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Abstract 

This thesis investigates the performance of a two-way wireless relay channel (TWRC) 

employing physical layer network coding (PNC) combined with binary and non-binary 

error-correcting codes on additive impulsive noise channels. This is a research topic that 

has received little attention in the research community, but promises to offer very 

interesting results as well as improved performance over other schemes. The binary 

channel coding schemes include convolutional codes, turbo codes and trellis bit-

interleaved coded modulation with iterative decoding (BICM-ID). Convolutional codes 

and turbo codes defined in finite fields are also covered due to non-binary channel 

coding schemes, which is a sparse research area. The impulsive noise channel is based on 

the well-known Gaussian Mixture Model, which has a mixture constant denoted by α. 

The performance of PNC combined with the different coding schemes are evaluated with 

simulation results and verified through the derivation of union bounds for the theoretical 

bit-error rate (BER). The analyses of the binary iterative codes are presented in the form 

of extrinsic information transfer (ExIT) charts, which show the behaviour of the iterative 

decoding algorithms at the relay of a TWRC employing PNC and also the signal-to-noise 

ratios (SNRs) when the performance converges. It is observed that the non-binary coding 

schemes outperform the binary coding schemes at low SNRs and then converge at higher 

SNRs. The coding gain at low SNRs become more significant as the level of 

impulsiveness increases. It is also observed that the error floor due to the impulsive noise 

is consistently lower for non-binary codes. There is still great scope for further research 

into non-binary codes and PNC on different channels, but the results in this thesis have 

shown that these codes can achieve significant coding gains over binary codes for 

wireless networks employing PNC, particularly when the channels are harsh.  
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CHAPTER I  

 

Physical layer network coding (PNC) is an extension of network coding to the physical 

layer that exploits the addition of electromagnetic signals summed at a relay of a two-

user wireless network. The summed electromagnetic signals are demapped to soft values 

that represent the exclusive-OR (XOR) of the binary messages of two users. When this is 

broadcast back to the users, the desired message can be obtained by performing the XOR 

operation on the summed binary message and the user’s original binary message. Hence, 

both users have exchanged messages in a fast and efficient way, improving the 

throughput of the network. However, it is well known that there is a degradation in 

performance due to the interference at the relay and it is important to address this. 

Therefore, the combination of PNC with binary and non-binary error-correcting codes 

will be investigated in order to improve performance. 

This thesis investigates the performance of a two-way wireless relay channel (TWRC) 

employing PNC at the relay combined with different coding schemes on additive 

impulsive noise channels. The coding schemes are turbo codes, trellis bit-interleaved 

coded modulation with iterative decoding (BICM-ID) and non-binary convolutional 

codes and turbo codes defined in different Galois Fields with a cardinality of q (GF(q)). 

The type of PNC used throughout the thesis is called link-by-link PNC, where decoding 

and encoding takes place at the relay as well as at the source nodes.  

 

1.1 Motivation and Challenges 

Physical layer network coding has been a very active research area over the last 10 years. 

It is a technique that can significantly increase the throughput of a wireless network, but 

at the cost of degrading the overall performance. The literature contains many papers 

investigating error-correcting codes combined with PNC to improve the performance on 

the additive white Gaussian noise (AWGN) and fading channels. However, there are two 

areas that do not seem to have been considered in the literature, but could provide very 
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interesting results for the academic community. First, the performance of PNC on 

wireless networks when the channels suffer from impulsive noise has not been 

investigated. In wireless environments, impulsive noise is a result of man-made 

interference that introduces very large noise samples that occur for very short time 

periods into the transmitted signal. This means that the overall noise at a receiver has a 

non-Gaussian distribution and there are several methods to model impulsive noise, such 

as the Gaussian mixture model (GMM), symmetric alpha-stable distributions, Middleton 

class A noise and Bernoulli-Gaussian noise. It is likely that a wireless network could be 

subjected to impulsive noise and it is important to be able to understand how it would 

affect the performance of PNC, which this thesis addresses. Second, all papers on PNC 

focus solely on binary error-correcting codes, but it appears that none consider non-binary 

error-correcting codes. It is well known that non-binary codes have a performance 

advantage over binary codes when a channel contains burst errors, so it interesting to 

observe if these codes can reverse the degradation in performance due to the interference 

at the relay due to the summed electromagnetic signals. Furthermore, there appear to be 

no papers investigating non-binary codes on impulsive noise channels, so it will be very 

interesting and novel to evaluate the performance of PNC combined with non-binary 

codes on additive impulsive noise channels. 

  

1.2 Aims and objectives 

The aim of this thesis is to investigate the performance of a TWRC employing PNC at the 

relay combined with binary and non-binary error-correcting codes on additive impulsive 

noise channels. Simulation results of PNC combined with binary turbo codes and trellis 

BICM-ID will be presented and compared with PNC combined with non-binary 

convolutional codes and turbo codes, on impulsive noise channels with different levels of 

impulsiveness. Theoretical analyses will also be provided, with extrinsic information 

transfer (ExIT) charts to show the behaviour and convergence of the iterative decoding 

schemes at the relay and also bounds on the bit-error rate (BER) performance of these 

coding schemes will be derived to validate the simulation results. 

The objectives of this project are: 
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• To investigate the design criteria of convolutional codes, turbo codes and trellis 

BICM-ID on the AWGN channel and impulsive noise channels. 

• To derive theoretical performance bounds for coded PNC systems and design suitable 

codes to optimize performance. 

• Develop ExIT chart analyses to compare the capability of different iterative codes. 

• To investigate the design criteria of convolutional codes and turbo codes over GF(q) 

on PNC over impulsive noise channel. 
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1.3 Statement of Originality 

The accompanying thesis submitted for the degree of Doctor of Philosophy is entitled 

‘Iterative Decoding Combined with Physical-Layer Network Coding On Impulsive Noise 

Channel’. This thesis is based on the work conducted by the author in the Department of 

Electrical and Electronic Engineering, University of Newcastle during the period 

between April 2012 and July 2016. All the work recorded in this thesis is original unless 

otherwise acknowledged in the text or by references. This work has not been submitted 

for another degree in this or any other University. 
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1.4 Organisation of the thesis 

Chapter 2 presents a literature review covering wireless networks employing PNC, 

different channel models and coding schemes including convolutional codes, turbo code 

and trellis BICM-ID used in this thesis. 

Chapter 3 begins with a theoretical background on PNC, including the way PNC 

exchanges information using a simple channel model, which is followed by the 

description of the AWGN channel and Gaussian mixture model. Also, an introduction to 

binary convolutional codes is given, explaining the encoding and decoding processes, 

along with a theoretical performance analysis, which will be used when investigating the 

more advanced coding schemes in the later chapters. This chapter ends with a summary 

of finite fields in order to understand the arithmetic required in the encoding and decoding 

of non-binary codes. 

Chapter 4 including the construction of binary turbo coded PNC and the iterative 

decoding process of turbo codes at the relay are described. Also the theoretical 

performance analysis of turbo codes is given, by deriving upper bounds on BER 

performance and performing an ExIT chart analysis to observe the behaviour of the 

iterative decoder used in binary turbo codes and determine the pinch-off SNR where the 

decoder converges. Next, trellis BICM-ID is detailed with explanations of the encoder 

and iterative demapper/decoder and how it is combined with PNC. ExIT charts are also 

provided to verify the pinch-off SNR of trellis BICM-ID demapper/decoder. Finally, 

simulation results are presented for PNC combined with turbo codes and trellis BICM-ID 

on different impulsive noise channels and are compared. 

Chapter 5 introduces non-binary convolutional codes defined in finite fields and explains 

the encoding and decoding processes. A description of how PNC is combined with non-

binary convolutional codes is given and simulation results are presented on different 

impulsive noise channels and compared with binary convolutional codes. A bound on the 

BER performance of PNC combined with non-binary convolutional codes on impulsive 

noise channels is also presented to validate the simulation results. 

Chapter 6 explains non-binary turbo codes, including the encoding and decoding 

processes and how they are combined with PNC. Since there is very little information on 

non-binary turbo codes in the literature, a numerical worked example is provided for one 
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complete turbo decoder iteration. Simulation results for PNC combined with a non-binary 

turbo code defined in GF(4) are presented and compared with PNC combined with a 

binary turbo code on impulsive noise channels. Lower bounds on the BER performance 

are also derived to show the error floor region of non-binary turbo codes defined in GF(4) 

and GF(16) and these are also compared with the error floor region of binary turbo codes. 

Finally, chapter 7 concludes the work presented in this thesis and provides suggestions for 

future work.  

 

 

 

1.5 Publications arising from this research 

1. Zhao, Yuanyi, et al. "Link-by-Link Coded Physical Layer Network Coding on 

Impulsive Noise Channels." Sensor Signal Processing for Defence (SSPD), 2015. IEEE, 

2015. 

2. Zhao, Yuanyi, et al. "Convolutional Codes Defined In GF(q) Combine With PNC Over 

Impulsive Noise Channel." IET journal.2016 

3. Zhao, Yuanyi, et al. "Non-Binary Turbo Coded Physical Layer Network Coding on 

Noise Channels." Electronics letters. 2016 
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2.1 Introduction 

 

In the modern wireless communication area, one of the biggest challenges is to eliminate 

the interference at the receiver, when the signals are received from multiple sources 

simultaneously. As a matter of fact, most solutions are proposed from the view of 

reducing or avoid the interference by the design of a proper receiver to schedule the 

transmission schemes [1]. However, with the scheme of physical-layer network coding 

(PNC), it is possible to embrace the interference in order to improve the throughput 

performance, but there are two aims that must be met: First, the simultaneously received 

signals at the relay must be able to be interpretable and broadcast from the relay to the 

destination nodes. Secondly, the destination node must be able to extract the information 

from the received signals sent from the relay. The capability of network coding schemes 

provides a potential approach to meet these aims though simple Galois field additions 

[2][3]. The concept of PNC is to deal with signal reception and modulation through the 

relay at the physical layer so that the EM signals are mapped by the GF(q) addition of bit 

streams so that the interference can be used as part of the arithmetic operation in the PNC. 

Thus, we are curious to find out the performance of PNC with different channel coding 

schemes over a variety of noise channels, in order to see the capability of PNC and its 

possible applications. 

 

 

2.2 Physical-layer Network Coding 

 

The concept of PNC was first proposed in 2006 [4], in order to enhance the performance 

of wireless network transmission, and since then it has developed into a new field of 

network coding with wide implications. The basic idea of PNC is to maximize the 

network coding usage, which occurs naturally when electromagnetic (EM) waves are 

superimposed on one another. This simple idea turns out to have profound and 

fundamental ramifications.  Since then, many researchers have made contributions in the 

area of PNC. Afterwards, Zhang introduced the basic concept of synchronization of PNC 
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in [5], and the importance of the transmitted signals from each node to be synchronized 

by listing the impact of imperfect synchronization. Katti et.al addressed the XOR 

operation for the received mixing signals from different sources at the relay [6], and 

evaluates the design on a multiple nodes model. Hausl et.al proposed a joint network-

channel coding based on turbo codes for multiple-access relay channel [7], which shows 

the capability of PNC for the cooperative uplink for two mobile stations with the aid of a 

relay, and shows that systems with network coding for the multiple-access relay channel 

gain cooperative diversity compared to the system with the distributed turbo code for the 

relay channel.  Popovski proposed the model of a TWRC on PNC, and the application of 

network coding arising from this model [8].  Partan in [9] has highlighted the important 

practical issues of PNC.  
Zhang proposed another paper in [10] to show the direct application of network coding at 

PNC for TWRC and subclass the technique into two classes: PNC over a finite field and 

PNC over an infinite field. Katti et.al [11] describes a system that improves the 

throughput of wireless networks on PNC by mapping the signals on symbol levels, which 

allows the nodes to opportunistically route groups of bits to their destination with low 

overhead.  

In 2009, Zhang investigates the link-by-link channel coded PNC to show that the 

performance of Repeat Accumulate (RA) codes on the channel at the nodes in a relay 

system [12].  This was followed by Rossetto and Zorzi who proposed the design of 

practical asynchronous PNC design to show the advantage of asynchronous PNC [13]. 

Koike-Akino et.al investigated optimized modulation schemes for TWRC on PNC, 

showing that QPSK constellations with an XOR network always perform the best for the 

broadcast stage of PNC [14]. Furthermore, Cui and Gao showed several new 

transmission schemes for TWRC on PNC with differential modulation schemes.[15]  

Further studies by various researchers have led to many new outcomes in the areas of 

wireless communication and wireless networking.  In [17], Louie proposed an analysis 

and performance comparison of practical PNC for two-way relay channel (TWRC), 

which compares the performance of traditional transmission schemes, e.g. four time-slots 

transmission schemes to the performance of PNC and show that the maximum sum-rate 

of PNC is higher. Nazer explored the core ideas behind PNC and showed the possibilities 

PNC offers for communications over interference limited wireless networks [18]. 

Another performance comparison is shown in [19] by Wilson, proving that PNC can 
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outperform  the recently proposed analog network coding schemes. The benefits of PNC 

are not only limited by synchronous transmission, but Lu also showed that from the 

asynchronously transmitted signals of the PNC received at the relay, the performance can 

be improved by applying a belief propagation method [20].  

2.3 Channel Coding and PNC 

The introduced research on PNC does not include channel coding, but channel coding 

schemes are widely applied to PNC in order to improve the performance of PNC. Thus, 

it is important to learn the application of channel coding schemes combined with PNC. 

 

2.3.1 Convolutional codes on PNC 

Elias first proposed the class of binary convolutional codes in 1955 [65], and it is one of 

the most commonly used channel coding schemes with a vast range of applications. 

Khan considered a physical-layer simulation with quadrature phase shift keying (QPSK) 

modulated convolutional code in [26] to serve as a helpful resource for researchers.  

A.Zhan investigates the advantage of linearity of the channel coding schemes combined 

with PNC in [27], analysing the capacity of the channel coded model on the AWGN 

channel in order to show the ability of PNC to improve the network throughput and 

robustness. Wang discussed the channel coding design on PNC under a three-node 

network coding scenario in [28], where the bit error rate (BER) at the relay of the 

channel is bounded by the weakest channel coding scheme. Gacanin presented the 

performance of bi-directional transmission with convolutional coded PNC on a multipath 

channel in [29]. D. To has shown that the Viterbi algorithm can be used by 

approximating the maximum likelihood (ML) decoding for the XORed message at the 

relay in [30] and by applying the convolutional codes reduced-state decoding can achieve 

the same diversity gain as full-state decoding for fading channels. The implementations 

of asynchrony between signals transmitted by the multiple transmitters, which integrate 

channel coding with PNC to achieve reliable communication, are looked into in [31]-[32]. 

The asynchrony decoding process of convolutional coded PNC systems is investigated 

by Yang. Overall, the convolutional codes are treated as the most commonly use channel 

coding schemes in PNC, and as a fundamental background of turbo codes or other 
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coding schemes, it is important to look into the performance of convolutional codes 

combined with PNC. 

 

2.3.2 Turbo Codes combined with PNC 

It is widely acknowledged that iterative decoding schemes have significant advantages 

when combined with PNC. In [33], Hausl introduced an extension of the conventional 

two-way relay communication with a joint network-channel coding method for PNC, 

where turbo codes are used as the channel coding scheme for both source nodes and a 

network code is used at the relay. They derived closed-form expressions for upper  

bounds on channel capacities of the time-division relay and two-way relay channel 

without power control. The study of [34] proposed a joint physical network coding with 

turbo codes for multiple-access channels, where the performance of the proposed scheme 

approached the information-theoretic limits of the traditional network. They showed that 

combining channel coding and network coding achieves a 2.1dB improvement at a bit 

error rate (BER) of 10ିହ on the AWGN channel over traditional network coding with a 

turbo multi-user detector. The study of Fang et al. [35] investigated the performance 

degradation of hierarchical decode-and-forward (HDF) turbo coded PNC on 

conventional two-way relay communications compared to a single user end-to-end turbo 

coded system. A simple upper bound on the performance of turbo codes using ExIT 

charts was also presented. Guan [36] showed an improved PNC method based on turbo 

codes and M-PSK, analyzing the transmission energy consumption of the proposed 

scheme and showing how the enhanced PNC method can halve transmission energy 

consumption at the relay node over conventional PNC. Zeng [37] presented the non-

coherent detection of iterative differential phase-shift keying (DPSK) demodulation for 

PNC combined with turbo codes on conventional two-way relay communications, where 

the iterative processing converges faster on a Rayleigh fading channel, and an ExIT chart 

analysis shows that most of the coding gains are achieved within two iterations. 
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2.3.3 Trellis BICM combined with PNC 

There are several studies on trellis BICM combined with PNC on conventional two-way 

relay communications. In [38], Xu et.al showed that trellis BICM can significantly 

improve the BER performance of a PNC system by applying a suitable iterative 

demapping and decoding framework and proper constellation mapping schemes specially 

designed for PNC. By considering the deployment of a relay transceiver employing PNC 

and BICM-ID coding, the performance of the receiver achieved an energy efficiency 

improvement of 0.5-0.9dB on fading channels. Tao [39] addressed the convergence 

behavior of the iterative receiver of BICM-ID coded PNC at the relay using (ExIT) 

charts to design good channel-coded PNC schemes. Noori introduces the concept of 

semi-Gray mapping on PNC that improves the system BER performance and the 

achievable rate in [40]. It needs to denotes that based on our system, the anti-Gray 

mapping could reduce the complexity at the relay, due to anti-Gray mapped signals 

addition could achieve the coding gain which semi-Gary mapping could not. It turns out 

research in the area of trellis BICM combined with PNC, which is one of the commonly 

used iterative coding schemes, is sparse and it is therefore important to investigate the 

performance of trellis BICM combined with PNC. 

 

 

 

2.3.4 Non-Binary Convolutional Codes on PNC 

One important class of error-correction code is the convolutional code. The major 

difference between convolutional code and block codes is that block codes are only able 

to encode a fixed length of information bits. However, convolutional codes can encode a 

continuous stream of information bits. Another advantage of the convolutional code is its 

simplicity: convolutional codes have a much simpler trellis than block codes. However, 

convolutional codes achieve a poorer performance than block codes at higher code rates. 

Multiple levels encoding to form q-ary codes was first proposed in [59] and then their 

performance over different channels was proposed in [60-62]. Also, this class of code is 

analyzed by [63][64]. It is well known that convolutional codes construct defined in 
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GF(q) outperform binary convolutional codes, and they have become more popular in 

recent research [64-68]. So our motivation is to compare the performance of non-binary 

convolutional codes combined with PNC over GMM channel with different mixtures of 

impulsiveness to binary convolutional codes, in order to see how the impulsive noise 

affects different coding schemes and evaluate it by deriving the upper bound on 

performance. 

There are two classes of non-binary convolutional code that provide substantial coding 

gains when used with M-ary orthogonal signaling and non-coherent detection. The first 

class is the q-ary convolutional code, which can be viewed as an extension of dual-k 

codes with much larger memory elements and the symbols are mapped to the field of 

GF(q). The second class is the binary-to-q-ary convolutional codes, which can be viewed 

as a rate 
ଵ

௡
 extension of the rate 1 code [69]. It turns out that the research of non-binary 

convolutional codes combined PNC is rare. Faraji-Dana investigated a non-binary 

constellation modulation scheme combined with PNC and convolutional coding in [70], 

where the simulated FER of the non-binary convolutional code is presented with a upper  

bound on the performance of decoding the network combinations.  However, their works 

only considered the field of GF(2) to GF(4) with simple comparison to the basic 

convolutional codes of constraint length two. In this work we are going to consider the 

scenarios where the non-binary convolutional codes are mapped onto higher order of 

fields with longer constraint lengths, e.g. the industry standards, to approach a practical 

performance for non-binary convolutional codes combined with PNC. 

 

 

2.3.5 Non-binary Turbo Codes on PNC 

As one of the most significant breakthroughs in coding, turbo codes soon became one of 

the most popular coding schemes. However, there is only a small body of work on turbo 

codes on the TWRC with PNC. This includes Hausl [78] who proposed a distributed 

turbo coding scheme for a multiple access relay channel and Feng [79] who studied the 

performance degradation of binary turbo codes on a TWRC. However, there appears to 

be no work in the literature studying non-binary turbo codes with PNC. In [80] Berrou 



20 

 

introduced non-binary convolutional codes for turbo coding and showed that Quaternary 

codes can be advantageous, both in terms of performance and complexity. Hence, in this 

thesis we investigate the performance of non-binary turbo codes over GF(4) and GF(16) 

combined with PNC, where encoding and decoding take place at the relay and source 

nodes in each time slot. We also consider the effect of additive impulsive noise on the 

performance of non-binary turbo codes. This has been investigated in [81], where the 

authors analyzed the performance of binary turbo codes combined with PNC on additive 

impulsive noise channels. 

 

 

2.4 Channel Coding and Impulsive Noise Channel 

Although channel coding combined with PNC is becoming a more popular research area, 

most of the research has been done under the assumption of AWGN channel due to the 

pdf of Gaussian noise being straightforward for the system to be analyzed.  However, it 

is important to look the performance of PNC over other more complicated channels. One 

noise model we are particular interested in is the impulsive noise model, as there are 

many scenarios in a real environment that can be modelled as impulsive noise channel, 

such as underwater environment and so on. Again, there are few works that focus on the 

impulsive noise channel with PNC, and none mention channel coded PNC. In [98], 

Chitre provides an overview of the key developments in communications techniques of 

underwater networks that discussed the open problems and the challenges of the 

impulsive channel in the near future. Yousuf discussed the impulsive noise events in the 

error correction and data interleaving codes with varying code rates in [99], proving that 

the effects of impulsive noise can be reduced by applying channel coding schemes. 

Overall, the area of channel coded PNC over impulsive noise channel still needs to be 

explored, and is one of the aims of this thesis. 
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2.5 Conclusions 

After a literature survey on past research on TWRC with PNC, it appears that most 

researchers are assuming the network coding system is on AWGN channels and only 

very few researchers are focusing on other noise channels. Furthermore, the non-binary 

channel coding schemes combined PNC is essentially and unknown area. We have 

chosen four different channel coding schemes that are combined with PNC, in order to 

observe the BER performances on PNC over both the AWGN channel and impulsive 

noise channels, along with the theoretical performance analysis including the bound 

theoretical derivation and ExIT charts for iterative decoding codes to verify our results. 

We believe that the works in this thesis are novel and the results are original, and not 

only explore the core ideas behind the PNC but also fill in an important gap in the 

available literature that will be useful for other researchers considering this area. 
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3. Theoretical Background 

 

3.1 Introduction 

In this chapter, the required background knowledge for physical layer network coding 

(PNC), impulsive noise channel modelling, encoding and decoding of convolutional 

codes and finite field arithmetic required to understand non-binary codes is presented. 

The chapter begins by explaining the system model for PNC, where encoding/decoding 

is performed at the source/destination nodes and additionally encoding and decoding 

takes place at the relay. From this we can analyse the theoretical and simulated bit-error 

rate (BER) performance of the two-way wireless relay channel employing PNC at the 

relay. One of the contributions of this thesis is the addition of impulsive noise to the 

PNC system model, which is modelled as a Gaussian mixture and defined later in this 

chapter. Its effect on several different coding schemes, including turbo codes, trellis bit-

interleaved coded modulation, non-binary convolutional codes and non-binary turbo 

codes is evaluated and analysed throughout the thesis. It is therefore important to gain a 

fundamental understanding of convolutional codes, which are the component codes of 

the aforementioned coding schemes. Finally, non-binary codes are considered in 

chapters 5 and 6, which are defined in extension fields, so it essential to include an 

explanation of finite fields, which concludes this chapter. 
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3.2 System Channel Model 

3.2.1 AWGN model 

In wireless communications, the AWGN model is widely used as it provides an accurate 

description of a complete set of noisy observations by means of qualitative information 

that is characterized by a few simple parameter values [39]. The well-known AWGN pdf 

with zero-mean is given by: 

 

ሻݔሺ݌ ൌ
1

ଶߪߨ2√
݁ି

௫
ଶఙమ																																																						ሺ3.1ሻ 

 

where ߪଶ is the noise variance of the distribution. This distribution plays an important 

role in statistical modelling and was first derived by German mathematician Johann 

Gauss in 1867 [47]. As the reference model for this research, the Gaussian distribution 

acts as one of the main factors in analysing the theoretical performance of each network 

coding scheme in this thesis. Examples of AWGN noise samples for different SNRs are 

shown in Fig 3.1. 

 

Figure 3.1 Noise strength at different SNR: 0dB (black), 5dB (blue), and 10dB (red). 
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3.2.2 Impulsive Model 

It is not enough to evaluate the performance of network coding only on the AWGN 

model. Some scenarios can cause impulsive noise to be added during network 

transmission. In general, there are several different models to represent an impulsive 

noise environment: the Gaussian mixture model (GMM), symmetric alpha-stable 

distributions, Middleton class A noise and Bernoulli-Gaussian noise. The mixture model 

was first purpose by Tukey in 1960 [50], and it is a probabilistic model that assumes the 

data are generated from a mixture of a finite number of Gaussian distributions, which 

results in an approximately Gaussian distribution but with a certain number 

(corresponding to the mixture constant ) of contaminating distributions. Due to the 

mixture model being convenient to calculate the noise distribution in order to evaluate 

the network coding performance in an impulsive noise environment, it has widespread 

popularity among many researchers over the past decade [44-50]. However, the most 

popular model of the GMM is a mixture of two Gaussian densities. To evaluate the 

network coding schemes under an impulsive noise environment, it is important to know 

the distribution of the impulsive model. The pdf of the GMM can be expressed as: 

 

ெெீ݌ ൌ ሺ1 െ ሻݔሺீ݌ሻߙ ൅  ሺ3.2ሻ																																										ሻ.ݔூሺ݌ߙ

where 0 ൑ ߙ ൑ 1  is the Gaussian mixture constant, with larger values of ߙ  denoting 

more impulsiveness. The terms ீ݌ሺݔሻ	and	݌ூሺݔሻ are the Gaussian pdf and impulsive pdf 

respectively, where  ݌ூሺݔሻ has a much larger variance than	ீ݌ሺݔሻ, and their addition 

results in a heavy-tailed distribution	ீ݌ெெ. The noise strength at different  of GMM 

impulsive noise is shown in Fig 3.2. 
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Figure 3.2  Noise strength at various ߙ at SNR=1dB: ߙ ൌ 0.01 (black), ߙ ൌ 0.1 (red), 

and ߙ ൌ 0.5 (blue). 

 

From Fig 3.2 it can be seen that as the value of mixture constant ߙ  increases, the 

proportion of the distribution ݌ூሺݔሻ  increases and thus increases the impulsiveness 

of	ீ݌ெெ.  

In this thesis, we have chosen the variance of impulsive noise ߪூ
ଶ	to be ten times larger 

than the variance of Gaussian noise		ீߪ
ଶ, where: 

ீߪ
ଶ ൌ ଴ܰ

2
,																																																																			ሺ3.3ሻ 

଴ܰ ൌ
1

4ܴ10
ௌேோ೏ಳ
ଵ଴

.																																																							ሺ3.4ሻ 

We chose the mixture constant  to have values of	0 ൑ ߙ ൑ 0.5. For some channel 

coding schemes, even with one percent of impulsive noise, the performance of the codes 

can be affected significantly.  

Recalling the distribution of GMM in (3.2), the BER of the impulsive channel with 

BPSK and QPSK modulation is simply defined as: 
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ܲீ ெெ ൌ ሺ1 െ αሻ
1
2
݂ܿݎ݁ ቌඨ

௕ܧ
ீܰ
ቍ ൅ α

1
2
݂ܿݎ݁ ቌඨ

௕ܧ
ூܰ
ቍ,																					ሺ3.5ሻ 

where ீܰ  and ௜ܰ are the noise power spectral densities of the Gaussian noise and 

impulsive noise respectively. 

 

3.3 Construction of PNC 

3.3.1 PNC Transmission Model  

Let us consider the following situation: There are two source nodes: node 1 and node 3. 

Both nodes want to communicate to each other but this is only possible through the aid 

of a relay as shown in Fig 3.3 [18]： 

 

 

Figure 3.3 Three-node Linear Network. 

Fig 3.3 shows a traditional two-way relay channel (TWRC) model, where 1 and 3 are the 

user nodes and 2 is the relay. In a two-way relay transmission scheme, communication 

can take place over four-time slots, where node 1 communicates with node 2 in the first 

two time slots and node 2 remains idle, and node 2 communicates back to node 1 during 

the last two time slots with node 1 remaining idle, as shown in Fig 3.4 [18].  

 

 

Figure 3.4 Traditional four-time slot transmission scheme. 
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We refer to this scheme as a four-time slot transmission scheme, and its performance has 

been studied extensively.. One problem with this transmission scheme is the relatively 

low throughput, as a consequence of transmission over four-time slots. 

One way to increase the throughput is to allow node 1 to transmit S1 in the first time slot 

but now let node 3 transmit S3 in the the second time slot. At the relay (node 2), the 

signals are added resulting in: 

S2 = S1⊕	S3                                        (3.6) 

where ⊕	denotes the bitwise exclusive OR operation applied to the entire frame of S1 

and S3. Then node 2 broadcasts the signal S2 back to both node 1 and node 3 in the third 

time slot. When the destination receives the message (e.g. node 1), S3 can be extracted by 

XOR-ing S2 and S1: 

S1⊕S2 = S1 ⊕(S1 ⊕	S3) = S3                                (3.7) 

This is known as straightforward network coding and its system model is shown in Fig 

3.5 [18]: 

 

Figure 3.5 straightforward network coding scheme. 

 

Similarly, node 3 can extract information that node 1 sent from the broadcast signal S2 as 

well. In this scheme, only three-time slots are needed, meaning the throughput 

improvement is 33% better than the traditional transmission scheduling scheme.  

Although the straightforward network coding scheme boosts the transmitting speed by 

33%, it can be improved to 100% with the PNC transmission scheduling scheme, which 

completes the exchange of signals over two time slots. In the first time slot, node 1 and 

node 3 transmit to the relay simultaneously, while during the second time slot, the relay 

forwards the summed received signals to both nodes. Such a scheme is referred to as a 
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two time slot PNC scheme and has been shown to achieve higher throughput than the 

four-time slot transmission scheme due to fewer time slots being used for transmission. 

However, certain assumptions are made to achieve this, e.g. symbol-level and carrier 

phase synchronization and the use of power control to all nodes so that the signals from 

node 1 and node 3 received by the relay have the same phase and amplitude. Fig 3.6 

shows the PNC system model [18]: The destination nodes perform the same procedure as 

in the straightforward network coding scheme to extract the information from the signal.  

 

 

Figure 3.6 PNC system model. 

 

3.3.2 Theoretical Analysis of PNC 

For BPSK-modulated PNC, it is possible to derive the theoretical performance for both 

the relay and the node. Let us consider the channel noise as AWGN, so the error 

probability is [36]: 

ܲ൫ݔ|ݎ ൌ ඥܧ௕൯ ൌ 	
1

ଶߪߨ2√
݁ି

൫௥ିඥா್൯
మ

ଶఙమ ,																																										ሺ3.8ሻ 

This gives us the probability of getting an error event when the node is transmitting a 

ඥܧ௕ . So, the error probability of node 1 transmitting to node 2 without a relay is: 

௦ܲ௜௡௚௟௘ ൌ
1
2
݂ܿݎ݁ ቌඨ

௕ܧ
଴ܰ
ቍ,																																														ሺ3.9ሻ 

where 
ா್
ேబ

 is the SNR. The received added signals are resulting in three values with four 

different situations, which are:  
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Node 1 Node 3 Relay 

ඥܧ௕ ඥܧ௕ 2ඥܧ௕ 

ඥܧ௕ െඥܧ௕ 0 

െඥܧ௕ ඥܧ௕ 0 

െඥܧ௕ െඥܧ௕ െ2ඥܧ௕ 

Table 3.1: Possible values of BPSK modulated signals received at the relay on PNC 

 

From Table 3.1, it can be seen that the probability of receiving a 0 is 50%, and the other 

two values are 25% respectively. The probability of a bit error at the relay given that the 

summed BPSK signals equal െ2ඥܧ௕ is 

ܲ൫ݔ|ݎ ൌ െ2ඥܧ௕൯ ൌ 	
1

ଶߪߨ2√
න ݁ି

ሺ௥ାଶඥா್ሻమ

ଶఙమ ݎ݀
ିඥா್

ඥா್

.																							ሺ3.10ሻ 

For the probability of a bit error, given that x= +2ඥܧ௕ we have: 

ܲ൫ݔ|ݎ ൌ ൅2ඥܧ௕൯ ൌ 	
1

ଶߪߨ2√
න ݁ି

ሺ௥ିଶඥா್ሻమ

ଶఙమ ݎ݀
ඥா್

ିඥா್

.																							ሺ3.11ሻ 

For the probability of a bit error, given that x= 0 we have: 

ܲሺݔ|ݎ ൌ 0ሻ ൌ 	 ଵ

√ଶగఙమ
׬ ݁ି

ೝమ

మ഑మ
ିඥா್
ିஶ +ݎ݀

ଵ

√ଶగఙమ
׬ ݁ି

ೝమ

మ഑మ
ஶ

ඥா್
 ሺ3.12ሻ																							.ݎ݀

The complementary error function is defined as [37]: 

ሻݔሺ݂ܿݎ݁ ൌ 	
2

ߨ√
න ݁ି௧

మ
ݐ݀

ஶ

௫
																																																		ሺ3.13ሻ 

So, by applying Eqn. (3.13) to Eqn. (3.10) - (3.12) we obtain: 

ܲ൫ݔ|ݎ ൌ െ2ඥܧ௕൯ ൌ 	
1
2
݂ܿݎ݁ ቌඨ

௕ܧ
଴ܰ
ቍ െ

1
2
݂ܿݎ݁ ቌ3ඨ

௕ܧ
଴ܰ
ቍ,																								ሺ3.14ሻ 
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ܲ൫ݔ|ݎ ൌ ൅2ඥܧ௕൯ ൌ 	
1
2
݂ܿݎ݁ ቌ3ඨ

௕ܧ
଴ܰ
ቍ െ

1
2
݂ܿݎ݁ ቌെඨ

௕ܧ
଴ܰ
ቍ,																						ሺ3.15ሻ 

ܲሺݔ|ݎ ൌ 0ሻ ൌ ݂ܿݎ݁	 ቌඨ
௕ܧ
ܰ0
ቍ.																																																		ሺ3.16ሻ 

By following the probabilities from Table 3.1, the theoretical bit error probability 

௥ܲ௘௟௔௬	at the relay can be derived as:  

௥ܲ௘௟௔௬ = 0.25	ܲ൫ݔ|ݎ ൌ െ2ඥܧ௕൯ + 0.25	ܲ൫ݔ|ݎ ൌ ൅2ඥܧ௕൯+0.5ܲሺݔ|ݎ ൌ 0ሻ 

ൌ 0.25 ቎
1
2
݂ܿݎ݁ ቌඨ

௕ܧ
଴ܰ
ቍ െ

1
2
݂ܿݎ݁ ቌ3ඨ

௕ܧ
଴ܰ
ቍ቏

൅ 0.25 ቎
1
2
݂ܿݎ݁ ቌ3ඨ

௕ܧ
଴ܰ
ቍ െ

1
2
݂ܿݎ݁ ቌെඨ

௕ܧ
଴ܰ
ቍ቏

൅ ݂ܿݎ0.5݁ ቌඨ
௕ܧ
ܰ0
ቍ.																																																																																						ሺ3.17ሻ 

Due to terms ݂݁ܿݎ ൬േ3ට
ா್
ܰ0
൰ only having a significant effect on	 ௥ܲ௘௟௔௬ at very low SNRs, 

we can ignore them to obtain: 

 

௥ܲ௘௟௔௬ ൎ 	
3
4
݂ܿݎ݁ ቌඨ

௕ܧ
ܰ0
ቍ.																																										ሺ3.18ሻ 

 

To derive the theoretical performance at the destination nodes, two situations need to be 

considered when an error is received at a destination node: an error occurred at the relay 

during the first time slot and is received unchanged by node 3, or no error occurred at the 

relay but an error then occured at the destination node during the second slot.  
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If a bit error occurs at the relay and also at the destination node, then in reality the bit has 

been flipped twice and no error has actually occured.  According to the situations above, 

the error probability of transmitting signals from source node to destination can be 

expressed as: 

ௗܲ௘௦௧௜௡௔௧௜௢௡_௡௢ௗ௘ ൌ ൫1 െ ݕ݈ܽ݁ݎ൯݈ܲ݁݃݊݅ݏܲ ൅ ൫1 െ ݈݁݃݊݅ݏ൯ܲݕ݈ܽ݁ݎܲ െ ݕ݈ܽ݁ݎ݈ܲ݁݃݊݅ݏ2ܲ

ൌ ൮1 െ	
1

2
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ൲

3

4
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ

൅ ൮1 െ	
3

4
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ൲

1

2
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ																																					ሺ3.19ሻ

െ 2 ቎
3

4
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ
1

2
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ቏ ൌ

5

4
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ െ

9

4
ቌඨ݂ܿݎ݁

௕ܧ
ܰ0
ቍ

2

 

 

3.3.3 Performance of QPSK modulated PNC at the Relay and 

Destination Nodes 

Figure 3.5 shows the system model of a PNC system from the source nodes to the relay.  

 

Figure 3.7 The system model evaluating the BER performance of uncoded QPSK PNC at 

the relay. 
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It can be seen that node A and node B map the information sequences ݉஺	and	݉஻ to 

modulated signals xA and xB and then transmit these signals to the relay simultaneously. 

 :are added at the relay, which can be expressed as	஻ݔ	and	஺ݔ

ݕ ൌ ஻ݔ஺൅ݔ ൅  (3.20)                                                         ,ߟ

where ߟ is the channel noise. Constellation diagrams showing the constellation points at 

the source node and at the relay without noise are shown in Fig 3.8. Then the theoretical 

BER performance at the relay can be determined from the nine constellation points. 

 

Figure 3.8 Constellation diagrams of the QPSK modulation scheme at the source nodes 

(left) and the 9-point constellation at the relay (right). 

 

Let us consider the channel noise as AWGN first, where the probability distribution 

function (pdf) of receiving a signal at the relay given that we transmitted two signals 

from the source nodes is [36]: 

ܲሺݔ|ݎሻ ൌ 	
1

ଶߪߨ2√
݁
ି൥
ሺ௥಺ି௫಺ሻమା൫௥ೂି௫ೂ൯

మ

ଶఙమ
൩
,																																		ሺ3.21ሻ 

where ݔ is the summed received symbol from the source nodes, ݔூ and ݔொ are real and 

imaginary part of x, r is the received symbol at the relay and rI and rQ are the real and 

imaginary parts of r.  

As shown in Fig 3.8, the received signals when added result in nine different complex 

values from sixteen possible summations, presented in Table 3.2:  
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Node 1 x1 Node 3 x3 x = x1 + x3 Relay 

00 ඥܧ௕ ൅ ݆ඥܧ௕ 00 ඥܧ௕ ൅ ݆ඥܧ௕ 2ඥܧ௕ ൅ 2݆ඥܧ௕ 00 

00 ඥܧ௕ ൅ ݆ඥܧ௕ 01 െඥܧ௕ ൅ ݆ඥܧ௕ 2݆ඥܧ௕ 01 

00 ඥܧ௕ ൅ ݆ඥܧ௕ 10 ඥܧ௕ െ ݆ඥܧ௕ 2ඥܧ௕ 10 

00 ඥܧ௕ ൅ ݆ඥܧ௕ 11 െඥܧ௕ െ ݆ඥܧ௕ 0 11 

01 െඥܧ௕ ൅ ݆ඥܧ௕ 00 ඥܧ௕ ൅ ݆ඥܧ௕ 2݆ඥܧ௕ 01 

01 െඥܧ௕ ൅ ݆ඥܧ௕ 01 െඥܧ௕ ൅ ݆ඥܧ௕ െ2ඥܧ௕ ൅ 2݆ඥܧ௕ 00 

01 െඥܧ௕ ൅ ݆ඥܧ௕ 10 ඥܧ௕ െ ݆ඥܧ௕ 0 11 

01 െඥܧ௕ ൅ ݆ඥܧ௕ 11 െඥܧ௕ െ ݆ඥܧ௕ െ2ඥܧ௕ 10 

10 ඥܧ௕ െ ݆ඥܧ௕ 00 ඥܧ௕ ൅ ݆ඥܧ௕ 2ඥܧ௕ 10 

10 ඥܧ௕ െ ݆ඥܧ௕ 01 െඥܧ௕ ൅ ݆ඥܧ௕ 0 11 

10 ඥܧ௕ െ ݆ඥܧ௕ 10 ඥܧ௕ െ ݆ඥܧ௕ 2ඥܧ௕ െ 2݆ඥܧ௕ 00 

10 ඥܧ௕ െ ݆ඥܧ௕ 11 െඥܧ௕ െ ݆ඥܧ௕ െ2݆ඥܧ௕ 01 

11 െඥܧ௕ െ ݆ඥܧ௕ 00 ඥܧ௕ ൅ ݆ඥܧ௕ 0 11 

11 െඥܧ௕ െ ݆ඥܧ௕ 01 െඥܧ௕ ൅ ݆ඥܧ௕ െ2ඥܧ௕ 10 

11 െඥܧ௕ െ ݆ඥܧ௕ 10 ඥܧ௕ െ ݆ඥܧ௕ െ2݆ඥܧ௕ 01 

11 െඥܧ௕ െ ݆ඥܧ௕ 11 െඥܧ௕ െ ݆ඥܧ௕ െ2ඥܧ௕ െ 2݆ඥܧ௕ 00 

Table 3.2: Possible values of QPSK modulated signals received at the relay on PNC 
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From Table 3.2, it can be seen that there are four cases of receiving 00, i.e. the points 

2ඥܧ௕ ൅ 2݆ඥܧ௕, 2ඥܧ௕ െ 2݆ඥܧ௕,െ2ඥܧ௕ ൅ 2݆ඥܧ௕,െ2ඥܧ௕ െ 2݆ඥܧ௕ , which each have 

the probability of 1/16=6.25%. The probability for each of the points െ2ඥܧ௕,

2ඥܧ௕,െ2݆ඥܧ௕, 2݆ඥܧ௕	 is 2/16 = 12.5% and the probability of the point 0 is 4/16 = 25%. 

Thus, the conditional probabilities of the received signal at the relay are: 

ܲሺݕ|݉ଵ ൌ 0,݉ଷ ൌ 0ሻ ൌ 

න න ൮݁
ି൥
൫௬಺ିଶඥா್൯

మ
ା൫௬ೂିଶඥா್൯

మ

ଶఙమ
൩
൅ ݁

ି൥
൫௬಺ାଶඥா್൯

మ
ା൫௬ೂିଶඥா್൯

మ

ଶఙమ
൩∞

ି∞

∞

ି∞

൅ ݁
ି൥
൫௬಺ିଶඥா್൯

మ
ା൫௬ೂାଶඥா್൯

మ

ଶఙమ
൩

൅ ݁
ି൥
൫௬಺ାଶඥா್൯

మ
ା൫௬ೂାଶඥா್൯

మ

ଶఙమ
൩
൲݀ݕூ݀ݕொ,																																																																																													ሺ3.22ሻ 

 

ܲሺݕ|݉ଵ ൌ 0,݉ଷ ൌ 1ሻ ൌ 

	න න ൮2݁
ି൥
௬಺మା൫௬ೂିଶඥா್൯

మ

ଶఙమ
൩
൅ 2݁

ି൥
௬಺మା൫௬ೂାଶඥா್൯

మ

ଶఙమ
൩
൲ ொݕூ݀ݕ݀

∞

ି∞

∞

ି∞
,			ሺ3.23ሻ 

 

ܲሺݕ|݉ଵ ൌ 1,݉ଷ ൌ 0ሻ ൌ	 

න න ൮2݁
ି൥
൫௬಺ିଶඥா್൯

మ
ା௬ೂమ

ଶఙమ
൩
൅ 2݁

ି൥
൫௬಺ାଶඥா್൯

మ
ା௬ೂమ

	

ଶఙమ
൩
൲ ொݕூ݀ݕ݀

∞

ି∞

∞

ି∞
, ሺ3.24ሻ 

 

ܲሺݕ|݉ଵ ൌ 1,݉ଷ ൌ 1ሻ ൌ 	න න 4݁
ିቈ
௬಺మା௬ೂమ

ଶఙమ
቉
ொݕூ݀ݕ݀

∞

ି∞

∞

ି∞
																		ሺ3.25ሻ 
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As we know, the error probability of QPSK is equal to the error probability of BPSK. 

Thus the error probability at the relay can be simply viewed as: 

௤ܲ௥ ൌ ௥ܲ௘௟௔௬	 ൌ
1
4
ܲሺݕ|݉ଵ ൌ 0,݉ଷ ൌ 0ሻ ൅

1
4
ܲሺݕ|݉ଵ ൌ 0,݉ଷ ൌ 1ሻ ൅

1
4
ܲሺݕ|݉ଵ ൌ 1,݉ଷ ൌ 0ሻ

൅
1
4
ܲሺݕ|݉ଵ ൌ 1,݉ଷ ൌ 1ሻ																																																																																																	ሺ3.26ሻ 

 

A system model showing both time slots of the TWRC employing PNC is shown in Fig 3.9.   

 

Figure 3.9 System model of evaluating BER performance of uncoded QPSK PNC at 

destination nodes.   

 

To derive the theoretical BER at the destination nodes, there are two scenarios that need 

to be considered: First, a bit error is received at the destination node due to noise added 

at node 1. Second, a bit error occurs at the relay during the second slot and is broadcast 

to the destinatio nodes where is remains as a bit error. One situation needs to be 

highlighted: If a bit error occurs at the relay and at the destination node, then the bit has 

actually been flipped twice and there is no error at the destination node. According to the 

scenarios above, the probability of a bit error at the destination nodes is: 
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௤ܲ௡ ൌ ൫1 െ ௦ܲ௜௡௚௟௘൯ ௤ܲ௥ ൅ ൫1 െ ௤ܲ௥൯ ௦ܲ௜௡௚௟௘ െ 2 ௦ܲ௜௡௚௟௘ ௤ܲ௥		.																			ሺ3.27ሻ 

 

The comparison between simulated BER and the theoretical BER both at the relay and 

the destination nodes are shown in Fig 3.10.  

 

Figure 3.10 Comparison of simulated BER to theoretical BER, ௤ܲ௡ and ௤ܲ௥ at the 

relay/node on uncoded PNC. 

 

From Fig 3.10 it can be seen that the simulation results match closely with the theoretical 

error probability. The performance of decoding at the relay on PNC (red curve) is 

slightly better than decoding at the destination node (green curve), with approximately a 

0.5dB advantage. The reason for this degradation is because if the relay only broadcasts 

signals without error correction, the signals are interfered by the channel noise twice. 

Thus, the performance of the BER performance at the relay is very critical, and it is 

important to find the appropriate network coding scheme for the relay. 
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By following the constellation diagram in Fig 3.8, the conditional probabilities of received 

signals at the node are:  

	

ܲீ ெெሺݔ|ݕ ൌ 00ሻ ൌ 

න න

ۉ

ۈ
ۇ
ሺ1 െ ሻ݁ߙ

ି൥
൫௬಺ିඥா್൯

మ
ା൫௬ೂିඥா್൯

మ

ଶఙಸ
మ ൩

൅ ݁ߙ
ି൥
൫௬಺ିඥா್൯

మ
ା൫௬ೂିඥா್൯

మ

ଶఙ಺
మ ൩

ی

ۋ
∞ۊ

ି∞

∞

ି∞
,ொݕூ݀ݕ݀ ሺ3.28ሻ 

ܲீ ெெሺݔ|ݕ ൌ 01ሻ ൌ 

න න

ۉ

ۈ
ۇ
ሺ1 െ ሻ݁ߙ

ି൥
൫௬಺ିඥா್൯

మ
ା൫௬ೂାඥா್൯

మ

ଶఙಸ
మ ൩

൅ ݁ߙ
ି൥
൫௬಺ିඥா್൯

మ
ା൫௬ೂାඥா್൯

మ

ଶఙ಺
మ ൩

ی

ۋ
ۊ
ொݕூ݀ݕ݀

∞

ି∞

∞

ି∞
, ሺ3.29ሻ 

ܲீ ெெሺݔ|ݕ ൌ 10ሻ ൌ 

න න

ۉ

ۈ
ۇ
ሺ1 െ ሻ݁ߙ

ି൥
൫௬಺ାඥா್൯

మ
ା൫௬ೂିඥா್൯

మ

ଶఙಸ
మ ൩

൅ ݁ߙ
ି൥
൫௬಺ାඥா್൯

మ
ା൫௬ೂିඥா್൯

మ

ଶఙ಺
మ ൩

ی

ۋ
ۊ
ொݕூ݀ݕ݀

∞

ି∞

∞

ି∞
, ሺ3.30ሻ 

ܲீ ெெሺݔ|ݕ ൌ 11ሻ ൌ 

න න ൮ሺ1 െ ሻ݁ߙ
ି൥
൫௬಺ାඥா್൯

మ
ା൫௬ೂାඥா್൯

మ

ଶఙಸ
మ ൩

൅ ݁ߙ
ି൥
൫௬಺ାඥா್൯

మ
ା൫௬ೂାඥா್൯

మ

ଶఙ಺
మ ൩

൲
∞

ି∞

∞

ି∞
,ொݕூ݀ݕ݀ ሺ3.31ሻ 

 

The conditional probability at the relay can be calculated by following the same 

procedure. By substituting (3.28) - (3.31) into (3.26), the theoretical error probability 

௤ܲ௥
ீெெ	at the relay of PNC on impulsive noise channels with QPSK modulation can be 

derived as: 
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௤ܲ௥
ீெெ 	ൌ ሺ1 െ ሻߙ ௤ܲ௥

ீ	 ൅ ߙ ௤ܲ௥
ூ	 																																													ሺ3.32ሻ 

where ௤ܲ௥
ீ ൌ ଷ

ସ
݂ܿݎ݁ ൬ට

ா್
ேಸ
൰  and ௤ܲ௥

ூ	 ൌ ଷ

ସ
݂ܿݎ݁ ൬ට

ா್
ே಺
൰  are the bit error probability of 

AWGN and impulsive noise respectively. Thus, the error probability of transmitting 

signals from node to node with PNC on impulsive noise channels ݌௤௡ீெெ  can be 

expressed as: 

 

௤௡ீெெ݌ ൌ ሺ1 െ ܲீ ெெሻ ௤ܲ௥
ீெெ ൅ ൫1 െ ௤ܲ௥

ீெெ൯ܲீ ெெ െ 2ܲீ ெெ ௤ܲ௥
ீெெ.												ሺ3.33ሻ 

 

The comparison of simulated BER to theoretical BER of uncoded PNC on the impulsive 

channel is shown in Fig 3.11. 

 

Figure 3.11 Comparison of simulated BER to theoretical BER, ௤ܲ௥
ீெெ and ݌௤௡ீெெ at the 

relay/nodes on uncoded QPSK PNC over impulsive channel, ܽ ൌ 0.1. 
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From Fig 3.11 it can be seen that the simulation results match closely with the theoretical 

error probability. The performance of decoding at the relay on PNC (green curve) is 

slightly better than decoding at the destination node (red curve), with approximately a 

1.5dB advantage. With ten percent of impulsive noise in the channel, the BERs of the 

system are significantly affected by the channel noise compared to the AWGN channel 

in Fig 3.8. The comparison verifies the expressions of the theoretical BER performance 

of PNC with uncoded QPSK on impulsive channels, which will support the work 

presented in later chapters. 

 

3.4 Construction of Binary Convolutional Codes 

 

Elias first proposed the class of binary convolutional codes in 1955 [65]. The major 

difference between convolutional codes and block codes is that block codes are only able 

to encode a fixed length of information bits. However, convolutional codes can encode a 

continuous stream of information bits. Another advantage of the convolutional codes is 

their simplicity: convolutional codes have a much simpler trellis than block codes. Thus, 

convolutional codes have been widely applied since 1955. In this section, we are going to 

introduce the basic principles of convolutional codes combined with PNC and evaluate 

the theoretical performance of convolutional codes. 

 

3.4.1 Convolutional Encoder 

 

There are two kinds of convolutional codes encoder that are commonly used to encode 

information bits: Non-Systematic convolutional (NSC) codes and Recursive Systematic 

Convolutional (RSC) codes [74]. NSC codes have the encoder structure shown in Fig 

3.12. The generator polynomials ܩ ൌ ሾ ଵ݃
	 ሺܦሻ, ݃ଶ

	 ሺܦሻ… ሿ specify the different types of 

NSC code. 
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Figure 3.12 Encoder structures of NSC Codes. 

As shown in Fig 3.12, the generator polynomials can be expressed as: 

 

݃ଵሺܦሻ ൌ ሾ ଵ݃
ଵ ൅ ݃ଶ

ଵሺܦሻ ൅ ⋯൅ ݃௡ଵሺܦ௡ିଵሻ	ሿ                                           

݃ଶሺܦሻ ൌ ሾ ଵ݃
ଶ ൅ ݃ଶ

ଶሺܦሻ ൅⋯൅ ݃௡ଶሺܦ௡ିଵሻ	ሿ																																			ሺ3.34ሻ 

 

where D are the memory elements, ݃ଵሺܦሻ and ݃ଶሺܦሻ used to obtain the output ݔଵ and ݔଶ. 

Thus, for input information bits of length	ܮ, the output coded bits have a length of 

	 ଵ
ோ೎
ሺܮ ൅  ܴ௖ denotes the code rate, v is the number of memory elements and the	ሻ, whereݒ

extra ܴ௖ݒ coded bits occur due to the v bits added at the end of the information bit 

sequences to reset the memory elements, which is known as terminating the code.  
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3.4.2 Decoding of Binary Convolutional Codes 

 

There is more than one choice of decoder for decoding convolutional codes, including 

majority logic decoder [75], the sequential decoder [76], the Viterbi decoder [77] and the 

BCJR decoder [78]. In this thesis we use MAP decoder or BCJR algorithm [79], since 

the MAP decoder achieves better performance at low SNR. The criterion of MAP 

decoding is given by: 

ොݔ ൌ argmax
௫

ܲሺݕ|ݔሻ,																																													ሺ3.35ሻ 

where ܲሺݕ|ݔሻ is the a posteriori probability (APP) of the transmitted symbol ݔ given the 

received codeword ݕ. Considering the ݔො ∈ ሼേ1ሽ due to BPSK mapping, then (3.35) can 

be simplified to: 

ොݔ ൌ  ሺ3.36ሻ																																																					ሻሿ,ݔሺܮሾ݊݃݅ݏ

where ܮሺݔොሻ is the log-likelihood ratio (LLR), which is defined as: 

ሻݕ|ݔሺܮ ൌ log ቈ
ܲሺݔ ൌ ൅1|ݕሻ
ܲሺݔ ൌ െ1|ݕሻ

቉.																																									ሺ3.37ሻ 

and can be extended to: 

ሻݕ|ݔሺܮ ൌ log ቈ
∑ ܲሺݔ ൌ ൅1|ݕሻ௦́ି௦∈ௌభ

∑ ܲሺݔ ൌ െ1|ݕሻ௦́ି௦∈ௌబ
቉.																																		ሺ3.38ሻ 

The	ݏ	and ́ݏ represent the current state and next state respectively in the trellis diagram, 

where ́ݏ െ ݏ ∈ ଵܵ corresponds to the input	ݔ ൌ ൅1, and ́ݏ െ ݏ ∈ ܵ଴ corresponds to the 

input	ݔ ൌ െ1. Thus, two pdfs ݌ሺݔ ൌ ൅1|ݕሻ and ݌ሺݔ ൌ െ1|ݕሻ can be factored as: 

ܲሺݕ|ݔሻ ൌ ,ݏ௞ሺ́ߛሻݏ௞ିଵሺ́ܣ	  ሺ3.39ሻ																											ሻ,ݏ௞ሺܤ	ሻݏ

where k is the index of the kth data, ܣ and ܤ are the trace forward and trace backward 

metrics respectively, ߛ is the branch metric. The trace metrics are defined as: 

ሻݏ௞ሺܣ	 ൌ෍ߛ௞ሺ́ݏ, ሻݏ௞ିଵሺ́ܣ	ሻݏ
௦ሶ

,																																			ሺ3.40ሻ 
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ሻݏ௞ିଵሺ́ܤ	 ൌ෍ߛ௞ሺ́ݏ, ሻݏ௞ሺܤ	ሻݏ
௦

.																																							ሺ3.41ሻ 

The recursion of ܣ and ܤ is initialized based on the assumption of the encoder of 

convolutional code being initialized to the all-zero state and terminated to the all-zero 

state at k = L: 

ሻݏ௞ሺܣ	 ൌ ቄ1	when	ݏ ൌ 0
0	when	ݏ ് 0

	݇ ൌ  ሺ3.42ሻ																																ܮ…0,1

ሻݏ௞ሺܤ	 ൌ ቄ1	when	ݏ ൌ 0
0	when	ݏ ് 0

	݇ ൌ ,ܮ ܮ െ 1…0																								ሺ3.43ሻ 

where L is the length of the received information signal. The branch metric ߛ	 is defined 

as: 

,ݏ௄ሺ́ߛ ሻݏ ൌ
ܲሺݔ௞ሻ
ଶߪߨ2

݁
൬ି
‖௬ೖି௖ೖ‖మ

ଶఙమ
൰
																																															ሺ3.44ሻ 

where ߪଶ is the noise variance. For long codeword lengths, the BCJR algorithm can be 

numerically unstable [80], so now the metrics are considered in the logarithmic domain. 

This is known as the log-BCJR or log-MAP algorithm. The way to compute metrics ܣ,  ܤ

can be expressed as: 

ሻݏ௞ሺܣ	 ൌ log෍݁ఊೖሺ௦́,௦ሻ஺ೖషభሺ௦́ሻ

௦ሶ

,																																									ሺ3.45ሻ 

ሻݏ௞ିଵሺ́ܤ ൌ log෍݁ఊೖሺ௦́,௦ሻ஻ೖሺ௦ሻ

௦

.																																												ሺ3.46ሻ 

,ݏ௞ሺ́ߛ ሻݏ ൌ log
ܲሺݔ௞ሻ
ଶߪߨ2

െ ቆെ
௞ݕ‖ െ ௞‖ଶݔ

ଶߪ2
ቇ																																	ሺ3.47ሻ 

 

As we know, 

logሺ݁௫ ൅ ݁௬ሻ ൌ maxሼݔ, ሽݕ ൅ log൫1 ൅ ݁ି|௫ି௬|൯.																			ሺ3.48ܽሻ 

This can be approximated to 

logሺ݁௫ ൅ ݁௬ሻ ൎ maxሼݔ,  ሺ3.48ܾሻ																																												ሽݕ
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Thus, (3.45) to (3.47) can be rewritten as: 

ሻݏ௞ሺܣ	 ൌ max
௦́
ሼܣ௞ିଵሺ́ݏሻ ൅ ,ݏ௞ሺ́ߛ ,ሻሽݏ 																															ሺ3.49ሻ 

ሻݏ௞ሺ́ܤ ൌ max
௦
ሼ	ܤ௞ሺݏሻ ൅ ,ݏ௞ሺ́ߛ ,ሻሽݏ 																																		ሺ3.50ሻ 

,ݏ௞ሺ́ߛ ሻݏ ൌ െ
௞ݕ‖ െ ௞‖ଶݔ

ଶߪ2
																																									ሺ3.51ሻ 

Moreover, (3.38) can also be rewritten as: 

ሻݔሺܮ ൌ log ቈ
∑ ሻݏ௞ିଵሺ́ܣ	 ൅ ,ݏ௞ሺ́ߛ ሻݏ ൅ ሻ௦́ି௦∈௫శݏ௞ሺܤ	

∑ ሻݏ௞ିଵሺ́ܣ	 ൅ ,ݏ௞ሺ́ߛ ሻݏ ൅ ሻ௦́ି௦∈ௌషݏ௞ሺܤ	
቉ 

ൌ max
௦́ି௦∈௫శ

	ሾ	ܣ௞ିଵሺ́ݏሻ ൅ ,ݏ௞ሺ́ߛ ሻݏ ൅ ሻሿݏ௞ሺܤ	 																		

െ max
௦́ି௦∈௫ష

	ሾ	ܣ௞ିଵሺ́ݏሻ ൅ ,ݏ௞ሺ́ߛ ሻݏ ൅  ሺ3.52ሻ																																																ሻሿ.ݏ௞ሺܤ

If the max operation defined in (3.48a) is used, then the algorithm is called the log-MAP 

algorithm. However, if the max operation defined in (3.48b) is used, then it is called the 

Max log-MAP algorithm. 

In order to show the procedure of determining the trace metrics, a typcial calculation 

involving two branches in the trellis diagram that converge at a node is shown in Fig 

3.13. 
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Figure 3.13 The Illustration of trace forward metric ܣ and backward metric ܤ of the 

MAX-log MAP decoder  

 

 

3.4.3 Theoretical Performance of Binary Convolutional Codes 

 

We assume without loss of generality that the all-zero sequence is the input to the 

encoder and the rate 
ଵ

ଶ
 ሺ7,5ሻ଼ convolutional code is chosen as the example code to 

introduce the following analysis. The state table of the rate 
ଵ

ଶ
 ሺ7,5ሻ଼ convolutional code is 

shown in Table 3.3. Based on the state table, it is possible to draw a signal-flow graph of 

the convolutional code. The Hamming distance properties and BER performance of the 

convolutional code can be obtained from a signal-flow graph, as shown in Fig 3.14. 

 

Input Initial State Next State Output 

0 00 00 00 
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1 00 01 11 

0 01 11 01 

1 01 10 10 

0 10 01 10 

1 10 00 11 

0 11 10 01 

1 11 11 10 

Table 3.3. State table of rate 
ଵ

ଶ
 ሺ7,5ሻ଼ convolutional code. 

 

 

Figure 3.14 signal-flow graph of rate 
ଵ

ଶ
 ሺ7,5ሻ଼ convolutional code. 

 

Let ܺ௔= state 00, ܺ௕= state 10, ܺ௖= state 01 and ܺௗ= state 11. Thus, based on the signal-

flow graph, we can write four state equations: 

ܺ௕ ൌ ଶܺ௔ܦ ൅ ܺ௖,																																																		ሺ3.53ሻ 

ܺ௖ ൌ ௗܺ	ܦ ൅  ሺ3.54ሻ																																														௕,ܺܦ

ܺௗ ൌ ௗܺ	ܦ ൅  ሺ3.55ሻ																																															௕,ܺܦ
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ܺ௔ᇱ ൌ  ሺ3.56ሻ																																																											ଶܺ௖,ܦ

By definition the transfer function TሺDሻ is defined as: 

TሺDሻ ൌ 	
ܺ௔ᇱ
ܺ௔

.																																																											ሺ3.57ሻ 

By submitting (3.53)-(3.56) to Eqn (3.57), we have: 

TሺDሻ ൌ 	
ହܦ

1 െ ܦ2
.																																																					ሺ3.58ሻ 

The exponent of D shows the distance of the sequence of encoded bits for that path from 

the all-zero sequence. Then the transfer function TሺDሻ can be evaluated by performing 

the long-division: 

TሺDሻ ൌ ହܦ	 ൅ ହܦ2 ൅⋯																																									ሺ3.59ሻ 

The bound on the bit-error probability of the rate 
ଵ

ଶ
 ሺ7,5ሻ଼ convolutional code ௕ܲ௖ can be 

expressed as [81]: 

௕ܲ௖ ൑
1
ܭ
෍ ෍ ௗܶ ௖ܲ௛௔௡௡௘௟.																																																		ሺ3.60ሻ

ே

ௗ೑ೝ೐೐௪

 

where ௖ܲ௛௔௡௡௘௟ ൌ
1

2
݂ܿݎ݁ ൬ට

ா್
ܰ0
൰, N is the codeword length and K is the information bits 

length, R is the code rate.  Thus by substituting (3.59) into (3.60), the bound on the bit 

error probability of a rate 
ଵ

ଶ
 ሺ7,5ሻ଼ convolutional code can be calculated. A comparison of 

simulated BER to theoretical bound of rate 
ଵ

ଶ
 ሺ7,5ሻ଼ convolutional code is shown in 

Figure 3.15. From the figure it can be seen that the bound matches the simulated BER 

closely, and proves the derivation is correct. 
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Figure3.15 Comparison of simulated BER to theoretical bound of rate 
ଵ

ଶ
 ሺ7,5ሻ଼ 

convolutional code 

 

3.5 Finite Fields 

 

The nonbinary coding schemes used in chapters 5 and 6 in this thesis have elements 

defined in finite fields, denoted as GF(q). A finite field is a field containing a finite 

number of elements and the number of elements in the finite field is called the order [75]. 

The elements in the field can be added, subtracted, multiplied or divided. A finite field of 

order q exists if the order q is a prime power	p௔, where p is a prime number and α is a 

positive integer [76]. A finite field in which the element can takes q different values is 

referred to as GF(q). In the work of this thesis, we are focused on the field of four and 

field of sixteen, that is GF(4) and GF(16). Table 3.4 and Table 3.5 list the mapping from 

binary bits to nonbinary symbols. It needs to be denoting here, the primitive polynomial 

is 	βଶ ൅ β ൅ 1 ൌ 0  gives 	βଶ ൌ β ൅ 1  by modulo-2 addition in a field of ܨ ൌ
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൛0,1, 	β	, 	βଶ, … , 	β௝, … ൟ. Let ݌ሺܺሻ be the primitive polynomial of degree ݖ over GF(2), 

and assume ݌ሺߚሻ ൌ 0. Since ݌ሺܺሻ divides ܺଶ
೥ିଵ ൅ 1, we have ܺଶ

೥ିଵ ൅ 1 ൌ  ሺܺሻ݌ሺܺሻݍ

where ݍሺܺሻ  can be regarded as a polynomial of ߚ  over GF(2). Thus, if X = 	β , we  

have 	βଶ
೥ିଵ ൅ 1 ൌ ሺβሻ݌ሺβሻݍ . Since ݌ሺߚሻ ൌ 0,  we have βଶ

೥ିଵ ൅ 1 ൌ 0 ⟹ βଶ
೥ିଵ ൌ 1 . 

Therefore, the field can be expressed as ܨ ൌ ൛0,1, 	β	, 	βଶ, … , βଶ
೥ିଶൟ, that is a Galois field 

of 2௭ elements GF(2௭ሻ. 

 

Binary GF(4) Polynomial 

00 0 0 

01 1 1 

10 β β 

11 βଶ β ൅ 1 

Table 3.4. Mapping of GF(4), primitive polynomial is	βଶ ൅ β ൅ 1 ൌ 0. 

 

Binary GF(16) Polynomial 

0000 0 0 

0001 1 1 

0010 β β 

0100 βଶ  βଶ 

1000 βଷ βଷ 

1001 βସ βଷ ൅ 1 

1011 βହ βଷ ൅ β ൅ 1 

1111 β଺ βଷ ൅ βଶ ൅ β ൅ 1 
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0111 β଻ βଶ ൅ β ൅ 1 

1110 β଼ βଷ ൅ βଶ ൅ β 

0101 βଽ βଶ ൅ 1 

1010 βଵ଴ βଷ ൅ β 

1101 βଵଵ βଷ ൅ βଶ ൅ 1 

0011 βଵଶ β ൅ 1 

0110 βଵଷ βଶ ൅ β 

1100 βଵସ βଷ ൅ βଶ 

Table 3.5. Mapping of GF(16), primitive polynomial is	βସ ൅ βଷ ൅ 1 ൌ 0. 

 

There are two operations in GF(q) commonly used in the encoding and decoding of non-

binary codes: addition and the multiplication. The addition and multiplication tables of 

GF(4) are shown in table 3.6 and 3.7 respectively. 

+ 0 1 ઺ ઺૛ 

0 0 1 β βଶ 

1 1 0 βଶ β 

઺ β βଶ 0 1 

઺૛ βଶ β 1 0 

Table 3.6. Addition table for GF(4). 

ൈ 0 1 ઺ ઺૛ 

0 0 0 0 0 

1 0 1 β βଶ 
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઺ 0 β βଶ 1 

઺૛ 0 βଶ 1 β 

Table 3.7. Multiplication table for GF(4). 

 

3.6 Conclusions 

In this chapter, an introduction to TWRC employing PNC at the relay is given, including 

a comparison of the simulated BER performance with the theoretical BER performance 

of uncoded PNC at the relay and destination nodes. Furthermore, the basic concepts of 

impulsive noise channels based on GMM are presented with the noise distribution 

expression and noise variance analysis. A brief introduction of encoding and decoding 

convolutional codes is provided with a comparison of simulated BER to theoretical 

bound. Finally, the fundamental knowledge of finite fields is presented explaining how 

to add and multiply finite field elements in order to have a better understanding of 

encoding and decoding nonbinary channel codes in future chapters 
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4. Binary Turbo codes and Trellis BICM-ID 

4.1 Introduction 

Shannon’s channel coding theory states that as the block size of a random code increases, 

it will approach its optimal performance, known as the Shannon limit. This initiated a 

new research area with the aim of constructing codes that could achieve the Shannon 

limit but with a reasonable complexity. In 1993, turbo codes, or parallel concatenated 

convolutional codes (PCCCs), were introduced by Berrou et.al and Glavieux later [58]. It 

can be said that turbo codes are one of the most significant breakthroughs in error control 

coding, achieving near-Shannon limit performance with a decoder complexity that 

enables it to be implemented in hardware. One of the main factors for this excellent 

performance is the iterative turbo decoder, which comprises two component soft-input-

soft-output decoders in series passing prior information to each other to achieve further 

improvements in performance after each iteration. The turbo principle has also been 

applied to other coding schemes, in particular trellis bit-interleaved coded modulation 

with iterative decoding (BICM-ID), which comprises a single convolutional encoder and 

interleaver, but decoding is achieved iteratively by passing prior information between a 

demapper and SISO decoder. 

In this chapter, PNC is combined with turbo codes and the performance is evaluated 

when the channels between source/destination nodes and relay node are impulsive. The 

additive impulsive noise channels are modelled using the well-known Gaussian mixture 

model (GMM), as described in chapter 3. The turbo encoder and decoder are first 

explained and this is followed by an explanation of the combination of PNC with turbo 

codes. A detailed analysis of the performance of PNC with turbo codes on impulsive 

noise channels is then presented. The extrinsic information (ExIT) chart showing the 

behaviour of the iterative turbo decoder at the relay of a TWRC with impulsive noise is 

derived. Furthermore, a upper bound on the BER performance of turbo codes is derived 

to accurately determine the error floor for different impulsive noise channels.  

Next, an investigation into PNC combined with trellis BICM-ID on additive impulsive 

noise channels is presented. The encoder and iterative demapper/decoder scheme is 

explained and how PNC is combined with trellis BICM-ID. The ExIT charts of the 

iterative demapper/decoder scheme for trellis BICM-ID are derived at the relay of a 
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TWRC employing PNC with additive impulsive noise channel. The chapter is concluded 

by comparing PNC combined with turbo codes and trellis BICM-ID in terms of 

performance and complexity. 

 

4.1.1 Turbo Code Encoder 

 

Figure 4.1 Encoder structure of turbo code. 

The turbo code encoder is a parallel concatenation of two identical recursive systematic 

convolutional (RSC) codes encoders separated by an interleaver, as shown in Figure 4.1.  

The interleaver is usually a pseudorandom interleaver that interleaves the message for 

encoder 2. The combination of two RSC encoders with an interleaver produces a 

codeword with a high hamming weight, and the interleaver makes different codewords 

relatively sparse, named multiplicity, increase the coding gain of turbo code.  

The standard turbo code encoder polynomials can be expressed as: 
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ሻܦሺܩ ൌ ቈ1,
݃ሺଶሻሺܦሻ

݃ሺଵሻሺܦሻ
቉																																																														ሺ4.1ሻ 

where ݃ሺଵሻሺܦሻ and ݃ሺଶሻሺܦሻ are the feedforward and feedback polynomials respectively, 

e.g.  ቀ1, ହ
଻
ቁ
଼
 RSC code can be represented by the binary strings ݃ሺଵሻ ൌ 101 and	݃ሺଶሻ ൌ

111  for which ݃ሺଵሻሺܦሻ=1 ൅ ܦ ൅ ଶܦ  and 	݃ሺଶሻሺܦሻ ൌ 1 ൅ ଶܦ . It can be seen that the 

general codeword produced by turbo encoder has a rate of 1/3, which can be increased to 

a higher rate of 1/2 with a puncture matrix of ܲ ൌ ቂ1 0
0 1

ቃ.   

 

4.1.2 Puncturing 

It can be seen that the codeword generated by the turbo encoder has a rate of 1/3, but this  

can be increased to higher code rates by removing certain patterns of bits from the 

codeword to decrease the block size. This is called puncturing and for turbo codes it is 

only applied to the parity-check bits from each RSC encoder. A puncture matrix P is 

used to determine which bits are removed. For example, the puncture matrix ۾ ൌ ቂ1 0
0 1

ቃ 

increases the code rate of a rate 1/3 turbo code to a rate 1/2 turbo code by removing the 

even indexed bits from the first RSC encoder and the odd indexed bits from the second 

RSC encoder. The puncture matrix must also be known for the decoder process so that it 

knows which bits in the codeword have been removed. 

 

Figure 4.2 Encoder structure of turbo code with a puncture. 
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4.1.3 Turbo Decoder 

The turbo code decoder in this thesis is constructed from two soft-in-soft-out (SISO) 

Max log-MAP decoders that exchanges prior information between each decoder in every 

decoding iteration loop to converge to an optimal performance, as shown in Fig. 4.3. In a 

decoding iteration, the first decoder takes in LLR values of the received message and 

parity-check bits and LLR values from the second decoder. The first decoder updates the 

LLRs of the message symbols and then extrinsic LLRs are extracted by subtracting the 

original LLRs of the message symbols and the a priori LLRs from the second decoder. 

Then the second decoder takes in the original interleaved LLRs of the message symbols 

and the interleaved extrinsic LLRs from the first decoder, which becomes the a priori 

LLRs. The second decoder updates the interleaved LLRs of the message symbols and 

extrinsic LLRs are extracted by subtracting the original interleaved LLRs of the message 

symbols and the a priori LLRs from the first decoder. Finally, the extrinsic LLRs are 

deinterleaved and become the new a priori LLRs for the first decoder. This completes 

one decoding iteration. After a certain number of iterations, the turbo decoder 

performance either converges until no more errors are present or fails if too many errors 

are present. 

 

Figure 4.3 The turbo decoder 
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To decode the soft received symbols using the MAX-log-MAP algorithm, three metrics 

,ܣ  metrics are the trace-forward and trace-backward ܤ	and	ܣ are defined. The ߛ	and	ܤ

metrics and ߛ is the branch metric. ܣ	and	ܤ are initialized as in (3.42)-(3.43), but ߛ is 

now defined as: 

,ݏ௄ሺ́ߛ ሻݏ ൌ 	
௄ሻݔ௘ሺܮ௄ݔ

2
െ
௄ݕ‖ െ ܿ௄‖ଶ

ଶߪ2
.																																						ሺ4.2ሻ 

where ܮ௘ሺݔ௄ሻ is the extrisic information of ݔ௄, K is the index, ݏ is the present state and ́ݏ 

is the next state and ߪଶ is the noise variance.  

Thus, the output LLR is calculated as: 

ሻݔሺܮ ൌ max
௦́ି௦∈ௌభ

	ሼ	ܣ௄ିଵሺ́ݏሻ ൅ ,ݏ௄ሺ́ߛ ሻݏ ൅ ሻሽݏ௄ሺܤ	 	

െ max
௦́ି௦∈ௌబ

	ሼ	ܣ௄ିଵሺ́ݏሻ ൅ ,ݏ௄ሺ́ߛ ሻݏ ൅  ሺ4.3ሻ																																																.	ሻሽݏ௄ሺܤ	

where ܵା is the set of all state transitions corresponding to x = +1 and ܵି is the set of all 

state transitions corrresponding to x = -1. By substituting  (3.42)-(3.43) and (4.2) into 

(4.3), we have: 

ሻݕ|ݔሺܮ ൌ ௄ሻݔ௘ሺܮ ൅
	

max
௦́ି௦∈௫శ

	 ቄ	ܣ௄ିଵሺ́ݏሻ ൅
௄ܿ௄ݕ
ଶߪ

൅ ሻቅݏ௄ሺܤ	

െ max
௦́ି௦∈௫ష

	 ቄܣ௄ିଵሺ́ݏሻ ൅
௄ܿ௄ݕ
ଶߪ

൅ ሻቅݏ௄ሺܤ ൅
௄ݕ2
ଶߪ

	.																																						ሺ4.4ሻ 

In (4.4), the first term is the extrinsic LLR received from the other decoder, the second 

and third terms are the a priori information send to the other decoder, and the fourth term 

is directly received from the noise channel, known as the channel reliability. The 

performance of a turbo code with ቀ1, ହ
଻
ቁ
଼
 RSC encoders on the AWGN channel is shown 

in Fig. 4.4, for one iteration up to 10 iterations. Observe how the gain in performance 

becomes smaller with each iteration until it converges. Also notice that an error floor 

appears at around a BER of 10-5, which is a characteristic of turbo codes. 
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Figure 4.4 BER performance of ሺ7,5ሻ଼ Turbo code on AWGN channel. 

 

4.2 PNC combined with Turbo Codes 

Based on the review carried out in chapter 2, it appears that the effect of impulsive noise 

on a conventional TWRC employing PNC has not been considered. Of particular interest 

is the effect of impulsive noise on the iterative decoder employed at the relay. When 

evaluating the performance of an iterative decoding scheme, it is important to investigate 

the convergence behaviour of the iterative decoding algorithm, which can be achieved 

using ExIT charts [9].  When there are two decoders exchanging information, the 

behaviour can be plotted with respect to each decoder. The process of exchanging 

information is represented in a chart that depicts the transfer of mutual information 

between the a priori information and the extrinsic information passed between these 

decoders. To obtain an ExIT chart for the turbo code affected by impulsive noise, we 

need to know the probability density function (pdf) of the noise. To achieve this, the 

Gaussian mixture model (GMM) has been selected [10][11], which was defined in 

chapter 3. 
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Figure 4.5 System model of turbo coded PNC over impulsive noise channel, where the 

channel encoder is the required turbo encoder, e.g. (7,5)8. 

The performances of rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
  turbo codes are evaluated on the conventional 

TWRC employing PNC, where the uplink and downlink channels are additive impulsive 

noise channels. Furthermore, ExIT charts are presented to analyse the effect of impulsive 

noise on the iterative decoding algorithms at the relay and to validate the simulations 

results in following sections. 

The system model of turbo coded PNC on impulsive noise channels is shown in Figure 

4.5. Let ݉஺ ∈ ሼ0,1ሽ௞  and ݉஻ ∈ ሼ0,1ሽ௞  be the k-bit binary messages sent from node A 

and B. The information sequences are encoded resulting in ஺ܿ ∈ ሼ0,1ሽ௡ and		ܿ஻ ∈ ሼ0,1ሽ௡, 

where n is the block size of the codes.  

 

The received information sequence at the relay can be expressed as: 

ݕ ൌ ஺ݔ ൅ ஻ݔ ൅  (4.9)                                               ,ߟ

where ݔ஺	and	ݔ஻	 are complex QPSK symbols transmitted from nodes A and B 

respectively, ߟ is the noise added at the relay and		ሺݔ஺, ஻ሻݔ ∈ ሼ1 ൅ j, 1 െ j, െ1 െ j, െ1 ൅

jሽ. The sum of the two transmitted QSPK signals ݔோ  can have nine possible complex 

values, as shown in Figure 4.6.  
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Figure 4.6. Constellation diagram of anti-Gray mapped QPSK. 

 

The relay must then determine the log-likelihood ratio (LLR) of y given that ݔோ ൌ ஺ݔ ൅

஻ݔ  was transmitted,		ܮሺݔ|ݕ஺ ൅   ஻ሻ. This is decoded at the relay to give the messageݔ

݉ோ ൌ ݉஺ ⊕݉஻  , where ⊕ is the XOR operation. The decoded message is then re-

encoded to give		ܿோ ൌ ܿ஺ ⊕ ܿ஻, which is mapped to a QPSK constellation and broadcast 

back to nodes A and B. At nodes A and B, the received signal is decoded to obtain			݉ோ, 

where node A can obtain ݉஻		by performing the XOR of 	݉ோ  with its known binary 

message 	݉஺  and vice versa. To show that the codeword c1 + c2 can be obtained by 

encoding the message m1 + m2, consider a general encoder with generator matrix G. We 

therefore have: 

ܿଵ ൌ ݉ଵ ∙ G																																																										ሺ4.5ሻ 

ܿଶ ൌ ݉ଶ ∙ G																																																										ሺ4.6ሻ 

So, the sum ܿଵ ൅ ܿଶ	is: 

ܿଵ ൅ ܿଶ ൌ ݉ଵ ∙ G ൅ ݉ଶ ∙ G																																														ሺ4.7ሻ 

which can be simplified to: 

ܿଵ ൅ ܿଶ ൌ ሺ݉ଵ ൅ ݉ଶሻ ∙ G																																														ሺ4.8ሻ 

In other words, the message m1 + m2 can be recovered from the codeword c1 + c2. 

The turbo decoder will decode a vector of LLR values that give a measure of the 

reliability of the combination of both source nodes’ codewords. We choose to use the 

Max-log-MAP decoding algorithm for the component decoders, so at the output of each 

decoder, the a posteriori LLR ܮሺݔோ|ݕሻ can be expressed as: 
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ሻݕ|ோݔሺܮ ൌ 		ݕ௖ܮ ൅ ோሻݔ௔ሺܮ ൅  ோሻ,                                      (4.10)ݔ௘ሺܮ

where  

௖ܮ ൌ
4ඥܧ஻

଴ܰ
																																																																ሺ4.11ሻ 

is the channel reliability that represents the relationship between channel outputs 

corresponding to the systematic bits. 

ோݔ௔ሺܮ
ଵሻ ൌ ln ቆ

ܲሺܿோ ൌ 11ሻ ൅ ܲሺܿோ ൌ 10ሻ

ܲሺܿோ ൌ 01ሻ ൅ ܲሺܿோ ൌ 00ሻ
ቇ					 

ோݔ௔ሺܮ
ଶሻ ൌ ln ቆ

ܲሺܿோ ൌ 11ሻ ൅ ܲሺܿோ ൌ 01ሻ

ܲሺܿோ ൌ 10ሻ ൅ ܲሺܿோ ൌ 00ሻ
ቇ																															ሺ4.12ሻ 

where ݔோ
ଵ and ݔோ

ଶ are the first and the second bit of ݔோ
	  ோሻ is the a priori LLR andݔ௔ሺܮ ,

 .ோሻ is the extrinsic LLR of each decoderݔ௘ሺܮ

From the resulting nine-point constellation diagram at the relay, each received symbol y 

is demapped to a pair of LLR values, ܮሺݕ|݉ோ
ଵሻ	and ܮሺݕ|݉ோ

ଶሻ,	which are a measure of the 

reliability of the two XORed transmitted bits, ݉ோ
ଵ  and ݉ோ

ଶ , where the superscript denotes 

the first or second bit and ݉ோ
ଵ  = ݉஺

ଵ ⊕݉஻
ଵ  and ݉ோ

ଶ  = ݉஺
ଶ ⊕݉஻

ଶ . Hence the LLR of y 

conditioned on ݉ோ
ଵ  can be written as [67]: 

ோ݉|ݕሺܮ
ଵሻ ൌ ln ቆ

ܲሺݕ|݉ோ
ଵ ൌ 1ሻ

ܲሺݕ|݉ோ
ଵ ൌ 0ሻ

ቇ ,																																							ሺ4.13ሻ 

 

where ݉ோ
ଵ  is the first bit of	݉ோ

	 . By following the constellation diagram in Figure 4.6, the 

conditional probability of y given that ݉ோ
ଵ ൌ 0 is determined as: 

 

ܲሺݕห݉ோ
ଵ ൌ 0ሻ ൌ ܲሺݕ|݉ோ

	 ൌ 00ሻ ൅ ܲሺݕ|݉ோ
	 ൌ 01ሻ 

ൌ න න ൮ඨ
1

ଶߪߨ2
൭݁ି

൫௬ೂିଶா൯
మ

ଶఙమ ൅ ݁ି
൫௬ೂାଶா൯

మ

ଶఙమ ൱ ቆ݁ି
ሺ௬಺ିଶாሻమ

ଶఙమ ൅ ݁ି
ሺ௬಺ାଶாሻమ

ଶఙమ ൅ 2݁ି
ሺ௬಺ሻమ

ଶఙమ ቇ൲݀ܳݕ݀ܫݕ
ஶ

ିஶ

ஶ

ିஶ
		ሺ4.14ሻ 
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where ߪଶ  is the noise variance, ݕூ  is the real part of y and ݕொ  is the imaginary part. 

Similarly, the conditional probability of y given that the ݉ோ
ଵ ൌ 1 is determined as: 

ܲሺݕ|݉ோ
ଵ ൌ 1ሻ ൌ ܲሺݕ|݉ோ

	 ൌ 10ሻ ൅ ܲሺݕ|݉ோ
	 ൌ 11ሻ 

ൌ න න 2ඨ
1

ଶߪߨ2
݁ି

൫௬ೂ൯
మ

ଶఙమ ቆ݁ି
ሺ௬಺ିଶாሻమ

ଶఙమ ൅ ݁ି
ሺ௬಺ାଶாሻమ

ଶఙమ ൅ 2݁ି
ሺ௬಺ሻమ

ଶఙమ ቇ
ஶ

ିஶ

ஶ

ିஶ
 ሺ4.15ሻ	ொݕூ݀ݕ݀

 

Therefore, by submitting (4.14) and (4.15) into (4.13) the reliability of y can be rewritten 

as: 

ோ݉|ݕሺܮ
ଵሻ ൌ ln ቆ

ܲሺݕ|݉ோ
	 ൌ 10ሻ ൅ ܲሺݕ|݉ோ

	 ൌ 11ሻ
ܲሺݕ|݉ோ

	 ൌ 00ሻ ൅ ܲሺݕ|݉ோ
	 ൌ 01ሻ

ቇ																																	ሺ4.16ሻ 

This can be simplified to: 

ோ݉|ݕሺܮ
ଵሻ ൌ ln ൬cosh

ொݕܧ2
ଶߪ

൰ െ
1
ଶߪ
																																									ሺ4.17ሻ 

The derivation can be viewed in the appendix. 

Similarly, the second bit ܮሺݕ|݉ோ
ଶሻ	can also be determined as: 

ோ݉|ݕሺܮ
ଶሻ ൌ ln ቆ

ܲሺݕ|݉ோ
	 ൌ 01ሻ ൅ ܲሺݕ|݉ோ

	 ൌ 11ሻ

ܲሺݕ|݉ோ
	 ൌ 10ሻ ൅ ܲሺݕ|݉ோ

	 ൌ 00ሻ
ቇ ൌ ln ൬cosh

ூݕܧ2
ଶߪ

൰ െ
1
ଶߪ
				ሺ4.18ሻ 

 

Hence, based on (4.17) to (4.18), the pdf of the GMM at the relay can be derived. For 

example, the conditional pdfs of y given that ݉ோ
ଵ ൌ 1 when impulsive noise is added at 

the relay is: 
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ܲீ ெெሺݕห݉ோ
ଵ ൌ 1ሻ 

ൌ න න ൮ሺ1 െ ሻ2ඨߙ
1

ீߪߨ2
ଶ ݁

ି
൫௬ೂ൯

మ

ଶఙಸ
మ
൭݁

ି
ሺ௬಺ିଶாሻమ

ଶఙಸ
మ

൅ ݁
ି
ሺ௬಺ାଶாሻమ

ଶఙಸ
మ

൅ 2݁
ି
ሺ௬಺ሻమ

ଶఙಸ
మ
൱

ஶ

ିஶ

ஶ

ିஶ

൅ ඨߙ
1

ூߪߨ2
ଶ ݁

ି
൫௬ೂ൯

మ

ଶఙ಺
మ
൭݁

ି
ሺ௬಺ିଶாሻమ

ଶఙ಺
మ

൅ ݁
ି
ሺ௬಺ାଶாሻమ

ଶఙ಺
మ

൅ 2݁
ି
ሺ௬಺ሻమ

ଶఙ಺
మ
൱൲݀ܳݕ݀ܫݕ															ሺ4.19ሻ 

and  

ܲሺݕ|݉ோ
ଵ ൌ 0ሻ 

ൌ න න ሺ1 െ ሻඨߙ
1

ீߪߨ2
ଶ ቌ݁

ି
൫௬ೂିଶா൯

మ

ଶఙಸ
మ

൅ ݁
ି
൫௬ೂାଶா൯

మ

ଶఙಸ
మ

ቍ൭݁
ି
ሺ௬಺ିଶாሻమ

ଶఙಸ
మ

൅ ݁
ି
ሺ௬಺ାଶாሻమ

ଶఙಸ
మ

൅ 2݁
ି
ሺ௬಺ሻమ

ଶఙಸ
మ
൱

ஶ

ିஶ

ஶ

ିஶ
 

൅ߙඨ
1

ூߪߨ2
ଶ ቌ݁

ି
൫௬ೂିଶா൯

మ

ଶఙ಺
మ

൅ ݁
ି
൫௬ೂାଶா൯

మ

ଶఙ಺
మ

ቍ൭݁
ି
ሺ௬಺ିଶாሻమ

ଶఙ಺
మ

൅ ݁
ି
ሺ௬಺ାଶாሻమ

ଶఙ಺
మ

൅ 2݁
ି
ሺ௬಺ሻమ

ଶఙ಺
మ
൱  ொሺ4.20ሻݕூ݀ݕ݀

where ீߪ
ଶand ߪூ

ଶ are the variances of Gaussian noise variance and impulsiveness noise 

variance respectively. Hence, by substituting (4.19) and (4.20) into (4.16),  ீܮெெሺݕ|݉ோ
ଵሻ 

and ீܮெெሺݕ|݉ோ
ଶሻ  can be expressed as: 

ோ݉|ݕெெሺீܮ
ଵሻ ൌ ln ቆ

ܲீ ெெሺݕ|݉ோ
ଵ ൌ 1ሻ

ܲீ ெெሺݕ|݉ோ
ଵ ൌ 0ሻ

ቇ																																					ሺ4.21ሻ 

ோ݉|ݕெெሺீܮ
ଶሻ ൌ ln ቆ

ܲீ ெெሺݕ|݉ோ
ଶ ൌ 1ሻ

ܲீ ெெሺݕ|݉ோ
ଶ ൌ 0ሻ

ቇ																																				ሺ4.22ሻ 

The extension of  ீܮெெሺݕ|݉ோ
ଵሻ and ீܮெெሺݕ|݉ோ

ଶሻ	is lengthy and can be found in the 

appendix. 
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4.3 ExIT Chart of Turbo Codes 

Each component decoder in the turbo decoder receives three sets of LLRs, which are the 

channel reliability for the systematic bits ܮ௖௛
௫෤ , the a priori LLR ܮ௔  and the channel 

reliability for parity check bits ܮ௖௛
௣ . The extrinsic LLR, Le, can be expressed as: 

௘ܮ ൌ ௧௢௧௔௟ܮ െ ௖௛ܮ
௫෤ െ  ሺ4.23ሻ																																																							௔,ܮ

where the a priori information ܮ௔  of one decoder is the extrinsic information ܮ௘  sent 

from the other decoder. Therefore, we have the mutual information between the a priori 

information and the systematic message ෤ݔ			 , represented as ;ሺܺܫ	 ሻܣ , and the mutual 

information between the extrinsic information and the systematic message 	ݔ෤ , which 

is	ܫሺܺ;  ሻ. The relationship between the mutual information I(X;E) and the systematicܧ

message ݔ෤ in AWGN channel with binary input can be expressed as: 

;ሺܺܫ ሻܧ ൌ ܶ ൬ܫሺܺ; ,ሻܣ
௕ܧ
଴ܰ
൰																																																ሺ4.24ሻ 

The pdf of the conditional extrinsic information on systematic input X, ீ݌ሺݕ|ܺሻ	, can be 

expressed as: 

෤ሻݔ|ݕሺ	ீ݌ ൌ
1

2ߪߨ2√
݁
െ
ሺݕെݔ෤ሻ2

2ߪ2 																																													ሺ4.25ሻ 

In order to analyse the behaviour of the turbo decoding algorithm at the relay, the ExIT 

chart is introduced, which tells us the number of iterations required for a decoder to 

converge at a particular SNR, or conversely that the system will not converge at a 

particular SNR. To generate the ExIT chart characteristics, it is necessary to introduce 

the concepts of the turbo decoder first. In the iterative decoding process, A is obtained 

from the other decoder. The extrinsic LLR E is produced by the turbo decoders based on 

the received sequence and A. According to Bayes' rule, the distribution of X at the relay 

can be expressed as: 

ሻݕሺ݌ ൌ෍݌ሺݕ|ܺ ൌ ෤ሻܲሺܺݔ ൌ ෤ሻݔ
௫෤

																																							ሺ4.26ሻ 
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where the value of ݔ෤  is related to the modulation scheme, and ܲሺܺ ൌ ෤ሻݔ  is the 

probability. By substituting p(y) into the GMM ீ݌ሺݕሻ can be obtained. By using the 

Kullback-Leibler distance, the mutual information between X and A can be computed as: 

;ሺܺܫ ሻܣ ൌ ෥,ݔ௑஺ሺ݌஺ሻන݌௑݌||௑஺݌ሺܦ ሻݕ logଶ
෥,ݔ௑஺ሺ݌ ሻݕ

ሻݕ஺ሺ݌෤ሻݔ௑ሺ݌
 ሺ4.27ሻ										,ݕ෤݀ݔ݀

where ݌௑஺ is the joint probability distribution of X and A. By applying Bayes’ rule we 

can rewrite I(X;A) as: 

;ሺܺܫ ሻܣ ൌ න݌஺|௑ሺݔ|ݕ෤ሻ݌௑ሺݔ෤ሻ logଶ
෤ሻݔ௑ሺ݌෤ሻݔ|ݕ஺|௑ሺ݌

ሻݕ஺ሺ݌෤ሻݔ௑ሺ݌
ݕ෤݀ݔ݀

ൌ
1
ܰ
න ෤ሻݔ|ݕ஺|௑ሺ݌ logଶ

௦ܰ݌஺ሺݔ|ݕ෤ሻ
∑ ෤ሻ௫෤∈ሼௌሽݔ|ݕ஺ሺ݌

.ݕ݀
ାஶ

ିஶ
																																									ሺ4.28ሻ 

 

where ௦ܰ is the number of states of ݔ෤ and ܵ ∈ ሼݔோሽ. The extrinsic LLR E from the output 

of the decoder can be used to determine I(X;E) by generating a histogram of the extrinsic 

outputs. Since the distribution of E is not Gaussian we can compute I(X;E) as: 

;ሺܺܫ ሻܣ ൌ
1
ܰ
න ෤ሻݔ|ݕா|௑ሺ݌ logଶ

௦ܰ݌ாሺݔ|ݕ෤ሻ
∑ ෤ሻ௫෤∈ሼௌሽݔ|ݕாሺ݌

.ݕ݀
ାஶ

ିஶ
																					ሺ4.29ሻ 

When performing the ExIT chart analysis, we chose values of α from 0.01 to 0.1 to 

analyse the convergence behaviour of the turbo codes at the relay. From Figure. 4.7(a) it 

can be seen that the lowest SNR, or pinch-off SNR, where the rate 
ଵ

ଶ
		turbo coded PNC 

system converges is 3.1dB. The trajectory in the ExIT chart indicates that approximately 

12 or 13 iterations are required to achieve convergence. Similarly, Figure.4.8 (a) shows 

the ExIT charts for the rate 
ଵ

ଷ
	turbo code and we observe that the pinch-off SNR limit for 

the turbo code is 2.7dB with approximately ten iterations required. Figure.4.7 (b) shows 

the ExIT charts of the rate 
ଵ

ଶ
	turbo code when α=0.1. In this case, the pinch-off SNR limit 

of the turbo code is 16.5dB, and it takes about four iterations for the decoder to achieve 

convergence. Again, we also see this behaviour in the ExIT charts of the rate 
ଵ

ଷ
	turbo 
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codes are shown in Figure.4.8 (b), where the rate 
ଵ

ଷ
	turbo code has a 1.5dB advantage 

over the rate 
ଵ

ଶ
	turbo code. 

 

(a)                                                         (b) 

Figure 4.7 Rate 
ଵ

ଶ
 Turbo code ExIT chart on GMM, α=0.01 (a) and 0.1 (b), pinch-off 

SNR limit = 3.1dB and 16.5dB. 

 

(a)                                                                (b) 

Figure 4.8 Rate 
ଵ

ଷ
 Turbo code ExIT chart on GMM, α=0.01 (a) and 0.1 (b), pinch-off 

SNR limit = 2.7dB and 15dB. 
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Table 4.1 lists all pinch-off SNRs for rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 turbo code in different ߙ mixtures: 

 0.5 0.2 0.1 0.05 0.01 0 ߙ

R= 
ଵ

ଶ
 2.2dB 3.1dB 3.8dB 16.5dB 19.5dB 21.5dB 

R= 
ଵ

ଷ
 1.7dB 2.7dB 3.2dB 15dB 18dB 21dB 

 

TABLE 4.1: Comparison of the pinch-off SNR limit of rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 turbo codes 

when		0 ൑ ߙ ൑ 0.5. 

 

 

4.4 Upper bound on turbo code BER performance 

As shown in Fig. 4.1.3, turbo codes exhibit an error floor when the probability of error 

performance fails to reduce rapidly at high SNR. It can be explained by approximating 

the BER of a turbo code, by using the union bound the average BER is bounded by [108]: 

௕ܲ ൑ ෍
	௜ݓ
ܰ
ܳ ቌඨ

௕ܧ2ܴ݀
଴ܰ

ቍ

ଶ಼ିଵ

௜ୀଵ

																																										ሺ4.30ሻ 

where w is the weight of the message sequence of the i-th message, d is the Hamming 

distance of a certain codeword; N is the interleaver length and R is the code rate of the 

turbo code.  Reordering the terms corresponding to the information sequences of the 

same weight, equation (4.26) can be rewritten as [46]: 

௕ܲ ൑ ෍ ෍
௜ݓ
ܭ
ܳቌඨ

2݀௟ܴܧ௕
଴ܰ

ቍ

ሺே	௝ሻ	

௟ୀଵ

ே

௜ୀଵ

																																								ሺ4.31ሻ 

where ሺܰ	݆ሻ is the number of information sequences of weight j. As SNR increases, the 

first two terms of ௕ܲ dominates, so (4.27) can be approximate at high SNR as: 
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௕ܲ ൑ ෍
݆ ௝݊

ܭ
ܳቌඨ

2݀௠௜௡ܴܧ௕
଴ܰ

ቍ

ଷ

௝ୀଶ

																																						ሺ4.32ሻ 

where  ݀௙௥௘௘ denotes the minimum codeword weight among all codewords generated by 

the information sequences of weight j. The reason why error floors appear at high SNR 

can be seen from equation (4.41), that is, a smaller ݀௠௜௡ will cause an error floor due to 

it representing low weight codewords.  

 

Figure 4.9 Upper bound of rate 
ଵ

ଶ
	turbo code, ten decoding iterations. 

Figure 4.9 shows the upper bound on the BER of a rate 
ଵ

ଶ
	turbo code. It can be seen that 

at an SNR of 2dB, the turbo code BER converges to the upper bound and s in an error 

floor. 

Recalling the pdf expression of GMM noise in (3.26), that related to overall noise power 

spectral density of GMM noise ீܰெெ: 

ீܰெெ ൌ ሺ1 െ ሻߙ ீܰ ൅ ߙ ூܰ																																																		ሺ4.33ሻ 
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where ீܰ  and ூܰ  are the noise power spectral densities for the Gaussian noise and 

impulsive noise respectively. By substituting (3.36) to (4.32), the asymptotic 

performance of a turbo code on a GMM channel can be expressed as: 

ܲீ ெெ ൑෍
ሺ1 െ ሻ݆ߙ ௝݊

ܭ

ଷ

௝ୀଶ

ܳ ቌඨ
2݀௠௜௡ܴܧ௕

ீܰ
ቍ ൅෍

݆ߙ ௝݊

ܭ

ଷ

௝ୀଶ

ܳ ቌඨ
2݀௠௜௡ܴܧ௕

ூܰ
ቍ					ሺ4.34ሻ 

Moreover, if we only take the impulsive term	∑
ఈ௝௡ೕ
௄

ଷ
௝ୀଶ ܳ ൬ට

ଶௗ೘೔೙ோா್
ே಺

൰ from ܲீ ெெ, this 

gives a higher bound that actually indicates the error floor caused by impulsive noise. 

 

 

Figure 4.10 Comparison of rate 
ଵ

ଶ
	 turbo code with PNC at the relay, 0.01=ߙ with upper 

bound and the higher impulsive bound  
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Figure 4.11 Comparison of rate 
ଵ

ଷ
  turbo code on PNC at the relay, 0.01=ߙ with upper 

bound and the higher impulsive bound 

 

Figure 4.12 Comparison of rate 
ଵ

ଶ
	 turbo code on PNC at the relay, 0.1=ߙ with upper 

bound and the higher impulsive upper bound 
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Figure 4.13 Comparison of rate 
ଵ

ଷ
  turbo code on PNC at the relay, 0.1=ߙ with upper 

bound and the higher impulsive bound 

 

As SNR increases, the simulated results start to converge with the upper bound. Figure 

4.10 and Figure 4.11 show the upper bounds and simulated results when 0.01= ߙ. In this 

case, we observe that the impulsive bound does not have a significant effect on the turbo 

code performance since the impulsive mixture is much lower and the error floor region is 

consequently much smaller, but the simulated turbo code performance converges with 

the upper bound at higher SNRs. In Figure 4.12 and Figure 4.13 the mixture is 0.1= ߙ 

and it can be seen that, at low SNR the simulated results match closely with the higher 

impulsive bound and converge with the error floor region from approximately 8dB to 

15dB.  
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4.5 BER Performance of Turbo Codes combined with PNC  

 

Figure 4.14 BER performance of rate 
ଵ

ଶ
ሺ37,21ሻ଼ and rate 

ଵ

ଷ
ሺ37,21ሻ଼ turbo codes on 

PNC at the relay, Interleaver length = 2,000 bits, five decoding iterations and AWGN 

Figure 4.14 shows a comparison of rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 ሺ37,21ሻ଼ turbo codes combined with 

PNC, both at the relay and at a destination node. The performance of the rate 
ଵ

ଶ
 punctured 

turbo code performs slightly worse than the rate 
ଵ

ଷ
 turbo code for both at the relay and 

node. The waterfall regions for both codes start at around an SNR of 2dB for decoding at 

the relay and around 5dB for decoding at the node. It can also be seen that there is 

approximately a 3dB difference between decoding at relay and decoding at node for each 

turbo code. This is due to the codewords being decoded and encoded again at the relay 

before transmitting to each node, where the uncorrected errors remain in the codeword 

but are incorrrectly assumed to be ‘correct’.  
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Figure 4.15 BER performance of rate 
ଵ

ଶ
ሺ37,21ሻ଼ Turbo code (white squares) and rate 

ଵ

ଷ
 

Turbo code (black squares) with impulsive noise at the relay, Interleaver length = 2,000 

bits, five decoding iterations 

Figure 4.15 shows a comparison of rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 ሺ37,21ሻ଼ turbo codes combined with 

PNC at the relay with impulsive noise channels. At the relay, any large positive or 

negative impulses are clipped so that their energy is no greater than the transmitted 

symbol energy E. The performance of turbo coded PNC is seriously affected on additive 

impulsive noise channels resulting in error floors, as shown in the figure. The rate 
ଵ

ଶ
 

punctured turbo code performs slightly worse than the rate 
ଵ

ଷ
 turbo code when ߙ ൌ 0.01 

and the waterfall regions for both codes start at around an SNR of 3dB, which is 

supported by the ExIT charts in Figure 4.7 and Figure 4.8. When	ߙ ൌ 0.5, the channel is 

very impulsive and both codes are having similar performance with error floor occurring 

at very high BERs. 
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4.6 PNC combined with Trellis BICM-ID 

In this section, the structure of the trellis BICM-ID encoder and iterative decoders will be 

discussed, including the design and analysis of the trellis BICM-ID decoder suitable for 

combination with PNC. Trellis BICM-ID has a much lower complexity than turbo codes 

and is designed for fading channels, where bursts of errors occur frequently. It is well 

known that the performance of trellis BICM-ID on the AWGN channel is worse than 

turbo codes, but their performance on impulsive noise channels compared with turbo 

codes is not known. A BER performance comparison to the turbo code is presented with 

a view to seeing the difference between different network coding schemes for PNC on 

the impulsive channel. ExIT charts are also presented to compare the performance of 

PNC combined with different code rates of trellis BICM-ID code and turbo code to 

verify the simulation results. 

 

4.6.1 Construction of trellis BICM-ID 

The encoder of trellis BICM-ID consists of a convolutional encoder connected to an 

interleaver, which increases the achievable diversity order. Thus with the aid of the 

interleaver the code’s diversity order can be extended to the binary Hamming distance of 

code [54]. The decoder structure of trellis BICM-ID is similar to the turbo decoder, but 

consists of only one soft-in-soft-out (SISO) demapper in series with a SISO  decoder, in 

order to exchange the extrinsic information to each other to enhance the performance of 

the decoder.  The maximum likelihood (ML) decoding of trellis BICM-ID is infeasible, 

due to the interleaver introducing a significant number of states. However, the trellis 

BICM-ID decoder has an efficient and sub-optimal decoding method that may approach 

the performance of the ML decoding algorithm. The basic structure of trellis BICM-ID is 

shown in Figure 4.16 
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Figure 4.16 General structure of trellis BICM-ID 

 

Figure 4.17 System model showing trellis BICM-ID encoder and iterative decoding 

processing on the PNC system. 

 

It should be noted that trellis BICM-ID needs to use QPSK with anti-Gray mapping to 

ensure a coding gain. The demapper exchanges mutual information with the decoder 

during each decoding iteration, in order to update the LLR for more accurate demapping. 

The received signal y is demapped to form the LLR of the modulo-2 sum of the binary 

messages ݉ோ and after de-interleaving the LLR is fed to the log-MAP decoder. Extrinsic 

information obtained from the output of the log-MAP decoder is then interleaved and fed 

back to the demapper, thus completing one iteration. Similarly, extrinsic information 
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from the demapper is de-interleaved to form the a priori information to the log-MAP 

decoder. The system model of the TWRC with PNC at the relay combined with trellis 

BICM-ID is shown in Figure 4.17. 

 

4.6.2 Demapper and MAP decoder of trellis BICM-ID on PNC 

Trellis BICM-ID is a spectrally efficient coded modulation scheme that has been shown 

to perform well under suitable signal mapping schemes with iterative demapping-

decoders. In order to demap the received symbol, the conditional LLRs of the two bits, 

݉ோ
ଵ  and ݉ோ

ଶ , contained in the  received symbol ோݕ	
	 ሺ݉ோܮ ,

ଵ ሻݕ|  and ሺ݉ோ
ଶ|ݕሻ  , can be 

expressed as: 

ሺ݉ோܮ
ଵ|ݕሻ ൌ ln ቆ

ܲሺ݉ோ
ଵ ൌ ሻݕ|1

ܲሺ݉ோ
ଵ ൌ ሻݕ|0

ቇ																																														ሺ4.35ሻ 

and  

ሺ݉ோܮ
ଶ|ݕሻ ൌ ln ቆ

ܲሺ݉ோ
ଶ ൌ ሻݕ|1

ܲሺ݉ோ
ଶ ൌ ሻݕ|0

ቇ																																															ሺ4.36ሻ 

which can be expanded as: 

ሺ݉ோܮ
ଵ|ݕሻ ൌ ln ቆ

ܲሺ݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ ሻݕ|0 ൅ ܲሺ݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ ሻݕ|1

ܲሺ݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ ሻݕ|0 ൅ ܲሺ݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ ሻݕ|1
ቇ													ሺ4.37ሻ 

and 

ሺ݉ோܮ
ଶ|ݕሻ ൌ ln ቆ

ܲሺ݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ ሻݕ|1 ൅ ܲሺ݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ ሻݕ|1

ܲሺ݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ ሻݕ|0 ൅ ܲሺ݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ ሻݕ|0
ቇ													ሺ4.38ሻ 

Since the coded bits are bit interleaved, we can assume they are all independent. Hence, 

the joint probabilities can be expressed as the product of individual probabilities: 

ܲሺ݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 1ሻ ൌ ܲሺ݉ோ
ଵ ൌ 0ሻܲሺ݉ோ

ଶ ൌ 1ሻ																												ሺ4.39ሻ 

So by applying Baye’s rule: 

ܲሺܤ|ܣሻܲሺܤሻ ൌ ܲሺܣ|ܤሻܲሺܣሻ																																																	ሺ4.40ሻ 
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the joint conditional probabilities can be expressed as: 

ܲሺ݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ ሻݕሻܲሺݕ|1 ൌ ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 1ሻܲሺ݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 1ሻ						ሺ4.41ሻ 

and the LLRs of the received symbol ܮሺ݉ோ
ଵ ሺ݉ோܮ ሻ andݕ|

ଶ|ݕሻ can be expanded as: 

ሺ݉ோܮ
ଵ ሺ4.42ሻ																																																																																																																																																	ሻݕ|

ൌ ln

ۉ

ۇ

ܲሺݕ|݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ 0ሻܲሺݕ|݉ோ
ଵ ൌ 1ሻܲሺ݉ோ

ଶ ൌ 0ሻ
ܲሺݕሻ ൅

ܲሺݕ|݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ 1ሻܲሺݕ|݉ோ
ଵ ൌ 1ሻܲሺ݉ோ

ଶ ൌ 1ሻ
ܲሺݕሻ

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 0ሻܲሺݕ|݉ோ
ଵ ൌ 0ሻܲሺ݉ோ

ଶ ൌ 0ሻ
ܲሺݕሻ ൅

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 1ሻܲሺݕ|݉ோ
ଵ ൌ 0ሻܲሺ݉ோ

ଶ ൌ 1ሻ
ܲሺݕሻ ی

ۊ

Cancelling out ܲሺݕሻ and factorising reduces ܮሺ݉ோ
ଵ|ݕሻ to two terms: 

ሺ݉ோܮ
ଵ ሺ4.43ሻ																																																																																																																																																	ሻݕ|

ൌ ௔ሺ݉ோܮ
ଵሻ ൅ ln ቆ

ܲሺݕ|݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ 0ሻܲሺ݉ோ
ଶ ൌ 0ሻ ൅ ܲሺݕ|݉ோ

ଵ ൌ 1,݉ோ
ଶ ൌ 1ሻܲሺ݉ோ

ଶ ൌ 1ሻ

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 0ሻܲሺ݉ோ
ଶ ൌ 0ሻ ൅ ܲሺݕ|݉ோ

ଵ ൌ 0,݉ோ
ଶ ൌ 1ሻܲሺ݉ோ

ଶ ൌ 1ሻ
ቇ , 

 

Similarly ܮሺ݉ோ
ଶ|ݕሻ is equal to: 

ሺ݉ோܮ
ଶ|ݕሻ																																																																																																																																																	ሺ4.44ሻ

ൌ ௔ሺ݉ோܮ
ଶሻ ൅ ln ቆ

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 1ሻܲሺ݉ோ
ଵ ൌ 0ሻ ൅ ܲሺݕ|݉ோ

ଵ ൌ 1,݉ோ
ଶ ൌ 1ሻܲሺ݉ோ

ଵ ൌ 1ሻ

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 0ሻܲሺ݉ோ
ଵ ൌ 0ሻ ൅ ܲሺݕ|݉ோ

ଵ ൌ 1,݉ோ
ଶ ൌ 0ሻܲሺ݉ோ

ଵ ൌ 1ሻ
ቇ , 

where ܮ௔ሺ݉ோ
ଵሻ is the a priori LLR of the first coded bit and		ܮ௔ሺ݉ோ

ଵሻ	is the a priori LLR 

of the second coded bit, defined as: 

௔ሺ݉ோܮ
ଵሻ ൌ ln ቆ

ܲሺ݉ோ
ଵ ൌ 1ሻ

ܲሺ݉ோ
ଵ ൌ 0ሻ

ቇ ,																																																	ሺ4.45ሻ 

௔ሺ݉ோܮ
ଶሻ ൌ ln ቆ

ܲሺ݉ோ
ଶ ൌ 1ሻ

ܲሺ݉ோ
ଶ ൌ 0ሻ

ቇ .																																																	ሺ4.46ሻ 

Since 

ܲሺ݉ோ
ଵ ൌ 1ሻ ൌ 1 െ ܲሺ݉ோ

ଵ ൌ 0ሻ,																																																	ሺ4.47ሻ 

Therefore,  
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ܲሺ݉ோ
ଵ ൌ 1ሻ ൌ

݁௅ೌ൫௠ೃ
భ൯

1 ൅ ݁௅ೌ൫௠ೃ
భ൯
,																																																						ሺ4.48ሻ 

and	

ܲሺ݉ோ
ଵ ൌ 0ሻ ൌ

1

1 ൅ ݁௅ೌ൫௠ೃ
భ൯
.																																																							ሺ4.49ሻ 

 

Now the received LLRs can be derived as: 

ሺ݉ோܮ
ଵ ሻݕ|

ൌ ௔ሺ݉ோܮ
ଵሻ

൅ ln

ۉ

ۇ

ܲሺݕ|݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ 0ሻ
1 ൅ ݁௅ೌ൫௠ೃ

మ൯
൅
ܲሺݕ|݉ோ

ଵ ൌ 1,݉ோ
ଶ ൌ 1ሻ

1 ൅ ݁௅ೌ൫௠ೃ
మ൯

݁௅ೌ൫௠ೃ
మ൯

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 0ሻ
1 ൅ ݁௅ೌ൫௠ೃ

మ൯
൅
ܲሺݕ|݉ோ

ଵ ൌ 0,݉ோ
ଶ ൌ 1ሻ

1 ൅ ݁௅ೌ൫௠ೃ
మ൯

݁௅ೌ൫௠ೃ
మ൯
ی

ۊ ,																													ሺ4.50ሻ 

That can be simplified to: 

ሺ݉ோܮ
ଵ|ݕሻ ൌ ௔ሺ݉ோܮ

ଵሻ

൅ ln ൭
ܲሺݕ|݉ோ

ଵ ൌ 1,݉ோ
ଶ ൌ 0ሻ ൅ ܲሺݕ|݉ோ

ଵ ൌ 1,݉ோ
ଶ ൌ 1ሻ݁௅ೌ൫௠ೃ

మ൯

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 0ሻ ൅ ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 1ሻ݁௅ೌ൫௠ೃ
మ൯
൱ . 			ሺ4.51ሻ 

and 	

ሺ݉ோܮ
ଶ|ݕሻ ൌ ௔ሺ݉ோܮ

ଶሻ

൅ ln ൭
ܲሺݕ|݉ோ

ଵ ൌ 0,݉ோ
ଶ ൌ 1ሻ ൅ ܲሺݕ|݉ோ

ଵ ൌ 1,݉ோ
ଶ ൌ 1ሻ݁௅ೌ൫௠ೃ

భ൯

ܲሺݕ|݉ோ
ଵ ൌ 0,݉ோ

ଶ ൌ 0ሻ ൅ ܲሺݕ|݉ோ
ଵ ൌ 1,݉ோ

ଶ ൌ 0ሻ݁௅ೌ൫௠ೃ
భ൯
൱ . ሺ4.52ሻ 

From Figure 4.6, we know the received symbol belongs to nine possible complex values 

at the relay. By following the constellation diagram the conditional pdfs can be expressed 

as: 
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ோ݉|ݕሺ݌
ଵ ൌ 0,݉ோ

ଶ ൌ 0ሻ																																																																																																											 

ൌ න න ቌ݁ି
ቂሺ௬಺ିଶாሻమା൫௬ೂିଶா൯

మ
ቃ

ଶఙమ ൅ ݁ି
ቂሺ௬಺ିଶாሻమା൫௬ೂାଶா൯

మ
ቃ

ଶఙమ ൅ ݁ି
ቂሺ௬಺ାଶாሻమା൫௬ೂିଶா൯

మ
ቃ

ଶఙమ
∞

ି∞

∞

ି∞

൅ ݁ି
ቂሺ௬಺ାଶாሻమା൫௬ೂାଶா൯

మ
ቃ

ଶఙమ ቍ݀ݕூ݀ݕொ																																																															ሺ4.53ሻ 

 

ோ݉|ݕሺ݌
ଵ ൌ 1,݉ோ

ଶ ൌ 1ሻ 

ൌ න න ቌ2݁ି
ቂሺ௬಺ିଶாሻమା൫௬ೂ൯

మ
ቃ

ଶఙమ ൅ 2݁ି
ቂሺ௬಺ାଶாሻమା൫௬ೂ൯

మ
ቃ

ଶఙమ 	ቍ
∞

ି∞

∞

ି∞
 ሺ4.54ሻ												ொݕூ݀ݕ݀

 

ோ݉|ݕሺ݌
ଵ ൌ 0,݉ோ

ଶ ൌ 1ሻ 

ൌ න න ቌ2݁ି
ቂሺ௬಺ሻమା൫௬ೂିଶா൯

మ
ቃ

ଶఙమ ൅ 2݁ି
ቂሺ௬಺ሻమା൫௬ೂାଶா൯

మ
ቃ

ଶఙమ ቍ
∞

ି∞

∞

ି∞
 ሺ4.55ሻ													ொݕூ݀ݕ݀

 

ோ݉|ݕሺ݌
ଵ ൌ 1,݉ோ

ଶ ൌ 0ሻ ൌ න න 4݁ି
൫௬಺

మା௬ೂ
మ൯

ଶఙమ
∞

ି∞

∞

ି∞
 ሺ4.56ሻ																																ொݕூ݀ݕ݀

By substituting the conditional probability into ܮሺ݉ோ
ଵ ሺ݉ோܮ	and	ሻݕ|

ଶ|ݕሻ, the extension of 

ሺ݉ோܮ
ଵ|ݕሻ	and	ܮሺ݉ோ

ଶ|ݕሻ can be viewed in the appendix. 
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4.7 ExIT chart of trellis BICM-ID 

The ExIT-chart technique for trellis BICM-ID is quite similar to the turbo decoder. Let 

us denote the decoder to demapper message as ܯ௞
ௗ௘௖ିௗ௘௠ and the demapper to decoder 

message is	ܯ௞
ௗ௘௠ିௗ௘௖. Also we define the two symbols	ܯ௘ and	ܯ஺ as the average mutual 

information between the coded bit	ܺ௞, where ݇ ൌ 1,… , ݊ and ݊ is the length of message 

and the decoder to demapper message 	ܯ௞
ௗ௘௖ିௗ௘௠  and ௞ܯ	

ௗ௘௠ିௗ௘௖ . So in general the 

relationship between the extrinsic information and a priori information in the trellis 

BICM-ID decoder can be expressed as: 

ாܯ ൌ
1
݊
෍ܫ

௡

௞ୀଵ

൫	ܺ௞;ܯ௞
ௗ௘௖ିௗ௘௠൯,																																															ሺ4.57ሻ 

஺ܯ ൌ
1
݊
෍ܫ

௡

௞ୀଵ

൫	ܺ௞; ௞ܯ	
ௗ௘௠ିௗ௘௖൯,																																														ሺ4.58ሻ 

where ܯா and ܯ஺ correspond to the extrinsic information from the output of the decoder 

to the input of the demapper, and vice versa. ܯா	and ܯ஺ has the relationship: 

஺ܯ ൌ  ሺ4.59ሻ																																																						ாሻ,ܯௗ௘௠ሺݐ݅ݔ݁

ாܯ ൌ   ሺ4.60ሻ																																																								஺ሻ.ܯௗ௘௖ሺݐ݅ݔ݁

This relationship represents the transfer function of the extrinsic information and a priori 

information exchange between the decoder and demapper in the trellis BICM-ID decoder. 

The ExIT charts of trellis BICM-ID at the relay on GMM impulsive noise channels is 

shown in Figures 4.18 – 4.21. When performing the ExIT chart analysis, we chose values 

of the GMM mixture constant α from 0.01 to 0.1 to analyse the convergence behaviour 

of the turbo codes at the relay of the conventional two-way relay communications. From 

Figure. 4.18 it can be seen that the lowest SNR, or pinch-off SNR limit, where the SNR 

of the rate 
ଵ

ଶ
		trellis BICM-ID converges is 6.5dB. Similarly, Figure.4.19 shows the ExIT 

charts for the rate 
ଵ

ଷ
	trellis BICM-ID and we observe that the pinch-off SNR limit is 

5.6dB, which is a 0.9dB advantage over the rate  
ଵ

ଶ
 trellis BICM-ID.  
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Figure 4.18 Rate 	ଵ
ଶ
	trellis BICM-ID ExIT chart on PNC over GMM, 0.01=ߙ pinch-off 

SNR limit=6.5dB. 

 

Figure 4.19 Rate 
ଵ

ଷ
 trellis BICM-ID ExIT chart on PNC over GMM, 0.01=ߙ pinch-off 

SNR limit=5.6dB. 

Figure. 4.20 shows the ExIT charts of the rate 
ଵ

ଶ
		trellis BICM-ID when α=0.1. In this 

case, the pinch-off SNR limit of the rate  
ଵ

ଶ
		trellis BICM-ID is 10.5dB; we also see this 

behaviour in the ExIT charts of the rate 
ଵ

ଷ
	trellis BICM-ID is shown in Figure.4.21, where 

the rate 
ଵ

ଷ
	trellis BICM-ID has a 1dB advantage over the rate 

ଵ

ଶ
	trellis BICM-ID. 
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Figure 4.20 Rate 
ଵ

ଶ
	trellis BICM-ID ExIT chart on PNC over GMM, 0.1=ߙ pinch-off 

SNR limit=10.5dB. 

 

Figure 4.21 Rate 
ଵ

ଷ
	 trellis BICM-ID ExIT chart on PNC over GMM, 0.1=ߙ pinch-off 

SNR limit=9.5dB. 
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4.8 Performance of Trellis BICM-ID 

After performing the ExIT chart analysis of trellis BICM-ID at the relay on GMM 

impulsive noise channels in the previous section, we now compare simulation results of 

trellis BICM-ID to see the advantage of trellis BICM-ID. Earlier in the chapter, lower 

bounds on the turbo code error floor were presented to validate simulation results. 

However, this is not possible for trellis BICM-ID since they do not exhibit error floors. 

Therefore, only the ExIT charts in the previous section can be used to validate the 

simulation results. 

Figure 4.22 Simulation BER of 	 rate 
ଵ

ଶ
 (7,5)8 trellis BICM-ID in point to point 

transmission on AWGN channel, ten iterations. 

Figure 4.22 shows the simulated BER of a rate 
ଵ

ଶ
 trellis BICM-ID in point to point 

transmission for ten decoding iterations. It can be seen that the performance of trellis 

BICM-ID improves as the number of decoding iteration increases. After ten iterations 

the decoder reaches an error floor at the BER of 10ିସ at the SNR of 3dB.  



84 

 

 

Figure 4.23 BER performance of rate 
ଵ

ଷ
 trellis BICM-ID on PNC over AWGN channel at 

the relay with ten iterations. 

In Figure 4.23 the BER performance of PNC combined with rate 
ଵ

ଷ
 trellis BICM-ID at the 

relay on AWGN channels is shown for ten iterations. Compared to the previous BER of 

trellis BICM-ID on AWGN channel without PNC in Figure 4.22, there is an 

approximately 2dB degradation. The ‘waterfall’ region starts around 3.5dB, and the error 

floor occurs around 4.5dB. 

Figure 4.24 shows a comparison of PNC combined with rate 
ଵ

ଶ
 and 

ଵ

ଷ
 trellis BICM-ID on 

AWGN channels both at the relay and node. Clearly rate 
ଵ

ଷ
 trellis BICM-ID outperforms 

rate 
ଵ

ଶ
 trellis BICM-ID due to the extra redundancy and increased minimum Hamming 

distance.  
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Figure 4.24 BER performance of rate 
ଵ

ଶ
 and 

ଵ

ଷ
 trellis BICM-ID on PNC over AWGN 

channel both at the relay and destination nodes. 

 

In Figure 4.25 – 4.26, a comparison of PNC combined with rate 
ଵ

ଶ
 and 

ଵ

ଷ
 trellis BICM-ID 

on GMM impulsive noise channels with the different mixture is presented. As before, the 

rate 
ଵ

ଷ
 trellis BICM-ID has better performance than the rate 

ଵ

ଶ
 trellis BICM-ID, but the 

coding gain is even larger than on the AWGN channel, which is approximately 4.5 dB. 

By increasing ߙ  the performance of trellis BICM-ID becomes worse due to the 

impulsiveness of the channel increasing. Compared to the performance of trellis BICM-

ID on the AWGN channel, even a small mixture of impulsive noise will degrade the 

BER significantly. e.g. when	ߙ ൌ 0.01, the degradation in BER is nearly 3dB worse. As 

the impulsiveness of the noise grows larger to ߙ ൌ 0.5, the BER of trellis BICM-ID 

suffers a huge error floor at lower SNR. 
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Figure 4.25 BER performance of rate 
ଵ

ଶ
 trellis BICM-ID on PNC at the relay over GMM 

channel with different GMM mixture constant ߙ. 

 

Figure 4.26 BER performance of rate 
ଵ

ଷ
 trellis BICM-ID on PNC at the relay over GMM 

channel with different GMM mixture constant	ߙ. 

Table 4.2 lists all pinch-off SNR for rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 trellis BICM-ID at the relay over 

GMM channels for different ߙ mixtures: 
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 0.5 0.2 0.1 0.05 0.01 0 ߙ

R= 
ଵ

ଶ
 3.5dB 6.5dB 7.5dB 10.5dB 16.5dB 21.5dB 

R= 
ଵ

ଷ
 3dB 5.6dB 6.5dB 9.5dB 15dB 20.5dB 

 

TABLE 4.2: Comparison of the pinch-off SNR limit between rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 trellis 

BICM-ID when	0 ൑ ߙ ൑ 0.5. 

 

4.9 Performance comparison of Turbo code and Trellis BICM-

ID on PNC over impulsive noise channel 

We now comparing difference between two channel coding schemes and discuss their 

advantages and disadvantages when combined with PNC. 

Figure 4.27 BER performances comparison of rate  
ଵ

ଶ
 turbo code and rate  

ଵ

ଶ
 trellis 

BICM-ID on PNC over AWGN channel, decoding at relay/destination node. 
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In Fig 4.27-4.28, the comparison of rate 
ଵ

ଶ
 and rate  

ଵ

ଷ
 channel codes have been made. It 

can be seen that turbo code outperforms trellis BICM-ID under all conditions with 

approximately 1.5dB coding gain for both decoding at relay/destination. There is no 

doubt that turbo codes are a good option for PNC on AWGN channels. However, 

referencing the pinch-off SNR of both coding schemes, it can be seen that the trellis 

BICM-ID codes have advantages when combined with PNC on impulsive noise channels 

when	0.1 ൑ ߙ ൑ 0.5 , as shown in TABLE 4.3 and verified in Figures 4.29 - 4.30. 

 

 

Figure 4.28 BER performances comparison of rate  
ଵ

ଷ
 turbo code and rate  

ଵ

ଷ
 trellis BICM-

ID on PNC over AWGN channel, decoding at relay/destination. 
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Figure 4.29 Comparison of rate 
ଵ

ଶ
 turbo codes and trellis BICM-ID when	0.1 ൑ ߙ ൑ 0.5. 

 

Figure 4.30 Comparison of rate 
ଵ

ଷ
 turbo codes and trellis BICM-ID when	0.1 ൑ ߙ ൑ 0.5. 
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Turbo Code Trellis BICM-ID 

 0.5 0.2 0.1 ߙ 0.5 0.2 0.1 ߙ

R= 
ଵ

ଶ
 16.5dB 19.5dB 21.5dB R= 

ଵ

ଶ
 10.5dB 16.5dB 21.5dB 

R= 
ଵ

ଷ
 15dB 18dB 21dB R= 

ଵ

ଷ
 9.5dB 15dB 20.5dB 

TABLE 4.3: Comparison of the pinch-off SNR limit between rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 turbo 

codes and trellis BICM-ID when	0.1 ൑ ߙ ൑ 0.5. 

From Figs 4.29 - 4.30, it can be seen that when the impulsive noise mixture varies 

with 	0.1 ൑ ߙ ൑ 0.5 , trellis BICM-ID outperforms turbo codes especially in the 

range	0.1 ൑ ߙ ൑ 0.2. The turbo codes occurred with error floors at lower SNR, and the 

level of error floors are even higher when the channel is more impulsive,  ߙ ൌ 0.1 at 

BER of 10ିଶ and ߙ ൌ 0.2	at BER of	10ିଵ. However, trellis BICM-ID has avoided that 

effect and starts to fully decode the signals at much lower SNR than turbo codes. Overall, 

the comparisons of the BER performance of both channel coding schemes on PNC over 

impulsive channel have verified our pinch-off SNR results, and trellis BICM-ID has 

shown its advantages when combined with PNC on impulsive noise channels. 

 

 

4.10 Conclusions 

In this chapter, an analysis of rate 
ଵ

ଶ
 and rate 

ଵ

ଷ
 turbo codes and trellis BICM-ID combined 

with channel coded PNC on AWGN channels and additive impulsive noise channels has 

been investigated on a conventional TWRC. We have shown that the performance of 

turbo codes is severely affected on the GMM noise channel compared to AWGN 

channels, especially when the mixture is high, and ExIT charts have been presented to 

show the convergence behaviour of the turbo decoder for different mixtures of 

impulsiveness. The pinch-off SNR values for rate 
ଵ

ଶ
 and 

ଵ

ଷ
 turbo codes have also been 

determined from the ExIT charts and match closely with the simulation results. The error 

floors caused by impulsive noise are analysed by determining the upper bound on the 
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performance of turbo codes at the relay. We observed that for higher mixtures the error 

floor is determined solely by the impulses of the GMM noise channel at low SNRs, but 

this effect quickly reduces with increasing SNR and the Gaussian noise part of the GMM 

noise channel has more of an effect on the performance.  

Compared to turbo coded PNC on the impulsive channel, when the impulsiveness is low, 

i.e.	α ൑ 0.1, trellis BICM-ID perform worse than the turbo codes with a degradation of 

2.5dB. This is because at the lower SNR region, the turbo codes could overcome the 

interferences from the impulsive by interleaving the information bits that input to the 

second encoder, so that few errors can be corrected during the iterative decoding process. 

However, when	0.1 ൑ α ൑ 0.5, trellis BICM-ID starts to achieve a better performance 

than turbo codes. When the impulsiveness is higher than a threshold, the iterative 

decoders cannot correct the error in the received signal, which the errors remain in the 

loop not matter how many iterations the decoder take. 

Trellis BICM-ID performs better than the turbo code when 0.1 ൑ α ൑ 0.5 because the 

impulsiveness in the channel is more severe, resulting in very large LLR magnitudes. In 

the turbo decoder, it is difficult for each component decoder to correct this large LLR 

value meaning it will be passed on to the other component decoder, affecting other LLR 

values and causing an error floor. However, trellis BICM-ID is less affected because the 

decoder and demapper are independent of each other. The effect of this can be seen more 

clearly in the EXIT charts in figs. 4.20 and 4.21. We observe that, because the two 

curves are not symmetrical, the BICM-ID receiver converges at lower SNRs than the 

turbo decoder when ߙ ൌ 0.1. When ߙ ൌ 0.01, the impulsiveness is lighter and the turbo 

decoder copes better with the less frequent larger impulses. This can be seen in the EXIT 

charts of figs. 4.7(a) and 4.8(a), where the turbo decoder converges at lower SNRs than 

trellis BICM-ID. 

Overall, the iterative decoding behavior of trellis BICM-ID combined with PNC on 

impulsive channels at different ߙhas been analyzed and compared with similar turbo 

codes in the same scenario. The ExIT charts of trellis BICM-ID at the relay with two 

values of ߙ were presented. We observed that the SNR values that signify the start of the 

‘waterfall regions’ of the BER curves also matches closely with the pinch-off SNRs 

found from the ExIT charts. There are many environments where impulsive noise is 

present, such as interference from nearby machinery or power line communications, 
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where the noise at the receiver is non-Gaussian. The interference due to the two users' 

incoming signals at the relay causes degradation in performance compared to a single 

user, uni-directional coded system.  

We have shown that both turbo code and trellis BICM-ID are good choices for a TWRC 

with PNC on impulsive noise channels and present a good trade-off between 

performance, spectral efficiency and complexity. There is considerable scope for further 

research in this area to achieve further improvements in performance by investigating 

new signal processing techniques and channel code design methodologies specifically for 

impulsive noise channels. 
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Chapter 5 

Physical Layer Network 

Coding combined with Non-

Binary Convolutional Codes 
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5.1 Introduction 

  

Physical layer network coding (PNC) combined with binary error-correcting codes is 

commonly employed in the literature. In the previous chapter, PNC was combined with 

binary turbo codes and trellis BICM, where the focus was on the performance of these 

schemes on additive impulsive noise channels. However, the use of non-binary codes is 

less common in the literature and it seems that the combination of PNC with non-binary 

codes has not been investigated previously. Therefore, the major novelty in this chapter 

is the performance analysis of PNC combined with non-binary convolutional code on 

additive impulsive noise channels.  

 

The chapter begins by defining the encoder structure and Maximum A Posteriori (MAP) 

decoding algorithm for a non-binary convolutional code defined in finite fields. This is 

followed by a theoretical performance analysis of PNC combined with non-binary codes 

on additive impulsive noise channels, which are modelled using the Gaussian mixture 

model as in the previous chapter. A union bound on the BER performance is derived and 

simulation results are also presented to validate the analysis. Finally, the design 

parameters for non-binary convolutional codes on impulsive noise channels are 

investigated to optimize their performance when combined with PNC. 
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5.2. Q-ary Convolutional Code Encoder 

The structure of a q-ary convolutional codes encoder is shown in Figure 5.1. 

 

 

Figure 5.1 Encoder structures of q-ary convolutional codes 

 

As shown in Figure 5.1, the encoder consists of three parts: the first two parts involve the 

multilevel source mapping of binary bits 	ܾଵ … ܾ௠ିଵ to the finite field symbols	ܽ௜ in 

GF(q). These symbols are encoded by a convolutional encoder to generate the codeword 

defined in GF(q).  

 

Figure 5.2 General encoder of q-ary convolutional codes. 
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In Fig 5.2, a general encoder of q-ary convolutional codes is given that the input symbols 

υଵ …υ௡ ∈ ሾ0,1, ,ߚ ଶሿ to obtain the output of ܿଵߚ … ܿ௡. A simple convolutional encoder 

over GF(4) is shown in Figure 5.3, which has a rate of 	ଵ
ଶ
	 and is denoted as the ߚߚଶ/1 4-

ary convolutional code.  

  

Figure 5.3 Convolutional encoder of rate	ଵ
ଶ
 ଶ/1 4-ary convolutional codeߚߚ 	

 

It consists of one memory element with two feed forward coefficients	ߚߚଶ, and one 

feedback coefficient 1. The state table for this rate	ଵ
ଶ
 ଶ/1 4-ary convolutional code isߚߚ 	

shown in Table 5.1. 

 

Input Initial State Next State Output 

0 0 0 00 

 ߚ 1 1 0 1

 0ߚ ߚ 0 ߚ

 ଶ1ߚ ଶߚ ଶ 0ߚ

0 1 1 01 
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 ଶߚ1 0 1 1

 ߚ	ߚ ଶߚ 1 ߚ

 ଶ0ߚ ߚ ଶ 1ߚ

 ߚ ଶ 0ߚ ߚ 0

 10 ߚ ߚ 1

 1ߚ 1 ߚ ߚ

 ଶߚଶߚ 0 ߚ ଶߚ

 ଶߚ	ଶ 0ߚ ଶߚ 0

 11 ߚ ଶߚ 1

 ଶߚߚ ଶ 1ߚ ߚ

 ߚଶߚ ଶ 0ߚ ଶߚ

Table 5.1. State table for rate	ଵ
ଶ
 ଶ/1 4-ary convolutional codeߚߚ 	

 

Furthermore, the corresponding trellis diagram is shown in Figure 5.4 Comparing to the 

binary trellis, clearly we can see that although the number of states for the 4-ary 

convolutional code is the same as the (7, 5)8 binary convolutional code, the number of 

branches in the trellis are doubled since there are now four branches entering and leaving 

each node. From the state table, we can also draw the signal-flow graph as shown in 

Figure 5.5, which is more complicated than the signal flow graph of a 4-state binary 

convolutional code.  
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Figure 5.4 Trellis of a rate	ଵ
ଶ
 .ଶ/1 4-ary convolutional codeߚߚ 	

 

Figure 5.5 signal-flow graph of rate	ଵ
ଶ
 .ଶ/1 4-ary convolutional codeߚߚ 	
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5.3 Decoding of q-ary Convolutional Codes 

The decoding of q-ary convolutional codes can be achieved with any of the popular 

trellis decoding methods, but in this thesis the Max Log-MAP decoder is chosen due to 

its good tradeoff between performance and complexity. The calculation of the trace 

forward, trace backwards and branch metric parameters are the same as described in 

chapter 3, but the overall complexity of the Max Log-MAP algorithm is increased due to 

the increased number of branches in the trellis. This is illustrated in Fig. 5.6.  

 

 

 

Figure 5.6 The Illustration of trace forward metric ܣ and backward metric ܤ of MAX-log 

MAP decoder. 
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The general equations for the trace and branch metrics for the log-MAP decoder can be 

written as: 

 

௞ܣ	
	ሺݏሻ ൌ max

௦́
ሼ	ܣ௞ିଵ

	ሺ́ݏሻ ൅ ,ݏሺ́	௞ߛ ,ሻሽݏ 																																					ሺ5.1ሻ 

௞ܤ	
	ሺ́ݏሻ ൌ max

௦
ሼ	ܤ௞

	ሺݏሻ ൅ ,ݏ௞ሺ́ߛ ,ሻሽݏ 																																					ሺ5.2ሻ 

,ݏሺ́	௞ߛ ሻݏ ൌ െ
௞ݕ‖ െ ଶ‖ݔ

ଶߪ2
.																																																		ሺ5.3ሻ 

where ‖ݕ௞ െ  ଶ is the squared euclidean distance between the received symbol yK and‖ݔ

the location of each constellation point x. 

 

When PNC is employed at the relay, then (5.3) must be modified since the resultant 

constellation diagram due to the summing of the two incoming signals no longer has a 

unique mapping to a specific finite field symbol. For example, in the 9-point 

constellation diagram in Figure 3.8 there are four constellation points that map to the 

symbol 0. Therefore, the conditional probability ܲሺݕ௄|ܿ௄ ൌ  ሻ is given asݖ

ܲሺݕ௄|ܿ௄ ൌ ሻݖ ൌ ෍ ܲሺݕ௄|ݔሻ
௫∈௑೥

,																																															ሺ5.4ሻ 

where Xz is the set of constellation points corresponding to the symbol z. So, 

 ܺ଴ ∈ ൛2√ܧ ൅ ܧ√2			,ܧ√2݆ െ ,ܧ√2݆ െ2√ܧ ൅ ,ܧ√2݆ െ2√ܧ െ  ,ൟܧ√2݆

ଵܺ ∈ ൛2݆√ܧ,െ2݆√ܧൟ, 

ఉܺ ∈ ൛2√ܧ,െ2√ܧൟ, 

ܺఉమ ∈ ሼ0ሽ. 

For the max log-MAP algorithm, we take the natural logarithm of (5.4) to obtain 

ln൫ܲሺݕ௄|ܿ௄ ൌ ሻ൯ݖ ൌ lnቌ෍ ܲሺݕ௄|ݔሻ
௫∈௑೥

ቍ,																																							 
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ൎ max
௫∈௑೥

ቊ
௞ݕ‖ െ ଶ‖ݔ

ଶߪ2
ቋ																																																				ሺ5.5ሻ 

 Hence, ߛሺ́ݏ,  ሻ is expressed asݏ

,ݏሺ́ߛ ሻݏ ൌ max
௫∈௑೥

ቊ
௞ݕ‖ െ ଶ‖ݔ

ଶߪ2
ቋ		 																																													ሺ5.6ሻ 

 

Finally, once 	ܣ௄
	ሺݏሻ and 	ܤ௄

	ሺ́ݏሻ have been determined, the LLR of the decoded 

message symbols ܮ	
ሺ௭ሻሺݕ|ݔሻ is defined as: 

௄൯ݕ|	௄ݔሺ௭ሻ൫	ܮ ൌ ln ቆ
∑ ሻݏ௄ିଵሺ́ܣ	 ൅ ,ݏ௄ሺ́ߛ ሻݏ ൅ ሻ௦́ି௦∈ௌ೥ݏ௄ሺܤ	

∑ ሻݏ௄ିଵሺ́ܣ	 ൅ ,ݏ௄ሺ́ߛ ሻݏ ൅ ሻ௦́ି௦∈ௌబݏ௄ሺܤ	
ቇ,																ሺ5.7ሻ 

 

where ܮሺ௭ሻሺݔ௄|ݕ௄ሻ is the LLR value corresponding to the finite field element z, Sz is the 

set of state transitions, s’ – s, in the state table where the message symbol is non-zero and 

S0 is the set of state transitions where the message symbol is 0. Therefore, ܮሺ଴ሻሺݔ௄|ݕ௄ሻ ൌ

0 since the numerator and denominator in (5.5) will be the same and it is therefore not 

used in the decoding of non-binary convolutional codes. 

 

The message symbols can be obtained by making a hard decision on ܮሺ௭ሻሺݔ௄|ݕ௄ሻ . 

However, this is not as straightforward as for the binary case because we now have q 

LLRs for each message symbol. Therefore, the hard decision is made as follows: 

 If all ܮሺ௭ሻሺݔ௄|ݕ௄ሻ ൏ 0 , for ݖ	 ൌ 1, ,ߚ ,ଶߚ … , ௤ିଶߚ , then the decoded message 

symbol is ݉௄ ൌ 0. 

 Else the decoded message symbol mK is equal to the index z of the maximum 

value of ܮሺ௭ሻሺݔ௄|ݕ௄ሻ, for	ݖ ൌ 1, ,ߚ ,ଶߚ … , 	௤ିଶߚ
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5.4 Theoretical Performance of q-ary Convolutional Codes 

  

In chapter 3, the theoretical performance of binary convolutional codes was explained, 

which required knowledge of the transfer function of the code derived from the signal 

flow graph. The theoretical performance of non-binary convolutional codes can be 

derived using the same method, but we now find that the signal flow graph is more 

complex and the state equations will have more terms due to the increased size of the 

message alphabet. 

 

Recall the signal-flow graph in Figure 5.5 for the rate ½ ߚߚଶ/1  convolutional code 

defined in GF(4).  

Let ܺ௔= state 0, ܺ௕= state 1, ܺ௖= state	ߚ and	ܺௗ= state	ߚଶ. Thus, we can write the four 

state equations: 

ܺ௕ ൌ ଶܺ௔ܦ ൅ ௕ܺܦ ൅ ௖ܺܦ ൅  ሺ5.8ሻ																																									ଶܺௗ,ܦ

ܺ௖ ൌ ௔ܺܦ ൅ ଶܺ௕ܦ ൅ ௖ܺܦ ൅  ሺ5.9ሻ																																										ଶܺௗ,ܦ

ܺௗ ൌ ଶܺ௔ܦ ൅ ଶܺ௕ܦ ൅ ௖ܺܦ ൅  ሺ5.10ሻ																																							ଶܺௗ,ܦ

ܺ௔ᇱ ൌ ଶܺ௕ܦ ൅ ଶܺ௖ܦ ൅  ሺ5.11ሻ																																																				ଶܺௗ,ܦ

Where D  and Dଶ  are referring the hamming distance which compares the symbol 

difference instead of bit difference. 

By definition the transfer function TሺDሻ is defined as: 

 

TሺDሻ ൌ 	
ܺ௔ᇲ
ܺ௔

ൌ
ଶܺ௕ܦ ൅ ଶܺ௖ܦ ൅ 		ଶܺௗܦ

ܺ௔
																																	ሺ5.12ሻ 

ൌ ସܦ2 ൅ ଷܦ ൅ ଶܦଶሺ2ܦ2 ൅ ሻܦ
ܺ௕
ܺ௔

൅ ଷܦ3 ܺ௖
ܺ௔
. 
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From (5.8)-(5.11), it can be concluded that: 

 

ܺ௕ ൌ
ଶܺ௔ܦ ൅ Dܺ௖		
1 െ ܦ െ ଶܦ ,																																																		ሺ5.13ሻ 

and 

ܺ௖ ൌ
Dܺ௔ ൅ 		ଶܺ௕ܦ2

1 െ ܦ
.																																																						ሺ5.14ሻ 

 

So, by substituting (5.13) to (5.14), we can have the relationship of 
௑್
௑ೌ

: 

 

ܺ௕
ܺ௔

ൌ
ଶܦ2 െ 		ଷܦ
1 െ ܦ2 െ ଷܦ .																																																		ሺ5.15ሻ 

 

Also, by following the same procedure, the relationship of 
௑೎
௑ೌ

 can be derived as: 

 

ܺ௖
ܺ௔

ൌ
ܦ െ ଶܦ ൅ 		ଷܦ
1 െ ܦ2 െ ଷܦ .																																																		ሺ5.16ሻ 

 

Thus, by substituting (5.13) and (5.14) to (5.10), we can have: 

 

TሺDሻ ൌ
ଷܦ ൅ ସܦ3 െ ହܦ3 ൅ ଺ܦ8 െ 		଻ܦ6

1 െ ܦ2 െ ଷܦ .																																			ሺ5.17ሻ 

 

Then the transfer function TሺDሻ can be derived by performing the long-division, 

resulting in: 
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TሺDሻ ൌ ଷܦ	 ൅ ସܦ5 ൅ ହܦ7 …																																												ሺ5.18ሻ 

 

which means the rate ½ ߚߚଶ/1 4-ary convolutional code has one path of ݀௠௜௡ ൌ 3, and 

five paths with ݀	 ൌ 4, and so on. Thus, recall (5.1), the bound of bit error probability of 

a rate	ଵ
ଶ
 ଶ/1 4-ary convolutional code can be calculated asߚߚ 	

 

	ܲ ൑
2௞ିଵ

2௞ െ 1
	
1
ܭ
෍ ෍ ௗܶ ௖ܲ௛௔௡௡௘௟.																																						ሺ5.19ሻ

ே

ௗ೑ೝ೐೐௪

 

 

where the term 
ଶೖషభ

ଶೖିଵ
 converts symbol error rate (SER) to BER [73], and k ൌ logଶ  of ݍ

GF(q). 
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5.5 PNC combined with q-ary Convolutional Codes  

 

The system models of q-ary convolutional codes applied to the TWRC with PNC are 

shown in Figure 5.7 and Figure 5.8, respectively. 

 

Figure 5.7 System model of q-ary convolutional code decoding at the relay on PNC. 

 

In Fig. 5.7, the q-ary convolutional decoder is decoding the received signal ݕ at the relay, 

where	ݕ ൌ ஺ܺ൅ܺ஻ ൅  Recalling (3.13) and substituting into (5.19), the upper bound on .ߟ

the bit error probability ௡ܲ௖௥ in this case is: 

 

௡ܲ௖௥ ൑
2௞ିଵ

2௞ െ 1
	
1
ܭ
෍ ෍ ௗܶ ௤ܲ௥.

																																										ሺ5.20ሻ

ே

ௗ೑ೝ೐೐௪

 

 

The bound on the theoretical BER of decoding at the destination nodes is derived as  

 

௡ܲ௖௡ ൑ ሺ1 െ ௖ܲ௛௔௡௡௘௟ሻ ௡ܲ௖௥ ൅ ሺ1 െ ௡ܲ௖௥ሻ ௖ܲ௛௔௡௡௘௟ െ 2 ௖ܲ௛௔௡௡௘௟ ௡ܲ௖௥.													ሺ5.21ሻ 
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Figure 5.8 System model of q-ary convolutional codes decoding at the nodes on PNC 

over impulsive channel. 

 

The comparison of simulated BER to theoretical BER of rate 	ଵ
ଶ
	 ଶߚߚ  /1 4-ary 

convolutional code on PNC over AWGN channel is presented in Figure 5.9. 

 

 

Figure 5.9. The comparison of simulation BER to theoretical BER of rate	ଵ
ଶ
 ଶ/1 4-aryߚߚ 	

convolutional code on PNC over AWGN channel. 
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As shown in Figure 5.9, the simulated BERs match the bounds closely, which proves the 

derivation of the bounds is correct. Not surprisingly, the BER performance of decoding 

at the relay is approximately 1dB better than decoding at the node.  

 

So far the analysis of PNC combined with the binary convolutional code is on the 

AWGN channel, but now the performance is evaluated on impulsive noise channel using 

the Gaussian mixture model. Recalling (3.17) and submitting in (5.19), the bound of 

rate	ଵ
ଶ
ଶߚߚ 	 /1 4-ary convolutional code on PNC over impulsive channel ݌௡௖௥ீெெ  can be 

expressed as: 

 

௡௖௥ீெெ݌ ൑
2௞ିଵ

2௞ െ 1
෍ ෍ ௗܶ݌௤௥ீெெ.

																																													ሺ5.22ሻ

ே

ௗ೑ೝ೐೐௪

 

 

Also the bound of decoding at the node ݌௡௖௡ீெெ in this case is:  

 

௡௖௥ீெெ݌ ൌ ሺ1 െ ܲீ ெெሻ݌௡௖௥ீெெ ൅ ሺ1 െ ௡௖௥ீெெሻܲீ݌ ெெ െ 2ܲீ ெெ݌௡௖௥ீெெ.															ሺ5.23ሻ 
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Figure 5.10. The comparison of simulated BER to theoretical BER of rate	ଵ
ଶ
 ଶ/1 4-aryߚߚ 	

convolutional code on PNC over impulsive channel decoding at the relay, mixture 

constant  = 0.1.  

 

The comparison of simulated BER with the theoretical BER of PNC combined with the 

rate	ଵ
ଶ
ߙ ଶ/1 4-ary convolutional code over an impulsive noise channel withߚߚ 	 ൌ 0.1 are 

shown in Figure 5.10 and Figure 5.11. 

 

From Figure 5.10 and Figure 5.11, it can be seen that the simulated BER performance is 

only slightly degraded at a BER of 10ିହ. Hence, the simulated BER converges to the 

theoretical BER, which verifies the results. However, with ten percent of impulsive noise 

present in the channel, the BER degradation of the rate	ଵ
ଶ
 ଶ/1 4-ary convolutionalߚߚ 	

code is more significant, which has a difference of approximately 8dB compared to the 

performance on the AWGN channel. 
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Figure 5.11. The comparison of simulated BER to theoretical BER of rate	ଵ
ଶ
 ଶ/1 4-aryߚߚ 	

convolutional code on PNC over impulsive channel decoding at the node, mixture 

constant ɑ = 0.1. 
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5.6 Simulated Performance of PNC combined with Non-

Binary Convolutional Codes on Impulsive Noise Channels 

 

The following section presents several results for convolutional codes defined in GF(2), 

GF(4) and GF(16) on impulsive noise channels with difference mixtures of impulses. 

There are very few papers containing tables of good non-binary codes defined in 

different fields, so the convolutional code defined in GF(16) has been selected from [59], 

which catalogues a number of good non-binary convolutional codes. However, all codes 

in [60] are non-systematic and comprise only feedforward coefficients. Therefore, for a 

fair comparison the other codes defined in GF(2) and GF(4) are also chosen to be non-

systematic. Furthermore, the number of states is fixed at 256 for all the codes and the 

message length in bits is fixed at 1000 bits. For binary convolutional codes we choose 

the ሺ561,753ሻ଼ code since it has the maximum minimum Hamming distance for a rate ½ 

code with a constraint length of 9. The mixture parameter is set to	ߙ ൌ 0, 0.01	and	0.1, 

corresponding to an AWGN channel, moderately impulsive channel and heavily 

impulsive channel respectively. The parameters of the q-ary convolutional codes are 

listed in Table 5.2. 

 

 GF(2) GF(4) GF(16) 

Constraint Length 9 5 3 

݀௠௜௡ 12 13 14 9 10 11 6 7 8 

Nௗ೑ೝ೐೐ 11 50 286 12 39 303 15 120 900 

Generator 

Polynomials 

ሺ561,753ሻ଼ 1 1 1 ଶߚ   ߚ

ߚ 1 1 ߚ  ଶߚ

 ସߚ 1 1

 ସߚ ߚ 1
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Table 5.2. Parameters of rate	ଵ
ଶ
 q-ary convolutional codes, the primitive polynomials are 

ଶݔ ൅ ݔ ൅ 1 and ݔସ ൅ ݔ ൅ 1 for GF(4) and GF(16) respectively. 

The performance comparison of PNC combined with the different convolutional codes at 

the relay over an impulsive channel with different mixtures is shown in Figure 5.12. At 

the relay, any significant positive or negative impulses are clipped so that their energy is 

no greater than the transmitted symbol energy E. From the figure it can be seen that the 

performance of coded PNC is severely affected on additive impulsive noise channels 

compared to the AWGN channel. When ߙ ൌ 0 all codes converge at a BER of	10ିହ, but 

the q-ary convolutional codes perform slightly better at low SNR. The binary 

convolutional code shows a higher error floor compared with the q-ary convolutional 

codes when	ߙ ൐ 0. Surprisingly, the convolutional code over GF(4) performs the best 

with a lower error floor than the convolutional code over GF(16). The binary 

convolutional code performs the worst for all values of ߙ. 

 

Figure 5.12 Simulation results for PNC combined with binary and non-binary 

convolutional codes on impulsive noise channels with ߙ ൌ 0, 0.01	and	0.1. 
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We observe in fig. 5.12 that the performance of the code over GF(16) does not 

outperform the code over GF(4), which at first seems unexpected. However, it must be 

noted that the number of states in the trellis of all codes is fixed at 256. This means the 

code over GF(16) having a smaller constraint length, which results in a smaller 

minimum Hamming distance and reduces the error-correcting capabilities of the code. 

For example, the code over GF(16) has a minimum Hamming distance of 6, but the code 

over GF(4) has a minimum Hamming distance of 9. 

The error floor discussion is grouped by different values of	ߙ	: First, when the channel is 

slightly impulsive with ߙ	 ൌ 0.01	 , the performances of all codes are significantly 

degraded by the impulsive noise, with a coding loss of around 15dB for all codes at a 

BER of 10ିହ. However, the BER performance of all codes beings to converge as SNR 

exceeds 20dB. Secondly, when the noise in channel becomes more impulsive at	ߙ ൌ 0.1, 

the BER performance of all codes converge at a BER of 10ିସ when the SNR exceeds 

24dB. In this case, the performance is further degraded by the increased impulsiveness, 

with a coding loss of around 18dB at a BER of 10-4.   

 

 

5.7 Design of q-ary Convolutional Codes for use with PNC on 

Impulsive Noise Channels 

One of the biggest advantages of a q-ary convolutional code is that the codewords are 

constructed with symbols instead of single information bits, for which the decoder can 

correct several bits at a time. For example, each symbol of a K=5 convolutional code 

defined in GF(4) contains two bits so with a free distance of 9 this code can correct up to 

4 symbol errors. Therefore, if the bit errors are close together, i.e. a burst error extending 

over 4 symbols, then this code can correct up to 8 bit errors. However, if the bit errors 

are spread then we can have the situation where each symbol only contains a single bit 

error, meaning that the code can only correct up to 4 bit errors in this case. This is why 

the performance of non-binary codes tends to converge with binary codes on the AWGN 

channel at high SNRs, but we find that on impulsive noise channels the errors are closer 
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together and the non-binary code has a performance advantage over the binary code, 

particularly at the SNR regions where the error floors occur. 

 

Recall (5.19) and rewrite as: 

௡ܲ௖௥ ൑
2௞ିଵ

2௞ െ 1
1
ܭ
෍ ෍ ௗܶ೑ೝ೐೐ ௤ܲ௥

.
																																						ሺ5.24ሻ

ே

୒೏೑ೝ೐೐௪

 

The effects of various Nௗ೑ೝ೐೐ and ݀௙௥௘௘ for convolutional codes in different finite fields 

are now shown in Figure 5.13 and Figure 5.14. The q-ary convolutional codes with 

small 	Nௗ೑ೝ೐೐	have better performance in the error floor region. The comparisons are 

made by choosing Nௗ೑ೝ೐೐ ൌ 5, 10	and	15 with a fixed	݀௙௥௘௘ , and ݀௙௥௘௘ ൌ 8, 10	and	12 

with a fixed	Nௗ೑ೝ೐೐. In Figure 5.13, it can be seen that when	ߙ ൌ 0, increasing values of 

Nௗ೑ೝ೐೐ only slightly degrade the performance of the code but it generally has a small 

effect. However, when ߙ ൐ 0 codes with smaller Nௗ೑ೝ೐೐ have a significantly lower error 

floor. For example, when ߙ ൌ 0.01, there is a coding loss of up to 8dB when comparing 

the code with Nௗ೑ೝ೐೐ = 5 and Nௗ೑ೝ೐೐ = 15 at a BER of 3 ൈ 10ିସ.  
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Figure 5.13. Comparison of theoretical BER with different N௪	with fixed ݀௙௥௘௘ of q-ary 

convolutional code on PNC over Impulsive channel. 

 

Similarly, coding losses of up to 10dB occur when comparing the same values of Nௗ೑ೝ೐೐ 

for ߙ ൌ 0.5  at a BER of 2 ൈ 10ିସ.  The effect of different dfree and fixed 	Nௗ೑ೝ೐೐  are 

shown in Figure 5.13. It can be seen that when	ߙ ൌ 0, coding gains of 1dB are achieved 

as dfree is increased from 8 to 10 to 12 at a BER of 10ି଺. When the channel is impulsive, 

dfree has a negligible effect on the error floor. However, at high SNR coding gains of 1dB 

are observed as before for both ߙ ൌ 0.01 and ߙ ൌ 0.5. 
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Figure 5.14. Comparison of theoretical BER with different ݀௙௥௘௘	with fixed Nௗ೑ೝ೐೐	of q-

ary convolutional code on PNC over Impulsive channel. 

 

In order to make a comparison to the binary convolutional codes to show the advantage 

of non-binary convolutional codes via theoretical bounds, we compare the theoretical 

performances of convolutional codes to the non-binary convolutional under the same 

conditions, i.e. Nௗ೑ೝ೐೐ ൌ 5 and ݀௙௥௘௘ ൌ 12, shows in Fig. 5.15: 
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Figure 5.15 Theoretical BER comparison of GF(16) non-binary convolutional codes to 

binary convolutional codes on PNC over impulsive noise channel with Nௗ೑ೝ೐೐ ൌ 5 and 

݀௙௥௘௘ ൌ 12. 

 

From Fig 5.15 it can be seen that the GF(16) non-binary convolutional codes outperform 

the binary convolutional codes under all circumstances with the same Nௗ೑ೝ೐೐ and ݀௙௥௘௘. 

The performance of non-binary convolutional codes on AWGN channel is only better at 

lower SNR, and soon converges to the binary convolutional code at	7݀ܤ. However, the 

advantage of non-binary convolutional codes is significant on impulsive channels. 

Clearly, with a lower error floor level the non-binary convolutional codes have a 3݀ܤ 

coding gain at a BER of 10ିସ when 	ߙ ൌ 0.01, and a 2݀ܤ coding gain at BER of 10ିସ 

when ߙ ൌ 0.1. Although both codes are converging at higher SNR, the coding gain still 

exists even at a high SNR of	25݀ܤ. Thus, the non-binary convolutional codes have 

shown their advantage over binary convolutional codes and have a great potential for 

application on impulsive noise channels. 
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5.8 Conclusions 

 

In this chapter, the performance of PNC combined with binary and non-binary 

convolutional code on impulsive noise channels has been presented. The chapter began 

by explaining the fundamental theory of non-binary convolutional codes, which included 

encoder structure, the log-MAP decoder with non-binary LLR values and a upper bound 

on the theoretical BER performance of these codes at the relay of a TWRC employing 

PNC and at the destination nodes. The theoretical BERs were compared with simulation 

results for both binary and non-binary codes and it was observed that on the AWGN 

channel there was no performance advantage for non-binary codes over binary codes at 

high SNR. However, on impulsive noise channels it could be clearly seen that the non-

binary codes had a lower error floor region, achieving significant coding gains, before 

converging with the binary codes at high SNRs. 

 

Finally, the design of convolutional codes for use in a TWRC with PNC was presented by 

investigating the effect of the parameters dfree and Nௗ೑ೝ೐೐ . Three convolutional codes 

defined in GF(2), GF(4) and GF(16) were investigated by plotting their theoretical BER 

performance by varying Nௗ೑ೝ೐೐  and keeping dfree fixed and also by varying dfree and 

keeping Nௗ೑ೝ೐೐ fixed. It was observed that on the AWGN channel, the performance of 

PNC with binary and non-binary convolutional codes is dominated by dfree, whereas 

increasing Nௗ೑ೝ೐೐  only slightly degraded performance. However, on impulsive noise 

channels it was observed that decreasing the value of Nௗ೑ೝ೐೐ had a more significant effect 

on performance by lowering the error floor, whereas increasing dfree had a negligible 

effect on the error floor, for all levels of impulsiveness. As before, dfree only effected 

performance at high SNRs. From these observations it is clear that choosing 

convolutional codes with a higher value of Nௗ೑ೝ೐೐  will results in a higher undesirable 

error floor and minimizing Nௗ೑ೝ೐೐ is the most important design criterion when designing 

convolutional codes for use in a PNC system. 
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6.1 Introduction 

 

In the previous chapter, the performance and design of non-binary convolutional codes 

for use with a TWRC employing PNC were investigated and it was observed that non-

binary codes exhibit lower error floors than binary codes on impulsive noise channels. 

Following on from these promising results, this chapter will investigate PNC combined 

with non-binary turbo codes with the aim of achieving much greater performances on 

impusive noise channels. There is very little research on non-binary turbo codes in the 

literature and apparently no research on applications of non-binary turbo codes. 

Therefore, this chapter presents very original and interesting results that show for the 

first time how non-binary turbo codes behave at the relay of a TWRC with PNC and also 

how their performance is affected by impulsive noise. The non-binary turbo encoder will 

be introduced and modifications to the log-MAP decoding algorithm from chapter 5 will 

be explained in order to realise the non-binary turbo decoder. A detailed worked 

example of the non-binary turbo decoder is presented showing how the received symbols 

at the relay are decoded after PNC demapping. Simulation results of the performance of 

binary and non-binary turbo codes at the relay on AWGN and impulsive noise channels. 

Finally, theoretical upper bounds on the BER performance of non-binary turbo codes 

defined in GF(4) and GF(16) are derived to predict the error floor of these codes at the 

relay on AWGN and impulsive noise channels and are compared with the error floor 

upper bound of binary turbo codes.  
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6.2 Non-binary Turbo Encoder 

A non-binary turbo encoder is almost identical to a binary turbo encoder, with the 

difference that it comprises two non-binary recursive systematic convolutional (RSC) 

codes in parallel separated by an interleaver. The encoder of a non-binary turbo encoder 

is shown in Figure 6.1. 

 

Figure 6.1 Encoder structure of non-binary turbo code. 

The message symbols input ݀ and the encoder output ܥ, ܲଵ, ଶܲ are now defined over 

finite fields, ܨܩሺݍሻ. As before, this arrangement results in a rate 1/3 turbo code, but 

puncturing can be applied to P1 and P2 as explained in chapter 4. In this chapter, the 

convolutional codes used are defined in GF(4) and GF(16) and have feedforward and 

feedback coefficients of 2/1 and 74/6 respectively. The 2/1 RSC code has 4 states 

and the 74/6  RSC code has 16 states. 

 

6.3 Non-binary Turbo Decoder 

In Fig 6.2, the soft values entering the turbo decoder are LLRs for the non-binary 

symbols of the message and parity-check symbols of the transmitted codeword. As 

mentioned in chapter 5, there are q – 1 LLR values corresponding to the reliability of a 
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received symbol corresponding to 0,1, ,ߚ ,ଶߚ … ,  ௤ିଶ compared to the zero symbol. Inߚ

non-binary turbo decoders, we express the output LLR in a multi-dimensional way: 

ሻݕ|ሺ௭ሻሺܿ௄ܮ ൌ ln ቆ
ܲሺܿ௄ ൌ ሻݕ|ݖ

ܲሺܿ௄ ൌ ሻݕ|0
ቇ																																		ሺ6.1ሻ 

 

 

Figure 6.2 Decoder structure of non-binary turbo decoder. 

 

where ݖ ൌ  :ሻ. Thus, for GF(4), (6.1) comprises the following LLRsݍሺܨܩ

ە
ۖ
ۖ
ۖ
۔

ۖ
ۖ
ۖ
ሻݕ|ሺ଴ሻሺܿ௄ܮۓ ൌ ln ቆ

ܲሺܿ௄ ൌ ሻݕ|0
ܲሺܿ௄ ൌ ሻݕ|0

ቇ ൌ 0

ሻݕ|ሺଵሻሺܿ௄ܮ ൌ ln ቆ
ܲሺܿ௄ ൌ ሻݕ|1

ܲሺܿ௄ ൌ ሻݕ|0
ቇ

ሻݕ|ሺఉሻሺܿ௄ܮ ൌ ln ቆ
ܲሺܿ௄ ൌ ሻݕ|ߚ
ܲሺܿ௄ ൌ ሻݕ|0

ቇ

ሺఉܮ
మሻሺܿ௄|ݕሻ ൌ ln ቆ

ܲሺܿ௄ ൌ ሻݕ|ଶߚ

ܲሺܿ௄ ൌ ሻݕ|0
ቇ
ۙ
ۖ
ۖ
ۖ
ۘ

ۖ
ۖ
ۖ
ۗ

.																																				ሺ6.2ሻ 
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6.4 Non-binary Turbo Codes on PNC 

 

Figure 6.3 System model of non-binary turbo codes on PNC over impulsive channel. 

 

The system model of the non-binary turbo code combined with PNC is shown in Figure 

6.3 and we are focused on the performance of non-binary turbo code at the relay. 

Let	݉஺,݉஻ ∈ ሾ0,1, ,	ߚ ,ଶሿ denote the information from both source nodes and ஺ܿߚ ܿ஻ ∈

ሾ0,1, ,	ߚ ଶሿߚ  denote their codewords respectively. At the relay, the incoming QPSK 

symbols are added at the relay and result in a nine-point constellation diagram. As with 

the binary turbo decoder in chapter 4, to decode the added signal at the relay, we are 

using max-log-MAP decoders for the component decoders. Thus, the trace metrics ܣ,  ܤ

and branch metric ߛ can be expressed as: 

 

௄ܣ	
	ሺݏሻ ൌ max

௦́
ሼ	ܣ௄ିଵ

	ሺ́ݏሻ ൅ ,ݏሺ́	௄ߛ ,ሻሽݏ 																																	ሺ6.3ሻ 

௄ܤ	
	ሺ́ݏሻ ൌ max

௦
ሼ	ܤ௄

	ሺݏሻ ൅ ,ݏ௄ሺ́ߛ ,ሻሽݏ 																																	ሺ6.4ሻ 
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,ݏሺ́	௄ߛ ሻݏ ൌ ௔ܮ
ሺ௭ሻሺ݇ሻ ൅ max

௫∈௑೔
ቊെ

௄ݕ‖ െ ଶ‖ݔ

ଶߪ2
	ቋ																																ሺ6.5ሻ 

 

A detailed worked example of one complete decoding iteration is now presented to 

explain the decoding process of non-binary turbo codes. The message length is set to 10 

and the interleaver mapping is defined as: 

 

10 4 5 9 3 7 8 6 1 2

  

The messages from node 1 and node 3 are: 

m஺ ൌ 

࢑ 0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ

ଶ 1 1ߚ  ଶߚ ߚ ߚ ଶߚ ଶߚ ଶߚ ଶߚ

 

and 

m஻ ൌ 

࢑ 0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ

0 ߚ ߚ  ߚ ߚ ଶߚ ߚ ଶߚ ଶߚ 1

  

At the relay, the 30-symbol received vector, corresponding to the sum of the transmitted 

QPSK symbols plus noise, is split into three 10-symbol vectors corresponding to the summed 

message y1 , parity-check symbols from encoder 1 y2 and parity-check symbols from decoder 

2 y3. 

yଵ ൌ 
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࢑ 0 1 2 3 4 5 6 7 8 9 

  ‐0.21 ‐ 1.7j 0.56+ 

0.5j 
0.2 + 

1.86j 
0.27 ‐ 

1.74j 
2.8 – 

2.9j  

0.3 + 

0.18j 
‐2.75 ‐ 

1.7j 
‐2.57 + 

0.4j 
‐2.57 + 

1.2j 
3.1 + 

1.62j 

 

yଶ ൌ 

࢑ 0 1 2 3 4 5 6 7 8 9 

  ‐2.6+ 0.39j ‐2.6 + 1.1j 3.1 + 1.6j ‐0.2 ‐ 1.7j 0.57 + 0.2j 0.18 + 1.8j 0.27 ‐ 1.74j 1.9 + 0.66j 0.3 + 0.18j ‐2.76 ‐ 1.7j

  	

yଷ ൌ 

࢑ 0 1 2 3 4 5 6 7 8 9 

  1.9+ 0.67j 0.3 + 

0.19j 
‐2.75 ‐ 

1.7j 
‐2.56 + 

0.4j 
‐2.57 + 

1.1j 
3.1 + 

1.6j 
0.2 + 

1.86j 
0.57 + 

0.2j 
0.2 + 

1.86j 
0.27 ‐ 

1.75j 

 

  

The LLR values corresponding to the summed message ݉ோ, denoted by L y1 after PNC 

demapping are : 

L௬ଵ ൌ 

࢑
ሺ௭ሻൗܮ  0 1 2 3 4 5 6 7 8 9 

0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1  3.4 3.4 3.4 3.4 ‐6.7 3.4 3.4 ‐3.4 ‐3.4 ‐3.4 

 ࢼ ‐3.4 3.4 ‐3.4 3.4 6.7 ‐3.4 3.4 ‐3.4 ‐3.4 3.4 

 ૛ࢼ 0.0  6.7  0.0 6.7 0.0 0.0 6.7 ‐6.7 ‐6.7  0.0 

 

In this example, noise has caused the fourth symbol of y1 to introduce an error and a hard 

decision of 	ܮ௬ଵ generates the summed codeword: 
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cோ ൌ 

࢑ 0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ

ଶߚ 1  1 1 ߚ 1 1 0 0 ߚ

 

  

The a priori LLRs that are fed into decoder 1 are initialised to zero, so by applying (6.5), 

we can calculate ߛ: 

ߛ ൌ 

࢑
ሺ࢙, ࢙′ሻൗ  0 1 2 3 4 5 6 7 8 9 

૙ → ૙ ‐6.7 ‐6.7 ‐3.4 ‐6.7 ‐11.7 ‐3.4 ‐10.1 ‐3.4 ‐6.7 ‐10.1

૙ → ૚ 0.0 ‐6.7 ‐3.4 ‐6.7 ‐15.1 ‐3.4 ‐10.1 ‐3.4 ‐6.7 ‐10.1

૙ → 10.1‐ ࢼ ‐10.1 ‐13.4 ‐10.1 ‐5.0 ‐13.4 ‐6.7 ‐6.7 ‐3.4 0.0

૙ → ૛ ‐10.1ࢼ ‐3.4 ‐6.7 ‐3.4 ‐15.1 ‐6.7 0.0 ‐13.4 ‐10.1 ‐6.7

૚ → ૙ ‐10.1 ‐10.1 ‐6.7 ‐10.1 ‐15.1 ‐6.7 ‐6.7 ‐6.7 ‐3.4 ‐6.7

૚ → ૚ ‐3.4 ‐10.1 ‐6.7 ‐10.1 ‐18.5 ‐6.7 ‐6.7 ‐6.7 ‐3.4 ‐6.7

૚ → 10.1‐ 6.7‐ 6.7‐ ࢼ ‐6.7 ‐1.7 ‐10.1 ‐10.1 ‐3.4 ‐6.7 ‐3.4

૚ → ૛ ‐6.7 0.0 ‐3.4 0.0ࢼ ‐11.7 ‐3.4 ‐3.4 ‐10.1 ‐13.4 ‐10.1

ࢼ → ૙ ‐3.4 ‐10.1 ‐6.7 ‐10.1 ‐8.4 ‐6.7 ‐13.4 0.0 ‐3.4 ‐6.7

ࢼ → ૚ ‐3.4 ‐3.4 0.0 ‐3.4 ‐18.5 0.0 ‐6.7 ‐6.7 ‐10.1 ‐13.4

ࢼ → 13.4‐ ࢼ ‐6.7 ‐10.1 ‐6.7 ‐8.4 ‐10.1 ‐3.4 ‐10.1 ‐6.7 ‐3.4

ࢼ → ૛ ‐6.7 ‐6.7 ‐10.1ࢼ ‐6.7 ‐11.7 ‐10.1 ‐3.4 ‐10.1 ‐6.7 ‐3.4

૛ࢼ → ૙ ‐6.7 ‐13.4 ‐10.1 ‐13.4 ‐11.7 ‐10.1 ‐10.1 ‐3.4 0.0 ‐3.4

૛ࢼ → ૚ ‐6.7 ‐6.7 ‐3.4 ‐6.7 ‐21.8 ‐3.4 ‐3.4 ‐10.1 ‐6.7 ‐10.1

૛ࢼ → 10.1‐ ࢼ ‐3.4 ‐6.7 ‐3.4 ‐5.0 ‐6.7 ‐6.7 ‐6.7 ‐10.1 ‐6.7
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૛ࢼ → ૛ ‐3.4 ‐3.4 ‐6.7 ‐3.4ࢼ ‐8.4 ‐6.7 ‐6.7 ‐6.7 ‐10.1 ‐6.7

 

The two trace metrics ܣ and ܤ are then calculated using (6.3) and (6.4): 

ܣ ൌ 

࢑
ൗݏ́  0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ 10

0 0  ‐6.7 ‐10.1 ‐10.1 ‐3.4 ‐15.1 ‐11.7 ‐11.7 ‐15.1 ‐18.5 ‐18.5

1 െ∞  0.0 ‐10.1 ‐10.1 ‐3.4 ‐15.1 ‐11.7 ‐11.7 ‐15.1 ‐18.5 ‐18.5

 ∞െ ࢼ ‐10.1 0.0 ‐6.7 ‐6.7 ‐8.4 ‐8.4 ‐11.7 ‐11.7 ‐15.1 ‐18.5

 ∞૛ െࢼ ‐10.1 ‐6.7 0.0 ‐10.1 ‐5.0 ‐8.4 ‐11.7 ‐15.1 ‐15.1 ‐18.5

ܤ ൌ 

࢑
ൗݏ́  0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ 10

0 ‐18.5 ‐28.5 ‐21.8 ‐21.8 ‐15.1 ‐13.4 ‐10.1 ‐10.1 ‐6.7 ‐10.1 0 

1 ‐28.5 ‐18.5 ‐25.2 ‐18.5 ‐18.5 ‐16.8 ‐10.1 ‐10.1 ‐10.1 ‐6.7 െ∞ 

21.8‐ 18.5‐ 28.5‐ 25.2‐ ࢼ ‐18.5 ‐10.1 ‐13.4 ‐6.7 ‐6.7 ‐3.4 െ∞ 

૛ ‐28.5 ‐25.2 ‐25.2 ‐18.5ࢼ ‐21.8 ‐16.8 ‐10.1 ‐10.1 ‐6.7 ‐6.7 െ∞ 

 

The calculation of the decoder output LLRs can then be determined using: 

 

ሻݕ|	ݔሺ௭ሻሺܮ ൌ max
௦́ି௦∈ௌభ

	ሼ	ܣ௄ିଵሺ́ݏሻ ൅ ,ݏ௄ሺ́ߛ ሻݏ ൅ ሻሽݏ௄ሺܤ	 	െ max
௦́ି௦∈ௌబ

	ሼ	ܣ௄ିଵሺ́ݏሻ ൅ ,ݏ௄ሺ́ߛ ሻݏ ൅ ሻሽݏ௄ሺܤ	 . ሺ6.6ሻ 

 

Thus the output LLRs ܮሺ௭ሻሺݔ	ݕ|ሻ of the first decoder are: 

ଵܮ
ሺ௭ሻሺݔ	ݕ|ሻ ൌ 
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࢑
ሺ௭ሻൗܮ  0 1 2 3 4 5 6 7 8 9 

0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1  16.8 3.4 10.1 16.7 ‐10.1 6.7 10.1 ‐6.7 ‐6.7 3.4 

 ࢼ ‐3.4 3.4 ‐3.4 10.1 6.7 3.4 6.7 ‐3.4 ‐3.4 10.1 

 ૛ࢼ 0.0  16.8  0.0  13.4 0.0 3.4 6.7 ‐6.7  ‐6.7  6.7

 

ଶߚ 1  1 1 ߚ 1 1 0 0 ߚ

 

We observe that after making a hard decision on ܮଵ
ሺ௭ሻሺݕ|ݔሻ, there is still and error in the 

fourth symbol. The extrisic information can be obtained by : 

௘ܮ ൌ ଵܮ
ሺ௭ሻሺݔ	ݕ|ሻ െ ௔ଶܮ െ  ሺ6.7ሻ																																																				ௗ,ܮ

where ܮ௔ଶ  is the a priori LLRs from decoder 2 that are initially set to zero in the first. This 

results in: 

 

௘ܮ ൌ 

࢑
ሻݖሺܮ
ൗ  0 1 2 3 4 5 6 7 8 9 

0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1  13.4 0.0 6.7 3.4 ‐3.4 3.4 6.7 ‐3.4 ‐3.4 6.7 

 ࢼ 0.0 0.0 0.0 6.7 0.0 6.7 3.4 0.0 0.0 6.7 

 ૛ࢼ 0.0  10.1  0.0  6.7  0.0  3.4  0.0  0.0  0.0  6.7 

 

The interleaved extrisic information of first decoder becomes the priori information for 

the second decoder, thus ܮ௔ଶ  is determined as: 

௔ଶܮ ൌ 
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࢑
ሺ௭ሻൗܮ 0 1 2 3 4 5 6 7 8 9 

0  0 0 0 0 0 0 0 0 0 0 

1  ‐3.4 6.7 ‐3.4 0 6.7 ‐3.4 3.4 6.7 3.4 13.4 

 ࢼ 0 6.7 0 0 0 0 6.7 3.4 6.7 0 

 ૛ࢼ 0  6.7  0  10.1 0  0  3.4 0  6.7 0 

 

Now, the ߛ of the second decoder is obtained from the interleaved y1 and the original 

received y3: 

 

ߛ ൌ 

࢑
ሺ࢙, ࢙′ሻൗ  k 0 1 2 3 4 5 6 7 8 9 

૙ → ૙  ‐5.3 ‐2.7 ‐8.0 ‐2.7 ‐10.7 ‐5.3 ‐5.3 ‐8.0 ‐8.0 ‐5.3 

૙ → ૚  ‐5.3 ‐2.7 ‐24.0 ‐21.3 16.0 8.0 ‐13.3 ‐2.7 8.0 ‐8.0 

૙ → 16.0‐ 10.7‐ 5.3  ࢼ ‐8.0 8.0 0.0 ‐16.0 0.0 ‐13.3 ‐5.3 

૙ → ૛  ‐2.7 0.0 ‐16.0ࢼ ‐18.7 8.0 ‐5.3 ‐8.0 ‐8.0 ‐8.0 13.3 

૚ → ૙  ‐2.7 ‐5.3 ‐5.3 0.0 ‐8.0 ‐8.0 ‐2.7 ‐5.3 ‐5.3 ‐8.0 

૚ → ૚  ‐2.7 ‐5.3 0.0 ‐18.7 18.7 5.3 ‐10.7 0.0 10.7 ‐10.7

૚ → 10.7‐ 0.0 8.0‐ 2.7  ࢼ 5.3 2.7 ‐18.7 ‐2.7 0.0 ‐2.7 

૚ → ૛  0.0 ‐2.7 ‐18.7ࢼ ‐21.3 0.0 ‐2.7 ‐10.7 ‐10.7 ‐10.7 16.0 

ࢼ → ૙  ‐8.0 ‐5.3 ‐5.3 ‐5.3 ‐8.0 ‐2.7 ‐2.7 ‐5.3 ‐5.3 ‐8.0 

ࢼ → ૚  ‐2.7 0.0 ‐26.7 ‐18.7 13.3 5.3 0.0 ‐5.3 5.3 ‐5.3 

ࢼ → 5.3‐ 0.0 8.0‐ 8.0  ࢼ 5.3 ‐2.7 ‐18.7 ‐2.7 ‐16.0 ‐2.7 

ࢼ → ૛  0.0 ‐8.0 ‐13.3ࢼ ‐21.3 10.7 ‐2.7 0.0 ‐5.3 ‐5.3 0.0 

૛ࢼ → ૙  ‐5.3 ‐8.0 ‐2.7 ‐2.7 ‐5.3 ‐5.3 0.0 ‐2.7 ‐2.7 ‐10.7
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૛ࢼ → ૚  0.0 ‐2.7 ‐24.0 0.0 16.0 2.7 ‐13.3 ‐2.7 8.0 ‐8.0 

૛ࢼ → 21.3‐ 5.3‐ 5.3  ࢼ ‐8.0 2.7 0.0 ‐21.3 ‐5.3 ‐18.7 0.0 

૛ࢼ → ૛  ‐8.0 0.0 ‐16.0ࢼ ‐24.0 8.0 0.0 ‐8.0 ‐8.0 ‐8.0 13.3 

 

As before the two trace metrics ܣ and ܤ are: 

 

ܣ ൌ 

࢑
ൗݏ́  0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ 10 

0 0 ‐5.33 ‐2.67 ‐10.7 ‐10.7 13.33 13.33 13.33 18.67 26.67 37.33 

1 െ∞ ‐5.33 ‐2.67 ‐8 ‐5.33 5.333 21.33 18.67 16 26.67 37.33 

െ∞ 5.333 0 ‐5.33 ‐10.7 ࢼ 16 13.33 10.67 18.67 26.67 42.67 

૛ െ∞ ‐2.67 5.333 2.667 0 2.667ࢼ 21.33 21.33 18.67 24 40 

 

ܤ ൌ 

࢑
ൗݏ́  0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ 10 

0 37.33 26.67 24 32 34.67 16 13.33 18.67 5.333 ‐5.33 ‐1.39

1 26.67 24 29.33 34.67 34.67 18.67 8 8 5.333 ‐10.7 ‐1.39

29.33 29.33 24 32 34.67 ࢼ 21.33 10.67 13.33 18.67 ‐2.67 ‐1.39

૛ 32 24 32 34.67 37.33ࢼ 13.33 16 16 10.67 13.33 ‐1.39

 

Notice that at k = 10, the metric B is now initialised to lnሺ0.25ሻ ൌ െ1.39 since the 

second encoder is not terminated, so the codeword is equally likely to end in any one of 

the four states. By following the same decoding procedure as we applied to the first 

decoder, we obtain the output LLRs of second decoder, ܮଶ
ሺ௭ሻሺݔ	ݕ|ሻ: 



130 

 

 

 

ଶܮ
ሺ௭ሻሺݔ	ݕ|ሻ ൌ 

࢑
ሻݖሺܮ
ൗ  0 1 2 3 4 5 6 7 8 9 

0  0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1  16.0 10.6 16.0 16.0 ‐21.3 26.6 26.6 ‐21.3 ‐26.6 ‐5.3 

 ࢼ 5.3 5.3 0.0 ‐5.3 ‐16.0 0.0 ‐5.3 ‐21.3 ‐16.0 16.0 

 ૛ࢼ 10.6 16.0  0.0  5.3  ‐21.3 5.3  0.0  ‐26.6 ‐21.3  ‐10.6 

 

Notice that all the LLR values of the non-zero elements in the fourth symbol are now 

negative. This means that we will obtain a zero symbol when applying a hard decision. 

After applying a hard decision on all of ܮଶ
ሺ௭ሻሺݔ	ݕ|ሻ, we obtain  

:  

࢑ 0 1 2 ૜ ૝ ૞ ૟ ૠ ૡ ૢ

ଶߚ 1  1 1 0 1 1 0 0 ߚ

 

which is equal to the sum of ݉ଵ and ݉ଷ and shows that the turbo decoder has corrected 

the error.  
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6.5 Performance of PNC combined with Non-Binary Turbo 

Codes 

Simulation results of PNC combined with non-binary turbo codes are now presented at 

the relay of a TWRC on AWGN channels and impulsive noise channels. 

 

Figure 6.4 Comparison of rate 
ଵ

ଶ
 ሺ7,5ሻ଼ binary turbo code and rate 

ଵ

ଶ
 non-binary turbo 

code with ߚ	ߚଶ/1 RSC encoders on AWGN channel. 

 

In Figure 6.4, a comparison of rate 
ଵ

ଶ
 ሺ7,5ሻ଼ binary turbo code and rate 

ଵ

ଶ
 non-binary turbo 

code with ߚ	ߚଶ/1 RSC convolutional encoders on AWGN channel is presented to show 

the performance of both coding schemes when no relay is present and act as a reference. 

In the figure, it can be seen that, although both codes converge at around 4dB, the non-

binary turbo code has a significant advantage at the lower SNR, with approximately 1dB 

coding gain at BER of	10ିସ.  

 

Figure 6.5 shows that the advantage of non-binary turbo code remains when evaluated at 

the relay of a TWRC with PNC. Both codes converge at an SNR of 8dB, but the non-
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binary turbo code maintains the excellent performances at low SNR, with a coding gain 

of approximately 1.5dB at a BER of	10ିସ. 

 

Figure 6.5 Comparison of rate 
ଵ

ଶ
 ሺ7,5ሻ଼ binary turbo code and rate 

ଵ

ଶ
 non-binary turbo 

code with ߚ	ߚଶ/1 RSC encoders on AWGN channel decoding at the relay on PNC. 

 

 

Figure 6.6 Comparison of PNC combined with rate 
ଵ

ଶ
 ሺ7,5ሻ଼ binary turbo code and rate 

ଵ

ଶ
 

non-binary turbo code with ߚ	ߚଶ/1 RSC encoders on different impulsive noise channels. 
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The comparison of PNC combined with non-binary turbo code and binary turbo codes on 

impulsive noise channels is shown in Figure 6.6. The channel is slightly impulsive when 

ߙ ൌ 0.01 and the performance of both codes are seriously degraded, but the non-binary 

turbo code performs approximately 2dB better than binary turbo code at a BER of 10ିସ, 

and this difference is even larger when the channel is more impulsive at ߙ ൌ 0.1. In this 

situation both codes exhibit an error floor at a BER of 10ିସ at an SNR of 6dB and 9dB 

respectively. However, the non-binary turbo code still has a 3dB better performance at 

BER of 10ିସ compared to the binary turbo code. 

  

 

6.6 Theoretical BER Analysis of PNC combined with Non-

Binary Turbo Codes on Impulsive Noise Channels 

 

In this section, upper bounds on the BER performance of turbo codes will be derived to 

predict the error floor and also validate the simulation results from the previous section. 

To derive expressions of the upper bound, we have to recall the theoretical bound for 

PNC combined with binary turbo codes from (4.42) in chapter 4, but multiply it by the 

term 
ଶೖషభ

ଶೖିଵ
 to converts symbol errors to bit errors: 

ܲீ ெெ ൑
2௞ିଵ

2௞ െ 1
቎෍

݆ ௝݊ሺ1 െ ሻߙ
ܭ

ܳቌඨ
2݀௠௜௡ܴܧ௕

ீܰ
ቍ

ଷ

௝ୀଶ

൅෍
݆ߙ ௝݊

ܭ
ܳ ቌඨ

2݀௠௜௡ܴܧ௕
ூܰ

ቍ

ଷ

௝ୀଶ

		቏	ሺ6.10ሻ 

where	݇ ൌ logଶ   .and q is the size of the finite field ݍ

The upper bound comparison of non-binary turbo code and binary turbo code are shown 

in Figure 6.7 and Figure 6.8.  
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Figure 6.7 Comparison of the upper bounds on BER of PNC combined with non-binary 

and binary turbo codes at the relay on impulsive noise channels with	ߙ ൌ 0.01. 

 

In Figure 6.7 it can be clearly seen that the upper bounds of both codes are converging 

with the simulation results at the high SNR region, which verifies our results. However, 

the non-binary turbo code consistently outperforms the binary turbo code, particularly at 

low SNRs. 

 

Figure 6.8 shows the upper bounds on BER of PNC combined with both codes at the 

relay on impulsive noise channels when	ߙ ൌ 0.01	and	0.1. From the comparison it can 

be concluded that the non-binary turbo code outperforms the binary turbo code at all 

SNRs and non-binary turbo codes have a lower error floor than the binary turbo codes at 

all times. 
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Figure 6.8 Lower bound on BER of PNC combined with non-binary and binary turbo 

codes at the relay on impulsive noise channels when	ߙ ൌ 0.01	and	0.1. 

 

We might assume that the codes defined in larger finite fields with more states should 

achieve better performance than the codes defined in the small finite fields, due to the 

increase in minimum Hamming distance. However, we have observed that the 

performance of non-binary turbo codes peaks when the number of states is around 8, but 

for higher number of states the performance of the codes degrades. A theoretical upper 

bound comparison on the BER of non-binary turbo codes defined in GF(2), GF(4) and 

GF(16) highlights the difference in performance, as shown in Figure 6.9 and Figure 6.10. 

The free distances of turbo codes defined in different GF(q) are giving in table 6.1. 

 

Field GF(2) GF(4) GF(16) 

݀௙௥௘௘ 5 5 3 

Table 6.1 The free distance of turbo codes defined in different GF(q) 
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Figure 6.9 Lower bound of GF(4) and GF(16) non-binary turbo codes and binary turbo 

code decoding at the relay on PNC under impulsive channel when	ߙ ൌ 0.01. 

 

Figure 6.10 Lower bound of GF(4) and GF(16) non-binary turbo codes and binary turbo 

code decoding at the relay on PNC under impulsive channel when	ߙ ൌ 0.1. 
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6.7 Conclusions 

In this chapter, an analysis of non-binary turbo codes on a TWRC employing PNC with 

additive impulsive noise channels has been investigated. The decoding procedures of 

non-binary turbo decoders, including a complete worked example of one single turbo 

decoder iteration, are detailed. We have shown that the performance of turbo codes is 

severely affected on the GMM noise channel when the mixture is high, but that non-

binary turbo codes achieve significant improvements in performance at low SNR 

compared with binary turbo codes. Finally, an upper bound on BER to determine the 

error floor in the presence of impulsive noise was derived for both binary and non-binary 

turbo codes to validate our simulation results and was observed to be consistently lower 

for non-binary turbo codes for a broad range of SNRs. We have shown that the 

performance of non-binary turbo codes does not keep increasing as finite field size 

increases, with higher error floors observed for a non-binary turbo code defined in 

GF(16).  
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7.1 Conclusions 

This thesis has focused on the performance of PNC combined with non-binary coding 

schemes on impulsive noise channels. After a comprehensive literature survey, it was 

found that this is a research topic that has not been considered by the academic 

community despite evidence that non-binary codes can outperform binary codes on 

harsher channels. Furthermore, wireless networks can be deployed in urban environments 

where man-made interference can cause impulses to be added to the transmitted signals. 

Hence, if PNC is employed at the relays of a wireless network in this environment, it is 

very important to have a good understanding of how the performance will be affected and 

also find solutions that can mitigate the effects of the channel. This was the major 

motivation for the thesis and interesting and original results have been achieved that show 

the advantages of non-binary codes when combined with PNC on impulsive noise 

channels.  

In chapter 4, the combination of binary turbo codes and trellis BICM-ID with PNC was 

investigated on AWGN and additive impulsive noise channels modelled using the 

Gaussian mixture model. On the AWGN channel, the turbo codes achieved a superior 

performance, but interestingly it was observed that trellis BICM-ID outperformed turbo 

codes when the channel became more impulsive. This was due to the bit interleaver 

increasing the code diversity and also the simplified decoding scheme that prevents errors 

from propagating in each iteration. Therefore, it has been shown that trellis BICM-ID is a 

better choice of coding scheme to be combined with PNC when the channels are 

impulsive, since the performance is better than turbo codes and there is also a reduction in 

complexity. 

In chapter 5, non-binary convolutional codes were combined with PNC on impulsive 

noise channels. This is original work and presented the first results of non-binary 

convolutional codes combined with PNC. To make a fair comparison between binary and 

non-binary convolutional codes, the number of states was kept fixed at 256. On the 

AWGN channel, the convolutional codes defined in GF(2), GF(4) and GF(16) all 

performed the same as expected. However, on impulsive noise channels it was observed 

that the non-binary convolutional code defined in GF(4) outperformed the binary 

convolutional code, but the non-binary convolutional code defined in GF(16) performed 

worse. This is due to the shorter constraint length of the GF(16) code, which results in the 
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minimum length of a path diverging from and converging to the all-zero path being 

shorter. 

In chapter 6, the first results of PNC combined with non-binary turbo codes were 

presented. It was shown that the non-binary turbo codes outperform binary turbo codes at 

low SNRs for both AWGN and impulsive noise channels, but then the performances 

converged at higher SNRs. As the impulsiveness increased, the coding gain at low SNRs 

became more significant. Furthermore, the error floor in the performance due to 

impulsive noise was consistently lower for non-binary turbo codes. However, increasing 

the finite field size did not result in further gains in performance. The non-binary turbo 

code defined in GF(16) performed worse despite having a higher finite field and more 

states. This is most likely due to the higher number of states, since it is known that binary 

turbo code performance peaks when the number of states is around 8. When the number 

of states is higher, the BER performance of the convolutional code has a steeper waterfall 

region, but has a worse BER performance at low SNRs. However, it is the performance at 

low SNRs that determines the performance of the turbo code. This argument could also 

be applied to non-binary turbo codes, but requires further investigation. 

 

7.2 Further work 

As we have presented the application of channel coding schemes to PNC over impulsive 

channels, it opens new and challenging aims for the future. In the binary coding area, we 

have shown that the iterative decoder can fail to correct the errors caused by impulsive 

noise, since the LLRs of the error bits are too large making the decoder believe that 

certain bits are very reliable. Thus, a simpler iterative decoder for impulsive channel is 

necessary, such as that used in trellis BICM-ID, since it is important to keep the 

complexity at the relay as low as possible. Second, the best modulation schemes for 

channel coded PNC need to be ensured for different channel coding schemes. In this 

thesis we are using QPSK modulation scheme for all codes, resulting in a 9-QAM 

constellation at the relay. However, higher level of modulation schemes could increase 

the transmission capacity but at a cost of higher complexity at the relay, e.g. 8-PSK 

modulated signals at node results in 17-QAM at the relay. This may increase the 

difficulty of demapping the signals as well as the theoretical analysis of the system. Thus, 
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suitable modulation schemes for PNC in realistic situations need to be considered. Third, 

the design of non-binary codes defined in larger GF(q) is an interesting topic. We have 

shown that the non-binary codes have a significant improvement of BER at lower SNR, 

especially for impulsive channels. Furthermore, the codes defined in larger GF(q) have 

more capability to correct errors since there are more bits contained in a single symbol. 

Therefore, finding the optimal codes defined in larger GF(q) is critical to optimise the 

performance of PNC on more realistic channels. 
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Appendix 

1. In appendix 1 its showing the derivation of simplifies the LLR of turbo decoder ܮሺݕ|݉ோ
ଵሻ 

and ܮሺݕ|݉ோ
ଶሻ from (4.16) to (4.17). 

From the resulting nine-point constellation diagram at the relay, each received symbol y is 

demapped to a pair of LLR values, ܮሺݕ|݉ோ
ଵሻ	and ܮሺݕ|݉ோ

ଶሻ,	which are a measure of the 

reliability of the two XORed transmitted bits, ݉ோ
ଵ  and ݉ோ

ଶ . 

From (4.14) and (4.15) we have 

	

				ܲሺݕห݉ோ
ଵ ൌ 0ሻ ൌ ܲሺݕ|݉ோ

	 ൌ 00ሻ ൅ ܲሺݕ|݉ோ
	 ൌ 01ሻ

ൌ ඨ
1

ଶߪߨ2
൭݁ି

൫௬ೂିଶா൯
మ

ଶఙమ ൅ ݁ି
൫௬ೂାଶா൯

మ

ଶఙమ ൱ቆ݁ି
ሺ௬಺ିଶாሻమ

ଶఙమ ൅ ݁ି
ሺ௬಺ାଶாሻమ

ଶఙమ ൅ 2݁ି
ሺ௬಺ሻమ

ଶఙమ ቇ								ሺ4.14ሻ 

ܲሺݕ|݉ோ
ଵ ൌ 1ሻ ൌ ܲሺݕ|݉ோ
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ൌ 2ඨ
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ଶߪߨ2
݁ି

൫௬ೂ൯
మ

ଶఙమ ቆ݁ି
ሺ௬಺ିଶாሻమ
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ሺ௬಺ାଶாሻమ

ଶఙమ ൅ 2݁ି
ሺ௬಺ሻమ

ଶఙమ ቇ															ሺ4.15ሻ 

 

Therefore, by submitting (4.14) and (4.15) into (4.13) the reliability of y can be rewritten 

as: 

ோ݉|ݕሺܮ
ଵሻ ൌ ln ቆ

ܲሺݕ|݉ோ
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ൌ ln
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2. In appendix 2 we are giving the full extension expression of the LLR exchanged between 

two turbo decoders with the a priori LLR. 

Extension of (4.21) and (4.22) 

The full expression of (4.21) is: 
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And the full expression of (4.22) is: 
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