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ABSTRACT

Glass fibre reinforced plastic (GRP) structural profiles, in standard shapes and sizes
are now being commercially manufactured by the process of pultrusion. GRP profiles
are light weight, posses higher specific strengths and are more durable than the

conventional metal or concrete counterparts.

GRP pultruded profiles have open or closed cross-sections comprising thin composite
walls of low elastic moduli. Stability failure has been identified as the main cause of
failure for these profiles when subjected to compressive stresses, as it may occurs at
stresses much lower than the ultimate strengths. Therefore, the load carrying
capacities of composite compression members mainly depends upon stability criteria.
The conventional stability analyses for the prediction of buckling loads are not
considered adequate as the GRP material is orthotropic and its behaviour is different
from steel (non-yielding). The existing guidance for the design of composite members
under compression ignores the presence of geometrical imperfections inherited in the
pultruded profiles, whilst, experimental evidence suggests considerable loss of
stiffness due to the imperfections particularly in the intermediate column heights. The
design guidance provided by the manufacturers gives empirical equations based on
data obtained from experiments on specified profiles. A universal design curve based
on the experimental results of concentrically loaded GRP columns has been
developed and presented. However, conducting a vast experimental study is not
always feasible. The need to develop a procedure, predicting failure load numerically

for the development of a design curve for GRP columns has been recognised.

Two GRP box-sections (closed square cross-sections) have been investigated for
failure/buckling loads using experimental and numerical methods. In the experimental
phase, specimen columns of various heights have been concentrically loaded in
compression to measure the failure loads. Experimental results have been compared
with the theoretical predictions made using classical methods and the equations given
by the design manuals. Based on thé experimental and analytical failure loads, an
experimental design curve has been derived. In the numerical study, 3-dimensional
full scale finite element models representing experimental configuration of the
composite columns, have been analysed using both linear and nonlinear solutions.

Imperfections of known amplitudes have been included parametrically to establish the

XV



sensitivity of the failure loads towards imperfections. Imperfect model have been
calibrated for the estimation of imperfection amplitude present in the profiles using
experimental data. Using the numerical and analytical data, a design curve has been
derived establishing interaction coefficients for each profile. The numerical design
curve is compared with the experimental design curve for the validation of the

numerical procedure adopted in this study.

Effects of perforations (circular holes) on the buckling stiffness of GRP box-section
columns have also been investigated. Holes are drilled in the walls of profiles and
tested experimentally to measure the loss in the buckling loads. Finite element models
of columns with holes have been developed and analysed for buckling loads.

Comparisons of experimental and numerical results are plotted.

For use in the numerical representation of the composite columns, mechanical
properties of the orthotropic GRP material of the both sections have been established
analytically and experimentally. In-plane shear properties have been measured by
physically testing standard sized coupons, extracted along the length of profiles.
However, short coupons were available in the transverse directions due to
dimensional constraints. Short coupons, similar in geometry to the standard coupon,
but smaller in size, have been validated for performance using finite element analyses
and comparing the outcomes with the models of standard coupons. Both standard and
short coupons have been used for the experimental measurement of the in-plane shear

properties. Compression properties have also been measured experimentally.

Ultimate failure/buckling loads of the composite columns depend upon their heights,
material properties, and the cross-sectional dimensions. These factors have been
combined into one characteristic parameter ‘A’, the slenderness ratio. As the later two
factors are constant for a particular box-section profile, the ultimate loads depend
upon column heights. Four types of failure modes; global, local, modal interaction
and material failure have been observed. The loss in the buckling stiffness is minimal
for smaller circular holes, provided the interval between holes is not less than 20
times the diameter of the holes. For bigger holes and an inter hole spacing of 10time
the diameter, a loss of 30% have been measured. Finite element representation of
pultruded columns adequately predicted the numerical failure loads and failure modes

for most of the column heights.
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CHAPTER 1

INTRODUCTION

1.1 COMPOSITE STRUCTURAL PROFILES

A composite material is formed when two or more materials are chemically or
mechanically combined giving properties that are different from the individual
components and exhibiting enhanced characteristics (e.g. strength, ductility,
electromagnetic inertia, etc). Historically, composite materials such as timber (a
natural composite), straw-reinforced clay, reinforced-cement-concrete and plywood
have been used in civil engineering construction. New composite materials have also
been conceived for fast and more versatile construction. For example, fibrous
composites were proposed some fifty years ago as a lightweight material for use in
military and aerospace applications, where weight reduction was the major concern
(Ballinger, 1990). As indicated by their name, fibres are the essential part of these
composites. Fibrous composites have two distinctive phases: a load-carrying
constituent the reinforcement, and a body constituent, the matrix. Typically, the
reinforcement comprises fibres of various types e.g. carbon, kevlar or glass.
Principally as the reinforcing fibres impart the strength and stiffness to the composite
they possess higher strength and elastic modulus than the matrix (Green 1987,
Barbero 1991, Godoy and Almanzar, 1996). The matrix acts as a binding material that
transfers load between fibres through shear and maintains alignment and orientation
of fibres. The matrix also protects the fibres from chemical and environmental
damage. Metals ceramics and polymer compounds such as polyester, vinylester, or
epoxies define the matrix. Fibrous composites are now called ‘advanced composites’
as many types of fibres and matrix can be purposely combined to meet the demands
for specific applications. Fibrous composites with those formed from polymers
(plastics) as the matrices are referred to as polymer matrix composites (PMC) or fibre

reinforced plastics (FRP).

Glass-fibre-reinforced plastics (GRP) represent a subset of composite FRP materials
developed particularly for structural applications. Generally two types of glass fibres
are in use: E -glass (electronic) and S-glass (silica) fibres (Miller 1987, Datoo 1991).

S-glass fibres have superior strength and stiffness properties but are expensive, while



E-glass fibres are most commonly used being cheaper and possessing adequate and
satisfactory strength and stiffness. Typically, E-glass fibres have a tensile modulus of
70kN/mm? and a tensile strength of 3.5kN/mm?’. The matrix component of GRP
composites are normally thermoset (hardens irreversibly when cured) plastics, e.g.,
epoxy, vinylester or polyester resins. Epoxy resin has better adhesive and mechanical
properties than polyester, though polyester resins are cheaper and cure more rapidly.
The typical values for the elastic moduli and strengths of the epoxy and polyester
resins are SkN/mm?, 100N/mm?, 3kN/mm? and 60N/mm? respectively. Mechanical
properties of the GRP composite materials depend on the properties of the constituent
materials, fibre forms (filaments, mats, or fabric), fibre-direction and orientation
sequence of these fibre-forms, and the volume fractions (percentage) of fibres in the
composite. Typically, GRP structural profiles have a specific modulus
(modulus/density) of 20mm and specific strength (strength/density) of 300mm in the
direction of fibres. These properties are comparable to mild steel (25mm and 77mm)
and aluminium (25mm and 160mm). GRP composite profiles offer a good alternative
to conventional metallic materials. Besides having adequate strength and stiffness,
GRP materials are lightweight (30% lighter than aluminium and 80% than steel),
corrosion resistant, chemical resistant, non-magnetic, have good fatigue strength and

require little maintenance (Liskey 1991, Zureick and Shih 1998, Turvey 2000).

Initially GRP materials have been produced by hand layup or machine buildup (layer
of fibres bounded with a plastic resin) in the form of sheets (Ballinger, 1991). The
method is slow and expensive. GRP sheets were cut and joined to form simple shapes
to be used in non-bearing infra structural applications. Later, “pultrusion”, an
automated process of manufacturing FRP structural shapes, was developed. Pultrusion
is a continuous process of pulling the required reinforcement (fibres) impregnated
with an initially viscous liquid matrix through a heated die. Here the pre-formed
composite is consolidated to the desired shape and the matrix is hot cured. The
finished composite exits from the die as a solid hollow shape or profile cross-section
(Starr 1983, Bonger 1990, Ballinger 1991, Davalos et al 1996, Barbero and Trovillion
1998). The process is very versatile and variations are possible relative to the nature
of the operations, the type of reinforcement and matrix, and the type and size of the
profile being manufactured (Martin and Sumerak, 1987). Pultrusion is the best-suited

manufacturing technique for the commercial production of GRP structural profiles



(Starr 1983, Werner 1984, Strongwell 1989, Davalos et al 1996). It enables a high
manufacturing performance with consistency and reproducibility in strength and

stiffness, and good surface textures, which require no further treatments.

“Among the many composite manufacturing processes that have evolved during the
past four decades, the pultrusion process offers the highest productivity-to-cost

ratio.”

(Zureick and Scott, 1997)

Today, pultrusion has a commonality in both geometry and dimensions to standard
structural elements, (angles, girders, beams, hollow sections and pipes), frequently
given the name ‘Pultruded fibre reinforced plastic (PFRP) profiles or ‘pultrudes’,
where the term ‘structural’ has been taken to assume profiles subjected to any form of
load condition. These structural profiles are gaining acceptance as substitutes for
conventional load bearing elements produced from steel, aluminium and timber
(Barbero 1991, Ballinger 1991, Mottram, 1991, Zureick and Scott 1997, Turvey
2000). The main reinforcement in standard GRP structural profiles is glass-fibre
strands (roving) placed along the longitudinal axis to produce “unidirectional
profiles”. Glass fibre mats are introduced to improve the transverse stiffness of the
matrix and composite, leading to orthotropic material properties. Mechanical
properties of the pultruded structural profiles are generally approximated as

orthotropic (Vakiener et al, 1991).

Probably the largest structural application of pultruded GRP structural profiles is
pipes for water or oil transportation (Ballinger, 1990), whilst they have been used in
infrastructure development for air terminals and railway stations (Liskey, 1991).
Purposely fabricated pultruded GRP structural elements have been used in the
construction of lightweight pedestrian bridges. For example, a 51.5m span suspension
bridge has been erected over A5 at Nescliff, near Shrewsbury (Plate 1.1). The deck of
this footbridge has been constructed from pultruded GRP flat panels.



DOING THE LIGHT FANTASTIC: The new
51.5m span suspension bridge straddling
the A5 at Nescliff, near Shrewsbury, is so
light it barely needs holding up. The 51.5m
long deck of the footbridge has been
constructed from fibre-reinforced plastic,
i which is roughly a quarter as dense as

o steel. Weight saving has enabled designer

! FaberMaunsell and contractor Balfour
Beatty to tie back the suspension cables
without need for piling. Mass concrete
slabs provide footings for the bridge's
masts and anchorage for its back-stays.
Fears that the featherweight deck would
flutter in cross winds led to a decision to
add concrete ballast along the bridge’s
centre line, said FaberMaunsell project
manager John Cadei.

Plate 1.1 Pultruded GRP suspension foot-bridge, Shrewsbury, UK.
(New Civil Engineer, 6 February 2003)

A lightweight pedestrian bridge (Plate 1.2) has been built over the Tay river at the
Aberfeldy golf club in Scotland (Robbins 1992, Bodamer 1998). All the components
of this cable-stayed bridge are made from composite materials. The ratio of designed
superimposed load to the self- weight is 10:1. This bridge has a 63m central span with
back spans stayed from “A” pylons. The deck, pylons and handrails have been
fabricated from pultruded cellular glass fibre reinforced plastic. The frames “A” were
assembled in the factory by joining two heavy box-section legs, with pre-drilled holes
to accommodate the cable stays. The deck (120m long containing 360m of GRP
planks and weighing 75kg/m) was also factory prepared and assembled on site in a
staggered lap arrangement with adhesive bonding. Though a considerable amount of
time was expended on designing the bridge components, it took only four days to
convert raw material into finished products (with no secondary finishing operations

necessary), and the bridge was completed in just six weeks.

A composite road bridge (Tech 21) has been constructed in Butler County, Ohio USA
(Foster et al, 2000). The bridge meets the AASHTO" HS-20 load requirements,
equivalent of two fully loaded 18-wheel tractor/trailers, one in each lane. The bridge,
10m (33ft) long and 7.3m (24ft) wide comprising all GRP components, weighs about
one-fifth the weight of a conventional concrete structure, and was installed in six

weeks. The deck is covered with asphalt wearing surface (instead of polymer

" American Association of State Highway and Transportation Officials.



concrete) weighing more than the bridge itself (10,000kg), yet it meets the AASHTO
specification requirements. The performance of the bridge is being monitored
continually using strain sensors and deflection gauges embedded in and under the
deck. The data collected should provide the necessary information and guidance for

future composite bridge designs.

Standard shaped structural profiles have also acted as load-bearing members (beams,
columns, floors and ceiling decks) in the construction of buildings, cooling towers,
and bridges (Green et al, 1994). For example, pultruded GRP structural components
manufactured by COMPOSITE Technology, Inc (CTI), with a brand name of
Unilite® units have been used in the construction of cooling towers (Ballinger 1990
1991, Yuan et al 1991, Green et al 1994). The cooling tower components include
Unicolumns, Unibeams, lintels and gusset plates with bolts and pins for connections,
all made from GRP (plate 1.3). The shape of the Unicolumns was designed to support
the Unibeams from all the four sides. Standard pultruded profiles have also been used
in building a stair-tower (Plate 1.4) for the US Navy at Fort Story, VA, USA. The

tower is designed to sustain hurricane loads (Turvey, 2000).

1.2 STABILITY AND BUCKLING ANALYSIS

Any structural system when subjected to applied loads can have two kinds of failure,
namely, (i) material failure and (ii) form failure. In material failure, the stresses in the
structure exceed the capacity of the material, resulting in the formation of cracks
and/or rupture. In form failure, though the stresses may not exceed the yield or rupture
values, the structure may not be able to maintain its original form. Here the structure
does not break physically but is deformed to some other shape (or form) due to a
significant external disturbance. This deformed configuration of the structure is
regarded as failure because its equilibrium configuration becomes unstable and it is
unable to sustain the external load. The load, at which the equilibrium of a structure
(or of its component) changes from stable to neutral, is referred to as the critical load
(Chen and Lui, 1987). This is the limiting load at which the original configuration of
the structure ceases to be stable. This phenomenon of change of equilibrium is known
as buckling and the corresponding load as the buckling load. Buckling failure is often
sudden and catastrophic and is normally accompanied by large deflections and

nonlinear behaviour (Chen and Lui 1987, Farshad 1994; Palmer et al 1998). The



buckling failure commences at stresses much lower than the crushing (or yield)
strength of the material. Therefore, the structural components having hollow cross-
sections with thin walls are more susceptible to buckling than material failure, when
subjected to compressive loads in cases where the components have a large

slenderness ratio.

The instability or the buckling failure of structures (or their components) is of many
types; for example, overall (or global) buckling, local buckling or lateral torsional
buckling. Correspondingly, their failure modes are denoted as global, local, lateral or
torsional modes. In overall or global buckling the member fails with excessive
deflections in a direction normal to its length and it is unable to sustain the applied
load. This type of buckling develops in slender columns (in frames) or in truss
members. The cross-section of the member remains un-deformed but its longitudinal
axis is no longer straight (but deflected). In local buckling, on the other hand, parts of
a member (under compression) fail locally with large lateral deflections. The cross-
section of the member deforms (de-shapes) but the longitudinal axis remains straight.
Local buckling, for example, occurs in short columns and beams (e.g. compression
flange of a beam buckles locally or walls of a compressively loaded intermediate
length column). In lateral torsional buckling an open-section profile buckles by a
combination of twist and lateral bending of the cross-section (Timoshenko and Gere
1961, Mottram 1992, Brooks and Turvey 1995). This type of buckling usually
develops in cantilever beams or in beams with unsymmetric cross-section. It is not
necessary for a structure to undergo overall (global) buckling for it to be classified as
having failed both under serviceability and ultimate limit states (Farshad, 1994). Local
or torsional buckling in a part of the structure may lead to rapid onset of complete
failure either by global buckling due to large deformations or by material degradation
(crushing). Therefore the minimum buckling load (regardless of the buckling mode)
may define the critical load i.e. the ultimate load carrying capacity of the structural

member.

Pultruded GRP structural profiles have open or closed thin-walled cross-sections
similar to their steel counterpart e.g. wide flange, I-sections, angle, channels,
rectangular-hollow-box sections and square box-sections. The composite material is
orthotropic in nature and remains elastic up to failure load without yielding in the

direction of the primary reinforcement (Barbero, 1991). Further, GRP material has a



lower modulus of elasticity (30kN/mm?) and shear modulus (3.5kN/mm?) than steel
(E=205kN/mm2 and G=80kN/mm?). For these reasons, the ultimate strength (load
carrying capacity) of pultruded profiles is often governed by stiffness (buckling) and
not by the actual strength of the material. It means buckling failure in pultruded
sections often precedes material failure (Barbero 1991, Vakiener et al 1991).
Consequently the design of structures comprising thin-walled composite members
may be governed by buckling (compressive or torsional) of the flange or web
segments or the overall buckling (Brown et al, 1998) in addition to deflection (or

serviceability) constraints that may also prove critical.

Classical theories of elastic stability (Timoshenko and Gere, 1961) consider the
analytical solutions to buckling problems of a structure or its components such as
plates, beams and columns, characterised by conventional isotropic materials (metals).
The formulas and design equations for the buckling analysis of these components
subjected to various types of loading and boundary conditions have been developed
and are well documented in the texts (Timoshenko and Gere 1961, Chen and Lui
1987, Farshad 1994, Galambos 1998). For example, the critical buckling load for a
simply-supported, straight, prismatic and axially loaded column that is slender enough

to buckle laterally (global buckling) at its mid-height, has been predicted by Euler

2
(1759) as P, = Elj?l Here E is the elastic modulus of the material, I the moment of

inertia, and L, the effective length (depending on the column boundary conditions) of
the column. It is quite notable that the buckling load P; is independent of the strength

or yield limit of the material but depends primarily on the elastic modulus and cross-
sectional stiffness of the column. The slenderness of a column is defined by the ratio
of its length to radius of gyration of its cross-section (slenderness ratio). Theoretically,
above a certain slenderness ratio a column buckles in a global mode. Below this
critical value the column may fail in a local buckling mode. Design curves for
metallic columns along with the corresponding equations have been developed to
predict the critical loads for columns of various heights and boundary conditions.
Research focused on conventional material and section types (e.g. steel “I” sections),
has demonstrated that critical buckling load is sensitive (decreases) to eccentric
loading and initial imperfections (e.g. out of straightness and variations in the wall

thickness) (Galambos 1998).



The Euler formula has initially been applied to the prediction of the critical global
buckling loads for the slender GRP pultruded columns (Barbero and Raftoyiannis,
1990). The material stiffness E, for the orthotropic GRP, has been taken along the
direction of applied load (which is same as the direction of primary fibres). Elastic
modulus E for GRP wide-flange sections was calculated using the principles of
micromechanics and lamination theory (Davalos et al, 1996) (see § 3.2). In the
micromechanical approach, each thin composite wall (lamina) in the cross-section is
taken as a combination of layers of different fibre forms (roving and mats). The
stiffness of composite wall is calculated from the stiffness of constituent materials
(fibres and matrix), percentage of their volumes in each layer (volume fraction) and
configuration of layers in the wall (provided by the manufacturer). Classical
lamination theory (Jones, 1975) is applied with these values to calculate the cross-
sectional stiffness by algebraically adding the stiffness contributed by each layer
toward the whole section, considering its orientation and position with respect to the
section’s neutral axis. This approach has been shown to provide estimates of cross-
sectional stiffness (Salim et al 1995, Davalos et al 1996). The theoretical buckling
loads predicted in the study of Barbero and Raftoyiannis (1990) have been validated
by experimental results reported by Barbero and Tomblin (1992). The experimental
results were evaluated from the linear regression (Southwell, 1932) of the load-
deflection plot of experimental data. The close correlation of analytical and
experimental results (within 6%) demonstrated that the theoretical prediction using
the Euler equation could be applied to a specific GRP structural component. It was
further demonstrated that the Euler formula gave an upper bound to the buckling load,
as the experimental values were lower than the analytical predictions. The use of the
Euler formula to predict the critical buckling loads, has also been validated by Zureick
et al (1992), Scott et al (1992) and Yoon et al (1992) for GRP pultruded Wide-flange
columns. These experimental studies also demonstrated the application of Southwell’s
method to the non-destructive testing of pultruded columns. Zureick and Scott (1997)
suggested that a shear coefficient term should be added to the Euler equation,
identifying the contribution of the high E; /Gy ratio that GRP composites generally
display. Therefore the critical load of a slender column be estimated by the following

equation, where Pg is the Euler load, A, =gross area and n,=form factor for shear

depending on the shape of the cross-section.



PE
1+(n,P,/A,G,;)

Ppy =

Critical buckling loads for local buckling of short columns and beams have been
theoretically predicted using the classical equations of elastic buckling for thin plates
(Timoshenko and Gere, 1961). The thin walls of the cross-section (flanges or webs)
are modelled as rectangular thin plates with appropriate boundary conditions
depending upon their location and connections in the cross-section. Design curves are
also available to predict the critical buckling loads for isotropic plates for different
types of loadings and boundary conditions. Similar classical equations are also

available for orthotropic plates (Timoshenko and Gere 1961, Galambos 1998).

Local buckling in GRP composite profiles have been studied extensively (Barbero
1991, Barbero and Sonti 1991, Mottram 1991, Vakiener et al 1991, Barbero and
Raftoyiannis 1990 & 1993, Bank et al 1996, Qiao et al 2001). In these studies, thin
walls of composite sections have been modelled as orthotropic rectangular plates
subjected to in-plane compression. To simulate an axially loaded column, the shorter
sides (loaded) of the plate are simply supported while the long sides have different
boundary conditions depending upon their position in the section. For example the
flange of a wide section is considered as a long plate with short edges simply
supported, one long edge free and other long edge elastically connected to the web.
Similarly the flange of a box-section is considered as a long plate with shorter ends
simply supported and longer edges elastically connected to the web. Three types of
web-flange connections have been considered in the above studies: simply supported
or zero rotational stiffness, elastic connection with rotational stiffness equal to the
stiffness of web or the fixed connection with restrained rotation. The plate buckles in
a sine wave shape with a number of half-sign-wave lengths depending on the length
of the plate. Theoretical loads have been predicted and plotted for column lengths
equivalent to 2, 3, and 4 numbers of half sine waves (called as mode 2, 3 and 4
respectively). Experimentally measured local buckling loads of the short GRP wide-
flange and box-section profiles are close to the results obtained from mathematical
models including elastic web-flange connection. Simply supported and the fixed
assumptions of the connection behaviour give the lower and upper bounds of the

buckling loads. These studies further demonstrate that local buckling failure initiates a



process (tearing apart or separation of flange-web connection or material) that leads to

the overall collapse and failure of the member (Bank and Yin, 1999).

A transition zone may exist between global and local buckling referred to as the
‘interactive mode’. This mode has been identified in buckling tests on columns with
intermediate heights. For isotropic columns the interaction between local buckling and
yielding of material occurs which practically reduces the critical buckling load
(Galambos, 1998). There exist column heights for an intermediate region in which the
buckling load is lower than the predictions for both local and global buckling modes
(Toneff et al, 1987). Column design curves (Galambos, 1998) show a maximum loss
in buckling load at this height. For orthotropic columns, on the other hand, the
interactive buckling is attributed to the interaction of local and global modes.
Experimental studies of GRP pultruded columns (Yuan et al 1991, Tomblin 1991,
Barbero and Tomblin 1992, Raftoyiannis 1994, and Tomblin and Barbero 1994) have
identified an intermediate-column height range for which the measured buckling load
is lower than the predictions of both local and global buckling theories. This reduction
in the critical load is due to the interaction between local and global modes whilst the
GRP material remains linear elastic for large values of strain without yielding
(Barbero and Tomblin, 1994). An interaction constant has been defined to estimate
the amount of interaction. Theoretically there exists a column height called the
transition height at which both local and global modes have the same critical load.
The interaction of the two isolated modes is highly sensitive to imperfections (Godoy
et al 1995). In fact the interaction between local and global modes developed an
unstable tertiary mode leading to imperfection sensitivity and a lower buckling load
Experimental data has indicated that while the isolated local and Euler modes have

stable post buckling path, the interacting path is unstable (Barbero et al, 2000).

Design curves accompanied by the corresponding equations for wide-flange pultruded
sections have been proposed (Barbero and Tomblin 1994, Barbero and Evans 1997
and Barbero and DeVivo 1999). Critical buckling loads for the isolated global mode

of pultruded GRP columns are plotted against a selected slenderness ratio
L |P o . . .

A=— =5 which is function of material properties and P, , the short column load.
/4

P, is the load that is converged towards as the length of the column is reduced.

Theoretically the short column load is equal to Euler load at A=1. Both isolated global
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and local curves converge at the transition height where the buckling load is same for
global and local modes. Theoretically interaction between global and local modes
occurs in the vicinity of this height, and is characterised by a reduction in the buckling
load up to 25 to 35% (Barbero and DeVivo 1999). An interaction constant, ‘c’,

indicates the level of interaction.

The finite element method has been used to predict the critical buckling loads of
pultruded profiles acting as beams and columns (Vakiener et al 1991, Barbero et al
1995, Barbero et al 1996, Davalos et al 1996, Bank and Yin 1996, Palmer et al 1998
and Barbero and Trovillin 1998). The method has the ability to model the orthotropic
composite material properties and to simulate the actual (physical) test conditions i.e.
boundary (support) and loading states with both material and geometric nonlinearities

represented.

Research into the stability of GRP pultruded sections used as columns, has been less
widely reported compared with equivalent work concentrating on the behaviour of
beams, where wide-flange sections have been investigated rather than box-section
profiles. Furthermore, using the same sub-division of section type, wide flange and ‘I’
section pultruded columns with concentric axial loads have been investigated both
theoretically and experimentally for local and overall (global) buckling, (Vakiener et
al 1991, Barbero and Tomblin 1992, Barbero and Raftoyiannis 1993, Zureick and
Scott 1997, Barbero and DeVivo 1999). Very few studies have considered the
buckling behaviour of thin walled composite box-sections as columns (Barbero and

Raftoyiannis 1993, Zureick and Scott 1997).

Design codes for the reliable design of structures made from conventional materials
are available and approved by a number of independent international and national
organisations (ASTM, ASCE, BS, Eurocode etc). For design with the pultruded
profiles (composite sections), no unified design code has been available. Both the
Structural Plastic Design Manual (ASCE 1984) and the Eurocomp Design Code
(Clarke, 1996) summarises equations based on classical Euler buckling theory
(developed for isotropic materials) for complete sections and orthotropic plates
buckling formulae (Timoshenko and Gere, 1961) for limited cases of boundary
conditions to predict local buckling phenomena. The use of these equations provides a
reasonable estimate of the global and local buckling loads when true material

properties are known (Barbero and Raftoyiannis, 1993). The theoretical equations do
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not simulate the actual physical conditions of the columns, especially when section
walls are thick, predicting very high buckling loads. Design manuals supplied by the
manufacturers (Strongwell, 1989) provide some empirical expressions. The majority
of available expressions are theoretical and have not been validated by experimental
evidence (Mottram, 1992). Many authors have stressed the need for a unified and
reliable design guide based on theoretical and experimental evidence (Ballinger 1990,
Vakiener 1991, Green et al 1994, Brook and Turvey 1995, and Mottram 2000). It is
recommended that design curves for the pultruded shapes should be developed in the
same way as historical design curves for isotropic material sections. The design curve
for wide-flange sections developed for the whole range of manufactured lengths

(Barbero and Tomblin 1994 and Barbero and DeVivo 1999) is taken as an example.
1.3 AIMS AND OBJECTIVES OF THE RESEARCH.

The aim of the present research is to predict the stability (critical buckling loads) of
pultruded GRP box-sections (homogeneous and macro-perforated) from numerical

methods both quantitatively and qualitatively for dissemination to practitioners.

“It is clear to this author that the research community has not given adequate
attention to creating a database with reliable geometric and mechanical properties

for standard pultruded profiles.”
(Mottram, 2000)
The following objectives are identified for the fulfilment of this aim:

1 To determine the current state-of-the-art in the prediction, determination,
classification and dissemination of buckling phenomena in GRP composite

sections with particular reference to box-section profiles.

2 To determine the experimental response (failure loads and the failure modes) of
pultruded box-sections subjected to concentric compressive loads (with and
without macro-perforations), contributing to the database describing the behaviour

of pultruded GRP profiles.

3 To establish a numerical representation of the buckling phenomena (without mode
presumptions) including the effective determination of elastic linear and non-

linear material responses.

4 To verify the numerical representation against experimental evidence.
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5 To develop design data and analysis procedures within the context of the

experimental and numerical outcomes.

1.4 SCOPE OF THE RESEARCH

To achieve the objectives of the research, aspects of the procedures proposed by
Barbero and Tomblin (1994), and Barbero and DeVivo (1999) have been followed.
Two box-sections manufactured by FIBREFORCE Composites UK with nominal size
of cross-section 51x51x3.2mm and 44x44x6.0mm have been selected to be studied as
simply supported columns (Plate 1.5). The box-sections are made of E-glass fibres
and polyester resin (Fibreforce, 2000). The box-section composition includes the

following four types of layers (Figure 1.1):

1. Veil, a resin-rich layer containing polyester fibres, primarily used as a protective
cover against erosion and surface damage to the reinforcing fibres. The layer

provides a smooth surface for handling.

2. Continuous Filament Mat (CFM) consisting of continuous fibres randomly

oriented. The layer improves the transverse mechanical properties of the section.

3. Plain Roving (PR) containing continuous unidirectional fibre bundles

contributing to the stiffness and strength in the longitudinal direction.
4. Mock Spun Roving (MSR) inner protective layer covering the inner CFM layer.

Mechanical properties are measured using analytical and physical test methods.
Tensile properties of the material both in longitudinal and transverse directions have
been provided experimentally (Saribiyik, 2000). In-plane shear properties have been
measured in longitudinal and transverse directions, by testing double V-notched
specimens according to the losipecu test method (ASTM D5379M-93). Compressive
stiffness and strengths of the material have been provided from the test procedure

adopted by Mottram (1994).

Both numerical and experimental methodologies have been used to determine the
critical buckling loads and failure modes of the selected pultruded box-sections
columns. Numerical technologies, based on existing advanced finite element methods,
have been applied to solve non-conventional structural models of pultruded columns.
The experimental data has been quantified applying existing analytical and statistical

approaches. Recommendations have been developed regarding the numerical
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modelling of pultruded GRP box-sections. Numerical and experimental outcomes

have been used to develop design curves and procedures.

1.5 THESIS OVERVIEW

The scope of the research outlined above is presented in 6 chapters.

Chapter-2 reviews the stability research carried out on the buckling of pultruded
beams and columns with particular emphasis on the techniques used for the prediction
of buckling loads using approaches developed for isotropic materials. Some of these
techniques are used in the present research. Test methods to measure the mechanical
properties of the composite material are also reviewed and suitable methods for the

determination of compressive and in-plane shear are selected.

Chapter 3 presents the determination of mechanical properties of the GRP pultruded
composite material. Compressive strength and in-plane shear properties are estimated
analytically. Small test coupons are proposed using the finite element method for the
measurement of transverse shear properties from which experimental material

properties are established.

Chapter 4 details the column testing. Experimental procedure and data reduction

techniques described. The outcomes of the experiments are presented and discussed.

Chapter 5 presents the numerical studies for predicting critical buckling loads using
finite element models of GRP columns having different lengths. Linear elastic models
with and without geometric non-linearity are analysed. Models with non-linear
material properties are included. Effects of initial imperfections in the form of varying
wall thickness, load eccentricities and initial curvatures are investigated. Circular
holes introduced in the column walls are analysed for possible loss of buckling

strength.

Chapter 6 draws together the main conclusions of the research. Recommendations for

future research are also made.
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Plate 1.2. The GRP composite bridge in Aberfeldy golf-club, Scotland.

(Civil Engineering, January 1998)
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Plate 1.3 Cooling Tower built with pultruded GRP beams and columns.
(Ballinger, 1990)
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Plate 1.4 Fort Story composite stairtower built with pultruded GRP profiles.

(Turvey, 2000)
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Plate 1.5 Pultruded GRP box-sections (a) 51x51x3.2 mm (b) 44x44%6.0 mm.
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Figure 1.1 Typical Construction of pultruded box-sections.
(a) 51x51x3.2 mm (b) 44x44x6.0 mm.
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CHAPTER 2

DEVELOPMENTS IN BUCKLING ANALYSIS
METHODOLOGIES AND DESIGN GUIDANCE

2. IINTRODUCTION

Buckling of thin-walled structural profiles subjected to compressive stresses (beams
and columns), reported in the literature, has been divided into three types; local;
global; and interaction between the two, depending on the effective length of the
member. Historical development of the methodologies applied for the three types of
buckling problems, with particular emphasis on orthotropic pultruded sections have
been reviewed (§ 2.2.2). Prediction of critical buckling loads for different column
lengths has been a pre-requisite for the construction of column design curves.
Universal design curves for pultruded GRP wide-flange columns has been developed
by many authors, using experimental results of buckling tests performed on different
lengths of various wide-flange sections (§ 2.3). For the two isolated modes i.e. local
and global buckling, experimental and analytical results have shown good
compromise demonstrating the validation of the analytical techniques. But for the
intermediate columns, experimental loads have been found lower than predicted by
any of the isolated buckling analysis. The decrease in the buckling load has been
attributed to the interaction between local and global modes; the resulting mixed
mode instability being imperfection sensitive. Therefore, the analytical procedures
have not been successful to correctly predict the buckling load for columns of
intermediate length. However, numerical analysis (finite element method), assuming
different initial imperfections (fractions of the flange thickness), has been used to
develop a design curve, based on numerical data for the wide-flange pultruded
sections. Numerical methodology appropriate to predict accurate buckling loads for
all the practical heights of the column has been identified from the review (§ 2.4).
Buckling studies reviewed here, also emphasise the need to establish true mechanical
properties of the pultruded material. Test methods previously used to determine the
mechanical properties of the pultruded materials have been reviewed to identify their
potential application in the context of dimensional limitations of the GRP box-section

profiles being investigated in the present study (§2.5 onwards).



2.2 RESEARCH ON BUCKLING

2.2.1 ISOTROPIC SECTIONS

Buckling of thin-walled metal structural profiles, when subjected to compression
loading, has been extensively studied and reported in the literature (e.g. Usami et al
1982, Toneff et al 1987, Key et al 1988, and Galambos 1998). The studies have
covered many modes of buckling failure including overall (or global), local, lateral

torsional, and interaction buckling.

Euler (1759) solved the buckling problem of a slender, isotropic, axially loaded
column and presented the classic formula bearing his name (Timoshenko and Gere
1961, Galambos 1998). It was concluded mathematically that the buckling failure
occurred at an axial stresses much lower than yield stress of the material, with
instability due to geometry effects (length and moment of inertia) and boundary
conditions of the column. For a long simply supported column under axial loading,
there exists an infinite number of buckling loads, each one associated with a specific
deformed shape called the buckling mode. The minimum of these loads is the critical
buckling load. Once reached, the column fails with excessive lateral deflection (half

sine wave) at mid height of the column. The Euler buckling load * P.’for a simply

supported and axially loaded isotropic column is

_m’El
==

Py 2.1

(E, I and L already defined on page 7)

Later research has solved more specific cases of slender columns where the effects of
boundary conditions and load eccentricities have been investigated (Timoshenko and
Gere 1961, Jones 1975). The boundary conditions (supports at the ends) determine the
effective length of the column. A coefficient ‘k’, has been defined to calculate its
effect on the critical buckling load. For example, & is 1 for a simply supported and 4
for fixed ended column. The slenderness (denoted by ‘A’) of columns has been

characterised by the ratio of the column effective lengths (kL) to the radius of gyration

,I . .
(r= 1 where A is the area of the cross-section). For a particular cross-section
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(shape) of the isotropic profile, global buckling occurs above a particular slenderness

ratio (A = k—L—) of the column.
r

If the column length is short, failure occurs due to local buckling of thin walls
(flanges and webs) such as in the case of I-beams and hollow box-sections. The Euler
formula cannot be applied in this case. Instead, the buckling load is predicted by
discrete plate theory, assuming the walls of the section as thin rectangular plates
subjected to in-plane compression (Timoshenko and Gere 1961, Jones 1975, Toneff et
al 1987). Equations and graphs have been developed to solve the local buckling of the
thin plates with different boundary conditions depending on the position of the flange
in the cross-section (Rasmussen and Rondal 1997, Faella et al 2000). The flange
buckles in a number of half sine waves (mode number) depending on the length of the
plate. The critical buckling load remains constant (minimum) for any number of half
waves as long as they are fully developed (all half waves accommodated in the
length). Extensive experimental studies have been reported to demonstrate the validity

of this procedure (Usami and Fukumoto 1982, Key et al 1988, Faella et all 2000).

In the intermediate column range (short to long) a loss of buckling stiffness has been
identified in experimental data on steel columns. Theoretical investigations attributed

this loss to the yielding of material (Toneff et al 1987, Chin et al 1993).

2.2.2 ORTHOTROPIC SECTIONS

Like thin-walled isotropic (steel) structural profiles, the governing mode of failure for
fibre-reinforced profiles, is also buckling. This instability phenomenon is well

documented in the literature.

“As it is demonstrated by the experiments, local buckling of the compression flanges

initiates a process that leads to the collapse of the member.”
(Barbero and Fu 1990, Barbero and Raftoyiannis 1990)

“Buckling is the governing failure for this type of cross-sections (pultruded GRP) and
the critical buckling load is directly related to the load carrying capacity of the

member.”

(Barbero and Raftoyiannis, 1993)
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“In thin-walled columns made of FRP composite materials, instability is a

mechanical behaviour of major interest.”
(Godoy and Almanzar, 1996)

Due to low modulus of elasticity of glass fibres and the common thin-walled section
geometry, pultruded FRP beams are susceptible to large deflection and buckling

under service loads.”

(Davalos et al, 1996)

“Since composite columns are thin-walled, buckling is a major consideration in

design.”
(Barbero, 2000)

“Because of the relatively low modulus of elasticity of commonly used glass fibres
and the common thin-walled sectional geometry, FRP beams may be susceptible to
buckling even under service loads. Due to the high strength-to-stiffness ratio of
pultruded FRP composites, buckling is likely to occur before the ultimate material

strength is reached.”
(Qiao et al, 2001)

However, the procedures developed for the theoretical prediction of critical buckling
loads of isotropic columns have not been considered appropriate for anisotropic
profiles. Although the shapes of the pultruded structural profiles are similar to their
steel counterparts, their material properties (and hence the behaviour under the
applied loading) are different, resulting in significant variations in behaviour

compared with isotropic equivalents.

GRP structural profiles have been considered as unidirectional members (§ 1.1) i.e.,
the main reinforcing fibres are in the longitudinal direction, with nominal
reinforcement provided in directions aligned to the longitudinal axis. In general, GRP
structural profiles exhibit anisotropic or orthotropic behaviour. For instance they have
different elastic moduli in longitudinal and transverse directions. Also the elastic

moduli in extension and bending are different (unlike steel)
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“Pultruded structural elements are assumed as especially® orthotropic homogeneous
materials that could be characterised through four independent elastic constants: the

longitudinal elastic modulus Ey; the transverse elastic modulus Et; the in-plane shear

modulus Grr; and the major Poisson’s ratio vir.”
(Barbero and Raftoyiannis 1990, Zureick and Scott, 1997)

For pultruded profiles, bending moment of inertia ‘I’ is a function of cross-sectional
geometry and the stiffness of the material which, in turn depends upon configuration
of the composite material in the cross-section. It means two sections of similar shape
and size (produced by different manufacturers) may have different moments of inertia
about the same axis, depending upon the type, amount, location and the percentage
volume of the fibres. Therefore the bending stiffness ¢ EI °, used to predict the critical
buckling load (Euler formula) has to be redefined for pultruded profiles to account for
their orthotropic nature. Further, the pultruded material has a high ratio of extensional
stiffness to shear stiffness (E/Grr = 6 typically) compared with steel (E/G = 2.7
typically). Also pultruded materials do not have distinct yield points and are relatively

non-ductile.
“The buckling equation has to account for the anisotropic nature of the material.”

(Barbero and Tomblin, 1994)

“GRP typically features a higher ratio of elongation to shear moduli (than metals)
and exhibits a non-ductile behaviour (unlike steel) without having a distinct yield
point that may cause local buckling in highly stressed areas of the cross-section.

There is a need to develop new design practices specifically for GRP type materials”
(Barbero and Evans, 1997)

The existence of inherited weak axes (e.g., lower bending stiffness in transverse
directions), lack of yielding, high shear modulus ratio and brittle failure suggests the
need of further investigation of the buckling behaviour of GRP structural sections

when subjected to compression failure.

* When the material axes coincide with the reference axes (or loading axes), then the ply is said to by

especially orthotropic (Datoo, 1991).
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Global buckling (flexural mode)

Global (or overall) buckling loads of long pultruded GRP columns have been
predicted theoretically and measured experimentally by many authors. These studies
include Hewson (1978), Lee and Hewson (1979), Yuan et al (1991), Zureick et al
(1992), Scott et al (1992), Yoon et al (1992), Barbero and Tomblin (1992), Barbero
and Raftoyiannis (1990 and 1993), Zureick and Scott (1997), Brown et al (1998),
Barbero and DeVivo (1999), Barbero and Turk (2000). Most of these studies include
both theoretical prediction and experimental measurement of critical loads and
comparative studies. The Euler formulation (2.1)" has typically been employed for the
theoretical prediction of buckling loads. Effect of transverse shear has been included
in the Euler formulation by Lee and Hewson (1979), Zureick and Scott (1997) and
Brown et al (1998) as,

P,= i
* 1+(nP,/A,G,)

(2.2)

where Pg — Euler buckling load for pin ended axially loaded column (2.1),
Ag;— Area of column webs,

G,— In-plane shear modulus (assumed to be Gyr).

n— A form factor for shear depending on the cross-section geometry.

The bending stiffness EI has been redefined to account for the orthotropic behaviour
of GRP material. Either the E has been replaced by directional modulus of elasticity

‘E,’ (x being the direction of loading in Fig. 2.1) of the material (Barbero and

Raftoyiannis, 1990 and 1993) or the bending stiffness ‘D’ of the entire cross-section is

used (instead of EI, Bank 1989). The directional elastic moduli E,and E, (in

longitudinal and transverse directions) and in-plane shear modulus ‘G, for

orthotropic GRP profiles have been experimentally measured using coupons
(specimens obtained from the flanges and webs of profiles) by many authors (Barbero
and Fu 1990, Yuan et al 1991, Mottram 1991, Turvey 1992, Mottram 1994, Wang and
Zureick 1994, Davalos et al 1996, Zureik and Scott 1997, Saribiyik, 2000). It has been

* The number in parenthesis is equation number.
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demonstrated experimentally that the values of elastic modulus in tension ‘E,,’ and
in compression ‘ E, . ’are nearly equal (Zureick and Scott, 1997). It means that, for a

pultruded section having uniform material architect in all its components (flanges and

webs), E,,orE, ., evaluated from coupon testing, can directly be used in the Euler

formulation. Alternatively the bending stiffness ‘D’ for the entire cross-section of
column has been experimentally measured using three- and four-point bending tests
(Bank 1989 and 1989a, Barbero and Fu 1990, Mottram, 1991, Bank et al 1994,
Palmer et al 1998).

Theoretically, elastic moduliE, ,E , Poisson ratiovxy and shear moduluszyof the

composite material have been evaluated from the properties of the constituents (i.e.
fibres and matrix) and the material architecture of the cross-section (Barbero and
Raftoyiannis 1990, Barbero 1991, Luciano and Barbero 1994, Nagaraj and GangaRao
1997, Saribiyik 2000). Micromechanics in conjugation with the classical lamination
theory ‘CLT’ (Jones 1975, Tsai 1989) for plates have been used to calculate the
material constants of the composite walls of the pultruded cross-sections. The material
properties evaluated from micromechanics has been experimentally validated by
coupon testing for various pultruded shapes (Lopez-Anido et al 1995, Davalos et al
1996, Qiao et al 1998).

Experimental determination of overall buckling loads, based on performing physical
tests on the pultruded GRP columns, has also been reported in the literature. Yuan et
al (1991) and Hashem (1993) tested, pin-ended and concentrically loaded, square box-
section columns without and with extended flanges (Unicolumns in § 1.1). The
studies demonstrated that the buckling loads (and hence the strength) mainly
depended on the slenderness of the column. No comparison of the experimental

buckling loads to analytical predictions has been reported.

Experimental buckling loads measured by testing of slender square GRP box-sections
(76x76x6.4mm) by Zureick et al (1992), Scott et al (1992), Yoon et al (1992) and
Yoon (1993), and of wide-flange sections by Barbero and Tomblin (1992 and 1994),
Zureick and Scott (1997) and Brown et al (1998) under similar testing conditions
(simply supported and concentrically loaded) were found to be lower than those
obtained using Euler formulation (2.2). It was suggested that presence of initial

eccentricities (imperfections) was the main cause of this discrepancy. In these studies
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Southwell plots (Southwell 1932, Tsai 1986) have been used to obtain the critical

buckling loads from the test data (measured axial load and central deflection). The

Southwell method also provides an estimate of cumulative imperfections (i.e. sum of

material, geometric and testing equipment). In the method a nonlinear load-deflection

(P-A) plot has been transformed into a linear plot when lateral deflection A

normalized by the axial load P, is plotted against the load (P - % ). The inverse of the

slope of the linear graph, gives an estimate for the critical buckling load and the

intercept the magnitude of the cumulative imperfections.

Important findings reported in these studies include;

Theoretical predictions using the Euler equation closely agreed with the
experimental results, indicating that buckling capacity mainly depends on the
longitudinal modulus of elasticity. Additional fibre reinforcement placed in the
longitudinal direction would improve the longitudinal modulus and hence the
buckling capacity of the profiles. Evaluation of true elastic constants,
theoretically or experimentally has been demonstrated. A good estimate of

bending stiffness ‘D’ is vital for the prediction of buckling loads.

Material properties could be found with great accuracy from the material
properties of the constituents and a detailed knowledge of the lamination

construction.

The effect of transverse shear on the Euler buckling load was very small (<
4%). However the effects of shear stresses should be included to provide a

conservative estimate.

Southwell plots gave a good estimate of critical buckling loads of slender
columns subjected to axial loading. The method allowed non-destructive and
repeatable testing of long columns and was able to account for the presence of

imperfections.

The axial shortness is proportional to loading and can be predicted by linear

PL

theory. Theoretical and experimental observations correlate well. (A =
A E;
gL

)
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e The typical axial deflection curve showed a linear elastic response for 75-95%

of the buckling load.

e Qut of straightness should comply with ASTM D3917-94 (e,< L/240 where

e, is the initial deviation from the mean dimension).

e Tension and compression moduli in longitudinal direction can be taken as

equal.

Local Buckling

For short spanned pultruded GRP columns or beams, the anticipated mode of failure
is primarily local buckling (§ 1.2). Pultruded profiles are essentially an assembly of
laminated panels (long rectangular plates), identified as flanges and webs (Barbero
and Fu, 1990). When subjected to axial or bending loads, these panels enter a state of
unstable equilibrium and buckle locally. This results in a premature failure of the
entire GRP section, characterised by a distortion of the cross-section. The failure may
be due to local buckling of one or more panels or a web panel under the action of
combined normal and shear stresses (Johnson 1985, Barbero and Fu 1990, Yoon
1993, Bank et al 1994, Qiao et al 2001).

Local buckling analyses of GRP pultruded profiles have generally been accomplished
by modelling the flanges and webs individually and considering the flexibility of the
flange-web connection (Vakiener 1991, Barbero and Raftoyiannis 1990 and 1993,
Qiao et al 2001). Flanges and webs of the cross-sections of the pultruded shapes (box-
and I-sections) have been simulated as plates analysed independently using equations
for composite plate buckling (Timoshenko and Gere, 1961). The governing
differential equation for buckling of a symmetric plate (having similar material
architect on both sides of the central plane) where no bending-extension coupling
exists, under in-plane compression loading is:

9w 0w 0w

STy +D +N

*w
D 22 ay4 x axz =

1t ax4

+2(D,, +2D,;) 0 (2.3)

where Ny is the in-plane stress resultant, D;;, D2, D2, and Des are the plate stiffness

coefficients (Galambos, 1998; Jones, 1975), given as:
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1- VoV (2.4)

For an axially loaded column, all flanges and webs are subjected to compression,
while, in the case of a beam under flexure loading, only the top flange is subjected to
compression. When the critical buckling load has been reached, panels buckle in a

local mode.

The classical theory governing the buckling of orthotropic plates (2.3) is
fundamentally the same as that for isotropic plates (Leissa, 1983). The main
assumptions include: homogeneous thin plate of constant thickness; small
displacements (less than the plate thickness) during buckling; elastic material;
behaving kinematically according to the Kirchhoff hypothesis (normal to the middle
surface remains normal and straight during deformation of the plate e.g., no shear
deformations). The only difference is that: the stress-strain relationships for each ply
are typically orthotropic, and may be different amongst the plies. Therefore, stresses
for each ply must be transformed into a common plate co-ordinate system and the
force and moment resultants must be integrated piecewise from ply to ply through the

thickness of the plate (Qiao, 1997).

“The flange of a pultruded I-section can be modelled as an orthotropic plate with two
simply supported loaded edges and two unloaded edges, one of which is free while the

other is elastically restrained.”
(Vakiener et al, 1991).

The flange-web connection plays a significant role in the determination of the critical
buckling load. Three cases of flange-web connection have been considered
historically: rigid flange-web connection with rigid web (fixed or clamped); rigid
flange-web connection with flexible web (elastic); and hinged flange-web connection

(simply supported ‘SS’). A typical flange (from a pultruded section) under uniform

27



in-plane compression along the longitudinal axis is shown in Fig 2.2. Due to the
periodic form of the buckling wave along the length of the profile, the flange has been
assumed as simply supported (SS) at any of the inflection points on the buckling wave
(Barbero and Raftoyiannis, 1990). The boundary conditions of the two unloaded long
edges depend upon the section shape. The flange of an I-section has one long edge
free with the other joined to the web. The flange of a box-section has both the long
unloaded edges connected to the webs. The stiffness of the connection between
intersecting flanges and webs has been denoted by ‘D’. For free or simply supported
connection D = 0, for clamped connection D = o and for an elastic connection D is
equal to the bending elastic (transverse) modulus of the webs. Typically, a flange has
been considered as an orthotropic thin plate subjected to in-plane compression along
two short edges and elastically supported by the web on one long side in case of an I-

beam and on both long sides in the case of a box-section (Fig. 2.2).

Critical buckling loads, obtained by solving the differential buckling equations (2.3)
for thin orthotropic plates for the three proposed long-sides boundary conditions, have
been plotted in the form of failure envelopes (Fig 2.3) against profile lengths (Barbero
and Raftoyannis, 1990). The graphs indicate lower buckling loads (lower bound) for
hinged connection, higher for clamped connection (upper bound) and intermediate for

elastic web-flange connection. For a short length the flange buckled in mode 1 (m=1);

. [ mx .
i.e., in the shape of sm(——) . For a longer length, the mode number increases, but the
a

minimum critical load remains constant. This feature supports the assumption of a
simply supported boundary at the inflection points along the length of the plate. It has
been demonstrated that buckling of plate is independent of the length and only
dependent on the bending stiffness of the material, boundary conditions and axial load

applied.

Theoretical results for a 152x152x6.4mm wide flange section (using (2.3)) were
compared with those from a three point bending test of same-size wide-flange beam
(Barbero and Fu, 1990). The measured half wavelength (152mm) has confirmed the
theoretical predicted value. The experimental buckling load however lies between the
two bounds, but closer to the theoretical buckling loads predicted for clamped web-
flange connection than the elastic simulation. The authors (Barbero and Raftoyiannis,

1990) attributed this to the excessive thickness of web near the flanges. However, no
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experimental study giving the measured buckling loads for box-sections is available

to verify the theoretical results predicted in this study.

The study reported by Tomblin and Barbero (1994) includes both the theoretical and
experimental investigations on the local buckling of wide flange (102x102x6.4mm,
152x152x6.4mm, 152x152x9.5mm and 203x203x9.5mm) pultruded GRP columns in
axial compression. Local buckling loads have been predicted using the discrete plate
formulation (2.3) used by Barbero and Raftoyiannis (1990) and considering the web-
flange connection elastic with stiffness equal to the transverse elastic modulus (Dy)
of the web. Buckling failure envelopes (Fig. 2.3a) have been drawn for the different
column lengths showing minimum (and constant) buckling loads for column heights
corresponding to integral values for number of half waves along the buckled flanges.
The physical axial compression tests have been performed on four wide-flange
sections with lengths corresponding to 2, 3, and 4 half waves. Authors (Tomblin and
Barbero, 1994) have extended the application of Southwell’s method to estimate the
local buckling load. Axial load has been plotted against the flange-tip deflection
normalised by the applied load. The method has been used to extract the experimental
buckling loads from the measured lateral deflections of the flanges. The close
correlation between experimental and theoretical buckling loads indicate that
simulation of web-flange connection as elastic, with stiffness of the connection equal
to the transverse elastic modulus of the web, provided accurate predictions. However,
the percentage difference between the two results increased as the number of half
waves increased. The authors attributed this rising difference to the imperfections
inherited in the pultrusion manufacturer. A careful inspection of the failure envelopes
(Fig. 2.3a) and lengths of the tested specimens revealed that the flanges of the
orthotropic material did not buckled in a square pattern as in the case of isotropic

(steel) plates but with an aspect ratio of 1.2 to 1.3.

A numerical study predicting the local buckling loads of wide-flange sections using
the finite element method and comparing these results with classical plate theory has
been reported by Vakiener et al (1991). Three pultruded GRP wide flange sections
have been investigated for local buckling loads using full-scale finite element models.
The columns are assigned orthotropic material properties and are axially loaded with
pin-ended (simply supported) boundary conditions. Classical orthotropic plate

buckling analyses have also been performed considering the three general flange-web
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connections discussed in the above mentioned studies, for comparison of results.
Finite element results reaffirmed classically predicted buckling loads considering
flange-web connections as elastic, re-establishing that the hinged (SS) web-flange
connection predicting a lower load (lower bound) and the rigid web-flange connection
a higher (upper bound) buckling load. Furthermore, the number of half waves
obtained by the numerical method agreed fully with the number predicted using

classical plate buckling theory.

The local buckling load has been referred to as short-column load ‘ P, > (Barbero and
Tomblin, 1994). It is a function of both material properties and the geometry of the

cross-section (depends upon Dy;, Dj2, D22, and Dgg). P, is independent of the length

of the column and boundary conditions (Barbero and DeVivo, 1999). The value of P,_

has been determined by a column test (Tomblin and Barbero, 1994) or by numerical

simulation (Vakiener et al, 1991) of short columns. Barbero and Evans (1997) have
suggested that the value of B, should be reported by the industry in their design
guides (also Mottram, 2000). For example it is reported (Strongwell, section 10, Eq.
C-2) that P, =0.5EA/(b/t)"? , based on experimental data for their product; where A

is the area of the cross-section, E is the modulus, and b and ¢ are the width and

thickness of the flange, respectively.

Local buckling of thin-walled pultruded profiles (box and I-sections) has been
analytically investigated by Qiao et al (2001). Buckling loads for the flanges
subjected to in plane compression have been calculated using the discrete plate
method. The buckled shape has been defined as a function of plate boundary
conditions, which in turn are a function of rotational stiffness (material stiffness) of
the joining webs. Coefficients of restraints defined in terms of material stiffness have
been used in the solution of the classical buckling differential equation (2.3). Solution
to these equations has been plotted against different values of restraint coefficients.
Expressions for the coefficients of restraint for I- and box-sections are presented. It
has been demonstrated that actual cases of restraint lie between simply supported and

fully restrained (clamped) conditions. It has been submitted conclusively;

“Although significant research has been achieved in the area of local buckling

analysis of orthotropic plates with various boundary conditions, there is still a need to
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develop simplified and suitable design equation for the local buckling of pultruded
FRP shapes.”

(Qiao et al, 2001)

Mode Interaction

An important aspect of column buckling analysis is the interaction between local and
global modes for intermediate lengths of the columns. Mode-interaction (interaction
of two or more isolated’ buckling modes) occurs when the theoretical buckling loads
for the two isolated modes (global and local), for the corresponding length, are close.
The mode-interaction phenomenon has been physically observed during the
experimental tests on GRP pultruded I-section columns, where flange buckling (local)
occurred in combination with lateral deflection (Tomblin, 1991; Raftoyiannis, 1994,
Barbero et al, 2000). Once the maximum load had been achieved, global (lateral)
deflection combined with local flange deflection, increased rapidly with a decrease in
the applied compressive load. The loss in the buckling stiffness depended on the
length of the column and the magnitude of imperfections. It was further concluded
that maximum interaction (and hence the maximum reduction in failure load)
occurred for a column length having equal theoretical global and local buckling loads.
The intermediate range of column height has been defined as the region of column
heights for which interaction occurs between local and global buckling modes. The
height of a column, for which the theoretical local and global buckling loads are
equal, has been termed as the transition height. The occurrence of mode-interaction
and resulting decrease in the experimental buckling loads has also been reported by

other authors;

“The experimental data for short and long column buckling suggest the existence of
an intermediate column region where the critical loads are lower than the prediction

of both local and global buckling theories.”

(Barbero and Tomblin, 1994)

* Global and local buckling modes observed in long and short columns have been termed as isolated

buckling modes (Barbero et al, 1996; Barbero, 2000).
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“When two modes have close critical loads, there is a possibility of having interaction
between them leading to a new equilibrium path (a coupled path) with a reduction in

critical load”.
(Godoy, et al, 1995)

“For practical lengths of columns in frame structures, the work (Barbero, Tomblin
and Raftoyannis) showed that there will be an interaction between local and global

buckling.
(Mottram, 2000)

“When two or more modes of buckling correspond to loads that are close or
coincident, interaction between the modes may lead to post-bucking behaviour quite

different from the post-buckling behaviour of the participating modes.”

(Barbero et al, 1996)

“Columns of intermediate slenderness experience mode interaction, which effectively
reduces the load carrying capacity below than both predicted values, local and

global, for a given slenderness.”
(Barbero and Evans, 1997)

“For intermediate lengths, the local and global buckling modes interact leading to

smaller failure loads than predicted by any of the two isolated modes acting alone”.
(Barbero, 2000)

Experimental studies carried out by Barbero and Tomblin (1994) and Barbero et al
(2000) indicated a loss of up to 30% in the buckling loads of wide-flange pultruded
columns of intermediate heights and a different failure mode (flange local buckling
combined with lateral deflection at mid height of column) than the participating
modes. Experimental data from one of these studies (Table 2 in Barbero et al, 2000)
demonstrated that interactive buckling occurred at stress/strength ratios of less than
0.4, i.e., well in the elastic range of the composite material. It was concluded that the
mode-interaction in pultruded GRP columns was due to interaction between local and
global buckling mode rather than between local buckling and yielding of the material
as in the case of steel columns. It was further demonstrated that the interaction
between the isolated modes, in the case of pultruded I-sections, mainly depended on

the length of the column and not on the cross-section dimensions. For the other
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structural shapes, effect of the cross-sectional geometries on the degree of interaction
may further be investigated by testing additional shapes for intermediate heights. The
degree of interaction between isolated modes has been defined by an empirical
constant ‘¢’ derived from the experimental data (Tomblin 1991, Barbero and Tomblin
1994). The value of ‘c’ is the ratio of measured load for a particular length of the

column to its local and Euler theoretical load.

The interaction constant ‘c’ has been empirically evaluated using the experimental
data from tests on the pultruded I-shape columns (Tomblin, 1991; Barbero and

Tomblin, 1994). The buckling strength ratios ‘q’ and ‘s’ have been defined as:

_ Experimental failureload _ F,,
" Localbucklingload P,
_ Experimental failureload _ F,,
" Euler buckling load _E

(2.5)

An empirical interaction equation, based on the experimental data has been defined by

the authors (Barbero and Tomblin, 1994) as:
g+s=1+cqs (2.6)
For each column tested, ‘c’ may be calculated from (2.6) as;

g+s-—1
qs

c= 2.7

The interaction constant ‘c’ for a profile of particular cross-section is determined by
averaging the ‘c’ values from all the samples (lengths in intermediate range) tested.
For example, the interaction constant ¢=0.85 for a wide-flange I-section
(152x152x6.4mm) has been determined by averaging the ‘c’ obtained by testing a
number of samples of 152x152x6.4 profiles having intermediate lengths (Tomblin,
1994). Similarly, interaction constant ¢=0.84 for the four different cross-sections of
wide-flange I-sections has been averaged (Fig 2.4) in one value with the conclusion
that interaction constant is independent of the cross-section, but is a function of

column length and material properties (Barbero and Tomblin, 1994).

The mode interaction phenomenon (also known as modal interaction) in composite
columns of intermediate heights has been investigated theoretically by many authors

(Barbero et al 1993, Raftoyiannis 1994, Godoy et al 1995, Barbero et all 1996,
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Barbero 2000). The investigations have been carried out within the general framework
of the theory of elastic stability considering the occurrence of the buckling
phenomenon within the linear range of composite material. This has been documented
experimentally for pultruded columns by Barbero and Tomblin (1994) and Vakiener
et al (1991) and for lateral-torsional buckling of beams by Mottram (1991). Theory of
elastic stability provides a similar understanding of the critical loads as those obtained
by Euler (for global) and Timoshenko (for local), but it differs in that it allows to
study post-critical states, also accounting for imperfection sensitivity of the critical
loads. As the mode-interaction occurs after the initialisation of the buckling process
(Godoy et al 1995, Barbero et al 1996), post-buckling behaviour of the structure, has
been included in addition to the pre-buckling behaviours in these analyses.
Analytically, mode-interaction has been studied by Barbero and Tomblin (1994),
Godoy et al (1995), Barbero et al (1996) and Barbero (2000), using a static
perturbation (incremental) technique to draw the equilibrium path for the entire

buckling process.

A numerical analysis considering the first order displacements (Barbero et al 1993,
Raftoyiannis 1994), proved insufficient to predict the interaction behaviour, as the
resulting mode was imperfection insensitive. It was concluded from the previous
analytical studies on the interactive buckling of isotropic columns (Sridharan and Ali,
1986), that an interactive failure mode (similar to one observed experimentally) could
be included in the analysis to notice the imperfection sensitivity of the buckling load
(Ratoyiannis 1994, Barbero and Tomblin 1994). It was suggested, therefore, to add a
new mode (resulting from interaction) as a third participating mode in the buckling
analysis. The third mode was termed a secondary local mode as its deformed shape

(flange deflection) characterised the local buckling mode.

A number of buckling modes may interact with the global and local mode (Godoy et
al 1995, Barbero 2000). The criteria for the possible interacting modes are: (a) it is
different from Euler or local modes; (b) it follows an interacting path; and (c) the
interacting mode resembles the experimental mode shape. Once the shape of the third
mode has been determined, modal displacements of the resulting interaction mode can

be written as the linear combination of the three interacting modes.

The studies reported by Raftoyiannis (1994), Barbero and Tomblin (1994), Godoy et
al (1995), Barbero et al (1996) and Barbero (2000) include three isolated modes: a
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primary local (rotation of flanges and bending of web); a global (Euler); and a
secondary local (bending of flanges), in the mode interaction analyses for I-shaped
GRP columns. In the study by Godoy et al (1995) analytical functions have been
chosen to model the deformed shapes of the three participating buckling modes.
Contributions from the proposed displacements of the individual (a global and two
local) modes, have been combined linearly to obtain the total displacement field in
terms of four degrees of freedom (axial shortening, lateral web deflection, rotation of
flanges and transverse displacement of flange outer-tip). The deformed shape and the
buckling behaviour (loss in strength at buckling and imperfection sensitivityi) were
then calculated by linear analysis. The fundamental path was typically linear (for a
perfect system), with three bifurcation points on the loading axis, corresponding to the
three isolated modes. Two secondary paths, both stable and symmetric emerged from
the lowest bifurcation point (corresponding to local mode) and next one, close or
nearly coincident bifurcation point (corresponding to global mode). Two further
bifurcation points were found on the local (lower) secondary path; the first one
yielded a stable tertiary path similar to the Euler mode, while the second one yielded
an unstable tertiary path with a different mode shape (flange and web deflection)
resulting from interaction between local and global mode. Since the tertiary path is
unstable, the behaviour of a real imperfect column will be imperfection sensitive and
failure will be catastrophic, with no load capacity after buckling. It is worth
mentioning that other modes with shapes similar to the second local mode has been
chosen as the third interacting mode along with primary local and global modes.
However, similar deformed shapes and buckling behaviour were obtained from the
interaction analysis. This means that interaction depends exclusively on the two
primary modes. The third mode needs to be considered because first order
displacement is insufficient to trigger interaction (Barbero et al 1996, Barbero 2000).
The finite element method has also been employed using commercial code
(ABAQUS, 1998) to model the intermediate height wide flange pultruded columns

(Barbero, 2000). By using a finite element discretisation as plate assemblies, all

* Imperfection sensitivity means that the peak or failure load of the imperfect system will be lower than
the bifurcation load of the perfect system, the magnitude of the reduction depends on the magnitude of

imperfection (Barbero, 2000)
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buckling modes as well as amplitude modulation®

are automatically taken into
account. While all the isolated mode secondary paths were found to be stable, the

column was found to be imperfection sensitive once mode interaction was reached.

Material properties (like orthotropy i.e., ratio between stiffness in the transverse and
axial directions) play an important role in the interactive buckling of I-section
columns (Godoy et al, 1995). For higher orthotropic ratios, higher degrees of
interaction have been reported in the analytical investigations performed by Godoy et
al (1995). Conversely, it is possible to design the material so as to avoid the
occurrence of interaction for a given length (one of the advantages of using composite
materials) (Barbero, 2000).

Numerical results for 152x152x6.4mm I-section columns of intermediate lengths
(Barbero, 2000) are compared with experimental results for the same columns by
Barbero and Tomblin (1994), with poor agreement (difference between 14% to 55%)
between the two, indicating that the interacting mode shape is different from the

isolated local mode.

Barbero (2000) presented a numerical study investigating the effects of geometrical
imperfections on the degree of modal interaction in pultruded columns. Imperfections
of known quantities (/240 to #2 where ‘¢’ is the thickness of the flange) were
introduced to the column corresponding to the shape of Euler, local or a combination
of the both buckling modes. Euler and local imperfections, when introduced
separately, produced virtually the same decrease in buckling loads, whereas a
combination of both imperfections caused cumulated reduction adding the effect of
both imperfections. It was concluded that besides the column slenderness, buckling
load is a function of amplitude of imperfections, and is independent of the
imperfection shape. Interaction plots (Fig. 2.5) for an I-section profile of intermediate
lengths has been constructed numerically by Barbero (2000) similar to that developed
experimentally (Fig. 2.4) by Barbero and Tomblin (1994). Numerical plots (Fig 2.5)
clearly show the deviation of the peak load from the corresponding isolated mode

predictions. For each imperfection amplitude, several points represent different values

¥ Wave modulation implies the reduction in the amplitude of the buckling shape near the supports

(Barbero, 1996).
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of slenderness. The simulated data for the imperfection amplitudes have been curve
fitted to evaluate the empirical interaction constant ‘c’ (Tomblin, 1991). The
annotated plots represent the best fit to the data for the imperfection amplitudes, and
the corresponding values of ‘c’ are given in the legend. As the process accounts for
the effect of slenderness, ‘c’ represents all the various values of slenderness. Values
of ‘c’ taken from the best fit to the data are plotted against imperfection amplitude e/t,
can be represented by a linear equation (straight line). From this plot ‘c’ can be

determined for any value of e/t, and peak load can be predicted using design equations

(§2.4).
2.3 STATE -OF-THE-ART DESIGN GUIDANCE

For design purposes, simplified formulas have been provided for steel structural
profiles, being used as beams and columns in the structural frames. For instance the
column formulas are functions of the major parameters of strength, such as the yield
point, the length, and the cross-sectional properties, with factors of safety prescribed
to give designs of acceptable safety. The Column Research Council (CRC) was
founded in 1944 to monitor and present theoretical and practical work related to metal
column design. Later in 1976 the CRS became the Structural Stability Research
Council (SSRC) with an extended scope to include research dealing with all types of
structures and structural elements where stability is a controlling feature of behaviour
(Johnston 1983, Galambos 1998). The council publishes up-to-date research on the
stability of metal structures, on a regular basis, and maintains a working interaction

between structural engineering practice and research (Galambos, 1998).

For example, “CRC" —Column strength curves” has recommended empirical

equations (Galambos, 1998) based on the tangent-modulus theory as:

" 2
o, =0 1—%} for A<2 (2.8)

o,=0 i] for A>+2 2.9)

where

** CRC: Column Research Council.
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/1=;z- —Ey-7 (2.10)

The curves has been drawn for the average critical stress for small and medium-sized
hot rolled wide flange sections of mild structural steel, with a symmetrical residual
stress distribution typical of such members. The recent trend in column design
involves column formulas which are a numerical fit of curves obtained from
maximum strength analysis of representative geometrically imperfect columns.
Further, the strength of columns has now been represented by more than one column
curve, introducing the concept of multiple column curves, e.g., SSRC™ curves 1 (Fig.
2.6), 2, and 3 (Galambos, 1998); Eurocode 3 (ECS, 1992) and Canadian standard
(CSA, 1994).

Pultruder’s Design Manuals.

The first EXTREN® Design Manual was published in 1971, updated in 1978 and
republished in 1989, providing design guidance for compression members (columns)
using empirical equations based on the manufacturing experience, application
knowledge and test data gathered from physical tests on GRP columns (Strongwell,
1989). FIBREFORCE, UK also follows this manual. Design tables, besides the
corresponding design equations have been included for the prediction of allowable
axial stress and loads for different sections. Neither the test methods have been
described nor are the experimental data available in public domain for independent
evaluation. The column heights are divided into two groups; short and long,
depending on the slenderness ratio taken as kL/r (like conventional steel elements).
Only concentric loading conditions have been considered. For example, the allowable

axial stress F, (should be less than critical buckling stress) for:
short box-section column:

E

T 166/ @10

u

(b and r are width and thickness of the webs of the box-section respectively)

long box-section column:

" SSRC: Structural Stability Research Council, new name of CRC since 1976 (Galambos, 1998).

38



1.3E

“= W (2.12)
short wide-flange column:
_ 0SE
‘= m (2.13)
£
(b and ty are the width and thickness of the flange respectively)
long wide-flange column:
_ 49E
u (kL/r)l.7 (2.14)

“These relationships appear to correlate well with the actual failure loads
encountered during testing. However, since these equations are empirical in nature,

they must be supported analytically before acceptance in a general design code.”
(Vakiener et al, 1991)

The Elastic moduli used for design purposes are the minimum for a range of materials
of structural profiles produced by the company. Most importantly, intermediate
heights of column (near to the transitional length) have been omitted from the design
point of view, for which the experimental load has been found much lower than either
for short or long column due to interaction of local and global buckling (Barbero,
1994; Barbero and Trovillion, 1998). Therefore these design equations can not be

referred to as universal design equations.

ASCE (1984)

This code, published by the American Society of Civil Engineers, includes design
equations suitable for composite fibre reinforced structural profiles. Design
expressions are based on the theory of elastic stability (Timoshenko and Gere, 1961;
Jones, 1975). Long column buckling has been addressed using directional modulus of
elasticity in the Euler formulation (2.1). To deal with the local flange buckling,
equations are presented for the limiting case of a one edge simply supported flange
(simple-simple-simple-free), and a one edge fixed flange (simple-fixed-simple-free)

as:
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P, =%t —E*———(-b-) +2 (iJ 2.15)
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The equation can be used to approximate the critical load for an outstanding flange
(Vakiener et al, 1991). Composite columns with intermediate lengths susceptible of

buckling mode interaction have not been included in the design.

Eurocomp Design Code (EDC, 1996)

“This publication represents the first independent, practical guidance on structural
design of polymer composites. The EUROCOMP design code has a limit state

approach to requirements for resistance, serviceability and durability of structures.”
(Mottram, 2000)

The equations cited in Eurocomp design code for the prediction of design load for the
concentrically loaded pultruded (FRP) column are based on elastic theory of stability
(Timoshenko and Gere, 1961). It has been suggested in the code that columns should
be investigated for all the possible types of buckling for that height such as global
(lateral deflection), web local (flexural and shear) and flange local (compression)
buckling. The Euler formula has been used (in the design code) for the determination
of global buckling load assuming the material as isotropic and using the elastic
modulus along the weak axis of the profile. Local buckling, on the other hand, has
been solved using the classical plate buckling equation and requires the knowledge of
both longitudinal and the transversal flexural stiffness of the member. For example,
the local compression flange buckling for the two general cases: a long rectangular
flange with both longitudinal edges simply supported (flange of a box-section); and a
long rectangular plate with one longitudinal edge simply supported and the other free

(outstayed of an I- or H-section); are respectively computed as

2
Ocery = %{(,/D,Dy )+H o} (2.16)

and

Tl p\* (12D
ac.cr.y =Ibh2{Dx(;) + ”2xy (217)
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where

H,=

N | =

G’
(v,D, +v,.D,)+2 = (2.18)

a = the half wave length of the buckle (taken equal to the length of the plate)
b = effective width of the plate

t = thickness of the plate

D,.D,D,, and Diy are the plate stiffness and are respectively equal to D,

xy,

D,,,D,, and D, givenin (2.4).

The design equations presented in the EDC for design of composite structural profiles
are the same as given in the ASCE (1984). Effects of apparently lower shear modulus
of the composite material have not been accounted for. Also the length of half sine
wave ‘a’ assumed by the buckled flange cannot be taken equal to the length of the
long rectangular plate (equal to short column length). It is well known that a long
rectangular isotropic plate buckles in half-waves, the lengths of which approach (for
minimum load) the width of the plate i.e. a buckled plate subdivides approximately
into squares. In a three point bending test on composite wide-flange I beam
(152x152x6.35mm), both theoretical predicted (Barbero and Raftoyannis, 1990) and
experimental measured (Barbero and Fu, 1990), half-wave length of 152mm was
found, confirming the square divisions of the buckled flange. However these studies
concluded that local buckling of the compression flange is independent of the length
of the beam and only dependent of the maximum bending moment (load) applied.
Further Eurocomp design code does not address the potential loss of buckling
stiffness in the column of intermediate (or transition) height. The design criteria in
EDC require computing the ultimate stresses for all possible modes of buckling and
serviceability limitations, for every practical height. Interaction of global and local
buckling develops an unstable mode, which reduces the stiffness of the section up to

30%, and is highly imperfection sensitive (Barbero et al, 1996).
Design curves for GRP columns.

A universal design curve along with the corresponding equation has been developed

to estimate the buckling loads for GRP pultruded I-section structural profiles used as
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concentrically loaded columns (Tomblin 1991, Barbero 1992, Barbero and Tomblin
1993). The design curve represents the whole range of practical column lengths
(similar to universal design curve for steel columns). The main parameters involved in
the design equation are the slenderness ratio (A), the local buckling load (P.) for a
short column and the interaction constant (c¢) to account for modal interaction in

columns of intermediate length range.

The universal slenderness ratio (A) for the composite GRP columns has been defined
based on similar arguments made for steel (Galambos, 1998) and timber (Zahn, 1992)

column universal design curves. For example, in the case of steel columns the

,a
slenderness ratio (A4 = 1L —E—y) has been defined as a function of o, (yield stress)
Tr

and E (the bending stiffness) in conjunction with the normally expected L (Iength of
r

column divided by its radius of gyration). In case of a timber column (a natural
) . 1L |F, .
composite) the slenderness ratio (4 = ;; E ) has been defined as a function of F,

(compression strength) and E (bending stiffness) in addition to the L/p (ratio of
column length to curvature). Likewise, the slenderness for the composite GRP column
has been defined in terms of D (the sectional flexural rigidity), P, (local buckling load
which in turn depends upon D) and column length L. The P corresponds to the local
buckling behaviour of steel sections before yielding and compressive failure of timber
columns in the absence of local buckling. Note that because of various amounts,
types, and orientation of fibres in the cross-section the term D cannot be separated
into bending stiffness (E) and the moment of the inertia ‘I’ (Barbero 1990, Barbero
and Trovillion 1998). Further, two columns having same ratio of L/r may have
different bending stiffness and hence the bending characteristics (Barbero and
Trovillion, 1998). Where as, dependency of the buckling load on column length has
been established experimentally by many authors (Yuan 1991, Barbero and
Raftoyiannis 1992, and Barbero and Tomblin 1994). Therefore the slenderness ratio

for pultruded composite columns has been redefined (Tomblin 1991, Barbero 1992,

LA
”\/_D- (2.19)
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2
Since Pg =”_L22’ from the definition of universal slenderness (2.19), it may be

written as
P =— (2.20)

which means that theoretical global and local buckling loads are same for A = 1,
giving the definition of transition height (e.g., transition between global and local
buckling). Putting A = 1 in (2.19), the transition height ¢ L"’for an I-section column

can be calculated as:

Dr?
PL

L=

(2.21)

“For the theoretical imperfection-free situation there is a column height where the
critical buckling load is identical for both the global and local buckling modes. This

height is referred to as the transition height”.

Mottram (2000)

The loss in the buckling stiffness (decrease in the critical buckling load due to mode
interaction) of an intermediate column (imperfect or real) has been estimated by
defining the interaction constant ‘c’, which physically describes the degree of
interaction present between the local and global buckling modes (2.7). The parameter
‘c’ accounts for the effects of nonlinear compression due to inhomogeneity of the
material, and physical imperfection such as out of straightness in the columns (Zahn

1992, Barbero and Tomblin 1994).

Substitution of (2.20) and (2.5) in (2.6) gives,

P B P FPo
l: SLT: A P SVt 4

2 2
i+’1pcr =1+cPcrlecr
PL PL PL PL

g+Aq=1+cAq?

(1+A%)g =1+ cA’g?
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cAq? -1+ A*)g+1=0 2.22)

The root of this equation is

1 1
q=1+}2—_ 1+F 1 023
2c 2c cA )
. P, .
replacing g by P gives,
L
- - -
1+ % 1+ ;12— 1
P, =P - -
cr L 2% 2c c,lz (224)

which represents actual values of P, determined experimentally and presented in
terms of interaction parameter ¢ and slenderness ratio A. Therefore, equation (2.24)
has been presented as a design equation over the entire range of column slenderness,

short, intermediate, and long (Fig 2.7).

Barbero and Tomblin (1994) used this equation to construct a universal design curve
for the wide flange I-sections used as columns simply supported and concentrically
loaded. Buckling loads for intermediate length columns (in the vicinity of transition
length (2.21)) has been measured on three wide flange sections i.e. 102x102x6.4mm,
152x152x6.4mm and152x152x 9.35mm. Additional experimental data from Barbero
and Tomblin (1992) and Barbero and Raftoyiannis (1993) have also been included.
The interaction constant for each type of cross-section was inferred from the
experimental data by averaging the value of ‘c’ using all data points. Theoretical
buckling loads have been computed using micromechanics and classical lamination
theory (Barbero and Ratoyiannis 1990, Luciano and Barbero 1995). This procedure
has been validated experimentally for similar pultruded shapes (Lopez-Anido et al,
1995; Davalos et al, 1996, Qiao et al, 1998) by comparing the predicted material

properties with coupon test results. Experimental loads, normalised by the local
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P
buckling load ( PN = q), have been plotted against universal slenderness ‘A’ (2.19),
L

and resulting buckling envelopes for all I-sections collapse into one universal curve.
All the I-sections used in this investigation have been described by the same value of
the interaction constant. It has been further recommended that the interaction constant
‘c’ must be determined experimentally for each new section following the procedure
described. A similar design equation, design curve and the procedure for the
evaluation of the interaction constant ‘c’ has also been reported by Barbero and Evans
(1997). Determination of the interaction constant using experimental data has also

been emphasised by other authors as:

“The value of the mode-interaction constant must be determined from reliable and

relevant experimental data (i.e. when the load eccentricity is zero).”

(Mottram, 2000)

A further parameter needed for the construction of the universal (applicable for all
range of practical heights) design curve is P;. This should also be measured as
accurately as possible. Design equation (2.24) is simpler to use than many equations
for different heights (2.11-2.17) or Euler equation for long columns and local
buckling equation for short columns. Equation 2.24 provides a basis for the design
and use of pultruded structural columns in engineering applications Barbero and

Evans, 1997).

Barbero and DeVivo (1999) have produced a design curve (Fig 2.7) for pultruded
GRP I-section columns using (2.24) and experimental data from Barbero and Tomblin
(1994), Zureick and Scott (1997), Barbero and Trovillion (1998), Brown et al (1998),
and Barbero et al (1999). Values of ‘D’ and P, were taken from the respective
references. The column loads have been normalised by P, (function of D) to compare
the experimental data from various sources because for even the same cross-sections,
the material properties of the columns differ among the manufacturers. The classical
local and Euler curves are recovered by setting ¢ = 1, with buckling loads showing a
strong dependency on the slenderness of the column as expected. Interaction constant
has been calculated to a value of 0.65. The curve with interaction constant ¢ = 0.65
has proved to be conservative as all the experimental points fall above this curve.

According to Mottram (2000), a ‘c’ value of 0.65 for concentric loaded columns, is
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very low and indicative of very high imperfections either in the structural profiles or
in the testing rig and the procedure followed to obtain concentric loading. Mottram
(2000) also observed a substantial difference in the value of P, computed analytically

or measured experimentally by many authors. In this respect he submits,

“Agreement must be reached on the method or methods (either testing or numerical)

that can be used to accurately determine the local flange-buckling load.”
(Mottram, 2000)

Mottram (2000) did agree to the logical arguments used to define the universal
slenderness ratio (A) for the composite columns and the procedure followed to
evaluate the interaction constant ‘c’ from the experimental results by Barbero and his

fellow researchers. It has been added,

“The methodology used to develop their equations has laid down procedures that will

eventually provide a rigorous design approach for engineers to use with confidence.”
(Mottram, 2000)

Zureick and Scott (1997) have undertaken an experimental study regarding the Euler
buckling of pultruded GRP I-and box-sections columns, and presented a design curve
based on the experimental data gathered through buckling tests on slender columns.
For comparison of experimental results from different sections, a non-dimensional
slenderness ratio has been defined as:

YL

(2.25)

e
where F;/ denotes ultimate longitudinal compression stress,

and F, is the Euler load including the shear factor.

Note that F; included in the slenderness ratio (even for long columns, where
buckling occurs at stresses much lower stresses than ultimate compressive stress)
corresponds to the local buckling load P, used in the definition of slenderness in

(2.19). P is unique property of the profile which is independent of the column height.
The experimentally measured buckling stresses ‘f..,” have been calculated by dividing
the experimental buckling load by cross-sectional area. To compare the experimental

results from different sections, the buckling stress ‘f..,” has been normalised by the
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ultimate compressive stress ‘F;’ of the material and plotted against the defined
slenderness ratio. Plots of the experimental results of all the sections (two I- and two
box-sections) showed a great similarity in the behaviour of different cross-sections.
The curves are similar to the Euler curves for slender columns. Based on the
experimental observations, design guidelines, for concentrically loaded unidirectional
fibre reinforced composite members with doubly symmetric cross-section in which

the global limit controls, have been proposed as:
P, =¢.F, (2.26)

where P, is the factored axial compressive resistance, ¢,is the resistant factor that

shall not exceed 0.85, and P, is nominal compressive resistance given by

Pn =A FE (227)

8

where A, is the gross sectional area of the member Fiis the elastic buckling stress

and may be defines as

n’E,

F.=
© L/ R

The axial shortening in the member can be estimated as

PL
A, =—72—
° A,(08E,) (2.29)

where L, is the member length, and a reduction of 20% in the average material

property E, is an empirical factor obtained experimentally.

In the previous studies the interaction constant ‘c’ has been calculated using
experimental data. Barbero (2000) described a procedure to evaluate the constant ‘¢’
from simulation results generated from Finite Element Analysis. Critical loads for
pultruded wide-flange (152x152x6.4mm) columns have been estimated using the
finite element method for various constant values of slenderness (in the vicinity of
transition length i.e., A from 0.824 to 1.013) and varying the introduced imperfections
(e/t from 1/40 to 1/2, where e is initial central deflection and ¢z is flange thickness) at
mid lengths (called the imperfection amplitude). The larger is the imperfection the

greater is the reduction of the peak load. For each value of imperfection amplitude,
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the simulation data were fitted with the empirical equation (2.6) which models
interaction by an adjustable constant ‘c’. The lines with symbols (Fig. 2.5) represent
the best fit to the data for corresponding imperfection amplitudes and corresponding
values of ‘¢’ are given in the legend. Note that this process accounts for the effect of
slenderness because all the data for various slenderness values have been represented
by a single value of ‘¢’ corresponding to a given imperfection amplitude.
Experimental data have also been include for comparison and is presented by open
circle symbols in the Fig 2.5. Interaction constant ‘c’ has been found inversely
proportional to the amplitude of imperfection (e/t). Consequently, ‘c’ can be obtained
if the amplitude of imperfections is estimated. For design purposes, an estimate of the
imperfection amplitude can be obtained from the geometric tolerance reported by the
manufacturer. Once the ‘c’ value has been established for a particular shape, (2.24)

can be used to compute the peak load for any slenderness value.
2.4 RESEARCH METHODOLOGY

The research on the buckling strength of pultruded GRP profiles has demonstrated the
application of combined experimental and analytical approaches to establish the
critical buckling loads and associated buckling modes. Experimental investigations
have been employed to obtain the load-deflection (overall lateral deflections or flange
rotations) diagrams showing the pre- and post-buckling behaviour of the structure
under the applied load. For example, overall buckling loads for pultruded GRP wide-
flange and box-section columns have experimentally been measured by Yuan et al
(1991), Barbero and Tomblin (1992), Zureick and Scott (1997), Brown et al (1998).
Southwell method (Southwell, 1932) has been applied for the linear regression of
non-linear P-A (axial Load versus central lateral deflection) plots. A mathematical
explanation of the Southwell method has been given by Tsai (1986). Experimental
methodologies not only provide the shapes of buckling modes but also measure the
modal amplitude (lateral central deflection). Further, Southwell plots provide an
overall estimate of initial imperfections. The experimental data has been used as the
primary information for constructing the analytical models and also for the validation

of the theoretical outcomes.

Analytical approaches correlate the experimental observations with the classical

theories (e.g. theory of elastic stability, CLT and static equilibrium equations) and
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provide explanations for the observed behaviour. The classical approaches i.e. Euler
formulation and differential equation for buckling of orthotropic plates has been
solved using analytical functions representing modal shapes observed in experimental
configurations (Barbero and Fu 1990, Barbero and Raftoyiannis 1993). The analytical
functions are required to satisfy the boundary conditions and modal displacements of
the buckled shapes. Similarly in the mode-interaction investigations modal
displacement fields have been analytically proposed by Barbero and Raftoyiannis
(1994) and Godoy et al (1995). Modal displacements of the three isolated modes
participating in the interaction process, in the form of strain energy have been added
linearly to obtain the displacement field of the resulting interaction mode. The
analytical investigations have been usually generalized allowing parametric studies to
establish the effects of varying material properties, geometry, loading or support
conditions. Numerical approaches (e.g. finite element method) have now become
more useful as large and complex geometries can be solved using fast and extensive
computing facilities. Theoretical investigations save time, material, and expensive
laboratory resources. Parametric studies lead to identification of principal factors
imparting improvements in the material architect and the buckling behaviour. For
example introduction of angle-plies in the material, improves the transverse stiffness
of the material and hence the local flange buckling and interaction properties (Barbero
et al 1993). However, the calibration and validation of numerical simulations are

essential.

Finite element method

Finite element method (FEM) has been widely used in the buckling analysis of
pultruded structures during the last decade. It is the numerical method which can
successfully model large and geometrically complex structures (Barbero et al, 1995).
FEM has been employed to estimate the critical buckling loads for the isolated
buckling modes (local and global). A linear elastic buckling analysis of a pultruded
wide-flange column using a finite element model has been presented by Vakiener et al
(1991). An individual flange was modelled first as an orthotropic plate (assigning
orthotropic material properties) simply supported at the loaded edges, one unloaded
edge simply supported and the other unloaded edge as free. FEM results, when

compared with those obtained from classical plate buckling analysis, demonstrated
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the validity of the approach (difference < 4%). Secondly, three whole wide-flange
sections were modelled as pin ended columns under axial compression and analysed
using FEM. Predicted critical buckling loads fell between the upper and lower bounds
estimated by the classical simply supported and fixed flange solutions. FEM results
were very close (difference < 5%) to the results obtained using web-flange interaction
solutions (Barbero and Raftoyiannis 1990, Yoon and Zureick 1992). The actual

observed number of half waves was the same as the number of half waves predicted.

FEM has been used to model GRP profiles like wide-flange, angles and box-sections
with and without extended flanges (Barbero et al 1995). Full scale models of pin
ended columns under concentric and eccentric loads were solved for the critical
buckling loads. FEM results were found to provide very close correlation to that of
computed by plate buckling analysis. FEM results of Vakiener (1991) were
confirmed, analysing the same sections with different loading conditions. In the
analysis performed by Vakiener (1991), point loads of different intensities applied
along the width of flanges, while in Barbero et al (1995) model, a uniform loading on
all nodes along the flange width were applied. This close correlation has provided
confidence to propose that finite element methods can be used to model the complex
boundary and loading conditions and solved to produce the accurate results. It has

been concluded:

“With the increased capacity of present day workstations and personal computers, it
is now possible to solve large problems without having to assume analytical
approximations for prismatic members. Furthermore, the finite element method easily
allows the modelling of non-prismatic problems, complex boundary conditions and

geometries. The accuracy of the results can be improved with mesh refinement.”

(Barbero et al. 1995)

Finite element method has been employed for the post-buckling analysis of the
pultruded columns (Godoy et al, 1995). Post-buckling analysis is required to establish
the nature of the critical state (stable or unstable bifurcation), classification of
secondary paths and sensitivity of the emerging secondary and tertiary paths. The
post-buckling solution has provided information on the mode-interaction in columns
of intermediate length. Imperfection sensitivity and mode interaction of the pultruded

columns have been assessed without having to choose appropriate analytical
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functions. A perturbation technique (incremental loading) was used to draw post
critical analysis to capture the mode-interaction during the nonlinear finite element
analysis. The authors describe the FEM as a comprehensive tool for stability analysis

of the composite pultruded profiles,

“However, engineering problems often require the modelling of a rather complex
geometry, and the finite element method has been the most convenient tool to achieve
this in the last three decades. Thus, it is most desirable to have finite element

2”

solutions adapted to the needs of stability analysis.
(Godoy et al, 1995)

An experimental and numerical study to measure the buckling loads of pultruded GRP
I-sections, when used as beam-columns and to construct a curve for their design has
been reported by Barbero and DeVivo (1999). FEM has been used to model numerous
load eccentricities and slenderness which could not practically be possible due to
equipment limitations and experimental set up. For example, the load eccentricity of
25.4mm could only be applied by the testing arrangement used in the study. The
buckling loads for other eccentricities were predicted using finite element simulation.
Furthermore, some loading configurations are simply not possible to apply. For
instant, application of a constant end-moment (due to beam bending in frames), while
the axial load increased to failure load, can be introduced using finite element
simulation, yet would be very difficult to apply in physical tests. Finite element
simulation and statistical methods have been used to develop resistance factors that
represent a lower bound to the expected beam-column load of wide-flange shapes. For
other shapes the procedure described here can be used to redefine the coefficients in

the resistance factors, using the relevant section properties.

A study to establish a relationship between column imperfection and the interaction
constant using finite element method has been reported by Barbero (2000). Buckling
and post-buckling of pultruded columns (152x152x6.4mm wide flange sections) have
been modelled using a finite element code (ABAQUS 1998). For short and long
columns finite element models closely predicted the bifurcation load and the
curvature of the post-critical path, as long as the local and Euler bifurcation loads
were far apart. For intermediate lengths, a linear combination of the isolated modes

could predict a deformation field similar to the experimental deformation data.
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“Finite element modelling provides the engineer with a powerful tool that consistently
predicts the physical behaviour of a particular structural member without having to

conduct numerous laboratory tests.”
(Barbero, 2000)

“Work must be undertaken to find out if the finite element method can be used to
determine the failure load that would occur in practice (assuming the column

conditions remain unaltered).”
(Mottram, 2000)

It has also been demonstrated that a variety of commercial FEM codes are available
now enabling the engineers and designers to perform many types of analyses
including eigenvalue, linear and nonlinear (both geometrically and materially).
Different types of material properties, boundary conditions and loading schemes can

be assigned to different components of the structures.
2.5 COMPRESSION MATERIAL PROPERTIES

“Properties for pultruded materials are usually determined by tests in directions
parallel and perpendicular to the direction of the pull. Data in the form of

characteristic values are required for a limit state design approach
(Eurocomp design code)”.
(Mottram, 2000)

Compression testing of polymeric composite materials is extensively reported in the
literature. However, the present review is limited to the testing of material in GRP

pultruded structural profiles.

Design manuals prepared by manufacturers of the pultruded GRP structural profiles
provide values for the compressive properties of pultrudes (Strongwell, 1989). These
properties are the minimum values representing a group (members with similar
constituents, fibre volume fractions and material configurations) of pultrudes and are
intended to be used for structural design purposes. These properties have been

measured in accordance with ASTM D695% standard test using coupons cut from the

# ASTM D695: “Standard Test Method for Compressive Properties of Rigid Plastics.”
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pultruded profiles and physically testing them in the lab. The manufacturers tend not
to publish the test data, details of the size of the material specimen tested, stress-strain
curves, failure modes or details of any statistical analyses. In the ASTM D693 test, a
rectangular prismatic material specimen is loaded in axial compression. A steel fixture
(called as compression tool) holds the specimen vertically and facilitates the axial
load application. The steel fixture transfers the compressive force directly to the end
faces of the test specimen (end loading). Specimen ends should be squared and kept
parallel with the platens of the compression machine for uniform loading. This test is
basically approved for rigid plastics and a thick prismatic specimen (length is twice
the principal width) is recommended (ASTM D695M-91)*, For thinner specimens
(3mm or less) a supporting jig is required or a different specimen shape is used. This
method is not recommended for resin-matrix composites reinforced with oriented
continuous, discontinuous or cross-ply reinforcements (Note 1 in the ASTM D695M-
91). In the absence of a standard test method for pultruded material, different

researchers have used different test methods.

Mottram (1991) measured the compressive properties of pultruded GRP I-beams
(102x51x6.6mm). Short parallel-sided and parallel-ended (nominally 40x20x6.6mm)
material specimens obtained form flanges and webs of I-beams, were compressed
between parallel high strength steel platens (end loading). No compression tool was
used. The stroke rate of the compression machine was kept at 0.0lmm/s. The
measured ultimate compressive strengths in longitudinal direction were much higher
than given in the design manual (design value). However the longitudinal ultimate
strengths for web-specimens were lower than for the flange specimens (depending on
fibre volume fraction). In the transverse direction, measured compressive stresses
were close to the design value. Failure modes were undesirable (not within the central
gauge length) and most specimens failed with end crushing or brooming (splitting of
CFM layers and unidirectional roving). Transverse specimens (51mm long instead of
40mm) failed in a mixed mode of end crushing, brooming and buckling, giving a

lower ultimate load. The specimens were obviously not restrained against end

8 ASTM D695M-91: “Standard test Method for Compressive Properties of Rigid Plastics [Metric].”
(Revised in 1991).
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brooming in the absence of compression tool. Neither compressive stress-strain

curves nor information as the measurement of compressive moduli were reported.

Turvey (1992) used the ASTM D3410™" method to measure the compressive
properties of GRP pultruded plate. A flat strip of material having a constant
rectangular cross-section cut from the pultruded sheet was used as a test coupon. The
test coupon was inserted in a steel fixture with a pair of rectangular steel wedge-grips
at each end. The fixture (gripping the specimen) was placed vertically between the
platens of the testing machine and loaded in compression. The compressive load was
introduced into the coupon through shear at the wedge grip interface. Three sets of
specimens with widths 15mm, 25mm and 35mm and lengths of 140mm to 155mm
and a thickness of 6.4mm were tested in this study. Gripping length was 65mm on
each end leaving a central gauge length of 10 to 25mm. Aluminium tabs, 1.5mm
thick, were bonded on both sides gripping lengths to avoid crushing under the
compressive action of the grips. The coupons failed within the gauge lengths as
required. Both compressive stresses and moduli were measured and reported. The
method uses a specially designed fixture and wedge grips, the latter requiring a high
level of technical skill to avoid wedge-seating problems (ASTM D3410). The method
may be expensive if specimens with different thickness are required to be tested, as
for every thickness, separate grips are needed. Another disadvantage is the use of long
specimens, which are not always possible to cut from pultruded profiles due to
dimensional constraints. Fixing of aluminium tabs is a technical and time-consuming
process, which may further increase the expense of the test methodology. For thicker
specimens high transverse compressive stresses applied on the surfaces of the tabbed

specimen can introduce errors in the results.

Wang and Zureick (1994) used ASTM standard D3410 to determine the compressive
properties of GRP pultruded WF-beams (102x102x6.4mm size), with one exception;
the width of the coupon was 38mm as opposed to the maximum 25mm width given in
the standard. The decision to use a wider coupon was based on a study made by the
same authors (Wang and Zureick, 1994A) to measure the tensile properties of the

same material. Longitudinal compressive strain in the coupon was measured using a

*** ASTM D3410: “Standard Test for Compression properties of Polymer matrix Composite Materials
with Unsupported Gauge Section by Shear Loading.”
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single uniaxial extensometer, which was removed at a stress level of about one-half of
the expected ultimate strength, to avoid damage. Compressive moduli were estimated
from stress-strain curves (not up to failure loads) for the coupons, while the ultimate
strength was calculated from the load recorded by the machine at failure of the
coupon. A similar study using the ASTM standard D3410-95M (revised counterpart
of D 3410) method to determine longitudinal compressive properties of pultruded
GRP I- and box-beams has been reported by Zureick and Scott (1997). Prismatic
material coupons, whose lengths (not given) were determined from the classical
stability analysis to avoid buckling, were used in this study. During preliminary tests,
tabs were found unnecessary and coupons were tested without tabs using hydraulic
grips. Coupons failed within the gauge lengths confirming to the desired mode of

failure.

Tomblin (1994) measured the compressive properties of pultruded GRP cylindrical
rods using a non-standard end loading method. The cylindrical specimen was
encircled by a steel ring attached to the bottom plate of a compressive testing machine
to position the specimen for axial loading and to confine it against end brooming. The
steel ring was not thick and whole length of the specimen acted as the gauge length.
The appropriate specimen length was calculated using the classical formulation for
global buckling, with a safety factor of two. Favourable failure modes (failure in the
central gauge length) were obtained. Tomblin (1994) observed that the method used
for a specific compression-testing programme depends upon the objective of the
particular investigations and no universally accepted test configuration exists for

characterising the compressive properties of composite material.

Mottram (1994) tested GRP pultruded sheet (6.4mm thick) using a non-standard
method, as none of the existing standard methods has been specified for the pultruded
material. A special test rig was designed for the axial compression of a flat
rectangular material specimen on its ends (end loading), essentially a modified
version of compression rig used by Barker and Balasundaram (1987) and Haeberle
and Matthews (1990) to measure the compression properties of carbon fibre
reinforced plastics (CFRP). The salient features of the test rig are shown in Fig. 2.8. A
high precision die set consisting of two (one upper and one lower) parallel plates,
comprises the rig. The lower plate is fixed while the upper plate can move in the

vertical direction, guided by four vertical columns using linear bearings to ensure
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frictionless and concentric loading. Each plate is fitted with an adjustable mounting
block into which either end of a rectangular straight-sided specimen is inserted. The
internal faces of the adjustable mounting blocks are smooth enough to minimise the
transmission of any transverse load to the specimen and also confine the specimen
avoiding end-brooming and end splitting. The die set is fixed (screwed) to the lower
platen of the compression-testing machine while load is applied at the centre of the
top plate. The GRP specimens used were 70mm long, 20mm wide and 6.4mm thick.
Of the 70mm overall length, 25mm on each side is inserted in mounting blocks
leaving on open gauge length of 20mm. Strain gages were bonded to the specimen at
the centre of gauge length to measure the compressive strain. Some specimens were

strain gauged on both sides to enable the identification of any bending or buckling.

Typical stress strain curves, measured compressive properties, failure modes and
statistical analyses are included in the paper. The measured compressive strengths
using more than fifty coupons obtained from the same GRP material (sheet) in
longitudinal direction range from 210 to 343 MPa. This large range of scatter in the
strength values has been attributed to the non-homogeneous placement of roving
bundles in the material. The author (Mottram 1994), suggested that five specimens in
a batch required by the ASTM D3410 are not enough to estimate a representative
value of the material property and that the test method used in this study (other than
the ASTM standards) is equally valid method.

The test method proposed by Mottram (1994) has the following advantages:
1. Simple and shorter rectangular prismatic material specimens

2. No tabs, adhesives or time consuming preparation procedures required
3. No expensive wedge shaped grips or size dependent fixture required

4. Specimen ends directly loaded in axial compression. Hence no introduction of

transverse compression into the strain measuring (gauge-length) area

5. Simple die-sets to insert specimen, which is screwed to base platen of

compressive machine to ensure alignment for axial loading.
6. Adjustable mounting block to accommodate variable specimen thickness.

7. Free and frictionless vertical movement of the top plate guided by four posts,

using linear bearings, ensure concentric loading
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8. Screw-tight lateral supports to confine the specimen and avoid end brooming.

2.6 IN-PLANE SHEAR PROPERTIES

ASTM Designation D5379/D5379M-93'1 is the standard test method recommended
for the determination of in-plane shear properties of the composite materials
reinforced by high modulus fibres. Note 1 of the designation D5379/D5379M-93

states

“The shear test concept was originally developed without reference to fibre direction

for use on isotropic materials such as metals or ceramics.”

The method, originally introduced by losipescu (1967), can produce failure of
specimen under the action of pure shear stresses, with maximum and uniformly
distributed values of shear strains at the central test section. The test has been
successfully used for measuring shear properties of steel, aluminium alloys and welds
(Iosipescu, 1967). Rectangular specimens cut from the metals were loaded in pure
shear through a specially designed steel fixture. The original specimen used by
Tosipescu was notched on all four sides and through an extensive photo-elastic study,
the author found a region of maximum and uniform pure shear stress in the central

test section (Iosipescu, 1967, Herakovich and Bergner, 1980).

In 1977 the Composite Materials Research Group of the University of Wyoming USA
adopted the procedure to test composite materials. A double v-notched rectangular
coupon was used for the measurement of the shear properties of the composite
materials with and without fibre reinforcements (Walrath and Adams, 1983). The
schematic of the test coupon and fixture used by the group is shown in Fig. 2.9. The
test configuration (coupon geometry and fixture loading) achieves a state of pure
shear loading at specimen mid-length by application of two counteracting moments
produced by two force couples. These moments exactly cancel each other at the mid-
length of the specimen producing a pure shear loading state. The shear force and
moment diagrams of the schematic demonstrate a region of pure shear at the centre
(Fig. 2.10). With the introduction of 90-deg notches on both longer sides of the test

specimen, the shear-stress distribution across the middle cross-section is altered from

" ASTM D 5379/D 5379M-93: “Standard test method for Shear Properties of Composite Materials by
the V-notched Beam Method.”
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the parabolic shear-stress distribution (evidenced in constant cross-section beams) to a
constant shear-stress distribution. The notches do not cause any stress concentration at
the centre, as the sides of the notches are parallel to the normal stress directions at that
point in the specimen (Walrath and Adams, 1983). Therefore the shear stress
distribution at the central cross-section is simply equal to the shear force divided by
the net cross-sectional area between the notches. Also, the notches create a central test
section with a minimal cross-sectional area, where failure may occur due to maximum
shear stresses. The test was applied to measure the shear properties of a wide variety
of the composite materials, ranging from unidirectional reinforced glass/epoxy and
graphite/epoxy to chopped-glass fibre-reinforced polyester sheet moulding

components (SMC), and even materials such as wood and foam.

Sleptz et al (1978) adopted a slightly different loading scheme (Fig. 2.11) to test a
similar double v-notched composite material coupon and adopted the title
‘asymmetrical four-point bend (AFPB) test’. The fixture is simpler than the Wyoming
fixture, but under this arrangement the induced shear stress depends on the location of
the loading-points. The test was subjected to numerical analysis using finite element
method to investigate the effect of notch geometry on the shear stress distribution
achieved at the central notched section of the coupon. It was found that 90-degree
notches produce a maximum and uniform shear stress distribution at the mid-section.
The experimental study was also conducted to compare with numerical predictions for
different notch geometries. Ultimate shear strengths were not achieved experimentally
due the material failure under the loading points. The test was used to measure the
shear stiffness of many composites with different 1ay up configurations. Although, the
test fixture is simple in fabrication and use, but is limited to the determination of shear

modulus only.

Herakovich and Bergner (1980) used an alternative loading arrangement (Fig. 2.12).
The ends of a flat rectangular double v-notched composite coupon are gripped (either
bolted or bonded) in steel fixture and then loaded in tension. The Finite element
method was used to investigate the suitability of this arrangement to measure the
shear properties of composites with different lay-up configurations ([0], [0/90], [+45]
and [0/90/145]). It was numerically established that a uniform, pure shear region
exists in the test section of a flat v-notch coupons, and a laminate with fibres parallel

to the axis between the notches is most desirable for determining the ultimate shear
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strength (showing pure shear failure mode) of unidirectional materials. The findings

are in agreement with those of Slepetz et al (1978).

Adams and Walrath (1987) made a detailed finite element study of the Wyoming test
(Walrath and Adams, 1983) to investigate the stress states in the specimen under the
influence of the specific test fixture configuration. The influences of coupon
parameters including notch depth, notch angle, and notch-root radius were also
investigated. Finite element analyses indicated that the shear stress distribution was
heavily concentrated near the edge of the notches, even though the loading surfaces
were flat and extended over a considerable length remote from the notch. The normal
stresses in the specimen length direction were low, indicating minimal bending
effects, but the normal stresses in specimen width direction, induced by the inner load
points did intrude into the gauge section. As a result, in the redesign, these loading
points were moved outward. Another disadvantage considered was the use of a
relatively small specimen. The small specimen meant that the region of constant shear
strain between notches was small, thus making shear strain measurement more
difficult. Also loading of a specimen in a small fixture was difficult, and the specimen
was not fully exposed for inspection during a test. It was decided to increase the
specimen size by 50 percent in the redesigned (termed ‘second version’) Wyoming
fixture. The finite element investigations for optimum specimen geometry concluded
that for orthotropic materials, the greater (< 90°) notch angle reduced the notch-root
shear-stress concentrations. However, the effect was not significant for unidirectional
composites. Furthermore, the greater the notch angle, lead to a reduction in the notch
depth and hence the uniform distribution of the shear stresses in the notched section.
A notch depth equal to 20 to 25 percent of coupon-width, with a notch angle of 90-
deg was recommended. The analysis also demonstrated that the stress state obtained
with an Tosipescu shear test is truly pure shear in the test region, and that the test is a
viable method of measuring both shear strength and shear modulus of anisotropic as
well as isotropic material. No experimental studies were included to produce test data
using the redesigned coupon and fixture for comparison with the original Wyoming
test configuration. However, the revised version of the Wyoming test configuration is
now the part of the ASTM standards for the measurement of shear properties of the
composite materials (ASTM D5379/D 5379M-93).
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Lee and Munro (1986) evaluated different in-plane shear test methods for advanced
composite materials by the decision analysis technique, considering many factors
including cost of fabrication, cost of testing, producibility of the test and accuracy of
experimental results. The losipescu test method has been rated as one of three best

testing methods been used for the composite materials.

A detailed numerical and experimental investigation was conducted by Spigel et al
(1987), to analyse and compare the performance of Wyoming and AFPB loading-
fixtures with respect to loading positions, notch angles and notch-root radii. A linear-
elastic finite element analysis was used to demonstrate that both the Iosipescu and
AFPB shear test produce a region of uniform shear stress in the central notched
section. Notch geometry and load locations were found to significantly influence the
magnitude and the uniformity of the shear stress in this region. The findings are
similar to those of Sleptz et al (1978). Experimentally, a 90° (without radius) notch
gave the best results with both fixtures. It was concluded (most important from this
study’s point of view) that the Iosipescu and AFBP test fixtures are essentially the
same test with the difference that in AFPB test, induced shear stress at the notched
section is a function of the loading point location. The criterian for the selection have
been the time and cost spent for preparation and test and the simplicity and ease of its
use. The authors found the losipescu fixture was difficult to use because of the
necessary strict dimensional tolerance to prevent bending of the specimen. The AFBP
fixture was found to be easier to use, to provide greater exposure of the test section
for monitoring and measuring the strains, but required tabs to prevent crushing of the
specimen under the round loading rods. Abdullah and Gsacoigne (1989) concluded
that even the revised (modified) version of Iosipescu fixture produced large
undesirable bending in the specimen, where as, the AFPB fixture gave a symmetric

distribution in the gauge section.

ASTM shear coupon and Wyoming fixture has been used by many researchers in the
determination of shear properties of pultruded GRP structural profiles. Bank (1990)
used the second version of Wyoming test fixture (Fig. 2.9) to measure the shear
modulus and ultimate shear strength of specimens extracted from pultruded glass-
fibre reinforced wide-flange beams. Shear strains were measured using three element
strain rosettes. From the plots of stresses and strains, shear properties were measured.

Sonti and Barbero (1995) measured the shear properties (modulus and ultimate
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strength) of pultruded composite (GRP) I-beam material using the Iosipescu test
method. Coupons (ASTM standard size) were cut from the flanges and webs of the I-
beam. Strains were measured using *45-degree two-element strain gauges bonded at
the centreline of the coupon between the notches. Graphs between applied shear stress
and measured shear strain were plotted to abstract the shear properties. A considerable
amount of scatter in the results was found which was attributed to the fact that test
area was very small and material was not uniform. The use of an asymmetric four-
point bending test is reported by Zureick and Scott, (1997) to measure the shear
properties of pultruded GRP I- (102x102x6.4mm and 152x152x9.5mm) and box-
sections (76.2x76.2x6.4mm and 102x102x6.4mm). The test was performed in
accordance with ASTM D5379 with one notable exception; the coupons used were
bigger than given in the standard. The bigger coupons were used to account for the
degree of inhomogeneity of pultruded material. Tests were performed on coupons
measuring 203mm in length and 38 mm in width with a 90° notch at mid-span of the
longer sides to a depth of 6.4mm. The in-plane shear modulus was taken as the chord
modulus for the region between 1,000 and 6,000pm (as required in ASTM procedure)

on the stress strain curve.

It is concluded from the above discussion that a double V-notched shear coupon is
capable of measuring in-plane shear properties of the composite materials. Size of a
standard shear coupon has been recommended in the ASTM designation D5379/
D5379M-93, and should be adopted where ever available. Further, different sizes of
test coupon can be adopted depending upon the degree of non-homogeneity and size
of the section available. However, the suitability of other sizes may be established
using theoretical or experimental investigations. Numerical investigations have been
opted by many others as parametric analysis may be performed using these
techniques. Many researchers have successively used this coupon configuration for
the experimental measurement of shear properties of the pultruded materials. It has
also been demonstrated that Iosipescu and AFBP shear fixtures produces the similar
pure shear loading and stress distribution at the central test section of the v-coupon.
However, doublers (tabs) have been recommended to avoid the material crushing of

the coupon under the fixture’s loading points.
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CHAPTER 3

DETERMINATION OF MATERIAL PROPERTIES

3.1 INTRODUCTION

Material properties of two pultruded GRP box-section structural profiles have been
established analytically and experimentally. Analytically, four orthotropic material
constants (Ex, E,, Gy and vy) have been estimated using micromechanics and
classical lamination theory. Coupons extracted from the sides (walls) of two GRP
box-sections (51x51x3.2mm and 44x44x6mm) have been tested in the laboratory to

measure these properties.

In-plane shear properties (modulus and ultimate strength) have been measured in both
longitudinal and transverse directions using the V-notched beam method (ASTM
D5379M-93). A standard (ASTM) shear-coupon (76x20mm) is available only in the
longitudinal direction due to dimensional constraints. A short coupon, similar in
geometry to the standard ASTM coupon, is proposed to measure the transverse
properties. The most appropriate geometry of the proposed short coupon has been
established from a parametric (geometry) study using the finite element method
(FEM), with the best geometry defined as that with the most uniform shear strain
distribution at the central test section of the coupon. For comparison, FEM models of
the standard ASTM shear coupon have also been analysed for shear strain distribution

across the central section.

Asymmetric four point bending (AFPB) steel fixtures have been developed to load the
ASTM and short coupons in shear. Longitudinal properties of the materials have been
measured experimentally using standard and short coupons in the longitudinal
direction for validation against the short coupon performance. Once validated through
comparison of numerical and experimental evidence, short coupons have been used to

measure the transverse material properties.

Compression properties have been measured using material coupons in the
longitudinal direction only. The tests were performed by Mottram using a specific
compression test rig (Mottram, 1994). Tensile properties have been assumed equal to

compression properties (Bank et al 1994, Zureick and Scott 1997).
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3.2 THEORETICAL PREDICTIONS

GRP box-sections (Plate 1.5) manufactured by the pultrusion process comprise fibres
and fibre mats (impregnated in resin matrix) arranged in layers. The box-sections
consist of four composite walls (webs), having the same material architect and layer
thickness. The typical layer architect of the two pultruded GRP box sections
(51x51x3.2mm and 44x44x6.0mm) is shown in Fig. 1.1. Theoretically, each wall has
been simulated as a laminate (laminated plate) of specified thickness, consisting of a
number of laminae or plies (thin layers) with varying thicknesses and properties
(Barbero 1991, Davalos et al 1996, Nagaraj and GangaRao 1997). Mechanical
properties of the GRP material (of box-sections) depend on the properties of the fibres
and matrix, fibre volume fraction, and the architecture of fibres in the laminae. The
fibre volume fraction in each lamina is the ratio of volume of fibres present to the
total volume of lamina. Details of the architect, types and amount of fibres, and fibre
volume fraction in each layer, for the box-sections, under investigation, have been
provided by Mottram (1999). These details have been used to calculate the weight of
fibres and matrix (per meter), fibre volume fractions, layer thickness, for each lamina
(layer), and are presented for 51x51x3.2mm and 44x44x6.0mm box-sections in
Tables 3.1-3.2. The mechanical properties of the constituent materials i.e., glass-fibre

and the vinylester matrix, (Fibreforce Ltd) are given in Table 3.3.
MICROMECHANICAL APPROACH

In micromechanics each wall of the cross-section has been assumed as a laminate
formed by combining a number of thin laminae. A lamina either contains
unidirectional roving or randomly oriented filament mats combined using a matrix. A
layer with unidirectional fibres as reinforcement exhibits orthotropic properties (e.g.
plane roving), whilst a lamina containing fibre mats behaves as isotropic (e.g. veil,
CFS, and MRS layers in Fig. 1.1). For each layer, Young’s modulus in the
longitudinal direction (fibre direction) has been denoted by E,, in the transverse
(normal to fibre direction) by E,, the major Poisson’s ratio by v;,, and the in-plain
shear modulus by G, For a unidirectional (plane roving) layer, E;, E,, v, and G, are

calculated from equations 3.1 (Jones 1975).
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E, =W, xE;)+(V,xE,)

E - (EfxEm)
POV, xE)+(V, xE )]
vy, =V, xv, )+, xv,) 3.1
Eyv,
V. =
yx Ex
c (G, xG,)

» .G, +V,G,)

where Vjis the fibre volume fraction and Ey the elastic modulus of fibres along x-axis,
V,, the volume fraction and E, the elastic modulus of matrix, 1 and v, are the
Poisson’s ratio of the fibres and matrix, Gy and G,, are the shear modulus of the fibres
and matrix respectively. Using the information provided in Tables 3.1-3.2, and Table
3.3, the material properties for the plain roving (PR) lamina have been calculated and
are reported in Table 3.4. The outer layer ‘veil’ contains polyester fibre (instead of
glass fibres), added for the protection of the outer surface, and assumed not to

contribute towards the stiffness. It has, therefore, been excluded from the calculations.

CFM and MSR laminae are made up of continuous filament mats in which fibres are
randomly oriented. They are, therefore considered isotropic layers. Approximate
mechanical properties for these layers have been computed using the following

equations derived by Akasaka (1974):

E=§Ex+—5-E
g " 8
G =1p 41
w =gt Es (32)
v=£—1
2G

Where E; and E, can be determined by the mechanics of materials approach given in
(3.1). Substituting the appropriate values from Tables 3.1-3.2 into (3.1) and using
these results in (3.2), the isotropic elastic properties of the CFM and MSR layers have
been calculated (Table 3.4).
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Having estimated the material properties of each lamina using micromechanics,
classical lamination theory ‘CLT’ has been used to evaluate the laminate properties.
The main assumptions made in micro-mechanics approach are:

¢ the laminates consists of perfectly bonded layers (laminae),

e cach layer is a homogeneous material with known effective properties,

e properties of a layer can be isotropic, orthotropic, or transversely isotropic.

e cach layer is in a state of plane stress.
It is recognised that the ensuing equations relate only to state of plane stress and not
bending. In the latter case the positions of the layers with respect to a neutral axis
would need to be used to define an equivalent bending stiffness. However, the
material property estimates derived here are to be used in a finite element simulation
in which facets are used to construct the complex box section. Global bending
associated with overall buckling is fully represented by this approach. Local buckling
in which a facet of the section deforms is approximated in the post-buckling range,
and fully simulated in the pre-buckled state. As the latter is the focus of this research,
the proposed CLT approach is appropriate, therefore. This also applies to the adoption

of experimentally obtained plane-stress elastic constants.

The stress-strain relation for a single orthotropic lamina in a state of plane stress
where the principal material axes are aligned with the x-y system can be derived from

the generalised form (Jones, 1975) as:

Ox Q, Q. 0 &
o, 1={Q2 Qp O €, (3.3)
Txy 0 0 Q66 }/xy

where the stiffness components 0,,,0,,,0,,,0q are given by engineering constants

of the laminate in three mutually orthogonal directions as:

E, E
Qn PR sz =—7

1-v,v,’ 1-v,v,’ (3.4)
O, =v, 05, =v,0, Qe = G,

The strain-stress relations in terms of compliance ([S]=[Q]") are given by,
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y (=S S» O o, 3.5
-~ 0 O Ses 7,

where the compliance components S;1, S12, S22, S¢s In terms of engineering constants

are,
1 1
S =—, S =—
n Ex 22 Ey
(3.6)
ny Vyx 1
SIZ =—= 1] S66 =-—
E. E G,

The engineering properties (E;, E), Vi, and Gy) of the section-wall (laminate) are

computed by assembling the stiffness coefficients @, (of laminae) into the

extensional stiffness matrix [A] (extending the single lamina case to N laminae). The

coefficients 4, of the matrix [A] are calculated as (Jones 1975),

4; =Z(Q—ij)ktk 3.7
k=1

where ij = 1,2,6 and t is the thickness of the k™ ply.
[A] is the in-plane stiffness matrix relating strains to resultant forces.
Similarly [S] is replaced by [a] with the [a]=[A]_ldeﬁned as the compliance matrix

of the laminate.

Using the law of micromechanics, the material properties of the laminate of thickness

N
¢ (¢ = t, ) are obtained as (Davalos, 1996):

k=1

Ex = 1 s E = 1 ,
a, xt Y oay, xt
1 (3.8)
G, = , Vv=-a,xE xt
Qs X1t

The stiffness matrix [A] is calculated for 3.2mm thick laminate using the layer

properties listed in Table 3.4 as
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899 13.7 0
[4]=[137 359 0©
0 0 121

and matrix [A] for 6mm thick laminate as;

197 212 0
[4]=[212 636 ©
0 0 236

The compliance matrix, [a] which is the inverse of [A] , becomes:

0.0118 -0.00452 0
for the 3.2mm thick laminate [a]=]-0.00452  0.0296 0 |,and
0 0 0.0824

0.00529 -0.00193 0
for the 6mm thick laminate [a]=]-0.00193  0.0160 0
0 0 0.0426

The quantities in the compliance matrix give the box section elastic moduli, E;, E,,

Gy, and v,y by using the following equations (Davalos et al 1996).

E, = L 1 =27.3 kKN/mm?
ot 0.0118x3.2

1 1 ,
E, =—2= =10.9 kKN/mm 3.9
Y ot 0.0296x3.2 (3.9)

G, = L : =3.91 kN/mm?
oget 0.0824x3.2

v,y = aytE, = (0.00452x3.2x27.3) = 0.38

where ¢ = 3.2mm is the box section wall thickness. For the 6mm thick box sections,

the elastic constants are calculated as;
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Ex — =
a,f 0.00529x6

® = o 0.0426x6

1

1 1

» "oyt 0016%6

1

=31.5 kKN/mm?

=10.4 kKN/mm?

=3.92 kN/mm?

v, = aptE, = (0.00193x6x31.5) = 037

(3.10)

The results are summarised in Table 3.4. The outcomes (mechanical properties) of

the micro-mechanical study are used as guidelines for the subsequent finite element

studies, to analyse the models of short coupons proposed to measure the transverse

properties of the composite material.

Table 3.1 Laminae detail of 51x51x3.2mm GRP box-section.

Weight of | Weight of | Volume of Layer Thickness
Layer | Fibre (gm) | Matrix (gm) | fibre (%) volume in of layer
(Wp) (Wm) (Vy) wall (%) (mm)
Veil 1.05 2.95 24 2.1 0.06
CFM 54.4 67.8 28 49.9 1.61
PR 110 32.8 62 45.8 1.46
MSR 4.8 1.83 56 22 0.07

Table 3.2 Laminae detail of 44x44x6.0mm GRP box-section

Weight of | Weightof | Volume of Layer Thickness
Layer | Fibre (gm) | Matrix (gm) | fibre (%) volume in of layer
(Wp) (Wm) (Vo) wall (%) (mm)
Veil 0.975 275 24 1.40 0.08
CFM 579 72.0 28 385 2.31
PR 194 577 62 58.5 3.51
MSR 4.8 1.87 56 1.58 0.10
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Table 3.3 Properties of the constituent materials

Material Tensile Shear Tensile Poisson | Density
Modulus E | Modulus G | Strength Ratio v p
(kN/mm?) | (kKN/mm?) | (N/mm? (gm/cm®)
E-glass 72 (E)) 29 (Gy 3400 0.25 (v) 2.56
fibres
Vinyl-ester 3.5(En) 1.6 (G) 0.35 (vin) 1.24
matrix
Table 3.4 Calculated material properties for each lamina
Layer E; (KN/mm®) E, (kN/mm®) Viy Gy
CFM 11.5 11.5 0.43 4.01
PR 46.0 8.53 0.29 3.86
SMR 20.4 20.4 0.43 7.11
Table 3.5. Estimated elastic properties of the box-sections
Box-section | Er (KN/mm®) | E,(KN/mm°) Vyy Gy
51x51x3.2mm 273 10.9 0.38 3.91
web or flange
44x44x6.0mm 31.6 10.4 0.37 3.92
web or flange
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3.3 IN-PLANE SHEAR PROPERTIES

The shear coupon described in ASTM D5379/D5379M specifications (referred to as
the “ASTM coupon” hereafter and shown in Fig. 3.1) is 76mm (3.0 in) long, 20 mm
(0.75 in) wide and may be of any thickness up to 12.7mm (0.5 in). The ASTM coupon
has two 4mm deep 90° v-notches cut symmetrically along the two longer sides at
mid-length. The notches have a dual purpose, creating a test-section (smallest across
the notch tips) for failure at the centre, and also converting the parabolic shear stress
distribution (typical in a rectangular beam section) to a uniform stress distributed
across the test section (Walrath and Adams 1983, ASTM D5379/D5379M-93). The
fixture required to hold the coupon in position and to load it in a state of pure shear,
should be a four point asymmetric flexure fixture as recommended in the ASTM
testing procedure. The fixture described in the ASTM specification was developed by
Adams and Walrath (1987) and referred to the earlier work of Iosipescu (1967) and
Arcon et al (1978). The coupon loading, using this fixture, has been idealised as
asymmetric flexure, as shown by the shear force and bending moment diagrams in
Fig. 2.10 (ASTM D5379/ D5379M).

A relatively simpler, more intuitive and easier to fabricate shear fixture has been
proposed by Sleptz et al (1978) denoted as the “asymmetric four-point bending”
(AFPB). In this type of fixture, the shear loading at the central test-section is not equal
to the applied load, but depends upon the distance between the loading points. The
main draw back of the AFPB fixture is the specification of round loading bars (Fig.
2.11), which cause local crushing of the coupon edges under high compressive

loading.

A similar loading scheme has been adopted for the development of an AFPB type
fixture for the present study, keeping in mind the simplicity of fabrication. A detailed
sketch of the AFPB shears fixture (made from steel) showing components and
dimensions has been provided in Fig. 3.2, and a schematic of ASTM coupon loaded in
the AFPB fixture in Fig. 3.3. The round loading bars in the new fixture have been
replaced by rectangular broad faced bars to spread the compressive loading over a
wider area. The cross-sectional dimensions of the loading bars (and hence the contact
area) have been calculated from the expected maximum compressive load (a function

of material’s shear strength and position of the loading bars) and ultimate compressive
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(bearing) strength of the coupon material. The minimum unsupported coupon length
at the centre has been kept to 13mm to comply with the recommendations of standard
specifications (ASTM D5379/D5379M). The behaviour and performance of the
ASTM shear coupon loaded by the proposed AFPB type fixture is investigated using

the finite element method.

Finite element models of the ASTM type shear coupon without and with the AFPB
fixture are analysed for the shear stress/strain distribution at the coupon’s central test
section. The validity of the performance of the AFPB fixture is established by
examining the stress/strain distribution at the central test section, under a known
applied load. The effects of material orthotropy on the shear stress/strain distribution

across the central test section are also investigated.

A short shear coupon geometry is proposed to measure the transverse shear
properties. Having a similar shape to the ASTM shear coupon, the short coupon has a
reduced length of 40mm, constrained by the dimension in the transverse direction of
the 44mm box-section. The test section of the coupon should provide a region of pure,
uniform shear stress, which is uniquely related to the applied load. The central
notched section should also exhibit a uniform and predictable shear stress, whilst
stress concentrations due to the load introduction and free edge effects should be
minimal in the proposed coupon. The finite element method provides a relatively
efficient tool for assessing the configuration of candidate specimens most adequately
meeting these requirements. The analysis goes some way to predicting the effects of
load locations and notch parameters on the stress/strain distribution across the central
notched section of shear coupons. FEM modelling and analysis has been conducted
using ‘LUSAS’, (v.12.3, Finite Element Analysis UK (FEA)). The adequacy and
suitability of the short shear coupon has been established by comparing the
consistency of numerical results with the predicted distribution of the ASTM coupon.
The short configuration is also used to measure experimentally the longitudinal shear
properties, in-order to compare and validate the performance of short coupon with the
standard coupon. Following validation, short coupons have been used for the

experimental measurement of the transverse shear properties of the GRP box profiles.
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3.3.1 ASTM SHEAR COUPON AND AFPB FIXTURE

The ASTM shear coupon (Fig 3.1) is a rectangular flat strip of composite material,
76mm long and 20mm wide, with a thickness as received. Two symmetrical centrally
located v-notches with a notch depth of 4mm and notch angle of 90° have been cut on
the longer sides of the coupon. ‘Longitudinal coupons’ are those having reinforcing
fibres along the length (longitudinal axis) of the coupon i.e., extracted from the box-
sections (Plate 1.5) in a direction parallel to the longitudinal axis. ‘Transverse
coupons’ on the other hand have reinforcement parallel to the shorter direction of the
coupon (normal to the longitudinal axis) and are extracted width-wise from the GRP
box-sections. Both longitudinal and transverse coupons are orthotropic. Four material
constants (Ey, E,, v, and Gy,) are established for their complete characterisation. To
investigate the effect of material orthotropy on the behaviour and performance of the
ASTM shear coupons, ‘isotropic coupons’ have also been included in the present

investigations. They have been defined by two material constants (£, and v), whilst G

is taken equal to . The isotropic coupons could either be obtained from a

E
2(1+v)

composite material mainly made from fibre mats, or from metals.

The asymmetric four point bending (AFPB) fixture developed for the loading of the
ASTM coupon is shown in Fig.3.2. The fixture has two loading beams; an upper to
which the compressive load ‘P’ is applied, and a lower providing the reaction to the
applied load. The lower loading beam is fixed to the side posts, and rests on a
rectangular cross beam to locate the reaction point. The cross beam is clamped to the
lower platen of the testing machine. The upper loading beam can move vertically
downward under the applied load, guided by groves cut in the side posts. Attached to
the loading beams are the rectangular loading bars designed to transfer the
compressive forces on to the coupon edges. The bars near the central notch location
are referred to as inner loading bars, with those at the extremities as outer loading
bars. The location of the inner loading bars is fixed to keep the central 13mm of the
coupon length (6.5mm on each side of the notch) unsupported (ASTM standard
D5379M-93). This amount of clearance is required to avoid the introduction of effects
of vertical normal stresses into the central test-section. The cross-sectional areas of
the inner and outer loading bars have been calculated from the maximum expected

load (multiplied by a safety factor of 2), the ultimate compressive strength, and the
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contact area between the loading bars and the coupon. Inner loading bars have twice
the width (10mm) of the outer (Smm), reflecting the relative magnitude of the applied
compressive forces. The shear loading applied by the AFPB fixture can be idealized
as asymmetric and dependent upon the location of the loading bars with respect to the
central notched section (Fig 3.4). The actual load application is “distributed and
imperfect” along the contact area of the loading bars (ASTM D5379M-93),
contributing to asymmetry in the shear strain distribution. This fact has also been

recognised by the ASTM standard for the fixture used in the standard procedure, as:

“While the idealization indicates constant shear loading and zero bending moment in
the specimen at the notches, the actual load application is distributed and imperfect,
which contributes to asymmetry in the shear strain distribution and to a component of

normal stress that is particularly deleterious to [90]n" specimens.”’

(ASTM D5379/D5379M footnote 9)

However, in the analytical solutions, the load application has been assumed to act
through the central vertical axis of the loading bars. Under the idealized loading
configuration, the central test section (notched section) is subjected to maximum shear
force as the coupon has a minimum cross-sectional area at this section, and further,
‘b’ is always less than half the length (L) of the coupon (see Fig 3.4). Contact surfaces
have been assumed in the numerical representation to simulate the distributed load

application.

Finite Element Models

A two-dimensional, surface model of the ASTM coupon has been developed
considering plane stress loading (Fig. 3.5). Rectangular, eight node, isoparametric,
plane stress elements (QPM8)*, having two translational degrees of freedom u and v
(i.e., in x and y directions) at each node have been used. These elements can
accommodate curved boundaries, varying thickness and are capable of accounting for

membrane and shear deformations. As the loading is asymmetric, the entire x-y plane

* A laminate with n layers having fibres at right angles to the longitudinal direction.

Y LUSAS™ element library code.
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of the coupon has been modelled. Non-eccentric geometric properties with a thickness
equal to the nominal web-thickness of pultruded profiles (3.2 and 6.0mm) have been

assigned to surface elements.

Material properties have been assigned to the surface finite elements in x and y
directions denoted as the local material co-ordinates. Isotropic material has been
simulated as having E=27.3kN/mm’ and v=0.38 (Table 3.5). Three types of
orthotropic coupons using the estimated material properties (Table 3.4) has been
modelled as: a ‘pseudo orthotropic’* having E,=E,~E=27.3kN/mm?, v=0.38, and
G,y=3.91kN/mm’; 2 “longitudinal coupon® having E,=27.3kN/mm’, E,=10.9 kN/mm’,
v =0.38 and G,~=3.91 kN/mm?; and a ‘transverse coupon’ having E,=10.9kN/mm?,
Ey=27.3kN/mm2, v=0.38, and ny=3.9lkN/mm2. The longitudinal coupon has been
loaded by a shear force in a direction normal to the direction of the fibres whilst the

transverse coupon is subjected to a shear force parallel to the direction of fibres.

Boundary conditions simulate a simply supported beam, i.e., the supports (indicated
by green arrows R1 and R2 in Fig. 3.5) allow coupon movement in vertical direction
(in the direction of applied load), but restrict any horizontal or transverse (in z-
direction) movements. For an idealised loading situation (Fig. 3.4), point supports
have been considered (Fig. 3.5(a)). Similarly, two point loads, L1 and L2 (Fig 3.5),
have been adopted for the simple calculation of the shear force acting at the coupon’s
mid-section. A regular mesh grid in local x and y directions of the specimen has been
used to divide the surfaces into the finite elements. Comparison of un-averaged and
averaged nodal stress/strains results has been used to determine the necessary degree

of mesh refinement throughout this study.

The FE model of the ASTM coupon loaded in AFPB fixture (Fig. 3.6) comprises the
same eight node QPM8 elements. The fixture posts have been ignored in the model as
the vertical movement of the upper loading beam has been assumed to be friction free.
To simulate coupon-fixture interaction, slide lines ‘SL’ (indicated by red lines) have
been introduced along the contact lines between loading bars and the coupon. One, of

the four contact lines, is non-sliding to hold the specimen in position and prevent

¢ Orthotropic properties with zero orthotropy (E,=E,) has been assigned to establish the effect of
change in shear modulus in isotropic and orthotropic coupons and to validate the adequate performance

of the model.
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rigid-body motion. This simulates the simply supported boundary conditions of the
coupon. The upper loading beam has been assigned side supports (R2 in Fig. 3.6)
which allow vertical movement but prohibit horizontal and transverse movements. A
fixed support (R1 indicated by green arrows in Fig 3.6), generating a reaction equal to
the applied load ‘P’ has been assigned to the cross beam supporting the lower loading
beam. A compressive point load ‘P’ has been applied at the mid position of the upper
loading beam, to model the external testing load. bOnly isotropic linear material
properties for the steel fixture have been considered. A similar (to that of coupon)
regular mesh grid in local x and y direction has been used to divide the surfaces into
elements.

Finite Element Results

A theoretical unit load (P=1kN)§, has been applied externally to the fixture. The shear
force resultant at the central test section of the coupon due the application of this load
has been calculated from the shear force diagram (Fig 3.4), knowing the value of ‘b’
and ‘L’ (e.g., the distance between idealised lines of load application through the inner
and outer loading bars respectively), leading to a theoretical average shear stress
distribution. For P=1kN, 5=23mm, L=71mm, and thickness #=3.2mm, a shear force
(S.F) of 0.51kN has been calculated. Corresponding to this S.F, shear stress and strain

has been obtained using simple elastic theory principles (e.g., Hook’s law):

f
Shear stress = shear force — =7 = S—Ii 3.11)
area of the cross - section A
) Shear Stress T
Shear Strain = =y=— .
car ' Shear Modulus 4 G (3.12)

For 2 S.F of 0.51kN and area 4=12x3.2=38.4mm’, a shear stress of 1.33x107
kN/mm? has been calculated. Because of the rectangular loading bars, load applied by
the fixture is different from point loading (Fig. 3.5-3.6), the shear force actually
applied by the fixture (for an external load of 1kN) to the coupon’s mid-section has

§ As the analysis is linear elastic, an arbitrary value of P has been applied within the elastic range and
the ultimate shear strength of the material. Minimum ultimate shear strength of similar pultrates quoted
by STRONGWELL is more than 20 N/mm® An external load of 1kN produces a shear stress of
13.3N/mm? at the central test section (A=12><3.2mm2) of the ASTM coupon. Shear strains for other
applied loads (in the linear range) can be evaluated by simple scaling of the applied load with the

numerical results.
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been established by the finite element analysis of the testing configuration. The
deformed shape of the model (post analysis configuration, Fig 3.6(b)) indicated
bending in the upper loading beam under the applied load. Due to this bending, the
shear stresses along the lengths of the loading bars are no longer uniformly
distributed. The resultants of shear force exerted by each loading bar have been
calculated by measuring the shear stress intensities along the length of the bars (at
sections L1, L2, R1 and R2, shown in Fig 3.6 (b)) and multiplying by the cross-
sectional area of the respective loading bars. A graphical representation of the
variation of the shear stress intensities along the loading bar lengths have been shown
in Fig 3.6(c). The stress resultants” calculated using the vertical nodal stresses (S,
gave a shear resultant of 0.51kN and shear stress of 1.33x10” kN/mm? at the central
test section, which are equal to the theoretical values obtained from shear force
diagram of Fig 3.4. This outcome, indicates (also evident from the graphs in Fig 3.6
(c)) that the stress resultants pass through the centre of the loading bars maintaining
the idealised distances ‘b’ and ‘L’ (shown in Fig. 3.4). This theoretical shear stress is
expected to be constant across the section between the notches (due to the

introduction of the notches).

A corresponding theoretical shear strain has been calculated from the shear stress and

the estimated shear modulus (from micromechanics and CLT). For isotropic coupons

the shear modulus has been taken as G = , whilst for orthotropic coupons G,,

2(1+v)
is taken as 3.91kN/mm?’ (Table 3.5). Numerical shear strains across the central test
section have been obtained from finite element analyses and plotted against the
distance between the notch roots at the central test section, measured from the central

longitudinal axis of the coupon, positive upward and negative downward.

The shear strain distributions in the entire ASTM isotropic coupon, under the
idealised point loading, and for the loading applied by using AFPB fixture, have been
shown in Fig. 3.7. The distribution is asymmetric about the axis between the notches
(as expected due to asymmetric loading). A contour interval of 0.5x10 has been
used to display the strain distributions in both the loading cases for comparison. For

the point loading case (Fig. 3.7 (a)), a higher shear strain (of the order of :t2.0><10'3)

** Mid section method is used where each nodal stress is multiplied by half the area between two nodes.
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can be seen under the point loads which is 1.8 times greater than the numerical and
theoretical shear strain (1.15><10'3) at the mid-section of the coupon. This high strain
concentration at the points of load application implies possible damage to the coupon
edges and produces a premature coupon failure preventing the determination of
ultimate shear strength of the material. In the case of loading with the proposed
AFPB fixture the intensity of the shear strains under the loading points is less than
half (of the order of 0.5x10%) of the mid-section strains. This justifies the use of
broader loading bars in the present version of the AFPB fixture. A central region with
uniform shear strain (with no contours i.e., strain variations are less than the contour
interval of 0.5x10) has been observed in the middle of the coupon. Similar contour
plots showing shear strain distributions in the orthotropic coupons have been given in
Figs 3.8 - 3.10. To obtain a similar number of contours (for comparison) in a specified
coupon area, the contour interval for orthotropic strain distributions is taken as
0.15x10 (three times of that for isotropic coupon) since the shear modulus of the
orthotropic material is nearly one-third of the shear modulus of the isotropic and the

range of shear strains obtained is three times larger than in the latter.

Theoretical and numerical (computed using FEM) results agree closely for the
isotropic assumption for the majority of the depths of the coupon with a negligible
strain concentration at the notch roots (Fig 3.11). The coupon loaded by the proposed
fixture produced very similar results to the coupon only model. The quality and
uniformity of numerically computed shear strains demonstrate the potential of the
AFPB test fixture. This outcome is consistent with the findings of Adams and Walrath
(1987), in that 90° notches minimise shear stress concentrations when notch sides are
parallel to the direction of maximum shear stress. Pseudo orthotropic coupons also
show a close agreement between the theoretical and numerical results for the central
9mm width (+ 4.5mm from the longitudinal axis) of the mid-section and a strain
concentration of less than 5% at the notch roots. These results also contribute to
establishing appropriateness of the finite element model representation of the ASTM

coupon.

Similar higher strain concentrations can be seen under the loading points in the case
of longitudinal coupons modelled individually and loaded using point loads (Fig.
3.9(a)). For the longitudinal coupons loaded using the proposed AFPB fixture, the

magnitude of the strain concentrations under the loading bars is smaller than the
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strains at the central test section (Fig. 3.9(b)), anticipating failure in the gauge section.
A central region with uniform shear strain (without contours) is indicative of the
proper use and validation of the purpose of v-notches in the testing of orthotropic
materials. The shear strain distribution is more symmetric and constant over a wider
area than obtained in isotropic coupon, establishing the validity of the designed test
fixture. However, strain values are slightly higher (7%) than the theoretical strains and
larger strain concentrations (28%) have been computed at the notch roots (Fig 3.11).
ASTM standard D5379/DS379M states that stress/strain concentrations arise as an
effect of the orthotropy of the material and can be minimised by adjusting the notch
angle (e.g., see FEA results for notch angle parametric study for small coupon, Fig.

3.20).

Shear strain contours for transverse coupons are illustrated in Fig. 3.10. Strain
concentrations can again be seen under the loading points in the case of individual
coupon point loading (Fig.3.10(a)). For both the loading cases, the shear strain
distribution is constant (no contours are displayed as the variations are less than the
contour interval) in the central test section. Sufficient area of constant shear strain at
the centre of the coupon is available to accommodate a rosette strain gauge for the
experimental determination of shear properties. The shear strain values at the centre
are slightly lower (4%) than the theoretical strain values. A higher strain

concentration (34%) has been observed in the case of transverse coupon (Fig 3.1 n.

From the numerical results obtained from finite element analysis of the ASTM
coupon model and their comparison with the theoretically calculated values it is
predicted that proposed AFPB shear fixture (Fig. 3.2) is capable of testing ASTM
shear coupons for the determination of in-plane shear properties (modulus and
ultimate strength). The fixture applies a unique shear resultant at the central test
section of the test coupon, which can be theoretically calculated by using values of
length (L) and loading point separation ‘b’ and simple shear force diagram (Fig. 3.4).
The strain concentrations at the notch roots in the cases of isotropic and special

orthotropic coupons are low. Higher strain concentrations in the cases of longitudinal

t* The ASTM shear coupon in transverse direction is not used in this study owing to geometry
restraints. This analysis is only for completeness and validation of the AFPB shear test fixture. A new

short coupon to measure transverse shear properties is proposed in the subsequent section.
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and transverse coupons are attributed to the orthotropy of the material and not to the
fixture’s performance. A close agreement between numerical and theoretical shear
strain for isotropic and special orthotropic coupons goes some way to validate the
performance and behaviour of the designed steel fixture. This validation is used in the
subsequent section to design a smaller version of the proposed fixture to test the short

shear coupon for the measurement of transverse shear properties.
3.3.2 SHORT COUPON AND FIXTURE

Finite Element Models

Finite element models for short shear coupon and the corresponding (short) AFPB
fixtures are geometrically similar to those for ASTM coupon. To maintain a similar
aspect ratio, a coupon width of 10mm for a length of 40mm has been adopted.
Initially a base model with 90° sharp V-notches and a notch depth of 2.5mm (25% of
overall depth) has been modelled (Fig 3.12). Keeping the inner loading bars 2.5mm
from either of the notch edges, a length of 10mm at the centre of the coupon remains
unsupported (as compared to 13mm in the case of the ASTM coupon), when loaded in
the fixture. Another important difference is that the widths of the inner and outer
loading bars are identical (Smm) in the case of short AFPB fixture! (Fig. 3.13).
Correspondingly, the short coupon has supports and loading surfaces all equal to
S5mm. For a Smm width of the loading bars, a loading point separation ‘b’=15mm has
been obtained. Different loading bars have been used for 3.2mm thick (Fig. 3.13 (b))
and for 6mm thick (Fig 3.13 (c)) coupons. Models of shear coupons with varying
notch-angles, notch depths and loading point separations have been developed

through variations in the base model.

A two dimensional (2-D) surface model of the short coupon using the isoparametric,
rectangular plane-stress elements ‘QPM8’ has been constructed. The entire coupon
has been modelled considering an asymmetric loading (Fig 3.14(a)). The model
comprises points, lines and surfaces, defining the geometry of the coupon. Thickness

of the coupon has been assigned to the surfaces using non-eccentric geometric

$! The width of loading bars are calculated from the maximum expected applied load (depending on the
cross-sectional area of the test section and the shear strength of the coupon) and the compressive
strength of the coupon. A width of Smm for the inner loading bars is found sufficient to keep the

applied stress lower than the bearing strength of the coupon material.
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properties. Estimated material properties (Table 3.5) have been used to represent the
isotropic, pseudo orthotropic, longitudinal and transverse coupons in the similar way
as described for the modelling of ASTM coupon material properties. The coupon
model has been simply supported using a set of fixed support R1 (u=0, v=0, z=0) and
a hinged support R2 (u=0, v#0, z=0) to restrain the horizontal movement of the
coupon and to allow the vertical displacement due to the applied loads. Point loads L1
and L2 acting vertically downward have been applied at the upper edges of the
coupon. A regular mesh in x and y directions, with more refined mesh in the central
region of interest, has been assigned to the surfaces. Surface models (2-D) have been

used to represent isotropic, special orthotropic and longitudinal coupons.

A finite element representation of a short coupon schematically loaded in the
proposed short AFPB fixture is shown in Fig. 3.14 (c). The model is similar to that for
ASTM coupon and fixture except the dimensions of the coupon, inner loading bars
and fixture size. Similar eight nodded isoparametric rectangular finite elements have
been used to construct the model. Slide lines (SL1-SL4) have been introduced to
simulate the contact of coupon and loading bars and one of the slide lines has been
fixed to avoid the rigid body motion. Rectangular mesh grid, loading and supports
(similar to ASTM coupon and fixture model) are shown in Fig. 3.14 (a), and (c). The
vertical reactions in the loading bars of the short fixture (Fig. 3.14 (d)) are discussed
under the heading “Fixture effect”.

Aluminium tabs®® have been bonded to the transverse coupons at locations of loading
(under loading bars) to avoid compressive failures at sections directly under the
compressive loads. The size of the tabs has been calculated from the bearing capacity
(maximum compressive strength) of the material in the transverse direction and the

maximum expected load. A three dimensional (3-D) volume model has been prepared

¥ Compressive failure of short transverse coupons without aluminium tabs, beneath the loading bars,
has been observed during preliminary shear testing. To avoid this type of failure and to ensure a true
shear failure at the central test sections, aluminium tabs have been used. The thickness and width of the
aluminium tabs were calculated from the expected total load for the shear failure, multiplied be a safety
factor of 2, and the ultimate transverse compressive strength of the material. Ultimate transverse
strength in tension has been measured for the 51x51x3.2 box section profile by Saribiyik (2000) and

taken equal to the compressive strength as stated previously.
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using the isoparametric solid continuum elements (HX20""") to represent the coupon
and tab thicknesses. 3-D continuum elements has been defined by volumes and do not
require geometric (thickness) assignments. To compare and investigate the effect of
the tabs, on the shear strain distribution at the central test section of the coupon, 3-D
volume models of the transverse short coupon without tabs have also been prepared
(Fig. 3.15) and analysed. Boundary conditions (supports) are assigned to the lower
surfaces of the volume model. Similarly the loading has been assigned to the upper
surfaces of the volumes comprising the 3-D model. Loading has been applied as
uniformly distributed over the surface (load per unit area) idealising the loading
applied by the fixture. 2D-surface and 3D-volume models of transverse shear coupons
have been compared to predict the intensity and distribution of shear strains across the
test section. Aluminium tabs have been added to the model to simulate the tabbed
models of the GRP coupon (Fig. 3.16). The steel fixture has not been included in the
analysis as no modification was required to the fixture geometry. However plane
inner loading bars (without grooves, Fig 3.13 (d)) have been used to accommodate the

tabs.

As previously stated, the main region of interest in this study is the area between the
notches where an approximately uniform shear strain distribution should be exhibited
when a known shear force is applied. This is the region where shear strains are
measured using strain gauges during the experimental measurement of the shear
properties. Different parameters relating to the geometry of the shear coupon
including notch depth, notch angle and distance of loading ends from notch root are
investigated for their influence on the shear stress distribution. In addition to
establishing the geometry of a short shear coupon and appropriate interpretation of
test results, the study also aims to identify the effects of orthotropy on the
performance of this test, as making it suitable for the measurement of the shear
properties of the GRP material of varying orthotropy. To investigate this, analyses has
been performed for a range of orthotropy by simply modifying elastic constant values

E, and E, in isolation.

e

LUSAS™ element library code.
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Finite Element Results

Overall Depth

Initially the depth of the coupon has been taken as 10 mm to maintain the aspect ratio
of 4.0 as compared to 3.8 for ASTM coupon used in the standard specification.
Numerical analyses has been performed to investigate the effect of changing the
overall depth ‘D’ of the short coupon on the shear strain distribution across the central
notched section. Notch depth (25% of the overall depth) and notch angle (90°) have
been kept constant in the analyses. An isotropic material coupon with point loading
has been assumed. Numerical shear strains for four values of overall depthi.e., D =9,
10, 11, and 12mm, normalised by the respective theoretical shear strains has been
plotted for comparison (Fig. 3.17). The shear strain distribution is of a similar form
for all four values of ‘D’. A gradual increase in the deviation of computed shear strain
from the theoretical uniform distribution with an increase in the coupon depth is
observed. However, the deviation is small e.g., 1.5% to 2.8% for a D value of 9mm to
12mm. Furthermore, the strain concentration near the notch root increases with the
increase in depth. These effects imply the consistent selection of coupon depth with

notch depth.

For practical reasons i.e., to accommodate the notches and strain gauge between the
notches, a minimum depth of 10mm has been maintained. A 2% difference between
numerical and theoretical shear strain values have been observed for an overall depth

of 10mm (Fig 3.17).

Loading Bars Separation

The separation between the inner loading bars controls the shear force intensity at the
central notched section (shear force diagram in Fig. 3.4). The distance between the
central vertical axes of the inner loading bars (where the loads are visualised to act) is
denoted ‘b’ (Fig. 3.14(b)). The ASTM specification recommends locating the loading
bars at 2.5mm from the notch edges to avoid the introduction of vertical direct
stresses into the central test section. Starting from a minimum 1.5mm distance
between the notch edge and inner loading bar on each side of the notched section,
values of ‘b’ of 13mm to 19mm, with a difference of 2mm, have been investigated to
establish its effects on the shear strain distribution at the centre. For comparison,

values has been normalised by theoretical shear strains (Fig. 3.18). No significant
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difference is observed in the strain distribution for the values of ‘b’ ranging from 13
to 19mm. The apparent reason for this similarity and consistency in the results is that
for each value of ‘b’ the moments produced at the mid-section by the load couples
that are equal and opposite, thus cancelling (Fig. 3.4). For practical reasons,
‘b>=15mm (corresponding to an unsupported coupon length of 10mm between the
inner loading bars), giving a maximum difference between numerical and theoretical
strain values of 2% only, has been selected. This deviation from the theoretical value
is similar to that arising from the depth of the coupon, as discussed earlier.
Consequently the proposed loading configuration does not further compromise the

quality of shear strain distribution at the centre.

Notch Depth

The effect of variation in notch depth has been studied by changing the notch depth
from 1.5mm to 3.0mm (15% to 30% of overall depth) with a difference of 0.5mm.
Numerical results are shown to straddle the theoretical target (Fig. 3.19). For small
values of notch depth the shear strain distribution is relatively broader (8% for 1.5mm
and 3% for 2mm notch depth) than the theoretical strains. For large values of notch
depth the strain distribution is 7.5% lower than the theoretical values. The ASTM
standard recommends a notch depth between 20 to 25% of the depth of the coupon
(e.g., 2.0 to 2.5mm for a 10mm deep coupon). Interestingly, this recommendation is
fully consistent with the numerical results obtained in this study, with results for notch
depths of 2.0mm (20%) and 2.5mm (25%) enclosing the theoretical solution. In this
study a 2.5mm notch depth is recommended, providing closest correlation to the
expected or desired distribution.

Notch Angle

Strain distributions predicted for notch angle values of between 60° and 120° with 10°
increments (Fig 3.20) clearly support the recommendation of the ASTM standard
(ASTM D5379) that the preferred notch angle is 90°. While lower and higher angles
generate numerical shear strain deviations of -5% to +14.9% (from the theoretical
expectation), high strain concentrations (+100% to -50%) result from the same
variation of notch angles. In contrast, the strain concentration associated with a 90°
notch angle is approximately +6%. It is clear that the notch angle is significant in
strength measures rather than elastic modulus determination, given the relative

insensitivity of the strain concentration to the notch angle.
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Effect of Orthotropy

The main object of the study is to measure the shear properties of the orthotropic
(composite) material using short shear coupon. The behaviour and performance of the
short coupon has been investigated by varying the material properties along the
longitudinal and transverse (x and y) directions of the coupon. The degree or amount
of orthotropy of an orthotropic material has been defined as the ratio between elastic
moduli in the longitudinal and transverse direction (E, : E,). For example for material
with longitudinal elastic modulus of 30kN/mm’ and transverse elastic modulus of
5kN/mm?, the degree of orthotropy has been taken as 6:1. The strain distributions
across the central notched sections of short coupons of materials with varying degrees
of orthotropy have been plotted in Fig. 3.21. Two special orthotropic materials have
also been included; one with E,;=Ey=30kN/mm2 with shear modulus of 3.91kN/mm?'t
(denoted as 1:1), and the second as E=E~30kN/mm’ with shear modulus of
11.54kN/mm?>** (denoted by 1:1+), with the later as isotropic material specification
but has been treated as orthotropic material. For comparison, the shear strains have

been normalised by the theoretical shear strain.

For a zero degree of orthotropy (1:1+), the strain distribution shows a small deviation
across the notched section with strain concentrations at the notch root that are low
(4.4 to 5.4%). For the pseudo isotropic case (1:1) with a lower shear modulus, results
are similar, with the most noteworthy difference a reduction in strain concentration at
the notch tips. For higher degrees of orthotropy, the strain distribution deviates
further from the uniform theoretical results. The deviation increases with an increase
in the degree of orthotropy (Fig. 3.21), is positive for longitudinal coupons (e.g.,
E>E,, 6:1), and negative for transverse coupons (e.g., Ex:E;=1:6). Similar results have
been produced by Herakovich and Bergner (1980) and are in agreement with the

observations made in ASTM specifications;

“The actual degree of uniformity varies with the level of material orthotropy and the

direction of loading. Both analysis and full-field experimental strain measurement

t1t This value of shear modulus has been derived from micromechanics and CLT, see Table 3.5.

$12 This value of shear modulus has been derived from the expression E/2(1+v).
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have shown that when testing in the 1— 2 plane, [0]n®** specimen result in an elastic

modulus estimate that is too high (about 10% too high for carbon/epoxy), while [90]n

specimens of the same material result in a value that is about 20% too low. The most
accurate measurement of in-plane shear modulus for unidirectional material have

been shown to result from the [0/90]ns specimens.”

(ASTM D5379/D5379M, 1996, §6.3)

The most adverse effect of orthotropy has been observed on the strain concentration at
the notch roots. Particularly in highly orthotropic transverse coupons (1:6), the strain
concentration is almost double the theoretical strain at the centre of the section.
Therefore a premature failure at the notch root may result within the coupon not
capable of measuring all material characteristics, including strength. The strain
concentration decreases whilst lowering the degree of orthotropy. For a transverse
coupon with an orthotropy ratio of 1:3 (GRP material in the present study), the strain
concentrations are 44% higher than the uniform theoretical strain at the centre. For a
longitudinal coupon with same ratio of orthotropy i.e. 3:1, however, the strain
concentration is 13% higher than at the centre. But for a higher ratio i.e. 6:1, the strain
concentrations increases to 60% more than theoretically expected value. Interestingly,
the strain distribution is uniform along the central section for orthotropy ratio of 3:2
(though paradoxically not for 2:3) and the strain concentration is acceptable (within
5%).

Fixture effect

Finite element models of the short shear coupon separately and within the AFPB
fixture (Fig 3.14) have been analysed to investigate the effect of the fixture on the
shear strain distributions at the central notched section. Contours of numerically
obtained shear strains over the entire plane of short isotropic coupons without and
with the fixture are shown in Fig 3.22. A contour interval of 0.9E-04 (corresponding

to the 0.5E-04 for ASTM isotropic coupon where shear strains’ range is nearly 60%

§§8 The digit in square parentheses indicates the direction of reinforcing fibres i.e., [0] means fibre are
at 0 angle to direction 1 and n out side the parentheses indicates the number of layers in the composite
laminate. In the present study the longitudinal coupons have fibres at 0 angles to longitudinal axis of
the coupon. In transverse coupons, fibres are at 90 degree to the longitudinal axis. [0/90]n represents a
composite made from alternate longitudinal and transverse layers in a multilayered composite.

Carbon/epoxy has a high ratio of orthotropy(typically 17:1, Herakovich and Bergner,1980)
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of the range for the short coupon) has been chosen to obtain comparable contour
plots. The patterns of the contours (strain distributions) are alike in the coupon
subjected to idealised loads and the coupon loaded via the fixture. The obvious
difference is that in the case of the isolated coupon loaded by point loads (theoretical),
a large strain concentration (almost double the strain values at centre of the coupon) is
manifested beneath the loading point indicating potential local compression failure of
the coupon. By using broader loading bars, the loading has been converted to a
distributed load and with a corresponding strain concentration beneath the loading
bars lower than the strain at the centre, ensuring the coupon failure at the central
section under the influence of pure shear loading. A “uniform™ shear strain
distribution has been obtained along the central notched section in both cases of the
isolated and fixture encapsulated coupons. The similarity of the contour patterns
suggests that the AFPB fixture simulation is representative of the overall expected

behaviour.

However, a disparity has been noted between the predicted magnitudes of the shear
strains at the centre test section of the isolated and fixture encapsulated coupons. In
expecting the results to be the same it has been assumed that the load applied to the
coupon via the loading and reaction bars/beams of the fixture is uniform and
consistent with the fundamental idealisation illustrated in Fig. 3.4. The vertical
(normal) stresses acting through the upper and lower loading bars have been plotted
along the width (Smm) of the loading bars (Fig 3.14 (e). The net loading applied to
the coupon by integrating graphs L1 and L2 has been calculated. Similarly the
reaction to the loading exerted by lower bars has been calculated by integrating R2
and R1 graphs. The calculations showed that a relatively lower (0.37 kN) shear force
than the theoretically calculated (0.4 kN from bending force diagram of Fig. 3.4)
shear force has actually been applied. The apparent reasons for this difference are; a
slight bending in the upper loading beam, and a slight change in the load separation
‘b’ due to non-uniform (nearly triangular) load distribution through the upper loading
bars (Fig 3.14(¢)). However the loading remains asymmetric and the opposite couples
induced by the loading are equal, maintaining a zero bending moment at the central
notched section in the coupon. It has been concluded therefore, that for this size of
coupon and AFPB fixture used in this analysis, the resultant shear force applied to the

coupon is 0.37 kN when an external load of 1 kN has been applied to the fixture (and
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not 0.4kN as predicted by classical elastic theory). For other sizes of coupon and
testing fixture arrangement, the resultant shear force should also be established
through a finite element analysis. This is identified as a key observation in
characterising the fixture and proposing a procedural approach to the analysis.

The quantitative comparison of the shear stress distribution across the central notched
section of the point loaded coupons and coupons loaded with fixtures has been made
in Fig. 3.28. Four types of short coupons have been included (e.g., isotropic, pseudo-
orthotropic, longitudinal and transverse). The numerical strains obtained from FEA
agree closely with the theoretical solution. The presence of the uniform shear strain
along the central section up to a width of nearly 4mm infers the capability of the short
coupon to accommodate strain gauges in the middle of the notched section within a

“uniform” strain field.

2-D and 3-D Models

The performance of the 2-D short shear coupon has been assessed by comparing the

strain contour patterns and the uniformity of the shear strain distributions across the
central notched section of the ASTM and short coupon. The 2-D surface model has
been further used to assess the performance of a 3-D volume model of the short
coupon, which in turn has been used to indicate the effect of tabs (Fig 3.26).

Shear strain contours plots are given for isotropic 2-D coupon (encapsulated in the
fixture), 3-D coupon only and 3-D coupon including tabs (Fig 3.26). Essentially the
results from the 2-D and 3-D (coupon only) simulations demonstrate the numerical
validity of the latter through the similarity of the contour plots whilst recognising the
necessary applied load modification compared with the classical solution, as
discussed in a preceding section. These results are included for completeness as it is
unnecessary to represent a coupon in 3-D when tabs are not used. When simulating
the addition of tabs bonded to the sides of the coupon in line with the primary load
bars it is expected that the shear strain distribution will be altered (e.g. see Fig 3.26
(b) and (c)). However, the quality (€.g. uniformity) of the strain field within the centre
test area has been maintained with a clear zone of low strain variation. This is also
best quantified in Fig 3.29. With the transverse coupon prone to degradation of the
uniformity of the strain field it is also useful to provide equivalent results for
comparison (Fig. 3.27). Again the proposed short coupon is shown to perform

adequately on comparing the FE results given in Figs 3.27 and 3.29).
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Comparison of ASTM and short coupon

The shear strain distributions for the isotropic and orthotropic material ASTM and
short coupons have been plotted in Fig 3.30 for comparison. Clearly the patterns of
deviations of numerical strains from the theoretical distributions are alike. Isotropic
coupons produce least deviations at the centre and minimum strain concentration
under the notch roots. Longitudinal coupons show a 2% increase in the shear strain
distribution at the centre while a strain concentration of 30% under the notches.
Conversely in the case of transverse coupons, the shear strain distribution is 4% less
than the theoretical strain but a strain concentration of 30% (ASTM) to 45% (short
coupon) has been observed.

Short Shear Coupon and Fixture Specification

The geometry and dimensions of a short shear coupon adequate for measuring the

longitudinal and transverse shear properties, is proposed following the outcomes of
the parametric study. The recommended short shear coupon is 40mm long, 10mm
wide and as supplied thickness. A 90° sharp V-notch with a notch depth of 2.5mm
machined on each of the longer sides of the coupon (Fig. 3.12). The geometry is
similar to the standard ASTM shear coupon (Fig. 3.1).

The proposed AFPB type fixture shown in Fig 3.13 is capable of testing the short
coupon for the measurement of the in-plane shear properties. The shear loading
applied by the fixture on the coupon’s test section is less than the theoretical value
calculated from the shear force diagram visualised for the AFPB fixture (Fig. 3.4). It
has been established that a shear resultant equal to 0.37P corresponding to an
externally applied load ‘P’ has been applied at the central test section of short coupon

loaded by this fixture.

3.3.3 SUMMARY OF OUTCOMES
e The proposed finite element models of the ASTM and short coupons
adequately represent the behaviour of orthotropic material under the shear
loadings. 2-D models using plane stress elements can represent the thick
prismatic coupon and fixture components. This is validated through the
comparison of the FEA results of 2D and 3D coupon models. Both isotropic
and orthotropic models adequately predict the theoretical strain distribution at

the central test section of the coupons.
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The introduction of V-notches at mid lengths of longer sides of rectangular
shear coupons transforms the shear stress distribution, from parabolic to
uniformly distributed, across the central notched section.

The proposed numerical models, are utilised for defining the most efficient
“short” shear coupon, having the lowest strain deviation at the centre and
minimum stress concentration at the notch tips, for the measurement of shear
properties when a standard length is not available.

Proposed AFPB fixture applies a pure shear loading across the central test
section during a shear test. Use of broader loading bars reduced the strain
concentration (from 1.8 to 0.5 times the average theoretical strain at centre)
beneath the loading points, eliminating the possibility of failure at these points
rather than at the centre of coupon. Numerical results are used to calculate the
amount of resultant shear force applied by the proposed test fixtures on the
shear coupons. In the case of ASTM coupon loaded in the fixture the
numerical shear force calculated at the centre is equal to 0.51P, where P is the
total applied load on the fixture by the compression testing machine. This
agrees with the theoretically calculated shear force using the shear force
diagram of Fig. 3.4. In the case of short coupon, the numerical value of the
shear force applied by the test fixture (0.37P) is less than the theoretical value
(0.4P). Therefore, for any other arrangements of coupon loading the intensity

of shear resultant should be established using finite element analyses.
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Fig 3.1 Schematic of ASTM shear coupon.
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Fig 3.2 Designed AFPB shear test fixture.
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‘R’; (a) un-deformed, (b) deformed (exaggeration factor = 30).
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Fig 3.7 Shear strain contours in isotropic ASTM coupon.

(a) coupon only (b) coupon with fixture.
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Fig 3.8 Shear strain contours in pseudo orthotropic ASTM coupon.
(a) coupon only (b) coupon with fixture.
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Fig 3.11° Shear strain distribution across the mid-section of ASTM coupon;

(b)

(a) coupon only (b) coupon loaded in fixture.

* Legend: “Iso”=Isotropic coupon; “S-ortho”=Pseudo orthotropic coupon; “Long”=Longitudinal

coupon; “Tran”=Transverse coupon; “Theo (is0)” and “Theo (ortho)” = theoretical shear strains for

isotropic and orthotropic coupons respectively. Assumed material values are on page 81.
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Fig 3.12 Schematic of short shear coupon.
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Fig 3.13 Schematic of the short AFPB shear fixture and attachable loading bars
(B) for 3.2mm longitudinal coupon, (c) for 6mm longitudinal and (D) inner
loading bars for 3.2mm and 6mm tabbed transverse coupons.

(all dimensions in mm)
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104



(c)

Fig 3.15 3-D (volume) model of short transverse coupon
(a) Volumes; (b) mesh; (¢) deformed mesh.

Fig 3.16 3-D (volume) model of short transverse coupon with tabs:
(a) Volumes; (b) mesh; (¢) deformed mesh.
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Fig 3.17 Effect of overall depth on the shear stress distribution across the mid-
section of the coupon.
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Fig 3.18 Effect of loading points separation ‘b’ on the strain distribution across the
mid-section.
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Fig 3.19 Effect of notch depth on the shear strain distribution.
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Fig 3.20 Effect of notch angle on the shear strain distribution.
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EFFECT OF ORTHOTROPY
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Fig 3.21 Effect of orthotropy (E,:E,) on the shear strain distribution at short
coupon’s mid-section.
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Fig 3.22 Shear Strain Distribution in isotropic short coupon.
(a) coupon only (b) coupon with fixture.
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Fig 3.23 Shear strain distribution in pseudo orthotropic short coupon.

(a) coupon only (b) coupon with fixture
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Fig 3.24 Shear strain distribution in longitudinal short coupon.
(a) coupon only (b) coupon with fixture
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Fig 3.25 Shear strain distribution in transverse short coupon.
(a) coupon only (b) coupon with fixture

110



STRAIN

(c)

Fig 3.26 Shear strain distribution in isotropic short coupons;
(a) 2D with fixture (b) 3D coupon only (c) 3D tabbed coupon on
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Fig 3.27 Shear strain distribution in transverse short coupons;
(a) 2D coupon with fixture (b) 3D coupon only (c¢) 3D tabbed coupon
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Fig 3.28 Shear strain distribution across mid section of short coupon.
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3.3.4 EXPERIMENTAL STUDY

Physical tests have been performed to measure the in-plane shear properties of the GRP
material forming the two box-section profiles (see § 1.4), in the longitudinal and
transverse directions. Ultimate shear strengths and shear moduli in the two orthotropic
directions have been calculated from experimental stress-strain plots. Longitudinal
properties have been measured by testing both standard ASTM and short shear coupons
extracted from the longitudinal direction (parallel to the direction of fibres and pull). The
validity of the proposed short shear coupon has been demonstrated by comparing
experimental results of long (ASTM) and short coupons. Transverse shear properties have
been determined using the short coupon.

Coupon Preparation

Standard ASTM (76x20mm) and short coupons (40x10mm) have been extracted from the
uniformly thick walls of two GRP box-section profiles (51x51x3.2 and 44%44x6.0mm

(see plate 1.1)). Direction of the reinforcing fibres (roving) has been taken parallel to the

longitudinal axis of the GRP profiles, defining longitudinal and transverse coupons.
Initially the coupons have planer rectangular geometries with nominal thicknesses of
3.2mm and 6.0mm. Two 90° V-notches have been machined at the mid-length of the
longitudinal sides to a depth of 4mm for the ASTM coupon and 2.5mm for short coupon.

A total of 30 coupons, 5 for each size, direction and thickness have been prepared.

Strain gauge rosettes (planar 45°-rectangular EA-13-060RZ-120), having three grids, with
the second and third grids angularly displaced from the first grid by 45° and 90°,
respectively, have been, adhered (m-Bond 200) to the gauge area of each coupon (see Fig.
3.31). Thin electric wires have been soldered to the terminals of the strain gauges for
connection to the data-logger through quarter-bridge circuits. A micrometer with
measurement accuracy of £25um (£0.001 in), as recommended by the ASTM, has been
used to measure the thickness and width of the coupons. Widths between notches have
been measured using vernier calliper to the same accuracy for the calculation of central
cross-sectional area. Coupons are designated by letters, LC (for long ASTM), SL (for
short longitudinal) and ST (for short transverse) with sequential numbers, clearly marked

on both sides, for identification.
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Fabrication of AFPB Steel fixture

Two steel fixtures illustrated in Fig. 3.2 for long (ASTM) coupon and in Fig. 3.13 for
short coupon have been fabricated from steel. Dimensions of all the components have
been marked in the figures. The vertical posts have grooves on their internal faces to
guide the vertical movement of the upper loading bar. The vertical loading bars, 10mm
deep with rectangular cross-sections, have been fixed to the upper and lower rigid beams.
The inner loading bars in the case of fixture for ASTM coupon are wider (10x12.5mm)
than the outer loading bars (5x12.5mm). The loading bars have been grooved (Imm deep)
to hold the specimen vertical and to avoid twisting of the coupon during testing. Two sets
of loading bars having grooves 3.5mm and 6.5mm wide have been prepared. Further sets

of loading bars may be fabricated to accommodate the coupons with different thicknesses.

Test Procedure

The typical experimental set-up for testing the shear coupons, inserted in the AFPB steel
fixture and loaded in compression by a universal testing machine is indicated in Plate 3.1.
A horizontal thick (rigid) circular steel platform has been fabricated and fixed to the main
frame of the testing machine. The cross beam of the shear fixture has been fixed to this
circular platform using adjustable clamps, which allow the necessary alignment for
concentric loading. A rectangular rigid steel plate has been used to fix the load cell to the
upper platen of the testing machine. The load cell in turn is connected to the upper
loading beam of the fixture by a conical bar having round lower tip to apply a concentric
load. A load cell measures the applied load and is connected to an electronic data
acquisition system which records the load values every two seconds with strains
simultaneously. The compression machine applies a direct load, which is converted into a
shear couple by the fixture. The loading rate has been adjusted to complete a test within
ten to fifteen minutes (consistent with ASTM D5379/D5379M §11.3). The speed of
testing may be approximated by repeated monitoring and adjusting of the rate of load
application to maintain a nearly constant strain rate as measured by strain gauge response
versus time. A standard shear strain rate of 0.01/min (ASTM guidance) has been adopted

in this experimental study.

Coupons have been loaded up to the ultimate load i.e. up to failure. Mode and location of
failure of each tested specimen has been recorded. All coupons failed in the test section.

Their failure modes are shown in Plate 3.2 to 3.5.
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Calculations
Shear stress

The shear stress applied by the fixture at the test section (central notched section) of the

coupon had been calculated from the experimental data as under,

for the ASTM (long) coupon T, = 0517 (3.13)

wxt

where 7,is the shear stress at ith data point, F; the applied load at ith data point, w is
width between the notches and ¢ is the thickness of the specimen. The factor 0.51
corresponds to the location of the loading bars (for a ‘b’ value of 23mm and L=71mm, as

indicated in Fig. 3.4 and confirmed by the FEA of AFPB fixture for reactions) on the test
coupon;

) 0.37P,
for the short coupon 1s T, = !
i T oxt 3.14)

with the same notation as above. The factor 0.37 is obtained by FEA of fixture effect on
the short coupon (see fixture effects in § 2.3, FEA results of short coupon), and is less
than the theoretically calculated (shear force diagram of Fig. 3.4) factor of 0.4.

Ultimate shear Strength

The load that accompanies failure in the test section is used as the failure load, normally
the maximum load attained on the load-deflection curve (ASTM D5379M, § 6.6.2). The

ultimate shear strength is calculated as;

0.51P
for ASTM coupon F = max
P = (3.15)
0.37P
and for short coupon F = max
P = (3.16)

where F, is ultimate shear strength, P, ., the maximum load prior to failure, w the width
between the notches and ¢ the thickness of the coupon.
Shear Strain

The strain rosette bonded to the coupon has three gauge elements, numbered sequentially
anticlockwise as 1-3. The rosette has been fixed at the centre of section between the

notches such that gauge 1 is in vertical direction and gauges two and three are at 45° and
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90° from the first (Fig 3.31). Strains measured by gauges 1-3, are denoted as ¢,,&,and
€,, respectively. From the measured strain values (&;,£,and ¢, ), the following can be

calculated (Measurement Group, 1990):

g +¢€ 1
€ro = l2 . 1Lﬁ\/(“’l"“"2)2“"(“"2‘5'3)2

1. f2e,-¢-¢
¢p,Q=Etan (——28. _'83 3} (3.17)
}’max =8P—8Q

where £, and ¢, are maximum and minimum principal strains, ¢ is the angle from axis of

the strain gauge 1 (reference gauge) to the principal strain and y,,, is the maximum shear

strain. The angle ¢ = 45° between the axis of gauge 1 (set parallel to the loading axis)
and the maximum principal stress direction indicates the state of pure shear at the central

section.

Shear Modulus

For each coupon the shear stress and strain values measured during the experiment have
been plotted. A typical stress-strain plot for the ASTM coupon is given in Fig 3.32, and
for longitudinal and transverse short coupons in Fig 3.33 and Fig 3.34. ASTM D5379/D
5379M-93 recommends the determination of shear chord modulus of elasticity, if values
are available for an interval of 5000pe (at points 1000pe and 6000pe), the total strain is
more than 12000ue and the curve does not exhibit a transition region. The experimental
results from the present study show a considerable degree of non-linearity in the initial
region and in some cases results in the initial region are not reliable. The ASTM standard
in this case suggests the use of another equivalent range in the vicinity of this range.

Chord modulus is then defined (reporting the accepted range) as:

chord __ At

v (3.18)

where

G = shear chord modulus of elasticity (kN/mm?),

A7=change in shear stress (kN/mm?) between the specified strain interval and
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Ay= specified strain range interval.

The experimental results obtained from tests on long and short coupons are given in

Tables 3.6 - 3.11.

As the stress-strain curves are nonlinear, a second definition of the shear modulus -‘secant
modulus’- has also been evaluated (Lee and Munro 1990, Dickson and Munro 1995). To
determine secant modulus, the stress-strain curves for each test are fitted with least-square
polynomial curves (third-order polynomials are found sufficient to yield a correlation
coefficient above 0.995). Shear stress values corresponding to 1000pe and 6000pe are
calculated using polynomial expressions for each test. The difference between the two
stresses (A1) is divided by the strain interval (Ay=5000pe) to calculate the secant shear
modulus. This procedure compensates any discrepancies in the initial range of data
caused by specimen, fixture or load settings, as the polynomial represents a smooth curve

between the data points. Secant modulus values are included in the Tables. 3.6- 3.11
Statistics

For each series of tests, the average value (AV), standard deviation (SD), and coefficient
of variation (CV in percent) are calculated for each property using the following relations

(ASTMD5379M93, §12.5);

}=(_zx,.)/n (3.19)

A \/(ix’ -nf’)/(n -1) (3.20)

i=1

CV =100xS,_, /x (3.21)

n-1

where

¥ =sample mean (average), x; =measured or derived property, » = number of specimens

s, , = sample standard deviation, and CV=sample coefficient of variation (%).

n-|

Tolerance for material properties

Tolerance in each property is estimated at a confidence level of 95% (Kennedy and

Neville 1976, Wang and Zureick, 1994) ;
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(3.22)

Experimental Results

Stress-strain plots have been drawn, using the experimental data, to establish the in-plane
shear properties of the composite material comprising the GRP box-profiles. Stresses and
strains are calculated using relations (3.15 - 3.18) summarised in the previous section.
Typical stress-strain plots for ASTM, and proposed short (in longitudinal and transverse
directions) shear coupons are shown in Figs. 3.32-3.34. The range of shear strain calculate
from the experimental data (3.17) is higher than 12000u€ (35000 to 50000p¢€). Therefore,
a strain interval of 5000ue (1000 to 6000pe or the closet available data points)''™ and the

corresponding stress interval have been used for the calculation of both chord and secant
. At .
moduli (=Z€-). Ultimate shear strength (F,) has been derived from the maximum stress

measured from each plot using (3.15, 3.16). The number of shear coupon tested in each
set is five (n=5). Average properties from each set of tested coupons (X ), along with
standard deviation (SD) and coefficients of variation (CV) have also been calculated (3.19
— 3.21). The experimental results for the six sets of shear coupons, each set comprising

five coupons, are summarised in Tables 3.5-3.10.

ASTM coupons.

For the 3.2mm (nominal) thick ASTM coupons (Table 3.6), the average values of the
chord and secant (3.94 and 3.92kN/mm?) shear moduli are close to the theoretically
predicted shear modulus (3.91 kN/mm?, Table 3.5) using micromechanics and CLT. The
low values of SD and CV show a consistency in the shear properties (and hence the
material configuration) and in the testing procedure. The longitudinal shear strength of the
GRP material (coupons loaded normal to the direction of fibres) is 82.8 N/mm? with a
SD=1.82 and CV=2.2%. No theoretical or experimental value of ultimate shear strength
of this material is available in the literature for comparison. However, Fibreforce Ltd, UK
quotes a value of shear strength of 60MPa (IMPa=IN/mm?) for a group of series 800
GRP profiles, of which the current profile (51x51x3.2) is a member. The quoted value is

a minimum average established through experimental studies carried out by the

tHtt ASTM D5379M Table 1, giving the strain ranges for the chord modulus.
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manufacturers. Therefore the measured strength may be taken as comparable and

conservative.

For 6mm thick ASTM coupons, the average (¥ ) values of chord and secant shear moduli
(3.96 and 3.98kN/mm’) agree closely with the predicted value of (3.92kN/mm?, Table
3.5) establishing the validation of test fixture, testing equipment and procedures.
Calculated values of SD and CV (0.07 and 1.77) are lower than corresponding values for
the set of 3.2mm thick coupons, indicating a reduced scatter and increased consistency of
the specimen coupons. However a higher scatter (SD=4.48 and CV=5.12%) has been

observed in the calculation of ultimate shear strength.

The angle ¢po indicates the direction of principal normal stresses (¢p and &) from the
direction of orientation of strain gauge 1 in the rosette. The strain gauge 1 is aligned in the
direction of loading (see Fig. 3.31). As the direction of max shear stress is normal to the
directions of principal stress direction, and tang = tan(¢+90), ¢gpp is the direction of
maximum stress from the orientation of strain gauge 1. The calculated angles ‘dpp’
(Tables 3.6-3.7) are close to 45°, indicating the maximum shear stress at the centre

(measured by the strain rosette) of the coupon is parallel to the sides of the notches,

minimising the strain concentrations at the notch roots.

All the ASTM coupons failed along the central notched sections under shear (maximum
shear being at the centre) (see Plates 3.2 - 3.3). The reinforcing fibres delaminated from
the matrix, deformed under the shear load (normal to the direction of fibres) but did not
break (the two halves remained in tact). This type of failure and the failure locations are

typical of those approved as satisfactory by the relevant test standards.

Short Longitudinal coupons

Average chord and secant moduli of five 3.2mm thick short longitudinal shear coupons
are 3.95 and 3.96kN/mm’ (Table 3.8) respectively. The measured moduli are in close
agreement (difference being only 1.3%) with the predicted shear modulus (3.91kN/mm?,
Table 3.5). Whilst for 6mm thick coupons the average chord and secant moduli are
calculated as 3.95kN/mm? (Table 3.9), which are very close (with 0.25% difference) to
the predicted value of 3.94 kKN/mm? (Table 3.5). The low values of the SDs and SVs for
the short longitudinal shear coupons demonstrate the uniformity of the shear properties of
the box-sections in the longitudinal directions and the consistency of the test procedure.

Average ultimate shear strengths for the two sets of 3.2mm and émm thick coupons are
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85.2 and 85.7N/mm’, which are similar to the shear strengths measured by ASTM
standard coupons. The SD and CV value for the shear strength are also acceptably low.
All the short longitudinal shear coupons failed (see Plates 3.4-3.5) at the central sections
under the applied shear force. The failure modes are similar to the failure of ASTM
coupons and are admissible according to the ASTM specifications (ASTM D5379M).

Validation of the short coupon

Experimental results of ASTM coupon are used to validate the performance of the short
longitudinal coupons. The shear moduli measured by short coupons (3.95 to
3.96kN/mm?) are very close to that obtained by ASTM coupons (3.92 to 3.98kN/mm?)
(difference being 0.05 to 0.08 %). Similarly the ultimate shear strengths measured by
short coupon (85.2 to 85.7N/mm?) are very close to the strengths measured by ASTM
(82.8 to 86.4N/mm?) with a small difference of 0.07 to 2.7%.

The representation of short coupon test results to the outcomes of ASTM coupon results
has been established using the “Student’s t test” (Kennedy and Neville, 1976), where a
significance of difference‘t’ is calculated as;

X -X,

LY

n+n
Sy = Sq/—-‘ 2 (3.23b)
n, xn,

52 = SDlz(nl -1) +SD22(n2 -1)
¢ (n,~-D+(n,-1)

=

(3.23a)

(3.23¢)

where S, is the combined variance and Sy is the standard deviation of the difference of the
means, n is the number of coupons in each set, SD is standard deviation for each set, and
subscripts 1 and 2 are used for ASTM and short coupon sets respectively.

The ‘t’ value for the chord and secant shear moduli obtained from the ASTM and short
coupon results fall in a range of 0.69 to 1.67, whilst ‘t’ values for the shear strength
results are calculated as 0.06 and 0.44 for the 3.2 and 6 mm coupons respectively. For a
degree of freedom = [(5+5)-2]=8, the ‘t’ value given in Table A-8 in Kennedy and Neville
(1976), for a 5 percent level of significance (in the difference of the data) is 2.4. The
greater value of ‘t’ as tabulated (2.4) compared with the calculated values (0.06 to 1.67),
suggests that the difference between the ASTM and the short coupon data is significant to

less than 5%. There is at least 95% confidence that the short coupon is able to represent
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the behaviour of ASTM coupon in determining the shear properties of the composite
material. Further the SD and CV values of the ASTM and the short coupons compare
favourably (Tables 3.6-3.9).

The failure modes observed in the ASTM and short coupon are also similar. All the
coupons failed at the central test section in a similar fashion i.e., delamination of fibres
and matrix and bending (rather than breaking) of fibres under shear.

It is concluded, therefore, that short coupon results are valid, and that short coupon can be
used to evaluate the in-plane shear properties in the longitudinal direction where a
standard ASTM coupon would normally be used.

Short transverse coupons

The chord and secant shear moduli (in transverse direction) range from 2.81 to
2 95kN/mm? with an average value of 2.85 kN/mm? for both the 3.2mm and 6mm thick
transverse coupons. The moduli in the transverse coupons are lower than the moduli
calculated in the longitudinal direction. The roving are in a direction parallel to the
direction of load in comparison to the longitudinal specimens. The matrix (resin), is
established as the unreinforced failure plane, possessing a lower shear strength and failing
prior to any fibre failure.

These results are more consistent than the results produced by the ASTM and short
longitudinal coupons. The SD and CV values are also in a narrow range (0.10 to 0.13) and
(421 to 4.56%) showing uniform transverse moduli. No specific theoretical or
experimental values are found from the literature to compare the experimental outcomes
of this study. However, having established the validity of the short longitudinal shear
coupons, results obtained from the transverse coupon are also considered valid. The
average of ultimate shear strengths from the 3.2mm and 6mm thick coupons are
64.4N/mm? and 68.0N/mm’ respectively (Tables 3.9-3.10). Although no study to the
relevant box-sections has been reported in the literature, the ultimate strength is
comparable to the minimum shear strength (60 N/mm?) specified by FIBREFORCE, Ltd,
UK, for the structural design of similar GRP profiles.

The short transverse coupons failed at the centre under the applied shear loading (Plates

3.6-3.7) consistent with the ASTM and longitudinal specimen failure modes.
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Fig 3.31 Strain rosette (45° rectangular) bonded to (a) ASTM coupon (b) Short
coupon. (c) Angle g represents the acute angle from gauge 1 to the principal axis
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Fig 3. 34 A typical experimental stress-strain curve of transverse short coupon.



Table 3.6 ASTM shear coupon (3.2mm thick) test results.

Specimen Shear modglus Shear Mode and
Code . #po° (kKN/mm?) Strength | location of
Polynomial Chord | Secant | (N/mm?) failure
LC-1 T=1552087- | 424 | 3.83 | 3.83 85.4 Shear at
137.40y’+4.3513y centre
LC-2 T=1818.7y3- | 446 | 3.82 | 3.82 83.8 Shear at
168.13y°+4.8746y centre
LC-3 1=1740.6y"- 43.2 4.01 3.95 81.7 Shear at
142.69y°+4.872y centre
LC-4 1=1642.97- 448 | 3.95 3.95 81.5 Shear at
131.07y’+4.7794y centre
LC-5 T=1395.773- | 442 | 4.09 | 4.04 81.8 Shear at
126.92y°+4.8639y centre
Average - 3.94 3.92 82.8 -
SD - 0.12 0.11 1.82 -
CV - 3.05% | 2.81% 2.2% -

Table 3.7 ASTM shear coupon (6.0mm thick) test results.

Specimen Shear modlixlus Shear Mode and
Code . #p.0° (KN/mm®) Strength | location of
Polynomial Chord | Secant | (N/mm?) | failure
LC-6 1=1470.9y- 419 | 3.79 3.79 89.8 Shear at
123.01y7+4.8814y centre
LC-7 1=1929.2y3- 44.2 3.91 4.03 914 Shear at
164.417°+5.2661y centre
LC-8 1=1484.7y- 427 | 412 | 4.07 85.5 Shear at
127.8y°+4.9682y centre
LC-9 t=112131y- 43.8 | 396 | 3.93 84.9 Shear at
109.94y*+4.6488y centre
LC-10 1 =1319.5y3- 42.8 4.01 4.07 80.2 Shear at
119.79y*+4.8493y centre
Average - 3.96 3.98 86.4 -
SD - 0.07 0.07 448 -
CV - 1.77% | 1.76% 5.12% -
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Table 3.8 Longitudinal short shear coupon (3.2mm thick) test results.

Specimen Shear modlleus Shear Mode and
Code . #p0° (kKN/mm”) Strength | location of
Polynomial Chord | Secant | (N/mm?) failure
SL-1 1 =1303.5y- 443 | 397 | 3.96 86.7 Shear at
115.87y*+4.826y centre
SL-2 1=1013.6y3- 43.2 4.01 3.95 82.9 Shear at
111.04y*+4.6558y centre
SL-3 1=1324.6y- 44.1 | 393 | 3.9 82.5 Shear at
114.057°+4.6447y centre
SL-4 1=897.83y- 42.4 3.89 392 874 Shear at
94.431y’+4.7329% centre
SL-5 1=1161.1y3- 43.7 3.95 4.05 86.3 Shear at
102.78y%+4.7174y centre
Average - 3.95 3.96 85.2 -
SD - 0.05 0.19 1.82 -
CcV - 1.14% | 4.8% 2.2% -

Table 3.9 Longitudinal short shear coupon (6.0mm thick) test results.

Specimen Shear modlillus Shear Mode and
Code . #r0° (kKN/mm®) Strength | location of
Polynomial Chord | Secant | (N/mm?) failure
SL-6 1 =706.38y"- 44.5 3.95 3.91 86.1 Shear at
82.16y°+4.426y centre
SL-7 15964613~ | 44.6 | 4.03 | 4.04 92.1 Shear at
82.37y%+4.5924y centre
SL-8 1=725.71y- 447 | 3.92 3.98 80.5 Shear at
84.81y2+4.5408y centre
SL-9 © =838.61y"- 442 3.94 3.94 84.8 Shear at
89.779y"+4.5315y centre
SL-10 1=810.54y3- 448 | 3.89 3.87 85.2 Shear at
87.147y’+4.413y centre
Average - 3.95 3.95 85.7 -
SD - 0.19 0.12 3.13 -
cvV - 4.81% | 3.04% 3.65% -
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Table 3.10 Transverse short shear coupon (3.2mm thick) test results.

Specimen Shear mod1211us Shear Mode and
Code ) oro° (kKN/mm”) Strength | location of
Polynomial Chord | Secant | (N/mm?) | failure
ST-1 t=1263.9v- 44.3 2.81 2.81 64.1 Shear at
101.78y*+3.4713y centre
ST-2 1=1418.2y3- 43.8 2.84 2.87 65.3 Shear at
97.58y*+3.2413y centre
ST-3 1=1278.1y- 426 | 2.85 2.94 68.9 Shear at
100.99y*+3.5961y centre
ST-4 1=1239.9y- 432 | 2.86 | 2.83 62.6 Shear at
90.888y7+3.4174y centre
ST-5 1=996.96y3- 42.5 2.88 2.80 60.9 Shear at
84.205y*+3.3481y centre
Average - 2.85 2.85 64.4 -
SD - 0.12 0.12 1.82 -
cv . 421% | 421% | 3.02% -

Table 3.11 Transverse short shear coupon (6.0mm thick) test results.

Specimen Shear modlelus Shear Mode and
Code . #p0° (kN/mm?) Strength | location of
Polynomial Chord | Secant | (N/mm?) failure
ST-6 1=579.24y- 441 | 285 | 2.88 68.1 Shear at
58.475y%+3.549y centre
ST-7 1=593.72y3- 41.6 2.79 2.83 71.4 Shear at
59.937y*+3.6377y centre
ST-8 1 =535.8y- 424 | 287 2.79 70.5 Shear at
54.097%+3.2828y centre
ST-9 1 =640.62y’- 31.7 | 294 | 295 64.9 Shear at
63.577y+3.4124y centre
ST-10 1=679.173- 43.5 2.81 2.79 65.2 Shear at
63.667y*+3.8734y centre
Average - 2.85 2.85 68.0 -
SD - 0.13 0.10 2.89 -
CcvV - 4.56% | 3.51% | 4.25% -
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3.4 COMPRESSIVE PROPERTIES

The compressive properties (strength and stiffness) of the pultruded box profiles,
investigated for buckling behaviour, in this study (Fig. 1.4 & 1.5) have been
experimentally measured. The procedure adopted for this experimental study has been
introduced by Mottram (1994). The material specimen is a parallel sided rectangular
coupon (70x20mm) obtained from the uniformly thick walls (sides) of the box sections.
Only longitudinal coupons have been extracted and tested as transverse coupons are not
available due the profiles dimensional constraints. Furthermore, the profiles are only to be

tested in longitudinal compression.

Coupon Preperation

The coupons, cut from the side walls of box-sections, in a direction parallel to the
longitudinal axis and remote from the edges (joints) to avoid edge effects (Mottram,
1991), have been machined to the required dimensions (70x20mm). Five coupons from
each of the 51x51x3.5mm and 44x44x6.0mm box-section profiles have been extracted.
Coupons have been cleaned and numbered sequentially. The exact dimensions of the
finished coupons have been measured up to 0.0lmm accuracy, using a micrometer and
recorded for subsequent calculations. To each coupon, two single-element strain gauges,
one on each side at its geometric centre, have been bonded (M-Bond 200 adhesive)
having aligned the longitudinal axes of the both specimen and gauge. Pair of gauges being

used to enable identification of bending arising from imperfections.

Bondable terminals have been used to secure the solder joints between the strain-gauge
conductors and the connecting wires, with double wires (two with each terminal) able to
provide temperature compensation during the test. The prepared coupons were dispatched
for testing to the School of Engineering University of Warwick, Coventry, for testing (for
a schematic of the testing see Fig 2.8).

Compression testing

A prepared coupon is inserted to a depth of 25mm into lower mounting block of the
testing rig. The upper mounting block (attached to upper platen of the compression testing
machine) is lowered gradually and the coupon aligned to fit in the upper block. The
clamping arrangement of the rig holds the coupon vertical, aligning and confining at the

ends against brooming or splitting. Consequently 25mm of coupon length on each end is
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gripped by the mounting blocks, leaving an un-supported length of 20mm at the centre to
act as the test section. The failure of the coupon under the compression load is expected to
occur in this section. The test-rig has been loaded in a DARTEC 9500 compression
machine for compression and concentric loading. The rate of loading has been maintained
by controlling the stroke rate at 0.0lmm/sec. Strain produced at the central test section

and corresponding applied loads have been recorded in addition to real-time stress strain

graphs.

Compression test results

All the coupons failed in a similar failure mode i.e. material failure near the ends (Plate.
3.9 and 3.10). Ideally the failure should have occurred in the test section i.e., at the mid-
length of the coupon. The similarity in the failure pattern in all tested coupons implies the
inability of the clamping arrangements to promote gauge section failure. However the
compression properties obtained (Tables 3.12 and 3.13) in the tests suggest that the
coupons were loaded to a maximum strength prior at “failure”, The test data has been
processed using a similar procedure to that described for the shear tests within the
exception that a second degree polynomial was used in the curve fitting. The longitudinal
compressive modulus has been calculated from polynomial stress values against strain

values of 1000 and 6000ue, as:

Ac
B "

where Acis the difference between stresses (in kN/mmz) at strain values of 1000 and
6000pe and A¢ is the difference between the strain values i.e., 0.005Smm (corresponding
to strain interval of 1000 and 6000u€). Stress-strain plots for three 3.2mm and five 6mm
compressive coupons are given in Fig 3.35. The ultimate compressive stress has been
evaluated from the maximum load at failure. Results from the eight coupons (three
3.2mm and five 6mm thick) are summarised in Table 3.12 and 3.13. Two of the 3.2mm
thick coupons could not be tested owing to failure of the gauges. Stress-strain graphs for
the tested coupons along with the polynomial curve fits are given in Fig. 3.35. Average
compressive modulus (quoted as one representative value of the material) for the two
box-sections has been calculated using (3.19). Similarly ultimate compressive stresses

have been averaged to quote one value as the compressive strength of the material.
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Standard deviation (SD) (3.20) and coefficients of variation (CV) (3.21) have also been
calculated and included in Tables 3.12-3.13.

3.5 TENSILE PROPERTIES

Tensile properties in the longitudinal (parallel to the fibres) direction have been taken
equal to the longitudinal compressive properties of the GRP composite profiles (Bank et
al 1994, Zureick and Scott 1997).

Tensile properties of one of the box-sections, being investigated in this study, i.e.
51x51x3.2mm were measured by Saribiyik (2000). The properties have been predicted
numerically by micromechanics and experimentally by testing coupons in longitudinal
and transverse directions. Standard ASTM coupons were used in longitudinal direction
while short coupons were used in the transverse direction. The experimental outcomes for
the 51x51x3.2mm box-sections are;

E,,=26.7KN/mm’  (Exc=30.3kN/mm’)"’

o, = 388N/mm’ (o, = 385N/mm?)

where E,, is the longitudinal elastic modulus in tension; o; is the ultimate longitudinal
tensile strength; E; . is longitudinal elastic modulus in compression; and o is the ultimate

compressive strength.

3.6 TOLERANCE FOR MATERIAL PROPERTIES

Using the average property values for GRP material, from Tables 3.5 -3.12, tolerance for
elastic properties has been estimated at 95% confidence level, using (3.24) (Kennedy and

Neville 1976, Wang and Zureick 1994):
1.96SD

xt T (3.29)
51x51%3.2mm box-section

Longitudinal shear Modulus =3.95+0.12kN/mm’
Transverse shear Modulus =2.85+0.04kN/mm?
Longitudinal shear strength =82.8+2.6N/mm’
Transverse shear strength =64.4+2.5N/mm’

Compressive longitudinal Modulus = 30.3+0.40N/mm?
Compressive longitudinal Strength = 385+8.0N/mm?

15 Values in the parenthesis are compressive properties for 3.2mm thick coupon from the present study.
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44x44x6mm box-section

Longitudinal shear Modulus =3.95+0.13kN/mm?
Transverse shear Modulus =2.85+0.05kN/mm>
Longitudinal shear strength =85.84+3.3N/mm’
Transverse shear strength =68.0+3.73N/mm>

Compressive longitudinal Modulus = 33.2+1.5kN/mm’
Compressive longitudinal Strength = 385+16.3N/mm’

3.7 CONCLUSIONS AND RECOMENDATIONS

Material properties of the two GRP structural profiles (51x51x3.2 and 44x44x6.0mm

box-sections) have been established using theoretical and experimental studies, for use in

stability analysis of these profiles used as columns in the composite structures. The
outcomes of the research presented in this chapter are summarised here;

1. Elastic constants for the composite material have been predicted using constitutive
information (manufacturer supplied) and a theoretical approach (micromechanics and
CLT) and reported (Table 3.5).

2. Experimental studies have been conducted to measure the in-plane shear and
compressive properties of these profiles. Standard ASTM shear coupon, 76x20mm
rectangular notched beam (ASTM Designation D5379M-93), has been used to
measure the longitudinal in-plane shear properties (modulus and strength). An
alternative, enhanced, AFPB type shear test fixture has been proposed and adopted to
apply a uniform pure shear load across the central test section of ASTM coupon.

3. The performance of the ASTM shear coupon under the shear loading has been
assessed using the finite element method as a benchmark to the establishment of a
short equivalent. The agreement of the theoretical and numerical results validated the
FEA model and analysis itself.

4. A short shear coupon, similar in shape and geometry to the ASTM coupon, has been
proposed to measure the in-plane transverse shear properties in cases where the ASTM
coupon cannot be extracted from the pultruded sections. The proposed short coupon is
40x10mm rectangular notched beam. FEA models (2D, surface) of an individual short
coupon and fixture encapsulated short coupon subjected to idealised (point loading
described in Fig. 3.4) loading and of coupon loaded in AFPB test fixture has been
analysed for the shear stress/strain distributions across the central test section and

compared with the theoretical values. The effects of variations in the geometric
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parameters (overall width of coupon, notch depth, notch angle) have been investigated
numerically. A short coupon with a length = 40mm, depth = 10mm, thickness equal to
webs of the box-sections, grooved at the mid-length of each long side with one 90°
sharp V-notch of notch depth = 2.5mm is recommended.

. Aluminium tabs have been proposed located parallel to the loading bars to avoid
premature failure of coupon in the contact regions. Analysis of a volume model (3D)
of the proposed short shear coupon has been indicated that the tabs do not alter the
uniformity of the shear strain distribution across the central section of the test region.

. A finite element analysis of the coupon encapsulated in the test fixture is essential in
determining the loading applied to the coupon for use in calculating the elastic moduli
and strength constants.

. In-plane shear properties have been measured experimentally using ASTM and short
shear coupons extracted from both box-profiles. ASTM coupons show consistent
values of the shear moduli and shear strengths with low SD and CV values.

. Short coupons in the longitudinal directions gave consistent and similar results to the
ASTM outcomes demonstrated by the statistical “Student’s t test”. The test validates
the performance of the short shear coupon for the measurement of in-plane shear
properties where a standard ASTM coupon would normally be used and by inference,
where geometric constraints apply. Short coupons with aluminium tabs are
recommended when measuring transverse shear properties of the two box-profiles.

. All the coupons failed at the central test section (between the notches). Longitudinal
coupons failed by delamination of fibres and matrix, whilst the overall integrity of the
coupon was maintained. Conversely transverse coupons with tabs failed at the centre
by matrix failure splitting the coupon into two halves with the consequent loss of
integrity.

10.From the experimental outcomes of the ASTM and short coupons, the average shear
properties of the box-sections are Gy, = 3.95kN/mm?; F,, = 85N/mm? Gy=
2.85kN/mm’ and F,t= 66N/mm?. The material’s shear response behaves behaviour is
non-linear but elastic.

11. The compressive properties measured by testing the material coupons 3.2mm thick,
are E., = 30.3kN/mm’ and o, = 385N/mm®. The average compressive properties for

the 6.0mm thick box-section are E,, = 33.23kN/mm? and Ouc = 523N/mm?.
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Fig. 3.35. Stress-strain curves for the compression coupons.
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Table 3.12 Longitudinal compressive properties of 3.2mm thick box-section.

Specimen EvL.c Strength Location and
Code Polynomial (kN/mmz) (N/mmz) mode of failure
CL-2 0=-218.09¢’+30.886¢ |  30.0 388 Shear at end
CL-3 | 0=-211.82¢’+31.708¢ 30.8 390 Shear at end
CL-5 0=-207.56€%+30.949¢ 30.1 377 Shear at end

Average 30.3 385 -
SD - 0.46 7.0 -
Ccv - 1.5% 1.8% -

Table 3.13 Longitudinal compressive properties of 6.0mm thick box-section.

Specimen EL.c Strength Location and
Code Polynomial (kN/mm?) | (N/mm?) | mode of failure
CL-6 | 06=-20.355e%+34.689¢ 34.6 537 Shear at end
CL-7 | 0=-26.454e>+31.859% 31.8 503 Shear at end
CL-8 | 0=-24.394e’+34.862¢ 34.8 546 Shear at end
CL-9 | 6=-22.078¢*+31.109¢ 31.0 522 Shear at end

CL-10 | 0=-36.114e*+34.181¢ | 340 507 Shear at end
Average 33.2 523 -
SD - 1.73 18.6 -
cv - 5.2% 3.6% -
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Plate 3.1 Testing arrangements for shear coupons;

(a) ASTM coupon 3.2mm thick; (b) ASTM coupon 6.0mm thick;

(¢) short longitudinal coupon 6.0mm thick; (d) short transverse coupon with tabs.
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(b)
Plate 3.2 Failure modes of ASTM shear coupons (3.2mm thick):

(a) front view; (b) side view.

(a) (b)
Plate 3.3 Failure modes of ASTM shear coupons (6.0mm thick):

(a) front view; (b) side view.
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(a) (b)
Plate 3.4 Failure modes of short longitudinal coupons (3.2mm thick):

(a) front view; (b) side view.

(b)

Plate 3.5 Failure modes of short longitudinal coupons (6.0mm thick):

(a) front view; (b) side view.
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(a) (b)
Plate 3.6 .Failure modes of short transverse coupons (3.2mm thick):

(a) front view; (b) side view.

(a) (b)

Plate 3.7 Failure modes of short transverse coupons (6.0mm thick):

(a) front view; (b) side view.
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(@) (b)
Plate 3.8 Failure modes of compressive coupons (3.2mm thick):

(a) front view; (b) side view.

(a) (b)

Plate 3.9 Failure modes of compressive coupons (6.0mm thick):

(a) front view; (b) side view.
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CHAPTER 4

BUCKLING OF GRP BOX COLUMNS -
EXPERIMENTAL STUDY

4.1 INTRODUCTION

Much of the present useful design knowledge is based on careful experiments.
Although judiciously chosen mathematical models may predict the expected physical
behaviour, experimental data is needed to validate predicted behaviours. Furthermore,
physical tests may exhibit the complete behaviour of real structures, aspects of which

may not have been considered in the simplified models.

Experimental testing of two GRP pultruded box-sections structural profiles (shown in
Plate 1.5) is reported in this chapter. Specimens (columns), of various heights (200 to
2000mm) have been concentrically loaded (within experimental limitations) in a
purposely constructed test rig with pin supports (knife-edges) and vertical alignment.
The main objectives of the experimental programme include the determination of
critical buckling loads and failure modes, with classifications into global, local,

material failure and compound sets.

The experimental data generated during the tests, comprise the applied loads, axial
and lateral deflections, axial strains, and ultimate load capacity (critical buckling
loads in general). In the case of slender columns (exhibiting global buckling in the
linear elastic linear range), the Southwell method (Southwell, 1932) has been applied
for the calculations of single representative buckling loads and for the estimation of
imperfections in the geometries of the profiles. Taking advantage of this non-
destructive method, specimens have been retested after rotating about the longitudinal
axis of symmetry and lengthwise by 180 degrees (reversing the orientation). For short
columns, however, as failure was abrupt, non-linear and irreversible with negligible

transverse deflections, the Southwell method could not be applied.

The experimental outcomes have been compared with the theoretically predicted
results using classical approaches and the design guidance from Eurocomp design
code and manufacturers’ design manuals. A unified design curve for the two-box

sections under investigation, have been produced using the procedure prescribed by
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Barbero and DeVivo (1999). Comparisons with linear and non-linear analyses are

given in Chapter 5.

To establish the effects of perforations on the load carrying capabilities of the
composite columns circular holes have been drilled through the webs of pre-tested
(with known buckling load) long specimens. Three sizes (diameters) of the holes have
been adopted, one for each member comprising a group of specimens of one length.
For example, three 51x51x3.2mm specimens of length 2000mm, tested for critical
buckling loads have been retested with holes 14, 25 and 35mm diameter respectively.
Similarly three 44x44x6.0mm specimens of length 2000mm are retested with holes

14, 20, and 25mm diameter respectively.

4.2 BUCKLING TESTS
4.2.1 PREPARATION OF SPECIMENS

Specimen extraction

Test specimens (columns of lengths ranging from 200 to 2000mm) have been
extracted from standard lengths (6m = 20ft as supplied) of the two GRP box profiles
(51x51x3.2 and 44x44x6.0mm). Three specimens have been prepared for each length
of the two cross-sections. Specimens in each length-group are marked with sequential
numbers (1, 2, 3 for 51mm box-sections and 4, 5, 6 for 44mm box-sections) and their
sides (webs) with letters A, B, C, and D for identification and tabulation of the test
results. The specimens are machined to the idealised lengths and their ends squared
i.e., ends made flat, smooth and normal to the longitudinal axis of the columns. End
squaring promotes uniform distribution of applied load over the whole cross-sectional
area and helps to reduce the onset of premature localised failure (Brown et al 1998,

Barbero and Truk 2000).

Initial measurements

Outer dimensions (width on all four sides) have been measured every 100mm along
the length of the specimens. The cross-sectional dimensions have been measured to
establish the geometrical properties (e.g., area ‘4’ and moment of inertia ‘I°). As the
box-sections have a closed cross-section, wall-thicknesses and internal measurements
are only available at the ends. Outer and inner widths have been measured using a

vernier calliper with minimum increment of 0.01mm, whilst the wall-thicknesses are
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measured using a micrometer with same resolution. Wall-thicknesses have been
measured at twelve locations (shown by dotted lines in Fig 4.1) around each end-
cross-section. In the case of 5lmm box-section, four thin plateaus (two on each
opposite sides (see Fig 4.1) are included during manufacture to accommodate
adhesive for joining purposes. The formation of these plateaus has been assumed to
be as a result of consolidation of the material during the manufacturing process, and
that the material configuration (reinforcements and matrix) remain uniform across the
entire cross-section. Therefore, average measured values from both ends of a
specimen, for the geometry of the box-sections, has been used in calculating the
average web-thickness, mean cross-sectional area ‘4’ and the moment of inertia ‘I
for each specimen. The minimum and maximum wall-thickness has been recorded as
3.07 and 3.54mm as compared to 3.2mm nominal thickness specified by the
manufacturer (FIBREFORCE Ltd UK). As an example, the thickness variations
(between 3.07 and 3.54mm) for 51mm box-section differ from a mean thickness value

(3.3mm) by £0.25mm and are within the standard tolerance (ASTM D3917-94).

Initial imperfections

Initial imperfections i.e., out of straightness and variations in the outer cross-sectional
dimensions (inherited in sections due to pultrusion process) have been measured
along the specimen length on all four sides. For this purpose, the length of the
specimen is marked every 50mm starting from one end. The specimen is placed
horizontally on a lathe table (marking table) and a dial gauge with 0.0lmm accuracy,
mounted on a vertical stand, is moved along the specimen length to measure the
widths along the centre line of the upper face (see plate 4.2). The procedure is
repeated for each side. The imperfections of cross-section on each side have been
calculated by subtracting the mean width from the measured values (Fig 4.2). The
initial imperfections have been compared with the allowable imperfections (tolerance)
from the ASTM standard D3917-94. For the box-sections used in this investigation,
the tolerance specified by the ASTM standard is:

< —_—
<o @.1)

where e is the initial deflection (deviation) from the mean dimension and L is the
height of the specimen. All measured deviations from straightness are significantly

within the tolerance specified by ASTM. For example the variations in the outer
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dimensions are within +0.3mm from the average values (5.09mm and 43.8m for
51mm and 44mm box-sections respectively). Considering the minimum height of the
column i.e., 200mm, e, calculated using (4.1) is 0.83mm (> 0.3mm). For longer
columns the variations are very small as compared to standard limits. An important
observation made here is that specimens deflect under self weight when placed on the
marking table, showing very little out of straightness. Consequently measured
imperfections are mainly cross-sectional variations with indications of out of

straightness reduced or neglected.

Fixing strain rosettes and bondable terminals

To obtain a full representation of the strain field at the mid height of the column, A
45° rectangular strain rosette (EA-06-060RZ-120 from Measurement Group) is
bonded on each side (M-Bond 200 adhesive and catalyst C used) of the specimen,
symmetrically about the longitudinal centre line (see Plate 4.2). The surface is cleaned
(using methane) and prepared (rubbed smooth) to ensure a sound bond and to
maximise bondable area. The pre-treatment processes were carried our using a clean
absorbent material and neutraliser with the briefest delay before bonding, to minimise
re-contamination of the surface. A similar procedure has been used for the fixing of
the bondable terminal. Thin wires are soldered to connect the gauges to the bondable

terminals that in turn are wired, to a data-logger for data recording, via quarter bridge

circuits.
4.2.2 EXPERIMENTAL SETUP

In establishing the experimental setup, the primary considerations adopted have been:

e Columns are tested in the vertical position, to negate the introduction of initial

imperfection arising from self weight deflections.

e Friction free knife-edge supports to simulate pin ended conditions, with

rotation admissible about the knife-edge axis only.

e Concentric loading i.e., knife-edge centre line aligned with the axes of

loading.

Test Rig
The test rig (main frame) comprises two vertical steel channel-sections, bolted rigidly

via a thick steel base plate to the laboratory strong floor (Fig 4.3). To the frame base
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are welded steel plates (one horizontal and two vertical) forming a platform that
provides support to the test specimen at one end and makes the frame further rigid,
vertical and parallel. To the upper end, a steel saddle bolted across the channels,
supports a hydraulic jack fitted to the underside by a steel plate. A second ‘assembly
saddle’ containing four horizontal rectangular supporting posts is attached (bolted)
below the upper saddle. Both, upper and assembly saddles can be relocated by
repositioning the bolts (Plate 4.3) along the steel channels, to suit various lengths of
the specimens. The supporting posts accommodate the load guiding mechanism (see
Fig 4.3 and Plate 4.3(a)). Two guide bars (25.4mm diameter steel rods) slide smoothly
and vertically through four holes, lined with copper bushes. A plate, fastened to the
guide bars between the supporting posts, accommodates a knife-edge support (wedge
shaped steel prismatic bar, see Plate 4.3). A steel shoe (locating the specimen)
comprising of a fabricated hollow steel box-section (65x65x6mm) and thick base
plate (37.5mm) having a “V” notch along the centre line for the afore mentioned
prismatic bar forming a simple (pinned) support (see Plate 4.4(b)). The specimen is
restrained in the horizontal (x and z) plane but can move in the vertical direction under
the axial load. Also, the steel shoe distributes the applied load uniformly to the
specimen cross-section, reducing the possibility of localised material failure. The
hollow box (of steel shoe) encapsulates the column end to a depth of SOmm (2 inches)
as a safeguard against slipping or breaking of the specimen at failure. Steel shimming
plates and screws on all four sides are provided to tighten and align the column end in
the shoe (Plate 4.3 (a)). Centre lines, on all four sides of the steel shoe, are marked to
centre (align) the test specimen for concentric loading. A similar knife-edge plate and
shoe have been fabricated for the lower end (Plate 4.4 (b)). The lower plate is fixed
i.e., the displacements in horizontal and vertical directions are restrained about the
centre line but free to rotate on a knife edge. A second load cell is located beneath the
lower knife-edge plate (atop of the base platform), to measure the reaction produced

by the lower platform (Plate 4.3(b)) and to check friction losses in the total assembly.

Holes along the main frame (steel channels) has been used to fix LVDTS (Linear
variable differential transducers) at the required locations. Simple steel holders have
been fabricated and welded to bolts to fit in these holes. The test assembly is,

therefore, fully integrated (see Plate 4.5).
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Alignment of test rig and specimen

The reaction frame should be vertical and components orthogonal for concentric
loading. A surveying theodolite has been used to check the verticality of the frame.
The theodolite has been centred and levelled at a distance (3 to 4 meters) from the test
rig to cover whole height of column. The top internal edge of one of the channel
sections comprising the frame has been sighted and followed downward along the
length. The same procedure has been followed to note the alignment of second steel
channel. Misalignment, if detected, is eliminated using steel tie-rods. The verticality
of the frame from in the orthogonal plane was similarly determined and the procedure
iterated until the reaction frame was square. Equivalent accuracy in the components

comprising the reaction frame has been assumed throughout.

The specimen (column) has been inserted into the lower shoe (remote from the rig)
and centred by aligning preset marks. Thin shimming plates have been tightened
around the specimen by screws, leaving equal gaps between shoe walls and the
specimen. The opposite end of the specimen has then been inserted into the second
shoe and centred by repeating this procedure. The specimen with steel shoes on both
ends has been inserted into the test rig by gradually pushing the upper shoe against
upper knife edge, lifting it until enough room has been available to place the lower
shoe on top of lower knife edge. The specimen has been aligned as straight and
vertical between the knife edge plates, using the theodolite. Screws in the lower shoe
are used for adjusting the specimen position for the specimen alignment. The
theodolite has been used only to align the specimen from the front face. In the
orthogonal plane, the sight from the theodolite was restricted by the steel channels.
Lateral alignment has been achieved using steel strips bolted to the main frame at the
locations of knife edge plates. A steel strip fixed at lower knife-edge is shown in Plate
4.3(b). Internal and external callipers have been used to align the upper and lower
knife-edge plates at equal distance from the aligning strips. Adjusting screws on sides

of the shoe centre the specimen.

The specimen has been loaded to one third of the expected load to allow initial setting
of the specimen ends. The steel shoes have then been loosened, the alignment checked
and the shoes retightened to allow the specimen to destress before the start of actual

test.
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Effective Height (L q)

The height between the knife-edges (pivots) of the upper and lower supports is the
effective length for each test specimen. An additional length of 55mm to the physical
length of the GRP specimens, due to the introduction of the upper and lower steel
shoes, has been measured. For example the effective lengths (L.;) for 200 and
2000mm GRP specimens while testing are 255 and 2055mm respectively (assuming
pin supports). The presence of two steel shoes does not affect the column’s
deformation characteristics as in a theoretical analysis Chilver (1956) showed that
even when the total length of two fully rigid end fixtures is 0.2 of the column height

between simple supports, the increase in the Euler load is approximately 1.3%.
4.2.3 MEASUREMENTS

Axial Load

Axial load has been measured using two load cells; an upper and a lower. The upper
load cell is directly mounted on the hydraulic jack and connected to the upper steel
plate via a copper cylindrical attachment (copper being a relatively soft material, acts
as a shock absorber protecting the load cell from impact damage). This load cell
measures the axial compressive load applied to the specimen through the knife edge
and steel shoe. The lower load cell has been placed under the lower steel plate,
measuring the reaction to the above load (Plate 4.3(a) and 4.3(b)). Ideally these loads
should be equal given a frictionless system and the induced gravity loads arising from
the moving plate, knife-edge, steel shoes and specimen are included. Comparing the
load cell readings a difference of 0.1 to 0.3kN has been recorded corresponding
approximately to the self weights of the components listed previously. The test rig has

a demonstrably low friction error, therefore.

During testing the load has been applied in small increments to reach the ultimate load
(estimated from theoretical solutions) within 10 minutes. The load is measured and
recorded digitally every two seconds (i.e. 300 readings in 10 minutes). The capacities
of the load cells (e.g., 89kN to 898kN) and the hydraulic jack have been selected

depending upon the height and cross-section of the columns.

Deflections

Axial deflection (vertical shortening) is measured by the downward movement of

upper plate accommodating the knife edge support. An LVDT fixed to the upper
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saddle measures the axial deflection of the specimen (see LVDT 1 in Fig 4.3 and Plate
4.3(a)).

For longer columns showing global buckling, lateral deflections are measured at three
points (mid, upper one-quarter, and lower one-quarter of the length, see Plates 4.6-

4.7), whilst for short columns, where local buckling is expected and locations of the

maximum deflections are not known before hand, more than three LVDTs have been

used (see Plate 4.8(d)).

The cross-sectional rotation of the specimen at mid height is measured indirectly. A
flat steel (or plastic) strip is clamped to on side of the specimen and horizontal
displacements at two equal distant points from the centre are measured using two
LVDTs (see Plate 4.4 (a)). However, the cross-sectional rotation of the column ends is

not admissible due to the rotational restraint of the knife-edge supports.

Strains

Strains produced by the compressive loads are measured by strain gauge rosettes
bonded to each face of the specimen at mid-heights. Each strain rosette comprises
three strain grids (see Fig 4.3 and Plate 4.2). Strain grids are numbered anticlockwise.
Grid 2 of the strain rosette is at the centre of each web at mid-height parallel to the
vertical axis. Grid 1 and 3 are at £45° to vertical axis. Maximum principal strains are
calculated from the strains measured by three grids of a rosette (using 3.17). The
angle (¢#) from the axis of grid 1 to the maximum principal strain is calculated to
confirm the verticality of the bonded gauge in the case of the column tests. If the
angle ¢ is 45°, the maximum principle strain (-ve compressive and +ve tensile) is in
the axial direction. Strain measurements in the initial loading range are not only used
to calculate the compressive modulus, but also indicate equal and uniform distribution
of compressive load on the all four sides of the specimen, confirming the proper

alignment of the specimen and concentric loading,
4.2.4 TESTING PROCEDURE
e Rig adjusted to fit a particular specimen height.
e Specimen inserted and aligned.
e Load-cells, LVDTs and strain-gauges connected to the data-logger.

e Instrumentation initialised and initial values set to zero.
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Specimen loaded to one-third of the expected load. Instrumentation checked
for proper functioning. Load released, alignment re-checked and

instrumentation brought to initial zero readings.
Loading applied gradually.

Instrumentation continuously monitored. Data filtered through noise and

recorded using a data acquisition system (every 2 seconds).

Load increased in intervals until either the central lateral displacement

increased uncontrollably or material failure occurred.
Mode of failure recorded.

In the case of Euler buckling (non-destructive), specimen either rotated

through 90° about the longitudinal axis or inverted and retested.

In the case of local failure i.e., tearing of the cross-section, half sine wave-

length measured to within a reasonable accuracy of + 0.5Smm.

4.3 EXPERIMENTAL RESULTS

The results comprise buckling/failure loads and the resulting failure shapes. Critical

loads are presented in the tabular form (Tables 4.1-4.3), and failure modes have been

illustrated with photographs (Plates 4.6-4.7, 4.9-4.15, and 4.17-4.19). Four types of

column failure have been observed during the experiments:

Global buckling exhibiting lateral deflection at the critical load. Buckled shape

is half sine wave with maximum deflection at mid-height,
Local buckling of the webs followed by tearing of the cross-section,
Compression failure of the material.

Interaction between global and local buckling modes followed by tearing of

the cross-section or global and material failure.

Critical buckling (or failure) loads depend on the column heights and the material

properties of the parent materials (Barbero and Tomblin 1994, Brown et al 1998,

Barbero 2000). These factors has been combined together to define the universal
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. L PL *® .
slenderness ratioA = D (2.19) of each specimen. By definition ‘A’ is a function

of material stiffness and geometric properties, in addition to the column height. The
experimental evidence suggests that specimens having A >1 buckle globally, whilst
specimens having A < 1 exhibited local or material failure. Specimens having A =1
showed mode-interaction. This observation is in line with the findings of the previous
studies (Barbero and Tomblin 1994, Barbero and Evans 1998, Brown et al 1998,
Barbero and DeVivo 1999).

As a reference of demarcation between the global and local failure, critical heights L*
(2.21) (for the occurrence of maximum mode interaction), for the two box-section
profiles (51mm and 44mm) have been calculated taking A = 1. The columns have
been assumed to be of uniform cross-sectional area and moment of inertia (mean
value given in Tables 4.4-4.5) throughout the length. The bending stiffnesses D have

been taken equal to E, , x I, where E, , are the measured compressive moduli for the

two sections (Tables 3.11-12). P for either of the box-sections has been taken equal
to experimental load for the short columns'. The critical lengths for SImm box-
section (with P, = 120kN) and 44mm box-section (with P, = 220kN) have been

calculated as 771 and 569mm respectively.
4.3.1 GLOBAL BUCKLING

Global buckling has been observed in specimens of height 1000mm (Ley= 1055mm
and A= 1.37) and longer in the case of the 5Imm box-section and for the heights
750mm (L= 805mm and A = 1.41) and longer in the case of the 44mm box-sections.
As the global buckling is the characteristic of the slender columns, these specimens
(and hence the column heights) have been categorised as slender columns. The
specimens remain vertically straight (with no or very little lateral deflections) before
buckling commences. As the buckling loads approach, the specimens abruptly deflect

laterally to one side (with respect to the knife edge axis) and deflection continues to

* P, has been taken from the short column tests on the two box-sections (Tables 4.2-3). P, has been
confirmed to be independent of the column height in the short range as at least one specimen from each

height group reached this experimental failure load. This is in line with the definition of P;.

t The minimum acceptable length for short column has been suggested to accommodate at least 4 half

sine waves when buckled in a local mode (Mottram, 2000).
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increase without further increase in the applied load. The buckled shape is a half sine
wave (Fig 4.4 and plates 4.6-4.7) with maximum lateral deflection at the mid-height.
The maximum lateral deflection at the centre is limited to height/100 to avoid any
cracks or permanent damage to the material (Mottram et al, 2000). The cross-section
of the specimen remained un-distorted (square with right angles) and uniform
throughout the length of the specimen. The supports (knife edges) at the both ends of
the specimen are rotated about the knife edge (see pin ended rotation in Plates 4.7(c,
d)) without orthogonal movement. The upper support moves axially downward under
the application of external compressive load. Specimens fail (without any damage or
breakage) due to buckling in the elastic range (i.e., buckling stress is much lower than
the ultimate compressive stress). They are retested with change in sides or rotation by
180°. Experimental results are given in Table 4.1 in which sides A, B, C, and D
indicate the side of specimen in the observation reference plane (parallel to the knife-
edge axis and in contact with LVDTs to measure lateral deflections), and the negative
(-) sign indicates the rotation about the transverse axis by 180° (specimen longitudinal
orientation reversed). The critical buckling loads measured experimentally ‘Pg,,’ and
determined by Southwell method using experimental data ‘Ps v * have been included

in the results (Table 4.1)

The global buckling modes for the slender columns are given in Plates 4.6-4.7. The
classic half sine wave deflected shape is clearly demonstrated with rotation (pin
action) of the supports. The plates also indicate the position of LVDTs to measure the
lateral deflections, cross-sectional rotation and central location of bonded strain

rosecttes.

The characteristics of the global buckling in composite GRP columns have been

studied by plotting the following graphs:

Axial Deflection verses axial load

Typical plots of axial deflection verses the applied loads, for the various lengths of
specimen, have been presented in Fig 4.5 for 51mm box- and in Fig 4.6 for 44mm
box-sections. Axial deflection increases with load until ultimate load and remain
constant after buckling. As is evident from the Figs 4.5-4.6, the behaviour is linear up
to the ultimate load in all specimens. Therefore, it has been established experimentally

that the global buckling of GRP slender columns occurs in the linear elastic range of
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the material. Despite the reconditioning of the specimen by loading to a third of the
expected failure load prior to initialising the complete test, it is clear from the initial
stages of the plots (Figs 4.5-4.6) that the response of a column is less stiff than the
nominal (mid-range stiffness). This characteristic is consistent for both 5lmm and
44mm box-section tests. It suggests that there exists a certain amount of elastic
behaviour (< SkN) that is fully recoverable under unloading that induces a limited

non-linearity at low loads that may include both material and testing flexibilities.

Axial Load (P) verses Lateral Deflection (A)

Lateral deflections have been measured at three points along the specimen height i.e.,
mid, upper quarter (L/4) and lower quarter (L/4) heights. Maximum lateral deflection
(A3 measured by LVDT 3)* has been measured at the mid height of the specimen. The
deflections measured at the upper and lower quarter lengths of the column are lower.
At the buckling load, the measured values of the lateral deflection at three locations
are compared with a half sinusoidal buckled shape such that A; ~ Ay =~ 0.707A3 (see
Fig 4.4). It is clear that the 5Imm box section approximates the normally assumed
half-sine wave deformation. The smaller section (44mm box) with considerably
thicker walls displays a much greater curvature at the centre. Typical plots between
the lateral deflections (at mid-height and upper and lower quarter lengths) and the
applied axial loads for S5Imm and 44mm box-sections have been shown in Figs 4.7-

4.8.

It is evident from the graphs that lateral deflections are minimal until the onset of
global buckling, increase abruptly without any further rise in the applied load and are
asymptotic to the theoretical (Euler) buckling loads. Euler lines indicate the buckling
of ideal columns perfectly straight_ and free from imperfections (bifurcation theory in
elastic buckling). Any deviation from the ideal behaviour i.e., increasing lateral
deflection from the lower range of the loading and/or decreasing buckling load, has
been attributed to the initial imperfections and the limited ability of LVDTs to
measure very small displacements consistently. The potential imperfections causing

deviation of the column behaviour from approaching the theoretical bifurcation point

! In all the global buckling tests, LVDT3 has been placed at mid-height and measured deflection is

denoted as A;. Likewise A, and A, represent deflections at upper and lower quarter lengths.
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include misalignment of the testing rig (equipment limitations), geometrical tolerance
(specimen limitations) and non-homogeneity of the composite material (inherited

limitations).

Misalignment of the test rig causes a load eccentricity if the centroids of the sections
at both ends do not coincide with the line of action of the compressive load (Mottram,
2000). It can be minimised (if not eliminated) by the proper alignment of the
specimen and the components comprising the test rig e.g. knife-edge supports and
steel shoes housing the specimen. In the present study surveying equipments have
been used to align the upper and lower knife-edge supports with the loading line (§
4.2.2). Both ends of the specimen are properly centred in the steel shoes, using the
guiding centre lines and the adjusting screws. A close agreement (difference < 5%,
Table 4.1) between the measured buckling loads Pg,, and the loads predicted form
Southwell plots Ps.wen confirms the achievement of an adequate alignment using the
adopted technique. Also, the measured (Pgxp) and Southwell (Ps wenr) loads (Table 4.1)
for the same specimen when tested in upright and upside down (rotated by 180° about
the transverse axis), are very close, indicating minimal alignment imperfections. This
comparison further substantiates that the test rig performed well regarding loading

(frictionless and concentric) and pin-ended support conditions.

In the paper by Barbero and DeVivo (1999), a loss of 35% in the buckling loads of
GRP wide-flange profiles of intermediated heights has been suggested and attributed
to the interaction between the buckling modes. Mottram (2000) reviewed the contents
of this paper considering this loss (35%) in buckling load to be too high and suggested
that the greater part of this loss in stability was due to load eccentricity produced by
the misalignment of the testing rig, as the specimen could move within the larger steel
fixtures during the test. Mottram (2000) is of the opinion that mode-interaction may
reduce the buckling loads but this loss is proportional to the specimen’s imperfections
(imperfection sensitive). Therefore, in the context of Barbero’s work, a loss of 35%
was deemed too high to be attributed to mode-interaction only, as recent profiles
exhibit low section imperfection, and may be due to the influence of other
imperfections i.e., load eccentricity due to misalignment in applied loading. This
demonstrates the adverse effects of rig-misalignment on the buckling stiffness of

slender columns.
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Out of straightness and cross-sectional variations (e.g., varying thickness of walls and
outer measures) manifest a small shift in the position of the neutral axis of cross-
sections (along the column height) from the nominal centroidal axis, producing a load
eccentricity leading to increased lateral deflection and the loss if buckling loads.
Initial imperfections, like out of straightness and cross-sectional variations measured
for both the box-sections (typically shown in Fig 4.2) are very small (of the order of
less than 1mm). A small difference of less than 5% between the experimental and

predicted loads suggests low level initial imperfections.

GRP composite material is non-homogeneous; i.e., the distribution of the reinforcing
fibres is not uniform over the cross-section leading to a non-uniform distribution of
applied load in the cross-section. The determination of material properties (Chapter 3,
compressive and shear moduli), using coupons obtained from both the box-sections,
established small variations in the measured material constants (Tables 3.5-3.12).
However small the variations are, they still contribute toward the small eccentricities
produced in the compressive loading leading to the deviations of actual behaviour of

the specimens from the ideal case.

Southwell Plots

The presence of imperfections prevents the P-A response from following the
theoretical bifurcation behaviour with its distinct limit point. These imperfections
induced an initial curvature producing lateral deflections well before Pg could be
attained, justifying the need to use the Southwell plot method to predict the
experimental load. The method has been used efficiently to analyse the linear elastic
test data from a column with initial curvature to determine the buckling capacity
which the column would have if it were perfectly straight (Tsai, 1986). The capacity
is estimated from the measured lateral deflection and the applied axial load. The basic
assumption enforced for the validity of the Southwell method is that the deviation of
the P-A curve from bifurcation theory equates to an out of straightness (Ag) in the
form of a half sine wave. It is further assumed that the deformations (lateral) are in the
linear range of the material. The method is especially useful in non-destructive testing
(like the present study) since the specimens are required to be loaded within the
elastic limit (Barbero and Tomblin 1992, Brown et al 1998). However, the accuracy
of the predicted buckling capacity becomes poor if the initial curvature is small. The

reason is that the actual deflection dwells within the deviation range of employed
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gauges (LVDTs). To overcome this limitation, experimental data only for loads in the
ranges of 80 to 100% of ultimate loads have been used (Southwell 1932, Mottram et
al 2003). In the method, lateral deflections normalised by the applied load (A3/P) have
been plotted against deflections (A3) for each test. Typical Southwell plots for various
tested lengths of the 51mm and 44mm box-sections have been shown in Figs. 4.9-
4.10. A linear regression curve (trend line) with equation (slope and ordinate) and
correlation coefficient has been obtained for each plot. For most of the curves the
correlation coefficient (R-squared value) is either unity or more than 0.99, indicating
high linearity of Southwell curves, and low physical imperfections in the specimens.
The inverse of the slope of the regression line yields the critical buckling load of the
corresponding specimen whilst the ordinate of the equation estimates initial
imperfections (including all the practical imperfections). Critical buckling loads
‘Pswen’ obtained from the Southwell plots for 5Imm and 44mm box-sections have

been reported in Table 4.1.

It is assumed here that Southwell method is valid for data where the deflections are
due to combination of several imperfections and not just Ao. In other words two P-A
_curves due to overall eccentricity ey or due to a higher A (higher to account for all

imperfections), have very similar shapes.

Cross-sectional rotation

The knife edge supports at the ends of the specimen prevent its rotation about the
longitudinal (vertical in the present experimental study) axis. However its mid-height
section may rotate under the applied compressive load. To measure this rotation, a
long rectangular (steel or plastic) strip has been fixed to the cross-section. Lateral
deflections (normal to the knife edge axis) at two equidistant points from the centre of
the strip are measured using LVDTs (D5 and D6 in the case of slender columns). Both
deflections are normally in the same direction, indicating the lateral deflection rather
than cross-sectional rotation. The difference of the two deflections (D5-D6) gives the
amount of net deflection associated with rotation of the mid-height section (see Figs
4.11-4.12 for 51mm and 44mm box-sections respectively). The small values of these
deflections suggest that specimen undergoes lateral deflections due to lateral
imperfections rather than twisting of the specimen. Furthermore, it is interesting to

note that after initial loading, the relative deformation (D5-D6) remains constant.
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Axial strains and compressive modulus

The axial stresses resulting from the applied compressive loading have been plotted
against the strains measured during the buckling experiments. Axial stress has been
calculated by dividing the applied load by the cross-sectional area of the specimen.
Experimental strains at each load-increment have been measured by strain-rosettes
fixed at mid-height of all the four sides of each of the box-sections. Each strain rosette
comprise of three gauges numbered anticlockwise as 1, 2, and 3. The gauge 2
(central) has been fixed parallel, whilst the gauges 1 and 2 are at 45° to the
longitudinal axis of specimen (Plate 4.2). The strains measured by gauges 1, 2, and 3

are denoted as &, & and €; respectively.

Principal strains £p,p (maximum and minimum axial strains) and ¢ (angle between
principal strains and the direction of gauge 1) have been calculated using (3.17,
Measurement Group, 1990). The angle ‘¢’, in most of the tests has been calculated
between 40° and 45° indicating satisfactory alignment of the strain rosettes with the
longitudinal axis and demonstrating that principal strains are in axial direction. For a
properly aligned strain rosette, strains measured by gauge 2 and principal strains
(calculated from €y, €; and €3) should be similar. For example stress-strain plots, for
the 2000mm high 51mm box-section specimen, using strain data from a single gauge
(central 2) and principal strains, have been presented in Fig 4.13 (a) and (b). Both the
plots show very close results establishing proper gauge alignment. Typical stress-
strain plots for various specimen heights using calculated maximum principal strains

and average stresses have been presented in Figs 4.14-4.17.

Fig 4.14 presents stress-strain plots for specimens representing 51x51x3.2mm box-
sections. The first three plots are for long columns (heights of 2000, 1500 and
1000mm). In the plots, sides A and C' have arbitrarily been taken for the sides of the
specimen parallel to the knife edge axis, towards front i.e., in the observation
reference plane and the back (opposite side), which may deflect laterally. Other two

sides i.e., B and D are restrained against lateral deflections due to knife-edge supports.

§ The notation of the side may not agree with the notation given in result table (Table 4.1). The strains
gauges fixed to the front side are numbered as 1, 2, and 3. Arbitrary side B have gauges 4, 5, and 6.
The back side (again parallel to the knife-edge axis) is denoted C and is associated with strain gauges 7,
8, and 9. Like wise side D contains strain gauges 10, 11 and 12.
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Principal strains measured on each side have been shown in different colours. As can
be seen from the plots (Fig 4.14), initially all the four sides are under compression
(negative strains) and remain alike until the onset of global buckling. It is important to
note here that response of the material is linear and the plots have similar slopes. The
evidence that stresses and strains on all the four sides are identical for a range of
applied load establishes that; the loading is concentric, alignment of test-rig and
specimen is adequate, material is uniform, and above all stresses and strains are

linearly proportional.

At the onset of buckling, specimen deflects laterally about the knife-edge axis and the
bulging (convex) side develops tensile strains due to bending. For example
compressive strains (-ve) in side C in 2000mm long specimen (Fig 4.14) reverse the
direction (+ve strain) abruptly at the buckling load and go on increasing without
further increase in stress. The opposite side (side A), after buckling takes the convex
shape resulting further increase in compression strains with no increase in the applied
load. In other words, after buckling, lateral deflection (and hence the strains)
demonstrably increase without an increase in the buckling load. The other two
opposite sides (side B and D) remain undeflected due to the restraint imposed by the
knife-edge supports and show no change in the strain state after buckling of the
specimen. Stress-strain plots in the linear elastic range (before buckling) can be used
to determine the experimental compressive modulus of the GRP material. The plots
for the two un-deflected opposite sides (B and D) have normally been used for the
determination of the compressive modulus as the stress-strains are due to compressive
loading only. For each plot a trend line giving the slope of the plot and the correlation
coefficient has been drawn (using the same colour as of the plot). The correlation
coefficient for all the plots in Fig 4.14 is higher than 0.99, indicating high degree of
linearity of these graphs. The compressive elastic modulus E;,c measured from the
stress-strain plots (of the un-deflected sides) varies from 28.2 to 32.4kN/mm? as
compared with 30.2kN/mm’ measured by coupon testing (Table 3.11). Another
important point to note here is that elastic modulus of the composite material can
accurately be measured using the stress strain data measured during the concentric

compression testing of the long composite columns.

Figure 4.16 gives the stress-strain plots for slender 44mm box-section showing linear

response of the material in the case of overall or global buckling. An abrupt change in
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the direction of strains (compression to tension), at buckling loads, can be seen froni
the plots of convex sides and increase in compressive strain for the concave sides.
Similar slopes of the plots representing all the four sides, suggest accurate alignment
of the test-rig and specimens and presence of minimal imperfections. Elastic moduli
have been calculated (from plots of sides B and D) with a range from 28.4 to
33.7kN/mm? as compared with 32.2kN/mm’ measured by the coupon testing (Table
3.12).

4.3.2 LOCAL BUCKLING

51mm Square Box-Sections

Specimens made from 51x51 x3.2mm box-sections, having heights 200, 300, 400 and
500mm that did not develop global buckling have been grouped as short columns.
These specimens failed by abruptly splitting at the web-interfaces and breaking across

the sides. The failure is catastrophic and specimens lose their integrity.

Three specimens have been tested for each length. The effective height for each
specimen is obtained by adding 55mm to its physical height. The loading (concentric)
and support conditions (pin-ended), application of load in incremental intervals,
number of observations, and the testing procedure, have been adopted from the long
columns tests. As the locations of the peak web-deflections are not known before
hand, more than three LVDTs have been employed™. The arrangement of LVDTs for
the measurement of lateral deflection in different height specimens have been shown
in Plate 4.8. Each specimen was tested once only due to catastrophic failure. Critical
failure loads for short columns has been given in Table 4.2, and failure modes

(shapes) can be seen in Plates 4.9-4.12.

Although the failure of short S1mm square specimens occurred by sudden tearing of
the sections, a careful inspection of the failed specimen suggested that a type of local
buckling existed prior to section breaking. For example, in the case of 200mm (Lerr =
255mm) specimen sides (webs) A and C bulge out whilst sides B and D deflect
inwards at mid-height (see plate 4.9(a) and 4.9(b)). The local deformations (at the

critical load) increase rapidly without further increase in the buckling load and cause

** Numerical analysis for short columns ( included in Chapter 5) has also been used for guidance for the

location of LVDTs at locations of maximum web-deflection.
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catastrophic (bursting) failure comprising rupture of the interfaces and side C at the
bulge crest. Similar horizontal ruptures of webs (and fibres) are observed in sides B
and D (under compression). After failure the specimen looses stiffness and the end
restraints (knife edges) rotate showing a pseudo global mode. The plot between axial
deflection and the axial load has been included in Fig. 4.5, indicating linear elastic
behaviour up to the failure of the specimen. The lateral deflections measured during
the test have been plotted in Fig. 4.7, showing very little deflection with the
increasing load (less than 1mm). Surprisingly all the LVDTs measuring deflections
along the specimen height showed similar readings. It indicates that local web
buckling could not be measured while the web interfaces were in tact. It was only
after the interface failure that webs buckled locally and breaking along the crests due
to excessive strains. At this point the material behaviour changed to nonlinear as
evidenced by the stress strain plot for 200mm GRP length in Fig 4.15. Due to the
tearing of the section and breaking of the webs, it was not possible to measure the
length of half sine wave (web local buckling). Furthermore, different length cracks on
different sides prevented the measurement of true half sine wave length. Two other
specimens of the 51mm square box-section with equivalent heights showed similar

failure modes.

Failure of the 300mm specimen (L.y = 355mm) was characterised by the opposite
sides (webs) A and C deforming inwards and mirrored by sides B and D (Plate 4.10(a)
and 4.10(b)). Rapid increase in displacements again causes splitting (tearing) of web-
joints. Sides A and C (under high compression) fail with horizontal cracks. Side B
takes the form of a long strip, splitting at the interface and buckling globally.
Interestingly side D (with outward bulge like side B) fails with horizontal rupture
(breaking fibres). Typical axial and lateral deflection plots for 300mm height (Figs 4.5
and 4.7) indicate linear elastic behaviour of the short column. However the stress
strain plot for 300mm height (Fig 4.15) shows possible non-linearity at the failure
load. Other 300mm GRP specimens failed in a similar fashion (Plates 4.10(c) and

4.10(d)).

The web of the 400mm specimen (L7 = 455) on sides A, B and D bulge outwards
while side C has deformed inwards (see Plate 4.11(a) and 4.11(b)). Only side C failed
under compressive stresses, while the remaining three sides deflected outwards. Side

A may have deflected inwards at first and deflected outwards subsequently after
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failure of side C and rotation at the lower support showing a pseudo global buckling
mode. The interface at sides A and B remained in tact after damage, but a vertical
crack in side D ruptured near the joint. Another important observation is that buckling
was initiated in the lower L/4 rather than at mid-height. In the second specimen of
400mm GRP height (see Plate 4.11(c) and 4.11(d)) buckling commenced at upper L/4
with rotation of upper support, but two opposite sides (B and D) bulge out while the
other two sides (A and C) move inwards. All four interfaces rupture by tearing and the
section lost integrity. Sides B and D (bulging out) show overall buckling while the
sides A and C (moving inward) break under compression with horizontal cracks.
Typical stress-strain graphs for the 400 mm length column (Fig 4.15) support the

proposition that local buckling initiated the subsequent tearing failure.

Failure modes of 500mm high 51mm square sections have been shown in Plate 4.12.
All the three specimens fail near the mid-height. Sides B and D in the first specimen
(Plate 4.12 (a), (b)) deflect outwards tearing the web-interfaces with side C. Side A
and C deflect inwards whilst side C breaks under compression. However, side A
remains in tact (even after developing cracks) following stress-relieving from tension
developed by pseudo global mode. The pseudo global mode is also local as the knife-
edge supports show no rotation. Typical stress strain plot for 500mm height (Fig 4.15)
establish the local buckling mode as two opposite sides A and C increase in
compression whilst the other sides B and D develop tensile strain at the failure. The
other two 500mm specimens (Plates 4.12(c)-4.12(¢)) showed similar failure modes
i.e., two opposite sides deflecting inwards, the other two outwards, and failed with

excessive strains.

This behaviour is different from the local buckling behaviour of open sections (wide-
flange profiles) observed by Barbero and Tomblin (1994) and Mottram (2000), where
flange of the sections buckled locally in sine wave forms along the length of the
column. It has been demonstrated in the study reported by Zuerick and Scott (1997)
that the profile with the highest flange outstand-to-thickness (by/t; = 10.7) ratio
requires the lowest stress to induce the local mode of instability. It has also been
reported that in sections with short flange outstands, the buckling stresses are higher
when the failure has been catastrophic by tearing of the flange-web connections
(Brown et al, 1998). It is obvious that the cross-section dimensions play an

increasingly important role in determining the failure mode for short lengths of
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composite columns. Observations related to tests conducted as part of the research
presented in this thesis indicate that specimen shape and relative web thickness also
contribute towards the failure mode (mechanism) of the short length columns. Closed
form sections such as square box-sections do not exhibit a well-developed wave-like
deformed shape as obviously as open sections in the local buckling mode, but a
catastrophic rupturing failure particularly for short length columns (see Plates 4.9-
4.12). In short columns (Ler =255, 355, 455 and 555mm) local buckling commences
first as small lateral deflections, followed by abrupt bursting (tearing and breaking),
leaving the web in strip forms, which then deform in global buckling under the
compressive loads (see Plates 4.11, 4.12). It is noted in this case that the rotation of
one or both end restraints (similar to the global mode) is due to post-buckling
deformations and not due to co-existence of the buckling mode. The failed geometry
is the result of buckling of webs after failure and not of the whole section and in some

cases (see plate 4.11) no end-restraint rotations have been observed.
4.3.3 COMPRESSIVE FAILURE

44mm Square Box-Sections

Short specimens comprising 200, 300, and 400mm heights, extracted from 44mm
square box-sections failed by material failure under higher compressive stresses
(Plates 4.13-4.14). In these specimens, the interfaces between the side walls are
sufficiently stiff such that side walls neither locally buckle (wave like formation) nor
rupture along their interfaces. As a result the cross-section of the box section
maintains its shape and specimen remains straight. With further increase in the load,
the ends of the specimen inside the shoes fail under direct compression (crushing). As
the material is not perfectly homogeneous and longitudinal axis of the end sections
may not exactly be in the line of the axial loading, a portion of the section at one end
may be subjected to a local stress concentration, causing local failure of the cross-
section (Plate 4.13) and rotation of one (or both) of the supporting shoes. All the
44mm box-section short specimens (200, 300, and 400mm heights) failed with local

compressive failure at the lower ends (see plate 4.14).

To avoid end brooming failure of these short specimen wooden blocks were inserted
inside the ends to confine the sides of the GRP sections. These blocks displaced as a

result of end failure (Plate 4.13(c)), indicating that the failure was due to the crushing
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of the material under high compressive stresses and not lateral bending action of the

sidewalls (in the form of a plate supported on two sides).

The universal slenderness ratio ‘A’ for effective heights of 255, 355 and 455mm,
44mm box-section profiles (for a maximum measured short column load Py of
220kN), have been calculate as 0.45, 0.62 and 0.80. As A <1 for these specimens,
grouping them as short columns is in line with the previous studies (Barbero and
Tomblin 1994, Brown et al 1998, Barbero 2000). The observed failure modes suggest
that short columns having slenderness less than one, do not necessarily exhibit local
web buckling, but can directly fail by material degradations. Interestingly, the
material failure has occurred at an averaged applied stress of 250N/mm? which is a
nearly 50% of the ultimate compressive stress (523N/mm2) measured by coupon tests
(Table 3.12). The large reduction (50%) in the compressive capability of the section
cannot be attributed solely to the material non-homogeneity only as the typical stress
strain plots (Fig 4.17) for these specimens indicate a uniform and linear stress and
strain distribution from the beginning to failure loads. It is proposed, therefore, that if
a closed narrow cross-section with thicker webs is unable to exhibit local web
buckling due to stiffer web-interfaces, the section fails by the development of a
complex three-dimensional stress state (see finite element results, §5.4.2) at
compressive stresses lower than those indicated by simple coupon tests. The observed
behaviour of the short 44mm square specimens further demonstrate the need of
experimental evidence for the validation of any numerical approach to predict failure

loads for closed cross-sections with relatively thick walls.
4.3.4 MODE-INTERACTION

The phenomenon of mode interaction has been observed during the compression
testing of 750mm (Ler = 805mm, A = 1.04) high 51mm box-section and 500mm (L
= 555mm, A = 0.98) high 44mm box-section specimens. These heights of the
specimens have been grouped as intermediate heights, where either global and local

buckling or global and material failure modes interact.

In the case of 750mm high 51mm square specimens, the buckling process began with
lateral deflection of the columns (maximum at mid-height) i.e., in global mode (see P-

A graph for L=750mm in Fig 4.7). Lateral deflection increased with load and reaches
a typical value of 9mm (A > L/100) at mid-height. Also the rotation of knife-edge
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supports (Plate 4.15(a)-4.5(d)) confirms the on-setting of the global buckling. At this
stage, the specimen failed catastrophically by breaking from the concave side (under

compression) at mid-height (see Plate 4.15).

It is proposed that the specimen failure mode is such that (Plate 4.15(a)) the inner
web-interfaces (towards concave side) broke (tearing) initially due to outward
displacement (bulging) of the compression side, leaving the inner web in the form of a
vertical strip under compression. This further buckled and ruptured with horizontal
crack (fibre failure). The convex side (under tension) had not ruptured. Interestingly
the two other sides deflected inward and broke with horizontal cracks. The resulting
pattern of deformation (and ultimate failure), i.e., two opposite sides (inner and outer)
bulged outwards and the other two opposite sides deformed inward, is clearly a
characteristic of local buckling (Plate 4.15(a)-4.15(b)). It implies that the specimen
developed global buckling in the first phase with lateral deflection of more than
L/100, and at the same load local buckling commenced starting from the mid-height
section, with the specimen failing catastrophically by tearing at interfaces and
breaking across the webs. Plates 4.15(c) and 4.5(d) show similar failure modes for an
additional 750 mm high 51mm square box-section specimen. The lateral deflections
measured at mid heights and upper and lower quarter lengths have been used to draw
P-A and Southwell plots for the determination of experimental buckling loads (Fig
4.9). Buckling loads for 750mm high 5Imm square box-sections are given in Table
4.3. Due to the destructive nature of the tests, only one test per specimen was done.
Typical stress-strain plots (Fig 4.14) indicate a nearly uniform (parallel slopes) stress
distributions on all the four sides and determine a range for experimental compressive

modulus (27.2 to 32.2kN/mm2) close to the measured E . by coupon testing
(30.3kN/mm?).

The failure of 500mm high, 44mm square box occurred by the interaction of global
and material failure modes. At the buckling load the specimen buckled globally with
maximum lateral deflection at mid-height. Maximum deflection reached L/100 (Fig
4.8) after which the specimen failed at one eﬁd without further increase in the loading.

All three 500mm specimens gave the same mode of failure.

It has therefore been demonstrated, using experimental evidence, that composite
columns with universal slenderness ratio close to unity (A=1) based on P_ e.g.,

750mm high 51mm square box-sections and 500mm height 44mm square box-
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sections, exhibit mode interaction at failure loads. The critical failure loads for these

specimens measured during the experiments have been presented in Table 4.3.

4.4. COMPARISON OF EXPERIMENTAL AND THEORETICAL
RESULTS

Different approaches from the literature have been used to predict the theoretical
buckling and failure loads for long and short columns. In using these approaches two
types of material properties; measured using coupons (Chapter 3); and minimum

specified by the manufacturer, have been used.

Measured Properties

51x51x3.2 Box-section

Longitudinal compressive modulus Ey. = 30.3 kN/mm”. (Table 3.12)
Maximum longitudinal compressive stress = 385 N/mm?, (Table 3.12)
Transverse compressive modulus E7.=9.2 KN/mm?.  (Saribiyik, 2000)
In-plane Shear Modulus (normal to fibres) G, = 3.95 kN/mm”, (Table 3.6)
In-plane Shear Modulus (parallel to fibres) Gy, = 2.85 kN/mm? (Table 3.10)
Longitudinal Poisson’s ratio vy, = 0.29 (Saribiyik, 2000)

Transverse Poisson’s ratio v, = 0.15 (Saribiyik, 2000)

44%44x6.0mm Box-section

Longitudinal compressive modulus E; = 33.2 KN/mm?. (Table 3.13)
Maximum longitudinal compressive stress = 523 N/mm’, (Table 3.13)
In-plane Shear Modulus (normal to fibres) Gy, = 3.95 kN/mm?’. (Table 3.7)
In-plane Shear Modulus (parallel to fibres) Gyx = 2.85 kN/mm?. (Table 3.11)

Transverse compressive modulus E7. and Poisson’s ratios measured by Saribiyik

(2000) for 51x51x3.2mm box-section have been adopted for 44x44x6.0mm box-

section.

Minimum properties supplied by manufacturer
Material properties provided by the FIBREFORCE Ltd UK are the minimum

characteristic properties for the both (51mm and 44mm) GRP box-sections.
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Longitudinal compressive modulus E; .= 17.2 kN/mm?,
Maximum longitudinal compressive stress = 207 N/mm?.
Transverse compressive modulus E7, = 6.9 kN/mm?.
In-plane Shear Modulus G, = Gy, = 2.9 kKN/mm’.
Longitudinal Poisson’s ratio vy, = 0.33

Transverse poisson’s ratio v, = 0.11

Theoretical buckling and failure loads for long and short columns for both the box-
sections have been presented in Tables 4.4-4.5, along with the measured loads

(average of many loads for each height of the column).

Average cross-sections

The measured outer dimension (A B, C, and D in Fig 4.1) for several specimens are
very close with an average difference of £0.3mm from the mean values (50.9 and
43.8mm for 51mm and 44mm box-sections respectively (see Fig 4.2). Furthermore,
the web-thicknesses at either ends of each specimen vary by less than £0.25mm, with
variations sufficiently random and distributed that it is practically impossible to
include all the variations. As all specimens have been extracted from a single batch of
profiles, dimensional variations are very similar in all the prepared specimens.
Average cross-sections for the two profiles with average geometrical properties (4ave
and L) have been calculated for the subsequent determination of experimental as
well as theoretical results (for comparison). The average geometrical properties have
been used for the characterisation of the specimens with the standard deviations used

to indicate data variations. The calculated values of A,. and I, are included in

Tables 4.4-4.5.

4.4.1 GLOBAL BUCKLING

Classical Column Theory

The critical buckling load for a slender, perfectly straight, centrally compressed

column, pinned at the both ends with the upper end free to move vertically has been

, m2EI
L2

given by Euler (1759) as Py = (2.1) where E is Young’s modulus, 7 is the

moment of the inertia of the cross-section, L is the height of the column between the
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pin-ends, and n is the order of the buckling load. Euler assumed that the cross-section

of the column does not distort during buckling and failure, the parent material obeys

Hooke’s law and the wave length is of the order of the column length. The smallest or

critical buckling load occurs for n = 1™, Including the transverse shear effects
Pr

1+(n Py 1 4,G,,)

(Engesser, 1889), the Euler equation, becomes Py, =

(2.2),

where Py is given by (2.1); 4, = gross cross-sectional area and n; = form factor for
shear (taken as 2 for square box-section (Zureick and Scott, 1997)). Average cross-
sectional areas and the moments of inertia representative of the two box-sections
(Table 4.4) have been used in (2.2). Directional compressive modulus Ey. replaces E
in (2.2) for composite materials (Barbero and DeVivo, 1999) and effective length
(between the pivots of the knife edge end restraints) has been used for L, for the
calculation of Pk . The critical buckling loads ‘P’ calculated using (2.2), for both

box-sections (slender columns) have been reported in Table 4.4.

Eurocomp Design Code (EDC)

EDC (Clarke, 1996) uses Euler equation (2.1) for the determination of global buckling
loads of pultruded profiles (section 4.4 for designing compression members in EDC).
The effects of low shear stiffness of the composite material have not been included.

For example (4.7) in EDC gives the member’s buckling resistance N, as

2
N =KL,

R 4.2)

The modulus of elasticity (Ex) used here is the directional modulus of elasticity (Ey, )
in the longitudinal direction (direction of loading), k = 1 for pin ended column, L =
effective length and , is partial safety factor for material resistance (taken equal to 1
for comparison). The moment of inertia I;; used in the above equation is the moment
of inertia for the average section. For a conservative design, including the shear
effects, EDC design criteria predicts the same results Pgpcy as calculated using the

classical approach (Table 4.4).

tt n=1 represents first order buckling i.e., column buckles in a single half sine wave. Higher-order
buckling loads can be attained only by using very slender column and by appling external constraints at
the points of inflection to prevent the lateral deflection associated with the lower order modes

(Timoshenko and Gere, 1961; Chen and Lui, 1987).

166



Included in Table 4.4 are the buckling loads Pgs, and Pgpc) calculated using
minimum material properties supplied by the manufacturer (given on page 166) for

comparison.

Manufacturer’s manual

Both the pultruded box-sections (51x51x3.2 and 44x44x6.0mm) are manufactured by
Fibreforce Ltd UK, for which the design manual is under preparation. However, the
Fibreforce (in a private communication), recommended to following the design
manual prepared by Strongwell (Strongwell, 1989) for column design because the
material and proportions (fibre content percentages and lay-up) used for the both
types of profiles are very similar. The empirical expression for the design of long

square tubes (box-sections) suggested by Strongwell is;

13E
F, = 4.3)

Nel

Using the minimum specified material properties and (4.3), the buckling loads

P(sTRONGWELL) have been calculated and included in the last column of Table 4.4.

From Table 4.4 the following observations have been made;

e The classical buckling theory (Euler formulation) predicts the global buckling
loads very well for the slender columns. The experimental loads (Ps.wen)
confirm the theoretical prediction (Pggh), with a difference of no more than
5%. These results infer that longitudinal elastic modulus (in the direction of
applied load) mainly contributes towards the buckling capacity of the axial
columns. Furthermore, transverse shear properties have minimal effects on the
global buckling loads. It also indicates that initial imperfections incorporated
in the manufacturing process of these profiles and the cross-sectional
tolerance, are minimal, as the Euler load normally corresponds to the buckling
load of a perfect column. Finally, measured elastic constants are reasonably

representative of the box-section material.

e EDC adopts the Euler formulation for the prediction of the global buckling
load. The effects of lower shear stiffness possessed by composite material
have been ignored as the effect is less than 4% (Barbero and Tomblin, 1994).

However the predictions depend mainly on the value of elastic constant (E; ;)
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used in the formulations. Higher buckling capacities are predicted if the true
material properties are used and likewise lower capacities are achieved if
minimum specified properties are considered. As the EDC is a limit state
approach, true properties with adequate factors of safety should be used.
Alternatively, a lower factor of safety is required if the minimum
representative properties are used. Nevertheless, the EDC approach is capable

of predicting safe global buckling loads.

e Buckling loads using Strongwell expression (4.3) are higher than the measured
loads. The loads are even higher for the longer columns. If the factor of safety
recommended in the manual (Strongwell, 1989) of =3 is used, the predicted
loads can be considered safe. However, the empirical expression given in
Strongwell’s design manual has been derived by curve fitting to the
experimental data evolved from a range of particular profiles and though
stated to be equivalent by FibreForce, may not represent profiles from other
manufacturers. Significantly, the EDC approach (based on Euler formulation
and having theoretical background) is applicable to composite profiles from
various manufacturers, provided reliably measured material constants are

available.

In light of above discussion it is shown that Euler formulation (also adopted by EDC)
is capable of predicting the global buckling loads for long box-section profiles. It is
further demonstrated that the global loads measured experimentally confirm the

theoretical predictions, suggesting little initial imperfection.
4.4.2 LOCAL BUCKLING

Classical plate buckling

Consider an orthotropic rectangular plate, with width ‘b’ equal to the width of web in
the box-sections (Fig. 2.2). The two short edges (x = 0, a) are considered as simply
supported and compressed axially with an axial stress resultant N;. The longer edges
(v = 0, b) are each elastically restrained against rotation by side walls (webs with
known transverse stiffness D;). The critical value of the N, causing local buckling of
plate is give by the governing differential equation (2.3). An approximate solution to
(2.3) is (Galambos, 1998) as:
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72D, |(bm\’ D D 2
N, =T 2s(fbm) Dy Dyfa
=) [(a] p, 2+ )+ 1) Dj(mb” (44)

where f> and f; are functions of rotational restraint applied at the two longer edges of
the rectangular plate, € = Kb/D,, K = stiffness of supporting webs per unit length per
radian of rotation, a is the length of the plate equal to half sine wave length of the

plate buckling. The half sine wave length ‘a’ can either be measured during the local
buckling tests (Barber and Tomblin, 1994; Bank et al, 1996; Barbero and Turk, 2000)

1/4
. . E
or theoretically determined as a = b[ EXJ (Iyenger, 1998). As the length of half

y
sine wave could not be measured experimentally, the theoretical approach has been

used.

51x51x3.2mm Box-section

3
Moment of inertia ‘I’ of a small strip (of plate) of Imm wide =M =2.73mm*
Average section internal width b =51.0- 3.2 = 47.8mm,
E,=30.3kN/mm?, E,=9.2kN/mm’, a =64.4, and G,,= 3.95kN/mm? .
(ED 30.32x(2.73)
D, = L= = 86.5kN-mm? 4.5
I-v, v, 1-(029)0.15) (4.5
(ET) 9.2x2.73
D, = L — = = 26.3kN-mm? 4.5
1-v,v,, 1-(0.29)(0.15) (4.50)
1
D, = 2 (v,x Dy +V 5, D;) + 2(GI),,, =25.9 kN-mm? (4.5¢)

Considering short loaded as well as long unloaded edges simply supported

£,(€)= f,(¢) =0 the resultant Ny =0.42 kN /mm, and

P, = 0.42x47.8x4 = 80.3 kN.

Considering loaded edges simply supported and unloaded edges (longer sides)
clamped, an approximate solution has been given by Wittrick (1952) (Galambos,

1998) as:
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~*\D,D, D
N =—— k- 1-—=

where ¢ = 2.4 and k (buckling coefficient for orthotropic plate) is taken from curve
drawn for orthotropic plate with ends simply supported and sides clamped (Fig. 4.30
in Galambos, 1998).

9.87x47.67 25.86
N, ==—————177-241-—"0||=1.
(47.8) [ ( 47.67)] 132

and Pp=1.42x47.8x4=252 kN

44x44%6.0mm Box-section

=18 mm4,

Moment of inertia ‘7’ of a small strip of 1mm wide =

1x(6)*
12

b= 44.00-6.00=38.00mm

E=33.2 kN/mm?, E, = 9.2 KN/mm’, a = 52.4mm and G,, = 3.95 kN/mm?,

(EN), _ 33.32xI18

D, = = = (4.7a)
1-v,v, 1-(0.29)0.15)
_ (E),  9.2x18 (4.7b)
) = = = '
1-v v, 1-(029)(0.15)
1
D, =5("ny1 +v,,D,) +2(GI),, =175 (4.7¢)

For the case of loaded edges simply supported and long side also simply supported,
using (4.4),

N, = 4.64 KN/mm and P = 4.64%38.0x4 = 705 kN

For clamped long sides, using (4.6), ¢ =2.4 and k=17.5,

N, = 14.4 kN/mm and P, = 14.4x38.0x4 = 2181 kN
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Eurocomp design code

For an element of the section which can be defined as a long rectangular plate with
two longer edges simply supported the buckling stress is calculated using the

following equation (equation 4.9 in Eurocomp, 1996);
27?
Cor =Tb'z_[(D|D2)”2 +Ho] (4.8)
Where Hy = D3, and D;, D; and D; have been defined in (4.5) for 51x51%3.2mm box-

section and in (4.7) for 44x44x6.0 mm box-section.

For 51mm box-section (4.8) gives o.-= 0.20 kN/mm and P; = 0.20%628 = 126kN

For 44mm box-section (4.8) gives o= 1.26kN/mm and P, = 1.26x882 = 1111kN.

Using minimum material properties (manufacturer’s supplied) in (4.8),
For 51mm box-section (4.8) gives o= 0.14 kN/mm and P.,= 0.14x628 = 88kN
For 44mm box-section (4.8) gives o= 0.80kN/mm and P.,= 0.80%882 = 706kN.

EDC design approach includes checking of the box-section for the ultimate
compressive capacity of the cross-section. According to (4.6) in EDC, the design

ultimate resistance of the cross-section is;

N .=4do,ly, (4.9)
where A is average cross-sectional area of the cross-section, o is the critical
compressive stress and y is the partial safety factor (taken equal to 1 for comparison).

Ultimate compressive capacities of the box-sections have been calculated using (4.9)
and given in brackets under the P @pc), for £, measured and minimum Ej, . provided

be Fibreforce.

STRONGWELL Approach

The empirical design equation in the Strongwell’s manual for the allowable design

loads of short square tubes is;

AE
F=—— (4.10)

a 0.85
‘ 16(?—)
t
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where A is the average cross-sectional area of box-sections, b the web width, ¢ the

web-thickness and E is taken as Ej, . given by manufacturer.

Using the minimum material properties supplied by the Fibreforce, in (4.10),

allowable loads for short columns have been calculated and listed in the Table 4.5.

From Table 4.5, following observations have been made;

Classical orthotropic plate buckling theory predicts a range of buckling load
for the short columns depending on the assumed behaviour of the web
connections. Experimental loads for the 51x51x3.2mm box-section do fall
between the predicted ranges but towards the lower bound. This indicates that
the stiffness of the connection between the webs approaches a simple support
with nominal rotational restraint. However, it is interesting to note that the
plate equations bound the experimental findings, suggesting that the local
buckling of the columns may be represented by a plate with loaded edges
simply supported longer edges with a nominal restraint. Adopting all four
edges as simply supported results in a conservative estimate of the local

buckling load.

In the case of 44x44x6.0mm box-section, the range predicted by the plate
buckling theory is far from the experimental evidence. The apparent reason for
this disagreement is that failure is due to compression of webs and not the web
local buckling. It is interesting to note that experimental failure load (220kN)
is almost half the ultimate compressive capacity for this cross-section. It is
recommended therefore that in the absence of local flange buckling, the failure

load must be predicted by experiments.

EDC, predicted a buckling load close to the experimental values, but non-
conservative, in the case of SImm box-section. The EDC expression is for
elements that could be assumed as long rectangular plates with all the four
edges simply supported. The bounding by the plate solutions suggests that the
web interface in the case of SImm box-section may be assumed to have little
rotational stiffness. The mode of failure observed for these sections are
different to the uniform wave like local buckling mode characteristic of long
rectangular plates. The failure is catastrophic and material breaks along the

web-interfaces following horizontal cracks. The failure of pultruded profiles
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with small outstands (small I-sections) by tearing of material at the web-flange
junctions have been reported by Zureick and Scott (1997) concluding the
potential affect of the flange thickness to width ratio (¢/b) on the failure mode.
Brown et al (1998) have used Bank and Rhodes (1983) expression for the
prediction of P, in I-sections, where ratio of flange-thickness to its width
(t/7bf) is a parameter. EDC expression (4.8) also includes the width and
thickness of the composite plate. It indicates that if this ratio is small, local
buckling of flange can cause bursting of the profile. On the other hand if this
ratio is large, local web buckling may occur. For thicker sections (lower tf/bf),
local buckling is replaced by a complex three-dimensional stress state (as
observed in 44mm short columns). Relative cross-sectional dimensions greatly
influence the failure mode of the short column, compounded by low ratios of
(t/7bf). Furthermore, as web local buckling is not fully developed, correct
length of the half buckled sine-wave cannot be determined with the prediction

of Py using classical approach perhaps is appropriate.

e Contrary to the findings associated with the long columns, assuming a material
factor of unity, predictive failure loads given by the Strongwell design
equation are conservative (safe) compared with test results. The correlation to
the 44mm box is approximately 15%, reducing to 40% in comparison with the
51mm box experimental data. It is clear, therefore, that short columns with
low tf7bf ratios do not follow a behaviour consistent with Euler buckling or

basic material crushing across the section.

4.5 UNIVERSAL DESIGN CURVE

Design codes such as Eurocomp design code (EDC, 1996), ASCE (1984) and
manufacturer’s manuals (Strongwell, 1989) recognise global and local buckling in
addition to material crushing but assume no interaction between these modes of
failures. The common practice recommended by these guides is to evaluate a
column’s load bearing capability against global, local and compression failure modes
and to accept the lowest value of buckling load for design (Brown et al, 1998). The
outcomes of the present experimental investigations, however, do not support this

approach.
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It has been established experimentally (in the present and previous studies, e.g.,
Barbero and Tomblin, 1994) that there exist intermediate heights (in the vicinity of
transition height) for a section, which exhibit lower experimental buckling loads than
either of global, local or material failure predictions. This situation can become more
adverse in the case of smaller (with small outstands) or closed form sections where
the failure is catastrophic, and happens by tearing and breaking of webs or web/flange
connections. A different approach that can be used for the design of columns having
various (including slender, intermediate and short) heights, is required. For example, a
“universal design curve”, along with corresponding equation (2.24) has been proposed
before by Barbero and Tomblin (1994), for the design of composite wide-flange
profiles. Later Barbero and DeVivo (1999), extended the scope of this curve to wide-
flange profiles of various sections manufactured by different pultruders, using
experimental data from various sources (Fig 2.7). A similar procedure has been
adopted here to construct a universal design curve for the design of pultruded box-

section profiles when used as concentric columns.

The parameters involved in the development of the universal design curve in Fig 4.19
are given in Tables 4.6-4.7. These include the effective heights of the column (Lp);
experimental buckling loads P); Euler buckling loads Pg; short column failure load
P;; mode interaction coefficient c; compressive modulus of elasticity in longitudinal
direction E;. and the cross-sectional moment of inertia I The dimensionless
slenderness ratio ‘A’ (2.19) has been defined, as a function of column length L
stiffness EI and short column failure load P, to represent the various heights of
composite box-sections. It has been established that Py, the maximum buckling (or
failure) load for a short column depends upon both material properties and the
geometry of cross-section (Barbero and DeVivo, 1999, Mottram, 2000), and could

either be determined experimentally or predicted theoretically.

The ultimate loads measured testing three 200mm (L.y= 255mm) long 51mm square
specimens average to a value of 120kN (Table 4.2). It can also be seen from Table 4.2
that at leasf one specimen from 300 to 500mm (range for short columns for 51mm
box) reaches a maximum load of 120+1.51kN. This observation demonstrates that
maximum measured load is independent of the specimen height. Similarly maximum
loads measured using the shortest 44mm specimens i.e., 200mm (L= 255mm)

averages to 220kN and others 44mm specimens 300 to 400mm high, showed even
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higher buckling loads than 220kN. This further demonstrates that although P is
constant over the specimen lengths in the short column range but depends upon
material properties and geometry of the cross-sections. These findings are in line with
the basic assumptions made for the construction of the universal design curves for
composite columns. The minimum affective height of the specimens (255mm) taken
here is more than sufficient to accommodate four half sign-waves (using Y4 power
formula by Iyengar, 1998) to eliminate any fix-end effects, recommended in previous
studies (Mottram, 2000). The short column slendemess ratios 4 (0.33 for 51mm and
0.45 for 44mm box-sections) are also well below the transition heights (1=1) to avoid
potential reduction of buckling stiffness due to mode interaction. Consequently 120

and 220kN has been established as Py, for 51 and 44mm box-section short specimens.

Material properties Ey, . and Gy, have been measured experimentally (Table 3.12-3.13,
3.6-3.11) whilst moment of inertia ‘I’ and 4, used for Euler load calculation are the
average sections properties (Table 4.4). The slenderness ratio A for each specimen
height has been calculated using actually measured parameters (Leg; Py, ELc and 1,)

and presented in Tables 4.6-47.

The second important step in the formation of design curve is the determination of
mode-interaction coefficient ‘c’ (2.7) using buckling load ratios ‘¢’ and‘s’ (2.5).
Calculated g and s values using average experimentally measured loads for each
specimen (Tables 4.1-4.3), have been plotted in Fig. 4.18 and values are compared
(curve fitted) using several theoretical curves for ¢ values ranging from 0.90 to 0.95.
The curve with ¢ = 0.91 is conservative enough to provide a lower bound for all the
experimental values in the intermediate column range (around A =1). Alternatively,
from the ¢ values for tested specimens in Tables 4.6-4.7, average values of ¢ as 0.92
and 0.91 have been found for 51mm and 44mm box-section. Using these ¢ values, k;
(2.23) and design compressive loads P, (2.24) for all the tested heights have been
calculated (Table 4.6-4.7). The design curve (Fig. 4.19) has been plotted between the

universal slenderness ratio A and k; using design loads.

The experimental loads have been include in Fig 4.19 showing that most of the
theoretical loads are above the design plots or very close to it. The thick solid line
(k=1) gives the maximum buckling load equal to Pp. Dotted lines represent the Euler

buckling loads for the sections tested. The experimental loads for short and slender
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lengths of the specimens lie on these lines indicating that measured load is either
equal to Py or Pg. For these cases ¢ =1 (no interaction). The maximum reduction in
the design load P, has been observed at A = 1 (Fig 4.19). The loading capacity of the
columns at this height reduces by 8% (c = 0.92) and 9% (c = 0.91) in the case of
51mm and 44mm box-sections respectively. It has already been demonstrated that
reduction in load capacity of the axial columns of intermediate height due to mode
interaction is imperfection sensitive. Experimental observations and design loads
plotted in Fig. 4.19, indicate that the imperfections (overall as discussed under the
heading Lateral Deflections) are very small. Experimental loads for slender and short
columns (Table 4.1-3) are only 5% lower than the theoretical loads in the presence of
small initial imperfections. In the view of this observation, mode interaction
(maximum at A=1) may have caused a further 3 to 4% loss in the buckling resistance

of the intermediate columns.

In the view of above discussion it is proposed that “Universal Design Curve” plotted
in Fig 4.19 can predict the ultimate load for any length of both box-section columns.
Furthermore, this design curve is based on the experimental evidence. Such curves for
the different composite sections (pultruded profiles) should be developed for the safe

and confident design of structures using these profiles.

4.6 FFECTS OF HOLES

Three heights (2000, 1500 and 1000mm) of specimens from each cross-section
(51mm and 44mm square boxes) have been retested after drilling holes through their
webs to measure the loss of stiffness due to the introduction of holes. These
specimens have already been tested and their buckling loads (without holes) are
known. As each height group comprise three specimens, three diameters of the holes
have been selected for the study. The diameters of holes made in the webs of the
51mm box-section are d= 14, 25 and 35mm respectively whilst for 44mm box-section
the diameters are taken to be 14, 20 and 25mm (Plate 4.16). The resulting diameter to
box-width ratios (d/w) are 0.28, 0.49 and 0.69 for the SImm box-section while for
44mm box-section these ratios are 0.32, 0.46 and 0.57 respectively. Initially the holes
are drilled on one side at distances 20d from centre to centre, starting at mid-height.
The presence of a hole at mid-height is considered more onerous as maximum

deflection (and hence the stresses) occurs at mid-height. Specimens have been tested
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in both longitudinal orientations (as the testing is non-destructive). Additional holes
are subsequently made in the two opposite sides (2 Holes) at 20 diameter distances
and tested for buckling loads, with the process repeated giving holes on all four sides
(4 Holes). Furthermore, to investigate the effect of the distance between holes, holes
on all four sides are made at 10 times the diameter (mid-distance between the
previous holes). Buckling loads for holes on all four sides at a distance of 10 times the
diameter of holes are listed as ‘8 Holes’ in the Table 4.8. The arrangement of the
holes i.e., 1 Hole, 2 Holes, and 4 Holes at mid-height are shown in Plate 4.16. Short
specimen could not be included in the study as they were tested to destruction whilst

determining short column loads.

Table 4.8 presents the percentage loss in the buckling stiffness of the specimens due
to the introduction of holes. These results have also been plotted against the diameter
size in Fig 4.20. The graphs show a tendency of loss in the buckling stiffness with
increase in the d/w ratio. The loss of stiffness is small (under 10%) for a d/w ratio of
0.5 for up to four holes at an interval of 20 times the diameter. Further increase in the
hole-diameter reduces the stiffness more rapidly. More adverse effects can be seen in
the plots for 8 Holes i.e., when holes are drilled at intervals of 10d. For the smallest
size holes the loss is more than 10% in 51mm box-sections, increasing rapidly to up to
30% for a d/w ratio of 0.7. However for a d/w ratio of 0.5, the losses due to 8 Holes

remain under 20%.

The effect of holes in the 44mm box-sections is less compared to with SImm box.
The main reason is the additional thickness of the walls and a lower width to
thickness ratio. Introduction of 4 holes at 20d reduces the critical load by only 6 to 8%
up to d/w ratios of 0.5. Decreasing the interval between holes (8 Holes) to half,

reduces the stiffness of the specimens up to 20% for the same d/w ratio (0.5).

The buckling modes of the slender columns with circular holes are shown in Plates
4.17-4.19 for the three GRP heights of the box-sections 1000, 1500 and 2000mm.
Buckling shapes clearly suggest the global buckling of the columns with maximum
lateral deflection, at mid-heights. The specimens buckled in a half sine wave with the

length of the half wave equal to the effective length of the specimens.
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4.7 CONCLUSIONS

Buckling or failure loads for concentrically loaded composite columns depend upon
their heights, material properties and the cross-sectional dimensions. These factors
have been combined into one characteristic parameter ‘A’ the slenderness ratio
governing the ultimate load carrying capacity and behaviour of these columns.
Slenderness ratio (A) of each specimen is calculated using its effective height (L.p),
material (EL ) and sectional (/4) constants and the short column buckling (or failure)
loads (PL). Material constants should be measured using suitable methods (standard
test methods where available) reported in the literature. Material properties given in
the manufacturer’s manuals are minimum values representing a group of pultrudates
and their use in the prediction equations normally underestimates the critical buckling
loads (and hence the load carrying capacities) of the pultruded profiles. Measured
values of E;. (Table 3.12-13), average values of I (Table 4.4) and experimental
failure loads for short columns (Table 4.2), for the two sections have been used for the
determination of respective slenderness ratios of all specimen (Tables 4.6-4.7). It can
be seen from the data given in Tables 4.6-4.7 that experimentally measured loads P,
decrease with increase in ‘A’. The four types of failure modes, observed in the present
study are; global buckling, local flange buckling followed by tearing and rupture of
the cross-section, crushing of material at ends and interaction between two modes.

The main outcomes of the experimental study are:

1. Slender columns (A>1) buckled globally with no permanent damage to the
material (without breaking). These specimens deformed in a half sine wave
shape with maximum deflections at mid height (Fig 4.4). In the post buckling
stage lateral deflection continued increasing without any further increase in the
applied load (Figs. 4.5-4.8 for slender heights). Specimens retain their stiffness
whilst the deflections increase beyond the serviceability limits (Zuerick and
Scott, 1997). Furthermore, global buckling occurred in the linear elastic limits
of the composite material (Figs. 4.5-4.6 for axial shortening and 4.14-4.18 for
stress-strain plots). Specimens regained their straight configurations on
unloading establishing the elastic behaviour of the material. Establishing the
global buckling response as linear elastic, Southwell method has been used to
determine the critical buckling load using measured load (P) and lateral

deflection (A) data (Figs 4.9-4.10). Southwell method provides a critical load
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Pgs enconsidering the column as if it were a perfectly straight column free from
imperfections. The ordinate of the Southwell plot gives an estimate of total
imperfections present in the specimen and the test configuration. Twelve values
of Ps i loads are available for every slender specimen with mean load and SD
values. The lower SD values (less than 6%) for specimens (Table 4.1) establish
the applicability of the Southwell method in the determination of the
consistence global buckling loads. The close agreement (with difference less
than 5%) of the measured Pgxp and Psen loads (Table 4.1) demonstrate that not
only the Southwell method is desirable in the case of composite slender
columns but also that the pultruded box-section profiles used in this study

possess minimal inherited imperfections.

. Short columns (A<1) extracted from 51mm box-section failed by tearing of the
joints and breaking of the webs after local buckling was initiated. The web
connection failure leaves the section comprising four thin composite strips
which buckle globally and break at the centre due to excessive deformation.
Therefore, failure of short column is not purely due to local buckling but
precipitates material failure. The phenomenon has been found dependent on the
web (and hence the connection) thickness and related to the thickness to width
ratio of the web. Such a failure has also been reported by Zureick and Scott
(1997) in the buckling experiments on I-section columns, where sections with
small flange outstand failed due to tearing along the web-flange connection.
This effect has been established in the case of thick section (44x44x6mm)
short columns, where failure was not due to failure at the web interface, rather
the material crushing at the ends (Plates 4.13-4.14). Specimens remained
straight up to failure without any distortion of the cross-sections along the
entire length Stress-strain plots for short specimens (Figs 4.15-4.17) conform
that material behaved linearly prior to the failure followed by a minor non-
linearity at failure. The failure loads (Table 4.2) indicate higher scatter (SD =
12.4) for longer specimens (in short column range) with a decreasing trend
towards 255mm (SD = 2.14), establishing more consistent results for shorter
heights (approaching to P;). The failure loads for these specimens range from
202 to 226kN (Table 4.2) with a difference of -8 to +3% from the chosen P,
(220kN) for this section. However these loads are lower (45 to 47%) than the
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crushing strength of the 44mm box-section, indicating a complex type of three

dimensional stress distribution.

It is concluded therefore, that the conventional procedures for the prediction of
buckling loads (e.g., orthotropic plate buckling formulation) are not applicable
to the pultruded profiles with narrow and closed sections. Also the empirical
design equations recommended by the manufacturers can only be valid for
some particular sections as cross-sectional dimensions and material
configuration varies from manufacturer to manufacture. Hence for the
determination of design resistance when the pultruded profiles are used as

concentric columns, a universal design equation is recommended.

. Interaction between the global and local buckling has been observed in the case
of 51mm box-section specimens with effective height 805mm (A=1.05). The
specimen first developed global mode at the critical load, with half sine
configuration of the order of effective height. Then at the same load developed
local web-buckling and failed with huge bang by tearing at the joints and
rupture of webs (Plate 4.15). The experimental loads Py, for the three 750mm
GRP (L. = 805mm) specimens are given in Table 4.3 with an average of
97.1kN (SD = 1.65), which is less than Pg (110kN) and Py (120kN for 51mm
box-section) indicating loss in the resistance due to the interaction between the
buckling modes. It may be noted here that the A for the columns may slightly
vary as the experimentally measured values of E . for various specimens (from
stress strain graphs in Fig 4.15) differs from the E; . (from Table 3.12) used in
the calculation of A. This establishes that specimens having effective heights in
the vicinity of A=1 will exhibit mode-interaction leading to loss of resistance

depending on the amount of imperfections present in the testing system.

. Interaction between the global and material crushing has been exhibited by
500mm (L.g = 555mm and A=0.99) high specimens of 44mm box-section. The
specimens first develop global buckling with a lateral deflection >L/100 (see
Fig 4.8 for L = 500mm) and then failed by material crushing at the lower end
(Plate 4.14 (c)). The measured load (195kN) is less than either Pz (224kN) or
the P (220 kN) for the 44mm box-section.
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5. Comparison has been made between measured and predicted loads (§ 4.4) to
establish the method or methods capable of predicting buckling (or failure)
loads for composite box-sections. The classical approach to predict the global
buckling of slender columns (Euler formula) is applicable in the case of
composite pultruded profiles. Correlation between the Pg,,.y and calculated Pg
results (Table 4.4) suggests that the Euler predictions are reasonable. The shear
effects may be included in the analysis for a conservative prediction. Eurocomp
design code (EDC) also recommends Euler formula for the prediction of
buckling loads for slender columns. However use of minimum material
properties underestimates the buckling capacities of the long composite
columns. EDC recommends checking the sections against web local buckling
or crushing of the material. Again using minimum properties EDC
formulations underestimate the buckling resistance. Using Strongwell
empirical formulations, bucking loads for long columns are too high whilst low
for the short columns. Classical orthotropic plate buckling approach give a
reasonable range of buckling loads for short 51mm box-sections (80.3 to
252kN) as compared to P (120kN) indicating a nominal stiffness of the web-
interfaces. However the predictions for the short 44mm box-section columns,
using classical orthotropic plate buckling theory, are far from the experimental
loads (Table 4.5). EDC also predicts a very high load for the 44mm box-section
profiles. It is concluded therefore, that the conventional procedures for the
prediction short column failure loads are not applicable to the pultruded

sections having closed and narrow sections.

6. Strain gauge readings have proved useful in providing some insight into the
implied load carrying mechanisms. Stress strain plots (Figs 4.14-4.17) have
been constructed using the measured strain and loading data. The changes in
the directions of the graphs at buckling or failure loads indicate the nature of
deformations (strains) and buckling behaviour. Compressive modulus
calculated from the stress-strain plots is close to the E; . values established by
coupon testing (Tables 3.12-3.13) for majority of specimens but, in some cases,
varies in the range of + 12.5% . The potential reasons include non-homogeneity
of material, poor alignment, testing and measuring inconsistencies. The small

variations among the measured values of Ey . on four sides of a specimen are
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attributed to material non-homogeneity and initial minor deflections of the
specimens webs, and bending induced strains. Nevertheless, identical slopes of
the plots in the initial loading ranges confirm the satisfactory alignment of the
test specimen and the concentric loading. This establishes that a theodolite and
callipers can be effectively used to align specimens. Similarly the use of strain

gauges can infer the correct alignment of the specimens.

7. The conclusions drawn here also establish the fact that pultruded profiles tested
in this study are straight, having reasonably uniform cross-section and the

imperfections (due to manufacturing process) are well within specified limits.

8. Experimental buckling loads for the intermediate heights are lower than either
of the predicted global or local buckling loads. For example, for 750mm high
specimen (51mm box-section having Ley = 805mm), the averaged measured
load (Table 4.3) is 97.10kN as compared with Pg g, = 108kN and Py = 120kN.
When P and P are close, buckling modes can interact. The resulting mode
is highly sensitive to the imperfections. In the case of perfect column, the

measured load should approach the Pg value.

0. Universal design equation constructed, in Fig 4.18, is based on the
experimental evidence considering the actual material and geometric properties
and includes all the practical column heights. Most of the experimental results

fall above the design curve confirming it as a conservative one.

Determination of ‘Pr’ needs careful consideration and a well defined procedure

(preferably experimental) as the design of the column, particularly in the

intermediate range, greatly dependents on its value. P, may be reported as an
0.5EA

empirical parametric expression (e.g., P, =———
(b, /1,)"

has been suggested by

Strongwell, 1989).

10. Holes do not affect adversely the critical buckling loads, provided d/w ratio is
not large (< 0.3). For higher ratios (d/w = 0.6) buckling stiffness can be reduced

by up to 30%. Sections with thicker webs demonstrated lower sensitivity

towards the effects of holes.
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Fig 4.3 Test setup for axial loading of GRP box-section specimens.
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plots for 500 to 300mm specimens indicate the distance in mm from the lower

column ends, of respective LVDTS measuring the lateral deflections).

188




L=2000mm [ L=1500mm
20 30 -
et | 5 25 s
g 15 r’— % C Y
° /
g 10 4 § 15 4 /’
J —
B | [—Le —— Upper L/4 Baloy U2 —— Upper L/4
< | Corer [ e e < 5 Lower L/4 —— Euler
0+ . : - — ' . v ' —
0 10 20 30 40 0 10 20 30 40
Lateral Deflection (mm) Lateral Deflection (mm)
—
L=1000mm L=750mm
60
60 ——
= 50 F/_F
= 3
= 40 o
B ]
o 30 S
3 20 8204 |—12 —— Upper /4
L == — Upper L/4 E: pe
< 10 Low er L/4 —— Euler 10 - Low er L/4 —— Euler
0 T T T 1 ‘I T T !
0 5 10 15 0 5 10 15
Lateral Deflection (mm) Laterl Deflection (mm)
L=500mm L=400mm
2004 — 250 |
— — d A_,_,_——-'—'/
g 150 ez-" 200
° © 150 -
£100 | 3 —— D10
| 100 - —— D200
s £ —L2 —— Upper L/4 s o
E o] |
< Low er U4 —— Euler 50
0 . y — 0- ; . = —
0 2 4 6 0 0.2 0.4 06 08
Lateral deflection (mm) Lateral deflection (mm)
L=300mm L=200mm
200 —— D100 | sl
= < 200 -
3 Sl
3 150 - D150 x
8 100 - g
- = 100 — D100
§ = < 50 D150
0 T T Tasaed T 0 . . —
-03 -02 -01 0 01 02 03 .02 0 02 0.4 06
Lateral Deflectoion (mm) Lateral Deflection (mm)
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Fig 4.14 Stress-Strain plots (typical) for long SImm box-section specimens.
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Fig 4.15 Stress-Strain plots (typical) for short SImm box-section specimens.

196




L= 2000mm L=1500mm
Axial Strain (mm) Axial Strain (mm)
-0.003 -0.0015 0 0.0015 -0.004  -0.002 0 0.002
L 0 = . } 0 &a
& 0005 E
- -0.005 § o g
001 X y =29.277x - .0.015 %
8 R? = 0.9996 y =30.029x g
g R =09986 002 &
L -0.015 & =
= - -0.025 %
= <
- -0.02 é L .0.03
Side A Side B Aide A Side B
Side C ———Side D Side C -~ SideD
------- Linear (Side B) - - - - - - - Linear (Side D)| ||-------Linear (Side B) Linear (Side D)
L=1000mm L=750mm
Axlal Straln (mm) Axial Strain (mm)
-0.004  -0.002 0 0.002 001 001 -0 -0 O 0.002
l . ; 0.00 & ‘ * : ; 0 “E
1 -001 E L -0.02 g
/ 002 § L 0.04 ?5
1003 = L 006 @
y =28.018x { -0.04 y = 30.661x L o
R -09981 // ¥=32611x o 8 L y=32071x 008 Z
R =0.9997 s ; Re =0.9999 -0.1 L]
A 1006 L 012 <
1 .007 < L 0.4
Side A SdeB | Side A Sde B
Side C : Side D Side C - SideD
-~ Linear (Side D) ------- Linear (Side B) | -~ Linear (Side D) - - - - - -- Linear (Side B)
L=600mm L=500mm
Axial Strain (mm) Axial Strain (mm)
-0.008 -0.006 -0.004 -0.002 0 | [-00 -0.005 0
| ‘ A J 0o 02 E | | i NE
L 004 2 L -0.05 s
L -006 & . L -0.1 =
y =31.049x - -008 $ }’q;_:"g-gg;" 3
R = 0.999 . L-01 B = +-0.15 &
= © /) -
y =31618x -0.12 .8 7 y=33728x| oo B
L -0.16 - -0.25
Side A Side B Y Side A Side B
Side C — side D Side C ———— Side D
------- Linear (Side B) - - - - - - - Linear (side D) Linear (Side B) - - - - - - - Linear (Side D)

Fig 4.16 Stress-Strain plots (typical) for long 44mm box-section specimens.
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Fig 4.17 Stress-Strain plots (typical) for short 44mm box-section specimens
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Fig. 4.18 Estimation of interaction coefficient ‘c’ for the two box-section profiles.
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Fig 4.19 Universal design curve for pultruded box-section concentric columns.
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Fig. 4.20 Effect of holes on the buckling stiffness of slender GRP columns.
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Table 4.1 Experimental buckling Loads of slender columns

Column No: 1, 51x51x3.2mm, Lggrp=2000mm, Ly =2055mm, A =2.69

Side A | -A B -B C -C D | -D | Mean | SD

Peop | 151151 (15.0)15.1 1551541153 1153 | 15.2 |0.16

Pswen | 152 | 154 [ 1551153 | 15.7 [ 15.7 [ 15.7 [ 15.7 | 15.5 | 0.21

Column No: 2, 51x51x3.2mm, Lgre=2000mm, Leg =2055mm, A =2.69

Side AJl-A| B -B C -C | D | -D |Mean| SD

Pep | 1511511531153 (154|154 1152[151{ 152 |0.14

Ps.o | 15.1|15.4 [ 156|156 | 16.1 | 159 | 154|154 | 156 | 030

Column No: 3, 51x51x3.2mm, Lgrp=2000mm, L.g = 2055mm, A =2.69

Side A -A B -B C -C D -D | Mean | SD

Peyp | 152152158 156153 1153|158 |155| 155 | 0.24

Pouer | 1541551631161 (155157 | 164161 | 159 | 0.38

Column No: 4, 44x44x6.0mm, Lgrp=2000mm, Lt = 2055mm, A = 3.61

Side A}{-A| B |-B| C]|-C| D/| -D|[Men| SD

Pext | 158 | 15.8 | 14.8 | 14.7 | 15.7 [ 15.6 | 14.6 | 147 | 152 | 0.56

Psuer | 16.1]16.1 152 (152159 158|152 (152 | 157 | 0.43

Column No: 5, 44x44x6.0mm, Lgrp = 2000mm, Leg = 2055mm, A = 3.61

Side A -A B -B C -C D -D | Mean| SD

Pexp |[15.9]15.8 1148 (14.7 (158|157 149|149 153 | 0.52

Pswer | 160 [ 16.1 1152 (153 161|160 | 152152 156 | 0.44

Column No: 6, 44x44x6.0mm, Lgrp=2000mm, L.y =2055mm, A = 3.61

Side A|-AjB|-B C -C|{ D | -D |Mean| SD

Peop [15.1 1511571157152 152 (156|156 | 154 |0.28

Pswen | 1541154161 1160154154 |16.0|16.0| 157 | 0.33
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Table 4.1 Experimental buckling Loads of slender columns (continued)
Column No: 1, 51x51x3.2mm, Lgrp= 1500mm, Lcg = 1555mm, A =2.03

Side A|-A|B|-B|C|C| D/|-D|[Men|SD

Peyp |27.0126.8 (27212731269 268 (2742741 27.1 |0.38

Pswen | 27.3 |1 27.2 | 28.1 { 28.0 | 27.1 | 27.2 |1 28.3 | 28.2 | 27.7 | 0.51

Column No: 2, 51x51%3.2mm, Lgrp= 1500mm, Lg = 1555mm, A=2.03

Side A -A B -B C -C D -D | Mean| SD

Peyp |26.9 (26912741273 (267267274 (274 27.1 |0.32

Pswen | 27.4127.1 1279 1282 |27.0(27.1|28.2|28.3| 27.6 |0.54

Column No: 3, 51x51x3.2mm, Lgre = 1500mm, Legs = 1555mm, A=2.03

Side A -A B -B C -C D -D | Mean | SD

Pep |[26.0]26.0(27.5(27.325.7|25.9|27.4|27.4] 266 | 0.81

Po.en | 267 | 26.8 | 28.4 | 283 [26.7]26.7 | 28.1 [ 284 | 27.5 | 0.86

Column No: 4, 44x44x6.0mm, Lgrp = 1500mm, Ly = 1555mm, A=2.73

Side A|-A|B|[B| C|-C| D|-D |Mean|SD

Pep [25.9]25.8]269126.7)26.0]25.6(26.7)|269| 263 |0.53

Poer | 27.9 | 28.0 [27.3 270 (279278 | 26.8 | 27.1 | 27.5 | 0.48

Column No: 5, 44x44x6.0mm, Lgrp= 1500mm, L¢s = 1555mm, A=2.73

Side A -A B -B C -C D -D |Mean | SD

Pegp |25.4(253]264263(25.025.0]26.0263]| 257 |0.61

Psen | 26.6 | 26.728.0 | 27.8 (267|267 278 | 27.6 | 27.2 | 0.61

Column No: 6, 44x44x6.0mm, Lgrp= 1500mm, L¢g = 1555mm, A=2.73

Side A -A B -B C -C D -D |Mean| SD

Pexp |25.4125.7]27.026.8)252|25.2|26.8|27.0|26.14]0.83

Pswen | 26.7 | 26.7 | 27.9 | 27.9126.5126.5|28.2 279 | 273 | 0.74
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Table 4.1 Experimental buckling Loads of slender columns (continued)

Column No: 1, 51x51x3.2mm, Lgrp= 1000mm, Leg = 1055mm, A = 1.38

Side A}-A| B|-B]C|-C| D]|-D|Men]|SD

P |[54.0(53.8544(57.053.8]543]56.7]|568 | 55.1 |1.45

Pswen | 58.1 [ 57.5159.9 {60.2 | 57.1 [ 57.1 | 60.6 | 61.0 | 59.0 | 1.64

Column No: 2, 51x51x3.2mm, Lgrp = 1000mm, Leg = 1055mm, A = 1.38

Side A|-A| B -B C -<C | D | -D |Mean| SD

Pexp |51.8[53.8[53.8]56.4]54.7|54.2]56.6|56.6] 54.8 |1.70

Poen | 57.5 | 57.1|59.5|60.0 | 57.1|56.8|59.9|59.9| 586 |1.55

Column No: 3, 51x51x3.2mm, Lgrp = 1000mm, L. = 1055mm, A = 1.38

Side A|-A| B -B C -C D | -D | Mean | SD

Pexp | 56.2|56.6 549|543 |56.8 573|548 550/ 55.7 | 1.11

Pswen | 59.9 | 59.9 | 60.6 | 60.6 | 57.4 | 58.1|60.7|60.1 | 59.7 | 1.22

Column No: 4, 44x44x6.0 mm, Lgrp= 1000mm, Ly = 1055mm, A = 1.85

Side A|-A| B -B C|-C| D | -D |Men| SD

Peop | 553559583 (55.655.7|553(57.6]588] 56.6 |1.43

Psuen | 57.8159.5]58.8 |585]61.0]59.2588]595] 59.1 |0.93

Column No: 5, 44x44x6.0mm, Lgrp= 1000mm, L = 1055mm, A = 1.85

Side A|-A|B|-B|[C|-C|D/|-D|Men|SD

Peyp | 56.1]56.359.058.5(56.8]563](56.3|564]| 56.7 |1.14

Pswen | 59.2 | 59.9 | 60.2 | 59.5 | 60.6 | 60.6 | 58.2 | 58.5 | 59.6 | 0.92

Column No: 6, 44x44x6.0mm, Lgrp= 1000mm, Ly = 1055mm, A = 1.85

Side A|-A| B |-B| C || D/|-D|Men|SD

Pexp | 55.5(55.1]51.051.5|545|524(52.8|51.1] 53.0 |1.81

Pswen | 58.6 [ 58.5159.2159.6 | 582 (57.5{60.9}60.2| 59.1 |1.13
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Table 4.1 Experimental buckling Loads of slender columns (continued)

Column No: 1, 44%44x6.0 mm, Lgrp= 750mm, L = 805mm, A = 1.42

Side | A | -A

B

C

-D {Mean|{ SD

Pep |87.9 869

8508

5.1|86.7|87.

84.4

85.9 | 1.41

Pswen | 96.2 1 95.0

99.0

99.0 | 95.

103 | 98.6 |3.46

Column No:2, 44x44x6.0mm, Lorp=

805mm, A = 1.42

Side | A | -A

-D | Mean | SD

Pe, |76.0 | 80.8

81.5

81418

291802|81.2

80.7 | 80.6 | 2.0

Ps,we]] 96.2 9

7.11935

94.3

101

100 | 98.0

99.01 97.4 |2.66

Column No: 3, 44x44%6.0mm, Lgrp=750mm, L = 805mm, A = 1.42

Side A

-A

B

-B

C

-C | D

-D [ Mean | SD

Py | 815812

89.1

82.2180.0

81.3|81.4

81.1

82.2 | 2.82

Ps.wen | 98.0 ] 98.0

96.2

96.2

106

102 | 98.0

99.0

99.2 1343
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Table 4.2 Short Column Failure loads for box-sections

Specimen | Specimen Length Specimen No: Mean | SD
S(erff;f)n Lore Lesr 1 2 3 0
(mm) (mm)
500 555 118 115 110 114 4.2
51x51x3.2
400 455 120 111 120 117 5.2
300 355 114 118 122 118 4.0
200 255 123 118 121 121 2.1
44x44%6.0 400 455 202 220 203 208 10.2
300 355 221 223 210 218 6.6
200 255 226 216 219 220 5.3
Table 4.3 Mode-interaction in intermediate column heights
Specimen Specimen Length Specimen No: Mean SD
Sfr;trlg)n Lerp Ley 1 2 3 1 s
(mm) | (mm)
51x51x%3.2 750 805 96.2 99.0 96.2 97.1 1.7
44x44x6.0 500 555 196 192 196 195 2.2
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Table 4.4 Comparison of experimental and theoretical results (long columns)

Column Length of Psweri™* Pesh=Pepc Prstrongwen
Section gnd Specimen (kN) (kN) E;.
Properties Lcrp Loy Erc Erec Fibreforce
(mm) | (mm) Measured | Fibreforce | (kN)
51x51%x3.2 mzm 2000 | 2055 15.7 16.7 9.5 32.5
Agve = 628.mm
7 vee_; 238000mm® 1500 | 1555 27.6 28.8 16.5 46.8
1000 1055 59.1 61.0 35.9 77.4
750 805 97.1 101 61.7 110
44%x44%6.0 1r21m 2000 | 2055 15.6 16.6 8.6 345
}4““2:2818720‘3(’)“ C i [T500 | 1555 | 273 287 151 495
1000 | 1055 59.3 61.2 32.7 82.0
750 805 98.4 102 56.2 117
500 555 195 202 118 189

Table 4.5 Comparison of experimental and theoretical Results (short columns)

Column Lcngth of P L(Exp)t? Classical P EDC P Strongwell
Section and Specimen (kN) Ortho- (kN) (kN)
Properties tropic
Lgrp Leﬁ' plate§§ EL.c Epe Ere
(mm) | (mm) P (kN) | Meas- | Fibre- | Fibre-force
ured force
51><51x3.2mr;1 500 | 555 114 80.3 126 88.0 67.8
Agve = 628mm to
Ion= 400 | 455 117 252 242) | (130)

238000mm* 300 | 355 118
200 | 255 121

Aaxaa<60mm | 400 | 455 | 208 | 705 | 1L | 706 197
Ape = 882mm to
I 300 | 355 1 218 4 9181 | (@61) | (185)

217000mm* 200 | 255 220

¥ Average of several tests

$ Minimum and maximum buckling loads corresponding to simply supported and fixed long edge
supports
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Table 4.6 Design parameters for 51x51x3.2mm box-section

Loy A Pesn Prxp q s c ki P,
(mm) _L\/E N) | (N | Py | Ppy | _gts-l (kN)
~aVEl Bl B gs = kP,
255 0.33 582 123 1.02 0.21 1.08 0.99 119
255 0.33 582 118 099 | 0.20 0.94 099 119
255 0.33 582 121 1.01 0.21 1.03 0.99 119
355 0.46 389 114 0.95 0.29 0.87 0.98 117
355 0.46 389 118 0.99 0.30 0.97 0.98 117
355 0.46 389 122 1.01 0.31 1.03 098 | 117
455 0.60 270 120 1.00 | 0.45 1.00 096 115
455 0.60 270 111 0.92 0.41 0.88 0.96 115
455 | 060 | 270 | 120 | 1.00 | 0.44 100|096 | 115
555 0.73 195 118 0.99 0.61 0.99 0.92 111
555 0.73 195 115 096 | 0.59 0.97 092 | 111
555 0.73 195 110 092 | 0.56 0.93 092 | 111
805 1.05 101 96.2 0.80 0.95 0.99 0.73 | 88.2
805 1.05 101 99.0 0.83 0.98 1.00 0.73 | 88.2 .
805 1.05 101 96.2 0.80 0.95 0.99 0.73 | 88.2
1055 | 1.38 61 59.0 049 | 097 0.96 049 590
71055 1.38 61 58.6 0.49 0.96 0.96 049 | 590
1055 1.38 61 59.7 0.50 0.98 0.98 049 | 59.0
1555 | 2.03 28.8 27.7 023 | 096 0.86 024 | 287
1555 2.03 28.8 27.6 0.23 0.96 0.86 0.24 | 28.7
555 | 203 | 288 | 275 | 023|095 0.84 | 024 | 287
2055 2.69 16.7 15.5 0.13 0.93 0.50 0.14 | 16.7
2055 2.69 16.7 15.6 0.13 0.92 0.52 0.14 | 16.7
2055 2.69 16.7 15.9 0.13 0.94 0.67 0.14 | 16.7
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Table 4.7 design parameters for 44x44x6mm box-section

Lest A PEsh Pryp q s c k; P,
(mm) L\/'P'L &N) | (kN) _ Py =PExp _g+s-1 (kN)
~zVEI P, Py 7 =k,P,
255 0.45 672.28 226 1.03 0.34 1.06 0.99 217
555 | 045 [67228 | 216 | 098 | 032 096 099 | 217
355 | 045 67228 | 219 | 099 | 033 099 099 | 217
355 0.62 426.60 221 1.00 0.52 1.00 0971 214
355 0.62 | 426.60 | 223 1.01 0.52 1.01 097 214
355 0.62 | 426.60 | 210 096 | 0.49 0.95 097 | 214
455 0.80 |287.22 202 092 | 0.70 0.96 0931 205
455 0.80 287.22 220 1.00 | 0.77 1.00 0.93 205
455 0.80 287.22 203 0.92 0.71 0.97 0.93 205
555 0.98 | 204.08 196 0.89 | 0.96 1.00 0.83 183
555 0.98 204.08 192 0.87 0.94 0.99 0.83 183
555 0.98 | 204.08 196 0.89 | 0.96 1.00 0.83 183
805 1.42 103.36 | 98.6 0.45 0.95 0.94 047 104
805 1.42 10336 | 974 044 | 094 0.92 0471 104
805 1.42 103.36 | 99.2 045 | 0.96 0.95 0.47 104
1055 1.85 61.71 59.1 0.27 0.96 0.88 029 | 63.0
1055 1.85 61.71 59.6 0.27 | 0.97 0.90 029 | 63.0
1055 1.85 61.71 59.1 0.27 | 0.96 0.88 029} 63.0
1555 2.73 28.96 27.5 0.12 | 0.95 0.62 0.13 | 29.3
1555 2.73 28.96 27.2 0.12 | 0.94 0.55 0.13 | 293
1555 2.73 28.96 273 0.12 | 094 0.57 0.13 | 293
2055 3.61 16.70 15.7 0.07 | 0.94 0.20 0.08 | 16.8
2055 3.61 16.70 15.6 0.07 | 0.94 0.11 0.08 | 16.8
2055 3.61 16.70 15.7 0.07 | 094 0.17 0.08 | 16.8
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Table 4.8 Percentage loss in buckling resistance due to holes

Column Column d'w No of holes in one set
Size & length NO: 1 Hole | 2 Holes | 4 Holes | 8 Holes
51x51x3.2mm 1 0.28 3.1 5.8 7.1 9.1
L = 2000mm 2 0.49 4.3 7.3 9.6 16.0
3 0.69 6.8 9.8 16.1 243
51x51%3.2mm 1 0.28 3.4 5.9 8.2 10.7
L =1500mm 2 0.49 5.5 8.2 11.6 17.5
3 0.69 8.8 11.3 17.8 30.3
51x51x%3.2mm 1 0.28 34 6.6 9.6 11.7
L = 1000mm 2 0.49 6.5 9.5 123 18.5
3 0.69 10.2 17.0 20.1 322
44x44x6.0mm 1 0.32 2.1 42 54 7.5
L =2000mm 2 0.46 3.5 6.8 8.5 12.5
3 0.57 4.2 10.0 11.7 18.4
44x44x6.0mm 1 0.32 2.7 4.7 6.8 8.7
L =1500mm 2 0.46 4.12 6.95 8.46 13.8
3 0.57 5.64 10.2 134 19.6
44x44x6.0mm 1 0.32 2.8 53 7.5 104
L = 1000mm 2 0.46 4.6 6.7 9.5 144
3 0.57 6.2 11.2 14.7 21.1
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Plate 4.1 Measurement of initial imperfections.

Plate 4.2 Strain rosettes and bondable terminals with wires.



e

(b)

Plate 4.3 (a) Upper knife-edge, load cell and support assembly and
(b) Lower knife-edge, load cell and alignment strip.
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Plate 4.4 (a) Mid-height rotation check, (b) upper shoe and (c) lower shoe.
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Plate 4.6 Global buckling in S1mm box-section specimens of height

nd (¢) 1000mm.
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Plate 4.7 Global buckling in 44mm box-section specimens of height;

(a) 2000mm, (b) 1500mm, and (¢) 1000mm, and 750mm.

~



Plate 4.8 Number and position of LVDTs to measure lateral deflection in short
specimens (a) 200mm, (b) 300mm, (¢) 400mm and (d) 500mm.



(a) (b)

(c)

Plate 4.9 Local buckling of 200mm high, 51mm box-section specimen (a) front
web bulging out, orthogonal web moving in; (b) rear (opposite) web bulging out
and broken in compression; (¢) compression failure at the lower end.



(a) b)

Plate 4.10 Failure mode of 300mm high, SImm box-section specimen;
(a) front view, (b) rear view



(©) (d)

Plate 4.10 (continued) Failure mode of 300mm high, SImm box-section
specimen; (a) front view, (b) rear view



(a) (b)

Plate 4.11 Failure mode of 400mm high, 51mm box-section specimen; (a) front
view, (b) rear view
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(c) (d)

Plate 4.11 (continued) Failure mode of 400mm high, S1mm box-section
specimen; (c¢) front view, (d) rear view
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(a) (b)

Plate 4.12 Failure modes of 500mm high SImm box-section specimen;
(a) front and (b) rear view.



(c)
Plate 4.12 (continued) Failure modes of S00mm high S1mm box-section
specimen; (c¢) front view.



.

(d) (e)

Plate 4.12 (continued) Failure modes of S00mm high S1mm box-section
specimen; (d) front and (e) rear view.



(©)

Plate 4.13 Failure mode of 200mm high 44mm box-section specimen;
(a), front view (b), rear view (c¢) compressive failure at end.
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.

(c)

Plate 4.14 Material failure mode in (a) 300mm, (b) 400mm and (c¢) 500mm high,
44mm box-section specimens.
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(a) (b)

Plate 4.15 Buckling mode-interaction in 750mm high, S1mm box-section
specimen; (a) front and (b) rear view.
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(c) (d)

Plate 4.15 (continued) Buckling mode-interaction in 7S0mm high, SImm box-
section specimen; (¢) front and (d) rear view.
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CHAPTER S

BUCKLING OF GRP BOX COLUMNS—NUMERICAL
STUDY

5.1 INTRODUCTION

The ultimate failure loads of axially loaded composite columns of various heights
have been measured experimentally and estimated analytically in Chapter 4. In this
chapter the failure loads and failure modes of the same box-section columns have
been simulated and predicted numerically using finite element modelling. Included in
the numerical investigations are the effects of physically measured imperfections e.g.
variations in the cross-sectional dimensions. The effects of load eccentricity and
initial curvature (bow) have been studied by adding known (measured) amounts of
load eccentricities and deflections at the mid-height of the specimen models. The
investigations have further been extended to include the effects of holes formed in the
webs of the GRP profiles representing changes to the section arising from connections
or services details and also to demonstrate the effective zones of the columns. Circular
holes of various sizes have been considered for the estimation of the buckling
stiffness loss of the composite columns. The outcomes of the numerical studies have

been compared with the experimental and closed form analytical results.

Finite element (FE) models representing the true cross-section geometry of the box-
sections (shape, parametric dimensions of wall thickness and column heights), have
been analysed using a commercial finite element code “LUSAS”. A typical base
model representing both the box-section profiles, with a GRP height of 1000mm has
been constructed (Fig 5.1). The effective height of the column becomes 1055mm after
adding 27.5mm thick steel plates to the specimen at the upper and lower ends to
simulate the steel shoes used to restrain the specimens and distribute the axial load
uniformly as in the experimental configuration. Finite element models of various
heights and different boundary conditions have been produced by making respective
changes to the base models. The most common boundary conditions found in the
literature e.g., simply supported, hinged and fully fixed supports have been applied to
the axially loaded columns. Different boundary conditions and the initial assumption

of GRP material as isotropic (taking E=FE;) have been adopted to establish the

233



satisfactory benchmarking of the software. Load eccentricity has been introduced (in
intervals) by altering the loading positions in the base model. Initial out of
straightness (curvature) at mid heights of the columns have been modelled by
introducing the imperfections as half sine waves (the most critical imperfections
corresponding to the first mode shape). Additional finite element models of the
composite columns, with holes in the webs (walls), have been developed to predict
the potential loss in the buckling strength of composite columns in the presence of
these holes. The sizes of holes have been varied in terms of d/w ratios, where d is the
diameter of the hole and w is the web-width. The study has been limited to longer
columns (1000 to 2000mm GRP heights) for both box-sections as experimental
results are available for comparison. Recommendations regarding the sizes and gaps

between the holes are presented.

The main objectives of the numerical investigations are to:

¢ Develop suitable finite element models representing the true geometry of the
box-profiles, simulating the constraints (boundary and loading) of the
experimental set up, that exhibit similar behaviour (failure modes and

deformations) when analysed using numerical formulations.

e Establish the suitability of different types of analysis. Concepts of elastic
stability have been applied through linear analysis. Analytical methods assume
axial columns as perfectly straight whereas actual columns are not free from
imperfections. In the presence of imperfections, initial loadings path exhibit
lateral deformation and the load changes with deflections. Also deformations
may be very large in some buckling modes. Non-linear analyses, therefore, are
required to trace the predicted behaviour of the member under applied load.
Non-linearity may be only geometrical if the dimensional of shape
imperfections are present and the failure stresses (and hence failure mode) are
within the elastic range of the material. Conversely, if failure modes
(experimental) indicate bursting of the material, nonlinearity in the material

becomes necessary to consider.

e To establish the effects of specimen height, boundary conditions, degree of

orthotropy, in-plane shear modulus, load eccentricity, initial curvature and
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hole-size on the buckling strength of the composite columns through

parametric studies.

e To establish general rules governing the numerical prediction of ultimate
faiture loads of GRP pultruded columns. Similar rules are also defined for the

composite columns having holes in their webs.

e To establish numerical results (with confidence) containing safe loads for
various column heights of the two box-sections (51 and 44mm square). The
results have been used for the construction of a design curve for pultruded
GRP columns. The universal slenderness ratio ‘A’ (2.19) defined for
composite columns in Chapter 2 has been used to define a universal design

equation for the design of pultruded GRP columns,

e To compare failure loads (and modes) predicted by finite element analyses
with those obtained using conventional procedures e.g., elastic stability theory,
Strongwell design manual (Strongwell, 1989), ASCE design manual (ASCE,
1984), and design equations in the ECD (Clarke, 1996).

5.2 FINITE ELEMENT MODEL OF COLUMN

The model (geometric details given in Fig. 5.1) comprises a GRP specimen of a
specified (variable) height and two steel plates (27.5mm thick) attached to the upper
and lower ends simulating the bearing surfaces of the shoes used to restrain the
specimen in the experimental study (Chapter 4). As the GRP specimens were
restrained laterally in the shoes, the steel plates in the numerical model have been

considered as integral parts of the composite specimen.

To represent the geometrical dimensions of the square cross-section of the GRP
profiles and the covering steel plates, a 3-dimensional volume model has been
developed. Side-walls (webs) of the GRP profile joined to make a square cross-
section are represented by volumes (v13 to v20, Fig 5.1) of specified thickness. The
terminal steel plates have also been represented by volumes, each comprising 12
volumes (lower v1 to v12 and upper v21 to v32, Fig 5.1). All volumes have identical
orientations with respect to the global axes of the model i.e., the orientation of the
axes (indicated by black arrows on all the volumes) are parallel to the global X, ¥ and

Z direction (Fig 5.1).
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The volumes have been discretised by dividing into a mesh using three dimensional
(volume) solid continuum finite elements (HX20)". The elements are hexagonal
(brick) defined by 20 nodes i.e., 8 at corners and 1 at half-length of each side. Each
node has 3 translational degrees of freedom (d.o.f), %, v, and w. The elements are of
quadratic order where up to a linear variations of field variables (stress, strain etc),
between the nodes, can be represented. The elements belong to the isoprametric
family. A regular mesh has been assigned to discretise the rectangular volumes using
rectangular finite elements (HX20). H-refinement has been adopted with inference
from multi-mesh extrapolation to obtain an adequate mesh (measured as deviations of
strain contour plots using averaged and unaveraged nodal values). To maintain the
clement’s aspect ratio within limits (<10 e.g., Cook et al 2002, Lusas theory manual
2001) at least two elements width-wise and four elements per 100mm specimen
height have been used. However for shorter lengths (750mm and less) the mesh has
been further refined to four divisions in the transverse (width-wise) dimension and
eight divisions per 100mm of specimen length in the longitudinal direction. A typical
finite element model for the GRP box-section profile of height 1000mm (Fig. 5.2) has

been used as the base model for both sections (51 and 44mm square).

Material properties for the steel and GRP composite materials have been defined
using data sets and assigned to the volumes representing the corresponding materials.
For example, an isotropic material data set, with properties E = 205kN/mm? and v =
0.3, have been defined for steel and assigned to volumes 1 to 12 and 21 to 32 (Fig
5.1a, and c). An orthotropic material data set defines the material properties

(established in Chapter 3) for the GRP composite using nine constants as follows;

51x51x3.2mm box-section

E, = 30.3kN/mm?, E, = 9.2 kN/mm?, E, = 9.2kN/mm®!, G,, = 2.85kN/mm?’,
Gye = Goe = 3.95KN/mm’, v, =0.29 and vy, = vx=0.15,

44x44x6.0mm box-section

E,=33.2kN/mm?, E,=9.2 KN/mm’® E, = 9.2kN/mm*!, G, = 2.85kN/mm’

* Lusas element library.

t Transverse material properties has been taken equal in X and Z direction (transversely homogeneous)
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G,z = Gor= 3.95KN/mm’, vy = 0.29, vy, = vy = 0.15%

The base model assumes simply supported boundary conditions with respective
restraints along the mid-line of the lower and upper steel plates. Each support is
defined by specifying the restraints that support applies to the assigned component of
the structure. For example, support R1 (Fig 5.2b) three transitional displacements in
the x, y and z directions have been restrained (¥ = v = w = 0), but rotation about the x-
axis is admissible. This simulates the knife-edge supporting the lower steel shoe in the
experimental set up. At support R-2 (Fig 5.2 b), displacements in x and z directions
are restrained but not in y direction (# =w = 0, y # 0) to allow axial shortening under
the applied load. Rotation about the x-axis is again admissible. Further, rotations
about the y and z axes are restrained in both support-sets (R-1 and R-2) to simulate the

knife edge support (KES) used in the experimental test-configuration (Plate 4.3a-b).

The axial compressive load has been applied in the vertically downward direction (-y)
along the central line of the top steel plate. Typically a unit load distributed along the
centre line (51mm long) has been defined. This simplifies the implementation of
subsequent analyses by using a load factor approach for both linear and nonlinear
analysis. This downward load has been assigned to the lines defining the centre line
of the upper plate (see the blue downwards arrows in Fig 5.2 a) to simulate the knife
edge loading in experimental configuration. The idealised loads 1.96E-02kN/mm and
7 27E-02kN/mm have been applied along the centre line of 51mm and 44mm box-
sections respectively. The FE models of various GRP heights have been obtained by

simply changing the length of the base models for each cross-section profile.

Types of analyses

Three types of analyses; linear elastic (eigenvalue), geometrically nonlinear elastic
and fully non-linear have been used to predict the buckling loads and failure modes.
The linear elastic solution assumes that both the geometry and the material properties
remain unchanged up to failure. A geometrically non-linear analysis recognises
contributions of changes in the geometry of the structure (column) to the failure mode
and load within a constant material framework. A fully nonlinear analysis (geometric
and material) recognises both geometric and material nonlinearities in the solution.
All three types of the analysis methodology have been considered in this numerical

study with recommendations made regarding their selection and application, given
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that computational expense escalates dramatically with increased assumed levels of

nonlinearity.

5.3 LINEAR ELASTIC (EIGENVALUE) ANALYSIS

Theoretical fundamentals

The instability of the axially compressed columns has been associated with the
phenomenon referred as “bifurcation of equilibrium” (Chen and Lui 1987, Farshad
1994, Galambos 1998). In the process, a perfect member when subjected to increasing
load initially deforms in one mode and at a load referred to as the critical load, the
deformation suddenly changes into a different pattern. For example, an axially loaded
column initially shortens due to axial compression. The axial strains are also known
as “membrane strains” and the energy stored during the process as “membrane
energy”. At the critical load, the column suddenly bends. At this bifurcation in the
load-displacement behaviour the membrane strain energy is converted into bending
strain energy without any change in the externally applied load. In slender columns
(and in thin plates) membrane stiffness is much greater than bending stiffness, giving
rise to large membrane strain energy for relatively small deformations and
displacements. When buckling occurs comparatively large bending deformations are
needed to absorb the released strain energy, producing excessive bending

deformations.

The critical load at this assumed bifurcation can be determined by an eigenvalue
analysis. In the analysis all the possible equilibrium configurations that the system can
assume at the bifurcation load are taken into account. These possible displaced
configurations of the system are described by specifying a set of generalised
displacements. The stiffness matrix relates the generalised forces to the generalised
displacements of the system. The stiffness of the system is measured by the
determinant of the stiffness matrix. At the critical load the stiffness of the system
vanishes. Thus, by setting the determinant of the system’s tangent stiffness matrix
equal to zero, the system’s critical conditions can be identified. The critical conditions
are represented by the eigenvalues of the system’s stiffness matrix and the displaced
configurations are represented by eigenvectors. The lowest eigenvalue corresponding

to an axially loaded state (in this case) is the critical load of the system. The
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bifurcation or eigenvalue approach is an idealised mathematical approach to

determine the critical conditions of a geometrically perfect system.

Initially, to predict the critical buckling load P for the base model of 51mm box-
section 1000mm high, a linear elastic analysis has been performed by defining the
eigenvalue buckling control as the base model is perfectly straight and of slender
height (§ 4.7). In this case the assumption of linearity is justified as the overall
structural response implies both geometric and material linear responses. A converged
solution of 59.3kN to P, is obtained (Table 5. 2). This value of P is close to the
experimental load of 59.1kN and analytical load Pg.g, of 61kN (Table 4.4).
Furthermore, the deformed shape obtained from the linear elastic analysis (Fig 5.4a)
predicted global buckling with a maximum transverse deflection at column mid height
and rotation of lower and upper steel plate about the central axis in the x-direction.
The deformed shape is identical to the shape observed in the experimental study i.e.
half sine wave of the order of the column effective length (Plate 4.6c). This
observation serves as an initial indication of the satisfactory performance of the FE
model, type of element chosen and the type of analysis performed for this particular
case. It also demonstrates that 1000mm GRP high column (L¢y = 1055mm) is in the

category of slender columns.

Different support conditions at the lower and upper ends (steel plates) of the column
model also serve to demonstrate the validity of the numerical predictions. Normally
the nature of a support is defined by the displacement or rotational prescriptions. For
example in the base model, the simple support assigned to the central line of lower

steel plate R-1 (Fig 5.2b) is defined as;
u=v=w=0,6+0,6=6=0

where u, v, w, are translational displacements and &, 6, and 6, are rotational
displacements with respect to X, ¥ and Z axis. A displacement set equal to zero infers

the respective restraint.
The following four support conditions have been analysed for critical buckling loads:

(2) Simple-Simple (SS): Column is simply supported at both ends as described in the
base model with lower support asu =v=w =0 and & # 0, 6= 6, = 0. Upper support

conditionisu=w=0,v#0, 6#0, ,=6,=0.
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(b) Fixed-Simple (F-S): Lower support is fixed i.e., restraint to all translational and
rotational degrees-of-freedom as; u =v=w =0, 6, = 6, = &, = 0. Upper support as

given in (a) above.

(c) Fixed-Fixed (F-F). Lower support fixed as described in (b) above. Upper support

is also fixed but allows vertical shortening as; u=w=0,v#0, 6, =6~ 6,=0.

(d) Fixed-Free (F-Free). Lower support as described in (b) above and no restraints at

the upper end of the column.

The outcomes of linear analyses of 1000mm high GRP box-sections (51x51%3.2mm
and 44x44x6.0mm) with different boundary conditions are given in Table 5.1. The
corresponding buckling modes for the respective box-sections are indicated in Figs
5.4 and 5.5 respectively. Critical buckling loads for F-S boundary conditions (case b)
factor the Ps obtained with simple supports (case a) by 2.04 and 2.02 respectively, as
compared with analytical value of 2 (Galambos, 1998). For the F-F boundary
conditions (case c) the predicted critical loads, the factors are 4.07 and 4.04 as
compared with 4 (analytical, Galambos, 1889). Similarly for F-Free boundary
conditions, the predicted critical loads are 0.26 and 0.25 of the S-S case (c.f. 0.25,
Galambos, 1998). These results support the implied validity of the numerical model

under linear assumptions.

Critical loads for various column heights

Simply supported boundary conditions and application of concentrated load along the
centre line of upper steel covering plate remain constant in the FE models of various
column heights (of both box-section profiles in the range of 200mm to 2000mm)
simulating the experimental set-up (knife edge supports and concentric loading as
shown in Fig 5.2). Orthotropic material properties have been used to represent the
GRP material in all models. Eigenvalue buckling analyses, with a convergence norm?
of 1.0x10%, predict critical bucking (or failure) loads, under linear assumptions, for

51mm and 44mm box-sections (Tables 5.2 and 5.3 respectively).

! During analysis, the numerical solution is reffered to a criterion with which to measure its

A=A

convergence. It is assumed that the eigensolution has converged on iteration k when —
k

i

<norm

for all eigenvalues 4.

240



51%x51x3.2mm box-section

Linear elastic solutions for the column heights of 655mm (GRP height 600mm) and
above converged to the required norm (1.0E-06) giving the minimum eigenvalues as
the critical buckling loads (Table 5.2). The failure modes (Fig 5.6), of these
specimens, obtained as deformed shapes show global (Euler) buckling with maximum
lateral deflections at the mid-height. Therefore, columns with effective heights of
655mm and above are grouped as slender columns. The numerical results in Table 5.2
indicate the tendency of the buckling load to depend on column height. Initial
comparison of the outcomes of the linear analyses with the experimental and
theoretical studies (Table 5.10) indicate the adequacy of eigenvalue solution in
predicting critical buckling loads (to within 3%) in the Euler mode (e.g.,, Ler 2
655mm for the box sections assumed) and where no material damage (fibre or matrix

failure) is observed.

For shorter heights (Ler = 255 to 555mm), however, the linear solutions failed to
converge to the required norm. Furthermore, the deformed shapes do not show any
type of (global or local) buckling (Fig 5.6). The predicted loads are significantly
higher than the experimental and theoretical loads (Table 5.10). Notably, if the
required convergence norm is lowered (e.g. 1.0E-01), the predicted buckling loads
and deformed shapes are inconsistent. For example, the buckling load for the 555mm
column is higher than that of 455 and 355mm columns (Table 5.2) contrary to
expectations and the physics of the problem. The deformed shapes of the two
columns 255mm and 355mm (Fig. 5.8) show similar buckling-waves in opposite
walls, where opposite directions are expected. Failure to comply with the required
convergence norm suggests that the equivalent test specimens may have failed by

material degradation rather than buckling of the walls or the section as a whole.
44%x44%6.0mm box-sections

Linear analysis for column heights Leg=455mm and above (Table 5.3), converged to
the required norm, showing global buckling in the deformed shapes (Fig 5.7).
Buckling loads for 455mm and 555mm high columns significantly over predicted
compared with experimental loads (Table 5.11), while for heights 655mm and above
the predicted loads correlate well (maximum 9%). However, the analyses for the

short columns (Ler = 255 and 355mm), failed to converge and gave inconsistent

241



failure loads e.g., failure loads for 255mm and 355mm columns are 790kN and 471kN
respectively, greater than the maximum crushing strength of the section (461kN,
Table 4.5). It clearly implies that these profiles fail by material crushing as evidenced

by experimental observations.

It is concluded therefore, that linear elastic analysis is valid for the numerical
prediction of buckling loads for slender columns that exhibit purely global buckling
modes. The lateral deflections at the critical loads appear to be small enough to
validate the assumption of linear response. The predicted loads for both the square
box-section specimens are close to the Euler (theoretical) loads® and are higher than
the experimental loads with the latter reduced by imperfections and experimental
limitations. Notably, all the converged specimens showed global buckling, confirming
the slender column range established experimentally in § 4.3.1. Conversely, if the
solution does not converge, numerical predictions are not reliable, as incorrect
solutions are obtained. Furthermore, the analysis indicates the range of column
heights which are short enough not to show global buckling, suggesting the need for

other types of analyses for the safe prediction of failure loads.

5.4 NONLINEAR ELASTIC ANALYSIS

Theoretical fundamentals

Geometric nonlinearities arise from significant changes in the structural configuration
during loading e.g., in vertically loaded columns progressive eccentricity of the
applied load due to lateral bending. Furthermore, the presence of geometric
imperfections introduces lateral deflections at the onset of loading and the problem
then becomes a coupled load-deflection problem. Linear elastic (bifurcation) analysis
assumes no coupling between membrane (axial) and bending (lateral) deformations
and does not take into account either material limits or material nonlinearity (elastic
or elasto-plastic). For practical problems (real columns) linear analysis may
overestimate the actual collapse load, particularly in those cases where significant
imperfections exist and/or the material elastic limit would be exceeded prior to
achieving the critical load predicted as an eigenvalue (see §5.3 for example).

Therefore a nonlinear analysis is required to account for the changes in loading (or its

§ For comparison of numerical , theoretical and experimental results see Tables 5.10-11
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direction) with geometric variations. However, in a geometrically nonlinear analysis
the material properties assigned are elastic (for both steel plates (isotropic) and GRP
profiles (orthotropic)) with solutions reflecting only influences of geometric

parameters (e.g. imperfections in the current examples).

In the non-linear analysis (a load deflection problem) an iterative numerical procedure
successively approximates the equilibrium path (Riks 1979, Godoy et al 1995). The
required total load is applied in a number of increments (load steps). Within each
increment a linear prediction of the nonlinear response is made, and subsequent
iterative corrections are performed to restore equilibrium by the elimination of the
residual or ‘out of balance’ forces. The iterative corrections are referred to a
‘convergence’ criterion” which indicates to what extent an equilibrate state has been
achieved. In each load step, a number of iterations may be required to reach the
required level of convergence. The solution procedure is, therefore, commonly
referred to as an ‘incremental-iterative method. The Newton-Raphson algorithm has
been adopted in the present study. In this incremental iterative method, for each load
step, the initial prediction of the incremental solution is based on the ‘tangent
stiffness’ from which incremental deformations and their iterative corrections are
derived. Each iterative calculation is based upon the current tangent stiffness. This
involves the formulation (and factorisation) of the tangent stiffness matrix at the start
of each equilibrium iteration. Although the continual manipulation of the stiffness
matrix is expensive, the standard Newton-Raphson method generally converges
rapidly and is preferred for geometrically non-linear problems (Riks 1979, Crisfield
1981).

The “Total Lagrangian” formulation has been coupled with nonlinear solution
procedure. In this formulation the undeformed configuration (in each load step) is

taken as a reference configuration i.e. the limits of integration are carried out over the

** The convergence criteria, generally incorporated in the nonlinear anlayses are the “root mean square
residual norm” and the “displacement norm”. In the formar criterion, the norm is the square root of the
average of the squares of the residual forces and is dependent upon the units being used. The later
(displacement) norm is the sum of the squares of all the iterative displacements as a percentage of the
sum of the squares of the total displacement. It is the measure of how much the structure has ‘moved’

duringan iteration. Being a scaled norm it is not affected by the units.
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undeformed configuration. The formulation is numerically stable, convergent under
large load increments, valid for small strains and considered more appropriate in the
absence of large nodal rotations. In the non-linear control data set of the software,
Total Langrangian formulation has been opted, among the other available

formulations.

In the solution algorithm the applied load is modified during each increment by a load
factor for which the system equilibrium is restored to a required convergence norm, as
the displacements increase. At the critical load factor, the plot of load verses
displacement becomes horizontal, implying zero stiffness at failure. Buckling or
failure of the columns is not indicated as rupture in the numerical model. A zero or
negative pivot is interpreted as numeric instability by the gauss elimination algorithm
during the forward reduction procedure. At the critical load (or load factor) a zero or

negative pivot indicates that the equilibrium is lost.

In the incremental procedure two control methods are available. The incremental path
is usually initially controlled under a “constant load level” in which displacement
solutions are sought to each segmental load increment. At failure to converge, control
is switched to “arc length” in which the incremental load factor is modified to a value
consistent with predefined displacement limits. The latter is typically used in stability

analyses, especially where the buckled-deformation path is required (e.g. snap-

through analyses).

Irrespective of the method being used, incrementation for nonlinear analysis has been
specified by automatic incrementation using an incrementation control data set. In this
case the starting load factor, amount and number of further increments, and the total
load factor, are specified. In uniform incrementation, for each increment the starting
load factor will be multiplied by the specified load components and added to the
previous level. Termination may be specified in three ways: limiting the maximum
load factor, limiting the maximum number of applied increments, limiting the
maximum value of named freedom. Where more than one criterion is specified,
termination will occur on the first criteria to be satisfied. In addition, the solution will
be terminated if, at the beginning of an increment, more than two negative pivots are

encountered during the frontal elimination phase.
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Geometrically nonlinear results

51x51x3.2mm box-section

The failure loads predicted by the geometrical nonlinear analysis for various
simulated columns heights have been given in Table 5.4. The predicted loads for
columns heights 655 to 2055 (GRP heights 600 to 2000mm) are in good agreement
with the linear (< 2%), theoretical (< 5%) and experimental (< 4%) results (Table
5.10). The axial stress contours (Figs 5.9-5.11) show high compression stresses at the

ends under steel plates whilst stress distribution is uniform along the column height.

However the global buckling modes (observed in experimental study) have not been
detected in the deformed shapes of non-linear analyses (Figs 5.9-5.11). Instead failure
has been manifested by the loss of equilibrium, as indicated by a negative pivot in the
reduced stiffness matrix at the critical load. However, whilst the non-linear analysis is
capable of predicting the ultimate load carrying capacities in the slender columns, it is
unable to predict the buckling modes'™. In the absence of local buckling and predicted
loads near to the global analytical loads these column heights are categorised as

slender columns.

In the case of short columns (Ley = 555mm and less), local web buckling has been
predicted by the nonlinear analyses. The shortest model analysed comprises 200mm
GRP height. The deformed shapes and the axial-stress contours have been shown in
Fig 5.12. Three half sine waves are clearly visible in the 2- and 3-dimentional views
indicating the alternate amplitudes of the buckled waves. The central half sine wave is
fully developed in contrast to the end waves. From the geometry of the mesh, the
length of the central half sine wave is deduced to be 62.5mm. It appears that buckling
deformation starts at mid-length and propagates towards ends resulting in an odd
number of sine waves. Careful inspection of the deformed shapes reveals that the
web-interface has also undergone some buckling. The “solution” was achieved at a
high convergence norm (l.OXlO*"kN) giving a failure load of 274kN. The predicted
load is higher than the crushing strength of the cross-section i.e. 236kN (Table 5.10).
Experimentally, an average failure load of 121kN (Table 4.2) has been measured with

t It is shown in § 5.5 that global buckling mode has been predicted by introducing a small initial

imperfection in the geometry of the cross-section.
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failure accompanied by tearing through the box walls. Furthermore, the experimental
failure mode showed only a mid-height buckling wave (Plate 4.9). Apparently, the
steel shoes prevented the development of the end waves. Numerically, the contours of

axial stresses (Fig 5.12) along the column height range from 0.117 to —0.496kN/mm?.

The first stress plot shows the shear stress distribution just before the failure (+ve
pivot showing system still in equilibrium). At this stage the stress concentrations at
the peaks of the buckled half sine wave are within the ultimate allowable axial stress
of the material (0.385kN/mm?). The second plot shows increase in the intensity of
axial stresses at failure load when solution converges with negative pivot (loss of
equilibrium). High axial stresses at the predicted failure compared with the material
limits suggest the development of complex non-linear deformations leading to the

bursting and tearing failure.

The simulated column height (GRP = 300mm, Ly = 355mm), buckled locally with
five half sine waves (Fig 5.13). The three middle waves are fully developed while
those towards each end are under developed. This confirms the proposition that
buckling starts at mid-height and propagates towards the ends giving an odd number
of half sine waves. The three central developed half sine waves again indicate a wave
length of 62.5mm. Whilst the numerical predicted load of 211kN (Table 5.4) is lower
than the crushing strength of the section (235kN), the axial stresses at the wave crests
range from 0.113 to -0.482kN/mm’ with the latter exceeding the material limit
(O.385kN/mm2) implying material failure (not detected in the deformed shape) at the
failure load (second contour plot in Fig 5.13). Therefore, the poor convergence norm

at failure suggests that predicted load is unreliable and beyond simple stability

(buckling) failure.

For the 400mm column (Lex = 445mm), the nonlinear analysis converges to the
required norm and a failure load of 155kN (Table 5.4) is predicted. The deformed
shape (Fig 5.14) indicates seven half sine waves out of which middle five has been
developed leaving the extreme two under developed. At mid-height a wave length of
62.5mm is interpreted using the mesh geometry. A height of 440mm of GRP is
therefore theoretically required to obtain seven fully developed half sine waves

(without rotational restraint on the box-face), predicting the minimum local buckling
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load*. The axial stress distribution (contours of S,) suggests a range from 0.111 to
—0.473kN/mm?’ while the compressive stress is 0.385kN/mm?, confirming material
failure in physical laboratory tests. However the stress concentrations just before

failure are lower than the ultimate limit.

Similar behaviour has been predicted for the 500mm GRP column (L = 555mm).
Seven half sine waves have been predicted (Fig 5.15), five of which are developed.
The length of the half sine wave at centre measures 62.5mm suggesting that wave
length is constant over the column heights in short range. However, the nonlinear
solution converged to a predicted Pr of 150kN (Table 5.4), again higher than the
experimental load (Table 5.10). Axial stress contour plots just before and after the

failure have been included. The stresses at the failure load on the wave crests are

(0.082 to —0.444kN/mm’), indicating material rupture.

44x44%6.0mm box-section

Table 5.5 presents the ultimate failure loads predicted for the B44 profile at various
heights from 255 to 2055mm. Deformed shapes for these profiles are shown in Figs
5.16-5.19. All the models display identical failure modes i.e., no local or global
buckling is visible. Instead axial shortening with transverse strains are exhibited. This
is supported by the axial stress plots along the length showing uniform stress along
the whole heights (Figs 5.16-5.19). Ultimate loads for heights 555mm and above
(GRP height 500mm and above) are comparable with the experimental, linear and
theoretical results for slender columns (Table 5.11). These are heights for which the

solutions converged. No local buckling is indicated.

There are two short heights i.e., 255 and 355mm (GRP heights 200, 300m) for which
the predicted loads exceeded the crushing strength (477kN) of the material (Table
5.11). The solutions for these column heights did not converge. The stress contours
indicate the highest stress intensity at the central (support) line of steel plate
(simulating knife edge). Whilst the ultimate allowable compressive stress for 44mm

box-section profile is 0.523kN/mm? (Table 3.13), predicted stresses in GRP material

1t A similar study has been included in the next section (§ 5.3.4) to determine minimum local buckling

load.
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adjacent to the steel-plates, range from —0.7 to —0.99kN/mm? (Fig. 5.19), confirming

that this will be material failure at the ends in the experimental tests.

Weak convergence of the solution for shorter heights of both 51 and 44mm box-
section columns, leading to unreliable results, indicates that column behaviour cannot
be predicted assuming geometric nonlinearity without the inclusion of material
nonlinearity. Furthermore, the absence of the experimental end half sine waves is
attributed to the restrictions imposed by steel plates in very short columns. This
finding is in line with that of Mottram (2000), who recommended that for the
determination (or measurement) of the local buckling load (that must be uniform in a
range of short column lengths) of composite columns, the length of column should

accommodate at least four half sine-waves.

5.5 ELASTIC DEGRADING (FULLY NONLINEAR) MODEL

5.5.1 Theoretical fundamentals

The evidence emerging from the experimental failure modes (tearing and bursting of
the walls and interfaces) of the short columns suggested nonlinear behaviour of the
composite material at the failure loads. Large strains modify (reduce) the elastic
modulus in the longitudinal and transverse directions and the in-plane shear moduli.
Non-linear response of the pultruded GRP materials has been modelled as elastic
degrading of the material stiffness under large complex strains (Haj-Ali and Kilic,
2002). Referring, to the orthotropic nature of the GRP material an “Hoffman
Criterion” has been adopted for the prediction of the nonlinear behaviour. This is a
general failure criterion describing yield (linear limit) of anisotropic materials.
Several models, including the well known Von Mises yield criterion are special cases
of the Hoffman criterion. The criterion includes the stress hardening in longitudinal
and transverse directions of the material. Hardening in the Hoffman criterion has been
assumed to be proportional in tension and compression in a particular direction,

maintaining the form of the initial yield surface.

The nonlinearity of GRP material (in a particular direction) has been represented by
the change in slopes or degree of curvature of the stress strain plots. The “linear limit”
oL has been identified at the location where initial linearity in the stress-strain curve
diverges. Beyond the linear limit a non-linear behaviour has been assumed with a

reduced elastic modulus. Linear elastic and nonlinear degrading strains have been
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combined to define a reduced modulus (Fig. 5.20) with degrading strains defined as
those beyond the elastic limit. For example, assuming that the stress-strain response of

a material is beyond linear range is represented by a tri-linear stress-strain curve, the

degrading modulus, E; , (Fig. 5.20) can be represented by a pseudo modulus C;, where

E.
C,.=——L—-, i=123 5.1
(l_ﬂg (5.1a)

E

c,—O G,—GC G, —0
E,=——-%, Ej=—2*—L, E;; = 2 5.1b
81—8L 82—'81 a3 83‘- 2 ( )
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The limit of applicability of C;, C; and C; (for example) are defined by effective

nonlinear strain limits, Ly, L> and L3 with

c . c (o)
Ll =81 —8: =& "El ’ Lz =£2_82 =82—_E_2andL3 =83 —eg =83 _? (5'2)

The appropriate values of £, E;, €,,and g, for the GRP material have been derived

from the average of all the quadratic polynomials fitted to the experimentally obtained
stress-strain data from coupon tests. For example the average of the quadratic
polynomials fitted to the transverse tensile data (5 coupons) is shown in Fig 5.21
(Saribiyik, 2000). To this average quadratic polynomial, linear regression analysis
(with R? > 0.99) has been applied to fit a series of straight line-approximations such
that Fig 5.21 resembles Fig. 5.20. From this exercise, the “linear limit” of GRP
material in transverse tension is defined as 0.0243kN/mm? at a strain of 0.0025, and

Young’s modulus, E is 9.2kN/mm?. The values of E;, and g,are given in Table 5.6a

in addition to the pseudo-modulus C;and effective plastic strain limit L;.

Similarly the nonlinear idealisation of the average compression polynomial curves for
3.2mm and 6.0mm thick box-sections are presented in Fig 5.22(a,b). Corresponding
values of degrading modulus, pseudo modulus and limits of nonlinear strains (before
breaking) have been calculated using (5.1) and (5.2) and presented in Tables 5.6b and
5.6c¢.
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Notably, (as discussed in § 3.5), in the present numerical representation, transverse
compression properties of both the box-sections have been assumed to be equal to the
tensile properties of the 5lmm box-section as measured by Saribiyik (2000).
Furthermore, the tensile properties in the longitudinal direction for each box-section
have been taken equal to the compression properties measured for each corresponding
box-section (Chapter 3). The in-plane shear moduli in the orthotropic directions are

assumed to remain constant throughout the analysis®®.

The same incremental-iterative method (as employed in the geometrically nonlinear
analysis) with nonlinear control and Hoffman failure criterion has been used for the
full nonlinear analysis. Buckling or failure of the system is not manifested as rupture
in the numerical model. Instead, the load factor, plotted against the iteration number,
converges to a plateau and appropriate nonlinear strains are identified. Essentially, the
solution algorithm maintains numerical stability through arc-length control (i.e. the
displacements do not tend to infinity) as zones of the numerical model reaches and
attains their stress and nonlinear strains capacities. The converged load factor has
been used to calculate the ultimate load (i.e. load factor x applied load) with the
vectors of nonlinear strains used to identify critical component areas. The applied load
has been taken as unity and the converged load factor directly gives the ultimate

applied load.

Outcomes of materially nonlinear (Hoffman model) analysis

51x51%3.2mm box-sections

Non-linear (Hoffman) results have been presented in Table 5.7. Models with effective
heights 655mm and above (GRP heights 600mm and above) failed at loads similar to
the obtained from the geometrically nonlinear analysis indicating that the buckling
stresses in the columns are lower than the assumed yield stress of the GRP material
(Fig 5.22a). Also, the deformed shapes for these columns exhibited similar modes of
failure i.e., axial shortening and increases in transverse volumetric strains (Figs 5.9-
5.11) with no mid-height lateral deflections, indicative of global buckling. Notably,

for straight columns the nonlinear analysis does not indicate a buckled configuration.

§§ Although the experimental shear stress-strain curves (Figs 3.32-34) are nonlinear, the adopted

Hoffman failure criterion does not admit yielding or strain hardening of the in-plane shear stresses.
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Representing physical columns (not perfectly straight), small initial curvatures ‘Ao’
(0.5% of the GRP height) have been introduced in the non-linear Hoffman models. As
expected, the inclusion of initial curvature at the mid-height reduces the buckling
loads and the deformed shapes exhibit global buckling modes in the slender columns
(GRP lengths 600mm and above) as shown in Figs 5.23-5.24. These results
demonstrate numerically that the imperfection (disturbance) initially induces the onset
of global buckling i.e., bifurcation of the primary equilibrium path. In the absence of
imperfections, the straight column continues to follow its primary path, even if the
critical point is approached. The predicted loads for slender columns with initial
curvature (0.5% of the GRP height) correlate with the experimental results e.g., Table
5.10, implying that the GRP columns as tested have initial imperfections of the order
0.5% or less of their heights. Measured imperfections were of the order of 0.2-0.02%
of the column height (e.g. see chapter 4, § 4.2.1 and Fig 4.2). The columns heights of
655mm (GRP height 600mm) and above are confirmed as slender columns exhibiting

global buckling.

The nonlinear solutions for the short columns 255 and 355mm (GRP heights of 200
and 300mm) terminated with a low convergence norm of 1.0E-01 (Table 5.7).
However, whilst the predicted loads are unreliable, the deformed shapes indicated
local buckling (Figs 5.25-5.26) of the webs in a sine mode, characteristic of web-
buckling in thin walled structures. The shortest modelled length i.e., 255mm (200mm
of GRP) exhibited only three half sine waves with indications that these results should
not be used for the prediction of the local buckling load as at least four half sine
waves are recommended (Mottram 2000). However the 355mm high column buckled
locally with 5 half sine waves. Buckled modes in Figs 5.25-5.26 suggest a sine wave

of 62.5mm interpreted from the mesh size' .

To investigate the effect of the number of fully developed sine waves of a locally
buckled column, on its ultimate load, the height of the column (GRP) has been
increased in small intervals of 25mm, from 350 to 475mm and reanalysed. The
buckled shapes of these models are shown in Fig. 5.27. Interestingly, nonlinear

Hoffman analyses predicted similar ultimate loads (134 to 139kN) for all the models

*** Each 100mm height of GRP is divided into 8 elements, giving element height as 12.5mm. The

zoomed half sine wave in Fig 5.25 spans 5 elements, indicating a length of 62.5mm.
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having GRP lengths ranging from 350mm to 500mm (Lerr = 405 to 555mm). This
infers the important result that the numerically predicted buckling load is constant for
a range of short column heights exhibiting local buckling. From these numerical
results, the straight short column load Py is around 135kN for the 51mm box section.
This compares with an experimentally average value of approximately 120kN (§ 4.5).
A second important observation made from Fig 5.27 (and also from Figs 5.12-5.15) is
that a constant wave length of 62.5mm is interpolated (using the mesh size) in various
column heights among the short column range (local buckling only)'*!. This
numerically predicted length of half-sine wave can be compared with the theoretically
calculated length of 64.4mm (§ 4.4.2). Buckling starts from the mid-height and
proceeds towards the ends. If the column height is only sufficient to accommodate an
integer (odd) number of sine waves, the outer half waves are under developed.
Conversely if the column height is increased, either the extremities of the column
remain laterally undeformed (Lgre= 375mm) or the number of sine waves is increased
by 2 (one at each end) and these new peaks may not be fully developed (e.g. Lgrp=
425mm in Fig 5.27). Finally, at the onset of web buckling, strains that are
combinations of elastic and nonlinear strains are developed. Elastic strains are
uniformly distributed along the height of the column whilst nonlinear strains are only
developed at the crests of the buckling wave (and locally along the stress singularity
along the line of load application of the load platens). The vectors of elastic and
nonlinear strains have been separately plotted on the two adjacent webs (half the

cross-section) of the column in Fig 5.28.

The ultimate load predicted for straight columns is generally higher than the
experimental loads, given the absence of imperfections in the former and their
influence on the latter. Whilst the predicted P is over predicted using a straight
(perfect) simulation by approximately 10 — 15%, geometric imperfections have been
included to provide an improved prediction for Py for the SImm box-section and an
indication of the nature of the imperfections and their simulation. The variations of
cross-sectional dimensions, including the outer widths of the GRP sections, have been

measured during the experimental studies. For example, for a 51mm box-section GRP

1t Measurements of the half sine wave lengths were not possible because short columns failed by

tearing of webs and the cross-sections into long strips.
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specimen of height 400mm, the measured outer dimensions along the height have
been plotted in Fig 5.29. The imperfections have been evaluated by subtracting the
mean dimension from the measured widths. In introducing the imperfections in the

fully nonlinear models, four options have been implemented:

Option 1 Wall-thickness has been kept constant, distributing the cross-section with
respect to the longitudinal axis of the profile at four heights i.e. 100, 200, 300 and

400mm, with the load remaining concentric.

Option 2 Moving the outer faces only, varying the wall thicknesses and keeping
internal dimension constant. The central longitudinal axis passing through all the
sections is straight and loading is concentric. However, stresses (and strains) vary

along the height depending on the cross-sectional areas.

Option 3 Wall-thickness kept constant, moving the cross-sections as a whole (varying
the internal dimensions). The centres of the cross-sections are eccentric, generally,

with respect to the line of application of the load.

Option 4 A known load eccentricity, constant wall-thickness and an averaged
constant cross-section. Five values of load eccentricities; 0.25, 0.5, 1.0, 1.5, and

2.0mm have been used.

Results for option-4 and combinations of other options with option-4 have been
presented in Table 5.8. Results listed for load eccentricity equal to zero correspond to
the respective options 1, 2, and 3. Option-1 without load eccentricity caused the
minimum reduction in the load as the load is concentric and imperfections divided
symmetrically about the side walls. However, the stiffness further reduced with load
eccentricity. Combining options 3 and 4 exhibited the most adverse effects on load
capacity as explicit load eccentricity was combined with out of straightness along the
column height. For example, the predicted failure load for a 400mm GRP specimen
with a load eccentricity of 2mm and an out of straightness on average 0.5mm
(£0.25mm) reduced from 139kN (perfect column) to 117kN. This latter value is in
agreement to the average experimental results of 117kN (Table 5.10). The outcomes
combined with the accurate simulations of the behaviour of the long columns
establishes the ability of the nonlinear numerical analysis to predict buckling loads for
all the practical heights of the composite columns provided, an average estimate of the

geometric imperfection is available. Furthermore, imperfections may be reasonably
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introduced by assuming constant cross section geometry but that is translated laterally
as a function of the height of the column. It is also evident that load eccentricity by
itself is not significantly onerous on the failure load of a buckled member, but can be
highly degrading when coupled with section geometry imperfections. This is clear
when considering the case of a load eccentricity of 2.0mm in the absence of other
geometry imperfections (130kN) and section imperfection only (135kN) with the load

and section imperfections combined (117kN).

An initial curvature of 0.5% of the column height has been introduced to the models
for column heights representing 555 to 2055mm in the fully nonlinear analysis. The
predicted loads for imperfect columns (Table 5.10) indicate that the effect of initial
curvature reduces with column height. The predicted loads for imperfect columns of
heights 805 and 1055mm are much lower than experimental loads indicating small

initial imperfections in the physical columns (o < 0.2% measured).

44%44%6.0mm box-sections

Results of the Hoffman nonlinear analysis for thicker box-section (Table 5.9) failed to
converge for shorter heights (255 and 355mm) predicting ultimate loads that are lower
than the crushing strength of the material but are far greater than the experimental
loads. Predicted loads for the taller columns (Legr = 455 to 2055mm) are close to the
linear outcomes (Table 5.11) suggesting that columns in this height range are slender.
Ultimate failure loads for the slender imperfect (0.5% of GRP height) columns
correlate well with the experimental loads (2.7 -3.4%) with global buckling modes
(Fig. 5.30). For column heights of 455mm to 805mm (GRP length 400 to 750mm) no
local deformations were indicated. Given the nominal dimensions of the column walls

(44mm wide by 6mm thick) these results are to be expected.

5.6 EFFECTS OF INITIAL CURVATURE

GRP profiles used as columns have been manufactured by pultrusion and possess
dimensional imperfections. Although the imperfections are within the tolerances
stated by the design guides, these imperfections reduce the load bearing capacities of
the composite columns. Outer dimensions and wall thickness vary from section to
section along the length of the profile. Being practically not feasible to separate out-
of-straightness and wall thickness variations in assessing P in §5.5, these parameters

were considered in a semi-adhoc manner. Of practical interest, however, is an initial
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curvature (out of straightness). An assumed average imperfection has been assumed in
the form of an approximate half sign wave of the order of the full column height and
maximum amplitude at the mid height. In the numerical (FE) simulation, the initial
curvature has been defined by three points (at mid and end points) lying on a sine
curve, with the mid-point controlling the magnitude (A). The initial curvature (A) has
been taken as percentage of the height of the GRP column in the FE model. The
effects on the buckling stability for initial curvatures of 0.5, 1, 2 and 3% of GRP

height (Fig. 5.32) have been simulated using the fully non-linear finite element model.

The numerical predictions for composite columns having initial curvatures have been
plotted in Fig 5.33 for Slmm box and Fig 5.34 for 44mm box-section. The results
indicate initially that the loss of buckling stiffness is proportional to the initial
curvature and inversely proportional to the column height. Furthermore, the 44mm
box-section is significantly less sensitive to this type of imperfection even though the

failure loads at higher column heights are comparable with the 51mm box.

5.7 EFFECT OF IN-PLANE SHEAR

GRP box sections have different in-plane shear modulus in the longitudinal and
transverse directions. The longitudinal shear modulus G,, is parallel to the fibres
whilst transverse moduli Gy, and G, are normal to the fibre direction. Experimentally
measured values of shear moduli, for the 51mm box-section in the directions parallel
and normal to the fibres, are Gy, = 2.85kN/mm’ and G, = Gy, = 3.95kN/mm?
respectively (Tables 3.8-3.11).

The effect of longitudinal in-plane shear modulus is investigated by varying Gy, from
2N/mm? to SkN/mm? with a uniform interval of 1kN/mm? whilst transverse shear
moduli are kept constant at Gy, = Gy, = 3.95kN/mm?®. The results (Fig 5.35a) indicate
that the shear effects are not significant in the slender columns (< 4%). In short

models however, a loss of 6% is predicted if the G,y is reduced from 5 to 2kN/mm?,

The loss in buckling resistance by varying transverse shear moduli G, = G, from 2 to
5kN/mm? with a constant G, of 2.85kN/mm? for various column heights are plotted
in Fig 5.35b. Again the effects are not significant for the slender column. However,
for short columns the effects are considerable (10-12%). Furthermore, the transverse

shear effects are higher in magnitude than the longitudinal shear effects.
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5.8 NUMERICAL DESIGN CURVE

A universal design curve based on the numerical failure loads, for the two box-section
columns has been developed using the procedure described in Chapter 4 (§ 4.5). The
experimental loads have been replaced by fully nonlinear FEA results (Tables 5.10-
5.11) and slenderness ratios ‘A’ recalculated using (2.19) and measured E; and
moment of inertia ‘I’ of the modelled cross-sections***. The minimum short column
load ‘P.’ has been decided from the failure loads for 400mm GRP high columns (Ley
= 455mm), for which FEA solutions converged (51mm box-section) exhibiting local
buckling with more than four half sine-waves. The interaction coefficient ‘c’ for each
section, to account for imperfections like the material non-homogeneity and out of
straightness (§ 2.2.2.3), has been established graphically by plotting the buckling
strength ratios ‘g’ and ‘s’ (2.5), using numerical (non-linear FEA), P; and Euler loads
(Tables 5.10-5.11). The non-dimensional load factors &; for all column heights have
been calculated using (2.24). The failure loads corresponding to initial imperfections

of 0.5 and 1.0% have been used for the development of the numerical design curve.

The P, for 400mm high GRP columns having 0.5% curvature are 130 and 210kN for
51 and 44mm box-sections respectively. From the FEA results for A = 0.5%, the
interaction coefficients (Fig 5.36(a) have been established as ¢ = 0.95 for both
sections. For the 400mm high GRP columns having imperfections A = 1.0%, P are
120 and 210kN and interactions coefficients as 0.85 and 0.90 (Fig 5.36(b)), for the 51
and 44mm box-sections respectively. The numerical design curves for the real
(imperfect) columns having imperfection equivalent to typically assumed initial
central curvatures of 0.5 and 1.0% of the GRP heights, are given in Fig 5.37. The
experimental curve (Fig 4.19) has also been include for comparison and limiting ‘A’

to 2 to enlarge the area of interest.

Fig 5.37 shows that by increasing imperfections, Py and column slenderness A
reduces while loss of resistance increases due to interaction and the range of column

heights subjected to interaction buckling. Design loads represented by the “imperfect

! Moments of inertia ‘I’ of the two box-section have been calculated using the sectional dimensions

(51x51x3.2 and 44x44x6.0mm) and differ from those measured for average sections in § 4.4.

However, measured properties (E, . and G,;) have been used for the calculation of ‘A’ and Euler loads.
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curves” with a 1.0% initial curvature are conservative as the experimental values are
above these curves. The design loads are comparable to the experimental outcomes.
Notably, the initial imperfection of 1.0% does not necessarily mean an initial mid-
height curvature of 1.0% of the GRP height in the physical columns. Rather, this
imperfection is equivalent to any combination of out of straightness, cross-sectional
variations, wall thickness variations or load eccentricities. Therefore the curves for the
two box-sections corresponding to the initial imperfections of 1.0%, presented in Fig.
5.38, have been recommended as the numerically developed design curves for the safe

design columns made from GRP box-section profiles under investigation.

These results establish that inclusion of imperfections (of appropriate intensity) is
necessary for the development of a safe design curve (Fig. 5.38). Imperfections,
typically in the form of initial curvature, can be included in the FE models of the
composite columns to simulate the physical columns. Furthermore, fully nonlinear FE
analyses are required to obtain a minimum P, to draw a safe and representative design
curve. The accurate estimation of an interaction coefficient by plotting FEA failure

loads is vital as it has a substantial effect on the load factor k;, for the calculation of

design loads.

5.9 EFFECTS OF HOLES

Models have been developed with circular holes in one, two and all four side-walls of
the box-section (Fig 5.39). Only slender columns i.e., 1000, 1500 and 2000mm high
GRP columns (Legr 1055, 1555 and 2055) have been considered to investigate the
effects of introducing openings for services or connections for example. The holes
have been typically located at the columns mid-height expecting maximum lateral
deflections and axial stresses at the buckling loads. The size of the holes are specified
in terms of the d/w ratios where‘d’ is the diameter of the hole and ‘w’ is outer width
of the cross-sections. The diameters of the holes in most FE models correspond to the
hole-sizes actually employed in the experimental study. For example d/w ratios of 0.3,
0.5 and 0.7 correspond to correspond to 15, 25 and 35mm diameter holes in S1mm
box-sections. Similarly d/w ratios of 0.32, 0.45 and 0.57 correspond to 14, 20 and
25mm diameter holes made in the 44mm box-sections. The spacing (interval) between
the holes is 20d for 1, 2, and 4 holes. The columns with 8 holes represent models

having 4 holes, one in each side, but spacing between the holes is reduced to halfi.e.,
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10d. Therefore columns with 8 holes have double the number of holes as compared
with similar height columns with 4 holes. Columns have been analysed using simple
supports and concentric loading and assuming no imperfections. Recognising the
heights of the columns as slender, linear elastic (eigenvalue buckling) analysis has
been performed. FEA solutions converged and all the models exhibited global

buckling modes at failure.

The failure loads for the columns of three GRP heights 1000, 1500, and 2055mm have
presented in Tables 5.13-14 and are plotted for various hole-sizes in Figs. 5.40-43.
Failure loads have been reduced with the introduction of holes. Generally the
reduction is directly proportional to the size of holes and inversely proportional to the
heights of the columns. The loss of resistance for 51mm box-sections (Fig 5.40), with
1-4 holes for small holes (d/w < 0.3) is minimal (< 5%), but increase to15% for larger
holes (d/w = 0.7). By reducing the spacing to 10d (8 holes), buckling loads decreased
by more than 28%.

Similar trends of loss in buckling stiffness with holes have been exhibited by the
44mm box-sections (Figs 5.42-5.43). However the reduction in the failure loads is
less when compared to the 5Imm box-section. This infers that thicker walls (webs)
are less affected by the perforations. For smaller holes (d/w < 0.32) loss of stiffness is
less than 5% and increases to 11% for bigger holes for 1000mm high columns with 1-

4 holes. For columns with 8 holes (spacing =10d) the loss of stiffness is 17.5%.

Comparing the loss of stiffness due to the spacing between the holes, especially in the
thin walled section, it is recommended that interval between the holes should be

limited to 20d.

Experimental loads for columns with similar holes have also been added to the Figs
5.40-5.43, for comparison. Experimental loads are lower than predicted (Figs 5.40,
5.42) with a greater loss of buckling load (Figs 5.42, 5.43). This is because: firstly,
FEA loads are for perfect column overestimating the failure loads for physical
columns; and secondly, the failure loads used for the calculation loss, for columns
with loads for perfect columns are also higher than the experimental loads of columns

without holes.

The axial stresses around the holes (Figs. 5.44-5.46) are well within the ultimate

compressive stresses, however the stress zones further spread in the case of bigger
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holes. The stress distributions are symmetric outer side of the holes indicating

uniform compression.

5.10 CONCLUSIONS

L.

Linear elastic (Eigenvalue) analysis has successfully been used for the
prediction of critical buckling loads of slender columns. In slender columns
failure is due to bifurcation of the primary equilibrium path into a secondary
(stable or unstable) path. Linear analysis is capable of predicting this
bifurcation point and the critical load. At critical loads, slender columns
deform into half sine wave (global buckling) of length equal to the effective
length of the column. Buckling occurs within elastic limits without any failure
or damage of the material (column recovers its shape if the load is removed).
51mm and 44mm box-sections of the type analysed (and tested in chapter 4)
are classified as slender for heights 655mm and 555mm, respectively,
assuming simple end restraints. The predicted loads have been confirmed by
both analytical (Euler including shear effects) and experimentally measured
loads. The applicability and reliability of the linear analysis using actual

orthotropic properties has been established for slender columns.

For short columns, not exhibiting global buckling modes, linear buckling
analyses are inappropriate. Reduction in the convergence norm to force
“convergence”, leads to the prediction of inaccurate and unreliable failure
loads. If the solution fails to converge, a failure mode different to buckling
may be implied (e.g. material crushing in short columns). In this case a
nonlinear analysis should be undertaken. For the Slmm and 44mm box-
sections tested, column heights of less than 455mm are included in this
category.

Geometrically non-linear (Total Lagrangian) analysis has predicted local
buckling in the S1mm box-section short columns. The side-walls (webs) show
inward and outward deformations (sine-waves) along the length of columns. It
is concluded that wave like formation starts at the mid-height and propagates
towards ends giving rise to an odd number of half sine waves. The number of
half sine waves in local buckling depends upon the height of the GRP

specimen. If the column is high enough to accommodate an integer number of
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waves, all waves are fully developed. Otherwise, the waves towards the
supports are of reduced amplitude. The length of half sine-waves remained
approximately constant at 62.5mm for various heights of short columns
compared with an analytical value of 64.4mm. However, an experimental

value is not available.

. The reliability of the numerical results obtained from a geometrically
nonlinear analysis depends on the numerical convergence of the solution.
Simulation models of 200 and 300mm GRP columns failed to converge and
predicted incorrect and unreasonable buckling loads. For column heights of
400mm and above, the analyses converged providing good estimates of failure
loads. The stress contours plotted on the deformed shape provided an
indication of the failure mode. At the wave crests, predicted stresses exceeded
the physical material limits, implying that in physical tests bursting and tearing
across the section would have occurred. The most developed half sine wave at
the mid-height of the column initiated failure by bursting of the specimen in

the experimental observations.

. Short columns failure loads, considering material nonlinearity, are lower than
the geometrically nonlinear analyses. Plots of the stress contours just before
the failure reveal that stresses (and strains) are within the limit of the defined
nonlinearity. The strains (and hence the stresses) are high due to reduced
elastic moduli beyond the elastic limit. It is after reaching the failure loads,
strains (and hence stresses) increase rapidly and exceed the ultimate limits,
implying bursting and tearing of the section. Nonlinear strains are only seen at
the crests of local buckling waves and at column end under the steel plate
subjected to high stresses. Conversely plots of the elastic strains show a
uniform distribution along the length of the column. It is further concluded
that nonlinear analyses in the short column range are needed to establish the
local buckling mode, number of half sine waves, length of the half sine wave,
and most importantly to predict P, for the construction of design curve. The
half sine wave length predicted for the SImm box-section (62.5mm) is
comparable with the theoretically calculated value (64.4mm in § 4.4.2). Half
sine wave length for 44mm box-section is not available as no local buckling

was predicted for this section. P, for the 51 and 44mm box-sections are
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predicted as 135 and 210kN respectively in comparison to the 120 and 220kN
established experimentally. The difference between the values can be
attributed to the imperfections involved both in geometry and testing

configurations.

Critical buckling loads for the slender columns (of both sections) predicted
from fully non-linear analyses are comparable to the linear elastic predictions.
In slender columns the strains (and hence the stresses) were below the ultimate
limits of the material and sections did not rupture. Furthermore, the failure
loads for elastic and nonlinear analyses are similar because the material is not
highly nonlinear. Infact, a pseudo type nonlinearity with minimal stress
hardening has been assumed in the material properties. No nonlinear strains
have been observed in the case of slender columns. Rather, elastic strains are

uniformly distributed along the heights of slender columns.

However, the fully-nonlinear (elastic degrading) predictions for the straight
columns are higher than the experimental results. Introduction of the load
eccentricity and initial curvature at mid-height as the sources of imperfection
decreased the failure loads. The effect of initial curvature is more pronounced
than load eccentricity. The failure loads considering eccentricity and curvature
combined, are lower than the experimental loads. This demonstrates that
accurate predictions using nonlinear analysis (particularly) for short columns,

are possible provided that imperfections can be accurately estimated.

Deformed geometries obtained by nonlinear analyses (both elastic and
nonlinear) for the slender perfect columns (of both box-sections) fail to
indicate global buckling. However, the buckling mode shapes are recovered by
introducing imperfections in the form of initial curvature. This establishes that
global buckling is initially induced by the presence of geometric

imperfections.

. Buckling resistance is sensitive to initial curvature (as a source of
imperfection) and inversely proportional to the column height and the
thickness of the section walls (webs). For the box-sections analysed, an initial
curvature of 0.5% of GRP length can reduce critical buckling loads by 15% in

short to 10% in long columns for 51mm box-section, and 12% in short and 7%
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in long columns for the 44mm box-section. When combined, eccentricity and
initial curvature induce substantial reductions in the load carrying capacities of

the composite columns.

. The effects of in-plane shear stiffness are negligible in the slender columns of
both box-sections. However, the effect of transverse shear modulus is
significant particularly in short columns. For example, the buckling stiffness
of 455mm high column can be reduced by 15% if the transverse shear

modulus is decreased by 50%.

. A numerical “FEA design curve” has been plotted using predicted P, and
ultimate failure loads for various heights of the both box-section perfect and
imperfect columns. The ultimate failure loads for columns assumed as perfect
overestimate the ultimate failure loads and not represent the real columns.
Perfect columns do not exhibit interaction of modes, observed in the physical
testing for a range of column heights between short and slender columns. FEA
design curve corresponding to the imperfect columns can predict safe buckling
loads. The predicted FEA loads using fully non-linear analyses have
successfully been used for the development of the design curve yielding
design loads for all the practical heights of both the 51 and 44mm box-section
columns. Imperfections in the FEA models can typically be included in the
form of initial curvature representing accumulation of all kinds of physical
imperfections. Interaction coefficient ‘c’ representing the interaction between
the isolated buckling modes and reducing the column stiffness, mainly
depends upon length of the column, minimum column load P, and the cross-
section. Choosing a suitable single interaction constant can aggregate design
curves for various box-section profiles. Recommended design curves to the

tested box-sections are given in Fig.5.38.

. Circular holes can be formed (drilled) in the sidewalls (webs) of the GRP box-
section profiles without loosing considerable loss of stiffness (loss < 5%), if
the size of the holes is kept small (d/w < 0.3). However, for bigger holes the
loss in the stiffness can reduce considerably (up to 25%). An interval (spacing)
between the consecutive holes, equal to 20 times the diameter of the hole, has

been recommended limiting the maximum loss of buckling stiffness lower
than 15%.
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5.11 RECOMMENDATIONS RELATED TO THE USE OF FEA
AND THE INTERPRETATION OF NUMERICAL SOLUTIONS.

The finite element method has been successively used for the prediction of ultimate
failure loads of composite columns of various heights. The predicted loads, when
compared with experimentally measured and analytical calculated failure loads, have
shown a reasonable correlation. The predicted loads have also been used for the
development of FEA design curves for the GRP two box-sections. For the efficient
performance of the FEA procedures and to obtain accurate results, the following

recommendations are made.

Appropriate finite element models, representing the true geometrical configuration of
the structure (concentric columns in this study) are developed. Boundary conditions
i.e., external supports applied to the FE modes should simulate the restraints applied
by the actual physical supports to the structures. The expected behaviour of the
physical structure under the applied load can provide the guidance in providing extra
restraints and the location and type of load in the FE model. The type, order, shape
and degrees of freedom for finite elements used for discretisation of the structure
should be decided considering the nature of deformations exhibited by the physical
structure. The type of analyses may also depend upon the required results. For
example, linear analysis is needed if the deformations are small and do not alter the
boundary or loading conditions during the analysis. Or eigenvalue buckling analysis is
performed when linear stability formulations are applicable. Similarly a full nonlinear
analysis is performed when both geometry and material undergo changes as the load
increases. Preliminary analysis with coarse mesh may be performed to establish the
proper working of the analyses and resulting behaviour of the structures. Once the
finite elements modelling the structure, boundary and loading conditions and type of
analysis is established, mesh may be refined to increase the accuracy of the

predictions.

After preparing the numerical models of vertically oriented, simply supported, and
concentrically loaded straight GRP columns, FEA analyses are performed for the

predictions of failure loads. For this, the following rules are recommended:

A linear elastic (eigenvalue analysis) should be performed initially to infer the nature

of the failure mode of a column. If the deformed shape indicates Euler (global)
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buckling, the column height is grouped as slender and the eigenvalue load taken as the
critical buckling load. If the solution fails to converge or converges without indicating

any failure mode, a nonlinear may be performed to find out the type of buckling.

If a geometrically nonlinear analysis indicates local web-buckling and the number of
developed half sine waves is more than four and the peak stresses and peak stresses
are lower than the material strength, then the predicted loads should be taken as the
ultimate failure loads for the corresponding heights. However, the quality of the
prediction of these loads may further be improved by performing a fully nonlinear
analysis, especially if the material exhibits any nonlinearity at higher stresses. A fully
non-linear analysis is essential if the peak stresses exceed the material capacity. Fully
nonlinear analyses may also improve the prediction of failure loads for slender
columns, but the difference decreases with the height of the column. To simulate the
real columns, initial imperfections can be introduced in the form of wall thickness
variation, load eccentricity, out of straightness or a combination of these
imperfections. These rules are also applicable for the prediction of failure loads of the

columns with circular holes in the webs.

FEA design curve developed using the FEA predicted loads for perfect columns,
overestimates the design loads. To simulate the buckling of real columns,
imperfection in the form of initial curvature has been included. The intensity of the
initial imperfections may be decided by the ultimate loads when compared with the
experimental results. The FEA design curve for the imperfect columns successfully
indicates local, interaction and global buckling characteristic of the actual column
behaviour for different heights. This establish that Design curve for the two box-
section profiles may be developed using fully nonlinear numerical analyses of
imperfect columns. The procedure can be used to develop design curves for other
GRP box-sections, if the accurate mechanical properties and initial imperfections can

be estimated.

264



v2b V25
Y2 V32 ¥31 2
T V28 v3a 23
V21 ¥22
(c)
viB | v17
Nig 16
= L
21 1
ZE | V14
(b)
113 V5
v 7| vi? vii A
% ve via v3
vi v2
(a)

V=Y |

=
e

N
e

{\'
W=y

(d)

Fig 5.1 A typical 3-dimensional finite element model of composite column fixed
with steel plates at both ends; (a) lower steel plate presented by 12 volumes, (b)
GRP thin wall section presented by 8 volumes, (c) upper steel plate presented by
12 volumes and (d) three dimensional configuration of the model.
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Fig 5.28, (a) Deformed shape of 400mm GRP, 51mm box section showing local

buckling, (b) distribution of elastic and (c) nonlinear strains.
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Fig 5.33 Effects of initial curvature on the critical buckling loads (SImm box).
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Fig 5.34 Effects of initial curvature on the critical buckling loads (44mm box).
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EFFECT OF LOGITUDINAL SHEAR MODULUS
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Fig 5.35 Effects of in-plane shear modulus on the ultimate failure loads.
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Fig. 5.36 Estimation of interaction coefficient using FEA predictions.
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COMPARISON OF NUMERICAL AND EXPERIMENTAL DESIGN CURVES
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Fig 5.40 Effects of holes on the buckling loads in SImm box-section columns.
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Table 5.1 Effect of boundary conditions on the critical buckling loads.

Column size and

Boundary conditions

length Simple-simple | Fix-simple Fix-fix Fix-free
(51x51x3.2mm) 59.3 121 241 15.2
1000mm
(44x44x6.0mm) 64.1 130 259 16.2
1000mm
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Table 5.2 Linear elastic (eigenvalue) analysis results of 51x51x3.2mm section.

Length (mm) Eigenvalue Load Failure Mode

255 1898 Solution not converged (no buckling)
355 171 Solution not converged (no buckling)
455 166 Solution not converged (no buckling)
555 192 Solution not converged (no buckling)
655 143 Global buckling

805 98.4 Global buckling

1055 59.3 Global buckling

1555 28.1 Global buckling
2055 16.2 Global buckling

Table 5.3 Linear elastic (eigenvalue) analysis results of 44x44x6.0 section.

Length (mm) Eigenvalue Load Failure Mode
255 790%¢ Solution not converged
355 471 Solution not converged
455 308 Global buckling
555 216 Global buckling
655 159 Global buckling
805 108 Global buckling
1055 64.1 Global buckling
1555 30.0 Global buckling
2055 17.3 Global buckling

§88 The values in italics are non-converged solutions.
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Table 5.4 Geometrically non-linear analysis results of 51x51x3.2mm section.

Length (mm) | Failure Load Failure Mode

255 2747 Local buckling with 3 half sine waves
355 211 Local buckling with 5 half sine waves
455 155 Local buckling with 5 half sine waves
555 150 Local buckling with 7 half sine waves
655 143 Axial shortening, no buckling
805 97.0 Axial shortening, no buckling
1055 58.6 Axial shortening, no buckling
1555 279 Axial shortening, no buckling

2055 16.2 Axial shortening, no buckling

Table 5.5 Geometrically non-linear analysis results of 44x44x6.0mm section.

Length (mm) | Failure Load Failure Mode
255 774" Axial shortening, no buckling
355 465 Axial shortening, no buckling
455 305 Axial shortening, no buckling
555 216 Axial shortening, no buckling
655 158 Axial shortening, no buckling
805 107 Axial shortening, no buckling
1055 62.5 Axial shortening, no buckling
1555 29.5 Axial shortening, no buckling
2055 17.2 Axial shortening, no buckling

sHeE

The values in italics are non-converged results,
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Table 5.6a Elastic degraded gradients for transverse tension test (S1mm and

44mm box-sections).

Degraded Total strain ‘e’ Stress/Strain Effective
modulus E, gradient, C nonlinear strain
(kN/mm?) (pseudo modulus) limit, L
(kN/mm?)
7.2 0.0035 27.8 0.00026
5.8 0.0045 144 0.00066
4.5 0.0053 8.4 0.00109

Table 5.6b Elastic degrated gradients for longitudinal compression test (SImm

box-section).

Degraded Total strain ‘€’ Stress/Strain Effective
modulus E4 gradient, C nonlinear strain
(kN/mmz) (pseudo modulus) limit, L
(kN/mm?)
27.5 0.009 370 0.000148
27.0 0.011 296 0.00033
25.9 0.0138 203 0.00068

Table 5.6¢ Elastic degraded gradients for longitudinal compression test (44mm

box-section).

Degraded Total strain ‘¢’ Stress/Strain Effective
modulus E4 gradient, C nonlinear strain
(kN/mm’) (pseudo modulus) limit, L
(kN/mm?)
33.0 0.01 7648 0.000013
327 0.013 2289 0.0001
32.6 0.0159 2151 0.001
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Table 5.7 Fully Nonlinear (Hoffman analysis results of 51x51x3.2mm section.

Length Failure load Failure Modes / comments
(mm) (Straight column)
(kN)
255 188 Local buckling with 3 half sine waves.
355 157 Local buckling with 5 half sine waves.
455 139 Local buckling with 5 half sine waves.
555 137 Local buckling with 7 half sine waves.
655 134 Global buckling with initial imperfections.
805 96.2 Global buckling with initial imperfections.
1055 58.5 Global buckling with initial imperfections.
1555 27.9 Global buckling with initial imperfections.
2055 16.2 Global buckling with initial imperfections.

Table 5.8 Initial imperfections effecting the P, of 400mm high 51mm section.

Load P, for options (kN)
eccentricity
(mm) 4 1+4 2+4 3+4
0 139 138 135 135
0.25 134 134 132 134
0.5 138 137 131 130
1.0 136 135 126 125
1.5 134 133 124 122
2.0 130 129 124 117

tttt The values in italics are non-converged solutions.
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Table 5.9 Nonlinear (Hoffman) analysis results of 44x44x6.0 section.

Lesr Failure load Failure modes / comments
(mm) | (Straight column)
(kN)
255 453+ Axial shortening, no buckling
355 446 Axial shortening, no buckling
455 305 Axial shortening, no buckling in straight columns.
Global buckling with initial imperfections.
555 214 Axial shortening, no buckling in straight columns.
Global buckling with initial imperfections.
655 158 Axial shortening, no buckling in straight columns.
Global buckling with initial imperfections.
805 105 Axial shortening, no buckling in straight columns.
Global buckling with initial imperfections.
1055 62.1 Axial shortening, no buckling in straight columns.
Global buckling with initial imperfections.
1555 29.2 Axial shortening, no buckling in straight columns.
Global buckling with initial imperfections.
2055 17.1 Axial shortening, no buckling in straight columns.
Global buckling with initial imperfections.

111! The values in italics are non-converged solutions.
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Table 5.10 Failure loads (comparison) for 51x51x3.2 mm box-section columns.

Effective Numerical (kN) Theoretical (kN) Experi-
Length Linear | Nonlinear Nonlinear Euler & Strongwell mental 3%
(mm) (perfect) | (geometric) (geometric+material) EDC (crushing strength) (kN)
(perfect) Perfect Imperfect (m::l:::ng E;, E;,
A05% A% effects) Measured | FibreForce
255 189 274 188 185 134 570 120 66.1 121
355 171 211 157 151 123 381 (236) (127) 118
455 166 155 139 131 123 264 117
555 192 150 137 129 101 191 108
655 143 143 134 129 91.2 144 257 146 -
805 98.4 97.0 96.2 91 69.23 99.2 196 112 97.1
1055 59.3 58.6 585 51.1 46.2 59.8 138 78.6 59.1
1555 28.1 27.9 279 25.1 234 28.3 83.4 475 27.6
2055 16.2 16.2 16.2 15.0 14.1 16.4 58.0 33.1 15.7

$58 Average of three tested columns

ooooo

The values in italics are non-converged solutions.
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Table 5.11 Failure loads (comparison) for 44x44x6.0 mm box-section columns.

Effective Numerical (kN) Theoretical (kN) Experi-
Length Linear | Nonlinear Nonlinear Euler & Strongwell mental """
(mm) (perfect) | (geometric) (geometric+material) EDC (crushing strength) (kN)
(perfect) Perfect Imperfect (ln:li:::ng Er. E[.
AT05% [Aci0% | effects) Measured | FibreForce
255 790°++ 774 453 350 220 696 381 204 220
355 471 465 446 350 220 442 477) (189) 218
455 308 305 305 215 210 298 464 248 209
555 216 216 214 190 137 211 358 192 195
655 159 158 158 144 128 157 289 155 -
805 108 107 105 96.3 90.6 107 221 118 98.4
1055 64.1 62.5 62.1 57.4 56.1 64 155 83.3 59.3
1555 30.0 29.5 29.2 27.9 26.5 30.0 93.9 50.3 27.3
2055 17.3 17.2 17.1 16.3 14.6 17.3 65.4 35 15.7

11 Average of three tested columns.

#3332 The values in italics are non-converged solutions.
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Table 5.12 Effects of holes on the buckling loads of 51mm box-section profiles.

d/'w Lgre P (kN)
(mm) "'NoHoles | 1Hole | 2Holes | 4Holes | 8Holes
0.3 1000 59.3 579 56.5 55.2 54
1500 28.1 275 272 26.8 26.2
2000 16.2 16.0 15.7 15.4 15.3
0.5 1000 59.3 56.1 54.3 522 49.8
1500 28.1 27.1 26.6 25.7 24.6
2000 16.2 15.8 154 149 14.4
0.7 1000 59.3 53.7 St 48.5 42.6
1500 28.1 26.4 25.6 23.9 22.1
2000 16.2 154 14.9 13.9 12.9

Table 5.13 Effects of holes on the buckling loads of 44mm box-section profiles.

d/w Lgre P (kN)
(mm) No Holes | 1 Hole 2 Holes 4 Holes 8 Holes
0.32 1000 64.1 62.8 62.6 61.6 60.6
1500 30.0 29.5 29.3 28.9 28.5
2000 173 17.0 16.8 16.7 16.3
0.46 1000 64.1 61.8 61.0 59.5 57.4
1500 30.0 29.1 28.6 27.8 27.1
2000 173 16.8 16.6 16.1 15.7
0.57 1000 64.1 60.5 59.1 56.8 52.9
1500 30.0 285 275 26.5 25.1
2000 173 16.6 16.0 15.0 14.4
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CHAPTER 6

CONCLUSIONS AND FUTURE SUGGESTIONS

6.1 GENERAL OVERVIEW

Buckling is the most common failure mode associated with compression members
having thin walled cross-sections. This has been further emphasised for the GRP
structural profiles comprising thin composite walls and lower stiffness constants. The
design guidance presently available mainly consists of classical solutions for steel
profiles (plates and columns) or empirical equations derived from limited
experimental studies on individual profiles conducted by manufacturers. The need to
establish effective methods of analysis for the prediction of safe buckling loads for
these profiles has been recognised. Potential advantages of using finite element
analyses for the prediction of ultimate failure/buckling loads, of GPR box-section
columns, for the development of appropriate design curves have been investigated in
this study. The numerical predictions have been validated by comparison with

experimental evidence.

Two GRP box-section profiles having cross-sections 51x51x3.2 and 44x44x6.0mm
have been investigated to determine the buckling and the ultimate failure loads for
various column heights. The investigations comprise experimental and numerical
studies. In the experimental phasp, three specimen of each height of the two box-
sections have been tested to measure the failure loads. The failure modes and material
behaviour at failure have been observed. In the numerical phase, finite element
models of simply supported and axially compressed composite columns have been
analysed for the ultimate loads and the respective failure modes. Both linear and
nonlinear analyses have been considered to investigate the failure behaviour,
witnessed in the experimental observations. Numerical analyses have been used for
parametric studies to establish the effects on the ultimate loads of various factors e.g.,
different boundary conditions, material orthotropy, load eccentricities, initial

curvature and making holes through the walls of the profiles.

For use in the numerical analysis, the material properties of the GRP profiles have

been determined. The micromechanics approach, in conjugation with the classical
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lamination theory, has been used to calculate the theoretical properties of the GRP
material (Ex, Ey, vy and Gyy) from the properties of the constituent materials and their
configuration. In-plane shear properties have been measured experimentally, testing
the material coupons obtained from the two profiles. A simple AFPB fixture for the
testing of shear coupons have been proposed, validated using FE analysis, fabricated
and subsequently used for the measurement of shear properties. To meet dimensional

constraints, shorter coupon and AFPB fixture have been proposed, validated and used

for the determination of shear properties.

The investigations undertaken in this study can be divided into following thematic

sections:

e Determination of the material properties using analytical and experimental

methods.

o Experimental testing of simply supported and axially loaded GRP specimens

(columns) of various heights, for the measurement of the buckling/ultimate

loads.

e Numerical prediction of the ultimate loads and failure modes using finite

element analyses.

¢ Development of a universal design equation for the prediction of safe buckling

loads for the two box-section profiles.

6.2 CONCLUSION

6.2.1 MATERIAL PROPERTIES

Material properties of the two GRP box-sections profiles, in the longitudinal and
transverse directions, have been established using analytical and experimental
methods. Analytically, four orthotropic material constants (E;, E,, Gy, and v,,) have
been estimated using micromechanics and classical lamination theory (CLT).
Experimentally, coupons (specimens) extracted from the sides of GRP box-sections
have been tested in the laboratory to measure these properties. Estimated (analytical)
properties has been used in the (FE) analyses of standard and short shear coupons

(Chapter 3) whilst measured (experimental) outcomes are used in the numerical
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representations of GRP columns for the prediction of buckling loads and modes

(Chapter 5).

In-plane shear properties have been measured using V-notched beam method (ASTM-
D5379M-93). Shear coupons of standard length (76mm) have been extracted, from
the walls of the box-sections, in the longitudinal direction. A short shear coupon
(40mm) has been proposed for extraction from the webs in the width-wise
(transverse) direction (one of the box-sections is only 44mm wide). The potential
performance of the short shear coupon has been investigated numerically using finite
element (FE) method. Representative FE models of standard ASTM and short shear
coupons have been developed. Numerical representation of the standard ASTM
coupon has been validated by the FE analyses enforcing a selection criterion, set as
the lowest divergent strain field across the centre of the coupon. Numerically
validated ASTM shear coupon provides a bench mark against which the performance
of the short coupon has been measured. An insight into the performance of the short
coupon has been gained by investigating the effects of geometric parameters including
width, thickness, notch-depth and interval between the loading points. Addition of the
aluminium tabs in the FE models of short transverse coupons, to avoid local failure
under the loading bars and to achieve a true shear failure at the centre has also been
validated for adequate performance. FE models of the proposed AFPB (asymmetric
four point bending) test fixtures for the ASTM and short coupons have been
developed and analysed prior to fabrication. FE presentations of the shear coupons
(ASTM and short) without and with AFPB test fixtures have been used to establish

and validate the performance of these fixtures under the applied loads.

In-plane shear properties have been measured experimentally using ASTM and short
shear coupons extracted from both box-profiles. Short coupons with the main
reinforcement perpendicular to the notch tips gave consistent and similar results to the
ASTM outcomes, validating the performance of short shear coupon for the
measurement of in-plane shear properties. Aluminium tabs have been bonded to the

short shear coupons with main reinforcement parallel to the notch tips.
The following principal conclusions have been drawn:

e Material properties of the composite GRP materials can be effectively

predicted theoretically, from the properties of the constituent materials and the

309



constitutive information (manufacturer supplied), using principals of
micromechanics and classical lamination theory (CLT). Material properties of
the two GRP box-sections, to be used in the numerical analyses, have been

theoretically predicted.

Experimentally, material coupons (specimens) extracted from the composite
walls of the profiles can be physically tested to confirm these properties and to

validate the theoretical procedure.

Finite element analyses have been successfully used to investigate the
performance and behaviour of material coupons when subjected to shear
loading. FE models of both ASTM standard and short shear coupons without
and with test fixtures have been analysed to check their performance under the
applied loads. The performance of the coupons has been judged by the quality

of shear strain and stress distributions across the central section (between the

notches).

Surface models using plane stress elements can represent thick prismatic
coupon and fixture components. This is validated through the comparison of

the FEA results of 2D and 3D coupon models

It has been established numerically that the schematic loading of the ASTM
and short coupons produce no bending moment at the centre. The loads
applied by the upper loading bars and the reactions in the lower loading bars

produce equal and opposite couples cancelling each other at the centre.

Numerically predicted shear force resultant (and hence the shear stress) across
the central test section of the ASTM coupon, loaded in the AFPB fixture, is
identical to the theoretical calculations using the schematic shear force
diagram given in the ASTM standard, validating the adequacy of the fixture.
However, in the case of short shear coupon, the numerical shear force resultant
is 7.5% less than the theoretical value obtained using shear force diagram.
This decrease in the applied shear force has been attributed to the slight
bending of the top loading beam in the short AFPB fixture, changing the force
distribution across the contact area between loading bars and coupon, from
uniform to triangular. Resultants, however, remained equal and opposite and

no bending effects at central section are induced. This implies that the
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resultant shear force applied at the central test section of a different (non-
standard) coupon, loaded by an AFPB fixture, can be predicted using finite
element analyses. This maintains the validity and capability of the short
coupon and fixture to be used for measuring the in-plane shear properties in
directions where material for the standard ASTM coupon is not available due

to dimensional constraints.

Most importantly, the AFPB shear fixture reduced the high compressive
stresses under the load application points. For example, in the case of the
ASTM coupon subjected to standard loading, the strain intensity under the
inner loading point is 1.8 times the uniform shear strain at centre and can
cause premature failure of the coupon under the point loads. This strain
intensity reduces to half the value of the uniform central shear stress, when
ASTM coupon is loaded using AFPB shear fixture, ensuring coupon failure at
central test section at the ultimate shear stress. This demonstrates the adequate

performance of the shear coupon and test fixture.

Finite element analyses have been successively used for the parametric study
of the behaviour of the coupons. FE analyses of short coupon (when assumed
as isotropic) loaded in fixture established that 90° notches produced the lowest
deviation of the numerical shear strain distribution across the central test
section from the uniform theoretical. Furthermore, a notch depth of 20 to 25%
of the coupon depth produces the numerical shear stress nearest to the

theoretical value.

Material orthotropy, causing strain concentrations at notch roots, have been
recognised as the most adverse parameter effecting the magnitude and quality
of the shear strain distribution at the central section of the coupon. The effect
is more pronounced in transverse coupons. According to the present numerical
outcomes, an orthotropy of 1:3 causes 13% and 44% higher strain
concentrations at notch roots than at centre, in the longitudinal and transverse
coupons respectively. Whereas an orthotropy of 1:6 produces 60 and 100%
higher strain concentrations at notch roots in the longitudinal and transverse

coupons.
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e Separation between the loading points has been predicted not to effect the

shear strain distribution.

e The short shear coupon, 40x10mm rectangular with 90° v-notches at mid-
length of the long sides, notch depth of 2.5mm (25% of overall depth) has
been recommended in the light of numerical and experimental results

presented.

6.2.2 EXPERIMENTAL INVESTIGATIONS

Columns of various heights ranging from 200 to 2000mm, extracted from the two
GRP box-section profiles have been tested for ultimate load capacities and failure
modes. Three specimens for each column height have been tested. All the specimens
are simply supported and concentrically loaded in a vertically aligned testing rig.
Specimen ends have been squared and the cross-sectional dimensions measured to

establish the imperfections, with the sections held in place by steel shoes and aligned

vertically using survey techniques.

Experimental data has been recorded at regular intervals (every 2 seconds) during a
specified test time (10 minutes) by a data-logger, giving applied load, axial
shortening, 3 lateral deflections (mid and quarter heights), axial strains (on four sides
at mid height) and the ultimate failure loads. Columns exhibiting global buckling e.g.,
1000mm and above for 5lmm box-section and 750mm and above for 44mm box-
section profiles are categorised as slender columns. Global buckling occurred without
material failure and the lateral deflections were restricted to 1.0% of the column
height. The Southwell method has been used to establish the critical buckling loads
for the slender columns without imperfections. The slender columns have been
retested after rotating about the longitudinal axis of symmetry and lengthwise by
180°. Short columns of 51mm box-section, however, exhibited negligible transverse
deflections, before an abrupt and irreversible failure, eliminating any possibility of
retesting the specimens or the use of Southwell method. The short 44mm box-section
columns failed by material degradation at the both ends under the high compressive
stresses at the ultimate loads. The maximum short column loads ‘P’ for the two box-

sections have been established from the experimental ultimate loads.

The experimental outcomes have been initially compared with the theoretically

predicted results using classical approaches and the design guidance from Eurocomp
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design code and the manufacture’s design manuals. A unified design curve for the two

box-sections has been produced using experimental and analytical results.

Circular holes have been drilled through the walls of the box-section columns and

retested to establish the effects of perforations on the critical buckling loads of slender
columns. Three sizes of holes with d/w ratios of 0.3, 0.5 and 0.7 for 51mm and 0.32,

0.46 and 0.57 for the 44mm box-sections have been considered.

The main conclusions of the experimental study are:

Using the cross-sectional measurements (outer widths and wall thickness) at
the two column ends, mean cross-sections have been established. The
variations in the measurements are within +0.25mm from the mean
dimensions, i.e., with in the standard tolerance (ASTM 3917-94). Mean cross-
section has been used for the calculation of cross-sectional area and moment

of area in the subsequent calculations of stresses, strains and analytical critical

buckling loads.

Ultimate failure/buckling loads of composite columns depend upon their
heights, material properties and the cross-section dimensions. These factors
have been combined into one characteristic parameter ‘A’, the slenderness
ratio. As the latter two factors are constant for a particular box-section profile,

the ultimate loads and failure modes depend upon column heights.

The 51mm box-section columns of GRP height 1000mm and above buckled
globally and categorised as slender columns. The 44mm box-section columns
of GRP height 750 and above exhibited global buckling and grouped as
slender columns. Slender columns buckled in a half sine wave with maximum
deflections at mid sections. The measured lateral deflection at mid and quarter

heights confirmed the deflected shape as half sine wave of the order of the

effective column length.

Slender columns buckled without material failure and regained their straight
configuration on unloading establishing that global buckling occurred in the
elastic range of material. Specimens retained there stiffness after failure whilst
the lateral deflections increased continuously without further increase in
applied load. However, the columns unloaded after lateral deflection reached

1% of the GRP length, to avoid material damage. The stress-strain plots
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confirm the linear elastic buckling of the slender columns. The Southwell

method adequately predicted the Euler buckling load for slender columns.

Short 51mm box-section columns failed by tearing of the joints and breaking
of webs. Deformed geometries indicated that local buckling was initiated
initially at mid height followed by excessive deformations leading to a
catastrophic tearing failure of the specimen. The phenomenon has been
reported previously in the literature and is dependent on the ratio of web
thickness to its width. The failure loads for the short specimens range from
110 to 123kN with a difference of -8.2 to +2.1% from the implied P, whilst
these loads are nearly half of the crushing strength (242kN) of this section.
However, experimental loads are comparable to the analytical predictions
(126kN) calculated using EDC design equation (taking safety factor 1 for
comparison). Closed form expressions using linear elastic theory predict a
range of critical buckling loads from 80.3 to 252kN for simply supported and
fixed long edges. Experimental loads fall with in this range, establishing
intermediate torsional stiffness of interface between elastic and fully rigid for
the pultruded profiles. It further demonstrates that EDC equation accounts for
the interface stiffness. Experimental failure loads for short column further

demonstrate that Py is independent of the column heights in the short range.

Short 44mm box-section columns did not exhibited local buckling or tearing
of the webs, but failed by material crushing at the ends. Stress-strain plots
confirmed that material behaved linearly prior to the failure followed by
nonlinearity at failure. The failure loads for these specimens range from 202 to
296kN with a difference of -8.1 to 2.9% from the implied P, of 220kN.

However, the ultimate failure loads are nearly half (44 to 49%) of the crushing

strength of the material (461kN).

Mode interaction has been observed in the box columns of intermediate
heights of both the sections. The 750mm high 5Imm box-section columns
initially exhibited global buckling with lateral deflections at mid-height, but
later failed by tearing of material under local compression on the concave side,
demonstrating interaction of global and local modes exhibited by the slender
and short columns of 51mm box-sections. Similarly 500mm high 44mm box-

section columns initially developed global buckling, but later failed by
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material degradation at the ends, establishing interaction of the two modes

exhibited by slender and short 44mm box-section columns,

e The loss in the buckling resistance is minimal (< 10.0%) for smaller circular
holes (d/w < 0.3), provided the interval between holes is not less than 20 times

the diameter of the holes. For bigger holes (d/w = 0.7) and an inter hole

spacing of 10 times the diameter, a loss of 30% have been measured.

6.2.3 NUMERICAL INVESTIGATIONS

Ultimate loads and failure modes for the columns of two box-section profiles have
been predicted numerically using the finite element method (FEA). The method
comprises the formation of models simulating the columns physically tested in the
experimental study, and analysing them under the action of applied loads and
boundary conditions. Both linear and nonlinear analyses have been included to
establish the effects of geometrical and material nonlinearities on the failure modes.
Physical imperfections affecting the ultimate loads e.g., variations in the outer and
cross-sectional dimensions, out-of-straightness and eccentric loading have been
considered. Assumed initial mid-height curvatures (percentage of GRP heights) have
been included into the models of imperfect columns to account for these
imperfections. The fully nonlinear numerical results for imperfect columns (minimum
load capabilities) have been used to derive a design curve with an appropriate value of
interaction coefficient accounting for the loss of stiffness in the composite columns
due to mode interaction and physical imperfections. Separate models of the columns
having circular holes of different sizes in the walls have been prepared and analysed

for ultimate failure loads. The main outcomes of the numerical investigations are:

e 3-Dimensional volume elements with three translational degrees of freedom
have been successfully used to model the orthotropic composite walls of the
square cross-sections and the isotropic steel plates at the column ends. All the
models are simply supported (knife edges) and axially loaded (along the
middle line of the plate).

e Linear elastic (eigenvalue buckling) analyses adequately predicted the
buckling loads of slender columns. The failure modes, in the form of a half
sine wave of the order of effective column heights, exhibited by the linear

analyses confirmed the global buckling in slender columns. The range of the
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column heights for which the linear analysis exhibited global buckling, has
been categorised as the slender columns. Column heights of 655mm and above
in the case of 51mm square box-section and 555mm and above in the casc of

44mm box-sections have been grouped as slender columns, and short

otherwise.

Buckling loads and the global modes predicted using linear elastic analyscs,
confirm that global buckling of composite columns occurs due to bifurcation
at the critical loads, and can be solved by linear elastic theory (cigenvalucs).
The predicted loads are close to the Euler buckling and expcrimental loads,
establishing that not only the physical imperfections in the composite columns
are small, but also the deformations (axial and lateral deflections) are small at
critical loads, and the columns behave linearly. Furthermore, stress contours
drawn along the length of the columns, confirm that the stresses at critical

loads are within the elastic limits of the material.

However, in the case of shorter columns, the linear elastic solutions failed to
converge without indicating buckling modes. Only axial shortening and
volumetric strains are exhibited. This suggests that buckling modes other than

global buckling or material failure occurs beyond the elastic limit of the
analysis.

Geometrically nonlinear analyses predicted the local buckling modes in short
51mm box-section columns. The number of half sine waves depends upon the
GRP column height. The FE solution for the shortest column having a GRP
height of 200mm failed to converge, exhibiting three half sine waves. The
failure load predicted by the non-converged solution, more than twice the
experimental load, is incorrect. It is concluded therefore that FE solutions
which fail to converge are not reliable. It also supports the observation made
by Mottram (2000) that for measuring the short column load the minimum
height of the column should be long enough to accommodate at Icast four half
sine waves. The stress contours plotted along the column heights show that
although the stress concentrations at the peaks of the initiated buckled wavcs,
is less than the elastic limit, stresses immediately after the onset of local

buckling increase abruptly and exceed the elastic limits (causing rupture of
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material). The need for a fully nonlinear analysis including the material

nonlinearity is implied by these results.

No local buckling has been predicted in the short 44mm box-sections modcls
whilst the geometrically non-linear solutions failed to converge, giving
unreliable failure loads. Stress contours indicate a uniform stress distribution
along the entire height indicating only axial and no lateral stresses. The
absence of the local buckling has been attributed to low b/t and the strong

interface restricting the local deformations.

For slender columns, the geometrically nonlinear analyses failed to exhibit the
expected failure modes i.e., global buckling in perfect columns. It infers that
nonlinear solutions for the slender columns converge (maintaining
equilibrium) beyond the bifurcation point, if no disturbance or impcrfections
enhance the lateral deformation. Inclusion of initial curvatures in the nonlincar

analyses, confirmed global buckling mode in slender columns.

Fully nonlinear (geometrically and materially) analyses have been uscd to
provide buckling solutions to perfect and imperfect composite columns. For
perfect columns, the results (failure loads and modes) are similar to the
geometrically nonlinear findings i.e., global buckling not indicated in the
slender columns whilst local buckling exhibited in the short S1mm columns.
For shorter column heights (200 and 300mm GRP) the solutions failed to
converge giving incorrect and unreliable loads. The converged solutions for

the short and slender columns are higher than the experimental results.

Imperfections in the form of assumed initial curvatures has been introduced to
simulate the numerical models with the real (tested in Chapter 4) columns. The
converged solutions of imperfect columns exhibited representative buckling
modes and the predicted loads which are closer to the experimental results.
Imperfect nonlinear solutions have confirmed slender heights of 655mm and

above for 51mm and 555mm and above for 44mm box-sections.

Fully nonlinear solutions for short 51mm box-section imperfect columns, 400-
500mm GRP heights (converged solutions), established that the maximum
short column load remains constant for a range of short column heights

exhibiting four or more half sine waves in the buckled shape. This maximum
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short column load is taken to be the P;. It is shown that the Py, is sensitive to
geometric imperfections. Furthermore, the length of half sine wave remained
constant at 62.5mm irrespective of the column height between 400 and
500mm. These important conclusions are in line with the previous findings of
studies on pultruded columns reported in the literature (Mottram 2000,
Barbero and Turk 2000). No local buckling has been predicted in the 44mm
box-section short columns inferring material (crushing) failure. Experimental

observations confirmed material failure of the short 44mm box-section

columns.

A general rule for applying FE analyses for the prediction of ultimate (design)
loads has been outlined. Initially, a linear elastic analysis should be performed
indicating the buckling mode and behaviour (deformed shape) of the modecl. If
the solution converges and a definite buckling mode is exhibited, the failure
load is taken as the buckling load for the column. If the linear solution fails to
converge exhibiting local web buckling with underdeveloped or fewer than
four sine waves, a nonlinear solution procedure is recommended as follows,
An imperfection of reasonable amplitude i.e., 0.5 to 1% should be included to
specify an imperfect column and a geometrically nonlinear analysis should be
performed. If the predicted stresses are less than the ultimate strength of the
material, then the load can be the failure load. Conversely, if the predicted
stresses are higher than ultimate strength of the material, a full nonlincar

(Hoffman failure criterion) analysis should be performed.

The results from the fully nonlinear FE analyses clearly demonstrate that
failure loads depends upon the column height (L), longitudinal stiffness E,,,
load eccentricity and initial curvature. Of these, the first two parameters arc
included in establishing column slenderess ratio ‘A’, and the imperfections
are accounted for by the interaction coefficient ‘c’. Whilst, the numerical
solutions predicted only two isolated buckling modes, global and local,
exhibited by the slender and short columns, the predicted loads for the
intermediate column heights (A=0.5-1.5) are lower than theoretical loads for
isolated modes. This loss of buckling resistance has been attributed to the
mode interaction (not indicated by the deformed shapes) and is represented by

interactions coefficient ‘c’. The interaction coefficient is established by
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plotting numerical data, for certain imperfection amplitude, normalised by the
Pr and Py, into interaction plots and best fitted with the empirical interaction
curves. The value of ‘¢’ also accounts for the effects of slenderness because all
the data for various slenderness values is represented by a single value of ‘¢’

corresponding to a given imperfection amplitude.

A numerical design curve has been developed using failure loads predicted
from fully nonlinear analyses of the imperfect columns. A single curve
represents short and slender columns depending on the slenderness ratio. The
values of ¢ for 0.5% imperfection are ¢ = 0.95 for both the box-sections. For
the imperfection amplitude of 1.0% of column height, ‘c’ values have been
estimated as 0.85 and 0.9 for 51mm and 44mm box-sections respectively. The
proposed design curve has been verified by including experimental results

located above the curve.

Perforations (holes) reduce the buckling resistance of the slender columns, but
the loss is minimal (< 5%) provided the size of the holes is small (d/w < 0.3)
and interval between the holes not less than twenty times the diameter of the
holes. Buckling stiffness is further reduced by increasing the holes size and

reducing the interval between the holes. It is recommended to limit the holcs

size to d/w = 0.6.

6.3 SUGGESTIOS FOR FUTURE WORK

The following recommendations for the future work, based on the experimental

and numerical result, are suggested:

Standard pultruded box-sections with larger dimensions should be investigated
for the ultimate loads and column behaviour using the fully non-lincar

imperfect numerical models proposed in this study.

Numerical simulation can predict the critical height of the box-scction
columns exhibiting maximum loss of stiffness due to mode interaction.
Additional specimens in the range of A= 0.5 to 1.5 should be tested
experimentally to achieve a fully representative value of interaction coefficient

[P ]

c.

Influences of various parameters on ¢ should be investigated.
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Consider new definitions for slendemncss ratio A, which correspond to

observed mode of failure,

Buckling or failure capacities of the pultrudcd scctions verses the ultimate

material strengths should be investigated.

Present study considered mainly simply supported boundary conditions in the
experimental and numcrical investigations. Other types of supports (c.g.,
fixed-fixed) should be included to simulate the columns behaviour in non-

idealised structural scenarios.
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