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Abstract 

 

Over the years, several attempts have been made by various research institutions and 

petroleum companies to develop models for the prediction of CO2 corrosion in pipelines, in 

order to better capture the underlying principles that cause it. Modelling CO2 corrosion is 

important to the oil and gas and carbon capture and storage (CCS) industries, as it provides 

the means by which the prevention of the financial costs from lost production, the 

preservation of the environment as well as the health and safety of human lives can be 

achieved.  

In this thesis, existing models have been investigated and compared against newly derived 

models in terms of their accuracy of prediction, by using an identical test dataset. A neural 

network (NN) model was developed, in which a detailed sensitivity analysis was carried out 

on Matlab training functions to determine their degree of suitability in CO2 corrosion 

prediction. Results showed that the tansig transfer function was the most suitable and that a 2-

layer network was sufficient to obtain desirable R
2
-values of ~0.9 for both low and high 

pressure CO2 corrosion data. 

Also, a linear regression model was developed based on predictor variables: temperature (T), 

CO2 partial pressure (𝑃𝐶𝑂2), fluid velocity (U) and pH, for both low and high pressure CO2 

data. The respective R
2
-values obtained are 0.65 and 0.7. An R

2
-value of 0.8 can be achieved 

for the low pressure CO2 data; however the derived regression equation is inelegant and 

contains a combination of a large number of predictor terms. 

From Monte Carlo analyses, the exponential and normal distributions were discovered to be 

the best fits for the low and high pressure CO2 corrosion rate data, respectively. Further, 

parametric sensitivity analyses revealed the pH and fluid velocity to be the least and most 

significant variables for low pressure CO2, respectively, while the velocity and temperature 

were the least and most significant variables for high pressure CO2 corrosion, respectively. 
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1.1 Corrosion Costs 

 

The effect of carbon dioxide (CO2) corrosion on pipelines is of great relevance to the 

petroleum as well as the Carbon Capture and Storage (CCS) industries. CO2 corrosion is 

responsible for lost production as it brings about the gradual degradation of pipe internals 

with time.  

The U.S. refinery capacity was approximately one-fifths of the total world refinery capacity as 

of 1991 (Campbell, 1991), and is ~27% of the global refinery capacity as of 2014. In 2002, 

the production and manufacturing industry accounted for approximately 13% (or $18 billion) 

of the corrosion costs in industry categories (Koch et al., 2002). The share for each of the 

industry categories is shown in Table 1-1. 

Table 1-1. Share of corrosion costs for the U.S. industry categories (Koch et al., 2002) 

Industry Category Percentage Share (%) 

Infrastructure 16 

Utilities* 35 

Transportation 21 

Production and Manufacturing 13 

Government 15 

 

* Utilities includes corrosion costs from the natural gas distribution system (~10% of Utilities) 

 

The industry category of interest is production and manufacturing, as it is accountable for 

most of the corrosion costs. The breakdown of costs in this category is shown in Figure 1-1. 

From the pie chart of Figure 1-1, the oil and gas industry costs cut across the oil and gas 

exploration, petroleum refining as well as the petrochemical and pharmaceutical sectors. 

These costs amount to 39%. 
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Figure 1-1. The production and manufacturing corrosion costs share  

(Koch et al., 2002) 

 

In addition, the natural gas distribution corrosion costs account for 10% of the Utilities 

industry category, as seen from Table 1-1. Hence, the cumulative share for the petroleum 

industry was in excess of 40% of the U.S. total corrosion costs as of 2002. As of 2014, the 

cost of corrosion in the production and manufacturing sector was $34.4 billion, almost double 

the reported 2002 amount, with the oil and gas industry accounting for more than half. 

As of 2011, the annual cost of corrosion rose to $2.2 trillion, amounting to over 3% of the 

world‘s gross domestic product (GDP) (Hays, 2011). The cost of general corrosion is said to 

be between 3 to 5% of an industrialised nation’s GDP (Schmitt et al., 2009). Also, 

approximately 60% of all oil and gas field failures are related to CO2 corrosion (Nyborg, 

2005). 

1.2 Environmental Impact of CO2 emissions 

 

According to the Inter-governmental Panel for Climate Change (IPCC), observational 

evidence suggests that the composition of the atmosphere is changing as a result of increased 

concentrations of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4). 
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A recent report by the IPCC also suggests that most of the observed increase in global average 

temperatures since the mid-20
th

 century is most likely due to the observed increase in 

anthropogenic greenhouse gas concentrations (IPCC, 2014). 

CO2 is evidently the most significant greenhouse gas given that annual emissions of the gas 

have risen by almost 80% between 1970 and 2010, from 21 to 49 gigatonnes, and as of 2010, 

represented approximately 77% of the total global greenhouse gas emissions (IPCC, 2014). 

The pie chart in Figure 1-2 shows the share of each greenhouse gas in global emissions. 

 

 

Figure 1-2. Share of each greenhouse gas in total global emissions (IPCC, 2014) 

 

On this note, atmospheric CO2 concentration has elevated beyond its pre-industrial revolution 

magnitude, 280ppm, to the value of 400ppm, as of 2013 (IPCC, 2014; Dlugokencky, 2014). 

This observational evidence is depicted by the rise in atmospheric CO2 concentration as 

shown in the Keeling curve of Figure 1-3. From Figure 1-3, it is seen that atmospheric CO2 

concentration increased steadily on an annual basis from 1960 to date. This rise in greenhouse 

gas levels ultimately results in projected changes in climate such as increasing temperatures, 

changes in precipitation, sea-level rise and increased frequency and intensity of some extreme 

climatic events leading to increased climate variability. 
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Figure 1-3. Keeling curve (NOAA, 2015) 

 

Globally, these environmental changes have a profound impact on biodiversity such that the 

ecosystems are unable to adopt or induce self-regulatory mechanisms to nullify the changes, 

thus mitigation processes are required. CO2 is being emitted anthropogenically at a faster rate 

than the natural processes of the carbon cycle are able to remove it. One major reason for the 

earths’ ecosystems inability to counteract the effect of these changes is land use – 

deforestation. The impact of deforestation is two-fold; firstly, it reduces the number of trees, 

which are the earth’s natural carbon sinks and secondly, when trees are felled, they are often 

burned, releasing their carbon contents into the atmosphere. 

Mitigation is the anthropogenic intervention to reduce net greenhouse gas emissions that 

would lessen the pressure on natural ecosystems as well as human systems from the effects of 

climate change. Furthermore, mitigation involves the reduction of greenhouse gases by the 

reduction of fossil fuel use or by the increase in the natural carbon uptake rate by ecosystems. 

An examination of CO2 emissions by sector indicates that electricity and heat generation is 

the largest sector (41%) responsible for CO2 emissions as shown in Figure 1-4. 
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__________________________________________________________________________________ 

*Other refers to emissions from commercial services, agriculture, fishing and energy industries other than 

electricity and heat generation 

__________________________________________________________________________________________ 

Figure 1-4. World CO2 emissions by sector (IEA, 2010) 

 

Further evidence of the impact of CO2 emissions can be inferred from climate modelling. In 

2014, the IPCC proposed four Representative Concentration Pathway (RCP) scenarios. These 

are: RCP 2.6, RCP4.5, RCP6.0 and RCP8.5. The RCPs are consistent with a wide range of 

possible changes in predicted anthropogenic GHG emissions (IPCC, 2014).The names of the 

RCPs come from their respective radiative forcing values from the end of the 21
st
 century 

with reference to pre-industrial revolution values: 2.6, 4.5, 6.0 and 8.5W/m
2
 (IPCC, 2014). 

Radiative forcing of a gas is defined as the difference between the incident solar radiation on 

the earth’s atmosphere and the outgoing infrared radiation caused by the increased 

concentration of the gas (IPCC, 2014). CO2 has the highest contribution to radiative forcing 

and accounts for more than 80% of the radiative forcing from GHGs for the climate modelling 

pathway scenarios due to its high atmospheric concentration, warming effect, long residence 

time in the atmosphere and its global spatial distribution (Clarke et al., 2007). Since 1750, its 

radiative forcing has increased by 1.88W/m
2
 or ~65% of the increased forcing by all long-

lived greenhouse gases (LLGHG) (Dlugokencky et al, 2014). Table 1-2 is a summary of the 

RCP scenarios. 
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Table 1-2. RCP scenarios for the end of the 21
st
 century (IPCC, 2014) 

 

Of all these scenarios, RCP2.6 represents the best possible future pathway for emissions 

however; it represents a near-ideal situation. In terms of the current global emission trends, 

based on socio-economic factors, RCP 4.5 and RCP6.0 represent the more likely future 

pathways while RCP8.5 is an extreme. The effect each of these scenarios has on the CO2 

atmospheric concentrations is shown in Figure 1-5. 

It can be observed from Figure 1-5 that the atmospheric CO2 concentration peaks for RCP2.6, 

4.5 and 6.0 do not coincide with the stated emissions peaks listed in Table 1-2. For instance, 

the emissions peak for RCP2.6 is between 2010 and 2020, yet the atmospheric concentration 

of the gas does not peak until approximately 2040. The atmospheric CO2 concentration peaks 

occur much later due to the long-life or long residence time of CO2. 

 

Future 

Scenario 

Definitions Global Mean Surface 

Warming (
o
C)  

Global Mean Sea 

level rise (m) 

RCP2.6 Assumes global annual 

emissions peak between 

2010 and 2020 

1.00 0.40 

RCP4.5 Assumes global annual 

emissions peak around the 

year 2040 

1.80 0.47 

RCP6.0 Assumes global annual 

emissions peak around the 

year 2080 

2.20 0.48 

RCP8.5 Assumes global annual 

emissions increase 

indefinitely throughout the 

21
st
 century 

3.70 0.63 
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Figure 1-5. Projected Keeling curve based on climate modelling  

(Meinshausen et al., 2011) 

 

1.3 The Importance of CCS 

 

Worldwide, the power generation sector is heavily reliant on coal which is the most carbon 

intensive of fuels thus amplifying its share in global emissions as shown in the pie chart of 

Figure 1-4. 

 

Figure 1-6. World total primary energy supply (IEA, 2012) 
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It is worth noting that from Figure 1-6, fossil fuel (oil, gas and coal) combustion accounts for 

approximately 80% of the total world CO2 emissions. Also shown in Figure 1-6, is the 

projected world energy consumption for the year 2035, and this shows very little change in 

the usage of coal. This implies that while some countries will inevitably reduce their reliance 

on coal, other countries may increase their consumption of it – in general, some countries will 

depend on it more than others. 

In order to reduce greenhouse gas emissions however, coal-fired plants will have to be 

deployed in conjunction with CCS technologies. This is a low-cost option (World Energy 

Council, 2007; IPCC, 2014). In a context where a gas-fired system is deployed instead of the 

coal-fired alternative, CCS technologies should be used alongside even though, generally 

speaking, the former is more efficient and environmentally cleaner than the latter (IEA, 2012). 

1.4 CO2 Corrosion in Petroleum and CCS pipelines 

 

Corrosion of pipelines under low pressure CO2 conditions has been covered extensively with 

readily accessible corrosion data made available (Dugstad et al., 1994b; Halvorsen et al., 

1999; Sun and Nesic, 2004). CO2 corrosion under low pressure conditions is characteristic of 

the oil and gas industry and comes about when CO2 in produced gases dissolve in water, thus 

forming carbonic acid (Garverick, 1994). For gas condensate wells producing formation 

water, produced gas coupled with acid gases, (H2S, CO2), if liquid water is allowed to 

condense on the tubing, CO2 corrosion may occur (Garverick, 1994). CO2 corrosion has also 

become an increasingly common phenomenon in enhanced oil recovery applications, where 

CO2 and water mixtures are injected directly into the depleted well to facilitate extraction 

(Garverick, 1994; Satter et al., 2007). 

Corrosion of pipelines under high pressures comes about by the transportation of the gas in 

the dense liquid-phase from its point of capture (Power plant) to a storage site (abandoned 

coal mine or oilfield) (Downie et al., 2007). Elevated pressures in this context exceed 7.4MPa 

(74bar), hence corrosion risks are possible. Corrosion risks are potentially more severe when 

impurities such as traces of water droplets, H2S, SOx and NOx gases are present (Downie et 

al., 2007). These gases are present in CO2 streams depending on the fuel source of the power-

generating emitter: fuel or flue gas (Granite and O’Brien, 2005). 
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Fuel gases are combustible gases which are direct products of the partial combustion of a fuel 

during gasification. They usually contain higher amounts of CO than flue gases (Zevenhoven 

and Kilpinen, 2004). Flue gases are the final gaseous products of complete combustion and 

typically contain higher amounts of CO2 than fuel gases (Zevenhoven and Kilpinen, 2004). 

The costs associated with pipeline CO2 corrosion coupled with the unique challenges of 

modelling corrosion risks at elevated CO2 pressures, in order to reduce global emissions of 

the gas signifies the importance of a research undertaking in this field. 

1.5 Aims and Objectives 

 

The aims and objectives for this research are: 

1. The writing-up of a literature review in order to be fully aware of the latest research 

activities being carried out in the field of CO2 corrosion. Preparation of the literature 

review would aid the preparation of a project Gantt chart (see Appendix A1.1), 

planning of project activities and to direct the focus of the research. 

 

2. The gathering of CO2 corrosion data from sources in research literature. Data is to be 

collected from multiple experimental sources. In these sources, corrosion tests were 

carried out on samples of ferritic-pearlitic carbon steel for low pressure data. One such 

chemical composition for the low pressure CO2 dataset is presented in Table 1-3 

(Dugstad et al., 1994b): 

Table 1-3. Weight percentage chemical composition of St.52 carbon steel (Dugstad et al., 

1994b) 

C Si Mn S P Cr Ni V Mo Cu 

0.180 0.340 1.500 0.017 0.023 0.080 0.030 0.003 0.030 0.100 

 

Other elements include: Al=0.009, Sn=0.000, Nb=0.002 and Fe= 97.686

 

 

St.52 is a carbon-manganese steel. For the high pressure dataset, corrosion 

experiments were carried out on a variety of steels. However one common steel type 
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was the X65 pipeline carbon steel with a ferritic-pearlitic microstructure (Zhang et al., 

2012a). Its chemical composition is shown in Table 1-4: 

Table 1-4. Weight percentage chemical composition of X65 carbon steel (Zhang et al., 

2012a) 

C Si Mn P S N Cr Mo Ni Cu 

0.100 0.310 1.480 0.350 0.005 0.007 - - - - 

 

Iron is the only other element; Fe= 97.748

 

3. The preparation of a database for storage of the gathered experimental data. A 

database was created using Microsoft Excel (see Appendix A1.2). 

 

4. The analysis of the stored data. This involves the plotting of profiles for corrosion 

rates against temperature or with other variables such as the CO2 partial pressure, flow 

velocity, and pH, depending on what is being modelled at that instance. 

 

5. The writing, debugging and execution of Matlab model codes for the respective 

established CO2 corrosion models obtained from research literature. All model codes 

are written in Matlab 2012a. These models include the 1975, 1991 and 1995 De 

Waard as well as the Norsok and Nesic-Postlethwaite-Olsen (NPO) models. The 

limitations of each of the models are then fully discussed. 

 

6. The use of the R
2
-statistic as a means for assessing model performance. 

 

7. The division of the low and high pressure CO2 datasets into model-developing and 

testing datasets. 

 

8. The development of statistical models. Statistical analysis would include descriptive 

statistics, principal component analysis (PCA) and regression of the respective 

corrosion datasets. 
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9. The development of neural network (NN) models for both low and high pressure CO2 

corrosion data based on the designated model-developing datasets. Given that the use 

of NNs as prediction tools for low pressure CO2 data has been established (Nesic and 

Vrhovac, 1999), but not for high pressure; it would be useful to develop a NN model 

for predicting high pressure CO2 corrosion as this would constitute a novel approach. 

 

10. The development of a fuzzy inference system (FIS) model capable of predicting 

corrosivity for the low and high pressure CO2 corrosion datasets. 

 

 

11. The application of Monte Carlo simulations to develop a parametric sensitivity study 

on the influence of the predictor variables (temperature, CO2 partial pressure, flow 

velocity and pH) on CO2 corrosion rates; for both low and high pressure CO2 

corrosion datasets.CO2 corrosion research literature has very limited content when it 

comes to the use of statistical tools and Monte Carlo modelling. Some aspects of 

statistical modelling such as the use of PCA as well as the Monte Carlo-simulated 

sensitivity analysis constitute novel approaches in this field. 

 

12. The established 1991 and 1995 De Waard, Norsok and Freecorp models are tested 

with the same test datasets used with the derived models. The model results based on 

the application of the R
2
-coefficient for both low and high pressure CO2 datasets are 

compiled together and discussed. 
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1.6 Thesis Structure and Content 

 

This Chapter has so far, dealt with the monetary costs of CO2 corrosion and its impact on 

world climate. There was also a discussion of the recently adopted climate modelling 

scenarios applicable from current timelines until the end of the 21
st
 century. The thesis aims 

and objectives have been fully discussed, showing a progression from a review of the 

literature to data collection, storage and analysis. Specific modelling techniques considered to 

be novel in approach with respect to CO2 corrosion research literature have also been 

highlighted.  

The following chapters have generally been organised the same way as the ordered list of the 

thesis aims and objectives. Chapter 2 is the literature review for CO2 corrosion and this is 

dealt with in great detail. Topics covered include: CO2 corrosion mechanism, the factors 

affecting CO2 corrosion, the different types, an introductory account of CO2 corrosion models 

as well as the methodology for modelling CO2 corrosion from low to high CO2 partial 

pressures. Also discussed are introductory reviews of the use of NNs and fuzzy logic as tools 

suitable for CO2 corrosion prediction. 

Chapter 3 deals with the established CO2 corrosion correlations and models. These include the 

aforementioned De Waard, Norsok and Freecorp models. The NPO model is also discussed as 

it is the basis for the development of the Freecorp model. These models are compared against 

each other by applying identical parametric conditions for the temperature, CO2 partial 

pressure, flow velocity and pH and assessing their predictions. Other topics covered include 

organic acid and H2S corrosion. 

Chapter 4 covers the statistical analysis of the low and high pressure CO2 datasets. 

Explanations on the full descriptive statistics, principal component analysis and regression 

relationships are outlined. Also, response surface model plots for the CO2 corrosion datasets 

are discussed. Again, the R
2
-coefficient is used to report model performances for the derived 

regression equations, which are subsequently used in Chapter 7. 

In Chapter 5, the methodology by which a NN model is developed for the purpose of 

predicting corrosion rates for both low and high pressure CO2 datasets is discussed. The basic 

definition of the R
2
-statistic from first principles is also outlined. The methodology for NN 

model development involves the use of performance tests based on the R
2
-value for given 
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Matlab 2012a training and transfer functions. A process of elimination is carried out to 

determine which combination of transfer and training functions is best-suited to CO2 

corrosion modelling. Also, the determination of the final NN model size is discussed and this 

is proven to be a direct consequence of the size of the datasets used. The low and high 

pressure CO2 datasets were each split into model-developing and testing sets. The R
2
-value is 

then used to report model performance following testing with test set. 

Chapter 6 covers fuzzy modelling. An account is given of how fuzzy logic originated. The 

various membership functions are discussed. The methodology for the development of a fuzzy 

logic model based on the creation and applicability of rules (‘if-then’) is explained. The R
2
-

statistic is used as an assessment of model performance when tested with a test set. 

The seventh chapter covers Monte Carlo simulation. Definitions of relevant concepts such as 

the random variable and the different types of probability distributions are stated. A brief 

basis is outlined on how to determine best-fit distributions for a given dataset. The low and 

high pressure CO2 datasets are analysed in order to determine their best-fit theoretical 

distributions. The pre-determined regression equations are then used as case study scenarios 

for establishing a parametric sensitivity analysis for CO2 corrosion rates in terms of the given 

predictor variables.   

Chapter 8 is an extended discussion of the performance results obtained for the established 

models outlined in Chapter 3. An identical test dataset to the ones used for the assessment of 

performances of the derived models in Chapters 5 to 8, is used as the basis for evaluating the 

accuracy of model predictions. Performance results of the derived models in Chapters 4 to 8 

are discussed in an expansive manner. The advantages, limitations and their applicability are 

explained in detail. 

The Conclusions and Recommendations for Further work are outlined in Chapter 9. 

Generally, the conclusion is discussed in the same logical manner as the thesis aims and 

objectives. Furthermore, those aspects of modelling that have are beyond the scope of this 

research are stated as recommendations for further work. 
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Chapter 2. Literature Review on CO2 Corrosion 
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2.1 CO2 Corrosion - Introduction  

In Section 1.4, the formation of carbonic acid in pipelines was briefly discussed. The 

scenarios in which low and high pressure CO2 corrosion are prevalent in the petroleum and 

CCS industries respectively, were also explained. In this chapter, the mechanism and types of 

CO2 corrosion will be discussed. The major factors influencing CO2 corrosion are also 

outlined.  

Some established models developed for the prediction of CO2 corrosivity are also outlined. 

Modelling techniques for the accurate prediction of high pressure CO2 corrosion in pipelines 

such as neural networks and fuzzy logic are also discussed as viable research directives in the 

latter sections of this chapter. 

Carbon dioxide corrosion was first documented to occur as early as the 1940’s in the U.S. oil 

and gas industry (Perez, 2013) and has since been followed by several studies on corrosion 

rate prediction (Crolet and Bonis, 1991; Song et al., 2005; Hernandez et al., 2006). CO2 

corrosion, also termed sweet corrosion involves the dissolution of gaseous carbon dioxide into 

an aqueous phase where, via a hydration reaction with water forms carbonic acid, H2CO3, the 

specie which induces corrosive attack on the surface of the metal (Kermani and Morshed, 

2003). 

Dry carbon dioxide is itself non-corrosive at oilfield temperature and pressure conditions 

(T=0-100
o
C, P<7.4MPa) however when dissolved in an aqueous solution, it initiates a series 

of electrochemical reactions culminating in the aqueous phase coming in contact with the 

metal surface thus inducing the dissolution of the latter. 

2.2 An Outline of the CO2 Corrosion Process 

 

In general, gaseous carbon dioxide exerts a partial pressure on water resulting in its 

dissolution. The aqueous carbon dioxide then undergoes hydration thus forming carbonic acid 

which does not fully dissociate, unlike strong mineral acids, which completely dissociate in 

aqueous media (Kermani and Morshed, 2003). 

The following set of equilibria depicts its incomplete dissociation: 

CO2 + H2O ⟺ CO2 − H2O ≈ H2CO3⟺ H+ + HCO3
−  (2.1) 
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Figure 2-1. Diagram showing CO2 corrosion including the effect of O2 

(Song et al., 2005) 

 

Figure 2-1 is a summary of reactions occurring on the surface of the metal. The horizontal 

short-dashed line represents the aqueous boundary situated in close proximity, at a distance, 

y=δs, to the steel surface. The steel surface is represented by a distance, y=0. CO2 present in 

the oil and gas stream exerts a partial pressure, CO2 (𝑃𝐶𝑂2), leading to its dissolution in the 

aqueous phase, CO2 (aq). Its reaction with water leads to the formation of carbonic acid 

(H2CO3). Carbonic acid eventually undergoes dissociation into the bicarbonate ion (HCO3
-
) 

and hydrogen ion. The bicarbonate ion undergoes further dissociation into the carbonate ion 

and hydrogen ion. Meanwhile, steel undergoes oxidation into ferrous ions (Fe
2+

). The 

eventual reaction between ferrous ions and the carbonate ions results in the formation of 

ferrous carbonate (FeCO3). 

Also, a possibility in the corroding system is the presence of O2 (Song et al., 2005). This 

exerts a partial pressure, O2 (𝑃𝑂2), leading to its dissolution in the aqueous phase O2 (aq). 

Aqueous O2 then gets oxidised in the presence of water, forming hydroxide ions (OH
-
). The 

consequent reaction between the aforementioned ferrous ions and hydroxide ions results in 

the formation of ferrous hydroxide, Fe(OH)2. 

It is often the case that the corrosion of iron is generally summarised as follows (Crolet et al., 

1999): 

Fe + 2H2O → Fe(OH)2  (2.2) 

The CO2 corrosion mechanism is a series of electrochemical reactions that involve the anodic 

dissolution of iron and the cathodic evolution of hydrogen. (Nesic and Vrhovac, 1999) 
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The overall reaction is: 

Fe (s) + CO2 (g)  +  H2O (l) → FeCO3 (s) + H2(g)  (2.3) 

The anodic dissolution of iron leads to the formation of various films such as FeCO3 

(siderite), Fe3O4 (magnetite) and Fe3C (cementite) which can be protective or non-protective 

depending on film-formation conditions and the type of film formed.  

The anodic dissolution of iron is outlined as follows: 

Fe (s) →  Fe2+(aq) + 2e− (2.4) 

For the cathodic reactions, it has been assumed that the presence of CO2 increases the rate of 

hydrogen evolution reaction. For strong acids that are known to dissociate fully, hydrogen 

ions will be evolved readily in solution however since the CO2 corrosion mechanism is mass 

transfer limited therefore hydrogen ion evolution cannot exceed the rate at which it is 

transported to the metal surface from bulk solution. (Nesic and Vrhovac, 1999) 

In solutions of pH>4, the mass transfer controlled current is small but the presence of the 

weak acid, H2CO3, which is the hydrated form of CO2, enables hydrogen evolution at a much 

higher rate. Hence at any given pH, the presence of CO2 leads to a much higher corrosion rate 

than would be found in a solution of a strong acid. Carbonic acid may be reduced at the 

cathode leading to the evolution of hydrogen gas. In any case, both reactions are said to 

procced independently of each other (Gray et al., 1989). Another cathodic reaction is the 

reduction of water (Tanupabrungsun et al., 2013). 

The cathodic evolution of hydrogen is outlined as follows: 

2H+(aq) + 2e− → H2 (g)  (2.5) 

2H2CO3(aq) + 2e
− → H2(g) + 2HCO3

− (aq)  (2.6) 

2H2O (l) + 2e
−  → 2OH−(aq) + H2(g)  (2.7) 

Also it has been suggested that at high pH conditions in CO2-rich solutions, that the reduction 

of the bicarbonate ion becomes important: 

2HCO3
− (aq) + 2e− → H2(g) + 2CO3

2−(aq)  (2.8) 
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The following reaction summarises film formation: 

 Fe2+(aq) + CO3
2−(aq) →  FeCO3 (s)  (2.9) 

2.3 Types of CO2 Corrosion Damage 

Carbon dioxide corrosion often takes up the form of general (uniform) corrosion, which is 

characterised by an electrochemical reaction proceeding uniformly over the entire surface area 

of the metal. It may also take three forms of localised attack – pitting, mesa-type attack and 

flow-induced corrosion. It is also worth noting that combined CO2–erosion corrosion is 

characterised by the following physical descriptions: horse shoe, ripple effect marks, comet 

tails and dinosaur footprints, (Crolet, 1994; Kermani and Smith, 1994) while the previously 

mentioned forms apply strictly to pure CO2 corrosion, and are the subject of this discussion.  

2.3.1 Pitting  

This is a form of localised corrosion that usually occurs in low-velocity fluid flow 

environments around dew point temperatures in a gas-producing well (Kermani and Morshed, 

2003). It results in the appearance of holes in the metal surface, as seen in Figures 2-2 A and 

2-2B.                                                                                               

  

Figure 2-2  Pitting corrosion of a steel pipe (Newman, 2010) 

 

Figure 2-2A is a close-up view of pipe steel that has undergone pitting corrosion and Figure 

2-2B shows the pit size on the steel surface in relation to the rest of the pipe. Pitting corrosion 

is difficult to predict and may give the appearance of small holes on the steel surface and is 

known to develop under the surface of the metal triggering mechanical failures by fatigue, as 

seen in Figure 2-3 (Newman, 2010). 

A B 
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Figure 2-3  Pitting corrosion of a steel pipe (Newman, 2010) 

 

Pitting susceptibility increases with increasing temperature and CO2 partial pressure. It is also 

reported that nearly all metals and alloys regardless of type are likely to undergo pitting 

corrosion provided the conditions are right. While some researchers have pointed out that 

chloride ions are not a necessary component for propagating pitting corrosion (Videm and 

Dugstad, 1989) and conversely, the addition of lead (Pb) inhibited pitting corrosion through 

deposition at local anodes (Schmitt and Feinen, 1983; Schmitt and Engels, 1988); there is 

generally no applicable rule for the prediction of this type of corrosion since its propagation 

has been put down to its dependency on various factors. 

2.3.2 Mesa-type Attack  

This is a type of localised corrosion that takes place in low to medium fluid-flow 

environments as shown in Figure 2-4, where the protective film forms, however it is unstable 

and unable to withstand the intensity of the operating regime. Low to medium velocity fluid 

flow is still capable of washing away any protective films formed on the metal surface. 

 

Figure 2-4. Mesa-type corrosion in a CO2-rich system (Kermani and Morshed, 2003) 

 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

21 

 

In terms of physical appearance, typically, mesa-type attacks manifest in large flat-bottom 

basin-like depressions with sharp edges – corrosion damage showing in areas of localised 

attack is well in excess of surrounding areas. It was proposed by (Crolet et al., 1996) that the 

microstructurally formed galvanic coupling between the ferrite phase of steel and the 

cementite layer (Fe3C) is a possible cause to promote mesa-attack in sweet environments. It is 

likely to occur in mature gas wells and young wells provided that the acid gas pressures are 

high in the latter. It was also mentioned by the same author, that while this form of corrosion 

is a little sensitive to fluid flow velocities, it is more dependent on the fluid composition. 

Although a study performed by Ikeda and others (Ikeda et al., 1984) attributed the initiation of 

mesa-attack to the competitive film formation reactions between Fe3O4 and ferrous carbonate 

(FeCO3), the presence of magnetite scale has not been detected in actual field conditions 

(Crolet, 1994; Crolet, 2002). It was concluded that the initiation and propagation of mesa-

attack corrosion is due to inadequate protection offered by ferrous carbonate film formation 

on the metal surface (Crolet, 1994; Crolet, 2002). However there is still no definitive 

understanding of the way in which mesa-attack occurs and the precise nature of prevailing 

conditions required for its propagation is uncertain hence further systematic studies are 

necessary to prevent future occurrence in the field. 

2.3.3 Flow-induced Localised Corrosion 

This form of corrosion usually starts from pits/troughs that had previously been sites of 

localised mesa attack (Kermani and Morshed, 2003). This form of corrosion is solely 

dependent on high fluid flowrates. 

 

Figure 2-5. Flow-induced localised pipeline corrosion 

(https://co2corrosionchem409.wikispaces.com/Background+of+CO2+Corrosion) 

 

High velocity fluid flow proceeds to generate turbulent eddies around mesa-attack sites, 

sweeping away any films formed as well as scale growths (Schmitt and Feinen, 1983), 

https://co2corrosionchem409.wikispaces.com/Background+of+CO2+Corrosion
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(Schmitt and Engels, 1988). Once the scales are damaged or destroyed, the flow velocity then 

prevents the re-formation of protective film thereby leaving fluids to corrosively attack the 

exposed metal surface.  

2.4 Major Factors Influencing CO2 Corrosion 

 

A number of key factors play a role in influencing the extent of CO2 corrosion. These 

parameters are broadly classified into the following categories as shown in Figure 2-6 below:  

 

 

 

 

 

Figure 2-6. Major factors affecting CO2 corrosion 

 

2.4.1 The Effect of Environmental Factors on CO2 Corrosion 

These are factors that affect the inherent corrosivity of the aqueous phase and as such 

influence carbon dioxide corrosion. These factors include solution chemistry, CO2 partial 

pressure (mol% CO2), temperature, in-situ pH, and the presence of hydrogen sulphide (H2S) 

as well as the effect of organic acids such as acetic acid (CH3COOH, HAc) (Kermani and 

Morshed, 2003). Some of which will be discussed in other sections of this review. In-situ pH 

will be discussed in this Section, in presence of H2S. 

Effect of Solution Chemistry 

Solution chemistry deals with the relative concentration of dissolved ions with respect to each 

other, in the aqueous solution and how this affects the pH. While it will be discussed in the 

next Section that the pH of the solution is mostly influenced by the CO2 partial pressure, 

solution chemistry is also very important given that it controls the formation and stability of 

protective film layers. Supersaturation, Sat, is defined as the ratio of the product of the ionic 

(cation and anion) concentrations to the solubility limit, Ksp: 

Environmental 

Factors 

 

Metallurgical Factors 

 

Physical Factors 

 

CO2 Corrosion 
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𝑆𝑎𝑡 =
[𝐴+][𝐵−]

𝐾𝑠𝑝
   (2.10) 

 𝐴+ + 𝐵− ⇌ 𝐴𝐵 (2.11) 

Where: 

𝑆𝑎𝑡 is supersaturation and is dimensionless  

𝐴+ and 𝐵−are ionic species in ′
mol

l
′ , that form an insoluble salt (𝐴𝐵)   

𝐾𝑠𝑝 is the solubility limit in ′ (
mol

l
)
2

′  

For CO2 corrosion, A
+
 and B

-
 are Fe

2+
 and CO3

2-
, respectively. Thus: 

∴ 𝑆𝑎𝑡 =
[A+][B−]

𝐾𝑠𝑝
 (2.10) ⟹ 𝑆𝑎𝑡𝐹𝑒𝐶𝑂3 =

[Fe2+][CO3
2−]

𝐾𝑠𝑝𝐹𝑒𝐶𝑂3

  (2.12) 

∴ 𝐴+ + 𝐵− ⇌ 𝐴𝐵 (2.11) ⟹ Fe2+ + CO3
2− ⇌ FeCO3 (s)  (2.13)  

High supersaturation of Fe
2+

 and CO3
2- 

ions leads to the precipitation of FeCO3 on the metal 

surface as a film layer, once the ferrous carbonate solubility limit (Ksp) is exceeded, which 

leads to a consequent reduction in corrosion rate by providing an extended diffusion length 

between the metal surface and corrosive medium, as seen in the Corrosion rate vs. pH plot of 

Figure 2-7B (Kermani and Morshed 2003). Low Fe
2+ 

concentrations in solution has the effect 

of reducing corrosion rates but at a much slower rate because the rate of formation of FeCO3 

scale is much slower, as seen in the Corrosion Rate vs. pH plot of Figure 2-7B. 

Effect of Temperature, CO2 Partial Pressure and Fluid Flowrate Velocities 

Temperature has the effect of increasing corrosion rates and this is due to the reasoning 

behind the Arrhenius and Kinetic theories, as seen in Figure 2-7C (Tan and Chan, 2011). 

Higher temperatures provide molecules with greater amounts of energy, thus enabling faster 

collisions between reacting species and speeding up reaction rates. The higher the CO2 partial 

pressure, in general, the greater the corrosion risk, as this directly translates to higher 

concentrations of carbonic acid and lower pH-values of the solution surrounding the metal 

surface, as seen in Figure 2-7A. Also, higher fluid flowrate velocities imply greater corrosion 

risks due to the mechanical washing away of the protective film on the metal surface. A more 

detailed explanation of how these factors affect corrosion rate is described in the next Section. 
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The following illustrations depict the general trend for some environmental factors on CO2 

corrosion.  

  

Figure 2-7. Plot illustrations indicating the effect of the primary parameters on CO2 

corrosion of carbon steel (Dugstad et al., 1994a) 

Figure 2-7A shows a linear relationship between CO2 partial pressure to an exponent of 0.7 

and corrosion rate (Dugstad et al., 1994a). An increase in CO2 partial pressures results in 

incremental rates of corrosion. Figure 2-7B shows a near-linear decrease in corrosion rate 

with increasing pH. Corrosion rate however decreases more slowly for low dissolved ferrous 

ion concentrations than for higher ferrous ion concentrations, due to supersaturation occurring 

more readily for the latter than the former thus forming a protective scale sooner on the steel 

surface. Figure 2-7C shows an increase in temperature resulting in a corresponding increase in 

corrosion rates albeit a peak occurs at the 60-80
o
C range due to protective magnetite scale 

formation, which subsequently leads to a fall in corrosivity. Figure 2-7D shows an initial 

increase in fluid flow velocity leads to an increase in corrosion rates, after which increasing 

fluid flow velocity leads to a levelling-off of corrosivity. For very high fluid velocities 

exceeding 7m/s, there is the possibility of a further increase in corrosion rate, particularly for 

elevated temperatures (Eriksrud and Sφntvedt, 1983), due to the mechanical removal of 

surface film (Dugstad et al., 1994a). 

  

A B 

C D 
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CO2 Corrosion Prediction – Corrosion Rate-Determining Parameters 

The impact of CO2 corrosion on the oil and gas industry as well as the CCS industries is well 

documented. (Kermani and Morshed, 2003; IEAGHG, 2010). In the oil and gas industry, 

carbon dioxide is present as a sub-component of petroleum fluids or from enhanced CO2 

recovery processes while for CCS applications, CO2 is the primary component containing 

small quantities of contaminants such as SOx, NOx and water. 

For both processes, CO2 corrosion is induced by the dissolution of the gas in an aqueous 

medium coupled with the initiation of carbonic acid equilibria; and is dependent on the CO2 

mole fraction or percentage. In general, CO2 corrosion will increase in magnitude, the greater 

its mole fraction within the oil and gas stream, likewise this rule is applicable to CCS 

processes albeit the higher CO2 mole fractions and presence of acid gases potentially implies 

greater corrosion rates are to be expected for the latter. Other factors intrinsic to petroleum 

fluids such as operating pressures, temperatures and pH also have an influence on CO2 

corrosion rates as shown in Table 2-1. 

Table 2-1. Estimated corrosion rates of carbon-manganese steels for some fields in the 

Norwegian sector of the North Sea (Dugstad et al., 1994a) 

Field 

Operator 

Type CO2 

content 

(mol %) 

Pressure 

(bar) 

Max. 

temperature 

(
o
C) 

Calculated 

pH 

Estimated 

corr. rate 

(mm/year) 

Tommeliten 

Statoil 

Oil/Gas 3 235 90 6.1 11 (90
o
C) 

15 (67
o
C) 

Lille-Frigg 

Elf Aquitaine 

Gas 2.4 440 80 Sat.* 13 (80
o
C) 

15 (68
o
C) 

TOGI 

Norsk Hydro 

Gas 0.2 100 55 Sat.* 5.1 

Sleipner 

West Statoil 

Gas/oil 9 150 90 6.8 12 (90
o
C) 

19 (56
o
C) 

  

Corrosion rates are calculated by using the 1991 De Waard correlation (De Waard et al., 1991) 

* The pH at FeCO3 saturation has been used in the corrosion rate calculation 
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From Table 2-1, it is observed that though CO2 mole content is the primary determinant of the 

magnitude of predicted corrosion rates, pressures, temperatures and pH also contribute hence 

these are utilised in CO2 corrosion prediction modelling. The 1991 De Waard model is 

described in greater detail in Section 3.3. The high CO2 mole content (9%) of the Sleipner 

West field implies that it has the greatest predicted CO2 corrosion rates (12 and 19mm/year) 

of all the fields. 

It must be noted that while these parameters are the main causes of corrosion, small variations 

in film formation layers and corrosion product layers (of the aqueous phase) also play a part. 

For instance, in a scenario when all primary parameters are kept constant: temperature, partial 

pressure, fluid velocity and pH, while the amount of corrosion product in the water phase is 

varied, relatively high corrosion rates can be expected. (Dugstad et al., 1994a). The reason for 

these high corrosion rates is attributed to changes in the properties of the thin layer of 

corrosion products and scale which accumulate on the surface of the metal. The morphology 

and composition of the film layer determine the type of corrosive attack – worst-case, low 

corrosion under protective film or localised corrosion (mesa/pitting) (Dugstad et al., 1994a). It 

is also said that the film layers can interact with the transport of corrosion inhibitors to the 

surface of the metal thereby controlling inhibitor performance (Dugstad et al., 1994a). 

In ‘worst-case’ (nonprotective film) corrosion, the presence of ferrous ions (Fe
2+

) ions in 

solution leads to the formation of iron carbide film, Fe3C. This film deposits on the metal 

surface, un-corroded and due to its naturally porous nature, offers no protection to the metal 

surface underneath as seen in Figure 2-8, for the nonprotective Fe3C or Fe3C-FeCO3 films 

(Dugstad et al., 1994a).  

In most cases, it enhances CO2 corrosion as a result of it having a greater overpotential than 

iron. It sets up a galvanic contact between itself and iron and this accelerates cathodic 

reactions that lead directly to the anodic dissolution of the metal in the presence of << 1ppm 

Fe
2+

 (Dugstad, 1998).  

It may also lead to increased anodic dissolution of the metal by enhancing local acidification 

around the metal surface – since cathodic reactions occur preferentially at iron carbide sites, 

the aqueous phases in these regions become more alkaline as they are separated from the 

metal. The net effect is a change in the water composition where cathodic regions become 

more alkaline and anodic ones become more acidic leading to increased dissolution rates of 

the metal by internal localised acidification. (Crolet, 1994; Dugstad, 1998).  
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Figure 2-8. Morphologies for protective and nonprotective scale formation (Crolet et al., 

1996, Kermani and Morshed, 2003) 

 

It is worth noting that the FeCO3 and Fe3C films are the most commonly observed surface 

films on carbon and low-alloy steels in CO2-containing environments (Kermani and Morshed, 

2003). This film is protective when the FeCO3 phase covers the metal surface, effectively 

sealing it completely as seen for the protective film in Figure 2-8, or if it is integrated within 

the Fe3C phase. 

Presence of H2S  

CO2/H2S corrosion is widely encountered in the oil and gas industry. Hydrogen sulphide 

corrosion, often termed as sour corrosion, occurs in fields whose oil and gas streams have 

some amount of hydrogen sulphide satisfying the following condition: 𝑃𝐶𝑂2/𝑃𝐻2𝑆 < 200 (Yap 

Nonprotective 

Protective 

Fe3C + FeCO3 

Fe3C 

Fe3C 
Fe3C + FeCO3 

Fe3C 

Metal Metal 

Metal Metal 

Fe3C + FeCO3 
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and Srinivasian, 2010). This is the condition for corrosive effect as stated in Table 2-2. It is 

suggested that the simultaneous presence of both acid gases leads to a very aggressive 

environment that can cause severe corrosion of steels but ultimately, the extent of corrosivity 

is dependent on the aforementioned relative partial pressures of each gas with respect to each 

other (Yap and Srinivasian, 2010). 

In general, the higher the partial pressure of H2S, the lower the pH of the system since it is an 

acid gas. When the system temperature, H2S and CO2 partial pressures are constant, the pH 

increases with time, as the hydrogen ion concentration falls in the aqueous phase. 

The presence of CO2 and H2S in bulk solution greatly influences the solution pH however it 

should be noted that while pH is an important parameter for the estimation of corrosion rates, 

the in-situ pH is of particular importance. The pH reported from results of water analyses is 

not in-situ as the water analyses are carried out after samples have been exposed to the 

atmosphere. This pH does not accurately describe the system (Yap and Srinivasian, 2010). In-

situ pH is said to be determined from ionic modelling of the solution or can be calculated 

using the Brönsted concept as stated below (Yap and Srinivasian, 2010): 

Thus pH =  −𝑙𝑜𝑔𝑎𝐻+⟹ pH = −𝑙𝑜𝑔𝛾𝐻+𝑚𝐻+  (2.14) 

𝑊ℎ𝑒𝑟𝑒:  

𝑎𝐻+ = activity of H
+ species  

𝛾𝐻+ = activity coefficient of H
+ species  

𝑚𝐻+ = molar concentration of H
+ species  

By the Brönsted  concept, a Brönsted acid is a proton donor while a Brönsted base is a proton 

acceptor (Naiman, 1948). 

Determination of pH for a Mixed CO2/H2S-System 

For systems that contain both CO2 and H2S, the following ionic balance has been developed 

by using the Brönstead concept: 

H+ = [HCO3
−] + 2[CO3

2−] + [HS−] + 2[S2−] + [OH−] − CHCO3
− − 2CHS

2− − CCO3
2− − 2CS

2− (2.15) 

The species in square brackets represent equilibrium concentrations which can be determined 

by dissociation reactions for both CO2 and H2S. In this thesis, only the dissociation of H2S is 
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shown. The following set of reactions summarise the dissolution of H2S into the aqueous 

medium and its subsequent dissociation: 

Dissolution of H2S in aqueous phase: H2S (g)
𝐾𝐻
→  H2S (aq)  (2.16) 

Hydration of aqueous H2S: H2S (aq) + H2O(l)
𝐾1
→  HS− (aq) + H3O

+ (aq) (2.17) 

Dissociation of bisulphide ion: HS−(aq)
K2
→  S2− (aq) + H3O

+ (aq) (2.18) 

The equilibrium constant terms, KH, K1 and K2 are then written and simplified as follows: 

𝐾𝐻 = 
[H2S]

pH2S
  (2.19) 

Making [𝐻2𝑆] the subject of the equation, thus [𝐻2𝑆] = 𝐾𝐻𝑝𝐻2𝑆 (2.20)  

𝐾1 = 
[HS−][H+]

[H2S]
 (2.21) 

Making [HS−] the subject of the equation, thus [HS−] =  
K1[H2S]

[H+]
 (2.22)  

𝐾2 = 
[S2−][H+]

[HS−]
  (2.23) 

Making [𝑆2−] the subject of the equation, thus [S2−] =  
𝐾2[HS

−]

[H+]
 (2.24)  

Substituting eqn. (2.16) in eqn. (2.18),we have ⟹ [HS−] =  
𝐾1𝐾𝐻p[H2S]

[H+]
 (2.25)  

Substituting eqn. (2.25) in eqn. (2.24),we have ⟹ [S2−] =  
𝐾1𝐾2𝐾𝐻p[H2S]

[H+]2
  (2.26)  

Once all the equilibrium constants are determined in this way, several measured parameters 

such as temperature, pressure, CO2 and H2S mole fraction, ionic strength, Henry’s law 

constants and equilibrium constants in conjunction with an accurate water analysis are 

required to solve Equation. (2.11) (Yap and Srinivasian, 2010). 

Conditions for H2S Corrosion Risks and H2S Corrosion Mechanism 

The relative proportions of carbon dioxide to hydrogen sulphide determine the levels of 

corrosion risks associated with systems that contain a mixture of the two acid gases. In terms 

of corrosion assessment, H2S has been discovered to have a three-fold role as summarised in 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

30 

 

Table 2-2.In a similar way to the CO2 corrosion mechanism, H2S dissolves in the aqueous 

bulk solution to exhibit corrosive effects. Gaseous hydrogen sulphide exerts a partial pressure 

thus enabling it to dissolve in solution to form bisulphide ion (HS
-
). The bisulphide ion then 

undergoes further dissociation to form the sulphide ion (S
2-

), as shown as Equations. (2.16), 

(2.17) and (2.18). These equations constitute the cathodic reactions. 

The anodic reactions are as follows: 

Fe (s) → Fe2+(aq) + 2e− (2.4) 

Fe2+ (aq) + S2−(aq) → FeS (s)  (2.27) 

Table 2-2. Corrosion assessment in CO2/H2S systems is dictated by three conditions. 

(Yap and Srinivasian, 2010) 

 No Corrosive Effect Mitigating Effect Corrosive Effect 

Conditions 

Occurs when 

pH2S < 0.01psia 

(6.895x10
-5

MPa) 

Occurs when 

𝑃𝐶𝑂2/𝑃𝐻2𝑆 > 200psia 

(1.379MPa) 

Occurs when 

𝑃𝐶𝑂2/𝑃𝐻2𝑆 < 200psia 

(1.379MPa) 

Outcome 

No significant impact 

of H2S on corrosion rate 

is observed 

 

For systems containing 

CO2, the CO2 corrosion 

mechanism will 

proceed 

Formation of FeS 

(mackinawite) scale at 

temperatures of 60
o
C 

 

Scales formed are meta-

stable and preferentially 

form over FeCO3 scale 

 

Net effect is decrease in 

corrosion rates due to a 

reduced surface area 

exposed to attack 

FeS scales dominate over 

FeCO3 since the mole 

content of H2S exceeds 

that of CO2 

 

Scales are meta-stable; 

when T<60
o
C and when 

T>120
o
C, scales become 

unstable, porous and offer 

little protection 

Following the oxidation of iron to ferrous ions, the ferrous ions then react with sulphide ions 

to form iron sulphide scale (FeS). The reaction between ferrous ions and sulphide ions to form 

a thin layer of ferrous sulphide on the metal surface is highly pH and temperature-dependent 

and often mitigates corrosion. (Yap and Srinivasian, 2010) 
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Mechanics and Kinetics of Iron Sulphide Film/Scale Formation 

In an attempt to comprehend the mechanics and kinetics of the formation of iron sulphide 

scale in mixed CO2/H2S systems for the accurate prediction of mixed CO2/H2S corrosion, 

experiments have been performed on glass cells to describe H2S corrosion (Sun and Nesic, 

2007). Experimentation involved weight loss procedures in which hydrogen sulphide 

corrosion was measured using rectangular and cylindrical specimens of X65 pipeline steel. 

The retention rate of iron sulphide scales was also measured in these experiments. 

A mechanistic model was developed based on results from the experiments. From the 

research findings, it was discovered that iron sulphide scale in the form of mackinawite is 

predominant over other forms of iron sulphide scale particularly at the initial stages of scale 

formation. Also, H2S is observed to react with the metal surface directly by a ‘solid-state’ 

reaction which differs from the supersaturation-precipitation theory mode by which iron 

carbonate scale is formed in CO2-rich environments. By ‘solid-state’ reaction, the implication 

is that there is still evidence that iron sulphide precipitates out of solution following 

supersaturation but in addition, a direct reaction between H2S and the metal surface is the 

prevalent mode of combination. Furthermore, there are several scales formed in the H2S 

environment in contrast to a CO2-only environment. Some of these scales are: amorphous 

ferrous sulphide, mackinawite ((Fe, Ni)1+xS [where x=0 to 0.11]), cubic ferrous sulphide, 

smythite (Fe3+xS4 [where x=0 to 0.3] or Fe3S4), greigite (Fe
2+

Fe
3+

2S4 or Fe3S4), pyrrhotite 

(Fe1-xS), troilite (FeS) and pyrite (FeS2) (Sun and Nesic, 2007; James and Fleischer, 1966). 

These are all various forms of iron sulphide scale but it is worth noting that the actual number 

of these sulphides in existence is still a source of debate between mineralogists and 

thermodynamicists (Smith and Joosten, 2006). These scales are covered in more detail in 

Section 3.7.2 In addition, evidence from a preceding journal article: (Sun et al., 2006), 

supports the fact that the supersaturation-precipitation theory does not always hold for H2S 

corrosion, in that, corrosion rates always exceed precipitation rates and the explanation is that 

iron sulphide scale is formed mainly by ferrous ions released from the metal surface by 

corrosion and not by ferrous ions present in bulk solution. 

In terms of the kinetics of iron sulphide film formation, it is concluded that H2S corrosion 

rates generally increase with increasing concentrations of H2S however corrosion rates 

decrease with increasing reaction time. The reason for the decrease of corrosion rate with time 

is due to the formation of stable mackinawite scales whose thickness increases over time on 

the metal surface (Sun et al., 2006). 
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Species Transport through Boundary Layers 

In the assumption that H2S corrosion is mass-transfer controlled and similar to the mass-

transfer mechanism for CO2 corrosion, the rate of evolution of hydrogen ions cannot exceed 

the rate at which they are transported to the metal surface. Hence, the H2S corrosion rate is 

dependent on the rate at which hydrogen ions are transported to the metal surface from the 

bulk solution as seen in Figure 2-9.  

Both H2S and H
+
 species will travel to the metal surface from the bulk solution via convective 

diffusion (turbulent eddies) and then by molecular diffusion. 

 

Figure 2-9. Schematic of H2S corrosion – corrosion rate of steel in H2S solutions is said 

to be under mass-transfer control. (Sun and Nesic, 2007) 
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A Mathematical Model for the Prediction of H2S Corrosion Rate 

A number of assumptions were made in the development of the mathematical model. These 

assumptions are discussed here. Firstly, there is always a very thin but dense mackinawite 

film of about << 1μm on the metal surface and it acts as solid state diffusion barrier for the 

sulphide species involved in corrosion. Secondly, film growth is cyclical going through 

growth, cracking and delamination stages. Also, the film (outer scale) continuously grows in 

thickness over time and lastly, the outer scale is layered, very porous and is loosely attached 

hence is prone to peeling and spalling (Sun and Nesic, 2007). 

These assumptions coupled with the findings from experimentation have led to the conclusion 

that using the concept of fluxes and the fact that the corrosion rate of steel in H2S solutions is 

mass-transfer limited; at steady-state (equilibrium), all fluxes are equal. 

𝐶𝑅𝐻2𝑆 = 𝐴𝐻2𝑆𝑒
−
𝐵𝐻2𝑆
𝑅𝑇𝑘 𝑙𝑛

𝑐𝑏,𝐻2𝑆 − 𝐶𝑅𝐻2𝑆 (
𝛿0.5

𝐷𝐻2𝑆𝜀𝜓
+

1
𝑘𝑚,𝐻2𝑆

)

𝑐𝑠,𝐻2𝑆
   (2.28) 

Where:  

𝐶𝑅𝐻2𝑆 is the corrosion rate of steel due to H2S in mm/year  

𝐴𝐻2𝑆, 𝐵𝐻2𝑆 are the Arrhenius constants, 𝐴𝐻2𝑆 = 1.30 × 10
−4 𝑚𝑜𝑙

𝑚2𝑠
and 𝐵𝐻2𝑆 = 15500 J/mol  

𝑐𝑠,𝐻2𝑆 is the concentration of H2S on the steel surface and is set to 1.00 × 10
−7 in mol/m3  

𝑐𝑏,𝐻2𝑆 is the bulk concentration of H2S in the liquid phase in mol/m
3  

𝛿𝑜𝑠 is the thickness of the mackinawite scale ⟹ 𝛿𝑜𝑠 = 𝑚𝑜𝑠 (𝜌𝐹𝑒𝑆𝐴𝑜𝑠)⁄ in m  

𝐷𝐻2𝑆 is the diffusion coefficient for dissolved H2S in water, 𝐷𝐻2𝑆 = 2.00 × 10
−9, in m2/s  

𝑘𝑚,𝐻2𝑆 is the mass transfer coefficient for H2S in the hydrodynamic boundary layer, 𝑘𝑚,𝐻2𝑆 =

1.00 × 10−4 in nearly stagnant condition, in m/s  

𝜀 is the outer mackinawite scale porosity  

𝜓 is the outer mackinawite scale tortuosity factor  

𝑇𝑘 is the temperature in Kelvin  



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

34 

 

𝑅 is the molar gas constant  

This equation is non-linear with respect to 𝐶𝑅𝐻2𝑆 but can be solved by the application of 

appropriate numerical techniques. 

 

2.4.2 The Effect of Physical Factors on CO2 Corrosion 

These are also very important factors that include water-wetting, the presence of wax and wax 

deposition, corrosion film characteristics, the effect of crude oil and erosion. 

Effect of Crude Oil 

 While experiments have been carried out to determine the magnitudes of corrosion of 

associated steel pipelines in brine environments, it is not the same as carrying out these 

experiments in the presence of the particular crude oil and brine. Differences are likely to be 

present in measurements recorded for the two instances and these have often led to gross 

errors when using corrosion test results to predict corrosion scenarios in the field. 

Crude oil composition is therefore said to have an effect on CO2 corrosion. Experimental 

research provided supporting evidence of this, which also showed that more sophisticated 

analyses of the data presented in the study were required such as the use of artificial neural 

networks (ANNs) (Hernandez et al., 2006). The article suggests the fact that though 

interfacial tension and fluid dynamics play an important role in CO2 corrosion, the role of the 

given crude oil is also significant, in that the composition of the latter affects interfacial 

tension. (Hernandez et al., 2006). It is also suggested that wettability is strongly affected by 

the presence of surface active compounds and these are believed to be polar molecules 

containing oxygen (O), nitrogen (N) and sulphur (S) molecules.  

The heavier the fraction of the crude, the greater the number of oxygen, nitrogen and sulphur 

molecules because such crudes contain asphaltene and resins. In other words, the polar 

molecules, O, N and S, in these crudes are as a result of the presence of polarisable 

compounds, asphaltenes and resins (Hernandez et al., 2006). Polarisable compounds and polar 

molecules thus exert a synergistic effect which changes the wettability of crude oil by 

reducing the interfacial tension between oil and water therefore causing the system to be more 

oil-wet. The net effect is a decreased dissolution rate of the metal at its surface because 
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corrosion of the metal proceeds at high rates when the metal surface is water-wet as opposed 

to when it is oil-wet. 

Effect of Flow and Erosion 

It is generally accepted that the higher the fluid flowrates flowing through a segment of pipe, 

the greater the associated corrosion risks as seen in the corrosion rate vs flow rate plot of 

Figure 2-7D. Therefore corrosion test results are greater for high fluid flow than for very low 

fluid flow. However, the effect of flow is still a contentious area in CO2 corrosion prediction 

(Hernandez et al., 2006). Flow regimes influence corrosion risk but there is very little 

experimentation to accurately quantify their contribution to flow-induced CO2 corrosion. 

The prevailing flow regimes in a segment of pipe will depend on the fluid velocity through 

the pipe, pipe orientation and geometry, pipe inclination and length as well as temperature and 

pressure conditions. Once any of the aforementioned variables undergo a slight change along 

the length of the pipe segment, then this change induces a change in flow regime. 

Typical flow regimes found in oil and gas production facilities include stratified, wavy 

stratified, rolling wave, plug flow and annular (Bondos et al., 2007). The significance of 

knowledge of the flow regime, particularly of mixed phase fluids, is the fact that the type of 

wetting occurring in any given scenario is easily determined. The key factors here are 

oil/water ratio, emulsion tendency/stability and water cut percentages (Hernandez et al., 

2006). When water cut percentages are greater than 30%, water then becomes the continuous 

phase and there are higher corrosion risks (Kermani and Morshed, 2003). 

Erosion occurs when solid particles that may range in size such as sand accompany fluid flow 

thus creating an abrasive effect on the metal surface (Giourntas et al., 2015). Erosion-

corrosion is a form of tribo-corrosion material loss mechanism caused by flowing fluid (in the 

presence of solid particles) damaging both the surface layers such as the passive 

film/corrosion products and the base metal (Hu et al., 2011). It involves electrochemical 

corrosion processes and mechanical wear (Hodgkiess et al., 1999). This form of corrosion is 

gaining greater attention not only because of its destructive nature but also this regime of 

degradation has a greater likelihood of occurring particularly for old oil wells known to 

produce high levels of sand in produced fluids.  

Experimentation is often very useful when erosion occurs as a result of particulate fluid flow. 

Currently, there are no industry guidelines that assess and control erosional corrosion caused 
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by particulate fluid flow however the commonly cited equation formulated by the American 

Petroleum Institute (API): API RP-14E is used as a resource tool for evaluating pure gas-in-

liquid-erosion and is stated as follows (API, 1981): 

𝑉𝑒  =
𝐶
√𝜌𝑚
⁄   (2.29) 

Where: 

𝑉𝑒 = Mixed fluid velocity (of gas and liquid) in m/s or ft s⁄   

𝐶 = Constant(specific to given material)  

𝜌𝑚 = Mixed fluid density (of gas and liquid) in kg/m
3or lb ft3⁄   

This equation is empirical and it is more often the case that any judgements made using the 

equation in predicting corrosion risks are by the operator’s personal experience or discretion. 

 

Effect of Organic Acid 

The presence of organic acids in CO2-containing environments is known to influence and 

complement CO2 corrosion of pipelines. In test simulations, the addition of acetic acid 

(CH3COOH), reduces the protectiveness of films on the metal surface and makes it more 

susceptible to mesa-type corrosive attacks (Crolet, 1994; Crolet, 2002). Generally, the 

presence of CH3COOH causes a significant increase in corrosion rates in CO2 environments 

and is known to take over as the main source of corrosivity even in conditions where CO2 

partial pressures are considerably low. In some cases where traces of CH3COOH are freely-

occuring, iron acetate scales are more prevalent than iron carbonate scales (Crolet et al., 

1999). Organic acid corrosion is further discussed in Section 3.8.  

2.4.3 The Effect of Metallurgical Factors on CO2 Corrosion 

The key factor here is the chemical composition of the alloy in use. Heat treatment and 

microstructural features also play important roles on corrosion of carbon steels in CO2 

environments. While it is generally accepted that the presence of chromium (Cr) in steel 

alloys is beneficial in terms of improving corrosion resistance, the optimum amounts of 

chromium needed varies with the environment. It must also be borne in mind that the greater 

the fractional amounts of chromium in these steel alloys, the greater the costs are in its 

manufacture and its eventual installation.  
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Molybdenum (Mo) has also been found to improve the corrosion-resistant characteristics of 

steel alloys and while the addition of copper (Cu) also gives the alloys similar beneficiary 

traits; it tends to reduce the effectiveness of corrosion inhibitors (Gulbrandsen and Nyborg, 

2000). In general, the addition of small quantities of copper, nickel, chromium and possibly 

molybdenum together have been found to improve corrosion-resistance of carbon steels 

(Videm and Dugstad, 1989). 

 

Further Metallurgical Considerations - Alloying Elements 

Substantial laboratory work has been carried out to systematically test the corrosion-resistance 

of low-alloy steels. Research publications by (Kermani et al., 2001) reveal that corrosion-

resistance is enhanced by the application of the following principles: 

I. Lowering carbon (C) and adding carbide-forming alloying elements to maximise the 

effect of any subsequent addition of chromium (Cr) and Molybdenum (Mo) by 

ensuring that they remain in solid solution. 

II. Achieving the desired properties by micro-alloying additions and mechanical and heat 

treatments. 

In microalloying, steel compositions are designed with low carbon content containing 

microalloying elements such as titanium (Ti), niobium (Nb) and vanadium – stronger carbide-

forming metals. The reason for micro-alloying is that the aforementioned metals will combine 

with carbon (in the given steel) preferentially thus leaving chromium and nickel uncombined 

in the ferrite thereby enhancing corrosion resistance of the alloy. 

Additionally, while the removal of carbon from these low-alloy steels is likely to reduce their 

overall strength, the addition of silicon and nickel is used to restore the strength caused by the 

removal of carbon. Extensive metallurgical studies have led to confirmed results in terms of 

the degree of corrosion-resistance of each alloying element. A comparative trend is shown in 

Figure 2-10. 
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Figure 2-10. Plot showing comparative trend of elemental contributions to corrosion-

resistance (Kermani et al., 2001), (Kermani et al., 2003) 

 

The Influence of Chromium 

The addition of chromium has a beneficial effect on the corrosion performance of low-alloy 

steels as seen in Table 2-3 and Figure 2-11. 

The following table categorises the effect of chromium in terms of addition percentages. 

Table 2-3. Chromium-content categories and expected corrosion performance levels 

(Kermani et al., 2001; Kermani et al., 2003) 

Cr-content (%) Description 

5 Offers lowest corrosion rates 

3 Offers a 10-time reduction in corrosion rates 

1.5 Insufficient to provide reliable corrosion performance 

< 1.5 Generally not satisfactory for CO2 corrosion performance 

Highest corrosion rates are observed at 0.02% Cr 

  

The following figure shows a schematic of CO2 corrosion performance for each of the 

chromium-content categories discussed in Table 2-3. 
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Figure 2-11. Plot showing the category of chromium content of steel and corresponding 

corrosion rate (Kermani et al., 2001; Kermani et al., 2003) 

 

While optimum levels for the addition of chromium is still undetermined, a level between 2 to 

3% Cr was considered essential to achieve good corrosion performance. It is also concluded 

that Vanadium-microalloyed steel containing Cr, Si, Mo and Cu is the most promising 

combination in terms of producing alloys with the desired features of strength and corrosion 

resistance (Kermani et al., 2001; Grau, 2000). 

2.5 Established CO2 Corrosion Models 

 

Many research institutions and petroleum companies have developed CO2 corrosion models 

over the years. Some of the oil companies that have contributed to the understanding of CO2 

corrosion through the development of pipeline corrosion models include: Shell, Statoil, Total 

and BP (Nyborg, 2010). In addition some research institutes have developed pipeline CO2 

corrosion models and these are: the Institute for Energy Technology (IFE), OLI Systems and 

Ohio University (Nyborg, 2010). 

The models discussed in this Section include the HydroCor, Corpus, KSC and Multicorp 

models. Other models such as the De Waard, Norsok M-506 and Freecorp Models are 

discussed in detail in Chapter 3. 
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2.5.1 Hydrocor Model 

This model was developed by Shell to combine corrosion and fluid flow modelling and is 

their preferred tool for CO2 corrosion prediction in pipelines. Oil-wetting is assumed for flow 

velocities in excess of 1.5m/s and water cuts less than 40% implying there is no corrosion risk 

(Pots et al., 2002; Nyborg 2002; Nyborg 2010). Greater water cut percentages would change 

the wettability simulation conditions from oil-wet to water-wet hence a greater corrosion risk. 

The model assumes scale formation for condensed water but not for formation water due to 

scale instability. Porous mixture scales may form with little protection offered to the metal 

surface.  

It should be noted that a separate CO2 corrosion model is used to generate a corrosion rate 

profile for pipelines with multi-phase flow. Due to this fact, pH calculation is not included in 

the Hydrocor model it therefore does not account for iron and bicarbonate concentrations. 

 

2.5.2 Corplus Model 

Corplus is Total’s own corrosion model and is a result of the merger between Elf’s Cormed 

and Total’s Lipucor (LI) models (Crolet and Bonis, 1991; Nyborg, 2010). It has a fluid flow 

model and a CO2 potential corrosivity index. The latter is based on the vast experience of 

Total’s engineers gained over the years of service in the field. The scale uses terminology 

like: very high, low, and so on, to classify the severity of CO2 potential corrosivity. 

It also has a separate model for computing corrosion rates. In general the Corpus model relies 

on huge amounts of data to work out corrosion rates. The full CO2 corrosion description in 

this case comprises results from the CO2 potential corrosivity index and the corrosion rate 

values. It must be noted that the model does not account for any instances of oil-wetting. 

Model operation is based on detailed water chemistry analyses including the effects of CO2, 

organic acids and calcium. 

It includes a facility for correcting calcium carbonate (CaCO3) concentration. Where user-

specified CaCO3 concentrations are likely to lead to CaCO3 super-saturation, the user is 

warned to check the calcium carbonate concentration to reduce its magnitude. If this message 

is ignored by the user, the program then proceeds to correct this by calculation of a pH of 

lower magnitude (Nyborg, 2010). 
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2.5.3 KSC Model 

This model is mechanistic, so offers insight and thorough descriptions of the occurring 

physical phenomena in CO2 corrosion. It was developed at IFE, Norway, and is based on the 

combination of an electrochemical and a transport model (Nesic et al., 1996; Nyborg, 2002). 

The model simulates chemical reactions in the aqueous phase, electrochemical reactions on 

the metal surface and diffusion of species to and from the bulk solution, as well as diffusion 

through porous iron carbonate films. Corrosion rate calculations are carried out to include the 

risk of mesa attack. It includes a relatively strong effect of protective films, which is sensitive 

to pH and temperature. For this reason, there is a tendency for it to predict low corrosion rates 

for high temperatures and high pH (Nyborg, 2010). 

 

2.5.4 Multicorp Model 

This is a mechanistic model developed by Ohio University and was originally based on the 

KSC model using mechanistic simulation of chemical, electrochemical and transport 

processes that typically take place in CO2 corrosion (Nyborg 2010).  

Advancements to the original KSC model came by way of the development of a multiphase 

flow model with precipitation of iron carbonate films and effects of oil wetting. The model 

results were then further verified against laboratory and field data (Nesic et al., 2005; Nyborg 

2010). 

The model also includes the effects of organic acids such as acetic acid and H2S, including 

iron sulphide film precipitation. It is based on detailed mechanistic modelling of the kinetics 

of chemical and electrochemical reactions of species in the bulk solution and on the metal 

surface respectively and the transient transport of species from the bulk solution to the metal 

surface. The model is well suited for facilitating an understanding of the various CO2 

corrosion mechanisms through the inclusion of corrosion inhibitor performance and the 

effects of multi-phase flow in addition to the other facets mentioned. 

  



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

42 

 

2.6 CO2 Corrosion Mechanism between Low and High Partial Pressures 

 

2.6.1 Carbon Capture and Storage (CCS) 

In the CCS industries, carbon dioxide is captured and transported at elevated pressures in 

pipes for the purpose of controlling emissions of the gas in order to reduce its greenhouse gas 

effects in the atmosphere. The gas is transported at pressures above those characteristic of oil 

and gas pipelines; usually exceeding 20 bar, and as a single-component stream, to suitable 

storage sites at secure locations for geologically significant timescales (Downie et al., 2007). 

CO2 can be transported on the liquid side or on the vapour side of the vapour/liquid line 

running between the critical point (74bar, 31
o
C) and the triple point (5bar, -56

o
C) while not 

allowed to cross the dashed line as shown in Figure 2-12 (IEA GHG, 2010). It is often 

transported as a dense-phase liquid at elevated pressures for convenience and efficiency 

(Downie et al., 2007). However assessing the corrosion risks for pipelines at these elevated 

pressures is challenging and potentially unpredictable due to the non-ideal dissolution of CO2 

in the liquid phase coupled with the presence of impurities such as SOx and NOx gases with 

traces of water. 

 

Figure 2-12. Phase diagram for pure CO2 – the captured gas can be transported strictly 

on either side of the dashed line without cross over. Dense-phase region represents the 

most efficient means of pipeline transport. (IEA GHG, 2010) 

 

It should be noted that prior to transport, the captured gas has to be elevated to pressures 

above its critical point however the presence of impurities in the stream influences the critical 
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temperature and pressure as well as the width of the phase envelope that consequently dictates 

the region of two-phase flow as shown in Figure 2-13.   

 

Figure 2-13. Phase envelopes of CO2 with a combination of impurities 

(Downie et al., 2007) 

 

Increasing percentage content of impurities in the CO2 stream is known to reduce the 

supercritical phase of the gas which impacts on the operating region of the pipeline thus the 

pipeline may have to be operated at higher pressures in order to maintain single-phase flow of 

the gas stream (supercritical/dense phase), for instance. The presence of impurities also 

affects the density and viscosity of the stream and the extent of their influence are dependent 

on the type, quantity and combination of impurities present (Downie et al., 2007). A well-

documented implication of the presence of impurities is its effect on the temperature drop and 

consequent hydrate formation (Downie et al., 2007).  

 

2.6.2 Research Directions 

The objective of this research is to obtain the solubility values for a mixed CO2-H2O system 

using appropriate equations of state (EOS). An equation of state is a mathematical function 

that describes the pressure, volume and temperature (PVT) behaviour of a substance. The 

solubility results will first be determined by obtaining compressibility values from the given 

EOS and then using these to obtain fugacity coefficients for a mixed CO2-H2O system. The 

compressibility and fugacity coefficients are thermodynamic concepts that represent the 
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departure of real gases from ideal gas behaviour. The acidity of the aqueous solution is thus 

known by converting the solubility values to solution concentrations.  

It is also possible to determine the acidity of the aqueous media for mixed CO2-H2S, CO2-SOx 

and CO2-NOx, by application of the same principles stated for the CO2-H2O system. 

 

2.6.3 The Limitation of Henry’s law for High Pressure Conditions 

As previously discussed, in the oil and gas industry, CO2 partial pressures often do not exceed 

2MPa. Carbon dioxide is said to dissolve in water for partial pressures no greater than 20bar 

(2MPa). Such dissolution is considered to be ideal and Henry’s law is applicable for these 

ranges of pressures however for carbon dioxide partial pressures that exceed 20bar, 

dissolution is no longer ideal thus Henry’s law is inapplicable for such pressures, as shown in 

Figure 2-14 (Spycher et al., 2003). 

 

Figure 2-14. Solubility of CO2 in H2O (Spycher et al., 2003) 

There is therefore a need to take into account the non-ideality of the gas phase as it dissolves 

in the aqueous phase. Due to the fact that co-solubility of carbon dioxide in water and water in 

carbon dioxide are the means by which CO2 corrosion occurs, solubility of these species is 

thus investigated in terms of solution thermodynamics as is briefly outlined in the following 

Section. The methodology for accurate supercritical CO2 corrosion modelling is discussed by 

(Choi and Nesic, 2009) as well as (Mohamed et al., 2011). 
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2.6.4 Methodology for CO2 Corrosion Prediction at High Pressure Conditions 

Equilibrium constants for solubility (𝐾𝐶𝑂2 and 𝐾𝐻2𝑂) were first obtained for the CO2-H2O 

system where necessary. Dissociation constants for the dissociation of water, dissolution of 

CO2, the hydration of CO2, carbonic acid dissociation and bicarbonate ion dissociation were 

also obtained (Mohamed et al. 2011). 

Of all these reactions, the dissolution of CO2 is briefly discussed because it was derived from 

basic thermodynamic relationships. The dissolution of carbon dioxide from its gaseous form 

to its aqueous form is summarised by the following reaction:  

CO2 (g)
𝐾𝐻
⇔ CO2(aq)  (2.30) 

𝐾𝐻 = 
[CO2(aq)]

𝑃𝐶𝑂2(g)
=  
[𝐶𝐶𝑂2]

𝑃𝐶𝑂2
  (2.31) 

KH is the Henry’s law constant and its unit is mol/ (litre x bar) 

Where: 

𝑃𝐶𝑂2 =  partial pressure of gaseous CO2 in bar 

[𝐶𝐶𝑂2]  = concentration of CO2 in aqueous solution  

Accounting for non-ideality of the gas phase, the following equations are derived from the 

definition of fugacity and applying necessary corrections for the pressure: 

𝑦𝐻2𝑂 = 
𝐾𝐻2𝑂(1 − 𝑥𝐶𝑂2)

∅𝐻2𝑂𝑃𝑡𝑜𝑡
. exp {

(𝑃 − 𝑃0)𝑉𝐻2𝑂

𝑅𝑇
} (2.32) 

𝑥𝐶𝑂2 =
(1 − 𝑦𝐻2𝑂)∅𝐶𝑂2𝑃𝑡𝑜𝑡

55.508𝐾𝐶𝑂2
. 𝑒𝑥𝑝 {

−𝑉𝐶𝑂2(𝑃 − 𝑃
𝑜)

𝑅𝑇
}  (2.33) 

The correction for K is given by: 𝐾(𝑇,𝑃) = 𝐾(𝑇,𝑃)𝑒𝑥𝑝 {
𝑉𝑖(𝑃−𝑃

𝑜)

𝑅𝑇
} (2.34), and serves as a 

correction for pressure at a given temperature in the two preceding equations. 

Where: 

𝑦𝐻2𝑂  is the mole fraction of water in the CO2 phase  

𝑥𝐶𝑂2  is the mole fraction of CO2 in the water phase  
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∅𝐻2𝑂 is the fugacity coefficient for water (dimensionless)  

∅𝐶𝑂2 is the fugacity coefficient for CO2 (dimensionless)   

𝑉𝐻2𝑂 is the average partial molar volume of water in cm
3/mol  

𝑉𝐶𝑂2  is the average partial molar volume of CO2 in cm
3/mol  

𝑃, 𝑃0 and 𝑃𝑡𝑜𝑡  are the applied pressure, atmospheric pressure (0.101325 MPa) and the   

total system pressure  respectively  

𝑅 = Molar Gas Constant in J/mol. K  

𝑇 = Absolute Temperature in K  

These equations were then used to solve for the fugacity coefficients so that the volumes of 

the compressed CO2 gas and H2O are then calculated using an equation of state. In this case, 

the Redlich-Kwong equation was used and yielded cubic equations which were then solved 

using the Newton-Raphson numerical algorithm (Mohamed et al., 2011). The solubility 

constant, KH was then computed. The Redlich-Kwong EOS is stated as follows (Redlich and 

Kwong, 1949): 

𝑃 = 
𝑅𝑇

𝑉 − 𝑏
− 

𝑎

𝑉(𝑉 + 𝑏)𝑇𝑘
0.5   (2.35) 

Where: 

𝑃 = Pressure (in MPa)  

𝑉 = Volume (in m3)  

𝑅 = Molar Gas Constant (J/mol. K)  

𝑇𝑘 = Absolute Temperature (in K)  

𝑎 = EOS parameter → Measure of the attractive forces between molecules  

𝑏 = EOS parameter → Related to size of the molecule  
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2.7 Neural Networks 

 

Artificial neural networks are information-processing units that are quite similar in terms of 

mode of operation to biological nervous systems such as the brain and it’s highly complex 

network of neurons – artificial neural networks (ANNs) are inspired by their biological 

counterparts (Haykin, 1999; Krogh, 2008). Essentially, neural networks are models which can 

be ‘trained’ to forecast, by developing a correlation between a known set of input variables 

and output problem descriptors. They obtain a correlation from the use of transfer functions 

thereby assigning ‘weighted scalars’ to input data which is subsequently matched to a given 

output. Matching is achieved by adjusting and re-adjusting the weighted scalars accordingly 

in a continuous loop, thereby reducing the error between the target and output as seen in 

Figure 2-15. In so doing, the neural network learns and trains such that it utilises its 

‘experience’ in predicting the outcome for a different set of input data. 

 

Figure 2-15. Flow loop of input to output via continuous adjustment of weights 

(Demuth et al., 2009) 

Often neural networks (NNs) are designed in the form of neural architectures. A typical 

layered structure of a NN is shown in Figure 2-16. A NN may contain as many layers as 

necessary depending on the task to be carried out. However, if a NN has been trained with a 

large number of layers on a small dataset, then there is the risk of over-fitting. When a NN is 

over-trained in this manner, it loses its ability to adapt and fit a wider range of datasets and as 

such is said to lose its ability to generalise (Radonja and Stankovic, 2002).  
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Figure 2-16. Basic layered structure of a three-layer artificial neural network 

(Al-Fattah and Startzman, 2003) 

As earlier stated, the transfer function determines the correlation that maps input data to 

output. For this reason, the type of transfer functions to be used should be based on the 

characteristics of the given input and output data, such as the range and magnitude of each 

data-value within the dataset (Vogl et al., 1988).  The purelin and log-sigmoid transfer 

functions are shown in Figure 2-17, on the left and right respectively.  

 

 

 

 

 

 

 

Figure 2-17. The purelin and log-sigmoid transfer functions (Beale et al., 2014) 

 

The purelin transfer function is often used in the last layer of a multilayer NN as function 

approximator while the logsig transfer function is used in the hidden layer of a multilayer NN 

because it is differentiable (Beale et al., 2014). Training algorithms are a set of instruction 

code that controls the optimisation method for a given NN. They therefore control how the 

a = purelin (n) a = logsig (n) 

n n 
O O 

+1 +1 

-1 -1 
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weights of a NN are set (Beale et al., 2014). The definitions of some training algorithms are 

shown in Table 2-4. 

Table 2-4. Definitions of the training functions used (Beale et al., 2014) 

Training 

Function 

Training Algorithm 

Group 

(Definition) Updates network weights 

according to: 

Traingdm Gradient Descent Gradient descent with momentum 

Trainrp Gradient Descent Resilient backpropagation (Rprop) 

Trainscg Conjugate Gradient Scaled conjugate gradient method 

Traincgf Conjugate Gradient Conjugate gradient backpropagation with 

Fletcher-Reeves updates 

Trainbfg Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

quasi-Newton method 

Trainlm Quasi-Newton Levenberg-Marquardt optimisation 

 

 2.7.1 Case Study on the Implementation of Neural Networks in Model Prediction 

This research study is about a ‘purpose-built’ experiment that involved a 10-problem/variable 

domain in which pitting corrosion potential was investigated using a sample of austenitic type 

304 stainless steel. The ten variables investigated were F
-
, Cl

-
, Br

-
, I

-
, CO3

2-
, OH

-
, SO4

2-
, 

S2O3
2-

, NO3
-
 and temperature (Cottis et al., 1999).  

The neural network employed was a simple 4-node network with a single hidden layer. 

Training of this network involved making use of two-thirds of the experimental data available 

while the remaining one-third of the data was used for validation purposes to signal the 

termination of training. This resulted in a network with a total of 75 weights and plots were 

then produced to observe the effect of each ion on pitting corrosion potential. Plots were 

produced in order to compare experimental results by (Man and Gabe, 1981), with those of 

the neural network where experimental results were measured using the same material and 

test method as was used to produce the training data (Cottis et al., 1999). One such plot is 

shown in Figure 2-18.  
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Figure 2-18. Plot showing the effect of sulphate ion on pitting potential of steel in 3% 

NaCl solution. (Cottis et al., 1999) 

 

Overall, the training dataset was small therefore there was the need to design a small neural 

network such that it relies on generalisation as opposed to memorisation. The neural network 

performs reasonably well in situations where elements of extrapolation are required when 

modelling problems with small data sets. 

Furthermore, based on observations from these studies it can be said that, the performance of 

neural networks is largely dependent on the quality of training data however given that 

corrosion data is largely inconsistent and is known to contain a substantial amount of ‘noise’, 

results are not likely to be meaningful as are likely to be models of the noise rather than that 

of the average behaviour (Cottis et al., 1999).  

Noise in corrosion data may be as a result of the use of Monte Carlo techniques to fill gaps in 

summarisation plots, the use of faulty equipment, poor conduction of experiments and a 

failure to report significant variables while carrying out corrosion experiments (Cottis et al., 

1999). Monte Carlo techniques, in this instance, are used to improve upon the quality of the 

reported data and the appearance of summarisation plots before the application of neural 

networks for corrosion prediction. In another study in which sulphuric acid corrosion of steel 

was investigated, the question of validation was raised (Helliwell et al., 1996). Validation had 

been carried out to a limited extent. It is also apparent that the degree of confidence that could 

be placed in prediction was questionable.  
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In conclusion, there is a need to state the confidence that can be placed in the prediction of a 

given neural network and it is also necessary to predict both model variability and mean 

behaviour though it will require copious amounts of training data sets. 

2.8 Fuzzy Logic Systems 

 

Fuzzy logic systems provide a language with syntax and semantics that can translate 

qualitative knowledge into numerical reasoning. Fuzzy linguistic variables include low, high, 

good and so on and when these are combined with fuzzy set operators such as and/or, the 

process is termed approximate reasoning (Hajizadeh, 2006). 

Approximate reasoning is a term used when referring to fuzzy logic due to the fact that it does 

not deal in absolutes. In fact, it is based on binary logic, but it differs from it. Where binary 

logic assigns 0 or 1, for a false or true statement, fuzzy logic instead assigns an approximate 

value in the range: 0-1. 

Essentially, fuzzy systems process input data converting it to output data according to the 

steps shown in Figure 2-19. Fuzzification involves assigning linguistic variables to input data, 

often applying ‘if-then’ rules as conditional statements. The ‘if-then’ rule is discussed more in 

Section 2.8.1. The implication phase assigns a membership function to the data. This is the 

mapping of the data into the range: 0-1, also known as categorising the input data into degrees 

of membership (Zadeh, 1965), as seen in Set X of Figure 2-19. It is worth noting that 

membership functions may take several forms: triangular, trapezoidal and continuous among 

others. These are discussed further in Section 6.3. 

The membership function selected for a given input dataset depends upon the distribution of 

the data within the dataset. Aggregation is the process of putting all fuzzy sets together in an 

aggregate fuzzy set and defuzzification translates the fuzzy information back to readable form 

as an output, as seen in Figure 2-19.  

There are two main types of fuzzy inference systems (FIS), and these are the Mamdani and 

Takagi-Sugeno systems. These will be discussed further in the next Section however the main 

difference between these two systems is in the defuzzification step. The Mamdani re-

transforms fuzzy sets to output using a defuzzification technique – directly striping away 

fuzzified data to reveal the output.  
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Figure 2-19. Steps in fuzzy inference process 

 

The Takagi-Sugeno system on the other hand, makes use of a weighted average technique to 

convert fuzzified data into output (Kaufmann and Gupta, 1985; Fuzzy Logic Toolbox User’s 

Guide, 2015). In general, fuzzy logic systems excel particularly during instances where gaps 

in numerical banks of data exist and where in such cases, exact measured process variables 

are considered too imprecise to justify the use of numbers. This is often quite common in 

several engineering problems (Hajizadeh, 2006). 

2.8.1 Case Study on the Execution of the Fuzzy Logic System 

In this Section, a case study on the use of fuzzy logic for CO2 corrosion rate prediction is 

described (Hajizadeh, 2006). A graphical user interface (GUI) was set up with six input 

parameters: pressure, temperature, oil production rate, gas production rate, H2S and CO2 mole 

percentages. The single output is corrosivity (mils/year). 

A simple set of if-then rules was used in the execution of a fuzzy set in which the input 

variables are classed as members or non-members given that a fuzzy set is defined as a 

collection of ordered pairs of the form A={x, μ(x)}, where A describes the relationship 

between an unknown quantity, x, and a membership function, μ(x). It should be noted that in 

general, fuzzy sets can be divided into crisp boundary and non-crisp boundary fuzzy sets but 

for each type, quantities are classed as members or non-members.  

In terms of the execution of the if-then rules of a fuzzy system, the closer an argument is to 

the ‘if’ part, the greater the influence the ‘then’ part has on the mapping of input variables. 

 

classical (crisp) set A            fuzzy set Ã  

 
membership function μ(x) 

 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

53 

 

For instance, for the statement: ‘If temperature is low, then corrosion rate is low’; for small 

input temperature values, the corrosion rates will definitely be assigned small magnitudes. 

The fuzzy system then sums up the ‘then’ parts and implements a defuzzification system 

which yields an output. The Takagi-Sugeno (TS) inference system was used for this research 

study in which 50 different corrosion rate data points are used for training however a choice 

can be made between its use and the use of the Mamdani inference system. The main 

difference between these inference systems is that the former involves the use of only 

constant output membership functions however the TS system can be applied to mimic the 

commonly-used Mamdani by implementing a hyperbolic transfer function (Hajizadeh, 2007; 

Fuzzy Logic Toolbox User’s Guide, 2015). 

Furthermore, three-dimensional (3-D) surface contour plots were produced for the given user-

input parameters and the trends were found to be in general agreement with research 

literature. Two such plots are shown in Figure 2-20. In addition, the 3-D plots can be used in 

CO2 corrosion rate prediction and can also serve as an informative tool which lends itself to 

the understanding of specific relationships between model input variables and the output, 

corrosion rate (Hajizadeh, 2007). 

 

Figure 2-20. 3-D Surface contour plots showing the relationships between input 

variables (CO2 mole % with temperature and gas production rate with temperature) 

and the output variable, CO2 corrosion rate (Hajizadeh, 2007) 
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2.9 Conclusions 

Since the discovery of CO2 corrosion in gas wells located in Texas, USA, in the 1940’s, 

several research undertakings on this subject have been carried out. CO2 in the dry gas form is 

non-corrosive at oilfield and CCS conditions. It however becomes corrosive when it dissolves 

in the aqueous phase, forming carbonic acid. It is particularly more corrosive when localised 

mesa-type attacks take place. Mesa-type attacks occur in low fluid-flow environments, in 

which Fe3C scale is somewhat prevalent. It is also very dependent on the composition of fluid 

flow. Fe3C scales provide inadequate protection, thus expose the metal surface underneath to 

severe corrosive attack. 

The major factors influencing CO2 corrosion were also discussed and these were broadly 

categorised into: environmental, physical and metallurgical factors. The environmental factors 

were also discussed with respect to actual oil and gas producing fields in the North Sea; data 

contained in Table 2-1. Explanations were provided for the quoted corrosion rate estimates 

given in Table 2-1 in terms of the corrosion rate-determining factors, i.e. the environmental 

factors. An increase in the magnitudes of temperature and CO2 partial pressures were 

observed to lead to elevated corrosion risks for pipelines. For pH, the reverse was the case, 

low pH implies high corrosivity while for fluid flow; very high velocities appear to cause 

corrosion rates to plateau, as seen in Figure 2-7D. 

The condition for corrosivity with regards to a H2S-containing environment is: 𝑃𝐶𝑂2/pH2S < 

200. Also, H2S corrosion is fundamentally different from CO2 corrosion, in that it is not 

electrochemical whereas the latter is. H2S corrosion proceeds via direct combination of the 

gas with the metal in a ‘solid state corrosion reaction’ in which species transport from the 

bulk solution through boundary layers to the metal surface dictates the rate of corrosion. 

For accurate modelling of CO2 corrosion at high pressures, the application of appropriate 

equations of state is required. Some research directives were stated, one of which was the 

determination of the pH for a mixed CO2-H2O system. 

The use of NNs for the prediction of low pressure CO2 corrosion rates is well-documented 

however in this thesis; it is also used for the prediction of CO2 corrosion rates under high 

pressure conditions. Some reference was made to the training of neural networks for small 

datasets in order to retain their ability to generalise. High pressure CO2 corrosion datasets in 

open literature are very small in size therefore the need to adapt the NNs for this particular 
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purpose is crucial. NN modelling of high pressure CO2 is discussed in the chapter on neural 

network models. 

For fuzzy inference systems (FIS), the process in which input data is converted to output data 

was discussed. FIS employ approximate reasoning techniques to problem-solving through the 

use of human language descriptors and assigning values between: 0 to 1 to represent these 

descriptors. The way in which the assignments are carried out is governed by the use of the 

membership function. It is imperative to understand the data being modelled in order to be 

able to select an appropriate membership function. The advantage this modelling technique 

has over the others is its ability to directly visualise the various relationships between input 

data variables in both two-dimensional and three-dimensional space. 
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Chapter 3. CO2 Corrosion Models 
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3.1 Introduction – CO2 Corrosion Models 

 

A large number of models have been developed by oil companies for the purpose of 

predicting pipeline CO2 corrosion (Nyborg, 2002; Nyborg, 2010). In Section 2.5 of the 

previous chapter, some established CO2 corrosion models were discussed such as Shell’s 

HydroCor, Total’s Corplus, IFE’s KSC model and Ohio University’s Multicorp models.  

These models differ from each other because of the different philosophies behind their 

development. One way to classify these models is by conservatism. The concept of 

conservatism is explained by the scale formation effect. For those models described as 

conservative or known to over-predict corrosion rates, these models are said to take little or 

no account of the effect of the corrosion film (passive layer) on the overall CO2 corrosion 

mechanism. It is known that, particularly at high temperatures, scale formation layers are 

more stable and compact hence the net effect on the surface of the metal is that corrosion is 

reduced.  

The less conservative models often assume the influence of film and scale formation hence 

generally predict lower corrosion rates than conservative models. It is also said that the less 

conservative models also assume oil-wetting tendencies as opposed to the mostly water-

wetting tendencies of conservative models (Nyborg, 2002; Nyborg, 2010). The aqueous phase 

is the continuous phase in contact with the metal surface for water-wetting systems hence 

corrosion risks are greater than for oil-wetting systems whose continuous phase is oil. 

In general, these two factors – the effect of corrosion products/film layer and oil/water 

wettability are the main distinguishing features in the modes of operation of the several 

models developed for CO2 corrosion prediction. In this chapter, the corrosion models 

discussed fall into one of two categories – empirical or mechanistic. The former implies 

models developed with the use of raw experimental or field data to extract underlying 

relationships between measured variables while the latter involves the development of a 

prediction system based on the mechanisms that underpin the physical phenomena being 

investigated. The 1975, 1991, 1995 De Waard and Norsok models are empirical models 

(Nyborg, 2010) while the Nesic-Postlethwaite-Olsen (NPO) model is purely mechanistic 

(Nesic et al., 1996). 

Also, in Section 2.4.1, as part of the environmental factors affecting CO2 corrosion, the 

presence of H2S was discussed. The scenarios for the severity of corrosion risks in the 
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presence of H2S as well as the mechanics and kinetics of formation of iron sulphide scale 

were also outlined. In this chapter, H2S corrosion is discussed in terms of the use of Ohio 

University’s freely accessible Freecorp software (Ohio University, 2008) to predict 

corrosivity for H2S corrosion data in research literature (Lyle and Schutt, 1998; Nesic et al, 

2008). 

In the mechanics and kinetics of iron sulphide scale formation of Section 2.4.1, some H2S 

scale types were listed, one of which was mackinawite. In Section 3.7.2, with the aid of the 

aforementioned Freecorp software, the H2S solution concentration is expressed in terms of the 

distance of corroding species (H3O
+
 and H2S) from the steel surface. Mackinawite is said to 

constitute the inner film formed on the steel surface. The Freecorp model is also used to 

predict corrosivity for CO2 corrosion data in research literature (Crolet et al, 1999; Guo et al, 

2005) as it incorporates the electrochemical philosophy of the NPO model. 

 

3.2 The 1975 De Waard-Milliams Correlation 

 

In an attempt to come up with a correlation capable of accurately predicting CO2 corrosion in 

oil and gas pipelines, the de Waard-Milliams equation was formulated as follows: 

log10(𝑉𝑐𝑜𝑟𝑟) = 5.8 −
1710

𝑇𝑘
+ 0.67 log10(𝑃𝐶𝑂2)  (3.1) 

 Where: 

𝑉𝑐𝑜𝑟𝑟 = Corrosion rate (mm/year)  

𝑇𝑘 = Temperature (K)  

𝑃𝐶𝑂2 = carbon dioxide partial pressure (MPa);  𝑃𝐶𝑂2 = 𝑚𝑜𝑙% 𝐶𝑂2  × 𝑡𝑜𝑡𝑎𝑙 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒(𝑃) 

(de Waard and Milliams, 1975; Zhang et al., 2012b) 

The correlation expresses corrosion rates in units of mm/year in terms of temperature, T and 

carbon dioxide partial pressure,  𝑃𝐶𝑂2. A typical plot for the correlation is shown in Figure 3-1.  
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Figure 3-1. Plot of corrosion rate against temperature for varying carbon dioxide partial 

pressures, 𝑷𝑪𝑶𝟐 = 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟑, 𝟎. 𝟏 𝐚𝐧𝐝 𝟎. 𝟑𝐌𝐏𝐚 (without inhibition from carbonate 

scale) 

From Figure 3-1, it is observed that corrosion rates increase as a power function – power of 

10, as the temperature increases. Herein lies the limitation of the model, in that typically plots 

of corrosion data from laboratory results as well as field data show a distinct peak at 

approximately 60-90
o
C followed by a decrease in magnitude of corrosion rate with a further 

increase in temperature beyond 90
o
C, as shown in Figure 3-2. 

 

Figure 3-2. Typical plot of corrosion rate against temperature from experimental CO2 

corrosion data (Dugstad et al., 1994b; Halvorsen et al., 1999; Sun and Nesic, 2004) 
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However for the plot in Figure 3-1, there is no peak for this range of temperatures hence the 

reason a subsequent correlation was formulated in order to account for the film formation 

effect. 

The other limitation of this corrletion is the use of carbon dioxide partial pressures instead of 

fugacity. At higher CO2 pressures, such as for pressures that exceed 20bar, for instance, a 

more appropriate and accurate approach will involve the use of the concept of fugacity as 

opposed to partial pressure (de Waard et al., 1991). 

3.3  The 1991 De Waard-Lotz-Milliams Correlation  

 

The 1991 correlation is basically the same as the 1975 equation in terms of statement and 

variables with the exception of the fugacity term, fCO2, which replaces the previous carbon 

dioxide partial pressure term, 𝑃𝐶𝑂2. The equation is stated as follows (de Waard et al., 1991):  

log10(𝑉𝑐𝑜𝑟𝑟) = 5.8 −
1710

𝑇𝑘
+ 0.67log10(𝑓𝐶𝑂2)  (3.2) 

Where: 

𝑇𝑘 = Temperature (K)  

𝑓𝐶𝑂2 = Carbon dioxide fugacity (MPa)  

Application of this model involves the use of correction factors which are associated with a 

physical or chemical effect that causes a slight change in the corrosion prediction result (de 

Waard et al., 1991). The physical or chemical effect includes parameters affecting CO2 

corrosion such as pH and scale formation, which are not stated directly in Equation 3.2 as 

variables. Therefore, separate corrrection factors for each of these parameters are determined  

Generally, for any physical or chemical effect being corrected for, the correction factor, which 

is usually less than unity (<1), is multiplied by the result obtained from the Equation 3.2 and 

this often yields corrosion rates of decreased magnitudes as compared to the original predicted 

results from Equation 3.2, which are considered to be over-conservative (de Waard et al., 

1991). Specifically, the correction for pH will tend to yield correction factor results that 

exceed unity (>1) for media that are under-saturated with corrosion products, Fe2CO3 or 

Fe3O4. The reason being that for under-saturated systems, there is a steady anodic dissolution 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

62 

 

rate of iron on its surface and this proceeds until the system is sufficiently saturated after 

which the rate of dissolution slows down. Thus corrosion rates are higher for under-saturated 

systems because film formation has not yet proceeded to the point where it inhibits further 

corrosion at the metal surface therefore any pH correction factors obtained will exceed unity.  

3.3.1 Accounting for High-temperature Protective Films 

It is known that the precipitation of iron carbonate, FeCO3, or ferrous oxide, Fe2O3, ultimately 

leads  to the formation of protective film layers however they are not the only requirement for 

stable protective film formation (de Waard et al., 1991). Temperature has a direct influence – 

increasing temperatures increase the rates of several known chemical reactions as explained 

by the Arrhenius theory and as such in CO2 corrosion, this implies that the carbonate layers 

will be formed at a much faster rate due to an increased rate of reaction between ferrous ions 

and carbonate ions to form FeCO3 (siderite). 

These FeCO3 films are formed and adhere onto the metal surface and reduce the surface area 

of the metal exposed to corrosive attack thereby reducing corrosion rates and resulting in 

temperature maximum (peak) for corrosion rates. The temperature corresponding to the 

maximum corrosion rate is the scaling temperature and is given by Equation 3.3. At this 

temperature, ferrous ion concentration (Fe
2+

) formed at the metal surface and local pH are 

such that a protective film is formed. (de Waard et al., 1991) 

𝑇𝑠𝑐𝑎𝑙𝑒 =
2400

6.7 + 0.6log10(𝑓𝐶𝑂2)
  (3.3) 

Where: 

𝑇𝑠𝑐𝑎𝑙𝑒 = Scaling Temperature (K)  

𝑓𝐶𝑂2 = Carbon dioxide fugacity (MPa)  

While film formation can occur at any temperature, its protection of the metal surface is 

greater at higher temperatures. At lower temperatures, for instance, temperatures less than 

60
o
C, the corrosion product film has a smudge-like appearance and is easily removed by 

flowing liquids while at higher temperatures, the texture is different, usually coarser and is 

less easily washed away (de Waard et al., 1991). It is also worth noting that flowrate has an 

effect on scaling temperature; a higher flowrate will result in a higher scaling temperature. 

Also, a higher bulk pH will tend to lower this temperature. 
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Figure 3-3 shows the plot of corrosion rate against temperature for varying CO2 fugacities.  

 

Figure 3-3. Plot of corrosion rate against temperature for varying CO2 fugacities, 

𝒇𝑪𝑶𝟐 = 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟑, 𝟎. 𝟏𝐚𝐧𝐝 𝟎. 𝟑𝐌𝐏𝐚 

For the ascending part of the curve, Equation 3.2 is applied, however for the descending part 

of the curve, Equation 3.5 is applied. Equation 3.5 is derived as follows: 

From Equation (3.3), re-arranging: 

2400

𝑇𝑘
− 0.6log10(𝑓𝐶𝑂2) − 6.7 = 0  (3.4) 

Multiplying the right hand side of Equation (3.2) by the left hand side of Equation (3.4), 

yields the result for calculating the new corrosion rate, Equation (3.5): 

log10(𝑉𝑐𝑜𝑟𝑟) = {5.8 −
1710

𝑇𝑘
+ 0.67 log10(𝑓𝐶𝑂2)} × { 

2400

𝑇𝑘
− 0.6log10(𝑓𝐶𝑂2) − 6.7}  (3.5) 

 

The scaling temperature is evaluated from Equation 3.3 using the given CO2 fugacity, to 

determine where the ascending part of the curve ends and where the descending part begins. It 

is observed from Figure 3-3, that the scaling temperatures for each of the CO2 fugacities is 

different, the higher the CO2 fugacity, the smaller the magnitude of its corresponding scaling 

temperature and this is due to the fact that at lower temperatures, any scale formation is 
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washed away. This therefore results in greater corrosion rates for high CO2 fugacities as the 

rate at which scale is being washed away is also high. These equations were implemented in 

Matlab and verified against results published in research literature (Woollam and Hernandez, 

2006). 

3.4  The 1995 De Waard-Lotz-Dugstad Correlation 

This model is currently being used by Shell for predicting CO2 corrosion rates in the field 

(Kermani and Morshed, 2003) and accounts for fluid flowrate as this is known to have an 

influence on corrosion rates. It comprises a simple resistance model which is the combination 

of the 1991 de Waard-Lotz-Milliams model with a  flow-dependent CO2 mass-transfer model 

(Woollam and Hernandez, 2006). The model was developed to take into consideration the fact 

that mass transfer rates need to keep up with reaction kinetics of the corrosion reaction. Hence 

the established equilibrium reaction is stated as follows (Woollam and Hernandez, 2006; de 

Waard et al., 1995): 

𝐶𝐶𝑂𝑅𝑅 =
[𝐶𝑂2]

1
𝑘𝑟
+
1
𝑘𝑚

  (3.6) 

Where: 

[𝐶𝑂2] is CO2concentration which is related to CO2fugacity, 𝑓𝐶𝑂2  

𝑘𝑟 and 𝑘𝑚 are rate constants associated with reaction kinetics of the corrosion reaction,  

the charge transfer reaction and the mass transfer of dissolved 𝐶𝑂2 from 

 the bulk of solution to the surface of steel respectively. 

Equation 3.6 can be expressed as Equation 3.7, shown below. Equation 3.7 is the overall 

resistance model. 

𝐶𝐶𝑂𝑅𝑅 =
1

𝐶𝑅
+ 

1

𝐶𝑀𝑇
  (3.7) 

Where: 

𝐶𝑅 is the highest possible reaction rate, i. e. when mass transfer is infinitely fast  

𝐶𝑀𝑇 is the highest possible mass transfer rate of corrosive species  
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Hence CR, also known as the contribution from activation reaction kinetics is associated with 

‘worst-case’ corrosion and takes the form of the previously established 1991 de Waard-Lotz-

Milliams correlation:  

log10(𝐶𝑅) = 4.93 −
1119

𝑇𝑘
+ 0.58 log10(𝑓𝐶𝑂2)  (3.8) 

Also, CMT is given by: 𝐶𝑀𝑇 = 2.45
𝑈0.8

𝑑0.2
(3.9) 

Where: 

𝑈 is liquid velocity (in m/s)  

𝑑 is pipe diameter (in m)  

𝑓𝐶𝑂2is Carbon dioxide fugacity (MPa)  

The pH term stated in the correlation in research literature, is neglected here as this 

correlation was used for condensed water whose pH is determined by the solubility and 

dissociation of CO2 (Woollam and Hernandez, 2006). The plot of corrosion rate against 

temperature in Figure 3-4 shows the shape and trend for each CO2 fugacity value. 

 

Figure 3-4. Plot of corrosion rate against temperature for varying CO2 fugacities 

𝒇𝑪𝑶𝟐 = 𝟎. 𝟎𝟏, 𝟎. 𝟎𝟑, 𝟎. 𝟏𝐚𝐧𝐝 𝟎. 𝟑𝐌𝐏𝐚 
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It is observed from Figure 3-4, that corrosion rates increase as CO2 fugacity increases from 

0.01 to 0.3MPa (0.1-3bar). The reason being that greater CO2 fugacities translate into greater 

concentrations of the gas in bulk solution and consequently greater carbonic acid 

concentrations. This in turn leads to greater corrosion rates hence greater dissolution rates of 

the metal at the anode. 

Also, it is observed that the scaling temperatures increase as CO2 fugacity decreases from 3 

bar to 0.1 bar. This is due to the fact that at higher temperatures, more stable film layers are 

formed that are considerably harder to wash away (de Waard et al., 1991). At lower 

temperatures, scale takes up a smudge-like texture and does not offer protection to the metal 

surface hence a greater proportion of the metal surface is exposed to corrosive attack leading 

to greater corrosion rates. Scaling is more likely to occur at lower temperatures for greater 

CO2 fugacities because corrosion rates are higher, therefore the bulk solution is likely to get 

super-saturated more readily before the effect of high temperatures set in – solubility 

decreases with increasing temperature. 

 

3.4.1 Parameter Study on the 1995 De Waard-Lotz-Dugstad Correlation – Investigating 

Changes in Flow Velocity and CO2 Fugacity on CO2 Corrosion Rate 

 

The plot in Figure 3-5 shows the corrosion profile with temperature for 𝑓𝐶𝑂2=1MPa (10bar), 

T=10-100
o
C, pH=5.0 and varying flow velocities. It is observed that corrosion rates increase 

with increasing temperatures regardless of the fluid flowrate velocity until the scaling 

temperature is reached (~63
o
C) after which corrosion rates decrease gradually. It is generally 

known that corrosion specie solubilty decreases with increasing temperature and upon 

reaching the scaling temperature of 63
o
C, supersaturation takes place and as temperatures 

proceed to increase further, there is said to be suffcient scale build-up on the metal surface 

such that the effective area of the metal exposed to corrosive action is reduced hence 

corrosion rates fall even though it follows from Arrhenius theory, that increasing temperatures 

lead to an increase in reaction rates. 
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Figure 3-5. Plot of corrosion rate against temperature (Conditions are: T=10-100
o
C, 

𝒇𝑪𝑶𝟐=1MPa, pH=5.0 and for varying flowrate velocity) 

 

For the plot of corrosion rate against temperature for T=10-100
o
C, U=6.0m/s, pH=5.0  and 

varying carbon dioxide partial pressures, Figure 3-6, there is an increase in corrosion rates 

with increasing temperatures until the scaling temperature is reached after which there is a 

drop in the magnitudes of corrosion rates. Carbon dioxide partial pressure to the power of 0.7 

is said to have a direct proportional relationship with corrosion rate (Dugstad et al., 1994a), as 

seen in Figure 2-7A, Section 2.4.1 – there is an increasing trend for each curve in that the 

greater the CO2 partial pressure, the greater the corresponding corrosion rate and this is a 

result of greater concentrations of carbonic acid forming. Given that carbonic acid readily 

dissociates into the bicarbonate ion and hydrogen ion, it implies that a greater concentration of 

carbonic acid will result in a greater concentration of hydrogen ions in solution thereby 

making the solution more acidic thus enhancing CO2 corrosion. 
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Figure 3-6. Plot of corrosion rate against temperature (Conditions are: T=10-100
o
C, 

U=6.0m/s, pH=5.0 and for varying carbon dioxide fugacities) 

3.5  The NORSOK M-506 Model 

 

This is an empirical model developed by the Norwegian oil companies, Statoil, Norsk Hydro 

and Saga petroleum. It is originally based on laboratory data that was previously used to 

calibrate the de Waard model, however in addition it is capable of estimating corrosion rates 

at temperatures of up to 150
o
C (Nyborg, 2010). The model is said to yield ‘worst-case’ CO2 

corrosion rate results since the flow loop experiments upon which it is based assume low 

ferrous (Fe
2+

) ion concentration in the aqueous phase (Olsen et al., 2005). The model equation 

can be summarised as follows Woollam and Hernandez (2006), Norsok Standard M-506, 

(2005): 

𝐶𝑁𝑂𝑅 = 𝐾𝑡𝑓𝐶𝑂2
0.62 (

𝑆

19
)
0.146+0.0324log (𝑓𝐶𝑂2)

𝑓(𝑝𝐻)𝑡  (3.10) 

Where: 

𝐾𝑡 is a constant dependent on temperature  
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𝑓𝐶𝑂2is CO2 fugacity  

𝑆 is wall shear stress (Pa)  

𝑓(𝑝𝐻)𝑡 is a complex function of pH and temperature  

The model takes account of the formation of protective films at higher temperatures as seen in 

the plot in Figure 3-7. This Figure was obtained from the open-source Norsok M-506, 

accessed by a Microsoft Excel spreadsheet (coloured lines with markers). The NORSOK 

source code was then written, implemented and plotted separately using Matlab 2012a 

software (coloured lines without markers). These two plots were then superimposed together. 

Corrosion rates are observed to increase with increasing temperature after which there are 

peaks at a temperature of about 78
o
C followed by a dip in magnitudes. The peaks in corrosion 

rate are due to the effect of the presence of protective film layers on the surface of the metal 

which have the dual action of reducing the number of sites on the metal surface available to 

corrosive attack as well as forming a compact shield of ferrous carbonate on the metal surface 

that is neither easily swept away by fluid flow nor does it offer channels through its structure 

for the possibility of localised attack. 

 

 

Figure 3-7. NORSOK M-506-generated and Matlab 2012a-generated plots of corrosion 

rate against temperature for varying CO2 fugacities: 0.03MPa (0.3bar), 0.1MPa (1bar) 

and 0.3MPa (3 bar). Conditions are: pH=4, CO2 mole =100%, Shear stress=2Pa 

 

Peaks in corrosion rates due to protective 

film layer formation at high temperatures 
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One limitation of the model is that it does not account for oil-wetting and its use is not 

applicable to systems in which pH stabilisation is used for corrosion control (Nyborg, 2010).  

3.5.1 Matlab Model Results based on NORSOK Correlations 

 

Figure 3-7 shows the Matlab 2012a model results (shown as blue, gree and cyan lines) 

overlaid on the Norsok M-506-generated results (shown as magenta circles, black crosses and 

red stars). The code was written based on identical parameters as indicated in published 

research literarture to validate Matlab 2012a-generated results. (Woollam and Hernandez, 

2006). Other conditions required to obtain the plot shown in Figure 3-7 are tabulated in Table 

3-1 as follows: 

Table 3-1. Summary of variables and their respective magnitudes required to obtain 

results in figure 3-7 

Parameter/unit Magnitude 

pH 4.0 

Pipe Diameter (mm) 100 

Water cut (%) 20 

*Liquid volumetric flowrate (m
3
/s) 0.0307 

CO2 mole (%) 100 

*Superficial liquid velocity (m/s) 3.9063 

 

* These parameters have been assumed. Superficial liquid velocity is calculated from an assumed value of liquid 

volumetric flowrate using the formula: Velocity, 𝑈 (
m

s
) =  

Volumetric flowrate (m3/s)

Area (m2)
 . 𝑇𝑘/Tstd was assumed to be 

approximately equal to unity given that the instantaneous temperature of the gas in Kelvin, 𝑇𝑘, is almost 

identical to the temperature of the gas at standard conditions, Tstd. 

All other parameters such as pipe roughness, oil specific gravity, density and viscosity of 

water, density and viscosity of oil as well as compressibility have been assigned identical 

values as the default Norsok M-506 corrosion rate model. There are slight differences in the 

superimposed plots and these are likely due to the assumed figures used in modelling. 
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3.5.2 Parameter Study on the NORSOK M-506 Model – Investigating Changes in Water 

Cut Percentage and CO2 Mole Percentage on CO2 Corrosion Rate 

 

Upon observation of the plot in Figure 3-8, corrosion rates increase with increasing 

temperature as expected due to the reasoning behind the Arrhenius theory (Section 3.7.3); 

there is a temperature dependence on the rate constant hence the chemical reaction, CO2 

corrosion in this context is dependent on temperature change. 

 

Figure 3-8. Plot of carbon dioxide corrosion against temperature  

(For varying water cut percentages) 

 

In general, the greater the water cut percentage in the fluid, the greater the rates of corrosion. 

This is explained by the relative ease of formation of carbonic acid when the water cut 

percentages are greater and the fact that the pressure or shear stress exerted on the metal 

surface or pipe walls is greater for conditions of high water cut. Fluid flow with a great water 

cut percentage, say 70%, implies that a bigger force is exerted per unit area of the pipe 

internal wall than the same fluid flow with 30% water cut, for instance. For the plot shown in 

Figure 3-9, corrosion rates increase with increasing CO2 mole percentages due to the fact that 

there is an increased likelihood for the formation of carbonic acid in solution of a greater 
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concentration hence a CO2 mole percentage of 90% would induce greater corrosion rates than 

one of 70%, for instance. 

 

Figure 3-9. Plot of carbon dioxide corrosion against temperature  

(For varying CO2 mole percentages) 

 

3.6 The Nesic-Postlethwaite-Olsen Model (NPO Model) 

 

This is a mechanistic model that combines the equations for the cathodic reactions which 

include the reduction of H
+
 and the reduction of H2CO3 against a single current equation for 

the anodic dissolution of Fe. Hence, when the sum of cathodic current equations is said to be 

equal to the anodic current equation, therefore the rate of corrosion can be determined (Nesic 

et al., 1996; Woollam and Hernandez, 2006): 

𝑖𝐹𝑒 =  𝑖𝐻+ + 𝑖𝐻2𝐶𝑂3 (3.11)  

𝑖𝐻+ , 𝑖𝐻2𝐶𝑂3 are the cathodic current terms for hydrogen ion and carbonic acid respectively  

𝑖𝐹𝑒 is the anodic current term for the dissolution of the metal (Fe)   
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3.6.1 Cathodic Reactions 

For these reactions, the electrochemical process is modelled by a resistance model, in which 

the inverse of the current function is equal to the sum of the inverses of the activation current 

and limiting current (Woollam and Hernandez, 2006). 

 
1

𝑖(𝐻+)
= 

1

𝑖𝛼(𝐻+)
+ 

1

𝑖𝑙𝑖𝑚(𝐻+)
𝑑   (3.12) 

Where: 

 𝑖𝛼(𝐻+) is the activation controlled current  

 𝑖𝑙𝑖𝑚(𝐻+)
𝑑  is the limiting current  

The term, 𝑖𝑙𝑖𝑚(𝐻+)
𝑑 , is due to mass transfer kinetics playing an important role in the transport 

of species to the metal surface from bulk solution.  

𝑖𝑙𝑖𝑚(𝐻+)
𝑑 = 𝑘𝑚𝐹[𝐻

+]𝑏  (3.13) 

Where: 

𝑘𝑚 = Mass transfer constant   

𝐹 = Faraday constant   

[𝐻+]𝑏 = Concentration of hydrogen ions in bulk solution   

The activation controlled current is given by the following expression (Woollam and 

Hernandez, 2006):  

 𝑖𝛼(𝐻+) = 𝑖𝑜(𝐻+). 10
−
𝜂
𝑏𝑐
⁄
  (3.14) 

𝜂 is the overpotential (Volts, V)  

𝑖𝛼(𝐻+) is the exchange current density (A/m
2)  

𝑏𝑐 is the cathodic Tafel slope on the Tafel plot  

The cathodic current equation for carbonic acid is expressed in a similar manner as that of 

hydrogen ions, H
+
. 
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3.6.2 Anodic Reactions 

This reaction is assumed to be strictly activation-controlled.  

𝐻𝑒𝑛𝑐𝑒,  𝑖(𝐹𝑒) = 𝑖𝑜(𝐹𝑒). 10
𝜂
𝑏𝑎
⁄
  (3.15)  

𝜂 is overpotential (Volts, V)  

𝑖𝑜(𝐹𝑒) is exchange current density (A/m
2)  

𝑏𝑎 is anodic Tafel slope on the Tafel plot   

These equations are used to derive the plot shown in Figure 3-10. This is a Tafel plot of 

potential against the log of current density and the corrosion rates are read off from the point 

of intersection of Ecorr=-513mV and the anodic dissolution line (A1). The current density is 

then read off from the horizontal axis as the value of icorr. This current is then converted into 

units of corrosion rate in mm/year by the following expression in order to obtain the plot 

shown in Figure 3-11. 

Conversion of Current density to Corrosion rate:
1.155A

m2
=
1mm

year
   (3.16) 

 

The plot shown in Figure 3-10 was produced for a temperature of 100
o
C and a CO2 fugacity 

of 0.3 MPa (3bar). The temperature was then changed accordingly in the model to determine 

the corresponding corrosion rates. The CO2 fugacity was then changed to 0.1MPa (1 bar), 

0.03MPa (0.3 bar) and 0.01MPa (0.1 bar) and the same procedure was repeated to obtain the 

plot shown in Figure 3-11.  
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Figure 3-10. Nesic-Postlethwaite-Olsen (NPO) model output for T=100
o
C – Tafel plot of 

potential against log10 (current density) 

 

 

Figure 3-11. Plot of corrosion rate against temperature for the NPO model for CO2 

fugacities: 0.01MPa (0.1bar), 0.03MPa (0.3bar), 0.1MPa (1bar) and 0.3MPa (3 bar). 

Other conditions where applicable are: pH=4, CO2 mole =100%, Shear stress=2Pa 
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From Figure 3-11, it is observed that corrosion rates generally increase with increasing 

temperature which is as expected following the explanation given by the Arrhenius theory for 

the effect of increasing temperature on increasing the rate of chemical reactions. It is also 

observed that the corrosion rates are greater for CO2 fugacities of higher magnitudes in the 

following order: 𝑓𝐶𝑂2 (at 0.3MPa) 𝑓𝐶𝑂2 (at 0.1MPa) > 𝑓𝐶𝑂2 (at 0.03MPa) > 𝑓𝐶𝑂2 (at 0.01MPa). 

The reason for this is that higher magnitudes of CO2 fugacity translate into greater 

concentrations of the gas in solution and consequently higher concentrations of carbonic acid 

hence enhanced corrosion risks and higher anodic dissolution rates of the metal. 

3.7 Introduction to Freecorp 

The Freecorp version 1.0 corrosion model is a simple point model developed exclusively 

based on freely accessible information by corrosion researchers at Ohio University (Ohio 

University, 2008). A point model is a simulator that is capable of predicting uniform 

corrosion rates for the following species: carbon dioxide (CO2), oxygen (O2), acetic acid 

(CH3COOH or HAc) and hydrogen sulphide (H2S) at a single point (Nyborg, 2002) within the 

given environment as opposed to a combined fluid flow-corrosion model which would be 

capable of predicting the corrosion profile at different locations in a pipeline or corrosion 

system (Nyborg, 2002).  

In terms of Freecorp version 1.0’s ability to accurately estimate corrosion, it has been 

designed with a mechanistic background at its core (Ohio University, 2008). The model is 

capable of indicating the relative contributions to corrosion as well as the dominant corrosion 

mechanism based on the corrosive species input by the user. In addition, polarisation sweeps 

and polarisation curves for each individual electrochemical reaction are displayed. 

 

3.7.1 Organic Acid Corrosion 

Acetic acid (CH3COOH) is the most commonly occurring of the organic acids that are 

typically seen in the water phase during oil and gas production. Other forms of organic acids 

include formic, acetic and propionic acids. It is known that there are only small significant 

differences between the corrosiveness of the aforementioned acids hence acetic acid corrosion 

is considered to be the broad representative for these organic acids since it is the most 

prevalent. 
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There is documented evidence of acetic acid contributing to top-of-line corrosion (TLC) 

(Nesic et al., 2009). TLC is a form of CO2 corrosion that occurs along the top of wet gas pipe 

internals as a result of condensation of water followed by the rapid saturation of corrosion 

products in the aqueous medium (Dugstad et al., 1994a). One limitation of Freecorp is that 

while it is able to predict CH3COOH corrosion, it makes no provision for TLC estimation. 

Acetic acid is of a major concern in top-of-line corrosion due to its ability to provide an 

additional source of hydrogen ions brought about by its weak dissociative property. It 

partially dissociates into a hydrogen ion and an acetate ion as shown below: 

HAc + H2O ⇔ H3O
+ + Ac− (3.17)  

Apart from being a reservoir for hydrogen ions, it has also been discovered experimentally 

that the undissociated CH3COOH specie can be directly reduced after adsorbing onto the 

metal surface (Nesic et al., 2009). 

2HAc + 2e−  ⟶  H2 + 2Ac
−  (3.18) 

Thus, the presence of free CH3COOH becomes problematic, in that, particularly at low pH 

ranges, the equilibrium of the dissociation reaction shifts to the left. It is also said that the 

reduction of free acetic acid is strongly affected by the velocity of fluid flow indicating that it 

is a mass transfer-controlled process and this implies that corrosion rate is dependent upon the 

acetic acid concentration and the kinetics of transport of the species from the bulk solution to 

the metal surface (Nesic et al., 2009). 

Figure 3-12 shows a scatterplot of Freecorp model results for acetic acid corrosion against 

experimental results. The two datasets, Crolet et al., 1999 and Guo et al., 2005, are the results 

of the investigation of CO2-CH3COOH corrosion on X65 carbon steel and N80 carbon steel 

respectively. Corrosion rates were determined by varying the concentrations of acetic acid for 

both studies. Experiments were carried out at temperatures of 22
o
C for Crolet et al., 1999 and 

50
o
C for Guo et al., 2005. Although the CO2 concentration in the former was constant, 1bar 

(0.1MPa), there were two magnitudes for CO2 concentration in the latter case: 1 (0.1MPa) and 

10bar (1MPa). 
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Figure 3-12. Scatterplot of Freecorp model readings against experimental readings for 

two datasets: Crolet et al, (1999) and Guo et al, (2005) 

The model over-predicts all data points of the Guo et al. (2005) study while the y=x line splits 

the Crolet et al. (1999) dataset roughly into two, particularly for high HAc concentrations. 

High HAc concentrations correspond to the experimental readings of the greatest magnitude 

(≈5mm/year) and as experimental readings increase in magnitude, disproportionately high 

readings are observed for model predictions. The Freecorp model predictions for the Guo et 

al., 2005 dataset for 1MPa (shown in red crosses) greatly exceed the corresponding 

experimental readings even though higher than normal corrosion rates are expected as a result 

of the CO2 partial pressure being equal to 1MPa (10bar). 

 

3.7.2 Hydrogen Sulphide Corrosion 

 

H2S corrosion proceeds via solid state reaction – the initial and final states of iron exist in the 

solid state and unlike CO2 and HAc corrosion, it is not electrochemical.  There is no 

significant separation of the oxidation and reduction reactions at the steel surface. Hence, no 

current flows between the cathode and anode (Nesic et al., 2009). 

Fe + H2S ⇔ FeS + H2 (3.19) 
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Freecorp version 1.0 models H2S as a chemical reaction showing the species concentration 

profile for H2S concentration from the metal surface across the liquid boundary layer to the 

bulk solution as shown in Figure 3-13. The following concentration profile is representative 

of the following conditions: T=20
o
C, Ptotal=0.1MPa (1bar), 𝑃𝐶𝑂2=0.01MPa (0.1bar), 

H2S(g)=40ppm and pH=5. 

In general, H2S corrosion is limited to the kinetics of diffusion of corroding species (H3O
+
 and 

H2S) from the bulk solution across the boundary layer and onto the metal surface. A 

concentration gradient is set up across the boundary layer whereby actively corroding species 

at the metal surface induce a drive resulting in the influx of more corroding species from the 

bulk solution to the metal surface. 

 

Figure 3-13. Species concentration profile - H2S concentration as a function of the 

distance from steel surface 

Mackinawite, a thin layer of sulphide scale formed by a rapid reaction between H2S and iron 

acts as a solid state diffusion barrier however diffusion of corroding species does not cease 

altogether, instead as corrosion proceeds, more mackinawite is formed thus thickening the 

scale layers which eventually results in spalling and microcracking and so a cyclic process of 

growth, cracking and delamination ensues (Sun and Nesic, 2007; Nesic et al., 2009). 
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As corrosion proceeds over time, mackinawite scales thicken and become more protective of 

the metal surface beneath and in some instances, may lead to the formation of pyrrhotite, 

another less soluble form of ferrous sulphide scale. In cases where, the H2S concentrations are 

high, pyrite and elemental sulphur form on the metal surface (Nesic et al., 2009). 

The reason for there being different forms of iron sulphide is attributed to the fact that they 

vary in terms of thermodynamic stability. Troilite and pyrrhotite are more stable than 

mackinawite, for instance, combined with the fact that the equilibrium ferrous ion 

concentration and pH are greater on the metal surface than in the bulk solution (Benning et al, 

2000; Criaud et al, 1989). 

Figure 3-14 shows a scatterplot for two sets of data: Lyle and Schutt (1998) and Nesic et al 

(2008). While overall, the model estimates corrosion fairly accurately, for both datasets, it 

tends to under-predict experimental readings of larger magnitudes. For instance, the model 

predicts less accurately for the last two data points (shown in green crosses) from the Lyle and 

Schutt (1998) study, which investigated H2S and pitting corrosion for a constant temperature 

of 15.6
o
C, at H2S pressures of the range: 0-0.013MPa (0-0.13bar), CO2 partial pressures (0-

0.069MPa), for a pH range of 3.85 to 4.75 and for a duration of 14 days. The less accurate 

model predictions correspond to the data points with low pH values (3.8-4.0) as well as with 

the high H2S gas phase pressures (0.0069-0.013MPa) while the varying CO2 pressures do not 

appear to have any significant impact on trends. Hence, the model struggles with corrosion 

estimations for high H2S pressures and very low pH ranges. 

A similar explanation can be used to describe model predictions on the Nesic et al., 2008 

study, as well. Here, H2S corrosion was investigated at a constant temperature (20
o
C), pH (5) 

and CO2 partial pressure (0.01MPa), with varying H2S concentrations (0-180ppm) and for a 

period of 24 hours. The main difference between the two studies is that the pH was constant 

for the Nesic et al (2008) study while it was varied for the Lyle and Schutt study. While the 

CO2 partial pressure varies for the former and is constant in the latter, CO2 does not influence 

the trends in these studies. 
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Figure 3-14. Scatterplot of Freecorp model readings against experimental readings for 

two datasets: Lyle and Schutt (1998) and Nesic et al. (2008) 

 

3.7.3 CO2 Corrosion Rate Trends and Parametric Study on Velocity of Fluid Flow 

Corrosion rates increase with increasing temperature. This is explained by the kinetic theory 

in that greater temperatures provide larger amounts of energy to colliding molecules in a 

given reaction hence the frequency of collisions and the likelihood of the formation of a 

product increases. In terms of CO2 corrosion, this implies that an increase in temperature 

results in increased reaction rates, thus an increased tendency to form corrosion products such 

as the evolution of hydrogen gas, the dissolution of iron to ferrous ions as well as the 

formation of carbonate scales. This reaction is summarised as follows (Nesic and Vrhovac, 

1999): 

Fe (s) + CO2 (g) + H2O(l) ⟶ FeCO3 (ppt) + H2(g) (3.20) 

The Arrhenius theory also follows from the Kinetic molecular theory and further emphasises 

this point (Tan and Chan, 2011). The Arrhenius equation is stated as follows:  

𝑘 = 𝐴𝑒
−
𝐸𝐴
𝑅𝑇𝑘   (3.21)  
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Where: 

𝑘 = Reaction Rate Coefficient  

𝐴 = Pre − exponential factor  

𝐸𝐴 = Activation Energy (KJ/mol)  

𝑅 = Molar Gas Constant  

𝑇𝑘 = Absolute Temperature (K)  

By the Arrhenius theory, reacting molecules will have to acquire a minimum threshold energy 

(activation energy, EA) in order to form products and temperature provides this energy (Tan 

and Chan, 2011). Thus, from the definition of the Arrhenius equation, the natural logarithm of 

the reaction rate constant, loge k, is proportional to the inverse of the absolute temperature of 

the reaction, implying that the rate constant for any given reaction increases with increasing 

temperature (Tan and Chan, 2011).  

It is observed from Figure 3-15, that corrosion rates generally increase with temperature and 

this is in accordance with the kinetic theory and the Arrhenius equation since it accelerates all 

processes involved in corrosion – species transport, electrochemical and chemical reaction 

rates. 

Corrosion rates increase quite markedly as temperatures increase without accounting for the 

effect of scale formation which results in peaks usually between 60-80
o
C depending on flow 

conditions and water chemistry as well as the formation of Fe3O4 at higher temperatures. It is 

also worth noting that even when ferrous ion concentrations are included in the simulation, 

[Fe
2+

] = 50-120ppm, the result is simply a decrease in the overall magnitude of the corrosion 

rates with no distinctive peak whatsoever (de Waard et al., 1991). 

It is also observed that from Figure 3-16, the greater fluid velocities result in greater 

magnitudes of corrosion rate (Corr Rate), thus Corr Rate at U=1.0m/s > Corr Rate at 

U=0.5m/s > Corr Rate at U=0.1m/s. The reason for this is due to the fact that iron carbonate 

scales deposited on the surface of the metal have an inhibitory effect to corrosion as they 

build up and thicken however with greater fluid velocities, there is a greater tendency for 

these scales to be eroded and washed away hence exposing a greater area of the metal surface 

to further corrosive attack. 
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Figure 3-15. Plot of corrosion rate against temperature for varying CO2 partial 

pressures for a fluid velocity, U=0.1m/s 

 

 

Figure 3-16. Plot of corrosion rate against temperature for varying fluid velocities  
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3.8 Conclusions 

The comparison of the different models discussed was based on identical values for the 

underlying physical and chemical conditions that affect CO2 corrosion – the parameters 

common to all these models were the temperature, CO2 fugacity (partial pressure), flow 

velocity and pH. 

The 1975 De Waard correlation is the most basic function. CO2 corrosion increased with 

increasing temperatures, as do all of the other models. However it does not account for mid-

temperature scaling and this is its main limitation. The 1991 and 1995 De Waard correlations 

account for mid-temperature scaling but the former does not explicitly contain a velocity term 

in its function whereas the latter incorporated a velocity term as part of its resistance model. 

The 1995 De Waard model also made use of a pH correction as part of the activation reaction 

kinetics term. 

The Norsok model also exhibited similar CO2 corrosion rate-temperature profile plots as the 

De Waard models whilst accounting for shear stress in pipe flow. An interesting feature was 

the scaling temperatures and how they varied across the different models. Table 3-2 shows the 

scaling temperatures for each of these models. 

Table 3-2. Scaling temperature maxima for the various models at 𝒇𝑪𝑶𝟐=0.3MPa 

Model Peak temperature, Tscale (
o
C) 

1975 De Waard-Milliams Continuous Increase 

1991 De Waard-Lotz-Milliams 71 

1995 De Waard-Lotz-Dugstad 75 

Norsok 78 

NPO Continuous Increase 

 

For the 1991 and 1995 De Waard correlations, as the CO2 fugacity decreased from 0.3MPa to 

0.01MPa, the scaling temperatures increased consequently, which is depicted in Figures 3-3 

and 3-4 respectively. Film formation is not included in both the 1975 De Waard and NPO 

models hence there are no peaks in their corrosion rate-temperature profiles, as indicated in 

Table 3-2. Film formation is included in the Norsok model correlations, and so a peak is 

depicted in its corrosion rate-temperature profile. However, this peak remains fairly constant 

regardless of changes in the magnitude of CO2 fugacity, as seen in Figure 3-7. While for the 
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1991 and 1995 De Waard models, changes in the magnitude of CO2 fugacity consequently 

leads to changes in the magnitude of the corresponding scaling temperatures as seen in 

Figures 3-3 and 3-4, respectively. A comparison of all the investigated corrosion models is 

shown in Figure 3-17.  

 

Figure 3-17. Plot of CO2 corrosion rate against temperature for the various models for 

𝒇𝑪𝑶𝟐=0.3MPa (3bar) 

 

From the plot, all the model predictions appear to be in close proximity to each other for the 

temperature range of 20-80
o
C but after 80

o
C, their behaviours are markedly different. While 

the 1991 De Waard, 1995 De Waard and Norsok model predictions decrease once their 

respective scaling temperatures are exceeded, the 1975 De Waard and NPO models continue 

to increase due to the fact that as previously mentioned, their correlations do not account for 

film formation. Therefore, their accuracy in prediction is limited to the low to mid-

temperature range only. 

In addition, the Norsok model’s predicted results are consistently higher than those of the De 

Waard’s correlations for most temperatures, due to the fact that the applied shear stress of 

2Pa, as seen in Figure 3-7, is in the lower end of its applicable range of 1-150Pa. The NPO 

model is mechanistic and electrochemical in its basis and as such has a tendency for over-
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prediction, particularly for temperatures exceeding 80
o
C. However, it must be said that while 

the empirical models such as the De Waard correlations and the Norsok model may appear to 

predict more accurately than the mechanistic NPO, drawing conclusions from results 

predicted outside their range of applicability is questionable. Mechanistic models are more 

likely, in general, to better model a wider range of parameters than their empirical 

counterparts. Overall, based on the corrosion rate vs temperature plot trends, the 1991, 1995 

and Norsok models are the more realistic ones, with porous Fe2O3 porous films forming 

before peak temperatures and Fe3O4 passive films forming beyond peak temperatures. 

For the Freecorp version 1 model, in predicting CO2 corrosion, the model does not account 

for Fe3C, FeCO3 and Fe3O4 scaling and the implication of this is that corrosion rates 

continuously increase with increasing temperatures. Despite a ferrous ion concentration, 

[Fe
2+

], provision in the model, corrosion rates still increase with increasing temperatures even 

though [Fe
2+

] in excess of 80ppm should lead to supersaturation that will eventually cause the 

build-up of scale (de Waard et al., 1991), culminating in a peak-like trend as depicted by the 

Norsok model, for instance. The model is also limited to uniform corrosion hence it is 

incapable of estimating pitting or any form of localised corrosion. Also, the range of CO2 

prediction is from 1Pa (0.01mbar) to 1MPa (10bar). 

In HAc corrosion prediction, model predictions are fairly accurate provided HAc 

concentrations do not greatly exceed 0.01M (600ppm), for which it grossly over-predicts. 

Also, the model makes no provision for TLC. 

In H2S corrosion prediction, the model seems to perform fairly well although as with HAc, 

the greater the concentrations of H2S, the less accurate are the model predictions. The model’s 

maximum limit is a H2S partial pressure of 1MPa (10 bar). The model does not account for 

the precipitation of ferrous sulphide hence is incapable of identifying the likeliest form of 

ferrous sulphide scale for a given flow condition given that there is a high tendency for the 

formation of a mixture of different scales on the steel surface. The composition of the scale 

will affect the species concentration profile from the metal surface across boundary layer to 

the bulk solution because the scale acts as a barrier to the transport of corroding species.  

These models were assessed in terms of their accuracy of predicted corrosion rates using a 

separate test dataset. The results are discussed in Section 8.2. 
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4.1 Introduction 

In the previous chapter, established CO2 corrosion models in research literature such as the De 

Waard-Milliams correlations, Norsok and NPO models were discussed. Though these models 

are satisfactory for their intended purpose – low pressure CO2 corrosivity prediction, their 

limitations are their unsuitability for high pressure CO2 corrosion prediction (Mohamed et al., 

2011) and when more complex effects are present such as the growth of protective scale 

(Nesic et al., 2008). 

In this chapter, low and high pressure CO2 corrosion datasets are analysed using various 

statistical techniques. The statistical techniques applied include descriptive statistics, principal 

component analysis (PCA), variable interactions, regression and response surface modelling. 

PCA is a mathematical procedure which transforms potentially correlated data into an 

orthogonal system of linearly uncorrelated principal components (Suryanarayana and Mistry, 

2016). PCA is carried out in such a way that the first principal component accounts for much 

of the variability within the dataset. The datasets comprise the primary environmental factors: 

temperature (T), CO2 partial pressure (𝑃𝐶𝑂2), flowrate velocity (U), pH and corrosion rate 

(Corr Rate). A smaller test dataset was then separately selected from related sources and used 

as unseen data in the prediction of CO2 corrosion rates. Assessments of the performance of 

each model were then made by plotting model vs experimental scatter diagrams and 

determining the difference (error) in magnitudes between each of the plotted points. In 

addition, the R
2
-value and 95% confidence intervals were also used in the evaluation of model 

accuracy and reliability. 

4.2 Low Pressure CO2 Corrosion Data 

4.2.1 Background on Datasets and Descriptive Statistics 

For the low pressure CO2 data (Dugstad et al., 1994b, Nordsveen et al., 2003) a parametric 

research investigation was carried out on CO2 corrosion rates of ferritic-pearlitic carbon steel 

St-52. As reported in the literature, experiments were carried out under strict control of the 

water chemistry in a high pressure corrosion testing loop. Parameters such as temperatures 

(20-90
o
C), CO2 partial pressures (0.04-2.10 MPa), pH (3.4-4.15) and flow velocities (0.1-13.0 

m/s) were varied under conditions in which protective iron carbonate films did not form. The 

test loops were carried out in an 80mm internal diameter (ID) high-velocity flow loop. In all, 

75 data-points were collected. 
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A summary of the descriptive statistics for each variable is displayed in Table 4-1. 

Table 4-1. Descriptive statistics of the CO2 corrosion sample data 

Variable Range Mean First Quartile 

(Q1) 

Median 

(Q2) 

Third Quartile 

(Q3) 

Skewness 

Temperature 

(
o
C) 

20-90 52.50 25.00 50.00 82.50 0.25 

CO2 Partial 

Pressure, 𝑃𝐶𝑂2 

(MPa) 

0.04-2.10 0.51 0.13 0.22 0.63 1.54 

Velocity (m/s) 0.1-13.0 7.20 3.10 8.50 13.00 -0.08 

pH 3.40-4.15 3.80 3.63 3.80 4.05 0.20 

Corrosion 

Rate 

(mm/year) 

0.5-70.0 17.03 4.85 9.00 23.00 1.46 

 

The boxplots in Figure 4-1 shows the distribution of each of these variables. The boxplots for 

temperature and pH data have approximately symmetrical data distributions, implying that the 

data within each of these variables is distributed evenly around the measures of central 

tendency (mean, median and mode). In general, the input variables: T, 𝑃𝐶𝑂2, pH and the 

output variable, Corr Rate, exhibit positive skewness, implying that their means are not 

substiantially greater than their respective medians and modes. For pH, the skewness is 0.20 

therefore, the mean, median and mode are approximately equal in magnitude. Velocity 

exhibits a negative skew, hence its mode is greater than its respective median and mean 

values. In the boxplots of Figure 4-1 and Figure 4-2, the closer the horizontal centre-lines of 

each variable to the bottom of the box is, the greater the degree of positive skewness and the 

closer the horizontal centre-line is towards the top of the box, the greater the degree of 

negative skewness. The red plus symbols above the corrosion rate boxplot indicate that the 

outliers for this dataset are in the 60-70mm/year range. There are outliers for the 𝑃𝐶𝑂2 variable 

as shown in Figure 4-2, however the range is not as significant as that of the corrosion rate 

variable.  
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Figure 4-1. Boxplot showing the overall range (box and whiskers), inter-quartile range 

(white space in blue edged box), median, skewness and outliers (red plus symbols) in 

each of the variables in the dataset 

 

  

Figure 4-2. Boxplot showing the range of values, inter-quartile range, median and 

skewness of the 𝑷𝑪𝑶𝟐 and pH variables (Outliers are red plus symbols) 
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A summary of the test dataset used in this study is shown in Table 4-2. The number of data-

points in this dataset is 15. This dataset is used for validation of the model and is not included 

in the development of the final model. 

Table 4-2. Test data variables and their corresponding ranges 

Variable Range 

Temperature, T (
o
C) 20-90 

𝑃𝐶𝑂2 (MPa) 0.13-0.65 

Fluid flowrate, U (m/s) 3.1-13.0 

pH 3.60-3.90 

Corrosion Rate (mm/year) 6.7-60.0 

 

This dataset is a randomly selected group of CO2 corrosion data (Dugstad et al., 1994b; 

Nordsveen et al., 2003). It is used as unseen data in each of the developed models in order to 

assess their performances in CO2 corrosion prediction. 

4.2.2 Principal Component Analysis 

A weighted principal component analysis of the dataset was carried out to account for 

variations in units and scales of each of the variables: T, 𝑃𝐶𝑂2, U and pH. In principal 

component analysis, the first 2-3 components account for the majority of the variation in the 

dataset (Jackson, 1991), (Jolliffe, 2002), for instance, as shown by the magnitudes of the 

eigenvalues of the four principal components in Table 4-3 and the Pareto chart in Figure 4-3. 

Table 4-3. Principal component analysis  

Principal 

Component 

Principal 

Component 1 

(PC1) 

Principal 

Component 2 

(PC2) 

Principal 

Component 3 

(PC3) 

Principal 

Component 4 

(PC4) 

Eigenvalue 

(Variance) 
2.016 1.023 0.811 0.151 

Proportion 0.504 0.256 0.203 0.038 

Cumulative 0.504 0.760 0.962 1.000 

Cumulative 

Percentage (%) 
50.400 76.000 96.200 100.000 
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It is seen that from the cumulative figures, 96.2% of the variation in this dataset, is explained 

by the first 3 principal components, and so the fourth is not necessary to describe the variation 

in this particular dataset. This further implies that three variables are sufficient in describing 

CO2 corrosion rate. The Pareto chart shown in Figure 4-3 illustrates this point further. 

 

Figure 4-3. Pareto chart showing the spread of the data (variance) among each of the 

principal components 

 

Pictorially, the biplot shown in Figure 4-4, below, illustrates the relative influence of each 

variable in two-dimensional (2-D) space. 

 

Figure 4-4. Two-dimensional biplot showing the orientation (magnitude and direction) 

of the variables in the principal component axes 

 

         Variable   Data-points 
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The 2-D biplot shows that CO2 partial pressure, temperature and velocity are three most 

dominant variables in terms of variation within the dataset and as such are likely to have a 

greater influence in terms of the prediction of CO2 corrosion rates, due to their respective 

lengths and directions in the first and second component axes. The CO2 partial pressure and 

temperature variables point in the positive direction of the first component (PC1) axis while 

the velocity and pH variables do not. The velocity is considered more significant than the pH 

in terms of its effect on the variance because its angular orientation to the positive direction of 

the PC1 axis is comparatively smaller.  

The scree plot shown in Figure 4-5 is essentially a line graph plot of the eigenvalues of all the 

principal components joined together. The slope of the line joining PC1 to PC2 is quite steep 

while the following line joining PC2 to PC3 is less steep, while the slope of the line joining 

PC3 to PC4 increases again. This serves to indicate that three principal components are 

required to describe this dataset. 

Figure 4-5, reinforces the fact that three principal components are responsible for the greatest 

variation in the dataset, and as indicated by the biplot in Figure 4-4, the principal variables are 

Temperature, 𝑃𝐶𝑂2 and Velocity. This deduction is used as a basis in the determination of a 

suitable multiple linear regression model shown in the following section. 

 

Figure 4-5. Scree plot showing decreasing eigenvalues (variances) for all the principal 

components 
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4.2.3 Multiple Linear Regression 

Multiple linear regression is a term used to decribe the modelling of a relationship between 

two or more explanatory variables and a single response variable by fitting a linear equation 

to observed or experimental data (Chatterjee and Hadi, 1986). 

The general form of a multiple linear regression model is represented as follows:  

𝑦𝑖 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 +⋯+ 𝛽𝑛𝑥𝑛 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝑛   (4.1) 

Where: 

𝛽0, 𝛽1,𝛽2, … , 𝛽𝑛 are constants  

𝑥1, 𝑥2, … , 𝑥𝑛 are explanatory variables (Temperature, PCO2,Flow Velocity, pH)  

𝑦𝑖 is the response variable (CO2 corrosion rate)  

 

Given that the principal variables of CO2 corrosion rate for this sample data as determined by 

principal component analysis are temperature and 𝑃𝐶𝑂2, the multiple linear regression model 

shown in Figure 4-6 comprises these variables. The following table shows the estimated 

coefficients for the simple multiple linear regression model. 

Table 4-4. Regression model terms and statistics 

Regression model term Estimate t-stat p-value 

Intercept -4.7680 -0.9945 0.3243 

T 0.2549 2.8549 0.0060 

𝑃𝐶𝑂2 36.7875 3.3849 0.0013 

T: 𝑃𝐶𝑂2 -0.2954 -2.0851 0.0416 

 

The R-squared and adjusted R-squared values are 0.507 and 0.480 respectively for N=60 

(number of data-points) and 56 error degrees of freedom. The t-stat statistic and p-value from 

Table 4-4 indicate the level of importance of the given term. The p-values of all the regression 

model terms with the exception of the intercept are less than the critical p-value of 0.05, thus 

implying that these terms are significant. The implication for the intercept term is that there is 

no significant difference in the regression model should this term be included or excluded 

completely.  
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For the t-stat values in Table 4-4, the absolute t-stat values for each regression model term is 

considered. The absolute t-stat values for each of the regression model terms with the 

exception of the intercept, exceeds the critical t-statistic of 2.004 (see Statistical t-tables in 

Appendix A4.1), for 56 degrees of freedom and the 0.025 significance level. Therefore, the 

intercept is the only term that is not significant in the model – the same conclusion as that of 

the p-value statistic. 

Based on the estimate values in Table 4-4, the regression equation is given by: 

Corr Rate =  −4.7680 + (0.2549 × 𝑇) + (36.7875 × 𝑃𝐶𝑂2) − (0.2954 × 𝑇 × 𝑃𝐶𝑂2)   (4.2) 

 

The polygonal plane through the points in the three-dimensional scatter plot in Figure 4-6, is a 

graphical representation of the corrosion rate regression model derived above. Alternate views 

for this plot are shown in Appendix A4.2 

 

Figure 4-6. Three-dimensional plot of corrosion rate against temperature and CO2 

partial pressure (𝑷𝑪𝑶𝟐) showing regression model through the points 
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Another linear regression model was derived with seven terms given by the following 

relationship.  

Corr Rate =  78.20 + (0.99 × 𝑇) − (2.00 × 𝑃𝐶𝑂2) + (0.98 × 𝑈) − (25.00 × pH)

− (7.00 × 10−3 × 𝑇2) + (5.30 × 10−3 × 𝑇 × 𝑃𝐶𝑂2 × 𝑈 × pH)   (4.3) 

The R-squared and adjusted R-squared coefficients are 0.79 and 0.77 respectively. This model 

was used to establish the variable interactions shown in the following section. The plots in 

Figure 4-7 show the performance of the model. Predictions from the model are made using 

the test dataset and the results are plotted against experimental data. Errors are calculated by 

subtracting the model predictions from the experimental corrosion rates. The R
2
-statistic is a 

common criterion for goodness of fit for regression models and indicates how well the 

mathematical model predictions match up against the experimental data (Draper and Smith, 

1998; Abyaneh, 2014). The definition of the R
2
-statistic and its derivation based on arbitrary 

data-points are covered in Section 5.6. 

There is a good positive correlation between the model and experimental data. The data-

points are also in close proximity to the 95% confidence intervals. 

 

Figure 4-7. Multiple linear regression model corrosion rate against experimental 

corrosion rate plot and error bar chart for selected test data – error is the difference 

between experimental and model corrosion rate 
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Variable Interactions 

Interaction prediction plots between single input variables, temperature, 𝑃𝐶𝑂2, U and pH, are 

simulated to examine their effect on corrosion rate. Adjusted corrosion rate responses are a 

function of the x-axis variable, shown in each of these plots, with the other variables fixed at 

constant values – low, medium and high magnitudes. These plots make it possible to examine 

whether the effect of one variable depends on the value of the other variable, and if so, to 

what extent. 

Figure 4-8A shows the prediction interaction between temperature and 𝑃𝐶𝑂2. It is observed 

that at T=20
o
C, the corrosion rate is low, barely exceeding 5mm/year while corrosion rates are 

greater for T=55
o
C than for T=90

o
C, at lower CO2 partial pressures. The corrosion rate for 

T=90
o
C is greater than that of T=55

o
C when 𝑃𝐶𝑂2 exceeds 1MPa. It is generally the case that 

the higher temperatures induce greater corrosion rates because the rates of chemical reactions 

increase with increasing temperatures (Tan and Chan, 2011). 

 

Figure 4-8. Variable interactions between:  

                         A. 𝑷𝑪𝑶𝟐  and temperature  B. Velocity and temperature 

 

A B 
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Figure 4-8 B shows the prediction interaction plot for temperature and velocity. The T=20
o
C 

line (shown in green) results in the least rate of corrosion. In general, corrosion rates increase 

from 0 to 11mm/year as the velocity increases from 0 to 13m/s. Initially, the T=55
o
C line 

(shown in red) exceeds the T=90
o
C (shown in blue) in terms of the magnitude of corrosion 

rate, i.e. 16>14mm/year, however as velocity increases to a value of 12m/s, the two lines 

intersect and then the T=90
o
C line exceeds the T=55

o
C line at U=13m/s. 

 

Figure 4-9. Variable interactions between:  

A. pH and temperature  B. Velocity and 𝑷𝑪𝑶𝟐 

Figure 4-9A shows the interaction plot for temperature and pH. Here, all the lines have a 

negative gradient. This indicates that low pH values have a greater effect on corrosion rate 

than higher ones as the concentration of the acidic medium is greater at low pH causing a 

faster rate of dissolution of the metal. The T=20
o
C line induces the least corrosion rate while 

the T=55
o
C induces the greatest corrosion rate – the reason being that corrosion rate versus 

temperature plots often show a distinct peak at mid-temperatures (Dugstad et al., 1994a). 

Figure 4-9B shows the prediction interaction plot for 𝑃𝐶𝑂2 and velocity. It is observed that 

higher 𝑃𝐶𝑂2 values result in greater corrosion rates, as greater acid concentrations within the 

fluid medium in contact with the metal surface become more prevalent. Initially, 

A B

B 
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𝑃𝐶𝑂2=0.04MPa yields the greater rate of corrosion, i.e. corrosion rate at 𝑃𝐶𝑂2=0.04MPa 

>corrosion rate at 𝑃𝐶𝑂2=1.07MPa>corrosion rate at 𝑃𝐶𝑂2=2.1MPa, for U=0m/s. However, at 

U=2m/s, the three lines intersect and then the order of adjusted corrosion rates is reversed: 

corrosion rate at 𝑃𝐶𝑂2=2.1MPa>corrosion rate at 𝑃𝐶𝑂2=1.07MPa>corrosion rate at 

𝑃𝐶𝑂2=0.04MPa. 

 

Figure 4-10. Variable interactions between:  

  A. pH and 𝑷𝑪𝑶𝟐  B. pH and velocity 

 

Figure 4-10A shows the prediction-interaction plot for 𝑃𝐶𝑂2 and pH. Each of the lines in the 

plot has negative gradients. Corrosion rates commence at approximately 32, 28 and 

24mm/year for 𝑃𝐶𝑂2=2.1, 1.07 and 0.04MPa respectively and decrease steadily until they 

reach 17, 11 and 4mm/year. 

Figure 4-10B shows the prediction-interaction plot for velocity and pH. Corrosion rates fall 

for each of the line plots with decreasing pH, thus negative slopes. The magnitudes of 

adjusted corrosion rates are in the following order: corrosion rate at U=13m/s> corrosion rate 

A B 
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U=6.55m/s>corrosion rate at U=0.1m/s. This order is so because higher velocities have a 

greater tendency to sweep away any protective films on the metal surface thereby inducing 

greater corrosion rates. Initially, corrosion rates commence at ~36, 26 and 16mm/year at a pH 

of 3.4 and then these rates decrease to 19, 7.5 and 0mm/year respectively for U=13, 6.55 and 

0.1m/s respectively, at pH=4.15. 

 

4.2.4 Nonlinear Regression 

Parametric nonlinear regression is carried out on the dataset and is an attempt to characterise 

the relationship between several continuous predictor variables (input) and a continuous 

response variable (output) with the use of nonlinear parameters. The model takes the 

following form (Chatterjee and Hadi, 1986): 

𝑦 = 𝑓(𝑥) + 𝜀𝑟   (4.4)  

Where: 

𝑦 is the response variable (CO2corrosion rate)  

𝑓 is the function that transforms predictor variables (input)to response variables (output)  

𝑥 is the predictor variable or input variable (Temperature, PCO2, Velocity and pH)    

𝜀𝑟 is a set of independent random disturbances   

In particular, the Hougen-Watson equation has proven to be a very useful nonlinear equation. 

The Hougen-Watson equation is a derived equation which expresses the rate of a chemical 

reaction in terms of the concentration of reacting species (Carberry, 2001; Staelens et al., 

2002). This relation is as follows: 

𝑦𝑖 = 
𝛽1𝑥2 −

𝑥3
𝛽5
⁄

1 + 𝛽2𝑥1 + 𝛽3𝑥2 + 𝛽4𝑥3
    (4.5) 

Where: 

𝑦𝑖 = CO2 corrosion rate (mm/year)  

𝑥1, … , 𝑥3 are the predictor variables (temperature, PCO2 and velocity)   

𝛽1, … , 𝛽5 are predictor variable coefficients (determined by nonlinear regression)  
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In this study, the predictor variables replace the concentrations of reacting species. From the 

formulation, it is clear that the corrosion rate can be expressed in terms of three variables. The 

R-squared values for this equation using the study dataset with a combination of temperature, 

𝑃𝐶𝑂2 and velocity, as predictor variables is 0.7; while the combination of temperature, 𝑃𝐶𝑂2 

and pH as predictor variables yields an R-squared value of 0.45.  

The magnitudes of the R-squared values provide supporting evidence to the deduction from 

principal component analysis, which is that temperature, 𝑃𝐶𝑂2 and velocity are the principal 

variables for this dataset. 

The plots in Figure 4-11 show the performance of the model. The R
2
-value is moderately high 

with majority of the data-points falling within the 95% confidence interval. This indicates that 

the model is reasonably accurate and reliable. 

 

Figure 4-11. Hougen-Watson nonlinear model corrosion rate against experimental 

corrosion rate plot and error bar chart for selected test data – Error is the difference 

between experimental and model corrosion rate 
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The plots in Figure 4-12 show how well the model fits the original data. The leverage plot 

indicates that a few outliers are present (points above the dashed line). There is a possibility 

that these high-leverage datapoints have greater random errors associated with their 

experimental measurements than the rest of datapoints in this particular dataset. Nevertheless, 

majority of the datapoints lie well below the dashed line (Chatterjee and Hadi, 1986). 

The residuals plot shows that there is an even spread of the datapoints about the zero mark 

(dashed line). This implies that the model is being sufficiently explained by the three predictor 

variables.  

 

Figure 4-12. Leverage-CO2 corrosion data plot and residuals-CO2 corrosion data plot 

 

4.2.5 Response Surface Plots 

Response surface modelling plot slices can be used to examine a change in CO2 corrosion rate 

by interactively changing the magnitude of any chosen predictor variable as shown in Figure 

4-13. The advantage this model has over the Hougen-Watson model is that, it permits the use 

of all variables in the dataset. 

The response surface plots also show trends for each variable, for instance, greater 

magnitudes of all the variables except pH lead to an increase in CO2 corrosion rate (shown by 
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the centre straight line shown in each plot slice). CO2 corrosion rate outputs are predicted 

using 95% confidence limits. The performance of the response surface model is summarised 

in the plots of Figure 4-14. The response surface tool produced a low value for the R
2
-statistic 

and this is because of a combination of the variation within the dataset as well as the presence 

of outliers. 

 

 

Figure 4-13. Response surface modelling plots – CO2 corrosion rate can be investigated 

by changing the magnitude of each predictor variable  

 

Figure 4-14. Response surface model corrosion rate against experimental corrosion rate 

plot and error bar chart for selected test data – error is the difference between 

experimental and model corrosion rate 
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4.3 High Pressure CO2 Corrosion Data 

4.3.1 Background on Datasets and Descriptive Statistics 

Data from multiple sources in open literature was used in the neural network modelling of 

high pressure carbon dioxide corrosion. All data sources determined corrosion rates 

experimentally by weight loss using autoclaves. For the Hesjevik et al (2003) study, a 

Hastelloy C-276 (UNS N10276) nickel-alloy was used and for the Choi and Nesic (2009) 

study, an X65 carbon steel sample was used. For the Zhang et al (2012a) study, several 

samples of steel were used, including martensitic carbon steel, a pipeline X65 steel as well as 

three chromium-containing corrosion-resistant alloys (CRA). For modelling purposes, only 

carbon steel corrosion rate results were used in order to maintain consistency as corrosion rate 

measurements for CRA would affect the final model. For the Cui et al (2006) study, samples 

of API P110, N80 and J55 casing/tubing carbon pipe steels were used. Following gathering of 

all the data, a summary of the variable ranges is as follows: temperatures of 24-150
o
C, CO2 

partial pressures of 3.5-23.3 MPa, velocities of 0-4 m/s, pH values of 3.1-6 and corrosion 

rates of 0.9-19 mm/year. Overall there are 22 data-points. The data was then statistically 

analysed and summarised in Table 4-5. 

Table 4-5. Descriptive statistics of the CO2 corrosion sample data 

Variable Range Mean First Quartile 

(Q1) 

Median 

(Q2) 

Third Quartile 

(Q3) 

Skewness 

Temperature 

(
o
C) 

24-150 80.25 50.00 60.00 125.00 0.46 

CO2 Partial 

Pressure, 𝑃𝐶𝑂2 

(MPa) 

3.5-23.3 13.17 8.07 12.10 20.30 0.32 

Velocity (m/s) 0-4 2.00 0.00 2.00 4.00 0.00 

pH 3.1-6 3.96 3.21 3.95 4.08 1.15 

Corrosion Rate 

(mm/year) 

0.9-19 10.78 8.32 9.75 14.50 -0.17 

 

From the boxplot shown in Figure 4-15, temperature has the widest range of values (24-

150
o
C) while pH has the smallest range of values (3.1-6). All of the variables excluding the 

corrosion rate are said to be positively skewed, implying that their means are greater than 

their respective medians and modes but not by substantial amounts as the skewness 
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magnitudes (Table 4-5), are only slightly greater than zero. The pH distribution, shown in 

Figure 4-16,  is the only distribution with outliers (indicated by the red plus symbol). The 

boxplot of the pH variable indicates that the outlier is that of pH=6. This is the single greatest 

value for pH in the dataset. The relatively long top whisker of the pH boxplot also indicates it 

is highly positively skewed. The pH skewness of 1.15, from Table 4-1 confirms this. 

 

Figure 4-15. Boxplot showing the overall range (box and whiskers), inter-quartile range 

(white space in blue-edged box), median, skewness and outliers (red plus symbols) in 

each of the variables in the dataset 

 

Figure 4-16. Boxplot showing the range of values, inter-quartile range, median, 

skewness and outliers of the pH variable 
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A summary of the test dataset is shown in Table 4-6. The size of this dataset is small as the 

actual dataset for the study also has a small size (N=16). This dataset is used for validation of 

the model and is not included in the development of the final model. 

Table 4-6. Test data variables and their corresponding ranges 

Variable Range 

Temperature (
o
C) 40-140 

𝑃𝐶𝑂2 (MPa) 6.0-23.3 

Fluid flowrate (m/s) 0-4 

pH 3.1-5.0 

Corrosion Rate (mm/year) 1.3-20 

 

4.3.2 Principal Component Analysis 

A weighted principal component analysis was carried out on the high pressure CO2 dataset. 

The following Table shows the cumulative contribution of each of the principal components 

to the variance of the data. The cumulative percentages indicate how well the principal 

components explain variation within the data. The cumulative share for principal components 

1 and 2 is 81.5% which is sufficient to explain variation in the dataset. 

Table 4-7. Principal component analysis  

Principal 

Component 

Principal 

Component 1 

(PC1) 

Principal 

Component 2 

(PC2) 

Principal 

Component 3 

(PC3) 

Principal 

Component 4 

(PC4) 

Eigenvalue 

(Variance) 
2.121 1.139 0.619 0.122 

Proportion 0.530 0.285 0.155 0.030 

Cumulative 0.530 0.815 0.970 1.000 

Cumulative 

Percentage (%) 
53.000 81.500 97.000 100.000 

 

The Pareto chart shown in Figure 4-17 shows the relative significance of the principal 

components to the variance of the data. 
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Figure 4-17. Pareto Chart showing the spread of the data (variance) among each of the 

principal components 

The relative influence of each of the variables to the first and second principal components is 

depicted in the two-dimensional biplot in Figure 4-18. 

 

Figure 4-18. Two-dimensional Showing the orientation of the variables in the principal 

component axes 

  

         Variable   Data-points 
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The 2-D biplot (Figure 4-18) shows that the CO2 partial pressure (𝑃𝐶𝑂2) variable is the most 

dominant variable in terms of accounting for the variation within the dataset followed by the 

temperature, velocity and pH respectively. This is because the direction of these three 

variables shows they are within close proximity to the Principal component 1 (PC1) axis. The 

length of each variable indicates their relative contribution to each principal component.  

The scree plot shown in Figure 4-19 is a line graph of the eigenvalues from Table 4-7. The 

slopes change from PC1 to PC2, PC3 and PC4. However, the most significant change in slope 

occurs between PC1 and PC2, afterwards, the slope from PC2 to PC4 is uniform. This 

indicates that PC1 and PC2 are sufficient to describe the variation within the dataset. 

 

Figure 4-19. Scree plot showing the decreasing magnitudes of eigenvalues for all the 

principal components 

 

4.3.3 Multiple Linear Regression 

Multiple linear regression technique was used to model CO2 corrosion rates in terms of the 

predictor variables: temperature, 𝑃𝐶𝑂2, flow velocity and pH. The regression equation 

(Equation. 4.1) was applied to the high pressure CO2 data for two variables, T and 𝑃𝐶𝑂2. This 

equation is graphed in Figure 4-20 as a 3-dinemsional plot. However this equation has an R
2
-

coefficient of 0.28, which is very small. Therefore, it is necessary to include more predictors 

in the model. 
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Figure 4-20. Three-dimensional plot of corrosion rate against temperature and CO2 

partial pressure (𝑷𝑪𝑶𝟐) showing regression model through the points  

 

Table 4-8 shows the model terms for a suitably derived regression equation. 

Table 4-8. Regression model terms and statistics 

Regression model term Estimate t-stat p-value 

Intercept -1.4267 -0.2893 0.7789 

T 0.8445 5.6704 0.0003 

𝑃𝐶𝑂2 -0.5504 -2.6466 0.0266 

U -0.2325 -0.4330 0.6752 

pH -3.2793 -3.8158 0.0041 

T
2
 -0.0044 -5.9486 0.0002 

T x 𝑃𝐶𝑂2  x U x pH 1.545x10
-5

 0.1994 0.8464 

 

For N=16 observations (data-points) and 9 degrees of freedom at the 95% confidence limit, 

the p-values of all the regression terms with the exception of the intercept and velocity terms, 

is less than the critical p=0.05 value. This indicates all these terms are significant to the model 

except the intercept, velocity and Tx𝑃𝐶𝑂2xUxpH terms. For the t-stat values, the absolute, 
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non-negative figure is considered. All t-stat values for the terms are greater than 2.262 with 

the exception of the intercept, velocity and the Tx𝑃𝐶𝑂2xUxpH terms. The value: 2.262 in this 

case is the critical t-statistic for 9 degrees of freedom at the 0.025 significance level (see 

Statistical t-tables in Appendix A4.1). Therefore the t-stat analysis arrives at the same 

conclusion as the p-value. Hence the intercept, velocity and Tx𝑃𝐶𝑂2xUxpH terms can be 

neglected altogether. This equation is given by: 

Corr Rate =  −1.43 + (0.84 × 𝑇) − (0.55 × 𝑃𝐶𝑂2) − (2.23 × 𝑈) − (3.28 × pH)

− (4.40 × 10−3 × 𝑇2) + (1.55 × 10−5 × 𝑇 × 𝑃𝐶𝑂2 × 𝑈 × pH)   (4.6) 

The performance of the model is summarised in Figure 4-21. An R
2
-value of 0.70 was 

obtained for the high pressure CO2 corrosion data. Also, the data-points lie in close proximity 

to the 95% confidence bounds. 

  

Figure 4-21. Multiple linear regression model corrosion rate against experimental 

corrosion rate plot and error bar chart for selected test data 

 

Variable Interactions 

The interaction between input variables is discussed by the use of variable interaction plots. 

By varying the x-axis variable and keeping a second variable constant at three magnitudes: 

low, medium and high, the changes in adjusted corrosion rate can be investigated. 
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In Figures 4-22A and 4-22B, the intearctions between temperature and CO2 partial pressure 

and velocity are shown as straight lines with negative gradients. These generally indicate that 

an increase in the x-variable leads to a decrease in the adjusted corrosion rate. For the 

tempertaure interaction with CO2 partial pressure, Figure 4-22A, the higher the CO2 partial 

pressures, the smaller the magnitude of the corrosion rate. This might be due to an  increased 

effect of the thicker scale formation at higher pressures forming a protective barrier on the 

metal surface against corrosion (Zhang et al., 2012b). The changes in temperature from the 

low to medium and high values indicate that corrosion rates peak at the medium temperature 

(T=87
o
C), starting off and ending with small corrosion rates for low and high temperatures 

respectively. This is true for high pressure CO2 corrosion (Zhang et al., 2012b). 

  

Figure 4-22. Variable interactions between: 

  A. 𝑷𝑪𝑶𝟐  and temperature  B. Velocity and temperature 

 

For Figure 4-22B, higher flow velocities have a decreased effect on corrosion rates but only 

very slightly and this may be because for high CO2 pressures, thicker scales are formed and 

flow velocities of 0 to 4m/s in magnitude are insufficient to induce the washing away of these 

A B 
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scales from the metal surface. For Figure 4-23A, the interaction between temperature and pH 

results in straight lines with negative gradients. 

  

Figure 4-23. Variable interactions between:  

A. pH and temperature  B. Velocity and 𝑷𝑪𝑶𝟐 

 

An increase in pH leads to a drop in the corrosion rate, which is because the higher the pH, 

the lesser its influence on CO2 corrosion as the acidity of the aqueous medium decreases. The 

T=24
o
C line is not visible on this plot because its effect on corrosion rate is very small. Again, 

the mid-temperature value of 87
o
C is responsible for the greatest corrosion rates. For Figure 

4- 23B, increasing flow velocities leads to an overall slight decrease in the adjusted corrosion 

rates and this may be attributed to the tendency for thicker scale formation for high pressure 

CO2 conditions. It is also observed that as the CO2 partial pressures increase from 3.5-

23.3MPa, the adjusted corrosion rates fall. It is worth noting that at high CO2 pressure 

conditions, the formation of dense, more compact and thicker iron carbonate scale is favoured 

(Zhang et al., 2012b). Invariably, the greater the CO2 partial pressures, the thicker the scales 

formed thus exerting an inhibitory effect on corrosion of the metal beneath. 

A B 
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For both Figures 4-24A and 4-24B, the adjusted corrosion rates decrease with increasing pH. 

The negative gradients of the lines are expected due to decreased effect that the aqueous 

medium has on corrosivity at high pH conditions. For Figure 4-24A, increasing CO2 partial 

pressure has an inhibitory effect on the corrosion rate due to the formation of thicker scales at 

P=13.4 and P=23.3MPa. For Figure 4-24B, greater corrosion rates are observed at U=0m/s 

than at U=4m/s.  

  

Figure 4-24. Variable interactions between:  

   A. pH and 𝑷𝑪𝑶𝟐  B. pH and velocity 

 

In general, the greater the flow velocity, the greater the corresponding corrosion rate due to 

the washing away of protective layers formed by scale on the metal surface. However, when 

low fluid velocities are causing high corrosion rates, there is the likelihood that some degree 

of localised corrosion is taking place as opposed to the more common uniform corrosion, 

which is more characteristic of high fluid flow velocities. 

 

A B 
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4.3.4 Nonlinear Regression 

Parametric nonlinear regression means the expression of a response variable in terms of a 

combination of several predictor variables. The Hougen-Watson equation was used as the 

nonlinear equation for modelling high pressure CO2 corrosion rates. The equation has three 

predictor variables and based on the results of principal component analysis, the temperature, 

𝑃𝐶𝑂2 and flow velocity are the variables to be considered for modelling. 

The plot in Figure 4-25 shows the performance of the model. In general, this model is a poor 

fit for the data. The R
2
-value was very low though nonlinear modelling is tricky especially 

when there is a shortage of data-points in the given high pressure CO2 corrosion dataset. 

  

Figure 4-25. Hougen-Watson nonlinear model corrosion rate against experimental 

corrosion rate plot and error bar chart for selected test data 

 

The leverage plot in Figure 4-26 indicates that there only two notable outliers, which is in 

partial agreement with the descriptive statistics of the dataset that suggests there are no 

outliers. The residulas plot of Figure 4-26, indicates that the there is an evem spread of the 

data about the zero dotted line, implying that the model adequately represents the data even 
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though its performance with the test set is poor as seen by the low R
2
-coefficient as well as the 

overall distribution of the data-points shown in Figure 4-25. 

 

Figure 4-26. Leverage-CO2 corrosion data plot and residuals-CO2 corrosion data plot 

 

4.3.5 Response Surface Plots 

Response surface modelling shows the visual trends of the variables as they affect the 

response variable in an interactive setting. For this tool, Figure 4-27 shows the panel for each 

of the variables and how they affect the CO2 corrosion rate.  

The performance of the model is shown in Figure 4-28. It is seen that while this model 

permitted the use of all variables, the R
2
-value was extremely low. This model struggled to fit 

the data due to an insufficient size of the dataset. For instance, modelling involved the use of 

numerical techniques, and in this case a definitive solution was not reached because 

convergence could not be attained. 
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Figure 4-27. Response surface modelling plots – CO2 corrosion rate can be investigated 

by changing the magnitude of each predictor variable  

 

  

Figure 4-28. Response surface model corrosion rate against experimental corrosion rate 

plot and error bar chart for selected test data 

  

Temperature 

(
o
C) 

pH Velocity (m/s) 𝑷𝑪𝑶𝟐 (MPa) 

C
O

2
 C

o
rr

o
si

o
n

 R
a
te

 (
m

m
/y

ea
r)

 

                 y vs x plot trend        9 5% Confidence Interval 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

117 

 

4.4 Conclusions 

 

Descriptive statistics of the low pressure CO2 dataset revealed that the CO2 partial pressure 

and corrosion rate variables contain outliers and these variables also exhibit positive 

skewness, implying their means are greater than their medians. Additionally, the corrosion 

rate variable outliers are in the 60-70mm/year range. These outliers are data-points which lie 

outside of the overall pattern of the distribution. For the high pressure CO2 dataset, the pH 

was the only variable distribution containing outliers. The presence of the outliers also had an 

effect on its skewness. Again, the pH was the only variable exhibiting notable positive 

skewness, with its mean only slightly greater than its median. 

The results from principal component analysis on the low pressure CO2 dataset revealed that 

two components were responsible for 76% of the variation within the dataset. Subsequent 

biplot analysis revealed that the respective variables in terms of contribution to the variation 

within the dataset are CO2 partial pressure, temperature, flow velocity and pH, in that order. 

For the high pressure CO2 dataset, two components accounted for 81.5% of the variation 

within the dataset implying that a biplot analysis in two components is sufficient to find the 

principal variables. Analysis form the 2-D biplot, revealed that in terms of contribution to the 

variance, the variables are in exactly the same order as that of the low pressure CO2 case. The 

major difference between these datasets is that the pH has a more significant influence on the 

variance of the high pressure CO2 dataset. 

The multiple linear regression, nonlinear regression and response surface techniques were 

developed based on the bulk of the low pressure corrosion dataset and the accuracy of these 

models was carried out by assessing their prediction performances using a smaller, identical 

and randomly selected test dataset. This was repeated for the high pressure CO2 corrosion 

dataset. 

The statistical models generally have good correlations with experimental results for low 

pressure CO2 corrosion. The Hougen-Watson nonlinear model has the highest R
2
-value of 

0.67; test data-points have close proximity to the 95% confidence intervals. The multiple 

linear regression model while also achieving a similarly high R
2
-value as the nonlinear 

regression model, it involved the use of square-terms for the temperature variable and 

interaction terms comprising all variables. However, the main limitation of the Hougen-

Watson nonlinear regression model is its inability to permit the use of all predictor variables.  
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The response surface model performed relatively poorly in comparison to the other statistical 

models in terms of the magnitude of the R
2
-squared coefficient. In addition, unlike the 

Hougen-Watson nonlinear model, it permits the use of all four predictor variables. It is also 

possible to interactively adjust any given predictor variable via graphical plot panes and 

observe the subsequent change in CO2 corrosion rate instantaneously. Table 4-9 is a summary 

of the statistical model performances. 

Table 4-9 Low pressure CO2 corrosion model performance  

Low Pressure CO2 dataset R
2
-value 

Multiple linear Regression 0.65 

Nonlinear Regression 0.67 

 

For high pressure CO2 corrosion, the multiple linear regression model had a moderately high 

R
2
-value as seen in Table 4-10, with data-points lying in close proximity to the 95% 

confidence limits. There is however a slight tendency for over-prediction, particularly for low 

to medium magnitudes of corrosion rates. This may be due to a greater degree of variation of 

these points causing the model to struggle to adequately fit the data. Diagnostic plots such as 

the leverage and residuals revealed that there are very few outliers and that the nonlinear 

model satisfactorily represented the data however the model performance stated in Table 4-10 

suggests otherwise. The response surface model performed very poorly in terms of the 

accuracy of prediction.  

In general, the statistical models struggled considerably to fit the data in terms of accuracy of 

prediction. This can be attributed to the small dataset for high pressure CO2 corrosion. It is 

worth noting that for both nonlinear regression and surface response surface models, 

numerical techniques are applied and for both cases definitive solutions were not reached due 

to a lack of convergence during numerical computation. 

Table 4-10 High pressure CO2 corrosion model performance 

High Pressure CO2 dataset R
2
-value 

Multiple linear Regression 0.70 

Nonlinear Regression 0.10 
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Chapter 5. Neural Network Models 
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5.1 Introduction – Historical Background 

In 1943, the first artificial neuron was designed by Warren McCulloch and Walter Pitts 

(Haykin, 1999). These artificial neurons were capable of simple computations through the 

application of logical functions. The main feature of these neurons is that the weighted sum 

of input signals is compared to a threshold in order to determine the output of the neuron. 

Hence, when the sum is greater than or equal to the threshold, the output signal is 1 and when 

the sum is less than the threshold, the output signal is zero (Veelenturf, 1995; Ukil, 2010). 

This is a binary neuron since it exhibits ‘zero or one’ behaviour. 

Thus, 

if Σ𝑤𝑗𝑥𝑗 > threshold ∴   𝑦𝑗 = 1  (5.1A) and if Σ𝑤𝑗𝑥𝑗 < threshold ∴  𝑦𝑗 = 0 (5.1B) 

Where: 

𝑤𝑗 = weight  

𝑥𝑗 = input signal   

𝑦𝑗 = output signal  

Figure 5-1 is an illustration of such a neuron yielding an output signal, yi, from the various 

input signals, xi, and their corresponding weights, wi. 

 

Figure 5-1. An artificial model of a neuron showing the transformation of input signals, 

xi, to an output signal, yi (Veelenturf, 1995) 

However, since no training was available, all the neural network (NN) parameters had to be 

designed but by the late 1950’s, the idea of the perceptron was conceived by Rosenblatt and 

others (Ukil, 2010). Perceptrons are a class of NNs that were primarily designed for pattern 

recognition (Veelenturf, 1995). The key difference between Rosenblatt’s neurons and those 
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of McCulloch is the introduction of the learning rule to the former. While these perceptrons 

were very useful, their limitations are well-documented, one of which is their ability to solve 

only a limited class of problems (Haykin, 1999). Another noteworthy contribution during this 

period was made by von Neumann. Von Neumann made it known that there was a tendency 

for NNs to have redundant neuronal connections and these yielded unreliable contributions, 

which in turn affected overall performance (Haykin, 1999). 

In the 1980’s however, two key developments were made to the advancement of NNs. The 

first was the use of statistical mechanics to explain the operation of a recurrent network by 

John Hopfield, which was capable of being used as an associative memory. A recurrent 

network is an NN configuration with at least one feedback loop. The second key development 

was the formulation and use of the backpropagation algorithm for training multilayer 

perceptron networks, proposed by David Rumelhart and James McClelland. At present, 

backpropagation remains the most popular learning algorithm for the training of multilayer 

perceptrons (Ukil, 2010). 

In chapter 3, the popular and well-established De Waard Milliam, Norsok and NPO corrosion 

models were discussed. In chapter 4, a derived statistical model was obtained as a means to 

address some of the shortcomings of the aforementioned established models. In this chapter, 

neural network modelling of collated low and high pressure CO2 corrosion datasets will be 

carried out by dividing these sets into training and test sets. 

The training set comprising variables T, 𝑃𝐶𝑂2 , U, pH and Corr Rate, was used to develop the 

neural network solely and is summarised as descriptive statistics in Tables 4-1 and 4-5 

(Chapter 4, Sections 4.2.1 and 4.3.1), for low and high pressure CO2 respectively. Figures 4-1 

and 4-15 are corresponding boxplots for the summary statistics in Tables 4-1 and 4-5 

respectively. The test set is summarised in Tables 4-2 and 4-6 for low and high pressure CO2 

corrosion respectively. The test set is strictly used for the purpose of prediction as unseen 

data and for the computation of the R
2
-coefficient. 
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5.2 Definition of Neural Networks 

A NN is a collection of information-processing units that is trained by machine learning. NNs 

use machine-learning algorithms to carry out non-parametric nonlinear regression of 

modelling data (Beale et al., 2014). By non-parametric nonlinear regression, is meant a 

technique in which input data is directly mapped to output data without the use of an 

assumed, pre-determined model equation. The stages of machine learning are shown in 

Figure 5-2. 

 

 

 

 

Figure 5-2. Stages in Machine Learning (Haykin, 1999) 

 

The stages in machine learning are explained with respect to artificial intelligence (AI). The 

goal of artificial intelligence is the development of algorithms that require machines to 

perform cognitive tasks and solve problems in a manner similar to human reasoning (Haykin, 

1999).  

The first stage of machine learning for an AI system is to set up an environment that supplies 

the given input data to the learning element. The learning element then uses the data to make 

improvements in its existing knowledge base. The performance element makes use of the 

knowledge base in order for the AI system to perform its task. Input data from the 

environment often contains flaws; however the AI system’s knowledge base is unaware 

initially and assesses itself by receiving feedback from the performance element. The 

feedback loop mechanism allows the AI system to evaluate its hypotheses and to revise them 

if necessary (Haykin, 1999). The error-minimisation concept in NNs applies the same logic, 

in which the goal is to reduce the error between a specified target and an output in a 

continuous loop as shown in Figure 5-3 (Demuth et al., 2009). 
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Figure 5-3. Flow loop of input to output via continuous adjustment of weights 

(Demuth et al., 2009) 

5.3 The Simple Neuron and Neuron with Vector Input 

The most basic building unit for NNs is the single-input neuron, such as the one shown in 

Figure 5-4. 

 

Figure 5-4. A simple neuron (Beale et al., 2014) 
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There are three distinct functional operations for the computation of output data from input 

data. Firstly, the input scalar, p, is multiplied by the weight, w. Secondly, the product of the 

weight and input scalar, p, is added to a bias and is the net input (n). The bias is similar to the 

weight except that it has a constant value of 1. Thirdly, the net input is passed through the 

transfer function, f. The operation of ‘f’ produces the scalar output, a. For a neuron with 

vector input, p1, p2, …, pj with weights w1, w2, …, wj, the net input, n is the sum of the 

products of p1, p2, …, pα and w1, w2, …, wj, added to bias, b. This is shown as follows: 

𝑛 = 𝑤1𝑝1 + 𝑤2𝑝2 +⋯+𝑤𝑗𝑝𝑗 + 𝑏  (5.1) 

⟹  𝑎 = 𝑓(𝑤𝑝 + 𝑏)  (5.2) 

5.4 The Transfer Function 

This is a function that calculates the output from a given NN net output. Transfer functions 

are of different types and are selected based on the characteristics of the input and output 

datasets (Vogl et al., 1988). Table 5-1 shows some of the transfer functions used for 

subsequent NN modelling in this thesis: 

Table 5-1. Definitions of the transfer functions used (Beale et al., 2014) 

Transfer 

Function 

Algorithm Definition 

Purelin(n) 
𝑎1 = 𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑛) = 𝑛 (5.3) 

Linear transfer function 

Logsig(n) 

𝑎2 = 𝑙𝑜𝑔𝑠𝑖𝑔(𝑛) =
1

(1 + 𝑒−𝑛)
  (5.4) 

Log-Sigmoid transfer 

function. Based on the 

logistic sigmoid function: 

𝑆(𝑥) =
1

(1+𝑒−𝑥)
  (5.5) 

Tansig(n) 

𝑎3 = 𝑡𝑎𝑛𝑠𝑖𝑔(𝑛) =
2

(1 + 𝑒−2𝑛)
− 1  (5.6) 

Hyperbolic tangent sigmoid 

transfer function. Based on 

the trigonometric function: 

tanh 𝑥 =
(1 − 𝑒−2𝑥)

(1 + 𝑒−2𝑥)
  (5.7) 

dLogsig(n) 
𝑑

𝑑𝑛
{𝑎2} =

𝑑

𝑑𝑛
{𝑙𝑜𝑔𝑠𝑖𝑔(𝑛)} = 𝑎2(1 − 𝑎2) (5.8) 

Derivative function for logsig 

transfer function 
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5.5 Neural Network Architectures 

The way in which neurons of a NN are structured is closely linked with the learning 

algorithm used in the training of the NN. It therefore follows that learning algorithms used in 

the design of NNs are structured. NN architectures are defined structural patterns for 

arranging neurons and are of three classes (Haykin, 1999). 

5.5.1 Single-layer Feedforward Networks  

These consist of a single layer of neurons from an input source node that projects to an output 

layer of neurons (computation nodes) and is acyclic. Figure 5-5 shows the arrangement of a 

typical single-layer feedforward network. 

 

Figure 5-5. A Single-layer feedforward network 

 

5.5.2 Multilayered Feedforward Networks 

These are NN architectures with at least one hidden layer. The hidden layers thus perform the 

computation for this class of NN architecture (Haykin, 1999). Figure 5-6 shows the structure 

of a typical multilayered feedforward network. 

 

Figure 5-6. A multilayered feedforward network (Al-Fattah and Startzman, 2003) 

  



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

126 

 

The hidden layers in such architectures enable the NN to extract higher-order statistics and it 

acquires a global perspective which is particularly useful when the input layer is large 

(Churchland and Sejnowski, 1992). 

 

5.5.3 Recurrent Networks 

Recurrent networks are a class of NN architecture in which connections between neurons 

form a cyclic pattern with at least one feedback loop (Haykin, 1999). These networks are able 

to use their internal memory to process arbitrary sequences of inputs and makes them suitable 

for tasks such as unsegmented, connected handwriting recognition: (Graves et al., 2009; Sak 

et al., 2014). Recurrent networks can either have a self-feedback loop or not. The presence of 

the self-feedback loop implies that the output of a particular neuron is fed directly back into 

its input (Haykin, 1999). When the self-feedback loop is absent, it means the output of a 

given neuron is not fed into its input. The diagram of a recurrent network is shown in Figure 

5-7. 

 

Figure 5-7. A recurrent network with no self-feedback loop (Haykin, 1999) 
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5.6 Design of the NN Model for Predicting CO2 Corrosion 

Figure 5-7 shows the schematic that was used to develop the procedural operation of the 

neural network (NN) model. 

 

Figure 5-8. Flowchart showing the sequence of steps in the development of the neural 

network model 

There are two sets of input to the NN model: the variable training dataset and the corrosion 

rate training dataset. Firstly, the NN is trained with the variable dataset which consists of the 

parameters which influence CO2 corrosion rate, i.e., temperature, CO2 partial pressure (𝑃𝐶𝑂2), 

pH and flowrate velocity. Secondly, the NN is trained with the corresponding corrosion rate 

data. These corrosion rate data are direct laboratory measurements from corrosion rate 

experiments reported in the literature: (Dugstad et al., 1994b; Choi and Nesic, 2009; Hesjevik 

et al., 2003; Zhang et al., 2012a; Cui et al., 2006). 

The NN model, net_01, is shown in Figure 5-8 as a process step in the flowchart sequence 

because the model is developed and defined by the two sets of input preceding it. The model 
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is then used for corrosion rate prediction. Figure 5-9 shows a block diagram view of the input 

and output datasets as well as the neural network, net_01. 

 

 

 

 

 

 

 

 

Figure 5-9. Block diagram of the neural network model 

 

The variable test dataset is contained within the second input set and is used for testing. It 

contains parameters identical to those in the variable training dataset. The model reads this 

data and based on learned knowledge from the first input, yields output. These output results 

are then compared against actual corrosion rates from the original data in order to compute 

the correlation coefficient (R
2
-value). The method in developing the final NN model is based 

on the use of the R
2
-value, and is shown in Figure 5-8 as the decision step (Draper and Smith, 

1998), (Abyaneh, 2014). The condition, R
2≥0.3, was chosen in the initial testing phase in 

order to characterise the selected training functions to be used: a low-level screening process 

to rule out undesirable training functions. For fine-tuning of the final NN model, however 

R
2≥0.7 was used and then later increased to R

2≥0.8, for the final model result. R
2
-coefficients: 

R
2≥0.7 and R

2≥0.8 were selected as further fine-tuning (pruning) criteria. The actual corrosion 

rates are a direct consequence of the parametric conditions contained in the variable test 

dataset, measured from experimental corrosion rate plots. The errors are calculated by 

subtracting the actual (experimental) CO2 corrosion rates from model predicted CO2 

corrosion rates. Absolute values of these errors are then evaluated and then results are 

summed up to obtain the ‘Sum Total of Absolute Error’. Equations for these expressions are 

shown as follows: 

Neural 

Network 

(net_01) 

Input Output 

Variable Training Dataset 

(T, 𝑃𝐶𝑂2, pH and Velocity) 
Predicted Corrosion 

Rates (mm/year) 
Corrosion Rate Training 

Dataset (mm/year) 

Variable Test Dataset (T, 𝑃𝐶𝑂2, 

pH and Velocity) 
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Corrosion Rate Error = Model Predicted Value − Actual Value  =  𝑦𝑖 − 𝑥𝑖  (5.9)   

For any given plotted i as shown in Figure 5-10: 

Absolute Error = |Corrosion Rate Error|  =  |𝑦𝑖 − 𝑥𝑖|  (5.10)        

For any given plotted i as shown in Figure 5-9: 

Sum Total of Absolute Error = ∑(Absolute Error)  = ∑ |𝑦𝑖 − 𝑥𝑖|
𝑛
𝑖=1    (5.11)       

For all plotted points n shown in Figure 5-9: 

𝑅2 = (
∑(𝑥𝑖−𝑥̅)(𝑦𝑖 − 𝑦̅)

√∑(𝑥𝑖 − 𝑥̅)2(𝑦𝑖 − 𝑦̅)2
)

2

   (5.12) 

 

Where xi and yi are the i
th

 observation and model predicted values respectively. 𝑥̅ and 𝑦̅ are 

the mean values of xi and yi and n is the total number of data-points: (Draper and Smith, 

1998; Abyaneh, 2014). The arbitrary x-y plot of predicted against experimental corrosion rate 

in Figure 5-10, illustrates how the equations for the error expressions are obtained. 

 

 

 

 

 

 

 

 

 

Figure 5-10. Arbitrary plot of predicted corrosion rate against experimental corrosion 

rate 
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NN training – Determination of the Final Model Parameters 

In order to determine the final model parameters such as size of the network, the number of 

layers (network configuration) and the type of training function(s) to use, simulation runs 

were performed using Matlab 2012a version on a Windows 7, 64-bit system with 6 gigabytes 

(GB) of random access memory (RAM).  

Given that in any given neural network model, the transfer function converts input data to a 

given output, trial runs to determine the final NN model, for the purpose of this study, are 

broadly based on the type of transfer function (Vogl et al., 1998). Hence simulation tests were 

carried out on two main groups – the logsig and tansig transfer function groups. The reason 

for their selection as the head of their respective groups is that their respective algorithms 

allow them to accept data of any magnitude (negative to positive infinity) whilst returning an 

output in the range 0 to 1 for the former and -1 to 1 for the latter, thus making them the most 

suitable to use as a starting transfer function in the network (Beale et al., 2014). Training 

algorithms are a set of instruction code that governs how the NN will be optimised such as 

the setting of weights and biases, for instance (Beale et al., 2014). There are three types of 

training algorithms and these are: the gradient descent, conjugate gradient and quasi-Newton 

algorithms (Sharma and Venugopalan, 2014).  

The gradient descent algorithms evaluate function gradients at the initial guess value and take 

steps proportional to the negative direction of the gradient in order to find a local minimum. 

In conjugate gradient methods, the local minimum is located by searching along conjugate 

directions. This implies that a faster convergence is achieved than with the gradient-descent 

method. The quasi-Newton algorithms usually give better and faster optimisation than 

conjugate methods however a greater amount of memory is required (Sharma and 

Venugopalan, 2014). 

Training functions are network functions that dictate a universal algorithm which sets weights 

and biases in any given network to optimise performance. Matlab training functions can be 

classified based on the type of training algorithm they use – all Matlab training functions thus 

fall into one of the three given training algorithms (Sharma and Venugopalan, 2014). For this 

study, two training functions were selected from each of the training algorithm groups to 

make a total of six functions. The definitions of each of these functions are shown in Table 5-

2. 
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Table 5-2. Definitions of the training functions used (Beale et al., 2014; Sharma and 

Venugopalan, 2014) 

Training 

Function 

Training Algorithm 

Group 

(Definition) Updates network weights 

according to: 

Traingdm Gradient Descent Gradient descent with momentum 

Trainrp Gradient Descent Resilient backpropagation (Rprop) 

Trainscg Conjugate Gradient Scaled conjugate gradient method 

Traincgf Conjugate Gradient Conjugate gradient backpropagation with 

Fletcher-Reeves updates 

Trainbfg Quasi-Newton Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) quasi-Newton method 

Trainlm Quasi-Newton Levenberg-Marquardt optimisation 

 

The overall performance of each Matlab transfer function – logsig and tansig for this study, is 

an aggregate of the individual performances of the training functions listed in Table 5-2. 

Figure 5-11 is a pictorial representation of how the degree of suitability of the transfer 

functions for determining the final NN model parameters is dependent on the combined 

performances of the individual training functions. The testing phase of the NN model 

development involved the use of two transfer functions, each with several training algorithms 

as shown, in Figure 5-10.
 

 

Figure 5-11. Combined performances of each training function defines the degree of 

suitability of the transfer function in determining the final NN model parameters 
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5.6.1 NN Modelling of Low Pressure CO2 Corrosion Data 

Summary of Training and Testing data for NN Modelling 

Data from Dugstad et al. (1994b), Nordsveen et al. (2003) was used in developing the NN 

model. The information displayed in Table 4-1, Section 4.2.1 is a detailed summary of the 

collated data and the descriptive statistics. In total, there are 75 data-points and these were 

divided into training and testing sets with 60 and 15 data-points for each set respectively. A 

summary of the test set variables are shown in Table 4-2, Section 4.2.1. 

 

Results 

Figure 5-12 shows the plot of the sum total of the absolute error against number of neurons 

for the logsig transfer function. 

 

Figure 5-12. Line plots of the sum total of absolute error against number of neurons for 

the logsig transfer function 

The sum total of absolute errors decreases with increasing number of neurons for half of the 

training functions tested, namely: traingdm, trainbfg and trainlm. Of all the training 

algorithms tested, it is observed that the trainscg and trainlm functions have the lowest 

overall absolute errors. This implies that predicted corrosion rates were consistently closer in 

magnitude to the actual corrosion rates from the original data source (Dugstad et al., 1994b), 

(Norsdveen et al., 2003) for the given range of number of neurons. The maximum number of 
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neurons tested was set at 20 to avoid overtraining. The sum total of absolute errors for 

trainscg is approximately 100mm/year, which is equivalent to 100/15 ≈ 6.67mm/year (for 15 

data-points). 

From Figure 5-13, it is observed that for half of the training functions (traincgf, trainbfg and 

trainlm), the magnitude of the coefficient of determination (R
2
-coefficient) increased from 5 

neurons to 20 neurons. Again, the trainlm function outperformed all others in terms of the 

magnitude of the R
2
-value. 

 

Figure 5-13. Line plots of R
2
-value against number of neurons for the logsig transfer 

function 

 

The R
2
-value line plots for the tansig function are shown in Figure 5-14. The magnitudes of 

the R
2
-coefficients increase with increasing number of neurons in a similar trend to that seen 

in Figure 5-13. The trainlm function has the highest R
2
-values indicating greater precision in 

prediction. It is also noted that while the R
2
-coefficients for each training function fluctuates 

from 5 to 20 neurons for both logsig and tansig transfer functions, the only exception is that 

of the consistently high-levelled trainlm. 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

134 

 

 

Figure 5-14. Line plots of R
2
-value against number of neurons for the tansig transfer 

function 

The bar charts for the mean R
2
-coefficients for each training function from the logsig and 

tansig transfer function tests shown in Figure 5-15, confirm that the trainlm functions 

consistently performs better than all the others. 

 

Figure 5-15. Multiple bar charts showing the mean R
2
-coefficients for each training 

function for both logsig and tansig transfer functions 
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It is also noted that the trainlm, being a quasi-Newton algorithm, is generally considered to be 

better than the other training functions at optimisation as they converge faster in performing 

nonlinear computations (Sharma and Venugopalan, 2014). Furthermore, there is additional 

evidence of better optimisation capability when observing the bar charts of Figure 5-16. It has 

the least average absolute corrosion rate error, indicating that it is the most suitable training 

function for the NN model due to its greater accuracy and precision. 

 

Figure 5-16. Multiple bar charts showing the absolute error means for each training 

function for both logsig and tansig transfer functions 

 

 

Figure 5-17. Line plots of sum total of absolute error against number of neurons for the 

tansig transfer function 
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Figure 5-17 shows the plot of the sum total of absolute errors against the number of neurons 

for the tansig transfer function. It is observed that for the training functions, namely, 

traingdm, trainscg, trainbfg and trainlm, there is a decrease in the sum total of absolute error 

with increasing number of neurons. The reason for this being that the NN model has a greater 

capacity to learn about the inherent patterns in the dataset more easily than when there are too 

few neurons (Alsmadi et al., 2009). Again, the sum total of absolute errors for trainlm is 

approximately 95mm/year, which is equivalent to 95/15 ≈ 6.33mm/year (for 15 data-points). 

 

Discussion of the Final Neural Network Model Specifications 

Based on the discussed NN model tests, it was thus concluded that trainlm and tansig were 

the respective training and transfer functions to be utilised in determining the optimum 

neuron configuration. It was also found from these tests that 10 and 15 neurons were 

sufficient to obtain an accurate CO2 corrosion prediction system as these yielded the best 

combination of total absolute errors and R
2
-coefficients. 

The number of layers to be used was determined by testing four different neuron 

configurations in multiples of 5 as shown in Table 5-4. Essentially, the total number of 

neurons was distributed in an organised manner within layers.  

Table 5-4. Summary of the results obtained for the tested neuron configurations 

Neuron Configuration Total Number of Neurons R
2
-value 

[5 5] 10 0.71 

[5 5 5] 15 0.66 

[5 10] 15 0.72 

*[10 5] 15 0.91 

 

      * The layers are arranged with 10 neurons in the first layer and 5 neurons in the second layer 

 

From the R
2
-coefficients of Table 5-4, it is seen that the [10 5] neuron configuration is the 

final choice for developing the NN model. It produces the most accurate CO2 corrosion 

predictions. A summary of the NN model properties is presented in Table 5-5. 
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Table 5-5. Summary of neural network properties 

Neural Network Property Value/Function 

Number of neurons and configuration 15 neurons, configuration= [10 5] 

Number of layers 2 

Training function Levenberg-Marquardt (trainlm) 

Transfer functions tansig-tansig 

 

The plot in Figure 5-18 shows the performance of the 15-neuron, [10 5] configuration, 2-

layer neural network model. The magnitude of the R
2
-value and the closeness of all data-

points to the 95% confidence intervals in Figure 5-18 indicate the model is accurate. The 

number of points outside of the upper boundary of the 95% confidence interval suggests 

some degree of over-prediction is occurring which may be due to variation within the dataset 

at low-mid temperatures. 

 

Figure 5-18. NN model corrosion rate against experimental corrosion rate 
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Figure 5-19 shows the error bar chart for the NN model. This plot highlights that there is 

over-prediction occurring for small corrosion rates. 

 

Figure 5-19. Error bar chart 

 

5.6.2 NN Modelling of High Pressure CO2 Corrosion Rate Data 

Summary of Training and Testing data for NN Modelling 

 

Data from multiple sources was used in developing the NN model: (Choi and Nesic, 2009; 

Cui et al., 2006; Hesjevik et al., 2003; Zhang et al., 2012a). The information displayed in 

Table 4-5, Section 4.3.1 is a detailed summary of the collated data and the descriptive 

statistics. In total, there are 22 data-points and these were divided into training and testing 

sets with 16 and 6 data-points for each set respectively. The bar chart of Figure 5-20 shows 

the distribution of the given data-points from each of the sources. 
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Figure 5-20. Bar chart showing the distribution of data-points from each source 

 

Overall the number of data-points from the Zhang et al (2012a) study exceeds those of the 

other sources (63% share) due to the fact that the experimental corrosion rate results for this 

source were carried out for the widest range of temperatures (50-130
o
C) and pressures (9.5-

23.3MPa). 

For the other sources, corrosion rate tests were carried out by maintaining a constant 

temperature whilst varying pressures or maintaining a constant pressure while varying 

temperatures as is the case with the Choi and Nesic (2009) and Cui et al (2006) studies 

respectively. For the study by Hesjevik et al (2003), tests were focused on measurement of 

corrosion rates for temperatures less than 30
o
C. Experimental corrosion rate measurements 

were grouped into classes of 0-4, 4-8,...,16-20mm/year. Figure 5-21 shows the distribution of 

corrosion rates in these classes. 
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Figure 5-21. Bar chart showing the distribution of data-points for the grouped 

experimental corrosion rates 

From Figure 5-21, the number of data-points for the mid-corrosion rate magnitude (8-

12mm/year) is greater than those for end-point corrosion rate groups (0-4 and 16-

20mm/year). 

 

Figure 5-22. Bar chart showing the distribution of data-points for the recorded 

temperatures 
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The bar chart in Figure 5-22 shows the distribution of data-points for the recorded 

experimental temperatures. There are more data-points in the mid-temperatures (50 and 60
o
C) 

than for end-point temperatures (24 and 150
o
C). 

Figure 5-23 shows the corrosion rate-temperature profile for the training dataset. A 

polynomial curve fit through the points depicts the classic peak observed for CO2 corrosion 

rate as a function of temperature (De Waard and Lotz, 1993). It is noted that the statistical 

range of corrosion rates in the mid-temperatures (50-80
o
C) is ~11mm/year, highlighting that 

the greatest variation in the magnitudes of corrosion occurs in these temperatures. 

 

Figure 5-23. Corrosion rate against temperature plot for the training dataset 

 

Results 

The variation of the magnitudes of R
2
-coefficients of the training functions with number of 

neurons for the logsig transfer function is shown in Figure 5-24. There is a general decrease 

in the magnitude of the R
2
-coefficients with increasing number of neurons for all training 

functions except for the Trainscg. This fall in the magnitude of the correlation coefficient 

with increasing number of neurons indicates that model performance is decreasing despite the 

increasing network size. This may be due to the presence of a greater number of redundant 

nodes or synaptic weights in the NN or that training is possibly diverging, resulting in 

predicted values being very different from expected results (Haykin, 1999). Other reasons 
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may be that the training dataset is small or that the inherent characteristic of the data is such 

that modelling with an increasing number of neurons beyond 5, results in a fall of the R
2
-

value.A similar trend was observed in an environmental research study (Abyaneh, 2014). 

 

Figure 5-24. Line plots of R
2
-values of training functions against number of neurons for 

the logsig transfer function 

For the tansig transfer function, Figure 5-25 is the variation of the magnitudes of R
2
-

coefficients against number of neurons. 

 

Figure 5-25. Line plots of R
2
-values of training functions against number of neurons for 

the tansig transfer function 
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There is a general dip in the magnitudes of the R
2
-coefficients as the number of neurons 

increases from 5 to 20. Again, given that the training dataset is small, there is greater 

certainty that as the number of neurons increases in the NN, the number of excess weights 

also increases and there is a tendency for their presence to reduce model accuracy (Haykin, 

1999).The only exceptions are the quasi-Newton algorithms, trainbfg and trainlm. The quasi-

Newton algorithms are generally known to give better optimisation results than the others, 

particularly for network sizes that are not large Beale et al., (2014), Sharma and 

Venugopalan, (2014). 

Figure 5-26 shows the performances of each training function for both logsig and tansig 

transfer functions in terms of the average R
2
-value. 

  

Figure 5-26. Bar charts showing the means of the R
2
-values of each training function for 

both logsig and tansig transfer functions 

The trainlm function again outperforms all the others. The traincgf and trainbfg rank second 

and third respectively on the R
2
-value performance test. It is also worth noting that the 

training functions mostly perform better with the tansig transfer function than the alternative 

logsig transfer function, the only exception being the traingdm function. This may be due to 

the effect of the unique combination of the input data, the logsig transfer function and the 

algorithm in the traingdm training function culminating in a good performance level. Overall, 

a steady, high magnitude of R
2
-coefficient is maintained by the trainlm function with an 
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increasing number of neurons. This thus shows its suitability for use in developing the final 

NN model. 

The training functions performances were also assessed in terms of the sum of their absolute 

errors. Figure 5-27 is the bar chart variation of the sum of absolute errors of the training 

functions against number of neurons.  

 

Figure 5-27. Bar charts showing the means of absolute corrosion rate error of each 

training function for both logsig and tansig transfer functions 

 

It is seen that the traingdm has the least favourable performance in terms of the mean 

absolute corrosion rate errors obtained while the trainrp and trainbfg have the smallest errors 

for both logsig and tansig transfer functions as a combination. On a singular basis, the trainlm 

has the least error when the tansig function is in use, followed closely by the traincgf 

function. In summary, the best training functions appear to be the trainlm and traincgf. It 

must be borne in mind that for all modelling tests conducted and discussed so far, the 

condition applied is that R
2≥0.3. 

Discussion of the Final NN Model Specifications 

The two functions used in this stage are the traincgf and trainlm functions. The best 

performances were obtained when the tansig transfer function was applied. In the initial 

testing stages, it was discovered that very few neurons were required to achieve desirable 
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results as shown in Figures 5-24 and 5-25. In particular, the NN performances were relatively 

high for neuron numbers of 5 to 15. The number of layers to be used was determined by 

testing four (4) different neuron configurations in multiples of 5 as shown in Table 5-6.  

Table 5-6. Summary of the results obtained for the tested neuron configurations 

 

 

 

 

 

Figure 5-28 shows the comparative line plots for both traincgf and trainlm functions. 

 

Figure 5-28. Line plots of sum of absolute corrosion rate error against neuron 

configuration for the traincgf and trainlm functions 

 

From Figure 5-28, the trainlm function consistently has the least absolute corrosion rate 

errors implying that it is a better training function for developing the final NN model. It is 

also noted that NNs with one hidden layer often encounter difficulties with approximation 

and model-fitting due to global interaction between neurons.  On the other hand, NNs with 

two hidden layers have no such issues, as the first layer extracts local features within the data 

while the second layer extracts the global features (Abyaneh, 2014). 

Neural Network Property Value/Function 

Number of neurons and configuration 10 neurons, configuration= [5 5] 

Number of layers 2 

Training function Levenberg-Marquardt (trainlm) 

Transfer functions tansig-tansig 
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Also, from Table 5-7, the [5 5] neuron layer configuration offers the highest R
2
-value. This 

value coincides with the smallest corrosion rate error, as seen in Figure 5-28. This corrosion 

rate error is equivalent to 10.61/6 ≈ 1.77mm/year per plotted data-point on the NN model 

corrosion rate against experimental corrosion rate plot shown in Figure 5-29. 

Table 5-7. Summary of neural network properties 

 

The plots in Figure 5-29 and Figure 5-30 show the performance of the 10-neuron, [5 5] 

configuration, 2-layer neural network model. The magnitude of the R
2
-value and the 

closeness of all data-points to the 95% confidence intervals in Figure 5-29 indicate the model 

is highly accurate. Figure 5-31 shows the corrosion rate-temperature profile for the test 

dataset with corresponding NN model predictions. The best fit line is a polynomial function 

with an R
2
-coefficient of 0.55. A higher R

2
-value can be attained however this results in a 

distortion of the overall shape and is badly conditioned. There is an increase in corrosion 

rates as temperatures increase from 20
o
C to 80

o
C owing to temperatures accelerating the 

chemical and electrochemical corrosion reactions. The precipitation rate though is said to 

increase as temperatures increase hence protective layers form on the metal surface leading to 

a reduction in corrosion rate: Johnson and Tomson, (1991), Yin et al., (2009). 

NN predictions are close to the test data results shown in Figure 5-31, appearing mostly as 

pairs of data-points. There is a slight degree of inaccuracy in model predictions for the mid-

temperature region of 50-80
o
C and this is attributed to greater variation in the training and 

test set corrosion rates. 

Neuron Configuration Total Number of 

Neurons 

Sum of Absolute Error 

(mm/year) 

R
2
-value 

[5 5] 10 10.61 0.91 

[5 5 5] 15 10.38 0.88 

[5 10] 15 22.46 0.68 

[10 5] 15 20.19 0.76 

[10 10] 20 23.82 0.80 
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Figure 5 -29. NN Model corrosion rate against experimental corrosion rate plot 

 

 

Figure 5-30. Error bar chart – Error is the difference between experimental and model 

corrosion rate 
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Figure 5-31. Corrosion rate against temperature plot for the testing dataset with NN 

model predictions 

 

5.7 Conclusions 

For both low and high pressure CO2 corrosion data, the tansig transfer function consistently 

outperformed the logsig transfer function for most training functions with the exception of 

the traingdm and trainrp training functions, in terms of the absolute corrosion rate errors. As 

these two algorithms are gradient descent functions, their under-performance relative to the 

conjugate gradient and quasi-Newton algorithm function alternatives is to do with the 

technique of finding and locating local minima while carrying out nonlinear optimisation. 

Also, in terms of the magnitude of the R
2
-coefficent, the tansig transfer function offered 

better results for all training functions except the traingdm. Again, the quasi-Newton 

algorithm functions, trainbfg and trainlm are known to offer better optimisation results. 

The R-squared coefficient for the final neural network model is 0.91 for both low and high 

pressure CO2 datasets. The models provide good fits for the corrosion test set. For the low 

pressure CO2 corrosion NN model, all test points are in close vicinity to the 95% confidence 

bounds indicating a high degree of accuracy however for test experimental results of lower 

magnitude; there is a slight tendency for over-prediction. For the high pressure CO2 corrosion 
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NN model, all test points are within the bounds of the 95% confidence limits indicating a 

high degree of accuracy. The error test bars indicate that predicted results are within 

3mm/year of the CO2 corrosion test set. 

As is usually the case with CO2 corrosion, the mid-temperature experimental values of ~60
o
C 

induce the greatest corrosion rates due to the Arrhenius theory - the fact that higher 

temperatures speed up corrosion rates by providing greater amounts of kinetic energy to 

reacting species on a molecular level. However the limiting factor preventing a continuous 

induced elevation of CO2 corrosion rates beyond levels of the mid-temperature values to 

higher levels of the very high end-point temperatures (110-150
o
C), is the consequent 

formation of iron carbonate (FeCO3) and magnetite. Though the ferrous ion concentration 

([Fe
2+

]) increases in solution with higher temperatures, solubility decreases, resulting in scale 

formation which coats the metal surface and brings about a decrease in corrosion rates. 

This phenomenon reflects on both training and testing datasets with mid-point temperatures 

coinciding with very high corrosion rates. Also, in these datasets, and in particular, the high 

pressure CO2 dataset, 50% of the data-points lie around the 50-80
o
C range, which represents 

a range of ~11mm/year in the training dataset – a wide variation.  

NNs tend to predict less accurately when trained with data of considerable variation. This is 

depicted in the model vs experimental plot where the high corrosion rate points are on 

opposite bounds of the 95% confidence limits while other data-points are not as widely-

spaced apart on the plot. A summary of the NN model performances for low and high 

pressure is presented in Table 5-8. 

 

Table 5-8. Model performance for each dataset 

NN Model R
2
-value 

Low Pressure CO2 dataset 0.91 

High Pressure CO2 dataset 0.91 
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Chapter 6. Fuzzy Inference Systems 
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6.1 Introduction – Fuzzy Logic 

In chapters 4 and 5, derived models were obtained by statistical and neural network 

modelling respectively. In this chapter, a fuzzy model will be derived for the given low and 

high pressure CO2 corrosion datasets.  

The model-developing data was summarised as descriptive statistics, given in Tables 4-1 and 

4-5 (Chapter 4, Sections 4.2.1 and 4.3.1) for the low and high pressure CO2 corrosion datasets 

respectively. Figures 4-1 and 4-15 are box plots of the data summarised in Tables 4-1and 4-5, 

for low and high pressure CO2 corrosion respectively. Also, the test set was summarised in 

Tables 4-2 and 4-6 for low and high pressure CO2 data respectively, for prediction and the 

subsequent calculation of the R
2
-coefficient. 

Classical logic is based on the assumption of bivalence; that there are two truth-values (true 

and false) and that the value of any given logical formula is uniquely defined by the truth-

values of its components: bivalence and truth functionality respectively (Behlolavek and Klir, 

2011). Various many-value logics employ the use of truth functionality while abandoning the 

bivalence concept (Behlolavek and Klir, 2011). 

Classic logic and predicates of classic logic are linked closely with classic sets. A predicate is 

a system that contains formulae and quantifiable variables. A logic operation on a predicate 

produces a unique solution – an operation on a classical set. 

 

Figure 6-1. Close connection between classical logic and classical set and their 

relationships with predicates of logic 

 

However with the abandoning of bivalence at the root core of many-value logics, the 

connection between logic and sets was severed. Historically, fuzzy logic was created by Lotfi 

Zadeh in the 1960s (Ukil, 2010).  Lotfi Zadeh renewed the connection between many-value 

logic and classical sets in his 1965 publication on fuzzy sets (Zadeh, 1965). A subsequent 
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publication was made ten years after the first seminal paper was released, in which the term 

fuzzy logic, was used (Zadeh, 1975). 

Fuzzy logic systems are an extension of multi-valued logic with the aim of developing 

approximate reasoning that is closer in spirit to human thinking and natural language than 

traditional logic systems: (Hajizadeh, 2006; Ukil, 2010; Fuzzy Logic Toolbox User’s Guide, 

2015). 

6.2 Definition of Fuzzy Logic 

Fuzzy logic is said to have two different meanings – narrow and broad definitions. The 

narrow definition is that fuzzy logic is a logical system, which is an extension of multivalued 

logic or probabilistic logic. It deals with reasoning that is approximate rather than fixed and 

exact. Compared to traditional binary sets (where variables may take on true or false values), 

fuzzy logic variables may have a truth value that ranges in degree between 0 and 1. The truth 

value for any given variable in a fuzzy set  is determined by a membership function as shown 

in the following figure. 

 

Figure 6-2. Membership function of a fuzzy set 

 

For any set X, the membership function on X, 𝜇(X),  is a function from X to the real unit 

interval [0,1] (Zadeh, 1965). Membership functions will be discussed further in the next 

section. The broad definition of fuzzy logic is almost synonymous with set theory, to which 

fuzzy sets belong. It is a branch of set theory that deals with the impreciseness of certain 

phenomena such as classes of objects with unsharp boundaries in which membership is a 

matter of degree. It is thus related to both logic as well as set theory (Behlolavek and Klir, 

2011). 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

154 
 

6.3 Membership Functions 

A  membership function is a curve that defines how each input variable is mapped into a 

membership value (or degree of membership) between 1and 0 such that the membership 

interval range is [0,1], as stated earlier (Zadeh, 1965; Hajizadeh, 2007). 

The membership degree 𝜇A(X) quantifies the grade of membership of the element x to the 

fuzzy set A. The simplest membership functions consist of straight lines and the most basic is 

the triangular membership function as shown in Figure 6-3A. This function is essentially a 

collection of three points forming a triangle. The other straight-line function, the trapezoidal 

membership function, which has a flat top and two sloped sides, is shown in Figure 6-3B . 

 

 

Figure 6-3. Triangular and trapezoidal membership functions  

(Fuzzy Logic Toolbox User’s Guide, 2015) 

 

Piece-wise membership functions portray assymetry in membership classification. For 

instance, the piece-wise membership function shown in Figure 6-4, has a point of 

discontinuity in the vertical region hence it groups data distinctly into two separate categories 

in terms of degree of membership (Fuzzy Logic Toolbox User’s Guide, 2015). 

A B 
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Figure 6-4. Linear piece-wise membership function (Ukil, 2010) 

 

In general, the more complex membership functions such as the Gaussian, generalised bell, 

sigmoidal, polynomial and the Z, S and Pi curves exhibit a continuous form as shown in 

Figure 6-5. However, it must be noted that of all the continuous membership functional 

forms, particularly the sigmoidal and bell-shaped functions have relatively little practical use 

in fuzzy control (Ukil, 2010). 

 

Figure 6-5.Generalised form of a continuous membership function  

(Fuzzy Logic Toolbox User’s Guide, 2015) 

  

Low (𝜇=0.0) 

High (𝜇=1.0) 

High (𝜇=0.90) 

Low (𝜇=0.30) 
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6.4 Mamdani and Sugeno Fuzzy Inference Systems 

The Mamdani fuzzy inference system (FIS) is a widely accepted system for capturing 

expertise knowledge while allowing the ability to describe the expertise in a more intuitive 

and human-like manner. 

The Mamdani FIS was proposed by Ebrahim Mamdani in 1975 following Lotfi Zadeh’s 1973 

publication, as an attempt to control a steam engine and boiler configuration by the 

implementation of a set of linguistic control rules obtained from experienced, well-trained 

human operators (Mamdani and Assilian, 1975; Mamdani, 1976; Mamdani, 1977). 

In general, both Mamdani and Sugeno fuzzy inference systems involve the transformation or 

fuzzification of input variables from a given data set into fuzzy sets, categorising the data into 

degrees of membership (by membership function) and the consequent re-transformation of 

the fuzzy sets into desirable output (Fuzzy Logic Toolbox User’s Guide, 2015). Where the 

main difference lies between these two methodolgies, is in the re-transformation of fuzzified 

data into desirable output. While for the Mamdani FIS , a defuzzification technique is used, 

for the Sugeno FIS, a weighted-average technique is implemented to compute the output 

(Fuzzy Logic Toolbox User’s Guide, 2015). Also, crisp functions are used as the 

consequences for rules in the Sugeno FIS while the Mamdani FIS is not characterised by this 

approach in defining rules (Ukil, 2010). Both methodologies can be used to effectively model 

any system however the Mamdani FIS is more versatile as it does not matter what form the 

desired output takes whereas the Sugeno FIS is only capable of rendering a constant or linear 

output. 
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6.5 Low Pressure CO2 Corrosion Prediction using a Fuzzy Inference System 

6.5.1 Methodology 

The Mamdani fuzzy inference system (FIS) was used in the development of the Mamdani 

model based on the given low pressure CO2 datasets:  (Dugstad et al., 1994b; Nordsveen et 

al., 2003). The model’s performance was then tested using the test sample dataset. The 

Mamdani FIS processes and its corresponding methods are listed in Table 6-1. These FIS 

properties produce the most desirable output for CO2 corrosion modelling in Matlab. 

Table 6-1. Summary of FIS processes and methods 

FIS Process Mamdani Method 

Fuzzy Operator Application (And) Prod 

Fuzzy Operator Application (Or) Max 

Implication Min 

Aggregation Max 

Defuzzification Centroid 

 

In general, FIS processes comprise fuzzification, fuzzy operator application, implication, 

aggregation and defuzzification stages, as shown in numbered steps 1-5 in Figure 6-5. 

Fuzzification is the process by which a linguistic set or descriptor is defined for the initial 

input data (Mamdani and Assilian, 1975).  

Fuzzy operators: ‘And’ and ‘Or’, as listed in Table 6-1, are then applied to the fuzzified data, 

thus converting the data into an antecedent. Once the fuzzy rule weights are set, implication 

involves taking a single number from the antecedent as input and forming a fuzzy set as 

output, the consequent. The consequent is represented by a membership function, which 

weights appropriately the linguistic features that are attributed to it. Implication is 

implemented for each fuzzy rule. The ‘Min’ or minimum implication method tends to 

truncate the output fuzzy set as opposed to the ‘Prod’ or product implication method which 

scales the output fuzzy set. Also, the centroid defuzzification method was chosen over the 

bisector method for its suitablity (See Appendix A6.1 a and A6.1b).  
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Figure 6-6. Fuzzy inference diagram showing all parts of the fuzzy inference process – 

from fuzzification through to defuzzification (Fuzzy Logic Toolbox User’s Guide, 2015) 

 

Aggregation is the process by which the fuzzy sets that represent the output of each rule are 

combined to form an aggregate fuzzy set. The input to aggregation, is the set of fuzzy sets for 

each rule, defined by the implication process. The aggregate output is such that there is one 

fuzzy set to each input variable.  

Defuzzification follows aggregation, thus receiving the input of aggregation, a single fuzzy 

set and then returns a single number, that best represents it. There are five different options 

for Mamdani FIS defuzzification – centroid, bisector, largest of maximum (lom), smallest of 

maximum (som) and middle of maximum (mom). The centroid was selected because it 

returns the centre of the area under the curve, thus producing the  most desirable corroiosn 

rate plot shape. It is important to note that while the fuzzification to defuzzification steps 

shown in Figure 6-6 are slightly different to the approach used by Mamdani, the overall idea 

is identical (Matlab Fuzzy Logic User’s Guide, 2015). Also, the Mamdani FIS is based on the 

original idea by Zadeh (Zadeh, 1973). Each of the input variables was assigned three 

low 

medium 

high 

low low 

If     temperature is high    or          PCO2 is high         then      corrosion rate = high 

If temperature is medium               then  corrosion rate = medium 

If    temperature is low   or              PCO2 is low       then     corrosion rate = low 

corrosion rate = 18.5% 

high high 

medium 

PCO2 = 3 (low) 

PCO2 = 3 (medium) 

 PCO2 = 8 (high) 

temperature = 3 (low) 

temperature = 5 (medium) 

temperature = 8 (high) 
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membership functions – Low, Medium, and High. For instance, the pH variable is shown in 

Figure 6-7. 

 

 

Figure 6-7. pH membership function plots 

The output variable, corrosion rate is assigned seven membership functions, namely – Very 

low, Low, Low-Medium, Medium, Medium-High, High and Very High. Seven membership 

functions are used in order to define an entire range of corrosion rate magnitudes (0-70 

mm/year) as seen in Table 6-2. 

Table 6-2. Membership function descriptor and corresponding corrosion rate ranges 

Membership Function Descriptor Corrosion Rate Range (mm/year) 

Very Low 0-10 

Low 10-20 

Low-Medium 20-30 

Medium 30-40 

Medium—High 40-50 

High 50-60 

Very High 60-70 

 

In order to develop the FIS for the dataset, fourteen rules are defined. The following Table 

shows some of the rules of the FIS based on close observation of variable trends within the 

dataset.  
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Table 6-3. Some rules for the development of the Mamdani and Sugeno FIS 

Rule 

Number 

Temperature 𝑃𝐶𝑂2 Velocity pH Corrosion 

Rate 

Weight 

1 Medium High High Low Very High 1 

2 Medium Low High Medium Low-Medium 1 

3 *Not Medium *Not High Low Low Very Low 1 

4 Medium Low High Low Medium 0.1 

5 High High High Low Medium-High 0.1 

6 High High Medium Low High 0.01 

7 Low Low High Medium Low 0.001 

___________________________________________________________________________ 

* Implies that these descriptors are negations 

The rule viewer is set once these rules are established in the FIS. Three-dimensional (3-D) 

plots of each of the variables in the dataset permit observation of any two input variables with 

CO2 corrosion rate. One such plot is shown in Figure 6-8. 

 

 

Figure 6-8. Three-dimensional plot of corrosion rate against 𝑷𝑪𝑶𝟐 and temperature – 

result of Mamdani FIS 

 

The 3-D plot in Figure 6-8 shows a dome-like shape for the variation of CO2 corrosion rate 

with temperature and CO2 partial pressure. There is a general increase of corrosion rate with 

increasing temperature and 𝑃𝐶𝑂2, however while there is a distinct peak for the change in 
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corrosion rate with temperature as shown in the two-dimensional (2-D) plot in Figure 6-9, the 

corrosion rate appears to level off for very high values of 𝑃𝐶𝑂2., as shown in Figure 6-10. 

 

Figure 6-9. Mamdani FIS plot of corrosion rate against temperature 

 

The corrosion rate plot against temperature shows a peak at a temperature of 55
o
C. The 

corrosion rate value at the peak is 57mm/year and as temperature increases further to 90
o
C, 

corrosion rate decreases steadily. Thus the plot in Figure 6-9 follows the typical corrosion 

rate against temperature plots described in research literature, for scaled corrosion (De Waard 

and Lotz, 1993; Zhang et al., 2012b). For this particular data, the greatest magnitudes for 

corrosion rate are at temperatures of 60
o
C, while there are lower corrosion rates at 90

o
C. The 

main shortcoming of this plot is that corrosion rates are rather conservative and it takes into 

account, the very high corrosion rates within the dataset. This plot does not represent the 

mean corrosion rates, particularly at 60
o
C and at 90

o
C. 

For the variation of corrosion rate with 𝑃𝐶𝑂2, Figure 6-10, corrosion rates increase very 

steadily from 15mm/year, for CO2 partial pressures in the range, 0-0.7MPa, to 17mm/year, 

after which it increases steeply to 60mm/year for 𝑃𝐶𝑂2 values of about 1.2MPa. Beyond this 

point, corrosion rates plateau and this depicts the dataset accurately. Theoretically, corrosion 

rates are expected to increase with increasing 𝑃𝐶𝑂2. In fact corrosion rates increase with 

increasing 𝑃𝐶𝑂2 to an exponent of 0.7, as seen in Figure 2-7A, Section 2.4.1 (Dugstad et al., 

1994b). The reason corrosion rate does not carry on increasing throughout the range of 𝑃𝐶𝑂2 
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values is due to the fact that film formation on the metal surface limits CO2 corrosion rates, 

by reducing the surface area of the metal exposed to the acidic medium.  

 

 

Figure 6-10. Mamdani FIS plot of corrosion rate against CO2 partial pressure 

 

Although, for this particular study, the water is un-buffered, implying a more corrosive 

medium, the protection provided by the surface film is sufficient to reduce corrosion rates at 

very high 𝑃𝐶𝑂2 values.  In un-buffered water, the film is said to comprise ferrous carbides and 

alloying elements from the steel (Dugstad et al., 1994b). 

The 3-D plot of Figure 6-11, shows that there are corrosion rate peak values for both 

temperature and velocity due to the presence of the central crest of the dome. The 2-D plot of 

corrosion rate against flowrate velocity (Figure 6-12) shows that the peak occurs at (7m/s, 

57mm/year). An increase in flowrate velocities results in a fairly steep elevation of corrosion 

rates. This is attributed to the erosional effect of fluid flow on surface film growth and 

thickness. The greater the velocity of fluid flow, the greater the tendency for any surface film 

to be washed away, exposing a greater area of the metal surface to the corrosive medium and 

increasing corrosion rates (Dugstad et al., 1994b). 
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Figure 6-11. Three-dimensional plot of corrosion rate against flowrate velocity and 

temperature – result of Mamdani FIS 

 

However, corrosion rates reach a peak at (7m/s, 57mm/year) and level-off at (13m/s, 

35mm/year). The higher fluid velocities wash away the surface film and at the same 

preventing the medium from further inducing the dissolution of iron to ferrous ions in 

solution at a sufficiently fast rate. 

 

 

Figure 6-12. Mamdani FIS plot of corrosion rate against flowrate velocity 
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The overall effect is that corrosion rates slow down and then decreases as the fluid velocity 

reaches the 13m/s mark. In general, it is difficult to model CO2 corrosion rate based on 

established fluid mechanical theories of mass transfer and shear stress for this particular study 

because of the effect that flow velocities have on the composition and the thickness of the 

surface film layer (Dugstad et al., 1994b). 

Figure 6-13 shows the prediction results from the Mamdani FIS model using the test dataset. 

The R
2
-value is relatively low, with about half of the data-points lying outside of the 95% 

confidence interval. The implication is that the model is not the most accurate of the all the 

discussed CO2 prediction models and in terms of reliability, a greater number of high-

magnitude corrosion rates fall within the boundaries of the confidence interval than the low-

magnitude corrosion rates. Hence it is more accurate and reliable in predicting high-

magnitude corrosion rates and much less accurate in predicting low-magnitude corrosion 

rates. 

 

Figure 6-13. Mamdani FIS model corrosion rate against experimental corrosion rate 

plot and error bar chart for selected test data – error is the difference between 

experimental and model corrosion rate 
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6.6 High Pressure CO2 Corrosion Prediction using a Fuzzy Inference System 

The data used for the fuzzy inference analysis in this study was obtained from the following 

research publications: Choi and Nesic (2009), Choi et al (2010), Hesjevik et al (2010) and 

Zhang et al (2012a). 

6.6.1 Methodology 

Mamdani and Sugeno fuzzy inference systems were implemented usng the Matlab fuzzy 

toolbox. The variables used for the analyses are listed in Table 6-4, below: 

Table 6-4. Variables used in the study and their corresponding ranges 

Variable Range 

Temperature (
o
C) 0-150 

𝑃𝐶𝑂2 (MPa) 3.5-23.3 

pH 3.1-6 

Fluid flowrate (m/s) 0-4 

Corrosion Rate (mm/year) 0-15 

 

The data used in the analyses was gathered from the aforementioned sources and sorted as 

listed in Table 6-4. A diagramatic representation of the FIS is shown in Figure 6-14, below. 

 

 

 

 

 

 

 

 

Figure 6-14. A generic fuzzy inference system showing input variables to the left (T, 

𝑷𝑪𝑶𝟐, pH, fluid flowrate) and the output variable to the right (Corrosion Rate) 

 

Corrosion Rate 

 

CO2 Fuzzy Inference System 

pH 

Fluid flowrate 

𝑷𝑪𝑶𝟐 

Temperature 
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Three membership functions are assigned to each input variable and five membership 

functions are assigned to the output variable. Descriptors are used in naming the membership 

functions. The input variable membership functions are: low, medium and high while the 

output variable membership functions are: very low, low, medium, high and very high as 

shown in Table 6-5. The membership function type used for both input and output variables 

is the Gausssian function. This function type was chosen for its practicality and also, for the 

fact in general, by the central limit theorem, the arithmetic means of samples from randomly 

different data sets are likely to be normally distributed (Rice, 2007). 

Table 6-5. Descriptors assigned to each of the input and output variable membership 

functions 

Input variable membership function Output variable membership function 

Low 

Medium 

High 

Very low 

Low 

Medium 

High 

Very High 

 

In order to obtain an output from an FIS, a number of  rules and the respective weight 

contribution for each rule has to be developed. The following table shows the seven self-

developed rules used by this particular FIS. 

Table 6-6. Rules for the development of Mamdani and Sugeno FIS 

Rule 

Number 

Temperature 𝑃𝐶𝑂2 pH Fluid 

flowrate 

Corrosion 

Rate 

Weight 

1 Medium High Low High Very High 0.4 

2 High Medium High Low Low 0.1 

3 Low Low High Low Very low 0.2 

4 Medium High Low High High 0.1 

5 High Medium Medium Medium Medium 0.1 

6 High * Low Low Very low 0.05 

7 * High Low Low Very low 0.05 

__________________________________________________________________________________
* Implies that these variables are absent in the given rule 
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Upon creation of the rules, the rule viewer is set as shown in Figure 6-15. The rule viewer 

provides the facility to change the magntiude of the input variables while showing an 

instantaneous change in the output (high pressure CO2 corrosion rate).  

 

Figure 6-15. Rule viewer for all seven rules showing mini graphical representations of 

each of the input variables and their effect on the output variable  

 

The following Table shows the magnitudes of the variables used in producing the Mandani 

and Sugeno FIS corrosion plots shown in Figures 6-16 and 6-17, respectively. 

Table 6-7. Magnitudes of input variables and respective output variable results 

Input Variable Output Variable 

Temperature = 78.4
o
C Mamdani FIS corrosion rate = 7.5mm/year 

 

Sugeno FIS corrosion rate = 5.43mm/year 

𝑃𝐶𝑂2 = 15.5MPa 

pH = 4.44 

Fluid flowrate = 1.69m/s 

Temperature 𝑷𝑪𝑶𝟐 pH Fluid flowrate Corrosion Rate 

1 

2 

3 

4 

5 

6

 

 1 

 1 

 1 

 1 

 1 

7

 

 1 

 1 

 1 

 1 

 1 
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Three-dimensional plots of corrosion rate against 𝑃𝐶𝑂2and temperature are shown for both 

Mandani and Sugeno systems in Figures 6-16 and 6-17. 

 

 

Figure 6-16.Three-dimensional plot of corrosion rate against 𝑷𝑪𝑶𝟐 and temperature – 

result of Mamdani FIS 

 

Figure 6-17.Three-dimensional plot of corrosion rate against 𝑷𝑪𝑶𝟐 and temperature – 

result of Sugeno FIS 
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Table 6-7 is a summary of results from the rule viewer for Figure 6-15. The Mamdani FIS 

plot shown in Figure 6-16, illustrates the variation of corrosion rate with 𝑃𝐶𝑂2 and 

temperature in three-dimensional space. It can be seen that for the temperature variable, 

corrosion rates increase steadily and peaks at approximately 80
o
C and 12 mm/year at the 

centre of the dome in accordance with the Van’t Hoff, Arrhenius and Kinetic theories (Tan 

and Chan, 2011). Corrosion rates then decrease steeply as temperatures drop (See Appendix 

A6.2).  

For CO2 partial pressures, the two-dimensional Mamdani plot, shown in Figure 6-18, is 

derived from the three-dimensional plot in Figure 6-16. It is observed that the corrosion rate 

increases steadily with increasing 𝑃𝐶𝑂2  up till pressures of approximately 12MPa after which 

there is a slight dip before it reaches the point, (~23MPa, 13.5mm/year): this is the highest 

corrosion rate.  

 

 

Figure 6-18. Mamdani FIS plot of corrosion rate against CO2 partial pressure 

 

Higher corrosion rates are possible for high pressure CO2 corrosion than for low pressure 

CO2 corrosion (Zhang et al., 2012b). However, there is a tendency for scale formation to limit 

corrosion rates as scales are found to be thicker. However for this plot, the velocity is high 
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(4m/s) and the pH is low (3.5), hence corrosion rates continue to increase with increasing 

CO2 partial pressures.  

The Sugeno FIS plot shown in Figure 6-17, illustrates the variation of corrosion rate with 

𝑃𝐶𝑂2 and temperature in three dimensions. The plot trend for the temperature axis of Figure 6-

17, shows an initial rise and subsequent plateau  in corrosion rates hence exhibiting an 

identical pattern to the front part of Mamdani plot dome. The variation of corrosion rates with 

𝑃𝐶𝑂2 is only slightly different to the observed trend exhibited by the Mamdani plot. Corrosion 

rates increase with increasing CO2 and reaches a peak at ≈13.8MPa and plateaus for 

increasing 𝑃𝐶𝑂2 values as seen in Figure 6-19.  

 

 

Figure 6-19. Sugeno FIS plot of corrosion rate against CO2 partial pressure 

 

A peak is reached in CO2 corrosion rates because super-saturation of the aqueous medium at 

the metal surface would ensue. Super-saturation in this context implies that the concentration 

of ferrous ions (Fe
2+

) and carbonate ions (CO3
2-

) have exceeded their solubility limits in the 

aqueous medium or fluid hence film growth occurs on the metal surface. For high pressure 

CO2 corrosion, thick scale formation is favoured (Zhang et al., 2012b) and this serves to limit 

corrosion rates, even with increasing CO2 partial presssures. Thick scale covers the metal 
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surface and reduces the rate of iron dissoultion, moreover the aqueous medium is super-

saturated thus cannot accommodate additional Fe
2+

 ions which ultimately results in limiting 

the magnitude of CO2 corrosion rate. Figure 6-20 shows the model vs experimental plot and 

error bar chart for the Mamdani FIS. The model has a tendency for under-prediction. The 

95% confidence bounds indicate that the reliability in prediction is not very high but this is to 

be expected since the size of the dataset is small. 

  

Figure 6-20. Mamdani FIS model corrosion rate against experimental corrosion rate 

plot and error bar chart for selected test data – Error is the difference between 

experimental and model corrosion rate 
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6.7 Conclusions 

Classical logic comprises two parts: bivalence and truth functionality. Bivalence is the 

concept of having two truth value (true or false) outcomes while truth functionality is the use 

of a truth-value to represent the solution of a given logical formula. The link between 

classical logic and classical sets was established through the application of bivalence. 

By abandoning bivalence, these two systems were disconnected from each other only to be 

re-connected once more by Lotfi Zadeh in the 1960’s. The development of fuzzy inference 

systems has led to intelligent systems which use human thinking and natural language to 

transform input data to output data. 

For modelling low and high pressure CO2 corrosion, each of the input variables, namely: 

temperature CO2 partial pressure, flow velocity, pH as well as the output variable, corrosion 

rate were simulated using the Gaussian membership function or bell functions. The reason 

that these were chosen is that they are continuous membership functions hence they depict 

smoother and more rounded edges during profile prediction than the straight-lined or sharp-

edged results of the triangular, trapezoidal or linear piece-wise functions. 

Additionally, suitable descriptors such as very low, low, medium, high and very high were 

used with corresponding ranges such as 0-10mm/year to categorise corrosion rates into 

different classes in order to aid corrosion simulation. Also, the rules were developed 

separately for the low and high pressure CO2 datasets so that the inherent traits within each 

dataset is fully captured during simulation. 

Fuzzy systems in general, map input data to output data via a procedural process: input data 

→ fuzzification → implementation →aggregation → defuzzification → output data. For the 

fuzzification stage, which is the assigning of linguistic descriptors to the initial input data, 

input is converted to the antecedent. The ‘Prod’ and ‘Max’ options were the selected fuzzy 

operators for ‘And’ and ‘Or’ respectively because the alternative fuzzy operator options, the 

‘Min’ and ‘Max’ produced simulated  corrosion rate magnitudes that did not match-up 

against expected results and so were unsuitable.  

For the implication stage, which involves taking a single number from the antecedent as input 

and forming a consequent by representing it with a membership function, the ‘Min’ option 

was selected for its suitability. The ‘Prod’ option tended to scale the simulated results by a 

small factor. For the aggregation stage, which is the combining of all fuzzy sets into a single 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

173 
 

aggregate fuzzy set, ‘Max’ was chosen due to the apparent likeness of simulated results to the 

experimentally measured data of the given datasets. 

For the defuzzification stage, which is the re-transformation of fuzzified data into output data, 

the centroid was selected out of a possible five alternatives because it returns the centre of the 

area under the curve thus producing the most desirable results, particularly when simulated 

trends for the various input variables are to be assessed against expected profiles. 

These FIS processes were applied to both the low and high pressure CO2 datasets following 

testing and trial runs of the various other alternatives. The Mamdani system was the FIS 

method deployed for both datasets. The Sugeno method was also applied to the high pressure 

CO2 dataset however the R
2
-value was considerably low. 

In terms of performance, the Mamdani FIS model attained a higher level of accuracy for the 

high pressure CO2 dataset than for the low pressure CO2 dataset as shown in Table 6-8. 

Table 6-8. Model performance for each dataset 

Mamdani FIS Model R
2
-value 

Low Pressure CO2 dataset 0.32 

High Pressure CO2 dataset 0.63 

 

This may be due to the fact that though the size of the dataset for the high pressure CO2 case 

is considerably smaller when compared to that of the low pressure CO2 dataset, there is also 

much less variation within it. There is also a substantially less scatter of data-points in the 

model vs experimental plots for the high pressure CO2 dataset when compared to that of the 

low pressure CO2 one. 

Overall, the FIS model is not the most accurate prediction system there is for CO2 corrosion, 

but it excels at showing realistic relationships between the various variables and the corrosion 

rate. The simulated corrosion rate against temperature, 𝑃𝐶𝑂2 and flow velocity plots depict the 

expected trend that is characteristic of experimental profiles. 
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Chapter 7. Monte Carlo Simulation 
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7.1 Introduction 

Monte Carlo simulation is a computational technique for determining the sensitivity of a 

complex system by varying parameters within statistical constraints (Statistics and Machine 

Learning Toolbox User’s Guide, 2015). It can also be defined as a numerical method of 

solving mathematical problems by random sampling (Sobol, 1994). Historically, the birth of 

this technique is widely accepted to be in 1949 and its main originators are: Stanislav Ulam 

and John von Neumann (Sobol, 1994). Interestingly however, the theoretical foundation 

behind the technique which involves the use of randomness in a determinative manner can be 

traced back to the 18
th

 century (Harrison, 2010).  

Sections 4.2.1 and 4.2.3 covered the descriptive statistics and regression analysis for the low 

pressure CO2 dataset respectively, while Sections 4.3.1 and 4.3.3 of the previous chapter 

covered the descriptive statistics and regression analysis for the high pressure CO2 dataset 

respectively. In the previous chapter, a fuzzy model was derived with some limitations 

particularly in the prediction accuracy for low pressure CO2 data. 

In this chapter, the focus is a mathematical model that involves the prediction of CO2 

corrosion rate from the following input variables: temperature, CO2 partial pressure (𝑃𝐶𝑂2), 

pH and flow velocity. In order to carry out Monte Carlo simulations, appropriate probability 

distributions for the given datasets must be assumed or obtained in conjunction with a suitable 

best-fit regression equation, which in this thesis, was derived from the chapter on statistical 

analysis. 

For each of the low and high pressure CO2 corrosion datasets, the multiple linear regression 

equations were deemed to be most suitable for further analysis due to their moderately high 

R
2
-coefficient values: ~0.7 each, when these equations were assessed with separate test 

datasets, in Sections 4.2.3 and 4.3.3. Probability distribution plots and probability plots were 

used to measure the goodness of fit of each corrosion dataset from one of several probability 

distributions – normal, Rayleigh, exponential, lognormal and Weibull probability 

distributions. Tests for normality were first carried out on the datasets such as the Anderson-

Darling and Kolmogorov-Smirnov tests followed by other probability distribution tests. 

Sensitivity analysis plots were also used to determine the relative significance of each of the 

input variables on CO2 corrosion rate. 
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7.2 Probability Distributions 

Probability distributions are theoretical distributions based on assumptions about a source 

population that assign a probability to the event that a random variable has a specific discrete 

value or a specified range of continuous values (Statistics and Machine Learning Toolbox 

User’s Guide, 2015). In this light, an explanation of a random variable is necessary. A random 

variable is essentially a random number (Rice, 2007). It can also be defined as a variable 

whose precise value is unknown but the range of values it can assume and the probability of 

these values are known (Sobol, 1994). 

7.3 Types of Probability Distributions 

Probability distributions are broadly divided into two groups: Discrete and Continuous.  

7.3.1 Discrete Probability Distributions 

Discrete probability distributions are based on the discrete random variable and characterised 

by a probability mass function. A discrete variable is one which has a finite or countably 

infinite number of possible values and is often based on counts, such as the set of positive 

integers (Rice, 2007). Also, the probability mass function is the likelihood of occurrence of a 

given discrete variable to be equal to a certain fixed value (Stewart, 2009). Hence, if X is a 

discrete random variable, then the probability of X occurring is given by (Sobol, 1994): 

∑𝑃𝑟(𝑋 = 𝑛) = 1

𝑛

 (7.1) 

Where: 

𝑃𝑟 is the probability of an event occuring  

𝑛 runs through all possible values of the random variable 𝑋  

7.3.2 Continuous Probability Distributions 

Continuous probability distributions are based on the continuous random variable and are 

characterised by the probability density function (pdf). A continuous variable is a variable 

which has an infinite number of values, whose elements can take any numeric value and can 

be measured at many different points. The set of real numbers which may include fractional, 

decimal or whole number integers are all elements of the continuous variable. Also, the 

probability density function is a function that describes the likelihood of the continuous 

random variable taking place. If X is a continuous random variable, then it has a pdf, f(x). 
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Hence, the probability of X falling within a given range [a, b] is given by (Sobol, 1994), 

(Harrison, 2010): 

𝑃𝑟[𝑎 ≤ 𝑋 ≤ 𝑏] = ∫𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

= 𝐹(𝑥)  (7.2) 

Where: 

𝑓(𝑥) is the pdf of the random variable 𝑋  

𝐹(𝑥) is the integral of 𝑓(𝑥)and is the cumulative density function (cdf) of 𝑋 over   

the range [𝑎, 𝑏]  

Given that all the variables discussed in this thesis (temperature, 𝑃𝐶𝑂2, flow velocity, pH, and 

corrosion rate) are continuous variables, Monte Carlo simulations were carried out using 

continuous probability distributions. The main probability distributions used as starting 

references were the normal and Weibull distributions. The probability density functions for 

these distributions are shown in Table 7-1. 

Table 7-1. Probability density functions for the normal and Weibull distributions 

(Harrison, 2010), (Johnson et al., 1994) 

Probability Distribution Probability Density Function 

Normal 
𝑓(𝑥; 𝜇, 𝜎) =

1

𝜎√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2  𝑓𝑜𝑟 𝑥 ≥ 0 (7.3)  

 

 𝜇 and 𝜎 are the mean and standard deviation  
respectively 

2-Parameter Weibull 
𝑓(𝑥; 𝑘𝑊, 𝜆) =

𝑘𝑊
𝜆
(
𝑥

𝜆
)
𝑘𝑊−1

𝑒−(
𝑥
𝜆
)
𝑘
   𝑓𝑜𝑟 𝑥 ≥ 0 (7.4) 

 

 𝑘𝑊 and 𝜆 are the shape and scale parameters  
respectively 

3-Parameter Weibull 
𝑓(𝑥; 𝑘𝑊, 𝜆, 𝜃) =

𝑘𝑊
𝜆
(
𝑥 − 𝜃

𝜆
)
𝑘𝑊−1

𝑒
−(
𝑥−𝜃
𝜆
)
𝑘𝑊

𝑓𝑜𝑟 𝑥 ≥ 0 (7.5) 

 

 𝑘𝑊, 𝜆 and 𝜃 are the shape, scale and location  
parameters respectively  

 

The 3-parameter Weibull pdf becomes the 2-parameter Weibull pdf when the location 

parameter, 𝜃 = 0. The 2-parameter Weibull pdf is therefore a special case of the 3-parameter 

Weibull pdf. 
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7.4 Monte Carlo Simulation of Low Pressure CO2 Corrosion Dataset 

7.4.1 Experimental Dataset 

The experimental CO2 corrosion rate data was first tested to determine the best-fit 

distribution: (Dugstad et al., 1994b; Nordsveen et al., 2003). The distributions tested against 

the dataset include the normal, Rayleigh and Weibull distributions. Probability plots of the 

normal and Weibull distributions for the given dataset are shown in Figure 7-1. 

 

Figure 7-1. Normal probability plot and Weibull probability plot 

 

It is observed from Figure 7-1, that the Weibull probability plot is a better fit for the dataset 

than the normal probability plot and as such will be used in modelling the Monte Carlo 

simulation. Table 7-2 shows a summary of statistical tests carried out on the experimental 

CO2 corrosion rate data that confirms the Weibull distribution as a better fit than the Normal 

distribution. 
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Table 7-2. Test statistic summary for normal and Weibull Probability density functions 

Test Statistic Normal Distribution Weibull Distribution 

Anderson-Darling (AD) 3.586; p-value<0.005 0.326; p-value>0.5 

Kolmogorov-Smirnov (KS) Rejects Null hypothesis (H0) - 

 

It can be concluded from the results that a distribution is a better fit provided that the 

magnitude of the AD-test statistic is small and the p-value is greater than 0.5 at the 5% 

significance level (α=0.05). The KS-test for normality rejects the null hypothesis at the 5% 

confidence level. Given that the null hypothesis in this instance is the statement that there are 

no significant differences between the dataset and the distribution fit, the rejection of the null 

implies that there are indeed significant differences between the dataset and the distribution 

fit. This provides further proof that the Weibull pdf is better at modelling experimental CO2 

corrosion rates. 

Probability density plots of the normal and Weibull distributions for the given dataset are 

shown in Figure 7-2. It is also observed from Figure 7-2, that the histogram fit for the Weibull 

probability density function, is a better representation of the dataset than the histogram fit for 

the normal pdf.  The characteristic feature of the density plot is that the sum of the areas of all 

the histogram bars is equal to unity. This implies that the area of a histogram bar for a given 

corrosion rate range represents the probability of obtaining that given corrosion rate range.  

The exponential and lognormal probability distributions are also close fit functions for the 

data. The exponential distribution is directly related and belongs to the Weibull family of 

distributions while the lognormal distribution is known to be a good fit for natural processes, 

chemical reactions as well as for materials undergoing failure due to reactions such as stress 

and corrosion (Lee and Wang, 2003; Gronhölm and Annila, 2007; Baboian et al., 2005). In 

general, both the Weibull and lognormal distributions are used extensively in reliability and 

survival analyses (Lee and Wang, 2003). Both are good fits for data that is positively skewed 

(Fahidy, 2005). The corrosion rate variable from the low pressure CO2 dataset is positively 

skewed as discussed in Section 4.2.1 and seen from the boxplot in Figure 4-1. The lognormal 

and exponential pdfs are shown in Table 7-3.  
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Table 7-3. Probability density functions for the lognormal and exponential distributions 

(Harrison, 2010; Johnson et al., 1994) 

Probability Distribution Probability Density Function 

2-parameter Lognormal 
𝑓(𝑥; 𝜇, 𝜎) =

1

𝑥𝜎√2𝜋
𝑒
{−
(𝑙𝑛𝑥−𝜇)2

2𝜎2
}
 𝑓𝑜𝑟 𝑥 ≥ 0 (7.6)  

 

 𝜇 and 𝜎 are scale parameters respectively 
3-parameter Lognormal 

𝑓(𝑥; 𝜇, 𝜎, 𝛾) =
1

(𝑥 − 𝛾)𝜎√2𝜋
𝑒
{−
[ln(𝑥−𝛾)−𝜇]2

2𝜎2
}
 𝑓𝑜𝑟 𝑥 ≥ 0 (7.7) 

 

 𝜇, 𝜎 are scale parameters and 𝛾 is the threshold 

Exponential               𝑓(𝑥; 𝜆) = 𝜆𝑒−𝜆𝑥  𝑓𝑜𝑟 𝑥 ≥ 0 (7.8) 
 𝜆 adjusts the exponential decay  

 

 

The 3-parameter lognormal pdf reduces to the 2-parameter lognormal pdf, when the threshold 

parameter: 𝛾 = 0. 

 

 

Figure 7-2. Normal probability density and Weibull probability density plots for 

experimental CO2 corrosion rate dataset 
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The following Table summarises the statistical parameters of each distribution. 

Table 7-4. Statistical parameters for each distribution 

Statistical 

Parameter 

Weibull Normal Exponential Lognormal 

Mean (mm/year) 17.03 17.03 17.03 19.38 

Standard Deviation 

(mm/year) 

16.78 17.02 17.03 32.74 

Shape factor 17.14 - - 𝜇 (log location)

= 2.29 

Scale factor 1.02 - 𝜇 (𝑠𝑐𝑎𝑙𝑒)

= 17.03 

𝜎 (log scale)

=  1.14 

 

7.4.2 Monte Carlo Dataset 

As previously stated, the Monte Carlo method involves the generation of random numbers for 

simulation purposes. The aim of this simulation is to compare the percentage errors in means 

and standard deviations of the simulated data against the experimental data. 

Simulations were carried out for two groups. Case Study I involved the modelling of each 

input parameter as a uniform probability distribution function in conjunction with a 

previously-derived regression equation. Case study II involved the determination of the best-

fit probability distribution function for each parameter and the subsequent application of these 

distribution functions in a pre-derived regression equation. 

For  every test simulation, 100,000 (1x10
5
) Monte Carlo simulation runs were executed, 

resulting  in a randomly generated dataset of 100,000 CO2 corrosion rates. In general, 

increasing the simulation runs decreases the size of the class intervals (bins) of the 

histograms, leading to smoother representative probability density function plots however this 

comes as a cost to computation. Also, there is a risk of the appearance of very thin comb-like 

lines in the pdf plot if the simulatoin runs are increased indefinitely. The number of runs 

chosen is shown in Figure 7-3. As simulation runs increased by an order of magnitude, 

likewise time elapsed  increased. This however meant that at one million (1x10
6
) runs, the 

time elapsed for this section of code increased to 0.1 seconds and subsequently, a whole 

second for ten million (1x10
7
) runs. Therefore, the point before the angled deviation on the 

plot was chosen as the ideal for simulation runs. The difference between 0.1s and 1s is small 
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however in a context where optimisation is required (discussed in Section 7.6), a bit more 

time may be required to run through all the lines of code. A Monte Carlo simulation was 

performed based on the statistical parameters of the experimental dataset. Figure 7-4 shows 

the result of this process. The simulated data was modelled specifically on the shape and scale 

factors of the Weibull distribution, shown in Table 7-4. This was done because the probability 

plot and the two statistical tests, whose results are shown in Table 7-2, revealed the Weibull to 

be the better fit. 

 

Figure 7-3. Number of runs used in Monte Carlo simulations 

 

 

Figure 7-4. Monte Carlo simulation using statistical parameters of the experimental 

dataset 
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The Weibull model fit statistics were then compared against those for the experimental data. 

Table 7-5 is a summary of the results. 

Table 7-5. Summary statistics for the use of the Weibull distribution as a direct fit for 

the low pressure CO2 corrosion rate 

Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Weibull Monte 

Carlo Model 

(mm/year) 

Percentage Error 

(%) 

 

Mean 17.03 17.02 0.00* 

Standard Deviation 17.02 16.78 1.41* 

____________________________________________________________________________________________________ 

* Percentage Errors are calculated as follows: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒−𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒|

𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒
× 100% 

____________________________________________________________________________________________________ 

Two other theoretical distributions had also been found to be good fits to the corrosion rate 

experimental data as seen in Figure 7-2. However, where the Monte Carlo simulation runs of 

the exponential model improved on the statistics of the Weibull, the variance for the 

lognormal model was quite high.  

Table 7-6 Summary statistics for the exponential and lognormal probability 

distributions 

Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Exponential Monte 

Carlo (mm/year) 

Lognormal Monte 

Carlo (mm/year) 

 

Mean 17.03 17.03 (0.00)* 19.39 (13.86)* 

Standard Deviation 17.02 17.03 (0.06)* 32.76 (92.50)* 

____________________________________________________________________________________________________ 

* Figures in brackets are percentage errors with respect to experimental data  

Percentage Errors are calculated as follows: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒−𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒|

𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒
× 100% 

____________________________________________________________________________________________________ 

From the results of Table 7-5 and 7-6, it is concluded that the exponential distribution is a 

better distribution than the Weibull for representing low pressure CO2 corrosion data. 
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Case Study I - Based on the Derived Regression Equation 

The regression equation. (7.3) derived in Section 7.2.3 for the low pressure CO2 dataset was 

used as a basis for carrying out further Monte Carlo simulations. Uniform probability 

distributions were used to model each parameter. The simulated temperature is evaluated 

using the following expression: 

𝑇𝑠𝑖𝑚 = 𝑇0 + {(𝑇1 − 𝑇0) ×𝑁}  (7.1)       

Where: 

𝑇𝑠𝑖𝑚 is the simulated temperature (℃)  

𝑇0 is the lowest temperature (℃)  

𝑇1 is the highest temperature (℃)  

 𝑁 is the randomly generated number  

The form of the equation shown in (7.1) was used for each of the other variables, replacing T 

with 𝑃𝐶𝑂2, pH and velocity accordingly.Given that the number of simulated corrosion rates is 

very large (N=100,000), a test sample subset (N=100) was randomly selected for the purpose 

of carrying out the AD and KS statistical tests. The results of these tests are shown in Table 7-

7. The Mersenne twister was chosen as the algorithm for the generation of pseudo-random 

numbers. It was implemented in Matlab with a seed of zero due to its high number generation 

speed in comparison to other modern generators, its long period length and has also passed 

several stringent statistical tests for randomness (Matsumoto and Nishimura, 1998). 

Table 7-7. Test statistic summary for normal and Weibull probability density functions 

Test Statistic Normal Distribution Weibull Distribution 

Anderson-Darling (AD) 0.427; p-value=0.307 0.232; p-value>0.5 

Kolmogorov-Smirnov (KS) Rejects Null hypothesis (H0) - 

 

The AD-statistic of the test sample for both the normal and Weibull distributions is low in 

magnitude and as such the dataset can be adequately modelled by both distributions. The KS-

test for normality rejects the null hypothesis. Given that the null hypothesis is the assumption 

that no significant differences exist between the sample test and a typical normal distribution, 

rejection of the null therefore implies significant differences exist. 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

186 
 

Figure 7-5 shows the probability density function plot for the simulated corrosion rates. It is 

observed that both normal and Weibull probability curves fit the data adequately particularly 

for very low and very high corrosion rates (tailends of the dataset) however both curves seem 

slightly off for corrosion rates in the 20-35mm/year range. This imprecise prediction can also 

be observed on the cumulative density function (cdf) plot for the 20-35mm/year range, shown 

in Figure 7-6. In general, the Weibull distribution is seemingly a closer fit to the corrosion 

rate data than the normal hence is used to model this dataset. 

 

Figure 7-5. Probability density function plot for Monte Carlo simulation of low pressure 

CO2 corrosion rate 

 

Figure 7-6. Cumulative density function plot for Monte Carlo simulation of low pressure 

CO2 corrosion rate 
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Table 7-8 shows the summary statistics for Case study I and how they compare against those 

of the experimental corrosion dataset. It is observed that while there is a sizeable error in the 

estimated mean, the standard deviation estimate is closer to the true value. A second case 

study is carried out while assuming best-fit distributions for each predictor variable and the 

results of the study will be compared against that of Case Study I. This is described in the 

next Section. 

Table 7-8. Summary statistics for case study I 

Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Monte Carlo Model 

Corrosion Rate 

(mm/year) 

Percentage Error 

(%) 

 

Mean 17.03 26.40 55.03
*
 

Standard Deviation 17.02 12.95 23.88
*
 

____________________________________________________________________________________________________ 

* Percentage Errors are calculated as follows: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒−𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒|

𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒
× 100% 

____________________________________________________________________________________________________ 

Case Study II - Based on the Derived Regression Equation 

Datasets for each variable were plotted on a normal probability plot in order to test for 

normality. Once it was established by inspection that a given dataset did it follow the normal 

distribution, it was then tested against the Rayleigh, Uniform and Weibull distributions by 

plotting the probability density functions for the dataset. The best-fit distribution for the 

variable dataset usually came from one of the aforementioned theoretical distributions. The 

best-fit distribution for each variable is summarised in Table 7-9. 

Table 7-9. Best-fit distributions for each input parameter 

Predictor Variable Probability Distribution 

Temperature Uniform 

CO2 Partial Pressure (𝑃𝐶𝑂2) Weibull 

pH Normal 

Velocity Uniform 

 

The best-fit distributions listed in Table 7-9 were used as equivalent representations for the 

corresponding predictor variables in the derived expression obtained from multiple linear 
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regression on the low pressure CO2 corrosion dataset (Equation. 7.3), and is used to perform 

Monte Carlo simulation. Table 7-10 is a summary of the test statistics. 

Table 7-10. Test statistic summary for normal and Weibull probability density functions 

Test Statistic Normal Distribution Weibull Distribution 

Anderson-Darling (AD) 0.605; p-value=0.113 0.579; p-value=0.114 

Kolmogorov-Smirnov (KS) 0.0766; p-value=0.5881 0.0749; p-value=0.6209 

 

The AD-test value for the Weibull distribution is smaller in magnitude than the corresponding 

test-value for the normal distribution, 0.579<0.605. Also, the p-value of the AD-test for the 

Weibull distribution is greater than the corresponding value for the normality test at the 5% 

significance level. This proves the Weibull distribution is marginally better suited to fit the 

data. The values from the KS-test also support the results of the AD-test. 

 

Figure 7-7. Probability density function plot for Monte Carlo simulation of low pressure 

CO2 corrosion rate 
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The plot in Figure 7-7 is the result of the Monte Carlo simulation using the best-fit Weibull 

statistical parameters for shape and scale. This plot is approximately normal in appearance 

despite the pH being the only predictor variable to be modelled as normally-distributed. This 

observation is explained by the Central limit theorem, which states that with sufficiently large 

or a near-infinite number of draws, the arithmetic mean of independent random variables, 

each with their distinct averages and variances converges to the normal distribution (Rice, 

2007).  

Figure 7-8 is the cumulative density function plot of the distribution in Figure 7-7. It is seen 

that both Weibull and normal distributions closely match the simulated data, such that it is 

difficult to tell which distribution is more suitable by mere inspection. This emphasises the 

significance of the statistical test carried out in Table 7-10. 

 

Figure 7-8. Cumulative density function plot for Monte Carlo simulation of low pressure 

CO2 corrosion rate 

Thus, comparing the results from Case Study I, shown in Table 7-8, with the results of Case 
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suggests that the results of Case Study II are marginally better than Case Study I, even though 

the standard deviation increases by ~13%.  

Table 7-11. Summary statistics for case study II 

Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Monte Carlo Model 

Corrosion Rate 

(mm/year) 

Percentage Error 

(%) 

 

Mean 17.03 23.13 35.58
*
 

Standard Deviation 17.02 10.79 36.57
*
 

____________________________________________________________________________________________________ 

* Percentage Errors are calculated as follows: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒−𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒|

𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒
× 100% 

____________________________________________________________________________________________________ 

 

Sensitivity Analysis 

Case Study II was used as the basis for the Monte Carlo sensitivity analysis. Figure 7-9 shows 

the sensitivity plot for corrosion to each of the predictor variables for the low pressure CO2 

dataset.  

  

 

Figure 7-9. Sensitivity analysis – effect of each parameter on corrosion rate 

It is observed that the corrosion rate is most sensitive to changes in the flow velocity and least 

sensitive to changes in pH. A physicochemical explanation for this fact is that for low 

pressure CO2 corrosion, the flow velocities need to be closely monitored due to the washing 
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away of protective film formation on the metal surface. Higher velocities are likely to trigger 

greater corrosion rates in carbon steel pipes by more readily exposing the metal surface. This 

is so because scales are thinner, less dense and less compact than for high CO2 pressure 

conditions (Zhang et al., 2012b). The effect of temperature and CO2 partial pressure can be 

seen as the second most-influential predictor variables. Their effect here can be explained 

from the principal component analysis (PCA) results from Section 7.2.2, as they are the 

greatest contributors to the variation within this dataset. The pH is the least contributor to the 

variation within the dataset from PCA analysis, which also can be seen to have little impact 

on corrosion rates even with a 50% change in the magnitude of its standard deviation. The 

velocity variable is the only variable that does not follow the PCA order in terms of influence 

and statistically, this may be due to the imperfect mean and standard deviation percentage 

errors for Case Study II with respect to the experimental dataset. The best-fit distributions are 

the best possible matches to the predictor variable datasets but cannot completely describe 

them due to the presence of random errors in measurements or noise (Cottis et al., 1999). 

 

7.5 Monte Carlo Simulation of High Pressure CO2 Corrosion Dataset 

 

7.5.1 Experimental Dataset 

Figure 7-10 shows that though both the Weibull and normal probability distributions represent 

the data adequately, the normal line plot is a slightly better fit. Results from the summary 

statistics Table 7-12, confirm the normal distribution as the slightly better fit. Firstly, the 

magnitude of the AD-test statistic is smaller than that of the Weibull, given that the smaller 

test result is the better statistic. Also, the corresponding p-values are greater for the former 

than for the latter at the 5% significance level (0.05). 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

192 
 

 

Figure 7-10. Normal probability plot and Weibull probability plot 

 

For the KS-test statistic, again, the smaller the magnitude of the test result, the better, while 

the p-value is greater for the normal than for the Weibull distribution suggesting that the 

probability of obtaining a good fit is slightly better for the Normal than the Weibull.  

Table 7-12. Test statistic summary for normal and Weibull probability density functions 

Test Statistic Normal Distribution Weibull Distribution 

Anderson-Darling (AD) 0.314; p-value=0.513 0.492; p-value=0.211 

Kolmogorov-Smirnov (KS) 0.164; p-value=0.815 0.168; p-value=0.776 

 

Figure 7-11 shows the probability density plot for the high pressure CO2 corrosion dataset. By 

inspection, both normal and Weibull curves appear to fit the data accurately. However, the 

AD and KS tests show the data more likely comes from a normal distribution. 
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Figure 7-11. Normal probability density and Weibull probability density plots for 

experimental CO2 corrosion rate dataset 

 

Table 7-13 shows comparative statistics for the Weibull and normal distributions. 

Table 7-13. Statistical parameters for each distribution 

Statistical Parameter Weibull Normal 

Mean (mm/year) 10.66 10.78 

Standard Deviation (mm/year) 4.72 4.75 

Shape factor 12.03 - 

Scale factor 2.41 - 

 

7.5.2 Monte Carlo Dataset 

The Monte Carlo datasets were modelled using 100,000 simulations. Figure 7-12 is a 

probability density function plot for the Monte Carlo simulated corrosion rates. The Weibull 

distribution does not fit the data hence is not shown. 
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Figure 7-12. Monte Carlo simulated probability density function plot showing normal 

and logistic curve fits 

Both the normal and logistic curves are good fits for the data. However, the logistic curve 

hangs slightly over the centrally-located histograms at the peak of the pdf. Since the data 

comes from a normal distribution, the normal curve is a good fit. The following Table shows 

the summary statistics for both Normal and Logistic distributions. The normal Monte Carlo 

outperforms the alternative Logistic distribution in terms of the calculated statistical 

parameters. 

Table 7-14 Summary statistics for the normal and logistic probability distributions 

Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Normal Monte 

Carlo (mm/year) 

Logistic Monte 

Carlo (mm/year) 

 

Mean 10.78 10.79 (0.09)* 10.79 (0.09)* 

Standard Deviation 4.75 4.76 (0.21)* 4.94 (4.00)* 

____________________________________________________________________________________________________ 

* Figures in brackets are percentage errors with respect to experimental data  

Percentage Errors are calculated as follows: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒−𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒|

𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒
× 100% 

____________________________________________________________________________________________________ 
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Case Study I - Based on the Derived Regression Equation 

The regression Equation. (7.6) derived in Section 7.3.3 for the high pressure CO2 dataset was 

used as a basis for carrying out Monte Carlo simulations for this Case Study. Again, uniform 

probability distributions were used to model each variable. Equation (7.1) was used in the 

formulation of the uniform distributions for each of the variables in the dataset: temperature, 

CO2 partial pressure, flow velocity and pH. Table 7-15 is a summary of the test statistic 

results for simulations of the data using the Normal and Weibull distributions.  

Table 7-15. Test statistic summary for normal and Weibull probability density functions 

Test Statistic Normal Distribution Weibull Distribution 

Anderson-Darling (AD) 0.624; p-value=0.101 0.618; p-value=0.075 

Kolmogorov-Smirnov (KS) 0.064; p-value=0.813 0.064; p-value=0.814 

 

The results of the given test statistics imply that both distributions closely match the data. The 

magnitude of the AD-test result is slightly smaller for the Weibull than for the normal 

distribution however the p-value at the 5% significance level is higher for the Weibull than for 

the normal distribution. Hence both distributions are as good as each other. The result of the 

KS-test statistic implies given that both distributions have the same KS-test value, the Weibull 

is slightly better because of the higher p-value. 

For the probablity density function plot of Figure 7-13, both distributions also show how 

closely they match-up against the given data. The cdf plot of Figure 7-14 also shows that by 

inspection, the better fit might be difficult to deduce. The Weibull curve fits the data less 

accurately for corrosion rates in the range: 8 to16mm/year as well as for corrosion rates 

greater than 20mm/year. The Normal distribution matches up quite closely with the data 

except for corrosion rates in the range: 0-8mm/year. Despite the close fit of the normal curve, 

by visual inspection, the AD-test statistic is sufficiently conclusive. 
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Figure 7-13. Probability density function plot for Monte Carlo simulation of high 

pressure CO2 corrosion rate 

 

Figure 7-14. Cumulative density function plot for Monte Carlo simulation of high 

pressure CO2 corrosion rate 
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Table 7-16 shows summary statistics for Case Study I. The mean of the Monte Carlo dataset 

is accurate with a percentage error of 0.56% however the standard deviation is not as accurate. 

Optimisation of the Monte Carlo dataset would be beneficial. This is discussed in Section 7.6. 

 

Table 7-16. Summary statistics for case study I 

Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Monte Carlo Model 

Corrosion Rate 

(mm/year) 

Percentage Error 

(%) 

 

Mean 10.78 10.84 0.56
*
 

Standard Deviation 4.75 5.90 24.21
*
 

____________________________________________________________________________________________________ 

* Percentage Errors are calculated as follows: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒−𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒|

𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒
× 100% 

____________________________________________________________________________________________________ 

 

Case Study II - Based on the Derived Regression Equation 

Best-fit distributions were determined for each of the variables and Table 7-17 summarises 

the results. 

Table 7-17. Best-fit distributions for each input parameter 

Input Parameter Probability Distribution 

Temperature Uniform 

CO2 Partial Pressure (𝑃𝐶𝑂2) Weibull 

pH Normal 

Velocity Uniform 

 

Table 7-18 shows the summary statistics for the Normal and Weibull probability density 

functions. 
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Table 7-18. Test statistic summary for normal and Weibull probability density functions 

Test Statistic Normal Distribution Weibull Distribution 

Anderson-Darling (AD) 0.694; p-value=0.068 0.801; p-value>0.5 

Kolmogorov-Smirnov (KS) 0.066; p-value=0.784 0.067; p-value=0.773 

 

From the Table, the AD and KS test statistic values have smaller magnitudes for the normal 

distribution than for the Weibull distribution. This implies that the data comes from a normal 

distribution. However, the p-value for the AD test is greater for the normal distribution than 

for the Weibull distribution. For the KS test, the p-value at the 5% significance level is 0.784, 

which is greater than the corresponding value for the Weibull distribution. This leads to the 

conclusion that the data is normally-distributed. Figure 7-13 shows the Monte Carlo 

probability density function plots for both normal and Weibull distributions. 

 

Figure 7-15. Probability density function plot for Monte Carlo simulation of high 

pressure CO2 corrosion rate 
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It is observed from the pdf plot, that while the Weibull curve originates at point (0, 0), it does 

not match-up closely against the data for very low and very high-magnitude corrosion rates. 

The normal curve on the other hand, performs better at fitting the data, particularly for the 

high corrosion rates of 15-30mm/year. Figure 7-16 shows the Monte Carlo cdf plot for the 

data with normal and Weibull cumulative distributions. 

 

Figure 7-16. Cumulative density function plot for Monte Carlo simulation of high 

pressure CO2 corrosion rate 

 

While the shapes for both curves roughly match-up against the data, the Weibull curves 

deviates from the data for corrosion rates of the range: 7-17mm/year and for the tail-points of 

the data. The normal curve generally approximates the data better than the Weibull curve with 

evidently smaller deviations. Table 7-19 is the summary statistics for Case Study II. 
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Table 7-19. Summary statistics for case study II 

Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Monte Carlo Model 

Corrosion Rate 

(mm/year) 

Percentage Error 

(%) 

 

Mean 10.78 12.65 17.35
*
 

Standard Deviation 4.75 6.17 29.89
*
 

____________________________________________________________________________________________________ 

* Percentage Errors are calculated as follows: 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑀𝑜𝑛𝑡𝑒 𝐶𝑎𝑟𝑙𝑜 𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒−𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒|

𝐸𝑥𝑝.  𝐶𝑜𝑟𝑟 𝑅𝑎𝑡𝑒
× 100% 

____________________________________________________________________________________________________ 

The results of this Case Study were compared with those of Case Study I, presented in Table 

7-16. It is apparent that for both statistical parameters, Case Study I outperforms Case Study 

II. The predictor variables in Case Study I were modelled using Uniform distributions and not 

their best-fit distributions, the latter was applied for Case Study II, yet the Monte Carlo 

simulation results are better for the first Case Study than the second. This may be because the 

experimental dataset is quite small in size therefore what may appear to be the best-fit 

distribution may not necessarily be the case. The small size of the dataset makes it somewhat 

flexible to alternatives when Monte Carlo simulations are carried out. 

 

Sensitivity Analysis 

Case Study I was used to evaluate the sensitivity of corrosion rates to the various predictor 

variables of the high pressure CO2 corrosion dataset. The Monte Carlo sensitivity plot is 

shown in Figure 7-17. 

From the plot, it is observed that the corrosion rate was most sensitive to changes in 

temperature, CO2 partial pressure, pH and flow velocity, in that order. The reason this is so is 

partly explained by the results from PCA of the high pressure CO2 dataset in Section 4.3.2. 

From a statistical perspective, the temperature and CO2 partial pressure induce the greatest 

influence on the variance for this dataset. In addition, the flow velocity and pH are less 

significant in terms of their contribution to the variance. 
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Figure 7-17. Sensitivity Analysis – effect of each parameter on corrosion rate 

 

From a corrosion mechanism standpoint, the impact of the temperature is significant as it 

speeds up the rate of chemical reactions, which is explained by the Arrhenius theory (Tan and 

Chan, 2011). The corrosion rate is least sensitive to the flowrate velocity, which is contrary to 

the low pressure CO2 dataset. The reason is that under high pressure CO2 conditions, thicker, 

denser and more compact scales are formed and its presence on the metal surface provides a 

protective barrier against corrosion (Zhang et al., 2012b).  These scales have a greater 

tendency to resist the effects of fluid flow such that its effect on the corrosion rate is limited. 

 

7.6 Optimisation of Results 

For both low pressure and high pressure CO2 corrosion datasets, Case Study II and Case 

Study I produced the better Monte Carlo solutions for each group respectively, in terms of 

accuracy in predicting the means and standard deviations of their respective experimental 

datasets. Notwithstanding, in order to model the experimental data more accurately, 

optimisation is required.  

For the low pressure CO2 corrosion dataset, sensitivity analysis revealed corrosion rates to be 

most sensitive to changes in the velocity. For this reason, optimisation was performed on the 

velocity variable. The other three variables (temperature, 𝑃𝐶𝑂2 and pH) were modelled using 
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their best-fit distributions while carrying out Monte Carlo simulations. The best-fit 

distributions were used given that the summary statistics (Case Study II) produced marginally 

better results than when modelling was carried out assuming uniformly distributed variables 

(Case Study I). The mean and standard deviation of the Monte Carlo simulated dataset were 

then equated with the corresponding statistics for the experimental dataset. An initial estimate 

for the velocity was chosen after which an iterative scheme was implemented in Matlab 2012a 

to determine the actual flow velocity for the optimisation process. During optimisation, the 

solutions for the flow velocity were: 5.47m/s. and 6.96m/s. Even though there is more than 

one solution for the optimised velocity, a conclusion can be drawn, which is the velocity 

needs to be greater than 5.47m/s for the simulated data to more accurately model the 

experimental dataset. The solution is more likely to be closer to 6.96m/s, given that the 

recorded mean for the velocity at low pressure stated in Section 4.2.1, Table 4-1 is: 7.20m/s. 

Though, the best-fit distributions were used in optimisation for each of the variables, these 

distributions were only the best-match to the variable datasets and not their ideal 

representations. It is highly unlikely that a given theoretical distribution will completely 

represent every given data-point in any given experimental dataset due to the presence of 

random errors or noise (Cottis et al., 1999). For instance, Figure 7-18 shows the CO2 partial 

pressure dataset and its best-fit distribution. It can be seen that though the Weibull is a good-

fit, it does not accurately model the tail-points of the CO2 partial pressure data, i.e., the very 

low and the very high data-points.  

Similarly for the high pressure CO2 dataset, optimisation is carried out with respect to the 

variable that the corrosion rate is most sensitive to, which is temperature. Again, for high 

pressures, the percentage errors in Case Study I suggests adequate precision in modelling, 

hence the other variables are modelled using the uniform distribution. There is one solution 

result when the means and standard deviations of the Monte Carlo and experimental corrosion 

rates are identical. This solution is at 60.36
o
C. Though this value is well below the mean of 

temperatures for the high pressure corrosion dataset stated in Section 4.3.1, Table 4-5: 

(80.25
o
C), it must be noted that the assumption during optimisation is that all other variables 

are uniformly distributed. 

In general, optimising the Monte Carlo data proved to be unusual because for the high 

pressure CO2 dataset in particular, the size of the experimental dataset is quite small hence 

there is the possibility of having several fitting solutions or no solutions at all.  
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Figure 7-18. Probability plot showing the Weibull distribution as the best-fit for CO2 

partial pressure variable 

 

7.7 Conclusions 

Monte Carlo simulation is a technique involving the use of repeated sampling of a random 

discrete or continuous variable. The experimental datasets for low and high pressure CO2 

corrosion are of a continuous nature, in that the respective variables can be measured at 

different points and contain decimal numbers and not simply whole number integers as is 

applicable to discretised variables. An attempt was made to find a suitable range for the 

number of simulations to be used when carrying out Monte Carlo simulations. A range of 

between a hundred thousand to one million (1 × 105 − 1 × 106) simulations seemed sufficient 

for modelling.  

The experimental datasets were first tested for normality using probability plots and then were 

subsequently fitted against several other theoretical distributions. The low CO2 pressure 

corrosion dataset was found to come from the Weibull family of distributions. The Weibull, 

lognormal and exponential distributions were all good fits judging by the low percentage 

errors of the estimated distributions statistical parameters with respect to those of the 
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experimental dataset. The statistical reason for this is due to the positive skewness of the 

corrosion rate predictor variable, which was shown as a boxplot in the descriptive statistics of 

Section 4.2.1. The importance of these theoretical distributions to reliability and survival 

analysis is well-known. The lognormal distribution, for instance, is a good fit for materials 

undergoing failure due to stress or corrosion. 

For the high pressure CO2 dataset, the normal distribution was found to be a closer fit than the 

Weibull distribution. This may partly be due to its small size. Unlike the low pressure CO2 

dataset, the corrosion rate response variable is approximately symmetrical and not positively 

skewed as shown in the boxplot in Section 4.3.1. It therefore does not lend itself to being 

modelled accurately by the Weibull family of distributions. The regression equations derived 

from Sections 4.2.3 and 4.3.3 were used in the Case Studies for the evaluation of the 

corrosion rate sensitivity plots, for the low and high pressure CO2 corrosion datasets 

respectively.  

For the low pressure CO2 corrosion dataset, Case Study II was used to derive the corrosion 

rate sensitivity plot. This Case Study involved the use of best-fit distributions, which 

produced better statistics than the alternative Case Study I, for which Uniform distributions 

were assumed for the predictor variables: temperature CO2 partial pressure, flow velocity and 

pH. Table 7-19 shows these results. Corrosion rates were proven to be most sensitive to the 

flow velocity, temperature, CO2 partial pressure and pH, in that order. Flow velocities tend to 

have a great impact on low CO2 corrosion because according to experimental findings, the 

ferrous carbonate (FeCO3) scale formed is less-dense, less-compact and comparatively thinner 

than the scale formed under high pressure CO2 conditions. The flow velocities under low 

pressure CO2 conditions will have to be closely monitored to avoid a scenario where 

moderately high to very high flowrates sweep away protective scale on the metal surface, thus 

exposing the metal to further corrosivity. 

For the high pressure CO2 corrosion dataset, Case Study I, in which all variables were 

assumed to follow the Uniform distribution, outperformed Case Study II, in which the best-fit 

distributions were used to represent the predictor variables. This may be due to the small 

experimental dataset used as the basis for carrying out Monte Carlo simulations. Table 7-20 

shows summary statistics for low and high pressure CO2 corrosion datasets. 
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Table 7-20. Monte Carlo simulation results based on the derived regression equations 

 Statistical 

Parameter 

Experimental 

Corrosion Rate 

(mm/year) 

Monte Carlo 

Corrosion Rate 

(mm/year) 

Percentage 

Error (%) 

Low Pressure 

CO2 dataset 

Mean 17.03 23.13 35.58 

Standard 

Deviation 

17.02 10.79 36.57 

High Pressure 

CO2 dataset 

Mean 10.78 10.84 0.56 

Standard 

Deviation 

4.75 5.90 24.21 

 

Corrosion rates for the high pressure CO2 dataset were found to be most sensitive to 

temperature, followed by the CO2 partial pressure, pH and flow velocity, in that order. The 

temperature and CO2 partial pressures are influential variables regardless of the dataset. This 

is partly explained statistically by the PCA results of Sections 4.2.3 and 4.3.3. These variables 

have the greatest contributions to the variances of both datasets.  

In terms of the corrosion mechanism, temperature affects corrosion rates because it speeds up 

the underlying transport and electrochemical processes. It is generally known that the rate 

constants of most reactions increase with an increase in temperature and corrosion is not an 

exception. This implies that where possible, temperatures will have to be kept low, to control 

corrosivity. A 5 or 10% increase in the temperature is roughly equivalent to a 2.5mm/year 

increment in corrosion rates. This is obtained from the sensitivity analysis plot in Section 

7.5.2, Figure 7-17. The flow velocity has the least effect on corrosion due to the fact that the 

thicker scales under high pressure conditions diminish its effect. Table 7- 21 shows the least 

and most influential variables to corrosion rates for both low and high pressure CO2 corrosion 

datasets. 
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Table 7-21. The least and most influential predictor variables on CO2 corrosion 

 Low Pressure CO2 dataset High Pressure CO2 dataset 

Least Influential Variable pH Flow velocity 

Most Influential Variable Flow velocity Temperature 

 

As with all attempts at modelling, there are usually limitations. The limitations of the 

sensitivity analysis results are that they are based on derived regression equations whose R
2
-

values are moderately high, with adequate reliability but are not perfectly accurate models. 

The use of best-fit distributions as equivalent representations in Monte Carlo simulations can 

be somewhat simplistic, given that these theoretical distributions are not always representative 

of the experimental datasets and are capable of adding noise into simulations. 

Also, the high pressure dataset is small in size therefore simulations based on the use of this 

dataset may not fully capture the intrinsic patterns as thoroughly as possible, such as when a 

sufficiently large dataset is used. 
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Chapter 8. Extended Discussion 
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8.1 Introduction 

In Chapter 3, various CO2 corrosion models were discussed including the empirical 1991, 

1995 De Waard and Norsok correlations (Nyborg, 2002; Nyborg, 2010) as well as the 

mechanistic Freecorp model. Also, in Chapters 4 to 7, statistical, neural network, fuzzy, and 

Monte Carlo models were derived respectively. 

In this Chapter, the models discussed in Chapter 3 are assessed using an identical 

experimental dataset used in determining the performances of the derived models of Chapters 

4 to 7. Model performances were evaluated using the R
2
-statistic in conjunction with 95% 

confidence intervals. In addition, the applicability and limitations of the derived models from 

Chapters 4 to 7 are discussed. 

 

8.2 Model Performances of the 1991, 1995 De Waard, Norsok and Freecorp 

The test dataset was used to evaluate the performance of the models. The predicted outputs 

were plotted against their equivalent experimental corrosion results in the same manner as 

described for the previously discussed models. 

8.2.1 Low Pressure CO2 Corrosion Prediction Results 

The 1991 De Waard Model 

Figure 8-1 shows the correlation of the 1991 De Waard model results with experimental 

results. It is seen that the 1991 De Waard model has an average correlation with experimental 

results, as indicated by the R
2
-value. There is evidence of under-prediction – the data-points 

are consistently below the ‘experiment=model line’. The error bar chart of Figure 8-1 also 

indicates that under-prediction is highly prevalent, since all of the error bars are positive. 

Also, all of the data-points lie outside of the 95% confidence interval. This is due to the fact 

that for this model, only temperature and 𝑃𝐶𝑂2 variables are required with the other two 

variables, velocity and pH not represented. The model is therefore very limited hence the 

model-experiment plot indicates that the parameters are inadequately describing the data. 
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Figure 8-1. The 1991 De Waard model corrosion rate against experimental corrosion 

rate plot and error bar chart for selected test data – error is the difference between 

experimental and model corrosion rate 

 

The 1995 De Waard Model 

Figure 8-2 shows the correlation of the 1995 De Waard model results with experimental 

results. It is seen that the 1995 De Waard model has a very strong correlation with 

experimental results, as indicated by the very high R
2
-value. Also, majority of the data-points 

lie within the 95% confidence interval, validating the reliability of the model. The interval 

range is not as large as the ranges associated with the other models, which implies the 1995 

De Waard model has a greater degree of precision. 
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Figure 8-2. The 1995 De Waard model corrosion rate against experimental corrosion 

rate plot and error bar chart for selected test data 

 

Norsok Model 

Figure 8-3 shows the correlation of the Norsok model results with experimental results. It is 

seen that the Norsok model has a very strong correlation with experimental results, as 

indicated by the very high R
2
-value even though there is evidence of over-prediction – the 

data-points are consistently above the ‘experiment=model line’.  

Additionally, a significant number of data-points lie outside of the narrow-range 95% 

confidence interval indicating that though the model may have a strong correlation with 

experimental results, its reliability is satisfactory. 
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Figure 8-3. Norsok model corrosion rate against experimental corrosion rate plot and 

error bar chart for selected test data 

 

Freecorp Model 

Figure 8-4 shows the correlation of the Freecorp model results with experimental results. It is 

seen that the Freecorp model has a rather weak correlation with experimental results, as 

indicated by the very low R
2
-value. The data-points appear to be divided into two sub-groups, 

where the low-magnitude corrosion rates are close together, under-predicted and the high-

magnitude corrosion rates that are more scattered, yet evenly dispersed around the 

‘experiment=model line’.  

Also, a significant number of data-points lie outside of the wide-range 95% confidence 

interval. This information coupled with the fact that the R
2
-value is low implies that the model 

is not sufficiently accurate and reliable. The wide confidence bounds also indicate there is a 

greater degree of uncertainty in prediction results in comparison to other models. 
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Figure 8-4. Freecorp model corrosion rate against experimental corrosion rate plot and 

error bar chart for selected test data – error is the difference between experimental and 

model corrosion rate 

 

8.2.2 High Pressure CO2 Corrosion Prediction Results 

The 1991 De Waard Model 

The R
2
-coefficient for this model was very low when tested with the high pressure CO2 

corrosion test set. However this result is expected given that the model was originally 

formulated for predicting corrosion rates under low pressure. Figure 8-5 shows the correlation 

of the 1991 De Waard model results with the test dataset.  

Also, the model over-predicted all test data-points indicating a high degree of conservatism. 

While the predictions are mostly within the 95% confidence bounds, the boundary limits are 

very wide indicating a high degree of uncertainty in predictions. 
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Figure 8-5. The 1991 De Waard model corrosion rate against experimental corrosion 

rate plot and error bar chart for selected test data – error is the difference between 

experimental and model Corrosion rate 

 

The 1995 De Waard Model 

The R
2
-value for the 1995 DeWaard model is very low indicating a poor performance in 

prediction. Nevertheless, as with the earlier-published 1991 De Waard model, it was 

developed for low pressure CO2 corrosion data. 

The model vs experimental results, shown in Figure 8-6, is characterised by a very wide 

confidence interval. This implies a high degree of imprecision in prediction, even though most 

data-points lie within the confidence bounds. In addition, all test points with the exception of 

one is under-predicted.  
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Figure 8-6. The 1995 De Waard model corrosion rate against experimental corrosion 

rate plot and error bar chart for selected test data 

 

Norsok Model 

Figure 8-7 shows the correlation of Norsok model results with the test dataset. The R
2
-

coefficient for the model predictions of high pressure CO2 corrosion is low. The model was 

developed for predicting low pressure CO2 corrosion thus struggles for this test dataset. The 

model under-predicts test set data hence it is not a conservative model for high pressure CO2 

data unlike the very conservative De Waard models. Though all predicted points lie within the 

95% confidence bounds, it is not a reliable model given the wide range for the confidence 

intervals. 

The Freecorp model was not discussed because for the high pressure dataset, it was very 

conservative leading to considerable over-predictions. 
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Figure 8-7. Norsok model corrosion rate against experimental corrosion rate plot and 

error bar chart for selected test data 

 

8.3 Applicability and Limitations of the Various Derived Models 

The derived models from Chapters 5 to 8 are the neural network, fuzzy, statistical and Monte 

Carlo simulations, respectively. These are discussed in the order in which they are listed in 

Section. 

The derived NN models for both low and high pressure CO2 datasets were highly accurate, in 

terms of their computed performances using the R
2
-statistic. In addition, the use of the tansig 

transfer function in conjunction with the trainlm training function produced the best results. 

This is because the trainlm being a quasi-Newton algorithm is known for offering excellent 

optimisation results. The size of the networks obtained were also a reflection of the size of the 

datasets being used for modelling. The low pressure dataset was bigger in size than the high 

pressure dataset and a network configuration of [10 5] was sufficient for obtaining accurate 

predictions. For the high pressure dataset, a network configuration of [5 5] produced desirable 

results. In general, NN models are very useful; however their performances are dependent on 
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the selection of the training data used. It is imperative that the training data adequately 

captures the trends within the overall data or is at least representative of the entire dataset 

being modelled. 

The advantage of the NN models is that despite the small size of the high pressure CO2 

corrosion dataset, with the appropriate data division for training and testing coupled with 

pruning, high model accuracy was attained. It is capable of predicting corrosion rates to 

within 3mm/year. They are somewhat robust and are adaptable to handle datasets of 

different sizes. 

For the derived Mamdani FIS model, the obtained R
2
-coefficients varied markedly for the low 

and high pressure CO2 corrosion datasets, as seen in the Conclusion Section of Chapter 6, 

Table 6-7. The reason for this is because the low pressure dataset is bigger and contains a 

greater degree of variation within it while the high pressure dataset is small and has much less 

variation within it. In general, both derived models are not accurate. There is a more even 

spread of test data-points about the experiment=model line for the low pressure CO2 corrosion 

dataset, as seen in Section 6.5.1, Figure 6-12, than for the high pressure CO2 corrosion 

dataset, as seen in Section 6.6.1, Figure 6-19.  

Fuzzy models have been described as useful models that excel at filling banks or gaps of data 

which is either unknown or otherwise unavailable. They also excel at producing accurate 

profiles for the given predictor variables in a two or three-dimensional format. The plots of 

simulated corrosion rate against each of the predictor variables (temperature, CO2 partial 

pressure, flow velocity and pH) showed realistic depictions of what is expected in an 

experimental setting. They have also been described as models that improve substantially in 

terms of performance when combined with NN models, forming neuro-fuzzy models 

(Hajizadeh, 2007). This model aspect is beyond the scope of this thesis.   

For the described statistical models, the multiple linear regression equations were moderately 

accurate for both low and high pressure CO2 corrosion datasets. They also produced good 

scatters for test data-points around the experiment-model line on the Model vs experimental 

plots, though with a slight degree of over-prediction for both low (Section 4.2.3, Figure 4-7) 

and high pressure CO2 corrosion datasets (Section 4.3.3, Figure 4-21) respectively. 

For the nonlinear regression equations, the performances were markedly different for the 

datasets. While the R
2
-coefficient obtained for the low pressure dataset was moderately high 
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(R
2
=0.67), that of the high pressure dataset was very low (R

2
=0.10). The reason for this is 

because nonlinear regression modelling involves the application of numerical techniques and 

while the dataset is sufficiently large for the low pressure dataset, the high pressure dataset is 

quite small. Therefore, there was a lack of convergence during numerical computation. This 

manifests itself in the model vs experiment line, shown as wide 95% confidence bounds, as 

seen in Section 4.3.4, Figure 4-25. This implies that the results are imprecise and unreliable. 

The multiple linear regression models are versatile and lend themselves for further statistical 

analysis such as Monte Carlo simulations. 

The statistical models have a drawback, which is the size of the dataset being modelled. They 

generally require sizeable amounts of data in comparison to NN models in order to attain high 

performance levels in terms of accuracy. The advantage they have over the NN models is that 

relationships between predictor variables are inferred. A given response variable can be 

expressed explicitly in terms of its predictor variables, when parametric modelling is carried 

out, as was done in this thesis, unlike the ‘black-box’ approach of the NN models. 

Monte Carlo simulations use random sampling and statistical modelling to estimate statistical 

parameters or mathematical functions of interest. This technique is therefore an extension of 

statistical analysis. The advantage of this technique is that it offers a solution for modelling 

data-points as a ‘collective’. For instance, low pressure corrosion rates were found to come 

from a Weibull family of distributions which includes the exponential distribution as a special 

case. Though, the lognormal distribution was also found to fit the data, after a 100,000 Monte 

Carlo simulations, the best-fit distribution was the exponential; with mean and standard 

deviation percentage errors given as: 0.00 and 0.06%.  

The Weibull, exponential and lognormal distributions are extensively applied in reliability 

and survival analysis as they accurately model naturally-occurring phenomena such as 

corrosion and wear accurately. For the high pressure CO2 dataset, it is not as clear-cut which 

distribution is a best-fit. However, the logistic, normal and Weibull distributions were good 

solutions. After carrying out Monte Carlo simulations, the normal proved to be the best fit, 

owing to the central limit theorem (Rice, 2007). The best-fit percentage errors were within 

0.09 and 0.21% of the mean and standard deviation respectively. 

While these inferences are very useful, they still do not provide insight as to how the various 

predictor variables affect the response variable: corrosion rate. The derived regression 

equations enabled the evaluation of the corrosion rate sensitivity with respect to each of the 
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predictor variables. The flow velocity and pH were found to be the most and least influential 

predictor variables respectively on corrosion rate, for the low pressure CO2 corrosion dataset. 

Also, the temperature and flow velocity were found to be most and least influential predictor 

variables respectively on corrosion rate for the high pressure CO2 corrosion dataset.  

Overall, it was challenging to model the low pressure data due to a high degree of variation. 

The presence of outliers in this dataset causes skewness which the models struggled to cope 

with thereby increasing the errors in prediction and lowering their accuracy. For the high 

pressure dataset, variation within the dataset did not prove problematic in modelling as the 

dataset was small however because of the few data-points, the nonlinear regression model, for 

instance was unable to converge to a solution. This is because the model applies numerical 

techniques to compute the solution which relies on the use of a large dataset to be more 

effective. Table 8-1 is summary of the results obtained for the derived models. 

Table 8-1. R
2
-values for the derived models 

Model Low Pressure CO2 Dataset High Pressure CO2 Dataset 

Neural Network 0.91 0.91 

Mamdani FIS 0.32 0.63 

Multiple Linear Regression 0.65 0.70 

Nonlinear Regression 0.67 0.10 

8.4 Concluding Remarks on the Performances of each of the Models 

The empirical Norsok formulation has a strong positive correlation with experimental results 

for the given test dataset while the mechanistic Freecorp model has a weak positive 

correlation. The Norsok formulation shows clear evidence of over-prediction but it must be 

borne in mind that since CO2 corrosion mitigation is the principal aim in modelling, it follows 

that over-prediction is more favourable than under-prediction. The Freecorp model predicts 

the test dataset corrosion rate inaccurately, producing two separate trends on the model vs 

experiment graph, of closely packed low-magnitude corrosion rate values and a more 

scattered high-magnitude corrosion rate values. 

The 1991 De Waard model with an R-squared coefficient of 0.54 showed a positive 

correlation between model and experimental results however it generally under-predicted the 

test dataset. This inadequate representation of the data is apparently due to the correlation 

only having two predictor variables: 𝑃𝐶𝑂2 and temperature and as such misses out completely 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 
 

219 
 

on the effects of the other two missing variables on the data. The 1995 De Waard model 

performed better than each of all the other models. In addition to attaining a high R
2
-value, all 

the test data-points are in very close proximity to the 95% confidence bounds. 

The Freecorp model has a low R
2
-coefficient, even for the low pressure CO2 test dataset 

owing to its lack of scaling modelling in its predictions. As a result, it has a great tendency to 

over-predict. Predictions can be partially split into two groups, as seen in Figure 8-4: test 

data-points less than 25mm/year and test data-points greater than 25mm/year. Model 

performances are summarised in Table 8-1. 

For high pressures, all the established models performed poorly, as indicated by the low R
2
-

values in Table 8-2. This is the case because all these models were developed with the sole 

purpose of predicting corrosion under low pressure CO2 conditions, characteristic of oil and 

gas pipelines. The wide 95% confidence bounds for all models indicate that they are 

imprecise and model predictions are unreliable. 

Table 8-2. R
2
-values for the established models 

Model Low Pressure CO2 Dataset High Pressure CO2 Dataset 

The 1991 De Waard 0.54 0.05 

The 1995 De Waard 0.88 0.13 

Norsok 0.89 0.14 

Freecorp 0.24 (-)* 

 

*The Freecorp model R2-value was not computed for the high pressure CO2 test dataset because it was excessively 

conservative which led to massive over-predictions 
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Chapter 9. Conclusions and Recommendations for Further Work 
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9.1 Conclusions 

The effect of carbon dioxide (CO2) corrosion on pipelines is of great relevance to the 

petroleum as well as the CCS industries. CO2 corrosion is responsible for lost production as it 

brings about the gradual degradation of pipe internals with time. CO2 corrosion was 

discovered in gas wells in Texas in the 1940’s and ever since there have been multiple 

research undertakings on the topic. 

The cost of corrosion cannot be overstated - general corrosion costs are said to be between 3 

to 5% of an industrialised nation’s gross domestic product. The cost of CO2 corrosion in the 

U.S. oil and gas industry as of 2014 was said to be ~$18 billion. Due to the negative impact of 

current global emissions of the gas on the World climate, geo-sequestration efforts are 

currently being explored by the CCS industries which involve the use of abandoned oilfields 

and coal mines for the storage of the gas for geologically significant timescales. 

CO2 as a dry gas is non-corrosive at oilfield and CCS conditions, however when it becomes 

dissolved in water, it forms carbonic acid, which is corrosive. CO2 corrosion potentially poses 

a greater risk when it manifests in the localised mesa-form as opposed to uniform corrosion. 

In mesa-type corrosion, the medium velocity fluid flow coupled with the ‘right’ fluid 

composition gives rise to localised corrosive attack on the metal surface. Also the iron carbide 

(Fe3C) scale is prevalent in this form of corrosion. Unlike the ferrous carbonate (FeCO3) 

scale, Fe3C provides less of a protective barrier to corrosion for the metal surface beneath.  

These forms of corrosion risk coupled with the aforementioned costs necessitate the 

importance of understanding the core concepts underpinning CO2 corrosion hence the need 

for reliable corrosion rate prediction models. Various models have been developed over the 

years for predicting corrosion rates in pipelines. Some of these include the 1975, 1991 and 

1995 De Waard, Norsok and Freecorp models. These models were developed for application 

in the oil and gas setting, known for their characteristically low CO2 partial pressures, 

typically less than 2MPa (20bar).  While their prediction performances are good for low CO2 

partial pressure conditions, their performances for high CO2 pressure environments have been 

shown to be poor. 

Separate low and high pressure CO2 datasets obtained from research literature were used to 

evaluate model performance in terms of their accuracy in prediction. The statistical measure 

used is the R
2
-coefficient, with a minimum value of 0 and maximum value of 1, for a positive 

correlation between the test dataset and model predictions.  
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Various models were derived based on neural networks (NN), fuzzy, statistical and Monte 

Carlo simulations. These will be discussed in the order in which they are listed. Neural 

networks are inspired by the operation of the human brain and its neurons in the nervous 

system. For modelling CO2 corrosion, performance-related tests were carried out on Matlab 

2012a transfer and training functions. 

The derived NN models for the low and high pressure CO2 datasets produced very good 

results with high R
2
-values of ~0.9 and the narrow 95% confidence bounds indicated model 

precision and a great certainty in predictions. All predictions were within 3mm/year of the 

experimental data. In general, NN models are particularly useful when the size of the dataset 

is small, which is currently the case for high pressure CO2 corrosion. They are adaptable and 

are capable of producing excellent results for very small datasets however their drawback is in 

their need for a good user-selected training set. Without a training set that captures the 

variation sufficiently enough, results may not be forthcoming. 

Fuzzy Inference Systems (FIS) or fuzzy logic systems are based on binary systems, but where 

binary systems deal with extremes (0 or 1); fuzzy logic systems operate in the ‘fuzzy’ region: 

0-1. In terms of performance, the Mamdani FIS attained a higher R
2
-value for the high 

pressure CO2 test set than for the low pressure CO2 test set. The reason the model struggled in 

model prediction, particularly for the low pressure CO2 dataset might be due to a greater 

degree of variation within this dataset than with the comparatively smaller high pressure test 

set. The models do however excel at modelling the corrosion rate vs predictor variable 

profiles realistically 

The statistical models were derived for both low and high pressure CO2 corrosion datasets. 

Firstly, principal component analysis (PCA) was performed on both datasets. The PCA results 

reveal the relative contribution of each of the predictor variables to the response variable. The 

analysis revealed that the temperature and CO2 partial pressure had the greatest share in terms 

of the contribution to the variance of both low and high pressure datasets. The multiple linear 

regression equations were obtained with moderately high R
2
-values. For the high pressure 

CO2 dataset, there was a tendency for over-prediction indicating some degree of 

conservatism. 

The Monte Carlo model performances were evaluated by estimating the means and standard 

deviations of the test dataset as well as for the derived models, and computing the errors 

between these and expressing them as a percentage error.  
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The low and high pressure datasets were analysed to find their best-fit theoretical 

distributions. The low pressure CO2 dataset was found to match-up well against the Weibull 

family of distribution. This is because the corrosion rates in the low pressure CO2 dataset 

exhibit positive skewness. The outliers within this dataset are in the 60-70mm/year range. The 

lognormal, Weibull and exponential distributions are good models for naturally-occurring 

phenomena such as metals undergoing wear and corrosion. They are also good fits for 

positively skewed data. The high pressure dataset was found to follow the normal distribution 

although this is not as clear-cut as the low pressure case. This is attributed to the small size of 

the dataset. The regression equations were applied in the derivation of the corrosion rate 

sensitivity. Since the regression equations contain predictor variable terms, Monte Carlo 

simulations were used to determine the variables that the corrosion rate is most sensitive to. 

The sensitivity analysis for the low pressure CO2 data revealed that corrosion rates are most 

sensitive to flow velocity, closely followed by the temperature and CO2 partial pressure and 

least sensitive to the pH. The result implied that the flowrate for the low CO2 pressure dataset 

has to be closely monitored as for instance, an initial 10% increment in the standard deviation 

of the flow velocity results in a corresponding increase in corrosion rates by 5mm/year. 

For high pressures, it was observed that the temperature is the most influential variable on 

corrosion rate followed by the CO2 partial pressure, pH and flow velocity, in that order. 

Interestingly, results from PCA revealed the temperature and CO2 partial pressure to be the 

predictor variables that had the greatest contribution to the variance of the dataset. This is true 

for the both low and high pressure datasets. For both datasets, corrosion rates are consistently 

sensitive to these variables.  

Also, as previously stated, temperatures increase corrosion rates as explained by the Kinetic 

theory, and so is significant. At high pressure conditions, thicker, more compact and denser 

FeCO3 scales are formed on the metal surface which offers greater resistance to the sweeping 

effect of fluid flowrates. Under low pressure CO2 conditions, FeCO3 scales are thinner and 

less dense therefore are more vulnerable to fluid flow effects. These can be easily washed off 

thus exposing the metal surface beneath to further corrosivity. 

The limitations of the Monte Carlo sensitivity analyses are that they are based on fairly 

accurate regression equations however they are not flawless and do not completely capture the 

variability in the datasets. Also, in some cases, the distributions selected as best-fit were the 

best-match distributions, which do not necessarily mean that they describe every data-point 
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within the predictor variable dataset accurately. For some predictor variables, the best-fit 

distributions fit the central set of data-points well but perform relatively poorly at the tail-

points (very low and very high-magnitude data). In these instances, the assumptions for best-

fit distributions introduce more uncertainties to further modelling. 

 

9.2 Recommendations for Further Work 

 

In this thesis, a Mamdani FIS model was derived for the purpose of CO2 corrosion prediction 

for both low and high partial pressures of CO2. However, a Sugeno FIS model was not 

developed for low and high CO2 partial pressures. Also, due to the fact that the derived 

models had limited accuracy, which is somewhat a feature of these models when used as 

stand-alone tools, a neuro-fuzzy model can be developed. This model would combine the 

good characteristics of both the NN and fuzzy models, which can potentially result in a more 

robust tool for corrosion prediction. 
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Appendices 

A1.1 Project Gantt Chart 
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A1.2 Microsoft Excel Corrosion Database - Sample

Temperature 

(
o
C) 

𝑃𝐶𝑂2 

(MPa) 

Velocity 

(m/s) 

pH Corrosion 

Rate 

(mm/year) 

 Data Source  Temperature 

(
o
C) 

𝑃𝐶𝑂2 

(MPa) 

Velocity 

(m/s) 

pH Corrosion 

Rate 

(mm/year) 

20 0.05 0.1 4.1 0.7  Dugstad et 

al., 1994 

 20 0.05 0.1 4.1 0.7 

20 0.13 0.1 3.8 0.9  Halvorsen et 

al., 1999 

 20 0.13 0.1 3.8 0.9 

20 0.17 0.1 3.7 0.5  Nordsveen 

et al., 2003 

 20 0.17 0.1 3.7 0.5 

20 0.28 0.1 3.7 1.9    20 0.28 0.1 3.7 1.9 

20 0.38 0.1 3.7 2.5    20 0.38 0.1 3.7 2.5 

20 0.05 13 4.1 3.5  Zhang et al., 

2012a 

 20 0.05 13 4.1 3.5 

20 0.05 8.5 4.1 4  Hesjevik et 

al., 2010 

 20 0.05 8.5 4.1 4 

20 0.28 13 3.7 13    20 0.28 13 3.7 13 

20 0.28 8.5 3.7 10    20 0.28 8.5 3.7 10 

20 0.28 3.1 3.7 9    20 0.28 3.1 3.7 9 

20 0.13 13 3.8 7    20 0.13 13 3.8 7 

20 0.13 8.5 3.8 8    20 0.13 8.5 3.8 8 

20 0.17 3.1 3.7 4.8    20 0.17 3.1 3.7 4.8 

20 0.17 8.5 3.7 5.4    20 0.17 8.5 3.7 5.4 

20 0.17 13 3.7 8    20 0.17 13 3.7 8 

40 0.2 3.1 3.8 1    20 0.205 1.13 4.8 2.5 

40 0.2 8.5 3.8 6    20 0.225 1.13 4.7 3 

40 0.04 8.5 4.15 5    20 0.305 2.25 4.6 6 
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A4.1 Statistical Student t-table 
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A4.2 Three-dimensional Plot of Corrosion Rate against CO2 Partial Pressure and 

Temperature for the Low Pressure CO2 Corrosion Dataset from Alternate Viewing Angles  

 

      



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 

230 
 

A6.1a Three-dimensional Mamdani FIS Plot of Corrosion Rate against Temperature and 

CO2 partial pressure for the Low Pressure CO2 Dataset (Centroid Defuzzification) 

 

 

 

A6.1b Three-dimensional Mamdani FIS Plot of Corrosion Rate against Temperature and 

CO2 partial pressure for the Low Pressure CO2 Dataset (Bisector Defuzzification) 
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A6.2 Mamdani FIS Plot of Corrosion Rate against Temperature for the High Pressure CO2 

Dataset 
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Developed Model Code 

 

Regression Model Code 

 

%Script to analyse Low Pressure CO2 corrosion data from Dugstad 1994 journal article using 

multiple linear 

%regression and non-linear regression 

  

clc, clear, close all  

  

%The data in columns are low pressure CO_2 corrosion data from Dugstad 1994  

%First column => Temperature (^oC) 

%Second column => CO2 Pressure (MPa) 

%Third column column => Velocity/flow (m/s) 

%Fourth column => pH 

%Fifth column => CO2 Corrosion rate (mm/year) 

  

Dugstad_1994_data_01=... 

  [20.0000    0.0500    0.1000    4.1000    0.7000 

   20.0000    0.1300    0.1000    3.8000    0.9000 

   20.0000    0.1700    0.1000    3.7000    0.5000 

   20.0000    0.2800    0.1000    3.7000    1.9000 

   20.0000    0.3800    0.1000    3.7000    2.5000 

   20.0000    0.0500   13.0000    4.1000    3.5000 

   20.0000    0.0500    8.5000    4.1000    4.0000 

   20.0000    0.2800   13.0000    3.7000   13.0000 

   20.0000    0.2800    8.5000    3.7000   10.0000 

   20.0000    0.2800    3.1000    3.7000    9.0000 

   20.0000    0.1300   13.0000    3.8000    7.0000 

   20.0000    0.1300    8.5000    3.8000    8.0000 

   20.0000    0.1700    3.1000    3.7000    4.8000 

   20.0000    0.1700    8.5000    3.7000    5.4000 

   20.0000    0.1700   13.0000    3.7000    8.0000 

   40.0000    0.2000    3.1000    3.8000    1.0000 

   40.0000    0.2000    8.5000    3.8000    6.0000 

   40.0000    0.2000   13.0000    3.8000   18.0000 

   40.0000    0.0400    3.1000    4.1500    4.0000 

   40.0000    0.0400    8.5000    4.1500    5.0000 

   40.0000    0.0400   13.0000    4.1500    6.5000 

   40.0000    0.0530    3.1000    4.1000    4.5000 

   40.0000    0.0530    8.5000    4.1000    6.0000 

   40.0000    0.0530   13.0000    4.1000    8.5000 

   40.0000    0.0700    8.5000    4.0500    2.5000 

   40.0000    0.0700   13.0000    4.0500    9.0000 

   40.0000    0.7000    3.1000    3.6000    4.6000 

   40.0000    0.7000    8.5000    3.6000   17.0000 

   40.0000    0.7000   13.0000    3.6000   23.0000 

   40.0000    1.2000    8.5000    3.4000   15.0000 

   60.0000    0.2000    0.1000    3.8000    3.0000 

   60.0000    0.2100    0.1000    3.8000    5.0000 
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   60.0000    0.2200    0.1000    3.8000    6.8000 

   60.0000    0.2200    3.1000    3.8000   16.0000 

   60.0000    0.2200    8.5000    3.8000   23.0000 

   60.0000    0.2200   13.0000    3.8000   32.0000 

   60.0000    0.2200   13.0000    3.8000   44.0000 

   60.0000    1.8000    3.1000    3.4000   33.0000 

   60.0000    1.8000    8.5000    3.4000   60.0000 

   60.0000    1.8000   13.0000    3.4000   70.0000 

   60.0000    0.0700    3.1000    4.1500    8.8000 

   60.0000    0.0700   13.0000    4.1500   20.0000 

   60.0000    0.4000    3.1000    3.7000   30.0000 

   60.0000    0.4000    8.5000    3.7000   34.0000 

   60.0000    0.4000   13.0000    3.7000   50.0000 

   90.0000    0.1600    3.1000    4.1000    1.9000 

   90.0000    0.1600    8.5000    4.1000    8.5000 

   90.0000    0.1600   13.0000    4.1000   19.0000 

   90.0000    0.3700    3.1000    3.8000   16.0000 

   90.0000    0.3700    3.1000    3.8000   17.0000 

   90.0000    0.3700    8.5000    3.8000   21.0000 

   90.0000    0.3700   13.0000    3.8000   32.0000 

   90.0000    1.4000    3.1000    3.6000    6.8000 

   90.0000    1.4000    3.1000    3.6000   15.0000 

   90.0000    1.4000    8.5000    3.6000   30.0000 

   90.0000    1.4000   13.0000    3.6000   41.0000 

   90.0000    1.4000    8.5000    3.6000   50.0000 

   90.0000    2.1000    3.1000    3.5000   15.0000 

   90.0000    2.1000    3.1000    3.5000   38.0000 

   90.0000    2.1000   13.0000    3.5000   65.0000]; 

   %'Temperature                ' 'CO_2 Partial Pressure (MPa)' 'Flowrate(m/s)              ' 'pH                         

' 'Corrosion Rate (mm/year)   '}; 

  

X_01=Dugstad_1994_data_01(:,1:3); 

  

x_01=Dugstad_1994_data_01(:,1); 

%x_01, x_02, x_03 and x_04 are column matrices comprising temp, pressure, velocity and 

%pH values respectively 

x_02=Dugstad_1994_data_01(:,2); 

x_03=Dugstad_1994_data_01(:,3); 

x_04=Dugstad_1994_data_01(:,4); 

  

y_01=Dugstad_1994_data_01(:,5); 

%y_01 represents a column matrix comprising the Corrosion rate values 

  

b_1=0.7; 

b_2=1.9; 

b_3=2.4; 

b_4=2.1; 

b_5=1.92; 

  

beta_01=[b_1 b_2 b_3 b_4 b_5]; 

beta_02=[b_1; b_2; b_3; b_4; b_5]; 
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%beta is a matrix of five values - containing the values of b_1,  

%b_2, b_3, b_4 and b_5 above 

  

%rate_01=Sc_data_01_Fuzzy_data(:,3); 

  

%nlintool(x_01,y_01,@model_fun_ScCO2_01) 

  

%xname={'Temperature (oC)' 'CO2 Partial Pressure, PCO2 (MPa)' 'Flowrate (m/s)'}; 

%yname={'Corrosion Rate (mm/year)'}; 

  

  

%nlintool(X_01,y_01,@hougen,beta_01,0.01,xname,yname) 

%Using the Hougen non-linear system to analyse this problem 

%X_01 is a matrix comprising three columns: x_01, x_02 and x_03 

  

%X_001=lsqcurvefit(@hougen,[1],X_01,y_01); 

  

%betahat_01=nlinfit(X_01,y_01,@hougen,beta_02); 

  

%[betahat_01,resid,J]=nlinfit(X_01,y_01,@hougen,beta_02); 

%betaci=nlparci(betahat_01,resid,J); 

  

  

%--using rstool--% 

X_02=Dugstad_1994_data_01(:,1:4); 

X_04=[x_01 x_02 x_04]; 

%X_02 is a matrix containing all the input varaiables for Temperature, 

%P_CO2, Velocity and pH and will be used with the rstool 

  

%beta_star=randn(nVars,1); 

  

mdl_10=NonLinearModel.fit(X_01,y_01,@hougen,beta_02); 

plotSlice(mdl_10) 

  

figure('Name','Nonlinear Regression Model Case Order Diagnostic Plots - Leverage and 

Residuals') 

  

subplot(1,2,1) 

theta_01=plotDiagnostics(mdl_10,'leverage'); 

set(theta_01,'LineWidth',2.5,'MarkerSize',8.0) 

set(gca,'FontName','Times New Roman') 

title('') 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Leverage','FontWeight','Bold') 

  

  

%--Original labels for the plot--% 

%title('Case Order Plot of Leverage') 

%xlabel('Row Number') 

%ylabel('Leverage') 
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subplot(1,2,2) 

theta_02=plotResiduals(mdl_10,'fitted'); 

set(theta_02,'LineWidth',2.5,'MarkerSize',8.0) 

set(gca,'FontName','Times New Roman') 

title('') 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Residuals','FontWeight','Bold') 

  

  

%--Original labels for the plot--% 

%title('Plot of Residuals vs Fitted Values') 

%xlabel('Fitted Values') 

%ylabel('Residuals') 

  

display(mdl_10) 

  

%--mdl_11 is a nonlinearmodel identical to mdl_10 but with a pH variable in 

%place of the velocity variable in order to ascertain that mdl_10 with the 

%velocity variable has a higher r-squared value 

mdl_11=NonLinearModel.fit(X_04,y_01,@hougen,beta_02); 

plotSlice(mdl_11) 

  

figure() 

  

subplot(1,2,1) 

plotDiagnostics(mdl_11,'leverage') 

  

subplot(1,2,2) 

plotResiduals(mdl_11,'fitted') 

%mdl_11=NonLinearModel.fit(X_02,y_01,@hougen,beta_02); 

  

display(mdl_11) 

  

  

%These next two lines for carrying out the regression analysis without errors% 

ones_01=ones(60,1); 

X_03=[X_02 ones_01]; 

  

  

xname_01={'Temperature' 'PCO2' 'Flowrate (m/s)' 'pH'}; 

yname={'Corrosion Rate'}; 

  

rstool(X_01,y_01,'interaction'); %For Temp, P_C_O_2 and Vel variables 

  

rstool(X_02,y_01,'linear');%,xname_01,yname) 

%For all four variables 

  

  

%rstool(X_02,y_01,{'Temperature' ,'PCO2' ,'Flowrate (m/s)' ,'pH','Corrosion Rate 

(mm/year)'}) 
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%--Variable Interaction plots--% 

  

%mdl_01=fitlm('y_01 ~ x_01 + x_02 + x_03 + x_04 + x_01:x_02:x_03:x_04'); 

  

[b,bint,r,rint,stats] = regress(y_01,X_03); 

  

%mdl_01=stepwise(X_02,y_01); 

  

  

%--Linear Model Fit--% 

  

mdl_02=LinearModel.fit(X_02,y_01); 

display (mdl_02) 

  

%mdl_03=LinearModel.fit(X_02,y_01,'interactions'); 

%display (mdl_03) 

  

%plotEffects(mdl_03); 

  

d_01=dataset(x_01,x_02,x_03,x_04,y_01); 

  

mdl_04=LinearModel.fit(d_01,'y_01 ~ x_01 + x_02 + x_03 + x_04 + x_01:x_02:x_03:x_04 + 

x_01^2'); 

  

  

%--Interaction Plots for all the Variables (Using 'predictions')--% 

  

figure('Name','Interaction Plots of Temperature with CO_2 Partial Pressure and Temperature 

with Velocity') 

subplot(1,2,1) 

kappa_01=plotInteraction(mdl_04,'x_01','x_02','predictions'); 

set(gca,'FontName','Times New Roman') 

set(kappa_01,'LineWidth',2.5) 

xlabel('CO_2 Partial Pressure,\it P_{CO_2} \rm\bf (MPa)','FontWeight','Bold') 

ylabel('Adjusted Corrosion Rate (mm/year)','FontWeight','Bold') 

legend('\it T\rm=20^oC','\it T\rm=55^oC','\it T\rm=90^oC',2) 

title('') 

  

subplot(1,2,2) 

kappa_02=plotInteraction(mdl_04,'x_01','x_03','predictions'); 

set(gca,'FontName','Times New Roman') 

set(kappa_02,'LineWidth',2.5) 

axis([3.3 Inf 0 Inf]); 

xlabel('Velocity (m/s)','FontWeight','Bold') 

ylabel('Adjusted Corrosion Rate (mm/year)','FontWeight','Bold') 

legend('\it T\rm=20^oC','\it T\rm=55^oC','\it T\rm=90^oC',2) 

title('') 

  

  

figure('Name','Interaction Plots of Temperature with pH and CO_2 Partial Pressure  with 

Velocity') 
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subplot(1,2,1) 

kappa_03=plotInteraction(mdl_04,'x_01','x_04','predictions'); 

set(gca,'FontName','Times New Roman') 

set(kappa_03,'LineWidth',2.5) 

axis([3.3 Inf 0 Inf]); 

xlabel('pH','FontWeight','Bold') 

ylabel('Adjusted Corrosion Rate (mm/year)','FontWeight','Bold') 

legend('\it T\rm=20^oC','\it T\rm=55^oC','\it T\rm =90^oC',2) 

title('') 

  

  

subplot(1,2,2) 

kappa_04=plotInteraction(mdl_04,'x_02','x_03','predictions'); 

set(gca,'FontName','Times New Roman') 

set(kappa_04,'LineWidth',2.5) 

xlabel('Velocity (m/s)','FontWeight','Bold') 

ylabel('Adjusted Corrosion Rate (mm/year)','FontWeight','Bold') 

legend('\it P\rm=0.04MPa','\it P\rm=1.07MPa','\it P\rm=2.1MPa',2) 

title('') 

  

  

  

figure('Name','Interaction Plots of CO_2 Partial Pressure with pH and Velocity with pH') 

subplot(1,2,1) 

kappa_05=plotInteraction(mdl_04,'x_02','x_04','predictions'); 

set(gca,'FontName','Times New Roman') 

set(kappa_05,'LineWidth',2.5) 

axis([3.3 Inf 0 Inf]); 

xlabel('pH','FontWeight','Bold') 

ylabel('Adjusted Corrosion Rate (mm/year)','FontWeight','Bold') 

legend('\it P\rm=0.04MPa','\it P\rm=1.07MPa','\it P\rm=2.1MPa',3) 

title('') 

  

  

subplot(1,2,2) 

kappa_06=plotInteraction(mdl_04,'x_03','x_04','predictions'); 

set(gca,'FontName','Times New Roman'); 

set(kappa_06,'LineWidth',2.5) 

axis([3.3 Inf 0 Inf]); 

xlabel('pH','FontWeight','Bold') 

ylabel('Adjusted Corrosion Rate (mm/year)','FontWeight','Bold') 

legend('\it U\rm=0.1m/s','\it U\rm=6.55m/s','\it U\rm=13m/s',3) 

title('') 

  

  

%--Interaction Plots for all the Variables (Using 'effects')--% 

  

Temperature=x_01; 

PCO2=x_02; 

Velocity=x_03; 

pH=x_04; 
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Corrosion_Rate=y_01; 

  

d_02=dataset(Temperature,PCO2,Velocity,pH,Corrosion_Rate); 

mdl_05=LinearModel.fit(d_02,'Corrosion_Rate ~ Temperature + PCO2 + Velocity + pH + 

Temperature*PCO2*Velocity*pH + Temperature^2 + PCO2^2 + Velocity^2'); 

mdl_06=LinearModel.fit(d_02,'Corrosion_Rate ~ Temperature + PCO2 + 

Temperature:PCO2'); 

mdl_07=LinearModel.fit(d_02,'Corrosion_Rate ~ PCO2 + Temperature:PCO2 + PCO2:pH + 

Temperature^2 + PCO2^2 + Temperature:PCO2:pH - 1 - Temperature'); 

mdl_08=LinearModel.fit(d_02,'Corrosion_Rate ~ Temperature + PCO2 + Velocity + pH + 

Temperature:PCO2:Velocity:pH + Temperature^2'); 

%mdl_08 is the same as mdl_04 except that the x and y's in mdl_4 represent 

%temperature and co. in mdl_08 

  

figure() 

subplot(2,3,1) 

plotInteraction(mdl_05,'Temperature','PCO2','effects') 

%xlabel('CO_2 Partial Pressure, P_C_O_2 (MPa)') 

%ylabel('Adjusted Corrosion Rate (mm/year)') 

%legend('Green=>T=20^oC','Red=>T=55^oC','Blue=>T=90^oC',2) 

title('Interaction of Temperature and CO_2 Partial Pressure') 

xlabel('Effect on Corrosion Rate') 

  

subplot(2,3,2) 

plotInteraction(mdl_05,'Temperature','Velocity','effects') 

%axis([3.3 Inf 0 Inf]); 

%xlabel('Velocity (m/s)') 

%ylabel('Adjusted Corrosion Rate (mm/year)') 

%legend('Green=>T=20^oC','Red=>T=55^oC','Blue=>T=90^oC',2) 

title('Interaction of Temperature and Velocity') 

xlabel('Effect on Corrosion Rate') 

  

subplot(2,3,3) 

plotInteraction(mdl_05,'Temperature','pH','effects') 

%axis([3.3 Inf 0 Inf]); 

%xlabel('pH') 

%ylabel('Adjusted Corrosion Rate (mm/year)') 

%legend('Green=>T=20^oC','Red=>T=55^oC','Blue=>T=90^oC',2) 

title('Interaction of Temperature and pH') 

xlabel('Effect on Corrosion Rate') 

  

subplot(2,3,4) 

plotInteraction(mdl_05,'PCO2','Velocity','effects') 

%xlabel('Velocity (m/s)') 

%ylabel('Adjusted Corrosion Rate (mm/year)') 

%legend('Green=>P=0.04MPa','Red=>P=1.07MPa','Blue=>P=2.1MPa',2) 

title('Interaction of CO_2 Partial Pressure and Velocity') 

xlabel('Effect on Corrosion Rate') 

  

subplot(2,3,5) 

plotInteraction(mdl_05,'PCO2','pH','effects') 
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%axis([3.3 Inf 0 Inf]); 

%xlabel('pH') 

%ylabel('Adjusted Corrosion Rate (mm/year)') 

%legend('Green=>P=0.04MPa','Red=>P=1.07MPa','Blue=>P=2.1MPa',3) 

title('Interaction of CO_2 Partial Pressure and pH') 

xlabel('Effect on Corrosion Rate') 

  

subplot(2,3,6) 

plotInteraction(mdl_05,'Velocity','pH','effects') 

%axis([3.3 Inf 0 Inf]); 

%xlabel('pH') 

%ylabel('Adjusted Corrosion Rate (mm/year)') 

%legend('Green=>V=0.1m/s','Red=>P=6.55m/s','Blue=>P=13m/s',3) 

title('Interaction of Velocity and pH') 

xlabel('Effect on Corrosion Rate') 

  

display(mdl_04); 

display(mdl_05); 

display(mdl_06); 

display(mdl_07); 

display(mdl_08); 

  

  

figure('Name','Multiple Lin Regression Case Order Plot of Levereage and Plot of Residuals 

against Fitted Values') 

subplot(1,2,1) 

zeta_01=plotDiagnostics(mdl_08); 

set(zeta_01,'LineWidth',2.5,'MarkerSize',8.0) 

set(gca,'FontName','Times New Roman') 

%xlim([0 80]) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Leverage','FontWeight','Bold') 

title('') 

%Leverage Plot -> Identifies outliers within the data 

  

subplot(1,2,2) 

zeta_02=plotResiduals(mdl_08,'fitted'); 

set(zeta_02,'LineWidth',2.5,'MarkerSize',8.0) 

set(gca,'FontName','Times New Roman') 

%Plot of Residuals -> plot should be an even random scatter  

xlim([0 80]) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Residuals','FontWeight','Bold') 

title('') 

  

%figure() 

%plotEffects(mdl_04); 

  

%--ANOVA (Analysis of Variance)--% 

tbl_01=anova(mdl_02,'summary'); 

display(tbl_01) 
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tbl_02=anova(mdl_06,'summary'); 

display(tbl_02) 

  

%Corr_Rate_01=11.787-(4.0357.*Temperature)-(1214.3.*PCO2)+(0.90548.*Velocity)-

(4.5541.*pH)+(75.02.*Temperature.*PCO2)+(0.18747.*Temperature.*Velocity)... 

 %            -(31.663.*PCO2.*Velocity)+(0.94402.*Temperature.*pH)+(357.1.*PCO2.*pH)-

(0.35984.*Velocity.*pH)+(0.0121.*Temperature.^2)-(188.67.*PCO2.^2)... 

 %            -(0.02112.*Velocity.^2)+(0.59099.*Temperature.*PCO2.*Velocity)-

(20.312.*Temperature.*PCO2.*pH)-(0.037319.*Temperature.*Velocity.*pH)... 

 %            +(9.3645.*PCO2.*Velocity.*pH)-(0.17275.*Temperature.*PCO2.*Velocity.*pH); 

         

  

test_set_01=[ 20.0000    0.1300   13.0000    3.8000    6.7000 

              20.0000    0.3600    3.1000    3.6000   12.5000 

              20.0000    0.3600    8.5000    3.6000   17.0000 

              40.0000    0.1400    3.1000    3.8000   13.0000 

              40.0000    0.1400    8.5000    3.8000   16.0000 

              40.0000    0.2500    3.1000    3.7500   19.0000 

              40.0000    0.2500   13.0000    3.7500   24.0000 

              60.0000    0.1500    8.5000    3.9000   20.0000 

              60.0000    0.1500   13.0000    3.9000   27.0000 

              60.0000    0.6500    3.1000    3.7000   30.0000 

              60.0000    0.6500   13.0000    3.7000   60.0000 

              90.0000    0.2400    8.5000    3.8500   17.0000 

              90.0000    0.2400   13.0000    3.8500   26.0000 

              90.0000    0.3300    8.5000    3.8000   15.0000 

              90.0000    0.3300   13.0000    3.8000   37.0000]; 

  

Temperature_01=test_set_01(:,1); 

PCO2_01=test_set_01(:,2);           

Velocity_01=test_set_01(:,3); 

pH_01=test_set_01(:,4); 

Corr_Rate_01=test_set_01(:,5); 

  

  

%--Error Plots for Multiple Linear Regression -> Plots of Multiple Linear Corr Rate vs 

Experimental Corr Rate--% 

  

Corr_Rate_01_test=78.2+(0.9923.*Temperature_01)-

(2.0.*PCO2_01)+(0.9826.*Velocity_01)-(25.0.*pH_01)... 

            -(7.0e-3.*Temperature_01.^2)+(5.3011e-

3.*Temperature_01.*PCO2_01.*Velocity_01.*pH_01); 

  

%display(Corr_Rate_01_test) 

Error_test=Corr_Rate_01-Corr_Rate_01_test; 

Error_test_omic_01=[-6.74 4.50 -1.81 -13.58 -4.72 -9.18 2.95 2.90 -4.67 -3.80 -6.58 -2.93 

5.84 1.30 18.54]; 

  

%figure() 

%bar(Error_test) 
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%xlabel('Test Data') 

%ylabel('Error') 

  

%figure() 

X_001=linspace(0,60,15); 

Y_001=X_001; 

%plot(X_01,Y_01,'k-') 

  

%hold on  

%plot(Corr_Rate_01,Corr_Rate_01_test,'bx') 

%xlabel('Experimental Corrosion Rate (mm/year)') 

%ylabel('Multiple Linear Regression Model Corrosion Rate (mm/year)') 

%legend('Blue Cross => Multiple Linear Regression') 

  

  

figure('Name','Multiple Linear Regression Prediction with Error Bar Chart') 

subplot(1,2,1) 

plot(X_001,Y_001,'k-','LineWidth',1.5) 

set(gca,'FontName','Times New Roman') 

  

hold on 

plot(Corr_Rate_01,Corr_Rate_01_test,'bx','MarkerSize',7,'LineWidth',2.5) 

  

%-- 95% Confidence Intervals for Mulitple Linear Regression --% 

X_01_conf=[0 

           4.2857 

           8.5714 

          12.8571 

          17.1428 

          21.4285 

          25.7142 

          29.9999 

          34.2856 

          38.5713 

          42.857 

          47.1427 

          51.4284 

          55.7141 

          59.9998]; 

  

Y_01_multi_uci=[8.27397568 

               11.27638841 

               14.32847528 

               17.47026027 

               20.78720942 

               24.45262515 

               28.69280475 

               33.53005299 

               38.74822417 

               44.15978721 

               49.66952557 
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               55.23300039 

               60.82832323 

               66.44383875 

               72.07287628]; 

  

Y_01_multi_lci=[-8.27397568 

                -2.704988409 

                 2.814324717 

                 8.243939729 

                13.49839058 

                18.40437485 

                22.73559525 

                26.46974701 

                29.82297583 

                32.98281279 

                36.04447443 

                39.05239961 

                42.02847677 

                44.98436125 

                47.92672372]; 

  

plot(X_01_conf,Y_01_multi_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_multi_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Multiple Lin Regression Model Corr Rate (mm/year)','FontWeight','Bold') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf = 

0.65','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_01) 

set(gca,'FontName','Times New Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1) 

  

  

%--Error Plots for Surface Model Plot -> Plots of Surface Model Corr Rate vs Experimental 

Corr Rate--% 

  

 Sur_mod_01=[17.1679 

              7.8581 

             16.5356 

              5.2500 

             13.9275 

              7.2684 

             23.1771 
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             15.4265 

             22.6577 

             15.2441 

             31.1528 

             23.1853 

             30.4165 

             25.0632 

             32.2945]; 

  

%figure() 

         

Error_test_01=Corr_Rate_01-Sur_mod_01; 

Error_test_omic_02=[-10.47 4.64 7.75 -10.06 2.07 -6.19 0.46 11.73 4.57 0.82 -4.42 4.34 

14.76 4.71 28.85]; 

  

R_coef_01=corrcoef(Corr_Rate_01,Sur_mod_01); 

R_squared_coef_01=(R_coef_01(1,2))^2; 

  

display(R_squared_coef_01) 

  

  

  

%figure() 

%bar(Error_test_01) 

%xlabel('Test Data') 

%ylabel('Error') 

  

figure('Name','Response Surface Model Prediction and Error Bar Chart') 

subplot(1,2,1) 

plot(X_001,Y_001,'k-','LineWidth',1.5) 

set(gca,'FontName','Times New Roman') 

  

hold on 

plot(Corr_Rate_01,Sur_mod_01,'bx','MarkerSize',7,'LineWidth',2.5) 

  

%-- 95% Confidence Intervals for Surface Model --% 

  

Y_01_sur_mod_uci=[8.942072077 

                 11.58287086 

                 14.34067466 

                 17.33684729 

                 20.83055263 

                 25.15391021 

                 30.28646651 

                 35.88890152 

                 41.71546102 

                 47.65277063 

                 53.6501071 

                 59.68291495 

                 65.7382078 

                 71.80857065 
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                 77.88949395]; 

  

Y_01_sur_mod_lci=[-8.942072077 

                  -3.011470859 

                   2.802125339 

                   8.377352713 

                  13.45504737 

                  17.70308979 

                  21.14193349 

                  24.11089848 

                  26.85573898 

                  29.48982937 

                  32.0638929 

                  34.60248505 

                  37.1185922 

                  39.61962935 

                  42.11010605]; 

  

plot(X_01_conf,Y_01_sur_mod_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_sur_mod_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Response Surface Model Corrosion Rate (mm/year)','FontWeight','Bold') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf= 

0.39','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_02) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 

  

  

  

%--Error Plots for Mamdani FIS -> Plots of Mamdani FIS Corr Rate vs Experimental Corr 

Rate--% 

  

Mamdani_Corr_Rate_01=[9.9800 

                      5.7500 

                      5.8300 

                      7.1200 

                     14.1000 

                      6.5400 

                     20.8000 

                     22.8000 

                     23.5000 
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                      7.6600 

                     28.9000 

                     23.6000 

                     23.8000 

                     24.4000 

                     24.7000]; 

  

Error_test_02=Corr_Rate_01-Mamdani_Corr_Rate_01; 

Error_test_omic_03=[-3.28 6.75 5.88 -9.40 1.90 -6.60 11.17 12.46 -2.80 3.20 2.20 3.50 22.34 

12.30 31.10]; 

  

figure('Name','Mamdani FIS Model Prediction and Error Bar Chart') 

subplot(1,2,1) 

plot(X_001,Y_001,'k-','LineWidth',1.5) 

set(gca,'FontName','Times New Roman') 

  

hold on 

plot(Corr_Rate_01,Mamdani_Corr_Rate_01,'bx','MarkerSize',7,'LineWidth',2.5) 

  

%-- 95% Confidence Intervals for Mamdani FIS Model--% 

  

Y_01_mamdani_uci=[8.454310412 

                 11.05344341 

                 13.83667082 

                 17.00891198 

                 20.93037816 

                 25.79286637 

                 31.31271579 

                 37.15760942 

                 43.15780204 

                 49.23867426 

                 55.36553781 

                 61.52073541 

                 67.69450053 

                 73.88104499 

                 80.07673936]; 

  

Y_01_mamdani_lci=[-8.454310412 

                  -2.482043405 

                   3.306129176 

                   8.705288023 

                  13.35522184 

                  17.06413363 

                  20.11568421 

                  22.84219058              

                  25.41339796 

                  27.90392574 

                  30.34846219 

                  32.76466459 

                  35.16229947 

                  37.54715501 
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                  39.92286064]; 

  

  

plot(X_01_conf,Y_01_mamdani_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_mamdani_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Mamdani FIS Model Corrosion Rate (mm/year)','FontWeight','Bold') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf= 

0.32','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_03) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold')                 

  

  

  

%--Error Plots for Sugeno FIS -> Plots of Sugeno FIS Corr Rate vs Experimental Corr Rate--

% 

  

Sugeno_Corr_Rate_01=[5.3700 

                     9.7200 

                    26.5000 

                     4.2300 

                     6.0200 

                     4.6800 

                     8.0100 

                    11.8000 

                    12.0000 

                     5.0200 

                    29.4000 

                    29.4000 

                    30.0000 

                    29.8000 

                    30.0000]; 

                 

Error_test_03=Corr_Rate_01-Sugeno_Corr_Rate_01; 

  

figure() 

subplot(1,2,1) 

plot(X_001,Y_001,'k-') 

hold on 

plot(Corr_Rate_01,Sugeno_Corr_Rate_01,'bx') 

xlim([0 60]); 
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ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)') 

ylabel('Sugeno FIS Model Corrosion Rate (mm/year)') 

%legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

  

  

subplot(1,2,2) 

bar(Error_test_03) 

xlabel('Test Data') 

ylabel('Corrosion Rate Error (mm/year)') 

  

  

%--Hougen-Watson Equation Results--% 

Corr_Rate_02_test=((20.675.*PCO2_01)-(Velocity_01./-1.2831e7))./(1+(-

0.0012539.*Temperature_01)+(0.31458.*PCO2_01)+(-0.062364.*Velocity_01)); 

  

Error_test_Hougen=Corr_Rate_01-Corr_Rate_02_test; 

Error_test_omic_04=[-6.41 4.18 9.38 0.20 9.76 3.66 5.53 12.81 12.98 0.26 -6.66 7.76 15.64 -

0.86 17.81]; 

  

figure('Name','Nonlinear Model Prediction and Error Bar Chart') 

  

subplot(1,2,1) 

plot(X_001,Y_001,'k-','LineWidth',1.5) 

set(gca,'FontName','Times New Roman') 

hold on 

plot(Corr_Rate_01,Corr_Rate_02_test,'bx','MarkerSize',7,'LineWidth',2.5) 

  

%-- 95% Confidence Intervals for Hougen-Watson Nonlinear Model--% 

  

Y_01_hougen_uci=[6.504021634 

                 9.729126352 

                13.11129082 

                16.76113024 

                20.8202204 

                25.35997741 

                30.30121796 

                35.50227022 

                40.85542096 

                46.29788671 

                51.79505695 

                57.32742911 

                62.88351577 

                68.45622592 

                74.04098918]; 

  

Y_01_hougen_lci=[-6.504021634 

                 -1.157726352 

                  4.031509175 

                  8.953069755 

                 13.4653796 
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                 17.49702259 

                 21.12718204 

                 24.49752978 

                 27.71577904 

                 30.84471329 

                 33.91894305 

                 36.95797089 

                 39.97328423 

                 42.97197408 

                 45.95861082]; 

  

plot(X_01_conf,Y_01_hougen_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_hougen_lci,'k--','LineWidth',1.5) 

              

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Nonlinear Model Corrosion Rate (mm/year)','FontWeight','Bold') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf= 

0.67','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_04) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 

  

  

  

%--Error Plots for Neural Network Corrosion Model -> Plots of Neural Network Model Corr 

Rate vs Experimental Corr Rate--% 

  

Neural_Net_Corr_Rate_01=[13.4935 

                         16.1991 

                         13.8781 

                         18.9542 

                         14.7386 

                         19.2873 

                         25.0607 

                         20.3173 

                         30.9718 

                         25.8677 

                         36.0933 

                         11.2166 

                         17.6583 

                         14.9526 

                         19.9719]; 
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Error_test_neu_net_01=Corr_Rate_01-Neural_Net_Corr_Rate_01; 

Error_test_omic_05=[-6.80 -3.70 -5.95 0.05 1.26 3.12 5.78 -0.29 -0.32 -1.06 8.34 -3.97 4.13 

17.03 23.91]; 

  

R_coef_nn_01=corrcoef(Corr_Rate_01,Neural_Net_Corr_Rate_01); 

R_sq_coef_nn_01=(R_coef_nn_01(1,2))^2; 

  

display(R_sq_coef_nn_01) 

  

%figure() 

%bar(Error_test_01) 

%xlabel('Test Data') 

%ylabel('Error') 

  

  

figure('Name','Neural Network Model Prediction and Error Bar Chart') 

subplot(1,2,1) 

plot(X_001,Y_001,'k-','LineWidth',1.5) 

set(gca,'FontName','Times New Roman') 

hold on 

plot(Corr_Rate_01,Neural_Net_Corr_Rate_01,'bx','MarkerSize',7,'LineWidth',2.5) 

  

%-- 95% Confidence Intervals for Neural Network Model--% 

  

Y_01_neunet_uci=[6.895212776 

                 9.865263005 

                12.89318747 

                16.04817034 

                19.51909385 

                23.68002714 

                28.62121496 

                33.97367112 

                39.49038024 

                45.07878625 

                50.70325877 

                56.34807536 

                62.00539645 

                67.67091947 

                73.34209999]; 

  

Y_01_neunet_lci=[-6.895212776 

                 -1.293863005 

                  4.249612535 

                  9.666029655 

                 14.76650615 

                 19.17697286 

                 22.80718504 

                 26.02612888 

                 29.08081976 

                 32.06381375 

                 35.01074123 
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                 37.93732464 

                 40.85140355 

                 43.75728053 

                 46.65750001]; 

  

plot(X_01_conf,Y_01_neunet_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_neunet_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontWeight','Bold') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','R^2 = 

0.6444','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_05) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 

  

  

  

  

%---Empirical models and other models---% 

  

%--Freecorp Model--% 

  

Freecorp_Corr_Rate_01=[4.2 

                       5.6 

                       6.4 

                       6.2 

                       7.1 

                       7.9 

                       9.1 

                      10.8 

                      11.1 

                      23.9 

                      25.3 

                      28.2 

                      28.6 

                      34.6 

                      35]; 

                   

Error_test_freecorp_01=Corr_Rate_01-Freecorp_Corr_Rate_01; 

Error_test_omic_06=[2.50 6.90 6.80 -19.60 8.90 -11.20 10.60 11.10 9.20 14.90 -2.60 15.90 

6.10 2.00 34.70]; 
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R_coef_freecorp_01=corrcoef(Corr_Rate_01,Freecorp_Corr_Rate_01); 

R_sq_coef_freecorp_01=(R_coef_freecorp_01(1,2))^2; 

  

display(R_sq_coef_freecorp_01)      

  

%-- 95% Confidence Intervals for Freecorp Model--% 

  

Y_01_freecorp_uci=[9.41690706 

                  12.09367008 

                  15.02585986 

                  18.40373002 

                  22.4606524 

                  27.27686736 

                  32.68102457 

                  38.44260606 

                  44.40643611 

                  50.48737145 

                  56.639728 

                  62.83804391 

                  69.06737523 

                  75.31849927 

                  81.58546403]; 

  

Y_01_freecorp_lci=[-9.41690706 

                   -3.52227008 

                    2.116940139 

                    7.310469983 

                   11.8249476 

                   15.58013264 

                   18.74737543 

                   21.55719394 

                   24.16476389 

                   26.65522855 

                   29.074272 

                   31.44735609 

                   33.78942477 

                   36.10970073 

                   38.41413597]; 

  

               

figure('Name','Freecorp Model Prediction and Error Bar Chart') 

  

subplot(1,2,1) 

plot(Corr_Rate_01,Freecorp_Corr_Rate_01,'bx','MarkerSize',7,'LineWidth',2.5) 

set(gca,'FontName','Times New Roman') 

  

hold on 

  

plot(X_001,Y_001,'k-','LineWidth',1.5) 

plot(X_01_conf,Y_01_freecorp_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_freecorp_lci,'k--','LineWidth',1.5) 
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xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Freecorp Model Corrosion Rate (mm/year)','FontWeight','Bold') 

legend(' Datapoints',' Experiment=Model Line',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf= 

0.24','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_06) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 

  

  

  

%--Norsok Model--% 

  

Norsok_Corr_Rate_01=[11.921 

                     11.865 

                     16.8267 

                     15.6008 

                     21.7844 

                     21.7068 

                     35.7804 

                     26.9424 

                     31.1412 

                     44.4108 

                     76.0114 

                     24.979 

                     29.0564 

                     30.7831 

                     35.9498]; 

                   

Error_test_norsok_01=Corr_Rate_01-Norsok_Corr_Rate_01; 

Error_test_omic_07=[-5.22 0.64 -2.60 -15.78 -5.78 -7.98 0.17 -2.71 -6.94 -11.78 -3.06 -4.14 -

14.41 1.05 -16.01]; 

  

R_coef_norsok_01=corrcoef(Corr_Rate_01,Norsok_Corr_Rate_01); 

R_sq_coef_norsok_01=(R_coef_norsok_01(1,2))^2; 

  

display(R_sq_coef_norsok_01)      

  

%-- 95% Confidence Intervals for Freecorp Model--% 

  

Y_01_norsok_uci=[  6.059941559 

                  10.86825435 

                  15.74434531 
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                  20.73596666 

                  25.92585717 

                  31.42548738 

                  37.30173923 

                  43.50275517 

                  49.91717948 

                  56.45663953 

                  63.0691332 

                  69.72606932 

                  76.41143338 

                  83.11585138 

                  89.83356939]; 

  

Y_01_norsok_lci=[-6.059941559 

                  0.560345647 

                  7.11285469 

                 13.54983334 

                 19.78854283 

                 25.71751262 

                 31.26986077 

                 36.49744483 

                 41.51162052 

                 46.40076047 

                 51.2168668 

                 55.98853068 

                 60.73176662 

                 65.45594862 

                 70.16683061]; 

  

X_01_norsok_conf=linspace(0,80,15); 

              

X_002=linspace(0,80,15); 

Y_002=X_002;              

  

  

figure('Name','Norsok Model Prediction and Error Bar Chart') 

  

subplot(1,2,1) 

plot(Corr_Rate_01,Norsok_Corr_Rate_01,'bx','MarkerSize',7,'LineWidth',2.5) 

set(gca,'FontName','Times New Roman') 

  

hold on 

  

plot(X_002,Y_002,'k-','LineWidth',1.5) 

plot(X_01_norsok_conf,Y_01_norsok_uci,'k--','LineWidth',1.5) 

plot(X_01_norsok_conf,Y_01_norsok_lci,'k--','LineWidth',1.5) 

  

xlim([0 80]); 

ylim([0 80]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('Norsok Model Corrosion Rate (mm/year)','FontWeight','Bold') 
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legend(' Datapoints',' Experiment=Model Line',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf= 

0.89','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_07) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 

  

  

%--De Waard 1991 Model--% 

  

DeWaard_1991_Corr_Rate_01=[1.0969 

                           2.1704 

                           2.1704 

                           2.7205 

                           2.7205 

                           4.012 

                           4.012 

                           6.0652 

                           6.0652 

                          16.2001 

                          16.2001 

                          10.6522 

                          10.6522 

                          10.8924 

                          10.8924]; 

                   

Error_test_dewaard_1991_01=Corr_Rate_01-DeWaard_1991_Corr_Rate_01; 

Error_test_omic_08=[5.60 10.33 10.28 4.11 13.28 6.35 14.83 14.99 13.93 19.99 15.35 20.93 

13.80 26.11 43.80]; 

  

R_coef_dewaard_1991_01=corrcoef(Corr_Rate_01,DeWaard_1991_Corr_Rate_01); 

R_sq_coef_dewaard_1991_01=(R_coef_dewaard_1991_01(1,2))^2; 

  

display(R_sq_coef_dewaard_1991_01)    

  

%-- 95% Confidence Intervals for the De Waard 1991 Model--% 

  

Y_01_dewaard_1991_uci=[ 3.234752517 

                        6.409148669 

                       10.4951783 

                       15.69246417 

                       21.32898385 

                       27.09907835 

                       32.92067353 

                       38.76674327 

                       44.62621408 
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                       50.49378029 

                       56.36659849 

                       62.24301274 

                       68.12199507 

                       74.00287433 

                       79.88519401]; 

  

Y_01_dewaard_1991_lci=[-3.234752517 

                        2.162251331 

                        6.647621697 

                       10.02173583 

                       12.95661615 

                       15.75792165 

                       18.50772647 

                       21.23305673 

                       23.94498592 

                       26.64881971 

                       29.34740151 

                       32.04238726 

                       34.73480493 

                       37.42532567 

                       40.11440599]; 

  

%X_01_norsok_conf=linspace(0,80,15); 

              

%X_002=linspace(0,80,15); 

%Y_002=X_002;              

  

  

figure('Name','The 1991 De Waard Model Prediction and Error Bar Chart') 

  

subplot(1,2,1) 

plot(Corr_Rate_01,DeWaard_1991_Corr_Rate_01,'bx','MarkerSize',7,'LineWidth',2.5) 

set(gca,'FontName','Times New Roman') 

  

hold on 

  

plot(X_001,Y_001,'k-','LineWidth',1.5) 

plot(X_01_conf,Y_01_dewaard_1991_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_dewaard_1991_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('The 1991 De Waard Model Corrosion Rate (mm/year)','FontWeight','Bold') 

legend(' Datapoints',' Experiment=Model Line',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf= 

0.54','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 

256 
 

bar(Error_test_omic_08) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 

  

  

%--De Waard 1995 Model--% 

  

DeWaard_1995_Corr_Rate_01=[10.4845 

                           14.6379 

                           19.1235 

                            9.0386 

                           14.4027 

                           14.4644 

                           24.5685 

                           18.9571 

                           22.8202 

                           38.1299 

                           65.4 

                           20.0906 

                           25.1775 

                           22.9145 

                           28.3876]; 

                   

Error_test_dewaard_1995_01=Corr_Rate_01-DeWaard_1995_Corr_Rate_01; 

Error_test_omic_09=[-3.78 -2.14 3.96 -7.91 1.60 -2.12 -3.09 4.54 1.04 -0.57 0.82 4.18 -8.13 

8.61 -5.40]; 

  

R_coef_dewaard_1995_01=corrcoef(Corr_Rate_01,DeWaard_1995_Corr_Rate_01); 

R_sq_coef_dewaard_1995_01=(R_coef_dewaard_1995_01(1,2))^2; 

  

display(R_sq_coef_dewaard_1995_01)    

  

%-- 95% Confidence Intervals for the De Waard 1995 Model--% 

  

Y_01_dewaard_1995_uci=[5.096154396 

                       9.297678133 

                      13.57457427 

                      17.98218398 

                      22.6110453 

                      27.55929483 

                      32.84441886 

                      38.38226898 

                      44.07394949 

                      49.85414067 

                      55.6865275 

                      61.5512445 

                      67.43702294 

                      73.33715252 

                      79.24744344]; 
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Y_01_dewaard_1995_lci=[-5.096154396 

                        0.702321867 

                        6.425425728 

                       12.01781602 

                       17.3889547 

                       22.44070517 

                       27.15558114 

                       31.61773102 

                       35.92605051 

                       40.14585933 

                       44.3134725 

                       48.4487555 

                       52.56297706 

                       56.66284748 

                       60.75255656]; 

  

X_01_dewaard_1995_conf=linspace(0,70,15); 

              

X_003=linspace(0,70,15); 

Y_003=X_003;              

  

  

figure('Name','The 1995 De Waard Model Prediction and Error Bar Chart') 

  

subplot(1,2,1) 

plot(Corr_Rate_01,DeWaard_1995_Corr_Rate_01,'bx','MarkerSize',7,'LineWidth',2.5) 

set(gca,'FontName','Times New Roman') 

%set(gca,'YGrid','on') 

  

hold on 

  

plot(X_003,Y_003,'k-','LineWidth',1.5) 

plot(X_01_dewaard_1995_conf,Y_01_dewaard_1995_uci,'k--','LineWidth',1.5) 

plot(X_01_dewaard_1995_conf,Y_01_dewaard_1995_lci,'k--','LineWidth',1.5) 

  

xlim([0 70]); 

ylim([0 70]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','Bold') 

ylabel('The 1995 De Waard Model Corrosion Rate (mm/year)','FontWeight','Bold') 

legend(' Datapoints',' Experiment=Model Line',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\it R^2 \rm\bf= 

0.88','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New 

Roman','FontWeight','Bold'); 

  

subplot(1,2,2) 

bar(Error_test_omic_09) 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1,'FontName','Times New 

Roman') 

xlabel('Test Data','FontWeight','Bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','Bold') 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 

258 
 

Neural Network Model Code 

 

% Same neural network as the first except with a tansig transfer function in place 

%  of the logsig transfer function in the first hidden layer 

  

clc, clear, close all 

  

%tic 

  

%R_coef_nn_01=0; 

  

%while R_coef_nn_01<0.85 

  

%repeat  

  

%net_03=network; % Create network 

  

%net.numInputs=1; % Set number of inputs 

%net.inputs{1}.size 

  

Raw_01=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Training_01'); 

  

%[x_1,t_1]=size(Raw_01); 

  

x_1=Raw_01; 

  

%x_1=[40,50,60,80,40; 5.98,10.93,14.13,17.35,13.64]; %2.7,2.7,2.7,2.7,2.7; 

4.5,4.5,4.5,4.5,4.4; 5.98,10.93,14.13,17.35,13.64]; 

%t_1=[20,40,60,80,100]; %;5.5,7.5,14,11.5,10.0]; 

  

net_01=feedforwardnet([10 5]);%Custom neural network with 10 hidden layers 

  

Raw_02=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Corr_Rates_01'); 

  

CR_01_target=Raw_02; 

  

%[trainInd,valInd,testInd]=dividerand(98,0.6,0.2,0.2); 

  

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

% The following syntax makes sure that the input is divided up exactly  

% in the stated percentages at all times 

%net_01.divideFcn = 'dividerand';  % Divide data randomly 

%[trainInd,valInd,testInd] = divideint(60,0.6,0.2,0.2); 

  

%net_01.divideMode = 'sample';  % Divide up every sample 

net_01.divideParam.trainRatio = 60/100; 

net_01.divideParam.valRatio = 20/100; 
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net_01.divideParam.testRatio = 20/100; 

  

% For help on training function 'trainlm' type: help trainlm 

% For a list of all training functions type: help nntrain 

net_01.trainFcn = 'trainlm';  % Levenberg-Marquardt 

  

net_01.trainParam.epochs=100;  

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net_01.performFcn = 'mse';  % Mean squared error 

  

  

%net_01=train(net_01,x_1,CR_01_target); 

[net_01,tr]=train(net_01,x_1,CR_01_target); 

  

net_01.layers{1}.transferFcn = 'tansig';%'tansig';'tansig'; 

net_01.layers{2}.transferFcn ='tansig'; 

net_01.layers{3}.transferFcn = 'tansig';  

  

net_01.inputWeights{1}.initFcn = 'initzero';       % set input weight init function 

net_01.inputWeights{1}.learnFcn = 'learnp';        % set input weight learning function 

net_01.inputWeights{2}.learnFcn = 'learnp'; 

net_01.inputWeights{2}.initFcn = 'initzero'; 

  

  

%view(net_01); 

y_1=net_01(x_1); 

%size(y_1)=196; 

perf_01=perform(net_01,y_1,CR_01_target); 

  

x_2=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Test_Dataset_01'); 

  

%x_2=[16 17 3 10 20 25 32 11 5 19]; 

y_2=sim(net_01,x_2); % Simulating the neural network, in terms of net_01 and x_1 

%figure() 

%plot(t_1,y_1,'k-x') 

display (y_2) 

  

  

X_01=linspace(0,60,15); 

Y_01=X_01; 

x_test_01=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Test_Corr_Rates_01'); 

error_01=x_test_01-y_2; 

E_01=sum(abs(error_01)); 

display(E_01) 

  

  

R_coef_nn_01=corrcoef(x_test_01,y_2); 
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R_sq_coef_nn_01=(R_coef_nn_01(1,2))^2; 

  

  

  

%until R_coef_nn_01==0.85  end_repeat 

  

%else 

  

    %display(R_sq_coef_nn_01) 

     

%end 

  

%if R_sq_coef_nn_01<0.65 

  

    while R_sq_coef_nn_01<0.85 

  

    Raw_01=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Training_01'); 

  

    %[x_1,t_1]=size(Raw_01); 

  

    x_1=Raw_01; 

  

    %x_1=[40,50,60,80,40; 5.98,10.93,14.13,17.35,13.64]; %2.7,2.7,2.7,2.7,2.7; 

4.5,4.5,4.5,4.5,4.4; 5.98,10.93,14.13,17.35,13.64]; 

    %t_1=[20,40,60,80,100]; %;5.5,7.5,14,11.5,10.0]; 

  

    net_01=feedforwardnet([10 5]);%Custom neural network with 10 hidden layers 

  

    Raw_02=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Corr_Rates_01'); 

  

    CR_01_target=Raw_02; 

  

    %[trainInd,valInd,testInd]=dividerand(98,0.6,0.2,0.2); 

  

  

    % Setup Division of Data for Training, Validation, Testing 

    % For a list of all data division functions type: help nndivide 

    % The following syntax makes sure that the input is divided up exactly  

    % in the stated percentages at all times 

    %net_01.divideFcn = 'dividerand';  % Divide data randomly 

    %[trainInd,valInd,testInd] = divideint(60,0.6,0.2,0.2); 

  

    %net_01.divideMode = 'sample';  % Divide up every sample 

    net_01.divideParam.trainRatio = 60/100; 

    net_01.divideParam.valRatio = 20/100; 

    net_01.divideParam.testRatio = 20/100; 

  

    % For help on training function 'trainlm' type: help trainlm 

    % For a list of all training functions type: help nntrain 
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    net_01.trainFcn = 'trainlm';  % Levenberg-Marquardt 

  

    net_01.trainParam.epochs=100;  

  

    % Choose a Performance Function 

    % For a list of all performance functions type: help nnperformance 

    net_01.performFcn = 'mse';  % Mean squared error 

  

  

    %net_01=train(net_01,x_1,CR_01_target); 

    [net_01,tr]=train(net_01,x_1,CR_01_target); 

  

    net_01.layers{1}.transferFcn = 'tansig';%'tansig';'tansig'; 

    net_01.layers{2}.transferFcn ='tansig'; 

    net_01.layers{3}.transferFcn = 'tansig';  

  

    net_01.inputWeights{1}.initFcn = 'initzero';       % set input weight init function 

    net_01.inputWeights{1}.learnFcn = 'learnp';        % set input weight learning function 

    net_01.inputWeights{2}.learnFcn = 'learnp'; 

    net_01.inputWeights{2}.initFcn = 'initzero'; 

  

  

    %view(net_01); 

    y_1=net_01(x_1); 

    %size(y_1)=196; 

    perf_01=perform(net_01,y_1,CR_01_target); 

  

    x_2=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Test_Dataset_01'); 

  

    %x_2=[16 17 3 10 20 25 32 11 5 19]; 

    y_2=sim(net_01,x_2); % Simulating the neural network, in terms of net_01 and x_1 

    %figure() 

    %plot(t_1,y_1,'k-x') 

    display (y_2) 

  

  

    X_01=linspace(0,60,15); 

    Y_01=X_01; 

    x_test_01=xlsread('G:\University Files and More\University of Newcastle Upon Tyne 

Files\PhD\Dugstad_Data_From_Original_Journal_Article_01.xlsx','Test_Corr_Rates_01'); 

    error_01=x_test_01-y_2; 

    E_01=sum(abs(error_01)); 

    display(E_01) 

  

  

    R_coef_nn_01=corrcoef(x_test_01,y_2); 

    R_sq_coef_nn_01=(R_coef_nn_01(1,2))^2; 

  

    display(R_sq_coef_nn_01) 

    end 
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tic 

   

  

figure() 

subplot(1,2,1) 

plot(X_01,Y_01,'k-') 

  

hold on 

  

plot(x_test_01,y_2,'bx') 

xlabel('Experimental Corrosion Rate (mm/year)','FontName','Times New Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontName','Times New Roman') 

  

subplot(1,2,2) 

bar(error_01) 

xlabel('Test Data','FontName','Times New Roman') 

ylabel('Error','FontName','Times New Roman') 

  

figure() 

plot(CR_01_target,y_1,'x') 

%title('Neural Network Corrosion Rate Against Experimental Corrosion Rate for 

Supercritical CO_2 (ScCO_2) Pressures') 

xlabel('Experimental Corrosion Rate (mm/year)','FontName','Times New Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontName','Times New Roman') 

  

figure() 

plotregression(CR_01_target,y_1) 

%title('Neural Network Corrosion Rate Against Experimental Corrosion Rate for 

Supercritical CO_2 (ScCO_2) Pressures') 

xlabel('Experimental Corrosion Rate (mm/year)','FontName','Times New Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontName','Times New Roman') 

  

  

figure() 

plotperform(tr) 

  

%--95% Confidence Interval Data--% 

  

X_01_conf=[0 

           4.2857 

           8.5714 

          12.8571 

          17.1428 

          21.4285 

          25.7142 

          29.9999 

          34.2856 

          38.5713 

          42.857 

          47.1427 
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          51.4284 

          55.7141 

          59.9998]; 

       

Neural_Net_Corr_Rate_01=[12.3923 

                          7.0497 

                         11.1169 

                         12.1380 

                         15.7352 

                         13.6138 

                         17.2251 

                         23.5501 

                         37.0132 

                         28.0422 

                         44.6256 

                         20.5530 

                         27.3942 

                         20.8959 

                         29.3329]; 

                                        

Error_test_neu_net_01=x_test_01.'-Neural_Net_Corr_Rate_01; 

R_coef_nn_01=corrcoef(x_test_01.',Neural_Net_Corr_Rate_01); 

R_sq_coef_nn_01=(R_coef_nn_01(1,2))^2; 

  

display(R_sq_coef_nn_01) 

  

%figure() 

%bar(Error_test_01) 

%xlabel('Test Data') 

%ylabel('Error') 

  

figure() 

subplot(1,2,1) 

plot(X_01,Y_01,'k-','LineWidth',1.5) 

hold on 

plot(x_test_01.',Neural_Net_Corr_Rate_01,'bx','MarkerSize',7,'LineWidth',2.5) 

  

%-- 95% Confidence Intervals for Neural Network Model--% 

  

Y_01_neunet_uci=[6.895212776 

                 9.865263005 

                12.89318747 

                16.04817034 

                19.51909385 

                23.68002714 

                28.62121496 

                33.97367112 

                39.49038024 

                45.07878625 

                50.70325877 

                56.34807536 
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                62.00539645 

                67.67091947 

                73.34209999]; 

  

Y_01_neunet_lci=[-6.895212776 

                 -1.293863005 

                  4.249612535 

                  9.666029655 

                 14.76650615 

                 19.17697286 

                 22.80718504 

                 26.02612888 

                 29.08081976 

                 32.06381375 

                 35.01074123 

                 37.93732464 

                 40.85140355 

                 43.75728053 

                 46.65750001]; 

  

plot(X_01_conf,Y_01_neunet_uci,'k--','LineWidth',1.5) 

plot(X_01_conf,Y_01_neunet_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times New 

Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times 

New Roman') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','R^2 = 

0.6444','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New Roman'); 

  

subplot(1,2,2) 

bar(Error_test_neu_net_01) 

xlabel('Test Data','FontWeight','bold','FontName','Times New Roman') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','bold','FontName','Times New Roman') 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1)       

  

  

%%%---For Updated Dugstad 1994 NN Model Report-%%% 

  

  

%--95% Confidence Interval Data--% 

  

X_02_conf=[0 

           4.2857 

           8.5714 

          12.8571 

          17.1428 

          21.4285 
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          25.7142 

          29.9999 

          34.2856 

          38.5713 

          42.857 

          47.1427 

          51.4284 

          55.7141 

          59.9998]; 

       

Neural_Net_Corr_Rate_02=[14.4904 

                         20.3834 

                         14.7004 

                         16.2215 

                         22.1838 

                         20.5459 

                         20.8682 

                         18.7632 

                         39.8937 

                         29.00017 

                         48.1738 

                         17.4176 

                         27.727 

                         19.1816 

                         34.316]; 

                                        

Error_test_neu_net_02=x_test_01.'-Neural_Net_Corr_Rate_02; 

R_coef_nn_02=corrcoef(x_test_01.',Neural_Net_Corr_Rate_02); 

R_sq_coef_nn_02=(R_coef_nn_02(1,2))^2; 

  

%display(R_sq_coef_nn_02) 

  

figure() 

  

subplot(1,2,1) 

plot(X_01,Y_01,'k-','LineWidth',1.5) 

hold on 

plot(x_test_01.',Neural_Net_Corr_Rate_02,'bx','MarkerSize',7,'LineWidth',2.5) 

  

%-- 95% Confidence Intervals for Neural Network Model--% 

  

Y_02_neunet_uci=[6.270715157 

                 9.608877368 

                12.98495857 

                16.42805428 

                19.99812187 

                23.81239276 

                28.02546799 

                32.67008875 

                37.60927109 

                42.70562029 
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                47.88366413      

                53.10684567 

                58.35686651 

                63.62391643 

                68.90236576]; 

  

Y_02_neunet_lci=[-6.270715157 

                 -1.037477368 

                  4.15784143 

                  9.28614572 

                 14.28747813 

                 19.04460724 

                 23.40293201 

                 27.32971125 

                 30.96192891 

                 34.43697971 

                 37.83033587 

                 41.17855433 

                 44.49993349 

                 47.80428357 

                 51.09723424]; 

  

plot(X_02_conf,Y_02_neunet_uci,'k--','LineWidth',1.5) 

plot(X_02_conf,Y_02_neunet_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times New 

Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times 

New Roman') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','R^2 = 

0.81','Background','w','EdgeColor','black','LineWidth',1.0); 

  

subplot(1,2,2) 

bar(Error_test_neu_net_02) 

xlabel('Test Data','FontWeight','bold') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','bold') 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1)     

  

  

figure() 

  

plot(X_01,Y_01,'k-','LineWidth',1.5) 

hold on 

plot(x_test_01.',Neural_Net_Corr_Rate_02,'bx','MarkerSize',7,'LineWidth',2.5) 

plot(X_02_conf,Y_02_neunet_uci,'k--','LineWidth',1.5) 

plot(X_02_conf,Y_02_neunet_lci,'k--','LineWidth',1.5) 

  

xlim([0 60]); 
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ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times New 

Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times 

New Roman') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','R^2 = 

0.81','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Times New Roman'); 

  

figure() 

  

bar(Error_test_neu_net_02) 

xlabel('Test Data','FontWeight','bold','FontName','Times New Roman') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','bold','FontName','Times New Roman') 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1)   

  

  

%t_1=linspace(20,90,15); 

  

  

%figure() 

%plot(t_1,y_1,'x') 

%xlabel('Temperature (^oC)') 

%ylabel('Corrosion Rate (mm/year)') 

  

%[P_1,S_1]=polyfit(t_1,y_1,3); 

%Y_1=polyval(P_1,t_1); 

%hold on 

%plot(t_1,Y_1,'k'); 

  

  

y_2_pub=[17.1358   15.9235   16.9200   15.6105   20.4090   16.2710   28.5162   16.5049   

23.3663   29.6982   54.1438   15.6518 ... 

             26.1009   21.1353   35.7521]; 

%y_2_pub are the NN predicted results for publication  

          

%y_2_pub_bar=mean(y_2_pub); 

%y_2_pub_bar is the mean of y_2_pub 

  

%y_2_pub_std=std(y_2_pub); 

%y_2_pub_std is the standard deviation of y_2_pub 

  

%n_pub=length(y_2_pub); 

%n_pub is the number of NN predicted data-points in y_2_pub 

  

%ci=0.95; 

%ci is the confidence interval. In this case it's set at 95% 

  

%alpha=1-ci; 

  

%T_multiplier=tinv(1-alpha/2,n_pub-1); 
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%T_multiplier is part of the formulae for computing the confidence interval 

%tinv is the matlab function which enables the computation of T_multiplier 

%n_pub-1 is so because one degree of freedom is used in calculating the 

%mean or standard deviation 

  

%ci95=(T_multiplier.*y_2_pub_std)./sqrt(n_pub); 

  

%conf_inf_95_01=[y_2_pub-ci95, y_2_pub+ci95]; 

  

%for n=1:length(y_2_pub) 

%conf_int_95_01=y_2_pub-ci95; 

%conf_int_95_02=y_2_pub+ci95; 

  

%display(conf_int_95_01) 

%display(conf_int_95_02) 

%end 

  

%display(conf_inf_95_01) 

  

  

Y_02_net_pub_01=[4.347933016 

                 7.977103099 

                11.6382261 

                15.35538299 

                19.17613313 

                23.18477432 

                27.47249051 

                32.03845381 

                36.79096383 

                41.64620233 

                46.5570312 

                51.49958737 

                56.46146411 

                61.43581576 

                66.41862842]; 

  

  

Y_02_net_pub_02=[-4.347933016 

                  0.594296901 

                  5.504573904 

                 10.35881701 

                 15.10946687 

                 19.67222568 

                 23.95590949 

                 27.96134619 

                 31.78023617 

                 35.49639767 

                 39.1569688 

                 42.78581263 

                 46.39533589 

                 49.99238424 
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                 53.58097158]; 

  

  

figure() 

  

plot(X_01,Y_01,'k-','LineWidth',1.5) 

set(gca,'FontName','Times New Roman') 

hold on 

plot(x_test_01,y_2_pub,'bx','MarkerSize',7,'LineWidth',2.5) 

plot(X_02_conf,Y_02_net_pub_01,'k--','LineWidth',1.5) 

plot(X_02_conf,Y_02_net_pub_02,'k--','LineWidth',1.5) 

%plot(conf_int_95_01,y_2_pub,'k--','LineWidth',1.5) 

%plot(conf_int_95_02,y_2_pub,'k--','LineWidth',1.5) 

  

  

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times New 

Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times 

New Roman') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[33 17],'String','\itR^2\rm\bf = 

0.91','FontWeight','bold','Background','w','EdgeColor','black','LineWidth',1.0,'FontName','Tim

es New Roman'); 

  

  

%Error_pub_01=x_test_01-y_2_pub; 

Error_pub_02=[-10.44 -3.42 -2.61 -6.14 -4.41 0.08 1.35 2.73 3.50 -4.52 -0.10 3.63 0.30 1.25 

5.86]; 

  

figure() 

  

bar(Error_pub_02) 

xlabel('Test Data','FontWeight','bold','FontName','Times New Roman') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','bold','FontName','Times New Roman') 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1)   

  

  

  

  

  

figure() 

subplot(1,2,1) 

  

plot(X_01,Y_01,'k-','LineWidth',1.5) 

set(gca,'FontName','Times New Roman') 

  

hold on 

plot(x_test_01,y_2_pub,'bx','MarkerSize',7,'LineWidth',2.5) 
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plot(X_02_conf,Y_02_net_pub_01,'k--','LineWidth',1.5) 

plot(X_02_conf,Y_02_net_pub_02,'k--','LineWidth',1.5) 

%plot(conf_int_95_01,y_2_pub,'k--','LineWidth',1.5) 

%plot(conf_int_95_02,y_2_pub,'k--','LineWidth',1.5) 

  

  

  

xlim([0 60]); 

ylim([0 60]); 

xlabel('Experimental Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times New 

Roman') 

ylabel('Neural Network Corrosion Rate (mm/year)','FontWeight','bold','FontName','Times 

New Roman') 

legend(' Experiment=Model Line',' Datapoints',' 95% Confidence Interval',2) 

text('Position',[5 37],'String','\itR^2\rm\bf = 

0.91','FontSize',12,'FontWeight','bold','Background','w','EdgeColor','black','LineWidth',1.0,'Fo

ntName','Times New Roman'); 

  

  

  

subplot(1,2,2) 

Error_pub_01=x_test_01-y_2_pub; 

  

bar(Error_pub_02) 

xlabel('Test Data','FontWeight','bold','FontName','Times New Roman') 

ylabel('Corrosion Rate Error (mm/year)','FontWeight','bold','FontName','Times New Roman') 

set(gca,'XMinorTick','on','XTick',[0 5 10 15 20],'LineWidth',1)   

  

 toc 
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 Monte Carlo Simulation Model Code 

  
 

clc, clear, close all  

  

%The data in columns are low pressure CO_2 corrosion data from Dugstad 1994  

%First column => Temperature (^oC) 

%Second column => CO2 Pressure (MPa) 

%Third column column => Velocity/flow (m/s) 

%Fourth column => pH 

%Fifth column => CO2 Corrosion rate (mm/year) 

  

Dugstad_1994_data_01=... 

  [20.0000    0.0500    0.1000    4.1000    0.7000 

   20.0000    0.1300    0.1000    3.8000    0.9000 

   20.0000    0.1700    0.1000    3.7000    0.5000 

   20.0000    0.2800    0.1000    3.7000    1.9000 

   20.0000    0.3800    0.1000    3.7000    2.5000 

   20.0000    0.0500   13.0000    4.1000    3.5000 

   20.0000    0.0500    8.5000    4.1000    4.0000 

   20.0000    0.2800   13.0000    3.7000   13.0000 

   20.0000    0.2800    8.5000    3.7000   10.0000 

   20.0000    0.2800    3.1000    3.7000    9.0000 

   20.0000    0.1300   13.0000    3.8000    7.0000 

   20.0000    0.1300    8.5000    3.8000    8.0000 

   20.0000    0.1700    3.1000    3.7000    4.8000 

   20.0000    0.1700    8.5000    3.7000    5.4000 

   20.0000    0.1700   13.0000    3.7000    8.0000 

   40.0000    0.2000    3.1000    3.8000    1.0000 

   40.0000    0.2000    8.5000    3.8000    6.0000 

   40.0000    0.2000   13.0000    3.8000   18.0000 

   40.0000    0.0400    3.1000    4.1500    4.0000 

   40.0000    0.0400    8.5000    4.1500    5.0000 

   40.0000    0.0400   13.0000    4.1500    6.5000 

   40.0000    0.0530    3.1000    4.1000    4.5000 

   40.0000    0.0530    8.5000    4.1000    6.0000 

   40.0000    0.0530   13.0000    4.1000    8.5000 

   40.0000    0.0700    8.5000    4.0500    2.5000 

   40.0000    0.0700   13.0000    4.0500    9.0000 

   40.0000    0.7000    3.1000    3.6000    4.6000 

   40.0000    0.7000    8.5000    3.6000   17.0000 

   40.0000    0.7000   13.0000    3.6000   23.0000 

   40.0000    1.2000    8.5000    3.4000   15.0000 

   60.0000    0.2000    0.1000    3.8000    3.0000 

   60.0000    0.2100    0.1000    3.8000    5.0000 

   60.0000    0.2200    0.1000    3.8000    6.8000 

   60.0000    0.2200    3.1000    3.8000   16.0000 

   60.0000    0.2200    8.5000    3.8000   23.0000 

   60.0000    0.2200   13.0000    3.8000   32.0000 

   60.0000    0.2200   13.0000    3.8000   44.0000 

   60.0000    1.8000    3.1000    3.4000   33.0000 
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   60.0000    1.8000    8.5000    3.4000   60.0000 

   60.0000    1.8000   13.0000    3.4000   70.0000 

   60.0000    0.0700    3.1000    4.1500    8.8000 

   60.0000    0.0700   13.0000    4.1500   20.0000 

   60.0000    0.4000    3.1000    3.7000   30.0000 

   60.0000    0.4000    8.5000    3.7000   34.0000 

   60.0000    0.4000   13.0000    3.7000   50.0000 

   90.0000    0.1600    3.1000    4.1000    1.9000 

   90.0000    0.1600    8.5000    4.1000    8.5000 

   90.0000    0.1600   13.0000    4.1000   19.0000 

   90.0000    0.3700    3.1000    3.8000   16.0000 

   90.0000    0.3700   13.0000    3.8000   32.0000 

   90.0000    0.3700    3.1000    3.8000   17.0000 

   90.0000    0.3700    8.5000    3.8000   21.0000 

   90.0000    1.4000    3.1000    3.6000    6.8000 

   90.0000    1.4000    3.1000    3.6000   15.0000 

   90.0000    1.4000    8.5000    3.6000   30.0000 

   90.0000    1.4000   13.0000    3.6000   41.0000 

   90.0000    1.4000    8.5000    3.6000   50.0000 

   90.0000    2.1000    3.1000    3.5000   15.0000 

   90.0000    2.1000    3.1000    3.5000   38.0000 

   90.0000    2.1000   13.0000    3.5000   65.0000]; 

   %'Temperature                ' 'CO_2 Partial Pressure (MPa)' 'Flowrate(m/s)              ' 'pH                         

' 'Corrosion Rate (mm/year)   '}; 

  

X_01=Dugstad_1994_data_01(:,1:3); 

  

x_01=Dugstad_1994_data_01(:,1); 

%x_01, x_02, x_03 and x_04 are column matrices comprising temp, pressure, velocity and 

%pH values respectively 

x_02=Dugstad_1994_data_01(:,2); 

x_03=Dugstad_1994_data_01(:,3); 

x_04=Dugstad_1994_data_01(:,4); 

  

y_01=Dugstad_1994_data_01(:,5); 

%y_01 represents a column matrix comprising the Corrosion rate values 

  

  

%Temperature dataset% 

%normal probability plot for temperature distribution 

figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,1) 

probplot('normal',x_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 
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xlabel('Temperature (^oC)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,2) 

histfit(x_01) 

xlim([0 150]) 

xlabel('Temperature (^oC)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

%probplot('rayleigh',x_01) 

  

%rayleigh probability plot for temperature distribution 

%figure() 

  

subplot(3,2,3) 

probplot('rayleigh',x_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Temperature (^oC)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,4) 

histfit(x_01,4,'rayleigh') 

xlim([0 150]) 

xlabel('Temperature (^oC)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

%weibull probability plot for temperature distribution 

%figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,5) 

probplot('weibull',x_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Temperature (^oC)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 

274 
 

  

subplot(3,2,6) 

histfit(x_01,4,'rayleigh') 

xlim([0 150]) 

xlabel('Temperature (^oC)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

  

%PCO2 dataset% 

%normal probability plot for PCO2 distribution 

figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,1) 

probplot('normal',x_02) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('CO_2 Partial Pressure (MPa)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,2) 

histfit(x_02) 

xlim([0 3]) 

xlabel('CO_2 Partial Pressure (MPa)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

%probplot('rayleigh',x_01) 

  

%rayleigh probability plot for PCO2 distribution 

%figure() 

  

subplot(3,2,3) 

probplot('rayleigh',x_02) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('CO_2 Partial Pressure (MPa)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 
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subplot(3,2,4) 

histfit(x_02,4,'rayleigh') 

xlim([0 3]) 

xlabel('CO_2 Partial Pressure (MPa)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

%weibull probability plot for PCO2 distribution 

%figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,5) 

probplot('weibull',x_02) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('CO_2 Partial Pressure (MPa)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

subplot(3,2,6) 

histfit(x_02,4,'rayleigh') 

xlim([0 3]) 

xlabel('CO_2 Partial Pressure (MPa)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

  

%Velocity dataset% 

%normal probability plot for Velocity distribution 

figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,1) 

probplot('normal',x_03) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Velocity (m/s)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,2) 

histfit(x_03) 

xlim([0 15]) 
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xlabel('Velocity (m/s)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

%probplot('rayleigh',x_01) 

  

%exponential probability plot for Velocity distribution 

%figure() 

  

subplot(3,2,3) 

probplot('exponential',x_03) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Velocity (m/s)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,4) 

histfit(x_03,4,'exponential') 

xlim([0 15]) 

xlabel('Velocity (m/s)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

%extreme value probability plot for Velocity distribution 

%figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,5) 

probplot('extreme value',x_03) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Velocity (m/s)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

subplot(3,2,6) 

histfit(x_03,4,'extreme value') 

xlim([0 15]) 

xlabel('Velocity (m/s)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

%pH dataset% 

%normal probability plot for pH distribution 

figure() 

%comparing the fit of different probability distributions against the 
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%temperature dataset 

subplot(3,2,1) 

probplot('normal',x_04) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('pH','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,2) 

histfit(x_04) 

xlim([3 5]) 

xlabel('pH','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

%probplot('rayleigh',x_01) 

  

%rayleigh probability plot for pH distribution 

%figure() 

  

subplot(3,2,3) 

probplot('rayleigh',x_04) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('pH','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,4) 

histfit(x_04,4,'rayleigh') 

xlim([3 5]) 

xlabel('pH','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

%weibull probability plot for pH distribution 

%figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,5) 

probplot('weibull',x_04) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 
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set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('pH','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

subplot(3,2,6) 

histfit(x_04,4,'rayleigh') 

xlim([3 5]) 

xlabel('pH','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

  

  

%CO2 corrosion rate dataset% 

%normal probability plot for Corrosion Rate distribution 

figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,1) 

probplot('normal',y_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,2) 

histfit(y_01,10,'normal') 

xlim([0 80]) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

%probplot('rayleigh',x_01) 

  

%Rayleigh probability plot for Corrosion Rate distribution 

%figure() 

  

subplot(3,2,3) 

probplot('rayleigh',y_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 
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ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

subplot(3,2,4) 

histfit(y_01,10,'rayleigh') 

xlim([0 80]) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

%Weibull probability plot for Corrosion Rate distribution 

%figure() 

%comparing the fit of different probability distributions against the 

%temperature dataset 

subplot(3,2,5) 

probplot('weibull',y_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

subplot(3,2,6) 

histfit(y_01,10,'weibull') 

xlim([0 80]) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

tic 

  

%--Monte Carlo simulation--% 

sample_num_01=100000; 

  

%-Using a uniform random distribution (rand)-% 

temp_01=20+((90-20).*rand(sample_num_01,1)); 

pCO2_01=0.04+((2.10-0.04).*rand(sample_num_01,1)); 

vel_01=0.1+((13-0.1).*rand(sample_num_01,1)); 

pH_02=3.4+((4.15-3.4).*rand(sample_num_01,1)); 

corr_rate_01=0.5+((70-0.5).*rand(sample_num_01,1)); 

  

toc 

  

%Multiple linear regression equation for CO2 Corrosion rate with T, PCO2, 

%Vel and pH as the independent variables 

Corr_Rate_01_test=(78.2+(0.9923.*x_01)-(2.0.*x_02)+(0.9826.*x_03)-(25.0.*x_04)... 
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            -(7.0e-3.*x_01.^2)+(5.3011e-3.*x_01.*x_02.*x_03.*x_04)); 

%Corr_rate_01_test is the original multiple linear equation derived from 

%regression analysis 

  

  

Corr_Rate_01_monte=abs(78.2+(0.9923.*temp_01)-(2.0.*pCO2_01)+(0.9826.*vel_01)-

(25.0.*pH_02)... 

            -(7.0e-3.*temp_01.^2)+(5.3011e-3.*temp_01.*pCO2_01.*vel_01.*pH_02)); 

  

  

figure() 

subplot(1,2,1) 

histfit(Corr_Rate_01_monte,100,'normal') 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

xlim([0 80]) 

  

sample_01=wblrnd(15.9056,0.8561,1e5,1); 

subplot(1,2,2) 

histfit(Corr_Rate_01_monte,100,'weibull') 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

xlim([0 80]) 

  

%sample_01=wblrnd(12.34,1.56,1e5,1); 

  

figure() 

%comparing the fit of different probability distributions against the 

%Corrosion Rate dataset 

%subplot(3,2,1) 

subplot(1,2,1) 

pp_normal=probplot('normal',y_01); 

%probplot('normal',y_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

title('') 

%axes; 

set(gca,'FontName','Times New Roman','LineWidth',1) 

  

%line; 

%set(gca,'Color','b--','LineWidth',2) 

  

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

set(pp_normal(1),'Color','b') % line 
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set(pp_normal(2),'Color','k') % markers 

%set(pp1(2),'MarkerSize',5)probplot 

  

  

subplot(1,2,2) 

pp_weibull=probplot('weibull',y_01); 

%probplot('weibull',y_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

%axes; 

set(gca,'FontName','Times New Roman','LineWidth',1)%,'XTick',0:20:80) 

%xlim([0 80]) 

%line; 

%set(gca,'Color','b--','LineWidth',2) 

  

  

%figure() 

%subplot(121) 

%sample = wblrnd(15.9056,0.8561,100,1);     

%histfit(sample,100,'wbl') 

%title('100 draws') 

  

%subplot(122) 

%sample = wblrnd(15.9056,0.8561,1e5,1);     

%histfit(sample,100,'wbl') 

%title('100,000 draws') 

  

title('') 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

set(pp_weibull(1),'Color','b') % line 

set(pp_weibull(2),'Color','k') % markers 

  

  

  

  

  

  

%-Descriptive statistics (Mean and Standard deviation calculation)-% 

mean_exp_corr=mean(y_01); %Experimental corrosion rate mean 

std_exp_corr=std(y_01); %Experimental corrosion rate standard deviation 

  

mean_03=mean(Corr_Rate_01_monte); %Mean of Monte Carlo CO2 corrosion model 

std_dev_03=std(Corr_Rate_01_monte); %Standard deviation of Monte Carlo CO2 corrosion 

model 

  

%display(mean_03) 

%display(std_dev_03) 



Newcastle University                                                                                                                                                  Muhammad Hashim Abbas 

School of Marine Science and Technology (MAST)                                                                                                               15 December 2016 
__________________________________________________________________________________ 

282 
 

  

fprintf('The mean and standard deviation of the Experimental CO2 Corr rate data are %.2f 

mm/year and %.2f mm/year respectively \n',mean_exp_corr,std_exp_corr) 

fprintf('The mean and standard deviation of the Monte Carlo CO2 Corr model are: %.2f 

mm/year and %.2f mm/year respectively \n',mean_03,std_dev_03) 

  

mean_per_error_01=((mean_03-mean_exp_corr)./mean_exp_corr).*100; %Percentage error 

in means of the two results  

std_per_error_01=((std_dev_03-std_exp_corr)./std_exp_corr).*100; %Percentage error in the 

standard deviations of the two results 

  

fprintf('The percentage errors in the means and standard deviations of experimental data and 

the Monte Carlo model are: %.2f and %.2f respectively 

\n',mean_per_error_01,std_per_error_01) 

  

  

  

%--Sensitivity Analysis--% 

  

percent_change_01=[-50 -30 -20 -10 -5 0 5 10 20 30 50]; 

  

temp_ave=(min(x_01)+max(x_01))./2; 

pCO2_ave=(min(x_02)+max(x_02))./2; 

vel_ave=(min(x_03)+max(x_03))./2; 

pH_ave=(min(x_04)+max(x_04))./2; 

  

  

temp_sens_01=mean(temp_01)+([-.5 -.3 -.2 -.1 -.05 0 .05 .1 .2 .3 .5].*temp_ave); 

pCO2_sens_01=mean(pCO2_01)+([-.5 -.3 -.2 -.1 -.05 0 .05 .1 .2 .3 .5].*pCO2_ave); 

vel_sens_01=mean(vel_01)+([-.5 -.3 -.2 -.1 -.05 0 .05 .1 .2 .3 .5].*vel_ave); 

pH_sens_02=mean(pH_02)+([-.5 -.3 -.2 -.1 -.05 0 .05 .1 .2 .3 .5].*pH_ave); 

  

  

  

for i_1=temp_sens_01 

     

corr_rate_01_temp_change=(78.2+(0.9923.*temp_sens_01)-

(2.0.*pCO2_ave)+(0.9826.*vel_ave)-(25.0.*pH_ave)... 

            -(7.0e-3.*temp_sens_01.^2)+(5.3011e-

3.*temp_sens_01.*pCO2_ave.*vel_ave.*pH_ave)); 

  

end 

  

  

for i_2=pCO2_sens_01 

     

corr_rate_01_pCO2_change=(78.2+(0.9923.*temp_ave)-

(2.0.*pCO2_sens_01)+(0.9826.*vel_ave)-(25.0.*pH_ave)... 

            -(7.0e-3.*temp_ave.^2)+(5.3011e-3.*temp_ave.*pCO2_sens_01.*vel_ave.*pH_ave));    

         

end 
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for i_3=vel_sens_01 

     

corr_rate_01_vel_change=(78.2+(0.9923.*temp_ave)-

(2.0.*pCO2_ave)+(0.9826.*vel_sens_01)-(25.0.*pH_ave)... 

            -(7.0e-3.*temp_ave.^2)+(5.3011e-3.*temp_ave.*pCO2_ave.*vel_sens_01.*pH_ave));       

         

end 

  

  

for i_4=pH_sens_02 

     

corr_rate_01_pH_change=(78.2+(0.9923.*temp_ave)-(2.0.*pCO2_ave)+(0.9826.*vel_ave)-

(25.0.*pH_sens_02)... 

            -(7.0e-3.*temp_ave.^2)+(5.3011e-3.*temp_ave.*pCO2_ave.*vel_ave.*pH_sens_02));        

         

end 

  

  

  

  

display(corr_rate_01_temp_change) 

  

figure() 

plot(percent_change_01,corr_rate_01_temp_change,'k-p','LineWidth',2.0) 

  

hold on 

plot(percent_change_01,corr_rate_01_pCO2_change,'g-o','LineWidth',2.0) 

plot(percent_change_01,corr_rate_01_vel_change,'b-*','LineWidth',2.0) 

plot(percent_change_01,corr_rate_01_pH_change,'r-x','LineWidth',2.0,'MarkerSize',10.0) 

xlim([-50 50]) 

xlabel('Percentage Change in Input Magnitude (%)','FontName','Times New 

Roman','FontWeight','Bold') 

ylabel('Corrosion Rate (mm/year)','FontName','Times New Roman','FontWeight','Bold') 

legend('Temperature','CO_2 Partial Pressure','Velocity','pH') 

grid on 

ylim([0 80]) 

  

  

figure() 

  

subplot(1,2,1) 

histfit(y_01,10,'normal') 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlim([0 80]) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

subplot(1,2,2) 
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%figure() 

histfit(y_01,10,'weibull') 

xlim([0 80]) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Frequency','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

  

  

  

figure() 

%comparing the fit of different probability distributions against the 

%Corrosion Rate dataset 

%subplot(3,2,1) 

subplot(1,2,1) 

pp1=probplot('normal',y_01); 

%probplot('normal',y_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

title('') 

%axes; 

set(gca,'FontName','Times New Roman','LineWidth',1) 

  

%line; 

%set(gca,'Color','b--','LineWidth',2) 

  

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

set(pp1(1),'Color','k') % line 

set(pp1(2),'MarkerSize',4,'Color','b') % markers 

%set(pp1(2),'MarkerSize',5)probplot 

  

  

subplot(1,2,2) 

pp1=probplot('weibull',y_01); 

%probplot('normal',y_01) 

%hold on 

%plot(conf_int_low_01,prob_frac_01,'k--') 

%plot(conf_int_up_01,prob_frac_01,'k--') 

  

%axes; 

set(gca,'FontName','Times New Roman','LineWidth',1) 

  

%line; 

%set(gca,'Color','b--','LineWidth',2) 

title('') 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

set(pp1(1),'Color','k') % line 
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set(pp1(2),'MarkerSize',4,'Color','b') % markers 

  

  

  

%figure() 

%[f,x_values,flo,fup] = ecdf(y_01); 

%F=plot(x_values,f); 

%set(F,'LineWidth',2,'k'); 

%hold on 

  

figure() 

%[H_01,STAT_01]=cdfplot(y_01); 

  

%G=plot(x_values,normcdf(x_values,0,1),'b-'); 

%set(G,'LineWidth',2); 

%legend([F G],... 

 %      'Empirical CDF','Standard Normal CDF',... 

  %     'Location','SE'); 

%display(STAT_01) 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

cdfplot(y_01) 

title('') 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('F(x)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

grid off 

  

  

  

figure() 

%[f_monte,x_values_monte,flo_monte,fup_monte] = ecdf(Corr_Rate_01_monte); 

%plot(x_values_monte,f_monte) 

%hold on 

  

%[H_03,STAT_03]=cdfplot(Corr_Rate_01_monte); 

%display(STAT_03) 

  

set(gca,'FontName','Times New Roman','LineWidth',1) 

cdfplot(Corr_Rate_01_monte) 

title('') 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1) 

ylabel('F(x)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

grid off 

  

  

%test_cdf= [y_01,cdf('normal',17.03,17.02,1)]; 

  

%[H,P,KSSTAT,CV] = kstest(y_01,'cdf',test_cdf,0.05,'unequal'); 
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[H,P,KSSTAT,CV] = kstest(y_01); %Carrying out a Kolmogorov-Smirnov (kstest) normality 

test on the experimental CO2 corrosion rate data(y_01) 

  

display(H) %H is the hypothesis, when H=0, accept the nul hypothesis; when H=1, reject the 

null hypothesis (hence data does not follow Normal distribution) 

display(P) %P is the p-value of  the test (asymptotic p-value) 

display(KSSTAT) %KSSTAT is the magnitude of the kstest statistic 

display(CV) %CV is the critical Value 

  

  

[H_02,P_02,KSSTAT_02,CV_02] = kstest(Corr_Rate_01_monte); %Carrying out a 

Kolmogorov-Smirnov (kstest) normality test on the Monte Carlo-simulated CO2 corrosion 

rate data(Corr_Rate_01_monte) 

  

display(H_02) %H is the hypothesis, when H=0, accept the nul hypothesis; when H=1, reject 

the null hypothesis (hence data does not follow Normal distribution) 

display(P_02) %P is the p-value of  the test (asymptotic p-value) 

display(KSSTAT_02) %KSSTAT is the magnitude of the kstest statistic 

display(CV_02) %CV is the critical Value 

  

  

%R_01=wblrnd(31.30,2.236,[10000,1]); 

  

%[H_03,P_03,KSSTAT_03] = kstest2(Corr_Rate_01_monte,R_01,0.05,'unequal');  

  

%display(H_03) %H is the hypothesis, when H=0, accept the nul hypothesis; when H=1, 

reject the null hypothesis (hence data does not follow Normal distribution) 

%display(P_03) %P is the p-value of  the test (asymptotic p-value) 

%display(KSSTAT_03) %KSSTAT is the magnitude of the kstest statistic 

%display(CV_03) %CV is the critical Value 

  

  

figure() 

% Output fitted probablility distributions: PD1,PD2,PD3 

  

% Data from dataset "Corr_Rate_01_monte data": 

%    Y = Corr_Rate_01_monte 

  

% Force all inputs to be column vectors 

Corr_Rate_01_monte = Corr_Rate_01_monte(:); 

  

% Prepare figure 

clf; 

hold on; 

LegHandles = []; LegText = {}; 

  

  

% --- Plot data originally in dataset "Corr_Rate_01_monte data" 

[CdfF,CdfX] = ecdf(Corr_Rate_01_monte,'Function','cdf');  % compute empirical cdf 

BinInfo.rule = 1; 

[~,BinEdge] = internal.stats.histbins(Corr_Rate_01_monte,[],[],BinInfo,CdfF,CdfX); 
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[BinHeight,BinCenter] = ecdfhist(CdfF,CdfX,'edges',BinEdge); 

hLine = bar(BinCenter,BinHeight,'hist'); 

set(hLine,'FaceColor','none','EdgeColor',[0 0 0],... 

    'LineStyle','-', 'LineWidth',1); 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1); 

ylabel('Density','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

%LegHandles(end+1) = hLine; 

%LegText{end+1} = 'Corr_Rate_01_monte data'; 

  

% Create grid where function will be computed 

XLim = get(gca,'XLim'); 

XLim = XLim + [-1 1] * 0.01 * diff(XLim); 

XGrid = linspace(XLim(1),XLim(2),100); 

  

xlim([0 80]) 

% --- Create fit "fit 2" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd1 = ProbDistUnivParam('weibull',[ 29.69797925362, 2.093948068127]) 

pd1 = fitdist(Corr_Rate_01_monte, 'weibull'); 

% This fit does not appear on the plot 

  

% --- Create fit "Weibull" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd2 = ProbDistUnivParam('weibull',[ 29.69797925362, 2.093948068127]) 

pd2 = fitdist(Corr_Rate_01_monte, 'weibull'); 

YPlot = pdf(pd2,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[0 0 1],... 

    'LineStyle','-', 'LineWidth',2.5,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Weibull'; 

  

% --- Create fit "Normal" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd3 = ProbDistUnivParam('normal',[ 26.44988114611, 12.93956295892]) 

pd3 = fitdist(Corr_Rate_01_monte, 'normal'); 

YPlot = pdf(pd3,XGrid); 

hLine = plot(XGrid,YPlot,'Color',[0.666667 0.333333 0],... 

    'LineStyle','-', 'LineWidth',2.5,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles(end+1) = hLine; 

LegText{end+1} = 'Normal'; 
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% Adjust figure 

box on; 

hold off; 

  

% Create legend from accumulated handles and labels 

hLegend = legend(LegHandles,LegText,'Orientation', 'vertical', 'Location', 'NorthEast'); 

set(hLegend,'Interpreter','none'); 

  

  

  

  

figure() 

% Output fitted probablility distributions: PD1,PD2,PD3 

  

% Data from dataset "Corr_Rate_01_monte data": 

%    Y = Corr_Rate_01_monte 

  

% Force all inputs to be column vectors 

Corr_Rate_01_monte_cdf = Corr_Rate_01_monte(:); 

  

  

% Prepare figure 

%clf; 

hold on; 

LegHandles_01 = []; LegText_01 = {}; 

  

  

% --- Plot data originally in dataset "Corr_Rate_01_monte data" 

[CdfY_01,CdfX_01] = ecdf(Corr_Rate_01_monte_cdf,'Function','cdf');  % compute empirical 

function 

hLine_01 = stairs(CdfX_01,CdfY_01,'Color',[0 0 0],'LineStyle','-', 'LineWidth',2); 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1'); 

ylabel('Cumulative probability','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1') 

LegHandles_01(end+1) = hLine_01; 

LegText_01{end+1} = 'Corr_Rate_01_monte data'; 

  

% Create grid where function will be computed 

XLim_01 = get(gca,'XLim'); 

XLim_01 = XLim_01 + [-1 1] * 0.01 * diff(XLim_01); 

XGrid_01 = linspace(XLim_01(1),XLim_01(2),100); 

xlim([0 80]) 

  

% --- Create fit "fit 2" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd1 = ProbDistUnivParam('weibull',[ 29.69797925362, 2.093948068127]) 

pd4 = fitdist(Corr_Rate_01_monte_cdf, 'weibull'); 
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% This fit does not appear on the plot 

  

% --- Create fit "Weibull" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd2 = ProbDistUnivParam('weibull',[ 29.69797925362, 2.093948068127]) 

pd5 = fitdist(Corr_Rate_01_monte_cdf, 'weibull'); 

YPlot_01 = cdf(pd5,XGrid_01); 

hLine_01 = plot(XGrid_01,YPlot_01,'Color',[0 0 1],... 

    'LineStyle','-.', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles_01(end+1) = hLine_01; 

LegText_01{end+1} = 'Weibull'; 

  

% --- Create fit "Normal" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd3 = ProbDistUnivParam('normal',[ 26.44988114611, 12.93956295892]) 

pd6 = fitdist(Corr_Rate_01_monte_cdf, 'normal'); 

YPlot_01 = cdf(pd6,XGrid_01); 

hLine_01 = plot(XGrid_01,YPlot_01,'Color',[0.666667 0.333333 0],... 

    'LineStyle','--', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles_01(end+1) = hLine_01; 

LegText_01{end+1} = 'Normal'; 

  

% Adjust figure 

box on; 

hold off; 

  

% Create legend from accumulated handles and labels 

hLegend_01 = legend(LegHandles_01,LegText_01,'Orientation', 'vertical', 'Location', 

'SouthEast'); 

set(hLegend_01,'Interpreter','none'); 

  

%Corr_rate_01_monte_weib=wblrnd(17.136,1.0149,[sample_num_01 1]); 

  

%figure() 

%histfit(Corr_rate_01_monte_weib,100,'weibull') 

  

%display(mean(Corr_rate_01_monte_weib)) 

%display(std(Corr_rate_01_monte_weib)) 

  

  

Sim_run_01=[1e7 1e6 1e5 1e4 1e3]; %Simulation Run to determine best number for Monte 

Carlo simulations 

  

Time_01=[0.9657 0.0979 0.0094 0.0008 0.0001]; %Time-taken to run Monte Carlo 

simulations 
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figure() 

  

semilogx(Sim_run_01,Time_01,'b-*','LineWidth',2) 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Number of Monte Carlo Simulations','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1'); 

ylabel('Time Elapsed (s)','FontWeight','Bold','FontName','Times New Roman','LineWidth',1') 

  

hold on 

text(0.3e4,0.3,'Chosen Number of Simulation Runs','FontName','Times New 

Roman','FontWeight','Bold') 

annotation('arrow',[0.4289 0.5125],... 

    [0.3143 0.1310]); 

  

  

figure() 

% Output fitted probablility distributions: PD1,PD2 

  

% Data from dataset "y_01 data": 

%    Y = y_01 

  

% Force all inputs to be column vectors 

y_01 = y_01(:); 

  

% Prepare figure 

clf; 

hold on; 

LegHandles_02 = []; LegText_02 = {}; 

  

  

% --- Plot data originally in dataset "y_01 data" 

[CdfF,CdfX] = ecdf(y_01,'Function','cdf');  % compute empirical cdf 

BinInfo.rule = 1; 

[~,BinEdge] = internal.stats.histbins(y_01,[],[],BinInfo,CdfF,CdfX); 

[BinHeight,BinCenter] = ecdfhist(CdfF,CdfX,'edges',BinEdge); 

hLine_02 = bar(BinCenter,BinHeight,'hist'); 

set(hLine_02,'FaceColor',[0 0 0.8],'EdgeColor',[0 0 0],... 

    'LineStyle','-', 'LineWidth',1.5); 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1); 

ylabel('Density','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

%xlabel('Data'); 

%ylabel('Density') 

%LegHandles_02(end+1) = hLine_02; 

%LegText_02{end+1} = 'y_01 data'; 

  

% Create grid where function will be computed 

XLim_02 = get(gca,'XLim'); 

XLim_02 = XLim_02 + [-1 1] * 0.01 * diff(XLim_02); 
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XGrid_02 = linspace(XLim_02(1),XLim_02(2),100); 

xlim([0 80]) 

  

% --- Create fit "Weibull" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd1 = ProbDistUnivParam('weibull',[ 17.13597550619, 1.014898003019]) 

pd7 = fitdist(y_01, 'weibull'); 

YPlot_02 = pdf(pd7,XGrid_02); 

hLine_02 = plot(XGrid_02,YPlot_02,'Color',[1 0 0],... 

    'LineStyle','-', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles_02(end+1) = hLine_02; 

LegText_02{end+1} = 'Weibull'; 

  

% --- Create fit "Normal" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd2 = ProbDistUnivParam('normal',[ 17.02666666667, 17.01911056118]) 

pd8 = fitdist(y_01, 'normal'); 

YPlot_02 = pdf(pd8,XGrid_02); 

hLine_02 = plot(XGrid_02,YPlot_02,'Color',[0 0 0],... 

    'LineStyle','--', 'LineWidth',2,... 

    'Marker','none', 'MarkerSize',6); 

LegHandles_02(end+1) = hLine_02; 

LegText_02{end+1} = 'Normal'; 

  

% Adjust figure 

box on; 

hold off; 

  

% Create legend from accumulated handles and labels 

hLegend_02 = legend(LegHandles_02,LegText_02,'Orientation', 'vertical', 'Location', 

'NorthEast'); 

set(hLegend_02,'Interpreter','none'); 

  

  

  

figure() 

% Output fitted probablility distributions: PD1,PD2 

  

% Data from dataset "y_01 data": 

%    Y = y_01 

  

% Force all inputs to be column vectors 

y_01 = y_01(:); 

  

% Prepare figure 

clf; 
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hold on; 

LegHandles_03 = []; LegText_03 = {}; 

  

  

% --- Plot data originally in dataset "y_01 data" 

hLine_03 = probplot('normal',y_01,[],[],'noref'); 

set(hLine_03,'Color',[0 0 0],'Marker','o', 'MarkerSize',6,'LineWidth',2); 

set(gca,'FontName','Times New Roman','LineWidth',1) 

xlabel('Corrosion Rate (mm/year)','FontWeight','Bold','FontName','Times New 

Roman','LineWidth',1); 

ylabel('Probability','FontWeight','Bold','FontName','Times New Roman','LineWidth',1) 

title('') 

%LegHandles_03(end+1) = hLine_03; 

%LegText_03{end+1} = 'y_01 data'; 

  

  

% --- Create fit "Weibull" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd1 = ProbDistUnivParam('weibull',[ 12.02705976236, 2.406601738499]) 

pd9 = fitdist(y_01, 'weibull'); 

hLine_03 = probplot(gca,pd9); 

set(hLine_03,'Color',[1 0 0],'LineStyle','-','LineWidth',2); 

LegHandles_03(end+1) = hLine_03; 

LegText_03{end+1} = 'Weibull'; 

  

  

% --- Create fit "Normal" 

  

% Fit this distribution to get parameter values 

% To use parameter estimates from the original fit: 

%     pd2 = ProbDistUnivParam('normal',[ 10.78125, 4.746257297422]) 

pd10 = fitdist(y_01, 'normal'); 

hLine_03 = probplot(gca,pd10); 

set(hLine_03,'Color',[0 0 1],'LineStyle','-','LineWidth',2); 

LegHandles_03(end+1) = hLine_03; 

LegText_03{end+1} = 'Normal'; 

  

  

% Adjust figure 

box on; 

hold off; 

  

% Create legend from accumulated handles and labels 

hLegend_03 = legend(LegHandles_03,LegText_03,'Orientation', 'vertical'); 

set(hLegend_03,'Units','normalized'); 

Position = get(hLegend_03,'Position'); 

Position(1:2) = [0.153828,0.675584]; 

set(hLegend_03,'Interpreter','none','Location','NorthWest'); 
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%Optimising the Mean and Standard Deviation of the Monte Carlo dataset 

  

%Soln_01 is the difference between the mean of the Monte Carlo dataset and 

%that of the Experimental corrosion rate dataset 

  

a_01=mean(y_01); 

a_02=mean(Corr_Rate_01_monte); 

  

b_01=std(y_01); 

b_02=std(Corr_Rate_01_monte); 

  

  

%Soln_01=fzero(@mean_optim_01,5,optimset('TolFun',1e-12)); 

%Soln_02=fzero(@stand_dev_optim_01,5,optimset('TolFun',1e-12)); 

  

%figure() 

%histfit(Corr_Rate_01_monte,100,'Weibull') 

  

%[x_pH,fval,exitflag,output] = Auto_gen_01(x0) 

%% This is an auto generated MATLAB file from Optimization Tool. 

  

%% Start with the default options 

options = optimset; 

%% Modify options setting 

options = optimset(options,'Display', 'iter'); 

options = optimset(options,'PlotFcns', {  @optimplotx @optimplotfunccount @optimplotfval 

}); 

[x_vel,fval_vel,exitflag_vel,output_vel] = ... 

fzero(@mean_optim_02,5.0,options); 

  

display(x_vel) 

display(fval_vel) 

display(exitflag_vel) 

display(output_vel) 

  

  

  

  

%% This is an auto generated MATLAB file from Optimization Tool. 

  

%% Start with the default options 

options = optimset; 

%% Modify options setting 

options = optimset(options,'Display', 'iter'); 

options = optimset(options,'PlotFcns', {  @optimplotx @optimplotfunccount @optimplotfval 

}); 

[x_vel_01,fval_vel_01,exitflag_vel_01,output_vel_01] = ... 

fzero(@stand_dev_optim_02,5.0,options); 
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display(x_vel_01) 

display(fval_vel_01) 

display(exitflag_vel_01) 

display(output_vel_01) 
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