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ABSTRACT

Electrical impedance tomography (EIT) is a technique in which images
representing the cross-sectional distribution of electrical impedance within a three-
dimensional object are reconstructed from measurements on the object surface. In
this work, some developments of image reconstruction algorithms aimed at
increasing the value of this technique in the field of medical diagnosis are studied.

The electrical properties of biological tissue and the possibilities for medical
applications of EIT are first reviewed. The physical and mathematical basis for EIT
Is then examined with particular regard for the assumptions required. Following a
review of published work on image reconstruction methods, a set of specifications
thought useful to advance the utility of EIT as a clinical imaging modality is
proposed, together with an approach to image reconstruction designed to fulfil
these specifications. A series of computer simulations of the image reconstruction
problem is then used to investigate the performance of this reconstruction approach
on simple, known, impedance distributions, and to develop the method to the stage
of a complete reconstruction algorithm. The algorithm is then tested on a series of
data sets produced by measurements on a physical phantom, and on a set of

measurements made on a volunteer human subject.




A mathematician, a scientist and an engineer were competing for the
favours of the beautiful daughter of a professor of mathematics. Not approving of
any of them, he stipulated that, while they may see his daughter, the distance that
any of them would be allowed to move towards her at any time must be no greater
than half the distance remaining. When informed of this constraint, the
mathematician left immediately. The scientist, after experimentally performing a

couple of moves left also. The engineer, however, stayed, saying to himself: "Il

get close enough.....".

(A joke told by one of my undergraduate lecturers,

and sometimes a surprisingly productive philosophy.)
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CHAPTER 1
INTRODUCTION TO ELECTRICAL

IMPEDANCE TOMOGRAPHY

1.0 Introduction

The objective of electrical impedance tomography (EIT) is to reconstruct
images which represent the cross-sectional spatial distribution of electrical
impedance within a three-dimensional object from measurements on its surface.
The application of this technique to medical imaging is the main driving force
behind its development, but applications in geophysics (Dines and Lytle, 1981),
archaeology (Barber and Brown, 1983), geophysics and industrial non-destructive
t-esting have also been suggested. Parallels between the relationships which govern
the physics of current flow in volume conductors and those which govern field
behaviour in electrostatics, magnetostatics, fluid diffusion, heat flow, molecular
diffusion and gravitation (Seagar et al, 1987b) suggest that solutions for the

electrical impedance problem could find application in these areas also.
" The introduction of increasingly sophisticated computing into medical

imaging which started in the early 1970’s has resulted in a great increase in the
number of diagnostic imaging techniques commonly available. In the field of
tomographic imaging specifically, the greatest advances have been the development
of X-ray computed tomography (CT) (Hounsfield, 1973) and nuclear magnetic
resonance imaging (Lauterbur, 1973). In their fully developed form these imaging
modalities are capable of delivering images with high spatial resolution and
sensitivity to their imaged parameters, but this does not imply that no other
imaging modalities are desirable. Single photon emission computed tomography, for
example, is capable of only modest spatial resolution, but is still a valuable tool
because of the nature of the imaged parameter (spatial distribution of a
radiopharmaceutical) which can be linked to the physiological function of a number
of organs in the body. Thus poor quality images of parameters which are sensitive

to local pathology can be complementary to high quality images which are able to
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demonstrate details of the anatomy. Due to the physics of current flow in volume
conductors, EIT images would be expected to be difficult to reconstruct and of low

spatial resolution, but because of the wide range of tissue impedances found within
the body and the link between the dielectric properties of tissue and its structure
at the cellular and even molecular level, EIT could still emerge as a valuable
complementary imaging modality.

In this work, the basis of EIT will be examined with particular regard to the
assumptions required, and published image reconstruction methods reviewed. A set
of specifications thought useful to advance the utility of EIT as a clinical imaging
modality will be proposed together with an approach to image reconstruction
designed to fulfil these specifications, whilst remaining practicable in terms of
computational effort. Computer simulations will be used to investigate this
reconstruction approach and develop it to the stage of a complete reconstruction

algorithm which will then be tested on physical phantom and in vivo data.

1.1 Electrical properties of biological tissue

To a first approximation, biological tissue can be said to comprise a densely
packed distribution of cells surrounded by inter-cellular electrolyte and containing
an intra-cellular electrolyte. Cell membranes are composed of a lipid bilayer with a
thickness around 6 nm into which protein molecules are incorporated (Pethig,
1984) and tend to act in a capacitive manner. This leads to a variation in tissue
bulk impedance with frequency as well as structure. At low frequencies, current
cannot flow through the cellular membranes and the impedance of the tissue will
depend largely on the proportions and distribution of the cells and on the size of the
conductive pathways between them. At higher frequencies, a proportion of the
current will flow through the cells so that the measured impedance will depend on
the conductivities of both the inter- and intra-cellular electrolytes. This results in a
general reduction in the bulk impedance of biological tissues with increasing
frequency.

The magnitude of the reactive (capacitive) component of the impedance is

governed by the relative permittivity (or dielectric constant), €, of the tissue at the
frequency being considered. Tissue relative permittivity decreases with frequency

in three stages (figure 1.1), labelled a, # and y dispersions (Schwan, 1957). The a
dispersion (approximately 10Hz to 10kHz) is caused by electric field induced
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Figure 1.1

- The variation of the relative permittivity

- "with frequency for a typical biological

tissue (after Schwan, 1957).
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diffusions of ions and other charged species, the g dispersion (100 kHz to 10 MHz)
Is caused by the membrane capacitance progressively short-circuiting the
membrane resistance, and the y dispersion (1 to 100 GHz) is caused by the
relaxation of the dipolar water molecules in the intra-cellular fluid. At the
frequencies commonly employed for EIT, the conduction current is generally much
greater than the displacement current, but the link between the permittivity of
tissue and its physiological and physical properties has led to developments in

multi-frequency and phase-sensitive EIT.

A further structural effect encountered particularly with skeletal muscle and
to alesser extent cardiac muscle is anisotropic resistivity. This is due to the cellular
structure of the tissues consisting of long parallel fibres in one direction. Changes
In bulk tissue resistivity with temperature of the order of 2% per °C (Conway,
1987) also contribute to the difficulties in obtaining reliable data on the electrical
properties of biological tissue. Table 1.1 (reproduced from Barber and Brown, 1984)
shows the result of a survey of published resistivity values for mammalian tissues.
Due to the various complicating factors outlined above, the values would be

expected to include significant errors, but the data does show that the range of

tissues of interest are clearly separated on a scale of resistivity. This implies that

good tissue contrast should be possible in EIT imaging.
Changes in the conductive and dielectric properties of various biological

tissues with physi’ological changes have been reported by a number of authors.

Changes in the resistivity of canine lung tissue during respiration were

measured by Witsoe and Kinnen (1967). They found the changes to be relatively

large and linearly related to lung air volume.

Changes in resistivity between moving and stationary blood have been
reported (Frewer, 1972), although the effect is not significant above very low flow
rates making the use of EIT unlikely for blood flow measurements using this effect.
The resistivity of blood also depends on its composition in terms of haematocrit
content (Hill and Thompson, 1975).

In the brain, changes in the bulk impedance of the cerebral cortex have been
correlated with the onset of brain oedema (Fujita et al, 1972). This is thought to
be caused by fluid accumulation in the extra-cellular space of the white matter.
Since it is known that small impedance changes result from neuronal discharges in
the brain, the idea of mapping areas of neural activity with EIT is very attractive
although the changes are probably too small to detect with present technology




Resistivity (Qm)

Cerebro-spinal fluid 0.65

Blood 1.5

Liver 3.5

Skeletal muscle 1.25 (longitudinal)
18.0 (transverse)

Cardiac muscle 1.6 (longitudinal)

4.3 (transverse)

Neural tissue 5.8

Grey matter 2.8

White matter 6.8

Lung r 7.2 (expiration)
23.6 (inspiration)

Fat | 27.2

Bone | 166.0

Table 1.1

A survey of published resistivity values
for mammalian tissue, reproduced from
Barber (1989).



(Holder and Gardner-Medwin, 1988).

Changes in the low-frequency dielectric properties of a range of tissues with
time following death have been observed (Surowiec et al, 1985) and an application
of this effect to assess the degree of myocardial ischemia to the arrested and
bypassed heart during surgery has been suggested (Gersing et al, 1983).

The impedance of breast tissue has been shown to be changed by the

presence of a tumour (Fricke and Morse, 1926; Singh et al, 1979). As the highly
vascularised tissue surrounding a breast tumour will have a low resistivity with
respect to the avascular tissue of the tumour, good contrast in the spatial

distribution of electrical impedance in a true plane through the tumour might be

expected.

1.2 Electrical safety considerations

As well as the passive electrical properties of biological tissue which form
the parameter to be imaged in EIT, it is also necessary to consider the possible
hazard posed by the technique in terms of the stimulation of irritable tissues. The
threshold of sensation for low frequency currents applied via skin surface
electrodes is known to increase with frequency due to the relationship between the
current density required for stimulation and the duration of the stimulus (Geddes
and Baker, 1975). To avoid stimulation, frequencies in excess of 20 kHz are
normally employed. In this frequency range, the current density required to cause
neural stimulation is such that heating of the tissue is the dominant biological
effect. The British Standard relating to the safety of medical electrical equipment,
BS5724 (British Standards Institute, 1989) allows a patient auxiliary current (in
milliamperes) of 0.1 times the frequency in kHz up to a limit of 10 mA. The same
limit appears in a number of other national and international standards (Ghahary,
1990).

This current limitation is important not only from the safety point of view,
but also because it governs the signal-to-noise ratio of the data obtained for any
given measurement strategy and therefore sets a fundamental limit for the imaging

performance of EIT applied to medical imaging.




1.3 The four-electrode impedance measurement method

To produce data related to the impedance distribution within the body it is
necessary to inject currents via skin surface electrodes or induce currents by

suitable magnetic fields. Although the latter approach has been reported (Purvis et
al, 1990; Scaife et al, 1990; Genger et al, 1992), the much more common
technique of injecting a constant amplitude alternating current between pairs of

skin surface ECG-type electrodes will be used in this work.

The skin surface electrode forms a transducer between ionic current flow
In tissue and electronic flow in the measuring system. Various equivalent circuits
for the electrode-skin interface have been suggested (Rabbat, 1990), all of which
exhibit a fall of impedance with frequency. Above about 100 kHz the effects of
stray capacitances in the measurement equipment will tend to become significant,
so measurements in the 20 - 50 kHz region are most commonly employed. Even
at these frequencies, however, the magnitude of the electrode impedance is likely
to be similar to that of the impedance to be measured. It is therefore necessary to
use a four-electrode approach to minimise the effect of electrode impedances.

The four-electrode method applied to EIT is illustrated in figure 1.2 which
shows a body section around which a number of skin surface electrodes have been
attached. To make an impedance measurement, a constant current is injected via
one pair of electrodes while a voltage measurement is made at another pair using
a high impedance voltmeter. For an ideal constant current generator and infinitely
high impedance voltmeter, the measurement will be independent of the electrode
contact impedances. The four-electrode method derives from the non-imaging
technique of electrical impedance plethysmography in which the constant current
is applied along the length of a segment of body extremity by an outer pair of band
electrodes and the voltage measurement is made between an inner pair (Geddes
and Baker, 1975).

1.4 Data collection strategies
Clearly, in EIT with typically 16 electrodes around the body segment to be

imaged, there are a large number of current drive and voltage sense configurations
possible. To exploit the advantage of relative insensitivity to electrode contact

impedance offered by the four-electrode method, it is necessary to restrict voltage
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Figure 1.2

Four-electrode impedance
measurement method
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1.5 Electrode placement

The present generation of EIT systems are designed to use either a ring of

16 ECG electrodes around the plane to be imaged, or a flexible electrode belt on
which the electrodes are etched. In either case, data at one plane only are available

and the positions in space of the electrodes are not directly measured. (A method
for calculating the positions of electrodes from the measured data set has,

however, been proposed by Kiber et al (1990)).
The reconstruction algorithm investigated in this work will operate on data

from the present generation of EIT systems (section 5.4) but is principally intended
for 3-dimensional operation on multiple plane data sets with accurately known
electrode positions. Provided that it is not intended to inject current between
electrode planes, the data collection strategies discussed above will still apply.
Such an approach also avoids the need to collect all planes of data simultaneously.
To produce multiple plane data sets in clinical practice with accurate and rapid
electrode placement would require an electrode carrier as envisaged by Smith
(1985). Anelectrode carrier of this type has already been developed for EIT imaging
of the breast (Jossinet, 1988) although this design does not include simultaneous

measurement of electrode position or make specific provision for the collection of

multiple plane data sets.

1.6 Data sets for electrical impedance tomography

-~ Two major approaches to EIT can be defined; static imaging, in which the
desured result is a distribution of absolute values of impedance, and dynamic
imaging, in which a distribution of changes in impedance is to be imaged. Static
imaging requires a data set of absolute measurement values and necessarily
requires an iterative approach to image reconstruction. Dynamic imaging can,
however, be carried out using as a data set the normalised change between two
sets of impedance measurements, and approximate linear reconstruction methods
can be employed provided the changes to be imaged are small. Other advantages
to the dynamic approach are insensitivity to errors caused by electrode contact
impedance and electrode placement inaccuracy (Barber and Brown, 1988). The
linear reconstruction method explored in this work is intended for use in dynamic
EIT.

Pairs of data sets for dynamic imaging can be produced in a number of
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ways. Where a temporal change in impedance, such as during respiration or within

the cardiac cycle is to be imaged, data sets separated in time are required. One of
the strengths of EIT is its temporal resolution, as the time taken to acquire a set of
impedance measurements can be quite short. Data acquisition times as short as 39
ms have been reported (Sinton et al 1992) making possible runs of images at video
frame rates. v s

Data sets for dynamic imaging can also be produced by exploiting the ;

frequency dependent properties of tissue both in terms of its bulk impedance and

[
J e N T I T . - JEE . L. - =

its complex component. Dual frequency images of the forearm have been produced
using frequencies of 40.96 and 81.92 kHz (Zhang and Griffiths, 1987) and
simulations have demonstrated the feasibility of producing separate images of

resistivity and relative permittivity if the complex components of the data sets at

R R g L o

two frequencies are available (Griffiths and Ahmed, 1987).
-A further option for dynamic imaging is to use as a reference data set a set

of real or computed measurements from an object with the same boundary shape
as the object being imaged, but with homogeneous resistivity. The dynamic imaging
approach can then be used to produce a quasi-static image of changes from a
uniform reference. With appropriate calibration, it would be expected that this
approach could produce a similar result to true staticimaging, although the changes
being- imaged are unlikely to be small enough to justify the use of linear

reconstruction techniques except as an approximation.

1.7 Data acquisition systems for electrical impedance

tomography
~ Adetailed review of the desngn and construction of data acquisition systems
for EIT WI|| not be attempted as this is a major subject in its own right, and not
dlrectly relevant to the investigation of the reconstruction method presented in this
work. Reviews of the general design requirements for EIT systems have been given
by Brown and Seagar (1987), and Murphy and Rolfe (1988).

1.8 A review of clinical applications

~Although the technique of electrical impedance tomography is still under
development, a number of preliminary trials of prospective clinical applications have

been carried out using prototype EIT systems. Further possible applications of EIT
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based on known electrical properties of tissue have been suggested. All of the
applications listed employ the dynamic imaging approach and all are based on an

assumption of 2-dimensional geometry.

In EIT of the chest, two main time varying impedance changes can be
detected, related to respiration and to the cardiac cycle. Dynamic imaging of the
lungs has shown clear demarcation between the left and right lungs and a linear
relationship between the reconstructed pixel value in the lung and the volume of
air inspired (Harris et al, 1987). Emphysema of the lung has also been shown to be
detectable. It is suggested that EIT should be sensitive to the volume of fluid in the
lungs and therefore be of use in following the course of treatment in established

cases of pulmonary oedema, and in monitoring any change in oedema following

cardiac failure (Brown et al, 1985).
Because the impedance changes related to the cardiac cycle are of low

amplitude, it is necessary to carry out signal averaging synchronised to the
electrocardiogram (Eyliboglu and Brown, 1988; Silva et al 1990). The signals
related to the cardiac cycle can also be separated from the respiratory signals by
(temporal) frequency filtering, which reduces the amount of signal averaging
necessary (Zadehkoochak et al, 1992). This technique has also been used
successfully at high frame rates (Smith et al, 1990). A comparison between EIT

and radioisotope lung perfusion scans showed detectable clinical abnormalities in

the EIT images, but only with the foreknowledge provided by the radioisotope
images (McArdle et al, 1988).

Using an array of electrodes encircling the abdomen, the high impedance
contrast between water and physiological tissue has been exploited to perform
studies of gastric clearance. A reference set of data before ingestion of the test
drink or meal, and a sequence of data sets following ingestion are used to generate
a sequence of dynamic images. By plotting the change in mean pixel value over the
stomach with time, a gastric emptying profile can be produced. Good correlation
between the EIT method and the equivalent examination carried out using a
radioisotope technique has been demonstrated (Mangnall et al 1987, 1988),
although the acidity of the stomach contents are known to affect the results (Evans
and Wright, 1990). Measurement of gastric emptying using EIT has been applied
to the diagnosis of infantile hypertrophic pyloric stenosis (Lamont et al, 1988).
Changes in impedance due to acid and stomach volume changes have also been

imaged and associated with changes in activity of the migrating motor complex
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(Wright and Evans, 1990). Further up the digestive tract, measurements of
pharyngeal transit time have been made using an array of electrodes around the

neck to image fluid being swallowed (Liu et al, 1992).

The use of EIT in the head is complicated by the presence of the skull which
tends to distort the images and reduce the signal amplitude (Brown, 1990). By
using ECG gated EIT data acquisition over a large number of cardiac cycles,

however, images appearing to show bilateral changes in impedance associated with
brain perfusion have been produced (Barber, 1990). Consideration of the amplitude
of impedance changes expected to arise during neuronal discharge in the brain

suggests that the changes are probably too small to be detected with the present
generation of EIT systems, although the changes associated with the pathological
condition of spreading depression are larger and possibly suitable for EIT imaging
(Holder and Gardner-Medwin, 1988). The monitoring of neonates to detect
intraventricular haemorrhage using EIT has been investigated, and dynamic images

have been produced of the displacement of cerebro-spinal fluid in the ventricle by

blood (Murphy et al 1987).
Dynamic EIT has been used to image fluid shifts in women with pelvic

venous congestion following a change from the supine to the erect position. The
results appear to show a different distribution between confirmed cases and a
control group (Thomas et al, 1991). Fluid shifts during short periods of
weightlessness have been imaged using a portable EIT system. It is thought that
this technique could have applications in monitoring longer term fluid shifts in
orbiting astronauts (Lindley et al, 1992).

The impedance contrast between blood and physiological saline has been
used to measure blood flow in vitro and in vivo in the peripheral vascular system
using a dilution technique. The saline is injected as a tracer and the area under the
impedance change with time curve related to blood flow (Brown et al, 1992).

It has been suggested that the relationship between impedance change In
tissue and temperature could be exploited to provide a method for non-invasive
temperature mapping in hyperthermia treatment by EIT (Conway, 1987; Persson

et al, 1990; Conway et al, 1992). This application has produced a number of in

vitro and in vivo results, but has not been reported as being used in the clinical

environment.
EIT has been used to monitor the process of bone healing following fractures

of the upper arm. The geometry of this problem is conducive to EIT using a 2-
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dimensional approximation as the cross-section of the arm does not change rapidly
with axial distance from the electrode plane. The presence of a contralateral limb

for comparison is also useful. Quasi-static images using a cylindrical saline tank to
provide a reference data set have been produced (Kulkarni et al, 1990). The

resulting images, although of poor quality, do appear to show changes associated
with the process of bone healing and are reported to show the difference between
normal bone, a united fracture and a non-union (Ritchie and Kulkarni, 1990).

EIT imaging of the breast is an attractive proposition because of the known
changes in the dielectric properties of breast tissue with pathology, and because
of the accessibility for electrode placement and simple geometry of the breast. Non-
tomographic electrical imaging of the breast has been reported (Sollish et al, 1979;
Man et al, 1979; Sollish et al, 1981) and systems for electrode placement and data
acquisition directed at breast imaging have been described (Jossinet et al, 1981;
Skidmore et al, 1987; Jossinet, 1988) but no in vivo EIT images have been
presented.

Significant changes in the dielectric properties of physiological tissue
following cell deﬂath are known to occur. A possible imaging application using this
effect mi*ght be to f;allow the course of radiotherapy (Brown, 1990) but this has not

yet been attempted. A cross-sectional image related to the delivered radiotherapy
dose distribution would be very valuable as a means to confirm that a prescribed

dose distribution had been achieved.

1.9 Summary of chapter 1

Tﬁe babkg;ound to electrical impedance tomography applied to medical
imaging has been given in terms of the physical parameter to be imaged and its
dependence on tiésue type, physiology and in some cases pathology. The overall
strategy for data collection using the four-electrode technique has been described,
with particular emphasis on dynamic imaging, i.e imaging changes in impedance.
The possibility of using multiple plane 3-dimensional data sets for the
reconstruction of 3-dimensional impedance distributions has been discussed, and

a range of possible clinical applications of EIT reviewed.
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CHAPTER 2
THE RECONSTRUCTION OF ELECTRICAL

IMPEDANCE TOMOGRAMS

2.0 Introduction

In this chapter some of the fundamental relationships which form the basis
for electrical impedance tomography will be examined. This will lead to a
specification of a reconstruction algorithm together with a list of assumptions

required for its operation. A review of published reconstruction methods will be

undertaken in order to clarify the requirement for, and specification of the proposed

reconstruction algorithm.

2.1 Fundamental relationships relating to current flow In a

volume conductor

The influence of the resistivity distribution within a volume conductor on the

current flow within the conductor can be expressed by Poissons’ Equation,

V.(OV@) - f (2.1)

where 0, & and £ are the conductivity, potential and impressed current
source distributions within the bounded volume conductor, and V is the gradient
operator. Where the volume conductor contains no current sources, this equation

reduces to,

V(oV®) = 0 (2.2)

For the special case of a homogeneous conductivity distribution, o is a

constant and the relationship further reduces to Laplace’s Equation,

v2¢ -0 (2.3)
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Where the conductivity distribution is non-uniform but isotropic, equation

2.2 reduces to

Vi - - (l)Vo.th (2.4)
o

which may be expressed in the simpler form
V20 - VR.V® (2.9)

by defining a logarithmic resistivity, R = -In o (Barber and Brown, 1984).

Certain simplifying assumptions are required to justify the use of the above
relationships in the context of electrical impedance tomography applied to medical
imaging. These initial assumptions are:

Assumption 1) Quasi-static conditions hold. As described in section 1.2,
alternating currents are used in EIT, but the quasi-static assumption can be justified
provided that the wavelength of the potential distribution within the bounded
volume is large compared with the maximum dimension of the volume so that the
current everywhere in the volume varies in synchrony. This is the case for EIT
where the drive current frequency is normally in the range 20 - 50 kHz.

~ Assumption 2) Current flow in the conductivity distribution, o, is due to pure

conduction and has no displacement component. In general, displacement currents

in tissue are normally much smaller than conduction currents (e.g Witsoe and
Kinnen, 1967). Larger proportions of displacement current have been reported for
skeletal muscle in the transverse direction (Zheng et al, 1984) although current
flow in the longitudinal direction (along the muscle fibres) was found to be
predominantly resistive.

Assumption 3) There are no current sources within the bounded volume.
This statement can be said to be true in practice since, although the human body
contains various electrical sources, these do not operate in the frequency range
used by EIT and would be filtered out by a practical EIT measurement system.

Assumption 4) The conductivity distribution, o, isisotropic. The conductivity
of skeletal muscle is, in fact, known to be highly anisotropic (Rush et al, 1963) due
to its fibrous structure, but due to the added complications involved in allowing for
anisotropy, the assumption of isotropy is made by most workers (e.g Seagar et al,
1987b; Barber, 1989a).

Equation 2.5 represents a non-linear relationship between ¢ and R because
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of the occurrence of V& on the RHS of the equation. This implies that the solution
to the inverse problem of calculating the distribution of log resistivity, R, from the
voltage distribution measurable at the boundary will, in general be an iterative
process (Murai and Kagawa, 1985). It is possible, however, to formulate the
problem in a linear fashion provided a further assumption is made:

Assumption 5) The imaged parameter is related to the spatial distribution of
small changes in conductivity. As discussed in section 1.6, these changes may be
temporal or related to the frequency of the applied current and this approach would
be expected to deliver only conductivity changes rather than absolute values of
conductivity i.e dynamic rather than static images. The assumption of small
changes is equivalent to the assumption that the current flow pattern in the

conductivity distribution is not significantly disturbed after the distribution of

changes is applied.
Following the approach of Barber and Seagar (1987) and considering the

case of a reference distribution of R, R,, and a perturbed distribution, R,. + Rp,

if @ _is the solution to the equation
V20, = VR.VO, (2.6)
ahd ¢ = ¢ + & S thersolution to the equation
V2@ - (VR,+VR).VO (2.7)
then{
V2®, + V2@, - VR.V®  + VR.V® + VR,.V®, + VR.V®, (2.8)

If the perturbation, R,., is small, then the terms in Vép can be eliminated

pf
as being small compared with the terms in V&, to give

V2@, + V2@, - (VR, + VR).V®, (2.9)

Substituting for VR,.. V&_from equation 2.6,

24 o (2.10)
Véo , = VR,.VO,

o oentrbe ATl e W e E LY R ST S TR R TR W L TN TR
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This equation shows that there is a linear relationship between small

perturbations of log resistivity, Ry and the resulting perturbations of the potential

distribution within the volume conductor, . including the potential distribution
along the boundary. For sets of measurements of the boundary potential for the log
resistance distribution, R,, and for the perturbed distribution, R. + R, there will

therefore be a set of linear equations relating the changes in log resistivity, Ry, tO
changes in boundary potential. The reconstruction of images of change in log

resistivity, R,,, requires the inversion of this set of equations.

D

2.2 Sensitivity coefficients

A set of linear equations defining the ‘forward problem’ of calculating
voltage changes at the boundary of an object from knowledge of its internal
conductivity distribution can be established using the sensitivity theorem developed
from electrocardiography lead theory by Geselowitz (1971) and independently
proved by Lehr (1972).

For the situation illustrated in figure 2.1a, which shows a volume conductor

of uniform conductivity, g, carrying a constant current I, impressed via the
electrode pair, m, which gives rise to a voltage V,,, measured at electrode pair, n

Conversely (figure 2.1b), a current I,, impressed via electrode pair, n, results in

a voltage V,, across the pair, m. The mutual impedance, Z,, between the

electrode pairs m and n is, by definition,

7 _ Vm.u _ Vn.m (2_11)
e Im In

the second equality being a consequence of the reciprocity theorem. The
sensitivity theorem states that when the conductivity distribution changes from o
to (0+60), the mutual impedance change, 8Z,,,,. for the pairs of current drive and

voltage sense electrodes m and n can be given as

oV‘DI (o) Vo (;Hbo) (2.12)

m n

8z, . - -f.s
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Figure 2.1

A volume conductor of uniform conductivity, o,

(a) carrying a current, I, impressed by electrode

pair, m, and (b) I,impressed by electrode pair,
n. Refer to equation 2.11.
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In this equation & (o) is the potential distribution over the bounded volume
when the current I, is applied via the electrode pair, m, and ¢ indicates the
conductivity distribution when &,(0) is established for I,. ®,(0+d0o) is the

potential distribution when the current I, is applied via the electrode pair, n, and
(o+ do) indicates the conductivity distribution when &, (0 +d0) is established for
I, . The integration is carried out over the whole of the bounded volume, U.

Using a truncated Taylor expansion, the term V& (o0 +é60) can be expanded

with respect to do (Murai and Kagawa, 1985) to give

V@ (0+30) = VO (o) + V(botb’,,(o)) + seesres (2.13)

Equation 2.12 can then be expressed as

8Zpp = - 3o "'(°).W;(°) dU + 0((30)3) (2.14)
/-

|

m n

where 0((d0)?) indicates the higher order terms in do. If éo is small enough
(assumption 5), these higher order terms can be neglected (Nakayama et al, 1981,
Murai and Kagawa, 1985). Breckon and Pidcock (1987) show that a similar relation

holds for the mutual impedance, Z,,,, for the case of the unperturbed conductivity

distribution, o,

e I I

n

- f" Vo m(o).thn(o) du (2.15)
U

If the conductivity and conductivity change distributions, ¢ and do, are
divided into volume elements within which the conductivity remains constant,
g(x,y,z) and do(x,y,z), then equations 2.14 and 2.15 can be rewritten in terms of

a summation over all the volume elements making up the bounded volume

du (2.16)

I I

n

12, - L5 bolera)

Vo (o) V(o)
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ve (o)
I

du (2.17)

Zun = LY Y olxyd)[ WI'"(O)-
Xy u m

The integration is now over the volume of the element, u. It is convenient

to define a sensitivity coefficient, S, ..., such that

Vo (o) V& (o)
| s (2.18)

In the case of the four-electrode technique applied to EIT (section 1.2), a
constant current is applied for all current drive orientations, so I, = I, = I. It
is still useful, however, to include this current term in the definition of the
sensitivity coefficient to make it compatible with work in electro-cardiography
(where the quantity V&(o)/I is called the ‘lead field’) and to make the sensitivity

coefficients independent of the current which will vary between measurement
systems. Interpreted physically, the sensitivity coefficient, S, ... relates the
magnitude of voltage change measured at a voltage sense electrode pair, n, to a
small perturbation in conductivity occurring at the point (x,y,z) when a constant
current I is being injected by the current drive electrode pair, m.

Dividing equations 2.16 and 2.17, and substituting from 2.18, an expression

for the fractional change in mutual impedance can be given as

E 2 E Sm.n.x.y.zb o(x,y,2)

(_Q.Z) ey o (2.19)

YY) Spnry20(xn2)

This can be further simplified provided that a further assumption is made:

Assumption 6) The initial, unperturbed conductivity distribution is one of
constant conductivity. The conductivity distribution o(x,y,z) can then be replaced
with a constant, o. This assumption will be violated in most medical imaging
applications, but there is evidence that this does not prevent the formation of
images in practice (Barber and Brown, 1986; Barber, 1990).

Noting that, for a constant current, from 2.11,

(.é_é) i} (.él’.) ] (2.20)
Z m,n V m,n
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and that, from the definitions of conductivity and resistivity,

So __38 (2.21)
o p

and, provided that §p< <p (assumption 5),

Sp . In(1 +§-9-) - In(p+5p)-In(p) = R (2.22)
N P

where R is log resistivity as defined in section 2.1, equation 2.19 can be re-

written as

Y XY SpnrySR(EY2)

(ﬂ) -y oz (2.23)

2323 Smnsye
Xy z

This exprﬁesfsion represents in an explicit form a set of equations relating
small perturbations of log resistivity to changes (in this case normalised) in the

boundary potential, the general form of which was given as equation 2.10.

2.3 A short review of EIT image reconstruction methods

Following the publication of results showing low resolution projectionimages
of the human chest produced using a 10 x 10 array of current sensing electrodes

(Henderson and Webster, 1978) the potential advantages of producing cross-
sectional images of electrical impedance were discussed by Price (1978a, b). Price
predicted that the use of a two-electrode impedance measurement technique with
extra guard electrodes would produce a "beam of current” which could be swept
across the section to be imaged, to give measurements which could then be
reconstructed using techniques based closely upon those of X-ray CT. It soon
emerged, however, that the question of image reconstruction would not be so
straightforward when Bates et al (1980) produced an analysis showing that it is,
in general, impossible to uniquely reconstruct conductivity distributions using
methods designed to produce straight and parallel current streamlines.

. A more feasible approach was used by Kim et al (1983) and Murai and
Kagawa (1985}, who defined the forward problem of relating a conductivity

distribution to resulting transfer impedance by using the sensitivity theorem of
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Geselowitz (1971), previously used in electrocardiography. Using this approach, the
boundary potential distribution can be related to the conductivity distribution by a

forward transformation matrix calculated using the sensitivity theorem. In general,
the inverse problem of static EIT image reconstruction can then be approached by
inverting the forward transformation matrix. The matrix inversion problem is,
however, non-linear and ill-conditioned (i.e small changes in boundary potential can
be associated with very large changes in the conductivity distribution) making the
inversion quite difficult. The non-linearity of the problem requires that an iterative
solution Is used, and its ill-conditioned nature requires additional constraints to be
applied to ensure convergence in the presence of noise.

The strategy for achieving this kind of iterative solution is to assume an
initial conductivity distribution, then using a numerical solution to Poisson’s
equation to calculate the current or voltage distribution at the surface of the object

expected to result from the application of the known current or voltage distribution
produced by the measurement apparatus. The predicted surface distribution is then
compared with the actual measurements, and the differences used to adjust the
conductivity values in the model so that they move towards the true values. The
process is repeated until the predicted values of current or voltage are sufficiently
close to their measured values. Iterative approaches mainly differ in the way the
conductivity values are adjusted at each iteration. A comparison of several iterative
approaches and suggested improvements have been made by Yorkey et al (1986}
and Yorkey and Webster (1987).

Although not restrained to two dimensions by definition, most work on
schemes for iterative inversion of the forward transformation matrix have been
carried out assuming a simplification to two dimensions. The three-dimensional
problem has been specifically addressed by Wexler (1988) and Liu et al (1988).

Iterative, non-linear EIT reconstruction methods, although justified by the
nature of the problem, suffer from some disadvantages in practice. Iterative
methods require the forward problem of estimating the boundary voltages expected
for a given conductivity distribution to be accurate to 1% or 2% (Barber, 1989a)
if the method is to converge. This is difficult to achieve unless the knowledge of
the surface shape of the object and the electrode positions are known very
accurately. The amount of data storage and overall calculation time required for
iterative  reconstruction schemes can also be quite large (Woo, 1990). Where

generalised, three-dimensional boundary shapes such as the human body are being
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considered it is not clear how the conductivity distribution used to produce the
forward problem transformation matrix will be chosen to maximise the spatial
information available in the measured data, as it is known that the spatial resolution
in the final image will vary with position and boundary shape. Although some
results from physical phantoms have been produced using iterative reconstruction
methods (Kim and Woo, 1987; Sakamoto et al, 1987; Wexler, 1988) and crude in
vivo static images from a one-step version of an iterative approach (Isaacson et al,
1992), no clinically useful images have so far been presented.

An alternative type of iterative EIT image reconstruction approach known as

the adaptive current method has been suggested by Gisser et al (1987, 1988) and

Mcleod et al (1990). Using this approach, the measurement instrumentation is
itself part of the iterative process as it adjusts the configuration of the current
pattern it applies until it satisfies the requirement that it is the "best" current
distribution to recoverinformation about the conductivity distribution being imaged.

To simplify the EIT reconstruction problem, Nakayama et al (1981) and
Sakamoto and Kanai (1983) considered the problem of imaging small changes in
a conductivity distribution (dynamic images). For such small changes, the current
distribution within the object can be considered to be unchanged by by the
conductivity change, and the Geselowitz sensitivity theorem can be used to

formulate a linear relationship between the conductivity change and the change in

potential distribution at the boundary of the object. Using this approximation, non-

iterative methods can be used to perform the image reconstruction task.

A number of workers have addressed the linearised EIT image reconstruction
problem via analogy with the method of filtered backprojection used successfully
in X-ray CT (e.g Barrett and Swindell, 1981). Unlike X-ray CT, where the ray paths
of the X-ray beam are unchanged by the object shape and distribution of linear
attenuation coefficients (see figure 2.4), the current distributions used to make
measurements in EIT are strongly dependent on the object shape and the unknown
conductivity distribution. By making appropriate assumptions, however,
approximate solutions can be obtained using this approach which will be followed
in the reconstruction method described in this work.

The most successful EIT reconstruction method to date has been that of
Barber et al (1983) which employs the backprojection of normalised changes in
boundary potential gradient along the equipotential lines of the voltage distributions

produced by a range of orientations of applied currents (figure 2.2). The geometry



Figure 2.2

Backprojection between equi-
potential lines for 2-D circular
region.
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is fixed as a two-dimensional circular region with equally spaced electrodes.
Adjacent electrode current drive is used which is approximated to a dipole in the
reconstruction, so that the equipotentials can be taken as arcs of circles (Barber
and Brown, 1986). Geometrically calculated weighting factors are used in the
backprojection, and spatial frequency filtering in a geometrically transformed space
is used to improve the appearance of the images (Barber and Seagar, 1987). A
recent development of this method has used backprojection weights calculated
from a consideration of the approximate matrix inversion properties of this type of
backprojection (Barber and Brown, 1990). The equipotential backprojection method
has been shown to be very robust, and capable of producing phantom and in vivo
dynamic images from both two and three dimensional objects with non-circular (or
non-cylindrical) boundary shapes. The method does, however, suffer from some
restrictive assumptions. Due to the fixed circular geometry, reconstructed images
are often severely distorted and it is difficult to see how the method could be
extended to Incorporate three-;dimensional data sets, true electrode positions and
alternativé drive current strategies.

Tarassenko and Rolfe (1984) used sensitivity coefficients calculated for a
two-dimensional circular region by perturbing each element of the region in turn and
calculating the resulting boundary potentials using a finite elements method. Images
were reconstructed by backprojecting the ratios of the voltage gradients measured
before and after a change in the conductivity distribution (dynamic image) weighted
by the calculated sensitivity coefficients. The speed of the method was improved
by using only the most significant sensitivity coefficients for each
measurement/element combination. Images of a physical phantom and in vivo

images have been presented (Tarassenko et al, 1985; Gadd et al, 1992).
The reconstruction algorithm proposed by Zadehkoochak et al (1990) is a

single step method derived from the iterative method of Yorkey et al (1986), and
related to backprojection in X-ray CT. Posed as an approximate matrix inversion
method, the inverse matrix is formed using as an approximation a weighted
transpose of the sensitivity coefficient matrix. Phantom and in vivo images have
been sucessfully reconstructed t;éing this method.

The reconstruction algorithm to be described in this work also uses a
sensitivity coefficient weighted backprojection approach with the inverse matrix
approximated by a weighted transpose of the sensitivity coefficient matrix. Early

phantom and in vivo results using a two-dimensional model in conjunction with an
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empirical spatial frequency filter were reported in Kotre (1989a,b).

Figure 2.3 shows a diagrammatic interpretation of the relationships between
the various EIT image reconstruction methods that have been reported, together
with a representation of the computational effort required by the various methods
and their imaging specification. The time scale is approximate by publication date.
The algorithm developed in this work is intended to fill the gap in specification

between the fast, two-dimensional circular bounded, dynamic imaging approach
offered by the successful method of Barber and Brown (1986), and the more
sophisticated, but as yet unproven, two- and three-dimensional iterative methods.
The proposed algorithm introduces a three-dimensional approach which is capable
of dealing with body contour boundary shapes, but which does not require the

heavy computational effort of three-dimensional iterative methods.

2.4 A specification for an electrical impedance tomography

reconstruction algorithm

As can be seen from the range of EIT reconstruction methods reviewed
above, the implementation of a reconstruction algorithm requires a compromise
between the specification of the algorithm (and hence the number of assumptions
permissable) and the computational effort required to execute it. The reconstruction
algorithm developed in this work is based upon a set of requirements which are
intended to advance the utility of EIT as a clinical imaging modality, whilst
remaining practicable in terms of computational effort. These requirements are as

follows:
1) The algorithm should produce dynamic images. The analysis of section

2.1 would suggest that the appropriate parameter to be imaged is change in log
resistivity.

2) The algorithm should be non-iterative. Provided that the application of the
algorithm is restricted to the imaging of small changes in log restivity, an
approximate linear reconstruction method should be appropriate.

3) The algorithm should be defined in three dimensions. The EIT
reconstruction problem isintrinsically three-dimensional. Where data is derived from
a single plane of electrodes, the algorithm should be capable of approximating the
effects of out-of-plane current flow. When multiple plane data sets are available,

the method should be capable of utilising this data to produce three-dimensional
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reconstructions.

4) The algorithm should be capable of employing boundary conditions
corresponding to measured body cross-sections. The positions in space of the
electrodes could, in principle, be measured. This information could then be used to
set the boundary conditions for the reconstruction algorithm provided it is
sufficiently flexible in this respect. To meet this requirement, the algorithm should
not make use of any parameters defined for an unrealistic fixed geometry (e.g radial

distance from the centre of a circular image), but should relate to measured

electrode positions and an assumed boundary simply connecting the known points.

5) The algorithm should be capable of employing a range of current drive
configurations. Whilst a large proportion of previously published work has employed
adjacent electrode current drive, this is not universally recognised as the optimal
approach for all applications (Patel, 1990; Cheney and Isaacson, 1992). In addition,
developments using induced rather than directly injected currents may lead to data
sets containing more independent measurements (Gencer et al, 1992), so an
algorithm capable of being adapted for this situation would be desirable.

6) The algorithm should be capable of operating on an image matrix
containing a larger number of elements than there are independent measurements
in the data set. It is known that the spatial resolution obtainable with EIT is variable
with position in the image. If spatial frequency information present in the measured
data set is not to be lost when using variable boundary conditions, it will be

necessary to operate with a reconstruction matrix capable of representing the

maximum spatial frequency expected in the image at all points.

2.5 A sensitivity coefficient weighted backprojection approach

to EIT image reconstruction

It is possible to use the concept of sensitivity coefficients, which relate the
spatial distribution of changes in the imaged parameter to changes in the measured
data set, to draw an analogy between the technique of filtered backprojection used
successfully in X-ray CT (e.g Barrett and Swindell, 1981) and the EIT
reconstruction problem. Figure 2.4 shows the essential features of the two
situations; figure 2.4a for one (parallel beam) ray measurement in CT where one
element has a changed linear attenuation coefficient, and figure 2.4b for one

impedance measurement in EIT where one element has a changed resistivity. The
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Figure 2.4
Comparison of measurement geometry for (a),

computed tomography, where the highlighted pixel
has a different linear attenuation coefficient to the

background (incident x—ray intensity,lo; measured,|)
and (b) EIT, where the pixel has a different resistivity
(measured voltage, V+dV).
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fundamental difference between the two cases is that, while the path of the pencil
X-ray beam is known to be a straight line between source and detector, the current
flow for the impedance measurement is distributed throughout the bounded
volume. Both cases can be described in terms of sensitivity coefficients.

For the CT case, each measurement of In(I,/I) will be related to a set of
sensitivity coefficients which have some constant value along the ray path (since

a change in any of these pixels will affect the measured ray sum by the same
amount) and a value of zero elsewhere. The operation of parallel beam

backprojection can then be thought of as a multiplication of each measurement by
all of the sensitivity coefficients to which it is related. The process is repeated for
each measurement and the result summed into an image array. This operation is
known to produce a blurred image which can be recovered by spatial frequency
filtering because the blur is characterised by a Point Spread Function (PSF) which
is constant with position and has a known form.

For the EIT case, each measurement of (§V/V) will be related to a set of
sensitivity coefficients which can be calculated from knowledge of (or assumptions
about) the current density distribution within the object (equation 2.18), and which
will have a range of values spatially distributed throughout the volume conductor.
If a backprojection operation is defined similarly to the CT case, i.e each
measurement of (6V/V) multiplied by all the sensitivity coefficients to which it
relates, then this operation will result in a weighted summation into a three-
dimensional array. Itis here proposed that this type of backprojection operation can
also be used to produce blurred images in EIT which can then be further processed
to reduce the effect of a now spatially variant PSF. This approach forms the basis
for the reconstruction method to be developed in this work.

The problem of EIT image reconstruction can be simply stated using matrix

notation. If the forward problem of calculating surface voltages from a known

resistivity distribution and current excitation is defined as

FR - V (2.24)
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where R is a vector describing the resistivity distribution, V is a vector
describing the surface voltage distribution, and F is the forward transformation

matrix, then the inverse, image reconstruction, problem can be stated as

FlV =R (2.25)

where F' is the inverse of the matrix F. |f the problem is redefined in terms
of small changes of log resistivity and normalised voltage gradient changes, (6V/V),
then the matrix F can be assembled from the appropriate sensitivity coefficients
using equation 2.23 and the image reconstruction problem is then to find the
inverse of this matrix. The backprojection operation defined above is equivalent, in
its basic form, to using the transpose of the forward transformation matrix F', as
an approximation to F'. There is no reason to assume that this approximation
should work for the general matrix inversion case, and objections have been raised
toits use in the specific case of EIT image reconstruction (Barber, 1989b), although
images have have produced using related methods (Tarassenko and Rolfe, 1984;
zadehkoochak et al, 1990). The reconstruction method to be investigated in this

work will concentrate on the use of the sensitivity coefficients in a weighted

backprojection scheme rather than in any generalised matrix inversion sense.

2.6 Summary of chapter 2

In this chapter some of the fundamental relationships forming the basis of
the EIT problem have been examined. By the application of a number of simplifying
assumptions, a linear approximation governing the relationship between small
perturbations in log resistivity and the resulting perturbations in the boundary
potential distribution was arrived at. The sensitivity theorem was then used to
produce a definition of the sensitivity coefficient and an explicit relationship
between normalised boundary potential perturbations and perturbations of log
resistivity. In order to clarify the position of the proposed reconstruction algorithm
with respect to previously published work, a short review of EIT reconstruction
methods was undertaken and a set of specifications for the proposed algorithm
stated. An approach to EIT image reconstruction based on sensitivity coefficient
weightéd backprojection was described. Some parallels between this method and
the successful method of filtered backprojection used in X-ray CT were indicated.
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CHAPTER 3

THE DEVELOPMENT OF A THREE-

DIMENSIONAL COMPUTER SIMULATION
OF ELECTRICAL IMPEDANCE
TOMOGRAPHY

3.0 Introduction

To investigate the properties of the proposed image reconstruction approach
in isolation from the effects of the measurement process, a long series of computer
simulations was carried out. The simulations were based on a physical system
consisting of a cylindrical tank containing a conductive liquid into which objects of
various sizes, shapes and resistivities can be introduced. A number of workers have
made measurements on this type of system to investigate the effects of the
introduction into the tank of insulating rods (Barber and Brown, 1986), conductive
spheres (Jossinet and Kardous, 1987) and insulating planes (Rabbani and Kabir,
1991). In most cases measurements have been made between electrodes equally
spaced in a plane at half the tank height. The simulation, however, makes provision

for the case of multiple planes of electrodes spaced at equal distances along the

axis of the cylinder in accordance with the specifications of 2.4, and treats the
cylinder as extending to infinity above and below the plane of the image. So that
the form of point spread functions could be examined, the resolution of the
simulation was chosen to be considerably higher than the expected resolution of

the images.

3.1 Simulation geometry

Figure 3.1 illustrates the geometry of the computer simulation used
throughout chapters 3 and 4. A uniformly conducting cylinder is modelled as 63

layers of volume elements where each layer is of diameter 63 elements. This
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diameter was chosen so that the symmetrical case of an object exactly on the axis
of the cylinder can be easily simulated. The position of each volume element is
given by the cartesian coordinates (x,y,z). The origin of the coordinate system is
on the axis of the cylinder in the plane of the image to be reconstructed. By
symmetry about this plane, provided the test impedance change distribution is
uniform in cross-section throughout the cylinder, the effect of including the layers
-1 to -62 can be achieved by doubling the contributions made to the reconstruction
from layers 1 to 63, so that the total simulation effectively refers to a cylinder
twice as long as its diameter. It is assumed that the effect on the image of
resistivity changes further than one image diameter away from the plane of the

image is negligible, and conversely that measurements made in planes further away
than one diameter from the image plane make no measurable contribution to the
reconstructed image.

Sixteen equally spaced point electrodes are assumed to be in contact with
-62 to z = 62. The electrode contact

the boundary for each of the planes z
impedance is assumed to be zero so that all electrodes are considered to be

available for voltage measurements. In accordance with the measurement approach
described in section 1.3, a constant current is applied between adjacent electrode
pairs, m, and voltage measurements are made between adjacent electrode pairs,
n. The values of m and n are in the range O to 15. (In section 5.3 the effect of
applying the constant current between other pairs of electrodes will be investigated
in which case m applies across the larger electrode spacings.) The measurement

process is repeated for each plane of electrodes, .

3.2 Simulated test objects

For the majority of simulations that follow, the test object is a volume of
raised or lowered resistivity one pixel in cross-section and extending through all the
planes in the cylindrical test volume so that it appears at the same x,y position for
all planes. The spatial resolution of the simulation is high with respect to the spatial
resolution expected in the reconstructed images, So it is reasonable to regard this
single pixel cross-section perturbation as an impulse from which the Point Spread
Function (PSF) of the system in the plane of the image can be measured. Since this
test resistivity distribution is of uniform cross-section, and can be considered to

extend infinitely above and below the plane of the image, the set of voltage
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measurements for all electrode planes, I, will be identical. To calculate this set of
voltages for the simulation, it is therefore only necessary to consider a section of
the cylinder extending to one diameter above and below the plane of measurement
assuming that the effect of resistivity changes beyond this will be negligible.
Because the set of voltage measurements for all planes, |, are identical, the
effect of combining the influences of a large number of measurement planes into
the reconstruction at the image plane z = 0 can be achieved by only considering
the set of measurements at z = 0, but then forming the image as the sum of all the
image planes in the simulation, effectively from | = -62 to | = 62. This can be
thought of as leaving the electrode array stationary and then integrating the effect
as the image plane moves down the axis of the cylinder passing through the plane
of the electrodes. The overall result will be equivalent to reconstructing a single
image plane from multiple electrode plane data sets. Because the sets of voltage
gradients, V(l,m,n), and voltage gradient changes, édV{l,m,n) are in this case the
same for all electrode layers, the index | is not really required. it will be retained,
however, to be consistent with the 3-dimensional approach being considered.
For the investigation of the effect of out-of-plane perturbations on the

reconstructed image (section 4.7), a single volume element of increased resistivity

at various distances from the plane of the image is used.

3.3 Potential field calculation

In order to evaluate the sensitivity coefficients required for image
reconstruction (section 2.2) it is necessary to know the potential at each volume

element in the cylindrical volume under consideration when a constant current is
applied between an electrode pair m at a distance | from the plane of the image.
Sinqe it iIs being ;ssumed (section 2.5) that the Initial unperturbed resistivity
distribution is uniform, the potential field required is the solqtion to the Laplace
equation (2.3) for the boundary condiiions given by the geometry of the simulation.
Since the Laplaceﬂ equationqcannﬂot be solved analytically for other than simple
boundary conditionsf,f a numerical method is required. The choice lies between the
Finite Difference Method (FDM) and the Finite Element Method (FEM) (e.g Ferrari,
1975). Finite difference methods utilise directly an approxihation to the differential
equation governiﬁg the system to relate poten_tials at nodal points on a fixed

rectangular mesh which are then solved in an iterative process. In contrast, finite
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element methods derive nodal potentials by expressing the unknown voltages in
terms of interpolation functions within each finite element. The basic grid mesh is
usually formed from sets of interconnected triangles whose vertex coordinates may
be varied to optimise the mesh for the appropriate geometry.

Although it is generally accepted that the FEM is superior to the FDM for
arbitrarily shaped boundaries (Hua and Woo, 1990), the FEM is considerably more

complicated to implement, and most users of the FEM use as a starting point an

existing software package for mesh generation and field calculation. This is
especially the case when 3-dimensional field calculation is required. Due to the
difficulty of obtaining access to such a package and the attractive simplicity of the
FDM it was decided to write a program specifically matched to the geometry of the
simulation using the FDM.

The geometry of the boundary condmons used was similar to that shown
in figure 3.1 with the plane of the current drwe electrodes at z = 0. The symmetry
of the field about z = 0 was again used to reduce the number of volume elements
required, and the further symmetry of the field about the zero voltage equipotential
plane was also employed. The geometry for the boundary conditions atz = O is
shown in figure 3.2. In the figure, the semi-circular wall of the tank constitutes the
Neumann portion of the boundary (where the condition of zero potential gradient
normal to the boundary applies), and the shaded pixels along the zero voltage
equipotential and the ‘electrode’ pixel constitute the Dirichlet (fixed voltage)
portions. The point of electrode contact is thus modelled as being flush with the
wall of the tank rather than intruding into it. To complete the definition of the
boundary conditions, the planes z = 0 and z = 62 are defined as Neumann
boundaries.

For guaranteed convergence the FDM program was run without employing
overrelaxation to increase the convergence speed, and for improved accuracy in
dealing with the sometimes very small potential differences between adjacent
volume elements, double precision floating point (64 bit) arithmetic was specified.
The stopping criterion ending the iteration process was chosen to be when the
maximum potential difference detected between iterations anywhere in the data
array was less than 1 partin 10", This was considered to give more than adequate
accuracy for the field calculation, and resulted in a convenient overnight calculation

time on the Sun Sparcstation 330 computer used in this work. The completed

potential field array was then stored on disk.
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Figure 3.2

Geometry of boundary conditions
for potential field calculation at

z = 0.
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The accuracy of the resulting potential distribution was checked by
comparing the calculated boundary potentials with those previously measured on

a real saline filled tank using a constant current 20 KHz signal source and a high
input impedance true RMS averaging voltmeter (Kotre, 1988). The 3-dimensional
distribution of the field was checked by displaying the equipotential patterns at

various axial distances from the plane of the electrodes.

3.4 Sensitivity coefficient calculation

Ll Reael B

electrode pair, m, and a voltage sense electrode pair, n, in the electrode layer, |, is

given by
Vo, Vo, ﬂ
SIIMI"lnyDz - f I = I 'du , " (3'1)
u ‘im In L ,

where the potential field ® is due to the pair (I,m) and the potential field
2 n is that which would have been produced if the pair (I,n) had been carrying the
current (section 2.2). The integration is over the volume of the element which is
constant. It is assumed that the value for the sensitivity coefficient in the
simulation is constant throughout the volume element at (x,y,z). In EIT where
constant currents are used, I; , = Il,nh = I, a constant which for the
simulation will be taken as unity.# o

For the reasons given above (section 3.2), the plane of the electrodes can
be takenasz = 0, and | = z. Thus the potential field calculated using the FDM can
be used for all the sensitivity coefficient calculations required by rotating the
coordinate system of the simulation by the appropriate number of inter-electrode
angles, m and n, so that it coincides with the stored field. The polarity of the
potential fields & ., and &  alsoneeds tobe considered. If the polarity of &, .,
the current drive field is considered to be fixed, then the polarity of | ®\n will be the
same where m = n but of opposite polarity in all other cases so that the most
positive of the voltage sense pair is always closest to the positive current drive
electrode.

The algorithm for the calculation of a sensitivity coefficient is shown in
figure 3.3. The coordinate system rotations are made on a nearest-neighbour basis.

Where the rotation results in a position x’,y’,z’ or x",y",z" outside the defined
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Figure 3.3
Sensitivity coefficient calculation
algorithm.
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boundary because of the quantisation of the boundary shape, a sensitivity
coefficient of zero is returned. Various schemes of interpolation to the nearest point
inside the boundary were tried, but were not found to produce any significant
improvement whilst increasing the calculation time. The potential gradient is
calculated at a point by taking the difference between the two adjacent potential

values in the X, y, and z directions and combining the components to give the
vector magnitude and direction (figure 3.4). At the Neumann boundaries, the

gradient normal to the boundary is zero by definition. The calculations were carried
out using double precision floating point arithmetic.

Figure 3.5 shows three examples of sensitivity distributions calculated for
the plane | = 0. Because the sensitivity coefficients are signed and have a very
large dynamic range, it is necessary to compress the data so that it can be
displayed. The images of figure 3.5 were produced by taking the modulus and then
the logarithm of the sensitivity coefficient values. Figure 3.5a shows the sensitivity
distribution for m = n = 0, which is everywhere positive and, for unit drive
current, takes the value (from equation 2.18) of | &, || & ,|.Figure 3.5b shows
the distribution for m = 0 and n = 4 which demonstrates null lines joining the
current drive and voltage sense electrodes. Between the null lines, the sensitivity
values are positive and outside the lines, negative. Figure 3.5¢ shows the
distribution for m = 0 and n = 8 and demonstrates the null lines more clearly. The
sensitivity values are again positive between the null lines and negative elsewhere.
Figures 3.5b and 3.5¢ can be compared to the sensitivity distributions obtained by
Jossinet and Kardous (1987) as a result of physical experiments using a similar
geometry, in which the same features are evident.

A numerical test of the validity of the sensitivity coefficient algorithm was
carried out using equations 2.11, 2.17 and 2.18 applied to the case of a uniform
multiplicative change in resistivity throughout the bounded volume. In this case, for
constant current drive, the potential fields &,  and &  are unaltered apart from
being scaled by the multiplying factor, and the voltage gradient profile §V(m,n)

calculated will be related to the unperturbed voltage gradient profile V(I,m,n) by the

scaling constant, k. Thus,

Vlimn) = k[ [ [, niya dxdydz (3.2)

Xytz
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Geometry of potential field gradient
~calculation (2-D).



_ Figure 3.5
Sensitivity distributions for the plane 1=0 calculated for
(a) m=0 n=0, (b) m=0 n=4 and (c) m=0 n=8.
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which can be approximately evaluated as

mn) =k Y s (3.3)
X Yy 4

using the simulation program, where k’ is a new scaling constant which takes
account of the now finite dimensions of the volume element in the x, y and z

directions.
Table 3.1 shows a comparison between V(I,m,n) as calculated using the

sensitivity coefficients, and V(l,m,n) as calculated using the FDM for m = 0 to 3.
By symmetry, the results repeat for m > 3. The values calculated by the FDM have
been scaled to make direct comparison more convenient.

It is clear from the table that the profiles calculated using equation 3.3 are
in poor agreement with those produced by the FDM. A closer examination of the
calculation process revealed that the final calculated voltage gradient values were
the sum of numerically much larger positive and negative sensitivity coefficient
values, especially at positions close to the current drive and voltage sense
élect;bdes where the field gradients are steepest. Thus an error in a few peripheral
sensitivity coefficient values is enough to produce the effect seen in table 3.1.
Such errors are almost unavoidable when using a field generated using the FDM in
an application where the coordinate system must be rotated, as the cartesian
coordinate system is not rotationally symmetrical, and the FDM produces a
approximation to the field which is constant throughout each volume element rather

than known at a true point.
Linear interpolation between data values in the x,y plane of the potential

distribution (not needed in the z direction since z = |) was added to the sensitivity
coefficient calculation algorithm but was not found to produce a significant
improvement on the results of table 3.1. This was not unexpected as the problem
was clearly being caused at positions very close the tank wall boundary of the
simulation and no extra field values outside the boundary are available to make the

required interpolation. Due to the considerable extra computation time required by

the interpolation this step in the calculation was dropped.
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3.5 Calculation offvoltage gradient profiles and voltage gradient

perturbations

Given that the results of table 3.1 , together with the detailed examination
of the calculation process, indicate that sensitivity coefficient values produced by

the simulation program for positions on or very close to the boundary may be
inaccurate, the problem with evaluating the voltage gradient profiles, V{l,m,n), can

be circumvented simply by using the values obtained directly from the stored
potential field i.e column 1 in table 3.1. For the single pixel cross-section test object

described in section 3.2, the changés in these profiles, 6V(l,m,n), can be evaluated

simply as

SV(himyn) = A Simnsy 2 - (3.4)
4

where (x,,y,) is the position in the plane of the extended point object and A
is its amplitude. Since it is being argued that no resistivity changes take place
elsewhere within the bounded volume, the amplitude, A, cannot be used to
simulate a relative change in resistivity between the object and the background as
this is always infinity. A merely scales §V(l,m,n) with respect to V(l,m,n).

Using this approach, it can be seen that provided the position of the object
(x,,Y,) is not brought too close to the boundary, 6V(l,m,n) can be evaluated without

involving suspect sensitivity coefficient values.

3.6 Summary of chapter 3

The ‘forward problem’ in electrical impedance tomography is that of
calculating a set of voltage and voltage perturbation profiles from knowledge of the
conductivity distribution of the object and the currents applied to it. In this chapter,
a three-dimensional software simulation of the forward problem has been developed

which should allow the behaviour of the type of image reconstruction approach

proposed in section 2.5 to be studied.
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CHAPTER 4

RECONSTRUCTION ALGORITHM
DEVELOPMENT

4.0 Introduction

Having implemented a simulation of the ‘forward problem’ of creating sets
of voltage profile data from a defined distribution of resistivity changes, the
foundation has been laid for a quantitative assessment of the performance of
algorithms intended to approximately solve the ‘inverse problem’ of reconstructing
a cross-sectional image through the distribution of resistivity changes from the
voltage profile data. The class of algorithms under study in this section is based
upon the concept of weighted backprojection using sensitivity coefficients
introduced in section 2.5. All the reconstructions are dynamic (i.e reconstructions
of a distribution of resistivity changes), single pass (i.e the potential fields from

which the sensitivity coefficients are derived are not re-evaluated using the

reconstructed resistivity distribution) and, except where specifically stated, include

the effects of multiple plane data sets.

4.1 Initial trials of reconstruction algorithms employing

sensitivity coefficients for weighted backprojection

An extended point object of amplitude A = 1 was reconstructed initially at
eight positions corresponding to 0, 4, 8, 12, 16, 20, 24 and 28 pixels from the
centre of the image along the radius y = 0. All reconstructed images are nominally
for the plane z = O as defined in figure 3.1. The reconstructed yquantity is denoted
as pixel value, P(x,y,2), the dimensionalityd of which is not analysed at this stage.

The resulting images were stored both as scaled 8-bit values for display
purposes and in their original 64-bit Hfloating point form for further analysis. The
images were displayed using the 8-bit versions transformed via a "hot iron’ colour
scale often used in nuclear medicine, which was found to give a better dynamic

range of display than monochrome grey-scale.?The images shown as figures were
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produced using a 16-level version of the hot iron colour scale adapted to suit a
colour printer. Because the truncation of the image data to 8-bits was carried out
by mapping the minimum value in the image to O and the maximum value to 255,
it is not possible to directly compare amplitudes between images (this data is
supplied in tabular form) and images containing negative going resistivity changes
are displayed with an elevated zero level.

The most simplistic implementation of the weighted backprojection concept
of section 2.5 is one in which the reconstructed value, P(x,y,2), is related to the set

of normalised voltage gradient changes (from equation 2.23) as

P(x.)’.Z) - ; g‘: Zﬂ: Sl.m.n,x.y,z (‘%,)Lm (4.1 )

This algorithm, not surprisingly, does not produce a recognisable image due
to the very large range of sensitivity coefficient values encountered as the radial
distance from the centre of the image changes. To counteract this effect, and to
produce a backprojection where the total sensitivity to the voltage profile data for
each volume element is normalised to unity, it is necessary to include as a

denominator the sensitivity coefficient total for each volume element to give

P(x,y,2) - z': g 2"-: s (%)I,m.n

E': ; z": Sl.m.n.x.y.z

Images reconstructed using this algorithm are shown in figure 4.1 a-h and

(4.2)

~ the image statistics are given in table 4.1. The images show an area of raised
resistivity approximately corresponding to the position of the object. For objects
close to the boundary, negative resistivity changes associated with the positive
change at the position of the object can also be seen. Table 4.1 shows that
negative resistivity changes are recorded for all object positions, but their
magnitude only becomes significant with respect to the (positive) object amplitude
close to the boundary. The reconstructed PSF amplitudes (given by the maximum
pixel values) are reasonably constant except for a rise at x, = 28,

A comparison between the nominal and reconstructed object positions in
table 4.1 shows that there is a distortion of the image plane which 1takes the form
of dréwing objects near the centre of the image further in toWards thie centre whilst

leaving the positiéns of objects dlose to the boundary unchanged. This is not a
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Figure 4.1

Images of a simulated point test object at nominal

distances (a-h) 0, 4, 8, 12, 16, 20, 24 and 28 pixels from

the axis of the cylindrical boundary. Reconstructed using
equation 4.2.
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Table 4.1
Image statistics for the images of figure
4.1 which were reconstructed using the
algorithm of equation 4.2.

FWHM
of
PSF

16.22

16.15
16.07
15.79
15.07
13.75

11.44
8.78



36

fundamental flaw of the algorithm, since there is no reason to assume that the
image space obtained as the result of this weighted backprojection operation should
be-the final image space of the complete reconstruction process. What must be
true, however, is that there exists a one-to-one position mapping between the

image space resulting from the application of the weighted backprojection operation

and the object space, a requirement which is satisfied by the results obtained.
The FWHM column of table 4.1 shows a decrease in PSF width towards the

boundary, although the measurement accuracy close to the boundary is somewhat

compromised by the presence of the adjacent areas of negative resistivity change.

4. 2 Trlals of alternative weighted backprojection strategies

Although the images obtalned by the application of the weighted
backprojection operation defined by equatlon 4.2, were considered to be
encouraging, an investigation of a large number of related weighted backprojection

étrategies was carried out to see if any improvement could be obtained. Of
particular interest were the areas of negative resistivity change associated with
large posntlve changes (and vice versa, the product:on of positive changes by the
appllcatlon of a large negat:ve change this effect was confirmed by setting the
object amplitude, A, to a negative value) and the increase in point amplitudes close
to the boundary. These effects were considered to represent a serious impediment
to any attempt to apply spatial frequency filtering techniques to the images, since
these techniques can only be applied to linear systems in which the PSF is shift-
invariant. This condition clearly cannot be met for the images of figure 4.1 by any
spatial transformation due, to the varying amplitude with object position of the
spurious negative resistivity changes.

The first area of investigation concerned the amplitude correction term, i.e
the denominator, of equation 4.2. Since it is clear from the earlier studies of the

sensitivity coefficient calculation (section 3.4) that the sum

; E E Sl:m.n.rx.y.z (4.3)
m . n - |
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can be made up of individually much larger magnitude positive and negative
sensitivity coefficient values, it does not seem self evident that this term represents
the "overall sensitivity” of the volume element at (x,y,z) to the voltage
measurement data set. Various modifications, including root-mean-square mean,
sum of moduli, and decomposition into separate positive and negative sensitivity
coefficient images were tried without producing any improvement. Table 4.2 lists
some of the algorithms tried and summarises the main features of the resulting PSF
images.

Other variations tried included rearrangements of the whole backprojection
algorithm and amplitude normalisations of the voltage gradient profiles for each
current drive orientation. Some of these algorithms are listed in table 4.3 together
with the main features of the resulting PSF images.

A tHird approach was based on the analysis of Barber and Brown (1986,
1987) of the 2-dimensional case with dipole current drive. This analysis employs
a transformation to a coordinate system in which distances along the boundary are
expressed in a direction, U, in which dV/dU is a constant, E. The modulus of the
Fourier transform, B(f,), of the voltage gradient produced by a small perturbation

in log resistivity at a point a distance q from the boundary is given as

"B(f) - %El fu\ne"’w h (4.4)

where f, Is the spatial frequancy variable. This expression includes a term,
|f,], whose response in spatial frequency space increases linearly with frequency.
This is equivalent to the application of a ‘ramp’ spatial frequency filter to the point
response profile. As this ramp filter is known to be applicable as the inverse to the
spatial frequency modification that takes place as the result of the backprojection
operation used”‘in Xray cdmputed tomrography (e.g Barrett and Swindell, 1981), the
result of this analysis has been interpreted as being advantageous to an EIT
reconstruction base& on a backprojection method. This interpretation is based on
the unsubstantiated assumption that the ’built-in’ ramp filter is also appropriate to
EIT reconstruction. The result could also, however, be interpreted as the cause of
the negative overshoots seenin figure 4.1 aﬁd therefore as an effect to be removed
if possible.

The existence of negative overshoots in the simulated boundary voltage
gradients was established by observing the normalised voltage gradient changes
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main features of the resulting PSF images.
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(SV/V), .. for a fixed current drive orientation of m = 0 and an extended point
object at various positions along the line y = 0. Some examples of the resulting
profiles are shown in figure 4.2. In an attempt to attenuate these negative
overshoots, a convolution filter kernel equivalent to 1/U (the inverse of the ramp
filter) was applied to the (6V/V), .., profiles, but the resulting images showed little
if any improvement in the negative overshoots and displayed increased PSF widths

due to the blurring effect of the 1/U f}ifer. The convolution step was therefore

dropped.
Despite the numerous and increasingly complex attempts to improve on the

perfo}mance of the weighted backprojection algorithm of equation 4.2, no such

improvement was found and the development of this algorithm was resumed.

4.f3 A more detailed examination of the preferred weighted

backprojection algorithm

In section 2.1 it was established that the parameter imaged in dynamic EIT
should be change in log resistivity, Ri(x,y,z). Restating the 'forward problem’ in
terms of the relationship between the distribution of small perturbations in R(x,y,2}
to normalised changes in boundary potential given in equation 2.23 now for the

case of a multiple layer electrode array,

E Z E Sl,m,n,x,y,zb R(xly .Z)
4

(.9_'.{) Xy oz (4.5)
{m,n

E ; E Sl,m,n.x.y.z
X z

. A

and the proposed approximation to the ‘inverse problem’- the weighted

backprojection algorithm given in equation 4.2,

P(x,y,2) = ; ; ; s (EVL/)I.m,n

(4.6)

it can be seen that a strong symmetry exists between the two.
Considering the case of a small uniform multiplicative change in resistivity,

p, by a factor, k, throughout the bounded volume, from equation 2.22,
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SR(x,yz) = 2L - k-1 | | (4.7)
p
Since the mutual impedance for any measurement, Z,,,,, « p, for a constant
current from equation 2,11, V(I,m,n) « p, and for the case of a multiplicative

change,

%“ (—5-'-’) - k-1 | (4.8)
V I.mn |
a constant for all I,m,h. Shbstitdting for (6V/IV), .., in equation 4.6, the

sensitivity coefficient terms can be cancelled, and substituting from 4.7,

P(x,y.2) = k-1 = 8R(x,y,2) (4.9)

For tﬁeﬂéen?eral case of a ndn-homogeheous change in resistivity, the images
of figure 4.1 suggest that the distribution of P(x,y,z) is an approximation to
JR(x,y,z) with each value of P(x,y,2) being affected by its surroundings due to the
point spread functions in the image plane and between image planes.

In section 2.5, a set of specifications on which the image reconstruction
process would be based were stated. Amongst these were that the reconstruction
algorithm would in the first instance be ’single pass’ (i.e the potential fields from
which the sensitivity coefficients are derived would not be re-evaluated using the
reconstructed resistivity distribution) and that the algorithm would therefore only
apply to small changes in log resistivity (i.e changes so small that the potential
fields within the bounded volume would not be significantly changed from the case
of uniform resistivity). These assumptions are clearly not being satisfied when using
the extended point object in this simulation. As explained in section 3.5, the
amplitude of the point object in this case acts only as a scaling factor and does not
change the contrast of the object. Since the sensitivity coefficient calculation is
based on the use of stored Laplace potential fields, the current flow within the
bounded volume is fixed. This will result in the calculated perturbation profile
sV(I,m,n) having an anomalously large response to the change in resistivityéat the
object position, and an anomalously small response to the background resistivity
surrounding the object, both due to the assumption that the patternqoéf current flow
is unchanged from the case of uniform resistivity. The real physical situation is that

the introduction of an insulating rod into the test tank will cause a large reduction
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in current flow at the position of the rod and an increase close to it corresponding
to the displaced current. This effect is seen in the perturbation profiles shown in

figure 4.2.

The overshoot effect seen in figure 4.1 is clearly consistent with departure
from the assumption of small resistivity changes. This conclusion is reinforced by
the image statistics in table 4.1 which show that the reconstructed object

amplitude is anomalously high where it is close to the electrodes and subjected to
the highest current densities, and that objects close to the electrodes produce the

greatest- amount of overshoot for the same reason. Since the assumption of
unchanged current flow has been invoked both for the calculation of the voltage
profile data, and for its reconstruction into an image, the resulting artifacts would
be expected to be less severe for non-simulated data and to become neghguble for

the small resistivity changes for which the algorithm was defined.

4.4 Transformation of 'the:image space as a preliminary to
spatial frequency filtering

By analogy with X-ray computed tomography, where the backprojection
process produces an image containing a non-uniform distribution of spatial
frequencies (e.g Barrett and Swindell, 1981), it would be expected that the
weighted backprojection operation described in the preceding sections will also
need to be accompanied by some form of spatial frequency filtering operation. For
such an Operatlon to be applicable, the system PSF must be shift-invariant, a
requirement clearly not met by the images of figure 4.1. Disregarding the overshoot
effect which is explained above, the values of FWHM for the reconstructed PSFs
(table 4.1) show a change with distance from the electrodes. To make a filtering
operation possuble it is therefore necessary to transform the exustung image space
to one in which the width of the PSF, and hence the spatlal resolution, is constant
at all points. This will be termed the equi- -resolution space.

The most stranghtforward way to make such a transformation would be to
relate the resolution (defined for this discussion as the reciprocal of the PSF FWHM)
to radial position within the image space and from this to produce an appropriately
transformed radial position in the equi-resolution space. This approach, however,
contravenes one of the requirements for the reconstruction algorithm listed in

section 2.4, namely that the algorithm should not be constrained by the imposition



41

of artificial boundary conditions. :Thus the concept of a radial position in either
space does not apply when generalised body shapes are being considered. An
approach more consistent with the overall requirements of the reconstruction
algorithm is to find a causal relationship between the resolution at any point in the
image space and some parameter which can be evaluated purely from knowledge
of the real boundary conditions, and then to make the transformation to the equi-
resolution space in accordance with this relationship.

Different analyses of the EIT reconstruction problem for the case of a 2-
dimensional circular region by both Barber and Brown (1986) and Seagar et al
(1987) give the same result for the variation of spatial resolution with radial

position,

1

We —
(1 - ¢?

(4.10)
‘where W is a measure of spatial resolution, and c is the radial position
normalised for a circular region of unit radius. The analysis of Seagar et al (1987)

continues to give an expression for the variation of overall sensitivity with radial

position,

1
Sig] & ——— (4.11)
N (L ﬂ
where S,., is a measure of the total overall sensitivity of the measured data
set to a point change in conductivity at a normalised radius, c. Thus it would be

expected that,

W o stotal | - * S (4-12)

In section 4.2 it was concluded, after considerable experimentation, that the
overall sensitivity at any point was given simply by the sum of all the sensitivity
coefficients used during backprojection. It would therefore be expected that the

quantity S, could be evaluated as,

Stotdl - ; E E Sl,m.n,x.y.z : : (4.1 3)
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This sum is already evaluated as the denominator of the weighted
backprojection algorithm of equation 4.2.

An investigation of the relationship between the resolution and S,,, at
various positions in the image was carried out using the data from table 4.1
together with some data from extra object positions. In each case the value of S,
was taken at the reconstructed position of the point object rather than at its
nominal position.  The results are plotted in figure 4.3 which shows a convincing
linear relationship up to x, = 25. The results for x, > 25 do not fall on the line
probably due to inaccuracies in the FWHM measurement caused by the presence

of the negative overshoots and possible inaccuraciesin S,,,, caused by the difficulty

in evaluating sensitivity coefficients at positions close to the electrodes. It was
noted that the regression line does not pass through the origin suggesting the
presence of an offset on the resolution measurement. The results, however, seem
convincing enough to postulate a causal relationship between the total sensitivity
at a point and the achievable spatial resolution at that point, and are certainly good
enough to use for the purpose of transforming the image space to the required equi-
resolution space. It is useful to define a normalised total sensitivity, S,,m, S S,y

normalised to a minimum value of unity i.e

_Stoat®y) (4.14)

Smm(x 34 ) - sz (xm ’ym)

where (x_..Y.,) is the position at which the minimum value of S,..q OCccurs: the
centre of the image for cylindrical boundary conditions. This normalisation is useful
as it removes the dependence of the transformation to equi-resolution space on the
actual value of S,,, which, in the simulation, is dependent on various arbitrary
constants in the sensitivity coefficient calculation process. (From the definition of
the sensitivity coefficient given in equation 2.18 it can be seen, however, that if
the drive current, I, is known, then the coefficient should be uniquely defined
making this normalisation unnecessary.)

If a similarly normalised local magnification factor, F,(x,y), is defined as

FIWHM(,Y,)  (@.18)




0.1

0.09
®
O
0.07
0 2 4 6
‘Stotal)uz
~ Figure 4.3

Resolution plotted against the square
root of the total sensitivity, S;yar



43

then F,(x,y) gives the magnification factor required at any point in the
image to enlarge the FWHM of the PSF to match that at the position of minimum

total sensitivity {and maximum PSF width), (x..,y..) and thus perform the required

transformation to the equi-resolution space.

Figure 4.4 shows the results of figure 4.3 redrawn in terms of S, and
normalised local magnification factor. Using the regression equation for this
relationship, the magnification factor required at any point can be calculated from
the corresponding value of S, - 1

The transformation was implemented as a radial expansion about a central
origin using the fact that the transformed radial distance in equi-