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Abstract

The problem of designing controllers that are robust with respect to uncertainty leads

to questions that are in the areas of operator theory and several complex variables. One

direction is the engineering problem of µ-synthesis, which has led to the study of certain

inhomogeneous domains such as the symmetrised polydisc and the tetrablock. The µ-

synthesis problem involves the construction of holomorphic matrix valued functions on

the disc, subject to interpolation conditions and a boundedness condition.

In more detail, let λ1, . . . , λn be distinct points in the disc, and let W1, . . . ,Wn be 2×2

matrices. The µ-synthesis problem related to the symmetrised bidisc involves finding a

holomorphic 2× 2 matrix function F on the disc such that F (λj) = Wj for all j, and the

spectral radius of F (λ) is less than or equal to 1 for all λ in the disc. The µ-synthesis

problem related to the tetrablock involves finding a holomorphic 2 × 2 matrix function

F on the disc such that F (λj) = Wj for all j, and the structured singular value (for the

diagonal matrices with entries in C) of F (λ) is less than or equal to 1 for all λ in the disc.

For the symmetrised bidisc and for the tetrablock, we study the structure of inter-

connections between the matricial Schur class, the Schur class of the bidisc, the set of

pairs of positive kernels on the bidisc subject to a boundedness condition, and the set of

holomorphic functions from the disc into the given inhomogeneous domain. We use the

theory of reproducing kernels and Hilbert function spaces in these connections. We give a

solvability criterion for the interpolation problem that arises from the µ-synthesis problem

related to the tetrablock. Our strategy for this problem is the following: (i) reduce the

µ-synthesis problem to an interpolation problem in the set of holomorphic functions from

the disc into the tetrablock; (ii) induce a duality between this set and the Schur class of

the bidisc; and then (iii) use Hilbert space models for this Schur class to obtain necessary

and sufficient conditions for solvability.
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Chapter 1. Introduction and historical remarks

1.1 Introduction

Research by several mathematicians over the last few years indicates a rich structure

of interconnections between four naturally arising objects of analysis. We introduce this

structure, and construct correspondences to illustrate it. We use the theory of reproducing

kernels and Hilbert function spaces to aid in these constructions. Better understanding

of the structure is expected to contribute in solving extremal problems in the context of

control engineering.

The rich structure can be summarised by the following diagram:

S2×2

��

//

&&

R1
oo

��xx

Hol (D, X)

OO

// S2
oo

OO

which we call the rich saltire. Whereas S2×2 and S2 are classical objects that have been

studied greatly, Hol (D, X) and R1 are relatively new and have been introduced over the

last two decades in connection with the robust stabilisation problem (see, for example,

[1, 3, 11]). The objects are defined as follows:

Hol (D, X) := {holomorphic functions from D to X},

where D is the open unit disc and X is either the symmetrised bidisc or the tetrablock;

S2×2 is the 2 × 2 matricial Schur class; S2 is the Schur class of the bidisc D2; and R1 is

the set of pairs (N,M) of holomorphic kernels on D2 such that the function defined by

(z, λ, w, µ) 7→ 1− (1− wz)N(z, λ, w, µ)− (1− µλ)M(z, λ, w, µ),

is a rank 1 kernel on D2.

In the case of the tetrablock, we apply our results to obtain a solvability criterion for

an interpolation problem from the disc to the set of 2 × 2 matrices with entries in C,

subject to a boundedness condition. Similar results were obtained for the symmetrised

bidisc by J. Agler [UC San Diego, USA], Z. A. Lykova [Newcastle University, UK] and N.

J. Young [Leeds and Newcastle Universities, UK] in [3], we formalise these results in the

1



1.2. H∞ control and µ-synthesis

context of the rich saltire. Our strategy to obtain the criterion is the following: (i) reduce

the problem to an interpolation problem in the set of holomorphic functions from the

disc into the tetrablock; (ii) induce a duality between this set and S2; and then (iii) use

Hilbert space models for S2 to obtain necessary and sufficient conditions for solvability.

The criterion states that the interpolation problem is sovable if and only if there exists

positive 3n-square matrices N , of rank at most 1, and M that satisfy a matrix inequality

obtained from the interpolation data (see Theorem 4.4.2).

This research is a step towards the use of several complex variables as a tool for repre-

senting and analysing the uncertainty of models used in engineering design, particularly

in the design of robust automatic controllers.

In this thesis, any results that we use have a reference to the people who proved them

or where we found them. All results without references are proved by D. C. Brown, Z. A.

Lykova and N. J. Young.

1.2 H∞ control and µ-synthesis

H∞ control is a topic in control engineering and was heavily developed during the 1980’s.

Previously, control engineering theory tried to approximate desired frequency domain per-

formance, in the sense of mean-square-error. The main methods for classical control often

relied on trial and error, and so H∞ engineering arose to provide a more precise method

for optimising worst-case error in the frequency domain. This more precise approach is

useful in converting an engineering problem into a problem that can be treated with a

mathematical optimisation package. Numerous authors have covered the topic of H∞

control, for example, B. A. Francis [University of Toronto, Canada] in [40], and J. W.

Helton [UC San Diego, USA] and O. Merino [University of Rhode Island, USA] in [43].

D. Sarason [UC Berkeley, USA] gave an effective technique in [59] to deal with certain

interpolation problems that arise from H∞ control, in particular, the Carathéodory and

Nevanlinna-Pick problems. His technique is operator theoretic and so demonstrates a

connection between these interpolation problems and operator theory. There has been

a lot of research to develop connections of this type, for example, the book [56] of J.

R. Partington [Leeds University, UK] studies the problems of recovery and worst-case

identification, and gives the application of these to H∞ control.

An important aspect of modern control engineering is robustness. One approach to

the design of stabilising controllers, for linear time-invariant systems, that are robust with

respect to structured uncertainty, is that of H∞ control, which leads to an optimisation

problem over a class of holomorphic matrix functions on the disc. The book [57] of

Partington focuses on the connections between linear operators and linear systems, and

considers the stability of such systems. It includes a theorem of M. C. Smith [University

of Cambridge, UK] from [60], which connects stability with transfer functions and coprime

factorisations. In addition, it draws on a number of papers, for example, [42] by Smith

with T. T. Georgiou [University of Minnesota, USA], to show that the gap topology is

2



1.2. H∞ control and µ-synthesis

the correct topology to measure the distance between two linear systems in regards to

robustness.

More recent papers of Partington include research on inner functions and Toeplitz

kernels, for example, [28, 29] with I. Chalendar [Université du Lyon, France] and P.

Gorkin [Bucknell University, USA], and [26, 27] with M. C. Câmara [Instituto Superior

Técnico, Portugal], respectively.

The symbol µ denotes the structured singular value, of an operator or matrix, cor-

responding to a given uncertainty class. It is a type of cost function that generalises

the operator and H∞ norms, and was introduced by J. C. Doyle [Caltech, USA] and

G. Stein [Honeywell Laboratories, USA] in [33], with further work by Doyle in [31] and

[32]. The motivation for the structured singular value was the desire to achieve a less

conservative stabilising controller by incorporating known structural information. The

µ-synthesis problem involves the construction of holomorphic matrix valued functions on

the disc which are subject to interpolation conditions and a boundedness condition. It

can be shown, for certain cases of µ-synthesis, it is equivalent to construct holomorphic

functions from the disc to a particular inhomogeneous domain, subject to interpolation

conditions. Attempts to solve cases of the µ-synthesis problem have led to the study of a

number of these domains.

A good description of robust stabilisation and µ-synthesis can be found in the book

[36] of G. E. Dullerud [University of Illinois, USA] and F. G. Paganini [Universidad ORT,

Uruguay]. For our purposes a structure is a linear subspace of

Mn×m(C) := {[mij]
n,m
i,j=1 : mij ∈ C for all 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

For a structure E , we define the structured singular value of M ∈Mm×n(C) by

µE(M) :=
1

inf {||E|| : E ∈ E and I −ME is singular}
,

where we set µE(M) = 0 if I−ME is non-singular for all E ∈ E . Let D := {z ∈ C : |z| < 1}
be the open unit disc. Then the µ-synthesis problem, for a structure E , is to construct

a holomorphic matrix function F : D → Mm×n(C), which satisfies a finite number of

interpolation conditions, and is such that µE(F (λ)) ≤ 1 for all λ ∈ D.

We highlight two special cases of the structured singular value. If we consider the

structure E =Mn×m(C), then µE is the operator norm || · ||. If we consider the structure

which is the linear subspace of Mn×n(C) :=Mn(C) given by

E = {λI : λ ∈ C and I is the identity matrix in Mn(C)},

then µE is the spectral radius ρ of a square matrix. One reason we highlight these two

cases is that they can be considered extremal cases. Indeed, for any structure E and any

M ∈ Mm×n(C), we have µE(M) ≤ ||M || and if, in addition, m = n and E contains the

identity matrix then ρ(M) ≤ µE(M).

3



1.2. H∞ control and µ-synthesis

The other reason we highlight these cases is that the associated µ-synthesis problems

become examples of more familiar problems. In the case that µE = || · ||, the µ-synthesis

problem becomes the classical Nevanlinna-Pick problem as discussed by many authors,

including J. A. Ball [Virginia Tech, USA], I. Gohberg [Tel Aviv University, Israel] and

L. Rodman [College of William and Mary, USA] in [15]. In the case that µE = ρ, the

µ-synthesis problem becomes the spectral Nevanlinna-Pick problem as discussed by, for

example, H. Bercovici [Indiana University, USA], C. Foiaş [Indiana University, USA] and

A. Tannenbaum [Stony Brook University, USA] in [19]. In particular, if we take µE = ρ

in the case of 2 × 2 matrices then the µ-synthesis problem becomes the 2 × 2 spectral

Nevanlinna-Pick problem, which is an interpolation problem that can be stated as follows.

Question 1.2.1. Let λ1, . . . , λk be distinct points in D. Let W1, . . . ,Wk ∈M2(C) be such

that ρ(Wj) ≤ 1 for j = 1, . . . , n. Does there exist a holomorphic function F : D→M2(C)

such that F (λj) = Wj for all j = 1, . . . , k, and ρ(F (λ)) ≤ 1 for all λ ∈ D?

Agler and Young showed in [11] that this question is equivalent to an interpolation

problem in the set of holomorphic functions from the disc to the symmetrised bidisc.

Moreover, Agler, Lykova and Young showed in [3] that this interpolation problem can be

used to find a criterion for which Question 1.2.1 is solvable.

We highlighted the extremal case in the setting of 2 × 2 matrices, that is, the case

of µ = ρ. The ‘next’ case we can consider is the structure that contains the diagonal

matrices in M2(C), that is, we consider the structure

Diag :=

{[
z 0

0 w

]
: z, w ∈ C

}
,

in this case, the µ-synthesis problem can be stated as follows.

Question 1.2.2. Let λ1, . . . , λk be distinct points in D. Let W1, . . . ,Wk ∈ M2(C) be

such that µDiag(Wj) ≤ 1 for j = 1, . . . , n. Does there exist a holomorphic function

F : D → M2(C) such that F (λj) = Wj for all j = 1, . . . , k, and µDiag(F (λ)) ≤ 1 for all

λ ∈ D?

Young with A. A. Abouhajar [Newcastle University, UK] and M. C. White [Newcastle

University, UK] showed in [1] that this question is equivalent to an interpolation problem

in the set of holomorphic functions from the disc to the tetrablock. We show, in Chapter

4, that this interpolation problem can be used to find a criterion for which Question

1.2.2 is solvable. The strategy is: (i) to induce a duality between the set of holomorphic

functions from the disc to the tetrablock, and a subset of S2; and then (ii) use Hilbert

space models for S2 to obtain necessary and sufficient conditions for solvability.

4



1.3. Main results

1.3 Main results

Our first main result appears in Section 4.3.1, and gives the existence of a function in

S2×2 := {F : D→M2(C) : F is holomorphic and ||F (λ)|| ≤ 1 for all λ ∈ D}

for each holomorphic function from the disc to the tetrablock. Let

E = {(x1, x2, x3) ∈ C3 : 1− x1z − x2w + x3zw 6= 0 for all z, w ∈ D}

be the tetrablock, and let T := {z ∈ C : |z| = 1} be the unit circle. Then the result is:

Theorem 4.3.1. Let x = (x1, x2, x3) ∈ Hol (D,E). Then there exists a unique

F =

[
F11 F12

F21 F22

]
∈ S2×2

such that x = (F11, F22, detF ), |F12| = |F21| almost everywhere on T, F12 is either outer

or 0, and F12(0) ≥ 0. Moreover, we have

1−Ψ(w, x(µ))Ψ(z, x(λ)) = (1− wz)γ(µ,w)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D, where

Ψ(z, x(λ)) =
x3(λ)z − x1(λ)

x2(λ)z − 1
, γ(λ, z) =

F21(λ)

1− F22(λ)z
and η(λ, z) =

[
1

zγ(λ, z)

]

for all z, λ ∈ D.

The proof of Theorem 4.3.1 is constructive, and is used to produce a map from

Hol (D,E) to S2×2. The proof uses the inner-outer factorisation of non-zero H∞ func-

tions to construct the appropriate function in S2×2. The identity is proved by using the

realisation formula for functions on D, and the fact that, for the constructed function F ,

we have

Ψ(z, x(λ)) = F11(λ) + F12(λ)z(1− F22(λ)z)−1F21(λ)

for all z, λ ∈ D. The identity is a useful tool in the construction of a number of our other

correspondences.

Our second main result appears in Section 4.4, and comes from our study of the rich

structure of interconnections between Hol (D,E), S2×2,

S2 := {holomorphic functions from D2 to D}

and R1, where D := {z ∈ C : |z| ≤ 1} is the closed unit disc. The result gives a criterion

for the solvability of an interpolation problem in Hol (D,E). The strategy is: (i) to induce

5



1.3. Main results

a duality between Hol (D,E) and a subset of S2; and then (ii) use Hilbert space models

for S2 to obtain necessary and sufficient conditions for solvability. The result is:

Theorem 4.4.1. Let λ1, . . . , λn be distinct points in D, and let (x1j, x2j, x3j) ∈ E be such

that x1jx2j 6= x3j for j = 1, . . . , n. Then the following are equivalent.

(i) There exists a holomorphic function x : D→ E satisfying

x(λj) = (x1j, x2j, x3j) for j = 1, . . . , n;

(ii) there exists a rational E-inner function x satisfying

x(λj) = (x1j, x2j, x3j) for j = 1, . . . , n;

(iii) for every distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that, for 1 ≤ i, j ≤

n and 1 ≤ l, k ≤ 3,

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1
= (1− zlzk)Nil,jk + (1− λiλj)Mil,jk;

(iv) for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that[

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
.

Although Theorem 4.4.1 concerns the solvability of an E-interpolation problem, by use

of the result of Abouhajar, White and Young in [1] that connects E-interpolation prob-

lems with the µ-synthesis problems described by Question 1.2.2, we obtain the following

criterion for which the associated µ-synthesis problem is solvable.

Theorem 4.4.2. Let λ1, . . . , λn be distinct points in D, and let

Wj =

[
wj11 wj12

wj21 wj22

]
∈M2(C)

be such that µDiag(Wj) ≤ 1 and wj11w
j
22 6= detWj for j = 1, . . . , n. Set (x1j, x2j, x3j) =

(wj11, w
j
22, detWj) ∈ E for each j = 1, . . . , n. Then the following are equivalent.

(i) There exists a holomorphic function F : D → M2(C) such that F (λj) = Wj for

j = 1, . . . , n, and µDiag(F (λ)) ≤ 1 for all λ ∈ D;

(ii) there exists a holomorphic function x : D→ E satisfying

x(λj) = (x1j, x2j, x3j) for j = 1, . . . , n;

6



1.4. Description of results by section

(iii) for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that[

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
.

1.4 Description of results by section

In Chapter 2, we consider the connections between S2×2, S2 and R1. In Section 2.1, we

give a realisation formula for functions on D, and, in Section 2.2, we use this to define a

map from S2×2 to S2. In Section 2.3, we define a map from S2×2 to the set

R1 := {(N,M) : N,M,KN,M are holomorphic kernels on D2 and KN,M has rank 1},

where KN,M : D2 × D2 → C is the function given by

KN,M(z, λ, w, µ) := 1− (1− wz)N(z, λ, w, µ)− (1− µλ)M(z, λ, w, µ)

for all z, λ, w, µ ∈ D. The map takes each F ∈ S2×2 to the pair of kernels (NF ,MF ) ∈ R1,

which are defined by

NF (z, λ, w, µ) := γ(µ,w)γ(λ, z) and MF (z, λ, w, µ) := η(µ,w)∗
I − F (µ)∗F (λ)

1− µλ
η(λ, z)

for all z, λ, w, µ ∈ D. The functions γ and η are given by

γ(λ, z) = (1− F22(λ)z)−1F21(λ) and η(λ, z) =

[
1

zγ(λ, z)

]

for all z, λ ∈ D. In Section 2.4, we construct a function Ξ ∈ S2×2 for each pair of kernels

in the subset of R1 defined by

R11 := {(N,M) ∈ R1 : N has rank 1},

and use this to define a set map from R11 to S2×2. We show that by taking (NΞ,MΞ) we

get back the pair of kernels in R11. In Section 2.5, we give a set map from R1 to S2, and,

in Section 2.6, we give a set map from S2 to R1. Where possible, we investigate how the

maps of this chapter interact with one another.

In Chapter 3, we study the structure of interconnections between the sets Hol (D, X),

S2×2, S2 and R1 in the case that X is the symmetrised bidisc. In Section 3.1, we give

some historic remarks on the symmetrised bidisc,

Γ := {(z1 + z2, z1z2) : z1, z2 ∈ D},
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1.4. Description of results by section

and describe the connection between Γ and µ-synthesis. In Section 3.2, we discuss the

necessary background for Γ, including the distinguished boundary of Γ and Γ-inner func-

tions. In Section 3.3, we construct the maps that illustrate the interconnections between

Hol (D,Γ), S2×2, S2 andR1. Some of the results in this section are contained in [3, 4, 8, 12],

and references are given for where each of these results originally appeared. We formalise

the results and bring them together in order to better understand the rich structure; we

fill the gaps and add any connections that do not appear in these papers.

In most of Section 3.3, we consider the connections between Hol (D,Γ), S2×2 and S2.

We construct a unique function in S2×2 for each function in Hol (D,Γ), and provide a

map from S2×2 that recovers the function in Hol (D,Γ). We produce a bijection between

Hol (D,Γ) and the subset of S2 that contains the functions ϕ for which ϕ(·, λ) has the

form

z 7→ a(λ)z + b(λ)

b(λ)z + c(λ)

for all λ ∈ D. In the remainder of Section 3.3, we consider the connections between

Hol (D,Γ) and the kernel set R1. We use the results of Chapter 2 to define a set map

fromR11 to Hol (D,Γ). Where possible, we investigate how the maps of Chapter 2 interact

with the maps involving Hol (D,Γ) that were obtained in the first half of the section.

In Section 3.4, we give a criterion for the solvability of a Γ-interpolation problem, and

discuss the process of obtaining a solution to this problem. These results are proved in

[3]. We give concluding remarks on how the criterion for solvability of the Γ-interpolation

problem connects with the associated µ-synthesis problem.

In Chapter 4, we study the structure of interconnections between the sets Hol (D, X),

S2×2, S2 and R1 in the case that X is the tetrablock. In Section 4.1, we give some historic

remarks on the tetrablock,

E = {(x1, x2, x3) ∈ C3 : 1− x1z − x2w + x3zw 6= 0 for all z, w ∈ D},

and describe the connection between E and µ-synthesis. In Section 4.2, we discuss the

necessary background for E, including the distinguished boundary of E and E-inner func-

tions. In Section 4.3, we construct the maps that illustrate the interconnections between

Hol (D,E), S2×2, S2 and R1.

In the majority of Section 4.3, we consider the connections between Hol (D,E), S2×2

and S2. We construct a unique function in S2×2 for each function in Hol (D,E), and provide

a map from S2×2 that recovers the function in Hol (D,E). We produce a surjection from

Hol (D,E) to the subset of S2 that contains the functions ϕ for which ϕ(·, λ) has the form

z 7→ a(λ)z + b(λ)

c(λ)z + 1

for all λ ∈ D, where c is holomorphic and if a(λ) = b(λ)c(λ) for some λ ∈ D, then,

in addition, |c(λ)| ≤ 1. We finish Section 4.3 by considering the connections between

8



1.5. Historical remarks

Hol (D,E) and the kernel set R1. Using the results of Chapter 2, we define a set map

fromR11 to Hol (D,E). Where possible, we investigate how the maps of Chapter 2 interact

with the maps involving Hol (D,E) that were obtained in the rest of the section.

In Section 4.4, we prove a criterion for the solvability of an E-interpolation problem.

The strategy is: (i) to induce a duality between Hol (D,E) and a subset of S2, and

then (ii) use Hilbert space models for S2 to obtain necessary and sufficient conditions

for solvability. We give concluding remarks on how the criterion for solvability of the

E-interpolation problem connects with the associated µ-synthesis problem.

An appendix contains the necessary supplementary material. Chapter A contains

examples from control engineering, and Chapter B contains the required background

material. In Section B.1, we give definitions and results we wish to use but not discuss in

depth. In Section B.2, we give a realisation formula and a number of related results. In

Section B.3, the required definitions and results from the theory of reproducing kernels

and Hilbert function spaces are given.

1.5 Historical remarks

Engineers often represent modelling error as a linear fractional transformation of an un-

known element of a structured uncertainty class, in this case, the problem of designing

controllers that are robust with respect to uncertainty leads to questions that are in the

areas of operator theory and several complex variables. One direction is the engineering

problem of µ-synthesis, which has led to the study of certain inhomogeneous domains

that enjoy a rich function theory and operator theory.

The topics of this section represent a rich area of research with many active authors.

As we cannot cover everything, our aim is to illustrate some of the areas and give an

insight into the type of research that has been carried out. In particular, we want to

highlight some of the alternative branches of research to ours, which exist in this area.

In [11], Agler and Young proved that there is an equivalence between the solvability of

the 2×2 spectral Nevanlinna-Pick problem and the solvability of an interpolation problem

in the set of holomorphic functions from the disc to the symmetrised bidisc. The spectral

Nevanlinna-Pick problem is a special case of the µ-synthesis problem, and is a variant of

the classical Nevanlinna-Pick problem, as studied by Pick in 1916 and Nevanlinna in 1919.

The paper [11] includes a realisation formula for holomorphic functions from the disc to

the symmetrised bidisc, which is a useful tool in the study of the domain, and answers,

for dimension two, the problem posed by Ball and Young in [18]: to find a realisation

formula for holomorphic functions from the disc to the symmetrised polydisc.

Since Agler and Young’s first paper on the subject, the study has led to other domains

related to cases of µ-synthesis. D. J. Ogle [Newcastle University, UK] studied the sym-

metrised n-disc in his thesis [53]. Ogle proves a necessary condition for the solvability of

the spectral Nevanlinna-Pick problem that extends the necessary condition of Agler and

Young in [9] for the 2 × 2 spectral Nevanlinna-Pick problem. He uses the approach of
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1.5. Historical remarks

Agler and Young to reduce the n×n spectral Nevanlinna-Pick problem to an interpolation

problem in the set of holomorphic functions from the disc to the symmetrised n-disc, and

then consider commuting n-tuples of operators that have this domain as a complete spec-

tral set. Ogle uses this condition to find an upper bound on the Carathéodory distance

between two points in the symmetrised n-disc.

Abouhajar, White and Young introduced the tetrablock in [1]. They showed that

there is a relationship between a special case of µ-synthesis and interpolation in the set of

holomorphic functions from the disc to the tetrablock. One of the main results of the paper

is a Schwarz lemma for the tetrablock. They describe a large group of automorphisms

of the tetrablock, and conjecture that this group of automorphisms is the automorphism

group of the tetrablock. It was proved later, by Young in [63], that the conjecure is

correct.

Agler, Lykova and Young introduced the pentablock in [5]. The paper studies the com-

plex geometry of the pentablock, and derives a group of automorphisms of the pentablock.

It was later shown, by L. Kosiński [Jagiellonian University, Poland] in [47], that this group

of automorphisms is the automorphism group of the pentablock. Agler, Lykova and Young

also show how the pentablock arises from a special case of µ-synthesis, and that this con-

nection is more subtle than the similar connections that exist for the symmetrised bidisc

and the tetrablock.

Aside from their use in the study of µ-synthesis, these domains turn out to have many

properties of interest to specialists in several complex variables and operator theory. We

give some examples. C. Costara [Ovidius University, Romania] showed in [30] that the

symmetrised bidisc is not biholomorphic to a convex set. A. Edigarian [Jagiellonian Uni-

versity, Poland] improved on this result in [37] by showing that the symmetrised bidisc

cannot be exhausted by domains biholomoprhic to convex ones. Combining this with

an earlier result of Agler and Young in [12], that the Carathédory distance, Kobayashi

distance and Lempert function coincide on the symmetrised bidisc, it follows that the sym-

metrised bidisc is a non-convex domain that satisfies the result of the Lempert Theorem

(see [45, Theorem 11.2.1]).

In [51], N. Nikolov [Bulgarian Academy of Sciences, Bulgaria], P. Pflug [Oldenburg

University, Germany] and W. Zwonek [Jagiellonian University, Poland] proved that, for

n greater than two, the Lempert function of the symmetrised n-disc is not a distance.

In particular, the Carathéodory distance and Lempert function of these domains do not

coincide. As a result, these domains cannot be exhausted by domains biholomorphic to

covex domains; this had previously been shown directly by Nikolov in [50]. In addition, the

authors show that there exist, for any dimension greater than two, bounded pseudoconvex

domains that cannot be exhausted by domains biholomorphic to covex domains, but for

which the Carathéodory distance and Lempert function coincide.

Edigarian, Kosiński and Zwonek showed in [39] that the tetrablock is an example of a

domain that cannot be exhausted by domains biholomorphic to convex domains, but for
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1.5. Historical remarks

which the Carathéodory distance and Lempert function coincide. More information on

these topics can be found in the book [45] of Pflug with M. Jarnicki [Jagiellonian Univer-

sity, Poland]. The book is about the study of invariant pseudodistances and pseudometrics

in several complex variables, and is a useful collection of many results from this area. The

authors include chapters on the symmetrised polydisc and on Lempert’s theorem, and

sections on complex geodesics in the symmetrised bidisc and in the tetrablock.

Edigarian and Zwonek studied the geometric properties of the symmetrised polydisc

in [38]. They describe all proper holomorphic mappings of the symmetrised polydisc, and

apply their results to the study of the spectral unit ball in Mn(Cn). They show that,

for a proper holomorphic self-map of the spectral unit ball, there exists a finite Blaschke

product such that the spectrum of the map evaluated at a point in the ball is equal to

the Blaschke product applied to elements of the spectrum of that point. This is a partial

generalisation of a result of White with T. J. Ransford [Laval University, Canada] in [58].

In [48], Kosiński and Zwonek discuss three notions of m-extremal holomorphic maps,

and the relations between them in the general case, and in special cases, including the

symmetrised bidisc and the tetrablock. They showed that weak 3-extremal maps in the

symmetrised bidisc are rational, which gives a partial positive answer to the question of

Agler, Lykova and Young in [4] that asks if this is true for m-extremal maps. In [4], the

authors introduced the class of m-extremal maps, and explored it in relation to the finite

interpolation problem for holomorphic functions from the disc to the symmetrised bidisc.

They give a sequence of necessary conditions for solvability that are of strictly increasing

strength.

Agler and Young proved a Commutant Lifting Theorem for the symmetrised bidisc

in [9], which led to the study of Γ-contractions. In [10], Agler and Young developed a

model theory for Γ-contractions; they show that any Γ-contraction is unitarily equivalent

to the restriction to a common invariant subspace of the orthogonal direct sum of a Γ-

unitary and the adjoint of a pure Γ-isometry. This was taken further by T. Bhattacharya

[IIT Kharagpur, India], S. Pal [IIT Bombay, India] and S. Shyam Roy [IISER Kolkata,

India] in [21]. They construct an explicit Γ-isometric dilation for any Γ-contraction, the

existence of which follows from the results of Agler and Young. Moreover, they show that

a commuting pair of operators is a Γ-contraction if and only if the fundamental equation

of the pair can be solved with a solution of numerical radius less than or equal to one.

In [20], Bhattacharya constructed a tetrablock-isometric dilation for a

tetrablock-contraction whose fundamental operators satisfy certain commutativity condi-

tions. Pal showed in [54] that there is a tetrablock-contraction which does not dilate to

a tetrablock-isometry, and so demonstrated the failure of rational dilation on a domain

in C3. In a different direction, M. A Dritschel [Newcastle University, UK] and S. Mc-

Cullough [University of Florida, USA] showed in [34] the failure of rational dilation on a

triply connected domain in C.

In [55], Pal showed that every tetrablock-contraction can be uniquely written as a
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1.5. Historical remarks

direct sum of a tetrablock-unitary and a completely non-unitary tetrablock-contraction.

Moreover, for certain conditions on the fundamental operators of the tetrablock-contraction,

he showed the tetrablock-contraction is the restriction to a common invariant subspace

of the orthogonal direct sum of a tetrablock-unitary and a pure tetrablock-co-isometry.

Shyam Roy with G. Misra [IISc Bangalore, India] and G. Zheng [Chalmers and Gothen-

burg Universities, Sweden] studied in [49] a class of weighted Bergman spaces on the sym-

metrised polydisc that isometrically embed as a subspace in the corresponding weighted

Bergman space on the polydisc. Using their embedding, the authors compute the kernel

function for the weighted Bergman spaces on the symmetrised polydisc. In particular,

they show that the collection of all these kernel functions contains the Szegő and Bergman

kernels on the symmetrised polydisc.

The theory of reproducing kernels and Hilbert function spaces is a useful tool in

treating certain interpolation problems. One use comes from a result of Agler in [2], that

functions in the Schur class of the bidisc have a realisation in terms of a pair of kernels. As

the proof of this is non-constructive, these pairs have been studied by a number of authors

in order to produce a canonical pair, for example, in [16] by Ball with C. Sadosky [Howard

University, USA] and V. Vinnikov [Ben Gurion University of the Negev, Israel], in [22] by

K. Bickel [Bucknell University, USA], and in [23] by Bickel with G. Knese [Washington

University, USA].

In [6], Agler with J. E. McCarthy [Washington University, USA] developed an operator

theoretic approach to interpolation problems of Pick type. The book is also a good

introduction to the theory of reproducing kernels and Hilbert function spaces. Other

authors have considered this topic too, for example, Ball with T. T. Trent [University of

Alabama, USA] in [17], and Dritschel and McCullough in [35]. More recently, in [7], Agler

and McCarthy obtained a criterion for solving a Pick interpolation problem on a basic

open set, and its generalisation to extending bounded free holomorphic functions off free

varieties. In addition, they give a description of all solutions of a solvable Pick problem.

The study of the inhomogeneous domains, and related topics, brings together a diverse

range of researchers including pure and applied mathematicians, computer scientists and

engineers. This is because, in addition to the interest from several complex variables and

operator theory, there is interest in the applications of the area to problems in control

theory. Evidence that the area has a thriving international community can be seen,

for example, in the 2014 international workshop ‘Function theory in several complex

variables in relation to modelling uncertainty’ at the ICMS in Edinburgh, which was

ICMS/EPSRC/LMS/Newcastle University funded. The workshop was well attended and

there were many interesting talks from specialists in mathematics and engineering. Details

of the presentations given can be found on the workshop website: http://www.icms.org.

uk/workshops/functiontheory#presentations.
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Chapter 2. The realisation formula and kernels on D2

In this chapter, we construct maps between S2×2, S2 and R1. Where possible, we inves-

tigate how the maps interact with each other. We label the maps in accordance with the

following diagrams:

S2×2

SE
$$ S2

S2×2

Upper E
//R1

Upper W
oo

Right S

��

S2

Right N

OO

The maps in this chapter are used in Chapter 3 to study the rich saltire in the case of the

symmetrised bidisc, and in Chapter 4 to study the rich saltire in the case of the tetrablock,

however they are independent of either set and so we have collected them in this chapter.

2.1 The realisation formula

Recall that S2×2 is the set of holomorphic functions F : D→M2(C) such that ||F (λ)|| ≤ 1

for all λ ∈ D. For F =

[
F11 F12

F21 F22

]
∈ S2×2, we define a linear fractional transformation

by

FF (λ)(z) := F11(λ) + F12(λ)z(1− F22(λ)z)−1F21(λ)

for all z, λ ∈ D. Furthermore, we define two functions by

γ(λ, z) := (1− F22(λ)z)−1F21(λ) and η(λ, z) :=

[
1

zγ(λ, z)

]

for all z, λ ∈ D. If F21 = 0 then γ is the zero map. Note that, for z, λ ∈ D, since

|F22(λ)| ≤ 1, we have 1 − F22(λ)z 6= 0, and so FF (λ)(z), γ(λ, z) and η(λ, z) are all well

defined.

Proposition 2.1.1. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. Then

1−FF (µ)(w)FF (λ)(z) = γ(µ,w)(1− wz)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D. Moreover, for z, λ ∈ D, we have FF (λ)(z) is holomorphic and

|FF (λ)(z)| ≤ 1.
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2.2. SE : S2×2 → S2

Proof. The required equality follows immediately if we let H = G = U = V = C,

P = F (λ), Q = F (µ), X = z and Y = w in Proposition B.2.1. Moreover, by Corollary

B.2.2, since ||F (λ)|| ≤ 1 for all λ ∈ D,

|FF (λ)(z)| ≤ 1 for all z, λ ∈ D.

We note that, by Remark B.2.3, 1−F22(λ)z 6= 0 for all z, λ ∈ D. Now, by Remark B.2.4,

since F is holomorphic on D, we have FF (λ)(z) is holomorphic.

2.2 SE : S2×2 → S2

Recall that S2 is the set of holomorphic functions from D2 to D. Proposition 2.1.1 shows,

for each F ∈ S2×2, there is such a function. This motivates the following definition.

Definition 2.2.1. We define SE : S2×2 → S2 by

F 7→ SE (F ) : D2 → D

for all F ∈ S2×2, where

SE (F )(z, λ) := −FF (λ)(z) = −F11(λ)− F12(λ)z(1− F22(λ)z)−1F21(λ)

for all z, λ ∈ D.

That SE is well defined follows immediately from Proposition 2.1.1.

Remark 2.2.2. Let F =

[
F11 F12

F21 F22

]
. If either F21 = 0 or F12 = 0, then

SE (F )(z, λ) = −FF (λ)(z) = −F11(λ)

for all z, λ ∈ D. In this case, SE (F ) is independent of z and, in general, can lose

information about F .

2.3 Upper E : S2×2 → R1

Recall that R1 is the set of pairs (N,M) of holomorphic kernels on D2 such that KN,M is

a rank 1 kernel on D2, where KN,M is defined by

KN,M(z, λ, w, µ) = 1− (1− wz)N(z, λ, w, µ)− (1− µλ)M(z, λ, w, µ)

for all z, λ, w, µ ∈ D. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. By Proposition 2.1.1,

1−FF (µ)(w)FF (λ)(z) = γ(µ,w)(1− wz)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)
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2.3. Upper E : S2×2 → R1

for all z, λ, w, µ ∈ D, where

γ(λ, z) = (1− F22(λ)z)−1F21(λ) and η(λ, z) =

[
1

zγ(λ, z)

]

for all z, λ ∈ D. Define NF : D2 × D2 → C and MF : D2 × D2 → C by

NF (z, λ, w, µ) := γ(µ,w)γ(λ, z) and MF (z, λ, w, µ) := η(µ,w)∗
I − F (µ)∗F (λ)

1− µλ
η(λ, z)

for all z, λ, w, µ ∈ D. Clearly NF and MF are well defined. The following lemma motivates

our definition of Upper E.

Proposition 2.3.1. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. Then NF , MF and KNF ,MF

are holo-

morphic kernels on D2. Moreover,

KNF ,MF
(z, λ, w, µ) = FF (µ)(w)FF (λ)(z)

for all z, λ, w, µ ∈ D, that is, KNF ,MF
has rank 1.

Proof. By Proposition B.3.22, since γ : D2 → C, we have NF is a kernel on D2. By

Corollary B.3.32, since η : D2 → C2, we have MF is a kernel on D2. By Proposition 2.1.1,

1−FF (µ)(w)FF (λ)(z) =(1− wz)NF (z, λ, w, µ) + (1− µλ)MF (z, λ, w, µ)

for all z, λ, w, µ ∈ D. Hence

KNF ,MF
(z, λ, w, µ) = FF (µ)(w)FF (λ)(z)

for all z, λ, w, µ ∈ D. By Corollary B.3.23, KNF ,MF
is a rank 1 kernel on D2. It is clear

that NF , MF and KNF ,MF
define holomorphic kernels.

Remark 2.3.2. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. If F21 = 0, and so γ is the zero map, then

NF = 0 and is the trivial kernel on D2. If F21 6= 0 then, by Corollary B.3.23, the kernel

NF has rank 1, since

NF (z, λ, w, µ) = γ(µ,w)γ(λ, z)

for all z, λ, w, µ ∈ D.

Definition 2.3.3. We define Upper E : S2×2 → R1 by

Upper E (F ) = (NF ,MF )

for all F ∈ S2×2.

That Upper E is well defined follows immediately from Proposition 2.3.1.
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2.4. Upper W : R11 → S2×2

Remark 2.3.4. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. If F21 = 0 then NF = 0 and

MF (z, λ, w, µ) =
1

1− µλ

[
1

0

]∗ [
F11(µ)F11(λ) F11(µ)F12(λ)

F12(µ)F11(λ) F12(µ)F12(λ) + F22(µ)F22(λ)

][
1

0

]

=
1− F11(µ)F11(λ)

1− µλ

for all z, λ, w, µ ∈ D. If either F21 = 0 or F12 = 0, then, by Proposition 2.3.1 and Remark

2.2.2,

KNF ,MF
= FF (µ)(w)FF (λ)(z) = F11(µ)F11(λ)

for all z, λ, w, µ ∈ D. Clearly, if F21 = 0 then we lose information about F when we pass

to (NF ,MF ), since we only retain F11.

Remark 2.3.5. We could consider the following alternative realisation formula. Let

F =

[
F11 F12

F21 F22

]
∈ S2×2. Define

ν(λ, z) := F12(λ)(1− F11(λ)z)−1 and υ(λ, z) :=

[
zν(λ, z)

1

]

for all z, λ ∈ D. If F12 = 0 then ν is the zero map. Let

FN(z, λ, w, µ) = ν(µ,w)ν(λ, z) and FM(z, λ, w, µ) = υ(µ,w)∗
I − F (µ)∗F (λ)

1− µλ
υ(λ, z)

for all z, λ, w, µ ∈ D. Then, similarly to the proof of Proposition 2.3.1, it can be shown

that (FN,F M) ∈ R1. Similarly to Remark 2.3.4, if F12 = 0 then FN = 0 and

FM(z, λ, w, µ) =
1− F22(µ)F22(λ)

1− µλ

for all z, λ, w, µ ∈ D. Moreover, if either F12 = 0 or F21 = 0, then

K
FN,FM(z, λ, w, µ) = F22(µ)F22(λ)

for all z, λ, w, µ ∈ D. Thus we lose information about F if F12 = 0.

In this thesis, we consider the realisation formula as in Definition 2.2.1.

2.4 Upper W : R11 → S2×2

Let F ∈ S2×2. By Remark 2.3.2, there are two possibilities, either the kernel NF is 0 or

it has rank 1. As NF is used to map F into R1, the image of Upper E is contained in the

proper subset of R1 containing (N,M) such that either N is 0 or has rank 1. Clearly, we
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2.4. Upper W : R11 → S2×2

want Upper W to map from this subset, and so, for convenience, we separate into the two

possibilities. Recall that

KN,M(z, λ, w, µ) = 1− (1− wz)N(z, λ, w, µ)− (1− µλ)M(z, λ, w, µ)

for all z, λ, w, µ ∈ D. Then we define two subsets of R1.

Definition 2.4.1. We define R10 ⊆ R1 by

R10 := {(N,M) : N = 0;M,KN,M are holomorphic kernels on D2 and KN,M has rank 1}

and R11 ⊆ R1 by

R11 := {(N,M) :N,M,KN,M are holomorphic kernels on D2 and N,KN,M have rank 1}.

In the proof of the next theorem, we describe the procedure by which we construct a

function in S2×2 from a pair of kernels in R11, we refer to this as Procedure UW. First,

we give a lemma which provides the existence of functions required in the construction.

Lemma 2.4.2. Let (N,M) ∈ R11. Then HN and HKN,M
are 1-dimensional, and

N(z, λ, w, µ) = eN(w, µ)eN(z, λ) and KN,M(z, λ, w, µ) = eKN,M
(w, µ)eKN,M

(z, λ)

for all z, λ, w, µ ∈ D, where {eN} and {eKN,M
} are orthonormal bases of HN and HKN,M

,

respectively.

Proof. Since (N,M) ∈ R11, we have N and KN,M are rank 1 kernels, and so HN and

HKN,M
are 1-dimensional. Let {eN} and {eKN,M

} be orthonormal bases of HN and HKN,M
,

respectively. By Proposition B.3.6,

N(z, λ, w, µ) = eN(w, µ)eN(z, λ) and KN,M(z, λ, w, µ) = eKN,M
(w, µ)eKN,M

(z, λ)

for all z, λ, w, µ ∈ D.

Theorem 2.4.3. Let (N,M) ∈ R11. Then there is a function Ξ ∈ S2×2 such that

Ξ(λ)

(
1

zf(z, λ)

)
=

(
g(z, λ)

f(z, λ)

)

for all z, λ ∈ D, where f ∈ HN and g ∈ HM are such that

N(z, λ, w, µ) = f(w, µ)f(z, λ) and KN,M(z, λ, w, µ) = g(w, µ)g(z, λ)

for all z, λ, w, µ ∈ D.

17



2.4. Upper W : R11 → S2×2

Proof. (Procedure UW). Let (N,M) ∈ R11. Lemma 2.4.2 guarantees the existence of

f ∈ HN and g ∈ HM such that

N(z, λ, w, µ) = f(w, µ)f(z, λ) and KN,M(z, λ, w, µ) = g(w, µ)g(z, λ)

for all z, λ, w, µ ∈ D. By Corollary B.3.8, the functions vz,λ = CM(·, ·, z, λ) ∈ HM satisfy

M(z, λ, w, µ) = 〈vz,λ, vw,µ〉HM

for all z, λ, w, µ ∈ D, where C is the conjugate linear operator. By the definition of KN,M ,

we obtain

g(w, µ)g(z, λ) = 1− (1− wz)f(w, µ)f(z, λ)− (1− µλ)〈vz,λ, vw,µ〉HM

and hence

g(w, µ)g(z, λ) + f(w, µ)f(z, λ) + 〈vz,λ, vw,µ〉HM
= 1 +wzf(w, µ)f(z, λ) + µλ〈vz,λ, vw,µ〉HM

for all z, λ, w, µ ∈ D. It follows that

〈
(
g(z, λ)

f(z, λ)

)
vz,λ

 ,


(
g(w, µ)

f(w, µ)

)
vw,µ

〉
C2⊕HM

=

〈
(

1

zf(z, λ)

)
λvz,λ

 ,


(

1

wf(w, µ)

)
µvw,µ

〉
C2⊕HM

for all z, λ, w, µ ∈ D. Hence, by Proposition B.1.22, there is an isometry

L0 : span



(

1

zf(z, λ)

)
λvz,λ

 : z, λ ∈ D

→ C2 ⊕HM

such that

L0


(

1

zf(z, λ)

)
λvz,λ

 =


(
g(z, λ)

f(z, λ)

)
vz,λ


for all z, λ ∈ D. As the proof of Proposition B.1.22 is constructive, this isometry is

uniquely defined. We extend L0 to a contraction L on C2 ⊕HM by defining L to be 0 on

(span{


(

1

zf(z, λ)

)
λvz,λ

 : z, λ ∈ D})⊥. If we write

L =

[
A B

C D

]
: C2 ⊕HM → C2 ⊕HM ,

18



2.4. Upper W : R11 → S2×2

then A : C2 → C2, B : HM → C2, C : C2 → HM and D : HM → HM satisfy

[
A B

C D

]
(

1

zf(z, λ)

)
λvz,λ

 =


(
g(z, λ)

f(z, λ)

)
vz,λ


for all z, λ ∈ D. By expanding the last equality, we obtain

A

(
1

zf(z, λ)

)
+Bλvz,λ =

(
g(z, λ)

f(z, λ)

)

and

C

(
1

zf(z, λ)

)
+Dλvz,λ = vz,λ

for all z, λ ∈ D. By Remark B.2.3, since L is a contraction, IHM
−Dλ is invertible for all

λ ∈ D. Thus, we can write

(IHM
−Dλ)−1C

(
1

zf(z, λ)

)
= vz,λ

for all z, λ ∈ D. It follows that

(
A+Bλ(IHM

−Dλ)−1C
)( 1

zf(z, λ)

)
=

(
g(z, λ)

f(z, λ)

)

for all z, λ ∈ D. Since L is a contraction, by Corollary B.2.2 and Remark B.2.4,

||FL(λ)|| = ||A+Bλ(IHM
−Dλ)−1C|| ≤ 1 for all λ ∈ D,

and FL(λ) = A+Bλ(IHM
−Dλ)−1C is holomorphic on D. Set

Ξ(λ) = A+Bλ(IHM
−Dλ)−1C

for all λ ∈ D. Since A and Bλ(IHM
− Dλ)−1C are operators from C2 to C2, we have

Ξ ∈ S2×2. Moreover, Ξ(λ) satisfies the required identity for all λ ∈ D.

Remark 2.4.4. We could apply Procedure UW to a pair (N,M) ∈ R10 by taking the

representation f of N to be 0. From this we would obtain a function Ξ ∈ S2×2 such that

Ξ(λ)

(
1

0

)
=

(
g(z, λ)

0

)

for all z, λ ∈ D. If we let Ξ =

[
a b

c d

]
, then it follows easily that a = g(z, ·) and c = 0.

There is not much we can say about b and d beyond that they must be such that Ξ ∈ S2×2.
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Since the representations f and g used in Procedure UW are not unique, the function

Ξ may not be unique. However, we can say something about the relationship between Ξ

and another function obtained by Procedure UW using different representations.

Proposition 2.4.5. Let (N,M) ∈ R11. Let f1, f2 ∈ HN ; g1, g2 ∈ HKN,M
and v1, v2 :

X → HM be such that

N(z, λ, w, µ) = f1(w, µ)f1(z, λ) = f2(w, µ)f2(z, λ),

KN,M(z, λ, w, µ) = g1(w, µ)g1(z, λ) = g2(w, µ)g2(z, λ)

and

M(z, λ, w, µ) = 〈v1(z, λ), v1(w, µ)〉HM
= 〈v2(z, λ), v2(w, µ)〉HM

for all z, λ, w, µ ∈ D. Let Ξ1 and Ξ2 be constructed from (N,M) by Procedure UW using

f1, g1, v1 and f2, g2, v2, respectively. Then

Ξ2 =

[
ζ1 0

0 ζ2

]
Ξ1

[
1 0

0 ζ2

]

for some ζ1, ζ2 ∈ T.

Proof. By Theorem 2.4.3, we have

Ξ1(λ)

(
1

zf1(z, λ)

)
=

(
g1(z, λ)

f1(z, λ)

)
and Ξ2(λ)

(
1

zf2(z, λ)

)
=

(
g2(z, λ)

f2(z, λ)

)

for all z, λ ∈ D. By Proposition B.1.30, we have f2 = ζff1 and g2 = ζgg1 for some

ζf , ζg ∈ T. Hence

Ξ2(λ)

(
1

zf2(z, λ)

)
= Ξ2(λ)

[
1 0

0 ζf

](
1

zf1(z, λ)

)

and (
g2(z, λ)

f2(z, λ)

)
=

[
ζg 0

0 ζf

](
g1(z, λ)

f1(z, λ)

)
=

[
ζg 0

0 ζf

]
Ξ1(λ)

(
1

zf1(z, λ)

)
for all z, λ ∈ D. By subtracting the two equations, we obtain

0 =

(
Ξ2(λ)

[
1 0

0 ζf

]
−

[
ζg 0

0 ζf

]
Ξ1(λ)

)(
1

zf1(z, λ)

)

for all z, λ ∈ D. Set

Ξ2(λ)

[
1 0

0 ζf

]
−

[
ζg 0

0 ζf

]
Ξ1(λ) := A(λ) =

[
a11(λ) a12(λ)

a21(λ) a22(λ)

]

20



2.4. Upper W : R11 → S2×2

for all λ ∈ D. Then

a11(λ) + a12(λ)zf1(z, λ) = 0 and a21(λ) + a22(λ)zf1(z, λ) = 0

for all z, λ ∈ D. Letting z = 0, we obtain a11(λ) = 0 = a21(λ) for all λ ∈ D. Let z, λ ∈ D
be such that zf1(z, λ) 6= 0. Then a12(λ) = 0 = a22(λ), and hence A(λ) = 0.

Conversely, let z, λ ∈ D be such that zf1(z, λ) = 0. Since N is a rank 1 holomorphic

kernel on D2, we have f1 6= 0 and, by Proposition B.3.12, f1 is holomorphic on D2. Thus,

by Corollary B.1.28, there is a sequence (zi, λi)
∞
i=1 in D2 such that

lim
i→∞

(zi, λi) = (z, λ),

and zif1(zi, λi) 6= 0 for each i ∈ N. It follows that A(λi) = 0 for each i ∈ N, and, since A

is holomorphic on D, we have A(λ) = limi→∞A(λi) = 0. Consequently, A(λ) = 0 for all

λ ∈ D, that is,

Ξ2(λ) =

[
ζg 0

0 ζf

]
Ξ1(λ)

[
1 0

0 ζf

]
for all λ ∈ D,

where ζf , ζg ∈ T.

Remark 2.4.6. Let (N,M) ∈ R10. Let f : (z, λ) 7→ 0 for all z, λ ∈ D, so that

N(z, λ, w, µ) = f(w, µ)f(z, λ) = 0 for all z, λ, w, µ ∈ D. Moreover, let v1, v2 : D2 → HM

and g1, g2 ∈ HKN,M
be such that

M(z, λ, w, µ) = 〈v1(z, λ), v1(w, µ)〉HM
= 〈v2(z, λ), v2(w, µ)〉HM

and

KN,M(z, λ, w, µ) = g1(w, µ)g1(z, λ) = g2(w, µ)g2(z, λ)

for all z, λ, w, µ ∈ D. Then, by Proposition B.1.30, g2 = ζg1 for some ζ ∈ T. Let Ξ1 and

Ξ2 be constructed from (N,M) by Procedure UW using f, g1, v1 and f, g2, v2, respectively.

Then, by Remark 2.4.4,

Ξ1 =

[
g1(z, ·) b1

0 d1

]
and Ξ2 =

[
ζg1(z, ·) b2

0 d2

]

for all z ∈ D. There is not much we can say about b1, d1 and b2, d2 as we do not have an

effective way to compare them.

From Proposition 2.4.5 we obtain the following result, which motivates our definition

of Upper W.

Proposition 2.4.7. Let (N,M) ∈ R11. Let Ξ be constructed from (N,M) by Proce-
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dure UW. Then {[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
is a subset of S2×2,

and is the set of all functions that can be constructed from (N,M) by Procedure UW.

Moreover, it is independent of which function Ξ is used to define it.

Proof. By Proposition 2.4.5, any function constructed from (N,M) by Procedure UW

belongs to the set. To see that any function in the set can be constructed from (N,M)

by Procedure UW, let ζ1, ζ2 ∈ T and consider the function[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
.

Let f and g be the representations of N and KN,M , respectively, used in Procedure UW

to construct Ξ. By the proof of Proposition 2.4.5, applying Procedure UW to (N,M)

using the representations ζ2f and ζ1g, we obtain the function[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
.

Hence any function in the set can be constructed from (N,M) by Procedure UW, and so,

in addition, the set is contained in S2×2.

For the last statement, suppose Ξ1 is any other function constructed from (N,M) by

Procedure UW. Then, by Proposition 2.4.5,

Ξ1 =

[
ξ1 0

0 ξ2

]
Ξ

[
1 0

0 ξ2

]

for some ξ1, ξ2 ∈ T. Let ζ1, ζ2 ∈ T. Then[
ζ1 0

0 ζ2

]
Ξ1

[
1 0

0 ζ2

]
=

[
ζ1 0

0 ζ2

][
ξ1 0

0 ξ2

]
Ξ

[
1 0

0 ξ2

][
1 0

0 ζ2

]
=

[
ζ1ξ1 0

0 ζ2ξ2

]
Ξ

[
1 0

0 ζ2ξ2

]
,

where ζ1ξ1, ζ2ξ2 ∈ T. Similarly,[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
=

[
ζ1 0

0 ζ2

][
ξ1 0

0 ξ2

]
Ξ1

[
1 0

0 ξ2

][
1 0

0 ζ2

]
=

[
ζ1ξ1 0

0 ζ2ξ2

]
Ξ1

[
1 0

0 ζ2ξ2

]
,

where ζ1ξ1, ζ2ξ2 ∈ T. It follows that{[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
=

{[
ζ1 0

0 ζ2

]
Ξ1

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
,

and so the set is independent of which function Ξ is used to define it.
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Remark 2.4.8. Although the result of Proposition 2.4.7 may not hold for (N,M) ∈ R10,

we can say the following. Let (N,M) ∈ R10, and let g ∈ HKN,M
be such that

KN,M(z, λ, w, µ) = g(w, µ)g(z, λ)

for all z, λ, w, µ ∈ D. Then the set of all functions that can be constructed from (N,M)

by Procedure UW is contained in the set{
Ξ =

[
ζg(z, ·) b

0 d

]
: ζ ∈ T; b, d are functions such that Ξ ∈ S2×2

}
.

Moreover, by Remark 2.4.6, any function constructed from (N,M) by Procedure UW has

the form Ξ =

[
ζg(z, ·) b

0 d

]
for some ζ ∈ T, where b, d are functions such that Ξ ∈ S2×2.

Hence, this set is independent of which function g is used to define it.

Definition 2.4.9. We define Upper W as the set map from R10 ∪ R11 to S2×2 given in

following way. For (N,M) ∈ R10,

Upper W ((N,M)) =

{
Ξ =

[
ζg(z, ·) b

0 d

]
: ζ ∈ T; b, d are functions such that Ξ ∈ S2×2

}
,

where g ∈ HKN,M
is such that KN,M(z, λ, w, µ) = g(w, µ)g(z, λ) for all z, λ, w, µ ∈ D. For

(N,M) ∈ R11,

Upper W ((N,M)) =

{[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
,

where Ξ ∈ S2×2 is constructed from (N,M) by Procedure UW.

That Upper W is well defined follows immediately from Proposition 2.4.7 and Remark

2.4.8, since R10 ∩R11 = ∅. We now look at how this map interacts with Upper E.

Proposition 2.4.10. Let (N,M) ∈ R11. Then, for all F ∈ Upper W ((N,M)), we have

Upper E (F ) = (N,M).

Proof. Let Ξ =

[
a b

c d

]
∈ S2×2 be constructed from (N,M) by Procedure UW, and let

F ∈ Upper W ((N,M)). Then

F =

[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
=

[
ζ1a ζ2ζ1b

ζ2c d

]
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for some ζ1, ζ2 ∈ T. Hence

NF (z, λ, w, µ) =
ζ2c(µ)

1− d(µ)w
· ζ2c(λ)

1− d(λ)z
=

c(µ)

1− d(µ)w
· c(λ)

1− d(λ)z
= NΞ(z, λ, w, µ)

for all z, λ, w, µ ∈ D. Moreover,

MF (z, λ, w, µ) =

[
1

w ζ2 c(µ)

1− d(µ)w

]
I − F (µ)∗F (λ)

1− µλ

 1
zζ2c(λ)

1− d(λ)z



=

[
1

w ζ2 c(µ)

1− d(µ)w

] I − [1 0

0 ζ2

]
Ξ(µ)∗

[
ζ1 0

0 ζ2

][
ζ1 0

0 ζ2

]
Ξ(λ)

[
1 0

0 ζ2

]
1− µλ

 1
zζ2c(λ)

1− d(λ)z


=

[
1

w ζ2 c(µ)

1− d(µ)w

][
1 0

0 ζ2

]
I − Ξ(µ)∗Ξ(λ)

1− µλ

[
1 0

0 ζ2

] 1
zζ2c(λ)

1− d(λ)z


and so

MF (z, λ, w, µ) =

[
1

w c(µ)

1− d(µ)w

]
I − Ξ(µ)∗Ξ(λ)

1− µλ

 1
zc(λ)

1− d(λ)z

 = MΞ(z, λ, w, µ)

for all z, λ, w, µ ∈ D. It follows that Upper E (F ) = (NF ,MF ) = (NΞ,MΞ).

If NΞ = N and MΞ = M , then we have Upper E (F ) = (N,M). Let f and g be the

representations of N and KN,M , respectively, used in the construction of Ξ. Then

N(z, λ, w, µ) = f(w, µ)f(z, λ) and KN,M(z, λ, w, µ) = g(w, µ)g(z, λ)

for all z, λ, w, µ ∈ D. Thus, by Theorem 2.4.3,

Ξ(λ)

(
1

zf(z, λ)

)
=

(
g(z, λ)

f(z, λ)

)

and so

a(λ) + b(λ)zf(z, λ) = g(z, λ) and c(λ) + d(λ)zf(z, λ) = f(z, λ)

for all z, λ ∈ D. Since Ξ ∈ S2×2, we have |d(λ)| ≤ 1 for all λ ∈ D, and so 1 − d(λ)z 6= 0

for all z, λ ∈ D. Hence

c(λ)

1− d(λ)z
= f(z, λ) and FΞ(λ)(z) = a(λ) + b(λ)z(1− d(λ)z)−1c(λ) = g(z, λ)

for all z, λ ∈ D. It follows that

NΞ(z, λ, w, µ) = f(w, µ)f(z, λ) = N(z, λ, w, µ)
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and

FΞ(µ)(w)FΞ(λ)(z) = g(w, µ)g(z, λ) = KN,M(z, λ, w, µ)

for all z, λ, w, µ ∈ D. By Proposition 2.1.1,

1−FΞ(µ)(w)FΞ(λ)(z) = (1− wz)NΞ(z, λ, w, µ) + (1− µλ)MΞ(z, λ, w, µ)

and so

KN,M(z, λ, w, µ) = 1− (1− wz)N(z, λ, w, µ)− (1− µλ)MΞ(z, λ, w, µ)

for all z, λ, w, µ ∈ D. It follows that MΞ(z, λ, w, µ) = M(z, λ, w, µ) for all z, λ, w, µ ∈ D.

Thus Upper E (F ) = (N,M).

Remark 2.4.11. Let (N,M) ∈ R10. Then, for all F ∈ Upper W ((N,M)), we have

Upper E (F ) = (N,M). Indeed, let g ∈ HKN,M
be such that

KN,M(z, λ, w, µ) = g(w, µ)g(z, λ)

for all z, λ, w, µ ∈ D, and let F ∈ Upper W ((N,M)). Then, for some ζ ∈ T, we can write

F =

[
ζg(z, ·) b

0 d

]
,

where b and d are functions such that F ∈ S2×2. By Remark 2.3.4, NF = 0 = N and

MF (z, λ, w, µ) =
1− g(w, µ)g(z, λ)

1− µλ
=

1−KN,M(z, λ, w, µ)

1− µλ
= M(z, λ, w, µ)

for all z, λ, w, µ ∈ D. Hence Upper E (F ) = (NF ,MF ) = (N,M), as required.

Proposition 2.4.12. Let F =

[
F11 F12

F21 F22

]
∈ S2×2 be such that F21 6= 0. Then

Upper W ◦Upper E (F ) =

{[
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
.

Proof. We have Upper E (F ) = (NF ,MF ), where

NF (z, λ, w, µ) =
F21(µ)

1− F22(µ)w
· F21(λ)

1− F22(λ)z

and

MF (z, λ, w, µ) =

[
1

wF21(µ)

1− F22(µ)w

]
I − F (µ)∗F (λ)

1− µλ

 1
zF21(λ)

1− F22(λ)z


for all z, λ, w, µ ∈ D. By Proposition 2.3.1, KNF ,MF

(z, λ, w, µ) = FF (µ)(w)FF (λ)(z) for all
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z, λ, w, µ ∈ D. Let Ξ ∈ S2×2 be constructed from (NF ,MF ) by Procedure UW using the

representations

(z, λ) 7→ F21(λ)

1− F22(λ)z

of NF , and (z, λ) 7→ FF (λ)(z) of KNF ,MF
. Then, by Theorem 2.4.3,

Ξ(λ)

 1
zF21(λ)

1− F22(λ)z

 =

 FF (λ)(z)
F21(λ)

1− F22(λ)z


for all z, λ ∈ D. Moreover,

F (λ)

 1
zF21(λ)

1− F22(λ)z

 =

F11(λ) +
F12(λ)zF21(λ)

1− F22(λ)z

F21(λ) +
F22(λ)zF21(λ)

1− F22(λ)z

 =

 FF (λ)(z)
F21(λ)

1− F22(λ)z


for all z, λ ∈ D. Hence

(Ξ(λ)− F (λ))

 1
zF21(λ)

1− F22(λ)z

 = 0

for all z, λ ∈ D. Set Ξ(λ)− F (λ) := A(λ) =

[
a11(λ) a12(λ)

a21(λ) a22(λ)

]
for all λ ∈ D. Then

a11(λ) + a12(λ)
zF21(λ)

1− F22(λ)z
= 0 and a21(λ) + a22(λ)

zF21(λ)

1− F22(λ)z
= 0

for all z, λ ∈ D. Letting z = 0, we obtain a11(λ) = 0 = a21(λ) for all λ ∈ D.

Fix 0 6= z ∈ D, and suppose λ ∈ D is such that F21(λ) 6= 0. Then a12(λ) = 0 = a22(λ),

and hence A(λ) = 0. Now suppose λ ∈ D is such that F21(λ) = 0. By Theorem B.1.25,

since F21 is a non-zero holomorphic function on D, the zeros of F21 are isolated. Thus

there is a sequence (λi)
∞
i=1 in D such that

lim
i→∞

λi = λ,

and F21(λi) 6= 0 for each i ∈ N. Since A(λi) = 0 for each i ∈ N, and A is holomorphic on

D, we have A(λ) = limi→∞A(λi) = 0. It follows that A(λ) = 0 for all λ ∈ D, and hence

Ξ(λ) = F (λ) for all λ ∈ D. Consequently,

Upper W ◦Upper E (F ) = Upper W ((NF ,MF )) =

{[
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
,

as required.
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2.5. Right S : R1 → S2

In Proposition 2.4.12, the reason we require F21 6= 0 is: we lose information about F

when we pass to (NF ,MF ) in the case that F21 = 0 (see Remark 2.3.4).

2.5 Right S : R1 → S2

Recall that

R1 := {(N,M) :N,M,KN,M are holomorphic kernels on D2 and KN,M has rank 1},

where

KN,M(z, λ, w, µ) = 1− (1− wz)N(z, λ, w, µ)− (1− µλ)M(z, λ, w, µ)

for all z, λ, w, µ ∈ D.

Definition 2.5.1. We define Right S to be the set-valued map from R1 to S2 given by

Right S (N,M) = {ζfN,M : ζ ∈ T}

for all (N,M) ∈ R1, where fN,M : D2 → C is holomorphic and satisfies

KN,M(z, λ, w, µ) = fN,M(w, µ)fN,M(z, λ)

for all z, λ, w, µ ∈ D.

Proposition 2.5.2. Right S is well defined.

Proof. Let (N,M) ∈ R1. Then, by Proposition B.3.10, there is a holomorphic f : D2 → C
such that

KN,M(z, λ, w, µ) = f(w, µ)f(z, λ)

for all z, λ, w, µ ∈ D. Suppose g is another such function. Then, by Proposition B.1.30,

g = ξf for some ξ ∈ T. It follows that

{ζf : ζ ∈ T} = {ζg : ζ ∈ T},

and so Right S (N,M) is independent of which function f is used to define it.

Now, let ζ ∈ T. Then ζf : D2 → C is holomorphic and, by Corollary B.1.6, since

1− f(w, µ)f(z, λ) = (1− wz)N(z, λ, w, µ) + (1− µλ)M(z, λ, w, µ) ≥ 0

for all z, λ, w, µ ∈ D, we have

|ζf(z, λ)| = |f(z, λ)| ≤ 1

for all z, λ ∈ D. Hence ζf ∈ S2, and it follows that Right S is well defined.
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2.5. Right S : R1 → S2

We now consider how Right S interacts with some of the other maps we defined in this

chapter.

Proposition 2.5.3. Let F ∈ S2×2. Then

Right S ◦Upper E (F ) = {ζ SE (F ) : ζ ∈ T} .

Proof. We have SE (F )(z, λ) = −FF (λ)(z) for all z, λ ∈ D. Moreover, Upper E (F ) =

(NF ,MF ), where, by Proposition 2.3.1,

KNF ,MF
(z, λ, w, µ) = FF (µ)(w)FF (λ)(z) = (−FF (µ)(w))(−FF (λ)(z))

for all z, λ, w, µ ∈ D. It follows that

Right S ◦Upper E (F ) = Right S ((NF ,MF )) = {ζ SE (F ) : ζ ∈ T} ,

as required.

Proposition 2.5.4. Let (N,M) ∈ R11. Then

Right S ((N,M)) = {SE (F ) : F ∈ Upper W ((N,M))}.

Proof. Let Ξ =

[
Ξ11 Ξ12

Ξ21 Ξ22

]
be constructed from (N,M) by Procedure UW. Then

Upper W ((N,M)) =

{[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}

and

SE

([
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

])
(z, λ) = SE

([
ζ1Ξ11 ζ1ζ2Ξ12

ζ2Ξ21 Ξ22

])
(z, λ)

=− ζ1Ξ11(λ)− ζ1ζ2Ξ12(λ)ζ2Ξ21(λ)z

1− Ξ22(λ)z

=ζ1

(
−Ξ11(λ)− Ξ12(λ)Ξ21(λ)z

1− Ξ22(λ)z

)
= ζ1 SE (Ξ)(z, λ)

for all z, λ ∈ D and ζ1, ζ2 ∈ T. It follows that

{SE (F ) : F ∈ Upper W ((N,M))} = {ζ SE (Ξ) : ζ ∈ T} .

Hence, by Proposition 2.5.3,

Right S ◦Upper E (Ξ) = {SE (F ) : F ∈ Upper W ((N,M))} .
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2.6. Right N : S2 → R1

By Proposition 2.4.10, Upper E (Ξ) = (N,M), and so

Right S ((N,M)) = {SE (F ) : F ∈ Upper W ((N,M))} ,

as required.

Remark 2.5.5. Let (N,M) ∈ R10. Then

Right S ((N,M)) = {SE (F ) : F ∈ Upper W ((N,M))}.

Indeed, let F =

[
F11 F12

F21 F22

]
∈ Upper W ((N,M)). Then F21 = 0, and F11 = ζg(z, ·) for

some ζ ∈ T, where g ∈ HKN,M
is such that

KN,M(z, λ, w, µ) = g(w, µ)g(z, λ)

for all z, λ, w, µ ∈ D. It follows that SE (F )(z, λ) = −ζg(z, λ) for all z, λ ∈ D, and so

Right S ((N,M)) = {ζg : ζ ∈ T} = {SE (F ) : F ∈ Upper W ((N,M))}.

2.6 Right N : S2 → R1

The following theorem gives the realisation formula for functions on D2. We omit the

proof of this theorem.

Theorem 2.6.1. [2, Proof of Theorem 1.12] Let ϕ ∈ S2. Then there are holomorphic

kernels N and M on D2 such that

1− ϕ(µ1, µ2)ϕ(λ1, λ2) = (1− µ1λ1)N(λ1, λ2, µ1, µ2) + (1− µ2λ2)M(λ1, λ2, µ1, µ2)

for all λ1, λ2, µ1, µ2 ∈ D.

Remark 2.6.2. Theorem 2.6.1 gives the realisation formula in terms of kernels, but there

is an alternative statement, which is a consequence of [2, Theorem 1.12]. Let ϕ ∈ S2. Then

there is a Hilbert spaceH = H1⊕H2 and a contractive operator

[
A B

C D

]
: C⊕H → C⊕H

such that

ϕ(λ) = A+BλP (IH −DλP )−1C,

where λP = λ1IH1 ⊕ λ2IH2 on H1 ⊕H2, for all λ = (λ1, λ2) ∈ D2.

The proof of Theorem 2.6.1 is non-constructive, and so it does not give a particular

pair (N,M). Pairs of kernels that satisfy Theorem 2.6.1 are known as Agler kernels. There

has been research by a number of authors to produce a constructive proof of Theorem

2.6.1, and thus a canonical pair of Agler kernels (see, for example, [16], [22] and [23]).
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2.6. Right N : S2 → R1

Recall that R1 is the set of pairs (N,M) of holomorphic kernels on D2 such that KN,M

is a rank 1 holomorphic kernel on D2, where

KN,M(z, λ, w, µ) = 1− (1− wz)N(z, λ, w, µ)− (1− µλ)M(z, λ, w, µ)

for all z, λ, w, µ ∈ D.

Lemma 2.6.3. Let ϕ ∈ S2. Then every pair of Agler kernels for ϕ belongs to R1.

Proof. Let (N,M) be a pair of Agler kernels for ϕ ∈ S2. Then

KN,M(z, λ, w, µ) = ϕ(w, µ)ϕ(z, λ)

for all z, λ, w, µ ∈ D. Hence, by Corollary B.3.23, KN,M is a holomorphic kernel on D2 and

has rank 1. Since N and M are holomorphic kernels on D2, we have (N,M) ∈ R1.

Definition 2.6.4. We define Right N to be the set-valued map from S2 to R1 given by

Right N (ϕ) = {A ∈ R1 : A is a pair of Agler kernels for ϕ}

for all ϕ ∈ S2.

That Right N is well defined follows immediately from Lemma 2.6.3. We now consider

how Right N interacts with Right S.

Proposition 2.6.5. Let ϕ ∈ S2. Then, for all A ∈ Right N (ϕ),

Right S (A) = {ζϕ : ζ ∈ T}.

Proof. We have

Right N (ϕ) = {A ∈ R1 : A is a pair of Agler kernels for ϕ}.

Let A = (N,M) ∈ Right N (ϕ). Then

KN,M(z, λ, w, µ) = ϕ(w, µ)ϕ(z, λ)

for all z, λ, w, µ ∈ D. Hence Right S (A) = {ζϕ : ζ ∈ T}.

Proposition 2.6.6. Let (N,M) ∈ R1. Let f : D2 → C be holomorphic and satisfy

KN,M(z, λ, w, µ) = f(w, µ)f(z, λ)

for all z, λ, w, µ ∈ D. Then, for all ϕ ∈ Right S ((N,M)),

Right N (ϕ) = Right N (f).
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2.6. Right N : S2 → R1

Proof. By the proof of Proposition 2.5.2, f ∈ S2. Clearly (N,M) ∈ Right N (f). More-

over,

Right S ((N,M)) = {ζf : ζ ∈ T}.

Let ϕ ∈ Right S ((N,M)). Then ϕ = ζf for some ζ ∈ T. Now, for all (P,Q) ∈ Right N (ϕ)

and all (R, S) ∈ Right N (f), we have

KP,Q(z, λ, w, µ) = ζf(w, µ)ζf(z, λ) = f(w, µ)f(z, λ) = KR,S(z, λ, w, µ)

for all z, λ, w, µ ∈ D. It follows that Right N (ϕ) = Right N (f).
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Chapter 3. The symmetrised bidisc

3.1 Introduction

Agler and Young introduced the symmetrised bidisc in [9]. The main result of [9] is a

commutant lifting theorem for the symmetrised bidisc. As an application of this theorem,

they proved a necessary condition for the solvability of the 2×2 spectral Nevanlinna-Pick

problem, which is a special case of the µ-synthesis problem. This connection motivated

the study of the symmetrised bidisc.

We define the open and closed symmetrised bidiscs to be the sets

G := {(z1 + z2, z1z2) : z1, z2 ∈ D} and Γ := {(z1 + z2, z1z2) : z1, z2 ∈ D},

respectively. The sets G and Γ are the images of the open and closed bidiscs under the

symmetrisation map

(z1, z2) 7→ (z1 + z2, z1z2),

which inspires their names. We note that the geometry of G is different to that of the

bidisc. (For the next proposition, see Definition B.1.23 and Definition B.1.24 for the

notions of hypoconvexity and polynomial convexity.)

Proposition 3.1.1. [12, Theorem 2.3] The set G is hypoconvex, polynomially convex and

starlike about (0, 0), however, it is not convex.

Let tr and det be the trace and determinant, respectively. In [11], using the fact that

a 2× 2 matrix M has both of its eigenvalues in D if and only if (tr M, detM) ∈ Γ, Agler

and Young showed that the solvability of the 2 × 2 spectral Nevanlinna-Pick problem is

equivalent to the solvability of an interpolation problem from D into Γ. More precisely

they proved the following theorem.

Theorem 3.1.2. [11, Theorem 1.1] Let λ1, . . . , λn be distinct points in D. Let W1, . . . ,Wn ∈
M2(C) be such that ρ(Wj) ≤ 1 for j = 1, . . . , n, and all or none of which are scalar ma-

trices. Then the following are equivalent.

(i) There is a holomorphic function F : D → M2(C) such that F (λj) = Wj for j =

1, . . . , n, and ρ(F (λ)) ≤ 1 for all λ ∈ D.

(ii) There is an h ∈ Hol (D,Γ) such that h(λj) = (tr Wj, detWj) for j = 1, . . . , n.

32



3.2. Background

In this chapter, we discuss some background material for the symmetrised bidisc and

define Γ-inner functions. Afterwards, we focus on the construction of the maps that

illustrate the rich structure of interconnections between the sets S2×2, S2, Hol (D,Γ) and

R1. The maps can be summarised by the rich saltire:

S2×2

��

//

&&

R1
oo

��xx

Hol (D,Γ)

OO

// S2
oo

OO

We use the maps produced to give conditions for the solvability of the µ-synthesis problem

in Theorem 3.1.2.

To understand the rich structure between the sets, we need a number of results from

[3, 4, 8, 12]. We give these results when they are needed and include the proofs when

they provide insight into the rich structure.

3.2 Background

We give, as defined in [4], a useful function in the study of Γ. Let Φ : C3 → C be given

by

Φ(z, s, p) =
2zp− s
2− zs

for all p ∈ C and z, s ∈ C such that zs 6= 2. Note that, since Φ is a rational function and

rational functions are holomorphic, Φ is holomorphic everywhere that zs 6= 2. Hence Φ

is defined and holomorphic on D× Γ since, for all z ∈ D and (s, p) ∈ Γ, we have |zs| < 2.

We call attention to a special case. Let (s, p) ∈ Γ be such that s2 = 4p. Then

Φ(z, s, p) =
2z s

2

4
− s

2− zs
=
−1

2
s(2− zs)
2− zs

= −1

2
s.

The following boundary is also useful in the study of Γ. First we give the general

definition.

Definition 3.2.1. [1, pp. 739-740] Let X be a domain in Cn and X be its closure. We

denote by A(X) the algebra of continuous functions on X that are holomorphic on X. A

boundary for X is a subset of X on which every function in A(X) attains its maximum

modulus. By [24, Corollary 2.2.10], if X is polynomially convex then there is a smallest

closed boundary of X that is contained in all closed boundaries of X. We call this boundary

the distinguished boundary of X, and denote it by bX. This boundary is also known as

the S̆ilov boundary of A(X).

By Proposition 3.1.1, Γ is polynomially convex. Hence the distinguished boundary of

Γ exists and is the S̆ilov boundary of the algebra A(Γ) of continuous functions on Γ that

are holomorphic on G. The following characterisation of bΓ is more useful.
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3.2. Background

Proposition 3.2.2. [12, Theorem 2.4] The distinguished boundary of Γ is the symmetri-

sation of the 2-torus, that is,

bΓ = {(z + w, zw) : z, w ∈ T}.

Moreover, bΓ is a Möbius band.

In the following proposition we give alternative characterisations of G, Γ, bΓ and the

topological boundary of Γ, that is, the set ∂Γ := Γ \G.

Proposition 3.2.3. [12, Theorem 2.1, Corollary 2.2],[4, Proposition 3.2] Let (s, p) ∈ C2.

Then

(i) (s, p) ∈ G ⇐⇒ |s− sp| < 1− |p|2

⇐⇒ |s| < 2 and, for all w ∈ T, |Φ(w, s, p)| < 1;

(ii) (s, p) ∈ Γ ⇐⇒ |s| ≤ 2 and |s− sp| ≤ 1− |p|2

⇐⇒ |s| ≤ 2 and, for all w in a dense subset of T, |Φ(w, s, p)| ≤ 1;

(iii) (s, p) ∈ bΓ ⇐⇒ |s| ≤ 2, |p| = 1 and s = sp;

(iv) (s, p) ∈ ∂Γ ⇐⇒ |s| ≤ 2 and |s− sp| = 1− |p|2

⇐⇒ there exist z ∈ T and w ∈ D such that s = z + w, p = zw;

(v) if (w, s, p) ∈ T× Γ then |Φ(w, s, p)| = 1 ⇐⇒ w(s− sp) = 1− |p|2.

In Proposition 3.2.3 (ii), we have a dense subset of T because Φ is not defined for

points of the form (w, 2w,w2) ∈ T × Γ. In fact, these are the only points in T × Γ for

which Φ is not defined. Indeed, for w ∈ T and (s, p) ∈ Γ,

2− ws = 0 ⇐⇒ 2 = ws ⇐⇒ 2w = |w|2s = s ⇐⇒ (s, p) = (2w,w2).

The last equivalence holds since s is the sum of two elements in D, and w ∈ T gives

|s| = 2.

An important subset of Hol (D,Γ) is the collection of Γ-inner functions. A Γ-inner

function is the analogue for Hol (D,Γ) of inner functions in Hol (D,D).

Definition 3.2.4. [4, Definition 6.1] A Γ-inner function is a function h ∈ Hol (D,Γ) such

that, for almost all λ ∈ T, the radial limit

lim
r→1−

h(rλ) ∈ bΓ.

We note that if h ∈ Hol (D,Γ) then we may consider h as the function (s, p) : D→ Γ

defined by

(s, p)(λ) = (s(λ), p(λ)) = h(λ) for all λ ∈ D.

It follows that if h = (s, p) is a Γ-inner function then p is an inner function.
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3.3. Relations between the sets

3.3 Relations between the sets

In this section, we construct maps between S2×2, S2, Hol (D,Γ) and R1, which illustrate

the rich structure of interconnections summarised by the rich saltire. We label the maps in

accordance with the following diagrams. The subscript SB denotes that we have Hol (D,Γ),

and so consider the symmetrised bidisc.

S2×2

Left SSB

��

Hol (D,Γ)

Left NSB

OO

Lower ESB

// S2

Lower WSBoo

S2×2

SE
$$ S2

S2×2

Upper E
//R1

Upper W
oo

Right S

��

S2

Right N

OO
R1

SWSB

xx

Hol (D,Γ)

3.3.1 Schur class of the bidisc and Left NSB : Hol (D,Γ)→ S2×2

We begin this section with the construction of a unique function F ∈ S2×2 for each

h ∈ Hol (D,Γ). It is appropriate to include the realisation of Φ(z, h(λ)) that is related to

F . We show later that Φ(z, h(λ)), as a function on the bidisc, belongs to S2, and that

this realisation is a powerful tool in producing a number of the maps in the rich saltire.

Let F =

[
F11 F12

F21 F22

]
∈ S2×2. Then the linear fractional transformation FF (λ)(z) is

given by

FF (λ)(z) := F11(λ) + F12(λ)z(1− F22(λ)z)−1F21(λ),

where z, λ ∈ D.

Theorem 3.3.1. [3, Proposition 6.1] Let h = (s, p) ∈ Hol (D,Γ). Then there exists a

unique

F =

[
F11 F12

F21 F22

]
∈ S2×2

such that h = (tr F, detF ), F11 = F22, |F12| = |F21| almost everywhere on T, F21 is

either outer or 0, and F21(0) ≥ 0. Moreover, we have

1− Φ(w, h(µ))Φ(z, h(λ)) = (1− wz)γ(µ,w)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D, where

γ(λ, z) = (1− F22(λ)z)−1F21(λ) and η(λ, z) =

[
1

zγ(λ, z)

]

for all z, λ ∈ D.

Proof. First, we show that such an F exists and is unique. Let h = (s, p) ∈ Hol (D,Γ).
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3.3. Relations between the sets

Suppose that 1
4
s2 = p. Then it is clear that

F =

[
1
2
s 0

0 1
2
s

]

is the only matrix to satisfy all of the required conditions. In particular, F is holomorphic

and, since, by Proposition 3.2.3 (ii), |s(λ)| ≤ 2 for all λ ∈ D, we have

||F (λ)|| = 1

2
|s(λ)| ≤ 1

for all λ ∈ D. That it is the only matrix follows since we have |F21||F12| = |14s
2 − p| = 0

and |F12| = |F21|.

Now suppose that 1
4
s2 6= p. Then 1

4
s2 − p is a non-zero H∞ function, and so, by

Theorem B.1.21, it has a unique inner-outer factorisation of the form ϕeC = 1
4
s2 − p,

where ϕ is inner, eC is outer and eC(0) ≥ 0. Set

F =

[
1
2
s ϕe

1
2
C

e
1
2
C 1

2
s

]
.

Then, except for the condition that F ∈ S2×2, it is easy to check that F is the only matrix

satisfying the required conditions. In particular,

detF =
1

4
s2 − ϕeC =

1

4
s2 − (

1

4
s2 − p) = p,

and, since |ϕ| = 1 almost everywhere on T, we have |F12| = |F21| almost everywhere on

T. That it is the only matrix follows from the uniqueness of the representation ϕeC and

the requirements that F21 be outer, and that |F12| = |F21| almost everywhere on T.

We still need to show that F ∈ S2×2. Clearly F is holomorphic, since inner and outer

functions are holomorphic. To check that ||F (λ)|| ≤ 1 for all λ ∈ D, it is equivalent,

by Corollary B.1.6, to check that I − F (λ)∗F (λ) is positive semidefinite for all λ ∈ D.

To do this, we show that the diagonal entries of I − F (λ)∗F (λ) are non-negative and

det (I − F (λ)∗F (λ)) ≥ 0 for all λ ∈ D. Since |F12| = |F21| almost everywhere on T, and

F21F12 = 1
4
s2 − p, we have

|F12|2 = |F21|2 = |F21F12| =
∣∣∣∣14s2 − p

∣∣∣∣
almost everywhere on T. By Proposition B.1.29, for almost every λ ∈ T,

I − F (λ)∗F (λ) =

1− 1
4
|s(λ)|2 − |1

4
s(λ)2 − p(λ)| −1

2
s(λ)F12(λ)− 1

2
F21(λ)s(λ)

−1
2
F12(λ)s(λ)− 1

2
s(λ)F21(λ) 1− |1

4
s(λ)2 − p(λ)| − 1

4
|s(λ)|2
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3.3. Relations between the sets

and

det (I − F (λ)∗F (λ)) = 1− 2

(
1

4
|s(λ)|2 − |1

4
s(λ)2 − p(λ)|

)
+ |p(λ)|2.

Let D1(λ) and D2(λ) be the diagonal entries of I − F (λ)∗F (λ). For any λ ∈ T, by

continuity and since (s, p) : D→ Γ, we can write s(λ) = z1 + z2 and p(λ) = z1z2 for some

z1, z2 ∈ D. Thus, for almost every λ ∈ T,

D1(λ) = D2(λ) = 1− 1

4
|z1 + z2|2 − |

1

4
(z1 + z2)2 − z1z2|

= 1− 1

4
|z1 + z2|2 −

1

4
|z1 − z2|2

= 1− 1

4
(|z1|2 + z1z2 + z1z2 + |z2|2)− 1

4
(|z1|2 − z1z2 − z1z2 + |z2|2)

= 1− 1

2
|z1|2 −

1

2
|z2|2 ≥ 1− 1

2
− 1

2
= 0

and

det (I − F (λ)∗F (λ)) = 1− 2

(
1

4
|z1 + z2|2 − |

1

4
(z1 + z2)2 − z1z2|

)
+ |z1z2|2

= 1− |z1|2 − |z2|2 + |z1z2|2

= (1− |z1|2)(1− |z2|2) ≥ (1− 1)(1− 1) = 0.

Hence, by Corollary B.1.6, ||F (λ)|| ≤ 1 for almost every λ ∈ T. It follows from the

Maximum Modulus Principle that ||F (λ)|| ≤ 1 for all λ ∈ D, as required.

It remains to show that

1− Φ(w, h(µ))Φ(z, h(λ)) = (1− wz)γ(µ,w)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D. First we note that

FF (λ)(z) =F11(λ) +
F12(λ)F21(λ)z

1− F22(λ)z
=

1

2
s(λ) +

(1
4
s(λ)2 − p(λ))z

1− 1
2
s(λ)z

=
1
2
s(λ)− 1

4
s(λ)2z + (1

4
s(λ)2 − p(λ))z

(1− 1
2
s(λ)z)

=
1
2
s(λ)− p(λ)z

1− 1
2
s(λ)z

=− 2p(λ)z − s(λ)

2− s(λ)z
= −Φ(z, h(λ))

for all z, λ ∈ D. Hence, by Proposition 2.1.1,

1− Φ(w, h(µ))Φ(z, h(λ)) =1−FF (µ)(w)∗FF (λ)(z)

=(1− wz)γ(µ,w)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D.
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3.3. Relations between the sets

Definition 3.3.2. We define Left NSB : Hol (D,Γ)→ S2×2 by

Left NSB (h) = F =

[
F11 F12

F21 F22

]

for each h ∈ Hol (D,Γ), where F ∈ S2×2 and satisfies h = (tr F, detF ), F11 = F22,

|F12| = |F21| almost everywhere on T, F21 is either outer or 0, and F21(0) ≥ 0.

Clearly the function F , as defined in Definition 3.3.2, must also satisfy F21F12 = 1
4
s2−p.

That Left NSB is well defined follows immediately from Theorem 3.3.1. In the case that h

is a Γ-inner function, there is an alternative proof of the realisation from Theorem 3.3.1

of Φ(z, h(λ)), which we give now.

Proposition 3.3.3. [3, Proposition 7.1] Let h = (s, p) be a Γ-inner function such that

s2 6= 4p. Then there is a Hilbert space H, a holomorphic function F : D→ B(C2, H), and

an outer function g ∈ H∞ such that |g(ξ)|2 = 1− 1
4
|s(ξ)|2 for almost every ξ ∈ T, which

satisfy

1− Φ(w, h(µ))Φ(z, h(λ)) =(1− wz)

〈
g(λ)

1− 1
2
zs(λ)

,
g(µ)

1− 1
2
ws(µ)

〉
C

+ (1− µλ)

〈
F (λ)

(
1

zg(λ)

1− 1
2
zs(λ)

)
, F (µ)

(
1

wg(µ)

1− 1
2
ws(µ)

)〉
H

for all µ, λ ∈ D and w, z ∈ C such that 1− 1
2
s(µ)w 6= 0 and 1− 1

2
s(λ)z 6= 0.

Proof. By Proposition 3.2.3 (iii), |p(λ)| = 1 and s(λ) = s(λ)p(λ) for almost every λ ∈ T.

Hence

Φ(z, h(λ)) =
2zp(λ)− s(λ)

2− zs(λ)
=

2zp(λ)− s(λ)p(λ)

2− zs(λ)
=

z − 1
2
s(λ)

1− 1
2
zs(λ)

p(λ)

for almost every λ ∈ T and every z ∈ C such that 1− 1
2
s(λ)z 6= 0. It follows that

1− Φ(w, h(λ))Φ(z, h(λ)) =

=1−
w − 1

2
s(λ)

1− 1
2
ws(λ)

p(λ)
z − 1

2
s(λ)

1− 1
2
zs(λ)

p(λ) = 1−
w − 1

2
s(λ)

1− 1
2
ws(λ)

z − 1
2
s(λ)

1− 1
2
zs(λ)

|p(λ)|

=
(1− 1

2
zs(λ)− 1

2
ws(λ) + 1

4
wz|s(λ)|2)− (wz − 1

2
ws(λ)− 1

2
zs(λ) + 1

4
|s(λ)|2)

(1− 1
2
ws(λ))(1− 1

2
zs(λ))

=
1− 1

4
|s(λ)|2 + wz(1

4
|s(λ)|2 − 1)

(1− 1
2
ws(λ))(1− 1

2
zs(λ))

=
(1− 1

4
|s(λ)|2)(1− wz)

(1− 1
2
ws(λ))(1− 1

2
zs(λ))

for almost every λ ∈ T and every w, z ∈ C such that 1− 1
2
s(λ)w 6= 0 and 1− 1

2
s(λ)z 6= 0.

By Theorem B.1.21, the non-zero H∞ function 1
4
s2−p has an inner-outer factorisation

of the form ϕg0 = 1
4
s2 − p, where ϕ is inner and g0 ∈ H∞ is outer. Since |ϕ(λ)| = 1,
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|p(λ)| = 1 and s(λ) = s(λ)p(λ) for almost every λ ∈ T, we have

|g0(λ)|2 = ϕ(λ)g0(λ)ϕ(λ)g0(λ) =

(
1

4
s(λ)2 − p(λ)

)(
1

4
s(λ)2 − p(λ)

)
=

1

16
|s(λ)|4 − 1

4
s(λ)2p(λ)− 1

4
s(λ)

2
p(λ) + |p(λ)|2

=
1

16
|s(λ)|4 − 1

4
|s(λ)|2 − 1

4
|s(λ)|2 + 1

=

(
1

4
|s(λ)|2 − 1

)2

for almost every λ ∈ T. Since |s(λ)| ≤ 2, we have 1− 1
4
|s(λ)|2 ≥ 0, and hence

|g0(λ)| = 1− 1

4
|s(λ)|2

for almost every λ ∈ T. Set g = g
1
2
0 . Then g ∈ H∞ is an outer function such that

|g(λ)|2 = 1− 1
4
|s(λ)|2 for almost every λ ∈ T. Thus we can write

1− Φ(w, h(λ))Φ(z, h(λ)) = (1− wz)

〈
g(λ)

1− 1
2
zs(λ)

,
g(λ)

1− 1
2
ws(λ)

〉
C

and so, by expanding the right side,

1 +

〈
zg(λ)

1− 1
2
zs(λ)

,
wg(λ)

1− 1
2
ws(λ)

〉
C

= Φ(w, h(λ))Φ(z, h(λ)) +

〈
g(λ)

1− 1
2
zs(λ)

,
g(λ)

1− 1
2
ws(λ)

〉
C

for almost every λ ∈ T and every w, z ∈ C such that 1− 1
2
s(λ)w 6= 0 and 1− 1

2
s(λ)z 6= 0.

It follows that〈 1
zg(λ)

1− 1
2
zs(λ)

 ,

 1
wg(λ)

1− 1
2
ws(λ)

〉
C2

=

〈 Φ(z, h(λ))
g(λ)

1− 1
2
zs(λ)

 ,

 Φ(w, h(λ))
g(λ)

1− 1
2
ws(λ)

〉
C2

for almost every λ ∈ T and every w, z ∈ C such that 1− 1
2
s(λ)w 6= 0 and 1− 1

2
s(λ)z 6= 0.

That is, for almost every λ ∈ T, the Grammian of the vectors
 1

zg(λ)

1− 1
2
zs(λ)

 : z ∈ C and 1− 1

2
s(λ)z 6= 0

 ⊆ C2

is equal to the Grammian of the vectors
 Φ(z, h(λ))

g(λ)

1− 1
2
zs(λ)

 z ∈ C and 1− 1

2
s(λ)z 6= 0

 ⊆ C2.
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Thus, by Proposition B.1.22, for almost every λ ∈ T, there is an isometry Lλ such that

Lλ

 1
zg(λ)

1− 1
2
zs(λ)

 =

 Φ(z, h(λ))
g(λ)

1− 1
2
zs(λ)


for every z ∈ C such that 1− 1

2
s(λ)z 6= 0.

Now, we define a function Θ on D by

Θ(λ) :=

−1
2
s(λ)

p(λ)− 1
4
s(λ)2

g(λ)

g(λ) 1
2
s(λ)


for every λ ∈ D. Hence

Θ(λ)

 1
zg(λ)

1− 1
2
zs(λ)

 =

−
1
2
s(λ) +

p(λ)− 1
4
s(λ)2

g(λ)

zg(λ)

1− 1
2
zs(λ)

g(λ) + 1
2
s(λ)

zg(λ)

1− 1
2
zs(λ)



=


−1

2
s(λ) + 1

4
zs(λ)2 + zp(λ)− 1

4
zs(λ)2

1− 1
2
zs(λ)

g(λ)− 1
2
zs(λ)g(λ) + 1

2
zs(λ)g(λ)

1− 1
2
zs(λ)



=


zp(λ)− 1

2
s(λ)

1− 1
2
zs(λ)

g(λ)

1− 1
2
zs(λ)

 =

 Φ(z, h(λ))
g(λ)

1− 1
2
zs(λ)


for all λ ∈ D and z ∈ C such that 1 − 1

2
zs(λ) 6= 0. Clearly Θ is holomorphic and, for

almost every λ ∈ T, we have Θ(λ) exists and is equal to the isometry Lλ. It follows from

the Maximum Modulus Principle that ||Θ(λ)|| ≤ 1 for all λ ∈ D, and so Θ ∈ S2×2.

By Proposition B.3.30, the function defined by

(λ, µ) 7→ I −Θ(µ)∗Θ(λ)

1− µλ

is an M2(C)-valued kernel on D, and so, by Corollary B.3.20, there is a Hilbert space H
and a holomorphic function F : D→ B(C2,H) such that

I −Θ(µ)∗Θ(λ) = (1− µλ)F (µ)∗F (λ)
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3.3. Relations between the sets

for all µ, λ ∈ D. It follows that

(1− µλ)

〈
F (λ)

 1
zg(λ)

1− 1
2
zs(λ)

 , F (µ)

 1
wg(µ)

1− 1
2
ws(µ)

〉
H

=

=

〈
(I −Θ(µ)∗Θ(λ))

 1
zg(λ)

1− 1
2
zs(λ)

 ,

 1
wg(µ)

1− 1
2
ws(µ)

〉
C2

=

〈 1
zg(λ)

1− 1
2
zs(λ)

 ,

 1
wg(µ)

1− 1
2
ws(µ)

〉
C2

−

〈 Φ(z, h(λ))
g(λ)

1− 1
2
zs(λ)

 ,

 Φ(w, h(µ))
g(µ)

1− 1
2
ws(µ)

〉
C2

= 1 + wz

〈
g(λ)

1− 1
2
zs(λ)

,
g(µ)

1− 1
2
ws(µ)

〉
C

− Φ(w, h(µ))Φ(z, h(λ))−
〈

g(λ)

1− 1
2
zs(λ)

,
g(µ)

1− 1
2
ws(µ)

〉
C

= 1− Φ(w, h(µ))Φ(z, h(λ))− (1− wz)

〈
g(λ)

1− 1
2
zs(λ)

,
g(µ)

1− 1
2
ws(µ)

〉
C

and so

1− Φ(w, h(µ))Φ(z, h(λ)) =(1− wz)

〈
g(λ)

1− 1
2
zs(λ)

,
g(µ)

1− 1
2
ws(µ)

〉
C

+ (1− µλ)

〈
F (λ)

 1
zg(λ)

1− 1
2
zs(λ)

 , F (µ)

 1
wg(µ)

1− 1
2
ws(µ)

〉
H

for all µ, λ ∈ D and w, z ∈ C such that 1− 1
2
s(µ)w 6= 0 and 1− 1

2
s(λ)z 6= 0, which is the

required identity.

Remark 3.3.4. [3, Remark 7.2] It is natural to ask what the relationship is between the

function F from Theorem 3.3.1 and the function Θ from Proposition 3.3.3. Let h = (s, p)

be a Γ-inner function such that s2 6= 4p. Recall that

F =

[
1
2
s ϕe

1
2
C

e
1
2
C 1

2
s

]
,

where ϕ is inner, eC is outer and ϕeC = 1
4
s2 − p, and

Θ =

[
−1

2
s

p− 1
4
s2

g

g 1
2
s

]
,

where g ∈ H∞ is an outer function such that |g(λ)|2 = 1− 1
4
|s(λ)|2 for almost every λ ∈ T.

Then

F =

[
−1 0

0 1

]
Θ,
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since, by the uniqueness of the inner-outer factorisation of 1
4
s2−p in the proofs of Theorem

3.3.1 and Proposition 3.3.3, we have g = e
1
2
C and[

−1 0

0 1

]
Θ =

[
−1 0

0 1

][
−1

2
s

p− 1
4
s2

g

g 1
2
s

]
=

[
1
2
s

1
4
s2−p
g

g 1
2
s

]
.

3.3.2 Left SSB : S2×2 → Hol (D,Γ)

Definition 3.3.5. We define Left SSB : S2×2 → Hol (D,Γ) by

F 7→ (tr F, detF )

for all F ∈ S2×2.

Proposition 3.3.6. The map Left SSB is well defined.

Proof. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. Clearly Left SSB (F ) is holomorphic since

tr F = F11 + F22 and detF = F11F22 − F21F12.

Let λ ∈ D. Denote the eigenvalues of F (λ) by F1(λ) and F2(λ). Then

tr F (λ) = F1(λ) + F2(λ) and detF (λ) = F1(λ)F2(λ).

Moreover, since ||F (λ)|| ≤ 1 for all λ ∈ D, we have ρ(F (λ)) ≤ 1, and so |F1(λ)| ≤ 1 and

|F2(λ)| ≤ 1. Hence

(tr F (λ), detF (λ)) = (F1(λ) + F2(λ), F1(λ)F2(λ)) ∈ Γ

for all λ ∈ D. It follows that Left SSB (F ) = (tr F, detF ) ∈ Hol (D,Γ).

We now have a map S2×2 → Hol (D,Γ) and a map Hol (D,Γ)→ S2×2, and so we can

investigate how these maps interact.

Proposition 3.3.7. Left SSB ◦Left NSB = idHol (D,Γ).

Proof. Let h ∈ Hol (D,Γ). Then Left NSB (h) = F ∈ S2×2 as defined in Definition 3.3.2.

In particular, (tr F, detF ) = h. It follows that Left SSB (F ) = h, and hence

Left SSB ◦Left NSB (h) = h.

Consequently, Left SSB ◦Left NSB = idHol (D,Γ).

Example 3.3.8. Let F (λ) =

[
λ2 0

0 λ

]
for all λ ∈ D. Then F ∈ S2×2 and

Left NSB ◦Left SSB (F ) 6= F .
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Proof. Clearly F is holomorphic on D, and

||F (λ)|| = max{|λ2|, |λ|} = |λ| ≤ 1

for all λ ∈ D. Hence F ∈ S2×2. Thus we can apply Left SSB to obtain

Left SSB (F )(λ) = (tr F (λ), detF (λ)) = (λ2 + λ, λ3)

for all λ ∈ D. Define h = (s, p) ∈ Hol (D,Γ) by h(λ) := (λ2 + λ, λ3) for all λ ∈ D, and let

Left NSB (h) := G ∈ S2×2.

Then the function G is defined as in Definition 3.3.2. In particular,

G =

[
1
2
s G12

G21
1
2
s

]
,

where G21G12 = 1
4
s2 − p. Thus

G21(λ)G12(λ) =
1

2
(λ2 + λ)2 − λ3

for all λ ∈ D, and so G21G12 6= 0. Since F21F12 = 0, we have G 6= F . It follows that

Left NSB ◦Left SSB (F ) 6= F .

3.3.3 SWSB : R11 → Hol (D,Γ)

First we give a proposition which motivates our definition of SWSB. The idea is to follow

Procedure UW with the map Left SSB.

Proposition 3.3.9. Let (N,M) ∈ R11. Let Ξ be constructed from (N,M) by Proce-

dure UW. Then

{Left SSB (F ) : F ∈ Upper W ((N,M))} =

{(
tr

[
ζ 0

0 1

]
Ξ, ζ det Ξ

)
: ζ ∈ T

}
⊆ Hol (D,Γ).

Proof. Let F ∈ Upper W ((N,M)). Then F =

[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
for some ζ1, ζ2 ∈ T,

and so

Left SSB (F ) = (tr F, detF ) =

(
tr

[
ζ1 0

0 1

]
Ξ, ζ1 det Ξ

)
.
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It follows that

{Left SSB (F ) : F ∈ Upper W ((N,M))} =

{(
tr

[
ζ 0

0 1

]
Ξ, ζ det Ξ

)
: ζ ∈ T

}
.

Moreover, by Proposition 3.3.6, since F ∈ S2×2, we have Left SSB (F ) ∈ Hol (D,Γ).

Definition 3.3.10. We define SWSB to be the set-valued map from R11 to Hol (D,Γ)

given by

SWSB ((N,M)) =

{(
tr

[
ζ 0

0 1

]
Ξ, ζ det Ξ

)
: ζ ∈ T

}
for all (N,M) ∈ R11, where Ξ ∈ S2×2 is constructed from (N,M) by Procedure UW.

That SWSB is well defined follows from Proposition 3.3.9 and the observation that, as

Upper W is independent of which function Ξ is used to define it, the set{(
tr

[
ζ 0

0 1

]
Ξ, ζ det Ξ

)
: ζ ∈ T

}

is independent of the choice of Ξ.

By Proposition 3.3.9,

{Left SSB (F ) : F ∈ Upper W ((N,M))} = SWSB ((N,M))

for all (N,M) ∈ R11. We have the following other interactions with SWSB.

Proposition 3.3.11. Let F =

[
F11 F12

F21 F22

]
∈ S2×2 be such that F21 6= 0. Then

SWSB ◦Upper E (F ) =

{
Left SSB

([
ζ 0

0 1

]
F

)
: ζ ∈ T

}
.

Proof. By Proposition 2.4.12,

Upper W ◦Upper E (F ) =

{[
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
.

Hence

SWSB ◦Upper E (F ) =

{
Left SSB

([
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

])
: ζ1, ζ2 ∈ T

}

=

{(
tr

[
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

]
, det

[
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

])
: ζ1, ζ2 ∈ T

}

=

{
Left SSB

([
ζ 0

0 1

]
F

)
: ζ ∈ T

}
,
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as required.

Corollary 3.3.12. Let h = (s, p) ∈ Hol (D,Γ) be such that s2 6= p. Then

SWSB ◦Upper E ◦Left NSB (h) =

{(
1

2
(ζ + 1)s, ζp

)
: ζ ∈ T

}
.

Proof. Let F = Left NSB (h). Then, in particular,

F =

[
1
2
s F12

F21
1
2
s

]
,

F21 6= 0 and detF = p. By Proposition 3.3.11,

SWSB ◦Upper E (F ) =

{
Left SSB

([
ζ 0

0 1

]
F

)
: ζ ∈ T

}

=

{
Left SSB

([
ζ 1

2
s ζF12

F21
1
2
s

])
: ζ ∈ T

}

=

{(
1

2
(ζ + 1)s, ζ detF

)
: ζ ∈ T

}
.

Hence SWSB ◦Upper E ◦Left NSB (h) =
{(

1
2
(ζ + 1)s, ζp

)
: ζ ∈ T

}
.

We note that if ζ = 1 then
(

1
2
(ζ + 1)s, ζp

)
= (s, p). Hence, by Corollary 3.3.12, for all

h ∈ Hol (D,Γ), we have h ∈ SWSB ◦Upper E ◦Left NSB (h).

3.3.4 Lower ESB : Hol (D,Γ)→ S2
The definition of Lower ESB comes from the relationship between Hol (D,Γ) and a par-

ticular subset of S2. The relationship uses the function Φ. Recall that, for h = (s, p) ∈
Hol (D,Γ) and z, λ ∈ D, we have

Φ(z, h(λ)) =
2zp(λ)− s(λ)

2− zs(λ)
.

Thus, for all λ ∈ D, we have Φ(·, h(λ)) is a linear fractional map with the property ‘b = c’.

By the property ‘b = c’ we refer to the general form of a linear fractional map,

z 7→ az + b

cz + d
.

In our example, a = 2p(λ), b = −s(λ), c = −s(λ) and d = 2, and hence b = c. Moreover,

for all λ ∈ D, by Proposition 3.2.3 (i), h(λ) ∈ Γ if and only if |s(λ)| ≤ 2 and, for all w in

a dense subset of T, we have

|Φ(w, h(λ))| ≤ 1.

This motivates the following definition of the subset of S2.
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Definition 3.3.13. We define Sb=c2 to be the subset of S2 which contains those ϕ such

that, for all λ ∈ D, we have ϕ(·, λ) is a linear fractional map with the property ‘b = c’.

We now give the relationship between Hol (D,Γ) and Sb=c2 .

Proposition 3.3.14. [3, Proposition 5.2] Let ϕ be a function on D2. Then ϕ ∈ Sb=c2 if

and only if there exists a function h ∈ Hol (D,Γ) such that

ϕ(z, λ) = Φ(z, h(λ)) for all z, λ ∈ D.

Moreover, if ϕ ∈ Sb=c2 then its corresponding function h is unique.

Proof. First, suppose h = (s, p) ∈ Hol (D,Γ). Define ϕ(z, λ) := Φ(z, h(λ)) for all z, λ ∈ D.

Since h is holomorphic and maps into Γ, and since Φ is holomorphic on D × Γ, we infer

that ϕ is holomorphic on D2. For any λ ∈ D, by Proposition 3.2.3 (i), for all w in a dense

subset of T, we have

|Φ(w, h(λ))| ≤ 1.

Hence, for any z, λ ∈ D, by the Maximum Modulus Principle,

|Φ(z, h(λ))| ≤ 1,

and so ϕ(z, λ) ∈ D. It follows that ϕ ∈ S2. Moreover,

ϕ(z, λ) =
2zp(λ)− s(λ)

2− zs(λ)
=

2p(λ)z + (−s(λ))

(−s(λ))z + 2

for all z, λ ∈ D. It follows that ϕ ∈ Sb=c2 .

Conversely, suppose that ϕ ∈ Sb=c2 . Then, for all λ ∈ D, we have ϕ(·, λ) is a linear

fractional map with the property ‘b = c’. Thus we can write

ϕ(z, λ) =
a(λ)z + b(λ)

b(λ)z + d(λ)

for all z, λ ∈ D, where a, b, d are functions from D to C. Since ϕ ∈ S2, for any λ ∈ D, up

to cancellation, ϕ(·, λ) does not have a pole at 0, and so d(λ) 6= 0. Hence, without loss of

generality, we can write

ϕ(z, λ) =
a(λ)z + b(λ)

b(λ)z + 1

for all z, λ ∈ D. Set h(λ) = (−2b(λ), a(λ)) for all λ ∈ D. Then, since b(λ) = ϕ(0, λ) and

a(λ)z = ϕ(z, λ) (b(λ)z + 1)− b(λ) = ϕ(z, λ) (ϕ(0, λ)z + 1)− ϕ(0, λ)

for all z, λ ∈ D, we have h is holomorphic on D. Now,

Φ(z, h(λ)) =
2za(λ) + 2b(λ)

2 + z2b(λ)
=
a(λ)z + b(λ)

b(λ)z + 1
= ϕ(z, λ)
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for all z, λ ∈ D. Thus, by the continuity of Φ and since

|Φ(z, h(λ))| = |ϕ(z, λ)| ≤ 1 for all z, λ ∈ D,

we have |Φ(w, h(λ))| ≤ 1 for every λ ∈ D and every w in a dense subset of T. Moreover,

|2b(λ)| = 2|ϕ(0, λ)| ≤ 2

for all λ ∈ D. Hence, by Proposition 3.2.3 (ii), h(λ) ∈ Γ for all λ ∈ D. It follows that

there exists an h ∈ Hol (D,Γ) such that ϕ(z, λ) = Φ(z, h(λ)) for all z, λ ∈ D.

For uniqueness, suppose that ϕ ∈ Sb=c2 . Let h, g ∈ Hol (D,Γ) be such that

Φ(z, h(λ)) = ϕ(z, λ) = Φ(z, g(λ))

for all z, λ ∈ D. Then, if h = (s, p) and g = (q, r), we have

2zp(λ)− s(λ)

2− zs(λ)
=

2zr(λ)− q(λ)

2− zq(λ)

and so

−2p(λ)q(λ)z2 +(4p(λ)+ q(λ)s(λ))z−2s(λ) = −2r(λ)s(λ)z2 +(4r(λ)+ q(λ)s(λ))z−2q(λ)

for all z, λ ∈ D. By equating coefficients, we obtain s(λ) = q(λ), p(λ)q(λ) = r(λ)s(λ) and

4p(λ) + q(λ)s(λ) = 4r(λ) + q(λ)s(λ)

for all λ ∈ D. It follows that s = q, p = r and hence h = g.

Definition 3.3.15. We define Lower ESB : Hol (D,Γ)→ Sb=c2 by

Lower ESB (h)(z, λ) := Φ(z, h(λ)) =
2zp(λ)− s(λ)

2− zs(λ)

for all h = (s, p) ∈ Hol (D,Γ) and all z, λ ∈ D.

That Lower ESB is well defined follows immediately from Proposition 3.3.14

3.3.5 Lower WSB : Sb=c2 → Hol (D,Γ)

The proof of Proposition 3.3.14 provides the construction of a unique function in Hol (D,Γ)

for each function in Sb=c2 . We use this construction to define the map Lower WSB.

Definition 3.3.16. We define Lower WSB : Sb=c2 → Hol (D,Γ) by

Lower WSB (ϕ) = (−2b, a)
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for ϕ ∈ Sb=c2 , where ϕ can be written ϕ(z, λ) = a(λ)z+b(λ)
b(λ)z+1

for all z, λ ∈ D.

That Lower WSB is well defined follows from Proposition 3.3.14 and the observation

that, if ϕ ∈ Sb=c2 is such that ϕ(z, λ) = b(λ) for all z, λ ∈ D, then

ϕ(z, λ) =
b(λ)2z + b(λ)

b(λ) + 1

for all z, λ ∈ D, and so Lower WSB (ϕ) = (−2b, b2). The maps Lower WSB and Lower ESB

are mutually inverse.

Proposition 3.3.17. The following relations hold.

(i) Lower WSB ◦Lower ESB = idHol (D,Γ).

(ii) Lower ESB ◦Lower WSB = idSb=c
2

.

Proof. (i) Let h = (s, p) ∈ Hol (D,Γ). Then Lower ESB (h) ∈ Sb=c2 , and

Lower ESB (h)(z, λ) = Φ(z, h(λ)) =
2zp(λ)− s(λ)

2− zs(λ)
=
p(λ)z − 1

2
s(λ)

−1
2
s(λ)z + 1

for all z, λ ∈ D. Hence

Lower WSB ◦Lower ESB (h) =

(
−2

(
−1

2
s

)
, p

)
= h.

It follows that Lower WSB ◦Lower ESB = idHol (D,Γ).

(ii) Let ϕ ∈ Sb=c2 , where ϕ can be written ϕ(z, λ) = a(λ)z+b(λ)
b(λ(z)+1

for all z, λ ∈ D. Then

Lower WSB (ϕ) = (−2b, a). Hence

Lower ESB ◦Lower WSB (ϕ)(z, λ) = Φ(z,−2b(λ), a(λ)) =
2a(λ)z + 2b(λ)

2 + 2b(λ)z
= ϕ(z, λ)

for all z, λ ∈ D. It follows that Lower ESB ◦Lower WSB = idSb=c
2

.

3.3.6 Relations between the remaining maps

We now consider how some of the maps we defined in this section interact with some of

the maps in Chapter 2.

Proposition 3.3.18. SE ◦Left NSB = Lower ESB.

Proof. Let h ∈ Hol (D,Γ). Then Left NSB (h) = F ∈ S2×2 as defined in Theorem 3.3.1.

By the proof of Theorem 3.3.1,

SE (F )(z, λ) = −FF (λ)(z) = Φ(z, h(λ))
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for all z, λ ∈ D. Hence

SE ◦Left NSB (h)(z, λ) = Φ(z, h(λ)) = Lower ESB (h)(z, λ)

for all z, λ ∈ D. It follows that SE ◦Left NSB = Lower ESB.

Corollary 3.3.19. The following relations hold.

(i) Lower WSB ◦ SE ◦Left NSB = idHol (D,Γ).

(ii) SE ◦Left NSB ◦Lower WSB = idSb=c
2

.

Proof. The results follow immediately from Proposition 3.3.18 and Proposition 3.3.17.

Proposition 3.3.20. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. If F11 = F22 then

Lower ESB ◦Left SSB (F ) = SE (F ).

Proof. We have

SE (F )(z, λ) = −F11(λ)− F12(λ)F21(λ)z

1− F11(λ)z
=
−F11(λ) + (F11(λ)2 − F12(λ)F21(λ))z

1− F11(λ)z

for all z, λ ∈ D. Moreover, Left SSB (F ) = (tr F, detF ) = (2F11, F
2
11 − F21F12) and so

Lower ESB ◦Left SSB (F )(z, λ) = Φ(z, 2F11(λ), F11(λ)2 − F21(λ)F12(λ))

=
2z(F 2

11(λ)− F21(λ)F12(λ))− 2F11(λ)

2− 2zF11(λ)

=
−F11(λ) + (F11(λ)2 − F12(λ)F21(λ))z

1− F11(λ)z

for all z, λ ∈ D. It follows that Lower ESB ◦Left SSB (F ) = SE (F ).

However, for an arbitrary F ∈ S2×2, we may have Lower ESB ◦Left SSB (F ) 6= SE (F ),

as illustrated by the following example.

Example 3.3.21. Let f(z) =
1− 2z

2− z
and g(z) =

1 + 2z

2 + z
for all z ∈ D. Set F =

[
f 0

0 g

]
.

Then F ∈ S2×2 and Lower ESB ◦Left SSB (F ) 6= SE (F ).

Proof. A Blaschke factor has the form

Ba(z) =
a

|a|
a− z
1− az

for all z ∈ D and some a ∈ D. Hence f = B 1
2

and g = B− 1
2
. By Remark B.1.20, f and

g are holomorphic functions on D such that |f(z)| ≤ 1 and |g(z)| ≤ 1 for all z ∈ D. It
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follows that F is holomorphic on D, and

||F (λ)|| = max{|f(λ)|, |g(λ)|} ≤ 1

for all λ ∈ D. Hence F ∈ S2×2.

Clearly f 6= g. Moreover,

SE (F )(0, λ) = −F11(λ)− F12(λ)F21(λ) · 0
1− F22(λ) · 0

= −f(λ)

and

Lower ESB ◦Left SSB (F ) (0, λ) =
2 · 0 · detF (λ)− tr F (λ)

2− 0 · tr F (λ)
=
−(f(λ) + g(λ))

2

for all λ ∈ D. If Lower ESB ◦Left SSB (F ) = SE (F ), then f(λ) = g(λ) for all λ ∈ D, which

is a contradiction. It follows that Lower ESB ◦Left SSB (F ) 6= SE (F ).

Proposition 3.3.22. Let ϕ ∈ Sb=c2 . Then

Right S ◦Upper E ◦Left NSB ◦Lower WSB (ϕ) = {ζϕ : ζ ∈ T} .

Proof. By Corollary 3.3.19 (ii),

SE ◦Left NSB ◦Lower WSB (ϕ) = ϕ.

Moreover, by Proposition 2.5.3, since Left NSB ◦Lower WSB (ϕ) ∈ S2×2, we have

Right S ◦Upper E (Left NSB ◦Lower WSB (ϕ)) = {ζ SE (Left NSB ◦Lower WSB (ϕ)) : ζ ∈ T} .

It follows that Right S ◦Upper E ◦Left NSB ◦Lower WSB (ϕ) = {ζϕ : ζ ∈ T} .

3.4 Criterion for solvability

In this section, we present a criterion for the solvability of the µ-synthesis problem given

by Question 1.2.1. In addition, we give a number of related results, which can be seen

to arise from the rich structure we have been studying. The proofs of the results in this

section are contained in [3].

Theorem 3.4.1. Let λ1, . . . , λn be distinct points in D, and let Wj ∈M2(C) be such that

ρ(Wj) ≤ 1 for j = 1, . . . , n, and none of which are scalar multiples of the identity. Set

(sj, pj) = (tr Wj, detWj) ∈ Γ for each j = 1, . . . , n. Then the following are equivalent.

(i) There exists a holomorphic function F : D → M2(C) such that F (λj) = Wj for

j = 1, . . . , n, and ρ(F (λ)) ≤ 1 for all λ ∈ D;
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(ii) there exists a holomorphic function h : D→ Γ satisfying

h(λj) = (sj, pj) for j = 1, . . . , n;

(iii) for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that[

1− 2zlpi − si
2− zlsi

2zkpj − s1j

2− zksj

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
.

Theorem 3.4.1 follows easily from a combination of the following theorem with [3,

Theorem 8.4].

Theorem 3.4.2. [3, Theorem 8.1] Let λ1, . . . , λn be distinct points in D, and let (sj, pj) ∈
Γ be such that s2

j 6= 4pj for j = 1, . . . , n. Then the following are equivalent.

(i) There exists a holomorphic function h : D→ Γ satisfying

h(λj) = (sj, pj) for j = 1, . . . , n;

(ii) there exists a rational Γ-inner function h satisfying

h(λj) = (sj, pj) for j = 1, . . . , n;

(iii) for every distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that, for 1 ≤ i, j ≤

n and 1 ≤ l, k ≤ 3,

1− 2zlpi − si
2− zlsi

2zkpj − sj
2− zksj

= (1− zlzk)Nil,jk + (1− λiλj)Mil,jk;

(iv) for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that[

1− 2zlpi − si
2− zlsi

2zkpj − sj
2− zksj

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
.

The proof of Theorem 3.4.2 shows constructively that (iv) implies (i), which provides

a procedure by which a solution h can be obtained once a pair (N,M) is known. The

authors of [3] call this Procedure SW, and it is essentially Procedure UW followed by the

Left SSB map. More specifically we have:

Procedure SWSB. [3, p. 2503] Let λ1, . . . , λn be distinct points in D, and let (sj, pj) ∈ Γ

be such that s2
j 6= 4pj for j = 1, . . . , n. For some distinct points z1, z2, z3 ∈ D, suppose N
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and M are positive 3n-square matrices such that N has rank at most 1, and the matrix

inequality as in Theorem 3.4.2 (iv) holds. Then:

1. Choose scalars γjk ∈ C such that N = [γilγjk]
n,3
i,j=1,l,k=1.

2. Choose a Hilbert space H and vectors vjk ∈ H such that M = [〈vjk, vil〉H]n,3i,j=1,l,k=1.

3. Choose a contraction

[
A B

C D

]
: C2 ⊕H → C2 ⊕H such that

[
A B

C D

]
(

1

zkγjk

)
λjvjk

 =


(
−Φ(zk, sj, pj)

γjk

)
vjk

 ,

for all j = 1, . . . , n and k = 1, 2, 3.

4. Let h(λ) = (tr , det)(A+Bλ(I −Dλ)−1C) for all λ ∈ D.

Now, we have h ∈ Hol (D,Γ) and h(λj) = (sj, pj) for j = 1, . . . , n.

The following proposition shows that every interpolating function can be obtained by

applying Procedure SWSB to a general solution (N,M) of the matrix inequality such that

the rank of N is less than or equal to 1.

Proposition 3.4.3. [3, Proposition 10.1] Let λ1, . . . , λn be distinct points in D, and let

(sj, pj) ∈ Γ be such that s2
j 6= 4pj for j = 1, . . . , n. Then every holomorphic function

h : D→ Γ satisfying

h(λj) = (sj, pj), for j = 1, . . . , n,

arises by Procedure SWSB from a pair of positive 3n-square matrices N = [Nil,jk]
n,3
i,j=1,l,k=1

of rank at most 1, and M = [Mil,jk]
n,3
i,j=1,l,k=1 satisfying[

1− 2zlpi − si
2− zlsi

2zkpj − sj
2− zksj

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
,

where z1, z2, z3 are distinct points in D.

The following proposition shows that, in order to use Theorem 3.4.2 to determine if

there is an interpolating function, it is sufficient to search over a compact set for a pair

(N,M) that satisfies the matrix inequality and such that the rank of N is 1.

Proposition 3.4.4. [3, Proposition 11.1] Let λ1, . . . , λn be distinct points in D, and let

(sj, pj) ∈ Γ be such that s2
j 6= 4pj for j = 1, . . . , n. Then the interpolation problem

λj ∈ D 7→ (sj, pj) ∈ Γ, for all j = 1, . . . , n,
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is solvable if and only if, for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-

square matrices N = [Nil,jk]
n,3
i,j=1,l,k=1 of rank 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 that satisfy[

1− 2zlpi − si
2− zlsi

2zkpj − sj
2− zksj

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
,

and

|Nil,jk| ≤
1

(1− 1
2
|si|)(1− 1

2
|sj|)

and

|Mil,jk| ≤
2

|1− λiλj|

√
1 +

1

(1− 1
2
|sj|)2

√
1 +

1

(1− 1
2
|sj|)2

for all 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3.
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Chapter 4. The tetrablock

4.1 Introduction

The tetrablock was introduced by Abouhajar, White and Young in [1]. The authors

studied the complex geometry of the tetrablock. One of the main results of the paper

is a Schwarz lemma for the tetrablock. Motivation to study the tetrablock came from a

special case of the µ-synthesis problem. The authors showed that the solvability of this

special case is equivalent to the solvability of an interpolation problem into the tetrablock.

We define the open tetrablock to be the set

E := {(x1, x2, x3) ∈ C3 : 1− x1z − x2w + x3zw 6= 0 for all z, w ∈ D},

and denote its closure by E. More explicitly we have the following.

Proposition 4.1.1. [1, Theorem 2.4] The closed tetrablock satisfies

E = {(x1, x2, x3) ∈ C3 : 1− x1z − x2w + x3zw 6= 0 for all z, w ∈ D}.

It is shown in [1] that the tetrablock intersects R3 in a regular tetrahedron, which in-

spires its name. The following result about the geometry of the tetrablock is also given.

(For the next proposition, see Definition B.1.23 and Definition B.1.24 for the notions of

hypoconvexity and polynomial convexity.)

Proposition 4.1.2. [64, Lemma 2.2][1, Theorem 2.7, Theorem 2.9] The tetrablock is

hypoconvex, polynomially convex, starlike about (0, 0, 0), and not convex.

Recall that

Diag =

{(
z 0

0 w

)
: z, w ∈ C

}
,

and µDiag(M) = (inf{||E|| : E ∈ Diag and I −ME is singular})−1 for all M ∈ M2(C),

where µDiag(M) = 0 if I −ME is non-singular for all E ∈ Diag. The µ-synthesis problem

for µDiag is:

Question 4.1.3. Let λ1, . . . , λn be distinct points in D. Let W1, . . . ,Wn ∈ M2(C) be

such that µDiag(Wj) ≤ 1 for j = 1, . . . , n. Does there exist a holomorphic function

F : D → M2(C) such that F (λj) = Wj for all j = 1, . . . , n, and µDiag(F (λ)) ≤ 1 for all

λ ∈ D?
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It can be shown that x ∈ E if and only if there exists an

M =

[
m11 m12

m21 m22

]
∈M2(C)

such that µDiag(M) ≤ 1 and x = (m11,m22, detM). In [1], Abouhajar, White and Young

used this fact to show that the solvability of Question 4.1.3 is equivalent to the solvabil-

ity of an interpolation problem from D to E. More precisely they proved the following

theorem.

Theorem 4.1.4. [1, Theorem 9.2] Let λ1, . . . , λn be distinct points in D. Let W1, . . . ,Wn ∈
M2(C) be such that µDiag(Wj) ≤ 1 and wj11w

j
22 6= detWj for j = 1, . . . , n. Then the fol-

lowing are equivalent.

(i) There is a holomorphic function F : D → M2(C) such that F (λj) = Wj for j =

1, . . . , n, and µDiag(F (λ)) ≤ 1 for all λ ∈ D.

(ii) There is an x ∈ Hol (D,E) such that x(λj) = (wj11, w
j
22, detWj) for j = 1, . . . , n.

In this chapter, we discuss some background material for the tetrablock and define

E-inner functions. Afterwards, we focus on the construction of the maps that illustrate

the rich structure of interconnections between the sets S2×2,S2,Hol (D,E) and R1. The

maps can be summarised by the rich saltire:

S2×2

��

//

&&

R1
oo

��xx

Hol (D,E)

OO

// S2
oo

OO

We use the maps we produce to obtain conditions for the solvability of the µ-synthesis

problem in Theorem 4.1.4.

4.2 Background

The following two functions are useful in the study of the tetrablock. As defined in [1],

let Ψ,Υ : C4 → C be given by

Ψ(z, x1, x2, x3) =
x3z − x1

x2z − 1
, for x2z 6= 1, and Υ(z, x1, x2, x3) =

x3z − x2

x1z − 1
, for x1z 6= 1,

where z, x1, x2, x3 ∈ C. Note that, since Ψ is a rational function and rational functions

are holomorphic, Ψ is holomorphic everywhere that x2z 6= 1. Similarly, Υ is holomorphic

everywhere that x1z 6= 1. We prove the following proposition which says that x2z 6= 1

and x1z 6= 1 whenever z ∈ D and (x1, x2, x3) ∈ E.

Proposition 4.2.1. The functions Ψ and Υ are defined and holomorphic on D × E.

Moreover, if (x1, x2, x3) ∈ E then |x1| ≤ 1 and |x2| ≤ 1.
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Proof. Let x = (x1, x2, x3) ∈ E. Then (x2−x3z)w 6= 1−x1z for all z, w ∈ D. In particular,

for z = 0 we have x2w 6= 1 for all w ∈ D, and for w = 0 we have 0 6= x1z− 1 for all z ∈ D.

It follows that Ψ and Υ are defined and holomorphic on D× E.

Moreover, suppose |x2| > 1 and let

w =
1

x2

.

Then w ∈ D, and hence 1 = x2w 6= 1, which is a contradiction. It follows that |x2| ≤ 1.

Similarly, we can show that |x1| ≤ 1.

Remark 4.2.2. The proof of Proposition 4.2.1 can be easily modified to show that Ψ

and Υ are defined and holomorphic on D × E, and if (x1, x2, x3) ∈ E then |x1| < 1 and

|x2| < 1.

The tetrablock is related to Γ in the following way. Let (x1, x2, x3) ∈ E be such that

x1x2 = x3. Then, by Proposition 4.2.1, |x1| ≤ 1 and |x2| ≤ 1. It follows that

(x1 + x2, x3) = (x1 + x2, x1x2) ∈ Γ.

We call attention to the special case that (x1, x2, x3) ∈ E is such that x1x2 = x3, in this

case,

Ψ(z, x1, x2, x3) =
x1(x2z − 1)

x2z − 1
= x1 and Υ(z, x1, x2, x3) =

x2(x1z − 1)

x1z − 1
= x2.

The functions Ψ and Υ are related by the following equation. For (x1, x2, x3) ∈ C3

and z ∈ C such that x1z 6= 1, we have Ψ(z, x1, x2, x3) = Υ(z, x2, x1, x3). Through this

relationship, when working on D × E, it usually suffices to consider only one of these

functions, since, clearly, if (x1, x2, x3) ∈ E then (x2, x1, x3) ∈ E.

We have the following alternative characterisations of E and E.

Theorem 4.2.3. [1, Theorem 2.2] Let x = (x1, x2, x3) ∈ C3. The following are equivalent.

(i) x ∈ E;

(iia) |Υ(z, x)| < 1 for all z ∈ D, and if x1x2 = x3 then, in addition, |x1| < 1;

(iib) |Ψ(z, x)| < 1 for all z ∈ D, and if x1x2 = x3 then, in addition, |x2| < 1;

(iiia) |x2 − x1x3|+ |x1x2 − x3| < 1− |x1|2;

(iiib) |x1 − x2x3|+ |x1x2 − x3| < 1− |x2|2;

(iva) − |x1|2 + |x2|2 + |x3|2 + 2|x1 − x2x3| < 1 and |x1| < 1;

(ivb) |x1|2 − |x2|2 + |x3|2 + 2|x2 − x1x3| < 1 and |x2| < 1;

(v) |x1|2 + |x2|2 − |x3|2 + 2|x1x2 − x3| < 1 and |x3| < 1;

(vi) there is a 2× 2 matrix A = [aij]
2
i,j=1 such that ||A|| < 1 and x = (a11, a22, detA);

56



4.2. Background

(vii) there is a symmetric 2× 2 matrix A = [aij]
2
i,j=1 such that ||A|| < 1 and

x = (a11, a22, detA);

(viii) |x1 − x2x3|+ |x2 − x1x3| < 1− |x3|2;

(ix) |x3| < 1 and there exist β1, β2 ∈ C such that |β1|+ |β2| < 1, x1 = β1 + β2x3 and

x2 = β2 + β1x3.

Theorem 4.2.4. [1, Theorem 2.4] Let x = (x1, x2, x3) ∈ C3. The following are equivalent.

(i) x ∈ E;

(iia) |Υ(z, x)| ≤ 1 for all z ∈ D, and if x1x2 = x3 then, in addition, |x1| ≤ 1;

(iib) |Ψ(z, x)| ≤ 1 for all z ∈ D, and if x1x2 = x3 then, in addition, |x2| ≤ 1;

(iiia) |x2 − x1x3|+ |x1x2 − x3| ≤ 1− |x1|2 and if x1x2 = x3 then, in addition, |x2| ≤ 1;

(iiib) |x1 − x2x3|+ |x1x2 − x3| ≤ 1− |x2|2 and if x1x2 = x3 then, in addition, |x1| ≤ 1;

(iva) − |x1|2 + |x2|2 + |x3|2 + 2|x1 − x2x3| ≤ 1 and |x1| ≤ 1;

(ivb) |x1|2 − |x2|2 + |x3|2 + 2|x2 − x2x3| ≤ 1 and |x2| ≤ 1;

(v) |x1|2 + |x2|2 − |x3|2 + 2|x1x2 − x3| ≤ 1 and |x3| ≤ 1;

(vi) there is a 2× 2 matrix A = [aij]
2
i,j=1 such that ||A|| ≤ 1 and x = (a11, a22, detA);

(vii) there is a symmetric 2× 2 matrix A = [aij]
2
i,j=1 such that ||A|| ≤ 1 and

x = (a11, a22, detA);

(viii) |x1 − x2x3|+ |x2 − x1x3| ≤ 1− |x3|2 and if |x3| = 1 then, in addition, |x1| ≤ 1;

(ix) |x3| ≤ 1 and there exist β1, β2 ∈ C such that |β1|+ |β2| ≤ 1, x1 = β1 + β2x3 and

x2 = β2 + β1x3.

We recall Definition 3.2.1 of the distinguished boundary of a domain in Cn. By Propo-

sition 4.1.2, E is polynomially convex, and hence the distinguished boundary bE of E exists

and is the S̆ilov boundary of A(E), where A(E) is the algebra of continuous functions on

E that are holomorphic on E. We have the following alternative descriptions of bE.

Theorem 4.2.5. [1, Theorem 7.1] Let x = (x1, x2, x3) ∈ C3. The following are equivalent.

(i) x ∈ bE;

(ii) x ∈ E and |x3| = 1;

(iii) x1 = x2x3, |x3| = 1 and |x2| ≤ 1;

(iv) either x1x2 6= x3 and Ψ(·, x) is an automorphism of D, or x1x2 = x3 and |x1| =

|x2| = |x3| = 1;

(v) x is a peak point of E;

(vi) there is a 2× 2 unitary matrix U = [uij]
2
i,j=1 such that x = (u11, u22, detU);
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(vii) there is a symmetric 2×2 unitary matrix U = [uij]
2
i,j=1 such that x = (u11, u22, detU).

By a peak point of E, we mean a point p for which there is a function f ∈ A(E) such

that f(p) = 1 and |f(x)| < 1 for all x ∈ E \ {p}. Clearly, any peak point belongs to bE.

In regards to the topological structure of bE, we have the following result.

Corollary 4.2.6. [1, Corollary 7.2] The distinguished boundary bE is homeomorphic to

D× T.

Proof. The map f : D× T→ bE defined by

f((x2, x3)) = (x2x3, x2, x3) for all (x2, x3) ∈ D× T

is a homeomorphism.

An important subset of Hol (D,E) is the collection of E-inner functions. An E-inner

function is the analogue for Hol (D,E) of inner functions in Hol (D,D).

Definition 4.2.7. An E-inner function is a function x ∈ Hol (D,E) such that, for almost

all λ ∈ T, the radial limit

lim
r→1−

x(rλ) ∈ bE.

We note that if x ∈ Hol (D,E) then we may consider x as the function (x1, x2, x3) :

D→ E defined by

(x1, x2, x3)(λ) = (x1(λ), x2(λ), x3(λ)) = x(λ) ∈ E for all λ ∈ D.

It follows that if x = (x1, x2, x3) is an E-inner function then x3 is an inner function.

4.3 Relations between the sets

In this section, we construct maps between S2×2,S2,Hol (D,E) and R1, which illustrate

the rich structure of interconnections summarised by the rich saltire. We label the maps in

accordance with the following diagrams. The subscript T denotes that we have Hol (D,E),

and so consider the tetrablock.

S2×2

Left ST
��

Hol (D,E)

Left NT

OO

Lower ET

// S2

Lower WToo

S2×2

SE
$$ S2

S2×2

Upper E
//R1

Upper W
oo

Right S

��

S2

Right N

OO
R1

SWT

xx

Hol (D,E)

4.3.1 Schur class of the bidisc and Left NT : Hol (D,E)→ S2×2

We begin this section with the construction of a unique function F ∈ S2×2 for each

x ∈ Hol (D,E). It is appropriate to include the realisation of Ψ(z, x(λ)) that is related to
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F . We show later that Ψ(z, x(λ)), as a function on the bidisc, belongs to S2, and that

this realisation is a powerful tool in producing a number of the maps in the rich saltire.

Let F =

[
F11 F12

F21 F22

]
∈ S2×2. Then the linear fractional transformation FF (λ)(z) is

given by

FF (λ)(z) := F11(λ) + F12(λ)z(1− F22(λ)z)−1F21(λ),

where z, λ ∈ D.

Theorem 4.3.1. Let x = (x1, x2, x3) ∈ Hol (D,E). Then there exists a unique

F =

[
F11 F12

F21 F22

]
∈ S2×2

such that x = (F11, F22, detF ), |F12| = |F21| almost everywhere on T, F21 is either outer

or 0, and F21(0) ≥ 0. Moreover, we have

1−Ψ(w, x(µ))Ψ(z, x(λ)) = (1− wz)γ(µ,w)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D, where

γ(λ, z) = (1− F22(λ)z)−1F21(λ) and η(λ, z) =

[
1

zγ(λ, z)

]

for all z, λ ∈ D.

Proof. First, we show that such an F exists and is unique. Let x = (x1, x2, x3) ∈
Hol (D,E). Suppose that x1x2 = x3. Then it is clear that

F =

[
x1 0

0 x2

]

is the only matrix satisfying all of the required conditions. In particular, F is holomorphic

and, since, by Proposition 4.2.1, |x1(λ)| ≤ 1 and |x2(λ)| ≤ 1 for all λ ∈ D, we have

||F (λ)|| =

∣∣∣∣∣
∣∣∣∣∣
[
x1(λ) 0

0 x2(λ)

]∣∣∣∣∣
∣∣∣∣∣ = max{|x1(λ)|, |x2(λ)|} ≤ 1

for all λ ∈ D. That it is the only matrix follows since we have |F21||F12| = |x1x2−x3| = 0

and |F12| = |F21|.
Now suppose that x1x2 6= x3. Then x1x2 − x3 is a non-zero H∞ function, and so, by

Theorem B.1.21, it has a unique inner-outer factorisation of the form ϕeC = x1x2 − x3,

where ϕ is inner, eC is outer and eC(0) ≥ 0. Set

F =

[
x1 ϕe

1
2
C

e
1
2
C x2

]
.
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Then, except for the condition that F ∈ S2×2, it is easy to check that F is the only matrix

satisfying the required conditions. In particular,

detF = x1x2 − ϕeC = x1x2 − x1x2 + x3 = x3,

and, since |ϕ| = 1 almost everywhere on T, we have |F12| = |F21| almost everywhere on

T. That it is the only matrix follows from the uniqueness of the representation ϕeC and

the requirements that F21 be outer, and that |F12| = |F21| almost everywhere on T.

We still need to check that F ∈ S2×2. Clearly F is holomorphic, since inner and outer

functions are holomorphic. To show that ||F (λ)|| ≤ 1 for all λ ∈ D, it is equivalent,

by Corollary B.1.6, to show that I − F (λ)∗F (λ) is positive semidefinite for all λ ∈ D.

To do this, we show that the diagonal entries of I − F (λ)∗F (λ) are non-negative and

det (I − F (λ)∗F (λ)) ≥ 0 for all λ ∈ D. Since |F12| = |F21| almost everywhere on T, and

F21F12 = x1x2 − x3, we have

|F12|2 = |F21|2 = |F21F12| = |x1x2 − x3|

almost everywhere on T. By Proposition B.1.29, for almost every λ ∈ T,

I − F (λ)∗F (λ) =

1− |x1(λ)|2 − |x1(λ)x2(λ)− x3(λ)| −x1(λ)F12(λ)− F21(λ)x2(λ)

−F12(λ)x1(λ)− x2(λ)F21(λ) 1− |x1(λ)x2(λ)− x3(λ)| − |x2(λ)|2


and

det (I − F (λ)∗F (λ)) = 1− |x1(λ)|2 − 2|x1(λ)x2(λ)− x3(λ)| − |x2(λ)|2 + |x3(λ)|2.

Let D1(λ) and D2(λ) be the diagonal entries of I − F (λ)∗F (λ). By Theorem 4.2.4 (iiia)

and (iiib), since x : D→ E, we have

|x2(λ)− x1(λ)x3(λ)|+ |x1(λ)x2(λ)− x3(λ)| ≤ 1− |x1(λ)|2

and

|x1(λ)− x2(λ)x3(λ)|+ |x1(λ)x2(λ)− x3(λ)| ≤ 1− |x2(λ)|2

for all λ ∈ D. Since these two inequalities continue to hold for almost every λ ∈ T, it

follows that

D1(λ) ≥ |x2(λ)− x1(λ)x3(λ)| ≥ 0 and D2(λ) ≥ |x1(λ)− x2(λ)x3(λ)| ≥ 0

for almost every λ ∈ T. Moreover, by Theorem 4.2.4 (v), we have

|x1(λ)|2 + |x2(λ)|2 − |x3(λ)|2 + 2|x1(λ)x2(λ)− x3(λ)| ≤ 1
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for all λ ∈ D. Since this inequality also holds for almost every λ ∈ T, it follows that

det (I − F (λ)∗F (λ)) ≥ 0

for almost every λ ∈ T. Hence, by Corollary B.1.6, ||F (λ)|| ≤ 1 for almost every λ ∈ T.

By the Maximum Modulus Principle we obtain ||F (λ)|| ≤ 1 for all λ ∈ D, as required.

It remains to show that

1−Ψ(w, x(µ))Ψ(z, x(λ)) = (1− wz)γ(µ,w)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D. First we note that

FF (λ)(z) =F11(λ) +
F12(λ)F21(λ)z

1− F22(λ)z
= x1(λ) +

(x1(λ)x2(λ)− x3(λ))z

1− x2(λ)z

=
x1(λ)− x1(λ)x2(λ)z + x1(λ)x2(λ)z − x3(λ)z

1− x2(λ)z
=
x1(λ)− x3(λ)z

1− x2(λ)z

=
x3(λ)z − x1(λ)

x2(λ)z − 1
= Ψ(z, x(λ))

for all z, λ ∈ D. Hence, by Proposition 2.1.1,

1−Ψ(w, x(µ))Ψ(z, x(λ)) =1−FF (µ)(w)∗FF (λ)(z)

=(1− wz)γ(µ,w)γ(λ, z) + η(µ,w)∗(I − F (µ)∗F (λ))η(λ, z)

for all z, λ, w, µ ∈ D.

Definition 4.3.2. We define Left NT : Hol (D,E)→ S2×2 by

Left NT (x) = F =

[
F11 F12

F21 F22

]

for each x = (x1, x2, x3) ∈ Hol (D,E), where F ∈ S2×2 and satisfies x = (F11, F22, detF ),

|F12| = |F21| almost everywhere on T, F21 is either outer or 0, and F21(0) ≥ 0.

Clearly the function F , as defined in Definition 4.3.2, must also satisfy F21F12 =

x1x2 − x3. That Left NT is well defined follows immediately from Theorem 4.3.1. In

the case that x is an E-inner function, there is an alternative proof of the realisation of

Ψ(z, x(λ)) from Theorem 4.3.1, which we give now.

Proposition 4.3.3. Let x = (x1, x2, x3) be an E-inner function such that x1x2 6= x3.

Then there is a Hilbert space H, a holomorphic function F : D→ B(C2, H), and an outer
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function g ∈ H∞ such that |g(ξ)|2 = 1− |x2(ξ)|2 for almost every ξ ∈ T, which satisfy

1−Ψ(w, x(µ))Ψ(z, x(λ)) =(1− wz)

〈
g(λ)

1− x2(λ)z
,

g(µ)

1− x2(µ)w

〉
C

+ (1− µλ)

〈
F (λ)

(
1

g(λ)z
1−x2(λ)z

)
, F (µ)

(
1

g(µ)w
1−x2(µ)w

)〉
H

for all µ, λ ∈ D and w, z ∈ C such that 1− x2(λ)z 6= 0 and 1− x2(µ)w 6= 0.

Proof. By Theorem 4.2.5 (iii), x1(λ) = x2(λ)x3(λ), |x3(λ)| = 1 and |x2(λ)| ≤ 1 for almost

every λ ∈ T. Thus

Ψ(z, x(λ)) =
x3(λ)z − x1(λ)

x2(λ)z − 1
=
x3(λ)z − x2(λ)x3(λ)

x2(λ)z − 1
= x3(λ)

z − x2(λ)

x2(λ)z − 1

for almost every λ ∈ T and every z ∈ C such that 1− x2(λ)z 6= 0. It follows that

1−Ψ(w, x(λ))Ψ(z, x(λ)) =

=1− x3(λ)
w − x2(λ)

x2(λ)w − 1
x3(λ)

z − x2(λ)

x2(λ)z − 1
= 1− |x3(λ)|2 w − x2(λ)

x2(λ)w − 1

z − x2(λ)

x2(λ)z − 1

=
(|x2(λ)|2wz − x2(λ)w − x2(λ)z + 1)− (wz − zx2(λ)− wx2(λ) + |x2(λ)|2)

(x2(λ)w − 1)(x2(λ)z − 1)

=
|x2(λ)|2(wz − 1) + 1− wz
(x2(λ)w − 1)(x2(λ)z − 1)

=
(|x2(λ)|2 − 1)(wz − 1)

(x2(λ)w − 1)(x2(λ)z − 1)

for almost every λ ∈ T and every w, z ∈ C such that 1− x2(λ)z 6= 0 and 1− x2(µ)w 6= 0.

By Theorem B.1.21, the non-zero H∞ function x1x2−x3 has an inner-outer factorisa-

tion of the form ϕg0 = x1x2−x3, where ϕ is inner and g0 ∈ H∞ is outer. Since |x3(λ)| = 1,

x1(λ) = x2(λ)x3(λ) and |x2(λ)| ≤ 1 for almost every λ ∈ T, we have

|g0(λ)|2 =ϕ(λ)g0(λ)ϕ(λ)g0(λ) = (x1(λ)x2(λ)− x3(λ))(x1(λ)x2(λ)− x3(λ))

=|x1(λ)x2(λ)|2 − x1(λ)x2(λ)x3(λ)− x1(λ)x2(λ)x3(λ) + |x3(λ)|2

=|x1(λ)|2|x2(λ)|2 − |x2(λ)|2 − |x1(λ)|2 + 1

=|x2(λ)|4 − |x2(λ)|2 − |x2(λ)|2 + 1

=
(
|x2(λ)|2 − 1

)2

for almost every λ ∈ T. Since |x2(λ)| ≤ 1, we have 1− |x2(λ)|2 ≥ 0, and hence |g0(λ)| =
1− |x2(λ)|2 for almost every λ ∈ T. Set g = g

1
2
0 . Then g ∈ H∞ is an outer function such

that |g(λ)|2 = 1− |x2(λ)|2 for almost every λ ∈ T. Thus we can write

1−Ψ(w, x(λ))Ψ(z, x(λ)) =(1− wz)

〈
g(λ)

1− x2(λ)z
,

g(λ)

1− x2(λ)w

〉
C
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and so, by expanding the right side,

1 +

〈
g(λ)z

1− x2(λ)z
,

g(λ)w

1− x2(λ)w

〉
C

= Ψ(w, x(λ))Ψ(z, x(λ)) +

〈
g(λ)

1− x2(λ)z
,

g(λ)

1− x2(λ)w

〉
C

for almost every λ ∈ T and every w, z ∈ C such that 1− x2(λ)w 6= 0 and 1− x2(λ)z 6= 0.

It follows that〈 1
g(λ)z

1− x2(λ)z

 ,

 1
g(λ)w

1− x2(λ)w

〉
C2

=

〈Ψ(z, x(λ))
g(λ)

1− x2(λ)z

 ,

Ψ(w, x(λ))
g(λ)

1− x2(λ)w

〉
C2

for almost every λ ∈ T and every w, z ∈ C such that 1− x2(λ)w 6= 0 and 1− x2(λ)z 6= 0.

That is, for almost every λ ∈ T, the Grammian of the vectors
 1

g(λ)z

1− x2(λ)z

 : z ∈ C and 1− x2(λ)z 6= 0

 ⊆ C2

is equal to the Grammian of the vectors
Ψ(z, x(λ))

g(λ)z

1− x2(λ)z

 : z ∈ C and 1− x2(λ)z 6= 0

 ⊆ C2.

Thus, by Proposition B.1.22, for almost every λ ∈ T, there exists an isomety Lλ such that

Lλ

 1
g(λ)z

1− x2(λ)z

 =

Ψ(z, x(λ))
g(λ)z

1− x2(λ)z


for every z ∈ C such that 1− x2(λ)z 6= 0.

Now, we define Θ on D by Θ(λ) :=

x1(λ)
x1(λ)x2(λ)− x3(λ)

g(λ)

g(λ) x2(λ)

 for all λ ∈ D. Hence

Θ(λ)

 1
g(λ)z

1− x2(λ)z

 =

x1(λ) +
x1(λ)x2(λ)− x3(λ)

g(λ)

g(λ)z

1− x2(λ)z

g(λ) + x2(λ)
g(λ)z

1− x2(λ)z



=


x1(λ)− x1(λ)x2(λ)z + x1(λ)x2(λ)z − x3(λ)z

1− x2(λ)z
g(λ)− g(λ)x2(λ)z + x2(λ)g(λ)z

1− x2(λ)z



=


x3(λ)z − x1(λ)

x2(λ)z − 1
g(λ)

1− x2(λ)z

 =

Ψ(z, x(λ))
g(λ)

1− x2(λ)z
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for all λ ∈ D and z ∈ C such that 1 − x2(λ)z 6= 0. Clearly Θ is holomorphic and, for

almost every λ ∈ T, we have Θ(λ) exists and is equal to the isometry Lλ. It follows from

the Maximum Modulus Principle that ||Θ(λ)|| ≤ 1 for all λ ∈ D, and so Θ ∈ S2×2.

By Proposition B.3.30, the function defined by

(λ, µ) 7→ I −Θ(µ)∗Θ(λ)

1− µλ

is an M2(C)-valued kernel on D, and so, by Corollary B.3.20, there is a Hilbert space H
and a holomorphic F : D→ B(C2,H) such that

I −Θ(µ)∗Θ(λ) = (1− µλ)F (µ)∗F (λ)

for all µ, λ ∈ D. It follows that

(1− µλ)

〈
F (λ)

 1
g(λ)z

1− x2(λ)z

 , F (µ)

 1
g(µ)w

1− x2(µ)w

〉
H

=

=

〈
(I −Θ(µ)∗Θ(λ))

 1
g(λ)z

1− x2(λ)z

 ,

 1
g(µ)w

1− x2(µ)w

〉
C2

=

〈 1
g(λ)z

1− x2(λ)z

 ,

 1
g(µ)w

1− x2(µ)w

〉
C2

−

〈Ψ(z, x(λ))
g(λ)

1− x2(λ)z

 ,

Ψ(w, x(µ))
g(µ)

1− x2(µ)w

〉
C2

= 1 + wz

〈
g(λ)

1− x2(λ)z
,

g(µ)

1− x2(µ)w

〉
C

−Ψ(z, x(λ))Ψ(w, x(µ))−
〈

g(λ)

1− x2(λ)z
,

g(µ)

1− x2(µ)w

〉
C

= 1−Ψ(w, x(µ))Ψ(z, x(λ))− (1− wz)

〈
g(λ)

1− x2(λ)z
,

g(µ)

1− x2(µ)w

〉
C

and so

1−Ψ(w, x(µ))Ψ(z, x(λ)) =(1− wz)

〈
g(λ)

1− x2(λ)z
,

g(µ)

1− x2(µ)w

〉
C

+ (1− µλ)

〈
F (λ)

 1
g(λ)z

1− x2(λ)z

 , F (µ)

 1
g(µ)w

1− x2(µ)w

〉
H

for all µ, λ ∈ D and w, z ∈ C such that 1− x2(µ)w 6= 0 and 1− x2(λ)z 6= 0, which is the

required identity.

Remark 4.3.4. It is natural to ask what the relationship is between the function F from

Theorem 4.3.1 and the function Θ from Proposition 4.3.3. Let x = (x1, x2, x3) be an
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E-inner function such that x1x2 6= x3. Recall that

F =

[
x1 ϕe

1
2
C

e
1
2
C x2

]
,

where ϕ is inner, eC is outer and ϕeC = x1x2 − x3, and

Θ =

[
x1

x1x2−x3
g

g x2

]
,

where g ∈ H∞ is an outer function such that |g(λ)|2 = 1−|x2(λ)|2 for almost every λ ∈ T.

Then

F = Θ,

since, by the uniqueness of the inner-outer factorisation of x1x2 − x3 in the proofs of

Theorem 4.3.1 and Proposition 4.3.3, we have g = e
1
2
C .

4.3.2 Left ST : S2×2 → Hol (D,E)

Definition 4.3.5. We define Left ST : S2×2 → Hol (D,E) by

F =

[
F11 F12

F21 F22

]
7→ (F11, F22, detF )

for all F ∈ S2×2.

Proposition 4.3.6. The map Left ST is well defined.

Proof. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. Clearly Left ST (F ) is holomorphic since

detF = F11F22 − F21F12.

By Theorem 4.2.4 (vi), since ||F (λ)|| ≤ 1 for all λ ∈ D,

Left ST (F )(λ) = (F11(λ), F22(λ), detF (λ)) ∈ E

for all λ ∈ D. It follows that Left ST (F ) ∈ Hol (D,E).

We now have a map Hol (D,E)→ S2×2 and a map S2×2 → Hol (D,E), and so we can

investigate how they interact.

Proposition 4.3.7. Left ST ◦Left NT = idHol (D,E).

Proof. Let x = (x1, x2, x3) ∈ Hol (D,E). Then Left NT (x) = F ∈ S2×2 as defined in

Definition 4.3.2. In particular, F11 = x1, F22 = x2 and detF = x3. It follows that

Left ST (F ) = x, and hence

Left ST ◦Left NT (x) = x.
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Therefore Left ST ◦Left NT = idHol (D,E).

Example 4.3.8. Let F (λ) =
λ√
2

[
1 0

1 0

]
for all λ ∈ D. Then F ∈ S2×2 and

Left NT ◦Left ST (F ) 6= F .

Proof. Clearly F is holomorphic on D, and

||F (λ)|| = |λ|√
2

∣∣∣∣∣
∣∣∣∣∣
[

1 0

1 0

]∣∣∣∣∣
∣∣∣∣∣ ≤ |λ|√2

√
2 ≤ 1

for all λ ∈ D. Hence F ∈ S2×2. Thus we can apply Left ST to obtain

Left ST (F )(λ) =

(
λ√
2
, 0, 0

)

for all λ ∈ D. Define x = (x1, x2, x3) ∈ Hol (D,E) by x(λ) =
(

λ√
2
, λ√

2
, λ

2

2

)
for all λ ∈ D,

and let

Left NT (x) := G ∈ S2×2.

Then the function G is defined as in Definition 4.3.2. In particular, since x1 · 0 = 0, we

have

G =

[
x1 0

0 0

]
6= F.

Hence Left NT ◦Left ST (F ) 6= F .

4.3.3 SWT : R11 → Hol (D,E)

The idea for SWT is to follow Procedure UW with the map Left ST. The following

proposition facilitates this.

Proposition 4.3.9. Let (N,M) ∈ R11. Let Ξ =

[
Ξ11 Ξ12

Ξ21 Ξ22

]
be constructed from (N,M)

by Procedure UW. Then

{Left ST (F ) : F ∈ Upper W ((N,M))} = {(ζΞ11,Ξ22, ζ det Ξ) : ζ ∈ T} ⊆ Hol (D,E).

Proof. Let F ∈ Upper W ((N,M)). Then F =

[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

]
for some ζ1, ζ2 ∈ T,

and so

Left ST (F ) =

(
ζ1Ξ11,Ξ22, det

[
ζ1 0

0 ζ2

]
Ξ

[
1 0

0 ζ2

])
= (ζ1Ξ11,Ξ22, ζ1 det Ξ) .

It follows that

{Left ST (F ) : F ∈ Upper W ((N,M))} = {(ζΞ11,Ξ22, ζ det Ξ) : ζ ∈ T} .
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Moreover, by Proposition 4.3.6, since F ∈ S2×2, we have Left ST (F ) ∈ Hol (D,E).

Definition 4.3.10. We define SWT to be the set-valued map from R11 to Hol (D,E) given

by

SWT ((N,M)) = {(ζΞ11,Ξ22, ζ det Ξ) : ζ ∈ T}

for all (N,M) ∈ R11, where Ξ =

[
Ξ11 Ξ12

Ξ21 Ξ22

]
∈ S2×2 is constructed from (N,M) by

Procedure UW.

That SWT is well defined follows from Proposition 4.3.9 and the observation that, as

Upper W is independent of which function Ξ is used to define it, the set

{(ζΞ11,Ξ22, ζ det Ξ) : ζ ∈ T}

is independent of the choice of Ξ.

By Proposition 4.3.9,

{Left ST (F ) : F ∈ Upper W ((N,M))} = SWT ((N,M))

for all (N,M) ∈ R11. We have the following other interactions with SWT.

Proposition 4.3.11. Let F =

[
F11 F12

F21 F22

]
∈ S2×2 be such that F21 6= 0. Then

SWT ◦Upper E (F ) =

{
Left ST

([
ζ 0

0 1

]
F

)
: ζ ∈ T

}
.

Proof. By Proposition 2.4.12,

Upper W ◦Upper E (F ) =

{[
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

]
: ζ1, ζ2 ∈ T

}
.

Hence

SWT ◦Upper E (F ) =

{
Left ST

([
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

])
: ζ1, ζ2 ∈ T

}

=

{(
ζ1F11, F22, det

[
ζ1 0

0 ζ2

]
F

[
1 0

0 ζ2

])
: ζ1, ζ2 ∈ T

}

=

{
Left ST

([
ζ 0

0 1

]
F

)
: ζ ∈ T

}
,

as required.

Corollary 4.3.12. Let x = (x1, x2, x3) ∈ Hol (D,E) be such that x1x2 6= x3. Then

SWT ◦Upper E ◦Left NT (x) = {(ζx1, x2, ζx3) : ζ ∈ T} .
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Proof. Let F = Left NT (x). Then, in particular,

F =

[
x1 F12

F21 x2

]
,

F21 6= 0 and detF = x3. By Proposition 4.3.11,

SWT ◦Upper E (F ) =

{
Left ST

([
ζ 0

0 1

]
F

)
: ζ ∈ T

}

=

{
Left ST

([
ζx1 ζF12

F21 x2

])
: ζ ∈ T

}
= {(ζx1, x2, ζ detF ) : ζ ∈ T} .

Hence SWT ◦Upper E ◦Left NT (x) = {(ζx1, x2, ζx3) : ζ ∈ T}.

We note that if ζ = 1 then (ζx1, x2, ζx3) = (x1, x2, x3). Hence, by Corollary 4.3.12,

for all x ∈ Hol (D,E), we have x ∈ SWT ◦Upper E ◦Left NT (x).

4.3.4 Lower ET : Hol (D,E)→ S2

The definition of Lower ET comes from the relationship between Hol (D,E) and a partic-

ular subset of S2. The relationship uses the function Ψ. Recall that, for x = (x1, x2, x3) ∈
Hol (D,E) and z, λ ∈ D, we have

Ψ(z, x(λ)) =
x3(λ)z − x1(λ)

x2(λ)z − 1
.

Hence, for all λ ∈ D, we have Ψ(·, x(λ)) is a linear fractional map. Moreover, for all

λ ∈ D, by Theorem 4.2.4 (iib), x(λ) ∈ E if and only if |Ψ(z, x(λ))| ≤ 1 for all z ∈ D, and

if x1(λ)x2(λ) = x3(λ) then, in addition, |x2(λ)| ≤ 1. This fact and the following lemma

motivate our definition of the subset of S2.

Lemma 4.3.13. Let ϕ ∈ S2 be such that, for all λ ∈ D, we have ϕ(·, λ) is a linear

fractional map. Then ϕ can be written as

ϕ(z, λ) =
a(λ)z + b(λ)

c(λ)z + 1

for all z, λ ∈ D, where a, b, c are functions from D to C. Moreover, b is holomorphic, and

if c is holomorphic then so is a.

Proof. Since, for all λ ∈ D, we have ϕ(·, λ) is a linear fractional map, we can write

ϕ(z, λ) =
a(λ)z + b(λ)

c(λ)z + d(λ)
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for all z, λ ∈ D, where a, b, c, d are functions from D to C. Since ϕ ∈ S2, for any λ ∈ D,

up to cancellation, ϕ(·, λ) does not have a pole at 0, and so d(λ) 6= 0. Thus, without loss

of generality, we can write

ϕ(z, λ) =
a(λ)z + b(λ)

c(λ)z + 1

for all z, λ ∈ D. Moreover, since b(λ) = ϕ(0, λ) for all λ ∈ D, we have b is holomorphic.

Now suppose c is holomorphic. Then

a(λ)z = ϕ(z, λ)(c(λ)z + 1)− b(λ)

for all z, λ ∈ D, and so a is holomorphic.

Definition 4.3.14. We define S lf
2 to be the subset of S2 which contains those ϕ such that,

for all λ ∈ D, we have ϕ(·, λ) is a linear fractional map of the form

ϕ(z, λ) =
a(λ)z + b(λ)

c(λ)z + 1

for all z, λ ∈ D, where c is holomorphic, and if a(λ) = b(λ)c(λ) for some λ ∈ D, then, in

addition, |c(λ)| ≤ 1.

We now give the relationship between Hol (D,E) and S lf
2 .

Proposition 4.3.15. Let ϕ be a function on D2. Then ϕ ∈ S lf
2 if and only if there exists

a function x ∈ Hol (D,E) such that

ϕ(z, λ) = Ψ(z, x(λ)) for all z, λ ∈ D.

Proof. First, suppose x = (x1, x2, x3) ∈ Hol (D,E). Define ϕ(z, λ) := Ψ(z, x(λ)) for

all z, λ ∈ D. Since x is holomorphic and maps into E, and since Ψ is holomorphic on

D × E, we infer that ϕ is holomorphic on D2. For all z, λ ∈ D, by Theorem 4.2.4 (iib),

|Ψ(z, x(λ))| ≤ 1, and so ϕ(z, λ) ∈ D. It follows that ϕ ∈ S2. Moreover,

ϕ(z, λ) =
x3(λ)z − x1(λ)

x2(λ)z − 1

for all z, λ ∈ D, where x2 is holomorphic. By Theorem 4.2.4 (iib), if x1(λ)x2(λ) = x3(λ)

for some λ ∈ D, then, in addition, |x2(λ)| ≤ 1. It follows that ϕ ∈ S lf
2 .

Conversely, suppose that ϕ ∈ S lf
2 . Then

ϕ(z, λ) =
a(λ)z + b(λ)

c(λ)z + 1

for all z, λ ∈ D, where c is holomorphic, and if a(λ) = b(λ)c(λ) for some λ ∈ D, then, in

addition, |c(λ)| ≤ 1. Moreover, by Lemma 4.3.13, both a and b are holomorphic. Set

x(λ) = (b(λ),−c(λ),−a(λ))

69



4.3. Relations between the sets

for all λ ∈ D. Then x is holomorphic on D, and

|Ψ(z, x(λ)| = |ϕ(z, λ)| ≤ 1 for all z, λ ∈ D.

Hence, by Theorem 4.2.4 (iib), x(λ) ∈ E for all λ ∈ D. It follows that there is an

x ∈ Hol (D,E) such that ϕ(z, λ) = Ψ(z, x(λ)) for all z, λ ∈ D.

Definition 4.3.16. We define Lower ET : Hol (D,E)→ S lf
2 by

Lower ET (x)(z, λ) := Ψ(z, x(λ)) =
x3(λ)z − x1(λ)

x2(λ)− 1

for all x = (x1, x2, x3) ∈ Hol (D,E) and all z, λ ∈ D.

That Lower ET is well defined follows immediately from Proposition 4.3.15.

4.3.5 Lower WT : S lf2 → Hol (D,E)

In terms of the uniqueness of a function x ∈ Hol (D,E) as in Proposition 4.3.15, we obtain

the following result.

Proposition 4.3.17. Let ϕ ∈ S lf
2 . Suppose x = (x1, x2, x3) and y = (y1, y2, y3) are

functions in Hol (D,E) such that

Ψ(z, x(λ)) = ϕ(z, λ) = Ψ(z, y(λ)) for all z, λ ∈ D.

Then,

(i) if x1x2 6= x3, we have x = y;

(ii) if x1x2 = x3, we have y = (x1, y2, x1y2).

Proof. Since Ψ(z, x(λ)) = ϕ(z, λ) = Ψ(z, y(λ)) for all z ∈ D, we have

x3z − x1

x2z − 1
=
y3z − y1

y2z − 1

and so x3y2z
2− (x1y2 + x3)z + x1 = y3x2z

2− (y1x2 + y3)z + y1 for all z ∈ D. By equating

coefficients, we obtain

x1 = y1, x3y2 = y3x2 and x1y2 + x3 = y1x2 + y3.

For (ii), suppose x1x2 = x3. Then y1 = x1 and

y3 = x1y2 + x3 − y1x2 = x1y2 + x1x2 − x1x2 = x1y2.

That is, y = (x1, y2, x1y2).
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For (i), suppose instead that x1x2 6= x3. Then f := x3 − x1x2 6= 0 and is holomorphic

on D. Hence, by Theorem B.1.25, the zeros of f are isolated. Let λ ∈ D. Then, since

x3y2 = (x1y2 + x3 − x1x2)x2, we have

(x3(λ)− x1(λ)x2(λ))y2(λ) = (x3(λ)− x1(λ)x2(λ))x2(λ).

If f(λ) 6= 0 then clearly y2(λ) = x2(λ). If f(λ) = 0 then there is a sequence (λn)∞n=1 in D
such that limn→∞ λn = λ, and f(λn) 6= 0 for each n ∈ N. Hence y2(λn) = x2(λn) for each

n ∈ N, and so y2(λ) = x2(λ). Either way, we obtain y2(λ) = x2(λ). It follows that

y1 = x1, y2 = x2 and y3 = x1x2 + x3 − x1x2 = x3,

that is, y = x.

Consequently, in some cases, the function x ∈ Hol (D,E) as in Proposition 4.3.15

may not be unique. However, the proof of Proposition 4.3.15 provides the construction

of a function in Hol (D,E) for each function in S lf
2 . We use this construction to define

Lower WT.

Definition 4.3.18. We define Lower WT : S lf
2 → Hol (D,E) by:

(i) for ϕ ∈ S lf
2 such that ϕ(z, λ) =

a(λ)z + b(λ)

c(λ)z + 1
for all z, λ ∈ D, where a 6= bc, the map

Lower WT (ϕ) = (b,−c,−a);

(ii) for ϕ ∈ S lf
2 such that ϕ(z, λ) = b(λ) for all z, λ ∈ D, that is, a = bc, the set map

Lower WT (ϕ) = {(b,−d,−bd) : d is holomorphic and |d(λ)| ≤ 1 for all λ ∈ D}.

By the proof of Proposition 4.3.15 and by Proposition 4.3.17, Lower WT is well defined.

Proposition 4.3.19. The following relations hold.

(i) For x = (x1, x2, x3) ∈ Hol (D,E) such that x1x2 6= x3, we have

Lower WT ◦Lower ET (x) = x.

(ii) For ϕ ∈ S lf
2 such that ϕ(z, λ) =

a(λ)z + b(λ)

c(λ)z + 1
for all z, λ ∈ D, where a 6= bc, we have

Lower ET ◦Lower WT (ϕ) = ϕ.
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(iii) For x = (x1, x2, x3) ∈ Hol (D,E) such that x1x2 = x3, we have

Lower WT ◦Lower ET (x) =

={(x1,−d,−x1d) : d is holomorphic and |d(λ)| ≤ 1 for all λ ∈ D}.

(iv) For ϕ ∈ S lf
2 such that ϕ(z, λ) = b(λ) for all z, λ ∈ D, we have

Lower ET (x) = ϕ for all x ∈ Lower WT (ϕ).

Proof. (i) Let x = (x1, x2, x3) ∈ Hol (D,E) be such that x1x2 6= x3. Then Lower ET (x) =

ϕ ∈ S lf
2 , where

ϕ(z, λ) = Ψ(z, x(λ)) =
x3(λ)z − x1(λ)

x2(λ)z − 1
=
−x3(λ)z + x1(λ)

−x2(λ)z + 1

for all z, λ ∈ D. Since x1x2 6= x3, we have

Lower WT (ϕ) = (x1, x2, x3) = x.

It follows that Lower WT ◦Lower ET (x) = x.

(ii) Let ϕ ∈ S lf
2 be such that ϕ(z, λ) = a(λ)z+b(λ)

c(λ)z+1
for all z, λ ∈ D, where a 6= bc. Then

Lower WT (ϕ) = (b,−c,−a) ∈ Hol (D,E). Moreover,

Lower ET ((b,−c,−a))(z, λ) = Ψ(z, b(λ),−c(λ),−a(λ)) =
−a(λ)z − b(λ)

−c(λ)z − 1
= ϕ(z, λ)

for all z, λ ∈ D. It follows that Lower ET ◦Lower WT (ϕ) = ϕ.

(iii) Let x = (x1, x2, x3) ∈ Hol (D,E) be such that x1x2 = x3. Then Lower ET (x) =

ϕ ∈ S lf
2 , where

ϕ(z, λ) = Ψ(z, x(λ)) =
x1(λ)x2(λ)z − x1(λ)

x2(λ)z − 1
= x1(λ)

for all z, λ ∈ D. Hence

Lower WT ◦Lower ET (x) =

={(x1,−d,−x1d) : d is holomorphic and |d(λ)| ≤ 1 for all λ ∈ D}.

(iv) Let ϕ ∈ S lf
2 be such that ϕ(z, λ) = b(λ) for all z, λ ∈ D. Then

Lower WT (ϕ) ={(b,−d,−bd) : d is holomorphic and |d(λ)| ≤ 1 for all λ ∈ D},

and is a subset of Hol (D,E). Moreover, for any x = (b,−d,−bd) ∈ Lower WT (ϕ), we
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have

Lower ET (x)(z, λ) = Ψ(z, b(λ),−d(λ),−b(λ)d(λ)) =
−b(λ)d(λ)− b(λ)

−d(λ)− 1
= b(λ) = ϕ(z, λ)

for all z, λ ∈ D. Hence Lower ET (x) = ϕ for all x ∈ Lower WT (ϕ).

By Proposition 4.3.19 (iii), it is clear that, for x = (x1, x2, x3) ∈ Hol (D,E) such that

x1x2 = x3, we have

x ∈ Lower WT ◦Lower ET (x).

4.3.6 Relations between the remaining maps

We now consider how some of the maps we defined in this section interact with some of

the maps in Chapter 2.

Proposition 4.3.20. SE ◦Left NT = Lower ET.

Proof. Let x ∈ Hol (D,E). Then Left NT (x) = F ∈ S2×2 as defined in Theroem 4.3.1. By

the proof of Theorem 4.3.1,

SE (F )(z, λ) = FF (λ)(z) = Ψ(z, x(λ))

for all z, λ ∈ D. Hence

SE ◦Left NT (x)(z, λ) = Ψ(z, x(λ)) = Lower ET (x)(z, λ)

for all z, λ ∈ D. It follows that SE ◦Left NT = Lower ET.

Corollary 4.3.21. The following relations hold.

(i) For x = (x1, x2, x3) ∈ Hol (D,E) such that x1x2 6= x3, we have

Lower WT ◦ SE ◦Left NT (x) = x.

(ii) For ϕ ∈ S lf
2 such that ϕ(z, λ) =

a(λ)z + b(λ)

c(λ)z + 1
for all z, λ ∈ D, where a 6= bc, we have

SE ◦Left NT ◦Lower WT (ϕ) = ϕ.

(iii) For x = (x1, x2, x3) ∈ Hol (D,E) such that x1x2 = x3, we have

Lower WT ◦ SE ◦Left NT (x) =

={(x1,−d,−x1d) : d is holomorphic and |d(λ)| ≤ 1 for all λ ∈ D}.
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(iv) For ϕ ∈ S lf
2 such that ϕ(z, λ) = b(λ) for all z, λ ∈ D, we have

SE ◦Left NT (x) = ϕ for all x ∈ Lower WT (ϕ).

Proof. The results follow immediately from Proposition 4.3.20 and Proposition 4.3.19.

Proposition 4.3.22. Lower ET ◦Left ST = SE.

Proof. Let F =

[
F11 F12

F21 F22

]
∈ S2×2. Then

SE (F )(z, λ) =F11(λ) +
F12(λ)F21(λ)z

1− F22(λ)z
=
F11(λ)− (F11(λ)F22(λ)− F12(λ)F21(λ))z

1− F22(λ)z

for all z, λ ∈ D. Moreover, Left ST (F ) = (F11, F22, detF ) and so

Lower ET ◦Left ST (F )(z, λ) =Ψ(z, F11(λ), F22(λ), detF (λ))

=
detF (λ)z − F11(λ)

F22(λ)z − 1

=
F11(λ)− (F11(λ)F22(λ)− F21(λ)F12(λ))z

1− F22(λ)z

= SE (F )(z, λ)

for all z, λ ∈ D. It follows that Lower ET ◦Left ST = SE.

4.4 Criterion for solvability

In this section, we present a criterion for the solvability of the µ-synthesis problem given

by Question 1.2.2. In addition, we give a number of related results, which can be seen to

arise from the rich structure we have been studying.

Theorem 4.4.1. Let λ1, . . . , λn be distinct points in D, and let (x1j, x2j, x3j) ∈ E be such

that x1jx2j 6= x3j for j = 1, . . . , n. Then the following are equivalent.

(i) There exists a holomorphic function x : D→ E satisfying

x(λj) = (x1j, x2j, x3j) for j = 1, . . . , n;

(ii) there exists a rational E-inner function x satisfying

x(λj) = (x1j, x2j, x3j) for j = 1, . . . , n;

(iii) for every distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that, for
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1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3,

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1
= (1− zlzk)Nil,jk + (1− λiλj)Mil,jk;

(iv) for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =

[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that[

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
.

Proof. Clearly (ii) =⇒ (i) and (iii) =⇒ (iv). To complete the proof, we need to show that

(iii) =⇒ (ii), (iv) =⇒ (i) and (i) =⇒ (iii).

(iii) =⇒ (ii): Suppose (iii) holds. Then, since N is positive and has rank 1, there are

γjk ∈ C such that, for all j = 1, . . . , n and k = 1, 2, 3, we have

Nil,jk = γilγjk.

Similarly, since M is positive, there is a Hilbert space H of dimension at most 3n and

vectors vjk ∈ H such that, for all j = 1, . . . , n and k = 1, 2, 3, we have

Mil,jk = 〈vjk, vil〉H .

Recall that Ψ(zk, x1j, x2j, x3j) =
zkx3j−x1j
x2jzk−1

. Then, as in Procedure UW, we can show that,

for j = 1, . . . , n and k = 1, 2, 3, the Grammian of the vectors
(

Ψ(zk, x1j, x2j, x3j)

γjk

)
vjk

 ∈ C2 ⊕H

is equal to the Grammian of the vectors
(

1

zkγjk

)
λjvjk

 ∈ C2 ⊕H.

Hence, by Proposition B.1.22, there is a unitary L on C2 ⊕H such that

L


(

1

zkγjk

)
λjvjk

 =


(

Ψ(zk, x1j, x2j, x3j)

γjk

)
vjk
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for all j = 1, . . . , n and k = 1, 2, 3. If we write L =

[
A B

C D

]
, then

(
Ψ(zk, x1j, x2j, x3j)

γjk

)
= A

(
1

zkγjk

)
+Bλjvjk and vjk = C

(
1

zkγjk

)
+Dλjvjk

for all j = 1, . . . , n and k = 1, 2, 3. Thus

vjk = (I −Dλj)−1C

(
1

zkγjk

)
,

and so (
Ψ(zk, x1j, x2j, x3j)

γjk

)
= (A+Bλj(I −Dλj)−1C)

(
1

zkγjk

)
for all j = 1, . . . , n and k = 1, 2, 3. Now, let

Ξ(λ) = A+Bλ(I −Dλ)−1C =

[
a(λ) b(λ)

c(λ) d(λ)

]

for all λ ∈ D. Since L is unitary and H is finite dimensional, Ξ is a rational 2 × 2 inner

function. Hence the function defined by x := (a, d, det Ξ) is a rational E-inner function.

If we show that x satisfies x(λj) = (x1j, x2j, x3j) for all j = 1, . . . , n, then we are done.

We have shown that (
Ψ(zk, x1j, x2j, x3j)

γjk

)
= Ξ(λj)

(
1

zkγjk

)

for all j = 1, . . . , n and k = 1, 2, 3. Hence

Ψ(zk, x1j, x2j, x3j) = a(λj) + b(λj)zkγjk and γjk = c(λj) + d(λj)zkγjk,

and so

Ψ(zk, x1j, x2j, x3j) = a(λj) + b(λj)zk(1− d(λj)zk)
−1c(λj)

for all j = 1, . . . , n and k = 1, 2, 3. Thus, for each j = 1, . . . , n, the linear fractional maps

x1j − x3jz

1− x2jz
and

a(λj)− (a(λj)d(λj)− b(λj)c(λj))z
1− d(λj)z

agree at three distinct points in D, and it follows that they are the same map. By

Proposition 4.3.17, since x1jx2j 6= x3j for j = 1, . . . , n, we have

a(λj) = x1j, d(λj) = x2j and det Ξ(λj) = a(λj)d(λj)− b(λj)c(λj) = x3j,

and so x(λj) = (x1j, x2j, x3j) for all j = 1, . . . , n.

76



4.4. Criterion for solvability

(iv) =⇒ (i): This proof is similar to (iii) =⇒ (ii), the difference is that, for j = 1, . . . , n

and k = 1, 2, 3, the Grammian of the vectors
(

Ψ(zk, x1j, x2j, x3j)

γjk

)
vjk

 ∈ C2 ⊕H

is less than or equal to the Grammian of the vectors
(

1

zkγjk

)
λjvjk

 ∈ C2 ⊕H.

Hence, there is a contraction L =

[
A B

C D

]
on C2 ⊕H such that

L


(

1

γjk

)
vjk

 =


(

Ψ(zk, x1j, x2j, x3j)

zkγjk

)
λjvjk


for all j = 1, . . . , n and k = 1, 2, 3. Now, let

Ξ(λ) = A+Bλ(I −Dλ)−1C =

[
a(λ) b(λ)

c(λ) d(λ)

]

for all λ ∈ D. Since L is a contraction, Ξ ∈ S2×2, and so x := (a, d, det Ξ) ∈ Hol (D,E).

That x(λj) = (x1j, x2j, x3j) for all j = 1, . . . , n, follows as in (iii) =⇒ (ii).

(i) =⇒ (iii): Suppose there is a holomorphic function x = (x1, x2, x3) : D → E such

that x(λj) = (x1j, x2j, x3j) for all j = 1, . . . , n. By Theorem 4.3.1, since x1jx2j 6= x3j for

j = 1, . . . , n, there is a holomorphic function

F =

[
x1 f1

f2 x2

]
: D→M2(C)

such that f2 6= 0, ||F (λ)|| ≤ 1 for all λ ∈ D, and

1−Ψ(w, x(µ))Ψ(z, x(λ)) = (1−wz)γ(µ,w)γ(λ, z)+(1−µλ)η(µ,w)∗
I − F (µ)∗F (λ)

1− µλ
η(λ, z)

for all z, λ, w, µ ∈ D, where

γ(λ, z) = (1− x2(λ)z)−1f2(λ) and η(λ, z) =

[
1

γ(λ, z)z

]
.

Let z1, z2, z3 be any distinct points in D. Then, in particular, for 1 ≤ i, j ≤ n and
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1 ≤ l, k ≤ 3, we have

1−Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j, x2j, x3j) =

= (1− zlzk)γ(λi, zl)γ(λj, zk) + (1− λiλj)η(λi, zl)
∗ I − F (λi)

∗F (λj)

1− λiλj
η(λj, zk).

By Corollary B.3.23, since F ∈ S2×2 and f2 6= 0, the map (z, λ, w, µ) 7→ γ(µ,w)γ(λ, z) is

a rank 1 kernel on D2. By Corollary B.3.32, since F ∈ S2×2, the map

(z, λ, w, µ) 7→ η(µ,w)∗
I − F (µ)∗F (λ)

1− µλ
η(λ, z)

is a kernel on D2. Hence the 3n-square matrices

N = [Nil,jk]
n,3
i,j=1,l,k=1 :=

[
γ(λi, zl)γ(λj, zk)

]n,3
i,j=1,l,k=1

and

M = [Mil,jk]
n,3
i,j=1,l,k=1 :=

[
η(λi, zl)

∗ I − F (λi)
∗F (λj)

1− λiλj
η(λj, zk)

]n,3
i,j=1,l,k=1

are positive semidefinite. Moreover, N has rank 1 and, for 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3,

1−Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j, x2j, x3j) = (1− zlzk)Nil,jk + (1− λiλj)Mil,jk.

It follows that (i) =⇒ (iii).

As a corollary of Theorem 4.4.1, we obtain the following criterion for the solvability

of the associated µ-synthesis problem.

Theorem 4.4.2. Let λ1, . . . , λn be distinct points in D, and let

Wj =

[
wj11 wj12

wj21 wj22

]
∈M2(C)

be such that µDiag(Wj) ≤ 1 and wj11w
j
22 6= detWj for j = 1, . . . , n. Set (x1j, x2j, x3j) =

(wj11, w
j
22, detWj) ∈ E for each j = 1, . . . , n. Then the following are equivalent.

(i) There exists a holomorphic function F : D → M2(C) such that F (λj) = Wj for

j = 1, . . . , n, and µDiag(F (λ)) ≤ 1 for all λ ∈ D;

(ii) there exists a holomorphic function x : D→ E satisfying

x(λj) = (x1j, x2j, x3j) for j = 1, . . . , n;

(iii) for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-square matrices N =
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[Nil,jk]
n,3
i,j=1,l,k=1 of rank at most 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 such that[

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
.

Proof. Since wj11w
j
22 6= detWj for j = 1, . . . , n, we have x1jx2j 6= x3j for j = 1, . . . , n.

Hence the theorem follows from a combination of Theorem 4.1.4 and Theorem 4.4.1.

The proof of Theorem 4.4.1 provides a procedure by which a solution x to an E-

interpolation problem can be obtained from a pair (N,M) satisfying the conditions of

Theorem 4.4.1 (iv). We call this Procedure SWT , and it is essentially Procedure UW

followed by the Left ST map. More specifically we have:

Procedure SWT . Let λ1, . . . , λn be distinct points in D, and let (x1j, x2j, x3j) ∈ E be such

that x1jx2j 6= x3j for j = 1, . . . , n. For some distinct points z1, z2, z3 ∈ D, suppose N

and M are positive 3n-square matrices such that N has rank at most 1, and the matrix

inequality as in Theorem 4.4.1 (iv) holds. Then:

1. Choose scalars γjk ∈ C such that N = [γilγjk]
n,3
i,j=1,l,k=1.

2. Choose a Hilbert space H and vectors vjk ∈ H such that M = [〈vjk, vil〉H]n,3i,j=1,l,k=1.

3. Choose a contraction

[
A B

C D

]
: C2 ⊕H → C2 ⊕H such that

[
A B

C D

]
(

1

zkγjk

)
λjvjk

 =


(

Ψ(zk, x1j, x2j, x3j)

γjk

)
vjk


for all j = 1, . . . , n and k = 1, 2, 3.

4. Let x = (a, d, det Ξ), where Ξ(λ) = A + Bλ(I − Dλ)−1C =

[
a(λ) b(λ)

c(λ) d(λ)

]
for all

λ ∈ D.

Now, we have x ∈ Hol (D,E) and x(λj) = (x1j, x2j, x3j) for j = 1, . . . , n.

The following proposition shows that every interpolating function can be obtained by

applying Procedure SWT to a general solution (N,M) of the matrix inequality such that

the rank of N is less than or equal to 1.

Proposition 4.4.3. Let λ1, . . . , λn be distinct points in D, and let (x1j, x2j, x3j) ∈ E be

such that x1jx2j 6= x3j for j = 1, . . . , n. Then every holomorphic function x : D → E
satisfying

x(λj) = (x1j, x2j, x3j), for j = 1, . . . , n,
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arises by Procedure SWT from a pair of positive 3n-square matrices N = [Nil,jk]
n,3
i,j=1,l,k=1

of rank at most 1, and M = [Mil,jk]
n,3
i,j=1,l,k=1 satisfying[

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
,

where z1, z2, z3 are distinct points in D.

Proof. Suppose x = (x1, x2, x3) ∈ Hol (D,E) is such that x(λj) = (x1j, x2j, x3j) for all

j = 1, . . . , n. By Theorem 4.3.1, since x1jx2j 6= x3j, there is a function

F =

[
x1 f1

f2 x2

]
∈ S2×2

such that f2 6= 0, and

1−Ψ(w, x(µ))Ψ(z, x(λ)) = (1−wz)γ(µ,w)γ(λ, z)+(1−µλ)η(µ,w)∗
I − F (µ)∗F (λ)

1− µλ
η(λ, z)

for all z, λ, w, µ ∈ D, where

γ(λ, z) = (1− x2(λ)z)−1f2(λ) and η(λ, z) =

[
1

zγ(z, λ)

]
.

By Proposition B.3.30, since F ∈ S2×2, we have

K : (λ, µ) 7→ I − F (µ)∗F (λ)

1− µλ

is anM2(C)-valued kernel on D. Hence, by Corollary B.3.20, there is a conjugate analytic

map U : D→ B(C2,HK) such that

I − F (µ)∗F (λ)

1− µλ
= U(µ)∗U(λ)

for all λ, µ ∈ D. Let z1, z2, z3 be any distinct points in D. Then, in particular, for all

1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3, we have

1−Ψ(zl, x1i, x2i, x3i)Ψ(zk, x1j, x2j, x3j) =

= (1− zlzk)γ(λi, zl)γ(λj, zk) + (1− λiλj)〈U(λi)
∗U(λj)η(zk, λj), η(zl, λi)〉C2

= (1− zlzk)γ(λi, zl)γ(λj, zk) + (1− λiλj)〈U(λj)η(zk, λj), U(λi)η(zl, λi)〉HK

It follows that the positive 3n-square matrices

N =
[
γ(zl, λi)γ(zk, λj)

]n,3
i,j=1,l,k=1

and M = [〈U(λj)η(zk, λj), U(λi)η(zl, λi)〉HK
]n,3i,j=1,l,k=1

satisfy the matrix inequality and the rank of N is less than or equal to 1. We now apply
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Procedure SWT to N and M . Choose γjk = γ(λj, zk) for 1 ≤ j ≤ n and 1 ≤ k ≤ 3,

H = HK , and vjk = U(λj)η(λj, zk) for 1 ≤ j ≤ n and 1 ≤ k ≤ 3. As in the proof of

Theorem 4.4.1, for z, λ ∈ D, the Grammian of the vectors
(

1

zγ(λ, z)

)
λU(λ)η(λ, z)

 ∈ C2 ⊕HK

is equal to the Grammian of the vectors
(

Ψ(z, x(λ))

γ(λ, z)

)
U(λ)η(λ, z)

 ∈ C2 ⊕HK .

Hence, by Proposition B.1.22, there is a contraction L on C2 ⊕HK such that

L


(

1

zγ(λ, z)

)
λU(λ)η(λ, z)

 =


(

Ψ(z, x(λ)

γ(λ, z)

)
U(λ)η(λ, z)



for all z, λ ∈ D. Choose

[
A B

C D

]
= L in step (iii) of Procedure SWT . Then we obtain a

function y ∈ Hol (D,E) such that y(λj) = (x1j, x2j, x3j) for j = 1, . . . , n.

If y = x then we are done. We have shown that, for z, λ ∈ D, we have


(

Ψ(z, x(λ)

γ(λ, z)

)
U(λ)η(λ, z)

 = L


(

1

zγ(λ, z)

)
λU(λ)η(λ, z)

 =


A

(
1

zγ(λ, z)

)
+BλU(λ)η(λ, z)

C

(
1

zγ(λ, z)

)
+DλU(λ)η(λ, z)

 .

Hence(
Ψ(z, x(λ))

γ(λ, z)

)
= A

(
1

zγ(λ, z)

)
+BλU(λ)η(λ, z) and (1−Dλ)U(λ)η(λ, z) = C

(
1

zγ(λ, z)

)
,

and so(
Ψ(z, x(λ))

γ(λ, z)

)
= (A+Bλ(I −Dλ)−1C)

(
1

zγ(λ, z)

)
=

[
a(λ) b(λ)

c(λ) d(λ)

](
1

zγ(λ, z)

)

for all z, λ ∈ D. It follows that

Ψ(z, x(λ)) = a(λ) + b(λ)zγ(λ, z) and γ(λ, z) = c(λ) + d(λ)zγ(λ, z),
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and so, letting Ξ =

[
a b

c d

]
,

Ψ(z, x(λ)) = a(λ) +
b(λ)c(λ)z

1− d(λ)z
=

det Ξ(λ)z − a(λ)

d(λ)z − 1

for all z, λ ∈ D. By Proposition 4.3.17 (i), y = (a, d, det Ξ) = (x1, x2, x3) = x.

The following proposition shows that, in order to use Theorem 4.4.1 to determine if

there is an interpolating function, it is sufficient to search over a compact set for a pair

(N,M) that satisfies the matrix inequality and such that the rank of N is 1.

Proposition 4.4.4. Let λ1, . . . , λn be distinct points in D, and let (x1j, x2j, x3j) ∈ E be

such that x1jx2j 6= x3j for j = 1, . . . , n. Then the interpolation problem

λj ∈ D 7→ (x1j, x2j, x3j) ∈ E, for all j = 1, . . . , n,

is solvable if and only if, for some distinct points z1, z2, z3 ∈ D, there exist positive 3n-

square matrices N = [Nil,jk]
n,3
i,j=1,l,k=1 of rank 1, and M = [Mil,jk]

n,3
i,j=1,l,k=1 that satisfy[

1− zlx3i − x1i

x2izl − 1

zkx3j − x1j

x2jzk − 1

]
≥ [(1− zlzk)Nil,jk] +

[
(1− λiλj)Mil,jk

]
,

and

|Nil,jk| ≤
1

(1− |x2i|)(1− |x2j|)
and

|Mil,jk| ≤
2

|1− λiλj|

√
1 +

1

(1− |x2i|)2

√
1 +

1

(1− |x2j|)2

for all 1 ≤ i, j ≤ n and 1 ≤ l, k ≤ 3.

Proof. Sufficiency follows from Theorem 4.4.1 (iv) =⇒ (i). For necessity, recall the proof

of Theorem 4.4.1 (i) =⇒ (iii), from which it follows that the matrix inequality is satisfied

for

N = [Nil,jk]
n,3
i,j=1,l,k=1 =

[
γ(λi, zl)γ(λj, zk)

]n,3
i,j=1,l,k=1

of rank 1, and

M = [Mil,jk]
n,3
i,j=1,l,k=1 =

[
η(λi, zl)

∗ I − F (λi)
∗F (λj)

1− λiλj
η(λj, zk)

]n,3
i,j=1,l,k=1

,

where ||F (λj)|| ≤ 1, γ(λj, zk) = (1− x2jzk)
−1f2(λj),

η(λj, zk) =

[
1

γ(λj, zk)zk

]
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and |f2(λj)| ≤ 1 for all j = 1, . . . , n. Hence

|γ(λj, zk)| ≤
1

|1− x2jzk|
≤ 1

1− |x2j|
,

and so |Nil,jk| ≤
1

(1− |x2i|)(1− |x2j|)
for all j = 1, . . . , n and k = 1, 2, 3. Moreover,

||η(λj, zk)||2C2 =

∣∣∣∣∣
∣∣∣∣∣
[
γ(λj, zk)zk

1

]∣∣∣∣∣
∣∣∣∣∣
2

C2

= 1 + |γ(λj, zk)zk|2 ≤ 1 +
1

(1− |x2j|)2
,

and so

|Mil,jk| ≤ ||η(λi, zl)||C2

||I − F (λi)
∗F (λj)||

|1− λiλj|
||η(λj, zk)||C2

≤ 2

|1− λiλj|

√
1 +

1

(1− |x2i|)2

√
1 +

1

(1− |x2j|)2

for all j = 1, . . . , n and k = 1, 2, 3. Thus, if the given E-interpolation problem is solvable,

then there exist positive 3n-square matrices satisfying the required conditions.
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Chapter A. Examples from control engineering

In this chapter, we sketch the reduction of a robust stabilisation problem to a spectral

Nevanlinna-Pick problem, and give an example to illustrate the connections with control

engineering.

A.1 Reduction of a robust stabilisation problem to a spectral

Nevanlinna-Pick problem

The content in this section is taken from [3, Section 2].

Figure 1 depicts a feedback system with uncertainty, where ∆, G and K are finite-

dimensional linear time-invariant systems. We identify ∆, G and K with their transfer

functions, which are real rational matrix-valued functions of the frequency domain. The

nominal plant is the plant (model of a physical system) which the designer adopts as a

representation of the system. For the system in Figure 1, we assume that the nominal

plant

G = [Gij]
3
i,j=1

is given and it is proper, that is, its entries are rational functions that have a finite limit

at infinity. We model uncertainty with an uncertainty set ∆, and the assumption that

the true plant is given by Figure 2 for some unknown ∆ ∈∆.

	
Δ	

!	

!	

Δ	

!	
	

Δ	

!	

!	

Δ	

!	

	

!	

!	

Figure 1. [3, p. 2475]. Figure 2. [3, p. 2475]. Figure 3. [3, p. 2476].

Let RH∞ be the space of real rational matrix-valued functions that are bounded and

analytic on H := {s : Re (s) > 0}. A system as in Figure 1 is well posed if the transfer

functions between different branches of the interconnection are well defined, and it is

stable if these transfer functions belong to RH∞. A system as in Figure 3 is internally
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A.1. Reduction of a robust stabilisation problem to a spectral Nevanlinna-Pick problem

stable if the transfer function [
I

G

]
(I +KG)−1

[
I K

]
belongs to RH∞. If there exists a controller K ∈ RH∞ such that the lower loop of

Figure 1 is well posed and internally stable, then we say G is stabilisable. If there exists

a controller K ∈ RH∞ such that the system in Figure 1 is well posed and stable for all

∆ ∈∆, then we say G is robustly stabilisable with respect to ∆.

Suppose G is stabilisable. By [36, Lemma 5.4], K stabilises G if and only if K stabilises

G33. The set of all stabilising controllers of G33 can be parameterised by [36, Theorem 5.13

and Theorem 5.14]. First, we need to say how to define a structure from an uncertainty

set. For a given property P , we define the uncertainty set

∆ = {∆ ∈Mn×m(C) : ||∆|| ≤ 1 and ∆ satisfies property P}.

As in [36, p. 256], we assume that P does not impose any norm restrictions. Moreover,

we assume that if ∆ satisfies P then so does α∆ for every α > 0. This means that the

structure

E∆ = {∆ ∈Mn×m(C) : ∆ satisfies property P}

is a cone. Recall that, for M ∈Mm×n(C), the structured singular value of M is

µE∆(M) =
1

inf{||∆|| : ∆ ∈ E∆ and I −M∆ is singular}
.

To illustrate, we give an example. Consider the uncertainty set

∆ = {δIn : |δ| ≤ 1},

where In is the identity matrix in Mn(C). Then E∆ = {δIn : δ ∈ C}, and, as shown in

[36, p. 257], we have µE∆ = ρ, the spectral radius.

Proposition A.1.1. [3, Proposition 2.2] Let G = [Gij]
3
i,j=1 be a stabilisable plant. Let

G33 have the doubly coprime factorisation

G33 = N̂M̂−1 = M̃−1Ñ

over RH∞, where Ñ , M̃ , X̃, Ỹ , N̂ , M̂ , X̂, Ŷ ∈ RH∞ and satisfy[
X̃ −Ỹ
−Ñ M̃

][
M̂ Ŷ

N̂ X̂

]
= I

(by [36, Proposition 5.10], every proper real rational plant admits such a factorisation).

Let the zero matrix belong to ∆ ⊂ RH∞. Then there exists a controller K ∈ RH∞ such
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that the system in Figure 1 is internally stable for all ∆ ∈∆ if and only if there exists a

Q ∈ RH∞ such that X̂(∞)− N̂(∞)Q(∞) is nonsingular and

sup
s∈H

µE∆((T1 − T2QT3)(s)) < 1,

where T1 = G11 + G13Ŷ M̃G31, T2 = G13M̂ and T3 = M̃G31. Moreover, the general

robustly stabilising controller of the system in Figure 1 for the uncertainty set ∆ is given

by

K = (Ŷ − M̂Q)(X̂ − N̂Q)−1 = (X̃ −QÑ)−1(Ỹ −QM̃)

for some Q ∈ RH∞ such that X̂(∞)− N̂(∞)Q(∞) is nonsingular and

sup
s∈H

µE∆((T1 − T2QT3)(s)) < 1.

Example A.1.2. [3, p. 2478] Using Proposition A.1.1, we reduce the robust stabilisation

problem for the nominal plant G with the uncertainty set

∆ = {δIn : |δ| ≤ 1}

to: Find Q ∈ RH∞ such that X̂(∞)− N̂(∞)Q(∞) is nonsingular and

sup
s∈H

ρ((T1 − T2QT3)(s)) < 1.

Suppose T2 and T3 are scalar matrix functions, and let s1, . . . , sn be the zeros of T2T3 in

H. If s1, . . . , sn are simple then

{T1 − T2QT3 : Q ∈ RH∞} = {F ∈ RH∞ : F (sj) = T1(sj) for j = 1, . . . , n}.

In this case, the problem is: Find F ∈ RH∞ such that F (sj) = T1(sj) for j = 1, . . . , n,

and

sup
s∈H

ρ(F (s)) < 1.

Now, by application of a Cayley transform, this becomes an instance of the spectral

Nevanlinna-Pick problem; as shown in [3, Section 3], when G11 and G33 are 2× 2 matrix

functions, the theory of the symmetrised bidisc can be used to analyse this problem. In

[3, Section 4], there is a worked numerical example in which it is shown that there exists

a robustly stabilising controller for a certain plant with the uncertainty set

∆ = {δIn : |δ| ≤ 1}

if and only if a certain parameter c satisfies |c| < 1

4− 2
√

3
.
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A.2 Example from robust control

The content in this section is taken from [36, Section 0.2].

In this section, we consider a concrete example to illustrate the effect of feedback when

modelling a physical system with uncertainty. Feedback can be used to achieve system

stability. A physical system is unlikely to be at an equilibrium point, however, a stable

system is insensitive to uncertainty about its initial conditions. This means that the state

trajectory of a stable system does not diverge when the initial state is slightly perturbed

from an equilibrium point. An exponentially stable system returns to the equilibrium

point at a fast rate after it has been slightly perturbed. To stabilise a system at an

equilibrium point we use the control input to make the equilibrium point exponentially

stable; this can be achieved by a state feedback control law (see [36, p. 10]).

Another reason we may apply feedback to a system is to improve aspects of the

dynamic behaviour. There may be environmental factors which affect the behaviour of

the system, or external commands which act on the system. The problem is that these

influences may be unknown when we design the control system. Thus we would like the

system to be insensitive to these influences, and again we can appeal to feedback control

to achieve this.

When we apply feedback to a system, there is an important issue to consider. We may

not have access to a complete description of the physical system, or a complete description

may be more complicated than we would like. Thus, when modelling the physical system

it can be useful to make approximations or simplifications of certain aspects of the system.

We must now ask what effect this has when feedback is applied.

Example A.2.1 (Position control of an electric motor). [36, pp. 13-14]. Figure 4 depicts

an electric motor which receives unknown inputs.

	
Unknown	input:	

!! , !! 	
Output:		

!	

Action:	
on !	

Measurement:	
of !	

Control	law:	
!(!) = !(!! − !)	

Dynamical	
system:		
Electric	motor	

Figure 4. [36, p. 12].

A voltage v is applied to the motor windings, which results in a torque τ applied to the

motor shaft. We characterise the behaviour of the system by its output θ, the angular

position of the shaft. We employ a feedback control law, which receives a measurement

of θ and acts on v, to ensure θ follows a reference command θr despite the effect of an

unknown resisting torque τd. The control system acts according to the law

v(t) = K(θr − θ),
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where K > 0 is a constant to be designed. As shown in [36, pp. 13-14], the dynamics of

the system are given by

d

dt

[
θ

θ̇

]
=

[
0 1

−K −1

][
θ

θ̇

]
+

[
0 0

K −1

][
θr

τd

]
,

and the system is exponentially stable in the absence of external inputs. Now it is im-

portant to note that, although the inputs θr and τd are unknown when K is designed, we

do need some information about them. For example, we may say that the disturbances

should lie in a prescribed set D, in which case, we would consider the worst possible

behaviour the system could have for any element in D. As in [36, pp. 14], we suppose θr

and τd are constant over time. In this case, the states (θ, θ̇) converge asymptotically to

θ(∞) = θr −
τd
K

and θ̇(∞) = 0.

It follows that θ will track θr despite the effect of τd whenever K is sufficiently large.

We now return to the issue of approximations and simplifications made in modelling

the system. In Example A.2.1, the effect of inductance in the electric circuit was con-

sidered negligible and so it was neglected in the model (see [36, p. 13]). However, if

inductance is accounted for in the model, it can be shown that the system becomes un-

stable for sufficiently large K. This means that feedback has caused the modelling error

we considered negligible to make the system unusable.

It is clear that feedback can make a system both insensitive to uncertainty and more

sensitive to uncertainty. This tradeoff is a fundamental issue in feedback design. Of

course, we could have worked with a model that did account for inductance, but even

then we would be neglecting other aspects of the system, for example, bending dynamics

of the motor shaft. There are always neglected effects, and how reliable our analysis is

depends on whether these effects can truly be neglected.

Detailed models can be infinite dimensional and more than what a computer can

accurately simulate. This means that stabilising the system can be very difficult, if not

impossible. However, it may be that it is enough to stabilise a low dimensional model of

the system. That is, a feedback design which makes the low dimensional model insensitive

to uncertainty may also make the real system insensitive to uncertainty. In this way, there

is no correct model of a system. Instead, we seek a model that can compensate for any

remaining uncertainty by means of feedback control.

88



Chapter B. Background material

B.1 General background

In this section, we give some definitions and results that we use. Let A be a unital C∗

algebra with unit 1A and let a ∈ A. Then we denote by σ(a) the spectrum of a, that is,

the set

σ(a) := {λ ∈ C : λ1A − a is not invertible}.

We denote by ρ(a) the spectral radius of a, that is,

ρ(a) := sup{|λ| : λ ∈ σ(a)}.

Definition B.1.1. [46, p. 244] Let A be a unital C∗-algebra and let a ∈ A. Then we say

that a is positive semidefinite and write a ≥ 0 if a = a∗ and σ(a) ⊆ [0,∞).

Proposition B.1.2. [46, Theorem 4.2.2 (iii)] Let A be a unital C∗-algebra. Let a, b ∈ A
be such that a, b ≥ 0. Then a+ b ≥ 0.

The following theorem gives an alternative description of a positive element of a C∗-

algebra. We primarily use two corollaries of this theorem.

Theorem B.1.3. [46, Theorem 4.2.6] Let A be a unital C∗-algebra and let a ∈ A. Then

a ≥ 0 if and only if a = b∗b for some b ∈ A.

Remark B.1.4. As a consequence of B.1.3, a∗a ≥ 0 for all a in a unital C∗-algebra.

Corollary B.1.5. [46, Corollary 4.2.7] Let A be a unital C∗-algebra. Let a ∈ A be such

that a ≥ 0. Then b∗ab ≥ 0 for all b ∈ A.

Corollary B.1.6. Let A be a C∗-algebra with identity 1A and let a ∈ A. Then

1A − a∗a ≥ 0 if and only if ||a|| ≤ 1.

Proof. By Remark B.1.4, we have σ(a∗a) ⊆ [0,∞). Hence

1A − a∗a ≥ 0 ⇐⇒ 1− σ(a∗a) ⊆ [0,∞) ⇐⇒ σ(a∗a) ⊆ [−1, 1] ⇐⇒ ||a||2 ≤ 1,

since ||a||2 = ρ(a∗a) for elements in a C∗-algebra.
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B.1. General background

The following theorem provides a useful characterisation of continuous linear function-

als on a Hilbert space.

Theorem B.1.7 (Riesz-Fréchet Theorem). [62, Theorem 6.8] Let H be a Hilbert space.

Let f be a continuous linear functional on H. Then there exists a unique y ∈ H such that

f(x) = 〈x, y〉 for all x ∈ H. Moreover, ||y|| = ||f ||.

Let H be a Hilbert space. We define B(H) to be the C∗-algebra of all bounded linear

operators T : H → H with norm given by

||T || = sup{||Tx||H : ||x||H ≤ 1}

and involution given by ∗ : T 7→ T ∗, where the bounded linear operator T ∗ : H → H is

called the adjoint of T and defined by

〈T ∗x, y〉 = 〈x, Ty〉 for all x, y ∈ H.

For any T ∈ B(H),

T ≥ 0 if and only if 〈Tx, x〉 ≥ 0 for all x ∈ H.

We define the identity operator I in B(H) by Ix = x for all x ∈ H.

Remark B.1.8. Let H and G be Hilbert spaces. Then we can similarly define B(H,G)

to be the Banach space of all bounded linear operators T : H → G with norm

||T || = sup{||Tx||G : ||x||H ≤ 1}

and involution ∗ : T 7→ T ∗, where the bounded linear operator T ∗ : G→ H is the adjoint

of T and defined by

〈T ∗x, y〉H = 〈x, Ty〉G for all x ∈ G and y ∈ H.

Although B(H,G) is not a C∗-algebra, we obtain analogous results to Remark B.1.4,

Corollary B.1.5 and Corollary B.1.6. Indeed, let T ∈ B(H,G). Then

〈T ∗Th, h〉H = 〈Th, Th〉G = ||Th||2G ≥ 0 for all h ∈ H,

and so T ∗T ≥ 0. Moreover,

||T || ≤ 1 ⇐⇒ 〈(I − T ∗T )h, h〉 = ||h|| − ||Th|| ≥ 0 for all h ∈ H ⇐⇒ I − T ∗T ≥ 0.

Lastly, suppose H = G and T ≥ 0. Then, if B ∈ B(U,H) for some Hilbert space U ,

〈B∗TBu, u〉U = 〈TBu,Bu〉H ≥ 0 for all u ∈ U,

90



B.1. General background

and so B∗TB ≥ 0.

The Banach algebra Mn(C) = B(Cn) is a finite dimensional C∗-algebra with the

involution that takes each element to its conjugate transpose. The conjugate transpose of

a matrix M = [mij]
n,m
i=1,j=1 ∈Mn×m(C) is the matrix

M∗ = ([mij]
n,m
i=1,j=1)T = [mji]

m,n
i=1,j=1 ∈Mm×n(C).

Let V be a complex vector space. Recall that a semi-inner product 〈·, ·〉 on V relaxes the

definition of an inner product to allow 〈v, v〉 = 0 for 0 6= v ∈ V . In the next proposition,

we note that a semi-inner product still satisfies the Cauchy-Schwarz inequality.

Proposition B.1.9. [46, Proposition 2.1.1 (i)] Let V be a complex vector space. Let 〈·, ·〉
be a semi-inner product on V. Then 〈·, ·〉 satisfies

|〈x, y〉|2 ≤ 〈x, x〉〈y, y〉

for all x, y ∈ V.

We now consider the class of spaces known as Hardy spaces. The Hilbert space struc-

ture of the Hardy space H2
d is particularly useful to us.

Definition B.1.10. Let Ω be an open set in C and X a Banach space. Then we say a

map f : Ω→ X is holomorphic if for every z0 ∈ Ω there exists an f ′(z0) ∈ X such that

lim
z→z0

∣∣∣∣∣∣∣∣f(z)− f(z0)

z − z0

− f ′(z0)

∣∣∣∣∣∣∣∣
X

= 0.

Definition B.1.11. [57, Definition 1.2.1, Definition 1.4.1] Let 1 ≤ p ≤ ∞. We define the

Hardy space Hp
d to be the set of holomorphic functions f : D→ Cd for which

||f ||p,d := sup
0<r<1

(
1

2π

∫ 2π

0

||f(reiθ)||pCddθ

) 1
p

<∞, when 1 ≤ p <∞,

and

||f ||p,d := sup
|z|<1

||f(z)||Cd <∞, when p =∞.

We denote by Hp the Hardy space Hp
1 .

For 1 ≤ p < q ≤ ∞, it follows from Hölder’s inequality that Hq
d ⊆ Hp

d . We note that

Hp
d is a Banach space for 1 ≤ p ≤ ∞, and H2

d is a Hilbert space with inner product given

by

〈f, g〉H2
d

= lim
r→1−

1

2π

∫ 2π

0

〈f(reiθ), g(reiθ)〉Cddθ

for all f, g ∈ H2
d .
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Remark B.1.12. [57, p. 13] Let f : D → Cd and 1 ≤ p ≤ ∞. Then it is easy to check

that f ∈ Hp
d if and only if fj ∈ Hp for all 1 ≤ j ≤ d, where fj : D → C maps z ∈ D to

the j-th entry of f(z) and

[fj]
d
j=1(z) := [fj(z)]dj=1 = f(z)

for all z ∈ D.

We can say more about the connection between H2
d and H2. Define the Hilbert direct

sum of Hilbert spaces H1, . . . , Hn to be the Hilbert space H1 ⊕ · · · ⊕ Hn given by the

vector space direct sum with inner product

〈(h1, · · · , hn), (f1, · · · , fn)〉 = 〈h1, f1〉H1 + · · ·+ 〈hn, fn〉Hn

for all h1, f1 ∈ H1, . . . , hn, fn ∈ Hn.

Proposition B.1.13. [57, p. 45] There is a unitary between H2
d and the Hilbert direct

sum of d copies of H2.

Proof. Define U : H2
d →

⊕d
i=1H

2 by Uf = (f1, . . . , fd) for all f = [fj]
d
j=1 ∈ H2

d . Clearly

U is linear and injective. By Remark B.1.12, f ∈ H2
d if and only if (f1, . . . , fd) ∈

⊕d
i=1 H

2.

Hence U is surjective. Let f = [fj]
d
j=1, g = [gj]

d
j=1 ∈ H2

d . Then

〈f, g〉H2
d

= lim
r→1−

1

2π

∫ 2π

0

〈f(reiθ), g(reiθ)〉Cddθ = lim
r→1−

1

2π

∫ 2π

0

d∑
j=1

〈fj(reiθ), gj(reiθ)〉Cdθ

=
d∑
j=1

〈fj, gj〉H2 = 〈(f1, . . . , fd), (g1, . . . , gd)〉⊕d
i=1H

2 = 〈Uf, Ug〉⊕d
i=1H

2 .

It follows that U is a unitary between H2
d and

⊕d
i=1 H

2.

We give another characterisation of H2
d . Define the Hilbert tensor product of Hilbert

spaces H1, . . . , Hn as the Hilbert space H1 ⊗H · · · ⊗H Hn given by the completion of the

algebraic tensor product with respect to the inner product

〈h1 ⊗ · · · ⊗ hn, f1 ⊗ · · · ⊗ fn〉 = 〈h1, f1〉H1 · · · 〈hn, fn〉Hn

for all h1, f1 ∈ H1, . . . , hn, fn ∈ Hn.

Remark B.1.14. [46, Remark 2.6.8] LetH andK be Hilbert spaces and let the dimension

of K be n. If {ei}ni=1 is an orthonormal basis for K then

h1 ⊕ · · · ⊕ hn 7→
n∑
i=1

hi ⊗H ei, where hi ∈ H for 1 ≤ i ≤ n,
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is a unitary between
⊕n

i=1H and H ⊗H K. Consequently, elements of H ⊗H K can be

written (uniquely, if {ei} is specified) as

n∑
i=1

hi ⊗H ei, where hi ∈ H for 1 ≤ i ≤ n,

and so are finite sums of the simple tensors h⊗H k, where h ∈ H and k ∈ K.

Corollary B.1.15. There is a unitary between H2
d and H2 ⊗H Cd.

Proof. By Proposition B.1.13, there is a unitary between H2
d and

⊕d
i=1H

2. By Remark

B.1.14, there is a unitary between
⊕d

i=1H
2 and H2 ⊗H Cd. Hence there is a unitary

between H2
d and H2 ⊗H Cd. More concretely, define U : H2

d → H2 ⊗H Cd by

U(f) =
d∑
i=1

fi ⊗H ei

for all f = [fi]
d
i=1 ∈ H2

d , where {ei}di=1 is an orthonormal basis for Cd. Then U is a unitary

between H2
d and H2 ⊗H Cd.

Remark B.1.16. We identify elements of H2
d as elements of H2⊗H Cd via the unitary in

Corollary B.1.15. More specifically, we consider [fi]
d
i=1 ∈ H2

d to be
∑d

i=1 fi ⊗H ei, where

the ei = [eij]
d
j=1 satisfy eii = 1 and eij = 0 when j 6= i. This representation is unique, by

Remark B.1.14, since we have specified the basis.

It is possible to factorise functions in Hp. First, we define the functions that are the

factors.

Definition B.1.17. [44, p. 62] An inner function is a holomorphic function h : D → D
such that

lim
r→1−

h(rλ) ∈ T

for almost every λ ∈ T. A non-constant inner function without zeros which is positive at

the origin is called a singular inner function.

Definition B.1.18. [44, p. 62] An outer function is a holomorphic function g on D that

has the form

g(z) = c exp

(
1

2π

∫ π

−π

eiθ + z

eiθ − z
k(θ)dθ

)
, for z ∈ D,

where c ∈ T and k is a real-valued integrable function on T.

We call an automorphism of D a Möbius transformation. A Möbius transformation

has the form

f(z) = eiθ
a− z
1− az

for some a ∈ D and θ ∈ [0, 2π).
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Definition B.1.19. [6, p. 2] A Blaschke factor is a Möbius transformation that is positive

at zero (or has positive derivative at zero if it vanishes there):

B0(z) := z or Ba(z) :=
a

|a|
a− z
1− az

, where a ∈ D.

A finite Blaschke product is a finite product of Blaschke factors times a unimodular con-

stant:

B(z) = eiθzM
N∏
j=1

Baj(z).

An infinite Blaschke product is a non-zero infinite product of Blaschke factors times a

unimodular constant:

B(z) = eiθzM
∞∏
j=1

Baj(z), where
∞∑
j=1

(1− |aj|) <∞.

The requirement that Blaschke factors are positive at zero guarantees that an infinite

Blaschke product converges to a holomorphic function on D.

Remark B.1.20. [57, Example 1.3.2] Blaschke factors and products are examples of

inner functions.

Theorem B.1.21 (Factorisation Theorem). [44, p. 67, p. 69] Let 1 ≤ p ≤ ∞. Let f be

a non-zero function in Hp. Then f is uniquely expressible in the form f = Bsg, where B

is a Blaschke product, s is a singular inner function and g is an outer function in Hp.

We give the following useful construction of an isometry between two collections, of

elements in Hilbert space, which have the same Grammian. Let {xi}i∈I be a collection

of elements in an inner product space. Then the Grammian of {xi}i∈I is the matrix

G = [Gij]i,j∈I defined by

Gij = 〈xj, xi〉

for all i, j ∈ I.

Proposition B.1.22. Let H and K be Hilbert spaces and let I be a set. Let {xi}i∈I be a

collection of elements in H and {yi}i∈I be a collection of elements in K. If {xi}i∈I and

{yi}i∈I have the same Grammian, then there exists an isometry L : span{xi : i ∈ I} → K

such that Lxi = yi for all i ∈ I.

Proof. Define a map L0 : span{xi : i ∈ I} → K by setting

L0

(∑
i∈I

λixi

)
=
∑
i∈I

λiyi,

where only finitely many λi are non-zero and λi ∈ C for all i ∈ I. Clearly L0 is linear and

L0xi = yi for all i ∈ I. Let n ∈ N. Then, for any λi1 , . . . , λin ∈ C, since {xi} and {yi}
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have the same Grammian,∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

λikxik

∣∣∣∣∣
∣∣∣∣∣
2

=
n∑

k,l=1

λikλil〈xik , xil〉 =
n∑

k,l=1

λikλil〈yik , yil〉 =

∣∣∣∣∣
∣∣∣∣∣
n∑
k=1

λikyik

∣∣∣∣∣
∣∣∣∣∣
2

.

Hence L0 is a well defined isometry. It follows that L0 extends to an isometry L on

span{xi : i ∈ I} which satisfies the required conditions.

We could extend the isometry L from Proposition B.1.22 to H, but the extension may

not be an isometry. For example, define L to be 0 on (span{xi : i ∈ I})⊥. We require the

following notions of convexity.

Definition B.1.23. [61, p. 1] Let Y be a compact set in Cn. Then the polynomial convex

hull Ŷ of Y is defined by

Ŷ = {z ∈ Cn : |P (z)| ≤ sup
w∈Y
|P (w)| for all polynomials P on Cn}.

We say that Y is polynomially convex if Ŷ = Y .

Definition B.1.24. [61, p. 2] Let X be a set in Cn. Then X is called hypoconvex

if its complement is the union of complex affine hyperplanes, that is, complex (n − 1)-

dimensional affine planes.

We note that other authors use different terminology, for example, in [52] and [64],

linearly convex is used instead of hypoconvex. We use the following result from complex

analysis.

Theorem B.1.25. [13, p. 127] Let Ω be a domain in C. Let f be a non-zero holomorphic

function on Ω. Then the zeros of f are isolated.

The following results are from the theory of several complex variables. The statement

of the corollary is given so that it is immediately applicable.

Theorem B.1.26. [41, Theorem 1] Let Ω be a domain in Cn. Let f be a holomorphic

function on Ω. If f = 0 on a non-empty open subset U ⊆ Ω, then f = 0 on Ω.

Proposition B.1.27. [41, Lemma 24] Let Ω be a domain in Cn. Let f be a non-zero

holomorphic function on Ω. Then the zero set of f is a closed nowhere dense set in Ω.

Corollary B.1.28. Let f : D2 → C be a non-zero holomorphic function. Let z, λ ∈ D be

such that zf(z, λ) = 0. Then there is a sequence (zi, λi)
∞
i=1 in D2 such that

lim
i→∞

(zi, λi) = (z, λ)

and zif(zi, λi) 6= 0 for each i ∈ N.
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Proof. Let g(w, µ) = wf(w, µ) for all w, µ ∈ D. Then g is the product of two holomorphic

functions, and hence holomorphic. Suppose g = 0 on D2. Then

f(w, µ) = 0

for all 0 6= w ∈ D and all µ ∈ D. That is, f = 0 on the non-empty open subset (D\{0})×D
of D2. Hence, by Theorem B.1.26, f = 0 on D2, which is a contradiction. It follows that

g is a non-zero holomorphic function on D2. Let

Z = {(w, µ) ∈ D2 : g(w, µ) = 0}.

Then (z, λ) ∈ Z and, by Proposition B.1.27, D2 \ Z is dense in D2. Let (w, µ) ∈ Z. It

follows that there is a sequence (wi, µi)
∞
i=1 in D2 such that

lim
i→∞

(wi, µi) = (w, µ)

and g(wi, µi) 6= 0 for each i ∈ N, as required.

The following two results are used frequently, and so we give them here for convenience.

Proposition B.1.29. Let M =

[
m11 m12

m21 m22

]
∈M2(C). Then

I −M∗M =

[
1− |m11|2 − |m21|2 −m11m12 −m21m22

−m12m11 −m22m21 1− |m12|2 − |m22|2

]

and det (I −M∗M) = 1− |m11|2 − |m21|2 − |m12|2 − |m22|2 + | detM |2.

Proof. The first equality is easy to check, and using it we obtain the second.

Proposition B.1.30. Let X be a set and let f, g : X → C be functions. Then

f(y)f(x) = g(y)g(x) for all x, y ∈ X

if and only if f = ζg for some ζ ∈ T.

Proof. Sufficiency is clear. For necessity, suppose

f(y)f(x) = g(y)g(x) for all x, y ∈ X.

Then |g(y)|2 = |f(y)|2 for all y ∈ X. If f(y) = 0 for all y ∈ X, then f = g = 0. Otherwise,

there is a y ∈ X such that f(y) 6= 0, and so f = ζg, where

ζ =
g(y)

f(y)

and ζ ∈ T, since |g(y)|2 = |f(y)|2.
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B.2 A realisation formula

The results in this section are used to prove the realisation formula in Section 2.1. Since

these results hold in a more general context than is required in that section, we give them

here. Some of the results are needed elsewhere too.

Let H,G,U and V be Hilbert spaces. Let P be an operator such that

P =

[
P11 P12

P21 P22

]
: H ⊕ U → G⊕ V

and let X : V → U be an operator for which I − P22X is invertible in B(V ). Then we

denote by FP (X) the linear fractional transformation

FP (X) := P11 + P12X(I − P22X)−1P21 : H → G.

Proposition B.2.1. [8, Lemma 1.7] Let H,G,U and V be Hilbert spaces. Let

P =

[
P11 P12

P21 P22

]
and Q =

[
Q11 Q12

Q21 Q22

]

be operators from H ⊕U to G⊕ V , and let X and Y be operators from V to U for which

I − P22X and I −Q22Y are invertible in B(V ). Then

IH −FQ(Y )∗FP (X) =

= Q∗21(IV − Y ∗Q∗22)−1(IV − Y ∗X)(IV − P22X)−1P21

+
[
IH Q∗21(IV − Y ∗Q∗22)−1Y ∗

]
(IH⊕U −Q∗P )

[
IH

X(IV − P22X)−1P21

]
.

Proof. We prove the equality by expanding both sides. Let S1 = Q∗21(IV − Y ∗Q∗22)−1 ∈
B(V,H) and S2 = (IV − P22X)−1P21 ∈ B(H,V ). On the left side we have

IH −FQ(Y )∗FP (X) =

= IH − (Q∗11 +Q∗21(IV − Y ∗Q∗22)−1Y ∗Q∗12)(P11 + P12X(IV − P22X)−1P21)

= IH −Q∗11P11 −Q∗11P12XS2 − S1Y
∗Q∗12P11 − S1Y

∗Q∗12P12XS2.

Let R1 = S1(IV − Y ∗X)S2 ∈ B(H) and

R2 =
[
IH S1Y

∗
]

(IH⊕U −Q∗P )

[
IH

XS2

]
∈ B(H).
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Then the right side equals R1 +R2. Moreover, R1 = S1S2 − S1Y
∗XS2 and

R2 =
[
IH S1Y

∗
] [IH −Q∗11P11 −Q∗21P21 −Q∗11P12 −Q∗21P22

−Q∗12P11 −Q∗22P21 IU −Q∗12P12 −Q∗22P22

][
IH

XS2

]

=

[
IH −Q∗11P11 −Q∗21P21 + S1Y

∗(−Q∗12P11 −Q∗22P21)

−Q∗11P12 −Q∗21P22 + S1Y
∗(IU −Q∗12P12 −Q∗22P22)

]T [
IH

XS2

]
= IH −Q∗11P11 −Q∗21P21 + S1Y

∗(−Q∗12P11 −Q∗22P21)

−Q∗11P12XS2 −Q∗21P22XS2 + S1Y
∗(IU −Q∗12P12 −Q∗22P22)XS2

= IH −Q∗11P11 −Q∗21P21 − S1Y
∗Q∗12P11 − S1Y

∗Q∗22P21

−Q∗11P12XS2 −Q∗21P22XS2 + S1Y
∗XS2 − S1Y

∗Q∗12P12XS2 − S1Y
∗Q∗22P22XS2.

We note that all of the terms in the expansion of IH − FQ(Y )∗FP (X) appear in the

expansion of R2, and so we examine the remaining terms of R1 +R2. That is,

R1 +R2−(IH −FQ(Y )∗FP (X)) =

= (S1S2 − S1Y
∗XS2)−Q∗21P21 − S1Y

∗Q∗22P21

−Q∗21P22XS2 + S1Y
∗XS2 − S1Y

∗Q∗22P22XS2

= S1S2 −Q∗21P21 − S1Y
∗Q∗22P21 −Q∗21P22XS2 − S1Y

∗Q∗22P22XS2

= S1(IV − (IV − Y ∗Q∗22)(IV − P22X)− Y ∗Q∗22(IV − P22X)

− (IV − Y ∗Q∗22)P22X − Y ∗Q∗22P22X)S2

= S1(IV − IV + Y ∗Q∗22 + P22X − Y ∗Q∗22P22X − Y ∗Q∗22 + Y ∗Q∗22P22X

− P22X + Y ∗Q∗22P22X − Y ∗Q∗22P22X)S2

= S1 · 0 · S2 = 0.

It follows that IH −FQ(Y )∗FP (X) = R1 +R2, as required.

Corollary B.2.2. Let H,G,U and V be Hilbert spaces. Let P be an operator such that

P =

[
P11 P12

P21 P22

]
: H ⊕ U → G⊕ V

and ||P || ≤ 1. Let X : V → U be an operator such that ||X|| ≤ 1 and I − P22X is

invertible. Then ||FP (X)|| ≤ 1.

Proof. By Proposition B.2.1,

IH −FP (X)∗FP (X) =

= P ∗21(IV −X∗P ∗22)−1(IV −X∗X)(IV − P22X)−1P21

+
[
IH P ∗21(IV −X∗P ∗22)−1X∗

]
(IH⊕U − P ∗P )

[
IH

X(IV − P22X)−1P21

]
.
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Let A = (IV − P22X)−1P21 : H → V and

B =

[
IH

X(IV − P22X)−1P21

]
=

[
IH

XA

]
: H → H ⊕ U.

Then

IH −FP (X)∗FP (X) = A∗(IV −X∗X)A+B∗(IH⊕U − P ∗P )B.

By Remark B.1.8, since ||X|| ≤ 1 and ||P || ≤ 1, we have

A∗(IV −X∗X)A ≥ 0 and B∗(IH⊕U − P ∗P )B ≥ 0.

Thus, by Proposition B.1.2,

IH −FP (X)∗FP (X) ≥ 0.

It follows from Remark B.1.8 that ||FP (X)|| ≤ 1.

Remark B.2.3. Suppose, in addition, ||X|| < 1 in Corollary B.2.2. Then

||P22X|| ≤ ||P22|| ||X|| ≤ ||X|| < 1

and so IV − P22X is automatically invertible.

Remark B.2.4. Suppose, in addition, H = G = Cn, U = V and X = z · IV in Corollary

B.2.2. Then, by Remark B.2.3, IV − zP22 is invertible for all z ∈ D. Moreover, the linear

fractional transformation FP , given by

FP (z) = P11 + zP12(IV − zP22)−1P21 for all z ∈ D,

is holomorphic on D.

B.3 Reproducing kernels and Hilbert function spaces

In this section we give the required definitions and results from the theory of reproducing

kernels and Hilbert function spaces. We include a number of additional results that are

used frequently in this thesis.

B.3.1 Kernels

Definition B.3.1. [14, p. 344] Let X be a set and k : X ×X → C be a function. Then

k is a positive semidefinite function if, for all x1, . . . , xn ∈ X and c1, . . . , cn ∈ C,

n∑
i,j=1

cjcik(xj, xi) ≥ 0.
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Definition B.3.2. [6, Definition 2.22] A kernel on a set X is a hermitian symmetric

positive semidefinite function k : X × X → C, where by hermitian symmetric we mean

k(x, y) = k(y, x) for all x, y ∈ X.

We note that Definition B.3.2 is what Agler and McCarthy call a weak kernel in [6].

Their definition requires that, in addition, kernels be non-zero on the diagonal. We use

Definition B.3.2 for convenience, since we do not need to make this distinction. This is

similar to Aronszajn’s approach in [14]. We now have an abstract definition of a kernel,

but it is also possible to construct a kernel from the following type of Hilbert space.

Definition B.3.3. [6, Definition 2.1] A Hilbert function space on a set X is a Hilbert

space H of functions on X such that evaluation at each point of X is a continuous linear

functional on H.

We note that if we defined kernels to be non-zero on the diagonal then in Definition

B.3.3 we would require that, in addition, evaluation at each point of X be non-zero, which

is the definition of Hilbert function space given in [6]. We now show how to construct a

kernel from a given Hilbert function space.

Definition B.3.4. [6, p. 17] Let H be a Hilbert function space on a set X. Let εx denote

the function on H given by evaluation at x ∈ X. Then εx is a continuous linear functional

on H, and so, by Theorem B.1.7, there is a unique element kx ∈ H such that

f(x) = εx(f) = 〈f, kx〉

for all f ∈ H. We call kx the reproducing kernel at x since it reproduces the value of each

function at x. Moreover, for all x, y ∈ X, since ky ∈ H,

ky(x) = εx(ky) = 〈ky, kx〉.

We define the kernel function of H to be the function k : X ×X → C given by

k(x, y) := ky(x)

for all x, y ∈ X.

Proposition B.3.5. Let H be a Hilbert function space on a set X with kernel function

k. Then k is a kernel on X.

Proof. Clearly k is hermitian symmetric. Let x1, . . . , xn ∈ X and c1, . . . , cn ∈ C. Then

n∑
i,j=1

cicjk(xi, xj) =

〈
n∑
j=1

cjkxj ,

n∑
i=1

cikxi

〉
=

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

cjkxj

∣∣∣∣∣
∣∣∣∣∣
2

≥ 0

and hence k is positive semidefinite. It follows that k is a kernel on X.
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As a consequence of Proposition B.3.5, we refer to the kernel function of a Hilbert

function space as the kernel of that space. The following proposition characterises the

kernel of a Hilbert function space in terms of an orthonormal basis for the space.

Proposition B.3.6. [6, Proposition 2.18] Let H be a Hilbert function space on X with

kernel k. Let {ei}i∈I be an orthonormal basis for H. Then, for all x, y ∈ X,

k(x, y) =
∑
i∈I

ei(y)ei(x).

Proof. By Parseval’s equation, since kx ∈ H for all x ∈ X, we have

k(x, y) = 〈ky, kx〉 =
∑
i∈I

〈ky, ei〉〈ei, kx〉 =
∑
i∈I

ei(y)ei(x)

for all x, y ∈ X.

We note that an orthonormal basis for a Hilbert space may be uncountably infinite.

In this case, we need to be more precise about the sum in Proposition B.3.6. As in [46,

pp. 25-26], a family of elements in a linear topological space V is called summable if the

ordered net of all finite partial sums, of elements of this family, converges in V .

We have shown how to construct a kernel from a given Hilbert function space. The

following theorem shows how to construct a Hilbert function space from a given kernel.

Theorem B.3.7 (Moore-Aronszajn). [6, Theorem 2.23] Let k be a kernel on a set X.

Then there is a unique Hilbert function space on X with kernel k.

Proof. Let Vk := span{k(·, x) : x ∈ X}. It can be easily verified that Vk is a complex

vector space. Define a map 〈·, ·〉Vk : Vk × Vk → C by〈
n∑
i=1

λik(·, yi),
m∑
j=1

µjk(·, xj)

〉
Vk

:=
n∑
i=1

m∑
j=1

λiµjk(xj, yi)

for all x1, . . . , xm, y1, . . . , yn ∈ X and µ1, . . . , µm, λ1, . . . , λn ∈ C. It is easy to check that

〈·, ·〉Vk is a semi-inner product, and so, by Proposition B.1.9,

|〈u, v〉Vk |2 ≤ 〈u, u〉Vk〈v, v〉Vk

for all u, v ∈ Vk. Consider the subset N =
{
v ∈ Vk : 〈v, v〉Vk = 0

}
⊆ Vk. Since

0 ≤ |〈η, v〉Vk |2 ≤ 〈η, η〉Vk〈v, v〉Vk = 0

for all η ∈ N and v ∈ Vk, we obtain 〈η, v〉Vk = 0 for all η ∈ N and v ∈ Vk. With this

fact, it is easy to verify that N is a linear subspace of Vk. Hence Hk := Vk/N is a vector

space. Define a map 〈·, ·〉Hk
: Hk ×Hk → C by

〈u+N , v +N〉Hk
:= 〈u, v〉Vk
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for all u + N , v + N ∈ Hk. Then it is easy to check that 〈·, ·〉Hk
is a well defined inner

product on Hk. Let Hk be the completion of Hk with respect to the norm given by

||v +N||2Hk
= 〈v +N , v +N〉Hk

for all v +N ∈ Hk. Then Hk is a Hilbert space.

We want Hk to be a Hilbert function space on X with kernel k. Define

f(x) := 〈f, k(·, x) +N〉Hk

for all f ∈ Hk and all x ∈ X. Then Hk is a space of functions on X. Let εx denote

the function on Hk given by evaluation at x ∈ X. Clearly εx is linear and εx(f) =

〈f, k(·, x) +N〉Hk
for all f ∈ Hk. Moreover, by Proposition B.1.9,

|εx(f)|2 = |〈f, k(·, x) +N〉Hk
|2 ≤ 〈f, f〉Hk

〈k(·, x) +N , k(·, x) +N〉Hk
= k(x, x)||f ||2Hk

for all f ∈ Hk. It follows that εx is continuous and so Hk is a Hilbert function space on

X. Since k(·, x) +N is the unique reproducing kernel of Hk at x ∈ X, the kernel of Hk

is given by

〈k(·, y) +N , k(·, x) +N〉Hk
= 〈k(·, y), k(·, x)〉Vk = k(x, y)

for all x, y ∈ X. Hence k is the kernel of Hk.

It remains to show that Hk is unique for k. Suppose that H is another Hilbert function

space on X with kernel k. Let kx denote the reproducing kernel of Hk at x ∈ X. Clearly

span{kx : x ∈ X} ⊆ H.

Since H is complete, Hk ⊆ H. Since Hk is closed, H = Hk ⊕ (Hk)
⊥. Let f ∈ (Hk)

⊥.

Then, since

f(x) = 〈f, kx〉 = 0

for all x ∈ X, we have f = 0. It follows thatH = Hk. Now let f ∈ H. Then f = limn∈N fn,

where each fn ∈ span {kx : x ∈ X}, that is, fn =
∑

x∈X αxkx, where only finitely many of

the αx are non-zero. Hence

||fn||2H =
∑
x,y∈X

αxαy〈kx, ky〉H =
∑
x,y∈X

αxαyk(y, x) =
∑
x,y∈X

αxαy〈kx, ky〉Hk
= ||fn||2Hk

and so

||f ||H = lim
n∈N
||fn||H = lim

n∈N
||fn||Hk

= ||f ||Hk
.

It follows that H and Hk are the same Hilbert function space.

As a consequence of Theorem B.3.7, for a kernel k on a set X, we denote by Hk the

Hilbert function space on X with kernel k. The following corollary shows that a kernel k
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can be represented as the Grammian of a collection of elements in Hk. Let {ei}i∈I be an

orthonormal basis for Hk. Then we define the conjugate linear operator by∑
i∈I

ciei 7→
∑
i∈I

ciei, where ci ∈ C for all i ∈ I.

Corollary B.3.8. [6, Theorem 2.53] Let k be a kernel on a set X. Define the maps

f, g : X → Hk by f(x) = k(·, x) and g(x) = Ck(·, x) for all x ∈ X, respectively, where C

is the conjugate linear operator. Then

k(x, y) = 〈f(y), f(x)〉Hk
= 〈g(x), g(y)〉Hk

for all x, y ∈ X.

Proof. Let f : X → Hk be defined by f(x) = kx for all x ∈ X, where kx is the unique

reproducing kernel of Hk at x ∈ X. Then, for all x, y ∈ X,

k(x, y) = 〈ky, kx〉 = 〈f(y), f(x)〉.

Now, let g : X → Hk be defined by g(x) = Cf(x) for all x ∈ X, where C is the conjugate

linear operator. Then, by Parseval’s equation,

k(x, y) =
∑
i∈I

〈ky, ei〉〈ei, kx〉 =
∑
i∈I

〈ei, Cky〉〈Ckx, ei〉 = 〈Ckx, Cky〉 = 〈g(x), g(y)〉

for all x, y ∈ X.

It follows from the construction of Hk that it is the space of minimal dimension for

which the representation in Corollary B.3.8 can be realised. This leads to the following

definition.

Definition B.3.9. The rank of a kernel k on a set X is the dimension of Hk.

Proposition B.3.10. Let k be a kernel on a set X and let n < ∞. Then k has rank n

if and only if there exist linearly independent functions f1, . . . , fn ∈ Hk such that

k(x, y) = f1(y)f1(x) + · · ·+ fn(y)fn(x)

for all x, y ∈ X.

Proof. For necessity, suppose k has rank n. Then the dimension of Hk is n, and so there

is an orthonormal basis {e1, . . . , en} of Hk. Hence, by Proposition B.3.6,

k(x, y) = e1(y)e1(x) + · · ·+ en(y)en(x)

for all x, y ∈ X.
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For sufficiency, suppose there are linearly independent functions f1, . . . , fn ∈ Hk such

that

k(x, y) = f1(y)f1(x) + · · ·+ fn(y)fn(x)

for all x, y ∈ X. Let f ∈ Hk. Then

f(y) = 〈f, k(·, y)〉 =

〈
f,

n∑
i=1

fi(y)fi

〉
=

n∑
i=1

fi(y) 〈f, fi〉

for all y ∈ X. Hence f =
∑n

i=1〈f, fi〉fi, and so the functions f1, . . . , fn span Hk. Since

f1, . . . , fn are linearly independent, {f1, . . . , fn} is a basis for Hk. Moreover, since n <∞,

this basis generates an orthonormal basis {e1, . . . , en} of Hk. Hence Hk has dimension n.

It follows that k has rank n.

We are particularly interested in kernels which produce Hilbert function spaces of

holomorphic functions. This motivates the following definition.

Definition B.3.11. [6, p. 15] Let X be a domain in Cd. Then a kernel on X is a holo-

morphic kernel on X if it is holomorphic in the first variable and conjugate holomorphic

in the second. A Hilbert function space on X is a holomorphic space on X if the functions

belonging to it are holomorphic.

Proposition B.3.12. [14, pp. 344 - 345] Let k be a holomorphic kernel on a domain X

in Cd. Then Hk is a space of holomorphic functions on X.

Proof. If k is a holomorphic kernel then every function in Hk, as constructed in the proof

of Theorem B.3.7, is holomorphic. Let f ∈ Hk. Then

f = lim
n∈N

fn, where each fn ∈ Hk.

Let K be a compact subset of X, let u = supn∈N ||fn||Hk
and let ε > 0. Then there is a

δ > 0 such that, for every x, y ∈ K,

||y − x||Cd < δ =⇒ ||k(·, y)− k(·, x)||Hk
<

ε

4u
.

Moreover, we can cover K by open discs of radius δ. This cover has a finite subcover,

and every y ∈ K belongs to an element of this subcover. Hence there is a finite subset

{y1, . . . , ym} ⊆ K such that, for every y ∈ K, we have ||y−yj||Cd < δ for some 1 ≤ j ≤ m.

Let y ∈ K. Then there is a j ∈ {1, . . . ,m} such that

||k(·, y)− k(·, yj)||Hk
<

ε

4u
.

Choose N to be such that

|f(yj)− fn(yj)| = |〈f − fn, k(·, yj)〉| ≤ ||f − fn||Hk
||k(·, yj)||Hk

≤ ε

2
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for all n ≥ N . Then, for every n ≥ N ,

|f(y)− fn(y)| ≤ |〈f − fn, k(·, y)− k(·, yj)〉|+ |f(yj)− fn(yj)|

≤ ||f − fn||Hk
||k(·, y)− k(·, yj)||Hk

+
ε

2

< 2u
ε

4u
+
ε

2
= ε.

It follows that fn is a sequence of holomorphic functions converging uniformly to f on

every compact subset of X, and so f is holomorphic on X.

Proposition B.3.13. [6, p. 17] Let H be a holomorphic space on a domain X in Cd.

Then the kernel of H is a holomorphic kernel.

Proof. Let k be the kernel of H and let λ ∈ X. Since k(·, λ) = kλ ∈ H, we have k(·, λ) is

holomorphic. Since k(λ, ·) = k(·, λ) ∈ H, we have k(λ, ·) is conjugate holomorphic.

B.3.2 Operator-valued kernels

Similarly to how scalar-valued kernels are defined, we can define operator-valued kernels.

Some of the results for scalar-valued kernels hold for operator-valued kernels as well.

Definition B.3.14. [6, Definition 2.57] Let H be a Hilbert space. A B(H)-valued ker-

nel on a set X is a map K : X × X → B(H) such that, for all x1, . . . , xn ∈ X and

u1, . . . , un ∈ H,
n∑

i,j=1

〈K(xi, xj)uj, ui〉H ≥ 0.

We note that Definition B.3.14 is what Agler and McCarthy call a weak B(H)-valued

kernel in [6]. Their definition requires that, in addition, B(H)-valued kernels be non-zero

on the diagonal. We do not need to make this distinction, and so use Definition B.3.14.

Definition B.3.15. [6, Definition 2.59] Let H be a Hilbert space. An H-valued Hilbert

function space on a set X is a Hilbert space H of maps from X to H such that evaluation

at each point of X is a continuous linear map from H to H.

We note that if we defined B(H)-valued kernels to be non-zero on the diagonal then in

Definition B.3.15 we would require that, in addition, evaluation at each point of X be non-

zero, which is the definition given in [6]. We now show how to construct a B(H)-valued

kernel from a given H-valued Hilbert function space.

Definition B.3.16. Let H be a Hilbert space. Let H be an H-valued Hilbert function

space on a set X, and let εx : H → H be given by evaluation at x ∈ X. For x ∈ X and

u ∈ H, define εx,u : H → C by

εx,u(f) := 〈εx(f), u〉H
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for all f ∈ H. Then it is easy to check that εx,u is a continuous linear functional. Hence,

by Theorem B.1.7, there is a unique element Kx,u ∈ H such that

〈f(x), u〉H = 〈εx(f), u〉H = εx,u(f) = 〈f,Kx,u〉H

for all f ∈ H. We call Kx,u the inner-product-reproducing kernel for u at x since it

reproduces the inner product of f(x) and u for each f ∈ H. Moreover, for all x, y ∈ X
and u, v ∈ H, since Kx,u ∈ H,

〈Ky,v(x), u〉H = 〈Ky,v, Kx,u〉H.

We define the B(H)-valued kernel function of H to be K : X ×X → B(H) given by

K(x, y)v := Ky,v(x)

for all x, y ∈ X and v ∈ H.

Proposition B.3.17. Let H be a Hilbert space. Let H be an H-valued Hilbert function

space on a set X with B(H)-valued kernel function K. Then K is a B(H)-valued kernel

on X.

Proof. Let x1, . . . , xn ∈ X and u1, . . . , un ∈ H. Then

n∑
i,j=1

〈K(xi, xj)uj, ui〉H =

〈
n∑
j=1

Kxj ,uj ,
n∑
i=1

Kxi,ui

〉
H

=

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

Kxj ,uj

∣∣∣∣∣
∣∣∣∣∣
2

H

≥ 0,

as required.

As a consequence of Proposition B.3.17, we refer to the B(H)-valued kernel function

of an H-valued Hilbert function space as the B(H)-valued kernel of that space. In the

following theorem, we describe how to construct an H-valued Hilbert function space from

a given B(H)-valued kernel.

Theorem B.3.18. [6, Theorem 2.60] Let H be a Hilbert space. Let K be a B(H)-valued

kernel on a set X. Then there is a unique H-valued Hilbert function space on X that has

K as its B(H)-valued kernel.

Proof. Let {ei}i∈I be an orthonormal basis for H. Define a function k : X × I → C by

k((y, j), (x, i)) := 〈K(y, x)ei, ej〉H

for all x, y ∈ X and i, j ∈ I. It is easy to check that k is a kernel on X. Hence, by

Theorem B.3.7, there is a unique Hilbert function space Hk on X × I that has k as its

kernel. Let H be the set of all maps F : X → H given by

F (x) =
∑
i∈I

f(x, i)ei
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for all x ∈ X and some f ∈ Hk. Then H is an H-valued Hilbert function space on X for

the inner product given by

〈F,G〉H = 〈f, g〉Hk

for all F,G ∈ H, where F (x) =
∑

i∈I f(x, i)ei and G(x) =
∑

i∈I g(x, i)ei for all x ∈ X

and some f, g ∈ Hk. Now, for each x ∈ X and i ∈ I, define

Kxi :=
∑
i∈I

k(·, (x, i))ei ∈ H.

Then, for all F ∈ H, where F (x) =
∑

i∈I f(x, i)ei for all x ∈ X and some f ∈ Hk, we

have

〈F,Kxi〉H = 〈f, k(·, (x, i))〉Hk
= f(x, i) = 〈F (x), ei〉H

for all x ∈ X and i ∈ I. In particular, for all x, y ∈ X and i, j ∈ I,

〈Kxi(y), ej〉H = 〈Kxi, Kyj〉H = k((y, j), (x, i)) = 〈K(y, x)ei, ej〉H .

It follows that Kxi(y) = K(y, x)ei for all x ∈ X and i ∈ I. Hence K is the B(H)-valued

kernel for H. That H is unique follows by the fact that Hk is unique.

As a consequence of Theorem B.3.18, for a B(H)-valued kernel K on a set X, we

denote by HK the H-valued Hilbert function space on X with B(H)-valued kernel K.

Corollary B.3.19. [6, Theorem 2.62] Let H be a Hilbert space. Let K be a B(H)-valued

kernel on a set X. Then the maps F : X → B(H,HK) and G : X → B(HK , H) defined

by F (x) = K(·, x) and G(x) = K(x, ·) for all x ∈ X, respectively, satisfy

K(x, y) = F (x)∗F (y) = G(x)G(y)∗

for all x, y ∈ X.

Proof. Let F : X → B(H,HK) be defined by F (x) = K(·, x) for all x ∈ X. Then

F (x)h = K(·, x)h = Kx,h ∈ HK

for all x ∈ X and h ∈ H, where Kx,h is the unique inner-product-reproducing kernel for

h at x. Hence, for all x, y ∈ X and h, g ∈ H,

〈F (x)∗F (y)h, g〉H = 〈Ky,h, Kx,g〉HK
= 〈K(x, y)h, g〉H .

It follows that F (x)∗F (y) = K(x, y) for all x, y ∈ X. That F (x) is bounded, for x ∈ X,

follows since

||F (x)||2 = sup
||h||H≤1

〈F (x)∗F (x)h, h〉 = sup
||h||H≤1

〈K(x, x)h, h〉 ≤ ||K(x, x)||2.
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Let G : X → B(HK , H) be defined by G(x) = F (x)∗ for all x ∈ X. Then

K(x, y) = F (x)∗F (y) = G(x)G(y)∗

for all x, y ∈ X.

Let H be a Hilbert space, and K be a B(H)-valued kernel on a domain X in Cd. Then

we call K an analytic B(H)-valued kernel on X if K is analytic in the first variable and

conjugate analytic in the second.

Corollary B.3.20. [6, Theorem 2.67] Let H be a Hilbert space. Let K be an analytic

B(H)-valued kernel on a domain X in Cd. Then the conjugate analytic map F : X →
B(H,HK) and the analytic map G : X → B(HK , H) defined by F (x) = K(·, x) and

G(x) = K(x, ·) for all x ∈ X, respectively, satisfy

K(x, y) = F (x)∗F (y) = G(x)G(y)∗

for all x, y ∈ X.

Proof. Let F : X → B(H,HK) and G : X → B(HK , H) be defined by F (x) = K(·, x)

and G(x) = F (x)∗ for all x ∈ X. Then, by the proof Corollary B.3.19,

K(x, y) = F (x)∗F (y) = G(x)G(y)∗ for all x, y ∈ X.

For each x ∈ X, since K is an analytic B(H)-valued kernel, K(x, y) is conjugate analytic

in y. It follows that F is conjugate analytic, and hence G is analytic.

Remark B.3.21. Let H be a Hilbert space. Let K be a B(H)-valued kernel on a set X.

Suppose dimH = 1. Then K is a kernel on X and HK is a Hilbert function space on X

with kernel K. Suppose, in addition, X is a domain in Cd and K is an analytic kernel.

Then, by Corollary B.3.20, for all x, y ∈ X, we have

K(x, y) = G(x)G(y)∗,

where G : X → B(HK , H) is the analytic map defined by G(x) = K(x, ·) for all x ∈ X.

B.3.3 Additional results

In this section, we give some additional results related to the theory of reproducing kernels.

These results are used frequently in this thesis, and so we have collected them here.

Proposition B.3.22. Let f : X → Cd be a function on a set X. Define k : X ×X → C
by k(x, y) = f(y)∗f(x) for all x, y ∈ X. Then k is a kernel on X.
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Proof. It is easy to check that k is hermitian symmetric. Now, let x1, . . . , xn ∈ X and

c1, . . . , cn ∈ C. Then

n∑
i,j=1

cjcik(xj, xi) =

〈
n∑
j=1

cjf(xj),
n∑
i=1

cif(xi)

〉
Cd

=

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

cjf(xj)

∣∣∣∣∣
∣∣∣∣∣
2

Cd

≥ 0.

It follows that k is a positive semidefinite function, and hence k is a kernel on X.

Corollary B.3.23. Let f = [fi]
d
i=1 : X → Cd be a function on a set X. Define

k : X × X → C by k(x, y) = f(y)∗f(x) for all x, y ∈ X. Then k is a kernel on X,

and the rank of k is the number of f1, . . . , fd that are linearly independent.

Proof. By Proposition B.3.22, k is a kernel on X. For all x, y ∈ X,

k(x, y) = f(y)∗f(x) =
d∑
i=1

fi(y)fi(x).

If f1, . . . , fd ∈ Hk are linearly independent then, by Proposition B.3.10, k has rank d.

Otherwise, we use elimination to obtain linearly independent functions g1, . . . , gn ∈ Hk,

where 1 ≤ n ≤ d− 1, such that

k(x, y) = f(y)∗f(x) =
n∑
i=1

gi(y)gi(x).

In this case, by Proposition B.3.10, the rank of k is n. However, n is also the number of

f1, . . . , fd that are linearly independent.

Using a similar proof to that of Proposition B.3.22, we can prove the following more

general result.

Proposition B.3.24. Let f : X → Cd be a function on a set X, and let Y be a set. Let

M : Y × Y → Md(C) be a function such that the matrix [M(yi, yj)]
n
i,j=1 ∈ Mdn(C) is

positive semidefinite for all y1, . . . , yn ∈ Y . Define k : (X × Y )× (X × Y )→ C by

k(x1, y1, x2, y2) = f(x2)∗M(y2, y1)f(x1)

for all x1, x2 ∈ X and y1, y2 ∈ Y . Then k is a kernel on X × Y .

Proof. To see that k is hermitian symmetric, let y1, y2 ∈ Y and x1, x2 ∈ X. Then the

matrix

M =

[
M(y1, y1) M(y1, y2)

M(y2, y1) M(y2, y2)

]
∈M2d(C)

is positive semidefinite. In particular, M =M∗ and so M(y2, y1) = M(y1, y2)∗. Hence

k(x1, y1, x2, y2) = f(x2)∗M(y2, y1)f(x1) = (f(x1)∗M(y1, y2)f(x2))∗ = k(x2, y2, x1, y1).
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To see that k is a positive semidefinite function, let x1, . . . , xn ∈ X and y1, . . . , yn ∈ Y .

Then the matrix

M = [M(yi, yj)]
n
i,j=1 ∈Mdn(C)

is positive semidefinite. By Theorem B.1.3, M = N ∗N for some N = [Nij]
n
i,j=1 ∈

Mdn(C), where Nij ∈Md(C) for 1 ≤ i, j ≤ n. It follows that

M(yi, yj) =
n∑
k=1

N∗kiNkj

for all 1 ≤ i, j ≤ n. Thus, for all c1, . . . , cn ∈ C,

n∑
i,j=1

cjcik(xj, yj, xi, yi) =
n∑

i,j=1

cjcif(xi)
∗

(
n∑
k=1

N∗kiNkj

)
f(xj)

=
n∑
k=1

〈
n∑
j=1

cjNkjf(xj),
n∑
i=1

ciNkif(xi)

〉
Cd

=
n∑
k=1

∣∣∣∣∣
∣∣∣∣∣
n∑
j=1

cjNkjf(xj)

∣∣∣∣∣
∣∣∣∣∣
2

Cd

≥ 0.

It follows that k is a kernel on X × Y .

In Section B.1, we defined the Hardy space H2
d , in fact, this is a Cd-valued Hilbert

function space. It is natural to ask what its Md(C)-valued kernel is.

Example B.3.25. [57, p. 6] It is well known that the kernel for the Hardy space H2 is

the function kS : D2 → C given by

kS(z, w) =
1

1− wz

for all z, w ∈ D. This kernel is called the Szegő kernel.

By Corollary B.1.15, H2
d and H2⊗H Cd are isomorphic as Hilbert spaces. By Remark

B.1.16, we identify kS(·, λ)⊗H v as a function in H2
d . Hence, we may ask how this function

interacts with functions in H2
d . The following proposition says that kS(·, λ) ⊗H v is the

inner-product-reproducing kernel for v at λ, and so theMd(C)-valued kernel of H2
d is the

map KS : D2 →Md(C) given by

KS(λ, µ)v = kS(λ, µ)⊗H v

for all λ, µ ∈ D and v ∈ Cd.

Proposition B.3.26. Let λ ∈ D and v ∈ Cd. Then

〈h, kS(·, λ)⊗H v〉H2
d

= 〈h(λ), v〉Cd

for all h ∈ H2
d .
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Proof. Let h = [hi]
d
i=1 ∈ H2

d , where h1, . . . , hn ∈ H2. For 1 ≤ i ≤ d, let ei = [eij]
d
j=1 ∈ Cd

be such that eii = 1 and eij = 0 if j 6= i. Then, for λ ∈ D and v ∈ Cd,

〈h, kS(·, λ)⊗H v〉H2
d

=

〈
d∑
i=1

hi ⊗H ei, kS(·, λ)⊗H v

〉
H2⊗HCd

=
d∑
i=1

〈hi, kS(·, λ)〉H2 〈ei, v〉Cd

=
d∑
i=1

hi(λ) 〈ei, v〉Cd = 〈h(λ), v〉Cd ,

since h(λ) =
∑d

i=1 hi(λ)ei.

In this thesis, we require that certain functions defined using an element of S2×2 are

kernels. We can, more generally, define these functions using an element of Sd×d, where

Sd×d := {F : D→Md(C) : F is holomorphic and ||F (λ)|| ≤ 1 for all λ ∈ D}.

In order to show that the functions are kernels, we use the fact that a certain matrix is

positive semidefinite. Thus, we begin by proving this fact.

Lemma B.3.27. Let F ∈ Sd×d. Define an operator TF : H2
d → H2

d by

(TFh)(λ) = F (λ)h(λ)

for all h ∈ H2
d and λ ∈ D. Then ||TF || ≤ 1 and TF ∈ B(H2

d). Moreover,

T ∗F (kS(·, λ)⊗H v) = kS(·, λ)⊗H F (λ)∗v

for all λ ∈ D and v ∈ Cd.

Proof. Clearly TF is linear. Since F is holomorphic, TFh is holomorphic for all h ∈ H2
d .

Since ||F (λ)|| ≤ 1 for all λ ∈ D,

||TFh||2H2
d

= sup
0<r<1

1

2π

∫ 2π

0

||F (reiθ)h(reiθ)||2Cddθ ≤ sup
0<r<1

1

2π

∫ 2π

0

||h(reiθ)||2Cddθ = ||h||2H2
d

for all h ∈ H2
d . Hence TFh ∈ H2

d and ||TF || ≤ 1. It follows that TF ∈ B(H2
d).

Let λ ∈ D and v ∈ Cd. By Proposition B.3.26, 〈h, kS(·, λ) ⊗H v〉H2
d

= 〈h(λ), v〉Cd for

all h ∈ H2
d . Hence

〈h, T ∗F (kS(·, λ)⊗H v)〉H2
d

= 〈TFh, kS(·, λ)⊗H v〉H2
d

= 〈(TFh)(λ), v〉Cd = 〈F (λ)h(λ), v〉Cd

and

〈h, kS(·, λ)⊗H F (λ)∗v〉H2
d

= 〈h(λ), F (λ)∗v〉Cd = 〈F (λ)h(λ), v〉Cd
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for all h ∈ H2
d . It follows that T ∗F (kS(·, λ)⊗H v) = kS(·, λ)⊗H F (λ)∗v.

Proposition B.3.28. Let F ∈ Sd×d and let λ1, . . . , λn ∈ D. Then the matrix

M =

[
I − F (λi)F (λj)

∗

1− λjλi

]n
i,j=1

∈Mdn(C)

is positive semidefinite.

Proof. Let v = [vi]
n
i=1 ∈ Cdn, where vi ∈ Cd for 1 ≤ i ≤ n. Then

〈Mv, v〉Cdn =

〈[
n∑
j=1

I − F (λi)F (λj)
∗

1− λjλi
vj

]n
i=1

, [vi]
n
i=1

〉
Cdn

=
n∑
i=1

〈
n∑
j=1

I − F (λi)F (λj)
∗

1− λjλi
vj, vi

〉
Cd

=
n∑

i,j=1

kS(λi, λj)(〈vj, vi〉Cd − 〈F (λi)F (λj)
∗vj, vi〉Cd)

=
n∑

i,j=1

〈kS(·, λj), kS(·, λi)〉H2(〈vj, vi〉Cd − 〈F (λj)
∗vj, F (λi)

∗vi〉Cd)

=
n∑

i,j=1

〈kS(·, λj)⊗H vj, kS(·, λi)⊗H vi〉H2
d

− 〈kS(·, λj)⊗H F (λj)
∗vj, kS(·, λi)⊗H F (λi)

∗vi〉H2
d
,

where kS is the Szegő kernel. Let TF be the operator defined in Lemma B.3.27. By

Corollary B.1.6, since ||TF || ≤ 1 and TF ∈ B(H2
d), we have I − TFT ∗F ≥ 0. Moreover,

T ∗F (kS(·, λ)⊗H v) = kS(·, λ)⊗H F (λ)∗v

for all λ ∈ D and v ∈ Cd. Hence

〈Mv, v〉Cdn =
n∑

i,j=1

〈kS(·, λj)⊗H vj, kS(·, λi)⊗H vi〉H2
d

− 〈T ∗F (kS(·, λj)⊗H vj), T ∗F (kS(·, λi)⊗H vi)〉H2
d

=
n∑

i,j=1

〈kS(·, λj)⊗H vj − TFT ∗F (kS(·, λj)⊗H vj), kS(·, λi)⊗H vi〉H2
d

=

〈
(I − TFT ∗F )

(
n∑
j=1

kS(·, λj)⊗H vj

)
,

n∑
i=1

kS(·, λi)⊗H vi

〉
H2

d

≥ 0.

It follows that M is positive semidefinite.
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Corollary B.3.29. Let F ∈ Sd×d and let λ1, . . . , λn ∈ D. Then the matrix

M =

[
I − F (λj)

∗F (λi)

1− λjλi

]n
i,j=1

∈Mdn(C)

is positive semidefinite.

Proof. Let G(λ) = F (λ )∗ for all λ ∈ D, and set µi = λi for 1 ≤ i ≤ n. By Proposition

B.3.28, we have[
I −G(µi)G(µj)

∗

1− µjµi

]n
i,j=1

=

[
I − F (µi )

∗F (µj )

1− µjµi

]n
i,j=1

=

[
I − F (λi)

∗F (λj)

1− λiλj

]n
i,j=1

=MT

is positive semidefinite. It follows that M is positive semidefinite.

Now, using Corollary B.3.29, we can show that the functions we require are indeed

kernels. The first is an Md(C)-valued kernel on D, and the second is a kernel on X × D.

Proposition B.3.30. Let F ∈ Sd×d. Define K : D× D→Md(C) by

K(λ1, λ2) =
I − F (λ2)∗F (λ1)

1− λ2λ1

for all λ1, λ2 ∈ D. Then K is an Md(C)-valued kernel on D.

Proof. Let λ1, . . . , λn ∈ D. By Corollary B.3.29, the matrix K = [K(λi, λj)]
n
i,j=1 is positive

semidefinite. Let v = [vi]
n
i=1 ∈ Cdn, where vi ∈ Cd for 1 ≤ i ≤ n. Then

n∑
i,j=1

〈K(λi, λj)vj, vi〉Cd =

〈[
n∑
j=1

K(λi, λj)vj

]n
i=1

, [vi]
n
i=1

〉
Cdn

= 〈Kv, v〉Cdn ≥ 0.

It follows that K is an Md(C)-valued kernel on D.

Proposition B.3.31. Let f : X → Cd be a function on a set X, and let F ∈ Sd×d.
Define a function k : (X × D)× (X × D)→ C by

k(x1, λ1, x2, λ2) = f(x2)∗
I − F (λ2)∗F (λ1)

1− λ2λ1

f(x1)

for all x1, x2 ∈ X and λ1, λ2 ∈ D. Then k is a kernel on X × D.

Proof. Let λ1, . . . , λn ∈ D. By Corollary B.3.29, the matrix[
I − F (λj)

∗F (λi)

1− λjλi

]n
i,j=1

∈Mdn(C)

is positive semidefinite. Hence, by Proposition B.3.24, k is a kernel on X × D.
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Corollary B.3.32. Let f : X × D → Cd be a function on a set X, and let F ∈ Sd×d.
Define a function k : (X × D)× (X × D)→ C by

k(x1, λ1, x2, λ2) = f(x2, λ2)∗
I − F (λ2)∗F (λ1)

1− λ2λ1

f(x1, λ1)

for all x1, x2 ∈ X and λ1, λ2 ∈ D. Then k is a kernel on X × D.

Proof. By Proposition B.3.31, the function given by

((x1, λ1), λ1, (x2, λ2), λ2) 7→ f(x2, λ2)∗
I − F (λ2)∗F (λ1)

1− λ2λ1

f(x1, λ1)

is a kernel on (X × D) × D. Hence, it is a hermitian symmetric positive semidefinite

function. Using this fact, it is easy to check that k is a hermitian symmetric positive

semidefinite function, that is, k is a kernel on X × D.

The following result is used frequently in this thesis, and so we give it here for conve-

nience. For kernels N and M on D2, we define a function KN,M : D2 × D2 → C by

KN,M(z, λ, w, µ) = 1− (1− wz)N(z, λ, w, µ)− (1− µλ)M(z, λ, w, µ)

for all z, λ, w, µ ∈ D.

Proposition B.3.33. Let N and M be kernels on D2. Suppose KN,M is a positive

semidefinite function. Then KN,M is a kernel on D2. Suppose, in addition, N and M are

holomorphic kernels. Then KN,M is a holomorphic kernel on D2.

Proof. It is easy to check that KN,M is hermitian symmetric. If KN,M is positive semidef-

inite, then KN,M is a kernel on D2. Suppose, in addition, N and M are holomorphic

kernels. Then they are holomorphic in the first variable and conjugate holomorphic in

the second. Let

f(z, w) = 1− wz

for all z, w ∈ D. Then clearly f is holomorphic in the first variable and conjugate holo-

morphic in the second. It follows that KN,M is a holomorphic kernel.
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[48] L. Kosiński and W. Zwonek, Extremal holomorphic maps in special classes of do-

mains, Ann. Sc. Norm. Super. Pisa Cl. Sci. 16 (1) (2016), 159-182.

[49] G. Misra, S. Shyam Roy and G. Zhang, Reproducing kernel for a class of weighted

Bergman spaces on the symmetrized polydisc, Proc. Amer. Math. Soc. 141 (7) (2013),

2361-2370.

[50] N. Nikolov, The symmetrized polydisc cannot be exhausted by domains biholomor-

phic to convex domains, Ann. Pol. Math. 88 (3) (2006), 279-283.

[51] N. Nikolov, P. Pflug and W. Zwonek, The Lempert function of the symmetrized

polydisc in higher dimensions is not a distance, Proc. Amer. Math. Soc. 135 (9)

(2007), 2921-2928.

[52] N. Nikolov, P. Pflug and W. Zwonek, An example of a bounded C-convex domain

which is not biholomorphic to a convex domain, Math. Scand. 102 (1) (2008), 149-

155.

[53] D. J. Ogle, Operator and Function Theory of the Symmetrized Polydisc, Thesis for

the degree of Doctor of Philosophy, Newcastle University, (1999).

[54] S. Pal, The failure of rational dilation on the tetrablock, J. Funct. Anal. 269 (7)

(2015), 1903-1924.

[55] S. Pal, Canonical decomposition of a tetrablock contraction and operator model, J.

Math. Anal. Appl. 438 (1) (2016), 274-284.

[56] J. R. Partington, Interpolation, Identification and Sampling, London Math. Soc.

Monographs 17, Oxford University Press, (1997).

[57] J. R. Partington, Linear Operators and Linear Systems: An Analytical Approach to

Control Theory, London Math. Soc. Student Texts 60, Cambridge University Press,

(2004).

[58] T. J. Ransford and M. C. White, Holomorphic self-maps of the spectral unit ball,

Bull. London Math. Soc. 23 (3) (1991), 256-262.

118



Bibliography

[59] D. Sarason, Generalised interpolation in H∞, Trans. Amer. Math. Soc. 127 (2)

(1967), 179-203.

[60] M. C. Smith, On stabilization and the existence of coprime factorizations, IEEE

Trans. Automat. Control 34 (9) (1989), 1005-1007.

[61] M. A. Whittlesey, Polynomial hulls and H∞ control for a hypoconvex constraint,

Math. Ann. 317 (4) (2000), 667-701.

[62] N. J. Young, An introduction to Hilbert space, Cambridge University Press, (1988).

[63] N. J. Young, The automorphism group of the tetrablock, J. London Math. Soc. 77

(3) (2008), 757-770.

[64] W. Zwonek, Geometric properties of the tetrablock, Arch. Math. 100 (2) (2013),

159-165.

119



Index

G, 32

H-valued Hilbert function space, 105

Hp, 91

Hd
p , 91

In, 85

KN,M , 114

Kx,u, 106

MF , 15

NF , 15

RH∞, 84

D, 3

D2, 1

E, 54

H, 84

T, 5

Γ, 32

Lower ESB, 47

Lower ET, 70

Left NSB, 37

Left NT, 61

Left SSB, 42

Left ST, 65

Lower WSB, 47

Lower WT, 71

Φ, 33

Ψ, 55

Right N, 30

Right S, 27

SE, 14

SWSB, 44

SWT, 67

Upper E, 15

Upper W, 23

Υ, 55

B(H), 90

B(H)-valued kernel, 105

B(H)-valued kernel function, 106

FP (X), 97

HK , 107

Hk, 102

Mn×m(C), 3

Mn(C), 3

R1, 7

R10, 17

R11, 7, 17

S2×2, 5

Sd×d, 111

S2, 5

S lf
2 , 69

Sb=c2 , 46

det, 32

η(λ, z), 13

γ(λ, z), 13

Hol (D, X), 1

B(H,G), 90

Diag, 4

µE , 3

µDiag, 54

D, 5

E, 54

E-inner function, 58

∂Γ, 34

ρ(a), 89

σ(a), 89

tr, 32

SB, 35

120



Index

T, 58

bX, 33

k(x, y), 100

kS, 110

kx, 100

Γ-inner function, 34

adjoint, 90

Agler kernels, 29

analytic B(H)-valued kernel, 108

Blaschke factor, 94

conjugate linear operator, 103

conjugate transpose, 91

criterion for Γ, 51

criterion for E, 74

distinguished boundary, 33

Factorisation Theorem, 94

Figure 1, 84

Figure 2, 84

Figure 3, 84

Figure 4, 87

finite Blaschke product, 94

Grammian, 94

Hardy space, 91

Hilbert direct sum, 92

Hilbert function space, 100

Hilbert tensor product, 92

holomorphic, 91

holomorphic kernel, 104

holomorphic space, 104

hypoconvex, 95

infinite Blaschke product, 94

inner function, 93

inner-product-reproducing kernel, 106

internally stable, 85

kernel, 100

kernel function, 100

linearly convex, 95
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Szegő kernel, 110

tetrablock, 54

well posed, 84

121


