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Abstract

This thesis investigates the performance of a two-way wireless relay channel (TWRC)
employing physical layer network coding (PNC) combined with binary and non-binary
error-correcting codes on additive impulsive noise channels. This is a research topic that
has received little attention in the research community, but promises to offer very
interesting results as well as improved performance over other schemes. The binary
channel coding schemes include convolutional codes, turbo codes and trellis bit-
interleaved coded modulation with iterative decoding (BICM-ID). Convolutional codes
and turbo codes defined in finite fields are also covered due to non-binary channel
coding schemes, which is a sparse research area. The impulsive noise channel is based on
the well-known Gaussian Mixture Model, which has a mixture constant denoted by a.
The performance of PNC combined with the different coding schemes are evaluated with
simulation results and verified through the derivation of union bounds for the theoretical
bit-error rate (BER). The analyses of the binary iterative codes are presented in the form
of extrinsic information transfer (ExIT) charts, which show the behaviour of the iterative
decoding algorithms at the relay of a TWRC employing PNC and also the signal-to-noise
ratios (SNRs) when the performance converges. It is observed that the non-binary coding
schemes outperform the binary coding schemes at low SNRs and then converge at higher
SNRs. The coding gain at low SNRs become more significant as the level of
impulsiveness increases. It is also observed that the error floor due to the impulsive noise
is consistently lower for non-binary codes. There is still great scope for further research
into non-binary codes and PNC on different channels, but the results in this thesis have
shown that these codes can achieve significant coding gains over binary codes for

wireless networks employing PNC, particularly when the channels are harsh.
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CHAPTER I

Physical layer network coding (PNC) is an extension of network coding to the physical
layer that exploits the addition of electromagnetic signals summed at a relay of a two-
user wireless network. The summed electromagnetic signals are demapped to soft values
that represent the exclusive-OR (XOR) of the binary messages of two users. When this is
broadcast back to the users, the desired message can be obtained by performing the XOR
operation on the summed binary message and the user’s original binary message. Hence,
both users have exchanged messages in a fast and efficient way, improving the
throughput of the network. However, it is well known that there is a degradation in
performance due to the interference at the relay and it is important to address this.
Therefore, the combination of PNC with binary and non-binary error-correcting codes

will be investigated in order to improve performance.

This thesis investigates the performance of a two-way wireless relay channel (TWRC)
employing PNC at the relay combined with different coding schemes on additive
impulsive noise channels. The coding schemes are turbo codes, trellis bit-interleaved
coded modulation with iterative decoding (BICM-ID) and non-binary convolutional
codes and turbo codes defined in different Galois Fields with a cardinality of q (GF(Q)).
The type of PNC used throughout the thesis is called link-by-link PNC, where decoding

and encoding takes place at the relay as well as at the source nodes.

1.1 Motivation and Challenges

Physical layer network coding has been a very active research area over the last 10 years.
It is a technique that can significantly increase the throughput of a wireless network, but
at the cost of degrading the overall performance. The literature contains many papers
investigating error-correcting codes combined with PNC to improve the performance on
the additive white Gaussian noise (AWGN) and fading channels. However, there are two

areas that do not seem to have been considered in the literature, but could provide very
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interesting results for the academic community. First, the performance of PNC on
wireless networks when the channels suffer from impulsive noise has not been
investigated. In wireless environments, impulsive noise is a result of man-made
interference that introduces very large noise samples that occur for very short time
periods into the transmitted signal. This means that the overall noise at a receiver has a
non-Gaussian distribution and there are several methods to model impulsive noise, such
as the Gaussian mixture model (GMM), symmetric alpha-stable distributions, Middleton
class A noise and Bernoulli-Gaussian noise. It is likely that a wireless network could be
subjected to impulsive noise and it is important to be able to understand how it would
affect the performance of PNC, which this thesis addresses. Second, all papers on PNC
focus solely on binary error-correcting codes, but it appears that none consider non-binary
error-correcting codes. It is well known that non-binary codes have a performance
advantage over binary codes when a channel contains burst errors, so it interesting to
observe if these codes can reverse the degradation in performance due to the interference
at the relay due to the summed electromagnetic signals. Furthermore, there appear to be
no papers investigating non-binary codes on impulsive noise channels, so it will be very
interesting and novel to evaluate the performance of PNC combined with non-binary

codes on additive impulsive noise channels.

1.2 Aims and objectives

The aim of this thesis is to investigate the performance of a TWRC employing PNC at the
relay combined with binary and non-binary error-correcting codes on additive impulsive
noise channels. Simulation results of PNC combined with binary turbo codes and trellis
BICM-ID will be presented and compared with PNC combined with non-binary
convolutional codes and turbo codes, on impulsive noise channels with different levels of
impulsiveness. Theoretical analyses will also be provided, with extrinsic information
transfer (ExIT) charts to show the behaviour and convergence of the iterative decoding
schemes at the relay and also bounds on the bit-error rate (BER) performance of these

coding schemes will be derived to validate the simulation results.

The objectives of this project are:



To investigate the design criteria of convolutional codes, turbo codes and trellis

BICM-ID on the AWGN channel and impulsive noise channels.

To derive theoretical performance bounds for coded PNC systems and design suitable

codes to optimize performance.
Develop EXIT chart analyses to compare the capability of different iterative codes.

To investigate the design criteria of convolutional codes and turbo codes over GF(q)

on PNC over impulsive noise channel.



1.3 Statement of Originality

The accompanying thesis submitted for the degree of Doctor of Philosophy is entitled
‘Iterative Decoding Combined with Physical-Layer Network Coding On Impulsive Noise
Channel’. This thesis is based on the work conducted by the author in the Department of
Electrical and Electronic Engineering, University of Newcastle during the period
between April 2012 and July 2016. All the work recorded in this thesis is original unless
otherwise acknowledged in the text or by references. This work has not been submitted

for another degree in this or any other University.
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1.4 Organisation of the thesis

Chapter 2 presents a literature review covering wireless networks employing PNC,
different channel models and coding schemes including convolutional codes, turbo code

and trellis BICM-ID used in this thesis.

Chapter 3 begins with a theoretical background on PNC, including the way PNC
exchanges information using a simple channel model, which is followed by the
description of the AWGN channel and Gaussian mixture model. Also, an introduction to
binary convolutional codes is given, explaining the encoding and decoding processes,
along with a theoretical performance analysis, which will be used when investigating the
more advanced coding schemes in the later chapters. This chapter ends with a summary
of finite fields in order to understand the arithmetic required in the encoding and decoding

of non-binary codes.

Chapter 4 including the construction of binary turbo coded PNC and the iterative
decoding process of turbo codes at the relay are described. Also the theoretical
performance analysis of turbo codes is given, by deriving upper bounds on BER
performance and performing an EXIT chart analysis to observe the behaviour of the
iterative decoder used in binary turbo codes and determine the pinch-off SNR where the
decoder converges. Next, trellis BICM-ID is detailed with explanations of the encoder
and iterative demapper/decoder and how it is combined with PNC. EXIT charts are also
provided to verify the pinch-off SNR of trellis BICM-ID demapper/decoder. Finally,
simulation results are presented for PNC combined with turbo codes and trellis BICM-ID

on different impulsive noise channels and are compared.

Chapter 5 introduces non-binary convolutional codes defined in finite fields and explains
the encoding and decoding processes. A description of how PNC is combined with non-
binary convolutional codes is given and simulation results are presented on different
impulsive noise channels and compared with binary convolutional codes. A bound on the
BER performance of PNC combined with non-binary convolutional codes on impulsive

noise channels is also presented to validate the simulation results.

Chapter 6 explains non-binary turbo codes, including the encoding and decoding
processes and how they are combined with PNC. Since there is very little information on

non-binary turbo codes in the literature, a numerical worked example is provided for one
11



complete turbo decoder iteration. Simulation results for PNC combined with a non-binary
turbo code defined in GF(4) are presented and compared with PNC combined with a
binary turbo code on impulsive noise channels. Lower bounds on the BER performance
are also derived to show the error floor region of non-binary turbo codes defined in GF(4)

and GF(16) and these are also compared with the error floor region of binary turbo codes.

Finally, chapter 7 concludes the work presented in this thesis and provides suggestions for

future work.

1.5 Publications arising from this research

1. Zhao, Yuanyi, et al. "Link-by-Link Coded Physical Layer Network Coding on
Impulsive Noise Channels." Sensor Signal Processing for Defence (SSPD), 2015. IEEE,

2015.

2. Zhao, Yuanyi, et al. "Convolutional Codes Defined In GF(q) Combine With PNC Over
Impulsive Noise Channel." IET journal.2016

3. Zhao, Yuanyi, et al. "Non-Binary Turbo Coded Physical Layer Network Coding on

Noise Channels." Electronics letters. 2016
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Literature Survey



2.1 Introduction

In the modern wireless communication area, one of the biggest challenges is to eliminate
the interference at the receiver, when the signals are received from multiple sources
simultaneously. As a matter of fact, most solutions are proposed from the view of
reducing or avoid the interference by the design of a proper receiver to schedule the
transmission schemes [1]. However, with the scheme of physical-layer network coding
(PNC), it is possible to embrace the interference in order to improve the throughput
performance, but there are two aims that must be met: First, the simultaneously received
signals at the relay must be able to be interpretable and broadcast from the relay to the
destination nodes. Secondly, the destination node must be able to extract the information
from the received signals sent from the relay. The capability of network coding schemes
provides a potential approach to meet these aims though simple Galois field additions
[2][3]. The concept of PNC is to deal with signal reception and modulation through the
relay at the physical layer so that the EM signals are mapped by the GF(q) addition of bit
streams so that the interference can be used as part of the arithmetic operation in the PNC.
Thus, we are curious to find out the performance of PNC with different channel coding
schemes over a variety of noise channels, in order to see the capability of PNC and its

possible applications.

2.2 Physical-layer Network Coding

The concept of PNC was first proposed in 2006 [4], in order to enhance the performance
of wireless network transmission, and since then it has developed into a new field of
network coding with wide implications. The basic idea of PNC is to maximize the
network coding usage, which occurs naturally when electromagnetic (EM) waves are
superimposed on one another. This simple idea turns out to have profound and
fundamental ramifications. Since then, many researchers have made contributions in the

area of PNC. Afterwards, Zhang introduced the basic concept of synchronization of PNC
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in [5], and the importance of the transmitted signals from each node to be synchronized
by listing the impact of imperfect synchronization. Katti et.al addressed the XOR
operation for the received mixing signals from different sources at the relay [6], and
evaluates the design on a multiple nodes model. Hausl et.al proposed a joint network-
channel coding based on turbo codes for multiple-access relay channel [7], which shows
the capability of PNC for the cooperative uplink for two mobile stations with the aid of a
relay, and shows that systems with network coding for the multiple-access relay channel
gain cooperative diversity compared to the system with the distributed turbo code for the
relay channel. Popovski proposed the model of a TWRC on PNC, and the application of
network coding arising from this model [8]. Partan in [9] has highlighted the important
practical issues of PNC.

Zhang proposed another paper in [10] to show the direct application of network coding at
PNC for TWRC and subclass the technique into two classes: PNC over a finite field and
PNC over an infinite field. Katti et.al [11] describes a system that improves the
throughput of wireless networks on PNC by mapping the signals on symbol levels, which
allows the nodes to opportunistically route groups of bits to their destination with low

overhead.

In 2009, Zhang investigates the link-by-link channel coded PNC to show that the
performance of Repeat Accumulate (RA) codes on the channel at the nodes in a relay
system [12]. This was followed by Rossetto and Zorzi who proposed the design of
practical asynchronous PNC design to show the advantage of asynchronous PNC [13].
Koike-Akino et.al investigated optimized modulation schemes for TWRC on PNC,
showing that QPSK constellations with an XOR network always perform the best for the
broadcast stage of PNC [14]. Furthermore, Cui and Gao showed several new
transmission schemes for TWRC on PNC with differential modulation schemes.[15]

Further studies by various researchers have led to many new outcomes in the areas of
wireless communication and wireless networking. In [17], Louie proposed an analysis
and performance comparison of practical PNC for two-way relay channel (TWRC),
which compares the performance of traditional transmission schemes, e.g. four time-slots
transmission schemes to the performance of PNC and show that the maximum sum-rate
of PNC is higher. Nazer explored the core ideas behind PNC and showed the possibilities
PNC offers for communications over interference limited wireless networks [18].

Another performance comparison is shown in [19] by Wilson, proving that PNC can
15



outperform the recently proposed analog network coding schemes. The benefits of PNC
are not only limited by synchronous transmission, but Lu also showed that from the
asynchronously transmitted signals of the PNC received at the relay, the performance can

be improved by applying a belief propagation method [20].
2.3 Channel Coding and PNC

The introduced research on PNC does not include channel coding, but channel coding
schemes are widely applied to PNC in order to improve the performance of PNC. Thus,

it is important to learn the application of channel coding schemes combined with PNC.

2.3.1 Convolutional codes on PNC

Elias first proposed the class of binary convolutional codes in 1955 [65], and it is one of
the most commonly used channel coding schemes with a vast range of applications.
Khan considered a physical-layer simulation with quadrature phase shift keying (QPSK)
modulated convolutional code in [26] to serve as a helpful resource for researchers.
A.Zhan investigates the advantage of linearity of the channel coding schemes combined
with PNC in [27], analysing the capacity of the channel coded model on the AWGN
channel in order to show the ability of PNC to improve the network throughput and
robustness. Wang discussed the channel coding design on PNC under a three-node
network coding scenario in [28], where the bit error rate (BER) at the relay of the
channel is bounded by the weakest channel coding scheme. Gacanin presented the
performance of bi-directional transmission with convolutional coded PNC on a multipath
channel in [29]. D. To has shown that the Viterbi algorithm can be used by
approximating the maximum likelihood (ML) decoding for the XORed message at the
relay in [30] and by applying the convolutional codes reduced-state decoding can achieve
the same diversity gain as full-state decoding for fading channels. The implementations
of asynchrony between signals transmitted by the multiple transmitters, which integrate
channel coding with PNC to achieve reliable communication, are looked into in [31]-[32].
The asynchrony decoding process of convolutional coded PNC systems is investigated
by Yang. Overall, the convolutional codes are treated as the most commonly use channel

coding schemes in PNC, and as a fundamental background of turbo codes or other
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coding schemes, it is important to look into the performance of convolutional codes

combined with PNC.

2.3.2 Turbo Codes combined with PNC

It is widely acknowledged that iterative decoding schemes have significant advantages
when combined with PNC. In [33], Hausl introduced an extension of the conventional
two-way relay communication with a joint network-channel coding method for PNC,
where turbo codes are used as the channel coding scheme for both source nodes and a
network code is used at the relay. They derived closed-form expressions for upper
bounds on channel capacities of the time-division relay and two-way relay channel
without power control. The study of [34] proposed a joint physical network coding with
turbo codes for multiple-access channels, where the performance of the proposed scheme
approached the information-theoretic limits of the traditional network. They showed that
combining channel coding and network coding achieves a 2.1dB improvement at a bit
error rate (BER) of 107> on the AWGN channel over traditional network coding with a
turbo multi-user detector. The study of Fang et al. [35] investigated the performance
degradation of hierarchical decode-and-forward (HDF) turbo coded PNC on
conventional two-way relay communications compared to a single user end-to-end turbo
coded system. A simple upper bound on the performance of turbo codes using ExIT
charts was also presented. Guan [36] showed an improved PNC method based on turbo
codes and M-PSK, analyzing the transmission energy consumption of the proposed
scheme and showing how the enhanced PNC method can halve transmission energy
consumption at the relay node over conventional PNC. Zeng [37] presented the non-
coherent detection of iterative differential phase-shift keying (DPSK) demodulation for
PNC combined with turbo codes on conventional two-way relay communications, where
the iterative processing converges faster on a Rayleigh fading channel, and an ExIT chart

analysis shows that most of the coding gains are achieved within two iterations.
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2.3.3 Trellis BICM combined with PNC

There are several studies on trellis BICM combined with PNC on conventional two-way
relay communications. In [38], Xu et.al showed that trellis BICM can significantly
improve the BER performance of a PNC system by applying a suitable iterative
demapping and decoding framework and proper constellation mapping schemes specially
designed for PNC. By considering the deployment of a relay transceiver employing PNC
and BICM-ID coding, the performance of the receiver achieved an energy efficiency
improvement of 0.5-0.9dB on fading channels. Tao [39] addressed the convergence
behavior of the iterative receiver of BICM-ID coded PNC at the relay using (ExIT)
charts to design good channel-coded PNC schemes. Noori introduces the concept of
semi-Gray mapping on PNC that improves the system BER performance and the
achievable rate in [40]. It needs to denotes that based on our system, the anti-Gray
mapping could reduce the complexity at the relay, due to anti-Gray mapped signals
addition could achieve the coding gain which semi-Gary mapping could not. It turns out
research in the area of trellis BICM combined with PNC, which is one of the commonly
used iterative coding schemes, is sparse and it is therefore important to investigate the

performance of trellis BICM combined with PNC.

2.3.4 Non-Binary Convolutional Codes on PNC

One important class of error-correction code is the convolutional code. The major
difference between convolutional code and block codes is that block codes are only able
to encode a fixed length of information bits. However, convolutional codes can encode a
continuous stream of information bits. Another advantage of the convolutional code is its
simplicity: convolutional codes have a much simpler trellis than block codes. However,
convolutional codes achieve a poorer performance than block codes at higher code rates.
Multiple levels encoding to form g-ary codes was first proposed in [59] and then their
performance over different channels was proposed in [60-62]. Also, this class of code is

analyzed by [63][64]. It is well known that convolutional codes construct defined in
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GF(q) outperform binary convolutional codes, and they have become more popular in
recent research [64-68]. So our motivation is to compare the performance of non-binary
convolutional codes combined with PNC over GMM channel with different mixtures of
impulsiveness to binary convolutional codes, in order to see how the impulsive noise
affects different coding schemes and evaluate it by deriving the upper bound on

performance.

There are two classes of non-binary convolutional code that provide substantial coding
gains when used with M-ary orthogonal signaling and non-coherent detection. The first
class is the g-ary convolutional code, which can be viewed as an extension of dual-k
codes with much larger memory elements and the symbols are mapped to the field of

GF(q). The second class is the binary-to-q-ary convolutional codes, which can be viewed
as a rate % extension of the rate 1 code [69]. It turns out that the research of non-binary

convolutional codes combined PNC is rare. Faraji-Dana investigated a non-binary
constellation modulation scheme combined with PNC and convolutional coding in [70],
where the simulated FER of the non-binary convolutional code is presented with a upper
bound on the performance of decoding the network combinations. However, their works
only considered the field of GF(2) to GF(4) with simple comparison to the basic
convolutional codes of constraint length two. In this work we are going to consider the
scenarios where the non-binary convolutional codes are mapped onto higher order of
fields with longer constraint lengths, e.g. the industry standards, to approach a practical

performance for non-binary convolutional codes combined with PNC.

2.3.5 Non-binary Turbo Codes on PNC

As one of the most significant breakthroughs in coding, turbo codes soon became one of
the most popular coding schemes. However, there is only a small body of work on turbo
codes on the TWRC with PNC. This includes Hausl [78] who proposed a distributed
turbo coding scheme for a multiple access relay channel and Feng [79] who studied the
performance degradation of binary turbo codes on a TWRC. However, there appears to

be no work in the literature studying non-binary turbo codes with PNC. In [80] Berrou
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introduced non-binary convolutional codes for turbo coding and showed that Quaternary
codes can be advantageous, both in terms of performance and complexity. Hence, in this
thesis we investigate the performance of non-binary turbo codes over GF(4) and GF(16)
combined with PNC, where encoding and decoding take place at the relay and source
nodes in each time slot. We also consider the effect of additive impulsive noise on the
performance of non-binary turbo codes. This has been investigated in [81], where the
authors analyzed the performance of binary turbo codes combined with PNC on additive

impulsive noise channels.

2.4 Channel Coding and Impulsive Noise Channel

Although channel coding combined with PNC is becoming a more popular research area,
most of the research has been done under the assumption of AWGN channel due to the
pdf of Gaussian noise being straightforward for the system to be analyzed. However, it
is important to look the performance of PNC over other more complicated channels. One
noise model we are particular interested in is the impulsive noise model, as there are
many scenarios in a real environment that can be modelled as impulsive noise channel,
such as underwater environment and so on. Again, there are few works that focus on the
impulsive noise channel with PNC, and none mention channel coded PNC. In [98],
Chitre provides an overview of the key developments in communications techniques of
underwater networks that discussed the open problems and the challenges of the
impulsive channel in the near future. Yousuf discussed the impulsive noise events in the
error correction and data interleaving codes with varying code rates in [99], proving that
the effects of impulsive noise can be reduced by applying channel coding schemes.
Overall, the area of channel coded PNC over impulsive noise channel still needs to be

explored, and is one of the aims of this thesis.
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2.5 Conclusions

After a literature survey on past research on TWRC with PNC, it appears that most
researchers are assuming the network coding system is on AWGN channels and only
very few researchers are focusing on other noise channels. Furthermore, the non-binary
channel coding schemes combined PNC is essentially and unknown area. We have
chosen four different channel coding schemes that are combined with PNC, in order to
observe the BER performances on PNC over both the AWGN channel and impulsive
noise channels, along with the theoretical performance analysis including the bound
theoretical derivation and EXIT charts for iterative decoding codes to verify our results.
We believe that the works in this thesis are novel and the results are original, and not
only explore the core ideas behind the PNC but also fill in an important gap in the

available literature that will be useful for other researchers considering this area.
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Chapter 3

Theoretical Background



3. Theoretical Background

3.1 Introduction

In this chapter, the required background knowledge for physical layer network coding
(PNC), impulsive noise channel modelling, encoding and decoding of convolutional
codes and finite field arithmetic required to understand non-binary codes is presented.
The chapter begins by explaining the system model for PNC, where encoding/decoding
is performed at the source/destination nodes and additionally encoding and decoding
takes place at the relay. From this we can analyse the theoretical and simulated bit-error
rate (BER) performance of the two-way wireless relay channel employing PNC at the
relay. One of the contributions of this thesis is the addition of impulsive noise to the
PNC system model, which is modelled as a Gaussian mixture and defined later in this
chapter. Its effect on several different coding schemes, including turbo codes, trellis bit-
interleaved coded modulation, non-binary convolutional codes and non-binary turbo
codes is evaluated and analysed throughout the thesis. It is therefore important to gain a
fundamental understanding of convolutional codes, which are the component codes of
the aforementioned coding schemes. Finally, non-binary codes are considered in
chapters 5 and 6, which are defined in extension fields, so it essential to include an

explanation of finite fields, which concludes this chapter.
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Amplitude

3.2 System Channel Model

3.2.1 AWGN model

In wireless communications, the AWGN model is widely used as it provides an accurate
description of a complete set of noisy observations by means of qualitative information
that is characterized by a few simple parameter values [39]. The well-known AWGN pdf

with zero-mean is given by:

1 _x
p(x)—me 20 (3.1)

where o2 is the noise variance of the distribution. This distribution plays an important
role in statistical modelling and was first derived by German mathematician Johann
Gauss in 1867 [47]. As the reference model for this research, the Gaussian distribution
acts as one of the main factors in analysing the theoretical performance of each network
coding scheme in this thesis. Examples of AWGN noise samples for different SNRs are

shown in Fig 3.1.

F | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Noise length

Figure 3.1 Noise strength at different SNR: 0dB (black), 5dB (blue), and 10dB (red).
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3.2.2 Impulsive Model

It is not enough to evaluate the performance of network coding only on the AWGN
model. Some scenarios can cause impulsive noise to be added during network
transmission. In general, there are several different models to represent an impulsive
noise environment: the Gaussian mixture model (GMM), symmetric alpha-stable
distributions, Middleton class A noise and Bernoulli-Gaussian noise. The mixture model
was first purpose by Tukey in 1960 [50], and it is a probabilistic model that assumes the
data are generated from a mixture of a finite number of Gaussian distributions, which
results in an approximately Gaussian distribution but with a certain number
(corresponding to the mixture constant o) of contaminating distributions. Due to the
mixture model being convenient to calculate the noise distribution in order to evaluate
the network coding performance in an impulsive noise environment, it has widespread
popularity among many researchers over the past decade [44-50]. However, the most
popular model of the GMM is a mixture of two Gaussian densities. To evaluate the
network coding schemes under an impulsive noise environment, it is important to know

the distribution of the impulsive model. The pdf of the GMM can be expressed as:

Peum = (1 — a)pg (x) + ap;(x). (3.2)

where 0 < a < 1 is the Gaussian mixture constant, with larger values of a denoting
more impulsiveness. The terms p;(x) and p;(x) are the Gaussian pdf and impulsive pdf
respectively, where p;(x) has a much larger variance than p;(x), and their addition
results in a heavy-tailed distribution pspp,. The noise strength at different o of GMM

impulsive noise is shown in Fig 3.2.
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Figure 3.2 Noise strength at various a at SNR=1dB: a@ = 0.01 (black), @ = 0.1 (red),
and a = 0.5 (blue).

From Fig 3.2 it can be seen that as the value of mixture constant a increases, the

proportion of the distribution p;(x) increases and thus increases the impulsiveness
of pemm-
In this thesis, we have chosen the variance of impulsive noise 6/ to be ten times larger

than the variance of Gaussian noise g, where:

0l =— (3.3)
No = SNRag " (3.4)
4R10 10

We chose the mixture constant o to have values of 0 < a < 0.5. For some channel
coding schemes, even with one percent of impulsive noise, the performance of the codes

can be affected significantly.

Recalling the distribution of GMM in (3.2), the BER of the impulsive channel with
BPSK and QPSK modulation is simply defined as:
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1 E,\ 1 E,
PGMM=(1—0()§eTfC Np +a§erfc N, | (3.5)

where N; and N; are the noise power spectral densities of the Gaussian noise and

impulsive noise respectively.

3.3 Construction of PNC

3.3.1 PNC Transmission Model

Let us consider the following situation: There are two source nodes: node 1 and node 3.
Both nodes want to communicate to each other but this is only possible through the aid

of a relay as shown in Fig 3.3 [18]:

Pl
[ 1 H—I'-[/-

™ ¥ onan
A R

-

J \j_,f'

Figure 3.3 Three-node Linear Network.

Fig 3.3 shows a traditional two-way relay channel (TWRC) model, where 1 and 3 are the
user nodes and 2 is the relay. In a two-way relay transmission scheme, communication
can take place over four-time slots, where node 1 communicates with node 2 in the first
two time slots and node 2 remains idle, and node 2 communicates back to node 1 during

the last two time slots with node 1 remaining idle, as shown in Fig 3.4 [18].

- S‘ - +
(D : ) - — =
P o o A
Tme ot 00 s Time slot 2
— — — Tmeskot3 ———— Time slot 4

Figure 3.4 Traditional four-time slot transmission scheme.
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We refer to this scheme as a four-time slot transmission scheme, and its performance has
been studied extensively.. One problem with this transmission scheme is the relatively

low throughput, as a consequence of transmission over four-time slots.

One way to increase the throughput is to allow node 1 to transmit Si in the first time slot
but now let node 3 transmit S3 in the the second time slot. At the relay (node 2), the

signals are added resulting in:
S2=S1D S3 (3.6)

where @ denotes the bitwise exclusive OR operation applied to the entire frame of Si
and S3. Then node 2 broadcasts the signal Sz back to both node 1 and node 3 in the third
time slot. When the destination receives the message (e.g. node 1), S3 can be extracted by

XOR-ing Sz and Si:
S1PS2=S1P(S1 D S3) =S3 (3.7)

This is known as straightforward network coding and its system model is shown in Fig

3.5 [18]:

/1— | S "?/5\7" Sa /;\]
e ———— )
S S

Timeslot1 e Time slot 2
— — — Timeslot3

Figure 3.5 straightforward network coding scheme.

Similarly, node 3 can extract information that node 1 sent from the broadcast signal Sz as
well. In this scheme, only three-time slots are needed, meaning the throughput

improvement is 33% better than the traditional transmission scheduling scheme.

Although the straightforward network coding scheme boosts the transmitting speed by
33%, it can be improved to 100% with the PNC transmission scheduling scheme, which
completes the exchange of signals over two time slots. In the first time slot, node 1 and
node 3 transmit to the relay simultaneously, while during the second time slot, the relay
forwards the summed received signals to both nodes. Such a scheme is referred to as a
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two time slot PNC scheme and has been shown to achieve higher throughput than the
four-time slot transmission scheme due to fewer time slots being used for transmission.
However, certain assumptions are made to achieve this, e.g. symbol-level and carrier
phase synchronization and the use of power control to all nodes so that the signals from
node 1 and node 3 received by the relay have the same phase and amplitude. Fig 3.6
shows the PNC system model [18]: The destination nodes perform the same procedure as

in the straightforward network coding scheme to extract the information from the signal.

P S1 T Sa n ¥

LT e X2 )L 3)

N S, g O, S, P
Time slot 1 s Time slot 2

Figure 3.6 PNC system model.

3.3.2 Theoretical Analysis of PNC

For BPSK-modulated PNC, it is possible to derive the theoretical performance for both
the relay and the node. Let us consider the channel noise as AWGN, so the error

probability is [36]:

1 VB’
P(r|x=\/E_b)=We 202, (3.8)

This gives us the probability of getting an error event when the node is transmitting a

V Ep - So, the error probability of node 1 transmitting to node 2 without a relay is:

1 E,
Psingle = EGTfC N_O ’ (3.9)

where % is the SNR. The received added signals are resulting in three values with four
0

different situations, which are:
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Node 1 Node 3 Relay
JE, JEs 2/Ey
V5, A 0

0

_2\/E_b

Table 3.1: Possible values of BPSK modulated signals received at the relay on PNC

From Table 3.1, it can be seen that the probability of receiving a 0 is 50%, and the other

two values are 25% respectively. The probability of a bit error at the relay given that the

summed BPSK signals equal —2,/E}, is

1 ~VEb _(r+2|/Ep)?
P(r|x = —2,/Eb) = WLE_ e
b

For the probability of a bit error, given that x=+2,/E}, we have:

(T_Z\/E_b)z

P(r|x = +2\/E_b) = W - 202 (r.

For the probability of a bit error, given that X= 0 we have:

r2

P(r|lx =0) = = VE» o35 202 dr+

V21o?

The complementary error function is defined as [37]:
2 o 2
erfc(x) = —f et
V1 s
So, by applying Eqn. (3.13) to Eqn. (3.10) - (3.12) we obtain:

1 Ey

P(r|x——2\/E_b)——erfc \/: ——erfc 315 )

202 (dr.

\/_f\/—e 202 dr.,

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)
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1 E 1 E
P(r|x = +2\/E,) = serfe|3 N—Z —serfe| - ’N—Z , (3.15)

P(rlx =0) = erfc| |— |. (3.16)

By following the probabilities from Table 3.1, the theoretical bit error probability

Pye1qy at the relay can be derived as:

Pretay = 0.25 P(r|x = —2,/E,) + 0.25 P(r|x = +2,/E},)+0.5P(r|x = 0)

— 025 1 E) 1 3 E,
= 0. 2erfc N, 2erfc N,
+0.25|~ 3 ) L B
. 2erfc N, Zerfc N,
Ey
+ 0.5erfc v | (3.17)

0

Due to terms erfc (13 \/%) only having a significant effect on Py.¢;4, at very low SNRs,
0

we can ignore them to obtain:

3 Ep
Prelay = Zerfc N_o . (3.18)

To derive the theoretical performance at the destination nodes, two situations need to be
considered when an error is received at a destination node: an error occurred at the relay
during the first time slot and is received unchanged by node 3, or no error occurred at the

relay but an error then occured at the destination node during the second slot.
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If a bit error occurs at the relay and also at the destination node, then in reality the bit has
been flipped twice and no error has actually occured. According to the situations above,
the error probability of transmitting signals from source node to destination can be

expressed as:

Pdestination_node = (1 - Psingle)Prelay + (1 - Prelay)Psingle - 2PsinglePrelay

1 Ey, \\3 E,
1— —erfc| |— | |-erfc| [—
2 Ny | |4 N,
3 Ey, \\1 E,
1— —erfc| |— | |zerfc| |— (3.19)
4 Ny | |2 N,

E,\1 E, 5 E, 9 E,
—2|=erfc| [— |zerfc| [— ||=—-erfc| |— |——erfc| |—
4 Ny | 2 Ny 4 Ny 4 Ny

+

2

3.3.3 Performance of QPSK modulated PNC at the Relay and

Destination Nodes

Figure 3.5 shows the system model of a PNC system from the source nodes to the relay.

Node A Channel noise
n
Xa
SRLL Modulator l
I{’.‘- --‘\. Yy
 + j——» Demapper —*
ms -
— | Modulator
XB
Node B Relay

First Time Slot

Figure 3.7 The system model evaluating the BER performance of uncoded QPSK PNC at
the relay.
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It can be seen that node A and node B map the information sequences m4 and mp to
modulated signals Xa and Xs and then transmit these signals to the relay simultaneously.

x4 and xp are added at the relay, which can be expressed as:
Y =X4+x5 +1, (3.20)

where 7 is the channel noise. Constellation diagrams showing the constellation points at
the source node and at the relay without noise are shown in Fig 3.8. Then the theoretical

BER performance at the relay can be determined from the nine constellation points.

Q

Q _
00 01 00

01 00 O d O

O @) 2or
N2E
_10 | 10
I |
110 010

0 00 (l) 01 0 00

Figure 3.8 Constellation diagrams of the QPSK modulation scheme at the source nodes

(left) and the 9-point constellation at the relay (right).

Let us consider the channel noise as AWGN first, where the probability distribution
function (pdf) of receiving a signal at the relay given that we transmitted two signals
from the source nodes is [36]:

_ (TI—XI)2+(TQ—XQ)2
202

e , (3.21)

P(r|x) =

2mo?

where x is the summed received symbol from the source nodes, x; and x, are real and

imaginary part of X, r is the received symbol at the relay and ri and rq are the real and

imaginary parts of I.

As shown in Fig 3.8, the received signals when added result in nine different complex

values from sixteen possible summations, presented in Table 3.2:
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Node 1 X1 Node 3 X3 X= X1+ X3 Relay
00| VE,+jyE, | 0 | JE+jJE | 2JE,+2jJE, | 0
0 | VE+iE | O | ~E+iE | 2VE o1
00 JE» +j\Ep 10 JE» — i\ 2./E, 10
00 JE» +j\Es 11 —JE, — jJE, 0 11
00 | B+ iE | 0 | R +iE 2B, o1
01 ~JE, +jJE, | O —JEy +j\Ey | —2E, +2jJE, | 00
01 —JE» + j\Ep 10 JE> — iy 0 11
01 —JE» + j\Ep 11 —JE, — jJE, ~2E, 10
0| VE,-iE, | 00 | JE,+jJE, 2By 10
10 JE» — i\ 01 —JE» +j\Ep 0 11
10 JE» — i\ 10 JE» — j\Ep 2./E, — 2j\/E, 00
10 JE» — i 11 —JE, — jiJE, ~2j/E, 01
11 —JE, — i JE, 00 JE» +j\Ep 0 11
11 —JE, — jJE, 01 —JE» + J\JE, ~2/E, 10
11 —JE, — jJE, 10 JE» — iE ~2j\/E, 01
11 —JE, = j/Ep 11 —JE» —iE, | —2E, —2jJE, | 00

Table 3.2: Possible values of QPSK modulated signals received at the relay on PNC
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From Table 3.2, it can be seen that there are four cases of receiving 00, i.e. the points
2Ey + 2j\JEp, 2/Ey — 2j\JEp, —2JE}, + 2j,/Ep, —2,/E, — 2j/E},, which each have
the probability of 1/16=6.25%. The probability for each of the points —2,/E,,
2/Ep, —2j\JEp, 2j\JE} is 2/16 = 12.5% and the probability of the point 0 is 4/16 = 25%.

Thus, the conditional probabilities of the received signal at the relay are:

P(ylm; = 0,m3 =0) =

[G1-2Ep) +(vo- [or+2Ep) +(vo-2/Ep)"

foo foo 202 te 202
[01-2JE)" +(vo+2JEp)°
+e 20°
_[Gr+2JEp) +(vo+24/Ep)°
2
te 20 dy,dyq, (3.22)
P(ylmy =0,m;=1) =
y,2+(yQ [y +(vor2 By
T 202 202
j f + 2e dy,dy,, (3.23)
P(ylm; =1,m3 =0) =
|G- zm +q? _[Or+2yE) +yg?
2
f f + 2e 20 dy,dy,,  (3.24)
o oo [vi*+¥Q®
Plyim;=1my;=1) = J. f 4e | 207 dy,dy, (3.25)
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As we know, the error probability of QPSK is equal to the error probability of BPSK.
Thus the error probability at the relay can be simply viewed as:
1 1 1

qu = Prelay = Zp(ylml =0,m3 =0) +ZP(}’|m1 =0,m3=1) +ZP(}’|m1 =1,m3=0)

1
+ZP(y|m1 =1,my;=1) (3.26)

A system model showing both time slots of the TWRC employing PNC is shown in Fig 3.9.

Node A Channel noise Channel noise
n n Node A
ﬂb Medulator =
l y Demapper ———»
—»( + I—yr Demapper [—» Modulator —»{ +
me - -
—» Modulator Demapper ———»
XB Relay y
Node B
Node B
———————————— e e e e i
First Time Slot Second Time Slot

Figure 3.9 System model of evaluating BER performance of uncoded QPSK PNC at

destination nodes.

To derive the theoretical BER at the destination nodes, there are two scenarios that need
to be considered: First, a bit error is received at the destination node due to noise added
at node 1. Second, a bit error occurs at the relay during the second slot and is broadcast
to the destinatio nodes where is remains as a bit error. One situation needs to be
highlighted: If a bit error occurs at the relay and at the destination node, then the bit has
actually been flipped twice and there is no error at the destination node. According to the

scenarios above, the probability of a bit error at the destination nodes is:
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BER

Pqn = (1 - Psingle)qu + (1

- qu)Psingle - 2Psinglepqr .

(3.27)

The comparison between simulated BER and the theoretical BER both at the relay and

the destination nodes are shown in Fig 3.10.

——BER at Node
BER at Relay

Theoretical Performance at relay

Figure 3.10 Comparison of simulated BER to theoretical BER, F,;,, and P, at the

relay/node on uncoded PNC.

From Fig 3.10 it can be seen that the simulation results match closely with the theoretical

error probability. The performance of decoding at the relay on PNC (red curve) is

slightly better than decoding at the destination node (green curve), with approximately a

0.5dB advantage. The reason for this degradation is because if the relay only broadcasts

signals without error correction, the signals are interfered by the channel noise twice.

Thus, the performance of the BER performance at the relay is very critical, and it is

important to find the appropriate network coding scheme for the relay.
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By following the constellation diagram in Fig 3.8, the conditional probabilities of received

signals at the node are:

Poumu(y|x = 00) =

+ ae

20

(yl—\/E_b)Z“‘(ZJ’Q—x/E_b)Z] (w@%gwas—bf]\‘
G

207

dydyq, (3.28)

[ ((1 —a)e
fwfw\

Peum(ylx = 01) =

[ ] |a-oe

Poun(y|x = 10) =

(J'I—JE_b)2+(2>'Q+JE_b)2

20¢

(yI—JE—b>2+(2yQ+¢E—b>2

207

+ ae

dy,dyq,(3.29)

S { [Or+E) +(vo~VEb)" | r+E) +(vo~VEp)’ \I
f f \(1 —a)e 206 + ae 20f dydyq,, (3.30)
Peum(ylx =11) =
- [t E) +vo+E)” [@1+JEp) + (o +Ep)*
] f (1-we 2% + ae 207 dydy,, (3.31)

The conditional probability at the relay can be calculated by following the same
procedure. By substituting (3.28) - (3.31) into (3.26), the theoretical error probability
PqGrMM at the relay of PNC on impulsive noise channels with QPSK modulation can be

derived as:
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PSMM = (1 — a)PS + aP), (3.32)

where P = E~f3rfc( /ﬂ> and P, = Serfc ( P) are the bit error probability of
4 Ng 4 Njp

AWGN and impulsive noise respectively. Thus, the error probability of transmitting

signals from node to node with PNC on impulsive noise channels pS;™ can be
expressed as:
pin™ = (1= Paun)Pg™™ + (1 = PG )Poram — 2PeumP™™. (3.33)

The comparison of simulated BER to theoretical BER of uncoded PNC on the impulsive

channel is shown in Fig 3.11.

10°L --=- Theoretical Performance at Node ___________________
-l ——BER at Node § N
- —=BER at Relay - ‘ -
- Theoretical Performance at Relay |- .
107 i i i i
0 B 10 15 20 25

SNR

Figure 3.11 Comparison of simulated BER to theoretical BER, P, and pga™ at the

relay/nodes on uncoded QPSK PNC over impulsive channel, a = 0.1.
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From Fig 3.11 it can be seen that the simulation results match closely with the theoretical
error probability. The performance of decoding at the relay on PNC (green curve) is
slightly better than decoding at the destination node (red curve), with approximately a
1.5dB advantage. With ten percent of impulsive noise in the channel, the BERs of the
system are significantly affected by the channel noise compared to the AWGN channel
in Fig 3.8. The comparison verifies the expressions of the theoretical BER performance
of PNC with uncoded QPSK on impulsive channels, which will support the work

presented in later chapters.

3.4 Construction of Binary Convolutional Codes

Elias first proposed the class of binary convolutional codes in 1955 [65]. The major
difference between convolutional codes and block codes is that block codes are only able
to encode a fixed length of information bits. However, convolutional codes can encode a
continuous stream of information bits. Another advantage of the convolutional codes is
their simplicity: convolutional codes have a much simpler trellis than block codes. Thus,
convolutional codes have been widely applied since 1955. In this section, we are going to
introduce the basic principles of convolutional codes combined with PNC and evaluate

the theoretical performance of convolutional codes.

3.4.1 Convolutional Encoder

There are two kinds of convolutional codes encoder that are commonly used to encode
information bits: Non-Systematic convolutional (NSC) codes and Recursive Systematic
Convolutional (RSC) codes [74]. NSC codes have the encoder structure shown in Fig
3.12. The generator polynomials G = [g,(D), g,(D) ...] specify the different types of
NSC code.
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Figure 3.12 Encoder structures of NSC Codes.

As shown in Fig 3.12, the generator polynomials can be expressed as:

g'(D) =[gi + g;(D) + -+ ga (D™ 1) ]

g*(D) = [g7 + g5(D) + -+ ga (D" D) ] (3.34)

where D are the memory elements, g*(D) and g2?(D) used to obtain the output x; and x,.

Thus, for input information bits of length L, the output coded bits have a length of

Ri (L + v), where R, denotes the code rate, V is the number of memory elements and the
c

extra R.v coded bits occur due to the v bits added at the end of the information bit

sequences to reset the memory elements, which is known as terminating the code.
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3.4.2 Decoding of Binary Convolutional Codes

There is more than one choice of decoder for decoding convolutional codes, including
majority logic decoder [75], the sequential decoder [76], the Viterbi decoder [77] and the
BCIJR decoder [78]. In this thesis we use MAP decoder or BCJR algorithm [79], since
the MAP decoder achieves better performance at low SNR. The criterion of MAP

decoding is given by:

X = argmax P (x|y), (3.35)
X

where P(x|y) is the a posteriori probability (APP) of the transmitted symbol x given the
received codeword y. Considering the X € {+1} due to BPSK mapping, then (3.35) can
be simplified to:

X = sign[L(x)], (3.36)

where L(X) is the log-likelihood ratio (LLR), which is defined as:

P(x = +1]y)
L(x = log | ———=. 3.37
(x1) glp(xz_lly) (3:37)
and can be extended to:
- P(x =+1
L(xly) _ log Zs SESy ( Iy) (3.38)

Ys-ses, P(x = =1]y)]

The s and $ represent the current state and next state respectively in the trellis diagram,
where § — s € S; corresponds to the input x = +1, and § — s € S, corresponds to the

input x = —1. Thus, two pdfs p(x = +1|y) and p(x = —1]|y) can be factored as:

P(xly) = Ax-1(8)yi($,s) By (s), (3.39)

where K is the index of the kth data, A and B are the trace forward and trace backward

metrics respectively, y is the branch metric. The trace metrics are defined as:
A() = ) 7i,9) Ay s (8), (3.40)
s
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AOESRACHYAGY (3.41)

The recursion of A and B is initialized based on the assumption of the encoder of

convolutional code being initialized to the all-zero state and terminated to the all-zero

state at K = L:
_(1whens =0, _
A(s) = {0 e k=011 (3.42)
__(1whens=0, _ _
B,.(s) _{OwhenSqt ok=LL=1.0 (3.43)

where L is the length of the received information signal. The branch metric y is defined

as:

lye—cill®
Pl (A3t

3.44
2o’ ( )

]/K(é, S) =

where 2 is the noise variance. For long codeword lengths, the BCJR algorithm can be
numerically unstable [80], so now the metrics are considered in the logarithmic domain.
This is known as the log-BCIJR or log-MAP algorithm. The way to compute metrics A, B

can be expressed as:

Ap(s) = logz eVk(E) k=109 (3.45)
3
By_1($) = logz eVk(9)Bk(s) (3.46)
S
. P(xx) ly = xell?
Y1 (8,s) = log T (—T (3.47)
As we know,
log(e* + e¥) = max{x,y} + log(1 + e~*1). (3.48a)
This can be approximated to
log(e* + e¥) = max{x, y} (3.48b)
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Thus, (3.45) to (3.47) can be rewritten as:

A (s) = max{A_1(8) + v, ($,5)}, (3.49)

By ($) = max{ Bi(s) + v« (8, )}, (3.50)
N

Ye($,s) = T o2 (3.51)

Moreover, (3.38) can also be rewritten as:

Ls-sex, Ar-1(8) +vi(8,5) + By (s)

L(x) = log Y ces. A 1(5) + 1., 5) + Bi(s)

= max [Ax_1(8) + yi(5,5) + Bi(s)]

S—SExX4

— max [Ax_1(S) +vx($,s) + By(s)]. (3.52)

$—sex_

If the max operation defined in (3.48a) is used, then the algorithm is called the log-MAP
algorithm. However, if the max operation defined in (3.48b) is used, then it is called the

Max log-MAP algorithm.

In order to show the procedure of determining the trace metrics, a typcial calculation
involving two branches in the trellis diagram that converge at a node is shown in Fig

3.13.

Ak-1($1)  $
§ Ar(s) = max {Ax_1($) +yi(s. 9},

Se{$1.5]

Ap-1(82) 4
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Br($) = max {Bx_1(s) +yk($,s)]
5E{51.52}

L.

Bi_1(s1)

Figure 3.13 The Illustration of trace forward metric A and backward metric B of the

MAX-log MAP decoder

3.4.3 Theoretical Performance of Binary Convolutional Codes

We assume without loss of generality that the all-zero sequence is the input to the

encoder and the rate % (7,5)g convolutional code is chosen as the example code to

introduce the following analysis. The state table of the rate % (7,5)g convolutional code is

shown in Table 3.3. Based on the state table, it is possible to draw a signal-flow graph of

the convolutional code. The Hamming distance properties and BER performance of the

convolutional code can be obtained from a signal-flow graph, as shown in Fig 3.14.

Input

Initial State

Next State

Output

00

00

00
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1 00 01 11
0 01 11 01
1 01 10 10
0 10 01 10
1 10 00 11
0 11 10 01
1 11 11 10
Table 3.3. State table of rate % (7,5)g convolutional code.
S Xy
D 7N D
D
% ¥ L ox k0 :; Y Xe
. %

Figure 3.14 signal-flow graph of rate % (7,5)g convolutional code.

Let X,= state 00, X;,= state 10, X.= state 01 and X;= state 11. Thus, based on the signal-

flow graph, we can write four state equations:

X, = DX, + X,,
XC = DXd + DXb,

Xd :DXd +DXb,

(3.53)
(3.54)

(3.55)
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X, = D2X,, (3.56)

By definition the transfer function T(D) is defined as:

X,
(D) = 3~ (3.57)

By submitting (3.53)-(3.56) to Eqn (3.57), we have:

T(D) = (3.58)

1-2D

The exponent of D shows the distance of the sequence of encoded bits for that path from
the all-zero sequence. Then the transfer function T(D) can be evaluated by performing

the long-division:
T(D) = D®>+2D5 + - (3.59)

The bound on the bit-error probability of the rate % (7,5)g convolutional code P, can be

expressed as [81]:

N
1
Pbc =< EE Z Tchhannel. (3-60)

W dfree

where P.pannet = %er fc ( \/i:z), N is the codeword length and K is the information bits

length, R is the code rate. Thus by substituting (3.59) into (3.60), the bound on the bit

error probability of a rate % (7,5)g convolutional code can be calculated. A comparison of

simulated BER to theoretical bound of rate % (7,5)g convolutional code is shown in

Figure 3.15. From the figure it can be seen that the bound matches the simulated BER

closely, and proves the derivation is correct.
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BER

10

—BER
-- Bound

Figure3.15 Comparison of simulated BER to theoretical bound of rate % (7,5)g

convolutional code

3.5 Finite Fields

The nonbinary coding schemes used in chapters 5 and 6 in this thesis have elements
defined in finite fields, denoted as GF(q). A finite field is a field containing a finite
number of elements and the number of elements in the finite field is called the order [75].
The elements in the field can be added, subtracted, multiplied or divided. A finite field of
order q exists if the order q is a prime power p%, where p is a prime number and « is a
positive integer [76]. A finite field in which the element can takes q different values is
referred to as GF(q). In the work of this thesis, we are focused on the field of four and
field of sixteen, that is GF(4) and GF(16). Table 3.4 and Table 3.5 list the mapping from
binary bits to nonbinary symbols. It needs to be denoting here, the primitive polynomial

is B2+B+1=0 gives B>?=B+1 by modulo-2 addition in a field of F =
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{0,1, B, B2, ..., B/, ...}. Let p(X) be the primitive polynomial of degree z over GF(2),
and assume p(B) = 0. Since p(X) divides X271 4+ 1, we have X214+ 1 = g(X)p(X)
where q(X) can be regarded as a polynomial of § over GF(2). Thus, if X =, we
have B2~1 + 1 = q(B)p(B). Since p(B) =0, we have B 1+1=0=p¥ 1 =1.
Therefore, the field can be expressed as F = {0,1, B, B, ..., B* 72}, that is a Galois field
of 2% elements GF(27).

Binary GF(4) Polynomial
00 0 0
01 1 1
10 B B
11 B2 B+1

Table 3.4. Mapping of GF(4), primitive polynomial is B? + B + 1 = 0.

Binary GF(16) Polynomial
0000 0 0

0001 1 1

0010 B B

0100 B2 B

1000 B3 B3

1001 p* B3 +1
1011 B® BP+p+1
1111 pe B*+p*+B+1
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0111 B’ BZ+p+1
1110 p® B>+ p*+B
0101 B° Br+1
1010 pto B+
1101 it B*+p2+1
0011 B2 B+1
0110 '3 B*+B
1100 pt4 B* + p2

Table 3.5. Mapping of GF(16), primitive polynomial is B* + 3 + 1 = 0.

There are two operations in GF(q) commonly used in the encoding and decoding of non-

binary codes: addition and the multiplication. The addition and multiplication tables of

GF(4) are shown in table 3.6 and 3.7 respectively.

v 0 1 B B
0 0 1 B B?
1 1 0 B? B
B B B’ 0 1
B B? B 1 0
Table 3.6. Addition table for GF(4).
X 0 1 B p?
0 0 0 0 0
1 0 1 B B?
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Table 3.7. Multiplication table for GF(4).

3.6 Conclusions

In this chapter, an introduction to TWRC employing PNC at the relay is given, including
a comparison of the simulated BER performance with the theoretical BER performance
of uncoded PNC at the relay and destination nodes. Furthermore, the basic concepts of
impulsive noise channels based on GMM are presented with the noise distribution
expression and noise variance analysis. A brief introduction of encoding and decoding
convolutional codes is provided with a comparison of simulated BER to theoretical
bound. Finally, the fundamental knowledge of finite fields is presented explaining how
to add and multiply finite field elements in order to have a better understanding of

encoding and decoding nonbinary channel codes in future chapters
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Chapter 4
PNC Combined with

Iterative Trellis Decoders



4. Binary Turbo codes and Trellis BICM-ID

4.1 Introduction

Shannon’s channel coding theory states that as the block size of a random code increases,
it will approach its optimal performance, known as the Shannon limit. This initiated a
new research area with the aim of constructing codes that could achieve the Shannon
limit but with a reasonable complexity. In 1993, turbo codes, or parallel concatenated
convolutional codes (PCCCs), were introduced by Berrou et.al and Glavieux later [58]. It
can be said that turbo codes are one of the most significant breakthroughs in error control
coding, achieving near-Shannon limit performance with a decoder complexity that
enables it to be implemented in hardware. One of the main factors for this excellent
performance is the iterative turbo decoder, which comprises two component soft-input-
soft-output decoders in series passing prior information to each other to achieve further
improvements in performance after each iteration. The turbo principle has also been
applied to other coding schemes, in particular trellis bit-interleaved coded modulation
with iterative decoding (BICM-ID), which comprises a single convolutional encoder and
interleaver, but decoding is achieved iteratively by passing prior information between a

demapper and SISO decoder.

In this chapter, PNC is combined with turbo codes and the performance is evaluated
when the channels between source/destination nodes and relay node are impulsive. The
additive impulsive noise channels are modelled using the well-known Gaussian mixture
model (GMM), as described in chapter 3. The turbo encoder and decoder are first
explained and this is followed by an explanation of the combination of PNC with turbo
codes. A detailed analysis of the performance of PNC with turbo codes on impulsive
noise channels is then presented. The extrinsic information (ExIT) chart showing the
behaviour of the iterative turbo decoder at the relay of a TWRC with impulsive noise is
derived. Furthermore, a upper bound on the BER performance of turbo codes is derived

to accurately determine the error floor for different impulsive noise channels.

Next, an investigation into PNC combined with trellis BICM-ID on additive impulsive
noise channels is presented. The encoder and iterative demapper/decoder scheme is
explained and how PNC is combined with trellis BICM-ID. The EXIT charts of the

iterative demapper/decoder scheme for trellis BICM-ID are derived at the relay of a
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TWRC employing PNC with additive impulsive noise channel. The chapter is concluded
by comparing PNC combined with turbo codes and trellis BICM-ID in terms of

performance and complexity.

4.1.1 Turbo Code Encoder

Input d C

Y

A 4

[—
—
—
Q)
-
P
¢
oo
-
)
P

A J

Figure 4.1 Encoder structure of turbo code.

The turbo code encoder is a parallel concatenation of two identical recursive systematic
convolutional (RSC) codes encoders separated by an interleaver, as shown in Figure 4.1.
The interleaver is usually a pseudorandom interleaver that interleaves the message for
encoder 2. The combination of two RSC encoders with an interleaver produces a
codeword with a high hamming weight, and the interleaver makes different codewords

relatively sparse, named multiplicity, increase the coding gain of turbo code.

The standard turbo code encoder polynomials can be expressed as:
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922 (D)
g (D)

G(D) = IL (4.1)

where g(1)(D) and g(,)(D) are the feedforward and feedback polynomials respectively,
e.g. (1,;)8 RSC code can be represented by the binary strings g;) = 101 and g,y =
111 for which g(;)(D)=1+ D + D? and g;)(D) = 1+ D?. It can be seen that the
general codeword produced by turbo encoder has a rate of 1/3, which can be increased to

a higher rate of 1/2 with a puncture matrix of P = [é (1) .

4.1.2 Puncturing

It can be seen that the codeword generated by the turbo encoder has a rate of 1/3, but this
can be increased to higher code rates by removing certain patterns of bits from the
codeword to decrease the block size. This is called puncturing and for turbo codes it is

only applied to the parity-check bits from each RSC encoder. A puncture matrix P is
used to determine which bits are removed. For example, the puncture matrix P = [(1) (1)]

increases the code rate of a rate 1/3 turbo code to a rate 1/2 turbo code by removing the
even indexed bits from the first RSC encoder and the odd indexed bits from the second
RSC encoder. The puncture matrix must also be known for the decoder process so that it

knows which bits in the codeword have been removed.

A 4

RSC encoder )I

Interleaver Puncture

v

RSC encoder

als

Figure 4.2 Encoder structure of turbo code with a puncture.
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4.1.3 Turbo Decoder

The turbo code decoder in this thesis is constructed from two soft-in-soft-out (SISO)
Max log-MAP decoders that exchanges prior information between each decoder in every
decoding iteration loop to converge to an optimal performance, as shown in Fig. 4.3. In a
decoding iteration, the first decoder takes in LLR values of the received message and
parity-check bits and LLR values from the second decoder. The first decoder updates the
LLRs of the message symbols and then extrinsic LLRs are extracted by subtracting the
original LLRs of the message symbols and the a priori LLRs from the second decoder.
Then the second decoder takes in the original interleaved LLRs of the message symbols
and the interleaved extrinsic LLRs from the first decoder, which becomes the a priori
LLRs. The second decoder updates the interleaved LLRs of the message symbols and
extrinsic LLRs are extracted by subtracting the original interleaved LLRs of the message
symbols and the a priori LLRs from the first decoder. Finally, the extrinsic LLRs are
deinterleaved and become the new a priori LLRs for the first decoder. This completes
one decoding iteration. After a certain number of iterations, the turbo decoder
performance either converges until no more errors are present or fails if too many errors

are present.

Input Demultipl |y, Decoder for

y exer | codel Ll Interleaver
y: =
Interleaver
L.
| Decoder for | De-
code 2 | interleaver

|
Hard Output

decision -

Figure 4.3 The turbo decoder
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To decode the soft received symbols using the MAX-log-MAP algorithm, three metrics
A, B and y are defined. The A and B metrics are the trace-forward and trace-backward
metrics and y is the branch metric. A and B are initialized as in (3.42)-(3.43), but y is

now defined as:

XgLe(xk) _ lyx — CKHZ
2 202 '

ve($,8) = (4.2)

where L, (xg) is the extrisic information of xg, K is the index, s is the present state and $

is the next state and ¢ is the noise variance.

Thus, the output LLR is calculated as:

L(x) = Sr_r};'é{é {Ak-1(8) +yk($,5) + Bg(s)}

_S,r_nS%)S(O {Ak_1(8) + vk (S, s) + Bg(s)}. (4.3)

where S, is the set of all state transitions corresponding to X =+1 and S_ is the set of all
state transitions corrresponding to X = -1. By substituting (3.42)-(3.43) and (4.2) into
(4.3), we have:

YkCk
o2

L(xly) = Le(e) + max { A1 (8) + =55 + By(s)}

Vi€ 2y
(’;ZK + BK(s)} + U—ZK . (4.4)

— max {AK—l(é) +

S—sex_

In (4.4), the first term is the extrinsic LLR received from the other decoder, the second
and third terms are the a priori information send to the other decoder, and the fourth term

is directly received from the noise channel, known as the channel reliability. The

performance of a turbo code with (1,5) RSC encoders on the AWGN channel is shown
8

in Fig. 4.4, for one iteration up to 10 iterations. Observe how the gain in performance
becomes smaller with each iteration until it converges. Also notice that an error floor

appears at around a BER of 10, which is a characteristic of turbo codes.
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aterfall region.

SNR
Figure 4.4 BER performance of (7,5)g Turbo code on AWGN channel.

4.2 PNC combined with Turbo Codes

Based on the review carried out in chapter 2, it appears that the effect of impulsive noise
on a conventional TWRC employing PNC has not been considered. Of particular interest
is the effect of impulsive noise on the iterative decoder employed at the relay. When
evaluating the performance of an iterative decoding scheme, it is important to investigate
the convergence behaviour of the iterative decoding algorithm, which can be achieved
using ExIT charts [9]. When there are two decoders exchanging information, the
behaviour can be plotted with respect to each decoder. The process of exchanging
information is represented in a chart that depicts the transfer of mutual information
between the a priori information and the extrinsic information passed between these
decoders. To obtain an ExIT chart for the turbo code affected by impulsive noise, we
need to know the probability density function (pdf) of the noise. To achieve this, the
Gaussian mixture model (GMM) has been selected [10][11], which was defined in

chapter 3.
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Figure 4.5 System model of turbo coded PNC over impulsive noise channel, where the

channel encoder is the required turbo encoder, e.g. (7,5)s.

1 1 .
The performances of rate > and rate 3 turbo codes are evaluated on the conventional

TWRC employing PNC, where the uplink and downlink channels are additive impulsive
noise channels. Furthermore, ExIT charts are presented to analyse the effect of impulsive
noise on the iterative decoding algorithms at the relay and to validate the simulations

results in following sections.

The system model of turbo coded PNC on impulsive noise channels is shown in Figure
4.5. Let my € {0,1}* and my € {0,1}* be the k-bit binary messages sent from node A
and B. The information sequences are encoded resulting in ¢4 € {0,1}" and cp € {0,1}",

where n is the block size of the codes.

The received information sequence at the relay can be expressed as:

Yy=x4+xp+n, (4.9)
where x, and x5 are complex QPSK symbols transmitted from nodes A and B
respectively, 1 is the noise added at the relay and (x4, x5) € {1 +j,1—j,—1—j,—1+
j}. The sum of the two transmitted QSPK signals xz can have nine possible complex

values, as shown in Figure 4.6.
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Figure 4.6. Constellation diagram of anti-Gray mapped QPSK.

The relay must then determine the log-likelihood ratio (LLR) of y given that xg = x, +
xp was transmitted, L(y|x, + xp). This is decoded at the relay to give the message
mg = my @ mg , where @ is the XOR operation. The decoded message is then re-
encoded to give ¢z = c4 @ cg, which is mapped to a QPSK constellation and broadcast
back to nodes A and B. At nodes A and B, the received signal is decoded to obtain mpg,
where node A can obtain mg by performing the XOR of my with its known binary
message my and vice versa. To show that the codeword Ci + C2 can be obtained by
encoding the message m1 + ma2, consider a general encoder with generator matrix G. We

therefore have:

cg=my-G (4.5)
c; =my -G (4.6)
So, the sum ¢; + ¢, is:
citc;=my-G+m,-G (4.7)
which can be simplified to:
citcey=(0m+my)-G (4.8)

In other words, the message mi + m2 can be recovered from the codeword ¢1 + Ca.

The turbo decoder will decode a vector of LLR values that give a measure of the
reliability of the combination of both source nodes’ codewords. We choose to use the
Max-log-MAP decoding algorithm for the component decoders, so at the output of each

decoder, the a posteriori LLR L(xg|y) can be expressed as:
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L(ley) = Lcy + La(xR) + Le(xR)' (410)

where

4./E
L, = NOB (4.11)

is the channel reliability that represents the relationship between channel outputs

corresponding to the systematic bits.

LoGcd) = In (P(CR =11) + P(cy = 10)>

P(cg = 01) + P(cg = 00)

(4.12)

P(cg = 10) + P(cg = 00)

LGB =In (P(CR =11) + P(cg = 01)>

where x} and x3 are the first and the second bit of x5, L,(xg) is the a priori LLR and

L. (xg) is the extrinsic LLR of each decoder.

From the resulting nine-point constellation diagram at the relay, each received symbol y
is demapped to a pair of LLR values, L(y|m%) and L(y|m2), which are a measure of the
reliability of the two XORed transmitted bits, m} and m%, where the superscript denotes
the first or second bit and m} = m} @ m} and m3 = m% @ m2. Hence the LLR of y

conditioned on m} can be written as [67]:

(4.13)

L(y|m}) = In (W)

P(y|mg = 0)

where mj is the first bit of my. By following the constellation diagram in Figure 4.6, the

conditional probability of y given that m} = 0 is determined as:

o oo 1 (YQ—ZZE)Z (3’Q+22E)2 (3/1—2215)2 (y1+22E)2 _%
:f_mf_oo omoz\e X te 2t Jle 2t 4e 207 +2e 20° | |dydy, (414)
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where g2 is the noise variance, y; is the real part of y and y, is the imaginary part.

Similarly, the conditional probability of y given that the m} = 1 is determined as:

P(ylmg = 1) = P(y|mg = 10) + P(y|my = 11)

© o 1 0o/ _om2e? 22 _)?
=.f f 2 L 202 (e 20> +e 20° +2e 20% |dydy, (4.15)

Therefore, by submitting (4.14) and (4.15) into (4.13) the reliability of y can be rewritten

as:
P(ylmg = 10) + P(ylmg = 11
L(y|mb) =lr1< (yImg ) (yImg )) (4.16)
P(y|lmg = 00) + P(y|mp = 01)
This can be simplified to:
2Ey, 1
L(y|m}) =In <cosh 2 ) - (4.17)
The derivation can be viewed in the appendix.
Similarly, the second bit L(y|m2) can also be determined as:
P(ylmg = 01) + P(ylmg = 11) 2Ey, 1
L(ylm3) =1 =1( h—)—— 4.18
(vimsz) n<P(y|mR =10) + Pylmg = 00)) ~ oSz ) — 5z (418)

Hence, based on (4.17) to (4.18), the pdf of the GMM at the relay can be derived. For
example, the conditional pdfs of y given that m: = 1 when impulsive noise is added at

the relay is:
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Peym (y|m}13 =1)

© o 1 (YQ)Z (y1—2E)* (y+2E)? _(yp)?
= f f (1-a)2 gy L 205 <e 206 te 206 +2e 29 )
—0J—0 og;

1 09 oimee? irzey 1)
e 29 (e 2901 +e 290 +42e 29 dyldyQ (4.19)

+a
2naf

and

P(y|mg = 0)

o o 1 (vo—26)°  (vo+2E)* W—2E)? _(y+2E)? _?
= j f (1-a) e 206 e 206 <e 206 t+e 296 42e 29 )
oo Tog

1 (yQ—ZZE)2 (yQ+225)2 (vj=2E)? (v +26)? _op?
e 29 +e 29 e 29 +e 29 +2e %9 |dydyy(4.20)

+a
2nof
where oZand of are the variances of Gaussian noise variance and impulsiveness noise
variance respectively. Hence, by substituting (4.19) and (4.20) into (4.16), Lgyy(ylmk)

and Ly (y|lm3) can be expressed as:

PGMM(Ylmll? =1)
Loy (yImd) = ln( 421
G Y 1T PGMM(Y|m11e =0) ( )
PGMM(}’|m12e =1)
Loy (yIm3) = ln( 4.22
Gum Y 1Tk PGMM(ylm}22 =0) ( )

The extension of Lgp (vIm3) and Ly, (yIm3) is lengthy and can be found in the

appendix.
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4.3 ExXIT Chart of Turbo Codes

Each component decoder in the turbo decoder receives three sets of LLRs, which are the
channel reliability for the systematic bits L%, , the a priori LLR L, and the channel

reliability for parity check bits L’Zh. The extrinsic LLR, Le, can be expressed as:
L, = Lfotel — X — ., (4.23)

where the a priori information L, of one decoder is the extrinsic information L, sent
from the other decoder. Therefore, we have the mutual information between the a priori
information and the systematic message X, represented as I(X;A), and the mutual
information between the extrinsic information and the systematic message X, which
is I(X; E). The relationship between the mutual information I(X;E) and the systematic

message X in AWGN channel with binary input can be expressed as:
Ep
IGE) =T (I(X;A),N—) (4.24)
0

The pdf of the conditional extrinsic information on systematic input X, p; (y|X), can be

expressed as:

1 =)
e 20° (4.25)

pe VIX) = —
2o

In order to analyse the behaviour of the turbo decoding algorithm at the relay, the ExIT
chart is introduced, which tells us the number of iterations required for a decoder to
converge at a particular SNR, or conversely that the system will not converge at a
particular SNR. To generate the EXIT chart characteristics, it is necessary to introduce
the concepts of the turbo decoder first. In the iterative decoding process, A is obtained
from the other decoder. The extrinsic LLR E is produced by the turbo decoders based on
the received sequence and A. According to Bayes' rule, the distribution of X at the relay

can be expressed as:

PO = ) pOIX = DPX =) (4:26)
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where the value of X is related to the modulation scheme, and P(X = X) is the
probability. By substituting p(y) into the GMM p;(y) can be obtained. By using the
Kullback-Leibler distance, the mutual information between X and A can be computed as:

pxaXy) .

1064) = Dpxallpspa) | praCEy) o, DS dzdy,  (427)

where py, is the joint probability distribution of X and A. By applying Bayes’ rule we

can rewrite 1(X;A) as:

PA|X()’|37)PX(3Z)
px(X)pa(y)

Ngpa(y|%) y
Zfe{s} pay|X) 7

1% 4) = f Paix 1Py (B logs dxdy

1

+00
=5 ] PO 0g;

(4.28)

where N; is the number of states of X and S € {xz}. The extrinsic LLR E from the output
of the decoder can be used to determine 1(X;E) by generating a histogram of the extrinsic
outputs. Since the distribution of E is not Gaussian we can compute 1(X;E) as:

+00

. Nspe (y|X)
PE|X()’|x) log,

Sres Pr VD)

1
IX:4) =5 f (4.29)

When performing the ExIT chart analysis, we chose values of a from 0.01 to 0.1 to

analyse the convergence behaviour of the turbo codes at the relay. From Figure. 4.7(a) it
can be seen that the lowest SNR, or pinch-off SNR, where the rate% turbo coded PNC

system converges is 3.1dB. The trajectory in the EXIT chart indicates that approximately

12 or 13 iterations are required to achieve convergence. Similarly, Figure.4.8 (a) shows
the ExIT charts for the rate é turbo code and we observe that the pinch-off SNR limit for
the turbo code is 2.7dB with approximately ten iterations required. Figure.4.7 (b) shows
the ExIT charts of the rate % turbo code when 0=0.1. In this case, the pinch-off SNR limit
of the turbo code is 16.5dB, and it takes about four iterations for the decoder to achieve

convergence. Again, we also see this behaviour in the EXIT charts of the rate%turbo
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codes are shown in Figure.4.8 (b), where the

over the rate % turbo code.
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Figure 4.7 Rate % Turbo code EXIT chart on GMM, a=0.01 (a) and 0.1 (b), pinch-off
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Table 4.1 lists all pinch-off SNRs for rate % and rate i turbo code in different & mixtures:

a 0 0.01 0.05 0.1 0.2 0.5

-1 1 22dB | 3.1dB | 3.8dB | 16.5dB | 19.5dB | 21.5dB

-1 | 1.7dB | 2.7dB | 3.2dB | 15dB 18dB | 21dB

TABLE 4.1: Comparison of the pinch-off SNR limit of rate % and rate § turbo codes

when 0 < a < 0.5.

4.4 Upper bound on turbo code BER performance

As shown in Fig. 4.1.3, turbo codes exhibit an error floor when the probability of error
performance fails to reduce rapidly at high SNR. It can be explained by approximating
the BER of a turbo code, by using the union bound the average BER is bounded by [108]:

2K_q

v< el |5 (430)

i=1

where w is the weight of the message sequence of the i-th message, d is the Hamming
distance of a certain codeword; N is the interleaver length and R is the code rate of the
turbo code. Reordering the terms corresponding to the information sequences of the

same weight, equation (4.26) can be rewritten as [46]:

N (NJ)

Wi ZleEb
P, < Z z 2ol = (431)
i=1 1=1 0

where (N j) is the number of information sequences of weight j. As SNR increases, the

first two terms of P, dominates, so (4.27) can be approximate at high SNR as:
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P, < Z%Q —"‘1:7 D (4.32)
- 0
j=2

where dfye denotes the minimum codeword weight among all codewords generated by
the information sequences of weight j. The reason why error floors appear at high SNR
can be seen from equation (4.41), that is, a smaller d,,,;;, will cause an error floor due to

it representing low weight codewords.

—e— 18 lteration

BER

Figure 4.9 Upper bound of rate ; turbo code, ten decoding iterations.

Figure 4.9 shows the upper bound on the BER of a rate % turbo code. It can be seen that

at an SNR of 2dB, the turbo code BER converges to the upper bound and s in an error

floor.

Recalling the pdf expression of GMM noise in (3.26), that related to overall noise power
spectral density of GMM noise Ngpp:
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where N; and N; are the noise power spectral densities for the Gaussian noise and
impulsive noise respectively. By substituting (3.36) to (4.32), the asymptotic
performance of a turbo code on a GMM channel can be expressed as:

3 3
(1 — a)]n] deinREb a]n] deinREb
ISPt f TN o1 f TN R
MM Z, X Q N, + X Q N, (4.34)

j=2

Moreover, if we only take the impulsive term ),

3 ajnj 2dminREp
j=2 g Ny

) from Py, this

gives a higher bound that actually indicates the error floor caused by impulsive noise.

0
10 ! ——Upper bound F’bG'\’"“'I
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——Turbo «=0.01
0 10° I T W S
107" | \
0 5 10 15 20 25 30

Eb/NO in dB

Figure 4.10 Comparison of rate % turbo code with PNC at the relay, a=0.01 with upper

bound and the higher impulsive bound

69



10 '?—-—Upper bound PbGMM
E—Upper bound PL
—==Turbo ¢=0.01
% 10'5 \ I
m %Q\K‘\\
\\ "
10-10
0 5 10 15 20 25 30

Eb/NO in dB

Figure 4.11 Comparison of rate § turbo code on PNC at the relay, @=0.01 with upper

bound and the higher impulsive bound
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Figure 4.12 Comparison of rate % turbo code on PNC at the relay, =0.1 with upper

bound and the higher impulsive upper bound
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Figure 4.13 Comparison of rate é turbo code on PNC at the relay, a=0.1 with upper

bound and the higher impulsive bound

As SNR increases, the simulated results start to converge with the upper bound. Figure
4.10 and Figure 4.11 show the upper bounds and simulated results when @ =0.01. In this
case, we observe that the impulsive bound does not have a significant effect on the turbo
code performance since the impulsive mixture is much lower and the error floor region is
consequently much smaller, but the simulated turbo code performance converges with
the upper bound at higher SNRs. In Figure 4.12 and Figure 4.13 the mixture is a =0.1
and it can be seen that, at low SNR the simulated results match closely with the higher
impulsive bound and converge with the error floor region from approximately 8dB to

15dB.
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4.5 BER Performance of Turbo Codes combined with PNC

BER

—e—R=1/3 Decoding at Relay
10 = |-=—R=1/2 Decoding at Relay
F |=o=R=1/3 Decoding at Node
=0—R=1/2 Decoding at Node

100 1 2 3 4 5 6 7 8

Figure 4.14 BER performance of rate % (37,21)g and rate % (37,21)g turbo codes on

PNC at the relay, Interleaver length = 2,000 bits, five decoding iterations and AWGN

Figure 4.14 shows a comparison of rate % and rate § (37,21)g turbo codes combined with
PNC, both at the relay and at a destination node. The performance of the rate % punctured

turbo code performs slightly worse than the rate § turbo code for both at the relay and

node. The waterfall regions for both codes start at around an SNR of 2dB for decoding at
the relay and around 5dB for decoding at the node. It can also be seen that there is
approximately a 3dB difference between decoding at relay and decoding at node for each
turbo code. This is due to the codewords being decoded and encoded again at the relay
before transmitting to each node, where the uncorrected errors remain in the codeword

but are incorrrectly assumed to be ‘correct’.
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Figure 4.15 BER performance of rate i (37,21)g Turbo code (white squares) and rate g

Turbo code (black squares) with impulsive noise at the relay, Interleaver length = 2,000

bits, five decoding iterations

Figure 4.15 shows a comparison of rate % and rate § (37,21)g turbo codes combined with

PNC at the relay with impulsive noise channels. At the relay, any large positive or
negative impulses are clipped so that their energy is no greater than the transmitted

symbol energy E. The performance of turbo coded PNC is seriously affected on additive

. . . o . 1
impulsive noise channels resulting in error floors, as shown in the figure. The rate >

punctured turbo code performs slightly worse than the rate g turbo code when a = 0.01

and the waterfall regions for both codes start at around an SNR of 3dB, which is
supported by the EXIT charts in Figure 4.7 and Figure 4.8. When a = 0.5, the channel is
very impulsive and both codes are having similar performance with error floor occurring

at very high BERs.
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4.6 PNC combined with Trellis BICM-ID

In this section, the structure of the trellis BICM-ID encoder and iterative decoders will be
discussed, including the design and analysis of the trellis BICM-ID decoder suitable for
combination with PNC. Trellis BICM-ID has a much lower complexity than turbo codes
and is designed for fading channels, where bursts of errors occur frequently. It is well
known that the performance of trellis BICM-ID on the AWGN channel is worse than
turbo codes, but their performance on impulsive noise channels compared with turbo
codes is not known. A BER performance comparison to the turbo code is presented with
a view to seeing the difference between different network coding schemes for PNC on
the impulsive channel. EXIT charts are also presented to compare the performance of
PNC combined with different code rates of trellis BICM-ID code and turbo code to

verify the simulation results.

4.6.1 Construction of trellis BICM-ID

The encoder of trellis BICM-ID consists of a convolutional encoder connected to an
interleaver, which increases the achievable diversity order. Thus with the aid of the
interleaver the code’s diversity order can be extended to the binary Hamming distance of
code [54]. The decoder structure of trellis BICM-ID is similar to the turbo decoder, but
consists of only one soft-in-soft-out (SISO) demapper in series with a SISO decoder, in
order to exchange the extrinsic information to each other to enhance the performance of
the decoder. The maximum likelihood (ML) decoding of trellis BICM-ID is infeasible,
due to the interleaver introducing a significant number of states. However, the trellis
BICM-ID decoder has an efficient and sub-optimal decoding method that may approach
the performance of the ML decoding algorithm. The basic structure of trellis BICM-ID is

shown in Figure 4.16
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Figure 4.16 General structure of trellis BICM-ID
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Figure 4.17 System model showing trellis BICM-ID encoder and iterative decoding
processing on the PNC system.

It should be noted that trellis BICM-ID needs to use QPSK with anti-Gray mapping to
ensure a coding gain. The demapper exchanges mutual information with the decoder
during each decoding iteration, in order to update the LLR for more accurate demapping.
The received signal y is demapped to form the LLR of the modulo-2 sum of the binary
messages mpy and after de-interleaving the LLR is fed to the log-MAP decoder. Extrinsic
information obtained from the output of the log-MAP decoder is then interleaved and fed

back to the demapper, thus completing one iteration. Similarly, extrinsic information
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from the demapper is de-interleaved to form the a priori information to the log-MAP
decoder. The system model of the TWRC with PNC at the relay combined with trellis
BICM-ID is shown in Figure 4.17.

4.6.2 Demapper and MAP decoder of trellis BICM-ID on PNC

Trellis BICM-ID is a spectrally efficient coded modulation scheme that has been shown
to perform well under suitable signal mapping schemes with iterative demapping-
decoders. In order to demap the received symbol, the conditional LLRs of the two bits,
mp and m3, contained in the received symbol yg, L(mk|y) and (m3|y) , can be

expressed as:

L(mk|y) =In <%) (4.35)
and
L(mé|y) =1n <%) (4.36)
which can be expanded as:
Lmbly) = In <P(m}e =1,m§ =0ly) + P(mg =1, mf = 1Iy)> (437)
P(mg = 0,m} = 0|y) + P(m = 0,m% = 1]y)
and
L(mly) = In <P(m}e = 0,mf = 1|y) + P(mg = 1,m§ = 1Iy)> (4.38)
P(mj = 0,m§ = 0ly) + P(my = 1,m§ = 0|y)

Since the coded bits are bit interleaved, we can assume they are all independent. Hence,

the joint probabilities can be expressed as the product of individual probabilities:
P(m} =0,m3 =1) = P(ms = 0)P(m3 =1) (4.39)
So by applying Baye’s rule:
P(A|B)P(B) = P(B|A)P(4) (4.40)
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the joint conditional probabilities can be expressed as:
P(mg = 0,mg = 1|y)P(y) = P(yIm = 0,m§ = DP(mgz =0,mz =1)  (4.41)

and the LLRs of the received symbol L(m}|y) and L(m3|y) can be expanded as:

L(mgly) (4.42)
/p(y|m; = 1,m} = OP(y|m} = DP(m = 0) | P(ylmp = 1,mf = DP(ylm} = DP(mf = 1)
—In Pk) Pk)
\P(y|m}a = 0,m} = 0P(yImk = OP(mf = 0)  P(ylmk = 0,mf = DP(ylm} = 0)P(m = 1) /
P(y) P(y)

Cancelling out P(y) and factorising reduces L(mx|y) to two terms:

L(mgly) (4.43)
P(ylmg = 1,m = 0)P(m§ = 0) + P(y|mg = 1,m§ = 1)P(mi = 1)
P(ylmg = 0,mg = 0)P(mj = 0) + P(yImg = 0,mp = 1)P(mf = 1))’

= Ly,(m}) +1n <

Similarly L(m%|y) is equal to:

L(mgly) (4.44)
P(ylmg = 0,m§ = DP(mg = 0) + P(ylmp = 1, mg = DP(mp = 1)>

= L,(m§) +1
ms) n(P(}IIm}q = 0,mj = 0)P(mf = 0) + P(yIm} = 1, mj = 0)P(mj = 1)

where L, (m%) is the a priori LLR of the first coded bit and L,(m}) is the a priori LLR
of the second coded bit, defined as:

. (Pmg=1)
La(m}?) =In (m) , (4-45)
(P =1)
La(m,%) =In (m) . (446)
Since
P(mi =1)=1-P(m} =0), (4.47)

Therefore,
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P(mt=1) = 4.48
( R ) 1+ eLa(mR) ( )
and
P(m} = 0) ! (4.49)
mpy = = .
R 1+ eLa(mR)
Now the received LLRs can be derived as:
L(mgly)
= La(milz)
POImh = 1m} = 0) | POImh = Lmk = 1) 1, (ni)
1 + ela(mk) 1 + eLa(mf)
+ In T 5 T 5 , (4.50)
P(ylmg=0,mz=0) , P(ylmg=0mz=1) , (m3)
2 + 2 e~ al"R
1 + ela(mk) 1 + eLa(mf)

That can be simplified to:

L(mgly) = La(mg)

o1 (POImE = Lmf = 0) + P/lmk = 1,mf = Delalmd (4.51)
n ]
P(ylmk = 0,m} = 0) + P(ylm} = 0,m} = 1)era(mi)

and
L(mgly) = Lo(m§)
tIn (P(ylm}e = 0,m% = 1) + P(y|m} = 1,m} = 1)eka(m)
P(ylmk = 0,m% = 0) + P(y|mk = 1,m% = 0)ela(mr)

).(4.52)

From Figure 4.6, we know the received symbol belongs to nine possible complex values
at the relay. By following the constellation diagram the conditional pdfs can be expressed

as:
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p(ylmg = 0,mg = 0)

w oo [ |01—2E)2+(yo—2E)"] [i-2E)2+(yq+2E)°] [i+2E)2+(yq-2E)°]
= f f e 202 +e 202 +e 202
[1+2E)2+(yq+2E)’]
+e 202 dy,dy, (4.53)
p(ylmg =1, mg =1)
o e [1-26)2+(yq)’] [1+26)2+(yq)’]
_ j f 2e 27 42 207 dy,dy,  (454)
p(yImg = 0,mg = 1)
o oo [(3’1)2+(YQ—25)2] [(J’I)2+(J’Q+ZE)2]
_ f f 2e 207 +2e 207 dy,dy, (4.55)
e e (yi+vd)
p(ylmp =1,m3 =0) = j f 4e” 207 dy,dy, (4.56)

By substituting the conditional probability into L(m%|y) and L(m3|y), the extension of

L(m}|y) and L(m3|y) can be viewed in the appendix.
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4.7 ExIT chart of trellis BICM-ID

The ExIT-chart technique for trellis BICM-ID is quite similar to the turbo decoder. Let
us denote the decoder to demapper message as MZ¢°~4€™ and the demapper to decoder
message is Me™~€¢_ Also we define the two symbols M, and M, as the average mutual
information between the coded bit X, where k = 1, ...,n and n is the length of message

dec—dem

and the decoder to demapper message M, and Mgem-dec

. So in general the
relationship between the extrinsic information and a priori information in the trellis

BICM-ID decoder can be expressed as:

n

1
Mg = _Z I (Xy; Mgee—dem), (4.57)
nk=1
1 n
M, = ;z I( Xy; Mgem—dec), (4.58)
k=1

where My and M, correspond to the extrinsic information from the output of the decoder

to the input of the demapper, and vice versa. Mg and M, has the relationship:
MA S exitdem(ME), (459)
ME = exitdeC(MA). (460)

This relationship represents the transfer function of the extrinsic information and a priori
information exchange between the decoder and demapper in the trellis BICM-ID decoder.
The EXIT charts of trellis BICM-ID at the relay on GMM impulsive noise channels is
shown in Figures 4.18 —4.21. When performing the ExIT chart analysis, we chose values
of the GMM mixture constant o from 0.01 to 0.1 to analyse the convergence behaviour
of the turbo codes at the relay of the conventional two-way relay communications. From

Figure. 4.18 it can be seen that the lowest SNR, or pinch-off SNR limit, where the SNR
of the rate% trellis BICM-ID converges is 6.5dB. Similarly, Figure.4.19 shows the ExIT

charts for the rategtrellis BICM-ID and we observe that the pinch-off SNR limit is

5.6dB, which is a 0.9dB advantage over the rate % trellis BICM-ID.
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Figure 4.18 Rate %trellis BICM-ID EXIT chart on PNC over GMM, a=0.01 pinch-off

SNR limit=6.5dB.
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Figure 4.19 Rate % trellis BICM-ID EXIT chart on PNC over GMM, a=0.01 pinch-off
SNR limit=5.6dB.

Figure. 4.20 shows the EXIT charts of the rate% trellis BICM-ID when a=0.1. In this
case, the pinch-off SNR limit of the rate % trellis BICM-ID is 10.5dB; we also see this
behaviour in the EXIT charts of the rate é trellis BICM-ID is shown in Figure.4.21, where

the rate é trellis BICM-ID has a 1dB advantage over the rate % trellis BICM-ID.
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Figure 4.20 Rate % trellis BICM-ID EXIT chart on PNC over GMM, a=0.1 pinch-off

SNR limit=10.5dB.
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4.8 Performance of Trellis BICM-ID

After performing the ExIT chart analysis of trellis BICM-ID at the relay on GMM
impulsive noise channels in the previous section, we now compare simulation results of
trellis BICM-ID to see the advantage of trellis BICM-ID. Earlier in the chapter, lower
bounds on the turbo code error floor were presented to validate simulation results.
However, this is not possible for trellis BICM-ID since they do not exhibit error floors.
Therefore, only the ExXIT charts in the previous section can be used to validate the

simulation results.

10 0 0.5 1 15 2 2.5 £ 3.5 4

SNR
Figure 4.22 Simulation BER of rate % (7,5)s trellis BICM-ID in point to point

transmission on AWGN channel, ten iterations.

Figure 4.22 shows the simulated BER of a rate % trellis BICM-ID in point to point

transmission for ten decoding iterations. It can be seen that the performance of trellis
BICM-ID improves as the number of decoding iteration increases. After ten iterations

the decoder reaches an error floor at the BER of 10~% at the SNR of 3dB.
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Figure 4.23 BER performance of rate % trellis BICM-ID on PNC over AWGN channel at

the relay with ten iterations.

In Figure 4.23 the BER performance of PNC combined with rate é trellis BICM-ID at the
relay on AWGN channels is shown for ten iterations. Compared to the previous BER of
trellis BICM-ID on AWGN channel without PNC in Figure 4.22, there is an
approximately 2dB degradation. The ‘waterfall’ region starts around 3.5dB, and the error
floor occurs around 4.5dB.

Figure 4.24 shows a comparison of PNC combined with rate % and % trellis BICM-ID on

AWGN channels both at the relay and node. Clearly rate % trellis BICM-ID outperforms

rate % trellis BICM-ID due to the extra redundancy and increased minimum Hamming

distance.
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Figure 4.24 BER performance of rate % and é trellis BICM-ID on PNC over AWGN

channel both at the relay and destination nodes.

In Figure 4.25 — 4.26, a comparison of PNC combined with rate % and § trellis BICM-ID
on GMM impulsive noise channels with the different mixture is presented. As before, the
rate g trellis BICM-ID has better performance than the rate ; trellis BICM-ID, but the

coding gain is even larger than on the AWGN channel, which is approximately 4.5 dB.
By increasing a the performance of trellis BICM-ID becomes worse due to the
impulsiveness of the channel increasing. Compared to the performance of trellis BICM-
ID on the AWGN channel, even a small mixture of impulsive noise will degrade the
BER significantly. e.g. when & = 0.01, the degradation in BER is nearly 3dB worse. As
the impulsiveness of the noise grows larger to @ = 0.5, the BER of trellis BICM-ID

suffers a huge error floor at lower SNR.
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Figure 4.25 BER performance of rate % trellis BICM-ID on PNC at the relay over GMM

channel with different GMM mixture constant .
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Figure 4.26 BER performance of rate é trellis BICM-ID on PNC at the relay over GMM

channel with different GMM mixture constant c.

Table 4.2 lists all pinch-off SNR for rate % and rate § trellis BICM-ID at the relay over

GMM channels for different & mixtures:
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a 0 0.01 | 0.05 0.1 0.2 0.5

R=1 |3.5dB | 6.5dB | 7.5dB | 10.5dB | 16.5dB | 21.5dB
2

—1 1 3dB |5.6dB|6.5dB| 9.5dB | 15dB |20.5dB
3

TABLE 4.2: Comparison of the pinch-off SNR limit between rate % and rate % trellis

BICM-ID when 0 < a < 0.5.

4.9 Performance comparison of Turbo code and Trellis BICM-

ID on PNC over impulsive noise channel

We now comparing difference between two channel coding schemes and discuss their

advantages and disadvantages when combined with PNC.

BER

=—#— Turbo Code Decoding at Destination
1 0'6 I | ===BICM-ID Decoding at Destination Yo
=& Turbo Code Decoding at Relay at
==='BICM-ID Decoding at Relay
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SNR

Figure 4.27 BER performances comparison of rate %turbo code and rate %trellis

BICM-ID on PNC over AWGN channel, decoding at relay/destination node.
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In Fig 4.27-4.28, the comparison of rate % and rate gchannel codes have been made. It

can be seen that turbo code outperforms trellis BICM-ID under all conditions with
approximately 1.5dB coding gain for both decoding at relay/destination. There is no
doubt that turbo codes are a good option for PNC on AWGN channels. However,
referencing the pinch-off SNR of both coding schemes, it can be seen that the trellis
BICM-ID codes have advantages when combined with PNC on impulsive noise channels

when 0.1 < a < 0.5, as shown in TABLE 4.3 and verified in Figures 4.29 - 4.30.
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Figure 4.28 BER performances comparison of rate %turbo code and rate gtrellis BICM-

ID on PNC over AWGN channel, decoding at relay/destination.
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Figure 4.29 Comparison of rate % turbo codes and trellis BICM-ID when 0.1 < a < 0.5.
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Turbo Code Trellis BICM-ID

a 0.1 0.2 0.5 0.1 0.2 0.5

S

—1 | 16.5dB | 19.5dB | 21.5dB 10.5dB | 16.5dB | 21.5dB
2

=
I
N | =

9.5dB | 15dB | 20.5dB

W

R= 1 15dB 18dB 21dB R
3

TABLE 4.3: Comparison of the pinch-off SNR limit between rate % and rate g turbo

codes and trellis BICM-ID when 0.1 < a < 0.5.

From Figs 4.29 - 4.30, it can be seen that when the impulsive noise mixture varies
with 0.1 < a < 0.5, trellis BICM-ID outperforms turbo codes especially in the
range 0.1 < a < 0.2. The turbo codes occurred with error floors at lower SNR, and the
level of error floors are even higher when the channel is more impulsive, a¢ = 0.1 at
BER of 1072 and @ = 0.2 at BER of 10~ 1. However, trellis BICM-ID has avoided that
effect and starts to fully decode the signals at much lower SNR than turbo codes. Overall,
the comparisons of the BER performance of both channel coding schemes on PNC over
impulsive channel have verified our pinch-off SNR results, and trellis BICM-ID has

shown its advantages when combined with PNC on impulsive noise channels.

4.10 Conclusions

In this chapter, an analysis of rate % and rate g turbo codes and trellis BICM-ID combined

with channel coded PNC on AWGN channels and additive impulsive noise channels has
been investigated on a conventional TWRC. We have shown that the performance of
turbo codes is severely affected on the GMM noise channel compared to AWGN
channels, especially when the mixture is high, and ExIT charts have been presented to

show the convergence behaviour of the turbo decoder for different mixtures of
impulsiveness. The pinch-off SNR values for rate % and g turbo codes have also been

determined from the EXIT charts and match closely with the simulation results. The error

floors caused by impulsive noise are analysed by determining the upper bound on the
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performance of turbo codes at the relay. We observed that for higher mixtures the error
floor is determined solely by the impulses of the GMM noise channel at low SNRs, but
this effect quickly reduces with increasing SNR and the Gaussian noise part of the GMM

noise channel has more of an effect on the performance.

Compared to turbo coded PNC on the impulsive channel, when the impulsiveness is low,
ie.a < 0.1, trellis BICM-ID perform worse than the turbo codes with a degradation of
2.5dB. This is because at the lower SNR region, the turbo codes could overcome the
interferences from the impulsive by interleaving the information bits that input to the
second encoder, so that few errors can be corrected during the iterative decoding process.
However, when 0.1 < a < 0.5, trellis BICM-ID starts to achieve a better performance
than turbo codes. When the impulsiveness is higher than a threshold, the iterative
decoders cannot correct the error in the received signal, which the errors remain in the

loop not matter how many iterations the decoder take.

Trellis BICM-ID performs better than the turbo code when 0.1 < a < 0.5 because the
impulsiveness in the channel is more severe, resulting in very large LLR magnitudes. In
the turbo decoder, it is difficult for each component decoder to correct this large LLR
value meaning it will be passed on to the other component decoder, affecting other LLR
values and causing an error floor. However, trellis BICM-ID is less affected because the
decoder and demapper are independent of each other. The effect of this can be seen more
clearly in the EXIT charts in figs. 4.20 and 4.21. We observe that, because the two
curves are not symmetrical, the BICM-ID receiver converges at lower SNRs than the
turbo decoder when @ = 0.1. When a = 0.01, the impulsiveness is lighter and the turbo
decoder copes better with the less frequent larger impulses. This can be seen in the EXIT
charts of figs. 4.7(a) and 4.8(a), where the turbo decoder converges at lower SNRs than
trellis BICM-ID.

Overall, the iterative decoding behavior of trellis BICM-ID combined with PNC on
impulsive channels at different ahas been analyzed and compared with similar turbo
codes in the same scenario. The ExIT charts of trellis BICM-ID at the relay with two
values of a@ were presented. We observed that the SNR values that signify the start of the
‘waterfall regions’ of the BER curves also matches closely with the pinch-off SNRs
found from the ExIT charts. There are many environments where impulsive noise is

present, such as interference from nearby machinery or power line communications,
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where the noise at the receiver is non-Gaussian. The interference due to the two users'
incoming signals at the relay causes degradation in performance compared to a single

user, uni-directional coded system.

We have shown that both turbo code and trellis BICM-ID are good choices for a TWRC
with PNC on impulsive noise channels and present a good trade-off between
performance, spectral efficiency and complexity. There is considerable scope for further
research in this area to achieve further improvements in performance by investigating
new signal processing techniques and channel code design methodologies specifically for

impulsive noise channels.
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Chapter 5

Physical Layer Network
Coding combined with Non-

Binary Convolutional Codes



5.1 Introduction

Physical layer network coding (PNC) combined with binary error-correcting codes is
commonly employed in the literature. In the previous chapter, PNC was combined with
binary turbo codes and trellis BICM, where the focus was on the performance of these
schemes on additive impulsive noise channels. However, the use of non-binary codes is
less common in the literature and it seems that the combination of PNC with non-binary
codes has not been investigated previously. Therefore, the major novelty in this chapter
is the performance analysis of PNC combined with non-binary convolutional code on

additive impulsive noise channels.

The chapter begins by defining the encoder structure and Maximum A Posteriori (MAP)
decoding algorithm for a non-binary convolutional code defined in finite fields. This is
followed by a theoretical performance analysis of PNC combined with non-binary codes
on additive impulsive noise channels, which are modelled using the Gaussian mixture
model as in the previous chapter. A union bound on the BER performance is derived and
simulation results are also presented to validate the analysis. Finally, the design
parameters for non-binary convolutional codes on impulsive noise channels are

investigated to optimize their performance when combined with PNC.
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5.2. Q-ary Convolutional Code Encoder

The structure of a g-ary convolutional codes encoder is shown in Figure 5.1.

Bi ..

. = : : G lutional
Binary b, > GF(q) information symbols | u : EZI::ZZ;; l:?:;r [
Source Boieonue] B8 M(by, by .. by y) GF(q)

e >

Multilevel source

Figure 5.1 Encoder structures of g-ary convolutional codes

As shown in Figure 5.1, the encoder consists of three parts: the first two parts involve the
multilevel source mapping of binary bits b; ... by,_; to the finite field symbols a; in

GF(q). These symbols are encoded by a convolutional encoder to generate the codeword

defined in GF(q).

Cn+1

Figure 5.2 General encoder of g-ary convolutional codes.

95



In Fig 5.2, a general encoder of g-ary convolutional codes is given that the input symbols

V; ..., € [0,1, B, B?] to obtain the output of ¢; ... c,,. A simple convolutional encoder
over GF(4) is shown in Figure 5.3, which has a rate of % and is denoted as the S 32/1 4-

ary convolutional code.

Figure 5.3 Convolutional encoder of rate% B B?%/1 4-ary convolutional code

It consists of one memory element with two feed forward coefficients £ 32, and one
feedback coefficient 1. The state table for this rate % BB?/1 4-ary convolutional code is

shown in Table 5.1.

Input Initial State Next State Output
0 0 0 00
1 0 1 1B
B 0 B B0
p? 0 B’ p*1
0 1 1 01
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1 1 0 182
B 1 p? BB
p? 1 B p?0
0 B B? 0B
1 p B 10
B B 1 B1
p? B 0 B*p*
0 p? p? 0p?
1 B2 B 11
B B? 1 BB
p? p? 0 p*B

Table 5.1. State table for rate% fB?/1 4-ary convolutional code

Furthermore, the corresponding trellis diagram is shown in Figure 5.4 Comparing to the
binary trellis, clearly we can see that although the number of states for the 4-ary
convolutional code is the same as the (7, 5)s binary convolutional code, the number of
branches in the trellis are doubled since there are now four branches entering and leaving
each node. From the state table, we can also draw the signal-flow graph as shown in
Figure 5.5, which is more complicated than the signal flow graph of a 4-state binary

convolutional code.
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Figure 5.4 Trellis of a rate% fB?/1 4-ary convolutional code.
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3

Figure 5.5 signal-flow graph of rate% BB?/1 4-ary convolutional code.
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5.3 Decoding of g-ary Convolutional Codes

The decoding of g-ary convolutional codes can be achieved with any of the popular
trellis decoding methods, but in this thesis the Max Log-MAP decoder is chosen due to
its good tradeoff between performance and complexity. The calculation of the trace
forward, trace backwards and branch metric parameters are the same as described in
chapter 3, but the overall complexity of the Max Log-MAP algorithm is increased due to

the increased number of branches in the trellis. This is illustrated in Fig. 5.6.

Ak—1(§1) $1 Yk(§1r5)

Ak—1(§2) $; ]/,:C(ng,

s Ax(s)= se{srf}sii sn}{Ak—l(EE) +vi($,5)}

Ak—1(§n—1) Sni Yi($ —1:5)

Yr (S"m S)

%1

Ak— 1 (én)

51 Bk—1(31)
S Bk—1(52)
B.(s) s

Sn—1 Bk—1(5n—1)

]"Fc(-é :Sn) Sn Bk—l(sn)

Br($) = max {Bi_1(s) +vi(s s)}

55{5152,...1"'3?1}

Figure 5.6 The Illustration of trace forward metric A and backward metric B of MAX-log
MAP decoder.
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The general equations for the trace and branch metrics for the log-MAP decoder can be

written as:

Ay (s) = max{ A1 (§) +yi (4,5}, (5.1
By (8) = max{ By () + 1 (5,9)}, (52)

_ 2
e G5) = — X (53)

where ||y, — x||? is the squared euclidean distance between the received symbol yk and

the location of each constellation point X.

When PNC is employed at the relay, then (5.3) must be modified since the resultant
constellation diagram due to the summing of the two incoming signals no longer has a
unique mapping to a specific finite field symbol. For example, in the 9-point
constellation diagram in Figure 3.8 there are four constellation points that map to the

symbol 0. Therefore, the conditional probability P(yx|cx = z) is given as

POilex =2) = ) POl 54

XEX,

where X is the set of constellation points corresponding to the symbol z. So,
X, € {2VE + 2jVE, 2VE — 2jVE, —2VE + 2jVE, —2VE — 2jVE},
X, € {2jvVE,-2jVE},
X € {2VE,—2VE},
X4z € {0}
For the max log-MAP algorithm, we take the natural logarithm of (5.4) to obtain
n(POle =) =In{ D Pyglo) |

X€EX,
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~ max{”yk _xHZ} (55)

XEX, 20'2

Hence, y (8, s) is expressed as

v(§, ) = max {M} (5.6)

XEX, 202

Finally, once Ay (s) and By ($) have been determined, the LLR of the decoded

message symbols L& (x|y) is defined as:

L(Z)(xK |YK) = ln(

Zs’—sesz Ag_1(8) + vk ($,s) + BK(S)>’ (5.7)

Zs’—seso Ag_1(8) + vx(S,s) + Bg(s)

where L@ (xy|yy) is the LLR value corresponding to the finite field element z, S; is the
set of state transitions, s’ — s, in the state table where the message symbol is non-zero and
So is the set of state transitions where the message symbol is 0. Therefore, L (x |yx) =
0 since the numerator and denominator in (5.5) will be the same and it is therefore not

used in the decoding of non-binary convolutional codes.

The message symbols can be obtained by making a hard decision on L (xy|yy).
However, this is not as straightforward as for the binary case because we now have Q

LLRs for each message symbol. Therefore, the hard decision is made as follows:

o If all L@ (xklyx) <0, for z=1,B,B% ..,892%, then the decoded message
symbol is mg = 0.
e FElse the decoded message symbol mk is equal to the index z of the maximum

value of L@ (xy|yy), forz = 1,8, B2, ..., BI72
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5.4 Theoretical Performance of g-ary Convolutional Codes

In chapter 3, the theoretical performance of binary convolutional codes was explained,
which required knowledge of the transfer function of the code derived from the signal
flow graph. The theoretical performance of non-binary convolutional codes can be
derived using the same method, but we now find that the signal flow graph is more
complex and the state equations will have more terms due to the increased size of the

message alphabet.

Recall the signal-flow graph in Figure 5.5 for the rate % $?%/1 convolutional code
defined in GF(4).

Let X,= state 0, X,= state 1, X.= state § and X,= state 52. Thus, we can write the four

state equations:

X, = DX, + DX, + DX, + D2X,, (5.8)
X, = DX, + D*X, + DX, + D?X,, (5.9)
X, = D*X, + D?X,, + DX, + D2X,, (5.10)
Xu = D%X, + D2X, + D2X,, (5.11)

Where D and D? are referring the hamming distance which compares the symbol

difference instead of bit difference.

By definition the transfer function T(D) is defined as:

X, DZ2X,+ D2X, + D%X
T(D) = =& =222 < d (5.12)
Xq Xq

X X
= 2D* + D3 4+ 2D2(2D% + D) =2 + 3D3 =5,
Xq Xa
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From (5.8)-(5.11), it can be concluded that:

_ D%*X, + DX, 5 13
b~ 1-p-Dp2’ (5-13)
and
_ DX, + 2D%X, c 14
c 1 _ D ( . )
So, by substituting (5.13) to (5.14), we can have the relationship of %:
Xp 2D? — D3 (5.15)
X, 1-2D-D% '
Also, by following the same procedure, the relationship of % can be derived as:
X, D—D?+D3 c 16
X, 1-2D-D3" (5.16)
Thus, by substituting (5.13) and (5.14) to (5.10), we can have:
D3 +3D* —3D° +8D® — 6D’
T(D) = . (5.17)

1—-2D-D3

Then the transfer function T(D) can be derived by performing the long-division,
resulting in:
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T(D) = D3 + 5D* + 7D5 ... (5.18)

which means the rate % f2/1 4-ary convolutional code has one path of d,,;, = 3, and

five paths with d = 4, and so on. Thus, recall (5.1), the bound of bit error probability of

a rate % BB?/1 4-ary convolutional code can be calculated as

2k1

-1 KZ 2 Td channel (5-19)

W dfree

[73], and k = log, q of

GF(qg).
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5.5 PNC combined with g-ary Convolutional Codes

The system models of g-ary convolutional codes applied to the TWRC with PNC are

shown in Figure 5.7 and Figure 5.8, respectively.

Node A Channel noise
1
7 q—ary C Xa
LSS Ivéultllevel —# Convolutioinal A: Modulator
ource
Encoder
q-ary
\ +\.'—"y D i » Convolutional ————»
%~ emapper
_ q-ary — Decoder
ma Multilevel i CB
—_— S = Convolutioinal » Modulator
ource
Encoder Xs
Relay
Node B

First Time Slot

Figure 5.7 System model of g-ary convolutional code decoding at the relay on PNC.

In Fig. 5.7, the g-ary convolutional decoder is decoding the received signal y at the relay,
where y = X,+Xp + 1. Recalling (3.13) and substituting into (5.19), the upper bound on

the bit error probability P, in this case is:

21 o v
Prer < 55— EZ Z TyPy (5.20)

W dfree

The bound on the theoretical BER of decoding at the destination nodes is derived as

Pncn < (1 - Pchannel)Pncr + (1 - Pncr)Pchannel - 2Pchannelpncr- (5-21)
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» Demapper —{ Convolutional |—
Decoder
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i

Figure 5.8 System model of g-ary convolutional codes decoding at the nodes on PNC

over impulsive channel.

The comparison of simulated BER to theoretical BER of rate% BB% /1 4-ary

convolutional code on PNC over AWGN channel is presented in Figure 5.9.

10°
10"
107
10°

| GF(4) Decoding at Relay|
10™L|-=- Theoretical BER

=1~ GF(4) Decoding at Node

s[-=- Theoretical BER — S— E— E—

10 : ‘ I | I i |

4 4.5 5 55 6 6.5 i 7.5 8

SNR

Figure 5.9. The comparison of simulation BER to theoretical BER of rate% BB?/1 4-ary

convolutional code on PNC over AWGN channel.
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As shown in Figure 5.9, the simulated BERs match the bounds closely, which proves the
derivation of the bounds is correct. Not surprisingly, the BER performance of decoding

at the relay is approximately 1dB better than decoding at the node.

So far the analysis of PNC combined with the binary convolutional code is on the
AWGN channel, but now the performance is evaluated on impulsive noise channel using

the Gaussian mixture model. Recalling (3.17) and submitting in (5.19), the bound of

rate% BB?%/1 4-ary convolutional code on PNC over impulsive channel pS¥M can be

expressed as:

2k—1 N
PEMM < o> TG (5.22)

W dfree

Also the bound of decoding at the node pS¥M in this case is:

M = (1 — Pepp)paet™ + (1 — pSMMYPoym — 2Pgpmpio™. (5.23)
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Figure 5.10. The comparison of simulated BER to theoretical BER of rate% BB?/1 4-ary

convolutional code on PNC over impulsive channel decoding at the relay, mixture

constant oo = 0.1.

The comparison of simulated BER with the theoretical BER of PNC combined with the
rate% B B?/1 4-ary convolutional code over an impulsive noise channel with & = 0.1 are

shown in Figure 5.10 and Figure 5.11.

From Figure 5.10 and Figure 5.11, it can be seen that the simulated BER performance is
only slightly degraded at a BER of 107°. Hence, the simulated BER converges to the
theoretical BER, which verifies the results. However, with ten percent of impulsive noise
present in the channel, the BER degradation of the rate% B B?/1 4-ary convolutional
code is more significant, which has a difference of approximately 8dB compared to the
performance on the AWGN channel.
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Figure 5.11. The comparison of simulated BER to theoretical BER of rate% BB?/1 4-ary

convolutional code on PNC over impulsive channel decoding at the node, mixture

constant a =0.1.
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5.6 Simulated Performance of PNC combined with Non-

Binary Convolutional Codes on Impulsive Noise Channels

The following section presents several results for convolutional codes defined in GF(2),
GF(4) and GF(16) on impulsive noise channels with difference mixtures of impulses.
There are very few papers containing tables of good non-binary codes defined in
different fields, so the convolutional code defined in GF(16) has been selected from [59],
which catalogues a number of good non-binary convolutional codes. However, all codes
in [60] are non-systematic and comprise only feedforward coefficients. Therefore, for a
fair comparison the other codes defined in GF(2) and GF(4) are also chosen to be non-
systematic. Furthermore, the number of states is fixed at 256 for all the codes and the
message length in bits is fixed at 1000 bits. For binary convolutional codes we choose
the (561,753)g code since it has the maximum minimum Hamming distance for a rate 2
code with a constraint length of 9. The mixture parameter is set to @ = 0,0.01 and 0.1,
corresponding to an AWGN channel, moderately impulsive channel and heavily
impulsive channel respectively. The parameters of the g-ary convolutional codes are

listed in Table 5.2.

GF(2) GF(4) GF(16)
Constraint Length 9 5 3
Amin 1213 14 91011 678
Nasree 1150 286 12 39 303 15 120 900
Generator (561,753)4 111p8%p 11p*
Polynomials
1B1Bp* 1B B*
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Table 5.2. Parameters of rate % g-ary convolutional codes, the primitive polynomials are

x?+ x + 1 and x* + x + 1 for GF(4) and GF(16) respectively.

The performance comparison of PNC combined with the different convolutional codes at
the relay over an impulsive channel with different mixtures is shown in Figure 5.12. At
the relay, any significant positive or negative impulses are clipped so that their energy is
no greater than the transmitted symbol energy E. From the figure it can be seen that the
performance of coded PNC is severely affected on additive impulsive noise channels
compared to the AWGN channel. When @ = 0 all codes converge at a BER of 107>, but
the g-ary convolutional codes perform slightly better at low SNR. The binary
convolutional code shows a higher error floor compared with the g-ary convolutional
codes when a > 0. Surprisingly, the convolutional code over GF(4) performs the best
with a lower error floor than the convolutional code over GF(16). The binary

convolutional code performs the worst for all values of a.

| e-CC (561,735),

v-Q-ary CC GF(4)

—.—

0 5 10 15 20 25
SNR=Eb/NO (dB)

Figure 5.12 Simulation results for PNC combined with binary and non-binary

convolutional codes on impulsive noise channels with « = 0,0.01 and 0.1.
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We observe in fig. 5.12 that the performance of the code over GF(16) does not
outperform the code over GF(4), which at first seems unexpected. However, it must be
noted that the number of states in the trellis of all codes is fixed at 256. This means the
code over GF(16) having a smaller constraint length, which results in a smaller
minimum Hamming distance and reduces the error-correcting capabilities of the code.
For example, the code over GF(16) has a minimum Hamming distance of 6, but the code

over GF(4) has a minimum Hamming distance of 9.

The error floor discussion is grouped by different values of a : First, when the channel is
slightly impulsive with @« = 0.01 , the performances of all codes are significantly
degraded by the impulsive noise, with a coding loss of around 15dB for all codes at a
BER of 1075, However, the BER performance of all codes beings to converge as SNR
exceeds 20dB. Secondly, when the noise in channel becomes more impulsive at « = 0.1,
the BER performance of all codes converge at a BER of 10™* when the SNR exceeds
24dB. In this case, the performance is further degraded by the increased impulsiveness,

with a coding loss of around 18dB at a BER of 10™.

5.7 Design of g-ary Convolutional Codes for use with PNC on

Impulsive Noise Channels

One of the biggest advantages of a g-ary convolutional code is that the codewords are
constructed with symbols instead of single information bits, for which the decoder can
correct several bits at a time. For example, each symbol of a K=5 convolutional code
defined in GF(4) contains two bits so with a free distance of 9 this code can correct up to
4 symbol errors. Therefore, if the bit errors are close together, i.e. a burst error extending
over 4 symbols, then this code can correct up to 8 bit errors. However, if the bit errors
are spread then we can have the situation where each symbol only contains a single bit
error, meaning that the code can only correct up to 4 bit errors in this case. This is why
the performance of non-binary codes tends to converge with binary codes on the AWGN

channel at high SNRs, but we find that on impulsive noise channels the errors are closer
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together and the non-binary code has a performance advantage over the binary code,

particularly at the SNR regions where the error floors occur.

Recall (5.19) and rewrite as:

2k-1 1 ¥
P""Sﬁﬁz z TgresPar (5.24)

w Ndfree

The effects of various Ny, free and dye. for convolutional codes in different finite fields
are now shown in Figure 5.13 and Figure 5.14. The g-ary convolutional codes with
small N, free have better performance in the error floor region. The comparisons are
made by choosing Nafee = 5,10 and 15 with a fixed dfye, and dfe, = 8,10 and 12
with a fixed Ny free- 1N Figure 5.13, it can be seen that when a = 0, increasing values of

Ng. . only slightly degrade the performance of the code but it generally has a small

fre

effect. However, when @ > 0 codes with smaller N, free have a significantly lower error

floor. For example, when @ = 0.01, there is a coding loss of up to 8dB when comparing

the code with Ny, =5and Ny, =15ata BER of 3 x 1074,
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Figure 5.13. Comparison of theoretical BER with different N,, with fixed df,. of g-ary

convolutional code on PNC over Impulsive channel.

Similarly, coding losses of up to 10dB occur when comparing the same values of N free
for « = 0.5 at a BER of 2 x 10™%. The effect of different dree and fixed Ny free AT€
shown in Figure 5.13. It can be seen that when & = 0, coding gains of 1dB are achieved
as dfree is increased from 8 to 10 to 12 at a BER of 107°. When the channel is impulsive,

diree has a negligible effect on the error floor. However, at high SNR coding gains of 1dB

are observed as before for both ¢« = 0.01 and o = 0.5.
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Figure 5.14. Comparison of theoretical BER with different d¢,, with fixed Ny free of g-

ary convolutional code on PNC over Impulsive channel.

In order to make a comparison to the binary convolutional codes to show the advantage
of non-binary convolutional codes via theoretical bounds, we compare the theoretical
performances of convolutional codes to the non-binary convolutional under the same

conditions, i.e. Nafree = 5 and dfe = 12, shows in Fig. 5.15:
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Figure 5.15 Theoretical BER comparison of GF(16) non-binary convolutional codes to

binary convolutional codes on PNC over impulsive noise channel with N, free = 5 and

dfree = 12

From Fig 5.15 it can be seen that the GF(16) non-binary convolutional codes outperform

the binary convolutional codes under all circumstances with the same N, free and dfye.

The performance of non-binary convolutional codes on AWGN channel is only better at
lower SNR, and soon converges to the binary convolutional code at 7dB. However, the
advantage of non-binary convolutional codes is significant on impulsive channels.
Clearly, with a lower error floor level the non-binary convolutional codes have a 3dB
coding gain at a BER of 10™* when a = 0.01, and a 2dB coding gain at BER of 107*
when @ = 0.1. Although both codes are converging at higher SNR, the coding gain still
exists even at a high SNR of 25dB. Thus, the non-binary convolutional codes have
shown their advantage over binary convolutional codes and have a great potential for

application on impulsive noise channels.
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5.8 Conclusions

In this chapter, the performance of PNC combined with binary and non-binary
convolutional code on impulsive noise channels has been presented. The chapter began
by explaining the fundamental theory of non-binary convolutional codes, which included
encoder structure, the log-MAP decoder with non-binary LLR values and a upper bound
on the theoretical BER performance of these codes at the relay of a TWRC employing
PNC and at the destination nodes. The theoretical BERs were compared with simulation
results for both binary and non-binary codes and it was observed that on the AWGN
channel there was no performance advantage for non-binary codes over binary codes at
high SNR. However, on impulsive noise channels it could be clearly seen that the non-
binary codes had a lower error floor region, achieving significant coding gains, before

converging with the binary codes at high SNRs.

Finally, the design of convolutional codes for use in a TWRC with PNC was presented by

investigating the effect of the parameters dfree and Ny free” Three convolutional codes

defined in GF(2), GF(4) and GF(16) were investigated by plotting their theoretical BER

performance by varying N, free and keeping diree fixed and also by varying diree and
keeping Ng. ., fixed. It was observed that on the AWGN channel, the performance of

PNC with binary and non-binary convolutional codes is dominated by dfree, Whereas

increasing Ny free ONLY slightly degraded performance. However, on impulsive noise
channels it was observed that decreasing the value of N, free had a more significant effect

on performance by lowering the error floor, whereas increasing diree had a negligible
effect on the error floor, for all levels of impulsiveness. As before, diree only effected
performance at high SNRs. From these observations it is clear that choosing

convolutional codes with a higher value of N, free will results in a higher undesirable
error floor and minimizing N, is the most important design criterion when designing
free

convolutional codes for use in a PNC system.
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Chapter 6

Physical Layer Network
Coding combined with Non-

Binary Turbo Codes



6.1 Introduction

In the previous chapter, the performance and design of non-binary convolutional codes
for use with a TWRC employing PNC were investigated and it was observed that non-
binary codes exhibit lower error floors than binary codes on impulsive noise channels.
Following on from these promising results, this chapter will investigate PNC combined
with non-binary turbo codes with the aim of achieving much greater performances on
impusive noise channels. There is very little research on non-binary turbo codes in the
literature and apparently no research on applications of non-binary turbo codes.
Therefore, this chapter presents very original and interesting results that show for the
first time how non-binary turbo codes behave at the relay of a TWRC with PNC and also
how their performance is affected by impulsive noise. The non-binary turbo encoder will
be introduced and modifications to the log-MAP decoding algorithm from chapter 5 will
be explained in order to realise the non-binary turbo decoder. A detailed worked
example of the non-binary turbo decoder is presented showing how the received symbols
at the relay are decoded after PNC demapping. Simulation results of the performance of
binary and non-binary turbo codes at the relay on AWGN and impulsive noise channels.
Finally, theoretical upper bounds on the BER performance of non-binary turbo codes
defined in GF(4) and GF(16) are derived to predict the error floor of these codes at the
relay on AWGN and impulsive noise channels and are compared with the error floor

upper bound of binary turbo codes.
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6.2 Non-binary Turbo Encoder

A non-binary turbo encoder is almost identical to a binary turbo encoder, with the
difference that it comprises two non-binary recursive systematic convolutional (RSC)
codes in parallel separated by an interleaver. The encoder of a non-binary turbo encoder

is shown in Figure 6.1.

Input d C .
Q-ary Convolutional P,
Encoder 1 -
Interleaver
Q-ary Convolutional P.
"[Encoder 2 !

Figure 6.1 Encoder structure of non-binary turbo code.

The message symbols input d and the encoder output C, P4, P, are now defined over
finite fields, GF(q). As before, this arrangement results in a rate 1/3 turbo code, but
puncturing can be applied to P: and P2 as explained in chapter 4. In this chapter, the
convolutional codes used are defined in GF(4) and GF(16) and have feedforward and
feedback coefficients of BB?/1 and B’B*/B¢ respectively. The BB*/1 RSC code has 4 states
and the B’B*/B¢ RSC code has 16 states.

6.3 Non-binary Turbo Decoder

In Fig 6.2, the soft values entering the turbo decoder are LLRs for the non-binary
symbols of the message and parity-check symbols of the transmitted codeword. As

mentioned in chapter 5, there are g — 1 LLR values corresponding to the reliability of a
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received symbol corresponding to 0,1, 3, p?, ..., 172 compared to the zero symbol. In

non-binary turbo decoders, we express the output LLR in a multi-dimensional way:

6.1)

. _ o (Plek = z|y)
L@ (ck|y) =In <P(CK - 0|y)>

Input| Demultipl [y, | Decoder for

J exer - code 1 o| Interleaver
y: | m
Interleaver
L Decoder for De-
| code?2 | interleaver

|

Hard Output
decision

Figure 6.2 Decoder structure of non-binary turbo decoder.

where z = GF(q). Thus, for GF(4), (6.1) comprises the following LLRs:
( P(cx = 0ly) )
LO(c =In (— =0
) =10\ Pt =0
P(ck = 1Iy)>

L(l)(cKly) =In (m

| (6.2)
P(cx =
L® (ckly) =In <%)
2 _(Plck = B2ly)
k LEI (ckly) =In (m) y
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6.4 Non-binary Turbo Codes on PNC

| S— Prior Extrinsic
Node A impulsive Information [~ Information
¥ 2 Noise | I |«
E Nonbinary | o) xa e
. miA Turbo s QPSK ; : Extrinsic
| Encoder — v _Information
b \ | i
{E;‘ E Nonbinary | | Nonbinary Nonbinary Node
2 Ly ;Demapper e SISO ~— It SISO = Turbo —» QPSK —
; m® |Nonbinary | g x& | : Decoder ! | Decoder || Encoder i
—— Turbo » QPSK : i !
' Encoder Prior
Information m ém®
_____________ el e e e
User Rela -
y First Time Slot
4————————————————————————,_| ——————————————
Second Time Slot [ =|£| 3
MeMa &e Nonbinary Nonbinary (’_“_ xR
Node1 «————"— Turbo Turbo [« Demapper «{ 3 |«
Decoder Decoder M
Impulsive
iy Noise
[ olisss ¥
Ma= Nenbinary Nonkinary TR |
Noded 4 D 2T | et Turbo Turbo |4 Demapper 4—{2 | H
Decoder Decoder b

Figure 6.3 System model of non-binary turbo codes on PNC over impulsive channel.

The system model of the non-binary turbo code combined with PNC is shown in Figure

6.3 and we are focused on the performance of non-binary turbo code at the relay.

Let my, mg € [0,1, 8, 2] denote the information from both source nodes and ¢4, cy €

[0,1, 8, 5?] denote their codewords respectively. At the relay, the incoming QPSK

symbols are added at the relay and result in a nine-point constellation diagram. As with

the binary turbo decoder in chapter 4, to decode the added signal at the relay, we are

using max-log-MAP decoders for the component decoders. Thus, the trace metrics 4, B

and branch metric y can be expressed as:

Ag (s) = ms,aX{ Ag_1 (8) + vk (5,9)}, (6.3)

By ($) = max{ By (s) + (s, )}, (6.4)
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, _L(z) k ||}’K—x||2 6.5
Yk (§,8) = a()+¥1€§g§ B (6.5)

A detailed worked example of one complete decoding iteration is now presented to
explain the decoding process of non-binary turbo codes. The message length is set to 10

and the interleaver mapping is defined as:

104593 |7|8|6]1]2

The messages from node 1 and node 3 are:

mA=
k|0 |12/ 3 |4|/5|/6 |7 |89
B | 1| 1| B> |B|B|B*|B*|B*|B°
and
mp =

BB|O|B|B|B* B |B*|B*|1

At the relay, the 30-symbol received vector, corresponding to the sum of the transmitted
QPSK symbols plus noise, is split into three 10-symbol vectors corresponding to the summed
message Y1 , parity-check symbols from encoder 1 y2 and parity-check symbols from decoder

2ys.

Vi =
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0 1 2 3 4 5 6 7 8 9
021-17] | 056+ 0.2+ 0.27- 2.8— 03+ 2.75- 257+ 257+ 31+
0.5j 1.86 1.74j 2.9j 0.18] 1.7 0.4j 1.2) 1.62)
Y2 =
0 1 2 3 4 5 6 7 8 9
26+039) | 26+1.1j | 3.1+16j | -02-17) | 057+0.2j | 0.18+1.8] | 0.27-1.74] | 1.9+0.66] | 0.3+0.18] | -2.76-1.7]
y3 =
0 1 2 3 4 5 6 7 8 9
1.9+ 0.67 03+ 2.75- 256+ 257 + 31+ 02+ 0.57 + 02+ 0.27-
0.19] 17 0.4j 1.1 1.6) 1.86 0.2j 1.86 1.75j

The LLR values corresponding to the summed message mg, denoted by L y1 after PNC

demapping are :

Lyl =

Kl 0|12 8|4 |5 |6|7|8]|9
0 [o00]00[o00][00[00]00][00]00]00]00
1 [34[34]34[34|67]34[34[34]34]34
B |34[34]34[34]67|34(34]34]34]34
B2 |00 [67[00[67[00[00 6767|6700

In this example, noise has caused the fourth symbol of y1 to introduce an error and a hard

decision of L, generates the summed codeword:
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Cp =

1 | p?

The a priori LLRs that are fed into decoder 1 are initialised to zero, so by applying (6.5),

we can calculate y:

y =
“ssy| O 12| 3 | 4|5 |6 | T |8 |9
0-0 -6.7 | -6.7 | -34 | -6.7 |-11.7 | -34 |-10.1| -34 | -6.7 | -10.1
0-1 00 | 67| -34 | -6.7 |-151| -34 |-10.1| -34 | -6.7 | -10.1
0-p |-10.1|-10.1|-134|-10.1| -50 |-134| -6.7 | -6.7 | -3.4 | 0.0
0- ﬁz -10.1| -34 | -6.7 | -34 |-151| -6.7 | 0.0 |-13.4|-10.1| -6.7
150 |-101[-101| -6.7 |-101|-151] -6.7 | 6.7 | -6.7 | -3.4 | 6.7
151 | 34 |-101| 6.7 |-101|-185 | -6.7 | 6.7 | -6.7 | -3.4 | 6.7
158 | 67| -67 |-101| 67 | -1.7 |-101|-10.1 | -3.4 | 6.7 | -3.4
15p2 | 67| 00 | 34| 00 |[-11.7] 3.4 | 34 [-10.1|-13.4|-10.1
-0 -34 |-10.1| -6.7 |-10.1 | -84 | -6.7 |-134| 00 | -34 | -6.7
-1 -34 | -34 ) 00 | -34 |-185| 0.0 | -6.7 | -6.7 |-10.1|-13.4
p-p |-134| -6.7 |-10.1| -6.7 | -84 |-10.1| -34 |-10.1| -6.7 | -3.4
B - ﬂz -6.7 | -6.7 |-10.1| -6.7 |-11.7|-10.1| -34 |-10.1| -6.7 | -3.4
Bz -0 | -6.7 |-134|-10.1|-134|-11.7|-10.1 |-10.1| -34 | 0.0 | -34
Bz -1 -67 | -67)|-34)| -67 |-218| -34 | -34 |-10.1| -6.7 | -10.1
Bz -p|-101| -34 | 67 | -34 | -50 | -6.7 | -6.7 | -6.7 | -10.1 | -6.7
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p*->p*| 34| 34| 67| -34| 84| -67 | -67 | -6.7 |-10.1| -6.7

The two trace metrics A and B are then calculated using (6.3) and (6.4):

A=

kj| o 1 2 | 3| 4 |5 |6 | 7|8 9|10

0 0 -6.7 | -10.1 | -10.1 | -34 |-15.1 | -11.7 | -11.7 | -15.1 | -18.5 | -18.5

1 —x | 00 |-101|-101| -34 |-15.1|-11.7 | -11.7 | -15.1 | -18.5 | -18.5

B —o0 |-101| 00 | -6.7 | -6.7 | -84 | -84 |-11.7 | -11.7 | -15.1 | -18.5

B? | —oo |-10.1| -6.7 | 0.0 |-10.1| -5.0 | -8.4 |-11.7 | -15.1 | -15.1 | -18.5

0 |-185]|-285| -21.8 | -21.8 | -15.1 | -13.4 | -10.1 | -10.1 | -6.7 | -10.1 0

1 |-285|-185| -25.2 | -185| -18.5 | -16.8 | -10.1 | -10.1 | -10.1 | -6.7 | —c0

B |-25.2|-285 | -18.5 | -21.8 | -18.5 | -10.1 | -134 | -6.7 | -6.7 | -34 | —o0

B* | -285|-25.2 | -25.2 | -18.5 | -21.8 | -16.8 | -10.1 | -10.1 | -6.7 | -6.7 | —oo

The calculation of the decoder output LLRs can then be determined using:

L@ (x|y) = [max {Ag_1($) + vk (S, 5) + Br(s)} ~ nax {Ag_1(8) + vk (S, 5) + Br(s)}.(6.6)

Thus the output LLRs L® (x |y) of the first decoder are:

L1(Z)(x ly) =
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Ko | 0| 1] 2|3 4 | 5| 6 | 7|8 9
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
1 16.8 3.4 10.1 16.7 -10.1 6.7 | 10.1 | -6.7 | -6.7 3.4
B -3.4 3.4 -3.4 10.1 6.7 3.4 6.7 -34 | 34 10.1

ﬁz 0.0 16.8 0.0 13.4 0.0 3.4 6.7 -6.7 | -6.7 6.7

tlpzlifi]pli]i]olo]p

We observe that after making a hard decision on L(lz) (x|y), there is still and error in the

fourth symbol. The extrisic information can be obtained by :
Le =L P xly) - 15— Lq (6.7)

where L? is the a priori LLRs from decoder 2 that are initially set to zero in the first. This

results in:
L, =
/ L@ 0 1 2 3 4 5 6 7 8 9
0 0.0 00 | 00 | 00| 00 |00 |00 | 00 | 00 | 00
1 134 | 00 | 67 | 34 | 34 | 34 | 67 | -34 | -34 | 67
B 0.0 00 | 00 | 67 | 00 | 67 | 34 | 00 | 00 | 67
B2 00 | 101 |00 |67 | 00 | 34 | 00| 00 | 00 | 67

The interleaved extrisic information of first decoder becomes the priori information for

the second decoder, thus L? is determined as:
12 =
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K| 012|345 67|89
0 0 0 0 0 0 0 0 0 0 0
1 -34|6.7|-34 0 6.7|-34(34|6.7 (134|134
B 0 (67| O 0 0 0 [6.7]|34]6.7 0
ﬁz 0 (67| O 101 | O 0O (34| 0 |6.7 0

Now, the ¥ of the second decoder is obtained from the interleaved yi and the original

received Y3:

y =
k/(s, s 0 1 2 3 4 5 6 7 8 9
0-0 53| 27 | 80 | 27 | 107 | 53 | 53 | 80 | 80 | -53
0-1 53| 27 | 240 | 213 | 160 | 80 | 133 | 27 | 80 | -80
0B 53 | 107 | -160 | 80 | 80 | 00 | -160 | 00 | -133 | =53
0 - B2 27| 00 | 160 | 187 | 80 | 53 | 80 | 80 | 80 | 133
1-0 -2.7 -5.3 -5.3 0.0 -8.0 -8.0 -2.7 -5.3 -5.3 -8.0
1-1 -2.7 -5.3 0.0 -18.7 18.7 5.3 -10.7 0.0 10.7 -10.7
1- ﬂ 2.7 -8.0 0.0 -10.7 5.3 2.7 -18.7 -2.7 0.0 -2.7
1- B2 00 | 27 | 187 | 213 | 00 | 27 | 107 | -107 | -107 | 16.0
B0 80| 53 | 53 | 53 | 80 | 27| 27 | 53 | 53 | -80
B 1 27| 00 | 267 | 187 | 133 | 53 | 00 | 53 | 53 | -53
BB 80 | 80 | 00 | 53 | 53 | 27| 187 | 27 | -160 | 2.7
B - p? 00 | -80 | -133 | -213 | 107 |27 ] 00 | 53 | 53 | 00
g% -0 53| 80 | 27 | 27 | 53 | 53| 00 | 27 | 27 | -107
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ﬁz -1 0.0 -2.7 -24.0 0.0 16.0 2.7 | -133 -2.7 8.0 -8.0
ﬁz - B 53 -5.3 -21.3 -8.0 2.7 0.0 | -21.3 -5.3 -18.7 0.0
ﬂz - ﬁz -8.0 0.0 -16.0 | -24.0 8.0 0.0 -8.0 -8.0 -8.0 13.3

As before the two trace metrics A and B are:

A=

k

[¢| O 1 2 3 4 5 6 7 8 9 10
0 | 0 |-533-267|-10.7 [-10.7 | 13.33 | 13.33 | 13.33 | 18.67 | 26.67 | 37.33
1 |—oo|-533|-267| -8 |-533|5333|21.33|1867| 16 |26.67| 37.33
B | —oo | 5.333 0 -5.33 |-10.7 | 16 |13.33 |10.67 | 18.67 | 26.67 | 42.67
B? | —o | -2.67 [5.333|2.667| 0 |[2.667]21.33|21.33|18.67| 24 40
B =

kil o 1 2 3 4 | 5 6 7 | 8 | 9 10
0 |37.33|26.67| 24 32 | 3467 | 16 |13.33|18.67 5333 |-533 | -1.39
1 |26.67| 24 |29.33|34.67|34.67 |18.67 | 8 8 |5.333]-10.7 | -1.39
B |34.67| 32 | 24 [29.3329.33]21.33(10.67 | 13.33 | 18.67 | -2.67 | -1.39
B2 | 32 | 24 | 32 [3467[3733|1333| 16 | 16 [10.6713.33| -1.39

Notice that at k = 10, the metric B is now initialised to In(0.25) = —1.39 since the
second encoder is not terminated, so the codeword is equally likely to end in any one of

the four states. By following the same decoding procedure as we applied to the first

decoder, we obtain the output LLRs of second decoder, L, @ (x |y):
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/pa| O | 1| 2|3 | 4 |5 |6 |1 8 9
0 | 00/|00]|00|00]|00|00|00| 00/ 00/ 00
1 16.0 | 10.6 | 16.0 | 16.0 | -21.3 | 26.6 | 26.6 | -21.3 | -26.6 | -5.3
B 53|53 |00 |-53]|-160| 0.0 | -5.3 |-21.3|-16.0| 16.0
p? 106 |16.0| 0.0 | 53 |-21.3| 53 | 0.0 | -26.6 | -21.3 | -10.6

Notice that all the LLR values of the non-zero elements in the fourth symbol are now

negative. This means that we will obtain a zero symbol when applying a hard decision.

After applying a hard decision on all of L, (x |y), we obtain

which is equal to the sum of m; and m; and shows that the turbo decoder has corrected
the error.
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6.5 Performance of PNC combined with Non-Binary Turbo
Codes

Simulation results of PNC combined with non-binary turbo codes are now presented at

the relay of a TWRC on AWGN channels and impulsive noise channels.

. Binary Turbd
— Nonbinary Turbo

L i i |
e 0.5 1 15

Figure 6.4 Comparison of rate % (7,5)g binary turbo code and rate % non-binary turbo

code with B $2/1 RSC encoders on AWGN channel.

In Figure 6.4, a comparison of rate % (7,5)g binary turbo code and rate % non-binary turbo

code with 8 f2/1 RSC convolutional encoders on AWGN channel is presented to show
the performance of both coding schemes when no relay is present and act as a reference.
In the figure, it can be seen that, although both codes converge at around 4dB, the non-
binary turbo code has a significant advantage at the lower SNR, with approximately 1dB
coding gain at BER of 107%.

Figure 6.5 shows that the advantage of non-binary turbo code remains when evaluated at

the relay of a TWRC with PNC. Both codes converge at an SNR of 8dB, but the non-
131



binary turbo code maintains the excellent performances at low SNR, with a coding gain

of approximately 1.5dB at a BER of 107,

| Non-binary Turbo

|\ —Binary Turbo

BER

0

Figure 6.5 Comparison of rate % (7,5)g binary turbo code and rate % non-binary turbo

code with 8 £?/1 RSC encoders on AWGN channel decoding at the relay on PNC.
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Figure 6.6 Comparison of PNC combined with rate % (7,5)g binary turbo code and rate %
non-binary turbo code with 8 $2/1 RSC encoders on different impulsive noise channels.
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The comparison of PNC combined with non-binary turbo code and binary turbo codes on
impulsive noise channels is shown in Figure 6.6. The channel is slightly impulsive when
a = 0.01 and the performance of both codes are seriously degraded, but the non-binary
turbo code performs approximately 2dB better than binary turbo code at a BER of 107%,
and this difference is even larger when the channel is more impulsive at @ = 0.1. In this
situation both codes exhibit an error floor at a BER of 10~* at an SNR of 6dB and 9dB
respectively. However, the non-binary turbo code still has a 3dB better performance at

BER of 10™* compared to the binary turbo code.

6.6 Theoretical BER Analysis of PNC combined with Non-

Binary Turbo Codes on Impulsive Noise Channels

In this section, upper bounds on the BER performance of turbo codes will be derived to
predict the error floor and also validate the simulation results from the previous section.
To derive expressions of the upper bound, we have to recall the theoretical bound for

PNC combined with binary turbo codes from (4.42) in chapter 4, but multiply it by the

2k-1 .
term —— to converts symbol errors to bit errors:

PGMM < [Z]n] 1—0{) < mm >+Za§<n] ( erz E > ] (6.10)
j=2

where k = log, q and ( is the size of the finite field.

The upper bound comparison of non-binary turbo code and binary turbo code are shown

in Figure 6.7 and Figure 6.8.
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Figure 6.7 Comparison of the upper bounds on BER of PNC combined with non-binary

and binary turbo codes at the relay on impulsive noise channels with ¢ = 0.01.

In Figure 6.7 it can be clearly seen that the upper bounds of both codes are converging
with the simulation results at the high SNR region, which verifies our results. However,
the non-binary turbo code consistently outperforms the binary turbo code, particularly at

low SNRs.

Figure 6.8 shows the upper bounds on BER of PNC combined with both codes at the
relay on impulsive noise channels when @ = 0.01 and 0.1. From the comparison it can
be concluded that the non-binary turbo code outperforms the binary turbo code at all
SNRs and non-binary turbo codes have a lower error floor than the binary turbo codes at

all times.
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Figure 6.8 Lower bound on BER of PNC combined with non-binary and binary turbo

codes at the relay on impulsive noise channels when ¢ = 0.01 and 0.1.

We might assume that the codes defined in larger finite fields with more states should
achieve better performance than the codes defined in the small finite fields, due to the
increase in minimum Hamming distance. However, we have observed that the
performance of non-binary turbo codes peaks when the number of states is around 8, but
for higher number of states the performance of the codes degrades. A theoretical upper
bound comparison on the BER of non-binary turbo codes defined in GF(2), GF(4) and
GF(16) highlights the difference in performance, as shown in Figure 6.9 and Figure 6.10.
The free distances of turbo codes defined in different GF(q) are giving in table 6.1.

Field GF(2) GF(4) GF(16)

free 5 5 3

Table 6.1 The free distance of turbo codes defined in different GF(q)
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Figure 6.9 Lower bound of GF(4) and GF(16) non-binary turbo codes and binary turbo

code decoding at the relay on PNC under impulsive channel when ¢ = 0.01.
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Figure 6.10 Lower bound of GF(4) and GF(16) non-binary turbo codes and binary turbo

code decoding at the relay on PNC under impulsive channel when a = 0.1.
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6.7 Conclusions

In this chapter, an analysis of non-binary turbo codes on a TWRC employing PNC with
additive impulsive noise channels has been investigated. The decoding procedures of
non-binary turbo decoders, including a complete worked example of one single turbo
decoder iteration, are detailed. We have shown that the performance of turbo codes is
severely affected on the GMM noise channel when the mixture is high, but that non-
binary turbo codes achieve significant improvements in performance at low SNR
compared with binary turbo codes. Finally, an upper bound on BER to determine the
error floor in the presence of impulsive noise was derived for both binary and non-binary
turbo codes to validate our simulation results and was observed to be consistently lower
for non-binary turbo codes for a broad range of SNRs. We have shown that the
performance of non-binary turbo codes does not keep increasing as finite field size
increases, with higher error floors observed for a non-binary turbo code defined in

GF(16).

137



Chapter 7

Conclusions and Further
Work



7.1 Conclusions

This thesis has focused on the performance of PNC combined with non-binary coding
schemes on impulsive noise channels. After a comprehensive literature survey, it was
found that this is a research topic that has not been considered by the academic
community despite evidence that non-binary codes can outperform binary codes on
harsher channels. Furthermore, wireless networks can be deployed in urban environments
where man-made interference can cause impulses to be added to the transmitted signals.
Hence, if PNC is employed at the relays of a wireless network in this environment, it is
very important to have a good understanding of how the performance will be affected and
also find solutions that can mitigate the effects of the channel. This was the major
motivation for the thesis and interesting and original results have been achieved that show
the advantages of non-binary codes when combined with PNC on impulsive noise

channels.

In chapter 4, the combination of binary turbo codes and trellis BICM-ID with PNC was
investigated on AWGN and additive impulsive noise channels modelled using the
Gaussian mixture model. On the AWGN channel, the turbo codes achieved a superior
performance, but interestingly it was observed that trellis BICM-ID outperformed turbo
codes when the channel became more impulsive. This was due to the bit interleaver
increasing the code diversity and also the simplified decoding scheme that prevents errors
from propagating in each iteration. Therefore, it has been shown that trellis BICM-ID is a
better choice of coding scheme to be combined with PNC when the channels are
impulsive, since the performance is better than turbo codes and there is also a reduction in

complexity.

In chapter 5, non-binary convolutional codes were combined with PNC on impulsive
noise channels. This is original work and presented the first results of non-binary
convolutional codes combined with PNC. To make a fair comparison between binary and
non-binary convolutional codes, the number of states was kept fixed at 256. On the
AWGN channel, the convolutional codes defined in GF(2), GF(4) and GF(16) all
performed the same as expected. However, on impulsive noise channels it was observed
that the non-binary convolutional code defined in GF(4) outperformed the binary
convolutional code, but the non-binary convolutional code defined in GF(16) performed

worse. This is due to the shorter constraint length of the GF(16) code, which results in the
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minimum length of a path diverging from and converging to the all-zero path being

shorter.

In chapter 6, the first results of PNC combined with non-binary turbo codes were
presented. It was shown that the non-binary turbo codes outperform binary turbo codes at
low SNRs for both AWGN and impulsive noise channels, but then the performances
converged at higher SNRs. As the impulsiveness increased, the coding gain at low SNRs
became more significant. Furthermore, the error floor in the performance due to
impulsive noise was consistently lower for non-binary turbo codes. However, increasing
the finite field size did not result in further gains in performance. The non-binary turbo
code defined in GF(16) performed worse despite having a higher finite field and more
states. This is most likely due to the higher number of states, since it is known that binary
turbo code performance peaks when the number of states is around 8. When the number
of states is higher, the BER performance of the convolutional code has a steeper waterfall
region, but has a worse BER performance at low SNRs. However, it is the performance at
low SNRs that determines the performance of the turbo code. This argument could also

be applied to non-binary turbo codes, but requires further investigation.

7.2 Further work

As we have presented the application of channel coding schemes to PNC over impulsive
channels, it opens new and challenging aims for the future. In the binary coding area, we
have shown that the iterative decoder can fail to correct the errors caused by impulsive
noise, since the LLRs of the error bits are too large making the decoder believe that
certain bits are very reliable. Thus, a simpler iterative decoder for impulsive channel is
necessary, such as that used in trellis BICM-ID, since it is important to keep the
complexity at the relay as low as possible. Second, the best modulation schemes for
channel coded PNC need to be ensured for different channel coding schemes. In this
thesis we are using QPSK modulation scheme for all codes, resulting in a 9-QAM
constellation at the relay. However, higher level of modulation schemes could increase
the transmission capacity but at a cost of higher complexity at the relay, e.g. 8-PSK
modulated signals at node results in 17-QAM at the relay. This may increase the
difficulty of demapping the signals as well as the theoretical analysis of the system. Thus,
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suitable modulation schemes for PNC in realistic situations need to be considered. Third,
the design of non-binary codes defined in larger GF(q) is an interesting topic. We have
shown that the non-binary codes have a significant improvement of BER at lower SNR,
especially for impulsive channels. Furthermore, the codes defined in larger GF(q) have
more capability to correct errors since there are more bits contained in a single symbol.
Therefore, finding the optimal codes defined in larger GF(q) is critical to optimise the

performance of PNC on more realistic channels.
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Appendix
. In appendix 1 its showing the derivation of simplifies the LLR of turbo decoder L(y|m%)
and L(y|m3) from (4.16) to (4.17).

From the resulting nine-point constellation diagram at the relay, each received symbol y is
demapped to a pair of LLR values, L(y|m3%) and L(y|m%), which are a measure of the

reliability of the two XORed transmitted bits, m} and m3.

From (4.14) and (4.15) we have

P(y|m} = 0) = P(y|lmg = 00) + P(y|my = 01)

1 (vo—2E)* (vo+2E)* 1—2E)? 1+2E)? _p?
= o2 e 202 +e 202 e 202 +e 20 +42e 207 (4.14)

P(ylmg = 1) = P(y|mg = 10) + P(y|my = 11)

1 )/ =280 (y1+2E)? _?
=2 e 20% e 20° 4e 20° 4 2e 20° (4.15)

2mo?

Therefore, by submitting (4.14) and (4.15) into (4.13) the reliability of y can be rewritten

as:

L(ylm}) = In (P(ylmR =10) + P(ylmg = 11))

P(ylmg = 00) + P(y|myp = 01)

e 202 +e 202 202 +e 202 + 2e 202

(yQ_ZE)Z (yQ+2E)2 ( (VI_ZE)Z (yl"’ZE)Z (3’1)2>
e

=In
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e
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2. Inappendix 2 we are giving the full extension expression of the LLR exchanged between

two turbo decoders with the a priori LLR.
Extension of (4.21) and (4.22)

The full expression of (4.21) is:

L(mgly)
= La(mile)
/ (yE+¥3) [(J/I—ZE)2+(3’Q)2] [(yI+ZE)Z+(J/Q)2] )
| 4e” 207 +2e 207 + 2e 207 ela(mk)
+ In
[51-2B)2+(y-2E)"] [@i-2B)2+(yg+2E)?] [Gr+2E)2+(vg-2E)"] [Gr+2E)2+(yg+2E)’] [n2+(vo—2E)] (2 +(vo+2
e 202 +e 202 +e 202 +e 202 + 2ye 202 + 2ye 202

And the full expression of (4.22) is:

L(mg|y)
= La(mIZQ)
|02+ (vo-2E)’] |02+ (vo+2E)"] [01-2E)%+(v)’] [@1+2E)%+(vq)’] )
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+ ln 2 2 2 2 2 2 2 2 2
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