groups of edges rather than

to a single edge. Blanquart & Lartillot (2006) used a variation of this idea by assuming the

compositional shifts occurred according to a Poisson process, independently of speciation

events. In the context of nucleotide evolution, Galtier & Gouy (1998) reduced the number

of parameters in the model of Yang & Roberts (1995) by using a model parameterised by a

single G+C component, rather than three free parameters for the composition vector. But

this inevitably came at the cost of a loss of information from the alignment. In a general

setting that allowed different reversible or non-reversible rate matrices to be assigned to

each edge of the tree, Jayaswal et al. (2011) devised a heuristic to reduce the number of

rate matrices using the distances between them as a similarity criteria, and forcing the

most similar rate matrices to be identical. However, given the speculative nature of the

model search, the algorithm offered no assurance of identifying a global optimum.
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1.4 Contribution

In spite of its importance, rooting major cellular radiations remains an under-investigated

and challenging area of phylogenetics. The assumptions of standard phylogenetic models

make them unable to infer rooted trees. Models which allow root inference are typically

non-homogeneous, assigning different rate matrices to different parts of the tree. While

being more realistic from a biological point of view, these models are substantially more

highly parameterised than their homogeneous counterparts. This makes model-fitting

challenging, often limiting inference to fixed unrooted trees or alignments on a small

number of taxa.

We take a Bayesian approach to inference and focus on rooting using homogeneous

models which require only one rate matrix. This approach has been explored previously

by Huelsenbeck et al. (2002). Here we build on that work in a number of ways. First, we

do not fix the unrooted topology and extend the inferential algorithm to allow inference

of rooted trees. This allows us to present a more complete summary of the posterior over

root positions and to demonstrate the sensitivity of the analysis to different topological

priors. Additionally, Huelsenbeck et al. (2002) used a so-called non-informative prior on

the rate matrix, with independent uniform distributions for each off-diagonal element. We

incorporate prior structure and consider two hierarchical models which are centred on a

standard reversible rate matrix but allow non-reversible perturbation of the individual

elements. The two models differ in the structure of the perturbation. We also investigate

non-stationary models in which the initial distribution at the root of the tree differs from

the theoretical stationary distribution.

1.5 Overall structure

The thesis investigates rooting phylogenetic trees using model-based approaches. The

analysis is performed in the Bayesian framework, aiming at inferring rooted phylogenetic

trees from aligned molecular sequences. Chapter 2 contains the necessary background on

Bayesian phylogenetic inference, as well as standard models of sequence substitution.

Chapter 3 describes two non-reversible substitution models. The chapter consists of

the description of the models, their implementation through the MCMC algorithm and

a simulation study. The simulations explore the performance of the models for different

levels of non-reversibility in the data simulated under a random rooted tree. We also

investigate the effect of different topologies and branch lengths on root inference, as well

as the sensitivity of root inference to different topological priors. We show that as the level

of non-reversibility in the data increases, root inference improves. As far as the branch

lengths are concerned our results show that long branches can potentially mislead the

rooting inference if the prior favours short branches.
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Chapter 4 deals with non-stationary models. It first analyses a model which is non-

stationary and reversible. Non-stationarity is achieved by introducing a composition at the

root vertex which differs from the theoretical stationary composition. We then combine

the idea of non-stationarity with the non-reversible models from Chapter 3, thus obtaining

models which are non-reversible and non-stationary. Simulations are used to investigate

the behaviour of the models for different levels of non-stationarity and non-reversibility in

the data, as well as different topologies and different alignment lengths.

Chapter 5 focuses on applying the models to experimental data. First we apply our

models to real biological data sets for which there is a robust biological opinion about the

position of the root: the palaeopolyploid yeasts and the primates. We explore the compo-

sition of the nucleotides in experimental data and perform posterior predictive simulations.

We show that while non-reversible models are able to extract some information about the

root, modelling non-stationarity with just two composition vectors can be misleading for

certain data sets. We then apply our models to an open question in biology: the root of

the tree of life. Our results are in accord with the current biological opinion about the tree

of life, whereby eukaryotes have originated within the Archaea, and the root is located

either on the branch leading to the Bacteria, or within the Bacteria.

Chapter 6 summarises the thesis and outlines potential directions of further develop-

ment.
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Chapter 2

Background

2.1 Markov models of substitution

2.1.1 Markov process

Markov models of substitution aim to model the evolutionary process operating along each

edge of a phylogenetic tree by approximating the processes of change from one nucleotide

(or amino acid) of the ancestor to another one of the descendants over some period of

time. Let us consider a single site of a DNA sequence. The nucleotide at this site can

be thought of as a realisation of a random variable X(t) indexed by time t that adopts

values in a discrete finite space Ω = {A, G, C, T}. The substitution process at the site is

described by a continuous time Markov process, where the characters at the site are the

states of the process. A Markov process is a stochastic process with the property that,

given the current state, the future states do not depend on the past states. In other words,

the probability of a nucleotide changing depends on its current value only and does not

depend on its past values given this current value:

Pr(X(tn) = in|X(tn−1) = in−1, X(tn−2) = in−2 , . . . , X(t1) = i1)

= Pr(X(tn) = in|X(tn−1) = in−1),

for any tn > tn−1 > tn−2 > . . . > t2 > t1.

The process can therefore be specified by a transition probability matrix P (t) =

{pij(t)} whose elements pij represent the probabilities of changing from one nucleotide

to another during time period t:

pij(t) = Pr(X(t) = j|X(0) = i).

Every row of the transition probability matrix sums to one. The transition probability
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matrix is characterised by the Chapman-Kolmogorov equations:

pij(t1 + t2) =
∑
k∈Ω

pik(t1)pkj(t2). (2.1)

This means that the probability of changing from state i to state j is a sum of probabilities

of changing from the state i to the intermediate state k, and then from the intermediate

state k to the target state j (the sum is over all intermediate states k ∈ Ω). If P (t) is

differentiable then

P (t) = P (0) + tQ+O(t2)

is a Taylor expansion of P (t) about t = 0, so that

Q = lim
t→0

P (t)− I
t

,

where I = P (0). Thus Q = dP/dt evaluated at t = 0. The matrix Q is called an

instantaneous rate matrix. The off-diagonal elements of Q represent an instantaneous rate

of change from one nucleotide to another during an infinitesimal period of time. It can be

shown that the diagonal elements of Q are specified such that every row sums to zero:

∑
j

qij =
∑
j

lim
t→0

pij(t)− δij
t

= 0,

since ∑
j

pij =
∑
j

δij = 1,

where

δij =

0, if i 6= j

1, if i = j

For instance, a rate matrix for DNA substitution can be represented as follows:

Q = (qij) =


−(q12 + q13 + q14) q12 q13 q14

q21 −(q21 + q23 + q24) q23 q24

q31 q32 −(q31 + q32 + q34) q34

q41 q42 q43 −(q41 + q42 + q43)

 ,

where qij > 0 for all i 6= j. The relationships between P and Q at general time t are

determined by forward and backward Kolmogorov equations which can be derived from

(2.1):

P (t+ h) = P (t)P (h) = P (t){I + hQ+O(h2)}, where h→ 0.
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It follows that
P (t+ h)− P (t)

h
= P (t)Q

and
P (t+ h)− P (t)

h
= QP (t).

Thus forward and backward Kolmogorov equations are given by

dP (t)

dt
= P (t)Q

and
dP (t)

dt
= QP (t)

with the solution

P (t) = I + tQ+
1

2!
t2Q2 +

1

3!
t3Q3 + · · · = exp(Qt).

The rate matrix Q can be written in a diagonal form:

Q = U × diag(λ1, . . . , λn)× U−1,

where the λi are eigenvalues of Q, and the columns of U are eigenvectors of Q. Then the

transition probability matrix can be calculated using the diagonal form of Q:

P (t) = exp(Qt) = U × diag(eλ1t, . . . , eλnt)× U−1.

2.1.2 Stationary distributions

The Markov process operating along each edge of the tree allows any state to change

into any other state in finite time with positive probability, that is any nucleotide can be

replaced by any other nucleotide. Such a process is called irreducible, and has a unique

stationary distribution, i.e. the distribution of the nucleotides after a long time has elapsed:

lim
t→∞

pij(t) = πj

for all i. In other words it is the distribution of the states after an infinitely large number

of substitutions have occurred such that it is independent of the starting distribution of

the states. The stationary distribution satisfies the equation

π = πP (t) (2.2)
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for all t. If X(t1) has distribution π, then X(t1 + t2) will have distribution π for all

positive values of t2. The stationary distribution can be derived from the rate matrix by

differentiating equation (2.2) with respect to t: πQ = 0.

A stationary distribution π is a row eigenvector of the rate matrix Q with eigenvalue 0.

Equivalently, π is a row eigenvector of the transition matrix P with eigenvalue 1. A proof

of the existence of the stationary distribution for 4-by-4 irreducible substitution models is

given in Appendix A.

2.1.3 Substitution model on a tree

The transition probability matrix over an edge e of a phylogenetic tree is

Pe = exp(µeteQe)

where te is a time duration, µe is a rate of substitution events and Qe is a normalised

instantaneous rate matrix (Qe = Q/ρQ, where ρQ = −
∑

i qiiπi is an overall substitution

rate). The edge length `e = µete represents an expected number of substitution events

during time te.

2.1.4 Likelihood of a phylogenetic tree

Single branch

Let us consider the likelihood of a rooted phylogeny T with just a single branch e of

length `e, where x is is the observed nucleotide of a single site of DNA sequence, and i

is the unobserved ancestral state (the root) (Figure 2.1). Assuming the process is in the

stationary distribution π, the probability that the nucleotide at the root has value i is πi.

The likelihood of the tree is then π(x|τ) =
∑

i πi × pix(`e).

xi
e

time

Figure 2.1: Phylogeny comprising a single branch e of lengths `e, where x is the observed nucleotide
and i is the unobserved ancestral state (the root).

Many branches

Let us consider a single site of DNA sequence evolving along a rooted phylogeny τ with

vertices V and edges E such that each edge is of the form e = (v, w), where v, w ∈ V .

Denote by X(i) a nucleotide at vertex i which is only observed at the leaves. We assume

that sequences change according to a Markov substitution model along each edge of the
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tree, and the processes are the same on separate edges. Suppose the nucleotides at the

internal vertices are known, in this case the probability of the data is a product of the

transition probabilities associated with every edge of the tree multiplied by the probability

associated with the root vertex:

π(x|X, τ) = πX(root)

∏
edges e=(v,w)

pX(v),X(w)(`e),

where `e is the length of the edge e. However, the nucleotides at the internal vertices are

unobserved. The likelihood therefore is obtained by averaging over all possible unobserved

nucleotide values at the internal vertices and at the root vertex:

π(x|τ) =
∑
X

πX(root)

∏
edges e=(v,w)

pX(v),X(w)(`e).

The sum is taken over all functions X(i) from the vertices to Ω such that X(i) matches

data xi for leaf vertices. For example, the likelihood of the tree depicted in Figure 2.2 is:

π(x|τ) =
∑

X(root)

∑
X(5)

∑
X(6)

πX(root)pX(5),T pX(5),C pX(6),A pX(6),C pX(0),X(5) pX(0),X(6).

(2.3)

4

1

2

3

5

T

0

C

A

C

6

Figure 2.2: Four-taxon tree for evaluating the likelihood according to equation (2.3).

Since the evaluation of the likelihood grows like |Ω|N for N taxa, it is convenient to use

the Felsenstein pruning algorithm (Felsenstein, 1973, 1981) to save computational time.

The algorithm works by calculating the conditional probabilities at each node of the tree

recursively from the tips of the tree towards the root, as illustrated in the following ex-

ample. Suppose we are interested in evaluating the likelihood of observing the nucleotides
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T, C, A, C at the leaves 1, 2, 3, 4 of the tree depicted in Figure 2.2 and we are given the

following transition probability matrix:

P (`) =


0.1 0.2 0.3 0.4

0.25 0.25 0.2 0.3

0.22 0.26 0.28 0.24

0.32 0.13 0.27 0.28

 .

Suppose for simplicity that all the edges of the tree have length `. The vector of the

conditional probabilities V5 for the node 5 is calculated as follows:

V5(A) = pAT × pAC = 0.3× 0.4 = 0.012,

V5(G) = pGT × pGC = 0.2× 0.3 = 0.06,

V5(C) = pCT × pCC = 0.24× 0.28 = 0.0672,

V5(T ) = pTT × pTC = 0.28× 0.27 = 0.0756.

The vector V6 = (0.03, 0.05, 0.0616, 0.0864) is calculated similarly. The conditional

probabilities at the node 0 are calculated using the vectors V5 and V6 (Figure 2.3). For

example,

V0(A) = (pAA × V5(A) + pAG × V5(G) + pAC × V5(C) + pAT × V5(T ))

× (pAA × V6(A) + pAG × V6(G) + pAC × V6(C) + pAT × V6(T ))

= (0.1× 0.012 + 0.2× 0.06 + 0.3× 0.0672 + 0.4× 0.0756)

× (0.1× 0.03 + 0.2× 0.05 + 0.3× 0.0616 + 0.4× 0.0864)

= 0.004200144.

After calculating the conditional probabilities of all the nodes on the tree, the proba-

bility of the data is computed by

π(x|τ) =
∑

X(root)

πX(root)V0(X).

Many sites

Let us consider an alignment comprising n sites. Since we assume that the sites of the

tree evolved independently of each other, the likelihood can be expressed as a product of

the likelihoods of n individual sites of the alignment:

π(D|τ) =

n∏
i=1

π(Di|τ),
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4

1

2

3

5

0 0 0T

0

1

0 0 1 0

1 0 0 0

0 0 1 0C

A

0.060.012 0.07560.0672
A G C T

C

6
0.050.03 0.08640.0616

A G C T

0.003150.042 0.00290.00318
A G C T

Figure 2.3: Example of calculating the conditional probabilities at nodes according to the Felsen-
stein pruning algorithm.

where π(Di|τ) is the likelihood of an individual site.

2.1.5 Homogeneity, stationarity, reversibility

One of the common assumptions of phylogenetics is that the evolutionary process at each

site is homogeneous, stationary and reversible. Homogeneity implies that a single instan-

taneous rate matrix Q applies to the whole tree. Stationarity implies that the probability

of each nucleotide does not change over time and the probabilities of transitioning be-

tween nucleotides over some time interval depend only on the size of that interval and

not on its position in time. If the model is homogeneous and stationary then it might or

might not be reversible. Reversibility allows the rate matrix to be represented in the form

Q = SΠ, where S is a symmetric matrix of the exchangeability parameters S = (ρij), and

Π = diag(π) is a diagonal matrix containing the elements of π:
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Q = (qij) =


? ρ12 ρ13 ρ14

ρ21 ? ρ23 ρ24

ρ31 ρ32 ? ρ34

ρ41 ρ42 ρ43 ?

×

πA 0 0 0

0 πG 0 0

0 0 πC 0

0 0 0 πT

 .

The diagonal elements of S are specified such that every row sums to zero. Reversibility

is described by the detailed balance equation:

πipij(`) = πjpji(`). (2.4)

Reversibility implies that the probability of sampling nucleotide i from the stationary

distribution and going to nucleotide j is equal to that of sampling nucleotide j from the

stationary distribution and going to nucleotide i (Felsenstein, 1981).

Reversibility leads to an important implication as far as the likelihood function is

concerned: changing the root position does not change the likelihood of the tree. We will

use a simple example to demonstrate how the likelihood under the reversibility condition

does not depend on the root position. Consider a tree with just two taxa where G and A

are the nucleotides at the leaves. Suppose that there are two alternative rooting positions

for this tree: rooting at the vertex X and rooting at the vertex Y (Figure 2.4). We will

G A
Xa e d

b
c

Y

Figure 2.4: A tree with two taxa, where G and A are the nucleotides at the leaves. Vertices X and
Y represent two possible root positions.

show that under the reversibility condition the likelihood of the tree is the same regardless

of whether it is rooted at the vertex X or Y .

The probability of observing this tree with the root at the vertex X is

L1 =
∑
X∈Ω

πXpXG(a)pXA(b),

while the probability of observing this tree with the root at the vertex Y is

L2 =
∑
Y ∈Ω

πY pY G(c)pY A(d).

According to the Chapman-Kolmogorov equation (2.1) the term pY G(c) can be re-arranged

as
∑
X∈Ω

pY X(e)pXG(a). According to the detailed balance equation (2.4),

pY X(e) =
1

πY
pXY (e)πX ,
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such that

pY G(c) =
∑
X∈Ω

1

πY
pXY (e)πXpXG(a).

Now we substitute the term pY G(c) into L2:

L2 =
∑
Y ∈Ω

πY
∑
X∈Ω

1

πY
pXY (e)πXpXG(a)pY A(d).

According to the Chapman-Kolmogorov equation, the terms coloured in red correspond

to pXA(b), and the terms πY and 1/πY are cancelled out, so

L2 =
∑
X∈Ω

πXpXG(a)pXA(b) = L1.

Thus the likelihood of the tree is the same regardless of whether it is rooted at the vertex

X or Y . This means that the reversibility condition allows us to ignore the direction of

evolution since changing the placement of the root does not change the likelihood.

While the homogeneity, stationarity and reversibility assumptions make statistical

models simpler, they have no biological justification, and are applied for computational

convenience only. Evidence of non-stationarity and non-reversibility has indeed been found

in biological data sets (Squartini & Arndt, 2008).

2.1.6 Molecular clock

We have shown in the previous section that imposing the reversibility constraint does not

allow inference of rooted trees. However this is only true if the molecular clock is not

assumed. Recall from Chapter 1 that the molecular clock assumption implies that the

rate of substitution events µ is constant over time. Under the clock the branch lengths on

the tree are proportional to time, therefore every leaf is equidistant from the root. The

constraint of equal distance of the tips from the root makes it possible to identify the root,

since re-rooting will violate the constraint, as illustrated in Figure 2.5.

time

C

B

A

t0 t1

A

B

C

time

t1t1/2 2t0

Figure 2.5: An illustration of identifying the root using a molecular clock. The tree on the left
hand side is constructed according to the molecular clock assumption (the leaves are equidistant
from the root mapped with a black circle). Re-rooting the tree on the middle of the branch leading
to the leaf C (blue circle) creates a tree which violates the molecular clock assumption (the tree
on the right hand side, where the leaves are not equidistant from the root).
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2.1.7 Majority rule consensus tree

One of the common ways to summarise the information contained in a set of trees is a

majority rule consensus tree. A rooted majority rule consensus tree is constructed in a

way that it contains clades which appear in at least 50% of the analysed set of trees. For

example, suppose we are interested in constructing a rooted majority rule consensus tree

from the set of four rooted trees: Tree 1, Tree 2, Tree 3 and Tree 4 in Figure 2.6. Clades

(A, B) and (C, D) appear on two trees (Tree 1 and Tree 2) therefore they are included in

the consensus tree with associated probability 0.5. The clade (A, B, C, D) appears on the

Trees 3 and 4, so it appears on the consensus tree with associated probability 0.5. It is

worth noting that the consensus tree does not have to represent one of the analysed trees.

Indeed, in our example the consensus tree is different from the four trees in the set.
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Figure 2.6: Rooted majority rule consensus tree, constructed from Tree 1, Tree 2, Tree 3 and Tree
4. The clades (A, B) and (C, D) appear on Trees 1 and 2, the clade (A, B, C, D) appears on
Trees 3 and 4. The three clades therefore appear on the consensus tree, each one with associated
probability 0.5. Note that the consensus tree is different from all the four trees.
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2.2 Models of nucleotide substitution

2.2.1 The JC69 model

The JC69 model (Jukes & Cantor, 1969) is the simplest substitution model which assumes

equal rates of substitution between any two nucleotides, so that the rate matrix is given

by

Q = (qij) =


−3λ λ λ λ

λ −3λ λ λ

λ λ −3λ λ

λ λ λ −3λ


for some constant λ. This model has symmetrical substitution rates (qij = qji), meaning

that the stationary distribution is 1/4 for every nucleotide.

2.2.2 The K80 model

The K80 model (Kimura, 1980) allows different substitution rates for transitions (sub-

stitutions between two purines or between two pyrimidines : A ↔ G or C ↔ T ) and

transversions (substitutions between purines and pyrimidines: A,G↔ C, T ). Let the sub-

stitution rates be α for transitions and β for transversions. The rate matrix is represented

as follows:

Q = (qij) =


−(α+ 2β) α β β

α −(α+ 2β) β β

β α −(α+ 2β) α

β β α −(α+ 2β)

 .

This model is more realistic than the JC69 because in real data transitions often occur at

higher rates than transversions (Brown et al., 1982; Gojobori et al., 1982; Curtis & Clegg,

1984). However, the stationary distribution in this model is again 1/4 for every nucleotide.

2.2.3 The TN93 model

The TN93 model (Tamura & Nei, 1993) relaxes the assumption of equal stationary prob-

abilities for the four nucleotides. Representing the stationary distribution by the vector

π = (πA, πG, πC , πT ), the rate matrix is expressed as

Q = (qij) =


−(α1πG + βπY ) α1πG βπC βπT

α1πA −(α1πA + βπY ) βπC βπT

βπA βπG −(α2πT + βπR) α2πT

βπA βπG α2πC −(α2πC + βπR)

 ,
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where α1, α2, and β represent the rates of transitional changes between purines and

between pyrimidines and of transversional change, respectively. It is worth noting that

even though the rate matrix is not symmetric, the model is still reversible since it satisfies

the detailed balance equation (2.4).

2.2.4 The HKY85 model

The HKY85 model (Hasegawa et al., 1985) can be considered a special case of the TN93

model obtained by setting α1 = α2 = α. It can be also parameterised by fixing β at the

value 1 and defining a transition-transversion rate ratio by κ = α/β. The rate matrix is

represented as follows:

Q = (qij)

=


−(πG + κπC + πT ) κπG πC πT

κπA −(κπA + πC + πT ) πC πT

πA πG −(πA + πG + κπT ) κπT

πA πG κπC −(πA + πG + κπC)

 .

2.2.5 The GTR model

The general time reversible model (Tavaré, 1986) has different instantaneous rates of

substitution between each of the six nucleotide pairs, while the reversibility condition still

holds. In fact, all other models are special cases of the GTR model which are achieved

by assuming equality amongst some of the parameters. Representing the rate parameters,

sometimes called exchangeability parameters, by vector ρ = (ρij), i = 1, 2, 3, j = i +

1, . . . , 4 the rate matrix can be represented as follows:

Q = (qij)

=


−(ρ12πG + ρ13πC + ρ14πT ) ρ12πG ρ13πC ρ14πT

ρ12πA −(ρ12πA + ρ23πC + ρ24πT ) ρ23πC ρ24πT

ρ13πA ρ23πG −(ρ13πA + ρ23πG + ρ34πT ) ρ34πT

ρ14πA ρ24πG ρ34πC −(ρ14πA + ρ24πG + ρ34πC)

 .

2.3 Models of amino acid substitution

It is straightforward to apply the continuous-time Markov process to describe substitutions

between amino acids. The states of the process now comprise 20 amino acids: Ω =

{A, R, N, D, C, E, Q, G, H, I, L, K, M, F, P, S, T, W, Y, V }. Amino acid models

are generally empirical models, that is, various parameters are fixed at values based on

analyses of large quantities of sequence data. The models are constructed by estimating
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relative rates between amino acids under the GTR model. Thus, the rate matrix of the

substitution model for amino acids is expressed by Q = SΠ, where S = (sij) is a 20-

by-20 matrix of the amino acid exchangeabilities, and Π = diag(π1, π2, . . . , π20) is the

equilibrium frequency of the amino acids. Typically Π is regarded as unknown and S is

fixed. A number of amino acid exchangeabilities matrices have been proposed. The first

empirical amino acid substitution matrices were constructed by averaging the number of

amino acid changes in closely related sequence pairs (Dayhoff et al., 1989; Jones et al.,

1992). The WAG matrix is based on the phylogeny of sequences rather than on the

counting method (Whelan & Goldman, 2001). The LG matrix takes into account the

variability of the evolutionary rates across sites (Le & Gascuel, 2008).

2.4 Models with a reduced alphabet (Dayhoff re-coding)

These models deal with groups of amino acids rather than with individual amino acids.

This approach reduces the alphabet from the number of amino acids (20) to a number of

groups. There are different approaches of clustering amino acids into groups. One of the

approaches called Dayhoff re-coding is based on looking for groups of chemically related

amino acids that commonly replace one another. Using this approach, the amino acids

are clustered into six groups: AGPST, DENQ, HKR, ILMV, FWY and C. Each group of

amino acids is treated as the same single character state, and hence this method has an

effect on homogenising the amino acid composition between sequences (Hrdy et al., 2004).

The GTR model is often used.

Re-coding of the amino acids into groups of amino acids helps to avoid the saturation

problem. Saturation occurs when multiple substitutions obscure the phylogenetic signal

such that it is no longer possible to accurately estimate sequence divergence. Since the

changes within the groups are much more common than the changes between the groups,

treating a group as a character can be beneficial for avoiding saturation in substitution

events (Embley et al., 2003; Susko & Roger, 2007).

2.5 Across-site heterogeneity

The rates of substitution can vary among sites due to their different roles in the structure

and function of the gene. Rates of nucleotide substitution at different sites are highly

variable in most genes because of the existence of variable and conserved regions in the gene

(Yang & Roberts, 1995). For example, sites which perform fundamental roles in life and

exist in all organisms are more likely to be conserved, while other sites may accumulate very

many changes. The rates among sites can be accommodated by assuming that each site i

has its own rate ri represented by a random variable drawn from a statistical distribution
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(a gamma distribution is often used) (Yang, 1993). The rate matrix for a site with rate

ri is then riQ and we assume that ri is equal to one on average. Often it is assumed

that ri|α ∼ Ga(α, α). Thus, the distribution has a mean of 1 and the variance of 1/α,

and manipulating α allows manipulation of the shape of the distribution. For instance,

if α > 1 then the distribution is bell-shaped, meaning that most of the sites have rates

around 1 with few sites having very low or very high rates. If α ≤ 1 then the distribution

has a skewed L-shape, meaning that most sites have very low rates of substitution and

only a few sites have high rates (Yang, 2006) (Figure 2.7). The parameter α is generally

treated as an unknown parameter about which inference is sought.
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Figure 2.7: Shapes of Ga(α, α) for two different values of α (α > 1 and α < 1). For α = 10 (black
line) the distribution is concentrated around 1 meaning that very few sites have low or high rates.
For α = 0.1 (green line) most of the sites have very low rates.

Since this model is expensive computationally, a discrete-gamma model has been sug-

gested whereby several equal-probability categories are used to approximate the continuous

gamma distribution, with the mean of each category representing all rates in that category

(Yang, 1994). Suppose there are n categories with rates r1, . . . , rn and the probability of

each category is pk = 1/n, k = 1, . . . , n. Then the likelihood of the data at a site i is:

P (Di|θ) =
n∑
k=1

pk × P (Di|rk,θ),

where θ represents the parameters of the substitution model, and rk is the rate of the

k-th category. By analysing goodness of fit of models with different numbers of categories,
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Yang (1994) suggested using n = 4. Even though there is no biological reason to use a

gamma distribution for among site rate variation, it allows a wide range of rate shapes

with only a single parameter.

There are other approaches of modelling heterogeneity across sites which allow other

model features to vary across sites. Lartillot & Philippe (2004) considered a mixed model of

K distinct classes, each class is characterised by its own substitution matrix QK with fixed

exchangeability parameters ρ, such that the mixture is defined on the space of stationary

distributions π. Working in a Bayesian framework, the model utilises a Dirichlet process

prior for the stationary probabilities for each class, with the number of classes being a free

parameter in the model. A stochastic allocation vector gives a probability of assigning a

site to each possible class. Conditioning on a fixed unrooted topology, another approach

(Jayaswal et al., 2014) considers a fixed assignments model, in which prespecified groups of

sites are assigned their own rate matrix. Given a particular number of sites, each allocation

is considered to be a different model. Performing a bottom-up search by increasing the

number of groups, the optimal model is specified as the best fitting model. Working in

a maximum likelihood framework, Jayaswal et al. (2007) considered a mixture model of

variable and invariant (constant over time) sites, with the variable sites evolving according

to the same Markov process. Thus, heterogeneity across variable sites was not considered.

2.6 Bayesian inference

2.6.1 Overview

According to Bayesian statistics, inference about an event is made using prior belief as

well as data, that is knowledge or experience about how likely the event is to happen.

Thus, the parameters are considered to be random variables with statistical distributions

rather than unknown fixed constants as in the frequentist approach. Before the analysis,

the parameters are assigned prior distributions, which are combined with the likelihood

of the data to generate a posterior distribution. The posterior distribution represents

the uncertainty about the parameters after observing the data and is calculated from the

prior distribution modified by the likelihood of the data. All inferences concerning the

parameters are then based on the posterior distribution of the parameters. According to

Bayes’ theorem, the posterior probability is:

π(θ|D) =
π(θ)f(D|θ)

f(D)
, (2.5)

where π(θ) is the probability density function of the parameter θ, f(D|θ) is the likelihood

function of the data given the value of θ, π(θ|D) is the posterior density of θ given the

data, and f(D) =
∫
θ f(D|θ)π(θ)dθ is the marginal probability of the data, which can be
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thought of as a normalising constant.

Let us consider the following example. Suppose, an experiment has been done to

identify cancerous cells. A stain has been developed which adheres only to the cancerous

cells. We are interested in modelling the random variable X which represents the number

of cancerous cells in a sample. We can use the binomial Bin(n, p) distribution to describe

the data, where n is the number of cells, and p is the probability of a cell being cancerous.

According to our prior belief the probability of a cell being cancerous is quite small, so

we assign it a beta distribution with the mode 0.25: p ∼ Beta(2, 4). The prior probability

density function of p is

π(p) ∝ p(1− p)3.

Suppose we collect a sample in which 2 out of the 20 cells are stained after the experiment.

The likelihood of the data is f(X|p) ∝ px(1 − p)20−x. The posterior distribution of p is

then

π(p|X) ∝ π(p)× f(X|p)

∝ p(1− p)3 × px(1− p)20−x

∝ px+1(1− p)23−x,

which is Beta(4, 22). The beta prior is called a conjugate prior for the binomial likelihood

because the prior and the posterior are from the same family of distributions. This example

illustrates that in Bayesian statistics the role of the data is to update the prior distribution

of the parameters. The prior density, the likelihood and the posterior density are illustrated

in Figure 2.8.
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Figure 2.8: Prior density (dashes), likelihood (dots) and posterior density (solid) in the example
of modelling the number of cancerous cells.
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The choice of the prior distribution is an important issue in Bayesian statistics. It is

convenient to select the prior on the basis of the distributional shape. For instance, in

our example p ∼ Beta(5, 5) represents a prior belief that the probability of a cell being

cancerous is the same as the probability of a cell being non-cancerous (E(p) = 0.5), while

p ∼ Beta(4, 2) represents higher prior belief of a cell being cancerous (E(p) = 2/3) (Figure

2.9a). Equivalently, the prior uncertainty can be expressed by the the distributional shape.

For instance, p ∼ Beta(2, 2) represents higher prior uncertainty than p ∼ Beta(5, 5),

because the variance of Beta(2, 2) is bigger that the variance of Beta(5, 5) (0.05 and 0.023

respectively), while both distributions have the same mean 0.5 (Figure 2.9b).
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(a) Beta distribution with different parameters:
Beta(2,4), Beta (5,5) and Beta (4,2) with means
1/3, 1/2 and 2/3 respectively.
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ent variances: the mean of Beta(5,5) and Beta(2,2)
is 0.5, while the variances are 0.023 and 0.05 respec-
tively.

Figure 2.9: Different shapes of beta distribution. Panel (a) shows three beta distributions with
different means. Panel (b) shows two beta distributions with the same mean but different variances.

Sometimes we are interested in inferring only certain parameters. The parameters we

are not interested in are called nuisance parameters and are dealt with through integration.

Suppose θ = (µ, σ) are the parameters, where µ is the parameter of interest and σ is a

nuisance parameter. The marginal posterior probability of µ is achieved by integrating

out σ as follows:
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π(µ|D) =
π(µ)f(D|µ)∫

µ π(µ)f(D|µ)dµ

=

∫
σ π(µ, σ)f(D|µ, σ)dσ∫

σ

∫
µ π(µ, σ)f(D|µ, σ)dµdσ

,

where π(µ) and π(µ, σ) are probability density functions of the parameters, f(D|µ) and

f(D|µ, σ) are likelihood functions of the data given the values of the parameters.

2.6.2 Markov chain Monte Carlo

One of the challenges of Bayesian statistics is calculating the marginal likelihood of the

data f(D) (the denominator of equation (2.5)), which is problematic when no conjugate

priors are available, or when the integration involves a large number of unknowns. In

these cases the marginal likelihood is analytically intractable. For instance, in order to

calculate the posterior probability of a phylogenetic tree the integration has to be per-

formed over all parameters of the substitution model and branch lengths for every tree

topology. Non conjugate Bayesian inference for problems with a large number of parame-

ters was found to be impractical until the past two decades, when it has gained popularity

due to development of advanced computational methods, especially Markov Chain Monte

Carlo algorithms (MCMC algorithms) (Gilks et al., 1996). Monte Carlo algorithms are

computational algorithms for sampling from probability distributions. The idea behind

MCMC is to construct a Markov chain, whose stationary distribution is the target poste-

rior distribution, and then generate dependent samples from this distribution by sampling

realisations from the Markov chain. Crucially, the normalising constant does not need to

be calculated.

2.6.3 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Hastings, 1970) is one of the MCMC algorithms for

sampling from the target density. Suppose we are interested in sampling from the posterior

density π(θ|D). The algorithm utilises some proposal density q(θ′|θ) called a transition

kernel which is used to propose a new realisation θ′ given the current realisation θ. The

steps of the Metropolis-Hastings algorithm are as follows (Chib & Greenberg, 1995):

1. Initialise the iteration counter i = 1 and initialise the current state with some value θ1

from the support of π(θ|D).

2. Generate a proposal value θ′ using the transition kernel q(θ′|θi).
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3. Evaluate the acceptance probability α of the proposed move:

α(θi, θ
′) = min

{
1,
π(θ′|D)

π(θi|D)
× q(θi|θ′)
q(θ′|θi)

}
= min

{
1,
π(θ′)π(D|θ′)/f(D)

π(θi)π(D|θi)/f(D)
× q(θi|θ′)
q(θ′|θi)

}
.

After cancelling the marginal likelihood of the data f(D) in the numerator and the de-

nominator, the acceptance probability simplifies as follows:

α(θi, θ
′) = min

{
1,
π(θ′)

π(θi)
× π(D|θ′)
π(D|θi)

× q(θi|θ′)
q(θ′|θi)

}
.

4. Accept or reject the proposal value θ′ based on the acceptance probability α. This step

consists of generating a random number u ∼ U(0, 1). If u < α(θi, θ
′) then θ′ is accepted,

otherwise it is rejected.

5. Set the new value θi+1 of the chain: if the proposal is accepted, then θi+1 = θ′. Other-

wise θi+1 = θi.

6. Go to step 2.

The generated samples are dependent. The posterior mean E(θ|D) of a quantity θ may

be approximated by the sample mean θ̄ of our sampled values of θ. As with any Monte

Carlo method, the accuracy of the approximation is limited by the sampling variation

inherent in taking random samples. This is measured by the Monte Carlo variance of

θ̄. When the sampled values from successive iterations are positively autocorrelated, the

Monte Carlo variance of θ̄ from n iterations is larger than it would be given a sample of

n independent draws from the posterior distribution.

It is possible to reduce the autocorrelation across iterations by thinning the chain,

that is by retaining only the sampled values from iterations m, 2m, 3m, . . . where m is an

integer, m > 1. Thinning gives a sample of n/m values and an increased Monte Carlo

variance but, when there is positive autocorrelation, the increase can be small. In cases

where time-consuming computations are done on each sampled value after it is collected,

it may be more computationally efficient to increase n and then thin using m > 1 before

executing these post-sample computations. An example of this is the computation of

posterior predictive means, as will be described in Section 5.1.3. Thinning can also be

useful for assessing convergence and when storage space is a problem. These issues are

discussed by Geyer (1992). The autocorrelation between samples can be monitored using

the autocorrelation function (ACF) plot (Geyer, 2011) (Figure 2.10).

The transition kernel can be symmetric, that is q(θ′|θi) = q(θi|θ′) ∀ θ′, θi (Metropolis

et al., 1953). In this case the acceptance probability simplifies to the ratio of the prior
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Figure 2.10: ACF plot showing the autocorrelation between the samples as a function of the
iteration lag between them. The plot is displaying a decaying pattern of auto-correlation.

densities times the likelihood ratio, that is

α(θi, θ
′) = min

{
1,
π(θ′)

π(θi)
× π(D|θ′)
π(D|θi)

}
.

The proposed value can be defined as a random variable from a distribution centred on

the current state of the process. In this case the variance of the proposal distribution

is controlling the size of the innovation. Large values of the variance are likely to cause

most of the proposal values to be rejected, that is the process will remain at the same

state for a long time, causing high autocorrelation. On the other hand, if the variance is

too small, most of the proposal values will be accepted and the new states will be very

close to the current state, leading again to the high autocorrelation. The variance can be

tuned to achieve the desirable acceptance rate (Gilks et al., 1996; Yang, 2006). It has been

found experimentally that proposals leading to an acceptance rate around 30% minimise

autocorrelation (Roberts et al., 1997). Since the chain is initialised with some random

value, it takes a certain amount of iterations until it reaches the stationary distribution.

These iterations are called the burn-in period and they are discarded to ensure that the

samples are drawn from the stationary distribution of the process (Brooks, 1998; Geyer,

2011).

Convergence diagnostics

The biggest concerns of an MCMC algorithm are convergence and mixing. “Convergence”

means the ability of the chain to reach its stationary distribution (Yang, 2006). Often

algorithms suffer from slow convergence, that is it takes a long time to reach stationarity.

“Mixing” refers to how quickly the sampler explores the support of π. Poor mixing is in-

dicated by high autocorrelation over iterations and inefficiency in exploring the parameter

space. For instance, in the case of a multi-modal target distribution, the sampler might

become stuck at one of the local modes. Thus, it is advisable to run multiple chains from

different starting points and to make sure that they all converge to the same distribution

(Gelman & Rubin, 1992). Though a variety of diagnostic tools has been proposed (Cowles
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& Carlin, 1996) which utilise numerical methods based on either a single chain (Geweke,

1992) or multiple chains (Gelman & Rubin, 1992), one of the common methods is a visual

examination of the plots of the parameters (Gelfand & Smith, 1990). For example, MCMC

output can be diagnosed by trace plots in which the parameters are plotted against the

iteration number (Figure 2.11). Stochastic nature of the MCMC algorithms imply that it
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Figure 2.11: Trace plots of a parameter from two different chains shown in red and blue colours.
(a) Good mixing of the chains, represented by frequent moves around the support of the target
distribution. (b) Poor mixing of the chains, suggested by a high autocorrelation.

is impossible to tell with certainty that convergence has been achieved. However, if the

trace plots for any parameter sampled from two chains with different starting points fail

to overlap, this is an indication of a lack of convergence. Therefore, when the process

has many parameters it is important to monitor all of them. If even one of n parameters

does not appear to have converged, the chain has not converged. After performing conver-

gence diagnostics, the MCMC output can be summarised with respect to the parameters

of interest.

2.6.4 Bayesian phylogenetics

In Bayesian phylogenetics the parameters are the substitution model parameters and the

phylogenetic tree (including branch lengths), while the data are aligned sequences. The

aim of Bayesian phylogenetics is to calculate the posterior probability of the phylogenetic

tree, branch lengths and the parameters of the substitution model, that is probability of

the tree and the parameters of the substitution model given the sequence data.

According to Bayes’ theorem, the posterior density of the tree and the parameters of

the substitution model is

π(τ,θ, `|D) =
π(τ |`,θ)× π(`|θ)× π(θ)× f(D|τ,θ, `)

T∑
i=1

∫
`

∫
θ π(τi|`,θ)× π(`|θ)× π(θ)× f(D|τi,θ, `)dθd`

,

where τ is the tree topology, ` are the branch lengths, θ includes all the parameters of the

substitution model, and D is the sequence data. Often the parameter of interest is only

the tree τ . In this case the parameters of the substitution model and the branch lengths

are treated as nuisance parameters by integrating out. Thus, the probability of the tree
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given the sequence data is

π(τ |D) =

∫
`

∫
θ π(τ |`,θ)× π(`|θ)× π(θ)× f(D|τ,θ, `)dθd`

T∑
i=1

∫
`

∫
θ π(τi|`,θ)× π(`|θ)× π(θ)× f(D|τi,θ, `)dθd`

.

The denominator is analytically intractable, since it involves an integral over all branch

lengths ` and all the substitution model parameters θ for every topology τ . The MCMC

technique is used in order to sample from the posterior distribution of the trees. Conver-

gence in the space of phylogenetic trees is usually assessed by comparing the split (branch

point where a single lineage evolved into a distinct new one) frequencies between chains

initialised at different starting points. An additional diagnostic is analysing the plots of

the posterior probabilities of the clades and the cumulative relative frequencies (Heaps

et al., 2014). A straight line pattern on a scatter plot of the posterior probabilities of

the clades from the two chains suggests convergence has been achieved (Figure 2.12a).

Likewise, if the plots of cumulative clade frequencies from both chains are approaching

the same fixed values this further indicates convergence (Figure 2.12b).
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Figure 2.12: Graphical convergence diagnostic of the two chains. The plots indicate that the chains
have reached convergence. (a) Scatter plot of the posterior probabilities of the clades from the
two chains. (b) Plot of cumulative relative clade frequencies. Solid and dotted lines of each colour
represent the frequency of the same clade for two different chains.
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Chapter 3

Non-reversible substitution models

This chapter focuses on two non-reversible substitution models. Both models incorporate

hierarchical priors which are centred on a standard reversible rate matrix but allow non-

reversible perturbations of the individual elements. The two models differ in the structure

of the perturbation.

A non-reversible model which is centered on a standard reversible rate matrix has been

explored previously (Huelsenbeck et al., 2002). However, that study utilised independent

uniform distribution for each of the off-diagonal elements of the rate matrix Q, that is

qij ∼ U(0.001, 100), i 6= j. Here, we incorporate prior structure for the instantaneous

rate matrix, thus adding a biological interpretation to substitution rates. Additionally, in

Huelsenbeck et al. (2002) the unrooted topology was fixed and the numbers of taxa was

small (eight taxa in the simulation study and five taxa in the analysis of the real data).

Here, we do not fix the unrooted topology and perform our analysis on larger numbers of

taxa (30 taxa in the simulation study and up to 36 taxa in the analysis of the real data).

Some work for this chapter appears in Williams et al. (2015).

3.1 One component model

3.1.1 Model description

This model, henceforth called the NR model, is based on a log-normal perturbation of

the off-diagonal elements of the rate matrix of the HKY85 model. Let QH = (qHij ) be

the rate matrix of the HKY85 model, which is characterised by a composition vector
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π = (πA, πG, πC , πT ) and transition-transversion rate ratio κ as follows:

QH =


? κπG πC πT

κπA ? πC πT

πA πG ? κπT

πA πG κπC ?

 .

Here the symbol ? is used to indicate that the diagonal elements are specified such that

every row sums to zero. Let Q = (qij) denote the rate matrix of the NR model. Working

element-wise on a log-scale, the off-diagonal elements of the rate matrix of the NR model

can be expressed as, for i 6= j

log qij = log qHij + εij ,

where the εij are independent N(0, σ2) quantities. Here the perturbation standard de-

viation σ represents the extent to which Q departs from a HKY85-structure: the larger

its value, the greater the degree of departure. The parameter σ is treated as an un-

known quantity whose value we learn about during the analysis. Let us denote by

πQ = (πQ,A, πQ,G, πQ,C , πQ,T ) the theoretical stationary distribution which can be

obtained from the rate matrix Q (i.e. πQQ = 0). We note that πQ is not the same as π,

the stationary distribution of the underlying HKY85 model. The structure of the hierar-

chical model for sequence data can therefore be represented through the following directed

acyclic graph (DAG):

Q

σ

QH Data

`, τ

α

π, κ

Here, the data depend on the non-reversible rate matrix Q, the branch lengths `, the

tree topology τ and the across site heterogeneity parameter α. They are conditionally

independent of π, κ and σ given Q.

3.1.2 Likelihood

As shown in Section 2.1.5, under reversible models the likelihood of the data does not

depend on the root position. Since the NR model relaxes the reversibility condition, it

gives rise to a likelihood function which depends on the position of the root. The NR

model is across-branch homogeneous (the same rate matrix is applied to every edge).

Processes at different sites are assumed to be independent, but each site i has its own rate

of evolution ri which is modelled by a gamma distribution with mean equal to 1 (Yang,
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1993). For computational convenience we approximate the continuous gamma Ga(α, α)

distribution with a discrete Ga(α, α) distribution with four categories (Yang, 1994), as

described in Section 2.5.

In order to calculate the likelihood we first need to calculate transition probability ma-

trices for each branch of the tree. Recall that the transition probability matrix is calculated

by using the diagonal form of Q: P (`) = exp(Q`) = exp(U ×D`×U−1) = U × exp(D`)×
U−1, where D is a diagonal matrix of the eigenvalues of Q. In the reversible case, all eigen-

values are real and the calculation is straightforward, i.e. exp(D`) = diag(eλ1`, . . . , eλn`),

where λ1, . . . , λn are the eigenvalues of Q. However, relaxing the reversibility condition

gives rise to rate matrices whose eigenvalues might be complex (Sinclair & Jerrum, 1989).

Complex eigenvalues appear in a conjugate pair λ± iµ, where λ and µ are real numbers,

and i is the imaginary unit which satisfies the equation i2 = −1. Suppose a pair of complex

eigenvalues is present. We will show that out of four eigenvalues of Q the other two eigen-

values are real. Recall that the row sum of the rate matrix Q is zero, i.e. Q1 = 0. This

implies Q1 = 0×1, where 1 is the eigenvector and 0 is the eigenvalue. Thus by definition

one of the eigenvalues of Q is 0, so the remaining eigenvalue has to be real. Therefore it

is possible to have at most one pair of complex eigenvalues out of four eigenvalues of Q.

In the programming language Java, which we use to implement our numerical inference

algorithm, the DenseDoubleEigenvalueDecomposition class for computing eigenvalues and

eigenvectors of a real matrix Q returns a matrix of eigenvectors U and a matrix containing

eigenvalues D such that Q = UDU−1. If all the eigenvalues are real, the matrix D is

diagonal and the calculation of exp(D`) is straightforward. However, if a conjugate pair

of eigenvalues is present, the matrix D is block-diagonal, where

D = diag(λ1, Λ2, λ3)

and

Λ2 =

(
λ µ

−µ λ

)
.

In this case exp(D`) = diag(eλ1`, eΛ2`, eλ3`). Therefore, in order to compute exp(D`), we

need to compute eΛ2 . For this we will use the diagonal form of Λ2, i.e. Λ2 = XVX−1 where

X is a matrix containing the eigenvectors of Λ2, and V is a diagonal matrix containing
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the eigenvalues of Λ2. First we will find the eigenvalues and the eigenvectors of Λ2:(
λ− x µ

−µ λ− x

)
= 0

(λ− x)2 + µ2 = 0

(λ− x)2 = −µ2

λ− x = ±iµ,

so the eigenvalues of Λ2 are xi = λ ± iµ, i = 1, 2. For eigenvalues xi, i = 1, 2 the

corresponding eigenvectors are vi = (vi1, vi2)T , where

Λ2vi = xivi

(Λ2 − xiI2)vi = 0

for i = 1, 2. Therefore we need to solve(
λ− (λ+ iµ) µ

−µ λ− (λ+ iµ)

)(
v11

v12

)
=

(
0

0

)
(3.1)

for v1 = (v11, v12)T and(
λ− (λ− iµ) µ

−µ λ− (λ− iµ)

)(
v21

v22

)
=

(
0

0

)
(3.2)

for v2 = (v21, v22)T . Solving (3.1) and (3.2) we get

v1 = (1, i)T

and

v2 = (1, − i)T .

Hence, the diagonal form of Λ2 can be written as

Λ2 =

(
1 1

i −i

)(
λ+ iµ 0

0 λ− iµ

)(
1 1

i −i

)−1

.

Since (
1 1

i −i

)−1

=
1

−i− i

(
−i −1

−i 1

)
=

i

2

(
−i −1

−i 1

)
=

1

2

(
1 −i

1 i

)
,

38



Chapter 3. Non-reversible substitution models

the diagonal form of Λ2 can be re-written as

Λ2 =
1

2

(
1 1

i −i

)(
λ+ iµ 0

0 λ− iµ

)(
1 −i

1 i

)
.

Now we can take an exponential of Λ2 in its diagonal form:

exp

{(
λ µ

−µ λ

)}
=

1

2

(
1 1

i −i

)(
exp(λ+ iµ) 0

0 exp(λ− iµ)

)(
1 −i

1 i

)

=
exp(λ)

2

(
1 1

i −i

)(
cosµ+ i sinµ 0

0 cosµ− i sinµ

)(
1 −i

1 i

)

=
exp(λ)

2

(
cosµ+ i sinµ cosµ− i sinµ

− sinµ+ i cosµ − sinµ− i cosµ

)(
1 −i

1 i

)

=
exp(λ)

2

(
2 cosµ 2 sinµ

−2 sinµ 2 cosµ

)

= exp(λ)

(
cosµ sinµ

− sinµ cosµ

)
.

So, if a matrix Q has a pair of complex eigenvalues, its diagonal form is represented in

Java as

Q = U ×


λ1 0 0 0

0 λ2 µ 0

0 −µ λ2 0

0 0 0 λ3

× U−1,

where λ2 ± iµ is the conjugate pair of complex eigenvalues, and λ1 and λ3 are real eigen-

values. The transition probability matrix is thus

P (`) = exp(Q`) = U × exp


λ1` 0 0 0

0 λ2` µ` 0

0 −µ` λ2` 0

0 0 0 λ3`

× U−1

= U ×


eλ1` 0 0 0

0 eλ2` cosµ` eλ2` sinµ` 0

0 −eλ2` sinµ` eλ2` cosµ` 0

0 0 0 eλ3`

× U−1.
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Note that the block-diagonal matrix D can alternatively be of the form

D = diag(Λ1, λ2, λ3)

or

D = diag(λ1, λ2, Λ3)

in which case the calculation is performed in an analogous way.

3.1.3 Prior

The aim of the analysis is to infer the parameters of the model: the composition vector

π, the transition-transversion rate ratio κ, the perturbation standard deviation σ, the off-

diagonal elements of the rate matrix Q, the shape parameter of the gamma distribution for

the across site variation α, the branch lengths ` and the rooted topology τ . We express our

uncertainty about these unknown parameters though a prior distribution which is given

by

π(π, κ, σ,Q, α, `, τ) = π(π)π(κ)π(σ)π(Q|π, κ, σ)π(α)π(`)π(τ).

Priors for numerical parameters

The composition vector π is defined on the four-dimensional simplex, that is, it has four

positive elements, constrained to sum to one. We choose to assign it a Dirichlet prior,

π ∼ D(αππ0), where π0 = (0.25, 0.25, 0.25, 0.25) is the mean and απ is a concen-

tration parameter (we take απ = 4). This prior is exchangeable with respect to the

nucleotide labels. We adopt a log-normal prior for the transition-transversion rate ratio

κ ∼ LN(log κ0, ξ
2), where κ0 = 1 and ξ = 0.8. The parameters of the prior for κ represent

our belief that the probability of κ exceeding 2 is 0.2, i.e. Pr(κ < 2) = 0.8. Our choice of

the priors for π and κ is governed by the biological opinion about these parameters.

The perturbation parameter σ is assigned an exponential prior σ ∼ Exp(γ), where

the rate γ = 2.3 reflects our prior belief that the probability of σ exceeding 1 is 0.1,

i.e. Pr(σ < 1) = 0.9. This choice discourages a stationary distribution πQ in which some

characters are heavily favoured over the others. Figure 3.1 shows a boxplot of 1000 samples

from the prior for the first element of the stationary distribution for different values of σ.

As σ increases, significant support is given to highly biased compositions, and for σ > 1.0

these are biologically unrealistic.

The branch lengths are assigned independent exponential priors `i ∼ Exp(µ), where

i = 1, . . . , k and k is the number of edges. The rate µ equals 10, so that E(`i) = 0.1

in keeping with biologists’ beliefs about the number of substitutions per site. The shape

parameter α is assigned a gamma prior, α ∼ Ga(10, 10), which ensures the expected
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Figure 3.1: Boxplot of the prior for the first element of the stationary distribution for different
values of the perturbation standard deviation σ conditional on the rate matrix QH (the priors for
the rest of the elements of the stationary distribution are the same due to symmetry). Increasing
the value of σ clearly increases the spread in the prior for the stationary probabilities.

substitution rate in the Ga(α, α) model for site-specific substitution rates is modestly

concentrated around 1.

Priors for topology

We define a root type as the number of species on each side of the root. For example, the

root type 1 : (n − 1) represents a root split on a pendant edge, 2 : (n − 2) represents a

root split between two taxa and all others, etc. A uniform prior over rooted topologies

assigns a prior probability of more than 0.5 to root splits of the type 1 : (n− 1), in other

words, to roots on pendant edges (an unrooted tree of n taxa has 2n − 3 branches, so

the probability of the root split on pendant edges is n/(2n − 3) > 0.5). We felt that

deeper roots are generally more biologically plausible and should be assigned higher prior

mass, whilst still retaining a diffuse initial distribution. We therefore chose to assign the

rooted tree topology a prior according to the Yule model (birth process), which assumes

that at any given time each of the species is equally likely to undergo a speciation event.

This generates a biologically defensible prior in which all root types receive the same prior

probability if n is odd, and a near uniform distribution if n is even, but with n/2 : n/2 root

types receiving half the prior probability of the other root types. This property follows

from the fact that if we randomly select one of the two sub-trees incident with the root
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of the tree generated under the Yule model, then the number of leaves in this sub-tree is

uniformly distributed between 1 and n − 1, that is f(i) = 1/(n − 1), where f(i) is the

probability that the number of leaves in the sub-tree is i (i = 1, . . . , n− 1).

A labelled history is a rooted tree with the internal vertices rank-ordered according to

their ages (Yang, 2014). The probability of generating a n-species tree T under the Yule

distribution is calculated by dividing the number of labelled histories for the tree T by the

total number of all possible labelled histories on n species:

2n−1

n!

∏
v∈T0

λv

−1

,

where T0 is the set of interior vertices of the rooted tree T , and λv is the number of internal

vertices that are descendants of v, or one less than the number of leaves below v (Steel &

McKenzie, 2001). This probability depends on the complete rooted topology. As discussed

in Section 2.6 we fit our model to data using Bayesian inference via a Metropolis-within-

Gibbs sampler. An important step is computation of the prior ratio. Therefore if we use

a Yule prior, we have to re-calculate the prior probability of the tree at every MCMC

iteration.

To save computational time, we therefore additionally introduce an approximation to

the Yule prior, which we term the structured uniform prior, which assigns equal prior

probability to all root-types, and also equal prior probability to all rooted trees within

each root-type. If we denote by k the number of taxa on one side of the root, then n−k is

the number of taxa on the other side of the root. The probability of generating a n-species

tree T under the structured uniform prior is

1

t
(
n
k

)
NkNn−k

,

where

1

t
=

n/2, if n is even

(n− 1)/2, if n is odd

is the probability of choosing a root-type k : (n− k),

1(
n
k

)
NkNn−k

is the probability of choosing a rooted tree given a root-type k : (n− k), and

Ni =
(2i− 2)!

2i−1(i− 1)!
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is the number of rooted trees with i taxa. Computationally, this prior is more convenient

than the Yule prior because its mass function is independent of the particular rooted

topology given its root type and so only considers the root type. It also has the advantage

of being uniform on root types for all n.

3.1.4 Posterior inference via MCMC

According to Bayes’ theorem, the posterior distribution is proportional to the prior times

the likelihood and is given by

π(π, κ, σ,Q, α, `, τ |D) ∝ π(Q|π, κ, σ)× π(π, κ, σ, α, `, τ)× π(D|Q,α, `, τ).

This distribution is analytically intractable, therefore we utilise Markov chain Monte Carlo

(MCMC) methods, specifically a Metropolis-within-Gibbs sampling scheme to generate

dependent samples from the posterior. At each iteration of the MCMC algorithm the

following steps are performed:

(a) update the parameters of the substitution model, i.e. π, κ, σ,Q, α;

(b) update the branch lengths ` and the topology τ .

In step (a) we update the parameters one at a time, sweeping through a Dirichlet

random walk proposal for π and log-normal random walk proposals for the rest of the

parameters as follows:

(i) Metropolis-Hastings step for the composition vector π:

Prior: π ∼ D(αππ0), απ = 4, π0 = (0.25, 0.25, 0.25, 0.25).

Proposal: π′ ∼ D(aππ), where π is the current value, aπ is a tuning parameter.

Acceptance probability:

min

{
1,
π(π′)

π(π)
× q(π|π′)
q(π′|π)

× π(Q|π′, κ, σ)

π(Q|π, κ, σ)
× π(D|Q,α, `, τ)

π(D|Q,α, `, τ)

}
.

After cancelling the term π(D|Q,α, `, τ) in the numerator and denominator, the accep-

tance probability takes the form min {1, A}, where

A =
π(π′)

π(π)
× q(π|π′)
q(π′|π)

× π(Q|π′, κ, σ)

π(Q|π, κ, σ)

=

4∏
i=1

Γ(aππi)

Γ(aππ′i)
π

(aππ′i−αππ0i)
i π

′(αππ0i−aππi)
i

× exp

 1

2σ2

∑
i 6=j

{
(log qHij )2 − (log qH

′
ij )2 + 2 log qij(log qH

′
ij − log qHij )

} ,
43



Chapter 3. Non-reversible substitution models

and the qH
′

ij are the off-diagonal elements of the HKY85 rate matrix computed with π′.

In practice using a Dirichlet random walk proposal can cause computational problems

for low values of the concentration parameter, because the mean of the proposal distri-

bution can be close to zero. In this case the variance of the proposal distribution is also

close to zero, thus resulting in the sampler getting stuck at values close to zero. In order

to avoid this problem we use a Dirichlet random walk proposal with a nudge to keep the

mean away from zero (Germain, 2010; Loza-Reyes et al., 2014). We choose a value of

δ = 0.005 for the nudge, as suggested in Germain (2010). The proposal then has mean

with elements, for i = 1, . . . , 4

πδ,i =
aππi + δ

aπ + 4δ
.

(ii) Metropolis-Hastings step for the transition-transversion rate ratio κ:

Prior: κ ∼ LN(log κ0, ξ
2), κ0 = 1, ξ = 0.8.

Proposal: κ′ ∼ LN(log κ, a2
κ), where κ is the current value.

Acceptance probability: min {1, A}, where

A =
π(κ′)

π(κ)
× q(κ|κ′)
q(κ′|κ)

× π(Q|π, κ′, σ)

π(Q|π, κ, σ)
× π(D|Q,α, `, τ)

π(D|Q,α, `, τ)

=
π(κ′)

π(κ)
× q(κ|κ′)
q(κ′|κ)

× π(Q|π, κ′, σ)

π(Q|π, κ, σ)

= exp

[
1

2ξ2

{
(log κ)2 − (log κ′)2 + 2 log κ0(log κ′ − log κ)

}]

× exp

 1

2σ2

∑
i 6=j

{
(log qHij )2 − (log qH

′
ij )2 + 2 log qij(log qH

′
ij − log qHij )

} ,
and qH

′
ij are the off-diagonal elements of the HKY85 rate matrix computed with κ′.

(iii) Metropolis-Hastings step for the perturbation standard deviation σ:

Prior: σ ∼ Exp(γ), γ = 2.3.

Proposal: a mixture of

(1) random walk proposal σ′ ∼ LN(log σ, a2
σ), where σ is the current value;

(2) independence sampler proposal σ′ ∼ Exp(γ).

At every iteration of the MCMC algorithm a proposal is chosen uniformly from the two

choices above.
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Acceptance probability for proposal (1): min {1, A}, where

A =
π(σ′)

π(σ)
× q(σ|σ′)
q(σ′|σ)

× π(Q|π, κ, σ′)
π(Q|π, κ, σ)

× π(D|Q,α, `, τ)

π(D|Q,α, `, τ)

=
π(σ′)

π(σ)
× q(σ|σ′)
q(σ′|σ)

× π(Q|π, κ, σ′)
π(Q|π, κ, σ)

=
( σ
σ′

)K−1
× exp

γ(σ − σ′) +
1

2

(
1

σ2
− 1

σ′2

)∑
i 6=j

{
(log qij − log qHij )2

} ,
and K is the number of the off-diagonal elements of the rate matrix Q (K = 12 for DNA

data).

Acceptance probability for proposal (2): min {1, A}, where

A =
π(σ′)

π(σ)
× q(σ)

q(σ′)
× π(Q|π, κ, σ′)
π(Q|π, κ, σ)

× π(D|Q,α, `, τ)

π(D|Q,α, `, τ)

=
π(σ′)

π(σ)
× q(σ)

q(σ′)
× π(Q|π, κ, σ′)
π(Q|π, κ, σ)

=
( σ
σ′

)K
× exp

1

2

(
1

σ2
− 1

σ′2

)∑
i 6=j

{
(log qij − log qHij )2

} ,
and K is the number of the off-diagonal elements of the rate matrix Q.

The reason we use a mixture of proposals rather than a single proposal is that in prac-

tice using a log-normal random walk proposal distribution for σ often causes the MCMC

sampler getting stuck in local maxima, i.e. regions where there exists a value σ for which

the likelihood of the data is higher than for the values within the close neighbours of σ,

but lower than for the neighbours of σ which are further away. In order to avoid this

problem, we employ a mixture of proposals with two components: a random walk pro-

posal and an independence sampler proposal (Tierney, 1994). The independence sampler

proposes a new value of the parameter that is independent of the current value. We use

the exponential prior distribution for σ as a kernel for the independence sampler, which

has bigger variance than the log-normal random walk proposal. Hence, the sampler has

a better potential of leaving local maxima, and allows the MCMC to better explore the

space of σ. Using a mixture distribution where components are a log-normal random

walk and an independence sampler with an exponential kernel is equivalent to alternating

between small and big moves in order to improve the mixing of the chain.

(iv) Metropolis-Hastings steps for the off-diagonal elements of the rate matrix Q con-

sist of a sweep through all of the off-diagonal elements qij :
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Prior for each element: qij ∼ LN(log qHij , σ
2).

Proposal for each element: q′ij ∼ LN(log qij , a
2
q), where qij is the current value.

Acceptance probability for each element: min {1, A}, where

A =
π(Q′|π, κ, σ)

π(Q|π, κ, σ)
×
q(qij |q′ij)
q(q′ij |qij)

× π(D|Q′, α, `, τ)

π(D|Q,α, `, τ)

= exp

 1

2σ2

∑
i 6=j

{
(log qij)

2 − (log q′ij)
2 + 2 log qHij (log q′ij − log qij)

}
× π(D|Q′, α, `, τ)

π(D|Q,α, `, τ)
.

(v) Metropolis-Hastings step for the gamma shape heterogeneity parameter α:

Prior: α ∼ Ga(s, r), s = 10, r = 10.

Proposal: α′ ∼ LN(logα, a2
α), where α is the current value.

Acceptance probability: min {1, A}, where

A =
π(α′)

π(α)
× q(α|α′)
q(α′|α)

× π(D|Q,α′, `, τ)

π(D|Q,α, `, τ)

=

(
α′

α

)s
exp

{
r(α− α′)

}
× π(D|Q,α′, `, τ)

π(D|Q,α, `, τ)
.

Step (b) consists of a series of Metropolis-Hastings steps to update each branch length

one at a time and then updating the rooted topology and branch lengths (in a joint move)

through three types of proposal: nearest-neighbour interchange (NNI), sub-tree prune and

regraft (SPR) (Allen & Steeel, 2001; Yang, 2006), and a proposal which moves the root

(Heaps et al., 2014).

(i) Metropolis-Hastings step for the branch lengths `:

Prior for each branch length: `i ∼ Exp(µ), µ = 10.

Proposal for each branch length: a mixture of

(1) random walk proposal `′i ∼ LN(log `i, a
2
` ), where `i is the current value;

(2) independence sampler proposal `′i ∼ Exp(µ).

At every iteration of the MCMC algorithm a proposal is chosen uniformly from the two

choices above.

46



Chapter 3. Non-reversible substitution models

Acceptance probability for proposal (1): min {1, A}, where

A =
π(`′)

π(`)
× q(`i|`′i)
q(`′i|`i)

× π(D|Q,α, `′, τ)

π(D|Q,α, `, τ)

=
`′i
`i
× exp(`i − `′i)×

π(D|Q,α, `′, τ)

π(D|Q,α, `, τ)
.

Acceptance probability for proposal (2): min {1, A}, where

A =
π(`′)

π(`)
× q(`i)

q(`′i)
× π(D|Q,α, `′, τ)

π(D|Q,α, `, τ)

=
π(D|Q,α, `′, τ)

π(D|Q,α, `, τ)
.

A mixture of two proposals for branch lengths in which the innovation variance of one

component depends on the current branch length and the innovation variance of the other

does not, has been shown to produce better mixing than using a single proposal. While the

proposal in which the innovation variance depends on the current value results in better

mixing for short branches, the proposal in which the innovation variance does not depend

on the current value produces better mixing for long branches. Thus alternating the two

types of proposals results in better mixing of the chain (Loza-Reyes et al., 2014).

(ii) Metropolis-Hastings step for the NNI move:

The nearest-neighbour interchange (NNI) algorithm is a topological rearrangement of a

tree which works by swapping two sub-trees on the two sides of a branch. First an internal

branch e is selected uniformly at random (excluding the two branches adjacent to the root

vertex). Let us denote the vertex on e which is closest to the root by v0, and the vertex

which is closest to the leaves by v. We denote the two sub-trees descended from v by T1

and T2, and the sub-tree descended from v0 by T0. In the NNI move either sub-tree T1 or

T2 is replaced with the sub-tree T0, as illustrated in Figure 3.2 (the probability of choosing

either T1 or T2 is 1/2). Thus a single NNI move can result in one of the two possible trees

as shown in Figure 3.3. The process creates a new branch e′ which replaces the branch

e. The length of e′ is proposed using a log-normal random walk proposal centred on the

length of e. It is worth noting that the root on the new tree remains unchanged since the

swapped sub-trees are descended from an edge not adjacent to the root. The acceptance
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Figure 3.2: An illustration of the NNI move. The internal edge e is chosen uniformly at random
from the set of internal edges not adjacent to the root. During the move, either sub-tree T1 or T2
descended from the vertex v is interchanged with the sub-tree T0 descended from the vertex v0.
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Figure 3.3: Two possible trees resulting from the NNI move illustrated in Figure 3.2. In (a) the
sub-tree T1 is interchanged with the sub-tree T0. In (b) the sub-tree T2 is interchanged with the
sub-tree T0. The length of the branch e′ is proposed using the log-normal random walk proposal
centred on the length of e from the original tree. The root of the new trees remains unchanged.
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probability of the NNI move is min {1, A}, where

A =
π(τ ′)

π(τ)
× π(`′)

π(`)
× q(`e|`e′)
q(`e′ |`e)

× π(D|Q,α, `′, τ)

π(D|Q,α, `, τ)

=
π(τ ′)

π(τ)
× exp{µ(`e − `e′)} ×

`e′

`e
× π(D|Q,α, `′, τ)

π(D|Q,α, `, τ)
.

In practice the acceptance rate in this move is very small (around 1%), and the pro-

posal in this move cannot be tuned to achieve the desirable acceptance rate. Thus the

posterior samples have high autocorrelation, which causes poor mixing of the chain. It

is possible to reduce autocorrelation by performing multiple NNI moves at each MCMC

iteration.

(iii) Metropolis-Hastings step for the SPR move:

Sub-tree pruning and regrafting (SPR) works by pruning a sub-tree and reattaching it

to a different branch. The move is illustrated in Figure 3.4. As in the NNI move, we first

select uniformly at random an internal edge ep which is not adjacent to the root. We also

select uniformly at random another internal edge eg which is not adjacent to either ep or

the root. Denote by vp the vertex closest to the root on the edge ep. Denote by ea and

eb the edges containing the vertex vp. Denote by T the tree evolving from the vertex vp

(including the edge ep). The SPR move consists of pruning the tree T and reattaching it

to a point vg on the edge eg (Figure 3.4a). The reattachment divides the edge eg into two

edges: e′a and e′b thus introducing a new vertex (vg) shared by the two newly created edges.

The vertex vp disappears such that the edges ea and eb are merged to form a new edge e′g

(Figure 3.4b). The lengths of the edges e′a and e′b are proposed as follows: we first sample

a random variable u ∼ Beta(2, 2), and we set the length of e′a to be proportional to the

value of u, that is `e′a = u× `eg , where `i is a length of an edge i. The length of the edge

e′b is then set such that the overall branch length is preserved, that is `e′b = (1− u)× `eg .
The parameters of the beta distribution of the random variable u are chosen such that

E(u) = 0.5, that is the regrafting point is centred on the middle of the edge eg. The

acceptance probability of the SPR move is min {1, A}, where

A =
π(τ ′)

π(τ)
× π(`′)

π(`)
× q(w)

q(u)
×

∣∣∣∣∣∂(`e′a , `e′b , `e
′
g
, w)

∂(`ea , `eb,`eg , u)

∣∣∣∣∣× π(D|Q,α, `′, τ ′)
π(D|Q,α, `, τ)

(3.3)

=
π(τ ′)

π(τ)
× π(`′)

π(`)
× w(1− w)

u(1− u)
×

`eg
`ea + `eb

× π(D|Q,α, `′, τ ′)
π(D|Q,α, `, τ)

,
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Figure 3.4: An illustration of the SPR move. (a) During the move, the edge ep (dashed line) and
the tree T evolving from it are pruned and reattached to the edge eg. The attachment point vg is
chosen by dividing the edge eg using a random variable drawn from Beta(2, 2). (b) As a result of
the move, the vertex vp disappears, such that the edges ea and eb are merged to form a new edge
e′g. The grafting edge eg is split into two new edges e′a and e′b by a new vertex vg which is formed
after reattaching the sub-tree T to eg.
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w = `ea/(`ea + `eb) is the auxiliary variable for the reverse move, and∣∣∣∣∣∂(`e′a , `e′b , `e
′
g
, w)

∂(`ea , `eb,`eg , u)

∣∣∣∣∣ =
`eg

`ea + `eb

is the Jacobian (Blanquart & Lartillot, 2006). As in the case of the NNI move, and for

the same reason, the acceptance rate in the SPR move is small (around 1%).

(iv) Metropolis-Hastings step for the root move:

This move is similar to the SPR move. A new root is proposed by selecting a branch

eg uniformly at random from the set of branches not adjacent to the root (Figure 3.5a).

The new root is created by inserting a degree two vertex vg on the branch eg. Thus the

branch eg is divided into two sub-branches: e′a and e′b (Figure 3.5b). The lengths of these

sub-branches are proposed using a random variable from the Beta(2, 2) distribution sim-

ilarly to the SPR move. The existing root vertex disappears such that the two edges ea

and eb are merged to create a new edge e′g. Because of the similarity with the SPR move,

the acceptance probability of the root move is calculated similarly, according to equation

(3.3).

3.1.5 Simulation study

The simulations are divided into two independent blocks. The first block of the simu-

lations aims to investigate root inference for data simulated with different levels of non-

reversibility under a random rooted tree. The second block of the simulations explores

the effect of different rooted topologies and different branch lengths on the root inference.

Block One

Here we explore the shape of the posterior when the model is fitted to data that contain

different levels of non-reversibility. The tree used to simulate the data is a random 30-taxon

tree (generated under the Yule birth process), with the branch lengths simulated from

Ga(2, 20). The lengths of the branches adjacent to the root are simulated from Ga(1, 20)

such that the combined lengths of these two branches will correspond to Ga(2, 20) (Figure

3.6). Since the tree was generated under the Yule birth process we expect both the Yule

prior and the structured uniform prior to assign a lot of support to the true root split.

Therefore, if we analyse data simulated under this tree, the high prior support for the true

root split may be reflected in the posterior, in spite of the information from the data, whose

effect we are investigating. In order to perform a more objective experiment, we therefore

reroot the tree such that the new root is not favoured by the prior. First, we investigate
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Figure 3.5: An illustration of the root move. (a) During the move, a new root is created by
inserting a degree two vertex vg on the branch eg. (b) As a result of the move, the new root vg
divides the branch eg into two sub-branches: e′a and e′b. The existing root vertex disappears such
that the two edges ea and eb are merged to create a new edge e′g.
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Figure 3.6: Rooted random 30-taxon tree generated under the Yule birth model used to simulate
the data in the first block of the simulations. The blue circle maps the branch which is preferred
by the topological priors to place the root on. The green circle maps the alternative root split
having much lower prior probability. The data were simulated under the tree rooted on the branch
mapped with the green circle.
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the prior distribution of the root splits conditional on the true unrooted topology and the

true values of the branch lengths (Figure 3.7). Indeed, both priors favour the original root

split represented by the blue bar in Figure 3.7 (mapped with the blue circle in Figure 3.6).

The green bar corresponding to the new root split has much lower prior probability than

the original root split. Therefore we simulate the data under the rerooted tree, such that

the model will have to extract information from the data rather than rely heavily on the

prior information.
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(a) Yule distribution on the root splits.
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Figure 3.7: Prior distribution of the root splits conditional on the unrooted topology and branch
lengths in Figure 3.6 for (a) the Yule prior; (b) the structured uniform prior. Different bars on the
plots represent different root splits on the prior distribution of trees (ordered by prior probabilities).
On each plot the blue bar corresponds to the original root split, the green bar correspond to the
alternative root split the data were simulated with (both root splits are mapped in Figure 3.6).

In order to simulate the alignments, we first fixed the underlying reversible HKY85

rate matrix (QH matrix) using the values π = (0.25, 0.25, 0.25, 0.25) and κ = 2. Then we

applied a log-normal perturbation to the QH matrix to obtain the non-reversible Q matrix

to simulate the data from. To investigate the effect of different levels of non-reversibility,

five different values of the perturbation standard deviation were used to simulate the data:

σ = 0, 0.05, 0.1, 0.2, 0.3. For each value of the perturbation standard deviation nine

different data sets of length 2000 sites were simulated, the first five having different rate

matrices (data sets 1 - 5), and the last five having the same rate matrix (data sets 5 -

9). Thus the former five data sets have different stationary distributions, while the latter

five data sets have the same stationary distribution. This type of alignment simulation

allows us to investigate different sources of variability in the data. All the alignments were

simulated using a gamma shape heterogeneity parameter simulated from Ga(10, 10). Note

that the case of σ = 0 corresponds to the reversible HKY85 model. The other values of

σ were chosen so that the prior for the stationary distribution induced by the log-normal
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perturbation would be in the range of values estimated for real data; as σ increases, signif-

icant support is given to highly biased compositions, and for σ > 0.3 these are biologically

unrealistic (Figure 3.8). The simulation results are based on (almost) un-autocorrelated
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Figure 3.8: Boxplot of the prior for the first element of the stationary distribution for different
values of the perturbation standard deviation σ conditional on the rate matrix QH(the priors for
the rest of the elements of the stationary distribution are the same due to symmetry). Increasing
the value of σ clearly increases the spread in the prior for the stationary probabilities.

posterior samples of sizes at least 5K. These samples were obtained by running the algo-

rithm for at least 1000K iterations, discarding about half of the iterations as burn-in and

then thinning by taking every 100-th iterate to reduce autocorrelation. Convergence was

diagnosed using the procedure described in Section 2.6.3. This involved initialising two

MCMC chains at different starting points and graphically comparing the chains through

properties based on model parameters and the relative frequencies of sampled clades. In

all cases, the graphical diagnostics gave no evidence of any lack of convergence.

Figure B.1 in Appendix B displays the posterior probabilities of the root splits for

data sets simulated with five different values of σ and analysed with the Yule prior. The

plots show that when σ = 0 the posterior of the root splits is very similar to the prior,

as expected, because when σ = 0 the data contain no information about the root. As

σ increases, the root is often inferred better, with σ = 0.3 demonstrating the best root

inference of all analysed values of σ. However, the analyses of nine simulated data set for

each value of σ do not show similar behaviour. There is substantial variability between

the data sets, even those simulated with the same rate matrix, and the true root split is

not inferred in all cases. The unrooted topologies, however, are inferred with the highest
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posterior probabilities for all values of σ (Figure B.2, Appendix B). This suggests that

in addition to inferring the unrooted topology, we can use the the NR model to extract

some information about the root. Moreover, as expected, the greater the degree of non-

reversibility, the stronger the signal from the data. The results of the analysis of the

same data sets performed with the structured uniform prior are similar to the Yule prior

(Figures C.1 and C.2, Appendix C).

Block Two

In a Bayesian analysis, the posterior distribution reflects information from both the prior

and the data. When the prior and likelihood are comparably concentrated, but in conflict,

the posterior can only represent a middle ground. In phylogenetics, inferences are known

to be highly sensitive to the choice of prior for branch lengths and the topology itself

(Yang & Rannala, 2005; Alfaro & Holder, 2006). Motivated by the kinds of conflicts that

are likely to arise in the analysis of real biological data, we consider the robustness of

posterior root inferences to conflicting prior and likelihood information concerning the

rooted topology and branch lengths. An Exp(10) prior for branch lengths which we adopt

in our analyses, asserts a strong prior belief that edges will be reasonably short. Therefore,

given an unrooted topology which contains a long branch, the prior will typically support

placement of the root midway along this branch in order to break it up into two shorter

ones. The Yule prior for rooted topologies assigns a (near) uniform distribution to all root

types. However, there are generally many fewer trees of unbalanced types, like 1 : n − 1,

than there are of more balanced types like n/2 : n/2 for n even or (n− 1)/2 : (n+ 1)/2 for

n odd. It follows that a topology which is more balanced will typically receive more prior

mass than a topology which is more unbalanced. In the remainder of this subsection we

therefore use simulation to examine posterior robustness in cases where prior-likelihood

conflict arises due to a data generating tree which is unbalanced or which contains a long

branch.

We base our simulations on an unrooted 30-taxon tree derived from a recent analysis

(Figure 3.9) (Williams et al., 2012). This tree describes the relationships between the

Archaea and the eukaryotes. We investigate the support for two competing hypotheses

about the tree of life (Section 1.2): (i) the three-domains hypothesis, according to which

the root of the tree comprising the Archaea and the eukaryotes is placed on the branch

separating between the monophyletic Archaea and the eukaryotes (branch E1 with the

length of 1.3), and (ii) the eocyte hypothesis which places the root within the paraphyletic

Archaea, (branch E2 with the length of 0.1). Based on this unrooted tree, we construct

six different rooted trees by changing the placement of the root and the length of branch

E1 according to Table 3.1.

Trees 1, 3 and 5 are fairly balanced with root type 11 : 19, whilst Trees 2, 4 and 6 are

56



Chapter 3. Non-reversible substitution models

0.2

Staphylothermus marinus

Pyrobalucum aerophilum

Trichomonas vaginalis

Caldivirga maquilingensis

Methanothermobacter thermautotrophicus

Entamoeba hystolytica 

Dictyostelium discoideum

Cenarchaeum symbiosum

Methanocuccus jannaschii

Homo sapiens

Leishmania major

Ignicoccus hospitalis

Saccaromyces cerevisiae

Caldiarchaeum subterraneum

Methanosarcina mazei

Termoplasma acidophilum

Korarchaeum cryptofilum

Aeropyrum pernix

Thalassiosira pseudonana

Nitrosopumilus maritimus

Archaeoglobus fuldigus

Phytophthora ramorum

Sulfolobus solfaricus

Arabidopsis thaliana

Pyrocuccus furiosis

Giardia lamblia

Thermofilum pendens

Naegleria gruberi

Hyperthermus bitylicus

E1
E2

Nitrosoarchaem limnia

        Archaea,
TACK syperphylum

     Archaea,
Euryarchaeota

eukaryotes

Figure 3.9: An unrooted 30-taxon tree derived from a recent analysis (Williams et al., 2012). The
root on branch E1 corresponds to the three-domains hypothesis (located between the monophyletic
Archaea and the eukaryotes), while the root on branch E2 corresponds to the eocyte hypothesis
(located within the paraphyletic Archaea separating the Euryarchaeota from the clade comprising
the TACK superphylum and the eukaryotes).

Table 3.1: Six rooted trees for the block two of the simulations. The trees have an unrooted
topology of the tree shown in Figure 3.9 but differ in the placement of the root and the length of
edge E1.

Tree Root edge Length of E1

1 E1 1.3
2 E2 1.3
3 E1 0.1
4 E2 0.1
5 E1 0.3
6 E2 0.3
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more unbalanced with root type 6 : 24. The Yule prior assigns almost 30% more mass to

the former rooted topology. In Trees 1 and 2 and, to a lesser extent, Trees 5 and 6, the

unrooted topology contains a long internal branch. In Trees 3 and 4 this internal branch

is short. Given the unrooted tree depicted in Figure 1, the prior will therefore support

placement of the root on branch E1 , particularly if this branch is long. We use the NR

model to simulate a rate matrix Q with π = (0.25, 0.25, 0.25, 0.25), κ = 2 and σ = 0.3. In

turn, this rate matrix is used to simulate three different alignments for each tree. These

alignments are then analysed under the NR model with the Yule prior.

(i) Tree 1.

Tree 1 is rooted on the long branch E1 . Clearly the likelihood for data generated

from this tree will support the correct placement of the root. Moreover, for the reasons

expressed above, the prior will also support rooting on edge E1 . It is not surprising,

therefore, that we find the posterior is very concentrated around the true root position

(Figure 3.10).
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Figure 3.10: Posterior distribution of the root splits for three different alignments simulated under
Tree 1. The true root split has high posterior support, possibly because it is heavily favoured by
the prior. The green bar here and on all the following plots corresponds to the true root split.

(ii) Tree 2.

In Tree 2, the root is placed on the much shorter branch E2 , creating a fairly unbal-

anced unrooted topology with a long interior branch E1 . As such, data generated under

this tree will favour the correct root position on edge E2 , but the prior will favour a

root on branch E1. This creates prior-likelihood conflict. As expected, we find that the

posterior probability of the true root drops substantially in comparison to the analysis for

Tree 1 and in two of the three analyses, the posterior offers more support to a root on

edge E1 (Figure 3.11).
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Figure 3.11: Posterior distribution of the root splits for three different alignments simulated under
Tree 2. The tree is rooted on a relatively short branch. The support for the true root decreases
in comparison to the analysis for Tree 1, presumably because of the presence of the long internal
branch.

(iii) Tree 3.

Tree 3 has the same rooted topology as Tree 1 but the root branch E1 is now much

shorter and the unrooted topology does not contain any long edges. As for Tree 1, prior-

likelihood conflict does not arise but there is no longer such pronounced prior support

for placement of the root on edge E1 . Nevertheless, we find that the posterior is still

concentrated around the true root position (Figure 3.12.)
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Figure 3.12: Posterior distribution of the root splits for three different alignments simulated under
Tree 3. The tree is balanced and has no long branches, so the root is inferred with the highest
posterior support.

(iv) Tree 4.

Tree 4 has the same rooted topology as Tree 2 but the long interior branch E1 is now

shortened to 0.1. Although the Yule prior generally favours more balanced trees than Tree

4, the prior for branch lengths no longer offers overwhelming support to placement of the

root on edge E1 . We find that the true root can now be recovered as the posterior mode
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(Figure 3.13) but with less support than in the analysis for Tree 3.
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Figure 3.13: Posterior distribution of the root splits for three different alignments simulated under
Tree 4. The tree has no long branches but it is less balanced than Tree 3. Still, the root is inferred
with the highest posterior support.

(v) Tree 5.

Tree 5 has the same rooted topology as Trees 1 and 3, but the root edge E1 has length

0.3, which lies between the corresponding values for Trees 1 and 3. As expected, we find

that the true root is inferred as the posterior mode (Figure 3.14), and the posterior is less

(more) concentrated around the mode in comparison to the analysis of Tree 1 (Tree 3)

(Figure 3.14).
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Figure 3.14: Posterior distribution of the root splits for three different alignments simulated under
Tree 5. The tree is balanced and the root edge is relatively long, so the true root split is inferred
quite high posterior support.

(vi) Tree 6.

Tree 6 has the same rooted topology as Trees 2 and 4, but the internal edge E1 has

length 0.3, which lies between the corresponding values for Trees 2 and 4. The unrooted

topology has a moderately long interior edge and the rooted topology is unbalanced, lead-
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ing to some prior-likelihood conflict. We find that a root on edge E1 sometimes receives

more posterior support than the true root (Figure 3.15), although, as expected, this effect

is less pronounced than in the analysis for Tree 2.
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Figure 3.15: Posterior distribution of the root splits for three different alignments simulated under
Tree 6. This tree has a relatively long internal branch. The support for the true root split decreases
in comparison to the same rooted tree with no long internal branch.

This simulation experiment illustrates the sensitivity of root inferences to conflict be-

tween the prior and the likelihood. The effect of a mismatch in information about branch

lengths is particularly noticeable. Given a particular unrooted topology, whilst the like-

lihood might support the presence of a long branch in the corresponding rooted tree, an

Exp(10) prior does not (Figure 3.16), and therefore favours placement of the root on the
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Figure 3.16: Prior distribution of the branch length, Exp(10). Vertical line represents the branch
length of 1.3. This plot shows that branches longer than approximately 0.3 have negligible prior
support.
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long edge. Long branches are not uncommon since overall rates of evolution can differ

over the tree (Foster, 2004) and therefore lead to fast lineages represented by the long

branches. Ideally constructing a more flexible prior which more explicitly models topol-

ogy and branch lengths jointly will contribute to better root inference. However, given

the absence of very long branches, our results show that the model is still able to extract

information from the data about the root even in the face of prior-likelihood conflict.

Run times

The analysis of an alignment with 2000 sites and 30 taxa took approximately 3 days to

obtain 500 000 MCMC iterations.

3.2 Two components model

Under the NR model, departures from the HKY85-structure could lead to a non-reversible

model or possibly just a more general reversible rate matrix. As such the two types of

deviation are confounded and so for any given data set, learning that σ is large does not

necessarily provide evidence of non-reversibility (Figure 3.17). The NR2 model addresses

this issue, thereby aiding model interpretation, by using a two-stage process to perturb

the underlying HKY85 rate matrix QH .

HKY85

1





Q1

Q

Q2

Q3

GTR

H

Figure 3.17: A figurative illustration of the space of rate matrices. The curve represents the
space of HKY85 matrices, the plane represents the space of GTR matrices which contains HKY85
matrices. The QH matrix might be perturbed with σ1 to obtain another HKY85 matrix Q1. It
might also be perturbed with σ2 to obtain a general reversible matrix Q2, or it might be perturbed
with σ3 to obtain a non-reversible matrix Q3. Hence, large σ does not necessarily provide evidence
of non-reversibility.

3.2.1 Model description

The two-stage perturbation process is designed as follows. The first perturbation is within

the space of GTR matrices, perpendicular to the subspace of HKY85 matrices, leading to a
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reversible rate matrix denoted QR. The second perturbation acts on QR and is within the

space of general rate matrices but perpendicular to the subspace of GTR matrices, leading

to a general non-reversible rate matrix denoted Q. These two random perturbations have

different variance parameters σ2
R and σ2

N respectively (Figure 3.18). Orthogonality ensures

that (at least locally) QR is not an HKY85 matrix, and Q is not reversible.

HKY85

R

N

Q

Q

Q

GTR

H

R

Figure 3.18: Two-stage process to perturb the underlying HKY85 rate matrix QH . The perturba-
tion within the set of reversible matrices is performed using σR, while the perturbation into the
non-reversible part of the rate matrix space is performed with σN .

The two-stage perturbation relies upon the underlying geometry of the space of Markov

rate matrices, and is achieved in the following way. We work on a log-scale element-wise

with all matrices, ignoring diagonal elements. The set of all possible 4-by-4 rate matrices

M is therefore identified with R12 which we equip with the standard inner product. The

sets of HKY85 matrices and GTR matrices form nested sub-manifolds of M . Recall that

working element-wise on a log-scale, the off-diagonal elements of the rate matrix of the

NR model can be expressed as, for i 6= j

log qij = log qHij + εij , (3.4)

where the εij are independent N(0, σ2) quantities. The element-wise log of the HKY85

matrix QH in equation (3.4) is

4∑
i=1

π̂is eTi + κ̂
(
e1e

T
2 + e2e

T
1 + e3e

T
4 + e4e

T
3

)
,

where (π̂1, π̂2, π̂3, π̂4) = (log πA, log πG, log πC , log πT ), κ̂ = log κ, ei is the i-th

standard basis vector of R4 and s = (1, 1, 1, 1)T . By differentiating with respect to

the parameters π̂1, π̂2, π̂3 and κ̂ we obtain 4 linearly independent vectors in M which

are locally tangent to the sub-manifold of HKY85 matrices at QH , and we denote these
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V1, V2, V3, V4. (Differentiating with respect to π̂4 gives a tangent vector contained in the

span of V1, V2, V3.) The tangent vectors in M correspond to the 4-by-4 matrices

Vi = s eTi − exp(π̂i − π̂4)s eT4 for i = 1, 2, 3,

and

V4 = e1e
T
2 + e2e

T
1 + e3e

T
4 + e4e

T
3 .

The element-wise log of the general GTR matrix is

4∑
i=1

π̂is eTi +
∑
i<j

ρ̂ij
(
eie

T
j + eje

T
i

)
,

where ρ̂ij is the log of the exchangeability parameter ρij (see Section 2.2.5). By differen-

tiating with respect to the ρ̂ij parameters, it is straightforward to obtain tangent vectors

V5, . . . , V9 to the sub-manifold of GTR matrices at QH , such that the set V1, . . . , V9 is

linearly independent:

V5 = (e1e
T
2 + e2e

T
1 )− (e3e

T
4 + e4e

T
3 )

V6 = (e1e
T
3 + e3e

T
1 ) + (e2e

T
4 + e4e

T
2 )

V7 = (e1e
T
3 + e3e

T
1 )− (e2e

T
4 + e4e

T
2 )

V8 = (e1e
T
4 + e4e

T
1 ) + (e2e

T
3 + e3e

T
2 )

V9 = (e1e
T
4 + e4e

T
1 )− (e2e

T
3 + e3e

T
2 )

Finally, standard linear algebra can be used to extend this collection to a basis V1, . . . , V12

of R12:

V10 = (e1e
T
2 − e2e

T
1 )− (e3e

T
4 + e4e

T
3 )

V11 = (e1e
T
3 − e3e

T
1 )− (e2e

T
4 + e4e

T
2 )

V12 = (e1e
T
4 − e4e

T
1 ) + (e2e

T
3 − e3e

T
2 )
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Thus, vectors V1, . . . , V12 form a 12-by-12 matrix with the following columns:

(0, 0, − exp(π̂1 − π̂4), 1, 0, − exp(π̂1 − π̂4), 1, 0, − exp(π̂1 − π̂4), 1, 0, 0)T

(1, 0, − exp(π̂2 − π̂4), 0, 0, − exp(π̂2 − π̂4), 0, 1, − exp(π̂2 − π̂4), 0, 1, 0)T

(0, 1, − exp(π̂3 − π̂4), 0, 1, − exp(π̂3 − π̂4), 0, 0, − exp(π̂3 − π̂4), 0, 0, 1)T

(1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1)T

(1, 0, 0, 1, 0, 0, 0, 0, ,−1, 0, 0, − 1)T

(0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0)T

(0, 1, 0, 0, 0, − 1, 1, 0, 0, 0, − 1, 0)T

(0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0)T

(0, 0, 1, 0, − 1, 0, 0, − 1, 0, 1, 0, 0)T

(1, 0, 0, − 1, 0, 0, 0, 0, − 1, 0, 0, 1)T

(0, 1, 0, 0, 0, − 1, − 1, 0, 0, 0, 1, 0)T

(0, 0, 1, 0, 1, 0, 0, − 1, 0, − 1, 0, 0)T

Next, the QR factorisation algorithm is applied to this matrix to obtain an orthonormal

basis of tangent vectors W1, . . . ,W12 which is used to perturb QH . First, QH is perturbed

using ν1, . . . , ν5 to obtain a GTR matrix QR where, for i 6= j

log qRij = log qHij +
9∑

k=5

νk−4Wkij ,

and the νk are independent N(0, σ2
R) and Wkij is the (i, j)-th element of the 4-by4 matrix

Wk. The choice of basis W1, . . . ,W12 ensures that this perturbation is locally orthogonal

to the sub-manifold of HKY85 matrices. The second stage perturbs QR into the space of

non-reversible rate matrices using η1, η2, η3: for i 6= j

log qij = log qRij +
12∑

k=10

ηk−9Wkij ,

and the ηk are independent N(0, σ2
N ) quantities. This perturbation is locally perpendicular

to the sub-manifold of GTR matrices in M . The equation determines the off-diagonal

elements of the non-reversible rate matrix Q, while the diagonal elements are fixed in order

to make the row sums zero. The size of the perturbation variance σ2
R can be thought of as

representing the extent to which the rate matrix Q departs from the class of HKY85 rate

matrices remaining within the class of reversible models, while σ2
N represents the extent

to which Q departs from being reversible. The hierarchical model for sequence data has
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the following structure:

QR

σR

QH Q

σN

Data

`, τ

α

π, κ

3.2.2 Prior

The parameters of the NR2 model are: the composition vector π, the transition-transversion

rate ratio κ, the perturbation standard deviation within the set of reversible matrices σR,

the perturbation standard deviation within the set of non-reversible matrices σN , the

gamma shape heterogeneity parameter α, the branch lengths ` and the rooted topology

τ . We also have latent variables comprising ν1, . . . , ν5 for the reversible perturbation, and

η1, η2, η3 for the non-reversible perturbation. The prior distribution of these unknowns

is given by

π(π, κ, σR, σN ,ν,η, α, `, τ) = π(π)π(κ)π(σR)π(σN )π(ν|σR)π(η|σN )π(α)π(`)π(τ).

The rate heterogeneity parameter α, branch lengths `, rooted topology τ and the

parameters π and κ of the reversible QH matrix are assigned the same priors as those

used for the NR model. Both perturbation standard deviations are assigned the same

prior as their analogue, σ, in the NR model, i.e. σR ∼ Exp(2.3) and σN ∼ Exp(2.3). As

discussed in Section 3.2.1, νi ∼ N(0, σ2
R) for i = 1, . . . , 5 independently, and ηi ∼ N(0, σ2

N )

for i = 1, 2, 3 independently.

3.2.3 Posterior inference via MCMC

Here the posterior distribution of the unknowns is given by

π(π, κ, σR, σN ,ν,η, α, `, τ |D) ∝ π(π, κ, σR, σN , α, `, τ)× π(ν|σR)× π(η|σN )

× π(D|π, κ,ν,η, α, `, τ)

and an analogous Metropolis-within-Gibbs algorithm is used to generate posterior samples:

(i) Metropolis-Hastings step for the composition vector π:

Prior: π ∼ D(αππ0), απ = 4, π0 = (0.25, 0.25, 0.25, 0.25).
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Proposal: π′ ∼ D(aππ), where π is the current value, aπ is a tuning parameter.

Acceptance probability: min {1, A}, where

A =
π(π′)

π(π)
× q(π|π′)
q(π′|π)

× π(D|π′, κ,ν,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)

=
4∏
i=1

Γ(aππi)

Γ(aππ′i)
π

(aππ′i−αππ0i)
i π

′(αππ0i−aππi)
i × π(D|π′, κ,ν,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)
.

(ii) Metropolis-Hastings step for the transition-transversion rate ratio κ:

Prior: κ ∼ LN(log κ0, ξ
2), κ0 = 1, ξ = 0.8.

Proposal: κ′ ∼ LN(log κ, a2
κ), where κ is the current value.

Acceptance probability: min {1, A}, where

A =
π(κ′)

π(κ)
× q(κ|κ′)
q(κ′|κ)

× π(D|π, κ′,ν,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)

= exp

[
1

2ξ2

{
(log κ)2 − (log κ′)2 + 2 log κ0(log κ′ − log κ)

}]
× π(D|π, κ′,ν,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)
.

(iii) Metropolis-Hastings step for the reversible perturbation standard deviation σR:

Prior: σR ∼ Exp(γ), γ = 2.3.

Proposal: σ′R ∼ LN(log σR, a
2
σR

), where σR is the current value.

Acceptance probability: min {1, A}, where

A =
π(σ′R)

π(σR)
×
q(σR|σ′R)

q(σ′R|σR)
×
π(ν|σ′R)

π(ν|σR)
× π(D|π, κ,ν,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)

=
π(σ′R)

π(σR)
×
q(σR|σ′R)

q(σ′R|σR)
×
π(ν|σ′R)

π(ν|σR)

=

(
σR
σ′R

)4

exp

{
γ(σR − σ′R)− 1

2

(
1

σ
′2
R

− 1

σ2
R

) 5∑
i=1

ν2
i

}
.

(iv) Metropolis-Hastings step for the reversible perturbation component ν (a sweep through

all the elements of ν):

Prior: νk ∼ N(0, σ2
R), k = 1, . . . , 5.
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Proposal: ν ′k ∼ N(νk, a
2
νk

), where νk is the current value.

Acceptance probability: min {1, A}, where

A =
π(ν ′)

π(ν)
×
q(νk|ν ′k)
q(ν ′k|νk)

× π(D|π, κ,ν ′,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)

= exp

{
5∑

k=1

(
ν2
k − ν

′2
k

)
/
(
2σ2

R

)}
× π(D|π, κ,ν ′,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)
.

(v) Metropolis-Hastings step for the non-reversible perturbation standard deviation σN :

Prior: σN ∼ Exp(γ), γ = 2.3.

Proposal: σ′N ∼ LN(log σN , a
2
σN

), where σN is the current value.

Acceptance probability: min {1, A}, where

A =
π(σ′N )

π(σN )
×
q(σN |σ′N )

q(σ′N |σN )
×
π(η|σ′N )

π(η|σN )
× π(D|π, κ,ν,η, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)

=
π(σ′N )

π(σN )
×
q(σN |σ′N )

q(σ′N |σN )
× π(η|σ′n)

π(η|σN )

=

(
σN
σ′N

)2

exp

{
γ(σN − σ′N )− 1

2

(
1

σ
′2
N

− 1

σ2
N

) 3∑
i=1

η2
i

}
.

(vii) Metropolis-Hastings step for the non-reversible perturbation component η (a sweep

through all the elements of η):

Prior: ηk ∼ N(0, σ2
N ), k = 1, 2, 3.

Proposal: η′k ∼ N(ηk, a
2
ηk

), where ηk is the current value.

Acceptance probability: min {1, A}, where

A =
π(η′)

π(η)
×
q(ηk|η′k)
q(η′k|ηk)

× π(D|π, κ,ν,η′, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)

= exp

{
3∑

k=1

(
η2
k − η

′2
k

)
/
(
2σ2

N

)}
× π(D|π, κ,ν,η′, α, `, τ)

π(D|π, κ,ν,η, α, `, τ)
.

Metropolis-Hastings steps for the gamma shape heterogeneity parameter α, the branch

lengths ` and the topology τ are the same as those used for the NR model.
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3.2.4 Simulation study

The simulations are performed in a similar manner as for the first block of the simulations

for the NR model. We use the same rooted tree (Figure 3.6) to create nine alignments

for each one of five values of σN = 0, 0.1, 0.25, 0.5, 1.0. In all the simulations we used

the same value for the reversible perturbation, σR = 0.1. Note, that the case of σN = 0

corresponds to the GTR model. The values of σN = 0.1, 0.25, 0.5, 1.0 were chosen so that

in the prior for the stationary distribution, some nucleotides are not heavily favoured over

the others (Figure 3.19). We note, that this type of perturbation allows us to use larger

values of σN in comparison to the values of σ in the NR model, while still maintaining a

realistic stationary distribution. As for the NR model, for each value of σN the first five

alignments were simulated from different rate matrices (data sets 1 - 5), while the last

five alignments were simulated from the same rate matrix (data sets 5 - 9). All of the

alignments were simulated using a gamma shape heterogeneity parameter simulated from

Ga(10, 10).
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Figure 3.19: Boxplot of the prior for the first element of the stationary distribution for different
values of σN with σR = 0.1, conditional on the rate matrix QH (the priors for the rest of the
elements of the stationary distribution are the same due to symmetry). Increasing the value of σN
clearly increases the spread in the prior for the stationary probabilities.

Figure D.1 in Appendix D displays the posterior probabilities of the root splits for data

sets simulated with five different values of σN and analysed with the Yule prior. As with

the NR model, when σN = 0 the posterior of the root splits is very similar to the prior, as

expected given that the data contain no information about the root. As σN increases, the

root is inferred better, with σN = 1 demonstrating the best root inference of all the values
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of σN analysed. It is clear, that the NR2 model infers the true root split better than the

NR model. For large values of σN the true root split has very high posterior support for

all cases. This can be explained by the fact that the structure of the NR2 model allows

using larger values of the non-reversible perturbation component which is the source of

the root information. Indeed, when fitting the NR model to the data simulated under the

NR2 model, we obtained very similar root inferences to those summarised in Figure D.1

in Appendix D, with strong posterior support for the correct root position for large σN

(not shown). The unrooted topologies are inferred with the highest posterior probabilities

for all the values of σ (Figure D.2, Appendix D). The analysis of the same data sets

performed with the structured uniform prior shows similar results (Figures E.1 and E.2,

Appendix E).

Run times

The analysis of an alignment with 2000 sites and 30 taxa took approximately 3 days to

obtain 500 000 MCMC iterations (similarly to the NR model).

3.3 Model for Dayhoff re-coding

3.3.1 Model description

The model is based on a GTR model for Dayhoff-recoding which is specified by the fol-

lowing rate matrix:

QG = (qij) =



? ρ12π2 ρ13π3 ρ14π4 ρ15π5 ρ16π6

ρ12π1 ? ρ23π3 ρ24π4 ρ25π5 ρ26π6

ρ13π1 ρ23π2 ? ρ34π4 ρ35π5 ρ36π6

ρ14π1 ρ24π2 ρ34π3 ? ρ45π5 ρ46π6

ρ15π1 ρ25π2 ρ35π3 ρ45π4 ? ρ56π6

ρ16π1 ρ26π2 ρ36π3 ρ46π4 ρ56π6 ?


,

where π = (π1, π2, π3, π4, π5, π6) is the amino-acid frequency vector for six Dayhoff

groups and ρij , i = 1, . . . , 5, j = i+ 1, . . . , 6 are the exchangeability parameters. As with

the NR model for DNA, the non-reversibility of this model is achieved by a log-normal

perturbation of the off-diagonal elements of the rate matrix QG.

3.3.2 Prior

The parameters of the model are: the composition vector π, the exchangeability parame-

ters ρij , i = 1, . . . , 4, j = i+1, . . . , 6 (ρ56 is fixed to 1 for identifiability), the perturbation

standard deviation σ, the off-diagonal elements of the rate matrix Q, the shape parameter
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for the gamma distribution for the across site variation α, the branch lengths ` and the

rooted topology τ . The prior distribution of the parameters is given by:

π(π,ρ, σ,Q, α, `, τ) = π(π)π(ρ)π(σ)π(Q|π,ρ, σ)π(α)π(`)π(τ).

The composition vector π is defined on the six-dimensional simplex, that is it has five

free positive elements and the sixth positive one is fixed such that the elements of π

sum to 1. We choose to assign it a Dirichlet prior, that is π ∼ D(αππ0), where π0 =

(1/6, 1/6, 1/6, 1/6, 1/6, 1/6) and απ is a concentration parameter equal to 6. Elements

of ρ are assigned a log-normal prior with median 1 and standard deviation 0.9, i.e. ρ ∼
LN(log 1, 0.92). Priors for σ, α, ` and τ are the same as in the NR model for DNA.

3.3.3 Posterior inference via MCMC

The posterior distribution of the parameters is given by

π(π,ρ, σ,Q, α, `, τ |D) ∝ π(Q|π,ρ, σ)× π(π,ρ, σ, α, `, τ)× π(D|Q,α, `, τ).

(i) Metropolis-Hastings step for the composition vector π, the standard deviation σ, the

off-diagonal elements of the rate matrix Q, the gamma shape heterogeneity parameter α,

and also for the branch lengths ` and the topology τ are similar as in the NR model for

DNA.

(ii) Metropolis-Hastings step for the exchangeability parameters ρij , i = 1, . . . , 4, j =

i+ 1, . . . , 6 (a sweep through all ρij):

Prior: ρij ∼ LN(log ρ0, λ
2), ρ0 = 1, λ = 0.9.

Proposal: ρ′ij ∼ LN(log ρij , a
2
ρ), where ρij is the current value.

Acceptance probability: min {1, A}, where

A =
π(ρ′ij)

π(ρij)
×
q(ρij |ρ′ij)
q(ρ′ij |ρij)

× π(Q|π,ρ′, σ)

π(Q|π,ρ, σ)
× π(D|Q,α, `, τ)

π(D|Q,α, `, τ)

=
π(ρ′ij)

π(ρij)
×
q(ρij |ρ′ij)
q(ρ′ij |ρij)

× π(Q|π,ρ′, σ)

π(Q|π,ρ, σ)

= exp

[
1

2λ2

{
(log ρij)

2 − (log ρ′ij)
2 + 2 log ρ0(log ρ′ij − log ρij)

}]

× exp

 1

2σ2

∑
i 6=j

{
(log qGij)

2 − (log qG
′

ij )2 + 2 log qij(log qG
′

ij − log qGij)
} ,

and qG
′

ij are the off-diagonal elements of the GTR rate matrix computed with ρ′ij .
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3.3.4 Simulation study

In order to simulate the alignments, we first fixed the underlying reversible GTR rate

matrix using the following values of ρ and π:

ρ = (0.9187689, 0.563163, 0.5723444, 0.1938824, 1.412338,

1.849246, 0.2421764, 0.1396191, 0.1699077, 0.2715765,

0.8613947, 0.39612, 0.7532268, 0.9419012, 0.9803037),

π = (0.25, 0.2, 0.15, 0.2, 0.15, 0.05).

The values of ρ were calculated based on the exchangeability values of the empirical LG

model (averaged over the Dayhoff categories). The values of π are proportional to the

numbers of the amino-acids in each category. We then apply a log-normal perturbation on

the off-diagonal elements of the rate matrix QG using the perturbation standard deviation

σ = 0.3.

Here we compare the inference for two different root placements on the unrooted tree

from Williams et al. (2012) (Figure 3.9). Figure 3.20 shows the posterior distribution of

the root splits and the unrooted topologies for the data simulated under the tree rooted

according to the three-domains hypothesis (on the longest edge E1), while Figure 3.21

shows the posterior probabilities of the root splits and the unrooted topologies for the

data simulated under the tree rooted according to the eocyte hypothesis (on edge E2).

While the unrooted topology is inferred well for both trees, clearly rooting is easier when

the data are simulated under the more balanced tree rooted on the longest edge.
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Figure 3.20: Posterior probabilities of the root splits (left) and the unrooted topologies (right) for
the non-reversible model for Dayhoff-recoding. The alignment was simulated under the tree shown
in Figure 3.9, rooted according to the three-domains hypothesis (root on branch E1). The true
root split and the true unrooted topology are recovered as the posterior mode.
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Figure 3.21: Posterior probabilities of the root splits (left) and the unrooted topologies (right) for
the non-reversible model for Dayhoff-recoding. The alignment was simulated under the tree shown
in Figure 3.9, rooted according to the eocyte hypothesis (root on branch E2). While the unrooted
topology has very high posterior support, the posterior probability of the true root decreases in
comparison to the analysis for the three-domains tree shown in Figure 3.20, presumably due to the
presence of the long internal branch.

Run times

The analysis of an alignment with 2000 sites and 30 taxa took approximately 6 days to

obtain 250 000 MCMC iterations.

Summary

In this chapter we have presented two hierarchical non-reversible models which are centered

on a reversible rate matrix, and which also differ in the structure of the perturbation. The

first model uses one perturbation component which allows a departure from the HKY85

structure. In contrast, the second model utilises two perturbation components: one which

allows a departure from the HKY85 structure towards the general time-reversible struc-

ture, and another which allows a departure from the general time-reversible structure.

For each model we performed a simulation study for the data with different values of the

perturbation parameter. The study showed that the larger the level of non-reversibility in

the data the better the root inference is for both models, suggesting that a large degree

of non-reversibility provides a better signal for the position of the root. We have also in-

vestigated the sensitivity of the model to the conflict between the prior and the likelihood

concerning the rooted topology and branch lengths. The simulation study showed that

the model is quite robust to the prior-likelihood conflict, given the absence of very long

branches.
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Non-stationary substitution

models

This chapter focuses on two non-stationary models. The first model is based on the

reversible HKY85 model but incorporates non-stationarity by allowing the evolutionary

process to start from a distribution that can differ from the equilibrium distribution. The

second model adopts the same idea of modelling non-stationarity, but it is based on the

non-reversible NR model described in Chapter 3.

4.1 Non-stationary reversible model

The models described in Chapter 3 are stationary. This means that the probability of

being in each state (e.g. each nucleotide for DNA) does not change over time and the

probabilities of transitioning between states over some time interval depend only on the

size of that interval and not on its position in time (meaning that the base composition

is constant over time). This assumption is unrealistic from a biological point of view. If

it was true, the average composition of the nucleotides would have remained unchanged

throughout evolutionary time. Thus stationarity assumption imply all taxa in alignment

had sequences with approximately the same proportions of the four nucleotides. Many

data sets show evidence that this is not the case (Yang & Roberts, 1995; Foster, 2004; Cox

et al., 2008). In fact, the composition is known to change over time, for example due to

adaptation to different environmental conditions (Penny et al., 2001; Lopez et al., 2002).

It has been shown that failing to accommodate such an important feature of the evolu-

tionary process is one of the reasons for a failure to obtain the correct topology (Foster,

2004). Here, we accommodate non-stationarity by introducing an additional composition

vector πroot which specifies a nucleotide frequency at the root vertex. Thus, the model

has two composition vectors: the composition at the root πroot and the stationary com-

74



Chapter 4. Non-stationary substitution models

position π. In other words, the evolutionary process is not assumed to have started at

the equilibrium distribution. We use an HKY85 rate matrix model to describe the sub-

stitution of nucleotides along branches. Even though the underlying model is reversible,

the whole process is non-stationary: the theoretical stationary distribution derived from

the rate matrix by πQ = 0 can be different from the composition at the root vertex.

The parameters of the model are: the composition vector at the root vertex πroot, the

theoretical stationary distribution π, the transition-transversion rate ratio κ, the gamma

shape heterogeneity parameter α, the branch lengths ` and the rooted topology τ .

A non-stationary model in which the initial distribution is not the equilibrium distri-

bution has been considered previously in a maximum likelihood framework (Yap & Speed,

2005). It has been found to fit the data better than the stationary non-reversible model.

In that study, however, the topology was fixed and the number of taxa was small (no

more than nine). Here, we do not fix the unrooted topology and extend the inferential

algorithm to allow inference of rooted trees with a greater number of taxa.

4.1.1 Prior

We assume that π, κ, α, ` and τ are independent a priori and assign the same prior as in

the NR model, i.e. a Dirichlet prior for the composition (π ∼ D(1, 1, 1, 1)), a log-normal

prior for the transition-transversion rate ratio (κ ∼ LN(0, 0.82)) and a gamma prior for

the gamma shape heterogeneity parameter (α ∼ Ga(10, 10)). However, the distribution at

the root is not assumed to be independent of the rate matrix. Rather, its prior is centred

on the theoretical stationary distribution π: πroot|π ∼ D(kπ), where k is a concentration

parameter. The prior distribution of the parameters is given by

π(π,πroot, κ, α, `, τ) = π(π)π(πroot|π)π(κ)π(α)π(`)π(τ).

We explore two possibilities: (a) fixing the concentration parameter k of the Dirichlet

prior for the composition at the root vertex πroot; (b) inferring the concentration parameter

k.

Fixing the concentration parameter

In order to choose the value of the concentration parameter k, we begin by analysing

plots of the marginal prior distribution for one component of πroot for different values

of k (the distribution of the other components is the same due to symmetry). Since

πroot|π ∼ D(kπ), each of the elements of πroot has a beta distribution

πroot,i|πi ∼ Beta(kπi, k(1− πi)),
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where πi ∼ Beta(1, 3) because π ∼ D(1, 1, 1, 1). We use five values of k: k = 1, 4, 16, 64,

and also the case of a perfect positive dependence between the πroot and π where k →∞
(denoted by “Stat”, because this case corresponds to a stationary model). For smaller

values of k the support is given to small values of πroot,i (πroot,i < 0.2). As k increases,

the distribution of πroot,i approaches the distribution of πi. The larger the value of k, the

more support is given to values of πroot,i between approximately 0.2 and 0.6, and the less

support is given to values of πroot,i > 0.6 (Figure 4.1). We continue our analysis with (i)

calculating the marginal prior correlation between πroot,i and πi for different values of k,

and (ii) performing prior predictive simulations for different values of k.
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Figure 4.1: Prior distribution for one component of the composition at the root πroot for different
values of the concentration parameter k (the distribution of the other components is the same due
to symmetry).

(i) In order to calculate the marginal prior correlation between πroot,i and πi, we first

calculate the marginal prior variance of πroot,i. Let us denote πi by π and πroot,i by πroot.

The marginal prior variance of πroot is

Var(πroot) = E {Var(πroot|π, k)}+ Var {E(πroot|π, k)} . (4.1)
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The first term on the RHS of equation (4.1) is

E {Var(πroot|π, k)} = E

{
kπ × k(1− π)

(kπ + k(1− π))2(kπ + k(1− π) + 1)

}
= E

{
k2π(1− π)

k2(k + 1)

}
= E

(
π − π2

k + 1

)
=

1

k + 1

{
E(π)− E

(
π2
)}

=
1

k + 1

[
E(π)−Var(π)− {E(π)}2

]
=

1

k + 1
(0.25− 0.0375− 0.0625)

=
0.15

k + 1
.

The second term on the RHS of equation (4.1) is

Var {E (πroot|π, k)} = Var

{
kπ

kπ + k(1− π)

}
= Var(π) = 0.0375.

Adding both terms on the RHS of equation (4.1) together gives

Var(πroot) =
0.15

k + 1
+ 0.0375.

We next calculate the marginal prior covariance between πroot and π as

Cov(πroot, π) = E(πrootπ)− E(πroot)E(π). (4.2)

The first term on the RHS of equation (4.2) is

E(πrootπ) = Eπ{E(πrootπ|π)} = Eπ{πE(πroot|π)} = E(π2).

Now equation (4.2) can be rewritten as

Cov(πroot, π) = E(π2)− E(πroot)E(π) = E(π2)− {E(π)}2 = Var(π).
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Using the marginal prior covariance Cov(πroot, π) and marginal prior variance Var(πroot),

we can calculate the the marginal prior correlation between πroot and π:

Cor(πroot, π) =
Cov(πroot, π)√

Var(πroot)
√

Var(π)

=
Var(π)√

Var(πroot)
√

Var(π)

=

√
Var(π)

Var(πroot)

=

√
0.0375

0.15(k + 1)−1 + 0.0375
. (4.3)

The values of Cor(πroot, π) for different values of k are

k Cor(πroot, π)

1 0.5773503

4 0.745356

16 0.887354

64 0.9705818

As k →∞, Cor(πroot, π)→ 1 and we get perfect positive dependence between πroot and π.

For k = 16 the marginal prior correlation between the πroot and π is moderate. This fact

combined with the information from the plot shown on Figure 4.1 suggests that k = 16 is

a sensible choice.

(ii) We perform prior predictive simulations for three different numbers of taxa (n =

5, n = 16 and n = 36). For each number of taxa we use five values of k: k = 1, 4, 16, and

also the case of independence between the πroot and π (denoted by “Ind”) and the case

of a perfect positive dependence between the πroot and π (denoted by “Stat”). Figure 4.2

shows the prior predictive means of the 0-th, 25-th, 50-th, 75-th and 100-th percentiles of

one component of the empirical composition in the n-taxa alignment for each value of k

and n. For k = 16 the empirical composition is modestly concentrated around its mean

and is in the range of biologically plausible values, thus confirming our choice of k = 16.

Inferring the concentration parameter

In order to infer the concentration parameter we adopt an inverse gamma prior k ∼
IG(a, b). Based on the previous analysis, we chose to centre the prior at the value of

16. In order to choose the values of the hyperparameters a and b, we first analyse the

distribution of k for different values of a and b (Figure 4.3a), and also the marginal prior

density for one component of the composition at the root πroot,i for different values of a
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Figure 4.2: Prior predictive means of the 0-th, 25-th, 50-th, 75-th and 100-th percentiles of one
component of the empirical composition in the n-taxa alignment for each value of k and n. The
cases of independence between the πroot and π is denoted by “Ind” and the case of a perfect
positive dependence between the πroot and π is denoted by “Stat”.
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Figure 4.3: Graphical analysis of the composition at the root πroot for different values of the
concentration parameter k. (a) Density of k for different values of a and b (k ∼ IG(a, b)). In each
case k has the mean of 16. (b) Marginal density of one element of the πroot for different a and b.
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Table 4.1: Marginal prior variance of πroot for different hyperparameters a and b of the prior for
the concentration parameter k.

a b Var(πroot)

5 96 0.04485711
15 256 0.04577384
77 1248 0.04621079

Table 4.2: Marginal prior correlation between the composition at the root and the stationary
distribution for different hyperparameters a and b of the prior for the concentration parameter k.

a b Cor(πroot, π)

5 96 0.9143237
15 256 0.9051217
77 1248 0.9008323

and b (Figure 4.3b). Interestingly, the densities of one element of πroot are very similar for

different a and b, suggesting that the choice of the hyperparameters does not really affect

the marginal distribution of the πroot. To confirm this result we calculate the marginal

prior variance for one of the elements of πroot according to equation (4.1)

Var(πroot) = E {V ar(πroot|π, k)}+ 0.0375

= 0.15E

(
1

k + 1

)
+ 0.0375

= 0.15

∫ ∞
0

ba

Γ (a)

e
−b
k

k + 1
k−a−1dk + 0.0375

= 0.15
ba

Γ (a)

∫ ∞
0

e
−b
k

k + 1
k−a−1dk + 0.0375.

Table 4.1 shows that the marginal prior variance of one of the elements of the composi-

tion at the root is very similar for different hyperparameters a and b; the integrals here

were evaluated using http://www.numberempire.com/definiteintegralcalculator.php. The

marginal prior correlation between the composition at the root and the stationary distri-

bution, calculated according to equation (4.3) is also very similar for different values of a

and b (Table 4.2), in accord with the simulations results.

In conclusion, the analytical results confirm that the composition at the root is not

affected by the choice of the hyperparameters of the concentration parameter. We therefore

decide to fix the concentration parameter at the value of 16.
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4.1.2 Posterior inference via MCMC

The posterior distribution of the unknowns is given by

π(π,πroot, κ, α, `, τ) ∝ π(π, κ, α, `, τ)× π(πroot|π)× π(D|π,πroot, κ, α, `, τ)

and the following Metropolis-within-Gibbs algorithm is used to generate posterior sam-

ples.

(i) Metropolis-Hastings step for the composition vector π:

Prior: π ∼ D(αππ0), απ = 4, π0 = (0.25, 0.25, 0.25, 0.25).

Proposal: π′ ∼ D(aππ), where π is the current value, aπ is a tuning parameter.

Acceptance probability: min {1, A}, where

A =
π(π′)π(πroot|π′)
π(π)π(πroot|π)

× q(π|π′)
q(π′|π)

× π(D|π′,πroot, κ, α, `, τ)

π(D|π,πroot, κ, α, `, τ)

=
4∏
i=1

Γ(aππi)Γ(kπi)

Γ(aππ′i)Γ(kπ′i)
π

(aππ′i−αππ0i)
i π

′(αππ0i−aππi)
i π

k(π′i−πi)
root,i

× π(D|π′,πroot, κ, α, `, τ)

π(D|π,πroot, κ, α, `, τ)
.

(ii) Metropolis-Hastings step for the composition at the root πroot:

Prior: πroot ∼ D(kπ).

Proposal: π′root ∼ D(aπrπroot), where πroot is the current value, aπr is a tuning parameter.

Acceptance probability: min {1, A}, where

A =
π(π′root)

π(πroot)
× q(πroot|π′root)
q(π′root|πroot)

× π(D|π,π′root, κ, α, `, τ)

π(D|π,πroot, κ, α, `, τ)

=
4∏
i=1

Γ(aπrπroot,i)

Γ(aπrπ
′
root,i)

π
(aπrπ

′
root,i−kπi)

root,i π
′(kπi−aπrπroot,i)
root,i

× π(D|π,π′root, κ, α, `, τ)

π(D|π,πroot, κ, α, `, τ)
.

(iii) Metropolis-Hastings step for the transition-transversion rate ratio κ:

Prior: κ ∼ LN(log κ0, ξ
2), κ0 = 1, ξ = 0.8.

Proposal: κ′ ∼ LN(log κ, a2
κ), where κ is the current value.
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Acceptance probability: min {1, A}, where

A =
π(κ′)

π(κ)
× q(κ|κ′)
q(κ′|κ)

× π(D|π,πroot, κ′, α, `, τ)

π(D|π,πroot, κ, α, `, τ)

= exp

[
1

2ξ2

{
(log κ)2 − (log κ′)2 + 2 log κ0(log κ′ − log κ)

}]
× π(D|π,πroot, κ′, α, `, τ)

π(D|π,πroot, κ, α, `, τ)
.

(iv) Metropolis-Hastings step for the joint move of the root split and the composition at

the root πroot:

This step is introduced in order to improve the mixing and the speed of convergence.

It is motivated by the fact that changing the root split independently of the composition

at the root might result in non-compatibility of the root split and the composition at the

root, and therefore in low acceptance rates for the root move. In this move we propose

both a new root as described in Section 3.1.4, and a new value for the composition at the

root π′root ∼ D(aπrπroot), where πroot is the current value and aπr is a tuning parameter.

The acceptance probability of this move is min {1, A}, where

A =
π(π′root)π(τ ′)

π(πroot)π(τ)
×π(`′)

π(`)
×q(πroot|π

′
root)

q(π′root|πroot)
×w(1− w)

u(1− u)
×

`eg
`ea + `eb

×π(D|π,π′root, κ, α, `, τ ′)
π(D|π,πroot, κ, α, `, τ)

,

the variable u ∼ Beta(2, 2) is the auxiliary variable for the proposed root move, w =

`eg/(`ea + `eb) is the auxiliary variable for the reverse move, `eg is the length of the

proposed rooting edge, `ea and `eb are the lengths of the two edges adjacent to the current

root (Figure 3.5), and `eg/(`ea + `eb) is the Jacobian (Blanquart & Lartillot, 2006).

82



Chapter 4. Non-stationary substitution models

4.1.3 Simulation study

The simulations aim to investigate the influence of different topologies, different levels of

non-stationarity, different alignment lengths and different topological priors on the root

inference. We present two blocks of simulations. The first block was performed using data

simulated under a random tree with the branch lengths sampled from Ga(2,20) (Figure

4.4). The second block was performed using data simulated under a tree derived from

Williams et al. (2012) (a rooted version of the unrooted 30-taxon tree used in Chapter 3,

Figure 3.9). The placement of the root in this tree corresponds to the eocyte hypothesis

(root on branch E2).
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Figure 4.4: Rooted random 30-taxon tree with the branch lengths simulated from Ga(2,20).
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Table 4.3: Three data sets simulated with the same HKY85 rate matrix and with different com-
position at the root πroot.

Data set πroot
L (0.27, 0.27, 0.23, 0.23)
M (0.3, 0.3, 0.2, 0.2)
H (0.33, 0.33, 0.17, 0.17)

Block One

Different levels of non-stationarity in the data

In order to investigate the effect of the non-stationarity on the root inference, we simulated

alignments with different levels of non-stationarity under the random tree discussed above.

The alignments with the lengths of 2000 sites were simulated with the same HKY85 rate

matrix (π = (0.25, 0.25, 0.25, 0.25) and κ = 2), but with different composition vectors

at the root vertex (Table 4.3). The data set L has a low level of non-stationarity, the

data set M has a moderate level of non-stationarity and the data set H has a high level of

non-stationarity. Figure 4.5 shows the posterior distribution of the root splits from three

alignments simulated for each level of non-stationarity. The analysis of the alignment

with the high level of non-stationarity clearly infers the root better in comparison to the

low level of non-stationarity. However, there is a substantial amount of variation between

the analyses based on the alignments simulated with the same level of non-stationarity,

presumably due to stochastic variation between the simulated data sets.

Block Two

In addition to exploring the effect of different levels of non-stationarity in the data, in this

block we explore the effect of different topological priors, different alignment lengths and

different concentration parameter for the prior for the composition at the root πroot. Here

we use data simulated under a rooted version of the tree shown in Figure 3.9, where the

root is placed on branch E2.

Different topological priors

A data set was simulated with a HKY85 rate matrix (π = (0.25, 0.25, 0.25, 0.25) and

κ = 2) with the composition at the root πroot = (0.25275, 0.31256, 0.14223, 0.29247)

(simulated from the prior). Figure 4.6 shows the posterior probabilities of the root splits

for the analysis with the Yule prior and the structured uniform prior. The posterior

probability of the true root is the highest for the Yule prior and the second highest for

the structured uniform prior. This suggest that the NS model is able to extract the
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Figure 4.5: Posterior distribution of the root splits for the data simulated with different levels
of non-stationarity: (a) L data set (πroot = (0.27, 0.27, 0.23, 0.23)); (b) M data set (πroot =
(0.3, 0.3, 0.2, 0.2)); (c) H data set (πroot = (0.33, 0.33, 0.17, 0.17)). For each level of non-
stationarity three alignments simulated using the same Q matrix are analysed.
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Figure 4.6: Posterior distribution of the root splits for the data simulated under the tree shown
in Figure 3.9, rooted according to the eocyte hypothesis (root on branch E2) with πroot simulated
from the prior, analysed with (a) the Yule prior; (b) the structured uniform prior. The true root
split has the highest posterior support for the Yule prior and the second highest for the structured
uniform prior. On the other hand, the root split on branch E1 has the highest posterior support
for the structured uniform prior and the second highest posterior support for the Yule prior.

information about the root from data simulated under the tree inferred from the analysis

of real data. We note, that this tree is rooted on the rather short branch E2, thus making

the inference more difficult. However, root on the rather long branch E1 has the highest

posterior probability for the structure uniform prior and second highest for the Yule prior.

This illustrates the sensitivity to of the model to the topological prior.

Combination of different levels of non-stationarity in the data with different

concentration parameters for the prior for the composition at the root

We tested the model on three different data sets having different levels of non-stationarity.

The data sets were simulated with the same HKY85 rate matrix (π = (0.25, 0.25, 0.25, 0.25)

and κ = 2), but with a different composition at the root vertex (Table 4.3). We already

analysed different levels of non-stationarity in the data in block one, however that analysis

was performed using only one value of the concentration parameter for the prior for πroot

(k = 16). Here we analysed each data set with four values of the concentration parameter

for the composition at the root: k = 1, 4, 16, 64. Figure 4.7 shows that a large degree of

non-stationarity helps to infer the root split better, while the prior for the concentration

parameter for the composition at the root makes very little difference. The composition

at the root is inferred well in all cases (shown in Figure F.1, Appendix F).
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Figure 4.7: Posterior distribution of the root splits for the data simulated under the tree shown in
Figure 3.9, with different levels of non-stationarity, analysed with different values of the concen-
tration parameter for the composition at the root.
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Different alignment length

We compared the root inference for two data sets simulated with the same parameters

but with different lengths. Both data sets were simulated with the moderate level of non-

stationarity (πroot = (0.3, 0.3, 0.2, 0.2)), one having 2000 sites, the other having 10000

sites. Increasing the alignment lengths substantially improved the root inference (Figure

4.8). Figure 4.9 shows the posterior distribution of the composition at the root for both

alignments. The true values of the composition at the root are shown with the black line.

Clearly the composition at the root is better inferred for the longer alignment.
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Figure 4.8: Posterior distribution of the root splits for the alignments with different lengths: (a)
2000 sites; (b) 10000 sites.
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Figure 4.9: Posterior distribution of the composition at the root for the alignments with different
lengths (black line - 2000 sites, green line - 10000 sites). The true values are indicated with dashed
vertical lines (the same for both alignments).

4.2 Non-stationary non-reversible one component model

The NS model discussed above utilises a reversible HKY85 rate matrix to describe the

substitution process along branches. In this section we combine the idea of non-stationarity

with the NR model to obtain a non-reversible and non-stationary model which we denote

NRNS. We note that in the NRNS model the prior for the composition at the root πroot

depends on the theoretical stationary distribution πQ which is not the same as π, the

composition vector in the underlying HKY85 rate matrix QH .

4.2.1 Posterior inference via MCMC

The posterior distribution of the unknowns is given by

π(π,πroot, κ, σ,Q, α, `, τ) ∝ π(Q|π, κ, σ)× π(π, κ, σ, α, `, τ)× π(πroot|πQ)

× π(D|Q,πroot, α, `, τ).
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The Metropolis-within-Gibbs algorithm used to generate posterior samples from the un-

derlying HKY85 rate matrix QH is similar to those described previously.

(i) Metropolis-Hastings step for the composition vector π:

Prior: π ∼ D(αππ0), απ = 4, π0 = (0.25, 0.25, 0.25, 0.25).

Proposal: π′ ∼ D(aππ), where π is the current value, aπ is a tuning parameter.

Acceptance probability: min {1, A}, where

A =
π(π′)

π(π)
× q(π|π′)
q(π′|π)

× π(Q|π′, κ, σ)

π(Q|π, κ, σ)
× π(D|Q,πroot, α, `, τ)

π(D|Q,πroot, α, `, τ)
.

Note that A is calculated similarly to its analogue in the NR model.

In fact, Metropolis-Hastings steps for κ, σ and α are also similar to their analogues

in the NR model, and the Metropolis-Hastings step for the composition at the root is

similar to its analogue in the NS model. However, the Metropolis-Hastings step for the

off-diagonal elements of the rate matrix Q is different from its analogue in the NR model.

This step includes evaluating the prior for the distribution at the root, since the latter

depends on the rate matrix Q:

Prior: qij ∼ LN(log qHij , σ
2).

Proposal: q′ij ∼ LN(log qij , a
2
q), where qij is the current value.

Acceptance probability: min {1, A}, where

A =
π(Q′ij |π, κ, σ)π(πroot|πQ′)
π(Qij |π, κ, σ)π(πroot|πQ)

×
q(qij |q′ij)
q(q′ij |qij)

× π(D|Q′,πroot, α, `, τ)

π(D|Q,πroot, α, `, τ)

=

4∏
i=1

Γ(kπQ,i)

Γ(kπQ′,i)
π
k(πQ′,i−πQ,i)
root,i

× exp

 1

2σ2

∑
i 6=j

{
(log qij)

2 − (log q′ij)
2 + 2 log qHij (log q′ij − log qij)

}
× π(D|Q′,πroot(Q′), α, `, τ)

π(D|Q,πroot(Q), α, `, τ)
,

and πQ′ is the stationary distribution obtained from Q′.

4.2.2 Simulation study

The simulations focus on investigating the effect of different levels of non-stationarity and

non-reversibility in the data simulated under the trees used in the simulations for the NS

model (Section 4.1.3).
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Block One

Different levels of non-stationarity

We use a random 30-taxon tree with branch lengths simulated from Ga(2,20) (Figure 4.4)

to simulate alignments with different levels of non-stationarity. The alignments contain

the same (moderate) level of non-reversibility, each alignment has 2000 sites. Figure 4.10

shows the posterior distribution of the root splits for 3 alignments simulated with σ = 0.1

and different levels of non-stationarity (Table 4.3). As expected, the inference is better for

the data set having a higher level of non-stationarity. Apart from higher posterior support

for the true root split, the analysis of the alignment with larger degree of non-stationarity

also shows less posterior variation on the root splits.
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Figure 4.10: Posterior distribution for the root splits for the data simulated with σ = 0.1 and
different levels of non-stationarity (a) L data set (πroot = (0.27, 0.27, 0.23, 0.23)); (b) M data set
(πroot = (0.3, 0.3, 0.2, 0.2)); (c) H data set (πroot = (0.33, 0.33, 0.17, 0.17)).

Different levels of non-stationarity and non-reversibility

This analysis comprises 15 data sets simulated with different levels of non-reversibility (low:

σ = 0.05, moderate: σ = 0.1, high: σ = 0.3) and different degrees of non-stationarity (low:

πroot = (0.27, 0.27, 0.23, 0.23), moderate: πroot = (0.3, 0.3, 0.2, 0.2), high: πroot = (0.33,

0.33, 0.17, 0.17)) (Table 4.4). The stationary case is denoted by “Stat” (πroot = (0.25,

0.25, 0.25, 0.25)), and the reversible case is denoted by “Rev” (σ = 0). Notice, that the

case of Stat and Rev corresponds to a HKY85 model (not analysed because the likelihood

does not depend on the root position). The posterior probabilities of the root splits for

the 15 data sets are shown on Figure 4.11.

Increasing the level of non-reversibility for alignments simulated under stationary mod-

els, and increasing the level of non-stationarity for alignments simulated under reversible

models improves the root inference. However, the combination of different levels of non-

91



Chapter 4. Non-stationary substitution models

Table 4.4: data set with different values of perturbation component and different degrees of non-
reversibility.

Stat NS (low) NS (moderate) NS (high)

Rev HKY85 NS(l) NS(m) NS(h)
NR (low) NR(l) NR(l)NS(l) NR(l)NS(m) NR(l)NS(h)
NR (moderate) NR(m) NR(m)NS(l) NR(m)NS(m) NR(m)NS(h)
NR (high) NR(h) NR(h)NS(l) NR(h)NS(m) NR(h)NS(h)
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Figure 4.11: Posterior probabilities of the root splits for different degrees of non-reversibility and
non-stationarity (Table 4.4). For each case three independent alignments are analysed.

reversibility with non-stationarity does not necessarily do this, probably because the effects

of non-reversibility and non-stationarity are confounded. Amongst the non-reversible and

non-stationary data sets the root inference is better for the moderate amount of non-

reversibility (σ = 0.1). Increasing the amount of non-stationarity increases the posterior

probability of the true root for all degrees of non-reversibility. This suggests that the
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signal of non-stationarity is stronger than the signal of non-reversibility.

Block Two

In this block we use the tree shown in Figure 3.9, rooted on edge E2. Two data sets were

simulated with the same HKY85 rate matrix (π = (0.25, 0.25, 0.25, 0.25) and κ = 2) and

the same composition at the root πroot = (0.25275, 0.31256, 0.14223, 0.29247) (simulated

from the prior), but different perturbation parameters (σ = 0.1 and σ = 0.3). Figure 4.12

shows the posterior distribution for the root splits analysed with two topological priors

(the Yule prior and the structured uniform prior). The true root split is inferred as the

mode for both values of σ confirming that the effect of non-stationarity seems to dominate

over the effect of non-reversibility. Overall this analysis suggests that the NRNS model can

extract information about the root for non-reversible and non-stationarity data simulated

under the tree inferred from the analysis of real data.

Similarly to the NRNS model, the idea of non-stationarity can be combined with

the NR2 model from Chapter 3, thus giving a two component non-reversible and non-

stationary model. However, for brevity it is not considered further.
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Figure 4.12: Posterior distribution of the root splits for the data simulated under the tree shown in
Figure 3.9 (rooted on edge E2) with the NRNS model and with different values of the perturbation
parameter (σ = 0.1 and σ = 0.3), analysed with (a) the Yule prior; (b) the structured uniform
prior.

Summary

In this chapter we have presented two non-stationary models in which the composition at

the root is centered on the stationary composition. While the first model (the NS model)
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Chapter 4. Non-stationary substitution models

uses a reversible HKY85 rate matrix to describe the substitution of nucleotides, the second

model (the NRNS model) utilises a rate matrix of the non-reversible NR model presented

in Chapter 3. For each model we performed a simulation study for data containing different

degrees of non-stationarity, and in the case of the NRNS model also different degrees of

non-reversibility. We found that increasing the level of non-stationarity leads to better

root inference for both models, and so does increasing the level of non-reversibility for the

NRNS model. However, an analysis of the data with combination of different levels of non-

stationarity and non-reversibility showed the potential problem of confounding between

the two signals. Analysing data with the same level of non-stationarity and different levels

of non-reversibility showed that the effect of non-stationarity dominates the effect of non-

reversibility. We also investigated the influence of the length of the sequence alignment to

the root inference and found that both the root split and the composition at the root are

inferred better for longer alignments.
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Application to experimental data

In this chapter we analyse real biological data sets with non-reversible and non-stationary

models: the palaeopolyploid yeasts data, the primates data and the tree of life data. For

the yeasts and the primates data there is a robust biological opinion about the position

of the root, whereas the root of the tree of life is still an open question in biology. We

address the difference in the results obtained with different models and identify possible

biological reasons for it, e.g. variation in composition of nucleotides. We show that while

non-reversible models are able to extract some information about the root, modelling non-

stationarity with just two composition vectors can be misleading for certain data sets.

5.1 Rooting the radiation of palaeopolyploid yeasts

MCMC implementation

In this chapter, all results are based on (almost) un-autocorrelated posterior samples

of size at least 5K. These samples were obtained by running the algorithm for at least

1000K iterations, discarding at least 300K iterations as burn-in and then thinning by

taking every 100-th iterate to remove autocorrelation. Convergence was diagnosed using

the procedure described in Section 2.6.3. This involved initialising two MCMC chains at

different starting points and graphically comparing the chains through properties based

on model parameters and the relative frequencies of sampled clades. In all cases, the

graphical diagnostics gave no evidence of any lack of convergence.

5.1.1 Non-reversible models

We investigated the performance of the non-reversible and non-stationary models on a

real biological data set for which there is broad biological consensus on the root position

(Byrne & Wolfe, 2005; Hedtke et al., 2006). The lineage leading to Saccharomyces cere-

visiae (brewer’s yeast) and its relatives underwent a conserved whole-genome duplication
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(WGD) about 100 million years ago (Wolfe & Shields, 1997; Kellis et al., 2004). Evi-

dence for this WGD, in the form of duplicated genes and genomic regions, is shared by

all post-WGD yeasts and defines the group as a clade from which the root of the Sac-

charomycetales is excluded. Current biological opinion on the rooted phylogeny of these

species is summarised in Figure 5.1 (Byrne & Wolfe, 2005; http://ygob.ucd.ie, 2015). The
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Figure 5.1: Rooted phylogeny of the palaeopolyploid yeasts supported by the whole-gene dupli-
cation analysis (not drawn to scale), reproduced from the YGOB website (Byrne & Wolfe, 2005;
http://ygob.ucd.ie, 2015). Four different roots indicated by numbers 1 - 4 were inferred in the
analysis with the non-reversible and non-stationary models. Root 1 which represents the biolog-
ically plausible root was inferred after fitting the GTR model via maximum likelihood (Hedtke
et al., 2006).

analysis which generated this tree was based on outgroup rooting (see Section 1.3.1) af-

ter fitting the GTR model by maximum likelihood (Hedtke et al., 2006). The root on

this tree separates a clade comprising Eremothecium gossypii, Eremothecium cymbalariae,

Kluyveromyces lactis, Lachancea kluyveri, Lachancea thermotolerans and Lachancea waltii

from the other species. It is consistent with the timing of the WGD event.

We analysed an alignment of concatenated large and small subunit ribosomal DNA

sequences for 20 species of yeast, with a combined length of 4460 sites. The sequences

were aligned with MUSCLE (Edgar, 2004), and poorly-aligned regions were detected and

removed using TrimAl (Capella-Gutiérrez et al., 2009). Figure 5.2 (a) shows the posterior
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Figure 5.2: The posterior distribution of the root splits of the palaeopolyploid yeasts data set
for both NR and NR2 models analysed with (a) the structured uniform prior and (b) the Yule
prior. Different bars on the plot represent different root splits on the posterior distribution of trees
(ordered by posterior probabilities). The roots are mapped in Figure 5.1. In (a) the root split
supported by outgroup rooting (Hedtke at al. 2006) has the highest posterior probability (root
1, highlighted). Root 2 is placed within the outgroup and root 3 is placed within the post-WGD
clade. In (b) the root split supported by outgroup rooting (Hedtke at al. 2006) has the second
highest posterior probability (root 1, highlighted).
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distribution of the root splits for both the NR and NR2 models implemented with the

structured uniform prior. The root split supported by outgroup rooting (Hedtke et al.,

2006) has the highest posterior probability (root 1 in Figure 5.1) for both models. However,

there is a substantial amount of uncertainty represented by the non-negligible posterior

probabilities of the other root splits. While the third most plausible root is placed within

the outgroup (root 2 in Figure 5.1), the second most plausible root is located within

the post-WGD clade (root 3 in Figure 5.1). This degree of uncertainty is also reflected

in the sensitivity of the analysis to the topological prior: while the structured uniform

prior recovered the root supported by the outgroup analysis with the highest posterior

support, the Yule prior instead recovered this root with the second-highest support (root

1 in Figure 5.2 (b)). The most plausible root inferred with the Yule prior is placed within

the post-WGD clade (root 3 in Figure 5.1), which contradicts the WGD analysis.

The posterior for the non-reversibility parameter σ in the NR model is suggestive of a

substantial degree of non-reversibility in the data.This is illustrated in Figure 5.3 which

shows posterior density for σ for five data sets analysed in this chapter (the primates and

the tree of life data sets will be introduced later in this chapter). For the yeasts data set,

it offers no support for values of σ around zero. For some simulated data, we were able

to infer the true root with higher posterior support and less uncertainty for such σ. This

suggests the presence of other features of the data not accounted for by the model that

are masking the root signal.

The rooted majority rule consensus trees from the analyses with the two topological

priors are depicted in Figure 5.4. The unrooted topologies of both consensus trees differ
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Figure 5.3: Posterior density for the perturbation standard deviation σ for five data sets analysed
in this chapter. In each plot, the dotted line represents the prior density for σ.
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Figure 5.4: Rooted majority rule consensus tree of the palaeopolyploid yeasts data set, inferred
under the NR model using (a) the structured uniform prior and (b) the Yule prior, with the WGD
event mapped. The trees differ from that supported by the WGD analysis by the placement of
Vanderwaltozyma polyspora (shaded in blue) within the pre-WGD clade.
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from that supported by the WGD by the placement of Vanderwaltozyma polyspora. While

the WGD analysis places it within the post-WGD clade, in our analysis this taxon is

located within the pre-WGD clade. Interestingly, this result is consistent with an analysis

performed with the CAT-GTR model (Lartillot & Philippe, 2004), which is a Dirichlet

process mixture model accounting for heterogeneity in composition across sites (Section

2.5). It has been shown that the CAT-GTR model can provide a better fit to the data than

the site homogeneous models (Cox et al., 2008). On the tree inferred with the CAT-GTR

model, Vanderwaltozyma polyspora is excluded from the post-WGD clade (Figure 5.5).

The placement of Vanderwaltozyma polyspora outside the WGD clade is surprising given

that the genome of Vanderwaltozyma polyspora preserves evidence of having undergone

WGD (Scannell et al., 2007).
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Figure 5.5: Unrooted consensus tree of the palaeopolyploid yeasts data set, inferred with the
CAT-GTR model (Lartillot & Philippe, 2004), with the WGD event mapped. Similarly to the NR
model, the CAT-GTR model places the Vanderwaltozyma polyspora (shaded in blue) within the
pre-WGD clade which contradicts the WGD analysis.

This result requires further investigation. However, the similarity between the un-

rooted consensus trees obtained with the CAT-GTR model and with our non-reversible

models suggests that the non-reversible models can not only extract meaningful infor-

mation about the root position, but also capture information for inferring the unrooted
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topology.

It is worth noting that the root split on the majority rule consensus tree (Figure 5.4b)

does not match the marginal posterior modal root split (Figure 5.2b). This can happen

because the consensus tree is a conditional summary, computed recursively from the leaves

to the root, which depends upon the plausibility of sub-clades. On the other hand, the

posterior over root splits is a marginal summary which averages over the relationships

expressed elsewhere in the tree; see Appendix G for an illustrative example.

5.1.2 Non-stationary models

We also analysed the yeasts data set with the NS and NRNS models to investigate if mod-

elling non-stationarity improved the root inference. Surprisingly, both models (analysed

with both topological priors) recovered the root on a pendant edge leading to Tetrapisis-

pora blattae with posterior probability of 1 (root 4 in Figure 5.1). This root is located

within the post-WGD clade and hence it contradicts current biological opinion. In order

to investigate this result we analysed the empirical composition of nucleotides. Since the

composition vector π is defined on the four-dimensional simplex, its graphical represen-

tation is not straightforward. To provide a graphical visualisation of the composition we

therefore transformed each composition vector π to the three-dimensional real parameter

β. The transformation was achieved by applying a multinomial logit reparametrisation

followed by a linear mapping, to obtain three unconstrained real numbers corresponding

to each composition vector, as described in Heaps et al. (2014). The procedure consists of

two parts:

(i) Multinomial logit reparametrisation of the (empirical) composition vector πj for species

j:

πjk =
exp(αjk)

4∑
m=1

exp(αjm)

,

where j = 1, . . . , n are the species, and k = 1, . . . , 4 are the nucleotides. Here αjk ∈ R4

and
4∑

k=1

αjk = 0.

(ii) Linear mapping of the four-dimensional parameter αj to the unconstrained three-

dimensional real parameter βj ∈ R3:

αj = Hβj ,
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where βj = (βj1, βj2, βj3)T , and H is a 4-by-3 matrix with (j, k)-th entry

hjk =


0, if j < k

dk, if j = k

−dk/(4− k), if j > k

for j = 1, . . . , 4 and k = 1, . . . , 3. Here d1 = 1 and dk = dk−1

√
1− 1/(4− k + 1)2 for

k = 2 , 3. This choice of H is symmetric in the sense that π = (0.25, 0.25, 0.25, 0.25) is

mapped to β = (0, 0, 0).

Tetrapisispora 
blattae Tetrapisispora 

phaffii 

2 

3 

1 

Clusters
1

2

Figure 5.6: Graphical visualisation of the empirical composition of nucleotides for the yeasts data
set. Each circle represents a three-dimensional vector βj obtained by transforming the empirical
composition πj of species j into R3. Green and blue colours represent clustering of the βj into
two groups according to the k-means clustering procedure with k = 2. The non-stationary models
place the root on a pendant edge leading to Tetrapisispora blattae (cluster 1).

Since the non-stationary model assumes two composition vectors, we divide the pa-

rameters βj , j = 1, . . . , n, into two clusters. This is to check whether the difference in

composition of nucleotides between species could explain our rooting results. In order to

do this we apply a k-means clustering procedure to the transformed composition, βj . The
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k-means clustering partitions the data into k clusters such that the sum of squares from

the data to the assigned cluster means is minimised. We take k = 2 in order to partition

the summary statistics βj into two clusters. Figure 5.6 shows the βj plotted in a three-

dimensional space, clustered into two groups according to the k-means clustering. Cluster

1 comprises Tetrapisispora blattae and Tetrapisispora phaffii which appear to be sister

taxa on the tree representing the current biological opinion about the palaeopolyploid

yeasts (Figure 5.1). We note, that on the trees inferred with the NR and the CAT-GTR

models both taxa are located on rather long branches to allow the composition to evolve

and become different from the other species (Figures 5.4 and 5.5). The root of the tree

inferred with the non-stationary models is located on a pendant edge leading to Tetrapi-

sispora blattae (Figure 5.7). We note that even though the species Tetrapisispora blattae

and Tetrapisispora phaffii are clustered together by the k-means clustering procedure (Fig-

ure 5.6), the β vector of the Tetrapisispora blattae is further from the mean of the other

cluster.

Thus the rooting on a pendant edge leading to Tetrapisispora blattae can be explained
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Figure 5.7: Rooted majority rule consensus tree of the palaeopolyploid yeasts data set, inferred
under the NRNS model using the Yule prior. The colours represent the two clusters of the summary
statistics β which were obtained by transforming the empirical composition of the nucleotides into
three real numbers (Figure 5.6). The tree inferred with the structured uniform prior looks very
similar and so is not shown.
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by the fact that the NS model tries to separate two compositionally different groups

of species. This suggests that for some data sets modelling non-stationarity with two

composition vectors (one vector at the root of the tree and the other as the limiting

distribution for the rest of the tree) can be misleading. Compositional heterogeneity in

this data set would be better accommodated by a more flexible model, which, for example,

allowed more frequent changes in the theoretical stationary distribution, as in the models

proposed by Foster (2004); Blanquart & Lartillot (2006); Heaps et al. (2014). However,

this can lead to computational difficulties in model fitting due to the increase in the

complexity of the model.

In order to investigate the composition further we also constructed a tree based on

hierarchical cluster analysis of the parameters β. First we obtained the matrix of euclidean

distances between the parameters β. We then perform a hierarchical cluster analysis which

works by assigning each parameter its own cluster and then joining the two most similar

clusters iteratively, until there is just a single cluster. The similarity between the clusters

is based on the matrix of euclidean distances. The tree constructed according to the

hierarchical clustering analysis shows that the Tetrapisispora blattae is located at the base

of the tree (Figure 5.8). This provides further explanation for the placement of the root

on the pendant edge leading to Tetrapisispora blattae by the non-stationary models.
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Figure 5.8: The yeasts data set tree based on the hierarchical cluster analysis of the summary
statistics β which were obtained by transforming the empirical composition of the nucleotides to
three-dimensional space (Figure 5.6). The clustering is based on the matrix of euclidean distances.
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5.1.3 Posterior predictive simulations

In order to examine the fit between the model and the data, we compared the empirical

GC content (proportion of G and proportion of C) for each species with their posterior

predictive distributions. To do this, for each iteration of the MCMC algorithm we sim-

ulated an alignment using the parameters obtained in this iteration. We then calculated

the composition of the nucleotides for these alignments and hence the GC content, thus

obtaining the posterior predictive distribution of the empirical GC content. We performed

these simulations for each one of the models: NR, NS and NRNS (Figure 5.9).

As expected, the NR model does not account for the heterogeneity in composition.

Both NS and NRNS models have posterior predictive mean for the empirical GC content

close to the empirical GC content only for species 16 which corresponds to Tetrapisispora

blattae. In fact, the posterior predictive means for the GC content for all other species are

different from that of Tetrapisispora blattae (around 0.478 for Tetrapisispora blattae with

both NS and NRNS models, and around 0.468 (NS model) and 0.46 (NRNS model) for all

the other species). This can be explained by the fact that the model places the root on the

pendant edge leading to Tetrapisispora blattae, so the composition of Tetrapisispora blattae

is close to the composition at the root, and different from that of all the other species. This

provides further evidence that modelling non-stationarity with two composition vectors is

not sufficient to describe the compositional heterogeneity in this data set. However, the

unrooted topology obtained with the NRNS model is the same as the unrooted topology

obtained with the NR model.
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Figure 5.9: Posterior predictive means and 95% credible intervals for the empirical GC content of
the yeasts data set. Empirical values are indicated with a horizontal line in each panel. Numbers
1 - 20 correspond to the twenty species of yeasts in the data set:

1 - Candida glabrata 11 - Naumovozyma dairenensis
2 - Eremothecium cymbalariae 12 - Saccharomyces bayanus
3 - Eremothecium gossypii 13 - Saccharomyces cerevisiae
4 - Kazachstania africana 14 - Saccharomyces kudriavzevii
5 - Kazachstania naganishii 15 - Saccharomyces mikatae
6 - Kluyveromyces lactis 16 - Tetrapisispora blattae
7 - Lachancea kluyveri 17 - Tetrapisispora phaffii
8 - Lachancea thermotolerans 18 - Torulaspora delbrueckii
9 - Lachancea waltii 19 - Vanderwaltozyma polyspora
10 - Naumovozyma castellii 20 - Zygosaccharomyces rouxii
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5.2 Rooting the primates data set

5.2.1 12 species data set

As a second example we analysed a set of primates data provided as part of the Mr-

Bayes software (Huelsenbeck & Ronquist, 2001). This is a combined nucleic acid data set

from subunits 4 and 5 NADH (Nicotinamide Adenine Dinucleotide) dehydrogenase genes.

The primates data set has been analysed previously in a maximum likelihood framework.

Non-reversible and non-stationary models were fitted to rooted trees with a fixed unrooted

topology, and the likelihood values of the rooted trees were then compared. It has been

found that non-stationary models were able to infer the root, while non-reversible models

were not (Yap & Speed, 2005). Current biological opinion about this data set is sum-

marised in Figure 5.10 (Purvis, 1995; Perelman et al., 2011), with roots 1, 2 and 3 being

biologically plausible (located near Tarsius and Lemur). We analysed this data set with

the NR, NS and NRNS models. Our results are consistent with the published analysis:

the non-stationary models infer biologically plausible root splits, while with the stationary
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Macaca  fuscata
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Figure 5.10: Schematic tree of the primates 12 species data set. Numbers 1 - 7 represent root splits
obtained in the analyses with our non-reversible and non-stationary models. Biologically plausible
roots are roots 1 - 3.

107



Chapter 5. Application to experimental data

model these root splits have very low support (Figure 5.11). Both NS and NRNS models

assign most posterior support to root 2 (on the Tarsius branch) and root 1 (on the branch

connecting Tarsius and Lemur to the other species). The other root splits supported by

non-stationary models are located on the Lemur branch (root 3), Saimiri branch (root

7) and on the branch connecting Tarsius, Lemur and Saimiri to the other species (root

6). Thus all the root splits inferred with the non-stationary models are in the vicinity of

the biologically plausible root. By contrast, the NR model assigns the highest posterior

probability to the roots on the branch leading to the Macaca clade (root 4) and on the

branch leading to the apes (root 5). These two roots contradict biological opinion about

the phylogeny of primates. In terms of the unrooted topology, all three models recovered

the widely agreed topology (Figure 5.10) with posterior probability of almost 1.
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Figure 5.11: Posterior distribution of the root splits for the primates 12 species data set analysed
with (a) NR model, (b) NRNS model, (c) NS model. NR model: the most plausible root split is
between the Macaca clade and the other species (root 4), the second most plausible root split is
between the apes and the other species (root 5); both contradict biological opinion. NS and NRNS
models: high posterior probability of the root being somewhere near Tarsius and Lemur (roots 1
and 2); this is in accord with biological opinion. The roots are mapped in Figure 5.10.

108



Chapter 5. Application to experimental data

Similarly to the yeasts data set, we transformed the vectors of the empirical composi-

tion of the nucleotides πj to unconstrained real vectors βj ∈ R3 and applied the k-means

clustering procedure with k = 2 in order to partition the βj into two clusters. Cluster

1 comprises four species, three of them are in the vicinity of the biologically plausible

root (Tarsius, Lemur and Saimiri) (Figure 5.12). We also constructed a tree from the

2

 

Clusters
1

2

3 
1 

Tarsius 

Saimiri 

Lemur 

Macaca
sylvanus 

Figure 5.12: Graphical visualisation of the empirical composition of nucleotides for the primates
data set. Each circle represents a three-dimensional vector βj obtained by transforming the em-
pirical composition πj of species j into R3. Green and blue colours represent clustering of the βj

into two groups according to the k-means clustering procedure with k = 2. Tarsius, Lemur and
Saimiri (cluster 1) are the species in the vicinity of the biologically plausible root. Non-stationary
models support root positions near Tarsius and Lemur.

hierarchical cluster analysis. On this tree, Lemur, Tarsius and Saimiri appear as a cluster

on one side of the root, which provides additional explanation of the placement of the root

around Tarsius and Lemur by non-stationary models (Figure 5.13).

Analysis of the posterior predictive distributions for empirical GC content shows a

rather poor fit for all three models (Figure 5.14). Nevertheless, with the non-stationary

models, species 4 and 12 which correspond to Lemur and Tarsius, respectively, have

posterior predictive means for the empirical GC content different from the other species.
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Figure 5.13: The primates data set tree based on hierarchical cluster analysis of the summary statis-
tics β obtained by transforming the empirical composition of the nucleotides to three-dimensional
space (Figure 5.12). The three species comprising the bottom cluster (Tarsius, Lemur and Saimiri)
are in the vicinity of biologically plausible root.

This can be explained by the fact that these species are close to the inferred root position.

The success of the non-stationary model to infer the root in the primates data set

can be explained by the high level of non-stationarity inferred from the data. We define

the level of non-stationarity as an Euclidean distance between the inferred composition

at the root and the inferred theoretical stationary distribution. The posterior mean for

the level of non-stationarity in the primates data set is 0.279 which is even higher than

the “high” level of non-stationarity in the simulated data (0.203). In the yeasts data set,

the posterior mean for the level of non-stationarity is 0.146 which is close to the level

of “moderate” non-stationarity (0.1) in the simulations of the NS model. For the NRNS

model, the posterior mean for the level of non-stationarity is also higher in the primates

data set in comparison to the yeasts data set (0.36 vs. 0.279). However, unlike the yeasts

data set, the posterior for σ in the primates dataset offers high support for values of σ

around zero (Figure 5.3). This can explain the failure of the NR model to infer the root

in the primates data set.

110



Chapter 5. Application to experimental data

1 2 3 4 5 6 7 8 9 10 11 12

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

36

39

42

45

G
C

 c
om

po
ne

nt
(%

)

Model

●

●

●

NR

NS

NRNS

Figure 5.14: Posterior predictive means and 95% credible intervals for the empirical GC content
of the primates 12 species data set. Empirical values are indicated with a horizontal line in each
panel. Numbers 1 - 12 correspond to the twelve species of primates in the data set:

1 - Gorilla 7 - Macaca sylvanus
2 - Homo sapiens 8 - Macaca fuscata
3 - Hylobates 9 - Pan
4 - Lemur 10 - Pongo
5 - Macaca fascicularis 11 - Saimiri
6 - Macaca mulatta 12 - Tarsius

111



Chapter 5. Application to experimental data

5.2.2 Expanded primates data set

In order to demonstrate scalability of the models, we have expanded the above data set

to include most of the species analysed in Perelman et al. (2011). The expanded data set

comprises 38 species (the schematic rooted tree is represented in Figure 5.15).
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Figure 5.15: Schematic rooted tree of the expanded primates data set, comprising 38 species.
Branches 1 - 3 represent the region of biologically plausible root positions.

We analysed this data set with the NR, NS and NRNS models. The results are con-

sistent with those from the smaller data set. The NR model recovers the biologically

plausible root positions with very low posterior probability. On the other hand, non-

stationary models support the root splits at the region of the true root: the NS model

infers root 2 with posterior probability 1; the NRNS model supports three different root

splits: root 2 (posterior probability = 0.46), root 1 (posterior probability = 0.28) and root

3 (posterior probability = 0.26) (Figures 5.15 and 5.16).
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Figure 5.16: Posterior distribution of the root splits for the primates 38 species data set, inferred
with the NR, NRNS and NS models: (a) the NR model recovers the biologically plausible roots
(roots 1 - 3) with low posterior support; (b) the NRNS model supports three biologically plausible
roots (roots 1 - 3); (c) the NS model supports one of the biologically plausible roots (root 2). The
roots are mapped in Figure 5.15.
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The consensus tree recovers the major relationships amongst primates but for the

placement of Ceirogaleus which is clustered with Cercopithecidae in all of our analyses

(Figure 5.17) (the unrooted topology of the consensus trees inferred with the NR, NS and

NRNS models are very similar). While the peculiar placement of Ceirogaleus requires

further investigation, we note that this placement is consistent with the analysis under

the CAT-GTR model (Figure 5.18).

0.2

Propithecus

Lophocebus

Semnopithecus

Macaca mulatta

Rhinopithecus

Macaca fascicularis

Mirza
Avahi

Cercopithecus

Procolobus

Gorilla

Hylobates

Varecia

Homo sapiens

Presbytis

Lemur
Aotus

Saimiri

Pongo

Cheirogaleus

Trachypithecus

Macaca sylvanus

Nasalis

Pan

Hapalemur

Symphalangus

Macaca fuscata

Chlorocebus

Mandrillus

Eulemur

Nomascus

Cercocebus

Allenopithecus

Tarsius
Daubentonia

Pygathrix

Papio
Theropithecus

1

1

0.5067

1

1

1

1

0.9987

1

1

1

0.9877

1

1

1

1

0.9922

1

1

1

1

1

1

0.978

1

1

1

1

1

1

1

2

1

3

Figure 5.17: Rooted consensus tree of the primates 38 species data set, inferred with the NRNS
model. The unrooted topology corresponds to that of the schematic tree (Figure 5.15) but for the
placement of the Ceirogaleus. Roots 1 - 3 correspond to the roots mapped on the schematic tree
(Figure 5.15).

Interestingly, the plot of the posterior density for σ is suggestive of a large degree of

non-reversibility in the data (Figure 5.3). However, the non-reversible model infers the

biologically plausible root with very low posterior probability. This can be explained by

the fact that the data contain a very high level of non-stationarity (posterior mean for the

level of non-stationarity is 0.35, which is bigger than the “high” level of non-stationarity in
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Figure 5.18: Unrooted consensus tree of the primates 38 species data set, inferred with the CAT-
GTR. The Ceirogaleus (shaded in blue) is placed within the Cercopithecidae. This placement is
consistent with the results of our non-reversible and non-stationary models (Figure 5.17); however,
it contradicts the placement of Ceirogaleus on the schematic tree (Figure 5.15).

the simulated data), and we have previously shown in the simulations for the NRNS model

that the effect of non-stationarity seems to dominate over the effect of non-reversibility

(see Section 4.2.2).

5.3 Rooting the tree of life

Finally we applied the models to a data set for which there is still debate about the

unrooted topology and root position: the ribosomal tree of life. The debates are cen-

tred on two hypotheses. According to the three domains hypothesis, the Archaea are

monophyletic, sharing a common ancestor with the Eukaryota (Woese, 1990). The other

hypothesis, called the eocyte hypothesis, suggests that the Archaea are paraphyletic and
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the Eukaryota originated from within the Archaea (Lake, 1988; Rivera & Lake, 1992; Cox

et al., 2008). Recent analyses of the tree of life ribosomal RNA data have demonstrated

that inference on the tree is sensitive to the substitution model that is fitted. When

homogeneous (and therefore stationary) models are used for the analysis they often re-

cover the three domains tree, while heterogeneous models generally recover the eocyte tree

(Cox et al., 2008; Williams et al., 2012; Heaps et al., 2014). In addition to heterogeneous

models, there is also external evidence for the eocyte hypothesis. For example, newly dis-

covered archaeal species whose genomes encode many eukaryote-specific features, provide

additional support for the eocyte hypothesis. (Spang et al., 2015).

5.3.1 16 species data set

We analysed a previously published 16-species concatenated rRNA alignment containing

761 sites from small subunit ribosomal RNA (Heaps et al., 2014). The data set comprises

archaebacterial, bacterial and eukaryotic species, including the recently discovered archaeal

groups: Thaumarchaeota, Aigarchaeota and Korarchaeota. These new groups are closely

related to Crenarchaeota and together they form the so-called TACK superphylum (Guy

& Ettema, 2011; Kelly et al., 2011; Williams et al., 2012; Lasek-Nesselquist & Gogarten,

2013). The analysis with the NR model recovered a widely accepted root (i.e. between

the Bacteria and Archaea) with posterior probability 0.72 (Figure 5.19). This root is
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Figure 5.19: The posterior distribution of the root splits of the tree of life 16 species data set for
the NR model analysed with the Yule prior. Different bars on the plot represent different root
splits on the posterior distribution of trees (ordered by posterior probabilities). The root split on
the branch leading to the Bacteria has the highest posterior probability (root 1). Root 2 is placed
within the Bacteria (on the branch leading to Rhodopirellula baltica). The roots are mapped in
Figure 5.20.
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supported by paralogue rooting methods (Iwabe et al., 1989; Gogarten et al., 1989; Brown

& Doolittle, 1995) and analysis of genome networks (Dagan et al., 2010). The plot of

the posterior density for σ shows evidence of a substantial amount of non-reversibility in

the data (Figure 5.3). In terms of the unrooted topology the NR model recovered the

classic three-domains topology, in which the eukaryotes emerge as the sister group to a

monophyletic Archaea (Figure 5.20). This result is not surprising given that the three-

domains tree has been previously supported by analyses with stationary models (Gouy &

Li, 1989).
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Figure 5.20: Rooted majority rule consensus tree of the tree of life 16 species data set inferred
with the NR model and the Yule prior. Roots 1 and 2 have the highest and the second highest
posterior support respectively; both roots are plausible from a biological point of view.
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We also analysed this data set with the non-stationary model (NRNS). The analysis

recovered rather unusual relationships between the three domains of life. On the consensus

tree inferred with the NRNS model the Archaea is paraphyletic, with the root placed

between the TACK superphylum and all the other species on the tree (Figure 5.21). The

root split on the consensus tree has the highest posterior support, and the root split

with the second highest posterior support is also within the TACK superphylum (on

a pendant edge leading to Caldivirga maquilingensis, Figure 5.22). This result can be

explained by the fact that the archaeal species are very different in composition from the

other species, as shown in the analysis of the composition of nucleotides transformed to the

three-dimensional space and clustered into two clusters (Figure 5.23). Again, this suggests

that there is a need to account for compositional heterogeneity in a more sophisticated

way while implementing non-stationary analyses.
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Figure 5.21: Rooted majority rule consensus tree of the tree of life 16 species data set inferred
with the NRNS model and the Yule prior. Roots 1 and 2 have the highest posterior probability in
our analysis. However, the support for these roots has not been reported previously.
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Figure 5.22: The posterior distribution of the root splits of the tree of life 16 species data set for
the NRNS model analysed with the Yule prior. Different bars on the plot represent different root
splits on the posterior distribution of trees (ordered by posterior probabilities). The root split on
the branch separating the TACK superphylum from the other species has the highest posterior
probability (root 1). Root 2 is placed within the TACK superphylum (on the branch leading to
Caldivirga maquilingensis). The roots are mapped in Figure 5.21.
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Figure 5.23: Graphical visualisation of the empirical composition of nucleotides for the the tree of
life 16 species data set. Each circle represents a three-dimensional vector βj obtained by transform-
ing the empirical composition πj of species j into R3. Green and blue colours represent clustering
of the βj into two groups according to the k-means clustering procedure with k = 2. The posterior
modal root inferred with the NRNS model separates Caldivirga maquilingensis and Sulfolobus
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5.3.2 36 species data set

Here we analysed aligned concatenated large and small subunit ribosomal RNA sequences

from the archaebacterial, bacterial and eukaryotic species comprising 36 taxa (1734 se-

quence positions). Previous analyses of this data set recovered an eocyte topology, however

these analyses were not able to infer the root because they used stationary substitution

models based on reversible rate matrices (Williams et al., 2012). We also analysed these

data with both the NR and NR2 models using both the Yule prior and the structured

uniform prior (the analyses with non-stationary models did not converge). All the anal-

yses recovered the eocyte topology with similar posterior support. Figure 5.24 shows the

majority rule consensus tree from the analysis with the Yule prior and with the structured

uniform prior.

Figure 5.25a shows that the analysis with the Yule prior assigned high posterior support

to two roots splits - one on the branch leading to Bacteria (root 1 in Figure 5.24), the

other within the Bacteria, on the branch leading to Rhodopirellula baltica (root 2 in Figure

5.24). This inference is in accord with current biological opinion about the root of the

tree of life, which places the root either on the branch leading to the Bacteria, or within

the Bacteria (Baldauf, 1996; Cavalier-Smith, 2006; Skophammer et al., 2007). However, in

the analysis performed with the structured uniform prior, the support for the root within

the Bacteria decreased and that for the the root on the bacterial branch increased (Figure

5.25b). This analysis illustrates the sensitivity of the inference to the choice of topological

prior, and confirms the importance of prior choice in Bayesian phylogenetics.

Summary

In this chapter we have analysed five experimental data sets with non-reversible and

non-stationary models. In the analysis of the yeasts data set we have found that non-

reversible models are able to extract useful information about the root of the tree, while

non-stationary models turned out to be misleading due to presence of some species with a

very different composition of nucleotides to other species. On the other hand, the analysis

of the primates data set illustrated the success of non-stationarity models, presumably

because of the high level of non-stationarity in the data. Analysis of the tree of life with

the non-reversible models supports the widely agreed root, however there is a disagreement

between the unrooted topologies inferred from the two data sets of the tree of life. While

the 16 species data set recovered the classic three-domains topology, the 36 species data set

recovered the eocyte topology, thus confirming the importance of taxonomic sampling for

inferring ancient evolutionary relationships. The analysis also highlighted the substantial

sensitivity of the root inference to the choice of topological priors.
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Figure 5.24: Rooted majority rule consensus tree of the tree of life 36 species data set inferred with
(a) Yule prior and (b) structured uniform prior. Roots 1 - 3 were inferred in the analysis with our
non-reversible models.
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Figure 5.25: The posterior distribution of the root splits of the tree of life 36 species data set for
the NR model analysed with (a) Yule prior and (b) structured uniform prior. Different bars on
the plot represent different root splits on the posterior distribution of trees (ordered by posterior
probabilities). The root split on the branch leading to the Bacteria has the highest posterior
probability (root 1). Root 2 is placed within the Bacteria (on the branch leading to Rhodopirellula
baltica) and root 3 is placed on the branch leading to the Eukaryota. The roots are mapped in
Figure 5.24.
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Chapter 6

Conclusions and future work

This chapter summarises the overall contribution of this thesis to the literature, gives a

summary of overall conclusions and discusses potential future work.

6.1 Contributions

Standard phylogenetic models are unable to infer the root of a phylogenetic tree because

their likelihood functions do not depend on the root position. Most models that allow root

inference are based on relaxing the assumption of homogeneity of the Markov substitu-

tion process and are constructed by assigning different reversible rate matrices to different

parts of the tree. Whilst biologically persuasive, such non-homogeneous models are, how-

ever, highly parameterised, which causes computational challenges in model-fitting. The

main contribution of the thesis is in improving understanding of the potential of simpler

assumptions which relax the requirement of reversibility and stationarity to enable root

inference. By investigating homogeneous non-reversible models which require only one

rate matrix we found that non-reversibility is a useful feature of the data for inferring the

position of the root (Sections 3.1.5, 3.2.4, 5.1.1). We also highlighted limitations of our

approach. The simulation study in Chapter 3 shows that a substantial amount of non-

reversibility in the data is needed in order to infer the root correctly. These simulations

illustrate that when the level of non-reversibility is low, the posterior probability of the

true root is small. Analysis of real data shows that the signal from non-reversibility can

be masked by other signals present in the data (Section 5.1.2).

Sensitivity of phylogenetic analysis to the choice of prior for branch lengths and the

topology itself has been noted previously (Yang & Rannala, 2005; Alfaro & Holder, 2006).

In the thesis we investigated the robustness of posterior root inferences to conflicting prior

and likelihood information concerning the rooted topology and branch lengths.

We have contributed to the understanding of the effect of non-stationarity to the root
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inference by studying the effect of relaxing the stationarity assumption in a similar manner

to how we relaxed the reversibility assumption. In the simulation study we found that

the signal of non-stationarity in the data is useful for root inference. However, analysis

of real data shows limitations in applying the model to data sets where some species

are very different in composition from the others. We also investigated the confounding

effects of non-reversibility and non-stationarity and found that, for the simulation cases we

studied, the combination of different levels of non-reversibility with non-stationarity does

not necessarily improve the root inference (Section 4.2.2). In the analysis of experimental

data we found that the signal from non-stationarity is stronger and hence has the potential

to mask the signal from non-reversibility (Section 5.1.2).

We also made a methodological contribution by proposing a structured uniform prior

for rooted topologies. This prior is an approximation of a biologically defensible Yule

prior, with the advantage of being uniform over rooted topologies and less computationally

demanding. Overall, our work extends earlier work on non-reversible and non-stationary

models which has been limited to fixed unrooted topologies (Huelsenbeck et al., 2002; Yap

& Speed, 2005). The principal contribution of our work is that it facilitates inference

of both unrooted topology and root position. Although our approach has limitations it

represents a direction towards improving root inference of phylogenetic trees.

6.2 Conclusions

In this thesis we presented two substitution models in which changing the root position

changes the likelihood of the tree. We started by proposing two hierarchical non-reversible

but stationary models in Chapter 3, the NR model and the NR2 model. These models

have rate matrices which are centered on that for a (reversible) HKY85 model, but they

differ in the structure of the perturbation. The NR model uses one perturbation compo-

nent which allows a departure from the HKY85 structure. In contrast, the NR2 model

utilises two variation components and the perturbation is performed on the space of re-

versible and non-reversible rate matrices separately. This separation allows us to judge

the extent of the different types of perturbation. In simulations for the NR model, we

analysed the model with two topological priors (the Yule prior and its approximation, the

structured uniform prior) and with five different values of the non-reversibility perturba-

tion parameter σ = 0, 0.05, 0.1, 0.2, 0.3. For each topological prior and each value of

the perturbation parameter we analysed nine different alignments, simulated using either

the same or different rate matrices. Our simulations show that as expected, for σ = 0 the

data contain no information about the root. However, for σ > 0 the posterior is often

concentrated around the true root, though not in all cases. For larger values of σ the root

is inferred more accurately.
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We note that departures from the HKY85-structure do not necessarily lead to a non-

reversible model. In fact, they could lead to a more general reversible rate matrix. As such

the two types of deviation are confounded and so for any given data set, large values of

the perturbation parameter do not necessarily provide evidence of non-reversibility. The

NR2 model addresses this issue by using a two-stage process to perturb the underlying

HKY85 rate matrix. The first perturbation is within the space of GTR matrices, locally

perpendicular to the subspace of HKY85 matrices. The second perturbation is within the

space of general rate matrices but locally perpendicular to the subspace of GTR matrices.

Splitting the perturbation up allowed us to simulate rate matrices with a larger degree of

non-reversibility whilst maintaining a biologically plausible stationary distribution.

A similar set of simulations was performed for the NR2 model. The data were simulated

with the same value of the reversible perturbation (σR = 0.1) and five different values of

the non-reversible perturbation (σN = 0, 0.1, 0.25, 0.5, 1). As σN increases, the posterior

probability of the true root increases, and for larger values of σN the model was able to

infer the root with very high posterior support for all cases. Under both models the true

unrooted topology was inferred with high posterior support.

In the simulation study we also addressed the issue of the sensitivity of root inferences

to conflict between the prior and the likelihood. We showed that long branches can

potentially mislead the root inference. However, in the absence of very long branches,

non-reversible models can extract information from the data about the root even in the

face of prior-likelihood conflict (Section 3.1.5).

However, the stationarity assumption of the NR and NR2 models is not realistic from

a biological point of view. We therefore investigated relaxing the stationarity assump-

tion of the HKY85 model. Here we employed a similar strategy to that of relaxing the

reversibility assumption. In Chapter 4 we presented a non-stationary model in which

the composition vector at the root is centered on the stationary composition. Simula-

tion experiments showed that the higher the level of non-stationarity in the data, the

better the root inference (Section 4.1.3). We then combined the idea of non-reversibility

and non-stationarity in one model which is non-reversible and also has a composition at

the root vertex centered on the theoretical stationary distribution. A simulation study

showed the potential problem of confounding between the two signals, with the effect of

non-stationarity dominating the effect of non-reversibility (Section 4.2.2).

The analysis of experimental data presented in Chapter 5 highlights the success and

the limitation of our models. The non-reversible models are able to extract useful rooting

information from real biological data. On the other hand, analyses with the non-stationary

models suggest that modelling non-stationarity with two composition vectors can be mis-

leading for certain data sets in which the composition of some species is very different from

the others. These data sets require more complex modelling of compositional heterogene-
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ity, but more complex models are typically more highly parameterised and often difficult

to fit to data. Therefore finding a trade-off between model complexity and computational

tractability of model-fitting seems desirable.

6.3 Future work

One of the limitations of the NR model is that the perturbation parameter σ is inferred

from only 12 off-diagonal elements of the rate matrix. Inferring σ is important because

the model assumes that the information about the root comes from the non-reversibility

of the data. Therefore it would be interesting to look at a rate matrix of larger dimension.

We extended the NR model so that it could be applied to Dayhoff-recoded data. The

corresponding rate matrix comprises 30 off-diagonal elements. However, we did not per-

form an exhaustive simulation study, and also did not apply this model to experimental

data. Similarly, the model could be extended to amino acid data. However, in this case,

there might be computational challenges owing to the large number of the off-diagonal

elements of the rate matrix (380 off-diagonal elements). In particular, this may require a

joint proposal and perhaps a parallel implementation of the MCMC algorithm.

One more potential direction of improvement is modelling across-site heterogeneity

in a more complex way. Currently we model across-site heterogeneity through linear

scaling of the rate matrix where the scaling variable is drawn from a discrete version of a

gamma Ga(α, α) distribution with four categories (Yang, 1994). This way is convenient

computationally because the discretisation of a gamma distribution greatly simplifies the

calculation of the likelihood of a phylogenetic tree. However, there is no biological necessity

for accounting for across-site heterogeneity in such a way, because only the rate of evolution

is allowed to change, and not the evolutionary pattern. Ideally a more complex way

of modelling across-site heterogeneity which captures main features of the underlying

biological process of variation at different sites would make the model more realistic and

improve the inference.

Prior information is an important issue in Bayesian phylogenetics. Our analyses show

the sensitivity of the models to the topological priors. The analyses also underpin the

problem of long internal branches for root inference. Standard phylogenetic priors for

branch lengths assign little prior density to long branches and so favour rooting on long

branches because it results in dividing a long branch into two short branches. Therefore, a

potential direction of development could be to construct a joint prior for rooted phylogenies

and branch lengths which, for example, allows for long branches, or alternatively, penalises

rooting on long branches.

When applying statistical methods in phylogenetics, integration of the underlying bi-

ology is of great importance. Biological information from morphological and fossils data,
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for example, could be incorporated into the analysis in order to reduce the posterior uncer-

tainty. Adding different sources of information about the root such as lateral gene transfers

(LGTs) and gene duplications and losses could be also of use and value (Abby et al., 2012;

Boussau et al., 2013). For example, if it is believed that gene loss is more likely than ac-

quisition of genes (and data suggest that this is the case), then patterns of gene presence

or absence in extant genomes will favour particular rooted tree topologies. Combining

different sources of information about the root either via a hierarchical Bayesian model or

by a sequential Bayesian approach in which various data sources refine our knowledge of

the root position, would contribute to future research of rooting phylogenetic trees.
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Appendix A

Proof of the existence of the stationary distribution

In order to prove that the stationary distribution exists we (a) prove the existence of the

left eigenvector π which correspond to the eigenvalue λ = 0, and (b) prove that the eigen-

vector π corresponds to a probability distribution.

(a) Since det(Q) = det(QT ), det(Q − λI) = det(QT − λI), so Q and QT have the same

eigenvalues. Since det(Q − λI) = 0 if and only if det(QT − λI) = 0, the left and right

eigenvalues of Q are the same. However,

Q×


1

1

1

1

 = 0,

so λ = 0 is a right eigenvalue, and hence there must be a left eigenvector with eigenvalue

0.

(b) Suppose πQ = 0, where π = (πA, πG, πC , πT ) and

Q =


−(q12 + q13 + q14) q12 q13 q14

q21 −(q21 + q23 + q24) q23 q24

q31 q32 −(q31 + q32 + q34) q34

q41 q42 q43 −(q41 + q42 + q43)

 .

(i) Multiply the vector π by the first column of Q:

(q12 + q13 + q14)πA = πGq21 + πCq31 + πT q41. (A.1)

i.e. if πG, πC and πT are positive, then so is πA.
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(ii) Multiply the vector π by the second column of Q:

(q21 + q23 + q24)πG = πAq12 + πCq32 + πT q42. (A.2)

Now we multiply both sides of equation (A.2) by (q12 + q13 + q14):

(q21 + q23 + q24)πG(q12 + q13 + q14) = q12πA(q12 + q13 + q14) (A.3)

+ (q12 + q13 + q14)(πCq32 + πT q42).

Now we replace the red part in the RHS of equation (A.3) with the RHS of equation (A.1)

(q21 + q23 + q24)πG(q12 + q13 + q14) = q12(πGq21 + πT q31 + πT q41) (A.4)

+ (q12 + q13 + q14)(πCq32 + πT q42).

After the q21q12πG term is cancelled out, equation (A.4) can be simplified as follows:

πG(q21(q13 + q14) + (q23 + q24)(q12 + q13 + q14)) = q12πCq31 + q12πT q41 (A.5)

+ (q12 + q13 + q14)(πCq32 + πT q42).

Equation (A.5) can be written as

πGA = πCB + πTC, (A.6)

where A, B and C are positive quantities:

A = q21q13 + q21q14 + q23q12 + q23q13 + q23q14 + q24q12 + q24q13 + q24q14,

B = q12q31 + q12q32 + q13q32 + q14q32,

C = q12q41 + q12q42 + q13q42 + q14q42,

i.e. if πC and πT are positive, then so is πG, and so is πA.

(iii) Multiply the vector π by the third column of Q

(q31 + q32 + q34)πC = πAq13 + πGq23 + πT q43. (A.7)

Now we multiply both sides of equation (A.7) by (q12 + q13 + q14):

(q31 + q32 + q34)πC(q12 + q13 + q14) = q13πA(q12 + q13 + q14) (A.8)

+ (q12 + q13 + q14)(πGq23 + πT q43).
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Now we replace the red part in equation (A.8) with the RHS of equation (A.1)

(q31 + q32 + q34)πC(q12 + q13 + q14) = q13(πGq21 + πCq31 + πT q41) (A.9)

+ (q12 + q13 + q14)(πGq23 + πT q43).

After the q31q13πC term is cancelled out, equation (A.9) can be simplified as follows:

πC(q31(q12 + q14) + (q32 + q34)(q12 + q13 + q14)) = q13πGq21 + q13πT q41 (A.10)

+ (q12 + q13 + q14)(πGq23 + πT q43).

Equation (A.10) can be written as

πCD = πGE + πTF, (A.11)

where D,E and F are positive quantities:

D = q31q12 + q31q14 + q32q12 + q32q13 + q32q14 + q34q12 + q34q13 + q34q14,

E = q13q21 + q23q12 + q23q13 + q23q14,

F = q13q41 + q43q12 + q43q13 + q43q14.

Now let us consider the equations (A.6) and (A.11). After multiplying the equation (A.11)

by A we have

πCAD = πGAE + πTAF. (A.12)

Now we replace the red part of equation (A.12) with the RHS of equation (A.6):

πCAD = (πCB + πTC)E + πTAF = πCBE + πT (CE +AF ),

hence πC(AD−BE) = πT (CE+AF ). AD−BE is positive, since AD > BE (the elements

with matching colours are cancelled out):

AD = (q21q13 + q21q14 + q23q12 + q23q13 + q23q14 + q24q12 + q24q13 + q24q14)

× (q31q12 + q31q14 + q32q12 + q32q13 + q32q14 + q34q12 + q34q13 + q34q14).

BE = (q13q21 + q23q12 + q23q13 + q23q14)× (q12q31 + q12q32 + q13q32 + q14q32).

i.e. if πT is positive, then so is πC , and so are πG and πA. Thus we have proved the

existence of the left eigenvector π whose elements are either all positive or all negative, so

π corresponds to a probability distribution.
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This appendix summarises the results of the first block of simulations for the NR model,

analysed with the Yule prior. Figure B.1 shows the posterior distribution of the root splits

for σ = 0, 0.05, 0.1, 0.2, 0.3. Different bars on the plots represent different root splits on

the posterior distribution of trees (ordered by posterior probabilities). On each plot the

green bar represents the true root split. Figure B.2 shows the posterior distribution of the

unrooted topologies for σ = 0, 0.05, 0.1, 0.2, 0.3. Different bars on the plots represent

different unrooted topologies (ordered by posterior probabilities). On each plot the green

bar represents the true unrooted topology. Each subfigure contains an analysis of nine

alignments simulated with a particular value of σ.
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Figure B.1: Posterior distribution of the root splits for different values of σ and the Yule prior.
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(a) Yule prior, σ = 0.
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(c) Yule prior, σ = 0.1.
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 = 0.2, Yule prior

(d) Yule prior, σ = 0.2.
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 = 0.3, Yule prior

(e) Yule prior, σ = 0.3.

Figure B.2: Posterior distribution of the unrooted topologies for different values of σ and the Yule
prior.
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Appendix C

This appendix summarises the results of the first block of simulations for the NR model,

analysed with the structured uniform prior. Figure C.1 shows the posterior distribution of

the root splits for σ = 0, 0.05, 0.1, 0.2, 0.3. Different bars on the plots represent different

root splits on the posterior distribution of trees (ordered by posterior probabilities). On

each plot the green bar represents the true root split. Figure C.2 shows the posterior

distribution of the unrooted topologies for σ = 0, 0.05, 0.1, 0.2, 0.3. Different bars on

the plots represent different unrooted topologies (ordered by posterior probabilities). On

each plot the green bar represents the true unrooted topology. Each subfigure contains an

analysis of nine alignments simulated with a particular value of σ.
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(a) Structured uniform prior, σ = 0.
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(b) Structured uniform prior, σ = 0.05.
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(c) Structured uniform prior, σ = 0.1.
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(d) Structured uniform prior, σ = 0.2.
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(e) Structured uniform prior, σ = 0.3.

Figure C.1: Posterior distribution of the root splits for different values of σ and structured uniform
prior.
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(a) Structured uniform prior, σ = 0.
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(b) Structured uniform prior, σ = 0.05.
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(c) Structured uniform prior, σ = 0.1.
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(d) Structured uniform prior, σ = 0.2.
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(e) Structured uniform prior, σ = 0.3.

Figure C.2: Posterior distribution of the unrooted topologies for different values of σ and structured
uniform prior.
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Appendix D

This appendix summarises the results of the first block of simulations for the NR2 model,

analysed with the Yule prior. Figure D.1 shows the posterior distribution of the root splits

for σN = 0, 0.1, 0.25, 0.5, 1. Different bars on the plots represent different root splits on

the posterior distribution of trees (ordered by posterior probabilities). On each plot the

green bar represents the true root split. Figure D.2 shows the posterior distribution of the

unrooted topologies for σN = 0, 0.1, 0.25, 0.5, 1. Different bars on the plots represent

different unrooted topologies (ordered by posterior probabilities). On each plot the green

bar represents the true unrooted topology. Each subfigure contains an analysis of nine

alignments simulated with a particular value of σN .
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(a) Yule prior, σN = 0.
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(b) Yule prior, σN = 0.1.
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(c) Yule prior, σN = 0.25.
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(d) Yule prior, σN = 0.5.
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(e) Yule prior, σN = 1.

Figure D.1: Posterior distribution of the root splits for different values of σN and the Yule prior.
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(a) Yule prior, σN = 0.
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(b) Yule prior, σN = 0.1.
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(c) Yule prior, σN = 0.25.
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(d) Yule prior, σN = 0.5.
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(e) Yule prior, σN = 1.

Figure D.2: Posterior distribution of the unrooted topologies for different values of σN and the
Yule prior.
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Appendix E

This appendix summarises the results of the first block of simulations for the NR2 model,

analysed with the structured uniform prior. Figure E.1 shows the posterior distribution of

the root splits for σN = 0, 0.1, 0.25, 0.5, 1. Different bars on the plots represent different

root splits on the posterior distribution of trees (ordered by posterior probabilities). On

each plot the green bar represents the true root split. Figure E.2 shows the posterior

distribution of the unrooted topologies for σN = 0, 0.1, 0.25, 0.5, 1. Different bars on

the plots represent different unrooted topologies (ordered by posterior probabilities). On

each plot the green bar represents the true unrooted topology. Each subfigure contains an

analysis of nine alignments simulated with a particular value of σN .
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(a) Structured uniform prior, σN = 0.
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(b) Structured uniform prior, σN = 0.1.
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Figure E.1: Posterior distribution of the root splits for different values of σN and structured
uniform prior.
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(a) Structured uniform prior, σN = 0.
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(b) Structured uniform prior, σN = 0.1.

171



Appendix E.

0.
0

0.
2

0.
4

0.
6

0.
8

unrooted topologies

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

unrooted topologies

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

unrooted topologies

0.
0

0.
2

0.
4

0.
6

0.
8

unrooted topologies

0.
0

0.
2

0.
4

0.
6

unrooted topologies

0.
0

0.
2

0.
4

0.
6

0.
8

unrooted topologies

0.
0

0.
2

0.
4

0.
6

0.
8

unrooted topologies

0.
0

0.
2

0.
4

0.
6

0.
8

unrooted topologies

0.
0

0.
2

0.
4

0.
6

0.
8

unrooted topologies

  = 0.25, structured uniform prior
N

Dataset 1 Dataset 2 Dataset 3

Dataset 4 Dataset 5 Dataset 6

Dataset 7 Dataset 8 Dataset 9

po
st

er
io

r 
pr

ob
ab

ili
ty

po
st

er
io

r 
pr

ob
ab

ili
ty

po
st

er
io

r 
pr

ob
ab

ili
ty

po
st

er
io

r 
pr

ob
ab

ili
ty

po
st

er
io

r 
pr

ob
ab

ili
ty

po
st

e
rio

r 
pr

ob
ab

ili
ty

po
st

er
io

r 
pr

ob
ab

ili
ty

po
st

er
io

r 
pr

ob
ab

ili
ty

po
st

er
io

r 
pr

ob
ab

ili
ty

(c) Structured uniform prior, σN = 0.25.
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Figure E.2: Posterior distribution of the unrooted topologies for different values of σN and struc-
tured uniform prior.
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(a) Posterior distribution of πroot for the dataset with low level of non-stationarity (πroot =
(0.27, 0.27, 0.23, 0.23)).
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(b) Posterior distribution of πroot for the dataset with moderate level of non-stationarity (πroot =
(0.3, 0.3, 0.2, 0.2)).
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(c) Posterior distribution of πroot for the dataset with high level of non-stationarity (πroot =
(0.33, 0.33, 0.17, 0.17)).

Figure F.1: Posterior distribution of the composition at the root πroot for three datasets
simulated with different levels of non-stationarity: (a) low level of non-stationarity (πroot =
(0.27, 0.27, 0.23, 0.23)); (b) moderate level of non-stationarity (πroot = (0.3, 0.3, 0.2, 0.2));
(c) high level of non-stationarity (πroot = (0.33, 0.33, 0.17, 0.17)). The true values of πroot are
shown with dashed vertical lines.
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Appendix G

The root on the majority rule consensus tree and the mode of the posterior distribution

for root splits are different point summaries of the posterior distribution for root positions.

Both can be approximated from posterior samples of rooted topologies but they need not

coincide. For example, suppose the posterior output comprises the following five trees:

Tree 1: ((A:1,B:1):1,(((E:1,F:1):1,D:1):1,C:1):1);

Tree 2: (((A:1,B:1):1,C:1):1,((E:1,F:1):1,D:1):1);

Tree 3: ((((A:1,B:1):1,C:1):1,D:1):1,(E:1,F:1):1);

Tree 4: (((((A:1,B:1):1,C:1):1,D:1):1,E:1):1,F:1);

Tree 5: ((A:1,B:1):1,(((E:1,F:1):1,D:1):1,C:1):1);

The clade (A, B) appears on all the trees, and so is included in the consensus tree with

probability one. Similarly, the clade (A, B, C) appears on three trees (Tree 2, Tree 3 and

Tree 4), and so appears in the consensus tree with support 0.6. Continuing in this fashion,

the consensus tree is completed by incorporating the clades (E, F) and (D, E, F) which

appear with support 0.8 and 0.6 respectively. Hence, the root position on the consensus

tree (shown in the Figure below) separates the taxa A, B, C from D, E, F. On the other

hand, the posterior for root splits is given by:

Root split Count Probability

(A, B) : (C, D, E, F) 2 0.4

(A, B, C) : (D, E, F) 1 0.2

(E, F) : (A, B, C, D) 1 0.2

(F) : (A, B, C, D, E) 1 0.2

Thus the posterior modal root split is (A, B) : (C, D, E, F) which does not match the

root split (A, B, C) : (D, E, F) on the consensus tree.
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