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Abstract

Proportional hazards models are commonly used in survival analysis. Typically a baseline

hazard function is combined with hazard multipliers which depend on covariate values

through a logarithmic link function and a linear predictor. Models have been developed

which allow flexibility in the form of the baseline hazard. However, the form of dependence

of the hazard multipliers on covariates is usually specified. The aim of this research is

to introduce flexibility into the form of the dependence of the hazard function on the

covariates by removing the assumptions of parametric forms which are usually made.

Given sufficient data, this will allow the model to adapt to the true form of the relationship

and possibly uncover unexpected features.

The Bayesian approach to inference is used. The choice of a suitable prior distribution

allows a compromise which relaxes the assumption of a parametric form of relationship

while imposing enough structure to exploit the information in finite data sets by specifying

correlations in the prior distribution between log-hazards for neigbouring covariate profiles.

The choice of prior distribution can therefore be important for obtaining useful posterior

inferences.

A generalised piecewise constant hazard model is introduced, in which quantitative

covariates, as well as time, are categorised. Thus, the time and covariate space is divided

into cells, within each of which the hazard is a constant. Two forms of prior distribution

are considered, one based on a parametric model and the other using a Gaussian Markov

random field. When the number of covariates is large, this approach leads to a very large

number of cells, many of which might not represent any observed cases. Therefore, we

consider an alternative approach in which a Gaussian process prior for the log-hazards over

the covariate space is used. The posterior distribution is computed only at the observed

covariate profiles.

The methodology developed is applicable to a wide range of survival data and is illus-

trated by applications to two data sets referring to patients with non-Hodgkin’s lymphoma

and leukaemia respectively.
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Chapter 1

Introduction and Outline of Thesis

1.1 Introduction

This research is concerned with the methodology of flexible Bayesian modelling of covari-

ate effects in survival. A standard problem in survival analysis is to make inference for

covariate effects and baseline hazards from life time or survival data. The proportional

hazard model is well known to explore the relationship between the covariates and survival

(Cox, 1972). The key assumption of the proportional hazard model is that the hazard of

any individual is a fixed proportion of the hazard of any other individual. This implies that

the hazard ratio is dependent only on the covariates and not on the time. The baseline

hazard function is combined with hazard multipliers which depend on covariate values

through a logarithmic link function and a linear predictor. Most modelling in survival

analysis is usually done using a proportional hazard model.

Typically in survival analysis, assumptions of three kinds are made. The first is the

proportional hazard assumption. The second is the form of the baseline hazard. The

third is the form of the relationship between the covariate values and the hazards. Each

of these assumptions might not be appropriate and hence we can relax them to provide

a more flexible model. We can relax the first assumption by having a non-proportional

hazard model and we discuss one way to do this in Chapter 3 and 5 where it is done

with the piecewise constant hazard model. The form of the baseline hazard can also be

relaxed using the piecewise constant hazard model. The third assumption is the main

focus of this research. Thus, this research is aimed at introducing flexibility into the form

of the dependence of the hazard function on the covariates by removing the assumptions

of parametric forms which are usually made. There is the need to develop flexible models

that will capture the underlying shape of the data and allow the model to adapt to the true

form of the relationship and possibly uncover unexpected features. We discuss two ways

of relaxing the form of the relationship between the covariate values and the hazards using
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Chapter 1. Introduction and Outline of Thesis

the generalised piecewise constant hazard and the continuous parameter space model in

Chapter 6 and 7 respectively.

Parametric models for survival data may have the advantage of being simple to handle

because the visualization of the hazard function is much easier (Collett, 1994). Hence,

most analysts start out by fitting a parametric proportional hazard model to describe the

features of the data. The baseline hazard in these parametric models might not have a

simple form. One limitation of the assumed proportional hazard model which is the key to

its analytical simplicity in estimating the parameters is that the parameters stay constant

over time thereby forcing the covariates effects to have the same effect at all points in time.

The popular Cox semi-parametric model (Cox, 1972) is semi-parametric in the sense that

there is a parametric model for the dependence of the hazard multipliers on the covari-

ates but no parametric form is specified for the baseline hazard. Similarly, the piecewise

constant hazard model can be used as a relaxation of the assumption of a particular form

of baseline hazard. It allows the form of the baseline hazard to change. In addition, the

coefficients of the covariates can change over time and this allows for non-proportionality

of hazards whereby the proportional hazard (or accelerated life) assumption will be in-

appropriate. Cortese et al. (2009) discussed the limitations of the Cox model as not

capturing some important aspects of the data such as time varying covariate effects and

the need for more flexibility by allowing a semi parameteric Cox model using generalised

additive models. For example, the combinations of covariate values which suggest a high

risk of early death may not be the same as those which suggest a relatively short survival

once the initial phase has been survived. Gamerman (1991) and Wilson & Farrow (2010)

discussed modelling non-proportionality of hazards using the piecewise constant hazard

model with priors for the coefficients in the linear predictor taking the form of the system

evolution in a dynamic linear model. Sasieni (1992) extended the proportional hazard

model by allowing for the non-proportionality of hazards by incorporating time varying

regression coefficients. Zhao (2010) used a mixture model approach to non-proportionality

of hazards.

Typically, covariates contribute linearly to the logarithm of the hazard multiplier. This

may not be appropriate as a pure linear predictor may not be sufficient to capture complex

relationship between covariates and survival. Some non-linear function of the covariates

may be more appropriate. There may be interaction effects between covariates. This

suggests the possibility of using some kind of non-parametric regression on the covariates

rather than a specified (typically linear) functional form. There are various possibilities

for different forms of dependence on covariates, such as splines, basis function regression,

Bayesian classification and regression trees (C&RT) (Denison et al., 2002). Royston &

Parmar (2002) developed a flexible parametric model which was based on the assumption

of proportional hazards of covariate effects by using regression splines which are flexible
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mathematical functions. Zhou et al. (2014) checked the assumption of linear covariate

effects on survival using restricted cubic splines and Martingale residuals. Ripley et al.

(2004) demonstrated how a neural network can be used to allow for non-linear predictors

and covariate effects varying over time. Therefore, this research proposes some methods

for introducing flexibility in incorporating the covariates in the survival model since the

linear predictor may not be suitable. The Bayesian approach to inference will be adopted.

Existing approaches to creating flexibility in the form of dependence of the hazard

on covariates are linked with the form of the baseline hazard and non-proportionality of

hazards. Much effort has been focused on incorporating flexible baseline hazards and time

dependent covariate effect in survival analysis. Ibrahim et al. (2001) focused on the use

of gamma, beta and Dirichlet processes to model baseline hazards and time dependent

covariate effects.

Like most analysts, we start by discussing the proportional hazard model using a

parametric model for the hazard function and we illustrate inference for the covariate

effects and the baseline hazards using some example life time data. We will also fit a

piecewise constant hazard model which relaxes the assumption of a particular form for

the baseline hazard by having sub-divided time. Here, there is flexibility in modelling of

the baseline hazard and we check for time dependent covariate effects which is a form of

non-proportionality of hazards. In this research, we will demonstrate using the generalised

piecewise constant hazard model and continuous parameter space model as two ways of

introducing flexibility to covariate effects. In the generalised piecewise constant hazard

model, we categorise the quantitative covariates and make them ordinal and thus, we divide

the covariate space into cells. We will approach this either by having a prior based on

the parametric models (with main and interaction effects) or a Gaussian Markov random

field. In the continuous parameter space model, we give a Gaussian process prior.

Two sets of data with large numbers of patients are available for illustrations in this

research. One of the sets of data was provided by the Scotland and Newcastle Lymphoma

Group (SNLG) (Proctor, 2000). The data include survival times of patients with non-

Hodgkin’s lymphoma and a large number of covariates with some missing values. Earlier

work, notably the PhD project of Xioahui Zhao (Zhao, 2010), has mainly concentrated

on methods for dealing with missing data, both in the analysis of the data set and in

calculating prognostic indices for new patients. The other set of data was provided by the

North West Leukaemia Register in the United Kingdom (Henderson et al., 2002). This

data set has records of incidence and subsequent survival status of all leukaemia cases in

northwest England and includes survival times and a small number of covariates without

missing values.
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1.2 Why the Bayesian approach to inference?

The Bayesian approach to inference will be of interest in creating flexibility in the form

of the dependence of the hazard on covariates. The choice of a suitable prior distribution

allows a compromise which relaxes the assumption of a parametric form of relationship

while imposing enough structure to exploit the information in finite data sets by specify-

ing correlations in the prior distribution between log-hazards for neighbouring covariate

profiles. The choice of prior distribution can therefore be important for obtaining useful

posterior inferences.

1.3 Aims of the research

The main aims of this research are

• providing a Bayesian framework for flexibility in incorporating covariates into the

model.

• building a model where there is no restriction in the way that the covariates enter

the model.

• developing flexible models for covariate effects that could greatly improve the accu-

racy of predicting the survival.

In this research, we look at interesting questions to do with finding a “good” model

for the effects of the covariates. The specific objectives of this research are to answer the

following questions

• Can we fit survival models and make useful inferences without specifying the form

of the dependence on the covariates?

• Can we, at the same time, not specify the form of the baseline hazard?

• Can we allow non-proportionality of hazards?

• What are the practicalities involved and how can we overcome computational diffi-

culties?

• How do we specify meaningful prior distributions?

• How can we construct a prognostic index?
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1.4 Outline of the thesis

The two data sets used as illustrations in this research are introduced in Chapter 2.

The background knowledge about lymphoma and leukaemia will be provided along with

information on the Scotland and Newcastle Lymphoma Group (SNLG) data set collection

process. We will also give an overview of the explanatory covariates of both data sets.

Chapter 3 introduces survival analysis with censored data. We discuss the propor-

tional hazard and accelerated life models as ways of relating the covariates to the survival

distribution using a parametric approach like the Weibull distribution as an illustration.

The piecewise constant hazard model is discussed as an alternative to the usual parametric

model. We introduce frailty and illustrate with an example to show that it could cause

non-proportionality when included in the model. We review some important lymphoma

prognostic indices. These indices include the most widely used IPI (Shipp et al., 1993)

and FLIPI (Solal-Celigny, 2004) and others are AaIPI (Shipp et al., 1993), RIPI (Sehn

et al., 2007) and MIPI (Hoster et al., 2008).

Chapter 4 reviews Bayesian inference. We introduce the use of Bayes theorem and some

Markov chain Monte Carlo (MCMC) techniques which include the Metropolis-Hastings al-

gorithm, Gibbs sampling and Metropolis within Gibbs sampling. We provide some infor-

mation on the construction and elicitation of priors. The discussion on the construction of

priors for the model parameters will include quantitative, binary covariates and, unordered

and ordered factors. When fitting with MCMC methods, we may observe considerable

autocorrelation and poor mixing because of the correlations between model parameters.

Some approaches to improving mixing in MCMC when samples are strongly correlated

are suggested. The numerical approaches include the forward backward algorithm and the

use of a Gaussian approximation to find a suitable proposal distribution.

In Chapter 5, we will apply Bayesian inference to survival analysis using the two data

sets as illustrations. We illustrate the construction of priors for the model parameters for

quantitative, binary and categorical covariate parameters using the two data sets. The

usual assumptions of a proportional hazard model are illustrated using the non-Hodgkins

lymphoma data in using a Bayesian approach and a prognostic index is produced following

Zhao (2010). We discuss the piecewise constant hazard model as a model which allows the

relaxation of the form of the baseline hazard and one possibility of non-proportionality

of hazards if the covariate effects change over time. We illustrate the piecewise constant

hazard models with time varying covariate effects using both the non-Hodgkins lymphoma

and leukaemia data sets. The predictive median survival time and the fixed time survival

probability are suggested as ways of constructing the prognostic indices when using the

piecewise constant hazard model.

In Chapter 6, the generalised piecewise constant hazard model will be discussed as
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an extension of the piecewise constant hazard model where we introduce flexibility into

the form of the dependence of the hazard function on the covariate effects model by

categorising the covariates. Each combination of covariate profile with a time interval

corresponds to a node in a multidimensional rectangular lattice. We refer to these nodes

as cells. Associated with each cell is an unknown hazard value. We discuss the generalised

piecewise constant hazard model using two forms of prior distribution. One of the priors

will be based on a parametric model and the other uses a Gaussian Markov random field.

The structure of the former will allow for the use of prior beliefs about main and interaction

effects. In the Gaussian Markov random field prior, the log-hazard in each cell depends

on those in its neighbouring cells but is conditionally independent of all other log-hazards

given its neighbouring log-hazards. The generalised piecewise constant hazard model will

be illustrated using the leukaemia data set. We discuss numerical approaches of improving

the mixing of the MCMC by sampling the principal components of the log-hazards since

the principal components are uncorrelated in the prior which will improve mixing. Another

approach to improving mixing was splitting the log-hazard of an individual into two parts

where one part carries the dependence between the log-hazards and the other part was

the logarithm of the frailty of the individual. Thus, we sample the part that carries

the dependence. We make some comments on the computations using the generalised

piecewise constant hazard model and some alternatives to the approach.

Chapter 7 presents the continuous parameter space model using a Gaussian process

prior over the covariate space of the log-hazards as an alternative to the generalised piece-

wise constant hazard model where we leave the continuous covariates as they are. Each

observed covariate profile thus has a separate log-hazard and, in the prior, these are given

a correlation based on a distance measure in the covariate space. We suggested improving

the mixing using the numerical approaches discussed in Chapter 6.

In Chapter 8, we apply the methodologies mentioned in Chapter 6 and Chapter 7 to

the two sample data sets. We model the log-hazards representing the possible combination

of covariates using the generalised piecewise constant hazard model using priors based on

the parametric model and Gaussian Markov random field. We suggested some numerical

approaches to improving mixing in MCMC. We will also illustrate using the continuous

parameter space model using a Gaussian process prior and Weibull lifetime where we

increase the number of parameters so that there is exactly one parameter for each distinct

covariate profile in order not to have the constraints implied by the standard parametric

model. We illustrate improving poor mixing in the MCMC by sampling the principal

components of the log-hazards which are independent in the prior, sampling of the log-

hazards as a block by approximating the joint full conditional distribution as the proposal

distribution and by splitting the log-hazards into two parts to include log-normal frailties

in the model then sampling using the Cholesky decomposition. In the latter case, we
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separate the mean log-hazards excluding the frailties and we sample log-hazards one at

a time using the Metropolis-Hastings steps and then we sample the vector of mean log-

hazards not including frailties since it will have a multivariate normal full conditional

distribution.

Finally, Chapter 9 will summarise the project, make some conclusions and give ideas

for future work.

The methods developed are implemented in R functions (R Development Core Team,

2008).
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Chapter 2

Examples of Data

2.1 Introduction

This chapter introduces the two data sets used for illustrations in this research. The

background information, the process of data collection, definition and types of variables

of the data sets will be discussed.

2.2 Scotland and Newcastle Lymphoma Group (SNLG) data

2.2.1 Background and data collection

The Scotland and Newcastle Lymphoma Group (SNLG) was formed in 1977. It built up

a database on about 18,000 patients with lymphoma within Northern England and Scot-

land. The SNLG data set was collected over a period of 10-years (1992 to 2002). The

SNLG includes specialists from the disciplines of medicine, surgery, pathology, haematol-

ogy, radiology, medical and clinical oncolgy and other specialities. The data were provided

for this project by Professor Stephen J. Proctor, Dr. Michal Sieniawski and Ms Jo White.

These data are collected using a process known as Population Adjusted Clinical Epidemi-

ology (PACE) which was used by the Northern Regional Haematology Group (NRHG)

(Proctor, 2000). The data collected have been used by different groups of people working

in individual centres with the aim of promoting collaboration in the assessment of patients

with the disease, developing the procedures for assessing the extent of the disease, and to

promote co-operative prospective clinical trials.

The data set was an unselected data collection on all cases of lymphoma from North

England and Scotland which enabled the SNLG to become a leader in population lym-

phoma studies internationally. In this research, we will concentrate on the non-Hodgkin’s

lymphoma (NHL), a subset of the SNLG data set. NHL is one of the most common types

of lymphoma.
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2.2.2 Non-Hodgkin’s Lymphoma (NHL)

Non-Hodgkin’s Lymphoma (NHL) is the 6th most common cancer in the UK. NHL begins

in the lymphocyte cells which are found in the lymph nodes and other lymphoid tissues

like the bone marrow and spleen of the body (American Research Society, 2013). Can-

cer Research UK (2012) recorded around 12,200 cases of NHL each year in adults. About

4 out of every 100 cancers diagnosed are NHL. American Research Society (2013) also

records that NHL accounts for about 4% of all cancer cases and 95% of the NHL cases

occur in adults in the United States. The lymphatic system consists of lymph vessels that

run throughout the body. It is part of the immune system and fights infections and other

diseases. Hence, the lymph nodes are the most common places where the NHL is first

found. It can also occur in other organs of the body (Cancer Research UK, 2012).

NHL begins when the lymphocytes (white blood cells) of the body behave abnormally

by dividing themselves continuously before they are fully matured and hence, produce too

many cells which fail to die off naturally as they ought to. These abnormal cells do not

protect the body but rather form a mass of tissue.

NHL is normally classified by the type of cell affected. There are two main types of

lymphocytes cell. These are the B lymphocytes (B-cells) and T lymphocytes (T-cells). We

have B-cell lymphoma or T-cell lymphoma. The B-cells produce proteins which protect

the body against bacteria (American Research Society, 2013) while the T-cells help to

destroy the infected cells and release substances to attract other types of white blood cells

which take part in digesting these infected cells. The B-cell lymphoma is mostly common

with aged or older NHL patients while T-cell lymphoma is more common in teenagers and

younger adults (Cancer Research UK, 2012).

2.2.3 Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma (DLBCL) is the most common type of NHL. It is a cancer

of the B-cells. The diffuse large B-cell lymphoma occurs when B lymphocytes continue

to develop and get matured and larger than normal and stop responding to signals that

limit the growth and reproduction of cells.

The first sign of the condition is often a painless swelling in the neck, armpit or groin,

caused by enlarged lymph nodes. Sometimes lymph nodes in more than one part of the

body are affected. In some people, DLBCL does not start in the lymph nodes but rather

develops in another part of the body like the stomach, lungs, skin, thyroid, brain or even

spinal cord. These are called extranodal disease. The lymphoma may spread to various

organs in the body such as the liver, lungs or bones. Some people may experience a loss of

appetite and tiredness. Some other symptoms which are known as B symptoms, include

night sweats, unexplained high temperatures and weight loss. DLBCL can be diagnosed
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by removing an enlarged lymph node (biopsy) and examining the cells under a microscope.

Some additional tests include blood tests, x-rays, scans and bone marrow samples which

are done to find out more about the type and extent of spread of lymphoma.

DLBCL can occur at any time between adolescence and old age but is most commonly

diagnosed around an average age of 65 years (American Research Society, 2013). DLBCL

is slightly more common in men than in women (Tilly & Dreyling, 2009). The causes of

DLBCL are unknown. Like other cancers, DLBCL is not infectious and can not be passed

on to other people (Vickers, 1999).

2.2.4 An overview of explanatory variables of the SNLG data set

One of the data sets used as an example in this research is the SNLG data set. The time to

death or last follow - up which is the overall survival (OS), the time to first relapse (TFR)

and the censoring indicator which was “1” for death and “0” for censoring were given in

the data. In this section, we will present fourteen prognostic variables chosen following

the clinical research by Prof Proctor, Dr Sieniawski and Mrs White. These variables used

were continuous, binary or categorical.

Age: This explanatory variable refers to the patient’s age at diagnosis. NHL can

happen at any age but Cancer Research UK (2012) recorded that about 6 in 10 of all

cases of diagnosed NHL are aged at least 65 years. Age was recorded as a continuous

variable. The average age in the DLBCL data set is 62 years and the standard deviation

is 14.2.

Sex: This variable describes the gender of patients. Sex is a 2-level categorical variable.

The value 1 was used for male and 2 was for female. There were 704 males and 687 females

in the data. Cancer Research UK (2012) recorded that NHL was slightly more common

in men than in women.

Stage: This involves the extent of spread of the disease. It is usually advised that

further tests be done to assess the extent of spread (staging) of the disease, size of the

tumour and whether the lymph nodes containing the cancer has spread from the origi-

nal site to other parts of the body once NHL is diagnosed. Staging involves a number

of tests like physical examination, biopsies of enlarged lymph nodes or other abnormal

areas, blood tests, imaging tests such as computer tomography (CT) scans, bone marrow

aspiration and biopsy (not always carried out) and lumbar puncture (may not be carried

out) (Cancer Research UK, 2012).

The Ann Arbor staging system in Table 2.1 (Goffinet et al. (1973); Hirsh (1990)) is

the first and most often used staging system to describe the extent of spread and location

of NHL in adults. Stage is an ordinal categorical variable. The stages are described using

Roman numerals I, II, III and IV (1-4). Stage I, II, III and IV are also called Early, Locally

Advanced, Advanced and Widespread disease respectively (Lymphoma.org, 2016). In this
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thesis, the stages were recorded with the values 1,2,3 and 4. The Ann Arbor staging

system was used.

Table 2.1: Ann Arbor staging system

Stage Description

I The lymphoma is found in one lymph node region or
one region of a single organ outside the lymph system .

II The lymphoma is found in two or more lymph node regions and on one of
the sides of the diaphragm alone.

III The lymphoma is found in lymph nodes regions on both sides of
the diaphragm.

IV The lymphoma has spread to one or more organs or tissues outside the
lymphatic system, with or without involving a nearby lymph node.

Eastern Cooperative Oncology Group (ECOG) performance scale: This vari-

able is a scale and criterion used by doctors and researchers to assess the progress and

how the disease affects the daily living abilities of the patient (Oken et al., 1982). This

is an ordinal categorical variable. ECOG has a scale from 0 to 5. The value 5 indicates

that the patient is dead so the ECOG scale is normally taken from 0 to 4. The ECOG

performance is given in Table 2.2. In this thesis, the variable ECOG was recorded with

Table 2.2: ECOG performance scale

Performance Scale definition

0 The individual is fully active and has no restrictions on performance.

1 The individual is restricted from performing strenuous physical activities
but he or she is allowed to carry out light work.

2 The individual is capable of taking care of himself or herself but unable to
carry out any work activities.

3 The individual is capable of partially taking care of himself or herself but
confined to bed or chair more than 50% of waking hours.

4 The individual is completely disabled and confined to bed or chair.
He or she can not take care of himself or herself.

the values 1,2,3,4 and 5.

Serum Lactate Dehydrogenase (LDH): This variable is one of the group of en-

zymes found in the blood and other body tissues. It is involved in the production of energy

in cells. An increase in the amount of LDH in the blood may be a sign of tissue damage.

LDH can be used as either a continuous or categorical variable (Longmore & Longmore,

2007). In this thesis, the normal range of LDH was used as values between 70 to 250
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IU/L and the value was not recorded when it was “normal”. Endrizzi et al. (1982) used

three levels of LDH. Level 1 (normal range) with LDH value less than 250 international

units per litre (IU/L), level 2 (moderately increased) with LDH between 250IU/L and

500IU/L and level 3 (highly increased) with LDH more than 500IU/L. Butt et al. (2002)

recorded the normal range of LDH as between 100IU/l and 250IU/L. The lower limit level

and upper limit level varies in different hospital because of the use of different calibra-

tions. The difference between the LDH level and LDH upper limit was divided by their

corresponding upper limit ((LDH.level - LDH.upper.limit)/LDH.upper.limit). However,

because the lower and upper limit varies between hospital, Endrizzi et al. (1982) system

was modified as will be discussed below.

Suppose we let the observed LDH be L and the corresponding upper limit for the

hospital where the measurement was made be Lu. To allow for the calibration differences,

we give the value “1” if L < Lu, “2” if Lu < L < 2Lu and “3” if L > 2Lu. Equivalently,

we give “1” if log L
Lu

< 0, “2” if 0 < log L
Lu

< 0.7 and “3” if log L
Lu

> 0.7 (where log 2 is

≈ 0.7). Hence, our coding 1, 2, 3 corresponds to level 1, level 2 and level 3 respectively

with allowance for calibration. Zhou et al. (2014) in the development of the National

Comprehensive Cancer Network International Prognostic Index (NCCN-IPI), categorised

LDH ratio into > 1, > 2 and > 3 (using normal LDH (ratio ≤ 1) as a reference). We will

note that the actual values of LDH could be used in cases where they are available.

Haemoglobin (HB): This variable is a protein that enables the red blood cells to

carry oxygen from the lungs to the rest of the body. The amount of haemoglobin deter-

mines how much oxygen the red blood cells are capable of carrying to other cells. Low

or reduced HB may be due to low red cell mass and could lead to inadequate concentra-

tion of oxygen within the vital organs. The reference normal levels of haemoglobin has

a range from 130 to 180 grams per litre (g/dl) for men and 115 to 160 grams per litre

(g/dl) for women (Longmore & Longmore, 2007). Smokers often show an increase in their

haemoglobin level. The HB level in the data used in this thesis has continuous values

between 70 and 180 (g/dl). Haemoglobin will be used as a continuous variable.

White Blood Cell (WBC): These are also called leukocytes. The WBC make up

part of the immune system and defend the body against infection and foreign materials.

The WBC just like other blood cells are produced in the bone marrow. If the WBC of

a patient is above its upper limit of normality, this signifies the presence of infection,

inflammatory processes and cancer in the bodies. On the other hand, a low WBC signifies

there are many factors of viral infection, HIV infection or marrow infiltration (Longmore

& Longmore, 2007). WBC is measured in 109/l. LaFleur-Brooks (1994) classified patients

with White Blood Cell Count between 4 × 109/l and 11 × 109/l as those with healthy

condition. Johnston (1996) recorded the normal range of WBC as values between 3.9 ×
109/l and 11.3 × 109/l. In this data set, WBC will be a continuous variable with values
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between 1× 109/l and 30× 109/l.

Binary variables

Some of the covariates used were represented as binary variables. In principle, the

variables serum albumin, alkaline phosphatase and blood urea nitrogen are continuous.

However, in the NHL data, measurement of the variables in the normal range were recorded

as “normal” while measurements outside normal range were not recorded. Hence, in this

thesis, these binary variables were coded 1 for “normal range”, 2 for “abnormal”, and 9

for “missing”.

Serum Albumin (Albumin): This is the most abundant type of protein in the

blood. It promotes the transfer of nutrients and wastes to and from the blood and cells.

It is manufactured in the liver and decreases in chronic liver disease. It also reflects one’s

general nutritional status. Albumin has a normal range of concentrations in blood of 35

to 50 grams/litre (g/l) (Longmore & Longmore, 2007). Low albumin suggest malignancy

while high albumin indicate dehydration.

Alkaline Phosphatase (AP): This reflects the alkaline blood pH. An increased

alkaline phosphatase indicates an alkaline blood system and inefficient mineral transfer to

the cells. A decreased alkaline phosphatase expresses an exhausted adrenal system and

an acid blood system (common in chronic disease). The AP has a normal range of 50 to

150IU/L for non pregnant adults (Longmore & Longmore, 2007).

Blood Urea Nitrogen (urea): This is the waste from the liver which is processed by

the kidneys. Blood urea nitrogen also reflects carbohydrate storage in the liver associated

with the kidneys. It tends to increase in dehydration and in kidney or heart failure. An

increase in blood urea nitrogen can also indicate that the liver is inactive. A decrease

in blood urea nitrogen indicates that the pancreas and/or adrenal gland is inactive. The

normal range of blood urea nitrogen for an adult is between 2.5 and 6.7 mmol per litre

(Longmore & Longmore, 2007).

Extranodal without Bone Marrow (extranod): This occurs when the lymphoma

starts in areas outside the lymph nodes (Cancer Research UK, 2012). Such lymphomas

can develop in other tissues around the body such as the kidneys and gut. The value 1

is used to indicate a patient with extranodal disease without an indication from the bone

marrow otherwise the value 2 or the value 9 was used if missing.

Bulk Disease (Bulk): This is used to describe a lymph node mass measuring 10 cm

(4 inches) or more in its greatest dimension or at least one-third as wide as the chest as

determined by computed tomography(CT) scan (Longmore & Longmore, 2007). However,

some authors suggested a variety of sizes of nodal mass. Federico et al. (2009) suggested

6cm as the best size for the definition of bulky disease for follicular lymphoma and Cheson

et al. (2014) suggested 6 to 10cm for DLBCL patients who were treated with rituximab.

In this thesis, the value 1 is used to indicate a patient with bulk disease otherwise the
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value 2 or the value 9 was used if missing.

Bone Marrow Involvement (marrow): Bone marrow is a spongy material in the

center of bones where blood cells are made (Cancer Research UK, 2012). Bone marrow

biopsy (BMB) is often performed even when the likelihood of its involvement is low (Che-

son et al., 2014). The positron emission tomography (PET)-computed tomography (CT)

is more sensitive than BMB. If the PET or CT is performed, the BMB is no longer re-

quired. In this thesis, the value 1 is used to indicate that a patient has shown the evidence

of the lymphoma disease by the cause of bone marrow otherwise the value 2 or the value

9 was used if missing.

B-symptoms (Bsy): This is an indicator variable to show whether a patient has

specific symptoms. A patient is said to have B-symptoms if he or she has weight loss,

fevers or night sweats. The presence or absence of B-symptoms has a significance for the

prognosis and can be seen in the staging of NHL. In this thesis, the value 1 was used to

indicate the absence of B-symptoms while the value 2 was used to indicate the presence

of B-symptoms and 9 was used to indicate missing values.

In the SNLG data set, the covariates age, sex and stage were the only completely ob-

served covariates. There are missing data in the other covariates. Out of the 1391 patients,

there are only 636 patients having all 14 complete covariates. Table 2.3 summarises the

number of missing covariates with the corresponding number of patients.

Table 2.3: Table showing the number of missing covariates with the corresponding number of
patients

Number of missing covariates Number of patients

0 636
1 449
2 188
3 57
4 22
5 18
6 12
7 8
8 0
9 1

A cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy

has been the standard therapy for diffuse large B-cell lymphoma. All patients in the SNLG

data set are known to have received CHOP. The addition of rituximab to CHOP has been

shown to improve outcome in elderly patients with DLBCL (Sehn, 2005). There is also a

smaller data set of 309 patients who were treated with rituximab (Zhou et al., 2014). The
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variables used in both data sets were exactly the same.

2.3 Leukaemia Data

2.3.1 Background

The leukaemia data set from the North West Leukaemia Register in the United Kingdom

(Henderson et al., 2002) was also used in this thesis. This database hold records of

incidence and subsequent survival status of all leukaemia cases in northwest England.

Results were recorded for 1043 patients who were diagnosed with acute myeloid leukaemia

between 1982 and 1998.

Leukaemia is a cancer of the blood-forming cells. Like lymphoma and other cancers,

it develops when some cells in the body start to grow out of control. These cells might

be dividing too quickly and build up in large numbers. Leukaemia starts from the bone

marrow and sometimes spreads from there into the bloodstream and to other parts of the

body. Leukaemia is described as either lymphoid or myeloid. This is dependent on the

blood-forming cell in which it develops. People with leukaemia experience some common

symptoms like tiredness, inability to work and breathlessness on exertion which are caused

by lack of red blood cells. They also have an increased risk of developing infections due

to lack of white blood cells. Sometimes, leukaemia patients have bruises and bleeding

from some part of the body such as the nose due to lack of platelets which normally help

with blood clotting. Some other symptoms are like those of lymphoma. Fast developing

leukaemia is called acute leukaemia otherwise it is called chronic leukaemia.

Leukaemia could be diagnosed by conducting some blood and bone marrow test to

check the counts of the different blood cells. Sometimes, bone marrow biopsy can be

carried out like in the case of lymphoma.

2.3.2 An overview of explanatory variables of the leukaemia data

The data set includes four covariates which are the age, sex, white blood cell count (WBC)

and a measure of deprivation of the area of residence which uses the Townsend score

(Thunhurst, 1988). There were 879 (84%) patients who died and 164 (16%) patients who

were censored. The data set includes time in days until the death of the patient. The

censoring indicator was “1” for death and “0” for censoring. The variables used in this

leukaemia data set are discussed below.

Age: This is the age (in years) of the patient. Leukaemia can occur at any age but it

is more common between the ages of 2 and 5 years. The risk of leukaemia also increases

again in individuals aged over 45 years. Acute leukaemia is most common in adults. The

average age in the leukaemia data set is 60.7 years and the standard deviation is 18.3 years
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Sex: This is the sex of the patient. Yamamoto & Goodman (2007) record that

leukaemia occurs more frequently in males than females. Female was indicated as 0 while

male as 1. There were 547 males and 496 females in the data.

White blood cell (WBC): This is the white blood cell count (1 unit is 50× 109/l)

(see Section 2.2.4)

Deprivation score (Depsc): The deprivation score is a measure of poverty/affluence

for the residential location of the patient. It uses the Townsend score (Thunhurst, 1988)

on a scale from −7 to 10 (lower values indicate more severe deprivation).

The treatment of leukaemia depends on the age, kind of leukaemia and the general

health of the patient. Leukemia treatments include, chemotherapy, immunotherapy, radi-

ation therapy, stem cell transplantation and surgery. The first treatment offered to people

diagnosed with leukaemia is chemotherapy. This involves destroying both the good and

bad cells from the bone marrow. The good cells are grown back in the marrow which

recovers the blood counts. The kind of leukaemia determines the number of courses of

chemotherapy treatment. Some patients could have bone marrow and stem cell transplan-

tation. This treatment involves destroying cancerous bone marrow cells using higher doses

of chemotherapy or radiotherapy. These cells are replaced with healthy bone marrow or

stem cells which help patients build a new and healthy immune system. Most patients

now receive rituximab like the lymphoma patients.

2.4 Summary

In this chapter, we have given details of the background information of the data sets that

will be used as illustrations in the project. We also gave an overview of the types of

covariates in each of the data sets.
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Introduction to survival analysis

3.1 Introduction

This chapter describes some basic aspects of survival analysis, based on previously pub-

lished work.

Survival analysis involves the modelling of time to event data which may include dealing

with “incomplete” or “censored” data. For further background details see, for example

Hosmer & Lemeshow (1999), Lee & Wang (2003) and Kleinbaum & Klein (2005).

Section 3.3 reviews preliminary work that has to do with relating covariates to the sur-

vival distribution using the proportional hazard and the accelerated life models. The form

of the survival distribution could either be specified as a parametric or non-parametric

form. Section 3.4 and 3.5 will review parametric forms such as the Weibull distribution

and semi-parametric which combines a parametric model for the covariate effects and a

non-parametric form for the baseline distribution such as a piecewise constant hazard

model. We discuss investigating non-proportionality in survival analysis using a piecewise

constant hazard model with time varying covariate effects. The hazard or survival func-

tion of an individual may depend on some unmeasured or unknown set of covariates or

risk factors called frailties. We discuss with an illustration that frailties can cause a form

of non-proportionality of hazard in survival modelling. Section 3.7 introduces prognostic

indices as the logarithm of the hazard multiplier and as being used to predict the outcome

in patients. We give a review of some prognostic indices across lymphoma subtypes in

Section 3.8. Background knowledge about the International Prognostic Index (IPI) for

aggressive lymphoma, Age-adjusted International Prognostic Index, Follicular Lymphoma

International Prognostic Index, Revised International Prognostic Index, Mantle Cell In-

ternational Prognostic Index and National Comprehensive Cancer Network International

Prognostic Index will also be reviewed in Section 3.8.
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3.2 Survival analysis

Survival analysis is a statistical methodology for analysing data for which the variable of

interest is the time until an event occurs. The simplest case comes from how long people

live until death. The event which terminates the time interval need not be death. Other

examples of time to some events are time till failure of a machine, time till discharge from

hospital after a surgery et.c. The event is often called a failure and the time taken till

failure is called the failure or survival time. Survival analysis can also be used in many

fields of study like medicine, biology, health, engineering, economics et.c.

Survival analysis is different from standard regression methods because times usually

have skewed distributions and are always non-negative, variances usually depend upon

covariates and survival times are often censored (see Section 3.2.1).

3.2.1 Censored data

Censoring is a nearly universal feature of survival data which occurs when we have some

information about the individual but we do not know the exact survival or failure time.

Censored data can also mean that the observations are incomplete or partially known. We

could have left, right and interval censoring.

Right censoring occurs when the failure time is known to be larger than some given

time. There are many reasons that make it difficult to get complete data in survival time.

The most common reason is that the study finishes before all subjects experience the event

of interest and we disregard when the subject really had the event. We assume that for

an individual i, there is a lifetime Ti and a fixed censoring time Ci. If the exact lifetime

of the individual, Ti is greater than or equal to Ci ( Ti ≥ Ci), the individual is a survivor

and is right censored at Ci. Right censoring is common in almost all survival data.

In left censoring, the event of interest is known to have occurred before the censoring

time. The exact failure time is less than the censoring time. The event of interest has

already occurred for the individual before that person is observed in the study.

Interval censoring occurs when the interval of the failure time is known. Interval

censoring occurs when the exact failure time lies between a lower and upper limit. Such

censoring occurs when subjects have periodic follow-up and the event time is only known

to fall in an interval.

3.2.2 The Survival Function

Let the survival time ti of an individual i be a realisation of a non-negative random variable

Ti with probability density function fi(t) and cumulative distribution function (cdf) Fi(t).
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Then, the lifetime distribution function of Ti, Fi(t), is given by

Fi(t) = Pr(Ti < t)

and the probability density function fi(t) is given by

fi(t) =
d

dt
Fi(t)

The survival function Si(t) of an individual i can be defined as the probability that the

individual survives longer than some specified time t where t ranges from 0 to ∞ (Lee &

Wang, 2003). The survival function can be given as

Si(t) = Pr(Ti ≥ t) = 1− Fi(t) =

∫ ∞
t

fi(t)dt

Survival functions decrease as the time t increases and hence, they are non-increasing.

The survival function at time t=0 is 1. This means that, at the start of the study, no

subject has reached the event yet so the probability of surviving past time 0 is one.

3.2.3 The Hazard Function

The Hazard function hi(t) of an individual i can be expressed mathematically as

hi(t) = lim
∆t→0

Pr(Ti < t+∆t|Ti ≥ t)
∆t

= lim
∆t→0

Fi(t+∆t)− Fi(t)
Si(t)∆t

=
fi(t)

Si(t)

The cumulative hazard function Hi(t) of an individual i is given by

Hi(t) =

∫ t

0
hi(z)dz

The cumulative hazard function can be expressed in terms of the survival function since

the hazard function can be written in terms of the survival function. It follows that

d

dt
log[Si(t)] =

1

Si(t)
× d

dt
Si(t)

= − fi(t)
Si(t)

= −hi(t)
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We will have that

log[Si(t)] = −Hi(t)

Hence, the relationship between the survival function and the corresponding cumulative

hazard function is given as

Si(t) = exp {−Hi(t)}

The relationship between the survival and hazard function in terms of integral is

S(t) = exp

{
−
∫ t

0
h(u)du

}
and in terms of derivative is

h(t) = − 1

S(t)

dS(t)

dt

The hazard function is always non-negative and has no upper bound.

A survival model includes two features. One of them is how we relate the covariates to

the distribution so that we can distinguish between individuals and the other is the form

of the survival distribution.

3.3 Relating covariates to the survival distribution

The proportional hazard and accelerated life models are both ways of relating the covari-

ates to the survival distribution.

3.3.1 Proportional hazards model

The proportional hazard model is the most commonly used method to relate the hazard

function to the covariate values for an individual using the proportionality assumption.

Cox (1972) proposed using the proportional hazard model in medical testing analysis and

modelling the effect of explanatory variables on survival. Suppose we have S covariates for

s = 1....S and n individuals for i = 1.....n. We denote the covariate vector for an individual

i by Xi = (1, xi,1, xi,2, ....xi,S). These covariates may be continuous or discrete, categorical

or even indicator variables (equal to 1 if present and 0 if absent). The proportional hazard

model assumes that any two individuals i and j with the hazard function hi(t) and hj(t)

at time t and covariate vectors Xi = (1, xi,1, xi,2, ....xi,S) and Xj = (1, xj,1, xj,2, ....xj,S),

have their hazards related by

hi(t) = λi,j × hj(t)

We have that λi,j is a constant and does not depend on t. The proportional hazard model

can also be written as:

hi(t) = λi × h0(t) (3.1)
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where h0(t) is the baseline hazard function which is a function of time t but does not

involve the covariates Xi = (1, xi,1, xi,2, ....xi,S). The quantity λi is the hazard multiplier

which depends on (or is related to) the covariates of the individual i but not on the time

variable t. We must have that λi ≥ 0. This is usually done using a logarithmic link

function to a linear predictor ηi. So,

log λi = ηi = β0 +
S∑
s=1

βsxi,s (3.2)

where xi,s is the value of covariate s for subject i and β0 is the baseline parameter. The

linear predictor can then be used as a prognostic index.

3.3.2 Accelerated life model

The accelerated life model is another way of incorporating explanatory variables in a

model where we relate the survival function to the covariates. Instead of scaling the

hazard functions, we scale time in the survival function in the accelerated life model. In

an accelerated life model, we assume that the survival function Si(t) for individual i with

covariates vector Xi = (1, xi,1, xi,2, ....xi,S) takes the form

Si(t) = S0(ϕit)

where S0(t) is the baseline survival function and ϕi is a positive constant which is called

the acceleration factor which depends on the covariates of individual i. Hougaard (1999)

compared the proportional hazard models with accelerated life models.

3.4 Parametric approach to survival modelling

We can choose either a parametric or a non-parametric form when specifying the form

of the survival distribution. Models with a non-parametric form for the baseline dis-

tribution are often combined with a parametric model for the covariate effects giving a

semi-parametric model.

We could specify the baseline hazard in a proportional hazard model or the base-

line survival function in an accelerated life model by giving a standard parametric form,

such as a Weibull distribution. This is called a parametric model. Parametric modelling

offers relatively straightforward modelling and analysis techniques provided that the cho-

sen distribution is appropriate and it makes efficient use of data. The commonly used

parametric forms for lifetime distributions include the Weibull, Gompertz and log-logistic

distributions.
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3.4.1 Weibull distribution

The Weibull distribution (Weibull, 1951) is an important and widely used distribution in

survival analysis. The Weibull distribution is a very flexible distribution for lifetimes data.

It is a generalized form of the exponential distribution.

The distribution function of a Weibull distribution with scale parameter λ and shape

parameter α is given by

F (t) = 1− exp {−λtα}

It has a hazard rate that is monotone increasing if α > 1, monotonic decreasing if α < 1

or constant if α = 1. The Weibull model reduces to an exponential model when α = 1.

The shape of the Weibull distribution depends upon the value of α which is the reason

for referring to this parameter as the shape parameter. The probability density function

of the Weibull distribution is given by

f(t) = λαtα−1 exp {−λtα}

The scale parameter λ can be used to incorporate the covariates. The linear predictor of

an individual (ηi) would be given as

ηi = g(λi)

where g is a known function called the link function which must be monotonic and differ-

entiable. Usually,

ηi = XT
i β

where XT
i is the transpose of the vector Xi = (1, xi,1, xi,2, ....xi,S) which are the covariates

of the individual i and the vector of parameters β = (β0, β1, . . . , βS)T

We could then have λi as

λi = exp {ηi}

= exp
{
XT
i β
}

So, g(λi) = log λi.

The survival function of the Weibull distribution with scale parameter λ and shape pa-

rameter α is given by

Si(t|λi, α) = 1− Fi(t) = exp {−λitα} (3.3)
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The hazard function hi(t) of the Weibull distribution could also be determined since

hi(t) =
fi(t)

Si(t)

= λiαt
α−1

= λih0(t)

h0(t) = λ0αt
α−1

where h0(t) is the baseline hazard function. The simplicity of survival, hazard and proba-

bility density functions of the Weibull distribution has made it a very popular parametric

model. It can also be used in either a proportional hazard or accelerated life model.

3.4.2 Likelihood functions

Suppose that we have n individuals with lifetimes governed by a survival function S(t) with

probability density function f(t). We suppose that the ith individual has an observation

time ti. The general form of the likelihood, where some observations are right censored is

L =
∏
i∈E

f(ti)
∏
i∈C

S(ti)

where C is the set of right censored individuals and E is the set of individuals that had

the event. The probability density function is denoted by f(t) and the survival function

is also denoted by S(t). The contribution of a right censored observation to the likelihood

is S(ti). This is the probability that the patient is still alive at time ti.

Let D = (T,X, δ, S, n) where:

X is a n by (S + 1) matrix such that the ith row of X is (1, xi,1, . . . , xi,S) given that

xi,1, xi,2.....xi,S are the covariate values for ith individual,

n is the number of individuals,

S is the number of covariates used in the model,

T = (t1, t2, .......tn)T , where ti is the event or censoring time for the ith individual and

δ = (δ1, ....δn)T , where δi is the event indicator which indicates whether the individual

died or was right censored. We have

δi =

1 if the individual died

0 if censored

Since h(t) = f(t)
S(t) , we have f(t) = h(t)S(t). Therefore, the likelihood is

∏
hδii (t)Si(t) =

[∏
E

hi(t)

][∏
E∪C

Si(t)

]
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Suppose that the lifetime random variable has a Weibull distribution with parameters

(λ, α). The probability density function of the ith individual is denoted by

f(t|λi, α) = λiαt
α−1 exp {−λitα}

The survival function for the individual is given by

S(t|λi, α) = exp {−λitαi }

The likelihood contribution from the data is then given by

L(β, α|D) =
∏
i∈E

f(ti|λi, α)
∏
i∈C

S(ti|λi, α)

=
∏
i∈E

λiαt
α−1
i

∏
i∈E∪C

exp {−λitαi }

=

[∏
i∈E

λi

]
αnD

[∏
i∈E

tα−1i

]
exp

{
−
∑

i∈E∪C
λit

α
i

}

where nD is the number of individuals in E.

3.5 Semi-parametric hazard models

A semi-parametric approach to specifying the hazard is often preferable to a fully para-

metric model (Sinha & Dey, 1997) to avoid specifying the time dependence parametrically

and hence, mis-specifying the parametric form. We will discuss the piecewise constant

hazard model and time varying covariate effects model as semi-parametric models.

3.5.1 The piecewise constant hazard (PCH) model

The piecewise constant hazard model is one of the most convenient and popular models for

a semi-parametric approach to survival modelling. It is flexible and relaxes the assumption

of a particular form for the baseline hazard by having sub-divided time where the baseline

hazard h0(t) and the linear predictor are assumed constant in each interval. It also serves

as a benchmark for comparisons with the fully parametric models for survival data. Bres-

low (1972, 1974) proposed the use of piecewise constant hazard model in survival data

analysis and as a replacement of the proportional hazard model. The piecewise constant

hazard model is sometimes called piecewise exponential because within each interval, the

conditional distribution is exponential. The advantage of the piecewise constant hazard

model is that the overall shape of the hazard function does not have to be imposed in

advance. Kalbfleisch & Prentice (1973) suggested that the cut points should be selected
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independently of the data. However, there is an arbituary choice of cut points.

In the PCH model, the time t is partitioned into J disjoint intervals with J − 1 cut

points given as 0 = τ0 < τ1 < τ2 < .....τJ−1 < τJ = ∞ (Ibrahim et al., 2001). The jth

interval is defined as [τj−1, τj) for j = 1, 2, ....J with τ0 = 0 and τJ = ∞. The hazard is

constant within each interval but is allowed to vary from one interval to another. Thus,

the hazard function for individual i, hi(t) for each interval could be written as

hi(t) =



hi,1(t) for 0 ≤ t < τ1

hi,2(t) for τ1 ≤ t < τ2
...

hi,J−1(t) for τJ−2 ≤ t < τJ−1

hi,J(t) for t ≥ τJ−1

3.5.2 Time varying covariate effects

The proportional hazard model assumption has become widely used but it might not be

true as the effects of covariates might vary over time. The proportional hazard model is

unable to describe time varying covariate effects. If we ignore the time varying covariate

effects and assume constant effects, the results for our model could be incorrect and hence,

we have wrong conclusions. For instance, in the piecewise constant hazard models, we allow

the baseline hazard to change at points but the coefficients of the covariates do not change.

In this case, it is still a proportional hazard model. However, non-proportional hazards

could arise if the covariate effects change over time. In some applications, especially cases

with large population sizes, the effect of the covariates could be weaker if the follow up

times were longer and the proportional hazard assumption might be violated.

3.5.3 Piecewise constant hazard model with time varying covariate ef-

fects

We can allow the effects of the covariates to vary over time. The piecewise constant hazard

model with time varying covariates effects can be a very useful way to investigate the

problem of non-proportionality present in the data. Gamerman (1991) allowed dependence

on the covariates to change at points which makes the hazards non-proportional and allow

time varying covariate effects. Martinussen & Scheike (2006) also developed dynamic

survival models in which the coefficients varied over time.

If we suppose a piecewise constant hazard model with time varying covariate effects,
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the hazard function hi,j(t) for individual i in the jth interval for j = 1, 2, .....J is given by

hi,j(t) = h0,j(t) exp

{
S∑
s=1

βj,sxi,s

}

where xi,s denotes the value of the covariate s for the ith individual and βj,s is the regression

parameter for the covariate s in the jth interval.

The cumulative hazard function for a patient i, Hi(t) is given by

Hi(t) =

∫ t

0
hi(t)dt

=
k−1∑
j=1

∫ τj

τj−1

hi,j(t)dt+

∫ t

τk−1

hi,k(t)dt

=

k−1∑
j=1

hi,j(t)(τj − τj−1) + hi,k(t)(t− τk−1)

The survival function for a patient i, Si(t) can then be given by

exp

−
k−1∑
j=1

hi,j(t)(τj − τj−1) + hi,k(t)(t− τk−1)


where τk−1 ≤ t < τk.

3.6 Frailty

In survival analysis, the hazard or survival function for an individual may be dependent

on a set of covariates or risk factors which were not all known or measured (Ibrahim et al.,

2001). These unknown and unobserved covariates or risk factors are called frailties (Vaupel

et al., 1979). Frailties are very often or almost always present in survival data. If frailties

are present but ignored this will cause underestimation of covariate effects. Frailties might

also be a way to allow for differences between individuals and measurement errors or

missing information in observed survival times. For instance, in medical studies, some

patients will survive or stay healthy relatively long despite adverse observable risk factors

whereas some others will survive shorter than expected. Henderson & Oman (1999) showed

the inclusion of frailty in the survival model as unexplained heterogeneity in the survival

data. They concentrated on frailty models as used to describe association between subjects

in univariate survival analysis with members of a cluster sharing a common observable

frailty effect. Sahu et al. (1997) examined semi-parametric and fully parametric approaches

to frailty models.
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Frailties have an effect on univariate (i.e only one-event) survival data. It can cause

a form of non-proportionality of hazards when modelling one time event for a patient.

Frailty could also be relevant when each individual has more than one event time since

frailties allow for correlations within individuals. Burzykowski et al. (2008) and Booth

& Eisenhauer (2012) introduced frailties as random effects in progression free survival

(PFS) where we model the correlation between more than one time event which introduces

dependence in times for an individual. For instance, times of event of a patient could be

when a patient is treated and the disease stops developing (known as remission), time

when the disease starts to progress again (known as progression or relapse) and death

time. The length of time between remission and the start of progression is known as the

progression free survival (PFS). The time events are not independent because the two time

observations are for the same patient and the dependence can be modelled using frailties.

Suppose we have a proportional hazard model and the hazard function for an individual

i with covariates Xi = (1, xi,1, xi,2, ....xi,S) is given by

hi(t|Xi) = h0(t) exp{XT
i β}

where h0(t) is the baseline hazard function. Let XT
i β = ηi and λi = exp{ηi}.

If we introduce the frailty zi into the proportional hazard model, the conditional hazard

function of the time given the unobserved frailty zi for the ith individual is given as follows

hi(t|zi) = h0(t)λizi

The unobserved random variable Z with realisation zi is assumed to act multiplicatively

on the hazard h(t) for a survival variable T. The conditional cumulative hazards Hi(t|zi)
is given by

Hi(t|zi) = H0(t)λizi

The conditional survival function Si(t|zi) is given by

Si(t|zi) = [exp {−H0(t)}]λizi = [S0(ti)]
λizi

where S0(ti) is the baseline survival function.

We can get the marginal survival function by marginalising over z by taking the ex-

pectation with respect to Z since the conditional survival function is a probability. We

have that

Si(t) = EZ

{
[S0(t)]

λizi
}
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To take the expectation, we take the integral

Si(t) =

∫ ∞
0

fz(zi)[S0(t)]
λizidzi

where fz(zi) is the probability density function of zi.

The marginal survival function loses the property of proportionality. We can get the

marginal survival probability density function fi(t) as

fi(t) = − d

dt
Si(t)

=

∫ ∞
0

fz(zi)λizi[S0(t)]
λizi−1f0(t)dzi

= f0(t)EZ

{
λizi[S0(t)]

λizi−1
}

Hence, the hazard function is

hi(t) =
fi(t)

Si(t)

= f0(t)
EZ
{
λizi[S0(t)]

λizi−1
}

EZ {[S0(t)]λizi}

= h0(t)
EZ
{
λizi[S0(t)]

λizi
}

EZ {[S0(t)]λizi}
(3.4)

Illustration: We will illustrate this with an example to show that including frailties when

modelling can cause non-proportionality. We suppose that S0(t) = exp{−t}. From 3.4,

we have that

hi(t) = h0(t)
EZ {λiZi exp(−λiZit)}

EZ {exp(−λiZit)}

Suppose Zi ∼ Ga(a, b) then,

EZ {exp(−λiZit)} =

∫ ∞
0

fZ (Zi) [S0(t)]
λiZi dZi

and

EZ{exp(−λiZit)} =
ba

(λit+ b)a

Similarly,

EZ{λiZi exp(−λiZit)} =
aλib

a

(λit+ b)a+1

So

hi(t) = h0(t)
λia

λit+ b
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and
hi(t)

hj(t)
=
λi(λjt+ b)

λj(λit+ b)
.

Let m = a/b, v = a/b2 so b = m/v. Then let m = 1.

Now,
hi(t)

hj(t)
=
λi(vλjt+ 1)

λj(vλit+ 1)
. (3.5)

Equation 3.5 is not constant in t so it is not proportional.

3.7 Introduction to prognostic indices

Prognostic models are used for predicting the outcome in patients on the basis of the

clinical information of the patient usually before treatment. The prognostic indices can be

used to estimate the length of an individual’s survival. It helps to take clinical decisions

and helps doctors choose an appropriate treatment for the patients. The prognostic indices

could help in creating clinical risk groups which stratify patients by the severity of the

disease.

Most researchers use the proportional hazard model to analyse time to event and

survival prediction by estimating hazard ratios which measures how much a covariate

affects the hazard function for an event of interest. The prognostic index is the main

product of a proportional hazard model. The obvious way to construct the prognostic

index is to use the linear predictor from a proportional hazard model. The linear predictor

is a weighted sum of the prognostic variables in the model, where the weights are the

regression coefficients (see Equation 3.2). The prognostic index of an individual is the

logarithm of the hazard multiplier. High values of the prognostic index indicate a worse

prognosis or adverse outcome for the event of interest. Mallett et al. (2010) reviewed

current practice in methods used to develop and evaluate the performance of prognostic

indices and risk groups from the prognostic models. It was summarised that 94% of the

studies used proportional hazard model where the effects of the covariates were assumed

to have a linear functional form. The assumption of proportional hazard was not applied

in the remaining 6% but instead the recursive partitioning analysis (RPA) and artificial

neural network (ANN). The recursive partitioning analysis (RPA) can be used to classify

patients by splitting them into sub-populations according to their variables. It allows

varying misclassification in order to create a decision rule. One of the disadvantages of

RPA is that it does not work well for continuous variables (Gordon et al., 1984). Artificial

neural networks (ANN) can be used to approximate or estimate non-linear functions of

variables (Naguib & Sherbet, 2001). Chih-Lin et al. (2007) used ANN to solve the complex

relationship among variables and predict the time of reoccurence of a breast cancer.
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3.8 Review of prognostic indices across lymphoma subtypes

Haematologists have developed a number of prognostic indices because of the large num-

ber of lymphoma patients. The most widely used lymphoma prognostic indices are the

International Prognostic Index (IPI) for aggressive lymphoma and Follicular Lymphoma

International Prognostic Index (FLIPI) for follicular lymphoma. Other indices will also

be discussed.

3.8.1 International Prognostic Index (IPI)

The Ann Arbor stage was used to assess prognosis but because of its inadequacy in pre-

dicting survival outcomes, the International Prognostic Index (IPI) was developed in 1993

to help doctors determine the outlook for people with fast growing lymphoma. Shipp et al.

(1993) developed the International Prognostic Index (IPI) for predicting the outcome in

patients with aggressive non-Hodgkins lymphoma based on the universally recognised clin-

ical covariates before treatment. The IPI identified four risk groups of patients: low, low

intermediate, high intermediate and high. These groups depend on five binary variables

which include age ≥ 60, high serum LDH, stage 3 or 4, ECOG 2,3 or 4 and more than

1 extranodal site. The adverse indications or “risk factors” include age > 60, stage III

or IV, lymphoma is in more than 1 organ of the body outside of lymph nodes and the

performance status is that the patient needs a lot of help with daily activities.

The IPI ranges from point 0-5 and with one point assigned for each of the five risk

factors. The IPI divides patients into four risk groups which are summarised in Table

3.1 with the IPI point, risk group and 5-year survival probability based on an analysis

performed on 2031 patients with aggressive non-Hodgkins lymphoma.

Table 3.1: Summary of the IPI point, risk group and 5-year survival

IPI point Risk group 5-year survival(%)

0 -1 low 73%
2 low intermediate 51%
3 high intermediate 43%
4-5 high 26%

3.8.2 Age-adjusted International Prognostic index (AaIPI)

The Age-adjusted International Prognostic index (AaIPI) (Shipp et al., 1993) differentiates

the prognosis for younger patients from the older ones. A simplified index was used to

compare patients within an age group (i.e 60 or younger or over 60) with one point assigned

for each of the following three risk factors: stage, LDH and performance status (ECOG).
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Shipp et al. (1993) used the Age-adjusted International Prognostic index as a simplified

model for 1274 younger patients (age ≤ 60) by using the clinical covariates. Table 3.2

summarises the AaIPI point, risk group and 5-year survival.

Table 3.2: Summary of the AaIPI point, risk group and 5-year survival

AaIPI point Risk group 5-year survival(%)

0 -1 low 83%
1 low intermediate 69%
2 high intermediate 46%
3 high 32%

3.8.3 Follicular lymphoma International Prognostic Index (FLIPI)

The IPI is useful for most lymphomas but it is not as helpful for the follicular lymphoma

which is slower growing. Follicular lymphoma accounts for one third of non-Hodgkins

lymphoma in adults and it is the second most frequent subtype of non-Hodgkins lymphoma

(Solal-Celigny, 2004).

The FLIPI was developed based on 4167 diagnosed patients with five adverse prog-

nostic factors selected as follows: age (> 60;≤ 60), stage(III − IV ; I − II), haemoglobin

level(HB)(< 120g/l;≥ 120g/l), extranodal (> 4 nodal areas;≤ 4 nodal areas) and LDH

(abnormal ; normal). Solal-Celigny (2004) defined three risk groups; low risk, intermediate

risk and high risk which are summarised in the Table 3.3:

Table 3.3: Summary of FLIPI score, risk group and 5-year survival

FLIPI score Risk group 5-year survival(%)

0 -1 low 90.6%
2 intermediate 77.6%
≥ 3 high 52.5%

3.8.4 Revised International Prognostic Index (R-IPI)

The Revised International Prognostic Index (R-IPI) is a more recent IPI which is based

on patients with lymphomas who have received a new modern treatment called rituximab.

The RIPI depends on the same factors as IPI but divides patients into three distinct

prognostic groups. These groups are summarised as very good (if no poor prognostic

factors), good (if 1 or 2 poor prognostic factors) and poor (if 3 or more poor prognostic
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factors). Sehn et al. (2007) published the R-IPI with an analysis of 365 patients with

DLBCL non-Hodgkins Lymphoma using the IPI factors which is summarised in Table 3.4.

Table 3.4: Summary of R-IPI score, risk group and 4-year survival

R-IPI score Risk group 4-year survival(%)

0 very good 94%
1,2 good 79%
3,4,5 poor 55%

3.8.5 Mantle cell International Prognostic Index (MIPI)

Hoster et al. (2008) developed the prognostic index based on 455 patients with advanced

stage mantle cell lymphoma since the IPI and FLIPI were developed for the diffuse large

B-cell and follicular lymphoma respectively. According to the Mantle cell International

Prognostic Index (MIPI), Age, ECOG, LDH and WBC counts were the four independent

prognostic factors used in classifying patients for the overall survival. Hoster et al. (2008)

calculated the MIPI prognostic score as

s = 0.03535x1 + 0.6978x2 + 1.367 log10 x3 + 0.9393 log10 x4

where s is the MIPI score

x1 is the age in years

x2 is the ECOG value used if it is greater than 1

x3 is the LDH

x4 is the white blood cell count

According to Hoster et al. (2008) the patients were classified into three risk groups; low,

intermediate and high risk groups on the basis of the four prognostic factors as summarised

in Table 3.5. Table 3.5 summarises the risk groups, the percentage of the patients and the

median overall survival.

Table 3.5: Summary of MIPI risk groups, the percentage of the patients and the median overall
survival

Risk group (%) of patients median overall survival

low 44% median overall survival time not reached
intermediate 35% 51 months
high 21% 29 months
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3.8.6 National Comprehensive Cancer Network International Prognos-

tic Index (NCCN-IPI)

In recent times, there has been a great effort to improve the prognostic value of the original

IPI. Until the development of the National Comprehensive Cancer Network International

Prognostic Index (NCCN-IPI), the original IPI was a powerful prognostic tool for de-

termining the prognosis among patients with DLBCL for over 20 years. Clinical data

were collected from 1650 adult patients diagnosed with DLBCL from 2000-2010 who were

treated with rituximab from seven National Comprehensive Cancer Network (NCCN) cen-

ters (Zhou et al., 2014). The NCCN-IPI used five variables which include age, LDH, sites

of involvement (extranod), stage and ECOG with a maximum of 8 points assigned with

each having a score of 1. Table 3.6 summarises the 8 scoring points for the NCCN-IPI.

Table 3.6: Summary of the 8 scoring points for the NCCN-IPI

NCCN-IPI variable score

40 < Age ≤ 60 1
60 < Age ≤ 75 2
75< Age 3

1 < LDH ratio < 3 1
≥ 3 2

Stage 3,4 1

Extranodal disease 1

ECOG ≥ 2 1

The model was validated using a population-based registry cohort from the British

Columbia Cancer Agency (BCCA). Table 3.7 summarises 4 distinct risk groups (low, low

intermediate, high intermediate and high) with comparison with the IPI with 5-years

overall survival (OS) and progression free survival (PFS) (see Section 3.6).

The BCCA cohort supported the generalisability of the NCCN-IPI. Both NCCN-IPI

and the original IPI included the same set of clinical variables and recognised four risk

groups. In NCCN-IPI, the variable age was categorised and LDH was normalised to

capture the associated increased risk of mortality. Hence, in recent times the NCCN-IPI

is used to stratify the prognostic index of DLBCL patients. The application of NCCN-IPI

is easy and more powerful than the original IPI for predicting survival of patients.

3.9 Summary

In this chapter, we have discussed the basic aspects of survival analysis. We showed how

the covariates are related to the survival distribution using the proportional hazards and
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Table 3.7: Summary of 4 distinct risk groups with comparison with the IPI with 5-years overall
survival (OS) and progression free survival (PFS) with NCCN and BCCA cohort

NCCN cohort NCCN IPI NCCN IPI

Risk Group NCCN score IPI score 5yr OS 5yr OS 5yr PFS 5yr PFS

Low 0-1(19%) 0-1(38%) 96% 90% 91% 85%
L.I 2-3(42%) 2(26%) 82% 77% 74% 66%
H. I 4-5(31%) 3(22%) 64% 62% 51% 52%
High ≥ 6 (8%) 4-5(14%) 33% 54% 30% 39%

BCCA cohort NCCN IPI NCCN IPI

Risk Group NCCN score IPI score 5yr OS 5yr OS 5yr PFS 5yr PFS

Low 0-1(12%) 0-1(33%) 96% 84% 94% 81%
L.I 2-3(37%) 2(22%) 77% 72% 72% 66%
H.I 4-5(37%) 3(22%) 56% 54% 54% 54%
High ≥ 6 (14%) 4-5(21%) 38% 43% 35% 41%

the accelerated life model using a parametric distribution like the Weibull distribution.

We discussed a semi-parametric model like the piecewise constant hazard model where

we could have time varying covariate effects if the covariate effects varied over time. We

illustrated with an example how frailties could cause non-proportionality of hazards. We

also gave some existing prognostic indices in lymphoma.
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Introduction to Bayesian inference

4.1 Introduction

This chapter introduces Bayesian inference for reference in later chapters. This is largely

based on previously published work but we also introduce some new ideas on the con-

struction of prior distributions for the effects of factors.

Bayesian inference requires the combination of prior experience (which is in the form of

prior probability) and the observed data (which is in the form of a likelihood). Therefore,

we will discuss the specification of prior information about the model parameters in Section

4.4.1. We will review prior elicitation as a process which helps an expert in the field to

express his or her knowledge in a probabilistic form.

We will present a way of specifying the covariances between parameters by thinking in

terms of the coefficient of determination and we get the correlation between the parameters.

We incorporate our prior beliefs into the construction of the covariance matrix of the

parameters. We will also present some structures of prior distributions which are used to

construct priors depending on the type of variable. We discuss the construction of prior

for the coefficient of a quantitative covariates in the context of a general linear model

following an example in Farrow (2011). We will review the requirement of exchangeability

and identifiability of the parameters of a model. We will consider some alternatives of

reparameterisation of the quantities of the model by either having a zero-sum constraint

or a corner constraint to avoid over-parameterisation.

We present a way of constructing priors for the coefficient of a 2-level factor following

the construction of prior distribution of the coefficient of a quantitative covariate. We

will also present new ideas on the construction of prior distributions for the effects of

unordered categorical covariates by making the parameters identifiable by having a zero-

sum constraint using some orthogonal constrasts scheme when the number of levels is a

power of 2 and a general scheme for a case of any number of levels. We will also present
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new ideas with illustrations of how we might construct the prior for a categorical factor

where we want all levels of the factor to be exchangeable using the general scheme and

how we can transform m−1 uncorrelated random variables into m random variables which

are constrained to sum to zero for i = 1, . . . ,m levels of factors. We will show that the

variances of the parameters are equal and covariances between pairs of parameters are also

equal to each other.

There was the need to build a set of ordered random variable with a zero-sum con-

straint. We present new ideas to do this where the means for neighbouring categories are

more positively correlated than those of categories further apart. We considered using

a correlation matrix and modified them so that they have any required means and vari-

ances. We give some numerical illustrations for some numbers of levels on how we choose

the elements of the correlation matrix depending on the distance and not violating some

defined conditions.

Having discussed the structures of prior distributions, we recall that Bayesian inference

often involves calculations which are analytically intractable. These are typically done

using Markov chain Monte Carlo methods (MCMC). We will review these methods in

Section 4.6. The methods include Metropolis and Metropolis Hastings algorithm, Gibbs

sampler and Metropolis within Gibbs algorithm.

We will give a clear discussion on how sampling from a multivariate normal distribution

can be done using the Cholesky decomposition of the covariance matrix as a fast and

numerically stable way. Section 4.7 reviews two numerical methods for improving mixing in

MCMC since the Markov chain may move around very slowly in the posterior distribution.

These methods include sampling the parameters using the idea of the forward backward

algorithm where the forward recursion accumulates information in the form of a conditional

distribution and the backward recursion updates the distribution of the parameters after

the information has been collected from the observed data. The other method is the

Gaussian approximation of the proposal distribution of the parameters. This is done by

expanding around the mean of the approximation to generate an improved approximation

until it is equal to the mode of the full conditional distribution. We discuss using the

Newton Raphson step and the procedure is iterated until the parameter values stabilise.

We approximate a multivariate normal distribution as the proposal distribution using the

mode as the mean and the value of the partial second derivative evaluated at the mode to

obtain the precision matrix.

We review data missingness and types of missingness which include missing at random

(MAR), missing completely at random (MCAR) and when the missing data mechanism

is said to be ignorable.
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4.2 Bayes’ Theorem and Bayesian Inference

Bayes’ theorem can be used to show the relationship between two conditional probabilities

that are the reverse of each other. In general, Bayes’ theorem combines the prior experience

(in the form of a prior probability) with observed data (in the form of a likelihood) to

interpret these data (in the form of a posterior distribution) in a process known as Bayesian

inference. Bayes’ theorem is the probabilistic result which plays a central role in Bayesian

inference.

Suppose we have data D = (x1, x2, ...xn) which we model using the probability density

function f(D|θ) for an unknown parameter θ. The likelihood of the parameter θ is given

by

L(θ|D) = f(D|θ)

=

n∏
i=1

fi(xi|θ, x1, ....xi−1)

where fi(xi|θ, x1, ....xi−1) is the conditional probability density function of xi given

x1, ....xi−1 and θ.

If x1, ....xn are independent given θ then,

fi(xi|θ, x1, ....xi−1) = fi(xi|θ)

Hence

L(θ|D) =

n∏
i=1

fi(xi|θ)

The prior beliefs about θ, with no reference to the data, can be expressed in the form of the

probability density function π(θ). The posterior distribution combines the likelihood and

the prior and captures all we know about the parameters. Then, the posterior probability

density function for θ, π(θ|D), which summarises our beliefs about θ after seeing the data,

is derived from the joint density π(θ)L(θ|D) according to Bayes’ formula and is given by

π(θ|D) =
π(θ)L(θ|D)∫

Θ π(θ)L(θ|D)dθ
(4.1)

The integral
∫
Θ π(θ)L(θ|D)dθ is not a function of θ and so the posterior distribution would

be given as

π(θ|D) ∝ π(θ)× L(θ|D)

which is often expressed as

Posterior ∝ Prior× Likelihood.
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The integral
∫
Θ π(θ)L(θ|D)dθ is known as the normalising constant. It is also known as

the marginal likelihood of the data (Berger, 1985). In many models and applications, the

integral does not have an analytical closed form. The difficulty of not having a closed form

has led to the use of sampling from the posterior distribution π(θ|D).

4.3 Monte Carlo integration

The posterior distribution can sometimes not be represented analytically in realistically

complex problems because of the intractability of the normalising constant. This created

an obstruction to the implementation of the Bayesian approach until the development of

suitable numerical methods.

Suppose we want to evaluate an integral∫
G
Φ(x)dx

for which there is no closed analytic solution. If we suppose that, for some density function

f, Φ(x) has the form

Φ(x) = Φ̂(x)f(x),

then, the integral has the form∫
G
Φ(x)dx =

∫
G
Φ̂(x)f(x)dx = E[Φ̂(X)]

where X is a random variable which has probability density function f. If we know how

to simulate realisations x1, . . . . . . , xn of X, then we will have an estimate for the integral

which is given by ∫
G
Φ(x)dx = E[Φ̂(X)] ≈ 1

n

n∑
i=1

Φ̂(xi) = Î

This method of approximating integrals is known as Monte Carlo integration. An estimate

should converge to the true value in expectation. We consider the variance of the estimate

as

Var(Î) = Var[
1

n

∑
Φ̂(xi)]

= Var[Φ̂(X)]

=
1

n

∫
G
f(x)

(
Φ̂(x)− E[Φ̂(x)]

)2
dx

=
1

n

∫
G
f(x)

(
Φ̂(x)−

∫
G
Φ̂(y)f(y)dy

)2

dx

We cannot evaluate the above integral so an easier way is to estimate the variance by
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working out the standard error (s.e) of the estimator Î. So,

(s.e)2 =
1

n− 1

n∑
i=1

(Φ̂(xi)− Î)2

Monte Carlo integration draws samples from a distribution and then forms sample averages

to approximate expectations. It can be used to calculate the normalising constant in

Bayesian analysis.

4.4 Prior distributions

A Bayesian analysis requires the specification of prior information about the model param-

eters by expressing beliefs about the parameters in the form of a probability distribution

before we look at the observations. The prior distribution should reflect information about

the model parameters. The prior information is often an opinion or subjective belief of an

“expert” within the field of investigation from whom information is being elicited. This is

appropriate, for example, when the purpose of the analysis is to inform a decision which

must be made. In other cases, the purpose may be simply to communicate the results of

a scientific investigation. In such cases, one or more “reasonable” prior specification may

be used.

4.4.1 Prior elicitation

Prior elicitation is a process whereby a person’s knowledge or belief about some uncertain

quantities are expressed in the form of a probability distribution of the quantities before

the data are taken into account. Hence, the person’s personal beliefs about the unknowns

are given in the form of a probability distribution. The prior distribution is an important

issue in Bayesian inference because it is used in the calculation of the posterior distribution

which brings the analyst closer to what is being modelled. Elicitation helps expert in the

field to express their current knowledge in a probabilistic form (Garthwaite et al., 2005).

We find ways of using the limited specification of beliefs from the experts when trying to

fit a prior distribution for a parameter. In many cases, we will elicit the first and second

order moments (i.e means, variances and covariances).

In the case of multivariate elicitation, we elicit beliefs about two or more unknown

parameters. These parameters may or may not be independent. If the parameters are

independent, information about some of the parameters would not affect the beliefs about

the other parameter. The joint probability density for these parameters will be the product

of their marginal densities. In cases where the parameters are dependent, the dependence

can be expressed in terms of correlation by eliciting either the correlation coefficient or

covariances. The correlation between parameters can be directly specified as between the
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values −1 and +1 (Clemen et al., 2000). More generally, we might assess the conditional

distribution of one unknown given another. Revie et al. (2010) investigated different

methods of eliciting prior correlations with applications to Bayes linear modelling of the

reliability of defence systems.

The prior probability distributions are often classified into either informative or un-

informative priors. A prior is informative when prior information about the parameter

is available and included in the prior distribution. An expert’s opinion is a form of an

informative prior because the expert provides honest information of the present state of

knowledge before updating with the new information (James et al., 2010). In the absence

of an expert’s knowledge, prior information may be obtained from earlier studies. We

could also have an informative prior when the posterior distribution of the previous model

which is similar to the form of a present model is used as the prior distribution of the

present. In this case, the present model is not starting from scratch but based not only

on the present data but the cumulative effects of past and present data are taken into

account.

Berger et al. (2009) categorised prior distributions into four categories according to

information and the goal in the use of the prior. These categories were informative,

weakly informative, least informative, and uninformative prior. Priors which have little

effect on the posterior are sometimes called uninformative priors. Irony & Singpurwalla

(1997) explained that truly uninformative priors do not really exist and that all priors are

informative in some way. The weakly informative prior uses less prior information than

is actually available. It provides some of the benefit of prior information while avoiding

some of the risk from using information that is not generally agreed. Selecting a weakly

informative prior is difficult but these are the most commonly used priors in practice. In

some cases, we may choose to use a prior distribution which is non-prejudicial about some

aspect of the unknowns. For example, in a clinical trial to compare the effects of two

treatments, we might choose to give the effects of the two treatments the same marginal

prior distributions to avoid favouring one over the other apriori. Gosling (2014) suggested

that a criterion or standardized method for the judgement of an elicitation exercise in

health technology assessment (HTA) can be produced through a joint discussion on the

expectation of elicitation exercises between experts in the process of elicitation, health

technology assessors and policy makers.

4.4.1.1 Construction of prior covariances between parameters

We might want to think of the degree of dependency between two variables. Eliciting

covariances between parameters directly could be difficult as experts do not think in terms

of covariances. Revie et al. (2010) discussed four different methods of determining the

dependency between variables. These methods include direct calculation, direct elicitation
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of correlation, adjusted expectation and adjusted uncertainty.

We will want to specify the covariances between pairs of parameters by incorporating

our prior beliefs into the parameterisation and construction of the covariance matrix.

We could make the covariance between parameters zero if we reasonably think that the

parameters of a model are independent of each other in our beliefs. One way of thinking

of how to get actual values for the prior covariance between any two parameters is to

think of the correlation between the parameters. We could also think in terms of the

coefficient of determination which is the square of the correlation between the parameter.

The coefficient of determination would be the proportion of the variance of one of the

parameter that we will lose if we knew the value of the other parameter. If knowing the

value of one parameter does not affect our belief about another parameter, then we have

a covariance of zero. This means that the parameter is unable to explain some of the

uncertainty by knowing the other. For instance, we will suppose that if we knew one

parameter then 50% of the proportion of the variance of the other parameter will be lost.

Then, the coefficient of determination (r2) is 0.50 and the correlation will be 0.7. We

will have to decide on the sign of the correlation by thinking if the parameter is bigger in

the same direction with the other parameter in which case we have a positive sign. The

covariance between the parameters X and Y can then be calculated using

Covar {X,Y } = σXσY r (4.2)

where σX and σY are the standard deviation of X and Y respectively and r is the corre-

lation between the parameters.

4.4.2 Centering of covariates

Quantitative variables can sometimes be standardized or centered (i.e subtracting a central

value such as the mean). Centering of covariates is important in prior elicitation. It is

good to center the covariates because it makes it easier to choose a sensible prior. The

constant (intercept) will correspond to a plausible case thereby making elicitation more

realistic. Furthermore, it will then be more reasonable for the intercept and the coefficient

of the covariate to be independent in the prior. For instance, we could center the covariate

age, xage by using xage = a− 60 where a is the patient’s age in years. This should be done

throughout.

4.4.3 Structures for prior distributions

When we have many related parameters in a model, it is usually best to build a qualitative

structure for their joint prior distribution first before quantifying prior means, variances

et.c. (Farrow, 2003). We will construct priors depending on the type of variable. We
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will frame our discussion in this chapter in the context of a general linear model. The

construction of a prior distribution would be specified depending on the type of covariate.

4.4.3.1 Construction of prior distribution for the coefficient of a quantitative

variable

We discuss the construction of prior for the coefficient of a quantitative variable by con-

sidering a regression example in Farrow (2011).

We will suppose a simple regression model

Y = α+ βx+ ε

for a pair of values (xi, yi) for a group of people, where yi is the height in inches and xi is

the shoe size.

Suppose we wish to predict the height of someone if we know the person’s shoe size.

We could express this model by saying that the conditional mean height for someone with

shoe size x is α+βx. It will follow that someone with a shoe size of zero will have a mean

height of α. It is difficult to think about our prior beliefs about α since there is no person

with shoe size of zero. We refer to the reason for centering discussed in Section 4.4.2. So,

we elicit a mean height of a realistic shoe size. Hence, we will think of a reference value

xref1 as the shoe size 11. We let

z = x− xref1 = x− 11

The regression equation becomes

Y = α̃1 + βz + ε

where α̃1 = α+ βxref1 = α+ 11β.

We have that α̃1 represents the mean height of people who have size 11 shoes. As a

guide to the likely values of α̃1, we will suppose that the height of the person who has

shoe size 11 is 74 inches. So, α̃1 has a normal prior distribution with mean 74. We also

have to think of the standard deviation for α̃1 since 74 might not exactly be the average

height for people with shoe size 11. We will suppose that with probability about 0.95, 74

is not more than six inches from the conditional mean and so the standard deviation is 3.

We will need a prior distribution for β. We will choose another reference shoe size

xref2 = 5 with a 64 inches height for the person. So,

α̃2 = α+ βxref2 = α+ 5β

We suppose that α̃2 has a normal prior distribution α̃2 ∼ N(64, 9)
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We will make α̃1 and α̃2 independent in our prior distribution. We let

β̃ =

(
α̃1

α̃2

)

We will give β̃ a bivariate normal prior distribution with mean

M̃ =

(
E(α̃1)

E(α̃2)

)
=

(
74

64

)

and variance

V0 =

(
Var(α̃1) Covar(α̃1, α̃2)

Covar(α̃1, α̃2) Var(α̃2)

)
=

(
9 0

0 9

)
.

We will have that

β =
α̃1 − α̃2

xref1 − xref2
and

α =
α̃2xref1 − α̃1xref2
xref1 − xref2

We will have that

β =

(
α

β

)
=

1

xref1 − xref2

(
−xref2 xref1

1 −1

)
β̃ = Hβ̃.

Thus α, β have a bivariate normal prior distribution with mean

M0 = HM̃ =
1

6

(
−5 11

1 −1

)(
74

64

)
=

(
55.7

1.7

)

and variance

V0 = HṼ0H
T =

1

36
=

(
−5 11

1 −1

)(
9 0

1 −1

)(
−5 11

0 9

)
=

(
36.5 −4

−4 0.5

)
.

We would want to show what happens when we center the variable. Suppose we want to

center the covariate at x0, then we have that

Y = α+ βx0 + β(x− x0)

= α∗ + β∗(x− x0)

If we suppose that x0 = 8 is the central value then the variance of the modified parameters
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is

Var

(
α∗

β∗

)
=

(
1 x0

0 1

)(
36.5 −4

−4 0.5

)(
1 0

x0 1

)
=

(
4.5 0

0 0.5

)

4.4.3.2 Exchangeability and identifiability

Suppose that we have observations Y1, . . . , Yn on individuals i = 1, . . . , n. The observations

are said to be exchangeable if the information that the quantities provide is independent of

the order in which they are collected and hence it is a property of symmetry with respect

to order.

Suppose now that observations made on individuals are in J groups. Observation Yi,j

is the ith individual in the jth group for i = 1, . . . , nj . Often, we would regard individuals

within a group as exchangeable. We might model this by saying that the distribution of

observation within a distribution within group j is such that, conditional on the value of

an unknown parameter, θj , Y1,j , . . . , Ynj ,j are independent and identically distributed with

a distribution which has parameter θj .

Now consider a collection of observation, one from each group. Without loss of gen-

erality, suppose that these are Y1,1, . . . , Y1,J . An expert may well also consider these

to be exchangeable. We can elicit beliefs about the parameters θ1, . . . , θJ by asking

suitable questions about observations within the groups. For example, suppose that

Yi,j |θj ∼ N(θj , 1). Then, E(θj) = E(Yi,j) and E(θ2j ) = E(Yi,jYk,j) where i 6= k. Hence,

Var(θj) = E(Yi,jYk,j)− [E(Yi,j)]
2. Now, the requirement that Y1,1, . . . , Y1,J are exchange-

able leads to the requirement that beliefs about θ1, . . . , θJ are such that θ1, . . . , θJ are also

exchangeable.

Now, we consider a case where we group individuals in more than one way. For sim-

plicity, suppose that we group individuals in two ways. So, Yi,j,k is the observation on the

ith individual in group j, k. That is, level j of the first factor and level k of the second

factor, where j = 1, . . . , J and k = 1, . . . ,K. In the same way as above, we might use

parameters θj,k. Now, we might well require Y1,1,k, . . . , Y1,J,k to be exchangeable for any

k and Y1,j,1, . . . , Y1,j,K to be exchangeable for any j but not that Y1,1,k, . . . , Y1,J,k are all

exchangeable because the relationships between

(i) two groups with the same j but different k

(ii) two groups with the same k but different j and

(iii) two groups between which both j and k differ

are not the same.

In many cases, the expert’s uncertainty about the values of θ1,1, . . . , θJ,k may be use-

fully described in the form of an overall level and main effects for factors 1 and 2. We

might write

44



Chapter 4. Introduction to Bayesian inference

θj,k = µ+ αj + βk (4.3)

For example,

θ1,k = (µ+ βk) + α1

θ2,k = (µ+ βk) + α2

...

θJ,k = (µ+ βk) + αJ

In practice, we specify the mean vector and covariance matrix. We learn the values

of some quantities and use this information to update our beliefs about others. It is

difficult to specify the covariances directly or construct a covariance matrix for quantities

that have the property of exchangeability. We make specifications relating the observables

to uncertainty factors that have zero prior means but we need to specify their variances

following Farrow (2003).

For programming in BUGS or JAGS specification language, it is convenient to be

able to specify these because of the way we parameterize and construct the prior when

we do MCMC. For computational reasons, it can be convenient to use Equation (4.3) to

construct unknown quantities. Then, for identifiability, we need constraints.

The expectations of (µ + βk), α1, . . . , αJ are then not identifiable in terms of the J

expectation E(Y1,1,k), . . . ,E(Y1,J,k) unless we constrain α1, . . . , αJ . That is, there are only

J − 1 degrees of freedom for α1, . . . , αJ . In order to maintain exchangeability, we treat

those in the same way and impose the constraint
∑J

j=1 αj = 0. Imposing the so-called

“corner constraint”, α1 = 0 would violate exchangeability.

4.4.3.3 Construction of prior for the coefficient of a 2-level factor

Suppose that we have a 2-level categorical factor. If the model also contains an intercept

then we would have only 1 degree of freedom and we could have only a single contrast with

coefficients −1 and 1. We might think of constructing the priors for the coefficient of a

2-level factor by representing the covariate values as −1,1. Then, it is just the same as the

construction of the prior for a quantitative covariate. Again, the center of the covariate

values as −1,1 is 0 which is exactly the case in Section 4.4.3.1.

4.4.3.4 Construction of prior distribution for the categorical (unordered) fac-

tors

Suppose that we have a categorical factor with m unordered categories. If the model also

contains an intercept then we would have m − 1 degrees of freedom. We might want to
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make the parameters identifiable by either constraining them to sum to zero or by fixing

one of the parameters to be zero.

If we have a corner constraint where we fix one of the parameters to be zero, this

suggests that we have a greater prior knowledge about this parameter. In some cases,

this parameter could be the parameter for the baseline category and we would find the

distribution of the remaining parameters. Suppose that we want to construct prior for

four categorical factor. We might choose level 1 as the baseline (known) and consider the

other levels of the categorical factor as in the scheme in Table 4.1.

Table 4.1: Scheme with level 1 as baseline

Level covariate

1 0 0 0
2 1 0 0
3 0 1 0
4 0 0 1

This gives a different prior variance to level 1 compared to the other three levels. In

reality, we might not have greater prior knowledge about level 1. There are some possible

ways to overcome this problem. We could constrain the parameters to sum to zero and

make the parameters exchangeable. That is, the parameters could all have the same

means, variances and each pair of parameters would also have the same covariance.

We illustrate constraining the parameters to sum to zero by supposing that we have

a factor with four levels. The following scheme of orthogonal contrasts given in Table 4.2

could be used to constrain parameters to sum to zero.

Table 4.2: Scheme of orthogonal contrasts constrain to sum to zero

Level contrast

1 1 1 1
2 1 -1 -1
3 -1 1 -1
4 -1 -1 1

When the number of levels is not a power of 2 it is more complicated to construct a

scheme of contrasts. The following scheme given in Table 4.3 could be used for a general

case of m levels.

Table 4.4 shows a suitable scheme for m = 5.

As an illustration, we might want to construct prior for categorical factor where we

want all levels of the factor to be exchangeable using the scheme in Table 4.3. We can
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Table 4.3: A scheme when the number of levels is not a power of 2

Level contrast

1 -1 -1 -1 .... -1
2 1 -1 -1 .... -1
3 0 2 -1 .... -1
4 0 0 3 .... -1
...

...
... ....

...
m 0 0 0 .... m - 1

Table 4.4: Example of a scheme number of levels is 5

Level contrast

1 -1 -1 -1 -1
2 1 -1 -1 -1
3 0 2 -1 -1
4 0 0 3 -1
5 0 0 0 4

transform m − 1 uncorrelated random variables into m random variables which are con-

strained to sum to zero. These random variables would be the parameters for a categorical

covariate with m levels. For example, suppose we have m − 1 independent zero - mean

random variables δ1, δ2....δm−1 with δ = (δ1, δ2....δm−1)
T and β = (β1, ....βm)T . We let

Var(δj) = wj , β = Mδ where M is a m× (m− 1) matrix given by the scheme in Table 4.3.

We note that each column is a contrast so the total is fixed at zero.

We let (m− 1)2wm−1 = υ and so Var(βm) = υ. Hence,

wm−1 =
υ

(m− 1)2
(4.4)

For 1 ≤ i ≤ m, we require

Var(βi) = υ = (i− 1)2wi−1 +
m−1∑
k=i

wk

Var(βi+1) = υ = i2wi +
m−1∑
k=i+1

wk

Hence

(i− 1)2wi−1 − i2wi +
m−1∑
k=i

wk −
m−1∑
k=i+1

wk = 0
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(i− 1)2wi−1 − i2wi + wi = 0

and

wi−1 =
(i2 − 1)wi
(i− 1)2

=
(i+ 1)

(i− 1)
wi (4.5)

We need to show that the covariances are also equal to each other. We would also show

what the values are.

Covar(βm, βm−1) = −(m− 1)wm−1 = −(m− 1)
υ

(m− 1)2
=
−υ
m− 1

For i = 2, . . . ,m− 1

Covar(βi, βi−1) = −(i− 1)wi−1 +

m−1∑
k=i

wk

Covar(βi+1, βi) = −iwi +

m−1∑
k=i+1

wk

Hence

Covar(βi, βi−1)− Covar(βi+1, βi) = iwi − (i− 1)wi−1 + wi

= (i+ 1)wi − (i− 1)wi−1

= (i+ 1)wi − (i− 1)
(i+ 1)

(i− 1)
wi

= 0

and

Covar(β1, β2) = Covar(β2, β3) = Covar(βm−1, βm) = − υ

m− 1

Clearly, for i = 3, . . . ,m and j = 1, . . . , i− 2

Covar(βi, βj) = Covar(βi, βi−1).

Hence for all i 6= j,

Covar(βi, βj) = − υ

m− 1
(4.6)

We could also want to relax the assumption of exchangeability by allowing the prior

means of the parameters to be different by applying the exchangeability to the differences

between the parameters and their prior means. We can construct a set of exchangeable

parameters β’s by having βj − E(βj) for j = 1, . . . ,m. We can also allow the variances

to be different while maintaining m − 1 degrees of freedom. Let β∗1 , . . . , β
∗
m be a set of
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exchangeable quantities with a zero-sum constraint. Then, we can let βj = mj + sjβ
∗
j

for some choice of mj , sj . This will allow the prior means to be different. We will note

that more general structures for the construction of priors for categorical variables are

discussed in Farrow (2003).

4.4.3.5 Building a set of ordered random variables with a zero-sum constraint

We might also want to build a set of ordered random variables with a zero-sum constraint.

Suppose that we wish to construct a multivariate normal prior distribution for the means,

β1, . . . , βm, a set of m ordered categories. We require the sum of the means to be con-

strained to be zero. We will not constrain the means to be ordered but we may wish the

means for neighbouring categories to be more positively correlated than those of categories

further apart. We might also wish to impose stationarity.

Let the correlation between βi and βj be ri,j . We assume that we wish ri,j to depend

only on |i− j|. Let β = (β1, . . . , βm)T . Let 1 be a m-vector, 1 = (1, 1, . . . , 1)T .

We will consider the form of the correlation matrix C. Of course, given a set of

variables with the required correlation matrix, it is easy to modify them so that they have

any required means and variances. For simplicity in what follows, we will assume that

β1, . . . , βm all have variance 1 so that C is the covariance matrix.

Since ri,j depends only on |i− j|, we write ri,j = ck where k = |i− j|.
The zero-sum constraint implies that the variance of 1Tβ =

∑m
i=1 βi is zero. Thus,

1TC1 = 0. That is the sum of the elements of C is zero. Hence,

m+ 2

m−1∑
j=1

(m− j)cj = 0. (4.7)

The zero-sum constraint will also imply that the correlation matrix is singular so

|C| = 0. (4.8)

The requirements that correlations are greater between neighbours and that −1 ≤ ri,j ≤ 1

lead to

−1 ≤ cm−1 ≤ cm−2 ≤ · · · ≤ c2 ≤ c1 ≤ 1. (4.9)

We will later suggest how to choose c1, . . . , cm−1 in practice. The exact choice will depend

on how quickly we think that the correlation should decrease as |i− j| increases. We will

avoid violating any of the condition 4.7, 4.8 and 4.9. As an example of what happens if

we violate (4.8), consider
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C∗ =

 1 −1
4 −1

−1
4 1 −1

4

−1 −1
4 1


which violates (4.8). In fact |C∗| = −1/4 < 0 so this is not a valid correlation matrix.

For example, consider Var(β1 + kβ2 + β3) for some constant k. We can easily calculate

Var(β1 + kβ2 + β3) = (1, k, 1)C∗(1, k, 1)T = k2 − k but k2 − k < 0 for 0 < k < 1.

If there is no ordering, or we consider the order to be unimportant, we can set

c1 = · · · = cm−1 = −(m− 1)−1.

In this case (4.8) is always satisfied since each row of C sums to zero. As an example,

consider the case m = 3. Here, we have

C =

 1 −1
2 −1

2

−1
2 1 −1

2

−1
2 −1

2 1

 .

Consider Var(k1β1 + k2β2 + β3). (That is k1β1 + k2β2 + k3β3 where we set k3 = 1 since

we could rescale the total). It is easy to show that Var(k1β1 + k2β2 + β3) = (k1 − k2)2/2
and (k1 − k2)2 ≥ 0 for all k1 and k2.

More generally, we can write

cj = δj − (m− 1)−1.

Then constraints (4.7) and (4.9) become

m−1∑
j=1

(m− j)δj = 0

and

δ1 ≥ δ2 ≥ · · · ≥ δm−1,

δ1 − (m− 1)−1 ≤ 1,

δm−1 − (m− 1)−1 ≥ −1.

Clearly, for m > 2, we will have δ1 ≥ 0 and δm−1 ≤ 0. If δj = 0 for j = 1, . . . ,m− 1, then

we have the unordered case.

We will have numerical example of valid solutions for some values of m.

m = 2
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The only valid solution is

C =

(
1 −1

−1 1

)
.

m = 3

Condition (4.8) reduces the degrees of freedom to zero so it appears that the only value

which provides a valid correlation matrix with the zero sum constraint is c1 = c2 = −1/2.

That is δ1 = δ2 = 0. Hence, the only valid solution is

C =

 1 −0.5 −0.5

−0.5 1 −0.5

−0.5 −0.5 1

 .

We can use Cholesky decomposition to sample this as follows, where ε1 and ε2 are inde-

pendent random variables with εi ∼ N(0, 1).

β1 = ε1

β2 = −1/2ε1 +
√

3/4 ε2

β3 = −β1 − β2

4.4.3.6 Construction of prior for parameters representing a set of proportion

The Dirichlet distribution could be a choice of expressing our beliefs about a set of propor-

tions because of the convenience of being a conjugate family to the multinomial likelihood

in Bayesian analysis (see Elfadaly & Garthwaite (2013)). Suppose we wish to elicit expert

beliefs about a set of uncertain proportion ϑ = (ϑ1, . . . , ϑk) of k categories where ϑi ≥ 0

for i = 1, 2, . . . , k and
∑k

i=1 ϑi = 1. The Dirichlet distribution has a probability density

function discussed in Appendix A.2.3 and parameters a1, . . . , ak where
∑k

i=1 ai = n and

ϑi = ai/n. We can elicit the ϑi’s as the probability that we think that a single observation

is in category i. Zapata-Vazquez et al. (2014) suggested thinking in terms of a judgement

of the expected value of each ϑi together with judgement concerned with uncertainty to

identify n. Some recent work on elicitation of parameters of Dirichlet distribution are

given by Elfadaly & Garthwaite (2013).

4.5 Prior and posterior predictive distribution

Prediction is a major and important aspect of Bayesian inference. Suppose that before

taking our sample, the uncertainty in the parameters θ is given by a prior distribution π(θ).
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Then, the prior predictive distribution π(xnew) for some new data value xnew averaging

over π(θ) is given as follows

π(xnew) =

∫
Θ
π(xnew, θ)dθ =

∫
Θ
π(xnew|θ)π(θ)dθ

where Θ is the space of the parameter θ.

Suppose that after taking our sample, the posterior distribution is π(θ|D). The poste-

rior predictive distribution π(xnew|D) for some new data value xnew averaging over π(θ|D)

is given as follows

π(xnew|D) =

∫
Θ
π(xnew|θ,D)π(θ|D)dθ =

∫
Θ
π(xnew|θ)π(θ|D)dθ.

4.6 Markov chain Monte Carlo (MCMC) techniques

4.6.1 Introduction

Often, it is not feasible to draw independent samples from the posterior distribution since

the posterior might not be in a standard form. Hence, sampling is done through a Markov

chain which has the required distribution as its stationary distribution by using Markov

chain Monte Carlo (MCMC) simulation (Gilks et al., 1996). Markov chain Monte Carlo is a

generalised and flexible way of simulating a sample from the joint posterior distribution of

the unknown parameters. Each sample may depend on the previous one and the sequence

of samples follows a Markov chain and so, the past states provide no information about

the future state if the present is known.

The Bayesian Inference Using Gibbs Sampler (BUGS) (Spiegelhalter et al., 1995),

WinBUGs (Lunn et al., 2000), OpenBUGS (Spiegelhalter et al., 2003) and Just Another

Gibbs Sampler (JAGS) (Plummer, 2013) software packages can be used to implement

MCMC algorithms without having to write new programs each time. These softwares can

be used to analyse highly complex problems. With MCMC, we are able to generate the

whole distribution numerically from which we can make any inferences of interest. In this

section, MCMC algorithms like Metropolis-Hastings (MH) algorithms, Gibbs sampling

algorithm and Metropolis within Gibbs will be discussed.

4.6.2 Metropolis and Metropolis-Hastings algorithm

The Metropolis algorithm was developed by Metropolis et al. (1953). The Metropolis

algorithm is one of the MCMC algorithms used to simulate a Markov chain with the

posterior π(θ|D) as its stationary distribution. Suppose we have some (arbitrary) con-

ditional distribution for a value θtnew of θ, given another value θt. This is called a pro-

posal distribution. Suppose that the density is q(θtnew|θt) and that this is symmetric so,
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q(θtnew|θt) = q(θt|θtnew). The steps of the Metropolis algorithm (Metropolis et al., 1953)

would be given as follows:

Step 1: We set t=1 and choose an initial value θ0.

Step 2: We generate a new sample θtnew from the proposal distribution with density

q(θtnew|θt).
Step 3: We calculate the acceptance probability A which is

A = min

{
π(θtnew|D)

π(θt|D)
, 1

}
Step 4: We sample u from the uniform distribution U(0,1).

Step 5: We set θt+1 = θtnew if u < A otherwise we set θt+1 = θt.

Step 6: We set t = t+ 1 if t is less than the number of desired samples and return to step

2. Otherwise we stop.

In this case, it is not necessary to know the normalising constant in Equation 4.1.

Hastings (1970) gave a more general form of the Metropolis algorithm and it was

called the Metropolis-Hastings (MH) algorithm. The MH algorithm can be used with

asymmetric proposal distribution where q(θtnew|θt) 6= q(θt|θtnew). The Metropolis-Hastings

(MH) algorithm takes all the steps of the Metropolis algorithm except that the acceptance

probability A would be given by

A = min

{
π(θtnew|D)q(θt|θtnew)

π(θt|D)q(θtnew|θt)
, 1

}
At each stage, a new value is generated from the proposal distribution. Again, the chain

moves if this value is accepted (that is if u < A). Otherwise it stays where it is if the value

is rejected.

4.6.3 Choice of proposal distribution

The MH algorithm allows using any distribution with suitable support as the proposal since

the algorithm will still converge to the target distribution. However, the performance of

the MH algorithm depends on the choice of the relationship between the density of interest

and the proposal distribution. Choosing a suitable proposal distribution is very important

to make sampling from the non-standard posterior distribution easy when using the MH

algorithm. The choice of variance will affect the overall proportion of accepted moves.

If the spread or standard deviation is too large, some points will have low acceptance

probability and the chain will move less frequently because of many rejections. On the

other hand, if the spread is too small, the chain will take a longer time to cross the

support of the target density but more proposed values are accepted. Thus, in order to

make our chain more efficient (better mixing), the proposal distribution should be carefully

53



Chapter 4. Introduction to Bayesian inference

chosen. Some commonly used classes of proposal distributions are the symmetric chain

(as discussed above), the random walk and the independence chain.

The MH algorithm can be extended to higher-dimensions where the parameter θ =

(θ1, θ2, ...θd)
T could be a vector. Initial values should be selected for each element and a

multivariate proposal distribution q(θtnew|θt) should be used to select a d-dimensional new

parameter. In particular, we might have to sample a vector from a multivariate normal

distribution. We will discuss sampling from a multivariate normal distribution using the

Cholesky decomposition in Section 4.6.6.

4.6.3.1 Random walk proposal

Suppose we define the proposed move at counter t as θtnew = θt + zt where z1, z2, ...

is a sequence of independent and identically distributed random variables and zt has a

distribution with density g(.) which is easily simulated. Since the proposed value is equal

to the current value θt plus a random step, the algorithm is called random walk Metropolis-

Hastings (See Gamerman (1997) for further information). The proposal density is given

by q(θtnew|θt) = g(θtnew − θt).

4.6.3.2 The independence proposal

In the independence sampler, the proposal distribution in the algorithm does not depend

on the current value (Gamerman, 1997). Rather it is like the target distribution. The

MH algorithm takes all the steps of Metropolis algorithm except that the acceptance

probability A will be given as

A = min

{
π(θtnew|D)q(θtnew)

π(θt|D)q(θt)
, 1

}
4.6.4 Gibbs Sampler

The Gibbs sampler was developed by Geman & Geman (1984). Gibbs sampling is one of

the best known MCMC sampling algorithms. It allows sampling and updating parameter

by parameter from the posterior distribution without knowing the normalising constant. It

samples from a multivariate distribution by simulating from the conditional distributions.

We can obtain a full conditional distribution for any parameter by ignoring all terms

that are constant with respect to that parameter. When updating the jth component, all

other components are kept as constant and the proposal distribution for the new value

will be the full conditional distribution. Some full conditional distribution are well known

distributions which are easy to sample from such as normal or gamma distributions.

Suppose π(θ|D) is the posterior distribution given data D where θ = (θ1, θ2, . . . , θd)
T
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is a d-dimensional vector of parameters and the full conditional densities are denoted by

π(θj |θ1, . . . , θj−1, θj+1, . . . , θd, D) for j = 1, 2....d.

The Gibbs sampling algorithm follows the following steps:

Step 1: Set the iteration counter to t=1 and the chain at

θ0 = (θ01, θ
0
2, . . . , θ

0
d)
T

Step 2: Obtain a new value

θt+1 = (θt+1
1 , θt+1

2 , . . . , θt+1
d )T .

from θt by successsive simulation from the full conditional distributions as follows:

θt+1
1 ∼ π(θ1|θt2, θt3, . . . , θtd, D)

θt+1
2 ∼ π(θ2|θt+1

1 , θt3, . . . , θ
t
d, D)

...

θt+1
d−1 ∼ π(θd−1|θt+1

1 , θt+1
2 , . . . , θt+1

d−2, . . . , θ
t
d, D)

θt+1
d ∼ π(θd|θt+1

1 , θt+1
2 , . . . , θt+1

d−1, D)

Step 3: We move from counter t to t+1 and return to step 2.

Each of θ1, θ2 . . . , θd could be a vector. Hence, we can sample the unknowns in groups,

known as blocks. Blocking of variables can greatly improve mixing and convergence of the

MCMC scheme for carrying out inferences (Roberts & Sahu, 1997).

4.6.5 Metropolis within Gibbs

Metropolis within Gibbs or “component-wise MH” is used when the distribution of inter-

est has a complicated form which prevents sampling directly from it. Some or all of its

full conditional distribution have forms which make direct sampling difficult and so MH

samples are drawn instead in these cases. The Metropolis within Gibbs algorithm goes

through each unknown and samples directly from the corresponding full conditional dis-

tribution or carries a Metropolis-Hastings update as necessary (Gamerman, 1997) where

we sample from a suitable proposal distribution and either accept or reject the proposal

value according to a Metropolis-Hastings acceptance rule.
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4.6.6 Sampling from a multivariate normal distribution using the Cholesky

decomposition

Sampling using MCMC might involve sampling an “n” dimensional vector with multi-

variate normal distribution given by Nn(µ, V ) where µ is the mean vector and V is the

covariance matrix. We will discuss sampling from Nn(µ, V ) using the Cholesky decompo-

sition.

Suppose we wish to sample a vector of parameters ω from the multivariate normal

distribution. We can subtract its mean E(ω) from it as follows:

ω̃ = ω − E(ω)

We will decide on how to sample ω̃. Suppose we have

ω̃ = Lε

where we have ε = ε1, ε2, . . . , εn such that εi
iid∼ N(0, 1). Then, the covariance matrix of

the vector of ε
′
s, ε is given by

Covar(ε) = I

where I is an identity matrix.

For convenience, L will be a lower triangular matrix. Then U = LT is an upper

triangular matrix. The covariance matrix of Lε is given by

Covar(Lε) = LIU = LU = V (4.10)

which implies that

ω̃ = Lε

where V is the covariance matrix of ω̃.

We can sample values for ω̃ and then add the mean E(ω) to the sampled values as

ω = ω̃ + E(ω)

The Cholesky decomposition of V can be used to find the matrix L. There are standard

R functions to calculate the Cholesky decomposition. The Cholesky decomposition is fast

and numerically stable.

4.6.7 Initial values

We must first initialise the Markov chain by providing starting values for each unknown

parameter in the statistical model before the MCMC method is started. In some cases,
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like WinBUGs, OpenBUGS and JAGS, the initial values can be chosen automatically by

sampling from the prior distribution of each parameter (Plummer, 2012). However, this

may cause inappropriate starting values and may cause the program to crash if the prior

distribution has very large variances. In BUGS and JAGS, the initial values can also be

supplied as a separate file. We can also run several chains by supplying different starting

values for each chain in order to monitor convergence.

4.6.8 Burn-in and convergence

There is need to be able to detect when the simulated values will be close to stationarity.

Burn-in is the process of discarding the initial non-stationary portion of the Markov chain

which minimises the effect of the initial values on the posterior inference (Lunn et al., 2013);

(Gamerman, 1997). At convergence, the chains will have mixed, so that the distribution

of the simulations between and within chains will be identical. We can sometimes detect

convergence in a straight forward way by eye. Visual inspection of plots is the most obvious

and commonly used method of determining burn-in. This can be done by a history or

trace plot of successive realisations of a particular variable against the iteration number

of the sampler. However, this may not always be reliable. Therefore, using two or more

parallel chains can also help to determine when the convergence has occurred. There are

also various diagnostics available. A review of convergence diagnostics is given by Cowles

& Carlin (1996). As well as the question of convergence to the stationary distribution,

there is the question of how quickly the sampler moves around the parameter space. If

the sampler moves quickly around the parameter space, and there is little dependence

between successive samples, the sampler is said to mix well. Poor mixing often shows as

strong autocorrelation of the samples.

4.6.9 Thinning

Thinning is done so that we do not have to store so many samples in the memory. When

the samples are strongly positively auto correlated, the thinned samples contain almost as

much information as the whole set but require less space to store. In thinning, we discard

all but every nth sampled value. For example, because of dependence, thinning 10000

samples with strong correlation by using only every 10th sample will reduce the storage to

1000 samples while losing little information. It will not give a better representation of the

joint posterior distribution. It simply saves space. Thinning does reduce the precision of

the summary of the Markov chain (Link & Eaton, 2011) but, when there is strong positive

autocorrelation, this reduction may be slight. We could just collect all samples and have

more efficient summary than using the thinned chain if there is little or no dependence

between the samples.
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4.6.10 Efficiency and accuracy

In practice, we judge how long it takes for the sampler to converge. We need to be able to

detect when the marginal behaviour of our MCMC is sufficiently close to stationarity. We

run the simulation well beyond the point of convergence whereas detecting stationarity

requires a sample size which depends very much on the efficiency of the Markov chain.

The accuracy of our inference depends on the efficiency of the posterior sample. We will

have to think of the choice of the sample size that will achieve the specific level of accuracy

that is required. We refer to Spiegelhalter et al. (1995) for the batch means method of

calculating Monte Carlo standard error.

Suppose we have H posterior samples for a parameter θi and we want to estimate the

posterior expectation of some function f(θi). The Monte Carlo estimate using the samples

is given by

f̄H =
1

H

H∑
h=1

f(θ
(h)
i )

We again refer to Spiegelhalter et al. (1995) for the estimation of the Monte Carlo stan-

dard error (MCSE) where the samples θ1i , . . . , θ
H
i are independent and Jones (2004) for

dependent samples. We split the samples into B batches of length l. We assume that the

central limit theorem holds for each batch and hence f̄b,l = 1
l

∑ba
h=(b−1)l+1 f(θ

(h)
i ) ∼approx

N(E[f(θi)], ρ/H) for b = 1, . . . , B and some positive ρ.

We can estimate ρ using

ρ̂ =
l

B − 1

B∑
b=1

(f̄b,l − f̄H)2.

The MCSE of f̄H will tell us how accurately the Monte Carlo samples estimate the true

posterior expectation. This MCSE of f̄H is approximately
√
ρ̂/H where the value of l is

given by
⌊√

(H)
⌉

(Abrams et al., 1988). We will be interested in comparing the MCSE to

the posterior standard deviation s which estimates the effective sample size (ESS). This

will tell us whether the inaccuracy about estimating the posterior mean of f(θ) is large

compared to the overall uncertainty about it. The ESS is given by

ESS =
( s

MCSE

)2
.

We would want to know the effect of sample size that we get per second. We can get this

by dividing the average of the values of the effective sample size of all parameters by the

time taken to collect H samples.
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4.7 Numerical methods for improving mixing in MCMC

Mixing is the movement of the sampler around the posterior distribution. One at a time

updating of parameters can be disadvantageous if the parameters are highly dependent in

the posterior distribution and thus mixing can be poor. This is because the Markov chain

may move around very slowly in the posterior distribution. Mixing of a Gibbs sampler

can sometimes be improved by “blocking” groups of correlated unknowns. MCMC mixing

and convergence can be improved by centering the variables because it reduces correlations

between the parameters in the posterior. Thus, it is likely to make the coefficients of the

parameters closer to being independent in the posterior which makes a Gibbs sampler

work more efficiently. We introduce blocking of the parameters via the forward backward

algorithm and Gaussian approximation of the proposal distribution of the parameters as

numerical approaches to improving mixing.

4.7.1 Sampling the parameters using the idea of forward backward re-

cursion

The forward backward algorithm developed by Baum et al. (1970) is a Markov chain

Monte Carlo (MCMC) sampling technique used to simulate hidden Markov model param-

eters from the posterior distribution given observed data (Scott, 2002). This is done by

calculating the conditional distributions of the hidden states given observed data and the

model parameters. The forward backward recursion is usual when the data follow Markov

processes (Scott, 1999) and is typically used with state space models (West & Harrison,

1997) which are assumed to follow a Gaussian process. The forward recursion accumulates

information in the form of a conditional distribution about the process as it moves down

the hidden Markov chain while the backward recursion updates the distribution of the

parameter calculated in the forward recursion after information has been collected from

all observed data.

Suppose we have a simple Gaussian Markov process θ1, . . . , θn, where θj = θj−1 +Wj

and wj ∼ N(0, Vw), that we wish to sample given some observed data η1, . . . , ηn using

the forward backward algorithm. In the forward recursion of a simple Markov process, we

change the distribution of θ1 by conditioning on η1, f(θ1|η1). This will in turn change the

distribution of θ2 since θ2 = θ1 + W2 for W2 ∼ N(0, Vw). We then condition on η2 and

get the distribution of θ2, f(θ2|η1, η2). We keep conditioning until we have conditioned

on all the η’s and we get the distribution of θn, f(θn|η1, · · · ηn). We store all conditional

distributions in the forward recursion. We then start the backward recursion by sampling

θn from f(θn|η1, . . . , ηn). We will go back to the distribution of θn−1, f(θn−1|η1, . . . , ηn−1).
We condition on θn since we have now observed θn, f(θn−1|η1, . . . , ηn, θn). Then, we sample

θn−1 from f(θn−1|η1, · · · ηn, θn). We will keep conditioning on the previous known values
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of θ’s until we have the distribution of θ1 given all other θ’s, f(θ1|η1, . . . , ηn, θ2, . . . , θn) and

we sample θ1 from this distribution. We then have a sample from the joint distribution of

(θ1, . . . , θn) given (η1, . . . , ηn).

4.7.2 Gaussian approximation of the proposal distribution of the pa-

rameters

Sampling a vector of dependent unknowns η as a block can improve mixing but when the

joint full conditional distribution is not Gaussian and does not take some other convenient

form, the options of a forward backward algorithm or sampling the joint distribution via

a Cholesky decomposition are not available. Therefore, we use a Metropolis-Hastings

step and we wish to choose an appropriate multivariate proposal distribution. One way

to do this is to use a Gaussian approximation to the joint full conditional distribution.

Suppose that the full conditional distribution of the vector of parameters η we want to

sample from is π(η|D). A natural choice could be expanding around the mean of the

approximation to generate an improved approximation until it is equal to the mode of the

full conditional distribution (Rue & Held, 2005). This might require applying iterative

quadratic approximation to the posterior density until convergence in order to obtain a

normal proposal with mean equal to the posterior mode.

We wish to approximate the function

g = log
(
π(η|D)

)
.

We find the posterior mode using a Newton Raphson algorithm. Thus, we use an iterative

method which is based on a quadratic Taylor series approximation of the logarithm of the

posterior density g. We start by determining the vectors of the first derivatives g′(η) and

the matrix of second derivatives g′′(η) of the logarithm of the posterior density. We choose

a starting or initial set of parameter values (probably the maximum likelihood estimate)

say η
0
. For p = 1, 2 . . ., we compute g′(η

p−1) and g′′(η
p−1). The Newton Raphson step at

p = 1 is based on the quadratic approximation to g at η
p−1. We set the new iterate or

value η
p

to maximise the quadratic approximation. We have

η
p

= η
p−1 −

[
g′′(η

p−1)
]−1

g′(η
p−1)

This procedure is iterated until the parameter values stabilize. We suppose that G′′mode is

the value of the partial second derivative when evaluated at the mode. Then, the precision

matrix of the proposal distribution is approximately

Q1 = −G′′mode
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Hence, we get the covariance matrix.

Once we have found the mode, we fit a multivariate normal distribution based on

the mode. We use the approximated multivariate normal distribution as the proposal

distribution using the Cholesky decomposition discussed in Section 4.6.6. The advantage

of Newton Raphson algorithm is that the parameter values stabilizes very fast. Depending

on the form of the full conditional distribution, it may be that the Newton Raphson

algorithm is not guaranteed to converge to the model from all starting values so choice of

initial values may be important.

4.8 Missing data

Data missingness is a frequent characteristic of many clinical data sets. Missing data may

occur because of failure to report some evaluations, refusal to answer questionnaires, lost

data et.c. It is a common technique to exclude or discard individuals with partially or

totally missing data and use only the cases with complete data (Congdon, 2001). Little

& Rubin (1987) discussed the disadvantages of case deletion. Discarding the observation

where there are missing data is not advisable because this is inefficient and may lead to

biased inferences. Longmore & Longmore (2007) in the development of the National Com-

prehensive Cancer Network International Prognostic Index (NCCN-IPI) (Section 3.8.6)

used only cases with completely observed clinical information while 15% of the patients

were deleted from the data analysis due to missing values in one or more clinical variables

which is likely to cause biased inference in the analysis. The Scotland and Newcastle

Lymphoma Group (SNLG) data set, which is one of the data sets used in this thesis, has

1391 patients and only 636 patients had complete data. Thus, almost half of cases have

missing data which can cause the posterior summaries using the complete data set to be

different from those using the full data set (including cases with missing data) and might

give misleading results. There is therefore the need to develop methods which would deal

with missing data (Zhao, 2010).

In Bayesian inference, the missing data become extra unknown quantities and the

model can be extended to include the variables that may be missing. If a covariate

is sometimes missing, we can use the cases where it is not missing to learn about its

relationship with other covariates. Hence, we can obtain a joint posterior distribution for

the model parameters by including the extra unknown quantities.

4.8.1 Types of Missingness

Suppose that Y = (y1, . . . , yn)T represents a response variable where some values of xi,j

might be missing and therefore not observed. We introduce an indicator Ii = (Ii,1, Ii,2...Ii,J)T

which is a vector indicating which observations are missing for the ith individual, where
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Ii,j = 1 if xi,j is observed and Ii,j = 0 if xi,j is missing.

Suppose we use the parameters β to denote the model parameters and φ to denote the

parameters of the missing data mechanism. The joint distribution of (T,X, I) given (β, φ)

can be written as

f(T,X, I|β, φ) = f(T,X|β)PI(I|T,X, φ)

where PI(I|T,X, φ) is the conditional probability of the indicator I given the survival time

T , the covariate matrix X and the missing data mechanism φ.

We partition the values of the covariate X into the observed X values (Xobs) and the

missing X values (Xmiss). Thus, X = (Xobs, Xmiss). The distribution of the observed

data is obtained by integrating over the distribution of Xmiss:

f(T,Xobs, I|β, φ) =

∫
f(T,Xobs, Xmiss|β)PI(I|T,Xobs, Xmiss, φ)dXmiss

Little & Rubin (1987) defined three different types of missingness. When the miss-

ingness on the covariate is conditionally independent of the missing values given observed

values then the missing data are missing at random (MAR). That is

PI(I|T,Xobs, Xmiss, φ) = PI(I|T,Xobs, φ).

The joint distribution under missing at random can be written as

f(T,Xobs, I|β, φ) = f(T,Xobs|β)PI(I|T,Xobs, φ)

When the distribution of I is not related to either missing or observed values then the

missingness is said to be completely at random (MCAR). In MCAR, we have that

PI(I|T,Xobs, Xmiss, φ) = PI(I|φ)

The joint distribution under missing completely at random can be written as

f(T,Xobs, I|β, φ) = f(T,Xobs|β)PI(I|φ)

The missing data mechanism is said to be ignorable when in addition to the missing data

being missing at random, the model parameter β and the missing data parameter φ are

independent in their prior. The joint prior density is given by

fβ,φ(β, φ) = fβ(β)fφ(φ).
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The joint posterior density is proportional to

fβ(β)fy,obs(yobs|β)× fφ(φ)p(I|yobs, φ)

In this thesis, the missing data are assumed missing at random (MAR). We can justify

this assumption of missing at random because a lot of covariates were observed and the

missingness indicator and the missing observations only have to be conditionally indepen-

dent given the observed covariates. Hence, the missingness of the covariates may depend

on the observed covariates Xobs and not on the missing values Xmiss (Little & Rubin,

1987). The basic idea is that the more covariates we can condition on, the more likely

it is that the missing values are conditionally independent of the missingness given the

observed values. In the case of survival, there are a lot of covariates we are conditioning

on which convey enough information to make the missingness conditionally independent

of the missing observations.

4.9 Summary

In this chapter, we introduced Bayesian inference which is our intended approach of in-

ference. We have also discussed various Markov chain Monte Carlo (MCMC) techniques.

The elicitation and structures of prior distribution were discussed with illustrations. We

have also discussed some numerical methods such as the forward backward algorithm and

Gaussian approximation of the proposal distribution which will be suggested as approaches

to improving poor mixing in later chapters. We also discussed missing data and different

types of missingness.
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Chapter 5

Introduction to Bayesian inference

in survival analysis

5.1 Introduction

In this chapter we review the application of Bayesian inference to the analysis of survival

data, based on previously published work. In addition we present new work on two topics.

One is the construction of prior distributions for the parameters of survival models and the

elicitation of hyperparameters for these prior distributions The second is the construction

of prognostic indices using the piecewise constant hazard model.

In Bayesian survival analysis, our beliefs about the unknown parameters of the survival

model are expressed in terms of a probability distribution in the form of the prior which

is updated to the posterior distribution after seeing the data in the form of the likelihood

function. In cases where the posterior distribution does not have a standard form, it is

usual to sample from the posterior distribution using Markov chain Monte Carlo (MCMC)

methods.

We discuss in Section 3.2.1 the fact that censoring is very common in most survival

data. We will discuss how censored observations are handled in survival analysis. Section

5.3 presents (with illustration) the construction of prior distributions of the parameters

with application to survival analysis following the proportional hazard framework. We ap-

ply our discussion on the specification of prior distribution of the parameters in the model

to survival analysis. We present constructing the prior distribution of the baseline param-

eters of a survival model by supposing an exponential lifetime distribution and assuming

a normal prior distribution for the log-hazard. We will also present the construction of

the prior distribution for the coefficient of a quantitative covariate and a 2-level factor

with examples in survival models. We give some examples on the construction of the

prior distribution for unordered factors with application to survival model. We present
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the prior distributions for linear predictors by assuming a normal distribution and we plot

the probability density function of the survival function with different means and standard

deviation for the linear predictors.

We review a Bayesian approach to survival analysis using a Weibull lifetime distribu-

tion. We present a new approach to constructing the prior distribution for a Weibull shape

parameter by thinking in terms of the median survival time, upper quartile survival time

and the lower quartile survival time. We apply Bayesian survival modelling to the SNLG

data set using our methods of construction of the prior distributions of all parameters of

the model. We give posterior summaries to the parameters. We show with illustrations

how the prognostic indices for a Weibull survival model is calculated using the SNLG data

set.

We present Bayesian survival modelling using a piecewise constant hazard model. We

also present with some illustrations a way of choosing the cutpoints of the time intervals for

the piecewise constant hazard model. We review and construct the likelihood of a piecewise

constant hazard model. We will construct the prior distribution such that the parameters

are correlated over time by assuming a stationary distribution for the parameters using a

first order auto-regressive process. We present a new approach to constructing the prior

distribution for a frailty variance by supposing a normal distribution for the log-frailty

and a gamma distribution for the precision of the log-frailty. We apply Bayesian survival

modelling using a piecewise constant hazard model using the two example data sets as

illustrations. We present time dependent effects by fitting two versions of the model. One

without and the other with log normal frailties using the example data sets. We will also

present ways of constructing the prognostic indices of a piecewise constant hazard model

using both the survival probability at some time or the predictive median survival time,

with illustrations.

5.2 Censoring and data augmentation

Some models have complicated likelihood functions which, if handled directly, would lead

to difficult calculations. We may introduce extra variables known as auxiliary variables

which are not observed but, if observed, would make the likelihood simpler. These aux-

iliary variables are then treated as if they were missing data. This is known as data

augmentation. Tanner & Wong (1987) defined data augmentation as a concept of aug-

menting the observed data so as to make it easier to analyse. In Bayesian analysis for

survival data, censored observations can be handled as “missing data” and the actual

death times for censored patients are auxilliary variables. Alternatively, we evaluate the

likelihood directly where a right censored observation contributes a term equal to the

survival function as discussed in Section 3.4.2.
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5.3 Proportional hazards and prior distribution for the co-

efficients of covariates

In this section, we follow the classical proportional hazard framework discussed in Section

3.3.1 in modelling the hazard rate of the survival time in terms of the covariates. We have

an example of a baseline hazard using the exponential distribution which has constant

hazard given by

h(t) = λ.

The survivor function is

S(t) = exp {−λt}

and the density is

f(t) = λ exp {−λt} .

The proportional hazard assumption means that every individual has a hazard function

that is a constant multiple of the underlying baseline hazard. The constant of propor-

tionality depends on the covariates. This is done following the linear approach or linear

predictor given in Equation (3.2).

5.3.1 Construction of prior distribution for the coefficients of a linear

predictor

In this section, we will construct the joint prior distribution for the coefficients in a linear

predictor using a multivariate normal distribution. We will suppose for now that we have

an exponential lifetime distribution so that there are no additional parameters. We will

consider the case of a Weibull distribution, where there is, in addition, a shape parameter,

in Section 5.5.

The construction of the prior distribution will often involve elicitation of prior beliefs

from a person other than the analyst. This person will often have expert knowledge of the

subject matter of the study. We will refer to this person as the “expert”. The expert may

not have great expertise in probability and statistics so the design of suitable questions

for elicitation is important. Translating the beliefs of the expert into a statistical form to

suit the analysis might be challenging. The expert may not be able to provide probability

distributions for the parameters of interest directly but rather the researcher is required

to find appropriate questions to ask the expert in order to determine the probability

distribution of the parameters. It is generally considered that the expert should be asked

questions about observable quantities. Hiance et al. (2009) used a structured questionnaire

to elicit the opinion of a group of experts.

The details of the elicitation method may vary depending on the type of covariates
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involved. We will give examples of the construction of priors with covariates of different

types.

Ren & Oakley (2013) considered elicitation of prior distributions for the parameters of

lifetime distributions. In the case of a single lifetime distribution, they referred to Sections

6.3 and 6.4 of O’Hagan et al. (2006). Ren & Oakley (2013) then considered the case of

two groups. They recommended eliciting judgements about the survival probability at

some specified time and we follow this approach. However, in our application, we have

more than two groups and need to consider beliefs about the effects of several covariates.

Therefore, we adapt the approach by adopting the following strategy.

We first identify a suitable “baseline” case. This is a hypothetical patient with “typical”

or “central” covariate values. We will then consider the effects of changing covariate values

away from this baseline case by varying one covariate at a time from the baseline values.

By choosing such a central case as a baseline, it becomes reasonable to suppose that the

coefficients of covariates are independent of the baseline log-hazard in the prior distribution

and may be elicited separately. It does not follow that the coefficients of covariates are

mutually independent but this may be a reasonable assumption in many cases in practice.

It would be possible to extend the method to allow dependence between coefficients by

considering the effects of varying more than one covariate.

So, our first question is the following.

Q1: “Please identify a set of covariate values for a “baseline” patient. This should be a

“typical” case so that it is relatively easy to use your experience to express judgements

about this case. The baseline case should be the case about which you have the

least uncertainty. Making this case “central” or “average” enables us to ask about

judgements for this case separately and then to ask other questions about the effects

of changing covariate values from this case.”

Because we will ask about the survival probability at a specified time, it is necessary

to identify a suitable choice of time to specify. Our second question therefore asks for the

median survival time for a baseline patient.

Q2 “Please identify a survival time t such that you feel that it is equally likely that a

baseline patient would die before or after this time.”

5.3.1.1 Construction of prior distribution for the baseline parameter of a

survival model

We start by eliciting a prior distribution for the log-hazard of a baseline patient. Let the

reference time elicited in response to Question Q2, or some rounded value close to it, be
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t0, although, in subsequent questions, the actual value would be given rather than the

symbol “t0”.

Given a sample of baseline patients, the number who survive beyond t0 has a binomial

distribution. We wish to elicit beliefs about the parameter of this binomial distribution.

Winkler (1967) discusses a number of methods for eliciting prior distribution for binomial

parameters. These methods may be used but we might also use a more direct approach

with questions such as the following.

Q3 “Please think about the proportion of baseline patients who would survive beyond t0.

Please give a value p such that you think that it is equally likely that the proportion

is less than or greater than p.” Let the given value be p2.

Q4 “Still thinking about the proportion of baseline patients who would survive beyond t0,

please give a value p such that you think that it is equally likely that the proportion

is between p2 and p and that it is greater than p.” Let the given value be p3.

Q5 “Still thinking about the proportion of baseline patients who would survive beyond t0,

please give a value p such that you think that it is equally likely that the proportion

is between p and p2 and that it is less than p.” Let the given value be p1.

We thus elicit the three quartiles, p1, p2, p3, of the prior distribution for the survival

probability at time t0. These may be transformed to give the quartiles of the prior distri-

bution for the baseline log-hazard β0. Since the survival probability is exp(−λt0) where

λ = exp(β0), the three quartiles for β0 become

b0,h = ln

{
− ln p4−h

t0

}
(5.1)

for h = 1, 2, 3.

Using a normal prior distribution, we can determine the mean as (b0,1 + b0,3)/2 and

the standard deviation as (b0,3 − b0,1)/1.349. The additional value, b0,2 can be used as a

check of normality, or, at least, symmetry, since we should have b0,2 ≈ (b0,1 + b0,3)/2.

We will now consider the elicitation of prior distributions for other parameters in the

log-hazard for non-baseline patients.

5.3.1.2 Example: Construction of prior distribution for the coefficient of a

quantitative variable

To construct the prior distribution for the effect of a quantitative covariate, xj , we intro-

duce a second hypothetical patient. The covariate values for this patient are the same
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as those for the baseline patient except in the case of xj where the baseline value xj,0 is

replaced by xj,0 + δj . A suitable value for δj should be determined in consultation with

the expert.

Q6 “We are going to consider the effect of a change in the value of (covariate xj). Please

suggest a value, different to the baseline value but where you feel able to give judge-

ments based on your experience which may be used for this purpose. The value

should not be too close to the baseline value but should be within the range of your

experience.”

Using the same method as in Section 5.3.1.1 we elicit a normal distribution for the

log-hazard in this case, which is β0 + βjδj .

Given the underlying linear model and assuming that the value of βj is not known

with certainty, the variance of this distribution should be greater than that of β0. If it

is found that it is not then the elicitation process may be repeated to try to overcome

this problem. Alternatively, if the variance given in this second case is less than that for

the baseline, the elicitation might be repeated with this case as the baseline. If the two

variances are equal then increasing the value of |δj | might solve the problem. Note that

problems of this sort are a consequence of the linear parametric model and will not apply

when we consider nonparametric models in Chapters 6 and 7.

Assuming that the value given for Var(β0 + βjδj) is greater than that for Var(β0) and

that β0 and β1 may be considered to be independent, we have

E(βj) =
1

δj
{E(β0 + βjδj)− E(β0)} (5.2)

and

Var(βj) =
1

δ2j
{Var(β0 + βjδj)−Var(β0)}. (5.3)

5.3.1.3 Example: Construction of prior distribution for the coefficient of a

2-level factor

Suppose that we have a 2-level factor, that is a binary covariate. We might choose to

use the so-called “corner constraint” and set the effect of the baseline level of the factor

to zero. Then a prior distribution for the effect of the other level of the factor can be

obtained in the same way as for a quantitative covariate, with δj = 1. However, we might

prefer to use the “zero-sum” constraint, particularly if we regard the effects of the two

levels of the factor as exchangeable. In this case, the model for the log-hazards for the

69



Chapter 5. Introduction to Bayesian inference in survival analysis

two levels, ignoring other covariates, would take the form β0 − βj , β0 + βj . In this case,

when eliciting prior distributions for the effects of other covariates, we can regard one of

the levels as the baseline and, as long as there are no interaction effects and the effects

are regarded as independent, this has no effect on the cases of the other covariates. The

only difference is that the difference in mean between the two levels of the factor is now

2βj so, in effect, δj = 2.

5.3.1.4 Example: Construction of prior distribution for unordered factors

Now we consider the case of unordered factors with K > 2 levels. We might think of

constructing the prior distribution for the effects of the levels by choosing a baseline or

reference level. If we fix one of the parameters to be zero as discussed in Section 4.4.3.4

then this parameter is the baseline and we compare its level with the others (see Scheme

in Table 4.1). However, again, we might prefer to use a zero-sum constraint. In this case,

we adopt the following procedure.

If we have more than one factor then, because of the need to have a common baseline,

we consider these factors together. Let us leave aside other covariates for now and suppose

that we have J factors and that factor j has Kj levels. Then we represent the mean of

the log-hazard, when the levels of the factors are k = (k(1), . . . , k(J)), as

β∗(k) = β0 +
J∑
j=1

βj,k(j) (5.4)

where, for j = 1, . . . , J ,
Kj∑
k=1

βj,k = 0.

We start by selecting a single reference profile of factor levels. This should preferably

be a profile which would be likely in practice but, without loss of generality, we can label

this profile k0 = (1, 1, . . . , 1). Using the method described in Section 5.3.1.1, we can elicit

a mean m0 and variance v0 for the log-hazard at this profile, that is for β∗(k0).

Next we consider other profiles. For an additive model, we can hold the levels of

all but one factor at their reference levels and vary just the level of the factor under

consideration. That is, for j = 1, . . . , J and k = 2, . . . ,K(j) we consider the profile

kj,k = (1, 1, . . . , 1, k, 1, . . . , 1) where the value k occurs for factor j. This leads to a mean
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mj,k and a variance vj,k for the log-hazard. The prior mean for βj,k is then

E(βj,k) = mj,k −
Kj∑
k=1

mj,k/Kj ,

where, for j = 1, . . . , J , mj,1 = m0. We can then find the prior mean for β0 as

E(β0) = m0 −
J∑
j=1

E(βj,1) =
J∑
j=1

Kj∑
k=1

mj,k

Kj
− (J − 1)m0.

The method can be adapted if interaction effects are included.

The effects βj,1, . . . , βj,Kj can now be given a correlation matrix which imposes the

zero-sum constraint. For example, we recall the correlation matrix in Section 4.4.3.5 for a

3-level factor given by

C =

 1 −0.5 −0.5

−0.5 1 −0.5

−0.5 −0.5 1

 .

However, to find the variances of β0, β1,1, . . . , βJ,Kj , we need to assess covariances between

levels. We will often be willing to simplify matters by assuming that a priori Bj is

independent of Bh and of β0, where h 6= j and B = (βj,1, . . . , βj,Kj ), and the elements of

Bj are exchangeable for each j. Then, from (5.4), we see that

Var[β∗(kj,k)]− Covar[β∗(kj,k), β
∗(k0)] = Var(βj,k)− Covar(βj,k, βj,1).

Using the exchangeablility assumption, this simplifies to

Var[β∗(kj,k)]− Covar[β∗(kj,k), β
∗(k0)] =

Kj

Kj − 1
Var(βj,k).

Hence, given assessments of the covariances, we can find Var(βj,k) for all j, k and, in turn,

using the independence assumption, this allows us to calculate

Var(β0) = Var[β∗(k0)]−
J∑
j=1

Var[βj,1].

Relaxing the independence and exchangeability assumptions would lead to the need to

assess a greater number of covariances.

To find the required covariances we can adapt the hypothetical future sample method

of Winkler (1967). For example, we might ask a question such as the following. The actual

numbers used in the question would be chosen to be reasonably realistic.
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Q7 “Still thinking of patients where all other covariates are at their baseline values, con-

sider how your judgements might change if we observed some data. Suppose that

we observed a sample of 30 patients with all factors at Level 1 and that 20 of these

survived beyond time (t0). What would your assessed mean now be for the proportion

of patients, with all factors at Level 1 except for Factor (j) which is at Level 2, who

would survive beyond time (t0)?”

Similarly we elicit revised quartiles and hence a revised mean and variance for β∗(kj,2).

In order to compute the effect of the observed patients at Profile k0 on the distribution,

we approximate the prior distribution for π0, the survival probability at Profile k0 and time

t0, by a Beta(a0,0, b0,0) distribution where a0,0 and b0,0 are chosen to match the specified

lower and upper quartiles. The hypothetical observed data then lead to a Beta(a0,1, b0,1)

distribution as an approximation posterior distribution. With the example values given

above, a0,1 = a0,0 + 20 and b0,1 = b0,0 + 10. This allows new quartiles to be computed

for π0. Then we apply (5.1) to obtain new quartiles for β∗0 and hence a revised mean and

variance for β∗0 .

If we observed the value of β∗0 , then the revised mean for β∗(kj,2) would be

E1[β
∗(kj,2) | β∗0 ] = E0[β

∗(kj,2)] + CjVar0[β
∗
0 ]−1{β∗0 − E0[β

∗
0 ]} (5.5)

where E0[β
∗
0 ] and E0[β

∗(kj,2)] are the prior means of β∗0 and β∗(kj,2) respectively, Var0[β
∗
0 ]

is the prior variance of β∗0 and Cj is the prior covariance.

Applying the idea of Bayes linear kinematics, as discussed by Goldstein & Shaw (2004),

we suppose that the relationship (5.5) still holds when we do not observe β∗0 but observe

data D which cause us to revise our mean and variance for β∗0 . Then we replace (5.5) with

E1[β
∗(kj,2) | D] = E0[β

∗(kj,2)] + CjVar0[β
∗
0 ]−1{E1[β

∗
0 | D]− E0[β

∗
0 ]}

where E1[β
∗
0 | D] is the revised mean for β∗0 after observing the data. Hence we assess Cj

using

Cj = Var0[β
∗
0 ]

E1[β
∗(kj,2) | D]− E0[β

∗(kj,2)]

E1[β∗0 | D]− E0[β∗0 ]
.

5.4 Prior distributions for linear predictors

Prior judgements should be related to observable quantities (Zapata-Vazquez et al., 2014).

In assessing prior distributions for the parameters of a survival model, we should consider

their effects on the prior predictive distributions of observable quantities such as survival

proportions or, at least, on the prior distribution of summaries of distributions of ob-

servable quantities. To elicit the prior distribution of the logarithm of the hazard of a
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patient, we might think of the proportion of a large group of patients that will survive for

a particular, typical, number of years (e.g 3 years in the case of the SNLG data set). For

example, suppose that we think that about one tenth to nine tenth of the patients will

survive 3 years. Let us suppose that we have an exponential lifetime distribution with

parameter λ. This corresponds to having no changes in parameters between time intervals

in the piecewise constant hazard model or α = 1 in the Weibull model. We will obtain

0.1 ≤ exp−3λ ≤ 0.9

log 0.1 ≤ −3λ ≤ log 0.9

−3.36 ≤ log λ ≤ −0.265

This gives a range for the linear predictor (logarithm of the hazard). A normal prior

distribution for logarithm of the hazard will give us a mean of µ = −1.81 and standard

deviation σ = 0.77. So,

η ∼ N(µ, σ2)

where

η = log λ

and λ is the hazard. We would like to find the probability of surviving say τ years. This

will be done by the transformation of the random variables. The survival probability (p)

is

p = exp {−τλ} .

Given a value for p

λ =
− log p

τ

is implied. Then η = log λ = log − log p
τ

This is called a “complementary log-log transformation”. We will let the probability

density functions of p and η be f(p) and f(η) respectively. Then

f(p) = f(η)/|J |

where

|J | = |dp
dη
| = τ exp {η − τ expη} = λτ exp {−λτ}

Hence we have

f(p) =
1

τ
(2πσ2)1/2 exp

{
− 1

2σ2
(η − µ)2 − η + τeη

}
(5.6)
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where η = log − log p
3 .

Figure 5.1 shows various plots of the probability density function of the survival func-

tion with different means and standard deviations for η.
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Figure 5.1: Density plots of the 3 years survival probability with (a) mean -1.81 and standard
deviation 0.77 (b) mean 0 and standard deviation 0.77 (c) mean -1.81 and standard deviation 1
(d) mean 2 and standard deviation 0.77 (e) mean -1.81 and standard deviation 1.5 (f) mean -1.465
and standard deviation 0.77

The plot of the 3 years survival probability with mean= -1.81 and standard deviation

=0.77 does not look symmetric hence there will be the need to investigate further on how

the plots will look when the elicitated prior means standard deviations are either increased

or decreased. When the means and standard deviations of the 3 years survival probability

were increased or reduced the plots no longer looked unimodal.
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We might want to think of the value of the linear predictor η when the survival prob-

ability p = 0.5. The value of the linear predictor at p = 0.5 given by

exp {−3 expη} = 0.5

η = log
log 2

3
= −1.465

We will try various values of standard deviation that makes the plot look symmetric. The

standard deviation value of 0.3 makes it look symmetric. Since η has a normal distribution,

we will work out the corresponding 95% interval values of the survival function as between

0.282 and 0.683. Figure 5.1 also shows various plot of the probability density function of

the survival function with mean= -1.465 and standard deviation= 0.3 which looks close to

being symmetric. We then have to check for the conditions for symmetry and unimodality

in the function.

We attempt to check for the conditions of symmetry by replacing η with a negative η

in the function and we try to make the equation back to its original form. We will work

in terms of the logarithm of the density in Equation (5.6) since it is easier. The log of the

density is

log(f(p)) = − 1

2σ2
(η − µ)2 − η + τeη

We will not end up with the exact function that we started with at the beginning. This

is not symmetric.

We might think of the conditions for unimodality. The partial first derivative of the

log of the pdf with respect to η is

d [log(f(p))]

d(η)
= −σ2(η − µ)− 1 + τ exp {η} = 0

The second partial derivative is also given as

d2(log(f(p)))

d2(η)
= −σ2 + τ exp {η}

This does not lead to tractable conditions for unimodality.

We might think that it will be more tractible in the case of the median survival time.

The median survival time q2 is the time at which the the survival probability is half. Thus

1

2
= exp {−q2λ}

q2 =
log(2)

λ
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We have that
1

λ
= exp {−η}

and since η ∼ N(µ, σ2), q2 has a log-normal distribution. We work out the mean and

variance of this log-normal distribution. The mean of the log-normal is exp
{
µ+ σ2

2

}
and

the variance is
(
exp

{
2µ+ σ2

}) (
exp

{
σ2
}
− 1
)
. This turns out to be tractible. Some plots

of the log-normal density at different means and variances of η are given in Figure 5.2.

The log-normal distribution is not symmetric but it is always unimodal.
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Figure 5.2: Density plots of the median survival time using different means and variances for η (a)
mean -1.81 and standard deviation 0.77 (b) mean -1 and standard deviation 0.77 (c) mean -1.81
and standard deviation 1 (d) mean -1 and standard deviation 1
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5.5 Bayesian survival analysis with Weibull lifetimes

5.5.1 Model, prior and likelihood

We refer to the Weibull distribution discussed in Section 3.4.1. It will be used because the

shape parameter accounts for additional possible hazard shapes and the scale parameter

will be used to incorporate the covariates of the data. The logarithm of the likelihood is

given by

` = log
{
L(β, α|D)

}
=
∑
i∈E
{log {λi}+ (α− 1) log {ti}}+ nD log{α} −

n∑
i=1

λit
α
i

The vector of regression coefficients is

β = (β0, β1, . . . , βS)T

where β0 is the intercept and βs is the regression coefficient for the sth covariate. We recall

that λi = exp{ηi} and ηi = β0 +
∑S

s=1 βsxi,s (see Equation (3.2)). The prior density for

the vector of regression coefficients β = (β0, β1, . . . , βS)T could be a multivariate normal

distribution NS+1(µ, V ) where µ is the vector of prior means given as µ = (µ0, ....µS)T and

V is a (S+1) by (S+1) covariance matrix. The prior density for the vector of regression

coefficient is then given by

(2π)−S/2|V |−1/2 exp

{
−1

2

[
(β − µ)TV −1(β − µ)

]}
For illustration, we may choose to give α and β independent prior on the grounds that

beliefs about β are beliefs about the effects of covariates on the hazard function. In

general, α and β need not be independent. A special case where the regression coefficients

are independent simplifies the logarithm of the multivariate normal prior density to

−S
2

log{2π} − 1

2

S∑
s=0

log |Vs| −
1

2

S∑
s=0

(βs − µs)2

Vs

given that V = diag(V0, V1, ....VS)

where V0 is the variance of the intercept regression coefficient and Vs is the variance of the

coefficient of the sth covariate since the coefficients are assumed independent.

The prior distribution for α could be a gamma distribution α ∼ Ga(a, b) with density
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given by

π(α|a, b) =
ba

Γ (a)
αa−1 exp {−bα}

∝ αa−1 exp {−bα}

Suppose that we denote the joint prior density of the parameters by π(β, α). The posterior

density π(β, α|D) is then given by

π(β, α|D) ∝ prior× likelihood

= κπ(β, α)L(β, α|D)

where κ is the constant of proportionality. The logarithm of the posterior density is

log{π(β, α|D)} = log{κ}+ log{π(β, α)}+ log{L(β, α|D)}

= log κ+ (a− 1) logα− bα− S

2
log{2π} − 1

2

S∑
s=0

log{Vs} −
1

2

S∑
s=0

(βs − µs)2

Vs

+
∑
i∈E
{log(λi) + (α− 1) log(ti)}+ nD log(α)−

n∑
i=1

λit
α
i

The joint posterior density would not have a closed form but we can simulate from it

using MCMC techniques. Metropolis within Gibbs sampling (discussed in Section 4.6.5)

can be used.

5.5.1.1 Construction of prior distribution for Weibull shape parameter

One way to think of the prior of the shape parameter (α) of a Weibull distribution is

by thinking in terms of the median survival time tm, upper quartile survival time tq(3)

and lower quartile survival time tq(1). We have that the median survival time tm has a

probability Pr(T < tm) = 0.5. The survival function at the median survival time is given

by

S(tm) = 1− F (tm) = 1/2

so,

exp {−λtαm} = 1/2

and the median survival time tm can be expressed as

tm =

(
log 2

λ

)1/α
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Let the lower and upper quartiles of the survival time be tq(1) and tq(3). We have

S(tq(3)) = 1− F (tq(3)) = 1/4

exp
{
−λtαq(3)

}
= 1/4

The upper quartile survival time can then be expressed as

tq(3) =

(
2 log 2

λ

)1/α

We have

S(tq(1)) = 1− F (tq(1)) = 3/4

exp
{
−λtαq(1)

}
= 3/4

−λtαq(1) = log(3/4)

The lower quartile survival time can then be expressed as

tq(1) =

(
− log 3 + 2 log 2

λ

)1/α

We may decide to take the ratio between the upper and lower quartile survival times which

gives:

tq(3)/tq(1) =

(
2 log 2

− log 3 + 2 log 2

)1/α

= k1/α (5.7)

We have eliminated λ from the ratio and found a quantity, given in Equation (5.7), which

only depends on α. We have that

tq(3)/tq(1) = k1/α

If we take the logarithms of both sides we get

α =
log(k)

log(tq(3)/tq(1))
(5.8)

We can elicit values for tq(1) and tq(3) for a baseline patient by adapting Question Q2.

Q8 “In response to Question Q2 you identified t0 as the time such that you felt that it was

equally likely that a patient would die before or after this time. Please now consider

just those baseline patients who die before time t0 and identify a survival time t such

that you feel that it is equally likely that such a patient would die before or after this

time.”
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Q9 “Please now consider just those baseline patients who survive after time t0 and identify

a survival time t such that you feel that it is equally likely that such a patient would

die before or after this time.”

The responses to Questions Q8 and Q9 give point assessments for tq(1) and tq(3) and we

can calculate a point value for r = tq(3)/tq(1). However we need to find a prior distribution

for α and therefore we need an assessment of uncertainty in the ratio r = tq(3)/tq(1). The

quantities tq(1) and tq(3) are unlikely to be independent in the expert’s beliefs. Therefore,

to assess uncertainty in the ratio we ask directly about it.

Q10 “Your responses to Questions Q8 and Q9 suggest that the time when the survival

probability for a baseline patient reaches 75% is tq(1) and that the time when the

survival probability for a baseline patient reaches 25% is tq(3). This suggests that,

if the time when the survival probability reaches 25% is R times the time when it

reaches 75%, then R is about r. Please think about the value of R and give a value

r2 such that you think that R is equally likely to be smaller or larger than r2.”

Q11 “Now please give a value r1 which is smaller than r2 such that R is equally likely to

be less than r1 or between r1 and r2.”

Q12 “Now please give a value r3 which is larger than r2 such that R is equally likely to

be greater than r3 or between r2 and r3.”

The three elicited values r1, r2, r3 can be converted into three quartilesQ1(α), Q2(α), Q3(α)

for α using (5.8). We assume a gamma prior distribution, α ∼ Gamma(aα, bα) for α. The

parameters aα and bα are chosen to match the lower and upper quartiles α1, α3 and we

can use the median α2 as a check of the gamma distribution assumption.

The prior density for α is

π(α|aα, bα) =
baαα αaα−1 exp {−bαα}

Γ (aα)

The elicited lower and upper quartiles for α are Q1(α), Q3(α). Since bα is a scale

parameter, Q3(α)/Q1(α) depends only on aα, allowing aα to be determined by numerical

iteration. Once aα is found, bα is easily found using bα = qaα(0.75)/Q3(α) where qa(0.75)

is the upper quartile of a gamma(a, 1) distribution.

Ren & Oakley (2013) commented that a value for the Weibull shape parameter could

be obtained by eliciting two survival rates say S(t) and S(t
′
) at two times t and t

′
, where
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t
′
> t. The Weibull shape parameter was then given as

α =

log

(
log

(
S(t
′
)
)

log(S(t))

)
log
(
t′

t

) . (5.9)

However, as S(t) and S(t′) might be dependent in the expert’s beliefs, they suggested

constructing a joint prior for α and λ by eliciting beliefs about S(t) and the difference

S(t)− S(t′).

5.5.1.2 Construction of prior distribution for the coefficients in a linear pre-

dictor in the Weibull case

To develop the prior distribution for the coefficients in the linear predictor in the Weibull

case we can follow a procedure similar to that given in Section 5.3.1. However some

modification is necessary.

Suppose that we use Questions Q3, Q4 and Q5 to determine the distribution for the

baseline parameter. In this case, the survival probability is p = exp(−λtα0 ). Hence

ln(− ln p) = β0 + α ln t0.

Let

c0,h = ln(− ln p4−h)

for h = 1, 2, 3 where p2, p3, p1 are the responses to questions Q3, Q4 and Q5 respectively.

We approximate the prior mean for β0 using (c0,1+c0,3)/2−E(α) ln t0 and approximate

the variance of β0 using (c0,3 − c0,1)/1.349− (ln t0)
2Var(α).

Similarly, with these adjustments, we can find prior distributions for the linear predic-

tors at other covariate values nd hence use the methods described in Section 5.3.1 to find

prior distributions for the coefficients of covariates.

5.5.2 Example: Metropolis-Hastings sampling with random walk pro-

posal

The joint posterior density discussed in Section 5.5 did not have a closed form so MCMC

methods will be used to sample from the posterior density. The performance of the

algorithm will strongly depend on the choice of the proposal distribution. We could use a

Metropolis-Hastings algorithm with a random walk proposal.

A multivariate normal distribution will be used as the proposal distribution for the
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vector parameter βi at the ith iteration. This is given by

βi ∼ N(βi−1, V )

where V is known and the same for all iterations. Hence, the proposal density for a

proposed value βi∗ given the old value βi, q(βi∗|βi) and the proposal density of the old

value given the proposed value q(βi|βi∗) are the same.

The Weibull shape parameter α will have a gamma proposal distribution. Suppose

αi∗|αi ∼ Ga(a, b). The mean of αi∗ is the previous value αi. So,

a

b
= αi

and

b =
a

αi

We propose a new value αi∗ ∼ Ga(a, b). The proposal density of the new value of α, α∗

given the current value of α denoted by q(αi∗|αi) has a Ga(a, a/αi) distribution. The

logarithm of the ratio
q(αi|αi∗)
q(αi∗|αi)

is

(2a− 1)(logα− logα∗)− a(α/α∗ − α∗/α)

The acceptance ratio which is denoted by A is given by

A(βi∗, αi∗|βi, αi) = min

{
1,
π(β∗, α∗|D)

π(β, α|D)
× q(βi|βi∗)
q(βi∗|βi)

× q(αi|αi∗)
q(αi∗|αi)

}
Hence, the proposal density for a proposed value βi∗ given the old value βi, q(βi∗|βi)
and the proposal density of the old value given the proposed value q(βi|βi∗) are the same

and therefore cancel from the acceptance ratio. Since the proposal distributions of β,

q(βi∗|βi) = q(βi|βi∗) is symmetric with a multivariate normal distribution, it cancels out

from the acceptance probability and is discarded from equation. The proposal distribution

of α is not symmetric and hence does not cancel from the acceptance ratio. The acceptance

probability is simplified to

A(βi∗, αi∗|βi, αi) = min

{
1,
π(β∗, α∗|D)

π(β, α|D)
× q(αi|αi∗)
q(αi∗|αi)

}
(5.10)

The acceptance ratio is computed from equation 5.10 and a random sample of a value u

is drawn from a uniform distribution on (0,1). We set (βi∗, α1∗) = (βi, αi) if the value

u < A at the end of the iteration. The distribution will tend to the posterior distribution
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as i increases. The summary of the posterior can be worked out from the sampled values

of the (β, α) after discarding burn in. We note that we could also do Metropolis within

Gibbs with separate sampling of α and β.

5.6 Application: Bayesian survival modelling to SNLG data

set

We will apply the procedure discussed in Section 5.5 to the SNLG data set described in

Chapter 2. The covariates and their notations are given in Table 5.1.

Table 5.1: Covariates and notations

Covariates Notation Covariates Notation

Age x1 Extranod x8
HB x2 Urea x9
WBC x3 Marrow x10
Sex x4 Bsy x11
Albumin x5 Stage x12
Ap x6 ECOG x13
Urea x7 LDH x14

For illustration, we suppose that the expert identifies the values for a “baseline” patient

following Question Q1 and gives the choice of central values for the continuous covariates

x1, x2 and x3 as 60, 110 and 2 respectively. The covariates x4 to x11 are the 2-level cate-

gorical covariates. The ordinal covariate x12 has values 1, 2, 3, 4, x13 has values 1, 2, 3, 4, 5

and x14 has values 1, 2, 3.

We will suppose that the overall survival (OS) lifetime Ti ∼Weibull(λi, α), where the

hazard multiplier λi depends on the linear predictor ηi which is given by

ηi = β0 + β1xi,1 . . .+ β11xi,11 +
4∑

k=1

β12,kδi,12,k +
5∑

k=1

β13,kδi,13,k +
3∑

k=1

β14,kδi,14,k (5.11)

where δi,j,k = 1 if xi,j = k and δi,j,k = 0 otherwise for j = 12, 13, 14.

We construct the design matrix X = x1, . . . , xS′ where S′ is the number of columns

of the design matrix and it depends on the number of covariates and the number of

categories of the categorical covariates. We refer to our discussion in Section 4.4.3 to

include categorical covariates (also known as “factors”) by considering a factor with m

levels (ie possible values). The model also includes the overall constant β0. This means

that using m parameters would be over-parameterising and the parameters would not be

identifiable. Therefore a factor with m levels contributes m − 1 columns to the design
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matrix X. Consider a two-level factor such as Sex. One way to put this in the model is

to introduce a column in X which has a 1 for each male patient and a −1 for each female

patient. There is a single parameter associated with this column. Another method would

be to use 0 and 1 instead of 1 and −1. This has the disadvantage that the prior variance

for ηi for a male patient would be less than that for a female patient who has the same

covariate values and otherwise. Other 2-level factors, such as those with values “Normal”

and “Abnormal” can be treated in the same way. Each gets one column in X and one

parameter. When m > 2 we get m − 1 columns in X and m − 1 parameters. In some

ways, the easiest thing to do is to choose a baseline level for the factor and choose this as

the one which does not get a parameter (like the second method for Sex above). We could

revisit the example of a 4-level factor discussed in Section 4.4.3.

The number of regression parameters is 24. We also have the Weibull shape parameter

α.

5.6.1 Prior distributions

We construct the prior distribution for the parameters of the linear predictor. We let the

reference time elicited in response to Question Q2 be t0 = 3. We will also let the response

to Question Q3, Q4 and Q5 be 0.5, 0.4 and 0.6 respectively. Thus, we elicit the three

quartiles p1, p2 and p3 at time t0 as 0.6, 0.5 and 0.4 and we follow Equation (5.1) to get

the quartiles of β0: β0,1 = −1.77, β0,2 = −1.5 and β0,3 = −1.23. Using a normal prior

distribution, the mean and standard deviation of β0 are given as µ0 = −1.5 and standard

deviation σ0 = 0.4.

For illustration, we construct the prior distribution for the coefficient of a quantitative

variable using the covariate “age”. We let the response to Question Q6 be 70 years and

thus δj = 10. We follow Section 5.3.1.1 and we elicit a normal distribution for the log-

hazard of β0 + βjδj . Thus, we have E(β0 + βjδj) = −1.1 and Var(β0 + βjδj) = 0.238. We

follow Equation 5.2 and 5.3 to get the prior distribution for βage as mean m = 0.04 and

standard deviation σ = 0.028. We perform a similar process for all other coefficients of

the continuous covariates.

We will construct the prior distribution for the parameter of sex βsex by thinking

that it is a quantitative covariate with δj = 1 following Section 5.3.1.3. We get the prior

distribution for βsex as mean m = 0.046 and standard deviation σ = 0.15. Other 2-

level factors in the example data set are covariates with values such as “Normal” and

“Abnormal”. These can be treated in the same way as sex.

We construct the prior distribution for the coefficient of the categorical covariates

using the method of 5.3.1.4 with modification given in 5.5.1.2. We used judgements about

survival at three years so t0 = 3. As a baseline, we set all categorical variables to level

1. The assessed values of p1 and p3 were 0.232 and 0.735. These give c0,1 = −1.179 and
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c0,3 = 0.379, leading to E(β∗0) = −1.5 and Var(β∗0) = 0.25. Following 5.3.1.4, we assess

the variances of β0 and the coefficients of the covariates LDH, ECOG and Stage.

We would want to construct the prior distribution of the Weibull shape parameter α

as discussed in Section 5.5.1.1. For illustration, we let our responses to Questions Q8 and

Q9 be 2 and 4 years and hence tq(1) = 2 and tq(3) = 4. In response to Questions Q10, Q11

and Q12, we have that the three quartiles of α are 0.6, 0.9 and 1.2 respectively.

We would want the prior distribution of the Weibull shape parameter in the form of a

gamma distribution given by α ∼ Gamma(a, b). We elicit the lower and upper quartiles

of α as 0.6 and 1.2. The ratio of the upper quartile to the lower quartile which is 2 only

depends on the value of the shape parameter a. We determine the value of a by numerical

iteration and b as discussed in Section 5.5.1.1. The values of a and b are given as 4 and 4

respectively.

The prior means and standard deviations of the coefficients of linear predictors are

given in Table 5.2. We refer to Section 4.4.3.4 for discussions on the δ quantities.

Table 5.2: The prior means and standard deviations for the unknown parameters

Parameter prior mean prior variance

β0 (baseline parameter) -1.500 0.400
β1 (Age) 0.040 0.030
β2 (HB) 0.020 0.014
β3 (WBC) 0.080 0.060
β4 (Sex) 0.050 0.150
β5 (Albumin) 0.000 0.173
β6 (Ap) 0.000 0.173
β7 (Urea) 0.000 0.173
β8 (Extranod) 0.000 0.173
β9 (Bulk) 0.000 0.173
β10 (Marrow) 0.000 0.173
β11 (Bsy) 0.000 0.173
δ12,1 0.000 0.14
δ12,2 0.000 0.077
δ12,3 0.000 0.055
δ13,1 0.000 0.14
δ13,2 0.000 0.077
δ13,3 0.000 0.055
δ13,4 0.000 0.45
δ14,1 0.000 0.077
δ14,2 0.000 0.45
α 1 0.5
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Table 5.3: The posterior means and standard deviations (std) for the unknown parameters

Parameter prior mean prior std posterior mean posterior std

β0 (baseline parameter) -1.500 0.400 0.352 0.194
β1 (Age) 0.040 0.030 0.009 0.005
β2 (HB) 0.020 0.014 0.002 0.003
β3 (WBC) 0.080 0.060 0.050 0.018
β4 (Sex) 0.050 0.150 -0.034 0.059
β5 (Albumin) 0.000 0.173 -0.020 0.074
β6 (Ap) 0.000 0.173 0.048 0.070
β7 (Urea) 0.000 0.173 -0.097 0.067
β8 (Extranod) 0.000 0.173 0.073 0.066
β9 (Bulk) 0.000 0.173 -0.154 0.060
β10 (Marrow) 0.000 0.173 -0.171 0.088
β11 (Bsy) 0.000 0.173 -0.044 0.065
β12,1 (Stage 1) 0.000 0.272 -0.048 0.087
β12,2 (Stage 2) 0.000 0.272 -0.048 0.073
β12,3 (Stage 3) 0.000 0.363 0.037 0.091
β12,4 (Stage 4) 0.000 0.495 0.055 0.126
β13,1 (ECOG 1) 0.000 0.722 -0.134 0.136
β13,2 (ECOG 2) 0.000 0.722 -0.143 0.134
β13,3 (ECOG 3) 0.000 0.813 0.148 0.150
β13,4 (ECOG 4) 0.000 0.945 0.169 0.182
β13,5 (ECOG 5) 0.000 7.2 -0.041 0.468
β14,1 (LDH 1) 0.000 0.527 -0.113 0.059
β14,2 (LDH 2) 0.000 0.527 -0.034 0.055
β14,3 (LDH 3) 0.000 1.8 0.147 0.086
α 1 0.5 1.03 0.043

5.6.2 Posterior distributions

The joint posterior distribution have been given in Section 5.5.1. The Metropolis-Hastings

within Gibbs algorithm was applied using R JAGS software (Plummer, 2012) (see R code

in Appendix A.4.1 and an explanation of how R JAGS works for survival data with right

censoring in Appendix A.1.2). Following a burn-in of 5000 iterations of the sampler,

100000 iterations were taken. Convergence was checked using two chains starting from

very different values. Visual inspection of the trace plots of the covariate parameters

showed that the mixing appeared very satisfactory. The posterior numerical summaries

of the parameters are also given in Table 5.3.
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5.6.3 Calculation of the prognostic index for the Weibull survival mod-

elling to SNLG data set

We recall the formula of the linear predictor in Equation 3.2 as follows

log λi = ηi = β0 +
S∑
s=1

βsxi,s (5.12)

The linear predictor has a linear structure with the posterior values of covariate effects

β = β0, β1, . . . , βS which are given in Table 5.3. We can obtain the expectation of the

linear predictor by substituting the posterior means into the formula. We have that the

expectation of the linear predictor for a new individual i
′

is

log λi′ = ηi′ = β0′ +
S∑
s=1

βs′xi′ ,s (5.13)

where β0′ is the posterior expectation of β0 and βs′ is the corresponding posterior expec-

tation of βs. We might prefer to index the linear predictor in a range (0, 100). We do

this by finding 100Φ−1
(
η
′
i−m
s

)
where Φ() is the standard normal distribution function

and m and s are the sample mean and sample standard deviation of the values of η for

all patients in the SNLG data set using the posterior means of β0, . . . , βS . The function

to do this is given in Appendix A.4.2. For instance, a patient with the covariate vector

x = (72, 1, 4, 4, 2, 123, 1.9, 2, 2, 2, 1, 1, 2, 2)T for the covariates age, sex, stage, ECOG, LDH,

HB, WBC, albumin, AP, urea, extranod, bulk, marrow and bsy respectively will have an

index of 83. This will mean that the patient has an index of 83 on a scale from 0 to 100

and this is a great risk value.

5.7 Bayesian survival modelling using the piecewise con-

stant hazard model

We may wish to apply Bayesian inference to our discussions on the piecewise constant

hazard model with time varying covariate effects as discussed in Section 3.5. Much work

has been done on piecewise constant hazard models where the hazard parameters are

independent between intervals. See, for example Genest & Kalbfleisch (1988);Ibrahim et al.

(2001). Kim et al. (2007) proposed a class of semi-parametric models for survival data in

which they constructed a dynamic model for piecewise constant hazard functions over a

finite partition of the time axis. Gamerman (1991) introduced the dynamic generalised

linear model into survival analysis where he applied it to the piecewise constant hazard

model.

We will need to choose the cut points for the piecewise constant hazard model.
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5.7.1 Choosing the cut points of time intervals for the piecewise constant

hazard model

The piecewise constant hazard model requires the discretisation of the time axis into

intervals and thereby choosing the number and locations of the cut points. Some authors

have suggested defining the intervals as beginning and ending at the observed failure times

while Kalbfleisch & Prentice (1973) suggested selecting intervals independently of the data.

West (1992), in an attempt to define intervals, suggested shorter intervals over the first

few years since deaths in cancer data are common in early stages and longer intervals in

the later years since there are fewer deaths. One possibility is to choose our cut points

deliberately so that we expect to have the same number of deaths in each interval. A

researcher would think of a certain number of cut points and expect equal portions of

death to be in each time interval using prior judgements.

Suppose we choose to have ten time intervals, we might then think ordinarily that we

should have approximately 10% of the deaths in each interval. We might also suppose

that the event times will have approximately an exponential distribution. The survival

function of an exponential distribution with parameter λ is given by exp {−λt}.
Given the cut points τ1 < τ2 < . . . < τJ−1, the probability of surviving until τj will be

exp {−λτj} = 1− 0.1j

so

−λτj = log (1− 0.1j)

and

τj = − 1

λ
log (1− 0.1j)

We let the mean of the exponential distribution ( 1
λ) be ν and ζ = 1

J . So,

τj = −ν log (1− jζ) (5.14)

5.7.2 Construction of the likelihood for piecewise constant hazard model

We will suppose that associated with every patient is a time which could either be a death

or censoring time. Every interval is associated with three different groups of patients,

patients who died during the interval, patients who were censored during the interval and

patients who survived the interval. The contribution of the likelihood from the patients

in every interval will depend on the three different groups of patients. The likelihood
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contribution L of the patients is given as

L =
n∏
i=1

J∏
j=1

Li,j

where

Li,j =


1 if ti < τj−1

λ
δi,j
i,j exp {−λ(ti − τj−1)} if τj−1 ≤ ti < τj

exp {−λ(τj − τj−1)} if ti ≥ τj

where n is the number of patients

J is the number of time intervals

ti is the event or censoring time of the ith patient.

λi,j is the hazard of the ith patient in the jth interval.

δi,j is the indicator of death or censoring of the ith patient in the jth interval.

Within each interval the conditional survival distribution given that the patient is alive

and uncensored at time τj−1, is exponential since the hazard is constant.

5.7.3 Construction of prior distribution for the parameters of piecewise

constant hazard model

In a Bayesian context, we have the advantage of constructing a prior that makes the

hazard parameters in neighbouring intervals to be correlated. In practice, we could use a

piecewise constant hazard function which has prior distribution in which the parameters

are correlated over time. Genest & Kalbfleisch (1988) and Ibrahim et al. (2001) made

the prior distribution of the parameters independent between time intervals. However, it

would be reasonable to think that the hazards in the intervals which are closely together

are likely to be similar. McKeague & Tighiouart (2000) gave a dependent prior using a

Markov random field.

We will assume that the prior used in the illustration of the piecewise constant hazard

model will take the form of a realisation of a stochastic process which could either be

stationary or non stationary. If the prior is made stationary then each parameter gets

the same variance in each time period. For example, we might use an autoregressive

process with autoregressive parameter which governs how strong the correlation between

time periods will be. We choose the autoregressive parameter ρ > 0 to give positive

autocorrelation. We will choose a first order autoregressive process such that for any

given value of autoregressive parameter ρ, the process is given by

βs − µ = ρ(βs−1 − µ) + εs
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where εs is normally distributed with mean zero and variance σ2 (Chatfield, 2004).

The variance of the process is

Var(βs) = σ2
∞∑
p=0

ρ2p =
σ2

1− ρ2

Making the process stationary makes the prior variance the same in all intervals. We

could also choose the value of ρ following Revie et al. (2010) on the construction of corre-

lations.

5.7.4 Construction of prior distribution for the frailty variance

Supposing that the logarithm of the frailty has a normal distribution with zero mean and

a variance of σ2f . We can construct the prior distribution for the frailty variance σ2f . We

might suppose that the precision τf = σ−2f has a gamma prior distribution.

If the parameters remained constant over all time intervals then an individual’s lifetime

would have an exponential distribution since the hazard λ of the individual is constant.

The individual’s mean lifetime will be 1/λ. Doubling λ would half the mean lifetime and

correspond to a log-frailty of log 2. Suppose, for example, we had σf = log 2 then this

corresponds to τf = 1
(log 2)2

. Thus, we might set the prior mean for τf to be 1
(log 2)2

. So, if

τf ∼ Ga(af , bf ), then
af
bf

=
1

(log 2)2
(5.15)

The prior variance of τf is
af
b2f

and the coefficient of variation is 1√
af

. We choose af to

reflect our prior uncertainty in τf . Since we have little prior information on τf we choose

a small value for af . However, so that the prior density of τf is at τf , we choose af > 1,

say 1.1. Combining this with Equation 5.15 gives bf = 0.53.

5.8 Application: Bayesian survival modelling using the piece-

wise constant hazard model

We will apply the Bayesian survival modelling using the piecewise constant hazard model

to the two example data sets described in Chapter 2. We follow Section 5.7.2 and give

further explanation in Appendix A.1.3 for the construction of the likelihood contribution.

We will apply Equation (5.14) to the two example data sets to choose the cut points. We

may make a prior assessment of the mean survival life time of a patient, ν as 3 years in

the SNLG data set, and we get the cut points as

0.105, 0.223, 0.357, 0.511, 0.693, 0.916, 1.204, 1.609, 2.303.

We may also assess the mean survival life time of a patient, ν as 500 days in the leukaemia
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data set and we get the cut points as

52.68, 111.57, 178.34, 255.41, 346.57, 458.15, 601.99, 804.72, 1151.29.

We will use the same prior means and variances of the parameters of the SNLG data

set given in Table 5.2. The prior means and standard deviations of the leukaemia data set

will also be constructed in a similar way and given in Table 5.4. We would want to think of

the value of the autoregressive parameter as discussed in Section 5.7.3 by considering how

much the variance of the parameter will reduce in the next time periods if we know the

value in the first time period. We suppose that 90% of the variance in the next time period

is explained. This corresponds to a coefficient of determination r2 = 0.9 and correlation

r = 0.95.

Table 5.4: The prior means and standard deviations (std) for the coefficients of the covariates

Parameter prior mean prior std

β0 -6.90 0.12
βage 0.040 0.030
βsex 0.050 0.150
βWbc 0.080 0.173
βDepsc 0.120 0.110

The time dependent effects of covariates were illustrated using both the leukaemia

and the SNLG data sets using the piecewise constant hazard model. Two versions of

the model were fitted, one without and one with log normal frailties. We would refer

to Section 5.7.4 for the prior distribution of the precision of the logarithm of the frailty.

Posterior distributions for the covariate effects were evaluated using the RJAGS software

and the functions for both SNLG and leukaemia data set are given in Appendix A.4.3

and Appendix A.4.4 respectively. We have plotted the effects of the covariates over time.

Figure 5.3 shows time plots for the posterior means and ±2 standard deviation intervals

for the coefficients of age, sex and baseline with frailty and without frailty in the model

using the SNLG data set. The posterior means and standard deviations for some of the

parameters for each interval for the SNLG data set are given in Table 5.5.

The age effect decreases and later increases from one interval to another while the sex

effect increases over time and later decreases over time (see Table 5.5). Figure 5.4 shows

time plots for the posterior means and ±2 standard deviation intervals for the coefficients

of age, sex and baseline with frailty and without frailty in the model using the leukaemia

data set. The posterior means and standard deviations for some of the parameters for

each interval for the leukaemia data set are given in Table 5.6. The age effect decreases

from one interval to another while the sex effects increases from one interval to another
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Table 5.5: Posterior numerical summaries of some selected parameters in each interval in the SNLG
model

j τj βage βsex β0
1 0.105 0.031(0.007) 0.038(0.074) -0.434( 0.189)
2 0.223 0.026(0.007) 0.052(0.069) -0.289( 0.176)
3 0.357 0.019(0.007) 0.058(0.068) -0.294( 0.179)
4 0.511 0.022(0.007) 0.059(0.068) -0.390( 0.181)
5 0.693 0.018(0.008) 0.054(0.071) -0.624( 0.191)
6 0.916 0.026(0.009) 0.044(0.075) -0.738( 0.201)
7 1.204 0.030(0.009) 0.047(0.080) -0.894( 0.213)
8 1.609 0.035(0.010) 0.047(0.082) -0.992( 0.223)
9 2.303 0.040(0.011) 0.045(0.085) -1.040( 0.238)
10 ∞ 0.039(0.013) 0.042(0.09) -1.051( 0.247)

Table 5.6: Posteriors numerical summaries of some selected parameters in each interval in the
leukaemia model

j τj βage βsex β0
1 52.6 0.069(0.005) -0.055(0.049) -6.04( 0.062)
2 111.6 0.053(0.005) -0.064(0.049) -6.10( 0.055)
3 178.3 0.032(0.005) -0.056(0.052) -6.20( 0.053)
4 255.4 0.027(0.005) -0.071(0.053) -6.30( 0.054)
5 346.6 0.023(0.005) -0.069(0.057) -6.39( 0.054)
6 458.1 0.010(0.006) -0.068(0.060) -6.48( 0.057)
7 601.99 0.015(0.006) -0.060(0.060) -6.59( 0.058)
8 804.7 0.015(0.005) -0.077(0.060) -6.71( 0.059)
9 1151.3 0.023(0.006) -0.089(0.061) -6.82( 0.060)
10 ∞ 0.036(0.005) -0.10(0.065) -6.92( 0.062)

in some cases and decreases in other cases over time (see Table 5.6). The dependence on

time was not obvious in some cases when frailty was included in the model.

The posterior means of the effects of age and sex in the SNLG data set are positive in

all time intervals in both the cases with and without including frailty. The posterior means

of the baseline parameter are negative in all time intervals. The effect of age decreases

initially before increasing again over time. The effect of sex appears very similar over time

in both the cases with and without including frailty (see Figure 5.3).

The posterior means of the effects of sex and baseline parameter in the leukaemia data

set are negative in all time intervals in both the case with or without including frailty.

The posterior means of the effect of age is positive in all time intervals. The effect of age

decreases initially before increasing again over time. The effect of sex appears very similar
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Figure 5.3: Time plots of the posterior means and ±2 standard deviation intervals for the co-
efficients of age, sex and baseline with including frailty (left column) and without frailty (right
column) using the SNLG data set

over time in both the case with and without including frailty (see Figure 5.4).

Introducing frailty sometimes reduces the apparent dependent covariate effect. Includ-

ing frailty might be a less flexible way to allow covariate effects to depend on time than the

piecewise constant hazard. Henderson & Oman (1999) showed that ignoring frailty when

present can lead to inapropriate estimated values of the parameters and hence inaccurate

survival plots.
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Figure 5.4: Time plots of the posterior means and ±2 standard deviation intervals for the coefficient
of age, sex and baseline with including frailty (left column) and without frailty (right column) in
the model using the leukaemia data set

5.9 A Prognostic index based on the piecewise constant haz-

ard model

5.9.1 Introduction

The prognostic index in a standard proportional hazard model is the linear predictor or

some function of it, that is the logarithm of the hazard multiplier (see Section 3.3.1) while

for the accelerated life model it is the logarithm of the acceleration factor or time multiplier

(see Section 3.3.2). A prognostic index in the case of the piecewise constant hazard model
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can not be constructed in the same way as the linear predictor changes from one time

interval to another. It is not obvious what the prognostic index should be in the piecewise

constant hazard model. We could use the survival probability at a particular time or the

predictive median survival time as the prognostic index, for example.

We will need to compute the predictive survival probability in order to work out

the predictive median survival time. The joint density of the lifetime T and the model

parameter β is given by

f(t, β|x) = f(t|β, x)f(β)

Given values for the model parameters β and the covariate values x, the survival function

is then given by the probability

Pr(T > t|β, x)

If all the covariates are observed, the predictive survival function is given by

∫
β

Pr(T > t|β, x)f(β)dβ (5.16)

5.9.2 Computation of survival probability at a fixed time

We wish to evaluate the integral in Equation (5.16). We propose that, in routine use with

new patients, we represent the posterior distribution of the parameters by storing a set

of sampled values from the MCMC computation. In order that we do not store so many

samples in memory, MCMC samples are thinned with the reason that samples from the

MCMC might be autocorrelated as discussed in Section 4.6.9. The following steps can be

used to find the predictive survival probability at any fixed time t∗.

• We would calculate the survival probability at each cut point τj where τj < t∗ for

each vector of sampled parameter values. Suppose we have cut points τ0 = 0, τ1 =

......., τJ → ∞ with J intervals and hazards hi1, hi2, . . . . . . , hiJ for a new case. We

would want a predictive survival probability for a new case or a particular covariate

profile. Then, the probability that the individual survives the first interval is

Pr(T > τ1) = exp {−τ1hi1}

Similarly, the probability that the individual survives the second interval is

Pr(T > τ2) = exp {−τ1hi1} exp {−(τ2 − τ1)hi2}

= exp {−τ1hi1 − (τ2 − τ1)hi2}
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and the jth interval is

Pr(T > τj) = exp

{
−

j∑
m=1

him(τm − τm−1)

}

Finally

Pr(T > t∗) = exp

−
j∗−1∑
m=1

him(τm − τm−1) + hij∗(t
∗ − τj∗−1)


where j∗ is the smallest j such that t∗ < τj .

• The stored survival probabilities are then averaged over all sampled parameters sets.

The averaged survival probability is the predictive survival probability of the patient

at time t∗.

5.9.3 Practical computation of predictive median survival time

In order to find the predictive median survival time, we will first of all find the predictive

survival probability, Pr(T > τj) for τ1, τ2 . . . until S(τj) < 0.5. An iterative method can

be used to find the predictive median survival time (tm) such that Pr(T > tm) = 0.5 since

we know the interval in which tm falls. We could, for example, find where in the interval

the predictive median survival time tm is by using interval halving. We do interval halving

by moving half way between the lower and the higher time limits of the interval until it

eventually converges. In cases, where the predictive median survival time falls in the last

interval, the upper limit would be infinity and the interval halving will not be direct. We

could transform the life times to a function x where x ∈ [0, 1). However, we propose a

more efficient algorithm as follows.

5.9.4 An iterative algorithm for finding the predictive median survival

time

We could avoid the problem of looking for the upper or lower limit and using interval

halving as discussed in Section 5.9.3 by using the following algorithm.

Let S(t) = Pr(T > t) be the predictive survival probability at time t (i.e the function

evaluated at time t). Suppose that we have evaluated S(τj−1) and S(τj) and S(τj−1) >

0.5 > S(τj) so τj−1 < tm < τj where tm is the predictive median survival time.

Let S(t|λ) = Pr(T > t|λ) be the survival function for a given value of λ. Now,

S(t|λ) = S(τj−1) exp {−λ(t− τj−1)} for (τj−1 ≤ t < τj)
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So,

log[S(t|λ)] = log[S(τj−1)]− λ(t− τj−1)

which is linear in t. We use a locally linear approximation to g(t) = log[S(t)] within

τj−1 ≤ t < τj . We require tm such that g(tm) = log 0.5 = − log 2.

Algorithm

Let t1 = τj−1. Calculate g1 = g(t1).

Let t2 = τj , if j < J or t2 = 2τJ−1 if j = J.

Calculate g2 = g(t2).

For k = 3, 4, ....kmax

{ If (tk−1 − tk−2)2 > δ then { Calculate

b =
gk−1 − gk−2
tk−1 − tk−2

Calculate

tk = tk−2 −
1

b
(gk−2 + log 2)

}
Else Stop

}

5.9.5 Application: Finding the predictive median survival time and sur-

vival probability at some fixed time

The MCMC samples from the example in Section 5.8 were thinned and 1000 samples were

retained. The procedure discussed in Section 5.9.3 and Section 5.9.2 was used to find the

predictive median survival time and the survival probability at 3 years. The algorithm

discussed in Section 5.9.4 was written using a R function (see Appendix A.4.5). The plot

of the predictive median survival time against the 3 years survival probability of the SNLG

data set is shown in Figure 5.5. The plot of the predictive median survival time against

the 500 days survival probability of the leukaemia data set is shown in Figure 5.6.

Both plots revealed that the predictive median survival time and the fixed time survival

probability have a close relationship over the region where most values occur. We would

also have a closer look at both plots by restricting the plots to a smaller range (see Figure

5.7 and 5.8). Figure 5.8 reveals some kind of patterns or clustering of points on the

plot. We identified the corresponding patients by ordering the covariates by the values

of either the predictive median survival time or fixed time survival probability. Further

investigation revealed that the clustering was caused by discrete or categorical covariates

of groups which correspond to different values of that covariate.
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Figure 5.5: Plot of the predictive median survival time against the 3 years survival probability
using a piecewise constant hazard model for the SNLG data set

In this application, there may be little to be gained by calculating the predictive

median survival time rather than the simpler fixed time survival probability. The fixed

time survival probability appears to be just as good as an index as the predictive median

survival time does. The computation of the predictive median survival time is harder than

that of the fixed time survival probability. We would have the problem of the choice of

time when working out the fixed time survival probability. Another problem is that the

time that is most informative for one patient might be different for another patient.

Another possibility of calculating the prognostic index of a piecewise constant hazard

model would be to use the survival probabilities at more than 1 time. By calculating the
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Figure 5.6: Plot of the predictive median survival time against the 500 days survival probability
using a piecewise constant hazard model for the leukaemia data set

predictive survival probabilities at a suitable range of times, such as the cut points, we

could use simple interpolation to give an approximate predictive median survival time.

5.10 Summary

The Weibull survival model is simple to handle and is widely used in survival analysis

since the hazard function is easy (Collett, 1994). This model assumes there is propor-

tionality in the hazards and hence the covariate effects stay the same at all time points.

Here, we specify the form of the baseline hazard using a Weibull distribution. This was
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Figure 5.7: Plot of the predictive median survival time against the 3 years survival probability
using a piecewise constant hazard model for the SNLG data set on a restricted axis

demonstrated with the SNLG data set. The JAGS software was used to implement this

and we provided posterior summaries for the coefficient of the covariates.

We discussed the piecewise constant hazard model where the form of the dependence

of the hazard function on the covariates is not specified. This has the advantage of not

imposing the overall shape of the hazard function. We relaxed the proportional hazard

assumption with a non-proportional hazard using the piecewise constant hazard model.

We showed time dependent covariate effects using both the SNLG and leukaemia data

sets. The predictive median survival time and the fixed time survival probability were

discussed as ways of calculating the prognostic index of the piecewise constant hazard
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Figure 5.8: Plot of the predictive median survival time against the 500 days survival probability
using a piecewise constant hazard model for the leukaemia data set on a restricted axis

model.

5.11 Flexible models for survival data

This research is aimed at creating flexibility in the form of the dependence of the hazard

on covariates. Approaches to creating flexibility in the form of dependence of the hazard

on covariates are linked with to the following

• the form of the baseline hazard
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Chapter 5. Introduction to Bayesian inference in survival analysis

• non-proportionality of hazards and

• the relationship between covariate values and the hazard i.e. relaxing the assumption

that

ηi = log λi = β0 +

S∑
s=1

βsxi,s. (5.17)

Flexible modelling in survival avoids proportional hazards assumption of linearity of co-

variate effects. Flexible survival models avoid the restrictive parametric assumptions of

proportionality of hazards or log-linearity of the relationships among covariates. We in-

troduce flexibility to the covariate effects by using a generalised piecewise constant hazard

model in which we categorise the quantitative covariates and make them ordinal and thus

we divide the covariate space into cells. We will have two forms of prior distributions. One

will be based on a parametric model and the other uses a Gaussian Markov random field.

The second way of introducing flexibility to the covariate effects is by using the continuous

parameter space model and supposing a model where the logarithms of the hazards are

given a Gaussian process prior. It is important to think about priors when introducing

flexibility to covariate effects as we will have to compensate for lack of structure by having

a prior which makes neighbouring covariates profiles correlated in their prior. This will

allow “borrowing of strength” (Morris & Normand, 1992).
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Generalised piecewise constant

hazard model

6.1 Introduction

In this chapter, we introduce flexibility into the form of the dependence of the hazard

function on the covariate effects by introducing a new model, the generalised piecewise

constant hazard (GPCH) model in which quantitative covariates are categorised or made

ordinal. The generalised piecewise constant hazard model will be discussed using two

forms of prior distribution. One of the prior distributions will be based on a parametric

model and the other uses a Gaussian Markov random field.

We recall that the proportional hazard model in Equation (3.2) restricts the hazard

function to be linear in the covariates. In recent times, some methods like splines, basis

function regression, Bayesian classification and regression trees (C&RT) have been used

for evaluating the dependence of the survival time on the covariates. Classification and

regression trees allow for recursive partitioning which reveals the structure of the data by

examining the effect of the covariates on the survival distribution and whether the effect

is true for all individuals. A simple prediction model is fitted for each partition. The main

advantage of C&RT over other methods is the ability to analyse complex non-linear data

sets with many variables by reducing the dimensionality of the data. See Denison et al.

(2002) for further details on classification and regression trees.

The spline function is another approach to modelling the dependence of the survival

time on the covariates. Spline functions can be used to investigate non-linear effects

in covariates. The proportional hazard assumption is violated as the coefficient of the

covariate can be represented by smooth non-linear functions and Equation (3.1) which is

given as
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Chapter 6. Generalised piecewise constant hazard model

hi(t) = h0(t) exp

{
S∑
s=1

βsxi,s

}
(6.1)

is replaced by

hi(t) = h0(t) exp {g(x)} (6.2)

where g is the log-hazard ratio function which is an unspecified smooth function of the

covariates which can be approximated by a spline function. Molinari et al. (2001) devel-

oped a survival model in which the hazard ratios are not restricted to being linear in the

covariates by using spline functions and the hazard ratio was estimated with piecewise

linear splines. See Royston & Parmar (2002) for further details on spline functions.

Section 6.2 presents the generalised piecewise constant hazard model (GPCH) as a new

approach to modelling where we categorise the covariates. We introduce a time variable

and treat it like another ordinal covariate. We combine the time variable and the covariate

profile as a cell. The new approach involves constructing the likelihood contribution from

individuals. We introduced and presented two new alternatives to constructing the priors

based on the parametric model. In the first alternative, the covariance matrix between

the time periods tends to a zero matrix as the number of time steps tend to infinity while

the second alternative has a non-zero limit.

We present a new approach of using a Gaussian Markov random field prior in the

GPCH model using a distance based measure where we constructed a correlation matrix.

We review the first order autoregressive (AR(1)) process as a Gaussian Markov random

field (GMRF) in one dimension and illustrate this in a 2-dimensional case where the

autoregressive parameters were isotropic. We give the provision for inclusion of frailty

in the GPCH using GMRF priors. We will illustrate sampling the log-hazards using the

two forms of priors. We present a new model for the GPCH model where we split the

log-hazards of an individual into two parts. We will think of this approach as a way of

improving the performance of sampling relative to updating each parameter independently.

One part will carry the dependence between log-hazards and the other part is the logarithm

of the frailty of the individual which does not carry dependence since every individual’s

frailty differs. We will also suggest using the forward backward algorithm in sampling the

log-hazards. We present a new approach to improving mixing. These approaches include

sampling the principal components of the log-hazards and Gaussian approximation of the

proposal distribution.
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6.2 Generalised piecewise constant hazard model (GPCH

model)

We recall the piecewise constant hazard model discussed in Section 3.5.1 as a model that is

flexible in the baseline hazard. The generalised piecewise constant hazard (GPCH) model

is one form of the piecewise constant hazard model in which we will relax the parametric

assumption of the relationships among the covariates. In the GPCH model, we categorise

the quantitative covariates or make them ordinal and thus, we divide the covariate space

into cells within each of which the hazard is constant. In the standard piecewise constant

hazard model, we divide the time variable into intervals in which the hazard is constant. In

the generalised piecewise constant hazard model, we have a time variable which indicates

the period in which the individual had the event or was censored and we incorporate time

intervals just as in the case of the standard piecewise constant hazard model. We define

a “covariate profile” as a specific list of values for the categorised covariates. The time

is treated as another ordinal covariate except that a patient can appear in several time

intervals. We define a “cell” as a combination of a covariate profile and the time interval.

Suppose we have S covariates in the model. Let the number of levels of covariate s

be ps. Then, each covariate profile is associated with a unique node in a S-dimensional

array in the covariate space containing P =
∏S
s=1 ps nodes. Combining this with J time

intervals, we have a S + 1 dimensional array with J × P = c cells. A constant hazard is

associated with each cell.

We define the collection of all log-hazards as

η = (ηT
1
, ηT

2
, . . . , ηT

P
)T

where η
p

= (ηp1, . . . , ηpJ)T and ηpj is the log-hazard for covariate profile p in time interval

j for p = 1, . . . , P and j = 1, . . . , J . The vector η is ordered so that the time intervals are

nested within the covariate profiles. We could also have a rearranged form of η so that we

have covariate profiles nested within time interval as

η̃ = (η̃T
1
, . . . , η̃T

J
)T

where η̃
j

= (ηj,1, . . . , ηj,P )T . We have that

η = Hη̃ (6.3)

where H is a permutation matrix.

We think of the likelihood contribution of the individuals just like in the case of the

piecewise constant hazard model discussed in Section 3.3.1. We denote the likelihood
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contribution in the jth time interval for the kth individual with profile p as Lj,p,k. The

overall likelihood is

L =

J∏
j=1

P∏
p=1

np∏
k=1

Lj,p,k =

J∏
j=1

P∏
p=1

Lj,p (6.4)

where the number of individuals with profile p is np.

The individuals are labelled i = 1, . . . , n, the covariate profiles are labelled p = 1, . . . , P ,

the time intervals as j = 1, . . . , J and the individuals in the subset with covariate profile

p are labelled k = 1, . . . , np. The number of individuals with profile p who die will be

denoted by nd,p. The number of individuals with profile p who die in time interval j will

be denoted by nd,j,p.

We define

δj,p,k =

1 if the kth individual in profile p dies in interval j

0 otherwise

Now,

Lj,p =

{ np∏
k=1

λ
δj,p,k
j,p

}
exp

{
−λj,p

np∑
k=1

t∗j,p,k

}

= λ
nd,j,p
j,p exp

{
−λj,p

np∑
k=1

t∗j,p,k

}
= λ

nd,j,p
j,p exp

{
−λj,pT ∗j,p

}
where λj,p = exp {ηj,p}, T ∗j,p =

∑np
k=1 t

∗
j,p,k and

t∗j,p,k =


0 if tp,k < τj−1

tp,k − τj−1 if τj−1 < tp,k ≤ τj
τj − τj−1 if τj < tp,k

The overall likelihood contribution can then be written as

L =
J∏
j=1

P∏
p=1

λ
nd,j,p
j,p exp

{
−λj,pT ∗j,p

}

=


J∏
j=1

P∏
p=1

λ
nd,j,p
j,p


exp

− J∑
j=1

P∑
p=1

λj,pT
∗
j,p

 (6.5)
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and the logarithm of the likelihood is

` = logL =
J∑
j=1

P∑
p=1

nd,j,pηj,p −
J∑
j=1

P∑
p=1

λj,pT
∗
j,p (6.6)

We introduce flexibility to covariate effects using the generalised piecewise constant hazard

model using the prior based on a parameteric model and the Gaussian Markov random

field prior. We will discuss the structures of these priors.

6.3 GPCH model with priors based on parametric model

In Section 5.7.3, we used a prior for the piecewise constant hazard model in which log-

hazards in neighbouring time intervals were positively correlated. In the GPCH model,

we also wish to have prior correlation between log-hazards for neighbouring covariate pro-

files. We will discuss the generalised piecewise constant hazard model using priors which

are based on a parametric model. This structure of prior for the generalised piecewise

constant hazard model will allow for the main and interaction effects. We will expect that

neighbouring time intervals are correlated in their prior distribution.

Suppose we have S covariates for s = 1, . . . , S with a vector of covariate effects β =

(β1, . . . , βS)T . If we use just main effects and the P-way interaction, the linear predictor

of the pth covariate profile in the jth time interval, ηp,j with covariate vector xp,1, . . . , xp,S

is given by

ηp,j = β0,j + β1,jxp,1 + . . .+ βS,jxp,S + γxp,1,...xp,S ,j

where β0,j is the baseline hazard in the jth interval, γxp,1,...xp,S ,j is the highest order

interaction effect in the jth interval, βs,j is the sth covariate main effect in the jth time

interval . We could also include 2-way, 3-way etc. interactions.

We refer to the discussion in Section 5.6 on the construction of the design matrix.

6.3.1 Construction of prior distribution based on parametric model

We recall that the usual linear model for the logarithm of the hazards given in Equation

3.2 is

ηj = β0 +
S∑
s=1

βsxj,s (6.7)

where xj,s is the value of covariate s in covariate vector xj and hence, we have S covariates.

Let η∗ = (η1, . . . , ηP )T be the log-hazards in the first time interval for the P covariate

profiles. Let X = x1, . . . , xS′ be the design matrix of the data. We recall that the vector of
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the parameters of the linear model β will also have S′ parameter (see Section 5.6). Then

η∗ = Xβ . (6.8)

If the expectation of β is E(β) then the expectation of η∗ is

µ∗ = XE(β) (6.9)

Let the covariance matrix of β be Vβ. Then, the covariance matrix of η∗ is

Var(η∗) = XVβX
T (6.10)

We suppose that the prior mean and covariance matrix of the first time interval are

given as µ∗ = E(η∗) and Var(η∗) respectively. We now need to consider the dependence

between parameters in different time intervals. One possible way of constructing the

joint prior distribution of the c parameters of the model might be to give it either a

stationary first order autoregressive process prior or a moving average process prior. In

this thesis, we will assume a first order autoregressive model AR(1) and so, we choose an

autoregressive parameter ρ which gives different strength of relationship to the parameters.

If the autoregressive parameter is positive then the collections of parameter that are closer

to each other are more strongly correlated. Hence, the autoregressive parameter governs

the degree of prior correlation between neighbouring time periods. We refer to Chatfield

(2004) for further details on AR models. The autocovariance at lag j for j = 1, . . . , J is

given by ρjVar(η∗). Hence, the nested covariance matrix of the log-hazards with covariate

profiles nested within the time intervals is given as

Var(η̃) =



V0 V1 V2 V3 · · ·
V1 V0 V1 V2 · · ·
V2 V1 V0 V1 · · ·
V3 V2 V1 V0 · · ·
...

...
...

...
...

VJ−1 VJ−2 · · · V1 V0


where V0 is Var(η∗)+Var(γ) and Var(γ) is a P×P diagonal matrix which is the covariance

matrix of the interactions effects of the covariate profiles and Vk is ρkVar(η∗) for k > 0.

The addition of Var(γ) to Var(η∗) makes V0 non-singular.

We might want to rearrange Var(η̃) so that we have a covariance matrix for the vector

of η in which the time intervals are nested within the covariate profiles. Hence, we have a

re-ordered matrix

Var(η) = HVar(η̃)HT (6.11)
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Again, H is a permutation matrix.

The means of the model parameters might or might not depend on the time interval.

We choose to make the means of the parameters not depend on the time interval so that

they are the same at every time interval and the prior is stationary. Again, we might

rearrange the means so that we have the time intervals within the covariate profiles. We

get µ from µ∗. The joint prior distribution of the parameters of the model now has a prior

mean of µ and covariance matrix Var(η).

An alternative represention of the GPCH model using priors based on a parametric

model is

ηp,j = β0 + β1xp,1 + . . .+ βSxp,S + βtime,j + γxp,1,...xp,S ,j

where βtime,j is the time effect at the jth time interval. In this model, we assume that the

covariance matrix of the linear model without including the interaction effect is

Var(η∗) = Var(β0 + β1xp,1 + . . .+ βSxp,S)

where we have S covariates and P possible covariate profiles and Var(η∗) is a P × P

covariance matrix. The variance of βtime, Vt is a scalar. Again, we have a nested covariance

matrix of the covariate profiles within the time intervals where V0 is Var(η∗)+VtA+Var(γ)

and Vk is Var(η∗) + ρkVtA for k > 0.

Here, Var(γ) is a diagonal matrix which is the variance of the interaction and A is

a matrix with all entries as 1. Again, we might want to rearrange Var(η̃) so that we

have a covariance matrix for η where the time intervals are nested within the covariate

profiles and hence, we do the transformation. We also rearrange the means so that we

have the time intervals within the covariate profiles. Again, the joint prior distribution of

the parameters of the model now has a prior mean and covariance matrix µ and Var(η)

respectively.

6.3.2 MCMC sampling of the log-hazards (η) using priors based on para-

metric model

We recall the logarithm of the likelihood of the GPCH model given in Equation 6.6. A

simple MCMC algorithm is the Gibbs sampler which involves sampling the log-hazards

one at a time. The conditional prior distribution of each log-hazard given the others will

be a normal distribution using the basic properties of the normal distribution (Rue &

Held, 2005).

The conditional prior density for the pth log-hazard representing a covariate profile at
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a time interval, ηp, is then given by

π(ηp) ∝ exp

{
−1

2

(ηp − µp|p′ )
2

Vp|p′

}

where µp|p′ and Vp|p′ are the conditional mean and variance of the log-hazard.

The full conditional distribution of the pth log-hazard ηp is

π(ηp|D) ∝ prior× likelihood

= (constant)π(ηp)Lj,p

We propose a new value of ηp, η
∗
p from a normal distribution. We compute the proposal

density of η∗p given ηp, q(η
∗
p|ηp) and the proposal density of ηp given η∗p, q(ηp|η∗p). From the

Metropolis-Hastings algorithm, the proposed log-hazard η∗p is accepted with probability

A = min

{
1,
π(η∗p|D)

π(ηp|D)

q(ηp|η∗p)
q(η∗p|ηp)

}
.

If q(ηp|η∗p) = q(η∗p|ηp), that is, if we use a symmetric proposal such as a random walk

proposal, the acceptance probability reduces to

A = min

{
1,
π(η∗p|D)

π(ηp|D)

}
since the proposal densities cancel out.

We could do block sampling using some other method: for example in the case of sampling

where we approximate a Gaussian proposal distribution for the log-hazards (see Section

8.3.2).

6.4 Gaussian process prior

We define a Gaussian process as a set of random variables Y (t) where every finite collection

of random variables Y (t1), . . . , Y (tk) has a joint Gaussian distribution. Just like a Gaussian

distribution, a Gaussian process is specified by a mean function and a covariance function.

The covariance function defines the properties and covariance between random variables

in a space. As usual, the covariance function is symmetric and positive semi-definite.

We specify the covariance matrix of a Gaussian processes prior using a distance mea-

sure. Suppose that we compute prior means and marginal prior variances for the elements

of η using a linear model as in 6.3.1 then
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η = Xβ

where X is the design matrix and β is the S′ linear model parameters.

The expectation of η is

B? = E(η) = XE(β) (6.12)

The implied covariance matrix of η would be

V ?
η = XVβX

T (6.13)

However, we do not use the implied covariance matrix since it will be singular. We

construct a correlation matrix R based on “distances” between the c covariate vectors.

The diagonal elements of V ?
η will be the marginal variances. We let the diagonal of V ?

η be

v? = (v?1, . . . , v
?
c )
T and let s? = (s?1, . . . , s

?
c)
T be the vector of standard deviations where

s?j =
√
v?j . Let S? = diag(s?), a diagonal matrix with diagonal s?. Then

Var(η) = S?RS? (6.14)

We will want to construct the correlation matrix R.

If we assume that there are no frailties, the correlation between a patient i in cell (p, j)

i.e. profile p and time period j and another patient i′ in cell (p′, j′) i.e. profile p′ and time

period j′) r(i,p,j),(i′,p′,j′) is given by

r(i,p,j),(i′,p′,j′) = a+ (1− a) exp
{
−d(p,j),(p′,j′)

}
for i 6= i′ (6.15)

We could have a suitable distance measure between cell (p, j) and (p′j′), d(p,j),(p′,j′) as

d(p,j),(p′,j′) =
S∑
s=1

Ks|xp,s − xp′,s| (6.16)

Another possibility of the distance measure between cell (p, j) and (p′, j′) is

d(p,j),(p′,j′) =
S∑
s=1

Ks(xp,s − xp′,s)2 (6.17)

where xp,s and xp′,s are the covariate vectors for covariate profile p and p′. Ks is a vector

of autoregressive parameters or decay rate parameters for each covariate which weights

the distance. We choose Ks as part of the prior specification. If Ks is small then we have

a strong correlation between neighbouring cells. The advantage of (6.17) is that it can be
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written as a matrix given by

d(p,j),(p′,j′) = (xp,s − xp′,s)TK(xp,s − xp′,s) (6.18)

where K is a diagonal matrix with elements K1, . . . ,KS .

The distance d(p,j),(p′,j′) between the log-hazards of two patients with similar covariate

vectors in the same time interval will be zero and r(i,p,j),(i′,p,j) = 1. However, we might

have that the correlation between a patient i in cell (p, j) i.e. profile p and time period j

and another patient i′ in cell (p′, j′), r(i,p,j),(i′,p′,j′) 6= 1 even if the covariates profiles are

exactly the same because of frailty (see Section 6.6.2).

The value of a represents the correlation that remains when the distance becomes

very big. The value of the constant a should always be positive so that we do not

have r(i,p,j),(i′,p′,j′) → 0 as d(p,j),(p′,j′) → ∞. If a = 0, r(i,p,j),(i′,p′,j′) depends on only

exp{−d(p,j),(p′,j′)}. The bigger the value of “a”, the more similar the value of the correla-

tion to “a”. Hence, as d(p,j),(p′,j′) →∞, r(i,p,j),(i′,p′,j′) → a. Larger values for a makes the

correlation depend less on distance.

6.5 Gaussian Markov random field priors

A special case of a Gaussian process is a Gaussian Markov random field. Instead of the

process being defined on continuous space, it is defined on a graph so that nodes have

neighbours. A Gaussian Markov random field (GMRF) is a finite-dimensional random

vector that follows a Gaussian distribution which satisfies the Markov conditional inde-

pendence assumptions. The simplest example of a GMRF is the autoregressive process of

order 1 (AR(1) process) which is in 1 dimension. We illustrate the AR(1) process following

Rue & Held (2005) by supposing that η = (η1, . . . , ηP )T is a random vector expressed as

ηp = ρηp−1 + εp for εp
iid∼ N(0, 1), |ρ| < 1

The joint density of η is

1

(2π)n/2
|Q|1/2 exp

{
−1

2
ηTQη

}
where the precision matrix Q is the tridiagonal matrix with zero entries outside the first

off diagonal elements and is given by
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Q =



1 −ρ 0 0 · · ·
−ρ 1 + ρ2 −ρ 0 · · ·
0 −ρ 1 + ρ2 −ρ · · ·
...

...
...

...
...

0 −ρ 1 + ρ2 −ρ
0 0 · · · −ρ 1


The precision matrix is formed due to the fact that ηi and ηi′ are conditionally independent

for |i−i′| > 1, given the rest. Hence for a GMRF, if the elements of Q are Qii′ then Qii′ = 0

unless i = i′ or i is a neighbour of i′ and thus it is dependent on a distance measure on the

graph and requires the Markov property. In one dimension, the entries of the covariance

matrix V = Q−1 are given by

σii′ =
1

1− ρ2
ρ|i−i

′|

and the correlation is

rii′ = ρ|i−i
′| for − 1 < ρ < 1

In this research, we look at Markov random fields on a rectangular lattice and we

define neighbours as nodes which are separated by exactly one step in one dimension. We

extend the GMRF to a vector of S + 1 dimensions denoted by η = (ηT1 , . . . , η
T
P )T leading

to a GMRF of size PJ .

We illustrate a 2 dimensional case. We assume a stationary GMRF and define the

equation

ηi,j = ρηi,j−1 + ρηi−1,j + εi,j (6.19)

following Figure 6.1 where ε is the random change with mean 0 and variance σ2. In this

illustration, we make the autogressive parameter ρ equal (isotropic). Just like a generalised

autoregressive model, we have the marginal variance of the parameters V , the one-step

autocovariance between parameters C and the diagonal autocovariance as D.

We want to find expressions for V , C andD. We find an expression for V by multiplying

both sides of Equation (6.19) by ηi,j and taking expectations. We get

V = ρC + ρC + σ2 = 2ρC + σ2 (6.20)

We find an expression for C by multiplying both sides of Equation (6.19) by ηi,j−1 and

taking expectations. We get

C = ρV + ρD (6.21)

We find an expression for D by multiplying both sides of Equation (6.19) by ηi−1,j−1 and
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Figure 6.1: Directed acyclic graph to illustrate a 2-dimensional case of GMRF

taking expectations. We get

D = 2ρC (6.22)

Then, we solve Equations (6.20), (6.21) and (6.22) to get values for V , C and D. If we

subsitute D into (6.21), we get

C =
ρV

1− 2ρ2
(6.23)

and if we substitute (6.23) into (6.20) we get

V =
σ2(1− 2ρ2)

1− 4ρ2
. (6.24)

We substitute (6.24) into (6.23) and we get

C =
ρσ2

1− 4ρ2
. (6.25)

Finally, we substitute (6.24) and (6.25) into (6.22) and we get

D =
2ρ2σ2

1− 4ρ2
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It is obvious that we require that for stationarity condition, 1− 4ρ2 > 0 and so, ρ2 < 1/4.

We might also be interested in the proportion of the variance of ηi,j explained by ηi−1,j

and ηi,j−1 and it is given as

R2 = 1− σ2

V
=

2ρ2

1− 2ρ2

since the biggest value of ρ2 = 1/4, R2 = 1 and when ρ2 = 0, R2 = 0.

6.6 GPCH model with Gaussian Markov random field prior

We discuss the generalised piecewise constant hazard model using the Gaussian Markov

random field prior in which the covariate profiles are allowed to depend on their neigh-

bouring covariate profiles. We recall that for each cell we have a corresponding log-hazard

of individuals who have that particular covariate profile. Thus, each covariate profile as-

sociated with a log-hazard corresponds to a cell in a multidimensional array. If we use a

Markov random field prior, the logarithm of the hazard of a particular covariate profile will

be conditionally independent of all other log-hazards given its neighbouring log-hazards.

A good reason for categorising the covariates could be that when using the Gibbs sam-

pling, we can sample a particular log-hazard (cell) by conditioning just on the neighbours.

Thus, we exploit the Markov property.

6.6.1 Construction of Gaussian Markov random field prior

We recall the prior means and prior covariance matrix of η in Equations (6.12) and (6.13).

We treat the time intervals as covariates and hence η = (η1, . . . , ηc)
T , and we make X be

the design matrix with c rows and S′ columns. We construct the correlation matrix R and

the covariance matrix following Section 6.4.

6.6.2 Frailty

If we include frailty in the model then, the correlation between a patient i in cell (p, j)

i.e. profile p and time period j and another patient i′ in cell (p′, j′) i.e. profile p′ and time

period j′, r(i,p,j),(i′,p′,j′) is given by

r(i,p,j),(i′,p′,j′) = Λ(i,j),(i′,j′)

{
a+ (1− a) exp

[
−d(p,j),(p′,j′)

]}
for i 6= i′ (6.26)

The factor Λ, where 0 ≤ Λ ≤ 1 gives a provision for the inclusion of frailty.

We consider two different frailty models. In one of them, each patient has one random

frailty in all time intervals and the factor Λ is given by
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Λ(i,j),(i′,j′) =

= 1 if i = i′

< 1 otherwise

The other case is if we have different frailty value in each time interval and the factor Λ

is given by

Λ(i,j),(i′,j′) =

= 1 if i = i′ and j = j′

< 1 otherwise

In this second case, the frailties are effectively random patient-time period interaction

effects.

6.6.3 MCMC sampling of the log-hazards (η) using Gaussian Markov

random field prior

We can sample for example using Metropolis within Gibbs algorithm which involves sam-

pling the log-hazards one at a time. The conditional prior distribution of each log-hazard

when we have a Gaussian Markov random field prior is the conditional distribution of

that log-hazard given its neighbouring log-hazards. We use the basic properties of the

normal distribution in Rue & Held (2005). For instance, from standard results for mul-

tivariate normal distribution, the conditional distribution of the pth log-hazard given the

neighbouring log-hazards ηp|ηp′ has a normal distribution given by

ηp|ηp′ ∼ N(Mp|p′ , Vp|p′ )

The conditional mean Mp|p′ is given as

Mp|p′ = µp + Cpp′V
−1
p′

(η
p
′ − µ

p
′ )

and the conditional covariance matrix Vp|p′ is given as

Vp|p′ = Vpp − Cpp′V
−1
p′
Cp′p

where η
p′

is a p
′ × 1 column matrix of the neighbouring log-hazards and µ

p′
is the vector

of means of the neighbouring log-hazards. We get Cpp′ and Vpp′ from partitioning the

variance covariance matrix V given below as
Vpp Cpp′

Cp′p V −1
p′



116



Chapter 6. Generalised piecewise constant hazard model

and Cp′p is the transpose of Cpp′ .

The prior density for the pth log-hazard ηp given its neighbours ηp′ is then given by

π(ηp) ∝ exp

{
−1

2

(ηp − µp|p′ )
2

Vp|p′

}

The logarithm of the conditional prior density of the pth log-hazard is

log [π(ηp)] = (constant)− 1

2

(ηp − µp|p′ )
2

Vp|p′

The likelihood contribution from the pth log-hazard is L(ηp|D). Again, we use the Metropolis-

Hastings algorithm since we can not sample directly from the full conditional distribution.

The full conditional distribution of the pth log-hazard ηp is given by

π(ηp|D) ∝ prior× likelihood

= (constant)π(ηp)L(ηp|D)

We propose a new value of ηp, η
∗
p from a normal distribution with mean ηp. We compute

the proposal density of η∗p given ηp, q(η
∗
p|ηp) and the proposal density of ηp given η∗p,

q(ηp|η∗p). From the Metropolis-Hastings algorithm, the proposed log-hazard η∗p is accepted

with probability

A = min

{
1,
π(η∗p|D)

π(ηp|D)

q(ηp|η∗p)
q(η∗p|ηp)

}
The acceptance probability reduces to

A = min

{
1,
π(η∗p|D)

π(ηp|D)

}
since the proposal densities cancel out if a symmetric proposal is used.

The full conditional distribution of each log-hazards only depends on the neighbours.

Experience has shown that mixing will be poor since there is strong correlation in the

posterior between the log-hazards at neighbouring points in the parameter space. We

suggest numerical approaches in Section 4.7 for improving the poor mixing in the GPCH

model. We note that we could decide to split the log-hazards into two parts for us to use

the forward backward algorithm to sample the log-hazards.
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6.7 Splitting the log-hazards

When the parameters of the posterior distribution are correlated, joint sampling of these

parameters can improve the performance of the sampling relative to updating each param-

eter independently (Roberts & Sahu, 1997). We could aim at moving parameters together

(i.e blocking) in order to improve mixing.

We suppose that the joint prior density of the log-hazards η is

π(η) ∝ exp

{
−1

2
(η − µ)TQ(η − µ)

}
where the prior mean of η is µ and the prior precision matrix is Q. We recall that the

overall logarithm of the likelihood contribution from all covariate profiles is given in (6.5)

and the full conditional density of the log-hazards is

π(η|D) ∝ π(η)L(η|D) (6.27)

The difficulty of sampling directly from this full conditional distribution of the log-hazards

is that it is not a multivariate normal distribution because the likelihood is not normal.

We might consider splitting the log-hazard of an individual into two parts. One part will

carry the dependence between log-hazards and the other part is the logarithm of the frailty

of the individual which does not carry dependence since every individual’s frailty differs.

Hence, the ith log-hazard ηi is given by,

ηi = θp(i) + Zi (6.28)

where θp(i) is the log-hazard without frailty and carries the dependence, p(i) is the profile

to which the individual i belongs and Zi is the logarithm of the frailty of the individual.

The log-hazard ηi of individual i is conditionally independent of the log-hazard ηj of

individual j given the log-hazard without frailty θi (see Figure 6.2). The reason for splitting

the log-hazards is so that we separate the parts that do not have a normal distribution

and they become conditionally independent and we can sample them one at a time. Then,

the parts that are correlated have a multivariate normal full conditional distribution and

it is easier to sample them all at once (blocking). Again, we recall from Section 6.6.2 that

we could consider two different frailty models. In one model, each patient has one random

frailty in all time intervals and the other case we have a different frailty value in each time

interval.

We suppose that the vector of log-hazards without frailty θ has a multivariate normal

prior distribution with mean vector M and covariance matrix C given by

θ ∼ N(M,C).
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Figure 6.2: Directed acyclic graph to explain the idea of splitting the log-hazards
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The vector of log-frailty Z also has a multivariate normal prior distribution with mean 0

and covariance matrix σ2fI given by,

Z ∼ N(0, σ2fI).

where I is an identity matrix and σ2f is the variance of the log-frailties.

Then, the vector of log-hazards η will have a multivariate normal prior distribution with

mean vector M and covariance matrix C + σ2fI given by

η ∼ N(M,C + σ2fI).

The log-hazard of each individual is independent of the log-hazard of another individual

given the log-hazard without frailty. We sample the log-hazard of the ith individual, ηi

given both the log-hazard excluding the frailty and the individual’s survival time, ηi|θi, Ti.
We have to sample the precision of the log-frailty, the log-hazards of the individuals

η1, ....ηn and the vector of log-hazards without frailties θ. We sample η1, ....ηn one at a

time using the Metropolis within Gibbs algorithm (discussed in Section 4.6.5) since they

are conditionally independent of each other given the log-hazards without frailty θ. We

note that θp(i) is specific to the covariate profile to which the individual belongs.

Firstly, we might think of sampling the precision of log-frailties τf while we fix η and

θ. We recall that from 6.28, the vector of log-frailties Z is

Z = η − θ (6.29)

We suppose that the precision of the log-frailties τf has a gamma prior distribution with

parameters af and bf , τf ∼ Gamma(af , bf ) given by

π(τf ) ∝ τaf−1f exp {−bfτf}

The likelihood from the precision of the log-frailties is given by

L(τf ) ∝ τn/2f exp

{
−
τf
2

n∑
i=1

Z2
i

}

The full conditional distribution of the precision of the log-frailties is

π(τf |af , bf ) ∝ τaf+n/2−1f exp

{
−τf (bf +

1

2

n∑
i=1

Z2
i )

}
(6.30)

We sample τf directly using Equation 6.30.

We will sample the log-hazards including frailties η’s one at a time while we fix τf
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and θ using Metropolis-Hastings steps. The conditional variance of η|θ, Var(η|θ) is the

variance of the log-frailty τ−1f and the conditional mean is θ. The prior distribution of the

ith log-hazard, ηi is then given by

π(ηi) ∝ exp
{
−
τf
2

(ηi − θi)2
}

We recall that the likelihood contribution from the ith individual is

L(ηi|D) = {exp [ηi]}δi exp {− exp [ηi] t}

where

δi =

1 if the individual died

0 if censored

We propose a new value of ηi, η
∗
i from a normal distribution. The proposed value of the

log-hazard is accepted with probability is given as

A = min

{
1,
π(η∗i |τf , D)

π(ηi|τf , D)

}
When we have sampled values for τf and η, θ now has multivariate normal full conditional

distribution. We could sample θ from the multivariate normal distribution either using

the Cholesky decomposition or the forward backward algorithm discussed in Section 4.7.

This will only work if we use the patient-time period interactions rather than the standard

frailties.

6.8 Sampling the principal components of the log-hazards

Instead of sampling the correlated log-hazards one at a time, we can transform to a new

set of parameters which are not correlated in the prior. One way to do this is to use

the principal components. We could think of sampling the principal components of the

log-hazards when we have poor mixing in survival modelling. The reason for sampling

the principal components of the log-hazards is that the principal components given the

prior covariance matrix are linear functions of the log-hazards. In addition, the principal

components are independent and uncorrelated in the prior which could improve mixing.

Finding the principal components will involve the eigen values and eigen vectors (Jol-

liffe, 2002). Suppose Υ is a matrix where the columns are eigen vectors of Var(η). Let

vector of principal component P be given by

P = Υη
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The covariance matrix of the principal components Var(P ) is given by

Var(P ) = ΥVar(η)Υ T (6.31)

The covariance matrix of the principal components Var(P ) is a diagonal matrix of the

eigen values and hence, the principal components are independent. The vector of means

of the principal components E(P ) of the log-hazards is given by

E(P ) = ΥE(η) (6.32)

The prior distribution of the pth principal component is a normal distribution with mean

E(Pp), variance Var(Pp) and density

π(Pp) ∝ exp

{
−1

2

(Pp − E (Pp))
2

Var (Pp)

}

The likelihood contribution from the observations is L(η|D) which is the overall likelihood

contribution from all covariate profiles where

η = Υ−1P . (6.33)

In order to get the likelihood of the principal component, we convert the principal com-

ponents P back to the log-hazards (η) using the relationship between η and P .

Again, we could use the Metropolis within Gibbs algorithm since we can not sample

directly from the full conditional distribution. We sample each of the principal compo-

nents Pp from its full conditional distribution. The full conditional distribution of the pth

principal components Pp is then given by

π(Pp|D) = (constant)π(Pp)L(η|D)

We propose a new value of Pp, P
∗
p from a normal distribution. Since the principal com-

ponents are a function of the log-hazards, the proposed values of the log-hazards are

computed again using (6.33). So,

η∗ = Υ−1P ∗

The proposal densities cancel out if we use a symmetric proposal (i.e. if the variance of

the normal proposal distribution is constant). From the Metropolis-Hastings algorithm,

the proposed log-hazard η∗p is accepted with probability

A = min

{
1,
π(P ∗p |D)

π(Pp|D)

}
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If the proposed principal component of the pth log-hazard is accepted then the accepted log-

hazard value will be transformed from the proposed principal component value. Otherwise

it stays the same.

6.9 Some comments on the computations using the GPCH

model

In the generalised piecewise constant hazard model, the number of covariate profiles will

depend on the number of covariates and categories. In general, if we have P covariate

profiles and J time intervals, then we will have JP cells. For example, the number of

covariates in the SNLG data set discussed in Section 2.2.4 was 14 and the cutpoints

of the categories corresponding to the lower quartile, median and upper quartile of the

continuous covariates. The number of covariate profiles is 28 × 44 × 5× 3 ≈ 1 million. If

time is partitioned into 10 time intervals for example, the number of cells for the SNLG

data set is ≈ 10 million. This will involve fitting a model with so many parameters.

Clearly, 10 million is much bigger than the number of patients in the data set. We will

have too many cells but only 636 patients and some of these may share covariate profiles

so that the number of distinct covariate profiles among observed patients may be smaller.

In fact many (almost all) of the approximately 1 million possible covariate profiles are not

observed. The observed covariate profiles form only a tiny proportion of the possible total.

Most of the cells will not have patients in the neighbouring cells because nearly all of the

cells have no data. The GPCH model is very practicable in the case of the leukaemia

data where we have only four covariates, 128 covariate profiles and 10 time periods and

hence, a total of 1280 cells. We have 1043 patients. The log-hazard for a cell in the

multidimensional array depends on those in the neighbouring cells and hence the Markov

property could be used. This is unrealistic in the case of the SNLG data because of too

many combinations of covariate. It would not be feasible to do MCMC with log-hazards

for covariates cell if there were a large number of covariates.

We could consider the alternative of only updating the log-hazard in cells where there

were observed patients since most of the neighbours will be missing (not being used).

However, by doing this, we would lose the computational advantage given by the Markov

property.

An alternative is to use a modified prior correlation structure. The correlation structure

will be defined to have the property that the full conditional distribution for a log-hazard

depends only on the log-hazards for covariate profiles within a distance. This has a link

to the K nearest neighbours (KNN) method (Prijs et al., 2007).

Another alternative which is linked to the problem of large numbers of covariate profiles

in the generalised piecewise constant hazard model can be tackled by abandoning the
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piecewise constant hazard feature with respect to the covariates (not making the covariates

ordinal) and using a continuous parameter space model with a Gaussian process prior for

the logarithm of the hazards at the observed patient-points in covariate space. There

could be as many hazard values as the number of patients. In other cases, the number of

hazard values are less than the number of patients because two individuals may have the

same covariate profile.

6.10 Summary

In this chapter, we have discussed introducing flexibility into the form of the dependence

of the hazard function on the covariate effects using the generalised piecewise constant

hazard model. We discussed it using the prior distribution based on both a parametric

model and a Markov random field. The two prior distributions have different structures.

We suggested some numerical methods to improving mixing in cases where we have poor

mixing. These include sampling the principal components of the log-hazards because

the principal components are independent in their prior, Gaussian approximation of the

proposal distribution (see Section 4.7.2) and splitting the log-hazards and sampling the

part that carries the dependence using either the forward backward algorithm (4.7.1) or

the Cholesky decomposition (4.6.6). This method can be illustrated using a data set with

a smaller number of covariates since the number of covariate profiles is dependent on the

number of covariates.
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Continuous parameter space

model

7.1 Introduction

In this chapter, we discuss a new approach to flexible modelling in survival by relaxing

the parametric model for the covariate effects using the continuous parameter space model

where we leave the continuous covariates as they are. We introduce flexibility into the

model by giving the logarithm of the hazards a Gaussian process prior.

The form of the baseline hazard could possibly be a piecewise constant hazard model or

we could use a parametric survival model such as the Weibull distribution. For illustration

in this chapter, we will use a Weibull distribution lifetime. Each observed covariate profile

thus has a separate logarithm of the hazard and these are given a correlation based on a

distance measure in covariate space in the prior. We construct the prior distribution of the

parameters of the continuous parameter space model by using the prior information to set

up a systematic way of obtaining the means and variances of the log-hazards for patients

with different covariates. The continuous parameter space model could be an alternative

to the GPCH model discussed in Chapter 6.

7.2 Basic ideas and notation

Let us suppose that we are fitting a parametric survival model, such as a Weibull distri-

bution and each patient has one hazard (or hazard multiplier) λi. If we have n patients,

labelled i = 1, . . . , n then each patient has a hazard which depends on the patient’s co-

variate vector Xi. In the case of the generalised piecewise constant hazard model where

we make the quantitative covariates categorical, we expect many patients to share the

same covariate vector with others (see Section 6.2). It could be that some patients have
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exactly the same covariate values even when we do not make the covariates categorical. In

practice, it is possible that two patients share the same covariate vector because covariates

are only recorded to a small number of significant digits. For example, age is in whole

years. Therefore, to allow for this possibility, let us say that the number of distinct covari-

ate vectors is n′ where n′ ≤ n. Hence, we have n′ different hazard (or hazard multiplier)

values λ1, . . . , λn′ . We will let ηp = log(λp).

Suppose that we have a linear model for η1, . . . , ηn′ with S + 1 coefficients, β0, . . . , βS .

Usually S+1 < n′ and we will assume that this is the case. The coefficients corresponding

to columns of the design matrix which could be quantitative covariates or contrasts for the

categorical covariates. We include β0 as an intercept. Let η = (η1, . . . ηn′ )
T . Let X be the

design matrix with n′ rows and S+1 columns where row j is (1, xj,1, xj,2, . . . , xj,S). We will

note that we could also have categorical covariates (see discussions on Section 6.3.1 on the

suggested ways to include these covariate in the design matrix). Let β = (β0, β1, . . . , βS)T .

Then, in a parametric model for the covariate effects

η = Xβ .

Note that, if S + 1 > n′ then the parameters β0, . . . , βS are not identifiable. We will deal

with the case where S + 1 = n′ when we introduce the Gaussian process prior in Section

7.2.1.

Now, the fact that S + 1 < n′ imposes linear constraints on the values of η1, . . . , ηn′

since there are only S + 1 degrees of freedom available. This means that the values of

certain linear functions of η1, . . . , ηn′ are fixed by the model. It is these constraints which

we want to relax in this project.

We refer to (6.9) and (6.10) for the expectation and covariance matrix of η respectively.

Because of the linear constraints, the n′ × n′ matrix Var(η∗) can not have rank greater

than S + 1 and since S + 1 < n′, it is singular.

7.2.1 Unconstrained η (Gaussian process prior)

In order not to have the constraints implied by a parametric model as in (6.7) we increase

the number of parameters to n′. There is then exactly one parameter for each covariate

vector. The parameters are η1, . . . , ηn′ themselves. This is different from the linear model

shown in (6.7) since we increase the number of the degrees of freedom until there is one

degree of freedom for every logarithm of the hazard.

Now, we need a suitable prior distribution for η.
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7.3 Bayesian modelling of the log-hazards (η) using Gaus-

sian process prior and Weibull lifetime distribution

We suppose that the lifetime random variable has a Weibull distribution with parameters

(λ, α). Suppose that we have n
′

different covariate profiles. Let the number of cases with

covariate profile p be np, for p = 1, . . . , n
′
, and let the number of these cases where the

event time is observed be nd,p. Let the number of all cases where the event is observed be

nd =

n
′∑

p=1

nd,p .

Let the hazard multiplier for profile p be

λp = exp {ηp} .

The likelihood contribution from profile p is

L(λp, α|D) =

{ np∏
k=1

[
αλpt

α−1
p,k

]dp,k}
exp

{
−λp

np∑
k=1

tαp,k

}
(7.1)

where the event or censoring time for patient k in profile p is tp,k and dp,k = 1 if this is an

event but dp,k = 0 if it is a censoring time.

The logarithm of the likelihood contribution from profile p is therefore

`p = nd,p logα+ nd,pηp + (α− 1)

np∑
k=1

dp,k log tp,k − λp
np∑
k=1

tαp,k (7.2)

and the overall logarithm of the likelihood is

` = nd logα+
n
′∑

p=1

nd,pηp + (α− 1)
n
′∑

p=1

np∑
k=1

dp,k log tp,k −
n
′∑

p=1

{
λp

np∑
k=1

tαp,k

}
. (7.3)

We will suppose that from Section 7.2.1, the vector of log-hazards η has a multivariate

normal prior distribution with vector of means E(η) and covariance matrix which we have

to construct.
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7.3.1 Constructing prior distribution for the parameters of the contin-

uous parameter space model

We could make the prior means of all of η1, . . . , ηn′ equal. In this way, we are not using

prior information about which hazards are likely to be greater or smaller. Sometimes this

might be preferred. We could also make use of prior information by setting up a systematic

way of obtaining the means and variances of the log-hazards for patients with different

covariates. We set up a preliminary linear model and give prior means and variances to

all the coefficients of the covariates. Hence, the prior information depends on the effects

of the covariates on the log-hazard of the patients. In an attempt to make the prior mean

and variances of the log-hazard different, we can express the log-hazard for each covariate

profile as a linear function of these coefficient of the covariates and it helps us to form the

prior information. We follow the way that the expectation of η was constructed in Section

6.6.1.

We will want a suitable covariance matrix for η. We can not use V ?
η (see 6.10) because

of the implied constraints. This is because V ?
η is singular and the number of parameters

in the linear model is less than the number of log-hazards of the patients (S + 1 < n′).

We recall from Section 6.6 that the covariance matrix of the vector of log-hazards is

Var(η) = S?RS? (7.4)

and the elements of the correlation matrix R are

ri,j = Λ {a+ (1− a) exp {−di,j}} for i 6= j . (7.5)

One possibility could be to form a correlation matrix based on the “distances” between the

covariate vectors. We could combine this with the marginal variances which are given by

the diagonal elements of V ?
η . In this way, the variances of η1, . . . , ηn′ reflect a reasonable

assessment of our prior uncertainties.

We refer to (6.14) for the construction of the correlation matrix. In this case, di,j is the

distance measure between the ith and jth covariate profiles following Schmidt & Rodriguez

(2011) and is given by

di,j =
√

(xi − xj)TD∗(xi − xj) (7.6)

where xi and xj are the covariate vectors for the ith and jth covariate profiles. The

symmetric positive definite matrix D∗ rescales the covariates, for example to give them

the same standard deviation, since some of the covariates might be in different scales. If we

assume that D∗ is diagonal then the diagonal elements define the scales of the covariates

so that one unit of all covariates counts equally. The corresponding diagonal element of

D∗ for each variable is the inverse of the square of the standard deviation of the variable.
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Again, we think of values for Λ and a as in Section 6.6.

7.3.2 Sampling from the posterior distribution of the log-hazards

One possibility for MCMC sampling is to sample each of the log-hazards one at a time.

The conditional prior distribution of each log-hazard given the others will be a normal

distribution. For instance, from standard results for multivariate normal distribution, the

conditional distribution of the pth log-hazard ηp given the other remaining log-hazards

ηp|ηp′ has a normal distribution with mean Mp|p′ and variance Vp|p′ . So,

ηp|ηp′ ∼ N(Mp|p′ , Vp|p′) .

The conditional mean Mp|p′ is

Mp|p′ = µp + Cpp′V
−1
p′ (η

p′
− µ

p′
)

and the conditional covariance matrix Vp|p′ is

Vp|p′ = Vpp − Cpp′V −1p′ Cp′p

where η
p′

is a (n
′ − 1)× 1 column matrix without ηp,

µ
p′

is the vector of means of log-hazards without the mean of ηp.

We get Cpp′ and Vpp′ from partitioning the variance covariance matrix V as
Vpp Cpp′

Cp′p V −1p′


where Cp′p is the transpose of Cpp′ . The other conditional distributions of the other log-

hazards can be computed in a similar way. The conditional prior density for the pth

log-hazard ηp is then given by

π(ηp) ∝ exp

{
−1

2

(ηp −Mp|p′)
2

Vp|p′

}

where Mp|p′ and Vp|p′ are the conditional mean and variance of the pth log-hazard.

The logarithm of the prior density of the pth log-hazard is

log [π(ηp)] = (constant)− 1

2

(ηp −Mp|p′)
2

Vp|p′
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The posterior density will not have a closed or analytical form but we can simulate from it

using MCMC techniques. We will use the Metropolis within Gibbs algorithm since we can

not sample directly from the full conditional distribution. In this case, we fix the Weibull

shape parameter α and then we sample each of the log-hazard from its full conditional

distribution. The full conditional density of the pth log-hazard is

π(ηp, α|D) = (constant)π(ηp)L(ηp, α|D)

We propose a new value of ηp, η
∗
p from a normal distribution. We compute the proposal

density of η∗p given ηp, q(η
∗
p|ηp) and the proposal density of ηp given η∗p, q(ηp|η∗p). From the

Metropolis-Hastings algorithm, the proposed log-hazard η∗p is accepted with probability

A = min

{
1,
π(η∗p, α|D)

π(ηp, α|D)

q(ηp|η∗p)
q(η∗p|ηp)

}
which reduces to

A = min

{
1,
π(η∗p, α|D)

π(ηp, α|D)

}
and the proposal densities cancel out if they are symmetric. We will now fix the accepted

values of all the sampled log-hazards η and sample the Weibull shape parameter α. Using

a gamma prior for α, the prior density for α is

π(α|a, b) =
(b)a

Γ (a)
αa−1 exp {−bα}

∝ αa−1 exp {−bα} .

The posterior density of α is

π(α|η,D) = κπ(α|a, b)L(α|η,D) .

So, we propose a new value α∗ ∼ Ga(a∗, b∗) for some specified a∗, b∗. We refer to Section

5.5.2 for details on this.

The proposed value of α is accepted with probability

A = min

{
1,
π(α∗|η,D)

π(α|η,D)

q(α|α∗)
q(α∗|α)

}
Again, experience has shown that mixing might be poor as there is strong correlation in the

posterior between the log-hazards at neighbouring points in the parameter space. We will

suggest the numerical approaches discussed in Section 4.7 and others which have already

been discussed in Chapter 6 for improving the poor mixing. There are no additional

numerical approaches to improving poor mixing in the continuous parameter space model.
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7.4 Summary

In this chapter, we followed our discussion on the comments from Chapter 6, Section 6.9

to consider only updating the log-hazards of the observed patient-points using the contin-

uous parameter space model with a Gaussian process prior. It is possible that the form

of the baseline hazard should be a piecewise constant hazard. We illustrated this method

by supposing a Weibull lifetime distribution. We will suggest some numerical methods

to improving mixing in cases where we have poor mixing. These include sampling the

principal components of the log-hazards, Gaussian approximation of the full conditional

distribution as a proposal distribution (see Section 4.7.2) and splitting the log-hazards and

sampling the part that carries the dependence and sampling using the Cholesky decom-

position (4.6.6). It was impossible to split the log-hazards and sample using the forward

backward algorithm since the log-hazards in the continuous parameter space model do not

have the Markov property.
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Chapter 8

Applications to Example Data sets

and use of alternative

computational methods

8.1 Introduction

The investigation of flexible Bayesian modelling is intended to relax the standard propor-

tional hazard model. In this chapter, we will apply the methodology discussed in Chapters

6 and 7 to our example data sets discussed in Chapter 2.

We will begin by considering the leukaemia data set using the GPCH model with priors

based on a parametric model and a Markov random field as discussed in Chapter 6. The

GPCH model was not used on the SNLG data set for the reasons discussed in Section

6.9. In both cases, we discussed some alternative computational methods which might

be useful for improving mixing. These numerical approaches include splitting the log-

hazards and sampling using the forward backward algorithm (see Section 6.7 and Section

4.7.1) or Cholesky decomposition, Gaussian approximation of the fcd used as a proposal

distribution (see Section 4.7.2) and sampling the principal components of the log-hazards

discussed in Section 6.8. We then follow the first alternative approach to the comments

on Section 6.9 where we consider only updating the combinations of the covariates (cells)

where there were observed patients (continuous parameter space model) since most of the

neighbours will be missing (not being used).

We analysed the SNLG data set using the continuous parameter space model discussed

in Chapter 7. We also discussed some alternative computational methods to improve

mixing in MCMC. These approaches used to improve mixing include sampling the principal

components (see Section 6.8), splitting the log-hazards and sampling the log-hazards from

a multivariate normal distribution using the Cholesky decomposition (see Section 6.7 and

132



Chapter 8. Applications to Example Data sets and use of alternative computational
methods

Section 4.6.6) and Gaussian approximation of the fcd to form a proposal distribution of

the parameters.

8.2 Application 1: GPCH model with priors based on para-

metric model

We revisit the leukaemia data set collected by North West Leukaemia Register in the

United Kingdom in Section 2.3. The data set includes 1043 patients with 4 completely

observed covariates (see Appendix A.3.2 for a partial display of data). The time variable

was measured in units of days. The ordering of the covariates is given in Table 8.1.

Table 8.1: Ordering of covariates for the leukaemia data set for GPCH model

Covariates variable

Age x1
Sex x2
Wbc x3
Depsc x4
Time variable x5

The covariates x1, x3 and x4 were categorised into four groups and we give the cat-

egories values 1, 2, 3 and 4. The cut points of the categories correspond to the lower

quartile, median and upper quartile of the covariates. Covariate x2 is binary. We refer to

the cut points for the time variable used in Section 5.8 and we categorise the time variable

x5 based on these cut points. The number of covariate profiles is 128. Here, the linear

predictor for the pth covariate profile in the jth time interval is defined as

ηp,j = β0,j + βa′,j , xp,1 + βs′,j , xp,2 + βw′,j , xp,3 + βd′,j , xp,4 + γxp,1,xp,2,xp,3xp,4,j

where βa′,j , βs′,j , βw′,j and βd′,j depend on the categorical value of “age”, “sex”, “Wbc”

and “Depsc” respectively. Thus, the vector of covariate coefficients of the parametric

model is β = (β0, βa′ , βs′ , βw′ , βd′)
T .

We include these categorical covariates in the design matrix X following the discussion

in Section 6.3.1. There will be 11 parameters in the linear model, including an intercept

β0. Hence, the design matrix X is a 128 by 11 matrix.
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Construction of prior distributions

We construct the prior distributions of covariate effects following the discussion in Section

4.4.3.5 and 5.3.1.4. We constrain the parameters for the levels of the covariate effects to

zero sum in order to avoid over-parameterisation since all covariates are categorical. We

have δa′,1 , δa′,2 and δa′,3 for the coefficient of age, δs′ for the coefficient of sex, δw′,1, δw′,2

and δw′,3 for the coefficient of Wbc and δd′,1, δd′,2 and δd′,3 for the coefficient of Depsc.

We follow the discussions in Section 5.3.1.1 for the construction of the prior for the

baseline parameter. We get prior distribution for β0 will give us a mean of µ0 = −6.0 and

variance σ20 = 0.12. The means and variances of the parameters of the coefficients of the

ordinal covariates are given in Table 8.2.

Table 8.2: The prior means and variances for the coefficients of the ordinal covariates of the
leukaemia data set

Parameter prior mean prior variance

β0 (baseline parameter) -6 0.12
δa′,1 0 0.02
δa′,2 0 0.06
δa′,3 0 0.003
δs′ 0 0.0625
δw′,1 0 0.06
δw′,2 0 0.02
δw′,3 0 0.001
δd′,1 0 0.012
δd′,2 0 0.004
δd′,3 0 0.002

We will assume that the parameters of the linear model are not independent and so

we construct the prior covariance matrix following the discussions in Section 4.4.1. The

prior covariance matrix of the parameters of the linear model is given in Table 8.3.

We would want to construct the vector of prior means µ∗ and covariance matrix Var(η∗)

of the log-hazards of the possible combination of covariates η∗ given in Equation (6.9) and

(6.10) respectively. In this case, we have 128 covariate profiles excluding the time variable.

We make µ∗ and Var(η∗) be the prior mean and covariance matrix of the log-hazards in

the first time interval. We will assume a stationary first order autoregressive process for

the time periods. We choose an autoregressive parameter by thinking of how much the

variance of the log-hazards in the next time period will reduce if we learnt about the

log-hazards in one time period. We suppose that 64% of the variance is explained and we

have the coefficient of determination as r2 = 0.64. Hence, the correlation r = 0.8.

We follow the discussion in Section 6.3.1 and we construct the nested covariance matrix
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Table 8.3: Covariance matrix of the parameters of the ordinal covariates of the leukaemia data set

β0 δa′,1 δa′,2 δa′,3 δs′ δw′,1 δw′,2 δw′,3 δd′,1 δd′,2 δd′,3
1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0 1.0 0.9 0.9 0.0 0.7 0.7 0.7 0.7 0.7 0.7
0 0.9 1.0 0.9 0.0 0.7 0.7 0.7 0.7 0.7 0.7
0 0.9 0.9 1.0 0.0 0.7 0.7 0.7 0.7 0.7 0.7
0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0 0.7 0.7 0.7 0.0 1.0 0.9 0.9 0.7 0.7 0.7
0 0.7 0.7 0.7 0.0 0.9 1.0 0.9 0.7 0.7 0.7
0 0.7 0.7 0.7 0.0 0.9 0.9 1.0 0.7 0.7 0.7
0 0.7 0.7 0.7 0.0 0.7 0.7 0.7 1.0 0.9 0.9
0 0.7 0.7 0.7 0.0 0.7 0.7 0.7 0.9 1.0 0.9
0 0.7 0.7 0.7 0.0 0.7 0.7 0.7 0.9 0.9 1.0

of the covariate profiles Var(η̃) which is a covariance matrix for the covariate profiles within

the time intervals. We will also have a diagonal matrix Var(γ) which is the covariance

matrix of the interaction effects. For convenience in this thesis, we would want to rearrange

the vector of means η̃ and the covariance matrix Var(η̃), to follow time intervals within

the covariate profiles using Equation (6.3) and (6.11) and we stick to this style through

out the modelling. The vector of log-hazards η now has a prior distribution with mean

µ and covariance matrix Var(η). The number of log-hazards corresponding to the cells

will be 1280 since we have 10 time intervals. We have partially displayed the correlation

between some covariate vectors in Table 8.4 and 8.5 and covariance matrices of some of

the log-hazards in Table 8.6 and 8.7 respectively using the two alternatives discussed in

Section 6.3.1.

Table 8.4: Partial display of the correlation between ordinal covariate vectors with priors based on
parametric model

x1 x2 x3 x4 x5
1.000 0.724 0.579 0.463 0.370
0.724 1.000 0.724 0.579 0.463
0.579 0.724 1.000 0.724 0.579
0.463 0.579 0.724 1.000 0.724
0.370 0.463 0.579 0.724 1.000

Table 8.4 shows that the correlations between the pair of log-hazards are not very

strong.

Table 8.5 shows very strong correlations between the pair of log-hazards.
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Table 8.5: Partial display of the correlation between ordinal covariate vectors with (an alternative)
prior based on parametric model

x1 x2 x3 x4 x5
1.000 0.907 0.895 0.885 0.877
0.907 1.000 0.907 0.895 0.885
0.895 0.907 1.000 0.907 0.895
0.885 0.895 0.907 1.000 0.907
0.877 0.885 0.895 0.907 1.000

Table 8.6: Partial display of the prior covariance matrix of the log-hazards with priors based on
parametric model

1.047 0.758 0.606 0.485 0.388
0.758 1.047 0.758 0.606 0.485
0.606 0.758 1.047 0.758 0.606
0.485 0.606 0.758 1.047 0.758
0.388 0.485 0.606 0.758 1.047

These two forms of the covariance matrices are not equivalent and so we expect that

the posteriors will also be slightly different. We might want to consider what happens

if we have a lot of time steps and the time lag becomes large. In the first form, the

covariance matrix between two time periods tend to a zero matrix because ρk tends to

zero as k →∞. In the second form, the limit is Var(η∗). We think that the second form

may be more realistic because it suggests that we have non-zero prior covariances between

the log-hazards at different time intervals, no matter how far apart the time intervals are.

Posterior distributions

The joint posterior distribution has been discussed in Chapter 6, Section 6.3.2 and we use

both forms of the covariance matrices. The Metropolis within Gibbs algorithm can be

applied here. The R functions to do this computation using the first form of covariance

matrix can be found in Appendix A.5.1 and A.5.3. Following a burn-in of 20000 iterations,

60000 iterations were taken. Convergence was assessed by visual inspection of trace plots

of the parameters and the mixing was quite good. The trace plots and density plots of

some of the parameters (log-hazards) are shown in Figure 8.1. Visual inspection of the

trace plots of the posterior values of the parameters revealed no convergence problems.

The posterior means and standard deviations of some of the log-hazards are given in Table

8.8 (see basic Gibbs sampler I).

Figure 8.1 shows good mixing of the trace plots of the log-hazards of three covariate
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Table 8.7: Partial display of the prior covariance matrix of the log-hazards with (an alternative)
priors based on parametric model

1.295 1.175 1.159 1.147 1.136
1.175 1.295 1.175 1.159 1.147
1.159 1.175 1.295 1.175 1.159
1.147 1.159 1.175 1.295 1.175
1.136 1.147 1.159 1.175 1.295
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Figure 8.1: Trace plot and density plot (with dash lines representing the prior density and straight
lines representing the posterior density) for three log-hazards using the GPCH model and priors
based on the parametric model for the leukaemia data set
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profiles. The density plots also show that we have learnt something from both data and

prior.

Figure 8.2 shows timeplots of the posterior means and ±2 standard deviation intervals

for three log-hazards using the GPCH model and we shifted the time intervals to avoid

overlapping. There was little difference between log-hazards among these three covariate

profiles. The plot showed changes in the log-hazards within different time periods. Figure

8.3 shows three covariate profiles where the log-hazards are different. The effect of the

covariates are obvious.
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Figure 8.2: Time plots of the posterior means and ±2 standard deviation intervals for three log-
hazards using the GPCH model where priors are based on parametric model with overlapping
log-hazards for the leukaemia data set
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Figure 8.3: Time plots of the posterior means and ±2 standard deviation intervals for three log-
hazards using the GPCH model where priors are based on parametric model without overlapping
log-hazards for the leukaemia data set

The R functions to do this computation using the second form of covariance matrix

is also given in Appendix A.5.2 and A.5.3. Following a burn-in of 20000 iterations, 60000

iterations were taken. The posterior means and standard deviations of some of the log-

hazards are given in Table 8.8 (see basic Gibbs sampler II). The posterior summaries using

both forms are slightly different.
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Table 8.8: Posterior means and standard deviation of some chosen parameters using the GPCH
model with priors based on parametric model

Basic Gibbs sampler I Basic Gibbs sampler II

Parameter Post.means Post.std Post.means Post.std

η1 -6.961 0.669 -7.667 0.448
η2 -7.363 0.595 -6.689 0.445
η3 -7.080 0.611 -6.750 0.443
η4 -6.950 0.609 -6.767 0.449
η5 -6.848 0.574 -6.861 0.453
η6 -6.445 0.579 -6.827 0.449
η7 -6.436 0.594 -6.982 0.457
η8 -6.496 0.664 -7.342 0.458
η9 -7.126 0.678 -7.839 0.448
η10 -7.786 0.643 -8.251 0.458

8.3 Some alternative numerical approaches in GPCH model

with priors based on parametric model

There is a need to suggest alternative numerical approaches to improve the mixing when

using the priors based on parametric model. Sometimes, the reason for the poor mixing

could be that the parameters of the posterior distribution are correlated and hence, we

could aim at block sampling of the parameters. We would want to improve the mixing

using some numerical approaches which include splitting the log-hazards and sampling

using either the forward backward algorithm or Cholesky decomposition and by using a

Gaussian approximation of the fcd as a proposal distribution. We could also sample the

principal components of the log-hazards.

8.3.1 Sampling principal components using priors based on parametric

model

We follow the discussions in Section 6.8 to sample the principal components of the log-

hazards. We use a function in R package to compute eigen values and vectors. Thus, we

have the vector of means and the covariance matrix of the principal component following

Equation (6.32) and (6.31) respectively. The functions to sample the principal components

of the log-hazards are given in Appendix A.5.6 and A.5.3.

Following a burn-in of 3000 iterations, 10000 samples were collected. Convergence was

assessed by visual inspection of trace plots of the parameters and the mixing was good.
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8.3.2 Gaussian approximation of the fcd as a proposal distribution using

priors based on parametric model

We recall the overall logarithm of the likelihood given in Equation 6.6 as

` = logL =

J∑
j=1

P∑
p=1

nd,j,pλj,p −
J∑
j=1

P∑
p=1

λj,pT
∗
j,p (8.1)

The prior density of η is

π(η) ∝ exp

{
−1

2
(η − µ)TQ(η − µ)

}
where Q is the precision matrix. Then,

log
(
π(η)

)
= (constant)− 1

2
(η − µ)TQ(η − µ) .

We wish to approximate the function

g = log
[
π(η|D)

]
= `+ log

(
π(η)

)
The partial first derivative with respect to ηp is

g′p =
∂g

∂ηp
= nd,j,p − λj,pT ∗j,p − [Q(η − µ)]p .

Let g′ = (g′1, . . . , g
′
P )T , let nd = (nd,j,1, . . . , nd,j,P )T and let λ∗ = (λ∗1, . . . , λ

∗
P )T where

λ∗p = λj,pT
∗
j,p.

So

g′ = nd − λ∗ −Q(η − µ) .

The partial second derivatives are

g′′p,p =
∂2g

∂η2p
= −λj,pT ∗j,p −Qp,p

and

g′′
p,p′

=
∂2g

∂ηp∂ηp′
= −Qp,p′

for p 6= p
′
, where the element in row p and column p

′
of Q is Qp′ ,p. Hence, the matrix of
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partial second derivatives is

G′′ = −Q− diag(λ∗) . (8.2)

Let this matrix, when evaluated at the posterior mode, be G′′mode. Then, the posterior

precision matrix is approximately

Q1 = −G′′mode = Q+ diag(λ∗mode) (8.3)

where λ∗mode is λ∗ evaluated at the posterior mode. We could choose the maximum like-

lihood estimates as the starting parameter values of the log-hazards. The maximum

likelihood estimate of ηp is computed from logarithm of the likelihood given in Equation

(6.4) and is

η0 =
nd,j,p
T ∗j,p

The approximated proposal distribution now has mean λ∗mode and the precision matrix as

Q1. We use the approximated multivariate normal distribution as the proposal distribu-

tion. We propose a new value of η, η∗ from a multivariate normal distribution using the

Cholesky decomposition discussed in Section 4.6.6. We compute the proposal density of η∗

given η, q(η∗|η) and the proposal density of η given η∗, q(η|η∗). The Metropolis-Hastings

algorithm will be used and the functions used are given in Appendix A.5.7 and A.5.3.

We have taken 20000 iterations and convergence was assessed by visual inspection of

trace plots of the parameters and the mixing was good. The trace plots of some of the

parameters (log-hazards) are shown in Figure 8.4.

Figure 8.4 shows some very short periods where the sampler sticks.

8.4 Splitting the log-hazards

In the context of the GPCH model, we introduce the frailties as usual, one frailty per

patient, then ηi for patient i is a vector (over time intervals). In this case, each patient

has one random frailty in all time intervals. In another case, we could have that each

patient has a different frailty in each time interval. These frailties could be refered to as

random patient-time period interactions (see Section 6.7).

We split the log-hazard of an individual ηi into two parts so that one part θi, carries the

dependence and the other carries the individual’s log-frailty Zi since the full conditional

distribution of the log-hazards π(η|D) given in Equation (6.27) will not be a multivariate

normal distribution. Let the vector of log-frailties of the individuals be Z. We recall

the construction of the prior distribution of the precision of log-frailty with parameters

af and bf discussed in Section 5.7.4. We use the Metropolis within Gibbs algorithm to

sample the parameters. First, we sample the precision of the log-frailty, τf from its full
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Figure 8.4: Trace plot for three log-hazards when the proposal distribution was approximated using
the GPCH model and priors based on the parametric model for the leukaemia data set

conditional distribution given in Equation (6.30). Then, we sample the η’s one at a time

and the vector of log-hazards, θ will now have a multivariate normal distribution. We can

use either the forward backward algorithm discussed in Section 4.7.1 by extending it to

the case of a vector or we can also use the Cholesky decomposition to sample the vector

of log-hazards from the multivariate normal distribution.

In the case where we have one random frailty per patient, we can not use the for-

ward backward algorithm in the time direction but we could have the forward backward

algorithm in the direction of another covariate. In the other case where each patient

has a different random frailty in each time period, the forward backward algorithm is
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practicable. We illustrate using the latter case.

We suppose that we have “J” time intervals or cutpoints and we have a vector of means

and a covariance matrix for the vector of log-hazards for each time period. We use the

forward backward recursion to sample the θ’s over the time periods since we have observed

data for η
1
, ....η

t
. For instance, in the forward recursion, we change the distribution of 1st

vector of log-hazard θ1 by conditioning on the observed vector of η
1
. The distribution of

f(θ1|η1) has a conditional precision matrix Qθ1|η1
given by

Qθ1|η1
= Qθ1 +Qdata

and a conditional mean vector µ
θ1|η1

given by

Qθ1µ1 +Qdataη1
Qθ1 +Qdata

where Qdata is a data precision matrix given as

Qdata = Mτf

where M is a diagonal matrix with elements corresponding to the number of individuals

with that covariate profile. We have that Qθ1 is the prior precision matrix of θ1 and µ
1

is

the prior mean of θ1.

We store the distribution of f(θ1|η1) which will in turn change the distribution of the

vector θ2 since θ2 = θ1 + W for W ∼ N(0, Vw). We then condition on η
2

and get the

distribution of θ2, f(θ2|η1, η2). We keep conditioning until we have conditioned on all the

η
′

t
s for each time period and we get the distribution of θJ , f(θJ |η1, · · · ηt). We store all

conditional distributions in the forward recursion.

We start the backward recursion by sampling θJ from the multivariate normal dis-

tribution f(θJ |η1, . . . , ηJ) using any convenient method like Cholesky decomposition (see

Section 4.6.6) and this in turn changes the value of θJ−1. We will go back to the distribu-

tion of θJ−1 given η
1
, . . . , η

J−1, f(θJ−1|η1, . . . , ηJ−1). We condition on θJ since we have

now observed θJ , f(θJ−1|η1, . . . , ηJ , θJ). Then, we sample θJ−1 from f(θJ−1|η1, · · · ηJ , θJ).

We will keep conditioning on the previous known values of θJ ′s until we have the distri-

bution of θ1 given all other θJ ’s, f(θ1|η1, . . . , ηJ , θ2, . . . , θJ) and we sample θ1 from this

distribution. Thus, we have samples for the vectors of log-hazards for all time periods.

The R functions to do this are given in Appendix A.5.4 and A.5.3. Following a burn-

in of 5,000 iterations, 20,000 iterations were taken. Convergence was assessed by visual

inspection of trace plots of the parameters and the mixing was good. The posterior

summaries of some of the parameters are given in Table 8.9 (see Split model I).
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We could sample the vector of log-hazards θ from the multivariate normal distribution

using the Cholesky decomposition. The R functions to do this is given in Appendix

A.5.5 and A.5.3. Following a burn-in of 5,000 iterations, 20,000 iterations were taken.

Convergence was assessed by visual inspection of trace plots of the parameters and the

mixing was good The posterior summaries of some of the parameters are given in Table

8.9 (see Split model II).

Table 8.9: Posterior means and standard deviation of some chosen parameters when we split the
log-hazards using the GPCH model with priors based on parametric model

Split model I Split model II

Parameter Post.means Post.std Post.means Post.std

η1 -7.027 1.419 -7.148 0.678
η2 -7.023 1.684 -6.603 0.647
η3 -7.024 2.007 -7.515 0.862
η4 -7.021 2.269 -7.073 0.635
η5 -7.036 2.522 -6.861 0.597
η6 -7.042 2.760 -7.013 0.619
η7 -7.051 2.965 -6.944 0.590
η8 -7.052 3.155 -6.823 0.619
η9 -7.050 3.351 -6.766 0.619
η10 -7.055 3.527 -7.180 0.681

8.5 Application 2: GPCH model with priors based on Gaus-

sian Markov random field

We use similar ordering for the covariates in Table 8.1 since it is the same model but

we have different priors. We use all categorical covariates including time interval as a

covariate in the design matrix X following our discussion in Section 6.3.1. There will be

20 parameters in the linear model, including the intercept β0. Hence, the design matrix

X is a 1280 by 20 matrix.

Prior distributions

We refer to Table 8.2 for the means and standard deviations of the coefficients of the

ordinal covariates. We construct prior distribution for the time variable in a similar way.

Again, we construct the vector of means µ and covariance matrix V ?
η of the log-hazards

corresponding to the cells given in Equation (6.12) and Equation (6.13) respectively. We

construct a suitable covariance matrix for η, Var(η) given in Equation (6.14). We find the

distances between the log-hazards corresponding to the cells using Equation (6.16). We
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think of the value of a in Equation 6.15. The value of a corresponds to the correlation

between the log-hazards irrespective of how near their covariate profiles are. It could also

be thought of as the overall uncertainty of how long the individuals with leukaemia will

live irrespective of their covariates. We will suppose the value 0.2 for a. Hence, we have

the covariance matrix Var(η). We have partially displayed the correlation between some

covariate vectors in Table 8.10 and covariance matrix of some of the log-hazards in Table

8.11.

Table 8.10: Partial display of the correlation between ordinal covariate vectors using the Markov
random field prior with the leukaemia data set

x1 x2 x3 x4 x5
1.000 0.924 0.855 0.793 0.736
0.924 1.000 0.924 0.855 0.793
0.855 0.924 1.000 0.924 0.855
0.793 0.855 0.924 1.000 0.924
0.736 0.793 0.855 0.924 1.000

Table 8.10 shows that the correlations between the pair of log-hazards are very strong.

Table 8.11: Partial display of the prior covariance matrix of the log-hazards using the Markov
random field prior with the leukaemia data set

2.422 1.996 1.749 1.569 1.115
1.996 1.927 1.686 1.510 1.071
1.749 1.686 1.727 1.545 1.094
1.569 1.510 1.545 1.618 1.144
1.115 1.071 1.094 1.144 0.947

Posterior distributions

The joint posterior distribution has been discussed in Section 6.6.3. The Metropolis within

Gibbs algorithm can be applied to sampling the log-hazards one at time using the Gaussian

Markov random field prior and the functions to do this are given in Appendix A.5.9 and

A.5.8. Following a burn-in of 5000 iterations, 30000 iterations were taken. Convergence

was assessed by visual inspection of trace plots of the parameters and the mixing was

good. The trace plots and density plots of some of the parameters are shown in Figure 8.5

and the summary of the log-hazards of one of the covariate profiles at different intervals

are also given in Table 8.12 (see Basic Gibbs sampler).

Again, Figure 8.5 shows good mixing of the trace plots of the log-hazards of three
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Figure 8.5: Trace plot and density plot (with dash lines representing the prior density and straight
lines representing the posterior density) for three log-hazards using the GPCH model with Markov
random field priors for the leukaemia data set

covariate profiles. The density plots also show that we have learnt something from the

data.

We have also plotted the posterior means and ±2 standard deviation intervals for three

log-hazards at different time intervals using the GPCH model with Markov random field

priors in Figure 8.6.

In Figure 8.6, we have started at different time intervals to avoid overlapping. We can

see clear differences among the log-hazards from the three different covariate profiles.
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Figure 8.6: Time plots of the posterior means and ±2 standard deviation intervals for three log-
hazards using the GPCH model with Markov random field priors without overlapping log-hazards
for the leukaemia data set

8.6 Some alternative numerical approaches in GPCH model

with Markov random field prior

There is also a need to suggest alternative numerical approaches to improve the mixing in

the model using the Markov random field prior like in the case of using priors based on

the parameteric model. We follow all approaches discussed in Section 8.3.
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8.6.1 Sampling principal components using Markov random field prior

We follow a similar approach discussed in Section 8.3.1 to sample the principal components

of the log-hazards. The functions to sample the principal components of the log-hazards

are given in Appendix A.5.10 and A.5.8 using the Markov random field prior. Following

a burn-in of 5000 iterations, 10000 iterations were taken. Convergence was assessed by

visual inspection of trace plots of the parameters and the mixing was good.

8.6.2 Gaussian approximation of the proposal distribution using Markov

random field prior

We follow a similar approach discussed in Section A.5.13 to get a Gaussian approximation

of the proposal distribution and sample the log-hazards. The functions to do this are given

in Appendix A.5.11 and A.5.8. Following a burn-in of 5000 iterations, 20000 iterations

were taken. Convergence was assessed by visual inspection of trace plots of the parameters.

The trace plots of some of the parameters (log-hazards) are shown in Figure 8.7. Figure

8.7 shows periods where the sampler sticks.

8.7 Splitting the log-hazards

We follow a similar approach discussed in Section 8.4 to sample the log-hazards with the

forward backward algorithm using the Markov random field prior. The functions to do

this are given in Appendix A.5.11 and A.5.8. Following a burn-in of 5000 iterations, 20,000

iterations were taken. Convergence was assessed by visual inspection of trace plots of the

parameters and the mixing was good. The posterior summaries of some of the parameters

are also given in Table 8.12 (see Split model I).

Again, we could sample the vector of log-hazards θ from the multivariate normal

distribution using the Cholesky decomposition. The functions to do this are given in

Appendix A.5.12 and A.5.8. Following a burn-in of 5,000 iterations, 20,000 iterations were

taken. Convergence was assessed by visual inspection of trace plots of the parameters and

the mixing was good.

The method of splitting the log-hazard is a different model and we will not expect to

have similar results.

8.8 Application 3: Continuous parameter space model with

Gaussian process prior

We revisit the SNLG data set collected by the Scotland and Newcastle Lymphoma Group

in Section 2.2.4. The dataset includes 636 patients with 14 completely observed covariates
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Figure 8.7: Trace plots for three log-hazards with approximated proposal distribution with Markov
random field priors for the leukaemia dataset

(see Appendix A.3.1 for a partial display of data). We follow the ordering of the covariates

which are given in Chapter 5, Table 5.1. We refer to the Chapter 5, Table 5.2 for the

prior distribution of the parameters of the linear model. Again, we will assume that

the parameters of the linear model are not independent and so we construct the prior

covariance matrix using the discussion in Section 4.4.1. We construct the design matrix

X following our discussion in Section 6.3.1 for the categorical covariates and in Section

7.2 for continuous covariates. There will be 21 parameters in the linear model, including

an intercept β0. We note that we have 636 distinct covariate profiles in the SNLG data

set and hence, the design matrix X is a 636 by 21 matrix.
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Table 8.12: Posterior means and standard deviation of some chosen parameters using the GPCH
model with Markov random field prior

Basic Gibbs sampler Split model I

Parameter Post.means Post.std Post.means Post.std

η1 -3.800 0.241 -8.490 0.963
η2 -3.661 0.198 -8.553 1.154
η3 -3.470 0.182 -8.588 1.362
η4 -3.284 0.173 -8.746 1.574
η5 -3.275 0.142 -8.909 1.714
η6 -3.234 0.136 -9.044 1.802
η7 -3.391 0.132 -9.203 1.860
η8 -3.688 0.122 -9.369 1.872
η9 -4.063 0.129 -9.391 1.888
η10 -4.791 0.125 -9.717 2.076

8.8.1 Construction of prior distribution for the log-hazards

We recall the means and standard deviations of the coefficients of the covariates given in

Table 5.2. We construct the vector of means µ and covariance matrix V ?
η of the log-hazards

of the distinct covariate profiles given in Equation (6.12) and Equation (6.13) respectively.

We construct a suitable covariance matrix for η, Var(η) given in Equation (6.14). We

construct the distances between the covariate profiles using Equation (7.6). We would

think that the proportion of the variance representing the overall uncertainty of how long

the individuals with non-Hodgkins lymphoma will live irrespective of their covariates is

0.2. Hence, we take the value of a in Equation (7.5) as 0.2. Hence, we have the covariance

matrix Var(η). We have partially displayed the correlation between some covariate vectors

in Table 8.13 and covariance matrix of some of the log-hazards in Table 8.14.

Table 8.13: Partial display of the correlation between covariate vectors of the SNLG data set

x1 x2 x3 x4 x5
1.000 0.889 0.861 0.838 0.877
0.889 1.000 0.874 0.867 0.891
0.861 0.874 1.000 0.888 0.881
0.838 0.867 0.888 1.000 0.871
0.877 0.891 0.881 0.871 1.000

Table 8.13 shows that the correlations between the pair of log-hazards are strong.
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Table 8.14: Partial display of the prior covariance matrix of the log-hazards of the SNLG data set

3.117 0.809 1.114 2.764 0.948
0.809 0.266 0.331 0.834 0.281
1.114 0.331 0.538 1.216 0.396
2.764 0.834 1.216 3.486 0.995
0.948 0.281 0.396 0.995 0.375

8.8.2 Posterior distributions

The joint posterior distribution of the log-hazards has been discussed in Section 7.3.2. We

sample the log-hazards one at a time using the Metropolis within Gibbs algorithm and

the functions to do this are given in Appendix A.5.15 and Appendix A.5.14 . Following

a burn-in of 5,000 iterations, 30,000 iterations were taken. Convergence was assessed by

visual inspection of trace plots of the parameters and the mixing was good. The trace

plots of some of the parameter are shown in Figure 8.8. The posterior summaries of some

of the parameters are also given in Table 8.15 (see basic Gibbs sampler).

Figure 8.8 shows good mixing of the trace plots of the log-hazards of three covariate

profiles. Again, the density plot also show that we have learnt something from the data.

8.9 Some alternative numerical approaches in continuous

parameter space model

In some cases, the parameters of the posterior distribution might be strongly correlated and

hence we have poor mixing. We would want to improve the mixing using some numerical

approaches by using block sampling of the parameters. These approaches include split-

ting the log-hazards and sampling them using the Cholesky decomposition and Gaussian

approximation of the fcd as a proposal distribution. We could also sample the principal

components of the log-hazards. We would not be able to use the forward backward algo-

rithm to improve the mixing as the log-hazards in the continuous parameter space model

using a Gaussian process prior do not follow a Markov process.

8.9.1 Improving mixing in continuous parameter space model by sam-

pling the principal components of the log-hazards

Again, we follow the discussions in Section 6.8 to sample the principal components of the

log-hazards. We use a function in R package to compute eigen vectors and we have the

vector of means and the covariance matrix of the principal component following Equation

(6.32) and (6.31) respectively. We could use the Metropolis within Gibbs algorithm to
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Figure 8.8: Trace plot and Density plot for three log-hazards using the continuous parameter space
model with Gaussian process priors for the SNLG data set

sample since we can not sample from the full conditional distribution. We fix the Weibull

shape parameter α while we follow the discussions in Section 6.8 to sample the principal

components of the log-hazards. We then fix the sampled values of the log-hazards and we

sample α. The functions to do this are given in Appendix A.5.16 and A.5.14. Following a

burn-in of 3000 iterations, 7000 iterations were taken. Convergence was assessed by visual

inspection of trace plots of the parameters and the mixing was good (see Figure 8.9).
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Figure 8.9: Trace plot when we sample the principal components of the log-hazards using the
continuous parameter space model with Gaussian process priors for the SNLG data set

8.9.2 Improving mixing in continuous parameter space model by Gaus-

sian approximation fcd of the log-hazards

We recall the overall log likelihood given in Equation (7.3) as

` = nd logα+
n
′∑

p=1

nd,pηi + (α− 1)
n
′∑

p=1

np∑
k=1

dp,k log tp,k −
n
′∑

p=1

{
λp

np∑
k=1

tαp,k

}
. (8.4)
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The prior density of η is

π(η) ∝ exp

{
−1

2
(η − µ)TQ(η − µ)

}
where Q is the precision matrix. Then,

log
[
π(η)

]
= (constant)− 1

2
(η − µ)TQ(η − µ)

We wish to approximate the function

g = `+ log
[
π(η)

]
The partial first derivative with respect to ηp is

g′p =
∂g

∂ηp
= nd,p − λp

np∑
k=1

tαp,k − [Q(η − µ)]p .

Let g′ = (g′1, . . . , g
′
P )T , let nd = (nd,1, . . . , nd,P )T and let λ∗ = (λ∗1, . . . , λ

∗
P )T where

λ∗p = λp

np∑
k=1

tαp,k .

So

g′ = nd − λ∗ −Q(η − µ).

The partial second derivatives are

g′′p,p =
∂2g

∂η2p
= −λp

np∑
k=1

tαp,k.−Qp,p

and

g′′
p,p′

=
∂2g

∂ηp∂ηp′
= −Qp,p′ ,

for p 6= p
′
, where the element in row p and column p

′
of Q is Qp′ ,p. Again, the posterior

precision matrix follow Equation (8.3) and λ∗mode is λ∗ evaluated at the posterior mode.

The maximum likelihood estimate of ηp is

η0 =
nd,p∑np
k=1 t

α
p,k

We use a Metropolis within Gibbs algorithm to sample the log-hazards and the Weibull

shape parameter α. We fix the value of α while we use the approximated multivariate
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normal distribution as the proposal distribution. We propose a new value of η, η∗ from

a multivariate normal distribution using the Cholesky decomposition discussed in Section

4.6.6. We compute the proposal density of η∗ given η, q(η∗|η, α) and the proposal density

of η given η∗, q(η|η∗, α). The Metropolis-Hastings algorithm will be used to either accept

or reject the proposed log-hazard η∗p. We then fix the accepted value of the log-hazards and

we sample α. The functions to do this are given in Appendix A.5.18 and Appendix A.5.14.

Following a burn-in of 10,000 iterations, 30,000 iterations were taken. Convergence was

assessed by visual inspection of trace plots of the parameters. The trace plots of some of

the parameters (log-hazards) are shown in Figure 8.10 and it shows that there are some

periods where the sampler sticks. It is obvious that we might need a much longer number

of iterations. Further work is needed to address this problem.

Furthermore, we will try reducing the number of parameters to two so that we would

possibly plot a contour plot of the posterior and proposal density. This will enable us

know if the posterior density is very close to our approximated proposal density. If both

plots are similar, then we have a good approximation for our proposal distribution. We

will illustrate this using the case where we assume that we had only one covariate such as

sex. This reduces the number of covariate profiles to two and we can have a 2-dimensional

plot such as a contour plot while we fix the value of the Weibull shape parameter. We have

coutour plots of the posterior and proposal distribution in Figure 8.11. The plots of both

distributions look very much similar. It is very obvious that the posterior and proposal

distributions look very much alike. We also have trace plots of the two log-hazards (η1

and η2) and Weibull shape parameter α in Figure 8.12.

8.10 Splitting the log-hazards and sampling from the block

of the log-hazards in the continuous parameter space

model

We follow the similar approach discussed in Section 8.4 to split the log-hazard of an in-

dividual, η into two parts. Again, we could use the Metropolis within Gibbs algorithm

to sample the parameters. We sample the precision of the log-frailty τf from its full con-

ditional distribution given in Equation (6.30). Then, we sample the η’s one at a time.

We will also sample the Weibull shape parameter since we assume a Weibull parametric

distribution and then the vector of log-hazards θ will now have multivariate normal distri-

bution. We could use the Cholesky decomposition to sample from the multivariate normal

distribution.

The functions to do this are given in Appendix A.5.17 and A.5.14. Following a burn-

in of 5,000 iterations, 20,000 iterations were taken. Convergence was assessed by visual

inspection of trace plots of the parameters and the mixing was good. The summaries of
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Figure 8.10: Trace plot for three log-hazards with Gaussian approximation of the proposal distri-
bution using the continuous parameter space model with Gaussian process priors for the SNLG
data set

some of the parameter are given on Table 8.15 (see Split model).

8.11 Calculation of effective sample size

We refer to Section 4.6.10 for the calculation of the effective sample size of the parameters

of models. Effective sample size allows us to work out how to compare the numerical

methods in terms of time and get the same accuracy. We have written the functions (see

Appendix A.5.21) to calculate the effective sample size for all parameters of the model. We
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Figure 8.11: Contour plots of the posterior (a) and proposal density (b) of the log-hazards using
only sex as covariate

have also calculated the average effective sample size (average ESS) over all parameters

using the different numerical approaches. The time taken (see “time”) to run the number

of iteration (n.iter) was also given in Table 8.16. We will want to know the time per unit of

effective sample size. Thus, we divide the time taken to run the iterations by the average

effective sample size and the unit is seconds. This gives time per unit of effective sample

size.

We compare the time per unit of effective sample size of the basic Gibbs sampler,

sampling the principal components of the log-hazards (Principal components), splitting

the log-hazards and sampling using the forward backward algorithm (Splitting FBA) or
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Figure 8.12: Trace plot of the log-hazards using only sex as covariate

Cholesky decomposition (Splitting CD) and Gaussian approximation of the fcd of the log-

hazards (Gaussian approximation) for the methods in Table 8.16. In the GPCH model,

the basic Gibbs sampler using the Markov random field prior has time per effective sample

of 1.18 secs which is the smallest time and thus, it is the best method. On the other hand,

the basic Gibbs sampler in the Continuous parameter space model has a time per effective

sample of 4.25 secs which is also the best in this case.
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Table 8.15: Posterior means and standard deviation of some chosen parameters using the contin-
uous parameter space model and SNLG data set

Basic Gibbs sampler Split model

Parameter Post.means Post.std Post.means Post.std

η1 0.596 0.575 0.293 0.564
η2 -1.024 0.159 -1.077 0.187
η3 -1.438 0.227 -1.453 0.253
η4 -2.173 0.517 -2.010 0.521
η5 -1.238 0.181 -1.288 0.217
η6 -1.581 0.405 -1.556 0.409
η7 -0.792 0.431 -0.920 0.452
η8 -1.542 0.374 -1.486 0.383
η9 -1.433 0.778 -1.493 0.852
η10 -1.000 0.370 -1.078 0.390
α 0.887 0.042 0.574 0.015

8.12 General discussion on methods and alternative numer-

ical approaches

The investigation of flexible Bayesian modelling for relaxing the assumption of the standard

proportional hazard model led to two approaches which were discussed in Chapters 6 and

7. These methods have been applied to our example data sets.

We illustrated the GPCH model with priors based on parametric model using two

methods of constructing our covariance matrices. The correlations between the log-hazards

in the first form of construction of the covariance matrix were much smaller than those

from the latter. For instance, the correlation between the first and second log-hazards

was 0.724 in the first form whereas it was 0.907 in the second form of construction of

covariance matrix (see Tables 8.4 and 8.5 respectively). Tables 8.6 and 8.7 also show that

the two forms of covariance matrices are not equivalent and hence the posterior summaries

displayed in Table 8.8 slightly differ. We observed that in the approach where we sampled

the principal components to improve the mixing, we did not need too many iterations

for the MCMC algorithm to converge. The problem with this approach is that it takes a

long time for each iteration. We worked out the number of iterations we needed to have

particular effective sample size. Table 8.16 shows that the time per effective sample is

168.66 seconds. In the approach where we had block sampling of the parameters using

Gaussian approximation of the fcd, the time per effective sample is 16.07 seconds but we

need more iterations because of poor mixing. The approach where we split the log-hazards

is a different model and we sampled the log-hazards either using the forward backward

algorithm or Cholesky decomposition. The posterior summaries are not very different
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Table 8.16: Computational and statistical efficiency

GPCH with priors based on parametric model

Numerical approach Average ESS time (secs) n.iter Effect of sample size

Basic Gibbs sampler 957.81 10703.15 60000 11.17
Principal components 2085.583 211843.28 10000 101.58
Splitting FBA 1000.347 41788.42 20000 41.77
Splitting CD 160.71 101444.97 20000 631.23
Gaussian approximation 3342.25 53695.83 20000 16.07

GPCH with Markov random field prior

Numerical approach Average ESS time n.iter Effect of sample size

Basic Gibbs sampler 1465.551 1728.09 30000 1.18
Principal components 1590.085 188383.90 10000 118.474
Splitting FBA 6005.618 41440.33 20000 6.9
Splitting CD 2188.159 101454.64 20000 46.365
Gaussian approximation 608.42 191543.58 20000 314.821

Continuous parameter space model with Gaussian process random field prior

Numerical approach Average ESS time n.iter Effect of sample size

Basic Gibbs sampler 1359.934 5775.46 30000 4.25
Principal components 1194.135 201400.07 7000 168.66
Splitting CD 1179.331 202496.71 20000 171.70
Gaussian approximation 334.73 39908.45 20000 119.22

but they are not exactly the same. The idea of splitting the log-hazards does not have

much effect on the posterior in the GPCH model where the priors are based on parametric

model.

We have also illustrated the GPCH model with Markov random field priors. The

correlations between the log-hazards in this case were strongly correlated. For instance,

in this case, the correlation between the first and second log-hazards was 0.924 whereas in

the first and second cases discussed in the GPCH model with priors based on parametric

model, it was 0.724 and 0.907 respectively. The covariances between the log-hazards were

different from the GPCH model using priors based on parametric model. In this case, the

mean and variance of the first log-hazard are −6 and 2.422 respectively whereas it was −6

and 1.047 in the first case and −6 and 1.295 in the second case of the GPCH model using

priors based on parametric model. The priors are different in the terms of the covariance

structures. Table 8.16 shows that the time per effective sample is 1.18 seconds. We

would want to see how much effect the differences in the covariance structure has affected

the posterior summaries of log-hazards in the different choices of priors. The posterior

summaries in the case where we used the Markov random field prior are different from

any of the two methods in the case of the GPCH model with priors based on parametric
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model. The posterior summaries are very much concentrated on the prior. The approach

using splitting the log-hazards involves introducing frailties which gives a different model.

The posterior summaries are therefore not exactly the same but, in fact, they are not very

different. The idea of splitting the log-hazards does not have much effect on the posterior

in the GPCH model when we had the Markov random field priors.

We have illustrated the continuous parameter space model using the Gaussian process

prior. The correlations between the log-hazards in this case were strongly correlated.

For instance, the correlation between the first and second log-hazards was 0.899 and the

covariance was 0.809. Table 8.16 also shows that the time per effective sample is 4.25

seconds using this approach. Again, in the approach using splitting the log-hazards in the

continuous parameter space is a different model and we sampled the log-hazards either

using Cholesky decomposition, the posterior summaries are not exactly the same.

We might want to compare the strength of spatial correlation in the GPCH and con-

tinuous parameter space model. In the GPCH model, over a certain area (cell) of the

parameter space, the log-hazard is exactly the same and the correlation is 1 whereas the

correlation of log-hazards in neighbouring cells are less than 1. The GPCH model makes

the hazard constant over a region of space in the continuous space model. We would want

to find out what the correlation of the log-hazards between two patients that lie in the

same cell in the GPCH model would be in the continuous parameter space model. We

would illustrate this using the leukaemia data set. Suppose we consider two different co-

variate profiles p and p′ in the continuous parameter space model, with covariate vectors

xp = (61, 1, 13.3,−1.96) and xp′ = (76, 1, 450.0,−3.39) for the covariates age, sex, Wbc

and Depsc respectively in the same time period. These two covariate profiles were cat-

egorised into cells xp,j = (2, 2, 3, 2, 1) and xp′,j = (4, 1, 4, 1, 1) respectively in the GPCH

model. The correlation between the log-hazards in the continuous parameter space model

was 0.86 whereas it was 0.736 in the GPCH model. We might also want to consider an-

other example where the covariate profiles in the continuous parameter space model were

categorised in the same cell in the GPCH model. If we suppose two covariate profiles in

the continuous parameter space model, with covariate vectors xp = (79, 1, 500.0,−1.40)

and xp′ = (83, 1, 160.0,−2.59). These two covariate profiles were categorised into the same

cell given by xp,j = xp′,j = (4, 2, 4, 2, 1) in the GPCH model and hence have a correla-

tion of 1. These covariate profiles had a correlation of 0.89 in the continuous parameter

space model. There are slight differences in the correlation between log-hazards in the

continuous parameter space model and the GPCH model.

In our illustrations, we have quite a few patients with the same covariate profile in the

GPCH model whereas we only ever had one patient in the continuous parameter space

model and so if it was not for the covariances in the Gaussian process prior in this model,

we really would not have learnt very much from one patient.
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It is important to discuss the strength and weakness of all methods and alternative

numerical methods discussed in this research. The numerical methods are simple and

efficient. We will discuss some advantages and disadvantages of the numerical methods

used. One major advantage to all methods used is that we had the possibility of forming

and combining the marginal variances of the covariate profiles to reflect a reasonable

assessment of our prior uncertainties.

We discuss some advantages and disadvantages of the generalised piecewise constant

hazard model. One advantage of the GPCH model is that the corresponding hazard is

constant within cells. We could also decide on the choice of the number of cutpoints

and hence, avoid having too many parameters in the model. Another advantage of the

GPCH model is that we try to exploit the Markov property within cells by using the

Gibbs sampling where we can sample a particular log-hazard corresponding to a cell by

conditioning on the neighbours. We have the advantage of using the forward backward

algorithm in the GPCH model since we can simulate the hidden Markov model parameters

from the posterior distribution given observed data.

One disadvantage of the GPCH model is the problem of the choice of the number of

categories of the ordinal covariates. In our illustration, we have paritioned each continuous

covariate into four groups and the lower quartile, median and upper quartile were used

as the cut points of the covariates. We could also decide to partition the range of the

observations of the covariate of interest into four intervals of equal width and we use

these groups as the categories of the ordinal covariates. The problem with the choice of

categories is that cells that are neighbours with each other might not be neighbours in the

other choice of categories. Hence, the correlations between cells will be different in various

choices of categories. We might give varying results and hence misleading conclusions. We

might have to fit too many parameters if we have too many covariate and categories since

the number of cells depend on the number of ordinal categories like in the case of the SNLG

data set. Hence, the GPCH model is unrealistic when we have many cells and MCMC is

not feasible. The disadvantage is that the GPCH model can be illustrated using only a

data set with smaller number of covariates. Another disadvantage of the GPCH model

where we use the Markov random field prior is that, even though we try to exploit the

Markov property and the log-hazard in a corresponding cell is conditionally independent

given the neighbours, we sometimes find that most of the neighbours are not available to

depend upon.

The advantage of sampling the principal components is that they are independent in

their prior and we only need fewer iterations because the principal components are closer

to being independent. The disadvantage of sampling from the principal components one

at a time is that every time a new value for a particular principal component is proposed,

the values of all the log-hazards change and the likelihood calculation will involve all the
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patients at all times. The simulations will spend more time in the calculations involved

in each step.

A general advantage to both the GPCH models is the consideration of splitting the

log-hazard corresponding to a covariate profile into two parts and when sampling only

the part that carries the dependence, this has a multivariate normal distribution which is

easier to sample as a block. The weakness of this method is that we have separate frailties

at each time intervals in the GPCH model. We have illustrated this approach using the

case where each patient has a different frailty in each time interval. The weakness of

this method is that we have separate frailties at each time intervals. The method doesn’t

induce correlation between time intervals for an individual patient as a frailty should and

we might probably learn less about the effects of the covariates.

We will also discuss some advantages and disadvantages of the continuous parameter

space. An advantage in the continuous parameter space model is that it acts as an alter-

native to the GPCH model where the log-hazards for the patients that are closer together

in covariates will be closely correlated and we are not affected by the problem of most of

the neighbours being missing which occurs in the GPCH model. Another advantage of the

continuous parameter space model is that we overcome the problem of having too many

cells in the GPCH model but we have the log-hazards at the observed patient-points in

the covariate space and it is possible that two patients share the same covariate vector

since covariates are only recorded to a small number of significant digits. We also have

the advantage of giving the covariates the same scales so that one unit of all the covariates

count equally.

The disadvantage of the continuous parameter space model is that we lose the advan-

tage of the Markov property (in the prior). It was impossible to use the forward backward

algorithm in this case. Another disadvantage is that we could only have a maximum of as

many log-hazard values as the number of patients and hence we have not readily made a

provision for the log-hazards of patients not represented in the data. Predictions at other

points can be made but require a bit of computation (see Section 8.14).

8.13 Prognostic index for the generalised piecewise constant

hazard model

The prognostic index will no longer be obvious when we do not have the proportional

hazard model or accelerated life model as in the case of the piecewise constant hazard

model. We could also use either the predictive median survival time or the survival

probability at a fixed time as the prognostic index as discussed in Section 5.9. In the

GPCH model, we have the log-hazard corresponding to every cell and hence, we have the

prognostic index for patients with that covariate vector.
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We have a function to pick out the corresponding prognostic index using Appendix

A.5.19. For instance, a patient with the covariate vector x = (61, 0, 13.3,−1.96)T for the

covariates age, sex, WBC, depsc respectively and will have an index of 47 in the first time

interval. This will mean that the patient has an index of 47 on a scale from 0 to 100 and

this is a low risk value.

8.14 Prognostic index for the continuous parameter space

model

We have a similar function given in Appendix A.5.20 like in the case of the GPCH model

which can be used as in the case of the GPCH model to select the corresponding linear

predictor for a given covariate vector. For instance, a patient with the covariate vector

x = (72, 1, 4, 4, 2, 123, 1.9, 2, 2, 2, 1, 1, 2, 2)T for the covariates age, sex, stage, ECOG, LDH,

HB, WBC, albumin, AP, urea, extranod, bulk, marrow and bsy respectively will have a

log-hazard value of 0.604 and an index of 95. This will mean that the patient has an index

of 95 on a scale from 0 to 100 and this is a great risk value.

We would want to think of the prognostic index of a new patient with a covariate

profile which has not previously been observed. We calculate the prognostic index for a

new patient with a given covariate profile by working out the conditional mean of the

log-hazard of this patient given that the log-hazards of all other patients are equal to their

posterior means since the prognostic index is based on the mean of the log-hazards and

the conditional mean is linear in the other log-hazards.

8.15 Summary

In this chapter, we applied our methodology for relaxing the proportional hazard model

to the example data sets. We discussed the advantages and disadvantages of the methods

and numerical approaches to improving mixing in MCMC. We have also written functions

to calculate the prognostic indices of patients using any of the methods.

The GPCH model can be used when we have very few covariates so that we do not fit

a model with so many parameters and many combinations of covariates. The continuous

parameter space model can be used when we have any number of covariates as it is possible

that some individuals share the same covariate vector and hence the number of parameters

could be less than the number of individuals. Further comments on model choice will be

made in Section 9.3.
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Chapter 9

Conclusion and Future Work

9.1 Summary of thesis

This thesis is concerned with approaches to flexible Bayesian modelling of covariate effects

in survival. The ultimate goal of the research was to develop a methodology that can be

applied to introducing flexibility into the survival model in which we can relax the form of

the relationship between the values of the covariates and the hazards. It is reasonable to

capture the neccessary features of the data and develop an approach which is flexible and

reasonably easily implemented in a standard software. In this research, we presented two

fully Bayesian approaches for flexible Bayesian modelling of covariate effects in survival

with options of using suitable priors using MCMC simulation for inference. These mod-

els were the generalised piecewise constant hazard and the continuous parameter space

models. We assessed the performances of the MCMC simulation and several alterna-

tive numerical approaches were explored to improve mixing if we were hampered by slow

mixing.

In Chapter 2, we introduced the two example data sets that were used as illustrations

in this research. In Chapter 3 and 4, we discussed the basic concepts of survival analysis

and Bayesian inference respectively. In Chapter 4, we discussed how best we can build

good structures of prior distributions depending on the type of variables. We explained

exchangeability and how we reparameterise the parameters of the model by imposing

constraints on them to solve the problem of non-identifiability in MCMC. The parameters

are constrained to sum to zero to avoid over parameterisation. We built a set of ordered

random variables with a zero-sum constraint where the form of the correlation matrix

depended on the ordering of the categories of the parameter. We constructed the random

variables in such a way that neighbouring categories were more positively correlated than

categories further apart.

In Chapter 5, we applied Bayesian inference to the analysis of survival. We constructed
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prior distributions for the coefficients of the linear predictor and the Weibull shape param-

eter with illustrations. We illustrated a parameteric approach to survival modelling using

a Weibull distribution. The proportional hazard model was used to relate the covariates

to the survival distribution. Posterior distributions for the covariate effects were evaluated

using RJAGS software. We also wrote a function to calculate the prognostic index using

the Weibull distribution using R.

We relaxed the form of the baseline hazard and the assumption of a proportional hazard

model using the piecewise constant hazard model. We have also illustrated modelling in

survival using a piecewise constant hazard model where we discretised the time. The

cut points were chosen by supposing that we would expect equal portions of the event in

each time interval. We fitted two versions of the model, one without and one with log-

normal frailties. We demonstrated time dependent effects of covariates using both example

data set. Again, the posterior distributions for the covariate effects were evaluated using

RJAGS software. In some cases, the covariate effects either decreases or increases from

one interval to another. The age effect decreases from one interval to another while the sex

effects increases from one interval to another in the SNLG data set (see Table 5.5). The

age effect decreases and later slightly increases from one interval to another and sex effect

decreases over time in the leukaemia data set (see Table 5.6). The dependence on time was

not obvious in some cases when frailty was included in the model. Sometimes, introducing

frailty in the model reduces the apparent dependent covariate effect. We illustrated using

both the predictive median survival time and fixed time survival probability to calculate

the prognostic indices of a piecewise constant hazard model. There was a close relationship

between the predictive median survival time and fixed time survival probability. The fixed

time survival probability is simpler and can act as an index but has the problem of the

choice of a time which is most informative for all individuals.

We proposed two methods of relaxing the form of the relationship between the co-

variates values and the hazards using the generalised piecewise constant hazard and the

continuous parameter space model in Chapter 6 and 7 respectively. In Chapter 6, we

discussed the first model, the generalised piecewise constant hazard model where the co-

variates were made ordinal and we had a finite number of possible covariate profiles. We

would have a “cell” when we combine the covariate profile and the time interval. We

first used a prior distribution for the log-hazards of the covariate profiles which was based

on the parametric model which allowed for main and interaction effects in the first time

interval. We had two forms of construction of the covariance matrices. We then consid-

ered the dependence between parameters in the different time intervals by supposing a

first order autoregressive model by choosing an autoregressive parameter which gives the

strength of relationships to the log-hazards. The posterior summaries using both forms of

construction of covariance matrix were quite close.
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We also used a Markov random field prior in the GPCH model. We constructed

the covariance matrix of the parameters based on a correlation matrix which was also

based on the distances between the log-hazards corresponding to the cells. We discussed

the inclusion of frailties in the model. We suggested and gave illustrations on some nu-

merical approaches which will help in the practicalities involved in this model. We also

discussed overcoming these computational difficulties using some numerical approaches.

These numerical approaches include sampling the principal components of the log-hazards,

Gaussian approximation of the fcd of the log-hazards and splitting the log-hazards into

two parts and sampling the part without the log-frailties using block sampling such as the

forward backward algorithm.

The second method used was the continuous parameter space model using the Gaussian

process prior. The generalised piecewise hazard model was unrealistic with cases where

we have too many covariates and MCMC would involve a large number of parameters.

We proposed this method in which we only update the log-hazards for covariate profiles

where there were observed patients. Again, we gave a correlation which was based on a

distance measure in the covariate space of the Gaussian process prior of the log-hazards.

Some numerical approaches were suggested which helped in the practicalities involved in

this model. These numerical approaches include sampling the principal components of the

log-hazards, Gaussian approximation of the joint fcd and splitting the log-hazards into

two parts and sampling the part without the log-frailties using block sampling using the

Cholesky decomposition.

We have used two different types of prior in the GPCH model and we have different

posterior summaries. Hence, the posterior summaries are very much concentrated on the

prior. From Table 8.16, we found out that the basic Gibbs sampler using the Markov

random field priors has the smallest time per effective sample and hence we suggest that it

is the best approach to this method. In the case of the continuous parameter space model,

the basic Gibbs sampler using the Gaussian process prior also has the smallest time per

effective sample and thus we suggest that it is also the best approach in this case.

9.2 A review of objectives of Research

At the beginning of the thesis we stated that the aims of the research were to find a

methodology in which we will

1. provide a Bayesian framework for flexibility in incorporating covariates into the

model.

2. build a model where there is no restriction in the way that the covariates enter the

model.
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3. develop flexible models for covariate effects that could greatly improve the accuracy

of predicting the survival.

We showed in Chapter 5 how the usual proportional hazard model restricts the hazard

ratio to be linear in the covariates. We have suggested two approaches to flexibility in

Chapter 6 and 7 which satisfy all criteria set out above and offer adequate flexibility for

the model. There were no restriction in the way in which the covariates enter the models.

Techniques developed in this research can be applied in various disciplines.

At the beginning of the thesis we also set out for the following questions

1. Can we fit survival models and make useful inferences without specifying the form

of the dependence on the covariates?

2. Can we, at the same time, not specify the form of the baseline hazard?

3. Can we allow non-proportionality of hazards?

4. What are the practicalities involved and how can we overcome computational diffi-

culties?

5. How do we specify meaningful prior distributions?

6. How can we construct a prognostic index?

In Chapter 6 and 7 we showed that there was no specific form of dependence of the

hazard function on the covariates. In the case of the generalised piecewise constant hazard

model, the prior was based on the parametric model but the form of the dependence on

the covariates was not specified. In the illustration using the continuous parameter space

model with a Gaussian process prior, we supposed a Weibull life time but there were

no restrictions in the relationship between the covariates and the hazard function. This

satisfies question (1).

In Chapter 5, we illustrated the modelling in survival using the proportional hazard

model where we specified the form of the baseline hazard. In the same Chapter, we relaxed

this by having a non-proportional hazard model using the piecewise constant hazard model

where the form of the baseline hazard is not specified. The generalised piecewise constant

hazard model is a type of the piecewise constant hazard model and hence, the form of

the baseline hazard is not specified. In the continuous parameter space model using the

Gaussian process prior, the form of the baseline need not be specified. This satisfies

question (2).

In Chapter 5, we illustrated survival modelling with piecewise constant hazard model.

We relaxed the assumption of proportionality by allowing for non-proportional hazard.

The generalised piecewise hazard model allows for non-proportionality of hazards. In the
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case of the continuous parameter space model, we can also allow for non-proportionality

of hazards by having the form of the baseline as a piecewise constant hazard model. This

allows for the discretisation of time. This satisfies question (3).

The main focus of this thesis is to introduce flexibility into the model by relaxing the

form of the relationship between the covariates values and the hazards. Our intentions

are to remove the usual assumption of parametric forms made by survival analysts. We

have sufficient data to allow the model to adapt to the true form of relationship and not

being restricted to a particular form such as the assumption of linearity. Our approach

to inference is Bayesian. We have the advantage of choosing a suitable prior distribution

which allows relaxation of the assumption of a parametric form of the relationship while it

imposes enough structure to exploit the information of the data sets. The prior distribution

specifies the correlations between the log-hazards for the neighbouring covariate profiles.

We illustrated the generalised piecewise constant hazard model using two forms of prior

distribution. This satisfies question (5).

In this case of the GPCH model with priors based on a parametric model, the structure

of the prior distribution of the covariate profiles allows for main and interactions effects

and the neighbouring time intervals are correlated in their prior. In this thesis, we gave a

stationary first order autoregressive process prior for the neighbouring time intervals. In

this approach, updating was done one at a time using the Metropolis-Hastings algorithm.

We suggested some numerical approaches to improving mixing. In an approach to this,

we updated the principal components of the log-hazards one at a time also using the

Metropolis-Hastings algorithm.

The other form of prior was the Markov random field prior. In this case, each covariate

profile is associated with a log-hazard which corresponds to a cell. We allow the log-hazards

corresponding to the cells to depend on the neigbouring covariate profiles.

We have also illustrated using the continuous parameter space model using the Gaus-

sian process prior. In this model, we could have the form of the baseline hazard as a

piecewise constant hazard which satisfies (3) but we have illustrated using a Weibull life-

time distribution. In this model, we allowed for the possibility of having a number of

distinct covariate profiles which could be less than the number of patients. We increase

the number of parameters in the model and we have exactly one parameter for each covari-

ate vector in order that we do not have the constraints that are implied by a parametric

model. Each covariate profile is associated with a log-hazard and the log-hazards are

correlated based on a distance measure in the prior satisfying question (5).

We have illustrated both methods of introducing flexibility to the model and we dis-

cussed some alternative numerical approaches to modelling. We have discussed the ad-

vantages and disadvantages using the approaches. We have discussed how we overcome

some computational difficulties in Section 8.12. This satisfies question (4).
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We have also illustrated how we construct the prognostic index using any of the approaches

to introducing flexibility in the model in Section 8.13 and 8.14. This satisfies question (6).

The posterior summaries in the cases using priors based on parametric model and the

Markov random field prior showed differences in the log-hazards for the covariate profiles.

The effects of the covariates were obvious. The approach using the splitting of the log-

hazards which involves introducing frailties gives a different model and the summaries are

different. The posterior summaries are very much concentrated on the prior. The structure

of the covariance of the different choices of prior has an effect on the posterior summaries.

Both methods are good and provided good predictions. In practical issues, the generalised

piecewise constant hazard model is often faced with the problem of having many covariates

and some other disadvantages discussed in Section 8.12. In a sense, the GPCH model is

an approximation because we have assumed that the log-hazard is constant in a cell. For

this reason, the continuous parameter space can be used as an alternative.

In general, relaxing the form in which the covariates enter the survival model reveals

the true behaviour of the hazard function and this may help to reveal the covariate effects

on the survival. The understanding of the behaviour of the hazard function may also

help to reveal time related effects on hazard. The flexible models for covariate effects

discussed in this research could greatly improve the accuracy of predicting the survival.

The approaches are useful for health care practitioners. It will help them provide the

prognosis for a patient. We suspect that flexible modelling of the covariate effects will

provide for better survival estimation.

We have also attached details about the functions used as illustrations in the Appendix.

9.3 Model choice

Like all modelling approaches, the flexible modelling of covariate effects in survival using

either the GPCH or continuous parameter space model has several strengths and a few

weaknesses. The strengths include not having to make restrictions about the way that

the survival depends on the covariates, exploring the true form of the relationship and

maybe capturing complex relationship between the covariates and survival, the possibility

of reflecting a reasonable assessment of our prior uncertainties by making the log-hazards

of individuals that are closer together in covariate-space more strongly correlated and the

clarity of the results. Given enough data, we will identify some relationships even if we

did not expect the relationships. The weaknesses include the computational cost (length

of simulation runs) and practical limits on the size and complexity of the model. One of

the weaknesses of the GPCH model, is the difficulty of application when there are a large

number of covariates and hence, we fit too many parameters. In this case, the continuous

parameter space model was used to overcome this problem and the log-hazards are sampled
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only at the observed patient points in the covariate space.

Using a model that has a complicated relationship and allows much more flexibility

like our models, might impose less structure and cause a simple relationship to be less

clear. However, we do not have to use a model that biases things in favour of a simple

model (see Section 5.6) when we do not really know if there is a simple relationship or

not. On the other hand, we might want to be careful about the construction of priors

and so we will want to construct a prior which, with a small data set, will favour simple

relationships. This is the reason that we have constructed one of our priors based on a

linear model. By doing this, a lot of the probability is concentrated around this linear

model. Then, we have that the small data set would not make much difference in fitting

a linear model whereas in large data sets, the data will overcome the prior and allow the

relationship to be something different.

We would want to persuade researchers in the field of study to use our complex models

rather than the simpler models in the literature particularly with large data sets. It is

possible to have a good start with a simpler model and then move to a more complex

model as the second step. The computational cost of MCMC sampling for our complex

models may be a disincentive to their use. However, widespread use of complex models

will be helped by the development of standard software to do this. Our complex model

can be made easier to perform since interested researchers can be given higher-level in-

structions on how to go about it. In our models, the results from the complex model are

easier to understand than results from the simpler techniques since the results are directly

obtained from the summaries of the posterior. The transparency of the result should

allow researchers to think towards using the complex model. Future work may involve

applying integrated nested Laplace approximations (INLA) instead of MCMC and this

could make the computational time very much less and would also eliminate the problem

of convergence.

It is reasonable either to explore new models or investigate new innovative solutions

to challenges. Too much repetition does not make way for new possibilities. If only

simpler models are used, researchers can become dependent on the simpler models and

unquestioning of the assumptions involved. Our model gives researchers a sense of other

possibilities of modelling rather than only using the simple models found in literature.

It will also give researchers the opportunity to test their thoughts about the subject of

interest and they develop intuition for and experience the relationship between using simple

and complex models. Finally, one of the most powerful means of persuasion is directly

experiencing something in person. Personal experience with complex modelling can do

more to convince researchers of its value than having any amount of discussion.
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9.4 Future work

This thesis has attempted to provide answers to the questions in Section 1.3. We relaxed

the form of the relationship between the covariates values and the hazard function by

providing a flexible framework for incorporating the covariates into the model. In addition,

there is no restriction in the way the covariates enter the model. We have demonstrated

that the generalised piecewise constant hazard and the continuous parameter space models

provide flexibilty in modelling covariate effects in survival. There is a need to extend these

approaches to cases where some of the covariates are missing.

We would suggest some more areas for further work. These areas include flexible mod-

elling when we have more than one event time, K nearest neighbours, Bayesian networks

and applications of classification and regression trees to survival analysis (see Section 6.1).

9.4.1 Flexible modelling with more than one event times

An important issue is with when we have more than one event times. We might assume that

the people who died have a length of time with no progression and then the disease starts

to progress after which the patient eventually dies. It would be more complicated if the

patient is treated again and again and then goes to remission again. The events of remission

and death could be thought of as not independent because these two events are observed

from the same individual. Such correlation can be modelled using random effects which are

known as frailties (Henderson & Oman, 1999). We could introduce frailties in the model

to account for correlation between these two event times. In survival, frailties could be

also be introduced as dependence between two event times for the same individual. Earlier

discussions on frailties have been on only one event. It would be neccessary to model the

development of disease using progression free survival (PFS) (Booth & Eisenhauer, 2012).

These models involve the patient being in different states such as remission, progression

or death and we model the times of transition between states. Changing from one stage

to another at random time points could be treated as Markov chain and hence there is a

probability of moving from one stage to another.

9.4.2 Flexible modelling of covariate effects using the idea of K nearest

neighbours

Another area for future work could be using the idea of the K nearest neighbours. The

interest in K nearest neighbours (KNN) is to use the outcomes values of the K nearest

neighbours in covariate space to predict the outcome of an individual. The covariates used

could be quantitative or qualitative (ordinal or categorical). The K nearest neighbours

(KNN) algorithm is frequently used for classification problems where an individual is

classified depending on the class where most of the K nearest neighbours occur. Future
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work could be aimed at finding the K nearest neighbours with respect to building a

regression (hazard) model since in regression, the prediction for a new individual can

be made by taking the average value of the nearest neighbours to the individual.

We recall that in Section 6.9, the definition of the correlation structure of the covariate

profiles might be thought to have a link to the K nearest neighbours. However, Prijs

et al. (2007) presented a K nearest neighbours method in terms of the linear predictor and

related a new patient to the histories of similar individual patients with chronic respiratory

disease that were treated before by combining the K nearest neighbours methods with Cox

regression. Although Prijs et al. (2007) has done KNN in survival analysis, to the best of

our knowledge there is no Bayesian version of this.

Before applying the KNN method, decisions must be taken on the form of distance

measure to be used to find the K nearest neighbours, the number (K) of the nearest

neighbours and the form of weighting function to be used on the neighbouring observations.

The nearest neighbours of a new patient are selected using a distance measure on the

variables. Some common distance measures used are the Euclidean, Mahalanobis, absolute

and Minkowski distance measures.

Suppose we let x = (x1, x2, .....xS) and y = (y1, y2, .....yS) be two covariate vectors

with “S” covariates. The Euclidean distance measure is

d(x, y) =

√√√√ S∑
i=1

(xi − yi)2

The absolute distance measure is

d(x, y) =

S∑
i=1

|xi − yi|

The Minkowski distance measure is

d(x, y) = (

S∑
i=1

|x2i − y2i |p)1/p

where p can not be less than 1.

The Mahalanobis distance d(x, y) is

d(x, y) =
√

(x− y)TV −1(x− y)

where V is the covariance matrix.

If the covariates are continuous, we first standardize each of the covariates so that it

has a mean of zero and a variance of 1. This should be done because the covariates are
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measured in different units and hence we avoid the influence of the unit of measurement

on the distance. The Mahalanobis distance takes care of standardization of the covariates.

Yan (2013) presented weighted K nearest neighbour techniques where the distances of the

nearest neighbours were taken into account. The idea was that observations within the set

of interest which are close to the new observation of interest were given a higher weight

than neighbours that were far away from the observation of interest.

We will have to choose the value “K” which is the number of neighbours. The value

of K should be supposed moderately large because if the value of “K” is chosen to be too

small, there is a risk of overfitting the data because the number of neighbours will be too

small and hence the variance will be too big. If chosen to be too large, there is a risk of

underfitting. As K gets large the average will get more stable. Maltamo & Kangas (1998)

and Haara et al. (1997) used KNN based methods and obtained the predicted values for

the variables of interest as weighted averages of the values of neighbouring observations.

Cucala et al. (2009) proposed a Bayesian reassessment technique from a probabilistic

model by deriving computational tools for Bayesian inferences on the parameters of the

model.

9.4.3 Flexible modelling of covariate effects using Bayesian networks

In the generalised piecewise constant hazard model, we categorised the covariates. A

Bayesian network can also work with categorical covariates. In a Bayesian network, we

aim at constructing a structure for the network and hence we need to know which variables

are conditionally independent given the other variables or else we let all variables depend

on each other and we have too many parameters. We could have Dirichlet priors for

the parameters of the model. It may not seem reasonable to make these Dirichlet priors

independent of each other. We may want these Dirichlet priors to be correlated and hence,

we suggest using some hierachial Dirichlet distribution.
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Appendix

A.1 General Appendix

A.1.1 Software

BUGS which stands for Bayesian inference using Gibbs sampling (Lunn et al., 2013)

can be used to describe arbitrarily complex models using a very limited syntax. The

initial step when using BUGS is to construct a directed graphical model. The directed

graphical model which is also a called directed acyclic graph (DAG) is the basic idea of a

graphical representation used to express the relationship between the known and unknown

quantities in the model through a series of simple local relationships. DAGs represents

all the quantities as nodes and arrows which run into nodes from their direct parents.

This decomposition will allow for simplicity as well providing the basis for computation.

Nodes in the graph are of three types (see (Lunn et al., 2013)). The first is the Constant

node which are fixed by the design of the study. The second is the Stochastic nodes

which are variables that are given in a distribution. Stochastic nodes may be observed

(data) or unobserved (parameters) which may be unknown quantities underlying a model,

censored observations or missing data. The third is the Deterministic nodes which are

logical functions of their parent nodes. The strength of the Bayesian graphical modelling

techniques of BUGS is in the way it represents the typical complexities of real data.

There are two main versions of BUGS namely WinBUGS (Spiegelhalter et al., 1999) and

openBUGS (Spiegelhalter et al., 1996). We can run openBUGS directly from R using

BRugs package (Lunn et al., 2013)

JAGS which stands for Just another Gibbs sampler (Plummer, 2012) is a program

that is designed to work closely with the R language for the analysis of Bayesian models

using MCMC. It uses a version of the BUGS model specification language. The RJAGS

package can be used from within R to run JAGS (Plummer, 2013).
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A.1.2 Using RJAGS for survival data with right censoring

We will discuss how RJAGS works for survival data with right censoring. We suppose

that the data contains the event or censoring times t, an indicator variable “status” which

is “1” if the event is observed or “0” if the time is censored and the covariates. The data

set used by RJAGS contains four vectors as follows

• t : Element i of t is the event time if the event was observed for case i. If case i was

censored then element i if t is NA.

• is.censored: This is an indicator taking the value 1 if the time is censored and 0 if

the event is observed.

• t.cen: Element i of t.cen is the censoring time for case i is this case was censored.

If the event was observed for case i then the “censoring time” must be greater than

the observed event time.

• covariates: which are the covariates of the data.

We will note that in the model specification (e.g. Appendix A.4.1), is.censored is given

a special distribution

is.censored[i] ∼ dinterval (t[i], t.cen[i])

Experience has shown that it is usually necessary to initialise the missing values of

t. This is because the specification of “is.censored” declares these cases to be censored.

Therefore the unobserved event times must be greater than the censoring times. Allowing

JAGS to choose initial values at random is likely to lead to some values for unobserved

event times which are less than the censoring times and therefore inconsistent with this.

And so, we should initialise the missing values of t to values greater than the corresponding

values of t.cen.

A.1.3 Setting up the data for piecewise constant hazard model using

JAGS

In order to make JAGS fit the piecewise constant hazard model, the data set would contain

the covariates of the data and it will be a much bigger data that is created with a special

structure. In JAGS, the censoring time (t.cen) takes zero when the individual is not

censored and takes the actual censored values when the individual is censored in the first

time period and takes the conditional survival time that the individual survived to the

start of that interval. This conditional survival time will be the result of the first cutpoint

subtracted from the second cutpoint. We refer to Plummer (2012) for ways of handling

censoring.
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A.2 Some common distributions

For reference, we discuss some distibutions used as in this project.

A.2.1 Beta distribution

The Beta Distribution (Beta(a1, a2)) is a distribution with two proportions restricted to

the interval [0, 1]. If the parameter θ has a beta distribution then it has a probability

density function which is given by

f(θ; a1, a2) =
Γ (a1 + a2)

Γ (a1)Γ (a2)
θ(a1−1)(1− θ)(a2−1) for 0 ≤ θ ≤ 1

where a1 > 0, a2 > 0 and Γ (a) is a gamma function.

A.2.2 Gamma distribution

A random variable θ with shape parameter a1 > 0 and scale parameter a2 > 0 has a

gamma distribution with density given by

f(θ : a1, a2) =
aa12
Γ (a1)

θa1−1 exp {−a2θ} .

Again, Γ (a) is a gamma function.

A.2.3 Dirichlet distribution

The Dirichlet distribution is a distribution for a set of quantities θ1, θ2, .....θm where θi > 0

and
∑m

i=1 θi = 1. The probability density function is

f(θ1, ....θm; a1, . . . , am) =
Γ (A)∏m
i=1 Γ (ai)

m∏
i=1

θai−1i

where A =
∑m

i=1 ai and a1, . . . , am are parameters with ai > 0 for i = 1, ....m. When

m=2, we obtain a Beta (Beta(a1, a2)) distribution.

A.2.4 Binomial distributions

A random variable θ has a binomial distribution with parameter Ni ∈ N and p ∈ [0, 1]

where N is the population size. The probability of getting exactly a successes in Ni trials

has a probability mass function which is given by

f(a;Ni, p) = Pr(θ = a) =

(
Ni

a

)
pxi(1− p)Ni−a .
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The conjugate prior of a binomial observation is a beta distribution.

A.2.5 Multinomial observation

Suppose that we observe X1, . . . , Xm, we fix N =
∑m

i=1Xi = 1 and we have probabili-

ties for these as θ1, . . . , θm. Then given θ = (θ1, . . . , θm)T , X1, . . . , Xm has multinomial

distribution given by

Pr(X1 = x1, . . . , Xm = xm) =
N !∏m
i=1 xi!

m∏
i=1

θxii .

If m=2, we have a binomial distribution. The conjugate prior of multinomial distribu-

tion is a Dirichlet distribution.

A.3 Appendix to Chapter 2

A.3.1 Partial display of SNLG data

Table A.1: A Partial display of SNLG data

t died age albumin ap bsy . . .
0.016438356 1 72 2 2 2 . . .
0.250228311 1 63 1 1 2 . . .
0.168949772 1 58 1 2 1 . . .
2.285844749 0 39 1 1 2 . . .

A.3.2 Partial display of leukaemia data

Table A.2: A Partial display of leukaemia data

t t.cen age sex wbc depsc
1 0 61 1 13.3 -1.96
1 0 76 1 450.0 -3.39
1 0 74 1 154.0 -4.95
1 0 79 2 500.0 -1.40
1 0 83 2 160.0 -2.59
1 0 81 2 30.4 0.03
1 0 76 1 41.3 3.95
1 0 87 1 280.0 1.91
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A.4 Appendix to Chapter 5

A.4.1 Bayesian survival modelling to SNLG data set

#Weibull fit of the SNLG data with the complete observed cases

model

{

for (i in 1:636)

{

is.cen[i] ~ dinterval (t[i], t.cen[i])

t[i] ~dweib(alpha,lambda[i])

eta[i]<-beta0 +beta.age*age[i]+beta.hb*hb[i]+beta.wbc*wbc[i]

+beta.sex[sex[i]]+beta.albumin[albumin[i]]+beta.ap[ap[i]]+

beta.urea[urea[i]]+beta.extranod[extranod[i]]

+beta.bulk[bulk[i]]+beta.marrow[marrow[i]]+beta.bsy[bsy[i]]

+ beta.stage[stage[i]]+beta.ecog[ecog[i]]+beta.ldh[ldh[i]]

lambda[i]<-exp(eta[i])

}

delta.ecog[1]~dnorm(0,500)

delta.ecog[2]~dnorm(0,333.3)

delta.ecog[3]~dnorm(0,166.6)

delta.ecog[4]~dnorm(0,50)

beta.ecog[1]<- -delta.ecog[1] -delta.ecog[2] -delta.ecog[3]

-delta.ecog[4]

beta.ecog[2]<- delta.ecog[1] -delta.ecog[2] -delta.ecog[3]

-delta.ecog[4]

beta.ecog[3]<- 2*delta.ecog[2] -delta.ecog[3]

-delta.ecog[4]

beta.ecog[4]<- 3*delta.ecog[3] -delta.ecog[4]

beta.ecog[5]<- 4*delta.ecog[4]

delta.stage[1]~dnorm(0,333.3)

delta.stage[2]~dnorm(0,166.6)

delta.stage[3]~dnorm(0,50)

beta.stage[1]<- -delta.stage[1] -delta.stage[2] -delta.stage[3]

beta.stage[2]<- delta.stage[1] -delta.stage[2] -delta.stage[3]
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beta.stage[3]<- 2* delta.stage[2]-delta.stage[3]

beta.stage[4]<- 3*delta.stage[3]

delta.ldh[1]~dnorm(0,500)

delta.ldh[2]~dnorm(0,166.6)

beta.ldh[1]<- -delta.ldh[1] -delta.ldh[2]

beta.ldh[2]<- delta.ldh[1] -delta.ldh[2]

beta.ldh[3]<- 2*delta.ldh[2]

delta.sex~dnorm(0.05,44.4)

delta.albumin~dnorm(0,33.41)

delta.ap~dnorm(0,33.41)

delta.urea~dnorm(0,33.41)

delta.extranod~dnorm(0,33.41)

delta.bulk~dnorm(0,33.41)

delta.marrow~dnorm(0,33.41)

delta.bsy~dnorm(0,33.41)

beta.sex[1]<-delta.sex

beta.sex[2]<- -delta.sex

beta.albumin[1]<-delta.albumin

beta.albumin[2]<- -delta.albumin

beta.ap[1]<-delta.ap

beta.ap[2]<- -delta.ap

beta.urea[1]<-delta.urea

beta.urea[2]<- -delta.urea

beta.extranod[1]<-delta.extranod

beta.extranod[2]<- -delta.extranod

beta.bulk[1]<-delta.bulk

beta.bulk[2]<- -delta.bulk

beta.marrow[1]<-delta.marrow

beta.marrow[2]<- -delta.marrow

beta.bsy[1]<-delta.bsy

beta.bsy[2]<- -delta.bsy

beta.age~dnorm(0.04,1111.1)

beta.hb~dnorm(0.02,5102.04)

beta.wbc~dnorm(0.08,277.7)
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alpha~dgamma(4,4)

beta0~dnorm(-1.5,6.25)

}

A.4.2 Function to calculate the prognosis indices using the SNLG data

set

1 index<-function()

2 {#source("coefficientsweibnew.txt")

3 beta.stage <-c(-0.048,-0.048,0.037,0.055)

4 beta.ecog <-c(-0.134,0.143,0.148,0.169,-0.041)

5 beta.sex <- c(-0.034,0.034)

6 beta.age <- 0.009

7 beta.albumin <- c(-0.020,0.020)

8 beta.ldh <- c(-0.113, -0.034, 0.147)

9 beta.ap <- c(0.048, -0.048)

10 beta.urea <- c(-0.097 ,0.097)

11 beta.hb <- 0.002

12 beta.wbc <- 0.050

13 beta.extranod <- c(0.073, -0.073)

14 beta.bulk <- c(-0.154,0.154)

15 beta.bsy <- c(-0.044 ,0.044)

16 beta.marrow <- c(-0.171,0.171)

17 mean <- 0.4514261

18 std.dev <- 0.414887

19 ############### AGE

20 write(file="","Please enter the Age in years of

21 the patient at time of diagnosis.")

22 age<-scan(n=1)

23 age<-age -60

24 ############### SEX

25 write(file="","Please enter the Sex of the patient.

26 Enter 1 for male or 2 for female.")

27

28 sex<-scan(n=1)

29 # sex<-sex

30 ############### STAGE

31 write(file="","Please enter the Clinical Stage

32 of the patient (1, 2, 3 or 4).")
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33

34 stage<-scan(n=1)

35 ################ ECOG

36 write(file="","Please enter the ECOG Performance

37 status for the patient ( 1, 2, 3, 4 or 5).")

38

39 ecog<-scan(n=1)

40 ecog<-ecog

41 ################ LDH

42 write(file="","Please enter the LDH value

43 for the patient ( 1, 2 or 3).")

44

45 ldh<-scan(n=1)

46 ############### HB

47 write(file="","Please enter the Haemoglobin

48 (hb) (g/l) measurement for the patient.")

49

50 hb<-scan(n=1)

51 hb=hb-110

52 ################ WBC

53 write(file="","Please enter the White Blood Cell

54 count for the patient.")

55

56 wbc<-scan(n=1)

57 wbc=wbc-2

58 ################ ALBUMIN

59 write(file="","Please enter 1 if the Serum

60 Albumin measurement for the patient is normal")

61

62 write(file="","or 2 if it is abnormal")

63 albumin<-scan(n=1)

64 ################# AP (ALK)

65 write(file="","Please enter 1 if the Serum Alkaline

66 Phosphatase (ap) measurement for the patient is normal")

67

68 write(file="","or 2 if it is abnormal")

69 ap<-scan(n=1)

70 ################# UREA
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71 write(file="","Please enter 1 if the Blood Urea

72 Nitrogen measurement for the patient is normal")

73

74 write(file="","or 2 if it is abnormal")

75 urea<-scan(n=1)

76 ################ EXTRANOD

77 write(file="","Is there extranodal disease?

78 Please enter 1 for ‘Yes’ or 2 for ‘No’.")

79

80 ################## BULK

81 write(file="","Is there bulk disease? Please enter

82 1 for ‘Yes’ or 2 for ‘No’.")

83

84 bulk<-scan(n=1)

85 ################# MARROW

86 write(file="","Is there evidence of disease in the

87 bone marrow? Please enter 1 for ‘Yes’ or 2 for ‘No’.")

88

89 marrow<-scan(n=1)

90 ################# BSY

91 write(file="","Are there B-symptoms?

92 Please enter 1 for ‘No’ or 2 for ‘yes’.")

93

94 bsy<-scan(n=1)

95 eta<-beta.age*age+beta.sex[sex]+beta.albumin[albumin]

96 +beta.ap[ap]+beta.urea[urea]+beta.bulk[bulk]+

97 beta.bsy[bsy]+beta.extranod[extranod]

98 eta<-eta+beta.marrow[marrow]+beta.hb*(hb)+

99 beta.wbc*(wbc)+beta.ldh[ldh]+beta.stage[stage]+beta.ecog[ecog]

100

101 ind<-100*pnorm(eta,mean,std.dev)

102 ind<-round(ind)

103 #ind<-c(mu,ind)

104 write(file="","Index value is")

105 write(ind,file="")

106 write(file="","The index is on a scale from 0 to 100,

107 Greater index values indicate greater risk.")
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108 }

A.4.3 Bayesian survival modelling using the piecewise constant hazard

model and including frailties using the SNLG data

#Piecewise constant hazard model of the non-Hodgkins Lymphoma data

set using 14 covariates including some missing values using JAGS

model

{

for (i in 1:n.obs)

{

t.obs[i] ~ dexp(lambda.obs[i])

eta.obs[i]<- f[patients.obs[i]] +beta0[perj.obs[i]]+beta.age[perj.obs[i]]*

(age[patients.obs[i]])+beta.hb[perj.obs[i]]*(hb[patients.obs[i]])

+beta.wbc[perj.obs[i]]*(wbc[patients.obs[i]])+

beta.sex[perj.obs[i],sex[patients.obs[i]]]+

beta.albumin[perj.obs[i],albumin[patients.obs[i]]]

+beta.ap[perj.obs[i],ap[patients.obs[i]]]+

beta.urea[perj.obs[i],urea[patients.obs[i]]]+

beta.extranod[perj.obs[i],extranod[patients.obs[i]]]

+beta.bulk[perj.obs[i],bulk[patients.obs[i]]]+

beta.marrow[perj.obs[i],marrow[patients.obs[i]]]

+beta.bsy[perj.obs[i],bsy[patients.obs[i]]]+

beta.stage[perj.obs[i],stage[patients.obs[i]]]

+beta.ecog[perj.obs[i],ecog[patients.obs[i]]]+

beta.ldh[perj.obs[i],ldh[patients.obs[i]]]

lambda.obs[i]<-exp(eta.obs[i])

}

for (i in 1:n.miss)

{

is.cen[i] ~ dinterval (t.miss[i], t.cen[i])

t.miss[i] ~ dexp(lambda.miss[i])

eta.miss[i]<- f[patients.miss[i]]+ beta0[perj.miss[i]]
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+beta.age[perj.miss[i]]*(age[patients.miss[i]])+

beta.hb[perj.miss[i]]*(hb[patients.miss[i]])+

beta.wbc[perj.miss[i]]*(wbc[patients.miss[i]])+

beta.sex[perj.miss[i],sex[patients.miss[i]]]+

beta.albumin[perj.miss[i],albumin[patients.miss[i]]]

+beta.ap[perj.miss[i],ap[patients.miss[i]]]+

beta.urea[perj.miss[i],urea[patients.miss[i]]]+

beta.extranod[perj.miss[i],extranod[patients.miss[i]]]+

beta.bulk[perj.miss[i],bulk[patients.miss[i]]]+

beta.marrow[perj.miss[i],marrow[patients.miss[i]]]+

beta.bsy[perj.miss[i],bsy[patients.miss[i]]]+

beta.stage[perj.miss[i],stage[patients.miss[i]]]+

beta.ecog[perj.miss[i],ecog[patients.miss[i]]]+

beta.ldh[perj.miss[i],ldh[patients.miss[i]]]

lambda.miss[i]<-exp(eta.miss[i])

}

for (c in 1:636)

{

f[c]~dnorm(0,tau)

}

tau~dgamma(1.1,0.53)

#Priors for all model parameters

delta.albumin[1]~dnorm(0,p.albumin)

delta.ap[1]~dnorm(0,p.ap)

delta.sex[1]~dnorm(0.05,p.sex)

delta.bsy[1]~dnorm(0,p.bsy)

delta.bulk[1]~dnorm(0,p.bulk)

delta.extranod[1]~dnorm(0,p.extranod)

delta.urea[1]~dnorm(0,p.urea)

delta.marrow[1]~dnorm(0,p.marrow)

beta0[1]~dnorm(-1.5,p0)
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beta.sex[1,1]<- -delta.sex[1]

beta.sex[1,2]<- delta.sex[1]

beta.albumin[1,1]<- -delta.albumin[1]

beta.albumin[1,2]<- delta.albumin[1]

beta.ap[1,1]<- -delta.ap[1]

beta.ap[1,2]<- delta.ap[1]

beta.bsy[1,1]<- -delta.bsy[1]

beta.bsy[1,2]<- delta.bsy[1]

beta.bulk[1,1]<- -delta.bulk[1]

beta.bulk[1,2]<- delta.bulk[1]

beta.extranod[1,1]<- -delta.extranod[1]

beta.extranod[1,2]<- delta.extranod[1]

beta.marrow[1,1]<- -delta.marrow[1]

beta.marrow[1,2]<- delta.marrow[1]

beta.urea[1,1]<- -delta.urea[1]

beta.urea[1,2]<- delta.urea[1]

delta.ecog[1,1]~dnorm(0,p.ecog.d[1])

delta.ecog[1,2]~dnorm(0,p.ecog.d[2])

delta.ecog[1,3]~dnorm(0,p.ecog.d[3])

delta.ecog[1,4]~dnorm(0,p.ecog.d[4])

beta.ecog[1,1]<- -delta.ecog[1,1] -delta.ecog[1,2] -delta.ecog[1,3]

-delta.ecog[1,4]

beta.ecog[1,2]<- delta.ecog[1,1] -delta.ecog[1,2] -delta.ecog[1,3]

-delta.ecog[1,4]

beta.ecog[1,3]<- 2* delta.ecog[1,2] -delta.ecog[1,3]

-delta.ecog[1,4]

beta.ecog[1,4]<- 3*delta.ecog[1,3] -delta.ecog[1,4]

beta.ecog[1,5]<- 4*delta.ecog[1,4]
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beta.age[1]~dnorm(0.04,p.age)

beta.hb[1]~dnorm(0.02,p.hb)

beta.wbc[1]~dnorm(0.08,p.wbc)

delta.stage[1,1]~dnorm(0,p.stage.d[1])

delta.stage[1,2]~dnorm(0,p.stage.d[2])

delta.stage[1,3]~dnorm(0,p.stage.d[3])

beta.stage[1,1]<- -delta.stage[1,1] -delta.stage[1,2] -delta.stage[1,3]

beta.stage[1,2]<- delta.stage[1,1] -delta.stage[1,2] -delta.stage[1,3]

beta.stage[1,3]<- 2* delta.stage[1,2] -delta.stage[1,3]

beta.stage[1,4]<- 3*delta.stage[1,3]

delta.ldh[1,1]~dnorm(0,p.ldh.d[1])

delta.ldh[1,2]~dnorm(0,p.ldh.d[2])

beta.ldh[1,1]<- -delta.ldh[1,1] -delta.ldh[1,2]

beta.ldh[1,2]<- delta.ldh[1,1] -delta.ldh[1,2]

beta.ldh[1,3]<- 2*delta.ldh[1,2]

p0<-6.25

p.sex<-44.4

p.albumin<-33.41

p.ap<-33.41

p.urea<-33.41

p.extranod<-33.41

p.bulk<-33.41

p.marrow<-33.41

p.bsy<-33.41

p.age<-1111.1

p.hb<-5102.04

p.wbc<-277.7

p.ecog.d[4]<-500

p.ecog.d[3]<-333.3

p.ecog.d[2]<-166.6

p.ecog.d[1]<-50
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p.stage.d[3]<-333.3

p.stage.d[2]<-166.6

p.stage.d[1]<-50

p.ldh.d[2]<-500

p.ldh.d[1]<-166.6

rho<-0.95

rf<-1-rho*rho

p0.e<-p0/rf

p.sex.e<-p.sex/rf

p.albumin.e<-p.albumin/rf

p.ap.e<-p.ap/rf

p.urea.e<-p.urea/rf

p.extranod.e<-p.extranod/rf

p.bulk.e<-p.bulk/rf

p.marrow.e<-p.marrow/rf

p.bsy.e<-p.bsy/rf

p.ecog.e[4]<-p.ecog.d[4]/rf

p.ecog.e[3]<-p.ecog.d[3]/rf

p.ecog.e[2]<-p.ecog.d[2]/rf

p.ecog.e[1]<-p.ecog.d[1]/rf

p.hb.e<-p.hb/rf

p.wbc.e<-p.wbc/rf

p.age.e<-p.age/rf

p.stage.e[3]<-p.stage.d[3]/rf

p.stage.e[2]<-p.stage.d[2]/rf

p.stage.e[1]<-p.stage.d[1]/rf

p.ldh.e[2]<-p.ldh.d[2]/rf

p.ldh.e[1]<-p.ldh.d[1]/rf

for (j in 2:10)
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{

beta0m[j]<- -1.5 + rho*(beta0[j-1]+1.5)

beta0[j]~dnorm(beta0m[j],p0.e)

delta.sexm[j]<- 0.05 + rho*(delta.sex[j-1]-0.05)

delta.sex[j]~dnorm(delta.sexm[j],p.sex.e)

beta.sex[j,1]<- -delta.sex[j]

beta.sex[j,2]<- delta.sex[j]

delta.albuminm[j]<- rho*(delta.albumin[j-1])

delta.albumin[j]~dnorm(delta.albuminm[j],p.albumin.e)

beta.albumin[j,1]<- -delta.albumin[j]

beta.albumin[j,2]<- delta.albumin[j]

delta.apm[j]<- rho*(delta.ap[j-1] )

delta.ap[j]~dnorm(delta.apm[j],p.ap.e)

beta.ap[j,1]<- -delta.ap[j]

beta.ap[j,2]<- delta.ap[j]

delta.bsym[j]<- rho*(delta.bsy[j-1])

delta.bsy[j]~dnorm(delta.bsym[j],p.bsy.e)

beta.bsy[j,1]<- -delta.bsy[j]

beta.bsy[j,2]<- delta.bsy[j]

delta.bulkm[j]<- rho*(delta.bulk[j-1])

delta.bulk[j]~dnorm(delta.bulkm[j],p.bulk.e)

beta.bulk[j,1]<- -delta.bulk[j]

beta.bulk[j,2]<- delta.bulk[j]

delta.extranodm[j]<- rho*(delta.extranod[j-1])

delta.extranod[j]~dnorm(delta.extranodm[j],p.extranod.e)

beta.extranod[j,1]<- -delta.extranod[j]

beta.extranod[j,2]<- delta.extranod[j]

delta.uream[j]<- rho*(delta.urea[j-1])

delta.urea[j]~dnorm(delta.uream[j],p.urea.e)

beta.urea[j,1]<- -delta.urea[j]
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beta.urea[j,2]<- delta.urea[j]

delta.marrowm[j]<- rho*(delta.marrow[j-1])

delta.marrow[j]~dnorm(delta.marrowm[j],p.marrow.e)

beta.marrow[j,1]<- -delta.marrow[j]

beta.marrow[j,2]<- delta.marrow[j]

delta.ecogm[j,1]<- rho*(delta.ecog[j-1,1])

delta.ecog[j,1]~dnorm(delta.ecogm[j,1],p.ecog.e[1])

delta.ecogm[j,2]<- rho*(delta.ecog[j-1,2])

delta.ecog[j,2]~dnorm(delta.ecogm[j,2],p.ecog.e[2])

delta.ecogm[j,3]<- rho*(delta.ecog[j-1,3])

delta.ecog[j,3]~dnorm(delta.ecogm[j,3],p.ecog.e[3])

delta.ecogm[j,4]<-rho*(delta.ecog[j-1,4])

delta.ecog[j,4]~dnorm(delta.ecogm[j,4],p.ecog.e[4])

beta.ecog[j,1]<- -delta.ecog[j,1] -delta.ecog[j,2] -delta.ecog[j,3]

-delta.ecog[j,4]

beta.ecog[j,2]<- delta.ecog[j,1] -delta.ecog[j,2] -delta.ecog[j,3]

-delta.ecog[j,4]

beta.ecog[j,3]<- 2* delta.ecog[j,2] -delta.ecog[j,3]

-delta.ecog[j,4]

beta.ecog[j,4]<- 3*delta.ecog[j,3] -delta.ecog[j,4]

beta.ecog[j,5]<- 4*delta.ecog[j,4]

beta.agem[j]<- 0.04 + rho*(beta.age[j-1]-0.04)

beta.age[j]~dnorm(beta.agem[j],p.age.e)

beta.hbm[j]<- 0.02 + rho*(beta.hb[j-1]-0.02)

beta.hb[j]~dnorm(beta.hbm[j],p.hb.e)

beta.wbcm[j]<- 0.08 + rho*(beta.wbc[j-1]-0.08)

beta.wbc[j]~dnorm(beta.wbcm[j],p.wbc.e)

delta.stagem[j,1]<-rho*(delta.stage[j-1,1])

delta.stage[j,1]~dnorm(delta.stagem[j,1],p.stage.e[1])

delta.stagem[j,2]<- rho*(delta.stage[j-1,2])
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delta.stage[j,2]~dnorm(delta.stagem[j,2],p.stage.e[2])

delta.stagem[j,3]<- rho*(delta.stage[j-1,3])

delta.stage[j,3]~dnorm(delta.stagem[j,3],p.stage.e[3])

beta.stage[j,1]<- -delta.stage[j,1] -delta.stage[j,2] -delta.stage[j,3]

beta.stage[j,2]<- delta.stage[j,1] -delta.stage[j,2] -delta.stage[j,3]

beta.stage[j,3]<- 2* delta.stage[j,2] -delta.stage[j,3]

beta.stage[j,4]<- 3*delta.stage[j,3]

delta.ldhm[j,1]<- rho*(delta.ldh[j-1,1])

delta.ldh[j,1]~dnorm(delta.ldhm[j,1],p.ldh.e[1])

delta.ldhm[j,2]<- rho*(delta.ldh[j-1,2])

delta.ldh[j,2]~dnorm(delta.ldhm[j,2],p.ldh.e[2])

beta.ldh[j,1]<- -delta.ldh[j,1] -delta.ldh[j,2]

beta.ldh[j,2]<- delta.ldh[j,1] -delta.ldh[j,2]

beta.ldh[j,3]<- 2*delta.ldh[j,2]

}

}

A.4.4 Bayesian survival modelling using the piecewise constant hazard

model and including frailties using the leukaemia data

model

{

for (i in 1:n.obs)

{

t.obs[i] ~ dexp(lambda.obs[i])

eta.obs[i]<-beta0[perj.obs[i]]+beta.age[perj.obs[i]]*age[patients.obs[i]]+

beta.sex[perj.obs[i],sex[patients.obs[i]]]+beta.wbc[perj.obs[i]]

*wbc[patients.obs[i]]+beta.depsc[perj.obs[i]]*depsc[patients.obs[i]]

lambda.obs[i]<-exp(eta.obs[i])

}

for (i in 1:n.miss)

{is.cen[i] ~ dinterval (t.miss[i], t.cen[i])

192



Appendix A. Appendix

t.miss[i] ~ dexp(lambda.miss[i])

eta.miss[i]<-beta0[perj.miss[i]]+beta.age[perj.miss[i]]*age[patients.miss[i]] +

beta.sex[perj.miss[i],sex[patients.miss[i]]]+beta.wbc[perj.miss[i]]

*wbc[patients.miss[i]]+beta.depsc[perj.miss[i]]*depsc[patients.miss[i]]

lambda.miss[i]<-exp(eta.miss[i])

}

#Priors:

delta.sex[1]~dnorm(0.05,p.sex)

beta0[1]~dnorm(-6.9,p0)

beta.age[1]~dnorm(0.04,p.age)

beta.sex[1,1]<- -delta.sex[1]

beta.sex[1,2]<- delta.sex[1]

beta.wbc[1]~dnorm(0.08,p.wbc)

beta.depsc[1]~dnorm(0.12,p.depsc)

p0<-69.4

p.age<-1111.1

p.sex<-44.4

p.wbc<-33.41

p.depsc<-82.6

rho<-0.95

rf<-1-rho*rho

p0.e<-p0/rf

p.age.e<-p.age/rf

p.sex.e<-p.sex/rf

p.wbc.e<-p.wbc/rf

p.depsc.e<-p.depsc/rf

for (j in 2:10)

{

beta0m[j]<- -6.9 + rho*(beta0[j-1]+6.9)

beta0[j]~dnorm(beta0m[j],p0.e)
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beta.agem[j]<-0.04 + rho*(beta.age[j-1]-0.04)

beta.age[j]~dnorm(beta.agem[j],p.age.e)

delta.sexm[j]<- 0.05 + rho*(delta.sex[j-1]-0.05)

delta.sex[j]~dnorm(delta.sexm[j],p.sex.e)

beta.sex[j,1]<- -delta.sex[j]

beta.sex[j,2]<- delta.sex[j]

beta.wbcm[j]<-0.08+rho*(beta.wbc[j-1]-0.08)

beta.wbc[j]~dnorm(beta.wbcm[j],p.wbc.e)

beta.depscm[j]<-0.12+rho*(beta.depsc[j-1]-0.12)

beta.depsc[j]~dnorm(beta.depscm[j],p.depsc.e)

}

}

A.4.5 An iterative algorithm for finding the predictive median survival

time and fixed time survival probability

#predictive median survival time and

#predictive survival probability for SNLG data set

cuts=c(0, 0.105, 0.223, 0.357, 0.511, 0.693, 0.916, 1.204, 1.609, 2.303)

snlgsamples<-read.table("thessnlgpch.txt",header=TRUE)

snlgarcom=read.table("snlgdatacomp.txt",header=TRUE)

#computing differences between cut points

diff<-function(cuts)

{

ncuts<-length(cuts)

cutsd<-numeric(ncuts)

cutsd[1]<-cuts[1]

for(i in 2:ncuts)

{

cutsd[i]<-cuts[i]-cuts[i-1]

}

return (cutsd)

}
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#computing the survival probability

Sprob<-function(int,startprob,starttime,lambda,t)

{

condprob<-startprob*exp(-lambda*(t-starttime))

prob<-mean(condprob)

return(prob)

}

##calculating the predictive survival probabilty

predsurvprob=function(cuts,lambda)

{

ncuts<-length(cuts)

cutsd<-diff(cuts)

nsamples<-length(lambda[,1])

lambdacutsd<-matrix(nrow=nsamples,ncol=ncuts)

predsurv<-matrix(nrow=nsamples,ncol=ncuts)

avepredsurv<-matrix(nrow=1,ncol=ncuts)

# predictive survival prob at cutpoints

for(j in 1:nsamples)

{

lambdacutsd[j,]=lambda[j,] * cutsd

predsurv[j,]=exp(-(cumsum(lambdacutsd[j,])))

}

# average predictive survival prob at cutpoints

for(r in 1:ncuts)

{

avepredsurv[,r]=mean(predsurv[,r])

}

return(avepredsurv)

}

#predictive median survival time for patients in SNLG data

PMST<-function(cuts,snlgdccat121,snlgsamples,kmax=10,delta=0.000000001)

{
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ncuts<-length(cuts)

agegp<-snlgdccat121$age

albumingp<-snlgdccat121$albumin

apgp<-snlgdccat121$ap

bsygp<-snlgdccat121$bsy

bulkgp<-snlgdccat121$bulk

ecoggp<-snlgdccat121$ecog

extranodgp<-snlgdccat121$extranod

hbgp<-snlgdccat121$hb

ldhgp<-snlgdccat121$ldh

marrowgp<-snlgdccat121$marrow

sexgp<-snlgdccat121$sex

stagegp<-snlgdccat121$stage

ureagp<-snlgdccat121$urea

wbcgp<-snlgdccat121$wbc

snlgsamples<-as.matrix(snlgsamples)

beta.age<-snlgsamples[,2:11]

nsamples<-length(beta.age[,1])

beta.albumin<-snlgsamples[,12:31]

dim(beta.albumin)<-c(nsamples,10,2)

beta.ap<-snlgsamples[,32:51]

dim(beta.ap)<-c(nsamples,10,2)

beta.bsy<-snlgsamples[,52:71]

dim(beta.bsy)<-c(nsamples,10,2)

beta.bulk<-snlgsamples[,72:91]

dim(beta.bulk)<-c(nsamples,10,2)

beta.ecog<-snlgsamples[,92:141]

dim(beta.ecog)<-c(nsamples,10,5)

beta.extranod<-snlgsamples[,142:161]

dim(beta.extranod)<-c(nsamples,10,2)

beta.hb<-snlgsamples[,162:171]

beta.ldh<-snlgsamples[,172:201]

dim(beta.ldh)<-c(nsamples,10,3)

beta.marrow<-snlgsamples[,202:221]

dim(beta.marrow)<-c(nsamples,10,2)

beta.sex<-snlgsamples[,222:241]

dim(beta.sex)<-c(nsamples,10,2)

beta.stage<-snlgsamples[,242:281]
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dim(beta.stage)<-c(nsamples,10,4)

beta.urea<-snlgsamples[,282:301]

dim(beta.urea)<-c(nsamples,10,2)

beta.wbc<-snlgsamples[,302:311]

beta0<-snlgsamples[,312:321]

eta<-matrix(nrow=nsamples,ncol=ncuts)

for(j in 1:nsamples)

{

for(r in 1:ncuts)

{

eta[j,r]<-beta.age[j,r] *(agegp) +beta.albumin[j,r,albumingp]+beta.ap[j,r,apgp]

+beta.bsy[j,r,bsygp]+beta.bulk[j,r,bulkgp]+beta.ecog[j,r,ecoggp]

+beta.extranod[j,r,extranodgp]+beta.hb[j,r]*(hbgp)+beta.ldh[j,r,ldhgp]

+beta.marrow[j,r,marrowgp]+beta.sex[j,r,sexgp]+beta.stage[j,r,stagegp]

+beta.urea[j,r,ureagp]+beta.wbc[j,r]*(wbcgp) + beta0[j,r]

}

}

lambda<-exp(eta)

avepredsurv<-predsurvprob(cuts,lambda)

int<-sum(avepredsurv>0.5)

ttest<-numeric(kmax)

sprob<-numeric(kmax)

gsprob<-numeric(kmax)

ttest[1]<-cuts[int]

sprob[1]<-avepredsurv[int]

if(min(avepredsurv)>0.5)

{

ttest[2]=2*ttest[1]

sprob[2]=Sprob(int,avepredsurv[int],cuts[int],lambda[,int],ttest[2])

}

else

{

ttest[2]=cuts[int+1]

sprob[2]=avepredsurv[int+1]

}

gsprob[1]<-log(sprob[1])

gsprob[2]<-log(sprob[2])

for(d in 3:kmax)
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{

if((ttest[d-1] - ttest[d-2])^2 >delta)

{

b=(gsprob[d-1] -gsprob[d-2])/(ttest[d-1] -ttest[d-2])

ttest[d]<- ttest[d-2]-(gsprob[d-2]+log (2))/b

sprob[d]=Sprob(int,sprob[d-1],ttest[d-1],lambda[,int],ttest[d])

gsprob[d]=log(sprob[d])

}

else

{

ttest[d]<-ttest[d-1]

sprob[d]=Sprob(int,sprob[d-1],ttest[d-1],lambda[,int],ttest[d])

gsprob[d]=log(sprob[d])

}

t.out<-ttest[kmax]

}

return(t.out)

}

#compute predictive median survival time for all patients in SNLG data

PMSTall<-function(cuts,covariates,parameters,kmax=10,delta=0.000000001)

{

npatients<-length(covariates[,1])

pmst<-numeric(npatients)

for(i in 1:npatients)

{

x<-covariates[i,]

pmst[i]<-PMST(cuts,x,parameters)

}

return(pmst)

}

#computing the predictive survival probability for SNLG data

SPROB<-function(cuts,snlgdccat121,snlgsamples,t)

{

ncuts<-length(cuts)

agegp<-snlgdccat121$age

albumingp<-snlgdccat121$albumin
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apgp<-snlgdccat121$ap

bsygp<-snlgdccat121$bsy

bulkgp<-snlgdccat121$bulk

ecoggp<-snlgdccat121$ecog

extranodgp<-snlgdccat121$extranod

hbgp<-snlgdccat121$hb

ldhgp<-snlgdccat121$ldh

marrowgp<-snlgdccat121$marrow

sexgp<-snlgdccat121$sex

stagegp<-snlgdccat121$stage

ureagp<-snlgdccat121$urea

wbcgp<-snlgdccat121$wbc

patient<-snlgdccat121$patient

snlgsamples<-as.matrix(snlgsamples)

beta.age<-snlgsamples[,2:11]

nsamples<-length(beta.age[,1])

beta.albumin<-snlgsamples[,12:31]

dim(beta.albumin)<-c(nsamples,10,2)

beta.ap<-snlgsamples[,32:51]

dim(beta.ap)<-c(nsamples,10,2)

beta.bsy<-snlgsamples[,52:71]

dim(beta.bsy)<-c(nsamples,10,2)

beta.bulk<-snlgsamples[,72:91]

dim(beta.bulk)<-c(nsamples,10,2)

beta.ecog<-snlgsamples[,92:141]

dim(beta.ecog)<-c(nsamples,10,5)

beta.extranod<-snlgsamples[,142:161]

dim(beta.extranod)<-c(nsamples,10,2)

beta.hb<-snlgsamples[,162:171]

beta.ldh<-snlgsamples[,172:201]

dim(beta.ldh)<-c(nsamples,10,3)

beta.marrow<-snlgsamples[,202:221]

dim(beta.marrow)<-c(nsamples,10,2)

beta.sex<-snlgsamples[,222:241]

dim(beta.sex)<-c(nsamples,10,2)

beta.stage<-snlgsamples[,242:281]

dim(beta.stage)<-c(nsamples,10,4)

beta.urea<-snlgsamples[,282:301]
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dim(beta.urea)<-c(nsamples,10,2)

beta.wbc<-snlgsamples[,302:311]

beta0<-snlgsamples[,312:321]

eta<-matrix(nrow=nsamples,ncol=ncuts)

for(j in 1:nsamples)

{

for(r in 1:ncuts)

{

eta[j,r]<-beta.age[j,r] *agegp +beta.albumin[j,r,albumingp]+

beta.ap[j,r,apgp]+beta.bsy[j,r,bsygp]+beta.bulk[j,r,bulkgp]+

beta.ecog[j,r,ecoggp]+beta.extranod[j,r,extranodgp]+beta.hb[j,r]*hbgp+

beta.ldh[j,r,ldhgp]+beta.marrow[j,r,marrowgp]+beta.sex[j,r,sexgp]

+beta.stage[j,r,stagegp]+beta.urea[j,r,ureagp]+beta.wbc[j,r]*wbcgp + beta0[j,r]

}

}

lambda<-exp(eta)

avepredsurv<-predsurvprob(cuts,lambda)

int<-sum(cuts<t)

sprobb=Sprob(int,avepredsurv[int],cuts[int],lambda[,int],t)

return(sprobb)

}

#predictive survival probability for all patients

Sproball<-function(cuts,covariates,snlgsamples,t)

{

npatients<-length(covariates[,1])

sprobb<-numeric(npatients)

for(i in 1:npatients)

{

x<-covariates[i,]

sprobb[i]<-SPROB(cuts,x,snlgsamples,t)

}

return(sprobb)

}
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A.5 Appendix to Chapter 8

A.5.1 Functions for sampling the log-hazards using priors based on the

parametric model in the GPCH model

1 #Generalised piecewise constant hazard model using

2 #priors based on parametric model for the leukaemia data set

3 gpch<-function(niter)

4 {

5 #data values

6 ncuts<-length(cuts)

7 combmatrixx=bigconstruct(nlevel1)

8 designmatrix<-Xmat(combmatrixx)

9 ncomm<-length(combmatrixx[,1])

10 #prior values

11 bmean<-meanvec()#1

12 ##############variance vector of parameters#######

13 bvar<-varvec()#2

14 cotry<-read.table("lcovnot.txt",header=TRUE)

15 co<-as.matrix(cotry)

16 Vcov<-bbvar(bvar,co)

17 #mean of eta

18 bmean1<-as.matrix(bmean)

19 priormeaneta<-designmatrix%*%bmean1

20 priormeaneta<-as.numeric(priormeaneta)

21 mu<-wafnm(cuts,priormeaneta)

22 eta<-as.matrix(eta) #1280

23 gcovar<-diag(rep(0.0001,128))#covariance matrix

24 #for interaction effects

25 phimat<-phimatrixfn(phi,cuts) #10x10

26 etavar<-designmatrix%*%Vcov%*%t(designmatrix) #128x128

27 matrixposition<-matrixposition1(etavar,cuts)

28 bigmatt=bigmatt(matrixposition,phimat,etavar,gcovar,cuts)

29 covar=reorderedbigmat(etavar,cuts,bigmatt)

30 ncom<-length(covar[,1])#1280

31 ndtt=ndtfun(cuts,ncom,covarprof,combmatrixx)

32 nd<-ndtt[[2]]

33 nt<-ndtt[[1]]

34 condnvarall<-condnvarall(covar) #function to compute the conditional
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35 #variance of a log hazard given the others for all vector of log hazards

36 sdetaall<-sqrt(condnvarall) #conditional std for all vector of log hazards

37 Bmatrix=Bstoreall(covar)

38 result<-matrix(nrow=niter,ncol=ncom)

39 for(iter in 1:niter)

40 {

41 for(i in 1:ncom)

42 {

43 loglike=loglikenew1(eta[i],nd[i],nt[i])

44 othereta<-eta[-i,1]

45 othermu<-mu[-i,1]

46 condmean<-mu[i,1]+Bmatrix[i,]%*%(othereta-othermu)

47 logprior<- -1/2*(((eta[i]-condmean)/sdetaall[i])^2)

48 logpost<-logprior+ loglike

49 eta.prop<-rnorm(1,eta[i],sdetaprop)

50 loglike.prop<-loglikenew1(eta.prop,nd[i],nt[i])

51 logprior.prop<- -1/2*(((eta.prop-condmean)/sdetaall[i])^2)

52 logpost.prop<-logprior.prop+ loglike.prop

53 A<-logpost.prop-logpost

54 aprob<-min(0,A)

55 u=runif(1)

56 if(log(u)<aprob)

57 {

58 eta[i]<-eta.prop

59 }

60 }

61 result[iter,]<-eta

62 }

63 result

64 }

A.5.2 Functions for sampling the log-hazards using priors (using the

second form of covariance matrix) based on the parametric model

in the GPCH model

We use the function in Appendix A.5.2 but we replace line 28 with

bigmatt=bigmat(matrixposition,phimat,etavar,gcovar,cuts,vt)
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A.5.3 Functions consisting of all functions used in sampling the log-

hazards with priors based on the parametric model

1 #All functions used in the GPCH for leukaemia

2 #with priors based on parametric model

3 datainclude<-read.table("leukdd.txt",header=TRUE)

4 covarnames<-c("age"," sex", "wbc", "depsc")

5 ncovarnames<-length(covarnames)

6 times<-datainclude[,1:2]

7 covariates<-datainclude[,3:(ncovarnames+2)]

8 covariates=as.matrix(covariates)

9 n=length(covariates[,1])

10 ncov<-c(4,2,4,4,10)

11 cuts<-c(0,52.6,111.6,178.3,255.4,346.6,458.1,601.99,804.7,1151.3)

12 sdetaprop=1

13 sdpc.prop=1

14

15 #function to indicate the covariate profile which the individual belongs

16 profilenum1<-function(covariates){

17 c<-length(covariates[,1])

18 profnum<-c()

19 for(i in 1:c){

20 profnum[i]<-32*(covariates[i,1]-1)+16*(covariates[i,2]-1)+

21 4*(covariates[i,3]-1)+(covariates[i,4]-1)+1

22 }

23 profnum

24 }

25

26 nlevel1<-c(4,2,4,4)

27 profff<-profilenum1(covariates)

28 covarprof<-cbind(datainclude,profff)

29

30 #Creating a vector of means for the covariate effects

31 meanvec<-function()

32 {

33 meanb0<--6.9

34 agem1<-0

35 agem2<-0
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36 agem3<-0

37 sexm<-0

38 wbcm1<-0

39 wbcm2<-0

40 wbcm3<-0

41 depsc1m<-0

42 depsc2m<-0

43 depsc3m<-0

44 meanvec<-c(meanb0,agem1,agem2,agem3,sexm,wbcm1,

45 wbcm2,wbcm3,depsc1m,depsc2m,depsc3m)

46 meanvec

47 }

48

49 #Creating a vector of variances for the covariate effects

50 varvec<-function()

51 {

52 varb0<-0.12

53 agev1<-0.02

54 agev2<-0.006

55 agev3<-0.003

56 sexv<-0.0625

57 wbcv1<-0.006

58 wbcv2<-0.002

59 wbcv3<-0.001

60 depsc1v<-0.0012

61 depsc2v<-0.0004

62 depsc3v<-0.002

63 varvec<-c(varb0,agev1,agev2,agev3,sexv,wbcv1,wbcv2,

64 wbcv3,depsc1v,depsc2v,depsc3v)

65 varvec

66 }

67

68 #Creating the covariance matrix of covariate effects

69 # using the correlation matrix "co"

70 bbvar<-function(var,co){

71 std<-sqrt(var)

72 l<-length(var)

73 bbvar<-matrix(nrow=l, ncol=l)
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74 for(i in 1:l){

75 for(j in 1:l){

76 bbvar[i,j]<-std[i]*std[j]*co[i,j]

77 }

78 }

79 bbvar

80 }

81

82 #Creating contrast of categorical covariate for

83 #1 row in the design matrix

84 mattt<-function(stage,a){

85 xmat<-matrix(nrow=1,ncol=a-1)

86 for(j in 1:a-1){

87 if(stage<=j){

88 xmat[,j]<--1

89 }

90 if(stage==j+1){

91 xmat[,j]<-j

92 }

93 if(stage>j+1){

94 xmat[,j]<-0

95 }

96 }

97 xmat

98 }

99

100 #Creating contrast of categorical covariate for

101 #all rows in the design matrix

102 matttall<-function(stage,a)

103 {

104 n<-length(stage)

105 matttall<-matrix(nrow=n, ncol=a-1)

106 for(i in 1:n){

107 matttall[i,]<-mattt(stage[i],a)

108 }

109 matttall

110 }

111
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112 #Creating the design matrix for the data set

113 Xmat<-function(combmatrix){

114 sex=combmatrix[,2]

115 age=combmatrix[,1]

116 wbc=combmatrix[,3]

117 depsc=combmatrix[,4]

118 n<-length(wbc)

119 X<- matrix(nrow=n,ncol=11)

120 X[,1]<-rep(1,n) #1;intercept

121 X[,2:4]<-matttall(age,4) #2;age

122 X[,5]<-ifelse(sex==1,-1,1) #5:sex

123 X[,6:8]<-matttall(wbc,4) #6-8;wbc

124 X[,9:11]<-matttall(depsc,4) #9-11

125 X<-as.matrix(X)

126 return(X)

127 }

128

129 nlevel<-c(4,2,4,4,10)

130

131 ##creates an array of possible covariate profiles

132 bigconstruct<-function(nlevel){

133 ncovprod<-prod(nlevel)

134 ncovar<-length(nlevel)

135 veca<-c()

136 veca[1]<-1

137 for(i in 2:ncovar){

138 veca[i]<-veca[i-1]*nlevel[i-1]

139 }

140 vecb<-c()

141 vecb[ncovar]<-1

142 for(i in (ncovar-1) : 1){

143 vecb[i]<-vecb[i+1]*nlevel[i+1]

144 }

145

146 bigarray<-matrix(nrow=ncovprod,ncol=ncovar)

147 for(i in 1:ncovar){

148 vecc<-1:nlevel[i]

149 z<-rep(vecb[i],nlevel[i])
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150 vecc<-rep(vecc,z)

151 bigarray[,i]<-rep(vecc,veca[i])

152 }

153 #write(z,file="")

154 return(bigarray)

155 }

156

157 combmatrix=bigconstruct(nlevel)

158 combmatrixx=bigconstruct(nlevel1)

159 eta<-rep(-2.0,1280)

160 phi<-0.80

161 #phi<-0.90

162

163 #function to matrix of autoregressive coefficients

164 phimatrixfn<-function(phi,cuts){

165 nperiod<-length(cuts)

166 #A<-rep(0,nperiod^{2})

167 phiall<-matrix(nrow=nperiod,ncol=nperiod)

168 #diag(A)<-rep(1,nperiod)

169 for(i in 1:nperiod)

170 {

171 for(j in 1:nperiod)

172 {

173 k<-abs(i-j)

174 phiall[i,j]<-phi^{k}

175 }

176 }

177 phiall

178 }

179

180 #creating positions for matrix

181 matrixposition1<-function(etavar,cuts){

182 l1<-length(etavar[,1])

183 c1<-length(cuts)

184 c2<-1:c1

185 lc<-l1*c1

186 b1<-l1*(c2-1)+1

187 b2<-l1*c2
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188 n<-length(b1)

189 bb<-list()

190 for( i in 1:n){

191 bb[[i]]<-c(b1[[i]]:b2[[i]])

192 }

193 bb

194 }

195

196 #creating a bigger matrix from a smaller matrix

197 bigmat<-function(nww,phimat,etav,etag,cuts){

198 l1<-length(etav[,1])

199 c1<-length(cuts)

200 lc<-l1*c1

201 mmat<-matrix(nrow=lc,ncol=lc)

202 for(i in 1:c1){

203 for(j in 1:c1){

204 mmat[nww[[i]],nww[[j]]]<-phimat[i,j]*etav

205 mmat[nww[[i]],nww[[i]]]<-etav+etag

206 }

207 }

208 mmat

209 }

210

211 #creating the correct positions for the re-ordered for one point

212 newn1<-function(etavar,cuts,point){

213 l1<-length(etavar[,1])

214 nperiod<-length(cuts)

215 neworder1<-numeric(nperiod)

216 for(i in 1:nperiod){

217 neworder1[i]<-l1*(i-1) +point

218 }

219 neworder1

220}

221

222 #creating the re - ordered matrix

223 reorderedbigmat<-function(etavar,cuts,bigmat){

224 l1<-length(etavar[,1])

225 nperiod<-length(cuts)
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226 lc<-l1*nperiod

227 neworder<-list()

228 rebigmat<-matrix(rep(0,(lc*lc)),nrow=lc,ncol=lc)

229 neworder1<-numeric(lc)

230 neworder[[1]]<-newn1(etavar,cuts,1)

231 neworder2<-neworder[[1]]

232 for(i in 2:l1){

233 neworder[[i]]<-newn1(etavar,cuts,i)

234 neworder2<-c(neworder2,neworder[[i]])

235 }

236 rebigmat[c(1:lc),c(1:lc)]<-bigmat[neworder2,neworder2]

237 rebigmat

238 }

239

240 #function to form the mean

241 wafnm<-function(cuts,mean){

242 n<-length(mean)

243 ncuts<-length(cuts)

244 nc<-n*ncuts

245 wmatv<-list()

246 wmat<-c()

247 for(i in 1:n){

248 wmatv[[i]]<-rep(mean[i],ncuts)

249 wmat<-c(wmat,wmatv[[i]])

250 }

251 wmat<-as.matrix(wmat)

252 wmat

253 }

254

255 ndtfun<-function(cuts,ncom,covarprof,combmatrixx){

256 died<-covarprof$died

257 p.prof<-covarprof$profff

258 ndjp<-rep(0,1280)

259 Tstar<-rep(0,1280)

260 n<-length(covarprof[,1])

261 ngroup<-length(combmatrixx[,1])

262 ncuts<-length(cuts)

263 t<-covarprof$t
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264 tint<-rep(0,n)

265 for(j in 2:ncuts)

266 {

267 tint<-ifelse((t>cuts[j]),j,tint)

268 }

269 for(p in 1:ngroup)

270 {

271 for(j in 1:ncuts)

272 {

273 kstar<-10*(p-1)+j

274

275 for(i in 1:n)

276 {

277 if(p.prof[i]==p)

278 {

279 if(tint[i]==j)

280 {

281 Tstar[kstar]<-Tstar[kstar]+t[i]-cuts[j]

282 ndjp[kstar]<-ndjp[kstar]+died[i]

283 }

284 if(tint[i]>j)

285 {Tstar[kstar]<-Tstar[kstar]+cuts[j+1]-cuts[j]

286 }

287 }

288 }

289 }

290 }

291 vec<-list(Tstar,ndjp)

292 vec

293 }

294

295 #Calculating the maximum likelihood estimates

296 mle2<-function(meaneta,nd,nt)

297 {

298 numprof<-length(nd)

299 mle1<-numeric(numprof)

300 for(i in 1:numprof)

301 {
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302 if(nd[i]>0)

303 {

304 mle1[i]<- log(nd[i] / nt[i])

305 }

306 else

307 {

308 mle1[i]<-meaneta[i]

309 }

310 }

311 mle1

312 }

313

314 #new function for loglikelihood for one patient

315 loglikenew1<-function(eta,nd,nt){

316 lambda<-exp(eta)

317 loglikenew1=nd*log(lambda) -lambda*nt

318 loglikenew1

319 }

320

321 #new function for loglikelihood for all patient

322 loglikenewall<-function(eta,nd,nt){

323 ncom<-length(nd)

324 loglikenew=0

325 for(p in 1:ncom)

326 {

327 loglikenew=loglikenew+loglikenew1(eta[p],nd[p],nt[p])

328 }

329 loglikenew

330 }

331

332 #Approximating the proposal distribution using Newton Raphson’s algorithm

333 firstsecondd<-function(mu,nd,nt,prior.prec,mle,tol=0.001,maxiter=7){

334 ndd<-as.matrix(nd)

335 eta<-mle

336 tal<-as.matrix(nt)

337 go<-TRUE

338 for(i in 1:maxiter)

339 {if(go)
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340 {lambda<-exp(eta)

341 lt<-lambda*tal

342 ltn<-as.numeric(lt)

343 em<-eta-mu

344 firstd<-ndd -lt-prior.prec%*%em

345 secondd<- -prior.prec - diag(ltn)

346 delta<-solve(secondd,firstd)

347 eta<- eta - delta

348 check<- - t(delta)%*%secondd%*%delta

349 go<-(check>tol)

350 }

351 }

352 alll<-list(postmode=eta,postpre= -secondd)

553 alll

554 }

555

556 propdenn<-function(cov,mean,eta){

557 logdetapp<-determinant(cov)

558 logdetapp<-logdetapp$modulus[1]

559 sub<-eta-mean

560 logdetaoldetaprop<--0.5*logdetapp - 0.5*(t(sub)%*%solve(cov,sub))

561 return(logdetaoldetaprop)

562 }

563

564 #function to create fixed terms to be used when

565 #finding matrix (fixed matrix when finding the conditional variance)

566 Bstore<-function(covar,i)

567 {

568 c<-covar[,-i][i,]

569 v<-covar[-i,-i]

570 Bstore<-solve(v,c)

571 Bstore

572 }

573

574 #function to create n by n-1 matrix matrix that stores the constant

575 # part of the formula in finding a conditional mean or variance

576 Bstoreall<-function(covar)

577 {
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578 nlen<-length(covar[,1])

579 Bstoreall=matrix(nrow=nlen,ncol=nlen-1)

580 for(i in 1:nlen)

581 {

582 Bstoreall[i,]<-Bstore(covar,i)

583 }

584 Bstoreall

585 }

586

587 #function to find the conditional variance of one log hazard

588 #given all other log hazards

589 condnvar<-function(covar,i)

590 {

591 c<-covar[,-i][i,]

592 cn<-covar[-i,][,i]

593 v<-covar[-i,-i]

594 condnvar<-covar[i,i]-(solve(v,c))%*%cn

595 condnvar

596 }

597

598 #function to compute the conditional variance of one log hazard

599 #given all other log hazards for all log hazards

600 condnvarall<-function(covar)

610 {

602 nlen<-length(covar[,1])

603 condnvarall=numeric(nlen)

604 for(i in 1:nlen)

605 {

606 condnvarall[i]<-condnvar(covar,i)

607 }

608 condnvarall

609 }

610

611 # grouping the log hazards by time intervals

612 thetatt<-function(theta,nperiod,combmatrix){

613 period<-combmatrix[,5]

614 thetat<-list()

615 for(i in 1:nperiod){
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616 thetat[[i]]<-theta[period==i]

617 thetat[[i]]<-as.matrix(thetat[[i]])

618 }

619 thetat

620 }

621

622 ## grouping the covariances of the log hazards by time intervals

623 covariancet<-function(covar,nperiod,combmatrix){

624 period<-combmatrix[,5]

625 covariancet<-list()

626 for(i in 1:nperiod){

627 covariancet[[i]]<-covar[period==i,period==i]

628 }

629 covariancet

630 }

631

632 ## grouping the means of the log hazards by time intervals

633 meant<-function(mu,nperiod,combmatrix){

634 period<-combmatrix[,5]

635 meantt<-list()

636 for(i in 1:nperiod){

637 meantt[[i]]<-mu[period==i]

638 meantt[[i]]<-as.matrix(meantt[[i]])

639 }

640 meantt

641 }

642

643 #number of observations in each cell

644 nproff<-function(proff,ncom){

645 np<-c()

646 for(i in 1:ncom){

647 np[i]<-sum(proff==i)

648 }

649 np

650 }

651

652 #number of observations in each profiles by time periods

653 nobst<-function(combnobs,nperiod){
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654 np<-combnobs[,6]

655 period<-combnobs[,5]

656 nobst<-list()

657 for(i in 1:nperiod){

658 nobst[[i]]<-np[period==i]

659 }

660 nobst

661 }

662

663 #number of observations in each profiles by periods put in diagonal matrix

664 matnobst<-function(nobstbytime,nperiod){

665 matnobst<-list()

666 for(i in 1:nperiod){

667 matnobst[[i]]<-diag(nobstbytime[i][[1]])

668 }

669 matnobst

670 }

671

672 #regrouping the log hazards without frailty into a time period

673 singletheta<-function(theta,nperiod,t){

674 ntheta1<-length(theta)

675 ntheta<-c()

676 for(i in 1:ntheta1){

677 ntheta[i]<-t + (i-1)*nperiod

678 }

679 ntheta

680 }

681

682 #regrouping all log hazards without frailty into their respective time period

683 alltheta<-function(theta){

684 nperiod<-length(theta)

685 nalltheta<-list()

686 for(i in 1:nperiod){

687 nalltheta[[i]]<-singletheta(theta[[i]],nperiod,i)

688 }

689 nalltheta

690 }

691
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692 #joining the order of time period as a vector

693 joinc<-function(theta1,theta2){

694 rlist<-c()

695 rlist<-c(theta1,theta2)

696 rlist

697 }

698

699 #joining the order of time period as vector

700 joincall<-function(theta){

701 #theta<-alltheta(theta)

702 n<-length(theta)

703 rlist<-list()

704 rlist<-theta[[1]]

705 for(i in 2:n){

706 rlist<-joinc(rlist,theta[[i]])

707

708 }

709 rlist

710 }

A.5.4 Functions for splitting the log-hazards and sampling using forward

backward algorithm with priors based on the parametric model

in the GPCH model

In this case, we have that each patient has one random frailty in all time intervals. We

retain lines 1− 30 of Appendix A.5.1 and we include the following commands

31 eta<-neweta

32 eta<-as.matrix(eta)

33 profbygroup<-profbygroup(proff,covart,ncom)

34 priormeanlogfrailty<-as.matrix(meanlogfrailty)

35 tauf<-1/varlogfrailty

36 thetapriormean<-mu #prior mean of log hazard without frailty

37 thetapriorcovar<-covar #prior covariance matrix

38 #of the log hazard without frailty

39 thetapriorpre<-solve(thetapriorcovar) #prior precision

40 # matrix of log hazard without frailty

41 sdcovf<-sqrt(varlogfrailty)

216



Appendix A. Appendix

42 numinprof<-numm(profbygroup)

43 numinprofmat<-diag(numinprof)

44 theta<-rep(1,ncom)

45 theta<-as.matrix(theta)

46 tauparam<- af + ndata/2

47 nobsinprof<-nproff(proff,1280) #number of

48 #observations in each profiles

49 combnobs<-data.frame(combmatrix,nobsinprof)

50 nobstbytime<-nobst(combnobs,nperiod) #number of

51 #observations in each profiles by time periods

52 matnobstbytime<-matnobst(nobstbytime,nperiod) #number of

53 #observations in each profiles by time periods in a diagonal matrix form

54 ####neighbours#####

55 covtt<-rep(1,128)

56 covtt<-diag(covtt)

57 result<-matrix(nrow=niter,ncol=ncom+1)

58 for(iter in 1:niter)

59 {

60 f <- eta - theta

61 tauf<-rgamma(1,tauparam, bf + 0.5*sum(f^2))

62 result[iter,ncom+1]<-tauf

63 sdcovf<- sqrt(1/tauf)

64 for(i in 1:ncom)

65 {

66 loglike=loglikenew1(eta[i],nd[i],nt[i] #loglike contribution

67 # from all individuals in the various covariate profiles

68 logprior<- -0.5*(((eta[i]-theta[i])/sdcovf)^2) #log prior of the log hazard

69 #log prior of the log hazard

70 logpost<-logprior+ loglike

71 eta.prop<-rnorm(1,eta[i],sdetaprop)

72 loglike.prop<-loglikenew1(eta.prop,nd[i],nt[i])

73 #loglike contribution from all individuals in the various

74 #covariate profiles using the proposed values of the parameters

75 logprior.prop<- -0.5*(((eta.prop-theta[i])/sdcovf)^2)

76 logpost.prop<-logprior.prop + loglike.prop

77 A<-logpost.prop-logpost

78 aaprob<-min(0,A)

79 u=runif(1)
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80 if(log(u)<aaprob)

81 {

82 eta[i]<-eta.prop

83 }

84 }

85 frailtypriorpre<-tauf*numinprofmat

86 thetapostpre<-thetapriorpre+frailtypriorpre

87 #posterior precision matrix of log hazard

88 thetapostcovar<-solve(thetapostpre) #posterior

89 #covariance matrix

90 #of log hazard

91 thet=thetatt(theta,nperiod,combmatrix) # grouping the

92 #log hazards by time intervals

93 etat=thetatt(eta,nperiod,combmatrix) # grouping the

94 #log hazards including frailty by time intervals

95 covt=covariancet(covar,nperiod,combmatrix) ## grouping the

96 #covariances of the log hazards by time intervals

97 meant=meant(mu,nperiod,combmatrix) ## grouping the means of

98 #the log hazards by time intervals

99 condmean<-list()

100 condvar<-list()

101 priorprecisiontheta<-list()

102 frailtyprecision<-list()

103 postprecisiontheta<-list()

104 priorprecisiontheta[[1]]<-solve(covt[[1]])

105 frailtyprecision[[1]]<-tauf*matnobstbytime[[1]]

106 postprecisiontheta[[1]]<-priorprecisiontheta[[1]]+frailtyprecision[[1]]

107 condvar[[1]]<-solve(postprecisiontheta[[1]])

108 condmean[[1]]<-priorprecisiontheta[[1]]%*% meant[[1]]

109 +frailtyprecision[[1]]%*%etat[[1]]

110

111 condmean[[1]]<-solve(postprecisiontheta[[1]],condmean[[1]])

112 for(i in 2:nperiod){

113 meant[[i]]<-condmean[[i-1]]

114 covt[[i]]<-condvar[[i-1]]+covtt

115 priorprecisiontheta[[i]]<-solve(covt[[i]])

116 frailtyprecision[[i]]<-tauf*matnobstbytime[[i]]

117 postprecisiontheta[[i]]<-priorprecisiontheta[[i]]+frailtyprecision[[i]]
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118 condvar[[i]]<-solve(postprecisiontheta[[i]])

119 condmean[[i]]<-priorprecisiontheta[[i]]%*% meant[[i]]

120 +frailtyprecision[[i]]%*%etat[[i]]

121

122 condmean[[i]]<-solve(postprecisiontheta[[i]],condmean[[i]])

123 }

124 theta<-list()

125 CDmatrix<-chol(condvar[[nperiod]]) #cholesky decomposition

126 #of the covariance matrix

127 nc<-length(condvar[[nperiod]][,1])

128 epsilon<-rnorm(nc,0,1) #iid random variables with zero mean and variance 1

129 etatilde<-CDmatrix%*%epsilon

130 theta[[nperiod]]<-etatilde+condmean[[nperiod]]

131 condmean1<-list()

132 condvar1<-list()

133 pretheta<-list()

134 p<-nperiod-1

135 for(i in p:1){

136 backprecisiontheta<-solve(covtt)

137 postprethetaback<-postprecisiontheta[[i]]+backprecisiontheta

138 condvar1[[i]]<-solve(postprethetaback)

139 condmean1[[i]]<-postprecisiontheta[[i]]%*%condmean[[i]]

140 +backprecisiontheta%*%theta[[i+1]]

141

142 condmean1[[i]]<-solve(postprethetaback,condmean1[[i]])

143 CDmatrix<-chol(condvar1[[i]]) #cholesky decomposition

144 #of the covariance matrix

145 epsilon<-rnorm(nc,0,1) #iid random variables with zero mean and variance 1

146 etatilde<-CDmatrix%*%epsilon

147 theta[[i]]<-etatilde+condmean1[[i]]

148 }

149 thetaaa<-numeric(ncom)

150 alltheta<-alltheta(theta)

151 orderthetaperiod<-joincall(alltheta)

152 thetaa<-joincall(theta)

153 thetaaa[orderthetaperiod]<-thetaa

154 theta<-thetaaa

155 result[iter,1:ncom]<-theta
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156 }

157 result

158 }

A.5.5 Functions for splitting the log-hazards and sampling using Cholesky

decomposition

In this case, we have that each patient has one random frailty in all time intervals. We

retain lines 1− 42 of Appendix A.5.4 and we include the following commands

43 theta<-rep(1,ncom)

44 eta<-rep(0.5,ncom)

45 theta<-as.matrix(theta)

46 tauparam<- af + ndata/2

47 nobsinprof<-nproff(proff,1280) #number of

48 #observations in each profiles

49 nobsinprofmat<-diag(nobsinprof)

50 ndtt=ndtfun(cuts,ncom,covarprof,combmatrixx)

51 nd<-ndtt[[2]]

52 nt<-ndtt[[1]]

53 result<-matrix(nrow=niter,ncol=ncom+1)

54 for(iter in 1:niter)

55 {

56 f <- eta - theta

57 tauf<-rgamma(1,tauparam, bf + 0.5*sum(f^2))

58 result[iter,ncom+1]<-tauf

59 sdcovf<- sqrt(1/tauf)

60 for(i in 1:ncom)

61 {

62 loglike=loglikenew1(eta[i],nd[i],nt[i])

63 logprior<- -0.5*(((eta[i]-theta[i])/sdcovf)^2)

64 logpost<-logprior+ loglike

65 eta.prop<-rnorm(1,eta[i],sdetaprop)

66 loglike.prop<-loglikenew1(eta.prop,nd[i],nt[i])

67 logprior.prop<- -0.5*(((eta.prop-theta[i])/sdcovf)^2)

68 logpost.prop<-logprior.prop + loglike.prop

69 A<-logpost.prop-logpost

70 aaprob<-min(0,A)
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71 u=runif(1)

72 if(log(u)<aaprob)

73 {

74 eta[i]<-eta.prop

75 }

76 }

77 frailtypriorpre<-tauf*nobsinprofmat

78 thetapostpre<-thetapriorpre+frailtypriorpre

79 #of the log hazard

80 thetapostcovar<-solve(thetapostpre) #posterior covariance matrix

81 #of the log hazards

82 CDmatrix<-chol(thetapostcovar) #cholesky decomposition

83 #of the covariance matrix

84 thetapostmean<-thetapriorpre%*%thetapriormean+frailtypriorpre%*%eta

85 thetapostmean<-solve(thetapostpre,thetapostmean)

86 #posterior mean of log hazard without frailty

87 epsilon<-rnorm(ncom,0,1)

88 etatilde<-CDmatrix%*%epsilon

89 theta<-etatilde+thetapostmean #sampled log hazard values

90 result[iter,]<-c(theta,tauf)

91 }

92 result

93 }

A.5.6 Functions for sampling the principal components of the log-hazards

with priors based on the parametric model in the GPCH model

Again, we retain lines 1− 33 of Appendix A.5.1 and we include the following commands

34 eigenv<-eigen(covar) #eigen values and vectors of covariance matrix

35 eigenvv<-eigenv$vectors

36 covpc<-t(eigenvv)%*%covar%*%eigenvv #covariance matrix

37 #of the principal components

38 covpc<-round(covpc,digits=4)

39 varpc<-diag(covpc) #variance of the principal components

40 stdpc<-sqrt(varpc)

41 meanpc<-eigenvv%*%mu #mean of the principal components

42 ineigen<-solve(eigenvv)
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43 pcs<-eigenvv%*%eta #transforming log hazards to the principal components

44 eta<-ineigen%*%pcs

45 result<-matrix(nrow=niter,ncol=ncom)

46 for(iter in 1:niter)

47 {

48 for(i in 1:ncom)

49 {

50 logprior<- -0.5*(((pcs[i]-meanpc[i])/stdpc[i])^2)#logarithm of prior

51 loglike<-loglikenewall(eta,nd,nt) #loglike contribution

52 #from all individuals in the various covariate profiles

53 pcs.prop<-pcs

54 pcs.prop[i]<-rnorm(1,pcs[i],sdpc.prop)#proposing a

55 #value for the principal component

56 eta.prop<-ineigen%*%pcs.prop #transforming

57 #the principal components back to the log hazards

58 logprior.prop<- -0.5*(((pcs.prop[i]-meanpc[i])/stdpc[i])^2)

59 loglike.prop<-loglikenewall(eta.prop,nd,nt) #loglike contribution from

60 #all individuals in the various covariate profiles

62 #using the proposed values of the parameters

63 logpost<-loglike+logprior

64 logpost.prop<-loglike.prop+logprior.prop

65 aprob<-logpost.prop-logpost

66 aprob<-min(0,aprob)

67 u=runif(1)

68 if(log(u)<aprob)

69 {

70 loglike<-loglike.prop

71 pcs[i]<-pcs.prop[i]

72 eta<-ineigen%*%pcs

73 }

74 result[iter, i]<-eta[i]

75 }

76 }

78 result

79 }
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A.5.7 Functions for sampling the log-hazards when we approximate the

proposal distribution with priors based on the parametric model

in the GPCH model

We retain lines 1− 33 of Appendix A.5.1 and we include the following commands

34 mle=mle2(mu,nd,nt)

35 eta<-mle

36 findmode<-firstseconddt(mu,nd,nt,incovar,mle,tol=0.001,maxiter=7)

37 postmode<-findmode[[1]]

38 propcovar<- solve(findmode[[2]])

39 CDmatrix<-chol(propcovar) #cholesky decomposition

40 #of the covariance matrix

41 result<-matrix(nrow=niter,ncol=ncom)

42 for(iter in 1:niter)

43 {

44 loglike<-loglikenewall(eta,nd,nt) #loglike contribution

45 #from all individuals in the various covariate profiles

46 sub<-eta-mu

47 logprior<--0.5*(t(sub)%*%(incovar%*%sub))

48 #log prior density of the parameters

49 logpost<-logprior+ loglike

50 epsilon<-rnorm(ncom,0,1)

51 # iid random variables with zero mean and variance 1

52 etatilde<-CDmatrix%*%epsilon

53 eta.prop<-etatilde+postmode

54 logpropden1<-propdenn(propcovar,postmode, eta) #proposal density

55 #of the parameters given the proposed values of the parameters

56 logpropden2<-propdenn(propcovar,postmode, eta.prop) ##proposal

57 # density of the proposed parameters given the parameters

58 loglike.prop<-loglikenewall(eta.prop,nd,nt) ##loglike contribution

59 #from all individuals in the various covariate profiles using

60 # the proposed values of the parameters

61 subb<-eta.prop-mu

63 logprior.prop<- -0.5*(t(subb)%*%(incovar%*%subb)) #log prior

64 #density of the proposed parameters

65 logpost.prop<-logprior.prop+ loglike.prop #log posterior

66 #density of the proposed parameters

67 A<-logpost.prop-logpost
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68 logdenetaratio<-logpropden1-logpropden2

69 aprob<-min(0,A+logdenetaratio) #acceptance probability

70 u=runif(1)

71 if(log(u)<aprob)

72 {

73 eta<-eta.prop

74 }

75 result[iter,]<-eta

76 }

77 result

78 }

A.5.8 Functions consisting of all functions used in sampling the log-

hazards with Markov random field prior in the GPCH model

This function is similar to Appendix A.5.3. We retain Appendix A.5.3 but replace lines

30− 66 with

#Creating a vector of means for the covariate effects

meanvec<-function()

{

meanb0<--6

agem1<-0

agem2<-0

agem3<-0

sexm<-0

wbcm1<-0

wbcm2<-0

wbcm3<-0

depsc1m<-0

depsc2m<-0

depsc3m<-0

timem1<-0

timem2<-0

timem3<-0

timem4<-0

timem5<-0

timem6<-0
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timem7<-0

timem8<-0

timem9<-0

meanvec<-c(meanb0,agem1,agem2,agem3,sexm,wbcm1,wbcm2,wbcm3,depsc1m,depsc2m,

depsc3m,timem1,timem2,timem3,timem4,timem5,timem6,timem7,timem8,timem9)

meanvec

}

#Creating a vector of variances for the covariate effects

varvec<-function()

{

varb0<-0.12

agev1<-0.02

agev2<-0.06

agev3<-0.003

sexv<-0.0625

wbcv1<-0.06

wbcv2<-0.02

wbcv3<-0.001

depsc1v<-0.012

depsc2v<-0.004

depsc3v<-0.002

timev1<-0.012

timev2<-0.004

timev3<-0.002

timev4<-0.012

timev5<-0.007

timev6<-0.005

timev7<-0.004

timev8<-0.003

timev9<-0.002

varvec<-c(varb0,agev1,agev2,agev3,sexv,wbcv1,wbcv2,wbcv3,depsc1v,depsc2v,

depsc3v,timev1,timev2,timev3,timev4,timev5,timev6,timev7,timev8,timev9)

varvec

}

We remove lines 163− 253 from Appendix A.5.3.
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We replace lines 564− 609 with

Bstore<-function(covar,positionneig,i)

{

covar<-covar[c(i,positionneig),c(i,positionneig)]

c<-covar[,-1][1,]

v<-covar[-1,-1]

Bstore<-solve(v,c)

Bstore

}

Bstoreall<-function(covar,positionneig)

{

nlen<-length(covar[,1])

#Bstoreall=matrix(nrow=nlen,ncol=nlen-1)

Bstoreall=c()

for(i in 1:nlen)

{

Bstoreall[[i]]<-Bstore(covar,positionneig[[i]],i)

}

Bstoreall

}

#function for conditional variance for a particular etas given it’s neighbours

#for one

condnvar<-function(etavar,i,positionneig)

{

covar<-etavar[c(i,positionneig),c(i,positionneig)]

c<-covar[,-1][1,]

#c=as.matrix(c)

cn<-covar[-1,][,1]

v<-covar[-1,-1]

condnvar<-covar[1,1]-(solve(v,c))%*%cn

condnvar

}

#for all

condnvarall<-function(etavar,positionneig)
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{

nlen<-length(etavar[,1])

condnvarall=c()

for(i in 1:nlen)

{

condnvarall[[i]]<-condnvar(etavar,i,positionneig[[i]])

}

condnvarall

}

Then, we include

ncovp<-prod(ncov)

l<-c(0.1,0.1,0.1,0.1,0.1)

####to create neighbours###################

neigh1<-function(x,y){

diff<-x-y

neig<-sum(abs(diff))==1

return(neig)

}

neigh2<-function(x,yy){

ny<-length(yy[,1])

neighx<-c()

neight<-list()

for (i in 1:ny){

neighx[i]<-neigh1(x,yy[i,])

}

return(neighx)

}

neigh5<-function(yy){

ny<-length(yy[,1])

neighall<-list()

writneig<-list()

profnum<-list()

for (i in 1:ny){

neighall[[i]]<-neigh2(yy[i,],yy)

writneig[[i]]<-yy[which(neighall[[i]]==TRUE),]
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profnum[[i]]<-profilenum(writneig[[i]])

}

profnum

}

#function to find the distance between two covariate vectors

dist<-function(x,y,l)

{

dist=sum(l*abs(x-y))

return(dist)

}

#function to find the distance among covariate vectors of

# all patients and putting them in form of a matrix

distall<-function(covariates,l)

{

ncov<-length(covariates[,1])

distall<-matrix(nrow=ncov,ncol=ncov)

for( i in 1:ncov)

{

for( j in 1:ncov)

{

distall[i,j]<-dist(covariates[i,],covariates[j,],l)

}

}

distall

}

#function to create correlation matrix

corrall<-function(distance,b,c)

{

ncov<-length(distance[,1])

corrall<-matrix(nrow=ncov,ncol=ncov)

for( i in 1:ncov)

{

for( j in 1:ncov)

{
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corrall[i,j]<-b*(c +(1-c)*exp(-distance[i,j]))

corrall[i,i]<-1

}

}

corrall

}

patientalive<-function(xx,covart,listprof){

nx<-length(xx[,1])

stoppedd<-covart[,7]

writsamex<-list()

for (i in 1:nx){

writsamex[[i]]<-listprof[[i]][which(listprof[[i]]$stopped>=xx[i,5]),]

}

return(writsamex)

}

A.5.9 Functions for sampling the log-hazards with Markov random field

prior in the GPCH model

1 #Generalised piecewise constant hazard model using

2 #Markov random field priors for the leukaemia data set

3 gpch<-function(b,niter)

4{

5 c=0.2

6 covariates=as.matrix(covariates)

7 n<-length(covariates[,1])

8 combmatrix=bigconstruct(nlevel)

9 designmatrix<-Xmat(combmatrix) ## design matrix

10 ncom<-length(combmatrix[,1])

11 profile<-1:ncom

12 combmatrix1p<-data.frame(combmatrix,profile)

13 bmean<-meanvec()

14 bvar<-varvec() ##prior variance for parameter

15 cotry<-read.table("lcovt1.txt",header=TRUE)

16 ##correlation matrix of parameters

17 co<-as.matrix(cotry)

18 bbvar<-bbvar(bvar,co) ##creating covariance matrix of parameters
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19 bmean1<-as.matrix(bmean)

20 priormeaneta<-designmatrix%*%bmean1 ##prior mean for log hazard

21 mu<-as.matrix(priormeaneta) ## prior mean for log hazards

22 eta<-as.matrix(eta)

23 distance<-distall(combmatrix,l)

24 corr<- corrall(distance,b,c)

25 etavar<-designmatrix%*%bbvar%*%t(designmatrix) ##covariance of log hazard

26 etavard<-diag(etavar) #diagonal elements of covariance of log hazard

27 etastd<-sqrt(etavard)

28 etaS<-diag(etastd)

29 covar<-etaS%*%corr%*%etaS

30 neighallnum=neigh5(combmatrix) #changing neighbours of

31 covariates from string to numeric

32 condnvarall<-condnvarall(covar,neighallnum) #conditional variance

33 #for a particular etas given it’s neighbours

34 sdetaall<-sqrt(condnvarall) #conditional standard deviations

35 # for a particular etas given it’s neighbours

36 Bmatrix=Bstoreall(covar,neighallnum) #storing values

37 #to be used in calculating the conditional mean

38 ndtt=ndtfun(cuts,ncom,covarprof,combmatrixx)

39 nd<-ndtt[[2]]

40 nt<-ndtt[[1]]

41 result<-matrix(nrow=niter,ncol=ncom)

42 for(iter in 1:niter)

43 {

44 for(i in 1:ncom)

45 {

46 loglike=loglikenew1(eta[i],nd[i],nt[i])

47 positionneig<-neighallnum[[i]]

48 othereta<-eta[positionneig]

49 othermu<-mu[positionneig]

50 condmean<-mu[i,1]+Bmatrix[[i]]%*%(othereta-othermu)

51 logprior<- -1/2*(((eta[i]-condmean)/sdetaall[i])^2)

52 logpost<-logprior+ loglike

53 eta.prop<-rnorm(1,eta[i],sdetaprop)

54 loglike.prop<-loglikenew1(eta.prop,nd[i],nt[i])

55 #likelihood contribution of each profile

56 logprior.prop<- -1/2*(((eta.prop-condmean)/sdetaall[i])^2)
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57 logpost.prop<-logprior.prop+ loglike.prop

58 A<-logpost.prop-logpost

59 aprob<-min(0,A)

60 u=runif(1)

61 if(log(u)<aprob)

62 {

63 eta[i]<-eta.prop

64 }

65 }

66 result[iter,]<-eta

67 }

68 result

69 }

A.5.10 Functions for sampling the principal components of the log-

hazards using Markov random field priors in the GPCH model

Again, we retain lines 1 − 29 of Appendix A.5.9 and we add up all of lines 34 − 79 of

Appendix A.5.6.

A.5.11 Functions for splitting the log-hazards and sampling using for-

ward backward algorithm with Markov random field priors in

the GPCH model

We retain lines 1− 29 of Appendix A.5.9 and we add up all of lines 31− 158 of Appendix

A.5.4.

A.5.12 Functions for splitting the log-hazards and sampling using Cholesky

decomposition

We retain lines 1− 29 of Appendix A.5.9 and we add up all of lines 43− 91 of Appendix

A.5.5.

A.5.13 Functions for sampling the log-hazards when we approximate

the proposal distribution with Markov random field priors

We retain lines 1− 29 of Appendix A.5.9 and 34− 78 of Appendix A.5.7.
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A.5.14 Functions consisting of all functions used in sampling the log-

hazards using Gaussian process prior in the continuous parame-

ter space model

1 ##All functions for flexible modelling of log hazards in the

2 ## continuous parameter space model using the Gaussian process prior

3

4 data<-read.table("snlgcompt.txt",header=TRUE) #dataset

5 ndata<-length(data[,1])

6 meanlogfrailty<-0 ## mean of log frailty

7 varlogfrailty<-1 ## variance of log frailty

8 prior<-list(aprior=1.5,bprior=1.5,meanlogfrailty=meanlogfrailty,

9 varlogfrailty=varlogfrailty) #prior for parameters

10

11 #function to group patients by profile

12 profiler<-function(x)

13 {# x is a matrix of covariate values with one row for

14 #each patient and one column for each covariate

15 n<-length(x[,1])

16 n.covars<-length(x[1,])

17 profile.list<-numeric(n)

18 profile.list[1]<-1 # A list of which profile each patient has.

19 profile.mat<-x[1,]

20 dim(profile.mat)<-c(1,n.covars)

21 n.profile<-1 # The number of distinct profiles.

22 profile.n<-1 # The numbers of cases with each profile.

23 for (i in 2:n)

24 {new<-TRUE

25 for (j in 1:n.profile)

26 {if ((sum(x[i,]==profile.mat[j,])==n.covars) & new)

27 {new<-FALSE

28 profile.n[j]<-profile.n[j]+1

29 profile.list[i]<-j

30 }

31 }

32 if (new)

33 {n.profile<-n.profile+1

34 profile.list[i]<-n.profile
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35 profile.n[n.profile]<-1

36 profile.mat<-rbind(profile.mat,x[i,])

37 }

38 }

39 out<-list(n.profile=n.profile,profile.n=profile.n,

40 profile.list=profile.list,profile.mat=profile.mat)

41 return(out)

42 }

43

44 dat<-data[,-(1:2)]

45 datt<-as.matrix(dat)

46 profsearch<-profiler(datt)

47 numprof<-profsearch[[1]] # number of covariate profiles

48 numinprof<-profsearch[[2]] #number of individuals in each profiles

49 patientsbyprof<-profsearch[[3]] #list individuals according to their profiles

50 distinctprofiles<-profsearch[[4]] #The number of distinct profiles.

51 eta<-rep(-1.5,numprof)

52 neweta<-rep(-0.7,ndata)

53 alpha=1 #Weibull shape parameter

54 proposal<-list(a=4,b=4, af=1.1, bf=0.53,sdetaprop=1,sdpc.prop=1)

55

56 ##function to compute mean of log hazards by profile

57 meaneta<-function(patientsbyprof,eta){

58 n<-max(patientsbyprof)

59 meaneta<-numeric(n)

60 for(i in 1:n)

61 {

62 meaneta[i]<-mean(eta[which(patientsbyprof==i)])

63 }

64 meaneta

65 }

66

67 ##function to compute the maximum likelihood estimate

68 mle1<-function(data,numprof,patientsbyprof,alpha,meaneta)

69 {

70 datprof<-list()

71 died<-list()

72 t<-list()
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73 mle1<-numeric(numprof)

74 for(i in 1:numprof)

75 {

76

77 datprof[[i]]<-data[patientsbyprof==i,]

78 died[[i]]<-sum(datprof[[i]]$died)

79 t[[i]]<-datprof[[i]]$t

80 if(died[[i]]>0)

81 {

82 mle1[[i]]<- log(died[[i]] / sum(t[[i]]^alpha))

83 }

84 else

85 {

86 mle1[[i]]<-meaneta[i]

87 }

88 }

89 mle1

90 }

91 #function to group and list patients with similar profiles

92 profbygroup<-function(patientsbyprof,data){

93 n<-max(patientsbyprof)

94 profbygroup<-list()

95 for(i in 1:n)

96 {

97 profbygroup[[i]]<-data[which(patientsbyprof==i),]

98 }

99 profbygroup

100 }

101

102 #Creating a vector of means for the covariate effects

103 meanvec<-function()

104 {

105 meanb0<--1.5

106 agem<-0.04

107 hbm<-0.02

108 wbcm<-0.08

109 sexm<-0.05
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110 albuminm<-0

111 apm<-0

112 uream<-0

113 extranodm<-0

114 bulkm<-0

115 marrowm<-0

116 bsym<--0

117 stage1m<-0

118 stage2m<--0

119 stage3m<-0

120 ecog1m<-0

121 ecog2m<--0

122 ecog3m<-0

123 ecog4m<-0

124 ldh1m<-0

125 ldh2m<-0

126 meanvec<-c(meanb0,agem,hbm,wbcm,sexm,albuminm,apm,uream,

127 extranodm,bulkm,marrowm,bsym,stage1m,stage2m,stage3m,ecog1m,

128 ecog2m,ecog3m,ecog4m,ldh1m,ldh2m)

129 meanvec

130 }

131

132 #Creating a vector of variances for the covariate effects

133 varvec<-function()

134 {

135 varb0<-0.16

136 agev<-0.009

137 hbv<-0.002

138 wbcv<-0.004

139 sexv<-0.005

140 albuminv<-0.003

141 apv<-0.003

142 ureav<-0.003

143 extranodv<-0.003

144 bulkv<-0.003

145 marrowv<-0.003

146 bsyv<-0.003

147 stage1v<-0.002
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148 stage2v<-0.006

149 stage3v<-0.003

150 ecog1v<-0.002

151 ecog2v<-0.006

152 ecog3v<-0.003

153 ecog4v<-0.002

154 ldh1v<-0.006

155 ldh2v<-0.002

156 varvec<-c(varb0,agev,hbv,wbcv,sexv,albuminv,apv,ureav,

157 extranodv,bulkv,marrowv,bsyv,stage1v,stage2v,stage3v,

158 ecog1v,ecog2v,ecog3v,ecog4v,ldh1v,ldh2v)

159 varvec

160 }

161

162 #Creating contrast of categorical covariates for 1

163 #row in the design matrix

164 mattt<-function(stage,a){

165 xmat<-matrix(nrow=1,ncol=a-1)

166 for(j in 1:a-1){

167 if(stage<=j){

168 xmat[,j]<--1

169 }

170

171 if(stage==j+1){

172 xmat[,j]<-j

173 }

174

175 if(stage>j+1){

176 xmat[,j]<-0

177 }

178 }

179 xmat

180 }

181

182 #Creating contrast of categorical covariate for

183 #all rows in the design matrix

184 matttall<-function(stage,a)

185 {
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186 n<-length(stage)

187 matttall<-matrix(nrow=n, ncol=a-1)

188 for(i in 1:n){

189 matttall[i,]<-mattt(stage[i],a)

190 }

191 matttall

192 }

193

194 #Creating the design matrix for the SNLG data set

195 Xmat<-function(datt){

196 age=datt[,1]

197 hb=datt[,2]

198 wbc=datt[,3]

199 sex=datt[,4]

200 albumin=datt[,5]

201 ap=datt[,6]

202 urea=datt[,7]

203 extranod=datt[,8]

204 bulk=datt[,9]

205 marrow=datt[,10]

206 bsy=datt[,11]

207 stage=datt[,12]

208 ecog=datt[,13]

209 ldh=datt[,14]

210 n<-length(datt[,1])

211 X<- matrix(nrow=n,ncol=12)

212 X[,1]<-rep(1,n) #1;intercept

213 X[,2]<-age #2;age

214 X[,3]<-hb #3;hb

215 X[,4]<-wbc #4;wbc

216 X[,5]<-ifelse(sex==1,-1,1) #5:sex

217 X[,6]<-ifelse(albumin==1,-1,1) #6:albumin

218 X[,7]<-ifelse(ap==1,-1,1) #7:ap

219 X[,8]<-ifelse(urea==1,-1,1) #8:urea

220 X[,9]<-ifelse(extranod==1,-1,1) #9:extranod

221 X[,10]<-ifelse(bulk==1,-1,1) #10:bulk

222 X[,11]<-ifelse(marrow==1,-1,1) #11:marrow

223 X[,12]<-ifelse(bsy==1,-1,1) #12:bsy
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224 matstage<-matttall(stage,4)

225 matecog<-matttall(ecog,5)

226 matldh<-matttall(ldh,3)

227 X<-data.frame(X,matstage,matecog,matldh)

228 X<-as.matrix(X)

229 return(X)

230 }

231

232 #Creating the covariance matrix of covariate effects

233 # using the correlation matrix "co".

234 bbvar<-function(var,co){

235 std<-sqrt(var)

236 l<-length(var)

237 bbvar<-matrix(nrow=l, ncol=l)

238 for(i in 1:l){

239 for(j in 1:l){

240 bbvar[i,j]<-std[i]*std[j]*co[i,j]

241 }

242 }

243 bbvar

244 }

245

246 #Finding the distance between two covariate vectors

247 dist<-function(x,y,matx)

248 {

249 a=t(x-y)

250 b=x-y

251 dist= sqrt(a%*%(matx%*%b))

252 return(dist)

253 }

254

255 #Creating a matrix where the entries are the distances

256 # between the corresponding covariate vectors

257 distall<-function(covariates,matx)

258 {

259 ncov<-length(covariates[,1])

260 distall<-matrix(nrow=ncov,ncol=ncov)

261 for( i in 1:ncov)
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262 {

263 for( j in 1:ncov)

264 {

265 distall[i,j]<-dist(covariates[i,],covariates[j,],matx)

266 }

267 }

268 distall

269 }

270

271 #Creating a correlation matrix using the distance matrix

272 corrall<-function(distance,b,c)

273 {

274 ncov<-length(distance[,1])

275 corrall<-matrix(nrow=ncov,ncol=ncov)

276 for( i in 1:ncov)

277 {

278 for( j in 1:ncov)

279 {

280 corrall[i,j]<-b*(c +(1-c)*exp(-distance[i,j]))

281 corrall[i,i]<-1

282 }

283 }

284 corrall

285 }

286

287 #function to create fixed terms which are used when

288 # finding the conditional variance

289 Bstore<-function(covar,i)

290 {

291 c<-covar[,-i][i,]

292 v<-covar[-i,-i]

293 Bstore<-solve(v,c)

294 Bstore

295 }

296

297 #function to create n by n-1 matrix matrix that stores the constant

298 #part of the formula used to find a conditional mean or variance

299 Bstoreall<-function(covar)
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300 {

301 nlen<-length(covar[,1])

302 Bstoreall=matrix(nrow=nlen,ncol=nlen-1)

303 for(i in 1:nlen)

304 {

305 Bstoreall[i,]<-Bstore(covar,i)

306 }

307 Bstoreall

308 }

309

310 #function to find the conditional variance of one

311 #log hazard given all other log hazards

312 condnvar<-function(covar,i)

313 {

314 c<-covar[,-i][i,]

315 cn<-covar[-i,][,i]

316 v<-covar[-i,-i]

317 condnvar<-covar[i,i]-(solve(v,c))%*%cn

318 condnvar

319 }

320

321 #function to compute the conditional variance of one log hazard

322 #given all other log hazards for the vector of log hazards

323 condnvarall<-function(covar)

324 {

325 nlen<-length(covar[,1])

326 condnvarall=numeric(nlen)

327 for(i in 1:nlen)

328 {

329 condnvarall[i]<-condnvar(covar,i)

330 }

331 condnvarall

332 }

333

334 #loglike contribution from individuals having

335 #similar covariate profiles

336 loglikemf<-function(data,eta,alpha){

337 died<-data$died
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338 t<-data$t

339 nd<-length(died[died==1])

340 loglike<--(exp(eta)*sum(t^alpha))+nd*log(alpha) + nd*eta

341 #+ sum((alpha-1)*log(t)[died==1])

342 loglike

343 }

344

345 #loglike contribution from all individuals

346 loglikeaall<-function(data,eta,alpha){

347 ndd<-length(data)

348 loglike=0

349 for(i in 1:ndd){

350 loglike=loglike+loglikemf(data[[i]],eta[i],alpha)

351 }

352 loglike

353 }

354

355 #function to compute the log density of a distribution

356 propdenn<-function(cov,mean,eta){

357 logdetapp<-determinant(cov)

358 logdetapp<-logdetapp$modulus[1]

359 sub<-eta-mean

360 logdetaoldetaprop<--0.5*logdetapp - 0.5*(t(sub)%*%solve(cov,sub))

361 return(logdetaoldetaprop)

362 }

363

364 #number of deaths in each covariate profile

365 nd<-function(profbygroup,numprof){

366 nd<-numeric(numprof)

367 for(i in 1:numprof)

368 {

369 nd[i]<-sum(profbygroup[[i]]$died==1)

370 }

371 nd

372 }

373

374 #function to approximate the proposal distribution

375 #using Newton Raphson’s algorithm
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376 firstseconddd<-function(profbygroup,numprof,mu,alpha,nd,prior.prec,mle,

377 tol=0.001,maxiter=7){

378 ndd<-as.matrix(nd)

379 eta<-mle

380 tal<-numeric(numprof)

381 for(i in 1:numprof)

382 {

383 tal[i]<-sum((profbygroup[[i]]$t)^alpha)

384 }

385 tal<-as.matrix(tal)

386 go<-TRUE

387 for(i in 1:maxiter)

388 {if(go)

389 {lambda<-exp(eta)

390 lt<-lambda*tal

391 ltn<-as.numeric(lt)

392 em<-eta-mu

393 firstd<-ndd -lt-prior.prec%*%em

394 secondd<- -prior.prec - diag(ltn)

395 delta<-solve(secondd,firstd)

396 eta<- eta - delta

397 check<- - t(delta)%*%secondd%*%delta

398 go<-(check>tol)

399 }

400 }

401 alll<-list(postmode=eta,postpre= -secondd)

402 alll

403 }

A.5.15 Functions for sampling log-hazards with Gaussian process prior

in the continuous parameter space model using SNLG data set

1 #continuous parameter space model using

2 #Gaussian process prior for the log-hazards for the SNLG data set

3 gpp<-function(prior,proposal,b,niter)

4 {

5 n<-length(distinctprofiles[,1])

6 matt<-Xmat(distinctprofiles) # design matrix
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7 bmean<-meanvec() #prior means for covariates effects

8 bvar<-varvec() #prior variances for covariate effects

9 co<-read.table("co.txt",header=TRUE) #correlation matrix of parameters

10 co<-as.matrix(co)

11 bvarrr<-bbvar(bvar,co) #covariance matrix of parameters

12 bmean1<-as.matrix(bmean)

13 priormeaneta<-matt%*%bmean1

14 mu<-as.matrix(priormeaneta) #prior mean for parameters

15 aprior<-prior$aprior

16 bprior<-prior$bprior

17 eta<-as.matrix(eta)

18 a=proposal$a

19 sdetaprop=proposal$sdetaprop #proposal standard deviation for log hazards

20 matx=diag((sapply(dat,sd)^(-2))) #rescaled matrix

21 distance<-distall(distinctprofiles,matx) #matrix where the entries

22 #are the distances between the corresponding covariate vectors

23 c=0.2 #constant to avoid the correlation from tending to 0

24 corr=corrall(distance,b,c) #creates correlation matrix

25 etavar<-matt%*%bvarrr%*%t(matt) #creates covariance of the parameters

26 # with implied constraints (singular)

27 etavard<-diag(etavar) #diagonal elements of covariance

28 etastd<-sqrt(etavard)

29 etaS<-diag(etastd)

29 covar<-etaS%*%corr%*%etaS ##creates covariance of

30 #the parameters without constriants

31 profbygroup<-profbygroup(patientsbyprof,data)

32 condnvarall<-condnvarall(covar) #function to compute the conditional

33 #variance of a log hazard given the others for the vector of log hazards

34 sdetaall<-sqrt(condnvarall)

35 Bmatrix=Bstoreall(covar) #n by n-1 matrix #matrix which stores

36 #the constant part of the formula in finding a conditional mean or variance

37 result<-matrix(nrow=niter,ncol=numprof+1)

38 for(iter in 1:niter)

39 {

40 for(i in 1:numprof)

41 {

42 loglike<-loglikemf(profbygroup[[i]],eta[i],alpha)

43 othereta<-eta[-i,1]
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44 othermu<-mu[-i,1]

45 condmean<-mu[i,1]+Bmatrix[i,]%*%(othereta-othermu)

46 logprior<- -1/2*(((eta[i]-condmean)/sdetaall[i])^2)

47 logpost<-logprior+ loglike

48 eta.prop<-rnorm(1,eta[i],sdetaprop) #proposed value for the log hazard

49 loglike.prop<-loglikemf(profbygroup[[i]],eta.prop,alpha)

50 logprior.prop<- -1/2*(((eta.prop-condmean)/sdetaall[i])^2)

51 logpost.prop<-logprior.prop+ loglike.prop

52 A<-logpost.prop-logpost

53 aprob<-min(0,A)

54 u=runif(1)

55 if(log(u)<aprob)

56 {

57 eta[i]<-eta.prop

58 }

59 result[iter,i]<-eta[i]

60 }

61 alpha.prop<-rgamma(1,a,a/alpha)

62 loglikealpha<-loglikeaall(profbygroup,eta,alpha)

63 loglikealpha.prop<-loglikeaall(profbygroup,eta,alpha.prop)

64 logpropdenratio<-(2*a-1)*(log (alpha) - log (alpha.prop))

65 - a*((alpha/alpha.prop) - (alpha.prop/alpha))

66 logprioralpha<-(aprior-1)*log(alpha) - bprior*alpha

67 logprioralpha.prop<-(aprior-1)*log(alpha.prop) - bprior*alpha.prop

68 Aaprob1=logprioralpha.prop+loglikealpha.prop-(logprioralpha+loglikealpha)

69 +logpropdenratio

70

71 Aaprob<-min(0,Aaprob1)

72 u=runif(1)

73 if(log(u)<Aaprob)

74 {

75 alpha<-alpha.prop

76 }

77 result[iter,numprof+1]<-alpha

78 }

79 result

80 }
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A.5.16 Functions for sampling the principal components of the log-

hazards with Gaussian process priors in the continuous param-

eter space model

Again, we retain lines 1− 30 of Appendix A.5.15 and we include the following commands

eigenv<-eigen(covar) #eigen values and vectors of covariance matrix

eigenvv<-eigenv$vectors

covpc<-t(eigenvv)%*%covar%*%eigenvv #covariance matrix

#of the principal components

covpc<-round(covpc,digits=4)

varpc<-diag(covpc) #variance of the principal components

stdpc<-sqrt(varpc)

meanpc<-eigenvv%*%mu #mean of the principal components

ineigen<-solve(eigenvv)

profbygroup<-profbygroup(patientsbyprof,data) #group

#patients with similar covariate profiles

pcs<-eigenvv%*%eta #transforming log hazards to the principal components

eta<-ineigen%*%pcs #transforming the principal components to log hazards

alpha=1

result<-matrix(nrow=niter,ncol=numprof+1)

for(iter in 1:niter)

{

for(i in 1:numprof)

{

logprior<- -0.5*(((pcs[i]-meanpc[i])/stdpc[i])^2)#logarithm of prior

loglike<-loglikeaall(profbygroup,eta,alpha)

#loglikelihood contribution of involving all individuals

pcs.prop<-pcs

pcs.prop[i]<-rnorm(1,pcs[i],sdpc.prop)

#proposing a value for the principal component

eta.prop<-ineigen%*%pcs.prop #transforming

#the principal components back to the log hazards

logprior.prop<- -0.5*(((pcs.prop[i]-meanpc[i])/stdpc[i])^2)

loglike.prop<-loglikeaall(profbygroup,eta.prop,alpha)

logpost<-loglike+logprior

logpost.prop<-loglike.prop+logprior.prop

aprob<-logpost.prop-logpost

aprob<-min(0,aprob)

245



Appendix A. Appendix

u=runif(1)

if(log(u)<aprob)

{

loglike<-loglike.prop

pcs[i]<-pcs.prop[i]

eta<-ineigen%*%pcs

}

}

result[iter, 1:numprof]<-eta

alpha.prop<-rgamma(1,a,a/alpha)

loglikealpha<-loglikeaall(profbygroup,eta,alpha)

loglikealpha.prop<-loglikeaall(profbygroup,eta,alpha.prop)

logpropdenratio<-(2*a-1)*(log (alpha) - log (alpha.prop))

- a*((alpha/alpha.prop) - (alpha.prop/alpha))

logprioralpha<-(aprior-1)*log(alpha) - bprior*alpha

logprioralpha.prop<-(aprior-1)*log(alpha.prop) - bprior*alpha.prop

Aaprob1=logprioralpha.prop+loglikealpha.prop-(logprioralpha+loglikealpha)

+logpropdenratio

Aaprob<-min(0,Aaprob1)

u=runif(1)

if(log(u)<Aaprob)

{

alpha<-alpha.prop

}

result[iter,numprof+1]<-alpha

}

result

}

A.5.17 Functions for splitting and sampling the log-hazards using Gaus-

sian process prior in continuous parameter space model

We retain lines 1− 30 of Appendix A.5.15 and we include the following commands

meanlogfrailty<-prior$meanlogfrailty #prior mean of the log frailty

#priormeanlogfrailty<-as.matrix(meanlogfrailty)

varlogfrailty<-prior$varlogfrailty #prior variance of the log frailty
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tauf<-1/varlogfrailty

thetapriormean<-mu #prior mean of log hazard without frailty

thetapriorcovar<-covar #prior covariance matrix of

#the log hazard without frailty

thetapriorpre<-solve(thetapriorcovar) #prior precision matrix of

#the log hazard without frailty

sdcovf<-sqrt(varlogfrailty)

numinprofmat<-diag(numinprof)

theta<-rep(1,numprof)

theta<-as.matrix(theta)

tauparam<- af + ndata/2

profbygroup<-profbygroup(patientsbyprof,data)

result<-matrix(nrow=niter,ncol=numprof+2)

for(iter in 1:niter)

{

f <- eta - theta[patientsbyprof]

tauf<-rgamma(1,tauparam, bf + 0.5*sum(f^2))

result[iter,numprof+2]<-tauf

sdcovf<- sqrt(1/tauf)

for(i in 1:ndata)

{

loglike<-loglikemf(data[i,],eta[i],alpha)

#loglike contribution from individual

logprior<- -0.5*(((eta[i]-theta[patientsbyprof[i]])/sdcovf)^2)

#log priorof the log hazard

logpost<-logprior+ loglike

eta.prop<-rnorm(1,eta[i],sdetaprop)

loglike.prop<-loglikemf(data[i,],eta.prop,alpha) ##loglike contribution

#from individual using the proposed values of the parameters

logprior.prop<- -0.5*(((eta.prop-theta[patientsbyprof[i]])/sdcovf)^2)

logpost.prop<-logprior.prop + loglike.prop

A<-logpost.prop-logpost

aaprob<-min(0,A)

u=runif(1)

if(log(u)<aaprob)

{

eta[i]<-eta.prop

}
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}

alpha.prop<-rgamma(1,a,a/alpha)

loglikealpha<-loglikemf(data,eta,alpha)

loglikealpha.prop<-loglikemf(data,eta,alpha.prop)

logpropdenratio<-(2*a-1)*(log (alpha) - log (alpha.prop))

- a*((alpha/alpha.prop) - (alpha.prop/alpha))

logprioralpha<-(aprior-1)*log(alpha) - bprior*alpha

logprioralpha.prop<-(aprior-1)*log(alpha.prop) - bprior*alpha.prop

Aaprob1=logprioralpha.prop+loglikealpha.prop-(logprioralpha+loglikealpha)

+logpropdenratio

Aaprob<-min(0,Aaprob1)

u=runif(1)

if(log(u)<Aaprob)

{

alpha<-alpha.prop

}

frailtypriorpre<-tauf*numinprofmat

thetapostpre<-thetapriorpre+frailtypriorpre #posterior precision matrix

#of the log hazard

thetapostcovar<-solve(thetapostpre) #posterior covariance matrix

#of the log hazards

CDmatrix<-chol(thetapostcovar) #cholesky decomposition #of the covariance matrix

thetapostmean<-thetapriorpre%*%thetapriormean+frailtypriorpre%*%eta

thetapostmean<-solve(thetapostpre,thetapostmean) #posterior mean of

#log hazard without frailty

epsilon<-rnorm(numprof,0,1)#iid random variables with zero mean and variance 1

etatilde<-CDmatrix%*%epsilon

theta<-etatilde+thetapostmean #sampled log hazard values

result[iter,]<-c(theta,alpha,tauf)

}

result

}
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A.5.18 Functions for sampling the log-hazards with Gaussian process

priors using Gaussian approximation of the proposal distribution

in the continuous parameter space model

We retain lines 1− 30 of Appendix A.5.1 and we include the following commands

incovar<-solve(covar)

profbygroup<-profbygroup(patientsbyprof,data)

mle=mle1(data,numprof,patientsbyprof,alpha,mu)

eta<-mle

nd=nd(profbygroup,numprof)

result<-matrix(nrow=niter,ncol=n+1)

for(iter in 1:niter)

{

loglike<-loglikeaall(profbygroup,eta,alpha) #loglike contribution

# from all individuals in the various covariate profiles

sub<-eta-mu

logprior<--0.5*(t(sub)%*%(incovar%*%sub)) #log prior density

#of the parameters

logpost<-logprior+ loglike #log posterior density of the parameters

findmode<-firstsecondd(profbygroup,numprof,mu,alpha

,nd,incovar,mle,tol=0.001,maxiter=7)

postmode<-findmode[[1]]

propcovar<- solve(findmode[[2]])

CDmatrix<-chol(propcovar) #cholesky decomposition of the covariance matrix

epsilon<-rnorm(numprof,0,1) # iid random

#variables with zero mean and variance 1

etatilde<-CDmatrix%*%epsilon

eta.prop<-etatilde+postmode

logpropden1<-propdenn(propcovar,postmode, eta) #proposal

#density of the parameters given the proposed values of the parameters

logpropden2<-propdenn(propcovar,postmode, eta.prop) ##proposal

# density of the proposed parameters given the parameters

loglike.prop<-loglikeaall(profbygroup,eta.prop,alpha) ##loglike

#contribution from all individuals in the various covariate

#profiles using the proposed values of the parameters

subb<-eta.prop-mu

logprior.prop<- -0.5*(t(subb)%*%(incovar%*%subb)) #log prior
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#density of the proposed parameters

logpost.prop<-logprior.prop+ loglike.prop #log posterior

#density of the proposed parameters

A<-logpost.prop-logpost

logdenetaratio<-logpropden1-logpropden2

aprob<- min(0,A+logdenetaratio) #acceptance probability

u=runif(1)

if(log(u)<aprob)

{

loglike<-loglike.prop

eta<-eta.prop

}

result[iter,1:n]<-eta

alpha.prop<-rgamma(1,a,a/alpha) #proposing a

#value for weibull shape parameter

overallloglike.prop<-loglikeaall(profbygroup,eta,alpha.prop)

#log likelihood contribution from the Weibull shape parameter

logpropdenratio<-(2*a-1)*(log (alpha) - log (alpha.prop)) -

a*((alpha/alpha.prop) - (alpha.prop/alpha))

#ratio of the log proposal density of Weibull shape parameter

# and the proposed Weibull shape parameter

logprioralpha<-(aprior-1)*log(alpha) - bprior*alpha

# log prior of the Weibull shape parameter

logprioralpha.prop<-(aprior-1)*log(alpha.prop)

- bprior*alpha.prop ## log prior of the proposed Weibull shape parameter

Aa=(logprioralpha.prop+overallloglike.prop)-(logprioralpha+loglike)

+logpropdenratio

Aaprob<-min(0,Aa)

u=runif(1)

if(log(u)<Aaprob)

{

alpha<-alpha.prop

}

result[iter,n+1]<-alpha

}

result

}
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A.5.19 Function to calculate the prognosis indices using the generalised

piecewise constant hazard model with the leukaemia data set

indexgpp<-function()

{

#AGE

write(file="","Please enter the Age in years of the patient

at time of diagnosis.")

age<-scan(n=1)

age[which(age<=(49))]=1

age[which(age>(49)&age<=65)]=2

age[which(age>65&age<=74)]=3

age[which(age>74)]=4

# SEX

write(file="","Please enter the Sex of the patient.

Enter 1 for male or 0 for female.")

sex<-scan(n=1)

sex<-sex+1

#WBC

write(file="","Please enter the White Blood Cell count for the patient.")

wbc<-scan(n=1)

wbc[which(wbc<=1.8)]=1

wbc[which(wbc>1.8&wbc<=7.90)]=2

wbc[which(wbc>7.90&wbc<=38.65)]=3

wbc[which(wbc>38.65)]=4

#DEPSC

write(file="","Please enter the Deprivation score measurement for the patient." )

depsc<-scan(n=1)

deps<-depsc

depsc[which(deps<=(-2.7))]=1

depsc[which(deps>(-2.7)&deps<=(-0.370))]=2

depsc[which(deps>(-0.370)&deps<=2.93)]=3

depsc[which(deps>2.93)]=4

#TIME

write(file="","Please enter the time for the patient." )

time<-scan(n=1)
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time[which(time<=52.6)]=1

time[which(time>52.6&time<=111.6)]=2

time[which(time>111.6&time<=178.3)]=3

time[which(time>178.3&time<=255.4)]=4

time[which(time>255.4&time<=346.6)]=5

time[which(time>346.6&time<=458.1)]=6

time[which(time>458.1&time<=601.99)]=7

time[which(time>601.99&time<=804.7)]=8

time[which(time>804.7&time<=1151.3)]=9

time[which(time>1151.3)]=10

eta<-read.table("nnnmrfmean.txt")

eta<-eta[1:1280,]

patientsdata<-c(age ,sex,wbc,depsc,time)

len<-length(patientsdata)

datt<-read.table("combmatrix.txt",header=TRUE)

ndata<-length(datt[,1])

sump<-c()

for(i in 1:ndata){

sump[i]<-sum(patientsdata==datt[i,])

}

write(file="","The covariate vector of the patient is")

write(patientsdata,file="")

loghazard<-eta[which(sump==len)]

write(file="","The logarithm of the hazard is.")

write(loghazard,file="")

mean <- -3.062487

std.dev <- 0.7382914

ind<-100*pnorm(loghazard,mean,std.dev)

ind<-round(ind)

# ind<-c(mu,ind)

write(file="","Index value is")

write(ind,file="")

write(file="","The index is on a scale from 0 to 100,

Greater index values indicate greater risk.")

}
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A.5.20 Function to calculate the prognosis indices using the continuous

parameter space model with the SNLG data set

We retain lines 1− 94 of Appendix A.4.2 and we include the following commands

95 eta<-read.table("nnncpsbasicmean.txt")

96 patientsdata<-c(age,albumin,ap,bsy,bulk,ecog,extranod,hb

ldh,marrow,sex,stage,urea,wbc)

97 eta<-eta[1:636,]

98 eta<-as.numeric(eta)

99 len<-length(patientsdata)

100 datt<-read.table("snlgarcom.txt",header=TRUE)

101 ndata<-length(datt[,1])

102 sump<-c()

103 for(i in 1:ndata){

104 sump[i]<-sum(patientsdata==datt[i,])

105 }

106 write(file="","The covariate vector of the patient is")

107 write(patientsdata,file="")

108 loghazard<-eta[which(sump==len)]

109 write(file="","The logarithm of the hazard is.")

110 write(loghazard,file="")

112 mean <- mean(eta)

113 std.dev <- sd(eta)

114 ind<-100*pnorm(loghazard,mean,std.dev)

115 ind<-round(ind)

116 # ind<-c(mu,ind)

117 write(file="","Index value is")

118

119 write(ind,file="")

120 write(file="","The index is on a scale from 0 to 100,

121 Greater index values indicate greater risk.")

122 }

A.5.21 Function to calculate effective sample size

essf<-function(time,samples,sizeb,nbatch)

{

niter<-length(samples)
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overallmean<-mean(samples)

sdoverall<-sd(samples)

nnbatch<-1:nbatch

cutbs<-sizeb*nnbatch

fposition<-sizeb*(nnbatch-1)+1

sposition<-sizeb*nnbatch

#write(sposition,file="")

aq<-sizeb/(nbatch-1)

position<-list()

meanbatches<-numeric(nbatch)

for(i in 1:nbatch)

{

position[[i]]<-c(fposition[i]:sposition[i])

meanbatches[i]<-mean(samples[position[[i]]])

}

ph<-aq*sum((meanbatches-overallmean)^(2))

mcse<-sqrt(ph/niter)

ess<-(sdoverall/mcse)^(2)

ess

}

essfn<-function(time,samplesall,sizeb,nbatch)

{

nparams<-length(samplesall[1,])

ess<-c()

for(i in 1:nparams){

ess[i]<-essf(time,samplesall[,i],sizeb,nbatch)

}

aveess<-mean(ess)

aveess

}

A.6 List of notations
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Table A.3: Glossary of notations

Symbols Meaning
C Censoring
R Set of right censored individuals
E Set of individuals that had the event.
n Number of individuals indexed i = 1, . . . , n
nd Number of individuals who had the event
t Survival time
F (t) Lifetime distribution or cumulative distribution function
f(t) Probability density function
S(t) Survival function
h(t) Hazard function
H(t) Cumulative hazard function
h0(t) Baseline hazard function
S0(t) Baseline survival function
S Number of covariates indexed s = 1, . . . , S
λi Hazard multiplier which depends on the covariates of the ith individual.
ηi Linear predictor of the ith individual.
xi,s The value of the covariate s for the ith individual.
β0 Baseline parameter
ϕi Acceleration factor which depends on the covariates of the ith individual.
λ Weibull scale parameter
α Weibull shape parameter
φ Missing data parameter
g Link function
xi = (1, xi,1, . . . , xi,s) The covariate vector of the ith individual.
J Number of intervals indexed j = 1, . . . , J
zi frailty of the ith individual.
D = (x1, . . . , xn) Set of data
π(θ) Prior distribution of parameter θ
π(θ|D) Posterior distribution of parameter θ given data D.
L(θ|D) Likelihood contribution
µ Vector of prior means of the parameters

V Prior covariance matrix of parameters
Lt Lower limit of interval
Ut Upper limit of interval
m Number of categories of a covariate
ϑ Proportion
tm Median survival time
tq(1) Lower quartile survival time

tq(3) Upper quartile survival time

τj Cutpoint j
τf Precision of the logarithm of the frailty
b Possible number of covariate profiles
c Total possible number of covariate profiles including time periods.
A Acceptance probability
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Table A.4: Glossary of abbreviations

Symbols Meaning

SNLG Scotland Newcastle Lymphoma Group
NHL Non-Hodgkins lymphoma
DLBCL Diffuse large B-cell lymphoma
OS Overall survival
TFR Time to first relapse
ECOG Eastern Co-operative Oncology Group
LDH Serum lactate dehydrogenase
HB Haemoglobin
WBC White blood cell
AP Alkaline phosphase
Urea Blood urea nitrogen
Extranod Extranodal without bone marrow
Marrow Bone marrow involvement
Bsy B symptoms
PCH Piecewise constant hazard
MCMC Markov chain Monte Carlo
AaIPI Age-adjusted International prognostic index
FLIPI Follicular lymphoma International prognostic index
MIPI Mantle cell International prognostic index
NCCN − IPI National comprehensive cancer network

International prognostic index
fcd Full conditional distribution
MH Metropolis-Hastings
BUGS Bayesian inference using Gibbs sampler
JAGS Just another Gibbs sampler
GPCH Generalised piecewise constant hazard model
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