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ABSTRACT

The Global Positioning System (GPS) is a satellite navigation system which, when

fully operational, "will provide highly accurate position and velocity information in

three dimensions, as well as precise time, to users around the globe 24 hours a day"

(Anon, 1990). GPS can be operated under all weather conditions, with the only

restriction being that the user must be able to receive radio signals from the

satellites. Such a comprehensive positioning system has never been previously

available, and thus GPS is currently being used for a diverse range of applications.

This thesis is focused at the application of GPS for the offshore oil industry which is

requiring increasingly higher instantaneous positioning accuracies. The GPS system

and real-time positioning techniques are described, along with the main error

sources that limit the available accuracy. The suitability of using GPS observations

in a standard set of mathematical algorithms, the Kalman filter, in order to obtain

position and velocity information has been examined. This is carried out by

analysing the observations in order to determine some statistical properties that are

usually ignored during the processing and data spanning a two year period has been

analysed. The effect that these properties have on the resultant position and its

precision was ascertained, finding that position discrepancies were insignificant but

their associated precisions were highly dependent on the statistical properties were

highly dependent of the data sets. Along similar lines., the ability of the Kalman

filter to detect blunders, or gross errors, within GPS-type observations was analysed

showing that the relevant test statistics performed sub-optimally and, again, this was

dependent on the properties of the data.
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INTRODUCTION

OVERVIEW

GPS is operated by the US Department of Defence through the Joint Program

Office. It is a military system that was designed with military objectives in mind,

and, due to security reasons, has not been made fully available to the civilian

community. Presently, a positional accuracy of 100 metres 95 % of the time is

guaranteed to all users. This level of accuracy is not high enough for many

purposes and techniques have been developed and enhanced to improve this in real-

time. Differential GPS is now well established, providing accuracies in the region

of 2 - 10 m, and is used extensively in the offshore industry for operations such as

general navigation, survey, seismic acquisition, rig moves and dredging.

The offshore seismic industry has an estimated world-wide annual market of

US$950 million, $30 million of which is for the precise positioning of seismic

vessels, and $46 million is for the positioning of oil rigs (Jensen, 1992). Great

emphasis is therefore placed on the reliability of positioning systems which are

being employed. Traditionally, vessels have had two navigation systems onboard; a

primary and a secondary system. The primary system is used the vast majority of

the time, and the secondary system is used when the primary system is either no

longer available (due to coverage limitations), or is malfunctioning. Having two

systems allows individual performance to be checked. Differential GPS techniques

are now being widely used as the primary (and occasionally the only) navigation

system. These allow positioning at distances of up to 1000 km from a land-based

reference station with two-dimensional accuracies of 10 m, and better. There are no

other navigation systems capable of these accuracies at such distances, for example

1



Introduction

Syledis operates at ranges of up to 80 km. and no reliable comparisons of the GPS

positions can therefore be made. Due to this, considerable attention is being paid to

the real-time quality control and the quality assurance of GPS positioning. An

example of this is through the workshops, recommending standards and guidelines

for GPS offshore positioning, set up by the UK Offshore Operators' Association

(UKOOA) which represents the combined interests of operators within the North

Sea region. The workshops, which have been held since 1991, comprise of

representatives from oil companies, seismic exploration companies, GPS receiver

manufactures, navigation system operators, and academics.

Part of a positioning service includes the processing of the observation types by

various mathematical techniques in order to estimate the position, velocity and

acceleration of a vessel. These techniques have been adapted to incorporate

different navigation systems, such as Syledis, Pulse-8, Hyperfix, and now GPS.

One such method is the Kalman filter which incorporates information on the

dynamics of the vessel along with the observations from the positioning system.

THEsIs OBJECTWES

This thesis examines the suitability of using GPS observations within the Kalman

filter algorithms applied to offshore positioning. A mathematical assumption of the

Kalman filter is that the observations are not correlated in time; in other words,

there is no mathematical correlation between subsequent qbservations. GPS, being

a satellite based system, is prone to many error sources; some unintentional, such as

atmospheric delays, and some intentional, such as selective availability, which have

been imposed by the US military. These error sources introduce temporal

correlation into the observations, a fact that is ignored within the Kalman filter.

This could have implications when using such a method for the processing of GPS,

2



Introduction

or other similar, observables. This may include the final positions being incorrect

and their precisions, or quality assessments, being over, or under, optimistic. The

ability for a mathematical procedure to detect large unmodelled errors, blunders, in

observations is also very important since these errors will propagate into position

which, in turn, could have economic and safety implications. There are well

accepted algorithms within the Kalman filter equations that allow for the detection

of blunders but, again, these ignore the fact that observations may be temporally

correlated.

The objectives of this thesis are therefore two fold. Firstly to examine the GPS

observables and measure the actual extent of the temporal correlation and other

statistics, and give possible reasons for changes that may be observed. This is

carried out by modelling the observables using a time series model followed by

mathematically estimating their characteristics. A thorough analysis of GPS

observations recorded with several receiver types and under differing conditions has

been carried out. The second objective is to determine the effect of different levels

of temporal correlation within the Kalman filter. Differences in position and

precision can be measured by using two separate approaches; one that can take the

correlation into account, and a second that ignores it. Deterioration in any blunder

detection (reliability) routines can be assessed by processing many data sets with

different correlation statistics and with blunders of varying sizes. The detection

routines should detect an error of a predefined size a certain number of times, for

instance they will detect a 10 m error 95 % of the time. Tabulating the actual

performance when processing correlated data sets measures the extent of which the

correlation affects these routines.

3



Introduction

THESIS OUTLINE

Chapter One introduces GPS and how it is used for real-time positioning. This

includes describing the GPS system, its observables and the operations that are

carried out within a receiver in order to measure these observables. The main error

sources are then described with particular attention being paid to intentional errors

that are part of the accuracy denial policies of the US military. The technique of

differential GPS is also described.

Chapters Two and Three are concerned with the algorithms that are used for

positioning with GPS. It order to compute a position, it is first necessary to

determine the position of the satellites and this is described in Chapter Two.

Chapter Three describes the processes that are then needed to combine the GPS

observables with the satellite positions in order to determine a receiver's

coordinates. This is carried out by describing the operations of a computer

program, RINEXPOS, that has been developed to process GPS observations in

either stand-alone or differential modes. Further algorithms that may be introduced

at a later date, or in other similar programs, are also documented.

Chapters Four and Five concentrate on the analysis of the GPS observables and the

methods involved in determining certain characteristics. Chapter Four introduces

time series analysis, certain models that can be used and their associated correlation

and variance properties. The chapter also introduces the concept of Fourier analysis

which allows the breakdown of a data set into differing cyclic patterns of varying

amplitudes and frequencies. This technique allows the characteristics of GPS error

types to be described, in particularly the intentional errors. Chapter Five analyses

different GPS data sets that have been recorded over the period March 1991 to

March 1993 using several different receiver types and processing strategies. All the

4



Introduction

data sets are described in terms of their error magnitude (their variance), their

temporal correlation and the trends detected from their Fourier breakdown.

Chapters Six and Seven describe the Kalman filter and the effect that temporal

correlation has on the results. Chapter Six introduces the Kalman filter algorithms

for determining position and detecting blunders. The statistical assumptions and

terms that are often associated with the Kalman filter are also summarised. Chapter

Seven then describes the effect that temporal correlation has on the results from the

standard Kalman filter equations. This is carried out in terms of positional

differences and precision difference for a simplified positioning system. The

performance of the reliability routines is also analysed by processing differently

correlated GPS observations through the Kalman filter.

Finally, the research conclusions and suggestions for further analysis are given.

5



CHAPTER ONE

GPS FOR REAL-TIME NAVIGATION

1.1	 INTRODUCTION

The NAVSTAR Global Positioning System (GPS) was designed as a replacement to

the existing TRANSIT satellite navigation system which was developed in the early

1960's. TRANSIT is capable of providing a two-dimensional navigational accuracy

of approximately 250 metres at the 95% level, yet a position fix is only obtainable,

on average, every 1.5 hours due to the poor satellite coverage (Ackroyd and

Lorimer, 1990). GPS was designed to overcome these problems and to provide an

instantaneous position with an accuracy of 100 metres (95 %) almost anywhere on

the globe at any time, and in any weather. With the system it is also possible to

maintain centimetre relative accuracies between two points at distances up to 1000

km apart, which satisfies the most stringent of requirements within the fields of

surveying and geodesy. These, along with the fact that GPS only requires visibility

to the satellites, has revolutionised today's survey practices in terms of achievable

accuracies, speed, and cost.

This chapter describes the structure of the GPS system, the signals that sent from

the satellite, and the measurements made within the receiver. The chapter then

concentrates on the differential GPS (DGPS) technique wich is now the common

procedure used for real-time positioning by users requiring accuracies substantially

better than lOOm.
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Chapter One: GPSfor Real-time Navigation

1.2	 Tni GPS SEGMENTS

The policy making body for GPS is the Joint Program Office which represents the

US armed forces, NATO, and the civilian Department of Transport (DoT) and the

Defence and National Mapping Agencies (Ackroyd and Lorimer, 1990). Originally

designed by the US Department of Defence (DoD), GPS comprises of three main

components: the control segment, the space segment, and the user segment (Fig

1.1).

(	 \ /	 ______

CO	 G,nd /

SPS SYSTEM

Fig 1.1 The GPS control, space and user segments (Anon)

1.2.1	 The Control Segment

The control segment comprises of five stations located at Colorado Springs, Hawaii,

Ascension Island, Diego Garcia and Kwajalein. All of these stations monitor the

GPS satellites as they pass overhead by measuring distances to them every 1.5

seconds (Hofmann-Wellenhof et al, 1992). This data is then smoothed using

ionospheric and meteorological information before 15 minute normal points are

generated and sent to the Master Control Station at the US Air Force's Space

7



Chapter One: GPSfor Real-ti,ne Navigation

Command facilities at Colorado Springs. It is here that parameters describing the

satellites' orbit and clock performance are estimated, as well as assessing the health

status of the satellites and determining if any re-positioning may be required. This

information is then returned to three uplink stations (collocated at the Ascension

Island, Diego Garcia and Kwajalein monitor stations) which transmit the

information to the satellites.

1.2.2	 The Space Segment

The space segment comprises of a network of satellites in near circular orbits at a

nominal height of 20,183 km above the earth and with a period of 12 sidereal

hours. The original constellation was for 24 satellites, in 3 orbital planes and

inclined to the equator by 63° (Spilker, 1980), but these plans have since been

changed and the satellites are currently placed into six different planes and have a

55° inclination (see Fig 1.2).

Fig 1.2 The GPS constellation

The satellites are approximately 800 kg in weight and are powered by batteries

supplemented with solar panels. Manoeuvring within the orbit is carried out by the

means of three thrusters. The various signals that are transmitted lie in two

8



Chapter One: GPS for Real-time Navigation

frequency bands: the L-Band which is used for positioning purposes, and the S-

Band which is used for the management of navigation data from the control station

(Anon, 1989). There are four categories of GPS satellite, of which two types have

been currently launched (as of April 1993).

The first prototype Block I satellite was launched in February 1978 from the

Vandenberg Air Force Base in California. Since then a further 10 satellites have

been launched up until 1985 and there are still 4 operational. These satellites have a

design life of 4.5 years (Hofmann-Wellenhof et al, 1992) and were placed in the

original 630 inclination. The main difference between these and the later generation

satellites is that there was no ability to degrade the transmitted signals thus

providing the civilian users of GPS with a reduction in the achievable positional

accuracy (see 1.4.1).

The second category of GPS satellite is the operational Block II which were first

launched in 1985. These have the capability to degrade the signal, have a design

life of 7.5 years, and are in an inclination of 550 Originally they were to be put

into orbit from the Space Shuttle, but due to the 1986 disaster, they were re-

enforced and are now launched using the Delta II rocket; a process that delayed the

whole GPS program. The Block hA satellites are a slight modification of the

original design.

The Block hR satellites (R for replenishment) are designed to have a longer life, to

be capable of satellite to satellite communications, will be launched from 1996

(Graviss, 1992) and be used to maintain the full constellation. A further follow-on

category Block hF has also been planned.

The space segment will be declared initially operational when there are 24 working

Block I, H, and hA satellites in orbit (expected June 1993). Full operational

9



Chapter One: GPS for Real-time Navigation

capability will be when there are 24 Block II and hA in orbit and the testing of this

could last up to one year.

1.2.3	 The User Segment

The user segment comprises of the receivers that have been designed to decode the

signals transmitted from the satellites for the purposes of determining position,

velocity or time. To decipher the GPS signals, the receiver must perform the

following tasks: (Anon, 1989)

selecting one or more satellites in view

acquiring GPS signals

• measuring and tracking

• recovering navigational data

The DoD has its own policies for GPS receivers for use within the armed forces.

This is essentially the testing and purchasing of different receiver types - for

example precision lightweight receivers, standard lightweight receivers,

miniaturised airborne receivers, and timing receivers.

1.3	 ThE GPS PosrrioNmG SIGNALS

The GPS satellites transmit two L-Band signals which can be used for positioning

purposes. The signals, which are generated from a standard frequency of 10.23

MHz, are Li at 1557.42 MHz and L2 at 1227.60 MHz and are often called the

carriers. Since the carriers are pure sinusoids, they cannot be used easily for

instantaneous positioning purposes and therefore two binary codes are modulated

onto them: the C/A (coarse acquisition) code and P (precise) code. Also it is
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necessary to know the coordinates of the satellites and this information is sent within

the navigation data message which is also modulated onto the carriers.

1.3.1	 C/A Code

The C/A code is a pseudo random (PN) binary code (states of 0 and 1) consisting of

1,023 elements, or chips, that repeats itself every millisecond. The term pseudo

random is used since the code is apparently random although it has been generated

by means of a known process, hence the repeatability. Due to the chipping rate (the

rate at which each chip is modulated onto the carrier) of 1.023 Mbps, the chip

length corresponds to approximately 300 m in length and due to the code length, the

ambiguity is approximately 300 km - ie the complete CIA code pattern repeats itself

every 300 km between the receiver and the satellite.

The code is generated by means of a linear feedback register which is a hardware

device representing a mathematical PN algorithm, as shown in Fig 1.3.

XOR

000
011
101
110	

Shift Register

State 0 0 0 never occurs

sequence length = 2 "- 1
(n number of bits in shift register)

G(x)1+x'+ x3

PN Code

' Taps
111
011
101
0 1 0	 Code

0 0 1	
Repeats

1 •0 0
1 1 0 /
111
011

Fig 1.3 Example of a three stage linear feedback register

11



Chapter One: GPS for Real-time Navigation

The sequences that are used are known as Gold codes which have particularly good

autocorrelation and cross correlation properties. If two identical codes were

perfectly aligned, then the correlation (the sum of the products of all aligned chips)

will be at its greatest. As the two codes are the same, this is known as the

autocorrelation. Codes said to have good autocorrelation properties mean that the

autocorrelation value will be greatly reduced if the two identical codes are

misaligned. Fig 1.4 represents the autocorrelation function for a PN code, were n

is the number of taps in that code. When the two codes are perfectly aligned, the

value of the function is at its maximum (1,023 for the C/A code) and has a value of

-1 when the codes are separated by one chip or more.

-1

-1 Chip	 +1 Chip

Fig 1.4 PN autocorrelation function

The cross correlation properties of the Gold codes are such that the correlation

function between two different sequences is low. Both these properties are used

within the GPS receiver for the identification of the code for the required satellite,

and then for the alignment between the transmitted code and one that has been

internally generated.

The C/A code is a product of two PN codes, Gi and G2, resulting in the Gold

sequence, G. G2 is dependent on the actual satellite that is generating the codes and

is therefore used as a means of distinguishing the satellite that has transmitted the

12
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signal. These are represented by:

01(x) = 1 + x3 + x10

G2(x)=1+x2+x3+xó+x8+x9+x10

0(x) = 01(x) x G2(x)
	

(1.1)

where	 i is the satellite dependent integer delay

The x2 , x3 , etc are the tap positions used within the linear feedback register. From

(1. 1), it can be seen that ten taps are used, producing a code length and peak

autocorrelation value of 210 -1 (or 1,023) for the C/A code.

	

1.3.2	 P code

The P code, or precise code, is a much longer binary code that would repeat only

every 38 weeks (Pratt, 1992). Despite the code being shortened to a one week

repeatability because each satellite transmits a different weekly section of the code,

there is still no ambiguity between the satellite and receiver. Rapid access to the

relevant part of the code for a particular satellite is carried out by means of a hand-

over-word obtained from the broadcast data message. The chipping rate is at 10.23

MHz resulting in a chip length of approximately 30 m.

	

1.3.3	 Broadcast Data Message

The data message includes information describing the positions of the satellites,

their health status, and the aforementioned hand-over-word. Each satellite sends a

full description of its own orbit and clock data (within the ephemeris information)

and an approximate guide to the orbits of the other satellites (contained within the

almanac information). The data is modulated at a much slower rate of 50 bps and
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thus it takes 12.5 minutes to transmit all of the information. To reduce the time it

takes to obtain an initial position, the ephemeris and clock data is repeated every 30

seconds (Langley, 1990). Parameters representing the delay caused by signal

propagation through the ionosphere are also included within the data message.

1.3.4	 The Modulation Techniques

For purposes of imposing the binary data onto the carriers, all of the codes are

transferred from the 0 and 1 states to the -1 and 1 factors respectively. The

broadcast data message is then modulo-2 added to both the C/A code and the P

code. This inverts the code (see Fig 1.5) and has the effect of also inverting the

autocorrelation function, ie the maximum value of the function between a code and

an identical (but inverse) code is -(2"-l).

Binary biphase modulation (also known as binary phase shift keying [BPSK]) is the

technique that is used to modulate the codes onto the initial carrier waves (see Fig

1.5). The codes are now directly multiplied with the carrier, which results in a

180° phase shift of the carrier every time the state of the code changes.

Fig 1.5 GPS modulation techniques

The modulation techniques also have the properties of widening the transmitted

signal over a much wider frequency band than the minimum bandwidth required to
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transmit the information which is being sent (Pratt, 1992). This is known as spread

spectrum modulation and has the benefits of developing processing gain in the de-

spreading operation within the receiver, and it helps prevent possible signal

jamming.

1.3.5	 The Li and L2 Signals

As mentioned in 1.3, the Li signal is centred at 1575.42 MHz and the L2 at

1227.60 MHz both generated from the fundamental frequency, f0 = 10.23 MHz.

The Li frequency is 154f0 and has a wavelength of almost 19 cm, and L2 is 120f0

with a wavelength equating to approximately 24 cm. The purpose for using two

different frequencies is so that errors introduced by ionospheric refraction can be

eliminated.

The Li signal is modulated by both the C/A code and the P code, in such a way that

the two codes do not interfere with each other. This is done by modulating one

code in phase and the other in quadrature (ie they are at 900 to each other) and is

shown in Fig 1.6. The C/A code is also amplified so that it is between 3 and 6 dB

stronger than the P code (Spilker, 1980). A diagrammatic representation of the Li

signal can be seen in Fig 1.7.

(10 P-code chip for evely C/A code chip)	 C/A code PN

P code PN

P code signal

\AJ\f\j\f\j\f\f\JV\JV\f\J\Af\jV\iV11\AJV\ 
C/A code signal

C/A code 

(:IIII]-II:)
P code

Fig 1.6 Li P code and C/A code combination

15



Chapter One: GPS for Real-time Navigation

For L2, it is stated that the signal is modulated by P code or the C/A code (Spilker,

1980) although normal operation has seen the P code being used. It should be noted

that the precision obtained from P code measurements is thought not to be in the

interests of US national security and therefore will be restricted for civilian users.

This is the same for both the Li and L2 frequencies, and for further details refer to

section 1.4 on anti-spoofing.

Fig 1.7 The Li signal structure

1.3.6	 The Role of the GPS Receiver

A GPS receiver has to detect and convert the signals transmitted from all of the

satellites into useful measurements. During the propagation of the signals through

the atmosphere, a loss in signal strength occurs and it is because of this that the

spread spectrum and correlation properties of the signals are required. The

processing steps for the Li signal will be briefly described.

The antenna is usually designed to be omni-directional with a gain of 3 dB, meaning

that 50% of all surrounding signal is ignored (those coming from below the horizon,

or antenna ground plane). The antenna is connected to the receiver by a coaxial

cable through which a voltage is sent from the receiver to a pre-amplifier at the

antenna end. This pre-amplifier increases the power of the detected signal so that it
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can be sent along the cable into the receiver.

The signal is immediately passed through a high-pass filter that rejects all parts of

the signal which are not within the Li bandwidths (typically a filter with a central

frequency of 1575.42 Mhz and bandwidth of 20 MHz) and this results in the radio

frequency (RF) signal. The signal is then modulated with a sinusoid generated by

the local oscillator, resulting in the generation of a signal with two different

frequency components. The frequency produced by the local oscillator is selected

so that a signal at a low frequency (approximately 40 KHz) will be created, from

the rule cos(fl)*cos(f2) = 0.5(cos(fl - f2) + cos(fl + f2)). This lower frequency

is then separated by passing the signal through a low-pass filter which will also

eliminate some further noise. The bandwidth of this filter is dependent on the type

of measurements that are required. If the P code is required, the bandwidth will be

set to approximately 20 MHz (the distance between the first two nulls [Fig 1.8]) and

will be around 2 MHz if only the C/A code is tracked. The remaining analogue

signal (known as the IF, or intermediate frequency signal) is then sampled as fast as

possible to convert it to a digital form. An in-phase (I) and quadrature (Q) sample

of the signal is generated by further sampling with an in-phase and a delayed (by

90°) frequency from the local oscillator.

GPS	 C/ACodel

iode

1575.42 MHz

2.046 MHz

20.46 MHZ

Fig 1.8 Li power spectrum
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In order to perform the de-spreading operation the IF signal is mixed down to zero

frequency and copies of the signal are sent into separate channels, each of which

extract the code and carrier information for a particular satellite. A replica of the

CIA or P code is generated by the numerically controlled oscillator (NCO) and this

is correlated with the noisy IF signal. The correlation process also de-spreads the

signal, moving it to above the noise floor. The pseudorange is measured as the time

shift required to align the internally generated signal with the IF signal, scaled by

the speed of light. Three replica codes are in fact used for the correlation purposes

- one is directly aligned with the IF signal (punctual), one is delayed (late) and one

is advanced (early). The early and late codes lie on the slope of the autocorrelation

function (Fig 1.4) either side of the peak and are used to aid the continuous tracking

of the code, and to reduce the tracking error. New advances in receiver design have

reduced the spacing between the early and late correlators which results in the

cancellation of much of the noise inherent in the measurement process.

The signal is then processed for the data modulation and the carrier phase

measurements. A locally generated carrier is generated by the carrier NCO and is

correlated with the IF signal within a unit called the Costas ioop. Once the two

signals have been correlated, the data message bits can be decoded by detecting the

shift in phase. The continuous phase observable is obtained by counting the elapsed

cycles and by measuring the fractional part of the phase of the correlated locally

generated signal. Cycle slips occur within this measurement when the elapsed

cycles are not correctly counted, and loss of lock when the two signals are no longer

continuously correlated.
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1.3.7	 Positioning with GPS

There are essentially two broad categories of GPS positioning which can be

described as real-time navigation and high precision carrier phase positioning.

Navigation uses a minimum of four pseudorange measurements to four satellites

which are used to solve for the three-dimensional coordinates of the receiver and the

clock offset between the receiver oscillator and GPS system time. An extension to

this mode is differential GPS (DGPS) which again uses the pseudorange observable

for positioning, but also incorporates real-time corrections for the errors inherent in

the measurements.

The second category uses the much more precise carrier phase observations to

compute baselines between two locations. Since the two carriers have short

wavelengths (19 and 24 cm for Li and L2 respectively), they cannot be used in the

same manner as the pseudorange. The whole number of complete wavelengths

(integer ambiguities) between the satellite and receiver must first be determined and

this is usually carried out by post processing using linear combinations of the two

frequencies and differencing techniques (see Talbot [1992] or Chen [1992] for

further details).

Differences between these two modes are becoming less distinguishable.

Combining the pseudorange with the phase data reduces the noise error within the

pseudorange measurement resulting in a much higher positioning accuracy. New

techniques are also being developed to solve for the integer, ambiguities in a single

epoch leading to very high baseline positioning in real-time. These are known as

on-the-fly or fast ambiguity resolution techniques have already proved to provide

accuracies of less than 1 cm on moving platforms over short baselines.
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1.3.8	 The WGS84 Coordinate System

WGS84 (World Geodetic System 1984) is the coordinate system designed for the

use of GPS since this is the system in which the data describing the orbit of the GPS

satellites is given. It is an earth-fixed system (the coordinates of locations do not

change, see 2.1.1) which is related to the earth by means of a best fit ellipsoid. The

system, which replaced WGS72 in 1985, is based primarily on coordinates derived

from TRANSIT measurements from a total of 1591 locations (Cross, 1989). This

initially provided coordinates in the NSWC9Z-2 TRANSIT system, which were

then scaled, shifted, and oriented using collocated Satellite Laser Ranging (SLR)

and Very Long Baseline Interferometry (VLBI) measurements.

1.4	 GPS ERROR SOURCES

DGPS techniques were always necessary for users requiring positional accuracies

better than approximately 16 m (95%) simply due to the effect of hardware and

atmospheric error sources. However, due to US national security concerns, much

larger intentional errors have been placed on the GPS system thus limiting

accuracies obtainable from civilian users. This has reduced the GPS accuracy to

100 m (95%) but has had the effect of rapidly advancing DGPS techniques. The

two aspects of this degradation are known as selective availability (SA) and anti-

spoofing (AS).

1.4.1	 Accuracy Denial

1.4.1.1	 The evolution of accuracy denial

In order to appreciate fully the nature and impact of AS and SA it is necessary to
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provide some technical details of GPS and to discuss the evolution of the civilian

use of the system. Also, it is worth remarking at the outset that GPS, although

conceived (in around 1973) entirely as a military system, was certainly partially sold

to the US Congress on the basis of its civilian utility and it is thought to come with

the enormous price tag of some thirteen billion US dollars.

The initial system concept was that all absolute point positioning, military and

civilian alike, would essentially be carried out using the P-code. The C/A code was

simply conceived as a means of accessing the P-code. Hence its name:

Coarse/Acquisition code. The problem is that the P-code has such a long repeat

period that users need an approximate position (from the C/A-code pseudoranges) to

help determine which part of it to generate in order to carry out the code correlation

process needed for pseudorange measurement.

It is almost certain that accuracy denial was not part of the original GPS design

since the Block I satellites, launched from 1978 through to 1985, did not even have

the capability for signal degradation. Nevertheless the US Department of Defence

(DoD) must have considered the matter of restricting usage rather early in the

system development. For instance in Lasiter and Parkinson (1977) it is stated that

the full navigation capabilities after Phase II (full scale development of GPS) would

only be available to a limited group of users. There is no assessment of this group

nor any indication of the accuracies that others might expect. The earliest indication

of such figures is in Stansell (1980) which quotes a letter dated (1978) from the

DoD which indicates that navigation information at the 100-200 metre level would

be available for civil use under all conditions.

Despite these indications most of the technical literature on GPS continued to give

an incredibly optimistic view of its performance and its civil applications. For

example as late as 1982, (Payne, 1982) in a "military" paper at a civilian
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symposium, gives results from P-code absolute point positioning tests carried out in

1979 in which real-time rms position errors of as low as seven metres were achieved

with the P-code. No mention of C/A-code positioning was made and there was

only a brief reference to possibilities of accuracy denial. Most civilians were

probably under the impression that accuracy denial or any other kind of restriction

on the use of GPS simply would not occur. Nevertheless the DoD were clearly

becoming concerned over the national security implications of OPS being adopted

by a potential enemy.

The US Department of Transport (DoT) was not part of the Phase I GPS

programme, but was encouraged by the US Congress to consider GPS in the context

of the total navigation and positioning needs of the nation. The DoT compared the

accuracy requirements of civil users with the national security interests laid down by

the DoD. As a result the DoT/DoD formed a joint Federal Radionavigation Plan

(FRP) to consider all common navigation systems. The first FRP, published in

1980, stated, according to Beser and Parkinson (1984), that the C/A signal would

be available for civil use "at the highest level of accuracy consistent with national

security". This accuracy is quoted as 200 metres CEP for the first full year of GPS

operation with an improvement as time passes. The FRP included three aspects:

degraded C/A-code results, restriction on the use of the P-code and user charges,

although detailed policies for all three were not identified.

In March 1982 a second edition of the FRP was published (Cook, 1983) with

slightly different figures. It was the first formal mention 'of the SPS (Standard

Positioning Service) and PPS (Precise Positioning Service) as titles for the services

available (at that time) to civil and military users. A further revision took place in

1983, (Scull, 1984) when the SPS accuracy was increased to 100 metres 2drms

(which is equivalent to about 44 metres CEP). This change was brought about by

pressure from civil users, in particular from the Federal Aviation Administration
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after the KALOO7 disaster when a Korean airliner drifted into Soviet air space. At

that time President Reagan reiterated that GPS would continue to be available for

international civil use.

Another change occurred in August 1984 when a policy for civil access to the PPS

was approved. These policies were stated again in 1988, see (Scull, 1989), in the

1988 FRP and represent the current state of affairs. Note that in all FRPs since

1984 no further mention has been made of user charges.

The 1992 FRP mentioned differential GPS for the first time, stating that the only

restriction is as for all communication links, including DGPS correction broadcasts,

which are subject to control of the nation's National Command Authority. The

policy also confirmed that the system will consist of 24 operational satellites, not 21

plus 3 active spares. The military Full Operational Capability (FOC) is planned for

1995 (Montgomery, 1993).

1.4.1.2	 Measures of accuracy

There have been many different measures used for describing the accuracies

obtainable from GPS. The most common two terms are CEP and 2drms and their

exact meaning will be described in the following. Full statistical details can be

found in Kalafus and Chin (1986).

CEP is an acronym for Circular Error Probability and refeçs to the radius of a circle

in which 50% of the values occur, i.e. if a CEP of 100 metres is quoted then 50%

of absolute horizontal point positions should be within 100 metres of the true

position. For most offshore positioning applications 50% is rather too small a

probability to be useful and a higher percentage is more valuable, typically 95% is

often quoted and the term R95 used (with this notation CEP is R50). R95 (or CEP)
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could be determined as follows. Simply plot the results from a large number of

GPS fixes and draw a circle, centred on the mean (or known position) that

contained 95% (or 50%) of the results. The radius of the circle would be the R95

(or CEP) value. Of course the disadvantage of using this measure is that it says

nothing about the remaining 5% (or 50%) of the data (unless the probability density

function of the errors is known or assumed) and may hence hide the possibility of

there sometimes being some very large outages.

2drms is now the more commonly used term, and the one used by the most recent

FRPs. It refers to twice the drms (distance root mean square error) and not, as

many people seem to believe, to the two-dimensional rms. In order to compute the

drms from a set of data it is simply necessary to compute the rms of the radia)

errors, i.e. the linear distances between the measure and known (or mean)

positions. It can be predicted using covariance analysis by multiplying the HDOP,

a measure of the satellite geometry, by the standard deviation of the observed

pseudoranges and it is largely this predictability that makes it a much more

convenient measure in practice.

A disadvantage of the 2drms measure is that is does not have a constant probability

attached to it. This point is rather complex and has been analysed in detail by Chin

(1987). Essentially the associated probability is a function of the ellipticity of the

relevant error ellipse resulting from a particular satellite geometry. On the

assumption that the pseudorange errors are normally distributed this probability will

be in the range 95.4% to 98.2%. A representation of R95 and 2drms is shown in

Fig1.9.
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Fig 1.9 R95 and 2drms measures of accuracy

1.4.1.3	 Selective availability

SA essentially consists of two different components, known as dither and epsilon.

Dither is an intentional manipulation of the satellite clock frequency resulting in the

generation of the carrier waves and the codes with varying wavelengths. In other

words, under SA, the distance between each CIA code chip will be variable, and no

longer the designed 300 m (see Fig 1.10). The replica code generated within the

receiver will still assume the chip length to be 300 m and pseudorange

measurements are based on this.

The epsilon component of SA refers to errors imposed within the description of the

satellite orbit in the ephemeris data sent in the broadcast message (Fig 1.10). For

positioning purposes, the coordinates of the satellites are derived using this incorrect

information, and errors in these coordinates propagate into the position of the

receiver.
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Reported position

Actual position

CIA code =\= 293m

P code \ 29.3m

Fig 1.10 SA dither and epsilon

1.4.1.4	 Anti-spoofing

AS further alters the GPS signal by changing the characteristics of the P code by

mixing it with a so-called W code resulting in the Y code. It is the latter that is

modulated onto the carriers and is thus designed to prevent the ability of the

receiver to make P code measurements. Many receiver manufacturers have already

developed techniques to still make P code measurements with only a small addition

in added noise, see for instance Talbot (1992) or Ashjaee and Lorenz (1992).

1.4.2	 Sateffite Errors

Further unintentional errors within the space system still exist and will propagate

into a position solution. These include errors in the modelling of the satellite clock

offset and drift using a second order polynomial, and also errors that exist within

the Keplerian representation of the satellite ephemeris information. The cause of

these errors is primarily due to the manner in which the satellite ephemeris and

clock is monitored. Tracking data for all observed satellites recorded at the GPS

Monitor Stations is sent to the Master Control Station which then uses this data to
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predict the parameters for the future. These predictions are then returned to the

uplink stations where they are transmitted to the satellites. The latency of the

tracking data and the prediction routines used at the Air Force Base therefore

directly effect the satellite system errors. Although similar to the SA errors, these

are much smaller in magnitude.

1.4.3	 Atmospheric Propagation Errors

The satellite signals propagate through atmospheric layers as they travel from the

satellite to the receiver. Two layers are generally considered when dealing with

GPS: the ionosphere which extends from a height of 70 to 1000 km above the earth,

and the troposphere which from the ground level to 70 km (Gu et al, 1993).

As the signal propagates through the ionosphere, the carrier experiences a phase

advance and the codes experience a group delay. In other words, the GPS code

information is delayed resulting in the pseudoranges being measured too long as

compared to the geometric distance to the satellite (Hofmann-Wellenhof et a!,

1992). The extent to which the measurements are delayed depends on the Total

Electron Count (TEC) along the signal path which is a measure of the electron

density. This is dependent on three further factors: the geomagnetic latitude of the

receiver, the time of day and the elevation of the satellite. Significantly larger

delays occur for signals emitted from low elevation satellites (since they travel

through a greater section of the ionosphere), peaking during the daytime and

subsiding during the night (due to solar radiation). In regions near the geomagnetic

equator or near the poles, the delays are also larger (Spilker, 1980).

The ionospheric delay is frequency dependent and can therefore be eliminated using

dual frequency GPS observations, hence the two carrier frequencies in the GPS

design. Single frequency users, however, can partially model the effect of the
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ionoshere using the Kiobuchar model (see Hofmann-We!lenhof et al 1992). Eight

parameters for this model are transmitted with the broadcast data for the satellites,

and are used as the coefficients for two third order polynomial expansions which are

also dependent on the time of day and the geomagnetic latitude of the receiver.

These polynomials result in an estimate of the vertical ionospheric delay, which is

then combined with an obliquity factor, dependent on satellite elevation, producing

a delay for the receiver-satellite line of sight. The final value provides an estimate

within 50% of the true delay (Cohen et al, 1992) and produces delays ranging from

Sm (night) to 30m (day) for low elevation satellites and 3-5m for high elevation

satellites at mid latitudes (Gu et al,1993).

The troposphere causes a delay in both the code and carrier observations. Since it is

not frequency dependent (within the GPS L band range) it cannot be cancelled out

by using dual frequency measurements but it can, however, be successfully

modelled. The troposphere is split into two parts: the dry component which

constitutes about 90% of the total refraction, and the wet part which constitutes the

remaining 10%. Values for temperature, pressure and relative humidity are

required to model the vertical delay due to the wet and dry part, along with the

satellite elevation angle which is used with an obliquity/mapping function. Models

put forward by Hopfield, Black and Saastamoninen are all successful in predicting

the dry part delay to approximately 1 cm and the wet part to 5 cm.

1.4.4	 Multipath

Mutipath is the phenomena by which the GPS signal is reflected by some object or

surface before being detected by the antenna. The signal can be reflected off a part

of the satellite (for instance the solar panels) although this is usually ignored as there

is nothing that can be done by the user to prevent this. Mutipath is more commonly

considered to be the reflections due to surfaces surrounding the antenna and can

28



Chapter One. GPS for Real-tune Navigation

cause range errors as high as 15 cm for the Li carrier and of the order of 15-20 m

for the pseudoranges (Rodgers, 1992). The surface most prone to multipath is

water, whilst sandy soil is the least (abid.).

1.4.5	 Receiver Noise

Errors which are due to the measurement processes used within the receiver are

typically grouped together as receiver noise. These are dependent on the design of

the antenna, the method used for the analogue to digital conversion, the correlation

processes, and the tracking ioops and bandwidths (Pratt, 1992). Noise within the

pseudorange measurements can be reduced by a factor of 50% by combining with

the more precise carrier phase observations (Goad, 1990).

Error
Clock Error

/	 Epsilon (SA)

I	 Dither (SA)

i0ospberic

Refraction

TropoSphenc

Refraction

___	 Multipath

Receiver Noise

Fig 1.11 GPS error sources

29



Chapter One: GPS for Real-time Navigation

1.5	 DIFFERENTIAL GPS

Differential GPS (DGPS) relies on the concept that the errors in the position at one

location are similar to those for all locations within a given area. By recording GPS

measurements at a point with known coordinates, these errors can be quantified and

corrections can be applied to the other locations. By applying these corrections in

real-time, the accuracy of GPS for instantaneous positioning is reduced from 100 m

(95%) to typically 5m (95%). DGPS is now a well practised technique for areas

such as navigation, offshore surveying and seismic surveying.

1.5.1	 DGPS Reference Station

Under DGPS operations a station is established at a known location with its role

being to generate corrections which will later be applied at the unknown stations.

The reference station consists of a GPS receiver and antenna and a data link

(modulator and antenna).

The corrections that are generated could be of two different types: 3D positional

errors or individual pseudorange errors. Both of these approaches give identical

results if, and only if, the same satellites are observed at the reference station and

the unknown mobile station(s) (Drewett, 1989). There are several reasons why this

may not always be the case (Anon, 1990):

• The receiver criterion for selecting satellites may be different (eg 12-channel vrs

5-channel receivers).

• The satellite geometry at the two stations may be different due to the distance

between them, resulting in differing rise and set times for the individual

satellites.

• Terrain obstructions may exist at either station

• The receivers at both stations may not necessarily use all observed satellites to
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determine its position.

Because of these reasons, the pseudorange corrections are generated at the reference

station which usually adopts an all-in-view policy. By transmitting individual

corrections for all satellites, the mobile station uses the corrections for the satellites

observed at that station thus avoiding any errors that may be introduced. As well as

a pseudorange correction for each satellite, its rate of change is also computed and

transmitted to the mobile station and is used to model the time varying

characteristics of the corrections over the period in which the corrections are

generated at the reference station and applied at the mobile station (the age of

correction).

A central processor (a dedicated PC linked to the GPS receiver) is often used to

generate the corrections, although many of todays receivers can generate the

corrections in the "box". The processor also converts the corrections into a

standard binary format (RTCM SC-104) which is then sent to the data link

equipment and modulated onto a carrier frequency which is subsequently

transmitted. Details of how the corrections are generated can be found in 3.3.7.

1.5.2	 DGPS Mobile Station

The mobile station consists of a GPS receiver and antenna, a data link receiver and

demodulator, and usually a PC acting as a central processor. The pseudorange and

range rate corrections are received via the data link equipmçnt, demodulated, and

the binary message is then sent to the PC. The corrections are then translated and

applied to the individual pseudorange corrections observed by the mobile station's

GPS receiver which is also connected to the PC. The final correction is added to

the observed pseudoranges and is derived from (Anon, 1990):
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PRC(t) = PRC(t0) + RRC(t 1 -t0)
	

(1.2)

where	 PRC(t) is the correction to be applied to the appropriate mobile

pseudorange,

PRC(tCJ) is the correction generated at the reference station,

RRC is the range rate correction,

is the time at which the correction was generated at the reference

station, and

t 1 is the time at which the mobile pseudorange data was observed.

Occasionally a further correction (the delta correction) needs to be applied if the

reference station has used different ephemeris data to generate the pseudorange

corrections than is available at the mobile station. All satellites that have been

"corrected" are then used within a position computation (see 3.3.4.2) in which the

position and appropriate statistics for the mobile station are derived. Fig 1.12

represents the DGPS operation.

Fig 1.12 Differential GPS
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1.5.3	 Data Links

The data link provides the connection between the reference and mobile station, and

the medium that is used must be such that it can transmit over the required

reference-mobile separation, the binary data can be modulated fast enough to

provide a certain age of correction, and it must be reliable in terms of probability of

good reception (Barboux, 1993). The choices that are available can be divided into

land based and satellite based links.

The land based data links are predominantly radio transmitters operating at various

frequencies dependent on application. Low frequency (LF) links can be used which

provide a wide coverage due to good surface wave propagation. However, these

systems require substantial antenna and power, and provide a relatively slow age of

correction (Barboux, 1993) due to their long wavelengths. Choosing higher

frequencies generally reduces the power consumption, requires simpler hardware,

reduces the age of correction, but also leads to a reduction in the distance over

which the signal can be transmitted. Alternatives to the LF option that are in

operation include the medium (MF), high (HF), and ultra-/very-high (UHF/VHF)

frequencies and their performances are given in Table 1.1. Other options for land

based data links use existing radio transmissions which avoids the need to establish a

dedicated link and the necessity to obtain frequency allocation permission. These

include the use of existing radiolocation systems (for example Pulse-8 and Hyper

Fix), local FM radio broadcasts, cellular telephones, and marine radiobeacons. The

latter uses a existing network of direction finding radiobeacojis which, although no

longer used for positioning purposes, are well maintained, have frequency allocation

and a range of several hundred kilometres. The US Coast Guard (USCG) and the

International Association of Lighthouse Authorities (IALA) are supporting the use

of this medium, and the USCG have pledged to provide a DGPS radiobeacon

network for continental US coastal waters, southern Alaska, Hawaii and Puerto
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Rico by early 1996 (Hallmann, 1993). One final option for ground based

transmissions is for the use of pseudolites which are designed to transmit the data at

the GPS frequencies. The advantage of these is that the standard GPS antenna can

be used to receive the corrections, and the signal has the possibility of being used as

a additional pseudorange measurement. However, over land, the signal range is

poor and this along with expense issues, has meant that the option is seldom viable.

Frequency Band	 Range	 Typical Age of

____________________________	 (km)	 Correction (s)

LF	 30 - 300KHz	 > 700	 < 20

MF	 300KHz - 3MHz	 < 500	 5 - 10

HF	 3 - 25MHz	 < 200	 5 - 10

	

UHF/VHF 30 - 300MHz	 < 100	 < 5

Table 1.1 Ground based data links

The satellite based data links are now common place and provide a near global

coverage with a fast age of correction (less than 5 seconds) and use the INMARSAT

Standard-A telephone and telex link. INMARSAT is an internationally owned

cooperative set up to meet the communication needs of the world shipping industry

and operates geostationary satellites in four ocean region areas: the Atlantic Ocean

Region West, the Atlantic Ocean Region East, the Indian Ocean Region and the

Pacific Ocean Region (Al-Nakib, 1992). Information is uploaded to the satellites

from Coast Earth Stations (CES) which is usually operated by the local signatory -

in the UK this is British Telecom and the CES is located at Goonhilly in Cornwall.

A Ship Earth Station (SES) is required to receive the signals from the geostationary

satellites. For DGPS operations, the correction message is sent from the reference

station to the CES via leased land lines, is uploaded to the satellites and

subsequently transmitted for the use of the mobile.
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1.5.4	 RTCM SC-104 Message Format

It is necessary for DGPS operators to keep to standards concerning the format of the

correction message and matters concerning the reference and mobile station

operations, and the data link. These standards have been recommended by the

Radio Technical Commission for Maritime Services Special Committee 104 (RTCM

SC-104) which was originally established in November 1983 and were first

published in November 1987.

The data format has been modelled on the GPS navigation message with the word

size, word format and parity algorithms being the same. In version 2.0, there are a

possible 64 different message types of which 21 have been defined. The Type 1

message contains the pseudorange and range rate corrections, the issue of data

(IOD), and the user differential range error (UDRE). The IOD parameter allows

the mobile station to identify the satellite navigation data used by the reference

station - if this is different than the delta corrections (Type 2) should be included.

The UDRE is an estimate of the standard deviation of the differential error as

determined at the reference station and can be used to weight the solution at the

mobile. A list of some of the message types is provided in Table 1.2 (Ackroyd and

Lorimer, 1990).

35



Chapter One: GPS for Real-time Navigation

Message Type

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18-59

60-63

Message Title

DGPS corrections

Delta DGPS corrections

Reference station parameters

Carrier surveying information

Constellation health

Null frame

Marine radiobeacon almanacs

Pseudolite almanacs

High rate DGPS corrections

P code DGPS corrections

C/A code L1/L2 delta corrections

Pseudolite station parameters

Ground transmitter parameters

Surveying auxiliary message

Ionospheric/tropospheric message

Special message

Ephemeris almanac

Undefined

Differential Loran C messages

Table 1.2 RTCM SC-104 message types

1.5.5	 DGPS Error Budget

The ability to obtain instantaneous positioning to within 5 m can be summed up by

looking at an error budget that offsets stand-alone GPS and DGPS. The error

sources described in section 1.4 can be divided into two groups: those which are

independent of the user and those which are dependent. Table 1.3 shows the

pseudorange error budget for DGPS under SA (adapted from 'Ackroyd and Lorimer

[1990] and Gu et al, [1993]) with the baseline distance between the known and

unknown stations of 500 km and with an age of correction of 5 seconds.
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Error Source	 Stand-alone	 Differential

_____________	 (m)	 (m)

UserIndependent 	 ______________ ______________

Satellite clock	 15.0	 0.1

Ephemeris	 40.0	 1.0

Orbit	 5.0	 0.13

Ionosphere	 12.0	 1.0

Troposphere	 3.0	 0.5

UserDependent 	 ________________ _______________

Multipath	 2.0	 2.8

Receiver noise	 0.5	 0.7

Total root sum squared	 44.8	 3.3

Table 1.3 DOPS error budget

The table clearly shows which of the error sources cancel under the DOPS

operation. The reduction of satellite clock errors depends on the age of correction

of the pseudorange errors - the greater the latency, the less the clock error cancels.

Remaining orbital parameters depend on the baseline length between the reference

and mobile stations and the error imposed on the satellite. These are largely

independent on the age of correction since the largest error is due to epsilon which

can only be altered with every new ephemeris data for a particular satellite, which

occurs every hour. The atmospheric error sources will cancel if the baseline length

is short, and/or there are similar atmospheric conditions at both sites. It should be

noted that the user dependent error sources, multipath and receiver noise, are

increased under DGPS since similar errors at two stations are now combined.

1.5.6	 GPS Integrity Monitoring

a simple definition of integrity has been adopted by the Radio Technical

Commission for Aeronautics that states:
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Integj - the ability of a system to provide timely warnings to users when

the system should not be used for navigation." (Al-Nakib, 1992).

Monitoring the GPS system and assessing its quality in real- (or near real-) time

must therefore be carried out and action taken appropriately. Unhealthy satellites,

incorrect pseudoranges, poor DGPS corrections, excessive atmospheric interference

and problems at particular reference stations must be detected and the mobile

stations must be informed. There are three main approaches that are being used to

perform these tasks.

Monitor stations. A monitor station acts as a mobile station in that it receives the

DGPS corrections from a reference station and computes its position. The

difference is that the monitor is at a known location and can therefore assess the

quality of the solution. Any abnormal occurrences are then sent back to the

reference station and are then transmitted to the mobile users via the RTCM Sc- 104

ascii message.

RAIM. Receiver autonomous integrity monitoring (RAIM) is a technique whereby

the performance of the GPS system is determined within the receiver itself. Four

pseudoranges are needed to compute a position at any particular instance. If five

are available then five different position solutions can be computed by using all

combinations of four satellites (Al-Nakib, 1992). By examining these five

solutions, ones which are using an erroneous pseudorange will be similar, and

different from the remaining solution. In this way poor ranges can be isolated, but

the technique obviously relies on a full geometry to be able to detect multiple

errors.

The GPS integrity channel (GIC) uses satellites to transmit the warnings
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which are detected by monitor stations. Geostationary satellites are used to transmit

the integrity data to the mobiles, and two different signal formats have been

considered. Wideband GIC transmits a signal very similar to the C/A code

measurements at the same frequency as Li. This has the advantages that the GPS

antenna can be used to receive the signal, the data can be demodulated within the

receiver, and the signal from the geostationary satellite could be used as an

additional pseudorange to augment the GPS coverage. The next generation of

INMARSAT satellites (INMARSAT 3), which will be launched in late 1994, will

have this capability. The second signal format is the narrowband GIC which uses

the telephone and telex communication bands to transmit the message. This

requires separate receiving antenna and is merely an extension of the space-based

DGPS correction services.
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COMPUTATION OF A GPS SATELLITE'S POSITION

2.1	 CoORDINATE REFERENCE SYSTEMS

In satellite geodesy there are two fundamental earth-centred coordinate systems.

The first is the earth fixed terrestrial coordinate system which is required as a

reference frame in all positioning on the earth's surface. The second is the inertial,

or fixed celestial coordinate system, and is required since the equations of motion of

satellites (both artificial and the planets) are often expressed in this system.

2.1.1	 The Earth Fixed Terrestrial Coordinate System

Earth fixed systems are right handed systems with the origin at the geocentre, or the

earth's centre of mass. The Z-axis is aligned with the Conventional International

Origin (ClO) pole - the mean spin axis of the earth between 1900 and 1905. The

X-axis points towards the zero of longitude (approximately Greenwich) and is in the

equatorial plane. The Y-axis completes the right handed system. WGS84, the

coordinate system designed for use with GPS, is such a system and a representation

of this is shown in Fig 2.1.

2.1.2	 The Inertial Coordinate System

The celestial coordinate system (Fig 2.1) is a right handed system which is either

fixed in space, or has uniform motion (ie constant in time). The origin is at the

centre of mass of the earth, the Z-axis coincides with the earth's axis of rotation,

and the XY-plane is the equatorial plane. The X-axis points towards the vernal
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equinox, which is the intersection of the equatorial plane and the plane of the earth's

orbit around the sun. Theories of the earth's precession and nutation state that the

equator and ecliptic, and hence the vernal equinox, are in a constant state of motion

(Sharif, 1989). Therefore to correctly define an inertial coordinate system, the

effect of precession and nutation must be accounted for.

2.1.3	 Orbital Coordinates

A third type of coordinates are used for satellite coordinate computations. These

orbital coordinates represent the position of the satellite within its orbit. The system

is again right handed and is centred at the geocentre. For purposes that will become

clear later, the system will be defined as follows. The X-axis points towards the

Ascending node and the XY-plane is in the orbital plane with the Y-axis pointing

towards an argument of latitude of 900. The Z-axis is perpendicular to the orbital

plane, completing the right handed system.

2.1.4	 Coordinate Representation

The following notation is used to represent the 3D Cartesian coordinates of a point P

in the three different coordinate systems

Inertial	 Y	 X'

ZI

rx1
Earthfired 

[ziE
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rXl"

Orbital	 =rP

LzJ0

The relationship between the three systems is shown in Fig 2.1.

Fig 2.1 Inertial, earth-fixed and orbital coordinates.

2.2	 REPRESENTATION OF A SATELLITE'S ORBIT

2.2.1	 Kepler's Laws

Johannes Kepler (1571 - 1630) was a German astronomer and mathematician who

developed three laws, based on the observations of Tycho Brahe (1546 - 1601), that

described the motion of the planets around the sun. His first two laws were

published in Astronomia Nova in 1609 and his third law was published in

Harmonices Mundi in 1619.
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This planetary motion, or Keplerian motion, is now used to describe the path of an

orbiting satellite around the earth with the only force acting on it being the

gravitational attraction of the earth. Kepler's three laws are

1. The orbit is an ellipse in a plane with the centre of mass of the attracting body at

one of its foci. This indicates that a satellite orbiting the earth will not be the

same distance from the earth at all times, unless the orbit is circular. The point

where it is closest to the earth is known as the perigee and the farthest point is

known as the apogee.

2. The satellite's radius vector sweeps out equal area in equal time. This means

that the speed of the satellite is not constant and will be at its fastest at the

apogee and its slowest at the perigee.

3. The ratio between the square of the orbital period (the time taken for a satellite

to complete one orbit) and the cube of the semi major axis of the elliptical orbit

is the same for all satellites. This indicates that two satellites with the same

orbital semi major axis but with different eccentricities (the flattening of the

ellipse), will take the same time to complete one revolution of their orbits.

2.2.2	 The Keplerian Elements

Just six parameters (the Keplerian elements) can be used tQ describe a satellite

following Keplerian motion with respect to the earth. Their definitions are
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a	 the semi major axis of the elliptical orbit

e	 the eccentricity of the elliptical orbit

the inclination of the orbital plane to the equatorial

plane

the right ascension of the ascending node

w	 the argument of the perigee

the time at which the satellite passes the perigee

The size and shape of the orbital ellipse is defined by a and e, the orientation by i

and , the rotation of the ellipse within the orbital plane by o, and the instant

when the satellite is at a known location by ti,.

These parameters are illustrated in Fig 2.2 in which the coordinate system is an

XYZ inertial right ascension coordinate system. The satellite's orbit and the earth's

equator have been projected onto a unit sphere.
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Fig 2.2 The Keplerian elements depicting a normal satellite orbit

2.2.3	 Alternatives to the Keplerian elements

There are various ways of representing a satellite's orbit around the attracting body.

Polynomial or harmonic functions, as well as 3D cartesian coordinates and

velocities at a specific time all could be used to model the orbit (Van Dierendonck

et al, 1980). The Keplerian elements are often used for the broadcast ephemeris of

satellite positioning systems (eg Transit and GPS) instead of these alternatives.

They have the benefits that they are efficient to store (there are only six basic

parameters), they have an obvious meaning and they degrade gracefully with time

(Ashkenazi and Moore, 1986). They do have one disadvantage in the computational

time to compute a satellite position from the given elements - however, today's

processing speed has made this totally negligible. It should be noted that Keplerian
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elements are not always used to represent an orbit. The precise ephemeris (post-

mission) for Transit and GPS, and the broadcast ephemeris for Glonass all use a 3D

cartesian coordinate system providing the XYZ position and velocity components at

a specific moment in time.

2.2.4	 Perturbing forces on a GPS satellite

Kepler's laws are for an idealised satellite orbit where the only attracting force is a

spherical gravity field. For any satellite orbiting the earth this is not the case and its

Keplerian position will be affected by the following perturbing forces

The earth is not a perfect sphere and has an uneven density distribution. The

effect that this has on the earth's gravitational field is represented by spherical

harmonic coefficients which are used to compute the disturbing potential (the

difference of potential on the geoid and on a reference ellipsoid) at a particular

location. The largest coefficient in the expansion is known as J 2 (or C20) and

represents the effect of the flattening of the earth (the earth's equatorial bulge)

on the gravitational field. This coefficient is about 1000 times larger than the

other coefficients, although those of up to degree and order 36 are significant

for satellite orbit computations (Leick, 1990). This is dependent on the actual

satellite, and for GPS a harmonic function of degree and order 8 are adequate.

Other planets (in particular the moon and the sun) have their own gravity fields

and exert an attraction on the satellite. This is known as the third body effects.

The third body gravitational attractions have an additional effect on the satellite

orbit since they cause earth and ocean tides. The change in the earth's mass

distribution and shape resulting from these tides alters the gravity field and thus

the forces acting on any orbiting body. The magnitudes of these forces are

extremely well modelled and therefore their effects can be greatly reduced.
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• The satellite is not travelling in a perfect vacuum and will experience frictional

atmospheric drag. This is a function of the atmospheric density at the orbital

height and of the satellite's mass and surface area. It is negligible for GPS

orbits as they are orbiting at approximately 21000 km above the earth.

• The satellite will experience the impact of light photons emitted by the sun both

directly and indirectly (the albedo effect). This is known as solar radiation

pressure and will be a function of the satellite's effective area (the surface area

normal to the radiation), the surface reflectivity, the luminosity of the sun, and

the distance to the sun (Leick, 1990). For GPS satellites, this effect cannot be

ignored, it is difficult to model, and therefore represents the largest unknown

error source.

Most of these effects can be modelled, but this is difficult for the solar radiation

pressure and albedo perturbing forces (de Jong, 1991). All of the perturbing forces

alter the gravitational pull on the satellite and are quantified in terms of their

disturbing accelerations. If ignored, these disturbing accelerations will have an

effect on the GPS satellite position which will grow with time. Table 2.1 lists the

accelerations and their influence on GPS satellite orbits over 1, 2, and 3 hours.
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Perturbing	 Acceleration	 Growth of orbit error (m)

force	 (mIs2)	 1 hour	 2 hours	 3 hours

_______________	 5 x iO	 400.00	 1700.00	 4000.00

Third body	 7 x 10-6	 20.00	 100.00	 400.00

Other harmonics	 3 x iO	 1.50	 7.20	 40.00

Solar radiation	 6 x 10-8	 1.00	 5.00	 25.00

Earth tides	 1 x iO	 0.01	 0.02	 0.16

Ocean tides	 5 x 10-10	 0.00	 0.01	 0.07

Table 2. 1 Growth of GPS orbit perturbations (Sharif, 1989) and (de Jong, 1991).

2.3	 TIIE GPS BROADCAST EPHEMERIS PARAMETERS

2.3.1	 The GPS Keplerian Elements

The broadcast ephemeris, sent down within the GPS navigation message, uses the

Keplerian elements to represent the idealised GPS orbit and incorporates additional

terms to account for the effects of the perturbing forces. The main Keplerian

elements are

square root of the semi-major axis

e	 eccentricity

to	 ephemeris reference time

M0	 mean anomaly at reference time

0
	

inclination angle at reference time

c0	 right ascension at reference time

argument of the perigee
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The elements t0 and M 0 replace the usual time of perigee parameter, t, creating

seven, instead of six, Keplerian elements. The reason for this is that the parameters

are defined to a reference time which will be within a few minutes of the time of

evaluation, decreasing the sensitivity of the time derivative parameters and making

no increase in the number of words required within the navigation message (Van

Dierendonck et al, 1980).

The term within the GPS ephemeris is not strictly the right ascension of the

ascending node at to. More correctly, it is the angle between the Greenwich

meridian at the beginning of the GPS week and ascending node at the ephemeris

reference time. It should be more correctly described as the longitude of the

ascending node from the start of the GPS week to the ephemeris reference time.

For more details on this parameter refer to Wells et a! (1986) or Drewett (1989).

2.3.2	 The GPS Perturbation Parameters

In addition to the Keplerian elements, extra parameters have to be included to model

the position of the satellite from its norma! orbit and are provided as secular drift

terms and harmonic coefficients. These parameters are (Ashkenazi and Moore,

1986)

A n	 correction to the computed mean motion

rate of change of right ascension

i	 rate of change of inclination

C	 amplitude of cos and sin correction terms to the

argument of latitude

Crc, Crs	 amplitude of cos and sin correction terms to the

geocentric radius
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Ck,	 amplitude of cos and sin correction terms to the

inclination of the orbital plane

The GPS Keplerian elements and the perturbing parameters are shown in Fig 2.3.

C rc C rs

Orbital path

Fig 2.3 The OPS Keplerian elements
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2.3.3	 The Drift Terms

The correction to mean motion, z n, is used to describe the combined rate of change

of the co and M0 angles as shown in Fig 2.3. The parameter mainly describes the

effect of J2.

The rate of change of right ascension, , describes the precession of the satellite

resulting from J2. The earth's equatorial bulge exerts torques on the satellite

moving within its orbit causing the orbital path to migrate along the equator. This

effect is exactly analogous to the earth's precession. 	 is also used to model the

precess ion and nutation of the earth.

The rate of change of inclination, i , describes short term periodic motion which is

due to the J2 effect. i is also used to model the precession and nutation of the earth.

The effect of the zonal harmonics on satellite orbits is given in many texts on

physical geodesy - for instance Heiskanen and Moritz (1967) or Lambeck (1988).

The effect is often split into short term periodic motions (periods of 1, 2, 3,

revolutions) and long term periodic and secular motions. The secular terms are

constant over one revolution and increase steadily with time. Long term periodic

terms again are constant over one revolution but have a slow periodic motion. The

semi-major axis of the orbit does not change secularly or long periodically. The

eccentricity and the inclination undergo long-period, but not secular, variations,

whereas the right ascension and the perigee argument change both secularly and

long periodically (Heiskanen and Moritz, 1967).

Tessera! harmonics (describing longitudinal variations in the earth) have a much

smaller effect than the zonal harmonics. These are the cause for the rate of change

of inclination rapidily changing its sign.
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The approximate magnitudes of the drift terms for a GPS satellite are given in Table

2.2. Polar motion (precession and nutation) has the same effect on ^T and i , but

has a magnitude of approximately 1 x 10-13 radians I second and is therefore not

seen in the table.

Parameter	 Radians / sec	 Seconds of arc I sec

An	 5 x iO	 1.3 x iO

__________________	 -8 x iO	 -1.6 x iO-

±1 x 10-10	 ±2.1 x iO

Table 2.2 Approximate magnitudes of GPS perturbing drift terms

2.4	 COMPUTATION OF A GPS SATELLiTE'S PosrrioN

The position of a GPS satellite can be found in an earth fixed coordinate system

from the Keplerian elements and the parameters describing the effects of the

perturbing forces. The following equations have been adapted from Van

Dierendonck et al (1980) and Drewett (1989).

2.4.1	 The Position of the Sateffite within the Orbital Frame

The position of the satellite can be related to the transmission time, t, by using the

true anomaly, f, or the eccentric anomaly, E, along with the time the satellite

passed the perigee, t,. The true anomaly represents the geocentric angle in the

orbital plane between the perigee and the satellite. The eccentric anomaly is a more

convenient way of locating the satellite within its orbit and is shown in Fig 2.4. A

circumscribing circle, of radius a and centred at the centre of the orbital ellipse (C),
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is drawn over the ellipse. The eccentric anomaly is the angle subtended from the

centre of the earth (G) to the perigee and a sub-satellite point (S') which has been

projected onto the circle. The distance r represents the radial distance to the

satellite from the earth's centre. It is apparent from Fig 2.4 that the orbital

coordinates can be found via trigonometry once rand (f^) have been determined.

circle

xo

Fig 2.4 The eccentric and true anomalies of the satellite.

To find E, it is first necessary to calculate the mean anoma!y r M, which is the true

anomaly of an imaginary satellite moving with uniform angular velocity and with

the same period of the GPS satellite. The mean anomaly is linked to the mean

motion, n, of the satellite which is obtained from Kepler's third law
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GM a3n2
	

(2.1)

since it is related to the orbital period by,

n = 2irIT
	

(2.2)

where

GM is the gravitational constant times the mass of the

earth. (Defined as 3.986005 x 1014 m3sec 2 for

WGS84, Anon [1991]).

T	 is the orbital period of the satellite

Due to the perturbed orbit, the mean motion must be corrected by

n' = n + An
	

(2.3)

It is convenient to introduce the time delay, tk, between the time, t, at which the

satellite's coordinates need to be determined (the transmission time) and the

ephemeris reference time, t0. Thus

tk = t - tO
	 (2.4)

This time difference must account for beginning and end of week crossovers.

The mean anomaly at tk can be found by

Mk = fl'tk

Kepler's relates the mean and eccentric anomalies by

(2.5)
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M = E - esinE
	

(2.6)

which can be rearranged and solved iteratively for Ek. Hence

Ek1	Mk - esinEk - 1
	 (2.7)

The true anomaly, k, is then found by

cosfk = (cosEk - e) / (1 - ecosEk)
	

(2.8)

The next step is to calculate the argument of latitude - that is the angle subtended at

the geocentre between the satellite and the Ascending node. For a normal orbit, this

is given by

k + U)
	

(2.9)

Due to the orbit perturbations, a correction is necessary and is determined by

6 Uk = C S24) k + Ccos24 k
	 (2.10)

The corrected argument of latitude Uk is thus given by

Uk = 4k + Suk
	 (2.11)

The radial distance, rk, from the geocentre to the satellite is computed in a similar

manner

rk = A(1 - ecosEk) + S rk
	 (2.12)
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where

rk	 C rcCos2 k + CrsS Ifl2 4) k
	 (2.13)

The orbital coordinates of the satellite are then obtained

S
X	 ICOSUk

Y	 rsrnu

z o	 0

(2.14)

2.4.2	 The Sateffite's Position within an Earth-Fixed Frame

In order to bring the system into the earth-fixed WGS84 coordinate system, the

orbital coordinates must be rotated. The system must first be rotated about the X-

axis until the XY-plane coincides with the equatorial plane. The system is then

rotated about the Z-axis until the X-axis is aligned with the WGS84 X-axis (the zero

meridian).

The corrected inclination angle between the orbital and equatorial planes and

referenced to time tk is given by

= + tj 1 + Csin2 k + Ccos24 k	 (2.15)

The angle between the X-axis directions of the orbital and earth-fixed systems is

known as the longitude of the ascending node. The traditional method of obtaining

this angle is by subtracting the time oriented GAST angle from the right ascension

of the ascending node. As mentioned in 2.3.1, the GPS Keplerian element f j is

the longitude of the ascending node from the beginning of the GPS week. This
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avoids the necessity to compute GAST, but the rotation of the earth must be

accounted for. The corrected longitude of the ascending node, 7k' is found by

where

=	 O + (	 - (O e)tk • (O c t0	(2.16)

is the WGS84 rate of the earth rotation (7.292 115. iO

radians I sec).

The earth-fixed WGS84 coordinates of the satellite are finally computed by

S
X	 COSXk

Y = SrnA.k

Z E	 0

-CoSikSrnXk 0 X

COS1 k C0S? k 0 Y

SiflI k 	 0 Z0

(2.17)

During the time taken for the signal to travel from the satellite to the receiver, the

earth fixed coordinates of the satellite will have changed due to earth rotation. For

positioning purposes, therefore, it is usual to rotate the coordinates to the time of

signal reception. Hence if ti is the time of transmission from the satellite and t2 the

time of reception at the receiver, then the coordinates will be rotated about the Z

axis by (t2 -t1)a.
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CHAPTER THREE

GPS POSITIONING ROUTINES AND THE RINEXPOS UTILITY

PROGRAM

3.1	 PREAMBLE

A utility program has been developed to perform a variety of GPS pseudorange

positioning computations. This includes standalone point positioning and the

traditional two station DGPS positioning. The program is called RINEXPOS

(RINEX POSitioning program) and has been written in ProPascal Version 5.2'.

The options available in RINEXPOS Version 92.003 along with the algorithms

which have been incorporated are described in this chapter. Different algorithms

that can be easily implemented are also given where appropriate, thus enabling

future enhancement of the program. All the screen views of the program having

been captured using a PCX grab utility and have then been converted to show black

text on a white background. This improves the clarity when seen on paper,

although all screen colours and menu highlighting are not shown.

3.2	 TIlE RINEXPOS MENU STRucTuRE

The program is activated by simply typing RINEXPOS at the command line, which

results with the main menu as shown in Fig 3.1. The three options within this

menu are to input the data files, to change the default running parameters and to

1 ProPascal is a copyright of Prospero Software, Inc.
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carry out the positioning computations. The latter will be described later in this

chapter since it depends on the selections made within the other menus.

Version 92.003

RINE POSITIONING PROGRAM
Department of Surveying

University of Newcastle upon Tyne

MAIN MENU

Specify Data File Names
Positioning Computations
Change Parameters

Esc : DOS

Fig 3.1 The RINEXPOS Main Menu

3.2.1	 Specify Data File Names

The data files required for the input are:

• A navigation file containing the ephemeris data for all the satellites viewed

during the observation period.

• An observation data file containing the pseudorange observations recorded at the

reference station.

A similar file for the observations recorded at the mobile station.

• The name for the results file into which the final positions will be placed.

Depending on the mode of operation (see 3.2.2) that has been selected, it is not

necessary to input all the data files. For instance if the satellite positioning mode

has already been selected, it is only necessary to input the ephemeris file and a

results file, and for point positioning the mobile station data file is not required.

59



Chapter Three: GPS Positioning Routines and the RINEXPOS Utility Program

Since the default mode is for DGPS all the files are initially required if this option is

selected first, although the unnecessary files are not opened if options have been

changed at a later stage. Only files that exist are allowed to be input, except for the

results file for which an overwrite warning is produced if a file of the same name is

present in the working directory. All the data input files (ie except for the results

file) must be in the RINEX format.

3.2.1.1	 The RINEX data format

There are many different companies producing GPS receivers all of which hold the

data recorded by the receiver in a different manner. The data is usually split into

various binary files which need decoding particular to the manufacturer's format.

Almost without exception, one of the files will contain the ephemeris information

sent down with the GPS navigation message, and one will contain the observables

recorded from the two frequencies transmitted from the satellites. Other files that

might exist include one for site information, and one for the meteorological data.

The Receiver INdependent EXchange (RINEX) format has been developed so that

data from different receiver types can be easily exchanged and can be processed

using software written to accept one common format. Most software for different

receivers contain a program which will convert from the original binary formats to a

common RINEX ascii format. Apart from now being in a well documented

standard format, the data files can be easily viewed since they are now ascii. This

in turn enables an immediate understanding of the quantities involved.

The first proposal for the RINEX format was developed by the Astronomical

Institute of the University of Berne (Gurtner and Mader, 1990). For details of the

present formats (RINEX Version 2) and a more precise description of the data, the
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reader should refer to ibid. and Gurtner (1993). 	 The recommend naming

convention for RINEX files is (Gurtner, 1993)

ssssdddf. yyt

where	 ssss	 is a four character station name

ddd	 is the modified Julian day (the day of year)

f	 the file sequence number

yy	 the last two digits of the year

t	 file type

0	 observation file

N	 navigation file

M	 meteorological data file

All the different types consist of lines with a maximum of 80 characters. There is

general header information at the beginning of each file before the actual data is

provided. Short descriptions of the two main RINEX file types (the navigation and

the observation files) will suffice for this thesis and examples are given in Appendix

A.

3.2.1.2	 The navigation message file

The RINEX navigation message provides all the necessary elements for the

determination of the satellites positions. The header information simply comprises

of descriptions of the conversion programs and their executed dates with the RINEX

version that has been generated. Optional records within the header include the

eight Klobucher ionospheric model constants (a 03 and 103), and polynomial

parameters representing the offset of GPS time and UTC. The main section of the
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navigation message comprises of the following information for each satellite at all

hourly updates.

• The ephemeris time tags (the time of ephemeris (toe) and the transmission time

of message).

• The Keplerian elements (the seven [see 2.3.1] elements describing the normal

GPS orbit).

The elements modelling the perturbing forces acting on the satellite,

The three coefficients of the second order polynomial describing the satellite

clock correction.

The satellite health and accuracy measures (the Health flag and the user

equivalent range error (UERE)) as well as ephemeris confidence flags (the age

of data ephemeris (AODE) and the age of data word (AODC)).

Atmospheric refraction delay parameters in the form of the Time Group Delay

(TGD).

3.2.1.3	 The observation data file

The header record within the observation record contains general information on the

RINEX data version, receiver type used, the operators, and the conversion

programs that generated the RINEX data. The header also contains some more

information including

• The approximate position of the antenna at the start of the survey in WGS84

cartesian coordinates.

• The antenna height and offset from the survey marker used.

• The wavelength of the carrier phase observables that will follow within the main

section. This provides the knowledge of whether or not a squaring procedure

has been used to recover the carrier thus halving the relevant wavelengths.
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Details of the types of observations that are included for all epochs within the

data file and their order within the file. There are eight different observables

that can be included for GPS data files, which are

CIA code full pseudorange (ie the 300 km ambiguity has been resolved) on

the Li carrier. Measured in metres.

P code full pseudoranges on LI and L2. Measured in metres.

A derived C/A code full pseudorange on L2 (the C/A code on Li plus the

difference between the measured P or Y code distances on Li and L2).

Measured in metres.

Carrier phase observations on Li and L2. Measured in cycles.

Doppler measurements on Li and L2. Measured in Hertz.

Information on the observation times, the observation interval and the number of

different observation types made to each satellite.

After the header, the main section consists of information recorded at each epoch

during the session. There is capability for comment lines describing operations

during a kinematic or pseudo kinematic survey, but in general each epoch will

consist of

The time tag to which all observations have been related. This is given within

the receiver time frame.

The satellite PRN numbers which have been observed at this particular epoch.

There is provision for GPS, GLONASS and Transit satellites which may have

been observed with a combined/integrated receiver. For the case of Transit,

there is a further data type for the Integrated Doppler on the two Transit

frequencies (150 and 400 MHz).

The receiver clock offset as determined within the receiver relating the receiver

time frame to GPS system time.

63



Chapter Three: GPS Positioning Routines and the RINEXPOS Utility Program

For each satellite the values for all the observation types follow with signal

strength and loss of lock indicators. Information for the different satellites is

given on different lines.

3.2.2	 Change Parameters

The main menu option for changing parameters leads to a further menu as shown in

Fig 3.2. All the options available in this menu are briefly described.

Version 92.003

PINEX POSITIOIIII4G PROGRA1I

Department of Surveying
University of Newcastle upon Tyne

PARAMETER MENU

Healthy (Un) Satellites
Start and Stop Tines
DGPS Options
Mode of Operation
View InputIkitput Files

Esc ham Menu

Fl Load
	

FlU Save

Fig 3.2 The RINEXPOS Parameter Menu

3.2.2.1	 Healthy (un) satellites

This permits the user to turn on and off satellites which may have been flagged

unhealthy. It also allows just the Block I or II satellitea to be used. The default

setting for this option is to use all satellites with PRN numbers 2, 3, 6, 9 and 11

through to 32 as shown in Fig 3.3. There is no provision within the program to

automatically turn off unhealthy satellites as flagged within the navigation message.
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Healthy satellites are
2 3 6 9 11 12 13 14 15 16 17 18 19 20 21 22

23 24 25 26 27 28 29 30 31 32

HEALTHY SATELLITE UNHEALTHY SATELLITE

Esc : Parameter Flenu

Fig 3.3 RINEXPOS healthy satellite selections

3.2.2.2	 Start and stop tunes

This option permits the user to specify the amount of data that will be processed.

The choices are either by epoch number (epoch one being the first observation

within the reference station data file), by time of day, or by processing the whole

file. All these choices relate to the reference station file except when carrying out

satellite positioning when the time of day indicates the interval for which these

parameters are required. An example from the program with a specified start/stop

time is shown in Fig 3.4.

Start Time 14 0 0.0
Stop	 Time 15 0 0.0

on	 1 31993

Specify By TItlE EPOCH FILE

Esc : Parameter Menu

Fig 3.4 Start / stop times selection

3.2.2.3	 Mode of operation

Three different modes of operation are allowed within RINEXPOS, namely DGPS

positioning, point positioning and satellite positioning with the default being DGPS.

The satellite positioning option deserves a further explanation since it is used for
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comparison of satellite positions output from other programs developed at

Newcastle.

The satellite positioning option is used to compute the WGS84 coordinates of all the

satellites within the navigation file during a period of the day which is specified

through the "Start and Stop Times" option. The coordinates are in their cartesian

form (ie XYZ) and the times relate to the GPS time of transmission from the

satellites and there have been no earth rotation effects applied. The algorithms used

are those described in chapter two, and the time interval between successive epochs

is set to five seconds.

3.2.2.4	 View input/output files

This option allows a scrolled view of all the input and output files that have been

specified or created. Since all the files are in an ascii format, this simply reads the

appropriate file and scrolls the output to the screen. Progression down the file is

either by each line, by a page, or continuous.

3.2.2.5	 DGPS options

Choosing this option enters a third menu allowing further selections to be made.
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3.2.3	 The Differential GPS Menu

version	 .UJUJ

BINE POSITIONING PROGRAM
Department of Surveying

University of Newcastle upon Tyne

Differential GPS MENU

Reference Station Coordinates
Ages of Corrections
Remote Station Model
Height Aiding
Pseudorange Cozrns Output

Esc Previous Menu

Fl Load
	

PlO Save

Fig 3.5	 The Differential GPS Menu

3.2.3.1	 Reference station coordinates

This option allows for the input of the reference station coordinates which are used

to determine the differential pseudorange corrections. The algorithm for this is

given later in this chapter in section. The coordinates are all WGS84 ellipsoidal

coordinates and an example is given in Fig 3.6.

REFERENCE STATION COORDINATES
Name	 Newcastle
Latitude N 54 58 40 .2100
Longitude U 1 36 56.7500
Height	 134.0000

Fig 3.6 The Reference station coordinates
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3.2.3.2	 Ages of correction

This option attempts to imitate the latency in a true differential system (due to the

data link required to transfer the pseudorange corrections from the reference station

to the remote station) by introducing a delay within the two data files. This also

allows for an investigation on the importance of the rate at which a data link can

transfer the corrections which will be affected mainly by high frequency SA dither.

The age of correction can be input so that the program will process the data set with

any specified latency between the reference station and the remote. A tolerance

level is also required which accounts for the fact that the observation times at the

two stations will not be completely synchronous. Fig 3.7 is an example of the

default settings for this option and the program will process the data sets in the

following manner. The pseudorange corrections will be derived at the reference

station and applied to the remote station data that has been recorded at exactly the

same epoch (age of correction zero seconds) with the tolerance applied. The two

data sets are then processed in this way. The data is then processed again but with

an age of correction of five seconds - this means that the pseudorange corrections

are applied to the remote station at the epoch that was observed five seconds after

the one from which they were generated at the reference station. This is continued

until the age of correction is greater that sixty seconds.

Differential A9e Of Corrections

From	 0	 (secs)
To	 60
Every	 5
+/-	 0.1

Fig 3.7 Default age of corrections
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3.2.3.3	 Remote station model

When processing in the differential mode, there is an option to allow the mobile

station to be processed using a least squares solution or by using the Kalman filter

prediction and filtering algorithms.

The purpose of the latter is to reduce the level of noise within the solution by

filtering in the position domain and relies on the fact that the dynamic nature of the

mobile station is known, ie for instance there is previous knowledge that the station

is moving in a straight line. Three different models for these dynamics are catered

within RINEXPOS and these are a stationary model, a straight line model and a

model allowing the mobile to turn. The number of parameters that are solved for

within the solution thus also change from five (three position coordinates plus a

receiver clock offset and its drift) to eight (three additional velocity components

acting along the coordinate axes) to ten (horizontal accelerations) respectively. The

algorithms used within the Kalman filter solution are provided in chapter six,

equations 6.18 through 6.23. An important consideration for the Kalman filter is

the values within the stochastic models which are used to determine the amount of

importance that is placed on the knowledge of the mobile's dynamics. These are

input via a control file named "kalman.inp" which comprises of the following lines:

1. The number of parameters to be solved for (depending on the required model).

The options are 10, 8, or 5 with 10 as the default.

2. The standard deviation of the latitude forcing function. For instance, for the 10

parameter model, the forcing function is the rate of change of acceleration in

latitude and the units will be in radians/second 3 . A default value of 1x10 11 is

used which equates to approximately 6x10 5m/s3 for the United Kingdom

latitudes.
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3. The standard deviation for the longitude forcing function. This is the same as

above and uses the same default values (equating to approximately 5x105m/s3).

4. The standard deviation for the forcing parameters in height. The 10 state

model, this is height accelerations and the units will be in m/s 2 , with the default

value set to 1cm/s2.

5. The standard deviation of the forcing function for the receiver clock offset. For

all models, this is its acceleration and a default of 1x10 8s/s2 is set.

6. The standard deviation of the GPS pseudorange observations in metres. The

best value for this parameter has been found to be three metres which is used as

the default. By reducing this number (ie increasing the precision of the

pseudorange observations) less emphasis is placed on the mobile's dynamics.

7. A switch (set to 1 for on, or 0 for off) that controls the amount of output to be

written to file. The on setting enables all the stages of the Kalman filter

processing to be output, whilst off surpresses all but the final positions.

The settings described above play an important role in the performance of the

Kalman filter. If too much weight is placed on the dynamic model of the mobile,

then the position information derived from the GPS observations may be ignored.

This can produce an extremely smooth vessel track which may appear to be a very

good solution, however any wandering of the vessel (eg due to tidal or wind

changes, or simply turning a corner) may not be picked up within the solution. The

default values have been selected by determining the most appropriate values for

DGPS test data.

The least squares solution produces a position using only the GPS pseudorange

observations with no input from the knowledge of the motion of the mobile. This

has the advantage over the Kalman filter as the problems outlined above will not

occur, but the solution will not appear as smooth. In order to create this "smooth"

track via the least squares approach, the noise within the actual GPS observations
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must be reduced - a procedure that is not carried out within this version of the

software, but is often performed internally within the receiver. The least squares

approach simply solves for four parameters (three positional components and the

receiver clock offset) and this is the only type of solution allowed when in point

positioning mode.

3.2.3.4	 Height aiding

This option allows for an external height observation to be used within the solution

(either traditional least squares or Kalman filter). This is a height above the

ellipsoid which must be input along with its associated standard deviation. If a least

squares solution is used, the pseudorange observations are weighted according to

their standard deviations as calculated from their User Range Accuracy (URA)

values within the GPS ephemeris file - see Drewett (1989) for further details. If a

Kalman filter solution is used, the pseudorange observations are weighted according

to the input file as described in 3.2.3.3. The algorithms used to implement height

aiding are discussed later in section 3.3.6.

3.2.3.5	 Pseudorange corrections output

This option enables the output of the pseudorange corrections as determined at the

reference station to be output to file for later analysis.

3.3	 ALGORiTHMS FOR GPS PSEUDORANGE PosmoNiNG

The following section describes many of the algorithms which have been used for

the positioning computations within RINEXPOS. The details on determining the

satellite positions, the reader should refer to Chapter 2. Where appropriate, further
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equations have been documented and can be easily incorporated into this program or

into future OPS positioning programs.

3.3.1	 Satellite and Receiver Time Frames

When considering GPS computations, it is typical to refer to three different time

frames. The first two are local frames which are maintained by a local oscillator

which will experience drift. These are the receiver time frame (all receivers will

keep a slightly different time) and the satellite time frame (again, this will be

different for all satellites). It is necessary to relate these time frames to a common

frame, and GPS system time is most typically used.

GPS system time is a continuous frame that is kept by the atomic clocks at the GPS

Master Control Station and was synchronised to UTC (Universal Time Coordinated)

at midnight on 5/6 January 1980. UTC experiences leap second increments to keep

in line with the secular drift of the Earth's rotation, and is therefore now offset from

GPS system time by a number of integer seconds. A continuous offset of 19

seconds relates OPS system time with International Atomic Time which is the

fundamental time scale for all time-keepers on the Earth and is kept at the Bureau

International de l'Heure in Paris (Anon, 1989).

The relation between the local time frames kept by the receivers and satellites and

GPS system time can be summarised as

TGPS = TR - dTR
	 (3.1)

where	 TGPS is GPS system time

TR is local receiver time

dIR is the local receiver clock offset
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TGPS Ts - dTs
	 (3.2)

where	 TGPS is GPS system time

Ts is local satellite time

dls is the local satellite clock offset

3.3.2	 Pseudorange Transmit Time

In order to compute the satellite's earth fixed coordinates, it is first necessary to

determine the time at which the particular observable was transmitted. This is

needed in the GPS time frame and can be determined via the pseudorange

measurement in the following manner. The superscripts are used to describe the

time at which the range was transmitted, and the subscripts for the time at which the

range was received. The pseudorange (PR) is defined for the RINEX format

(Gurtner and Mader, 1990) as

PR/c = TGPS + dTR - (TGPS + dTS)	 (33)

where	 TGPS is the true received time in the GPS time frame

TGPS is the true transmission time in the GPS time

frame

c is the speed of light in a vacuum.

From (3.3) and (3.1), it is clear that the transmission time of a particular

pseudorange is obtained from

TGPS = PR/c - TR dTs	 (3.4)

where	 TR is the received time in the receiver time frame.
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TR is the actual time tag to which all the observations are related and is thus known,

and dTS is determined from an algorithm which requires a few iterations (see

3.3.3). This technique assumes that errors within the pseudorange measurement

would be small enough to have no significant effect on the determined satellite's

position. A large pseudorange error could be typically 100 m (a summation of SA,

ionospheric, multipath, and receiver noise errors), which will be a time error of

approximately 333 ns. A GPS satellite travels at approximately 3000 m/s and

therefore covers a distance of one mm over the time error interval.

3.3.3	 Satellite Clock Offset

The satellite clock offset, dTs, is the relationship between GPS system time and the

time frame kept within each satellite including all relativistic effects. Its value is

estimated by a second order polynomial whose parameters are transmitted within the

navigation message. The polynomial equation is (Van Dierendonck et al, 1980)

dTs = a0 + a 1 (t - toe) + a2(t - toe)2 	(3.5)

where	 a0, a 1 , a2 are the transmitted polynomial coefficients

t is the time of signal transmission

toe is the time of ephemeris which is transmitted within

the navigation message.

The a2 term often has a value of zero, and therefore a first order (straight line

representation) is suffice to model the satellite clock offset. In order to compute the

time of transmission from equation (3.4), it is necessary to first calculate dTs and

this is carried out by iteration of (3.5) and (3.2) with the initial value of t being the

received time. The sensitivity of the clock offset polynomial to the value of t is not
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great enough to differentiate between the signal transmission time in the satellite

frame or in GPS system time.

3.3.4	 Receiver Point Positioning

The algorithms presented below are used within RINEXPOS for the positioning of a

single station (point position mode), and for the positioning of the differentially

corrected pseudoranges both using least squares or the Kalman filter. The

algorithms have been derived from the basic mathematical models which are then

solved for within the program using the least squares observation equation approach

or the Kalman filter. No justification is given for using a least squares approach as

this is well documented and further details can be obtained from GeIb (1974) or

Cross (1983).

3.3.4.1	 Basic mathematical model

Simultaneous pseudorange observations from different satellites are used as lines of

position to compute the three dimensional coordinates of the receiver (or more

correctly the position of the phase centre of the antenna) along with it's clock offset

from GPS system time. If we define the true coordinates of the receiver in a

cartesian system and the clock offset as (K	 R ZR diR ), then a vector of

unknowns (the parameters we wish to solve for) can be written as:

=[K ' R Z d R ]T 	. 	 (3.6)

We can also define 1 as a vector of observed pseudoranges to different satellites

which is related to their true values T by:

1=I+v
	

(3.7)
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where	 v is a vector of residuals.

The general relationship between the vector of observations and the vector of

unknowns is given by: (Cross, 1983)

F()=i
	

(3.8)

For each satellite in view, (3.8) can be written in a more specific form as: (Drewett,

1989)

((R -x)2 +(R y)2 +(K _z)2) —dtR .c =1	 (3.9)

where	 c is the speed of light in a vacuum, and

X are the true coordinates of the satellite.

3.3.4.2	 Solving the mathematical model

It is usual to solve for the vector of unknown parameters using the least squares

observation equation approach (see Cross [1983] for further details). Since equation

(3.9) is non-linear, it is necessary to first linearise the equation by using the

Taylor's series expansion. For this, the unknowns need to be split into two parts -

one being an approximation to their true values (ic) and the other being a correction

to this approximation (Ax). The general function (equation 3.8) can now be

expressed as

F() = F(+ Ax) = 1+v
	

(3.10)
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which when expanded via the Taylor's series to the first differentials produces

F()+(aF/a)Ax=1+v
	

(3.11)

This now represents a linear set of equations relating the new parameters, Ax, to the

observables, I. Equation (3.11) can be rearranged so that the parameters are on the

left hand side and the measured and known quantities are on the right hand side,

thus forming the well known least squares equations, Ax = b +v.

The pseudorange equation (3.9) is partially differentiated with respect to the

provisional values in the following way.

	

- -	 XR—XS

	

-	 (3.12)
2	 '2

	((kR-xS) (R—YS	 (2R-zS) )

By representing the geometric distance between the satellite and the receiver as p,

(3.12) can be written as

aF/axR =

	

	
(3.13)

PRS

Similarly, the remainder of the partial differentials are:

8F/a'crR = 'R S

PRS

aF/azR=
PRS

(3.14)

(3.15)

ÔF/ÔdTR	 C
	

(3.16)
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Suppose now there are n satellites for which pseudorange observations have been

observed. Rearranging equations (3. 11) to (3.16) produces a system of n equations,

such
(aFI/axR)Ax+(aFlIoYR)Ay+(aFl/azR)Az_c.AdT=1l—Fl()+vl

(oF2/aXR)AX+(aF2/aYR)AY+(aF2/aZR)AZ_c.AdT=12_F2()+V2

(aFfl,axR)Ax+(aFfl/ayR)Ay+(aFfl/azR)Az_c.AdT=1fl_Ffl()+vfl

(3.17)

These now form a set of linear observation equations where

aFI /axR ôFl/ÔYR aFl/azR

A= a
F2 /aX R aF2/3YR F2 !R

[aFt /ax
AX

AY
,b=

AZ

AdT

—c

—c

—c

	

aFfl /3YR	 n/R

	

1 1 — F1 (i)	 v1

	1 2 —F2 (c)	 v2
,v=

	

1—F()	 v

(3. 18)

Since there are four unknowns, a minimum of four satellites need be observed to

compute the complete solution. When using RINEXPOS in the point positioning

mode or the least squares differential mode, this approach is taken and the

coordinates are computed in the cartesian system.

3.3.4.3	 Solving for Geographical Coordinates

It is sometimes desirable to separate the parameters into horizontal and vertical

components, in order to include other equations, or observation types, into the

system - for example, knowledge of velocities over the ground, knowledge of the
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course over ground, and external height information may be readily included in a

model solving for the parameters in their horizontal and vertical directions.

To solve for latitude, longitude and height it is necessary to redefine function (3.9)

so that it now consists of R ,XR ,hR . The conversion between cartesian and

geographical coordinates can be found in many texts, for instance Heiskanen and

Moritz (1967)and Cross et al (1981), and leads to the functional model

(((N ±h) cos R COSXR - X: 
)2 +

((N+h)cos R sin R —YS) +
	

(3.19)

1/2

T N + h ) sin R_ Zs)] —dfRxc=I

where	 N is the radius of curvature in the prime vertical.

This equation needs to be partially differentiated with respect to the geographical

coordinates which is best done in a numerical manner. This leads to the formation

of the A matrix and a system of equations similar to (3.18). The Kalman filter

within RINEXPOS uses this approach for the formulation of the observation

equations.
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3.3.5	 Dilution of Precision

The dilution of precision (DOP) is an indication of the quality of the results that can

be expected from a GPS point position. It is a measure based solely on the

geometry of the satellites and therefore can be computed without any pseudorange

observations being recored.

DOP values are often expressed in different terms relating to the propagation of the

satellite configuration into the position fix in its different components. The usual

figures are

GDOP	 geometrical dilution of precision

PDOP	 positional dilution of precision

TDOP	 time dilution of precision

HDOP	 horizontal dilution of precision

VDOP	 vertical dilution of precision

The values are obtained from the inverse of the normal equation matrix of the

solution. Suppose the design matrix is as in (3.18), then the cofactor matrix, Cx, is

a symmetric 4x4 matrix that can be represented as (Hofmann-Wellenhof et al, 1992)

cxx cxy cx CXT1

Cx (ATA)' 

L	

C I
=	

=	 Czz C I	 (3.20)

CU]
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The diagonal element are used for the following DOP definitions

GDOP =	 +c +c +c

PDOP =	 +c +c
	

(3.21)

mop =

The horizontal and vertical DOPs can be computed from similar elements from the

covariance matrix by either rotating Cx into a topocentric coordinate system

(Drewett, 1989) or directly by computing the system in geographical coordinates.

presently, RINEXPOS only compute the PDOP value.

It is most critical that DOP values should be used as an indication of when GPS is

likely to produce good positioning results, and not as a astite. that de. 1 e. the.

quality of positioning that has actually taken place. There are a number of reasons

why a DOP value, measuring geometry, may be misleading if used to describe

resultant positions

1. There may be outliers in the pseudorange observations resulting in a poor fix.

This would not be picked up by a DOP value.

2. Low elevation satellites will improve the geometrical configuration. However,

ranges observed to these satellites will have large atmospheric errors and again

will lead to poor positioning.

3. There is no indication of the level and rate of Selective Availability which

introduces errors on all observations.
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3.3.6	 Height Aided Solutions

The knowledge of the receiver's height above the ellipsoid is often used as an extra

equation within the positioning solution. Originally this was carried out to reduce

the number of pseudorange observations required to obtain a fix (3 are now needed

instead of 4), but it is now used to add further redundancy into the solution

especially in times of poor geometric configurations. Essentially the height

observation can be written as distance from an imaginary point (p), so that:

((R -x)2 +(R —y)2 +(R _z)2) = ii	 (3.22)

Once the coordinates of the point have been found with the relevant height

estimation, the function can be differentiated with respect to the receiver coordinates

and these values can be included as an extra line within the observation equations.

There are three separate approaches for implementing height aiding, all of which

relate to Fig 3.8.

z
receiver

h

effipsoid

sub-receiver point

cV
/

x

Fig 3.8 Height aiding determination
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3.3.6.1	 Height above the ellipsoid

The height above the ellipsoid (h) is the required distance. The coordinates of the

sub-receiver point (ie the point from which the distance is measured) are (4R,R,)

with the coordinates of the receiver being ( R ,XR ,hR ). The provisional coordinates

of the receiver can therefore be used to deduce the coordinates of the sub-receiver

point, which can then be converted into the cartesian system. These coordinates and

the ellipsoidal height can then go directly in equation (3.22). This approach is

currently implemented within RINEXPOS.

3.3.6.2	 Distance from the centre of the earth

The distance from the centre of the earth to the receiver point can be approximated

from Fig 3.8 as

d=G+h
	

(3.23)

Again for this technique, the cartesian coordinates of the sub-receiver point must be

determined in order to allow the distance G to be calculated. Suppose the cartesian

coordinates of the sub-receiver point are (X SR ,YSR ,ZSR ), then G can be determined

by

The distance d measured from coordinates (0,0,0) can now be used directly in

equation (3.22).
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3.3.6.3	 The direction of the vertical

Instead of finding the cartesian coordinates of a point from which a "height

distance" can be derived, equations for the direction of the vertical (given by R' in

Fig 3.8) can be used and numerically differentiated to form part of the observation

equations. The normal radius of curvature along the vertical is often denoted as N,

and can be used with the ellipsoidal height to derive a distance equation. Hence

(Heiskanen and Moritz, 1967)

C
N+h=	 +h

1 + e '2 cos2 4:i

(3.25)

where	 c = = 6399593. 6258m for WGS84 (Anon, 1987)

e'2 = Ja2 —b2 
= 0.00673949674227 for WGS84

b

3.3.7	 Pseudorange Corrections

In DGPS, pseudorange corrections are generated at the reference station (which has

known coordinates) and are then applied to the appropriate pseudoranges observed

at the mobile station. The corrections are found by:

1c 1 =d I -1 I -i-dTsI —dTR	(3.26)

where	 1c	 is the pseudorange correction to satellite i

d 1	is the geometric distance computed between the

coordinates of satellite i and the true coordinates of the

reference station

i	 is the observed pseudorange to satellite i

dT 1	is the clock correction for satellite i in metres
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dIR	is the receiver clock correction at the reference station

in metres.

Therefore the RINEXPOS program computes a DGPS solution at the mobile station

by performing the following steps.

1. All the pseudoranges observed at the reference station are used in a least squares

solution to determine the receiver clock offset and the station coordinates at that

epoch.

2. The pseudorange corrections are found based on the known coordinates of the

reference station, and the clock offsets.

3. These corrections are added to the observed pseudoranges at the mobile station.

4. The corrected pseudoranges at the mobile are processed in the same way as step

1 to produce the three-dimensional coordinates at the mobile station along with

its receiver clock offset.

The solution at the mobile must only be carried out using pseudorange observations

that have corrections available. This is the reason that reference stations have multi-

channel receivers and will record with a relatively low elevation mask setting, thus

allowing corrections to be generated for all available satellites. The clock offset that

has been computed at the mobile station will now be contaminated by any errors

that have been introduced at the reference station when computing its receiver clock

offset (atmospheric errors, receiver noise, multipath, etc). Indeed it is not

necessary to compute the clock offset at the reference station and many earlier

DGPS services did not do this. Instead an estimate for the clock offset is made,

either by using a polynomial approximation or by computing the clock offset based

on an assumption that the correction for one particular satellite (the base satellite) is

zero. This reduces the computational requirements at the reference station end as

there is no longer a need for a least squares calculation (with matrix multiplication
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and inversion). In these circumstances, a combination of the two receiver clock

offsets and other errors are computed within the four parameter least squares

solution at the mobile station. This type of approach is no longer recommended as

the pseudorange corrections may appear extremely large (especially if a base

satellite is used) and may suddenly "jump" if there has been a change in base

satellite or if the approximation is reset. Whilst having no effect on the results at

the mobile station, this does little to install confidence with the operators of the

system.

3.4	 RIINEXPOS PERFORMANCE AND OuTPur

3.4.1	 General Screen Output

When carrying out the positioning computations, the following output is displayed

to the screen:

1. The satellite numbers for which data has been obtained from the input ephemeris

file.

2. The epoch being processed at the reference station and, if in differential mode,

at the mobile station. Epoch number one is specified as the first time-tagged

data within each observation file, independent on whether it was used for

positioning (ie due to lack of data, poor observations, etc).

3. The current WGS-84 latitude, longitude and height position for the required

station - ie the reference station in point positioning mode and the mobile for

differential.

4. When processing in differential mode, the present age of correction between the

two data sets.
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CHAPTER FOUR

THE ANALYSIS OF TIME SERIES

4.1	 INTRODUCTION TO TIME SERIES ANALYSIS

A time series is a collection of observations made sequentially in time (Chatfield,

1989). It is often very useful to analyse a time series, and this can be carried out in

two general ways.

The first, is to look at the time series in the time domain - this is essentially an

analysis of the observations against time. Different time series have different

characteristics which are associated with different probability models. On analysising

a particular series, it is usual to adopt a certain probabilty model and to calculate a

number of statistical measures that describe the series. The statistic which is most

associated with time domain analysis is the autocorrelation function describIng the

evolution of the process through time.

The second approach for analysing a time series is to look at the process in the

frequency domain. This process breaks the series down into different cyclic

components with varying frequencies. It is easiest to think of this type of analysis as

describing the original series as a summation of a number of sinusoidal components,

each with a different frequency and amplitude. By selecting the frequencies which

have the largest amplitudes, it is possible to determine how often the overwhelming

trends in the series occur. For instance, if the highest amplitude is associated with a

frequency of 1/60 Hertz (cycles per second), then the trend wIthIn the senes repeats

every one minute.
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This chapter begins by looking at time domain analysis and the different probability

models that can be used. Frequency domain analysis is then introduced, and finally a

visual interpretation of computer generated series is given.

4.2
	

ANALYSIS IN THE TIME DOMAIN

4.2.1
	

Stochastic Processes

A stochastic process is a set of random variables which are ordered in time and can be

continuous or discrete. If time, t, is continuous (usually -00< t < 09 then the random

variable is denoted by X(t). If time is discrete (usually t = 0, ± 1, ±2, ...) then the

random variable is denoted by X. A useful way of describing such a process is by its

moments, particularly the first and second moments. These are the mean and the

variance and covariance of the process. The third moment is the skewness of a

process (the degree of asymmetry of a distribution about it's mean), whilst the fourth

(the kurtosis) measures the flatness of a distribution relative to a normal distribution.

The first two moments of a stochastic process are described for continuous time with

similar definitions applying in discrete time.

The mean function

p.(t) = E[X(t)]
	

(4.1)

The variance function

c3 2 (t) = Var[X(t)]
	

(4.2)

The covariance function

y(t 1 , t) = E{{X(t 1 ) - j.(t 1 )][Y(t) - t(t )]}
	

(4.3)
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The term autocovariance is used instead of covariance when X and Y are refer to the

same stochastic process.

4.2.2	 Stationary Processes

A time series is said to be strictly stationary if the joint probability distribution of

X(t1), .., X(tn) is the same as the joint probability distribution of X(t1 + t), .., X(t +

t) for all t1, .., t, t.

If n = 1 it implies that the distribution of X(t) must be the same for all t, so that

= p.
	 (4.4)

a2(t) =
	 (4.5)

ie the mean and variance do not depend on time.

By putting n = 2 the joint distribution of X(t1) and X(t2) depends only on the lag, (t2

-t1). Thus the autocovariance function y ( t i, t2) only depends on (t2 - t1) and may be

written as y(t) where t = t2 - t1 and

y(t) = E{[X(t)—p.][X(t+t)—p.]} 	
(4.6)

= Cov[X(t),X(t +

The equations for the mean and autocovariance are often , used to define a second-

order stationary (weakly stationary) process with no assumptions being made about

higher moments than those of second order. The value of the autocovariance depends

on the units used to describe X(t) and can be difficult to interpret. It is sometimes

useful to divide the autocovariance by the variance function to produce the
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autocorrelation function, p(t), which can lie between ± 1. Thus

p('r)='y(t)—y(0)
	

(4.7)

4.2.3	 Useful Stochastic Processes

There are 4 different types of stochastic process, with different probability models,

which are sometimes useful in setting up a model for a time series.

4.2.3.1	 Purely random

A discrete-time process is purely random if it consists of a sequence of random

variables (Zt) which are mutually independent and identically distributed. The

process has a constant mean and variance and an autocovariance of zero, and is

strictly stationary. A purely random process is often described as white noise.

4.2.3.2	 Random walk

A process is said to random walk if the value at one particular instant is totally

dependent on the previous value, with some added noise. Suppose tZt ) is a discrete,

purely random process with mean t and variance cr 2 . A process fXt} is said to

random walk if

xt =xt- 1+zt	 (4.8)
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which gives

E(X )	 = tj.t

Var(X 1 ) = ta2

As the first two moments change with time, this process is non-stationary.

4.2.3.3	 Moving average

A moving average process (Xt) is a linear combination of a purely random process

(Zr). Suppose (Zr) has a mean zero and variance c then

X = 13 oZ +131Z_i-i-.. •+3qZt_q
	 (4.10)

where	 X is a moving average process of order q

() are constants

Since the process is expressed in terms of purely random processes, it is second order

stationary for all values of the { t31). The mean and variance can be expressed as

E(Xt) =0
	

(4.11)

Var(X) = ± 2 	(4.12)

If the purely random process fZt) is normally (or Gaussian) distributed then so is the

moving average process (Xt ) and it is strictly stationary. Usually in a least squares

estimation a set of parameters (Xs) are described in terms of the observations by some

linear combination. The observations, or measurements, contain different types of

(4.9)
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errors (Zs) which are often assumed to be normally distributed. If this is the case, the

linear combination can be described as a moving average process and the resultant

parameters will also be normally distributed.

4.2.3.4	 Autoregressive

An autoregressive, or Markovian, process is a process that is regressed on past values

of itself. In other words, if ( Z1j is a purely random process with mean zero and

variance	 then an autoregressive process (Xt) of order p can be described as

X 1 	 iXt_i++xpXt_p+Zt
	 (4.13)

where	 I a 1 ) are constants

A process of order 0 is a representation of a purely random process as

xt=zt
	 (4.14)

4.2.3.4.1	 First order autoregressive

Typically a first order autoregressive process is used to model stochastic behaviour.

This can be represented as

X =aX_ +Z
	

(4.15)

If a = 1 then this is a random walk process. If IaI < 1 then initially the process is

non-stationary and the variance experiences bounded growth. Noise is added to the

system until it has reached a steady state, and the process then becomes second order

stationary. With this condition (lal < 1), the first two moments can be expressed as
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E(X)=O
	

(4.16)

Var(X)	
cy/(1_2)	

(4.17)

and the autocorrelation function as

p(k) = a 1	k = ±1,±2,...	 (4.19)

4.2.3.5	 Combination of processes

It can be seen that the above processes are not independent of each other. For

instance, an autoregressive process can be described in terms of an infinite order

moving average process. The autocovariance function used later in this report to

describe pseudorange residuals is first order autoregressive, but other processes could

equally be used. Another useful class of models for time series is a combined

autoregressive and moving average process (ARMA). Thus an ARMA process (X')

is described by past values of itself combined with several purely random processes.
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4.3	 ANALYSIS IN THE FREQUENCY DOMAIN

4.3.1	 A Sinusoidal Model

The analysis of a time series in the frequency domain is widely used in fields such as

electrical engineering and geophysics, but seldom applied to surveying applications.

For this reason, the following section intuitively discusses frequency domain analysis

and associated terms, without attempting a rigorous approach.

A time series, X, that contains a sinusoidal component could be described as

X = Rcos(ot+8)
	

(4.20)

where	 0 is the frequency,

R is the amplitude, and

0 is the phase of the sinusoidal variation.

It would be usual to expect that X contains a summation of different sinusoidal

components, and therefore could be represented as

X = Rcos(ot+8)
	

(4.21)

where	 R is the amplitude at frequency o

By applying the cosine rule of cos(A + B) = cosAcosB - sinAsinB, equation (4.21)

can be described as a combination of cosine and sine terms:

x
	

(4.22)
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where	 a = R cos8, and

b =—RsinB.

This rather simplistic approach shows how a time series can be represented by means

of a multitude of sinusoidal amplitudes and frequencies.

4.3.2	 Spectral Representation

The term "spectral" is associated with frequency domain analyses and is often teamed

with "representation", "distribution function", and "density function". Each of these

terms are discussed, but for full details refer to texts such as Chatfield (1989),

Koopmans (1974) and Bloomfield (1976).

In (4.22) the summation is made from a limited number of different frequencies (j = 1

to k). In fact all possible frequncies can contribute to the series, and to show this

mathematically it is neccesary to integrate (4.22). The limits of the integral will be

for a discrete process and for a continuous process. The integral is known as a

spectral representation of the time series.

The spectral distribution function, F(co), arises from the Wiener-Khintchine theorem

that states that for any stationary stochastic process with autocovariance function

y(k), there exists a consistently increasing function F(o) such that (Chatfield, 1989)

Y(k)=fcos((Ok)dF(CO)	 (4.23)

Equation (4.23) is called the spectral representation of the covariance function, and

F(o) can be shown to be the contribution to the variance of the process made by the

frequency range 0 to a.
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The spectral density function is obtained by differentiating F(co) with respect to 0)

and is often denoted by f(a), ie

The function now repesents the contribution to the variance of components with

frequencies co to 0) +da), and when the complete spectrum is drawn the area

underneath the curve represents the variance of the process. The spectral density

function is, in fact, the Fourier transform of the autocovariance function.

The word "power" is often used with both the spectral distribution and density

functions. This originates from the engineer's use of the term describing the passage

of an electric current through a resistance. For sinusoidal input, the power is

proportional to the squared amplitude of the oscillation, and the total power is equal

to the variance of the process (Chatfield., 1989).

4.3.3	 Fourier Analysis

Fourier analysis is simply a way in modelling the time series by means of sinusoidal

frequencies and amplitudes. The method uses a series developed by Jean Baptiste

Fourier which describes a well-behaved function, x(t), as

ka0
x(t) =—+(ar cosrt+br slnrt)	 (4.25)
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1 rwhere	 a0 = -j x(t)dt

a r !fx(t)cos(rt)dt	 r = 1,2,...

b = -j x(t)sin(rt)dt	 r = 1,2,...
it -,

The amplitude of the rth harmonic is given by

Rr =J(a+b) (4.26)

4.3.3.1	 FF1'

The Fast Fourier Transform (FF1') is a technique that finds the Fourier series in order

to model a process and significantly reduces the number of computations that are

required. This method is even more computationally efficient if the number of data

samples within the process is a power of 2, and if this is not the case it is usual to pad

the data with zeros or remove some of the final samples.

4.3.4	 Sampling Frequencies

When converting the time series into the frequency domain, it is necessary to model

the series with a wide range of different frequencies. The value of the limiting

frequencies are of particular interest as represent the lowest and highest frequency

that the data set can be sampled. The lowest frequency is simply the length of the

data set. In other words if a data set is collected for one hour, it is possible to fit a

sinusoidal component with a frequency of one hour (1/36O0 Hz). Obviously there is

only one set of data that can contribute to this frequency, so there is no redundancy

when modelling at this frequency.

The highest frequency is known as the Nyquist and is related to the sampling, or
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recording, interval of the data set and is given by (Koopmans, 1974)

where	 Et is the sampling interval.

This means that if the data set is recorded at one second intervals, it is impossible to

obtain information at frequencies higher than 1/2 Hertz - one cycle every two

seconds. Therefore if a particular phenomena is believed to occur at a high

frequency, then the data set recorded to look at this must be at a frequency at least

twice as high. Accordingly, if the phenomena is believed to be at a low frequency it

is necessary to extend the period over which the data set is recorded.

4.4	 THE ANALYSIS OF EXAMPLE TIME SERIES

4.4.1	 Description of the Analysis

Three different time series processes have been generated using the Matlab package

on the computer, in order to visually describe some of the aforementioned processes

and analyses. In each case the time series , the autocorrelation function and the

Fourier analysis is plotted. The Fourier analysis uses the FF1' techniques and is a plot

of amplitude against frequency. The variance of the process is determined using the

time domain analysis (the autocovariance at zero lag before scaling into the

autocorrelation function) and not by using frequency domain analyis (ie by the power

spectral density function). In each case the data set represents a time series recorded

at one second intervals for fifteen minutes giving 900 observations in total. The

different time series given here are examples of first-order autoregressive process
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with the values of a being 0, 0.8 and 1 respectively.

4.4.2	 A White Noise Process

A purely random process (4.14) was generated and scaled to have a variance of

approximately 9 m2. The autocovariance function was determined and scaled into the

autocorrelation function and the FFT was also computed. The analysis is shown in

Fig 4.1. The points to notice from the diagram are

1. The time series plot represents a completely random, non-deterministic, process

with a mean of zero a variance of 9 m2.

2. The autocorrelation function shows a vertical line at zero lag, and thereafter

noise. This represents the random process since, on average, there is no

correlation between observations which are recorded at different times.

3. The FF1' shows that the series is made up of sinusoidal components at all

frequencies with no overwhelming part since they all have similar amplitudes.
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Fig 4.1 White noise analysis

4.4.3	 A General First-order Autoregressive Process

The first-order autoregressive process (4.15) was generated for a value of a = 0.8,

and scaled so that the process had a variance of approximately 9 m 2. The analyses is

shown in Fig 4.2 with the points of interest being

1. The time series shows how the observations at one instance are related to those

at previous instances.

2. The autocorrelation function steadily declines from a value of one at zero lag to

approximately a value of zero. This again represents the relationship between

the observations.

3. The FFT shows that the process is built predominently out of low frequency

components. This indicates that the process is slow to change, which can be

verified by the time series plot. If the value of a was negative, then the time
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series would oscillate between positive and negative values resulting in a FF1'

analysis with high frequency components.
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Fig 4.2 General first-order autoregressive analysis

4.4.4	 A Random Walk Process

A random walk process (4.8) was generated and analysed as before. Since this is a

non-stationary process, there has been no scaling of the variance which is time

dependent. The points to notice for this analyses, shown in Fig 4.3, are

1. The time series clearly shows the "wandering" nature of the process which has a

mean and variance which are both time dependent.

2. The autocorrelation plot has a shallow gradient representing the high correlation

between data observations which have been taken at a considerable time interval

apart. The curve will eventually tend towards zero.
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3. The FFT plot again shows a concentration of low frequency components relating

to the high correlation.
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CHAPTER FIVE

GPS PSEUDORANGE ANALYSIS

5.1	 MODELLING TEMPORAL CORRELATION

In order to investigate the actual correlation that exists within GPS pseudorange

observations, as used for offshore positioning, it is necessary to select a certain time

series that represents the data. The pseudorange measurements themselves are fast-

changing due to the velocities of the satellites, and therefore their errors were

analysed. The actual errors were obtained through the computation of the

pseudorange residuals - the residual and error have the same magnitude, but a

different sign,

5.1.1	 Computation Of Residuals

Essentially there are two separate approaches to obtain the pseudorange residuals.

The residuals from a least squares estimation would be heavily correlated amongst

themselves and a large raw error for one range would be "dampened" and "spread"

into the residuals for all of the ranges. This correlation is known since it can be

obtained from the covariance matrix of the residuals (see 7.1.3 for further details):

= W.1 ACAr	 (7.6)

where	 A	 is the design matrix, and

W	 is the weight math of the observations
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So that this type of correlation is kept to a minimum, the following method was used

to compute the residuals of individual pseudorange measurements to the satellites:

v L l — dT 1 +dT —d1	 (5.1)

where	 v1	 is the pseudorange correction to satellite i

d 1 is the geometric distance computed between the

coordinates of satellite i and the true coordinates of the

reference station

1 1	is the observed pseudorange to satellite i

dT 1	is the clock correction for satellite i in metres

dTR	is the receiver clock correction in metres

Equation (5.1) is similar to that for the computation of the pseudorange corrections

(3.26), the only difference being the reversal of the sign. It is clear from (5.1) that to

produce a true estimate of the individual residuals, it is not possible to avoid using a

the least squares process as the pseudorange measurements include a receiver clock

offset. To convert the pseudorange into an observed distance, it is necessary to

compute the receiver clock error and the satellite clock offset at each epoch.

5.1.2	 Autocovariance Analysis

The residuals for all the satellites at every epoch are divided into time-tagged

residuals for each satellite. For each set, the autocovariance of the residuals is

calculated by the product of two residuals at a certain time interval (öt) apart. For

different values of 6t (0, 2, 4, ... secs) the autocovariance is computed by taking the

mean of the products of all residuals that are öt apart. This can be represented by:
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'y(&)

	

	 (5.2)
fl L0

where	 is the autocovariance at lag öt

is the pseudorange residual at time t

v151	 is the residual at time t+öt, and

n	 is the total number of v.

Having generated the correlation coefficients at different lags/delays for a certain time

series, it is then possible to fit a certain autocovariance function to the data. An

important consideration for the choice of autocovariance function is that it will be

used to generate a covariance matrix. Most mathematical procedures require this

matrix to be inverted at some stage, and it must therefore be positive-definite. The

translation of this property to the autocovariance function is not straight forward but,

for certain classes of positive-definite function, the Fourier transform is everywhere

positive or zero (Cooper and Cross, 1991).

The positive-definite first order autoregressive, AR(1) (Gauss-Markov)

autocovariance function (see 4.2.3.4.1) was used to model the time correlation of the

pseudorange residuals. This is given by:

2 -IotVre	 (5.3)

This function is characterised by two main properties which are illustrated in Fig 5.1

(Moritz, 1980).

• The variance,a2 , which is the autocovariance when 6t=0.

• The correlation time, T, which is the value of the time lag corresponding to an

autocovariance of y(0) / 2.
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A third property, curvature, is sometimes included which is a dimensionless measure

combining the gradient and rate of change of gradient of 7(6t).

Fig 5.1 Properties of a local covariance function (Moritz, 1980)

By using this function, the pseudorange residuals are being modelled in the following

fashion (see 4.2.3.4.1 for further details):

X t =ctX_1+Z
	

(4.15)

where	 (Xe)
	

is the pseudorange residuals process

tzt)
	

is the system noise

a
	

is a constant

The autocovariance function represented by equation (5.3) is the same as that for the

AR(1) process in (4.18), from:

y(k) = aka	 (4.18)
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where k=öt

5t 2
.•. y(öt)=a

as y(&) = —'y(öt)

8t 2y(öt)=cx a5

and a = e'1

y(6t) = a2e6t
	

(5.3)

5.1.3	 Fourier Analyses

In order to search for trends, or cyclic patterns, in the time series a Fast Fourier

Transform (FFT) was computed (see 4.3.3). This technique splits the time series into

different sinusoids at a range of frequencies and with varying amplitudes.

5.2	 TEMPORAL CORRELATION OF GPS PSEUDORANGE RESIDUALS

5.2.1	 Categorising Temporal Correlation

Different data sets were selected to allow different causes of temporal correlation to

be investigated. Three broad categories were identified, these being:

1. Correlation in the GPS system which the users can do little about. Causes of this

include satellite clock errors, satellite orbit errors and atmospheric refraction.

Selective Availability (SA), the intentional degradation of the pseudorange

accuracy, by means of dithering the satellite clock and satellite position epsilon

(1.4.1.3) is also in this category. Obviously these causes are time variant and will

therefore be different for both data sets recorded at different times, but will be

similar for all simultaneous data sets.
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2. Correlation introduced by the computation methods that have been used. This is

kept to a minimum but cannot be completely avoided. Calculating the receiver

clock correction will introduce some spatial correlation between satellites at

each epoch. Temporal correlation will result from any positional errors (for

both the satellites and the known ground station) when computing the residuals.

Positional errors at the ground station have been reduced by taking a mean

position for all data sets

3. Correlation caused by the receiving equipment used. This will be due to

different receiver/antenna design and data flow within the receiver, and from the

set up location due to multipath. This is dependent on the particular type of

receiver, the location of the antenna, and the geometry of the satellites.

5.2.2	 Description of the Data Sets

Various GPS pseudorange data sets were recorded in order to analyse possible causes

of temporal correlation. This included recording data when SA was both off and on,

using different receiver types and different smoothing algorithms, thus enabling the

following to be analysed:

The effect and characteristics of SA on the pseudorange corrections.

• The reduction of noise levels and the increase in temporal correlation when

smoothing raw data.

• The difference between different smoothing algorithms that manufacturers

provide within the receiver.

•	 Differences between receiver types.

•	 Differences between individual receivers of the same type.
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Three different receiver types were used for the collection of the data sets: the Ashtech

LMXII with P code upgrade, the Trimble 4000 SST, and the Leica System 200. All

processing was carried Out using the C/A code pseudoranges as produced by the

particular receiver, except for the earliest Ashtech files for which doppler

measurements were included for smoothing algorithms in order to test the difference

between the raw and smoothed data. All of the sets comprised of approximately one

hour of data recorded every second. Table 5.1 summarises the data sets.

File	 Date	 Receiver	 SA

S1'N10731 14/3/91 Ashtech LMXIT 	 Off

STN30731 14/3/9 1 Ashtech LMXII 	 Off

GTYH1921 10/7/92 Trimble 4000SST On

COMP2O21 20(7/92 Leica SR299 	 On

SAMP2O21 2017/92 Leica SR299	 On

PP923421	 7/12/92 Ashtech LMXII 	 On

WI-193061 1 2/3/93	 Ashtech LMXIT	 On

PP93061 1	 2/3/93	 Ashtech LMXH	 On

Table 5.1 Pseudorange data sets

The data sets that were recorded simultaneously were on the dates 14/3/9 1 when SA

was not being implemented and on 2/3/93 when SA was officially turned on.
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5.3	 RESULTS OF THE PSEUDORANGE ANALYSES

5.3.1	 The Analysis of Pre SA Data

The data sets used to analyse the characteristics of the GPS performance before the

implementation of SA were recorded in early 1991 in Newcastle. Two different data

sets were simultaneously recorded and were processed using a smoothing algorithm.

One of the data sets (STN1O731) was also processed using "raw" pseudoranges to

examine the noise characteristics of early geodetic receivers, and the improvements

that may be obtained with smoothing operations. The algorithm that was used to

smooth the pseudoranges is given by:

PRS(tn) = PRS(t i) + ID(t) + 21
	

(5.4)

where	 PRS	 is the smoothed pseudorange,

is the epoch at time t,

tn_I	 is the previous epoch,

ID	 is the scaled integrated doppler observable, and

21	 is an empirically derived ionospheric correction.

The integrated doppler measurement represents the rate of change of phase of the

signal and is measured in cycles/second, or Hz. Multiplying the doppler figure by the

time interval between the two epochs produces the change of phase, and then scaling

this by the wavelength (19 cm for Li) results in an accurate indication of the change in

distance that should have occurred. The ionospheric correction is used to account for

the phase advance and group delay phenomena. This process must be initialised for

each satellite by setting the smoothed pseudorange to be equal to the observed raw

value and is reinitialised every time a cycle slip or loss of lock on the doppler

measurement is detected.
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The results in terms of satellite (SV) correlation times and variance for the two data

sets using the smoothing algorithms are given in Tables 5.2 and 5.3. Full graphical

output can be found in Appendix C.

SVT (s) ________

2	 104.1	 16.2

6	 276.9 47.4

11	 52.2	 2.3

16	 226.6 30.7

17	 337.7	 34.3

19	 601.1	 36.8

Table 5.2 STN1O731 - smoothed

SV T (s)	 2(m2)

2	 297.0	 8.8

6	 1539.0 53.8

11	 47.3	 1.7

16	 1674.0 38.2

17	 2624.0 37.4

19	 897.0	 38.5

Table 5.3 STN30731 - smoothed

The general trend for both data sets is that all residuals lie within a ± 15m band, which

is confirmed by the variance values (maximum of 53.8 m2). The autocorrelation

analysis shows long correlation times (except for SV 11) for both data sets,

particularly for STN3073 1. The analysis for both files showed very little deterioration

of the correlation over the maximum lag interval used (180 s) and for some of the
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satellites the autocorrelation function value was 0.9 even at this lag. The difference

between the two data sets can be put down to the doppler tracking within the different

receivers, and also that the initial residuals for all satellites in the STN 10731 file were

in the region of ± 30m. The Fourier analyses again showed veiy similar patterns for

both data sets. There were no substantial peaks at any frequency, except for at 0 Hz

which represents a general offset from zero which most probably resulted from

unchanging atmospheric conditions. The fact that no other substantial peaks were

found means that no repeatable cyclic patterns occured. An example of the time series

and the autocorrelation functions are shown in Fig 5.2 and 5.3.

Fig 5.2 Pre SA time series

1
	 Autocorrelation
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0.9

0.851
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Fig 5.3 Pre SA autocorrelation
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The data set for STN1O731 was processed for a second time, but with no smoothing

algoritms applied. The results are given in Table 5.4.

SV T(s)	 a2(m2)

2	 59.1	 35.9

6	 158.8	 85.4

11	 16.1	 10.0

16	 128.2	 56.6

17	 216.7	 52.3

19	 240.5	 87.4

Table 5.4 STN1O731 - raw

The differences shown in Tables 5.4 and 5.2 are those expected from introducing

smoothing algorithms. The variances are greater, representing more noise in the

system, and the correlation times are shorter, again a result from the increase of noise.

The Fourier analyses (see Appendix C) are exactly the same for all satellites, indicating

that the same patterns are in both the smoothed and raw data. This proves that the

smoothing algorithms simply reduce the noise level of the pseudorange data and do not

change the general characteristics of the series.

5.3.2	 Post SA data

5.3.2.1	 Trimble data sets

The Trimble data set was recorded with a 4000SST receiver near Merthyr Tydfil,

Wales, in July 1992. The pseudorange data is initially smoothed within the receiver,

and no further algorithms were implemented. SA was on, which is indicated in the

time series plots in Appendix D, since the residuals are frequently changing and are in
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the range ± 150m. The noise characteristics of this data set cannot be examined in the

same way as for the pre-SA data since the overwhelming cause of the high variances is

that of SA. The autocorrelation plots show the traditional pattern represented in Fig

5.1 with the values for all satellites being below 0.5 at the maximum lag (180 s). The

exponential curve, representing the first-order autoregressive process (see Fig 5.4)

does not appear to fit this data (this is the same for most of the data collected with SA

on) and a more appropriate process may have been a second or third order

autoregressive, or a combined process. The Fourier analysis shows cyclic trends with

large amplitudes at frequencies ranging from 0.00025 Hz (a pattern that repeats every

4000 s) to approximately 0.0035 Hz (repeating every 280 s). For many of the satellites

(SYs 24, 20, 12, 3) the maximum amplitude is at a frequency of 0.0012 Hz, which is

one cycle every 830 s. The variance and correlation time results for this data set are

given in Table 5.5.

Fig 5.4 Trimble example autocorrelation
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SV T(s)	 2(m2)

3	 128.9	 1068.0

12	 171.0	 1517.0

13	 232.1	 1774.0

20	 170.0 3425.0

24	 169.7	 1808.0

25	 228.4 981.6

Table 5.5 GTYH1922

5.3.2.2	 Leica data sets

Two data sets were collected with the Leica SR299 receivers which have the capability

to perform different smoothing operations within the receiver. One data set

(COMP2O2I) was recorded with compacted pseudoranges which are generated by

taking an average of many high frequency ranges, for instance by recording

pseudorange measurements every 0.1 s and averaging to get a value for every second.

The other data set (SAMP2O21) was using sampled measurements which uses the

observation recorded at the particular instant. Both were recorded in Newcastle in

July 1992 when SA was on. There is no noticeable difference between the two

approaches in terms of correlation times, variances (see Tables 5.6 and 5.7) and the

Fourier analyses, and since the data sets were not recorded simultaneously no

conclusions about the smoothing processes can be made. The Fourier analyses (Fig

5.5 is an example) showed cyclic trends ranging from The lowest possible frequency,

0.0005 Hz or one cycle every 2000 s, to a higher frequency of 0.004 Hz, or one cycle

every 250 s. A substantial peak was noticeable for all satellites at a frequency of

approximately 0.0025 Hz, or every 400 s. Full output is provided in Appendix E.
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Fig 5.5 Leica example Fourier analysis

SV T (s) &(m2)

11	 196.7	 1095.0

17	 94.6	 1046.0

19	 110.1	 876.9

21	 145.5	 756.2

23	 147.2	 1072.0

28	 125.1	 2788.0

Table 5.6 COMP2O21

SV T (s)	 2(m2)

11	 138.0	 1020.0

17	 192.0	 1865.0

19	 131.4	 610.7

21	 207.1	 1118.0

23	 105.6	 1242.0

28	 218.6 2973.0

Table 5.7 SAMP2O21
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5.3.2.3	 Ashtech data sets

Data was recorded with the Ashtech LMXII receivers which had been upgraded to

measure the P code and to phase smooth the C/A code pseudoranges. The sets chosen

for analysis were observed in December 1992 (PP923421) and March 1993 (PP/WH

9306 11) which would allow any changes in the high frequency characteristics of SA

over that period to be identified. For the March data, two simultaneous data sets

recorded with the same instrument type at a distance apart of approximately 10 km.

Similar atmospheric conditions could be assumed, and therefore this analysis would

allow for differences between individual receivers to be examined. The variance and

correlation results for PP923421 are given in Table 5.8 which clearly show the high

variances and relatively short correlation times expected under SA conditions. The

correlation functions again follow the classical shape, which is not best fitted with an

AR(1) process, indictating that the estimated correlation times are all longer than has

actually occured. The errors in all of the pseudoranges are between ± 150 m and have

a maximum amplitude (except for SV 16) for the frequency representing one cycle

every hour - this is the lowest frequency that can be tested. Full graphical details for

this data set can be found in Appendix F, and an example of the time series is shown in

Fig 5.6 Ashtech example time series
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SV T(s) &(m2)

3	 150.6	 681.5

16	 149.9	 1518.0

18	 308.5 708.2

19	 235.1	 1629.0

24	 151.4	 644.1

27	 219.4	 1498.0

Table 5.8 PP923421

The results of the data sets recorded in March 1993 are shown in Tables 5.9, 5.10 and

Appendix G. The errors are in the range ± 200m which, again, is confirmed by their

variances and the amplitude of the lowest frequency within the Fourier analyses. The

exponential function appears to fit the correlation values for most of the satellites

with the estimated correlation times ranging from 132.0 to 325.5 s.

SV T(s)	 2(m2)

2	 160.7	 1892.0

16	 214.9	 3357.0

17	 171.6	 1782.0

26	 132.0	 3119.0

27	 325.5 4067.0

Table 5.9 PP93061 1
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SV T (s)	 c2(m2)

2	 225.9	 1292.0

16	 274.3	 2481.0

17	 182.2	 1506.0

26	 196.7 2360.0

27	 231.9	 3508.0

Table 5.10 WH930611

The Fourier analyses identified cyclic patterns ranging from 0.0003 Hz to 0.004 Hz

and these were similar for the same satellites at the two stations.

5.4	 CoNcLusioNs

The results given in 5.3 allowed a number of conclusions to be made on the effects of

smoothing algorithms, receiver design and SA.

5.4.1	 Smoothing Routines

The data recorded when SA was not activated (STN1O731) allowed for the analysis

of smoothing routines since the major error source within the data was user dependent

- a combination of receiver noise and multipath. The results show a decrease in the

average standard deviation of the series from 7.1 m for 4he raw data (Table 5.4) to 5.9

m for the smoothed data (Table 5.2). The differences in the correlation times is also

as expected with the smoothing process lengthening the values by a factor of between

2 and 3. This is also visually apparent since the raw data shows an immediate

temporal decorrelation to one half due to the excess noise. The similarities between
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the Fourier analyses prove that both the raw and smoothed data is the same time

series.

The differences between the Leica compacted and sampled data sets proved

inconclusive as there was no common trend for the correlation times or variances.

This can be explained by initial phase or doppler smoothing carried out within the

receiver and that the data was not recorded simultaneously and may have experienced

differing atmospheric conditions or levels of SA.

5.4.2	 Receiver Types

Comparing the output from the different receiver types showed little difference due

mainly to the overwhelming SA error sources present in most of the data. However,

the tests do show the advancement in receiver design/technology in terms of

producing higher precision C/A code measurement. By looking at the data sets in

their chronological order, a decrease in the noise can be seen from the earliest

Ashtech files (Appendix C) to the Trimble files (Appendix D) to Leica (Appendix E)

and finally the later Ashtech files (Appendix F and G).

Data recorded over the same periods with the same receiver types showed noticeable

differences. For instance, the pre SA data for STN1O731 had shorter correlation

times than for STN3073 1: an average of 266 against 1180 seconds. Differences in

the Doppler tracking abilities, maybe due to localised multipath, can account for these

differences. The post SA Ashtech files PP930611 and WH930611 showed

similarities within the estimated quantities but, again, this was due to the

overwhelming SA effects. PP93061 1 had an average correlation time of 201 s and

standard deviation of 53 m, and WH93061 1 resulted in 222 s and 46 m respectively.

The Fourier analyses are also similar showing that there was no significant

atmospheric or multipath differences over the short baseline.
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5.4.3	 Characterising SA

The most obvious difference between the pre and post SA results is that of variances.

The pre SA data produced standard deviation values of 5 - 8 m against the post SA

data which all averaged out to over 40 m. This is caused by the intentional dithering

of the satellite clock frequency and the epsilon orbit movement. The correlation

times are also very different, with SA resulting in a decrease of correlation time of

almost 20 minutes against values around 3 minutes for the post SA data. This is the

reason why the age of correction for DGPS operations is so critical.

The choice of time series model to fit the data is also an important conclusion from

the analyses carried out in this thesis. The AR(1) process appears to fit the pre SA

data (STN1O731, STN30731) and therefore gives a good indication of the actual

correlation times. The autocorrelation plots for the post SA data, however, showed

the more classical curve (as of Fig 5.1) for all satellites in the Trimble, Leica, Ashtech

PP923421 data sets. This type of function would more appropriately be modelled

using a higher order AR process (see 4.2.3.4) or a combined process (4.2.3.5). It

should also be noted that the autocorrelations for the most recent Ashtech files

PP93061 1 and WH93061 1 reverted back to the AR(1) exponential function - possibly

a change in the SA creating algorithms.

The Fourier analyses for the SA data shows that SA consists of numerous cyclic

patterns at varying amplitudes. It is extremely difficult to identify changes occurring

over the period July 92 (Trimble and Leica data) to March 93 (Ashtech) although

some general characteristics can be seen. The frequencies over which the FET could

sample the time series were very much dependent on the recording interval and period

for the data sets. All the data was recorded at second intervals which means that the

highest possible frequency was 0.5 Hz or one cycle every 2 s, (see 4.3.4) although no
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significant patterns were found at these high frequencies. Since most data sets were

approximately one hour in length, the lowest frequency is 1 cycle every 3600 s.

Table 5.11 attempts to characterise the analyses in to amplitude and frequency bands.

Amplitude (m) Frequency (Hz) Time of cyc%e (s)

	

0.0003	 3333

20-40

	

0.0015	 666

	

10-20	 L.

	0.002 1	 476

	

5-10	 .1.

_____________	 0.0039	 256

Table 5.11 SA frequencies

It should be noted that no distinction can be made between the Block I (which are

incapable of implementing SA) and Block II satellites. This is because at each epoch

all the satellites are used to compute the receiver clock offset (5.1) which is used to

compute the residuals. The same reasoning means that individual satellites within a

data set should not be separately analysed.
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CHAPTER SIX

THE KALMAN FILTER

6.1	 INTRODUCTION

The Kalman filter was originally developed in the field of electrical engineering

(Kalman, 1960). It is now readily used for processing information in many

different fields including surveying, navigation and GPS processing. The Kalman

filter is often perceived as a "black box" often producing excellent results, but

occasionally disastrous ones. This chapter presents the standard filter algorithms,

reliability algorithms and explaining the meaning of terms commonly associated

with the Kalman filter.

The Kalman filter is an optimal mathematical filter. This means that it follows a

certain criterion (the least squares criterion) when sequentially producing the "best

fit" results for a particular problem. The difference between the Kalman filter and

standard least squares is that the filter is specifically designed for dealing with

systems which have a known behaviour with time, by modelling that behaviour and

incorporating it with the observables. One of the simplest 'examples of such a

system is that of a moving vessel with the desired results being its position and

velocity. This movement along with the observations from the positioning system

can be used to provide an optimal solution and is often processed at every instant

that the observations come into the system, thus continuously providing the

navigator with the vessels position.
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6.1.1	 Predicting, Filtering and Smoothing

The filter is often split into three sections known as prediction, filtering and

smoothing. The same scenario of the moving vessel will be used to represent the

workings of these operations and they occur within the filter in the following order

1. Using the vessel's present results (positions, velocities and their precisions) and

the model of the vessels movement, the results at the next epoch (in the future)

are predicted.

2. At the next epoch (the present), new position data is now available and is

incorporated with the predicted results to obtain the ifitered solution.

3. Starting from this last filtered solution, the filtered and predicted results from

previous epochs can then be smoothed to obtain better results for these epochs.

The smoothed solution is often carried out post-mission using all the available

solutions. Cross (1983) explains these terms showing a vessel's track with its

positions obtained at different epochs (t1, t2 , . . . , tj). The epoch tj is considered the

present and tj is the time at which the vessel's position is to be estimated.

Prediction, filtering , and smoothing can then be defined as

tj < tj	 predicting,

tj = tj	filtering

tj > tj	 smoothing

and are represented in Fig 6.1.

125



Chapter Six: The Kalman Filter

t i t 2	ti

smoothing
predicting

filtering
ti

Fig 6.1 Predicting, filtering and smoothing

6.1.2	 GPS Processing using the Kalman Filter

There are many different examples in GPS processing for which the Kalman filter is

the ideal tool. For more details of these examples, the reader should refer to

Merminod (1989).

Navigation. Kalman filters have been used for navigation on land, sea and in

space, and have been developed to incorporate most positioning systems. This

situation uses the example above, with the vessels motion being modelled and

combined with the positioning observations. Models for this application will be

discussed later in this thesis.

Pseudorange smoothing. The GPS pseudorange values at future epochs can be

predicted, as can phase observations. The actual pseudorange values can then be

combined with the phase observations within the filtered solution to create the

so-called "phase-smoothed pseudoranges". Similar operations can be carried out

using GPS doppler and pseudorange observations.

Orbit computations. The Keplerian elements contained within the GPS

navigation message are predicted values. These values are updated, or filtered,

at the GPS Control Segment using tracking data from the monitor stations.
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More predictions based on these values are then made, which are subsequently

uploaded to the satellites.

Integer ambiguity resolution. The Kalman filter may be used to help resolve

the integer number of cycles ambiguity for phase processing. Filtering could be

particularly important for maintaining a small search area for the single epoch

FARS phase processing techniques.

Performance monitoring. The Kalman filter is an ideal tool for the integrity

monitoring of the GPS system. Outages in individual pseudorange

measurements can be readily identified, as can phase cycle slips, by using

associated reliability test statistics. Such testing procedures will be discussed

later

6.2	 TIlE KALMAN FILTER MATHEMATICAL MODELS

The Kalman filter incorporates information from both the incoming observations

and the perceived dynamics of the system. It therefore uses two mathematical

models

1. the measurement, functional, or primary model that relates the parameters to

the observations, and

2. the dynamic, kinematic, or secondary model that relates the parameters at

epoch tj to those at epoch tj4.

Before describing the two models, it is necessary to introduce the state vector

containing the desired parameters.
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6.2.1	 The State Vector

The state vector within the Kalman filter algorithms is a vector containing the

parameters to be estimated along with additional parameters that model the

behaviour of the system. If the system is that of a moving vessel with the

positioning system ultimately providing its easting and northing position, then the

state vector, x 1 , may comprise of

x 1 = [E, N 1 E,	 (6.1)

where

are the position components in easting and northing

are the velocity components

are the acceleration components

and the subscript i denotes the state at time i.

Along with the state vector, the precision of these parameters held as variances and

their covariances are also computed. These are contained within the non-singular

covariance matrix of the parameters, Cxi.

	

6.2.2	 The Measurement Model

This model relates the measurements to the parameters within the state vector.

Suppose that 11,12,.. .,i are the true values of the parameters at epochs t 1 , t2 , ..., tj

and that 11, 12, ..., I are vectors of the observations at the corresponding epochs

(Cross, 1983). The measurement model can be written as

F1 (11 )=11	 at epoch ti

F2 (12 )= 12	 at epoch t2,
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or more generally

F1(1) = l	 at epoch t.	 (6.2)

if the relationship between the observations and the parameters is non-linear, then

the model must be linearised. The form of the linear measurement model that is

used within the Kalman filter algorithms is given by

A 1 x 1 = b 1 +v 1	(6.3)

where	 A1	 is the design, or Jacobian, matrix given by ôF/ôx

x1	is the estimate of the state vector

b1	is the "observed - computed" quantities

v1	is the vector of residuals.

Typically, the measurement model will not solve for all the parameters within the

state vector at any one epoch. For example, in (6.1) the positioning system may

only be used to determine the easting and northing coordinates of the vessel.

6.2.3	 The Dynamic Model

The dynamic model represents the behaviour of the system as it varies with time.

The general functional relationship therefore relates the state vector between two

subsequent epochs (FLI), and can be expressed as

FI.LI (i .l ,i	 t.)
	

(6.4)

where	 is the true state vector at time t, and

is the true state vector at time tj1.

129



Chapter Six: The Kalinan Filter

This is reduced to the discrete linearised form

= M l x ii +y, 1	(6.5)

where	 M11	 is the transition matrix from time tj4 to time tj,

y 1 .1

	

	 is the dynamic model noise (residuals) from time t. 1 to

time tj.

6.2.4	 Example of a Dynamic Model

The transition matrix, M11 , describes the behaviour of the system between the two

time epochs and will depend on how that behaviour has been modelled. It is often

(especially for navigation systems) sufficient to use a very simple polynomial model

to describe the behaviour. Consider y(t) to be a continuous process, which is then

expanded using Taylor's theorem about the point t to determine the process at a

later time (t + t). This expansion is given by (Cross, 198Th)

y(t+St)y+'6t+t2/2+6t3 /6+...	(6.6)

where	 ' represents the first time differential of the process.

If the differentials are also considered continuous then two further Taylor's theorem

expansions can be written. If all terms higher than the third differential are said to

be negligible, the two expansions become

+ 6t) 1+	 +
	

(6.7)

(6.8)
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If two time epochs t1 and t are considered to be an interval S t apart, then

equations (6.6), (6.7), and (6.8) can be combined and expressed in matrix notation

as

y	 1 St 5t2 /2 y	 5t3/6

= 0 1	 St	 ' + 5t2/2
	

(6.9)

0 0	 1	 &

To represent a positioning scenario, let the process y(t) be the easting and northing

coordinates of a vessel. Equation (6.9) then contains the state vector (6.1) and can

becomes

E

N

E

N

E

1 0 St

010

001

000

000

000

0 E

5t2/2 N

OE

St	 IT

oE
1

5t3/6

0

5t2/2
+

0

St

0

0

5t3/6

0 IE1
&2/2 []

0

St

(6.10)

which is of the dynamic model form

= M 1 x 1 +Tg
	

(6.11)

The vector y 1 in (4.5) is now represented by the product of a matrix T by a

random noise vector g. The vector g, representing the"rate of change of the vessel's

acceleration, is often referred to as the driving noise or forcing function.
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6.2.5	 The Stochastic Models

The Kalman filter algorithms combine the dynamic and measurement models

together to create an optimum solution. In order to do this, both models must be

given an appropriate weighting which is expressed by their stochastic models - their

covariance matrices.

The stochastic model of the measurement model is expressed as the covariance

matrix of the observations, Cl 1 (= Wç 1). This matrix contains the variances of the

individual observations from the particular sensor(s) and any covariances among

them.

The stochastic model of the dynamic model, Cy, requires a complicated numerical

integration process for most applications (Cross, 198Th). For the polynomial model

example in (6. 10), however, the stochastic model can be obtained by applying

Gauss' propagation of error law. The driving function, g, representing the rate of

change of the vessel's acceleration can be considered to be a random process with a

diagonal covariance matrix, Cg. From the error propagation law, the covariance

matrix of the dynamic noise can be found by

Cy = TCgTT
	

(6.12)

For the dynamic model equations in (6.10), the stochastic model can be obtained

from the matrix products
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6t3/6
	

0

0

6t2/2
	

o
	

o [öt3 /6	 o	 öt72
	

0	 3t 0

0
	

öt2 /2 [0
	

0 &/6	 0 &2/2 0 &

6t
	

0

0
	

6t	 (6.13)

where	 is the standard deviation of the rate of change of the

vessel's acceleration in either direction.

Cross (1987b) gives two reasons for assigning the correct values for the two

stochastic models.

1. The covariances matrix of the state vector (computed from the Kalman filter

algorithms) depends on the two stochastic models. If these models are

incorrect, the resultant precisions obtained from the state covariance will also be

wrong. This is most serious if the models are over optimistic and the

positioning results appear to be of a higher quality than they actually are.

2. The second reason depends not on the actual sizes of the covariance matrices,

but on the ratio between them. If the values of CI are too over optimistic then

the Kalman filter solution will tend to follow the solution from the measurement

model with the dynamic model having very little effect. If the position of a

moving vessel was plotted, it would follow a rugged track which would be a

cause of the errors and noise within the positioning system. This is known as

under-filtering. On the other hand, if the valus of Cy are too optimistic in

relationship to Cl, then the vessel's track will appear extremely smooth and may

not follow the vessel's true track. This is over-filtering.
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It should be noted that both these circumstances can be overcome by applying the

correct statistical tests.

6.3
	

THE KALMAN FILTER ALGORITHMS

6.3.1
	

The Kalman Filter Assumptions

The Kalman filter is numerical optimal estimator. This can be defined as an

algorithm which processes all of the available information to produce an estimate of

the state of a system whilst satisfying some predefined optimality criterion (Cross,

198Th). The Kalman filter satisfies the "least squares" criterion by minimising the

quadratic form (Cross, 1987a)

v 1Ci'1 (+)v + VC1 1 V, +
	

(6.14)

where	 CI'1(+)	 is the covariance of the filtered state (6.22)

Least squares estimators are often referred to as best linear unbiased estimates (or

BLUEs) and their justification can be found in many texts, for example Cross

(1983).

A basic assumption in the formulation of the standard Kalman filter equations is that

there is no physical correlation between the observations at epoch tj and at a

different epoch, tk. There is also no equivalent correlation within the dynamic

model, nor any correlation between the two models. Following these assumptions,

the statistical models for the Kalman filter can be described as (Gao et al, 1992)
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ICy i=k
E(ykyl)=10 i^k

id i=k
E(vkvi)=tO i^k

(6.15)

(6.16)

E(ykvl)= 0
	

(6.17)

6.3.2	 The Prediction Equations

The prediction, or time update, algorithms represent the effects of the dynamic

model on the state and its covariance. Since the vector y is not actually known, it is

assumed to be zero and the state vector is given by

I(-)= M, 1 1 1.1 (+)
	

(6.18)

The algorithms and notation follow that of Cross (1987a). The symbol A denotes an

estimated quantity. The symbols (-) and (+) after a matrix or vector refer to

instants immediately before and after measurement updates respectively, and are

referred to as the predicted and filtered solutions. Appendix H gives other notation

commonly found within Kalman filter texts.

The predicted covariance matrix of the state can be obtained from

C1 1 (-) M .1Ci 11 (+)M 1 +Cy
	

(6.19)

It is clear that equations (6.17) and (6.18) require starting values for filtered state

vector and its covariance matrix at the very first epoch. These values should be as

near as possible to the "truth", in order for the Kalman filter solutions to quickly
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tend towards optimality. The further the initial starting values from the actual

values, the more epochs it takes the filter to reach this situation.

6.3.3	 The Filtering Equations

The algorithms for filtering, or the measurement update process, provide a best

estimate for the state and its covariance by incorporating the observations with the

predicted values from (6. 17) and (6.18). The filtered solutions are given by

G 1 = CI(-)A (CI +ACI1(-)AT)'	 (6.20)

i.(+)= I 1 (-)+G1 (b +A1i1(-))
	

(6.21)

CI(+)= (I-G1A1)CI(-)
	

(6.22)

G is the Kalman filter gain matrix which controls the amount the predicted state

vector with its covariance matrix is affected by the measurements.

A more stable solution for the filtered covariance matrix, which should always

maintain symmetry, is given by

C1 1 (+) = (II— G 1A )CI(-)(I— G1A1 )T +G 1 CI 1 GT	 (6.23)

6.3.4	 The Smoothing Equations

The smoothing process is a backward operator that is often carried out after the

completion of the system to fully optimise the state vector and its covariance matrix.

If there are a total of n epochs resulting in n state vectors (ie i=n), then the

smoothing solution will produce results at epochs n-i, n-2, ..., 1. The smoothing
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algorithms require a starting position, for which the filtered solutions at the final

epoch is used - thus for this epoch the filtered and smoothed solutions are the same.

Using the notation (s) to indicate a smoothed solution, the process can be written as

Initially letting

I(s)=I(+) & CI(s)=CI(+)	 (6.24)

then (for i	 n, n - 1, n - 2, ... etc)

S i = C1.1(+)M1C1:'(-)
	

(6.25)

I 11 (s)= i.1(+)+S.(i1(s)-11(-))
	

(6.26)

CI 1 (s) = C1 11 (+) + S 1 (CI(s) - CI(-))S	 (6.27)

Equations (6.25) to (6.27) are used recursively to smooth back as many epochs as

desired and the process is known as fixed-interval smoothing, or as the R-T-S

method (Rauch, Tung and Striebel (1965) were first responsible for its description).

These algorithms do have many restrictions in the amount of data that has to be

stored for all of the epochs that require smoothing. This includes the predicted and

filtered state vectors with their appropriate covariance matrices at all epochs, and

the transition matrices at all update points. Merminod (1989) gives a thorough

selection of other smoothing algorithms that may be used and that require less

storage necessities.
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6.3.5	 Non-linear Models

It is quite rare to have a practical solution for which both the measurement and

dynamic models are linear. Iterative solutions are then required within the Kalman

filter to obtain the predicted and filtered states.

For a non-linear measurement model, the linearised model as in (6.3) is used to

solve for the corrections to provisional values, thus in

A 1 x = b 1 +v1
	 (6.3)

where

A	 is given by F1 /i, (+)

b1	 is the "observed - computed" given by I —F1(11(+))

x1	 is the corrections to the provisional value of the

filtered state vector, i1(+)

by letting 6x = i(-)— i 1 (+) , the filtered state is calculated iteratively by

i.(+)= I 1 (-)+G(b 1 —A 16x)
	

(6.28)

Equation (6.28) is solved iteratively by firstly letting i(+) = I(-), repeating until

there is no significant change in i 1 (+), and ultimately setting the filtered state

vector to this final value, ie I(+)= i(+). Since the design matrix (A 1) depends on

the provisional values, so will the gain matrix (G1), and these, along with the b1

vector should be recomputed during each iteration. In some cases, dependent on

model design, the design and gain matrices will not significantly alter and therefore

need not be recomputed.
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For a non-linear dynamic model, the predicted state vector, the transition matrix,

and the dynamic model noise needs to be computed at every recursion of the filter.

Cross (1987a) develops the formula for the case of the dynamic model being a first

order non-linear differential equation of the form

i =F(x,t)
	

(6.29)

The predicted state vector can then be found from

= i.i(+)+fidt
	

(6.30)

and the transition matrix via the relationship

M=M
	

(6.31)

and finally the covariance matrix of the dynamic noise by

Cy 1 = fMjCy1jM1dt
	

(6.32)

6.4	 STATIsTICAL TESTING OF THE KALMAN FILTER

The approach given here for the statistical testing of Kalman filters is that developed

by the Deift Geodetic Computing Centre. The procedures are for the detection,

identification and adaptation (DIA) of the overall model. Local tests are carried out

on information at a particular epoch (the predicted state and the values of the
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incoming observations) and test for model errors at that epoch, ie blunders. Global

tests are used to test for unmodelled global trends that may build up and are not

detected by the local tests. This section will deal only with the overall model and

slippage tests (detection and identification of biases) and for details of the adaptation

procedures (eliminating the presence of biases), the reader should refer to Teunissen

(1990).

6.4.1	 The Predicted Residuals

Both the global and local tests are carried out on the predicted residuals, or the

innovation sequence, which is defined "as the difference between the actual system

output and the predicted output based on the predicted state." (Teunissen 1990).

Thus at epoch t, the predicted residuals, '(-), can be written as

= b - A1(-)
	

(6.33)

with the covariance matrix as

C(-)= Cl 1 +A1CI1(-)A
	

(6.34)

In the case of a non-linear measurement model, the predicted residuals are given by

the initial "observed - computed" values held in the b1 vector.

6.4.2	 Local Model Tests

The detection of local model errors is carried out by the local overall model (LOM)

test statistic and then the identification of the observation(s) which contain model

errors (blunders) is carried out via a one-dimensional local slippage (LS) test.
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If the dynamic model is valid, then the predicted residuals should be a zero mean

white noise (stationary random) process with known covariance, and this is used to

detect the overall validity of the model. The two local hypotheses to detect model

misspecification at epoch t are

HI	
(6.35)

HI	 (-) N(KV,C(-))

where	 K	 is a mi-by-b matrix specifying the type of error that is

being sought (assumed known),

V	 is a b-by-i vector specifying the whereabouts of the

error (unknown),

is the degrees of freedom (the number of observations)

at epoch tj.

The size of b depends on the type of model error within the alternative hypothesis

and can range from 1 to m1 . Teunissen (1990) explains that if a particular sensor

failure (which is being tested for) requires additional parameters within the state

vector to model it, then b is equal to the number of these extra parameters. This

section will deal entirely on the one-dimensional case (b = 1), for which the vector

V becomes a scalar and the matrix K becomes a vector denoted by c.

The uniformly-most-powerful-invariant (UMPI) test statistic for detecting model

errors in the null hypothesis is

= v1(-)TCv1(-)'v(-)
	

(6.36)

= T/m1
	 (6.37)
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This value is then tested for a local model error, which is said to have occurred if

T oM ^Fa(m.,cO,O)
	

(6.38)

where	 Fa(nhj,x,0) is the a percentile central F-distribution value with m

and 00 degrees of freedom.

Once a model misspecification has occurred, the individual predicted residuals are

analysed to determine the observation with the most likely model error. This uses

the data snooping LS test statistic

t	
cTC(-y'(-)

LS	 T(c Cv1(-)'c)"2	
(6.39)

where c is a null vector except for unity at the corresponding observation being

tested, ie if, at epoch tj, there were a total of 5 observations and observation 3 was

being tested then

c=[0 0 1 0 
01T	

(6.40)

It should be stressed that the c vector does not necessarily have just one element of

unity, but is dependent on the test being carried out.

The slippage test is carried out for all observations at epoch tj, and the most likely

blunder is said to have occurred at the observation for which Jt • j is at a maximum

and this observation can be rejected. The LOM test of (6.37) can now be

recomputed to test for model errors within the remaining data. The tests are
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therefore repeated recursively until no further blunders are detected. Various

alternative hypotheses can also be tested for.

6.4.3	 Global Model Errors

The local model tests may prove insensitive to unmodelled trends within the

mathematical model which can build up slowly with time. The test statistics used to

detect such biases need to incorporate information from previous epochs within the

filter, and therefore require memory capabilities. The global overall model (GUM)

test statistic along with the global slippage (GS) test are for the detection and

identification of such phenomena.

The following two hypotheses are considered for the detection of global model

errors occurring between epochs t1 and tk.

'1,k () = N( O, C Ik (-))	
(6.41)

Hk	
vIk(..)-. N(KLkV,CIk(-))

where
-	 T1T= [(_)T	

OT ... Vk() j	
(6.42)

The matrix K1 ,k (now a	 m 1 -by-b matrix) is again specifying the type of model

error likely to occur, but now V is specifying the time period in which it occurs.

The UMPI test statistic is given by

I,k - k
GOM	 k (6.43)
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which can be written in the recursive form of

k	 1,k-1
I,k-1 T - mkT3OM

T DM = TG0M +	 k

mi

i=I

(6.44)

A global model error is said to be present within the system if

k
T k >F (m1,cc,O)GOM	 a

i=I

(6.45)

The global slippage test is more difficult to perceive and depends explicitly on the

alternative hypothesis (Teunissen, 1990). 	 For the one-dimensional case K1,k

reduces to the vector c1,k, and the global slippage test is given by

t 
=	 cLkCvi(-)v(-)

[	
i(_) CLk]

(6.46)

The vector C ik. depends on how the particular global error propagates through the

Kalman filter and must be determined within the filter itself. Teunissen and

Salzmann (1989) give three different examples, dependent on model error, of how

to compute this vector for circumstances that may commonly arise when using the

Kalman filter to process an integrated navigation system. The misspecifications that

are covered are

1. a permanent slip in the state vector that starts at time t1,

2. a single slip in the vector of observables that starts at time t1, and

3. a sensor failure that starts at time t1.
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6.5	 OTHER FILTERS AND FILTER TERMINOLOGY

6.5.1	 The Bayes Filter

The filtering algorithms derived by Kalman are not the only least squares optimal

estimation procedures for obtaining the states of a time varying system. Another

such method is the Bayes filter which produces identical results as the Kalman

form.

The only difference between both filters is in the manner the filtered covariance

matrix of the state vector and the gain matrix are computed. For the Bayes filter

these are computed as follows (GeIb, 1974).

CI(+) = [C11(-y' +ATCl;'A]'
	

(6.47)

G = Cx1(+)AC1'
	

(6.48)

The Bayes form therefore requires two main matrix inversions during each epoch of

the filter (the matrix Cl only has to be held in its inverted form). Both these

matrices are of the size of the number of parameters within the state vector. There

is only one matrix inversion necessary in the Kalman form (6.20) and this is a

matrix of the size of the number of observations coming into the filter at the

particular epoch. It is therefore computationally more efficient to use the Kalman

form when there are more parameters than observations within the system - this is

typical for the navigation scenario. On the other hand, if a large number of

observations were contributing to the same parameters then the Bayes form of the

filter would be more efficient. Such an example might be when using the filter to

model the shape of a seismic streamer with observations form GPS, laser tracking,

transponders, magnetic compasses etc, being available.
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6.5.2	 Filter Types and Terminology

The Kalman or Bayes filter is presently being used to process data from an extensive

range of different applications. This has led to advances in the use of single filters,

and the use of multiple filters during the estimation which, in turn, have led to new

terminology associated with the filter. Some of these attributes are listed below

(Merminod, 1989).

6.5.2.1	 Single filters

The following are some of the terms often used when describing a single filter.

Extended. This is used to describe non-linearities between the measurements

and/or the parameters by linearising the measurement and dynamic models. If

the performance can be improved via iteration (as in [6.28] and [6.30]), then

this is known as an iterated extended filter.

Augmented. The size of the state vector has been increased to model an

additional relationship that is common to several observations. A bias within the

positioning system being used is such an example.

Constrained. Relations involving only the parameters are included within the

filter. A typical example is a height constrained solution within a navigation

system, where the value for height is a priori knowledge from previous height

values or some assumptions being made (eg the sea surface is the same as the

geoid). Although the height value is not an actual observation it can be

modelled in the same fashion and entered as a pseudo-measurement.
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Adaptive. The idea of an adaptive Kalman filter has already been implied in

section 6.3. The DIA local and global model tests based on the predicted

residuals are used to detect errors within the measurement model. Once a

misspecification has been identified the filter has to be adapted by, for example,

eliminating outliers detected by local tests or by augmenting the state vector to

model some previously unknown bias detected by the global tests.

6.5.2.2	 Combined filters

Several filters can be combined in three different ways. Firstly, horizontal filtering

is where the results from one filter are used as the input for another filter.

Secondly, vertical filtering is where different data sets are passed through different

filters - for instance, to monitor the performance of one positioning system against

another. The final type of combined filter is where the results from a vertical

structure are processed together within another filter. This is therefore a

combination of the vertical and horizontal structures.

Different terminology is often associated with filters which use either of these

structures.

Cascaded. This is a horizontal structure where the initial filter is used to

merely compress the data before it is processed by the main filter.

• Distributed.	 This is a vertical structure with two, or more, filters

independently processing data from different sensors. An example is the

processing of Syledis and DGPS as primary and secondary navigation systems

on a vessel.
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• Federated. This uses the combined structure to process data from different

sensors. An example of a federated filter is the integration of GPS and INS

where both sensors are initially processed using independent local filters. The

results are then passed to the main filter which estimates an optimal solution for

the state based on the two sets of results. The results frou the niait fiket can.

then be used to benefit the performance within the local filters. For this

example, the short term stability of INS can be used to aid the ambiguity finding

for GPS phase processing, and the long term stability of GPS can be used as

updates to correct the drift within the INS.

• Parallel. The concept of parallel filtering is to test different hypotheses when

processing the same data. There is no interaction between the different filters,

although their different precision measures would be analysed to determine the

best hypothesis for the system. Merminod (1989) gives the example of selecting

the set of integer ambiguities via parallel filtering.

The aforementioned terminology in shown in Table 6.1 relating the processing of

one or more sensors with either one or more filters (Merminod, 1989).

	

_______________ single filter	 multi filter

single sensor	 classical	 cascaded

multi-sensor	 distributed	 federated

Table 6.1 Filter terminology
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CHAPTER SEVEN

THE EFFECT OF TEMPORAL CORRELATION ON POSITION,

PRECISION, AND RELIABILITY

7.1	 LEAST SQUARES REPRESENTATION OF THE KALMAN FILTER

One way to determine the effect of temporal correlation on position and precision

results is to use the least squares observation approach and to account for the

correlation within the covariance matrix. The following chapter describes how this is

done, and then examines the ability of the standard Kalman filter algorithms to detect

blunders within correlated data sets.

7.1.1	 The Kalman Filter Statistical Assumptions

The Kalman filter combines two models (the measurement and dynamic models) to

compute both the components of a state vector, and their precisions, at particular

moments in time, or epochs. The two models can be described as (Cross, 1987a):

The measurement model

A 1; = b1 +v
	

(6.3)

with the covariance matrix of the set of observations

cli
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i^k

ICYk
E(ykyl)=1

(6.15)

i=k

i^k

ICIk
E(vkvi)=t 0

(6.16)
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and the dynamic model

x = M .1 x1.1 +y.1	 (6.5)

with the covariance matrix of the dynamic noise

cyi.1

These models are incorporated in the standard prediction, filtering and smoothing

equations as described in chapter six. The derivation of the equations (Cross, 1987a)

depends on the statistical assumptions

This indicates that both the measurement and system (dynamic) noise are a white

noise process and are therefore uncorrelated between epochs. That is, the magnitude

of the observations being received at one epoch are not related to those received at the

previous epoch, nor will have any bearing on what will be received at the next epoch.

This is rarely true in surveying applications. The following sections will introduce

some possible causes for temporal correlation between observation epochs and will

analyse its effect on the position and corresponding precisions as output from a

Kalman filter. This is carried out by representing the Kalman filter in the general

linear least squares observation equation form, and by introducing the statistical

model:
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E(vk vl )^ 0	 i^k
	

(7.1)

7.1.2	 Correlation within GPS Observations

Most types of measurements used for positioning in navigation are correlated in time

for a number of reasons. For instance GPS pseudorange observations will be

temporally correlated due to atmospheric refractions, hardware designs in both the

satellite and the receiver, any smoothing of the raw observables (integrated doppler or

phase aiding), other error sources, and, in particular, selective availability. The

amount of temporal correlation within actual pseudorange observations, recorded

between March 1991 and March 1993, has been described in chapter five.

In DGPS operations, the reason for the rapid transfer of the pseudorange correction

message between the reference and the mobile stations is that the errors in the

measurements are assumed to be correlated over a short period of time. The

differencing technique of DGPS is only "valid" if the errors at the time of generation

at the reference station are "similar" to the errors experienced at the mobile station

when the corrections are being applied. The validity will depend mainly on the age

of the corrections as a ratio of the frequency of the satellite clock dither being applied

through SA, although other error sources (orbit, atmospheric, and multipath errors)

will also have an effect.

7.1.3	 The Least Squares Observation Equations

The least squares observation equations can be expressed in their linear form as:

(Cross, 1983)
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Ax = b+v
	

(7.2)

where

A	 design matrix relating the observations to the

parameters

x	 vector of parameters

b	 vector of observations

v	 vector of residuals

with a covariance matrix of the set of observations

W-'

By definition, the least squares solution for the vector of parameters, i, is the

solution that minimises the sum of the squares of the weighted residuals, vTWv. The

usual approach for computing * is via the normal equations, where

= (ATWA)1(ATWb)	 (7.3)

= A* - b

with the a posteriori covariance matrices

C* = (A"WA)'

c = w' - AC*AT

For a full derivation of these equations refer to Cross (1983).

(7.4)
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7.1.4	 The Kalman Filter as Least Squares Observation Equations

The least squares equations can, theoretically, be used to represent the Kalman filter.

Consider a moving vessel with its position and velocity components in the state

vector. The Kalman filter processes each epoch at a time. When data comes into the

system it will produce estimates for the states and their covariances for that particular

instant. By combining the states at all epochs into one vector and incorporating the

Kalman filter observation and dynamic models into a design matrix, then the solution

for all epochs can be computed simultaneously via least squares. This approach has

an advantage in that observations at different epochs are being combined and any

temporal correlation between the observations can be accounted for within the a priori

covariance matrix, W'. Adversely the approach greafly expands the size of the

parameters and is, of course, computationally inefficient.

The Kalman filter models can be combined into a least squares solution in the

following manner. All vectors and matrices with a subscript (representing an epoch)

refer to the Kalman filter models and those without subscripts are the least squares

notation.

The observation equations
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Ax = b + V

A 1	0	 0

—M 1	I	 0
o	 A2	 0
o —M 2 I

o	 0	 0

o	 0	 0 1	 b1i [vii
o	 [xli	 1J
o	 0	 0	

2 
J i b 2	v2 I

o	 0	 0	 I=IOI+Iy2I

Lmi bo	 0	 A m J	 LmJ [j

(7.7)

with covariance matrix

w.1
	Cl1	0	 'y(öt12)	 0

	

o	 Cy1	 0	 0
y(öt 21 )	 0	 Cl2	 0

	

O	 0	 0	 Cy2

7( tmi)	 0	 •Y(öt2)	 0

(7.8)

where 'y(&) is the autocovariance function for a first order autoregressive / Gauss

Markov process. This represents the temporal correlation within the observations

since

= E(vv1+)	 (7.9)

and for the aforementioned case, y (5t 1 ) can be expressed as

y(öt1) =
	 (5.)
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where

öt 1 	the time interval between epochs i and j

the variance of the observations

T	 the correlation time of the observations

7.2	 A SIMPLE KALMAN FILTER MODEL

For this part of the analysis, a very simple model was used so as to keep

computational demands to a minimum. A scenario of a vessel travelling in a straight

line with the observed quantities being its easting and northing position at every

epoch was set up. The state vector contained four elements : the vessel's position and

velocity components in easting and northing. As the motion of the vessel was

assumed to be in a straight line, the dynamic model was one of constant velocity. The

two models can be shown in the usual Kalman filter matrix notation as follows.

The measurement model

Ax1 =b^v1

rEl

1 1 0 0 O1 N I rEol rv1l

[o 1 0 oIIEHI N0I'	 IJil	 I	 L	 Lv2J

IrTL	 (7.10)L	 .i

where E° and N° are the observed quantities.

155



Chapter Seven: The Effect of Temporal Correlation on Position, Precision, and Reliability

The dynamic model

x = M1 1 x11 +y11

E	 1 0 & 0 E	 y1

N	 0 1 0 & N	 y2
=	 .	 +

E	 0 0 1 0	 E	 y3

0 0 0 1	 N	 y4

(7.11)

where öt is the time interval between epochs i and i-i.

The covariance matrix for the observation model, Cl i , was taken to be diagonal with

its elements representing the variances of the observations. The typical way to

compute the covariance matrix for the dynamic model, Cy 1 is by using Gauss's

propagation of error law

Cy=TCgT T	(6.12)

where Cg is the diagonal covariance of the vessel's driving noise. The noise is

assumed to be white and therefore have a random distribution and in this case is the

vessel's acceleration. The matrix T models the effect of the noise on the state vector

and its elements will consist of the components of the Taylor's series. Using this

approach leads to a singular Cy1.1 , a problem that could not be overcome as the

matrix has to be inverted to form the least squares a priori weight matrix. This matrix

was also taken to be diagonal with its elements representing the certainty of the

dynamic model.
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7.2.1	 Kalman Filter Straight Line Data

Data representing a vessel travelling in a straight line was created with the

observables simply being the easting and northing position of the vessel at a particular

epoch. A starting position, bearing and velocity is initially specified and the straight

line positions are computed. The time interval between the epochs was set to one

second and positions for 100 epochs in all were computed resulting in a data set

comprising of 200 observations.

A set of normally (Gaussian) distributed errors with zero mean and unit variance was

generated using the Box - Muller method (Press et al 1989). Errors taken from this

set were added to each observation. The track of the vessel is shown in Fig 7.1.

Easting Cm)

Fig 7.1 Simple Kalman filter data

7.2.2	 Verification of the Least Squares Approach

A set of data comprising of straight line position components with random errors

imposed on them (as described in 7.2.1) was passed through the Kalman filter models

and the least squares representation. The whole data set was processed by the Kalman
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filter approach firstly using the two forward operations (prediction and filtering) with

the following being computed

C(+)

i+1 ()	 ci+1 (-)

portraying the filtered and predicted states respectively. Each state comprised of the

position and the velocity components, ie [E N E i]T. The backward smoothing

operation was then used to provide an optimal solution for all epochs (except for the

final epoch) with the resulting output for later comparison

11 (s)	 C1.1(s)

In all 100 epochs were used and thus 99 smoothed states were estimated. Unit

weights were used for both Kalman filter models.

The data set was also processed using the least squares approach with the same

models and weighting. No temporal correlation was applied within the a priori

covariance matrix. With 100 epochs, the vector of parameters comprised of 400

elements which were estimated from 596 observations. This vector and the elements

from the corresponding a posteriori covariance matrix was directly compared to the

smoothed Kalman filter results.

The two sets of results were identical (<0.00001 m) after the first twelve epochs.

The initial discrepancies are due to the time it takes for the Kalman filter to settle

down and are caused by the start state vector (and covariance matrix) and the ratio

between the dynamic and observation weights. The start state vector is the state at the

epoch before the Kalman filter starts operating, ie it is the state that is used to
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computed the predicted state, (-). A start covariance matrix must also be specified.

The ratio of the weighting between the two models affects how quickly a poor

starting state and covariance can be pulled into their optimum solutions. If the

weighting of the dynamic model is initially much greater than that of the observation

model then the system will take a long time to converge. This can be seen through

the gain matrix which controls the effect the observations have on the system when

producing the filtered solutions. Indeed the same data set was processed with

different weighting - the standard deviations for the observations was kept at 1 m, but

that for the positions from the dynamic model was reduced to 5 cm. Using the same

starting state and covariance, the two resulting solutions failed to compare to the same

level of precision over all 99 epochs.

7.3	 TiiE EFFECT OF CORRELATED MEASUREMENTS ON POSITION AND

PRECISION

To discover the effect of temporal correlation on the state and its covariance matrix, a

data set with correlated errors imposed onto it can be processed by the least squares

representation of the Kalman filter. By ignoring the temporal correlation, ie setting

to be zero in all cases, the Kalman filter result can be obtained. By processing

the data set again, but calculating the correct values for y (6t) will give an optimum

solution for the data (since the correlation is now accounted for). Comparing the two

results produces the effect of ignoring temporal correlation.

7.3.1	 Generating Correlated Measurements

A data set depicting a vessel travelling in a straight line was again created and

consisted of 100 epochs, each one second apart (see 7.2.1). Instead of adding random
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errors with a normal distribution on to the observations, autoregressive errors with a

known correlation time and variance were placed on to them. A set of autoregressive

(Gauss I Markov) errors, {x}, can be generated from the set of normalised random

errors, {z}, in the following way:

From chapter four, the first order autoregressive process can be written as: (Chatfield,

1989)

X = aX + Z
	

(4.15)

By back substituting this gives:

X1 = a(aX12 + Z1•1 ) + Z
	

(7.12)

and by continuing this process, we finally get:

X1 = Z1 +aZ 1 +a2Z21....+c(tZo	 (7.13)

where

a =
and T is the correlation time of {x1 }.

The variance of the process is given by:

a =°if'

This is, in fact, a representation of the first order autoregressive process as a moving

average process.
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Five data sets were produced with the characteristics given in Table 7.1.

T(secs)	 cy (m)

5	 1

10	 1

20	 1

30	 1

60	 1

Table 7.1 Characteristics of the correlated data sets

7.3.2	 Differences in Position

All five data sets were processed in the aforementioned manner. The a priori

standard deviations were set to im for the observation model and 5cm for the

dynamic model's position components. The velocity components of the dynamic

model were set to one fifth of the position variance (in this case 0.5mm). No a priori

covariances were used in either model.

The differences in positions for each data set were obtained by subtracting the

position component obtained when the temporal correlation was ignored from the

corresponding component when the correlation was accounted for. This was done for

both eastings and northings and the resulting data sets were analysed for maximum

difference (modula), mean difference and their standard. deviation. The results are

given in Table 7.2.
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T (secs)	 5	 10	 20	 30	 60

Max E (m)	 0.174	 0.799	 0.286	 0.642	 0.534

Max \N	 0.454	 0.536	 0.502	 0.275	 0.344

Mean AE	 -0.013	 0.099	 -0.002	 -0.040	 0.030

Mean N	 -0.061	 0.019	 0.046	 0.018	 0.032

Sd tE	 0.100	 0.293	 0.153	 0.235	 0.134

Sd iN	 0.218	 0.284	 0.179	 0.137	 0.083

Table 7.2 Summary of the differences in position

These position difference results show that position errors will result when using

correlated data within the standard Kalman filter equations. The mean and the

standard deviations of the sets are small indicating that the track of the vessel will

appear to be similar to its optimum track with no apparent bias in the solution. The

positional standard deviations given in Table 7.3 are, on the most part, greater than

the maximum differences in eastings in northings (except for zE, T = 10 secs). This

reiterates that there are no significant positional differences since it is expected that

approximately only 68% of the positional errors will lie within the 1 a value. It can

also be observed that the size of the differences does not appear to be dependent on

the correlation time of the measurements.

7.3.3	 Differences in the A Posteriori Covariance

The a posteriori standard deviations of the parameters at each epoch can be obtained

by isolating the relevant part of the global a posteriori covariance matrix from the

least squares computation. A mean standard deviation for eastings and northings was

obtained for both when the correlation was accounted for and when it was ignored.

Due to the initial weighting for the Kalman filter models, the standard deviations for
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eastings is the same as that for northings. The results when accounting for the

temporal correlation are shown in Table 7.3.

T(secs)	 5	 10	 20	 30	 60

a East (m)	 0.58 1	 0.7 10	 0.830	 0.886	 0.950

a North	 0.581	 0.710	 0.830	 0.886	 0.950

Table 7.3 A posteriori positional standard deviations from correlated measurements

The standard deviations when correlation is ignored are shown in Table 7.4. Since

these are obtained assuming that the errors on the data are normally distributed, the

values are the same for all data sets.

a East (m)	 0.259

a North	 0.259

Table 7.4 A posteriori positional standard deviations ignoring correlation

The differences between the two tables are very significant. Even with a short

correlation time, the precision with which a Kalman filter will estimate the position

has been obtained is very over optimistic. As the correlation time increases, so this

precision becomes worse. The scale of this can be seen graphically by drawing the

error ellipses (in this case circles) for a selection of the above data.
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N(m)

2 T = 5s
3 T=60

Fig 7.2 Mean positional error ellipses for correlated data

In Fig 7.2, the inner circle (labelled 1) represents the error ellipse produced from a

standard Kalman filter - ie the temporal correlation has been ignored. The two other

ellipses are for the data set with correlation times of 5 and 60 seconds. The error

ellipse represents the precision for a two-dimensional position fix. There is a 39.4%

probability that the least squares estimate of the vessel's position lies within the error

ellipse centred at its true position (Cross, 1983).

7.3.4	 Unit Variance Tests

The unit variance is a statistic that can be used to assess the a priori variances and

covariances used within the adjustment. It is computed by (Cross, 1983)

= VT Wv/n - m
	

(7.15)

where n - m are the degrees of freedom.

The expectation of the unit variance is unity and this is used as the null hypothesis

within a central F-distribution test. Assuming no blunders within the observations,

there are two possible reasons for the unit variance to fail the test. The first is that the

a priori covariance matrix needs to be multiplied by &2, and the second is that the
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model used for the least squares computation is incorrect or incomplete (Cross, 1983).

On failing the test, it is usual to scale all a posteriori covariance matrices by the factor

The unit variance was computed for all the data sets both when correlation was

accounted for and when it was ignored. The results are shown in Table 7.5.

T (sees) 
&2 with 'y(öt 1 ) applied &2 with y(&) ignored

0	 0.985	 N/A

5	 0.967	 0.55 1

10	 1.035	 0.459

20	 0.997	 0.207

30	 1.066	 0.215

60	 0.832	 0.057

Table 7.5 Unit variance values

The 0.95 F-distribution percentile with 196 and QOdegrees of freedom is a value of

1.21. When correlation has been applied the unit variance passes the test, although

this is only just the case for a correlation time of 60 seconds. When correlation has

been ignored, the unit variance fails the test for all data sets. Any resultant scaling of

the a posteriori covariance matrix will further enhance the differences between the

standard deviations presented in Tables 7.3 and 7.4.

7.4	 DGPS BLUNDER DETECTION WITHIN THE KALMAN FILTER

The reliability of the Kalman filter, the ability to detect blunders, for a typical DGPS

scenario relies not only on the correlation characteristics of the data, but also on GPS
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geometry. A Kalman filter to represent vessel motion at a DGPS mobile station was

established with the observations being "corrected" GPS pseudoranges. By

processing temporally correlated corrected pseudoranges with known blunders, the

reliability of the system could be tested.

7.4.1	 GPS Pseudorange Observation

The GPS pseudorange measurement can be modelled as

p=po +c(dt _dtS )+ct d +C+fl
	

(7.16)

where

p	 = pseudorange measurement

p0	= true distance between satellite and receiver

dt R	= receiver clock offset

dtS	= satellite clock offset

td	 = atmospheric refraction time delay

= other error sources (eg SA epsilon and dither)

n	 = receiver noise

C	 = speed of light

p0 relates the receiver and satellite coordinates as a straight line vector. The satellite

coordinates and the clock offset are obtained from the navigation message. The

refraction delay and the other error sources are assumed to cancel for two stations in

the same locality (the DGPS scenario) and is therefore ignored, as is the receiver

noise. The resulting unknowns are the receiver clock offset and the receiver position

(	 h) on the WGS84 ellipsoid which can thus be solved for with a minimum

of four pseudorange measurements.
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7.4.2	 DGPS Kalman Filter

The principle behind DGPS is that the magnitudes of td and e will be similar for

stations within close proximity of each other and differencing should almost nullify

their effects. A least squares solution at the reference station provides an

approximation of td and within the dtR bias parameter and corrections for each

pseudorange observation can be computed. These corrections are then applied to the

observations at the mobile station and the corrected observations are incorporated

within the observation model of a standard Kalman filter estimation.

The dynamic model of the Kalman filter links the accelerations and velocities of the

observation parameters via the Taylor's series expansion to represent a moving vessel.

The full state vector can be shown as

[4) X h dt R 	d R	 i;	 ;	
..]T

	(7.17)

where 4) and 4) indicates the velocity and acceleration of the parameter respectively.

7.4.3	 Correlated Pseudorange Observations

Pseudoranges transmitted from different satellites to the receiver at a certain epoch

can be generated from information contained in the GPS navigation message along

with knowledge of the receiver clock offset. Correlated errors can then be placed on

the ranges according to the AR(1) Gauss-Markov process. In all, seven data sets were

created with different correlation characteristics at both the reference and mobile

stations. Each data set consisted of 360 epochs of 1 second observations with five

satellite coverage throughout, and with an average PDOP of 4.4. The errors of the
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corrected pseudoranges at the mobile station had a 1 c value of approximately 3 m

and correlation times of 0, 5, 10, 20, 30, 60, 120 seconds respectively. Two graphical

examples of the errors in the corrected ranges as seen at the mobile station (for

satellite 18) are shown in Figs 7.3 and 7.4.

Fig 7.3 Errors in DGPS corrected pseudoranges (T =0 secs)

Fig 7.4 Errors in DGPS corrected pseudoranges (T =60 secs)

7.4.4	 Kalman Filter Blunder Detection

The methods used to detect outliers within pseudorange observations were the local

overall model (LOM) test and the one-dimensional local slippage (LS) test described
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in chapter six. The following details concerning these tests have been adapted from

Teunissen and Salzmann (1988), Teunissen (1990), and Salzmann (1993).

The local tests are carried out on the predicted residuals, or the innovation sequence,

which is defined (Teunissen, 1990)

= b -	 (6.33)

with the covariance matrix as

C(-) = Cl +AC1(-)A	 (6.34)

where

i(), C*j() are the predicted state vector and its covariance matrix

respectively

A, b1	are from equation (6.3).

If the dynamic model is valid, then the predicted residuals should be a zero mean

white noise (stationary random) process with known covariance, and this is used to

detect the overall validity of the model. The two local hypotheses to detect model

misspecification at epoch t are

H	 c(-) N(0,C1(-))

H	 (-) N(KV,C(-))	 (6.35)

The test statistic used for detecting model errors in the null hypothesis was:

11 =	 (6.36)
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TLOM = T1/m1	 (6.37)

A model error was detected only if:

T oM ^F(m1,c,O)	 (6.38)

These formulae (see section 6.4 for more comprehensive details) were used to detect

a misspecification in the local model. If one has been detected, then the individual

observations are searched for the most likely measurement error. This was carried

out using the data snooping LS test statistic

where c, in this case, is a null vector except for unity at the corresponding observation

being tested. The slippage test is carried out for all observations at epoch t, and the

most likely blunder is said to have occurred at the observation for which It.J is at a

maximum.

7.4.5	 Detection of Blunders within Correlated Data

A set of correlated pseudorange data, with added blunders, was passed through the

Kalman filter and the predicted residuals were tested using the UMPI LOM/LS

methods (with a 0.95 F-distribution percentile). One blunder was placed randomly

within the data set for each run of the filter. In all, 900 blunders were placed within

the observations (100 each of size 4, 5, 6, 7, 8, 9, 10, 11, 12 metres) and percentages

for correctly detected blunders against size was obtained. This process was repeated
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for all the correlated pseudorange data sets (correlation times of 0, 5,, 10,, 20,, 30,,

60,120 seconds). The results are given In Table 1.6.

T(secs)	 0	 5	 10	 20	 30	 60	 120

Size(m) ______ _______ ______ _______ ______ _______ _______

4	 1	 1	 0	 0	 0	 0	 0

5	 1	 3	 1	 0	 0	 0	 0

6(2cr)	 7	 4	 8	 0	 0	 0	 0

7	 8	 10	 8	 0	 0	 1	 2

8	 26	 23	 13	 13	 8	 5	 6

9 (3a)	 32	 28	 25	 24	 18	 20	 24

10	 45	 47	 27	 35	 35	 47	 27

11	 59	 59	 51	 54	 55	 60	 50

l2(4a)	 78	 73	 75	 77	 77	 78	 82

Table 7.6 Percentage of detected blunders for differently correlated data

These results clearly show a trend for small blunders (<=3a) when the ability to

detect becomes less with increasing correlation time. Data with a long correlation

time failed to identify these blunders, whereas approximately 10% were detected

using data with shorter correlation times. For larger size of blunder (>3a and <=4a)

the performance of the LOM and LS test statistics are similar independent of

correlation time with all data sets showing around an 80% detection rate for 4a

outliers. It should also be noted that for data with short periods of correlation (T=O, 5

seconds) and for small blunder sizes (4, 5 m), the correct epoch containing the

blunder was sometimes identified but the LS test statistic failed to identify the correct

observation. These results were not included in the table.
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7.5	 CONCLUSIONS

1. The standard Kalman filter equations can be expressed in the least squares

observation equation form. Identical results between this least squares

approach and the smoothed estimates from a Kalman filter can be obtained.

2. Errors in position are obtained when processing temporally correlated data

sets and ignoring the correlation. These errors can be determined by

processing the data set twice as a least squares computation, once ignoring the

correlation and the other accounting for the correlation with appropriate

covariances. On average the discrepancies between the two solutions are not

large, with a small mean and with no apparent bias. The maximum

discrepancies for different correlation times are smaller than the computed

positional standard deviations indicating that the position errors are not

significant. The errors are not dependent on correlation time.

3. Large differences in the a posteriori covariance matrix are obtained between

data for which temporal correlation has been accounted for and for when it

has been ignored. The differences are dependent on the correlation time of the

observations with the longer the correlation time, the greater the difference.

This suggests that the Kalman filter produces an extremely over optimistic

estimate of the precision of a position fix.

4. When ignoring correlation, the least squares solution invariably failed the unit

variance test. Any resultant scaling of the a posteriori covariance matrix will

further enhance the over optimistic estimates of the standard deviations of the

position fix.

172
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5.	 The ability to detect blunders within a DGPS Kalman filter is affected by the

correlation time of the observations. For small blunders (<3 a), the system is

less reliable the longer the correlation time of the pseudorange observations.

For larger blunders, there does not appear to be a significant reduction in

reliability for different correlation times.
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CHAPTER EIGHT

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

8.1	 CONCLUSIONS

DGPS is a proven positioning technique and is widely used within the offshore oil

industry. When processing DGPS observations using the Kalman filter algorithms,

certain assumptions concerning temporal correlation are ignored. This thesis has

identified that pseudorange measurements are temporally correlated and that this

significantly affects the output from the filter. The conclusions can be divided into

two sections: the first describing the correlation within recorded data sets, and the

second examining its implications when using the Kalman filter as a processing

technique.

8.1.1	 Pseudorange Analysis

A first-order autoregressive, AR(1), process has been selected to model the errors

within GPS pseudorange observations. This has allowed the variances and

correlation times of different data sets recorded between March 1991 and March

1993 to be estimated and compared. The data has also been processed using the

Fast Fourier Transform (FFT) technique to identify different cyclic patterns, due to

various error sources, that may appear in the data. The GPS data sets have been

selected to identify the effects of different error sources, including the atmosphere,

different receiver types, different smoothing routines and, most importantly, the

intentional selective availability (SA). Conclusions from this analysis are:
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1. Routines adopted for the smoothing of pseudorange observables with carrier

phase or doppler measurements change the statistics of the data sets. The only

data set that was recorded with pseudoranges that were not smoothed internally

within the receiver were those from March 1991. One of these was processed

in its "raw" state and with external smoothing applied. The results showed an

expected decrease in noise which was represented in a decrease in the variance

for the smoothed data set. Similarly, smoothing the data resulted in an

increase in the correlation time and, in particular, altered the short term

correlation properties. A reduction was seen with the average standard

deviations dropping from 7.1 to 5.9 m and correlation times from 136 to 266 s

when smoothing had been applied. Some of the correlation times after

smoothing were as long as 10 minutes, and even three times this length for a

similar data set recorded simultaneously. The fact that the Fourier analyses are

the same for all satellites both with and without smoothing, indicates that the

errors present both occur on the carrier and code measurements.

2. Few conclusions could be made when comparing the output from different

receiver types, mainly due to the difference in the technologies at the time the

observations were taken, and the overwhelming effects of SA. The pre SA

data did show that differences occur even when using the same data set.

Results show that for one data set, the correlation times were more than three

times that of the other set, although their variances were similar. This was due

to cycle slips and loss of lock within one of the receivers, thus reducing the

impact of the smoothing algorithm that was used. The other data sets showed

a visual chronological decrease in noise. This is almost certainly due to

receiver enhancements and internal processing that was carried out. The best

example of this is seen when comparing the raw Ashtech March 1991 to the
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Ashtech March 1993 data sets - exactly the same receivers were used, except

that they had been "upgraded" several times during this period.

3. The effects of SA were characterised by examining data both before and after

SA was officially implemented. The most obvious conclusion was from the

increase in standard deviation from approximately 5 m to 50 m, and this

therefore represents the largest error source within the pseudorange

observations. SA is implemented through the dithering of the satellite clock

frequency and the incorrect description of the orbit (epsilon). The Fourier

analyses for all data sets under SA showed similar patterns with large cyclic

patterns occurring every hour and smaller trends at higher frequencies. These

are almost certainly due mainly to the dither component, since epsilon would

only have a long term effect. Epsilon can change as frequently as new

navigation messages are transmitted (once every hour), and therefore only the

lowest frequencies detected within the analyses could be due to epsilon.

However, the orbit description will be changed on the hour, and if this has

occurred, a distinct step should be observed in the time series plots. Since this

was never experienced within the data sets analysed, epsilon can be considered

as to have a very small amplitude or be at a lower frequency than once every

hour. The correlation times are shorter for the data recorded after SA has been

implemented which, along with the high variance, is the reason why the age of

correction is so important in DGPS operations. With short correlation times

and high variances, the pseudorange corrections are only "valid" for a short

period of time, and therefore must be applied at the mobile station as soon as

possible after they have been generated at the reference.
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8.1.2	 Katman Filter Performance

Chapter seven reported on the effects that correlated data had on the performance of

the Kalman filter equations in terms of the resultant position, its precision and for

blunder detection. The position and precision analysis was carried out by

expressing the Kalman filter equations in a least squares observation equation form

and accounting for the correlation within the a priori covariance matrix. Due to the

inefficiency of this approach, a simplified model was used. Reliability analysis was

carried out by processing correlated OPS observations using a Kalman filter set up

for a DGPS scenario. Errors were placed within the observations and the actual

performance of the blunder detection was assessed. 	 The conclusions are

summarised:

1. Using the least squares approach gave exactly the same results as with the

Kalman filter, when a diagonal covariance matrix was used. Implementing a

full matrix (thus accounting for temporal correlation) showed difference in

both position and precision. On average, errors in position were not large,

with a small mean, no apparent bias, and considered insignificant. The

discrepancies were also not dependent on correlation time. The resultant

differences in precision produced another story. Large errors in the a

posteriori covariance matrix were obtained when ignoring the correlation and

these could be further increased if unit variance tests are carried out and any a

posteriori scaling occurs. These errors were dependent on the correlation time,

with, the longer the correlation time the greater the error. The Kalman filter

has therefore been shown to produce an extremely over optimistic estimate of

the precision of a position fix, and great care should be taken when assessing

such measures. The standard deviation from the Kalman filter using

observations with a correlation time of 60 s was almost a quarter of the value
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when the correlation was accounted for. In other words, a quoted standard

deviation of 25 cm derived from a Kalman filter is a far too optimistc

precision, and a value of approximately 1 m is more realistic.

2. The standard Kalman filter blunder detection algorithms are also affected by

temporally correlated measurements. This is most significant for small errors

(<3cy ), with the system becoming less reliable the longer the correlation time

of the pseudorange observations. Data with a long correlation time (30 to 120

s) failed to detect these blunders, whereas approximately 10% were detected

using data with shorter correlation times (0 to 20 s). For larger errors, there

was no reduction in reliability performance for the differently correlated data

sets, although this was still not optimal with approximately 80% of outliers

being detected using a 95 % percentile. It should be noted, however, that the

test statistics were not used to detect any errors larger than 4. The corrected

GPS pseudorange observations had a standard deviation of 3 m. It can

therefore be concluded that the Kalman filter local model test statistics are

sensitive to the correlation times of the observables if errors of 9 m or less are

being sought. For detecting errors of 12 m, or more, the statistics are not

dependent on correlation time.

8.2	 SUGGESTIONS FOR FURTHER WORK

The following gives some ideas for further research into similar work.

1. A test bed processing of the modern receiver types to analyse the receiver

performance. This would involve establishing many different receivers within

the same regional location and taking simultaneous observations over various
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sessions. Results from this would include receiver performance in terms of

internal measurement precisions and/or improvements through smoothing

routines, and also receiver compatibility which would conclude in whether or

not different receivers should be used at DGPS reference and mobile stations.

2. Further time series models should be examined to test which best fits the

pseudorange data for a particular session. For this thesis an AR(1) model was

selected which proved not to be the best choice under some of the SA data and

a higher order, or an integrated model, may have given a better representation.

If this was carried out over a long period of time, the true characteristics and

algorithms implementing SA could be deduced. In turn, this could lead to the

real-time modelling of the SA error source. Examining data sets of different

lengths, for instance a days observation, will allow for a more thorough

examination of dither and epsilon, as will a different approach for modelling

Block I and Block II satellites.
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APPENDIX A

EXAMPLES OF RINEX DATA FILES

The RINEX navigation message

2	 NAVIGATION DATA	 RINEX VERSION I TYPE

ASHTORIN

	

	 13 - AUG - 92 13:51 PGM / RUN BY / DATE

COMMENT

END OF HEADER

3 92 8 10 13 0 0.0 -.519670546055D-03 -.550244294573D-1O .000000000000D+00

.510000000000D+02 -. 913437500000D+02 .120326440651D-08 .521478630844D+OO

-.515952706337D-05 .129857703578D-01 .566989183426D-05 .515367980957D+04

.133200000000D+06 .109896063805D-06 .185361661610D+01 -.147148966789D-06

.112231582471D+01 .349375000000D+03 .249062771154D+01 -. 6507413917050-08

-.472876840076D-09 .000000000000D+00 .6570000000000+03 .000000000000D+00

.200000000000D+01 .000000000000D+00 -.419095158577D-08 .307000000000D+03

.127920000000D+06 .000000000000D+00 .000000000000D+00 .000000000000D+00

17 92 8 10 12 0 0.0 -.521168112755D-05 -.909494701773D-12 .0000000000000+00

.640000000000D+02 -.839687500000D+02 .406945522343D-08 .965234372743D-01

-.439025461674D-05 .688534637447D-02 .9935349226000-05 .5153675598140+04

.129600000000D+06 -.223517417908D-06 .264417122194D+01 .316649675369D-07

.963508774556D+00 .1934062500000+03 .145833865121D+01 -.778032408173D-08

.217866217860D-10 .000000000000D+00 .657000000000D+03 .0000000000000+00

.700000000000D+01 .000000000000D+00 .139698386192D-08 .320000000000D+03

.127890000000D+06 .000000000000D+00 .0000000000000+00 .0000000000000+00

28 92 8 10 12 0 0.0 .167074613273D-04 .227373675443D-11 .000000000000D+00

.213000000000D+03 -.523437500000D+02 .467840916023D-08 -.1506486171540+01

-.262074172497D-05 .763588387053D-02 .214017927647D-05 .5153641136170+04

.129600000000D+06 -.2235174179080-07 .1522961848990+01 -. 143423676491D-06

.963243783039D+00 .3365625000000+03 .272892602163D+01 -.8429994000230-08

-.144648882349D-09 .0000000000000+00 .6570000000000+03 .000000000000D+00

.700000000000D+01 .0000000000000+00 .0000000000000+00 .213000000000D+03

.127920000000D+06 .000000000000D+00 .000000000000D+00 .0000000000000+00

23 92 8 10 12 0 0.0 .117765739560D-05 .113686837722D-12 .000000000000D+00

.400000000000D+02 .1690625000000+02 .447661504041D-08 .2995487057580+01

.9778887033460-06 .611350964755D-02 .834092497826D-05 .5153650836940+04

.129600000000D+06 .5587935447690-08 -. 263525996326D+01 -. 819563865662D-07

.9583636375440+00 .2180625000000+03 -.2498480600200+01 -.7794967548830-08

.6214544575010-09 .0000000000000+00 .6570000000000+03 .0000000000000+00

.7000000000000+01 .0000000000000+00 .139698386192D-08 .2960000000000+03

.1281000000000+06 .0000000000000+00 .0000000000000+00 .0000000000000+00
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The RINEX observation file

2	 OBSERVATION DATA	 RINEX VERSION / TYPE

ASHTORIN

	

	 13 - AUG - 92 13:51 PGM / RUN BY / DATE

COMMENT

PP92	 MARKER NAME

MARKER NUMBER

WR
	 O5ERV	 I A(bNL

773	 LM-XII2	 6GP4
	

REC # / TYPE / VERS

959
	

ANT # / TYPE

	

3667215.1700 -103470.1500 5200004.1000
	

APPROX POSITION XYZ

0.0001	 0.0000	 0.0000
	

ANTENNA: DELTA H/E/N

1	 1
	

WAVELENGTH FACT L1/2

6	 Li	 L2	 Ci	 P2	 Di	 D2
	

# / TYPES OF OBSERV

1
	

INTERVAL

1992	 8	 10	 11	 32	 31.000000
	

TIME OF FIRST OBS

1992	 8	 10	 12	 33	 46.000000
	

TIME OF LAST OBS

END OF HEADER

92 8 10 ii 32 31.0000000 0 3 3 28 17
	

0.000127710

119783.81815	 0.000 1 23064067.448
	

0.000	 3304.876

0.000

46402.47617	 5127430.16316 21520769.571
	

21520780.664	 -2389.033

-1861.639

20653.10117 10951670.84116 20870124.603
	

20870137. 4 64
	

1256.466

979.046

	

92 8 10 ii 32 32.0000000 0 3 3 28 17
	

0. 0 00 127730

123089.045 5	 0.000 1 23064692.965
	

0.000
	

3305.4 69

0.000

44013.812 6	 5125568.863 5 21520312.148
	

21520326. 808
	 -2388. 329

-1861.044

21910.104 7 10952650.318 6 20870363.808
	

2087037 6.759
	

1257. 514

979.902

	

92 8 10 11 32 33.0000000 0 3 3 28 17
	

0.000127760

126394.952 5	 0.000 1 23065326.547
	

0.000
	

3306. 0 65

0.000

41625.931 7	 5123708.174 6 21519856.613
	

21519872.083
	 -2387.533

-1860.422

23168.178 7 10953630.638 6 20870602.562
	

20870615.933	 1258.566

980.7 66

	

92 8 10 ii 32 34.0000000 0 3 3 28 17
	

0.000127780

129701.454 5	 0.000 1 23065950.205
	

0.000	 3306.460

0.000

39238.753 6	 5121848.036 6 21519402.188
	

21519417.867	 -2386.998

-1860.024

24427.269 7 10954611.745 6 20870842.816
	

20870856.007	 1259.403

981.408

	

92 8 10 ii 32 35.0000000 0 3 3 28 17
	

0.000127810

133008.322 5	 0.000 1 23066579.499
	

0.000	 3306.951

0.000

36852.069 6	 5119988.283 6 21518950.431
	

21518963.681	 -2386.400

-1859.477

25687.167 7 10955593.485 6 20871081.601
	

20871095.961	 1260.353

982. 0 61
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EXAMPLES OF RINEXPOS OUTPUT

The Positions File

DIFFERENTIAL GPS POSITIONS
Reference Station 1 Newcastle
Latitude	 N 54 58 39.5 827
Longitude	 W 1 36 5 8.5502
Height	 64.5355

Reference file name 1 DATA\PP92223 1.920
Remote file name DATA\SSSS2231.920
Date	 10 8 1992

Time	 Latitude	 Longitude	 Height PDOP

DGPS Age Of Correction 0 secs

1135 31.000
113532.000
113533.000
1135 34.000
1135 35.000
1135 36.000
1135 37.000
1135 38.000
113539.000
113540.000
113541.000
113542.000
113543.000
1135 44.000
1135 45.000
113546.000
113547.000
113548.000
113549.000
113550.000
113551.000
113552.000
113553.000

N55 0 56.7008
N55 0 56.6218
N55 0 56.7468
N55 0 56.5290
N55 0 56.5696
N55 0 56.6295
N55 0 56.2453
N55 0 56.4704
N 55 0 56.2877
N55 056.7107
N55 0 56.9255
N55 0 56.9990
N55 057.1010
N55 0 56.6074
N55 0 56.5620
N55 0 56.7877
N55 057.0011
N 55 0 56.7675
N55 0 56.9427
N55 0 56.3547
N55 0 56.4562
N55 0 56.6609
N55 0 56.4846

W 1 45 19.4727
W 1 45 19.4381
W 1 45 19.4586
W 145 19.1145
W 1 45 19.3356
W 1 45 19.1908
W 1 45 19.1258
W 1 45 19.1865
W 1 45 19.3789
W 1 45 19.4212
W 1 45 19.4402
W 1 45 19.4048
W 145 19.2117
W 1 45 19.2964
W 1 45 19.0571
W 1 45 19.2107
W 1 45 19.3621
W 1 45 19.4260
W 1 45 19.6720
W 1 45 19.3774
W 1 45 19.1936
W 1 45 19.2593
W 1 45 19.1285

80.052
89.651
84.250
99.088
76.869
106.654
106.152
115.416
101. 190
105.629
98.481
89.926
91.340
102.9 10
104.503
108.649
91.977
84.289
91.3 19
92.634
95.994
8 6. 67 3
94.346

3.922
3.922
3.922
3.923
3.923
3.923
3.924
3.924
3.925
3.925

3.925
3.926
3.926
3.927
3.927
3.927
3.928
3.928
3.928
3.929
3.929
3.930
3.930
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Appendix B: Examples of RINEXPOS Output

The Pseudorange Corrections File

REFERENCE STATION PSEUDORANGE CORRECTIONS
Reference Station Newcastle
Latitude	 N 54 58 40.2100
Longitude	 W 1 36 56.7500

Height	 134.0000

Reference file name DATA\PP92223 1.920

128131.0000 23
128131.0000 3
128131.0000 28
128131.0000 17

128132.0000 23
128132.0000 3
128132.0000 28
128132.0000 17

128 133.0000 23
128133.0000 3
128 133.0000 28
128133.0000 17

128 134.0000 23
128134.0000 3
128 134.0000 28
128134.0000 17

128135.0000 23
128 135.0000 3
128 135.0000 28
128135.0000 17

-30.711 1
-57.200 1
-24.624 1
-66.061 1

-45.616 1
-62.281 1
-36.017 1
-80.333 1

-31.349 1
-57.134 1
-25.820 1
-66.815 1

-48.505 1
-67.999 1
-36.735 1
-85.981 1

-35.809 1
-53.807 1
-19.446 1
-62.315 1

	

128 136.0000 23	 -50.744 1

	

128 136.0000 3	 -69.855 1

	

128 136.0000 28	 -42.920 1

	

128 136.0000 17	 -91.259 1

	

128137.0000 23	 -52.618 1

	

128 137.0000 3	 -67.382 1

	

128137.0000 28	 -41.971 1

	

128137.0000 17	 -89.424 1
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APPENDIX C

PRE SA OUTPUT

Time series, autocorrelation and Fourier analysis for data files:

STN1O731 -raw

STN1O731 - smoothed

STN30731 - smoothed
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Appendic C: STN1O73J - raw

Variance = 35.91 m2

Correlation Time = 59.14 s
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Appendic C: STNJO731 - raw
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Appendjc C: STNJO73J - raw

0

10

-0.5
0

I

20	 40	 60	 80	 100	 120	 140	 160	 180

Lag (s)

Variance = 9.979 m2

Correlation Time = 16.09 s

195



1	 2	 3	 4	 5	 6

Frequency (Hz)	 xlO-3

8

4

.<	 2

0
0

Appendic C: STNJO73J - raw
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Appendic C: STNJO73J - raw
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Appendix C: STNJO73I - smoothed
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Appendix C: STN1O73J - smoothed

Time Series - Satellite 6
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Appendix C: STNJO73J - smoothed

Variance = 30.7 m2

Correlation Time = 226.6 s
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Appendix C: STNJO73J - smoothed
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Appendix C: STN1O731 - smoothed
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Appendix C: STN30731 - smoothed
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Appendix C: STN30731 - smoothed
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Appendix C: STN30731 - smoothed
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Appendix C: STN30731 - smoothed
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Appendix C: STN30731 - smoothed
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Appendix C: STN30731 - smoothed
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APPENDIX D

TRIMBLE OUTPUT

Time series, autocorrelation and Fourier analysis for data files:

GTYH1921
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AppendixD: GTYHJ921
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AppendixD: GTYHJ92J
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AppendixD: GTYHJ92J
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APPENDIX E

LEICA OUTPUT

Time series, autocorrelation and Fourier analysis for data files:

COMP2O2 1

SAMP2O2 1
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Appendix E: COMP2O21
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Appendix E: COMP2O21
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Appendix E: COMP2O2J
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Appendix E: COMP2O21
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Appendix E: SAMP2O2J
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Appendix E: SAMP2O2I
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Appendix E: 5AMP2021
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Appendix E: SAMP2O2I
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Appendix E: SAMP2O21
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APPENDIX F

ASHTECH DECEMBER '92 OUTPUT

Time series, autocorrelation and Fourier analysis for data files:

PP923421
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Appendix F: PP923421

100

50

I-
0

U	 0

-50
0
	

500	 1000	 1500	 2000
	

2500	 3000	 3500

Epoch (s)

Autocorrelation

0.4
U

0.2

0	 I	 I	 I	 I

0	 20	 40	 60	 80	 100	 120	 140	 160	 180

Lag (s)

Variance = 681.5 m2

Correlation Time = 150.6 s

232



20	 40	 60	 80	 100	 120	 140	 160	 180

Lag (s)

1

0.8

0.6

0.4
U

0.2

0
0

Appendix F: PP923421
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APPENDIX G

ASHTECH MARCH '93 OuTPu1

Time series, autocorretation and Fourier analysis for data files:

PP930611

WH930611
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APPENDIX H

DIFFERENT KALMAN FILTER NOTATiON
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