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Abstract

Minimization of propeller cavitation noise is best achieved through accurate and reliable pre-
dictions at an early design stage. The effect of cavitation and particularly the dynamics of cav-
itation on URN is rather complex to understand and the current state of the art does not offer a
plausible cavitation noise prediction method which can be implemented within the propeller
design spiral. Within this framework, the aim of the present thesis is to enhance the understand-
ing of the propeller cavitation noise by conducting detailed systematic cavitation tunnel tests to
investigate the main propeller design parameters and operating conditions and to scrutinize their
impact on propeller Radiated Noise Levels (RNL). The resulting experimental data are also
utilized to compile a database that enables engineering a novel noise prediction method to be
developed and used at preliminary design stage, using standard series approach.

A holistic approach to cavitation noise has been adopted through experimental investigations
into oblique flow effects on propeller noise and by conducting full scale and model scale noise
experiments of a research vessel. These have been used to evaluate the capabilities of the

adopted standard series based experimental prediction methodology.

The accumulated knowledge based on prior experiments has been utilized to design standard
series propeller test campaign. Experiments using members of Meridian standard propeller se-
ries were tested both in an open water condition and also behind systematically varied wake
inflows. Initially, a small subset of the Meridian standard propeller series was chosen, with
loading conditions derived from in-service, ocean-going vessels. The resulting measured noise
data were extrapolated to full-scale based on the powering information of these vessels to com-
pare with average shipping noise data. Finally, a larger subset of the propeller series was tested
systematically to compile a database of propeller cavitation noise and for the development of

noise prediction software.
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1.1 Introduction

Chapter 1 Introduction

1.1 Introduction

Chapter 1 is dedicated to setting the scene for this thesis and to provide an introduction. The
chapter initially states the motivations to conduct research on prediction of propeller cavitation
noise. Then, aims of this research are revealed together with the necessary objectives that need
to be measured in order to achieve the stated aim. Following this, a general layout of the thesis

Is provided together with a summary of the chapter.

1.2 Motivation

Over the past half century, the volume of commercial shipping has experienced an increasing
trend due to increasing ship size, service speed and number of ships operating (Hildebrand,
2009). This trend has resulted in significant elevation of various emissions by the seagoing
vessels. In order to ensure sustainable shipping, various anthropogenic impacts have been tar-
geted by the rising environmental awareness. Whilst initial focus of international organizations
was on greenhouse gas output of the maritime transportation, recently underwater noise created
by commercial ships has been targeted due to its potential impact on the marine fauna. Although
there is no solid evidence on how commercial shipping imposes a threat to marine fauna, am-
bient noise measurements indicate a potentially dangerous tendency (Frisk, 2012). The conse-
quences of this trend within the world fleet have been observed to affect the low frequency
range of ambient noise levels (10-500 Hz) which has been identified by Wenz, (1962) as the
dominant frequency range of shipping noise sources. Measurements made in the Pacific Ocean
indicate a 3 dB increase per decade (or 10 dB per half century) in terms of measured background
noise levels as summarized in Figure 1-1 by Frisk based on the compiled historical ambient
noise data (Chapman & Price, 2011; McDonald et al., 2008; Hildebrand, 2005).



1.2 Motivation

100

90 — 8 Shipping Noise
80 || ONatural/Biological Noise |

70
60
50

40
30
20

Ambient Noise (dB re 1 microPascal**2/Hz)

1940 1950 1960 1970 1980 1990 2000 2010

Year

Figure 1-1 Historical ambient noise levels in 25-50 Hz indicating the increasing trend of shipping con-
tribution (Reproduced from Frisk, 2012).

Notwithstanding this fact alone the low frequency region of the ambient noise levels inherently
has a low absorption rate due to the medium through which they propagate (Fisher & Simmons,
1977). This consequently means that a single vessel may pollute large masses of water with

underwater noise in the low frequency range.

Thus, combination of the aforementioned two properties of Underwater Radiated Noise (URN),
namely low attenuation and increasing ambient noise levels at low frequency, does impose a
potential threat to marine fauna when it is also borne in mind that the low frequency region is
utilized by marine mammals for various fundamental living activities. Hence, it may be con-
cluded that underwater noise pollution in the low frequency range may shadow the survivability
of marine mammals by affecting their behaviours or causing distress (White & Pace, 2010;
Richardson et al., 2013). The potential threat to marine species can be better understood if it is
considered that naturally occurring ambient noise levels are thought to have remained the same
for tens of centuries. Nevertheless, total ambient noise is now starting to see a significant rise
within time periods of decades. Thus, it may be concluded that it is nearly impossible for such
living organisms to adapt to such a violent change in their environment with a swift response.
Therefore, if no regulatory precaution is taken to limit shipping noise, exposing them to such
an abrupt change in the ambient noise levels may disorient marine mammals or disrupt their
communication, leading to behavioural changes of these mammals or local extinction (Figure
1-2).
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Originating from these concerns international organizations and committees, such as the Inter-
national Maritime Organization (IMO) and the Marine Environmental Protection Committee
(MEPC) (IMO, 2011, 2013) have made calls and initiated activities to study the URN from
commercial shipping to help in the development of potential guidelines and regulations. More-
over, the EU has established the Marine Strategy Framework Directive (MSFD) to investigate
and implement programmes of measures which are designed to achieve or maintain ‘Good En-

vironmental Status’ in the marine environment (Van der Graaf et al., 2012).

In complementing the European R&D activities on the subject of URN from commercial ship-
ping, several collaborative European R&D projects were completed recently (e.g. SILENV,
AQUO, SONIC) under the 7" Framework Programme (FP) of EU. Amongst them, SONIC
(Suppression Of Noise Induced by Cavitation) has brought together 12 world-leading hydrody-
namic institutes, noise experts, propeller designers, universities, European shipyards and ma-
rine biologists to develop guidelines to assist in regulating the underwater noise emitted by
shipping (SONIC, 2012). In complementing the above activities Joint Research Programme
(JRP)10, which was called “Noise Measurements”, was established within the Hydro Testing
Alliance-Network of Excellence (HTA-NoE) and which successfully completed its mission in
2011 (AMT 2011). The members of JRP10 decided to form a working group to investigate
underwater radiated noise issues further. This working group, which was initially named “Noise
Working Group” (NWG), later has become “Noise Community of Practice (Noise CoP)” of
Hydro Testing Forum (HTF) as a longer continuation of the HTA-NoOE, which was phased out
by then (AMT 2013).

Shipping noise originates from various sources on board a vessel. At low ship speeds, on-board
machinery noise is dominant until propeller cavitation occurs, which then dominates the overall
radiated noise spectrum (Ross, 1976). Above inception, well-developed cavitation may occur
on the propeller, contributing a significant increase in noise levels that may occur across the
entire frequency band of the URN spectrum (Arveson & Vendittis, 2000; Abrahamsen, 2012);
such cavitation noise tends to overshadow the other contributing sources and dominates the

overall URN spectra (Fischer & Brown, 2005). Whilst it is not possible to avoid cavitation at
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service speed conditions for efficient commercial ships, various full-scale URN measurements
have shown room for improvement. Among the same type of vessels, full-scale measurements
have shown up to 20 dB difference in the measured noise levels (McKenna et. Al., 2012; MCR,
2011; Wales & Heitmeyer, 2002). This may suggest that current practices in ship design can be
further scrutinized in terms of the URN characteristics of the ships and hence may lead to min-
imizing the impact on ever-increasing ambient noise levels in the world’s oceans (Renilson,
2009; Chekab et al., 2013).

In order to address the above concerns, a reliable and accurate prediction of URN at an early
design stage of ships is essential. The current state of the art methods for the URN predictions
utilize experimental methods based mainly on cavitation tunnels; semi-empirical methods
based on statistical databases; and Computational Fluid Dynamics (CFD) methods with signif-
icant simplifications. Although computational power has been increasing at an exponential
pace, URN prediction using the CFD method is in its infancy and requires coupling of as many
as five different codes as reported e.g. in (van Wijngaarden, 2005). Currently, CFD based noise
predictions are made using incompressible Reynolds Averaged Navier Stokes (RANS) equa-
tions coupled with the Ffowcs Williams-Hawkings (FW-H) equation. These have made phys-
ics-based URN predictions possible, however, further developments are necessary in order to
improve the accuracy of the predictions as well as the cost of the computational resources
(Bertschneider et al., 2014). Semi-empirical methods are based on a number of different ap-
proaches; some being developed based on data from the World War Il period, others
constructed upon the theoretical acoustic pressure of a single cavitation bubble collapse
multiplication for statistically determined cavitation events. These early methods over-predict
the measured URN levels of present-day commercial ships (Okamura & Asano, 1988) due to
developments in the field of propeller design (Ross, 1976; Brown, 1976) and testing. More
recently-introduced semi-empirical methods are commercially confidential, being based on
simple models for which various coefficients have been derived from large databases of full-
scale noise measurements (e.g. Raestad, 1996). By considering the additional complexities as-
sociated with the numerical modelling of the propeller cavitation, perhaps, the most reliable
current prediction method may be that based on experimental methods (Bertschneider et al.,

2014) by which much of the essential physics of the cavitation phenomena are well represented.
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Despite the relative success of the experimental techniques, outside the research vessel and
naval communities, which are inherently confidential research, publicly available information
is scarce for both full-scale URN levels and cavitation tunnel based predictions. Furthermore,
such data, which are publicly available, are either unsatisfactory due to lack of information on
the main particulars of the subject vessels and their operating conditions and/or measurement
techniques and methods used to collect the data (Bark, 1985). Allied with this unfavourable
status the complementary information, which can enhance the understanding of the noise emit-
ting mechanisms such as cavitation observations, pressure pulse measurements, is even more

scarce thus creating a significant gap in the current state of the art.

Moreover, modern propeller design is conducted in stages and includes both in-house databases
and sophisticated computational tools. The latter design stages make use of computational
methods (e.g. lifting line, lifting surface (Oosterveld & Van Oossanen, 1975; Lee, 1979)). In
the initial stage, selection of the main design parameters (e.g. optimum diameter, pitch, blade
area ratio) for propulsive efficiency, is still made using systematic propeller series databases
due to their reliability (e.g. Wageningen B-Series, Meridian Series etc. (Burrill & Emerson,
1962; Emerson & Sinclair, 1978; Troost, 1938)). Such propeller series data mainly present the
basic propeller performance coefficients (i.e. Ky, Kg and hence 7). This information has been
complemented further by experiment based cavitation diagrams (e.g. Burrill’s chart and the
SSPA erosion criterion) to give a preliminary indication for the risk of thrust breakdown and
cavitation erosion as well as the extent of particular types of cavitation over the blades in a
systematic manner. Also in the 1980’s, empirical methods were derived from full-scale data for
predicting hull pressures at blade and twice blade passing frequency (Sontvedt & Frivold,
1976), based on simple descriptions of blade designs and wake characteristics. Within the same
initial design framework, however, noise predictions are largely limited to empirical methods
such as Brown (1976) and Raestad (1996). There seems to be no information or at least any
attempt to complement systematic propeller series databases with the noise characteristics of
any standard propeller series. Such a tool could be useful in preliminary design or as a control

parameter in addressing the increasing concerns for increased levels of URN.

Whilst standard series of propellers are traditionally tested in uniform flow conditions due to
the insignificant effect of wake inflow in terms of the efficiency coefficients, the main noise

producing mechanism during the operation of a marine propeller is cavitation volume variation
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caused by the presence of the hull in front. Thus, implementation of a novel systematic variation
of wake inflow is not attempted by any study, which can provide an attractive design infor-
mation to propeller designer for URN prediction in early design stage for practical investigation

purposes.

Within the above framework, there has been a recent surge of worldwide interest to the subject
of URN. As a natural response to this surge, Newcastle University has been in the forefront of
the collaborative R&D activities (e.g. through FP7 SONIC Project, HTF Noise CoP) by taking
advantage of their complementary experimental facilities (i.e. the Emerson Cavitation Tunnel,
RV “The Princess Royal”) and accumulated knowledge in the field. These have provided the
essential thrust to motivate the Author to set the aim of his research involving the subject of
URN as a graduate of Newcastle University. This would also complement the Author’s personal
curiosity on the subject as a young naval cadet trained on a mine sweeper with optimised noise

signature qualities which always intrigued him.

1.3 Aims and Objectives

Various national authorities worldwide have concluded that cavitation noise may impose a
threat to the marine fauna if the current trend of the commercial shipping is not regulated. Yet,
current state of the art is not able to address the knowledge gap due to the limited, non-propri-
etary data and research available in the URN field that would enable a better understanding of

the ship and propeller design phenomena leading to quiet, efficient ships.

Thus, the main aim of the present research is to enhance the understanding of the propeller
cavitation noise by conducting detailed systematic cavitation tunnel tests in order to investigate
the main propeller design parameters and operating conditions and to scrutinize their impact on

propeller Radiated Noise Levels (RNL). The resulting experimental data are also utilized to
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compile a database that enables engineering noise prediction methods to be developed and used

at a preliminary design stage, together with a standard series approach.

The above aim is achieved through a systematic series of experiments. The first experimental
study considered the effect of shaft inclination on cavitation noise by conducting systematic
cavitation tunnel tests. These tests also served to reveal potential areas where noise measure-
ment accuracy could be improved as well as providing training for cavitation tunnel operation.
Following this, full-scale trials were conducted on-board the Newcastle research vessel to en-
hance understanding of cavitation phenomena at ship scale. Cavitation observations were made
and hull pressures were measured. Differences between ship and model results were also stud-
ied through cavitation tunnel tests using scaled models of the hull and propeller to evaluate and
confirm the cavitation noise prediction capabilities of the experimental approach adopted in this

thesis.

Furthermore, a small, but commercially representative, subset of the Meridian standard series
of propeller models were tested in the Emerson Cavitation Tunnel (ECT) behind different se-
verities of axial wake created using two-dimensional wake screens. Based on the measured
noise data the results were extrapolated to full-scale using an available in-house database for
some real commercial vessels with the similar main particulars to the standard series of propel-
lers. The extrapolated data was compared with the average commercial shipping noise data
(Wales & Heitmeyer, 2002) to make a rough validation of the generated noise data in order to
address any uncertainty due to the small scale factor of the research vessel, tunnel experiments

and utilization of the wake screen.

Finally, a larger subset of the Meridian propeller series were chosen to cover a significant range
of propeller design parameters from the noise radiation point of view; including pitch to diam-
eter ratio, blade area ratio, number of blades and operating conditions. This subset was tested
using a similar approach to the commercially representative propeller subset experiments but
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1.3 Aims and Objectives

using more members of the series in a systematic manner. The approach enabled compilation
of a quantitative database supported by an artificial neural network tool to predict URN. The
produced systematic data also provided further insight into the noise-creating mechanisms of
cavitation dynamics by analysis of the synchronised cavitation observations and pressure pulse

measurements.

The aforementioned research study, which leads to the achievement of the aim of the thesis, has
been conducted to meet the following specific and measurable objectives of the research study

presented in this thesis:

1. To make a critical review of the state of the art on propeller cavitation noise to identify
the gaps, especially seeking to make a contribution in cavitation noise prediction at early
stage of propeller design.

2. To design and conduct systematic cavitation tunnel tests with a special focus on the
effect of the shaft inclination on the RNL of a model propeller as well as cavitation
inception. Also, to obtain a better understanding of the nature of systematic cavitation
tests and tunnel operation training.

3. To conduct full-scale trials on-board a research vessel to provide URN data and to en-
hance the understanding of the phenomena by making cavitation observations and meas-
uring pressure pulses as well as relating these data to the measured URN from the same
vessel. The full-scale trials are further complemented by the simulation of the trial con-
ditions in cavitation tunnel by use of a scaled-model.

4. To provide dedicated propeller cavitation noise data in model and full-scale to be able
to scrutinise experimental methods to predict full-scale noise data using medium-size

cavitation tunnels.

5. To investigate the feasibility of a systematic series approach to predict the cavitation
induced URN of commercial vessels. To demonstrate and validate the approach by con-
ducting preliminary systematic cavitation tunnel tests using a small but commercially
representative subset of a standard propeller series with loadings based on in-service

vessels and operating in different grades of wake non-uniformity.
10
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6. To conduct systematic cavitation tunnel tests with a larger subset of standard series to
establish the standard series approach and associated tool to predict the cavitation in-
duced URN and to validate the capability of the developed tool.

7. To implement an advanced data analysis tool by making use of the synchronized pres-
sure pulses, cavitation images and URN data. Using this tool and the systematic data
produced with the series members investigate the effects of some major propeller design

and operational parameters on the URN as well as the effect of cavitation dynamics.

1.4 Layout of the Thesis

The thesis is presented in seven chapters. Chapter 1 specifies the motivations for conducting
research into far-field propeller noise and in setting the aims and objectives of the study as well
as describing the layout of the thesis.

In Chapter 2, a critical review of the literature is made, and gaps in the state of the art are given
in order to justify the study. Background information is provided for URN mainly in terms of
the fundamental acoustics. Due to the multi-disciplinary nature of the study, this chapter covers
both acoustical and hydrodynamic aspects. It looks into the acoustic analogy of the hydrody-
namic phenomena, with a specific focus on the current state of underwater noise prediction
methods and systematically designed experimental propeller tests focussing on propeller cavi-

tation noise.

Chapter 3 presents the experimental facilities and equipment utilized within the framework of
this study. An overview of the full-scale research vessel and model scale facility is initially
given. This is followed by the various key pieces of equipment used during the experiments.
The analysing methodology and the set-up information are provided within the section for the

equipment inventory.

Chapter 4 presents the systematic cavitation tunnel tests looking into the effect of oblique flow
on the propeller and discusses the cavitation observations, cavitation inception, noise and pro-

peller performance parameters to reveal the impact of the inclined shaft effect.
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Chapter 5 compares the measurements made on the full-scale research vessel with data from
the corresponding dummy model tests in the Emerson Cavitation Tunnel which can be catego-
rized as a medium size cavitation tunnel, to validate the prediction methods for the cavitation

extent, noise and induced pressures.

Chapter 6 has two parts. The first part investigates the feasibility of establishing a cavitation
induced URN prediction methodology based on a standard series approach by using a commer-
cially representative small subset of the Meridian standard propeller series. Having demon-
strated its viability the second part presents the further establishment of the methodology by
conducting systematic cavitation tunnel tests with the extended subset Meridian standard series.
An artificial neural network based URN predictor is developed and tested on two full-scale case
studies. In the same chapter, an advanced data analysis tool is implemented by making use of
the synchronized time-series pressure pulses, cavitation images and the frequency domain URN
data. Using this tool and the systematic data produced with the series members the effects of
some major propeller design parameters and operational conditions on the URN are investigated

as well as the effect of cavitation dynamics.

Finally, chapter 7 presents conclusions drawn from the thesis together with the recommenda-

tions for the future work.

1.5 Summary

Chapter 1 provided an introduction to the thesis by first setting the scene with the motivations
for the research conducted in the thesis. Following this, the aims for conducting such a research
is given together with the necessary objectives that lead to the accomplishment of the set aim.

Finally, a layout of the thesis is provided to guide readers through the thesis.

12



2.1 Introduction

Chapter 2 Literature Review

2.1 Introduction

Chapter 2 contains a critical review of the state of the art related to URN. The literature review
is used to explain and justify the experimental approach adopted in this work. Emphasis is
placed on the prediction methods for induced noise from propeller cavitation, to create a better
understanding of their nature and how they have been developed. Initially, the scene is set with
the history and fundamentals of underwater acoustics. Then, the impact of shipping noise is
presented together with various other anthropogenic sources. Following this, various methods
employed in cavitation noise prediction are reviewed. These include developed cavitation noise
predictions methods, those based on computational fluid dynamics and experimental propeller
noise prediction methods. Then, systematic propeller tests that are conducted to tests major
operational propeller parameters are visited. Moreover, the simplest variation of a propeller
operation is investigated by looking into the aspects of shaft inclination together with a review
of Artificial Neural Network as a tool for systematic database management. The ultimate aim
of the chapter is to rationalize the adopted experimental approach by critically reviewing the
state of the art of prediction methods as well as to locate gaps in the current state of the

knowledge.

2.2 History of underwater sound
Aristotle (384-322 BC) was one of the first to note that sound can be heard in water as well as

in air. It was nearly 2000 years later when Leonardo da Vinci (1452-1519) mentioned under-

water sound in his notes (1490), indicating a potential use of this phenomenon.

“If you cause your ship to stop and place the head of a long tube in the water and place the

outer extremity to your ear, you will hear ships at a distance from you.”
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2.2 History of underwater sound

It was another 200 years, during which numerous breakthroughs occurred (such as the laws of
vibrating strings by Marin Mersenne and Galileo in 1620’s and Sir Isaac Newton’s mathemat-
ical theory (1687) on how sound travels), before the first underwater sound experiment became
possible. Abbé J. A. Nollet, in 1743 conducted a number of experiments to prove the propaga-
tion of sound underwater with an experimental setup as shown in Figure 2-1 (Bjgrng & Bjgrng,
1999).
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Figure 2-1 The sketches for the experiments to prove sound propagation through water (Reproduced
from (Bjegrng & Bjerng, 1999)).

Following the proof that sound travels through water, the potential to detect enemy presence
from miles away using underwater acoustic devices, as previously quoted by Leonardo da
Vinci, resulted in a surge of interest in underwater noise during WWI. This significantly af-
fected naval warfare and was thus studied extensively by naval research offices. Unfortunately,
due to the inherent nature of naval warfare, such research was not available to the civil com-
munity. Following this interest in underwater noise from marine vehicles increased again due
to the usage of acoustic devices for various research purposes such as seismic survey and fish-
eries research vessels. This time, the interest focused on reducing vessel noise with the aim of
minimizing the disturbance to the measurement device, to increase the accuracy of results.
However, it was not until recently that rising environmental awareness focused on underwater

radiated shipping noise due to its adverse impacts on marine life (IMO, 2011, 2007).
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2.3 Background

2.3 Background

The emphasis on underwater acoustics necessitated knowledge of the fundamentals of the sub-
ject. The multi-disciplinary nature of the subject requires both advanced knowledge in the fields
of acoustics as well as marine hydrodynamics in order to enable interpretation of the hydrody-

namic phenomena and to link these to the acoustic response.

Within this framework, the following sections are structured to initially review and provide
necessary fundamental knowledge on underwater acoustics. Following the fundamental acous-
tics, the anthropogenic noise sources, that are present, are reviewed and their relative impact on
marine fauna is evaluated. As one of the major noise sources, propellers and propeller design
is further scrutinized. Propeller design methodologies are first presented, followed by the cavi-
tation as the dominant noise source during the operation of a propeller. As cavitation is una-
voidable during the normal service conditions of an efficient commercial vessel, various kinds
of cavitation and their noise signatures are discussed. Finally, various propeller noise prediction
methods are critically reviewed in chronological order, together with more recent computa-
tional and experimental approaches, in order to evaluate the best possible and practical approach

to be adopted for the execution of the experimental approach intended for this research.

2.4 Fundamental acoustics

The term noise is generally referred to as the unwanted sound that is produced during the oper-
ation of a system that interferes with the normal functioning of it. Although noise is defined as
unwanted, it is unavoidable at the same time as no mechanical process can take place without
any losses. The losses occur during the motion induced by the process, producing various by-
products that reduce the system efficiency, such as heat, vibration, friction, etc. (Ross, 1976).
It, however, constitutes a relatively smaller amount of power in comparison with the total me-
chanical power produced with even lower levels for underwater systems. Nevertheless, acous-
tical properties in water are significantly different than in air, and hence, result in various con-
sequences such as higher speed within the medium and lower absorption rate, which will be

discussed in detail in the following subsection.
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2.4 Fundamental acoustics

Acoustic measurements are expressed using the unit of “decibel”, which is a description of a
logarithmic ratio of an actual measurement and a predefined reference value (Hildebrand,
2009). The origin of the use of the decibel is from the electrical industry and is named after the
inventor of the telephone, Alexander Graham Bell. In order to avoid fractional values, the unit
bell is defined as ten times the bell and named as the decibel with the abbreviation of ‘dB’. The
use of the decibel unit simplifies the understanding of the large variations experienced in the
measurements. The use of the decibel scale, since then, has widened from its original applica-
tion to become a basis for the measurement of different quantities with dynamic range. In the
context of assessing noise, the sound pressure level (SPL) is the fundamental measure of sound
pressure and its definition is based on pressure ratios as given by the International Standard
Organization (ISO) (I1SO, 2015):

SPL = 20log,o(P/Py)dB Equation 1

where; Po is a reference pressure normally set to 1 xPa for water and P is the measured pressure

at the point of interest.

The use of the decibel unit dictates a scaling to the measured levels. Due to the inherent prop-
erties of the logarithmic operator, a 6 dB difference between two measurements means the
higher pressure measurement is two times, the lower pressure measurement. Likewise, a 12 dB

difference corresponds to the higher measurement being four times, the lower measurement.

Another important aspect of acoustical measurements is the spectral domain. As the time sig-
nals of the noise measurements are rather complex for interpretation, various signal manipula-
tion methods are employed to be able to convert the time signal to a frequency or spectral do-
main. For this purpose, Fast Fourier Transform (FFT) methods or wavelet methods are em-
ployed. The application of the post-processing approach to the measured time signal transforms
the measurement to the spectral domain where results are displayed as a function of frequency.
In the spectral domain, the noise may be either presented as a level in a 1Hz band, for which all
bands are equally 1 Hz wide, or it can be split into a series of adjacent frequency bands based
on a constant ratio of upper and lower frequency. For the proportional bandwidths, the power
spectral density of the spectrum is averaged from the upper to the lower band edge frequency
to calculate the spectral level at the centre frequency for the chosen bandwidth. The most

common underwater acoustic constant bandwidth frequency band is the octave band.
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2.4 Fundamental acoustics

The octave bands are defined as the ratio of the upper and lower frequency band based on the
power of 2. Therefore, an “octave” band means the upper frequency is twice the lower fre-
quency, whereas a “1/3™-octave” band further subdivides each octave band into three parts as
shown in Table 2-1. Thus, octave filters do not have an absolute constant bandwidth but do

have a constant relative bandwidth that increases logarithmically with the increasing frequency.

Table 2-1 Frequency limits for octave bands and 1/3-Octave bands.

Frequency (Hz)
Octave Bands 1/3 Octave Bands
Lower Band Centre Fre- Upper Band Lower Band Centre Fre- Upper Band

Limit quency Limit Limit quency Limit
14.1 16 17.8

11 16 22 17.8 20 224
22.4 25 28.2

28.2 315 355

22 315 44 35.5 40 44.7
44.7 50 56.2

56.2 63 70.8

44 63 88 70.8 80 89.1
89.1 100 112

112 125 141

88 125 177 141 160 178
178 200 224

224 250 282

177 250 355 282 315 355
355 400 447

447 500 562

355 500 710 562 630 708
708 800 891

891 1000 1122

710 1000 1420 1122 1250 1413
1413 1600 1778

1778 2000 2239

1420 2000 2840 2239 2500 2818
2818 3150 3548
3548 4000 4467
2840 4000 5680 4467 5000 5623
5623 6300 7079
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2.4 Fundamental acoustics

Narrow-band analysis results are used for the close-up investigation of spectral levels to locate
and confirm noise producing events at discrete frequencies. On the other hand octave and third-
octave band levels are used for interpretation of the general trend of the spectral levels. The use

of such bands are clearly demonstrated by McKenna et al. (2012).
2.4.1 Underwater sound propagation

The attenuation properties of sound underwater also carry great importance with regards to the
significance of the subject. Not only does sound travel approximately 4.4 times faster underwa-
ter (Lovett, 1978), but also the associated propagation losses are significantly lower mainly due
to the well-known wavelength equation. A higher propagation speed results in a greater acoustic
wavelength, as by definition, wavelength is given by Equation 2:

A= Equation 2

c
f
where A is wavelength in m, ¢ is speed of sound in m/s and f is the wave frequency in Hz.

Furthermore, since the wavelength is a function of the frequency, the lower frequencies inher-
ently have a longer wavelength. Since the physics enable higher attenuation efficiency of the
sound with longer wavelength, this results in significantly lower absorption rate for the low
frequency sound enabling it to travel hundreds of miles (Urick, 1983). A very detailed study
has been carried out by Fisher and Simmons looking at the mechanisms of sound absorption
(Fisher & Simmons, 1977; Francois & Garrison, 1982).

Due to the changing nature of sound absorption with frequency, the sound spectrum may be
divided into 3 frequency bands: 10 to 500 Hz for low frequency, 500 to 2500 Hz for medium
frequency and values higher than 2.5 kHz for high frequency. It can be concluded that a low
frequency underwater noise may pollute large masses of world seas due to the inherent low
absorption properties, whereas medium frequency noises are generally associated with rather
regional sources and for high frequency the source may be in close proximity (Hildebrand,
2009).
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2.4 Fundamental acoustics

There are other factors affecting the sound absorption such as the depth of the sea, the reflection
from the sea surface also known as the Lloyd’s Mirror effect and seabed type (Bell, 2008;
Wittekind, 2014; Simmonds et al., 1997). These also significantly influence the attenuation

properties and requires necessary attention for the acoustic measurements.

2.4.2 Ambient noise sources

In order to be able to process the underwater noise measurement data for vessels, detailed
knowledge about the various other sources present within the underwater environment is vital.
The information on the possible contributors to the raw noise measurements enables the accu-
rate interpretation of the sound of interest. Ambient noise level spectra of the world seas are
dominated by a number of factors that each applies to a particular frequency region (Gotz et al.,
2009). Amongst them are turbulent pressure fluctuations, wind-dependent noise from bubble,
spray and resulting surface agitation and shipping noise (Wenz, 1962; Cato, 2008). Whilst there
are other intermittent and instantaneous sources also present, the main components can be
confined to these three components in the context of ambient noise; they are illustrated in the

frequency domain as shown in Figure 2-2 (Wenz, 1972).
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Figure 2-2 Sample Ambient noise spectra (reproduced from Wenz, 1972)
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2.5 Shipping noise

The overall ambient noise spectrum is therefore dominated by large-scale oceanic turbulence
up to 20 Hz with small contributions from storms at a remote location and seismic events. The
frequency region of 500 Hz to 25 kHz shows a trend of 5 to 6 dB decrease per octave and is
mainly related to sea state and associated causes such as the wind, rain and wave. The third
band of 10 to 500 Hz region is dominated by distant shipping noise (Wenz, 1972) related to

various on- and off-board noise sources (Ross, 2005).

2.5 Shipping noise

The anthropogenic activities with the world seas are many and varying, ranging from seismic
surveys to piling, sonar exploration and commercial shipping. Except for shipping, however,
these sources are rather intermittent and instantaneous (Hildebrand, 2005). Hence, the impact
of such activities are not recognizable through ambient noise measurements (Mueller-Blenke
et al., 2010; Richards et al., 2007).

The technological advancements that have taken place in the last decades have resulted in sig-
nificant developments within the maritime industry. This has manifested itself in the commer-
cial shipping sector as an increasing trend in ship and engine size, number of ships in service
and the operating speed. The transportation of goods has thus become relatively cheaper and
easier as the concept of globalization has developed. Such trends experienced by commercial
shipping, however, have resulted in significant increases in various emissions produced by the
ocean-going vessels. One of the most adverse by-products has been underwater noise
(McKenna et al., 2013).

Figure 2-3, shows that while the world gross tonnage has increased as much as 6 times over the
course of 60 years, the number of vessels sailing the world’s seas has nearly tripled. The impact
of such an extraordinary expansion of the world fleet has resulted in a 3 dB increase per decade
in ambient noise level based on measurements (Hildebrand, 2009) as shown in Figure 1-1 and
as dicussd by Chapman & Price (2011).
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Figure 2-3 Numbers of vessels (dashed line) and gross tonnage of vessels (continuous line) in the
world’s fleet by Lloyd’s Register of shipping for self-propelled, merchant vessels over 100 gross
tonnes (Reproduced from (Hildebrand, 2009)).

Thus, the expansion of the world’s fleet has exposed marine fauna to higher levels of back-
ground noise (Mitson, 1995). The marine organisms and especially marine mammals use acous-
tic vocalizations for finding food, mates and various activities regarding their survivability
(Simmonds et al., 1997). Hence, exposing them to such an abrupt change in the ambient noise
levels within a short period of time, considering their evolution period, they may not adequately
adapt and evolve (Weilgart, 2008, 2005).

This consequently shows that, the main anthropogenic cause for the rising ambient noise levels
of the world seas is commercial shipping; hence various on- and off-board noise sources of a
vessel are worthwhile to be reviewed. Table 2-2, lists such noise producing systems on a vessel
together with their impacts both for the ship and for the environment as outlined by ITTC
(Bertschneider et al., 2014).
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Table 2-2 Underwater noise sources for ships (Reproduced from (ITTC, 2014)

. Impact on envi- .
Noise source Frequency range ronment Impact on ship
Propeller noise
nonFicavitating Blade Passage Fre- Low/ medium Depend
guencies (BPFs) on ship
tonal components
Singing propeller 100 Hz — 2 kHz high high
Propeller
non-cavitatilzg broadband 1 Hz - 20 kHz low low
Propeller cavitating tonal BPFs high high
Propeller cavitating broadband 10Hz - 20kHz high high
Propeller-hull BPFs and low high
interaction structural NF
Cavitation on 100 Hz — 20 kHz medium medium
appendages
Wave breaking 100 Hz — 10 kHz low low
Slamming 1 Hz—-100 Hz low low
Sea water cooling systems 100 Hz — 10 kHz medium medium
Main engines 1 Hz — 500Hz medium high
Driving systems 10 Hz - 1 kHz low medium
Auxiliary engines and systems 10 Hz — 2 kHz low medium
Active sonar military 100 Hz — 50 kHz high Medium
Active sonar 10 Hz — 30 kHz low low
echo-sounder
ACtI\./e sonar 10 Hz — 100 kHz low low
navigation
Airguns 1 Hz - 100 Hz high low

A review of these sources indicates that whilst there are numerous noise sources on a vessel,
the propeller is generally the dominant source due to its high impact both on in-board noise and
to the underwater environment. Furthermore, the impact is even more significant once cavita-
tion inception is reached (Norwood, 2002). In addition, underwater acoustical sources can be
characterized depending on their dominant acoustic radiation mechanism. In this respect, cavi-
tation acts as a monopole source while various non-cavitating noise sources associated with
vortex shedding, fluctuating loads, turbulent trailing edge noise, flow induced vibrations act as
dipole sources. Turbulent fluid motions are related to quadrupole sources. The significance of
the acoustical sources essentially lies in the radiation efficiency associated with each. There-
fore, when considering far field noise due to the presence of a monopole source (i.e. cavitation),
dipole components may be negligible i.e. non-cavitating components (van Wijngaarden, 2000).
In conclusion, a combination of the factors discussed identifies cavitation as the primary source

of shipping noise contributing to ambient noise levels (Wittekind, 2009).
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2.6 Propeller design and URN

The propeller is a vessel’s thrust-producing mechanism which drives it through the seas. During
the production of such a large force, the propeller is forced to operate in extremes. Therefore,
it is the duty of a propeller designer to ensure that the propeller does not fail while satisfying
the requirements set out. The propeller design, however, is a skill that requires numerous engi-
neering decisions to be made to achieve a design with high efficiency, low vibration, cost-
effective, silent and durable performance. Since it is impossible to design a propeller that attains
all these merits at the same time, the propeller designer compromises (trades-off) some aspects
in order to achieve a propeller balanced design for satisfactory operation through ship’s life
cycle (Carlton, 2012).

The most fundamental aspects of propeller noise in the marine environment are related to the
cavitation. In this respect, various environmental, operational and design parameters have an
impact on the RNL’s. Thus, it is utmost profitable to conduct a review regarding the main pro-
peller design parameters in order to aid the decision-making process for the systematic experi-
ments. The review is structured in two parts: hull shape and wake inflow, and propeller geom-

etry.
2.6.1 Hull shape and wake inflow

The propeller operates behind the hull and hence its inflow is affected by the hull wake caused
by the potential and viscous components of the flow over the hull. The propeller is located at
the stern of the ship to recoup some of the energy in the hull boundary layer, as well as for
improved manoeuvrability properties and protection against damage. Due to the presence of the
hull in front and its proximity to the rudder which is behind, the flow in which the propeller
operates (the wake) is not uniform. This non-uniformity results in variations in the angle of
attack of the propeller inflow and chordwise extent of cavitation experienced by the propeller
and consequently results in higher RNLSs.
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2.6 Propeller design and URN

The hull shape, especially the underwater stern shape, has a significant influence on the wake
properties. Based on initial criteria proposed by Huse (1974), the stern shape can be categorized
to be ‘U’ shape,“V’ shape or ‘Bulbous’ shaped (Carlton, 2012). The bulbous stern generally has
higher naked resistance properties since it tends to consume energy in creating vortical flows
within the wake. However, the wake properties can be significantly improved as a result of the
flow that is channelled up to the propeller wake shadow area by vortices formed in the concave
shape of the stern. A ‘U’ shape stern is used for bulk carriers as it enables larger cargo area for
this heavy commodity. The wake of the ‘U’ shape stern tends to have a very low axial speed
wake peak. Since it is a relatively full shape, the recovery from the low axial velocity region is
also slow resulting in higher excitation levels being experienced as well as the higher RNL’s
due to subsequent cavitation volumes experienced by the propeller. The ‘V’ shape with con-
ventional apertures tends to generate high wake peaks at the top dead centre position in front of
the propeller. However, the extent of the low axial velocity regions is smaller in comparison to
the ‘U’ shaped stern. This results in rapid variations of the angle of attack of the propeller

section causing violent growth and collapse of the cavitation formed in the wake shadow area.

Another important aspect regarding the ship stern is the propeller hull clearance. Whilst it is of
utmost importance for propeller-excitation forces impacting on the adjacent hull, it also carries
importance for RNL as the hull also acts as a hard reflector in close proximity to cavitation
sources (Fitzsimmons & Odabasi, 1977). Forced excitation effects of cavitation dynamics have
caused various problems including stress cracks, noise and vibration. This has resulted in reg-
ulations and guidelines to be announced by various classification societies that ensure sufficient

clearance between propeller and ship’s hull (LIoyd’s Register, 2014).

The non-uniformity of the wake must be investigated to enable a better understanding of the
forces which a propeller may generate. In this context the following simple descriptors have
been used; axial wake, tangential wake, depth and width of wake peak.
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2.6 Propeller design and URN

First of all, the axial wake non-uniformity in the outer radii of the propeller is the most important
parameter for propeller cavitation dynamics and should be carefully considered during the af-
terbody design of a new ship. The severity of the wake is generally expressed in terms of its
depth and width. These affect the cavitation volume developed and the violence of its collapse
both on and off the blade surface. Konno et al. (2002) have investigated the importance of the
wake using four different severities of wake by altering the velocity gradient of the axial vari-
ation of inflow speed at constant radii. The most severe wake had the most rapid change of
speed whilst the least severe one has a rather gradual change. The corresponding measurements
have shown significant acoustic pressure elevations for the wakes with higher velocity gradi-
ents, thus demonstrating the importance of the axial wake factor for acoustic tests of the marine

propellers; in particular when pursuing a standard series approach as presented in this thesis.

The tangential component of the wake is generated by the 3-dimensional shape of the hull and
may be due to the streamline directions of the hull flow or due to an embedded bilge vortex
flow. These components change from “with” the blade rotation to “against” the rotation across
the 12 o’clock position and hence also alter the angle of attack to the propeller blade. In com-
bination with the axial wake gradient they can cause the cavitation volume to change more
rapidly due to the added variation in the section angle of attack. Whilst, they have a greater
importance for twin screw vessels, the systematic representation of the tangential wake for cav-

itation tunnel tests is cumbersome and practically very expensive.

2.6.2 Propeller geometry

The propeller design has various parameters that are significant both in terms of their effect on
the efficiency of the propeller as well as on the development of cavitation and consequently,
noise. The major parameters are reviewed below with remarks made to the design requirements.

Particular emphasis is placed on their influence on RNL.
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2.6 Propeller design and URN

Diameter: The propeller design process encourages the propeller designer to select the largest
possible diameter and lowest RPM within permissible limits. The maximum diameter is deter-
mined by both the vessel’s immersed stern geometry at the ballast aft draft and the adopted
proper clearance following rules and regulations as proposed by the classification societies
(Lloyd’s Register, 2010, 2014). A larger propeller diameter both reduces the load/unit area and
also reduces the tip speed, which influences the amount of tip vortex cavitation. An empirical
prediction method (Ross, 1976) was given for ship source level noise based on propeller tip
speed utilizing the WWII noise measurements. The importance of the tip speed is also taken
into account the by tip vortex index (TVI) method (Raestad, 1996) where a term for a calculated
circulation strength at propeller tip is included. The diameter is thus a significant parameter that

needs to be carefully treated in terms of radiated noise.

Number of blades: The number of propeller blades is vital in terms of reducing the specific
loading on each blade and hence the pressure experienced by structures in close proximity to
the propeller as well as noise radiated in the far field. Fewer blades lead to a higher specific
loading which consequently results in worse cavitation performance or utilization of a larger
diameter. Thus, the number of blades is a major factor affecting the loading around the blade
tip. Hence, the tip vortex strength and consequent RNL can be lowered for propellers with
higher numbers of blades and unloaded tips. However, various compromises that should be
made in terms of propulsive efficiency and various other related aspects should be borne in
mind. It is generally preferred to choose number of blades and blade rate harmonics to not to
coincide with the main engine cylinder frequencies to avoid resonance due to overlapping shaft
force and moments. In addition, the frequency of the excitation forces depends on the number
of blades (Blade Rate Frequency) and the number of blades is hence selected not to coincide
with natural frequencies of a part of hull such as the superstructure (Gomez & Gonzalez-Adalid,
1998).
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2.6 Propeller design and URN

Blade area ratio: Blade area ratio is a function of chord length, which is mainly dominated by
the hydrodynamic requirements from a propeller. The larger blade area results in lower specific
loading (thrust density) hence making it less susceptible to cavitation. However with the in-
crease of the area of the blade, the hydrodynamic drag also increases and hence a loss in effi-
ciency of the propeller occurs. Thus, while cavitation performance may be improved with a
larger blade area ratio, it conflicts directly with the highest propulsive efficiency. As a prelim-
inary guidance, the blade area ratio to minimise the cavitation risk can be selected by using e.g.
Burrill’s diagram as a function of the thrust loading and cavitation number (Burrill, 1944;
Burrill & Emerson, 1962). Thus, it may be deduced that while providing better cavitation per-
formance with the increasing blade area, the section drag properties experience a loss, and these
need to be carefully balanced. The resulting cavitation performance consequently relates to the

URN induced by a propeller.

Rake: Rake is a parameter utilized especially to ensure sufficient clearance between propeller
and ship hull. The introduction of rake locally on the propeller blades, especially in the tip
region, has been used to achieve better operating conditions for the propeller. The local varia-
tion around the tip region and with the propeller being at a location further away from the hull
results in relatively better inflow conditions and can be expected to have a good impact on

cavitation performance, and hence a reduction in URN.

Chord Distribution: The chord distribution of a propeller is optimized from the aspect of pro-
peller efficiency which strongly depends on spanwise circulation distributions. To obtain the
optimum circulation distribution, the tip of the propeller has a narrower chord. A narrow tip is
also effective in minimizing the cavity extent in this region if the thickness is not excessive.
Where a low noise signature is at a premium for certain types of vessels such as warships,
narrow tip chords can be utilized whilst compromising the efficiency. However, for commercial
shipping, the chord should be chosen based on the limitations defined by the minimum lift to

chord ratio.
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Skew distribution: Skew is a parameter used to reduce the severity of cavity dynamics (i.e.
impact of sudden entrance of the whole propeller blade into the wake shadow area in which the
direction of the flow and incidence angle vary dramatically). Thus, incorporation of skew re-
sults in a reduction of the second derivative of cavitation volume variation (acceleration of the
cavity volume) which is proportional to radiated hydro-acoustic pressure (Fitzsimmons, 1988).
As acceleration of the cavitation volume has been known to be the dominating parameter for
the noise radiation, the introduction of skew can be expected to reduce the noise signature of a
vessel. However, utilization of skew needs attention due to the structural problems that might
arise from the stress concentrations around inflection point which appear in the tip regions for
extremely large skew (more than 60 degree) and in the trailing edge at the mid-span for medium

skew.

Pitch distribution: Pitch distribution of the propeller blade is determined to give the optimum
spanwise thrust distributions with adequate attack angle and in conjunction with the camber
distribution. The required load is then distributed along the blade mainly for the optimum pro-
peller efficiency although other design priorities may dominate depending on the design objec-
tives (e.g. cavitation, noise, etc.). However, local alterations to the pitch can also be utilized to
optimize the propeller in certain areas in terms of cavitation performance. A common method
is to off-load the propeller around the tip with a view to suppress the tip vortex cavitation.
However, off-loading should be applied with care to avoid the occurrence of any face cavitation
for higher inflow speed areas. Cavitation bucket diagrams can be utilized to implement suitable

pitch distribution in order avoid such phenomena being experienced.

Propeller blade section

Through history, various types of blade sections have been utilized for marine propulsion.
These have included various early stage and very inefficient designs from aerofoils, as given
by Abbott and Doenhoff (1959). However due to the difference between the application and the
fluid, in which they are operating, none has been found to be sufficiently effective. The devel-
opment of various different section shapes both symmetric (thickness) and non-symmetric
(camber) has been extensively studied by Eppler & Shen (1979; 1981). Furthermore, previous
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studies were also complemented by the famous sections of the time such as the Gawn-Burrill
and Wageningen sections (Gawn & Burrill, 1957; Oosterveld & Van Oossanen, 1975). How-
ever, further development of the sections and the increasing requirements expected by the pro-
pellers inherently resulted in definitions such as the camber and thickness distribution to be
utilized for the section design. This was due to the fact that earlier propellers contained only
one type of section for the whole propeller. However, it became apparent that depending on the
radial location of the section, the requirements differ significantly. For example, whilst struc-
tural integrity is more important for the sections in the root region, cavitation performance is
the priority for a section at the tip region. Therefore, camber and thickness distribution are

important definitions that are used to define a section shape and they are reviewed below.

Camber distribution: Propeller design procedure inherently adopts a camber distribution that
provides the necessary loading hence thrust. Earlier propeller designs adopted excessive usage
of camber in the mid-chord region, which resulted in propellers to experience bubble cavitation.
Model scale experience with such propeller designs and bubble cavitation proved to be noisy
and highly erosive. Thus, more contemporary propeller designs avoided bubble cavitation by
using less camber and higher angle of attack to exhibit sheet cavitation (Kuiper, 1998). The
same principles regarding local alteration can apply to the reduction of the cavitation extent
experienced around the tip region if utilized carefully. The lift of the blade section can be
achieved by using both propeller pitch and camber. The designer has to decide how much will
come from each, taking the two types of cavitation which will occur into account. The first one
is excessive sheet or face cavitation due to leading edge separation which will be introduced by
improper pitch angle. The second cavitation type is bubble cavitation on the mid-chord of the

blade section which will be brought by excessive camber as mentioned previously.

Thickness distribution: The thickness distribution is mainly a parameter to ensure structural
integrity of the propeller. The induced forces produced by the torque and thrust should be
adequately handled by the structural properties of a propeller. However, in addition to that,
thickness is also critical in terms of the cavitation performance, especially in the leading edge

region. For example, whilst the most desirable thickness distribution for the optimum cavitation
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performance is elliptic distribution, its drag properties are not that much superior. Excessive

thickness may also affect the inflow direction to the blade section and hence angle of attack.

Hub Shape: The propeller hub is often observed to experience a stable vortex cavitation arising
from the flow through the root sections of the blades accumulating towards the hub. The rota-
tion of the propeller introduces a circulation movement to the flow. The circulating flow
experiences a pressure drop due to increased rotational velocity as it travels in the slipstream
and leaves the hub resulting in the propeller hub vortex cavitation phenomena. Various different
hub designs have been investigated to avoid the cavitation experienced by the propeller hub or
to extract back the energy that is used by this kind of cavitation structure (Hansen, 2011; Atlar
& Patience, 1998).

With the above review of the various propeller design parameters in perspective, one may con-
clude on a number of outcomes. While a number of variants have been discussed above, only
some of them can be used as parameters for standard series of propeller tests. These are limited
to |Blade Area Ratio (BAR), pitch to diameter (P/D) ratio and blade number, in conjunction

with selected wake flow variations.

Also, no matter how well the propeller is designed, cavitation is unavoidable for an efficient
commercial vessel at service speed. Thus, it is in one respect crucial to have an understanding
of the propeller design parameters, yet their influence on the type of cavitation and the severity

of the cavitation bubble dynamics is of greater importance.

2.7 Cavitation

Cavitation is defined as the rupture experienced in a liquid medium due to a local static pressure
drop. Although it was first mentioned in the history of science by Euler (1754) in his work on
the theory of water wheels, it took another 150 years, with the advent of steam turbines and

high-powered screw propellers, for the phenomenon to become the focus of research.

The term cavitation is credited to R.E. Froude, when it was first observed by Thornycroft &
Barnaby (1895). During the trials of the “HMS Daring”, a high-speed torpedo-boat designed
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for the Admiralty, it was deduced that the propeller started to cause ruptures and voids in the
water above a certain speed due to the thrust loading density. It was however not until the trials
made with “Turbinia” in 1896, that cavitation research experienced its breakthrough when Sir
Charles Parsons devised the world’s first cavitation tunnel (Burrill, 1963). This tunnel, (Figure
2-4), contained almost all of the same components as a modern cavitation tunnel, except for an
impeller for water circulation. A turning mirror was used for stroboscopic photographs of the
2-inch propeller, while an arc lamp was used to achieve cavitation simulation by heating the

water instead of applying a vacuum as in today’s cavitation tunnels.

Figure 2-4 Propeller cavitation tests with Parsons’ world’s first cavitation tunnel (Courtesy of M.
Atlar).

Cavitation is a general fluid mechanics phenomenon which takes place in flowing liquids, such
as found in channels, valves, pumps, propellers and other hydrodynamic machinery where there
is a drop in the pressure. The phenomenon is caused by fluid velocity variations resulting in
pressure fluctuations within a fluid (Knapp, 1970). The physical process which generally gov-
erns the cavitation phenomenon can be found as an extension of the situation where water will
boil at a lower temperature when taken to the top of a high mountain, where the pressure is

lower from that at sea level.
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Cavitation occurs due to the presence of the very small gas/vapour filled bubbles of 1-100 mi-
cron meter diameter. These bubbles serve as the impurities within the fluid causing ruptures to
occur at a much lower pressure, whilst a pure liquid may sustain very high tensions without
experiencing cavitation. These impurities within the water are recognized as the seeds of the
cavitation and referred to as nuclei. As the nuclei pass through a region with strongly reduced
pressure (below the critical vapour pressure) a rapid vaporization process occurs (Chahine,
2004).

Although there are a number of non-dimensional parameters in existence to characterize the
flow and forces in a hydrodynamic system, the two parameters given by Equation 3 and Equa-
tion 4 are of utmost importance in terms of defining the inception point of cavitation. The pres-
sure coefficient “Cy” characterizes the forces acting on a body in water and enables calculation
of the pressure field around it. The pressure field map allows the determination of the points
vulnerable to cavitation. Following the same approach, Cavitation Number “c” given by the

Equation 4, was created to map the tendency of a flow to cavitate.

C. = PM - Pst .
Pl Equation 3
jPVR
Py, — Py static pressure head
1 V2 ~ dynamic pressure head Equation 4
5 PVR

where Cy is the pressure coefficient, Pm is the local pressure, Ps; is the static pressure at a refer-
ence point, VR is the propeller resultant velocity, p is the fluid density, o is the cavitation number

and Py is the vapour pressure.

Theoretically as long as the sum of cavitation number and pressure coefficient is positive no
cavitation will occur: cavitation should start when their sum is zero and remain for negative
values. In practice, this is not quite accurate, but the above implies that the higher the cavitation

number, the lesser the chance is for cavitation to occur.
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The “cavitation inception number” i derived from Equation 3 and Equation 4, is defined in
Equation 5. To simplify the inherently complex phenomena, the minimum pressure at which

cavitation inception occurs is assumed to be the vapour pressure as in Equation 6.
0; = —Cpmin Equation 5
Ppin = Py Equation 6

Beyond the point of cavitation inception and with decreasing cavitation number, the extent of
the cavitation enlarges up until the point when the pressure inside the bubble is the same as or
larger than that outside. At this point, due to the pressure recovery experienced, the cavitation
bubble will cease growing, reverse the procedure and collapse, potentially resulting in the
production of shock waves. The resulting acoustic pressure emits noise as well as causing a

micro-jet to be formed leading to the erosion on a nearby solid interface (Choi & Ceccio, 2007).

2.7.1 Types of cavitation experienced by propellers

Due to the inception of cavitation with decreasing cavitation number, the extent of cavitation
enlarges and takes the form of developed cavitation. The cavitation can be categorized based
on its location on the propeller blade and its physical appearance. Since the noise signature of
cavitation is more attributed to its physical appearance, the following four main cavitation types
will be reviewed with particular attention to their implication in terms of the emitted noise levels
together with the main reason behind the formation of each (Bark & Berlekom, 1978). Namely,
these are sheet, vortex, cloud and bubble cavitation. Photographic examples of each type are
also provided within the review together with the ITTC approved cavitation schematic patterns
used for hand sketches (ITTC, 2002a) of cavitation tunnel test observations. Figure 2-5 below

outlines the various types of cavitation that can be observed on a propeller.
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Propeller hull vortex cavitation—. M“ —— Cloud cavitation

Sheet cavitation

Bubble cavitation ——— —— Hub vortex cavitation

Blade root cavitation —

Figure 2-5 Representation of the most common types of cavitation (ITTC, 2002a).

27.1.1 Sheet cavitation

Sheet cavitation occurs when large suction pressures build up near the leading edge of the blade
resulting in the back of the blade being covered with a layer (sheet) of cavitation bubbles. Sheet
cavitation occurrence is largely a function of the variation of angle of attack of the propeller
blade sections experienced due to the propeller rotation through non-uniform wake of the
vessel. The low-pressure region has a value significantly lower than the critical pressure hence
even the smallest nuclei are destabilized forming a singular large sheet cavitation. However,
the unity of the cavitation is altered due to the propeller rotation out of the wake shadow region
where local speed and hence angle of attack is significantly reduced. With the recovered speed
the sheet cavitation experiences various types of break-off depending on the wake flow field
due to the re-entrant jet formation as discussed in detail by Lange & Bruin, (1998). The break-

off consequently results in the cavitation volume variation causing the acoustic pressure to be
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produced (Ceccio & Brennen, 1995). While the volume of the sheet cavitation significantly
contributes to the tonal levels emitted, dynamics experienced by the sheet cavitation, such as
the break-off and collapse mechanisms, results in broadband noise. Typical break-offs are out-
lined by Bark together with the potential collapse scenarios for a number of different ship types
and inflow conditions (Bark, 1986).

Stable sheet cavitation

Figure 2-6 ITTC approved schematic patterns used for hand sketches and cavitation tunnel cavitation
images for bubble cavitation (Courtesy of Emerson Cavitation Tunnel Archives).

2.7.1.2 \Vortex cavitation

A vortex is a rotating flow that generally sheds from the tips of lifting foils with finite spans.
The rotation causes a region of reduced pressure at the centre of the vortex which is also called
the core. The reduction of the local pressure at the core of a vortex is due to the centrifugal
forces acting upon it. If the vortex motion is strong enough, the reduction of the local pressure
at the core will reach the critical pressure creating a cavitating kernel with the help of entrained
nuclei due to the low-pressure region (Arndt, 2002). For uniform flow conditions such cavita-
tion exhibits excellent stability and travels intact in the slipstream of a propeller or a lifting
(Pennings, Westerweel et al., 2015; Pennings, Bosschers et al., 2015). However, if operating in
a non-uniform flow, the vortex may be distorted or even collapse or burst due to the speed
recovery upon the departure from the wake shadow region (Konno et al., 2002). Tip vortex
cavitation, in particular, is mostly found to experience such dynamics, which in return causes

large pressure fluctuations hence high levels of noise (Berghault, 2000). The emitted noise is
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generally observed in the spectral domain as a hump in the mid frequency region (200 to 800

Hz) and broadband monopole type cavitation noise contribution due to the dynamics such as

bursting and rebounding of the cavitation bubbles.

~

Thin stable tip/hub vortex cavitation

Figure 2-7 ITTC approved schematic patterns used for hand sketches and cavitation tunnel cavitation
images for bubble cavitation (Courtesy of Emerson Cavitation Tunnel Archives).

2.7.1.3 Cloud cavitation

The sheet cavitation is usually found in the region of the wake shadow where locally reduced
velocities provide a time interval for cavity volumes to grow and collapse. Upon the propeller
blade leaving the wake shadow region due to its rotation, either the sheet cavitation is rolled up
to form or join the tip vortex cavitation or it disintegrates in parts forming cloud cavitation. In
this context, the formation of cloud cavitation from the sheet cavitation is mainly dependent on
the wake inflow properties. Based on the unsteadiness of the flow, the sheet cavitation may
experience a periodic cloud cavitation shedding and disintegration with variable intensity. The
shed cloud cavitation would then experience a rise in the local pressure as it disintegrates re-
sulting in a violent collapse producing high-pressure pulses emitting a high level of broadband
noise (Wang & Brennen, 1995).
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Cloud cavitation

Figure 2-8 ITTC approved schematic patterns used for hand sketches and cavitation tunnel cavitation

images for bubble cavitation (Courtesy of Emerson Cavitation Tunnel Archives).

2.7.1.4 Bubble cavitation

Bubble cavitation is caused by high suction pressures developing in the mid-chord region of
the blade section due to combination of high camber and section thickness. Propellers with
relatively thick blade sections which are operating at a small angle of attack are susceptible to
bubble cavitation. Unlike sheet cavitation, bubble cavitation does not coalesce and form a single
volume of cavitation. The large bubbles exist separately, following the flow direction on the
blade surface. Early propeller design methodologies in the 1920’s resulted in propellers which
often experienced bubble cavitation due to the aerofoil sections used for the design purpose.
However, this has later been avoided by local reduction of camber in the mid-chord region due
to the high noise levels emitted by the collapse of this type as well as the erosive nature of the

implosions (Kuiper, 1998).
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Bubble cavitation

Figure 2-9 ITTC approved schematic patterns used for hand sketches and cavitation tunnel cavitation

images for bubble cavitation (Courtesy of Emerson Cavitation Tunnel Archives).
2.7.2 Consequences of cavitation

Cavitation, in addition to underwater radiated noise, leads to a number of highly undesirable
phenomena, such as propeller induced pressure pulses, erosion and loss of thrust (Kuiper,
2001).

Cavitation coverage of up to 25 to 30% of the blade area does not generally contribute to a
significant loss of thrust on the blade. However, with increased cavitation coverage, there can
be a significant loss in the pressure differential across the blade sections, leading to a loss of
section lift. This loss adversely influences the thrust, torque and efficiency of the propeller
(Pylkkanen, 2002).

Cavitating ship propellers may generate on-board noise and cause vibration that can be prob-
lematic for crew and passengers, in terms of both comfort and performance (Plunt, 1980; IMO,
2012). Pressure pulses caused by the propeller are the dominant source of on-board noise, pro-
duced by the displacement of the propeller blade and mainly due to the cavitation volume in

the close proximity of the hull (Breslin & Andersen, 1996).
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During the collapse process of sheet, bubble and vortex cavitation, bubbly structures can form
micro-jets, which if sufficiently close to the blade surface, that can erode the blade material by
the shock wave created by the imploding bubbles (Arndt et al., 1995). Cavitation erosion is one
of the most serious consequences of the phenomena causing structural damage propeller blades
and rudders (Fitzsimmons & Boorsma, 2007).

Amongst the various undesirable impacts of the cavitation, underwater radiated noise is the
main focus of this thesis due to its potential impact on the marine fauna. However, the potential
advancement that this experimental study may lead to alteration of propeller design methodol-
ogy and hence result in improvement in terms of various consequences of cavitation as covered

within this section.

2.8 Propeller noise prediction methods

This section reviews the main empirical and semi-empirical methods available in the literature.
Even though the interest in underwater radiated noise in the commercial domain is relatively
recent, it has been widely investigated for naval applications and specialist research vessels. A
considerable part of the noise generated by the ship system arises from the major sources: ma-
chinery, propeller and background hull flow noise as described by Ross (1976). Amongst these
sources the propeller noise, particularly for the cavitating propeller, is the most harmful one as
discussed previously, since the dominant noise levels can cover the broadband frequency
(Leaper et al., 2009). Therefore, the design of a quiet ship necessitates the minimization of
propeller noise and in particular cavitation related noise. To lower the SPL of propeller
hydrodynamic noise, there has been a number of studies made thus far to predict it in the early

design stage.

Although, the noise prediction methods can be categorized based on the cavitation presence or
cavitation type, this review considers the available prediction methods in chronological order.
This allows an understanding of the evolution of the estimation methods and is also expected
to point a direction towards a method to use whilst undertaking a systematic test campaign
concentrating on the propeller design parameters, previously reviewed, as is the objective of

this study.
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Fitzpatrick & Strasberg (1956), in their major study, reviewed various flow phenomena that
produce hydro-acoustic sound. Their major contribution regarding marine propeller noise was
the sound pressure prediction for a single cavitation bubble (Brennen & Ceccio, 1989). Based
on the radial motion of a cavity bubble, that is assumed to go through spherical growth, acoustic
pressure estimation is demonstrated. Another important fundamental recognition is made of the
main noise creating mechanism being related to the second time derivative of the cavitation
volume. As highlighted by the authors themselves, the prediction captures the main features of
the spectra despite the simple assumptions made. However, they also point out areas for more
accurate prediction, such as the non-spherical collapse, shock wave effect and rebounding dy-

namics of the cavitation bubble.

In the same vein, Baiter (1974) adopted a similar approach to Fitzpatrick and Strasberg. He
assumed each cavitation bubble to be individual and by summation of the independent events
of cavitation bubble collapse, noise radiated by the propeller may be predicted. The cavitation
events are related to the stochastic distribution of the cavitation nuclei present in the water to
enable the determination of the single cavitation number. Whilst, the simplifying assumptions
are significant, and being one of the first theoretical based propeller noise estimation method,

a great advancement in the subject was achieved.

Brown (1976), in his seminal manuscript, stresses the rising importance of propeller cavitation
noise. Following the presentation of a typical propeller cavitation noise spectrum, Brown di-
vides the spectrum into two regions. The low frequency region contains mainly tonal spikes
due to the blade harmonics as well as a peak in the shape of a hump that is generally in the 40
to 300 Hz band. The tonal components are observed to appear at the lower end of the 40 to 300
Hz range when the propeller diameter is large and heavily cavitating. Brown also identifies the
high frequency region to be mostly associated with cavitation, with a constant asymptote of -6
dB per Octave up to 10 kHz. Based on this concept, an equation is derived mainly dominated
by the fraction of the propeller disc area swept by cavitation. While different types of cavitation
and their impact on the noise are not explicitly recognized by this formulae, it has been com-
monly used by the shipbuilding industry for decades (Okamura & Asano, 1988; Ekinci et al.,
2010). However with the developments in the field of propeller design, these estimated levels

have tended to overpredict the RNL of newer ships.
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Ross (1976), in his comprehensive book on the mechanics of the underwater noise, compiles
his tremendous experience during the time he served in the US Navy. The book provides not
only valuable insight into the overall subject of underwater radiated noise but also offers several
simple noise prediction equations. The methods are based on ship noise measurements made
during WWII. The equation given by Ross is suggested to be used for frequencies higher than
100 Hz and for ships longer than 100 meters. The equation utilizes the propeller tip speed as
the main driving parameter. The tip speed is a significant parameter since it is influential in
parameters that dominate a number of cavitation types such as circulation distribution for tip
vortex cavitation as discussed above within the section dedicated to tip vortex cavitation. While
this simple method had been useful for the ships of the time, the complex nature of the cavitation
noise resulted in the prediction method being outdated and over predicting the actual noise

levels of today’s commercial ships.

The method developed by the British Maritime Technology (BMT) Cortec Ltd. utilizes
knowledge from full-scale noise range data of 12 single screw fisheries research vessels. The
model adopts a novel approach to model the cavitating and non-cavitating components of the
spectrum (Angelopoulos et al., 1988). The prediction method is composed of three sub-modules
including an inception module, non-cavitating noise module and cavitation noise module. The
results of the modules are used to sum up the noise levels emitted by a ship based on the statis-
tical analysis of the dataset. The prediction software was developed using a stepwise regression
analysis to determine the influential and significant parameters to noise (BMT-Cortec, 1992).
In this respect, the method is not only capable of making accurate predictions for fisheries re-
search vessels but also contributes to the understanding on the effect of various parameters on
the RNL (Aktas, Fitzsimmons et al., 2015).

Matusiak’s pioneering study makes a valuable contribution to propeller cavitation noise predic-
tion (Matusiak, 1992). Based on the assumption of dividing the spectrum into low and high
frequency regions, Matusiak shares the initial partition of the spectrum with Brown (1976). The
main contributing factors are defined to be tip vortex and sheet cavitation together with non-

cavitating sources such as the blade thickness and loading. The high frequency region in this
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respect is assumed to be dominated by the unsteady cavitation dynamics. Based on these as-
sumptions he adopts the single cavitation bubble noise approach as introduced by Fitzpatrick
and Strasberg (1959) combined with Baiter’s (1974) multiplication by the cavitation event
method. The cavitation events are predicted by a separate potential flow code as developed by
Geurst (1961). The comparisons of the predictions are demonstrated against the benchmark data
of the Sydney Express (ITTC, 1987). The predictions demonstrated significant potential and
were then taken over by the Cooperative Research Ships (CRS) group to be developed further.
More recent examples are demonstrated by Firenze and Valdenazzi (2015) and Hallander et
Al.(2012).

One of the latest methods that have found widespread use in the industry is the Tip Vortex
Index (TVI) method by Raestad (1996). The predictions are made based on the extensive data-
base of on-board noise measurements of cruise ships made by Det Norske Veritas (DNV). The
importance of tip vortex cavitation has long been known by experience both from naval vessels
and cruise/passenger ships. In light of this knowledge, DNV gathered a database of full-scale
measurements for calculation of some statistical coefficients that are present in the tip vortex
index method (Abrahamsen, 2005). According to Raestad, the pressure peaks at blade frequen-
cies are due to blade cavitation and the following broadband nature of the spectrum is due to
tip vortex cavitation. In addition to that, by presenting the pressure measurements conducted
on Queen Elizabeth 2 cruise liner, Raestad demonstrated the impact of tip vortex cavitation in
the propeller slipstream on the emitted noise levels. The method is limited to fully developed
tip vortex cavitation for high powered ships with highly optimised propellers, but the method-
ology adopted carries greater importance as it proves the concept. The theory established in this
context is the Intellectual Property of DNV and based on the pressure field calculation of cavity
volumes on propeller blades using lifting line theory. The theory, however, was also adopted
and developed by other major European facilities and demonstrated again by Firenze and
Valdenazzi (2015).

Considering all of the reviewed major studies, development of a method for the prediction of
underwater radiated noise induced by a cavitating propeller has experienced significant evolu-
tion. Yet, unsteady cavitation is a highly complex phenomenon that necessitates the implemen-
tation of non-linear equations. Whilst the current state of the art has reached a point where

relatively more accurate predictions can be made, the CFD simulations that reproduce realistic
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cavitation dynamics are still in their infancy (Lidtke et al., 2015). In this respect if the prediction
methods presented are categorized; Baiter’s and Matusiak’s method requires information from
another code that uses potential flow based methods to calculate mainly sheet cavitation extent,
as it fundamentally neglects viscous effects. Raestad’s method, however, concentrates on the
tip vortex cavitation phenomenon and hence no account is made regarding the sheet cavitation.
Thus, there is no existing method that can calculate the noise emissions from both sheet
cavitation and tip vortex cavitation. This is due to their complex nature and dynamics such as
the shock waves formed, rebounding of the cavitation bubbles and interaction and entrainment
of super-cavitating sheet cavitation into the tip vortex (Wijngaarden et al., 2005).

2.8.1 Computational propeller noise prediction methods

In addition to the above empirical, semi-empirical and statistical approaches for the prediction
of ship propeller noise, with the recent developments in computational power, is also possible
to be predicted using various CFD tools. Currently, computational prediction of the radiated
noise is divided into three parts. The first part is devoted to the calculation of the ship wake
field often obtained by Reynolds Averaged Navier-Stokes Equations (RANS) simulations. Fol-
lowing this, the propeller operation is then analysed using a Boundary Element Method (BEM)
or vortex lattice method, or by utilizing the RANS platform used for the wake field calculation.
Finally, a prediction is made for the far field radiated noise due to the cavitating propeller or
hydrodynamic noise sources in general. For this purpose; an acoustic BEM that solves the
Helmholtz or FW-H equations (Williams & Hawkings, 1969) are employed (van Wijngaarden,
2011; Firenze & Valdenazzi, 2015; Hallander et al., 2012).
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Figure 2-10 Flow chart for the computational prediction of cavitation noise (Reproduced from (van
Wijngaarden, 2011))

With such an approach as outlined in Figure 2-10, prediction of the cavitation noise of a marine
propeller is possible through coupling of up to five different software modules, while there are
other software platforms that enable the prediction through only one as demonstrated by
Kowalczyk & Felicjancik (2016). Overall, the prediction using CFD methods are time-consum-
ing, cumbersome and expensive. Furthermore, the accurate prediction of the cavitation noise
requires a very detailed analysis of unsteady cavitation behaviour, such as cavity clouds and
cavitating vortices generated by the collapse of sheet cavitation. This necessitates a time accu-
rate modelling of turbulence for which Large Eddy Simulations (LES) are even more expensive
in terms of the computational time (Bensow & Goran Bark, 2010). Thus, whilst such develop-
ments are of great importance and carries great potential with the further development of the

computational power, for the current state of the art it is in its infancy.
2.8.2 Experimental propeller noise prediction

Model scale experiments focusing on noise are usually performed to predict the full-scale
acoustic source strength of a given design of cavitating propeller with respect to the underwater
radiated noise for a broad range of frequencies (Blake, 1986, 1984). Since the main focus of
such tests is the cavitation noise, the experiments are conducted either in a cavitation tunnel or
a depressurized towing tank. During the set-up of such tests and the post-processing of the data,
there are various components and procedures that require utmost attention and experience to

ensure accurate measurements and reasonable predictions are made (Bark, 1985).
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2.8 Propeller noise prediction methods

The most important component of propeller cavitation noise experiments is the propeller model.
The model should be manufactured to meet the precision criteria for acoustic tests. The ITTC
specifies the maximum offset for the blade sections to be in the range of + 0.05 mm for a typical
minimum diameter of 250 mm (ITTC, 2011c). Furthermore, the propeller blade edges should

be manufactured with great care to avoid singing (Brennen, 2007; Fischer, 2008).

The most influential parameter after the propeller is the wake inflow. The propeller operates in
the wake of the ship hull which leads to loading variations on the propeller blade (Harvald,
1981). These loading variations are the principal factor while simulating cavitation inception
and dynamics which emit high level of cavitation noise (Brennen, 1995). The loading variation
thus needs to be adequately modelled for the cavitation tunnel testing. The wake to be simulated
in cavitation tunnels is either achieved by means of nominal wake measurements in towing
tanks and extrapolation to full scale using ITTC guidelines (ITTC, 2011b) or by using CFD
tools. Following the determination of the target wake, the wake field can be generated for the

experiments using the following configurations;

e Wire screen meshes for the cavitation tunnels with small test sections. Cost effective
and relatively simple method, simulating only axial velocity component of the wake
field.

e “Dummy” models are utilized at medium size facilities in conjunction with wire screens
as the removed parallel mid-section due to dummy model concept results in relatively
lower Reynolds Number and hence a boundary layer which is not sufficiently developed

e Full ship models, which are used for the towing tank tests, are also utilized for the cav-
itation tunnel testing in the facilities with large test sections. There may still be a need
for wake screens if the differences due to the extrapolation of the wake to full scale are

significant.

In addition to the above wake simulation methods, recently research (van Wijngaarden, 2011)
has shown that the representation of the full-scale wake can be also achieved by purpose built
models to replicate the full-scale wake based on the CFD calculations instead of geometrically

similar (geosim) models.
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2.8 Propeller noise prediction methods

The type of wake simulation method used is also important in terms of the turbulence intensity
introduced. In general cavitation tunnel LDA measurements have shown that, as the net mesh
area ratio is decreased (i.e. mesh size getting smaller), the level of turbulence increases. This
demonstrates the effectiveness of the wire meshes to create different levels of the turbulence

intensity.

The cavitation noise experiments also need utmost attention during the execution of the tests as
there are a number of factors that require correction or disposal of the data. One of the most
influential factor is the background noise of the facility. Background noise is determined in the
tests at the exact operational conditions of the cavitation noise tests, and where a dummy boss
replaces the propeller. The data needs to be removed if the difference between the background
levels and the cavitation noise levels is less than 3 dB and a correction is applied if the difference
is between 3 to 10 dB. No correction is required for differences higher than 10 dB (ANSI, 2009).
The major noise sources contributing to the background noise are turbulent boundary layer

noise, impeller noise and propeller dynamometer and motor noise.

As cavitation tunnels are closed circuits with a chamber type measuring section, they are highly
reverberant environments. Therefore, the influence of the testing environment on the noise
transfer function needs to be determined in order to properly relate measured SPLs to source
levels at a normalized distance of 1 m (Park et al., 2009). Such a correction is determined by
substituting a calibrated noise source for the propeller. The hydrophone measurement and the
calibrated source levels are then compared in order to determine the transfer function of the

sound within the testing section.

Following the application of the corrections discussed above, the ultimate noise measurements
are extrapolated to predict full-scale cavitation noise. The scaling methodology is based on
theoretical bubble dynamics for radial motion of a cavitation bubble (Bark, 1985). Extrapola-
tion methods are either based on the spherical spreading loss (Starsberg, 1977) or constant
acoustic efficiency (De Bruijn & Ten Wolde, 1974).
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2.8 Propeller noise prediction methods

In addition to full-scale noise prediction, cavitation tunnel experiments also provide invaluable
insight regarding the noise creating mechanisms of the cavitation phenomena. For this purpose,
measured time signals are fed into Joint Time-Frequency Analysis (JTFA). The influence of
the cavitation events in time signals are visualised using spectrograms and their corresponding
response in the frequency domain (Fitzsimmons, 2009). The synchronization of the pressure
signal and the cavitation observations enables the interpretation of the impact of instantaneous
cavitation events as well as the determination of broadband and tonal noise source identification
(Filcek, 2006). This type of analysis allows the user to interpret single signals in terms of their
effect to the overall spectrum and enables a better understanding of the reasons for the spectral

characteristic in the frequency domain (Fitzsimmons, 2014).

Cavitation noise tests are configured to match the required cavitation number. However, tip
vortex cavitation inception is generally observed to be premature at model scale for the exact
cavitation number condition (Latorre, 1982; Hsiao & Chahine, 2008). Since tip vortex cavita-
tion is significantly influenced by the viscous core of the vortex and therefore by the Reynolds
number (Kuiper, 2012), use has been suggested of a ratio based on the Reynolds numbers as

seen in Equation 7.

Equation 7

m
Ui,full scale __ ( Refull scale )

Ui,model scale Remodel scale

The exponent “m” is determined as a result of detailed investigations and comparisons of an
extensive database for full-scale and cavitation test information. Such studies have been con-
ducted using an experimental approach (Oshima, 1994) and by CFD simulations (Hsiao &
Chahine, 2008). Whilst the above argument stands valid for the inception condition, Bosschers,
(2010) argues that the cavitation number identity is still valid for the developed tip vortex cav-

itation since the vortex core is not influential on the cavitating vortex diameter.

Overall, amongst the several propeller noise prediction methods reviewed, cavitation tunnel
experiments can be concluded to be most appropriate for the adoption of a systematic approach
using a standard propeller series. This is due to the fact that while CFD methods hold a great

potential for the future, they are computationally expensive and time-consuming for studying
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2.9 Experimental propeller noise test cases

an extensive simulation matrix. In addition to that, the simulations are rather incapable of cap-
turing major noise creating mechanisms such as cavitation dynamics. Empirical and statistical
based methods are not sensitive to detailed propeller design parameters hence neither they aid
in recognizing the influences of such parameters on the RNL, nor they are sophisticated enough
to capture cavitation dynamics.

2.9 Experimental propeller noise test cases

Experimental noise studies with the propellers are of great importance as they represent the
state of the art and lead towards the knowledge gaps within the literature. Whilst, there is no
study that has used standard propeller series for noise testing, some studies have compared the
effect of some major propeller designs and operation parameters and wake inflow effect on the
radiated noise levels.

In his early study, Holden (1981) carried out an experimental campaign with six propellers out
of four that have been tested in the same wake field and two in different inflow conditions. The
study set out to investigate the effect of BAR, radial camber and pitch distribution and skew
with the four propellers and to look into the effect of wake inflow with an additional two pro-
pellers. This work reported that higher BAR, tip offloading and skew reduced the emitted noise
levels originating from the propeller cavitation. While the tests have led to some significant
conclusions regarding the major propeller design parameters, it failed to take into account wake
inflow variations. Moreover, it is not known if the propellers tested were members of a standard
propeller series. Whilst detailed pitch and camber distributions are provided for all propellers;
there is no mention to their blade section shapes.

Sharma et al. (1990) conducted extensive experiments with three basic propellers models of
different design to investigate the effect of advance coefficient, cavitation number and propeller
geometry on radiated noise levels in uniform flow conditions. Furthermore, one of the propel-

lers was tested behind a typical single screw vessel wake which led to the conclusion that wake
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2.9 Experimental propeller noise test cases

is one of the most important parameter for noise generation. Although the study provides valu-
able information and is one of the most important studies conducted on this subject, the work
was limited to testing three independent propellers with no systematic variation of parameters.
The tests were only carried out in uniform flow. Thus, no relation can be drawn from this study
with regards to the influence of major propeller design parameters on the radiated noise levels

of ships.

A recent, influential study by Konno et al. (2002) studied sheet and tip vortex dynamics phe-
nomena. The research considered the modern propeller design tendency to use highly skewed
propellers for lowering pressure fluctuations. However, the skew distribution created a strong
cavitating tip vortex which emitted high levels of acoustic pressure when deforming within the

wake peak.

The experimental strategy of this study centred on the effects of various parameters on tip vor-
tex cavitation dynamics (the so-called bursting phenomenon). One of the most important
aspects of this study was the inclusion of four wake variations. The severity of each wake was
determined by means of the wake fraction gradients. The developed wakes were tested with
two propellers having different pitch distributions as shown in Figure 2-11. The experiments
were conducted at different cavitation numbers and thrust coefficients in order to assess the

influences of such parameters.
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Figure 2-11 Wake non-uniformities (left) and propeller pitch distributions (right) of Konno et al.,
(2002)

The study draws some remarkable conclusions on the effects of such variants on the radiated
noise levels. First of all, the wake inflow has a high influential on the radiated noise levels and
the results of this study confirm that the cavitation noise increases with the increasing wake
severity. Moreover, the study also indicates that the measured levels increase over the whole
frequency range, as expected, with the decreasing cavitation number. Whilst certain trends are
observed for the thrust coefficient and propeller pitch distribution they are more complex in
nature due to the highly irregular cavitation interaction and dynamics. Although this work pro-
vides some vital evidence of how propeller cavitation noise changes with respect to propeller
pitch distribution and operation parameters in conjunction with the flow non-uniformity alter-
ation, it is limited by the absence of tests regarding the major propeller design parameters and

small number of test conditions conducted.

The studies reviewed here point to a knowledge gap in terms of systematically designed exper-
imental propeller tests. The research to date has explored the effect of single parameters on the
radiated noise levels, however, there is no single comprehensive study of propeller geometry
and wake structure that would enable implementation of a noise performance tool within the
propeller design spiral and it is not practical to design and conduct such a complex experimental
campaign. Thus, a series of experimental studies are required ranging from simple to complex

in order to evaluate noise measurement capabilities of cavitation tunnel experiments.
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2.9 Experimental propeller noise test cases

One of the most simple to implement yet inherently unsteady experimental case is testing a
propeller in oblique inflow condition. The inclined shaft introduces a cyclic variation of inflow
conditions thus, a systematic variation of propeller cavitation performance and resulting noise
signature. The implications of such a test case and previous studies on the subject are reviewed
in the following subsection.

2.9.1 Inclined shaft effect on propellers

The inclined shaft effect and flow on a propeller is a well-known, fairly straightforward, un-
steady flow phenomenon. It occurs either due to design choices in shafting configuration and
afterbody shaping or due to motions of the vessels whilst underway. Shaft inclinations may be
imposed in accordance with the engine arrangements, the need for sufficient propeller tip sub-
mergence, for increased minimum propeller tip clearance from the hull or for improving the
wake flow to the propeller. On the other hand vessel motions can result from the stern wave,
dynamic trim, pitching and heaving in heavy seas, and yawing and drifting of the vessel during
manoeuvring. Figure 2-12 shows a sketch to describe some fundamentals of the inclined flow

phenomenon.

Direction of general flow b

~ Looking forward

Figure 2-12 Inclined Flow Effect (Carlton, 2012)

Inclined flow imposes a cyclic variation of the incident tangential velocity and hence a change
in the inflow angle to each aerofoil section comprising the propeller. This effect is more severe
at the inner radii since the tangential velocity variation becomes a greater percentage of the
shaft rotational vector compared to the blade tip speed. The oblique flow increases the variation
in angle of attack and hence causes each blade section to operate farther from its design angle,

inducing a range of cavitation and radiated noise issues.
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2.9 Experimental propeller noise test cases

The literature on propeller shaft inclination has hitherto explored the cavitation extent and over-
all performance forces and moments (thrust, torque) (Gutsche, 1964, Hadler, 1966, Taniguchi
et al. 1969 and Kozhukharov & Sadovnokiov 1983).

Gutsche’s pioneering work included a combination of theoretical and experimental research
work involving six model propellers. The propellers varied in terms of the BAR and P/D ratio,
while all had a 200 mm diameter. The simulated shaft inclination angles were chosen as 0°, 20°
and 30°. The resulting experimental data was used to develop a quasi-steady flow analysis
method. The explanatory English description of Gutsche’s study can be found in (Hadler, 1966).
Further experimental investigations were conducted in the Mitsubishi Experimental Tank
(Taniguchi et al. 1969).using 5 super cavitating propellers with different P/D and expanded area
ratios (EAR). These tests covered a relatively smaller range of shaft inclination angles: 0°, 4°
and 8°.

Although one may find further examples of other experimental studies as reported e.g. in
(Carlton, 2012), the study conducted by (Kozhukharov & Sadovnikov, 1983) is of greater value
due to its inclusion of detailed cavitation sketches for the conditions tested. The results obtained
from this systematic series of propellers (designed using a lifting surface code) were used for
populating the data and a validation study was conducted using the quasi-steady Gutsche
method (Gutsche, 1964).

While the inclined flow effects can cause serious performance problems for a propeller - such
as loss of thrust; erosion; intensified cavitation; and thrust and torque fluctuations - a compre-
hensive, systematic experimental investigation on inclined shaft phenomena is scarce. Under-
water radiated noise data is even scarcer. Assessment of propeller cavitation and noise charac-

teristics at different flow inclinations thus provides an essential body of such missing data.
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2.9 Experimental propeller noise test cases

2.9.2 ANN for data management & post processing of systematic experi-

mental data

Systematically designed propeller experiments comprise of a large testing matrix. Thus, it is
unavoidable that such tests will result in a colossal amount of data. One of the most vital parts
of carrying out experimental studies is the data management analysis procedure and post pro-
cessing. Furthermore, such databases are also of utmost importance as they constitute a poten-

tial source for development of a database for statistical methods to enable prediction tools.

A survey of the various statistical methods has shown the potential of Artificial Neural Net-
works (ANN) with functionality to “learn” trends within the database using massive intercon-
nection of simple computing cells referred to as “neurons”. Examples of ANN in the Marine
field have been shown to excel not only in recognising complex patterns and trends but also
with a high accuracy of predicting points that are outside the initial database. A plethora of
studies have been conducted for a range of marine applications (Gougoulidis, 2008) in his com-
prehensive review. The versatility and power of the ANN is demonstrated through applications
including: stability (Alkan et al., 2004), sea-keeping (Cepowski, 2007), preliminary ship design
(Clausen et al., 2001), hull resistance prediction (Couser et al., 2004), diesel engine
troubleshooting (Dimoulas & Nightingale, 1996). Whilst there are ample marine applications
of ANN, the use of the neural network is also common for propeller design and performance
prediction.

Noteworthy ANN studies were conducted by Neocleous & Schizas (1995, 2003, 1999) on a
variety of propeller-based applications, including cavitation extent prediction, performance co-
efficient estimation for propeller design and performance comparison of Wageningen-B series
propellers (Oosterveld & Van Oossanen, 1975) with United States Navy (USN) series propel-
lers (Denny et al., 1989).
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Another major work with ANN in the marine propeller field was made by Calcagni et al. (2010).
An automated marine propeller design algorithm was developed based on data from a virtual
standard propeller series using inviscid—flow model predictions. The method was then extended

to the ducted propellers following confidence gained through initial comparisons.

One of the most distinguished applications of ANN for marine propellers was conducted by
Seo et al., (2011). Based on the main standard series propeller design parameters, initially, an
ANN was trained for the prediction of propeller performance coefficients. An additional net-
work was also established for the extension to three-bladed propellers from the Meridian Stand-

ard Propeller series, (four, five and six-bladed propellers).

The studies reviewed in this section provide evidence that ANN is a well-established prediction
and data management tool. Successful application of neural network methodology is clearly
demonstrated through scientific applications in the marine field with specific focus on propeller
cases. It is therefore concluded that ANN reveals itself as an outstanding tool to be utilized for
the management of data produced through the execution of noise tests for a systematic propeller

series.

2.10 Conclusions

Chapter 2 has reviewed the literature in terms of the cavitation noise of a marine propeller. The
literature review started with a brief history of underwater noise, then the background to the
subject was provided, followed by an outline of the fundamentals of acoustics. Shipping noise
was then considered as an anthropogenic source which causes disruption to marine fauna. Pro-
peller design parameters and the subsequent cavitation effects on noise were then reviewed
since cavitating propeller has been identified as the dominating source of underwater noise at
service speeds. Other considerations such as propeller efficiency were also noted. Following
this, various cavitation noise prediction methods were reviewed. Finally, systematically de-
signed experimental propeller tests focusing on the cavitation noise were revisited together with

the assessment of ANN as an efficient data management and associated prediction tool.
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2.10 Conclusions

Based on the review conducted in this Chapter it has been noted that the subject of URN expe-
rienced a recent surge of research interest. This is due to increasing concerns about the noise
emitted by commercial shipping and hence significant rise in the ambient noise levels of the
world seas during the last seven decades as a result of global commerce and advancements in
marine transportation. Whilst there are many environmental and anthropogenic contributors to
the ambient noise spectrum the low-frequency regions are dominated by commercial shipping
noise. Unfortunately, this frequency range is also used by marine mammals for various life-
preserving activities. Thus, if the noise levels emitted by commercial shipping are not regulated,
they may result in distress to these mammals and have longer-term implications which are still

unclear but have the potential to be significant.

In order to be able to regulate and minimize the impact of commercial shipping on underwater
radiated noise, accurate prediction at an early design stage is vital. Thus, this chapter critically
reviewed various computational, empirical and semi-empirical methods. Regrettably, the re-
view has revealed that although such above mentioned methods can give a rough indication of
cavitating propeller noise, cavitation dynamics are the major noise sources which have not been

represented by such methods.

Overall, it can be concluded that the state of the art is missing detailed information that can be
produced by means of extensive experimental campaigns to enable the prediction of propeller
cavitation noise. In addition, there is currently no practical way to provide a quick insight the
to the RNL performance of a vessel at an early design stage, due to the complexity of the dom-
inant cavitation phenomena. Furthermore, a large body of publicly available URN data is non-
existent, yet is vital for the development and validation of the more advanced prediction meth-
ods. The experimental approach to be adopted in this thesis can be thus justified. The nature of
the tests are designed to both provide detailed information about experimental techniques and
their validity as well as providing the public with valuable detailed URN data for ship and

model scales.
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3.1 Introduction

Chapter 3 Experimental Facilities, Equipment &

Data Analysis

3.1 Introduction

Chapter 3 provides a description of the experimental facilities and equipment utilized within
the framework of this thesis. Information on the major facilities is provided, such as the “Em-
erson Cavitation tunnel” and RV “The Princess Royal ”. Following this, the main equipment
inventory such as dynamometers, noise measurement, water quality monitoring, imaging
devices, are introduced. Information regarding the complementary data analysis methodolo-
gies for the test results are provided, together with various guidelines.

3.2 Emerson Cavitation Tunnel

Newcastle upon Tyne has been a centre for cavitation research for more than 100 years and is
credited with being the birthplace of the world’s first cavitation tunnel built by Charles Parsons
in 1895 (Burrill, 1963) featuring a 2-inch tunnel. In 1910, Parsons built the first large tunnel
(500mm square section) and following WWII a modern tunnel was erected in 1949. This was

subsequently named the Emerson Cavitation Tunnel (ECT) (Atlar, 2000).

The tunnel has served the British ship industry and contributed to international research contin-
uously since its inauguration in 1950, and it has undergone several major upgrades and modi-
fications to maintain its status within the hydrodynamic research community as one of the living
legends. The latest upgrade was in 2008 when significant portions of the facility were upgraded

to ensure that state of the art experiments, of high accuracy, could be carried out.
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3.2 Emerson Cavitation Tunnel

The tunnel is a closed circuit depressurized tunnel with a measuring section of 3.1m x 1.21m x
0.8m (LxBxH), as shown in Figure 3-1 and Figure 3-2. More detailed information about the
tunnel in detail after the recent upgrade is given by Atlar (2011) and general specifications can
be found in Table 3-1.
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Figure 3-2 Panoramic view of Emerson Cavitation Tunnel and test set-up.
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Table 3-1 Emerson Cavitation Tunnel specifications.

Tunnel

Emerson Cavitation Tunnel

Establishment year

1949

Description of facility

Vertical plane, closed circulating

Test section size (LxBxH)

3.10x1.22x0.81 m

Test section area

0.99 m?

Contraction ratio

4.271

Drive system

4 Bladed axial flow impeller with thyristor control

Main pump power

300 kW

Main pump rotational speed

294 Round Per Minute (RPM)

Impeller diameter

14m

Maximum velocity

8 m/s (15.5 knots)

Absolute pressure range

7.6 KN/m? (min) to 106 kN/m? (max)

Cavitation number range

0.5 (min) to 23 (max)

3.3 Research Vessel “The Princess Royal”

Newcastle University replaced its aged, slow-speed mono-hull research vessel with a modern
and relatively high-speed catamaran, named “The Princess Royal”, to support marine research,
teaching and consultancy activities currently ongoing in the North East of England. The hull
form of the new research vessel was designed by the staff and students of the School of Marine
Science and Technology (MAST). The catamaran design was based displacement type Deep-
V hull forms but with a novel anti-slamming bulbous bow and a tunnel stern as described in
detail by Atlar et al. (2013). The vessel was built in aluminium alloy by a local North East Yard.

Figure 3-3 shows the views of the research vessel whilst, Table 3-2 displays its main particulars.
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Table 3-2 Main particulars of “The Princess Royal” as built.

Launching date & place

11 August 2011 & Alnmaritec, Blyth (UK)

Hullform Displacement type Deep-V catamaran with sym-
metric demi-hulls

Length overall 18.88m

Length BP 16.45m

Breadth Moulded 7.03m

Breadth Extreme 7.34m

Depth moulded 3.18m

Demi-hulls separation (C. to Cy) 4.9m

Displacement (Lightship) 36.94tonnes

Draught (Lightship) (Amid - FP - AP)

1.65m—-1.6m—-1.7m

Deadweight data

7.32tonnes (Excluding 2tonnes of deck cargo)

Table 3-3 Propeller, engine and gearbox particulars of “The Princess Royal”.

Propeller particulars

Number of propellers & type

2 (one per shaft) & fixed pitch

Propeller diameter 0.75m
Pitch to diameter ratio at 0.7R 0.8475
Expanded blade area ratio 1.057
Number of blades 5
Rake angle 0°
Skew angle (back) 199

Direction of rotation

Port-left turning / SB-right turning ; outwards

Hub dia. to propeller dia. ratio

0.18

Blade thickness to propeller dia. ratio
at 0.2R

0.04

Blade loading distribution (radially)
Blade loading distribution (chordwise)

Wake adapted
NACA a=0.8

Thickness distribution

NACA 66 modified

Material

Ni-Al-Br
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Engine particulars

Number of engines & Type 2 & QSM11-610 HO Cummins Mercruiser Diesel
Power rating (each) 449 kW (602 BHP) @ 2300 rpm
Cylinder-Displacement-Bore-Stroke 6 - 10.8It — 125mm — 147mm
Fuel system CELECT
Aspiration Turbocharged — seawater after cooled
Fuel consumption at rated speed 117 It/hr
Gearbox particulars
Number of gearbox & Type 2 & QuickShift (Twin disc marine transmission) —
MGX 5114 A (intermediate duty)
Reduction ratio 1.75:1
Input speed limits 330 rpm (min) / 3000 rpm (max)

3.4 The Equipment inventory

The experimental approach devised for this study required a large variety of instrumentation.
While some equipment was already present within ECT (i.e. flow measurement devices, water
quality monitoring system, propeller dynamometers, visual recording devices, noise measure-
ment system), some new equipment was also found necessary (i.e. Pressure sensors and Data
Acquisition system). This equipment is presented in this chapter together with the selected ac-

quisition system, data presentation method and data analysing techniques.
3.4.1 Flow measurement

Cavitation tunnel experiments involve detailed measurement and monitoring of flow properties
such as the air content, velocity and turbulence intensity. Whilst flow measurements used pitot
tubes in the past, today’s technologies enable measurements without interrupting the flow; re-
sulting in higher accuracies. Within the present studies, flow measurements were necessary for
two instances. One was the simulation of the target wake in conjunction with a dummy model,
as presented in Chapter 5 for which a Particle Image Velocimetry (P1V) system was used. The
second was the construction of systematic axial wake variations for which wake screens were

used together with Laser Doppler Anemometry (LDA) as presented in Chapter 6.
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34.1.1 Particle Image Velocimetry

During the process of simulating a wake map in a cavitation tunnel, the traditional method of
measuring the wake flow velocities was to use Pitot tubes. These have been replaced in recent
years by laser-based systems allowing non-intrusive measurements. A PIV type field flow
measurement device is one such time-saving, practical system. The Stereoscopic PIV (SPIV)
device used in the ECT is a Dantec Dynamics Ltd system and a summary of its technical details

is given in Table 3-4.

Table 3-4 Details about the Stereoscopic PIV.

Laser NewWave Pegasus
Light sheet optics 80x70 high power Nd:YAG light sheet series
Synchronizer NI PCI-6601 timer board
Camera NanoSense MK 111
Sensor size 1280x1024 pixels
Maximum capture frequency 1000Hz
Maximum images 3300
Calibration target Multi-level 270x190 mm, 2™ level -4
Seeding particles Talisman 30 white 110 plastic powder

The SPIV setup used during the experiments for this thesis includes a laser illumination system;
two high-speed PIV cameras; and a timer board to synchronize the whole measuring system. A
Pegasus-P1V laser system, which consists of two IR laser heads, can generate high-energy laser
light to illuminate the measuring area for a double-frame image-capturing task. And a closed
laser light guide arm transfers the light to an 80x70mm light sheet optic to produce a light sheet
and the velocity of seeding particles passing through the light sheet is measured. Therefore, the
thickness of the light sheet is set 4 mm so that the camera can have enough time to capture the
movement. Two high-speed cameras are used to capture the image from both sides of the light
sheet and a traverse system is also included to move the light sheet and the cameras. The setup
of the SPIV system in the ECT is shown in Figure 3-4. Although, PIV is a relatively expensive
system in contrast to the traditional Pitot-tube measurements, it enables scanning a large area
of the tunnel volume allowing streamline tracing and rapid positioning of the wire mesh screens

for the simulation of the target wake as well as being non-intrusive to the flow.
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Cameras

Bl Light Sheet

Figure 3-4 Setup of Stereoscopic PIV for measurement of Dummy Hull wake.

In order to calibrate the SPIV system, a multi-level 270x190 mm calibration target had to be
used and therefore installed beside the propeller shaft at the wake plane, as shown in Figure
3-5. In the calibration process, it is generally assumed that the X,Y-plane where Z=0 corre-
sponds to the centre of the light sheet, but in practice this assumption may not hold since it can
be tough to align the calibration target properly with the light sheet. In order to improve the
accuracy of the calibration, the initial calibration results needed to be refined by combining the
images acquired simultaneously from both cameras with a built-in calibration refinement func-
tion. The comparison is presented in Figure 3-6 along with the coordinate system definition.
The green grid the initial calibration results, whereas the red grid represents the refined calibra-

tion results.
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|

Figure 3-6 Calibration result (left image for th‘e forward camera and right image for backward camera)

Throughout the measurements, 100 double frame image pairs are captured with a 100Hz fre-
quency and 240us delay between two frames. A sample of the captured images and a sample
of the normalized cross-correlation map between two frames are illustrated respectively in Fig-
ure 3-7 and Figure 3-8. As shown in Figure 3-8, the peak value is much higher than the others
in the interrogation area 64x64 pixels. Accordingly, the image quality and the seeding control

are qualified for PIV measurement.
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Figure 3-7 An example of PIV Images

Figure 3-8 Normalised cross-correlation map

In order to analyse the images and hence to determine the flow velocities, at the beginning of
data analysis, adaptive PIV analysis is used for the two-dimensional images from each camera.
Range-validation and moving-average validation are used to eliminate invalid data. Afterwards,
by combining the calibration results and the two-dimensional image data, SPIV results could

be achieved. Finally, the results of the 100 samples are averaged to obtain the final SPIV result.
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3.4.1.2 Laser Doppler Anemometry

LDA is an optical technique ideal for non-intrusive 1, 2 and 3 dimensional point measurement
of velocity and turbulence distribution. The basic configuration an LDA/Phase Doppler Ane-
mometry (PDA) is composed of a continuous wave laser, transmitting optics, receiving optics,
signal conditioner and a signal processor. The laser beam is split in a Bragg cell (beam splitter)
to produce a probe volume that is few millimetres long. The tunnel water is mixed with seeding
particles, which scatters the laser light as they pass through the probe volume. The changing
light intensity is then collected back by the receiver to be processed and transformed into the
velocity and turbulence information. In the ECT LDA measurements are conducted with laser
Doppler velocity device from Dantec Measurement Technology. A summary of its technical

details is given in Table 3-5.

Table 3-5 Technical details of the LDA system.

LDA/PDA flow measur- Dantec Measurement Technology (upgradeable to 3 Dimensional
ing device LDA)
Electronics Multi-PDA Signal Processor
Laser type and power Genesis Air cooled Laser Diode System- Max 1.1W output
Probe details 60mm diameter 2 Dimensional submersible type with 500mm working
distance
Traversing system 3-dimensional computer driven with a range of 590 mm x 690 mm

The development of novel systematic variations of axial wakes using wake screens is achieved
using the LDA unit set up and run through BSA Flow Software (Figure 3-9). A measuring grid
is defined at 1.5 propeller diameters downstream of the wake screen and included points on the
non-dimensional radius (r/R) values of 0.3, 0.5, 0.7, 0.9, 1.1 for every 10 degrees making up a

total of 180 point measurements as shown in Figure 3-10.
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The measurement grid defined for the BSA software is modified to account for refraction of the
beams in the water, hence there is a discrepancy between the set grid and the effective (actual)
grid, i.e. the information relayed to the automated traverse system that controls the laser probe
and the actual grid inside the measuring section. As the measurements were taken through the
bottom window of the ECT only the ‘z” (vertical component is affected by the water refraction.
At each measurement point conditional measurement is set as, 10000 samples or 30 seconds,

whichever came first.

3.4.2 Water quality

The cavitation experiments should always be performed under certain water quality conditions
(ITTC, 2011c). The water quality of the ECT is monitored throughout all cavitation tests as it
has a significant impact on the measurements. ECT has a dedicated water quality monitoring
system and degassing system to keep the oxygen saturation level of the tunnel at desired level.
The tunnel water quality is recorded using two systems in conjunction. The first device enables
continuous monitoring of the water quality using the MS5 mini sonde (Figure 3-11) and the
dedicated Hydrolab software. The probes attached to the tip of the mini sonde measure the water
quality within a tubing arrangement through which tunnel water is pumped. The second device
is a handheld meter for dissolved oxygen, from YSI instruments (Figure 3-12). This enables
instantaneous on-demand measurements of the water quality for cross checking with the con-

tinuous monitoring system.
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v

Figure 3-11 Hydrolab mini sonde MS5.

Figure 3-12 YSI 550A Handheld DO, Meter.

The ECT tunnel water is replaced annually with fresh water saturated in terms of the gas con-
tent. As such quantities of gas present in the tunnel water introduce measurement discrepancies,
the gas content is regulated by means of a degassing system. The tunnel water is thus brought
to the levels suggested by the ITTC (1987, 2011c). Gas content is one of the most influential
parameter for the hydro-acoustic properties of the facility as well as dominating the cavitation
dynamics, inception and extent. Higher levels of gas content will lead to a reduction in sound
speed which changes the Mach number and the acoustic impedance of the fluid. The gas content
should be kept to a minimum in model scale testing since too high of a gas content leads to a

reduction of noise levels at high frequencies (Bark, 1986).
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The ECT degassing method consists in creating an interface between the water and the local
atmosphere and applying a vacuum. An expanded interface between the water and local atmos-
phere is obtained through the injection of millimetre air bubbles into the water through porous
walls of submerged cylinders. The method is based on the idea of using the cavitation tunnel
itself as the volume in which the water-atmosphere interface is formed. The tunnel provides a
convenient environment for water degassing as it is already adapted to work under vacuum.
The air bubbles are injected through a porous wall into water at the certain depth as shown in
Figure 3-13. As the bubbles move vertically towards water free surface the dissolved air

transfers from the water into the bubble’s volume.

Air cutting j——=——""

valve i
Holders of C onnectil.lg. tub.es Steel tubes
the bubble of bubbl.e mjection protecting bubble
injection cylinders injection
cylinders cylinders

Figure 3-13 Bubble Injection cylinders of the ECT.

The injection of bubbles in the descending leg of the tunnel creates a slow, reverse flow due to
the airlift effect. This process is shown schematically in Figure 3-14. The air buoyancy effect
obliges the whole volume of the cavitation tunnel to cross the volume of the degasser. This
enables de-aeration of the tunnel water without having the main pump working.
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Figure 3-14 Degassing process of the ECT by application of millimetre bubbles under vacuum condi-

tion.
3.4.3 Dynamometers

ECT propeller tests are conducted using two high accuracy dynamometers. The experiments
such as open water propeller tests are performed with H33 due to its higher torque and thrust
range. Whereas, ship model cavitation tests and tidal turbine measurements are made with R45

as the measurement range of torque and thrust is smaller for such cases.

3431 Kempf & Remmers H33

The Kempf & Remmers H33 dynamometer, with its torpedo-shaped outline, is commonly used
for open water experiments due to its relatively bigger range of thrust and torque compared to
the Kempf & Remmers R45. The dynamometer is attached to the driving motor by means of a
Cussons type H101-27 system for shaft height and angle adjustment, which facilitates testing
for propeller inclination as well as yawing and heaving effects. The H33 is able to measure
torque values up to 147 Nm and thrust values up to 2943 N with maximum permissible revolu-
tions of 4000 RPM.
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Figure 3-15 Kempf & Remmers H33 dynamometer attached to the bevel gearbox (Left) and during
calibration (right).

3.4.3.2 Kempf & Remmers R45

Kempf & Remmers R45 dynamometer is dedicated to the relatively smaller ranged experiments
such as model ship cavitation tests and tidal turbine testing. It has greater accuracy for low
forces and moments and is suited to fit in the size of hull models installed in the ECT. The R45
is able to measure torque values up to 15 Nm and thrust values up to 400 N with maximum
permissible revolutions of 3000 RPM whilst being run through a driving motor by means of a
bevel gearbox as shown in Figure 3-16.

Figure 3-16 Kempf & Remmers R45 dynamometer attached to the bevel gearbox (Left) and during
calibration (right).
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3433 Propeller performance data acquisition and analysis

The dynamometer measurements are used to calculate the propeller performance characteristics
which enable extrapolation of the non-dimensional coefficients for the full-scale prediction.
The acquisition from the dynamometer is made through National Instruments software and
hardware as shown in Figure 3-17. An outline of the analysing procedure is described in order

to give further insight into the propeller analysing methodology that is adopted.

Figure 3-17 National Instruments hardware and software.

Following static calibration of the dynamometers, using the dedicated calibration rig, the pro-
peller is replaced with a dummy hub of similar mass and diameter in order to conduct “idle”
torque calibration to take into account of the shaft friction forces. Corrections to the measured

torque are obtained from the idle torque calibration curve and applied using Equation 8:
Q=0,—q Equation 8

Following correction; the non-dimensional torque coefficient Kq is calculated using Equation
9:
K, = L Equation 9
Q pn2D5
The water speed is determined from the detailed LDA calibrations conducted and cross-checked
with data from the Venturi manometer head and used to calculate the advance coefficient J

using Equation 10:
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|4
j=—=2

= Equation 10
nD

The thrust measurements are then corrected for two terms affecting the acquired data. The
pressure differential effects on the thrust in terms of the static pressure head are calculated using

Equation 11. The boss drag, due to the water speed is found with Equation 12.
Ts = 196.85 X Hgp Equation 11
Tp = 0.4267 XV Equation 12

The correction to the measured thrust is applied by adding the boss drag and static pressure

head correction. The corrected value of thrust is be found by Tcor using Equation 13:
Tcor = Tmeasurea + Ts + Tp Equation 13

Following the correction applied the non-dimensional thrust coefficient Kt is calculated using
Equation 14:

— TCor
T~ pn2p4

Equation 14

One of the important non-dimensional coefficients for the cavitation tunnel tests is the Reynolds
number at a reference location on the propeller blade. The general tendency is to calculate it at
the non-dimensional radius 0.7 r/R using the Equation 15. The Reynolds Number does not nec-
essarily need to be equal to the full-scale value, but it should be as high as possible in order to
maintain turbulent flow over the blade surfaces and to minimize the scale effects. It is important
that the Reynolds Number for the test should have a minimum value of 5x10° whenever possi-

ble to avoid scale effects occurring (ITTC, 2011c).

b Co7r\/V?2 + (0.77nD)?2

e

Equation 15

1%

The main purpose of cavitation tunnels is the accurate simulation of cavitation phenomena.
However, the definition of the cavitation numbers varies according to the main interest in an
experimental campaign; namely, the free stream, rotational or resultant cavitation number.
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A cavitation number based on the free stream velocity is used for the experiments where pro-
peller RPM is fixed and the tunnel flow velocity is altered. Thus, the equation is independent

of the RPM term focusing on the velocity inflow as given by Equation 16.

o :Pa+pghs_Pv
v 0.5pV2

Equation 16

A rotational cavitation number is used when the cavitation phenomenon of interest mainly re-
lates to the rotational speed of the propeller. Although no term for the free stream velocity is
included, this factor implicitly accounts for static head variations due to the flow speed. Being
able to represent both flow velocity and inflow variation, the rotational cavitation number is

commonly used for propeller cavitation tests and is calculated from Equation 17.

o =Pa+pghs_Pv
" 0.5p(nnD)?

Equation 17

Amongst these variations in cavitation number formulations, the most accurate and definition
is the resultant cavitation number due to its relatively more complex formulation. The calcula-
tion includes terms for both rotational speed of the propeller as well as the axial velocity com-
ponent as in Equation 18.

_ Pa + pghs - Pv
0.5p(V? 4+ 0.77Dn?)

Opr Equation 18

Throughout this thesis, different cavitation numbers are utilized depending on the nature and
focus of the experiment. For example, Chapter 4 of this thesis involves open water tests which
cavitation number is defined as the free stream version whilst Chapter 5 utilizes rotational cav-

itation number as it presents the ship model cavitation tests.

3.4.4 Cavitation observations

Since Parson’s first cavitation tunnel experiments, visual observations and recordings have al-
lowed a plethora of cavitation phenomena to be understood and interpreted both quantitatively
and qualitatively. The observation techniques have ranged from sketches to high-speed video

and P1V imaging.
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Within the current work, a large number of different types of cavitation observation have been
applied in order to gain insights into the nature and dynamics of propeller cavitation. Photo-
graphing propellers is a notoriously difficult application, so a range of cameras and methods
were used in order to cover as many possibilities and opportunities to get decent and useful
images.

The imaging techniques, however, differed for ship and lab based applications. Therefore, alt-
hough inventory of the photography equipment was the same, the imaging techniques were
relatively different and hence are covered separately. Table 3-6 shows the specifications of the

cameras and lenses used.

Table 3-6: Camera Specifications.

Nano Sense MKII 10000 Hz 8Gb ram
512x512 Pixels, USB and GigE 32800 Images, 3.3 Sec
Nano sense MkllI 2000 Hz 8Gb ram
512x512 Pixels, USB and GigE 6600 Images, 3.3 Sec
Nikon D700 + 20mm 2.8 lens 6400 ASA giving 1/1000 sec at f 2.8 still images

Nikon D90 Digital SLR Camera 4800 ASA giving 1/4000 sec at f 1.4 still images

Olympus Swing prism borescope

_ 30 fps video
with Watec camera

The full-scale imaging techniques included a borescope inserted through the hull using a hollow
bolt and ball-valve fitting, high-speed video recording, through flush-mounted windows, with
continuous lighting and with shaft-triggered strobe lighting, still imaging using a digital single-

lens reflex camera (DSLR) and compact digital camera recordings with stroboscopic lighting.
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Borescope observations on the vessel were made using dedicated housings inserted through
M20 tapped holes and a ball-valve fitting. The fitting is initially put into the place alongside,
while at the start of the trials the borescope is carefully inserted, the valve is opened and the eye
piece is used for focussing. Video recordings are made using an eyepiece adapter with a C-
mount thread for attaching the WATEC camera as shown in Figure 3-18. Re-focussing is nec-
essary when using the camera since its focus plane differs from the observer’s retina plane.
Figure 3-19 shows the trials equipment including the eyepiece, light amplification unit, camera
and exposure control unit. Images are acquired through a laptop using dedicated software. Alt-
hough the camera is rated at 0.000015 Lux, the light amplification unit is essential when using

a high shutter speed and due to severe light transmission loss in the borescope optics.

Figure 3-18 Full-scale borescope cavitation observation arrangement.
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Figure 3-19 Borescope observation technique parts.

Nanosense high-speed video cameras were used with the porthole setup on the trials. The cam-
eras were adapted from their usual PIV setup for use with 35mm lenses. The cameras were
paired with a continuous, high-wattage lamp with sufficient in-built cooling to be used close to
the porthole glass for continuous recording. Additionally, the cameras and a strobe unit from
the tunnel were linked through a synchronising trigger system. Better images of the cavitation
were obtained with stroboscopic lighting, but the cavity dynamics were better understood under

continuous lighting.
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Figure 3-20 Full-scale high-speed camera cavitation observation setup through observation windows.

Still images were taken through the cavitation observation portholes with a full frame 35 mm
Nikon D90 DSLR Camera fitted with a distortion-free 20 mm f 2.8 lens. This camera coupled
with the high-intensity light gave the best resolution images. The images were limited only by

the narrow scatter possible with the light source and the lack of a timing trigger.

Figure 3-21 Full-scale DSLR Camera sample image.

The model-scale imaging techniques included, high-speed video recording with continuous
lighting or with triggered stroboscopic lighting, still imaging using DSLR and flash-cam video
with stroboscopic lighting. Unlike the full-scale experiments the large Plexiglass observation
windows of the tunnel allowed a clear view of the propeller blades with plenty area to determine

the best position for image acquisition.
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The most commonly used observation technique for the cavitation tunnel tests are the high-
speed camera recordings aided with stroboscopic lighting synchronized with shaft position sig-
nal as shown in Figure 3-22. This enables freezing the image due to the triggered flash provided
by the strobe lights. Stroboscope lighting also accommodates the still imaging with a DSLR
camera by reducing the shutter speed in order to fit the image acquisition into the short bursts
of the strobe flash.

~Stroboscopic light *

High speed camera

High definition camera Plexiglass window

Figure 3-22 Cavitation observation using stroboscopic lighting.

Whilst observing blade images synchronized with the shaft speed simplifies the adjustment of
the cameras, in non-uniform inflow, it is essential to record information on cavitation dynamics.
Therefore, the high-speed cameras were also used at 5000 fps in a continuous recording mode
for the non-uniform inflow conditions. A high-intensity light source was obtained from Plasma-
Lite continuous light as shown in Figure 3-23, to allow a high acquisition rate for the high-
speed cameras. The measurements were performed whilst capturing videos and pressure syn-
chronously in an effort to relate cavitation images to characteristics of the measured pressure
time-series. This was achieved by connecting the high-speed cameras and the Data Acquisition
(DAQ) system to a signal generator, which helped filter out the signal from the motor shaft for

triggering purposes.
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Figure 3-23 Model scale continuous light cavitation observation set-up at ECT.

3.4.5 Pressure sensors and data acquisition

The pressure pulse measurements are a vital part of propeller cavitation experiments. They re-
late to forced excitation of the stern part of the hull and consequent potential accumulation of
fatigue cracks and an indication of potential erosion problems (van Wijngaarden, 2011, 2005).
During the course of the present cavitation tunnel tests and full-scale trials, pressure pickups
have been installed to measure the pressure pulses. Details are given in Table 3-8, Table 3-9
and Table 3-10. Through such measurements extrapolation methods may be applied to the

model scale measurements for scaling and comparison with the full scale.

The pressure data from the sensors were acquired using the National Instruments (NI) DAQ
system. The cDAQ 9178 chassis was used with the NI 9239 module for the output signal re-
cording of the pressure sensors. The pressure sensors were excited using a laboratory direct
current power supply being distributed to the each sensor by means of a dedicated pressure
transducer excitation voltage and junction Box as shown in Figure 3-24. The spare module slots
of the chassis were then utilized for various other measurements such as the acceleration meas-
urements using NI 9234, various digital input/output signal recordings using NI 9401 and volt-
age measurements using NI 9215. The modular approach adopted, enabled the acquisition from

different sensors to be executed using a single system as outlined in Table 3-7.
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Table 3-7 Components of DAQ System.

Product Num- o
Description
ber
NI 9924 Front-mount terminal block for 25-pin D-
781922-01
Sub Modules
NI 9239 4-Ch +£10 V, 50 kS/s/Channel, 24-bit,
779593-01
Channel-Channel Isolated Al Module
NI 9401 8-Channel, 100 ns, Transistor-Transistor
779351-01 Logic (TTL) Digital
Input/Output Module
NI19234, 4 Input, 24-Bit, 51.2 kS/s, SW
779680-01
Selectable IEPE & AC/DC
cDAQ-9178, Compact DAQ chassis (8 slot
781156-01
USB)
NI 9215 with BNC 4-Ch+-10V, 100 kS/s/Channel, 16-b, SS
779138-01 Dift. Al

ON VOLTAGE

Figure 3-24 Pressure and vibration Data Acquisition Hardware including NI CDAQ Chassis with
Modules and pressure sensors.
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Fast Fourier Transform (FFT) analysis was applied using NI DIAdem software (National
Instruments, 2014). The FFT applied had the Hanning window type and displayed the results
in peak amplitudes with no average applied. The application of the FFT analysis provides the
i-th harmonic of the blade rate for each shaft speed of the time signal. The analysed results of
the pressure peak amplitudes are recorded for the blade rate harmonics as presented in Figure
3-25.
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Figure 3-25 Appearance of typical simultaneous pressure Pulse Acquisition (left) and FFT analysis
(right) in the Labview software domain.

The pressure signals for ship trials and model tests are presented as the non-dimensional pres-
sure coefficient; K, defined in Equation 19. K, value is assumed to be constant for model Kpm
and full-scale Ky s according to ITTC (1987). The pressure values presented throughout the

thesis are extrapolated based on the above assumption and using Equation 19.

Pm Ps

= = =———=K Equation 19
/05"52*05g P f

K = =K
pm 2 D2 .S
pmanm
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The pressure measurements are conducted with three different pressure transducers used in full-
scale trials and model tests. Table 3-8 provides the details for the full-scale sensors. These were
not used for the tunnel tests due to their limitation of working under vacuum and IP67 rating
(i.e. waterproof up to 1m submergence into water). Therefore, for cavitation tunnel tests; pro-

totype MEAS pressure sensors (Table 3-9) and Kulite pressure sensors (Table 3-10) are used.

Table 3-8 Full-scale Pressure sensors specification.

Part Number Description Quantity
XPM10-S107-05BS | Miniature Pressure Sensor 4
Range: 5 bar sealed
Excitation: 10 to 30vVDC
Output: 0.5VDC to 4.5VDC
Ingress Protection: IP67

Table 3-9 Model-scale Measurement Specialities model Pressure sensors specification.

Part Number Description Quantity
XP1102-S107-05BS | Miniature Pressure Sensor 2
Range: 1 bar gauge
Excitation: 10VDC
Output: 0 to 100mVvDC
Ingress Protection: IP68

Table 3-10 Model-scale Kulite Pressure sensors specification.

Part Number Description Quantity
Xtm-190M-3.5BARA | Miniature Pressure Sensor 2
Range: 3.5 bar Absolute
Excitation: 10VDC
Output: 0 to 100mVvDC
Ingress Protection: 1P68

The pressure pulse acquisition used a 5000 Hz sampling rate for 5 seconds, totaling 25000

samples for each recording. The acquisition rate was limited due to the transmission properties
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of the pressure sensors, losing the linearity at the higher frequencies. The data recording was
initiated by a signal from the dynamometer speed decoder, conditioned with a signal generator
in order to enable synchronization with other simultaneous measurements. With a view to
ensure accurate pressure transducer measurements, a thorough investigation has been carried
out. The tests involving each element of the pressure data acquisition system and the effect of
pressure sensitivity is conducted. The results confirmed the accurate measured levels of the

cavitation induced pressure pulses.

3.4.6 Noise measurement equipment and analysing methodology

Historically, the Emerson Cavitation Tunnel was designed as an acoustic research channel when
it was originally established at Pelzerhaken in Germany. “The tunnel was one of the units of
the underwater acoustic research complex Nachrichten Versuchsanstalt; Pelzerhaken con-
structed in 1938-40. This complex was situated on the shores of the Baltic Sea in Lubeck Bay
and specialised in underwater acoustic research during the war, involving the inception of cav-
itation on sound domes, with the purpose of determining the physics of the phenomenon, as
well as designing shapes for surface vessel and submarine sound locators. Other work at this
complex included the development of a rubber coating for submarine hulls as an anti-locating
measure, which could be tested in this tunnel. The development of hydrophones and that of
depth charge proximity fuses operating on the Doppler principle for detonation below the plane
of operation of an attacked submarine were part of these activities” (Atlar, 2000). However
after shipping the tunnel to the Newcastle, the tunnel was reconstructed as a propeller testing
facility; the initial tunnel measurements indicated that the noise level of the overall facility was
high (Clarke, 1987). With the recent improvements and upgrades to the Emerson Cavitation
Tunnel, the background noise levels have significantly reduced and can be considered as a rea-
sonably silent commercial cavitation tunnel for practical propeller noise measurements (Korkut
& Atlar, 2012b).
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ECT noise measurements were made using the Bruel & Kjaer (B&K) PULSE Type 3023 data
acquisition system with a 6/1 local area network (LAN) interface and the B&K Type 8103

miniature hydrophone.

A sketch of the B&K 8103 hydrophone is given in Figure 3-26 (left). Two different hydrophone
location configurations for the noise measurement were adopted during the course of this study,
one of which located the hydrophone inside the tunnel using a foil strut support as shown in
Figure 3-26 (right). The other configuration attached the hydrophone in a water-filled, thick
walled steel cylinder which is usually placed on the 70mm thick Plexiglass window of the tun-
nel parallel the propeller plane. The latter configuration is no longer utilized due to the poor
high frequency response in comparison to the inside tunnel configuration following the experi-

ence through the inclined shaft tests that are presented in Chapter 4.

Double-shielded
Low-noise Cable

Mounting Seal

70-30 CuNi
Support

Nitrile
Butadiene
Rubber

92022772

Figure 3-26 B&K Type 8103 Hydrophone (on the right) and its streamlined foil support to fit inside
the tunnel test section (on the left).

Figure 3-27 presents further details of the B&K 8103 hydrophone; the top sketch in this figure
shows the calibration configuration of the B&K 8103 with the Piston-phone Type 4223 and the
coupler UA-0548. Even though the hydrophones were factory-calibrated, this set-up provided

quick and accurate calibration and ensured the factory calibration was still valid. The calibration
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frequency, nominally 250Hz, was 251.2Hz +0.1% as defined by ISO 266. The sound level pro-

duced by the Piston-phone was nominally 156.8 + 0.2 dB re 1 pPa at the reference conditions.

The middle sketch in Figure 3-27 shows the connection diagram. The hydrophone was sub-
merged in the water up to the BNC connection end. The connection end should be avoided from
water at all times. The bottom sketch of Figure 3-27 is the receiving frequency characteristics

of the hydrophone indicating a linear response of the hydrophone up to 20 kHz.

Coupler UA-0548

Hydrophone 8103

& Plug DB-1936

Water < T » Air
Hydrophone Connector Cable Connector | Cable Connector
E 8103 or 8103V - AC-0043 - x 3 m
-200 : T
' SEEEiE=
.; = =
-210 HHy
————a= t ¢ H AT
-+ Type 8103 =——1—+ \Tﬂ/ :\
- HH e s e e e e e e o i H——1 e
-220 I 1  — — — — — - I -
2 5 10 20 50 100 200 500 1kHz 2 5 10 20 50 100 kHz

Figure 3-27 Calibration configuration of the Hydrophone (Top). The connection diagram of the hydro-
phone (Middle). Typical Receiving Frequency Characteristics of B&K 8103 (Bottom).

The noise signals were processed by the PULSE lab-shop by using Constant Percentage Band-
width (CPB) and Fast Fourier Transform (FFT) analyser that were constructed in its dedicated
software. The analysed results were presented in 1/3 octave bandwidth for 20 Hz to 20 kHz and
1Hz band levels for 1 Hz up to 6.4 kHz.
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3.4 The Equipment inventory

The noise data acquisition for 1/3 Octave band was conducted by using the waterfall format of
the PULSE in order to eliminate the effect of any instantaneous sources as can be seen in Figure
3-28. This was achieved by using the multi-buffer option of the software which triggers the
system every 0.25 seconds for the next measurement. The measurements were recorded for 200
triggers or 50 seconds at 45 kHz sampling rate. The noise measurements are carried out for 50
seconds and 200 individual recordings. The average of such a long measurement ensured the

repeatability and determination of uncertainty for the conducted measurements.

S el

Figure 3-28 Pulse Labshop DAQ window.

E—.‘;

The acquired data was considered to be in raw format since the measured values needed to be
corrected to an equivalent 1 Hz bandwidth and 1m source level. A common practice in the
analysis and presentation of the noise levels is to reduce the measured values of SPL in each
1/3 Octave band to an equivalent 1 Hz bandwidth by means of the correction formula recom-
mended by ITTC (1987) as in Equation 20.

SPL, = SPL,,, — 10logAf Equation 20

where; SPL1 is the Sound Pressure level in 1 Hz band in dB relative to 1 pPa. SPLmis the Sound
Pressure level in 1/3 Octave band in dB relative to 1 uPa. Af’is the frequency bandwidth for the

1/3 Octave band for each centre frequency.
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The ITTC also requires that the sound pressure levels be corrected to a standard measuring

distance of 1 m using the spherical acoustic wave propagation relationship using Equation 21.
SPL = SPL; + 20log(r) Equation 21

where; SPL is the Sound Pressure Level in 1 Hz band in dB relative to 1 yPa at 1 m. r is the
distance of the location of the hydrophone distance from the propeller centerline

The corrections for the tunnel background noise measurements are applied to the measured total
noise levels in order to determine the net cavitation noise. The background noise measurements
are made without the model propeller which was replaced by a dummy hub (Bertschneider et
al., 2014). The background noise correction applied depending on the level of the difference
following the procedure in ANSI/ASA S12.64-2009/Partl. When the difference is smaller than
3 dB, the result is discarded. In case of a difference between 3 and 10 dB, the results are cor-
rected according to Equation 22 and no correction is applied in case of the difference being
greater than 10 dB.

SPLy = 10log [10(SPLT/10) - 10(5”3/10)] Equation 22

where; subscripts N, T, and B indicate net, total and background respectively.

The noise measurements in a cavitation tunnel are actually intended for prediction of full-scale
underwater RNL of a vessel. This can be achieved by utilizing some scaling procedures (Atlar
et al., 2001). Extrapolation of model test URN can be attained using various scaling procedures
to obtain the full-scale propeller noise levels (Bark & Berlekom, 1978; Bark, 2000, 1985).
However, different tunnel-related factors can result in erroneous acoustical cavitation testing
leading to inaccurate noise prediction. Two such factors are the reverberant nature of the cavi-
tation tunnel and the high level of background noise due to the tunnel impeller and model pro-
peller drive systems etc. These cause difficulties in interpreting the genuine propeller noise, as
do other factors such as dissolved gas content, viscosity, etc. (ITTC, 1987). Therefore, accurate

prediction of the full-scale propeller noise from model tests in a cavitation tunnel is not possible
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without a detailed knowledge of the influence of the proximity of the tunnel walls and other
factors, affecting the measured noise. On the other hand, the determination of correlation factors
to be applied to model measurements would involve a large programme of model and full-scale
tests. For this reason, such correlation factors do not exist for the Emerson Cavitation Tunnel.
In the absence of such an in-depth scrutiny of the tunnel performance for noise, linear acoustical

coefficients have been utilized for the extrapolation factors, as proposed by Starsberg (1977).

However, an approximation to the full-scale noise levels was made using the scaling laws rec-
ommended by the Cavitation Committee of (ITTC 1987). These laws are concerned only with
differences in dimensions and operating conditions of the model and full-scale propellers and
take no account of the fact that the model measurements may have been made in a cavitation
tunnel. Furthermore, the scaling laws are based on Rayleigh’s equation for the radial motion of
a single spherical cavity which is assumed to be in an inviscid and incompressible fluid (Plesset,
1949; Plesset & Prosperetti, 1977). Equation 23 was used in combination with the ratio of the
power spectral density expressions to represent the difference in the SPL in the model and full-
scale as follows:

. 3 . AP Py — Py .
R-R+—-R2=<—>=< ) Equation 23
2 p p

Equation 23 is then manipulated to derive the expression for the extrapolation of model scale
Power Spectral Density (PSD) to full scale as in Equation 24 (Nilsson & Tyvand, 1981). The
PSD is then converted to SPL. An additional cavitation number term has been included into the
extrapolation formulae assuming the cavitation bubble obeys the scaling method no matter its

size.

2 1.5 _ .
g:é;:?fkif) C_]Z)Z (2%) (5_;)05] Equation 24
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Within this framework, various institutes have published scaling methods with different expo-
nents for the terms in the extrapolation method. ITTC recommended the formula given in Equa-
tion 25 where the exponents used for the Emerson Cavitation Tunnel is x=1, y=2, and z=1
(ITTC, 2014).

ALg = SPLg — SPLy, = 20log

Ds\* (ry\* [ on,s & nsDs\” (ps 72 :
(m> <E> <0N,m> (nMDM) (E> dB Equation 25

The frequencies measured at model scale are also scaled using an approach based on the col-
lapse time of a single bubble (Ross, 1976) given in Equation 26.

Ru 3 0.5
t, = Eif 3R— = 0.915 X Ry, /i - f_s = (ﬁ) x Ons Equation 26
2 AP R RM — R3 AP fm N Onm

3.5 Conclusions

Chapter 3 presented the various major facilities, equipment inventory and analysis methods
utilized for the experimental research study carried out in this thesis. The major facilities in-
cluded the Emerson Cavitation Tunnel and RV, “The Princess Royal” which enabled the Author
to conduct the entire model tests and full-scale trials presented in this thesis. The equipment
inventory included laser-based flow measurement devices, water quality monitoring devices,
propeller dynamometers, cavitation observation cameras and supporting tools, pressure sensors

for the fluctuating hull pressures and noise measurement system for the URN.

The facilities and equipment described above are used to perform three sets of separately con-
ducted, but complementary, experimental campaigns. The first group was designed and
prepared to conduct systematic cavitation tunnel tests of a propeller in uniform and inclined

flow conditions as presented in Chapter 4. These tests simulate the simplest variation for the
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propeller operating condition by only introducing shaft inclination, hence providing a better
understanding of the noise measurement capabilities and the potential for improvement as well

as allowing familiarization with the testing equipment.

The second campaign group supported the investigations presented in Chapter 5. These involve
underwater radiated noise investigations of cavitating propellers using a medium size cavitation
tunnel and full-scale trials. These comparative tests and associated investigations not only pro-
vide an invaluable insight into the validation of the prediction capabilities of medium-sized

cavitation tunnels but also place a large body of URN data in the public domain.

The knowledge accumulated through the two campaigns presented in Chapter 4 and 5 were
used in Chapter 6 to design and conduct the third campaign group of tests in order to establish
a prediction methodology for propeller cavitation noise using a standard series testing proce-
dure. This third and final experimental campaign consisted of a variation of wake inflow pro-
duced by means of wake screens and a subset of the standard propeller series, chosen to evaluate
major propeller design parameters. Such an experimental approach to cavitation noise predic-
tion does not currently exist in the literature and hence justifies the novelty of the methodology

proposed in this thesis.
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4.1 Introduction

Chapter 4 Systematic Cavitation Tunnel Tests of a

Propeller in Uniform and Inclined Flow Conditions

4.1 Introduction

Chapter 4 is dedicated to the systematic cavitation tunnel tests of a propeller in uniform flow
under oblique flow conditions. The aim of the chapter is to describe the findings of systematic
propeller tests in order to provide comprehensive data on propeller noise, cavitation inception,
cavitation observation and propeller performance characteristics due to the effect of the shaft
inclination. Little such experimental data is available in the literature, especially in regard to
cavitation noise. This study also allowed the Author to become thoroughly familiar with cavi-

tation tunnel testing, the ECT facility and its equipment.

First, the experimental setup and test conditions are covered including the devised test matrix,
methodology and test procedure. Results are then presented and discussed in groups covering
performance coefficients, noise measurements, cavitation inception and observation recordings
and measurements. Finally, conclusions are drawn from measured and analysed experimental

results.

4.2 Experimental setup & test conditions

Experiments were carried out in three groups of tests at the Emerson Cavitation Tunnel (ECT)
of Newcastle University (UNEW). The first group of tests were conducted to obtain the open
water efficiency performance of the model propeller in systematically varied shaft inclination
angles at 3 different vacuum levels (cavitation numbers) and hence to investigate the effect of
the flow inclination and cavitation on the propeller performance. The second group of tests
involved cavitation inception measurements with the model propeller under the same inclina-
tion and vacuum conditions. The third group of tests comprised underwater noise measurements

with the model propeller, once again, under the same flow and vacuum conditions.
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4.2 Experimental setup & test conditions

All of the tests were conducted at a 4 m/s tunnel inflow speed recorded at the measuring section
and for advance coefficients (J) ranging from 0.4 to 0.75 under three different vacuum condition
corresponding to three free stream cavitation numbers (ov). Table 4-1 gives an overall summary

of the test conditions.

Table 4-1 A summary of test conditions.

Test Type
Open water perfor- Cavitation inception Noise measurements
mance tests tests and observations

Shaft Incl. Angle

©) 0,3,6,9,-3, -6 and -9

Atmospheric con- High vacuum condition cor-

Cavitation Con- Medium vacuum con-

. dition . — responding to vessel’s fully
dition (0v=13.9) dition (ov=8.1) loaded condition
(Gv=4.5)
J Range Tested 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40

The angle convention adopted for the shaft inclination during the tests was that a positive angle
was obtained when the dynamometer shaft (at the propeller end) was inclined in an upward
direction with the blade tip at the 6 o’clock position moving towards the incoming flow as
shown in Figure 4-1. The experiments were repeated at both negative and positive angles in
order to account for the tunnel’s speed profile at the propeller plane as shown in Figure 4-2.

The propeller centre was always positioned on the tunnel centerline.

x (Flow Direction)

Figure 4-1 Angle convention for the conducted shaft inclination tests at ECT.
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Figure 4-2 Axial speed profile of the Emerson Cavitation Tunnel for 4m/s inflow velocity measured at

the propeller plane where the origin is the shaft centreline.

The tunnel inflow to the propeller model thus contain some non-uniformities as presented by
Figure 4-2. However, the consistency of the conducted tests are achieved by means of height
adjustment following the angle configuration to ensure propeller model is kept in the centre of

the tunnel for all test conditions.

During the course of the experimental campaign repetition of the measurements are carried out
back to back in order to ensure a satisfactory level of measurement uncertainty. The open water
performance tests are repeated 6 times for zero degree inclination angle and resulted in a total
uncertainty of 1.03% for thrust coefficient and 2.53% for torque coefficient using the proposed
guidelines by ITTC (2002b).

4.2.1 Propeller design and model propeller

The propeller model utilized for the cavitation tunnel tests represented the starboard propeller
of “The Princess Royal”, having a scale ratio of 3.5, giving a 214 mm model propeller diameter.
This model was manufactured with high accuracy for cavitation testing. Figure 4-3 shows the
model propeller together with the full-scale port propeller. The propeller’s main particulars and

offset table given in Appendix A.
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4.3 Open water performance tests

Figure 4-3 Scale comparison of the full-scale (port) and model-scale (starboard) propellers

of “The Princess Royal”.

4.3 Open water performance tests

Open water performance tests to measure the thrust and torque of the model propeller were
carried out according to the ITTC procedures for open water tests (ITTC, 2011c), using a Kempf
& Remmers (K&R) H33 dynamometer and Cussons Type H101-27 shaft height and angle ad-
justment system of the Emerson Cavitation Tunnel. The tests were performed to cover the
whole advance coefficient (J) range of the tunnel and systematic shaft angle combination under
Atmospheric and 2 additional different vacuum conditions as specified in Table 4-1. The tunnel
inflow speed (V) was kept at 4 m/s and the advance coefficients (J) were varied systematically

by changing the rotational speed of the propeller (n).

In order to achieve accurate results in the open water tests, the sampling rate for the measure-
ments was 1000 Hz. The tests were repeated 6 times for the level shaft (0°) under Atmospheric
condition, for determination of uncertainty of the propeller performance measurements, and 3
times for all other conditions, as stated in Table 4-1. The average thrust and torque values were
then calculated and presented in non-dimensional coefficients: Kt for thrust, Kq for torque and

no for propeller efficiency.
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4.4 Cavitation observations

For the plotted advance coefficients a simple cosine correction was applied to the advance co-
efficients as Jeorrectes = J COSH, Where @is the shaft inclination angle. A typical representation of
the open water performance curves for the high vacuum condition, whilst varying the shaft
inclination angle, is shown in Figure 4-4. During the tests the propeller Reynolds number (Re)
range varied from 4.03x10° to 8.22x10°. Here R is defined based on the propeller chord length
at 0.7R using Equation 15
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Figure 4-4 Open water performance of model propeller, for various inclination angles under high vac-

uum condition.

4.4 Cavitation observations

The cavitation observation recordings were made during the experiments both for cavitation
inception/desinence detection and for well-developed cavitation. Two different configurations
for the recordings were used: one using a strobe synchronised with a high-speed video camera;
and the other using a continuous light source with the high-speed video camera. In the former
configuration, the cavitation images were captured using the Transistor-Transistor Logic (TTL)
signal from the electric motor driving the shaft to trigger both the strobe and the high-speed

video. In the latter a powerful continuous light was used with the high-speed video to obtain a
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better understanding of the cavitation dynamics. Figure 4-5 shows typical frames from the re-
cordings made with a Dantec Dynamics Nanosense MK Il high-speed video camera (running at
2000 frames per second) in combination with triggered strobe lighting for the cavitation devel-
opments at -9° inclination angle under the high vacuum condition for varying advance coeffi-

cients.

Figure 4-5 Cavitation developments at -9° inclination angle under high vacuum condition.

4.4.1 Cavitation inception

Inception and desinence points for respective cavitation events were recorded on video as well
as by eye. The procedure for the inception measurements was performed such that the tunnel
flow velocity was kept constant at 4 m/s. The tunnel static pressure was also set to a constant
value and the rotational speed of the propeller was initially increased until a visual appearance
of an unattached cavitating tip vortex cavitation was observed. This was recorded as the incep-
tion point of the respective cavitation. The rotational speed was then increased up to the point
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that the tip vortex attached to the blades and then was decreased until the vortex disappeared
from the tip of the propeller. This was accepted as the desinence point of the cavitation. Typical
images of the inception and desinence points are shown in Figure 4-6 for the propeller model
at 0° inclination angle under the high vacuum condition. The inception/desinence points for all

of the tested conditions are presented in Table 4-2.

Inception Desinence

.

Figure 4-6 Images of the cavitation inception and desinence p'o'ints for propeller model at 0° inclina-

tion angle under high vacuum condition.
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Table 4-2 Cavitation inception and desinence points of propeller model at varying inclination angles

and cavitation numbers

Atmospheric condition

Inclination 0° 30 6° 9° 30 6° _9°
angle
Cavitation Tip | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor-
Type Vortex tex tex tex tex tex tex
Inception
(RPM) 2128 2102 2047 2003 2138 2165 2095
Desinence
(RPM) 2188 2126 2076 2093 2165 2186 2110
Jinception 0.527 0.534 0.548 0.56 0.525 0.518 0.535

Ginception 0.758 0.772 0.811 0.845 0.748 0.737 0.782

Medium VVacuum Condition

Inclination 0° 30 6° 9° 30 6° _9°

angle
Cavitation Tip | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor-

Type Vortex tex tex tex tex tex tex

Inception

(RPM) 2013 1916 1900 1860 2004 2013 1921
Desinence

(RPM) 2030 1946 1930 1938 2002 2030 1962

Jinception 0.557 0.585 0.59 0.603 0.56 0.557 0.584

Ginception 0.489 0.537 0.541 0.566 0.492 0.498 0.542

High Vacuum Condition

Inclination 0° 30 6° 9° 30 6° _g°

angle
Cavitation Tip | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor- | Tip Vor-

Type \Vortex tex tex tex tex tex tex

Inception

(RPM) 1903 1856 1828 1793 1875 1860 1803
Desinence

(RPM) 1914 1860 1832 1797 1879 1870 1807

Jinception 0.589 0.604 0.614 0.625 0.598 0.603 0.622

Ginception 0.303 0.316 0.325 0.337 0.31 0.314 0.332
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In Table 4-2 the cavitation inception number (o) is defined based on the resultant velocity as
using Equation 18. In addition to the RPM values corresponding to the cavitation inception and
desinence points, Table 4-2 also includes the corresponding advance coefficients (Jinception) t0
be able to relate them to the RNL. Table 4-2 illustrates the effect of the varying shaft inclinations

on the inception and desinence points.

Figure 4-7 shows inception trends for positive and negative angles of shaft inclination angle.
Inception occurred earliest at the higher inclination angles. While this effect was not symmet-
rical with the angle at Atmospheric condition, it became more so with the increasing vacuum

in the case of the medium and high level of vacuum conditions.

Inclination Angle Effect on Inception Advance Coefficient

0.63
0.62
061

0.6
0:59
0.58

=
2
2 057
S 056
=) 0.55
0.54
0.53
052
051
05
9 % 3 0 3 6 9
Inclination Angle (Degree)
Athmospheric Condition Medium Vacuum Condition High Vacuum Condition

Figure 4-7 Variation of cavitation inception J number (Advance Coefficient) with respect to inclina-

tion angles.
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4.5 Noise measurements

Noise measurements were also carried out at the 7 different shaft inclination angles and 3
different cavitation conditions. The measurements were recorded using a Bruel and Kjaer type
8103 miniature hydrophone mounted in a water filled, thick walled steel cylinder placed on the
outside of the tunnel’s Plexiglas window. This cylinder was glued onto the starboard window
level with the centre of the propeller boss when the shaft inclination is zero and at a horizontal
distance of 0.61 m from the shaft centreline, as shown in Figure 4-8 (top picture). The hydro-
phone signals were collected by further Bruel and Kjaer hardware and software; in this case, a
PC based “PULSE” digital acquisition and analysis software system up to a frequency of 20

kHz, was used.

Hydrophone

Figure 4-8 A view of hydrophon glued on the side window (top); An overall view of the dynamome-

ter with inclined shaft arrangement in test section of the tunnel (bottom).
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4.5.1 Analysis and presentation of the noise results

The analysing methodology outlined in Chapter 3 is applied to the acquired data. Therefore, the
measured values of SPL in each 1/3 octave band is adjusted to an equivalent 1 Hz bandwidth
using Equation 20. Following this, the 1Hz equivalent levels are corrected for the reference 1m
measuring distance using the spherical acoustic propagation formulae given with Equation 21.
The presented levels throughout the chapter are the total noise levels. Hence no correction for
the background levels are applied. The total noise levels, however, are presented together with
the corresponding background noise levels in order to provide further insight into the nature of
the measuring environment of the ECT. Furthermore, the noise levels are cross plotted for cer-
tain frequencies where the measured SPL are significantly higher than the background noise
levels since this does not require correction according to ANSI procedure. Figure 4-9 is a typical
presentation of the noise spectra over a 20 kHz frequency range displaying the effect of varying

shaft inclinations at a fixed J and high vacuum condition (low cavitation number).
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Figure 4-9 Comparison of noise levels at varying inclination angles at advance coefficient of J=0.60

under high vacuum condition.
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Figure 4-10 gives quantitative information on the background noise level of the Emerson Cav-
itation Tunnel. The figure also presents SPL spectra of the propeller corresponding to the +6°
inclination angle at advance coefficient 0.4 for the three cavitation conditions as given in Table
4-1.
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Figure 4-10 Background noise level spectrum (at Atmospheric condition) and SPL for 6° inclination at

J 0.4 (at various cavitation condition).

In order to have a better understanding of the trends in the noise spectra at various conditions,
the measured noise data were extracted and presented in Figure 4-11 at two fixed frequencies:
630 Hz and 6.3 kHz. These correspond to frequency ranges where the SPL amplitudes were
significantly distinct from the background noise and showed strong variations with the advance

coefficient and shaft inclination angle.
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In Figure 4-11 the effect of varying advance coefficients on the SPL’s are shown for the sys-
tematically varied shaft angles and for three cavitation conditions at 630 Hz. The SPL’s show
relatively less sensitivity to the variations in J except for three distinct J’s, where the peak SPL’s
were recorded. It is considered that these peaks were due to the strong tip vortices are shown in
the selected cavitation images in Figure 4-12.

This frequency was also close to the 4th blade harmonic. In order to assess the effect of the
shaft inclination further, three cross-plot curves were extracted and shown in Figure 4-13 for
systematically varied advance coefficients and for three cavitation conditions at 630 Hz. These
cross plots do not show any significant asymmetry for the positive and negative angles of the
shaft inclination across the three cavitation conditions imposed. Similar plots for the SPL’s are
also illustrated in Figure 4-14 for 6.3 kHz. In the first group of these plots, Figure 4-13, the
noise levels appear to increase in a near monotonic manner from high to low J-values at each
of the three-cavitation conditions whilst in the second group of the plots, Figure 4-14, a little
asymmetry with the angle of inclination can be observed, although there is a weak tendency
towards higher levels for the positive inclination angles.

During the tests, tip vortex and sheet cavitation were the main types observed, together with
their complex interaction at the blade trailing edge. This interaction was also reflected in the
noise levels for certain operating conditions. This was particularly strong at J=0.4 for trailing
edge vortex breakdown due to interaction with the sheet cavity extending downstream and was
independent of the flow inclination angles. This phenomenon is illustrated for the zero and 6°
shaft inclination together with its consequent effect on the SPL levels given in Figure 4-14.
Here the impact of the phenomena is seen in a significant increase in the spectral levels for all
inclination angles at J=0.4 for the high vacuum condition (i.e. bottom graph). Similar observa-

tions were also given in e.g. (Bark, 1988, 1986; Konno et al., 2002).
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SPL at 830hz at Atmospheric Condition
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Figure 4-11 Comparison of noise levels for varying shaft inclination angles on advance coefficients
under different cavitation conditions at 630 Hz.
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Figure 4-12 Cavitation observation for varying shaft inclination angles on advance coefficients under
different cavitation conditions.
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Figure 4-14 Comparison of noise levels for varying advance coefficients on shaft inclination angles
under different cavitation conditions at 6.3 kHz.
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e

Zero shaft inclination, high vacuum  +6 deg shaft inclination, high vacuum

Figure 4-15 Tip vortex breakdown due to interaction with the sheet cavitation extension at J=0.4.

4.6 Discussion

4.6.1 Open water efficiency performance

Effects of the shaft inclination on all test cases are similar for the propeller open water perfor-
mance curves, namely showing discernible differences in the torque coefficient (Kg) at -3°, -6°
and -9° inclination angles and hence on the propeller efficiency (7o) curves. Figure 4-4 typically
shows this trend in the high vacuum condition. As theoretically expected, the inflow velocity is
not responsive to the direction of the inclination angle since the advance velocity is the cosine
of tunnel velocity and hence is the same for both negative and positive inclination angles. This
can be shown in Figure 4-16 where no discernible variation in the performance coefficients can
be detected with the variations in the inclination angles whilst for the high vacuum condition
the loss of thrust and torque is evident due to the cavitation extent. The effect of the different
vacuum (cavitation) conditions had similar trends in Ky, Ko and 7o for the Atmospheric and

medium cavitation conditions, hence making it difficult to quantify the effect of the inclination
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under these circumstances. It was observed that the increasing vacuum generally reduced the
open water efficiency of the propeller at all inclination angles and this effect was also found to
be dependent on the J range. For instance comparison of the efficiency of the propeller for 0°
and 6° has shown as high as 10% difference at the higher end of the advance coefficient range.

But this variance diminishes as the advance coefficient is lowered.
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Figure 4-16 The Non-Dimensional Performance Coefficients at J=0.4 for different vacuum conditions.
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4.6.2 Cavitation observations

The inception RPM values determined with the help of cavitation inception and desinence ob-
servations (Figure 4-6) showed that as the inclination angle was increased the cavitation incep-
tion J- value increased for the medium and high vacuum conditions as outlined in Table 4-2

and presented in Figure 4-7.

Positive shaft inclination stimulated earlier inception on the blades. Overall the inclination an-
gle was observed to initiate an earlier inception for all angles and at all cavitation conditions
except the Atmospheric condition. The difference seen in the Atmospheric condition are most
likely to be due to the axial flow speed map of the tunnel and to the reduced number of nuclei

available in the circulating water.

Trends in the observed cavitation patterns are discussed for the three vacuum conditions as

follows:

Atmospheric condition: the cavitation-free range lays above J=0.515 for all values of the shaft

inclination angle. Below this J value, two distinct types of cavitation patterns, i.e. tip vortex and
sheet cavitation were observed. Only slight differences were observed in the extent and strength
for the inclined cases relative to the level shaft inclination case. Figure 4-17 shows images for

zero shaft angle.

Medium vacuum condition: The cavitation-free range was observed above J=0.55. Below this

range, it was observed that the size of the tip vortices was increased compared to the Atmos-
pheric condition and also displayed distinct nodes in their structures behind the blade training
edges, as shown typically in Figure 4-18. However, similar to the Atmospheric condition, it is
hard to observe clear differences in the cavitation structures for the same positive and negative

shaft angles.
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High vacuum condition: The cavitation-free range was above J=0.59, including variations in

the inclination angle. Figure 4-15 and Figure 4-19 show typical examples of this condition with
larger tip vortex structures than observed at the lower vacuum conditions. The cavitation ap-
peared to be similar over the range of shaft inclination angle. However, there appeared to be
more sheet cavitation at J=0.4 and -6 degrees shaft inclination than at the moderate cavitation
condition. A wide extent of sheet cavitation was also shown over the blade area combined with
severe trailing edge sheet cavitation and tip vortex cavitation interaction and resulting dynam-

ics.

23/07/2013 17:11:04 000018 0.028000 s 0.008000123/07/2013 17:12:55 000020 0.040000 s 0.040000

J=0.45 J=0.40

29/07/2013 11:45:08 000055 0.110000 s%0.110000129/07/2013 11:46:53 000020 0.042000 £ 0.042000
g

J=0%5 J=0.40 \

- K

Figure 4-18 Cavitation patterns at 6° inclination angle under medium vacuum condition.
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Figure 4-19 Cavitation patterns at -6° inclination angle under high vacuum condition.

4.6.3 Noise measurements

The noise measurements presented contain the combined propeller and background noise; no
correction was made for the background noise of the tunnel. A vibration survey of the tunnel
carried out earlier showed that the frequencies of the structural vibration generated by the dy-
namometer and impeller to be in the region below 100 Hz. Therefore, it is most likely that the
noise levels due to the blade rate frequency ranging from 125 Hz to 250 Hz and its harmonics,
together with structural vibration, would be affected by these effects in the frequency region up
to 200 Hz. The contribution of these major operating noise sources produced a rather noisy
environment for frequencies below 200 Hz as shown, typically in Figure 4-10. Based on the
above information regarding the background noise signature of the ECT, certain 1/3 Octave
centre frequencies (630 Hz and 6.3 kHz) with SPL’s well above the background noise levels
are chosen and compared.

The analysed results in Figure 4-11 shows that, as the advance coefficient is reduced, the noise
levels at 630 Hz decreased for J=0.75 to 0.50 under the Atmospheric condition. At J=0.45 the
noise levels experience a distinct peak which is then followed by a decline at J=0.40. For the
medium cavitation condition as presented by the middle part of Figure 4-11, a similar trend was
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also observed from J=0.75 to J=0.50 at 630 Hz. However, at J= 0.45 again a distinct peak is
experienced followed by a reduction in the measured noise levels at J=0.40. Progressively, the
peak experienced by the cross plots are moved towards the J=0.55 for the high vacuum condi-
tion as presented by the bottom part of Figure 4-11. The peak formation was found to be coin-
ciding with the exact same formation and extent of tip vortex cavitation as presented in Figure
4-12. The peak is again followed by a reduction at high vacuum condition in the measured
levels for the J=0.50 and J=0.45. Then the levels experience a second peak at J=0.40, which is
caused by the tip vortex cavitation and sheet cavitation interaction as discussed in the cavitation
observation section and presented in Figure 4-19.

Figure 4-13 and Figure 4-14, presents the cross plots at 630 Hz and 6.3 kHz for variations of
inclination angle and advance coefficient. In this respect, Figure 4-13 is a reproduction of Fig-
ure 4-11. Hence, same conclusions are clearly visible from these plots too. Figure 4-13, presents
results at a high frequency. Thus, the corresponding cross plots are strongly influenced by cav-
itation dynamics due to their broadband noise characteristics. For example whilst the levels
have shown not so significant change with the decreasing advance coefficient at 630 Hz as
illustrated in Figure 4-13, the plots show elevation in terms of the spectral levels with the
decreasing advance coefficient as presented in Figure 4-14. The most noticeable increase is
experienced at J=0.40 at high vacuum condition as shown by the bottom part of Figure 4-14.
The elevation of up to 15 dB in comparison to J=0.45 is observed due to the previously men-

tioned interaction of tip vortex and sheet cavitation.

Overall, it can be deduced from the discussions regarding the measured levels that, the meas-
ured spectral levels and the frequency band contribution are highly pertinent with the cavitation
type present. Moreover, the interactions between different cavitation types result in complex
cavitation dynamics resulting in significant increases to be experienced by the propeller in terms
of the RNL.
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4.7 Conclusions

Chapter 4 presented the systematic cavitation tunnel tests were carried out to investigate the
open water (efficiency) performance, cavitation and noise characteristics of the model propeller
of the UNEW research vessel, “The Princess Royal”, in uniform (open water) and in inclined

flow conditions.

The main focus of this chapter has been on flow-unsteadiness caused by systematically varying
shaft inclination especially and in particular its effect on the underwater radiated noise of a
model propeller. The inclined shaft effect is mainly associated with small craft at relatively
high-speed as in the case of “The Princess Royal”. Although no effect of the hull wake is studied
in this investigation, invaluable and comprehensive data has been produced using a systematic
approach. The results have shown that the simplest variation of the inflow, which is shaft
inclination, in this case, can be recognized and studied thoroughly using cavitation tunnels. This
has provided justification and encourage to pursue an experimental approach with added inflow
complexity for accurate noise prediction. The following conclusions are deduced from the first

test campaign conducted in ECT.

e A set of systematic experimental data for the effect of shaft inclination on the URN of
a propeller is created in combination with the cavitation observations and efficiency
performance to contribute to the state-of-the-art to provide further insight on this effect
for the URN.

e The effect of shaft inclination on the propeller open water performance was greater on
the torque and hence the propeller efficiency. The effect was asymmetric with shaft
positive and negative angles and across the J range. The thrust was relatively insensitive
to the change in the shaft angles. The propeller efficiency was reduced with increasing
vacuum over the range tested.

e The effect of shaft inclination on the cavitation inception (and desinence) of the tip vor-
tices was evident and this effect was asymmetric; in general, depending on the direction
of the inclination. However, this asymmetry was less pronounced towards the higher

vacuum levels. The asymmetry for the Atmospheric and medium cavitation condition
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can be attributed to the axial flow profile of the tunnel and to the reduced number of
nuclei available in the circulating water.

e Two distinct types of well-developed cavitation patterns (tip vortex and sheet cavitation)
were observed together with their complex interactions at the trailing edges of the
blades. The extent and strength of these cavitation phenomena were influenced by the
change in the inclination angles.

e The presented total noise levels (including the tunnel background noise), showed that,
in the low-frequency range, the effect of changing the shaft inclination seemed not to
be significant, since all the inclined conditions displayed similar noise levels and trends.
However, this trend changed in the high frequency range, as presented by the 6.3 kHz
cross plots with Figure 4-14, depending on the direction of the shaft inclination as well
as the vacuum levels applied.

e Therecorded RNL were found to be highly sensitive to the type and extent of cavitation
as well as the frequency range to which the particular cavitation contributed.

On a final note, this experimental study also enabled a better understanding of the noise meas-
urement capabilities of the Emerson Cavitation Tunnel. The areas that may be improved have
been identified and possible methods of measurement technique for improved measurement
accuracy have been determined. Furthermore, the nature of the tests has provided a better un-
derstanding of the practicalities of undertaking such a systematic tests with particular focus on

noise.
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Chapter 5 Underwater Radiated Noise Investiga-
tions of Cavitating Propellers Using a Medium Size

Cavitation Tunnel and Full-Scale Trials

5.1 Introduction

Chapter 5 presents details of the propeller cavitation noise investigations for a research vessel
using a cavitation tunnel and full-scale trials. The main aim of the chapter is to demonstrate
and prove the noise prediction capabilities of medium size cavitation tunnels. The conducted
tests provided enhanced understanding from the cavitation testing point of view justifying the
adopted experimental approach. Moreover, familiarity with the facilities and equipment is
gained whilst providing publicly scarce URN data from both model and full scale to public
domain. Within this framework, the full-scale noise trials conducted with the RV “The Princess
Royal” has been simulated in the Emerson Cavitation Tunnel to validate the cavitation tunnel
predictions. The cavitation tunnel measurements necessitated a dummy model and wake simu-
lation which is initially covered within the chapter. Following this test conditions and the de-
termination of the tunnel operating conditions is given. Then the results of the noise prediction
in comparison with the full-scale counterparts are given together with a dedicated section dis-

cussing the results. Finally, conclusions drawn from the chapter is presented.

5.2 Further details of experimental facilities and setup

ITTC recommendations for model scale testing of cavitation phenomena on ships include an
accurate representation of the hull geometry in the way of the propeller and accurate represen-
tation of the 3-D velocity field. In the largest tunnels, worldwide, this is achieved using a full,
scaled model of the hull, with appropriate turbulence stimulators, if required. The length of the

ECT measuring section is too short for such a procedure. Hence, the usual approach was
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adopted for small and medium size cavitation tunnels. The usual approach makes use of a trun-
cated “dummy-hull” model to achieve correctly scaled afterbody shaping and transverse flow
velocities, while wake grids are used to achieve the correct axial flow velocities. For twin hull

and twin-screw vessel, it is permissible to represent one-half of the vessel.

5.2.1 Main particulars of “The Princess Royal” and propeller

“The Princess Royal” is a displacement type of Deep-V catamaran, which was designed in-
house and built locally, as described in details by (Atlar et al., 2013). For the present study, the
starboard demi-hull of the vessel was used as a basis for simulating the hull. The model scale
factor of 1:3.5 was set by considering various limiting factors such as avoiding an undesirable
blockage effect, achieving a reasonable Reynolds number range for minimizing the scale effects
and attaining a respectable size for avoiding practical size limitation. The size of the model
propeller and hull should be determined, within the capacity constraint of the test facilities and
within an acceptable range of test-section blockage (i.e. less than 20%), to achieve the highest
possible Reynolds number (i.e. using largest size propeller as possible). At this scale, the demi-
hull was too long (5.39 meter) to fit the tunnel’s test section and was truncated to 3 meters by
removing a portion from the parallel mid-section, to be combined with properly scaled fore and
aft sections. This is a well-recognized practice throughout the industry. The chosen dimensions
combined with the required tunnel conditions resulted in a propeller Reynolds number ranging
from 8.67x10° to 1.47x108. The largest blockage of the tunnel cross section was 16.5%, which
is well within the ITTC guidelines (ITTC, 2011a). Based on the above selections; the general
specifications of the dummy-hull model and the full-scale vessel are given in Table 5-1.
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Table 5-1 Full-scale vessel and dummy-hull model particulars.

Main particulars Full scale Full scale Model scale
(Start of Tri- (End of Tri- | (Dummy model of
als) als) Starboard Hull)

Length overall 18.88 - 3.007
Length between perpendiculars, Lep (M) 16.45 - N/A
Beam, moulded, B (m) 7.3 - 0.558
Draft at forward perpendicular, Te (m) 1.745 1.72 0.448
Draft at aft perpendicular, Ta (m) 1.845 1.82 0.557
Propeller distance from aft perpendicular 0.9 i 0.262

(m)

Number of propellers, NP 2 2 1

These data show two loading conditions of the vessel, namely, at the start and end of the full-
scale trials. This was because the trials were conducted over three consecutive days, thus, the
fuel consumptions and various other changes on-board resulted in slight changes in the drafts
and hence running conditions of the vessel. The loading conditions of the vessel were taken
from the bridge logbook and then used as an input to the stability booklet to interpolate the draft
readings for each loading condition. The procedure was then repeated taking into account the
fuel consumption during the course of the trials. The draft values in Table 5-1 represent only
the static trim condition. Further manipulation of this data to take account of the dynamic trim
is discussed in Section 3. Based on the selected scale ratio the main characteristics of the model

and full-scale propeller are given in Table 5-2.
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Table 5-2: Full-scale propeller and model propeller particulars

In full scale In model scale
Propeller diameter, D (m) 0.75 0.214
Number of blades, Z 5
Direction of rotation Port: left turning - SB: right turning - outwards
SB: right turning -

Type of propeller Fixed pitch

Pitch ratio at 0.7R P/D 1.057

Chord length at 0.7R, (m) 0.352 0.1006
Skew angle, 6s (Deg) 19°

Rake angle (Deg) 0°

Expanded Blade Area Ratio, EAR 1.057

Boss diameter ratio, Dy / D 0.2

Scale ratio, A 35

5.2.2 Wake simulations

A dummy hull plus 2D wake screens offer a better method of representing the 3D towing tank
flow effects compared to a simple two-dimensional wake screen approach, although the latter
IS more economical in time and cost. Hence, two-dimensional wake screens were added at the
aft end to account for the flow retardation lost by truncation of the hull in the middle section as
shown in Figure 5-1. During the wake simulation exercise in a cavitation tunnel, the traditional
method of measuring the wake flow velocities is to use the Pitot tubes. By considering the
intrusive nature of these devices, the use of a Particle Image Velocimetry (PIV) type field flow
measurement device is adopted. The density of the screen meshes was adjusted through an it-
erative exercise by using the SPIV system of the ECT. The target wake for these simulations
was obtained from the wake survey tests with a 1:5 full-model of “The Princess Royal” in the
Istanbul Technical University towing tank excluding the rudder and interceptor plates (Korkut
& Takinaci, 2013). Detailed wake measurement results are provided in numeric format in Ap-

pendix A.
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-

Wake simulation started with a “base wake screen”, which was made of 10x10 mm size of wire
mesh grids, was used. The base screen was laid over a steel framework, which was located in a
transverse plane at a distance of 1.5 propeller diameter upstream of the propeller’s hub centre,
as seen in Figure 5-1. To make the wake screen construction more efficiently, a streamline
tracing experiment was conducted to determine the corresponding position from the wake
screen to the wake plane. In order to trace the streamlines visually, sufficient numbers of soft
threads with different colours were attached to the base mesh at strategic positions. The projec-
tions of the trailing ends of these threads provide a very useful practical guide for strategically
positioning of wire mesh grids on the base mesh as presented by the right-hand side of Figure
5-1.

In the simulation exercise, more emphasis was put on the accuracy of the wake velocities at the
higher radius (r > 0.8r/R) and at the top dead centre (TDC) and bottom dead centre (BDC) due
to the influential effect of the wake shadow region and substantial skeg, respectively. Whilst
there happens to be some discrepancy at lower radius region, agreements for radii r/R> 0.5 are
particularly encouraging and considered satisfactory for the hydro-acoustic cavitation tunnel
tests. Figure 5-2 shows the contour plots of the target wake and simulated wake while Figure
5-3 and Figure 5-4 show the expanded comparative plots of the wake velocities at two critical
outer radii. The latter two figures demonstrate that reasonable simulation of the target wake has
been achieved.
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Figure 5-2 : Contour plots of target wake (left) and simulated wake (right) together with the vector
plot of the radial and tangential components of the target wake (bottom).
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Figure 5-3 : Comparative plots of axial wake velocities at r/R=0.827.
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Figure 5-4 : Comparative plots of axial wake velocities at r/R=1.013.

A scaled hull model used for the wake simulation is not enough to completely represent a de-
veloped flow boundary layer in comparison to full-scale wake. This results in discrepancies in
terms of Reynolds number to exists which leads to a relative difference in the boundary layer
thickness between the model and the full-scale ship. This is generally accounted for by applying
corrections as proposed by Sasajima as presented by Carlton (2012) especially for models with
high scale ratio. The full-scale extrapolation of the wake is not carried out for this case due to

the small scale factor of the model used for the case.

5.3 Cauvitation test conditions

The trial runs simulated in the tunnel were determined based on the four most representative
and reliable runs selected from the full-scale trials conducted under the SONIC project. These
conditions had sufficient repetitions and reciprocal runs to filter out the tidal current effects and
included one non-cavitating condition and three cavitating conditions corresponding to engine
speeds of 600, 900, 1200 and 2000 rpm, respectively. Readings are for the Port propeller since
its shaft torque gauge was deemed more reliable. The corresponding propeller shaft speeds were
lower, in the gearbox ratio of 1.75:1. A summary of the selected full-scale conditions and rele-

vant data for the vessel is given in Table 5-3.
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Table 5-3 : Selected full-scale test conditions and relevant data for “The Princess Royal”.

DATA / PARTICULARS VALUES
Service Con- Service Service Con- | Service Con-
Power rating (% of MCR) dition at Condition at dition at dition at
2.23% MCR | 6.9% MCR | 16.1% MCR | 73.4% MCR
Dynamic draught Ta/ Tr 1.95m 1.95m 195m 1.95m
(m) /1.57Tm /1.57Tm /1.57Tm /1.57Tm
Ship speed through water,
4.775 7.100 9.350 15.108
Vs(knot)
Engine speed, N (RPM)
(As set on the wheelhouse 600 900 1200 2000
by the skipper)
Delivered power at propel-
ler, Po (kW) (Port side in 10.0 31.0 72.25 329.5
full Scale)
Propeller speed, actual Nact
(RPM) 342.8 514.2 682.1 11415
(Port side in full Scale)
Cavitation number, on 1.20 0.53 0.30 0.11
Torque (KNm) -
0.3 0.6 1.0 2.8
(Port side in full scale)
Torque Coefficient, 10Kq 0.378 0.336 0.318 0.318

For the tunnel tests, similarity was achieved using key parameters for each operational condi-
tion such an advance coefficient, torque coefficient and rotational cavitation number using the

Equation 17.
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Using the relevant expressions and associated data given in Table 5-3 the key parameters for
setting the corresponding tunnel test conditions are presented in Table 5-4. In setting these con-
ditions, either the model propeller shaft speed or the applied vacuum level requires to be fixed
for each test condition; the former was selected. Thus, for each condition presented in the Table,
the propeller shaft speed, nm, was first selected, then the corresponding vacuum level calculated
based on this speed. The tunnel speed, Vi, was then adjusted to meet the required shaft torque,

Qm, based on the equivalent ship Kaq.

Table 5-4 : A summary of cavitation tunnel test conditions.

DATA / PARTICULARS VALUES
Power rating (% of MCR) Service Service Service Service
Condition | Condition | Condition | Condition
at 2.23% at 6.9% at 16.1% at 73.4%
MCR MCR MCR MCR
Test conditions Condition | Condition | Condition | Condition
1 2 3 4
Cavitation humber, o, (mnD) 1.2 0.54 0.3 0.11
Dynamometer, nm (revolutions per second 15 20 20 30
(rps))
Vacuum applied to tunnel, Hs(mmHQ) -254 -351 -510 -551
Model scale torque, Q (Nm) 3.84 6.07 5.75 12.92
Adjusted tunnel speed, Vi (M/s) 1.39 2.25 2.41 3.75

In Table 5-4 the test condition numbers: 1, 2, 3 and 4 corresponding to the selected trials con-
ditions (i.e. engine speed of) 600, 900, 1200 and 2000rpm, respectively given in Table 5-3. The
tunnel tests conditions cover a broad range of speeds. Therefore, although the fixed rotational
speed and fixed vacuum application method was employed, it was concluded that the best way
to cover such a wide cavitation range was to alter the propeller shaft speed in correspondence
with the full-scale propeller scaled shaft speed. This also enabled better cavitation observation
in test Condition 4 by achieving required cavitation number through increased rpm rather than
increased vacuum and thus reducing the number of light scattering bubbles in the viewing sec-

tion.

During the whole course of the testing campaign, the water quality of the facility was monitored
for gas content, since it is well known to affect cavitation. The dissolved oxygen content of the

tunnel was kept at 30% during the experiments as recommended by ITTC (2011a, 1987).
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5.4 Cavitation observations

Nano-Sense high-speed video cameras and Nikon DSLR camera were used for the cavitation
observation and recording at ship and model scale. The recordings were made in two different
lighting configurations. First one was with the high-speed camera mode with continuous light-
ing; the second one was with stroboscope lighting where both the strobe and cameras were
triggered from propeller speed. Figure 5-5 to Figure 5-12 show sample cavitation observations
for each condition, both from the cavitation tunnel tests and full-scale trials. Overall, qualitative
comparisons of the cavitation extent show reasonable similarity except the tip vortex diameter,

which is observed to be relatively small during tunnel tests.

- ;uyln.

Figure 5-5 Cavitation observations from tunnel tests for Condition 1; o, =1.20, Ko=0.378.

Figure 5-6 Cavitation observations from full scale trials for Condition 1; on =1.20, Kq=0.378.
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Figure 5-7 Cavitation observations from tunnel tests trials for Condition 2; o, =0.54, Ko=0.336.

Figure 5-8 Cavitation observations from full scale trials for Condition 2; o, =0.54, Ko=0.336.
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Figure 5-9 Cavitation observations from tunnel tests for Condition 3 Condition 3; o, =0.3, Ko=0.318.
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Figure 5-10 Cavitation observations from full scale trials for Condition 3 Condition 3; o, =0.3,
Kq=0.318.

=

Figure 5-11 Cavitation observations from tunnel tests for Condition 4; 6,=0.11, Ko=0.318.

Figure 5-12 Cavitation observations from full scale trials for Condition 4; 5,=0.11, Ko=0.318.
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5.5 Pressure pulse measurements

Propeller induced pressure pulse measurements were conducted both on board “The Princess
Royal” and with the pressure transducers installed in the dummy hull model. The locations of
the pressure sensors on the dummy model were determined by scaling the full-scale distances
of the pressure sensor holes from the centre scantling as in Figure 5-13. Extrapolation of the

model scale measurements are made using Equation 19.

Figure 5-13 Starboard side pressure sensor (indicated by SP*) and borescope hole (indicated by SB*)
arrangement of “The Princess Royal”.

5.5.1 Presentation of results

The propeller induced pressure measurements in the ECT using a dummy model were made
using 4 pressure transducers. Figure 5-14 to Figure 5-17 presents measured levels after extrap-
olation showing the influence of the pressure sensor location on the measured levels. The pres-
sure pulses increase significantly with decreasing cavitation number due the effect of the cavi-
tation. Figure 5-18 to Figure 5-21 show comparisons between the full-scale pressure amplitudes
and the extrapolated model scale measurements. The comparisons are made only for the P2
position due to poor signal quality from the other full-scale sensors.
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Figure 5-14 Comparative full-scale pressure peaks based on the extrapolation from model tests for
Condition 1; on =1.20, Ko=0.378.

Condition 2

mP1
mp2
mP3
mpa

Pressure Peak (Pa)

1st BPF

2nd BPF

3rd BPF

Blade Passage Frequencies

Figure 5-15 Comparative full-scale pressure peaks based on the extrapolation from model tests for
Condition 2; o, =0.54, Ko=0.336.
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Figure 5-16 Comparative full-scale pressure peaks based on the extrapolation from model tests for

Condition 3; o, =0.3, Kq=0.318.
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Figure 5-17 Comparative full-scale pressure peaks based on the extrapolation from model tests for

Condition 4; 6,=0.11, Ko=0.318.
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Figure 5-18 Comparison of the full scale and extrapolated model scale measurements for P2 position
Condition 1; on =1.20, Kq=0.378.
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Figure 5-19 Comparison of the full scale and extrapolated model scale measurements for P2 position
for Condition 2; on =0.54, Kq=0.336.
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Figure 5-20 Comparison of the full scale and extrapolated model scale measurements for P2 position
for Condition 3; on =0.3, Ko=0.318.
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Figure 5-21 Comparison of the full scale and extrapolated model scale measurements for P2 position
for Condition 4; 6,=0.11, Kq=0.318.
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5.6 Noise measurements

Noise measurements were made using the B&K PULSE Type 3023 data acquisition system
with a 6/1 LAN interface and a B&K Type 8103 miniature hydrophone which was located
inside the cavitation tunnel and supported by a streamlined strut. The offsets of the hydrophone

location are given in Table 5-5.

Table 5-5 Offset of hydrophone location in the tunnel.

8103 Hydrophone location relative to

Propeller Plane & shaft line intersection

X 415mm
y 455mm
150mm

In order to ensure the repeatability and reliability of the measurements, Condition 4 was re-
peated three times since this was the condition where the most severe cavitation was experi-
enced and hence might have had a higher risk of errors (Coleman & Steele, 2009; 1SO, 2009).
The uncertainty analysis for this condition has indicated a maximum error of 4.39 dB, calcu-
lated using back to back repetition tests using the same mountings and configuration, in the
measured URN levels and is within the range of the recommendations (1-5 dB) made by the
ITTC (Bertschneider et al., 2014).

One important practical issue in the analysis of the data is associated with the catamaran con-
figuration of the target vessel, which has two propellers and hence two dominant noise sources.
However, in the tunnel tests, only one of these sources was represented by the use of the star-
board demi-hull. The missing propeller effect was accounted for by doubling the measured

levels. This was achieved in the logarithmic scale by adding 3dB to the measured levels.
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5.6.1 Presentation of results

Figure 5-22 to Figure 5-25 present comparisons of the total RNL, measured on the full-scale
trials (SOTON) by Brooker & Humphrey (2014), The total RNL (UNEW) was extrapolated
based on Newcastle’s tunnel measurements for each of the four operating conditions given in
Table 5-4. Two double runs were conducted for each condition given in Table 5-3; a North-
wards and Southwards course heading for both starboard and port aspect. The trial area depth
was chosen to be approximately 100m with a seabed of soft mud. The measurements are made
using a 3 hydrophone array with the deepest hydrophone at 50 m. The full-scale measurements
were analysed assuming a dipole source level, which is also referred to as the affected (Ainslie,
2010; Jong, 2009) source level or RNL. Whilst the RNL representation does not account for the
influence of the well-known Lloyd’s Mirror effect, the error was minimised by adopting the
ANSI standard analysis procedure and averaging the measurements made with three hydro-
phones (ANSI, 2009; ISO, 2012).

Figure 5-22 to Figure 5-25 also include the measured background noise levels in both the full-
scale trials and cavitation tunnel experiments. Although the nature of the background noise for
the model and full-scale noise measurement is different, it is relevant to note the levels contrib-
uted from these sources. Whilst there is a significant contribution from the background in the
tunnel measurements, ambient noise in the full-scale measurements is rather small. Further in-
formation on the definition of the background noise levels for the full-scale trials and model
tests is given in Section 3.4.6 under the headline “Noise measurement equipment and analysing

methodology”.
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Figure 5-22 Condition 1 - Comparison of total RNL from full-scale trials and tunnel test measure-

ments based extrapolations at o, =1.20, Ko=0.378.
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5.6 Noise measurements

Figure 5-26 to Figure 5-29 compare “net” RNLs for the same four operating conditions after
including corrections for the background noise following the recommendations given by ITTC
(ITTC, 2014) and ANSI (ANSI, 2009). Moreover, during the tests, investigations of the effect
of varying torque loading on the measured noise is also carried out. Figure 5-29, includes a
dashed line representing the Net noise levels measured for the condition where the propeller is

operated for 15% higher torque than the required level.

The use of a dummy model and wake screen (1.5 propeller diameters upstream of the propeller
plane) to simulate the correct inflow conditions for propeller cavitation raises questions over
the noise creating mechanisms thus introduced. These may include cavitation, increase in tur-
bulence intensity and singing. The effects of these sources on the measured noise levels were

accounted for through the background noise correction.

Although the ITTC guidelines recommend further correction of the measured data to account
for the influence of the testing environment such as the reverberation and reflections due to the
walls (Bertschneider et al., 2014), such corrections were not applied to the presented results.
This was purely due to the time restrictions imposed on the project and tight tunnel schedule
that was not able to accommodate a detailed investigation for this dummy model.
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Figure 5-26 Condition 1 - Comparison of net RNL from full-Scale trials and tunnel test measurement
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Full Scale and Extrapolated Tunnel RNL Comparison for Condition 4
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Figure 5-29 Condition 4 - Comparison of net RNL from full-scale trials and tunnel test measurement
based on extrapolations at 0,=0.11, Kq=0.318.

5.7 Discussion

The discussion regarding the measurements are structured to initially elaborate on the cavitation
observations. The qualitative interpretation of the cavitation observations aid comparisons of
the propeller induced pressure pulses and underwater RNL between full-scale and model tests.

“The Princess Royal” had sub-cavitating propellers with very low inception speed and strong
tendency to develop cavitation with increasing propeller loading. During the full-scale trials,
no cavitation was observed for “Condition 1” at the engine speed of 600 RPM as in Figure 5-6.

This was also confirmed by the tunnel tests as can be seen in Figure 5-5.

As the speed increased to 900 rpm (i.e. Condition 2), in the full-scale, relatively continuous
leading edge vortex emanating from the blade suction side and trailing in the slipstream up to

rudder was observed. The comparison of the cavitation observations from the full-scale and

140
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cavitation tests present a relatively weaker tip vortex during model tests as shown in Figure 5-7

and Figure 5-8 for tunnel tests and from the portholes of “The Princess Royal” respectively.

At the engine speed of 1200 rpm (i.e. Condition 3), in the full-scale, a relatively strong suction
side Sheet cavitation emanating from the entire blade leading edge with increased extent (hub
to tip) terminated the blade by rolling-up in the form of trailing tip vortex extending to the
rudder. The partial break-up of the sheet cavitation, as well as the occasional appearance of hub
vortex cavitation and propeller-hull vortex cavitation, were observed as in Figure 5-10. In the
tunnel tests, the similar patterns could be observed at corresponding condition whilst the extent
of the cavitation has been judged to lesser in terms of the volume in comparison to the full scale

as presented in Figure 5-9.

Condition 4 has an engine speed of 2000 rpm and is closest to the engine MCR (2300) condition.
The full-scale propeller, in this condition, displayed a rather large extent (almost 25-30% of the
blade area, Figure 5-12), volume and intensity of suction side sheet cavitation. This was ex-
tremely unsteady, breaking-up (and bursting) intermittently with a cloudy appearance. This
sheet cavitation terminated at the blade tip region by rolling-up in the form of a rather thick,
intense and cloudy tip vortex trailing to the rudder. This trailing vortex was bursting from time
to time. The hub-vortex cavitation was much thicker, intense and continuous. The tunnel test
observations compared favourably with the full-scale observations, as shown in Figure 5-11
and Figure 5-12. There was a good correlation in terms of the type, strength and dynamic be-

haviour of the types of cavitation observed.

The four pressure measurement locations at model scale (Figure 5-14 to Figure 5-17) display
amplitudes which are significantly smaller for the non-cavitating Condition 1, however, as ex-
pected these increased significantly with the development of cavitation. In addition to this, the
amplitudes for sensor positions P1 and P4 are considerably smaller in comparison to P2 and P3
due to being located further from the cavitating region. As the displacement of the propeller
blade and cavitation volume and its dynamics are the major sources of pressure pulses, these
results show a reasonable tendency. Also, amplitudes from P2 and P3 indicate that P3 is always
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higher except in the non-cavitating Condition 1. This is consistent with P3 being located after
the wake shadow region. Here the developed cavitation is collapsing and rebounding as the
blades leave the wake shadow region and passes into the area of higher axial velocity where the
blade inflow angle decreases thus reducing the flow conditions which maintain the volumes of

the sheet and vortex cavitation.

Model-scale extrapolated predictions of propeller induced pressure amplitudes were compared
with the full-scale results in Figure 5-18 to Figure 5-21. Results for the non-cavitating Condition
1 and for Condition 2, which displays a weak tip vortex presence, display reasonable agreement
as shown in Figure 5-18 and Figure 5-19, respectively. However, for the Condition 3, the pre-
dictions underestimate the full-scale levels. This may be attributed to differences in observed
cavitation extent as discussed previously. Model-scaled predictions for Condition 4 show good

agreement with those measured at full scale.

Total noise measurements presented through Figure 5-22 to Figure 5-25 are given together with
the background noise measurements to provide further insight especially in the tunnel measure-
ments for which the background noise levels are much more significant. When the background
noise corrections were applied, as shown in Figure 5-26. For “Condition 1” most of the noise
spectrum had to be discarded since differences were less than 3 dB in the noise levels between
the measured model scale data with propeller and the background noise. The non-cavitating
noise spectrum was of the dominated by the background noise. Equations 4 and 5, are based on
cavitating bubble dynamics and are most probably not appropriate for this condition. Conse-
quently, no further investigation was made in this study of non-cavitating noise extrapolation

laws, since the focus was on cavitation induced noise which dominated the full-scale spectra.

In Conditions 2 and 3, as shown in Figure 5-27 and Figure 5-28 respectively, the spectral levels

are observed to be less affected by the tunnel background noise for frequencies lower than 1000

Hz. However, beyond this threshold, the spectral levels for both conditions are still affected

significantly by the background noise. The cavitation patterns for Conditions 2 and 3, shown in

Figure 5-7, Figure 5-8, Figure 5-9 and Figure 5-10 respectively, indicate that the developed
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leading edge tip vortex and sheet cavitation are extremely unsteady, breaking-up (and bursting)
only intermittently with a cloudy appearance. The sheet cavitation terminates at the blade tip
region by rolling-up in the form of a rather thick, intense and cloudy tip vortex, trailing aft to
the rudder. Comparison of both the tunnel cavitation observations and the URN predictions
with the full-scale measurements for these two conditions seem to be in reasonable agreement

up to 500 Hz for the noise predictions.

Underestimation of the SPL predictions at frequencies above 500 Hz may be due to various
noise emitting mechanisms and cavitation dynamics created by the tip vortex cavitation at full
scale. In order to ensure similar dynamics in model scale experiments, it may be possible to
establish a relationship based on acoustical and cavitation similarity, as proposed by Latorre
and Shen & Strasberg (Latorre, 1982; Shen & Strasberg, 2003) using McCormick’s earlier work
(McCormick, 1962); although this was not tried in this study. It was also noted that the cavita-
tion dynamics in Condition 3 appeared more active in full-scale than in the model tests, as
observed in the high-speed videos from both cavitation tunnel tests and full-scale trials. Differ-
ences in cavitation dynamics are reflected in the distinct differences between the cavitation

tunnel SPL predictions and the full-scale values.

For Condition 4, as shown in Figure 5-29, the high level of URN noise spectra over the entire
frequency range appears not to be significantly affected by the background noise since the RNL
is dominated by significant sheet cavitation and its complex interaction with the tip vortex cav-
itation. Figure 5-11 and Figure 5-12, show that the propeller developed a rather large extent of
suction side cavitation (almost 25-30% of the blade area) with increasing volume and intensity.
This was observed to be rather unstable foamy sheet cavitation. The unsteadiness was more
towards the blade tip where the sheet cavity terminated on the blade by rolling-up and increas-
ing the strength and thickness of trailing tip vortex extending to the rudder. The trailing vortex
sometimes broke-up intermittently, having a cloudy appearance. Also noted were a continuous,
intensified cavitating Hub Vortex and, intermittently, a cavitating Hull-Propeller VVortex. The
predictions for this condition underestimate the full-scale measurements at the high frequency
region (500 Hz - 20 kHz). Although comparisons of cavitation extent are in reasonable agree-

ment , such observed violent collapse events and partial break-off of the sheet cavitation, have
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been identified as major noise emitting mechanisms (Bark, 1986), yet cannot be adequately

represented in model scale tests. As such these may influence under prediction of the noise

levels in the high frequency region.
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Figure 5-30 Model scale total noise measurements overview.
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Full-Scale Measurements Overview
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Figure 5-31 Full-scale net noise measurements overview.

Figure 5-30 and Figure 5-31 give a comparative overview of the spectral noise levels for the
four operating conditions at model and full-scale, respectively. These allow further interpreta-
tion of the influence of the operating conditions and associated cavitation dynamics on the noise
spectra. It is evident from the both figures that without cavitation, the URN levels are low.
However, as soon as cavitation inception occurs, the spectral levels increase as is expected from
trends in the literature (Arveson & Vendittis, 2000). Following discussions are made based on
full-scale noise measurements as presented in Figure 5-31, as the relative shift in the measured
spectral levels are easier to distinguish. In Condition 2, the increase in the URN levels starts at
a frequency around 200 Hz and is considered to reflect the relatively smaller diameter of the
cavitating tip vortex and less activity in its cavitation dynamics (Berghault, 2000). In Condition
3 the noise levels are observed to increase over the whole frequency range due the broadband
nature of the dominant cavitation phenomena creating a direct impact on the spectral levels,
especially in the high frequency range. The only test condition with the large extent of sheet
cavitation is Condition 4, which shows a significant increase in the URN level over the whole
frequency range. A series of peaks around multiples of the blade rates occur in association with
increased volume variation of the sheet cavitation and with a larger diameter tip vortex cavita-
tion also exhibiting increased cavity dynamics.
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5.8 Conclusions

Overall, Chapter 5 has been a constructing block for the development of the systematic propel-
ler series approach to be presented in Chapter 6 by the further experience and familiarity with
the facility gained following the previous chapter. Moreover, invaluable data including the cav-
itation observations, pressure pulse measurements and noise measurements from both full scale
and model test are provided together with the necessary accompanying information such as the
operating conditions, wake data and propeller geometry which are publicly scarce if not non-

existent.

Detailed experimental investigations have been conducted to predict URN levels for the New-
castle University’s catamaran research vessel “The Princess Royal”. The findings are based on
a series of model tests carried out in the University’s medium size facility “The Emerson Cav-
itation Tunnel” and on full-scale noise trials conducted with the vessel as part of a collaborative
European research project SONIC. Based on the investigations it is concluded that:

e Inamedium size cavitation tunnel, a truncated dummy-hull model with properly scaled
bow and stern sections, combined with the wake screens strategically fitted at the stern,
could be the closest alternative to a full (twin-hull) model configuration to simulate the
wake flow effectively.

e In spite of various simplifications made in the dummy-hull configuration to represent
the actual catamaran vessel, the tunnel test measurements for underwater RNL and cav-
itation observations can provide a reasonable basis to validate the full-scale trial meas-
urements by using the ITTC procedures and guidelines.

e Extrapolated URN spectra, based on tunnel tests in the presence of cavitation displayed
more reasonable agreement with the full-scale URN over the low and medium frequency

ranges than over the higher frequency range.

e Inthe present study, the issues related to the effect of the reverberations of the cavitation
tunnel facility and non-cavitating operating conditions have not been tackled due to time
restrictions on the project and a focus on the cavitation induced noise. This may require

further investigations.
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Chapter 6 Propeller Cavitation Noise Prediction

Using a Standard Propeller-Series Approach

6.1 Introduction

Chapter 6 presents an experimental approach to the cavitation noise predictions of commercial
vessels in full-scale by using a subset of a standard propeller series and adopting a systematic
testing method. The proposed approach has been validated using full-scale case studies and
results are discussed. The systematic test data for the URN, fluctuating pressures and cavitation
observations have been analysed jointly for further understanding of the URN phenomenon in
terms of the cavitation dynamics as well as exploring the effects of some of the important design

parameters and operating conditions on URN.

Following this introduction, Section 6.2 of the chapter describes the philosophy behind the
prediction approach. Section 6.3 presents the adopted experimental approach to generate the
experimental database. The development of the database is conducted in two stages: firstly, a
small subset of the Meridian standard propeller series is tested to demonstrate the viability of
the proposed approach, which is presented in Section 6.4; secondly, an extended subset of the
Meridian series is tested to establish a larger database as presented in Section 6.5. In the same
section (i.e. Section 6.5) an advanced experimental data analysis tool is also implemented to
study the effect of some important propeller design parameters, operational conditions and
cavitation dynamics on URN. In Section 6.6 an artificial neural network (ANN) based predic-
tion tool is implemented to predict the URN of a vessel by using the large database established.
The developed tool is tested and hence the prediction approach is validated by using two full-
scale case studies in Section 6.7. Finally, the conclusions of the chapter are presented in Section
6.8.

147



6.2 Philosophy of standard series approach to URN prediction of a propeller

6.2 Philosophy of standard series approach to URN prediction of

a propeller

The scope of this chapter is comprised of a number of sections that are contributing to the
development of an experimental standard series approach to predict the propeller cavitation
noise. In order to help the reader Figure 6-1 is provided to summarise the philosophy behind

this approach and hence guidance for the layout of this chapter.
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Figure 6-1 Philosophy behind the experimental approach for URN prediction.

In spite of their limitations and costs, the power of systematic propeller standard series and their
role in propeller design is well-known. The proposed approach, therefore, aims to develop a
noise prediction procedure based on the standard series and starts with the selection of a suitable

series.

In order to implement the approach in a cost economical way, amongst the various standard
propeller series that are readily available in the inventory of the ECT, the one with the best
coverage for acoustic testing is considered to be the Meridian Standard Propeller series
(Emerson & Sinclair, 1978). This family of propellers also has existing propeller performance

data that enables cross-checking measurement reliability.

Since all standard propeller series are generated in uniform flow and since the effect of wake
distribution on the cavitation and resulting noise is vital, the approach should include the wake
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effect and hence a systematic variation of wake inflow for the propeller tests is proposed based

on the BSRA wake criteria parameters.

Having specified the representative standard series and wake variations a comprehensive ex-
perimental set-up and associated systematic programme is adopted for the noise tests of the
members of the series in ECT. This test programme also included the acoustic characterization
of the ECT.

The experimental setup and developed inventory are initially put to test with the commercially
representative small subset of Meridian standard propellers. The test matrix of this test cam-
paign is determined based on the real oceangoing commercial vessel powering data and propel-
ler design parameters (MAN, 2009, 2014). The URN measurements made with this small subset
in ECT are then extrapolated to full scale using the same powering information to validate and
confirm the adopted approach by comparing with average shipping noise data literature (Wales
& Heitmeyer, 2002) as well as quantitatively confirming the significance of the wake inflow
effect.

The developed confidence through the small subset is then extended to an extended, larger
subset of the Meridian standard series propeller chosen with particular attention to major pro-
peller design parameters such as BAR, P/D ratio and blade number. The tests are conducted in
a systematic manner in order to be able to compile a sophisticated database for the development
of a propeller cavitation noise prediction method.

With a view to improve the efficiency and accuracy of the database the artificial neural network
(ANN) is used as the most suitable database management tool. Finally, an ANN based
standalone tool is developed to predict the URN of a commercial vessel by utilising the database

developed.

The developed code is applied for two real test case studies to predict the URN. The first test
case is a Japanese training ship “Sein-Maru” with its conventional and highly skewed propellers
while the second test case is “Merchant Tanker Olympus” with a controllable pitch propeller.

Moreover, as a by-product of the experimental investigations in this Chapter, the analysed re-

sults of the systematic propeller tests are also used for the implementation of an advanced cav-
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itation dynamics analysis tool to provide better insight into the understanding of cavitation in-
duced noise by using the synchronized pressure time signal recordings and cavitation observa-
tions. For this purpose, Joint Time-Frequency Analysis technique is used as a tool to establish
a bridge between the time domain and frequency response. The developed methodology is
demonstrated through comparisons of major propeller design and operational parameters to en-
hance the understanding of their roles as noise producing mechanisms of the propeller cavita-

tion.

6.3 Adopted experimental approach

As outlined in Section 6.2 the experimental approach to be adopted required the selection of a
representative propeller series and the development of representative wake distributions. New-
castle University with its ECT facility has been the birthplace of a number of famous and most
widely used systematic propeller series (e.g. KCA or Gawn-Burrill, KCD, Meridian, etc.) for
which comprehensive open water performance charts have been published (Gawn & Burrill,
1957; Emerson & Sinclair, 1978). Some of these data were used in the development of Burrill’s
cavitation criterion (Burrill & Emerson, 1962) which relates sheet cavity extent to thrust, blade
area and cavitation number. Such historical data have formed the background to the main ob-
jective of the present research, namely, to generate a representative systematic body of under-
water noise data for a subset of the standard “Meridian propeller series” and to present it in a
form which can be used as a tool for propeller noise prediction and mitigation in the early design

stage.

The main noise-producing mechanism during the operation of a marine propeller has been iden-
tified by several authors as the variation of cavitation volume (sheet and vortex) in a non-uni-
form wake field produced by the hull-form and appendages ahead of the propeller (e.g. Konno
et al., 2002). This significant effect has been included in this study through a systematic varia-
tion of wake inflow fields, constructed prior to conducting the cavitation tests. The synthesised
wake characteristics were influenced by the BSRA wake criteria (Odabasi & Fitzsimmons,
1978) and critical parameters of this criteria were identified in the BMT empirical noise pre-
diction study (Angelopoulos et al., 1988). In supporting the importance of the wake flow on the

URN, the comparison of the tests in the uniform flow condition and behind three wake flows
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have confirmed the basic hypothesis of the dominance of non-uniform inflow when focussing

on the propeller radiated noise.

In the remaining parts of this section (6.3) the details of the selected standard series are pre-
sented in section 6.3.1. This is followed by the description of the representative wake inflows
and their constructions for the experiments in section 6.3.2. Finally in section 6.3.3, detailed
information about the experimental setup for the URN tests is given including the test pro-

gramme for the determination of the acoustic transfer function of the ECT.
6.3.1 Selection of standard propeller series

Propeller design with the absence of computational power initially relied mainly based on ex-
perience and model tests. Eventually, in order to aid propeller designers, standard propeller
series were developed and tested to give guidelines and a design methodology (Kuiper, 2010).
These series have enabled the propeller designer to size the propeller quickly using charts whilst
ensuring with sufficient thrust to achieve the contract speed and power. Table 6-1 (Carlton,
2012) shows some of the well-known standard series of propellers. The Emerson Cavitation
Tunnel has been involved in the development of the KCA series with the support and funding
of the British Admiralty and both the KCD and Meridian series with Stone Marine Manganese
(Emerson & Sinclair, 1978; Gawn & Burrill, 1957).

Table 6-1 Fixed pitch, non-ducted propeller series (Reproduced from (Carlton, 2012)).

Series Number of Range of parameters D (mm)  ry/R Cavitation ~ Notes
propellers data
in series Z Ag /Ao P/D available
Wageningen ~120 27 0.3-1.05 0.6-1.4 250 0.169 No Four-bladed
B-series propeller has
non-constant
pitch dist
Au-series 34 4-7 0.4-0.758 0.5-1.2 250 0.180 No
Gawn-series 37, 3 0.2-1.1 0.4-2.0 508 0.200  No
KCA-series 230 3 0.5-1.25 0.6-2.0 406 0.200  Yes
Ma-series 32 3and 5 0.75-1.20 1.0-1.45 250 0.190  Yes
Newton—Rader 12 3 0.5-1.0 1.05-2.08 254 0.167  Yes
series
KCD-series 24 3-6 0.587 Principal ~ 0.6-1.6 406 0.200  Yes Propellers not
(mainly 4)  0.44-0.8 geosyms
Meridian series 60 6-4 0.45-1.05 0.4-1.2 305 0.185 Yes Propellers not
geosyms
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The Meridian propeller series is a unique standard series based solely on practical propeller
designs for standardised variations in pitch to diameter ratio, BAR and number of blades (Z).
The series is unique in that actual propeller designs were chosen as the parent propellers for
each blade number group and blade area group. These were largely obtained from the extensive
database of Stone Marine Propulsion (SMP).

The designs were also refined through SMP’s design methodology to extrapolate the designs,
fill in the gaps and to check and adjust the designs. Standard Meridian forms were used for the
blade width distribution, basic section shapes and radial thickness distribution (SMP, 2016).
All of the parent propellers were designed to work in a uniform wake stream. In line with the
current practice, the blade outline below 0.5 r/R was expanded where necessary to give a t/c
ratio of 0.2 at 0.25 r/R, while the lift coefficients were limited to 0.65.

The original Meridian Propeller Series are the proprietary design of both Stone Manganese
Marine Ltd (now SMP Ltd) and Newcastle University. They have a range of blade numbers (Z)
from 4 to 6 and BAR of 0.45, 0.65, 0.85 and 1.05. For each parent model, five mean P/D ratios
of 0.4, 0.6, 0.8, 1.0 and 1.2 were generated. Model tests with 304.8 mm diameter propellers in
manganese bronze, were conducted in the Emerson Cavitation Tunnel. These tests generated
systematic open water performance curves, from which Bp-6 diagrams were derived. The tests
also included limited performance testing for a range of cavitation numbers (Emerson &
Sinclair, 1978).

The catalogue of the available model propellers at the ECT was used to select an appropriate
subset. Following detailed blade inspections, some propellers with minor damage were elimi-
nated from the final chosen subset. Details of the selected propellers are discussed in Section
6.4 and 6.5.
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6.3.2 Development of systematic variation of wake inflow

The significance of the hull wake and its distribution on propeller performance, especially for
cavitation and inboard noise, has been noted in many research studies since the 1970’s and is
routinely taken into account in the design and analysis process (e.g. Oossanen, 1971; Young &
Kinnas, 2001). Although all three components of the hull wake flow are critical to the perfor-
mance analysis of a propeller, the axial wake is the most important component dominating the
propeller’s loading characteristics (e.g. Huse, 1974; Harvald, 1981), as was also discussed in
the Literature Review in Chapter 2. Based on this fact and considering the time and resource
limitations of this project, only investigation of the axial wake distribution on the propeller
performance has been justified.

Consequently, it was decided that the desirable wake configurations could be simulated by us-
ing two-dimensional wake screens in combination with different grades of “chicken-wire”
meshes, strategically patched onto a base frame which is in line with the established practice
within the ECT.

In order to select suitable wake configurations, an extensive literature survey was conducted.
These included seminal studies such as Konno (Konno et al., 2002) in which cavity collapse
events were observed to increase amplitudes and complexities of the pressure pulse time-series
for the propeller operating behind a peaked, non-uniform inflow. The study further highlighted
the effect of altering the gradient of the wake distribution. The wakes with steeper velocity
change were shown to produce higher tonal amplitudes of pressures as well as high frequency
contributions from increased dynamic cavity collapses, both on and off the blade surface. A
characteristic pressure pulse feature was a double peak configuration in the time domain sig-
nals. Inspiration from Konno’s study led to the utilization of BSRA wake criteria suggested by
(Odabasi & Fitzsimmons, 1978; Angelopoulos et al., 1988) to quantify and develop a family of
3 representative wake grids, to complement the parametric variations in the standard propeller
series geometries. According to Odabasi & Fitzsimmons, the severity of the wake, which can
be quantified by the wake non-uniformity parameter given by Equation 27, is an important

characteristic in generating propeller excited vibration and radiated noise.
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WA — {WMix:VTV/VMin}

Equation 27

where, Wwvax and Wnin are the maximum and minimum wake fraction and W is the circumfer-
ential average wake fraction calculated by Equation 28. The above is defined at r/R = 0.7 in
this study. Whilst the BSRA wake criteria normally is defined at r/R = 1.0, the wake parameters
at r/R = 0.7 is preferred in the thesis since the developed wake grids presented higher gradients

at this radius and hence better representation of the implemented wake variation.

f:; r [ wrd@dr
m(R?%? —r?)

W = Equation 28

where, r is the representative radius of the propeller that is integrated over the propeller radius,

wis the wake fraction that is integrated over the 360° and R is the radius of the propeller.

In order to have a better definition and control of the systematic wake variation, further wake
parameters such as the mean wake, half-wake width and wake depth were included in the wake
analysis as shown in Figure 6-2 for r/R = 0.7. The highest value of the wake depth and lowest
value of the half-wake width would present the most non-uniform wake distribution. This re-
sulted in the most dramatic change of the inflow velocity in the wake shadow region and con-
sequently would induce the formation of unsteady cavitation in this region by the collapse and

rebound of cavity volumes at exit from the wake shadow region.

Based on the above considerations, three related wake configurations were generated numeri-
cally (theoretically); these are designated as ECT1, ECT2 and ECT3, for varying wake non-
uniformity parameters. The target variations are achieved through variation of the half wake
width and wake depth parameters, ranging from severe to mild. Thus, the wake with the nar-
rowest wake width and highest wake depth presents the most severe wake (ECT1) and the wake
that has the lowest wake depth and largest half wake width represent the mildest wake (ECT3)
while ECT2 is lying in between. Table 6-2 shows the main parameters of the three wake con-
figurations, while Figure 6-3 compares the target wake variations (dotted lines) with the exper-
imentally simulated wake distributions (solid lines) at one fractional radius (r/R= 0.7). Cavita-

tion dynamics outside the 0.7 r/R are considered to dominate noise generation.
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Figure 6-2 Representation of wake depth (AW) and half wake width for three representative wake dis-
tributions at r/R=0.7
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Figure 6-3 Comparison of target (theoretical) and simulated wakes (ECT) at r/R=0.7
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Table 6-2 Significant wake parameters for wake distributions selected.

Wake Parameters
Wake screen type ECT1 ECT2 ECT3
Wake depth 0.71 0.64 0.50
Half Wake Width (degrees) 60 95 132
Mean Wake (Propeller disc) 0.16 0.20 0.195
Wake non-uniformity parameter 0.86 0.81 0.63

The three wake screens manufactured and used for the experimental simulations are shown in
Figure 6-4. During the experimental wake simulations these wake screens were placed ahead
of the model propellers at a distance of 1.5 propeller diameters as shown in Figure 6-6 and (x
and z) wake velocity components were measured by using the ECT’s two-dimensional LDA
system and measurements were made as outlined in section 3.4.1.2 entitled Laser Doppler An-
emometry.

The simulations of the target wake velocities by using the final grid arrangements shown in
Figure 6-4 were achieved by 20 attempts in total for the three different wake variations. The
measurements with the finalized wake grids, which are presented as contour plots, are shown

in Figure 6-5 for the three representative wake flows.

ECT3 ECT2 ECT1

Figure 6-4 Constructed wake screens.
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Figure 6-5 Contour plots of axial velocity distributions of the simulated 3 representative wakes.
6.3.3 Experimental setup

The conduct of the systematic propeller tests required easy implementation and change of the
experimental parameters in order to make the process efficient. In this context, in order to be
able to acquire a significant amount of data points, major variations to the experimental setup,
such as the propeller and the wake screen, require short periods of downtime for the facility.
Therefore, although using a full model or a truncated dummy model to generate the wake is
preferable due to their advantage of representing the tangential components of a wake inflow
to the propeller, a series of fixed axial-flow wake screens has been used to simplify the experi-

mental setup and reduce the downtime.
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As stated earlier, the wake screens are located in the tunnel at a distance of 1.5 propeller diam-
eter upstream of the propeller model in order to avoid the high levels of turbulence intensities

introduced by the presence of the wake screen, as can be seen in Figure 6-6.

Figure 6-6 Testing set-up of model propeller behind wake ECT2 at a distance of 1.5 propeller diame-

ter.

The noise measurements are conducted using a B&K 8103 hydrophone mounted within the
tunnel in a streamlined strut. The configuration and properties of the hydrophone setup and
acquisition are outlined in section 3.4.6 entitled “Noise measurement equipment and analysing
methodology”. The hydrophone is positioned facing the incoming flow and at an offset given
in Table 6-3 and shown in Figure 6-7. Acoustic experimental procedure requirements are met
by conducting the tunnel background noise measurements as well as tunnel acoustic frequency
response due to reverberation. The details of the former study are presented in detail within the
following subsection (6.3.3.1). The background noise measurements are also presented in Ap-
pendix C.

Table 6-3 Offset of hydrophone location used during tests in ECT.

8103 Hydrophone Distance from the Pro-

peller Plane & shaft axis

X 264mm
y 245mm
Z 120mm
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Figure 6-7 Locations of two B&K hydrophones relative to model propeller inside ECT.

The experimental setup was modelled digitally before the conduct of the experiments in order
to ensure the feasibility and to give a better idea of the nature of the test setup. Figure 6-8 shows
a 3-dimensional Computer Aided Design (CAD) view of the experimental set-up used in ECT.

It displays the dynamometer, model propeller, hydrophone and wake screen.

Figure 6-8 CAD model of the experimental setup in ECT test section.

Throughout the test campaign, the water quality of the ECT was monitored in order to ensure
the satisfactory levels were attained as described in detail in section 3.4.2 entitled “Water qual-
ity”. The tunnel was deaerated by means of its dedicated degassing system as required. The
saturated gas content was increased by using the degassing cylinders under atmospheric condi-
tion and by circulating the tunnel for long time periods to enable saturation of the gas in the
tunnel water. The tunnel air content was kept between 30 to 40% throughout the periods that
experiments took place following the ITTC guidelines.
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6.3.3.1 Determination of acoustic transfer functions for the ECT

The cavitation tunnels are closed-circuit water circulation channels. As a result of the fixed
boundaries of such facilities, noise measurements suffer from reverberations (reflected waves
and boundary motions) (Park et al., 2009). In order to account for any related errors that may
influence the accuracy of the measurements, a known noise source is first introduced with a
view to determine the acoustic response of the tunnel at the measuring hydrophone (Tani,
Viviani, Armelloni, et al., 2015). The correlation between the known noise source and the re-
ceiver hydrophone is defined as the transfer function of cavitation tunnel acoustic frequency

response.

Measured transfer functions for the ECT have been determined for the systematic propeller
cavitation tests. Determination of the acoustical properties of the testing environment has been
performed reproducing the experimental setup as much as possible (Cochard & Arzelies, 1998).
In order to achieve this, while the hydrophone is kept at the exact location given in Table 6-3
and shown in Figure 6-7, a calibrated known noise source was attached to the propeller dyna-
mometer in the propeller plane as illustrated in Figure 6-9 and connected to an “Agilent” arbi-

trary waveform generator which produced sinusoidal sweep signals (Figure 6-10).

Figure 6-9 - Setup of the known noise source for the determination of the acoustical transfer functions
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Figure 6-10 - Agilent arbitrary waveform generator

The channel impulse response is shown in Figure 6-11, was measured by transmitting a 5-20
kHz sweep signal over the 0.5-second duration and performing the cross-correlation of the hy-
drophone signal with the transmitted signal. There is detectable reverberation spanning at least
20ms but the time spread of significant arrivals is approximately 4ms. As a rule of thumb, sig-
nals whose period is greater than 10 times the time spread will not experience large amplitude
variations due to destructive interference. Therefore, below ~25 Hz the cavitation tunnel may
be viewed as a waveguide and the losses between the source and receiver will be minimal (only
3 dB or multiplied by 0.5 as half the energy will travel away from the receiver). At frequencies
above this threshold value, the tunnel will present a complex frequency selective fading chan-

nel.
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Figure 6-11 Channel impulse response in time domain for 5-20 kHz sweep signal over 0.5 second.
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The Figure 6-12 and Figure 6-13 below show the spectrum of the signal received from the FFT
of the frequency sweep. The result is only reliable from 7-15 kHz due to poor sensitivity in the
source transducer outside this range and high signal to noise ratio. The first Figure 6-12 shows
the transit transducer sensitivity in dB re 1uPa/V @ 1 m (red trace), the expected received level
with a range of 0.38 m and the received signal level (blue trace). The second Figure 6-13 shows
the response of the channel (gain in dB) relative to a free space measurement at a given range
of 7-15 kHz.
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Figure 6-12 Narrowband frequency response of the tunnel with the calibrated noise source response.

The carried out investigation enabled the determination of the acoustic characterization of the
ECT for the systematic standard propeller series tests. The obtained transfer functions are pro-
vided in narrowband frequency domain to ensure the completeness of the study conducted as it
is stated by ITTC (2014). The resulting reverberation characteristics of the ECT has been ob-
served to be significantly similar to other cavitation testing facilities (Tani, Viviani, Gaggero,
et al., 2015) The conducted study is not applied as a correction to the experimental measure-
ments carried out in the context of this section due to the limited frequency range that the signal
to noise ratio of the measurements are reliable (i.e. only corresponding to three 3" octave centre
frequencies). In order to overcome this missing information, further investigations are planned
to take place using a hydrophone array to enable the spatial averaging of the cavitation tunnel

measurements.
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Figure 6-13 Narrowband frequency domain transfer function of the ECT.

6.4 URN data with commercially representative small subset of

Meridian propeller series

This section presents a small, but commercially representative, standard series of propeller
models tested in ECT using 3 members of the Meridian series for commercial ship propellers.
The members were chosen to test significant propeller design parameters in relation to cavita-
tion noise radiation. These parameters include pitch to diameter ratio, blade area ratio, number
of blades and operating conditions implemented by the changing of the wake, shaft speed and
applied vacuum level. The propellers selected were tested both in open water conditions and
behind 3 different grades of non-uniform axial wakes described earlier in Section 6.2.2. Based
on the measured noise data the results were extrapolated to full-scale using an available data-
base for some real commercial vessels (MAN, 2014, 2009) with similar main propeller partic-

ulars as the members of the selected propeller series.
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The initial aim of using this 3 member small subset was to test major propeller design parame-
ters such as BAR, P/D ratio and blade number (Z). Based on some major commercial ship types
(i.e. Container ship, Panamax bulker and Handy size bulker) the subset of 3 propellers was
selected from the Meridian Series (KCD 193, 192, 191) as shown in Figure 6-14.

Pitch/Diameter
0.6 0.8 1.0
Blade Area Ratio
0.65 KCD191 KCD193
’ (4 Blade) (4 Blade)
KCD129
0.85 (5 Blade)

Figure 6-14 Main propeller parameters from the 3-memeber Meridian Series subset (on the Left). Sub-
set images: KCD 129 (top left), KCD 193 (Top right), KCD 191 (bottom).

6.4.1 Test matrix and adopted approach for tests

The test matrix for this small propeller subset was devised based on the knowledge of some
ships in service, since it was considered that the test cases should both represent a certain ship
type with a realistic pitch to diameter ratio as well as realistic operating conditions. Bulk carri-
ers, container vessels and tankers are the three largest groups of vessels within the world mer-
chant fleet. Therefore, this study selected some sub-groups as the basis for compiling a noise
database. The model propellers and associated test data were extrapolated based on the assump-
tion that certain ship types tend to use certain pitch to diameter ratios and operate between

certain torque coefficients that are also similar due to their mission profiles (MAN, 2014, 2009).
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Consequently, Figure 6-15 is provided based on the actual operating conditions of a large num-
ber of full-scale commercial vessels where the representative operational conditions for certain
ship types are plotted for the determination of the test matrix as presented in Table 6-4. The
conditions are presented on the y-axis in terms of the rotational-speed based cavitation number
and representative torque coefficients on the x-axis. The individual powering conditions of the
vessels are also shown plotted against the vessel types for which the model test noise measure-

ments are extrapolated.

Systematic Test Matrix

Kq=0.12 Ky=0.16 K,=0.22K,=0.26K,=0.32  K,=0.40
| |

".l"l."" * 0 L ] ®

-~

o, (Rotational Cavitation NUmber)

0.00 0.05 0 0.15 0.2C 025 030 035

10K, (Torque Coeffficient)

Bulk Carrier Region Tanker Region Container Ship Region

Figure 6-15 Measurement matrix given together with the operating conditions of the target vessels.
(Operating conditions are denoted by circles while operating regions are denoted by dashed lines for

each vessel type).

In general, the data on the right-hand side of Figure 6-15, which is confined between Kq = 0.32
and Kq =0.4, correspond to the operational conditions for typical container vessels while the
data on the left-hand side, which are confined between Kq = 0.12 and Kq =0.16, correspond to
handy size bulk carriers. The data range in the middle confined between Ko = 0.22 and Kqg

=0.26 are for the Panamax size bulk carriers.
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Table 6-4 Commercially representative small subset test matrix.

Propeller Wake Eraction Vacuum Dynamometer Inflow
No Condition Speed (RPM) Speed (m/s)
KCD 191

Atmospheric, 3

100 mmHg, two RPMs for each pro- | (for open wa-

Open water
' peller ter)
KCD 193 "ECT1"' “ECTZ”, 200 mmHg,
" " 300 mmHg, based on the open wa- 3.5
ECT3
omme ter data (for behind
500mmHg.

wake screens)
KCD 129

In order to cover as many possible vessel operational data as possible and hence to facilitate
interpolations, the tests were conducted from relatively high to low representative torque coef-
ficients as well as their representative cavitation numbers. The propeller open water character-
istics were then utilized to calculate the test conditions using the chosen torque coefficients and
tunnel operating limitations. Once the propeller test conditions were fixed the tests were con-
ducted for six different cavitation numbers and corresponding noise data were recorded. The
required cavitation number was adjusted by application of a vacuum to the tunnel. The range
of the six cavitation numbers was achieved by applying 5 different vacuum levels from the
Atmospheric condition to 500 mmHg, at 100 mmHg intervals as shown in Table 6-4. The def-
inition of the non-dimensional coefficients comprising the test matrix are determined with

Equation 9 and Equation 29 for torque coefficient and cavitation number, respectively.

o :Pa+pghs_Pv
" 0.5p(nD)?

Equation 29

The overall test matrix included 3 model propellers (KCD 129, 191 and 193) behind 4 different
inflow configurations (i.e. open water and 3 different wake screens) for 2 different torque co-
efficients and at 6 different cavitation numbers. Thus, 144 unique operating conditions were

simulated in the cavitation tunnel in order to construct the systematic series database.
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In order to meet the requirements of the test matrix, three different operating regions were spec-
ified for each ship for which the powering data was readily available. Thus, during the tests, the
tunnel inflow speed was fixed at 3.5 m/s behind the wake screen conditions and at 3m/s for the
open water test conditions. This meant that although the exact predefined torque coefficient
was not achieved during the experiments, the intended region for each vessel type as presented

in Figure 6-15 was covered by the recorded data.

6.4.2 Noise measurement results

The systematic database of experimental results collected for the propeller noise has the poten-
tial to be used as a noise prediction and mitigation tool in the early stage of a propeller design
provided that the proposed design lies within the range of the database parameters. A designer
with concerns for noise levels will be able to make a preliminary estimation of noise for a

candidate propeller at the early design stages.

In order to demonstrate the above capability, bearing in mind the data range given in Figure
6-15, the noise data generated with the 3 KCD model propellers (KCD 191, 129 and 193) have
been extrapolated to full-scale using the main particulars of three relevant ship types, namely a
typical handy size bulk carrier, a Panamax size bulk carrier and a 4800 TEU Containership, as

shown in Figure 6-16, Figure 6-17 and Figure 6-18, respectively.

Handy Bulkcarrier
Loa 187.83 [m]
Lwl 182.46 | [m] Propeller Dimension
Lpp 180.00 | [m] Dp 6.130 | [m]
B 30.00| [m] P/D 0.676
D 17.30 | [m] EAR 0.400
d 11.00 | [m] z 4
Chb 0.8312 boss ratio 0.180

Figure 6-16 Handy Bulk carrier dimensions used for extrapolation of the KCD 191 noise data.

167



6.4 URN data with commercially representative small subset of Meridian propeller series

Dimension
PANAMAX BULK Carrier
Loa 203.61 [m]
Lwl 198.50 [m] Propeller Dimension
Lpp 195.85 [m] Dp 6.90 [m]
B 32.26 [m] P/D 0.804
D 18.00 [m] EAR 0.520
d 11.30 [m] Z 5
Cb 0.8353 boss ratio 0.180

Figure 6-17 PANAMAX Bulk carrier dimensions for extrapolation of the KCD 129 noise data.

CONTAINER SHIP 4800 TEU|

Loa 30230 [m]
Lwl 295.46 | [m]

Propeller Dimension

Lpp 292.00 [m] |t Dp 8.30 [m]
B 40.00 [m] L2 |H/D_0.7R|  1.029
D 21.80 [m] EAR 0.667
d 13.00 [m] V4 5

Cb 0.6265 boss ratio 0.180

Figure 6-18 Container ship dimensions for extrapolation of the KCD 193 noise data.

The dataset generated within the framework of this experimental campaign is extremely large
and hence to present all of the results is a challenge. However in order to give an insight into
the nature of the data produced, the effect on RNL of some main primary propeller design

parameters and operating conditions are shown in Figure 6-19 to Figure 6-21.

The noise data presented in Figure 6-19 and Figure 6-20 presents the full-scale noise levels with
the KCD 129 and KCD 193 in an open water condition as well as behind the ECT1 and ECT2
wake grids in full-scale. Thus, the figures carry great importance as they demonstrate the effect
of three different inflow conditions.

As one can see in both figures, the extrapolated spectral levels were significantly increased due
to the effect of the simulated wakes, over the whole frequency range thus proving the validity
of the approach adopted in the study in terms of the wake flow effect.
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Figure 6-19 Extrapolated noise levels of KCD 129 in open water condition and
behind wake screen ECT1 and ECT2.
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Figure 6-20 Extrapolated noise levels of KCD 193 in open water condition and
behind wake ECT1 and ECT2.
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In order to demonstrate the practical and qualitative accuracy of the data generated in this study,
the extrapolated noise levels for the representative container ship (KCD 193) and Panamax bulk
carrier (KCD129) are compared with the averaged shipping noise data recorded by Wales &
Heitmeyer, (2002) as shown in Figure 6-21. The scaled noise predictions compare reasonably
well with the ship statistical data above 100Hz, implying a certain level of correlation in the
spectra levels. Moreover, the predictions indicate significant potential in predicting especially

1%t BPF, as the spectral peak is present within the extrapolated spectrums.
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Figure 6-21 Comparison of predicted noise levels with average shipping noise data.

6.4.3 Remarks on test results with small subset of propeller series

An initial subset (3 model propellers) of the Meridian standard series was chosen to represent
the main design variants such as P/D ratio, BAR and blade number of commercial vessels.
These were combined with the selection of three different grades of wakes deficit ahead of the
propellers. The resulting model propeller and wake subset were tested in the Emerson Cavita-

tion Tunnel to generate associated noise data covering a broad range of operating conditions
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6.5 URN data with extended subset of Meridian propeller series

representative of three commercial ship types. The test results were extrapolated to full scale
using a database for the main particulars of real ocean-going vessels in order to validate the
extrapolated URN results with available full-scale URN data. Based on the results presented

here it can be concluded that:

1. Comparison of the measured noise levels behind the wake and in open water condition
demonstrates the importance, and hence necessity, of introducing the effect of wake into
the noise investigations of propellers even for the systematic series.

2. Qualitative comparisons of the predicted full-scale URN for representative commercial
vessels based on the systematic noise database and published commercial shipping noise
data from Wales and Heitmeyer (Wales & Heitmeyer, 2002), indicate a reasonable con-
fidence in the predicted noise levels and trends over the frequency range of the compar-

ison.

6.5 URN data with extended subset of Meridian propeller series

Confidence in the results achieved with the small subset experiments, allowed a larger subset
from the Meridian standard propeller series to be chosen and a more extensive experimental
matrix to be devised. The following subsection, therefore, covers various aspects of systematic
propeller testing and the eventual database to be produced based on the larger subset of model
propellers. Thus, initially, the larger test matrix and the subset are specified as given in Table
6-5. Following this, data representing the main variants of the conducted experimental cam-
paign are picked and compared in order to investigate the effect of these parameters on propeller
cavitation noise (Section 6.5.1). Within Section 6.5.1 further scrutiny of the experimental re-
sults by means of the synchronized pressure time signal and cavitation observation recordings
together with the joint time-frequency analysis using the Short-Time Fourier Transform tech-

nique.
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6.5 URN data with extended subset of Meridian propeller series

Six members of the Meridian series were hand-picked to assess key propeller design parameters
as such; models KCD 191,192 and 193 were chosen to assess the effect of the pitch, while
models KCD 129 and KCD 65 to evaluate the effect of blade number. In the meantime models,
KCD 65 and KCD 7 were selected to assess the effect of the BAR. Table 6-5 presents the
variation of the propeller design parameters, whilst Figure 6-22 shows the propellers ready for
the tests after marking with radius lines and chord length divisions. The same figure also

includes the three wake screens used.

Table 6-5 Propeller design parameters of the chosen standard series subset.

Pitch/Diameter
0.6 0.8 1.0
Blade Area Ratio

0.65 KCD191 KCD192 KCD193

’ (4 Blade) (4 Blade) (4 Blade)

KCD129

e (5 Blade)

. KCD65

(6 Blade)
KCD74
1.05
(6 Blade)

The systematic experimental data consisted of 576 individual tests, based on the selected 6
model propellers, conducted in uniform flow and behind the earlier described 3 systematically
varied wake grids together with 3 different levels of tunnel vacuum conditions and 8 different

propeller speeds. A summary of the test matrix is shown in Table 6-6.
In complementing the test matrix, Figure 6-23 is provided to summarise the complete database

in terms of Advance Coefficient (J), Resultant Cavitation Number (oresultant) , Thrust and Torque
coefficient (Kr, 10Kg)
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6.5 URN data with extended subset of Meridian propeller series

Figure 6-22 Extended subset of Meridian propellers and wake screens used for tests.
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Table 6-6 Extended subset of Meridian series test matrix.

Model . Inflow
P/D BAR Blade Wake flow condi- | Vacuum con- Shaft speed speed
propeller no tion dition (rpm)
No (m/s)
KCD 191 0.6 0.65 4
KCD 192 0.8 0.65 4
heri 600, 800
KCD 193 1.0 0.65 4 Open water, Atmospheric, 1000.1200
"ECT1", "ECT2", 150 mmHg, , ’ ' 3
KcD129 | 0.8 | 0.85 5 "ECT3" 300mmHg 1400, 1500,
1750,2000
KCD 65 0.8 0.85 6
KCD 74 0.8 1.05 6
2.5 0.7
~ 06
22 2
Pn’c 0.5 g
5 =
2 KT
= for 42 03 g
| .
2 |l||i" : 3
.*g 1 e I ) 0.2 §-
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Q e |
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Advance Coeficient (J)

Resultant Cavitation Number = Thrust Coefficient 10*Torque Coefficient

Figure 6-23 Dataset illustration as a function of Advance Coefficient (J) in conjunction with Resultant

Cavitation Number (oresuitant), Thrust (Ky) and Torque (10Kg) coefficients.
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6.5 URN data with extended subset of Meridian propeller series

6.5.1 Presentation of results and advance analysis of cavitation induced

noise data using JTFA technique

The earlier described scope of the experimental campaign resulted in a colossal database that is
unique in its nature. However, the presentation of such a large amount of data has proved to be
a significant challenge. While the management of this data will be achieved using the ANN as
described later in Section 6.6, in this sub-section part of the URN data collected is used to
investigate the effect of major propeller design parameters (i.e. namely P/D, BAR, Z) on the
URN levels.

Using hydrophones, the URN measurements are traditionally presented in the frequency do-
main thus enabling the comparisons of the RNL’s as a measure of the relative noise perfor-
mance of a propeller. However, this approach limits the interpretation of various causes for the
generation of URN as well as understanding the detailed effects of these causes. In order to
provide further insight into this matter, an advanced analysis tool for the cavitation induced
URN is implemented in this section. The implementation of this tool has required the recordings
of the pressure pulses at a strategic location above the test propellers in synchronisation with
the cavitation observations using High-Speed Video (HSV) cameras during the course of the
systematic tests. Both the pressure pulses and the cavitation observations were acquired at a
rate of 5000 Hz to allow a fine assessment of the time signal with respect to the visual cavitation
phenomena observed.

Within the framework of the above objective and approach, this section is comprised of three
analysis phases. The first phase presents the analysed net noise levels in the frequency domain
for the chosen sample data. Following this, the synchronized time signals and cavitation obser-
vations are put under the spotlight in the second phase. Finally, the raw pressure pulse signals
are processed by using the Joint Time-Frequency Analysis (JTFA) toolkit of LabVIEW to en-
able the determination of the frequency band to which certain types of cavitation phenomena
contribute. An overall presentation of this advance tool for the analysis of the cavitation induced

URN and background is outlined in Figure 6-23
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Synchronized Cavitation
observation and Pressure Hydrophone Measurments
Pulse recordings

DlAdem Analysis for the
synchronized Pressure Pulse JTFA of the Pressure pulse
Time Signal and Cavitation signal
observation

Figure 6-23 Layout of an advanced analysis tool for cavitation induced URN.

NI DIAdem and LabVIEW software tools are used to quickly locate, load, visualize, analyse,
and report the measurement data collected during the data acquisition and/or generated during
simulations (National Instruments, 2003, 2011). This toolkit is designed to meet the demands
of today’s testing environments, which require quick access, process, and report on large vol-

umes of scattered data in multiple custom formats to make informed decisions.

6.5.1.1 URN data of propellers in frequency domain

Noise measurements from the cavitation tunnel tests are analysed and processed according to
the procedure outlined in Chapter 3. Figure 6-24 to Figure 6-28 illustrate the influence of vari-
ous propeller parameters on URN, as well as the effect of wake inflow and operating conditions.
Sequentially, Figure 6-24 shows the effect of shaft speed; Figure 6-25 demonstrates the effect
of the wake inflow; Figure 6-26 shows the influence of the blade number; Figure 6-27 depicts
the influence of the BAR and Figure 6-28 illustrates the effect of the P/D ratio.
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KCD193 at Atmosphericcondition Behind ECT1
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Figure 6-24 The comparison of the KCD193 propeller behind ECT 1 wake at propeller speed of 600
RPM and 1750 RPM.

Figure 6-24 presents the impact of the cavitation on the measured SPLs caused by an increase
in the shaft speed and resulting change in the shaft speed based cavitation numbers and propeller
performance coefficients. The figure clearly shows that the SPLs present a significant increase
over the whole frequency range with amplitudes over 30 dB higher. Although such an observa-
tion is expected to be obvious, this also supports the hypothesis of the cavitation being the
dominant noise source once it develops.
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Figure 6-25 Noise comparison of the KCD193 propeller behind ECT 1 and in open water condition at
propeller speed of 1750 RPM.

Figure 6-25 provides further evidence on the claim that the cavitation developed behind a non-
uniform wake may induce higher SPLs, which can be up to 20 dB difference at the 1% blade
passage frequency and no less than 5 dB difference at the broadband frequencies, compared to
the SPLs measured in open water condition. This indicates that although the cavitation is the
dominating factor for the RNL, the dynamics involved due to the cavitation volume acceleration
emanating from the wake variation causes further elevation that may also be contributed by
bursting, rebounding and collapse of the cavitation bubbles. Such cavitation dynamics give rise
to the cavitation volume acceleration which is well known to be the main factor behind the

hydro-acoustic cavitation noise
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Figure 6-26 Noise comparison of KCD 129 and KCD 65 propellers behind ECT 2 wake at propeller
speed of 2000 RPM.

Figure 6-26 shows differences due to the number of blades on the measured SPLs from two

propellers tested. Interestingly the spectral levels emitted by the two propellers cross-over a

frequency around 600 Hz as such KCD 129 (5 bladed) displays higher SPLs below the cross-

over frequency while KCD 65 (6 bladed) emits higher SPLs above this frequency. While this

will be dominated by the nature of the cavitation experienced by each propeller over the fre-

quency range tested, the lesser blade number of KCD 129 will induce relatively higher thrust

density per blade compared to KCD65.
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Figure 6-27 The comparison of the KCD 74 and KCD 65 propellers behind ECT 1 wake at propeller
speed of 2000 RPM.

The comparison of the effect of the BAR is presented in Figure 6-27. The RNL are observed to

be similar up to 200 Hz. However, there seems to be a hump in the spectral levels experienced

by the KCD 74 from 200 Hz to 800 Hz emitting higher sound pressure levels within this fre-

quency range. KCD 65 is observed to produce higher noise levels for the high frequency range

(>800 Hz) when compared to KCD 74. This figure is intriguing as the propeller performance

coefficients are exactly same and cavitation numbers are similar, but there is a significant dif-

ference in the RNL. The impact of the BAR reveals itself in terms of the thrust per blade area.

Thus heavily loaded KCD 65 experiences more dynamic cavitation contributing to the high

frequency region of the measured spectra.
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Figure 6-28 The comparison of the KCD 193 and KCD 191 propellers behind ECT 1 wake at propeller
speed of 1750 RPM.

The final comparison presented by Figure 6-28 is to represent the effect of different pitch ratios
on the measured SPLs. While the noise levels of KCD193, which has a higher P/D and hence
thrust loading, are generally greater than those of KCD 191 over the frequency range tested,
this trend changes over a frequency band between 600 Hz to 2000 Hz. Over this frequency band
KCD 191, which has a lower P/D, displays two distinct humps that result in higher SPLs than
for the KCD 193 SPLs. The reason behind the presence of the humps will be scrutinized further
using the synchronized cavitation observation and pressure time signal method and JTFA in the
following sections. As one may also note that the BPF levels also present more than 10 dB

difference.
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6.5.1.2 Synchronized fluctuating pressures and cavitation behaviour

propellers in time domain

Details of the synchronised acquisition of the pressure sensor data and high-speed video
recordings of cavitation observation have been already described in Chapter 3 (Section 3.4.4
and 3.5.5). Synchronisation was achieved using a TTL signal from the motor speed encoder
and a signal generator as a conditioner. The synchronized recordings and analysis of the results
can enable one to make a comparison of the time signals to explore the effect of different
parameters on the URN within more details. Within this framework, some of the earlier
investigated parameters (in Section 6.5.2.1) has been further explored based on the analysis of
the synchronized pressure signals and cavitation observations and results are discussed in the

following.

Figure 6-29 to Figure 6-33 have been reproduced using the recording made during the standard
series propeller tests, using Diadem software. As the size of the high-speed video recordings
can occupy quite large amounts of hard disc space, they have been made for 0.1 second by
totalling 500 individual images at an acquisition rate of 5000 Hz. The video recordings for the
0.1-second configuration occupying approximately 350 Gigabyte of data. Therefore, although
the pressure signals are recorded for 5 seconds, they have been trimmed to match the length of
the high-speed video capture to enable synchronized viewing within the software. The user
interface is arranged to be divided into two, where the left-hand side of the figure belongs to
the time signal of one propeller within which the upper part is the pressure time signal and
bottom half is the corresponding cavitation observation. The right-hand side of the figure is
likewise arranged to present the comparison that is selected. A marker traces the time signal for
the corresponding cavitation observation aiding the interpretation.
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Figure 6-29 Synchronous time domain pressure signals and cavitation observations under atmospheric
pressure for KCD 193 behind ECT1 for 1750 RPM (left) and 600 RPM (right).
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Figure 6-29 is the reproduction of the test data used for Figure 6-24 using synchronized pressure
transducer time signals and cavitation observations. The propeller is cavitating heavily for the
condition with propeller speed of 1750 RPM whilst 600 RPM is a non-cavitating condition. The
cavitating pressure signal shows significantly higher amplitudes with higher frequency irregu-
larities (spikes). Such spikes are attributed to the cavitation collapse as shown within the top

side of Figure 6-29 by the pressure time signal and the corresponding cavitation observations.
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Figure 6-30 Synchronous time domain pressure signals and cavitation observations under atmospheric
pressure for KCD 193 at 1750 RPM behind ECT1 (left) and open water condition (right).

Figure 6-30 shows differences only due to the wake flow; ECT1 and open water. The pressure
time signals differ significantly both in terms of the amplitude and the spikes experienced by
the time signal. The images also support this finding as both tip vortex and sheet cavitation for
the propeller in open water condition are more stable, whilst behind ECT1, bursting of a tip
vortex cavitation (TVC) is observed in the slipstream together with unstable sheet cavitation

attached to the propeller blade.
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Figure 6-31 Synchronous time domain pressure signals and cavitation observations under 150 mmHg
vacuum behind ECT2 at 2000 RPM for KCD 65 (left) and KCD 129 (right).

The effect of different blade numbers is shown in Figure 6-31. The thrust load is less for KCD
65 (6 blades) which has the higher number of blades. KCD 65 is experiencing rather unsteady
tip vortex cavitation collapses in the propeller slipstream as shown in the images which are
resulting in spikes experienced by the associated time signals. On the other hand, KCD 129 (5
blades) shows more stable cavitation and a thicker diameter of tip vortex cavitation

comparatively.
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Figure 6-32 Synchronous time domain pressure signals and cavitation observations under 150 mmHg
vacuum behind ECT1 at 2000 RPM for KCD 74 (left) and KCD 65 (right).

Figure 6-32 presents the effect of the BAR for two 6-bladed propellers. KCD 74 has a higher
BAR, hence a smaller thrust density. This produces lesser extent and volume of sheet cavitation
and hence a lower peak to peak pressure signal. The sheet cavitation produced on KCD 65, with
its higher thrust loading, is relatively more unstable, showing foamy collapsing behaviour in
the slipstream, whilst the tip vortex cavitation of KCD 74 is rather stable but thicker in diameter.
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Figure 6-33 Synchronous time domain pressure signals and cavitation observations under atmospheric
pressure behind ECT1 at 17500 RPM for KCD 193 (Left) and KCD 191 (Right).
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Figure 6-33 shows the pressure time series and cavitation images for two different P/D ratios.
At the same J-value, KCD 193 is operating at a higher loading than KCD191. Consequently, it
generates a larger extent of sheet cavitation as well as unsteady tip vortices travelling into the
slipstream with foamy appearance. The pressure time signal for the KCD 193 experiences a
larger peak to peak amplitude, mainly due to the sheet cavitation volume and significant irreg-
ularities due to the cloudy collapse of the tip vortex cavitation. KCD 191 operates at a much
lighter loading and thus produces no sheet cavitation; only intermittent tip vortex cavitation
both attached to the propeller and in the slipstream. The tip vortex cavitation is bursting as it

detaches from the propeller resulting in a very spiky pressure time signal.
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6.5.1.3 Joint-time frequency analysis of fluctuating pressures and URN
of propellers

The acquired pressure time signal data, described in the previous section, has then been fed into
the JTFA tool in order to understand the relationship between time events of the pressure pulse
signals and cavitation presence and corresponding frequency domain response. The JTFA tool

does this through a spectrogram to provide an enhanced understanding of the frequency region
that certain types of cavitation contributes into.
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Figure 6-34 Joint-time frequency analysis of KCD 193 propeller behind ECT1 under atmospheric
condition at 1750 RPM.

Figure 6-34 presents pressure recordings and analysis results of KCD 193 propeller for its most
heavily cavitating condition. The spectrogram indicates that the spikes found in the time signal
contribute over a broad spectral range. Although the analysis is limited to 2.5 kHz since the
pressure transducer signal is sampled at 5 kHz, the noise data from the hydrophone analysis,
which is shown in Figure 6-24, also indicates contributions from the cavitation dynamics at
higher frequencies. Overall the spectrogram has only very small areas occupied by the blue
colour referring to the lower amplitude activity while it is dominated by the greenish colour

corresponding to the higher amplitude activities in the FFT at broadband range.
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Figure 6-35 Joint-time frequency analysis of KCD 193 propeller behind ECT1 under atmospheric
condition at 600 RPM.

Figure 6-35 shows the JTFA analysis of KCD 193 behind ECT1 wake at 600 RPM correspond-
ing to a non-cavitating condition. As a consequence and shown in Figure 6-36, not only the
peak to peak amplitudes have been significantly reduced but also the overall amplitude levels
in the spectral domain have been considerably reduced, as indicated by the dominant blue col-
ouring (low levels). A distinct peak is shown in the FFT results between 1.5 — 2 kHz which is
also captured in Figure 6-24 by the spectral levels of the corresponding hydrophone measure-
ments. The cause of the peak may be observed to be the light blue region present in the spec-
trogram potentially caused by the singing of the propeller.
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Figure 6-36 Joint-time frequency analysis of KCD 193 propeller in open water condition under at-
mospheric condition at 1750 RPM.

Figure 6-36 shows the pressure recording and analysis results of KCD 193 propeller at 1750
RPM but in open water condition. Overall the analysis of the results shows a reduction at the
blade rate and broadband spectra in terms of the amplitudes when compared to Figure 6-34.
Moreover, the previous comment is supported by the spectrogram colour map which is occu-
pied by bluer colour footprints over the broadband range. The above findings justify the use of
JTFA by further confirming the results presented in Figure 6-25. One interesting observation,
which can be made from the spectrogram is the contour oscillations at the blade rate frequency.
The spectrogram presents yellow colour during the peak in the time signal that coincides with
the passage of a propeller blade which indicates the presence of a large cavitation volume. Fol-
lowing the passage of the blade, contour colour changes to green in conjunction with the trough
of the time signal which is experienced by moving propeller blade. Another important aspect
of Figure 6-36 is the hump in the narrow band frequency range from 160 to 400 Hz, which is
again present in the noise measurements as shown in Figure 6-25. Overall the spectrogram
shows a rather denser green colour in Figure 6-34 indicating the higher emanated sound pres-

sure levels in comparison to the Figure 6-36.
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Figure 6-37 Joint-time frequency analysis of KCD 129 propeller behind ECT2 under 150 mmHg
vacuum at 2000 RPM (5 blades).

Figure 6-37 represents the analysis of one of the test runs to investigate the effect of blade
number. The results of the URN measurements with KCD 129 (5 blades) and KCD 65 (6 blades)
for this particular test run have already shown in Figure 6-26 and Figure 6-31. In this condition,
the propeller experiences stable TVC. Both the spectrogram and FFT results show elevated
pressure levels in the 200 to 600 Hz frequency range as represented by the green colour. This
elevation also reveals itself in the noise measurements by hydrophone as can be seen in Figure
6-26. Another interesting aspect of Figure 6-38 is the reflection of the blade rates in the spec-

trogram by the green and yellow pulsations present at the blade rate frequency.
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Figure 6-38 Joint-time frequency analysis of KCD 65 propeller behind ECT2 under 150 mmHg
vacuum at 2000 RPM.

Figure 6-38 is the JTFA analysis results of the test run with KCD 65 propeller which is the 6
bladed counterpart of KCD 129. The comparative results of the noise measurements with both
propellers (i.e. KCD 129 and KCD 65) for the same test run have been already shown in Figure
6-26 that can be combined with the JTFA results during the discussion. In this test run KCD 65
experiences a larger extent of sheet cavitation combined with a rather unstable foamy tip vortex
cavitation in the slipstream. The larger volume of the sheet cavitation results in more dramatic
collapse and rebounding resulting in higher cavitation volume acceleration and hence relatively
spikier time signals. The comparison of Figure 6-37 and Figure 6-38 does suggest that the RNLs
of KCD 129 appears to be higher up to 600 Hz compared to the results of KCD 65 since the
amplitudes. The rest of the frequency range, however, indicates higher noise levels radiated by
KCD 65. The above conclusion is well in agreement with the earlier presented spectral levels
in Figure 6-26.
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Figure 6-39 Joint-time frequency analysis of KCD 74 propeller behind ECT1 under 150 mmHg
vacuum at 2000 RPM.

Figure 6-39 represents the JTFA results for KCD 74 selected to discuss the effect of the BAR
on the URN levels. KCD 74 has a higher BAR compared to its counterpart propeller KCD 65.
Hence, the interpretation of the results should be combined with the URN measurement results
of the same propeller which have been presented in Figure 6-28 as discussed earlier. KCD 74
at this test condition does have a rather continuous green background of spectrogram results in
the 200 to 600 Hz range but also has a region dominated by the blue in the high frequency. The
propeller experiences a stable TVC with dynamic nature as it can be seen to experience some
volume fluctuation as it travels through the slipstream. The peak at 200 Hz coincides with the
1% Blade Passage Frequency (BPF) and represented by the green and yellow fluctuation in the
spectrogram. Figure 6-39 confirms the trend in the URN measurements observed in Figure 6-27

showing all dominant spectral features of the cavitating propeller.
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Figure 6-40 Joint-time frequency analysis of KCD 65 propeller behind ECT1 under 150 mmHg
vacuum at 2000 RPM.

Figure 6-40 represents the JTFA results of KCD 65 having the lower BAR. While the back-
ground colour of the spectrogram is exactly the same up to the 1%t BPF (200Hz) for both KCD
65 and KCD 74 propellers, the spectrogram shows relatively larger extent of blue colour in the

200 to 600 Hz region for the KCD 65. However, thereafter the colour code shows rather greener

background which reveals itself in the FFT result as the spiky broadband components. In the

light of the above comments and considering the trend in the URN spectrum as discussed in

Figure 6-27, the results of the JTFA confirms the analysis results of the URN, which is further

supported by the cavitation observations presented in Figure 6-32.
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Figure 6-41 Joint-time frequency analysis of KCD 191 propeller behind ECT1 under atmospheric
condition at 1750 RPM.

Figure 6-41 represents the JTFA results of KCD 191 propeller behind wake ECT1 at 1750
RPM. The propeller experiences a thin TVC cavitation that collapses in the slipstream as dis-
cussed in Figure 6-33. The spectrogram shows a rather blue region for the frequencies higher
than 1.5 kHz while the rest of the frequency range between 200 to 1.5 kHz has rather green
background which is also present in the power spectrum analysis part of the JTFA by the ele-
vated levels. The impact of the TVC is displayed as large-scale spike in the pressure time signal
at the exact time of the experienced collapse. These time domain spikes are reflected as contin-
uous green coloured zones on the spectrogram at two distinct frequency ranges: one being at
400 to 1000 Hz; and other at 1000 to 2000 Hz range. The reflection of these zones is also
clearly visible by two distinct humps in the RNL spectrum of KCD 191 propeller as shown in
Figure 6-28. The originating cause of these humps thus can be attributed to the TVC and its
dynamics with the aid of time stamped quantitative proof of the cavitation observations in con-
junction with the JTFA approach implemented. As experienced in this example such a case,
where there is only one type of cavitation with intermittent nature, presents a perfect example

for the merits of the implemented advanced analysis approach.
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6.5.1.4 Further remarks on the advanced analysis tool for cavitation in-

duced noise

Based on the systematic data produced in this study the capability of the implemented advanced
analysis tool for cavitation induced noise has been demonstrated. The main objective of this
tool is to aid in understanding further details of the cavitation induced noise phenomenon. This
has been achieved by making use of the synchronised fluctuating pressure signals and cavitation
observations in time-domain which is combined with the JTFA technique. The implemented
tool has demonstrated the further details of some of the major propeller design and operational
parameters involving the URN phenomenon as well as the interpretation of some important

mechanisms of the instantaneous cavitation dynamics contributing to the phenomenon.

The presented approach can be developed further by the introduction of a combined synchro-
nized cavitation observation and JTFA. Whilst this can be still achieved with the above-
presented approach, a dedicated combined software may simplify the analysis effort. Further-
more, the hardware may also be improved by use of a high-speed camera at a frame rate of 40
kHz in order to match the limit of the hydrophone frequency.
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6.6 Development of an ANN tool for cavitation noise prediction

The database compiled from the extended systematic propeller tests has been used for the
development of a cavitation noise prediction method with the aid of an ANN tool. The ANN
methodology is inspired by biological neural networks, replicating the interconnection of the
neurons in a nervous system of the human brain and other organisms (Rojas, 1994). Whilst the
main component for both biological neural networks and artificial neural networks are Neurons,
ANN tools adopt a rather non-linear processing method that suits a wide range of applications
being trained on sample data. With the appropriate training an ANN based software tests and
validates its predictions using the input database to evaluate the predictions of the network and
to improve the estimates by means of pattern recognition. A representative sketch for an ANN
IS given in Figure 6-42. The codes developed for the engineering of a Neural Network for cav-

itation noise prediction are provided in Appendix D.

2 &Output layer

D Hidden layer
Q | Input layer

Figure 6-42 Representative sketch of a three layer feedforward ANN (reproduced from (Basheer &
Hajmeer, 2000).
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The review of the applications of ANN in the marine field revealed the capabilities and relia-
bility of this tool in terms of the prediction accuracy and data management. Thus, originating
from the developed confidence, the data produced within the framework of the systematic ex-
periments with the extended subset of Meridian propellers are compiled into a database which
is function of a large number of parameters recorded during the course of the experiments. This
database and associated parameters, which are represented by suitable non-dimensional param-
eters, have formed the basis for the development of the noise prediction tool described in the

following.

The proposed approach for the development of an ANN based URN prediction of a propeller
has indicated that the traditional way of presentation of the net noise levels by extraction of the
background noise levels may not applicable. This is due to the fact that the method requires
elimination of the noise data for which the difference between the measured total noise levels
and the background noise levels is less than 3 dB. This consequently results in empty cells to
appear in the dataset which will adversely affect the accuracy of the database and hence the
predictions. In order to avoid any error accumulation, which may be introduced by this ap-
proach, the total noise and background noise level measurements are compiled into two separate
databases which are trained separately by the ANN. The net noise level of any member propeller
is then predicted by subtracting the total noise data from the background noise with the aid of
ANN.

The implementation of the above approach required the determination of different parameters
both for the background noise data set and the total noise dataset. Since some of the variants,
such as the propeller performance and propeller design parameters, are not applicable to the

background noise levels, the input matrices are modified to include appropriate parameters.

The total noise level data for the 31 third octave centre frequencies ranging from 20 Hz to 20
kHz is predicted using 12 non-dimensional input parameters in 4 categories. These categories
are specified as “propeller design parameters”, “wake parameters”, “propeller performance

parameters” and “cavitation number parameters” as outlined in Figure 6-43.
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Propeller design parameters Wake parameters Propeller Performance Coefficients Cavitation Numbers

P/D BSRA Wake Criteria Ky Ov
BAR Wake Depth 10Kq oy
Blade Number Half Wake Width Advance Coefficient OResultant

Figure 6-43 Defined model scale total noise prediction parameters for the ANN.

In the same vein, the background noise level data is also trained for the prediction of 31 third
octave centre frequencies. However, due to the lack of relevance of the some parameters related
to the propeller, the input parameters for this prediction were achieved by only 5 parameters
regarding the wake, tunnel inflow (advance coefficient) and applied vacuum level (cavitation

number).

Once the structure of the prediction method for the model scale measurements are accom-
plished, ANN training is started. The training of the ANN is achieved through using Neural
Network Fitting Tool provided by MATLAB (Beale et al., 2015). This choice was made due to
the patterns recognition capability of this training technique. The MATLAB toolbox initiates a
feed-forward network with hidden sigmoid neurons and linear output neurons. This option is
capable of fitting multi-dimensional mapping problems arbitrarily well, given consistent data
and enough neurons in its hidden layer. The network is trained with Levenberg-Marquardt
backpropagation algorithm neural network. The input data is split into three categories, namely
training, test and validation. 70% of the data has been used for training whilst the rest is equally
divided into 15% for testing and 15% for validation. The data division is made randomly. The
training is made up to 1000 iterations (epochs) if validation checks are not satisfied for the given

minimum error criteria.

After determining the various setting for the ANN, the optimum number of hidden layers and
number of neurons in each hidden layer needs to be set. ANN’s are sensitive to the number of
neurons in their hidden layers. The utilization of too few neurons can lead to under-fitting whilst
too many neurons can contribute to overfitting, in which all training points are well fitted, but

the fitting curve oscillates wildly between these points. In order to achieve a prediction with the
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best accuracy, a MATLAB code has been used to train the ANN for a range of hidden layer
numbers and neurons within them. The code was initially set to train 1 hidden layer ANN for 1
to 101 hidden neurons with 5 neuron intervals making up 21 combinations. Following this, a 2
hidden layer ANN was trained by the software for a combination of 1 to 101 neurons in each
hidden layer with again 5 neuron intervals totalling 21x21 options being tested. This code is
called the “sweep function” and aided the determination if the optimum number of hidden lay-
ers and neuron numbers within and presented in Appendix D.3. For both options the mean
squared error (MSE) of the predictions are plotted in order to achieve a global optimum number
of hidden layers and number neurons to be used for the prediction. Within this context, MSE is
a normalized performance function for the assessment of the prediction accuracies that is cal-
culated using the normalized deviation of the estimations. The iterations of the ANN ensure the

minimization of the MSE for a certain case through the back-propagation of the error value.

The above approach has been repeated for both total noise levels and background noise levels
in order to enable calculation of the Net Cavitation noise levels using Equation 22 as recom-
mended by the ITTC and ANSI (ANSI, 2009; ITTC, 1987). Once the net noise levels are cal-
culated the three additional parameters, namely; full-scale propeller diameter, propeller speed,
and mean wake are used as input by the developed code in order to perform the extrapolation
of the model test based data to the full scale using Equation 25 and Equation 26. The flow chart,
which provides basis for the ANN based noise prediction tool, is given in Figure 6-44.
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Figure 6-44 Flow chart of the prediction tool using ANN.

6.6.1 ANN for total noise level prediction

The above section explained the “sweep function” that used for loops to try every possible
permutation for the one hidden layer and 2 hidden layer options containing up to 101 neurons,
and this has initially applied to the total noise measurements to determine the global optimum
prediction. Figure 6-45 and Figure 6-46 present the MSE results of the software for the two
hidden layer and one hidden layer combinations.
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Figure 6-45 The MSE surface plot of the two hidden layer ANN for total noise levels.
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Figure 6-46 MSE plot of the one hidden layer ANN for total noise levels.

The above figures have shown that no significant improvement in terms of the prediction accu-
racy can be achieved in terms of the trained ANN with the use of the two hidden layers.
Therefore, another sweep function has been run, training one hidden layer option with one neu-
ron intervals from 30 to 80 neurons in order to determine the exact number of neurons that will
conduct the prediction with best statistical precision. The results of the MSE of the refined
sweep has shown that the best number of neurons to be used for the one hidden layer option is
46 neurons confirming the finding in Figure 6-46.

A MATLAB toolbox is then utilized to train the ANN using one hidden layer with 46 neurons
inside as presented in Figure 6-47. The toolbox enables the user to retrain the network since the
random initialization of the network may result in some randomness of the final trained net-
work. The retraining has been repeated several times in order to ensure the repeatability of the

statistical accuracy.
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Figure 6-47. Artificial Neural Network training window of the MATLAB toolbox - Neural Network

fitting with 46 hidden layer neurons for noise prediction.

Subsequent to the completion of the training various plot options are available within the
MATLAB toolbox. Figure 6-48 contains plots created for the error histogram, training state,
regression and performance of the trained network for the total noise level predictions. The
statistical analysis of the trained networks has shown satisfactory levels of accuracy. This is
clearly demonstrated by the error histogram (top left Figure 6-48) and regression analysis (bot-
tom left Figure 6-48). Furthermore, the continuation of the iterations has not led to enhancement
of the predictions as shown by performance figures as demonstrated by the figures on the right-
hand side of Figure 6-48.
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Figure 6-48 The statistical justification of the trained ANN for the prediction of total noise levels.

The trained network is then saved to be used for the prediction of the total noise levels as given
by the flow chart in Figure 6-44. Thus using 12 input parameters, 31 third octave centre fre-
quency total noise level measurements are predicted by the ANN with one hidden layer con-

taining 46 neurons showing satisfactory statistical accuracy.

6.6.2 ANN for background noise level prediction

The same approach adopted for the total noise levels was repeated for the background noise
levels. As stated earlier, the vital difference between the two sets of data was that not all of the

12 parameters utilized for the total noise levels were applicable to the background noise level
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prediction, thus instead, 5 parameters were used as input to the ANN development for the back-
ground noise prediction. In addition to this, the level variation for the background noise was
not as significant as the total noise levels and this has resulted in higher accuracy of predictions

due to their easier nature for the neural network to recognize their pattern.

Following the configuration of the inputs for the background noise levels, a sweep function
similar to the one used for the total noise levels was again run. Figure 6-49 and Figure 6-50
present the surface plot of the MSE for the two hidden layer and one hidden layer configuration

for all possible configurations up to 101 neurons with 5 neuron intervals.

Figure 6-49 The MSE surface plot of the two hidden layer ANN for background noise levels.
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Figure 6-50 MSE plot of the one hidden layer ANN for background noise levels.

The outcome of the sweep function has again proved the two hidden layer network to be un-
necessary considering the gain achieved in the prediction accuracy against the added complex-

ity.

In light of the above conclusion, a refined sweep function has been executed for one hidden
layer with 20 to 90 neurons in one neuron intervals in order to determine the exact number of
neurons with the optimum accuracy. The similar approach has been followed for the back-
ground noise levels as outlined for the total noise levels prediction which resulted in the fol-
lowing statistical results as presented in Figure 6-51. The plots have shown good agreement
with the expectations of higher statistical prediction accuracy due to the less complex nature of

the target values.
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Figure 6-51 The statistical justification of the trained ANN for background noise level prediction.

Following the achievement of a satisfactory accuracy in the predictions using ANN for the
background noise prediction the trained network has been saved for the development of a stand-
alone executable cavitation noise prediction tool, which is described in the next section, by

using the 35 neurons as they have given the best performance.
6.6.3 Standalone executable tool development

The trained networks for the determined optimum number of hidden layer and neurons are
saved into a folder together with the graphical user interface (GUI) for the input registry. The
GUI is developed again using MATLAB and prompts 15 parameters to be filled in by the user.
The values are sorted to be used as input to the total noise prediction, background noise predic-
tion and the independent values containing the full-scale propeller diameter, shaft speed, mean
wake and output name as shown in Figure 6-52.
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Figure 6-52 Propeller cavitation noise prediction method user interface.
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The code is then compiled using the dedicated command from the MATLAB library with the
addition of the trained network files. Figure 6-53 presents the properties of the standalone exe-

cutable file generated.

General |Cﬂmpatibil'rl}r | Securty | Details | Previous Versions

& ECT_CAV_NOISE exe

Type of file:  Application {exe)

Descrption:  ECT_CAV_MNOISE exe

Location: 0:M\Dropbo2_PhD Documents®1_Systematic Prope
Size: 2.38 MB (2 502 082 bytes)
Size ondisk:  2.38 MB (2 502 656 bytes)

Created: 09 December 2015, 17:22:16
Modified: 16 December 2015, 12:32:50
Accessed: 049 December 2015, 17:31:56

Atibutes:  [|Readonly || Hidden

Figure 6-53 Executable cavitation noise prediction tool properties.
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6.6 Development of an ANN tool for cavitation noise prediction

The resulting stand-alone cavitation noise prediction tool enables to predict the full-scale RNL
of a ship using 12 non-dimensional parameters together with the full-scale propeller diameter,
rotational speed and mean wake as the main input. Figure 6-55 shows a typical RNL spectrum

of a ship as the main output of the cavitation noise prediction tool.
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Figure 6-54 The noise prediction based on the given input data.
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6.7 Validation of the developed RNL prediction method

Subsequent to the development of the RNL prediction method, it was a necessity to test and
validate the end product. However, a detailed study of the publicly available literature has
shown that even the benchmark cases proposed by ITTC are lacking in terms of the necessary
data for the validation of the simplest noise prediction methods. Therefore, by private commu-
nications, two validation cases have been made available with satisfactory input details includ-
ing the operating conditions, wake data, propeller design parameters, cavitation observations
and the cavitation numbers. By all means these two test cases may not be the perfect cases due
to the obvious reasons of: (i) Lack of availability of URN data; (ii) Lack of further details of
the available URN data; (iii) Suitability of the available URN data in terms of the limitation of
the present database. Bearing in mind these limitations the following case studies are presented.

6.7.1 Case Study 1: Training Ship “Sein-Maru”

The first case study involves the full-scale URN data belongs to the Japanese training ship
“Sein-Maru”. The ship has been extensively tested by the Japanese research institutes and the
URN data involving the full-scale trial results as well the model tests are reported in (3& i/t
Jith4y, 1983). In this report, it was indicated that the initial trials conducted with “Sein-
Maru’s” original conventional propeller (indicated by CP) were repeated later by the replace-
ment of a highly skewed propeller (indicated by HSPII) to reduce the emitted noise levels. This
provides the opportunity to test the prediction technique presented here on two different pro-
pellers one of which is a highly skewed. In order to run the cavitation noise prediction tool, the
required input were determined by extracting and digitizing the relevant data in this report.
Initially, the runs to be used for the validation cases were chosen depending on the availability

of the full-scale data. The main particulars of “Sein-Maru” are given in Table 6-7.
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6.7 Validation of the developed RNL prediction method

Table 6-7 Main particulars and an image of “Sein-Maru”.

Principal Characteristics of “Sein-Maru”
Length BP 105.00 m
Breadth 16.00 m
Depth 8.00m
Displacement 5,781.3tonnes
Cs 0.576

The axial wake data is digitized and reproduced in order to calculate various parameters neces-
sary for the cavitation noise prediction tool as illustrated in Figure 6-55. The digitized data is

then used to calculate the wake width, mean wake and wake depth.

Figure 6-55 Original (left) and digitised (right) axial wake data of “Sein-Maru”.

The details of the two propellers (CP and HSPII) are then compiled as shown in Table 6-8. As
it is noted in this table the highly skewed propeller has also tip off-loading feature to improve
its noise emission characteristics. Whilst both propellers had a diameter of 3.6 meters the latter
design has a smaller pitch to diameter ratio and higher blade area ratio than the original propel-

ler. Finally, the blade sections of the new design are also different to the old design.
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6.7 Validation of the developed RNL prediction method

In total, more than 160 full-scale experiments were conducted during the “Sein-Maru” noise
trials. Amongst these experiments the conditions that produced the URN with significant
cavitation development were chosen for the validation case studies. The selected shaft speed
condition was 163 RPM for both propellers. Using the experimental spreadsheet, the necessary
input required by the cavitation noise prediction tool are calculated as presented in Table 6-9.

Table 6-8 Main particulars of Sein-Maru’s conventional and highly skewed propeller.

“Sein-Maru” Propeller Details
Type of the propeller Conventional Propeller Highly Skewed Propeller
Propeller Code CP HSPII (Tip offloaded)
Propeller diameter 3.6m
Pitch to diameter ratio 0.95 0.92
Expanded blade area ratio 0.65 0.7
Number of blades 5
Rake angle 6° (-)3°
Skew angle (back) 10.5° 45°
Hub dia. to pr_opeller dia. ra- 0.1972
tio
Blade Section MAU Modified SRI-B
Material Ni-Al-Br
Model Propeller Image

The decision on the chosen full-scale condition was based on the requirement to detect an ap-
preciable difference in the URN levels that may be present between the two propellers of “Sein-
Maru”. Thus, the original measurement of the URN data provided in Figure 6-56 has been found
satisfactory with respect to the SPL differences between the measurements with the two pro-
pellers over a discrete frequency band region of 10-100 Hz. Of course the ideal scenario would
be to detect the noise difference also in the broadband frequency region, but unfortunately, such

scenario was not possible to be located.
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6.7 Validation of the developed RNL prediction method

Table 6-9 The input table for ECT_CAV_NOISE cavitation noise prediction tool for “Sein-Maru”.

ECT_CAV_NOISE Input Table

Highly Skewed Propeller | Conventional Propeller
Exp. 158 Exp. 7
P/D 0.92 0.95
BAR 0.7 0.65
Blade Number 5
BSRA wake
non-uniformity 0805
wake depth 0.670
wake width 75
Kr 0.205 0.259
10Kq 0.315 0.353
J 0.700 0.678
Ov 5.81 6.19
ON 2.847 2.847
OR 0.227 0.227
Full-Scale Diameter (m) 3.6
Full Scale (rps) 2.72 2.72
Full Scale (RPM) 163 163
Mean Wake 0.24
Brake Horse Power (BHP) 3300 3700
Power (W) 2460810 2759090
Thrust (tonnes) 26.5 335
Thrust (N) 259876 328523
Torque (Nm) 144166 161640
Ship Speed (Kn) 16 15.5
Ship Speed (m/s) 8.23 7.97
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Figure 6-56 Full-scale measurements of the “Sein-Maru” HSPII and CP propeller at 163 RPM.

The full-scale URN data of “Sein-Maru”, which is shown in Figure 6-56, has been digitized to
be used for the comparison purposes in order to validate the cavitation noise prediction tool,
“ECT_CAV_NOISE”, developed in this study. The comparative data of Figure 6-57 indicates
that the highly skewed propeller (HSPII) emits lower levels of noise over a discrete frequency
range of 10 to 100 Hz in comparison to the conventional propeller (CP). The reasons for this
difference can only be interpreted in a structured way supported by the cavitation observations.
The full-scale noise measurements, therefore, were accompanied by the cavitation observations
made through the hull of the “Sein-Maru”. Figure 6-57 presents the cavitation sketches drawn
based on the cavitation observation recordings to provide further insight into the cavitation dy-

namics and to help the interpretation of the URN measurements to support the predictions.
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PULL SCALE TEST

163 RPM , 16. 3 KTS

Figure 6-57 Full-scale cavitation sketches of the “Sein-Maru” HSPII and CP propeller at 163 RPM.

Figure 6-57 provides the comparison of the cavitation observations for each propeller over the
top dead centre (TDC) of the propeller’s rotation plane. The sketches are provided from 350°,
which is just before the TDC, up to 90° by every 10° interval. The importance of such sketches
is to demonstrate the cavitation extent variation over the wake shadow where most severe cav-
itation volume variations are experienced. The cavitation volume variations are utmost im-
portance as they are the main parameter used for the calculation of cavitation volume accelera-
tion that is defined to be the dominant parameter for the cavitation induced noise. Figure 6-57,
in this respect, presents the HSPII on the left-hand side of the figure showing leading edge sheet
cavitation before the TDC, which then curls into a tip vortex. As the propeller continues to its
rotation, the extent of the sheet cavitation increases. This consequently also results in an in-
crease in the TVC diameter. The cavitation volume reaches its maximum at 30° after which it
starts to be reduced. As shown on the right of Figure 6-58, the CP propeller, on the other hand,
presents a rather large area of sheet cavitation starting from 0.5 r/R at 350°. With the rotation
of the propeller, the sheet cavitation extent significantly increases and starts to cover the
complete area in the tip region higher than 0.9 r/R at 30°. After this point, the propeller experi-
ences a swift reduction in the cavitation volume with only a very weak tip vortex presence at
90°. The relatively more rapid reduction of a rather large extent of sheet cavitation of the CP
propeller does reveal itself to be the reason behind the relatively high level of RNLs experienced

by this propeller in comparison to the HSPII.
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6.7 Validation of the developed RNL prediction method

In the light of the above information on the full-scale cavitation observations and URN meas-
urements, the ECT_CAV_NOISE predictions are compared with the full-scale URN data for
the chosen condition for both HSPI1 and CP propeller and results are shown in Figure 6-59 and

6-58, respectively.

At a first glance, the comparison of the predicted RNLs with the full-scale measurements dis-
plays encouraging signs for the capabilities of the developed cavitation noise prediction tool.
The magnitudes of the predicted RNLs of both propellers seem to be around the similar ballpark
with those of the measured RNLs over the range of frequencies predicted. There are reasonably
clear correlations for the prediction of the 1% blade rate effects for both propellers. Furthermore,
although the developed prediction method does not include any input parameter directly related
to neither skew nor the blade section details, the indirect relation and hence reflection of these
parameters on the user input, such as the P/D ratio and BAR, and the propeller performance
coefficient has been observed to be represented in the comparative RNLs. For example, the
predicted RNL for the CP and HSPII does show reduced URN levels for the HSPII compared

to the CP as expected and measured in the full-scale measurements.

Sein-Maru HSPIl 163 RPM
1% BPF

1 10 100 1,000 10,000
Frequency (Hz)

* Full-Scale e Prediction

Figure 6-58 Comparison of the Full-scale and ECT_CAV_NOISE predictions of the “Sein-
Maru” HSPII at 163 RPM.
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Figure 6-59 Comparison of the Full-scale and ECT_CAV_NOISE predictions of the “Sein-
Maru” CP propeller at 163 RPM.

6.7.2 Case Study 2: “Merchant Tanker (M/T) Olympus”

The second validation case study has been conducted for Merchant Tanker “M/T Olympus”
which is an oil and chemical tanker constructed in 2006. The vessel has formed basis to provide
benchmark URN data for the R&D activities of the collaborative EU-FP7 project AQUO
(Achieving Quieter Oceans) through the full-scale trials and extensive model testing focusing
on the cavitation noise (AQUO, 2012)(Tani et al., 2016). “M/T Olympus” is all6 m long and18
m wide vessel with a deadweight of 1989 tonnes. The main particulars of this ship are listed in
Table 6-10.
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Table 6-10 Main particulars and an image of “M/T Olympus”.

Principal Characteristics of “M/T Olympus”
Length BP 116.90 m
Breadth 18.00 m
Depth 8.12m
Deadweight 1989 tonnes
Cs 0.7565

The wake data is digitized and reproduced in order to be able to calculate various parameters
necessary for the cavitation noise prediction tool as illustrated in Figure 6-60. The acquired
wake data is then used to calculate the wake width, wake depth and mean wake.
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Figure 6-60 Original and digitized wake data of “M/T Olympus”.

The vessel is propelled by a four-bladed and 4.8 m diameter Controllable Pitch Propeller (CPP)
with an expanded BAR of 0.45 and design pitch of 0.87 at 0.7 radii. As a result of being a CPP,
the hub to diameter ratio of this propeller is relatively large being 0.287. The main particulars

of the propeller are listed in Table 6-11.
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Table 6-11 “M/T Olympus” Propeller details.

“M/T Olympus” Propeller Details
Type of the propeller Controllable Pitch Propeller
Propeller Code P2772
Propeller diameter 48m
Design P/D ratio at 0.7 r/R 0.87
Expanded blade area ratio 0.45
Number of blades 4
Hub dia. Tsapt)ir(c))peller dia. 0.287

The full-scale noise trial data sheets and model scale test results of “M/T Olympus” are utilized
to establish the input matrix of the cavitation noise prediction tool. Two full-scale trial runs,
which corresponded to two different P/D ratios and coded as LC1 and LCS5, are used for the
validation case studies as specified in Table 6-12. As one may note while the LC1 condition is
very close to the design pitch setting of the propeller LC5 condition is an off-design pitch setting

which is interesting to explore.
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Table 6-12 Input table for ECT_CAV_NOISE for “M/T Olympus”.

ECT_CAV_NOISE Input Table
LC1 LC5
P/D 0.857 0.56
BAR 0.45 0.45
Blade Number 4
BSRA wake non-uniformity 1.05
wake depth 0.73
wake width 105
Kr 0.204 0.259
10Kq 0.300 0.353
J 0.543 0.678
Ov 11.91 6.19
ON 3.52 2.847
OR 0.33 0.227
Full-Scale Diameter (m) 4.8
Full Scale (rps) 1.952 2.72
Mean Wake 0.299
Ship Speed (Kn) 14.13 11

The cavitation tunnel tests of the two full-scale conditions were reproduced and cavitation ob-
servations were made as part of the AQUO project activities. In these observations, as shown
in Figure 6-61, condition LC1 presents a combination of a sheet cavitation and TVC through
the wake shadow. The cavitation volume diminishes as the propeller gradually moves out of
the wake shadow area. In LC5 condition TVC appears to be the dominant feature as it is com-
monly observed at the off-design pitch setting of many CPP’s.

221



6.7 Validation of the developed RNL prediction method
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Figure 6-61 Full-scale cavitation observations from model test of the “M/T Olympus” for trial
condition LC1 and LC5.

Based on the above-described two operating conditions the RNL predictions for “M/T Olym-
pus” are made and results are compared with the full-scale RNL data as shown in Figure 6-62
and Figure 6-63 for operating condition of LC1 and LC5, respectively.

As stated earlier, there are considerable numbers of design feature differences between the pro-
peller of “M/T Olympus” and those of the members of the Meridian series which formed the
basis for the prediction methodology. Perhaps the most importantly the target propeller is a CPP
while the prediction basis is a fixed pitch one. On this basis, it will be too plausible to expect
any respectable correlation between the predictions and measured RNLs. Having said that the
similar range of P/D, BAR, number of blades and operational conditions over which the pre-
dictions are made, should reveal some correlations although there is no guarantee on the simi-
larity of the cavitation features and in particular its dynamics. However, as it is gathered from
the cavitation observations of the “M/T Olympus” propeller and members of the series propel-
lers the most dominant cavitation pattern are the back sheet and tip vortex cavitation for both
propellers although their dynamics can be vastly different. Based on these facts, as shown in
Figure 6-62 and Figure 6-63, there seems to be some correlation for the RNLs at a level of order
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without any meaningful trend for the BPFs, etc. This correlation is even poorer for the off-
design pitch setting (LC5). The performance deterioration for this off-design condition may be
attributed to the considerably different functioning of the propeller with pressure side cavitation
presence, which is not observed during any of the Meridian standard series propeller tests. Per-
haps one would hope to capture the tonal (BPF) effects of the noise spectra that seem to be not
so clear in the full-scale measurements, possibly due to the propagation losses, while the pre-
dictions indicate strong BPF effects. It is appreciated that the nature of the URN spectra for
CPPs can be significantly different to the fixed pitch propellers’ as claimed by many investiga-

tors (e.g. Berghault (2000)).
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Figure 6-62 Comparison of full-scale RNLs with the predictions from ECT_CAV_NOISE cavitation
noise prediction tool for “M/T Olympus” for trial condition LC1 (design pitch setting).
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Figure 6-63 Comparison of full-scale RNLs with the predictions from ECT_CAV_NOISE cavitation
noise prediction tool for “M/T Olympus” for trial condition LC5 (off-design pitch setting).

6.7.3 Further remarks on validation case studies

Overall, a first-time validation case has been set up to test the capabilities of the proposed meth-
odology based on the systematic propeller series approach and associated cavitation noise
prediction tool. In order to establish an effective validation campaign, publicly available full-
scale URN data are tried to be located for typical commercial vessels. As it is highlighted in the
literature review chapter and other parts of the thesis, there is still no comprehensive full-scale
URN data that is representative of today’s oceangoing vessels although there is URN data from

fisheries research vessels with reasonable input details.
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In the absence of relevant data for the proposed approach, two validation case studies have been
conducted even though they were not the ideal cases for the proposed cavitation noise predic-
tion method. Based on the 1% validation case study with the conventional propeller (CP) of the
“Sein-Maru” data has presented reasonable confidence in the predictions, the differences in the
trend of the RNLs for the highly skewed propeller (HSPII) can be attributed to the skew and
tip-loading features of the latter propeller. In addition relatively low block coefficient of the
vessel and hence favourable wake characteristics may be another contributing factor. Such low
block coefficients may be observed at some container ship designs. But, they travel at much
higher speed, displaying more severe cavitation which could have been ideal to test the
proposed method as the main strength of the procedure is to predict the cavitation induced noise

for commercial vessel propellers.

The second validation case study, on the other hand, involved a relatively new built commercial
tanker but employing a CPP, which can have inherently different noise spectra characteristics
compared to a conventional fixed pitch propeller as reported e.g. by Berghault, (2000). Moreo-
ver, the predictions at the off-design conditions are even harder due to the effect of pitch on the
propeller performance coefficients. Moreover, the pitch setting at this exact condition (LC5)
corresponds to a value (P/D=0.56) that is out of the region of the main experimental database
(min P/D tested 0.6).

Nevertheless, besides the imperfections of the validation cases, the predictions achieved
showed extremely encouraging resemblance to the full-scale noise spectra. A comparable
ballpark prediction of the spectral levels for all cases are obtained by using only 15 input data
and without all the cumbersome preparations for a cavitation tunnel test. The deviations in the
low-frequency range were observed due to the capability of the proposed approach to predict
the blade rate contributions while such tonal contributions are not present due to the propagation
losses and third-octave filtering. The predicted results around the 100 Hz region have shown
encouraging similarity for all cases while the predictions beyond this threshold frequency re-
gion have underestimated the measured levels in general which may be attributed to the acous-

tics transfer function of the tunnel.
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6.8 Conclusions

Chapter 6 presented an experimental approach to the cavitation noise predictions of commercial
vessels in full-scale by using a subset of a standard propeller series and adopting a systematic
testing method. The proposed approach has been validated using full-scale case studies and
results are discussed. The systematic test data for the URN, fluctuating pressures and cavitation
observations have been analysed jointly for further understanding of the URN phenomenon in
terms of the cavitation dynamics as well as exploring the effects of some of the important design

parameters and operating conditions on URN.

Within the above framework, a small subset of the Meridian standard propeller series was cho-
sen for the adopted approach. Three systematically varied axial-wake inflow configurations
were developed based on the BSRA wake criteria and initial experiments were conducted with
3-propellers of commercially representative small subset of the Meridian series. The experi-
mental RNLs were extrapolated to the full-scale using real oceangoing powering data for rep-
resentative vessels. This was to compare the extrapolated RNLs with publicly available average

shipping RNLs to justify the feasibility of the proposed approach.

With the confidence gained from the small subset of the database, an extended 6-propeller sub-
set of the same propeller series was tested in a systematic manner including 576 unique operat-
ing points simulated in the Emerson Cavitation Tunnel using the same wake set-up. The pro-
duced systematic data was then compiled into a database to be fed into an ANN tool in terms
of the total and background URN to extract then the net propeller URN. The ANN predictions
of the net propeller noise levels were then extrapolated to the full scale using the full-scale
propeller diameter, shaft speed and mean wake by the ANN based cavitation noise prediction
tool implemented. The developed tool was then validated against two full-scale test cases.
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The two test cases, which involved a 105m training ship “Sein-Maru” and 117m oil tanker “M/T
Olympus”, were not the ideal cases for the validation of the proposed method but were the best
due to the lack of publically available full-scale URN data. The validation studies indicated that
the proposed approach can provide ball-park correlations with the RNLs of the full-scale data
for the training ship in particular with its conventional propeller compared to the RNLs with
her highly skewed propeller. The predictions over the tonal frequency range were particularly
encouraging picking up the BRF effects as well as differentiating the favourable effect of the
skew and tip-unloading of the latter propeller. The correlations for the tanker data was relatively
less due to the CPP of this vessel although the RNLs were still at similar levels.

In this chapter also an advanced post-processing tool has been implemented in order to demon-
strate the influences of a number of major design parameters on the RNLs as well as exploring
the effect of cavitation dynamics on URN. The implementation of this tool involved the com-
bined analysis of the hydrophone based frequency domain RNLs, synchronized time-domain
pressure measurements and high-speed cavitation observations using a JTFA software in order
to reveal the frequency ranges to which certain cavitation phenomenon contribute into.

The post-processing tool clearly indicated that cavitation is the dominating noise source fol-
lowing its inception. The wake non-uniformity is the vital parameter to consider for the standard
series propeller noise tests since the cavitation dynamics experienced due to the flow irregular-
ity is one of the main sources of the emanated noise levels. Moreover, the cavitation type
experienced by any propeller is highly influential over the emanated noise levels as well as the
frequency region for which particular type of cavitation contributes into. These effects can be

analysed effectively by the implemented tool.
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Chapter 7 Conclusions and Recommendations

7.1 Introduction

Key findings of the thesis and recommendations for further work are provided in this chapter
together with an overall summary of the research conducted in this research study. A
philosophical review of the research is presented in conjunction with a brief overview of the
conducted study. The main conclusions drawn from this research are stated and an evaluation
of the accomplished objectives leading to the achievement of the set aim is revisited. Contribu-
tions to the state of the art are highlighted together with novelties within the conducted re-

search. Finally, recommendations are given for future research.

7.2 Philosophical review of the thesis

The motivation of the study conducted in this thesis is originated from the Author’s passion for
undertaking on-board and laboratory-based experimental hydrodynamics. A further incentive
to pursue underwater radiated noise as a subject was due to the increased global concern on the
URN pollution and timely opportunity of EU-FP7 SONIC project. SONIC was a European
collaborative project formed by a consortium of the major European testing facilities and mar-
itime technology companies. The project was initiated to address the calls made by the IMO
and MEPC (IMO, 2013, 2011) regarding the impacts of anthropologic activities on current lev-
els of ambient underwater noise. The research conducted for this thesis took place in conjunc-
tion with SONIC project activities and used Newcastle University facilities such as their re-
search vessel “The Princess Royal” and the Emerson Cavitation Tunnel. The ample amount of
resources and capabilities provided the perfect environment to undertake an experimental ap-
proach utilizing both full scale and model test capabilities. Furthermore, the expertise and
know-how on the subject from the members of the Emerson Cavitation Tunnel in combination

with the strong heritage on the subject was another incentive to take on this challenge.
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This thesis builds on more than a half-century of accumulated knowledge on the propeller de-
sign. The Emerson Cavitation Tunnel (ECT) has served the maritime industry especially in the
development of standard propeller series data. Thus, research made for this thesis has exploited
the available standard propeller model series existing within the facility. The experimental
approach that is adopted by this study has brought the series up to date by introducing high-
speed video, pressure pulse and noise measurement to the existing series performance data.
Moreover, the experiments were not only conducted in the traditional open water condition, but
also behind systematically varied wake inflow conditions. Such tests constitute the unique nov-
elty of this research. However, the necessary experience to conduct and analyse the tests was

achieved through several other experimental campaigns.

The experiments were designed to provide a holistic approach to experimental cavitation noise
prediction. Within this framework, a series of tests with a propeller model in oblique inflow
conditions provided a simple propeller noise scenario where the emitted noise levels changed
due to the systematically varied inclination angles in uniform flow. In the absence of the wake
inflow, the influence of shaft inclination was implemented and varied systematically, providing
invaluable and comprehensive data. Following this, full-scale trials conditions for “The Prin-
cess Royal”, conducted under the SONIC project, were replicated in the ECT with the use of a
‘dummy model’. This provided an opportunity to observe the nature of unstable cavitation ex-
perienced by the model propeller, operating in a 3-dimensional, non-uniform inflow due to the
presence of the model hull in front.

Within the above framework, this thesis set out to develop a propeller noise prediction tool for
use in an early design stage, based on unique enhanced experimental tests with a standard pro-
peller series tests. The tests demonstrate a novel approach to propeller noise prediction based
on the standard propeller series. Furthermore, attention has been given to advance analysis
methodology for the cavitation noise and in-depth understanding of the influence of propeller
design parameters. Moreover, during the course of the research, the experiments provided a
public body of scarce URN data which may freely be used in the development and validation

of more advanced computational tools.
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Thus, the main goal of the present research is to enhance the understanding of the propeller
cavitation noise by conducting detailed systematic cavitation tunnel tests in order to investigate
the main propeller design parameters and operating conditions and to scrutinize their impact on
propeller Radiated Noise Levels (RNL). The resulting experimental data are also utilized to
compile a database that enables engineering noise prediction methods to be developed and used

at a preliminary design stage, together with a standard series approach.

The above stated main goal of the research was achieved by the accomplishment of a number
of set objectives. Each chapter of the thesis serves to justify and contribute to at least one ob-
jective. The objectives determined in the introduction chapter are restated briefly for the refer-

ence.

1. To perform a critical review of the literature on propeller cavitation noise.

2. To design and conduct systematic cavitation tunnel tests with a particular focus on the
effect of shaft inclination non-uniformity on the RNL of a model propeller.

3. To perform full-scale trials on-board a research vessel to enhance understanding of the
noise source phenomena by making cavitation observations URN measurements and
propeller-induced pressure pulse measurements

4. To provide dedicated propeller cavitation noise data in model and full-scale to be able
to evaluate experimental methods to predict full-scale noise data using medium-size
cavitation tunnels.

5. To execute preliminary tests using a commercially representative small subset of the
standard propeller series cavitation tests using different grades of wakes and with load-
ing conditions based on real oceangoing commercial vessel sea trial data.

6. To conduct systematic cavitation tunnel tests with a larger subset of standard series to
establish the standard series approach and associated tool to predict the cavitation in-
duced URN and to validate the capability of the developed tool.

7. To implement an advanced data analysis tool by making use of the synchronized pres-
sure pulses, cavitation images and URN data. Using this tool and the systematic data
produced with the series members investigate the effects of some major propeller design

and operational parameters on the URN as well as the effect of cavitation dynamics.
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Following the restatement of the objectives, review of the chapters of this thesis are provided
together with the objective they serve:

Chapter 2, performed a critical review of the literature on propeller cavitation noise. The state
of the art revealed that whilst the propeller noise prediction by using computational methods
carries great potential, the current status is not satisfactory. In addition to that, it has been iden-
tified that the open literature is lacking in the details of experimental data from both full-scale
and model scale experiments. Thus, while complementing the 1% objective, the identified data
gaps provide justification of the adopted approach for this research.

Chapter 3 presents a detailed review of the experimental facilities, equipment and data analysis.
This chapter serves as the backbone of this research contributing to all objectives since the
experimental nature of the adopted approach necessitates the use of facilities, equipment and

data analysis. Thus, this chapter serves objectives 2-7.

Chapter 4 considers the influence of shaft inclination on RNL. The systematic experiments
conducted not only serve both practice and training purposes for subsequent cavitation tunnel
testing, but also provide comprehensive data - including cavitation observation and inception,
performance and noise data for variations of the inclination angle. The results and outcomes of
the chapter were published as a journal article (Aktas, Atlar, Turkmen et al., 2015) and serves

the 2" objective.

Chapter 5 presents results from full-scale noise trials with “The Princess Royal ” and their
scaled simulation in the ECT. Detailed measurements are made at both full-scale and model
tests including cavitation observation, pressure pulses, powering & performance information
and RNLs. Comparisons of the conducted research were compiled as a manuscript and pub-
lished in a peer-reviewed journal (Aktas et al., 2016). This chapter thus satisfies the 3™ and 4™

objective.

231



7.2 Philosophical review of the thesis

Chapter 6 is composed of three interrelated main sub-sections. The initial part is devoted to
testing a 3 model propeller subset of the Meridian standard propeller series behind three simu-
lated axial wake variations at tunnel conditions determined with the help of powering data of
ocean-going commercial vessels. These tests were conducted to check on the degree to which
the commercially representative tests were presented as a conference paper (Aktas, Atlar,
Fitzsimmons et al., 2015) and satisfy the 5" objective. The subsequent part of Chapter 6 pre-
sents results and analysis of the systematic cavitation and wake tests with six Meridian standard
propeller series members to produce a database for the development of a tool for noise predic-
tion and to demonstrate the use of an advanced dynamic cavitation analysis tool methodology,

thereby serving to the 6™ and 7™" objective of the thesis.

The experiments were prepared, set-up, conducted, recorded, analysed and presented mainly by
the Author, leading to his demonstration and training in a variety of engineering skills as well
as a better appreciation of the experimental research. Self-involvement throughout the experi-
mental process not only provided a deeper insight into the nature of the data but also helped

meticulous interpretation of the results.

Analysis of results from the executed experiments were initially assembled into ECT reports.
These reports are filed and stored for the reference of future researchers and academics. The
results were then compiled into scientific articles and conference manuscripts which have been
published in peer-reviewed journals and reputable international symposia (Aktas et al., 2014;
Aktas, Fitzsimmons et al., 2015). The feedback received during the symposia and from journal
reviewers has improved the clarity of the content and enhanced the quality of this thesis.

232



7.3 Main conclusions

7.3 Main conclusions

The research conducted for this thesis extends the state of the art with several noteworthy con-
tributions to the subject of URN created by propeller cavitation. Overall, the conclusions drawn
in this thesis have shed contemporary light on the contentious issue of propeller cavitation
noise. Amongst the major contributions of this thesis are: providing the literature with a public
body of scarce if not non-existent comprehensive and detailed underwater radiated noise data
carries utmost importance. Moreover, providing a novel practical noise prediction method
which is based on a unique propeller-series approach, adopted to introduce the influence of the
wake variation, is the first of its kind and can be considered a major contribution. Within this

framework, some crucial conclusions have been derived as outlined in the following.

1. The conducted comprehensive literature review concluded that the state of the art is
missing detailed information that can be produced by means of extensive experimental
campaigns to enable the prediction of propeller cavitation noise. In addition to that, there
is no plausible way that can provide a quick insight to the RNL of a vessel at an early
design stage due to the complexity of the phenomena. This knowledge gap present in
the publicly available literature justifies an experimental approach to be adopted to pro-
duce a data set of valuable and detailed full-scale and model scale propeller underwater
radiated noise accessible by the public as well as a practical method for use in early

design stage noise prediction.

2. The flow-unsteadiness caused by systematic variation of shaft inclination is investigated
with particular emphasis on its impact on URN. Important conclusions have been drawn
out of the conducted study regarding the influence of the oblique flow on the inception
of cavitation and the impact of the cavitation type on the RNL as follows:

a. Shaft inclination has been observed to result in earlier tip vortex cavitation in-
ception. This consequently results in higher noise levels emanating at the ad-

vance coefficients that are in the region of the inception advance coefficients.
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b.

The propeller model tested in oblique flow conditions has shown two distinct
types of well-developed cavitation patterns; tip vortex and sheet cavitation,
which have been detected to dominate the RNL. Moreover, the signature of each

type has been found contribute to the different parts of the spectral domain.

Presented systematic cavitation tunnel test data of a propeller on an inclined
shaft, particularly for URN is non-existent in this detail and size. These experi-
ments provide an invaluable benchmark data for a well-known, relatively

simple, unsteady flow phenomenon contributing to the state-of-the-art.

3. The full-scale noise trials of the Newcastle University’s catamaran research vessel “The

Princess Royal” were conducted in order to allow testing of the cavitation tunnel capa-

bilities for full-scale noise prediction. During the full-scale trials, the research vessel

was heavily instrumented and recordings are made for the off board RNL, propeller

induced pressure pulses, high-resolution cavitation observations and powering perfor-

mance data. Such a detailed and comprehensive data enabled the reproduction of the

full-scale trial conditions during cavitation tunnel tests. The conducted experiments en-

abled comparisons of the qualitative cavitation observation information and quantitative

pressure pulse and RNL predictions. Whilst providing the literature with scarce URN

data with comprehensive model scale and full-scale details also the following conclu-

sions are obtained:

a.

b.

The extrapolated test results of the cavitation tunnel tests, when compared with
the URN spectra acquired during the full-scale trials, have shown reasonable
agreement over the low and medium frequency ranges rather than over the

higher frequency range.

Applications of ITTC procedures and guidelines to the cavitation tunnel test re-
sults for underwater RNL and cavitation observations for the research vessel
have shown reasonable agreement for the prediction of the full-scale trial meas-

urements; the experimental data being obtained from a truncated dummy-hull
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model with properly scaled bow and stern sections, combined with the wake

screens strategically fitted at the stern.

c. The provided full-scale data complemented with corresponding model scale cav-
itation tunnel test data, in particular for URN with publically available details of
the vessel, makes an invaluable contribution to the state-of-the-art URN re-

search.

4. A small but commercially representative subset of the Meridian standard propeller se-
ries was selected and tested behind the three systematically varied grades of wakes in
order to validate and develop confidence on the adopted standard propeller series ap-
proach. Thus, 3 model propellers were chosen to represent the main design variants such
as P/D ratio, BAR and blade number. The real ocean-going vessel powering and perfor-
mance data was then utilized to determine the cavitation tunnel testing conditions. The
experimental results were then extrapolated using the vessel operating conditions and

following conclusions are reached at:

a. Comparisons of the measured noise levels behind the wake and in open water
condition demonstrate the importance, and hence necessity, of introducing the
effect of wake in the noise investigations of propellers. While previous testing
of the standard propeller series did not incorporate non-uniform inflow, due to
different focus, it can be concluded that for tests focussing on propeller noise, a

representation of the wake severity is of prime importance.

b. The extrapolated results of the cavitation tunnel tests shown good agreement in
terms of the RNL and trend over the frequency range of comparison in
comparison with the published average commercial shipping noise data from
Wales and Heitmeyer, (2002). This provided the necessary confidence and en-
couragement to conduct tests with a larger subset using the same methodology
but using a systematic variation of the operating conditions.

235



7.3 Main conclusions

5. The qualitative justification of the adopted approach with the commercially representa-
tive small subset led to an experimental campaign with six Meridian standard propeller
series members using a systematic approach. The test matrix was chosen to have a large
scope of parameters in order to ensure accurate predictions. The data recorded during
the experiments thus resulted in a colossal amount of recordings. In order to use the
recorded data, both as raw data or to make propeller noise predictions, the recordings
were compiled into a database. The compiled database is then processed through an
ANN toolbox to train a neural network to recognize the patterns inherently present
within the database. The trained network was then compiled to make propeller cavita-
tion noise predictions using 12 non-dimensional and 3 full-scale parameter inputs as
provided by the user. The developed cavitation noise prediction software is then put into
test with two full-scale case studies in order to validate the developed approach and

following conclusions are obtained:

a. The first validation case study involved the comparisons of the URN predictions
for a 105-meter training ship for which the full-scale noise measurements were
available with two different propellers fitted to the ship. The original propeller
was a conventional propeller with a very low skew which then replaced with a
highly skewed and tip-offloaded one to improve the noise signature of the vessel.
The predictions have shown that, even though the developed method does not
incorporate features like the skew and tip off-loading, the effect of these features
can be captured due to their inherent impact on the propeller performance pa-
rameters. For example, at same RPM, highly skewed propeller achieves higher
speed, which is one of the dominating parameters for radiated noise level, while
the predictions show lower RNLs in comparison to the RNLs of the conventional
propeller. This trend of the predictions is in good agreement with the full-scale

measurements.

b. The second validation case study involved the comparisons of the RNL predic-
tions for an 117-meter oil tanker driven by a single CPP. Two conditions from
the full-scale trials, which were available for the design pitch and off-design

pitch, were used for the comparisons of the predictions. Although CPP noise
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signatures are considerably different to conventional propellers, with only 15
user inputs, a reasonable approximation to the URN levels of the vessel is

achieved using the developed database and associated tool.

6. By taking advantage of the experimental nature of this research and systematic cavita-
tion tunnel test data generated in the study, an advanced tool for the analysis of cavita-
tion dynamics on URN was introduced and effectiveness of the tool was demonstrated
to explore the influence of some major propeller design parameters on URN as well as
further understanding of the effect of cavitation dynamics on URN. The developed
methodology makes use of the analysis of the fluctuating pressure pulses and cavitation
observations recorded simultaneously in time-domain together with the analysed URN
data in the frequency domain. In this advanced analysis the Joint Time-Frequency Anal-
ysis toolbox, which provides a spectrogram and corresponding frequency domain re-
sponse graphics, plays an important role together with the high-speed cavitation video
images to determine the character of an instantaneous cavitation event in the frequency
domain. Based on the experience of using the implemented tool it can be further con-
firmed that:

a. Cavitation is the dominating source for URN of a propeller over the whole spec-
tral frequency range following its inception. Wake non-uniformity is utmost im-
portant on the level and nature of URN experienced from a ship propeller due
its consequent impact on the cavitation dynamics. The type of cavitation and
dynamics experienced by the propeller is of prime importance for cavitation in-
duced URN as it is not only influential over the radiated noise levels but also in

the frequency region where it contributes into.

7.4 Recommendation for future work

It is the Author’s belief that his thesis has provided insight into the further understanding of
cavitation induced URN providing not only publicly scarce if not non-existent URN data from
both model scale tests and full-scale platforms but also led to the development of an early design

stage noise prediction method. However, the scope of the studies was enormous in terms of the
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data collected and the possibilities for other investigations to be carried out. The research con-

ducted was limited and demonstrative in nature due to the available resources and time con-

straint. Thus, a number of further research on the subject is proposed as recommendations for

future work listed below:

Further validation case studies for the developed URN prediction method: The
scarcity of the comprehensive full-scale noise data that is publicly available is one of
the reasons that this thesis stems from. During the validation study of the prediction
methodology, various sources of full-scale noise data were investigated, but no suitable
source of full-scale noise data has been found that provides adequate information for a
validation case. Thus, further validation case studies with suitable full-scale data on
conventional commercial vessels are the most important future study that needs to be
carried out.

Further extension of the database with strategically selected series members: Since
the current study was limited to a subset of the Meridian standard propeller series mem-
bers, strategically selected additional members of the Meridian series can be tested to
expand the URN database. Of course, the ideal scenario is to test the complete Meridian
series to improve the range of the database for better coverage and prediction. However,
this is very expensive and time-consuming. Instead, one can exploit the power of ANN
with minimum viable model test data generated by the minimum necessary and strate-
gically selected members of the series. The gap of the missing experimental data for the

unselected members can be filled with the ANN predictions using the available data.

Furthermore, additional enhancements can be also implemented by the introduction of
more contemporary propeller design parameters which are important from the URN
mitigation point of view; such as the skew, tip unloading, new blade sections (Korkut
et al., 2013), etc. Newly designed propeller models incorporating such parameters can
be selectively manufactured and tested in conjunction with the further cavitation tunnel
testing of the Meridian standard propeller series to modernise and enhance the database

further.
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Development of a propeller induced pressure pulse prediction method: Since the
pressure pulse data are available as an additional and invaluable by-product of the sys-
tematic database, the pressure pulse prediction can also be included in the prediction

software using a separately trained ANN database.

Development of a systematic numerical approach to URN prediction: One of the
most attractive features of the systematic approach to the URN prediction of a ship pro-
peller is the quick prediction time (basically an ANN based interpolation) once the da-
tabase is generated. In the current study, the database is experimental and limited. The
same database can be established by using numerical methods (e.g. potential flow based
lifting surface or panel methods) which are validated and eventually calibrated by using
the available systematic data on pressure pulses, cavitation observations and URN. This
will pave way for the development of a wider base, modern and most practical predic-

tion tool that can be used in early design stage.

Combining JTFA and cavitation observations: The usefulness of the JTFA in com-
bination with the synchronized pressure pulse time signal and cavitation observations
are introduced in Chapter 6 of this thesis. This advanced analysis tool has proven to
provide further insight into the effect of cavitation dynamics on URN. However, further
development of software programming using NI LabView is required for the integration
of the pressure pulse signals and cavitation observation images in time-domain to en-
hance the understanding and ease of interpretation of both pressure pulse and cavitation
phenomenon. The ultimate aim is to develop a graphical user interface that enables the
input of time domain pressure signal in synchronization with the cavitation observation
that processes the time domain signal with JTFA to show third octave and narrow band
frequency response with spectrogram in between. Such a combined post processing tool
would significantly aid the interpretation of the noise measurements.

Implementation of cavitation noise control in the propeller design spiral: A natural
progression of this work is to engineer a methodology, where the mitigation or optimi-
sation of the cavitation induced of a propeller, is introduced into the propeller design
spiral. Potential regulatory standards based on existing silent vessel notations and fur-

ther R&D work may be developed in a near future to determine an acceptable propeller
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from URN point of view. Although there is no regulation in place yet to force the use
of a propeller with lower RNLs, it is important to ensure that no loss in efficiency of the

propeller is experienced when such implementation in the design spiral takes place.

Investigation of various unconventional noise mitigation methods: The current
study has focussed on the development an URN prediction method for conventional
propellers and the method developed can be considered as a conventional mitigation
tool for URN. However there are other means of mitigation using rather unconventional
methods e.g. contracted tip loaded (CLT) propellers (Gonzalez-Adalid and Gennaro,
2011), Kappel propellers (Anderson & Andersen, 2000), pressure relief holes intro-
duced to the tip of the propeller (Sharma et al., 1990) and coating application to a pro-
pulsor (Korkut & Atlar, 2012a), etc. Thus further studies with these interesting solutions
based on the systematic approach presented in this study may be worthwhile to under-

take for future research.
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Appendix A — “The Princess Royal” Propeller and
Hull Wake Details

A.1 Introduction

The main objective of this appendix is to provide the full-scale propeller geometry details of
Newcastle University’s research vessel “The Princess Royal” and its nominal wake details

based on the model wake survey conducted in a towing tank.

A.2 Detailed propeller and wake data

The vessel has a 0.75m diameter 5 bladed conventional fixed pitch propeller was designed for
the 15 knots service speed as shown in Figure A-1. The optimum values of pitch to diameter
ratio and blade/area ratio were determined as P/D = 0.8475 and BAR = 1.057, respectively.
These initial particulars were derived from the basic design of the propeller based on the Wa-
geningen B-Series data (Oosterveld & Van Oossanen, 1975). Tip clearance was selected to be
15% of the diameter at the top while a 10% clearance above the extension of the skeg plating

was allowed. The clearance of the boss centre from the rudder stock was 0.5 % of the diameter.

] PRINCESS ROYAL
. BLYTH

Figure- A-1 “The Princess Royal” propellers as fitted on the vessel.

The following parts include a propeller drawing from the facility that conducted open water
tests (Figure- A-2), main propeller particulars (Table- A-1), the propeller offset table (Table-
A-2) and axial wake measurement results (Table- A-3) in the given order.
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Figure- A-2 “The Princess Royal” propeller drawing.




Table- A-1 “The Princess Royal” Propeller Main Particulars.

X Radius mm P/D nose-tail Pitch n-t mm Chord mm Skew mm Thickness mm
0.2 75 0.8180 613.50 245.6 -6.9 32.0
0.25 93.75 0.8494 637.05 263.0 -8.1 30.2
0.3 1125 0.8726 654.45 278.5 -10.2 28.4
0.4 150 0.8802 660.15 308.7 -12.3 24.7
0.5 187.5 0.8772 657.90 332.8 -10.0 21.1
0.6 225 0.8718 653.85 348.6 -1.1 17.4
0.7 262.5 0.8612 645.90 352.4 14.0 13.8
0.8 300 0.8467 635.03 3355 34.9 10.1
0.9 337.5 0.8216 616.20 280.2 64.0 6.5
0.95 356.25 0.7984 598.80 216.4 81.7 4.6

1 375 0.7634 572.55 0 101.7 2.8




Table- A-2 Blade section offset table.

x=0.20
%C from LE X mm Back Ord Thickness Face Ord

0 0.00 2.82 5.64 -2.82
25 6.14 5.29 9.79 -4.50
5 12.28 7.47 13.41 -5.94
10 24.56 10.78 18.69 -7.91
20 49.12 15.27 25.61 -10.35
30 73.68 17.91 29.68 -11.76
40 98.24 19.13 31.69 -12.57
50 122.81 19.07 31.76 -12.69
60 147.37 17.81 29.78 -11.97
70 171.93 15.37 25.82 -10.45
80 196.49 11.77 19.90 -8.13
90 221.05 7.01 12.01 -5.00
95 233.33 4.18 7.32 -3.13
100 245.61 1.25 2.50 -1.25

x=0.25
%C from LE X mm Back Ord Thickness Face Ord

0 0.00 2.58 5.15 -2.58
25 6.58 5.12 9.24 -4.12
5 13.15 7.29 12.65 -5.35
10 26.30 10.62 17.63 -7.00
20 52.61 15.18 24.16 -8.97
30 78.91 17.88 27.99 -10.11
40 105.21 19.09 29.89 -10.80
50 131.52 19.00 29.95 -10.95
60 157.82 17.72 28.09 -10.36
70 184.12 15.28 24.36 -9.07
80 210.42 11.69 18.77 -7.09
90 236.73 6.93 11.33 -4.40
95 249.88 4.16 7.00 -2.84
100 263.03 1.25 2.50 -1.25




x=0.30
%C from LE X mm Back Ord Thickness Face Ord

0 0.00 2.50 5.00 -2.50
25 6.96 491 8.68 -3.76
5 13.93 7.05 11.88 -4.83
10 27.85 10.35 16.56 -6.20
20 55.70 14.90 22.69 -7.79
30 83.55 17.59 26.29 -8.70
40 111.40 18.78 28.08 -9.30
50 139.26 18.68 28.13 -9.46
60 167.11 17.41 26.38 -8.98
70 194.96 14.99 22.88 -7.88
80 222.81 11.45 17.63 -6.18
90 250.66 6.77 10.64 -3.87
95 264.58 411 6.70 -2.59
100 278.51 1.25 2.50 -1.25

x=0.40

%C from LE X mm Back Ord Thickness Face Ord

0 0.00 2.17 4.34 -2.17
2.5 7.72 4.35 7.56 -3.21
5 15.44 6.28 10.35 -4.07
10 30.87 9.28 14.42 -5.15
20 61.74 13.43 19.77 -6.34
30 92.62 15.88 2291 -7.02
40 123.49 16.96 24.46 -7.51
50 154.36 16.85 24.51 -7.66
60 185.23 15.69 22.99 -7.29
70 216.10 13.51 19.93 -6.42
80 246.98 10.31 15.36 -5.06
90 277.85 6.08 9.27 -3.19
95 293.28 3.67 5.84 -2.17
100 308.72 1.25 2.50 -1.25




x =0.50
%C from LE X mm Back Ord Thickness Face Ord

0 0.00 1.85 3.70 -1.85
25 8.32 3.75 6.44 -2.70
5 16.64 5.43 8.82 -3.39
10 33.28 8.05 12.29 -4.25
20 66.57 11.68 16.85 -5.17
30 99.85 13.83 19.52 -5.69
40 133.13 14.77 20.85 -6.08
50 166.42 14.67 20.89 -6.22
60 199.70 13.65 19.59 -5.94
70 232.98 11.75 16.99 -5.24
80 266.26 8.96 13.09 -4.13
90 299.55 5.45 8.24 -2.79
95 316.19 3.45 5.52 -2.07
100 332.83 1.25 2.50 -1.25

x =0.60

%C from LE X mm Back Ord Thickness Face Ord

0 0.00 1.50 3.00 -1.50
2.5 8.72 3.14 5.32 -2.19
5 17.43 4.57 7.29 -2.72
10 34.86 6.80 10.16 -3.36
20 69.72 9.92 13.93 -4.01
30 104.58 11.76 16.14 -4.38
40 139.44 12.55 17.23 -4.68
50 174.31 12.46 17.27 -4.81
60 209.17 11.59 16.19 -4.60
70 244.03 9.97 14.04 -4.07
80 278.89 7.60 10.82 -3.22
90 313.75 4.65 6.90 -2.25
95 331.18 3.00 4.75 -1.75
100 348.61 1.25 2.50 -1.25




x=0.70
%C from LE X mm Back Ord Thickness Face Ord

0 0.00 1.25 2.50 -1.25
25 8.81 2.53 4.21 -1.68

5 17.62 3.71 5.76 -2.05
10 35.24 5.56 8.03 -2.47
20 70.49 8.15 11.01 -2.85
30 105.73 9.69 12.75 -3.06
40 140.98 10.34 13.62 -3.28
50 176.22 10.26 13.65 -3.39
60 211.46 9.54 12.80 -3.26
70 246.71 8.20 11.10 -2.90
80 281.95 6.24 8.55 -2.31
90 317.20 3.85 5.55 -1.70
95 334.82 2.56 4.00 -1.44
100 352.44 1.25 2.50 -1.25

x=0.80

%C from LE X mm Back Ord Thickness Face Ord

0 0.00 1.25 2.50 -1.25
25 8.39 2.11 3.48 -1.37
5 16.77 2.84 4.23 -1.39
10 33.55 4.30 5.90 -1.60
20 67.10 6.35 8.08 -1.73
30 100.64 7.57 9.37 -1.80
40 134.19 8.08 10.00 -1.92
50 167.74 8.00 10.02 -2.02
60 201.29 7.44 9.40 -1.96
70 234.84 6.38 8.15 -1.77
80 268.38 4.96 6.50 -1.54
90 301.93 3.23 457 -1.34
95 318.71 2.27 3.55 -1.28
100 335.48 1.25 2.50 -1.25




x=0.90
%C from LE X mm Back Ord Thickness Face Ord

0 0.00 1.25 2.50 -1.25
2.5 7.01 1.74 2.90 -1.16

5 14.01 2.19 3.25 -1.06
10 28.02 3.03 3.97 -0.94
20 56.04 4.38 5.16 -0.79
30 84.06 5.24 5.98 -0.75
40 112.08 5.59 6.39 -0.80
50 140.11 5.53 6.40 -0.87
60 168.13 5.13 6.00 -0.87
70 196.15 4.46 5.32 -0.86
80 224.17 3.57 4.49 -0.92
90 252.19 2.48 3.50 -1.02
95 266.20 1.88 3.00 -1.12
100 280.21 1.25 2.50 -1.25

x=0.95

%C from LE X mm Back Ord Thickness Face Ord

0 0.00 1.25 2.50 -1.25
2.5 541 1.56 2.69 -1.13
5 10.82 1.85 2.85 -1.00
10 21.64 2.38 3.20 -0.82
20 43.28 3.25 3.81 -0.56
30 64.93 3.83 4.29 -0.47
40 86.57 4.09 4.59 -0.50
50 108.21 4.04 459 -0.55
60 129.85 3.81 4.43 -0.62
70 151.49 3.40 4.10 -0.70
80 173.14 2.82 3.65 -0.83
90 194.78 2.10 3.11 -1.01
95 205.60 1.69 2.80 -1.11
100 216.42 1.25 2.50 -1.25




Table- A-3 Nominal axial velocity ratio distribution over the propeller disk in model scale.

ANGLE (degrees) | AXIAL VELOCITY RATIO — Vx/Vs
0 0.417 | 0.631 | 0.691 | 0.674 | 0.622
10 0.506 | 0.695 | 0.738 | 0.708 | 0.650
20 0.586 | 0.748 | 0.780 | 0.745 | 0.687
30 0.660 | 0.792 | 0.818 | 0.789 | 0.741
40 0.724 | 0.829 | 0.854 | 0.838 | 0.808
50 0.779 | 0.859 | 0.886 | 0.883 | 0.871
60 0.823 | 0.884 | 0.911 | 0.918 | 0.917
70 0.855 | 0.903 | 0.930 | 0.943 | 0.947
80 0.876 | 0.918 | 0.946 | 0.962 | 0.968
90 0.887 | 0.928 | 0.959 | 0.977 | 0.987
100 0.890 | 0.935 | 0.968 | 0.989 | 1.000
110 0.887 | 0.935 | 0.970 | 0.993 | 1.000
120 0.880 | 0.929 | 0.963 | 0.984 | 1.000
130 0.870 | 0.916 | 0.946 | 0.961 | 0.978
140 0.858 | 0.899 | 0.921 | 0.925 | 0.932
150 0.846 | 0.881 | 0.894 | 0.883 | 0.878
160 0.835 | 0.867 | 0.870 | 0.846 | 0.827
170 0.827 | 0.860 | 0.857 | 0.823 | 0.793
180 0.824 | 0.862 | 0.857 | 0.820 | 0.786
190 0.825 | 0.874 | 0.872 | 0.838 | 0.807
200 0.832 | 0.892 | 0.898 | 0.874 | 0.853
210 0.842 | 0.913 | 0.929 | 0.918 | 0.910
220 0.855 | 0.932 | 0.957 | 0.961 | 0.965
230 0.868 | 0.944 | 0.977 | 0.993 | 1.000
240 0.876 | 0.947 | 0.986 | 1.000 | 1.000
250 0.877 | 0.940 | 0.983 | 1.000 | 1.000
260 0.870 | 0.927 | 0.971 | 0.997 | 1.000
270 0.852 | 0.910 | 0.956 | 0.979 | 0.992
280 0.825 | 0.891 | 0.939 | 0.959 | 0.968
290 0.786 | 0.871 | 0.921 | 0.937 | 0.940
300 0.730 | 0.845 | 0.897 | 0.907 | 0.900
310 0.655 | 0.811 | 0.864 | 0.865 | 0.843
320 0.56 | 0.766 | 0.822 | 0.814 | 0.777
330 0.464 | 0.716 | 0.776 | 0.763 | 0.717
340 0.397 | 0.672 | 0.737 | 0.723 | 0.678
350 0.385 | 0.646 | 0.709 | 0.693 | 0.646
360 0.417 | 0.631 | 0.691 | 0.674 | 0.622
r'R 0.267 | 0453 | 0.64 | 0.827 | 1.013




Table- A-4 Nominal radial velocity ratio distribution over the propeller disk in model scale.

ANGLE (degrees) | RADIAL VELOCITY RATIO - Vr/Vs
0 0.108 | -0.041 | -0.146 | -0.195 | -0.234
10 0.04 -0.093 | -0.157 | -0.189 | -0.207
20 0.012 | -0.09 |-0.12 | -0.127 | -0.139
30 0.004 | -0.072 | -0.078 | -0.071 | -0.073
40 0.008 | -0.047 | -0.042 | -0.031 | -0.021
50 0.021 |-0.017|-001 | O 0.017
60 0.039 | 0.018 | 0.021 | 0.031 | 0.046
70 0.061 | 0.055 | 0.053 | 0.064 | 0.072
80 0.084 | 0.091 | 0.086 | 0.099 | 0.097
90 0.106 | 0.12 0.116 | 0.129 | 0.12
100 0.127 | 0.138 | 0.138 | 0.149 | 0.139
110 0.143 | 0.146 | 0.152 | 0.157 | 0.151
120 0.155 | 0.145 | 0.154 | 0.15 0.153
130 0.164 | 0.138 | 0.146 | 0.132 | 0.143
140 0.167 | 0.128 | 0.13 0.106 | 0.124
150 0.168 | 0.119 | 0.111 | 0.079 | 0.099
160 0.165 | 0.113 | 0.091 | 0.056 | 0.071
170 0.16 0.111 | 0.075 | 0.041 | 0.047
180 0.154 | 0.112 | 0.065 | 0.035 | 0.03
190 0.146 | 0.115 | 0.062 | 0.038 | 0.024
200 0.138 | 0.118 | 0.065 | 0.048 | 0.027
210 0.129 | 0.119 | 0.071 | 0.061 | 0.04
220 0.122 | 0.116 | 0.079 | 0.074 | 0.057
230 0.114 | 0.109 | 0.084 | 0.082 | 0.074
240 0.105 | 0.099 | 0.085 | 0.085 | 0.086
250 0.095 | 0.085 | 0.079 | 0.081 | 0.088
260 0.082 | 0.07 0.068 | 0.071 | 0.08
270 0.064 | 0.054 | 0.051 | 0.056 | 0.062
280 0.042 | 0.036 | 0.032 | 0.039 | 0.036
290 0.016 | 0.016 | 0.012 | 0.018 | 0.008
300 -0.009 | -0.005 | -0.007 | -0.006 | -0.022
310 -0.026 | -0.026 | -0.027 | -0.038 | -0.055
320 -0.025 | -0.041 | -0.05 | -0.079 | -0.096
330 0.001 | -0.042 | -0.079 | -0.128 | -0.154
340 0.054 | -0.026 | -0.115 | -0.18 | -0.227
350 0.112 | -0.005 | -0.147 | -0.215 | -0.287
360 0.108 | -0.041 | -0.146 | -0.195 | -0.234
r'R 0.267 | 0.453 | 0.64 0.827 | 1.013
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Table- A-5 Nominal tangential velocity ratio distribution over the propeller disk in model scale.

ANGLE (degrees) | TANGENTIAL VELOCITY RATIO - Vt/Vs
0 -0.147 | -0.152 | -0.109 | -0.096 | -0.077
10 -0.182 | -0.169 | -0.141 | -0.118 | -0.108
20 -0.22 -0.19 -0.185 | -0.175 | -0.187
30 -0.251 | -0.206 | -0.21 -0.209 | -0.229
40 -0.271 | -0.214 | -0.214 | -0.215 | -0.229
50 -0.277 | -0.215 | -0.208 | -0.205 | -0.208
60 -0.27 -0.209 | -0.197 | -0.19 -0.183
70 -0.253 | -0.197 | -0.185 | -0.175 | -0.162
80 -0.227 | -0.177 | -0.169 | -0.159 | -0.146
90 -0.196 | -0.151 | -0.148 | -0.14 -0.13
100 -0.163 | -0.12 -0.121 | -0.114 | -0.108
110 -0.128 | -0.088 | -0.088 | -0.083 | -0.078
120 -0.095 | -0.058 | -0.053 | -0.047 | -0.044
130 -0.065 | -0.032 | -0.02 -0.012 | -0.009
140 -0.038 | -0.012 | 0.007 | 0.018 | 0.022
150 -0.016 | O 0.024 | 0.039 | 0.043
160 0.001 | 0.006 |0.031 |0.049 |0.051
170 0.014 | 0.008 |0.028 | 0.048 | 0.048
180 0.024 | 0.009 | 0.02 0.04 0.037
190 0.031 |0.011 |o0.011 | 0.029 | 0.023
200 0.039 |0.017 |0.005 |0.019 |0.012
210 0.048 | 0.029 |0.008 | 0.016 |0.011
220 0.061 |0.046 |0.019 |0.021 |0.02
230 0.078 | 0.067 | 0.04 0.035 | 0.04
240 0.099 |0.089 |0.066 | 0.055 | 0.067
250 0.124 | 0.109 | 0.095 | 0.079 | 0.097
260 0.15 0.126 |0.119 |0.101 | 0.124
270 0.174 | 0.138 | 0.137 | 0.119 | 0.146
280 0.191 | 0.146 | 0.147 | 0.133 | 0.162
290 0.198 | 0.151 | 0.149 | 0.144 | 0.173
300 0.192 0.154 | 0.147 | 0.153 | 0.184
310 0.174 | 0.156 |0.146 | 0.162 | 0.194
320 0.145 | 0.153 | 0.144 | 0.168 | 0.196
330 0.108 | 0.136 | 0.136 | 0.158 | 0.177
340 0.062 0.089 | 0.107 | 0.117 | 0.116
350 -0.006 | -0.004 | 0.034 | 0.03 0.015
360 -0.147 | -0.152 | -0.109 | -0.096 | -0.077
r'R 0.267 0.453 | 0.64 0.827 1.013
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Wake measurements have been carried out in the Istanbul Technical University (ITU) Ata
Nutku Towing Tank. Wake measurements were conducted with a computer controlled five-
hole pitot-tube. The velocities across the propeller disk were measured from 0 degrees to 360
degrees. 0 degrees of wake corresponds to the Top Dead Centre — TDC, 180 degrees of the
wake corresponds to the Bottom Dead Centre — BDC and 90 degrees of the wake points out the

starboard side of the hull when viewed from the aft towards the bow.
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Appendix B — Drawings and Other Detalils of Merid-

lan Standard Propeller Series

B.1 Introduction

Appendix B contains the supplement material presenting the details of the Meridian Standard
Propeller Series. The Meridian Sections and profile details are initially presented. Following
this, the propeller drawings of the selected subset of the series members are given in order to
provide necessary additional information on the propellers.

B.2 Propeller blade sections and details

The Meridian Standard Propeller series has been manufactured by SMP where accumulated
experience in propeller design has been implemented and utilized. Figure- B-2 and Figure- B-5
present the definitions of the blade sections. The definition includes the chordwise distribution
of data points and the definition used for the thickness and ordinates at the data points. Follow-
ing this, the zoomed detail of the blade finish at propeller tip and the leading and trailing edge
radius has been given.

PITCH_DISTRIBUTION.

X ="r 2 3 .4 ‘5 ‘6 7 .8 9 .95 10

% Max.PITCH 66-8 T5-2 836 920 988 100 100 100 100 100
(meAN PITcH = a5-6 %)

Figure- B-1 Meridian Standard Propeller Section Pitch Distribution.

PROPELLER SECTIONS.  (moowien KCDA secTions)
A THICK ;
A

:/4 | Va Vs ] "/4;__

CHORD

Figure- B-2 Definition of the Meridian Propeller Sections.



THICKNESS OFFSETS

X A B c D E F G H J
2 5-82 47-98 799 00% 8912 6030 39-44 13-90
-3 6-61 4824 qiI-30 63-12 41-52 12-42
-4 7-59 48-53 2-0 64-22 4200 12-29
‘5 64-8 4224 12-64
-6 6516 42-58 13-32
7 14-62
-8

-q

( THICKNESS OFFSETS, NOT SHOWN HERE, SAME AS FOR BACK OFF SETS)

Figure- B-3 Thickness offset of the Meridian Standard Section.

BACK OFFSETS (N % oF max. THICKNESS (E) AT EACH RADWS)

A B C D E F G H J
27-89 57-27 80-29 94:53 100% 95-40 79-36 66-46 49-65
20.55 S52.81 78-07 94-46 1007 Q3-52 74-70 60-41 40-89
.20 49:56 77-28 94-39 100% 92:06 70:-90 54-98 32-60
8-89 48-84 76-92 94-43--100% 91-20 67-67 49-88 25-28
10-62 49-31 77-44 94-61 100% 90-98 65-59 45-40 19-40
12:63 50-71 78-81 94-89 100% 91-32 65-30 43-22 15-28
14-90 S52-89 80-48 95:43 1007 QqI-98 6555 4369 (722
21-45 55.31 82-13 96-42 100% 92-90 64-30 42-89 21-46

o ®m a0 o0 p b p |8
“

MEASUREMENTS FROM PITCH FACE

Figure- B-4 Back offsets of the Meridian Standard Section.

' BLADE FINISH - ST 0-3%0

CTIR THICKNESS - = 0:3% D L m

FINISH NOSE AND TAl. WITH RADIUS

. AS SHOWN. g

ALL THICKNESSES MUST BE GIVEN TO TWo DECIMAL PLACES (IN INS) '

Figure- B-5 Detail Drawings of the Propeller Blade Finish at Tip and Nose and Tail Radius.



STONE MANGANESE MARINE LIMITED. LONDON. ENGLAND.
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Figure- B-6 KCD 192 original propeller drawings.
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STONE MANGANESE MARINE LIMITED, LONDON, ENGLAND.
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Figure- B-7 KCD 129 original propeller drawings.
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Appendix C - Background Noise Measurements for

Standard Series Propeller Tests

C.1 Introduction

This appendix presents the summary of the background noise measurements conducted in the
Emerson Cavitation Tunnel facility. The measured background noise levels of the facility are
used to correct the total noise levels of the systematic test data using the Meridian standard

propeller series.

C.2 Background noise measurements

The background noise measurements are conducted for the conditions as outlined in Table- C-1.
Therefore, in addition to the exact conditions that the systematic cavitation tunnel tests using
Meridian standard propeller series are conducted, the conditions for only impeller running and
only dynamometer operating are also recorded and presented in this appendix. The SPL’s cor-
responding to the test conditions listed in C-1 are presented in Figures C-1 through C-12.

Table- C-1 Background noise test matrix.

Running Con- | Tunnel water Dynamometer, N Inflow condi-
o ) Pressure ]
dition velocity V [m/s] [RPM] tion
1,15,2,25,3,
Impeller only Turned off
35&4 Atmospheric
600, 800, 1000, 1200, | Pressure Condi- | Open Water
Dynamometer .
| Turned off 1400, 1500, 1600, tion only
on
y 1750 & 2000
Atmospheric
600, 800, 1000, 1200, | Pressure, 150 | Open Water &
Impeller & Dy- .
3 1400, 1500, 1600, mmHg &300 Behind ECT1,
namometer on
1750 & 2000 mmHg Vacuum | ECT2, ECT3
applied
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Figure- C-1 Impeller operating only background noise levels at atmospheric pressure in open water
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Figure- C-3 Background noise levels at 3m/s inflow speed for different dynamometer speeds at atmos-

pheric pressure in open water condition.
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Figure- C-4 Background noise levels at 3m/s inflow speed for different dynamometer speeds at atmos-

pheric pressure behind ECT1.
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Figure- C-5 Background noise levels at 3m/s inflow speed for different dynamometer speeds at atmos-

pheric pressure behind ECT2.
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pheric pressure behind ECT3.
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Figure- C-11 Background noise levels at 3m/s inflow speed for different dynamometer speeds at 300
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Appendix D - Fundamentals of Artificial Neural Net-

work & Associated Prediction Software

D.1 Introduction

Appendix D provides further insight into the adopted methodology implemented for the ANN,
which is used for the presentation of the propeller noise database and associated software for
the noise prediction. The utilized code for the determination of the optimum number of hidden
layer and neuron number is presented to enhance the understanding. Finally, the code devel-
oped for the compiled propeller noise prediction software is provided.

D.2 Fundamentals of ANN

ANN, in contrast to statistical polynomial fits, generates functional relationships between the
input and the output data spaces in a multi-dimensional manner. Therefore, it is a tool that is
possibly suitable for extrapolation of the data space. In order to achieve this functionality, the
ANN uses neurons. Each neuron is a singular processing unit that takes several inputs originat-
ing from other neurons and produces an output that is then transmitted to other neurons.

Whilst the original ANN methodology was inspired by the human biological neuron, as
sketched schematically in Figure D-1, the application of the network in the computational do-

main has evolved depending on the various mathematical principles.
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Figure- D-1 Schematic representation of a Biological Neuron (Reproduced from (Basheer & Hajmeer,
2000)).

An artificial neuron is a compilation of mathematical functions that can be conceived as a
simple model of a biological neuron. Figure D-2 presents the basic single input neuron model.
Based on the single input model more complex neural networks are developed as shown in
Figure D-3. The set of inputs selected are summed up by the processing unit after the weight
and bias values applied. Then summed up value is used as an input to a non-linear activation

function that is transferred to the other neurons.

Inputs  General Neuron
r N A

Pe w Z i ’ ](‘ a '
lb
U J
a=f(wp+b)

Figure- D-2 Basic single input Neuron Model (Reproduced from (Beale et al., 2015)).
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Figure- D-3 Multiple input Single Hidden layer Neural network (Reproduced from (Beale et al.,
2015)).

The number of neurons is a key factor in the development of an ANN. For every application,
there is an optimum number of hidden neurons that gives the best prediction. Furthermore, for
more complicated applications the number of hidden layers may also need to be increased.
However, while the predictions will be poor, if an unsatisfactory number of hidden neurons are
used, the over usage of neurons and hidden layer will also result in a loss of the prediction

performance.

«'
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;‘;.

output layer

N
0
?;\
)
Wi
0§

output layer
input layer input layer
hidden layer hidden layer 1 hidden layer 2

Figure- D-4 Simple representation of single hidden layer (left) and double hidden layer (right) Neural
Network (Reproduced from (Karpathy, 2016)).
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D.3 MATLAB code for the determination of optimum number of

hidden neurons

In order to determine the best number of hidden layer, a sweep function has been implemented
by a MATLAB code. The code trains ANN for 462 alternative configurations that include two
hidden layer option and one hidden layer option for neuron numbers from 1 to 101 with 5 neu-
ron intervals. The performance of the each trained network is recorded in order to create a
surface plot and a two-dimensional plot to be able to determine the best number of hidden layers
and neurons with reasonable computational effort. Whilst the code given by Table- D-1 is for
the time-delay neural network, other options provided by the MATLAB toolbox is also imple-
mented to ensure the use of the best ANN method. The number of inputs are also altered in this

respect to determine the optimum ANN that provides the most accurate prediction.

Table- D-1 Sweep function for determination of the optimum number of Hidden layers and Neurons.

% Solve an Input-Output Time-Series Problem with a Time Delay Neural Net-

work

% Script generated by NTSTOOL.

% Created Wed Apr 29 12:45:11 BST 2015
clear all; close all; clc;

AAA=x]lsread ('ANN BG noise.xlsx'");

AAA=AAA';

[x] = AAA(1:5,:);

[t] = AAA(6:36,:);

% X — input time series.

% t - target time series.
inputSeries = tonndata(x,true,false);
targetSeries = tonndata(t,true, false);

aaa = 1:5:101;

bbb = 1:5:101;
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ccc = 1:5:101;

for 1 = 1:21

a aaa(l,1);

% Create a Time Delay Network
inputDelays = 0:1;

hiddenlayerSize = a; %a;

net = timedelaynet (inputDelays,hiddenlLayerSize) ;

% Prepare the Data for Training and Simulation

o

The function PREPARETS prepares timeseries data for a particular network,

% shifting time by the minimum amount to fill input states and layer states.

oe

Using PREPARETS allows you to keep your original time series data un-

changed, while
% easily customizing it for networks with differing numbers of delays, with

% open loop or closed loop feedback modes.

[inputs, inputStates, layerStates, targets] =

preparets (net, inputSeries, targetSeries);

[

% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

Q

% Train the Network

[net,tr] = train(net, inputs, targets, inputStates, layerStates);

% Test the Network
outputs = net (inputs, inputStates, layerStates);

errors = gsubtract (targets,outputs);
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performance = perform(net,targets,outputs):;

error = cell2mat (errors);

e =abs (error);
es(i,:) = sum(e);

ess(i,1)=sum(es(i,:)):;

o

if ds < best

% best = ds
% netb = net;
% numbest = numHiddenNeurons

o

endfor 1 = 1:101
end

for j=1:21

for k=1:21

b = bbb(1,3);

c ccc(l,k);

[

% Create a Time Delay Network
inputDelays = 0:1;
hiddenLayerSize = [b,c]l; %a;

net = timedelaynet (inputDelays,hiddenlLayerSize) ;

o)

% Prepare the Data for Training and Simulation

% The function PREPARETS prepares timeseries data for a particular network,

[

% shifting time by the minimum amount to fill input states and layer states.

o)

% Using PREPARETS allows you to keep your original time series data un-

changed, while

[

% easily customizing it for networks with differing numbers of delays, with

o)

% open loop or closed loop feedback modes.

[inputs, inputStates, layerStates, targets] = preparets (net,inputSeries, tar-

getSeries);
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% Setup Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;

net.divideParam.testRatio = 15/100;

[

% Train the Network

[net,tr] = train(net,inputs, targets, inputStates, layerStates) ;

% Test the Network

outputs = net (inputs, inputStates, layerStates);

error twoHL gsubtract (targets, outputs) ;
performance = perform(net,targets,outputs):;

error twohls = cellZmat(error_tonL);

d =abs (error twohls);
ds(j,:) = sum(d);

dss (j,k)=sum(ds (j,:));

oe

if ds < best

o\°

best ds

o\°

netb = net;

% numbest = numHiddenNeurons
end
end

[C,I] = min(dss);

perfectneuron = aaa(l,I)

[

view(net) % View the Network

[

% Uncomment these lines to enable various plots.

oe

o\°

$figure, plotperform(tr)

oe

$figure, plottrainstate(tr)

o\

$figure, plotresponse (targets,outputs)
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figure, ploterrcorr (errors)

o

s %$figure, plotinerrcorr (inputs,errors)

o)

% % y(t+l) once x(t) is available, but before the actual y(t+l) occurs.

o
°

% The network can be made to return its output a timestep early by

removing one delay

o 9

5 % so that its minimal tap delay is now 0 instead of 1. The new network

returns the

% same outputs as the original network, but outputs are shifted left one

o)
°

timestep.

nets = removedelay (net);

[xs,xis,ais,ts] = preparets(nets,inputSeries, targetSeries);
ys = nets(xs,xis,ais);

earlyPredictPerformance = perform(net,tc,yc)

% wts = net.IW{l,1}

% bias = net.b{l}

D.4 MATLAB code for the noise prediction tool

The plotted results of the sweep functions aided the determination of the optimum number of
hidden layer and the number of neurons within. The determined numbers are repeatedly trained
using the MATLAB toolbox to ensure the training performance remained similar as the ANN
methodology adopts an initialization with random nature hence the trained network may result

in a different performance each time.

After achieving the satisfactory ANN performance by the trained network, the finalized version
is saved to be used within a user interface function written in MATLAB that prompts user input
for the determined parameters that is required by the software. Finally, the user interface is
compiled together with the trained networks to be converted into an executable file of the soft-
ware named ECT_CAV_NOISE as given in Table D-2.
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Table- D-2 Developed MATLAB Code for the User interface of the ECT_CAV_NOISE.

function [] = compiled network()
%% INTERFACE for INPUTS
disp (' ")
disp (' Full-Scale Propeller NOISE Estimation using ANN');
disp('———=—=————""-""-— - ")
disp (' ")
%invoke interface to input values
prompt = {'P/D (Pitch to Diameter Ratio )', 'BAR (Blade Area Ratio)', 'Blade
No', 'Wake Nonuniformity (BSRA Wake Criteria)', 'Wake depth', 'Wake width',
'KT (Thrust Coefficient)','l0KQ (Torque Coeffcient)','J (Advance Coeffi-
cient)', 'SigmaV (Free stream Cavitation Number)', 'SigmaN (Rotational Cav-
itation Number)', 'SigmaR (Resultant Cavitation Number)', 'Full Scale pro-
peller Diameter', 'Full Scale Propeller rps', 'Mean Wake', 'Output File
Name'};
dlg title = 'ECT CAV NOISE' ;
lines = 1.5;
options.Resize='on';
options.WindowStyle="'normal';
def =
{'o.8','0.65"','4','0.81"','0.64"','95"','0.28"'",'0.3424"','0.25808"','38.91"',"'2
.835','0.285"', '0.3048', '29.16', '0.20','ECT_CAV Noise Prediction.xls'};
answer = inputdlg(prompt,dlg title,lines,def,options);
y = answer{l, 1};
Inputl = str2num(y);
y = answer{2, 1};
Input2 = str2num(y):;
y = answer{3, 1};
Input3 = str2num(y);
y = answer{4, 1l};
Inputd4 = str2num(y);
y = answer{5, 1};
Inputb = str2num(y);
y = answer{6, 1};
Input6 = str2num(y);
y = answer{7, 1l};
Input?7 = str2num(y);
y = answer{8, 1};
Input8 = str2num(y);
y = answer{9, 1};
Input9 = str2num(y);
y = answer{10, 1};
Inputl0 = str2num(y);
y = answer{1l1l, 1};
Inputll = str2num(y);
y = answer{12, 1};
Inputl2 = str2num(y);
y = answer{13, 1};
Inputl3 = str2num(y);
y = answer{1l4, 1};
Inputld = str2num(y);
y = answer{1l5, 1};
Inputlb5 = str2num(y);
y = answer{le6, 1};
Inputle = (y);
%make the input array for total noise and BG Noise
Total Noise = [Inputl; Input2; Input3; Input4; Inputb; Input6; Input7; In-
put8; Input9; Inputll; Inputll; Inputl2;];
BG Noise = [Input4;Input5;Input6;Input?;Inputl2];
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frequency
=[ 20;25;31.5;40;50;63;80;100;125;160;200;,250;315,400,;500,630,;,800,;,1000;12
50;1600;2000;2500;3150;4000;5000;6300;8000;10000;12500;16000;200007;
%% LOAD ANN model
load Total network;
Total prediction=sim(net,Total Noise);
load BG network;
BG prediction=sim(net,BG Noise);
for 1i=1:31
if Total prediction(i)-BG prediction (i)<3;
Net noise(i)=0
FS Noise (1)=0
FS frequency (i)=0
else
Net noise(i)=10*((logl0( (10" (Total prediction(i)/10))-
(10" (BG_prediction(i)/10)))));
FS Noise (i)=Net noise(i)+(60*1ogl0 (Inputl3/0.3048)+40*1ogl0 (Inputl4*In-
put9*0.3048/3)+20*10gl0(1025/1003)) ;
FS frequency (i)=frequency (i) *Inputl4*Input9*0.3048/ (3* (1-In-

putld));

end

end

disp(' ");

disp (' Full-Scale Propeller Cavitation Noise Prediction');

PROP_CAV NOISE=[FS frequency;FS Noise]'

dlmwrite (Inputl6, PROP_CAV NOISE, '\t');

figure

semilogx (FS_ frequency, FS Noise)

xlabel ('Frequency (Hz)'); ylabel ('RNL re IlmicroPa @lm in 1Hz Equivalent');
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