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Abstract 

Inherited optic neuropathies represent an important cause of chronic visual morbidity among 

children and young adults. This group of disorders is genetically heterogeneous and it can be 

caused by pathogenic mutations within both the mitochondrial and nuclear genomes. The 

unifying pathophysiological theme is mitochondrial dysfunction, but the specific disease 

mechanisms that ultimately precipitate neuronal loss, particularly retinal ganglion cell (RGC) 

degeneration, still remain unclear. The work presented in this thesis provides further insight 

into the molecular and genetic basis of two classical forms of inherited optic neuropathy, 

namely autosomal dominant optic atrophy (DOA) and Wolfram syndrome. 

Dominant optic atrophy (DOA) secondary to pathogenic OPA1 mutations is the most 

common inherited optic neuropathy diagnosed in clinical practice. The pathology is 

characterised by the preferential loss of RGCs within the inner retina and optic nerve 

degeneration.  Although most OPA1 mutation carriers will only develop isolated optic 

atrophy, a subgroup of patients, referred to as DOA plus (DOA+), will develop more severe 

neuromuscular complications in addition to visual failure. The complexity of these clinical 

presentations may be due in part, to the various roles of OPA1 in the mitochondrial 

compartment such as regulating mitochondrial fusion and cristae structure,sequesterisation of 

pro-apoptotic molecules, mitochondrial DNA (mtDNA) maintenance,proper functioning of 

the oxidative phosphorylation system and calcium homoeostasis.  

To investigate the disease mechanisms that could explain the varying clinical 

manifestations and severity of OPA1 mutations, I made use of a cohort of eight fibroblast cell 

lines established from four patients with pure optic atrophy (OA) and four patients with 

DOA+ phenotypes. OPA1 expression and mitochondrial fragmentation patterns were 

compared between these two groups. There was no significant disruption in OPA1 

transcription, mitochondrial OXPHOS and mtDNA maintenance. DOA primary fibroblasts 

showed increased fragmentation of the mitochondrial network and cell lines established from 

patients with DOA+ phenotypes were found to be particularly susceptible to fragmentation 

under basal conditions, which had not been reported previously. 
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To further explore the findings obtained in OPA1 mutant fibroblasts, I made use of a 

cohort of nine myoblast cell lines that had previously been established from patient muscle 

biopsies. Interestingly, a similar mitochondrial fragmentation pattern was observed in OPA1 

mutant primary myotubes and this was associated with decreased mitochondrial DNA 

molecule number in DOA+ myotubes.  

I also investigated two sisters from a consanguineous Arab Muslim family who 

developed a fatal form of juvenile-encephalopathy complicated by optic atrophy and 

cardiomyopathy. Exome sequencing identified a putative homozygous OPA1 mutation, which 

was confirmed by both functional studies and in silico modelling.  

Whole-exome analysis was carried out on a cohort of fourteen patients with optic 

atrophy that had previously been found to be OPA1-negative. Pathogenic mutations in the 

Wolframin (WFS1) gene, which is known to cause Wolfram syndrome, were identified in 

3/14 (21%) patients. Based on our results, WFS1 mutations are an important cause of 

inherited optic atrophy and genetic testing should be considered in OPA1-negative patients. 

In conclusion, the body of work presented in my PhD thesis has provided further 

insight into the expanding genotypic and phenotypic spectrum of inherited optic neuropathies, 

which is highly relevant for clinical diagnosis and patient management. 
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1.1 Inherited Optic Neuropathies 

1.1.1 Epidemiology 

Mitochondrial diseases are now recognised as a major cause of chronic morbidity and the 

minimum prevalence has been estimated at 1 in 5,000 in the United Kingdom (Gorman et al., 

2015). Reflecting the ubiquitous nature of mitochondria and their fundamental roles in energy 

production, patients with mitochondrial genetic disorders often manifest a heterogeneous 

combination of tissue and organ involvement, which can lead to significant diagnostic delays. 

Optic nerve involvement is a major manifestation of mitochondrial diseases and it is an 

important cause of significant visual impairment. As a group, these inherited optic 

neuropathies affect approximately 1 in 10,000 individuals in the general population and there 

are currently limited treatment options (Yu-Wai-Man, 2010a; Newman and Biousse, 2004, 

Man et al., 2003). The pathological hallmark is the preferential loss of retinal ganglion cells 

(RGCs) within the inner retina, leading to progressive degeneration of the optic nerve and the 

onset of visual loss (Figure 1-1). Inherited optic neuropathies encompass a number of distinct 

clinical entities, but typically, the visual deterioration is bilateral and symmetrical with the 

development of a dense central or caecocentral scotoma (Yu-Wai-Man, 2009). 
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Figure 1-1 Anatomical structure of the human eye with a cross-section detailing the 

different retinal layers. 

Reproduced from Caspi, 2010. 
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1.1.2 Classification 

Historically, inherited optic neuropathies have been classified either based on their mode of 

inheritance, or on whether the optic atrophy was isolated or part of a more complicated 

syndromic presentation (Newman and Biousse, 2004). Mutations within the mitochondrial 

genome are maternally inherited whereas nuclear genetic defects are inherited either in a 

recessive or a dominant fashion (Table 1-1). However, with greater access to genetic testing 

and more careful phenotyping of affected patients with inherited forms of optic atrophy, these 

categorical distinctions have become more blurred. With the advent of next-generation exome 

and whole genome sequencing, the list of nuclear genes that cause inherited optic atrophy has 

also expanded markedly over the past few years. Three important groups have emerged, 

namely Leber hereditary optic neuropathy (LHON), autosomal dominant optic atrophy 

(DOA), and Wolfram syndrome (Yu-Wai-Man et al., 2011). These specific disorders will be 

described in more detail to highlight some of the key clinical and pathological manifestations, 

as well as the gaps in our current knowledge. 
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Table 1-1 Nuclear mitochondrial/ ER disorders with prominent optic nerve involvement 

          

Inheritance Locus Gene OMIM Phenotype 

Dominant 1p36.2 MFN2 601152 Hereditary motor and sensory neuropathy type 6 (HMSN-6,CMT2A) 

 

3q28-q29 OPA1 165500 Isolated optic atrophy (OA) and syndromal dominant optic atrophy (DOA+) 

 

4p16.1 WFS1 600965 Wolfram syndrome spectrum disorders 

 

16q24.3 SPG7 607259 Hereditary spastic paraplegia type 7 (HSP-7) 

 

18p11.21 AFG3L2 610246 Spinocerebellar ataxia 

 

19q13.2-q13.3 OPA3 165300 Autosomal dominant optic atrophy and early-onset cataracts (ADOAC) 

 

22q13.2 ACO2 614559 Infantile-cerebellar retinal degeneration 

Recessive 1q23.3 NDUFS2 252010 Optic atrophy-dystonia-deafness (Mohr-Tranbjaerg syndrome) 

 

4p16.1 WFS1 222300 Wolfram syndrome 1 

 

4q24 CISD2/WFS2 604928 Optic atrophy,neuropathy, deafness, diabetes mellitus, ulcer bleeding 

 

5q.22.1 SLC25A46 616505 Optic atrophy, peripheral neuropathy 

 

6q21 RTN4IP1 616732 Optic atrophy, seizures, mental retardation +/- ataxia 

 

9q13-q21.1 FXN 229300 Friedreich's ataxia (FRDA) 

 

9q22.31 AUH 250950 Type I-III methylglutaconic aciduria 

 

10p11.23 MTPAP 613672 Optic atrophy, dysarthria,spastic paraparesis, cerebellar ataxia +/-nystagmus 

 

11q14.1-q21 TMEM126A 612989 Optic atrophy +/- auditory neuropathy 

 

12p11.21 DRP1 614388 Optic atrophy, lactic acidemia, hypotonia, microcephaly 

 

12q24.31 C12ORF65 615035 Optic atrophy, peripheral neuropathy,spasticity+/- intellectual disability 

 

19q13.2-q13.3 OPA3 258501 Type III 3-methylglutaconic aciduria (Costeff syndrome) 
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1.2 Leber Hereditary Optic Neuropathy (LHON)  

1.2.1 Epidemiology 

Leber hereditary optic neuropathy (LHON) is a primary mitochondrial DNA (mtDNA) 

disorder that predominantly affects young adults with a peak age of onset in the second and 

third decades of life. The minimum prevalence of LHON has been estimated at about 1 in 

31,000 of the population with a much higher prevalence in men at about 1 in 14,000 (Man et 

al., 2003; Mascialino et al., 2012). 

 

1.2.2 Molecular genetics 

Three point mutations within the mitochondrial genome (m.3460G>A, m.11778G>A and 

m.14484T>C) account for about 90% of cases (Figure 1-2) with the m.11778G>A mutation 

being the most prevalent (60-80%) cause of LHON worldwide. Two peculiarities of this 

mitochondrial optic neuropathy are the marked incomplete penetrance and the male bias for 

visual loss (Johns et al., 1993; Nikoskelainen, 1994). Although there can be wide intra- and 

inter-familial variability, the lifetime risk of visual loss is about 50% for male carriers and 

about 10% for female carriers (Yu-Wai-Man et al., 2011).  

 

 

 

 

 

 

 

 

 



 

7 

    

 

 

 

  

Figure 1-2 Schematic illustrating the three common pathogenic mitochondrial DNA 

mutations found in LHON.  

Schematic illustrating the mitochondrial genome and the location of the three most common 

mtDNA LHON mutations, which all affect critical subunits of complex I. Reproduced from 

DiMauro et al., 2013. 
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1.2.3 Clinical manifestations 

Patients with LHON classically present wth subacute, painless, central visual loss in one eye, 

which is followed 2-4 months later by the fellow eye. Unilateral optic nerve involvement in 

LHON is exceptionally rare and another underlying pathological process should be actively 

excluded in these atypical cases. Bilateral simultaneous onset probably occurs in about 25% 

of patients and it is unusual for LHON carriers to experience visual loss beyond 50 years of 

age. The visual loss in LHON is severe and it usually plateaus over the next six months with 

most patients achieving visual acuities of 6/60 or worse (Figure 1-3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 Acute and chronic stages of LHON 

A and B. Classical fundoscopic appearance in acute LHON with optic disc hyperaemia, 

swelling of the peripapillary retinal nerve fiber layer, prominent vascular tortuosity and fine 

telangiectatic vessels. C and D. Marked pallor of the neuroretinal rim in chronic LHON. 

A B 

C D 
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1.2.4 LHON plus phenotypes 

LHON is monosymptomatic in the majority of patients with pure optic nerve involvement. 

However, a minority of LHON carriers can develop a more severe syndromic phenotype, 

known as LHON plus (LHON+), where the optic atrophy is associated with cardiac 

arrhythmias, peripheral neuropathies, myoclonus, juvenile-onset encephalopathy, ataxia and 

spastic dystonia (Yu-Wai-Man et al. 2011; Gropman et al., 2004; Howel et al., 1991). There is 

also a well-reported association between the three primary mtDNA LHON mutations 

(m.3460G>A, m.11778G>A and m.14484T>C) and a multiple sclerosis-like illness, 

especially among female carriers (Harding’s disease) (Pfeffer et al., 2013a).  

 

1.2.5 Pathophysiology 

The mechanisms that underpin the preferential loss of RGCs in LHON have not yet been fully 

elucidated and the pathological triggers are likely to be multifactorial. The axons of RGCs are 

unmyelinated until they reach the lamina cribosa and to sustain efficient neuronal conduction, 

there is a relatively high concentration of mitochondria in the prelaminar segment. 

Furthermore, the axons with the papillomacular bundle, which subserve the central vision, are 

relatively small and this anatomical characteristic is thought to result in a reduced 

mitochondrial reserve, which would put them at increased risk under pathological conditions 

that impair mitochondrial function (Pan et al., 2012). The two main pathological factors that 

have been put forward is impaired mitochondrial oxidative phosphorylation (OXPHOS) 

precipitating a bioenergetics crisis and the increased chronic release of reactive oxygen 

species (ROS) (Carelli et al., 2004). These are not mutually exlusive and once a threshold is 

reached, which exceeds the cell’s innate compensatory mechanisms, an irreversible cascade of 

events is initiated that precipitate apoptotic cell death. The incomplete penetrance observed in 

LHON reflects this precarious balancing act and the likelihood of a carrier losing vision is 

likely to be influenced by secondary genetic factors, both mitochondrial and nuclear, and 

environmental exposures. There is mounting evidence that smoking significantly increases the 

risk of disease conversion by further exacerbating the underlying mitochondrial bioenergetic 

deficit and unaffected carriers should, therefore, be strongly advised not to smoke (Kirkman et 

al., 2009). An attractive explanation that has been put forward to explain the marked male 

predominance observed in LHON is the neuroprotective influence of oestrogen hormones on 
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RGCs when under conditons of heightened mitochondrial stress (Giordano et al., 2011; 

Pisano et al., 2015) 

 

1.2.6 Other mtDNA mutations causing optic neuropathies  

Optic nerve involvement is also seen with other pathogenic mtDNA mutations, but visual loss 

is frequently a secondary disease manifestation overshadowed by more severe neurological 

deficits. An important category is the mitochondrial encephalomyopathies, which encompass 

several distinct phenotypes such as mitochondrial encephalomyopathy, lactic acidosis, and 

stroke-like episodes (MELAS), myoclonic epilepsy and ragged-red fibers (MERRF), 

maternally inherited Leigh syndrome (MILS), and mitochondrial neurogastrointestinal 

encephalomyopathy (MNGIE) (Figure 1-4). Although variable and not a disease-defining 

feature, the occurrence of optic atrophy is well described in this group of patients (Man et al., 

2002; Sitarz et al., 2012). 
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Figure 1-4 Mitochondrial genome illustrating the marked phenotypic heterogeneity 

observed in patients with primary mitochondrial disease.  

Colour-coded sections: pink – complex I (ND) subunits; light blue – complex III (cyt b) 

subunits; purple – complex IV (CO) subunits; yellow – complex V (A6,A8) subunits; green –  

12S and 16S rRNA; blue – 22 tRNA with corresponding 3-letter amino acid code. Circles: 

blue – mutations that impair protein synthesis; pink – mutations in OXPHOS subunit proteins. 

The number within the circle indicated the location of the pathogenic mutation wthin the 

mitochondrial genome. Reproduced from DiMauro et al., 2013. 

Abbreviations: Cyt b – Cytochome b; FBSN – familial bilateral striatal necrosis; LHON – 

Leber hereditary optic neuropathy; LS – Leigh syndrome; MELAS – mitochondrial 

encephalomyopathy, lactic acidosis, stroke-like episodes; MERRF – myoclonus epilepsy and 

ragged red fibers; MILS – maternally inherited Leigh syndrome; NARP – neuropathy, ataxia 

and retinitis pigmentosa; ND – NADH – dehydrogenase; PEO –  progressive external 

ophthalmoplegia.  
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1.3 Autosomal Dominant Optic Atrophy  

1.3.1 Epidemiology  

DOA is the most common inherited optic neuropathy in the general population and the 

prevalence has been estimated at 1 in 25,000 in the north east of England (Figure 1-5) (Yu-

Wai-Man et al., 2010a; Yu-Wai-Man et al., 2013). An even higher prevalence of 1 in 10,000 

has been reported in the Danish population, which is likely due to a founder event (Thiselton 

et al., 2002). 

 

 

 

 

Figure 1-5 Epidemiological study of DOA in the North East of England.  

Reproduced from Yu-Wai-Man et al., 2014. 
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1.3.2 Molecular genetics 

OPA1 is the primary causative gene accounting for ~ 60% of cases of DOA (Delettre et al., 

2000; Cohn et al., 2007). There are 30 exons spanning over 100 kb of genomic DNA and it 

codes for a 960-amino acid, dynamin-related GTPase protein that localises to the inner 

mitochondrial membrane. Disease penetrance is high with 80-90%, of mutation carriers 

developing optic atrophy and visual failure (Thiselton et al., 2002; Toomes et al., 2001; Cohn 

et al., 2007) Over 200 OPA1 pathogenic mutations have been reported and these cluster in 

two specific regions: the GTPase domain (exons 8-15) and the C-terminus, which is the 

proposed site of the GTPase effector domain (GED) (Figure 1-6). The majority of OPA1 

mutations (~ 50%) lead to premature termination codons (PTCs) as a result of nonsense 

mutations, frameshifts from small insertions or deletions, or splice-site mutations. The 

resulting truncated mRNAs are unstable and they are degraded by nonsense mediated mRNA 

decay (NMD), which are in-built protective cellular mechanisms against mutant proteins with 

possible dominant negative or gain-of-function effects. The role of haploinsufficiency in 

DOA is further substantiated by reports of patients with large-scale OPA1 rearrangements, 

including the complete loss of one copy of OPA1 in one family (Marchbank et al., 2002). The 

functional roles of OPA1 are discussed from Sections 1.7.2-1.7.7. 

 

 

Figure 1-6 Schematic representation of the OPA1 gene.  

Basic domain = exons 1-3; coiled coil domain = exons 5b-7; GTPase domain = exons 7-15; 

middle domain = exons 16-25; GTPase effector domain = exons 27-28. Adapted from Yu-

Wai-Man et al., 2010b. 
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1.3.3 Clinical manifestations 

Visual decline in DOA usually starts in early childhood and the majority of patients are 

symptomatic before the age of 20 years old (Cohn et al., 2008; Yu-Wai-Man et al., 2010a). 

The average visual acuity is between 20/80 and 20/120, but there is wide intra- and 

interfamilial variability with disease severity ranging from 6/6 to light perception (Cohn et al., 

2007; Kjer et al., 1996; Votruba et al., 1998a). In a study of 21 DOA pedigrees, 80% of 

individuals maintained a stable visual acuity of 20/200 or better (Votruba et al., 1998a). The 

reasons for these phenotypic variations are not fully understood, but secondary genetic, 

epigenetic and/or environmental factors have been implicated. Although the rate of visual loss 

is usually slow, the majority of patients are eventually registered legally blind and the 

prognosis is guarded. Patients with DOA will also manifest other features pointing towards 

optic nerve dysfunction, including dyschromatopsia and central or centrocaecal scotomas due 

to the primary involvement of the papillomacular bundle (Lenears et al., 2012; Smith, 1972; 

Puomila et al., 2005). The optic disc pallor in DOA falls into two main categories: diffuse 

pallor involving the entire neuro-retinal rim in about half of all cases or a temporal wedge of 

pallor in the remainder (Figure 1-7). Excavation of the optic nerve head in DOA can 

sometimes lead to a clinical misdiagnosis of normal tension glaucoma (Fournier et al., 2001; 

Buono et al., 2002). 
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Figure 1-7 Optic disc appearance in a patient carrying a confirmed pathogenic OPA1 

mutation.  

There is bilateral global optic disc pallor, which is more marked in the temporal quadrant 

consistent with the more severe involvement of papillomacular bundle (RE- Right eye, LE- 

Left eye).  

 

1.3.4 DOA plus phenotypes 

DOA can present either with isolated optic nerve involvement (pure DOA) or with additional 

neuromuscular features which include visual failure, sensorineural deafness, 

ataxia/myopathy/neuropathy and PEO (DOA plus, DOA+) (Figure 1-8). Previous work from 

our group have shown that ~ 20% of patients harbouring pathogenic OPA1 mutations develop 

the more severe DOA+ phenotype (Yu-Wai-Man et al., 2010b). These neuromuscular 

complications cause major functional disability in patients who are already severely visually 

impaired (Amati-Bonneau et al., 2005; Bailie et al., 2013).  

 

RE LE 
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Figure 1-8 Age of onset for clinical features associated with DOA plus phenotypes.  

PEO:  progressive external opthalmoplegia. Reproduced from Yu-Wai-Man et al., 2010b. 

 

These syndromic variants of DOA have been linked with the secondary accumulation of 

multiple mtDNA deletions and with the presence of cytochrome c oxidase (COX)-deficient 

fibres in skeletal muscle biopsies obtained from affected mutation carriers (Amati-Bonneau et 

al., 2008; Hudson et al., 2008). There is a threefold increased risk of developing the more 

severe DOA+ phenotype with missense OPA1 mutations involving the GTPase domain 

compared with other mutational subgroups (Yu-Wai-Man et al., 2010b). The deleterious 

consequences of this specific group of OPA1 mutations on RGC survival is therefore clearly 

linked to the development of multisystem organ involvement in DOA+, suggesting a possible 

dominant negative effect. However the fundamental question still remains – why does a 

subgroup of patients with OPA1 mutations develop DOA+ features, leading to an increased 

neurological disability in addition to a worse visual prognosis? 

 

1.3.5 Recessive OPA1 mutations 

Recently the clinical spectrum of DOA+ was further expanded with the description of Behr 

syndrome (Marelli et al., 2011). Behr syndrome is an autosomal recessive disorder originally 

classified by the German ophthalmologist Carl Behr, and describes an infantile form of optic 

atrophy compounded with mental retardation, ataxia, spasticity and peripheral neuropathy.  
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Most known cases of DOA are due to dominant inheritance which can either lead to an 

isolated optic nerve involvement or a syndromic optic atrophy. However, in rare instances, 

patients with compound heterozygous OPA1 variants with either recessive or semi dominant 

inheritance have been identified with severe visual loss and/ or ataxia, cortocospinal tract 

involvement, peripheral neuropathy and myopathy (Pesch et al., 2001; Marelli et al., 2011; 

Schaaf et al., 2011; Carelli et al., 2015a, Bonneau et al., 2014; Bonifert et al., 2014). 

Although both heterozygous and compound heterozygous OPA1 mutations have been 

detected in patients presenting with Behr syndrome, pathological homozygous variants have 

yet to be clinically identified. Three OPA1 mouse models have been developed with 

truncative OPA1 variants located in exons 8 (c.1051C>T) (Davies et al., 2007), intron 10 ( 

c.1065+5 G> A) (Alavi et al., 2007) and exon 27 ( c.2708-2711delTTAG) (Sarzi et al., 2012). 

These heterozygous models faithfully replicate the visual deterioration found in DOA. 

However, strikingly, homozygous models died in utero suggesting that OPA1 is highly 

relevant for early development. Based on this observation of embryonic lethality, it is 

therefore not surprising that compound heterozygous or homozygous pathogenic deletions or 

duplications have yet to be found in DOA affected individuals. 

 

1.3.6 Other DOA genes 

Additional prominant genes associated to a dominant form of congenital optic neuropathy 

include MFN2, OPA3, AFG3L2, SPG7 and ACO2 (Table 1-1). These are translated and 

dispatched to the mitochondrial compartment where they are primarily involved in 

mitochondrial fission/fusion dynamics and/or disparate functions of mitochondrial 

metabolism and quality control. Pathological mutations in these genes can lead to a syndromal 

form of optic atropy similar to the DOA+ phenotype which includes visual loss, spastic 

paraplegia and ataxia among other unique neuropathological presentations. 

1.3.7 OPA3 

About 40% of clinically diagnosed DOA patients do not harbour pathogenic variants in OPA1 

(Yu-Wai-Man et al., 2011). The causative nuclear defects in a small number of families have 

been mapped to other chromosomal loci; OPA3, OPA4, OPA5, OPA8,OPA9 and OPA10 of 

which only the OPA3 gene has been characterised (Section 1.5; Table 1-3) (Garcin et al., 
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1961; Reynier et al., 2004; Kerrison et al., 1999; Barbet at al., 2005; Carelli et al., 2007; 

2011b;Angebault et al., 2015). 

  OPA3 was originally identified in 8 Iraqi Jewish families with an autosomal recessive 

form of optic atrophy, associated with neuro-cognitive deficits, elevated urinary excretion of 

3-methyl glutaconic acid and increased plasma 3-methylglutaric acid levels (Type III 3-

methylglutaconic aciduria or Costeff syndrome) (Anikster et al.,2001). Subsequent case series 

also identified heterozygous mutations in OPA3 which can be responsible for dominant cases 

of either isolated or complex multi-systemic bilateral optic atrophy (Grau et al., 2013; Reynier 

et al., 2004; Sergouniotis et al., 2015). Patients typically present with optic atrophy and 

infantile-onset cataracts but may display other visual and ocular abnormalities such as 

dyschromatopsia and temporal optic disk pallor. Additional neurological features may also 

include sensorineural deafness, spasticity and extrapyramidal dysfunction.  

Functional investigation of OPA3 has shown that it is expressed as two different 

isoforms (A and B) of which isoform OPA3-A has a greater level of expression than its 

counterpart (Huizing et al., 2010) (Figure 1-9). A recent homozygous (c.365T>C; 

p.Leu122Pro) OPA3 mouse line has been developed modelling the type 3-methylglutaconic 

aciduria condition found in humans and will be invaluable in dissecting the molecular 

mechanisms of recessive and complex OPA3- related optic disorders (Davies et al., 2008; 

Wells et al., 2012).  

 

 

Figure 1-9 Schematic diagram of OPA3 illustrating the two alternative isoforms OPA3A and 

OPA3B.  

Adapted from Huizing et al., 2010. 
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1.3.8 MFN2 

MFN2 is a GTPase known to be involved in OMM fusion, ER-mitochondrial interaction, 

mitochondrial axonal transport and mitophagy. Mutations found in the gene encoding this 

GTPase are responsible for an optic neuropathy known as Charcot Marie Tooth 2A( 

CMT2A). It is the most common axonal CMT disorder responsible for at least 20% of known 

cases. Similar to DOA, CMT2A has a complex presentation, most notably with foot 

deformities, walking difficulty, areflexia, sensory loss, physical weakness and in some cases 

sensorineural hearing loss and optic atrophy. The inheritance of CMT with optic atrophy can 

be due to both dominant and recessive inheritance of defective MFN2. 

 

1.3.9 SPG7 

SPG7 encodes for paraplegin, a primary constituent of the m-AAA (mitochondrial-AAA) 

protease responsible for both degrading aberrant mitochondrial proteins and maturation of 

specific polypeptide substrates such as OPA1. In rare cases, mutations in SPG7 are associated 

with a dominant form of OA which can either present as an isolated OA or OA complicated 

with cerebellar atrophy and peripheral neuropathy (Klebe et al., 2012). 

 

1.4 Wolfram Syndrome 

1.4.1 Epidemiology 

In some conditions with optic neuropathy, the optic degeneration is not the primary symptom 

and is associated with other primary manifestations as is the case in Wolfram syndrome. 

Wolfram syndrome, also described as DIDMOAD or diabetes insipidus, diabetes mellitus, 

optic atrophy and deafness (Bessahraoui et al., 2014), has a prevalence of 1 in 770,000 

individuals in the United Kingdom with most cases described as recessive or sporadic (Barrett 

et al., 1995). Some cases with dominant inheritance have also been identified (Bai et al., 

2014; Bonnycastle et al., 2013). 
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1.4.2 Molecular genetics 

The genetic component of Wolfram syndrome, WFS1 was first identified in 1998 through 

genetic mapping and a candidate gene approach. Mutations within WFS1 have been found in 

most recorded cases of Wolfram syndrome (Inoue et al., 1998; Strom et al., 1998;  de Heredia 

et al., 2013). A wide variety of mutations have been detected in WFS1 which include splice-

site, stop and frameshift mutations. However no mutational hotspot has been located in the 

WFS1 gene (De Heredia et al., 2013). Currently most pathogenic variants described in 

patients diagnosed with Wolfram Syndrome are loss of function (90%). There are <200  total 

variants reported (www.euro-wabb.org -June 2015) in WFS1 with 51.8% substitutions, 37% 

deletions, 9.1% duplications, 1.6% insertions and 0.4% insertion/deletion. 

Another manifestation of Wolfram Syndrome was reported in a Jordanian family and 

the genetic component designated WFS2 (El-Shanti et al., 2000). The locus for WFS2 was 

mapped to chromosome 4q22-24. Clinical presentation involved the classical symptoms of 

Wolfram syndrome which included optic atrophy and diabetes mellitus. There was however, 

no incidence of diabetes insipidus and a few patients were bleeding and had upper 

gastrointestinal ulceration with/without sensorineural hearing loss (Rigoli et al., 2011; El-

Shanti et al., 2000; Amr et al., 2007). Linkage analysis identified CISD2 as the causative 

genetic factor. Similar to WFS1, CISD2 encode for a protein located within the ER 

compartment.  

 

 

 

 

 

 

 

 

 

http://www.euro-wabb.org/
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1.4.3 Clinical manifestations 

The progression of Wolfram syndrome is variable with, in most cases, onset occurring in the 

first or second decade of life. Either a loss in visual acuity and optic atrophy may precede 

other syndromic features, or a mild dyschromatopsia or optic atrophy may occur initially 

followed by visual loss (Barrett et al., 1997). In the latter stages of the condition, visual loss is 

extreme and there is an obstruction of visual fields with a pathological cupping of the optic 

disc. Although the ‘minimum ascertainment’ of wolfram syndrome was initially optic atrophy 

and juvenile diabetes mellitus (<16 years) (Table 1-2), investigation into the underlying 

genetic aetiology of this condition has highlighted cases of Wolfram syndrome without 

characteristic diabetes insipidus or diabetes mellitus (Barrett et al., 1995; Khanim et al., 2001; 

Chaussenot et al., 2015; Marshall et al., 2013; Kytovuori et al., 2013).  

 

Table 1-2 Minimum ascertainment parameters for the diagnosis of Wolfram syndrome.  

Reproduced from http://www.orpha.net/national/data/IE-EN/www/uploads/Wolfram2014.pdf  

 

1.4.4 Pathophysiology 

WFS1 is localised to the ER where it is involved in polypeptide quality control in the 

unfolded protein response (UPR) (Hofmann et al., 2003; Takeda et al., 2001). The UPR 

consists of post translational modifications (PTMs), folding and assembly of functional 

cellular proteins. WFS1 is a component of the UPR negative feedback loop and interacts with 

the transcription factor ATF6α which is responsible for the upregulation of chaperones, the 

http://www.orpha.net/national/data/IE-EN/www/uploads/Wolfram2014.pdf
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mediators of protein folding (Osman et al., 2003). Disturbed ER mechanics can culminate in 

ER stress due to the accumulation of malformed polypeptides and ultimately upregulate the 

apoptotic response. Pancreatic β cells, retinal ganglion cells and cochlear cells have all shown 

to have a greater susceptibility to this stress response than other tissue types (Example of 

human retinal layers from Wolfram syndrome diagnosed patients in Figure 1-10). Additional 

functions of WFS1 include protein trafficking, calcium homoeostasis and cell signalling 

pathways (Zatyka et al., 2008; Yamaguchi et al., 2004; Fonseca et al., 2005; Yamada et al., 

2006; Hofmann and Bauer, 2006)  

 

 

 

 

 

 

 

 

 

 

 

Figure 1-10 Light micrographs derived from paraffin-embedded sections of human 

retina from a patient with Wolfram syndrome.  

Haematoxylin and eosin stained Cross-sections taken 3.5mm from optic nerbe centre from (A) 

Control human macula and (B) Macula from patient suffering from Wolfram Syndrome. 

Control (A) shows normal staining of human retinal layers while retinal layers from patient 

with Wolfram Syndrome (B) displays loss of retinal ganglion cell layer. Figure adapted from 

Ross-Cisneros et al., 2013. 
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1.5 Other Inherited Optic Neuropathies 

Other genetic loci have been identified in patients with dominant and recessive inherited optic 

neuropathies (Table 1-1). Intriguingly, the pathophysiology of these disorders typically 

involves either mitochondrial or ER function suggesting a unifying biochemical theme for this 

clinically heterogenous group of disorders. As for OPA1 mutation carriers, the reported cases 

are either characterised by isolated optic atrophy or more severe syndromc manifestations 

complicated by varying combinations of sensorineural deafness, peripheral neuropathy, 

cognitive decline, seizures, hypotonia, ataxia and spasticity. About half of all patients with 

suspected inherited optic neuropathies do not yet have a confirmed molecular diagnosis and 

the hope is that more of these cases will be resolved in the next few years with the greater 

availability of next-generation exome and whole genome sequencing (Allen et al., 2015) 

(Table 1-3). Case series of isolated optic nerve involvement have also been described, such as 

autosomal recessive chiasmal optic neuropathy (Pomeranz et al., 1999) and apparent sex-

linked optic atrophy (Went et al., 1975; Assink et al., 1997), but the genetic basis still remains 

unknown.   
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         Locus Chromosome Gene Inheritance Pattern References 

OPA1 3q28-29 OPA1 Dominant 
Delettre et al., 2000 

Alexander et al., 2000 

OPA2 Xp11.4-p11.21 - X-linked recessive Assink et al., 1997 

OPA3 19q13.2-q13.3 OPA3 Dominant / Recessive Reynier et al., 2004; Anikster et al.,2001 

OPA4 18q12.2-q12.3 - Dominant Kerrison et al., 1999 

OPA5 22q12.1-q13.1 - Dominant Barbet, 2005 

OPA6 8q21-q22 - Recessive Barbet, 2003 

OPA7 11q14.1-q21 TMEM126A Recessive Hanein et al., 2009 

OPA8 16q21-22 - Dominant Carelli et al., 2011 

OPA9 6q21 RTN4IP1 Recessive Angebault et al., 2015 

     
Table 1-3 Mapped genetic loci and nuclear genes identified in patients with inherited optic neuropathies. 

Adapted from Wiggs, 2015 
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1.6 Mitochondria in Health and Disease 

Mitochondria are cellular organelles, which primary function is to produce chemical energy in 

the form of adenosine triphosphate (ATP) in the process of aerobic respiration. These 

organelles exist in an intricate interconnected dynamic network known as the mitochondrial 

reticulum (Chen and Chan et al., 2005). Mitochondria do not exist as discrete organelles but 

instead are in a constant state of dynamic fission or fusion with other members of the 

reticulum. They are found in the cytoplasm of most eukaryotic cells and their number varies 

from a few hundred to several thousand depending on the cell’s energy requirements.         

(Figure 1-11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-11 Structure of the mitochondrion. Depiction of the structure of mitochondrial 

cristae and the position of the mitochondrial respiratory chain supercomplexes. Reproduced 

from Saxton and Hollenbeck, 2012. 
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1.6.1 Origin  

The current hypothesis known as endosymbiotic theory, suggests that mitochondria arose 

from aerobic α-proteobacteria which were gradually assimilated by primitive glycolytic 

eubacteria (Lang et al., 1997). Over the course of evolution, much of the genetic material 

from these aerobic α-proteobacteria were transferred to the genome of the eubacterion which 

formed a symbiotic relationship. This is evidenced by phylogenetic study of Alphaprobacteria 

– Rickettsia prowazekii and mitochondria which lends support to a common evolutionary 

origin (Lang et al., 1997; Gray et al., 1999; Margulis et al., 1971). 

 

1.6.2 Structure 

Each mitochondrion is bounded by an outer and an inner membrane, and these are separated 

by an intermembrane space (Frey and Mannella, 2000). The outer mitochondrial membrane 

allows the free diffusion of molecules of ≤ 5 kDa. These molecules cross through 

membranous channels which are either formed by integral proteins known as porins or 

voltage dependent anion channels (VDACs). The inner membrane lacks porins and is rich in 

cardiolipin, which makes it highly impermeable. Molecules therefore need to be actively 

transported via specific active transport channels from the intermembrane space (IMS) into 

the matrix compartment. This allows the establishment of an electrochemical gradient. The 

inner membrane is compartmentalized into structures called cristae which increase the 

effective surface area for ATP production by the respiratory chain complexes (Perkins et 

al,1997). The mitochondrial matrix contains soluble enzymes involved in the -oxidation of 

fatty acids,the citric acid cycle and the intricate machinery required for the replication and 

transcription of mtDNA which are packaged into structures known as nucleoids (Alberts et 

al., 2002). Mitochondria also play an important role in calcium handling (Herrington et al., 

1996), apoptosis (Green, 1998), and the metabolism of amino acids, lipids, cholesterol and 

nucleotides (McBride et al., 2006). 
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1.6.3 Mitochondrial genetics 

The mitochondrial genome is a circular double stranded DNA molecule of 16,569 base pairs 

(bp) (Anderson et al., 1981). Originally it was thought that these genomic molecules were 

naked DNA backbones with a protective coat in the form of histone proteins similar to nuclear 

DNA (Nass et al., 1969, Iborra et al.,2004). It is now known that mtDNA molecules are 

instead contained within nucleoprotein structures known as nucleoids which are 

approximately 100 nm (Kukat et al., 2011). A recent investigation has suggested that each 

nucleoid contains a single mtDNA genome. There are approximately 1-10 mtDNA copies in 

each mitochondrion. Thousands of mtDNA molecules can exist in a cell depending on its 

metabolic requirements (Kukat et al., 2011). 

The structure of the mitochondrial genome consists of a purine-rich heavy chain (H-

strand) and a pyrimidine-rich light chain (L-strand) (Anderson et al., 1981). Unlike nuclear 

DNA, this genome contains no introns but instead has a 1.1kb region known as the 

displacement loop (D-loop) (Figure 1-12). This is a non-coding triple-stranded region which 

is involved in processes such as transcription and replication (Sbisa et al., 1997; Roberti et al., 

1998). This region has numerous regulatory elements such as binding sites for transcription 

factor A (TFAM-A), a termination associated sequence (TAS) and conserved sequence blocks 

(CSB1, CSB2 and CSB3) (Suissa et al., 2009; Sbisa et al., 1997). The origin of the H-strand  

is located within the D-loop. Most of the genes encoded by mtDNA are found on the H-strand 

and include two ribosomal RNAs (12S and 16S rRNA), 14 transfer RNAs (tRNAs) and 12 

subunits of the oxidative phosphorylation (OXPHOS) complexes. There are additional genes 

on the L-strand which include ND6 and eight tRNA genes. Other mitochondrial proteins are 

encoded by the cell’s nuclear genome and are targeted to the mitochondrial organelles. Due to 

the relatively small size of the mtDNA molecule and the lack of intronic sequences, many of 

these genes are overlapping and produce polycistronic transcripts. The tRNA genes found on 

both the H- and L-strand regulate this polycistronic transcriptional processing (Ojala et al., 

1980). Other unique features of the mitochondrial genome include the presence of only two 

stop codons (AGA and AGG) while the nuclear genome contains three (UAA, UGA, UAG) 

(Barrell et al., 1979. In addition the nuclear stop codon UGA instead transcribes for 

tryptophan in mtDNA (Barrell et al., 1979).  
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Figure 1-12 Schematic illustration of the human mitochondrial genome. 

MtDNA contains of 16,569 bps and is composed of two strands known as the heavy and light 

strand. Two promoters known as IH1 and IH2 are found on the heavy strand while one promoter 

IL on the light strand and these promoters are responsible for mtDNA replication. Promoters 

and other elements required for mtDNA replication are all found in the D-loop in an 

untranslated region of mtDNA mtDNA transcription occurs on both strands to encode 

required OXPHOS, ribosomal and t-RNA mRNAs. Reproduced from DiMauro et al., 2013. 
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1.6.4 Mitochondrial nucleoids 

The mitochondrial nucleoid is a nucleoprotein structure which encapsulates the mtDNA 

molecule (Spelbrink et al., 2010). Analysis of nucleoid aggregates with stimulated emission 

depletion microscopy (STED) has revealed that these structures are relatively uniform in size, 

however there is controversy as to the number of mtDNA per nucleoid. STED microscopy 

suggests that each nucleoid only contain a single mtDNA genome (Kukat et al., 2011), but 

another study using super resolution photoactivated localisation microscopy (PALM) found at 

least three mtDNA molecules per nucleoid (Brown et al., 2011). The latter study also found 

that the size of these nucleoids was dependent on the number of mtDNA molecules that they 

contained. Recent observation also demonstrates that nucleoids retain and regulate their own 

mtDNA and do not freely distribute it amongst other nucleoids (Gilkerson et al., 2008).  

Transcription factor-A (TFAM) is the primary protein which comprises the nucleoid 

and is involved in compartmentalising and organising mtDNA. Other subsidiary proteins 

contained within this structure include T7-like helicase (Twinkle, PEO1), mtSSB protein, 

Lon, DEAD-box protein 28 (DDX28), suv3-like helicase, POLRMT, and mtDNA polymerase 

γ (POLG) (Figure 1-13) (Y.Wang and Bogenhagen, 2006).  
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Figure 1-13 Mitochondrial nucleoid illustrating both the core (gold) and peripheral (blue) 

constituents. 

Core constituents (POLG, POLRMT, mtSSB, TFAM, TWINKLE, Lon) are capable of 

binding to mtDNA molecules and regulating transcription, translation and replication. 

Peripheral components (ATAD3, M19, PHB, and OPA1) are associated with integrating 

mtDNA and the nucleoid with global cellular signalling. Black rectangles indicate known 

protein and DNA interactions. Adapted from Gilkerson et al., 2013 

 

An additional group of proteins are transiently associated with a subset of mitochondrial 

nucleoids at any given time in order to perform a necessary function. An example of this are 

the mtDNA repair proteins and others involved on the process of mtDNA replication such as 

ATAD3. Although the mechanism of mtDNA copy number maintenance has still to be 

elicited, preliminary findings suggest that ATAD3 and POLG2 are some of the primary 

regulators involved. ATAD3 knockdown has also demonstrated an association with nucleoid 

formation (He et al., 2007; Holt et al., 2007.)  

These nucleoids are functionally diverse and promote mtDNA transcription and 

replication at the nucleoid core, while translation of mtDNA occurs on the outer periphery of 

these structures. The nucleoid is also believed to be involved in the organisation and 

distribution of mtDNA in dividing mitochondria by localizing to a tethered ER-mitochondrial 

complex, the ERMES complex as observed in a yeast model (Murley et al., 2013). These 

relocalised nucleoids are primarily the ones which are in the process of replicating new 

mtDNA. This allows mitochondrial nucleoids to segregate evenly following mitochondrial 
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division within each daughter mitochondria and allows maintenance of functioning newly 

developed organelles. The exact mechanism of how actively replicating nucleoids associate 

with these mitochondrial division sites is an active area of research.  The ERMES complex 

has not been found in mammalian cells but present research suggests that a similar structure 

may exist. Genetic knockdown of DRP1, a regulator of mitochondrial fission, promotes the 

aggregation of nucleoids (Ban-Ishihara et al., 2013). MIRO-1 has also been observed to co-

localise to ER-mitochondrial contacts where mitochondrial fission takes place. (Kornmann et 

al., 2011). MIRO-1 is a homologue of gem1 in yeast which is a RHO-like small GTPase 

responsible for releasing the mitochondrial –ER contacts.  

There is evidence from studies in yeast that the nucleoid also undergo remodelling 

under different metabolic conditions. Nucleoids may play a similar role to histones, which are 

protein structures binding to nuclear DNA and providing an additional level of complex 

regulation. Kucej and colleagues studied the yeast protein Abf2, which is an homolog of 

Human mTF1 and similar in function to human TFAM s using a Chip-on -chip assay (Kucej 

et al., 2008). They demonstrated that Abf2 was not as tightly bound and concentrated along 

mtDNA and formed a less compact nucleoid structure under conditions of respiration and 

growth which may potentially promote transcription of mtDNA. Greater accessibility of 

mtDNA may also promote regulation and binding of other factors but this remains to be 

elicited. Under conditions of glucose or amino acid starvation, factors such as hsp60 and ilv5 

are recruited to nucleoids (Kucej et al., 2008). These factors are believed to be involved in 

nucleoid/mtDNA maintenance. This preliminary research in yeast would suggest that the 

nucleoid is a dynamic structure which regulates mtDNA in response to metabolic 

homeostasis. These observations have yet to be extended into the human model but because of 

the high degree of functional conservation between yeast and higher order organisms, it is 

conceivable that such mechanisms may play a role in human health and disease states.  

  

1.6.5 Mitochondrial heteroplasmy 

The mitochondrial genome has a greater susceptibility to acquire genetic variants than the 

nuclear genome due to a number of factors. The close proximity of mtDNA to high levels of 

reactive oxygen species (ROS) produced as a byproduct of the OXPHOS system, the lack of 
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protective histones and the high replication rate of mtDNA molecules which promote 

replication error all contribute to polymorphism generation. The primary source of ROS is 

derived from the OXPHOS system, particularly from H2O2 species generation which together 

with redox-active metals such as Fe2+ undergo Fenton chemistry to create free radicals which 

effectively damage mtDNA (Thomas et al., 2009; Droge, 2002).  

As a cell comprises hundreds to several thousand mitochondria and each organelle 

contains between 2-10 mitochondrial genomes, mtDNA molecule are present in high copy 

number in individual cells. As a result of mutations caused by ROS, mtDNA population can 

be described as either homoplasmic or heteroplasmic. A homoplasmic mtDNA population is 

composed of mtDNA molecules with an identical genetic sequence. A heteroplasmic 

population comprises mtDNA molecules with different variants in the mtDNA genetic code 

(Wallace and Chalkia, 2013). Pathogenic mtDNA mutations are due to deleterious variants in 

a heteroplasmic population of mtDNA. In heteroplasmic populations, a minimum critical 

threshold of pathogenic mutated mtDNA molecules compared to wild-type (approximately 

60-80%) is necessary before biochemical defects and tissue dysfunction become apparent 

(Figure 1-14) (Wallace and Chalkia, 2013; Stewart and Chinnery. 2015). This threshold level 

varies depending on the mutation and differs amongst tissues, depending on their level of 

reliance on OXPHOS metabolism. 

 

 

 

Figure 1-14 Biochemical threshold of mutant mtDNA species.  

Reproduced from Stewart and Chinnery, 2015. 
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1.6.6 Mitochondrial DNA maintenance 

To combat genetic damage, the mitochondrial genome employs a number of DNA repair 

strategies which include mismatch repair and base excision repair of the mtDNA molecule. 

Base excision repair (BER) is the predominant and most well characterised mtDNA repair 

pathway (Alexeyev et al., 2013). This pathway is divided into two generalised mechanisms of 

BER, SP-BER (short-patch base excision repair) and LP-BER (long-patch base excision 

repair) (Svilar et al., 2011). The factors influencing the initiation of SP-BER or LP-BER are 

still being investigated but may be associated with the specific type of lesion, whether the cell 

is actively dividing or senescent and what stage of the cell cycle the lesion occurs.  BER is 

achieved by (i) detection of the DNA lesion (ii) Strand scission/ gap tailoring and (iii) DNA 

synthesis/ligation (Figure 1-15). (Alexeyev et al., 2013)  

In SP-BER, detection of the genetic lesion is facilitated by monofunctional or 

bifunctional glycosylases which introduce a single stranded break (SSB) (Anderson and 

Friedberg, 1980; Ohtsubo et al., 2000; Dodson and Lloyd, 2002). This SSB is further 

processed by AP-endonuclease-1 (APE1) or polynucleotide kinase 3’-phosphatase (PNKP) 

and ligated by the activity of POLG (Figure 1-15). 

LP-BER is the most common repair strategy for oxidative damage. It differs from SP-

BER because the DNA polymerase forms a ‘flap’ which is 6-9 nucleotides long from the 

point of excision. This ‘flap’ is processed by two nucleases FEN1 and DNA2 which create a 

DNA duplex which is ligated by LIG3 (Figure 1-15) (Alexeyev et al., 2013).  
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Figure 1-15 Mechanisms protecting against genetic damage to mtDNA.  

Reproduced from Alexeyev et al., 2013. 

 

1.6.7 Mitochondrial haplogroups 

The mitochondrial genome has a greater susceptibility to acquire genetic variants than the 

nuclear genome (Howell et al., 1996; Jazin et al., 1998). This is due to a number of factors. 

The close proximity of mtDNA to high levels of ROS, a byproduct of the OXPHOS system, 

the lack of histones which protect against genetic damage and the high replication rate of 

mtDNA molecules which promote replication error all contribute to polymorphism generation 

(Raha and Robinson, 2000, Alexeyev et al., 2013). MtDNA is inherited through a maternal 

lineage and it is through these genetic lines that different mtDNA polymorphisms have been 

acquired and fixed by distinct human populations (Cann, 2001). These fixed polymorphisms 

follow the pattern of human migration from Africa some 150,000 years ago into each of the 

different continents. Eighteen major phylogenetic haplogroups have been categorised in the 
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human species which comprise 497 unique haplogroup polymorphisms. Within Europe there 

are nine distinct haplogroups defined as H,I,J,K,T,U,V,W and X. H is the most common 

European haplogroup accounting for over half the population (Torroni and Wallace,1994; 

Herrnstadt and Howell, 2004, Herrnstadt et al., 2002). 

 

1.6.8 Mitochondrial DNA replication 

MtDNA replication is a process controlled by proteins encoded by the nuclear genome but is 

asynchronous to the cell cycle in mitotic and post-mitotic cells (Bogenhagen and Clayton, 

1977). It is regulated by the mitochondrial replisome, which is a complex composed of four 

different proteins which include POLG, mtSSB, TFAM and TWINKLE HELICASE 

(Wanrooij et al., 2010) and replication occurs at differential rates dependent on tissue type.  

The model which describes mtDNA replication is currently a controversial issue with 

three distinct mechanisms proposed. These three mechanisms are (i) asymmetric strand 

displacement (ASD) model (Clayton, 1982), (ii) synchronous strand coupled bidirectional 

(SSCB) model (Holt et al., 2000; Bowmaker et al., 2003)  and (iii) asymmetric strand 

displacement model combined with the incorporation of RNA at the lagging strand of 

replication (RITOLS model) (Figure 1-16) (Yasukawa et al., 2006).  

The ASD model, originally described by Clayton (1982), suggests that replication 

commences at the origin of replication (OH) on the leading\heavy strand (H-strand) and 

proceeds in a clockwise manner. This clockwise replication expands the D-region and exposes 

a second origin of replication (OL) on the inner lagging\light strand (L-strand). When H-strand 

clockwise replication has successfully replicated two thirds of the circular leading strand, anti-

clockwise replication of the inner L-strand begins. This form of replication generates two 

daughter mtDNA molecules but due to the asynchronous timings of the H and L strand, one 

daughter mtDNA is fully generated while the second daughter mtDNA is still replicating its 

L-strand.  

The synchronous strand coupled bidirectional (SSCB) model of mtDNA replication by 

Holt and colleagues is one that describes synchronous replication of both the H- and L-

strands (Holt et al., 2000). This conclusion resulted from the examination of replicative 

intermediates of mammalian mtDNA found in 2D agarose gel electrophoresis. Their proposed 
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model suggests that replication begins on both the H and L strand simultaneously at a region 

known as OZ, a single origin of replication where commences coupled strand replication. This 

generates two replication forks which expand and create two daughter mtDNA molecules 

simultaneously. Holt and colleagues propose that this model may occur independent or 

concurrent with the original strand displacement model (Holt et al., 2000) 

The RITOLS model of replication is mechanistically similar to the original ASD 

model which describes differential replicative timing of the leading and lagging mtDNA 

strand. However the RITOLS model proposes that mtDNA is first transcribed to RNA and 

subsequently reverse transcribed to the newly formed DNA strand (Yasukawa et al., 2006). 
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Figure 1-16 Alternative proposed models of mtDNA replication  

(i) Assymetric Strand displacement model: (Left panel) Replication begins at OH and 

replicates clockwise until OL is revealed on the light strand. A second replication event 

commenses on the light strand at OL in an anti-clockwise manner to generate two daughter 

mtDNA molecules. (ii) Synchronous Strand coupled bidirectional model: (middle panel) 

Replication on the heavy and light strand commenses simultaneously at OZ producing two 

coupled replication forks and generates two daughter mtDNA molecules. (iii) RITOLS model: 

(Right panel) Similar to the assymetric strand displacement model, replication on heavy and 

light strands occurs in an asynchronous manner however mtDNA is instead transcribed to 

RNA before being transcribed into two mtDNA daughter molecules. Reproduced from 

Kasiviswanathan et al., 2011. 
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1.6.9 Mitochondrial transcription 

Transcription of mtDNA can be initiated independently on the H and L strands. H-strand 

transcription can occur on two separate promotor sites, 150bp apart (Figure 1-17) These 

initiation sites are known as HSP1 and HSP2 and are differentially regulated (Litonin et al., 

2010; Lodeiro et al., 2012). Most often, the HSP1 promoter is initiated to create two tRNAs 

and two mitochondrial rRNAs. The HSP2 promoter alternatively produces a large 

polycistronic transcript which is punctuated by tRNA sequences, necessary to define rRNA 

and mRNA transcripts. The H-strand is responsible for transcribing twelve mRNA, fourteen 

tRNA and two rRNA species. The L-strand has only a single promoter initiation site 

designated LSP. It is responsible for transcribing a single mRNA and eight tRNA species. All 

three transcription initiation promoters are contained within the mitochondrial D-loop and 

each contains a 15bp consensus sequence (Cantatore et al., 1980; Montoya et al., 1982; 

Martin et al., 2005) 

The intricate mitochondrial transcription machinery is composed of POLRMT 

(mitochondrial RNA polymerase) and two initiation factors designated transcription factor A 

(TFAM) and transcription factor B2 (TFB2M) (Morozov et al., 2014). This model for 

mitochondrial transcription involves a simple mechanism where TFAM binds to a recognition 

site upstream of the D-loop transcriptional promoter. TFAM is required for transcription 

specificity at the transcription promoter sites. This TFAM bends the mtDNA and permits 

recruitment and interaction of POLRMT to form the pre-initiation complex (Morozov et al., 

2014). This pre-initiation complex in turn recruits TFB2M to form the initiation complex 

which is required for melting of the mtDNA and commencement of transcription.  

The concentration of TFAM is also believed to have a relationship on transcription 

promoter regulation. There are currently two models which describe this process, the 

cooperative looping monomer-dimer model and the cooperative spreading dimer model. 

These models describe how the binding of TFAM, initially at the LSP promoter site and 

subsequently at the inter- promoter region, drive structural changes of the mtDNA molecule 

and as a consequence adjust activation of the mitochondrial transcriptional promoter (Wong et 

al., 2009; Gangelhoff et al., 2009; Campbell et al., 2012).  

 



 

39 

    

 

Figure 1-17 Schematic of the mechanism of mtDNA transcription  

The intricate mitochondrial transcription machinery is composed of POLRMT (mitochondrial 

RNA polymerase) and two initiation factors designated transcription factor A (TFAM) and 

transcription factor B2 (TFB2M). Reproduced from Litonin et al., 2010.  

 

1.6.10 Mitochondrial translation 

The mitochondrion possess over 1000 different proteins, most of which are encoded by the 

eukaryotic translation machinery found in the cytoplasm (Endo et al., 2011). However a 

subset of these proteins are synthesised by a distinct mitochondrial translation system encoded 

by the mitochondrial genome. These proteins include 22 tRNAs, 2 rRNAs and 13 OXPHOS 

complex subunits.  

The mitochondrial translation system is not well characterised but close parallels have 

been noted between mitochondrial and prokaryotic translation machineries. This is primarily 

due to the lack of a proper in vitro model of mitochondrial protein synthesis. The subunits of 

the mitochondrial ribosome are mostly encoded by the nuclear genome. Recent efforts have 

defined the structure of the mitochondrial ribosome at a resolution of 3.5 angstrom (Amunts 

et al., 2015). This analysis has determined that this ribosome is a complex of approximately 

80 proteins including three ribosomal RNA proteins, 12S, 16S and mt-tRNAVal.  

Protein translation involves three steps, initiation, elongation and termination (Figure 

1-18). The initiation step is catalysed by initiation factors mtIF2 and mtIF3 which are 

orthologous to the IF1 and IF2 initiation factors in prokaryotes (Myasnikov et al., 2009). The  
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initiation factor mtIF3, dissociates the 55S ribosomal subunit into two smaller subunits 

39S and 28S to facilitate formation of the initiation complex. The mtIF2 factor is responsible 

for initiating an interaction between fMet-tRNA (tRNA carrying the first amino acid for 

protein synthesis) and the 28S subunit to form this initiation complex (Myasnikov et al., 

2009). Elongation involves three elongation factors similar to prokaryotes, mtEFTu, mtEFTs 

and mtEFG which promote mRNA read-through by coding-anticoding interaction, amino acid 

peptide bond formation and peptide elongation (Hammarsund et al., 2001; Ling et al., 1997; 

Xin et al., 1995). Termination of mitochondrial translation is regulated by two release factors 

MtRF1 and MtRF2 and a recycling factor mtRRF. This process begins at a mitochondrial stop 

codon (UAA, UAG, AGA or AGG). When this stop codon is recognised, the peptide is 

released from the tRNA (Smits et al., 2010). 

Interestingly, over 200 pathogenic mutations which affect tRNA processing enzymes and 

aminoacyl-tRNA synthases (ARS) of mitochondrial translation have been implicated in 

complex clinical diseases (Abbott et al., 2014). Mutations in tRNA enzymes typically disrupt 

aminoacylation and can impact the expression of OXPHOS complex subunits in these 

mitochondrial disorders. 

 Two classical and most well characterised cases associated with mitochondrial translational 

defects include mitochondrial encephalomyopathy, lactic acidosis and strike like symptoms 

(MELAS) and myoclonic epilepsy and ragged red fibres (MERRF) (Kobayashi et al., 1990; 

Shoffner et al., 1990). Intrigingly, presentation of these two diseases is predominantly due to 

defects at a tRNA anticodon wobble position (mt-tRNALEU- MELAS; mt-tRNALYS- MERRF). 

In addition to these phenotypes, other more rare tissue specific presentations with alternative 

mutations can afflict the auditory or visual system, similar to optic neuropathies (Yan et al., 

2011a; Crimi et al., 2003) 

.Mutations in mitochondrial tRNA modifying factors like glycl-tRNA synthase (GARS) and 

lysyl-tRNA synthase (KARS), which are encoded solely by mtDNA, can lead to diseases of 

the peripheral nervous system such as Charcot-Marie-Tooth. Other mitochondrial nuclear 

encoded modifying factors such as HARS2 (histidyl-tRNA synthetase 2), LARS2 (leucyl-

tRNA synthetase 2), DARS (aspartyl-tRNA synthetase), RARS2 (arginyl-tRNA synthetase 2), 

YARS2 (tyrosyl-tRNA synthetase 2 ), SARS2 (seryl-tRNA synthetase 2), AARS2 (alanyl-

tRNA synthetase 2), MARS2 (methionyl-tRNA synthetase 2), FARS2 (phenylalanine-tRNA 
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synthetase 2), EARS2 (glutamyl-tRNA synthetase 2), VARS2 (valyl-tRNA synthetase 2) and 

TARS2 (threonyl-tRNA synthetase 2) have also all been implicated in other mitochondrial 

related disorders demonstrating the complexity of mitochondrial translation in disease (Abbott 

et al., 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

42 

    

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-18 Schematic of the three stages (initiation, elongation and termination) 

involved in mitochondrial translation.  

Adapted from Smits et al., 2010.  

1.6.11 Mitochondrial oxidative phosphorylation  

The majority of the cells energy requirement in the form of ATP is provided by the 

mitochondrial respiratory chain. OXPHOS is regulated by five protein transmembrane 

complexes bound to the matrix side of the IMM (Inner Mitochondrial Membrane) (Bellance et 

al., 2009). These complexes are NADH ubiquinone oxidoreductase (complex I), succinate 

ubiquinone oxidoreductase (complex II), ubiquinol cytochrome c reductase (complex III), 

cytochrome c oxidase (complex IV) and ATP synthase (complex V). Each complex is 

composed of multiple subunits which are encoded by either the mtDNA or the nuclear 

genome. The only exception to this is complex II, whose subunits are entirely transcribed 

from the nuclear genome.  This chemical energy 'production line' is intrinsically linked to the 

Krebs cycle located within the mitochondrial matrix. The Krebs cycle produces cofactors 

known as Reduced Nicotinamide Adenine Dinucleotide (NADH2+H+ ) and Reduced Flavin 
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Adenine Dinucleotide (FADH2) and these molecules are oxidised when they interact with 

complexes I and II, respectively. The donated electrons are transported along the 

mitochondrial OXPHOS chain by coenzyme Q10 and cytochrome c and protons are pumped 

across the intermembrane space to generate an electrochemical gradient. This proton gradient 

is employed by ATP synthase (complex V) to generate ATP from the constituents’ adenosine 

diphosphate ADP and inorganic phosphate Pi (Figure 1-19). 
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Figure 1-19 The mitochondrial respiratory chain complexes. 

Reproduced from Nijtmans et al., 2004 

 

1.6.12  Complex I: NADH ubiquinone oxidoreductase 

Complex I is an L-shaped multiprotein structure composed of 47 subunits and is the largest 

complex of the OXPHOS system with a molecular weight of 980kDa. The hydrophobic 

components of this complex are embedded in the IMM while the hydrophilic arm extends into 

the mitochondrial matrix (Grigorieff, 1999). The subunits which compose this structure are 

composed of 7 mitochondrial and 40 nuclear encoded proteins which are shuttled and 

imported into the mitochondrion. The complex contains the co-enzyme Flavin 

mononucleotide (FMN) and up to nine iron sulphur clusters (Hinchliffe and Sazanov, 2005; 

Koopman et al., 2007). NADH is oxidised to NAD+ at complex I and two electrons are 

transferred to coenzyme Q10 (ubiquinone). Ubiquinone is reduced to ubiquinol and diffused 

within the IMM.  Each molecule of NAD+ is then used to pump four protons across the IMM 

to form an electrochemical gradient (Raha and Robinson, 2000).  
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1.6.13  Complex II: succinate ubiquinone oxidoreductase 

Complex II (succinate-ubiquinone oxidoreductase or succinate dehydrogenase; SDH) is 

unique because it is the only complex to be completely composed of nuclear encoded 

subunits. Structurally, it is the smallest complex and is constructed of only four subunits. 

Subunits A (73KDa) and B (27KDa) are hydrophilic with subunit A containing a covalently-

bound flavin adenine dinucleotide coenzyme and subunit B with three iron-sulphur clusters 

(Hatefi and Galante, 1980; Lancaster and Kroger, 2000). The remaining subunits C and D 

contain heme groups. Similar to complex I, it produces electrons through the process of 

oxidation to reduce ubiquinone to ubiquinol. These electrons are derived from succinate 

which is oxidised to fumarate at the FAD coenzyme and transferred by the iron-sulphur 

clusters to ubiquinone. However unlike complex I, this oxidation process in not accompanied 

by proton transfer. 

 

1.6.14  Complex III: ubiquinol cytochrome c reductase 

Complex III has a dimeric structure and is composed of eleven subunits. Ten are nuclear 

encoded while a single subunit, cytochrome b, is mitochondrial. Three subunits of this 

complex, cytochrome b (which contains two haem groups), cytochrome c1 (with a covalently 

bound haem c) and an iron-sulphur protein (Rieske protein) are components of a functional 

catalytic core known as the cytochrome bc1 complex (Yu et al., 1999). The primary function 

of complex III is to transfer electrons to cytochrome c through a series of oxidation/reduction 

reactions of ubiquinol and ubiquione in a mechanism known as the Q cycle (Mitchell et al., 

1976). This occurs in conjunction with protein pumping across the IMM which establishes an 

electrochemical gradient (Acin-Perez et al., 2004). 

 

1.6.15 Complex IV: cytochrome c oxidase 

Complex IV (cytochrome c oxidase; COX) is composed of thirteen subunits and is a soluble 

haemoprotein structure with a molecular weight of 204kDa. Ten subunits are nuclear encoded 

while the remaining three are mitochondrial (COX1, COXII and COXIII). It is the terminal 

electron acceptor of the OXPHOS system (Kadenbach et al., 1983). The complex spans the 
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inner membrane facing both the mitochondrial matrix and the IMS. It contains two copper 

centres (CUA and CUB) and two heme groups (cytochrome a and a3). Cytochome a3 and CUB 

create a binuclear centre required for the reduction of molecular oxygen to water. This process 

occurs by the transfer of electrons from cytochrome c to this binuclear centre which reduces 

oxygen. Two protons are transferred to this reduced oxygen molecule to form water. In 

conjunction with this process, four additional protons are translocated across the IMM 

forming an electrochemical gradient (Saraste et al., 1999). 

 

1.6.16 Complex V: ATP synthase 

Complex V (F0F1-ATP synthase) is composed of seventeen different subunits and has an 

approximate molecular weight of 500kDa (Von Ballmoos et al., 2009) Fifteen of these 

subunits are nuclear encoded while two are mitochondrial (ATP6 and ATP8) (Boyer, 1997) 

The ATP synthase complex is composed of two primary structures, the F0 motor which is 

located in the IMM and the F1 motor, a structure with a catalytic domain located in the 

mitochondrial matrix. F1 is a cylindrical structure derived from α, β, γ ,δ and ε subunits in an 

α3β3γε stoichiometry (Abrahams et al., 1994; Yoshida et al., 2001). Alternative α and β 

subunits form a cylinder bounding the γ subunit. The F0 motor has an a1b2c12 stoichiometry 

with c subunits forming a cylindrical structure and bounded by a and b subunits. The F0 and 

F1 motors are connected by a ring of subunit c which links the γ subunit through mutual 

contacts with ε subunit. Together these F0 and F1 moieties of ATP synthase form a rotor-stator 

model where protons are translocated along the cylindrical F0 structure which acts as a 

channel through the mitochondrial membrane and turns this F0 motor (Gibbons et al., 2000; 

Ko et al., 2000). These protons are generated through the electrochemical gradient established 

by complexes I, III and IV. Rotation of the F0 motor subsequently rotates the catalytic F1 

motor which binds ADP and Pi and generates ATP (Kayalar et al., 1977). 
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1.7 Mitochondrial dynamics 

Mitochondrial dynamics is a term describing the fusion and fission processes which occur 

between intracellular mitochondrial organelles. These dynamic processes mediate a broad 

variety of cellular functions. These functions include the maintenance of the mitochondrial 

genome, adaptation to extracellular stress, localizing mitochondria in areas of high energy 

demand, regulation of programmed cell death and calcium buffering between the endoplasmic 

reticulum and the mitochondrial compartments. (Ferree and Shirihai, 2012; Mcbride et al., 

2006). 

 

1.7.1 Mitochondrial fusion 

Fusion of adjacent mitochondria involves the coordinated fusion of the OMM and IMM 

(Meeusen et al, 2006; Song et al., 2007). Although these two fusional steps occur 

independently, OMM and IMM fusion usually occur in a synchronous manner through the 

tightly regulated interactions of OPA1 on the IMM, and the mitofusin complex (MFN1 and 

MFN2) on the OMM. OPA1, MFN1 and MFN2 regulate both transient and complete fusion 

of the mitochondrial network. Transient fusion is defined as an event in which only the OMM 

is fused while complete fusion involves both the outer and inner mitochondrial membranes. 

Transient or ‘kiss and run’ fusion is used to distribute mRNAs, small solutes and proteins 

between two mitochondria while complete fusion allows the distribution of both soluble and 

essential components required for mitochondrial survival. 

 

1.7.2  OPA1 

 OPA1 is a nuclear encoded gene of approximately 100kb (30 exons) which lies on 

chromosome 3.  Early linkage association studies mapped OPA1 to a locus at chromosomal 

position 3q28 (Eiberg et al., 1994) and subsequenct studies performed by both Delettre et al. 

and Alexander et al. (2000) identified the OPA1 gene. OPA1 belongs to the dynamin protein 

family and contains a putative conserved GTPase, a middle and GTPase effector domain. It is 

transcribed into eight different mRNA species which are alternatively spliced at exons 4, 4b 
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and 5b and translated by cytosolic ribosomes into OPA1 precursor (Figure 1-20). These 

OPA1 transcripts are constitutively expressed in all human tissues but are mostly abundant in 

heart, brain, testis, retina and muscle (Alexander et al., 2000). 

Downregulation of OPA1 protein levels caused by mutations or RNAi knockdown can 

result in mitochondrial network fragmentation (Griparic et al., 2004; Olichon et al., 2003) 

Knockdown of OPA1 to suboptimal levels (i.e. haploinsufficiency) can disrupt the formation 

of a stable fusion complex with MFN1 and MFN2, an essential step necessary for both 

transient and complete mitochondrial fusion (Cipolat et al., 2004). More recently, 

experimental data has emerged showing that OPA1 level is a critical factor in the formation 

and stability of mitochondrial respiratory chain complexes I, II and III. Reduced OPA1 levels 

or aberrant mutant proteins can therefore disrupt OXPHOS, leading to protein leakage as well 

as loss of mitochondrial membrane potential (Zanna et al., 2008). 

 

1.7.3 Proteolytic processing of OPA1 

The OPA1 precursor is targeted to the mitochondrial compartment by a mitochondrial 

targeting sequence (MTS) at the N-terminus which is cleaved upon import  by the matrix 

metalloprotease mitochondrial processing pepsidase (MPP) to produce the long isoform of 

OPA1 (L-OPA1) (Olichon et al., 2002; Satoh et al., 2003). L-OPA1 is embedded in the IMM 

and it is further processed by three additional proteases to produce OPA1 protein isoforms 

(Figure 1-20). These proteases target conserved S1 and S2 cleavage sites located at exons 5 

and 5b, respectively (Figure 1-21). The rhomboid protease PARL and the (matrix-AAA 

protease) mAAA-protease paraplegin cleave OPA1 at S1 (Cipolat et al.,2006; Ishihara et al., 

2006) and the (intermembrane-AAA protease) i-AAA protease YME1L cleaves OPA1 at S2 

site (Song et al., 2007) to produce short isoforms of OPA1 (S-OPA1). OMA1 also cleaves 

OPA1 at the S1 site under basal conditions but as it is an inducible protease, it can upregulate 

cleavage at this site and promote mitochondrial fission. Both long and short isoforms of 

OPA1 are localised to the IMS and are required for proper mitochondrial fusion to take place. 

It is thought that L-OPA1 is anchored to the IMM while the S-OPA1 is only peripherally 

associated with the IMM and can diffuse through the IMS to the OMM (Olichon et al., 2002; 

Satoh et al., 2003; Griparic et al., 2004; Ishihara et al., 2006; Ciplolat et al., 2006).  
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Figure 1-20 Eight isoforms of OPA1 generated through alternative splicing at S1 and S2.  

Reproduced from Song et al., 2007 
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Figure 1-21 Schematic of the structure of the Opa1 gene containing exons 1-30 inclusive 

of exons 4b and 5b.  

The structure of Opa1 is similar to other dynamins and contains a GTPase domain (exons 7-

15), middle domain (exons 16-25) and a GTPase Effector domain (exons 27-28). S1 and S2 

are proteolytic cleavage sites for paraplegin, OMA1 and YME1L required to produce mature 

Opa1 mRNA transcripts. OPA1 also contains a mitochondrial importer sequence (MIS), a 

carboxy-terminal coiled coil domain (Cc), a transmembrane domain (TM1) and an amino-

terminal CC which is present on all eight isoforms of OPA1. Reproduced from Landes et al., 

2010. 

1.7.4 - OPA1 processing and OXPHOS 

The balance between mitochondrial fusion and fission is tightly regulated by these long and 

short OPA1 isoforms. The metalloproteases YME1L and OMA1 alter the cleavage pattern of 

OPA1 depending on the efficiency and rate of ATP production through the OXPHOS system 

(Mishra et al., 2014; Anand et al., 2014).  

OMA1 is a metalloprotease responsible for cleaving OPA1 at the S1 site to produce 

short isoforms of OPA1 (S-OPA1). It is tuned to the electrochemical gradient produced 

through proton pumping of complexes I, III and IV. If this electrochemical potential is 

significantly decreased which may occur due to a defect in the rate of ATP production along 

OXPHOS, OMA1 is upregulated to enhance cleavage of OPA1 at the S1 site. This proteolytic 

processing of OPA1 produces an abundance of S-OPA1 isoforms which is thought to promote 

mitochondrial fragmentation (Anand et al., 2014).  
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In a study to examine of the mechanism of OPA1 cleavage by YME1L, Mishra and 

colleagues (2014) demonstrated that cleavage of OPA1 at the S2 site was tuned to OXPHOS 

activity. This cleavage mediates IMM fusion and proposes a mechanism in which metabolic 

signals may trigger differential cleavage of OPA1 and regulate IMM fusion. OMM fusion was 

not found to be triggered through cleavage of OPA1 by YME1L. The short (S2-OPA1) 

isoforms generated by YME1L may work in concert with long isoforms of OPA1 (L-OPA1) 

to promote this fusion, however this requires further investigation (Mishra et al., 2014). 

Interestingly, inhibition of ATPase activity to hyperpolarise the IMM demonstrated that 

YME1L activity is not tuned to the electrochemical gradient of OXPHOS as a measure of 

OXPHOS activity. Preliminary evidence indicates that YME1L may instead directly interact 

with subunits of ATPase (Stiburek et al., 2012).  

Additional studies also found that cells with primary defects of the OXPHOS system 

had a lower capacity to upregulate YME1L and promote IMM fusion (Mishra et al., 

2014).The mechanism of how these metalloproteases mediate metabolic signalling and 

mitochondrial dynamics is still under intense investigation. 

 

1.7.5 OPA1 processing and mitochondrial fragmentation 

Studies investigating the role of OMA1 and YME1L found no morphological difference in 

mitochondria between wild type and OMA1-/- primary mouse embryonic fibroblasts (Anand et 

al., 2014). However, investigation of YME1L-/- primary mouse fibroblasts produced excessive 

fragmentation of the mitochondrial network. Similar levels of L-OPA1 were detected in wild-

type and YME1L -/- cells. This would suggest that upregulation of OMA1 cleavage at the S1 

site promotes mitochondrial fragmentation which is supported by in vitro localisation studies. 

These studies suggest that S-OPA1 and L-OPA may form punctuate structures which 

colocalise with fission machinery and mitochondrial-ER contact sites (Anand et al., 2014). 

OMA1 may respond to both a transient decrease of IMM potential to cleave OPA1 

during the rapid depolarisation of a mitochondrial fission/fusion event and it may respond to a 

more chronic decrease in IMM potential due to impaired OXPHOS. This cleavage of OPA1 

serves to inhibit fusion and isolate damaged mitochondria from the network. These 

mitochondria are then targeted for destruction by the mitophagic quality control mechanism. 
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1.7.6 OPA1 and apoptosis  

The majority of OPA1 protein (~90%) localises to the cristae junctions on the IMM and is 

thought to play a structural role in maintaining the shape and organisation of these cristae 

folds (Perkins et al., 2009). OPA1 isoforms containing exon 5b are likely involved in the 

sequestering of cytochrome c in these specialised IMM folds. OPA1 is proposed to form an 

oligomeric complex at cristae junctions which may act as a dam and prevent the passage of 

large proteins and macromolecules (Perkins et al., 2009). Disruption of these oligomeric 

OPA1 complexes facilitates the widening of cristae junctions. But electrostatic interaction 

between cardiolipin and cytochrome C within the IMM prevents cytochrome C’s release 

(Rytomaa and Kinnunen, 1995; Rytomaa et al., 1992; Tuominen et al., 2002). tBID has been 

observed to associate with cardiolipin on the IMM to produce condensed mitochondria, 

reversing the curvature of cristae membranes at contant sites which may facilitate cytochrome 

C release (Gonzalves et al., 2005; Kuwana et al., 2002; Lutter et al., 2000). Disruption of 

these regulatory mechanisms unsurprisingly leads to increased rates of apoptotic cell death 

(Olichon et al., 2007) (Figure 1-22). 
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Figure 1-22 Maintenance of cristae junctions on the IMM is facilitated by OPA1 which 

aids in sequestering cytochrome c. 

Reproduced from Ramonet et al., 2013. 

 

1.7.7  OPA1 and mtDNA maintenance 

OPA1 is classified as a nuclear gene associated with mtDNA stability. Pathogenic variants in 

OPA1 have been shown to disrupt the stead-state of mtDNA through either a depletion of 

mtDNA as seen in an OPA1 mouse model with late-onset cardiomyopathy (Chen et al., 

2012), proliferation of mtDNA (Sitarz et al., 2012; Yu-Wai-Man et al., 201b) or multiple 

mtDNA deletions (Hudson et al., 2008) in human patients. Recent studies investigating the 

mechanistic link between OPA1 and mtDNA maintenance has found that OPA1 isoforms 

which contain exon 4b are involved in anchoring the mitochondrial nucleoid to the IMM 

(Elachouri et al., 2011). Anchoring the nucleoid is required to replicate mtDNA and is 

reminiscent of the chromosome replication mechanism found in bacteria (Thanbichler and 

Shapiro, 2006). Interestingly, YME1L which is linked to IMM fusion and OXPHOS by 

cleaving OPA1 is also responsible for producing the mature OPA1 exon 4b-containing 

isoform to facilitate mtDNA replication (Elachouri et al., 2011; Anand et al., 2014; Mishra et 

al., 2014; Kukat et al, 2011). 
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1.7.8 Mitofusins 

MFN1 and MFN2 both contain GTPase functional domains required for the fusion of the 

OMM. These proteins share approximately 60% homology and their structure is also highly 

complementary with that of OPA1 (Figure 1-23). Both MFN1 and MFN2 form multimeric 

complexes with OPA1 to regulate complete fusion (Chen et al., 2003). MFN2 regulates other 

cellular functions in addition to mitochondrial fusion. More recently MFN2 was observed to 

also be localised to the endoplasmic reticulum (ER) where it regulates ER morphology. Since 

MFN2 is located on both the ER and the mitochondrion, it is involved in the tethering of these 

two structures with each other. MFN2 plays a fundamental role in calcium homeostasis and is 

also involved in the maintenance of cellular glucose levels. Other functions of MFN2 include 

regulation of the OXPHOS system by influencing the expression of the respiratory chain 

subunits and maintenance of the mitochondrial genome (Sitarz et al., 2012; Rouzier et al., 

2012). 

 

 

 

 

 

 

 

 

Figure 1-23 Depiction of the conserved structures found in MFN proteins and their 

respective functions.  

Reproduced from Santel, 2006.  
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1.7.9 Mitochondrial fission 

Mitochondrial fission is regulated by Dynamin related protein 1 (DRP1) and this key protein 

is recruited from the cytosol by human Fission 1 protein (hFIS1) and mitochondrial fission 

factor (MFF). hFIS1, which is located on the outer mitochondrial membrane, forms a complex 

with DRP1 at sites of mitochondrial fission (Loson et al., 2013). A spiral of DRP1-hFIS1 

complexes wrap around these sites to trigger mitochondrial fission. To ensure complete 

mitochondrial fission, fusion must be downregulated at the same time and this is achieved by 

cleavage of the long form of OPA1 (Olichon et al., 2007). 

 

1.7.10 Mitochondrial quality control  

The mitochondrial quality control system employs a number of different and sophisticated 

strategies to maintain cellular homeostasis in the reticulum. These strategies include local 

quality control mechanisms such as regulating mitochondrial protein stability through 

proteases such as AFG3L2 and paraplegin which remove unstable N-terminal residues, 

effectively stabilising mitochondrial proteins and other more global mechanisms which 

regulate the mitochondrial dynamic machinery to identify and remove dysfunctional 

mitochondria from the cellular network (Rugarli and Langer, 2012).  

OPA1 is involved in many mitochondrial processes such as mitochondrial dynamics, 

replication of the mitochondrial genome, OXPHOS, maintenance of cristae structure and 

sequestering of cytochrome c (Olichon et al., 2003; Elachouri et al., 2011; Zanna et al., 2008; 

Cogliati et al., 2013; Ramonet et al., 2013). Its role in many of these processes make it a 

prime candidate for involvement in mitochondrial quality control. OPA1 has been shown to 

be regulated by a sophisticated cascade of proteases such as paraplegin, AFG3L2, PARL, 

OMA1 and YME1L (Section 1.7.3-1.7.5), which can alter the ratio of long and short isoforms 

and as a consequence, bias the mitochondrial network toward increased fission or fusion.  

The role of mitochondrial dynamics in cellular quality control and homeostasis is 

highlighted through pathological conditions such as Parkinson and Alzheimer diseases which 

display increased fragmentation of the mitochondrial network promoting mitochondrial 

autophagy (mitophagy) and apoptosis (Rugarli and Langer, 2012). Furthermore, events such 

as mitochondrial fission are tightly coupled with mitosis to maintain an adequate number of 
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mitochondria for cellular functioning in daughter cells. These observations suggest that 

regulators of mitochondrial dynamics are themselves maintained by cellular homeostatic 

pathways. 

 

1.7.11 Mitochondrial autophagy  

Mitophagy and apoptosis serve as additional quality control mechanisms under a persistent 

stress. Selective mitophagy is a mechanism which specifically isolates and targets damaged 

mitochondria for degradation in cellular lysosomes (Ding and Yin, 2012). Depolarisation of 

the mitochondrial membrane is an important trigger for the detection of dysfunctional 

mitochondria (Rodriquez-Enriquez et al., 2006). In healthy mitochondria, membrane potential 

is maintained by an active OXPHOS system which produces cellular ATP. Pathogenic 

variants in mtDNA can compromise the OXPHOS system by disrupting the production of 

OXPHOS protein subunits. This can lead to decreased activity of the OXPHOS system and 

reduced membrane potential Gilkerson et al., 2012.  

Reduced potential can trigger a mechanism of selective mitochondrial degradation 

which involves both the regulators of mitochondrial fission and fusion dynamics. As 

mentioned in Section 1.7.4, OPA1 can be selectively cleaved at the S1 position by OMA1, a 

protease recruited through reduced mitochondrial membrane potential. This cleaves L-OPA1 

and helps to inhibit mitochondrial fusion. In this manner, the damaged organelle is isolated 

from the mitochondrial network (Anand et al., 2014; Twig and Shirihai, 2011).  

Concurrently, a second mechanism specifically targets these dysfunctional 

mitochondria for degradation. PTEN-induced putative kinase 1 (PINK1) and PARKIN are 

mediators of targeted mitochondrial degradation (Figure 1-24). PINK1 normally is 

sequestered to the mitochondrial outer membrane where it is degraded by PARL (Jin et al., 

2010). Upon collapse of membrane potential, this degradation is obstructed and PINK1 

accumulates on the outer mitochondrial membrane where it phosphorylates OMM proteins. 

Phosphorylated MFN2 acts as a receptor for an E3-ubiquitin ligase known as PARKIN, which 

is recruited to the outer membrane and proceeds to ubiquinate outer mitochondrial membrane 

proteins in a non-selective manner (Jin et al., 2010). Ubiquinated proteins on the outer 

membrane attract autophagosomes which begin the process of mitophagy. Dysfunctional 
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mitochondria are consumed by autophagosomes and transported to lysosomes where they are 

degraded and their constituent components recycled.  

 

 

 

 

 

 

 

 

 

Figure 1-24 Schematic illustrating the mechanism of PINK1/PARKIN in mitophagy  

After membrane fission, daughter mitochondria both maintain an optimal membrane potential 

subsequent to depolarisation and can fuse with other organelles of the mitochondrial 

reticulum or there is membrane potential collapse due to a defective OXPHOS system. This 

triggers the sequesterisation of OMA1 into the IMM to cleave L-OPA1 and inhibits further 

mitochondrial fusion. Concurrently PINK1 is allowed to accumulate on the OMM and 

phosphorylate MFN2 which acts as a receptor for PARKIN, a protein ubiquitinator. 

Ubiquitination of OMM proteins signals for organelle degradation through autophagy and 

mitochondria are transported to and degraded by cellular lysosomes. Reproduced from Kubli 

and Gustafsson, 2012. 
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1.7.12 Mitochondrial dynamics and apoptosis 

Mitochondrial fission plays a significant role in cell death pathways. It occurs in concordance 

with disrupted cristae structure along the IMM, release of numerous pro-apoptotic factors:  

cytochrome c, SMAC/DIABLO HtrA2/omi and permeabilisation of the mitochondrial 

membrane. These events evoke a response from the CASPASE family to trigger apoptotic cell 

death. The mitochondrial apoptotic pathway involves both anti (BCL-2) and pro apoptotic 

(Bax, Bak) mediators which have roles in regulating mitochondrial morphology (Figure 1-

25). Pro-apoptotic proteins Bax and Bak inhibit MFN2 leading to a bias towards 

mitochondrial fragmentation (Karbowski et al., 2006) These mediators have also been found 

to colocalise with DRP1 on the OMM at sites of mitochondrial fragmentation (Karbowski et 

al., 2002). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-25 Mechanism of apoptotic cell death triggered by mitochondrial dysfunction.  

Reproduced from Czabotar et al., 2014. 



 

59 

    

1.7.13 Stress induced mitochondrial hyperfusion  

The current mitochondrial dynamic model for adapting cellular homeostasis to metabolic 

demand suggests that under acute stress or nutrient deprivation, the mitochondrial network 

will undergo stress induced mitochondrial hyperfusion (SIMH). This process increases 

mitochondrial fusion through inactivation of DRP1 by protein kinase A which phosphorylates 

DRP1 at residue Ser637 and acts to inhibit GTPase activity. This serves to downregulate 

mitochondrial fission. Concurrently the prohibitin-related protein SLP-2 interacts with OPA1 

to prevent stress-induced cleavage of OPA1 long isoforms. (Tondera et al.,2009). The 

involvement of SLP-2 appears to be a requisite for SIMH and the mechanism of how it 

prevents stress-induced cleavage by OMA1 is under current investigation. It is hypothesised 

that the mitochondrial dynamic fusion machinery is upregulated, however the mechanism of 

this upregulation is currently unknown.  

Increased SIMH is believed to act as a transient cellular protective mechanism and 

current research is focused on the relationship between apoptosis, mitophagy and 

mitochondrial fusion (Tondera et al., 2009). Several mechanisms have been put forward to 

explain the protective effects of SIMH, namely: 

(i) Fusion of the mitochondrial network to inhibit mitophagy.  

Increasing fusion between mitochondria in the network serves to block their engulfment by 

autophagosomes and their subsequent delivery to lysosomes for degradation and recycling of 

constituent components.  

(ii) Increased fusion to promote mitochondrial content-mixing. 

Increasing the fusion between mitochondrial organelles results in the distribution of proteins, 

RNA, lipids and mtDNA within the reticulum. This may help to ‘buffer’ mitochondrial 

organelles which have damaged components which may otherwise ultimately lead to 

dysfunctional ATP production through OXPHOS.  

(iii) Increased fusion as a response to other cellular protective pathways 

Recent research also suggests that mitochondrial dynamics and anti-oxidant gene expression 

are coupled. This idea is exemplified through the stabilisation of nrf2 under conditions of 

oxidative stress (Ma, 2013) Nrf2 is a transcription factor which upregulates anti-oxidant 
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defences such as superoxide dismutase and glutathione associated protective enzymes. This 

may serve to decrease cellular damage and return the morphology of the mitochondrial 

network from a hyperfused state to more normal homoeostatic fission/fusion dynamics. 

 Chronic stress of the mitochondrial network would ultimately lead to a loss of SIMH 

and increased fragmentation due to the accumulation of damaged organelles or depolarisation 

of the mitochondrial membrane. Whether this fragmentation would lead to mitochondrial 

clearance through mitophagy or cellular apoptosis would depend on the nature and duration of 

the stress.  

 

1.8 Mechanism of Nonsense-Mediated Decay 

Eukaryote cells contain a tightly regulated control quality system against error-prone DNA 

expression to limit the effects of misfolded proteins due to pathogenic mutations. During 

transcription, pre-mRNA is first transcribed by polymerase II to form a messenger 

ribonucleoprotein complex. This pre-mRNA is processed into mature mRNA through a series 

of steps. A 5’-m7GpppN cap and a poly(A) tail are attached to protect the mRNA from 

degradation. Other factors also contribute to protect mRNA from degradation such as the 

CBC (CBP80-CBP20) complex at the 5’ cap and PABPN1 and PABPC1 at the poly(A) tail. 

Pre-mRNA is composed of both exons and introns and these introns must be spliced out by 

the exon junction complex (EJC) to form alternative isoforms. Splicing factors play an 

important role in isoform specific nonsense-mediated decay (NMD). Intron-less isoforms are 

invulnerable to NMD.  

Translation begins when one or more ribosomes bind to these ribonucleoprotein 

complexes and the CBC is replaced by a translation initiation factor. Degradation of mRNA 

by the NMD mechanism occurs at the first round of translation during ribosome stalling. This 

stalling occurs if there is a truncation 50-55 nucelotides upstream of an exon junction 

complex (EJC) bound region. The truncated site is positioned at the ribosomal ‘A’ site where 

it is bound by the NMD SURF (SMG1-UPF1-Erf1-Erf3) complex (Schweingruber et al., 

2013). This triggers a process to detach the ribonucleoprotein complex from the ribosome and 
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prevent further translation (Figure 1-26). The ribonucleoprotein complex is subsequently 

degraded by SMG5-7, XRN1 and the exosome complex. 

One of the factors that contribute to clinical variability is the position dependent 

mechanism of NMD. If a frameshift or nonsense variant occurs 5’ of the NMD detection 

boundary, the ribonuceoprotein complex is subsequently degraded preventing the expression 

of the mutated allele. In the case of heterozygous mutations, haploinsufficiency could result in 

a milder clinical phenotype. However, if a pathological variant lies 3’ to this detection 

boundary, it is not recognised by the NMD machinery, resulting in a possible dominant-

negative effect and a more severe clinical phenotype.  

 

 

 

Figure 1-26 Schematic diagram of SURF complex assembly upsteam of the exon 

junction complex (EJC).  

The EJC inhibits translation of the faulty mRNA and subsequently leads to its degradation by 

the exosome complex. Reproduced from Schweingruber et al., 2013. 
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1.9 Mitochondrial Disease Mechanisms in OPA1-related DOA 

1.9.1 Disturbance of the mitochondrial network 

As described in Section 1.7 OPA1, MFN1 and MFN2 are primary regulators of mitochondrial 

fusion in the reticulum. Therefore, it is not surprising that pathogenic mutations in these genes 

can give rise to disturbed mitochondrial dynamics. In patient tissue, the pathological hallmark 

of OPA1 and MFN2 mutations is a striking fragmentation of the mitochondrial reticulum. 

Pathological variants in OPA1 also result in disrupted cristae along the IMM and proapoptotic 

calcium and cytochrome c release. 

 

1.9.2 Bioenergetic dysfunction 

 OXPHOS is tightly regulated by mitochondria in the production of ATP which produces 

most in vivo energetic requirements (Yu-Wai-Man, 2009). OPA1 pathological variants have 

been described in the context of OXPHOS dysfunction. OPA1 has been shown to directly 

interact with OXPHOS complexes (Zanna et al., 2008; Cogliati et al., 2013). This interaction 

was hypothesised to facilitate structural stability of the OXPHOS system. It may be possible 

that deleterious mutations which affect the stabilisation of these OXPHOS complexes, such as 

those found in DOA may cause exasperated proliferation of mtDNA to account for this 

structural instability. Although proliferation of mtDNA has been noted in DOA, the precise 

sensing mechanisms responsible for mtDNA steady state remain to be investigated.   

Studies have identified impairment of complex activity although conflicting reports 

point to either a complex I or COX deficiency (Amati-Bonneau et al., 2005; Chevrollier at al., 

2008). This decrease in activity has been observed in conjunction with a decrease in 

membrane potential due to proton leakage and increased fragmentation of the mitochondrial 

reticulum (Amati-Bonneau et al., 2005). This deficit in OXPHOS appears to disrupt the rate 

of ATP synthesis but does not culminate in a significant decline of gross ATP level in patient 

fibroblasts (Zanna et al., 2008; Amati-Bonneau et al., 2005). Compensatory mechanisms may 

contribute to maintaining a steady state of ATP such as mtDNA proliferation.  

Severe bioenergetic defect culminating in apoptotic cell death may be tissue specific. 

RGCs require a higher level of ATP synthesis and may be more susceptible to this deficit in 
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ATP production contributing to optic nerve degeneration. However dysfunction of the 

OXPHOS system alone cannot explain the increased susceptibility of the optic nerve. 

Preliminary evidence suggests that OPA1 isoforms directly interact with complexes of this 

pathway. Dysregulation of OPA1 may alter complex assembly and stability although further 

research is required (Zanna et al., 2008).  

 

1.9.3 Oxidative stress 

Elevated ROS production secondary to pathogenic variants in OPA1 and dysfunction of the 

OXPHOS system may further contribute to apoptotic cell death of RGCs. Investigation of 

pathogenic homozygous OPA1 generated through somatic mutagenesis in a drosophila model 

(dOPA1), demonstrated a significant rise in ROS which may have deleterious consequences 

for mitochondrial components and contribute to an already compromised subcellular 

environment (Tang et al., 2009). Enhanced mitochondrial fragmentation and an ommatidial 

phenotype was also noted in this model. Other models of OPA1 dysfunction have also noted 

an increase in ROS production, most noticeably in a OPA1 mouse model with late onset 

cardiomyopathy and primary lymphoblast lines (Chen et al., 2012; Kao et al., 2015). 

 

1.9.4 MtDNA instability 

The mitochondrial genome is packaged into nucleoids contained within the mitochondrial 

matrix. These nucleoids are associated with several proteins involved in mitochondrial DNA 

replication which include POLG, TWINKLE, the mtSSB, ligase proteins and topoisomerases 

(Gilkerson et al., 2013). Under mtDNA maintenance dysregulation conditions, mtDNA can 

either be depleted (Kim et al., 2005; Chen et al., 2012) or proliferated due to clonal expansion 

of deleterious mtDNA molecules; both states have a detrimental effect on the OXPHOS 

system (Hudson et al., 2008; Amati-Bonneau et al., 2005). This biochemical defect can be 

demonstrated diagnostically through the use of COX-SDH staining of patient muscle tissue. 

COX/SDH (cytochrome c oxidase)-negative muscle fibres which harbour high levels of 

mtDNA deletions are stained blue as opposed to the characteristic brown stain of non-

OXPHOS compromised tissue.  
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Patients with DOA have a marked increase in deleterious mtDNA molecules which 

have been identified in skeletal muscle biopsies (Yu-Wai-Man et al., 2010b). This observation 

may indicate that these mutations contribute to the clinical phenotype of DOA. Strikingly, the 

number of COX negative fibres in DOA+ patients was over four times higher than in pure 

optic atrophy which may indicate the importance of deleterious mtDNA proliferation in multi-

systemic disease (Yu-Wai-Man et al., 2010b).  

 

1.9.5 Calcium homeostasis 

Interaction between the endoplasmic reticulum and the mitochondrion has been a recent hot 

topic of interest. Recent investigation has highlighted signalling pathways at these interfaces. 

Most of the intracellular calcium is buffered either within the ER or the mitochondrion 

(Romagnoli et al., 2007). Mitochondria-associated membranes (MAMs) are sub-domains of 

the ER which are responsible for creating microenvironments for lipid and calcium flux 

between these two cellular compartments (Giorgi et al., 2015). This process is regulated by 

the mitochondrial calcium uniporter (MCU) and mitochondrial calcium uptake protein 1 

(MICU1). Calcium performs a variety of functions which include intracellular signalling, 

engagement and facilitation of apoptosis and a response to neurotransmitter excitotoxicity.  

Deleterious mutations in OPA1 and MFN2 have been shown to disrupt the machinery 

within these MAMs which highlight the importance of mitochondrial profusion regulators in 

calcium homeostasis and lipid biosynthesis (Dayanithi et al., 2010; Singaravelu et al., 2011; 

Kushnareva et al., 2013). Both calcium flux and storage within the ER and mitochondrion 

buffer the cell against calcium spiking which may promote apoptotic cell death. Disruption of 

this process, especially in the optic nerve which is also susceptible to glutamate excitotoxicity 

may sensitise RGCs to degeneration (Kushnareva et al., 2013). Mutations in mtDNA 

associated with complex I or COX are also known to disrupt this calcium homeostasis and 

may possibly contribute to DOA pathogenesis through dysfunction of OXPHOS (Trevelyan et 

al., 2010) in RGCs. 
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1.10 Overlapping Disease Mechanisms Leading to RGC Loss 

The optic nerve is composed of 1.2 million retinal ganglion fibres and is a susceptible target 

of degeneration due to pathological primary or secondary mitochondrial variants present in 

optic neuropathy. Both structural and biochemical parameters contribute to this predilection 

for RGC death (Maresca et al., 2013). The distribution and structure of RGCs are not 

homogenous throughout the retina. Smaller RGCs containing shorter axons and dendritic 

fields are located near the fovea and the papillomacular bundle (PMB) consists of densely 

packed parvocellular (P) and magnocellular (M) RGC subtypes. The density of RGCs 

decreases peripherally and there is a concomitant increase in axonal size. Both the density and 

the anatomical structure of RGCs might be relevant to the high prevalence of optic 

neuropathy in patients with mitochondrial disease. A relatively small axon could impose 

physical constraint on mitochondrial motility, which is a vital mechanism for transporting 

these organelles from the RGC soma where they undergo biogenesis, to more energetically 

dependent areas of the axon. RGCs are typically sheathed with myelin posterior to the lamina 

cribosa which have efficient saltatory conduction.  Unmyelinated axons require a greater 

concentration of mitochondrial organelles to facilitate conduction velocities and as a 

consequence may present a structural vulnerability, particularly for mitochondrial dysfunction 

(Carelli et al., 2004; Andrews et al., 1999; Bristow et al., 2002). These smaller RGCs within 

the PMB are also preferentially lost due to the limited mitochondria energy reserve of these 

smaller axons (Pan et al., 2012; Ross-Cisneros et al., 2013). However these reasons alone do 

not completely explain RGC susceptibility to apoptotic cell death. 
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Figure 1-27 Depiction of capillaries and mitochondrial abnormalities present in a LHON 

patient with the m.11778G>A mtDNA mutation.  

(A) Optic nerve head capillaries in a healthy control; (B) Disruption of optic nerve head 

capillaries and mitochondrial proliferation; (C) Swollen cristae indicative of a metabolic 

mitochondrial defect. Reproduced from Carelli et al., 2009. 

 

Additional observed structural abnormalities include edematous appearance of surrounding 

nerve fibres and tortuous and often enlarged vessels (Nikoskelainen et al., 1982). Upon 

examination of the visual field, there is usually a caecocentral scotoma and limited but 

variable peripheral vision (Carelli et al., 2004; Yu-Wai-Man et al., 2011). This finding is 

highlighted through histopathological investigation showing a severe loss of central RGCs 

with cell sparing in the ocular periphery. Other common structural features highlight axon 
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degeneration, differential myelin thickness, proliferation and build-up of swollen 

mitochondria in the post-laminar ocular area (Figure 1-27). Cytoskeletal condensation and 

debris are also observed. These characteristics are suggestive of a progressive low-grade optic 

degeneration. Unusually, histopathological investigation also demonstrated sparing of 

melanopsin RGCs in both classical paradigms of optic neuropathy, LHON and DOA, 

however the reason for this has yet to be investigated (Sitarz et al., 2012).  

 The precise biochemical mechanisms that lead to optic degeneration have not yet been 

clarified. Unfortunately, research in this area has been limited by the lack of human tissues 

and the inability to study the optic nerve directly. The investigation of factors leading to RGC 

loss has primarily been limited to the use of both cell and animal models. Typical biochemical 

parameters that contribute to classical models of optic neuropathy include a dysfunction of 

OXPHOS-driven ATP synthesis, enhanced ROS production and sensitivity to excitotoxic 

stimuli. Investigation of OXPHOS dysfunction and how it may lead to degeneration of the 

optic nerve is still an active area of research (Yu-Wai-Man et al., 2011; Barbiroli et al., 1995; 

Loiseau et al., 2007; Amati-Bonneau et al., 2005; Chevrollier et al., 2008). Current 

hypotheses include a prolonged decrease of ATP synthesis which may compromise high-

intensive energy dependent tissue such as RGCs in the optic nerve (Zanna et al., 2008). This 

hypothesis is partially supported by in vitro investigations of DOA showing a consistent 

defect in the rate of ATP synthesis due to either decreased activity of complex I or IV (Zanna 

et al., 2008; Chevrollier et al., 2008). However, this again, does not fully explain why RGCs 

are particularly susceptible to degeneration, especially considering other tissue with high 

energy demand which remain unaffected (Zanna et al., 2008; Lodi et al., 2004). 

A partial explanation may involve the anterograde-retrograde transport of 

mitochondria from the soma to unmyelinated axonic regions of the RGC (Figure 1-28). It is 

possible that a depletion in OXPHOS ATP could affect this process and interfere with the 

efficiency of synaptic transmission. This point may be particularly important in cells with 

relatively high rate of synaptic firing as seen in RGCs. This is supported by mitochondrial 

clumping, debris and loss of microtubules in spared RGCs shown through histochemical 

staining of LHON tissue (Sadun et al., 1994; Carelli et al., 1999). This suggests that 

dysfunction of axonal transport may be another common biochemical feature of optic 

neuropathy. 
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Figure 1-28 Schematic of mitochondrial anterograde/retrograde signalling mechanism 

required for synaptic transmission in retinal ganglion cells. 

(+) and (-) symbols illustrate the direction of mitochondrila transport along the microtubule 

with kinesin-1 and dyenin motors driving mitochondrial movement along these tubules from 

the RGC Soma alon the axons to regions of high energy demand required for synaptic 

transmission. Ancillary proteins linking kinesin-1 include Milton, Miro and syntabulin which 

are required for kinesin-1 recruitment and local mitochondrial fusion. Reproduced from 

Saxton and Hollenbeck, 2012.  

 

Other common themes associated with OXPHOS dysfunction involve a chronic 

increase in ROS production (ROS). Increased ROS levels contribute to activation of cell death 

pathways and also affect the myelin sheath, specifically the retrolaminar myelinated region of 

the optic nerve. Such effects would culminate in an enhanced susceptibility to pathological 

dysfunction in the papillomacular bundle (PMB).  

A recent LHON mouse model developed by Lin and colleagues successfully 

recapitulated the severe visual deficit of LHON due to a dysfunction of complex I (Lin et al., 

2012). An excess of ROS production, disrupted cristae, mitochondrial proliferation and axon 

swelling were noted. However ATP homeostasis was maintained leading to the conclusion 

that ROS production and oxidative damage was more pertinent to visual failure than a defect 

in ATP synthesis rate, at least for this ND6 P25L model. This observation is contrasted with 

other biochemical assays which demonstrate an impairment of complex I-driven ATP 

synthesis in LHON (Parker et al., 1989; Majander et al., 1991; Carelli et al., 1997; Baracca et 
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al., 2005). Further research is required to clarify these secondary mechanisms and establish 

their contribution to RGC death ‘in vivo’. 

 

1.11 Animal models of inherited optic neuropathies 

Both in vitro modelling of disease pathology and limited access to post mortem patient 

tissue may only provide partial insight into the pathomechanisms for this group of diseases. 

The use of transgenic or pharmacologically treated animal models in tangent with these 

other paradigms can therefore provide a more robust picture of the presentation and 

progression of optic neuropathies. Different animal models have been generated for both 

LHON and DOA.  

In order to mimic the selectivity of RGC degeneration found in LHON, rotenone, an 

inhibitor of OXPHOS complex I, was injected through the murine vitreous and more 

recently, the use of rotenone loaded microspheres which are uptaken into murine RGCs have 

both been used as pharmacological options which recapitulate the selective degeneration of 

the optic nerve (Zhang et al., 2002; Marela et al., 2010). In parallel, a transgenic LHON 

mouse, discussed briefly in Section1.10, with the G14600A mutation, equivalent to the 

human ND6 P25L, has also been generated and presents with common hallmarks of LHON. 

These hallmarks include demyelinating axons, mitochondrial proliferation and degeneration, 

axonal swelling and loss and increased ROS (Lin et al., 2012).  

In DOA, as mentiond in Section 1.3.5, three different truncative OPA1 models have been 

developed which include exons 8 (c.1051C>T) (Davies et al., 2007), intron 10 (c.1065+5 

G> A) (Alavi et al., 2007) and exon 27 (c.2708-2711delTTAG) (Sarzi et al., 2012). These 

models mimic both many of the ocular and extraocular clinical features found in DOA 

patients which include an age –dependent severe ocular nerve degeneration, visual loss, 

deafness, encephalomyopathy, peripheral neuropathy, cardiomyopathy, demylination of the 

optic nerve and mitochondrial ultrastructural abnormalities. Increased mitophagy was also 

noted.  In conjunction, drosophila melanogaster has also been used to model the role of 

abnormal ROS production in OPA1 DOA disease progression (Tang et al., 2009). 
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 Finally, both a DOA murine mouse model (c.365T>C) and zebrafish model (engineered 

with 5.2kb DNA insertion downseam of the mitochondrial leader sequence) has also been 

developed for OPA3,a paradigm for Costeff syndrome (Davies et al., 2008; Pei et al., 2010) 

. A significant loss of RGCs as well as impaired swimming behaviour due to ataxia, los of 

buonancy and hypokinesia have been determined in OPA3 zebrafish mutants while 3-

methylglutaconic aciduria type III, impaired visual acuity, optic nerve degeneration, 

cardiomyopathy, neuromuscular defects,extrapyramidal dysfunction amd elevated serum 

lactate have been noted in the murine model . Currently, the role of OPA3 is still unknown 

and these models will prove invaluably in delinating its precise mitochondrial function.  

 

1.12 Therapeutic strategies for inherited optic neuropathies 

Effective therapeutic strategies directed against optic neuropathy are still within the early 

stages of development. To combat degeneration of the optic nerve, a number of different 

avenues are being explored. These include pharmacological treatment, genetic therapy and the 

therapeutic potential of stem cells (Yu-Wai-Man et al., 2014; Sadun et al., 2012; Newman et 

al., 2012; Guy et al., 2002). Patients who present with optic neuropathy represent an excellent 

cohort for clinical studies due to both the localised dysfunction of many of these disorders 

within the eye and the organs ease of accessibility for assessment and treatment.  

 

1.12.1 Pharmacological options 

Current drug use designed to improve the clinical phenotype of optic neuropathies has been 

met with limited success. Such drugs include mitochondrial vitamin cocktails (B2,B3,B12,C,E 

and folic acid), the use of ubiquinone analogues like coenzyme Q10, Idebenone, EP1-743, the 

use of steroids and immuno-suppressants (Pfeffer et al., 2013; 2012; Newman et al., 2012; 

Porcelli et al., 2009) and finally the use of both compounds and molecules to activate 

mitochondrial biogenesis such as bezafibrate, rogsiglitazone, AICAR (5-aminoimidazone-4-

carboxamide ribonucleoside) and resveratrol (La Morgia et al., 2014). Some of these 

therapeutic compounds have been clinically tested but were investigated on a small, 
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statistically underpowered cohort of patients with no objectively significant benefit that 

improved visual function. 

Idebenone is an antioxidant that has shown limited success in visual recovery if 

treatment commenced at an early stage and patients receive a prolonged treatment (greater 

than 24 weeks) (Carelli et al., 2011a). Similarly, EPI-743 is another anti-oxidant which is 

similar in structure to Co-enzyme Q10. Although it has been tested on only a small cohort (5 

patients) with mitochondrial dysfunction, it shows promising results with noted improvement 

in field, colour vision and acuity (Sadun et al., 2012). More rigorous testing is required to 

determine the most effective, dose and time-course for treatment. 

Increased mitochondrial biogenesis is assocated with unaffected LHON carriers and is 

proposed to act as a compensatory mechanism through hightened OXPHOS capacity (La 

Morgia et al., 2014). Pharmacological stimulators of biogenesis such as AICAR, bezafibrate, 

rogsiglitazone and resveratrol may act to improve the clinical presentation of various optic 

neuropathies.  

 

1.12.2 Gene therapy paradigms 

Gene therapy is a potential strategy to halt optic nerve degeneration in inherited optic 

neuropathies because the RGC layer is easily accessible to manipulation (Yu-Wai-Man et al., 

2014). However, the fact that many optic neuropathy-related genes are encoded by the 

mitochondrial genome presents a technical hurdle. To overcome this obstacle, an associated 

viral vector (AAV) is being devised to transfect functional mitochondrial genes efficiently 

into the nuclear compartment to compensate for defective genetic material found in the 

mtDNA population. Such a strategy would be particularly effective for conditions such as 

LHON where pathogenic variants lie on mtDNA (Guy et al., 2002).  

The most recent research has successfully imported mitochondrial proteins in this 

manner in plants (Pineau et al., 2005), yeast (Roucou et al., 1999) and cultured mammalian 

cells (Guy et al., 2002; Oca-Cossio et al., 2003). Current research has also successfully 

imported the ND4 protein to compensate for a mtDNA defect G11778A in a rodent model of 

LHON (Guy et al., 2009; Ellouze et al., 2008; Qi et al., 2007a). However before this 

technique can be used in a clinical setting, further research is needed to demonstrate that this 
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allotopically expressed protein is fully integrated into complex IV of the OXPHOS system. Dr 

Patrick Yu-Wai-Man is currently involved in clinical trials to assess this mt-ND4 construct in 

patients presenting with LHON (> 1 year).  

Additionally, control of allotopic gene expression is required before it could be used 

as a feasible strategy for LHON patients with a G11778A mtDNA defect. Clinical trials are 

currently underway to assess patient safety and efficacy using this approach. A similar 

alternative strategy to replace the defective mitochondrial gene includes transfection of the 

ROS scavenger gene SOD2, which would mop up excess ROS and promote cell survival. Qi 

and colleagues (2007b) successfully demonstrated this in LHON cybrid cell lines. 

 

1.12.3 Stem cells and regenerative medicine  

Current research into stem cell therapeutics is divided into two different strategies. One 

consists in both differentiating and transplanting RGCs to directly replace damaged cells of 

the optic nerve. The alternative is to grow lines of differentiated RGCs which would produce 

trophic factors. These trophic factors would then be used to promote RGC survival within the 

optic nerve (Marchetti et al., 2010; Dahlmann-Noor et al., 2010). Currently, development of 

effective clinical stem cell therapeutics is still in its infancy. Obstacles include the efficient 

generation of mature RGCs and their introduction in vivo to promote the appropriate 

topographical connections. The most likely use of these human-derived RGCs is as a tool to 

explore RGC physiology through drug screening and biochemical analysis in the near future. 

This may help to both understand how RGCs are affected in different disease states and also 

refine RGC development and incorporation into the optic nerve. 

 

1.12.4 Genome editing and mitochondrial donation 

Unlike LHON which tends to be monosymptomatic with no impact on life expectancy, a 

subset of patients harbouring more deleterious mtDNA mutations or nuclear genetic defects 

that result in severe mtDNA depletion can develop an aggressive disease course, frequently 

starting in early childhood, and characterised by irreversible encephalopathy, intractable 

epilepsy, liver failure and multisystem organ failure. The outcome of these mitochondrial 
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syndromes is invariably fatal and in the absence of effective treatments, significant effort has 

been invested in developing tractable means of selectively eliminating these pathogenic 

mutations through germline genome editing, or in preventing the maternal transmission of 

pathogenic mtDNA mutations from mother to child. 

Several research groups worldwide are working on mitochondrial-targeted nucleases 

that have been engineered to selectively eliminate mutated mtDNA molecules. Zinc finger 

nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) are able to 

recognise these altered DNA sequences and they create double-strand breaks that effectively 

eliminate the mutated mtDNA molecules (Minczuk et al., 2008; Bacman et al., 2010, 

2013).The ability to shift the level of heteroplasmy could be used to reduce the overall mutant 

load in the oocyte of a woman carrying a known pathogenic mtDNA mutation to subthreshold 

level, thereby eliminating the risk of her child developing overt mitochondrial disease. The 

use of ZFNs or TALENs as a reproductive tool for manipulating levels of heteroplasmy is still 

in early stages of development and a number of technical difficulties need to be resolved. 

Germline genome editing, namely with the CRISPR/Cas9 system, could also be used to 

correct for pathogenic mutations within the nuclear genome (Jinek et al., 2012; Yin et al., 

2014).  

The elimination of mutated mtDNA molecules to shift the level of heteroplasmy to 

subthreshold level is an attractive strategy to prevent a biochemical deficit and rescue the 

cellular phenotype. However, in some mitochondrial diseases, such as LHON, the majority of 

carriers harbour homoplasmic mtDNA mutations and a different experimental strategy is 

needed to prevent the transmission of a pathogenic mtDNA mutation from mother to child. 

Two related in vitro fertilisation (IVF) techniques have been developed that involves 

transferring the parental nuclear genetic material into a donor cytoplast containing a normal 

wild-type mtDNA population (Tachibana et al., 2009; Craven et al., 2010). Although 

encouraging, further work is needed to explore the safety implications of these IVF 

techniques for embryo development, including the concerns that have been raised about 

epigenetic abnormalities and the possibility of nuclear-mitochondrial genetic mismatch 

leading to unforeseen negative consequences (Chinnery et al., 2014). The Nuffield Council on 

Bioethics has concluded that mitochondrial replacement might be appropriate within a strictly 

regulated research environment, and with the prospective parents being fully informed about 
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the potential risks, both real and theoretical. In February 2015, both Houses of Parliament in 

the UK have voted strongly in favour of mitochondrial donation to prevent the maternal 

transmission of mitochondrial disease paving the way for future clinical implementation 

(http://www.parliament.uk/business/news/2015/february/lords-mitochondrial-donation-si/, 

accessed on 28 December 2015). 

http://www.parliament.uk/business/news/2015/february/lords-mitochondrial-donation-si/
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The central aim of my PhD project was to investigate the disease mechanisms that contribute 

to RGC loss and optic nerve neurodegeneration in inherited optic neuropathies. To achieve 

this goal, I performed a series of studies that made use of tissue samples collected from 

patients carrying confirmed pathogenic OPA1 mutations. I also made use of whole-exome 

sequencing (WES) to investigate a cohort of patients with a suspected genetic basis for their 

optic atrophy, but who do not have a confirmed molecular diagnosis.  

 

Study Aims: 

1. To explore the biochemical differences that might explain disease severity in OPA1 

disease by comparing primary fibroblasts established from patients with DOA+ and OA 

phenotypes.   

2. To quantify the morphology of the mitochondrial network and the distribution of 

nucleoids in differentiated myotubes established from primary myoblasts of patients with 

DOA+ and OA phenotypes. 

3. To confirm the pathogenic nature of a novel homozygous OPA1 variant identified in two 

affected sisters presenting with lethal infantile encephalopathy, hypertrophic 

cardiomyopathy and optic atrophy. 

4. To identify potentially pathogenic disease variants in a cohort of patients with suspected 

inherited optic atrophy by using WES analysis. 

5. To further investigate the pathogenic nature of WFS1 variants identified with WES. 
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3.1 Fibroblast Cell Line  

3.1.1 Fibroblast line maintenance  

Fibroblasts were grown as a monolayer until 70-80% confluence. The cells were grown in 

glucose (5mM) MeM media (Gibco, Life Technologies,Paisley, UK) with 10% Foetal Bovine 

Serum (FBS) (Gibco, Life Technologies, Paisley, UK). The media was supplemented with 1% 

L-glutamine, 1% sodium pyruvate, 1% non-essential amino acids , 1% Penicillin-

streptomycin and 1% Vitamins ( All obtained from Gibco, Life Technologies, Paisley, UK). 

These cells were grown in a T25 flask until 70% confluence was reached then seeded in a T75 

flask for further growth. These flasks were stored at 37°C in 5% CO2 humidified air. Media in 

these flasks was changed every fourth day to allow an increased concentration of growth 

factors. 

 

3.1.2 Subculture of fibroblast cells 

When the cells in each respective flask reached 80% confluence, they were harvested in 1x 

trypsin (Gibco, Life Technologies, Paisley, UK) and PBS (Oxoid). They were then 

centrifuged at 1200 rpm for five minutes in 10 ml media. This media was aspirated, fresh 

media was added to the cellular pellet and these cells were homogenised and re-seeded into 

new T75 flasks. 

 

3.1.3 Fibroblast cryostorage  

For longer term storage, the cells in a T75 flask were harvested and re-suspended in 1 ml FBS  

(Gibco, Life Technologies, Paisley, UK) with 10% DMSO (Freezing solution- Sigma 

Aldrich). These cells were stored in cryovials and transferred to a larger cryostorage container 

containing isopropanol (Greiner) in a -80 freezer. Freezing solution was added dropwise to 

the cryovials to prevent bubble formation. The isopropanol container allowed for the gradual 

decrease in temperature to prevent excessive cell death. After 24 hours storage at -80°C, the 

cells were then transferred to liquid nitrogen storage.  
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3.1.4 Thawing of cryo-preserved fibroblasts 

When these cells were retrieved, they were thawed as fast as possible in a water bath at 37°C. 

Once the freezing media with fibroblasts was defrosted, it was added dropwise to 10 mls 

(millilitres) pre-warmed media and centrifuged for 5 minutes at 1200 rpm to pellet these cells. 

The supernatant was aspirated to remove DMSO (Sigma-Aldrich) and cells were suspended in 

fresh media. They were then transferred to a T25 flask. This flask was left at 37°C in 5% CO2 

humidified air overnight. The media in this T25 was removed to discard cell debris from this 

defrosting process. When cell confluence in this flask reached 70-80%, cells were trypsinised 

and transferred to a T75 flask for further growth. 

 

3.1.5 Mycoplasma detection  

All primary cell lines were routinely checked for the presence of mycoplasma using a 

luminescent detection kit (Lonza, UK) according to the manufacturer’s instructions. All 

incubation steps took place at room temperature. Approximately100ul of cell line media taken 

from primary line flasks (<48 hours) was transferred to a 1.5ml eppendorf tube. One volume 

of re-constituted MycoAlertTM reagent was added and the sample was allowed to incubate for 

5 minutes. A Fluoroskan Ascent (Thermo Scientific, Paisley, U.K.) was then used to detect 

luminescent signal denoted ‘reading A’.  

In the second stage, 100µl of MycoAlertTM substrate was added to the sample and 

allowed to incubate for 10 minutes. A second luminescent reading was detected and denoted 

‘reading B’. To determine if the sample was contaminated with mycoplasma, a ratio between 

reading B and reading A is calculated. If this ratio >1, the sample is deemed mycoplasma 

negative. A sample ratio of 1 is deemed borderline and a re-test is taken of the sample. If the 

ratio is <1, the sample is deemed mycoplasma positive and the primary lines are destroyed 

using 2% (w/v) Virkon® (Du Point, Hertfordshire, UK).  
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3.1.6 Cell seeding 

All cell counting and seeding was achieved using a haemocytometer chamber (AC1000 

Improved Neubauer; Hawksley, Lancing, UK). Briefly, primary cell lines were harvested as 

described in Section 3.1.2. Cell pellets were resuspended in 1 ml media. This media was 

homogenised and 100µl of sample was transferred to a fresh eppendorf tube where it was 

mixed with 100µl Trypan Blue (Sigma-Aldrich), a stain which is absorbed by apoptotic or 

necrotic cells. 10µl of this mixture was then added to a haemocytometer chamber complete 

with coverslip. The number of viable cells was counted in four squares of the haemocytometer 

chamber grid and averaged. This average value was then multiplied by 2 to account for the 

dilution of sample with Trypan Blue (Sigma-Aldrich) and then multiplied by a factor of 1x104 

to determine the number of viable cells per ml of media.  

 

3.2 Protein Extraction 

3.2.1 Protein extraction from muscle tissue 

Muscle tissue was thawed on dry ice before it was cut and weighed in an eppendorf tube. This 

cut muscle tissue was resuspended in ripa buffer (Sigma-Aldrich) with complete mini, EDTA-

free protease inhibitor cocktail (Roche Diagnostics) on ice. Tissue homogenisation and 

performed with a motor-driven Teflon pestle at 600 rpm at 4˚C. The sample was transferred to 

an eppendorf tube where it underwent centrifugation at 13,000 rpm at 4˚C. Supernatant 

containing the protein extract was transferred to a fresh eppendorf tube and kept on ice. 

Protein samples were aliquoted and stored at -80˚C. 

3.2.2 Protein extraction from fibroblast line  

Cells were grown in T75 flasks until 70-80% confluence was reached. These cells were then 

tripsinised and transferred to 10 ml of media. The cells were centrifuged at 1200 rpm for 5 

minutes. The media was aspirated and 1 ml of PBS (Oxoid) was added to the cell pellet in the 

container. The pellet was homogenised, transferred to a sterile eppendorf tube and centrifuged 

for a second time at 300g for 5 minutes. The PBS (Oxoid) was aspirated and the cell pellet 

was transferred to cold storage at -80 degrees for future experiments.  



 

81 

    

These cell pellets were lysed to extract protein using lyses buffer. This lyses buffer is 

composed of 500 µl Tris PH 7.5, 260 ul 5M NaCl (BDH AnalaR), 20 ul 1M MgCl2 (BDH 

AnalaR), 1 ml Triton (10%) ( All obtained from Sigma-Aldrich), 8.2 ml dH2O and 1 tablet of 

Roche protease inhibitor (Roche Diagnostics).  

50 µl of this lyses buffer was added to the cell pellets of each respective line. These 

pellets were vortexed for 30 seconds and incubated on ice for 30 minutes to allow for the 

chemical lyses of the cellular membrane. This homogenate was then spun down at 4 degrees 

for 2 minutes and the pellet discarded. 

 

3.3 Western Blotting 

3.3.1 Bradford assay  

The protein concentration from these cell pellets was measured using a Bradford assay. A 

1:30 dilution of each of these cell pellets was prepared by adding 3 µl of lyses buffer/ protein 

homogenate with 87 µl nanopure water in eppendorf tubes. This solution was vortexed and 10 

µl per well of each sample was transferred to a 96 well plate. Each cell line was repeated in 

triplicate. A calibration curve was used to provide a standard baseline against which to 

measure protein concentration. This calibration curve was created using defined dilutions of 

BSA (Bovine Serum Albumin- Sigma-Aldrich). This calibration curve was plated in duplicate.  

200 µl of Bradford solution (BioRad) was added to each well using a multichannel. 

Protein concentration was measured by using absorbance of each protein sample and the BSA 

calibration curve. These absorbencies were measured using a spectrophotometer microplate 

reader at 595 nm. The absorbencies were calculated using the Beer- Lambert law A = εlc. 

 

3.3.2  SDS-PAGE electrophoresis 

The level of protein expression was measured using a western blotting technique. Once the 

protein concentration of each of the samples was determined, the amount of loading due and 

lyses buffer to be loaded into each of the wells of a precast agarose gel ( mini-protean 4-15% 
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precast gels, Biorad) was determined. Each sample to be loaded was prepared with protein 

sample, lyses buffer, 6x loading dye, and benzonase with Mg2+ (Sigma-Aldrich) .  

 Lysis buffer was used to equalise the volumes in each well of the precast dye. This 

mixture was heated at 37 degrees for 30 minutes on a heating block to prevent aggregation of 

COX I. The samples were then boiled at 95 degrees to alter the conformation of protein and 

allow passage through the porous agarose gel (BioRad). These protein samples were then 

flash spun and left on ice prior to well loading of the precast gels. 

Ten-well precast gel electrophoresis was used to separate protein based on size and 

molecular weight. These gels were also loaded with 10 µl seablue coloured protein ladder 

(Life Technologiesnologies) and 5µl biotinylated ladder (New England Biolabs). This 

biotinylated ladder was boiled for 5 minutes at 95 degrees prior to loading. Gel 

electrophoresis was conducted in 1x running buffer ( 10x running buffer is composed of 30.3g 

Trizma base , 144g Glycine  and 10g SDS (all obtained from Sigma-Aldrich) made up to 1 

litre with nanopure water. A 1:10 dilution in nanopure water of this 10x running buffer is used 

in gel electrophoresis at 150 V for approximately 1 hour. 

 

3.3.3 Protein transfer to PVDF membrane 

Once gel electrophoresis was complete, protein was transferred from this gel to a PVDF 

membrane (Thermofisher Scientific) for detection. The gel was equilibrated in 1x transfer 

buffer for approximately 10 minutes. (10 x transfer buffer is composed of 30.3g of Trizma 

base, 144g of glysine and 2g of SDS (All obtained as powder form from Sigma-Aldrich). This 

is made up to 1 litre with nanopure water. 1x transfer buffer is created by diluting 150 ml 10x 

transfer buffer in 225 ml of methanol (Sigma-Aldrich) making this up to 1.5L with nanopure 

water.  

The PVDF membrane (ThermoFisher Scientific) is activated with absolute methanol and 

washed in 1x transfer buffer. The gel and membrane are then assembled in a cassette with 

blotting paper and sponges soaked in transfer buffer. Protein transfer was conducted in 1x 

transfer buffer at 4 degrees Celsius with 400 mA for 1.5 hours. An ice block was added to the 

transfer buffer of this apparatus to reduce heat produced by the transfer process and increase 

the efficiency of transfer. 
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3.3.4 Densitometry and statistical analysis 

Analysis of all Western blot membranes was conducted with VisionworksLS Version 7.0.2, 

ImageJ statistical software and Microsoft windows excel 2007. Each western blot membrane 

was visualised through chemiluminescense by using an ECL kit (Biorad) to treat each 

membrane according to the manufacturer’s instructions. Each membrane was left for five 

minutes in the dark room to allow the ECL solution to be absorbed by the membrane. These 

membranes were then exposes to UV light for a set period by using the 500 biospectrum 

imaging system to detect the relevant protein bands. Once detected these images were 

digitalised by using the VisionworksSL software which allow adjustments of these images for 

brightness and contrast. The files were converted to .tiff and .mpeg files. The files were 

analysed using ImageJ. ImageJ quantified these bands through densitometry by detecting the 

relative intensity of each band. To normalise each of these bands, the housekeeping gene 

GAPDH was used in each protein and control sample.  

 

3.4 ATP Levels from cultured DOA Fibroblasts 

3.4.1 Fibroblast seeding and drug treatment  

Primary fibroblast lines were harvested from two T75 flasks as described in Section 3.1.2. 

These cells were then counted as described in Section 3.1.6 and 30,000 cells were seeded into 

each well of a 96-well cell line plate (Greiner). These cells were left to incubate in 200µl cell 

line media for 24 hours. On the second day, media was aspirated from each well and washed 

2x with 200µl PBS (Oxoid) before being treated with the drug of interest. Each primary line 

was treated under four different drug conditions measured in ATP measuring buffer ( 156mM 

NaCl, 3mM KCl, 2mM MgSO4, 1.25Mm KH2PO4, 2mM CaCl2 and 20mM Hepes- All 

obtained from Sigma-Aldrich). These conditions include 1) 5mM Glucose with 1% pyruvate, 

2) 5mM D-deoxyglucose with 1% pyruvate, 3) 5mM glucose, 1% pyruvate and 20uM 

oligomycin and 4) 5mM d-deoxyglucose, 1% pyruvate and 20uM oligomycin (All obtained 

from Sigma-Aldrich).  
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3.4.2 Quantification of ATP levels  

Primary cell lines were left to incubate at 37˚C and 5% CO2. After 1.5 hours, 90µl of media 

was aspirated from each well and 100µl of CellTiter-Glo substrate solution (Cell Titer-Glo® 

Luminescent Cell Viability Assay, Promega) was added to each well. The plate was left to 

incubate in the dark at room temperature for 15 minutes before the luminescent signal from 

each well was detected and quantified using a Fluroskan Ascent (Thermo Scientific, Paisley, 

U.K.).  Each experiment was quantified in triplicate and further statistical analysis was 

conducted with excel (Microsoft, Reading, UK) and GraphpadTM V. 5 (Graphpad software).  

 

3.5 DNA Extraction 

3.5.1 Genomic DNA extraction from blood 

DNA was extracted from blood using Whole Blood Genomic Extraction kit (Nucleon) 

according to the manufacters protocol. All centrifugation steps were performed at room 

temperature.  5 mL of patient blood was added to a 50mL polypeptide centrifuge tube 

(Scientific Laboratory Supplies, Life Science). 4 volumes of reagent A were added and each 

sample was inverted and centrifuged at 3500g for 5 minutes to generate a cell pellet. 

The supernatant was discarded and a further 5mL of reagent A was added to suspend 

this pellet. The sample was vortexed and allowed to stand for 1 minute. The samples were 

centrifuged again at 3500g for five minutes and the supernatant discarded. 1mL Reagent B 

was added to lyse this cell pellet. 350uL of reagent C and 300µl Nucleon Resin were then 

added to each sample to achieve protein degradation and this sample was centrifuged at 3500g 

for 4 minutes.  

The DNA was then precipitated by transferring the supernatant to a clean 

polypropylene centrifuge tube (Scientific Laboratory Supplies, Life Science) and adding 1 

volume of absolute propan-2-ol. The tube was inverted several times and centrifuged at 4000g 

to pellet the precipitated DNA. Supernatant was removed and the DNA washed by adding 

1mL of 70% ethanol. The DNA was repelleted by centrifuging at 4000g and allowed to air 

dry for 10 minutes. The DNA was finally resuspended in TE buffer. These DNA samples 
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were measured using a NanoDropTM ND-1000 (NanoDrop Technologies, Wilmington, USA) 

.DNA samples were stored at -20˚C. 

 

3.5.2 Genomic DNA extraction from tissue 

To extract DNA from patient muscle, approximately 10-20 µg of muscle tissue from each 

patient was added to a glass test-tube and each sample was homogenised and treated with 

reagents from a blood and tissue kit (Qiagen) according to the manufacterers instructions. 

Briefy, 180µls of buffer ATL was added to each sample and the muscle was homogenised 

with tissueruptor (Qiagen). Once homogenised, each sample was transferred to a 1.5ml 

Eppendorf tube and 20 uls of proteinase K (Life Technologies) was added. The samples were 

heated to 56ºC overnight on a thermomixer (Sigma-Aldrich) to ensure maximum lysis of 

tissue. The following day, 200µls of buffer AL and 200µls of absolute ethanol (Sigma-

Aldrich) were added to each sample after brief vortexing and the samples were transferred to 

a 2ml collection tube within a DNeasy spin-column. The samples were centrifuged at 6000g 

for 1 minute, flo-through was discarded and the filter was placed in a new collection tube. 

500µls buffer AW1 was added to this new spin-column. After an additional centrifugation at 

6000g for 1 minute, flo-through was again discarded and 500µls of buffer AW2 was added. 

The samples were then centrifuged at 20,000g for 3 minutes and the filters of each spin 

column added to a 1.5ml Eppendorf tube. 100uls elution buffer was added to each filter and 

left at room temperature for 1 minute. The tubes were then centrifuged again at 6000g for 1 

minute to obtain purified DNA from each sample.  

 

3.5.3 Genomic DNA extraction from fibroblast line 

DNA was extracted from patient cell lines using the DNeasy® blood and tissue extraction kit 

(Quigen). Centrifugation steps for this protocol were performed at 21-25°C at 10,000 rpm. A 

cell pellet from each patient line (maximum 5 x 106) cells was homogenised in 200µl PBS 

(Oxoid). Protinase K (20 µl) (Life Technologies( and Buffer AL (200ul) were used to lyse the 

cells at 56°C for 10 minutes. Subsequently absolute ethanol (200 µl)(Sigma-Aldrich) was 

added to each of the patient samples to precipitate the DNA from the pellet. Each sample was 
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vortexed and transferred to a DNeasy® Mini spin-column which was placed in a 2ml 

collection tube. Each sample was centrifuged for 1 minute and then each sample spin column 

was transferred to a new collection tube. The previous tube containing sample supernatant 

was discarded. 500 µl of buffer AW1 was added to each spin column and these columns were 

centrifuged for one minute to wash the sample. The flow through was collected and discarded 

with the collection tube. A fresh tube was added to each spin column and 500 µl of buffer 

AW2 was used in the last washing stage of the protocol. These columns were centrifuged for 

3 minutes at 14,000 rpm to dry the DNeasy® membrane containing the DNA. This DNA was 

then eluted into a 1.5ml eppendorf tube by adding 100ul of elution buffer which was allowed 

to incubate on the membrane for 1 minute at room temperature. The spin column was 

centrifuged for 1 minute and the eluted DNA was collected in the eppendorf tube. The 

concentration of this DNA was determined by using a NanoDropTM ND-1000 (NanoDrop 

Technologies, Wilmington, USA) and these DNA samples were transferred to -20 for short 

term storage. 

 

3.6 Polymerase chain reaction  

A polymerase chain reaction (PCR) was achieved with a Veriti® 96-well thermal cycler 

(Applied Biosystems, Life Technologies, Paisley, UK) in 0.2 ml PCR strip-tubes (STARLAB, 

Hanburg Germany). Approximately 50ng of DNA from each sample was amplified in a 25µl 

mastermix reaction containing 5µls GoTaq buffer (Promega, Southhampton, UK)., 2.5uls 

dNTPs (dATP,dTTP,dCTP,dGTP (VH Bio, Gateshead, UK), 0.13 uls G2Taq polymerase 

(Promega, Southhampton, UK), 14.4 uls dH2O and 0.5uls 10uM forward and reverse primers 

(Integrated DNA Technologies, Interleuvenlaan, Belgium). DNA amplification was achieved 

under the following thermal cycler parameters: 95˚C for 7 minutes (denaturation); x30-x35 

cycles further denaturation with 95˚C for 1 minute, 58˚C for 1 minute and 72˚C for 1 minute; 

an extension step at 72˚C for 10 minutes and cooling to 4˚C for sample storage and prevent 

degradation. The amplicons genereated from these PCR reactions were stored at -20˚C. 
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3.7 Gel extraction of DNA amplicons 

To assess the efficiency and accuracy of mtDNA copy number quantification, three different 

templates were created using standard PCR protocols described in Section 3.6. These 

amplicons were run through and separated on a 1% (w/v) TAE agarose gel (BioRad) (Figures 

3-1 and 3-2). Once separated, these templates were cut from the gel and placed into separate 

2 ml eppendorf tubes (Cell Star). The tubes were weighed and each tube was allowed to hold 

a maximum of 200mg of gel fragment. 

The DNA from these gels was extracted using the QIAquick® Gel Extraction Kit  (Qiagen). 

All centrifuge steps in this protocol were performed at 20-25°C at 13,000 rpm. The gel 

fragments were treated with Buffer QG (600ul) and incubated for 10 minutes at 50°C. The 

tubes were vortexed every two minutes to dissolve the agarose gel. 200 ul of isopropanol was 

added to precipitate the DNA. This solution was added to a QIAquick® spin column placed in 

a 2ml collection tube and centrifuged for 1 minute. The supernatant in the collection tube was 

discarded. 750 µl of buffer PE was added to the spin column and the tube was centrifuged 

again for 1 minute. The spin column was then transferred to a fresh 2ml Eppendorf tube and 

centrifuged for 1 minute to dry the spin column membrane. This was then placed in a 1.5ml 

Eppendorf tube and 30μl of elution buffer applied to the membrane. 1 minute after the 

addition of the elution buffer, the column was centrifuged for 1 minute and the supernatant 

containing the DNA collected in the eppendorf tube. The concentration of DNA was 

quantified using a nanodrop ND-1000 (NanoDrop Technologies) and these tubes were stored 

at -20 °C. 

The number of mtDNA copies per ul of control DNA template were calculated by 

using the following equation where C = template concentration, Mw is the molecular weight 

(bp Product length x 2 x 330) and A is Avogadro’s constant (6.02 x 1023mol-1). 

                                   Copies/µl =  

A standard curve was generated from ctDNA template. The number of mtDNA copies in 

these templates was determined by measuring DNA concentration and using the mtDNA copy 

number calculation mentioned previously to quantify copy number in each of the control 
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templates. Each of these templates was then tested for efficiency before the experiment by 

performing a serial dilution and quantifying the PCR amplification as described in Section 

3.10.2.  

 

 

 

 

 

 

 

Figure 3-1 Representative image of ND1 amplicons generated through PCR and separated 

using a TAE agarose gel. 

 

 

 

 

 

 

Figure 3-2 Representative image of B2M amplicons generated through PCR and separated 

using a TAE agarose gel. 
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3.8 RNA Extraction 

3.8.1 RNA extraction from fibroblast lines 

RNA was isolated from patient and control cell pellets by following the manufacturer’s 

instructions (RNeasy minikit, Qiagen). All centrifugation was performed at room temperature.  

RNA concentration from each sample was quantified using NanoDropTM ND-1000 

(NanoDrop Technologies, USA). These samples were then stored at -80 degrees in cold 

storage. 

 

3.9 Reverse Transcription PCR of RNA Isolates 

3.9.1 cDNA synthesis 

To prepare the samples for quantitative PCR analysis, a superscript III first strand synthesis 

system (Invitrogen) was used to create cDNA from patient and control RNA isolates. This 

cDNA was created with a reverse transcription PCR method as outlined in the manufacturer’s 

instructions using the random hexamer protocol. 

 The first stage was to prepare the RNA/Primer mix for the reverse-transcription PCR 

(RT-PCR) reaction. The RNA of interest was mixed with 1 µl 10mm dNTPs, 1 ul random 

hexamers AND DEPC water to a final volume of 10 µl. Each sample was then incubated at 

65˚C for five minutes and placed on ice for a minimum time of 1 minute. 

A 10 µl synthesis mix was added which contained 2 ul 10x RT buffer, 4 ul 25 mM 

MgCl2, 2 ul 0.1M DTT, 1 ul RNaseOUT recombinant nuclease inhibitor and 1 ul Supercript 

III RT. This 20 ul mixture was then run with the following PCR protocol: 10 minutes at 25ºC, 

50 minutes at 50ºC, 5 minutes at 85ºC and cool to 4ºC. This PCR protocol results in the 

generation of cDNA. Each sample is then briefly centrifuged and 1 µl of RNase H is added. 

The sample is heated to 37ºC for 20 minutes to degrade any contaminating RNA. It can then 

be stored at -20ºC for future PCR reactions. 
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3.10 Real-Time PCR 

3.10.1  Principles of real-time PCR 

Real time quantitative PCR (RTqPCR) is a reliable method which has greater sensitivity than 

standard PCR reactions at detecting product produced from amplification of sample DNA. 

The principle of RTqPCR involves the non-specific fluorescent dye iQ™ SYBR® green 

(BioRad) which is designed to integrate into the DNA structure and provide a fluorescent 

signal. This signal is detected and quantified by a detector within the IQ5 thermocycler. 

During the DNA amplification process by the iTaq polymerase, the iQ5™ optical 

system software v.2.0 (BioRad) detects the level of sybergreen fluorescence which exceeds 

the background fluorescence and leads to a linear increase in the amplification curve. This 

linear increase should directly correspond to the amount of DNA being amplified 

exponentially during each cycle. The number of cycles in which fluorescence exceeds 

background noise is known as the threshold cycle (Ct). Preparations of reagents for RTqPCR 

analysis were performed in a UV-sterilised Aura PCR workstation (Bioair Instruments, Milan, 

Italy) to prevent contamination. 

 

3.10.2 Quantification of mtDNA copy number 

RTqPCR was used to quantify the levels of mtDNA copy number in each of the templates and 

patient lines. The real-time PCR analysis was performed on a 96 well plate (BioRad). The 

mtDNA copy number was assessed by amplifying two reference genes in each patient sample, 

the mitochondrial ND1 gene and the nuclear B2M gene (Figures 3-3 to 3-6). The relative 

number of ND1 copies amplified in each patient with respect to B2M is an indication of 

mtDNA copy number. These samples were analysed in biological triplicates. The protocol for 

RTqPCR amplification included denaturation at 95°C for 3 minutes, denaturation for 40, 10 

second cycles at 95 °C and annealing/extension for 1 minute at 62.5°C. The samples then 

underwent denaturation at 95 °C for 1 minute to ensure contamination did not take place. 
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Figure 3-3 Example of a ND1 amplicon serial dilution standard curve demonstrating 

efficiency (E), linearity (R^2) and slope.  

Generated by Bio-Rad IQ5TM software V.2.0. 

 

 

 

 

 

 

 

 

Figure 3-4 ND1 melt-curve. 

 This was generated through serial dilution of the ND1 amplicon and by measurement of the 

SYBRgreen fluorescent signal at each respective PCR amplication step.  
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Figure 3-5 Example of a B2M amplicon serial dilution standard curve demonstrating 

efficiency (E), linearity (R^2) and slope. 

 Generated by Bio-Rad IQ5TM software V.2.0. 

 

 

 

 

 

 

 

Figure 3-6 B2M melt curve.  

This was generated through serial dilution of the B2M amplicon and by measurement of the 

fluorescent signal at each respective PCR amplification step.  
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3.10.3 Quantification of gene expression using real-time PCR 

Similar to the quantification of mtDNA copy number using RTqPCR in Section 3.10.2, the 

relative mRNA expression of a specified gene was quantified by measuring the levels of 

cDNA in each patient and control line relative to a standard amplification curve. cDNA levels 

in each sample were also internally corrected against 2 reference genes B2M and B-Actin as 

described in Table 4-4. The protocol for RTqPCR includes denaturation at 95°C for 3 

minutes, denaturation for 40 10 second cycles at 95 °C and annealing/extension for 1 minute 

at 62.5°C. The samples then underwent denaturation at 95 °C for 1 minute to ensure 

contamination did not take place. 

 

3.11 Statistical Analysis of real-time PCR Data 

Analysis of gene expression was assessed using the ΔΔCt method. Following the 

amplification of DNA using the IQ5 thermocycler, a Ct value was generated for each of the 

patient samples. The fluorescent threshold for these samples was set at 500 RFU for mtDNA 

copy number and 200 RFU for relative gene expression. Each patient sample for each gene 

was repeated in triplicate per plate. The experiment was repeated three times to ensure 

accuracy of the results. The final value used in the analysis of mRNA expression levels in 

each patient was calculated by using the equation 2^-ΔΔct. 

 

3.12 Long-Range PCR 

Determination of multiple mtDNA deletions in patient sample was determined using the 

TaKara LA TaqTM PCR system (Takara Bio, Otsu, Japan). This system is capable of 

amplifying a DNA fragment thousands of bps long. The mitochondrial genome is 

approximately 16 kbs in length which makes it an ideal candidate for targeted long range PCR 

amplification. All long range PCR reactions were performed in a Veriti® thermal cycler 

(Applied Biosystems, Life Technologies) in 0.2ml strip tubes ( STARLAB, Hamburg, 

Germany). DNA extracted from patient muscle was used in a 25 µl long-range PCR 

mastermix used to amplify a 11kb DNA region. This mastermix contained 2.5µls 10x LA Taq 
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buffer (Takara, Bio), 4µls dNTPs (VH Bio), 0.25 µls TaKara LA Taq polymerase (Takara, 

Bio), 16.75 µls dH2O, 0.25 µls of 20µM forward and reverse primers and 1µl of patient DNA 

template per sample. Each sample was to amplify approximately 1-2ng of DNA. 

Amplification was carried out under the following conditions: denaturation occurred at 94˚C 

for 1 minute, x28 cycles of 94˚C for 30 seconds (further denaturation), 58˚C for 45 seconds 

(annealing step) and 68˚C for 11 minutes (extension step). The final step post-cycle is 72˚C 

for 12 minutes.  

After the successful amplification of the targeted 11kb region of mtDNA, these 

amplicons underwent gel electrophoresis on a 0.7% (w/v) TAE agarose gel (BioRad) as 

described in Section 3.13.1. 6 µl PCR amplicon was added to 6ul of Orange G (Sigma-

Aldrich) ( (Section 3.13.2) and 10ul of sample was added to each well of the agarose gel 

(BioRad). Gel electrophoresis was conducted with 1x TAE running buffer (Sigma-Aldrich) at 

a constant voltage of 30V for 4 hours. To confirm that the amplified PCR product was 

approximately 11kbs, GenerulerTM 1kb Plus DNA ladder (75-20,000 bps) (Fermentas, St 

Leon-Rot Germany) was run in parallel. The ladder and the PCR amplicons were visualised 

using a UV light source from an AlphaImager® 2200 system (Aalpha Innotech). 

 

3.13 Sanger Sequencing of Nuclear Genes 

3.13.1 Agarose gel electrophoresis 

Amplicons of genomic DNA generated through PCR were observed by running these PCR 

products through a 2% (w/v) 1x TAE agarose gel (BioRad) using electrophoresis. Agarose gel 

was created using 1x TAE buffer (0.04M Tris-acetate, 0.001M EDTA, pH: 8.3 (Helena 

Biosciences)) which was added to a conical flask and heated in a microwave for 2-5 minutes. 

This mixture was allowed to cool and EtBr was added (0.4ug/ml (Sigma-Aldrich)) to 

intercalate DNA. This mixture was then added to an electrophoresis tray with gel combs and 

allowed to polymerise.  
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3.13.2 PCR Amplification 

PCR amplification was achieved using 50ng genomic DNA as described in Section 3.6. The 

approximate concentration of these amplicons was compared by first mixing 6µl of each PCR 

product with 6µl of Orange G solution (Sigma-Aldrich), 70% nanopure dH2o (v/v) and 30% 

glyverol (Sigma-Aldrich). 10 µl of this mixture was then added to wells in a 2% w/v agarose 

gel with ethidium bromide as previously described in Section 3.13.1. Hyperladder IV was 

also added (5ul) to a well of the agarose gel to visualise PCR product size. These samples 

then underwent gel electrophoresis using 1xTAE as running buffer and a constant voltage of 

80V for approximately 40 minutes-1 hour. PCR amplicon bands were visualised under UV 

light generated by an AlphaImager ® 2200 system (Alpha Innotech, Kasendorf, Germany). 

 

3.13.3 ExoFap methodology 

The ExoFap reaction is a fast and efficient PCR clean-up step which degrades unwanted 

deoxynucleotides and primers left over from genomic amplification. ExoFap consists of 

FastAP Thermosensitive Alkaline Phsophatase (FAP) (Thermo Scientific) and Exonuclease 1 

(Exo 1) (Thermo Scientific). Volumes of 0.5 µl of Exo 1 and 1 ul of FAP were added to each 

3/5µl PCR reaction in a 96-well sequence reation plate (Greiner) on ice. The plate was sealed 

with a rubber met and pulse spun in a centrifuge before the mixture was incubated at 37°C for 

15 minutes.  These enzymes was subsequenctly inactivated by incubating the mixture at 80°C 

for a further 15 minutes. 

 

3.13.4 Big-DyeTM sequencing  

BigDyeTM Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Life Technologies) is 

used for preparing a fluorescent-based cycle sequencing reaction in a standard PCR 

thermocycler.  A mixture of 2µl  BigDye Terminator v3.1 Sequencing Buffer (x5), 11µl 

nanopure water, 1µl Primer and 1 µl Big Dye was added to the 3/5 µl PCR reactant. This 

mixture was then run using the Big Dye thermocycler protocol which includes 1 minute at 

96°C, x25 cycles of 96°C for 10 seconds, 50°C for 5 seconds and 60°C for 4 minutes.  

 



 

96 

    

3.13.5 Ethanol precipitation 

In order to remove non-incorporated nucleotides and excess salts, each sample underwent an 

ethanol precipitation step. 2 µls of 125mM EDTA, 2 uls of sodium acetate (3M) and 70 µls of 

absolute ethanol were added to each sample well in a 96 well sequencing reaction plate (All 

obtained from Sigma-Aldrich). These samples were incubated at room temperature for 15 

minutes before they were centrifuged at 2000g for 30 minutes. The supernatant was removed 

and 70 µls of 70% ethanol (Sigma-Aldrich) was added to each sample. The plate was 

centrifuged at 1650g for a further 15 minutes before this supernatant was also removed and 

the plate was allowed to air dry for 10 minutes. Samples were suspended in 10uls Hi-Di 

(Applied Biosystems, Life Technologies).  

 

3.13.6 Genomic sequencing  

After resuspension of samples in Hi-Di, samples were denatured at 95˚C for 2 minutes before 

loading onto the ABI 3130xl genetic analyser (Applied Biosystems, Life Technologies). 

Sequence chromatograms generated which were compared against reference sequence 

reproduced from Genbank (http://www.ncbi.nlm.nih.gov/RefSeq/) by using Seqscape v. 2.6 

(Applied Biosystems). 

 

3.14 Live Cell Imaging with Confocal Microscopy 

3.14.1 Cell seeding 

Primary fibroblasts were seeded on a glass bottomed confocal dish (Wilco) at a density of 

100-150,000 cells and incubated with Minimum Essential growth media (as described in 

Section 3.1.6) at 37˚C for 24 hours. Primary fibroblasts which were incubated in an oxidative 

media (galactose) containing MeM glucose-free media with 5mM galactose (Sigma-Aldrich) 

and supplemented with 1% L-glutamine, 1% sodium pyruvate, 1% non-essential amino acids , 

1% Penicillin-streptomycin and 1% Vitamins for 48 hours ( All obtained from Gibco, Life 

Technologies, Paisley, UK).  

http://www.ncbi.nlm.nih.gov/RefSeq/
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Primary myotubes were seeded at a density of 70,000 cells in a glass bottomed 

confocal dish (Wilco) and incubated in Skeletal Muscle Cell Differention Media (Promocell) 

with 2% FBS and 1% Penecillin-Streptomycin (All obtained fro, Gibco, Life Technologies, 

Paisley, UK) for 24 hours at 37˚C.  

 

3.14.2 MitoTracker® Red CMXRos incubation 

On the day of imaging, growth media was aspirated from each dish and primary cells were 

incubated with fresh media containing 75nM MitoTracker® CMXRos (Life Technologies) for 

30 minutes. These cells were then washed twice with PBS (Oxoid) and incubated in fresh 

media without phenol red and containing 25mM Hepes (Sigma-Aldrich). A similar protocol 

was used for the dual-staining of patient primary myotubes with MitoTracker® Red 

CMXROS and Quant-iT™ PicoGreen® (Life Technologies). This protocol can be found in 

Section 5.2.4. 

 

3.14.3 Mitochondrial fragmentation in fibroblasts  

Images of the primary fibroblast and myotube mitochondrial network were captured with an  

A1r inverted confocal microscope (Nikon) using a 63x 1.4 NA objective unless otherwise 

stated. 

 

3.14.4 Image analysis 

 The excitation wavelength for MitoTracker® Red CMXRos (Life Technologies) was 561nm, 

respectively. Primary fibroblasts were z-stacked with section interval at 0.1µm for 69 slices. 

Approximately 50 cells were captured for each primary fibroblast cell line. 

 

3.14.5 Statistical analysis 

Quantitative Analysis was analysed using excel (Microsoft, Reading, UK) and GraphpadTM 

V.5 (Graphpad software) 
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4.1 Introduction 

Autosomal dominant optic atrophy (DOA) is the most common congenital optic neuropathy 

with a global prevalence of 3 in 100,000 individuals (Thiselton et al., 2002). It is 

characterised by the selective degeneration of the retinal ganglion cell layer leading to the 

deterioration of the optic nerve. The syndrome presents as a gradual and severe visual deficit 

until virtually all patients diagnosed with this condition fulfill the requirements for registered 

legal blindness (Lenaers et al., 2012). It was originally clinically identified by Batten in 1896 

but adopted the name Kjer’s Optic Neuropathy due to additional studies performed by Poul 

Kjer in 1959 who described 19 families with the condition (Kjer, 1959). Most patients present 

with isolated optic atrophy (OA), although, some patients with similar age of onset of 

progressive visual loss also develop with extra-ocular multi-systemic symptoms, a subgroup 

often refered as DOA ‘plus’ (DOA+). In some instances, members of the same family 

carrying the same pathogenic Opa1 mutation may present with different severity of the 

disease (Yu-Wai-Man et al., 2010b). Transmission of DOA+ to succeeding generations is, 

however, typically more severe with incomplete penetrance (Yu-Wai-Man et al., 2010b; 

Amamti-Bonneau et al., 2008; Hudson et al., 2008).  

Until the last few decades, clinical research on DOA was hampered by the lack of 

longitudinal and follow-up studies of patients due in part to the lack of knowledge of the 

underlying genetic aetiology of the disease. In clinical practice, patients were phenotypically 

categorised which may have excluded individuals with underlying OPA1 mutations (Votruba 

et al.1998b).  

Genetic and biochemical analyses have frequently treated DOA as a single clinical 

manifestation grouping both OA and DOA+ together in order to determine common threads 

between DOA and other mitochondrial related optic neuropathies (Zanna et al., 2008; Agier et 

al., 2012), in part due to the lack of sufficient biobank material from either DOA+ or OA 

patients. A rigorous investigation of the underlying complex biochemical parameters which 

are distinct between these two groups has yet to be investigated. Preliminary investigation 

suggests that OA usually results from deletions, nonsense mutations and splice site defects 

which normally result in OPA1 haploinsufficency (Olichon et al., 2003; Marchbank et al., 

2002). On the other hand, missense mutations found in the OPA1 GTPase domain tend to be 
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more associated with a dominant-negative effect which may have a role in the increased 

severity of the disease (Olichon et al., 2007).  

Previous investigations of the molecular mechanisms governed by OPA1 have been 

carried out in a range of in vivo and in vitro models which include Drosophila melanogaster, 

Rattus norvegicus, Danio rerio and primary human tissues (Zanna et al., 2008; Chen et al., 

2007; Yarosh et al., 2008; Rahn et al., 2013). Fibroblasts are easily accessible from skin 

tissue derived from patients which can be obtained through non-invasive means. In the 

present project, primary human fibroblasts were then selected as a model to investigate the 

biochemical mechanisms which underpin DOA pathogenesis.  

The aim of this study was then to investigate and compare biochemical parameters 

between OA and the more severe DOA+ syndromes to identify both common and divergent 

factors which may explain why a subgroup of patients diagnosed with DOA develops a more 

severe visual deficit in addition to secondary multi-systemic features. 
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4.2 Materials and Methods  

4.2.1 OPA1 patient cohort  

The investigation of the disease mechanisms between DOA+ and OA was conducted in 

primary fibroblasts derived from eight patients described in Table 4-1. Four of these patients 

harbour missense mutations found in the GTPase domain of OPA1 (exons 8-15) and were 

diagnosed with an optic atrophy with additional multi-systemic symptoms. The remaining 

four patients presented with an isolated optic nerve involvement and harboured either 

deletions or splice-site OPA1 mutations. This study had the relevant institutional approval and 

written informed consent was obtained from all patients.   

 



 

102 

    

Table 4-1. Clinical features and OPA1 mutations of the patients included in this study.

            

Pedigree 
Age 

Gender 
Optic 

atrophy 
Deafness Ataxia Myopathy Neuropathy PEO Others 

OPA1 

mutations 
Exon / Intron 

(Years) 

DOA+(1) 69 M +   + +     Spasticity 
c.768C>G, 

c.854A>G 
5b ,8 

DOA+(2) 50 M + +       +   c.1198C>T 12 

DOA+(3) 57 M + +   +   +   c.1334G>A 14 

DOA+(4) 57 M +   + + + +   c.34521294A>G 13 

OA(1) 44 M +             c.1516+1G>T Intron 15 

OA(2) 64 M +             Exon 1-5 del. 1-5 del. 

OA(3) 48 M +             
c.2708_2711 

del(TTAG) 
27 

OA(4) 46 M +             
c.876-878 del 

(TGT) 
9 
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4.2.2 Cell culture 

Cell lines were maintained according to the protocol mentioned in Section 3.1. Each line was 

routinely checked for the presence of mycoplasma and all lines were found to be consistently 

mycoplasma negative for all experimental investigations. 

 

4.2.3 MitoTracker® Red CMXRos staining 

Cell seeding and MitoTracker® Red CMXRos (Life Technologies) staining of the 

mitochondrial network was performed according to the protocol in Section 3.14. Two glass-

bottomed confocal dishes (Wilco) containing primary Opa1 primary fibroblasts were stained 

simultaneously and washed twice with PBS (Oxoid) and left to incubate in imaging media 

containing 25mM HEPES (Sigma-Aldrich). One dish was used for imaging while the second 

dish was kept at 37ºC in an incubator without a CO2 regulator one hour prior to imaging on 

each day. A total of 24 glass bottomed dishes were prepared (4 control and 8 primary patient 

fibroblast lines). 

 

4.2.4 Mitochondrial network image capture and quantification 

Mitochondrial network image capture was performed using an A1r confocal microscope 

(Nikon) with a x63 oil-based objective lens. Imaging was performed at 3% laser power at 

561nm with a 512x512 voxel frame. A total of 69 slices (8µm) was captured along the z-axis 

for each fibroblast analysed. Approximately 50 cells were captured (25 cells per confocal 

dish) for each patient and control primary line analysed. 

Five parameters were measured under each condition: (1) Total Mitochondrial Length; 

(2) Total Mitochondrial Volume; (3) Total Number of Fragments; (4) Average Mitochondrial 

Length (5) Average Mitochondrial Volume; Average Mitochondrial Length and Volume were 

quantified by determining the Total Mitochondrial Length and Volume respectively and 

dividing by the number of mitochondrial fragments in each fibroblast to determine the ‘total 

length’ of each mitochondrial structure.  
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4.2.5 Protein expression in cultured fibroblasts 

Protein expression levels were analysed using western blot analysis to measure the expression 

in both OPA1 and individual constituent subunits of the respiratory complexes in DOA+ and 

OA primary fibroblasts. Protein levels were corrected to GAPDH protein levels and 

investigated using the method described in Section 3.3. Primary antibodies used to detect 

these proteins can be found in Table 4-2. 

 

4.2.6 OPA1 and mtDNA maintenance gene expression  

Quantification of mtDNA copy number in primary Opa1 fibroblasts was conducted with an 

iQTM SYBR® Green (Bio-Rad) methodology and a RTqPCR detection system (Bio-Rad). The 

relative number of mtDNA copies was determined by quantifying the number of mtND1 

copies relative to the number of nuclear B2M copies using the ΔΔCT method (described in 

Section 3.10.2). MtDNA copy number was quantified in four primary controls and eight 

primary DOA patient fibroblasts. 

Investigation of mtDNA copy number maintenance was also conducted by quantifying 

the mRNA expression level of TFAM using a reverse transcription qPCR protocol as 

described in Section 3.10.3. Details of RTqPCR primers used have been provided in Table 4-

3 and 4-4. 

 

4.2.7 Cell Titer-Glo luminescent cellular ATP assay 

Investigation of ATP levels was achieved by seeding primary fibroblasts onto 96-well cell 

line plates (Greiner) and treating them with drugs to inhibit either the glycolytic or the 

OXPHOS ATP synthesis as described in Section 3.4. The levels of ATP were quantified 

using a CellTiter-Glo Bioluminescent Cell Viability Assay (Promega) according to the 

manufacters protocol.  
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      Primary antibody 

target 
Product number 

Concentration 

used 
Protein molecular weight Species 

Incubation 

period/time 

OPA1 ab119685 1:1000 80-100 kDa 
mouse 

monoclonal 
1h room temperature 

NDUFB8 ab110242 1:4000 17kDa 
mouse mo 

noclonal 
1h room temperature 

SDHA ab14715 1:1000 70kDa 
mouse 

monoclonal 
1h room temperature 

COXII ab110258 1:1000 24kDa 
mouse 

monoclonal 
1h room temperature 

ATP5A ab14748 1:4000 55kDa 
mouse 

monoclonal 
1h room temperature 

GAPDH sc-25778 1:1000 37kDa rabbit polyconal 1h room temperature 

      
Table 4-2 List of primary antibodies and dilutions used to perform western blot analysis of OPA1 and mitochondrial repiratory subunits. 

OPA1: Optic atrophy 1 protein; NDUFB8: Nuclear encoded complex I subunit; SDHA: Nuclear encoded complex II subunit; COXII: mitochondria 

encoded complex IV subunit; ATPA5: nuclear encoded complex V subunit; GAPDH: glyceraldehyde-3-phosphate.  
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Template Base Pairs Forward Primer (5’-3’) Reverse Primer (3’-5’) 

B2M 1092 CGCAATCTCCAGTGACAGAA GCAGAATAGGCTGCTGTTCC 

MTND1 1041 AGGAACTCGGCAAATCTTACC GTCATGTGAGAAGAAGCAGG 

RTqPCR 
      

B2M 231 CACTGAAAAAGATGAGTATGCC AACATTCCCTGACAATCCC 

MTND1 111 ACGCCATAAAACTCTTCACCAAAG GGGTTCATAGTAGAAGAGCGATGG 

    
Table 4-3 List of primers for mtDNA copy number quantification. 

Templates were designed to produce standard curves with known DNA copy number. qPCR primers were used for the real-time PCR assay.Genbank 

accession numbers: B2M: NM_004048.2; mtND1: NC_012920.1. RTqPCR conditions used to quantify mtDNA copy number is described in Section 

3.10.2. 
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Template Base Pairs Forward Primer (5’-3’) Reverse Primer (3’-5’) 

TFAM 139 GCTCCCCTTCAGTTTTGTGT TTTTGCATCTGGGTTCTGAGCT 

OPA1 117 GTTCAACTGGCGGAAGACC TGCAGAGCTGATTATGAGTACGA 

Reference Genes bp 
    

B2M 231 CACTGAAAAAGATGAGTATGCC AACATTCCCTGACAATCCC 

B-ACTIN 131 GATGCAGAAGGAGATCACTGC ACATCTGCTGGAAGGTGGAC 

    
Table 4-4 List of primers for relative mRNA gene expression of mitochondrial maintenance markers.  

TFAM: transcription factor A, mitochondrial;OPA1: Optic atrophy 1; B2M: beta-2-microglobulin. 

Gen bank accession numbers: TFAM: NM_003201.2; OPA1: NM_015560.2; B2M: NM_004048.2; B-Actin: NM_001199954.1. The RTqPCR 

conditions used to quantify gene expression are described in Section 3.10.3. 
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4.3 Results 

4.3.1 OPA1 protein and gene expression in fibroblasts from DOA patients 

OPA1 protein levels were assessed in fibroblasts from the cohort of patients described in 

Table 4-1 using western blot analysis. Fibroblasts from DOA+ and OA patients were directly 

compared with fibroblasts from healthy donors. 

Overall, DOA+ primary fibroblasts had similar OPA1 protein levels compared with 

healthy controls (Figure 4-1). However, when studying patients separately, the four different 

patients showed varying levels (Appendix Figure A-1). Interestingly, DOA+(1) fibroblasts, 

presenting as a compound heterozygote (Table 4-1) had significant lower OPA1 protein 

levels, probably a direct result of two mutated versions of the protein.   

OA primary fibroblasts consistently had lower OPA1 protein levels compared with 

controls (Appendix Figure A-1; A-2). Overall, OPA1 levels were statistically decreased by 

less than 50% (Figure 4-1), consistent with the expression of one wild-type (WT) allele and a 

deleted one. 
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Figure 4-1 OPA1 protein densitometric analysis from primary fibroblasts from DOA+ and OA patients  

Representative images of western blots measuring OPA1 and GAPDH levels from controls, DOA+ and OA patient fibroblast (A). Densitometric 

analysis was performed using ImageJ and OPA1 densitometry normalised to GAPDH. OPA1/GAPDH ratios were expressed compared to mean of 

three different control cell lines (n=4) (B). Error bars represent standard error of the mean (SEM) **** p≤ 0.0001 using a Student’s unpaired t-test 

against controls. Refer to appendix A for representative raw images of immunoblots. 

(A) (B) 
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OPA1 mRNA expression was also assessed in fibroblasts from the cohort of patients 

described in Table 4-1 using real-time PCR anaysis. Fibroblasts from DOA+ and OA patients 

were directly compared with fibroblasts from healthy donors.  

Overall, DOA+ primary fibroblasts showed a statistically significant decrease in 

OPA1 gene expression by ~50% compared with controls (Figure 4-2). 

The OA group also showed a similar low trend, however, this was not significant 

(Figure 4-2). This is due to the variability in gene expression in individual patients. Indeed 

OA(1) and OA(3) had decreased OPA1 gene expression, whilst OA(4) did not (Appendix 

Figure B-1), suggesting different mechanisms regulating the gene expression of the different 

mutated OPA1 alleles in the different patients. 

 

 

 

 

 

 

 

 

Figure 4-2 OPA1 gene expression of primary fibroblasts from DOA+ and OA patients.   

Relative OPA1 gene expression was measured using real-time PCR and standardised against 

mean B-actin and B2M gene expression. OPA1/mean housekeeping genes was expressed 

compared to mean of three different control cell lines (n=3). Error bars represent Standard 

Error of the Mean (SEM). * p≤ 0.05 using a Student’s unpaired t-test against controls. 
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4.3.2 Mitochondrial network in primary fibroblasts from DOA+ and OA patients 

Mitochondrial networks from fibroblast cell lines were visualised using the mitochondrial-

specific MitoTracker® Red CMXRos stain. Images were capture along the z-axis for each 

fibroblast analysed allowing 3D-representation for further analysis. Images were then 

processed and filtered using the Huygens deconvolution algorithm (part of Huygens Essential 

software) (Figure 4-3). The Object analyser wizard (Hugens Essential) allowed detection and 

measurement of mitochondrial fragments in each cell.  

 

 

 

Figure 4-3 Mitochondrial staining of fibroblast cells and image processing 

Staining of the mitochondrial network was performed with MitoTracker® Red CMXRos 

(Molecular Probes, Life technologies). Raw image of control primary fibroblast was captured 

using Nikon Ti confocal microscope objective x63 assisted with Nyquist sampling (A). 

Computerised Image deconvolution of the same control primary fibroblast obtained using 

Huygens Essential deconvolution wizard (B). Scale bars represent 10μm.  



 

112 

    

Fibroblast mitochondrial network was visualised under two different bioenergetics conditions. 

Cell lines were grown in basal condition consisting of glucose suplemented medium, 

favorising glycolytic-driven energy production alongside basal OXPHOS-driven energy 

production. Fibroblast mitochondrial network was also visualised following specific 

OXPHOS-driven energy production, consisting of a medium supplemented with galactose but 

lacking glucose. Fibroblasts from all patients in the study cohort were then visualised and 

mitochondrial network quantified.(Figure 4-4). 

Total mitochondrial network length was expanded in all DOA+ patients and half of 

the OA patients (Appendix Figure C-1). Consequently, total mitochondrial length was 

statistically increased in both DOA+ and OA patients but with an exagerated effect in DOA+  

(Figure 4-5A). Total volume was also increased in most patients of the two groups 

(Appendix Figure C-1) leading to a mild significant increased average of total volume in 

both DOA+ and OA patient groups (Figure 4-5B). 

Following galactose treatment in control fibroblasts, total mitochondrial network 

length was retracted alongside with an increased total volume, suggesting a swollen total 

mitochondrial network. A similar effect was observed in both DOA+ and OA groups, 

although more intense in the OA group (Figure 4-5). 
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Figure 4-4 Mitochondrial network staining in fibroblast patients and controls under different bioenergetics conditions 

Staining of the mitochondrial network was performed with MitoTracker® Red CMXRos (Molecular Probes, Life technologies). Images of primary 

fibroblasts were captured using Nikon Ti confocal microscope objective x63 assisted with Nyquist sampling followed by Computerised Image 

deconvolution using Huygens Essential deconvolution wizard. Representative images of Fibroblast controls (A,D), Fibroblasts from DOA+ (B,E) and 

OA patients (C,F). All fibroblasts were treated to two different bioenergetics conditions: glucose treatment for 24 hours (A-C) or galactose treatment 

for 48 hours (D-F). Scale bars represent 10μm. .



 

114 

    

 

Figure 4-5 Total length and Volume measurements of the Mitochondrial Network patient and control Primary Fibroblasts 

Total mitochondrial length (A) and total volume (B) were measured using Huygens Object analyser module in fibroblasts imaged following either 24 

hour incubation with 5mM glucose (blue) or 48 hour incubation with 5mM galactose (red). Error bars represent the standard error of the mean (SEM). 

*** p  0.001 and **** p  0.0001 using a Student unpaired t-test against controls (n=200).  

A B 
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Under glucose conditions, the total number of mitochondrial fragments was 

significantly increased virtually in all patient fibroblasts (Appendix Figure C-2), with higher 

numbers in the DOA+ group (Figure 4-6A). Average length of mitochondrial fragments was 

also significantly decreased in both groups with shorter fragments measured in DOA+ 

patients (Figure 4-6B, Appendix Figure C-3A). Both these obsevations suggest a higher 

level of fragmentation in DOA+ patient fibroblasts under basal conditions than in OA patient 

fibroblasts, both groups showing fragmentation compared with controls. In parallel, the 

average volume was only midly decreased in DOA+ patients but not in OA patients compared 

with controls (Figure 4-6C, Appendix Figure C3B).  

Galactose treatment had the overall effect of decreasing the number of mitochondrial 

fragments, increasing the average fragment length and increasing the average fragment 

volume, consistent with mitochondrial elongation and mitochondrial swelling. A similar trend 

was observed in patient fibroblasts in both groups. However, this elongation effect 

(represented by a decreased mitochondrial fragment number and an increased fragment 

length) was exagerated in OA patient fibroblasts (Figure 4-6A-B and Appendix Figure C2C  

C3B and C5A). Strikingly, fibroblasts from OA patients had bigger fragment average 

volumes than from DOA+ patients, suggesting a high level of swelling. However, both DOA+ 

and OA groups had swollen mitochondria compared to control fibroblasts.   
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Figure 4-6 Mitochondrial fragmentation of the Network in patient and control primary fibroblasts  

Average number of mitochondrial fragments (A) were measured using Hugens Object analyser software in fibroblasts imaged following either 24 hour 

incubation with 5mM glucose (blue) or 48 hour incubation with 5mM galactose (red). Average fragment length (B) and average fragment volume (C) 

were calculated as described in section 4.2.4. Error bars represent the standard error of the mean (SEM). * p  0.05, ** p  0.01, *** p 0.001, and 

**** p  0.0001 using a Student’s unpaired t-test against controls (n=200). 
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4.3.3 MtDNA maintenance 

Mitochondrial DNA (mtDNA) copy number was measured using a RTqPCR assay designed 

to compare the relative levels of mitochondrial gene ND1 with respect to nuclear-encoded β-

2-microglobulin (B2M) in fibroblasts from healthy controls, DOA+ and OA patients. 

Compared with fibroblast from controls, fibroblasts from patients, whether from DOA+ or 

OA groups, did not reveal major variations in mtDNA copy number (Figure 4-7A, Appendix 

Figure D-1A). 

Mitochondrial transcription factor A (TFAM) mRNA expression was also measured 

using RTqPCR. TFAM mRNA levels seemed slightly decreased in most DOA+ and OA 

patient fibroblasts (Figure 4-7B, Appendix Figure D-1B). Due to high variability between 

patients, this decrease was only significant in the DOA+ group but not in the OA group. 
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Figure 4-7 MtDNA maintenance markers in primary fibroblasts from DOA+ and OA 

patients.   

MtDNA copy number was measured using real-time PCR and normalised to nuclear encoded 

B2M copy number (A). TFAM was measured using real-time PCR and standardised against 

mean B-actin and B2M gene expression (B). Both mitochondrial maintenance markers were 

expressed compared to mean of three different control cell lines (n=3). Error bars represent 

Standard Error of the Mean (SEM). * p ≤ 0.05 using a Student’s unpaired t-test against 

controls. 
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4.3.4 OXPHOS protein levels and ATP levels 

Several OXPHOS complex subunit protein levels were assessed using western blot analysis in 

fibroblasts from DOA+ and OA patients and compared with fibroblasts from healthy donors 

(Figure 4-8). Overall, subunit protein levels were variable between the different DOA 

patients (Appendix Figures E-1; E-2;E-3;E-4). 

Complex I subunit NDUFB8 had overall increased levels in both DOA+ and OA 

groups (Figure 4-9A). The nuclear-encoded complex II SDHA had significant increased 

levels in the DOA+ group, mainly due to one patient DOA+(1), whilst OA patients had 

consistently similar levels to controls (Figure 4-9B and Appendix Figure E-1B). The 

mitochondria-encoded complex IV subunit COXII had similar levels in DOA+ patient 

fibroblasts compared with controls. The OA group showed a mild increase mainly due to one 

of the patients (Figure 4-9C and Appendix E2-C). Overall, complex V subunit ATP5A 

showed no gross variation in protein level in both DOA+ and OA groups compared with 

controls (Figure 4-9D). 
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Figure 4-8 Montage of OXPHOS complex subunits western blot images from primary fibroblasts from DOA+ and OA patients.  

Representative images of western blots measuring OXPHOS complex subunits and GAPDH levels from controls (A), DOA+ (B) and OA (C) patient 

fibroblasts. COX II: mitochondria encoded complex IV subunit (17kDa); SDHA: Nuclear encoded complex II subunit (70kDa); NDUFB8: Nuclear 

encoded complex I subunit(14kDa); ATP5A: nuclear encoded complex V subunit (55kDa) and GAPDH: housekeeping protein (37kDa). Refer to 

Appendix E for representative raw images of immunoblots. 
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Figure 4-9 OXPHOS complex subunits protein levels from primary fibroblasts from 

DOA+ and OA patients  

Densitometric analysis of NDUFB8 (A), SDHA (B), COXII (C) and ATP5A (D). OXPHOS 

subunit immunoblots was performed using ImageJ and each subunit densitometry normalised 

to GAPDH. Ratios were expressed compared to mean of three different control cell lines 

(n=3). Error bars represent standard error of the mean (SEM). * p  0.05, ** p  0.01 and *** 

p  0.001 using a Student’s unpaired t-test against controls. 

(A) 
(B) 

(C) (D) 
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Following the observed disturbances in OXPHOS subunit levels, ATP levels were measured 

using a luminescent assay under different biogenesis conditions (Figure 4-11 and Appendix 

Figure E-4). 

Under basal glucose conditions, total ATP levels were not statistically different 

between the DOA+, OA and control groups. Under glycolysis-driven conditions, with 

oligomycin treatment, ATP levels were lower than under glucose conditions in all groups. 

Similarly, under basal conditions, ATP levels in the DOA+ group were slightly lower than the 

other two groups, although not significant. 

Under OXPHOS-driven conditions, with D-deoxyglucose treatment, ATP levels were 

approximately three times lower than in glucose conditions and twice lower than under 

oligomycin treatment in all groups. There was no difference in ATP levels in both DOA+ and 

OA groups compared with controls. 

Under minimal bioenergesis, treated with a combination of oligomycin and D-

deoxyglucose, ATP levels were very low showing minimal ATP production. 
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Figure 4-10 ATP levels measured in primary fibroblasts from DOA+ and OA patients  

Fibroblasts from patients and controls were treated with a range of bioenergetics conditions: glucose (Glucose), glucose and oligomycin (oligomycin), 

glucose and d-deoxyglucose (D-Deoxyglucose) and glucose with d-deoxyglucose and oligomycin (D-D+oligo). Error bars represent standard error of 

the mean (SEM). **** p≤0.0001 using a Student’s unpaired t-test against controls (n=3).



 

124 

 

4.4 Discussion  

4.4.1 Different mechanisms of OPA1 allelic expression in OA and DOA+ patients  

The effects of different types of mutations on OPA1 expression at the mRNA and protein 

levels were very different and potentially pinpoint different types of pathogenetic 

mechanisms within the same disease, DOA. 

OA syndrome is characterised with isolated optic nerve involvement and accounts 

for approximately 80% of all DOA cases (Lenears et al., 2012). Except for OA(4) patient, 

all other OA patients had lower protein levels, due to a decrease in gene expression as 

shown by the RTqPCR assay. Of note, gene expression was not statistically significant and 

as low as for protein levels in the OA group compared with controls because it was 

missing OA(2) patient in the group analysis, however all three remaining patients showed 

consistency between protein and gene expression. A decrease of 50% in gene expression is 

consistent with the expression of only one WT allele and silencing of the mutant allele. 

This effect is described as loss of function also refered as haploinsufficiency. 

Haploinsufficiency in DOA was first hypothesised by Alexander and colleagues (2000) 

and the first evidence in different types of OPA1 mutations was described soon afterwards 

(Pesch et al., 2001; Marchbank et al., 2002). For OPA1 mutations leading to loss of 

transcription of the mutated allele, Schimpf and colleagues (2008) were able to 

demonstrate a nonsense-mediated decay mechanism. However, they also observed that for 

some of the mutations, particularly those not leading to premature termination codon, such 

as missense and in-frame mutations, a nonsense-mediated decay did not occur and OPA1 

mRNA and protein levels were normal.  

OA(4) patient harbours an 876-878 (TGT) deletion in exon 9 which results in an 

in-frame deletion of a single amino acid at the C-terminus of the protein (termination at 

codon 960) which may go undetected by nonsense-mediated decay quality control. Gene 

and protein levels in OA(4) were found to be consistently normal, which may indicate that 

OA(4) is not subject to nonsense mediated quality control. 

One limitation of quantifying OPA1 OA protein level in this study is that the 

commercial antibody used in the western blot analysis to determine protein level is 
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targeted to an epitope on the C-terminus of the OPA1 protein. If the mutated OPA1 allele 

were to express a truncated protein in a dominant negative fashion as hypothesised by 

Kushnareva and colleagues, 2016, it would be undetectable by this assay because the 

truncation is upsteam of the antibody epitope. However Kunshnareva’s study which used 

an N-terminus targeted antibody reaffirmed a model of haploinsufficiency and it is likely 

that the same mechanism is operating in primary fibroblasts.  

On the other hand, DOA+ subgroup, presenting with extra-ocular symptoms in 

addition to the optic neurodegeneration defining DOA, account for approximately 20% of 

all cases (Lenaers et al., 2012; Yu-Wai-Man et al., 2010b). Most of these patients harbour 

pathological missense variants in the GTPase domain of OPA1 (Yu-Wai Manet al., 

2010b).  

OPA1 expression analysis showed higher variability within DOA+ patients. In the 

case of missense or in-frame mutations, as the resultant transcript would not be truncated 

but instead modified, such mutation would not be detected by non-sense mediated decay 

(Schimpf et al., 2008). However, mutated proteins could post-transcriptionally be 

degraded or, if not detected by a cellular chaperone system (Kriegenburg et al., 2012), 

result in the production of misfolded protein in the cell. In the case of DOA+(2), DOA+(3) 

and DOA+(4), OPA1 protein levels were not decreased indicating that both alleles should 

be expressed. The resulting overexpressed or normal levels of OPA1 protein suggest a 

potential dominant-negative effect in the DOA+ group, as previously hypothesised 

(Olichon et al., 2007).  

Decreased OPA1 protein levels with normal gene expression in DOA+(1) patient 

could be explained by the presence of the two heterozygous missense mutations (c.768 

C>G (exon 5b) and c.854A>G (exon 8) in trans). It is very likely that one or the two alleles 

are fully expressed but the two resulting mutated proteins have a dominant-negative effect 

resulting in destabilsation of the protein and a lower level than expected. Further study of 

allelic expression and OPA1 complex structure would be required. Interestingly, this 

patient presents with one of the most clinically severe cases of DOA in this cohort with 

optic atrophy, ataxia, myopathy and spasticity. 
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OA and DOA+ syndromes are characterised by two different types of mutations 

leading to two very different pathogenetic mechanisms: haploinsufficiency in most OA 

patients and dominant-negative mechanism in most DOA+ patients with mutations in the 

GTPase domain. These two different mechanisms could result in the involvement of 

different cellular and mitochondrial pathways between the two groups, potentially 

explaining different levels of severity between the two syndromes. Due to the 

multifunctional roles of OPA1 protein in mitochondrial dynamics, mitochondrial cristae 

structure, apoptosis, calcium signalling, OXPHOS complex stabilisation and mtDNA 

maintenance (Chevrollier et al., 2012; Zanna et al., 2008; Hudson et al., 2008; Amati-

Bonneau et al., 2008; Agier et al., 2012; Fueloep et al., 2011), it is difficult to predict how 

the different types of mutations can affect mitochondrial and cellular function.  

 

4.4.2 Mitochondrial network fragmentation and morphological differences in 

DOA+ and OA patients  

Analysis of mitochondrial fragmentation patterns was performed by confocal microscopy 

followed by semi-quantitative 3D image analysis allowing the measurement of three 

separate parameters: total mitochondrial length, total mitochondrial volume and number of 

total fragments per cell. These three parameters were then used to calculate two further 

metrics: average mitochondrial length and average mitochondrial volume. This image 

analysis method has great quantitative sensitivity in detecting mitochondrial morphological 

differences compared to previous qualitative (Zanna et al., 2008; Olichon et al., 2007; 

Chevrollier et al.,2008) and semi-quantitative (Agier et al.,2012; Chevrollier et al., 2012) 

analyses some of which are described below.  

Investigating morphological differences between DOA+ and OA primary 

fibroblasts under basal conditions in which cells use both OXPHOS and primarily 

glycolytic systems to derive chemical energy, highlighted two relevant observations. The 

first was a significant increase in total length in all DOA+ and half OA fibroblast lines 

(Table 4-5) and there are a number of possible reasons for this observation. The simplest 

explanation was that the total number of mitochondrial fragments found in DOA primary 

lines was significantly greater than control. This appears to correlate with a significant 

increase in total mitochondrial length (Appendix C1 and C2). So therefore this significant 
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increase in total length is a cumulative effect of the length of a much greater number of 

mitochondrial fragments. Agier and colleagues who observed a similar increase in total 

length of OPA1 primary lines also found a significant decrease in DRP1 steady-state which 

occurred at the post-transcriptional level (Agier et al., 2012).  This may also indicate that 

DRP1 may have a role in modulating total length although further evidence is required to 

make this assertion. The second observation was an increased fragmentation of average 

length and volume in DOA primary fibroblasts. This was reported in previous reports by 

Zanna et al. (2008); Olichon et al. (2007) and Chevrollier et al. (2008). However, DOA+ 

was found to be particularly susceptible to fragmentation under these basal conditions 

which has not been reported previously. This observation was reinforced by quantification 

of average volume which also demonstrated significant fragmentation in DOA+ compared 

with control. Severe fragmentation in DOA+ with milder fragmentation in OA would 

appear to be a basic pathophysiological observation. 

Investigation of morphological differences under forced oxidative conditions 

(5mM galactose) in which chemical energy is reliant on the OXPHOS system rather than 

glycolytic ATP (Rossignol et al., 2004; Bustamante and Pedersen, 1977), highlighted three 

relevant observations. The first was a general increase in both average length and volume 

of mitochondria in control, DOA+ and OA primary fibroblasts. This is reminiscent of 

Tondera and colleagues (2009) stress-induced mitochondrial hyperfusion (SIMH). SIMH 

is a normal acute physiological adaptation to a stress to promote cell survival through 

mitochondrial morphology modulation (Tondera et al., 2009). However, this increase in 

average length and volume was particularly intensified for OA primary fibroblasts with 

both excessive length and disproportionate swelling observed. 

Variations in mitochondrial morphology between both OA and DOA+ groups 

might be a direct consequence of OPA1 allelic expression.OPA1 is expressed as different 

spliced isoforms that form oligomeric complexes to direct its fusion and cristae 

remodelling roles (Frezza et al., 2006; Ramonet et al., 2012). The presence of mutated 

OPA1 protein due to missense mutations in the GTPase domain detected in DOA+ patients 

may interfere with oligomeric complex stabilisation, in turn impinging on OPA1 

functional and structural roles under basal conditions and lead to excessive fragmentation 

of mitochondrial network.  



 

128 

 

Under SIMH conditions induced by galactose treatment, ATP is specifically 

produced via OXPHOS and mitochondrial production is increased. The exaggerated SIMH 

and disproportionate swelling found in OA may be directly linked to OPA1 

haploinsufficiency. Deletions found in OA OPA1 lead to the degradation of truncated 

OPA1 mRNA and the translation of only wild-type OPA1 isoforms. With the absence of a 

modified protein, the resulting oligomerisation would lead to the formation of wild-type 

stable complexes and normal function, explaining the lesser impact on mitochondrial 

network morphology observed under normal conditions compared to DOA+ cases. 

However, the severe defect mainly observed under SIMH induced by OXPHOS-driven 

conditions might be more associated by the low levels of OPA1 protein available 

suggesting a higher demand of the protein during intense cristae remodelling required to 

maintain the mitochondrial network. This phenomenon implies a threshold of OPA1 

molecules needed beyond which disturbance of mitochondrial morphology can be 

detected. The mechanism of this mitochondrial swelling merits further investigation but 

one could hypothesize that this increase in mitochondrial volume may be due to a 

dysregulation of calcium/ potassium flux, resulting in the efflux of calcium and 

subsequenct swelling of the mitochondrial network due to a loss in cristae structure 

(Kushnareva et al., 2013).  

The different morphologies found in DOA+ and OA primary fibroblasts under 

basal and oxidative conditions imply alternative biochemical dysfunctions within 

mitochondria of OA and DOA+ patients. Variations in morphological parameters which 

occur within DOA+ and OA groups are likely reflective of either the underlying OPA1 

mutation or relative number of passages on each line. However, similar fragmentation 

patterns were also quantified in Chapter 5 reaffirming the different morphologies between 

these two groups.  Further understanding the nature of these alternative dysfunctions may 

explain clinical differences observed between these two groups in future studies. This is 

particularly pertinent given that optic and auditory systems, the central and peripheral 

nervous system, heart, muscle, pancreas, kidney and liver are all susceptible to 

mitochondrial dysfunction (Chinnery et al., 2015). 
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4.4.3 mtDNA maintenance is mildly dysregulated in DOA+ patients with no 

steady-state consequence on mtDNA copy number 

To assess the effects of OPA1 mutations on mtDNA maintenance, mtDNA copy number 

was measured using a real-time PCR. No variation in mtDNA copy number between 

controls, DOA+ and OA primary fibroblasts were detected. This observation is consistent 

with a previous report by Agier and colleagues who also demonstrated no significant 

difference in their cohort of four DOA patients implying that at least in these primary 

fibroblasts, pathological mutations in OPA1 do not appear to impact on gross mtDNA 

maintenance (Agier et al., 2012). However, this observation was contradicting Zanna and 

colleagues work who demonstrated a significant increase in mtDNA copy number in 

primary fibroblasts derived from a cohort of ten patients (Zanna et al., 2008).  

The maintenance of mtDNA was further assessed by analysing the relative gene 

expression of TFAM, a component of the mitochondrial nucleoid involved in mtDNA 

coiling and transcription. TFAM gene expression was significantly decreased in DOA+ but 

not in OA when compared against control.A slight decrease in TFAM levels with normal 

mtDNA copy number suggests a mild impairment in mtDNA maintenance with no overall 

effect in steady-state mtDNA copy number in normal conditions. This is consistent with 

previous in-house analyses which demonstrate a defect in mtDNA replication rate under 

stress conditions (driven repopulation of mtDNA after treatment with ethidium bromide).  

Currently there is much controversy in the field as to how pathological OPA1 

mutations may impact mtDNA maintenance. In addition to mtDNA levels quantified in 

primary fibroblasts, investigation of primary leukocytes using RTqPCR have indicated 

both a slight mtDNA depletion or a significant mtDNA proliferation in different studies 

(Kim et al., 2005; Sitarz et al., 2012). Additional investigation in single skeletal muscle 

fibres also demonstrates a mechanism of significant mtDNA proliferation, especially in 

COX-negative tissue (Yu-Wai-Man et al., 2010b). This may indicate that pathological 

disruption of OPA1 may result in a gross disruption of mtDNA maintenance although 

there may not be a different level of susceptibility of mtDNA maintenance in the different 

tissues. 
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4.4.4 OXPHOS subunit protein level variations in DOA do not have direct effect 

on overall ATP cellular levels 

OPA1 performs a variety of functions, which include maintance of cristae morphology, 

regulation of the IMM fusion and stabilisation of OXPHOS complex assembly (Zanna et 

al., 2008). Given these functions, it is plausible that OPA1 mutations may disturb 

OXPHOS function. Relative protein expression levels of individual subunits of OXPHOS 

complexes I, II, IV and V were semi-quantitatively analysed using western blot. Previous 

reports have found an abnormal steady-state of subunits associated with complex I (Zanna 

et al., 2008) which was potentially associated with an OXPHOS enzymatic defect. 

Analysis of these OXPHOS subunits corrected against GAPDH demonstrated a significant 

increase in NDUFB8 in both DOA+ and OA. However a significant increase of nuclear 

encoded SDHA was also detected in DOA+ which may indicate an excess of 

mitochondrial organelles. Further investigation is needed to detect a potential OXPHOS 

complex assembly defect (using blue-native gel electrophoresis) and analysis of enzymatic 

activity of complexes I. Abnormal steady-state levels of complex I subunits in OA may be 

preliminarily indicative of an underlying OXPHOS system defect.  

To further investigate the effects of varying OXPHOS subunit protein levels, 

cellular ATP production was measured. Total cellular, glycolysis-driven and OXPHOS-

driven ATP production were independently analysed and compared. No major ATP 

production disturbances were observed in any conditions between the three groups. This 

observation in consistent with previous measurements of ATP performed by Zanna and 

colleagues  who also reported no gross differences in ATP level in DMEM glucose (Zanna 

et al., 2008).  

D-deoxyglucose specifically inhibits the glycolytic pathway by competitive 

inhibition. D-deoxyglucose contains a hydrogen in place of two hydroxyl groups which 

prevents glucose molecules from being further processed to glucose-6-phosphate. This 

inhibition decreases the efficiency of glycolysis to generate ATP and increases the reliance 

of the primary fibroblasts to generate ATP through the OXPHOS system. In contrast, 

instead of inhibiting the glycolytic pathway, galactose is broken down to generate ATP via 

glycolysis but with a much lower ATP net yield. As the medium is supplemented by 
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glutamine, the cell mainly relies on the OXPHOS system for ATP generation via amino 

acid metabloism.  

The alternative mechanisms which these drugs use to enhance ATP production 

through OXPHOS may partially explain why there is no significant defect detected in 

DOA+ and OA groups under d-deoxyglucose treatment while primary fibroblasts treated 

under galactose exhibit abnormal mitochondrial morphology. Furthermore, mitochondrial 

morphology was quantified after 48 hours incubation with galactose while ATP generation 

was quantified under 1.5 hours incubation with d-deoxyglucose. It could be that any defect 

in OXPHOS may not be detectable until a later time point when mitochondrial 

morphology remodelling may exacerberate a defect in OXPHOS. Evidence for altered 

mitochondrial bioenergetics was demonstrated in Zanna et al., (2008) in which they 

observed increased mitochondrial ATP following 24 hour galactose treatment in both 

control and DOA primary fibroblasts, pointing to an underlying biochemical defect. 

Further investigation of how mitochondrial morphology in DOA under galactose treatment 

is linked to OXPHOS is required, particularly in OA patients. 

4.4.5 Conclusion  

The present study presented two very distinct syndromes of DOA with two different 

mutational effects. On one hand, primary fibroblast lines from DOA+ patients with 

missense muations showed normal levels of OPA1 gene and protein, with propensity to 

escape cellular quality control mechanisms such as nonsense-mediated decay. Such 

mutations led to a clear fragmentation of the mitochondrial network suggesting an 

impairment of OPA1 mediated maintenance of the mitochondrial structure and potentially 

an impairment of fusion under normal conditions. Pathological missense variants may then 

impact on normal OPA1 function, indicative of dominant–negative effect. Mitochondrial 

respiration and mtDNA copy number did not seem to be directly affected; however, the 

decrease in TFAM gene expression implicated a wider effect on mtDNA maintenance. In 

conclusion, dysfunction in DOA+ primary fibroblasts may be due to impaired 

mitochondrial fusion/structure and mtDNA replication rate (Table 4-5). 

On the other hand, investigation of OA primary fibroblasts showed a significant 

decrease in OPA1 steady state which occurred at the post transcriptional level probably 
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due to nonsense mediated decay. Haploinsufficiency led to a mildly significant 

fragmentation of the mitochondrial network under basal conditions. There was also no 

gross defect in mitochondrial respiration and mtDNA maintenance detected. Under 

oxidative conditions, OA primary fibroblasts showed a clear effect on mitochondrial 

morphology, represented by excessive SIMH and excessive swelling of mitochondria. This 

may indicate that under oxidative conditions, where a greater threshold of OPA1 is 

required for adaptation to stress, OPA1 function is severely compromised. In conclusion, 

as a consequence of OPA1 haploinsufficiency, OA primary fibroblasts may have a greater 

impact under stressful conditions and this defect may be due to a dysregulation of 

mitochondrial structure (Table 4-5). 
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Table 4-5 Summary of data obtained from analysis of DOA+ and OA primary fibroblasts. 

SIMH: Stress-induced Mitochondrial Hyperfusion; CI: complex I from the OXPHOS system, represented by NDUFB8A subunit; CII: complex II from 

the OXPHOS system represented by SDHA subunit 

 

 DOA+ OA 

OPA1 levels Normal levels  < 50% lower levels 

Mitochondrial Network under 

basal conditions 

Expansion of total 

mitochondrial network 

Acute fragmentation 

Mild expansion of total 

mitochondrial network 

Mild fragmentation 

Mitochondrial Network under 

OXPHOS-driven conditions 

Normal retraction of total 

mitochondrial network 

 SIMH 

Intensisfied retraction of total 

mitochondrial network 

Exagerated SIMH accompanied 

by intensified swelling 

mtDNA maintenance and 

replication 

Normal mtDNA copy number 

lower TFAM levels 

 

Normal mtDNA copy number but 

40% lower TFAM levels 

OXPHOS function 

Increased protein levels of CI 

subunit  

No overall significant ATP 

production changes 

Increased CI subunit protein level  

No overall significant ATP 

production changes 

 Dominant negative effect Haploinsufficiency 
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Chapter 5  

 

 

 

     Mitochondrial Network and Nucleoid Distribution in    

……..OPA1-Mutant Myotubes 
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5.1 Introduction 

Mitochondrial nucleoids are essential structures that play numerous roles including regulating 

mtDNA maintenance and copy number, segregation of mtDNA in daughter mitochondria following 

fission, manipulating mtDNA transcription and acting as an interface between mtDNA function and 

global cellular signalling pathways (Alam et al., 2003; Moraes et al., 2001; Tyynismaa and 

Suomalainen, 2009).  

Case series investigating key pathological mechanisms underpinning OPA1 mutations and 

mitochondrial dysfunction originally identified a disruption of mtDNA maintenance illustrated by 

the presense of multiple mtDNA deletions in patients diagnosed with optic atrophy and 

mitochondrial myopathy using histopathological staining (Amati-Bonneau et al., 2008).  

This observation was also confirmed in a pedigree of optic atrophy with progressive external 

ophthalmoplegia, ataxia, deafness, visual failure and sensory-motor neuropathy due to a 

pathological missense variant identified in Opa1 (Hudson et al., 2008). Hudson and colleagues then 

proposed that OPA1 may be a component of the mitochondrial nucleoid which may explain its 

involvement in mtDNA instability (Hudson et al., 2008).  

This initial set of observations combined with more recent investigations suggesting a 

relationship between OPA1 dysfunction and mtDNA proliferation (Sitarz et al., 2012; Yu-Wai-Man 

et al., 2010b), led to an investigation by Elachouri and colleagues to identify this mechanistic link 

between OPA1 and mtDNA maintenance (Elachouri et al., 2011). Their work highlighted a physical 

interaction of a 10kDa N-terminus OPA1 isoform with mtDNA, implicating OPA1 protein in 

mtDNA maintenance within HeLa cells. Similar to ATAD3, this 10kDa isoform was responsible for 

anchoring the mitochondrial nucleoid to the IMM, a necessary step for mtDNA replication, fidelity 

and nucleoid distribution within the mitochondrial network (Figure 5-1). 
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Figure 5-1 Mitochondrial nucleoid anchoring to the inner mitochondrial membrane via 

binding with OPA1 

OPA1 is alternatively spliced to produce pre-mature isoforms containing exon 4b. These isoforms 

are further processed by OPA1 protease YME1L and the mature protein isoform acts to bind 

mitochondrial nucleoids to the IMM to facilitate mtDNA replication and nucleoid distribution 

(Reproduced from Elachouri et al., 2011) 

 

 In addition, disruption of mitochondrial dynamics has been identified as a common hallmark 

of neurodegenerative disorders (Santel et al., 2006; Kijima et al., 2005; Zuchner et al., 2004; 

Waterham et al., 2007; Olichon et al., 2003). This is particularly pertinent for DOA because 

mutations in Opa1 may lead to a generalised disruption of mitochondrial fusion and increased 

fragmentation of the mitochondrial network (Zanna et al., 2008). This disruption may impinge on 

quality control, inhibiting both mitochondrial content mixing and the distribution of nucleoids 

(Meeusen et al., 2006; Detmer and Chan, 2007; Chen et al., 2007). This hypothesis is based upon 

experimental observation that mitochondrial fusion results in the repopulation of ρ0 cells through 

the slow migration of mtDNA/nucleoids in these fusion events (Legros et al., 2004). Moreover, 

mitochondrial networks with excessive fragmentation have been found to contain at least one 

mtDNA/nucleoid per mitochondrial fragment. These observations imply that mtDNA/nucleoid 
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distribution may be a regulated process and that potential disruption of this process, perhaps 

through excessive mitochondrial fragmentation, may impact mtDNA number and distribution 

(Margineantu et al., 2002). Strikingly, MFN2 dysfunction was shown to inhibit outer membrane 

fusion and lead to a decrease in mtDNA copy number further validating this hypothesis (Chen et al., 

2010; Vielhaber et al., 2013). These observations imply a relationship between mitochondrial 

dynamics and mtDNA/ nucleoid maintenance, number and distribution which has yet to be 

investigated in primary DOA patient tissue. 

To investigate this mechanistic relationship, we employed both Quant-iT™ PicoGreen® 

cytochemical and MitoTracker® Red CMXRos staining. The use of Quant-iT™ PicoGreen® has 

been used previously by Ashley et al. (2008) and Ylikallio et al. (2010) to determine both the 

relative number and size distribution of mtDNA/nucleoid molecules in primary cell models of 

mtDNA depletion due to pathological POLG1 mutations in Alpers syndrome and a bitransgenic 

Twinkle/TFAM mouse model, respectively. Both studies presented a detrimental decrease in 

mtDNA molecule number, respectively. 

Although Quant-iT™ PicoGreen® staining of live cells is less sensitive than anti-dsDNA 

antibodies, its advantages include a greater accuracy in quantifying nucleoid/mtDNA level (Ashley 

et al., 2008). Live cell cytochemical staining also provides additional data on the distribution and 

morphology of these mtDNA molecules and bypass the necessity to fix the cells. The use of 

mitotracker to analyse the fragmentation of the mitochondrial network in DOA primary tissue is 

also a well validated technique and ideal for in vitro analysis (Zanna et al., 2008; Agier et al., 2012; 

Chevrollier et al., 2012).  

The development of these confocal fluorescent assays has led us to investigate both 

mitochondrial fragmentation and the relative number and distribution of mitochondrial nucleoids. 

These parameters were measured in primary myotubes which are a tractable model system derived 

from quiescent satellite cells from patient muscle tissue. Advantages of this model include the 

ability to culture these satellite cells before myotube differentiation and to retain many of the 

biochemical traits of donor cells and mirror phenotypic traits which can be found in DOA+ and OA 

primary tissue (Thompson et al., 1996; Bell et al., 2010; Spinazzi et al., 2008). These differentiated 

myotubes are also more biochemically related to patient muscle fiber than primary fibroblasts and 

myoblasts. This is particularly pertinent given the observation of COX deficiency and bioenergetic 
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failure revealed through histochemical staining of DOA+ patient muscle biopsies as a consequence 

of the clonal proliferation of mtDNA molecules with multiple deletions (Hudson et al., 2008; 

Amati-Bonneau et al, 2008.) 

In parallel, primary differentiated myotubes with a pathological WFS1 mutations were also 

quantified using this in vitro live cell assay. The presentation of a pathological phenotype due to 

mutations of WFS1 is reminiscent of the many multi-systemic optic disorders normally associated 

with mitochondrial dysfunction such as DOA. However WFS1 is housed within the endoplasmic 

reticulum and is not primarily a mitochondrial disorder.  

The aim of this study was to quantify fragmentation of the mitochondrial reticulum in 

primary myotubes of patients diagnosed with DOA+ and OA and correlate these findings with the 

distribution of mtDNA molecules to detect a potential disturbed nucleoid distribution maintenance 

and number, which may play a role in the pathogenesis of DOA. 
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5.2 Materials and Methods 

5.2.1 Patient cohort 

Mitochondrial nucleoid distribution within the mitochondrial network was investigated using 

primary differentiated myoblasts, myotubes, derived from nine patients and three controls as 

described in Table 5-1. This study was supported by institutional approval and written informed 

consent was obtained from all patients. 
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Control Group Age Gender      OA Spastic Paraplegia Myopathy Deafness     Ataxia   

MyoControl(1) 47 M - - - - -   

MyoControl(2) 21 F - - - - -   

MyoControl(3) 29 F - - - - -   

DOA+ Group   
   

 
  

OPA1 Mutation 

MyoDOA+(1) 48 F + + - - - c.889C>T 

MyoDOA+(2) 59 M + + - - - c.876-878 del (TGT) 

MyoDOA+(3) 55 F + - + - - c.870+5g>a 

MyoDOA+(4) 36 F + - + - - c.870+5g>a 

OA Group   
      

  

MyoOA(1) 41 M + - - - - c.876-878 del (TGT) 

MyoOA(2) 59 M + - - - - Exon 1-5 Deletion 

MyoOA(3) 60 F + - - - - c.2713C>T 

MyoOA(4) 65 M + - - - - c.2818+5g>a 

WFS1 Group   
      

WFS1  Mutation 

WFS1(1) 36 F + - - + + c.409_424dup16 

         
Table 5-1 Clinical characteristics of controls and optic atrophy patients with known pathogenic mutations. 
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5.2.2 Seeding of patient myoblasts and differentiation into myotubes 

A 50 µg/ml collagen solution was prepared (Collagen: Life Technologies A10483-01) in 

filtered sterilised 20 mM acetic acid solution (Sigma-Aldrich). 1 ml of this collagen solution 

was added to a glass-bottomed confocal dish (Wilco) and left to incubate at room temperature 

overnight. The collagen solution was carefully aspirated and each dish was washed three 

times with autoclaved PBS solution (Oxoid) and used either immediately for myoblast cell 

seeding or left at 4oC. 

From a T25 flask, primary DOA and WFS1 myoblasts were seeded onto glass-bottomed 

confocal dishes (Wilco) as previously described (Section 3.14.1.) at a density of 75,000 cells/ 

dish. These cells were left to incubate overnight or until the cell density reached 50-70% 

confluence. Once this cell density threshold was achieved, the Skeletal Muscle Cell Growth 

Medium (Promocell) was aspirated from each dish and washed with PBS (Oxoid). Myoblasts 

were then incubated with Skeletal Muscle Differentiation Medium (Ready-to-use) (Promocell 

C-23061) for 24 hours before this media was aspirated and replaced with fresh differentiation 

medium. These cells were incubated in fresh differentiation medium every 2-3 days and 

primary myotubes were ready for imaging on day 6 of this protocol. Seeding and 

differentiation of myoblasts was performed by Dr. Florence Burté. 

5.2.3 MitoTracker® Red CMXRos and Quant-iT™ PicoGreen® staining  

On the day of imaging, cells were incubated with 1ml 3µl/ml stock Quant-iT™ PicoGreen®  

solution (Life Technologies) diluted in Skeletal Muscle Differentiation Medium (PromoCell: 

C-23061) for 1 hour at 37˚C. Thirty minutes mid-incubation of Quant-iT™ PicoGreen®  

stain, the staining medium was aspirated and 1ml of Skeletal Muscle Differentiation Medium 

containing 3µl/ml Quant-iT™ PicoGreen®  (Life Technologiesnologies) and an optimised 

concentration of MitoTracker® Red CMXRos  (50, 75 and 100nM) was added. Both Quant-

iT™ PicoGreen®  andMitoTracker® Red CMXRos were incubated for a further 30 minutes. 

This staining medium was aspirated and the cells were washed twice with PBS (oxoid) before 

they were added to DMEM (25mM glucose/phenol red free)(Gibco, Life Sciences) with 2% 

FBS ,1% Penicillin-Streptomycin and 25mM Hepes (All obtained from Sigma-Aldrich). 
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5.2.4 Optimisation of myotube image capture   

Optimisation of MitoTracker® Red CMXRos loading, Quant-iT™ PicoGreen® staining and 

confocal image acquisition settings were required before standardised mitochondrial network 

morphology and mtDNA/nucleoid capture of primary myotubes was achieved. Initial attempts 

to load 75nM MitoTracker® Red CMXRos (as in Section 4.2.3 for fibroblasts) and 3µl/ ml 

stock Quant-iT™ PicoGreen®  (Life Technologies) with a specific cutoff threshold for HV 

settings resulted in both low level and saturated signal variation in both channels preventing 

accurate image capture (Figure 5-2). To minimise this variation, two control myotubes 

(MyoControl (1) and MyoControl (3)) were analysed under twelve different conditions for 

MitoTracker® Red CMXRos and four different conditions for Quant-iT™ PicoGreen® . 

Briefly, to correct for signal variation using the Quant-iT™ PicoGreen® channel, 

myotubes were loaded with 3ul/ml stock Quant-iT™ PicoGreen® for 1 hour at 37ºC before 

confocal HV and laser power was adjusted and three myotubes were captured for analysis to 

determine the optimal acquisition settings as described in Table 5-2. 

To correct for MitoTracker® Red CMXRos, myotubes were loaded with 50, 75 or 100 

nM MitoTracker® Red CMXRos at 37ºC for 30 minutes before confocal HV and laser power 

was adjusted as described in Table 5-2 for each concentration. Both Quant-iT™ PicoGreen®  

and MitoTracker® Red CMXRos signals were analysed using Huygens Essential Analyser 

(Scientific Volume Imaging, Hilversum, the Netherlands) to determine  fluorescent signal 

intensity. 

This analysis highlighted a greater variation in MitoTracker® Red CMXRos which led 

to either a saturated or an extremely weak signal which was problematic for image capture. In 

order to correct for this variation, myotubes were incubated with 75nM MitoTracker® Red 

CMXRos as previously described and HV was manually adjusted. A linear relationship exists 

between HV and signal fluorescent intensity and so MitoTracker® Red CMXRossignal was 

adjusted both to saturation and to the lower threshold of signal intensity to determine signal 

range. The mitochondrial network in each primary myotube line was captured 20% below the 

signal saturation threshold (corrected condition) to acquire the mitochondrial network in 

these cells. This signal was subsequently analysed with Huygens Essential Analyser 

(Scientific Volume Imaging, Hilversum, the Netherlands) and statistically assessed through a 



 

143 

 

Student’s unpaired T-test of average mitochondrial length and volume to determine that there 

were no significant differences between control cells analysed (Figure 5-2) 

 

Table 5-2 Parameters used to analyse primary myotubes during image acquisition 

optimisation. 

 

5.2.5 Mitochondrial network and nucleoid distribution and image acquisition  

Excitation wavelength for MitoTracker® Red CMXRos and Quant-iT™ PicoGreen® were 

561nm and 488nm, respectively. Primary myotubes were z-stacked with a section interval of 

0.2um for 79 slices. Both the mitochondrial network (561nm excitation) and mtDNA/nucleoid 

(488nm excitation) were captured simultaneously. Laser power and PTM were carefully 

optimised to avoid both saturation and low level signal during image acquisition. 

5.2.6 Image deconvolution  

Following acquisition of live-cell images, the files were converted to TIFF format and each 

channel was stacked using ImageJ. ImageJ was also used to process these images by using the 

rolling-ball algorithm (Castle and Keller, 2007: Available at rsb.info.nih.gov/ij/plugins/rolling-

ball.html) to average background intensity variation before the files were imported to Huygens 

Essential Software ( Scientific Volume Imaging, Hilversum, the Netherlands) for 

deconvolution. Each channel was deconvolved independently with a standardised background 

threshold until confidence level approached 99% or the number of iterations approached 40.

     
  HV-Green 

488-Green 

Channel (%) 
HV-Red 561-Red Channel (%) 

Original 

Settings 
90 3 90 1 

Condition 1 80 3 90 2 

Condition 2 100 3 100 1 

Condition 3 90 2 80 1 

Condition 4 90 1 80 1 

     

http://rsb.info.nih.gov/ij/plugins/rolling-ball.html
http://rsb.info.nih.gov/ij/plugins/rolling-ball.html
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5.2.7 Image analysis 

Images were subsequently analysed with Huygens Essential Software (Scientific Volume Imaging, 

Hilversum, the Netherlands) using a standardised set of parameters for each channel (561nm 

channel (Mitotracker® Red CMXRos); Threshold 10%, Seed 11%, Garbage 40; 488nm channel 

(Quant-iT™ PicoGreen® ); Threshold 8%, Seed 6%, Garbage 4. A region of interest (ROI) was 

selected in each cell analysed for each channel. The final analysis was corrected for the size of this 

ROI as a mean of standardisation for each cell measured. 

A minimum of 12 myotubes were imaged for each primary myotube cell line (N ≤ 12). 

Three parameters were quantified while measuring the morphology of the mitochondrial network: 

(1) Average length/volume, (2) total length/volume and (3) the number of fragments detected in the 

network. The total length/volume is the sum total of the length and volume of all mitochondrial 

fragments within the network of each cell. The number of fragments is the number of objects 

detected by Huygens Essential Software Object Analyser (Scientific Volume Imaging, Hilversum, 

the Netherlands) using optimised thresholds for detecting mitochondrial organelles in each cell 

analysed. The average length/volume is a metric calculated from the ratio between the total 

length/volume and the number of fragments of each cell. Similarly, the number and distribution of 

mtDNA/nucloids was quantifed using Quant-iT™ PicoGreen® staining using an optimised signal 

threshold. 

The number, mean and standard error of the mean were generated from the analyses of these 

parameters calculated for each myotube disease group analysed. These parameters were corrected 

by there respective cell’s ROI. The number of objects was also corrected by the ROI and 

distribution was calculated by determining Log10 of the number of objects defined between an upper 

and lower threshold of object size.  

 

5.2.8 Statistical analysis 

Statistical analysis was performed with excel (Microsoft, Reading, UK) and GraphpadTM V. 5 

(Graphpad software). Comparison between groups was carried out using a Student’s unpaired t-test. 
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5.3 Results 

5.3.1 Optimisation of myotube image acquisition  

Two control myotube lines were analysed and their signal fluorescence quantified in either 

corrected (refer to Section 5.2.4) or uncorrected conditions. This analysis showed that there were no 

significant differences between quantifying each individual line under corrected or non-corrected 

conditions. There appeared to be a mildly greater variation along the Z-axis (volume) in uncorrected 

values. Therefore, it was decided to analyse all myotube lines under a corrected threshold to ensure 

no information loss due to signal variation (Figure 5-2). 

 

Figure 5-2 Optimisation of mitochondrial network capture in primary control myotubes. 

The mitochondrial network was captured and quantified in the same myotube control line manually 

adjusted 20% below the point of saturation. Average fragment length (A) and average fragment 

volume were calculated (B) for each cell (n ≥ 3) in two different control cell lines (Control1 and 

Control2). The signal of the mitochondrial network was captured and quantified in each myotube 

line using the same standardised settings throughout. Graphs were statistically compared using a 

Student’s unpaired t-test 

(A) (B) 
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5.3.2 Mitochondrial network analysis in myotubes from DOA patients.  

5.3.2.1 Mitochondrial network variation analysis between control cell lines 

Total mitochondrial length was determined in each of the three primary myoblast lines, 

myoControl(1), myoControl(2) and myoControl(3) (n = 33, Figure 5-3). The greatest total 

length was observed in line myoControl(1) (Mean = 432.11, SEM = 25.14) and the least total 

length was detected in line myoControl(2) (Mean = 278.97, SEM = 37.16). A statistically 

significant difference was noted between total length of these two myoblast lines (P = 0.0023; 

p < 0.01) using a Student’s unpaired t-test. No significant difference was detected between 

lines myoControl(1) and myoControl(3) (p = 0.1569) or lines myoControl(3) and 

myoControl(2) (p = 0.2372).  

Measurement of total mitochondrial volume indicated that the greatest total volume 

was found in primary line myoControl(1) (Mean = 409.13, SEM = 45.09) and the least total 

volume was found in myoControl(2) (Mean = 163.97, SEM = 40.01). Statistical comparison 

between these two lines was significant (p = 0.0006; p < 0.001) which is consistent with the 

previous data generated for total mitochondrial length. Again, no significant difference in 

total volume was detected between myoControl(2) and myoControl(3) (p = 0.5486), however 

a significant difference was detected between lines myoControl(1) and myoControl(3) (p = 

0.0059, p < 0.01).  
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Figure 5-3 Variability in total network morphology between control myotube lines 

Total mitochondrial length (A) and total volume (B) were measured using Huygens Object 

analyser module in control myotubes. Error bars represent the standard error of the mean 

(SEM). ns non-significant, ** p  0.01 and *** p  0.001 using a Student’s unpaired t-test 

against controls (n ≥ 10). 

 

Comparing the average mitochondrial length between myoControl(1), myoControl(2) 

and myoControl(3) (Figure 5-4B), primary line myoControl(1) had the greatest average value 

(Mean = 3.88, SEM = 0.24) while myoControl(3) was of least average length (Mean = 3.20, 

SEM = 0.18) with a statistical significance (p< 0.001). The average length of myoControl(3) 

however was not significantly different from myoControl(2) (P = 0.0794). This is consistent 

with previous measured parameters. 

Investigation of average mitochondrial volume reveals a similar trend (Figure 5-4C). 

The greatest average mitochondrial volume is found in line myoControl(1) (Mean = 3.96, 

SEM = 0.74) while myoControl(2) has the least mitochondrial volume (Mean = 1.86, SEM = 

0.41). This difference in average volume between myoControl(1) and myoControl(2) is 

statistically significant (P = 0.0247, p < 0.01) while the difference in average volume between 

myoControl(3) and myoControl(2) is not significant (P = 0.8133). 
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The total number of mitochondrial fragments was also determined in myoControl(1), 

myoControl(2) and myoControl(3) (Figure 5-4A). Again the same trend in variability was 

seen with myoControl(1) having the greatest number of mitochondrial fragments (Mean = 

115.79, SEM = 8.39) and myoControl(2) having the least number of fragments (Mean = 

81.63, SEM = 10.77). Statistical significance was noted between lines myoControl(1) and 

myoControl(2) (p = 0.0197; p < 0.05) while no statistical significance was found between 

lines myoControl(1) and myoControl(3) (p = 0.0695) and lines myoControl(2) and 

myoControl(3) (p = 0.5905). 

Overall, Variations between cell lines were more obvious when analysing volume 

parameters compared with length parameters. Also, total mitochondrial network was very 

similar between MyoControl(2) and MyoControl(3), whilst Myocontrol(1) appeared as an 

outlier compared to the other cell lines. This difference could be due to the older age or the 

gender of the healthy control and should be included to take in account the variations due to 

age and gender differences when comparing with the patient cell lines. 
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Figure 5-4 Variability in mitochondrial fragment morphology between control myotube lines 

Average number of mitochondrial fragments (A) were measured using Huygens Object analyser software in imaged control myotubes. Average 

fragment length (B) and average fragment volume (C) were calculated as described in section 5.2.6. Error bars represent the standard error of the 

mean (SEM). ns non-significant, * p  0.05 using a Student’s unpaired t-test against controls (n ≥ 10). 

 

(A) (B) (C) 
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5.3.2.2 Mitochondrial fragmentation analysis in patient primary myotubes 

Mitochondrial network analysis was visualised using the mitochondria specific stain 

MitoTracker® Red CMXRos in all the cell lines in the myotube cohort and morphology was 

compared between each disease group. Figure 5-5 shows representative images for each 

disease group.  
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Figure 5-5 Representative image of primary myotubes from control, DOA+, OA and WFS1 

patient-derived cell lines 

Staining of the mitochondrial network was performed with MitoTracker® Red CMXRos 

(Molecular Probes, Life technologies). Images of primary myotubes were captured using (Nikon) Ti 

confocal microscope objective (x63) followed by Computerised Image deconvolution using 

Huygens Essential deconvolution wizard. Representative images of a myotube from control (A), 

myotubes from DOA+ (B), OA (C) and WFS1 patients (D). Scale bars represent 10μm. 

 

A- Control 

B-DOA+ 

C- OA 

D- WFS1 
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Total network length was increased in all DOA+ patient myotubes from 1.5 to 2-fold 

(Appendix Figure F-1A). Consequently, the DOA+ patient group showed an overall total 

network extension compared to controls. In the OA group, three out of the four patients 

showed very mild total mitochondrial network length increase, with an average not 

significantly different to controls and significantly lower than in the DOA+ group. The WFS1 

patient cell line did not show gross changes in total mitochondrial network length compared 

with control and OA groups (Figure 5-6A). 

Among the cell lines derived from DOA+ patients, total network volume showed more 

variation leading to an overall mean similar to the control group (Appendix Figure F-1B). In 

the OA group, three out of four cell lines showed a very mild decrease or normal total 

mitochondrial network volume. Strikingly, MyoOA(4) showed an overly increased total 

mitochondrial network. WFS1 did not present any gross changes in total network volume 

(Figure 5-6B). 

Despite a significant increased number of fragment in all cell lines, mitochondria were 

not fragmented in all DOA+ myotube cell lines (Appendix Figure F-2A-B) as indicated by 

the average fragment length parameter. Despite an overall indication of no fragmentation in 

the OA group (Figure 5-7A-B), MyoOA(1) was very fragmented (Appendix Figure F-4B). 

Average mitochondrial volume did not show significant changes in each disease group 

when compared to controls (Figure 5-7C). This is mainly due to a high variation between 

myotubes derived from DOA+ patients for the DOA+ group (Appendix Figure F-2C) and 

for the OA group it is mainly due to the high increase in average volume in OA cell line, 

MyoOA(4), whilst the other cell lines did not show changes (Appendix Figure F-4C).
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Figure 5-6 Total length and volume measurements of the mitochondrial network in patients 

and control primary myotubes 

Total mitochondrial length (A) and total volume (B) were measured using Huygens Object analyser 

module in myotubes derived from different optic atrophy and control groups. Error bars represent 

Standard Error of the Mean (SEM). ns non-significant, **** p  0.0001 using a Student’s unpaired 

t-test against controls (n ≥ 12). 

 

(A) (B) 
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Figure 5-7 Mitochondrial fragmentation of the mitochondrial network in patient and control primary myotubes. 

Average number of mitochondrial fragments (A) were measured using Huygens Object analyser software in fibroblasts imaged. Average fragment 

length (B) and average fragment volume (C) were calculated as described in section 5.2.6. Error bars represent the standard error of the mean (SEM). 

** p  0.01, and **** p  0.0001 using a Student’s unpaired t-test against controls (n ≥ 12).
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5.3.3 Mitochondrial nucleoid distribution in myotubes from optic atrophy patients 

Investigation of nucleoid distribution was conducted concurrently with mitochondrial 

fragmentation analysis in DOA+, OA and Wolfram syndrome primary myotubes using DNA 

staining followed by confocal microscopy and parametric image analysis (Figure 5-8). 

Staining with the DNA-specific dye Quant-iT™ PicoGreen® ® allowed the measurement of 

mitochondrial nucleoid size distribution and their object number within cells.  

The Object Analyzer module from Huygens software allowed the measurement of 

volume of each DNA object within a specific region of interest (ROI) of a cell. Each object 

volume was standardised by the cell’s ROI area and then expressed as a logarithmic function. 

Resulting size ranges were divided into bins and expressed as percentage per analysed cell. 

The number fragment within each bin from each cell was averaged (n ≥ 12 cells) for each cell 

line. The resulting distribution of object size standardised to respective ROIs was then 

expressed as a percentage number fragment /cell line /size bin and represented as a 

distribution graph. The result from each cell line was then average per disease group (Figures 

5-9 to 5-11). 

The modified Kolmogorov-Smirnov test can be used as a distribution normality test. 

This statistical test indicated that the percentage nucleoid distribution in each group was not 

normally distributed (KS test for normality: Control, p >0.0001; DOA+, p > 0.0001, OA, p > 

0.0001; WFS1, p >0.0001; Table 5-3). This was represented by the presence of a slight tail 

for highest size ranges for all disease groups. 

The non parametric Mann-Whitney test comparing overall size distribution in heathy 

controls with those from patient cell lines revealed no significant difference (DOA+: p = 

0.8455; OA: p = 0.7290 and WFS1: p = 0.7869; Table 5-3). . 
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Figure 5-8 Maximum intensity projection of Quant-iT™ PicoGreen® staining within 

primary myotube lines 

Staining of DNA/nucleoid molecules was performed with PicoGreen® (Molecular Probes, 

Life technologies). Images of primary myotubes were captured using Nikon Ti confocal 

microscope objective (x63) followed by Computerised Image deconvolution using Huygens 

Essential deconvolution wizard. Representative images of a myotube from control (A) and 

myotubes from DOA+ (B), OA (C) and WFS1 patients (D). Scale bars represent 10μm. 

 

A- Control 

B-DOA+ 

C- OA 

D- WFS1 



 

157 

 

 

 

 

 

 

 

 

 

Figure 5-9 Distribution of mtDNA\nucleoid size in DOA+ (A) and control (B) primary myotubes 

Percentage distribution of nucleoid size in DOA+ patient myotubes (blue bars) compared with the distribution of nucleoids found in the control group 

(green bars). All values were corrected for unit area and percentage distribution of nucleoids in each cell analysed. Error bars represent the standard 

error of the mean (SEM). Statistical analysis found in Table 5-3.  
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Figure 5-10 Distribution of mtDNA/nucleoid size in OA (A) and control (B) primary myotubes 

Percentage distribution of nucleoid size in OA-derived myotubes (pink bars) compared with the distribution of nucleoids found in the control group 

(green bars). All values were corrected for unit area and percentage distribution of nucleoids in each cell analysed. Error bars represent the standard 

error of the mean (SEM). Statistical analysis found in Table 5-3.  
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Figure 5-11 Distribution of mtDNA/nucleoid size in WFS1 (A) and control (B) primary myotubes 

Percentage distribution of nucleoid size in WFS1-derived myotubes (purple bars) compared with the distribution of nucleoids found in the control 

group (green bars). All values were corrected for unit area and percentage distribution of nucleoids in each cell analysed. Error bars represent the 

standard error of the mean (SEM). Statistical analysis found in Table 5-3.  
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     Kolmogorov-Smirnoff test of normality 

  Control   DOA+   OA   WFS1 

Passsed Normality: <0.0001   <0.0001   <0.0001   <0.0001 

  No   No   No   No 

  Mann-Whitney test of significance 

      DOA+   OA   WFS1 

Vs Controls:     0.8456   0.729   0.7869 

                

        
Table 5-3 Statistical analysis of nucleoid/mtDNA distribution in control, DOA+, OA and WFS1 primary myotubes 

A  Kolmogorov –Smirnoff test was used to quantify deviance from normal distribution of mitochondrial nucleoids in control (N = 33), DOA+ (N = 

47), OA (N = 45) and WFS1 (N =10) groups.  A Mann –Whitney test was used to measure any significant bias in percentage nucleoid distribution 

between control and patient group.  (p ≤ 0.05 is * significance; p ≤ 0.01 is ** significance, p ≤ 0.001 is *** significance, p ≤ 0.0001 is **** 

significance). 
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Despite no statistical difference between healthy controls and disease groups, Figure 

5-9 shows a slight shift in size distribution towards the right indicating a slight increase in 

nucleoid size. Analysis of size distribution within each individuals, which was carried out by 

Dr Ian Wilson, detected that the shift was mainly due to one patient (MyoDOA+ (2)) who 

presented with significantly bigger mitochondrial DNA clumps than other patients (Appendix 

G-1 and G-2). 

In addition to the analysis of mitochondrial nucleoid size distribution, total number of 

nucleoid objects in ROI within each cell was also measured and averaged per cell line and 

then by disease group. This analysis revealed a marked decrease in object numbers in the 

individuals MyoDOA+(2) (p<0.0001), MyoDOA+(3) (p = 0.0003) and MyoDOA+(4) (p = 

0.0205) (Appendix Figure G-3). Overall nucleoid number was then statisticaly reduced in 

the DOA+ group. There was greater variation in the OA group with a proliferation of objects 

detected in MyoOA(2)(p = 0.0246) and a depletion in MyoOA(4) (Pp =  0.0012) (Appendix 

Figure G-3), leading to a similar trend overall in the OA group compared to the healthy 

control group (Figure 5-12). The cell line derived from the WFS1 patient had normal 

numbers of mtDNA objects/area analysed (P = 0.2189) (Figure 5-12). 
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Figure 5-12 Total number of mtDNA objects detected per unit area of cell analysed. 

The mean of the number of nucleoid/mtDNA objects detected per unit area of the cell in 

DOA+ (n = 47), OA (n = 45) and WFS1 (n = 10) was quantified and compared against control 

(n = 33). Error bars represent the standard error of the mean. *** P ≤ 0.001 using a Student’s 

unpaired t-test.
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5.3.4 Mitochondrial nucleoid distribution within mitochondrial network in patients with 

optic atrophy 

To investigate the distribution of nucleoids within the mitochondrial network (Figure 5-13) two 

parameters were analysed, ‘Total number of nucleoids/ mitochondrial fragment’ and ‘Total number 

of nucleoids/ total mitochondrial length’. 

The first parameter indicated a non-significant difference in the number of nucleoids per 

mitochondrial fragment between control, OA (p = 0.0780) and WFS1 (p = 0.8306) groups. A 

significant decrease in the number of nucleoids/mitochondrial fragment was detected in the DOA+ 

group (p < 0.0001), suggesting that each mitochondrial fragment contained significantly less 

nucleoids in the DOA+ group than in the control group (Figure 5-14A). 

The second parameter ‘Total number of nucleoids/ total mitochondrial length’ also indicated 

a significant decrease in the number of nucleoids within the ‘DOA+’ group (P <0.0001). A 

significant decrease in the number of nucleoids distributed along the total mitochondrial length was 

also detected in the OA group when compared against controls (p <0.0009) while the number of 

nucleoids/ total length was non-significant for the WFS1 group (p = 0.3702) (Figure 5-14B). 

 

 

Figure 5-13 Mitochondrial DNA distribution within the mitochondrial network 

Composite image of combined MitoTracker® Red CMXRos and Quant-iT™ PicoGreen® ® 

staining illustrating the mtDNA/nucleoid distribution (green) within the mitochondrial network 

(red) of a representative DOA+ primary myotube 
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Figure 5-14 Quantification of the number of nucleoid\ mitochondrial fragment and the 

number of nucleoids\total mitochondrial length. 

(A) The mean of the number of nucleoid objects corrected against the number of mitochondrial 

fragments in each cell was quantified per group, Control (N=33); DOA+ (N= 47); OA (N= 45); 

WFS1 (N= 10). DOA+, OA and WFS1 groups were statistically compared against control. (B)The 

total number of nucleoid objects corrected against the total mitochondrial length in each cell was 

also quantified per group; Control (N = 33); DOA+ (N = 47); OA (N = 45); WFS1 (N = 10) and 

statistically compared against control. A Student’s unpaired t-test was used in all statistical analyses 

to measure significance.  (P < 0.05 is non-significant; P ≤ 0.05 is * of significance; p ≤ 0.01 is ** 

significance; p ≤ 0.001 is *** significance, P ≤ 0.0001 is **** significance.

(A) (B) 
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5.4  Discussion 

5.4.1 Mitochondrial network fragmentation in DOA+ and OA patient myotubes  

The present study indicated increased fragmentation of the mitochondrial network in DOA+ 

and OA myotubes, however no significant morphological difference was detected in Wolfram 

syndrome myotubes. This increase in mitochondrial fragmentation in DOA was consistent 

with previous reports (Chen et al., 2005; Agier et al., 2012). In addition, greater 

fragmentation was detected in the DOA+ network when compared with mitochondria from 

the OA network, an observation which was consistent with the analysis of primary fibroblasts 

from DOA+ and OA patients (Section 4.3.3). Consistently, a similar trend between fibroblast 

and myotube lines from both cohorts of patients was detected with total mitochondrial length. 

Although trends were similar, more obvious changes in morphology were observed in DOA 

fibroblasts compared with controls than in the myotube study. This might be more related to 

the sample size included in the respective cohorts than cell type related (Fibroblast study: 

n=200, Myotube study: n~46), although this hypothesis can not be neglected. 

As discussed in the previous chapter in fibroblast cell lines (Section 4.4.2), mitochondrial 

expansion and fragmentation in DOA cell lines is in agreement with experimental validation 

studies performed by Agier and colleagues (2012) who also found an increased aspect ratio 

score indicating greater total mitochondrial length when compared against controls. This 

increase in total length was not attributed to OPA1 or DRP1 steady-state (Agier et al., 2012) 

but instead may be a compensatory mechanism due to Opa1 mutations. Mutated OPA1 may 

result in disrupted cristae, impaired mitochondrial dynamics efficiency and a reduced 

efficiency to assemble respiratory chain complexes and supercomplexes (Cogliati et al., 

2013). Although the study in fibroblasts did not give evidence of it, this may culminate in a 

reduced rate of ATP production (Zanna et al., 2008), however in view of recent reports 

linking OPA1 and mitochondrial maintenance, this remodelling of mitochondrial network 

might be associated with remodelling of mitochondrial nucleoid structure and numbers. 
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5.4.2 mtDNA size distribution is mildly affected in DOA+ myotubes associated with 

marked mtDNA nucleoid depletion 

Previous experimental endeavours in the field have quantified the level and/or 

distribution of mtDNA/nucleoids both in primary human lines and animal models of mtDNA 

disturbance. In this study, a significant depletion of total mtDNA/nucleoids was found in the 

DOA+ group while no significant change in level was found in either OA or WFS1 primary 

myotubes. This observation is consistent with OPA1/MFN1 and two mouse models in which 

disruption of either outer or inner mitochondrial membrane fusion can result in both mtDNA 

depletion and multiple mtDNA deletions (Chen et al., 2010; 2012). It is also consistent with 

data obtained from mouse embryonic fibroblasts (MEFS) showing that increased 

mitochondrial fragmentation and reduced fusion efficiency could result in a depletion of 

nucleoids and mtDNA content (Chen et al., 2007). 

MtDNA instability can also arise secondary to pathogenic mutations in POLG, a core 

mtDNA replication factor found within the nucleoid structure, TFAM, a peripheral factor 

involved in packaging and stability of mtDNA and Twinkle, a mitochondrial helicase essential 

for mtDNA replication. These constituents of the mitochondrial nucleoid all demonstrated a 

marked depletion of mtDNA either in animal models or primary patient-derived tissues. 

(Ashley et al., 2008; Dai et al., 2013; Milenkovic et al., 2013; Larsson et al., 1998; Ekstrand 

et al., 2004 ; Sanchez-Martinez et al., 2012; Matsushima and Kaguni, 2007). Based on these 

observations, it is therefore not surprising that a subset of OPA1 mutations found in the 

GTPase domain may disrupt mtDNA maintenance and lead to a depletion of mtDNA 

molecules.  

The experiments conducted in the present study have not only quantified the 

mtDNA/nucleoid population, but they have also demonstrated the number of 

mtDNA/nucleoids relative to both the size and number of fragments within the mitochondrial 

network. Our data indicate a severe depletion of mtDNA/nucleoids coupled with excessive 

mitochondrial fragmentation in DOA+ primary myotubes. Quantification of 

mtDNA/nucleoids relative to the total length and number of fragments within the 

mitochondrial network also showed this depletion in the DOA+ mitochondrial network. No 

significant difference in nucleoid number per total fragments or total mitochondrial length 

was detected in either OA or WFS1 primary myotubes. Quantifying mtDNA number by this 
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technique is more semiquantitative than RTqPCR, however, RTqPCR analysis conducted by a 

colleague subsequenct to this analysis in myoblasts confirmed a trend for mitochondrial 

depletion (unpublished). 

Quantification of the percentage distribution and size of nucleoid foci and statistical 

analysis using a Mann-Whitney test for non-normal distribution indicated there was no 

disruption of nucleoid morphology (clumping) found in DOA+, OA and WFS1 myotube 

groups. A decrease in the number of detectable nucleoids without a shift in nucleoid 

distribution (clumping) was noted in primary fibroblasts with Alpers syndrome (Ashley et al., 

2008). This may indicate that DOA+ mtDNA/nucleoids may generally deplete by a similar 

mechanism. The existence of this mechanism warrants further investigation. A second 

hypothesis to explain this observation includes the topological status of these mtDNA 

molecules. He and Colleagues observed a decrease of the cytochemical Quant-iT™ 

PicoGreen® staining upon silencing of ATAD3 (He et al., 2007). They concluded that 

although Quant-iT™ PicoGreen® is a useful cytochemical stain for marking mtDNA, the 

signal intensity is dependent on whether the mtDNA molecule is present in a relaxed or 

supercoiled state. A relaxed mitochondrial state results in a greater uptake of Quant-iT™ 

PicoGreen® and produces a signal of greater intensity, whereas supercoiled mtDNA 

molecules do not take up Quant-iT™ PicoGreen® as efficiently and therefore, they produce a 

lower intensity stain. Further investigation would require separation and identification of 

topoisomerases through a 1D or 2D agarose gel electrophoresis which would determine the 

supercoiled state of mtDNA in a qualitative manner. Overall, it may be that OPA1 mutations 

lead to a disruption of mtDNA structure, which could have consequences for both 

mitochondrial transcription and replication rates. Both hypotheses suggest a defect in mtDNA 

homeostasis. 

 Analysis of mtDNA/nucleoid distribution in individual myotube lines found both mild 

clumping and a reduction in the total number of mtDNA/nucleoids in MyoDOA+(2). 

Mitochondria found in this line were significantly larger than controls, with longer average 

length and volume, consistent with possible swelling. This clumping and abnormal 

mitochondrial morphology may be due to an impairment of fusion caused by abnormal OPA1 

processing and further investigations are needed. Impaired mitochondrial fusion in MEFs has 
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previously been linked with altered nucleoid distribution and morphology, and these 

abnormalities likely contribute to the observed mtDNA depletion (Chen et al., 2007). 

Our results are also consistent with the work by Elachouri and colleagues who showed 

a skew in mtDNA/nucleoid distribution towards a subpopulation of nucleoids with higher 

fluorescent intensity, indicative of either an increase in nucleoid size or nucleoid clumping in 

OPA1 exon 4b silenced Hela cells. These observations also agrees with the overexpression of 

TFAM or Twinkle which has been attributed to an increase of nucleoid size, however this 

increase in Quant-iT™ PicoGreen® fluorescence may also be a consequence of a shift in 

distribution towards increased clumping.   

Analysis of WFS1 myotubes, as a disease control, showed no significant difference in 

the number of nucleoids with respect to each mitochondrial fragment or with respect to the 

total mitochondrial length. Therefore, it would appear that, at least for this WFS1 primary 

myotube line, the c.409_424dup16 mutation does not have a direct effect on mitochondrial 

fragmentation or nucleoid distribution within the network. 

 

5.4.3 Conclusion 

Consisent with our previous study using patient-derived OPA1 fibroblasts, mitochondrial 

fragmentation was more pronounced in DOA+ patients. This was accompanied by a decrease 

in mitochondrial DNA objects suggesting a depletion in nucleoids/mitochondria along the 

mitochondrial network, and this could possibly be due to an impairment of fusion. This 

observation emphasises the biochemical disparity between the dominant-negative effect of 

OPA1 misense mutations compared with mutations, such as deletions and slice site mutations, 

which result in haploinsufficiency. Interestingly, myotubes derived from a patient carrying a 

pathogenic WFS1 mutation (c.409_424dup16) did not display aberrant mitochondrial 

morphology or nucleoid distribution when compared with controls. This would indicate that 

the pathogenic mechanisms linked to this specific WFS1 mutation is not directly related with 

impaired mitochondrial dynamics or abnormal nuceloid distribution within the mitochondrial 

network. 
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Chapter 6  

 

 

 

      Novel Homozygous OPA1 Mutation in a 

……..Consanguineous Israeli Family  
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6.1 Introduction 

Infantile mitochondrial encephalopathy and congenital hypertrophic cardiomyopathy are 

defined as a group of primary mitochondrial heterogenous disorders which present with 

severe OXPHOS impairment primarily in patient neuronal tissue (cerebellum, spinal cord, 

brain stem, thalamus, basal ganglia) but also in heart and liver. These disorders usually 

manifest either in the prenatal stage or in the first year of life and can manifest with severe 

neurological, hepatic and respiratory disturbances (Uziel et al., 2011). Individually rare, 

disorders of the OXPHOS system affect up to 1 in 5,000 individuals in the European 

population (Thorburn et al., 2004).  

The underlying genetic aetiology of these disorders is complex with many pathogenic 

variants recently discovered in both mitochondrial and nuclear encoded OXPHOS subunits, 

assembly factors of OXPHOS, factors which affect mtDNA replication and maintenance and 

factors involved in mitochondrial translation (Table 6-1). Pathogenic variants which affect 

mtDNA replication and maintenance have been shown to either cause a severe depletion of 

mtDNA copy number or a proliferation of mtDNA deletions associated with an inherent error 

in replication (Naviaux et al.,1999; Naviaux and Nguyen, 2004; Spinazzola et al., 2006; 

Elpeleg et al., 2005; Ghezzi et al., 2010; Goto et al., 1990; Hammans et al., 1991; Silvestri et 

al., 1993). This disruption of mtDNA maintenance can have a deleterious effect on the 

efficiency of OXPHOS to produce chemical ATP energy. Given the fact that approximately 

1,500 proteins are believed to be within the mitochondria and contribute to its function (Lopez 

et al., 2000), eliciting the underlying pathological variants of these conditions can be a clinical 

challenge. 

A novel homozygous OPA1 variant, c.1601T>G (p.Leu534Arg), was identified in two 

affected sisters from a consanguineous family of Arab-Muslim origin using a combination of 

homozygosity mapping (performed with an Affymetrix Gene-Chip Human Mapping 50k Xba 

array and a Gene-Chip Human Mapping 250k MspI array) to identify regions of genomic 

homozygosity and whole exome analysis (Hiseq 2000, mean coverage depth x65.9) to 

identify any potential pathogenic variants in these regions. The c.1601T>G OPA1 variant has 

not been previously reported in the 63,000 exome sequences found in the Exome Aggregation 

Consortium (ExAC) and it was not detected in 120 in-house controls. The two sisters 
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presented with similar neurological defects including optic atrophy, failure to thrive, 

neuromuscular weakness, cardiomyopathy and a fatal mitochondrial encephalopathy. Both of 

them died within 12 months after birth. 

Previous biochemical exploration of these sisters obtained from a collaboration with 

Dr. Ann Saada and Dr. Ronen Spiegel revealed elevated serum alanine and lactate levels 

detected in both patients, indicative of a metabolic disorder. COX/SDH histopathological 

staining of muscle biopsy did not reveal any COX deficiency.  Transmission electron 

microscopy (TEM) provided evidence of a defect in mitochondrial  inner mitochondrial 

fusion (Figure 6-1) and complex activity of mitochondrial OXPHOS demonstrated a marked 

global decrease, which was more severely depressed for complexes I and IV (Table 6-2). This 

disruption of OXPHOS may have a pathological impact on tissues with high energy 

consumption (nervous, cardiac, hepatic and retinal), as represented by the symptoms. 

 In this study, I further investigated the pathogenic nature of this novel homozygous 

OPA1 variant, c.1601T>G (p.Leu534Arg) as the likely cause of the fatal clinical phenotype in 

these two affected sisters. 
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Figure 6-1 Mitochondrial ultrastructure imaged using transmission electron microscopy 

of patient III-4 muscle biopsy. 

Enlarged mitochondria with a fusion defect were detected in patient III-2 (A) and (B). 

Irregular mitochondrial ultrastructure in the IMM of patient III-2 (B) Electron microscopy 

image obtained from collaboration with Drs Ronan Spiegal and Ann Saada 

Figure reproduced from Spiegel, Saada, Flannery et al., 2016, supplementary material. 
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Disease  OXPHOS Complex Affected Genotype 

 Infantile-onset spinocerebellar ataxia 
 

  

Leigh Syndrome  I MTND2,MTND3,MTND5, MTND6 

    NDUFS1,NDUFS3,NDUFS4,NDUFS7,NDUFS8,NDUFA2,NDUFV1,NDUFAF2 

    C8ORF38, C200RF7, FOXRED1 

  II SHDA 

  III UQCRQ 

  IV COX10,COX15, SURF1,TACO1 

  V MTATP6 

  Multiple complexes C12ORF65,EFG1 

   
French-Canadian Leigh Syndrome IV LRPPRC 

Leuko-encephalopathy I NDUFV1, NUBPL 

  II SDHAF1 

  IV COX6B1, SURF1 

  I,III TUFM 

  I,III,IV EARS2 

 Leuko-encephalopathy with Ataxia I MARS2 
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Disease  OXPHOS Complex affected Genotype 

Encephalo-cardiomyopathy     

Encephalo-cardiomyopathy I NDUFS2, NDUFV2, NDUFA11,NDUFAF4, ACAD9 

  II SDHA 

  III MTO1 

  IV SCO2,COX15 

      

Cardiomyopathy V TMEM70, SLC25A3 

  Unknown DNAJC19, TAZ 

 Hepatoencephalopathy 
 

  

Hepatoencephalopathy I  Twinkle 

  IV SCO1 

  Multiple Complexes EFG1 

   
Alpers-Huttenlocher Syndrome I,III,IV POLG1, MPV17, DGOUK,FARS2 

 

Table 6-1 Causative genes identified in patients with mitochondrial OXPHOS disorders.  

Table adapted from Uziel et al., 2011.  
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Assay  Patient III-2 Patient III-4 Controls±SD (n=50) 

Complex I  0.047 (24%) 0.050 (25%) 0.199±0.043 

Complex I+III 0.087 (40%) n.d. 0.217±0.599 

Complex II 0.099 (64%) 0.091 (59%) 0.154±0.024 

Complex II+III 0.100 (65%) 0.053 (34%) 0.153±0.039 

Complex III 0.934 (46%) n.d. 2.01±0.40 

Complex IV 0.270 (21%) 0.230 (22%) 1.03±0.24 

Complex V  0.151 (44%) n.d. 0.34±0.096 

    

Table 6-2 Measurement of enzymatic activities of the OXPHOS system in Patient III-2, 

III-4 and control tissue  

mU/U citrate synthase (% of control levels); n.d.-not determined. Data from OXPHOS 

complex activities obtained from the collaboration with Drs Ronan Spiegal and Ann Saada 

Table data reproduced from Spiegal, Saada, Flannery et al., 2015. 
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6.2 Materials and Methods 

6.2.1 Family history 

Two consanguineous female patients of Arab-Muslim origin were investigated. Patient III-2 

was born prematurely at 35 weeks. She presented with multiple episodes of hypotonic, 

opisthotonic posturing, weak cry and abnormal eye pursuits. Progression was characterised 

with a failure to thrive and severe neurodevelopmental delay. Following the onset of 

hypertrophic cardiomyopathy, the patient died at 10 months of age from an apnoeic episode. 

Patient III-4 was born at term but quickly developed (within 2 days) generalised 

hypotonia and opisthotonic postering. Echocardioraphy detected a thickening of the left 

ventricular myocardium. Disease progression was again characterised by a failure to thrive, 

hypertrophic cardiomyopathy, neurodevelopmental delay, muscle wasting and sensorineural 

deafness. Opthalmological investigation conducted at 6 months revealed a mild disc pallor 

and electrophysiological investigation showed weakened visual-evoked potentials indicative 

of degeneration.The patient died at 11 months of age from an apnoeic episode. 

The parents are first degree cousins with no apparent neurological or visual disruption. 

Exome sequencing analysis revealed that both sisters had a homozygous OPA1 variant 

(c.1601T>G; p.Leu534Arg). Further analysis confirmed that each parent and the two brothers 

carried this heterozygous OPA1 variant but were apparently healthy. The mode of inheritance 

appears to be recessive with no other known affected family members (Figure 6-2). 
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Figure 6-2: Pedigree from Israeli family with suspected pathogenic OPA1 mutation   

Affected family members are coloured in black. Parents are first-degree cousins of Arab-

Muslim origin. Individuals III-2 and III-4 are affected daughters with the homozygous 

c.1601T>G (p.Leu534Arg) OPA1 variant.  

 

6.2.2 Protein extraction from Muscle Tissue 

Muscle biopsies were performed at 11 months and 1 month of age in patient III-2 and III-4, 

respectively. Protein was extracted from muscle homogenates from patient III-2 and four 

biological controls (four females aged between 19-23 years old).  

6.2.3 Western blot analysis 

Western blot analysis was conducted as described in Section 3.3. Briefly, 25µg of protein was 

loaded onto each lane from four control muscle homogenates and muscle homogenate from 

patient III-2. Following SDS-PAGE and blotting protein transfer, PVDF membrane was 

probed for OPA1 and GAPDH (1:1000 dilution) for 1 hour at room temperature. Membrane 

was incubated with secondary anti-mouse antibody (1:1000) for 1 hour / room temperature 

and visualised using biospectrum 500 imaging system. Densitometric analysis of western blot 

bands was conducted using ImageJ.  

(I) 

(II) 

(III) 

I-1 I-2 I-3 I-4 

II-1 II-2 

III-1 III-2 III-3 III-4 
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6.2.4 DNA extraction from Muscle Tissue 

DNA was extracted from muscle tissue from patients’ III-2, III-4 and two biological controls 

(two females aged between 19-20 years old) using the protocol described in Section 3.5.2.  

6.2.5 mtDNA multiple deletion measurement  

To investigate the presence of multiple mtDNA deletions in patient and control samples a 

11kb long range PCR was conducted with the TaKaRa LA TaqTM pcr system on DNA muscle 

homogenate as described in Section 3.12. 

6.2.6 Real-Time PCR analysis of mtDNA copy number 

The mtDNA copy number quantification in control and patient tissue was investigated using a 

qPCR (ND1/B2M) assay as described in Section 3.10. The assay was used to quantify 

mtDNA content in two patients (Patient III-2 and Patient III-4) and two controls from 

extracted muscle biopsy. These two control muscle biopsies were gender-matched and the 

youngest muscle biopsies in storage were used for quantification with a mean age of 20 years. 

Real-time quantification of mtDNA was conducted in triplicate. 

6.2.7 Conservation analysis and pathogenicity scoring 

To determine if the leucine residue was evolutionarily conserved, the OPA1 amino acid 

sequence from a select group of outlying species was chosen for alignment. These sequences 

were acquired from the National Centre for Biotechnology Information (NCBI) protein 

database. In each case, OPA1 isoform 1 was chosen for alignment. These sequences were 

imported and aligned with BioEdit Sequence Alignment Editor (Obtained from 

http://www.mbio.ncsu.edu/bioedit/bioedit.html ) 

6.2.8 Modelling of OPA1 protein structure  

Homology modelling was performed between residues 220-960 of human OPA1 (gi 

18860834 ref NM.130833.1) based on the closest known structural homologue of OPA1 (June 

2015), Interferon-Induced GTP-binding protein MX2: FFAS Score -82.7, sequence identity 

16% (http://ffas.sanfordburnham.org/ffas-cgi/cgi/ffas.pl) This template was modelling with 

SCWRL server (http://www1.jcsg.org/scripts/prod/scwrl) with settings set to default. 

http://www.mbio.ncsu.edu/bioedit/bioedit.html
http://www1.jcsg.org/scripts/prod/scwrl
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Mutagenesis of p.Leu534Arg in protein model and illustration of GTP-binding domain of 

OPA1 was performed manually using PyMOL (Delano Scientific).  

6.2.9 Statistical Analysis 

Unpaired Student’s t-test was performed using Graphpad prism version 5.0 for windows, 

Graphpad software , San Diego California USA, www.graphpad.com 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.graphpad.com/
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6.3 Results 

6.3.1 Conservation of OPA1 p.Leu534Arg residue 

A multiple sequence alignment was generated to determine the evolutionary conservation of 

OPA1 p.Leu534Arg relative in six other outlying species (Figure 6.3). The leucine amino 

acid appears to be highly conserved in both mammalian and lower invertebrate species. 

Evolutionary divergence occurs in yeast (S. Cerevisiae and S. Pombe) indicating that this 

mutated region of OPA1 has been conserved since early evolutionary history and may impart 

an important structural or functional role. 

 

 

 

 

 

 

Figure 6-3 Multiple Sequence Alignment of OPA1 protein 

Multiple sequence alignment of OPA1 gene region (residue Ala495- Lys568) with suspected 

pathogenic OPA1 missense variant in different species. The black rectangle indicates the 

position of the missense variant p.Leu534Arg in Homo sapiens and six other outlying species. 

Sequences were aligned using BioEdit Sequence Alignment Editor. 

6.3.2 Pathogenicity scoring of OPA1 p.Leu534Arg variant  

Pathogenicity scoring is an in silico method used to predict the likelihood of a genetic variant 

to result in a pathological change which may be responsible for a disease phenotype. This in 

silico analysis was applied to the Leu534Arg OPA1 mutation with online pathogenicity 

software ‘Mutation Taster’ and ‘SIFT’ (Sorting Intolerant from Tolerant). Both pathogenicity 

programs predicted a disease causing pathogenic variant for p.Leu534Arg with a Mutation 

Taster prediction of ‘disease causing’ with a probability of 0.999 and SIFT prediction of 

‘Damaging’ with a score of 100% (Table 6-2).  

Ala-495 Lys-568 Leu534Arg GTPase catalytic domain 
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Program Score 

Mutation Taster Disease causing; probability 0.999 

SIFT Damaging; Score 100% 

  
Table 6-3 Pathogenicity Scoring of OPA1 variant 

OPA1 variant p.Leu534Arg pathogenicity report generated by online software Mutation 

Taster and SIFT. 

 

6.3.3 Modelling of OPA1 p.Leu534Arg mutant protein 

A theoretical model of OPA1 protein was generated to illustrate any structural changes which 

may occur as a consequence of the pathogenic p.Leu534Arg mutation. This OPA1 model was 

created by first using the FFAS server to identify the most structurally homologous protein to 

OPA1 and then modelled using the SCWRL online modeller with default settings, and 

manipulated using PyMol (Delano Scientific). The L534 residue (white) is in close proximity 

to the GTP binding domain of OPA1 (red). The missense change to Arginine introduces a 

much larger and more polar amino acid to this site which may result in structural instability 

near this GTP binding domain (Figure 6-4). 
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Figure 6-4 In Silico Modelling of OPA1 

(A) Modelling performed by Devorah Soiferman (Professor Ora Sheuler-Furman’s 

collaboration, Isreal) which illustrates the proximity of the L534 residue (white) to the GTP-

binding domain (multi-coloured) The GTP domain binding site is illustrated in magenta. 

Modelling was performed using I-tasser server (Yang et al., 2015). The template for 

modelling was derived from Yan et al., 2011b; (B) Homologous modelling performed by 

Padraig Flannery (Dr Yu-Wai-Mans lab)  of OPA1 protein using the ‘Fold and Functions 

Assignment System (FFAS)’ server to determine the most structurally homologous protein to 

OPA1 (Interferon –Induced GTP-binding protein MX2 (FFAS Score -84; Seq Id: 15%) to use 

as model. SCWRL modeller and PyMol for generation of protein model and manual 

manipulation of image. White spheres illustrate the position o f the L534R variant , red 

spheres illustrate the relative position of the catalytic GTPase domain (C) maginified position 

(A) (B) 

(C) (D) 

L534 L534 

L534 L534R 
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of the L534 residue in wild-type OPA1 (D) Magnified position of the L534R residue in 

mutated OPA1 protein.  

 

6.3.4 Proband OPA1 protein expression 

Western blot analysis was conducted on muscle homogenate from patient III-2 and four 

biological controls (age approximately 20 years old). Blotting of patient III-4 could not be 

conducted due to limited sample size. Analysis revealed a significant reduction of OPA1 

protein levels (p≤0.05) compared with controls indicating that the c.1601T>G; p.Leu534Arg 

change resulted in a marked decrease of OPA1 expression in muscle tissue (Figure 6-5). 
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Figure 6-5 Western blot analysis conducted between patient III-2 and controls. 

Representative western blot analysis of OPA1 normalised against GAPDH and mean of four 

biological controls (A). Quantification analysis performed in three independent experiments 

on patient muscle with three females and one male muscle controls aged between19-23. 

Control in green bar and patient value in purple bar are shown. Error bars represent standard 

error of the mean. An unpaired Student’s t-test was used in statistical comparison between 

patient and controls (* p < 0.05)(B). 

 

 

 

Ctrl1 Ctrl2 Ctrl3 Ctrl4 III-2 

OPA1 

GAPDH 

90-100kDa 

37kDa 

(A) 

(B) 
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6.3.5 MtDNA copy number analysis 

Investigation of mtDNA copy number in patient muscle tissue was conducted using a real-

time PCR assay to measure the ratio of mtDNA (ND1 gene) relative to Nuclear DNA (B2M 

gene). Analysis was conducted from the muscle homogenate of two negative controls (age 

approximately 20 years old) and two patients (patient III-2, Patient III-4). A significant 

mtDNA depletion (78% in both affected sisters) was detected in both affected patients relative 

to controls (p<0.0001) (Figure 6-6) 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-6 Comparison of mtDNA copy number between OPA1 patients and controls 

mtDNA copy number was assessed using real-time PCR measuring ND1 mtDNA gene copy 

number and normalised to nuclear B2M gene. Controls: n=2 ); OPA1 Patients:  Patient III-2 

and Patient III-4. Error bars represent standard error of the mean. Statistical analysis 

performed with Student’s unpaired t-test (**** p < 0.0001).  
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6.3.6 mtDNA deletion analysis 

To determine if the reduction of OPA1 protein levels may result in the accumulation of 

mtDNA deletions which may lead to an inhibition of OXPHOS, a long-range PCR was 

conducted in muscle tissue to detect alternative mtDNA species at a lower molecular weight 

than the wild-type molecule (16,569 bps). Analysis was performed on three controls (two 

negative controls (lane 1 and 2) and one positive control (lane 3)) and both patients (patient 

III-2, patient III-4). Fig 6.4. Amplification of patient mtDNA revealed no additional mtDNA 

species other than wild-type amplicon (11kbs). This indicates that there are no mtDNA 

deletions detected in patient mtDNA (Figure 6-7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

187 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-7 Long-range PCR of mtDNA derived from control and patient muscle 

homogenates 

Long range PCR amplification products of human muscle mtDNA. Forward primers nt6222-

6240 and reverse primers nt16122-16153 of mtDNA yielded an amplicon of 11kbs. Lane 1 

and 2 are amplicons of negative control mtDNA from muscle homogenate. Lane 3 is an 

amplicon of mtDNA from a multiple deletion positive control. Lane 4 and 5 are amplicons 

from patients III-2 and III-4. 
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6.4 Discussion 

Two sisters of Arab Muslim origin were diagnosed with fatal mitochondrial encephalopathy 

and congenital hypertrophic cardiomyopathy. Due to a family history of consanguinuity, these 

patients were investigated using a combination of homozygosity mapping and whole-exome 

sequencing analysis which highlighted a novel homozygous variant (p.Leu534Arg) in the 

OPA1 gene.  

To further confirm OPA1 involvement in the syndrome, both in silico and biochemical 

analyses were carried out. Bioinformatic analysis of OPA1 sequence conservation indicated 

that the p.Leu534Arg change occurred in a highly conserved region of OPA1 within the 

GTPase domain. Variants which display a high degree of evolutionary conservation are likely 

to impart an important structural or functional role and are more likely to be deleterious than 

variants within regions without evolutionary constraint. This was confirmed using online 

pathogenicity software Mutation taster2 and SIFT, which predicted the OPA1 change to be 

highly likely pathogenic.   

Significantly reduced levels of OPA1 protein in patient III-2 muscle biopsy suggested 

that the homozygous p.Leu534Arg may have deleterious effects on the protein function and/or 

structure. Dysfunction of OPA1 is demonstrated through abnormal IMM fusion and 

ultrastructure detected through TEM analysis (Figure 6-1). Although not located strictly 

within the GTPase domain, modelling of the OPA1 protein illustrated the proximity of the 

mutated residue to the GTPase domain. Pathogenic missense variants found in the GTPase 

domain of OPA1 are typically associated with a more severe form of DOA with extra-ocular 

features which include sensorineural deafness, ataxia, myopathy and peripheral neuropathy 

(DOA+). Novel OPA1 GTPase variants have also been found which extend the clinical 

spectrum of DOA+ by presentation with oththalmoplegia, ptosis, polyneuropathy and PEO 

(Liskova et al., 2013; Zeviani et al., 2008; Hudson et al., 2008). This illustrates how the 

pathological disruption of OPA1 may lead to complex multisystemic neurological disorders. 

(Liskova et al., 2013). The severe clinical phenotype of these two patients would appear to be 

consistent with these previous observations.  

Dysfunction of mtDNA replication in encephalopathy can manifest as either depletion 

in mtDNA copy number or the accumulation of mtDNA deletions which may lead to a 
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proliferation of mutated mtDNA copies. Both of these mechanisms may explain the 

generalised dysfunction of the OXPHOS system. Previous investigation of patients with 

OPA1 defect and broad multisystemic features found in DOA+ have shown the accumulation 

of mtDNA mutations to be an important pathogenic mechanism responsible for this broad 

symptomatic spectrum (Amati-Bonneau et al., 2008; Husdon et al., 2008). Our patients, 

however, did not harbour multiple mitochondrial deletions. This could be linked to the 

premature age of fatality of these two patients (under 1 year-old). Indeed, the accumulation of 

mtDNA deletions at detectable levels is often not observed before adolescence (Elpeleg et al., 

2002).  

Despite no mtDNA deletions detected, investigation of both affected sisters revealed a 

striking depletion of the mtDNA copy number (78% reduction). A marked depletion of 

mtDNA is typical in cases of infantile mitochondrial encephalopathy because multiple 

mtDNA deletions which are also known to underpin these disorders, are first required to 

clonally expand before they reach a threshold in the mtDNA population sufficient for a 

clinical presentation within an affected tissue (Elpeleg et al., 2002; Stewart and Chinnery, 

2015).  This may be linked to the recently observed role of OPA1 in mtDNA replication 

(Elachouri et al., 2011). Elachouri and colleagues demonstrated that isoforms of OPA1 which 

contain exon 4b have a role in anchoring the mitochondrial nucleoid to the IMM, a necessary 

step for mtDNA replication (Elachouri et al., 2011). This was supported by siRNA 

knockdown of OPA1 in Hela cells and isolated rat RGCs which resulted in a depletion of 

mtDNA and a partial inhibition of OXPHOS (Kushnareva et al., 2013).  

The suggested mechanism for OPA1 pathogenicity in this mitochondrial 

encephalopathy may consist of a multi-prolonged attack to reduce OXPHOS efficiency. The 

decrease in structural stability and potential decrease in GTPase activity induced by the 

p.Leu534Arg change may hamper mtDNA maintenance, disrupt cristae structure as revealed 

by TEM and supported by siRNA knockdown of OPA1 (Kushnareva et al., 2013) and disrupt 

OXPHOS complex assembly (Zanna et al,. 2008; Cogliati et al., 2013). Dysregulation of 

cristae may also promote the release of pro-apoptotic factors such as cytochrome c which may 

contribute to fatal encephalopathy and cardiomyopathy. Recent investigation of an OPA1 

mouse model support the involvement of pathogenic OPA1 variants which contribute to 

mtDNA instability and late-onset cardiomyopathy (Chen et al., 2012).  
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Investigation of OPA1 during embyogenesis in zebrafish has revealed its requirement 

for normal development (Rahn et al., 2013). In parallel, a previous homozygous OPA1 mouse 

model, introducing an OPA1 protein truncation in all four OPA1 transcripts was developed by 

Chen and colleagues (2012). It was hypothesised to lead to a complete reduction of OPA1 

expression and, consequently, embryonic lethality further reinforcing OPA1 involvement in 

development. The presence of a homozygous missense variant rather than a nonsense 

mutation may explain why this variant persisted to the post-natal stage. The rarity of 

pathological homozygous OPA1 variants is highlighted by the fact that this is the first 

recorded case found in the general population. 

 In addition to being the first report of OPA1 homozygosity, these two cases have 

broadened the clinical spectrum of OPA1-inherited disorders to include infantile 

mitochondrial encephalomyopathy and cardiomyopathy. It also further highlights the 

diagnostic power of whole-exome analysis for patients with molecularly undefined genetic 

disorders. 

 

The collaborative work presented in this chapter has been published in the Journal of Medical 

Genetics. 
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Whole-Exome Analysis of a Patient Cohort with 

Inherited Optic Atrophy 

 



 

192 

 

7.1 Introduction  

In recent years, the advancement of next-generation sequencing (NGS) technologies has 

allowed the development of a useful tool in the diagnostic assessment of patient genetic 

disorders (Shashi et al., 2014; Liew et al., 2013; Lee et al., 2014; Yang et al., 2013, 2014). 

This has been especially possible given decreased costs, increased speed of sequencing and 

increased shared annotation of genetic variants (Jamuar and Tan, 2015). NGS can be defined 

as either a whole-genome sequencing (WGS) or whole-exome sequencing (WES) technology. 

For WGS, patient DNA is extracted and isolated to determine the complete sequence 

of the genome. This sequence is aligned and compared against a reference sequence and the 

variants are annotated to identify distinct mutations in a patients’ genetic code. This WGS 

analysis may typically identify three to four million variants in an individual patient 

(Biesecker et al., 2012). A search algorithm can also be implemented to determine if any 

distinct variants are known to be disease causing (Rizzo et al., 2012). However, even after this 

bioinformatic analysis, there may be hundreds of false positive disease causing variants 

identified.  

WES is similar to WGS except that sequencing and analysis is confined to exons 

which collectively compose the exome. The exome represents only 1% of the whole genome. 

The rationale behind WES to analyse the genetic code lies in the observation that 85% of 

known disease causing genes are located in the exome, which may represent an enriched 

subset of the genome containing pathogenic variants (Botstein et al., 2003; Majewski et al., 

2011). Similar to WGS, sequences from these exons are aligned against a reference and 

variants annotated to identify disease causing mutations. Approximately 10,000 or more 

variants may be identified in an individual exome (Rabbani et al., 2014). This may increase 

the efficiency of identifying the underlying aetiology of a genetic disorder.  

To conduct NGS analysis, genomic DNA is typically extracted from patient blood to 

undergo library preparation and whole genome or targeted exon capture using an appropriate 

kit. Samples are subsequenctly sequenced using a next generation sequencing platform to 

generate raw sequence reads of the exome in the form of FASTQ files of each patient sample.  
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FASTQ files are then transferred to an in-house bioinformatics team who process this 

data using an established in-house pipeline for (1) sequence quality control, (2) alignment to a 

genetic reference and (3) annotation. These processes are briefly described in Section 7.2. 

This pipeline generates an excel-tabulated format of the analysed sequencing data for further 

clinical and genetic analysis. 

In silico analysis of novel variant pathogenicity is conducted with publically available 

online pathogenicity softwares. SIFT is an algorithm designed by Kumar and colleagues 

(2009) which predicts potential pathogenicity of detected variant by identifying evolutionary 

constrained regions through sequence homology with the PSI-BLAST algorithm. SIFT then 

compiles an alignment of these homologous sequences and calculates the effect of every type 

of amino acid substitution at a particular position on protein function. It then uses this 

information to predict if a specific mutation is pathogenic.  

Polyphen-2 is another online algorithm developed by Adzhubei and colleagues (2010) 

which was designed to predict the pathogenicity of missense mutations. The algorithm uses 

eight sequence-based and three structure-based modes of prediction. The mutant and wild-

type alleles are compared to each other and a set of parameters are applied to multiple 

homologous sequence alignments (MHSA). These parameters include the probability of this 

variant allele arising from a polymorphism which is determined from amino-acid changes in 

these MHSA and how different the human protein is from the closest evolutionary divergant 

protein. The hypermutability of the site is also accounted for when predicting pathogenic 

probability. Finally, functional impact of this mutant allele is calculated using a naïve Bayes 

classifier (Bayes classifier is a machine learning classifier based upon Bayes mathematical 

model of probability assessment).  

Mutation taster is a third pathogenecity algorithm developed by Schwarz and 

colleagues (2014) designed to not only identify pathogenic variants which create alternative 

amino acid sequences but also predict pathogenicity of synonymous variants and variants in 

intronic regions. MutationTaster 2 also contains publically available SNP and indel data 

generated from the 1,000 genomes project (Abecasis et al., 2010), ClinVar (Landrum et al., 

2014) and HGMD (Human Gene Mutation Database) (Stenson et al., 2014).  An annotated 

variant can be categorized as neutral if it has been detected in a homozygous state more than 

four times within either the 1,000 genomes or HapMap databases. If the variant is already 
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known to be pathogenic, this information can be retrieved from the ClinVar database. Similar 

to SIFT and Polyphen-2, MutationTaster2 scores the pathogenicity of a variant based on 

evolutionary conservation of the surrounding region and uses a number of integrated analyses 

based on genetic regulatory elements. In addition, the algorithm approximately predicts the 

pathogenicity of splice site defects only at known intron-exon boundaries. MutationTaster2 

improves upon older versions of MutationTaster by investigating variants at intron-exon 

junctions. Similar to these previous versions, MutationTaster2 uses a Bayes classifier to create 

genetic variant predictions. 

In the present study, WES analysis was performed on a cohort of fourteen patients 

(Ten females and four males), all clinically diagnosed with optic atrophy with ages ranging 

from 20-79 years. The underlying genetic aetiology of this cohort was unknown and previous 

mutation screenings performed in-house have excluded these patients for OPA9 and OPA1 

pathogenic variants. The overall aim of the study was to use WES analysis as a tool to explore 

the genetic aetiology underpinning this cohort of patients diagnosed with either pure optic 

atropy or optic atrophy associated with other systemic features which afflict the central or 

peripheral nervous systems. 
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7.2  Materials and Methods  

7.2.1 Assessment of appropriate control datasets for whole exome analysis 

To identify the most appropriate control exome database for WES analysis of this patient 

cohort, individual samples were filtered using a defined minor allele frequency (MAF) 

threshold of 5% to quantify the number of potential variants that were not found in control 

exomes: 1000 Genome Project, the National Heart, Lung and Blood Institute Exome 

Sequencing Project 6500 (http://evs.gs.washington.edu/EVS/), and the CG69 dataset 

(Abecasis et al., 2010, Drmanac et al., 2010) (Table 7-1).  This analysis demonstrated which 

databases contained the most variants found within the British population. The 1000 genomes 

project had the greatest number of variants in our patient cohort whereas the ESP6500 dataset 

had the least number of variants. 

 

http://evs.gs.washington.edu/EVS/
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Table 7-7-1 Calling of variants in published databases for each individual patient. 

              

  
PFC-340 PFC-341 PFC-342 PFC-344 PFC-345 PFC-346 PFC-347 PFC-348 PFC-349 PFC-350 PFC-351 PFC-352 PFC-353 

Exonic/Splicing/non-synon 10912 10728 10862 10950 10812 10716 10844 9819 10866 11028 12091 11220 11141 

Not in ESP6500 2292 2188 2219 2182 2226 2169 2224 1516 2194 2304 2667 2260 2386 

Not in 1000G 996 986 948 962 1003 983 994 833 1003 1014 1385 1047 1295 

Not in CG69 1492 1467 1420 1470 1504 1469 1494 1323 1508 1506 1933 1547 1697 

Not in ESP6500, 1000G, 

CG69                           

Dominant  1368 1361 1396 1351 1434 1350 1347 1311 1398 1415 2272 1846 1561 

Recessive  201 168 146 181 164 181 199 182 176 186 191 155 188 
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The number of single nucleotide polymorphisms (SNPs) and their relative frequency in each 

database were then analysed by Dr. Gavin Hudson to determine the most appropriate 

databases to use for data filtration of the excel tabulated pipeline output. 

 

 

 

 

 

 

 

 

 

Figure 7-1 Distribution of variant frequency in the 1000 genomes project, ESP6500 and CG69.  

Comparison of these datasets highlighted a tight linear concordance of variant frequency (A) 

between the ESP6500 and the 1000 Genomes dataset. However when comparing variants 

between the 1000 genomes dataset and CG69 (B), there was a skew in the frequency of 

detected polymorphisms which highlight underlying differences either in the analysis and 

annotation pipelines used to generate these variants and/ or genetic frequency stratification 

between the populations used in these projects.  

 

A skew in the frequency of detected polymorphisms was observed when comparing the CG69 

and the ESP6500 datasets, whilst the ESP6500 and 1000 Genomes projects showed a linear 

relationship (Figure 7-1). Consequently, for analysis of my patient cohort, it was determined 

that the 1000 genomes project and the ESP6500 were to be used as a reference population for 

intersection filtering of genetic variation generated as an excel tabulated output from the WES 

in-house pipline.  

 

(B) (A) 
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7.2.2 Whole exome capture, alignment and annotation 

Patient genomic DNA was previously isolated from whole blood 

(DNeasy®,Qiagen,Valencia,CA) for whole exome analysis and outsourced to AROS ( AROS 

Applied Biotechnology A/S, Aarhus, Denmark) where DNA underwent library preparation 

and enrichment with a Nextera Rapid Capture Expanded Exomes Kit ( Illumina Inc., San 

Diego, USA). This kit includes greater than 340,000 95mer probes designed using the hg19 

reference genome (Manolio et al., 2009). It allows greater coverage of exons and includes 

sequencing data in surrounding non-coding regions (UTRS and miRNA binding sites). Raw 

sequencing data was generated with an Illumina HiSeq2500 platform in the form of a FASTQ 

file (Illumina Inc., San Diego, USA). The quality of these sequences was analysed using 

‘FASTQC’ and sequences deemed low quality are removed (reads with poly-N tail). High 

quality reads were then input into a WES pipeline for data processing before the final results 

were generated in excel format. 

  

7.2.3 GATK and Freebayes in-house pipelines 

These in-house pipelines were designed by the in-house bioinformatics team for WES 

analysis. Briefly, sequence reads were aligned to UCSC hg19 with the (Barrows-Wheeler) 

aligner (BWA) (Li and Durbin, 2009) and variants were detected with either the GATK or 

Freebayes callers using filtering parameters as defined by GATK Best Practise 

Recommendations. Detected variants were annotated using Ingenuity Variant Analysis (IVA)  

or Annovar (Wang et al., 2010). Annotated variants were tabulated into Excel (Microsoft 

Office) along with other parameters such as variant location, type, frequency, associated gene, 

etc for further clinical and biological analyses. These analyses are described below. 

 

7.2.4 Comparison of Freebayes and GATK variant callers 

In order to determine the best exome variant caller to use in whole exome analysis specific to 

my patient cohort, the cohort was first subdivided into categories based on disease phenotype 

(Table 7-3). These groups of patients were then analysed using the BWA aligner with either a 

GATK or Freebayes caller to detect variants by the in-house Mitochondria Bioinformatics 
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Team, IGM. The output generated by both of these callers was then filtered using the 1000 

genomes project and ESP6500 datasets to detect >1% of variants and annotated using IVA 

which uses a biological context filter with curatted data from the Ingenuity knowledge base to 

determine how many of these annotated variants are detected in either known optic atrophy 

genes or genetic diseases associated with optic atrophy.  

 IVA is an online tool designed to work as a functional annotator for whole genome 

and whole exome data.  It integrates both analytical tools and curated integrated content from 

online publication to analyse called genetic variants. IVA is a more versatile tool than 

ANNOVAR as it permits filtering of variants based on a number of adjustable predefined 

parameters such as mode of inheritance, quality of reads or variant frequency in population 

exome databases. Data readout includes all known relevant information on the variants of 

interest including pathogenicity and links to any relevant publications. The predefined filters 

used for the analysis of GATK and Freebayes variants included ‘Confidence’, ‘Common 

variants’, ‘Predicted Deleterious’ and ‘Biological Context’ (as detailed in Table 7-2). 
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  Confidence Call quality is at least 20 reads in any case or control 

  
Outside top 5% most exonically variable 100bp windows in healthy public genomes 

Common Variants Exclude common variants found greater than 1% of the exome (1) 1000 genomes project and (2) ESP6500 project. 

Predicted Deleterious Disease associated according to computed ACMG guidelines classification 

 

(1)Pathogenic 

 

(2)Likely Pathogenic 

 

Or are associated with Loss of Gene Function 

 

(1)Frameshift, in-frame indel or start\stop codon change 

  (2)Missense 

Biological Context Optic Atrophy 

  
Table 7-2 Predefined parameters in Ingenuity Variant Analysis (IVA) used to filter variants obtained from both the GATK and Freebayes 

Caller 

Variants which were predicted deleterious according to IVA were defined according to the American College of Medical Genetics and Genomics 

(ACMG) guidelines. 
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7.2.5 Quality control usingTi/Tv ratio in WES 

The Ti/Tv ratio is a metric of genetic polymorphisms generation. Development of a next-

generation sequencing framework for analysing genetic variation in combination with 

previous inter-species sequencing projects have demonstrated that the ratio between genetic 

transitions and transvertions is approximately 2.1 in human whole genomic samples and 2.8 

in human whole exonic samples (Depristo et al., 2011; Ebersberger et al., 2002; Freudenberg-

Hua et al., 2003). The reason for a higher Ti/Tv ratio in whole exome samples is because there 

are a greater degree of methylated cytosine found within CpG nucleotides within these 

samples which can easily undergo a deamination and transition to thymine. This number may 

vary depending on the individual sequenced or between different human populations. If this 

number is appreciably lower it could indicate false positive enrichment. The Ti/TV ratio was 

quantified by IVA in each whole exome sample and used as a parameter of WES caller 

quality. 

 

7.2.6 Filtering of WES excel data generated through GATK pipeline 

Once WES data in excel format was output from the in-house GATK pipeline, annotated 

variants were filtered according to variant type, frequency in control exome databases and 

other parameters such as predicted pathogenicity, evolutionary conservation and quality of 

WES reads. In addition, patients with a common phenotype were compared in a process 

known as ‘intersection filtering’ (Table 7-3) (Robinson et al., 2011).  
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Patient Gender Age OA Ataxia 
Peripheral 

Neuropathy 
Deafness Nystagmus Spasticity  Epilepsy  Dementia Diabetes 

Isolated OA                         

PFC-346 F 37 + - - - - - - -   

PFC-347 M 33 + - - - - - - -   

PFC-348 F 27 + - - - - - - -   

PFC-349 F 61 + - - - - - - -   

PFC-351 F 20 + - - - - - - -   

OA and deafness                       

PFC-344 F 78 + - - + - - - -   

PFC-352 M 25 + - - + - - - -   

OA and diabetes                       

PFC-341 F 38 +               + 

OA and peripheral neuropathy                     

PFC-340 F 64 + + - - - - - -   

PFC-342 F 54 + + + - - - - -   

PFC-345   53 + + - - - - - -   

  Recessive OA                       

PFC-350 F 20 + - - - + - - -   

PFC-351 F 20 + - - - - - - -   

PFC-353 F 45 + - - - - + + +   

            
Table 7-3 Cohort of patients investigated through whole exome analysis with clinical phenotype. OA group 1; Isolated OA, OA group 2; 

OA and Deafness, OA group 3; OA and diabetes, OA group 4; OA and Peripheral Neuropathy, OA group 5; Recessive OA. 
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Briefly, annotated variants were first filtered according to whether they were present in the 

exome or at intronic splice sites as opposed to surrounding intronic regions which may not 

impact protein quality, are less probable to impart on pathogenicity and have poorer coverage 

due to the design of WES. 

Due to the relative rareness of these conditions, annoted variants were selected at a 

minor allele frequency of either 1% or 5% within both the 1000 genomes project and the ESP 

6500 project to provide a subset of potential pathogenic variants.  

At this stage a number of different strategies may be employed, potential pathogenic variants 

in individuals may be further refined to identify those only in evolutionarily conserved 

regions using the GERP2 filter (Cooper et al., 2005). The ‘a priori’ hypothesis behind this 

filtering process suggests that pathogenic variants are likely to be located in functional regions 

of the genome which are not subject to selective evolutionary pressure. Pathogenicity of 

variants in these regions as determined through four alternative pathogenicity programs is 

typically high, given that mutations in evolutionary conserved regions is one of the main 

parameters often used to judge whether a variant may be pathogenic. 

For the remaining variants, patients with a common clinical phenotype may be 

selected for comparison, filtering out non-common genes and only selecting those which 

‘intersect’ or are common to both individuals (Li et al., 2012). This process may further limit 

the number of potential pathogenic candidates and is a typical strategy used to analyse 

sporadic cases or cases of non-related individuals. This intersection filtering may also be 

employed prior to the use of the GERP2 filter, particularly if no relavent variants are 

identified.  

Identified common variants between individuals with a similar or identical clinical 

phenotype are a strong candidate for potential pathogenicity. These variants can then be 

further analysed with pathogenicity programs SIFT, PolyPhen2 and Mutationtaster2 to 

estimate the pathogenic probability of these variants. A summary of the methods used to 

sequence and identify potential pathogenic variants in this cohort and illustrated in Figure 7-

2.  
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7.2.7 Coverage of common genes associated with optic atrophy-related disorders 

Data analysis of relative gene coverage was calculated from sample alignment files using 

Bedtools v. 2.15.0 and Perl script. This analysis was conducted by Doctor Yaobo Xu PhD. 

Data was further analysed and graphed using excel (Microsoft, Reading, UK). 

 

7.2.8 Pathogenicity scoring 

Pathogenicity scoring was performed using three online tools designed to predict the 

probability of a variant identified through next-generation sequencing as being pathogenic. 

These tools included ‘Sorting Tolerant From inTolerant (SIFT), Polyphen-2 and Mutation 

taster (Kumar et al., 2009; Ng et al.,2001; 2003;2006)  

 SIFT threshold parameters to denote the degree of probability associated with variant 

pathogenicity which include ‘deleterious’ (<=0.05) and ‘tolerated’ (.0.05). 

 Parameters used to classify variants analysed by polyphen-2 pathogenicity software 

include ‘probably damaging (0.85), ‘possibly damaging’ (0.85-0.15) and ‘benign’ ( 0.15) 

and MutationTaster2 uses the following labels ‘ disease automatic’, ‘disease causing’,’ 

polymorphism’, ‘polymorphism automatic’ with a higher score indicating an increased 

probability of pathogenicity.  

 When analysing potential pathogenic variants from the optic atrophy cohort, these variants 

were analysed in parallel by MutationTaster2, SIFT and Polyphen-2 and variants was 

determined to be ‘likely’ pathogenic if two of these three algorithms determined the 

variant to be pathogenic.  
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Extraction of Genomic 
DNA

Library Preparation and 
enrichment

Whole Exome Sequencing
Generation of FASTQC Files

 Alignment (BWA Aligner)
Quality Control of 

Sequencing.
Or

Freebayes Caller
(Variant Calling)

Either

GATK Caller
(Variant Calling) 

Base recalibration

IVA\Annovar (Variant 
Annotation)

Ti/Tv Quality Control

Excel Tabulated Output
Filtered against ESP6500, 1000G

Intersection Filtering
Key Word Search

GERP2 Filter

In-House Whole Exome Pipeline

Pathogenicity Scoring 
SIFT/Polyphen2/ 
MutationTaster2

Outsourced Samples

 

 

Figure 7-2 Flowthrough schematic summarising the different stages necessary to 

sequence, align, call and annotate genetic variants in whole exome analysis.  

Excel tabulated output is further filtered and analysed to determine potential pathogenic 

variants. The probability of variant pathogenicity is determined using online tools.
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7.3 Results 

7.3.1 Comparison of the data resulting from different exonic pipeline callers  

Genomic variant location and translational variant impact were two parameters generated and 

compared following IVA of the annotated data (Figures 7-3 and 7-4; Table 7-4). This 

analysis produced the distribution of variants called by both GATK and Freebayes variant 

callers from each of the defined phenotypic groups. This showed a 3.4%-7.8% degree of 

crossover for heterozygous variants in OA groups 1 to 4 (described in Table 7-2). There was 

also a 19.7% ‘mutual’ detection for homozygous variants in OA group 5 (Table 7-4).  

Variants associated only with an optic atrophy phenotype also showed an 8.1%-22.2% 

of shared heterozygous variants for the OA group 1 to 4 and 17.4% homozygous variants 

between GATK and Freebayes. However more variants in known optic atrophy genes were 

detected in the GATK pipeline. This discrepancy may be due to a greater generation of novel 

variants by Freebayes, possibly due to a greater degree of false positive detection.  

The Ti/Tv ratio which was detected in samples called by Freebayes was between 1.3-

1.8 for 93% of our patient cohort, while exomes called using GATK generated a Ti/Tv ratio 

between 2.1 and 2.5 also in 93% of my patient cohort (Table 7-4). This ratio was probably 

lower than the 2.8 standard metric for whole-exome analysis as described in Section 7.2.5 due 

to Nextera whole-exome capture which also allows for genetic regions surrounding exons to 

be sequenced at a cost cheaper than whole genomic sequencing. 
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  GATK and Freebayes shared variants 

Heterozygous 3.4-7.8% 

Homozygous  19.70% 

GATK and Freebayes shared variants (Biological context OA) 

Heterozygous  8.1-22.2% 

Homozygous  17.40% 

  Ti/Tv 

Optimum  2.8 

Freebayes 1.3-1.8 

GATK 2.1-2.5 

  
Table 7-4 Crossover and quality scores of variants found between GATK and FreeBayes 

callers  

Identification of both shared heterozygous and homozygous variants between GATK and 

Freebayes callers and shared variants identified using the biological context filter (variants 

identified only in known optic atrophy related genes).  

 

The location and type of detected variants were also disparate between the two whole 

exome callers.These variants were mostly detected in intergenic regions by the Freebayes 

caller while the variants detected by GATK were detected in exonic regions (Figure 7-3). In 

addition, the Freebayes variant caller detected a greater proportion of SNPs, insertions and 

deletions as well as substitutions and complex variants not detected by the GATK caller 

(Figure 7-4).  

 Given the Ti/Tv ratio indicating a lesser degree of false positive discovery in the 

GATK pipeline, a greater degree of variants detected in known optic atrophy genes and in 

exonic regions and the fact that the genetic variance called in the 1000 genomes project and 

the ESP6500 datasets was generated using GATK, the GATK caller was chosen for the 

analysis of the present patient cohort.  
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Figure 7-3 Representative distribution of genomic locations  

Orange = exonic; Green = Intronic; Blue = ncRNA; Gray = 3’UTR; Red = Promotor; Light Blue = 5’ UTR. (B) Orange = SNP; Green = Deletion; Blue 

= Insertion; Gray = Insertion.  
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Figure 7-4 Representative distribution of the type of genetics variants with Freebayes and GATK caller. 

Orange  = SNP; Green = Deletion ; Blue = Insertion ; Gray = Substitution  
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7.3.2 Whole-exome coverage of known optic atrophy genes 

 

 

 

 

 

 

 

 

 

Figure 7-5 Whole- exome coverage data of ten representative genes associated with optic 

atrophy 

 

To determine the relative whole-exome sequencing coverage of the optic cohort, ten common 

genes associated with optic atrophy were selected and coverage data of the sequencing reads 

from these genes was determined by the in-house bioinformatics team (Figure 7-5). An 

average coverage of 78% was achived at a 20x sequencing depth across this panel of genes 

which conforms to the accepted coverage standard for whole exome analysis (Sims et al., 

2014).  

 

7.3.3 Intersection filtering by clinical phenotype  

Two alternative strategies were employed to analyse the present patient cohort, one based on 

intersection filtering of phenotypic groupings and the second based on filtering between 

patients irrespective of clinical presentation. The four phenotypic groups mentioned in 

Section 7.2.6 were first screened against the 1000 genomes and ESP6500 datasets to 
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determine the number of novel variants within each group. The MAF was set at 5% in order 

to capture as many rare variants as possible (Tables 7-5 and 7-6).  

Each grouping was filtered for both heterozygous and homozygous variants. Each of 

these genes was then investigated using the gene ontology database developed by the gene 

ontology consortium. This database provides classifications relating to several domains of 

cellular and molecular biology and provides an overview of known gene function. Once 

candidate gene lists were generated for each of the phenotypic groups, the number of gene 

hits in each group was quantified in an attempt to find a common novel optic atrophy 

candidate gene. The variants found in these genes were then manually assessed to determine if 

detected variants were due to obvious PCR read duplication error in low complexity regions. 

Most of the genes found using this method were detected due to common variants generated 

through sequencing bias and error in these low complexity regions. However it did highlight a 

SNP in WFS1 identified in OA group 2 ((c.2051C>T; Ala684Val) 1000 genomes project 

percentage frequency: 0; ESP6500 percentage frequency: 0; ExAc database: 0). Mutations in 

WFS1 are responsible for Wolfram syndrome, a disease characterised by optic atrophy, 

hearing loss and diabetes and so this was considered a likely pathogenic candidate. To further 

define the propensity of WFS1 variant c.2051C>T; p.Ala684Val to be disease causing in 

patients PFC-344 and PFC-352, the probability of pathogenicity of the variant was further 

investigated using online pathogenicity tools as described in Section 7.2.8. This analysis 

highlighted the pathogenicity of the c.1505C>T; Ala684Val variant (scores in Section 7.3.5) 

and furthermore it was previously documented in the literature as a variant known to cause 

optic atrophy and sensorineural deafness. This description matched the clinical presentation of 

patients PFC-344 and PFC-352 (Rendtorrf et al., 2011).  
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OA and Peripheral Neuropathy OA and Deafness Isolated OA 

Recessive 

OA 

 

PFC-340 PFC-344 PFC-346 PFC-350 

 

PFC-342 PFC-352 PFC-347 PFC-351 

 

PFC-345 

 

PFC-348 PFC-353 

   

PFC-349 

       PFC-351   

Dominant 111 193 41   

Recessive  93 104 52 79 

     
Table 7-5 Number of dominant and recessive variants after phenotypic intersection 

filtering of each phenotypic group. 
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Table 7-6 Dominant and recessive candidate genes after phenotypic intersection filtering.

           
  

Isolated 

OA 
OA and Deafness 

OA and Peripheral 

Neuropathy 

 

Isolated 

OA 

OA and 

Deafness 

OA and Peripheral 

Neuropathy 

Recessive OA 

group 

 

D
o

m
in

a
n

t 
ca

n
d

id
a

te
 g

en
es

 

FOXD4L5 ABCA12 OR1D5 FOXD4L5 

R
ec

es
si

v
e 

c
a

n
d

id
a

te
 g

en
es

 

COL18A1 AHSA1 ACSL6 COL18A1   

KCNN2 ATN1 OR6C76 KCNN2 CYFIP2 COL18A1 ATG3 DIXDC1   

NEK3 C2orf71 PIGQ NEK3 DIXDC1 DIXDC1 COL18A1 FOXD2   

OR11H12 CHL1 POU2F1 OR11H12 FOXD2 FOXD2 CTSA GRIA3   

POU2F1 CLYBL PRKCSH POU2F1 GRIA3 GRIA3 DIXDC1 GRM7   

TIMM23 CNTNAP2 PXDN TIMM23 HADHB GRM7 FOXD2 HADHB   

  EOMES SEPN1   MAPK8IP2 OLFM1 GRIA3 KCNN3   

  FOXC1 TIMM23   NCOR2 OR7C2 MAP3K1 MAP3K1   

  FOXD4L5 TOP1MT   OLFM1 OR8K3   MAPK8IP2   

  FSIP2 TPRN   OR7C2 POU4F2   NCOR2   

  OBP2A TSC2   PCLO SMPD1   OLFM1   

  OR11G2 UNQ514     TMIE   OR7C2   

  WFS1           PCLO   

                  STAU2   
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7.3.4 Intersection filtering of individual patients  

A second approach was adopted to analyse remaining patients for any potential gene 

candidates. This involved using a similar method previously described by Fogel and 

colleagues (2014). Two whole exome samples from non-optic atrophy patients sequenced in 

parallel were used as controls to screen for false positive variants generated through technical 

error that were detected in the analysis described previously in Section 7.2.5. These patients 

were diagnosed with vasovagal syncope with no known optic disturbances. Patients were 

screened using the 1000 genomes and ESP6500 datasets at a MAF frequency less than or 

equal to 1% to identify extremely rare pathogenic variants. A threshold of 1% was chosen as a 

reasonable threshold to limit the number of potential candidate genes. Only exonic and 

splicing regions were investigated in this analysis. Given the likelihood of pathogenic variants 

which lie in highly conserved genomic regions, only regions with a genomic evolutionary rate 

profiling (GERP) score greater than or equal to 2 were investigated. Once variants were 

filtered according to these parameters, a key word search was used to identify any relevant 

genes which included terms such as ‘eye’, ‘nervous system’, ‘endoplasmic reticulum (ER)’ 

and ‘mitochondria’. This generated a list of potential candidate genes which were further 

filtered by comparing between any two patients in the entire optic atrophy cohort. This 

analysis resulted in 90 potential genes which were then screened using gene card, web of 

science, google scholar and the Ingenuity Knowledge Base to identify any genes related to 

optic atrophy or any secondary symptom.  

These genes were further investigated to select those which contained any two or more 

pathogenic variants present in at least two individuals of the cohort. Pathogenic variants were 

defined as any variant which was identified as potentially pathogenic in at least two different 

online pathogenicity tools. This analysis was to identify any potential common pathogenic 

gene between any two individuals underpinning an optic atrophy phenotype. These genes are 

listed in Table 7-7. Two potential pathogenic variant in WFS1 (c.977C>T; p.Ala326Val 

(1000 genomes project percentage frequency: 0; ESP6500 percentage frequency: 0.00008; 

ExAc percentage frequency 0.000025) and c.2452C>T; p.Arg818Cys (1000 genomes project 

precentage frequency 0.002; ESP6500 precentage frequency 0.005; ExAc: 0.0049) and 

numerous patients containing ATF5 variants were discovered following this analysis. Since 

the majority of cases of Wolfram Syndrome are recessivly inherited as previously described, 
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PFC-341 and PFC-351 were further scrutinised to determine if any other variants were 

detected by WES but filtered out due to the stringent parameters used to detect any potential 

pathogenic variants. This revealed a second variant in patient PFC-341 (c.1309G>C; p. 

Gly437Arg; ExAc percentage frequency:0.0000082) . Further analysis to determine 

inheritance pattern of these variants in described in Chapter 8. 
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Table 7-7 Candidate gene list generated for each optic atrophy patient   

This table illustrates genes containing at least one pathogenic variant in two or more patients 

which are associated with either an OA phenotype or any other additional phenotype which 

presents in this patient cohort. Only genes which have been predicted to be pathogenic in at 

least two pathogenicity tools are included. Genes are ranked in order of decreasing probability 

of pathogenicity.  

    Genes cDNA Protein PFC- 

ATP7B 
c.1682C>T p.Thr561Met 348 

c.1763C>T p.Ala588Val 353 

CACNA1S c.773G>A p.G258D 346,349 

KCND3 
c.497G>A p.Arg166His 340;349 

c.5C>A p.Ala2Glu 147 

GRIN2A 
c.2909G>A p.Arg970Gln 342 

c.2626A>T p.Ile876Phe 350 

NBAS c.1093G>C p.Asp365His 345,350 

WFS1 
c.977C>T p.Ala326Val 341 

c.2452C>T p.Arg818Cys 351 

SYNE1 
c.4162C>T p.Arg1388Trp 341 

c.13696G>A p.Asp4566Asn 147 

ATF5 
c.365T>C p.Leu122Pro 341,342,348,353,147 

c.376T>C p.Ser126Pro 341,342,348,353 

CTSB 
c.203G>A p.Arg68His 147 

c.391G>A p.Val131Met 348 

CUL7 
c.3253C>T p.Arg1085Cys 353 

c.2570C>T p.Thr857Met 340 

CEP290 
c.2417G>A p.Arg806Gln 353 

c.245G>A p.Arg82Gln 348 

COL24A1 
c.4235A>T p.Asp1412Val 350 

c.20G>A p.Arg7Lys 353 

TRPV4 
c.219G>A p.Glu733Lys 147 

c.1363G>A p.Val455Ile 348 

HDGF 
c.709C>T p.His237Tyr 341 

c.622C>T p.Arg208Trp 340 

DRAXIN c.178C>T p.Arg60Trp 350,347 
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7.3.5 Investigation of the probability of WFS1 variant pathogenicity  

The pathogenicity of the four WFS1 variants (p.Ala684Val, p.Ala326Val, p.Gly437Arg and 

p.Arg818Cys) identified were analysed using Mutationtaster2, Polyphen-2 and SIFT. The 

c.2505C>T (p.Ala684Val) variant found in PFC-344 and PFC-352 patients was identified as 

pathogenic by all three prediction programs with a Polyphen2 score of ‘0.992’ and a SIFT 

score of ‘0’. MutationTaster2 predicted the variant to be disease causing with a probability of 

0.999 because it was a known disease mutation identified through HGMD.  

Investigation of patient PFC-341 identified the p.Ala326Val variant in Polyphen2 as 

probably damaging with a score of 0.997, SIFT predicted a tolerated variant with a score of 

0.356 and MutationTaster2 predicting a disease causing gene with a probability of 0.999. 

MutationTaster2 also determined the variant to be a known disease mutation. An investigation 

of the p.Gly437Arg variant revealed that both Polyphen2 and MutationTaster2 predicted the 

variant to be benign with a Polyphen2 score of 0.029, MutationTaster2 score of predicted of 

1.42e-5. Further investigation of these three WFS1 variants was conducted in patient PFC-341 

in Chapter 8. Patient PFC-351, who harboured the p.Arg818Cys WFS1 variant, had a 

Polyphen2 score of ‘1’, a SIFT score of 0.03 and a MutationTaster2 score of ‘0.999’. 

MutationTaster2 also annotated the variant as a known disease mutation. Further investigation 

of these three WFS1 variants was conducted in patient PFC-341 in Chapter 8. 

 

7.3.6 Identification of two potential pathogenic variants in ATF5 

Intersection filtering of the WES cohort also identied two potential pathogenic missense 

variants in ATF5 p.Leu122Pro and p.Ser126Pro (Table 7-7). The presence of these two 

variants in a relatively large subset of optic atrophy patients (PFC-341, PFC-342, PFC-348, 

PFC-353 and PFC-147) may warrant further investigation. 
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7.4 Discussion 

Typically, WES study design includes either a cohort of family trios consisting for two 

unaffected parents and an affected child or as singleton cases in which a large cohort of 

unrelated affected individuals is analysed.  

 Evaluation of family trios can improve the accuracy and detection of causative 

pathogenic mutations by allowing variant filtration based on the genetic background of the 

affected individual (Hunt et al., 2014). As a consequence, many polymorphisms, both 

common and rare in the general population, may be removed from the analysis. This is best 

for recessive conditions in which homozygous or compound heterozygous variants can be 

segregated in both parents and child. Furthermore, variants found in affected individuals but 

not in unaffected parents due to artefactual sequencing error may also be determined.  

On the other hand, the use of sequencing data from family trios may also introduce 

additional cost and complexity in the analysis. It would require detailed clinical assessment of 

both parents and child with a reduced cohort of affected individuals in the final assessment.  

Technical complexity could also be introduced due to sample ‘missingness’ referring to 

alternative loci of low coverage within a family trio (Browning et al., 2009). ‘This may 

increase the number of polymorphisms and false positives after the filtration process. Other 

difficulties can also arise due to reduced penetrance of a pathogenic variant. A large and 

detailed pedigree would therefore be beneficial for segregation analysis in these cases.  

In this study, we opted to analyse a cohort of rigorously phenotyped OPA1-negative 

singleton cases who presented with optic atrophy. This design was chosen to provide a large 

cohort of affected individuals of unknown genetic aetiology but with similar clinical 

presentation. In addition, although it would be useful to include other unaffected family 

members for segregation analysis, limited access to parental DNA for many of these cases 

limited the scope of the analysis which could be performed.  

Based on this study design, variant frequencies within the patient cohort were 

associative and based upon population frequencies found within the 1000 genome and 

ESP6500 datasets.  
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Two different in-house bioinformatics pipelines with either a GATK haplotype or 

Freebayes caller were developed by the mitochondria bioinformatics team, IGM. In order to 

assess the best caller for sequencing analysis of this patient cohort, FASTQ files were 

processed through either the GATK or Freebayes pipelines and annotated using IVA. This 

investigation revealed that the GATK caller generated more SNPs in the exonic region than 

Freebayes with a lower Ti/Tv false positive variant score. Freebayes also called a number of 

insertions and deletions in the intergenic region which were not detected by GATK. Given the 

likelihood that Freebayes may be detecting greater degree of variants that are false-positive 

both in exonic regions and regions not likely to result in protein functional pathogenicity, the 

GATK caller was then chosen to perform variant calling for the optic atrophy cohort. 

Numerous different study designs with different capture kits have been implemented 

to achieve the greatest depth and coverage of the human exome. Despite a significant 

reduction in recent years, sequencing costs still remain substantial and a fine balance must be 

achieved between cost and robust sequencing with adequate depth and coverage in each 

sample analysed (Sims et al., 2014). The minimum threshold to achieve this is 10x deep 

sequencing coupled with 80% targeted capture of the exome, regardless of the exome capture 

kit or WES pipeline used to detect variants (Zhou et al., 2012; Thauvin-Robinet et al., 2013; 

Yu et al., 2013). This means a significant portion of the exome may not be covered due to 

LCRs and poor hybridisation of sequence capture probes in GC rich regions.  

To assess the degree of coverage in the optic atrophy cohort through this selected 

pipeline, a selection of ten optic atrophy genes were chosen and their coverage analysed by 

the mitochondria bioinformatics team, IGM. The percentage of bases captured in each gene 

across the entire cohort was quantified and ranged between 50-90% coverage. Average 

coverage was approximately 80% at 20x sequencing depth which is the quality standard 

required for WES analysis (Sims et al., 2014). 

Initial filtering of the entire optic atrophy cohort did not detect variants common to all 

patients, suggesting underlying genetic heterogeneity in patient presentation. In order to 

prevent pathogenic variants from being screened through whole cohort filtering, each of the 

patients was stratified according to their phenotype. This divided the cohort into five 

phenotypic groups described as OA group 1 ‘Isolated optic atrophy’, OA group 2 ‘Optic 

atrophy and deafness’, OA group 3 ‘Optic atrophy and diabetes, OA group 4 ‘Optic atrophy 
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and peripheral neruopathy’ and OA group 5 ‘Suspected recessive inheritance’. Patients from 

OA groups 1-5 which had more than one individual with a similar clinical phenotype other 

than OA were used in this analysis (Exception for OA and diabetes which contained a single 

patient member).  

In the initial intersection filtration method, the patient cohort were stratified according 

to their common phenotypic presentations. This led to the identification of a dominant WFS1 

variant identified in patients characterised with optic atrophy secondary to hearing impairment 

(OA group 2). Further investigation of this variant indicated that it was disease causing. A 

literature search revealed two publications by Rendtorff et al. (2011) and Tessa et al. (2001) 

describing dominant inheritance of the pathogenic WFS1 phenotype of two patients harboring 

the p.Ala684Val WFS1 variant. Additional heterozygous/homozygous variants detected in 

each of these groupings were found to be caused by misalignment error or PCR bias which 

occurred at LCRs of the genome.  

In the second method of intersection filtering which involved filtering of any two 

patients irrespective of clinical presentation, false-positives due to technical errors were 

minimised by using two ‘no optic atrophy’ disease controls. Also, to help reduce the number 

of likely polymorphic variants in the cohort, variants were screened using a GERP2 filter. 

This was used to screen for variants located in evolutionarily conserved regions of the 

genome. Investigation of these evolutionary conserved regions highlighted a number of 

interesting variants. A WFS1 missense variants (p.Ala326Val) was detected in PFC-341, 

Table 7-7. This patient presented with optic atrophy and diabetes, a common clinical 

phenotype associated with Wolfram syndrome. (Wolfram and Wagner, 1938; Cooper et al., 

1950; Paley and Tunbridge, 1956). Wolfram syndrome is typically a recessive condition 

which is acquired through compound heterozygous or homozygous inheritance. A literature 

search indicated that this variant was one of a number of variants that were identified through 

genetic screening of a cohort of patients diagnosed with Wolfram syndrome and psychiatric 

illness. However it has not yet been proven to be causally linked to the manifestation of 

Wolfram syndrome (Torres et al., 2001). Further analysis of this patient is described in 

Chapter 8.  

Furthermore, a second WFS1 variant (p.Arg818Cys) was also detected using this 

second method of intersection filtering.  This variant has been annotated as ‘disease causing’ 
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according to HGMD however a literature search indicated that there is much controversy 

surrounding the pathogenicity of this variant. It was initially described in a consanguineous 

Spanish family with homozygous inheritance diagnosed with Wolfram syndrome (Gomez-

Zaera et al., 2001). However it has also been detected in control cohorts of independent 

studies investigating Wolfram syndrome (Cryns et al., 2002; Martorell et al., 2003). 

Functional analysis is required to determine if it is truly pathogenic. Unfortunately, we were 

unable to obtain the relevent biological material to perform this analysis.  

Interestingly two potential pathogenic ATF5 heterozygous variants (p.Leu122Pro and 

p.Ser126Pro) were both discovered in four patients in the optic atrophy cohort and a single 

p.L122P variant was detected in a fifth (Table 7-7). ATF5 is a transcription factor that 

belongs to the response element binding protein family (CREB) and is involved in the ER 

stress reponse (Vinson, 2002). It is expressed as two alternative transcripts (ATFα and ATFβ) 

that differ only in their 5’ untranslated region (UTR) (Hansen et al., 2002). This UTR is 

similar to the one found in ATF4 and allows ATF4 and ATF5 transcripts to be preferentially 

translated upon induction of ER stress due to an overload of misfolded proteins. It typically 

operates to promote cellular/protein homeostasis in conjunction with ATF4, ATF6 and XBP1 

downsteam of phosphorylated EIF2α. However, once ER stress conditions reach a critical 

threshold, it can instead promote apoptotic cell death (Teske et al., 2013). Previously, ATF5 

was not thought to be expressed in differentiated neuronal tissue however recent experimental 

work conducted by Torres-Pereza and colleagues (2013) showed that ATF5 is widely 

expressed in differentiated mouse neurons. The ATF5 gene is not particularly large with only 

5,235 bases which encode a 282 amino acid protein. Further functional work would be 

required to confirm these potential pathological variants in optic atrophy. Other ER 

components involved of the UPR such as WFS1 have been associated with optic atrophy 

illustrating that, ER components involved in maintaining ER homeostasis may also have an 

impact on optic nerve degeneration.  

In conclusion, intersection filtering was employed both between individual patients 

and groups of patient with a similar clinical phenotype. These strategies aided in the 

identification of a number of pathogenic or potential pathogenic WFS1 variants which may 

suggest a greater incidence of Wolfram syndrome than has previously been reported in the 

British population.  
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The number of confirmed and potential WFS1 cases (3/14 patients – 21%) is 

consistent with the current documented success rate for WES in monogenic disorders (25%) 

(Yang et al., 2013).  Further functional work to validate some of these variants is described in 

Chapter 8. Furthermore, stringent analysis between individual patients to identify highly rare 

potentially pathogenic variants in evolutionary conserved genomic regions have highlighted 

two novel ATF5 variants in 36% of my cohort (5/14 patients). Further investigation is 

required to determine if these variants influence an underlying clinical phenotype through in 

vitro manipulation of ER stress induced pathways.  

Inability to detect potential pathogenic variants in other member of the OA cohort 

reflect three limitations of study design. The first is that variant frequencies used in this 

analysis are merely associative. Variants of low frequency may reflect regions of poor 

coverage within each of the independent control studies used in this analysis or individuals 

within these control cohorts may only possess wild-type alleles for regions enriched with 

variants sequenced by our in-house pipeline. This can increase the number of polymorphisms 

left after intersection filtering.  The second is that WES is limited to only the exonic regions 

which are not of low complexity. Therefore, mutations in promotor regions, intronic regions 

and copy number variants will go undetected. Lastly, the lack of any definitive pathogenic 

gene other than WFS1 also likely reflects the genetic heterogeneity of optic neuropathies 

which could be ameliorated by a larger OA cohort. 
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Chapter 8  

 

 

 

WFS1 Mutations in Patients with Inherited Optic 

Atrophy 
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8.1 Introduction 

Wolfram syndrome was first described by Dr Donald Wolfram from the Mayo Clinic in 1938 

in a case series of four siblings diagnosed diabetes insipidus, diabetes mellitus, optic atrophy 

and deafness (DIDMOAD) (Wolfram and Wagner, 1938). The condition has been 

characterised with classical symptoms: diabetes insipidus, diabetes mellitus, optic atrophy 

and/or deafness (DIDMOAD). The EURO-WABB is an EU rare diseases registry for 

Wolfram syndrome, Alström syndrome, Bardet-Biedl syndrome and other rare diabetes 

syndromes (Farmer et al., 2013). Based on the latest EURO-WABB consensus guidelines, 

both optic atrophy and diabetes mellitus are considered as major criteria for the diagnosis of 

Wolfram.syndrome(http://www.orpha.net/national/data/IEEN/www/uploads/Wolfram2014.pd

f, accessed July 10, 2016). 

 Autosomal recessive WFS1 mutations were identified in patients with classical 

Wolfram syndrome (Strom et al., 1998). WFS1 encodes for Wolframin, a transmembrane 

endoplasmic reticulum protein that plays a critical role in calcium homeostasis and stress in 

the unfolded protein response (Takei et al., 2006; Yamada et al., 2006; Yamaguchi et al., 

2004).With the advent of genetic screening and through clinical assessment, the 

manifestations and mutational spectrum of pathogenic WFS1 mutations has expanded rapidly 

over the past few years. Over 200 case reports have been published so far and in addition to 

the classical DIDMOAD, other associated features include neurological deficits, psychiatric 

disturbances, urological dysfunction and gastrointestinal abnormalities. Fatal complications 

such as central apnea leading to aspiration pneumonia can also arise and the average lifespan 

of a patient diagnosed with Wolfram syndrome is 30-40 years old (De Heredia et al., 2013).  

Patients can also present with a more limited form of the disease, referred to as Wolfram-like 

syndromes,  including isolated sensorineural hearing loss, cataracts and diabetes (Bai et al., 

2014; Goncalves et al., 2014; Berry et al., 2013; Chacon-Camacho et al., 2013; Bonnycastle et 

al., 2013; Valero et al., 2008). 

The majority of patients with Wolfram syndrome or Wolfram-like syndromes, harbour 

homozygous or compound heterozygous WFS1 mutations. More recently, there have been a 

number of reports of patients carrying dominant WFS1 mutations, especially in association 

with low frequency sensorineural hearing loss, diabetes mellitus and autosomal dominant 

http://www.orpha.net/national/data/IEEN/www/uploads/Wolfram2014.pdf
http://www.orpha.net/national/data/IEEN/www/uploads/Wolfram2014.pdf
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optic atrophy (Rendtorrf et al., 2011; Khanim et al.,2001; Middle et al., 2000; Hogewind et 

al., 2010; Eiberg et al., 2006; Wasson et al., 2008). The studies that have been published so 

far have revealed variable genotype-phenotype correlations for recessive and dominant WFS1 

mutations. A recent study performed by Chaussenot and colleagues suggested that WFS1 

mutations located at or near the C-terminus are more likely to be associated with psychiatric 

illness whereas those located at or near the N-terminus have a  lower likelihood of causing 

neurological complications (Chaussenot et al., 2011). In addition, they also found that 

homozygous loss-of-function mutations, such as nonsense or frameshift mutations, which 

result in a marked reduction in WFS1 protein level are more likely to be associated with 

early-onset diabetes mellitus and optic atrophy. This early onset of optic atrophy and diabetes 

is consistent with the findings of other independent studies (Cano et al., 2007; Rohayem et 

al., 2011; Matsunaga et al., 2014). 

A systematic review of 49 published studies was performed by De Heredia and 

colleagues in which patients were stratified into groups based upon: (1) complete loss of 

WFS1 protein level, (2) dominant-negative WFS1 mutations, or (3) haploinsufficient WFS1 

mutations (De Heredia et al., 2013).  Compared with the other studies mentioned earlier, this 

analysis of 412 patients came up with different genotype-phenotype correlations. 

Interestingly, in this patient cohort, diabetes mellitus and optic atrophy were not always the 

first two manifesting clinical features. Disease progression was characterised by the 

development of diabetes mellitus (10 years old), optic atrophy (10-20 years old), diabetes 

insipidus (10-30 years old), sensorineural hearing loss (10-38 years old), and/or neurological 

defects (5-55 years old) (De Heredia et al., 2013). The age at onset of diabetes mellitus, 

hearing defects, and diabetes insipidus were found to depend on the patient's genotypic class. 

In terms of disease severity, dominant negative WFS1 mutations were associated with more 

rapid progression, in particular for optic atrophy, sensorineural deafness and diabetes mellitus 

(De Heredia et al., 2013) 

In this part of my PhD project, I further investigated the functional consequences of 

the WFS1 variants that have been identified with WES in our cohort of patients with 

undiagnosed inherited optic atrophy (Table 8-1). Moreover, given the unexpected high 

prevalence of pathogenic WFS1 mutations, Sanger sequencing was carried out for the 
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remaining patients in our optic atrophy cohort to look for possible WFS1 variants that might 

have been missed in regions not well covered by WES.  

 

      
Patient  Gender Age Clinical Presentation  cDNA Protein 

341 F 38 
OA and diabetes 

mellitus 
c.977C>T p.Ala326Val 

341 F 38 
OA and diabetes 

mellitus 
c.1309G>C p.Gly437Arg 

344 F 78 OA and hearing loss c.2051C>T p.Ala684Val 

352 M 25 OA and hearing loss  c.2051C>T p.Ala684Val 

351 F 19 OA c.2452C>T p.Arg818Cys 

      
Table 8-1 Cohort of patients with WFS1 variants identified through WES.  
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8.2 Materials and Methods 

8.2.1 DNA extraction from blood  

Whole Blood Genomic Extraction kit (Nucleon) was used to extract DNA from the blood of 

the parents of patient PFC-341 as described in Section 3.5.1. In addition, DNA previously 

extracted from patients PFC-341, PFC-344 and PFC-352’s blood and stored at -80°C were 

used. 

 

8.2.2 WFS1 Sanger sequencing 

Pathogenicity of WFS1 variants was determined ‘in silico’as described in Section 7.2.4 using 

online programs MutationTaster2, SIFT and Polyphen-2. The WFS1 variants identified with 

whole-exome sequencing was confirmed with both forward and reverse Sanger sequencing as 

described in Section 3.13. These sequenced amplicons were compared against WFS1 mRNA 

transcript variant 1 (NM_006005.3) and protein (NP_005996.2)) using Seqscape v 2.6 

(Applied Biosystems). DNA was extracted from blood samples obtained from the parents of 

patient PFC-341 to confirm the mode of inheritance. 

 

8.2.3 Western blot analysis of patient with compound heterozygous WFS1 variants 

Western blot analysis of patient ‘PFC-341’ was carried out as described in Section 3.3. 

Briefly, protein from three primary fibroblast biological replicates was extracted and probed 

using a primary WFS1 anti-rabbit antibody (cat: 11558-1-AP; Proteintech) overnight using a 

1:1000 antibody dilution. This was washed three times in TTBS (Sigma-Aldrich) for 10 

minutes before an anti-rabbit secondary antibody was applied for 1 hour at room temperature. 

The western blot membrane was re-washed with TTBS 4 times with each wash lasting 5 

minutes before antibody detection. Protein bands were imaged using an ECL kit (Biorad) and 

an Amersham Imager 600 (GE Healthcare Lifesciences). 
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8.2.4 Modelling of WFS1 protein 

A theoretical model of the WFS1 protein was generated to illustrate any structural changes 

induced by mutations in WFS1. Similar to the model generated for OPA1 as described 

previously in Section 6.3.3, the WFS1 structural model was generated by using the FFAS 

server to locate the most structurally homologous protein to WFS1, namely, maltose-binding 

periplasmic protein (score: -8.69; sequence identity: 9%, http://ffas.sanfordburnham.org/ffas-

cgi/cgi/ffas.p). This protein was then modelled using the SCWRL server with default settings. 

Pymol (Delano Scientific, https://www.pymol.org/) was used to manipulate the WFS1 model 

and introduce any changes due to specific mutations using the mutagenesis tool.  

 

8.2.5 WFS1 screening 

Exons 2-8 and surrounding intronic regions were PCR amplified and sequenced using 11 

M13-tagged primer pairs (Table 8-2). Sanger sequencing of WFS1 in my whole exome cohort 

was carried out as previously described in Section 3.13. These sequenced amplicons were 

also compared against WFS1 mRNA transcript variant 1 (NM_006005.3) and protein 

(NP_005996.2)) using Seqscape v 2.6 (Applied Biosystems). The genetic variants identified 

were analysed for pathogenicity using MutationTaster2, SIFT and Polyphen-2 as previously 

described (Section 7.3.3). Any identified WFS1 variants were reversed sequenced to exclude 

any errors due to PCR amplification.  

 

 

 

 

 

 

 

 

 

http://ffas.sanfordburnham.org/ffas-cgi/cgi/ffas.p
http://ffas.sanfordburnham.org/ffas-cgi/cgi/ffas.p
https://www.pymol.org/
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Table 8-2 Primers details in PCR amplification of select WFS1 exons.  

 

Exons of WFS1 which were not covered through 20x whole exome sequencing were 

selectively targeted,PCR amplified and Sanger sequenced to determine if any pathogenic 

variants of WFS1 may lie hidden in these genomic regions. All primers were designed using 

Genbank accession number NM_006005. Each primer contains an M13 tag to facilitate single 

primer sequencing. Sequencing conditions used to quantify mtDNA copy number are 

described in Section 3.10.2. 

 

 

 

 

 

 

 

 

    
Exon  

Size 

(bp) 
Forward (Sequence 5'-3') Reverse Sequence (3'-5') 

2 491 TCAGCGAGATCCTGTATGGA AGCTGCACAATGCTGAACTG 

4 579 TCCATGCATTGATGGTGAGC AATTTCCCAACAGCATCACC 

5 495 CCCTGGTAACCAAGTCCTGA GCACGGTCTCTACAGGAAGG 

7 684 GTCACCCGTGCTGTGAGAA GGCACGGCTGTAAGACACTC 

8(a) 482 TTTCAAGGGCACCTACTGCT CCATGTTGGTCTCCTTCCAG 

8(b) 599 ACATGCTCCCGTTCTTCATC CACTGGTGCATGCCTGTC 

8(c) 384 GGTCAAGCTCATCCTGGTGT AGCAGCTTAAGGCGACAGAG 

8(d) 540 AAGAGGAAGTAGCCGATGGA CAACCTGGATGTGGAGCAG 

8(e) 497 GTCAGAGGGAGGCGTGAGAT GGGATGCAGTCCTTGCTG 
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8.3 Results 

8.3.1 Confirmation of variant c.3452C>T(p.Arg818Cys) in patient PFC -351 

The c.C3452T (p.R818C) WFS1 variant in patient  PFC-351 that was detected with WES was 

confirmed by both forward and reverse Sanger sequencing (Figure 8-1). 

 

 

 

 

 

 

 

 

 

Figure 8-1 Sequencing chromatogram illustrating the c.C3452T WFS1 variant detected 

in patient PFC-351 

 

 

 

 

 

 

          Patient PFC-351 

c.3452C<T 
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8.3.2 Confirmation of variants c.1309G<C (p.Gly437Arg) and c.977C>T 

(p.Ala326Val) in patient PFC -341 

Clinical examination of patient PFC-341 was performed by Dr Yu-Wai-Man. Fundus 

examination showed bilateral optic atrophy and significant thinning of the peripapillary retinal 

nerve fibre layer was confirmed with optical coherence tomography (OCT) imaging (Figure 

8-2). Sanger sequencing confirmed the c.1309G<C (p.Gly437Arg) and c.977C<T 

(p.Arg326Val) WFS1 variants in patient PFC-341. Sanger sequencing was also carried out in 

both parents to confirm the mode of inheritance (Figure 8-3A). The father harboured the 

c.1309G>C (p.Gly437Arg) variant whereas the mother harboured the c.977C<T 

(p.Ala326Val) variant, indicating a compound heterozygous mode of inheritance for patient 

PFC-341 (Figure 8-3B). 
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Figure 8-2 Ophthalmological findings for patient PFC-341  

(A) Bilateral optic atrophy is demonstrated on fundoscopic examination (RE = right eye, LE = 

left eye). (B) Optical coherence tomography (OCT) measurements were obtained with the 

high-resolution spectral-domain CirrusTM platform (Carl Zeiss Meditec, Dublin, CA). The 

average retinal nerve fibre layer thickness was 67m in the right eye (OD) and 63m in the 

left eye (OS). (C) The analysis software automatically selects the appropriate normative range 

for the patient and the peripapillary RNFL measurements (dark traces) are represented within 

colour-coded distribution centiles (bottom panel): (i) red < 1%, (ii) yellow 1-5%, and (iii) 

green 5-95%. 
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Figure 8-3 (A) Family pedigree; (B) Sequencing chromatogram of the proband and his 

unaffected parents; and (C) WFS1 protein alignment and degree of evolutionary 

conservation. 

WFS1 Ala326Val 

WFS1 Gly437Arg 

289 Lys 362Leu 

401 His 471 Leu 



 

234 

 

The pathogenicity of the WFS1 variants found in patient PFC-341, c.1309G<C (p.Gly437Arg) 

and c.977C<T (p.Ala326Val), was further investigated with western blot analysis. WFS1 

protein levels in the patient’s fibroblasts showed a significant decrease compared with 

controls to about half normal levels. 

 

 

 

 

 

 

 

 

Figure 8-4 Western blot analysis of WFS1 in patient PFC-341.  

Western blot normalised against GAPDH and mean of two biological controls. An unpaired 

Student’s T-test was used for statistical comparison (p ≤0.001, *** significance). 

 

8.3.3 Confirmation of variant c.2051C<T (p.Ala684Val) in patients PFC-344 and 

PFC-352 

Clinical examination of patient PFC-344 was performed by Dr Yu-Wai-Man (Figure 8-5). 

Sanger sequencing confirmed the presence of the c.2051C<T (p.Ala684Val) WFS1 variant 

that was detected with WES (Figure 8-5).  
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Figure 8-5 Ophthalmological findings for patient PFC-344 

(A) Bilateral optic atrophy was observed on fundoscopic examination (RE = right eye, LE = 

left eye). (B) Optical coherence tomography (OCT) measurements were obtained with the 

high-resolution spectral-domain CirrusTM platform (Carl Zeiss Meditec, Dublin, CA). The 

average retinal nerve fibre layer thickness was 48m in the right eye (OD) and 53m in the 

left eye (OS). (C) The analysis software automatically selects the appropriate normative range 

for the patient and the peripapillary RNFL measurements (dark traces) are represented within 

colour-coded distribution centiles (bottom panel): (i) red < 1%, (ii) yellow 1-5%, and (iii) 

green 5-95%. 

(B) 

(A) 

(C) 
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Figure 8-6 Sequencing chromatogram illustrating the c.2051C<T WFS1 variant detected 

in patient PFC-344 

8.3.4 Confirmation of variant c.2051C<T (p.Ala684Val) in patient PFC-352 

Sanger sequencing confirmed the c.2051C<T (p.Ala684Val) WFS1 variant in patient PFC-352 

(Figure 8-7).  

 

 

 

 

 

 

 

Figure 8-7 Sequencing chromatogram illustrating the c.2051C<T WFS1 variant detected 

in patient PFC-352 

c.2051C<T 

c.2051C<T 
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8.3.5 Protein modelling of the impact of WFS1 mutations  

WFS1 is an 890 amino acid protein with the closest known structural homologue being 

Maltose-binding periplasmic protein (sequence identity: 9%) (Figure 8-8). The precise 

protein folding of WFS1 and how pathogenic mutations may impact on its structure and 

function are still poorly defined in the literature. Modelling of the c.2051C<T (p.Ala684Val) 

variant indicates that it lies structurally within the degron, a target for Smurf-1 mediated 

degradation of WFS1 by the ubiquitin-proteasome system, which is an important mechanism 

for regulating the unfolded protein response in the ER (Guo et al., 2011). Interestingly, an 

investigation of single heterozygous variants identified in patients with wolfram syndrome in 

the Euro-Wabb WFS1 database (https://lovd.euro-wabb.org/home.php?select_db=WFS1) 

indicate that almost all of these variants are located in exon 8 and they affect protein regions 

located within the ER (membrane and lumen) rathen than the cytoplasmic compartment. 

Heterozygous WFS1 mutations that have been linked specifically with optic atrophy and 

sensorineural hearing loss also appear to cluster exclusively in the protein region located 

within the ER lumen, with the exception of a single sporadic case reported by Cryns and 

colleagues (2002). The WFS1 missense variants, c.977C<T (p.Ala326Val) and c.1309G<C 

(p.Gly437Arg) are both located within the ER membrane, but due to the compound 

heterozygous nature of these variants with both contributing to disease pathogenicity, it is 

more difficult to structurally ascertain their impact on WFS1 protein function. 

https://lovd.euro-wabb.org/home.php?select_db=WFS1
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Figure 8-8 In silico modelling of the WFS1 protein and induced conformational changes. 

Structural protein modelling of WFS1 was determined with the ‘Fold and Functions 

Assignment (FFAS)’ server, SCWRL modeller and PyMol for manual manipulation of image. 

The red spheres indicate the position of the either the wild type or mutant amino acid. WFS1 

model with: (A) Ala326 amino acid; (B) Ala326Val amino acid change; (C) Gly437 amino 

acid; (D) Gly437Arg amino acid change; (E) Ala684 amino acid; (F) Ala684Val amino acid 

change. (A), (B), (C) and (D) illustrate recessive WFS1 mutations, whereas (E) and (F) 

illustrate dominant WFS1 mutations. 

(A) (B) 

(C) 
(D) 

(E) (F) 
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8.3.6 Screening of the remaining patients in our whole-exome cohort for potentially 

pathogenic WFS1 variants  

Analysis of our WES raw data indicate that only approximately 80% of the WFS1 gene is 

covered and called by the Illumina HiSeq2500 and GATK in-house pipeline. To ensure that 

no other pathogenic WFS1 variants were missed in these unsequenced regions, WFS1 Sanger 

sequencing was carried out for the other patients in our whole-exome cohort. Table 8-3 

indicates the WFS1 variants that were detected and confirmed with reverse sequencing within 

the 20% uncovered WES region. These WFS1 variants were then analysed using three online 

pathogenicity programs to determine whether these could account for the patient’s optic 

atrophy phenotype. Most of the identified missense variants were predicted to be benign in 

nature (Appendix Table H1). However, the c.631G<C (p.Asp211Gly), c.2165T<C 

(p.Met722Thr), c.2653C<G (p.Pro885Thr), and c.1810T<A (p.Cys604Ser) variants were 

identified as potentially pathogenic and require further investigation. 
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Nucleotide Change  
Protein 

Change 
ExAC database 

Euro-WAB 

database 
SIFT POLYPHEN2 Provean SIFT  Polyphen2  Provean PFC- 

c.631G<C p.Asp211Gly NA NA Damaging benign Deleterious 0.03 0.001 -2.78 147 

c.2165T<C p.Met722Thr NA NA Tolerated possibly damaging Deleterious 0.09 0.95 -2.56 342 

c.2653C<G p.Pro885Thr NA NA Tolerated probably damaging Deleterious 2.86 1 -6.75 346 

c.1810T<A p.Cys604Ser NA NA Tolerated possibly damaging Deleterious 0.27 0.82 -2.95 347 

           
Table 8-3 Potentially pathogenic WFS1 missense variants detected and confirmed with Sanger sequencing and their relative pathogenicity 

scores. 

SIFT, POLYPHEN2 and Provean were used to analyse each variant and their respective scores are indicated. The presence of these variants in the 

Euro-WABB WFS1 database, which contains the largest collection of up-to-date variants, was also investigated (September 2015).
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8.4 Discussion 

WES was performed on a cohort of 14 patients with optic atrophy and/or additional extra-

ocular features and four of these patients (28%) harboured potentially pathogenic WFS1 

variants. Sanger sequencing confirmed the presence of each of these variants: c.2051C<T 

(p.Ala684Val), c.977C<T (p.Ala326Val), c.1309G<C (p.Gly437Arg) and c.2452C<T 

(p.Arg818Cys). Two patients (PFC-344 and PFC-352) with optic atrophy and deafness 

carried a previously reported pathogenic variant c.2051C<T (p.Ala684Val), which was 

identified in a family with multiple affected family members segregating both optic atrophy 

and sensorineural deafness (Rendtorff et al., 2011). The pathogenic nature of this variant was 

confirmed functionally in Hek293 cells with a significant decrease in WFS1 level indicative 

of either structural instability or haploinsufficiency. The mechanisms by which the mutant 

WFS1 protein (p.Ala684Val) result in optic atrophy and deafness remain unclear, but it might 

be associated with mtDNA instability, which is a mechanism that has also been observed with 

the OPA1 p.Arg455His mutation (Rendtorff et al., 2011).   

Based on the Euro-Wabb WFS1 database, almost all heterozygous missense variants 

that result in optic atrophy and deafness, or isolated sensorineural hearing loss, are located 

near the C-terminal domain within the ER lumen. These missense mutations appear to cluster 

around the degron locus (Guo et al., 2011), which is located in the final 100 amino acids 

before the C terminus. Chassenot and colleagues have also reported that the majority of 

patients with Wolfram syndrome who developed neurological symptoms had compound 

heterozygous missense mutations located either within the transmembrane domains or 

towards the C-terminus of the protein (Chaussenot et al., 2011). Therefore, heterozygous 

missense mutations, such as c.2051C<T (p.Ala684Val), may lead to cellular dysfunction by 

interfering with ER stress mechanisms or the interaction between WFS1 and another 

transmembrane protein ATF6α, a mechanism which acts as a negative regulator of the 

unfolded protein response (UPR) (Fonseca et al., 2010) In addition, the fact that many of 

these missense mutations are located at or near the degron may suggest that ER stress 

mechanisms are impaired because of a dysfunctional interaction between WFS1 and 

SMURF1, which is a ligase required for maintaining steady-state WFS1 levels under different 

physiological conditions (Guo et al., 2011). Further research is currently ongoing to 
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determine how WFS1 mutations lead to neurological complications in patients with Wolfram 

syndrome. 

Patient PFC-341 harboured two previously unreported WFS1 variants, c.C977T 

(p.Ala326Val) and c.1309G<C (p.Gly437Arg). Patient PFC-341 presented with optic atrophy 

and diabetes mellitus. Both of his parents were clinically unaffected with no evidence of 

subclinical optic nerve dysfunction or diabetes. Segregation analysis revealed that each parent 

harboured one of these two variants and the proband was therefore compound heterozygous. 

Further functional analysis to assess the pathogenicity of these variants was conducted using 

western blot analysis and a significant decrease in level of the WFS1 protein was found, 

indicative of a possible haploinsufficient mechanism or instability of the mutant protein. 

Pathogenic WFS1 mutations are typically either homozygous or compound heterozygous with 

the majority of mutations classified as inactivating (Cryns et al., 2003). Compound 

heterozygosity with pathogenic missense variants is rare and it has been speculated that these 

mutation carriers would present with a clinically milder form of Wolfram syndrome, limited 

to optic atrophy and diabetes mellitus (Rigoli et al., 2011). This hypothesis would be 

consistent with the milder phenotype of patient PFC-341. Sanger sequencing confirmed the 

c.2452C<T (p.Arg818Cys) WFS1 variant in patient PFC-351 and additional functional 

analysis will be required to fully determine its pathogenicity. 

 As detailed in the WES analysis of our optic atrophy patient cohort (Chapter 7), the 

genetic aetiology of ten patients remains unknown.  It is interesting that two SNPs in ATF5 

(Table 7-6), which is a gene associated with the ER stress response, were found in 5/14 

(36%) patients. These SNPS are extremely rare in control population databases (1000 

genomes project and ESP6500). They were not present in two controls sequenced on the same 

plate to exclude technical PCR bias and they were also not found in our in-house control 

database. The relevance of these ATF5 variants will need to be investigated to determine if 

they are a possible risk factors for the development of optic neuropathy.  

Only 80% of the WFS1 exonic regions were appropriately covered with WES analysis 

and it is possible that other pathogenic variants might have been missed in the unsequenced 

regions. These regions were therefore screened with Sanger sequencing and the detected 

variants were analysed using the online SIFT, POLYPHEN2 and Provean pathogenicity 

programmes. A number of missense WFS1 variants were detected, which were confirmed by 
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reverse sequencing, and determined as possibly pathogenic (Table 8-2). Although these 

variants were not found in the Euro-WABB WFS1 database, further functional work is needed 

to determine if they are truly pathogenic. 

The prevalence of Wolfram syndrome has previously been estimated at 1 in 770,000 

in the UK population, but this was based on a clinical diagnostic criteria before the 

identification of WFS1 as the major causative gene (Barrett et al., 1995). Other reported 

prevalence figures are 1 in 500,000 in Germany (Rohayem et al., 2011) and 1 in 710,000 in 

Japan (Matsunaga et al., 2014). A much higher figure of 1 in 68,000 has been found in 

Lebanon and this has been ascribed to higher level of consanguinity and/or a potential founder 

even this region of the world (Zalloua et al., 2008). Lombardo and colleagues suggest that 

Wolfram syndrome and the prevalence of pathogenic WFS1 mutations may be underreported 

in non-consanguineous European populations (Lombardo et al., 2014). Our data is consistent 

with this as evidenced by the identification of confirmed pathogenic WFS1 mutations in 3/14 

patients with suspected inherited optic atrophy that had previously been found to be OPA1-

negative. Furthemore, it is clear that dominant WFS1 mutations represent an important genetic 

subgroup and the spectrum of clinical features has expanded from classical DIDMOAD to 

more limited forms of the disease characterised by varying combinations of optic atrophy, 

deafness and diabetes mellitus. Long-term prospective studies are needed to better assess the 

natural history of dominant and recessive WFS1 mutations, which will be crucial for 

designing future treatment trials. 
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Chapter 9  

 

 

 

       General Discussion 
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Inherited optic neuropathies are an important cause of chronic visual morbidity and they 

affect at least 1 in 10,000 individuals in the UK population (Yu-Wai-Man et al., 2014). The 

pathophysiology of this group of disorders is intrinsically linked with mitochondrial 

dysfunction and the two classical paradigms are LHON, which is caused by primary mtDNA 

mutations, and DOA secondary to pathogenic OPA1 mutations. Recessive forms of optic 

neuropathy are rarer and they are characterised by both genetic and phenotypic heterogeneity, 

with clinical features ranging from isolated optic atrophy to severe early-onset syndromic 

optic atrophy associated with debilitating neurological features and neurodevelopmental 

defects. Wolfram syndrome is the most common recessive optic atrophy and interestingly, the 

major causative gene, WFS1, encodes for an ER transmembrane protein, highlighting the 

complex interplay and crosstalk between the mitochondrial and ER compartments. A growing 

list of nuclear genes causing optic atrophy is being identified with the technological 

revolution of next-generation exome and whole genome sequencing. These exciting 

discoveries are providing major insights into the pathological mechanisms that eventually 

contribute to RGC loss and neurodegeneration. In addition to impaired mitochondrial 

bioenergetics and elevated ROS levels, it is now clear that disturbed mitochondrial dynamics, 

mtDNA instability and impaired mitochondrial quality control also play a role in triggering or 

potentiating RGC loss (Figure 9-1) (Burté et al., 2015; Yu-Wai-Man and Chinnery, 2012). 

We are still at the start of a long road to fully understand the complex interplay between these 

pathological pathways and how these ultimately result in tissue specificity and progressive 

neurodegeneration. 

As part of my PhD work, I have further investigated the expanding clinical 

manifestations and the disease mechanisms that contribute to OPA1-related dominant optic 

atophy. To do so, I made use of primary fibroblast cell lines established from two contrasting 

phenotypic patient groups, one with pure optic atrophy (OA) and the other with patients that 

had developed more severe extraocular features (DOA+). The data obtained with this OPA1 

cell model revealed a striking mitochondrial fragmentation pattern when compared to 

controls. Interestingly, there was significantly greater fragmentation in the DOA+ group 

compared with the OA group, which had not been reported previously. The differences in 

mitochondrial fragmentation might be associated with the underlying subtype of OPA1 

mutations that are more likely to be associated with DOA+ phenotypes (Zeviani, 2008; Yu-
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Wai-Man et al., 2010b). Missense OPA1 mutations involving the GTPase domain carry an 

increased risk of DOA+ phenotypes, presumably because the mutant mRNA is translated and 

the resulting aberrant protein is not immediately degraded by cellular quality control 

mechanisms. This hypothesis is consistent with the normal levels of OPA1 found in fibroblast 

cell lines from patients with DOA+ phenotypes. In contrast, the majority of OPA1 mutations 

result in haploinsufficiency due to nonsense mediated decay and with the wild-type allele 

accounting for the approximately 50% expression of OPA1 (Schimpf et al. 2008). 

 

 

 Figure 9-1 Disease mechanisms implicated in common inherited optic neuropathies -     

.LHON, DOA and Wolfram syndrome 

(1) Disturbed calcium homoeostasis from both the ER and cytosol have been implicated 

as potential dysfunctions in DOA and Wolfram syndrome(Jahani-Asl et al., 2011; 

Kamei et al., 2005; Dayanithi et al., 2010; Cagalinec et al., 2016) Increased calcium 

retention within the mitochondrial compartment could induce mitochondrial swelling 

and impaired SIMH in DOA as detected in chapter 4. Hypothetically, this calcium 

could alter the Krebs cycle as a compensatory effect to OXPHOS dysfunction 

(Traaseth et al., 2004). (2) Impaired rate of ATP production from OXPHOS 

implicating either a complex I (LHON)(Wallace et al., 1988; Huoponen et al., 1991; 

Johns et al., 1992)  and/or complex IV (DOA) defect (Zanna et al., 2008; Chevrollier 

et al., 2008) which could also exasperate levels of ROS (Carelli et al., 2004; Tang et 
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al., 2009; Millet et al., 2016). Disturbed cristae morphology may also impinge on the 

efficiency of OXPHOS while the release of cytochrome C, typically sequestered 

within these cristae compartments, can induce apoptosis (Gonzalves et al., 2005; 

Kuwana et al., 2002; Lutter et al., 2000). (3) Dysfunctional mtDNA maintenance in 

models of optic neuropathy can induce mtDNA depletion (Kim et al., 2005; Chen et 

al., 2012; Speigal et al., 2016; Chapter 5 results), mtDNA proliferation as a potential 

OXPHOS compensatory effect, (Sitarz et al., 2012; Yu-Wai-Man et al., 2010b; Yen et 

al., 2002) or disturb the distribution of mtDNA within the mitochondrial network 

(Elachouri et al., 2011; Chapter 5 results) (4) Increased mitophagy has been detected 

in models of DOA (White et al., 2009; Sarzi et al., 2012) and Wolfram syndrome          

(Caglinec et al., 2016). (5) Mitochondrial fragmentation is a hallmark of DOA 

(Olichon et al., 2003; Zanna et al., 2008; Chevrollier et al., 2012) with DOA+ 

displaying a more severe fragmentation pattern than OA (Chapter 4). In addition, OA 

mitochondrial morphology demonstrates abnormal SIMH under stressed metabolic 

conditions (Chapter 4). Mitochondrial fusion rates were also impaired in DOA (Zanna 

et al., 2008) and Wolfram syndrome (Cagalinec et al., 2016). This may disturb 

complementation between mitochondrial organelles.(6) Glutatemate excitotoxicity and 

reduced anti-oxidant defences are especially pertinent for retinal ganglion cells 

(Nguyen et al., 2011; Millet et al., 2016). (7) The anterograde/retrograde transport of 

mitochondria are dependent on ATP and mitochondrial dynamics and so may be 

particularly pertinent to retinal gangion cell dysfunction (Safiulina and Kaasik, 2013). 

 

Once translated, the OPA1 protein is targeted for integration into the IMM where short 

and long isoforms oligomerise into multimeric complexes (Yamaguchi et al., 2008; Frezza et 

al., 2006). A possible explanation for the increased fragmentation of the mitochondrial 

network in DOA+ may be that both wild-type and pathogenic OPA1 oligomers self assemble 

to create malformed and unstable OPA1 complexes, which further impair normal IMM 

fusion. In OA, the wild-type OPA1 oligomers form fewer multimeric complexes, but they are 

functional and therefore, these could minimise the impact on mitochondrial morphology. 

Based on our results, the increase in mitochondrial fragmentation in DOA+ and OA 

fibroblasts does not seem to be secondary to a severe mitochondrial OXPHOS defect or to 
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disruption of mtDNA maintenance, suggesting that the observed fragmentation is more likely 

the direct consequence of the impaired OPA1 fusional abilities (Chapter 4). Quantification of 

the mitochondrial network showed an exaggerated increase in both mitochondrial length and 

volume, consistent with pathological mitochondrial swelling. A more pronounced effect was 

observed in the OA group under stressful oxidative conditions and this could reflect activation 

of SIMH as a compensatory protective mechanism (Tondera et al., 2009). 

To further investigate the link between OPA1 mutations and mtDNA instability, I 

quantified mtDNA/nucleoid level and distribution, and how these relate with the 

mitochondrial fragmentation patterns observed in DOA+ and OA fibroblasts and myotubes. In 

both cell models, DOA+ was associated with a significantly higher number of mitochondrial 

fragments compared with OA or controls. This further supports our hypothesis that the 

severity of mitochondrial fragmentation is an important parameter that correlates with disease 

severity. It will be very interesting to investigate other tissue types, in particular RGCs, which 

are the neuronal populations that are prefentially affected in DOA. The greater extent of 

mitochondrial fragmentation could also impact on mitochondrial quality control by impairing 

the complementation of mutant mtDNA molecules by wild-type molecules through content 

mixing (Chen et al., 2010; Nakada et al., 2009). An elegant study performed by Elachouri 

and colleagues demonstrated mechanistically how a specific OPA1 peptide sequence encoded 

by exon 4b was likely responsible for anchoring mtDNA nucleoids to the IMM, thereby 

facilitating proper mtDNA replication (Elachouri et al., 2011). It is therefore plausible that a 

reduction in the level of OPA1 could impact on mtDNA number and nucleoid distribution. Of 

note, a recently published study has highlighted how ER-mitochondria contacts regulate 

mtDNA replication in relation to mitochondrial division in human cells (Lewis et al., 2016). 

MtDNA replication is undoubtedly a complex process and it is clear that disturbance at any 

point can result in human disease. In our study, I did not find any major difference in 

mtDNA/nucleoid distribution between DOA+ and OA compared with controls, but there was 

a significant decrease in the number of mtDNA/nucleoids when correlated with the 

mitochondrial fragmentation patterns. A significant decrease in mtDNA/nucleoid content was 

detected in both DOA+ and OA groups relative to total mitochondrial length. This difference 

is likely due to the greater total mitochondrial length that has been reported in OPA1-mutant 

fibroblasts (Agier et al., 2012), but it could also indicate a relative depletion of 
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mtDNA/nucleoid copies due to impaired fusion or mtDNA maintenance. Further work is 

required to explore the mechanisms that underlie these observations and the possible 

pathological link with mitochondrial quality control. 

 Although optic atrophy remains the defining feature of DOA, the clinical 

manifestations observed in OPA1-related disease have now expanded to include chronic 

progressive external ophthalmoplegia (CPEO) and other extraocular features such as ataxia, 

myopathy and peripheral neuropathy. The association of optic atrophy with spastic paraplegia, 

resembling cases that fit the historical description of Behr syndrome, has been well described 

in several unrelated OPA1 mutation carriers (Bonneau et al., 2014; Carelli et al., 2015b; Yu-

Wai-Man and Chinnery, 2015). The development of this syndromic form of DOA has been 

ascribed to the deleterious synergistic consequences of compound heterozygous OPA1 

mutations, in particular the recurrent c.1146A>G (p.Ile382Met) missense mutation, which can 

occur in combination with a deep intronic mutation (Bonifert et al., 2014). Remarkably, two 

Italian families carrying different OPA1 missense mutations have been reported with an 

atypical combination of parkinsonism, dementia and CPEO, but with only subclinical optic 

neuropathy (Carelli et al., 2015). In my PhD project, I have further extended the genetic 

complexity of OPA1 disease by confirming a novel homozygous OPA1 mutation as the 

underlying molecular defect in two affected sisters of Arab Muslim origin, born to 

consanguineous parents, and who developed a fatal infantile encephalomyopathy with 

hypertrophic cardiomyopathy and optic atrophy. Intriguingly, the muscle biopsy from one 

sister instead showed marked mtDNA depletion rather than multiple mtDNA deletions, which 

could explain the severity of the clinical phenotype (Spiegel et al., 2016). The expanding 

clinical and genetic heterogeneity linked to DOA plus phenotypes only serves to emphasize 

the more global neurodegenerative impact of pathogenic OPA1 mutations, which can extend 

far beyond the inner retina and the anterior visual pathways. 

Whole-exome sequencing (WES) has proven a powerful tool in determining the 

underlying genetic basis of rare monogenic disorders. As part of my PhD project, I analysed 

WES data for a cohort of 14 patients with suspected inherited optic atrophy, but who had been 

found to be negative for a number of known optic atrophy genes, namely OPA1, OPA3, 

C12orf65 and RTN4IP1. Pathogenic WFS1 mutations were identified in 3 patients and highly 

suspected in one additional patient, accounting for a nearly 30% positive hit rate. The genetic 
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aetiology for the remaining patients in our cohort remain unknown and further work, 

including whole genome sequencing, and ongoing collaborations will be crucial if we are to 

uncover new, but relatively rare, optic atrophy genes. Recessive WFS1 mutations were 

originally found in patients with early-onset severe Wolfram syndrome that developed 

diabetes insipidus, diabetes mellitus, optic atrophy and deafness (DIDMOAD) (Barrett et al., 

1995). WFS1 encodes for wolframin, a transmembrane endoplasmic reticulum protein that 

plays a critical role in calcium homeostasis and interorganellar cross-talk at mitochondria 

associated membranes (MAMs) (Lu et al., 2014; Hoppins and Nunnari, 2012). The molecular 

elucidation of Wolfram syndrome has uncovered the intimate dynamic interactions between 

mitochondria and the endoplasmic reticulum, and how dysfunction in one compartment can 

detrimentally affect the other, and vice versa (Burté et al., 2015; Murley and Nunnari, 2016). 

Importantly, these disturbances are highly relevant to normal RGC physiology and it is highly 

likely that new optic atrophy genes will be uncovered that directly or indirectly affect MAM 

function. WFS1 mutations have now been confirmed to be an important cause of DOA and 

they can cause a more limited phenotype, which, remarkably, can sometimes be restricted to 

the optic nerve. The variable tissue specificity observed with both OPA1 and WFS1 mutations 

raise fundamental questions about the secondary genetic and environmental modifiers, 

including possible epigenetic influence, that are influencing their downstream consequences 

on cellular function. 

 In conclusion, my PhD work has provided new insights into OPA1-related disease 

mechanisms and how these might impact on the severity of the patient’s phenotype. OPA1 

mutations can sometimes behave recessively and we have described the first report of a novel 

homozygous OPA1 mutation, which was associated with a fatal infantile mitochondrial 

encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy. The phenotypic 

manifestations of DOA+ will likely expand further with wider clinical access to WES. A 

similar development has occurred for WFS1 mutations and screening for this specific gene 

should no longer be limited to patients with the DIDMOAD “full house”. Indeed, WFS1 

mutations should now be actively sought in patients with suspected inherited optic atrophy 

who have been found to be OPA1 negative. There are currently no effective treatments for 

patients with inherited optic neuropathies and there are significant challenges in drug 

development and clinical trials for this group of disorders. Despite these difficulties, there 
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have been major advances in our understanding of the genetic and pathophysiological basis of 

inherited optic neuropathies, and the hope is that these breakthroughs will eventually translate 

into tangible benefits for patients experiencing progressive visual loss. 
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Appendix A OPA1 protein levels 

 

 

 

 

Figure A-1 Quantification of OPA1 in primary patient fibroblasts witt pure dominant optic 

atrophy and dominant optic atrophy plus  

Levels of OPA1 were standardised to GAPDH and control lines (N = 4) for each DOA+ and 

OA fibroblast cell line. Error bars represent the standard error of the mean (SEM). The 

individual DOA+ and OA fiboblast cell lines were analysed using the Student’s unpaired t-

test to determine the level of significance compared with controls (ns > 0.05; * ≤ 0.05; ** ≤ 

0.01; *** ≤ 0.001; **** ≤ 0.0001). 
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                     Figure A-2 Representative western blot of OPA1 and GAPDH in (A) DOA+ and (B) OA primary fibroblasts 
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Appendix B OPA1 gene expression 

 

 

Figure B-1Quantification of OPA1 mRNA expression  in individual DOA+ and OA primary 

fibroblasts. 

Error bars represent the standard error of the mean (SEM). A Student’s unpaired t-test was 

used to statistically measure DOA+ and OA groups relative to controls (ns > 0.05; * ≤ 0.05; 

** ≤ 0.01; *** ≤ 0.001; **** ≤ 0.0001). 
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Appendix C Mitochondrial network analysis 

 

 

 

 

 

 

 

Figure C-1Quantification of the Total length and Volume of individual lines from both DOA+ and OA groups under glucose (5mM) and 

galactose (5mM) conditions. 

 Total network length (A) and total network volume (B) were quantified under glucose (blue) and galactose (red) conditions. Error bars represent the 

standard error of the mean. A Student’s unpaired t-test was used for statistical comparison between DOA+, OA and controls. control (ns > 0.05; * ≤ 

0.05; ** ≤ 0.01; *** ≤ 0.001; **** ≤ 0.0001). 
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Figure C-2Mitochondrial fragmentation of the network in individual patient and control primary fibroblasts.  

Average number of mitochondrial fragments (A) were measured using Huygens Object analyser software in fibroblasts imaged following either 24 

hour incubation with 5mM glucose (blue) or 48 hour incubation with 5mM galactose (red). Average fragment length (B) and average fragment volume 

(C) were calculated as described in section 4.2.4. Error bars represent the standard error of the mean (SEM).* p  0.05, ** p  0.01, *** p  0.001 and 

**** p  0.0001 using a Student’s unpaired t-test against controls (n=200). 
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Appendix D Mitochondrial maintenance analysis 

 

 

 

 

 

 

 

Figure D-1 mtDNA maintenance markers in individual primary fibroblast lines from DOA+ and OA patients.   

MtDNA copy number was measured using real-time PCR and normalised to nuclear encoded B2M copy number (A). TFAM was measured using real-

time PCR and standardised against mean -actin and B2M gene expression (B). Both mitochondrial maintenance markers were expressed compared to 

mean of three different control cell lines (n=3). Error bars represent the standard error of the mean (SEM). * p ≤ 0.05 using a Student’s unpaired t-test 

against controls. 

(A) (B) 
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Appendix E  OXPHOS disturbances 

 

 

 

 

 

 

Figure E-1 Relative expression of OXPHOS complex subunits corrected against GAPDH in 

individual DOA+  primary fibroblasts compared to control.  

Densitometric analysis of NDUFB8 (A), SDHA (B), COXII (C) and ATP5A (D). OXPHOS 

subunit immunoblots was performed using ImageJ and each subunit densitometry normalised 

to GAPDH. Ratios were expressed compared to mean of three different control cell lines 

(n=3). Error bars represent standard error of the mean. A Student’s unpaired t-test was used to 

statistically compare DOA+and OA with control (ns > 0.05; * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001; 

**** ≤ 0.0001). 
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Figure E-2 Relative expression of OXPHOS complex subunits corrected against GAPDH in 

individual OA  primary fibroblasts compared to control. 

Densitometric analysis of NDUFB8 (A), SDHA (B), COXII (C) and ATP5A (D). OXPHOS 

subunit immunoblots was performed using ImageJ and each subunit densitometry normalised 

to GAPDH. Ratios were expressed compared to mean of three different control cell lines 

(n=3). Error bars represent standard error of the mean. A Student’s unpaired t-test was used to 

statistically compare DOA+and OA with control (ns >0.05; * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001; 

****≤ 0.0001). 
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Figure E-3  Representative western blots of mitochondrial OXPHOS complex subunits in (A) DOA+(2), DOA+(3) and DOA+(4) and (B) 

DOA+(1) primary fibroblasts 
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Figure E-4 Representative western blot of mitochondrial OXPHOS complex subunits in 

OA primary fibroblasts 
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Figure E-5 Quantification of the levels of ATP produced through OXPHOS and the 

glycolytic pathway incubated in (A) 5mM glucose, (B) 5mM glucose and oligomycin, (C) 

5mM glucose and d-deoxyglucose and (D) 5mM glucose with d-deoxyglucose and 

oligomycin within control DOA+ and OA groups.  

A Student’s unpaired t-test was used to statistically compare DOA+ and OA with controls (ns 

> 0.05; * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001; ****≤ 0.0001). 
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Appendix F  Mitochondrial network analysis in myotubes 

 

 

 

 

 

 

Figure F-1 Total mitochondrial length and volume measured in individual DOA+ primary myotube lines. 

 Total fragment length (A)  and (B) Total fragment volume of primary myotube DOA+ lines were compared statistically against group primary control 

myotubes using a Student’s umpaired t-test (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001). 

(A) (B) 
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Figure F-2Average mitochondrial length, volume measured and total number of mitochondrial fragments in DOA+ primary myotubes 

Average mitochondrial length (B) and volume (C) were calculated as a ratio between total length/ volume and total number of mitochondrial fragments 

(A).  Variation between DOA+ primary myotube lines and grouped control was statistically analysed using a Student’s unpaired t-test (* p ≤ 0.05; ** p 

≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001) 

(A) (B) (C) 
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Figure F-3Total mitochondrial length and volume measured in primary OA myotubes.  

Variation of total mitochondrial length (A) and volume (B) between individual myotubes lines and grouped control was statistically analysed using a 

Student’s unpaired t-test (* p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001) 

(B) (A) 



 

266 

 

 

 

 

 

 

 

 

 

Figure F-4Average mitochondrial length, volume and total number of mitochondrial fragments in individual OA primary myotube lines.  

Average mitochondrial length (B) and volume (C) was calculated as a ratio between total length/volume and the total number of mitochondrial 

fragments (A). Variation between average mitochondrial OA myotube lines was compared statistically to control using a Student’s unpaired t-test (* p 

≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001; **** p ≤ 0.0001)
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Appendix G Mitochondrial nucleoid distribution 

 

 

 

 

 

 

 

 

 

 

 

Figure G-1 Nucleoid distribution dot plot of individual DOA+ and OA primary 

myoblasts  

The size of each blot represents the weighted number of mtDNA/ nucleoid objects present in 

each individual myoblast cell. Graph was generated by Dr. Ian Wilson.  
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Figure G-2 Box-plot of average mtDNA/nucleoid distribution in each individual 

myoblast line  

Box-plot generated by Dr. Ian Wilson.  
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Figure G-3 Total number of nucleoids/mtDNA in each individual primary line per unit area of 

cell analysed 

The mean of the number of nucleoid/mtDNA objects detected per unit area of the cell in 

DOA+, OA and WFS1 lines (N ~ 11) was quantified and compared against control (N = 33). 

Error bars represent standard error of the mean. (p >0.05 is non-significant; p ≤ 0.05 * of 

significance; p ≤ 0.01 is ** of significance; p ≤0.001 is *** of significance; p ≤ 0.0001 is 

**** significance). 
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Appendix H  Benign variants found in WFS1 screen 

 

           DNA  Missense Change 
Euro-WAB 

database 
ExAc Frequency SIFT POLYPHEN2 Provean SIFT  Polyphen2  Provean PFC- 

c.634G<C p.Gly212Ala NA 0 Tolerated 
possibly 

damaging 
Neutral 0.26 0.571 -1.41 147 

c.637G<A p.Gly213Arg NA 0 Tolerated Benign Neutral 0.14 0.216 -2.06 147 

c.640G<A/641C<T/642G<T p.Ala214Ile NA 0 Tolerated Benign Neutral 0.22 0.221 -0.95 147 

c.645G<C p.Gln215His NA 0 Tolerated 
possibly 

damaging 
Neutral 0.13 0.884 -1.74 147 

c.977G<A p.Val333Ile Ganie et al., 2011 0.7818 Tolerated Benign Neutral 0.92 0.0001 0.36 147;349;350;342;345;346;351 

c.2470G<A p.Glu824Lys NA 0.000084 Tolerated 
probably 

damaging 
Neutral 2.86 1 -1.63 345 

c.56C<T p.Pro19Lys NA 0.000042 Damaging(low confidence) Benign Neutral 0.03 0 -0.99 349 

c.1832G<A p.Arg611His NA 0.5367 Tolerated Benign Neutral 0.1 0.146 -1.82 350;147;353;346;341 

c.2565A<G p.Ser855Pro NA 0.00058 Tolerated Benign Neutral 0.28 0.34 -2.023 353 

c.1367G<A p.Arg456His NA 0.057 Tolerated 
Probably 

damaging 
Neutral 0.12 1 -1.31 349 

           
Table H-1WFS1 Missense variants detected and confirmed with Sanger sequencing and their relative pathogenicity scores. 

SIFT, POLYPHEN2 and Provean were used to analyse each variant and their respective scores are indicated. The presence of these variants in the 

Euro-Wab WFS1 database which contains the largest collection of up-to-date variants was also investigated (September 2015)
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