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ABSTRACT 

Glass fibre reinforced plastic (GRP) structural profiles, in standard shapes and sizes 

are now being commercially manufactured by the process of pultrusion. GRP profiles 

are light weight, posses higher specific strengths and are more durable than the 

conventional metal or concrete counterparts. 

GRP pultruded profiles have open or closed cross-sections comprising thin composite 

walls of low elastic moduli. Stability failure has been identified as the main cause of 

failure for these profiles when subjected to compressive stresses, as it may occurs at 

stresses much lower than the ultimate strengths. Therefore, the load carrying 

capacities of composite compression members mainly depends upon stability criteria. 

The conventional stability analyses for the prediction of buckling loads are not 

considered adequate as the GRP material is orthotropic and its behaviour is different 

from steel (non-yielding). The existing guidance for the design of composite members 

under compression ignores the presence of geometrical imperfections inherited in the 

pultruded profiles, whilst, experimental evidence suggests considerable loss of 

stiffness due to the imperfections particularly in the intermediate column heights. The 

design guidance provided by the manufacturers gives empirical equations based on 

data obtained from experiments on specified profiles. A universal design curve based 

on the experimental results of concentrically loaded GRP columns has been 

developed and presented. However, conducting a vast experimental study is not 

always feasible. The need to develop a procedure, predicting failure load numerically 

for the development of a design curve for GRP columns has been recognised. 

Two GRP box-sections (closed square cross-sections) have been investigated for 

failurelbuckling loads using experimental and numerical methods. In the experimental 

phase, specimen columns of various heights have been concentrically loaded in 

compression to measure the failure loads. Experimental results have been compared 

with the theoretical predictions made using classical methods and the equations given 

by the design manuals. Based on the experimental and analytical failure loads, an 

experimental design curve has been derived. In the numerical study, 3-dimensional 

full scale finite element models representing experimental configuration of the 

composite columns, have been analysed using both linear and nonlinear solutions. 

Imperfections of known amplitudes have been included parametrically to establish the 
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sensitivity of the failure loads towards imperfections. Imperfect model have been 

calibrated for the estimation of imperfection amplitude present in the profiles using 

experimental data. Using the numerical and analytical data, a design curve has been 

derived establishing interaction coefficients for each profile. The numerical design 

curve is compared with the experimental design curve for the validation of the 

numerical procedure adopted in this study. 

Effects of perforations (circular holes) on the buckling stiffness of GRP box-section 

columns have also been investigated. Holes are drilled in the walls of profiles and 

tested experimentally to measure the loss in the buckling loads. Finite element models 

of columns with holes have been developed and analysed for buckling loads. 

Comparisons of experimental and numerical results are plotted. 

For use in the numerical representation of the composite columns, mechanical 

properties of the orthotropic GRP material of the both sections have been established 

analytically and experimentally. In-plane shear properties have been measured by 

physically testing standard sized coupons, extracted along the length of profiles. 

However, short coupons were available in the transverse directions due to 

dimensional constraints. Short coupons, similar in geometry to the standard coupon, 

but smaller in size, have been validated for performance using finite element analyses 

and comparing the outcomes with the models of standard coupons. Both standard and 

short coupons have been used for the experimental measurement of the in-plane shear 

properties. Compression properties have also been measured experimentally. 

Ultimate failurelbuckling loads of the composite columns depend upon their heights, 

material properties, and the cross-sectional dimensions. These factors have been 

combined into one characteristic parameter' 'A.', the slenderness ratio. As the later two 

factors are constant for a particular box-section profile, the ultimate loads depend 

upon column heights. Four types of failure modes; global, local, modal interaction 

and material failure have been observed. The loss in the buckling stiffuess is minimal 

for smaller circular holes, provided the interval between holes is not less than 20 

times the diameter of the holes. For bigger holes and an inter hole spacing of 10time 

the diameter, a loss of 30% have been measured. Finite element representation of 

pultruded columns adequately predicted the numerical failure loads and failure modes 

for most of the column heights. 

XVI 



CHAPTER 1 

INTRODUCTION 

1.1 COMPOSITE STRUCTURAL PROFILES 

A composite material is formed when two or more materials are chemically or 

mechanically combined giving properties that are different from the individual 

components and exhibiting enhanced characteristics (e.g. strength, ductility, 

electromagnetic inertia, etc). Historically, composite materials such as timber (a 

natural composite), straw-reinforced clay, reinforced-cement-concrete and plywood 

have been used in civil engineering construction. New composite materials have also 

been conceived for fast and more versatile construction. For example, fibrous 

composites were proposed some fifty years ago as a lightweight material for use in 

military and aerospace applications, where weight reduction was the major concern 

(Ballinger, 1990). As indicated by their name, fibres are the essential part of these 

composites. Fibrous composites have two distinctive phases: a load-carrying 

constituent the reinforcement, and a body constituent, the matrix. Typically, the 

reinforcement comprises fibres of various types e.g. carbon, kevlar or glass. 

Principally as the reinforcing fibres impart the strength and stiffness to the composite 

they possess higher strength and elastic modulus than the matrix (Green 1987, 

Barbero 1991, Godoy and Almanzar, 1996). The matrix acts as a binding material that 

transfers load between fibres through shear and maintains alignment and orientation 

of fibres. The matrix also protects the fibres from chemical and environmental 

damage. Metals ceramics and polymer compounds such as polyester, vinylester, or 

epoxies define the matrix. Fibrous composites are now called 'advanced composites' 

as many types of fibres and matrix can be purposely combined to meet the demands 

for specific applications. Fibrous composites with those formed from polymers 

(plastics) as the matrices are referred to as polymer matrix composites (PMC) or fibre 

reinforced plastics (FRP). 

Glass-fibre-reinforced plastics (GRP) represent a subset of composite FRP materials 

developed particularly for structural applications. Generally two types of glass fibres 

are in use: E -glass (electronic) and S-glass (silica) fibres (Miller 1987, Datoo 1991). 

S-glass fibres have superior strength and stiffness properties but are expensive, while 
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E-glass fibres are most commonly used being cheaper and possessing adequate and 

satisfactory strength and stiffness. Typically, E-glass fibres have a tensile modulus of 

70kN/mm2 and a tensile strength of 3.SkN/mm2
• The matrix component of GRP 

composites are normally thermoset (hardens irreversibly when cured) plastics, e.g., 

epoxy, vinylester or polyester resins. Epoxy resin has better adhesive and mechanical 

properties than polyester, though polyester resins are cheaper and cure more rapidly. 

The typical values for the elastic moduli and strengths of the epoxy and polyester 

resins are SkN/mm2
, 100N/mm2

, 3kN/mm2 and 60N/mm2
, respectively. Mechanical 

properties of the GRP composite materials depend on the properties of the constituent 

materials, fibre forms (filaments, mats, or fabric), fibre-direction and orientation 

sequence of these fibre-forms, and the volume fractions (percentage) of fibres in the 

composite. Typically, GRP structural profiles have a specific modulus 

(modulus/density) of 20mm and specific strength (strength/density) of 300mm in the 

direction of fibres. These properties are comparable to mild steel (2Smm and 77mm) 

and aluminium (2Smm and 160mm). GRP composite profiles offer a good alternative 

to conventional metallic materials. Besides having adequate strength and stiffness, 

GRP materials are lightweight (30% lighter than aluminium and 80% than steel), 

corrosion resistant, chemical resistant, non-magnetic, have good fatigue strength and 

require little maintenance (Liskey 1991, Zureick and Shih 1998, Turvey 2000). 

Initially GRP materials have been produced by hand layup or machine buildup (layer 

of fibres bounded with a plastic resin) in the form of sheets (Ballinger, 1991). The 

method is slow and expensive. GRP sheets were cut and joined to form simple shapes 

to be used in non-bearing infra structural applications. Later, "pultrusion", an 

automated process of manufacturing FRP structural shapes, was developed. Pultrusion 

is a continuous process of pulling the required reinforcement (fibres) impregnated 

with an initially viscous liquid matrix through a heated die. Here the pre-formed 

composite is consolidated to the desired shape and the matrix is hot cured. The 

finished composite exits from the die as a solid hollow shape or profile cross-section 

(Starr 1983, Bonger 1990, Ballinger 1991, Davalos et al 1996, Barbero and Trovillion 

1998). The process is very versatile and variations are possible relative to the nature 

of the operations, the type of reinforcement and matrix, and the type and size of the 

profile being manufactured (Martin and Sumerak, 1987). Pultrusion is the best-suited 

manufacturing technique for the commercial production of GRP structural profiles 
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(Starr 1983, Werner 1984, Strongwell 1989, Davalos et al 1996). It enables a high 

manufacturing performance with consistency and reproducibility in strength and 

stiffness, and good surface textures, which require no further treatments. 

"Among the many composite manufacturing processes that have evolved during the 

past four decades, the pultrusion process offers the highest productivity-to-cost 

ratio. " 

(Zureick and Scott, 1997) 

Today, pultrusion has a commonality in both geometry and dimensions to standard 

structural elements, (angles, girders, beams, hollow sections and pipes), frequently 

given the name 'Pultruded fibre reinforced plastic (PFRP) profiles or 'pultrudes', 

where the term 'structural' has been taken to assume profiles subjected to any form of 

load condition. These structural profiles are gaining acceptance as substitutes for 

conventional load bearing elements produced from steel, aluminium and timber 

(Barbero 1991, Ballinger 1991, Mottram, 1991, Zureick and Scott 1997, Turvey 

2000). The main reinforcement in standard GRP structural profiles is glass-fibre 

strands (roving) placed along the longitudinal axis to produce "unidirectional 

profiles". Glass fibre mats are introduced to improve the transverse stiffness of the 

matrix and composite, leading to orthotropic material properties. Mechanical 

properties of the pultruded structural profiles are generally approximated as 

orthotropic (Vakiener et aI, 1991). 

Probably the largest structural application of pultruded GRP structural profiles is 

pipes for water or oil transportation (Ballinger, 1990), whilst they have been used in 

infrastructure development for air terminals and railway stations (Liskey, 1991). 

Purposely fabricated pultruded GRP structural elements have been used in the 

construction of lightweight pedestrian bridges. For example, a 51.5m span suspension 

bridge has been erected over A5 at Nescliff, near Shrewsbury (Plate 1.1). The deck of 

this footbridge has been constructed from pultruded GRP flat panels. 
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DOING THE UGHT FANTASTIC: The new 
51 .5m span .uspension brldce stradd/inc 
the A5 at Ne. clitf. near Shrewsbury. i. so 
IICht It barely needs holdln, up. The 51 .5m 
lon' deck of the footbrid,. hu been 
constructed from filKe.reinforced plastic. 
which Is rou,hly a quarter as dense as 
sfee/. WeirIrt savinC h .. .,.."led desiener 
FaberMaunsell and contractor Balfour 
Beatty to lie back the suspension cable. 
without need for pllln,. Mass concrete 
slabs provide footinc' for the brid,e's 
masts and anchora,e for Its back·stays. 
Fears that the featherwel,ht deck would 
flutter in cross winds led to a decision to 
add concrete ballast alonc the bridce's 
centre line. said Fab.rMaunseU project 
mana,er John Cadei. 

Plate 1.1 Pultruded GRP suspension foot-bridge, Shrewsbury, UK. 

(New Civil Engineer, 6 February 2003) 

A lightweight pedestrian bridge (Plate 1.2) has been built over the Tay river at the 

Aberfeldy golf club in Scotland (Robbins 1992, Bodamer 1998). All the components 

of this cable-stayed bridge are made from composite materials. The ratio of designed 

superimposed load to the self- weight is 10: 1. This bridge has a 63m central span with 

back spans stayed from "A" pylons. The deck, pylons and handrails have been 

fabricated from pultruded cellular glass fibre reinforced plastic. The frames "A" were 

assembled in the factory by joining two heavy box-section legs, with pre-drilled holes 

to accommodate the cable stays. The deck (l20m long containing 360m of GRP 

planks and weighing 7Skglm) was also factory prepared and assembled on site in a 

staggered lap arrangement with adhesive bonding. Though a considerable amount of 

time was expended on designing the bridge components, it took only four days to 

convert raw material into finished products (with no secondary finishing operations 

necessary), and the bridge was completed in just six weeks. 

A composite road bridge (Tech 21) has been constructed in Butler County, Ohio USA 

(Foster et aI, 2000). The bridge meets the AASHTO t HS-20 load requirements, 

equivalent of two fully loaded 18-wheel tractor/trailers, one in each lane. The bridge, 

10m (33ft) long and 7.3m (24ft) wide comprising all ORP components, weighs about 

one-fifth the weight of a conventional concrete structure, and was installed in six 

weeks. The deck is covered with asphalt wearing surface (instead of polymer 

t American Association of State Highway and Transportation Officia ls. 
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concrete) weighing more than the bridge itself (1 O,OOOkg), yet it meets the AASHTO 

specification requirements. The performance of the bridge is being monitored 

continually using strain sensors and deflection gauges embedded in and under the 

deck. The data collected should provide the necessary information and guidance for 

future composite bridge designs. 

Standard shaped structural profiles have also acted as load-bearing members (beams, 

columns, floors and ceiling decks) in the construction of buildings, cooling towers, 

and bridges (Green et aI, 1994). For example, pultruded GRP structural components 

manufactured by COMPOSITE Technology, Inc (CTI), with a brand name of 

Unilite® units have been used in the construction of cooling towers (Ballinger 1990 

1991, Yuan et al 1991, Green et al 1994). The cooling tower components include 

Unicolumns, Unibeams, lintels and gusset plates with bolts and pins for connections, 

all made from GRP (plate 1.3). The shape of the Unicolumns was designed to support 

the Unibeams from all the four sides. Standard pultruded profiles have also been used 

in building a stair-tower (Plate 1.4) for the US Navy at Fort Story, VA, USA. The 

tower is designed to sustain hurricane loads (Turvey, 2000). 

1.2 STABILITY AND BUCKLING ANALYSIS 

Any structural system when subjected to applied loads can have two kinds of failure, 

namely, (i) material failure and (ii) form failure. In material failure, the stresses in the 

structure exceed the capacity of the material, resulting in the formation of cracks 

and/or rupture. In form failure, though the stresses may not exceed the yield or rupture 

values, the structure may not be able to maintain its original form. Here the structure 

does not break physically but is deformed to some other shape (or form) due to a 

significant external disturbance. This deformed configuration of the structure is 

regarded as failure because its equilibrium configuration becomes unstable and it is 

unable to sustain the external load. The load, at which the equilibrium of a structure 

(or of its component) changes from stable to neutral, is referred to as the critical load 

(Chen and Lui, 1987). This is the limiting load at which the original configuration of 

the structure ceases to be stable. This phenomenon of change of equilibrium is known 

as buckling and the corresponding load as the buckling load. Buckling failure is often 

sudden and catastrophic and is normally accompanied by large deflections and 

nonlinear behaviour (Chen and Lui 1987, Farshad 1994; Palmer et al 1998). The 
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buckling failure commences at stresses much lower than the crushing (or yield) 

strength of the material. Therefore, the structural components having hollow cross­

sections with thin walls are more susceptible to buckling than material failure, when 

subjected to compressive loads in cases where the components have a large 

slenderness ratio. 

The instability or the buckling failure of structures (or their components) is of many 

types; for example, overall (or global) buckling, local buckling or lateral torsional 

buckling. Correspondingly, their failure modes are denoted as global, local, lateral or 

torsional modes. In overall or global buckling the member fails with excessive 

deflections in a direction normal to its length and it is unable to sustain the applied 

load. This type of buckling develops in slender columns (in frames) or in truss 

members. The cross-section of the member remains un-deformed but its longitudinal 

axis is no longer straight (but deflected). In local buckling, on the other hand, parts of 

a member (under compression) fail locally with large lateral deflections. The cross­

section of the member deforms (de-shapes) but the longitudinal axis remains straight. 

Local buckling, for example, occurs in short columns and beams (e.g. compression 

flange of a beam buckles locally or walls of a compressively loaded intermediate 

length column). In lateral torsional buckling an open-section profile buckles by a 

combination of twist and lateral bending of the cross-section (Timoshenko and Gere 

1961, Mottram 1992, Brooks and Turvey 1995). This type of buckling usually 

develops in cantilever beams or in beams with unsymmetric cross-section. It is not 

necessary for a structure to undergo overall (global) buckling for it to be classified as 

having failed both under serviceability and ultimate limit states (Farshad, 1994). Local 

or torsional buckling in a part of the structure may lead to rapid onset of complete 

failure either by global buckling due to large deformations or by material degradation 

(crushing). Therefore the minimum buckling load (regardless of the buckling mode) 

may define the critical load i.e. the ultimate load carrying capacity of the structural 

member. 

Pultruded GRP structural profiles have open or closed thin-walled cross-sections 

similar to their steel counterpart e.g. wide flange, I-sections, angle, channels, 

rectangular-hollow-box sections and square box-sections. The composite material is 

orthotropic in nature and remains elastic up to failure load without yielding in the 

direction of the primary reinforcement (Barbero, 1991). Further, GRP material has a 
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lower modulus of elasticity (30kN/mm2) and shear modulus (3.5kN/mm2) than steel 

(E=205kN/mm2 and G=80kN/mm2). For these reasons, the ultimate strength (load 

carrying capacity) of pultruded profiles is often governed by stiffness (buckling) and 

not by the actual strength of the material. It means buckling failure in pultruded 

sections often precedes material failure (Barbero 1991, Vakiener et al 1991). 

Consequently the design of structures comprising thin-walled composite members 

may be governed by buckling (compressive or torsional) of the flange or web 

segments or the overall buckling (Brown et aI, 1998) in addition to deflection (or 

serviceability) constraints that may also prove critical. 

Classical theories of elastic stability (Timoshenko and Gere, 1961) consider the 

analytical solutions to buckling problems of a structure or its components such as 

plates, beams and columns, characterised by conventional isotropic materials (metals). 

The formulas and design equations for the buckling analysis of these components 

subjected to various types of loading and boundary conditions have been developed 

and are well documented in the texts (Timoshenko and Gere 1961, Chen and Lui 

1987, Farshad 1994, Galambos 1998). For example, the critical buckling load for a 

simply-supported, straight, prismatic and axially loaded column that is slender enough 

to buckle laterally (global buckling) at its mid-height, has been predicted by Euler 

(1759) as PE = 1[2 ~I . Here E is the elastic modulus of the material, I the moment of 
L 

inertia, and L, the effective length (depending on the column boundary conditions) of 

the column. It is quite notable that the buckling load PE is independent of the strength 

or yield limit of the material but depends primarily on the elastic modulus and cross­

sectional stiffness of the column. The slenderness of a column is defined by the ratio 

of its length to radius of gyration of its cross-section (slenderness ratio). Theoretically, 

above a certain slenderness ratio a column buckles in a global mode. Below this 

critical value the column may fail in a local buckling mode. Design curves for 

metallic columns along with the corresponding equations have been developed to 

predict the critical loads for columns of various heights and boundary conditions. 

Research focused on conventional material and section types (e.g. steel "I" sections), 

has demonstrated that critical buckling load is sensitive (decreases) to eccentric 

loading and initial imperfections (e.g. out of straightness and variations in the wall 

thickness) (Galambos 1998). 
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The Euler formula has initially been applied to the prediction of the critical global 

buckling loads for the slender GRP pultruded columns (Barbero and Raftoyiannis, 

1990). The material stiffness E, for the orthotropic GRP, has been taken along the 

direction of applied load (which is same as the direction of primary fibres). Elastic 

modulus E for GRP wide-flange sections was calculated using the principles of 

micromechanics and lamination theory (Davalos et aI, 1996) (see § 3.2). In the 

micromechanical approach, each thin composite wall (lamina) in the cross-section is 

taken as a combination of layers of different fibre forms (roving and mats). The 

stiffness of composite wall is calculated from the stiffness of constituent materials 

(fibres and matrix), percentage of their volumes in each layer (volume fraction) and 

configuration of layers in the wall (provided by the manufacturer). Classical 

lamination theory (Jones, 1975) is applied with these values to calculate the cross­

sectional stiffness by algebraically adding the stiffness contributed by each layer 

toward the whole section, considering its orientation and position with respect to the 

section's neutral axis. This approach has been shown to provide estimates of cross­

sectional stiffness (Salim et al 1995, Davalos et al 1996). The theoretical buckling 

loads predicted in the study of Barbero and Raftoyiannis (1990) have been validated 

by experimental results reported by Barbero and Tomblin (1992). The experimental 

results were evaluated from the linear regression (Southwell, 1932) of the load­

deflection plot of experimental data. The close correlation of analytical and 

experimental results (within 6%) demonstrated that the theoretical prediction using 

the Euler equation could be applied to a specific GRP structural component. It was 

further demonstrated that the Euler formula gave an upper bound to the buckling load, 

as the experimental values were lower than the analytical predictions. The use of the 

Euler formula to predict the critical buckling loads, has also been validated by Zureick 

et al (1992), Scott et al (1992) and Yoon et al (1992) for GRP pultruded Wide-flange 

columns. These experimental studies also demonstrated the application of Southwell's 

method to the non-destructive testing of pultruded columns. Zureick and Scott (1997) 

suggested that a shear coefficient term should be added to the Euler equation, 

identifying the contribution of the high EL IGLT ratio that GRP composites generally 

display. Therefore the critical load of a slender column be estimated by the following 

equation, where PE is the Euler load, Ag =gross area and ns =form factor for shear 

depending on the shape of the cross-section. 
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Critical buckling loads for local buckling of short columns and beams have been 

theoretically predicted using the classical equations of elastic buckling for thin plates 

(Timoshenko and Gere, 1961). The thin walls of the cross-section (flanges or webs) 

are modelled as rectangular thin plates with appropriate boundary conditions 

depending upon their location and connections in the cross-section. Design curves are 

also available to predict the critical buckling loads for isotropic plates for different 

types of loadings and boundary conditions. Similar classical equations are also 

available for orthotropic plates (Timoshenko and Gere 1961, Galambos 1998). 

Local buckling in GRP composite profiles have been studied extensively (Barbero 

1991, Barbero and Sonti 1991, Mottram 1991, Vakiener et al 1991, Barbero and 

Raftoyiannis 1990 & 1993, Bank et al 1996, Qiao et al 2001). In these studies, thin 

walls of composite sections have been modelled as orthotropic rectangular plates 

subjected to in-plane compression. To simulate an axially loaded column, the shorter 

sides (loaded) of the plate are simply supported while the long sides have different 

boundary conditions depending upon their position in the section. For example the 

flange of a wide section is considered as a long plate with short edges simply 

supported, one long edge free and other long edge elastically connected to the web. 

Similarly the flange of a box-section is considered as a long plate with shorter ends 

simply supported and longer edges elastically connected to the web. Three types of 

web-flange connections have been considered in the above studies: simply supported 

or zero rotational stiffness, elastic connection with rotational stiffness equal to the 

stiffness of web or the fixed connection with restrained rotation. The plate buckles in 

a sine wave shape with a number of half-sign-wave lengths depending on the length 

of the plate. Theoretical loads have been predicted and plotted for column lengths 

equivalent to 2, 3, and 4 numbers of half sine waves (called as mode 2, 3 and 4 

respectively). Experimentally measured local buckling loads of the short GRP wide­

flange and box-section profiles are close to the results obtained from mathematical 

models including elastic web-flange connection. Simply supported and the fixed 

assumptions of the connection behaviour give the lower and upper bounds of the 

buckling loads. These studies further demonstrate that local buckling failure initiates a 
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process (tearing apart or separation of flange-web connection or material) that leads to 

the overall collapse and failure of the member (Bank and Yin, 1999). 

A transition zone may exist between global and local buckling referred to as the 

'interactive mode'. This mode has been identified in buckling tests on columns with 

intermediate heights. For isotropic columns the interaction between local buckling and 

yielding of material occurs which practically reduces the critical buckling load 

(Galambos, 1998). There exist column heights for an intermediate region in which the 

buckling load is lower than the predictions for both local and global buckling modes 

(Toneff et aI, 1987). Column design curves (Galambos, 1998) show a maximum loss 

in buckling load at this height. For orthotropic columns, on the other hand, the 

interactive buckling is attributed to the interaction of local and global modes. 

Experimental studies of GRP pultruded columns (Yuan et al 1991, Tomblin 1991, 

Barbero and Tomblin 1992, Raftoyiannis 1994, and Tomblin and Barbero 1994) have 

identified an intermediate-column height range for which the measured buckling load 

is lower than the predictions of both local and global buckling theories. This reduction 

in the critical load is due to the interaction between local and global modes whilst the 

GRP material remains linear elastic for large values of strain without yielding 

(Barbero and Tomblin, 1994). An interaction constant has been defined to estimate 

the amount of interaction. Theoretically there exists a column height called the 

transition height at which both local and global modes have the same critical load. 

The interaction of the two isolated modes is highly sensitive to imperfections (Godoy 

et al 1995). In fact the interaction between local and global modes developed an 

unstable tertiary mode leading to imperfection sensitivity and a lower buckling load 

Experimental data has indicated that while the isolated local and Euler modes have 

stable post buckling path, the interacting path is unstable (Barbero et aI, 2000). 

Design curves accompanied by the corresponding equations for wide-flange pultruded 

sections have been proposed (Barbero and Tomblin 1994, Barbero and Evans 1997 

and Barbero and DeVivo 1999). Critical buckling loads for the isolated global mode 

of pultruded GRP columns are plotted against a selected slenderness ratio 

A = ~ ~ PL ,which is function of material properties and PL , the short column load. 
1t EI 

PL is the load that is converged towards as the length of the column is reduced. 

Theoretically the short column load is equal to Euler load at 1.=1. Both isolated global 
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and local curves converge at the transition height where the buckling load is same for 

global and local modes. Theoretically interaction between global and local modes 

occurs in the vicinity of this height, and is characterised by a reduction in the buckling 

load up to 25 to 35% (Barbero and DeVivo 1999). An interaction constant, 'c', 

indicates the level of interaction. 

The finite element method has been used to predict the critical buckling loads of 

pultruded profiles acting as beams and columns (Vakiener et al 1991, Barbero et al 

1995, Barbero et al 1996, Davalos et al 1996, Bank and Yin 1996, Palmer et al 1998 

and Barbero and Trovillin 1998). The method has the ability to model the orthotropic 

composite material properties and to simulate the actual (physical) test conditions i.e. 

boundary (support) and loading states with both material and geometric nonlinearities 

represented. 

Research into the stability of GRP pultruded sections used as columns, has been less 

widely reported compared with equivalent work concentrating on the behaviour of 

beams, where wide-flange sections have been investigated rather than box-section 

profiles. Furthermore, using the same sub-division of section type, wide flange and 'I' 

section puJtruded columns with concentric axial loads have been investigated both 

theoretically and experimentally for local and overall (global) buckling, (Vakiener et 

al 1991, Barbero and Tomblin 1992, Barbero and Raftoyiannis 1993, Zureick and 

Scott 1997, Barbero and DeVivo 1999). Very few studies have considered the 

buckling behaviour of thin walled composite box-sections as columns (Barbero and 

Raftoyiannis 1993, Zureick and Scott 1997). 

Design codes for the reliable design of structures made from conventional materials 

are available and approved by a number of independent international and national 

organisations (ASTM, ASCE, BS, Eurocode etc). For design with the pultruded 

profiles (composite sections), no unified design code has been available. Both the 

Structural Plastic Design Manual (ASCE 1984) and the Eurocomp Design Code 

(Clarke, 1996) summarises equations based on classical Euler buckling theory 

(developed for isotropic materials) for complete sections and orthotropic plates 

buckling formulae (Timoshenko and Gere, 1961) for limited cases of boundary 

conditions to predict local buckling phenomena. The use of these equations provides a 

reasonable estimate of the global and local buckling loads when true material 

properties are known (Barbero and Raftoyiannis, 1993). The theoretical equations do 
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not simulate the actual physical conditions of the columns, especially when section 

walls are thick, predicting very high buckling loads. Design manuals supplied by the 

manufacturers (Strongwell, 1989) provide some empirical expressions. The majority 

of available expressions are theoretical and have not been validated by experimental 

evidence (Mottram, 1992). Many authors have stressed the need for a unified and 

reliable design guide based on theoretical and experimental evidence (Ballinger 1990, 

Vakiener 1991, Green et al 1994, Brook and Turvey 1995, and Mottram 2000). It is 

recommended that design curves for the pultruded shapes should be developed in the 

same way as historical design curves for isotropic material sections. The design curve 

for wide-flange sections developed for the whole range of manufactured lengths 

(Barbero and Tomblin 1994 and Barbero and DeVivo 1999) is taken as an example. 

1.3 AIMS AND OBJECTIVES OF THE RESEARCH. 

The aim of the present research is to predict the stability (critical buckling loads) of 

pultruded GRP box-sections (homogeneous and macro-perforated) from numerical 

methods both quantitatively and qualitatively for dissemination to practitioners. 

"It is clear to this author that the research community has not given adequate 

attention to creating a database with reliable geometric and mechanical properties 

for standard pultruded profiles. " 

(Mottram, 2000) 

The following objectives are identified for the fulfilment of this aim: 

1 To determine the current state-of-the-art in the prediction, determination, 

classification and dissemination of buckling phenomena in GRP composite 

sections with particular reference to box-section profiles. 

2 To determine the experimental response (failure loads and the failure modes) of 

pultruded box-sections subjected to concentric compressive loads (with and 

without macro-perforations), contributing to the database describing the behaviour 

of pultruded GRP profiles. 

3 To establish a numerical representation of the buckling phenomena (without mode 

presumptions) including the effective determination of elastic linear and non­

linear material responses. 

4 To verify the numerical representation against experimental evidence. 
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5 To develop design data and analysis procedures within the context of the 

experimental and numerical outcomes. 

1.4 SCOPE OF THE RESEARCH 

To achieve the objectives of the research, aspects of the procedures proposed by 

Barbero and Tomblin (1994), and Barbero and DeVivo (1999) have been followed. 

Two box-sections manufactured by FIBREFORCE Composites UK with nominal size 

of cross-section 51x51x3.2mm and 44x44x6.0mm have been selected to be studied as 

simply supported columns (Plate 1.5). The box-sections are made of E-glass fibres 

and polyester resin (Fibreforce, 2000). The box-section composition includes the 

following four types of layers (Figure 1.1): 

1. Veil, a resin-rich layer containing polyester fibres, primarily used as a protective 

cover against erosion and surface damage to the reinforcing fibres. The layer 

provides a smooth surface for handling. 

2. Continuous Filament Mat (CFM) consisting of continuous fibres randomly 

oriented. The layer improves the transverse mechanical properties of the section. 

3. Plain Roving (PR) containing continuous unidirectional fibre bundles 

contributing to the stiffness and strength in the longitudinal direction. 

4. Mock Spun Roving (MSR) inner protective layer covering the inner CFM layer. 

Mechanical properties are measured using analytical and physical test methods. 

Tensile properties of the material both in longitudinal and transverse directions have 

been provided experimentally (Saribiyik, 2000). In-plane shear properties have been 

measured in longitudinal and transverse directions, by testing double V -notched 

specimens according to the Iosipecu test method (ASTM D5379M-93). Compressive 

stiffness and strengths of the material have been provided from the test procedure 

adopted by Mottram (1994). 

Both numerical and experimental methodologies have been used to determine the 

critical buckling loads and failure modes of the selected pultruded box-sections 

columns. Numerical technologies, based on existing advanced finite element methods, 

have been applied to solve non-conventional structural models of pultruded columns. 

The experimental data has been quantified applying existing analytical and statistical 

approaches. Recommendations have been developed regarding the numerical 
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modelling of pultruded GRP box-sections. Numerical and experimental outcomes 

have been used to develop design curves and procedures. 

1.5 THESIS OVERVIEW 

The scope of the research outlined above is presented in 6 chapters. 

Chapter-2 reviews the stability research carried out on the buckling of pultruded 

beams and columns with particular emphasis on the techniques used for the prediction 

of buckling loads using approaches developed for isotropic materials. Some of these 

techniques are used in the present research. Test methods to measure the mechanical 

properties of the composite material are also reviewed and suitable methods for the 

determination of compressive and in-plane shear are selected. 

Chapter 3 presents the determination of mechanical properties of the GRP pultruded 

composite material. Compressive strength and in-plane shear properties are estimated 

analytically. Small test coupons are proposed using the finite element method for the 

measurement of transverse shear properties from which experimental material 

properties are established. 

Chapter 4 details the column testing. Experimental procedure and data reduction 

techniques described. The outcomes of the experiments are presented and discussed. 

Chapter 5 presents the numerical studies for predicting critical buckling loads using 

finite element models of GRP columns having different lengths. Linear elastic models 

with and without geometric non-linearity are analysed. Models with non-linear 

material properties are included. Effects of initial imperfections in the form of varying 

wall thickness, load eccentricities and initial curvatures are investigated. Circular 

holes introduced in the column walls are analysed for possible loss of buckling 

strength. 

Chapter 6 draws together the main conclusions of the research. Recommendations for 

future research are also made. 

14 



Plate 1.2. The GRP composite bridge in Aberfeldy golf-club, Scotland. 

(Ci vil Engineering, January 1998) 

15 



Plate 1.3 Cooling Tower built with pultruded GRP beams and columns. 

(Balli nger, 1990) 

Plate 1.4 Fort Story composite stairtower built with pultruded GRP profiles. 

(Turvey, 2000) 
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(a) (b) 

Plate 1.5 Pultruded GRP box-sections (a) 51x51x3.2 mm (b) 44x44x6.0 mm. 
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Figure 1.1 Typical Construction of pultruded box-sections. 

(a) 51x51x3.2 mm (b) 44x44x6.0 mm. 
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CHAPTER 2 

DEVELOPMENTS IN BUCKLING ANALYSIS 

METHODOLOGIES AND DESIGN GUIDANCE 

2. I INTRODUCTION 

Buckling of thin-walled structural profiles subjected to compressive stresses (beams 

and columns), reported in the literature, has been divided into three types; local; 

global; and interaction between the two, depending on the effective length of the 

member. Historical development of the methodologies applied for the three types of 

buckling problems, with particular emphasis on orthotropic pultruded sections have 

been reviewed (§ 2.2.2). Prediction of critical buckling loads for different column 

lengths has been a pre-requisite for the construction of column design curves. 

Universal design curves for pultruded ORP wide-flange columns has been developed 

by many authors, using experimental results of buckling tests performed on different 

lengths of various wide-flange sections (§ 2.3). For the two isolated modes i.e. local 

and global buckling, experimental and analytical results have shown good 

compromise demonstrating the validation of the analytical techniques. But for the 

intermediate columns, experimental loads have been found lower than predicted by 

any of the isolated buckling analysis. The decrease in the buckling load has been 

attributed to the interaction between local and global modes; the resulting mixed 

mode instability being imperfection sensitive. Therefore, the analytical procedures 

have not been successful to correctly predict the buckling load for columns of 

intermediate length. However, numerical analysis (finite element method), assuming 

different initial imperfections (fractions of the flange thickness), has been used to 

develop a design curve, based on numerical data for the wide-flange pultruded 

sections. Numerical methodology appropriate to predict accurate buckling loads for 

all the practical heights of the column has been identified from the review (§ 2.4). 

Buckling studies reviewed here, also emphasise the need to establish true mechanical 

properties of the pultruded material. Test methods previously used to determine the 

mechanical properties of the pultruded materials have been reviewed to identify their 

potential application in the context of dimensional limitations of the ORP box-section 

profiles being investigated in the present study (§2.5 onwards). 



2.2 RESEARCH ON DUCKLING 

2.2.1 ISOTROPIC SECTIONS 

Buckling of thin-walled metal structural profiles, when subjected to compression 

loading, has been extensively studied and reported in the literature (e.g. Usami et al 

1982, Toneff et al 1987, Key et al 1988, and Galambos 1998). The studies have 

covered many modes of buckling failure including overall (or global), local, lateral 

torsional, and interaction buckling. 

Euler (1759) solved the buckling problem of a slender, isotropic, axially loaded 

column and presented the classic formula bearing his name (Timoshenko and Gere 

1961, Galambos 1998). It was concluded mathematically that the buckling failure 

occurred at an axial stresses much lower than yield stress of the material, with 

instability due to geometry effects (length and moment of inertia) and boundary 

conditions of the column. For a long simply supported column under axial loading, 

there exists an infinite number of buckling loads, each one associated with a specific 

deformed shape called the buckling mode. The minimum of these loads is the critical 

buckling load. Once reached, the column fails with excessive lateral deflection (half 

sine wave) at mid height of the column. The Euler buckling load • PE 'for a simply 

supported and axially loaded isotropic column is 

(2.1) 

(E , I and L already defined on page 7) 

Later research has solved more specific cases of slender columns where the effects of 

boundary conditions and load eccentricities have been investigated (Timoshenko and 

Gere 1961, Jones 1975). The boundary conditions (supports at the ends) determine the 

effective length of the column. A coefficient 'k', has been defined to calculate its 

effect on the critical buckling load. For example, k is 1 for a simply supported and 4 

for fixed ended column. The slenderness (denoted by 'A') of columns has been 

characterised by the ratio of the column effective lengths (kL) to the radius of gyration 

( r = J± where A is the area of the cross-section). For a particular cross-section 
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(shape) of the isotropic profile, global buckling occurs above a particular slenderness 

ratio (A = kL) of the column. 
r 

If the column length is short, failure occurs due to local buckling of thin walls 

(flanges and webs) such as in the case of I-beams and hollow box-sections. The Euler 

formula cannot be applied in this case. Instead, the buckling load is predicted by 

discrete plate theory, assuming the walls of the section as thin rectangular plates 

subjected to in-plane compression (Timoshenko and Gere 1961, Jones 1975, Toneff et 

al 1987). Equations and graphs have been developed to solve the local buckling of the 

thin plates with different boundary conditions depending on the position of the flange 

in the cross-section (Rasmussen and Rondal 1997, Faella et al 2000). The flange 

buckles in a number of half sine waves (mode number) depending on the length of the 

plate. The critical buckling load remains constant (minimum) for any number of half 

waves as long as they are fully developed (all half waves accommodated in the 

length). Extensive experimental studies have been reported to demonstrate the validity 

of this procedure (Usami and Fukumoto 1982, Key et al 1988, Faella et all 2000). 

In the intermediate column range (short to long) a loss of buckling stiffness has been 

identified in experimental data on steel columns. Theoretical investigations attributed 

this loss to the yielding of material (Toneff et al1987, Chin et aI1993). 

2.2.2 ORTHOTROPIC SECTIONS 

Like thin-walled isotropic (steel) structural profiles, the governing mode of failure for 

fibre-reinforced profiles, is also buckling. This instability phenomenon is well 

documented in the literature. 

"As it is demonstrated by the experiments, local buckling of the compressionjlanges 

initiates a process that leads to the collapse of the member. " 

(Barbero and Fu 1990, Barbero and Raftoyiannis 1990) 

"Buckling is the governing failure for this type of cross-sections (pultruded GRP) and 

the critical buckling load is directly related to the load carrying capacity of the 

member. " 

(Barbero and Raftoyiannis, 1993) 
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"In thin-walled columns made of FRP composite materials, instability is a 

mechanical behaviour of major interest. " 

(Godoy and Almanzar, 1996) 

Due to low modulus of elasticity of glass fibres and the common thin-walled section 

geometry, pultruded FRP beams are susceptible to large deflection and buckling 

under service loads. " 

(Davalos et aI, 1996) 

"Since composite columns are thin-walled, buckling is a major consideration in 

design. " 

(Barbero, 2000) 

"Because of the relatively low modulus of elasticity of commonly used glass fibres 

and the common thin-walled sectional geometry, FRP beams may be susceptible to 

buckling even under service loads. Due to the high strength-to-stiffness ratio of 

pultruded FRP composites, buckling is likely to occur before the ultimate material 

strength is reached. " 

(Qiao et aI, 2001) 

However, the procedures developed for the theoretical prediction of critical buckling 

loads of isotropic columns have not been considered appropriate for anisotropic 

profiles. Although the shapes of the pultruded structural profiles are similar to their 

steel counterparts, their material properties (and hence the behaviour under the 

applied loading) are different, resulting in significant variations in behaviour 

compared with isotropic equivalents. 

ORP structural profiles have been considered as unidirectional members (§ 1.1) i.e., 

the main reinforcing fibres are in the longitudinal direction, with nominal 

reinforcement provided in directions aligned to the longitudinal axis. In general, ORP 

structural profiles exhibit anisotropic or orthotropic behaviour. For instance they have 

different elastic moduli in longitudinal and transverse directions. Also the elastic 

moduli in extension and bending are different (unlike steel) 
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"Pultruded structural elements are assumed as especially'" orthotropic homogeneous 

materials that could be characterised through four independent elastic constants: the 

longitudinal elastic modulus EL; the transverse elastic modulus ET; the in-plane shear 

modulus GLT; and the major Poisson's ratio VLT." 

(Barbero and Raftoyiannis 1990, Zureick and Scott, 1997) 

For pultruded profiles, bending moment of inertia 'I' is a function of cross-sectional 

geometry and the stiffness of the material which, in tum depends upon configuration 

of the composite material in the cross-section. It means two sections of similar shape 

and size (produced by different manufacturers) may have different moments of inertia 

about the same axis, depending upon the type, amount, location and the percentage 

volume of the fibres. Therefore the bending stiffness' EI " used to predict the critical 

buckling load (Euler formula) has to be redefined for pultruded profiles to account for 

their orthotropic nature. Further, the pultruded material has a high ratio of extensional 

stiffness to shear stiffness (EIIGLT ~ 6 typically) compared with steel (E/G = 2.7 

typically). Also pultruded materials do not have distinct yield points and are relatively 

non-ductile. 

"The buckling equation has to account for the anisotropic nature of the material. " 

(Barbero and Tomblin, 1994) 

"GRP typically features a higher ratio of elongation to shear moduli (than metals) 

and exhibits a non-ductile behaviour (unlike steel) without having a distinct yield 

point that may cause local buckling in highly stressed areas of the cross-section. 

There is a need to develop new design practices specifically for GRP type materials" 

(Barbero and Evans, 1997) 

The existence of inherited weak axes (e.g., lower bending stiffness in transverse 

directions), lack of yielding, high shear modulus ratio and brittle failure suggests the 

need of further investigation of the buckling behaviour of GRP structural sections 

when subjected to compression failure . 

.. When the material axes coincide with the reference axes (or loading axes), then the ply is said to by 

especially orthotropic (Datoo, 1991). 
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Global buckling (flexural mode) 

Global (or overall) buckling loads of long pultruded GRP columns have been 

predicted theoretically and measured experimentally by many authors. These studies 

include Hewson (1978), Lee and Hewson (1979), Yuan et al (1991), Zureick et al 

(1992), Scott et al (1992), Yoon et al (1992), Barbero and Tomblin (1992), Barbero 

and Raftoyiannis (1990 and 1993), Zureick and Scott (1997), Brown et al (1998), 

Barbero and De Vivo (1999), Barbero and Turk (2000). Most of these studies include 

both theoretical prediction and experimental measurement of critical loads and 

comparative studies. The Euler formulation (2.1)* has typically been employed for the 

theoretical prediction of buckling loads. Effect of transverse shear has been included 

in the Euler formulation by Lee and Hewson (1979), Zureick and Scott (1997) and 

Brown et al (1998) as, 

(2.2) 

where PE - Euler buckling load for pin ended axially loaded column (2.1), 

Ag - Area of column webs, 

G xy- In-plane shear modulus (assumed to be GLT). 

n - A form factor for shear depending on the cross-section geometry. 

The bending stiffness EI has been redefined to account for the orthotropic behaviour 

of GRP material. Either the E has been replaced by directional modulus of elasticity 

, Ex' (x being the direction of loading in Fig. 2.1) of the material (Barbero and 

Raftoyiannis, 1990 and 1993) or the bending stiffness' D' of the entire cross-section is 

used (instead of EI, Bank 1989). The directional elastic moduli Ex and Ey (in 

longitudinal and transverse directions) and in-plane shear modulus 'G xy' for 

orthotropic GRP profiles have been experimentally measured using coupons 

(specimens obtained from the flanges and webs of profiles) by many authors (Barbero 

and Fu 1990, Yuan et a11991, Mottram 1991, Turvey 1992, Mottram 1994, Wang and 

Zureick 1994, Davalos et al 1996, Zureik and Scott 1997, Saribiyik, 2000). It has been 

• The number in parenthesis is equation number. 
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demonstrated experimentally that the values of elastic modulus in tension' Ex•t ' and 

in compression' Ex•c 'are nearly equal (Zureick and Scott, 1997). It means that, for a 

pultruded section having uniform material architect in all its components (flanges and 

webs), Ex•t or E xoc ' evaluated from coupon testing, can directly be used in the Euler 

formulation. Alternatively the bending stiffness 'D' for the entire cross-section of 

column has been experimentally measured using three- and four-point bending tests 

(Bank 1989 and 1989a, Barbero and Fu 1990, Mottram, 1991, Bank et al 1994, 

Palmer et al 1998). 

Theoretically, elastic moduli Ex' E y' Poisson ratio v xy and shear modulus G xy of the 

composite material have been evaluated from the properties of the constituents (Le. 

fibres and matrix) and the material architecture of the cross-section (Barbero and 

Raftoyiannis 1990, Barbero 1991, Luciano and Barbero 1994, Nagaraj and GangaRao 

1997, Saribiyik 2000). Micromechanics in conjugation with the classical lamination 

theory 'CLT' (Jones 1975, Tsai 1989) for plates have been used to calculate the 

material constants of the composite walls of the pultruded cross-sections. The material 

properties evaluated from micromechanics has been experimentally validated by 

coupon testing for various pultruded shapes (Lopez-Anido et al 1995, Davalos et al 

1996, Qiao et al 1998). 

Experimental determination of overall buckling loads, based on performing physical 

tests on the pultruded GRP columns, has also been reported in the literature. Yuan et 

al (1991) and Hashem (1993) tested, pin-ended and concentrically loaded, square box­

section columns without and with extended flanges (Unicolumns in § 1.1). The 

studies demonstrated that the buckling loads (and hence the strength) mainly 

depended on the slenderness of the column. No comparison of the experimental 

buckling loads to analytical predictions has been reported. 

Experimental buckling loads measured by testing of slender square GRP box-sections 

(76x76x6.4mm) by Zureick et al (1992), Scott et al (1992), Yoon et al (1992) and 

Yoon (1993), and of wide-flange sections by Barbero and Tomblin (1992 and 1994), 

Zureick and Scott (1997) and Brown et al (1998) under similar testing conditions 

(simply supported and concentrically loaded) were found to be lower than those 

obtained using Euler formulation (2.2). It was suggested that presence of initial 

eccentricities (imperfections) was the main cause of this discrepancy. In these studies 
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Southwell plots (Southwell 1932, Tsai 1986) have been used to obtain the critical 

buckling loads from the test data (measured axial load and central deflection). The 

Southwell method also provides an estimate of cumulative imperfections (i.e. sum of 

material, geometric and testing equipment). In the method a nonlinear load-deflection 

(P - ~) plot has been transformed into a linear plot when lateral deflection ~ 

normalized by the axial load P , is plotted against the load (P - ~ ). The inverse of the 
P 

slope of the linear graph, gives an estimate for the critical buckling load and the 

intercept the magnitude of the cumulative imperfections. 

Important findings reported in these studies include; 

• Theoretical predictions using the Euler equation closely agreed with the 

experimental results, indicating that buckling capacity mainly depends on the 

longitudinal modulus of elasticity. Additional fibre reinforcement placed in the 

longitudinal direction would improve the longitudinal modulus and hence the 

buckling capacity of the profiles. Evaluation of true elastic constants, 

theoretically or experimentally has been demonstrated. A good estimate of 

bending stiffness ' D ' is vital for the prediction of buckling loads. 

• Material properties could be found with great accuracy from the material 

properties of the constituents and a detailed knowledge of the lamination 

construction. 

• The effect of transverse shear on the Euler buckling load was very small « 

4%). However the effects of shear stresses should be included to provide a 

conservative estimate. 

• Southwell plots gave a good estimate of critical buckling loads of slender 

columns subjected to axial loading. The method allowed non-destructive and 

repeatable testing of long columns and was able to account for the presence of 

imperfections. 

• The axial shortness is proportional to loading and can be predicted by linear 

theory. Theoretical and experimental observations correlate well. (!l = ~ ) 
AgE~ 
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• The typical axial deflection curve showed a linear elastic response for 75-95% 

of the buckling load. 

• Out of straightness should comply with ASTM D3917 -94 (eo ~ U240 where 

eo is the initial deviation from the mean dimension). 

• Tension and compression moduli in longitudinal direction can be taken as 

equal. 

Local Buckling 

For short spanned pultruded GRP columns or beams, the anticipated mode of failure 

is primarily local buckling (§ 1.2). Pultruded profiles are essentially an assembly of 

laminated panels (long rectangular plates), identified as flanges and webs (Barbero 

and Fu, 1990). When subjected to axial or bending loads, these panels enter a state of 

unstable equilibrium and buckle locally. This results in a premature failure of the 

entire GRP section, characterised by a distortion of the cross-section. The failure may 

be due to local buckling of one or more panels or a web panel under the action of 

combined normal and shear stresses (Johnson 1985, Barbero and Fu 1990, Yoon 

1993, Bank et al 1994, Qiao et a12001). 

Local buckling analyses of GRP pultruded profiles have generally been accomplished 

by modelling the flanges and webs individually and considering the flexibility of the 

flange-web connection (Vakiener 1991, Barbero and Raftoyiannis 1990 and 1993, 

Qiao et al 2001). Flanges and webs of the cross-sections of the pultruded shapes (box­

and I-sections) have been simulated as plates analysed independently using equations 

for composite plate buckling (Timoshenko and Gere, 1961). The governing 

differential equation for buckling of a symmetric plate (having similar material 

architect on both sides of the central plane) where no bending-extension coupling 

exists, under in-plane compression loading is: 

where Nx is the in-plane stress resultant, D 11, D22, D 12, and D66 are the plate stiffness 

coefficients (Galambos, 1998; Jones, 1975), given as: 
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(2.4) 

For an axially loaded column, all flanges and webs are subjected to compression, 

while, in the case of a beam under flexure loading, only the top flange is subjected to 

compression. When the critical buckling load has been reached, panels buckle in a 

local mode. 

The classical theory governing the buckling of orthotropic plates (2.3) is 

fundamentally the same as that for isotropic plates (Leissa, 1983). The main 

assumptions include: homogeneous thin plate of constant thickness; small 

displacements (less than the plate thickness) during buckling; elastic material; 

behaving kinematically according to the Kirchhoff hypothesis (normal to the middle 

surface remains normal and straight during deformation of the plate e.g., no shear 

deformations). The only difference is that: the stress-strain relationships for each ply 

are typically orthotropic, and may be different amongst the plies. Therefore, stresses 

for each ply must be transformed into a common plate co-ordinate system and the 

force and moment resultants must be integrated piecewise from ply to ply through the 

thickness of the plate (Qiao, 1997). 

"The flange of a pultruded I-section can be modelled as an orthotropic plate with two 

simply supported loaded edges and two unloaded edges, one of which isfree while the 

other is elastically restrained. " 

(Vakiener et aI, 1991). 

The flange-web connection plays a significant role in the determination of the critical 

buckling load. Three cases of flange-web connection have been considered 

historically: rigid flange-web connection with rigid web (fixed or clamped); rigid 

flange-web connection with flexible web (elastic); and hinged flange-web connection 

(simply supported 'SS'). A typical flange (from a pultruded section) under uniform 
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in-plane compression along the longitudinal axis is shown in Fig 2.2. Due to the 

periodic form of the buckling wave along the length of the profile, the flange has been 

assumed as simply supported (SS) at any of the inflection points on the buckling wave 

(Barbero and Raftoyiannis, 1990). The boundary conditions of the two unloaded long 

edges depend upon the section shape. The flange of an I-section has one long edge 

free with the other joined to the web. The flange of a box-section has both the long 

unloaded edges connected to the webs. The stiffness of the connection between 

intersecting flanges and webs has been denoted by 'D'. For free or simply supported 

connection D = 0, for clamped connection D = 00 and for an elastic connection D is 

equal to the bending elastic (transverse) modulus of the webs. Typically, a flange has 

been considered as an orthotropic thin plate subjected to in-plane compression along 

two short edges and elastically supported by the web on one long side in case of an 1-

beam and on both long sides in the case of a box-section (Fig. 2.2). 

Critical buckling loads, obtained by solving the differential buckling equations (2.3) 

for thin orthotropic plates for the three proposed long-sides boundary conditions, have 

been plotted in the form of failure envelopes (Fig 2.3) against profile lengths (Barbero 

and Raftoyannis, 1990). The graphs indicate lower buckling loads (lower bound) for 

hinged connection, higher for clamped connection (upper bound) and intermediate for 

elastic web-flange connection. For a short length the flange buckled in mode 1 (m=I); 

i.e., in the shape of sin( ": ) . For a longer length, the mode number increases, but the 

minimum critical load remains constant. This feature supports the assumption of a 

simply supported boundary at the inflection points along the length of the plate. It has 

been demonstrated that buckling of plate is independent of the length and only 

dependent on the bending stiffness of the material, boundary conditions and axial load 

applied. 

Theoretical results for a 152x152x6.4mm wide flange section (using (2.3» were 

compared with those from a three point bending test of same-size wide-flange beam 

(Barbero and Fu, 1990). The measured half wavelength (152mm) has confirmed the 

theoretical predicted value. The experimental buckling load however lies between the 

two bounds, but closer to the theoretical buckling loads predicted for clamped web­

flange connection than the elastic simulation. The authors (Barbero and Raftoyiannis, 

1990) attributed this to the excessive thickness of web near the flanges. However, no 
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experimental study giving the measured buckling loads for box-sections is available 

to verify the theoretical results predicted in this study. 

The study reported by Tomblin and Barbero (1994) includes both the theoretical and 

experimental investigations on the local buckling of wide flange (102xI02x6.4mm, 

152xI52x6.4mm, 152xI52x~.5mm and 203x203x9.5mm) pultruded GRP columns in 

axial compression. Local buckling loads have been predicted using the discrete plate 

formulation (2.3) used by Barbero and Raftoyiannis (1990) and considering the web­

flange connection elastic with stiffness equal to the transverse elastic modulus (022) 

of the web. Buckling failure envelopes (Fig. 2.3a) have been drawn for the different 

column lengths showing minimum (and constant) buckling loads for column heights 

corresponding to integral values for number of half waves along the buckled flanges. 

The physical axial compression tests have been performed on four wide-flange 

sections with lengths corresponding to 2, 3, and 4 half waves. Authors (Tomblin and 

Barbero, 1994) have extended the application of Southwell's method to estimate the 

local buckling load. Axial load has been plotted against the flange-tip deflection 

normalised by the applied load. The method has been used to extract the experimental 

buckling loads from the measured lateral deflections of the flanges. The close 

correlation between experimental and theoretical buckling loads indicate that 

simulation of web-flange connection as elastic, with stiffness of the connection equal 

to the transverse elastic modulus of the web, provided accurate predictions. However, 

the percentage difference between the two results increased as the number of half 

waves increased. The authors attributed this rising difference to the imperfections 

inherited in the pultrusion manufacturer. A careful inspection of the failure envelopes 

(Fig. 2.3a) and lengths of the tested specimens revealed that the flanges of the 

orthotropic material did not buckled in a square pattern as in the case of isotropic 

(steel) plates but with an aspect ratio of 1.2 to 1.3. 

A numerical study predicting the local buckling loads of wide-flange sections using 

the finite element method and comparing these results with classical plate theory has 

been reported by Vakiener et al (1991). Three pultruded GRP wide flange sections 

have been investigated for local buckling loads using full-scale finite element models. 

The columns are assigned orthotropic material properties and are axially loaded with 

pin-ended (simply supported) boundary conditions. Classical orthotropic plate 

buckling analyses have also been performed considering the three general flange-web 
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connections discussed in the above mentioned studies, for comparison of results. 

Finite element results reaffirmed classically predicted buckling loads considering 

flange-web connections as elastic, re-establishing that the hinged (SS) web-flange 

connection predicting a lower load (lower bound) and the rigid web-flange connection 

a higher (upper bound) buckling load. Furthermore, the number of half waves 

obtained by the numerical method agreed fully with the number predicted using 

classical plate buckling theory. 

The local buckling load has been referred to as short-column load' PL ' (Barbero and 

Tomblin, 1994). It is a function of both material properties and the geometry of the 

cross-section (depends upon D ll , D]Z, D 22 , and D66)' PL is independent of the length 

of the column and boundary conditions (Barbero and DeVivo, 1999). The value of PL 

has been determined by a column test (Tomblin and Barbero, 1994) or by numerical 

simulation (Vakiener et aI, 1991) of short columns. Barbero and Evans (1997) have 

suggested that the value of PL should be reported by the industry in their design 

guides (also Mottram, 2000). For example it is reported (Strongwell, section 10, Eq. 

C-2) thatPL = 0.5EA/(b/t)l.S , based on experimental data for their product; where A 

is the area of the cross-section, E is the modulus, and band t are the width and 

thickness of the flange, respectively. 

Local buckling of thin-walled pultruded profiles (box and I-sections) has been 

analytically investigated by Qiao et al (2001). Buckling loads for the flanges 

subjected to in plane compression have been calculated using the discrete plate 

method. The buckled shape has been defined as a function of plate boundary 

conditions, which in tum are a function of rotational stiffness (material stiffness) of 

the joining webs. Coefficients of restraints defined in terms of material stiffness have 

been used in the solution of the classical buckling differential equation (2.3). Solution 

to these equations has been plotted against different values of restraint coefficients. 

Expressions for the coefficients of restraint for 1- and box-sections are presented. It 

has been demonstrated that actual cases of restraint lie between simply supported and 

fully restrained (clamped) conditions. It has been submitted conclusively; 

"Although significant research has been achieved in the area of local buckling 

analysis of orthotropic plates with various boundary conditions, there is still a need to 
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develop simplified and suitable design equation for the local buckling ofpultruded 

FRP shapes. " 

(Qiao et aI, 2001) 

Mode Interaction 

An important aspect of column buckling analysis is the interaction between local and 

global modes for intermediate lengths of the columns. Mode-interaction (interaction 

of two or more isolatedt buckling modes) occurs when the theoretical buckling loads 

for the two isolated modes (global and local), for the corresponding length, are close. 

The mode-interaction phenomenon has been physically observed during the 

experimental tests on GRP pultruded I-section columns, where flange buckling (local) 

occurred in combination with lateral deflection (Tomblin, 1991; Raftoyiannis, 1994; 

Barbero et aI, 2000). Once the maximum load had been achieved, global (lateral) 

deflection combined with local flange deflection, increased rapidly with a decrease in 

the applied compressive load. The loss in the buckling stiffness depended on the 

length of the column and the magnitude of imperfections. It was further concluded 

that maximum interaction (and hence the maximum reduction in failure load) 

occurred for a column length having equal theoretical global and local buckling loads. 

The intermediate range of column height has been defined as the region of column 

heights for which interaction occurs between local and global buckling modes. The 

height of a column, for which the theoretical local and global buckling loads are 

equal, has been termed as the transition height. The occurrence of mode-interaction 

and resulting decrease in the experimental buckling loads has also been reported by 

other authors; 

"The experimental data for short and long column buckling suggest the existence of 

an intermediate column region where the critical loads are lower than the prediction 

of both local and global buckling theories. " 

(Barbero and Tomblin, 1994) 

t Global and local buckling modes observed in long and short columns have been termed as isolated 

buckling modes (Barbero et ai, 1996; Barbero, 2000). 
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"When two modes have close critical loads, there is a possibility of having interaction 

between them leading to a new equilibrium path (a coupled path) with a reduction in 

critical load". 

(Godoy, et aI, 1995) 

"For practical lengths of columns inframe structures, the work (Barbero, Tomblin 

and Raftoyannis) showed that there will be an interaction between local and global 

buckling. 

(Mottram, 2000) 

"When two or more modes of buckling correspond to loads that are close or 

coincident, interaction between the modes may lead to post-bucking behaviour quite 

differentfrom the post-buckling behaviour of the participating modes." 

(Barbero et aI, 1996) 

"Columns of intermediate slenderness experience mode interaction, which effectively 

reduces the load carrying capacity below than both predicted values, local and 

global, for a given slenderness. " 

(Barbero and Evans, 1997) 

"For intermediate lengths, the local and global buckling modes interact leading to 

smaller failure loads than predicted by any of the two isolated modes acting alone". 

(Barbero, 2000) 

Experimental studies carried out by Barbero and Tomblin (1994) and Barbero et al 

(2000) indicated a loss of up to 30% in the buckling loads of wide-flange pultruded 

columns of intermediate heights and a different failure mode (flange local buckling 

combined with lateral deflection at mid height of column) than the participating 

modes. Experimental data from one of these studies (Table 2 in Barbero et aI, 2000) 

demonstrated that interactive buckling occurred at stress/strength ratios of less than 

0.4, i.e., well in the elastic range of the composite material. It was concluded that the 

mode-interaction in pultruded GRP columns was due to interaction between local and 

global buckling mode rather than between local buckling and yielding of the material 

as in the case of steel columns. It was further demonstrated that the interaction 

between the isolated modes, in the case of pultruded I-sections, mainly depended on 

the length of the column and not on the cross-section dimensions. For the other 
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structural shapes, effect of the cross-sectional geometries on the degree of interaction 

may further be investigated by testing additional shapes for intermediate heights. The 

degree of interaction between isolated modes has been defined by an empirical 

constant 'c' derived from the experimental data (Tomblin 1991, Barbero and Tomblin 

1994). The value of 'c' is the ratio of measured load for a particular length of the 

column to its local and Euler theoretical load. 

The interaction constant 'c' has been empirically evaluated using the experimental 

data from tests on the pultruded I-shape columns (Tomblin, 1991; Barbero and 

Tomblin, 1994). The buckling strength ratios 'q' and's' have been defined as: 

Experimental failure load Per 
q= =--

Local buckling load PL 

Experimental failure load Per 
S - ---- -

(2.5) 

Euler buckling load PE 

An empirical interaction equation, based on the experimental data has been defined by 

the authors (Barbero and Tomblin, 1994) as: 

q+ s =1+cqs (2.6) 

For each column tested, 'c' may be calculated from (2.6) as; 

q+s-l 
c=...!....--- (2.7) 

qs 

The interaction constant 'c' for a profile of particular cross-section is determined by 

averaging the 'c' values from all the samples (lengths in intermediate range) tested. 

For example, the interaction constant c=O.85 for a wide-flange I-section 

(152xI52x6.4mm) has been determined by averaging the 'c' obtained by testing a 

number of samples of 152x152x6.4 profiles having intermediate lengths (Tomblin, 

1994). Similarly, interaction constant c=O.84 for the four different cross-sections of 

wide-flange I-sections has been averaged (Fig 2.4) in one value with the conclusion 

that interaction constant is independent of the cross-section, but is a function of 

column length and material properties (Barbero and Tomblin, 1994). 

The mode interaction phenomenon (also known as modal interaction) in composite 

columns of intermediate heights has been investigated theoretically by many authors 

(Barbero et al 1993, Raftoyiannis 1994, Godoy et al 1995, Barbero et all 1996, 
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Barbero 2000). The investigations have been carried out within the general framework 

of the theory of elastic stability considering the occurrence of the buckling 

phenomenon within the linear range of composite material. This has been documented 

experimentally for pultruded columns by Barbero and Tomblin (1994) and Vakiener 

et al (1991) and for lateral-torsional buckling of beams by Mottram (1991). Theory of 

elastic stability provides a similar understanding of the critical loads as those obtained 

by Euler (for global) and Timoshenko (for local), but it differs in that it allows to 

study post-critical states, also accounting for imperfection sensitivity of the critical 

loads. As the mode-interaction occurs after the initialisation of the buckling process 

(Godoy et al 1995, Barbero et al 1996), post-buckling behaviour of the structure, has 

been included in addition to the pre-buckling behaviours in these analyses. 

Analytically, mode-interaction has been studied by Barbero and Tomblin (1994), 

Godoy et al (1995), Barbero et al (1996) and Barbero (2000), using a static 

perturbation (incremental) technique to draw the equilibrium path for the entire 

buckling process. 

A numerical analysis considering the first order displacements (Barbero et al 1993, 

Raftoyiannis 1994), proved insufficient to predict the interaction behaviour, as the 

resulting mode was imperfection insensitive. It was concluded from the previous 

analytical studies on the interactive buckling of isotropic columns (Sridharan and Ali, 

1986), that an interactive failure mode (similar to one observed experimentally) could 

be included in the analysis to notice the imperfection sensitivity of the buckling load 

(Ratoyiannis 1994, Barbero and Tomblin 1994). It was suggested, therefore, to add a 

new mode (resulting from interaction) as a third participating mode in the buckling 

analysis. The third mode was termed a secondary local mode as its deformed shape 

(flange deflection) characterised the local buckling mode. 

A number of buckling modes may interact with the global and local mode (Godoy et 

al 1995, Barbero 2000). The criteria for the possible interacting modes are: (a) it is 

different from Euler or local modes; (b) it follows an interacting path; and (c) the 

interacting mode resembles the experimental mode shape. Once the shape of the third 

mode has been determined, modal displacements of the resulting interaction mode can 

be written as the linear combination of the three interacting modes. 

The studies reported by Raftoyiannis (1994), Barbero and Tomblin (1994), Godoy et 

al (1995), Barbero et al (1996) and Barbero (2000) include three isolated modes: a 

34 



primary local (rotation of flanges and bending of web); a global (Euler); and a 

secondary local (bending of flanges), in the mode interaction analyses for I-shaped 

GRP columns. In the study by Godoy et al (1995) analytical functions have been 

chosen to model the deformed shapes of the three participating buckling modes. 

Contributions from the proposed displacements of the individual (a global and two 

local) modes, have been combined linearly to obtain the total displacement field in 

terms of four degrees of freedom (axial shortening, lateral web deflection, rotation of 

flanges and transverse displacement of flange outer-tip). The deformed shape and the 

buckling behaviour (loss in strength at buckling and imperfection sensitivity~) were 

then calculated by linear analysis. The fundamental path was typically linear (for a 

perfect system), with three bifurcation points on the loading axis, corresponding to the 

three isolated modes. Two secondary paths, both stable and symmetric emerged from 

the lowest bifurcation point (corresponding to local mode) and next one, close or 

nearly coincident bifurcation point (corresponding to global mode). Two further 

bifurcation points were found on the local (lower) secondary path; the first one 

yielded a stable tertiary path similar to the Euler mode, while the second one yielded 

an unstable tertiary path with a different mode shape (flange and web deflection) 

resulting from interaction between local and global mode. Since the tertiary path is 

unstable, the behaviour of a real imperfect column will be imperfection sensitive and 

failure will be catastrophic, with no load capacity after buckling. It is worth 

mentioning that other modes with shapes similar to the second local mode has been 

chosen as the third interacting mode along with primary local and global modes. 

However, similar deformed shapes and buckling behaviour were obtained from the 

interaction analysis. This means that interaction depends exclusively on the two 

primary modes. The third mode needs to be considered because first order 

displacement is insufficient to trigger interaction (Barbero et al 1996, Barbero 2000). 

The finite element method has also been employed using commercial code 

(ABAQUS, 1998) to model the intermediate height wide flange pultruded columns 

(Barbero, 2000). By using a finite element discretisation as plate assemblies, all 

* Imperfection sensitivity means that the peak or failure load of the imperfect system will be lower than 

the bifurcation load of the perfect system, the magnitude of the reduction depends on the magnitude of 

imperfection (Barbero, 2(00) 
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buckling modes as well as amplitude modulation§ are automatically taken into 

account. While all the isolated mode secondary paths were found to be stable, the 

column was found to be imperfection sensitive once mode interaction was reached. 

Material properties (like orthotropy i.e., ratio between stiffness in the transverse and 

axial directions) play an important role in the interactive buckling of I-section 

columns (Godoy et aI, 1995). For higher orthotropic ratios, higher degrees of 

interaction have been reported in the analytical investigations performed by Godoy et 

al (1995). Conversely, it is possible to design the material so as to avoid the 

occurrence of interaction for a given length (one of the advantages of using composite 

materials) (Barbero, 2000). 

Numerical results for 152x152x6.4mm I-section columns of intermediate lengths 

(Barbero, 2000) are compared with experimental results for the same columns by 

Barbero and Tomblin (1994), with poor agreement (difference between 14% to 55%) 

between the two, indicating that the interacting mode shape is different from the 

isolated local mode. 

Barbero (2000) presented a numerical study investigating the effects of geometrical 

imperfections on the degree of modal interaction in pultruded columns. Imperfections 

of known quantities (t1240 to tl2 where 't' is the thickness of the flange) were 

introduced to the column corresponding to the shape of Euler, local or a combination 

of the both buckling modes. Euler and local imperfections, when introduced 

separately, produced virtually the same decrease in buckling loads, whereas a 

combination of both imperfections caused cumulated reduction adding the effect of 

both imperfections. It was concluded that besides the column slenderness, buckling 

load is a function of amplitude of imperfections, and is independent of the 

imperfection shape. Interaction plots (Fig. 2.5) for an I-section profile of intermediate 

lengths has been constructed numerically by Barbero (2000) similar to that developed 

experimentally (Fig. 2.4) by Barbero and Tomblin (1994). Numerical plots (Fig 2.5) 

clearly show the deviation of the peak load from the corresponding isolated mode 

predictions. For each imperfection amplitude, several points represent different values 

§ Wave modulation implies the reduction in the amplitude of the buckling shape near the supports 

(Barbero. 1996). 
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of slenderness. The simulated data for the imperfection amplitudes have been curve 

fitted to evaluate the empirical interaction constant 'c' (Tomblin, 1991). The 

annotated plots represent the best fit to the data for the imperfection amplitudes, and 

the corresponding values of 'c' are given in the legend. As the process accounts for 

the effect of slenderness, 'c' represents all the various values of slenderness. Values 

of 'c' taken from the best fit to the data are plotted against imperfection amplitude elt, 

can be represented by a linear equation (straight line). From this plot 'c' can be 

determined for any value of elt, and peak load can be predicted using design equations 

(§ 2.4). 

2.3 STATE -OF -THE-ART DESIGN GUIDANCE 

For design purposes, simplified formulas have been provided for steel structural 

profiles, being used as beams and columns in the structural frames. For instance the 

column formulas are functions of the major parameters of strength, such as the yield 

point, the length, and the cross-sectional properties, with factors of safety prescribed 

to give designs of acceptable safety. The Column Research Council (CRC) was 

founded in 1944 to monitor and present theoretical and practical work related to metal 

column design. Later in 1976 the CRS became the Structural Stability Research 

Council (SSRC) with an extended scope to include research dealing with all types of 

structures and structural elements where stability is a controlling feature of behaviour 

(Johnston 1983, Galambos 1998). The council publishes up-to-date research on the 

stability of metal structures, on a regular basis, and maintains a working interaction 

between structural engineering practice and research (Galambos, 1998). 

For example, "CRC .... -Column strength curves" has recommended empirical 

equations (Galambos, 1998) based on the tangent-modulus theory as: 

for ). ~.J2 (2.8) 

for).?' .J2 (2.9) 

where 

•• CRC: Column Research Council. 
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(2.10) 

The curves has been drawn for the average critical stress for small and medium-sized 

hot rolled wide flange sections of mild structural steel, with a symmetrical residual 

stress distribution typical of such members. The recent trend in column design 

involves column formulas which are a numerical fit of curves obtained from 

maximum strength analysis of representative geometrically imperfect columns. 

Further, the strength of columns has now been represented by more than one column 

curve, introducing the concept of multiple column curves, e.g., SSRCtt curves 1 (Fig. 

2.6), 2, and 3 (Galambos, 1998); Eurocode 3 (ECS, 1992) and Canadian standard 

(CSA, 1994). 

Pultruder's Design Manuals. 

The first EXTREN® Design Manual was published in 1971, updated in 1978 and 

republished in 1989, providing design guidance for compression members (columns) 

using empirical equations based on the manufacturing experience, application 

knowledge and test data gathered from physical tests on GRP columns (Strongwell, 

1989). FIBREFORCE, UK also follows this manual. Design tables, besides the 

corresponding design equations have been included for the prediction of allowable 

axial stress and loads for different sections. Neither the test methods have been 

described nor are the experimental data available in public domain for independent 

evaluation. The column heights are divided into two groups; short and long, 

depending on the slenderness ratio taken as kUr (like conventional steel elements). 

Only concentric loading conditions have been considered. For example, the allowable 

axial stress Fu (should be less than critical buckling stress) for: 

short box-section column: 

F = E 
u 16(blt)0.85 

(2.11) 

(b and t are width and thickness of the webs of the box-section respectively) 

long box-section column: 

tt SSRC: Structural Stability Research Council, new name of CRC since 1976 (Galambos, 1998). 

38 



F = 1.3E 
u (kLI r)1.3 

(2.12) 

short wide-flange column: 

(2.13) 

(bj and tj are the width and thickness of the flange respectively) 

long wide-flange column: 

F = 4.9E 
u (kLlr)1.7 

(2.14) 

"These relationships appear to correlate well with the actual failure loads 

encountered during testing. However, since these equations are empirical in nature, 

they must be supported analytically before acceptance in a general design code. " 

(Vakiener et aI, 1991) 

The Elastic moduli used for design purposes are the minimum for a range of materials 

of structural profiles produced by the company. Most importantly, intermediate 

heights of column (near to the transitional length) have been omitted from the design 

point of view, for which the experimental load has been found much lower than either 

for short or long column due to interaction of local and global buckling (Barbero, 

1994; Barbero and Trovillion, 1998). Therefore these design equations can not be 

referred to as universal design equations. 

ASCE (1984) 

This code, published by the American Society of Civil Engineers, includes design 

equations suitable for composite fibre reinforced structural profiles. Design 

expressions are based on the theory of elastic stability (Timoshenko and Gere, 1961; 

Jones, 1975). Long column buckling has been addressed using directional modulus of 

elasticity in the Euler formulation (2.1). To deal with the local flange buckling, 

equations are presented for the limiting case of a one edge simply supported flange 

(simple-simple-simple-free), and a one edge fixed flange (simple-fixed-simple-free) 

as: 
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(2.15) 

The equation can be used to approximate the critical load for an outstanding flange 

(Vakiener et aI, 1991). Composite columns with intermediate lengths susceptible of 

buckling mode interaction have not been included in the design. 

Eurocomp Design Code (EDe, 1996) 

"This publication represents the first independent, practical guidance on structural 

design of polymer composites. The EUROCOMP design code has a limit state 

approach to requirements for resistance, serviceability and durability of structures. " 

(Mottram, 2000) 

The equations cited in Eurocomp design code for the prediction of design load for the 

concentrically loaded pultruded (FRP) column are based on elastic theory of stability 

(Timoshenko and Gere, 1961). It has been suggested in the code that columns should 

be investigated for all the possible types of buckling for that height such as global 

(lateral deflection), web local (flexural and shear) and flange local (compression) 

buckling. The Euler formula has been used (in the design code) for the determination 

of global buckling load assuming the material as isotropic and using the elastic 

modulus along the weak axis of the profile. Local buckling, on the other hand, has 

been solved using the classical plate buckling equation and requires the knowledge of 

both longitudinal and the transversal flexural stiffness of the member. For example, 

the local compression flange buckling for the two general cases: a long rectangular 

flange with both longitudinal edges simply supported (flange of a box-section); and a 

long rectangular plate with one longitudinal edge simply supported and the other free 

(outstayed of an 1- or H-section); are respectively computed as 

(2.16) 

and 

_ ,,2 { (b)2 (12Dxy J} 
(Yc.cr.y - tb 2 D x -;; + ~ (2.17) 
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where 

(2.18) 

a = the half wave length of the buckle (taken equal to the length of the plate) 

b = effective width of the plate 

t = thickness of the plate 

D x' D y ,D xy' and D~ are the plate stiffness and are respectively equal to Dll , 

D22 , D12 and D66 , given in (2.4). 

The design equations presented in the EDC for design of composite structural profiles 

are the same as given in the ASCE (1984). Effects of apparently lower shear modulus 

of the composite material have not been accounted for. Also the length of half sine 

wave 'a' assumed by the buckled flange cannot be taken equal to the length of the 

long rectangular plate (equal to short column length). It is well known that a long 

rectangular isotropic plate buckles in half-waves, the lengths of which approach (for 

minimum load) the width of the plate i.e. a buckled plate subdivides approximately 

into squares. In a three point bending test on composite wide-flange I beam 

(152x152x6.35mm), both theoretical predicted (Barbero and Raftoyannis, 1990) and 

experimental measured (Barbero and Fu, 1990), half-wave length of 152mm was 

found, confirming the square divisions of the buckled flange. However these studies 

concluded that local buckling of the compression flange is independent of the length 

of the beam and only dependent of the maximum bending moment (load) applied. 

Further Eurocomp design code does not address the potential loss of buckling 

stiffness in the column of intermediate (or transition) height. The design criteria in 

EDC require computing the ultimate stresses for all possible modes of buckling and 

serviceability limitations, for every practical height. Interaction of global and local 

buckling develops an unstable mode, which reduces the stiffness of the section up to 

30%, and is highly imperfection sensitive (Barbero et aI, 1996). 

Design curves for GRP columns. 

A universal design curve along with the corresponding equation has been developed 

to estimate the buckling loads for GRP pultruded I-section structural profiles used as 
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concentrically loaded columns (Tomblin 1991, Barbero 1992, Barbero and Tomblin 

1993). The design curve represents the whole range of practical column lengths 

(similar to universal design curve for steel columns). The main parameters involved in 

the design equation are the slenderness ratio 0..), the local buckling load (PL ) for a 

short column and the interaction constant (c) to account for modal interaction in 

columns of intermediate length range. 

The universal slenderness ratio (A.) for the composite GRP columns has been defined 

based on similar arguments made for steel (Galambos, 1998) and timber (Zahn, 1992) 

column universal design curves. For example, in the case of steel columns the 

slenderness ratio (A =.!.. L J'" ) has been defined as a function of cry (yield stress) 
7t r E 

and E (the bending stiffness) in conjunction with the normally expected L (length of 
r 

column divided by its radius of gyration). In case of a timber column (a natural 

composite) the slenderness ratio (A. = ~ L ~ Fe ) has been defined as a function of Fe 
7tp E 

(compression strength) and E (bending stiffness) in addition to the Up (ratio of 

column length to curvature). Likewise, the slenderness for the composite GRP column 

has been defined in terms of D (the sectional flexural rigidity), PL (local buckling load 

which in tum depends upon D) and column length L. The PL corresponds to the local 

buckling behaviour of steel sections before yielding and compressive failure of timber 

columns in the absence of local buckling. Note that because of various amounts, 

types, and orientation of fibres in the cross-section the term D cannot be separated 

into bending stiffness (E) and the moment of the inertia'/' (Barbero 1990, Barbero 

and Trovillion 1998). Further, two columns having same ratio of Ur may have 

different bending stiffness and hence the bending characteristics (Barbero and 

Trovillion, 1998). Where as, dependency of the buckling load on column length has 

been established experimentally by many authors (Yuan 1991, Barbero and 

Raftoyiannis 1992, and Barbero and Tomblin 1994). Therefore the slenderness ratio 

for pultruded composite columns has been redefined (Tomblin 1991, Barbero 1992, 

Barbero and Tomblin 1994), as: 

(2.19) 
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1[2D 
Since PE = -2-' from the definition of universal slenderness (2.19), it may be 

L 

written as 

(2.20) 

which means that theoretical global and local buckling loads are same for A = I, 
giving the definition of transition height (e.g., transition between global and local 

buckling). Putting A = 1 in (2.19), the transition height' L* 'for an I-section column 

can be calculated as: 

(2.21) 

"For the theoretical imperfection-free situation there is a column height where the 

critical buckling load is identical for both the global and local buckling modes. This 

height is referred to as the transition height". 

Mottram (2000) 

The loss in the buckling stiffness (decrease in the critical buckling load due to mode 

interaction) of an intermediate column (imperfect or real) has been estimated by 

defining the interaction constant 'c', which physically describes the degree of 

interaction present between the local and global buckling modes (2.7). The parameter 

'c' accounts for the effects of nonlinear compression due to inhomogeneity of the 

material, and physical imperfection such as out of straightness in the columns (Zahn 

1992, Barbero and Tomblin 1994). 

Substitution of (2.20) and (2.5) in (2.6) gives, 
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The root of this equation is 

. b Pcr • replacmg q y - gIves, 
PL 

1+_1 
..12 

2c 

1 

CA? 

2 
1+_1 

..12 

2c 

(2.22) 

(2.23) 

(2.24) 

which represents actual values of Per determined experimentally and presented in 

terms of interaction parameter c and slenderness ratio A. Therefore, equation (2.24) 

has been presented as a design equation over the entire range of column slenderness, 

short, intermediate, and long (Fig 2.7). 

Barbero and Tomblin (1994) used this equation to construct a universal design curve 

for the wide flange I-sections used as columns simply supported and concentrically 

loaded. Buckling loads for intermediate length columns (in the vicinity of transition 

length (2.21» has been measured on three wide flange sections i.e. 102x102x6.4mm, 

152x152x6.4mm and152x152x 9.35mm. Additional experimental data from Barbero 

and Tomblin (1992) and Barbero and Raftoyiannis (1993) have also been included. 

The interaction constant for each type of cross-section was inferred from the 

experimental data by averaging the value of 'c' using all data points. Theoretical 

buckling loads have been computed using micromechanics and classical lamination 

theory (Barbero and Ratoyiannis 1990, Luciano and Barbero 1995). This procedure 

has been validated experimentally for similar pultruded shapes (Lopez-Ani do et aI, 

1995; Davalos et aI, 1996, Qiao et aI, 1998) by comparing the predicted material 

properties with coupon test results. Experimental loads, normalised by the local 
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buckling load (Per = q), have been plotted against universal slenderness ''A' (2.19), 
PL 

and resulting buckling envelopes for all I-sections collapse into one universal curve. 

All the I-sections used in this investigation have been described by the same value of 

the interaction constant. It has been further recommended that the interaction constant 

'c' must be determined experimentally for each new section following the procedure 

described. A similar design equation, design curve and the procedure for the 

evaluation of the interaction constant 'c' has also been reported by Barbero and Evans 

(1997). Determination of the interaction constant using experimental data has also 

been emphasised by other authors as: 

"The value of the mode-interaction constant must be determined from reliable and 

relevant experimental data (i.e. when the load eccentricity is zero}." 

(Mottram, 2000) 

A further parameter needed for the construction of the universal (applicable for all 

range of practical heights) design curve is PL. This should also be measured as 

accurately as possible. Design equation (2.24) is simpler to use than many equations 

for different heights (2.11-2.17) or Euler equation for long columns and local 

buckling equation for short columns. Equation 2.24 provides a basis for the design 

and use of pultruded structural columns in engineering applications Barbero and 

Evans, 1997). 

Barbero and DeVivo (1999) have produced a design curve (Fig 2.7) for pultruded 

GRP I-section columns using (2.24) and experimental data from Barbero and Tomblin 

(1994), Zureick and Scott (1997), Barbero and Trovillion (1998), Brown et al (1998), 

and Barbero et al (1999). Values of 'D' and PL were taken from the respective 

references. The column loads have been normalised by PL (function of D) to compare 

the experimental data from various sources because for even the same cross-sections, 

the material properties of the columns differ among the manufacturers. The classical 

local and Euler curves are recovered by setting c = 1, with buckling loads showing a 

strong dependency on the slenderness of the column as expected. Interaction constant 

has been calculated to a value of 0.65. The curve with interaction constant c = 0.65 

has proved to be conservative as all the experimental points fall above this curve. 

According to Mottram (2000), a 'c' value of 0.65 for concentric loaded columns, is 
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very low and indicative of very high imperfections either in the structural profiles or 

in the testing rig and the procedure followed to obtain concentric loading. Mottram 

(2000) also observed a substantial difference in the value of PL computed analytically 

or measured experimentally by many authors. In this respect he submits, 

"Agreement must be reached on the method or methods (either testing or numerical) 

that can be used to accurately determine the local flange-buckling load. " 

(Mottram, 2000) 

Mottram (2000) did agree to the logical arguments used to define the universal 

slenderness ratio (A) for the composite columns and the procedure followed to 

evaluate the interaction constant 'c' from the experimental results by Barbero and his 

fellow researchers. It has been added, 

"The methodology used to develop their equations has laid down procedures that will 

eventually provide a rigorous design approach for engineers to use with confidence." 

(Mottram, 2000) 

Zureick and Scott (1997) have undertaken an experimental study regarding the Euler 

buckling of pultruded GRP I-and box-sections columns, and presented a design curve 

based on the experimental data gathered through buckling tests on slender columns. 

For comparison of experimental results from different sections, a non-dimensional 

slenderness ratio has been defined as: 

(2.25) 

where F: denotes ultimate longitudinal compression stress, 

and Fe is the Euler load including the shear factor. 

Note that F: included in the slenderness ratio (even for long columns, where 

buckling occurs at stresses much lower stresses than ultimate compressive stress) 

corresponds to the local buckling load P L used in the definition of slenderness in 

(2.19). PL is unique property of the profile which is independent of the column height. 

The experimentally measured buckling stresses 'fex/ have been calculated by dividing 

the experimental buckling load by cross-sectional area. To compare the experimental 

results from different sections, the buckling stress 'fex/ has been normalised by the 
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ultimate compressive stress 'F{' of the material and plotted against the defined 

slenderness ratio. Plots of the experimental results of all the sections (two 1- and two 

box-sections) showed a great similarity in the behaviour of different cross-sections. 

The curves are similar to the Euler curves for slender columns. Based on the 

experimental observations, design guidelines, for concentrically loaded unidirectional 

fibre reinforced composite members with doubly symmetric cross-section in which 

the global limit controls, have been proposed as: 

(2.26) 

where Pr is the factored axial compressive resistance, ¢Jc is the resistant factor that 

shall not exceed 0.85, and Pn is nominal compressive resistance given by 

(2.27) 

where Ag is the gross sectional area of the member FE is the elastic buckling stress 

and may be defines as 

(2.28) 

The axial shortening in the member can be estimated as 

(2.29) 

where Lo is the member length, and a reduction of 20% in the average material 

property EL is an empirical factor obtained experimentally. 

In the previous studies the interaction constant 'c' has been calculated using 

experimental data. Barbero (2000) described a procedure to evaluate the constant 'c' 

from simulation results generated from Finite Element Analysis. Critical loads for 

pultruded wide-flange (152x152x6.4mm) columns have been estimated using the 

finite element method for various constant values of slenderness (in the vicinity of 

transition length Le., A from 0.824 to 1.013) and varying the introduced imperfections 

(elt from 1140 to 112, where e is initial central deflection and t is flange thickness) at 

mid lengths (called the imperfection amplitude). The larger is the imperfection the 

greater is the reduction of the peak load. For each value of imperfection amplitude, 
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the simulation data were fitted with the empirical equation (2.6) which models 

interaction by an adjustable constant 'c'. The lines with symbols (Fig. 2.5) represent 

the best fit to the data for corresponding imperfection amplitudes and corresponding 

values of 'c' are given in the legend. Note that this process accounts for the effect of 

slenderness because all the data for various slenderness values have been represented 

by a single value of 'c' corresponding to a given imperfection amplitude. 

Experimental data have also been include for comparison and is presented by open 

circle symbols in the Fig 2.5. Interaction constant 'c' has been found inversely 

proportional to the amplitude of imperfection (elt). Consequently, 'c' can be obtained 

if the amplitude of imperfections is estimated. For design purposes, an estimate of the 

imperfection amplitude can be obtained from the geometric tolerance reported by the 

manufacturer. Once the 'c' value has been established for a particular shape, (2.24) 

can be used to compute the peak load for any slenderness value. 

2.4 RESEARCH l\fETHODOLOGY 

The research on the buckling strength of pultruded GRP profiles has demonstrated the 

application of combined experimental and analytical approaches to establish the 

critical buckling loads and associated buckling modes. Experimental investigations 

have been employed to obtain the load-deflection (overall lateral deflections or flange 

rotations) diagrams showing the pre- and post-buckling behaviour of the structure 

under the applied load. For example, overall buckling loads for pultruded GRP wide­

flange and box-section columns have experimentally been measured by Yuan et al 

(1991), Barbero and Tomblin (1992), Zureick and Scott (1997), Brown et al (1998). 

Southwell method (Southwell, 1932) has been applied for the linear regression of 

non-linear P-~ (axial Load versus central lateral deflection) plots. A mathematical 

explanation of the Southwell method has been given by Tsai (1986). Experimental 

methodologies not only provide the shapes of buckling modes but also measure the 

modal amplitude (lateral central deflection). Further, Southwell plots provide an 

overall estimate of initial imperfections. The experimental data has been used as the 

primary information for constructing the analytical models and also for the validation 

of the theoretical outcomes. 

Analytical approaches correlate the experimental observations with the classical 

theories (e.g. theory of elastic stability, CLT and static equilibrium equations) and 
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provide explanations for the observed behaviour. The classical approaches i.e. Euler 

formulation and differential equation for buckling of orthotropic plates has been 

solved using analytical functions representing modal shapes observed in experimental 

configurations (Barbero and Fu 1990, Barbero and Raftoyiannis 1993). The analytical 

functions are required to satisfy the boundary conditions and modal displacements of 

the buckled shapes. Similarly in the mode-interaction investigations modal 

displacement fields have been analytically proposed by Barbero and Raftoyiannis 

(1994) and Godoy et al (1995). Modal displacements of the three isolated modes 

participating in the interaction process, in the form of strain energy have been added 

linearly to obtain the displacement field of the resulting interaction mode. The 

analytical investigations have been usually generalized allowing parametric studies to 

establish the effects of varying material properties, geometry, loading or support 

conditions. Numerical approaches (e.g. finite element method) have now become 

more useful as large and complex geometries can be solved using fast and extensive 

computing facilities. Theoretical investigations save time, material, and expensive 

laboratory resources. Parametric studies lead to identification of principal factors 

imparting improvements in the material architect and the buckling behaviour. For 

example introduction of angle-plies in the material, improves the transverse stiffness 

of the material and hence the local flange buckling and interaction properties (Barbero 

et al 1993). However, the calibration and validation of numerical simulations are 

essential. 

Finite element method 

Finite element method (FEM) has been widely used in the buckling analysis of 

pultruded structures during the last decade. It is the numerical method which can 

successfully model large and geometrically complex structures (Barbero et aI, 1995). 

FEM has been employed to estimate the critical buckling loads for the isolated 

buckling modes (local and global). A linear elastic buckling analysis of a pultruded 

wide-flange column using a finite element model has been presented by Vakiener et al 

(1991). An individual flange was modelled first as an orthotropic plate (assigning 

orthotropic material properties) simply supported at the loaded edges, one unloaded 

edge simply supported and the other unloaded edge as free. FEM results, when 

compared with those obtained from classical plate buckling analysis, demonstrated 
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the validity of the approach (difference < 4%). Secondly, three whole wide-flange 

sections were modelled as pin ended columns under axial compression and analysed 

using FEM. Predicted critical buckling loads fell between the upper and lower bounds 

estimated by the classical simply supported and fixed flange solutions. FEM results 

were very close (difference < 5%) to the results obtained using web-flange interaction 

solutions (Barbero and Raftoyiannis 1990, Y oon and Zureick 1992). The actual 

observed number of half waves was the same as the number of half waves predicted. 

FEM has been used to model GRP profiles like wide-flange, angles and box-sections 

with and without extended flanges (Barbero et al 1995). Full scale models of pin 

ended columns under concentric and eccentric loads were solved for the critical 

buckling loads. FEM results were found to provide very close correlation to that of 

computed by plate buckling analysis. FEM results of Vakiener (1991) were 

confirmed, analysing the same sections with different loading conditions. In the 

analysis performed by Vakiener (1991), point loads of different intensities applied 

along the width of flanges, while in Barbero et al (1995) model, a uniform loading on 

all nodes along the flange width were applied. This close correlation has provided 

confidence to propose that finite element methods can be used to model the complex 

boundary and loading conditions and solved to produce the accurate results. It has 

been concluded: 

"With the increased capacity of present day workstations and personal computers, it 

is now possible to solve large problems without having to assume analytical 

approximations for prismatic members. Furthermore, the finite element method easily 

allows the modelling of non-prismatic problems, complex boundary conditions and 

geometries. The accuracy of the results can be improved with mesh refinement." 

(Barbero et al. 1995) 

Finite element method has been employed for the post-buckling analysis of the 

pultruded columns (Godoy et aI, 1995). Post-buckling analysis is required to establish 

the nature of the critical state (stable or unstable bifurcation), classification of 

secondary paths and sensitivity of the emerging secondary and tertiary paths. The 

post-buckling solution has provided information on the mode-interaction in columns 

of intermediate length. Imperfection sensitivity and mode interaction of the pultruded 

columns have been assessed without having to choose appropriate analytical 
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functions. A perturbation technique (incremental loading) was used to draw post 

critical analysis to capture the mode-interaction during the nonlinear finite element 

analysis. The authors describe the FEM as a comprehensive tool for stability analysis 

of the composite pultruded profiles, 

"However, engineering problems often require the modelling of a rather complex 

geometry, and the finite element method has been the most convenient tool to achieve 

this in the last three decades. Thus, it is most desirable to have finite element 

solutions adapted to the needs of stability analysis. " 

(Godoy et aI, 1995) 

An experimental and numerical study to measure the buckling loads of pultruded GRP 

I-sections, when used as beam-columns and to construct a curve for their design has 

been reported by Barbero and DeVivo (1999). FEM has been used to model numerous 

load eccentricities and slenderness which could not practically be possible due to 

equipment limitations and experimental set up. For example, the load eccentricity of 

25.4mm could only be applied by the testing arrangement used in the study. The 

buckling loads for other eccentricities were predicted using finite element simulation. 

Furthermore, some loading configurations are simply not possible to apply. For 

instant, application of a constant end-moment (due to beam bending in frames), while 

the axial load increased to failure load, can be introduced using finite element 

simulation, yet would be very difficult to apply in physical tests. Finite element 

simulation and statistical methods have been used to develop resistance factors that 

represent a lower bound to the expected beam-column load of wide-flange shapes. For 

other shapes the procedure described here can be used to redefine the coefficients in 

the resistance factors, using the relevant section properties. 

A study to establish a relationship between column imperfection and the interaction 

constant using finite element method has been reported by Barbero (2000). Buckling 

and post-buckling of pultruded columns (152xI52x6.4mm wide flange sections) have 

been modelled using a finite element code (ABAQUS 1998). For short and long 

columns finite element models closely predicted the bifurcation load and the 

curvature of the post-critical path, as long as the local and Euler bifurcation loads 

were far apart. For intermediate lengths, a linear combination of the isolated modes 

could predict a deformation field similar to the experimental deformation data. 
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"Finite element modelling provides the engineer with a powerful tool that consistently 

predicts the physical behaviour of a particular structural member without having to 

conduct numerous laboratory tests. " 

(Barbero, 2000) 

"Work must be undertaken to find out if the finite element method can be used to 

determine the failure load that would occur in practice (assuming the column 

conditions remain unaltered). " 

(Mottram, 2000) 

It has also been demonstrated that a variety of commercial FEM codes are available 

now enabling the engineers and designers to perform many types of analyses 

including eigenvalue, linear and nonlinear (both geometrically and materially). 

Different types of material properties, boundary conditions and loading schemes can 

be assigned to different components of the structures. 

2.5 COMPRESSION MATERIAL PROPERTIES 

"Properties for pultruded materials are usually determined by tests in directions 

parallel and perpendicular to the direction of the pull. Data in the form of 

characteristic values are required for a limit state design approach 

(Eurocomp design code)". 

(Mottram, 2000) 

Compression testing of polymeric composite materials is extensively reported in the 

literature. However, the present review is limited to the testing of material in ORP 

pultruded structural profiles. 

Design manuals prepared by manufacturers of the pultruded ORP structural profiles 

provide values for the compressive properties of pultrudes (Strongwell, 1989). These 

properties are the minimum values representing a group (members with similar 

constituents, fibre volume fractions and material configurations) of pultrudes and are 

intended to be used for structural design purposes. These properties have been 

measured in accordance with ASTM D695H standard test using coupons cut from the 

** ASTM D695: "Standard Test Method for Compressive Properties of Rigid Plastics." 
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pultruded profiles and physically testing them in the lab. The manufacturers tend not 

to publish the test data, details of the size of the material specimen tested, stress-strain 

curves, failure modes or details of any statistical analyses. In the ASTM D695 test, a 

rectangular prismatic material specimen is loaded in axial compression. A steel fixture 

(called as compression tool) holds the specimen vertically and facilitates the axial 

load application. The steel fixture transfers the compressive force directly to the end 

faces of the test specimen (end loading). Specimen ends should be squared and kept 

parallel with the platens of the compression machine for uniform loading. This test is 

basically approved for rigid plastics and a thick prismatic specimen (length is twice 

the principal width) is recommended (ASTM D695M-91)§§. For thinner specimens 

(3mm or less) a supporting jig is required or a different specimen shape is used. This 

method is not recommended for resin-matrix composites reinforced with oriented 

continuous, discontinuous or cross-ply reinforcements (Note 1 in the ASTM D695M-

91). In the absence of a standard test method for pultruded material, different 

researchers have used different test methods. 

Mottram (1991) measured the compressive properties of pultruded GRP I-beams 

(102x51x6.6mm). Short parallel-sided and parallel-ended (nominally 40x20x6.6mm) 

material specimens obtained form flanges and webs of I-beams, were compressed 

between parallel high strength steel platens (end loading). No compression tool was 

used. The stroke rate of the compression machine was kept at O.Olmmls. The 

measured ultimate compressive strengths in longitudinal direction were much higher 

than given in the design manual (design value). However the longitudinal ultimate 

strengths for web-specimens were lower than for the flange specimens (depending on 

fibre volume fraction). In the transverse direction, measured compressive stresses 

were close to the design value. Failure modes were undesirable (not within the central 

gauge length) and most specimens failed with end crushing or brooming (splitting of 

CFM layers and unidirectional roving). Transverse specimens (51mm long instead of 

40mm) failed in a mixed mode of end crushing, brooming and buckling, giving a 

lower ultimate load. The specimens were obviously not restrained against end 

§§ ASTM D695M-91: "Standard test Method for Compressive Properties of Rigid Plastics [Metric]." 

(Revised in 1991). 
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brooming in the absence of compression tool. Neither compressive stress-strain 

curves nor information as the measurement of compressive moduli were reported. 

Turvey (1992) used the ASTM D341O*** method to measure the compressive 

properties of GRP pultruded plate. A flat strip of material having a constant 

rectangular cross-section cut from the pultruded sheet was used as a test coupon. The 

test coupon was inserted in a steel fixture with a pair of rectangular steel wedge-grips 

at each end. The fixture (gripping the specimen) was placed vertically between the 

platens of the testing machine and loaded in compression. The compressive load was 

introduced into the coupon through shear at the wedge grip interface. Three sets of 

specimens with widths 15mm, 25mm and 35mm and lengths of 140mm to 155mm 

and a thickness of 6.4mm were tested in this study. Gripping length was 65mm on 

each end leaving a central gauge length of 10 to 25mm. Aluminium tabs, 1.5mm 

thick, were bonded on both sides gripping lengths to avoid crushing under the 

compressive action of the grips. The coupons failed within the gauge lengths as 

required. Both compressive stresses and moduli were measured and reported. The 

method uses a specially designed fixture and wedge grips, the latter requiring a high 

level of technical skill to avoid wedge-seating problems (ASTM D341O). The method 

may be expensive if specimens with different thickness are required to be tested, as 

for every thickness, separate grips are needed. Another disadvantage is the use of long 

specimens, which are not always possible to cut from pultruded profiles due to 

dimensional constraints. Fixing of aluminium tabs is a technical and time-consuming 

process, which may further increase the expense of the test methodology. For thicker 

specimens high transverse compressive stresses applied on the surfaces of the tabbed 

specimen can introduce errors in the results. 

Wang and Zureick (1994) used ASTM standard D3410 to determine the compressive 

properties of GRP pultruded WF-beams (102x102x6.4mm size), with one exception; 

the width of the coupon was 38mm as opposed to the maximum 25mm width given in 

the standard. The decision to use a wider coupon was based on a study made by the 

same authors (Wang and Zureick, 1994A) to measure the tensile properties of the 

same material. Longitudinal compressive strain in the coupon was measured using a 

••• ASTM D341O: "Standard Test for Compression properties of Polymer matrix Composite Materials 

with Unsupported Gauge Section by Shear Loading." 
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single uniaxial extensometer, which was removed at a stress level of about one-half of 

the expected ultimate strength, to avoid damage. Compressive moduli were estimated 

from stress-strain curves (not up to failure loads) for the coupons, while the ultimate 

strength was calculated from the load recorded by the machine at failure of the 

coupon. A similar study using the ASTM standard D341O-95M (revised counterpart 

of D 3410) method to determine longitudinal compressive properties of pultruded 

GRP 1- and box-beams has been reported by Zureick and Scott (1997). Prismatic 

material coupons, whose lengths (not given) were determined from the classical 

stability analysis to avoid buckling, were used in this study. During preliminary tests, 

tabs were found unnecessary and coupons were tested without tabs using hydraulic 

grips. Coupons failed within the gauge lengths confirming to the desired mode of 

failure. 

Tomblin (1994) measured the compressive properties of pultruded GRP cylindrical 

rods using a non-standard end loading method. The cylindrical specimen was 

encircled by a steel ring attached to the bottom plate of a compressive testing machine 

to position the specimen for axial loading and to confine it against end brooming. The 

steel ring was not thick and whole length of the specimen acted as the gauge length. 

The appropriate specimen length was calculated using the classical formulation for 

global buckling, with a safety factor of two. Favourable failure modes (failure in the 

central gauge length) were obtained. Tomblin (1994) observed that the method used 

for a specific compression-testing programme depends upon the objective of the 

particular investigations and no universally accepted test configuration exists for 

characterising the compressive properties of composite material. 

Mottram (1994) tested GRP pultruded sheet (6.4mm thick) using a non-standard 

method, as none of the existing standard methods has been specified for the pultruded 

material. A special test rig was designed for the axial compression of a flat 

rectangular material specimen on its ends (end loading), essentially a modified 

version of compression rig used by Barker and Balasundaram (1987) and Haeberle 

and Matthews (1990) to measure the compression properties of carbon fibre 

reinforced plastics (CFRP). The salient features of the test rig are shown in Fig. 2.8. A 

high precision die set consisting of two (one upper and one lower) parallel plates, 

comprises the rig. The lower plate is fixed while the upper plate can move in the 

vertical direction, guided by four vertical columns using linear bearings to ensure 
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frictionless and concentric loading. Each plate is fitted with an adjustable mounting 

block into which either end of a rectangular straight-sided specimen is inserted. The 

internal faces of the adjustable mounting blocks are smooth enough to minimise the 

transmission of any transverse load to the specimen and also confine the specimen 

avoiding end-brooming and end splitting. The die set is fixed (screwed) to the lower 

platen of the compression-testing machine while load is applied at the centre of the 

top plate. The GRP specimens used were 70mm long, 20mm wide and 6.4mm thick. 

Of the 70mm overall length, 25mm on each side is inserted in mounting blocks 

leaving on open gauge length of 20mm. Strain gages were bonded to the specimen at 

the centre of gauge length to measure the compressive strain. Some specimens were 

strain gauged on both sides to enable the identification of any bending or buckling. 

Typical stress strain curves, measured compressive properties, failure modes and 

statistical analyses are included in the paper. The measured compressive strengths 

using more than fifty coupons obtained from the same GRP material (sheet) in 

longitudinal direction range from 210 to 343 MPa. This large range of scatter in the 

strength values has been attributed to the non-homogeneous placement of roving 

bundles in the material. The author (Mottram 1994), suggested that five specimens in 

a batch required by the ASTM D3410 are not enough to estimate a representative 

value of the material property and that the test method used in this study (other than 

the ASTM standards) is equally valid method. 

The test method proposed by Mottram (1994) has the following advantages: 

1. Simple and shorter rectangular prismatic material specimens 

2. No tabs, adhesives or time consuming preparation procedures required 

3. No expensive wedge shaped grips or size dependent fixture required 

4. Specimen ends directly loaded in axial compression. Hence no introduction of 

transverse compression into the strain measuring (gauge-length) area 

5. Simple die-sets to insert specimen, which is screwed to base platen of 

compressive machine to ensure alignment for axial loading. 

6. Adjustable mounting block to accommodate variable specimen thickness. 

7. Free and frictionless vertical movement of the top plate guided by four posts, 

using linear bearings, ensure concentric loading 
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8. Screw-tight lateral supports to confine the specimen and avoid end brooming. 

2.6 IN-PLANE SHEAR PROPERTIES 

ASTM Designation D53791D5379M-93ttt is the standard test method recommended 

for the determination of in-plane shear properties of the composite materials 

reinforced by high modulus fibres. Note 1 of the designation D53791D5379M-93 

states 

"The shear test concept was originally developed without reference to fibre direction 

for use on isotropic materials such as metals or ceramics." 

The method, originally introduced by Iosipescu (1967), can produce failure of 

specimen under the action of pure shear stresses, with maximum and uniformly 

distributed values of shear strains at the central test section. The test has been 

successfully used for measuring shear properties of steel, aluminium alloys and welds 

(Iosipescu, 1967). Rectangular specimens cut from the metals were loaded in pure 

shear through a specially designed steel fixture. The original specimen used by 

Iosipescu was notched on all four sides and through an extensive photo-elastic study, 

the author found a region of maximum and uniform pure shear stress in the central 

test section (Iosipescu, 1967, Herakovich and Bergner, 1980). 

In 1977 the Composite Materials Research Group of the University of Wyoming USA 

adopted the procedure to test composite materials. A double v-notched rectangular 

coupon was used for the measurement of the shear properties of the composite 

materials with and without fibre reinforcements (Walrath and Adams, 1983). The 

schematic of the test coupon and fixture used by the group is shown in Fig. 2.9. The 

test configuration (coupon geometry and fixture loading) achieves a state of pure 

shear loading at specimen mid-length by application of two counteracting moments 

produced by two force couples. These moments exactly cancel each other at the mid­

length of the specimen producing a pure shear loading state. The shear force and 

moment diagrams of the schematic demonstrate a region of pure shear at the centre 

(Fig. 2.10). With the introduction of 90-deg notches on both longer sides of the test 

specimen, the shear-stress distribution across the middle cross-section is altered from 

ttt ASTM D 5379/D 5379M-93: "Standard test method for Shear Properties of Composite Materials by 

the V -notched Beam Method." 
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the parabolic shear-stress distribution (evidenced in constant cross-section beams) to a 

constant shear-stress distribution. The notches do not cause any stress concentration at 

the centre, as the sides of the notches are parallel to the normal stress directions at that 

point in the specimen (Walrath and Adams, 1983). Therefore the shear stress 

distribution at the central cross-section is simply equal to the shear force divided by 

the net cross-sectional area between the notches. Also, the notches create a central test 

section with a minimal cross-sectional area, where failure may occur due to maximum 

shear stresses. The test was applied to measure the shear properties of a wide variety 

of the composite materials, ranging from unidirectional reinforced glass/epoxy and 

graphite/epoxy to chopped-glass fibre-reinforced polyester sheet moulding 

components (SMC), and even materials such as wood and foam. 

Sleptz et al (1978) adopted a slightly different loading scheme (Fig. 2.11) to test a 

similar double v-notched composite material coupon and adopted the title 

'asymmetrical four-point bend (AFPB) test'. The fixture is simpler than the Wyoming 

fixture, but under this arrangement the induced shear stress depends on the location of 

the loading-points. The test was subjected to numerical analysis using finite element 

method to investigate the effect of notch geometry on the shear stress distribution 

achieved at the central notched section of the coupon. It was found that 90-degree 

notches produce a maximum and uniform shear stress distribution at the mid-section. 

The experimental study was also conducted to compare with numerical predictions for 

different notch geometries. Ultimate shear strengths were not achieved experimentally 

due the material failure under the loading points. The test was used to measure the 

shear stiffness of many composites with different lay up configurations. Although, the 

test fixture is simple in fabrication and use, but is limited to the determination of shear 

modulus only. 

Herakovich and Bergner (1980) used an alternative loading arrangement (Fig. 2.12). 

The ends of a flat rectangular double v-notched composite coupon are gripped (either 

bolted or bonded) in steel fixture and then loaded in tension. The Finite element 

method was used to investigate the suitability of this arrangement to measure the 

shear properties of composites with different lay-up configurations ([0], [0/90], [±45] 

and [0/90/±45]). It was numerically established that a uniform, pure shear region 

exists in the test section of a flat v-notch coupons, and a laminate with fibres parallel 

to the axis between the notches is most desirable for determining the ultimate shear 
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strength (showing pure shear failure mode) of unidirectional materials. The findings 

are in agreement with those of Slepetz et al (1978). 

Adams and Walrath (1987) made a detailed finite element study of the Wyoming test 

(Walrath and Adams, 1983) to investigate the stress states in the specimen under the 

influence of the specific test fixture configuration. The influences of coupon 

parameters including notch depth, notch angle, and notch-root radius were also 

investigated. Finite element analyses indicated that the shear stress distribution was 

heavily concentrated near the edge of the notches, even though the loading surfaces 

were flat and extended over a considerable length remote from the notch. The normal 

stresses in the specimen length direction were low, indicating minimal bending 

effects, but the normal stresses in specimen width direction, induced by the inner load 

points did intrude into the gauge section. As a result, in the redesign, these loading 

points were moved outward. Another disadvantage considered was the use of a 

relatively small specimen. The small specimen meant that the region of constant shear 

strain between notches was small, thus making shear strain measurement more 

difficult. Also loading of a specimen in a small fixture was difficult, and the specimen 

was not fully exposed for inspection during a test. It was decided to increase the 

specimen size by 50 percent in the redesigned (termed 'second version') Wyoming 

fixture. The finite element investigations for optimum specimen geometry concluded 

that for orthotropic materials, the greater « 90°) notch angle reduced the notch-root 

shear-stress concentrations. However, the effect was not significant for unidirectional 

composites. Furthermore, the greater the notch angle, lead to a reduction in the notch 

depth and hence the uniform distribution of the shear stresses in the notched section. 

A notch depth equal to 20 to 25 percent of coupon-width, with a notch angle of 90-

deg was recommended. The analysis also demonstrated that the stress state obtained 

with an Iosipescu shear test is truly pure shear in the test region, and that the test is a 

viable method of measuring both shear strength and shear modulus of anisotropic as 

well as isotropic material. No experimental studies were included to produce test data 

using the redesigned coupon and fixture for comparison with the original Wyoming 

test configuration. However, the revised version of the Wyoming test configuration is 

now the part of the ASTM standards for the measurement of shear properties of the 

composite materials (ASTM D53791D 5379M-93). 
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Lee and Munro (1986) evaluated different in-plane shear test methods for advanced 

composite materials by the decision analysis technique, considering many factors 

including cost of fabrication, cost of testing, producibility of the test and accuracy of 

experimental results. The Iosipescu test method has been rated as one of three best 

testing methods been used for the composite materials. 

A detailed numerical and experimental investigation was conducted by Spigel et al 

(1987), to analyse and compare the performance of Wyoming and AFPB loading­

fixtures with respect to loading positions, notch angles and notch-root radii. A linear­

elastic finite element analysis was used to demonstrate that both the Iosipescu and 

AFPB shear test produce a region of uniform shear stress in the central notched 

section. Notch geometry and load locations were found to significantly influence the 

magnitude and the uniformity of the shear stress in this region. The findings are 

similar to those of Sleptz et al (1978). Experimentally, a 90° (without radius) notch 

gave the best results with both fixtures. It was concluded (most important from this 

study's point of view) that the Iosipescu and AFBP test fixtures are essentially the 

same test with the difference that in AFPB test, induced shear stress at the notched 

section is a function of the loading point location. The criterian for the selection have 

been the time and cost spent for preparation and test and the simplicity and ease of its 

use. The authors found the Iosipescu fixture was difficult to use because of the 

necessary strict dimensional tolerance to prevent bending of the specimen. The AFBP 

fixture was found to be easier to use, to provide greater exposure of the test section 

for monitoring and measuring the strains, but required tabs to prevent crushing of the 

specimen under the round loading rods. Abdullah and Gsacoigne (1989) concluded 

that even the revised (modified) version of Iosipescu fixture produced large 

undesirable bending in the specimen, where as, the AFPB fixture gave a symmetric 

distribution in the gauge section. 

ASTM shear coupon and Wyoming fixture has been used by many researchers in the 

determination of shear properties of pultruded GRP structural profiles. Bank (1990) 

used the second version of Wyoming test fixture (Fig. 2.9) to measure the shear 

modulus and ultimate shear strength of specimens extracted from pultruded glass­

fibre reinforced wide-flange beams. Shear strains were measured using three element 

strain rosettes. From the plots of stresses and strains, shear properties were measured. 

Sonti and Barbero (1995) measured the shear properties (modulus and ultimate 
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strength) of pultruded composite (ORP) I-beam material using the Iosipescu test 

method. Coupons (ASTM standard size) were cut from the flanges and webs of the 1-

beam. Strains were measured using ±45-degree two-element strain gauges bonded at 

the centreline of the coupon between the notches. Graphs between applied shear stress 

and measured shear strain were plotted to abstract the shear properties. A considerable 

amount of scatter in the results was found which was attributed to the fact that test 

area was very small and material was not uniform. The use of an asymmetric four­

point bending test is reported by Zureick and Scott, (1997) to measure the shear 

properties of pultruded ORP 1- (l02x102x6.4mm and 152x152x9.5mm) and box­

sections (76.2x76.2x6.4mm and 102x102x6.4mm). The test was performed in 

accordance with ASTM D5379 with one notable exception; the coupons used were 

bigger than given in the standard. The bigger coupons were used to account for the 

degree of inhomogeneity of pultruded material. Tests were performed on coupons 

measuring 203mm in length and 38 mm in width with a 90° notch at mid-span of the 

longer sides to a depth of 6.4mm. The in-plane shear modulus was taken as the chord 

modulus for the region between 1,000 and 6,OOO~m (as required in ASTM procedure) 

on the stress strain curve. 

It is concluded from the above discussion that a double V -notched shear coupon is 

capable of measuring in-plane shear properties of the composite materials. Size of a 

standard shear coupon has been recommended in the ASTM designation D53791 

D5379M-93, and should be adopted where ever available. Further, different sizes of 

test coupon can be adopted depending upon the degree of non-homogeneity and size 

of the section available. However, the suitability of other sizes may be established 

using theoretical or experimental investigations. Numerical investigations have been 

opted by many others as parametric analysis may be performed using these 

techniques. Many researchers have successively used this coupon configuration for 

the experimental measurement of shear properties of the pultruded materials. It has 

also been demonstrated that Iosipescu and AFBP shear fixtures produces the similar 

pure shear loading and stress distribution at the central test section of the v-coupon. 

However, doublers (tabs) have been recommended to avoid the material crushing of 

the coupon under the fixture's loading points. 
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Fig 2.1 Typical 1- and box-sections with co-ordinate system. 
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Fig. 2.3. Failure envelopes (a) 152x152x6.4mm I-beam, Euler strong and weak 
curves represent buckling loads with respect to strong and weak axes of the 

column respectively (b) 102xl02x6.4mm Box-beam. 
(Reproduced from Barbero and Raftoyiannis, 1990). 
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(Reproduced from Barbero and DeVivo, 1999) 
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Fig. 2.8 Compression testing rig (a) front view; (b) s ide view. 
(Reproduced from Mottram, 1994) 
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Fig. 2.9 Schematics of the \Vyoming group shear fixture with shear coupon 
(reproduced from ASTM D5379DID 5379M) 
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Fig 2.10 Idealized force, shear and moment diagrams for shear coupon loading 
(reproduced from ASTM D 53791D5379M) 
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Fig. 2.11 Schematics of AFPB Shear fixture with ASTM shear coupon. 

(Reproduced from Walrath and Adams, 1983) 
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Fig. 2.12 Schematics of a tensile load steel fixture with double v-notched coupon. 

(Reproduced from Herakovich and Bergner, 1980) 
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CHAPTER 3 

DETERMINATION OF MATERIAL PROPERTIES 

3.1 INTRODUCTION 

Material properties of two pultruded GRP box-section structural profiles have been 

established analytically and experimentally. Analytically, four orthotropic material 

constants (E;to Ey , Gxy and vxy) have been estimated using micromechanics and 

classical lamination theory. Coupons extracted from the sides (walls) of two GRP 

box-sections (5I x51 x3.2mm and 44x44x6mm) have been tested in the laboratory to 

measure these properties. 

In-plane shear properties (modulus and ultimate strength) have been measured in both 

longitudinal and transverse directions using the V-notched beam method (ASTM 

D5379M-93). A standard (ASTM) shear-coupon (76x20mm) is available only in the 

longitudinal direction due to dimensional constraints. A short coupon, similar in 

geometry to the standard ASTM coupon, is proposed to measure the transverse 

properties. The most appropriate geometry of the proposed short coupon has been 

established from a parametric (geometry) study using the finite element method 

(FEM), with the best geometry defined as that with the most uniform shear strain 

distribution at the central test section of the coupon. For comparison, FEM models of 

the standard ASTM shear coupon have also been analysed for shear strain distribution 

across the central section. 

Asymmetric four point bending (AFPB) steel fixtures have been developed to load the 

ASTM and short coupons in shear. Longitudinal properties of the materials have been 

measured experimentally using standard and short coupons in the longitudinal 

direction for validation against the short coupon performance. Once validated through 

comparison of numerical and experimental evidence, short coupons have been used to 

measure the transverse material properties. 

Compression properties have been measured usmg material coupons in the 

longitudinal direction only. The tests were performed by Mottram using a specific 

compression test rig (Mottram, 1994). Tensile properties have been assumed equal to 

compression properties (Bank et al 1994, Zureick and Scott 1997). 
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3.2 THEORETICAL PREDICTIONS 

GRP box-sections (plate 1.5) manufactured by the pultrusion process comprise fibres 

and fibre mats (impregnated in resin matrix) arranged in layers. The box-sections 

consist of four composite walls (webs), having the same material architect and layer 

thickness. The typical layer architect of the two pultruded GRP box sections 

(51x51x3.2mm and 44x44x6.0mm) is shown in Fig. 1.1. Theoretically, each wall has 

been simulated as a laminate (laminated plate) of specified thickness, consisting of a 

number of laminae or plies (thin layers) with varying thicknesses and properties 

(Barbero 1991, Davalos et al 1996, Nagaraj and GangaRao 1997). Mechanical 

properties of the GRP material (of box-sections) depend on the properties of the fibres 

and matrix, fibre volume fraction, and the architecture of fibres in the laminae. The 

fibre volume fraction in each lamina is the ratio of volume of fibres present to the 

total volume of lamina. Details of the architect, types and amount of fibres, and fibre 

volume fraction in each layer, for the box-sections, under investigation, have been 

provided by Mottram (1999). These details have been used to calculate the weight of 

fibres and matrix (per meter), fibre volume fractions, layer thickness, for each lamina 

(layer), and are presented for SlxSlx3.2mm and 44x44x6.0mm box-sections in 

Tables 3.1-3.2. The mechanical properties of the constituent materials i.e., glass-fibre 

and the vinyl ester matrix, (Fibreforce Ltd) are given in Table 3.3. 

MICROMECHANICAL APPROACH 

In micromechanics each wall of the cross-section has been assumed as a laminate 

formed by combining a number of thin laminae. A lamina either contains 

unidirectional roving or randomly oriented filament mats combined using a matrix. A 

layer with unidirectional fibres as reinforcement exhibits orthotropic properties (e.g. 

plane roving), whilst a lamina containing fibre mats behaves as isotropic (e.g. veil, 

CFS, and MRS layers in Fig. 1.1). For each layer, Young's modulus in the 

longitudinal direction (fibre direction) has been denoted by Ex, in the transverse 

(normal to fibre direction) by Ey, the major Poisson's ratio by vxy, and the in-plain 

shear modulus by Gxy. For a unidirectional (plane roving) layer, Ex, Ey, Vxy and Gxyare 

calculated from equations 3.1 (Jones 1975). 
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Ex = (VI xEI)+(Vm xEm) 

E = (EI xEm) 
y [(VI xEm)+(Vm xEI )] 

v xy = (VI x v I) + (Vm XV m) 

Eyvxy 
v =--

yx E 
x 

(3.1) 

where Vt is the fibre volume fraction and Ef the elastic modulus of fibres along x-axis, 

Vm the volume fraction and Em the elastic modulus of matrix, 1j and Vm are the 

Poisson's ratio of the fibres and matrix, Gf and Gm are the shear modulus of the fibres 

and matrix respectively. Using the information provided in Tables 3.1-3.2, and Table 

3.3, the material properties for the plain roving (PR) lamina have been calculated and 

are reported in Table 3.4. The outer layer 'veil' contains polyester fibre (instead of 

glass fibres), added for the protection of the outer surface, and assumed not to 

contribute towards the stiffness. It has, therefore, been excluded from the calculations. 

CFM and MSR laminae are made up of continuous filament mats in which fibres are 

randomly oriented. They are, therefore considered isotropic layers. Approximate 

mechanical properties for these layers have been computed using the following 

equations derived by Akasaka (1974): 

(3.2) 

Where Ex and Ey can be determined by the mechanics of materials approach given in 

(3.1). Substituting the appropriate values from Tables 3.1-3.2 into (3.1) and using 

these results in (3.2), the isotropic elastic properties of the CFM and MSR layers have 

been calculated (Table 3.4). 
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Having estimated the material properties of each lamina using micromechanics, 

classical lamination theory 'CLT' has been used to evaluate the laminate properties. 

The main assumptions made in micro-mechanics approach are: 

• the laminates consists of perfectly bonded layers (laminae), 

• each layer is a homogeneous material with known effective properties, 

• properties of a layer can be isotropic, orthotropic, or transversely isotropic. 

• each layer is in a state of plane stress. 

It is recognised that the ensuing equations relate only to state of plane stress and not 

bending. In the latter case the positions of the layers with respect to a neutral axis 

would need to be used to define an equivalent bending stiffness. However, the 

material property estimates derived here are to be used in a finite element simulation 

in which facets are used to construct the complex box section. Global bending 

associated with overall buckling is fully represented by this approach. Local buckling 

in which a facet of the section deforms is approximated in the post-buckling range, 

and fully simulated in the pre-buckled state. As the latter is the focus of this research, 

the proposed CLT approach is appropriate, therefore. This also applies to the adoption 

of experimentally obtained plane-stress elastic constants. 

The stress-strain relation for a single orthotropic lamina in a state of plane stress 

where the principal material axes are aligned with the x-y system can be derived from 

the generalised form (Jones, 1975) as: 

(3.3) 

where the stiffness components QlI' Q12' Q22' Q66 are given by engineering constants 

of the laminate in three mutually orthogonal directions as: 

E Ey 
QlI = x Q22 = ---'--

I-vxyvyX I-vxyvyX (3.4) 

Q12 = V xyQ22 = vyxQII' Q66 = Gxy 

The strain-stress relations in terms of compliance ([S]=[Qr i
) are given by, 
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(3.5) 

where the compliance components Sl \, S12, S22, S66 in tenns of engineering constants 

are, 

Vxy Vyx 
S =-=-

12 E E' 
x y 

1 
S22 = E ' 

y 
(3.6) 

The engineering properties (Ex, Ey , vXY' and Gxy) of the section-wall (laminate) are 

computed by assembling the stiffness coefficients Qij ( of laminae) into the 

extensional stiffness matrix [A ]cextending the single lamina case to N laminae). The 

coefficients Aij ofthe matrix [A] are calculated as (Jones 1975), 

N 

Aij = 2)Qij)ttt (3.7) 
t=1 

where ij = 1,2,6 and tk is the thickness of the kth ply. 

[A] is the in-plane stiffness matrix relating strains to resultant forces. 

Similarly [S] is replaced by [a] with the [a] = [A ]-1 defined as the compliance matrix 

of the laminate. 

Using the law of micromechanics, the material properties of the laminate of thickness 

N 

t (t = Itt) are obtained as (Davalos, 1996): 
.1:=1 

1 
GXY =--­

a 66 xt 

E = 1 
y a 22 xt 

(3.8) 

The stiffness matrix [A] is calculated for 3.2mm thick laminate using the layer 

properties listed in Table 3.4 as 
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[

89.9 

[A]= ~3.7 

and matrix [A] for 6mm thick laminate as; 

13.7 

35.9 

o 

21.2 

63.6 

o 

The compliance matrix, [a] which is the inverse of [A], becomes: 

[ 

0.0118 

for the 3.2mm thick laminate [a] = - 0.000452 

-0.00452 

0.0296 

o 

for the 6mm thick laminate 
[ 

0.00529 - 0.00193 

[a] = -0.00193 0.0160 

o 0 

o ] o ,and 

0.0824 

The quantities in the compliance matrix give the box section elastic moduli, Ex, Ey , 

Gxy, and vxy by using the following equations (Davalos et al 1996). 

1 1 
Ex =-= =27.3 kN/mm2 

allt 0.0118x3.2 

Ey = _1_ = 1 = 10.9 kN/mm2 

a22t 0.0296x 3.2 
(3.9) 

1 1 
Gxy =-= =3.91 kN/mm2 

a 66t 0.0824x 3.2 

Vxy = a l2 tEx = (0.00452 x 3.2 x 27.3) = 0.38 

where t = 3.2mm is the box section wall thickness. For the 6mm thick box sections, 

the elastic constants are calculated as; 
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1 1 2 
Ex =-= =31.5 kN/mm 

alit 0.00529 x 6 

112 
Ey =--= =10.4 kN/mm 

a 22t 0.016x6 
(3.10) 

1 1 
Gxy =-= =3.92 kN/mm2 

a66t 0.0426 x 6 

Vxy = a 12tEx = (0.00193 x 6x 31.5) = 0.37 

The results are summarised in Table 3.4. The outcomes (mechanical properties) of 

the micro-mechanical study are used as guidelines for the subsequent finite element 

studies, to analyse the models of short coupons proposed to measure the transverse 

properties of the composite material. 

Table 3.1 Laminae detail of 51 x51 x3.2mm GRP box-section. 

Weight of Weight of Volume of Layer Thickness 

Layer Fibre (gm) Matrix (gm) fibre (%) volume in oflayer 

(Wr) (Wm) (Vr) wall (%) (mm) 

Veil 1.05 2.95 24 2.1 0.06 

CFM 54.4 67.8 28 49.9 1.61 

PR 110 32.8 62 45.8 1.46 

MSR 4.8 1.83 56 2.2 0.07 

Table 3.2 Laminae detail of 44x44x6.0mm GRP box-section 

Weight of Weight of Volume of Layer Thickness 

Layer Fibre (gm) Matrix (gm) fibre (%) volume in oflayer 

(Wr) (Wm) (Vr) wall (%) (mrn) 

Veil 0.975 2.75 24 1.40 0.08 

CFM 57.9 72.0 28 38.5 2.31 

PR 194 57.7 62 58.5 3.51 

MSR 4.8 1.87 56 1.58 0.10 
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Table 3.3 Properties of the constituent materials 

Material Tensile Shear Tensile Poisson Density 

ModulusE Modulus G Strength Ratio v p 

(kN/mm2
) (kN/mm2

) (N/mm2
) (gmIcm3

) 

E-glass 72 (EI) 29 (GtJ 3400 0.25 (vI) 2.56 

fibres 

Vinyl-ester 3.5 (Em) 1.6 (Gm) 103 0.35 (vm) 1.24 

matrix 

Table 3.4 Calculated material properties for each lamina 

Layer Ex (kN/mm-z) Ey(kN/mm.l) Vxy Gxy 

CFM 11.5 11.5 0.43 4.01 

PR 46.0 8.53 0.29 3.86 

SMR 20.4 20.4 0.43 7.11 

Table 3.S. Estimated elastic properties of the box-sections 

Box -section Ex (kN/mm.l) Ey(kN/mm') Vxy Gxy 

51x51x3.2mm 27.3 10.9 0.38 3.91 

web or flange 

44x44x6.Omm 31.6 10.4 0.37 3.92 

web or flange 
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3.3 IN-PLANE SHEAR PROPERTIES 

The shear coupon described in ASTM D53791D5379M specifications (referred to as 

the "ASTM coupon" hereafter and shown in Fig. 3.1) is 76mm (3.0 in) long, 20 mm 

(0.75 in) wide and may be of any thickness up to 12.7mm (0.5 in). The ASTM coupon 

has two 4mm deep 90° v-notches cut symmetrically along the two longer sides at 

mid-length. The notches have a dual purpose, creating a test-section (smallest across 

the notch tips) for failure at the centre, and also converting the parabolic shear stress 

distribution (typical in a rectangular beam section) to a unifonn stress distributed 

across the test section (Walrath and Adams 1983, ASTM D53791D5379M-93). The 

fixture required to hold the coupon in position and to load it in a state of pure shear, 

should be a four point asymmetric flexure fixture as recommended in the ASTM 

testing procedure. The fixture described in the ASTM specification was developed by 

Adams and Walrath (1987) and referred to the earlier work of Iosipescu (1967) and 

Arcon et al (1978). The coupon loading, using this fixture, has been idealised as 

asymmetric flexure, as shown by the shear force and bending moment diagrams in 

Fig. 2.10 (ASTM D5379/ D5379M). 

A relatively simpler, more intuitive and easier to fabricate shear fixture has been 

proposed by Sleptz et al (1978) denoted as the "asymmetric four-point bending" 

(AFPB). In this type of fixture, the shear loading at the central test-section is not equal 

to the applied load, but depends upon the distance between the loading points. The 

main draw back of the AFPB fixture is the specification of round loading bars (Fig. 

2.11), which cause local crushing of the coupon edges under high compressive 

loading. 

A similar loading scheme has been adopted for the development of an AFPB type 

fixture for the present study, keeping in mind the simplicity of fabrication. A detailed 

sketch of the AFPB shears fixture (made from steel) showing components and 

dimensions has been provided in Fig. 3.2, and a schematic of ASTM coupon loaded in 

the AFPB fixture in Fig. 3.3. The round loading bars in the new fixture have been 

replaced by rectangular broad faced bars to spread the compressive loading over a 

wider area. The cross-sectional dimensions of the loading bars (and hence the contact 

area) have been calculated from the expected maximum compressive load (a function 

of material's shear strength and position of the loading bars) and ultimate compressive 
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(bearing) strength of the coupon material. The minimum unsupported coupon length 

at the centre has been kept to 13mm to comply with the recommendations of standard 

specifications (ASTM D53791D5379M). The behaviour and performance of the 

ASTM shear coupon loaded by the proposed AFPB type fixture is investigated using 

the finite element method. 

Finite element models of the ASTM type shear coupon without and with the AFPB 

fixture are analysed for the shear stress/strain distribution at the coupon's central test 

section. The validity of the performance of the AFPB fixture is established by 

examining the stress/strain distribution at the central test section, under a known 

applied load. The effects of material orthotropy on the shear stress/strain distribution 

across the central test section are also investigated. 

A short shear coupon geometry is proposed to measure the transverse shear 

properties. Having a similar shape to the ASTM shear coupon, the short coupon has a 

reduced length of 40mm, constrained by the dimension in the transverse direction of 

the 44mm box-section. The test section of the coupon should provide a region of pure, 

uniform shear stress, which is uniquely related to the applied load. The central 

notched section should also exhibit a uniform and predictable shear stress, whilst 

stress concentrations due to the load introduction and free edge effects should be 

minimal in the proposed coupon. The finite element method provides a relatively 

efficient tool for assessing the configuration of candidate specimens most adequately 

meeting these requirements. The analysis goes some way to predicting the effects of 

load locations and notch parameters on the stress/strain distribution across the central 

notched section of shear coupons. FEM modelling and analysis has been conducted 

using 'LUSAS', (v.12.3, Finite Element Analysis UK (FEA)). The adequacy and 

suitability of the short shear coupon has been established by comparing the 

consistency of numerical results with the predicted distribution of the ASTM coupon. 

The short configuration is also used to measure experimentally the longitudinal shear 

properties, in-order to compare and validate the performance of short coupon with the 

standard coupon. Following validation, short coupons have been used for the 

experimental measurement of the transverse shear properties of the GRP box profiles. 
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3.3.1 ASTM SHEAR COUPON AND AFPB FIXTURE 

The ASTM shear coupon (Fig 3.1) is a rectangular flat strip of composite material, 

76mm long and 20mm wide, with a thickness as received. Two symmetrical centrally 

located v-notches with a notch depth of 4mm and notch angle of 90° have been cut on 

the longer sides of the coupon. 'Longitudinal coupons' are those having reinforcing 

fibres along the length (longitudinal axis) of the coupon i.e., extracted from the box­

sections (plate 1.5) in a direction parallel to the longitudinal axis. 'Transverse 

coupons' on the other hand have reinforcement parallel to the shorter direction of the 

coupon (normal to the longitudinal axis) and are extracted width-wise from the GRP 

box-sections. Both longitudinal and transverse coupons are orthotropic. Four material 

constants (Ex, Ey, v, and Gxy) are established for their complete characterisation. To 

investigate the effect of material orthotropy on the behaviour and performance of the 

ASTM shear coupons, 'isotropic coupons' have also been included in the present 

investigations. They have been defined by two material constants (E, and v), whilst G 

is taken equal to E . The isotropic coupons could either be obtained from a 
2(1 + v) 

composite material mainly made from fibre mats, or from metals. 

The asymmetric four point bending (AFPB) fixture developed for the loading of the 

ASTM coupon is shown in Fig.3.2. The fixture has two loading beams; an upper to 

which the compressive load 'P' is applied, and a lower providing the reaction to the 

applied load. The lower loading beam is fixed to the side posts, and rests on a 

rectangular cross beam to locate the reaction point. The cross beam is clamped to the 

lower platen of the testing machine. The upper loading beam can move vertically 

downward under the applied load, guided by groves cut in the side posts. Attached to 

the loading beams are the rectangular loading bars designed to transfer the 

compressive forces on to the coupon edges. The bars near the central notch location 

are referred to as inner loading bars, with those at the extremities as outer loading 

bars. The location of the inner loading bars is fixed to keep the central 13mm of the 

coupon length (6.5mm on each side of the notch) unsupported (ASTM standard 

D5379M-93). This amount of clearance is required to avoid the introduction of effects 

of vertical normal stresses into the central test-section. The cross-sectional areas of 

the inner and outer loading bars have been calculated from the maximum expected 

load (multiplied by a safety factor of 2), the ultimate compressive strength, and the 
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contact area between the loading bars and the coupon. Inner loading bars have twice 

the width (lOmm) of the outer (5mm), reflecting the relative magnitude of the applied 

compressive forces. The shear loading applied by the AFPB fixture can be idealized 

as asymmetric and dependent upon the location of the loading bars with respect to the 

central notched section (Fig 3.4). The actual load application is "distributed and 

imperfect" along the contact area of the loading bars (ASTM D5379M-93), 

contributing to asymmetry in the shear strain distribution. This fact has also been 

recognised by the ASTM standard for the fixture used in the standard procedure, as: 

"While the idealization indicates constant shear loading and zero bending moment in 

the specimen at the notches, the actual load application is distributed and imperfect, 

which contributes to asymmetry in the shear strain distribution and to a component of 

normal stress that is particularly deleterious to [90]n· specimens. " 

(ASTM D53791D5379M footnote 9) 

However, in the analytical solutions, the load application has been assumed to act 

through the central vertical axis of the loading bars. Under the idealized loading 

configuration, the central test section (notched section) is subjected to maximum shear 

force as the coupon has a minimum cross-sectional area at this section, and further, 

'b' is always less than half the length (L) of the coupon (see Fig 3.4). Contact surfaces 

have been assumed in the numerical representation to simulate the distributed load 

application. 

Finite Element Models 

A two-dimensional, surface model of the ASTM coupon has been developed 

considering plane stress loading (Fig. 3.5). Rectangular, eight node, isoparametric, 

plane stress elements (QPM8)t, having two translational degrees of freedom u and v 

(Le., in x and y directions) at each node have been used. These elements can 

accommodate curved boundaries, varying thickness and are capable of accounting for 

membrane and shear deformations. As the loading is asymmetric, the entire x-y plane 

• A laminate with n layers having fibres at right angles to the longitudinal direction. 

t LUSASTM element library code. 
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of the coupon has been modelled. Non-eccentric geometric properties with a thickness 

equal to the nominal web-thickness of pultruded profiles (3.2 and 6.0mm) have been 

assigned to surface elements. 

Material properties have been assigned to the surface finite elements in x and y 

directions denoted as the local material co-ordinates. Isotropic material has been 

simulated as having E=27.3kN/mm2 and v=0.38 (Table 3.5). Three types of 

orthotropic coupons using the estimated material properties (Table 3.4) has been 

modelled as: a 'pseudo orthotropic,t having Ex=Ey=E=27.3kN/mm2, v=0.38, and 

Gxy=3.91kN/mm2
; a 'longitudinal coupon' having Ex=27.3kN/mm2, Ey=1O.9 kN/mm2

, 

v =0.38 and Gxy=3.91 kN/mm2
; and a 'transverse coupon' having Ex=1O.9kN/mm2, 

Ey=27.3kN/mm2, v=0.38, and Gxy=3.91kN/mm2
• The longitudinal coupon has been 

loaded by a shear force in a direction normal to the direction of the fibres whilst the 

transverse coupon is subjected to a shear force parallel to the direction of fibres. 

Boundary conditions simulate a simply supported beam, i.e., the supports (indicated 

by green arrows Rl and R2 in Fig. 3.5) allow coupon movement in vertical direction 

(in the direction of applied load), but restrict any horizontal or transverse (in z­

direction) movements. For an idealised loading situation (Fig. 3.4), point supports 

have been considered (Fig. 3.5(a». Similarly, two point loads, Ll and L2 (Fig 3.5), 

have been adopted for the simple calculation of the shear force acting at the coupon's 

mid-section. A regular mesh grid in local x and y directions of the specimen has been 

used to divide the surfaces into the finite elements. Comparison of un-averaged and 

averaged nodal stress/strains results has been used to determine the necessary degree 

of mesh refinement throughout this study. 

The FE model of the ASTM coupon loaded in AFPB fixture (Fig. 3.6) comprises the 

same eight node QPM8 elements. The fixture posts have been ignored in the model as 

the vertical movement of the upper loading beam has been assumed to be friction free. 

To simulate coupon-fixture interaction, slide lines 'SL' (indicated by red lines) have 

been introduced along the contact lines between loading bars and the coupon. One, of 

the four contact lines, is non-sliding to hold the specimen in position and prevent 

t Orthotropic properties with zero orthotropy (Ex=Ey) has been assigned to establish the effect of 

change in shear modulus in isotropic and orthotropic coupons and to validate the adequate perfonnance 

of the model. 
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rigid-body motion. This simulates the simply supported boundary conditions of the 

coupon. The upper loading beam has been assigned side supports (R2 in Fig. 3.6) 

which allow vertical movement but prohibit horizontal and transverse movements. A 

fixed support (Rl indicated by green arrows in Fig 3.6), generating a reaction equal to 

the applied load 'P' has been assigned to the cross beam supporting the lower loading 

beam. A compressive point load 'P' has been applied at the mid position of the upper 

loading beam, to model the external testing load. Only isotropic linear material 

properties for the steel fixture have been considered. A similar (to that of coupon) 

regular mesh grid in local x and y direction has been used to divide the surfaces into 

elements. 

Finite Element Results 

A theoretical unit load (P=1kN)§, has been applied externally to the fixture. The shear 

force resultant at the central test section of the coupon due the application of this load 

has been calculated from the shear force diagram (Fig 3.4), knowing the value of 'b' 

and 'L' (e.g., the distance between idealised lines ofload application through the inner 

and outer loading bars respectively), leading to a theoretical average shear stress 

distribution. For P=lkN, b=23mm, L=71mm, and thickness t=3.2mm, a shear force 

(S.F) ofO.51kN has been calculated. Corresponding to this S.F, shear stress and strain 

has been obtained using simple elastic theory principles (e.g., Hook's law): 

shear force 
(3.11) 

Sh S
· Shear Stress T 

ear tram = ;;: r ;;: -
Shear Modulus G 

(3.12) 

For a S.F of O.51kN and area A=12x3.2=38.4mm2
, a shear stress of 1.33xlO-2 

kN/mm2 has been calculated. Because of the rectangular loading bars, load applied by 

the fixture is different from point loading (Fig. 3.5-3.6), the shear force actually 

applied by the fixture (for an external load of lkN) to the coupon's mid-section has 

§ As the analysis is linear elastic, an arbitrary value of P has been applied within the elastic range and 

the ultimate shear strength of the material. Minimum ultimate shear strength of similar pultrates quoted 

by STRONGWELL is more than 20 N/mm2
• An external load of IkN produces a shear stress of 

13.3N/rom2 at the central test section (A=12 x 3.2mm2) of the ASTM coupon. Shear strains for other 

applied loads (in the linear range) can be evaluated by simple scaling of the applied load with the 

numerical results. 
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been established by the finite element analysis of the testing configuration. The 

deformed shape of the model (post analysis configuration, Fig 3.6(b)) indicated 

bending in the upper loading beam under the applied load. Due to this bending, the 

shear stresses along the lengths of the loading bars are no longer uniformly 

distributed. The resultants of shear force exerted by each loading bar have been 

calculated by measuring the shear stress intensities along the length of the bars (at 

sections LI, L2, RI and R2, shown in Fig 3.6 (b)) and mUltiplying by the cross­

sectional area of the respective loading bars. A graphical representation of the 

variation of the shear stress intensities along the loading bar lengths have been shown 

in Fig 3.6(c). The stress resultants·· calculated using the vertical nodal stresses (Sy), 

gave a shear resultant of O.51kN and shear stress of 1.33xlO-2 kN/mm2 at the central 

test section, which are equal to the theoretical values obtained from shear force 

diagram of Fig 3.4. This outcome, indicates (also evident from the graphs in Fig 3.6 

(c)) that the stress resultants pass through the centre of the loading bars maintaining 

the idealised distances 'b' and 'L' (shown in Fig. 3.4). This theoretical shear stress is 

expected to be constant across the section between the notches (due to the 

introduction of the notches). 

A corresponding theoretical shear strain has been calculated from the shear stress and 

the estimated shear modulus (from micromechanics and CLT). For isotropic coupons 

the shear modulus has been taken as G = E , whilst for orthotropic coupons Gxy 
2(1 + v) 

is taken as 3.91kN/mm2 (Table 3.5). Numerical shear strains across the central test 

section have been obtained from finite element analyses and plotted against the 

distance between the notch roots at the central test section, measured from the central 

longitudinal axis ofthe coupon, positive upward and negative downward. 

The shear strain distributions in the entire ASTM isotropic coupon, under the 

idealised point loading, and for the loading applied by using AFPB fixture, have been 

shown in Fig. 3.7. The distribution is asymmetric about the axis between the notches 

(as expected due to asymmetric loading). A contour interval of O.5xl0-4 has been 

used to display the strain distributions in both the loading cases for comparison. For 

the point loading case (Fig. 3.7 (a)), a higher shear strain (of the order of±2.OX lO-3
) 

•• Mid section method is used where each nodal stress is multiplied by half the area between two nodes. 
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can be seen under the point loads which is 1.8 times greater than the numerical and 

theoretical shear strain (1.15 x 10-3) at the mid-section of the coupon. This high strain 

concentration at the points of load application implies possible damage to the coupon 

edges and produces a premature coupon failure preventing the determination of 

ultimate shear strength of the material. In the case of loading with the proposed 

AFPB fixture the intensity of the shear strains under the loading points is less than 

half (of the order of 0.5 x10-3) of the mid-section strains. This justifies the use of 

broader loading bars in the present version of the AFPB fixture. A central region with 

uniform shear strain (with no contours Le., strain variations are less than the contour 

interval of 0.5 xl 0-4) has been observed in the middle of the coupon. Similar contour 

plots showing shear strain distributions in the orthotropic coupons have been given in 

Figs 3.8 - 3.10. To obtain a similar number of contours (for comparison) in a specified 

coupon area, the contour interval for orthotropic strain distributions is taken as 

0.15x10-3 (three times of that for isotropic coupon) since the shear modulus of the 

orthotropic material is nearly one-third of the shear modulus of the isotropic and the 

range of shear strains obtained is three times larger than in the latter. 

Theoretical and numerical (computed using FEM) results agree closely for the 

isotropic assumption for the majority of the depths of the coupon with a negligible 

strain concentration at the notch roots (Fig 3.11). The coupon loaded by the proposed 

fixture produced very similar results to the coupon only model. The quality and 

uniformity of numerically computed shear strains demonstrate the potential of the 

AFPB test fixture. This outcome is consistent with the findings of Adams and Walrath 

(1987), in that 900 notches minimise shear stress concentrations when notch sides are 

parallel to the direction of maximum shear stress. Pseudo orthotropic coupons also 

show a close agreement between the theoretical and numerical results for the central 

9mm width (± 4.5mm from the longitudinal axis) of the mid-section and a strain 

concentration of less than 5% at the notch roots. These results also contribute to 

establishing appropriateness of the finite element model representation of the ASTM 

coupon. 

Similar higher strain concentrations can be seen under the loading points in the case 

of longitudinal coupons modelled individually and loaded using point loads (Fig. 

3.9(a». For the longitudinal coupons loaded using the proposed AFPB fixture, the 

magnitude of the strain concentrations under the loading bars is smaller than the 
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strains at the central test section (Fig. 3.9(b», anticipating failure in the gauge section. 

A central region with uniform shear strain (without contours) is indicative of the 

proper use and validation of the purpose of v-notches in the testing of orthotropic 

materials. The shear strain distribution is more symmetric and constant over a wider 

area than obtained in isotropic coupon, establishing the validity of the designed test 

fixture. However, strain values are slightly higher (7%) than the theoretical strains and 

larger strain concentrations (28%) have been computed at the notch roots (Fig 3.11). 

ASTM standard D53791D5379M states that stress/strain concentrations arise as an 

effect of the orthotropy of the material and can be minimised by adjusting the notch 

angle (e.g., see FEA results for notch angle parametric study for small coupon, Fig. 

3.20). 

Shear strain contours for transverse coupons are illustrated in Fig. 3.10. Strain 

concentrations can again be seen under the loading points in the case of individual 

coupon point loading (Fig.3.10(a». For both the loading cases, the shear strain 

distribution is constant (no contours are displayed as the variations are less than the 

contour interval) in the central test section. Sufficient area of constant shear strain at 

the centre of the coupon is available to accommodate a rosette strain gauge for the 

experimental determination of shear properties. The shear strain values at the centre 

are slightly lower (4%) than the theoretical strain values. A higher strain 

concentration (34%) has been observed in the case of transverse coupon (Fig 3.11)tt. 

From the numerical results obtained from finite element analysis of the ASTM 

coupon model and their comparison with the theoretically calculated values it is 

predicted that proposed AFPB shear fixture (Fig. 3.2) is capable of testing ASTM 

shear coupons for the determination of in-plane shear properties (modulus and 

ultimate strength). The fixture applies a unique shear resultant at the central test 

section of the test coupon, which can be theoretically calculated by using values of 

length (L) and loading point separation 'b' and simple shear force diagram (Fig. 3.4). 

The strain concentrations at the notch roots in the cases of isotropic and special 

orthotropic coupons are low. Higher strain concentrations in the cases of longitudinal 

tt The ASTM shear coupon in transverse direction is not used in this study owing to geometry 

restraints. This analysis is only for completeness and validation of the AFPB shear test fixture. A new 

short coupon to measure transverse shear properties is proposed in the subsequent section. 
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and transverse coupons are attributed to the orthotropy of the material and not to the 

fixture's performance. A close agreement between numerical and theoretical shear 

strain for isotropic and special orthotropic coupons goes some way to validate the 

performance and behaviour of the designed steel fixture. This validation is used in the 

subsequent section to design a smaller version of the proposed fixture to test the short 

shear coupon for the measurement of transverse shear properties. 

3.3.2 SHORT COUPON AND FIXTURE 

Finite Element Models 

Finite element models for short shear coupon and the corresponding (short) AFPB 

fixtures are geometrically similar to those for ASTM coupon. To maintain a similar 

aspect ratio, a coupon width of 10mm for a length of 40mm has been adopted. 

Initially a base model with 90° sharp V -notches and a notch depth of 2.5mm (25% of 

overall depth) has been modelled (Fig 3.12). Keeping the inner loading bars 2.5mm 

from either of the notch edges, a length of 10mm at the centre of the coupon remains 

unsupported (as compared to 13mm in the case of the ASTM coupon), when loaded in 

the fixture. Another important difference is that the widths of the inner and outer 

loading bars are identical (5mm) in the case of short AFPB fixturett (Fig. 3.13). 

Correspondingly, the short coupon has supports and loading surfaces all equal to 

5mm. For a 5mm width of the loading bars, a loading point separation 'b'=15mm has 

been obtained. Different loading bars have been used for 3.2mm thick (Fig. 3.13 (b» 

and for 6mm thick (Fig 3.13 (c» coupons. Models of shear coupons with varying 

notch-angles, notch depths and loading point separations have been developed 

through variations in the base model. 

A two dimensional (2-D) surface model of the short coupon using the isoparametric, 

rectangular plane-stress elements 'QPM8' has been constructed. The entire coupon 

has been modelled considering an asymmetric loading (Fig 3.14(a». The model 

comprises points, lines and surfaces, defining the geometry of the coupon. Thickness 

of the coupon has been assigned to the surfaces using non-eccentric geometric 

H The width of loading bars are calculated from the maximum expected applied load (depending on the 

cross-sectional area of the test section and the shear strength of the coupon) and the compressive 

strength of the coupon. A width of 5mm for the inner loading bars is found sufficient to keep the 

applied stress lower than the bearing strength of the coupon material. 
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properties. Estimated material properties (Table 3.5) have been used to represent the 

isotropic, pseudo orthotropic, longitudinal and transverse coupons in the similar way 

as described for the modelling of ASTM coupon material properties. The coupon 

model has been simply supported using a set of fixed support Rl (u=O, v=O, z=O) and 

a hinged support R2 (u=O, v;4), z=O) to restrain the horizontal movement of the 

coupon and to allow the vertical displacement due to the applied loads. Point loads Ll 

and L2 acting vertically downward have been applied at the upper edges of the 

coupon. A regular mesh in x and y directions, with more refined mesh in the central 

region of interest, has been assigned to the surfaces. Surface models (2-D) have been 

used to represent isotropic, special orthotropic and longitudinal coupons. 

A finite element representation of a short coupon schematically loaded In the 

proposed short AFPB fixture is shown in Fig. 3.14 (c). The model is similar to that for 

ASTM coupon and fixture except the dimensions of the coupon, inner loading bars 

and fixture size. Similar eight nodded isoparametric rectangular finite elements have 

been used to construct the model. Slide lines (SLI-SL4) have been introduced to 

simulate the contact of coupon and loading bars and one of the slide lines has been 

fixed to avoid the rigid body motion. Rectangular mesh grid, loading and supports 

(similar to ASTM coupon and fixture model) are shown in Fig. 3.14 (a), and (c). The 

vertical reactions in the loading bars of the short fixture (Fig. 3.14 (d» are discussed 

under the heading "Fixture effect". 

Aluminium tabs§§ have been bonded to the transverse coupons at locations of loading 

(under loading bars) to avoid compressive failures at sections directly under the 

compressive loads. The size of the tabs has been calculated from the bearing capacity 

(maximum compressive strength) of the material in the transverse direction and the 

maximum expected load. A three dimensional (3-D) volume model has been prepared 

§§ Compressive failure of short transverse coupons without aluminium tabs, beneath the loading bars, 

has been observed during preliminary shear testing. To avoid this type of failure and to ensure a true 

shear failure at the central test sections, aluminium tabs have been used. The thickness and width of the 

aluminium tabs were calculated from the expected total load for the shear failure, multiplied be a safety 

factor of 2, and the ultimate transverse compressive strength of the material. Ultimate transverse 

strength in tension has been measured for the 51x51x3.2 box section profile by Saribiyik (2000) and 

taken equal to the compressive strength as stated previously. 
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using the isoparametric solid continuum elements (HX20·
u

) to represent the coupon 

and tab thicknesses. 3-D continuum elements has been defined by volumes and do not 

require geometric (thickness) assignments. To compare and investigate the effect of 

the tabs, on the shear strain distribution at the central test section of the coupon, 3-D 

volume models of the transverse short coupon without tabs have also been prepared 

(Fig. 3.15) and analysed. Boundary conditions (supports) are assigned to the lower 

surfaces of the volume model. Similarly the loading has been assigned to the upper 

surfaces of the volumes comprising the 3-D model. Loading has been applied as 

uniformly distributed over the surface (load per unit area) idealising the loading 

applied by the fixture. 2D-surface and 3D-volume models of transverse shear coupons 

have been compared to predict the intensity and distribution of shear strains across the 

test section. Aluminium tabs have been added to the model to simulate the tabbed 

models of the GRP coupon (Fig. 3.16). The steel fixture has not been included in the 

analysis as no modification was required to the fixture geometry. However plane 

inner loading bars (without grooves, Fig 3.13 (d» have been used to accommodate the 

tabs. 

As previously stated, the main region of interest in this study is the area between the 

notches where an approximately uniform shear strain distribution should be exhibited 

when a known shear force is applied. This is the region where shear strains are 

measured using strain gauges during the experimental measurement of the shear 

properties. Different parameters relating to the geometry of the shear coupon 

including notch depth, notch angle and distance of loading ends from notch root are 

investigated for their influence on the shear stress distribution. In addition to 

establishing the geometry of a short shear coupon and appropriate interpretation of 

test results, the study also aims to identify the effects of orthotropy on the 

performance of this test, as making it suitable for the measurement of the shear 

properties of the GRP material of varying orthotropy. To investigate this, analyses has 

been performed for a range of orthotropy by simply modifying elastic constant values 

Ex and Ey in isolation . 

••• LUSASTM element library code. 

87 



Finite Element Results 

Overall Depth 

Initially the depth of the coupon has been taken as 10 mm to maintain the aspect ratio 

of 4.0 as compared to 3.8 for ASTM coupon used in the standard specification. 

Numerical analyses has been performed to investigate the effect of changing the 

overall depth 'D' of the short coupon on the shear strain distribution across the central 

notched section. Notch depth (25% of the overall depth) and notch angle (90°) have 

been kept constant in the analyses. An isotropic material coupon with point loading 

has been assumed. Numerical shear strains for four values of overall depth i.e., D = 9, 

10, 11, and 12mm, normalised by the respective theoretical shear strains has been 

plotted for comparison (Fig. 3.17). The shear strain distribution is of a similar form 

for all four values of 'D'. A gradual increase in the deviation of computed shear strain 

from the theoretical uniform distribution with an increase in the coupon depth is 

observed. However, the deviation is small e.g., 1.5% to 2.8% for a D value of 9mm to 

12mm. Furthermore, the strain concentration near the notch root increases with the 

increase in depth. These effects imply the consistent selection of coupon depth with 

notch depth. 

For practical reasons i.e., to accommodate the notches and strain gauge between the 

notches, a minimum depth of 10mm has been maintained. A 2% difference between 

numerical and theoretical shear strain values have been observed for an overall depth 

of 10mm (Fig 3.17). 

Loading Bars Separation 

The separation between the inner loading bars controls the shear force intensity at the 

central notched section (shear force diagram in Fig. 3.4). The distance between the 

central vertical axes of the inner loading bars (where the loads are visualised to act) is 

denoted 'b' (Fig. 3.14(b». The ASTM specification recommends locating the loading 

bars at 2.5mm from the notch edges to avoid the introduction of vertical direct 

stresses into the central test section. Starting from a minimum 1.5mm distance 

between the notch edge and inner loading bar on each side of the notched section, 

values of 'b' of 13mm to 19mm, with a difference of 2mm, have been investigated to 

establish its effects on the shear strain distribution at the centre. For comparison, 

values has been normalised by theoretical shear strains (Fig. 3.18). No significant 
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difference is observed in the strain distribution for the values of 'b' ranging from 13 

to 19mm. The apparent reason for this similarity and consistency in the results is that 

for each value of 'b' the moments produced at the mid-section by the load couples 

that are equal and opposite, thus cancelling (Fig. 3.4). For practical reasons, 

'b'=15mm (corresponding to an unsupported coupon length of 10mm between the 

inner loading bars), giving a maximum difference between numerical and theoretical 

strain values of 2% only, has been selected. This deviation from the theoretical value 

is similar to that arising from the depth of the coupon, as discussed earlier. 

Consequently the proposed loading configuration does not further compromise the 

quality of shear strain distribution at the centre. 

Notch Depth 

The effect of variation in notch depth has been studied by changing the notch depth 

from 1.5mm to 3.0mm (15% to 30% of overall depth) with a difference of 0.5mm. 

Numerical results are shown to straddle the theoretical target (Fig. 3.19). For small 

values of notch depth the shear strain distribution is relatively broader (8% for 1.5mm 

and 3% for 2mm notch depth) than the theoretical strains. For large values of notch 

depth the strain distribution is 7.5% lower than the theoretical values. The ASTM 

standard recommends a notch depth between 20 to 25% of the depth of the coupon 

(e.g., 2.0 to 2.5mm for a lOmm deep coupon). Interestingly, this recommendation is 

fully consistent with the numerical results obtained in this study, with results for notch 

depths of 2.0mm (20%) and 2.5mm (25%) enclosing the theoretical solution. In this 

study a 2.5mm notch depth is recommended, providing closest correlation to the 

expected or desired distribution. 

Notch Angle 

Strain distributions predicted for notch angle values of between 60° and 120° with 10° 

increments (Fig 3.20) clearly support the recommendation of the ASTM standard 

(ASTM D5379) that the preferred notch angle is 90°. While lower and higher angles 

generate numerical shear strain deviations of -5% to +14.9% (from the theoretical 

expectation), high strain concentrations (+100% to -50%) result from the same 

variation of notch angles. In contrast, the strain concentration associated with a 90° 

notch angle is approximately ±6%. It is clear that the notch angle is significant in 

strength measures rather than elastic modulus determination, given the relative 

insensitivity of the strain concentration to the notch angle. 
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Effect of Orlhotropv 

The main object of the study is to measure the shear properties of the orthotropic 

(composite) material using short shear coupon. The behaviour and performance of the 

short coupon has been investigated by varying the material properties along the 

longitudinal and transverse (x and y) directions of the coupon. The degree or amount 

of orthotropy of an orthotropic material has been defined as the ratio between elastic 

moduli in the longitudinal and transverse direction (Ex: Ey). For example for material 

with longitudinal elastic modulus of 30kN/mm2 and transverse elastic modulus of 

SkN/mm2, the degree of orthotropy has been taken as 6:1. The strain distributions 

across the central notched sections of short coupons of materials with varying degrees 

of orthotropy have been plotted in Fig. 3.21. Two special orthotropic materials have 

also been included; one with Ex=Ey=30kN/mm2 with shear modulus of3.91kN/mm2ttt 

(denoted as 1:1), and the second as Ex=Ey=30kN/mm2 with shear modulus of 

11.S4kN/mm2Ht (denoted by 1: 1 +), with the later as isotropic material specification 

but has been treated as orthotropic material. For comparison, the shear strains have 

been normalised by the theoretical shear strain. 

For a zero degree of orthotropy (1: 1 +), the strain distribution shows a small deviation 

across the notched section with strain concentrations at the notch root that are low 

(4.4 to 5.4%). For the pseudo isotropic case (1:1) with a lower shear modulus, results 

are similar, with the most noteworthy difference a reduction in strain concentration at 

the notch tips. For higher degrees of orthotropy, the strain distribution deviates 

further from the uniform theoretical results. The deviation increases with an increase 

in the degree of orthotropy (Fig. 3.21), is positive for longitudinal coupons (e.g., 

Ex>Ey, 6:1), and negative for transverse coupons (e.g., Ex:Ey=1 :6). Similar results have 

been produced by Herakovich and Bergner (1980) and are in agreement with the 

observations made in ASTM specifications; 

'The actual degree of uniformity varies with the level of material orthotropy and the 

direction of loading. Both analysis and full-field experimental strain measurement 

ttt This value of shear modulus has been derived from micromechanics and CLT, see Table 3.5. 

m This value of shear modulus has been derived from the expression E12( 1 +v). 
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have shown that when testing in the 1- 2 plane, [Ojrl§§ specimen result in an elastic 

modulus estimate that is too high (about 10% too high/or carbon/epoxy), while [90Jn 

specimens of the same material result in a value that is about 20% too low. The most 

accurate measurement of in-plane shear modulus for unidirectional material have 

been shown to result/rom the [0/90jns specimens. " 

(ASTM D53791D5379M, 1996, §6.3) 

The most adverse effect of orthotropy has been observed on the strain concentration at 

the notch roots. Particularly in highly orthotropic transverse coupons (l :6), the strain 

concentration is almost double the theoretical strain at the centre of the section. 

Therefore a premature failure at the notch root may result within the coupon not 

capable of measuring all material characteristics, including strength. The strain 

concentration decreases whilst lowering the degree of orthotropy. For a transverse 

coupon with an orthotropy ratio of 1:3 (GRP material in the present study), the strain 

concentrations are 44% higher than the uniform theoretical strain at the centre. For a 

longitudinal coupon with same ratio of orthotropy i.e. 3: 1, however, the strain 

concentration is 13% higher than at the centre. But for a higher ratio i.e. 6:1, the strain 

concentrations increases to 60% more than theoretically expected value. Interestingly, 

the strain distribution is uniform along the central section for orthotropy ratio of 3:2 

(though paradoxically not for 2:3) and the strain concentration is acceptable (within 

5%). 

Fixture effect 

Finite element models of the short shear coupon separately and within the AFPB 

fixture (Fig 3.14) have been analysed to investigate the effect of the fixture on the 

shear strain distributions at the central notched section. Contours of numerically 

obtained shear strains over the entire plane of short isotropic coupons without and 

with the fixture are shown in Fig 3.22. A contour interval of 0.9E-04 (corresponding 

to the 0.5E-04 for ASTM isotropic coupon where shear strains' range is nearly 60% 

§§§ The digit in square parentheses indicates the direction of reinforcing fibres i.e., [0] means fibre are 

at 0 angle to direction 1 and n out side the parentheses indicates the number of layers in the composite 

laminate. In the present study the longitudinal coupons have fibres at 0 angles to longitudinal axis of 

the coupon. In transverse coupons, fibres are at 90 degree to the longitudinal axis. [0/90]n represents a 

composite made from alternate longitudinal and transverse layers in a multilayered composite. 

Carbon/epoxy has a high ratio of orthotropy(typically 17: 1, Herakovich and Bergner, 1980) 
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of the range for the short coupon) has been chosen to obtain comparable contour 

plots. The patterns of the contours (strain distributions) are alike in the coupon 

subjected to idealised loads and the coupon loaded via the fixture. The obvious 

difference is that in the case of the isolated coupon loaded by point loads (theoretical), 

a large strain concentration (almost double the strain values at centre of the coupon) is 

manifested beneath the loading point indicating potential local compression failure of 

the coupon. By using broader loading bars, the loading has been converted to a 

distributed load and with a corresponding strain concentration beneath the loading 

bars lower than the strain at the centre, ensuring the coupon failure at the central 

section under the influence of pure shear loading. A "unifonn" shear strain 

distribution has been obtained along the central notched section in both cases of the 

isolated and fixture encapsulated coupons. The similarity of the contour patterns 

suggests that the AFPB fixture simulation is representative of the overall expected 

behaviour. 

However, a disparity has been noted between the predicted magnitudes of the shear 

strains at the centre test section of the isolated and fixture encapsulated coupons. In 

expecting the results to be the same it has been assumed that the load applied to the 

coupon via the loading and reaction barslbeams of the fixture is unifonn and 

consistent with the fundamental idealisation illustrated in Fig. 3.4. The vertical 

(nonnal) stresses acting through the upper and lower loading bars have been plotted 

along the width (5mm) of the loading bars (Fig 3.14 (e). The net loading applied to 

the coupon by integrating graphs LI and L2 has been calculated. Similarly the 

reaction to the loading exerted by lower bars has been calculated by integrating R2 

and Rl graphs. The calculations showed that a relatively lower (0.37 kN) shear force 

than the theoretically calculated (0.4 kN from bending force diagram of Fig. 3.4) 

shear force has actually been applied. The apparent reasons for this difference are; a 

slight bending in the upper loading beam, and a slight change in the load separation 

'b' due to non-uniform (nearly triangular) load distribution through the upper loading 

bars (Fig 3.14(e». However the loading remains asymmetric and the opposite couples 

induced by the loading are equal, maintaining a zero bending moment at the central 

notched section in the coupon. It has been concluded therefore, that for this size of 

coupon and AFPB fixture used in this analysis, the resultant shear force applied to the 

coupon is 0.37 kN when an external load of 1 kN has been applied to the fixture (and 
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not O.4kN as predicted by classical elastic theory). For other sizes of coupon and 

testing fixture arrangement, the resultant shear force should also be established 

through a finite element analysis. This is identified as a key observation in 

characterising the fixture and proposing a procedural approach to the analysis. 

The quantitative comparison of the shear stress distribution across the central notched 

section of the point loaded coupons and coupons loaded with fixtures has been made 

in Fig. 3.28. Four types of short coupons have been included (e.g., isotropic, pseudo­

orthotropic, longitudinal and transverse). The numerical strains obtained from FEA 

agree closely with the theoretical solution. The presence of the uniform shear strain 

along the central section up to a width of nearly 4mm infers the capability of the short 

coupon to accommodate strain gauges in the middle of the notched section within a 

"uniform" strain field. 

2-D and 3-D Models 

The performance of the 2-D short shear coupon has been assessed by comparing the 

strain contour patterns and the uniformity of the shear strain distributions across the 

central notched section of the ASTM and short coupon. The 2-D surface model has 

been further used to assess the performance of a 3-D volume model of the short 

coupon, which in turn has been used to indicate the effect of tabs (Fig 3.26). 

Shear strain contours plots are given for isotropic 2-D coupon (encapsulated in the 

fixture), 3-D coupon only and 3-D coupon including tabs (Fig 3.26). Essentially the 

results from the 2-D and 3-D (coupon only) simulations demonstrate the numerical 

validity of the latter through the similarity of the contour plots whilst recognising the 

necessary applied load modification compared with the classical solution, as 

discussed in a preceding section. These results are included for completeness as it is 

unnecessary to represent a coupon in 3-D when tabs are not used. When simulating 

the addition of tabs bonded to the sides of the coupon in line with the primary load 

bars it is expected that the shear strain distribution will be altered (e.g. see Fig 3.26 

(b) and (c». However, the quality (e.g. uniformity) of the strain field within the centre 

test area has been maintained with a clear zone of low strain variation. This is also 

best quantified in Fig 3.29. With the transverse coupon prone to degradation of the 

uniformity of the strain field it is also useful to provide equivalent results for 

comparison (Fig. 3.27). Again the proposed short coupon is shown to perform 

adequately on comparing the FE results given in Figs 3.27 and 3.29). 
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Comparison ofASTM and short coupon 

The shear strain distributions for the isotropic and orthotropic material ASTM and 

short coupons have been plotted in Fig 3.30 for comparison. Clearly the patterns of 

deviations of numerical strains from the theoretical distributions are alike. Isotropic 

coupons produce least deviations at the centre and minimum strain concentration 

under the notch roots. Longitudinal coupons show a 2% increase in the shear strain 

distribution at the centre while a strain concentration of 30% under the notches. 

Conversely in the case of transverse coupons, the shear strain distribution is 4% less 

than the theoretical strain but a strain concentration of 30% (ASTM) to 45% (short 

coupon) has been observed. 

Short Shear Coupon and Fixture Specification 

The geometry and dimensions of a short shear coupon adequate for measuring the 

longitudinal and transverse shear properties, is proposed following the outcomes of 

the parametric study. The recommended short shear coupon is 40mm long, 10mm 

wide and as supplied thickness. A 90° sharp V-notch with a notch depth of 2.5mm 

machined on each of the longer sides of the coupon (Fig. 3.12). The geometry is 

similar to the standard ASTM shear coupon (Fig. 3.1). 

The proposed AFPB type fixture shown in Fig 3.13 is capable of testing the short 

coupon for the measurement of the in-plane shear properties. The shear loading 

applied by the fixture on the coupon's test section is less than the theoretical value 

calculated from the shear force diagram visualised for the AFPB fixture (Fig. 3.4). It 

has been established that a shear resultant equal to 0.37P corresponding to an 

externally applied load 'P' has been applied at the central test section of short coupon 

loaded by this fixture. 

3.3.3 SUMMARY OF OUTCOMES 

• The proposed finite element models of the ASTM and short coupons 

adequately represent the behaviour of orthotropic material under the shear 

loadings. 2-D models using plane stress elements can represent the thick 

prismatic coupon and fixture components. This is validated through the 

comparison of the FEA results of 2D and 3D coupon models. Both isotropic 

and orthotropic models adequately predict the theoretical strain distribution at 

the central test section of the coupons. 
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• The introduction of V-notches at mid lengths of longer sides of rectangular 

shear coupons transforms the shear stress distribution, from parabolic to 

uniformly distributed, across the central notched section. 

• The proposed numerical models, are utilised for defining the most efficient 

"short" shear coupon, having the lowest strain deviation at the centre and 

minimum stress concentration at the notch tips, for the measurement of shear 

properties when a standard length is not available. 

• Proposed AFPB fixture applies a pure shear loading across the central test 

section during a shear test. Use of broader loading bars reduced the strain 

concentration (from 1.8 to 0.5 times the average theoretical strain at centre) 

beneath the loading points, eliminating the possibility of failure at these points 

rather than at the centre of coupon. Numerical results are used to calculate the 

amount of resultant shear force applied by the proposed test fixtures on the 

shear coupons. In the case of ASTM coupon loaded in the fixture the 

numerical shear force calculated at the centre is equal to 0.51P, where P is the 

total applied load on the fixture by the compression testing machine. This 

agrees with the theoretically calculated shear force using the shear force 

diagram of Fig. 3.4. In the case of short coupon, the numerical value of the 

shear force applied by the test fixture (O.37P) is less than the theoretical value 

(O.4P). Therefore, for any other arrangements of coupon loading the intensity 

of shear resultant should be established using finite element analyses. 
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Fig 3.1 Schematic of ASTM shear coupon. 
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Fig 3.2 Designed AFPB shear test fixture. 
(all dimensions in nun) 
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Fig 3.3 Schematic of ASTM shear coupon loading in AFTB fixture. 
(all dimensions in mm) 
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Fig. 3.4 Shear force and bending moment diagrams of ASTM coupon loaded in 
AFPB shear fixture. 
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Fig 3.5 FEM model of ASTM Coupon showing mesh, loading 'L' and supports 
'R'; (a) un-deformed, (b) deformed (exaggeration factor = 30). 
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Fig 3.6 FEM model of coupon and fixture (showing mesh, slide lines 'SL', 
loading 'L' and supports 'R'), (a) un-deformed (b) deformed (exaggeration 

factor = 30), (c) normal stress (Sy) distribution across the loading bars. 
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Fig 3.7 Shear strain contours in isotropic ASTM coupon. 
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Fig 3.9 Shear Strain contours in longitudinal ASTM coupon. 
(a) coupon only (b) coupon with fixture. 
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Fig 3.10 Shear strain contours in transverse ASTM coupon. 
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Fig 3.11* Shear strain distribution across the mid-section of ASTM coupon; 

(a) coupon only (b) coupon loaded in fixture. 

• Legend: "[so"=Isotropic coupon; "S-ortho"=Pseudo orthotropic coupon; "Long"=Longitudinal 

coupon; "Tran"=Transverse coupon; "Theo (iso)" and "Theo (ortho)" = theoretical shear strains for 

isotropic and orthotropic coupons respectively. Assumed material values are on page 8 1. 
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Fig 3.12 Schematic of short shear coupon. 
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Fig 3.13 Schematic of the short AFPB shear fixture and attachable loading bars 
(B) for 3.2mm longitudinal coupon, (c) for 6mm longitudinal and (D) inner 

loading bars for 3.2mm and 6mm tabbed transverse coupons. 
(all dimensions in mm) 
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(a) 
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Fig 3.15 3-D (volume) model of short transverse coupon 
(a) Volumes; (b) mesh; (c) deformed mesh. 
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Fig 3.16 3-D (volume) model of short transverse coupon with tabs: 
(a) Volumes; (b) mesh; (c) deformed mesh. 
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Fig 3.17 Effect of overall depth on the shear stress distribution across the mid­
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Fig 3.18 Effect of loading points separation 'b' on the strain distribution across the 
mid-section. 
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Fig 3.22 Shear Strain Distribution in isotropic short coupon. 
(a) coupon only (b) coupon with fixture. 
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Fig 3.23 Shear strain distribution in pseudo orthotropic short coupon. 
(a) coupon only (b) coupon with fixture 
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Fig 3.24 Shear strain distribution in longitudinal short coupon. 
(a) coupon only (b) coupon with fixture 
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Fig 3.25 Shear strain distribution in transverse short coupon. 
(a) coupon only (b) coupon with fixture 
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Fig 3.26 Shear strain distribution in isotropic short coupons; 
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Fig 3.27 Shear strain distribution in transverse short coupons; 
(a) 2D coupon with fixture (b) 3D coupon only (c) 3D tabbed coupon only. 
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3.3.4 EXPERIMENTAL STUDY 

Physical tests have been perfonned to measure the in-plane shear properties of the GRP 

material fonning the two box-section profiles (see § 1.4), in the longitudinal and 

transverse directions. Ultimate shear strengths and shear moduli in the two orthotropic 

directions have been calculated from experimental stress-strain plots. Longitudinal 

properties have been measured by testing both standard ASTM and short shear coupons 

extracted from the longitudinal direction (parallel to the direction of fibres and pull). The 

validity of the proposed short shear coupon has been demonstrated by comparing 

experimental results of long (ASTM) and short coupons. Transverse shear properties have 

been detennined using the short coupon. 

Coupon Preparation 

Standard ASTM (76x20mm) and short coupons (40xl0mm) have been extracted from the 

unifonnly thick walls of two GRP box-section profiles (51 x51 x3.2 and 44x44x6.0mm 

(see plate 1.1 ». Direction of the reinforcing fibres (roving) has been taken parallel to the 

longitudinal axis of the GRP profiles, defining longitudinal and transverse coupons. 

Initially the coupons have planer rectangular geometries with nominal thicknesses of 

3.2mm and 6.0mm. Two 90° V-notches have been machined at the mid-length of the 

longitudinal sides to a depth of 4mm for the ASTM coupon and 2.5mm for short coupon. 

A total of 30 coupons, 5 for each size, direction and thickness have been prepared. 

Strain gauge rosettes (planar 45°-rectangular EA-13-060RZ-120), having three grids, with 

the second and third grids angularly displaced from the first grid by 45° and 90°, 

respectively, have been, adhered (m-Bond 200) to the gauge area of each coupon (see Fig. 

3.31). Thin electric wires have been soldered to the tenninals of the strain gauges for 

connection to the data-logger through quarter-bridge circuits. A micrometer with 

measurement accuracy of ±251lm (±O.OOI in), as recommended by the ASTM, has been 

used to measure the thickness and width of the coupons. Widths between notches have 

been measured using vernier calliper to the same accuracy for the calculation of central 

cross-sectional area. Coupons are designated by letters, LC (for long ASTM), SL (for 

short longitudinal) and ST (for short transverse) with sequential numbers, clearly marked 

on both sides, for identification. 
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Fabrication of AFPB Steel fixture 

Two steel fixtures illustrated in Fig. 3.2 for long (ASTM) coupon and in Fig. 3.13 for 

short coupon have been fabricated from steel. Dimensions of all the components have 

been marked in the figures. The vertical posts have grooves on their internal faces to 

guide the vertical movement of the upper loading bar. The vertical loading bars, lOmm 

deep with rectangular cross-sections, have been fixed to the upper and lower rigid beams. 

The inner loading bars in the case of fixture for ASTM coupon are wider (lOx12.5mm) 

than the outer loading bars (5x12.5mm). The loading bars have been grooved (Imm deep) 

to hold the specimen vertical and to avoid twisting of the coupon during testing. Two sets 

of loading bars having grooves 3.5mm and 6.5mm wide have been prepared. Further sets 

of loading bars may be fabricated to accommodate the coupons with different thicknesses. 

Test Procedure 

The typical experimental set-up for testing the shear coupons, inserted in the AFPB steel 

fixture and loaded in compression by a universal testing machine is indicated in Plate 3.1. 

A horizontal thick (rigid) circular steel platfonn has been fabricated and fixed to the main 

frame of the testing machine. The cross beam of the shear fixture has been fixed to this 

circular platfonn using adjustable clamps, which allow the necessary alignment for 

concentric loading. A rectangular rigid steel plate has been used to fix the load cell to the 

upper platen of the testing machine. The load cell in tum is connected to the upper 

loading beam of the fixture by a conical bar having round lower tip to apply a concentric 

load. A load cell measures the applied load and is connected to an electronic data 

acquisition system which records the load values every two seconds with strains 

simultaneously. The compression machine applies a direct load, which is converted into a 

shear couple by the fixture. The loading rate has been adjusted to complete a test within 

ten to fifteen minutes (consistent with ASTM D53791D5379M § 11.3). The speed of 

testing may be approximated by repeated monitoring and adjusting of the rate of load 

application to maintain a nearly constant strain rate as measured by strain gauge response 

versus time. A standard shear strain rate ofO.Ollmin (ASTM guidance) has been adopted 

in this experimental study. 

Coupons have been loaded up to the ultimate load i.e. up to failure. Mode and location of 

failure of each tested specimen has been recorded. All coupons failed in the test section. 

Their failure modes are shown in Plate 3.2 to 3.5. 
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Calculations 

Shear stress 

The shear stress applied by the fixture at the test section (central notched section) of the 

coupon had been calculated from the experimental data as under, 

for the ASTM (long) coupon 
0.51p; 

T j = 
wxt 

(3.13) 

where 'j is the shear stress at ith data point, P; the applied load at ith data point, w is 

width between the notches and t is the thickness of the specimen. The factor 0.51 

corresponds to the location of the loading bars (for a 'b' value of23mm and L=7lmm, as 

indicated in Fig. 3.4 and confinned by the FEA of AFPB fixture for reactions) on the test 

coupon; 

for the short coupon is 
0.37P; 'j = wxt 

(3.14) 

with the same notation as above. The factor 0.37 is obtained by FEA of fixture effect on 

the short coupon (see fixture effects in § 2.3, FEA results of short coupon), and is less 

than the theoretically calculated (shear force diagram of Fig. 3.4) factor of 0.4. 

Ultimate shear Strength 

The load that accompanies failure in the test section is used as the failure load, nonnally 

the maximum load attained on the load-deflection curve (ASTM D5379M, § 6.6.2). The 

ultimate shear strength is calculated as; 

for ASTM coupon 
F = 0.51Pmax 

" wxt 
(3.15) 

and for short coupon 
F = O.37Pmax 

" wxt 
(3.16) 

where F" is ultimate shear strength, P max the maximum load prior to failure, w the width 

between the notches and t the thickness ofthe coupon. 

Shear Strain 

The strain rosette bonded to the coupon has three gauge elements, numbered sequentially 

anticlockwise as 1-3. The rosette has been fixed at the centre of section between the 

notches such that gauge 1 is in vertical direction and gauges two and three are at 45° and 
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90° from the first (Fig 3.31). Strains measured by gauges 1-3, are denoted as ~'t, 8 2 and 

83' respectively. From the measured strain values (81'82 and83 ), the following can be 

calculated (Measurement Group, 1990): 

(3.17) 

where 8 p and C Q are maximum and minimum principal strains, ¢ is the angle from axis of 

the strain gauge 1 (reference gauge) to the principal strain and Y mal( is the maximum shear 

strain. The angle ¢ = 45° between the axis of gauge 1 (set parallel to the loading axis) 

and the maximum principal stress direction indicates the state of pure shear at the central 

section. 

Shear Modulus 

For each coupon the shear stress and strain values measured during the experiment have 

been plotted. A typical stress-strain plot for the ASTM coupon is given in Fig 3.32, and 

for longitudinal and transverse short coupons in Fig 3.33 and Fig 3.34. ASTM D53791D 

5379M-93 recommends the determination of shear chord modulus of elasticity, if values 

are available for an interval of 5000J..lE (at points 1000J..lE and 6000J..lE), the total strain is 

more than 12000J..lE and the curve does not exhibit a transition region. The experimental 

results from the present study show a considerable degree of non-linearity in the initial 

region and in some cases results in the initial region are not reliable. The ASTM standard 

in this case suggests the use of another equivalent range in the vicinity of this range. 

Chord modulus is then defined (reporting the accepted range) as: 

Gchord = flT 

fly 
(3.18) 

where 

c;:hord = shear chord modulus of elasticity (kN/mm2
), 

1:1 T = change in shear stress (kN/mm2
) between the specified strain interval and 
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Ily= specified strain range interval. 

The experimental results obtained from tests on long and short coupons are given in 

Tables 3.6 - 3.11. 

As the stress-strain curves are nonlinear, a second definition of the shear modulus -'secant 

modulus'- has also been evaluated (Lee and Munro 1990, Dickson and Munro 1995). To 

determine secant modulus, the stress-strain curves for each test are fitted with least-square 

polynomial curves (third-order polynomials are found sufficient to yield a correlation 

coefficient above 0.995). Shear stress values corresponding to 1 OOOJ.l~ and 6000J.l~ are 

calculated using polynomial expressions for each test. The difference between the two 

stresses (Il!) is divided by the strain interval (1ly=5000J.l~) to calculate the secant shear 

modulus. This procedure compensates any discrepancies in the initial range of data 

caused by specimen, fixture or load settings, as the polynomial represents a smooth curve 

between the data points. Secant modulus values are included in the Tables. 3.6- 3.11 

Statistics 

For each series of tests, the average value (A V), standard deviation (SD), and coefficient 

of variation (CV in percent) are calculated for each property using the following relations 

(ASTMD5379M93, §12.5); 

~ =(iX-)ln ;=1 1 
(3.19) 

Sn-I = (t x2 - nX
2
)/(n-1) 

1=1 

(3.20) 

CV = 100x Sn_1 I x (3.21) 

where 

x = sample mean (average), x; = measured or derived property, n = number of specimens 

Sn-I = sample standard deviation, and CV=sample coefficient of variation (%). 

Tolerance (or material properties 

Tolerance in each property is estimated at a confidence level of 95% (Kennedy and 

Neville 1976, Wang and Zureick, 1994) ; 
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Experimental Results 

- + 1.96SD 
x _ .[;, (3.22) 

Stress-strain plots have been drawn, using the experimental data, to establish the in-plane 

shear properties of the composite material comprising the GRP box-profiles. Stresses and 

strains are calculated using relations (3.1S - 3.1S) summarised in the previous section. 

Typical stress-strain plots for ASTM, and proposed short (in longitudinal and transverse 

directions) shear coupons are shown in Figs. 3.32-3.34. The range of shear strain calculate 

from the experimental data (3.l7) is higher than 12000J..lE (3S000 to SOOOOJ..lE). Therefore, 

a strain interval of SOOOJ..lE (1000 to 6000J..lE or the closet available data points)tttt and the 

corresponding stress interval have been used for the calculation of both chord and secant 

moduli (= /1 r ). Ultimate shear strength (Fu) has been derived from the maximum stress 
/1& 

measured from each plot using (3.1S, 3.16). The number of shear coupon tested in each 

set is five (n=S). Average properties from each set of tested coupons (x), along with 

standard deviation (SD) and coefficients of variation (CV) have also been calculated (3.19 

_ 3.21). The experimental results for the six sets of shear coupons, each set comprising 

five coupons, are summarised in Tables 3.S-3.1 O. 

ASTM coupons. 

For the 3.2mm (nominal) thick ASTM coupons (Table 3.6), the average values of the 

chord and secant (3.94 and 3.92kN/mm2
) shear moduli are close to the theoretically 

predicted shear modulus (3.91 kN/nun2
, Table 3.S) using micromechanics and CLT. The 

low values of SD and CV show a consistency in the shear properties (and hence the 

material configuration) and in the testing procedure. The longitudinal shear strength of the 

GRP material (coupons loaded normal to the direction of fibres) is 82.S N/mm2 with a 

SD=I.S2 and CV=2.2%. No theoretical or experimental value of ultimate shear strength 

of this material is available in the literature for comparison. However, Fibreforce Ltd, UK 

quotes a value of shear strength of 60MPa (IMPa=IN/mm2
) for a group of series 800 

GRP profiles, of which the current profile (SlxSl x3.2) is a member. The quoted value is 

a minimum average established through experimental studies carried out by the 

tttt ASTM D5379M Table 1, giving the strain ranges for the chord modulus. 
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manufacturers. Therefore the measured strength may be taken as comparable and 

conservative. 

For 6mm thick ASTM coupons, the average (x) values of chord and secant shear moduli 

(3.96 and 3.98kN/mm2
) agree closely with the predicted value of (3.92kN/mm2

, Table 

3.5) establishing the validation of test fixture, testing equipment and procedures. 

Calculated values of SD and CV (0.07 and 1.77) are lower than corresponding values for 

the set of 3.2mm thick coupons, indicating a reduced scatter and increased consistency of 

the specimen coupons. However a higher scatter (SD=4.48 and CV=5.12%) has been 

observed in the calculation of ultimate shear strength. 

The angle ¢P,Q indicates the direction of principal normal stresses (ep and eQ) from the 

direction of orientation of strain gauge 1 in the rosette. The strain gauge 1 is aligned in the 

direction of loading (see Fig. 3.31). As the direction of max shear stress is normal to the 

directions of principal stress direction, and tan¢ = tan( ¢+90), t/JP,Q is the direction of 

maximum stress from the orientation of strain gauge 1. The calculated angles '¢P,Q ' 

(Tables 3.6-3.7) are close to 45°, indicating the maximum shear stress at the centre 

(measured by the strain rosette) of the coupon is parallel to the sides of the notches, 

minimising the strain concentrations at the notch roots. 

All the ASTM coupons failed along the central notched sections under shear (maximum 

shear being at the centre) (see Plates 3.2 - 3.3). The reinforcing fibres delaminated from 

the matrix, deformed under the shear load (normal to the direction of fibres) but did not 

break (the two halves remained in tact). This type of failure and the failure locations are 

typical of those approved as satisfactory by the relevant test standards. 

Short Longitlldinal cOllpons 

Average chord and secant moduli of five 3.2mm thick short longitudinal shear coupons 

are 3.95 and 3.96kN/mm2 (Table 3.8) respectively. The measured moduli are in close 

agreement (difference being only 1.3%) with the predicted shear modulus (3.91kN/mm2
, 

Table 3.5). Whilst for 6mm thick coupons the average chord and secant moduli are 

calculated as 3.95kN/mm2 (Table 3.9), which are very close (with 0.25% difference) to 

the predicted value of 3.94 kN/mm2 (Table 3.5). The low values of the SDs and SVs for 

the short longitudinal shear coupons demonstrate the uniformity of the shear properties of 

the box-sections in the longitudinal directions and the consistency of the test procedure. 

Average ultimate shear strengths for the two sets of 3.2mm and 6mm thick coupons are 
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85.2 and 85.7N/mm2
, which are similar to the shear strengths measured by ASTM 

standard coupons. The SD and CV value for the shear strength are also acceptably low. 

All the short longitudinal shear coupons failed (see Plates 3.4-3.5) at the central sections 

under the applied shear force. The failure modes are similar to the failure of ASTM 

coupons and are admissible according to the ASTM specifications (ASTM D5379M). 

Validation ofthe short coupon 

Experimental results of ASTM coupon are used to validate the performance of the short 

longitudinal coupons. The shear moduli measured by short coupons (3.95 to 

3.96kN/mm2
) are very close to that obtained by ASTM coupons (3.92 to 3.98kN/mm2

) 

(difference being 0.05 to 0.08 %). Similarly the ultimate shear strengths measured by 

short coupon (85.2 to 85.7N/mm2
) are very close to the strengths measured by ASTM 

(82.8 to 86.4N/mm2) with a small difference of 0.07 to 2.7%. 

The representation of short coupon test results to the outcomes of ASTM coupon results 

has been established using the "Student's t test" (Kennedy and Neville, 1976), where a 

significance of difference't' is calculated as; 

(3.23a) 

(3.23b) 

S2 = SD\2(n\ -1)+SD;(n2 -1) 

c (n\ -1) + (n2 -1) 
(3.23c) 

where Sc is the combined variance and Sd is the standard deviation of the difference of the 

means, n is the number of coupons in each set, SD is standard deviation for each set, and 

subscripts 1 and 2 are used for ASTM and short coupon sets respectively. 

The 't' value for the chord and secant shear moduli obtained from the ASTM and short 

coupon results fall in a range of 0.69 to 1.67, whilst 't' values for the shear strength 

results are calculated as 0.06 and 0.44 for the 3.2 and 6 mm coupons respectively. For a 

degree of freedom = [(5+5)-2]=8, the 't' value given in Table A-8 in Kennedy and Neville 

(1976), for a 5 percent level of significance (in the difference of the data) is 2.4. The 

greater value of 't' as tabulated (2.4) compared with the calculated values (0.06 to 1.67), 

suggests that the difference between the ASTM and the short coupon data is significant to 

less than 5%. There is at least 95% confidence that the short coupon is able to represent 
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the behaviour of ASTM coupon in detennining the shear properties of the composite 

material. Further the SD and CV values of the ASTM and the short coupons compare 

favourably (Tables 3.6-3.9). 

The failure modes observed in the ASTM and short coupon are also similar. All the 

coupons failed at the central test section in a similar fashion i.e., delamination of fibres 

and matrix and bending (rather than breaking) of fibres under shear. 

It is concluded, therefore, that short coupon results are valid, and that short coupon can be 

used to evaluate the in-plane shear properties in the longitudinal direction where a 

standard ASTM coupon would nonnally be used. 

Short transverse coupons 

The chord and secant shear moduli (in transverse direction) range from 2.81 to 

2.95kN/mm2 with an average value of 2.85 kN/mrn2 for both the 3.2mrn and 6mm thick 

transverse coupons. The moduli in the transverse coupons are lower than the moduli 

calculated in the longitudinal direction. The roving are in a direction parallel to the 

direction of load in comparison to the longitudinal specimens. The matrix (resin), is 

established as the unreinforced failure plane, possessing a lower shear strength and failing 

prior to any fibre failure. 

These results are more consistent than the results produced by the ASTM and short 

longitudinal coupons. The SD and CV values are also in a narrow range (0.10 to 0.13) and 

(4.21 to 4.56%) showing unifonn transverse moduli. No specific theoretical or 

experimental values are found from the literature to compare the experimental outcomes 

of this study. However, having established the validity of the short longitudinal shear 

coupons, results obtained from the transverse coupon are also considered valid. The 

average of ultimate shear strengths from the 3.2mm and 6mm thick coupons are 

64.4N/mm2 and 68.0N/mm2 respectively (Tables 3.9-3.10). Although no study to the 

relevant box-sections has been reported in the literature, the ultimate strength is 

comparable to the minimum shear strength (60 N/mrn2) specified by FIBREFORCE, Ltd, 

UK, for the structural design of similar GRP profiles. 

The short transverse coupons failed at the centre under the applied shear loading (Plates 

3.6-3.7) consistent with the ASTM and longitudinal specimen failure modes. 
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Fig 3.31 Strain rosette (45 0 rectangular) bonded to (a) ASTM coupon (b) Short 
coupon. (c) Angle ; represents the acute angle from gauge 1 to the principal axis 
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Fig 3. 32 A typical experimental stress-strain curve for ASTM coupon. 
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Table 3.6 ASTM shear coupon (3.2mm thick) test results. 

Specimen Shear modulus Shear Mode and 
Code Polynomial tPP.Qo (kN/mm2

) Strength location of 
Chord Secant (N/mm2

) failure 

LC-l T=1552.08Y- 42.4 3.83 3.83 85.4 Shear at 
137.40-(+4.3513y centre 

LC-2 t =1818.7y3- 44.6 3.82 3.82 83.8 Shear at 
168. 13'(+4. 8746y centre 

LC-3 T =1740.6Y- 43.2 4.01 3.95 81.7 Shear at 
142.69(+4.872Y centre 

LC-4 t =1642.9-(- 44.8 3.95 3.95 81.5 Shear at 
131.07r+4.7794y centre 

LC-5 T =1395.7y3- 44.2 4.09 4.04 81.8 Shear at 
126.92r+4.8639y centre 

Average - 3.94 3.92 82.8 -

SD - 0.12 0.11 1.82 -
CV - 3.05% 2.81% 2.2% -

Table 3.7 ASTM shear coupon (6.0mm thick) test results. 

Specimen Shear modulus Shear Mode and 

Code Polynomial 
tPP.Qo (kN/mm2

) Strength location of 
Chord Secant (N/mm2

) failure 

LC-6 t =1470.9"(- 41.9 3.79 3.79 89.8 Shear at 
123.01r+4.8814y centre 

LC-7 t =1929.2y3- 44.2 3.91 4.03 91.4 Shear at 
164.41r+5.2661y centre 

LC-8 t =1484.7Y- 42.7 4.12 4.07 85.5 Shear at 
127.8r+4.9682y centre 

LC-9 T =1121.31Y- 43.8 3.96 3.93 84.9 Shear at 
109.94r+4.6488y centre 

LC-I0 t =1319.5y3- 42.8 4.01 4.07 80.2 Shear at 
119.79(+4.8493Y centre 

Average - 3.96 3.98 86.4 -

SD - 0.07 0.07 4.48 -
CV - 1.77% 1.76% 5.12% -
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Table 3.8 Longitudinal short shear coupon (3.2mm thick) test results. 

Specimen Shear modulus Shear Mode and 
Code Polynomial ¢P.Qo (kN/mm2

) Strength location of 
Chord Secant (N/mm2

) failure 

SL-l t =1303.5-(- 44.3 3.97 3.96 86.7 Shear at 
115.87-(+4.826y centre 

SL-2 t =1013.6y3- 43.2 4.01 3.95 82.9 Shear at 
111.04-(+4.6558y centre 

SL-3 t =1324.6-(- 44.1 3.93 3.90 82.5 Shear at 
114.05-(+4.6447y centre 

SL-4 t =897 .83y'- 42.4 3.89 3.92 87.4 Shear at 
94.431-(+4.7329y centre 

SL-5 t =1161.1y3- 43.7 3.95 4.05 86.3 Shear at 
102.78-(+4.7174y centre 

Average - 3.95 3.96 85.2 -
SD - 0.05 0.19 1.82 -
CV - 1.14% 4.8% 2.2% -

Table 3.9 Longitudinal short shear coupon (6.0mm thick) test results. 

Specimen Shear modulus Shear Mode and 
Code ¢P.Q 

0 (kN/mm2
) Strength location of 

Polynomial 
Chord Secant (N/mm2

) failure 

SL-6 t=706.38-(- 44.5 3.95 3.91 86.1 Shear at 
82. 16-(+4.426y centre 

SL-7 t =596.46y3- 44.6 4.03 4.04 92.1 Shear at 
82.37-(+4.5924y centre 

SL-8 t =725.71 y3- 44.7 3.92 3.98 80.5 Shear at 
84.81-(+4.5408y centre 

SL-9 t =838.61i- 44.2 3.94 3.94 84.8 Shear at 
89.779'(+4.5315y centre 

SL-IO t =810.54y3- 44.8 3.89 3.87 85.2 Shear at 
87.147-(+4.413y centre 

Average - 3.95 3.95 85.7 -
SD - 0.19 0.12 3.13 -
CV - 4.81% 3.04% 3.65% -
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Table 3.10 Transverse short shear coupon (3.2mm thick) test results. 

Specimen Shear modulus Shear Mode and 
Code tPP.Q 

0 (kN/mm2
) Strength location of 

Polynomial Chord Secant (N/mm2
) failure 

ST-l t =1263.913
- 44.3 2.81 2.81 64.1 Shear at 

101.78'1+3.4713y centre 
ST-2 t =1418.2 y3- 43.8 2.84 2.87 65.3 Shear at 

97.58'1+3.2413y centre 
ST-3 t =1278.1f- 42.6 2.85 2.94 68.9 Shear at 

100.99j+3.5961y centre 
ST-4 t =1239.91- 43.2 2.86 2.83 62.6 Shear at 

90.888'1+3.4174y centre 
ST-5 t =996.96y3- 42.5 2.88 2.80 60.9 Shear at 

84.205'1+3.3481 y centre 

Average - 2.85 2.85 64.4 -
SD - 0.12 0.12 1.82 -
CV - 4.21% 4.21% 3.02% -

Table 3.11 Transverse short shear coupon (6.0mm thick) test results. 

Specimen Shear modulus Shear Mode and 
Code Polynomial 

(PP.Qo (kN/mm2
) Strength location of 

Chord Secant (N/mm2
) failure 

ST-6 t =579.24f- 44.1 2.85 2.88 68.1 Shear at 
58.475-(+3.5491 centre 

ST-7 t =593.72y3- 41.6 2.79 2.83 71.4 Shear at 
59.937'1+ 3.6377y centre 

ST-8 t =535.81- 42.4 2.87 2.79 70.5 Shear at 
54.09'1+ 3.2828y centre 

ST-9 t=640.62f- 31.7 2.94 2.95 64.9 Shear at 
63.577'1+3.4124y centre 

ST-I0 t =679.1y3- 43.5 2.81 2.79 65.2 Shear at 
63.667'1+ 3.8734y centre 

Average - 2.85 2.85 68.0 -
SD - 0.13 0.10 2.89 -
CV - 4.56% 3.51% 4.25% -
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3.4 COMPRESSIVE PROPERTIES 

The compressive properties (strength and stiffness) of the pultruded box profiles, 

investigated for buckling behaviour, in this study (Fig. 1.4 & 1.5) have been 

experimentally measured. The procedure adopted for this experimental study has been 

introduced by Mottram (1994). The material specimen is a parallel sided rectangular 

coupon (70x20mm) obtained from the uniformly thick walls (sides) of the box sections. 

Only longitudinal coupons have been extracted and tested as transverse coupons are not 

available due the profiles dimensional constraints. Furthermore, the profiles are only to be 

tested in longitudinal compression. 

Coupon Preperation 

The coupons, cut from the side walls of box-sections, in a direction parallel to the 

longitudinal axis and remote from the edges Goints) to avoid edge effects (Mottram, 

1991), have been machined to the required dimensions (70x20mm). Five coupons from 

each of the 51x51x3.5mm and 44x44x6.0mm box-section profiles have been extracted. 

Coupons have been cleaned and numbered sequentially. The exact dimensions of the 

finished coupons have been measured up to O.Olmm accuracy, using a micrometer and 

recorded for subsequent calculations. To each coupon, two single-element strain gauges, 

one on each side at its geometric centre, have been bonded (M-Bond 200 adhesive) 

having aligned the longitudinal axes of the both specimen and gauge. Pair of gauges being 

used to enable identification of bending arising from imperfections. 

Bondable terminals have been used to secure the solder joints between the strain-gauge 

conductors and the connecting wires, with double wires (two with each terminal) able to 

provide temperature compensation during the test. The prepared coupons were dispatched 

for testing to the School of Engineering University of Warwick, Coventry, for testing (for 

a schematic of the testing see Fig 2.8). 

Compression testing 

A prepared coupon is inserted to a depth of 25mm into lower mounting block of the 

testing rig. The upper mounting block (attached to upper platen of the compression testing 

machine) is lowered gradually and the coupon aligned to fit in the upper block. The 

clamping arrangement of the rig holds the coupon vertical, aligning and confining at the 

ends against brooming or splitting. Consequently 25mm of coupon length on each end is 
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gripped by the mounting blocks, leaving an un-supported length of 20mm at the centre to 

act as the test section. The failure of the coupon under the compression load is expected to 

occur in this section. The test-rig has been loaded in a DARTEC 9500 compression 

machine for compression and concentric loading. The rate of loading has been maintained 

by controlling the stroke rate at O.OImm1sec. Strain produced at the central test section 

and corresponding applied loads have been recorded in addition to real-time stress strain 

graphs. 

Compression test results 

All the coupons failed in a similar failure mode i.e. material failure near the ends (plate. 

3.9 and 3.10). Ideally the failure should have occurred in the test section i.e., at the mid­

length of the coupon. The similarity in the failure pattern in all tested coupons implies the 

inability of the clamping arrangements to promote gauge section failure. However the 

compression properties obtained (Tables 3.12 and 3.13) in the tests suggest that the 

coupons were loaded to a maximum strength prior at "failure". The test data has been 

processed using a similar procedure to that described for the shear tests within the 

exception that a second degree polynomial was used in the curve fitting. The longitudinal 

compressive modulus has been calculated from polynomial stress values against strain 

values of 1 000 and 6000~1::, as: 

E = I1cr 
x,c 111:: 

where 110" is the difference between stresses (in kN/mm2
) at strain values of 1000 and 

6000~E and 6& is the difference between the strain values i.e., 0.005mm (corresponding 

to strain interval of 1000 and 6000~E). Stress-strain plots for three 3.2mm and five 6mm 

compressive coupons are given in Fig 3.35. The ultimate compressive stress has been 

evaluated from the maximum load at failure. Results from the eight coupons (three 

3.2mm and five 6mm thick) are summarised in Table 3.12 and 3.13. Two of the 3.2mm 

thick coupons could not be tested owing to failure of the gauges. Stress-strain graphs for 

the tested coupons along with the polynomial curve fits are given in Fig. 3.35. Average 

compressive modulus (quoted as one representative value of the material) for the two 

box-sections has been calculated using (3.19). Similarly ultimate compressive stresses 

have been averaged to quote one value as the compressive strength of the material. 
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Standard deviation (SD) (3.20) and coefficients of variation (CV) (3.21) have also been 

calculated and included in Tables 3.12-3.13. 

3.5 TENSILE PROPERTIES 

Tensile properties in the longitudinal (parallel to the fibres) direction have been taken 

equal to the longitudinal compressive properties of the GRP composite profiles (Bank et 

al 1994, Zureick and Scott 1997). 

Tensile properties of one of the box-sections, being investigated in this study, i.e. 

SlxSlx3.2mm were measured by Saribiyik (2000). The properties have been predicted 

numerically by micromechanics and experimentally by testing coupons in longitudinal 

and transverse directions. Standard ASTM coupons were used in longitudinal direction 

while short coupons were used in the transverse direction. The experimental outcomes for 

the 51 x51 x3 .2mm box-sections are; 

Ex•t = 26.7kN/mm2 (Ex.c = 3 0.3 kN/mro
2
) 
1 5 

0; = 388N/mm2 
(O"c = 385N/mm

2
) 

where Ex.t is the longitudinal elastic modulus in tension; 0; is the ultimate longitudinal 

tensile strength; Ex.c is longitudinal elastic modulus in compression; and O"c is the ultimate 

compressive strength. 

3.6 TOLERANCE FOR MATERIAL PROPERTIES 

Using the average property values for GRP material, from Tables 3.5 -3.12, tolerance for 

elastic properties has been estimated at 95% confidence level, using (3.24) (Kennedy and 

Neville 1976, Wang and Zureick 1994): 

_+ 1.96SD 
x_ Fn 

51x5Jx3.2mm box-section 

Longitudinal shear Modulus 

(3.24) 

=3.95±0.12kN/mm2 

Transverse shear Modulus =2.85±0.04kN/mm2 

Longitudinal shear strength =82.8±2.6N/mm
2 

Transverse shear strength =64.4±2.5N/mm
2 

Compressive longitudinal Modulus = 30.3±0.40N/mm2 

Compressive longitudinal Strength = 385±8.0N/mro2 

IS Values in the parenthesis are compressive properties for 3.2mm thick coupon from the present study. 
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44x44x6mm box-section 

Longitudinal shear Modulus 

Transverse shear Modulus 

Longitudinal shear strength 

=3.9S±O.13kN/mm2 

=2.8S±O.OSkN/mm2 

=8S.8±3.3N/mm2 

Transverse shear strength =68.0±3.73N/mm
2 

Compressive longitudinal Modulus = 33.2±l.SkN/mm
2 

Compressive longitudinal Strength = 38S±16.3N/mm
2 

3.7 CONCLUSIONS AND RECOMENDATIONS 

Material properties of the two GRP structural profiles (SlxSlx3.2 and 44x44x6.0mm 

box-sections) have been established using theoretical and experimental studies, for use in 

stability analysis of these profiles used as columns in the composite structures. The 

outcomes of the research presented in this chapter are summarised here; 

1. Elastic constants for the composite material have been predicted using constitutive 

information (manufacturer supplied) and a theoretical approach (micromechanics and 

CLT) and reported (Table 3.5). 

2. Experimental studies have been conducted to measure the in-plane shear and 

compressive properties of these profiles. Standard ASTM shear coupon, 76x20mm 

rectangular notched beam (ASTM Designation D5379M-93), has been used to 

measure the longitudinal in-plane shear properties (modulus and strength). An 

alternative, enhanced, AFPB type shear test fixture has been proposed and adopted to 

apply a uniform pure shear load across the central test section of ASTM coupon. 

3. The performance of the ASTM shear coupon under the shear loading has been 

assessed using the finite element method as a benchmark to the establishment of a 

short equivalent. The agreement of the theoretical and numerical results validated the 

FEA model and analysis itself. 

4. A short shear coupon, similar in shape and geometry to the ASTM coupon, has been 

proposed to measure the in-plane transverse shear properties in cases where the ASTM 

coupon cannot be extracted from the pultruded sections. The proposed short coupon is 

40xl0mm rectangular notched beam. FEA models (2D, surface) of an individual short 

coupon and fixture encapsulated short coupon subjected to idealised (point loading 

described in Fig. 3.4) loading and of coupon loaded in AFPB test fixture has been 

analysed for the shear stress/strain distributions across the central test section and 

compared with the theoretical values. The effects of variations in the geometric 

132 



parameters (overall width of coupon, notch depth, notch angle) have been investigated 

numerically. A short coupon with a length = 40mm, depth = 10mm, thickness equal to 

webs of the box-sections, grooved at the mid-length of each long side with one 90° 

sharp V-notch of notch depth = 2.5mm is recommended. 

5. Aluminium tabs have been proposed located parallel to the loading bars to avoid 

premature failure of coupon in the contact regions. Analysis of a volume model (3D) 

of the proposed short shear coupon has been indicated that the tabs do not alter the 

uniformity of the shear strain distribution across the central section of the test region. 

6. A finite element analysis of the coupon encapsulated in the test fixture is essential in 

determining the loading applied to the coupon for use in calculating the elastic moduli 

and strength constants. 

7. In-plane shear properties have been measured experimentally using ASTM and short 

shear coupons extracted from both box-profiles. ASTM coupons show consistent 

values of the shear moduli and shear strengths with low SD and CV values. 

8. Short coupons in the longitudinal directions gave consistent and similar results to the 

ASTM outcomes demonstrated by the statistical "Student's t test". The test validates 

the performance of the short shear coupon for the measurement of in-plane shear 

properties where a standard ASTM coupon would normally be used and by inference, 

where geometric constraints apply. Short coupons with aluminium tabs are 

recommended when measuring transverse shear properties of the two box-profiles. 

9. All the coupons failed at the central test section (between the notches). Longitudinal 

coupons failed by delamination of fibres and matrix, whilst the overall integrity of the 

coupon was maintained. Conversely transverse coupons with tabs failed at the centre 

by matrix failure splitting the coupon into two halves with the consequent loss of 

integrity. 

10. From the experimental outcomes of the ASTM and short coupons, the average shear 

properties of the box-sections are Gxy = 3.95kN/mm2
; Fu.t = 85N/mm2, Gyx= 

2.85kN/mm2 and Fu.t = 66N/mm2
• The material's shear response behaves behaviour is 

non-linear but elastic. 

11. The compressive properties measured by testing the material coupons 3.2mm thick, 

are Eo = 30.3kN/mm2 and O'u.e = 385N/mm2. The average compressive properties for 

the 6.0mm thick box-section are Ee.t = 33.23kN/mm2 and O'u.e = 523N/mm2
• 
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Fig. 3.35. Stress-strain curves for the compression coupons. 
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Table 3.12 Longitudinal compressive properties of 3.2mm thick box-section. 

Specimen EL,c Strength Location and 

Code Polynomial (kN/mm2) (N/mm2) mode of failure 

CL-2 0'=-218.09£2+30.886£ 30.0 388 Shear at end 

CL-3 0'=-211.82E2+31.708E 30.8 390 Shear at end 

CL-5 0'=-207.56E2+30.949E 30.1 377 Shear at end 

Average 30.3 385 -
SD - 0.46 7.0 -
CV - 1.5% 1.8% -

Table 3.13 Longitudinal compressive properties of 6.0mm thick box-section. 

Specimen EL,c Strength Location and 

Code Polynomial (kN/mm2) (N/mm2) mode of failure 

CL-6 0'=-20.355E2 +34.689E 34.6 537 Shear at end 

CL-7 0'=-26.454E2 +31.859E 31.8 503 Shear at end 

CL-8 0'=-24.394E2 + 34.862E 34.8 546 Shear at end 

CL-9 0'=-22.078E2+31.109£ 31.0 522 Shear at end 

CL-I0 0'=-36.114E2+34.181E 34.0 507 Shear at end 

Average 33.2 523 -

SD - 1.73 18.6 -
CV - 5.2% 3.6% -
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(a) (b) 

(c) (d) 

Plate 3.1 Testing arrangements for shear coupons; 

(a) ASTM coupon 3.2mm thick; (b) ASTM coupon 6.0mm thick; 

(c) short longitudinal coupon 6.0mm thick; (d) short transverse coupon with tabs. 
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(a) (b) 

Plate 3.2 Failure modes of ASTM shear coupons (3.2mm thick): 

(a) front view; (b) side view. 

(a) (b) 

Plate 3.3 Failure modes of ASTM shear coupons (6.0mm thick): 

(a) front view; (b) side view. 
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(a) (b) 

Plate 3.4 Failure modes of short longitudinal coupons (3.2mm thick): 

(a) front view; (b) side view. 

(a) (b) 

Plate 3.5 Failure modes of short longitudinal coupons (6.0mm thick): 

(a) front view; (b) side view. 
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(a) (b) 

Plate 3.6 .Failure modes of short transverse coupons (3.2mm thick): 

(a) front view; (b) side view. 

(a) (b) 

Plate 3.7 Failure modes of short transverse coupons (6.0mm thick): 

(a) front view; (b) side view. 
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c -

(a) (b) 

Plate 3.8 Failure modes of compressive coupons (3.2mm thick): 

(a) front view; (b) side view. 

(a) (b) 

Plate 3.9 Failure modes of compressive coupons (6.0mm thick): 

(a) front view; (b) side view. 
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CHAPTER 4 

BUCKLING OF GRP BOX COLUMNS -

EXPERIMENTAL STUDY 

4.1 INTRODUCTION 

Much of the present useful design knowledge is based on careful experiments. 

Although judiciously chosen mathematical models may predict the expected physical 

behaviour, experimental data is needed to validate predicted behaviours. Furthermore, 

physical tests may exhibit the complete behaviour of real structures, aspects of which 

may not have been considered in the simplified models. 

Experimental testing of two GRP pultruded box-sections structural profiles (shown in 

Plate 1.5) is reported in this chapter. Specimens (columns), of various heights (200 to 

2000mm) have been concentrically loaded (within experimental limitations) in a 

purposely constructed test rig with pin supports (knife-edges) and vertical alignment. 

The main objectives of the experimental programme include the determination of 

critical buckling loads and failure modes, with classifications into global, local, 

material failure and compound sets. 

The experimental data generated during the tests, comprise the applied loads, axial 

and lateral deflections, axial strains, and ultimate load capacity (critical buckling 

loads in general). In the case of slender columns (exhibiting global buckling in the 

linear elastic linear range), the Southwell method (Southwell, 1932) has been applied 

for the calculations of single representative buckling loads and for the estimation of 

imperfections in the geometries of the profiles. Taking advantage of this non­

destructive method, specimens have been retested after rotating about the longitudinal 

axis of symmetry and lengthwise by 180 degrees (reversing the orientation). For short 

columns, however, as failure was abrupt, non-linear and irreversible with negligible 

transverse deflections, the Southwell method could not be applied. 

The experimental outcomes have been compared with the theoretically predicted 

results using classical approaches and the design guidance from Eurocomp design 

code and manufacturers' design manuals. A unified design curve for the two-box 

sections under investigation, have been produced using the procedure prescribed by 
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Barbero and DeVivo (1999). Comparisons with linear and non-linear analyses are 

given in Chapter 5. 

To establish the effects of perforations on the load carrying capabilities of the 

composite columns circular holes have been drilled through the webs of pre-tested 

(with known buckling load) long specimens. Three sizes (diameters) of the holes have 

been adopted, one for each member comprising a group of specimens of one length. 

For example, three 51x51 x3.2mm specimens of length 2000mm, tested for critical 

buckling loads have been retested with holes 14,25 and 35mm diameter respectively. 

Similarly three 44x44x6.0mm specimens of length 2000mm are retested with holes 

14, 20, and 25mm diameter respectively. 

4.2 BUCKLING TESTS 

4.2.1 PREPARATION OF SPECIMENS 

Specimen extraction 

Test specimens (columns of lengths rangmg from 200 to 2000mm) have been 

extracted from standard lengths (6m == 20ft as supplied) of the two GRP box profiles 

(51x51x3.2 and 44x44x6.0mm). Three specimens have been prepared for each length 

of the two cross-sections. Specimens in each length-group are marked with sequential 

numbers (1, 2, 3 for 51mm box-sections and 4,5,6 for 44mm box-sections) and their 

sides (webs) with letters A, B, C, and D for identification and tabulation of the test 

results. The specimens are machined to the idealised lengths and their ends squared 

i.e., ends made flat, smooth and normal to the longitudinal axis of the columns. End 

squaring promotes uniform distribution of applied load over the whole cross-sectional 

area and helps to reduce the onset of premature localised failure (Brown et al 1998, 

Barbero and Truk 2000). 

Initial measurements 

Outer dimensions (width on all four sides) have been measured every 100mm along 

the length of the specimens. The cross-sectional dimensions have been measured to 

establish the geometrical properties (e.g., area 'A' and moment of inertia Or). As the 

box-sections have a closed cross-section, wall-thicknesses and internal measurements 

are only available at the ends. Outer and inner widths have been measured using a 

vernier calliper with minimum increment of O.Olmm, whilst the wall-thicknesses are 
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measured using a micrometer with same resolution. Wall-thicknesses have been 

measured at twelve locations (shown by dotted lines in Fig 4.1) around each end­

cross-section. In the case of 51mm box-section, four thin plateaus (two on each 

opposite sides (see Fig 4.1) are included during manufacture to accommodate 

adhesive for joining purposes. The formation of these plateaus has been assumed to 

be as a result of consolidation of the material during the manufacturing process, and 

that the material configuration (reinforcements and matrix) remain uniform across the 

entire cross-section. Therefore, average measured values from both ends of a 

specimen, for the geometry of the box-sections, has been used in calculating the 

average web-thickness, mean cross-sectional area 'A' and the moment of inertia 'F 

for each specimen. The minimum and maximum wall-thickness has been recorded as 

3.07 and 3.54mm as compared to 3.2mm nominal thickness specified by the 

manufacturer (FIBREFORCE Ltd UK). As an example, the thickness variations 

(between 3.07 and 3.54mm) for 51mm box-section differ from a mean thickness value 

(3.3mm) by ±O.25mm and are within the standard tolerance (ASTM D3917 -94). 

Initial imperfections 

Initial imperfections i.e., out of straightness and variations in the outer cross-sectional 

dimensions (inherited in sections due to pultrusion process) have been measured 

along the specimen length on all four sides. For this purpose, the length of the 

specimen is marked every 50mm starting from one end. The specimen is placed 

horizontally on a lathe table (marking table) and a dial gauge with O.Olmm accuracy, 

mounted on a vertical stand, is moved along the specimen length to measure the 

widths along the centre line of the upper face (see plate 4.2). The procedure is 

repeated for each side. The imperfections of cross-section on each side have been 

calculated by subtracting the mean width from the measured values (Fig 4.2). The 

initial imperfections have been compared with the allowable imperfections (tolerance) 

from the ASTM standard D3917-94. For the box-sections used in this investigation, 

the tolerance specified by the ASTM standard is: 

L 
e <-0-

240 
(4.1) 

where eo is the initial deflection (deviation) from the mean dimension and L is the 

height of the specimen. All measured deviations from straightness are significantly 

within the tolerance specified by ASTM. For example the variations in the outer 
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dimensions are within ±O.3mm from the average values (S.09mm and 43.8m for 

Slmm and 44mm box-sections respectively). Considering the minimum height of the 

column i.e., 200mm, eo calculated using (4.1) is O.83mm (> O.3mm). For longer 

columns the variations are very small as compared to standard limits. An important 

observation made here is that specimens deflect under self weight when placed on the 

marking table, showing very little out of straightness. Consequently measured 

imperfections are mainly cross-sectional variations with indications of out of 

straightness reduced or neglected. 

Fixing strain rosettes and bondable terminals 

To obtain a full representation of the strain field at the mid height of the column, A 

45° rectangular strain rosette (EA-06-060RZ-120 from Measurement Group) is 

bonded on each side (M-Bond 200 adhesive and catalyst C used) of the specimen, 

symmetrically about the longitudinal centre line (see Plate 4.2). The surface is cleaned 

(using methane) and prepared (rubbed smooth) to ensure a sound bond and to 

maximise bondable area. The pre-treatment processes were carried our using a clean 

absorbent material and neutraliser with the briefest delay before bonding, to minimise 

re-contamination of the surface. A similar procedure has been used for the fixing of 

the bondable terminal. Thin wires are soldered to connect the gauges to the bondable 

terminals that in turn are wired, to a data-logger for data recording, via quarter bridge 

circuits. 

4.2.2 EXPERIMENTAL SETUP 

In establishing the experimental setup, the primary considerations adopted have been: 

• Columns are tested in the vertical position, to negate the introduction of initial 

imperfection arising from self weight deflections. 

• Friction free knife-edge supports to simulate pin ended conditions, with 

rotation admissible about the knife-edge axis only. 

• Concentric loading i.e., knife-edge centre line aligned with the axes of 

loading. 

Test Rig 

The test rig (main frame) comprises two vertical steel channel-sections, bolted rigidly 

via a thick steel base plate to the laboratory strong floor (Fig 4.3). To the frame base 
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are welded steel plates (one horizontal and two vertical) fonning a platfonn that 

provides support to the test specimen at one end and makes the frame further rigid, 

vertical and parallel. To the upper end, a steel saddle bolted across the channels, 

supports a hydraulic jack fitted to the underside by a steel plate. A second 'assembly 

saddle' containing four horizontal rectangular supporting posts is attached (bolted) 

below the upper saddle. Both, upper and assembly saddles can be relocated by 

repositioning the bolts (Plate 4.3) along the steel channels, to suit various lengths of 

the specimens. The supporting posts accommodate the load guiding mechanism (see 

Fig 4.3 and Plate 4.3(a». Two guide bars (25.4mm diameter steel rods) slide smoothly 

and vertically through four holes, lined with copper bushes. A plate, fastened to the 

guide bars between the supporting posts, accommodates a knife-edge support (wedge 

shaped steel prismatic bar, see Plate 4.3). A steel shoe (locating the specimen) 

comprising of a fabricated hollow steel box-section (65 x 65 x6mm) and thick base 

plate (37.5mm) having a "V" notch along the centre line for the afore mentioned 

prismatic bar fonning a simple (pinned) support (see Plate 4.4(b ». The specimen is 

restrained in the horizontal (x and z) plane but can move in the vertical direction under 

the axial load. Also, the steel shoe distributes the applied load unifonnly to the 

specimen cross-section, reducing the possibility of localised material failure. The 

hollow box (of steel shoe) encapsulates the column end to a depth of 50mm (2 inches) 

as a safeguard against slipping or breaking of the specimen at failure. Steel shimming 

plates and screws on all four sides are provided to tighten and align the column end in 

the shoe (Plate 4.3 (a». Centre lines, on all four sides of the steel shoe, are marked to 

centre (align) the test specimen for concentric loading. A similar knife-edge plate and 

shoe have been fabricated for the lower end (Plate 4.4 (b». The lower plate is fixed 

i.e., the displacements in horizontal and vertical directions are restrained about the 

centre line but free to rotate on a knife edge. A second load cell is located beneath the 

lower knife-edge plate (atop of the base platfonn), to measure the reaction produced 

by the lower platfonn (Plate 4.3(b» and to check friction losses in the total assembly. 

Holes along the main frame (steel channels) has been used to fix LVDTS (Linear 

variable differential transducers) at the required locations. Simple steel holders have 

been fabricated and welded to bolts to fit in these holes. The test assembly is, 

therefore, fully integrated (see Plate 4.5). 
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Alignment of test rig and specimen 

The reaction frame should be vertical and components orthogonal for concentric 

loading. A surveying theodolite has been used to check the verticality of the frame. 

The theodolite has been centred and levelled at a distance (3 to 4 meters) from the test 

rig to cover whole height of column. The top internal edge of one of the channel 

sections comprising the frame has been sighted and followed downward along the 

length. The same procedure has been followed to note the alignment of second steel 

channel. Misalignment, if detected, is eliminated using steel tie-rods. The verticality 

of the frame from in the orthogonal plane was similarly determined and the procedure 

iterated until the reaction frame was square. Equivalent accuracy in the components 

comprising the reaction frame has been assumed throughout. 

The specimen (column) has been inserted into the lower shoe (remote from the rig) 

and centred by aligning preset marks. Thin shimming plates have been tightened 

around the specimen by screws, leaving equal gaps between shoe walls and the 

specimen. The opposite end of the specimen has then been inserted into the second 

shoe and centred by repeating this procedure. The specimen with steel shoes on both 

ends has been inserted into the test rig by gradually pushing the upper shoe against 

upper knife edge, lifting it until enough room has been available to place the lower 

shoe on top of lower knife edge. The specimen has been aligned as straight and 

vertical between the knife edge plates, using the theodolite. Screws in the lower shoe 

are used for adjusting the specimen position for the specimen alignment. The 

theodolite has been used only to align the specimen from the front face. In the 

orthogonal plane, the sight from the theodolite was restricted by the steel channels. 

Lateral alignment has been achieved using steel strips bolted to the main frame at the 

locations of knife edge plates. A steel strip fixed at lower knife-edge is shown in Plate 

4.3(b). Internal and external callipers have been used to align the upper and lower 

knife-edge plates at equal distance from the aligning strips. Adjusting screws on sides 

of the shoe centre the specimen. 

The specimen has been loaded to one third of the expected load to allow initial setting 

of the specimen ends. The steel shoes have then been loosened, the alignment checked 

and the shoes retightened to allow the specimen to destress before the start of actual 

test. 
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Effective Height (Lral 

The height between the knife-edges (pivots) of the upper and lower supports is the 

effective length for each test specimen. An additional length of 55mm to the physical 

length of the GRP specimens, due to the introduction of the upper and lower steel 

shoes, has been measured. For example the effective lengths (Lef!) for 200 and 

2000mm GRP specimens while testing are 255 and 2055mm respectively (assuming 

pin supports). The presence of two steel shoes does not affect the column's 

deformation characteristics as in a theoretical analysis Chilver (1956) showed that 

even when the total length of two fully rigid end fixtures is 0.2 of the column height 

between simple supports, the increase in the Euler load is approximately 1.3%. 

4.2.3 MEASUREMENTS 

Axial Load 

Axial load has been measured using two load cells; an upper and a lower. The upper 

load cell is directly mounted on the hydraulic jack and connected to the upper steel 

plate via a copper cylindrical attachment (copper being a relatively soft material, acts 

as a shock absorber protecting the load cell from impact damage). This load cell 

measures the axial compressive load applied to the specimen through the knife edge 

and steel shoe. The lower load cell has been placed under the lower steel plate, 

measuring the reaction to the above load (Plate 4.3(a) and 4.3(b». Ideally these loads 

should be equal given a frictionless system and the induced gravity loads arising from 

the moving plate, knife-edge, steel shoes and specimen are included. Comparing the 

load cell readings a difference of 0.1 to O.3kN has been recorded corresponding 

approximately to the self weights of the components listed previously. The test rig has 

a demonstrably low friction error, therefore. 

During testing the load has been applied in small increments to reach the ultimate load 

(estimated from theoretical solutions) within 10 minutes. The load is measured and 

recorded digitally every two seconds (Le. 300 readings in 10 minutes). The capacities 

of the load cells (e.g., 89kN to 898kN) and the hydraulic jack have been selected 

depending upon the height and cross-section of the columns. 

Deflections 

Axial deflection (vertical shortening) is measured by the downward movement of 

upper plate accommodating the knife edge support. An L VDT fixed to the upper 
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saddle measures the axial deflection of the specimen (see LVDT 1 in Fig 4.3 and Plate 

4.3(a)). 

For longer columns showing global buckling, lateral deflections are measured at three 

points (mid, upper one-quarter, and lower one-quarter of the length, see Plates 4.6-

4.7), whilst for short columns, where local buckling is expected and locations of the 

maximum deflections are not known before hand, more than three L VnTs have been 

used (see Plate 4.8(d)). 

The cross-sectional rotation of the specimen at mid height is measured indirectly. A 

flat steel (or plastic) strip is clamped to on side of the specimen and horizontal 

displacements at two equal distant points from the centre are measured using two 

LVDTs (see Plate 4.4 (a)). However, the cross-sectional rotation of the column ends is 

not admissible due to the rotational restraint of the knife-edge supports. 

Strains 

Strains produced by the compressive loads are measured by strain gauge rosettes 

bonded to each face of the specimen at mid-heights. Each strain rosette comprises 

three strain grids (see Fig 4.3 and Plate 4.2). Strain grids are numbered anticlockwise. 

Grid 2 of the strain rosette is at the centre of each web at mid-height parallel to the 

vertical axis. Grid 1 and 3 are at ±45° to vertical axis. Maximum principal strains are 

calculated from the strains measured by three grids of a rosette (using 3.17). The 

angle (¢) from the axis of grid 1 to the maximum principal strain is calculated to 

confinn the verticality of the bonded gauge in the case of the column tests. If the 

angle ~ is 45 0
, the maximum principle strain (-ve compressive and +ve tensile) is in 

the axial direction. Strain measurements in the initial loading range are not only used 

to calculate the compressive modulus, but also indicate equal and uniform distribution 

of compressive load on the all four sides of the specimen, confirming the proper 

alignment ofthe specimen and concentric loading. 

4.2.4 TESTING PROCEDURE 

• Rig adjusted to fit a particular specimen height. 

• Specimen inserted and aligned. 

• Load-cells, LVDTs and strain-gauges connected to the data-logger. 

• Instrumentation initialised and initial values set to zero. 
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• Specimen loaded to one-third of the expected load. Instrumentation checked 

for proper functioning. Load released, alignment re-checked and 

instrumentation brought to initial zero readings. 

• Loading applied gradually. 

• Instrumentation continuously monitored. Data filtered through noise and 

recorded using a data acquisition system (every 2 seconds). 

• Load increased in intervals until either the central lateral displacement 

increased uncontrollably or material failure occurred. 

• Mode of failure recorded. 

• In the case of Euler buckling (non-destructive), specimen either rotated 

through 900 about the longitudinal axis or inverted and retested. 

• In the case of local failure i.e., tearing of the cross-section, half sine wave­

length measured to within a reasonable accuracy of ± O.Smm. 

4.3 EXPERIMENTAL RESULTS 

The results comprise buckling/failure loads and the resulting failure shapes. Critical 

loads are presented in the tabular form (Tables 4.1-4.3), and failure modes have been 

illustrated with photographs (Plates 4.6-4.7, 4.9-4.15, and 4.17-4.19). Four types of 

column failure have been observed during the experiments: 

• Global buckling exhibiting lateral deflection at the critical load. Buckled shape 

is half sine wave with maximum deflection at mid-height, 

• Local buckling of the webs followed by tearing of the cross-section, 

• Compression failure of the material. 

• Interaction between global and local buckling modes followed by tearing of 

the cross-section or global and material failure. 

Critical buckling ( or failure) loads depend on the column heights and the material 

properties of the parent materials (Barbero and Tomblin 1994, Brown et al 1998, 

Barbero 2000). These factors has been combined together to define the universal 

149 



slenderness ratio A = L ~ PL 
• (2.19) of each specimen. By definition 'A' is a function 

7t D 

of material stiffness and geometric properties, in addition to the column height. The 

experimental evidence suggests that specimens having A >1 buckle globally, whilst 

specimens having A < 1 exhibited local or material failure. Specimens having A =1 

showed mode-interaction. This observation is in line with the findings of the previous 

studies (Barbero and Tomblin 1994, Barbero and Evans 1998, Brown et al 1998, 

Barbero and DeVivo 1999). 

As a reference of demarcation between the global and local failure, critical heights L· 

(2.21) (for the occurrence of maximum mode interaction), for the two box-section 

profiles (51mm and 44mm) have been calculated taking A = 1. The columns have 

been assumed to be of uniform cross-sectional area and moment of inertia (mean 

value given in Tables 4.4-4.5) throughout the length. The bending stiffnesses D have 

been taken equal to E L,e X I , where E L,e are the measured compressive moduli for the 

two sections (Tables 3.11-12). PL- for either of the box-sections has been taken equal 

to experimental load for the short columnst. The critical lengths for 51mm box­

section (with PL = 120kN) and 44mm box-section (with PL = 220kN) have been 

calculated as 771 and 569mm respectively. 

4.3.1 GLOBAL BUCKLING 

Global buckling has been observed in specimens of height 1000mm (Lef!= 1055mm 

and A= 1.37) and longer in the case of the 51mm box-section and for the heights 

750mm (Lef!= 805mm and A = 1.41) and longer in the case of the 44mm box-sections. 

As the global buckling is the characteristic of the slender columns, these specimens 

(and hence the column heights) have been categorised as slender columns. The 

specimens remain vertically straight (with no or very little lateral deflections) before 

buckling commences. As the buckling loads approach, the specimens abruptly deflect 

laterally to one side (with respect to the knife edge axis) and deflection continues to 

• PL has been taken from the short column tests on the two box-sections (Tables 4.2-3). PL has been 

confirmed to be independent of the column height in the short range as at least one specimen from each 

height group reached this experimental failure load. This is in line with the definition of PL' 

t The minimum acceptable length for short column has been suggested to accommodate at least 4 half 

sine waves when buckled in a local mode (Mottram, 2000). 
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increase without further increase in the applied load. The buckled shape is a half sine 

wave (Fig 4.4 and plates 4.6-4.7) with maximum lateral deflection at the mid-height. 

The maximum lateral deflection at the centre is limited to heightJI00 to avoid any 

cracks or permanent damage to the material (Mottram et aI, 2000). The cross-section 

of the specimen remained un-distorted (square with right angles) and uniform 

throughout the length of the specimen. The supports (knife edges) at the both ends of 

the specimen are rotated about the knife edge (see pin ended rotation in Plates 4.7(c, 

d» without orthogonal movement. The upper support moves axially downward under 

the application of external compressive load. Specimens fail (without any damage or 

breakage) due to buckling in the elastic range (Le., buckling stress is much lower than 

the ultimate compressive stress). They are retested with change in sides or rotation by 

1800 • Experimental results are given in Table 4.1 in which sides A, B, C, and D 

indicate the side of specimen in the observation reference plane (parallel to the knife­

edge axis and in contact with LVnTs to measure lateral deflections), and the negative 

(-) sign indicates the rotation about the transverse axis by 1800 (specimen longitudinal 

orientation reversed). The critical buckling loads measured experimentally 'PExp' and 

determined by Southwell method using experimental data 'PS.well ' have been included 

in the results (Table 4.1) 

The global buckling modes for the slender columns are given in Plates 4.6-4.7. The 

classic half sine wave deflected shape is clearly demonstrated with rotation (pin 

action) of the supports. The plates also indicate the position of LVDTs to measure the 

lateral deflections, cross-sectional rotation and central location of bonded strain 

rosettes. 

The characteristics of the global buckling in composite GRP columns have been 

studied by plotting the following graphs: 

Axial Deflection verses axial load 

Typical plots of axial deflection verses the applied loads, for the various lengths of 

specimen, have been presented in Fig 4.5 for 51mm box- and in Fig 4.6 for 44mm 

box-sections. Axial deflection increases with load until ultimate load and remain 

constant after buckling. As is evident from the Figs 4.5-4.6, the behaviour is linear up 

to the ultimate load in all specimens. Therefore, it has been established experimentally 

that the global buckling of GRP slender columns occurs in the linear elastic range of 
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the material. Despite the reconditioning of the specimen by loading to a third of the 

expected failure load prior to initialising the complete test, it is clear from the initial 

stages of the plots (Figs 4.5-4.6) that the response of a column is less stiff than the 

nominal (mid-range stiffness). This characteristic is consistent for both 51mm and 

44mm box-section tests. It suggests that there exists a certain amount of elastic 

behaviour « 5kN) that is fully recoverable under unloading that induces a limited 

non-linearity at low loads that may include both material and testing flexibilities. 

Axial Load (Pl verses Lateral Deflection (Al 

Lateral deflections have been measured at three points along the specimen height i.e., 

mid, upper quarter (L/4) and lower quarter (LI4) heights. Maximum lateral deflection 

(~3 measured by LVDT 3)t has been measured at the mid height of the specimen. The 

deflections measured at the upper and lower quarter lengths of the column are lower. 

At the buckling load, the measured values of the lateral deflection at three locations 

are compared with a half sinusoidal buckled shape such that ~2 ~ ~4 ~ 0.707A3 (see 

Fig 4.4). It is clear that the 51mm box section approximates the normally assumed 

half-sine wave deformation. The smaller section (44mm box) with considerably 

thicker walls displays a much greater curvature at the centre. Typical plots between 

the lateral deflections (at mid-height and upper and lower quarter lengths) and the 

applied axial loads for 51mm and 44mm box-sections have been shown in Figs 4.7-

4.8. 

It is evident from the graphs that lateral deflections are minimal until the onset of 

global buckling, increase abruptly without any further rise in the applied load and are 

asymptotic to the theoretical (Euler) buckling loads. Euler lines indicate the buckling 

of ideal columns perfectly straight and free from imperfections (bifurcation theory in 

elastic buckling). Any deviation from the ideal behaviour i.e., increasing lateral 

deflection from the lower range of the loading and/or decreasing buckling load, has 

been attributed to the initial imperfections and the limited ability of L VDTs to 

measure very small displacements consistently. The potential imperfections causing 

deviation of the column behaviour from approaching the theoretical bifurcation point 

t In all the global buckling tests, L VOTJ has been placed at mid-height and measured deflection is 

denoted as ~3. Likewise ~2 and A. represent deflections at upper and lower quarter lengths. 
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include misalignment of the testing rig (equipment limitations), geometrical tolerance 

(specimen limitations) and non-homogeneity of the composite material (inherited 

limitations). 

Misalignment of the test rig causes a load eccentricity if the centroids of the sections 

at both ends do not coincide with the line of action of the compressive load (Mottram, 

2000). It can be minimised (if not eliminated) by the proper alignment of the 

specimen and the components comprising the test rig e.g. knife-edge supports and 

steel shoes housing the specimen. In the present study surveying equipments have 

been used to align the upper and lower knife-edge supports with the loading line (§ 

4.2.2). Both ends of the specimen are properly centred in the steel shoes, using the 

guiding centre lines and the adjusting screws. A close agreement (difference < 5%, 

Table 4.1) between the measured buckling loads PExp and the loads predicted form 

Southwell plots PS.well confirms the achievement of an adequate alignment using the 

adopted technique. Also, the measured (PExp) and Southwell (PS.well) loads (Table 4.1) 

for the same specimen when tested in upright and upside down (rotated by 1800 about 

the transverse axis), are very close, indicating minimal alignment imperfections. This 

comparison further substantiates that the test rig performed well regarding loading 

(frictionless and concentric) and pin-ended support conditions. 

In the paper by Barbero and DeVivo (1999), a loss of 35% in the buckling loads of 

GRP wide-flange profiles of intermediated heights has been suggested and attributed 

to the interaction between the buckling modes. Mottram (2000) reviewed the contents 

of this paper considering this loss (35%) in buckling load to be too high and suggested 

that the greater part of this loss in stability was due to load eccentricity produced by 

the misalignment of the testing rig, as the specimen could move within the larger steel 

fixtures during the test. Mottram (2000) is of the opinion that mode-interaction may 

reduce the buckling loads but this loss is proportional to the specimen's imperfections 

(imperfection sensitive). Therefore, in the context of Barbero's work, a loss of 35% 

was deemed too high to be attributed to mode-interaction only, as recent profiles 

exhibit low section imperfection, and may be due to the influence of other 

imperfections i.e., load eccentricity due to misalignment in applied loading. This 

demonstrates the adverse effects of rig-misalignment on the buckling stiffness of 

slender columns. 
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Out of straightness and cross-sectional variations (e.g., varying thickness of walls and 

outer measures) manifest a small shift in the position of the neutral axis of cross­

sections (along the column height) from the nominal centroidal axis, producing a load 

eccentricity leading to increased lateral deflection and the loss if buckling loads. 

Initial imperfections, like out of straightness and cross-sectional variations measured 

for both the box-sections (typically shown in Fig 4.2) are very small (of the order of 

less than Imm). A small difference of less than 5% between the experimental and 

predicted loads suggests low level initial imperfections. 

GRP composite material is non-homogeneous; i.e., the distribution of the reinforcing 

fibres is not uniform over the cross-section leading to a non-uniform distribution of 

applied load in the cross-section. The determination of material properties (Chapter 3, 

compressive and shear moduli), using coupons obtained from both the box-sections, 

established small variations in the measured material constants (Tables 3.5-3.12). 

However small the variations are, they still contribute toward the small eccentricities 

produced in the compressive loading leading to the deviations of actual behaviour of 

the specimens from the ideal case. 

Southwell Plots 

The presence of imperfections prevents the p-~ response from following the 

theoretical bifurcation behaviour with its distinct limit point. These imperfections 

induced an initial curvature producing lateral deflections well before PE could be 

attained, justifying the need to use the Southwell plot method to predict the 

experimental load. The method has been used efficiently to analyse the linear elastic 

test data from a column with initial curvature to determine the buckling capacity 

which the column would have if it were perfectly straight (Tsai, 1986). The capacity 

is estimated from the measured lateral deflection and the applied axial load. The basic 

assumption enforced for the validity of the Southwell method is that the deviation of 

the p-~ curve from bifurcation theory equates to an out of straightness (~o) in the 

form of a half sine wave. It is further assumed that the deformations (lateral) are in the 

linear range of the material. The method is especially useful in non-destructive testing 

(like the present study) since the specimens are required to be loaded within the 

elastic limit (Barbero and Tomblin 1992, Brown et al 1998). However, the accuracy 

of the predicted buckling capacity becomes poor if the initial curvature is small. The 

reason is that the actual deflection dwells within the deviation range of employed 
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gauges (LVDTs). To overcome this limitation, experimental data only for loads in the 

ranges of 80 to 100% of ultimate loads have been used (Southwell 1932, Mottram et 

aI2003). In the method, lateral deflections normalised by the applied load (/::,.3IP) have 

been plotted against deflections (~3) for each test. Typical Southwell plots for various 

tested lengths of the 51mm and 44mm box-sections have been shown in Figs. 4.9-

4.10. A linear regression curve (trend line) with equation (slope and ordinate) and 

correlation coefficient has been obtained for each plot. For most of the curves the 

correlation coefficient (R-squared value) is either unity or more than 0.99, indicating 

high linearity of Southwell curves, and low physical imperfections in the specimens. 

The inverse of the slope of the regression line yields the critical buckling load of the 

corresponding specimen whilst the ordinate of the equation estimates initial 

imperfections (including all the practical imperfections). Critical buckling loads 

'Ps.wen' obtained from the Southwell plots for 51mm and 44mm box-sections have 

been reported in Table 4.1. 

It is assumed here that Southwell method is valid for data where the deflections are 

due to combination of several imperfections and not just ~o. In other words two P-~ 

. curves due to overall eccentricity eo or due to a higher ~o (higher to account for all 

imperfections), have very similar shapes. 

Cross-sectional rotation 

The knife edge supports at the ends of the specimen prevent its rotation about the 

longitudinal (vertical in the present experimental study) axis. However its mid-height 

section may rotate under the applied compressive load. To measure this rotation, a 

long rectangular (steel or plastic) strip has been fixed to the cross-section. Lateral 

deflections (normal to the knife edge axis) at two equidistant points from the centre of 

the strip are measured using LVDTs (D5 and D6 in the case of slender columns). Both 

deflections are normally in the same direction, indicating the lateral deflection rather 

than cross-sectional rotation. The difference of the two deflections (D5-D6) gives the 

amount of net deflection associated with rotation of the mid-height section (see Figs 

4.11-4.12 for 51mm and 44mm box-sections respectively). The small values of these 

deflections suggest that specimen undergoes lateral deflections due to lateral 

imperfections rather than twisting of the specimen. Furthermore, it is interesting to 

note that after initial loading, the relative deformation (D5-D6) remains constant. 
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Axial strains and compressive modulus 

The axial stresses resulting from the applied compressive loading have been plotted 

against the strains measured during the buckling experiments. Axial stress has been 

calculated by dividing the applied load by the cross-sectional area of the specimen. 

Experimental strains at each load-increment have been measured by strain-rosettes 

fixed at mid-height of all the four sides of each of the box-sections. Each strain rosette 

comprise of three gauges numbered antic10ckwise as 1, 2, and 3. The gauge 2 

(central) has been fixed parallel, whilst the gauges 1 and 2 are at 45° to the 

longitudinal axis of specimen (Plate 4.2). The strains measured by gauges 1, 2, and 3 

are denoted as 81, 82 and E3 respectively. 

Principal strains 8P.Q (maximum and minimum axial strains) and ¢ (angle between 

principal strains and the direction of gauge 1) have been calculated using (3.17, 

Measurement Group, 1990). The angle '¢', in most of the tests has been calculated 

between 40° and 45° indicating satisfactory alignment of the strain rosettes with the 

longitudinal axis and demonstrating that principal strains are in axial direction. For a 

properly aligned strain rosette, strains measured by gauge 2 and principal strains 

(calculated from E\, E2 and 63) should be similar. For example stress-strain plots, for 

the 2000mm high 51mm box-section specimen, using strain data from a single gauge 

(central 2) and principal strains, have been presented in Fig 4.13 (a) and (b). Both the 

plots show very close results establishing proper gauge alignment. Typical stress­

strain plots for various specimen heights using calculated maximum principal strains 

and average stresses have been presented in Figs 4.14-4.17. 

Fig 4.14 presents stress-strain plots for specimens representing 51x51x3.2mrn box­

sections. The first three plots are for long columns (heights of 2000, 1500 and 

1000mm). In the plots, sides A and C§ have arbitrarily been taken for the sides of the 

specimen parallel to the knife edge axis, towards front i.e., in the observation 

reference plane and the back (opposite side), which may deflect laterally. Other two 

sides i.e., B and D are restrained against lateral deflections due to knife-edge supports. 

§ The notation of the side may not agree with the notation given in result table (Table 4.1). The strains 

gauges fixed to the front side are numbered as 1, 2, and 3. Arbitrary side B have gauges 4, 5, and 6. 

The back side (again parallel to the knife-edge axis) is denoted C and is associated with strain gauges 7, 

8, and 9. Like wise side D contains strain gauges 10, 11 and 12. 
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Principal strains measured on each side have been shown in different colours. As can 

be seen from the plots (Fig 4.14), initially all the four sides are under compression 

(negative strains) and remain alike until the onset of global buckling. It is important to 

note here that response of the material is linear and the plots have similar slopes. The 

evidence that stresses and strains on all the four sides are identical for a range of 

applied load establishes that; the loading is concentric, alignment of test-rig and 

specimen is adequate, material is uniform, and above all stresses and strains are 

linearly proportional. 

At the onset of buckling, specimen deflects laterally about the knife-edge axis and the 

bulging (convex) side develops tensile strains due to bending. For example 

compressive strains (-ve) in side C in 2000mm long specimen (Fig 4.14) reverse the 

direction (+ve strain) abruptly at the buckling load and go on increasing without 

further increase in stress. The opposite side (side A), after buckling takes the convex 

shape resulting further increase in compression strains with no increase in the applied 

load. In other words, after buckling, lateral deflection (and hence the strains) 

demonstrably increase without an increase in the buckling load. The other two 

opposite sides (side B and D) remain undeflected due to the restraint imposed by the 

knife-edge supports and show no change in the strain state after buckling of the 

specimen. Stress-strain plots in the linear elastic range (before buckling) can be used 

to determine the experimental compressive modulus of the GRP material. The plots 

for the two un-deflected opposite sides (B and D) have normally been used for the 

determination of the compressive modulus as the stress-strains are due to compressive 

loading only. For each plot a trend line giving the slope of the plot and the correlation 

coefficient has been drawn (using the same colour as of the plot). The correlation 

coefficient for all the plots in Fig 4.14 is higher than 0.99, indicating high degree of 

linearity of these graphs. The compressive elastic modulus ELIC measured from the 

stress-strain plots (of the un-deflected sides) varies from 28.2 to 32.4kN/mm2 as 

compared with 30.2kN/mm2 measured by coupon testing (Table 3.11). Another 

important point to note here is that elastic modulus of the composite material can 

accurately be measured using the stress strain data measured during the concentric 

compression testing of the long composite columns. 

Figure 4.16 gives the stress-strain plots for slender 44mm box -section showing linear 

response of the material in the case of overall or global buckling. An abrupt change in 
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the direction of strains (compression to tension), at buckling loads, can be seen from 

the plots of convex sides and increase in compressive strain for the concave sides. 

Similar slopes of the plots representing all the four sides, suggest accurate alignment 

of the test-rig and specimens and presence of minimal imperfections. Elastic moduli 

have been calculated (from plots of sides B and D) with a range from 28.4 to 

33.7kN/mm2 as compared with 32.2kN/mm2 measured by the coupon testing (Table 

3.12). 

4.3.2 LOCAL BUCKLING 

Stmm Square Box-Sections 

Specimens made from 51xSlx3.2mm box-sections, having heights 200,300,400 and 

500mm that did not develop global buckling have been grouped as short columns. 

These specimens failed by abruptly splitting at the web-interfaces and breaking across 

the sides. The failure is catastrophic and specimens lose their integrity. 

Three specimens have been tested for each length. The effective height for each 

specimen is obtained by adding 55mm to its physical height. The loading (concentric) 

and support conditions (pin-ended), application of load in incremental intervals, 

number of observations, and the testing procedure, have been adopted from the long 

columns tests. As the locations of the peak web-deflections are not known before 

hand, more than three L VDTs have been employed··. The arrangement of L VDTs for 

the measurement of lateral deflection in different height specimens have been shown 

in Plate 4.8. Each specimen was tested once only due to catastrophic failure. Critical 

failure loads for short columns has been given in Table 4.2, and failure modes 

(shapes) can be seen in Plates 4.9-4.12. 

Although the failure of short 51mm square specimens occurred by sudden tearing of 

the sections, a careful inspection of the failed specimen suggested that a type of local 

buckling existed prior to section breaking. For example, in the case of 200mm (LefT = 

255mm) specimen sides (webs) A and C bulge out whilst sides B and D deflect 

inwards at mid-height (see plate 4.9(a) and 4.9(b)). The local deformations (at the 

critical load) increase rapidly without further increase in the buckling load and cause 

•• Numerical analysis for short columns ( included in Chapter 5) has also been used for guidance for the 

location of L VDTs at locations of maximum web-deflection. 
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catastrophic (bursting) failure comprising rupture of the interfaces and side C at the 

bulge crest. Similar horizontal ruptures of webs (and fibres) are observed in sides B 

and D (under compression). After failure the specimen looses stiffuess and the end 

restraints (knife edges) rotate showing a pseudo global mode. The plot between axial 

deflection and the axial load has been included in Fig. 4.5, indicating linear elastic 

behaviour up to the failure of the specimen. The lateral deflections measured during 

the test have been plotted in Fig. 4.7, showing very little deflection with the 

increasing load (less than Imm). Surprisingly all the LVDTs measuring deflections 

along the specimen height showed similar readings. It indicates that local web 

buckling could not be measured while the web interfaces were in tact. It was only 

after the interface failure that webs buckled locally and breaking along the crests due 

to excessive strains. At this point the material behaviour changed to nonlinear as 

evidenced by the stress strain plot for 200mm GRP length in Fig 4.15. Due to the 

tearing of the section and breaking of the webs, it was not possible to measure the 

length of half sine wave (web local buckling). Furthermore, different length cracks on 

different sides prevented the measurement of true half sine wave length. Two other 

specimens of the 51mm square box-section with equivalent heights showed similar 

failure modes. 

Failure of the 300mm specimen (Lef! = 355mm) was characterised by the opposite 

sides (webs) A and C deforming inwards and mirrored by sides B and D (Plate 4.1 O(a) 

and 4.10(b». Rapid increase in displacements again causes splitting (tearing) of web­

joints. Sides A and C (under high compression) fail with horizontal cracks. Side B 

takes the form of a long strip, splitting at the interface and buckling globally. 

Interestingly side D (with outward bulge like side B) fails with horizontal rupture 

(breaking fibres). Typical axial and lateral deflection plots for 300mm height (Figs 4.5 

and 4.7) indicate linear elastic behaviour of the short column. However the stress 

strain plot for 300mm height (Fig 4.15) shows possible non-linearity at the failure 

load. Other 300mm GRP specimens failed in a similar fashion (Plates 4.1 O( c) and 

4.10(d». 

The web of the 400mm specimen (Lef! = 455) on sides A, B and D bulge outwards 

while side C has deformed inwards (see Plate 4.11(a) and 4.11(b». Only side C failed 

under compressive stresses, while the remaining three sides deflected outwards. Side 

A may have deflected inwards at first and deflected outwards subsequently after 
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failure of side C and rotation at the lower support showing a pseudo global buckling 

mode. The interface at sides A and B remained in tact after damage, but a vertical 

crack in side D ruptured near the joint. Another important observation is that buckling 

was initiated in the lower LI4 rather than at mid-height. In the second specimen of 

400mm GRP height (see Plate 4.11(c) and 4.11(d)) buckling commenced at upper U4 

with rotation of upper support, but two opposite sides (B and D) bulge out while the 

other two sides (A and C) move inwards. All four interfaces rupture by tearing and the 

section lost integrity. Sides B and D (bulging out) show overall buckling while the 

sides A and C (moving inward) break under compression with horizontal cracks. 

Typical stress-strain graphs for the 400 mm length column (Fig 4.15) support the 

proposition that local buckling initiated the subsequent tearing failure. 

Failure modes of 500mm high 51mm square sections have been shown in Plate 4.12. 

All the three specimens fail near the mid-height. Sides B and D in the first specimen 

(Plate 4.12 (a), (b)) deflect outwards tearing the web-interfaces with side C. Side A 

and C deflect inwards whilst side C breaks under compression. However, side A 

remains in tact (even after developing cracks) following stress-relieving from tension 

developed by pseudo global mode. The pseudo global mode is also local as the knife­

edge supports show no rotation. Typical stress strain plot for 500mm height (Fig 4.15) 

establish the local buckling mode as two opposite sides A and C increase in 

compression whilst the other sides B and D develop tensile strain at the failure. The 

other two 500mm specimens (Plates 4.12(c)-4.12(e)) showed similar failure modes 

i.e., two opposite sides deflecting inwards, the other two outwards, and failed with 

excessive strains. 

This behaviour is different from the local buckling behaviour of open sections (wide­

flange profiles) observed by Barbero and Tomblin (1994) and Mottram (2000), where 

flange of the sections buckled locally in sine wave forms along the length of the 

column. It has been demonstrated in the study reported by Zuerick and Scott (1997) 

that the profile with the highest flange outstand-to-thickness (br/tr = 10.7) ratio 

requires the lowest stress to induce the local mode of instability. It has also been 

reported that in sections with short flange outstands, the buckling stresses are higher 

when the failure has been catastrophic by tearing of the flange-web connections 

(Brown et aI, 1998). It is obvious that the cross-section dimensions play an 

increasingly important role in determining the failure mode for short lengths of 
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composite columns. Observations related to tests conducted as part of the research 

presented in this thesis indicate that specimen shape and relative web thickness also 

contribute towards the failure mode (mechanism) of the short length columns. Closed 

form sections such as square box-sections do not exhibit a well-developed wave-like 

deformed shape as obviously as open sections in the local buckling mode, but a 

catastrophic rupturing failure particularly for short length columns (see Plates 4.9-

4.12). In short columns (Leff =255, 355, 455 and 555mm) local buckling commences 

first as small lateral deflections, followed by abrupt bursting (tearing and breaking), 

leaving the web in strip forms, which then deform in global buckling under the 

compressive loads (see Plates 4.11, 4.12). It is noted in this case that the rotation of 

one or both end restraints (similar to the global mode) is due to post-buckling 

deformations and not due to co-existence of the buckling mode. The failed geometry 

is the result of buckling of webs after failure and not of the whole section and in some 

cases (see plate 4.11) no end-restraint rotations have been observed. 

4.3.3 COMPRESSIVE FAILURE 

44mm Square Box-Sections 

Short specimens comprising 200, 300, and 400mm heights, extracted from 44mm 

square box-sections failed by material failure under higher compressive stresses 

(Plates 4.13-4.14). In these specimens, the interfaces between the side walls are 

sufficiently stiff such that side walls neither locally buckle (wave like formation) nor 

rupture along their interfaces. As a result the cross-section of the box section 

maintains its shape and specimen remains straight. With further increase in the load, 

the ends of the specimen inside the shoes fail under direct compression (crushing). As 

the material is not perfectly homogeneous and longitudinal axis of the end sections 

may not exactly be in the line of the axial loading, a portion of the section at one end 

may be subjected to a local stress concentration, causing local failure of the cross­

section (Plate 4.13) and rotation of one (or both) of the supporting shoes. All the 

44mm box-section short specimens (200, 300, and 400mm heights) failed with local 

compressive failure at the lower ends (see plate 4.14). 

To avoid end brooming failure of these short specimen wooden blocks were inserted 

inside the ends to confine the sides of the GRP sections. These blocks displaced as a 

result of end failure (Plate 4. 13(c», indicating that the failure was due to the crushing 
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of the material under high compressive stresses and not lateral bending action of the 

sidewalls (in the form of a plate supported on two sides). 

The universal slenderness ratio 'A.' for effective heights of 255, 355 and 455mm, 

44mm box-section profiles (for a maximum measured short column load PL of 

220kN), have been calculate as 0.45, 0.62 and O.SO. As A. < 1 for these specimens, 

grouping them as short columns is in line with the previous studies (Barbero and 

Tomblin 1994, Brown et a1199S, Barbero 2000). The observed failure modes suggest 

that short columns having slenderness less than one, do not necessarily exhibit local 

web buckling, but can directly fail by material degradations. Interestingly, the 

material failure has occurred at an averaged applied stress of 250N/mm2 which is a 

nearly 50% of the ultimate compressive stress (523N/mm2
) measured by coupon tests 

(Table 3.12). The large reduction (50%) in the compressive capability of the section 

cannot be attributed solely to the material non-homogeneity only as the typical stress 

strain plots (Fig 4.17) for these specimens indicate a uniform and linear stress and 

strain distribution from the beginning to failure loads. It is proposed, therefore, that if 

a closed narroW cross-section with thicker webs is unable to exhibit local web 

buckling due to stiffer web-interfaces, the section fails by the development of a 

complex three-dimensional stress state (see finite element results, §5.4.2) at 

compressive stresses lower than those indicated by simple coupon tests. The observed 

behaviour of the short 44mm square specimens further demonstrate the need of 

experimental evidence for the validation of any numerical approach to predict failure 

loads for closed cross-sections with relatively thick walls. 

4.3.4 MODE-INTERACTION 

The phenomenon of mode interaction has been observed during the compression 

testing of 750mm (Leff = S05mm, A. = 1.04) high 51mm box-section and 500mm (Leff 

= 555mm, A. = 0.98) high 44mm box-section specimens. These heights of the 

specimens have been grouped as intermediate heights, where either global and local 

buckling or global and material failure modes interact. 

In the case of 750mm high 51mm square specimens, the buckling process began with 

lateral deflection of the columns (maximum at mid-height) i.e., in global mode (see P­

!1 graph for L=750mm in Fig 4.7). Lateral deflection increased with load and reaches 

a typical value of 9mm (.1 > LIIOO) at mid-height. Also the rotation of knife-edge 
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supports (plate 4.15(a)-4.5(d» confirms the on-setting of the global buckling. At this 

stage, the specimen failed catastrophically by breaking from the concave side (under 

compression) at mid-height (see Plate 4.15). 

It is proposed that the specimen failure mode is such that (Plate 4.15(a» the inner 

web-interfaces (towards concave side) broke (tearing) initially due to outward 

displacement (bulging) of the compression side, leaving the inner web in the form of a 

vertical strip under compression. This further buckled and ruptured with horizontal 

crack (fibre failure). The convex side (under tension) had not ruptured. Interestingly 

the two other sides deflected inward and broke with horizontal cracks. The resulting 

pattern of deformation (and ultimate failure), i.e., two opposite sides (inner and outer) 

bulged outwards and the other two opposite sides deformed inward, is clearly a 

characteristic of local buckling (Plate 4.15(a)-4.15(b». It implies that the specimen 

developed global buckling in the first phase with lateral deflection of more than 

LIl 00, and at the same load local buckling commenced starting from the mid-height 

section, with the specimen failing catastrophically by tearing at interfaces and 

breaking across the webs. Plates 4.15( c) and 4.5( d) show similar failure modes for an 

additional 750 mm high 51mm square box-section specimen. The lateral deflections 

measured at mid heights and upper and lower quarter lengths have been used to draw 

P-Il and Southwell plots for the determination of experimental buckling loads (Fig 

4.9). Buckling loads for 750mm high 51mm square box-sections are given in Table 

4.3. Due to the destructive nature of the tests, only one test per specimen was done. 

Typical stress-strain plots (Fig 4.14) indicate a nearly uniform (parallel slopes) stress 

distributions on all the four sides and determine a range for experimental compressive 

modulus (27.2 to 32.2kN/mm2
) close to the measured EL,c by coupon testing 

(30.3kN/mm2
). 

The failure of 500mm high, 44mm square box occurred by the interaction of global 

and material failure modes. At the buckling load the specimen buckled globally with 

maximum lateral deflection at mid-height. Maximum deflection reached LI100 (Fig 

4.8) after which the specimen failed at one end without further increase in the loading. 

All three 500mm specimens gave the same mode of failure. 

It has therefore been demonstrated, using experimental evidence, that composite 

columns with universal slenderness ratio close to unity (A=l) based on PL e.g., 

750mm high 5lmm square box-sections and 500mm height 44mm square box-
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sections, exhibit mode interaction at failure loads. The critical failure loads for these 

specimens measured during the experiments have been presented in Table 4.3. 

4.4. COMPARISON OF EXPERIMENTAL AND THEORETICAL 

RESULTS 

Different approaches from the literature have been used to predict the theoretical 

buckling and failure loads for long and short columns. In using these approaches two 

types of material properties; measured using coupons (Chapter 3); and minimum 

specified by the manufacturer, have been used. 

Measured Properties 

51 x51 x3.2 Box-section 

Longitudinal compressive modulus EL,c = 30.3 kN/mm2
• (Table 3.12) 

Maximum longitudinal compressive stress = 385 N/mm2
• (Table 3.12) 

Transverse compressive modulus ET,c= 9.2 kN/mm
2

• (Saribiyik, 2000) 

In-plane Shear Modulus (normal to fibres) Gxy = 3.95 kN/mm2
• (Table 3.6) 

In-plane Shear Modulus (parallel to fibres) Gyx = 2.85 kN/mm2
• (Table 3.10) 

Longitudinal Poisson's ratio Vxy = 0.29 (Saribiyik, 2000) 

Transverse Poisson's ratio Vyx = 0.15 (Saribiyik, 2000) 

44x44x6.0mm Box-section 

Longitudinal compressive modulus EL.c = 33.2 kN/mm
2

• (Table 3.13) 

Maximum longitudinal compressive stress = 523 N/mm2
• (Table 3.13) 

In-plane Shear Modulus (normal to fibres) O"y = 3.95 kN/mm2
• (Table 3.7) 

In-plane Shear Modulus (parallel to fibres) Gyx = 2.85 kN/mm2
• (Table 3.11) 

Transverse compressive modulus ET,c and Poisson's ratios measured by Saribiyik 

(2000) for 51 x51 x3.2mm box-section have been adopted for 44x44x6.0mm box­

section. 

Minimum properties supplied by manufacturer 

Material properties provided by the FmREFORCE Ltd UK are the minimum 

characteristic properties for the both (51mm and 44mm) GRP box-sections. 
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Longitudinal compressive modulus EL,c = 17.2 kN/mm2
• 

Maximum longitudinal compressive stress = 207 N/mm2
• 

Transverse compressive modulus ET,c = 6.9 kN/mm2
• 

In-plane Shear Modulus Gxy = Gyx = 2.9 kN/mm2
• 

Longitudinal Poisson's ratio Vxy = 0.33 

Transverse poisson's ratio Vyx = 0.l1 

Theoretical buckling and failure loads for long and short columns for both the box­

sections have been presented in Tables 4.4-4.5, along with the measured loads 

(average of many loads for each height of the column). 

Average cross-sections 

The measured outer dimension (A B, C, and D in Fig 4.1) for several specimens are 

very close with an average difference of ±0.3mm from the mean values (50.9 and 

43.8mrn for 51mm and 44mm box-sections respectively (see Fig 4.2). Furthermore, 

the web-thicknesses at either ends of each specimen vary by less than ±O.2Smm, with 

variations sufficiently random and distributed that it is practically impossible to 

include all the variations. As all specimens have been extracted from a single batch of 

profiles, dimensional variations are very similar in all the prepared specimens. 

Average cross-sections for the two profiles with average geometrical properties (Aave 

and lave) have been calculated for the subsequent determination of experimental as 

well as theoretical results (for comparison). The average geometrical properties have 

been used for the characterisation of the specimens with the standard deviations used 

to indicate data variations. The calculated values of Aave and lave are included in 

Tables 4.4-4.5. 

4.4.1 GLOBAL BUCKLING 

Classical Column Theory 

The critical buckling load for a slender, perfectly straight, centrally compressed 

column, pinned at the both ends with the upper end free to move vertically has been 

2 7t
2 EI . 

given by Euler (1759) as PE = n -2- (2.1) where E IS Young's modulus, I is the 
L 

moment of the inertia of the cross-section, L is the height of the column between the 
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pin-ends, and n is the order of the buckling load. Euler assumed that the cross-section 

of the column does not distort during buckling and failure, the parent material obeys 

Hooke's law and the wave length is of the order of the column length. The smallest or 

critical buckling load occurs for n = Itt. Including the transverse shear effects 

(Engesser, 1889), the Euler equation, becomes PE.sh = PE (2.2), 
1 + (nsPE / AgGxy) 

where PE is given by (2.1); Ag = gross cross-sectional area and ns = form factor for 

shear (taken as 2 for square box-section (Zureick and Scott, 1997». Average cross­

sectional areas and the moments of inertia representative of the two box-sections 

(Table 4.4) have been used in (2.2). Directional compressive modulus EL,c replaces E 

in (2.2) for composite materials (Barbero and DeVivo, 1999) and effective length 

(between the pivots of the knife edge end restraints) has been used for L, for the 

calculation of PE.sh. The critical buckling loads 'PE.sh' calculated using (2.2), for both 

box-sections (slender columns) have been reported in Table 4.4. 

Eurocomp Design Code (EDe) 

EDC (Clarke, 1996) uses Euler equation (2.1) for the determination of global buckling 

loads ofpultruded profiles (section 4.4 for designing compression members in EDC). 

The effects of low shear stiffness of the composite material have not been included. 

For example (4.7) in EDC gives the member's buckling resistance Nc as 

(4.2) 

The modulus of elasticity (Ex) used here is the directional modulus of elasticity (EL,c) 

in the longitudinal direction (direction of loading), k = 1 for pin ended column, L = 

effective length and rm is partial safety factor for material resistance (taken equal to I 

for comparison). The moment of inertia Izz used in the above equation is the moment 

of inertia for the average section. For a conservative design, including the shear 

effects, EDC design criteria predicts the same results P(EOC) as calculated using the 

classical approach (Table 4.4). 

tt n=1 represents ftrst order buckling i.e., column buckles in a single half sine wave. Higher-order 

buckling loads can be attained only by using very slender column and by appling external constraints at 

the points of inflection to prevent the lateral deflection associated with the lower order modes 

(Timoshenko and Gere, 1961; Chen and Lui, 1987). 
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Included in Table 4.4 are the buckling loads PE.sh and P(EDC) calculated usmg 

minimum material properties supplied by the manufacturer (given on page 166) for 

comparison. 

Manufacturer's manual 

Both the pultruded box-sections (51 x51 x3.2 and 44x44x6.0mm) are manufactured by 

Fibreforce Ltd UK, for which the design manual is under preparation. However, the 

Fibreforce (in a private communication), recommended to following the design 

manual prepared by Strongwell (Strongwell, 1989) for column design because the 

material and proportions (fibre content percentages and lay-up) used for the both 

types of profiles are very similar. The empirical expression for the design of long 

square tubes (box-sections) suggested by Strongwell is; 

F = 1.3E 

. (~)'l 
(4.3) 

Using the minimum specified material properties and (4.3), the buckling loads 

P(STRONGWELL) have been calculated and included in the last column of Table 4.4. 

From Table 4.4 the following observations have been made; 

• The classical buckling theory (Euler formulation) predicts the global buckling 

loads very well for the slender columns. The experimental loads (PS.well» 

confirm the theoretical prediction (PE.sh), with a difference of no more than 

5%. These results infer that longitudinal elastic modulus (in the direction of 

applied load) mainly contributes towards the buckling capacity of the axial 

columns. Furthermore, transverse shear properties have minimal effects on the 

global buckling loads. It also indicates that initial imperfections incorporated 

in the manufacturing process of these profiles and the cross-sectional 

tolerance, are minimal, as the Euler load normally corresponds to the buckling 

load of a perfect column. Finally, measured elastic constants are reasonably 

representative of the box-section material. 

• EDC adopts the Euler formulation for the prediction of the global buckling 

load. The effects of lower shear stiffness possessed by composite material 

have been ignored as the effect is less than 4% (Barbero and Tomblin, 1994). 

However the predictions depend mainly on the value of elastic constant (EL.c) 
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used in the fonnulations. Higher buckling capacities are predicted if the true 

material properties are used and likewise lower capacities are achieved if 

minimum specified properties are considered. As the EDC is a limit state 

approach, true properties with adequate factors of safety should be used. 

Alternatively, a lower factor of safety is required if the minimum 

representative properties are used. Nevertheless, the EDC approach is capable 

of predicting safe global buckling loads. 

• Buckling loads using Strongwell expression (4.3) are higher than the measured 

loads. The loads are even higher for the longer columns. If the factor of safety 

recommended in the manual (Strongwell, 1989) of rm=3 is used, the predicted 

loads can be considered safe. However, the empirical expression given in 

Strongwell's design manual has been derived by curve fitting to the 

experimental data evolved from a range of particular profiles and though 

stated to be equivalent by FibreForce, may not represent profiles from other 

manufacturers. Significantly, the EDC approach (based on Euler fonnulation 

and having theoretical background) is applicable to composite profiles from 

various manufacturers, provided reliably measured material constants are 

available. 

In light of above discussion it is shown that Euler fonnulation (also adopted by EDC) 

is capable of predicting the global buckling loads for long box-section profiles. It is 

further demonstrated that the global loads measured experimentally confinn the 

theoretical predictions, suggesting little initial imperfection. 

4.4.2 LOCAL BUCKLING 

Classical plate buckling 

Consider an orthotropic rectangular plate, with width 'b' equal to the width of web in 

the box-sections (Fig. 2.2). The two short edges (x = 0, a) are considered as simply 

supported and compressed axially with an axial stress resultant Nx• The longer edges 

(y = 0, b) are each elastically restrained against rotation by side walls (webs with 

known transverse stiffness D2). The critical value of the Nx causing local buckling of 

plate is give by the governing differential equation (2.3). An approximate solution to 

(2.3) is (Galambos, 1998) as: 
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(4.4) 

where fi and 13 are functions of rotational restraint applied at the two longer edges of 

the rectangular plate, E = KbID2, K = stiffness of supporting webs per unit length per 

radian of rotation, a is the length of the plate equal to half sine wave length of the 

plate buckling. The half sine wave length 'a' can either be measured during the local 

buckling tests (Barber and Tomblin, 1994; Bank et aI, 1996; Barbero and Turk, 2000), 

or theoretically detennined as a = b( !:)'14 (Iyenger, 1998). All the length of half 

sine wave could not be measured experimentally, the theoretical approach has been 

used. 

5Jx5Jx3.2mm Box-section 

Moment of inertia 'J' ofa small strip (of plate) of Imm wide = Ix (3.2)3 = 2.73mm4 

12 ' 

Average section internal width b = 51.0- 3.2 = 47.8mm, 

Ex= 30.3kN/mm2
, Ey= 9.2kN/mm2

, a = 64.4, and Gxy= 3.95kN/mm2 
• 

Dl = (EI)x = 30.32x(2.73) = 86.5kN-mm2 
1- v xy v yx 1- (0.29)(0.15) 

D
2

= (EI)y = 9.2x2.73 = 26.3kN- 2 
1- v xy v yx 1- (0.29)(0.15) mm 

(4.5a) 

(4.5b) 

Considering short loaded as well as long unloaded edges simply supported 

12 (e) = 13 (e) = a the resultant Nx = 0.42 kN Imm, and 

PL = 0.42x47.8x4 = 80.3 kN. 

Considering loaded edges simply supported and unloaded edges (longer sides) 

clamped, an approximate solution has been given by Wittrick (1952) (Galambos, 

1998) as: 
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(4.6) 

where c = 2.4 and k (buckling coefficient for orthotropic plate) is taken from curve 

drawn for orthotropic plate with ends simply supported and sides clamped (Fig. 4.30 

in Galambos, 1998). 

N = 9.87X47.67[7.7 -2.4(1- 25.86)] = 
.t (47.8)2 47.67 1.32 

44x44x6.0mm Box-section 

Moment of inertia' I' of a small strip of 1 mm wide = 1 x (6) 
3 

= 18 mm 4, 
12 

b= 44.00-6.00=38.00mm 

Ex= 33.2 kN/mm2
, Ey = 9.2 kN/mm2

, a = 52.4mm and Gxy = 3.95 kN/mm2
• 

D
1

= (EI)x = 33.32x18 =627 
1- v xy v yx 1- (0.29)(0.15) 

(4.7a) 

D2 = (EI)y = 9.2x18 =174 
1- v xy v yx 1- (0.29)(0.15) 

(4.7b) 

(4.7c) 

For the case of loaded edges simply supported and long side also simply supported, 

using (4.4), 

Nx = 4.64 kN/mm and PL = 4.64x38.0x4 = 705 kN 

For clamped long sides, using (4.6), c = 2.4 and k= 7.5, 

Nx = 14.4 kN/mm and PL = 14.4x38.0x4 = 2181 kN 
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Eurocomp design code 

For an element of the section which can be defined as a long rectangular plate with 

two longer edges simply supported the buckling stress is calculated using the 

following equation (equation 4.9 in Eurocomp, 1996); 

(4.8) 

Where Ho = D3, andDj. D2 andD3 have been defined in (4.5) for 51x51x3.2mm box­

section and in (4.7) for 44x44x6.0 mm box-section. 

For 51mm box-section (4.8) gives O"cr= 0.20 kN/mm and PL = 0.20x628 = 126kN 

For 44mm box-section (4.8) gives O"cr= 1.26kN/mm and PL = 1.26x882 = l111kN. 

Using minimum material properties (manufacturer's supplied) in (4.8), 

For 51mm box-section (4.8) gives O"cr= 0.14 kN/mm and Pcr= 0.14x628 = 88kN 

For 44mm box-section (4.8) gives O"cr= 0.80kN/mm and Pcr = 0.80x882 = 706kN. 

EDC design approach includes checking of the box-section for the ultimate 

compressive capacity of the cross-section. According to (4.6) in EDC, the design 

ultimate resistance of the cross-section is; 

(4.9) 

where A is average cross-sectional area of the cross-section, O"cr is the critical 

compressive stress and Ym is the partial safety factor (taken equal to 1 for comparison). 

Ultimate compressive capacities of the box-sections have been calculated using (4.9) 

and given in brackets under the P (EDC), for EL,c measured and minimum EL•c provided 

be Fibreforce. 

STRONGWELL Approach 

The empirical design equation in the Strongwell's manual for the allowable design 

loads of short square tubes is; 

AE 
Po = (b)O.85 

16 -
t 
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where A is the average cross-sectional area of box-sections, b the web width, t the 

web-thickness and E is taken as EL,c given by manufacturer. 

Using the minimum material properties supplied by the Fibreforce, in (4.10), 

allowable loads for short columns have been calculated and listed in the Table 4.5. 

From Table 4.5, following observations have been made; 

• Classical orthotropic plate buckling theory predicts a range of buckling load 

for the short columns depending on the assumed behaviour of the web 

connections. Experimental loads for the 5Jx51x3.2mm box-section do fall 

between the predicted ranges but towards the lower bound. This indicates that 

the stiffness of the connection between the webs approaches a simple support 

with nominal rotational restraint. However, it is interesting to note that the 

plate equations bound the experimental findings, suggesting that the local 

buckling of the columns may be represented by a plate with loaded edges 

simply supported longer edges with a nominal restraint. Adopting all four 

edges as simply supported results in a conservative estimate of the local 

buckling load. 

• In the case of 44x44x6.0mm box-section, the range predicted by the plate 

buckling theory is far from the experimental evidence. The apparent reason for 

this disagreement is that failure is due to compression of webs and not the web 

local buckling. It is interesting to note that experimental failure load (220kN) 

is almost half the ultimate compressive capacity for this cross-section. It is 

recommended therefore that in the absence of local flange buckling, the failure 

load must be predicted by experiments. 

• EDC, predicted a buckling load close to the experimental values, but non­

conservative, in the case of 51mm box-section. The EDC expression is for 

elements that could be assumed as long rectangular plates with all the four 

edges simply supported. The bounding by the plate solutions suggests that the 

web interface in the case of 5lmm box-section may be assumed to have little 

rotational stiffness. The mode of failure observed for these sections are 

different to the uniform wave like local buckling mode characteristic of long 

rectangular plates. The failure is catastrophic and material breaks along the 

web-interfaces following horizontal cracks. The failure of pultruded profiles 
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with small outstands (small I-sections) by tearing of material at the web-flange 

junctions have been reported by Zureick and Scott (1997) concluding the 

potential affect of the flange thickness to width ratio (llbf ) on the failure mode. 

Brown et al (1998) have used Bank and Rhodes (1983) expression for the 

prediction of PL in I-sections, where ratio of flange-thickness to its width 

(tjlbj) is a parameter. EDe expression (4.8) also includes the width and 

thickness of the composite plate. It indicates that if this ratio is small, local 

buckling of flange can cause bursting of the profile. On the other hand if this 

ratio is large, local web buckling may occur. For thicker sections (lower tj1bj), 

local buckling is replaced by a complex three-dimensional stress state (as 

observed in 44mm short columns). Relative cross-sectional dimensions greatly 

influence the failure mode of the short column, compounded by low ratios of 

(tjlbj). Furthermore, as web local buckling is not fully developed, correct 

length of the half buckled sine-wave cannot be determined with the prediction 

of PL using classical approach perhaps is appropriate. 

• Contrary to the findings associated with the long columns, assuming a material 

factor of unity, predictive failure loads given by the Strongwell design 

equation are conservative (safe) compared with test results. The correlation to 

the 44mm box is approximately 15%, reducing to 40% in comparison with the 

51mm box experimental data. It is clear, therefore, that short columns with 

low tj1bf ratios do not follow a behaviour consistent with Euler buckling or 

basic material crushing across the section. 

4.5 UNIVERSAL DESIGN CURVE 

Design codes such as Eurocomp design code (EDC, 1996), ASCE (1984) and 

manufacturer's manuals (Strongwell, 1989) recognise global and local buckling in 

addition to material crushing but assume no interaction between these modes of 

failures. The common practice recommended by these guides is to evaluate a 

column's load bearing capability against global, local and compression failure modes 

and to accept the lowest value of buckling load for design (Brown et aI, 1998). The 

outcomes of the present experimental investigations, however, do not support this 

approach. 
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It has been established experimentally (in the present and previous studies, e.g., 

Barbero and Tomblin, 1994) that there exist intermediate heights (in the vicinity of 

transition height) for a section, which exhibit lower experimental buckling loads than 

either of global, local or material failure predictions. This situation can become more 

adverse in the case of smaller (with small outstands) or closed form sections where 

the failure is catastrophic, and happens by tearing and breaking of webs or web/flange 

connections. A different approach that can be used for the design of columns having 

various (including slender, intermediate and short) heights, is required. For example, a 

"universal design curve", along with corresponding equation (2.24) has been proposed 

before by Barbero and Tomblin (1994), for the design of composite wide-flange 

profiles. Later Barbero and DeVivo (1999), extended the scope of this curve to wide­

flange profiles of various sections manufactured by different pultruders, using 

experimental data from various sources (Fig 2.7). A similar procedure has been 

adopted here to construct a universal design curve for the design of pultruded box­

section profiles when used as concentric columns. 

The parameters involved in the development of the universal design curve in Fig 4.19 

are given in Tables 4.6-4.7. These include the effective heights of the column (LejJ); 

experimental buckling loads P(Exp); Euler buckling loads P E; short column failure load 

PL ; mode interaction coefficient c; compressive modulus of elasticity in longitudinal 

direction EL c and the cross-sectional moment of inertia 1. The dimensionless 

slenderness ratio 'A' (2.19) has been defined, as a function of column length LejJ, 

stiffness EI and short column failure load PL, to represent the various heights of 

composite box-sections. It has been established that PL, the maximum buckling (or 

failure) load for a short column depends upon both material properties and the 

geometry of cross-section (Barbero and DeVivo, 1999, Mottram, 2000), and could 

either be determined experimentally or predicted theoretically. 

The ultimate loads measured testing three 200mm (LejJ= 255mm) long 51mm square 

specimens average to a value of 120kN (Table 4.2). It can also be seen from Table 4.2 

that at least one specimen from 300 to 500mm (range for short columns for 51mm 

box) reaches a maximum load of 120±1.51kN. This observation demonstrates that 

maximum measured load is independent of the specimen height. Similarly maximum 

loads measured using the shortest 44mm specimens i.e., 200mm (LefF 255mm) 

averages to 220kN and others 44mm specimens 300 to 400mm high, showed even 
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higher buckling loads than 220kN. This further demonstrates that although PL is 

constant over the specimen lengths in the short column range but depends upon 

material properties and geometry of the cross-sections. These findings are in line with 

the basic assumptions made for the construction of the universal design curves for 

composite columns. The minimum affective height of the specimens (255mm) taken 

here is more than sufficient to accommodate four half sign-waves (using If.. power 

formula by Iyengar, 1998) to eliminate any fix-end effects, recommended in previous 

studies (Mottram, 2000). The short column slenderness ratios A. (0.33 for 51mm and 

0.45 for 44mm box-sections) are also well below the transition heights (A. =1) to avoid 

potential reduction of buckling stiffness due to mode interaction. Consequently 120 

and 220kN has been established as PL for 51 and 44mm box-section short specimens. 

Material properties EL.c and Gxy have been measured experimentally (Table 3.12-3.13, 

3.6-3.11) whilst moment of inertia 'r and Ag used for Euler load calculation are the 

average sections properties (Table 4.4). The slenderness ratio A. for each specimen 

height has been calculated using actually measured parameters (Leff, PL, EL•c and I,) 

and presented in Tables 4.6-47. 

The second important step in the formation of design curve is the determination of 

mode-interaction coefficient 'c' (2.7) using buckling load ratios 'q' and's' (2.5). 

Calculated q and s values using average experimentally measured loads for each 

specimen (Tables 4.1-4.3), have been plotted in Fig. 4.18 and values are compared 

(curve fitted) using several theoretical curves for c values ranging from 0.90 to 0.95. 

The curve with c = 0.91 is conservative enough to provide a lower bound for all the 

experimental values in the intermediate column range (around A. =1). Alternatively, 

from the c values for tested specimens in Tables 4.6-4.7, average values of cas 0.92 

and 0.91 have been found for 51mm and 44mm box-section. Using these c values, k; 

(2.23) and design compressive loads Pcr (2.24) for all the tested heights have been 

calculated (Table 4.6-4.7). The design curve (Fig. 4.19) has been plotted between the 

universal slenderness ratio A. and k; using design loads. 

The experimental loads have been include in Fig 4.19 showing that most of the 

theoretical loads are above the design plots or very close to it. The thick solid line 

(ki=l) gives the maximum buckling load equal to PL. Dotted lines represent the Euler 

buckling loads for the sections tested. The experimental loads for short and slender 
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lengths of the specimens lie on these lines indicating that measured load is either 

equal to PL or PE• For these cases c = 1 (no interaction). The maximum reduction in 

the design load Pc has been observed at A = 1 (Fig 4.19). The loading capacity of the 

columns at this height reduces by 8% (c = 0.92) and 9% (c = 0.91) in the case of 

51mm and 44mm box-sections respectively. It has already been demonstrated that 

reduction in load capacity of the axial columns of intermediate height due to mode 

interaction is imperfection sensitive. Experimental observations and design loads 

plotted in Fig. 4.19, indicate that the imperfections (overall as discussed under the 

heading Lateral Deflections) are very small. Experimental loads for slender and short 

columns (Table 4.1-3) are only 5% lower than the theoretical loads in the presence of 

small initial imperfections. In the view of this observation, mode interaction 

(maximum at 1.=1) may have caused a further 3 to 4% loss in the buckling resistance 

ofthe intermediate columns. 

In the view of above discussion it is proposed that "Universal Design Curve" plotted 

in Fig 4.19 can predict the ultimate load for any length of both box-section columns. 

Furthermore, this design curve is based on the experimental evidence. Such curves for 

the different composite sections (pultruded profiles) should be developed for the safe 

and confident design of structures using these profiles. 

4.6 FFECTS OF HOLES 

Three heights (2000, 1500 and 1000mm) of specimens from each cross-section 

(51mm and 44mm square boxes) have been retested after drilling holes through their 

webs to measure the loss of stiffness due to the introduction of holes. These 

specimens have already been tested and their buckling loads (without holes) are 

known. As each height group comprise three specimens, three diameters of the holes 

have been selected for the study. The diameters of holes made in the webs of the 

51mm box-section are d= 14,25 and 35mm respectively whilst for 44mm box-section 

the diameters are taken to be 14, 20 and 25mm (Plate 4.16). The resulting diameter to 

box-width ratios (d/w) are 0.28, 0.49 and 0.69 for the 51mm box-section while for 

44mm box-section these ratios are 0.32, 0.46 and 0.57 respectively. Initially the holes 

are drilled on one side at distances 20d from centre to centre, starting at mid-height. 

The presence of a hole at mid-height is considered more onerous as maximum 

deflection (and hence the stresses) occurs at mid-height. Specimens have been tested 
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in both longitudinal orientations (as the testing is non-destructive). Additional holes 

are subsequently made in the two opposite sides (2 Holes) at 20 diameter distances 

and tested for buckling loads, with the process repeated giving holes on all four sides 

(4 Holes). Furthermore, to investigate the effect of the distance between holes, holes 

on all four sides are made at 10 times the diameter (mid-distance between the 

previous holes). Buckling loads for holes on all four sides at a distance of 10 times the 

diameter of holes are listed as '8 Holes' in the Table 4.8. The arrangement of the 

holes i.e., 1 Hole, 2 Holes, and 4 Holes at mid-height are shown in Plate 4.16. Short 

specimen could not be included in the study as they were tested to destruction whilst 

determining short column loads. 

Table 4.8 presents the percentage loss in the buckling stiffness of the specimens due 

to the introduction of holes. These results have also been plotted against the diameter 

size in Fig 4.20. The graphs show a tendency of loss in the buckling stiffness with 

increase in the d/w ratio. The loss of stiffness is small (under 10%) for a d/w ratio of 

0.5 for up to four holes at an interval of 20 times the diameter. Further increase in the 

hole-diameter reduces the stiffness more rapidly. More adverse effects can be seen in 

the plots for 8 Holes i.e., when holes are drilled at intervals of 10d. For the smallest 

size holes the loss is more than 10% in 51mm box-sections, increasing rapidly to up to 

30% for a d/w ratio of 0.7. However for a d/w ratio of 0.5, the losses due to 8 Holes 

remain under 20%. 

The effect of holes in the 44mm box-sections is less compared to with 51mm box. 

The main reason is the additional thickness of the walls and a lower width to 

thickness ratio. Introduction of 4 holes at 20d reduces the critical load by only 6 to 8% 

up to d/w ratios of 0.5. Decreasing the interval between holes (8 Holes) to half, 

reduces the stiffness of the specimens up to 20% for the same d/w ratio (0.5). 

The buckling modes of the slender columns with circular holes are shown in Plates 

4.17-4.19 for the three GRP heights of the box-sections 1000, 1500 and 2000mm. 

Buckling shapes clearly suggest the global buckling of the columns with maximum 

lateral deflection, at mid-heights. The specimens buckled in a half sine wave with the 

length of the halfwave equal to the effective length ofthe specimens. 
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4.7 CONCLUSIONS 

Buckling or failure loads for concentrically loaded composite columns depend upon 

their heights, material properties and the cross-sectional dimensions. These factors 

have been combined into one characteristic parameter 'A' the slenderness ratio 

governing the ultimate load carrying capacity and behaviour of these columns. 

Slenderness ratio (A) of each specimen is calculated using its effective height (LejJ), 

material (EL,c) and sectional (lave) constants and the short column buckling (or failure) 

loads (Pd. Material constants should be measured using suitable methods (standard 

test methods where available) reported in the literature. Material properties given in 

the manufacturer's manuals are minimum values representing a group of pultrudates 

and their use in the prediction equations normally underestimates the critical buckling 

loads (and hence the load carrying capacities) of the pultruded profiles. Measured 

values of EL,c (Table 3.12-13), average values of I (Table 4.4) and experimental 

failure loads for short columns (Table 4.2), for the two sections have been used for the 

determination of respective slenderness ratios of all specimen (Tables 4.6-4.7). It can 

be seen from the data given in Tables 4.6-4.7 that experimentally measured loads PExp 

decrease with increase in 'A'. The four types of failure modes, observed in the present 

study are; global buckling, local flange buckling followed by tearing and rupture of 

the cross-section, crushing of material at ends and interaction between two modes. 

The main outcomes of the experimental study are: 

1. Slender columns (A>I) buckled globally with no permanent damage to the 

material (without breaking). These specimens deformed in a half sine wave 

shape with maximum deflections at mid height (Fig 4.4). In the post buckling 

stage lateral deflection continued increasing without any further increase in the 

applied load (Figs. 4.5-4.8 for slender heights). Specimens retain their stiffness 

whilst the deflections increase beyond the serviceability limits (Zuerick and 

Scott, 1997). Furthermore, global buckling occurred in the linear elastic limits 

of the composite material (Figs. 4.5-4.6 for axial shortening and 4.14-4.18 for 

stress-strain plots). Specimens regained their straight configurations on 

unloading establishing the elastic behaviour of the material. Establishing the 

global buckling response as linear elastic, Southwell method has been used to 

determine the critical buckling load using measured load (P) and lateral 

deflection (~) data (Figs 4.9-4.10). Southwell method provides a critical load 
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Ps.wellconsidering the column as ifit were a perfectly straight column free from 

imperfections. The ordinate of the Southwell plot gives an estimate of total 

imperfections present in the specimen and the test configuration. Twelve values 

of Ps.wellloads are available for every slender specimen with mean load and SD 

values. The lower SD values (less than 6%) for specimens (Table 4.1) establish 

the applicability of the Southwell method in the determination of the 

consistence global buckling loads. The close agreement (with difference less 

than 5%) of the measured PExp and Ps.wellioads (Table 4.1) demonstrate that not 

only the Southwell method is desirable in the case of composite slender 

columns but also that the pultruded box-section profiles used in this study 

possess minimal inherited imperfections. 

2. Short columns (Ad) extracted from 51mm box-section failed by tearing of the 

joints and breaking of the webs after local buckling was initiated. The web 

connection failure leaves the section comprising four thin composite strips 

which buckle globally and break at the centre due to excessive deformation. 

Therefore, failure of short column is not purely due to local buckling but 

precipitates material failure. The phenomenon has been found dependent on the 

web (and hence the connection) thickness and related to the thickness to width 

ratio of the web. Such a failure has also been reported by Zureick and Scott 

(1997) in the buckling experiments on I-section columns, where sections with 

small flange outstand failed due to tearing along the web-flange connection. 

This effect has been established in the case of thick section (44x44x6mm) 

short columns, where failure was not due to failure at the web interface, rather 

the material crushing at the ends (Plates 4.13-4.14). Specimens remained 

straight up to failure without any distortion of the cross-sections along the 

entire length Stress-strain plots for short specimens (Figs 4.15-4.17) conform 

that material behaved linearly prior to the failure followed by a minor non­

linearity at failure. The failure loads (Table 4.2) indicate higher scatter (SD = 
12.4) for longer specimens (in short column range) with a decreasing trend 

towards 255mm (SD = 2.14), establishing more consistent results for shorter 

heights (approaching to PL)' The failure loads for these specimens range from 

202 to 226kN (Table 4.2) with a difference of -8 to +3% from the chosen PL 

(220kN) for this section. However these loads are lower (45 to 47%) than the 
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crushing strength of the 44mm box-section, indicating a complex type of three 

dimensional stress distribution. 

It is concluded therefore, that the conventional procedures for the prediction of 

buckling loads (e.g., orthotropic plate buckling formulation) are not applicable 

to the pultruded profiles with narrow and closed sections. Also the empirical 

design equations recommended by the manufacturers can only be valid for 

some particular sections as cross-sectional dimensions and material 

configuration varies from manufacturer to manufacture. Hence for the 

determination of design resistance when the pultruded profiles are used as 

concentric columns, a universal design equation is recommended. 

3. Interaction between the global and local buckling has been observed in the case 

of 5lmm box-section specimens with effective height 805mm (1.=1.05). The 

specimen first developed global mode at the critical load, with half sine 

configuration of the order of effective height. Then at the same load developed 

local web-buckling and failed with huge bang by tearing at the joints and 

rupture of webs (plate 4.15). The experimental loads PExp for the three 750mm 

GRP (Leff = 805mm) specimens are given in Table 4.3 with an average of 

97.1kN (SD = 1.65), which is less than PE (110kN) and PL (120kN for 51mm 

box-section) indicating loss in the resistance due to the interaction between the 

buckling modes. It may be noted here that the A. for the columns may slightly 

vary as the experimentally measured values of EL.c for various specimens (from 

stress strain graphs in Fig 4.15) differs from the EL.c (from Table 3.12) used in 

the calculation of A.. This establishes that specimens having effective heights in 

the vicinity of 1.=1 will exhibit mode-interaction leading to loss of resistance 

depending on the amount of imperfections present in the testing system. 

4. Interaction between the global and material crushing has been exhibited by 

500mm (Lef! = 555mm and 1.=0.99) high specimens of 44mm box-section. The 

specimens first develop global buckling with a lateral deflection >LII00 (see 

Fig 4.8 for L = 500mm) and then failed by material crushing at the lower end 

(Plate 4.14 (c». The measured load (195kN) is less than either PE (224kN) or 

the PL (220 kN) for the 44mm box-section. 
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5. Comparison has been made between measured and predicted loads (§ 4.4) to 

establish the method or methods capable of predicting buckling (or failure) 

loads for composite box-sections. The classical approach to predict the global 

buckling of slender columns (Euler formula) is applicable in the case of 

composite pultruded profiles. Correlation between the PS.well and calculated P E 

results (Table 4.4) suggests that the Euler predictions are reasonable. The shear 

effects may be included in the analysis for a conservative prediction. Eurocomp 

design code (ED C) also recommends Euler formula for the prediction of 

buckling loads for slender columns. However use of minimum material 

properties underestimates the buckling capacities of the long composite 

columns. EDC recommends checking the sections against web local buckling 

or crushing of the material. Again using minimum properties EDC 

formulations underestimate the buckling resistance. Using Strongwell 

empirical formulations, bucking loads for long columns are too high whilst low 

for the short columns. Classical orthotropic plate buckling approach give a 

reasonable range of buckling loads for short 51mm box-sections (80.3 to 

252kN) as compared to PL (120kN) indicating a nominal stiffness of the web­

interfaces. However the predictions for the short 44mm box-section columns, 

using classical orthotropic plate buckling theory, are far from the experimental 

loads (Table 4.5). EDC also predicts a very high load for the 44mm box-section 

profiles. It is concluded therefore, that the conventional procedures for the 

prediction short column failure loads are not applicable to the pultruded 

sections having closed and narrow sections. 

6. Strain gauge readings have proved useful in providing some insight into the 

implied load carrying mechanisms. Stress strain plots (Figs 4.14-4.17) have 

been constructed using the measured strain and loading data. The changes in 

the directions of the graphs at buckling or failure loads indicate the nature of 

deformations (strains) and buckling behaviour. Compressive modulus 

calculated from the stress-strain plots is close to the EL,c values established by 

coupon testing (Tables 3.12-3.13) for majority of specimens but, in some cases, 

varies in the range of ± 12.5% . The potential reasons include non-homogeneity 

of material, poor alignment, testing and measuring inconsistencies. The small 

variations among the measured values of EL,c on four sides of a specimen are 
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attributed to material non-homogeneity and initial minor deflections of the 

specimens webs, and bending induced strains. Nevertheless, identical slopes of 

the plots in the initial loading ranges confirm the satisfactory alignment of the 

test specimen and the concentric loading. This establishes that a theodolite and 

callipers can be effectively used to align specimens. Similarly the use of strain 

gauges can infer the correct alignment ofthe specimens. 

7. The conclusions drawn here also establish the fact that pultruded profiles tested 

in this study are straight, having reasonably uniform cross-section and the 

imperfections (due to manufacturing process) are well within specified limits. 

S. Experimental buckling loads for the intermediate heights are lower than either 

of the predicted global or local buckling loads. For example, for 750mm high 

specimen (51mm box-section having LejJ = S05mm), the averaged measured 

load (Table 4.3) is 97.10kN as compared with PE.sh = 10SkN and PL = 120kN. 

When PE.sh and PL are close, buckling modes can interact. The resulting mode 

is highly sensitive to the imperfections. In the case of perfect column, the 

measured load should approach the PE value. 

9. Universal design equation constructed, in Fig 4.1S, is based on the 

experimental evidence considering the actual material and geometric properties 

and includes all the practical column heights. Most of the experimental results 

fall above the design curve confirming it as a conservative one. 

Determination of' PL' needs careful consideration and a well defined procedure 

(preferably experimental) as the design of the column, particularly in the 

intermediate range, greatly dependents on its value. PL may be reported as an 

., I . . ( P 0.5EA h b d b empmca parametnc expressIon e.g., L = 15 as een suggeste y 
(bfllf )' 

Strongwell, 1989). 

10. Holes do not affect adversely the critical buckling loads, provided d/w ratio is 

not large « 0.3). For higher ratios (d/w = 0.6) buckling stiffness can be reduced 

by up to 30%. Sections with thicker webs demonstrated lower sensitivity 

towards the effects of holes. 
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195 



L=500mm 

Axial Strain (rnm) 

-0.015 -0.01 -0.005 o 

~ 

-0.05 N 

E 

-0.1 ~ 
~ 
~ 

-0.15 1/1 

~ 
-0.2 c;; 

iij 
y = 27.725x 
Ff2 = 0.9396 

Y = 40.635x >C 
-0.25 c:C Ff2 =0.8225 

-0.3 
--Side A --SideB 

Side C --Side D 
- ..... . Linear (Side A) . ... . . . Linear (Side B) 

L=300mm 

Axial Strain (mm) 

-0.008 -0.006 -0.004 -0.002 0 

~--~----~--~---x 0 

y = 31 .97x 
Ff2 = 0.9956 

~ 
N 

E 
-0.05 E 

Z 
~ -1/1 

~ 
-0.1 

c;; 

-0.15 ~ 
c:C 

-0.2 

--Side A --Side B 

Side C --Side D 
Linear (Side C) . . . . . Linear (Side D 

L=400mm 

Axial Strain (mm) 

-0.015 -0.01 -0.005 o 
~-----'------'------,.j- O 

y = 25.078x " 
Ff2 = 0.9827 y = 34.4x 

Ff2 = 0.9814 

-0.05 ~ 
Z 

-0.1 ~ 
1/1 

~ 
-0.15 c;; 

iij 
>C 

-0.2 c:C 

-0.25 

--Side A --sideB 

Side C --side D 
Linear (Side C) .... - . . Linear (side B) 

L=200mm 

Axial Strain (mm) 

-0.01 -0.005 o 
~--------~--------~.. 0 

y = 28.658x 
Ff2 = 0.9962 

. y = 35.835x 

Ff2 = 0.995 

--Side A --Side B 
Side C --Side D 

-0.05 E 

~ 
-0.1 ~ 

en 

~ 
-0.15 c;; 

iij 
>C 

-0.2 c:C 

-0.25 

... - . . . Linear (Side B) .. ... . . Linear (Side D 

Fig 4.15 Stress-Strain plots (typical) for short 51mm box-section specimens. 

196 



L= 2000mm 
Axial Strain (mm) 

-0.003 -0.0015 0 0.0015 

I 
0 

N 

-0.005 E 
.E z 

-0.01 .lI: --Y = 27.422x y = 30.971x ::I 
CI.I 

f12 = 0.9994 .~ f12 = 0.999 -0.015 ~ 
ia 

-0.02 
>< 
"' --Side A --Side 8 

Side C --SideD 
- - - - - - . Linear (Side 8) - - . . .. Linear (Side D 

L=1000mm 
Axial Strain (mm) 

-0.004 -0.002 0 0.002 

y = 28.018x 
f12 = 0.9981 

--Side A 
Side C 

0.00 N 

-0.01 E 

-0.02 ~ 
-0.03 ~ 

1/1 

-0.04 ~ 

-0.05 iii 
ia -0.06 ';( 

-0.07 "' 

--Side 8 
--SideD 

. . ... . . Linear (Side D) - - - - - _. Linear (Side 8) 

L=600mm 
Axial Strain (mm) 

-0.008 -0.006 -0.004 -0.002 0 
'--_-'-__ .1....-_ -'-_-,/. 0 

y=31 .049x 

f12 = 0.999 

--Side A 

-0.02 
-0.04 
-0.06 
-0.08 

-0.1 
r y = 31 .618x -0.12 
~= 0.9991 -0.14 

-0.16 
--Side 8 

SideC --sideD 

-N 

E 
.E z 
.lI: --1/1 
1/1 
CI.I ... 
tiS 
'jij 
>< 

"' 

- - - - - - . Linear (Side 8) ... - _. Linear (side D) 

L=1500mm 
Axial Strain (mm) 

-0.004 -0.002 0 0.002 

0 -
/ 

N 

-0.005 E 
.E 

-0.01 z 
.lI: --1/1 

Y = 29.277x -0.015 1/1 

f12 = 0.9996 Xl ... 
Ff! = 0.9986 -0.02 iii 

ia 

I Y =30.029, 

-0.025 >< 

"' -0.03 
--Aide A --Side 8 

Side C --SideD 
- - - - - - . Linear (Side 8) - .. - .. Linear (Side D) 

L=750mm 
Axial Strain (mm) 

-0.01 -0.01 -0 -0 0 

y = 30.661 x 
Ff! = 0.9995 

0.002 

0 

-0.02 

-0.04 

-0.06 

-0.08 

-0.1 

-0.12 

-0.14 

--Side A --Side 8 
Side C --Side D 

-N 

E 

~ 
.lI: 

1/1 
1/1 
CI.I ... 

tiS 
'jij 
;c 

"' 

Linear (Side D) - - - - - - . Linear (Side 8 

L=500mm 
Axial Strain (mm) 

-0.01 -0.005 0 -0 .. 
E 

-0.05 ~ 
-0.1 ~ 

1/1 

~ -0.15 
tiS 

-0.2 S 
)( 

"' -0.25 
--Side A --Side 8 

Side C --Side D 
--Lnear (Side 8) - _. - . . . Linear (Side D 

Fig 4.16 Stress-Strain plots (typical) for long 44mm box-section specimens. 
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T bl 41 E a e . t I b kr L d f I d I xpenmeo a uc 109 oa so S eo er co umos 

Column No: 1, 51 x51 x3.2mm, l-GRP=2000mm,LefT=2055mm, A=2.69 

Side A -A B -B C -C 0 -0 Mean SO 

PExp 15.1 15.1 15.0 15.1 15.5 15.4 15.3 15.3 15.2 0.16 

PS.welI 15.2 15.4 15.5 15.3 15.7 15.7 15.7 15.7 15.5 0.21 

Column No: 2, 51 x51 x3.2mm, l-GRP= 2000mm, LefT = 2055mm, A = 2.69 

Side A -A B -B C -C 0 -0 Mean SO 

PExp 15.1 15.1 15.3 15.3 15.4 15.4 15.2 15.1 15.2 0.14 

PS.well 15.1 15.4 15.6 15.6 16.1 15.9 15.4 15.4 15.6 0.30 

Column No: 3, 51 x51 x3.2mm, l-GRP = 2000mm, LefT = 2055mm, A = 2.69 

Side A -A B -B C -C 0 -0 Mean SO 

PExp 15.2 15.2 15.8 15.6 15.3 15.3 15.8 15.5 15.5 0.24 

PS.welI 15.4 15.5 16.3 16.1 15.5 15.7 16.4 16.1 15.9 0.38 

Column No: 4, 44x44x6.0mm, l-GRP= 2000mm, LefT = 2055mm, A = 3.61 

Side A -A B -B C -c 0 -0 Mean SO 

PExpt 15.8 15.8 14.8 14.7 15.7 15.6 14.6 14.7 15.2 0.56 

PS.welI 16.1 16.1 15.2 15.2 15.9 15.8 15.2 15.2 15.7 0.43 

Column No: 5, 44x44x6.0mm, l-GRP= 2000mm, LefT = 2055mm, A = 3.61 

Side A -A B -B C -c 0 -0 Mean SO 

PExp 15.9 15.8 14.8 14.7 15.8 15.7 14.9 14.9 15.3 0.52 

PS.well 16.0 16.1 15.2 15.3 16.1 16.0 15.2 15.2 15.6 0.44 

Column No: 6, 44x44x6.0mm, l-GRP= 2000mm, LefT = 2055mm, A = 3.61 

Side A -A B -B C -c 0 -0 Mean SO 

PExp 15.1 15.1 15.7 15.7 15.2 15.2 15.6 15.6 15.4 0.28 

PS.well 15.4 15.4 16.1 16.0 15.4 15.4 16.0 16.0 15.7 0.33 
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Table 4.1 Experimental buckling Loads of slender columns (continued) 

Column No: 1, 51 x51 x3.2mm, LaRP= 1500mm, LetT = 1555mm, A = 2.03 

Side A -A B -B C -C D -D Mean SD 

P Exp 27.0 26.8 27.2 27.3 26.9 26.8 27.4 27.4 27.1 0.38 

PS.wel1 27.3 27.2 28.1 28.0 27.1 27.2 28.3 28.2 27.7 0.51 

Column No: 2, 51 x51 x3.2mm, LaRP= 1500mm, LetT = 1555mm, A=2.03 

Side A -A B -B C -C D -D Mean SD 

PExp 26.9 26.9 27.4 27.3 26.7 26.7 27.4 27.4 27.1 0.32 

PS.wel1 27.4 27.1 27.9 28.2 27.0 27.1 28.2 28.3 27.6 0.54 

Column No: 3, 51 x51 x3.2mm, LaRP= 1500mm, LetT = 1555mm, 1..=2.03 

Side A -A B -B C -C D -D Mean SD 

PExp 26.0 26.0 27.5 27.3 25.7 25.9 27.4 27.4 26.6 0.81 

PS.wel1 26.7 26.8 28.4 28.3 26.7 26.7 28.1 28.4 27.5 0.86 

Column No: 4, 44x44x6.0mm, LaRP = 1500mm, LetT = 1555mm, A=2.73 

Side A -A B -B C -C D -D Mean SD 

PExp 25.9 25.8 26.9 26.7 26.0 25.6 26.7 26.9 26.3 0.53 

PS.wel1 27.9 28.0 27.3 27.0 27.9 27.8 26.8 27.1 27.5 0.48 

Column No: 5, 44x44x6.0mm, LaRP= 1500mm, LetT = 1555mm, A=2.73 

Side A -A B -B C -C D -D Mean SD 

PExp 25.4 25.3 26.4 26.3 25.0 25.0 26.0 26.3 25.7 0.61 

PS.well 26.6 26.7 28.0 27.8 26.7 26.7 27.8 27.6 27.2 0.61 

Column No: 6, 44x44x6.0mm, LaRP= 1500mm, LetT = 1555mm, 1..=2.73 

Side A -A B -B C -C D -D Mean SD 

PExp 25.4 25.7 27.0 26.8 25.2 25.2 26.8 27.0 26.14 0.83 

PS.well 26.7 26.7 27.9 27.9 26.5 26.5 28.2 27.9 27.3 0.74 
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Table 4.1 Experimental bucklin2 Loads of slender columns {continued) 

Column No: 1, 51 x51 x3.2mm, LaRP= 1000mm, LefT = 1055mm, A = 1.38 

Side A -A B -B C -C D -D Mean SD 

P Exp 54.0 53.8 54.4 57.0 53.8 54.3 56.7 56.8 55.1 1.45 

PS.well 58.1 57.5 59.9 60.2 57.1 57.1 60.6 61.0 59.0 1.64 

Column No: 2, 51 x51 x3.2mm, LaRP= 1000mm, LefT = 1055mm, A = 1.38 

Side A -A B -B C -C D -D Mean SD 

P Exp 51.8 53.8 53.8 56.4 54.7 54.2 56.6 56.6 54.8 1.70 

PS.well 57.5 57.1 59.5 60.0 57.1 56.8 59.9 59.9 58.6 1.55 

Column No: 3, 51 x51 x3.2mm, LaRP= 1000mm, LefT = 1055mm, A = 1.38 

Side A -A B -B C -C D -D Mean SD 

PExp 56.2 56.6 54.9 54.3 56.8 57.3 54.8 55.0 55.7 1.11 

PS.well 59.9 59.9 60.6 60.6 57.4 58.1 60.7 60.1 59.7 1.22 

Column No: 4, 44x44x6.0 mm, LaRP = 1000mm, LefT = 1055mm, A = 1.85 

Side A -A B -B C -C D -D Mean SD 

P Exp 55.3 55.9 58.3 55.6 55.7 55.3 57.6 58.8 56.6 1.43 

PS.well 57.8 59.5 58.8 58.5 61.0 59.2 58.8 59.5 59.1 0.93 

Column No: 5, 44x44x6.0mm, LaRP = 1000mm, LetT = 1055mm, A = 1.85 

Side A -A B -B C -C D -D Mean SD 

PExp 56.1 56.3 59.0 58.5 56.8 56.3 56.3 56.4 56.7 1.14 

PS.well 59.2 59.9 60.2 59.5 60.6 60.6 58.2 58.5 59.6 0.92 

Column No: 6, 44x44x6.0mm, LaRP= 1000mm, LefT = 1055mm, A = 1.85 

Side A -A B -B C -C D -D Mean SD 

PExp 55.5 55.1 51.0 51.5 54.5 52.4 52.8 51.1 53.0 1.81 

PS.well 58.6 58.5 59.2 59.6 58.2 57.5 60.9 60.2 59.1 1.13 
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Table 4.1 Experimental bucklin2 Loads of slender columns (continued 

Column No: 1, 44x44x6.0 mm, LaRP= 7S0mm, LefT = 80Smm, A. = 1.42 

Side A -A B -B C -c D -D Mean SD 

PExp 87.9 86.9 85.0 85.1 86.7 87.2 84.2 84.4 85.9 1.41 

PS.well 96.2 95.0 99.0 97.1 99.0 95.2 104 103 98.6 3.46 

Column No:2, 44x44x6.0mm, LaRP= 750mm, LefT = 80Smm, A. = 1.42 

Side A -A B -B C -c D -D Mean SD 

PExp 76.0 80.8 81.S 81.4 82.9 80.2 81.2 80.7 80.6 2.0 

PS.well 96.2 97.1 93.S 94.3 101 100 98.0 99.0 97.4 2.66 

Column No: 3, 44x44x6.0mm, LaRP= 750mm, LefT = 805mm, A. = 1.42 

Side A -A B -B C -c D -D Mean SD 

PExp 81.S 81.2 89.1 82.2 80.0 81.3 81.4 81.1 82.2 2.82 

PS.well 98.0 98.0 96.2 96.2 106 102 98.0 99.0 99.2 3.43 
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Table 4.2 Short Column Failure loads for box-sections 

Specimen Specimen Length Specimen No: Mean SD 
section (kN) (kN) 
(nun) LGRJ> Leff 1 2 3 

(nun) (nun) 

500 555 118 115 110 114 4.2 
51 x51x3.2 

400 455 120 111 120 117 5.2 

300 355 114 118 122 118 4.0 

200 255 123 118 121 121 2.1 

44x44x6.0 400 455 202 220 203 208 10.2 

300 355 221 223 210 218 6.6 

200 255 226 216 219 220 5.3 

a e . o e-ID erac Ion ID ID erme la e co umn T bl 4 3 Md' t f . . t d' t I h . ht elg] s 

Specimen Specimen Length Specimen No: Mean SD 
section (kN) (kN) 
(nun) LGRP Lef! 1 2 3 

(rom) (nun) 

51 x51 x3.2 750 805 96.2 99.0 96.2 97.1 1.7 

44x44x6.0 500 555 196 192 196 195 2.2 
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Table 4.4 Comparison of experimental and theoretical results (lon2 columns) 
Column Length of PS.weIP PE.sh=PEDC PStrongwell 

Section and Specimen (kN) (kN) EL,c 

Properties LGRP LejJ EL,c EL,c Fibreforce 
(mm) (mm) Measured Fibreforce (kN) 

51x51 x3.2 mm 2000 2055 15.7 16.7 9.5 32.5 
2 

Aave = 628.mm 1500 1555 27.6 28.8 16.5 46.8 4 
lave = 238000mm 

1000 1055 59.1 61.0 35.9 77.4 

750 805 97.1 101 61.7 110 

44x44x6.0 mm 2000 2055 15.6 16.6 8.6 34.5 
2 

Aave= 882mm 1500 1555 27.3 28.7 15.1 49.5 4 
lave = 217000mm 

1000 1055 59.3 61.2 32.7 82.0 

750 805 98.4 102 56.2 117 

500 555 195 202 118 189 

Table 4.5 Comparison of experimental and theoretical Results (short columns) 
Column Length of PL(Expm Classical PEDC PStrongwell 

Section and Specimen (kN) Ortho- (kN) (kN) 
Properties tropic 

LGRP LejJ plate§§ EL,c EL,c EL,c 

(mm) (mm) Pr(kN) Meas- Fibre- Fibre-force 
ured force 

51x51x3.2 mm 500 555 114 80.3 126 88.0 67.8 
2 to Aave= 628mm 400 455 117 

lave = 252 (242) (130) 

238000mm4 300 355 118 

200 255 121 

44x44x6.0 nun 400 455 208 705 1111 706 197 
2 to Aave= 882mm 300 355 218 

lave = 2181 (461) (185) 

217000nun4 200 255 220 

U Average of several tests 

§§ Minimum and maximum buckling loads corresponding to simply supported and fixed long edge 
supports 
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Ta e . eSlgn parameters or bi 46 D . ~ 51 x51 x3.2mm box-section 

Le.jJ A PE.sh PExp q S c ki Pc 

(mm) =Lli! (kN) (kN) PExP PExp q+s-l (kN) 
= =- = 

7t E1 PL PE 
qs =kjPL 

255 0.33 582 123 1.02 0.21 1.08 0.99 119 

255 0.33 582 118 0.99 0.20 0.94 0.99 119 

255 0.33 582 121 1.01 0.21 1.03 0.99 119 

355 0.46 389 114 0.95 0.29 0.87 0.98 117 

355 0.46 389 118 0.99 0.30 0.97 0.98 117 

355 0.46 389 122 1.01 0.31 1.03 0.98 117 

455 0.60 270 120 1.00 0.45 1.00 0.96 115 

455 0.60 270 111 0.92 0.41 0.88 0.96 115 

455 0.60 270 120 1.00 0.44 1.00 0.96 115 

555 0.73 195 118 0.99 0.61 0.99 0.92 111 

555 0.73 195 115 0.96 0.59 0.97 0.92 111 

555 0.73 195 110 0.92 0.56 0.93 0.92 111 

805 1.05 101 96.2 0.80 0.95 0.99 0.73 88.2 

805 1.05 101 99.0 0.83 0.98 1.00 0.73 88.2 

805 1.05 101 96.2 0.80 0.95 0.99 0.73 88.2 

1055 1.38 61 59.0 0.49 0.97 0.96 0.49 59.0 

t"""1055 1.38 61 58.6 0.49 0.96 0.96 0.49 59.0 

1055 1.38 61 59.7 0.50 0.98 0.98 0.49 59.0 

1555 2.03 28.8 27.7 0.23 0.96 0.86 0.24 28.7 

1555 2.03 28.8 27.6 0.23 0.96 0.86 0.24 28.7 

1555 2.03 28.8 27.5 0.23 0.95 0.84 0.24 28.7 

t-"2055 2.69 16.7 15.5 0.13 0.93 0.50 0.14 16.7 

2055 2.69 16.7 15.6 0.13 0.92 0.52 0.14 16.7 

t-"2055 2.69 16. 7 15.9 0.13 0.94 0.67 0.14 16.7 
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a e . es 12n parame ers or x x mm ox-sec Ion T bl 47 d . t f, 44 44 6 b f 

Leff A. PE.sh PExp q S c k; Pc 

(mm) 
~;~ 

(kN) (kN) = PExp PExp q+s-l (kN) 
= = 

PL PE 
qs =kjPL 

255 0.45 672.28 226 1.03 0.34 1.06 0.99 217 

255 0.45 672.28 216 0.98 0.32 0.96 0.99 217 

255 0.45 672.28 219 0.99 0.33 0.99 0.99 217 

355 0.62 426.60 221 1.00 0.52 1.00 0.97 214 

355 0.62 426.60 223 1.01 0.52 1.01 0.97 214 

355 0.62 426.60 210 0.96 0.49 0.95 0.97 214 

455 0.80 287.22 202 0.92 0.70 0.96 0.93 205 

455 0.80 287.22 220 1.00 0.77 1.00 0.93 205 

455 0.80 287.22 203 0.92 0.71 0.97 0.93 205 

555 0.98 204.08 196 0.89 0.96 1.00 0.83 183 

555 0.98 204.08 192 0.87 0.94 0.99 0.83 183 

555 0.98 204.08 196 0.89 0.96 1.00 0.83 183 

805 1.42 103.36 98.6 0.45 0.95 0.94 0.47 104 

805 1.42 103.36 97.4 0.44 0.94 0.92 0.47 104 

805 1.42 103.36 99.2 0.45 0.96 0.95 0.47 104 

1055 1.85 61.71 59.1 0.27 0.96 0.88 0.29 63.0 

1055 1.85 61.71 59.6 0.27 0.97 0.90 0.29 63.0 

1055 1.85 61.71 59.1 0.27 0.96 0.88 0.29 63.0 

1555 2.73 28.96 27.5 0.12 0.95 0.62 0.13 29.3 

1555 2.73 28.96 27.2 0.12 0.94 0.55 0.13 29.3 

1555 2.73 28.96 27.3 0.12 0.94 0.57 0.13 29.3 

2055 3.61 16.70 15.7 0.07 0.94 0.20 0.08 16.8 

2055 3.61 16.70 15.6 0.07 0.94 0.11 0.08 16.8 

2055 3.61 16.70 15.7 0.07 0.94 0.17 0.08 16.8 
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T bl 48 P a e , t I 'b kJ' , t ereen age oss 10 ue 109 reSlS anee d t h I ue 0 o es 

Column Column d/w No of holes in one set 

Size & length 
NO: 

1 Hole 2 Holes 4 Holes 8 Holes 

51x51x3.2mm 1 0.28 3.1 5.8 7.1 9.1 

L=2000mm 2 0.49 4.3 7.3 9.6 16.0 

3 0.69 6.8 9.8 16.1 24.3 

51x51x3.2mm 1 0.28 3.4 5.9 8.2 10.7 

L= 1500mm 2 0.49 5.5 8.2 11.6 17.5 

3 0.69 8.8 11.3 17.8 30.3 

51x51x3.2mm 1 0.28 3.4 6.6 9.6 11.7 

L= 1000mm 2 0.49 6.5 9.5 12.3 18.5 

3 0.69 10.2 17.0 20.1 32.2 

44x44x6.0mm 1 0.32 2.1 4.2 5.4 7.5 

L=2000mm 2 0.46 3.5 6.8 8.5 12.5 

3 0.57 4.2 10.0 11.7 18.4 

44x44x6.0mm 1 0.32 2.7 4.7 6.8 8.7 

L= 1500mm 2 0.46 4.12 6.95 8.46 13.8 

3 0.57 5.64 10.2 13.4 19.6 

44x44x6.0mm 1 0.32 2.8 5.3 7.5 10.4 

L= 1000mm 2 0.46 4.6 6.7 9.5 14.4 

3 0.57 6.2 11.2 14.7 21.1 
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Plate 4.1 Measurement of initial imperfections. 

Plate 4.2 Strain rosettes and bondable terminals with wires. 
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(b) 

Plate 4.3 (a) Upper knife-edge, load cell and support assembly and 
(b) Lower knife-edge, load cell and alignment strip. 
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(c) 

Plate 4.4 (a) Mid-height rotation check, (b) upper shoe and (c) lower shoe. 
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Plate 4.5 Test rig and complete set up of axial compression test. 
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(a) (b) (c) 

Plate 4.6 Global buckling in 51mm box-section specimens of height; 
(a) 2000mm, (b) 1500mm, and (c) lOOOmm. 
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(a) 

Plate 4.7 Global buckling in 44mm box-section specimens of height; 
(a) 2000mm, (b) 1500mm, and (c) 1000mm, and 750mm. 
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(a) (b) 

Plate 4.8 Number and position of L VDTs to measure lateral deflection in short 
specimens (a) 200mm, (b) 300mm, (c) 400mm and (d) SOOmm. 
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(a) (b) 

Plate 4.9 Local buckling of 200mm high, S1mm box-section specimen (a) front 
web bulging out, orthogonal web moving in; (b) rear (opposite) web bulging out 

and broken in compression; (c) compression failure at the lower end. 
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(a) b) 

Plate 4.10 Failure mode of 300mm high, S1mm box-section specimen; 
(a) front view, (b) rear view 
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(c) (d) 

Plate 4.10 (continued) Failure mode of 300mm high, Slmm box-section 
specimen; (a) front view, (b) rear view 
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(a) (b) 

Plate 4.11 Failure mode of 400mm high, stmm box-section specimen; (a) front 
view, (b) rear view 
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(c) (d) 

Plate 4.11 (continued) Failure mode of 400mm high, 51mm box-section 
specimen; (c) front view, (d) rear view 
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(a) (b) 

Plate 4.12 Failure modes of 500mm high S1mm box-section specimen; 
(a) front and (b) rear view. 
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(c) 
Plate 4.12 (continued) Failure modes of 500mm high 51mm box-section 

specimen; (c) front view. 
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(d) (e) 

Plate 4.12 (continued) Failure modes of SOOmm high Slmm box-section 
specimen; (d) front and (e) rear view. 
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(a) (b) 

(c) 

Plate 4.13 Failure mode of 200mm high 44mm box-section specimen; 
(a), front view (b), rear view (c) compressive failure at end. 
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(c) 

Plate 4.14 Material failure mode in (a) 300mm, (b) 400mm and (c) SOOmm high, 
44mm box-section specimens. 
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(a) (b) 

Plate 4.15 Buckling mode-interaction in 750mm high, 51mm box-section 
specimen; (a) front and (b) rear view. 
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(c) (d) 

Plate 4.1S (continued) Buckling mode-interaction in 7S0mm high, Slmm box­
section specimen; (c) front and (d) rear view. 
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Plate 4.16 Various sizes and combination of holes drilled through the webs of the 
two box-sections 

Plate 4.17 Global buckling in 1000mm GRP specimens with holes. 
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Plate 4.18 Global buckling in 1500mm GRP box-section specimens with holes. 
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Plate 4.19 Global buckling in 2000mm GRP box-section specimens with holes. 
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CHAPTERS 

BUCKLING OF GRP BOX COLUMNS-NUMERICAL 

STUDY 

5.1 INTRODUCTION 

The ultimate failure loads of axially loaded composite columns of various heights 

have been measured experimentally and estimated analytically in Chapter 4. In this 

chapter the failure loads and failure modes of the same box-section columns have 

been simulated and predicted numerically using finite element modelling. Included in 

the numerical investigations are the effects of physically measured imperfections e.g. 

variations in the cross-sectional dimensions. The effects of load eccentricity and 

initial curvature (bow) have been studied by adding known (measured) amounts of 

load eccentricities and deflections at the mid-height of the specimen models. The 

investigations have further been extended to include the effects of holes formed in the 

webs of the GRP profiles representing changes to the section arising from connections 

or services details and also to demonstrate the effective zones of the columns. Circular 

holes of various sizes have been considered for the estimation of the buckling 

stiffness loss of the composite columns. The outcomes of the numerical studies have 

been compared with the experimental and closed form analytical results. 

Finite element (FE) models representing the true cross-section geometry of the box­

sections (shape, parametric dimensions of wall thickness and column heights), have 

been analysed using a commercial finite element code "LUSAS". A typical base 

model representing both the box-section profiles, with a GRP height of lOOOmm has 

been constructed (Fig 5.1). The effective height of the column becomes l055mm after 

adding 27.5mm thick steel plates to the specimen at the upper and lower ends to 

simulate the steel shoes used to restrain the specimens and distribute the axial load 

uniformly as in the experimental configuration. Finite element models of various 

heights and different boundary conditions have been produced by making respective 

changes to the base models. The most common boundary conditions found in the 

literature e.g., simply supported, hinged and fully fixed supports have been applied to 

the axially loaded columns. Different boundary conditions and the initial assumption 

of GRP material as isotropic (taking E=Er) have been adopted to establish the 
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satisfactory benchmarking of the software. Load eccentricity has been introduced (in 

intervals) by altering the loading positions in the base model. Initial out of 

straightness ( curvature) at mid heights of the columns have been modelled by 

introducing the imperfections as half sine waves (the most critical imperfections 

corresponding to the first mode shape). Additional finite element models of the 

composite columns, with holes in the webs (walls), have been developed to predict 

the potential loss in the buckling strength of composite columns in the presence of 

these holes. The sizes of holes have been varied in tenns of d/w ratios, where d is the 

diameter of the hole and w is the web-width. The study has been limited to longer 

columns (1000 to 2000mm GRP heights) for both box-sections as experimental 

results are available for comparison. Recommendations regarding the sizes and gaps 

between the holes are presented. 

The main objectives of the numerical investigations are to: 

• Develop suitable finite element models representing the true geometry of the 

box-profiles, simulating the constraints (boundary and loading) of the 

experimental set up, that exhibit similar behaviour (failure modes and 

defonnations) when analysed using numerical fonnulations. 

• Establish the suitability of different types of analysis. Concepts of elastic 

stability have been applied through linear analysis. Analytical methods assume 

axial columns as perfectly straight whereas actual columns are not free from 

imperfections. In the presence of imperfections, initial loadings path exhibit 

lateral defonnation and the load changes with deflections. Also defonnations 

may be very large in some buckling modes. Non-linear analyses, therefore, are 

required to trace the predicted behaviour of the member under applied load. 

Non-linearity may be only geometrical if the dimensional of shape 

imperfections are present and the failure stresses (and hence failure mode) are 

within the elastic range of the material. Conversely, if failure modes 

(experimental) indicate bursting of the material, nonlinearity in the material 

becomes necessary to consider. 

• To establish the effects of specimen height, boundary conditions, degree of 

orthotropy, in-plane shear modulus, load eccentricity, initial curvature and 
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hole-size on the buckling strength of the composite columns through 

parametric studies. 

• To establish general rules governing the numerical prediction of ultimate 

failure loads of GRP pultruded columns. Similar rules are also defined for the 

composite columns having holes in their webs. 

• To establish numerical results (with confidence) containing safe loads for 

various column heights of the two box-sections (51 and 44mm square). The 

results have been used for the construction of a design curve for pultruded 

GRP columns. The universal slenderness ratio 'A' (2.19) defined for 

composite columns in Chapter 2 has been used to define a universal design 

equation for the design of pultruded GRP columns. 

• To compare failure loads (and modes) predicted by finite element analyses 

with those obtained using conventional procedures e.g., elastic stability theory, 

Strongwell design manual (Strongwell, 1989), ASCE design manual (ASCE, 

1984), and design equations in the ECD (Clarke, 1996). 

5.2 FINITE ELEMENT MODEL OF COLUMN 

The model (geometric details given in Fig. 5.1) comprises a GRP specimen of a 

specified (variable) height and two steel plates (27.5mm thick) attached to the upper 

and lower ends simulating the bearing surfaces of the shoes used to restrain the 

specimen in the experimental study (Chapter 4). As the GRP specimens were 

restrained laterally in the shoes, the steel plates in the numerical model have been 

considered as integral parts of the composite specimen. 

To represent the geometrical dimensions of the square cross-section of the GRP 

profiles and the covering steel plates, a 3-dimensional volume model has been 

developed. Side-walls (webs) of the GRP profile joined to make a square cross­

section are represented by volumes (v13 to v20, Fig 5.1) of specified thickness. The 

terminal steel plates have also been represented by volumes, each comprising 12 

volumes (lower vI to v12 and upper v21 to v32, Fig 5.1). All volumes have identical 

orientations with respect to the global axes of the model i.e., the orientation of the 

axes (indicated by black arrows on all the volumes) are parallel to the global X, Yand 

Z direction (Fig 5.1). 
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The volumes have been discretised by dividing into a mesh using three dimensional 

(volume) solid continuum finite elements (HX20r The elements are hexagonal 

(brick) defined by 20 nodes i.e., 8 at comers and 1 at half-length of each side. Each 

node has 3 translational degrees of freedom (d.o.f), u, v, and w. The elements are of 

quadratic order where up to a linear variations of field variables (stress, strain etc), 

between the nodes, can be represented. The elements belong to the isoprametric 

family. A regular mesh has been assigned to discretise the rectangular volumes using 

rectangular finite elements (HX20). H-refinement has been adopted with inference 

from multi-mesh extrapolation to obtain an adequate mesh (measured as deviations of 

strain contour plots using averaged and unaveraged nodal values). To maintain the 

element's aspect ratio within limits «10 e.g., Cook et al 2002, Lusas theory manual 

2001) at least two elements width-wise and four elements per 100mm specimen 

height have been used. However for shorter lengths (750mm and less) the mesh has 

been further refined to four divisions in the transverse (width-wise) dimension and 

eight divisions per 100mm of specimen length in the longitudinal direction. A typical 

finite element model for the GRP box-section profile of height 1000mm (Fig. 5.2) has 

been used as the base model for both sections (51 and 44mm square). 

Material properties for the steel and GRP composite materials have been defined 

using data sets and assigned to the volumes representing the corresponding materials. 

For example, an isotropic material data set, with properties E = 205kN/mm2 and v = 

0.3, have been defined for steel and assigned to volumes 1 to 12 and 21 to 32 (Fig 

5.1a, and c). An orthotropic material data set defines the material properties 

(established in Chapter 3) for the GRP composite using nine constants as follows; 

51 x51 x3.2mm box-section 

Ex = 30.3kN/mm2
, Ey = 9.2 kN/mm2

, Ez = 9.2kN/mm2t , Gxy = 2.85kN/mm
2

, 

Gyz = Gzx = 3.95kN/mm2
, vxy = 0.29 and Vyz = Vzx = 0.15, 

44x44x6.0mm box-section 

Ex = 33.2kN/mm2
, Ey = 9.2 kN/mm2 Ez = 9.2kN/mm2t, Gxy = 2.85kN/mm

2 

• Lusas element library. 

t Transverse material properties has been taken equal in X and Z direction (transversely homogeneous). 
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Gyz = Gzx= 3.95kN/mm2
, vxy = 0.29, vyz = vzx = O.l5t 

The base model assumes simply supported boundary conditions with respective 

restraints along the mid-line of the lower and upper steel plates. Each support is 

defined by specifying the restraints that support applies to the assigned component of 

the structure. For example, support Rl (Fig 5.2b) three transitional displacements in 

the x, y and z directions have been restrained (u = v = w = 0), but rotation about the x­

axis is admissible. This simulates the knife-edge supporting the lower steel shoe in the 

experimental set up. At support R-2 (Fig 5.2 b), displacements in x and z directions 

are restrained but not in y direction (u = w = 0, y :¢' 0) to allow axial shortening under 

the applied load. Rotation about the x-axis is again admissible. Further, rotations 

about the y and z axes are restrained in both support-sets (R-l and R-2) to simulate the 

knife edge support (KES) used in the experimental test-configuration (Plate 4.3 a-b). 

The axial compressive load has been applied in the vertically downward direction (-y) 

along the central line of the top steel plate. Typically a unit load distributed along the 

centre line (5lmm long) has been defined. This simplifies the implementation of 

subsequent analyses by using a load factor approach for both linear and nonlinear 

analysis. This downward load has been assigned to the lines defining the centre line 

of the upper plate (see the blue downwards arrows in Fig 5.2 a) to simulate the knife 

edge loading in experimental configuration. The idealised loads l.96E-02kN/mm and 

2.27E-02kN/mm have been applied along the centre line of Slmm and 44mm box­

sections respectively. The FE models of various GRP heights have been obtained by 

simply changing the length of the base models for each cross-section profile. 

Types of analyses 

Three types of analyses; linear elastic (eigenvalue), geometrically nonlinear elastic 

and fully non-linear have been used to predict the buckling loads and failure modes. 

The linear elastic solution assumes that both the geometry and the material properties 

remain unchanged up to failure. A geometrically non-linear analysis recognises 

contributions of changes in the geometry of the structure (column) to the failure mode 

and load within a constant material framework. A fully nonlinear analysis (geometric 

and material) recognises both geometric and material nonlinearities in the solution. 

All three types of the analysis methodology have been considered in this numerical 

study with recommendations made regarding their selection and application, given 
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that computational expense escalates dramatically with increased assumed levels of 

nonlinearity. 

5.3 LINEAR ELASTIC (EIGENVALUE) ANALYSIS 

Theoretical fundamentals 

The instability of the axially compressed columns has been associated with the 

phenomenon referred as "bifurcation of equilibrium" (Chen and Lui 1987, Farshad 

1994, Galambos 1998). In the process, a perfect member when subjected to increasing 

load initially deforms in one mode and at a load referred to as the critical load, the 

deformation suddenly changes into a different pattern. For example, an axially loaded 

column initially shortens due to axial compression. The axial strains are also known 

as "membrane strains" and the energy stored during the process as "membrane 

energy". At the critical load, the column suddenly bends. At this bifurcation in the 

load-displacement behaviour the membrane strain energy is converted into bending 

strain energy without any change in the externally applied load. In slender columns 

(and in thin plates) membrane stiffness is much greater than bending stiffness, giving 

rise to large membrane strain energy for relatively small deformations and 

displacements. When buckling occurs comparatively large bending deformations are 

needed to absorb the released strain energy, producing excessive bending 

deformations. 

The critical load at this assumed bifurcation can be determined by an eigenvalue 

analysis. In the analysis all the possible equilibrium configurations that the system can 

assume at the bifurcation load are taken into account. These possible displaced 

configurations of the system are described by specifying a set of generalised 

displacements. The stiffness matrix relates the generalised forces to the generalised 

displacements of the system. The stiffness of the system is measured by the 

determinant of the stiffness matrix. At the critical load the stiffness of the system 

vanishes. Thus, by setting the determinant of the system's tangent stiffness matrix 

equal to zero, the system's critical conditions can be identified. The critical conditions 

are represented by the eigenvalues of the system's stiffness matrix and the displaced 

configurations are represented by eigenvectors. The lowest eigenvalue corresponding 

to an axially loaded state (in this case) is the critical load of the system. The 
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bifurcation or eigenvalue approach is an idealised mathematical approach to 

determine the critical conditions of a geometrically perfect system. 

Initially, to predict the critical buckling load Per for the base model of 51mm box­

section 1000mm high, a linear elastic analysis has been performed by defining the 

eigenvalue buckling control as the base model is perfectly straight and of slender 

height (§ 4.7). In this case the assumption of linearity is justified as the overall 

structural response implies both geometric and material linear responses. A converged 

solution of 59.3kN to Per is obtained (Table 5. 2). This value of Per is close to the 

experimental load of 59.lkN and analytical load PE•sh of 61kN (Table 4.4). 

Furthermore, the deformed shape obtained from the linear elastic analysis (Fig 5.4a) 

predicted global buckling with a maximum transverse deflection at column mid height 

and rotation of lower and upper steel plate about the central axis in the x-direction. 

The deformed shape is identical to the shape observed in the experimental study i.e. 

half sine wave of the order of the column effective length (Plate 4.6c). This 

observation serves as an initial indication of the satisfactory performance of the FE 

model, type of element chosen and the type of analysis performed for this particular 

case. It also demonstrates that 1000mm GRP high column (Leff = 1055mm) is in the 

category of slender columns. 

Different support conditions at the lower and upper ends (steel plates) of the column 

model also serve to demonstrate the validity of the numerical predictions. Normally 

the nature of a support is defined by the displacement or rotational prescriptions. For 

example in the base model, the simple support assigned to the central line of lower 

steel plate R-I (Fig 5.2b) is defined as; 

u = v = w = 0, Ox '¢ 0, Oy = Oz = ° 
where u, v, w, are translational displacements and Ox, Oy, and Oz are rotational 

displacements with respect to X, Yand Z axis. A displacement set equal to zero infers 

the respective restraint. 

The following four support conditions have been analysed for critical buckling loads: 

(a) Simple-Simple (SS): Column is simply supported at both ends as described in the 

base model with lower support as u = v = w = ° and Ox '¢ 0, ~= Oz = 0. Upper support 

condition is u = w = 0, v '¢ 0, Ox '¢ 0, ~ = Oz = 0. 
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(b) Fixed-Simple (F-S): Lower support is fixed i.e., restraint to all translational and 

rotational degrees-of-freedom as; u = v = w = 0, Bx = By = Bz = O. Upper support as 

given in (a) above. 

(c) Fixed-Fixed (F-F). Lower support fixed as described in (b) above. Upper support 

is also fixed but allows vertical shortening as; u = w = 0, V :I: 0, Bx =By= Bz = O. 

(d) Fixed-Free (F-Free). Lower support as described in (b) above and no restraints at 

the upper end of the column. 

The outcomes of linear analyses of 1000mm high GRP box-sections (51 x51 x3.2mm 

and 44x44x6.0mm) with different boundary conditions are given in Table 5.1. The 

corresponding buckling modes for the respective box-sections are indicated in Figs 

5.4 and 5.5 respectively. Critical buckling loads for F-S boundary conditions (case b) 

factor the PeTS obtained with simple supports (case a) by 2.04 and 2.02 respectively, as 

compared with analytical value of 2 (Galambos, 1998). For the F-F boundary 

conditions (case c) the predicted critical loads, the factors are 4.07 and 4.04 as 

compared with 4 (analytical, Galambos, 1889). Similarly for F-Free boundary 

conditions, the predicted critical loads are 0.26 and 0.25 of the S-S case (c.f. 0.25, 

Galambos, 1998). These results support the implied validity of the numerical model 

under linear assumptions. 

Critical loads for various column heights 

Simply supported boundary conditions and application of concentrated load along the 

centre line of upper steel covering plate remain constant in the FE models of various 

column heights (of both box-section profiles in the range of 200mm to 2000mm) 

simulating the experimental set-up (knife edge supports and concentric loading as 

shown in Fig 5.2). Orthotropic material properties have been used to represent the 

GRP material in all models. Eigenvalue buckling analyses, with a convergence normt 

of l.Ox 10-6, predict critical bucking (or failure) loads, under linear assumptions, for 

51mm and 44mm box-sections (Tables 5.2 and 5.3 respectively). 

t During analysis, the numerical solution is reffered to a criterion with which to measure its 

A~ - Ak
-
t 

convergence. It is assumed that the eigensolution has converged on iteration k when ' k I ~nonn 
Ai 

for all eigenvalues ~. 
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5Jx5Jx3.2mm box-section 

Linear elastic solutions for the column heights of 655mm (GRP height 600mm) and 

above converged to the required norm (l.OE-06) giving the minimum eigenvalues as 

the critical buckling loads (Table 5.2). The failure modes (Fig 5.6), of these 

specimens, obtained as deformed shapes show global (Euler) buckling with maximum 

lateral deflections at the mid-height. Therefore, columns with effective heights of 

655mm and above are grouped as slender columns. The numerical results in Table 5.2 

indicate the tendency of the buckling load to depend on column height. Initial 

comparison of the outcomes of the linear analyses with the experimental and 

theoretical studies (Table 5.10) indicate the adequacy of eigenvalue solution in 

predicting critical buckling loads (to within 3%) in the Euler mode (e.g., Leff ~ 

655mm for the box sections assumed) and where no material damage (fibre or matrix 

failure) is observed. 

For shorter heights (Leff = 255 to 555mm), however, the linear solutions failed to 

converge to the required norm. Furthermore, the deformed shapes do not show any 

type of (global or local) buckling (Fig 5.6). The predicted loads are significantly 

higher than the experimental and theoretical loads (Table 5.10). Notably, if the 

required convergence norm is lowered (e.g. 1.0E-01), the predicted buckling loads 

and deformed shapes are inconsistent. For example, the buckling load for the 555mm 

column is higher than that of 455 and 355mm columns (Table 5.2) contrary to 

expectations and the physics of the problem. The deformed shapes of the two 

columns 255mm and 355mm (Fig. 5.8) show similar buckling-waves in opposite 

walls, where opposite directions are expected. Failure to comply with the required 

convergence norm suggests that the equivalent test specimens may have failed by 

material degradation rather than buckling of the walls or the section as a whole. 

44x44x6.0mm box-sections 

Linear analysis for column heights Leff= 455mm and above (Table 5.3), converged to 

the required norm, showing global buckling in the deformed shapes (Fig 5.7). 

Buckling loads for 455mm and 555mm high columns significantly over predicted 

compared with experimental loads (Table 5.11), while for heights 655mm and above 

the predicted loads correlate well (maximum 9%). However, the analyses for the 

short columns (Leff = 255 and 355mm), failed to converge and gave inconsistent 
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failure loads e.g., failure loads for 255mm and 355mm columns are 790kN and 471kN 

respectively, greater than the maximum crushing strength of the section (461kN, 

Table 4.5). It clearly implies that these profiles fail by material crushing as evidenced 

by experimental observations. 

It is concluded therefore, that linear elastic analysis is valid for the numerical 

prediction of buckling loads for slender columns that exhibit purely global buckling 

modes. The lateral deflections at the critical loads appear to be small enough to 

validate the assumption of linear response. The predicted loads for both the square 

box-section specimens are close to the Euler (theoretical) loads§ and are higher than 

the experimental loads with the latter reduced by imperfections and experimental 

limitations. Notably, all the converged specimens showed global buckling, confirming 

the slender column range established experimentally in § 4.3.1. Conversely, if the 

solution does not converge, numerical predictions are not reliable, as incorrect 

solutions are obtained. Furthermore, the analysis indicates the range of column 

heights which are short enough not to show global buckling, suggesting the need for 

other types of analyses for the safe prediction of failure loads. 

5.4 NONLINEAR ELASTIC ANALYSIS 

Theoretical fundamentals 

Geometric nonlinearities arise from significant changes in the structural configuration 

during loading e.g., in vertically loaded columns progressive eccentricity of the 

applied load due to lateral bending. Furthermore, the presence of geometric 

imperfections introduces lateral deflections at the onset of loading and the problem 

then becomes a coupled load-deflection problem. Linear elastic (bifurcation) analysis 

assumes no coupling between membrane (axial) and bending (lateral) deformations 

and does not take into account either material limits or material nonlinearity (elastic 

or elasto-plastic). For practical problems (real columns) linear analysis may 

overestimate the actual collapse load, particularly in those cases where significant 

imperfections exist and/or the material elastic limit would be exceeded prior to 

achieving the critical load predicted as an eigenvalue (see §5.3 for example). 

Therefore a nonlinear analysis is required to account for the changes in loading (or its 

§ For comparison of numerical , theoretical and experimental results see Tables 5.10-11 
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direction) with geometric variations. However, in a geometrically nonlinear analysis 

the material properties assigned are elastic (for both steel plates (isotropic) and GRP 

profiles (orthotropic» with solutions reflecting only influences of geometric 

parameters (e.g. imperfections in the current examples). 

In the non-linear analysis (a load deflection problem) an iterative numerical procedure 

successively approximates the equilibrium path (Riks 1979, Godoy et al 1995). The 

required total load is applied in a number of increments (load steps). Within each 

increment a linear prediction of the nonlinear response is made, and subsequent 

iterative corrections are performed to restore equilibrium by the elimination of the 

residual or 'out of balance' forces. The iterative corrections are referred to a 

'convergence' criterion·· which indicates to what extent an equilibrate state has been 

achieved. In each load step, a number of iterations may be required to reach the 

required level of convergence. The solution procedure is, therefore, commonly 

referred to as an 'incremental-iterative method. The Newton-Raphson algorithm has 

been adopted in the present study. In this incremental iterative method, for each load 

step, the initial prediction of the incremental solution is based on the 'tangent 

stiffness' from which incremental deformations and their iterative corrections are 

derived. Each iterative calculation is based upon the current tangent stiffness. This 

involves the formulation (and factorisation) of the tangent stiffness matrix at the start 

of each equilibrium iteration. Although the continual manipulation of the stiffness 

matrix is expensive, the standard Newton-Raphson method generally converges 

rapidly and is preferred for geometrically non-linear problems (Riks 1979, Crisfield 

1981). 

The "Total Lagrangian" formulation has been coupled with nonlinear solution 

procedure. In this formulation the undeformed configuration (in each load step) is 

taken as a reference configuration i.e. the limits of integration are carried out over the 

•• The convergence criteria, generally incorporated in the nonlinear anlayses are the "root mean square 

residual norm" and the "displacement norm". In the formar criterion, the norm is the square root of the 

average of the squares of the residual forces and is dependent upon the units being used. The later 

(displacement) norm is the sum of the squares of all the iterative displacements as a percentage of the 

sum of the squares of the total displacement. It is the measure of how much the structure has 'moved' 

duringan iteration. Being a scaled norm it is not affected by the units. 
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undefonned configuration. The fonnulation is numerically stable, convergent under 

large load increments, valid for small strains and considered more appropriate in the 

absence of large nodal rotations. In the non-linear control data set of the software, 

Total Langrangian fonnulation has been opted, among the other available 

fonnulations. 

In the solution algorithm the applied load is modified during each increment by a load 

factor for which the system equilibrium is restored to a required convergence nonn, as 

the displacements increase. At the critical load factor, the plot of load verses 

displacement becomes horizontal, implying zero stiffness at failure. Buckling or 

failure of the columns is not indicated as rupture in the numerical model. A zero or 

negative pivot is interpreted as numeric instability by the gauss elimination algorithm 

during the forward reduction procedure. At the critical load (or load factor) a zero or 

negative pivot indicates that the equilibrium is lost. 

In the incremental procedure two control methods are available. The incremental path 

is usually initially controlled under a "constant load level" in which displacement 

solutions are sought to each segmental load increment. At failure to converge, control 

is switched to "arc length" in which the incremental load factor is modified to a value 

consistent with predefined displacement limits. The latter is typically used in stability 

analyses, especially where the buckled-defonnation path is required (e.g. snap­

through analyses). 

Irrespective of the method being used, incrementation for nonlinear analysis has been 

specified by automatic incrementation using an incrementation control data set. In this 

case the starting load factor, amount and number of further increments, and the total 

load factor, are specified. In unifonn incrementation, for each increment the starting 

load factor will be multiplied by the specified load components and added to the 

previous level. Tennination may be specified in three ways: limiting the maximum 

load factor, limiting the maximum number of applied increments, limiting the 

maximum value of named freedom. Where more than one criterion is specified, 

tennination will occur on the first criteria to be satisfied. In addition, the solution will 

be tenninated if, at the beginning of an increment, more than two negative pivots are 

encountered during the frontal elimination phase. 
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Geometrically nonlinear results 

5Jx5Jx3.2mm box-section 

The failure loads predicted by the geometrical nonlinear analysis for vanous 

simulated columns heights have been given in Table 5.4. The predicted loads for 

columns heights 655 to 2055 (GRP heights 600 to 2000mm) are in good agreement 

with the linear « 2%), theoretical « 5%) and experimental « 4%) results (Table 

5.10). The axial stress contours (Figs 5.9-5.11) show high compression stresses at the 

ends under steel plates whilst stress distribution is uniform along the column height. 

However the global buckling modes (observed in experimental study) have not been 

detected in the deformed shapes of non-linear analyses (Figs 5.9-5.11). Instead failure 

has been manifested by the loss of equilibrium, as indicated by a negative pivot in the 

reduced stiffness matrix at the critical load. However, whilst the non-linear analysis is 

capable of predicting the ultimate load carrying capacities in the slender columns, it is 

unable to predict the buckling modes tt. In the absence of local buckling and predicted 

loads near to the global analytical loads these column heights are categorised as 

slender columns. 

In the case of short columns (Leer = 555mm and less), local web buckling has been 

predicted by the nonlinear analyses. The shortest model analysed comprises 200mm 

GRP height. The deformed shapes and the axial-stress contours have been shown in 

Fig 5.12. Three half sine waves are clearly visible in the 2- and 3-dimentional views 

indicating the alternate amplitudes of the buckled waves. The central half sine wave is 

fully developed in contrast to the end waves. From the geometry of the mesh, the 

length of the central half sine wave is deduced to be 62.5mm. It appears that buckling 

deformation starts at mid-length and propagates towards ends resulting in an odd 

number of sine waves. Careful inspection of the deformed shapes reveals that the 

web-interface has also undergone some buckling. The "solution" was achieved at a 

high convergence norm (1.0XI0-01kN) giving a failure load of 274kN. The predicted 

load is higher than the crushing strength of the cross-section i.e. 236kN (Table 5.10). 

Experimentally, an average failure load of 121kN (Table 4.2) has been measured with 

tt It is shown in § 5.5 that global buckling mode has been predicted by introducing a small initial 

imperfection in the geometry of the cross-section. 
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failure accompanied by tearing through the box walls. Furthermore, the experimental 

failure mode showed only a mid-height buckling wave (Plate 4.9). Apparently, the 

steel shoes prevented the development of the end waves. Numerically, the contours of 

axial stresses (Fig 5.12) along the column height range from 0.117 to -0.496kN/mm2
• 

The first stress plot shows the shear stress distribution just before the failure (+ve 

pivot showing system still in equilibrium). At this stage the stress concentrations at 

the peaks of the buckled half sine wave are within the ultimate allowable axial stress 

of the material (O.385kN/mm2). The second plot shows increase in the intensity of 

axial stresses at failure load when solution converges with negative pivot (loss of 

equilibrium). High axial stresses at the predicted failure compared with the material 

limits suggest the development of complex non-linear deformations leading to the 

bursting and tearing failure. 

The simulated column height (GRP = 300mm, Leff = 355mm), buckled locally with 

five half sine waves (Fig 5.13). The three middle waves are fully developed while 

those towards each end are under developed. This confirms the proposition that 

buckling starts at mid-height and propagates towards the ends giving an odd number 

of half sine waves. The three central developed half sine waves again indicate a wave 

length of 62.5mm. Whilst the numerical predicted load of 211kN (Table 5.4) is lower 

than the crushing strength of the section (235kN), the axial stresses at the wave crests 

range from 0.113 to -0.482kN/mm2 with the latter exceeding the material limit 

(0.385kN/mm2) implying material failure (not detected in the deformed shape) at the 

failure load (second contour plot in Fig 5.13). Therefore, the poor convergence norm 

at failure suggests that predicted load is unreliable and beyond simple stability 

(buckling) failure. 

For the 400mm column (Leff = 445mm), the nonlinear analysis converges to the 

required norm and a failure load of 155kN (Table 5.4) is predicted. The deformed 

shape (Fig 5.14) indicates seven half sine waves out of which middle five has been 

developed leaving the extreme two under developed. At mid-height a wave length of 

62.5mm is interpreted using the mesh geometry. A height of 440mm of GRP is 

therefore theoretically required to obtain seven fully developed half sine waves 

(without rotational restraint on the box-face), predicting the minimum local buckling 
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loadtt. The axial stress distribution (contours of Sy) suggests a range from 0.111 to 

-0.473kN/mm2 while the compressive stress is 0.385kN/mm2
, confirming material 

failure in physical laboratory tests. However the stress concentrations just before 

failure are lower than the ultimate limit. 

Similar behaviour has been predicted for the 500mm GRP column (Leff = 555mm). 

Seven half sine waves have been predicted (Fig 5.15), five of which are developed. 

The length of the half sine wave at centre measures 62.5mm suggesting that wave 

length is constant over the column heights in short range. However, the nonlinear 

solution converged to a predicted PL of 150kN (Table 5.4), again higher than the 

experimental load (Table 5.10). Axial stress contour plots just before and after the 

failure have been included. The stresses at the failure load on the wave crests are 

(0.082 to -0.444kN/mm2), indicating material rupture. 

44x44x6.0mm box-section 

Table 5.5 presents the ultimate failure loads predicted for the B44 profile at various 

heights from 255 to 2055mm. Deformed shapes for these profiles are shown in Figs 

5.16-5.19. All the models display identical failure modes i.e., no local or global 

buckling is visible. Instead axial shortening with transverse strains are exhibited. This 

is supported by the axial stress plots along the length showing uniform stress along 

the whole heights (Figs 5.16-5.19). Ultimate loads for heights 555mm and above 

(GRP height 500mm and above) are comparable with the experimental, linear and 

theoretical results for slender columns (Table 5.11). These are heights for which the 

solutions converged. No local buckling is indicated. 

There are two short heights i.e., 255 and 355mm (GRP heights 200, 300m) for which 

the predicted loads exceeded the crushing strength (4 77kN) of the material (Table 

5.11). The solutions for these column heights did not converge. The stress contours 

indicate the highest stress intensity at the central (support) line of steel plate 

(simulating knife edge). Whilst the ultimate allowable compressive stress for 44mm 

box-section profile is 0.523kN/mm2 (Table 3.13), predicted stresses in GRP material 

a A similar study has been included in the next section (§ 5.3.4) to determine minimum local buckling 

load. 
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adjacent to the steel-plates, range from -0.7 to -0.99kN/mm2 (Fig. 5.19), confirming 

that this will be material failure at the ends in the experimental tests. 

Weak convergence of the solution for shorter heights of both 51 and 44mm box­

section columns, leading to unreliable results, indicates that column behaviour cannot 

be predicted assuming geometric nonlinearity without the inclusion of material 

nonlinearity. Furthermore, the absence of the experimental end half sine waves is 

attributed to the restrictions imposed by steel plates in very short columns. This 

finding is in line with that of Mottram (2000), who recommended that for the 

determination (or measurement) of the local buckling load (that must be uniform in a 

range of short column lengths) of composite columns, the length of column should 

accommodate at least four half sine-waves. 

5.5 ELASTIC DEGRADING (FULLY NONLINEAR) MODEL 

5.5.1 Theoretical fundamentals 

The evidence emerging from the experimental failure modes (tearing and bursting of 

the walls and interfaces) of the short columns suggested nonlinear behaviour of the 

composite material at the failure loads. Large strains modify (reduce) the elastic 

modulus in the longitudinal and transverse directions and the in-plane shear moduli. 

Non-linear response of the pultruded GRP materials has been modelled as elastic 

degrading of the material stiffness under large complex strains (Raj-Ali and Kilic, 

2002). Referring, to the orthotropic nature of the GRP material an "Roffman 

Criterion" has been adopted for the prediction of the nonlinear behaviour. This is a 

general failure criterion describing yield (linear limit) of anisotropic materials. 

Several models, including the well known Von Mises yield criterion are special cases 

of the Hoffman criterion. The criterion includes the stress hardening in longitudinal 

and transverse directions ofthe material. Hardening in the Hoffman criterion has been 

assumed to be proportional in tension and compression in a particular direction, 

maintaining the form of the initial yield surface. 

The nonlinearity of GRP material (in a particular direction) has been represented by 

the change in slopes or degree of curvature of the stress strain plots. The "linear limit" 

(jL has been identified at the location where initial linearity in the stress-strain curve 

diverges. Beyond the linear limit a non-linear behaviour has been assumed with a 

reduced elastic modulus. Linear elastic and nonlinear degrading strains have been 
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combined to define a reduced modulus (Fig. 5.20) with degrading strains defined as 

those beyond the elastic limit. For example, assuming that the stress-strain response of 

a material is beyond linear range is represented by a tri-linear stress-strain curve, the 

degrading modulus, Ed' (Fig. 5.20) can be represented by a pseudo modulus Ci , where 

i = 1,2,3 (5.1 a) 

(5.lb) 

and 

(5.lc) 

The limit of applicability of C)' C2 and C3 (for example) are defined by effective 

nonlinear strain limits, LI, L2 and L3 with 

(5.2) 

The appropriate values of E, Edi , E L' and Ej for the GRP material have been derived 

from the average of all the quadratic polynomials fitted to the experimentally obtained 

stress-strain data from coupon tests. For example the average of the quadratic 

polynomials fitted to the transverse tensile data (5 coupons) is shown in Fig 5.21 

(Saribiyik, 2000). To this average quadratic polynomial, linear regression analysis 

(with R2 > 0.99) has been applied to fit a series of straight line-approximations such 

that Fig 5.21 resembles Fig. 5.20. From this exercise, the "linear limit" of GRP 

material in transverse tension is defined as 0.0243kN/mm2 at a strain of 0.0025, and 

Young's modulus, E is 9.2kN/mm
2

• The values ofEdi , and Elare given in Table 5.6a 

in addition to the pseudo-modulus Ci and effective plastic strain limit Li• 

Similarly the nonlinear idealisation of the average compression polynomial curves for 

3.2mm and 6.0mm thick box-sections are presented in Fig 5.22(a,b). Corresponding 

values of degrading modulus, pseudo modulus and limits of nonlinear strains (before 

breaking) have been calculated using (5.1) and (5.2) and presented in Tables 5.6b and 

5.6c. 
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Notably, (as discussed in § 3.5), in the present numerical representation, transverse 

compression properties of both the box-sections have been assumed to be equal to the 

tensile properties of the 51mm box-section as measured by Saribiyik (2000). 

Furthermore, the tensile properties in the longitudinal direction for each box-section 

have been taken equal to the compression properties measured for each corresponding 

box-section (Chapter 3). The in-plane shear moduli in the orthotropic directions are 

assumed to remain constant throughout the analysis§§. 

The same incremental-iterative method (as employed in the geometrically nonlinear 

analysis) with nonlinear control and Hoffinan failure criterion has been used for the 

full nonlinear analysis. Buckling or failure of the system is not manifested as rupture 

in the numerical model. Instead, the load factor, plotted against the iteration number, 

converges to a plateau and appropriate nonlinear strains are identified. Essentially, the 

solution algorithm maintains numerical stability through arc-length control (Le. the 

displacements do not tend to infinity) as zones of the numerical model reaches and 

attains their stress and nonlinear strains capacities. The converged load factor has 

been used to calculate the ultimate load (i.e. load factor x applied load) with the 

vectors of nonlinear strains used to identify critical component areas. The applied load 

has been taken as unity and the converged load factor directly gives the ultimate 

applied load. 

Outcomes of materially nonlinear (Hoffman model) analysis 

5Jx5Jx3.2mm box-sections 

Non-linear (Hoffman) results have been presented in Table 5.7. Models with effective 

heights 655mm and above (GRP heights 600mm and above) failed at loads similar to 

the obtained from the geometrically nonlinear analysis indicating that the buckling 

stresses in the columns are lower than the assumed yield stress of the GRP material 

(Fig 5.22a). Also, the deformed shapes for these columns exhibited similar modes of 

failure i.e., axial shortening and increases in transverse volumetric strains (Figs 5.9-

5.11) with no mid-height lateral deflections, indicative of global buckling. Notably, 

for straight columns the nonlinear analysis does not indicate a buckled configuration. 

§§ Although the experimental shear stress-strain curves (Figs 3.32-34) are nonlinear, the adopted 

Hoffman failure criterion does not admit yielding or strain hardening of the in-plane shear stresses. 
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Representing physical columns (not perfectly straight), small initial curvatures '!:J.o' 

(0.5% of the GRP height) have been introduced in the non-linear Hoffman models. As 

expected, the inclusion of initial curvature at the mid-height reduces the buckling 

loads and the deformed shapes exhibit global buckling modes in the slender columns 

(GRP lengths 600mm and above) as shown in Figs 5.23-5.24. These results 

demonstrate numerically that the imperfection (disturbance) initially induces the onset 

of global buckling i.e., bifurcation of the primary equilibrium path. In the absence of 

imperfections, the straight column continues to follow its primary path, even if the 

critical point is approached. The predicted loads for slender columns with initial 

curvature (0.5% of the GRP height) correlate with the experimental results e.g., Table 

5.10, implying that the GRP columns as tested have initial imperfections of the order 

0.5% or less of their heights. Measured imperfections were of the order of 0.2-0.02% 

of the column height (e.g. see chapter 4, § 4.2.1 and Fig 4.2). The columns heights of 

655mm (GRP height 600mm) and above are confirmed as slender columns exhibiting 

global buckling. 

The nonlinear solutions for the short columns 255 and 355mm (GRP heights of 200 

and 300mm) terminated with a low convergence norm of 1.0E-Ot (Table 5.7). 

However, whilst the predicted loads are unreliable, the deformed shapes indicated 

local buckling (Figs 5.25-5.26) of the webs in a sine mode, characteristic of web­

buckling in thin walled structures. The shortest modelled length i.e., 255mm (200mm 

of GRP) exhibited only three half sine waves with indications that these results should 

not be used for the prediction of the local buckling load as at least four half sine 

waves are recommended (Mottram 2000). However the 355mm high column buckled 

locally with 5 half sine waves. Buckled modes in Figs 5.25-5.26 suggest a sine wave 

of 62.5mm interpreted from the mesh size···. 

To investigate the effect of the number of fully developed sine waves of a locally 

buckled column, on its ultimate load, the height of the column (GRP) has been 

increased in small intervals of 25mm, from 350 to 475mm and reanalysed. The 

buckled shapes of these models are shown in Fig. 5.27. Interestingly, nonlinear 

Hoffman analyses predicted similar ultimate loads (134 to 139kN) for all the models 

••• Each lOOmm height of GRP is divided into 8 elements, giving element height as 12.5mm. The 

zoomed half sine wave in Fig 5.25 spans 5 elements, indicating a length of 62.5mm. 
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having GRP lengths ranging from 350mm to 500mm (Leff = 405 to 555mm). This 

infers the important result that the numerically predicted buckling load is constant for 

a range of short column heights exhibiting local buckling. From these numerical 

results, the straight short column load PL is around 135kN for the 51mm box section. 

This compares with an experimentally average value of approximately 120kN (§ 4.5). 

A second important observation made from Fig 5.27 (and also from Figs 5.12-5.15) is 

that a constant wave length of62.5mm is interpolated (using the mesh size) in various 

column heights among the short column range (local buckling only) ttt. This 

numerically predicted length of half-sine wave can be compared with the theoretically 

calculated length of 64.4mm (§ 4.4.2). Buckling starts from the mid-height and 

proceeds towards the ends. If the column height is only sufficient to accommodate an 

integer (odd) number of sine waves, the outer half waves are under developed. 

Conversely if the column height is increased, either the extremities of the column 

remain laterally undeformed (LGRP= 375mm) or the number of sine waves is increased 

by 2 (one at each end) and these new peaks may not be fully developed (e.g. LGRP= 

425mm in Fig 5.27). Finally, at the onset of web buckling, strains that are 

combinations of elastic and nonlinear strains are developed. Elastic strains are 

uniformly distributed along the height of the column whilst nonlinear strains are only 

developed at the crests of the buckling wave (and locally along the stress singularity 

along the line of load application of the load platens). The vectors of elastic and 

nonlinear strains have been separately plotted on the two adjacent webs (half the 

cross-section) of the column in Fig 5.28. 

The ultimate load predicted for straight columns is generally higher than the 

experimental loads, given the absence of imperfections in the former and their 

influence on the latter. Whilst the predicted PL is over predicted using a straight 

(perfect) simulation by approximately 10 - 15%, geometric imperfections have been 

included to provide an improved prediction for PL for the 51mm box-section and an 

indication of the nature of the imperfections and their simulation. The variations of 

cross-sectional dimensions, including the outer widths of the GRP sections, have been 

measured during the experimental studies. For example, for a 51mm box-section GRP 

ttt Measurements of the half sine wave lengths were not possible because short columns failed by 

tearing of webs and the cross-sections into long strips. 
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specimen of height 400mm, the measured outer dimensions along the height have 

been plotted in Fig 5.29. The imperfections have been evaluated by subtracting the 

mean dimension from the measured widths. In introducing the imperfections in the 

fully nonlinear models, four options have been implemented: 

Option 1 Wall-thickness has been kept constant, distributing the cross-section with 

respect to the longitudinal axis of the profile at four heights i.e. 100, 200, 300 and 

400mm, with the load remaining concentric. 

Option 2 Moving the outer faces only, varying the wall thicknesses and keeping 

internal dimension constant. The central longitudinal axis passing through all the 

sections is straight and loading is concentric. However, stresses (and strains) vary 

along the height depending on the cross-sectional areas. 

Option 3 Wall-thickness kept constant, moving the cross-sections as a whole (varying 

the internal dimensions). The centres of the cross-sections are eccentric, generally, 

with respect to the line of application of the load. 

Option 4 A known load eccentricity, constant wall-thickness and an averaged 

constant cross-section. Five values of load eccentricities; 0.25, 0.5, 1.0, 1.5, and 

2.0mm have been used. 

Results for option-4 and combinations of other options with option-4 have been 

presented in Table 5.8. Results listed for load eccentricity equal to zero correspond to 

the respective options 1, 2, and 3. Option-1 without load eccentricity caused the 

minimum reduction in the load as the load is concentric and imperfections divided 

symmetrically about the side walls. However, the stiffness further reduced with load 

eccentricity. Combining options 3 and 4 exhibited the most adverse effects on load 

capacity as explicit load eccentricity was combined with out of straightness along the 

column height. For example, the predicted failure load for a 400mm GRP specimen 

with a load eccentricity of 2mm and an out of straightness on average 0.5mm 

(±0.25mm) reduced from 139kN (perfect column) to 117kN. This latter value is in 

agreement to the average experimental results of 117kN (Table 5.10). The outcomes 

combined with the accurate simulations of the behaviour of the long columns 

establishes the ability of the nonlinear numerical analysis to predict buckling loads for 

all the practical heights of the composite columns provided. an average estimate of the 

geometric imperfection is available. Furthermore, imperfections may be reasonably 
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introduced by assuming constant cross section geometry but that is translated laterally 

as a function of the height of the column. It is also evident that load eccentricity by 

itself is not significantly onerous on the failure load of a buckled member, but can be 

highly degrading when coupled with section geometry imperfections. This is clear 

when considering the case of a load eccentricity of 2.0mm in the absence of other 

geometry imperfections (130kN) and section imperfection only (135kN) with the load 

and section imperfections combined (117kN). 

An initial curvature of 0.5% of the column height has been introduced to the models 

for column heights representing 555 to 2055mm in the fully nonlinear analysis. The 

predicted loads for imperfect columns (Table 5.10) indicate that the effect of initial 

curvature reduces with column height. The predicted loads for imperfect columns of 

heights 805 and 1055mm are much lower than experimental loads indicating small 

initial imperfections in the physical columns (eo ~ 0.2% measured). 

44x44x6.0mm box-sections 

Results of the Hoffinan nonlinear analysis for thicker box-section (Table 5.9) failed to 

converge for shorter heights (255 and 355mm) predicting ultimate loads that are lower 

than the crushing strength of the material but are far greater than the experimental 

loads. Predicted loads for the taller columns (Leer = 455 to 2055mm) are close to the 

linear outcomes (Table 5.11) suggesting that columns in this height range are slender. 

Ultimate failure loads for the slender imperfect (0.5% of GRP height) columns 

correlate well with the experimental loads (2.7 -3.4%) with global buckling modes 

(Fig. 5.30). For column heights of 455mm to 805mm (GRP length 400 to 750mm) no 

local deformations were indicated. Given the nominal dimensions of the column walls 

(44mm wide by 6mm thick) these results are to be expected. 

5.6 EFFECTS OF INITIAL CURVATURE 

GRP profiles used as columns have been manufactured by pultrusion and possess 

dimensional imperfections. Although the imperfections are within the tolerances 

stated by the design guides, these imperfections reduce the load bearing capacities of 

the composite columns. Outer dimensions and wall thickness vary from section to 

section along the length of the profile. Being practically not feasible to separate out­

of-straightness and wall thickness variations in assessing PL in §5.5, these parameters 

were considered in a semi-adhoc manner. Of practical interest, however, is an initial 
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curvature (out of straightness). An assumed average imperfection has been assumed in 

the form of an approximate half sign wave of the order of the full column height and 

maximum amplitude at the mid height. In the numerical (FE) simulation, the initial 

curvature has been defined by three points (at mid and end points) lying on a sine 

curve, with the mid-point controlling the magnitude (L\). The initial curvature (L\) has 

been taken as percentage of the height of the GRP column in the FE model. The 

effects on the buckling stability for initial curvatures of 0.5, I, 2 and 3% of GRP 

height (Fig. 5.32) have been simulated using the fully non-linear finite element model. 

The numerical predictions for composite columns having initial curvatures have been 

plotted in Fig 5.33 for 51mm box and Fig 5.34 for 44mm box-section. The results 

indicate initially that the loss of buckling stiffness is proportional to the initial 

curvature and inversely proportional to the column height. Furthermore, the 44mm 

box-section is significantly less sensitive to this type of imperfection even though the 

failure loads at higher column heights are comparable with the 51mm box. 

5.7 EFFECT OF IN-PLANE SHEAR 

GRP box sections have different in-plane shear modulus in the longitudinal and 

transverse directions. The longitudinal shear modulus Gxy is parallel to the fibres 

whilst transverse moduli Gyz and Gzx are normal to the fibre direction. Experimentally 

measured values of shear moduli, for the 51mm box-section in the directions parallel 

and normal to the fibres, are Gxy = 2.85kN/mm2 and Gyz = Gxz = 3.95kN/mm2 

respectively (Tables 3.8-3.11). 

The effect of longitudinal in-plane shear modulus is investigated by varying Gxy from 

2kN/mm2 to 5kN/mm2 with a uniform interval of lkN/mm2 whilst transverse shear 

moduli are kept constant at Gyz = Gxz = 3.95kN/mm2
• The results (Fig 5.35a) indicate 

that the shear effects are not significant in the slender columns (~ 4%). In short 

models however, a loss of6% is predicted if the Gxyis reduced from 5 to 2kN/mm2
• 

The loss in buckling resistance by varying transverse shear moduli Gyz = Gxz from 2 to 

SkN/mm2 with a constant Gxy of 2.8SkN/mm2 for various column heights are plotted 

in Fig 5.35b. Again the effects are not significant for the slender column. However, 

for short columns the effects are considerable (10-12%). Furthermore, the transverse 

shear effects are higher in magnitude than the longitudinal shear effects. 
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5.8 NUMERICAL DESIGN CURVE 

A universal design curve based on the numerical failure loads, for the two box-section 

columns has been developed using the procedure described in Chapter 4 (§ 4.5). The 

experimental loads have been replaced by fully nonlinear FEA results (Tables 5.10-

5.11) and slenderness ratios 'A' recalculated using (2.19) and measured EL and 

moment of inertia 'r of the modelled cross-sections~U. The minimum short column 

load 'PL' has been decided from the failure loads for 400mm GRP high columns (Lerc 

= 455mm), for which FEA solutions converged (5tmm box-section) exhibiting local 

buckling with more than four half sine-waves. The interaction coefficient 'c' for each 

section, to account for imperfections like the material non-homogeneity and out of 

straightness (§ 2.2.2.3), has been established graphically by plotting the buckling 

strength ratios 'q' and's' (2.5), using numerical (non-linear FEA), PL and Euler loads 

(Tables 5.10-5.11). The non-dimensional load factors k; for all column heights have 

been calculated using (2.24). The failure loads corresponding to initial imperfections 

of 0.5 and 1.0% have been used for the development of the numerical design curve. 

The PL for 400mm high GRP columns having 0.5% curvature are 130 and 210kN for 

51 and 44mm box-sections respectively. From the FEA results for /). = 0.5%, the 

interaction coefficients (Fig 5.36(a) have been established as c = 0.95 for both 

sections. For the 400mm high GRP columns having imperfections /). = 1.0%, PL are 

120 and 210kN and interactions coefficients as 0.85 and 0.90 (Fig 5.36(b», for the 51 

and 44mm box-sections respectively. The numerical design curves for the real 

(imperfect) columns having imperfection equivalent to typically assumed initial 

central curvatures of 0.5 and 1.0% of the GRP heights, are given in Fig 5.37. The 

experimental curve (Fig 4.19) has also been include for comparison and limiting 'J..' 

to 2 to enlarge the area of interest. 

Fig 5.37 shows that by increasing imperfections, PL and column slenderness J.. 

reduces while loss of resistance increases due to interaction and the range of column 

heights subjected to interaction buckling. Design loads represented by the "imperfect 

m Moments of inertia 'I' of the two box-section have been calculated using the sectional dimensions 

(51x51x3.2 and 44x44 x6.Omm) and differ from those measured for average sections in § 4.4. 

However, measured properties (Ex.c and Gyz) have been used for the calculation of 'A' and Euler loads. 
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curves" with a 1.0% initial curvature are conservative as the experimental values are 

above these curves. The design loads are comparable to the experimental outcomes. 

Notably, the initial imperfection of 1.0% does not necessarily mean an initial mid­

height curvature of 1.0% of the GRP height in the physical columns. Rather, this 

imperfection is equivalent to any combination of out of straightness, cross-sectional 

variations, wall thickness variations or load eccentricities. Therefore the curves for the 

two box-sections corresponding to the initial imperfections of 1.0%, presented in Fig. 

5.38, have been recommended as the numerically developed design curves for the safe 

design columns made from GRP box-section profiles under investigation. 

These results establish that inclusion of imperfections (of appropriate intensity) is 

necessary for the development of a safe design curve (Fig. 5.38). Imperfections, 

typically in the form of initial curvature, can be included in the FE models of the 

composite columns to simulate the physical columns. Furthermore, fully nonlinear FE 

analyses are required to obtain a minimum PL to draw a safe and representative design 

curve. The accurate estimation of an interaction coefficient by plotting FEA failure 

loads is vital as it has a substantial effect on the load factor ki' for the calculation of 

design loads. 

5.9 EFFECTS OF HOLES 

Models have been developed with circular holes in one, two and all four side-walls of 

the box-section (Fig 5.39). Only slender columns i.e., 1000, 1500 and 2000mm high 

GRP columns (Leff 1055, 1555 and 2055) have been considered to investigate the 

effects of introducing openings for services or connections for example. The holes 

have been typically located at the columns mid-height expecting maximum lateral 

deflections and axial stresses at the buckling loads. The size of the holes are specified 

in terms of the dlw ratios where'd' is the diameter of the hole and 'w' is outer width 

of the cross-sections. The diameters of the holes in most FE models correspond to the 

hole-sizes actually employed in the experimental study. For example d/w ratios of 0.3, 

0.5 and 0.7 correspond to correspond to 15, 25 and 35mm diameter holes in 5lmm 

box-sections. Similarly d/w ratios of 0.32, 0.45 and 0.57 correspond to 14, 20 and 

25mm diameter holes made in the 44mm box-sections. The spacing (interval) between 

the holes is 20d for 1, 2, and 4 holes. The columns with 8 holes represent models 

having 4 holes, one in each side, but spacing between the holes is reduced to half i.e., 
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10d. Therefore columns with 8 holes have double the number of holes as compared 

with similar height columns with 4 holes. Columns have been analysed using simple 

supports and concentric loading and assuming no imperfections. Recognising the 

heights of the columns as slender, linear elastic (eigenvalue buckling) analysis has 

been performed. FEA solutions converged and all the models exhibited global 

buckling modes at failure. 

The failure loads for the columns of three GRP heights 1000, 1500, and 2055mm have 

presented in Tables 5.13-14 and are plotted for various hole-sizes in Figs. 5.40-43. 

Failure loads have been reduced with the introduction of holes. Generally the 

reduction is directly proportional to the size of holes and inversely proportional to the 

heights of the columns. The loss of resistance for 51mm box-sections (Fig 5.40), with 

1-4 holes for small holes (d/w ~ 0.3) is minimal (~5%), but increase tol5% for larger 

holes (d/w = 0.7). By reducing the spacing to 10d (8 holes), buckling loads decreased 

by more than 28%. 

Similar trends of loss in buckling stiffhess with holes have been exhibited by the 

44mm box-sections (Figs 5.42-5.43). However the reduction in the failure loads is 

less when compared to the 51mm box-section. This infers that thicker walls (webs) 

are less affected by the perforations. For smaller holes (d/w ~ 0.32) loss of stiffness is 

less than 5% and increases to 11 % for bigger holes for 1000mm high columns with 1-

4 holes. For columns with 8 holes (spacing =1 Od) the loss of stiffness is 17.5%. 

Comparing the loss of stiffhess due to the spacing between the holes, especially in the 

thin walled section, it is recommended that interval between the holes should be 

limited to 20d. 

Experimental loads for columns with similar holes have also been added to the Figs 

5.40-5.43, for comparison. Experimental loads are lower than predicted (Figs 5.40, 

5.42) with a greater loss of buckling load (Figs 5.42, 5.43). This is because: firstly, 

FEA loads are for perfect column overestimating the failure loads for physical 

columns; and secondly, the failure loads used for the calculation loss, for columns 

with loads for perfect columns are also higher than the experimental loads of columns 

without holes. 

The axial stresses around the holes (Figs. 5.44-5.46) are well within the ultimate 

compressive stresses, however the stress zones further spread in the case of bigger 
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holes. The stress distributions are symmetric outer side of the holes indicating 

uniform compression. 

5.10 CONCLUSIONS 

1. Linear elastic (Eigenvalue) analysis has successfully been used for the 

prediction of critical buckling loads of slender columns. In slender columns 

failure is due to bifurcation of the primary equilibrium path into a secondary 

(stable or unstable) path. Linear analysis is capable of predicting this 

bifurcation point and the critical load. At critical loads, slender columns 

deform into half sine wave (global buckling) of length equal to the effective 

length of the column. Buckling occurs within elastic limits without any failure 

or damage of the material (column recovers its shape if the load is removed). 

51mm and 44mm box-sections of the type analysed (and tested in chapter 4) 

are classified as slender for heights 655mm and 555mm, respectively, 

assuming simple end restraints. The predicted loads have been confirmed by 

both analytical (Euler including shear effects) and experimentally measured 

loads. The applicability and reliability of the linear analysis using actual 

orthotropic properties has been established for slender columns. 

2. For short columns, not exhibiting global buckling modes, linear buckling 

analyses are inappropriate. Reduction in the convergence norm to force 

"convergence", leads to the prediction of inaccurate and unreliable failure 

loads. If the solution fails to converge, a failure mode different to buckling 

may be implied (e.g. material crushing in short columns). In this case a 

nonlinear analysis should be undertaken. For the Slmm and 44mm box­

sections tested, column heights of less than 455mm are included in this 

category. 

3. Geometrically non-linear (Total Lagrangian) analysis has predicted local 

buckling in the 51mm box-section short columns. The side-walls (webs) show 

inward and outward deformations (sine-waves) along the length of columns. It 

is concluded that wave like formation starts at the mid-height and propagates 

towards ends giving rise to an odd number of half sine waves. The number of 

half sine waves in local buckling depends upon the height of the GRP 

specimen. If the column is high enough to accommodate an integer number of 
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waves, all waves are fully developed. Otherwise, the waves towards the 

supports are of reduced amplitude. The length of half sine-waves remained 

approximately constant at 62.5mm for various heights of short columns 

compared with an analytical value of 64.4mm. However, an experimental 

value is not available. 

4. The reliability of the numerical results obtained from a geometrically 

nonlinear analysis depends on the numerical convergence of the solution. 

Simulation models of 200 and 300mm GRP columns failed to converge and 

predicted incorrect and unreasonable buckling loads. For column heights of 

400mm and above, the analyses converged providing good estimates of failure 

loads. The stress contours plotted on the deformed shape provided an 

indication of the failure mode. At the wave crests, predicted stresses exceeded 

the physical material limits, implying that in physical tests bursting and tearing 

across the section would have occurred. The most developed half sine wave at 

the mid-height of the column initiated failure by bursting of the specimen in 

the experimental observations. 

5. Short columns failure loads, considering material nonlinearity, are lower than 

the geometrically nonlinear analyses. Plots of the stress contours just before 

the failure reveal that stresses (and strains) are within the limit of the defined 

nonlinearity. The strains (and hence the stresses) are high due to reduced 

elastic moduli beyond the elastic limit. It is after reaching the failure loads, 

strains (and hence stresses) increase rapidly and exceed the ultimate limits, 

implying bursting and tearing of the section. Nonlinear strains are only seen at 

the crests of local buckling waves and at column end under the steel plate 

subjected to high stresses. Conversely plots of the elastic strains show a 

uniform distribution along the length of the column. It is further concluded 

that nonlinear analyses in the short column range are needed to establish the 

local buckling mode, number of half sine waves, length of the half sine wave, 

and most importantly to predict PL for the construction of design curve. The 

half sine wave length predicted for the Stmm box-section (62.Smm) is 

comparable with the theoretically calculated value (64.4mm in § 4.4.2). Half 

sine wave length for 44mm box-section is not available as no local buckling 

was predicted for this section. PL for the S 1 and 44mm box-sections are 
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predicted as 135 and 210kN respectively in comparison to the 120 and 220kN 

established experimentally. The difference between the values can be 

attributed to the imperfections involved both in geometry and testing 

configurations. 

Critical buckling loads for the slender columns (of both sections) predicted 

from fully non-linear analyses are comparable to the linear elastic predictions. 

In slender columns the strains (and hence the stresses) were below the ultimate 

limits of the material and sections did not rupture. Furthermore, the failure 

loads for elastic and nonlinear analyses are similar because the material is not 

highly nonlinear. Infact, a pseudo type nonlinearity with minimal stress 

hardening has been assumed in the material properties. No nonlinear strains 

have been observed in the case of slender columns. Rather, elastic strains are 

uniformly distributed along the heights of slender columns. 

However, the fully-nonlinear (elastic degrading) predictions for the straight 

columns are higher than the experimental results. Introduction of the load 

eccentricity and initial curvature at mid-height as the sources of imperfection 

decreased the failure loads. The effect of initial curvature is more pronounced 

than load eccentricity. The failure loads considering eccentricity and curvature 

combined, are lower than the experimental loads. This demonstrates that 

accurate predictions using nonlinear analysis (particularly) for short columns, 

are possible provided that imperfections can be accurately estimated. 

Deformed geometries obtained by nonlinear analyses (both elastic and 

nonlinear) for the slender perfect columns (of both box-sections) fail to 

indicate global buckling. However, the buckling mode shapes are recovered by 

introducing imperfections in the form of initial curvature. This establishes that 

global buckling is initially induced by the presence of geometric 

imperfections. 

6. Buckling resistance IS sensitive to initial curvature (as a source of 

imperfection) and inversely proportional to the column height and the 

thickness of the section walls (webs). For the box-sections analysed, an initial 

curvature of 0.5% of GRP length can reduce critical buckling loads by 15% in 

short to 10% in long columns for 51mm box-section, and 12% in short and 7% 
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in long columns for the 44mm box-section. When combined, eccentricity and 

initial curvature induce substantial reductions in the load carrying capacities of 

the composite columns. 

7. The effects of in-plane shear stiffness are negligible in the slender columns of 

both box-sections. However, the effect of transverse shear modulus is 

significant particularly in short columns. For example, the buckling stiffness 

of 455mm high column can be reduced by 15% if the transverse shear 

modulus is decreased by 50%. 

8. A numerical "FEA design curve" has been plotted using predicted PL and 

ultimate failure loads for various heights of the both box-section perfect and 

imperfect columns. The ultimate failure loads for columns assumed as perfect 

overestimate the ultimate failure loads and not represent the real columns. 

Perfect columns do not exhibit interaction of modes, observed in the physical 

testing for a range of column heights between short and slender columns. FEA 

design curve corresponding to the imperfect columns can predict safe buckling 

loads. The predicted FEA loads using fully non-linear analyses have 

successfully been used for the development of the design curve yielding 

design loads for all the practical heights of both the 51 and 44mm box-section 

columns. Imperfections in the FEA models can typically be included in the 

form of initial curvature representing accumulation of all kinds of physical 

imperfections. Interaction coefficient 'c' representing the interaction between 

the isolated buckling modes and reducing the column stiffness, mainly 

depends upon length of the column, minimum column load PL and the cross­

section. Choosing a suitable single interaction constant can aggregate design 

curves for various box-section profiles. Recommended design curves to the 

tested box-sections are given in Fig.5.38. 

9. Circular holes can be formed (drilled) in the sidewalls (webs) of the GRP box­

section profiles without loosing considerable loss of stiffness (loss ~ 5%), if 

the size of the holes is kept small (d/w ~ 0.3). However, for bigger holes the 

loss in the stiffness can reduce considerably (up to 25%). An interval (spacing) 

between the consecutive holes, equal to 20 times the diameter of the hole, has 

been recommended limiting the maximum loss of buckling stiffness lower 

than 15%. 
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5.11 RECOMMENDATIONS RELATED TO THE USE OF FEA 

AND THE INTERPRETATION OF NUMERICAL SOLUTIONS. 

The finite element method has been successively used for the prediction of ultimate 

failure loads of composite columns of various heights. The predicted loads, when 

compared with experimentally measured and analytical calculated failure loads, have 

shown a reasonable correlation. The predicted loads have also been used for the 

development of FEA design curves for the GRP two box-sections. For the efficient 

performance of the FEA procedures and to obtain accurate results, the following 

recommendations are made. 

Appropriate finite element models, representing the true geometrical configuration of 

the structure (concentric columns in this study) are developed. Boundary conditions 

i.e., external supports applied to the FE modes should simulate the restraints applied 

by the actual physical supports to the structures. The expected behaviour of the 

physical structure under the applied load can provide the guidance in providing extra 

restraints and the location and type of load in the FE model. The type, order, shape 

and degrees of freedom for finite elements used for discretisation of the structure 

should be decided considering the nature of deformations exhibited by the physical 

structure. The type of analyses may also depend upon the required results. For 

example, linear analysis is needed if the deformations are small and do not alter the 

boundary or loading conditions during the analysis. Or eigenvalue buckling analysis is 

performed when linear stability formulations are applicable. Similarly a full nonlinear 

analysis is performed when both geometry and material undergo changes as the load 

increases. Preliminary analysis with coarse mesh may be performed to establish the 

proper working of the analyses and resulting behaviour of the structures. Once the 

finite elements modelling the structure, boundary and loading conditions and type of 

analysis is established, mesh may be refined to increase the accuracy of the 

predictions. 

After preparing the numerical models of vertically oriented, simply supported, and 

concentrically loaded straight GRP columns, FEA analyses are performed for the 

predictions of failure loads. For this, the following rules are recommended: 

A linear elastic (eigenvalue analysis) should be performed initially to infer the nature 

of the failure mode of a column. If the deformed shape indicates Euler (global) 
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buckling, the column height is grouped as slender and the eigenvalue load taken as the 

critical buckling load. If the solution fails to converge or converges without indicating 

any failure mode, a nonlinear may be perfonned to find out the type of buckling. 

If a geometrically nonlinear analysis indicates local web-buckling and the number of 

developed half sine waves is more than four and the peak stresses and peak stresses 

are lower than the material strength, then the predicted loads should be taken as the 

ultimate failure loads for the corresponding heights. However, the quality of the 

prediction of these loads may further be improved by perfonning a fully nonlinear 

analysis, especially if the material exhibits any nonlinearity at higher stresses. A fully 

non-linear analysis is essential if the peak stresses exceed the material capacity. Fully 

nonlinear analyses may also improve the prediction of failure loads for slender 

columns, but the difference decreases with the height of the column. To simulate the 

real columns, initial imperfections can be introduced in the fonn of wall thickness 

variation, load eccentricity, out of straightness or a combination of these 

imperfections. These rules are also applicable for the prediction of failure loads of the 

columns with circular holes in the webs. 

FEA design curve developed using the FEA predicted loads for perfect columns, 

overestimates the design loads. To simulate the buckling of real columns, 

imperfection in the form of initial curvature has been included. The intensity of the 

initial imperfections may be decided by the ultimate loads when compared with the 

experimental results. The FEA design curve for the imperfect columns successfully 

indicates local, interaction and global buckling characteristic of the actual column 

behaviour for different heights. This establish that Design curve for the two box­

section profiles may be developed using fully nonlinear numerical analyses of 

imperfect columns. The procedure can be used to develop design curves for other 

GRP box-sections, if the accurate mechanical properties and initial imperfections can 

be estimated. 
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Fig 5.1 A typical 3-dimensional finite element model of composite column fixed 
with steel plates at both ends; (a) lower steel plate presented by 12 volumes, (b) 

GRP thin wall section presented by 8 volumes, (c) upper steel plate presented by 
12 volumes and (d) three dimensional configuration of the model. 
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Steel Plate 

GRP Specimen --+ 
Details at A 

Steel Plate 
Details at B 

(a) (b) 

Fig. 5.2 F.E model of box-section column, (a) showing regular mesh, supports 
and loading (b) simple supports assigned to the central line of lower and upper 

steel plates to form knife-edge supports and axial compressive loading. 

(a) (b) 

Fig 5.3 Fixed supports (green) assigned to (a) lower and (b) upper, steel plates. 
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(a) (b) (c) (d) 

Fig 5.4 Buckled shapes of lOOOmm high 51mm box-section having different 
supports (a) simple-simple, (b) fixed-simple, (c) fixed-fixed and (d) fixed-free. 

(a) (b) (c) (d) 

Fig 5.5 Buckled shapes of lOOOmm high 44mm box-section having different 
supports (a) simple-simple, (b) fixed-simple, (c) fixed-fixed and (d) fixed-free. 
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L eff = 655mm L eff = 805mm L erf = 1055mm L eff = 1555mm L efr = 2055mm 

I 

-L eff = 255mm L eff = 355mm L eff = 455mm L eff = 555mm 

Fig 5.6 Linear elastic (Eigenvalue) buckling of the 51 x51x3.2mm box-sections. 
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Leff = 255mm Lefr = 355mm Lerr = 455mm Lerr = 555mm 

Lefr = 655mm Lerr = 805mm Leff = l055mm Lerr =1555mm Leff = 555mm 

Fig 5.7 Linear elastic (Eigenvalue) buckling of the 44x44x6.0mm box-sections 
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Leff= 255mm Leff=355mm 

Fig 5.8 Linear alastic (Eigenvalue) buckling in 51mm box-sections failed to 
converge 
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Fig 5.9 Deformed shape and axial stress contours of 655mm high 51mm box­
section (geometrically non linear analysis). 
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Fig 5.10 Deformed shape and axial stress contours of (a) 805mm and (b) 
1055mm high 5lmm box-section columns (geometrically non linear analysis). 

(a) 

5T RE 55 
CONT OURS OF SY 

-0.5797E · 01 
- O. ~~91E' 01 
-0 .~ 16'E · 0 1 
-0 .' 87BE·0 1 
- O. S572E ' 01 
-o. S 26SE' 01 
- O. ~9 59E ' 01 
- O_9653E'01 
- O. 33t6E · Dl 
- a . 3D40E · Dl 
- a . 7731.E · 01 
- a . 7L:laE· 01 
-D . 71:l 1E·Dl 
- D. lalSE · 01 
- D. IS0IlE' 01 
-a . t102E · Dl 
- a. 9Q50E · 02 
- a. ~8g7E ' 02 
- a . 7B3l.E · 02 

O. naSE · OJ 
D. 3292E' 02 
0.6355E·02 
0.9.1.1BE·07 
0.124BE·01 

5T RE 55 
CO NT OURS OF 5Y 

(b) 

- 0.3565E · 01 
-0 . 3376E · 01 
-0.3 16BE·01 
- 0. 3000E · 01 
-0.1B l1 E· 01 
- 0.%23E · 01 
-0.1£'l5E· 0 1 
-0. 12'6E ' 01 
-0.10SSE·Ol 
- D. l B70E · 01 
- a .16B1E·01 
- a . lL Q3E · 01 
-D . 130LE·01 
-a . l11 tlE·Dl 
- a . g777E·02 
- a . 73Q3E · 02 
- a . ~~DIlE·D2 

- a . 3676E · 02 
-a. t 7 4 2E . 02 

O. 1~ t 7E ' OJ 
O. 7025E' 02 
O. 3909E ' 02 
O. 5793E' 02 
O. 7676E · 02 

Fig 5.11 Deformed shape and axial stress contours of (a) 1555mm and (b) 
2055mm high 5lmm box-section columns (geometrically non linear analysis). 
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Fig 5.12 Deformed shape of 255mm high 51mm box-section column showing 
local buckling (geometrically non-linear) and contours of axial stress. 
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Fig 5.13 Deformed shapes of 355mm high 51mm box-section column showing 
local buckling (geometrically non-linear) and contours of axial stress. 
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Fig 5.14 Deformed shapes and stress contours showing local buckling in 455mm 
high 51mm box-section (geometrically non-linear). 5 half sine waves are visible. 
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Fig 5.16 Deformed shapes and stress contours of (a) 455mm and (b) 555mm high 
44mm box-section columns, obtained by nonlinear analysis. 

51 RE 5S 
5Y sy 

- O. 5907 - 0 . ' 166 
-0.5592 - 0 .311" 
- 0.5277 - 0 . 3722 
- O. '962 -0 . '3500 
- 0./6'8 - 0. '3276 
- O. /'33'3 - 0 . 30~5 
- O. jO l 8 - 0 . 1833 
- O. 970'3 - 0 .16 11 
- 0. nBS - O. 2'3BII 
- 0 . 30?3 - 0 . 2 167 
- 0 . 77~8 - 0 . 1I1 t '5 
- 0 . 7''' - 0 . 172'3 
- 0 .7179 -0 . 1'5 01 
- O. 181t - 0 . 1779 
- C. l,gg - 0 . 1057 
- 0 . 1 1B' - 0.63 '5E · 01 
- C. B6g3E · 01 - 0.61 14E · 01 
-0 . S'5"E'OI - 0.3903E· 01 
-0 . 7'396E · 01 - 0 . 16B2E· 01 

0.7'53OE · 01 O. ~ '390E ' 01 

v 0.3901E · 01 y O. 2760E · 01 

l6 0.7050E · 01 ~ 
O. ' II B1E ' 01 

0.1010 O. 72 02E· 01 

0.1335 0 . lIl23E· 01 

(a) (b) 

Fig 5.17 Deformed shapes and stress contours of (a) 655mm and (b) 805mm high 
44mm box-section columns, obtained by nonlinear analysis. 
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high 44mm box-section specimens, obtained by nonlinear analysis. 
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Fig 5.19 Deformed shapes and stress contours of (a) 255mm and (b) 355mm high 
44mm box-section specimens, obtained by nonlinear analysis. 
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Fig. 5.24 Global buckling in (a) 10550101 (b) 15550101 and (c) 20550101 high 

nonlinear (Hoffman) models of 510101 box-section 
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(a) (b) (c) 

Fig 5.28, (a) Deformed shape of 400mm GRP, 51mm box section showing local 

buckling, (b) distribution of elastic and (c) nonlinear strains. 
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Fig 5.29 Measured dimensions for 400mm high 51mm GRP specimen. 
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Fig. 5.39 Typical FE models of columns with holes (dlw = 0.3, 0.5 and 0.7); 

(a) bole in one side, (b) boles in two sides and (c) holes in four sides. 
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Table 5.1 Effect of boundary conditions on the critical buckling loads. 

Column size and Boundary conditions 

length Simple-simple Fix-simple Fix-fix Fix-free 

(51 x51 x3.2mm) 59.3 121 241 15.2 

1000mm 

(44x44x6.0mm) 64.1 130 259 16.2 

1000mm 
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Table 5.2 Linear elastic (eigenvalue) analysis results of 51 x51x3.2mm section. 

Length (mm) Eigenvalue Load Failure Mode 

255 18¢§§ Solution not converged (no buckling) 

355 171 Solution not converged (no buckling) 

455 166 Solution not converged (no buckling) 

555 192 Solution not converged (no buckling) 

655 143 Global buckling 

805 98.4 Global buckling 

1055 59.3 Global buckling 

1555 28.1 Global buckling 

2055 16.2 Global buckling 

Table 5.3 Linear elastic (eigenvalue) analysis results of 44x44x6.0 section. 

Length (mm) Eigenvalue Load Failure Mode 

255 79(1§§ Solution not converged 

355 471 Solution not converged 

455 308 Global buckling 

555 216 Global buckling 

655 159 Global buckling 

805 108 Global buckling 

1055 64.1 Global buckling 

1555 30.0 Global buckling 

2055 17.3 Global buckling 

§§§ The values in italics are non-converged solutions. 
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Table 5.4 Geometrically non-linear analysis results of 51 x51 x3.2mm section. 

Length (mm) Failure Load Failure Mode 

255 274*··· Local buckling with 3 half sine waves 

355 211 Local buckling with 5 half sine waves 

455 155 Local buckling with 5 half sine waves 

555 150 Local buckling with 7 half sine waves 

655 143 Axial shortening, no buckling 

805 97.0 Axial shortening, no buckling 

1055 58.6 Axial shortening, no buckling 

1555 27.9 Axial shortening, no buckling 

2055 16.2 Axial shortening, no buckling 

Table 5.5 Geometrically non-linear analysis results of 44x44x6.0mm section. 

Length (mm) Failure Load Failure Mode 

255 774*··· Axial shortening, no buckling 

355 465 Axial shortening, no buckling 

455 305 Axial shortening, no buckling 

555 216 Axial shortening, no buckling 

655 158 Axial shortening, no buckling 

805 107 Axial shortening, no buckling 

1055 62.5 Axial shortening, no buckling 

1555 29.5 Axial shortening, no buckling 

2055 17.2 Axial shortening, no buckling 

•••• The values in italics are non-converged results. 
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Table 5.6a Elastic degraded gradients for transverse tension test (51 mm and 

44mm box-sections). 

Degraded Total strain 't' Stress/Strain Effective 

modulus Ed gradient, C nonlinear strain 

(kN/mm2
) (pseudo modulus) limit, L 

(kN/mm2) 

7.2 0.0035 27.8 0.00026 

5.8 0.0045 14.4 0.00066 

4.5 0.0053 8.4 0.00109 

Table S.6b Elastic degrated gradients for longitudinal compression test (51 mm 

box-section). 

Degraded Total strain 't' Stress/Strain Effective 

modulus Ed gradient, C nonlinear strain 

(kN/mm2
) (pseudo modulus) limit, L 

(kN/mm2
) 

27.5 0.009 370 0.000148 

27.0 0.011 296 0.00033 

25.9 0.0138 203 0.00068 

Table 5.6c Elastic degraded gradients for longitudinal compression test (44mm 

box-section). 

Degraded Total strain 't' Stress/Strain Effective 

modulus Ed gradient, C nonlinear strain 

(kN/mm2
) (pseudo modulus) limit, L 

(kN/mm2
) 

33.0 0.01 7648 0.000013 

32.7 0.013 2289 0.0001 

32.6 0.0159 2151 0.001 
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Table 5.7 Fully Nonlinear (Hoffman analysis results of51x51x3.2mm section. 

Length Failure load Failure Modes I comments 

(mm) (Straight column) 

(kN) 

255 188TTTT Local buckling with 3 half sine waves. 

355 157 Local buckling with 5 half sine waves. 

455 139 Local buckling with 5 half sine waves. 

555 137 Local buckling with 7 half sine waves. 

655 134 Global buckling with initial imperfections. 

S05 96.2 Global buckling with initial imperfections. 

1055 58.5 Global buckling with initial imperfections. 

1555 27.9 Global buckling with initial imperfections. 

2055 16.2 Global buckling with initial imperfections. 

Table 5.S Initial imperfections effecting the Per of 400mm high 51mm section. 

Load Pcr for options (kN) 

eccentricity 

(mm) 
4 1+4 2+4 3+4 

0 139 138 135 135 

0.25 134 134 132 134 

0.5 138 137 131 130 

1.0 136 135 126 125 

1.5 134 133 124 122 

2.0 130 129 124 117 

tttt The values in italics are non-converged solutions. 

302 



Table 5.9 Nonlinear (Hoffman) analysis results of 44x44x6.0 section. 

Leff Failure load Failure modes / comments 

(mm) (Straight column) 

(kN) 

255 453nn Axial shortening, no buckling 

355 446 Axial shortening, no buckling 

455 305 Axial shortening, no buckling in straight columns. 

Global buckling with initial imperfections. 

555 214 Axial shortening, no buckling in straight columns. 

Global buckling with initial imperfections. 

655 158 Axial shortening, no buckling in straight columns. 

Global buckling with initial imperfections. 

805 105 Axial shortening, no buckling in straight columns. 

Global buckling with initial imperfections. 

1055 62.1 Axial shortening, no buckling in straight columns. 

Global buckling with initial imperfections. 

1555 29.2 Axial shortening, no buckling in straight columns. 

Global buckling with initial imperfections. 

2055 17.1 Axial shortening, no buckling in straight columns. 

Global buckling with initial imperfections. 

UH The values in italics are non-converged solutions. 
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Table 5.10 Failure loads (comparison) for 51x51x3.2 mm box-section columns. 

Effective Numerical (kN) Theoretical (kN) Experi- I 

Length 
Linear Nonlinear Nonlinear Euler & Strongwell 

mental §§§§ 

(mm) (perfect) (geometric) (geometric+material) EDe (crushing strength) (kN) 

(perfect) (including 
Perfect Imperfect EL,c EL,c 

shear 
Measured FibreForce 

do=0.5% do=1.0% effects) 

255 189 274 188 185 134 570 120 66.1 121 

355 171 211 157 151 123 381 (236) (127) 118 

455 166 155 139 131 123 264 117 

555 192 150 137 129 101 191 108 

655 143 143 134 129 91.2 144 257 146 -
805 98.4 97.0 96.2 91 69.23 99.2 196 112 97.1 

1055 59.3 58.6 58.5 51.1 46.2 59.8 138 78.6 59.1 

1555 28.1 27.9 27.9 25.1 23.4 28.3 83.4 47.5 27.6 

2055 16.2 16.2 16.2 15.0 14.1 16.4 58.0 33.1 15.7 
-- --

§§§§ Average of three tested columns 

••••• The values in italics are non-converged solutions. 
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Table 5.11 Failure loads (comparison) for 44x44x6.0 mm box-section columns. 

Effective Numerical (kN) Theoretical (kN) Experi-

Length Linear Nonlinear Nonlinear Euler & Strongwell 
mentalttttt 

(mm) (perfect) (geometric) (geometric+material) EDe (crushing strength) (kN) 

(perfect) (including 
I 

Perfect Imperfect EL,c EL,c 
shear 

Measured FibreForce 
[\=0.50/0 [\=1.0% effects) 

255 790+++++ 774 453 350 220 696 381 204 220 

355 471 465 446 350 220 442 (477) (189) 218 

455 308 305 305 215 210 298 464 248 209 

555 216 216 214 190 137 211 358 192 195 

655 159 158 158 144 128 157 289 155 -
805 108 107 105 96.3 90.6 107 221 118 98.4 

1055 64.1 62.5 62.1 57.4 56.1 64 155 83.3 59.3 

1555 30.0 29.5 29.2 27.9 26.5 30.0 93.9 50.3 27.3 

2055 17.3 17.2 17.1 16.3 14.6 17.3 65.4 35 15.7 
~~-

ttttt Average of three tested columns. 

:!!!: The values in italics are non-eonverged solutions. 
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Table 5.12 Effects of holes on the buckling loads of 51mm box-section profiles. 

d/w L GRP Pcr (kN) 

(mm) No Holes 1 Hole 2 Holes 4 Holes 8 Holes 

0.3 1000 59.3 57.9 56.5 55.2 54 

1500 28.1 27.5 27.2 26.8 26.2 

2000 16.2 16.0 15.7 15.4 15.3 

0.5 1000 59.3 56.1 54.3 52.2 49.8 

1500 28.1 27.1 26.6 25.7 24.6 

2000 16.2 15.8 15.4 14.9 14.4 

0.7 1000 59.3 53.7 51.1 48.5 42.6 

1500 28.1 26.4 25.6 23.9 22.1 

2000 16.2 15.4 14.9 13.9 12.9 

Table 5.13 Effects of holes on the buckling loads of 44mm box-section profiles. 

d/w LGRP Pcr (kN) 

(mm) No Holes 1 Hole 2 Holes 4 Holes 8 Holes 

0.32 1000 64.1 62.8 62.6 61.6 60.6 

1500 30.0 29.5 29.3 28.9 28.5 

2000 17.3 17.0 16.8 16.7 16.3 

0.46 1000 64.1 61.8 61.0 59.5 57.4 

1500 30.0 29.1 28.6 27.8 27.1 

2000 17.3 16.8 16.6 16.1 15.7 

0.57 1000 64.1 60.5 59.1 56.8 52.9 

1500 30.0 28.5 27.5 26.5 25.1 

2000 17.3 16.6 16.0 15.0 14.4 

306 



CHAPTER 6 

CONCLUSIONS AND FUTURE SUGGESTIONS 

6.1 GENERAL OVERVIEW 

Buckling is the most common failure mode associated with compression members 

having thin walled cross-sections. This has been further emphasised for the GRP 

structural profiles comprising thin composite walls and lower stiffness constants. The 

design guidance presently available mainly consists of classical solutions for steel 

profiles (plates and columns) or empirical equations derived from limited 

experimental studies on individual profiles conducted by manufacturers. The need to 

establish effective methods of analysis for the prediction of safe buckling loads for 

these profiles has been recognised. Potential advantages of using finite element 

analyses for the prediction of ultimate failurelbuckling loads, of GPR box-section 

columns, for the development of appropriate design curves have been investigated in 

this study. The numerical predictions have been validated by comparison with 

experimental evidence. 

Two GRP box-section profiles having cross-sections 51x51x3.2 and 44x44x6.0mm 

have been investigated to determine the buckling and the ultimate failure loads for 

various column heights. The investigations comprise experimental and numerical 

studies. In the experimental phase, three specimen of each height of the two box­

sections have been tested to measure the failure loads. The failure modes and material 

behaviour at failure have been observed. In the numerical phase, finite element 

models of simply supported and axially compressed composite columns have been 

analysed for the ultimate loads and the respective failure modes. Both linear and 

nonlinear analyses have been considered to investigate the failure behaviour, 

witnessed in the experimental observations. Numerical analyses have been used for 

parametric studies to establish the effects on the ultimate loads of various factors e.g., 

different boundary conditions, material orthotropy, load eccentricities, initial 

curvature and making holes through the walls of the profiles. 

For use in the numerical analysis, the material properties of the GRP profiles have 

been determined. The micromechanics approach, in conjugation with the classical 
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lamination theory, has been used to calculate the theoretical properties of the GRP 

material (Ex, Ey , Vxy and Gxy) from the properties of the constituent materials and their 

configuration. In-plane shear properties have been measured experimentally, testing 

the material coupons obtained from the two profiles. A simple AFPB fixture for the 

testing of shear coupons have been proposed, validated using FE analysis, fabricated 

and subsequently used for the measurement of shear properties. To meet dimensional 

constraints, shorter coupon and AFPB fixture have been proposed, validated and used 

for the determination of shear properties. 

The investigations undertaken in this study can be divided into following thematic 

sections: 

• Determination of the material properties using analytical and experimental 

methods. 

• Experimental testing of simply supported and axially loaded GRP specimens 

(columns) of various heights, for the measurement of the buckling/ultimate 

loads. 

• Numerical prediction of the ultimate loads and failure modes using finite 

element analyses. 

• Development of a universal design equation for the prediction of safe buckling 

loads for the two box-section profiles. 

6.2 CONCLUSION 

6.2.1 MATERIAL PROPERTIES 

Material properties of the two GRP box-sections profiles, in the longitudinal and 

transverse directions, have been established using analytical and experimental 

methods. Analytically, four orthotropic material constants (Ex, Ey, Gxy, and vxy) have 

been estimated using micromechanics and classical lamination theory (CLT). 

Experimentally, coupons (specimens) extracted from the sides of GRP box-sections 

have been tested in the laboratory to measure these properties. Estimated (analytical) 

properties has been used in the (FE) analyses of standard and short shear coupons 

(Chapter 3) whilst measured (experimental) outcomes are used in the numerical 
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representations of GRP columns for the prediction of buckling loads and modes 

(Chapter 5). 

In-plane shear properties have been measured using V-notched beam method (ASTM­

D5379M-93). Shear coupons of standard length (76mm) have been extracted, from 

the walls of the box-sections, in the longitudinal direction. A short shear coupon 

(40mm) has been proposed for extraction from the webs in the width-wise 

(transverse) direction (one of the box-sections is only 44mm wide). The potential 

performance of the short shear coupon has been investigated numerically using finite 

element (FE) method. Representative FE models of standard ASTM and short shear 

coupons have been developed. Numerical representation of the standard ASTM 

coupon has been validated by the FE analyses enforcing a selection criterion, set as 

the lowest divergent strain field across the centre of the coupon. Numerically 

validated ASTM shear coupon provides a bench mark against which the performance 

of the short coupon has been measured. An insight into the performance of the short 

coupon has been gained by investigating the effects of geometric parameters including 

width, thickness, notch-depth and interval between the loading points. Addition of the 

aluminium tabs in the FE models of short transverse coupons, to avoid local failure 

under the loading bars and to achieve a true shear failure at the centre has also been 

validated for adequate performance. FE models of the proposed AFPB (asymmetric 

four point bending) test fixtures for the ASTM and short coupons have been 

developed and analysed prior to fabrication. FE presentations of the shear coupons 

(ASTM and short) without and with AFPB test fixtures have been used to establish 

and validate the performance of these fixtures under the applied loads. 

In-plane shear properties have been measured experimentally using ASTM and short 

shear coupons extracted from both box-profiles. Short coupons with the main 

reinforcement perpendicular to the notch tips gave consistent and similar results to the 

ASTM outcomes, validating the performance of short shear coupon for the 

measurement of in-plane shear properties. Aluminium tabs have been bonded to the 

short shear coupons with main reinforcement parallel to the notch tips. 

The following principal conclusions have been drawn: 

• Material properties of the composite GRP materials can be effectively 

predicted theoretically, from the properties of the constituent materials and the 
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constitutive information (manufacturer supplied), usmg principals of 

micromechanics and c1assicallamination theory (eLT). Material properties of 

the two GRP box-sections, to be used in the numerical analyses, have been 

theoretically predicted. 

• Experimentally, material coupons (specimens) extracted from the composite 

walls ofthe profiles can be physically tested to confinn these properties and to 

validate the theoretical procedure. 

• Finite element analyses have been successfully used to investigate the 

performance and behaviour of material coupons when subjected to shear 

loading. FE models of both ASTM standard and short shear coupons without 

and with test fixtures have been analysed to check their perfonnance under the 

applied loads. The performance of the coupons has been judged by the quality 

of shear strain and stress distributions across the central section (between the 

notches). 

• Surface models using plane stress elements can represent thick prismatic 

coupon and fixture components. This is validated through the comparison of 

the FEA results of 2D and 3D coupon models 

• It has been established numerically that the schematic loading of the ASTM 

and short coupons produce no bending moment at the centre. The loads 

applied by the upper loading bars and the reactions in the lower loading bars 

produce equal and opposite couples cancelling each other at the centre. 

• Numerically predicted shear force resultant (and hence the shear stress) across 

the central test section of the ASTM coupon, loaded in the AFPB fixture, is 

identical to the theoretical calculations using the schematic shear force 

diagram given in the ASTM standard, validating the adequacy of the fixture. 

However, in the case of short shear coupon, the numerical shear force resultant 

is 7.5% less than the theoretical value obtained using shear force diagram. 

This decrease in the applied shear force has been attributed to the slight 

bending of the top loading beam in the short AFPB fixture, changing the force 

distribution across the contact area between loading bars and coupon, from 

uniform to triangular. Resultants, however, remained equal and opposite and 

no bending effects at central section are induced. This implies that the 
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resultant shear force applied at the central test section of a different (non­

standard) coupon, loaded by an AFPB fixture, can be predicted using finite 

element analyses. This maintains the validity and capability of the short 

coupon and fixture to be used for measuring the in-plane shear properties in 

directions where material for the standard ASTM coupon is not available due 

to dimensional constraints. 

• Most importantly, the AFPB shear fixture reduced the high compressive 

stresses under the load application points. For example, in the case of the 

ASTM coupon subjected to standard loading, the strain intensity under the 

inner loading point is 1.8 times the unifonn shear strain at centre and can 

cause premature failure of the coupon under the point loads. This strain 

intensity reduces to half the value of the uniform central shear stress, when 

ASTM coupon is loaded using AFPB shear fixture, ensuring coupon failure at 

central test section at the ultimate shear stress. This demonstrates the adequate 

perfonnance ofthe shear coupon and test fixture. 

• Finite element analyses have been successively used for the parametric study 

of the behaviour of the coupons. FE analyses of short coupon (when assumed 

as isotropic) loaded in fixture established that 90° notches produced the lowest 

deviation of the numerical shear strain distribution across the central test 

section from the uniform theoretical. Furthermore, a notch depth of 20 to 25% 

of the coupon depth produces the numerical shear stress nearest to the 

theoretical value. 

• Material orthotropy, causing strain concentrations at notch roots, have been 

recognised as the most adverse parameter effecting the magnitUde and quality 

of the shear strain distribution at the central section of the coupon. The effect 

is more pronounced in transverse coupons. According to the present numerical 

outcomes, an orthotropy of 1:3 causes 13% and 44% higher strain 

concentrations at notch roots than at centre, in the longitudinal and transverse 

coupons respectively. Whereas an orthotropy of 1:6 produces 60 and 100% 

higher strain concentrations at notch roots in the longitudinal and transverse 

coupons. 
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• Separation between the loading points has been predicted not to effect the 

shear strain distribution. 

• The short shear coupon, 40x IOmm rectangular with 90° v-notches at mid­

length of the long sides, notch depth of 2.Smm (25% of overall depth) has 

been recommended in the light of numerical and experimental results 

presented. 

6.2.2 EXPERIMENTAL INVESTIGATIONS 

Columns of various heights ranging from 200 to 2000mm, extracted from the two 

GRP box-section profiles have been tested for ultimate load capacities and failure 

modes. Three specimens for each column height have been tested. All the specimens 

are simply supported and concentrically loaded in a vertically aligned testing rig. 

Specimen ends have been squared and the cross-sectional dimensions measured to 

establish the imperfections, with the sections held in place by steel shoes and aligned 

vertically using survey techniques. 

Experimental data has been recorded at regular intervals (every 2 seconds) during a 

specified test time (10 minutes) by a data-logger, giving applied load, axial 

shortening, 3 lateral deflections (mid and quarter heights), axial strains (on four sides 

at mid height) and the ultimate failure loads. Columns exhibiting global buckling e.g., 

1000mm and above for Slmm box-section and 750mm and above for 44mm box­

section profiles are categorised as slender columns. Global buckling occurred without 

material failure and the lateral deflections were restricted to 1.0% of the column 

height. The Southwell method has been used to establish the critical buckling loads 

for the slender columns without imperfections. The slender columns have been 

retested after rotating about the longitudinal axis of symmetry and lengthwise by 

180°. Short columns of Slmm box-section, however, exhibited negligible transverse 

deflections, before an abrupt and irreversible failure, eliminating any possibility of 

retesting the specimens or the use of Southwell method. The short 44mm box-section 

columns failed by material degradation at the both ends under the high compressive 

stresses at the ultimate loads. The maximum short column loads 'PL' for the two box­

sections have been established from the experimental ultimate loads. 

The experimental outcomes have been initially compared with the theoretically 

predicted results using classical approaches and the design guidance from Eurocomp 
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design code and the manufacture's design manuals. A unified design curve for the two 

box-sections has been produced using experimental and analytical results. 

Circular holes have been drilled through the walls of the box-section columns and 

retested to establish the effects of perforations on the critical buckling loads of slender 

columns. Three sizes of holes with d/w ratios of 0.3, 0.5 and 0.7 for 51mm and 0.32, 

0.46 and 0.57 for the 44mm box-sections have been considered. 

The main conclusions of the experimental study are: 

• Using the cross-sectional measurements (outer widths and wall thickness) at 

the two column ends, mean cross-sections have been established. The 

variations in the measurements are within ±0.25mm from the mean 

dimensions, Le., with in the standard tolerance (ASTM 3917-94). Mean cross­

section has been used for the calculation of cross-sectional area and moment 

of area in the subsequent calculations of stresses, strains and analytical critical 

buckling loads. 

• Ultimate failurefbuckling loads of composite columns depend upon their 

heights, material properties and the cross-section dimensions. These factors 

have been combined into one characteristic parameter 'A', the slenderness 

ratio. As the latter two factors are constant for a particular box-section profile, 

the ultimate loads and failure modes depend upon column heights. 

• The 51mm box-section columns of GRP height 1000mm and above buckled 

globally and categorised as slender columns. The 44mm box-section columns 

of GRP height 750 and above exhibited global buckling and grouped as 

slender columns. Slender columns buckled in a half sine wave with maximum 

deflections at mid sections. The measured lateral deflection at mid and quarter 

heights confirmed the deflected shape as half sine wave of the order of the 

effective column length. 

• Slender columns buckled without material failure and regained their straight 

configuration on unloading establishing that global buckling occurred in the 

elastic range of material. Specimens retained there stiffuess after failure whilst 

the lateral deflections increased continuously without further increase in 

applied load. However, the columns unloaded after lateral deflection reached 

1 % of the GRP length, to avoid material damage. The stress-strain plots 
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confinn the linear elastic buckling of the slender columns. The Southwell 

method adequately predicted the Euler buckling load for slender columns. 

• Short 51 mm box-section columns failed by tearing of the joints and breaking 

of webs. Deformed geometries indicated that local buckling was initiated 

initially at mid height followed by excessive defonnations leading to a 

catastrophic tearing failure of the specimen. The phenomenon has been 

reported previously in the literature and is dependent on the ratio of web 

thickness to its width. The failure loads for the short specimens range from 

110 to 123kN with a difference of -8.2 to +2.1 % from the implied PL whilst 

these loads are nearly half of the crushing strength (242kN) of this section. 

However, experimental loads are comparable to the analytical predictions 

(126kN) calculated using EDC design equation (taking safety factor 1 for 

comparison). Closed fonn expressions using linear elastic theory predict a 

range of critical buckling loads from 80.3 to 252kN for simply supported and 

fixed long edges. Experimental loads fall with in this range, establishing 

intennediate torsional stiffuess of interface between elastic and fully rigid for 

the pultruded profiles. It further demonstrates that EDC equation accounts for 

the interface stiffuess. Experimental failure loads for short column further 

demonstrate that PL is independent of the column heights in the short range. 

• Short 44mm box-section columns did not exhibited local buckling or tearing 

of the webs, but failed by material crushing at the ends. Stress-strain plots 

confinned that material behaved linearly prior to the failure followed by 

nonlinearity at failure. The failure loads for these specimens range from 202 to 

226kN with a difference of -8.1 to 2.9% from the implied PL of 220kN. 

However, the ultimate failure loads are nearly half (44 to 49%) of the crushing 

strength of the material (461kN). 

• Mode interaction has been observed in the box columns of intermediate 

heights of both the sections. The 750mm high Slmm box-section columns 

initially exhibited global buckling with lateral deflections at mid-height, but 

later failed by tearing of material under local compression on the concave side , 

demonstrating interaction of global and local modes exhibited by the slender 

and short columns of 5lmm box-sections. Similarly 500mm high 44mm box­

section columns initially developed global buckling, but later failed by 
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material degradation at the ends, establishing interaction of the two modes 

exhibited by slender and short 44mm box-section columns. 

• The loss in the buckling resistance is minimal (~ 10.0%) for smaller circular 

holes (d/w ~ 0.3), provided the interval between holes is not less than 20 times 

the diameter of the holes. For bigger holes (dlw = 0.7) and an inter hole 

spacing of 10 times the diameter, a loss of 30% have been measured. 

6.2.3 NUMERICAL INVESTIGATIONS 

Ultimate loads and failure modes for the columns of two box-section profiles have 

been predicted numerically using the finite element method (FEA). The method 

comprises the formation of models simulating the columns physically tested in the 

experimental study, and analysing them under the action of applied loads and 

boundary conditions. Both linear and nonlinear analyses have been included to 

establish the effects of geometrical and material nonlinearities on the failure modes. 

Physical imperfections affecting the ultimate loads e.g., variations in the outer and 

cross-sectional dimensions, out-of-straightness and eccentric loading have been 

considered. Assumed initial mid-height curvatures (percentage of GRP heights) have 

been included into the models of imperfect columns to account for these 

imperfections. The fully nonlinear numerical results for imperfect columns (minimum 

load capabilities) have been used to derive a design curve with an appropriate value of 

interaction coefficient accounting for the loss of stiffness in the composite columns 

due to mode interaction and physical imperfections. Separate models of the columns 

having circular holes of different sizes in the walls have been prepared and analysed 

for ultimate failure loads. The main outcomes ofthe numerical investigations are: 

• 3-Dimensional volume elements with three translational degrees of freedom 

have been successfully used to model the orthotropic composite walls of the 

square cross-sections and the isotropic steel plates at the column ends. All the 

models are simply supported (knife edges) and axially loaded (along the 

middle line of the plate). 

• Linear elastic (eigenvalue buckling) analyses adequately predicted the 

buckling loads of slender columns. The failure modes, in the form of a half 

sine wave of the order of effective column heights, exhibited by the linear 

analyses confirmed the global buckling in slender columns. The range of the 
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column heights for which the linear analysis exhibited global buckling, has 

been categorised as the slender columns. Column heights of 655mm and above 

in the case of 51mm square box-section and 555mm and above in the case of 

44mm box-sections have been grouped as slender columns, and short 

otherwise. 

Buckling loads and the global modes predicted using linear elastic analyses, 

confirm that global buckling of composite columns OCCurs due to bifurcation 

at the critical loads, and can be solved by linear elastic theory (eigenvalues). 

The predicted loads are close to the Euler buckling and experimental loads, 

establishing that not only the physical imperfections in the composite columns 

are small, but also the deformations (axial and lateral deflections) are small at 

critical loads, and the columns behave linearly. Furthermore, stress contours 

drawn along the length of the columns, confirm that the stresses at critical 

loads are within the elastic limits of the material. 

However, in the case of shorter columns, the linear elastic solutions failed to 

converge without indicating buckling modes. Only axial shortening and 

volumetric strains are exhibited. This suggests that buckling modes other than 

global buckling or material failure occurs beyond the elastic limit of the 

analysis. 

• Geometrically nonlinear analyses predicted the local buckling modes in short 

51mm box-section columns. The number of half sine waves depends upon the 

GRP column height. The FE solution for the shortest column having a GRP 

height of 200mm failed to converge, exhibiting three half sine waves. The 

failure load predicted by the non-converged solution, more than twice the 

experimental load, is incorrect. It is concluded therefore that FE solutions 

which fail to converge are not reliable. It also supports the observation made 

by Mottram (2000) that for measuring the short column load the minimum 

height of the column should be long enough to accommodate at least four half 

sine waves. The stress contours plotted along the column heights show th<1t 

although the stress concentrations at the peaks of the initiated buckled waves, 

is less than the elastic limit, stresses immediately after the onset of local 

buckling increase abruptly and exceed the elastic limits (causing rupture of 
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material). The need for a fully nonlinear analysis including the material 

nonlinearity is implied by these results. 

No local buckling has been predicted in the short 44mm box-sections models 

whilst the geometrically non-linear solutions failed to converge, giving 

unreliable failure loads. Stress contours indicate a uniform stress distribution 

along the entire height indicating only axial and no lateral stresses. The 

absence of the local buckling has been attributed to low bit and the strong 

interface restricting the local deformations. 

For slender columns, the geometrically nonlinear analyses failed to exhibit the 

expected failure modes i.e., global buckling in perfect columns. It infers that 

nonlinear solutions for the slender columns converge (maintaining 

equilibrium) beyond the bifurcation point, if no disturbance or imperfections 

enhance the lateral deformation. Inclusion of initial curvatures in the nonlinear 

analyses, confirmed global buckling mode in slender columns. 

• Fully nonlinear (geometrically and materially) analyses have been used to 

provide buckling solutions to perfect and imperfect composite columns. For 

perfect columns, the results (failure loads and modes) are similar to the 

geometrically nonlinear findings i.e., global buckling not indicated in the 

slender columns whilst local buckling exhibited in the short 51 mm columns. 

For shorter column heights (200 and 300mm GRP) the solutions failed to 

converge giving incorrect and unreliable loads. The converged solutions for 

the short and slender columns are higher than the experimental results. 

Imperfections in the form of assumed initial curvatures has been introduced to 

simulate the numerical models with the real (tested in Chapter 4) columns. The 

converged solutions of imperfect columns exhibited representative buckling 

modes and the predicted loads which are closer to the experimental results. 

Imperfect nonlinear solutions have confirmed slender heights of 655mm and 

above for 51mm and 555mm and above for 44mm box-sections. 

• Fully nonlinear solutions for short 5lmm box-section imperfect columns, 400-

500mm GRP heights (converged solutions), established that the maximum 

short column load remains constant for a range of short column heights 

exhibiting four or more half sine waves in the buckled shape. This maximum 
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short column load is taken to be the PL. It is shown that the PL is sensitive to 

geometric imperfections. Furthermore, the length of half sine wave remained 

constant at 62.5mm irrespective of the column height between 400 and 

500mm. These important conclusions are in line with the previous findings of 

studies on pultruded columns reported in the literature (Mottram 2000, 

Barbero and Turk 2000). No local buckling has been predicted in the 44mm 

box-section short columns inferring material (crushing) failure. Experimcntal 

observations confirmed material failure of the short 44mm box-section 

columns. 

• A general rule for applying FE analyses for the prediction of ultimate (design) 

loads has been outlined. Initially, a linear elastic analysis should be perfomled 

indicating the buckling mode and behaviour (deformed shape) of the model. If 

the solution converges and a definite buckling mode is exhibited, the failure 

load is taken as the buckling load for the column. If the linear solution fails to 

converge exhibiting local web buckling with underdeveloped or fewer than 

four sine waves, a nonlinear solution procedure is recommended as follows. 

An imperfection of reasonable amplitude i.e., 0.5 to 1 % should be included to 

specify an imperfect column and a geometrically nonlinear analysis should be 

performed. If the predicted stresses are less than the ultimate strength of the 

material, then the load can be the failure load. Conversely, if the predicted 

stresses are higher than ultimate strength of the material, a full nonlinear 

(Hoffman failure criterion) analysis should be performed. 

• The results from the fully nonlinear FE analyses clearly demonstrate that 

failure loads depends upon the column height (LefJ), longitudinal stiffilCSS £1 .. (', 

load eccentricity and initial curvature. Of these, the first two parameters arc 

included in establishing column slenderness ratio 'A.', and the imperfections 

are accounted for by the interaction coefficient 'c'. Whilst, the numerical 

solutions predicted only two isolated buckling modes, global and local, 

exhibited by the slender and short columns, the predicted loads for the 

intermediate column heights (A.=0.5-1.5) are lower than theoretical loads for 

isolated modes. This loss of buckling resistance has been attributed to the 

mode interaction (not indicated by the deformed shapes) and is represented by 

interactions coefficient 'c'. The interaction coefficient is established by 
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plotting numerical data, for certain imperfection amplitude, normalised by the 

PE and PL, into interaction plots and best fitted with the empirical interaction 

curves. The value of 'c' also accounts for the effects of slenderness because all 

the data for various slenderness values is represented by a single value of 'c' 

corresponding to a given imperfection amplitude. 

• A numerical design curve has been developed using failure loads predicted 

from fully nonlinear analyses of the imperfect columns. A single curve 

represents short and slender columns depending on the slenderness ratio. The 

values of c for 0.5% imperfection are c = 0.95 for both the box-sections. For 

the imperfection amplitude of 1.0% of column height, 'c' values have been 

estimated as 0.85 and 0.9 for 5lmm and 44mm box-sections respectively. The 

proposed design curve has been verified by including experimental results 

located above the curve. 

• Perforations (holes) reduce the buckling resistance of the slender columns, but 

the loss is minimal (~ 5%) provided the size of the holes is small (d/w S 0.3) 

and interval between the holes not less than twenty times the diameter of the 

holes. Buckling stiffness is further reduced by increasing the holes size and 

reducing the interval between the holes. It is recommended to limit the holes 

size to d/w = 0.6. 

6.3 SUGGESTIOS FOR FUTURE WORK 

The following recommendations for the future work, based on the experimental 

and numerical result, are suggested: 

• Standard pultruded box-sections with larger dimensions should be investigated 

for the ultimate loads and column behaviour using the fully non-linear 

imperfect numerical models proposed in this study. 

• Numerical simulation can predict the critical height of the box-section 

columns exhibiting maximum loss of stiffness due to mode interaction. 

Additional specimens in the range of A= 0.5 to 1.5 should be tested 

experimentally to achieve a fully representative value of interaction coefficient 

'c' . 

• Influences of various parameters on c should be investigated. 
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• Consider new definitions for slenderness ratio A, which correspond to 

observed mode of failure. 

• Buckling or failure capacities of the pultrudcd sections verses the ultimate 

material strengths should be investigated. 

• Present study considered mainly simply supported boundary conditions in the 

experimental and numerical investigations. Other types of supports (e.g., 

fixed-fixed) should be included to simulate the columns behaviour in nOIl­

idealised structural scenarios. 
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