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ABSTRACT 

 

Nabeel Ahmed: Improving the Torque Quality of a Modulate Pole Machine  

(Under the supervision of Dr. Glynn Atkinson and Dr. Nick Baker) 

 

The research work carried out in this thesis is collaboration between Newcastle University and 

Höganäs AB, Sweden.  

A topology, termed ‘Separate Phase MPM’ was initially developed by Newcastle University 

and Höganäs where the machine takes advantage of mutual flux paths in order to increase the 

torque density of the machine, however had high cogging torque and back EMF harmonic 

content. The work presented in this thesis was carried out with an overall aim to minimise the 

cogging torque and back EMF harmonics in the Modulated Pole Machine (MPM) topology 

aimed toward electric bicycles.  

Various techniques are proposed and verified in this thesis to reduce the magnitude of 

unwanted voltage and torque harmonics, providing a smoother riding experience. Finite 

Element Analysis was carried out using Infolytica MagNet® on various design techniques 

which ultimately stemmed in 24 motor prototypes being constructed and tested during this 

PhD. The measured results are compared with each other to approve the technique that provides 

the optimum motor performance.  

It is shown that the peak cogging torque is reduced by 90% while the back EMF harmonics are 

diminished too, with a minor 2% reduction in mean back EMF. The efficiency and peak torque 

of the optimum motor is 8% and 10% higher, respectively, when compared with the base motor 

used in this study. 
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This three year PhD was sponsored by Höganäs AB of Sweden. Höganäs is a company 

specialising in the production of metal powders. It was part of the sponsorship that the research 

student visits Höganäs Sweden at least once a year to carry out practical research activities in 

the highly advanced Höganäs laboratories. These research visits to the company were aimed to 

help the student understand and implement the practical aspects of research while gaining vital 

industrial experience.       

1.1 Project Background 

Metal powders are used in thousands of applications, products and solutions that are part of our 

everyday lives. Höganäs utilizes this vast market and develops new or better products by 

pushing the limits of metal powders. One such powder is Soft Magnetic Composite (SMC), the 

internationally recognised name for pressed and heat-treated metal powder components with 

three-dimensional (3D) magnetic properties. Somaloy® is the Höganäs brand for SMC 

materials, offering a wide material portfolio to fulfil the requirements of different 

electromagnetic applications such as electric motors, fast switching actuators or inductor cores 

for power electronics. A detailed discussion on SMC will be presented in Chapter 2.  

The Electromagnetic Applications Department of Höganäs AB and a previous Engineering 

Doctorate funded student manufactured a new electrical machine topology using SMC. This 

electrical machine was termed a ‘Modulated Pole Machine’ (MPM) and was used as a motor 

in the front or rear wheel of a Höganäs electric bicycle, shown in Figure 1.1. This electrical 

assisted bicycle aids the rider by providing extra power and making the journey significantly 

easier.  

The previous student (Dr. Jamie Washington [133]) developed a machine topology that 

provides a high torque at low rotation speed using Soft Magnetic Composites. This topology 

however had a high cogging torque and back EMF harmonics which introduced jerkiness and 

1. 
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vibrations into the ride and Höganäs want to minimise these effects to enhance the rider 

experience.  

 

Figure 1. 1: Illustration of the MPM used in the rear wheel of Höganäs electric bike 

1.2 Modulated Pole Machines  

Modulated Pole Machines (MPMs) are a well-known machine topology, the use first suggested 

in the 1890s [1] with further recent development beginning in the 1980s with Weh [2]. The 

term “Modulated Pole Machine” captures all machine types where the field generated by a coil 

is guided or “modulated” into a multi-pole field, by a toothed iron structure placed either side 

of it, where the number of poles are equal to the number of guiding teeth. This is a property 

exploited by a number of machine types such as Transverse Flux [2-5] and Claw Pole [6-8] 

machines. 

These machine types are considered as viable options for electric and hybrid propulsion 

applications due to their ability to produce high power densities. Many automotive companies 

and manufacturers employ their R&D to focus on projects producing efficient and cost 

effective designs [9 – 13].  

MPMs refer to structures where the armature only takes flux from one side of the surface 

mounted magnets and a return flux path is provided in the form of an iron core-back. The flux 

path of a two-pole section of a Transverse Flux Machine is illustrated in Fig. 1.2. Flux from 

the magnets (1) is grouped and directed into the ‘north’ pole piece (2), navigating axially, 
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crossing the air gap into tooth (3). It then returns around the core back (4), via the opposite 

tooth (5) placed at an angle of 180° electrical, crossing the air gap to the ‘south’ pole piece (6) 

this time and across the magnet to completely enclose the coil (7) and complete the magnetic 

circuit.       

 

 

MPMs are known for their ability to produce a high torque density (up to five times that of 

conventional machine geometries) relative to their volume. This is made possible by utilising 

3D flux paths as well as the decoupled nature of electrical and magnetic circuits in MPMs; if 

all other factors remain the same an increase in pole number leads to an increase in the overall 

magneto motive force (MMF) of the machine. This is due to the fact that the MMF of the coil 

is seen across all of the poles, no matter how many there are.   

When a constant current density and outer diameter are considered, the magnetic and electric 

loading in a conventional machine is determined by the choice of tooth width and slot area 

respectively. This means that changing one will vary the other; the fine balance between the 

two will be disturbed as they share the same cross sectional space.  

By comparison, MPM’s advantage lies in the fact that the coil and tooth do not occupy the 

same plane, resulting in the magnetic and electrical loadings to be set largely independent of 

each other [2], giving greater flexibility of design and hence benefit with regard to high pole 

numbers when designing MPMs [14]. As the pole number increases, the flux per pole reduces 

by the same proportion, but as the coil links the flux of every pole, the flux linking the coil is 

unchanged as shown by figure 1.3.  

 

Figure 1. 2: Two pole section of a single phase showing a complete magnetic circuit from (1) to (7) 
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Figure 1. 3: Illustration of changing the pole number of a modulated pole machine and its 'global' coil linking the flux of 

every pole 

 

As the Magneto-Motive Force (MMF) of the coil is seen across every pole of the machine, this 

high pole number allows for a greater electrical loading and therefore an increase in torque for 

a given volume [6] with relatively low winding losses [2, 8, 15]. 

High pole numbers cause high electrical frequency, resulting in a reduction in drive and 

machine efficiency. In addition, complex construction is required to fully harness three-

dimensional magnetic fields [16]. Resulting machines tend to have high leakage fluxes and low 

power factor [17] caused by high armature reactance. MPMs are particularly suited to 

applications where low speed and high torque is required; for example electric traction [18, 19] 

and renewable energy generation [20, 21].  

Two common problems of MPM are the high harmonic content of back EMF and cogging 

torque and the torque ripple [3, 21]. Both create undesirable noise and vibrations and hence 

reducing their magnitude is important.  This thesis proposes several novel techniques where it 

is shown that cogging torque, torque ripple and harmonic content can all be significantly 

reduced without a significant effect on the overall torque output. 

1.3 Objective of this Thesis  

Despite intensive research effort in the recent years focusing on transverse flux permanent 

magnet modulated pole machines, high cogging torque still presents a major drawback [3]. The 

aim of this thesis is to reduce the cogging torque and the harmonic content of the back EMF 

waveform in the previously mentioned Modulated Pole Machine; shown in Figure 1.1 and 1.4. 

Several techniques will be implemented and prototypes will be constructed to test, validate and 

improve the torque quality of the machine as well as the overall technology.  
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1.4 Structure of the Thesis 

Chapter 2 will present the literature review of the work done in this field previously with an 

aim to build on it. Chapter 3 will discuss the base machine design of the machine constructed 

previously and provides the problem statements of the thesis. Chapter 4 will look deeper into 

the design investigation of the novel techniques that will be used to reduce the unwanted 

harmonics in the cogging torque and back EMF. Analysis will be provided on the design rule 

for cogging torque, back EMF and their harmonics by carrying out Finite Element analysis 

(FEA) using the software MagNetTM. Construction of the prototypes will be shown in Chapter 

5 while Chapter 6 and 7 will provide a detailed study into the results and verification of 

prototypes. Chapter 8 will provide implementation of one novel technique onto a ‘Combined 

Phase’ (second generation) topology of this motor type while Chapter 9 will be the concluding 

chapter.   

 

Figure 1. 4: Simplified CAD drawing of the previously constructed MPM 
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1.5 Published work 
 

Following is a list of published work stemmed from the research carried out during this PhD. 

1. Ahmed, N; Atkinson, G. J. ; Baker, N. J. ; Sjöberg, L. “Flux Switching 

Modulated Pole Machine topologies which offer greater mechanical 

simplicity”, Electrical Machines and Drives Conference (IEMDC), 2013 

IEEE International on, pp. 354 – 358, May 2013 

2. Ahmed, N; Washington, J. ; Atkinson, G. J. ; Baker, N. J. “Reduction of 

cogging torque and torque ripple in Modulated Pole Machines by 

geometrical changes”, Power Electronics, Machines and Drives (PEMD 

2014), 7th IET International Conference on, pp. 1 – 6, April 2014.  

3. Ahmed, N; Atkinson, G. J. ; Baker, N. J. ; Sjöberg, L. “Reduction of 

Cogging Torque and back EMF harmonics in Modulated Pole Machine 

by variations in Tooth span,” Electrical Machines and Drives Conference 

(IEMDC), 2015 IEEE International on, May 2015 

4. Nabeel Ahmed, Glynn Atkinson. “Low Ripple TFM feasibility study for 

BAFCO”, January 2016. The Big Ass Fan Corporation (BAFCO) 

requested that Newcastle University carry out a feasibility on two TFM 

topologies, the aim being to produce feasible designs with high efficiency 

and low torque ripple.  

5. Nabeel Ahmed, Cristofaro Pompermaier, Jamie Washington, Lars Sjöberg. 

“Reduction of Cogging Torque in Transverse Flux Machines by Stator 

and Rotor Pole Shaping”, IEEE Energy Conversion Congress and Expo, 

Sept 18-22, Milwaukee, WI, USA. 

 

This PhD produced various novel design techniques to reduce the cogging torque and back 

EMF harmonic. 24 motor variants were constructed and tested to approve these techniques and 

ultimately one optimum motor was chosen that reduced the peak cogging torque by 90%; the 

efficiency and peak torque of the optimum motor is 8% and 10% higher, respectively, when 

compared with the base motor used in this study. 
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2.1 Introduction  

Electrical machines can be thought of as a conversion device from electrical energy to kinetic 

energy; a two-way mutual link is formed by the magnetic field. The energy is temporary stored 

in the magnetic field before being converted. It is important to note that apart from the flow of 

current, the reaction in the electrical system is inductions of an EMF while the product of this 

and current gives the rate of electrical energy conversion.    

The key to unified machine theory is the principle of increasing the stored magnetic energy. In 

order to increase the flux and the stored energy, a force of attraction will act to bring the poles 

together to minimise the reluctance of the air gap in the magnetic circuit.  

Magnetic systems try to optimise the stored energy by distorting the magnetic core either by 

closing air gaps or by aligning poles. The former is associated with forces of attraction and the 

latter with forces of alignment. Rotating machines are based on the force of alignment 

principle.  

When the poles are not situated opposite one another, there is a lateral force of alignment to 

attract poles towards each other, or align laterally to achieve greater stored magnetic energy 

i.e. when the poles are in contact with the maximum area of contact. This lateral movement of 

poles increases the area of air gap, hence reducing the reluctance. It should however be noted 

that this force does not necessarily act in the direction of the lines of flux.  

In 1890 [1], W. M. Mordey suggested a design which consisted of a hoop coil surrounded by 

numerous U and I shaped laminated iron cores with a wound field rotor. A machine where a 

ring coil creates a two pole field and guides this by an iron structure into a multi-pole 

arrangement is known as Modulated Pole Machine (MPM) [22].  The coil at this multi-pole 

arrangement links together the flux from individual poles creating a multiplex of poles and 

hence the MMF of the coil can be seen across every pole. This concept allows increasing the 

2. 
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specific torque by increasing the magnetising field strength which is achieved by increasing 

the pole number without actually changing the volume or speed of the machine [24 - 27]. 

Two forms of MPMs are Transverse Flux (TF) and Claw Pole (CP) machines which have been 

around since the late 19th century. TF machines were first put forward by Weh in his two papers 

[2, 24] in the 1980s in which he explains that the flux ‘transverses’ the direction of the rotor 

for a part of the magnetic circuit. TF and CP machines have flux paths that are 3D and hence 

their construction using 2D laminations is difficult. However due to the recent emergence of 

soft magnetic composites, research is being carried out in this area and new topologies have 

come into existence.  

MPMs ability to provide high torque density (for direct drive systems), low current density yet 

high electrical loading [6] by merely having a high pole number, makes it a very useful 

machine. These can offer as high as five times the torque density of conventional radial 

machine geometries [2] as the magnetic and electrical circuits are effectively decoupled. This 

is due to the availability of adjusting the coil slot and iron in the teeth independently as they do 

not share the same plane, hence changing the pole number has no effect on the area available 

for the winding. This is opposite to radial machines where the area of the slot is decreased as 

the iron and coil share the same plane and hence the available space for iron decreases, reducing 

the magnetic loading.    

Having a high pole number presents problems like complex and complicated construction 

while large amount of stray and fringing fluxes in the stator produces poor power factor.  

Moreover, high cogging torque and subsequently a high torque ripple presents another common 

disadvantage in such machines. These problems are addressed in this thesis and solutions are 

provided to reduce the effect of these. 

MPMs have been used to manufacture propulsion systems for buses [17, 10] ships [23], 

railways [24], wind turbine generators [25 – 28] and wave energy converters [20, 29, 30]. This 

literature review will provide an overview of the linear and rotating machine designs as well 

as the history and development of MPMs. Moreover, a detailed review is presented of the Soft 

Magnetic Composite and its production, properties and use in manufacturing of machines such 

as MPMs. 
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2.2 First generation of Electrical Machines    

The growing interest in electrical machines, power and its distribution led to various inventions 

and many patents being filed in the late 19th century and early 20th century. One of the early 

patents granted to W. M. Mordey in 1890 for an electric generator can be classified as the 

backbone of today’s transverse flux machine as it had the same constructional and operational 

conceptual properties [1].  

Figure 2.1 (left) shows the inner rotor design as proposed by Mordey, composed of a simple 

ring coil enclosed by I and K components spread out circumferentially around the machine. In 

order to reduce the eddy current losses, the iron segments are designed to provide a flux path 

that has similar reluctance whether the rotor aligns with I or K component; change in flux in 

the rotor is reduced hence the magnetic circuit should appear to be the same [1].    

The pole number of the machine is quantified by the number of teeth on the rotor and is 

equivalent to the number of iron segments. This meant that an increase in the number of 

sections led to an increased number of electrical cycles for a coil in one full rotation of the 

rotor.  

  

Figure 2. 1: Mordey’s electric generator (left) in 1890 and another rotor topology (right) [1] 

 

 There are many other rotor topologies offered too and one such design is presented in figure 

2.1 (right).  It can be seen from this that there is an iron core, C which is referred to as a 

‘magnet’, mounted on a shaft S and wound with a field coil to create the field distribution 
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shown. Upon inspecting the design in figure 2.1 (left), the flux path can be seen to start from 

the top ‘north’ pole making its way into the U core piece, along the core-back, down the other 

side of the U core into the bottom ‘south’ pole of the rotor and returning back to the ‘north’ 

pole through the rotor iron.    

Rotor parts labelled K in figure 2.1 are referred to as ‘magnetic short circuiting pieces’ as these 

does not link the coil as they are aligned with an inner U core, therefore not contributing to the 

output. This concept is quite common in modern machines as these are merely added to avoid 

stray fields that may occur in the parts of rotor that are not used to link the coil.   

Other patents that use flux paths similar to MPMs include Nicola Tesla’s high frequency 

generator in 1891 [31], Ernest Alexanderson’s 100 kHz alternator in 1911 [32] and Robert 

Lundell’s claw-pole alternator in 1960 [34]. Tesla’s generator, shown in Figure 2.2, consists of 

an iron ‘C’ core labelled ‘N’, contains a homopolar winding labelled ‘I’ while the triangular 

surface within the air gap produces an assembly of poles. An alternating voltage is induced 

when the rotating winding is wound (as shown in Figure 2.2 right) and placed between the 

triangular air gap of the stator.       
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Figure 2. 2: Diagram of Tesla’s high frequency generator [36] 

 

A few years later, Ernest F. W. Alexanderson built a 100 kHz alternator [32] for radio 

communications, shown in Figure 2.3. The concept of this machine is similar to the double 

sided machine (which will be described later in this chapter) and William Stanley’s 1887 

invention of producing fluctuating magnetic field [33, 34].  

It is seen from Figure 2.3 (right) that the armature coil (6) is integrated into the stator (1) and a 

‘solid magnetic inductor’ rotor (5) is used to create an alternating field by placing it in between 

two laminated rings. These rings are separated by two air gaps positioned in the 

circumferential/radial plane.   

The flux path of this can be described as being perpendicular to that of an MPM. The field 

created by the stator coil passes through one ring, crosses the first air gap in the rotor, across 

the second air gap into the second ring and finally around the core-back to the original ring 

completing a full magnetic circuit.  

Figure 2.3 (left) shows a cut out of rotor; zigzag winding (9) is shown held between two clamps 

(4). A high strength non-magnetic material (7) is used to fill the gaps between the rotor 
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windings in order to give the rotor a smooth finish ultimately reducing the windage which can 

often cause problems at the high speeds at which this machine works.     

 

Figure 2. 3: Diagrams from patent of E. F. W. Alexanderson showing 100 kHz alternator [40] 

 

The Lundell ‘claw-pole’ alternator was patented 49 years later and can be regarded as one of 

the most profound examples of a modern modulated pole machine and formed the basis of the 

modern day automotive alternator. Robert Lundell was the pioneer inventor of the iron core 

like structure, modulating flux for a single dc stator winding; this idea was developed by 

General Electric in 1902. Lundell’s technique was further revised and got used to form the 

modern day automotive alternator [35] once the silicon diodes were introduced. However, the 

introduction of affordable silicon components meant the birth of silicon thyristors, which 

replaced the induction alternators bringing them to an end. 

2.3 Second generation of Electrical Machines  

 In the last twenty-five to thirty years, with the introduction of higher energy density magnets 

[36], availability of rare earth magnets for a realistic cost, semiconductors replacing valves and 

the development of materials such as soft magnetic composites, attention turned back to MPMs 

with its popularity touching skyline. There was an increasing curiosity with research being 
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carried out more than ever before to figure out the result of replacing field windings by 

permanent magnets. This paved the way to many papers being published presenting different 

topologies for MPMs out of which was one published by H. Weh in 1986 presenting a MPM 

which formed the base of current day machines [2]. He realised the path of the flux trans-

versing the direction of motion of motor and hence named the machine ‘transverse flux 

machine’ which is the name used today for such types of machine.  

In [2], Weh puts forward the need to develop new soft magnet materials to avoid saturation, 

increased tooth widths were needed in conventional machines which in turn reduced the size 

available for the coil. Therefore to keep the electrical loading the same, higher current density 

and cooling was required [2].   

This was one of the main reasons why MPMs became popular as this type of machine allows 

increasing the number of pole numbers without reducing the space for the coil due to the 

electrical and magnetic circuits being decoupled from each other. This meant that one does not 

need to reduce the electric loading to increase the magnetic loading. Conductor losses in MPMs 

were also reduced due to high current loading as each pole saw the whole coil MMF and hence 

high current densities were not required.   

All these features meant that there were many designs created amongst which were single sided 

modulated pole machines (SSMPM), double sided modulated pole machines (DSMPM) as well 

designs with combined stators. A few designs from the literature are discussed in the following 

sub sections.  

2.3.1 Single sided machines 

In a Single sided modulated pole type of machine, flux is taken from one side of the magnet 

(mounted on the surface) by the armature and returned via the iron core-back via a return flux 

path. The most relevant arrangement to explain a single sided modulated pole machine is shown 

in figure 2.4 where several U shaped laminated iron cores, spaced two pole pitches apart, 

enclose the ring shaped winding. The purpose of this arrangement is to direct the flux around 

the coil across the air gap, up to the rotor where the magnets efficiently alternate the direction 

of the magnetising circuit [37]. The return path for the flux to return from the rotor is provided 

by an iron segment situated below the magnets.  
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Figure 2. 4: A single sided modulated pole machine arrangement designed by Weh [42] 

 

It was also noted by Arshad et al [38] that the topology presented in Figure 2.4 only utilises 

half the coil and uses only half the magnet material at any one time, which leads to stray fields.  

To tackle these issues, Mordey provided a solution by implementing magnetic short circuiting 

bars [39] which were used by Bork et al [40] and many other machine users [2, 39] to guide 

the flux from unused magnets. Bork not only used Mordey’s solution but also took this one 

step further by removing the iron link between the magnet; shown in Figure 2.5. The removal 

of iron from the rotor reduced the overall cost and weight of the machine as well as reducing 

eddy currents in the magnets, which are big advantages in machine manufacturing. It was seen 

that the main flux path links all the magnets however the presence of two air-gaps which the 

field must cross, an increase in current density for a given torque and reduced available area 

for the winding [41] reduces the extent of the initial advantage.  
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Figure 2. 5: Magnet utilisation in a single sided Modulated Pole machine by M. Bork et al [45]; solid rotor (left), separated 

rotor parts (right) 

 

A big problem in single sided MPMs is the high armature leakage due to iron cores being in 

close proximity of each other and hence the reluctance of these is very close to the reluctance 

of the air gap. High armature leakage means low power factor, at times as low as 0.35 [41].   

2.3.2 Double sided machines 

There are many benefits of a double sided machine over a single sided one, the main one being 

the doubling in force density [8]. In a double sided machine, several U cores and the coil usually 

covers the rotor from both sides [2, 33]. These rotors can be surface mounted [2, 37, 42, 43], 

where currents in the coils flow in opposite directions or flux concentrated [24, 33, 42-45], 

where current flows in the same direction in coils, as shown in Figure 2.6.  
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Figure 2. 6: A double sided MPM with flux concentrating rotor in a zero torque position; rotor iron pieces and U cores are 

aligned [36] 

 

The double sided machine concept was first brought into existence by Weh [2] by simply 

removing the magnet core back in figure 2.5a and replacing it with a second stator in an aim to 

achieve 100% magnet utilization. The concept of removing the magnetic short circuiting bars 

in the stator was the back bone of Weh’s paper [46] in which he explained the idea of using a 

flux concentrated rotor so both sides of the magnets can be used at all times.  

This flux concentration causes the flux density of the air gap to be greater than the residual 

value of the magnet which provided it, providing a huge advantage to the overall performance 

of the machine. This benefit, united with better magnet utilization and a stator made up on 

modulated pole topology, delivers high force densities with much better power factors.  

There were many ideas and machines that were manufactured to reduce the redundancy of 

magnets; one such machine was built by Jack et al [47] and tested by Madison [48] shown in 

Figure 2.7a. This was similar to the machine developed by McLean, a claw pole machine 

(CPM), shown in Figure 2.7c [49] in which he took full advantage of SMC’s isotropic 

permeability by introducing a surface mounted magnet rotor and a claw pole structure in the 

armature stator. CPMs have been used in cars [50], stepping motors such as hard drives and 

digital cameras [51, 52] and recently in an induction motor made from SMC [53]. Mclean 

showed that torque is not just dependent on peak flux density and electrical loading (and the 

machine constant [49]), but also on the number of poles.  

Figure 2.7c shows Mclean’s double rotor single stator axial field claw pole machine [49] where 

the claw pieces are split, half pointing inwards and half pointing outwards to direct the magnet’s 

flux linking the coil. The machine proved advantageous when compared against conventional 

machines however it also had its disadvantages such as high stator leakage, poor power factor 
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and high core loses [47]. Overall, the machine topology presented by Mclean was unusual for 

a claw pole machine because of its axial design; more common are the radial type machines 

found in [6, 47].     

The machine design by Jack etal [47] provided a close complex structure of claw teeth which 

resulted in high amount of armature flux reducing the power factor, a low torque density of 3.3 

 

(a) Jack’s single sided ‘claw pole’ MPM [47]  (b) Dickinson’s optimised 

machine  [54] 

 

 

(c) McLean’s general topology [58] (d) McLean’s method to allow iron claws  

to be laminated  

 

Figure 2. 7: Various Claw pole Modulated Pole Machines 
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Nm/kg for active material; however the simple structure of the armature eased the 

manufacturing.  

Dickenson etal [9, 54], on the other hand, increased the pole number to 50 in order to optimise 

the design, by changing the claw topology to reduce the armature flux which resulted in a 

torque density of 9.3 Nm/kg; the machine design is shown in Figure 2.7b.  

Other advantages of a double sided MPM include high torque densities as shown by Mecrow 

et al [3] where the machine was built out of SMC and achieved a torque density of 12.35 

Nm/kg, torque per unit volume of 45.3 kNm/m3; compared to 28.3 kNm/m3 for a single sided 

design. The downside of a DSMPM when compared to a SSMPM is the complex construction 

[3] though the power factor shows improvement as the amount of armature leakage is lowered. 

Use of SMC material is recommended for double sided MPM as pointed out by Guo et al [55] 

due to eddy currents in the laminated material.  

It can thus be concluded that double sided topologies offer higher power producing capabilities 

compared to single sided topologies: however they are more complicated to manufacture. In 

order to find a good compromise between performance and simplicity, a claw pole transverse 

flux permanent magnet machine is often considered by researchers [6, 56].  

2.3.3 Multi-Phase Machines  

The concepts, designs and topologies presented so far all consisted of single phase synchronous 

machines. The simplest way to design a multiphase machine is by stacking multiple machines 

in series displaced by an appropriate angle to produce a smooth net output. There are many 

examples of such machines such as Mecrow et al’s [57] and others such as [53, 58, 59] which 

uses the technique to integrate variations in an induction machine’s stator, while Cros et al [60] 

have a hybrid machine comprising a conventional and modulated pole machine, presented in 

Figure 2.8. 
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Figure 2. 8: Two examples of multiple phase MPMs; Mecrow’s [57] multiple phase MPM (left), Cros’s [60] hybrid 

multiphase MPM (right) 

 

2.4 General properties of Transverse Flux Machines 

There are many advantages of TFM topology over the classical longitudinal concept; the main 

ones being the increase in pole numbers does not reduce the MMF per pole therefore producing 

higher power densities if needed. Secondly, there is a lot more design freedom as the magnetic 

flux and the coil geometry can be varied without compromising on the dimensions of either 

giving a higher torque/volume ratio. Moreover the armature coil is very simple and the total 

conductor length is relatively short. Last but not the least, the control method is simplified due 

to magnetic decoupling as the phases in a TFM are magnetically independent.  

     

On the other hand, the reasons that can prevent companies from manufacturing mass 

production of TFM comprises of low power factor, three dimensional magnetic fields causing 

complex and complicated construction. This means that the use of lamination is replaced by 

the use of isotropic materials like soft magnetic composite materials as well as 3D numerical 

design tools, increasing the production costs significantly. However, for critical applications 

where the demand revolves around the performance and the compactness of machine, TFMs 

fulfil the criteria perfectly.  

 

TFM designs can be based around three concepts. The first design is when there is an active 

rotor i.e. the exciting permanent magnets are placed on the rotor. The second concept is when 

the rotor is passive i.e. the exciting permanent magnets are on the stator. The third concept of 
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a TFM is when the permanent magnets are replaced by an electrically excited reluctance motor. 

These three concepts can either be single sided or double sided, though single sided are easier 

to manufacture and have better prospects in practical applications.  

There have been various designs and prototypes recently developed in the field of TFMs 

investigating regarding the geometries and their characteristics. To conclude, TFMs have a 

higher torque/volume ratio when compared to conventional ones, but because of three 

dimensional flux paths, the topologies require the use of isotropic materials like soft magnetic 

composites, as well as 3D numerical design tools. 

2.5 Soft magnetic composite – MPM 

Most of the early MPMs were manufactured using laminated steel to offer the flux path to link 

the coil of the machine [1-2] however advancements in materials such as soft magnetic 

composite and 3D design techniques made research into flux switching MPMs more feasible 

and offered commercial viability for this machine type. Many complex designs and complex 

shapes can now be made out of SMC which were difficult or impossible to make via stamping 

the laminations.  

Soft Magnetic Composites (SMC) is the internationally recognised name for pressed and heat-

treated metal powder components with three-dimensional (3D) magnetic properties. Somaloy® 

is Höganäs brand for SMC materials. The Somaloy technology offers a wide material portfolio 

to fulfil the requirements of different electromagnetic applications such as electric motors, fast 

switching actuators or inductor cores for power electronics.  

2.5.1 Production of SMC Somaloy  

Höganäs Somaloy is a high purity water atomized iron powder with very thin inorganic surface 

insulation. The iron powder is coated with insulation of 50 – 200 micro-meter in diameter 

combined with a binder or lubricant, as shown in Figure 2.9. The addition of additives, 

lubricants and coating depends on the application; for electric motors, Somaloy 700HR would 

be coated with 5P (phosphate) where for power electronic applications, Somaloy 700HR would 

only require a coating of 1P. Moreover, the size of the fraction, microstructure and processing 

parameters for heat treatment solely depend on the application. 
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Figure 2. 9: Schematic of Somaloy powder (SMC particles) with lubricant coating [73] 

 

The properties and performance of the SMC material depends upon the mix and the method of 

compaction, the atmosphere it is compacted under and the amount of pressure applied. 

Compaction takes place after the addition of necessary lubricants and additives; three steps 

involved in the compaction cycle [62] are shown in Figure 2.10. The first step is crucial as 

filling determines the homogeneity of the compacted component in terms of density. The 

performance of the material at a given frequency is determined by the size of the particles in 

the initial mix; the smaller the particles, the better the performance at high frequencies and vice 

versa [49].  

 

Figure 2. 10: Three steps involved in compacting the powder [62] 
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Secondly, the pressure applied during compaction is important as this determines the gaps 

between the particles. Higher pressure means small gaps between the particles leading to higher 

permeability and saturation flux density [62]. The process of compaction causes poor magnetic 

performance and high hysteresis losses due to the stresses created in the material [49] and hence 

the components needs to be heat treated under high temperatures to remove the lubrication 

from compaction and to improve the performance of the finished component.     

Although laminations require less processing and hence are cheaper and quicker to 

manufacture, SMC’s ability to easily assemble the finished shape is of greater benefit [63]. 

Other benefits of SMC include a smoother shape of the end product which saves on further 

machining, an increased fill factor due to reduced requirement for slot insulation, a compact 

size, smaller thermal barriers and shorter end windings than laminated machines [64]. 

2.5.2. Properties  

SMC has a lower density and permeability than magnetic steel due to the insulation layer 

described earlier and asymmetrical shape of particles leading to gaps in the material. SMC has 

a density ranging between 7300 – 7550 kg/m3 whereas laminations have densities higher than 

7600 kg/m3. The relative permeability of SMC is usually around 500 to 800 while laminations 

have permeability in numerous thousands (7500 for Transil 315); these comparisons can be 

seen in [65]. Because of the lower permeability of SMC, the performance of the machine can 

be lowered [62] and hence it cannot be a direct replacement for laminations especially in 

induction or switched reluctance machine which require high permeability (to minimise the 

magnetising currents) due to smaller air gaps. 

The main advantage of SMC comes when the machine to be designed has complex three 

dimensional shapes, requiring 3D flux paths. One such example is presented in [66] where the 

magnets are positioned in order to provide flux to a radial and axial machine’s air gap; this 

would not have been made possible with laminations. It is easier to use powder and engineer 

shapes that are otherwise not possible with laminations, ultimately saving space and material; 

one such example of an axial flux machine is presented in [67].   

The positioning of Somaloy in terms of resistivity and operating induction level makes it a 

desirable candidate for electric motor application. Somaloy falls between the operating 

frequency of ferrites and steel sheets with wider operating induction level for the given 

frequency, as shown by figure 2.11. SMC also has higher resistivity with fewer alloying 



Chapter 2 – Literature Review 

23 | P a g e  

 

elements as shown in figure 2.12; it was shown in [68] that SMC has an approximate value of 

150μΩm compared to 0.16μΩm for laminations.  

Other benefits of SMC include iron loss, at low frequencies it is comparable to low quality 

laminated steels [49] however it is much better at higher frequencies. This is due to the 

insulation around each iron particle, as shown in figure 2.9, eddy currents finds it difficult to 

circulate around the material. It is therefore preferred to use SMC in high frequency 

applications such as drive fed machines. It is discussed in [49, 69, 70] that there is a point where 

SMCs act superior to the conventional machines due to the fact that hysteresis losses increase 

linearly with frequency while eddy current losses increase with frequency squared.    

 

 

Figure 2. 11: Illustration of operating induction level of Somaloy as a function of operating frequency in comparison with 

steel sheets and ferrites. 
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Figure 2. 12: : Comparison of resistivity of Somaloy with different materials. 

 

It can hence be concluded that although laminations are a good manufacturing material, SMC 

behaves better in many aspects, especially when the machine designs are complex requiring 

3D flux paths and high frequency operations. In order for laminations to compete at high 

frequencies, the losses needs to be reduced by making them thinner and introducing additives 

such as silicon that have high resistivity. This however would increase the cost of 

manufacturing process [63, 71] which will put laminates to another disadvantage as SMCs 

frequency operation is not affected by the manufacturing process.  

2.6 Material Hybrid Machines 

It is difficult to press large size shapes of SMC and sometimes therefore many smaller SMC 

pieces needs to be connected together to make a final shape of a large machine, as was the case 

in [3]. Using this technique however causes a compromise on the permeability and isotropic 

properties of the machine.  

The solution to such problems is hybrid machines, where both laminates and SMC are used. 

Laminates are used where there is a need of radial component of field such as the teeth and 

SMC is used to fulfil 3D field requirements such as the core back and the pole pieces. This 

brings into practice the best properties of both materials as well as reducing the component 
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count and overall size of individual pieces, ultimately reducing the manufacturing cost of the 

machine.  

There have been many instances when this technique has been used, such as in [67] shown in 

Figure 2.12 where Jack et al combines SMC teeth and laminated strip-punched core back to 

produce a hybrid axial machine. Pinguey [22] and Amreiz [72] both produced stator teeth from 

bent laminations while the core back is manufactured from SMC, exploiting its 3D flux 

carrying properties. Pinguey’s machine features the MPM concept while Amreiz construction 

method of producing stator teeth from laminated strips wastes very little material. The 

laminations are used to create flux paths with higher permeability while the rotor contains the 

SMC flux producing blocks.      
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Figure 2. 13: Jack et al [67] Material Hybrid machine made from compacted iron powder and laminations 

2.7 Cogging torque 

Cogging torque in an electrical motor is produced exclusively due to the interaction between 

the permanent magnets on the rotor and the teeth on the stator, which have a tendency to align 

such that the reluctance seen by the rotor is minimised. It is position dependant and hence 

depends on the number of magnetic poles and the teeth on the stator.  

In a MPM, there are an equal number of rotor poles and stator teeth (poles) and hence the 

number of positions where the rotor will find this position of low reluctance will be equal to 

the number of poles. In the case of this these, the MPM discussed is 50 poles, hence there are 

possible 50 positions where production of cogging torque can take place. It was shown in [86-

89] that a suitable selection of slot/pole combinations with a high common multiple can 
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decrease the cogging torque produced by a conventional machine; this however is not true for 

MPM. 

Although an MPM has equal numbers of stator teeth and rotor poles, these still line up twice 

in positions of low reluctance per electrical cycle. During one electrical cycle the rotor lines up 

in the d-axis twice (at 180° and 360°) and twice in q-axis (at 90° and 270°) and hence a large 

amount of rated torque is in fact the cogging torque [52, 90]. Moreover, improper designing of 

the machines can also cause a high cogging torque, sometimes as high as 25% of the rated 

torque; though many commercial machines, the value of cogging torque usually ranges around 

5% to 15% [3]. 

Another factor influencing the performance of the machine is the torque ripple which is not 

just made up of the cogging torque, but the harmonic content in the back EMF waveform too. 

It is vital to consider this, especially when the application demands a low torque ripple, as 

machines of this type can show a high harmonic content especially on load as was shown in 

[77]. It is vital that in high performance applications, the cogging torque of the machine does 

not exceed 1% to 2% of the rated torque and therefore detailed analysis and computation 

techniques are required to design optimal machines which meet the specifications.   

Phases of an MPM usually consist of three identical stator sections stacked axially and 

separated by a gap for magnetic isolation to reduce the mutual coupling between adjacent 

phases. Each of these three phases produces their own cogging torque [78] which is summed 

together on the shaft to create the resultant cogging torque for the whole machine. This allows 

for the possibility of reducing cogging torque by appropriate phase alignments and orientation.  

It was shown in [79] that most of the even harmonics in a three phase MPM cancel out, leaving 

only the 6th and 12th harmonics and hence techniques to reduce these will be investigated in 

this thesis. It was also shown that cogging torque for a SSMPM is usually significantly lower 

than that of DSMPM, as was discussed earlier in the section.  

There have been many literature publications on axial [80] and radial [81-83] PM machines 

however not many can be used directly in flux switching PM machines. Techniques that can 

reduce cogging torque include skewing the stator stack or magnets [84-86], using fractional 

slots per pole, optimising the magnet pole arc or width, shaping stator tooth tips [86], notching 

of teeth [87-88] and modulating the drive current waveform to compensate the torque ripple 

from a control viewpoint [89]. These techniques however are either difficult for some 
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topologies, adds to the complexity of the machine or reduce the motor’s back-EMF therefore 

reducing the resultant running/useful torque.  

It is also suggested in [90] that the cogging torque can be computed by calculating the co-

energy around the edges of the magnet in proximity to the nearest tooth and slot opening. A 

limited amount of research work is conducted to reduce the noise and vibrations in the machine 

[91-93], however due to the emerging interest in this field on part of the manufacturer, progress 

is being made to address the problem of cogging torque in much more detail.  

2.8 Literature Review Summary 

A brief history into the literature of modulated pole machines and soft magnetic composite was 

presented in this section. Topologies such as single sided, double sided and multiphase 

modulated pole machines were discussed, ultimately leading towards material hybrid designs 

as these are of particular interest to this thesis.  

It was shown that early modulated pole machines such as the one designed by Mordey mainly 

consist of solid laminated steel while the field was provided by a coil carrying current. 

However, the renewed research and availability of strong permanent magnets have 

reintroduced the modulated pole machines concept, especially in applications where high 

torque density is required. On the other hand, material hybrid machines use a combination of 

high permeability laminated steel and soft magnetic composite to make use of two kinds of 

field; one that travels in the plane and other that harness three-dimensional nature.  

A brief review on soft magnetic composite discussed the material’s production process, its 

isotropic and thermal properties, and its ability to produce three-dimensional flux paths that are 

ideal for modulated pole machines. It was also argued that these have a lower permeability than 

laminated steels mainly due to the compaction process; the non-magnetic gaps created between 

the adjacent iron powders that make up the composite.       

Lastly, the problem of cogging torque was highlighted and reducing this is the main aim of this 

thesis. Various techniques are presented in the literature to reduce the cogging effect, however 

most of them either alter the machine parameters, give rise to complex manufacturing or 

decrease the useful torque. These ultimately either increase the cost of the machine or reduce 

the performance.   
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The modulated pole machine (MPM) is well known for torque density; however the quality of 

torque is generally poor, with cogging and ripple exceeding 10% of rated torque. In this chapter 

a base machine is presented and analysed, against which all subsequent design development 

and analyses are compared. The chapter concludes with a set of suggestions to improve the 

torque quality of the MPM.  

In this chapter the operation of the previously designed separate phase MPM design is 

presented along with the problems that were highlighted in the design. These problems will be 

discussed and solutions will be outlined to improve the torque quality of the machine.   

3. 
Base machine  

Torque Quality 
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3.1 The Base machine for comparison   

The stator of the machine, described in [117] is shown in Figure 3.1 and forms the base design 

for this study. The stator is made up of six pressed SMC toothed sections enclosing three hoop 

coils made from rectangular cross section copper wire. The phases are separated by 2mm thick 

aluminium rings to reduce the mutual coupling between the phases.  

 

Figure 3. 1: CAD model of the base machine assembled 3-phase stator 
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The rotor consists of fifty pole pieces made from pressed SMC (Somaloy® grade 3P) while the 

magnets are made from Neodymium grade N35; the pole pieces and magnets are alternately 

arranged in an aluminium hub, as shown in Figure 3.2.  

 

 

Figure 3. 2: CAD model of the base machine rotor 

 

An axial view of the three phase MPM arrangement is shown in Fig. 3.3. It consists of three 

identical stator sections separated by a gap to reduce the mutual coupling between adjacent 

phases. Phase A consists of two laminate toothed rings (Tooth 1 and 1’) placed at an electrical 

angle of 0º and 180º respectively enclosing coil A. Phase B is similar to Phase A except that 

the Tooth 2 is moved by 120° from Tooth 1 while Tooth 2’ is 180° from Tooth 2. Phase C’s 

Tooth 3 is 240° from Tooth 1 and hence completes a balanced three phase arrangement.   
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Figure 3. 3: Finite Element axial view of a three-phase MPM with axial separation 

The coils are made from rectangular cross section copper wire and are 3.3mm wide axially 

while the phases are separated by 2 mm thick aluminium rings; the separation reduces the 

mutual coupling between phases, whilst the aluminium rings ensure the correct angular position 

of the adjacent stator phases, table 3.1 gives the major dimensions of the machine. Figure 3.1 

shows the CAD view of the stator arrangements along with the shaft, bearing and a rotor end 

cap.   
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Table 3. 1: The major dimensions of the separate phase motor 

Stator Tooth sections (axial length) 5.95 mm 

Coil Width 3.3 mm 

Coil Outer Diameter 146 mm 

Coil Inner Diameter 114 mm 

Number of turns on Coil 17 

Phase separation gap 2 mm 

Phases  3 

Poles 50 

Magnets 50 

Magnet Dimensions  3.9mm x 3.5mm x 49.6mm 

Outer Diameter 159.2 mm 

Inner Diameter 103.7 mm 

Axial Length  49.6 mm 

Stator Core-back Depth  5 mm 

Air gap 0.4 mm 

 

  



Chapter 3 – Base machine Torque Quality 

34 | P a g e  

 

3.2 Base machine performance  

The cogging torque and back EMF waveforms of the base machine are presented in Figures 

3.4 and 3.5 respectively. These results form the base performance for all subsequent analysis.  

The cogging torque measurements of the base machine is shown in Figure 3.4. This test was 

carried out with zero current using the test bench shown in Figure 6.1.  

 

Figure 3. 4: Static Torque characteristics of the base machine design prototype over two pole pitches (28.8 mechanical 

degrees) 

 

It is seen that the base machine has a peak cogging torque of 1.76Nm, which is 12.6% of the 

rated torque, and as such is too high. Harmonic decomposition of this waveform yields a high 

6th harmonic content and significant second, fourth and twelfth harmonics, these are presented 

in Table 3.2.  
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Table 3. 2: Static Torque harmonic content of the base machine design (as a percentage of rated torque) 

Peak Cogging Torque 12.57% 

1st harmonic 1.57% 

2nd harmonic 1.67% 

3rd harmonic 0.19% 

4th harmonic 1.25% 

5th harmonic 0.14% 

6th harmonic 10.41% 

7th harmonic 0.10% 

8th harmonic 0.12% 

9th harmonic 0.11% 

10th harmonic 0.34% 

11th harmonic 0.02% 

12th harmonic 1.41% 

13th harmonic 0.11% 

14th harmonic 0.04% 

15th harmonic 0.07% 

16th harmonic 0.12% 

 

In figure 3.5, the no-load back EMF is shown for the three phases. In this waveform, there is a 

significant 5th and 7th harmonic, which is found to be greatest in Phase B, the central of the 

three coils. The harmonic components are presented in Table 3.3. These harmonics are 

undesirable and subsequent work will describe the efforts to reduce and remove them.  
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Figure 3. 5: Back EMF of all three phases of the base machine design taken under no load conditions with the rotor rotating 

at 200rpm. 

 

Table 3. 3: Harmonic content of back EMF waveforms for the three phases 

Harmonics Phase A Phase B Phase C 

Fundamental  110.57 110.94 110.07 

5th  2.75 3.20 2.46 

7th    1.07 0.86 0.84 

 

The central phase (B) shows a higher peak voltage than the two outer phases (A and C) as seen 

from Table 3.4. In addition to this imbalance, there is a slight mis-alignment in the electrical 

angle of the three phases, as shown in Table 3.5. The three waveforms can be regarded as close 

to 120o electrical; phases A and B are misaligned by 1.85 electrical degrees, indicating the 

circumferential displacement of the stator phases can affect the phase voltages, as seen from 

Figure 3.4.  

 

Table 3. 4: Comparison of peak Voltages of the base machine 

Base Design  Phase A Phase B Phase C Mean  

Peak back EMF (V) 109.46 110.19 109.01 109.55 
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Table 3. 5: Misalignment of the three phases of the base machine (electrical degrees) 

 Phase AB Phase AC Phase BC 

Electrical angle 120 240 120 

Misalignment (elec. Deg) 121.85 242.92 120.78 

 

Transient torque analysis was also carried out in Finite Element Analysis; the machine was 

supplied with 20 Amperes of current while the rotor was rotated two pole pitches. It can be 

seen from Figure 3.6 that the average torque produced at 20A is approximately 14 Nm with a 

very high torque ripple of 25%.   

 

Figure 3. 6: Torque waveform of the base machine design prototype over two pole pitches (28.8 mechanical degrees) when 

supplied with 20A 

3.3 Problem Statements  

The machine model presented in section 3.2 is treated as the base design and all the newer 

techniques and topologies were compared against this model. The three problems that are 

encountered in this design are the high peak cogging torque and its harmonic, the back EMF 

and its harmonics and the high torque ripple. The aim of this thesis is to provide solutions to 

reduce these undesired cogging, back EMF harmonics and the ripple without altering most of 

the machine parameters that were presented in Table 3.1.  

3.3.1 Cogging Torque 

Interaction between the rotor permanent magnets and the stator slots of a PM machine give rise 

to an undesirable component for the operation of the motor known as Cogging torque. MPMs 
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display a large amount of cogging torque [30, 94] and this can be a substantial proportion of 

the rated torque. This cogging torque coupled with a high torque ripple is detrimental to the 

performance for an application where low torque ripple is a necessity [1]. Because MPMs have 

the same number of rotor and stator poles, the number of positions where the rotor will find a 

stable low reluctance position is equal to the number of these poles and hence is not ideal from 

the cogging point of view. 

It is seen from Table 3.2 that there is a high peak cogging torque and its harmonics present in 

the machine. It is important to reduce cogging torque as it introduces jerkiness, vibration; noise 

and torque ripple in the user’s experience of the machine. There have been many techniques 

that can reduce the cogging torque however these also reduce the back EMF resulting in 

reduced average torque. There are techniques [30-31] that decrease the cogging torque 

produced by a conventional machine; these however, are not applicable to an MPM. 

There are numerous techniques mentioned previously in Chapter 2 as well in recently published 

literature which can be implemented to reduce cogging torque in both, axial and radial type 

permanent magnet machines. These include skewing the poles [95 – 97] or the magnets [97], 

segmenting the magnet [98, 99], shifting the magnet [100], optimising the slot openings [111] 

and the pole arc coefficient [101 – 102]. Moreover, the authors in [103 – 104] present a possible 

method of teeth pairing, while [105 – 108] provides teeth notching as a technique to reduce the 

cogging torque in flux switching permanent magnet machines, though only suitable for 

machines with odd numbers of rotor [105]. Authors in [109] present a dual rotor axial field flux 

switching PMM whose cogging torque is reduced by approximately 77% with simply 

increasing the rotor pole width and adopting a fan shaped rotor pole.  

Other techniques that are previously developed in literature to minimise the cogging torque 

magnitude of conventional MPMs consist of two major classes: 1) generating a supply current 

which produces an opposing torque ripple to the cogging torque [112] and 2) optimising 

machine size and parameters [113 – 116]. These include slot number and pole number 

combination, stator slot widths, radial air gap length and magnet thickness, pole arc to pole 

pitch ratios and skewing of slots in the stator or magnets in the rotor.  

Although the MPM has equal number of stator teeth and rotor poles, these still line up twice in 

positions of low reluctance per electrical cycle. When moving through one electrical cycle, the 

rotor passes through the aligned and unaligned position twice. These positions are explained 

[28] and the graph of this cogging torque is shown in figure 3.7.  
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Fig. 3.7 shows the cogging torque created by a Single Phase MPM over one electrical cycle. 

The rotor starts in the d-axis, passes the q-axis at 90°, and crosses the negative d-axis at 180°, 

followed by q-axis at 270° and finally d-axis at 360°. These five are the zero torque positions 

for this machine type shown in figure 3.6. 

 

 

Figure 3. 7: The cogging torque of a Single Phase MPM over one electrical cycle [133] 

 

Torque ripple is a combination of the cogging torque and the harmonic content in the back 

EMF waveform. It was shown in [30] that when such machines are used on load, there is a high 

harmonic content and hence MPM is not ideal for low torque ripple applications. 

3.3.2 Factors affecting cogging torque 

Cogging torque is largely affected by machine design issues and manufacturing related 

variables. These include magnet strength, slot width, manufacturing irregularities such as 

placement of magnets in the rotor and other manufacturing impact on materials (such as quality 

of SMC or stamping the laminations). The precision required in placing magnets in the rotor 

requires more attention than the dimension of the magnets itself, as it has a greater influence 

on the cogging toque, as previously been investigated [117]. 

Magnet strength is an important characteristic as it determines the air gap flux which in turn 

determines the magnitude of cogging torque. Factors such as temperature and initial charging 

of magnets also affect the flux density and hence the cogging torque.  
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Slot width is used to maximise the torque generation and is usually equal to the tooth width (at 

least in conventional designs). This is beneficial from output point of view but it is important 

to remember that it is the interaction between the magnets and slot opening that affects the 

cogging torque. It could be said that a zero slot opening will have zero cogging torque though 

a minimum opening has to be provisioned for winding placements. The key is to determine this 

minimum slot opening while maximising the torque output while placing magnetic wedges in 

the slot opening to reduce cogging torque; though this may increase the manufacturing cost.  

Two other factors that affect the cogging are the manufacturing of stator laminations and the 

rotor eccentricity in the machine. Stator laminations isotropy is affected by punching, stamping, 

grain orientation, and method of stacking, using welds, holes and bolts and other forms of 

interlocking as these introduce anisotropies resulting in reduction of cogging cycles and hence 

increasing the cogging torque. Secondly, the rotor eccentricity in the machines is affected by 

the manufacturing tolerances and imperfections in the bearing which not only contribute to the 

unbalanced radial forces but also constraints the cogging cycles.  

The priority of the new topologies is to reduce this peak cogging torque and its harmonics in 

order to provide smoother riding experiences for the rider.  

3.3.3 Back EMF  

The counter (back) electromotive force or the voltage produced against the current which 

induces it is an important indicator on machine’s working capabilities and also on how well 

the prototypes are configured.  

Three important features are to be considered when testing for back EMF for new topologies; 

the mean back EMF of the three phases, the harmonic content in the back EMF waveforms and 

the alignment of the three phases.  

3.3.4 Torque Ripple 

Torque ripple is the peak-peak torque expressed as a percentage of the average torque; 

𝑇𝑜𝑟𝑞𝑢𝑒 𝑅𝑖𝑝𝑝𝑙𝑒 =  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑇𝑜𝑟𝑞𝑢𝑒 − 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑇𝑜𝑟𝑞𝑢𝑒 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑇𝑜𝑟𝑞𝑢𝑒 
 𝑥 100% 

The torque ripple of this machine type is not just made up of the cogging torque but the 

harmonic content in the back EMF waveform and reluctance ripple due to inductance variations 

contributes too. It is vital to consider this especially when the application demands a low torque 

ripple as machines of this type can show a high harmonic content especially on load as was 
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shown in [30]. It has been previously stated that torque ripple can also be present/increased due 

to magnetic saturation [118, 119] as it enlarges the original three sources of torque ripple. There 

have been many instances in the previous literature where skewing the rotor and stator is used 

to minimise the cogging torque and back EMF harmonics in order to reduce the torque ripple 

[120 - 125].  

Torque ripple can be caused by cogging torque, the interaction between the air gap flux 

harmonics and the MMF as well as mechanical imbalances. In order to reduce the torque ripple, 

the interference between the MMF and air gap flux harmonics must be analysed. It is known 

that this factor is influenced by changes in the geometry of the machine design; hence varying 

these should have an effect. 
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3.4 Summary 

The main problems highlighted in this section were cogging torque, back EMF harmonics and 

therefore high torque ripple. It is important to keep in mind that a machine with a low cogging 

torque might have a high torque ripple whereas a machine with a high cogging torque might 

have a low torque ripple. This is due to the fact that the torque ripple due to the interaction 

between the MMF and air gap flux harmonics can compensate or increase the cogging torque 

in different cases. Magnitudes of these are presented in table 3.6 and the thesis is aimed at 

producing novel ways that can reduce these magnitudes while increasing or at least keeping 

the mean back EMF and average torque the same.  

 

Table 3. 6: Summary of various base machine output values to be compared to newer topologies 

Peak Cogging Torque 1.76 Nm 

2nd harmonic cogging torque 0.23 

4th harmonic cogging torque 0.17 

6th harmonic cogging torque 1.46 

12th harmonic cogging torque 0.52 

Mean back EMF 109.55 V 

5th harmonic back EMF 3.20 

7th harmonic back EMF 0.86 

Torque Ripple (%) 25 

Average Torque at 285 rpm 14 Nm 
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This chapter introduces techniques that can improve current Modulated Pole machines (MPM) 

by reducing the cogging torque, back EMF harmonics and the torque ripple. All the techniques 

were first simulated using 3D Finite Element methods with Infolytica MagNet software; results 

and comparisons are presented in this chapter.  

It is seen previously that only one phase of a multiphase MPM is modelled when using finite 

element analysis. This is due to the fact that there is a magnetic isolation for each phase for 

most part due to the separation of both rotor and stator. However in this thesis, the finite element 

analysis is conducted on models that represent all three phases. This is because the machines 

modelled in this thesis use the same rotor where the three phases share some magnet between 

them, as shown in figure 4.1. This extra magnet increases the flux linkage of all phases of the 

SPMPM when compared to modelling a single phase machine. This was investigated previously 

(in) [117].  

 

Figure 4. 1: FEA geometry of one pole-pair 

 

4. 
Design 

Investigations 
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Due to periodic nature, there was no need for a full fifty poles finite element model rather a two 

poles of each machine was modelled with an even periodic boundary condition applied to the 

edge of the models. This reduced the computational time required for the models to solve as the 

models were not as complex as would be for a 50 poles model and therefore reducing the 

number of elements it contains.  The two pole geometry for FEA is shown in Figure 4.1.  

4.1 FEA – Mesh Sensitivity Analysis  
There is a lot of work that is purely theoretical based on outcomes from 3D FEA. It is important 

to verify the sensitivity of the solution mesh as it is considered the most valuable part for torque 

quality analysis in this thesis. A mesh is used in FEA to segment the model of the machine into 

many small parts which are termed elements. These elements are of first or second order 

tetrahedrons with their specific set of equations which when solved provide the solution of the 

magnetic fields in the model.    

The initial analysis in this thesis are all based on FE solutions. These are extremely sensitive to 

the size of mesh especially in the regions such as air gap. This is because of the large changes 

in the magnetic fields and stored energies. For the solution to be considered valid, it is vital that 

the mesh of the FE solution is within reasonable bounds.   

A mesh sensitivity analysis was conducted where in the mesh size was reduced until the change 

in d-axis flux or peak torque became very small (due to finer mesh) i.e. less than 1%. Reducing 

the mesh more than this would considerably increase the computation time without much 

improvement in accuracy of the results.  

Machine’s air gap was the key region where mesh refinement would have the biggest effect as 

most energy is stored here and field changes direction the most. Due to this reason, air gap mesh 

was kept significantly denser than other regions in the machine. The maximum element size in 

the air gap was limited to 0.4mm, the model contained over 60,000 elements.  

Air gap was split into four section. These were named stator air box, stator slip, rotor slip and 

rotor air box. The rotor and stator air boxes extend into the air gap by 0.1mm to make sure that 

they clear any stator or rotor components that have acute edges. This is very important as these 

are the areas where there are very high errors in the field, in fact a right angled corner would 

tend towards a field with an infinite flux density at that point.  

The torque calculated in MagNetTM by the Maxwell Stress method along a surface with such 

field irregularities would lead to a highly inaccurate calculation [136]. Hence extending the 

rotor and stator air boxes into the air gap and assigning a material known in MagNetTM as virtual 



  Chapter 4 – Design Investigation 

45 | P a g e  

 

air which is not used to denote separation between bodies removes the problem caused by the 

field errors at component edges. This is known as virtual air shell [136].  

So the model is split in four section; rotor air box, rotor slip, stator slip and stator air box. Rotor 

and stator slips are in the air gap regions therefore applying a fine mesh to these regions only 

as they benefit from it the most. It also allows for a boundary condition to be placed upon the 

surface of the static slip region, shown in Figure 4.2; this is required for proper operation of the 

model when static three dimensional models are solved.  

 

Figure 4. 2: Periodic boundary condition for a 2 pole section of MPM 

 

4.2 FE Models vs. Prototypes  

Work done previously [117] showed that there are some known differences between the FE 

models and the final prototypes that can be included in the adjusted FE models. These 

differences were: 

 An increased air gap due to excessive machining of the stator to remove 

high points from construction. These were measured by clocking the teeth 

while holding them in a lathe and were in the range of +/-0.05mm.  

 A construction gap between the SMC core-backs and the inner diameter of 

the stator laminations. This exists as there must be some clearance to be able 

to fit the laminations over the SMC core-backs and also because of the 

tolerances that occur in manufacturing, this was expected to be in the range 

of 0.025mm – 0.1mm [117].  

 There can be gaps between the rotor poles and magnets which is a difficult 

problem as these gaps are non-uniform and are not easy to measure. 
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Although the effect of these gaps is averaged out on the measured back 

EMF, there is also the possibility that the tolerance in the angular placement 

of the magnets and pole pieces could create a ‘pitching’ effect, which may 

also reduce the magnitude of the fundamental EMF and some harmonics.   

 

There was analysis carried out [117] where such gaps were introduced in the FE models to 

notice the effect of these. It was concluded that a gap of 0.05mm will be introduced between 

the stator laminations and SMC core-back and a 0.2mm gaps between rotor poles and magnets 

gives a reasonable correlation however air gap was kept at 0.4mm. It was understood that if 

there are any variances between the FE and prototype results, these are mainly due to the 

differences listed above.  Illustration of these gaps is shown in Figure 4.3.  

     

Figure 4. 3: Illustration of gaps between rotor poles and magnets (left) and SMC core-back and stator laminations (right) 

 

A parameterised model of a three-phase machine was created where all dimensions and 

machine parameters can be altered (diameter, axial length, pole number, tooth span, magnet 

size, pitching angle, MMF…). To reduce computing time (which can be quite considerable for 

a 3DFE simulation) a two-pole segment of the machine is simulated and an even magnetic 

symmetry applied. A view of the 3DFE solid models is shown in Figure 4.4.  
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Experiments and verifications are carried out on a number of prototypes in Chapters 6 and 7. 

A variety of techniques were discussed in chapter two to reduce cogging torque, however this 

chapter focuses on some novel methods that have minimal effect on the torque producing 

capability of the machine.  

The design techniques presented in this chapter comprise of ‘Combination of Tooth spans’, 

‘Tooth Pitching’, and ‘Designing pole pieces with different shapes’. All of these techniques are 

aimed to reduce the cogging torque, back EMF harmonics and torque ripple, whilst having a 

minimal effect on overall torque production.  

4.3 Tooth tip span alteration and combinations 

The parameter of interest in this section is the stator tooth span as shown in Fig. 4.5; this will 

be varied and the effect on cogging torque, back EMF harmonics and torque ripple is assessed. 

It is a much more predictable way of tuning the torque and EMF harmonics as the ratio of pole 

span to tooth span is merely changed by varying the tooth span and keeping magnet thickness 

the same; rotor pole span stays constant. This also means that there will be less of an impact on 

the magnitude of the fundamental back EMF as the magnets are unaltered. Varying this 

dimension has a minimal influence on the mass, and torque production ability of the machine 

in the range applicable for this machine.  

Figure 4. 4: 3DFE solid model of a two-pole segment of the MPM showing rotor and stator airboxes and slip regions 
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Figure 4. 5: Illustration of the tooth span of an MPM, tooth span changes applied: 120° span (left) and 180° span (right) 

 

The tooth span was varied between 120° and 180° electrical and the Finite Element simulations 

for each were carried out. Figure 4.6 show the change in magnitude of the important 6th (Tc6) 

and 12th (Tc12) harmonics along with the peak cogging torque value corresponding to each span. 

The peak cogging torque of the base design with a 130° tooth span was found to be 1.76Nm. A 

trend was observed, as the tooth span increased towards 170°, the cogging torque decreased to 

0.42Nm. This is a significant reduction in peak cogging torque; figure 4.7 presents these two 

waveforms.  

 

Figure 4. 6: Magnitude of cogging torque harmonics in the three-phase MPM  with varying tooth span (FE analysis) 
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It is also evident from Figure 4.6 that Tc6 is cyclic with its maxima at a tooth span of 135° and 

minima at a tooth span of 170°. Tc12 is also cyclic however there are two cycles repeated within 

the tooth span range studied in this section. The two minimums of this trend are observed at a 

tooth span of 140° and 170°. 

There is a pattern seen in Figure 4.6, the peak cogging torque is in fact just the summation of 

Tc6 and Tc12, this is shown in Table 4.1. Adding Tc12 for each tooth span gives a number that is 

very close to the actual peak cogging torque noticed for that tooth span, percentage difference 

is nearly zero for various tooth spans especially 120o and 160o. The only noticeable difference 

is for the tooth span of 170o, however that is mainly due to the values being quite small and 

hence a small difference makes a big percentage difference.  

This meant that almost all the other harmonics contributed very little to the overall cogging 

torque of the machine for these tooth spans. Figure 4.7 presents a complete representation of 

all the harmonics in the range of tooth spans investigated and it is clearly seen that Tc6 and Tc12 

are the main ones present.  

  

Table 4. 1: Illustration of 6th and 12th harmonics being the main ones contributing to the overall cogging torque 

Tooth Span 

(Elec. Deg) 

6th 

harmonic 

12th 

harmonic 

Sum of 6th and 

12th harmonics 

Peak Cogging 

Torque (Nm) 

Percentage 

Difference 

120 0.8873 0.5589 1.4462 1.4511 0.34% 

130 1.1778 0.5233 1.7011 1.7434 2.43% 

140 1.1894 0.0392 1.2286 1.2636 2.77% 

150 0.8630 0.4411 1.3041 1.3756 5.20% 

160 0.3573 0.4260 0.7833 0.7835 0.02% 

170 0.2389 0.0655 0.3044 0.4225 27.95% 

180 0.7195 0.4675 1.1870 1.2017 1.23% 
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Figure 4. 7: Harmonic content of cogging torque with changes in tooth span 

 

 

Figure 4. 8: Cogging torque of the three-phase MPM with 130° and 170° spans. 

 

Torque ripple can be caused by cogging torque, the interaction between the air gap flux 

harmonics and the MMF as well as mechanical imbalances. In order to reduce the torque ripple, 
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the interference between the MMF and air gap flux harmonics are analysed. It is known that 

this factor is influenced by changes in the geometry of the machine design; hence varying tooth 

span should have an effect.  

It was observed that similar to the cogging torque harmonics, changes in the tooth span also 

vary the back EMF harmonic content. Figure 4.9 shows the shape of the back EMF waveform 

for three different tooth spans, while Figure 4.11 shows the change in the major harmonics; 

with tooth spans from 120° to 180°. The three phases are connected in a star configuration, 

hence the triplen harmonics cancel. 

It can be seen that as the tooth span changes, the harmonic magnitude is cyclic with clear 

minima and maxima.  A span of 130° gives the lowest harmonic content with the 5th (Ef5) almost 

cancelled while a 170° span maximised the 5th and 7th harmonic (Ef7). This is exactly opposite 

to what we see in Figure 4.2 as the tooth span of 170° gives the lowest cogging torque and tooth 

span of 130° gives nearly the highest.  

 

Figure 4. 9: Variation in back EMF waveform with tooth span 

 

It can hence be concluded that a machine with low cogging torque will most probably have a 

high Ef5 and a machine with high cogging torque will most likely have a low Ef5. This is mainly 
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The significant drop in the fundamental as the tooth span increases is due to the stator tooth 

spanning more of the magnet and creating a magnetic short circuit. Wide tooth spans provide a 

low reluctance path for magnet flux where there is a short gap and hence aids the flux in 

travelling from one side of the magnet to the other without linking the coil, as shown by Figure 

4.10.  

 

Figure 4. 10: A tooth span of 180o (right) covering a significant area of rotor magnet causes an increased flux leakage 

between the tooth and the magnet compared to a tooth span of 120o (left) 

 

There is unfortunately a trade off when using tooth span to reduce the harmonics in the back 

EMF, and that is the effect it has on cogging torque. If the tooth span is changed the position at 

which the poles come into line with the teeth change, which will affect the rate of change of 

reluctance as seen by the rotor, and hence the cogging torque.  

Figure 4.6 shows the cogging torque (non-energised coils) waveforms for the same range of 

tooth spans as that used in the study of back EMF. It can be seen that the optimal cogging torque 

is achieved at the tooth span of 170°, a position where harmonic content of the back EMF 

waveform is not ideal.  
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Figure 4. 11: Harmonic content of back EMF waveform with tooth span. 

 

Both back EMF harmonics and cogging torque contribute to torque ripple. The effect of tooth 

span on the overall torque ripple has been analysed.  A sinusoidal current with a peak value of 

20A was applied to the three phase machine over the same range of tooth spans (120° to 180°); 

the torque ripple for each tooth span is shown graphically in Fig. 4.12.  

It is seen that the span of 170° gives the lowest torque ripple which matches the position of 

lowest cogging torque found earlier (Figure 4.6). The torque ripple as a percentage of full load 

torque is reduced significantly from 25.5% for a 130° span to 17.1% for a 170° span, the mean 

torque drops by 8%, as would be expected due to the drop in the fundamental component of 

back EMF as shown in Figure 4.8. The two waveforms for the base 130° design and the 170° 

span tooth are shown in Fig. 4.13. 
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Figure 4. 12: Torque  ripple as a percentage of average torque 

 

 

Figure 4. 13: Three-phase torque waveform for 130° and 170° tooth span 

 

It was proposed that by applying a variety of tooth spans to the 25 tooth stator, the cogging 

torque and torque ripple of the machine can be reduced. Various spans could be selected in a 

way to attenuate certain harmonics.  
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This is achieved by summing the cogging torque waveforms off 120° and 180° span shown in 

Fig. 4.14, as these are in anti-phase and hence undergo destructive interference, reducing the 

resultant torque ripple. Also, it can be seen from Fig 4.6 that the Tc6 for tooth spans between 

120° to 150° is in anti-phase to tooth spans between 170° to 180° and hence the reduction in 

torque. Fig 4.6 also shows that Tc12 changes phase twice between 120° and 180° and hence will 

be in phase. This means that the summing of waveforms in Fig 4.14 will result in Tc6 being 

reduced while Tc12 will be averaged for the two waveforms.   

To test this logic, a FE simulation was created where the machine model was designed where 

twelve teeth were of a 120° span and the other thirteen were a 180° tooth span. Fig 4.15 presents 

the harmonic content of the resulting cogging torque waveforms. It is evident that the Tc6 was 

subject to destructive interference and was greatly attenuated whilst Tc12 experienced little 

change as it was in phase and resulted in being averaged out between the two tooth spans.  

 

Figure 4. 14: Cogging torque waveforms for a 120° and 180° span machine 
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Figure 4. 15: Harmonic content of cogging torque with a combination of tooth spans 
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conditions in Finite Element are vital as these reduce the solution time of the model by reducing 

the mesh density of the model. 

 

Table 4. 2: Tooth Combinations – Number of teeth of each span 

Name 140° Tooth Span 150° Tooth Span 180° Tooth Span Total teeth 

Combination 1 6           7              12 25 

Combination 2 0          14   11 25 

 

Fig 4.16 shows the stator half for combination 1 where in 12 teeth are of 180° span, 7 teeth are 

of 150° span and 6 teeth are of 140° span. Both combinations were simulated and the resulting 

waveform was compared to the base design (a 130° span) and a 170° span (as it provided the 

lowest cogging torque harmonics and the lowest torque ripple).  

These new combinations reduced the peak cogging torque and the torque ripple; Fig. 4.17 and 

Table 4.3 depict this improvement. 

 

Figure 4. 16: Illustration of the two tooth span combinations; combination 1 on left, combination 2 on right 

 

Combination one has the lowest cogging torque at 0.37Nm peak, a reduction of 79% from a 

span of 130° and 12% from that of 170°. In terms of torque ripple, combination one provides 

the best outcomes with a ripple of only 2.02%; decreasing by 92% from that of the base model 

with a tooth span of 130°. The peak cogging torque of combination two is higher than 
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combination one though this can be accounted for the fact that the cogging torque cancels the 

ripple introduced due to harmonic content.  

Table 4.3 also shows the reduction in average torque for the new combinations and it is evident 

that there is a little reduction. This comes from the reduction in the fundamental harmonic 

content of the back EMF waveform when higher tooth spans are used as was shown in Fig 4.8.  

Even though the average torque produced by combination two is reduced by 2.1% in 

comparison to the base design this still corresponds to a torque per kg of active mass of 

3.83Nm/kg.  

It can be seen that while combinations 1 and 2 reduce the peak cogging torque and torque ripple, 

the back EMF harmonics, especially Ef5, increases when compared to the 130° tooth span. It is 

important that a combination of tooth span chosen not only reduces the cogging torque and 

ripple but also the back EMF harmonics. 

There are many combinations of spans that can reduce the ripple and cogging torque, though 

for simplicity and ease of production of a component, the choice has been limited to three.    

 

Figure 4. 17: Cogging torque waveform with a combination of tooth spans 
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Table 4. 3: Summary of different combinations of tooth span (Combination 1 comprises of three tooth spans while 

Combination 2 is made up of two different tooth spans – details of each combination presented in Table 4.2) 

Combination 
Peak Cogging 

(Nm) 

Tc6  Tc12 Torque 

Ripple (%) 

Change in 

Torque (%) 

Ef5 Ef7 

All 130° (Base) 1.76 1.46 0.52 25.4 0 0.234 0.31 

All 170° 0.42 0.24 0.07 17.1   8.06 1.16 0.53 

Combination 1 0.37 0.19 0.06 2.02   1.98 0.87 0.19 

Combination 2 0.39 0.18 0.10  4.06       2.08 0.97 0.24 

 

4.5 Conclusion  

This section explored the possible reduction of cogging torque and torque ripple in a three-

phase Modulated Pole Machine. An analysis was carried out to distinguish the optimum tooth 

span for the machine between 120° and 180°. It was concluded that the 170° span gave the 

lowest cogging torque and torque ripple while a 140° provided the lowest non-fundamental 

harmonic content for the back EMF.  

It was examined that the cogging torque and overall torque ripple could be reduced by changing 

a simple stator dimension, the tooth span. Two simple combinations were modelled and 

investigated; it was found that the peak cogging torque could be reduced by a further 79% by 

having a combination of three tooth spans. This combination reduced the torque ripple on load 

to 2.02% of the average torque with only a 2% reduction in the average torque. 

Depending on the choice of application, the final combination choice of tooth spans can be 

made; combination one will provide the lowest peak cogging torque and the minimum torque 

ripple. It can be seen that more the combination of tooth spans, the lower the cogging and ripple; 

combination 1 made up of three different tooth spans performs better than combination 2 which 

comprises of only two different tooth spans. This method could be further expanded to tune the 

machine output torque with other and additional combinations.  
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4.6 Pitching the Stator components  

The technique of pitching the coils is used in conventional radial flux machines to minimise 

winding harmonics. In radial machines, the coils are separated by the same electrical degree as 

the pole pitch in order to achieve voltages that are opposite polarity under south and north pole 

and hence can be summed together to give twice the conductor-induced EMF when connected 

in series. However if the coil pitch is different to the pole pitch, the resultant induced EMF is 

reduced as it has a phase shift other than the pole pitch. This is usually accounted by an 

attenuation factor known as the pitch factor which is represented by equation 4.1 where n is the 

nth harmonic and Ω is the coil pitch angle, as illustrated in Figure 4.18.  

𝑘𝑝 = sin(𝑛
𝛺

2
)       (4.1) 

A harmonic can be cancelled by choosing a coil pitch with a pitch factor equal to zero e.g. a 

coil pitch of 72o would eliminate the 5th harmonics (while there will be no triplen harmonics 

in star connected windings).  

 

Figure 4. 18: Illustration of pitching angle Ω 

In radial machines, the number of pole and slot numbers determine the number of angles that 

the windings can be pitched by. If the slots are increased while the pole numbers are kept 

constant, slots angles would decrease and hence more flexibility for pitching is available; 

though increasing the complexity.  
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4.7 Cogging Torque  

In a MPM, each phase has a simple hoop coil which cannot be pitched in the same way as a 

radial machine. The stator structure modulates the simple 2 pole field of the hoop coil to a multi-

pole field, dictated by the number of stator tooth per stator half.  

There is freedom in the position of these stator teeth around the circumference so by offsetting 

teeth either side of the centre line, as shown in figure 4.19, the MPM is capable of pitching. 

These pitching angles would change the position at which the teeth overlap the poles and hence 

will have an effect of the cogging torque produced by the machine. 

In a fully pitched version of a 50 pole MPM, the stator teeth are displaced by 14.4o 

mechanically, this equates to 360o electrical (two pole pitches). In the same way as a radial 

machine, this amplifies or attenuates harmonics of EMF and torque.  

Equation 4.2 combines the pitch angle, θpitch and harmonic number where n is the harmonic 

to be cancelled. 

θpitch =  
180

𝑛
                                               (4.2) 

Previously, Figure 4.6 showed the cogging torque was dominated by the 6th and 12th harmonics. 

If we consider the Tc6; equation 4.2 suggests a pitching angle, θpitch = 30o, will cancel Tc6. To 

apply this to the MPM, the stator teeth would alternate at +30o and -30o electrical from the tooth 

centre. 

For a 50 pole machine, this equates to a +/- 1.2o mechanical offset as shown in Figure 4.19.    

 

 

 

 

 

 

 

 

  

Figure 4. 19: Stator phase front elevation (coil removed) with 0 pitch (left) and 30 pitch (right) 
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As the teeth are shifted by +/- 30o electrical, the flux enclosed by the coil is also shifted by +/-

30o per pole pair. However, overall total flux linkage is not affected by the phase shift, as the 

sum of two sections of a coil sum to zero. 

The tooth pitching technique was tested in a 3DFE simulation. The base machine had its teeth 

shifted by +/- 30o electrical to minimise Tc6. Figure 4.20 shows the effect on total cogging 

torque, it is clear that the magnitude is greatly reduced, and harmonic analysis shows a 

reduction in Tc6 of 94%. 

 

Figure 4. 20: Comparison of cogging torque waveforms for fully pitched and 6th pitched models of MPM 

 

With a feasible technique to reduce Tc6, Tc12 was also tested by introducing a pitching angle of 

30o and 15o electrical. 

Tooth pitching to minimise a pair of harmonics requires two pitching angles to be introduced 

which requires modelling at least 4 pole pairs of the MPM and is shown in Figure 4.21. The 

cogging torque waveforms for the 6th pitched and 6th and 12th pitched machines are shown in 

Figure 4.22. It is seen that the peak cogging torque is further reduced from 0.45 Nm to 0.42 

Nm. This is a 76% reduction from the base model.  
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Figure 4. 21: Illustration of a 2 pole pairs MPM pitched by 15o and 30o electrical (6th and 12th harmonic) 

 

Harmonic analyses of both models are shown in Figure 4.20 and it can be seen that Tc6 and Tc12 

are greatly attenuated. Table 4.4 shows a comparison of the harmonic contents in the kind of 

models presented in this section.   

 



  Chapter 4 – Design Investigation 

64 | P a g e  

 

 

Figure 4. 22: Cogging Torque waveforms comparison of 6th pitched and 6th &12th pitched models 
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Figure 4. 23: Cogging Torque harmonic contents of 6th pitched and 6th &12th pitched models (6th and 12th harmonics 

zoomed in for the two new models) 
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Table 4. 4: Comparison of the major harmonic in the fully pirched, 6th pitched and 6th &12th pitched models (percentage 

reductions from the fully pitched model) 

Harmonic Number Fully Pitched 

(Base) 

6th Pitched 6th and 12th pitched 

Tc2 0.230 0.040 (82.60) 0.128 (44.35) 

Tc4 0.170 0.163 (4.12) 0.064 (62.35) 

Tc6 1.462 0.086 (94.12) 0.054 (96.31) 

Tc12 0.522 0.122 (76.63) 0.013 (97.51) 

 

4.8 Back EMF 

The 3 phase EMF waveforms of the fully pitched machine are shown in Figure 4.24 with the 

harmonic content in Table 4.5. The fundamental harmonic in all three phases are similar 

however there is a large 5th and 7th harmonic component which ought to be reduced. The 

majority of the harmonics are present in the inner phase of the machine hence Phase B is 

compared for the fully pitched and 6th and 12th pitched models and presented in Figure 4.25. It 

can be seen that the 5th and 7th harmonic are suppressed. Figure 4.26 shows the changes in 1st, 

5th and 7th harmonics with the pitching angles.  
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Figure 4. 24: Back EMF waveforms for the three phases of the fully pitched model 

 

Table 4. 5: Comparison of the three phases back EMF harmonic content of the fully pitched model 

Harmonic Number Phase A Phase B Phase C 

1 110.94 110.57 110.76 

2 2.47 2.29 2.47 

3 1.86 0.24 1.70 

4 0.17 0.25 0.12 

5 2.75 3.20 2.46 

6 0.21 0.23 0.26 

7 0.86 1.07 0.84 

8 0.22 0.10 0.25 

9 0.28 0.16 0.34 

10 0.08 0.01 0.07 

11 0.05 0.02 0.03 

12 0.12 0.01 0.11 

13 0.22 0.11 0.14 

14 0.05 0.02 0.06 

15 0.09 0.05 0.07 

16 0.05 0.01 0.06 
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Figure 4. 26: Comparison of fundamental, fifth and seveth harmonic for Phase B of a fully pitched and 6th and 12th pitched 

models (per unit fully pitched model) 
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Figure 4. 25: Comparison of Phase B back EMF waveforms for fully pitched and 6th and 12th pitched models, 5th and 7th 

harmonics displayed 
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It can be concluded that the pitching technique suppress unwanted cogging torque harmonics 

as well as back EMF harmonics, and presents much smoother waveforms. Pitching angles of 

15o and 30o electrical were tested to see if these reduce Tc6 and Tc12 in cogging torque as well 

as the Ef5 and Ef7; the results in Table 4.4 and Figure 4.22 proves that these angles work.  

4.9 Combination of tooth span and pitching techniques 

It is seen in this chapter thus far that combination of tooth spans and applying a pitching angle 

reduces the cogging torque and back EMF harmonics. However it is found that a solution that 

works well to reduce the cogging torque might not be the best solution to reduce the back EMF 

harmonics too. In order to find out one solution that can solve both problems and reduce the 

harmonics content further, an investigation will be carried out to see if a combination of 

solutions can be applied to reduce the harmonics in both, back EMF and cogging torque, to 

produce a better solution and balance in the machine.   

The two significant harmonics in the back EMF are the Ef5 and Ef7 hence the machine was 

pitched for the 6th harmonic, as a good compromise for both Ef5 and Ef7. The tooth span is then 

varied between 120o and 180o electrical to evaluate the effect it has on Ef and Tc.  

Figure 4.27 presents the peak cogging torque and Tc6 and Tc12 normalised to the 130o tooth 

span. It seems that a tooth span of 170o provides the lowest peak cogging torque and a 

reasonable Tc6 while Tc12 is almost eliminated. However it’s equally important to see the effect 

a tooth span of 170o and 6th pitched stator has on back EMF waveform and its harmonics; this 

is presented in Figure 4.28.  
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Figure 4. 27: Variations in peak cogging torque and its harmonics as tooth span is varied while pitched for 6th harmonic 

 

A tooth span of 170o gives rise to 5th harmonic in back EMF and is seen as the highest with in 

the tooth span range investigated. The 1st and 7th harmonics are comparable to the others. In 

order to achieve the best solution for cogging torque and back EMF, a combination of 

techniques will be applied where in a combination of 6th pitched tooth spans will be modelled.  
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Figure 4. 28: Variations in back EMF  harmonics as tooth span is varied while pitched for 6th harmonic 

 

Various combinations of tooth span were investigated that could offer a good solution for 

improved cogging torque and EMF harmonics. The most appropriate combination was six teeth 

of 140o span, seven teeth of 150o span and 12 teeth of 170o span. The cogging torque produced 

by this combination is shown in figure 4.25 and is compared with the original unmodified 

machine and 6th pitched machine. The peak cogging torque is reduced from 1.74 Nm to 0.40 

Nm for this combination of techniques.  

Back EMF waveform for the inner phase of the machine is compared for the original 

unmodified machine and the machine with combination of tooth spans and pitching technique, 

shown in Figure 4.29. The harmonic content of this machine is much lower and the waveform 

is smoother than before. Combining the tooth span and introducing pitching reduces the cogging 

torque by a considerable percentage. It shows that the techniques work the best when combined 

together.  
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Figure 4. 29: Cogging Torque waveforms for the base design machine (130o tooth span fully pitched), 130o tooth span and 6th 

pitched lamination and combination of three tooth spans with 6th pitching (TSC + 6th pitched) 

 

 

Figure 4. 30: Back EMF waveforms for inner phase of the base design machine (130o tooth span and fully pitched) and 

combination of tooth spans with 6th pitching 
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Figure 4.31 compares the base machine with the machine made of a combination of tooth spans 

and pitching; the results are per unit value of the original machine. There is a substantial 

reduction in cogging torque (by 77%) and Tc6 (by 83%) and Tc12 (by 87%) harmonics while the 

Ef5 and Ef7 are also reduced significantly, by 75% and 70% respectively. A 2% reduction in Ef1 

is encouraging as it is not a big price to pay for huge reductions in the unwanted harmonics of 

cogging and back EMF.      

 

Figure 4. 31: Comparison of the original unmodified machine with the machine made of a stator with combination of tooth 

span and pitching 
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4.10 Pole Piece Designs 

The influence of tooth span and tooth pitching has been investigated in this chapter thus far and 

it has been shown that altering these parameters can help to reduce the unwanted harmonics. 

Both these parameters are altered on the stator; however the focus now turns to the rotor.  

Cogging torque is produced as a result of rotor’s tendency to align with stator poles to minimise 

reluctance even when no current is applied in the coils. Cogging torque can be investigated by 

focusing on the magnetic interaction and the reluctance change between the coil and the 

magnets which means that cogging torque can be determined by air gap flux and the variation 

of reluctance in the magnetic circuit with the rotating displacement. It is easier for the rotor to 

align itself with stator at some positions than others and this tendency causes vibrations and 

speed ripples, particularly at low speed, which need to be reduced [126 – 129]. Cogging torque 

can predominantly be produced due to fringing fields in the magnet poles interpole [130] and 

hence the side of the pole facing the air gap is vital.  

There have been many methods in literature where cogging torque is reduced by rotor 

redesigning in both radial and axial type PM machines [82, 83, 89, and 131]. There has also 

been methods such as rotor axis teeth pairing [132], harmonic current injection  into the excited 

winding to compensate the torque ripple resulting from cogging torque [89], teeth notching 

[108, 133], pole flanging [133] and adopting a fan-shaped rotor pole [111].   

In this section, the pole piece designs are investigated and various proposals are presented to 

see the influence of these on the cogging torque and back EMF. The pole pieces were located 

in the rotor and shapes of these are altered while the stator is kept unchanged. The pole piece 

side facing the air gap has an influence on cogging torque and the new shapes have this side 

redesigned and optimised in Finite Elements. The effect of these designs on the back EMF and 

cogging torque have been examined in this section.   
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The designs were created to reduce Tc6 and hence the pole pieces with wave direction feature 

are 6th frequency, shown in Figure 4.32. These were designed to cancel/reduce the effect of 6th 

harmonic by destructive interference, pole piece waveforms are in antiphase with Tc6.  

 

Figure 4. 32: Illustration of wave direction pole pieces design to accomodate the 6th harmonic waveforms of cogging torque 

 

 Other designs shown have features such as notches, concave, convex, gradient and claw base 

structures which help to reduce the cogging torque harmonics too. The simulated results are 

shown in Figure 4.34 and 4.35.  
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Figure 4. 33: Various Pole designs under investigation to reduce the harmonic content in cogging and back EMF waveforms 
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There are several designs that reduced the peak cogging torque, particularly pole piece named 

‘Direction 5’, ‘Convex’ and ‘Claw’ pole piece designs, as seen from Figure 4.34. Peak cogging 

torque for direction 5 design is reduced by 56% of the base design while convex 0.2 mm shape 

reduces the cogging torque by 39%. This figure also presents the percentage back EMF for all 

these pole designs and most of these produce nearly the same as base machine pole piece design. 

The two pole piece shapes that stand out are the ‘Gradient 5’ and ‘Convex 0.2mm’ as these 

have 100% back EMF as the base design. Claw pole designs are good options too however their 

manufacturing can be a little demanding and requires a new tool to be made first; the pressing 

is not as straight forward. It is therefore decided that the two modified pole piece designs to be 

taken forward for manufacturing are ‘Gradient 5’ and ‘Convex 0.2mm’; these will be used to 

construct a prototype rotor and compared against base unmodified pole piece rotor. 

 

Figure 4. 34: Comparison of percentage peak cogging torque and back EMF for various pole designs per unit of base machine 

model (unmodified pole piece) 

 

The cogging torque waveforms for these two pole piece designs are compared to the unmodified 

pole shape and are displayed in Figure 4.35. The harmonic content of these two newer pole 

piece’s designs are much lower than the unmodified pole piece shape. The 6th and 12th 

harmonics that made up most of the cogging torque in the unmodified pole pieces are reduced 

significantly. Figure 4.36 shows the Tc6 being reduced by 51% and Tc12 down to 17% of the 
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base design for convex shaped pole piece. Wave direction 5 also suppresses Tc6 by 64% while 

Tc12 is reduced by 6%. This also proves that the wave direction feature which was designed to 

reduce Tc6 works well in achieving the purpose.  

As well as the harmonics, these two pole piece designs reduce the harmonic content in back 

EMF too. Figure 4.36 shows that the convex pole piece shape reduces Ef5 by 37% while wave 

direction 5 pole piece reduces Ef5 almost to zero. This is a huge benefit in using such pole piece 

designs as not only are the cogging torque reduced, back EMF harmonics are also eliminated.  

 

 

Figure 4. 35: Comparison of cogging torque waveforms for the unmodified, convex and direction 5 pole piece designs 
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Figure 4. 36: Comparison of harmonics of the unmodified, convex and direction 5 pole piece designs per unit of base pole 

design 

 

In this section, various new rotor pole piece shapes were presented and two designs were 

selected based on a good compromise between reductions of cogging torque and back EMF 

harmonics. These designs will be manufactured and prototype results will be obtained to see 

how these compare with the Finite Element results with further tests conducted to see the 

performance of the overall machine in terms of average electromagnetic torque production, 

efficiency of the machine with these new pole piece rotors and a full analysis on cogging torque 

and back EMF. These measured results and analysis will be presented in Chapter 6.  

4.5 Conclusion 

Various techniques were investigated in this section and it was shown that these techniques can 

be used to reduce the cogging torque and back EMF harmonic by a significant amount. A 

selection of combination of tooth spans, pitching angles and modified pole pieces are all novel 

techniques applied to this MPM, figures 4.37 and 4.38 shows the comparison of these with the 

base model.  

It is seen from the FE studies that combining the tooth spans, pitching the teeth and specific 

pole shapes can reduce the peak cogging torque (Figure 4.37) greatly, especially when the stator 

laminations are pitched for 6th and 12th harmonic. There are major reductions in Tc6 and Tc12 
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Laminations made of a combination of three tooth spans and 6th pitched also show promising 

results. The peak cogging torque of this lamination is down to 21% of the base design while its 

second and fourth harmonics are also very low, though the Tc6 and Tc12 are a little higher than 

6th and 12th pitched lamination.  

Modified pole piece rotors also depict a low cogging torque however their second harmonics 

are higher than the base design which makes these not so reasonable. However, it is important 

to see the effect of these techniques on the back EMF and torque production ability of the 

machine; these are presented in figure 4.37.  

 

Figure 4. 37: Comparison of cogging torque and its harmonics for various techniques investigated in this section (base design, 

combination of three tooth spans, 6th and 12th pitched laminations, laminations made of combination of tooth spans and 6th 

pitched, modified pole pieces of convex and direction 5 type) 

 

It was explored that the second and fourth harmonics were mainly caused due to the mutual 

coupling taking place between the stator phases and hence two rotors were manufactured to 

reduce these effects. These rotors consisted of split magnets and poles, affectingly creating a 

rotor for each phase and was termed ‘split rotor’ while another rotor was manufactured where 

in the inner phase magnets and rotors were cut to increase the air gap. These rotors and their 

effect on the techniques will be presented in chapter 6 and 7. 
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and Ef7 however the smallest Tc6 and Tc12. Lamination made of three tooth spans and 6th pitching 

shows the best results; Ef5 and Ef7 are reduced by 75% while the cogging torque harmonics are 

very low relative to the base model. The average torque production for this kind of lamination 

is also the highest; 120% of the base model, and hence can be regarded as the best.  

However it should be noted that there is not much of a difference between the mean back EMF 

and average torque produced between the six machines.  

 

Figure 4. 38: Comparison of mean back EMF, its harmonics and average Torque for various techniques investigated in this 

section (base design, combination of three tooth spans, 6th and 12th pitched laminations, laminations made of combination of 

tooth spans and 6th pitched, modified pole pieces of convex and direction 5 type) 

 

These methods have shown that it is possible to reduce the cogging while keeping the back 

EMF and torque production similar to the best machine, while the number of components to be 

made and assembled is kept the same too. These methods were manufactured and prototypes 

were constructed; construction of these is shown in the following chapter while the measured 

test results are presented in chapter 6.  
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5.1 Introduction  

This chapter details the manufacturing and assembling of the prototype machines. The 

machines are constructed from laminates and SMC as explained in Chapter 2. Laminates aid 

the radial component of magnetic field in the stator teeth while SMC allows for 3D flux 

movement through the core-back.   

Six different types of stator components were manufactured; each using one or more techniques 

and material to suppress the cogging torque. These six stators are described as following: 

1. S1: Single tooth span unpitched stator made up of laminates – basic stator 

used for comparison 

2. S2: Laminate stator made of 3 tooth span combinations  

3. S3: Stator made up of 3 tooth spans combination and 6th pitched 

laminations 

4. S4: 6th and 12th pitched stator laminations  

5. S5: Stator made of SMC, single tooth span unpitched chamfered teeth 

6. S6: 6th and 12th pitched stator made of SMC   

7. S7: The same stator as S5 however the phase gaps increased by 0.1mm 

each. 

 

Five different rotor types were also constructed that were used with all the six stators one at a 

time to find the best machine with least cogging torque. These rotors are: 

1. R1: Basic rotor used for comparison – simple 50 poles and 50 magnets 

2. R2: The basic rotor (R1) was ‘split’ into three sections to provide a rotor 

section for each phase 

3. R3: The basic rotor (R1) was machined in the inner phase region to 

increase the air gap as seen by the flux   

5. 
Construction and 

Assembly of prototypes 
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4. R4: Rotor made up of ‘Convex’ types of pole pieces 

5. R5: Rotor made up of ‘Wave direction’ types of pole pieces 

 

It was made sure that the dimensions of each component, the size of the overall machine as 

well as the number of components in the machine are kept the same in each case so the 

comparison is valid. These dimensions are shown in Table 5.2. The measurements from these 

combinations of stators and rotors are then compared to the base machine in a matrix table 

shown in Table 5.1, where each unfilled box represents a machine type.  

Due to time constraints, not every stator-rotor combination was assembled. The machines that 

were tested are presented by grey-filled boxes in table 5.1. Measured test results of these 25 

motors are presented in chapters 6 and 7. 

 

Table 5. 1: Combination of prototype stators and rotors 

Stator/Rotor 

combination R1 R2 R3 R4 R5 

S1 BASE MODEL          

S2 

  

         

S3 

  

         

S4 

  

         

S5 

  

         

S6 

  

         

 

S7      
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Table 5. 2: Major dimensions that were kept the same in all 25 prototypes 

Pole pairs 25 

Stator outer radius 73 mm 

Stator core radial length 5 mm 

Rotor radial length 3.5 mm 

Coil slot width 3.3 mm 

Coil radial length 14 mm 

Stator sweep 5.95 mm 

Phase gap 2 mm 

Core-back radial length  10 mm 

Air gap 0.4 mm 

Pole radial length  4.3 mm 

Machine diameter 155.4 mm 

Number of turns on coil 17 
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5.2 Stator Construction  

This section will describe the construction of stator components.  

5.2.1 Laminations 

The stator laminations are M270-50A grade electrical steel, which was supplied in 300mm x 

600mm sheets. The wire erosion machine at Newcastle University has an operable area of 

200mm x 200mm, hence these lamination sheets were cut to fit. Each laminate is 0.5mm thick, 

therefore ten laminations glued in a stack of 5.6mm (0.1mm being made by the glue in between 

the sheets) for each stator side. This stack is pressed between two steel plates (as shown in 

Figure 5.1) to force excessive glue out between the layers and give a high stacking factor. This 

compressed stack is then heated to 180o C for 3 hours to get the glue to its highest strength.  

 

Figure 5. 1: Gluing jig placed in the oven for heat treatment with lamination stack inserted; four bolts and the spacers visible 

too 

The glued lamination stacks were then wire eroded to an accuracy of +/- 0.01mm. All six stacks 

are placed between two aluminium plates, as shown in Figure 5.2, and cut as one using the wire 

erosion machine. The stacks were passed through three cuts; first one for the inner diameter, 

second for the outer diameter while the last cut removed the small tabs that were holding the 

stacks from falling out during the process.  
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Figure 5. 2: Wire Eroding jig with glued laminations bolted between two plates 

 

The end product of wire erosion is the laminations shown in Figure 5.3. There are four variants 

of laminated stators plus two SMC variants. In all cases the diameter is kept the same. Each 

lamination has the same location features to help in locate itself in the inner hub according to 

the required electrical displacements which were 0o, 180o, 120o, 300o, 240o and 60o. There are 

12 notches on the lamination displaced by 30o mechanical which help to locate the laminations 

to complete the three phase topology.  

The opening in the lamination is to provide an entry and exit route for the coil from the outer 

diameter, beneath the core-back via the central shaft to exit the machine. This feature also helps 

to reduce circulating eddy currents.  

 

 

Lamination shown in Figure 5.3 was used as the base 

stator model. The lamination is made from single tooth 

span of 130o electrical and was fully pitched. All the 

other stators (S2 to S6) were compared against still 

stator model. 

 

  

 

Figure 5. 3: Base stator - Single tooth span 

unpitched lamination – S1 
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Another lamination variant with combinations of three 

tooth spans is shown in Figure 5.4. There were many 

combinations of tooth spans that were made and Finite 

Element models were created however this tooth span 

combination provided the least cogging torque for this 

technique, as discussed in Chapter 4. This lamination had 6 

teeth of 140o, 7 teeth of 150o and 12 teeth of 180o. Stator 

assembled from this lamination was termed S2.   

  

 

 

FE analysis showed that S2 would still have a high 6th 

harmonic in cogging torque. The lamination shown in 

Figure 5.5 was machined to reduce this unwanted harmonic 

by using the same three tooth span combination as S2 

however introducing 6th pitching in the stator teeth. The 

stator assembled from this lamination was termed S3.   

 

  

 

 

 

A fourth set of laminations were machined that consisted 

of single tooth span, same as that in the base machine 

presented in Figure 5.3 but pitched for 6th and 12th 

harmonic. This lamination had single tooth span is shown 

in Figure 5.6. Stator assembled from this lamination was 

termed S4.   

  

 

 

Figure 5. 4: Lamination made of 

combination of 3 tooth spans – S2 

Figure 5. 5: Lamination made of 3 tooth 

spans combination and 6th pitched – S3 

Figure 5. 6: 6th and 12th pitched 

lamination – S4 



Chapter 5 – Construction and Assembly of prototypes 

87 | P a g e  

 

5.2.2 SMC Stator components 

There were two stators that were made from SMC stator components instead of laminate steel. 

These stator components had the same diameter and design parameters except the fact that 

there was no cut in the laminations and the coil exit route was a little different; shown in Figure 

5.7 and 5.8 (and its technical drawings in Appendix A). 

  

Figure 5. 7: CAD illustration of SMC stator component with new type of coil exit 

  

 

Figure 5. 8: CAD illustration of new SMC stator component, coil sandwiched between two stator components 
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A fifth set of stator components were 

manufactured; these were made from SMC 

with a single tooth span, same as that in base 

machine shown in figure 5.3 however the 

teeth were chamfered. This design feature 

showed signs of reducing the cogging torque 

in FE modelling. This design is shown in 

Figure 5.9. The stator assembled from this 

was termed S5. 

  

 

 

This stator component, shown in Figure 5.10, was 

manufactured from SMC and pitched for 6th and 

12th harmonic, similar to stator S4. The tooth tips 

were not chamfered and new type of coil exit slot, 

as described in Figure 5.8 was implemented. The 

stator assembled from this was termed S5.   

 

 

 

Lastly, a stator was assembled which consisted of 

SMC fully pitched single tooth span stator components however the phase gaps in the stator 

was increased by 0.1mm. This made the inner phase of stator weaker: the effect of mutual 

coupling between the phases was examined. This stator was termed S7.   

  

Figure 5. 9: CAD Illustration of SMC chamfered teeth – S5 

Figure 5. 10: 6th and 12th pitched SMC stator 

component – S6 



Chapter 5 – Construction and Assembly of prototypes 

89 | P a g e  

 

5.2.3 The SMC Core-back 

The core-back ring was manufactured from an SMC ring provided by Höganäs AB in a pre-

heated state to provide better mechanical strength and fixed characteristics compared to 

untreated SMC. Three identical core-backs were used in each machine, one for each phase and 

with locating points to align laminations.   

The core-backs and the laminations have the same cross-section in the compression direction 

and hence one tool was used in producing these parts. The axial length of the core-backs was 

decided to be 14.7mm; this was made up of 5.6mm x 2 for two laminations stacks plus 3.3mm 

for coil and 0.2mm for associated insulation. The core-back included a 7mm deep slot through 

which the coil exit into the stator hub through the laminations cut, shown in Figure 5.11. 

  

Figure 5. 11: Core-back prototype manufactured from SMC, notches and slot visible – lamination compressed and fitted too. 
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5.2.4 Shaft mounted Hub  

The hub is made from aluminium which is wire eroded and machined to locate on the shaft, as 

shown in Figure 5.12. This hub determines alignment of the stator phases at 0o, 120o and 240o 

and provides a connection between the shaft and the stator parts such as coils, laminations and 

insulations while aligning the coils and its exit slots with the slots in core-backs and laminations 

as described before. This hub is machined to accommodate the wire and coil connections 

making sure there is enough space for these to be compressed within.     

 

Figure 5. 12: Central hub of the machine fitted over the shaft 
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5.2.5 The Shaft  

The shaft was machined from nonmagnetic stainless steel to a diameter of 21mm and this has 

the hub heat shrunk to fit. There are two bearing seats at either end for the end caps of the rotor 

and the shaft ends are threaded to lock on to the forks of the bicycle. The hub mounted on the 

shaft is shown in Figure 5.13, with the dimensional drawings in appendix B.  

 

Figure 5. 13: Prototype representation of the shaft and central hub displaying the exit holes, threaded end, bearing seat and 

coil exits 
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5.2.6 Coils 

The coils are made from 3mm x 1mm rectangular copper insulated wire and have 17 turns. A 

complete coil is shown in Figure 5.14.  

 

Figure 5. 14: Prototype coil showing 17 turns 

 

The coils were placed between the two lamination stacks to form a single stator phase. 0.1mm 

thick NomexTM insulation is used between the lamination and coil, while extra insulation is in 

place around the coil bends at the entry and exit points. This arrangement is shown in Figure 

5.15. 

The slot fill factor of the base machine was 66%, a conservative value which exceeded 80% 

with rectangular wire in the new produced machines, coil shown in Figure 5.14.     
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Figure 5. 15: Prototype lamination, coil and core-back fitted together, coil exiting through the lamination and core-back 

slots, Nomex providing insulation between coil and laminations 
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5.3 Stator Assembly 

The stator consists of 14 components which are assembled in the following order: 

1. Central hub heat shrunk on shaft. 

2. Sensor and power lines passed through shaft centre (as shown in Figure 

5.13). 

3. Stator end plate made of aluminium screwed on one end of the central 

hub. 

4. The first core-back slid on the central hub followed by the first lamination 

stack, rotated by 180 degrees (six notches) from the opening in the core-

back.  

5. Coil, sandwiched by Nomex insulation, was placed in such a way as to 

allow the coil ends to pass through the core-back slot into the central hub. 

6. The next lamination is placed so that it is in line with the slot in the core-

back and allows the coil ends to pass through the lamination cut.  

7.  Another aluminium separator of 2mm thickness is placed to complete 

first phase of the machine, as shown in Figure 5.16 (left).  

8. Phase two core-back is rotated by 120o and placed over the aluminium 

separator and the laminations, coil and insulation are placed in the same 

fashion as explained earlier, however rotated.   

9. The first lamination of phase two is also rotated by 120o from the first and 

sits opposite to the coil exit slot in the core-back.  

10. The fourth lamination rotated by 120o from the second lamination and 

placed such that its cut is on top of the coil exit slot.  

11. A second phase separator is put on top of this fourth lamination to 

complete the second phase, as shown in Figure 5.16 (right). 

12. Third core-back is placed rotated by a further 120o from the second core-

back to complete the three phase arrangement.  

13. Same steps are repeated to place the fifth and sixth laminations enclosing 

the third coil and insulations.  

14. The coils were iron soldered with the wires and heat shrunk into the 

central hub space.  
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15. A second endplate is screwed on top to complete and press the stator 

assembly together as shown in Figure 5.17 while a complete stator is 

shown in Figure 5.18.  

 

    

Figure 5. 16: Machine Stator during assembly 

   

 

 

 

  

Figure 5. 17: Stator coil wires soldered and second end cap 

screwed to press the stator components 

 

Figure 5. 18: View of the complete stator assembly 
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5.4. Rotor types and Assembly 

There are five types of rotor manufactured to reduce cogging torque as shown in Table 5.1. 

The base design for all comparison is from a 

Höganäs Electric bicycle (shown left) and was 

termed R1. The 50 magnets and 50 pole pieces 

are glued onto an aluminium hub which has 

features to help locate the components. The 

pole pieces are Somaloy 3P and the magnets 

are NdFeB N35SH grade. The aluminium 

plates have the bearings and enclose the 

armature; these are shown in Figure 5.19. A 

single rotor was used throughout as slight 

variations do occur between two different rotors. 

     

Figure 5. 19: Different views of simple rotor consisting magnets and pole pieces and end plates 

 

The Finite Element analysis showed that there is 

coupling between stator phases via the rotor pole 

pieces. Splitting the rotor into three separate sections 

axially allows for this affect to be experimentally 

analysed. This split rotor is shown in Figure 5.20 and 

was termed R2. 

 

  
Figure 5. 20: Split Rotor prototype 
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An alternative to complete axial separation of 

the rotor is an increased air gap aligned with the 

central phase. A FE analysis study was carried 

out which showed a groove of 0.44mm provided 

the optimum solution for reducing the mutual 

coupling in this machine and hence a prototype 

with a 0.04mm cut in the  inner phase was 

created, shown in Figure 5.21. This rotor is 

termed R3. 

  

 

Lastly, variable air gap was imposed on rotor pole 

pieces. The effect of rotor pole shaping on the air 

gap face was investigated. FE analyses suggested 

two topologies to reduce cogging; a convex and 

wave property; rotors using each were 

constructed; these are shown in Figure 5.22. 

Rotor assembled using Convex pole pieces was 

termed R4 and rotor assembled from Wave 

direction pole pieces was termed R5. 

 

 

 

 

 

  

  

          

  

Figure 5. 22: CAD models of Convex (top) and wave 

direction (bottom) pole piece designs 

 

  

 

                                     

Figure 5. 21: Rotor with a cut of 0.04mm for increased air 

gap in inner phase 

Figure 5. 23: Prototype rotor with convex pole pieces 
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5.5 Final Assembly  

Figure 5.24 shows an unmounted machine assembly. The rotor and stator are separately 

assembled and then aligned in the lathe. The stator is slowly inserted into the rotor; one end 

cap is screwed onto the rotor and is held in the jaws of a lathe while the other end cap and the 

rotor is held in a tailstock and slowly introduced into the stator. The stator aligns itself into the 

rotor, the shaft locates in the bearing and the endcap is rotated to fit the screw holes in the rotor 

hub.  

 

 

Figure 5. 24: CAD version of machine assembly showing the stator components, rotor, shaft and inner hub 
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After construction of all the prototypes, a variety of measurements were taken for each motor 

so that comparisons can be made and the best combination of stator and rotor can be chosen. 

Cogging torque, back EMF, speed-torque and efficiency were measured for each machine. 

Results for cogging torque and back EMF are presented in this chapter while Chapter 7 

discusses the torque-speed-efficiency performance.   

This chapter is divided into four parts: 

 Details of the test benches  

 Cogging torque measurement and analysis  

 Back EMF measurements and analysis 

 Summary of design analysis for cogging and EMF – the optimum 

machine 

Two test rigs were used to carry out the measurements; these test rigs are shown in Figure 6.1 

and 6.2 while their drawings are shown in Appendix C and D. Both of the rigs were equipped 

with high precision instruments to provide reliable and repeatable results. LabVIEW was used 

to control, acquire data and process the measured values. Both test rigs are based at Höganäs.      

6.1 Measurement setup – Test benches 

There were two test benches used to carry out the measurements detailed above. These are: 

 A cogging torque test rig, figure 6.1 

 A motor performance test rig, figure 6.2 

6.11 Cogging Torque test bench 

The cogging torque test bench is equipped with an absolute encoder from Heidenhain with 25 

bits resolution and rated accuracy ±20”. A torque transducer from HBM with Rated torque of 

20 N and accuracy class 0.2 is used to measure the torque. A small motor rotates the machine 

under testing until one complete mechanical revolution. The data is recorded using National 

6. 
Testing of Prototypes – 

harmonic effect 
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Instruments CompactRIO and two modules, one for the torque and other of the position. The 

torque output from the transducer is a voltage (±10 V), hence a voltage module with 24 bits 

resolution, ±10 V is used (NI 9239). For the position, a dedicated module from SEA is used to 

read the digital data by means of the protocol EnDat 2.2 from the encoder (SEA 9510). 20,000 

measurements per revolution were taken, equating to 900 per electrical cycle or one per 0.45o 

electrical.  

 

Figure 6. 1: Cogging Torque test bench. 

The cogging torque test bench consists of the following components; 

1. DC motor and planetary gearhead (Maxon A-max 22, 12 V, 6 W, 7 mNm and Maxon 

GP 22 A, reduction 84.1) 

2. Planetary Gearhead (Wittenstein Alphira 060-2, reduction 100:1) 

3. Coupling (R+W) 

4. Torque transducer (HBM T20WN, Rated torque 20 Nm, Accuracy class 0.2) 

5. Coupling (R+W) 

6. Absolute Encoder (Heidenhain ECN 125, 25 bits, accuracy ±20”) 

7. Coupling (R+W) 

8. Machine under test 

9. Lathe Chuck (Fuerda) 

6.12 Dynamometer test bench 

The Dynamometer Test Bench uses a drive motor to rotate the test motor as a local at a precise 

speed and torque. This load is equipped with a 4-quadrant control driver, which regenerates 

load power back to the grid. The torque measurement is with a 200Nm HBN torque transducer 
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from HBM; rated torque 200 Nm. An external encoder was used as the prototype motor does 

not have embedded position sensors. Figure 6.2 shows the test bench.  

 

Figure 6. 2: Motor Test Bench. 

 

1. 4-quadrant torque control driver and Induction motor (motor drive: VFD-C2000, 

Induction Motor: Watt Drive 1060 rpm, 5.5 kW, 50 Nm) 

2. Gearhead (Watt Drive HU 60E70 133S4, 456 rpm, 115 Nm, ratio 2.33) 

3. Torque transducer (HBM T20WN, Rated torque 200 Nm, Accuracy class 0.2) 

4. Coupling (R+W) 

5. Incremental Encoder (Heidenhain ERN 120, 5000 lines, accuracy 1/20 of grating 

period) 

6. Coupling (R+W) 

7. Machine under test 

The signals are acquired using the high precision power analyser from Yokogawa, with power 

accuracy of ±0.02%. Due to the current limitation of the power analyser, a HITECH current 

transducer was used. LabVIEW plus National Instruments modules are used to acquire and 

process data. The measurement and analysis rig is shown in figure 6.3.  
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Figure 6. 3: Instrument rack for the motor test bench. 

 

1. Power analyser (Yokogawa WT3000, power accuracy of ±0.02%) 

2. Current Transducer (HITEC Power Protection, MACC-PLUS , Current Ration 

1000:1) 

3. CompactRIO for control and data acquisition (National Instrument, modules: NI RIO 

9148, NI 9229, NI 9269, NI9401, NI 9472, NI 9481) 

4. Power Supply (Elektro Automatik GmbH EA-PS 8080-40, 0..80 V, 0..40 A, 0..1000 

W) 
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6.2 Cogging Torque   

In this section, cogging torque analysis is separated into the laminates and SMC stators, 

conjunction with each of the five rotors. Where possible, measured and FE results are compared 

for satisfaction of the analysis. Any variations are down to the factors discussed earlier i.e. the 

mesh sensitivity or the mechanical tolerances in the prototypes. 

6.2.1 Laminate Stators  

The four laminated stators were tested with each of the five rotors. In each test, the rotor was 

rotated in the clockwise direction and then in anticlockwise direction. Average cogging torque 

is then calculated from both which ensures hysteresis, back lash or any frictional or test bench 

features do not affect the measurements.  

A)  Base Rotor (R1) 

Figure 6.4 shows the measured cogging torque for the four stators and the base rotor. 

 

Figure 6. 4: Comparison of cogging torque waveforms of four laminate stator types with simple rotor 

 

It is evident that the peak cogging torque is reduced for all three stators when compared to the 

basic stator design. There is a reduction in peak cogging torque and all harmonics for all the 

stators except for the Tc2 of S2 and S3. The magnitude of Tc2 present in these two is greater 
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than the base stator (S1) as seen from table 6.1. FE waveforms are of a similar magnitude and 

phase adding clarity to the mechanical prototyping and measurement excellence.  

S3 reduce the peak cogging torque but still has a large Tc6 (43% of the base model) however 

S4 reduces the Tc6 by 97%. This shows that the pitching and tooth span combination works 

well and fulfils the purpose for which it was designed.  

S4 reduces the peak cogging torque by 75% while the Tc6 and Tc12 are also reduced by 97% 

and 95% respectively. This by far is the best solution for peak cogging torque and its entire 

harmonics; at least when used in conjunction with R1. Table 6.1 presents the results for four 

laminated stator types when combined with basic rotor type.  

  

Table 6. 1: Comparison of Peak cogging torque and its harmonic content for laminate stators and simple rotor 

 Base Rotor (R1) 

 Stator 

types 

Peak Cogging 

Torque (Nm) 

2nd 

harmonic  

4th 

harmonic 

6th 

harmonic 

12th 

harmonic 

S1  1.76 0.23 0.18 1.46 0.20 

S2 1.01 0.35 0.12 0.63 0.03 

S3 0.45 0.38 0.04 0.04 0.01 

S4 0.43 0.13 0.06 0.05 0.01 
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B) Convex pole pieces – R4  

The same four stators were tested with the rotor R4, figure 6.5 compares these waveforms.  

 

Figure 6. 5: Comparison of cogging torque waveforms of four laminate stator types with rotor R4. 

 

The effect of convex pole pieces is evident; peak cogging torque of all the stators are reduced 

further when compared to the peak cogging torque with R1. Peak cogging torque of the base 

model (S1, R1) is reduced from 1.76 Nm to 1.18 Nm with S1, R4 motor. Table 6.2 shows the 

cogging torque and its harmonics for all four laminate stators with R4. 

Table 6. 2: Comparison of Peak cogging torque and its harmonic content for four laminated stators and R4. 

 Convex Rotor (R4) 

 Stator 

types 

Peak Cogging 

Torque  

2nd 

harmonic  

4th 

harmonic 

6th 

harmonic 

12th 

harmonic 

S1  1.18 0.40 0.11 0.71 0.07 

S2 0.62 0.39 0.03 0.25 0.01 

S3 0.41 0.27 0.06 0.03 0.01 

S4 0.36 0.06 0.04 0.03 0.00 
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It is evident again that S4 has the biggest effect; the reductions in the harmonics and the peak 

cogging torque are the largest. S4 reduces the peak cogging torque by 70%, Tc2 by 85%, Tc4 by 

65%, Tc6 by 96% and Tc12 by 100%. These percentage reductions are the largest in all four (S1 

to S4) stators.  

C) Wave Direction Pole pieces – R5  

Thirdly, S1 - S4 were tested for cogging torque with R5, figure 6.6 presents the waveforms. 

The effect of using this rotor is a reduction of 33% in peak cogging torque for S1; however it 

causes an increase in peak cogging torque when compared with S2R4, S3R4 and S4R4. These 

increases are mainly due to the increased Tc2 and Tc6 content of these stators (Table 6.3) when 

compared to the results in Table 6.2.  

 

Figure 6. 6: Comparison of cogging torque waveforms of four stator types with R5. 

 

Comparing the stators with S1 in terms of the R5, it is evident that all stators cogging torque is 

reduced as well as its harmonics. S2 has the lowest reduction due to its Tc6 nearly double when 

compared to the S1. It can be concluded that R5 works best with S4 however the level of 

cogging present is higher when S4 was used with R4. The variations in S3’s measurement and 

FE results is due to the complexity of combining tooth spans and pitching techniques however 

the deviation is not extreme.  
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Table 6. 3: Comparison of Peak cogging torque and its harmonic content for four laminated stators and R5. 

 Wave direction (R5) 

 Stator 

types 

Peak Cogging 

Torque  

2nd 

harmonic  

4th 

harmonic 

6th 

harmonic 

12th 

harmonic 

S1  0.79 0.39 0.14 0.25 0.19 

S2 0.69 0.24 0.03 0.51 0.03 

S3 0.50 0.36 0.03 0.04 0.03 

S4 0.49 0.09 0.04 0.05 0.00 

 

D) Split Rotor (R2) 

It could be seen from results in Tables 6.1, 6.2 and 6.3 that Tc2 in all stators with the three rotors 

is comparatively high. It was known from [117] that this harmonic occurs mainly due to the 

mutual coupling taking place between the three phases of the motor and hence R2 was 

machined; a simple rotor (like R1) was split in three sections to reduce this effect. This rotor 

was only tested with S1 and S2. Figure 6.7 compares the cogging torque waveforms of S1R2, 

S2R2, S1R1 and S2R1.  

 

Figure 6. 7: Comparison of cogging torque waveforms of stators S1 and S2 with rotors R1 andR2. 
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It can be seen from figure 6.7 and table 6.4 that the peak cogging torque for both S1R2 and 

S2R2 is reduced when compared to these stators used with R1. The sole purpose of using this 

rotor was to reduce Tc2 appearing due to mutual coupling between the stator phases. This 

purpose seems to be achieved as table 6.4 shows the Tc4, Tc6 and Tc12 for both stators have 

decreased however Tc2 has increased by a small amount.   

Moreover the peak cogging torque present in these two stators is still significantly higher than 

that produced when these stators were used with R4 and R5. It can therefore be concluded that 

although splitting the rotor will reduce the harmonics, it does not provide the best solution. 

Furthermore, manufacturing such rotors are not feasible as component count is increased; there 

are three times the components as that of R1.  

Table 6. 4: Comparison of Peak cogging torque and its harmonic content for two laminated stators with R1 and R2. 

 Split Rotor (R2) 

 Stator 

types 

Peak Cogging 

Torque  

2nd 

harmonic  

4th 

harmonic 

6th 

harmonic 

12th 

harmonic 

S1  1.47 0.26 0.12 1.23 0.11 

S2 0.99 0.48 0.05 0.48 0.02 

Simple Rotor (R1) 

S1  1.76 0.23 0.18 1.46 0.20 

S2 1.01 0.35 0.12 0.63 0.03 

 

It can be concluded that the best solution achieved by the laminated stator family for reduction 

of cogging torque is by using the stator pitched for 6th and 12th harmonic (S4) partnering with 

the convex type of modified pole pieces rotor (R4). Table 6.5 conclude the comparisons.  

Table 6. 5: Comparison of base model with the best solution of laminated stator 

 Stator 

types 

Peak Cogging 

Torque (Nm) 

2nd 

harmonic  

4th 

harmonic 

6th 

harmonic 

12th 

harmonic 

S1R1 1.76 0.23 0.18 1.46 

 

0.20 

S4R4 0.36 0.06 0.04 0.03 

 

0.00 
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6.2.2 SMC Stators  

This family of stators are manufactured from Soft Magnetic Composite material instead of 

laminations. There are two stators under this family; stator with chamfered teeth (S5) and stator 

pitched for 6th and 12th harmonic of cogging torque (S6). Both these stators were tested with 

all the rotors that first family of stators were tested with to see the effect these have on them.  

A) SMC stator chamfered teeth (S5) 

S5 was tested first with R1 and is compared with the S1R1 (base model). Figure 6.8 compares 

the cogging torque waveforms for the two machines. It is apparent that S5 diminishes the peak 

cogging torque from 1.76 Nm to 0.86 Nm which is a major improvement in the torque quality 

of the machine. This improvement can be credited down to the chamfered feature introduced 

in the stator; Finite Element analysis predicted this as seen from Figure 6.8.     

 

Figure 6. 8: Comparison of cogging torque waveforms for S1R1 (base model) and S5R1 

 

S5 was tested with R4 and R5, cogging torque waveforms are shown in Figure 6.9. It is 

comprehensible that R4 reduces cogging torque the most. R5 also reduces the peak cogging 

torque compared to R1 however it introduces a higher Tc6 compared to Tc6 of R1. This is 

because of the shape of R5 pole piece as was described in section 4.4.  
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Figure 6. 9: Comparison of cogging torque waveforms for S5R1, S5R4 amd S5R5 

 

Next, S5 was tested with R2 and R3; waveforms are displayed in figure 6.10. Both of these 

rotors helped reduce the cogging torque in comparison with R1 however R2 introduces a higher 

Tc6 and R3 establishes a higher Tc2.   

Lastly, S7 was used with R1 to lower the mutual coupling. This was achieved as can be seen 

from Table 6.6. Peak cogging torque and the entire harmonic range was reduced in comparison 

with S1. Figure 6.11 compares these waveforms.  
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Figure 6. 10: Comparison of cogging torque waveforms for S5R1, S5R2 and S5R3 

 

 

Figure 6. 11: Comparison of cogging torque waveforms for S5R1 and S7R1 
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To conclude, S5 was tested with five different rotor types. The aim was to reduce the peak 

cogging torque and ideally, all its corresponding harmonics too.  

Table 6.6 presents the results; it is seen that R4 produce the least cogging torque, a reduction 

of 46% however its 2nd harmonic is a little higher than R1’s 2nd harmonic. R2 also reduces the 

peak cogging torque by 34% however it increases the 6th harmonic and also increases the 

component count. The machine that reduces all the harmonics is with an increased inner phase 

stator gap with simple rotor (S7R1); peak cogging torque is reduced by 30%. It is not an ideal 

solution however, as increasing the phase gap will have an effect on the back EMF production 

and efficiency of the machine; presented in sections 6.3 and 7.2 respectively. 

 

Table 6. 6: Comparison of Peak cogging torque and its harmonic content for S5 with five type of rotors and S7 with R1. 

Motor 

Type 

Peak Cogging 

Torque 

2nd 

Harmonic 

4th 

Harmonic 

6th 

Harmonic 

12th 

Harmonic 

S5, R1 0.86 0.27 0.46 0.12 0.00 

S5, R2 0.57 0.06 0.27 0.21 0.01 

S5, R3 0.58 0.35 0.24 0.13 0.02 

S5, R4 0.47 0.33 0.10 0.11 0.01 

S5, R5 0.63 0.21 0.19 0.44 0.04 

S7, R1 0.60 0.19 0.18 0.05 0.01 
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B) SMC 6th and 12th pitched Stator (S6) 

S6 is compared first with S5 and then a comparison is made for this with all types of rotors 

used in the study. Figure 6.12 depicts the comparison of cogging torque waveforms for this 

new stator (S6) and S5.  

 

Figure 6. 12: Comparison of cogging torque waveforms for the two SMC stators 

 

It can be seen that there is a 70% reduction in peak cogging torque for this new stator when 

tested with R1 producing a minor 0.25 Nm of peak cogging torque. Moreover the reductions 

in all the harmonics are evident too; these results are displayed in table 6.7. 

S6 was then enclosed with R2, R4 and R5; figure 6.13 shows this comparison along with FE 

waveforms. It can be seen that although all these rotors further reduce the cogging torque, R4 

provides the optimum solution. R2 and R5 also reduces the cogging torque however Tc2 and 

Tc12 for these are increased in comparison to R1.  

The comparison between measured and FE results are positive and shows that the 

manufacturing, assembling and testing of the prototypes were of good standards. 
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Figure 6. 13: Comparison of cogging torque waveforms for S6 with R1, R2, R4 and R5 

 

Table 6. 7: Comparison of Peak cogging torque and its harmonic content for for S6 with R1, R2, R4 and R5 

Motor 

Type 

Peak Cogging 

Torque 

2nd 

Harmonic 

4th 

Harmonic 

6th 

Harmonic 

12th 

Harmonic 

S6, R1 0.254 0.09 0.028 0.053 0.002 

S6, R2 0.251 0.042 0.043 0.096 0.006 

S6, R4 0.169 0.024 0.019 0.03 0.001 

S6, R5 0.233 0.083 0.019 0.023 0.006 
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6.2.3 Summary Cogging Torque  

The full set of cogging torque results are summarised in Figure 6.14. These results are all per 

unit of the base design i.e. S1R1. It is clear from this figure that all combinations of stators and 

rotors designs reduce the cogging torque compared to the base model. 

 

Figure 6. 14: Comparison of peak cogging torque per unit of base model for all the motors tested 

 

For all five rotor types, S6 produces the lowest peak cogging torque; a reduction of 86%, 81%, 

65%, 90% and 82% for R1, R2, R3, R4 and R5 respectively.  

Except for S1, R4 proves to be the optimum rotor type for all other stators as the lowest peak 

torque is achieved with this. The only exception is S1 which when combined with R5 produces 

the lowest peak cogging torque.  

The aim behind designing all these motors was not just to reduce the cogging torque but to also 

keep the important 2nd, 4th, 6th and 12th harmonic as low as possible. Figures 6.15 to 6.18 present 

a comparison of these harmonics; all results being per unit of the base motor.  

It is evident from Figure 6.15 that using S1 and S2 causes a higher 2nd harmonic than the base 

motor. On the other hand, S4 and S6 reduce the 2nd harmonic; especially for R4 and R5.  In 

fact the R1 in conjunction with S6 works equally as well. The worst case scenario is using S5 

with R1 as it increases the 2nd harmonic three times of the base motor. 
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It can hence be concluded that the optimum motors to reduce the 2nd harmonic of cogging 

torque are S4R4 and S6R4 while S2 and S5 generally introduces a higher 2nd harmonic.  

 

Figure 6. 15: Comparison of 2nd harmonic of peak cogging torque per unit of base model for all the motors tested 

 

Figure 6.16 displays the 4th harmonic comparison and it is obvious that except S5, all the other 
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Figure 6. 16: Comparison of 4th harmonic of peak cogging torque per unit of base model for all the motors tested 

 

Most important cogging torque harmonics in this study are the 6th and 12th as these were the 

main ones present in the initial base motor (S1R1). Figure 6.17 shows the comparison between 

the 6th harmonic of the motors tested and it can be seen that S3 works the best in minimising 

this unwanted harmonic. In fact all of the motors manufactured and tested have lower 6th 

harmonic than the base model. Equally good were the S4 and S6 when combined with R4.   

Figure 6.18 presents the comparison between 12th harmonic of these motors and similar to 6th, 

all the motors have a lower harmonic than the base motor. S6 have the lowest 12th harmonic 

for all the rotors making this stator a good choice.  

It can be concluded that the best motor for reducing cogging torque and its harmonics is the 

motor with S6 and R4. This motor, when compared with the base motor, reduces the peak 

cogging torque by 90%, 2nd harmonic of cogging torque by 72%, 4th harmonic by 78%, 6th 

harmonic by 98% and the 12th harmonic by 99% (shown in table 6.8). These percentage 

reductions are massive and help to reduce the vibrations in motor and give a smoother overall 

performance. The entire harmonic breakdown is presented in figure 6.19 for the base and 

optimised motor designs.  
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Figure 6. 17: Comparison of 6th harmonic of peak cogging torque per unit of base model for all the motors tested 

 

Figure 6. 18: Comparison of 12th harmonic of peak cogging torque per unit of base model for all the motors tested 
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Table 6. 8: Comparison of Cogging Torque of the base motor and the most optimised motor 

 

S1, R1  

(Base motor) 

S6, R4 

motor 

Percentage 

reductions 

Peak Cogging Torque (Nm) 1.759 0.178 90 

2nd harmonic 0.234 0.065 72 

4th harmonic 0.175 0.039 78 

6th harmonic 1.457 0.025 98 

12th harmonic 0.198 0.002 99 

 

 

Figure 6. 19: Harmonic content for the base and optimised motor designs 

 

However, it is vital to see how the back EMF, efficiency and torque production of this machine 

is compared with the base motor as well as the other motors under tests before coming to a 

final choice of optimum motor.  
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6.3 Back EMF 

It was observed from Finite Element analysis that similar to the cogging torque harmonics, 

changes in tooth span and pitching also varies the back EMF harmonic content. This section 

focuses on the changes in back EMF and its harmonics observed for the two set of stator 

families. The test bench used for carrying out back EMF measurements was described in detail 

in section 6.12.   

Figure 6.20 shows the comparison of central phase (B) with end phases (A and C) for S4R1. It 

is evident that there is very little phase misalignment while peak values for all three phases are 

similar too.  

 

Figure 6. 20: Comparison of central and end phases of S4R1  
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6.3.1 Laminate Stators (S1 to S4) 

Firstly, the stators manufactured from laminates are tested with R1, R2, R4 and R5. 

A) Basic rotor (R1) 

Figure 6.21 demonstrates the shape of the back EMF waveform for four stators in conjunction 

with R1; Table 6.9 displays the changes in key harmonics.  

 

Figure 6. 21: Illustration of back EMF waveforms of phase 2 for four laminated stators with R1 

 

S4 produces the largest fundamental harmonic, surpassing the base motor (S1) too however 

has a higher 7th harmonic. S3 have a lower fundamental harmonic however its 5th and 7th 

harmonic are lower than S1. 

Table 6. 9: Harmonic content of back EMF waveform for laminated stators with R1 

Motor Type with R1 Fundamental Harmonic 5th Harmonic 7th Harmonic 

S1  110.57 3.20 0.86 

S2 107.36 4.82 0.52 

S3 108.53 0.79 0.26 

S4 111.24 1.79 1.47 
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B) Convex Rotor (R4) 

Same stators were tested with R4; waveforms are displayed in figure 6.22 while the harmonic 

contents are shown in table 6.10. 

 

Figure 6. 22: Variation in back EMF waveforms with different laminated stators with R4 

 

Comparing table 6.9 with 6.10, it is evident that using R4 reduces the back EMF produced by 

the motor, however by only 1%. There is a considerable bigger percentage difference of 3.6% 

for S4 when R4 is used instead of R1. The harmonic content in this stator however is quite 

lower when compared with S1. S2 also reduces the fundamental harmonic as well as giving 

rise to the 5th and 7th harmonic so is not the ideal motor to choose in terms of back EMF.  

Table 6. 10: Harmonic content of back EMF waveform for laminated stators with R4 

Stator types 

with R4 

Fundamental 

Harmonic 

5th 

Harmonic 

7th 

Harmonic 

S1 109.10 2.03 0.32 

S2 107.59 3.56 0.36 

S3 107.09 0.89 0.18 

S4 107.27 0.32 0.18 
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C) Wave direction (R5) 

R5 was used next with the four stators under test. Back EMF waveforms for these are shown 

in Figure 6.23 while their harmonic contents are displayed in Table 6.11.  

 

Figure 6. 23: Variation in back EMF waveform with four laminated stators and R5 

 

Using R5 decreases the fundamental harmonic and also introduces a large 7th harmonic in back 

EMF with S1 as shown in table 6.11; an increase of 370 times from R1 and 1000 times from 

R4. The stator best suited so far being S4 still has a very minimal 5th and 7th harmonic and a 

good fundamental harmonic content when compared with S1R1.  

A small conclusion can be derived at this point that R5 seem to reduce the back EMF for all 

stator types while generally introducing a high 7th harmonic.  
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Table 6. 11: Harmonic content of back EMF waveform for laminated stators with R5 

Stator types 

with R5 

Fundamental 

Harmonic 

5th 

Harmonic 

7th 

Harmonic 

S1 105.01 0.03 3.19 

S2 99.52 2.63 1.38 

S3 101.49 0.74 0.45 

S4 101.88 0.51 0.14 

 

D) Split Rotor (R2) 

Lastly, the split rotor is tested with the two laminated stators, S1 and S3. The waveforms are 

displayed in Figure 6.24 and its harmonic contents are presented in table 6.12. 

 

Figure 6. 24: Variation in back EMF waveform with two laminated stators and R2 

 

 

Comparing Table 6.9 and 6.12, it is apparent that R2 reduces the fundamental harmonic by 
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well as more components count. S2 provides the lowest fundamental harmonic while the 5th 

harmonic in back EMF is the largest for this motor type, making this motor choice a bad one.  

 

Table 6. 12: Harmonic content of back EMF waveform for laminated stators with R2 

Stator type with R2 Fundamental Harmonic 5th Harmonic 7th Harmonic 

S1 104.10 1.99 0.68 

S2 100.20 4.81 0.17 
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6.3.2 SMC Stators (S5 to S7) 

This Section will present back EMF analysis for the three SMC manufactured stators; S5, S6 

and S7.  

S5 was combined with five rotors (R1 to R5) and measurements were taken for its back EMF. 

S7 was also tested with R1; results of cogging torque for this combination showed promising 

results in Figure 6.11. Figure 6.25 displays the back EMF waveforms while Table 6.13 presents 

the harmonic content of these motors. 

 

Figure 6. 25: Illustration of back EMF waveforms for S5 with different rotors 

 

Table 6.13 shows that S7 provides the highest fundamental harmonic followed by S5R3. These 

prove the concept that weakening the inner phase to reduce the mutual coupling increases the 

back EMF however the 5th harmonic for these two motors are in the high. R4 and R5 reduce 

the fundamental harmonic by 1.5% however the harmonic content in these are comparatively 

low making it a good option. It was also seen from Table 6.6 that S5R4 and S5R5 produce the 

lowest cogging torque and its harmonic content are low relative to the other stator rotor 

combinations. It can hence be concluded that S5 combined with R4 or R5 provide the best 

compromise between the cogging torques and back EMF.  
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Table 6. 13: Harmonic content of back EMF waveform for S5 with various rotors and S7 with R1 

Motor 

Types 

Fundamental 

Harmonic 

5th 

Harmonic 

7th 

Harmonic 

S5R1 108.77 5.25 0.72 

S5R2 106.10 6.43 0.67 

S5R3 110.13 5.74 0.91 

S5R4 106.99 2.92 0.42 

S5R5 106.22 0.79 1.67 

S7R1 110.80 4.75 0.88 

 

Secondly, S6 was combined with the various rotor types and tested for back EMF, waveforms 

are shown in Figure 6.26 whereas the harmonic contents of these are charted in Table 6.14.   

 

Figure 6. 26: Variations in Back EMF waveforms for S6 and four rotors 

 

S6 combined with the R1 produces the highest back EMF while its 5th and 7th harmonics are 

reasonable. Combining S6 with R4 produce a very similar back EMF fundamental harmonic 

however the 5th and 7th harmonic content are much smaller, giving a smoother curve. Table 6.6 
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also showed that S6 combined with R4 deliver the best solution for cogging torque and table 

6.14 backs up this motor choice further as it also has the lowest back EMF harmonic content.   

Table 6. 14: Harmonic content of back EMF waveform for S6 and four rotors 

Motor Type 

with S6 

Fundamental 

Harmonic 

5th 

Harmonic 

7th 

Harmonic 

S6R1 109.12 0.78 0.22 

S6R2 105.76 1.07 0.20 

S6R4 108.35 0.32 0.18 

S6R5 101.68 0.50 0.13 
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6.3.3. Back EMF Summary 

The mean back EMF of all the motors tested are summarised in Figure 6.27; all these are 

displayed as per unit of the base motor (S1R1). It can be seen that the lowest back EMF 

produced is by S2R5, a 9% drop while the highest back EMF is produced by S4R1, an increase 

of 3% compared to S1R1. S4R1 however nearly doubles the 7th harmonic when compared to 

the base motor as seen from Figure 6.29. A general observation can be made; modifying the 

rotors decrease the back EMF production while the basic rotor R1 provides a better EMF.       

 

Figure 6. 27: Comparison of mean back EMF per unit of base model for all the motors tested 

 

Table 6.15 shows the measured and FE results to be the same in most cases and approves the 

manufacturing, assembling and testing techniques.  

Table 6. 15: Comparison of mean back EMF measured resutls with FE in brackets, all number per unit of base model (S1R1) 

  S1 S2 S3 S4 S5 S6 S7 

R1 1.00 (1.00) 1.01 (1.00) 1.00 (1.00) 1.03 (1.02) 1.00 (0.99) 0.99 (0.99) 1.00 (1.01) 

R2 0.94 (0.94) 0.95 (0.95)     0.96 (0.96) 0.98 (0.98)   

R3         0.98 (0.97) 0.96 (0.96)   

R4 0.97 (0.96) 0.99 (0.97) 0.96 (0.97) 0.96 (0.96) 0.99 (0.99) 0.98 (0.98)   

R5 0.97 (0.97) 0.91 (0.93) 0.92 (0.92) 0.92 (0.93) 0.97 (0.97) 0.94 (0.94)   
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Figure 6.28 shows S2 and S5 produce a relatively high 5th harmonic as compared to the S1R1. 

S3, S4 and S6 are a better choice as the 5th harmonic is generally low in these. It is also observed 

that R5 causes 5th harmonic to decrease while R1, R2 and R3 increases this unwanted harmonic. 

 

Figure 6. 28: Comparison of 5th harmonic of mean back EMF per unit of base model for all the motors tested 
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Similar trend is seen from Figure 6.29 where the 7th harmonic is presented for all machines 

type. Machines comprised of R5 generally have a high 7th harmonic while R2 and R4 

diminishes the 7th harmonic.   

 

Figure 6. 29: Comparison of 7th harmonic of mean back EMF per unit of base model for all the motors tested 

 

It can be concluded that the best solution for back EMF is provided by the motor made of S6 

and R4, generating 98% of the mean back EMF while its 5th and 7th harmonic are 10% and 

22% of the base motor, respectively. This is the same motor that reduced the cogging torque 

by 90% as seen in Table 6.8. 
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This chapter presents the performance measurements (torque speed envelopes and efficiency 

of the motors tested in Chapter 6. The drive setup used to carry out these tests was presented 

in Figure 6.12.    

Performance in terms of torque-speed capability and efficiency is accessed here. 

7.1. Torque Speed Envelope   

This section will focus on the torque-speed characteristics for the full set of machines. All tests 

were carried out up to 350rpm and at a fixed voltage of 48V.  

7.1.1: Laminate Stators 

Figures 7.1 and 7.2 present the Torque-Speed curves for the two laminated stators that offer 

the lowest cogging torque and cleanest back EMF while Table 7.1 shows the maximum Torque 

achieved by each motor. These two stators were tested with rotors R1, R2 and R3.  

S3 in conjunction with R1 provides 40.4Nm of peak torque while S4 combined with R1 outputs 

a peak torque of 47.18 Nm; a 17% increases.  

7. 
Performance 

measurements 
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Figure 7. 1: Illustration of Torque Speed envelope for S3 with R1, R4 and R5 

 

R4 and R5 combined with S3 and S4 reduces the peak torque produced by these motors as seen 

from table 7.1. S4 produces the most torque for all motors of laminated family while the lowest 

torque output is through using S2.    
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Figure 7. 2: Illustration of Torque Speed envelope for S4 with R1, R4 and R5 

 

At present, the Höganäs e-bike motor is capable of producing a maximum of 50Nm torque 

under best conditions however the cogging torque is generally high at this point. These 

laminated family stators produce much lower torque than 50 Nm. The base motor (S1R1) used 

in this case study generates 40.42 Nm. Comparing all other motors with this, S2 is the worst 

stator type in regards to peak torque while S1 and S3 perform in similar range. S4 depicts the 

best performance as not only is the torque generated greater, the cogging and back EMF 

performance of this stator was relatively much better (as seen from chapter 6).    

Table 7. 1: Peak Torque produced by each laminated motor 

Stator/Rotor type R1  R2 R4  R5 

S1 40.42 38.92 38.59 39.17 

S2 37.81 35.81 38.63 37.45 

S3 40.40  NA 39.10 40.12 

S4 47.18 NA 44.50 41.35 

7.1.2 SMC Stators 

The same Torque Speed envelope was created for the 2nd family of stators; the SMC 

components, S5, S6 and S7.  

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350

To
rq

u
e

 (
N

m
)

Speed (rpm)

S4, R1 S4, R4 S4, R5



Chapter 7 – Performance measurements 

135 | P a g e  

 

S5’s torque speed envelope was measured for R1, R2, R4 and R5 while a fifth measurement 

was done for S7 with R1. These waveforms are presented in Figure 7.3. 

 

Figure 7. 3: Illustration of Torque speed curves of S5 with different rotors 

 

This stator combined with the rotors mentioned above achieves peak torque of nearly 50 Nm, 

shown in table 7.2. R1 generates 49.29 Nm while R4 and R5 produce 48.7 Nm and 47.05 Nm 

respectively. Splitting the rotor (R2) to reduce mutual coupling also output a 49 Nm peak 

torque whereas increasing the inner phase gap in stator (S7) generates 48.6 Nm. This also 

shows that the rotor variations have a relatively low effect on the peak torque produced as the 

values are very similar; S5proves to be a good option for high torque production due to 

chamfered teeth structure.  
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The Torque speed curves for S6 along with the four rotors are presented in Figure 7.4 along 

with the peak torque in table 7. 2.  

 

Figure 7. 4: Illustration of back Torque speed waveforms for S6 with different rotors 

 

It was seen from figure 6.12 that using S6 reduces the peak cogging torque by 70% compared 

to S5. This is due to the reduction of 6th and 12th harmonic by pitching the stator which has a 

more detrimental effect on cogging than the chamfered teeth of S5. This comes at a price of 

peak torque reduction of approximately 8% between the two stators as shown in Table 7.2 for 

all rotor types. This means that pitching the stator for 6th and 12th reduces the peak cogging 

torque and its harmonics; have a similar back EMF while a small reduction in peak torque is 

seen compared to the SMC chamfered stator teeth.  

 

Table 7. 2: Peak Torque produced by each SMC motor 

      Peak Torque (Nm) R1 R2 R4 R5 

S5 49.29 49.03 48.69 47.05 

S6 45.45 46.90 44.50 43.34 

S7 48.55 NA NA NA 
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7.1.3 Summary 

Figure 7.5 shows the chart with a summary of peak torque of all motors per unit of S1R1. The 

new Höganäs brochure claims to produce motors up to 50Nm peak torque; however the base 

motor for this study produced 40Nm and all motors are still compared against this. 

It can be seen from Figure 7.5 that the stators manufactured from SMC (S5, S6 and S7) tend to 

achieve higher peak torque. This is because of the isotropic and thermal properties of SMC, 

and its ability to produce three-dimensional flux paths that are ideal for modulated pole 

machines. S1 and S2 in conjunction with any of the four rotors produce lower peak torque than 

S1R1. Similar values are seen for S3 except S3R1 which outputs 18% more torque than the 

base model.    

S5 produces the highest torque however the cogging for this stator was not the lowest as seen 

from Figure 6.14 to 6.18 nor was the 5th and 7th back EMF harmonics as seen in Figures 6.27 

and 6.28. Contrary to this, S6R4 was the optimum motor in terms of lowest peak cogging torque 

and its harmonic as well lowest back EMF harmonic; it also produces 110% of the peak torque.  

 

Figure 7. 5: Summary of all motors for Peak torque produced per unit of a 40 Nm motor (S1R1). 

 

The last parameter of interest is the efficiency of the motor and the comparisons are presented 

in section 7.2.  
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7.2 Efficiency  

To achieve high motor efficiency, careful attention must be paid to all sources of loss in a 

motor. A motor designer should take advantage of any inherent performance characteristics of 

different motor geometries to achieve the goal of a high efficiency motor with low material and 

manufacturing costs.  

Motor efficiency is inversely related to the total amount of power losses in the motor. Motor 

losses are often divided into two major areas: conduction losses and speed-related losses. 

Conduction losses are the result of the motor drive current flowing in the motor coils with a 

finite resistance. These losses are related to the motor current squared times the motor 

resistance (I2R). All of the conduction losses occur in the stator of a permanent magnet motor. 

The speed related losses consist of iron losses, hysteresis and eddy currents in the motor 

components, frictional losses from the bearings, and windage. Iron losses can occur in both the 

stator and the rotor of the motor. Frictional losses are all related to the rotor of the motor.  

A last category of losses is other losses that depend both on torque and speed and especially 

occur in the extremes of motor operation. These losses are generally related to magnetic 

nonlinearities which increase harmonics, hysteresis and eddy current losses at a rate that is 

faster than predicted by normal operating conditions. Conduction losses generally dominate 

the efficiency performance of a motor when the motor is operated at lower speeds. Iron losses 

generally set the efficiency performance at high speeds. To achieve a broad flat efficiency 

curve, both conduction and iron losses must be addressed and kept at a low value. Motor losses 

are summarized in Table 7.3 below. 

Table 7. 3: Motor Loss Summary [137] 

Conduction losses – torque-related losses 

Coil I2R losses 

Stator 

Speed losses – speed-related losses  

Iron losses – hysteresis and eddy currents 

Frictional losses – bearings and windage 

 

stator and rotor 

Other – torque and speed related  

Excess losses – hysteresis and eddy currents 

 

stator and rotor 
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Efficiency of the motors in this thesis is compared against the base motor in this section, figure 

7.9 presents the summary of efficiency percentages for all motors tested at 200 rpm. The test 

bench in section 6.12 was used for efficiency torque measurements too.  

7.2.1 Laminated Stators 

Figure 7.6 presents the efficiency torque waveforms for S3 and S4 combined with R1, R4 and 

R5. S3 has the highest efficiency with R1; of 82% at 8Nm whereas S4’s highest efficiency is 

achieved with R4, of 86% at 9Nm.  R3 and R4 combined with S3 tend to have a lower 

efficiency compared to when these rotors are used with S4. This shows that pitching the stator 

produces higher efficient motors compared to using combinations of tooth spans.  This is 

because it is not possible to add the effect of two teeth with different spans for the points at 

which teeth of two differing spans intersect as was shown in Figure 4.15.  

  

 

 

 

 

 

 

 

 

7.2.2 SMC Stators 

The same measurements were done for the SMC manufactured stators with same set of rotors. 

Efficiency curves for S5 and S7 are presented in Figure 7.7 while S6 is shown in 7.8.  

It can be seen that the efficiency of these stators are higher than the laminated stators, an 

increase of 6% is seen on average. The peaks of these motors are also towards the 8 Nm marks 

which is similar to the laminated stators.  

 

 

Figure 7. 6: Efficiency vs. Torque waveforms of S3 (left) and S4 (right) with R1, R4 and R5 
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There is a very little difference between S5 and S6 in terms of peak efficiency achieved. S7 

attain the highest efficiency of around 87% while motors with R4 and R5 have efficiencies in 

the range of 86% which is very good for this motor type.  

 

Figure 7. 7: Efficiency vs. Torque curves for S5 with R1, R2, R3, R4 and S7 with R1 

 

 

Figure 7. 8: Efficiency vs. Torque curves for S6 with with R1, R2, R3 and R4 
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7.2.3 Summary – Efficiency vs. Torque  

The base motor in this study has an efficiency of 79%, one of the lowest. One of the highest 

efficiencies achieved is 86% by the motor made of S6R4. The laminated stators (S1 to S4) are 

generally 80% efficient while R4 and R5 increase the efficiency by 4 to 5% for S4.  

It can be concluded that the efficiency is not affected greatly by the choice of rotors rather the 

choice of stator and material are more significant; SMC stators are more efficient as shown by 

figure 7.9.  

  

Figure 7. 9: Summary of efficiency of all motors in the study 

 

This is due to the fact that SMC give stators isotropic and thermal properties, and ability to 

produce three-dimensional flux paths that are ideal for modulated pole machines. These also 

have a lower permeability than laminated steels mainly due to the compaction process; the 

non-magnetic gaps created between the adjacent iron powders that make up the composite 

and help in achieving higher efficiencies than laminated stators.          
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7.3. Conclusion  

Back EMF and torque are the two major aspects for evaluating machine performance. The back 

EMF is highly associated with the permanent magnet performance and the relationship between 

the applied voltage and rotating speed. On the other hand, torque dominates the relation 

between the generated torque and applied current.  

Hysteresis losses are directly related to frequency, and eddy current losses are proportional to 

frequency squared, it is important to minimize higher frequency content in the motor to achieve 

low losses and high efficiency [137]. Therefore, it becomes obvious that a high efficiency 

motor would minimize harmonic content as much as possible ultimately reducing cogging 

torque. 

The initial study showed that the base motor design (S1R1) had high cogging torque and 

significant harmonic content present in the back EMF. These caused the motor’s performance 

to be affected, causing the efficiency and peak torque to be relatively lower than expected.  

Changing and combining the stator tooth span, pitching the teeth, chamfering the stator teeth, 

modifying the rotor pole piece shapes and weakening the inner phase were techniques tested 

in this chapter. It was shown that these techniques work well for some harmonics while others 

are worsened. For example a combination of tooth spans works well to reduce the cogging 

torque, however introduces high 5th harmonic in the back EMF. Similarly, using chamfered 

stator teeth provides high percentage efficiency and peak torque, however the 2nd and 4th 

harmonics in cogging torque are aggravated.  

Table 7.4 presents the results for all 25 motors manufactured, assembled and tested in this 

project. All motors are compared against the base model (S1R1).   
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Table 7. 4: Measured results for all motors tested in this thesis compared against the base motor (S1R1) 

COGGING TORQUE R1 R2 R3 R4 R5 

S1 1.00 0.84 - 0.67 0.45 

S2 0.58 0.56 - 0.35 0.39 

S3 0.25 - - 0.23 0.28 

S4 0.24 - - 0.21 0.28 

S5 0.56 0.33 0.49 0.27 0.44 

S6 0.14 0.19 0.35 0.10 0.18 

S7 0.34 - - - - 

BACK EMF R1 R2 R3 R4 R5 

S1 1.00 0.94 - 0.97 0.97 

S2 1.01 0.95 - 0.99 0.91 

S3 1.00 - - 0.96 0.92 

S4 1.03 - - 0.96 0.92 

S5 1.00 0.96 0.98 0.99 0.97 

S6 0.99 0.98 0.96 0.98 0.94 

S7 1.00 - - - - 

PEAK EFFICIENCY R1 R2 R3 R4 R5 

S1 1.00 1.00 - 1.03 1.03 

S2 1.02 1.05 - 1.02 1.02 

S3 1.04 - - 1.00 1.01 

S4 1.02 - - 1.08 1.07 

S5 1.08 1.09 1.09 1.08 1.08 

S6 1.09 1.07 1.07 1.08 1.08 

S7 1.09 - - - - 

PEAK TORQUE R1 R2 R3 R4 R5 

S1 1.00 0.96 - 0.95 0.97 

S2 0.94 0.89 - 0.96 0.93 

S3 1.17 - - 0.97 0.99 

S4 1.00 - - 1.10 1.02 

S5 1.22 1.21 1.05 1.20 1.16 

S6 1.12 1.16 1.04 1.10 1.07 

S7 1.20 - - - - 
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Figure 7. 10: Measured results for all motors tested in this thesis compared against the base motor (S1R1)
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It was seen that techniques where pitching was introduced in the stator teeth (S3, S4 or S6)  and 

rotors with modified pole pieces (R4 and R5) reduces the cogging torque the most, while 

maintains a high back EMF, peak efficiency and peak torque.  

According to table 7.3, the most optimised motor is the S6R4; cogging torque is reduced by 

90%, back EMF is 98% of the base motor, efficiency has increased by 8% and there is an 

increase of 10% in peak torque. Table 7.4 sums up the interesting comparisons between the 

cogging torque, back EMF, peak efficiency and peak torque for the base design motor and the 

chosen optimised motor.  

Table 7. 5: Comparison of base design with the most optimised motor, consisting of SMC 6th and 12th pitched stator and 

convex pole shalped rotor pole pieces; percentage difference between the important parameters shown (2 d.p) 

  
Base motor 

(S1R1) 
SMC 6th & 12 pitched stator 

with convex rotor (S6R4) 
Percentage 
Difference 

Peak Cogging Torque 1.76 0.18 -89.88 

2nd harmonic 0.23 0.07 -72.22 

4th harmonic 0.18 0.04 -77.71 

6th harmonic 1.46 0.03 -98.28 

12th harmonic 0.20 0.00 -98.99 

Peak Back EMF 108.27 105.70 -2.37 

5th Harmonic back EMF 3.20 0.33 -89.69 

7th Harmonic back EMF 0.86 0.19 -77.91 

Peak Efficiency 79.37 85.96 8.30 

Peak Torque 40.42 44.50 +10.094  

 

Results shown in table 7.4 depict a 90% reduction in peak cogging torque with the vital 6th and 

12th harmonics nearly reduced to zero. There is a minor 2% reduction in mean back EMF 

however the major reductions in 5th and 7th harmonics are crucial and can compensate the effect 

of this 2% reduction. Lastly the peak efficiency and peak torque are improved for the optimised 

motor, with an increase of 8% and 10% respectively.  
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A combined phase modulated pole machine (CPMPM) design was introduced previoulsy [117] 

where it was shown that this design provided greater torque density with in a given volume as 

compared to the separate phase machine (SPMPM).  

8.1 Combined Phase vs. Separate Phase MPM 

The CPMPM and SPMPM have the same outer and inner diameters, axial length and core-back 

depth, identical pole numbers and coils and all material used are the same. The difference 

between the two designs (shown in Figure 8.1) is that the inside teeth of the separate-phase 

topology have been combined into sets; Teeth 1’ and 2 combine to form tooth 2 of the 

combined-phase topology, and likewise separate-phase tooth 2’ and 3 to form combined-phase 

8. 
Combined Phase 

MPM 

 

 

Figure 8. 1: Axial view of a separate phase MPM (top) and a combined phase MPM (bottom) 
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tooth 3. Hence, there are now four rather than six sets of stator teeth. Note the three coils and 

rotor are identical in both cases. 

The method of ensuring the angular and axial locations of the four rings of stator teeth in the 

combined phase topology is explained in detail in [84, 106]. It was determined that if tooth 1 

and tooth 4 are 1 unit long in the axial direction, tooth 2 and tooth 3 must be √3 units long. 

The angular position of the tooth must be 0°, 150°, 270° and 60° for teeth 1, 2, 3 and 4 

respectively. Experimentation confirmed the improved performance of the combined phase 

machine, with a 10.3% increase in fundamental back EMF (corresponding to a 8.6% increase 

in RMS back EMF), a 15.0% increase in the average excitation torque, and 10.4% higher torque 

density when compared to the separate-phase machine [21].  

In addition to the improved electromagnetic performance, the combined-phase machine offers 

a reduction in stator SMC components from six to four. This is clearly of benefit for 

commercial production, with fewer components and greater mechanical integrity of the stator.  

Continuing the interest in reducing harmonic content and cogging torque of the combined-

phase machine, this section aims to reduce this cogging torque without changing the machine 

size or the phase arrangements described. The method (of varying and combining tooth spans) 

applied earlier to the separate machine are now applied to the combined phase machine. The 

comparison of two topologies under the influence of tooth spans is investigated; results for 

static torque and back EMF are presented with conclusions in the following sections.  

8.2 Induced back EMF 

The differential of the flux waveforms yields the back EMF, shown in Figure 8.2. At 285 r/min, 

the rms phase back EMFs for the CP and SP machines are 28.8 and 25.8 mV per pole per turn 

respectively, an increase of 11.6% for the CP machines. This reflects the fact that there is some 

harmonic content in each of the waveforms. It is seen from Figure 8.3 that there is an increase 

in fundamental harmonic for CP machine when compared with SP machine.  



Chapter 8 – Combined Phase MPM 

148 | P a g e  

 

 

Figure 8. 2: Three dimensional FE comparison of the induced back EMF in one coil of the SP and CP machines 

 

 

Figure 8. 3: Harmonic content of back EMF waveform with tooth span for SP and CP topologies. 

 

The harmonic content of back EMF for a variety of tooth spans is shown in figure 8.3. It can 

be seen that as the tooth span changes, the harmonic magnitude is cyclic with clear minima and 

maxima. A 140° span coincides with the minima for the 7th harmonic while its 5th harmonic is 

also comparable to others and appears to be the optimal tooth width to choose with regarding 

keeping the harmonics in the inner phase voltage low.   
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Similar to SP topology, EMF induced by the central phase in CP differs from that for the outer 

two phases, as end leakage flux is not present here. The harmonic content of the inner and outer 

coil EMF was calculated and is shown in figure 8.4. It is evident that the inner coil possesses a 

greater 7th harmonic when compared to that for the outer coils. As with SP, tooth span 

alterations are investigated as a method of balancing the harmonic content of all three phases.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The variation in flux linkage for the outermost phase of the SP and CP machines is shown in 

Figure 8.5. This was obtained by performing a series of magnetostatic simulations with the 

rotor stepping through a full electrical cycle. It can be seen that there is an increase of 10.7% 

for CP machine when compared with SP. This is because of the additional flux obtained by 

using a rotor that extends the full length of the stator. The additional magnet flux is provided 

by the magnets directly above the gap separating the phases and also some mutual fluxes due 

to the proximity of phases to each other.   
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Figure 8. 5: Three dimensional FE no-load flux linkage for phase A of the SP and CP machines 

 

8.3 Cogging Torque  
Static torque characteristics of CP was simulated and compared with SP machines. Figure 8.6 

shows the cogging torque (non-energised coils) for the same range of tooth spans in Figure 8.3. 

It can be seen that the minimal cogging occurs for tooth span of 160°, a position where the 

EMF harmonic content is not ideal. It also shows the change in magnitude of the important 2nd 

and 4th harmonics of cogging. The peak cogging torque of the base design with 120° span was 

found to be 5.05Nm. A trend was observed; as the tooth span increased towards 160°, the 

cogging torque decreased by 78% to 1.1Nm at a tooth span of 160°.  
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Figure 8. 6: Magnitude of cogging torque harmonics in the three-phase MPM  with varying tooth span 

 

A comparison of two topologies for peak cogging torque with varying tooth spans is shown in 

Figure 8.8. CP has the lowest cogging torque at 160° while SP is at 170°. For a tooth span of 

165°, CP has 1.8Nm of peak cogging torque compared to 0.6Nm for SP; an increase of 300%.   

Technique of combining the tooth spans was applied to see if the cogging torque can be reduced 

as it was for SP topology.   
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Figure 8. 7: Comparison of peak cogging torque for SP and CP topologies 

 

8.4 Torque Ripple 

A sinusoidal current with a peak value of 14.14rms was applied to the three phase machine 

over the range of tooth spans (120° to 180°). Torque ripple for each tooth span is shown in 

Figure 8.8 along with torque ripple of SP topology superimposed for comparison.  

It is evident that CP topology produced a much higher torque ripple for a given tooth span 

compared to SP topology. For example, CP topology nearly doubles the ripple compared with 

SP topology for the tooth span of 130°.   
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Figure 8. 8: Comparison of torque ripple for SP and CP topolgies 

 

It is seen that the a span of 160° gives the lowest torque ripple which matches to the position 

of lowest cogging torque found earlier (Figure 8.7). The torque ripple is reduced significantly 

from 54% of the average torque for 120° down to 18% for 160°; the average torque drops by 

4% as would be expected due to the drop in the fundamental component of back EMF that was 

seen in Figure 8.4.  

8.5 Combination of tooth spans 

It was proposed that the technique of combining the tooth spans can be applied to CP topology 

too in order to reduce EMF harmonics and cogging torque. As before, there is a possibility that 

the negatives of each tooth span can be used to cancel out the drawbacks in each other. 

In depth study was carried out to see if this technique worked equally as well as it did in SP 

topology. It was seen that 120 degree span’s inner phase voltage has a seventh harmonic that 

is in anti-phase with the 180 degree span’s seventh harmonic. The two waveforms of 120° and 

180° are summed as they are in anti-phase, and undergo destructive interference, reducing the 

resultant harmonic content leaving a much smoother waveform.  

After carrying out series of simulations, it was decided that there would be 10 teeth of 120° 

span and 15 teeth of 180° span; this tooth layout is shown in figure 8.9.  
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Figure 8. 9: Illustration of tooth span combinations for reducing 7th harmonic in back EMF 

 

Figure 8.10 shows the waveform shapes for 120° and 180° spans and the resultant waveform 

for a machine with a combination of the two tooth spans. Accompanying this is fig 8.11 which 

shows the harmonic content of the three back EMF waveforms. It can be seen that the 

combination of spans has suppressed the seventh harmonic significantly, while all other 

harmonics experiences a reduction too. There is a little reduction in the fundamental component 

for this combination of tooth span when compared to 120° tooth span, however it is minimal 

when compared to the suppression of seventh harmonic.  
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Figure 8. 10: Back EMF waveforms for 120°, 180° and the resultant waveform of summing the two together 

 

Figure 8. 11: Harmonic content of back EMF waveforms from a combination of tooth spans with 7th harmonics zoomed in 

 

There were infinite number of tooth span combinations. However it is important to find an 

optimum combination that is a good compromise between reducing the seventh harmonic in 

back EMF, the second and fourth harmonic in cogging torque, whilst still maximising the 

average torque.  

Combinations of tooth spans were applied, this time to minimise the cogging torque. There are 

many combinations of tooth spans that can reduce the cogging torque and torque ripple but 

only 3 (most optimised ones) are shown in Table 8.1. 
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It was tried to use a similar combination that works for EMF and cogging so combination B 

was used as it provides a good balance between the cogging torque and back EMF while 

combination of 3 tooth spans are easy to produce. Figure 8.12 presents the three original 

waveforms while it is seen from figure 8.135 that the resulting 2nd and 4th harmonics are greatly 

reduced using this; 2nd harmonic is down by 83% while 4th is reduced by 97% with a peak 

cogging torque of 0.48Nm i.e. a reduction of 90% when compared to base model of 120° span.  

Table 8. 1: Tooth Combinations – Number of teeth of each span 

Name 

120° Tooth 

Span 

140° Tooth 

Span 

150° Tooth 

Span 

180° Tooth 

Span 

Combination A 3 3        9       10 

Combination B 4 0       11       10 

Combination C 0 13        0       12 

 

 

Figure 8. 12: Cogging torque waveforms for a 120°, 150°, 180° and combination of tooth span 
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Figure 8. 13: Comparison of 2nd and 4th harmonic content of cogging torque waveforms for 120°, 150° and 180° span with 

combination of tooth span 

 

Initial 3DFE analysis showed that there was a significant harmonic content present in the back 

EMF (7th in the inner phase) and the cogging (2nd and 4th) which were undesired. Changing the 

tooth span of the teeth was investigated and FE analysis showed this method to reduce the 

harmonic content and the cogging torque.  

Table 8.2 concludes the findings; there is a reduction in average torque of 5% when using 

combination B. This comes from the reduction in the fundamental harmonic content of the back 

EMF waveform when larger tooth spans are used.   

There are of course many more combinations of spans that can reduce the ripple and the 

cogging torque as shown in Table 8.1 though for simplicity and ease of production, the choice 

of different spans is kept to three.    
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Table 8. 2: Comparison of base model with 120° tooth span and the model using combinations of tooth span 

 

A final comparison in terms of percentage changes for two topologies while using 

combination of tooth spans is shown in Table 8.3. It is seen that the technique works for both 

topologies and reduces the peak cogging torque by considerable percentage changes. Peak 

cogging torque is reduced by 79% in SP machine and 90% in CP at a cost of 2% and 5% 

reductions in average torque for SP and CP respectively.  

Table 8. 3: Comparison of SP and CP machines for using combination of tooth spans techique 

 SP (percentage change from 

base model) 

CP (percentage change from 

base model) 

Peak Cogging Torque 0.37 (79%) 0.48 (90) 

Average Torque 14.72 Nm (2%) 17.62 Nm (5) 

 

  

Parameters comparison 
Base Model 120° span  Combination B 

Percentage 

reductions 

Peak Cogging (Nm) 5.05 0.48 90 

2nd Harmonic 1.15 0.19 83 

4th Harmonic 4.42 0.11 98 

Torque Ripple 54.18 18.73 65 

Average Torque (Nm) 18.55 17.62 5 

7th Harmonic of inner phase EMF 0.083 0.006 93 
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8.6 Conclusion 

This section explored methods to reduce back EMF harmonics, cogging torque and torque 

ripple in a ‘combined’ three-phase Modulated Pole Machine. The prototype versions of 

separate phase and combined phase MPMs were shown in Figure 8.16.  

An analysis was carried out to distinguish the optimum tooth span for the machine between 

120° and 180° electrical. It was concluded that the 160° span gave the lowest cogging torque 

and torque ripple while a 140° provided the lowest non-fundamental harmonic content for the 

back EMF.  

It was shown that the cogging torque and overall torque ripple could be reduced by changing a 

simple stator dimension, the tooth span. A simple combination was modelled and investigated; 

it was found that the peak cogging torque could be reduced by 90% while the torque ripple by 

65% of the average torque with only a 5% reduction in the average torque. 

The 2nd and 4th cogging harmonics were reduced by 83% and 98% while the 7th harmonic of 

inner phase EMF was reduced by 93%. 

Depending on the choice of application, the final combination choice of tooth spans can be 

made. This method could be further expanded to tune the machine output torque with other and 

additional combinations.  

 

  

Figure 8. 14: Assembled stator; Separate Phase MPM (left) and Combined Phase MPM (right) 

 

A CPMPM offers 10% increase in fundamental back EMF, a 15.0% increase in the average 

excitation torque and 10.4% higher torque density when compared to the basic SPMPM with 

fewer components count [15]. 
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The aim of this thesis was to improve the existing technology by reducing the cogging torque 

and back EMF harmonics in a modulated pole machine.  

Techniques such as combination of stator tooth spans, pitching the stator teeth and modifying 

the rotor pole piece shapes were applied to reduce the unwanted harmonic contents.  

Initial Finite Element investigations were carried out to find an optimum solution which was 

then implemented in prototypes. These prototypes were built to confirm the solutions and 

further improvements were made by combining the above techniques. For example, the best 

solution motor designed and tested consists of 6th and 12th pitched stator with convex pole 

pieces rotor.  

Further to this, combining the tooth span technique was applied to a combined phase version 

of modulated pole machine and is presented in previous chapter. It was shown through Finite 

Element analysis that the technique works for this version of machine too and prototypes can 

be constructed to test this as a further work. 

9.1 Background  

The existing modulated pole machine was manufactured by Höganäs AB, used in electrical 

bicycle, provided extra propulsion to help the rider. This modulated pole machine was termed 

separate phase machine due to the motor made of three single phase machines, sharing the 

same rotor, each producing their own cogging torque which was summed on to the shaft. This 

project was aimed at reducing this cogging torque while maintaining the performance and size 

of the existing machine.  

9. 
 

Summary & 

Conclusions 
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A combined phase machines was investigated by a previous EngD student sponsored by 

Höganäs AB, where in the machine provided higher torque density for fewer component counts 

and reduced rare earth magnetic material. However the cogging torque and back EMF 

harmonics in this machine were even greater than the separate phase machine.  

This project therefore aimed to reduce the unwanted harmonics in cogging torque and back 

EMF firstly for separate phase machine and secondly to see if similar techniques can be used 

in combined phase machine.  

9.2 Design and Construction  

The separate phase modulated pole machine is composed of three single phase units as one unit 

alone cannot provide a continuous torque. This single phase is made of two sets of teeth 

surrounding a simple hoop coil modulating the two pole field of coil into the number of teeth 

that are equal to the stator teeth.  

The three phase modulated pole machine consists of three axially arranged single phase units 

on the shaft, separated by non-magnetic separation to reduce mutual coupling and shifted by 

120o electrical to complete the three phase arrangement.  

The initial studies showed that the separate phase machine had a very high cogging torque 

which was predominantly made of 6th and 12th harmonics, while the back EMF had a high 5th 

and 7th harmonics. Moreover the torque ripple produced by this machine was 25% of the 

average torque which was quite a high number.  

To reduce these unwanted harmonic contents in back EMF and cogging torque, three solutions 

were proposed. First one explored the effect of changing or combining the stator tooth spans 

while the second one looked at the effect of pitching the stator teeth. The third technique was 

to change the shape of the pole face directly over the air gap in a way that reduces the unwanted 

harmonics.  

Initial Finite Element analysis showed that the optimal tooth span for reducing cogging torque 

was not the same for reducing back EMF harmonics and hence it was anticipated to use 

combination of tooth spans so a compromise between the two can be found.  

Finite element analysis was conducted on these motor designs in Chapter 4 which showed that 

these techniques can be implemented in real world and hence prototypes were constructed as 

shown in Chapter 5. It was decided that two stators would be made of SMC while three stators 
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were made from laminates; this way a comparison could also be made between the two 

materials and it was seen how the cogging is affected by the choice of material.  

There were five different kinds of stators manufactured which were used with four rotors one 

by one to test for the optimum stator rotor combination which maximised the reduction of 

cogging torque and back EMF harmonics. The stators consisted of laminations that were 

pitched, or have combination of tooth spans, or had both pitching and tooth span combinations. 

Rotors were either made of modified pole piece shapes, or had an increased inner phase air gap 

or were split to reduce the mutual coupling between the phases.  

Moreover, the stators made of laminate steel allowed the easier construction of smaller parts 

which otherwise would have been hard to manufacture using SMC as it is harder to press them, 

as explained in Chapter 2. It was hence decided that larger parts which can be pressed in one 

piece such as the core back can be manufactured from SMC while the stator teeth can be made 

from laminated steel; ultimately reducing the cost and complexity of the machine.  

The construction and assembling of the prototypes were shown in Chapter 5. Majority of the 

parameters were identical for all the motors except the pole piece shapes and the stator tooth 

spans and pitching angles. This made sure that the techniques to reduce the cogging torque and 

back EMF harmonics were compared fairly.  

The prototypes were tested for their cogging torque, back EMF, efficiency and torque speed 

envelopes. These results for each motor were compared against each other motor and a matrix 

was constructed where each stator was tested with each rotor providing the best stator rotor 

combination that worked best for reducing the unwanted harmonics.  

Chapter 6 provides the results for the testing carried out on all the prototypes; 25 motors in 

total. It was concluded that the stator pitched for 6th and 12th harmonic made of SMC while the 

rotor composed of convex type of pole pieces provided the best machine design for the separate 

phase topology. The benefits of this motor over the base design motor previously designed with 

simple stator and rotor is shown in Table 9.1. 
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Table 9. 1: Comparison of results of the base motor with the most optimised motor made 

 

Base 

motor 

SMC 6th & 12 pitched 

stator with convex rotor 

Percentage 

Difference 

Peak Cogging Torque 1.759 0.178 -89.881 

6th harmonic 1.457 0.025 -98.284 

12th harmonic 0.198 0.002 -98.990 

Peak Back EMF 108.270 105.700 -2.374 

5th Harmonic back EMF 3.200 0.330 -89.688 

7th Harmonic back EMF 0.860 0.190 -77.907 

Peak Efficiency 79.370 85.960 +8.303 

Peak Torque 40.420 44.500 +10.094 

      

The peak cogging torque of the new motor is reduced by 90% which is a massive improvement. 

Almost all the harmonics in the cogging are reduced, while the vital 6th and 12th are nearly 

reduced by 100%.   

The back EMF of the new motor was 2.4% lower than the base motor which was mainly due 

to the reduction in fundamental harmonics. However, the important 5th and 7th harmonics in 

back EMF are significantly reduced, 90% and 78% respectively. This shows that although the 

fundamental harmonic in back EMF is a little lower than the base motor, eliminating the 5th 

and 7th harmonics can have a significant effect on the torque producing capability of the 

machine and hence the peak torque provided by the new motor is 10% higher than the base 

motor.  

Both machines had the same mass and volume therefore the new motor would have higher 

torque density and higher torque per volume.  Moreover, due to crucial improvements in 

cogging and back EMF harmonic, the peak efficiency of the new motor was 8% higher than 

the base motor.  

All in all, this PhD produced various novel design techniques to reduce the cogging torque and 

back EMF harmonic. 24 motor variants were constructed and tested to approve these 

techniques and ultimately one optimum motor was chosen that reduced the peak cogging torque 

by 90%; the efficiency and peak torque of the optimum motor is 8% and 10% higher, 

respectively, when compared with the base motor used in this study. 
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9.3 Future work recommendations  

This thesis concentrated on design techniques only to reduce cogging torque and back EMF 

harmonics however in future, drive techniques such as introducing current harmonics to reduce 

unwanted harmonics could also be implemented.  

Various current profiling methods have been implemented and described in literature [78-81]. 

Most of these conventional methods generally rely on application of Fourier Series Analysis 

or least square minimization methods to acquire the harmonic coefficients and optimal output 

torque. Approaches such as designing the permanent magnet field characteristics to match the 

stator excitation current for achieving optimal torque or to use excitation current design to 

complement the permanent magnet field characteristics to ensure optimal torque have been 

implemented [134].   

These methods usually require significant computational time and control being impractical. 

In [134], C. W. Lu et al describes a novel approach where application of instantaneous power 

theory [135] is implemented which eliminates Fourier analysis and rather requires Park’s 

transformation only. This method eliminates the need to assume a finite harmonic spectrum as 

is the case in conventional current profiling methods, and instead, instantaneous measurements 

are used.  

Similar technique was implemented and various calculations were carried out to produce a 

three phase current waveforms that can be applied instead of sinusoidal currents, half the 

current waveform is shown in Figure 9.1.  
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Figure 9. 1: Comparison of the optimum currents and the sinusoidal currents 

 

Implementation of the profiled current waveforms results in reducing cogging torque harmonic 

contents as shown in Figure 8.2. A reduction is seen in all harmonics especially in the vital 6th 

and 12th harmonics, 82% and 77% respectively.  

This area of current profiling along with injecting current harmonics to create torque that would 

oppose the cogging torque could be a very interesting future area to look into. The initial Finite 

Element analysis show success using these methods on separate phase machine; it will be 

interesting to see how this method works on combined phase topology presented in previous 

chapter.  
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Figure 9. 2: Comparison of cogging torque harmonics for sinusoidal and profiled current waveforms shown in Figure 9.1 

 

One of the techniques applied to reduce the cogging torque and back EMF harmonics was using 

combination of tooth spans. There were few simple combinations of this idea investigated 

however there can be significantly many more possible combinations that can be manufactured. 

For example a stator where 5 tooth spans are combined with introduction of a pitching angle 

can be manufactured as initial Finite Element analysis showed this to reduce back EMF 

harmonics even more. Moreover, it was shown in Chapter 7 that this technique of combining 

tooth spans can be implemented to combined phase modulated pole machine too and it reduces 

the desired harmonic content in both, back EMF and cogging torque. The next step could be to 

produce a prototype of this topology and compare the results.  
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9.4 Published work 

Following is a list of published work stemmed from the research carried out during this PhD. 

1. Ahmed, N; Atkinson, G. J. ; Baker, N. J. ; Sjöberg, L. “Flux Switching 

Modulated Pole Machine topologies which offer greater mechanical 

simplicity”, Electrical Machines and Drives Conference (IEMDC), 2013 

IEEE International on, pp. 354 – 358, May 2013 

2. Ahmed, N; Washington, J. ; Atkinson, G. J. ; Baker, N. J. “Reduction of 

cogging torque and torque ripple in Modulated Pole Machines by 

geometrical changes”, Power Electronics, Machines and Drives (PEMD 

2014), 7th IET International Conference on, pp. 1 – 6, April 2014.  

3. Ahmed, N; Atkinson, G. J. ; Baker, N. J. ; Sjöberg, L. “Reduction of 

Cogging Torque and back EMF harmonics in Modulated Pole Machine 

by variations in Tooth span,” Electrical Machines and Drives Conference 

(IEMDC), 2015 IEEE International on, May 2015 

4. Nabeel Ahmed, Glynn Atkinson. “Low Ripple TFM feasibility study for 

BAFCO”, January 2016. The Big Ass Fan Corporation (BAFCO) 

requested that Newcastle University carry out a feasibility on two TFM 

topologies, the aim being to produce feasible designs with high efficiency 

and low torque ripple.  

5. Nabeel Ahmed, Cristofaro Pompermaier, Jamie Washington, Lars Sjöberg. 

“Reduction of Cogging Torque in Transverse Flux Machines by Stator 

and Rotor Pole Shaping”, IEEE Energy Conversion Congress and Expo, 

Sept 18-22, Milwaukee, WI, USA. 
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Appendix A – Stator component 
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Appendix B – The Shaft 
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Appendix C – Cogging Torque Test Bench Rig Drawings 
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Appendix D – Motor Test Bench Rig drawings 

 



Appendix  

189 | P a g e  

 

Bearing Shield – Cable Side 

 



Appendix  

190 | P a g e  

 

Bearing Shield – Coupling Side 
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Pole piece designs  

 


