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Abstract

Latent Gaussian models are popular and versatile models for performing Bayesian
inference. In many cases, these models will be analytically intractable creating a
need for alternative inference methods. Integrated nested Laplace approximations
(INLA) provides fast, deterministic inference of approximate posterior densities
by exploiting sparsity in the latent structure of the model. Markov chain Monte
Carlo (MCMC) is often used for Bayesian inference by sampling from a target
posterior distribution. This suffers poor mixing when many variables are cor-
related, but careful reparameterisation or use of blocking methods can mitigate
these issues. Blocking comes with additional computational overheads due to the
matrix algebra involved; these costs can be limited by harnessing the same latent
Markov structures and sparse precision matrix properties utilised by INLA, with
particular attention paid to efficient matrix operations.

We discuss how linear and latent Gaussian models can be constructed by com-
bining methods for linear Gaussian models with Gaussian approximations. We
then apply these ideas to a case study in detecting genetic epistasis between telom-
ere defects and deletion of non-essential genes in Saccharomyces cerevisiae, for an
experiment known as Quantitative Fitness Analysis (QFA). Bayesian variable se-
lection is included to identify which gene deletions cause a genetic interaction.
Previous Bayesian models have proven successful in detecting interactions but
time-consuming due to the complexity of the model and poor mixing. Linear and
latent Gaussian models are created to pursue more efficient inference over stan-
dard Gibbs samplers, but we find inference methods for latent Gaussian models
can struggle with increasing dimension. We also investigate how the introduction
of variable selection provides opportunities to reduce the dimension of the latent
model structure for potentially faster inference.

Finally, we discuss progress on a new follow-on experiment, Mini QFA, which
attempts to find epistasis between telomere defects and a pair of gene deletions.
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Part 1

Preliminaries and methodologies



Chapter 1
Introduction

The desire to perform Bayesian inference on increasingly complicated models
has required investigations into methods that can perform inference on high-
dimension models. Markov chain Monte Carlo methods became prevalent as
a means to perform Bayesian inference, but as model dimension increases, espe-
cially in the presence of highly correlated variables, so does the time needed to
perform a good analysis. Correlated variables being inferred by these stochastic
means can often have slow convergence to the target posterior distribution.

This thesis explores methods to make inference on latent Gaussian models
more efficient, which we will define as the ability to produce a suitably uncorre-
lated MCMC chain in minimal CPU user time. Our main avenues of exploration
for achieving this will be the use of blocking MCMC methods. As we will consider
models that contain elements of Bayesian variable selection, we will also explore
computational tricks that utilise the variable selection to achieve reductions in
scheme completion time.

Many investigations have been made to make various MCMC schemes run in
parallel (Neiswanger et al., 2013; Casarin et al., 2015), including work to perform
this on spatial latent Gaussian models (Whiley and Wilson, 2004), which will in
practice make schemes run faster for users who now have easy access to multi-
core processors and clusters. For the purposes of this thesis, we will not consider
the use of parallel chains as we have an interest in ensuring each chain is as
efficient as possible. Therefore, all measurements of computation time will be
done based on CPU user time.

Not all Bayesian inference methods employ stochastic techniques. Rue et al.

(2009) demonstrate that they are able to use a deterministic scheme to perform
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Chapter 1. Introduction

approximate inference on latent Gaussian models. In many cases, the inference
can be faster than an equivalent MCMC scheme, with evidence that the approx-
imations are very close to inference performed by exact' MCMC methods. We
therefore investigate the methods used in INLA as part of this thesis.

To test the methods that are explored, applications of the techniques will be
made to some genetics datasets in Part II of this thesis.

1.1 Bayesian variable selection

As explained by O’Hara and Sillanp&a (2009), Bayesian variable selection focuses
on the problem of finding the posterior probability that each variable should be in-
cluded in the model. It considers posterior probabilities for all possible considered
models, as opposed to the frequentist equivalent of selecting a single optimum
model.

In this thesis, we will feature two variable selection schemes which are used to
help calculate the posterior probability that an associated effect should be included
in the model. In both cases, these are treated as simple binary indicators, J, that
can take the values 6 = 0 or & = 1. If n of the variables, x4, ..., x,;, are to be tested
for inclusion in the model, then each variable is multiplied by a corresponding
indicator, 6;, 1 = 1,...,n, so that the combined effect is ;x;. When an indicator
states that a variable should be included in the model, then § = 1, causing J;x; =
x;. On the other hand, if the indicator states that a variable should be excluded,
then 6 = 0, causing ¢;x; = 0; this essentially means x; has no effect on the model.

The first variable selection scheme will be referred to as the Kuo and Mallick
(1998) indicators. The indicator and the variable it acts upon are assumed to be
independent, such that 7t(d;, x;) = 71(9;)7w(x;). O’'Hara and Sillanp&a (2009) warns
that if the prior distribution on x; is too vague, the indicator will rarely flip from
0 = 0toé = 1, since when x; is sampled from a vague prior distribution when
excluded from the model, it will often sample values with low posterior support.

The second variable selection method featured is Gibbs variable selection
(GVS) (Dellaportas et al., 2002). This behaves like the Kuo & Mallick indica-
tors, except the distribution of the variable depends on the value of the indicator.
Now 7t(6;, x;) = 7t(6;)7t(x; | 6;) where 7t(x; | 6;) = (1 — 6;)N(fi;, 67) + 6;N(0, 0?).

1 An “exact” MCMC scheme is intended to define a method that samples from the exact target
posterior distribution, but the stochastic nature of MCMC introduces random error itself.

3



Chapter 1. Introduction

Consequently, when the variable x; is currently excluded from the model, it is
sampled from a pseudo-prior, which has parameters fi; and ¢;, designed to closely
match the target posterior distribution. This makes the indicator more likely to
swap from § = 0 to 6 = 1 for better mixing. When x; is currently included, the
pseudo-prior distribution has no effect, and x; would follow the actual posterior
distribution.

O’Hara and Sillanpéaa (2009) provides a good overview of other methods of
variable selection exist, such as reversible-jump MCMC (Green, 1995) where the
variables are randomly selected and proposed for inclusion or removal from the

current model.

1.2 Novel contributions to the scientific community

Contributions have been made to statistical computing by rewriting existing soft-
ware, known as GDAGsim, into a Java version, called GDAGsimJ, before enhancing
the feature set of GDAGsimJ to work efficiently on larger datasets.

GDAGsim and GDAGsimJ can be used to perform inference on linear Gaussian
models. We perform an investigation into its efficiency in comparison to pop-
ular existing software by testing their capabilities on a large-dimension linear
Gaussian model that also includes an additional complexity from Bayesian vari-
able selection. This allows us to establish which software is more efficient and
to quantify how much more efficient the optimal software is. GDAGsimJ was then
combined with deterministic approximation methods to explore its capabilities at
performing inference on the more general class of latent Gaussian models, with
the aim of establishing when this method will be effective and efficient. Through-
out these investigations, we also check what strategies for performing Bayesian
variable selection will provide more efficient inference, providing an overlapping
contribution between statistical methodologies and computing.

Finally, research is performed on a new and ongoing experiment featured
in Chapter 6. This requires a new statistical model to work at the end of an
existing analytical pipeline, providing a contribution to the genetics community

by identifying possible relationships between the functions of various genes.



Chapter 1. Introduction

1.3 Outline of thesis

Part I of this thesis presents the basic concepts for inference on latent Gaussian
models, before the ideas are used on genetics-related case studies in Part II.

Both linear and latent Gaussian models are detailed in Chapter 2, where we
demonstrate how models can be constructed by specifying each latent variable in
turn based on its conditional dependencies. We also highlight how to condition
on the model, with different techniques used between latent and linear Gaussian
models. Sparsity among latent structures can also be found and exploited to re-
duce memory usage and computational demands in the sparse matrix operations
also detailed towards the end of Chapter 2.

Integrated nested Laplace approximations are investigated in Chapter 3, where
we describe the method as detailed by Rue et al. (2009) and we attempt to recreate
their INLA software. We compare the accuracy of the software to both our own
version of the software and long, high-quality MCMC chains from JAGS.

Chapter 4 provides an overview of various Markov chain Monte Carlo schemes
that can be employed for performing Bayesian inference. These range from stan-
dard Gibbs and Metropolis-Hastings algorithms, to blocking methods designed
to help improve mixing. The blocking methods are extended further to accom-
modate Bayesian variable selection, adding in the necessary steps to perform
inference on a set of variable selection indicators.

To commence Part II of the thesis, Chapter 5 looks at a case study for an ex-
periment to identify epistasis in telomere-defective chromosomes that have non-
essential gene deletions. This experiment is named Quantitative Fitness Analysis
(QFA). We provide a brief background in genetics before presenting the calcu-
lations that underpin the experiment. We then perform a comparison between
blocking methods and conventional Gibbs sampling techniques for both linear
and latent Gaussian versions of the model.

A new, ongoing follow-up study to QFA is featured in Chapter 6. A relatively
small selection of genes are chosen, and the pairwise deletion of each of these
genes is performed against different telomere defects. Despite using a small subset
of possible gene deletions, the possible number of combinations creates a model
of even greater dimension than that seen in the QFA experiment.

Conclusions are made in Chapter 7 for the content of this thesis, while also

discussing future topics to be investigated for this work.



Chapter 2

Background

2.1 Linear Gaussian models

2.1.1 Model structure

Linear Gaussian models are highly versatile models with many applications. The
structure of a typical linear Gaussian model can be represented by the Directed
Acyclic Graph (DAG) shown in Figure 2.1. In the DAG, vertices are used to repre-
sent variables of the model, while edges are used to show conditional dependence
between any of these variables. We see that the parameters of the model, 8, can
have influence on the observations of the model, y, and the latent variables, x.
In turn, the latent variables, which are not observed directly, can also influence
the values of the observations. In the DAG, square nodes represent an observed

value, while round nodes show an unobserved variable.

e 0 are parameters of the model.
Q) x are the latent Gaussian variables.
Yy

y are the observed variables.

Figure 2.1: A general Directed Acyclic Graph for a linear Gaussian system

The DAG shown in Figure 2.1 would correspond to the factorisation,

(0,x,y) = (0) (x| 6) 7(y | x,0). (2.1)



Chapter 2. Background

For a linear Gaussian model we require that, conditional on the parameters,
0, all other variables in the model, (x,y), are jointly multivariate Normal in their
distribution. For a p-dimensional model, the observations can have a mean equal

to a linear combination of the latent variables:
y|x0~N,(Ax+b,Z:(0)), (2.2)

where y, x and b are 1 x p vectors; A and X,(6) are p X p matrices. The latent

values follow a distribution,

x| 8 ~N,(u[Q(0)] ),

where pisa 1 x p vector, Q(6) = £,(0) ! isa p x p precision matrix quantifying
the conditional dependence between latent variables, and X,(0) is the variance

matrix (also known as a covariance matrix) of the latent variables.

2.1.2 Sparsity in latent structures

By adding more detail in to Figure 2.1, we can better understand the structures
and dependencies between latent variables and observations. One such example
could be the model structure represented by the DAG in Figure 2.2, where this
sort of structure might be seen in an autoregressive walk of order 1, AR(1), or
random walk of order 1, RW(1).

PO

n 2 Y3 e Yn

Figure 2.2: A more detailed example DAG for a particular linear Gaussian system. This
particular DAG could be found in an AR(1) system as an example. Note that the edges
denoting dependence between the parameters and each observation are faded only for
legibility reasons.

The structure of the example in Figure 2.2 shows how the value of a latent
variable can be dependent on a preceding latent variable and the parameters of the

model, while also being a parent of, and therefore being able to influence, the value

7



Chapter 2. Background

of an observation. For example, latent variable x; of Figure 2.2 is dependent on x;
and parameters 0. Each observation, y;,7 = 1,...,n, in the Figure 2.2 example also
shows dependence on the corresponding latent variable, x;, and the parameters,
0.

Where a DAG shows no edge connecting any two of the vertices of the graph,
we can see that those two variables are conditionally independent. For the exam-
ple in Figure 2.2, we could say that the observations, y, are conditionally indepen-

dent given the latent variables, x, and parameters, 0, i.e.

yi Lyj| (x,0)Vi#j.

We also see a Markov property exhibited among the variables of the latent struc-
ture, such as x3 L x1 | (xp, 0)—again, there is no edge that directly connects x3
and x; in the DAG of Figure 2.2.

While a variance matrix shows the covariance between variables, a precision
matrix shows the conditional dependence between variables. Consequently, mod-
els showing conditional independence due to any Markov properties will have
correspondingly located zero-entries in its precision matrix. Using Figure 2.2 as
an example, the precision matrix between latent variables x would be,

X1 X2 X3 o Xn
v [ 111(0) T2(0) 0 .. 0
| 21(0) ©2(0) T3(0) ' :
Q:=X."= | 0 1,000 130 0 . (23)
: : ' e Tu-1,1(0)
X 0 . 0 Tun—1(0)  Tun(6)

which shows a tri-diagonal structure, where T j denotes the conditional depen-
dence between variables i and j.

We may often encounter the situation where multiple elements of the latent
structure depend on the value of a single other latent variable; this commonly
occurs when there is an underlying mean to a latent process. Suppose latent
variable, y, is an underlying mean value, and x; ~ N(y, 02) fori=1,...,n, as
shown in Figure 2.3a, then the precision matrix would feature a diagonal structure

with a dense first row and column, and zero values in all remaining entries as
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given in Figure 2.3b.
X X X X X X X X
X XX
X X X X
X X X X
Q= | X X XX
0fCIoRE® :
X X XX
X X X X
X X X

(a) DAG for latent variables in a linear
Gaussian model containing latent vari-
ables, x4, ..., x;,, that are all conditional (b) Precision matrix where x denotes a non-
on a common mean latent variable, u. zero entry. The first row/column represents
Parameters and observations are omit- the y parameter, with all remaining parame-
ted from this diagram. ters representing x.

Figure 2.3: Example DAG and precision matrix for a latent structure with a common mean
parameter, p.

2.1.3 The benefit of sparsity

The quantity of latent variables and parameters in a model can often be quite large,
leading to high dimensional matrices that represent the model. Working with such
large dimension matrices can be expensive in terms of both computation cost and
memory requirements.

For dense n x n matrices, the computational cost of a matrix-matrix multiplica-
tion or matrix inversion using a naive algorithm is O(n3). There are more efficient
algorithms, such as the Coppersmith and Winograd (1990) algorithm which can
reduce this to O(n%>37%), but this can still be time consuming as the dimension of
the matrix increases.

We can exploit the sparsity in the precision matrices using special storage and
calculation algorithms for sparse matrices. For sparse n x n matrices with no more
than m non-zero elements, a multiplication algorithm by Yuster and Zwick (2005)
performs in as little as O (m%7n12 4 n2+0(1)) operations and never more than the
number of operations taken by the alternative dense operations. To save memory,
the non-zero values of a sparse matrix can be stored with their corresponding

indices in a map—this saves memory when the majority of the matrix values are

9
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zero, with potential reductions to computational time and memory requirements
as a direct consequence.

Implementing these methods for sparse matrices has been made convenient
thanks to a number of software packages that perform these sparse operations for
a variety of commonly used programming languages. Some examples include:
Matrix for R (Bates and Machler, 2014); CSPARSE for C (Davis, 2006); PSPASES
(Joshi et al., 1999); Parallel Colt for Java (Wendykier and Nagy, 2010).

2.1.4 Canonical parameterisation of the Gaussian distribution

We begin with the moment parameterisation of a d-dimensional multivariate Gaus-

sian distribution, specified by a mean vector, # and variance matrix, X:

X ~N(u,X)
- — 1 1 Ty—1(, _
(s E) = W exp {—E(x —u) T (x ,u)} . (2.4)

It will often be more convenient to consider this distribution in terms of its
precision matrix, which will often be sparse for the models considered in this
thesis. As previously mentioned in Section 2.1.1, we define the precision matrix
asQ =xr 1

X ~N(u Q)
ron ) = 127 o {—1<x—u>TQ<x—m}. 25)
N 2

A canonical parameterisation of the Gaussian distribution can be obtained by
performing the substitutions, h = X lyand A = Z7! into Equation (2.4) (Lau-
ritzen, 1992; Wilkinson and Yeung, 2002). This gives a density of,

X ~N(hA) =N(Ah, AT

m(x; A Th, A7) o« exp {—%(x —A )T TA(x - A—lh)}
o exp {—%xTAx + th} . (2.6)
h and A are then called the canonical parameters, and A is equivalent to the

10



Chapter 2. Background

precision matrix Q.
Taking the product of two canonically parameterised multivariate Gaussian

densities gives,

N (x;h1, A1) N (x; ha, Ap)
1
x exp {—ExTAlx + xThl} exp {—%xTAzx + xThZ}
L T
xexp | —5¥ (A1 +Ap)x+x (hy + hy)

= N(x;h1 + hy, A1 + Az), (2.7)

up to a normalising constant. This implies the product of two Gaussian distribu-

tions is equivalent to summing the canonical parameters.

2.1.5 Prior model construction from DAG specification

The result from Equation (2.7) leads to a simplification of multivariate Normal
theory which produces a method that allows the canonical parameter matrices to
be easily constructed from the model (Wilkinson and Yeung, 2004), such that the
model can be described by N (h, A). Models can be constructed according to their
DAG specification in a node-by-node fashion.

Roots in the latent structure are simplest to add to the model as they do not
need to be conditioned on any parent nodes, excluding parameter nodes. For a
root, x; | 0 ~ N(p;, 7, 1) = N(timi, @), {wi, i} € 6, the canonical parameter ma-

trices can be updated as,
bi=7p and A;=T.

Nodes which depend on other nodes or roots can then be specified. When we
add the j-th node, we aim to find the values of the canonical parameters with j
nodes specified, denoted h(]-) and A(j). If we define the notation Xej= X100, X1,
then we wish to find the distribution of N (x< j+1 h( i) A(]-)), which has a density
that can be factorised as,

j j—1

qﬂ (X; | Par(X;),0) = m(X; | Par(Xj),B)nn(Xi | Par(X;),0), (2.8)

11
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where Par(X;) is an (i — 1)-dimension vector defining the parents of node X;,
which will typically be sparse due to the sparse properties of the latent structure.

The density of 77(X; | Par(X;), 8) can be considered Gaussian where the mean
parameter is a linear combination of dependencies (a].TX <j+ bj for constant b; and
a (j — 1)-dimension sparse vector a]-T denoting which nodes are parents of X;) and
with precision, T:

X; | Par(X;),0 ~ N(x;; a/ x; + bj, 7))

1

7T(X] | Par(Xj),e) X exp {—§<x] — a}-Tx<]~ — b])T](x] — aij<]- — b]) }

T
. ajtja) -1un> (xq>

xexpy — X_; x]' <
{ [ (% ) —haj G )\ %
—a:T:b:
] 4
(= =) Tibj

which matches the form of the canonically parameterised Gaussian density from

N~

Equation (2.6). Therefore:

; —a;Th;\ [atal —a;T
X; | Par(X;),0 ~ N ( (S ) (U5 (TS TEEY ) 29
Xj Tjbj —ha;

We can use Equation (2.9) to complete the calculation of Equation (2.8),
N (< b, Agy)

j—1
= 71(X; | Par(X;),0) [[7(X; | Par(X;), 6)
i=1
N\ [(—atb;\ [aTal —aT
N x<]; ﬂ]T]], jti% 7t N (h oA
) ((’%‘) ( Tjb; ~Tiaj T (g2 A0
X Tjb

12
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Using the result from Equation (2.7) allows for the parameters to be summed:

T
T G T G Ak Y e e i (2.10)
X 1bj ~Taj g

This means we can construct the prior distribution of the model by specifying
roots, followed by each node in turn based on its parents. The parameters of
the canonically-parameterised distribution are iteratively updated as each node
is added, such that the parameters after the j-th node is added will be,

e (B = ey (A Tame e
) Tb; () _Tja]'T T

The final matrix for A should be sparse as a is usually sparse as each node is
added. Special care must be taken with the indexes of h and A when stored in a
computer since the dimension of these parameters will increase as each node is
added.

2.1.6 Conditioning on the observations

Wilkinson and Yeung (2004) also explain how the full conditional distribution for
the latent variables of the model can be obtained once the model has been con-
ditioned on the Gaussian observations. Recall that for a linear Gaussian model,
the observations are Normally distributed with mean parameter equal to a linear
combination of the latent variables, as defined in Equation (2.2). Since the observa-
tions are all conditionally independent given the latent variables and parameters,
we can say,

Yi | x,0 ~ N((ui)Tx—l—bi,T_l), (2.11)

where g; is the i-th column from matrix A. The method will proceed in a similar
fashion to how the prior structure was created in Section 2.1.5, and assumes that
the prior distribution has already been constructed.

The intention is to find the posterior distribution for the latent values after the
j-th observation is added:

x| 0,1,y ~ N(hgi'/))"‘g)))'
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where hg)) and AS./)) are the canonical parameters that have so far been conditioned
on j observations.

Multiplying the current density by a Gaussian observation density is analo-
gous to adding a Gaussian node to construct the prior distribution. By extension
of the result in Equation (2.10), the joint-density for the current posterior and the
j-th observation is,

W) o p (v) nT o
4 i ~74] g

By dropping all dependence on y;, we can find the full conditional distribution
for x:

(x| 6,y1,...,Y))

() T
1 A taTta; —a;T; x
ey g | () |0V
1ja; Tj Yij
(v)
=2(x" yy) () — gty be)”

1
o exp {_E A + gl )x =2 () = ayrity)| }
) AW
< Ny Agy)- 1

We use this result to find that the canonical parameters can be iteratively updated
upon each new observation. To condition on the j-th observation, the parameters
are updated to,

v) _ ) b AW AW T
iy = iy — G0 Ay = Ao T a9

At each stage, hgzl) and AE]@D will be known, except when conditioning on the
first observation, in which case the parameters are updated from the canonical

parameters from the completed prior distribution, h and A.
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2.1.7 GDAGsim

GDAGsim is a software package that makes it easier to perform various computa-
tions on models with a Gaussian DAG structure. Based on the user’s specification
of the model DAG, the software can handle the construction of the underlying
sparse precision matrix and simulating from the model among other tasks, follow-
ing methods described by Wilkinson and Yeung (2004). This allows the user to
perform various block sampling methods with the assistance of the software. The
sparse matrix algorithms used by the software are crucial to the efficiency of the
software.

The original GDAGsim package (Wilkinson, 2002) was written in C, using the
Meschach matrix library (Stewart and Leyk, 1994) for sparse matrix operations
and the GNU Scientific Library (Galassi et al., 2009). We have completely rewritten
GDAGsim in Java, giving a new version called GDAGsimJ which uses Parallel Colt
(Wendykier and Nagy, 2010) to handle the storage and operations for both dense
and sparse matrices. Parallel Colt performs all operations as pure Java code,
eliminating the dependency for external linear algebra packages to be installed.

The functionality of GDAGsimJ has a number of additional features over its pre-
decessor, GDAGsim, such as the ability to permute the underlying sparse matrix,
which will be explained in more detail in Section 2.3.2. Since GDAGsimJ can per-
form all tasks that GDAGsim can and more, we will usually refer to GDAGsim for
tasks that could be performed using GDAGsimJ and GDAGsim. We will also make
reference to “GDAG models” and “GDAG methods” to refer to models contructed
in GDAGsim and inference methods performed using GDAGsim.

The package can be used to specify the dependencies of each node in turn to
build up the structure of the model, using the methods described in Sections 2.1.5
and 2.1.6. Roots are defined first—these being nodes (variables) that have no
parents to depend upon. Nodes are then added with their dependencies upon
existing roots and nodes specified. With this structure prepared, the model can
be pre-processed before observations are added to the model, before final process-
ing is performed on a fully specified model. After processing, block simulations
and various density calculations can then be obtained from the model using the
software.

An outline of how a model is specified by the user in GDAGsim and GDAGsimJ is
provided in Algorithm 5 of Appendix A.
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2.2 Latent Gaussian models

We can relax an assumption from the linear Gaussian models introduced in Sec-
tion 2.1, which allows for more versatile models to be considered. This is achieved
by removing the restriction requiring observations y to follow a Gaussian distri-
bution. Instead, we consider observations to come from a more general likelihood
function, while maintaining the requirement for observations to be conditionally

independent given latent values and model parameters. Now, we can define,

y|x0) ]—Iﬂ yi | x;,0 (2.13)

for observation values y;, i = 1, ...,n, and general likelihood function 7t(-). This

causes Equation (2.2) to take the form,

Y | x;,0 ~ Dist(g(x;),0:(0)),

for suitable link function, g(-), and likelihood distribution Dist(-).

The facility to use general link functions permits more flexibility than a linear
Gaussian model, in which y; is required to have Gaussian distribution with mean
u; provided by an identity link function to a single latent variable, i.e. y; = x;.

A consequence of permitting a general link function and observation distribu-
tion is that many of the convenient properties found in linear Gaussian models
are invalidated. While the prior distribution can still be constructed by the same
methods explained in Section 2.1.5, we can no longer use the methods described
in Section 2.1.6 to condition the model on the observations. Therefore, GDAGsim is
still useful for constructing the prior distribution of the model, but not for condi-
tioning on the observations.

An alternative method for conditioning the model on the observations can be
found by adopting techniques discussed by Rue and Held (2005). Performing a
Gaussian approximation enables for modal values of the latent field to be approx-
imated using an iterative optimisation, while simultaneously adjusting values of
the precision matrix diagonal to account for increased precision from the data.
The method for performing this will be discussed later in Section 3.2.2.

Gaussian approximations can fail to account for skew in the latent densities;

such inaccuracy can be mitigated by using a Laplace approximation or simplified-
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Laplace approximation as described by Rue et al. (2009). The Laplace approxima-
tion is most accurate of these approximations but comes with the greatest com-
putational cost, while the simplified-Laplace approximation provides a middle-
ground between the Laplace and Gaussian approximations in terms of cost and
accuracy.

As part of a deterministic inference method such as INLA (Rue et al., 2009),
the increased accuracy of the Laplace or simplified Laplace approximation is de-
sirable despite the increased computational cost. When used as part of an MCMC
algorithm, a Metropolis-Hastings step can be used to ensure the exact posterior
distribution of the latent values are targeted despite the inaccuracy in the approx-
imation of the latent variables. The minimal computational cost of the Gaussian
approximation is desirable for use in a fast MCMC scheme, since this approxima-

tion would be performed at every iteration.

2.3 Numerical operations

2.3.1 Cholesky decomposition

The Cholesky decomposition provides an efficient way to factorise a square, Her-
mitian, positive-definite matrix, using fewer floating-point operations (flop') than
the QR decomposition. Brezinski and Tournes (2014) explain that the method was
developed by André-Louis Cholesky and written in an unpublished manuscript?
before the method was published by Benoit (1924) six years after the death of
Cholesky.

For a square, Hermitian, positive-definite matrix A, we can perform a Cholesky
decomposition to find unique triangular factors such that A = LL*, where L is
a lower-triangular matrix and L* is the conjugate transpose of L. In the context
of precision matrices, which we will use Cholesky decompositions to factorise,
these matrices will always contain real valued elements, meaning the Hermitian
requirement simplifies to a symmetry requirement. Therefore, a p-dimensional

square, real-valued symmetric matrix, A, can be factorised as A = LLT.

1 We define “flop” written in the singular form to be “floating-point operation(s)”—with em-
phasis that “operation(s)” may refer to both singular or plural form—to prevent confusion with
the term “flops” which is commonly defined as “floating-point operations per second”.

2 Cholesky’s handwritten manuscript has been scanned and translated from French to English
in Brezinski and Tournes (2014).
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The values for the elements in the lower-traingular factor L are calculated as,

j -1
Lij = ﬂjj—kZl!ljk!z/ Lij = (“if_ klez-kl}i«) /e (214

fori=(j+1),...,(j+ p). Performing a Cholesky decomposition on a dense ma-
trix would require % /3 flop, compared to 21> /3 for a QR decomposition (Bjorck,
2014). Variations of the algorithm are available to perform the Cholesky decom-
position on row-ordered and column-ordered matrices, and both will produce
equivalent numerical factors regardless of which ordering the decomposition is
performed in (Bjorck, 2014). Methods to compute a Cholesky decomposition in
parallel on multi-core processors have been created with George et al. (1986) sug-
gesting the most efficient method to be the ‘column-Cholesky” method since this
gives the least amount of processor idle time.

Aside from always being square and symmetric, a precision matrix will usually
be positive-definite, but numerical instability can cause certain precision matrices
to appear otherwise to a computer, usually where values close to zero feature on
the diagonal of the matrix. In these situations, a square-root free Cholesky decom-
position could be performed, such that matrix A is decomposed as A = LDLT,
where D is a diagonal matrix. This was a generalisation of the Cholesky method
called the ‘unsymmetrical Choleski [sic] method” by Turing (1948).

2.3.2 Permutation matrices for sparse Cholesky decompositions

The positioning of the non-zero elements in the sparse precision matrix, Q, can
lead to a problem known as fill-in, where values which were originally zero end up
with non-zero values in those same positions after the Cholesky decomposition
is performed. This is demonstrated in Figure 2.4. Where non-zero elements are
in rows or columns towards the top and left of the matrix Q, there is severe fill-
in throughout the Cholesky factor L, as shown in Figure 2.4a. Conversely, in
Figure 2.4b, we see minimal fill in when non-zero elements in Q appear on the
bottom /right rows and columns of the matrix.

For certain models where GDAGsim is employed, precision matrices will often
end up in a form resembling that in Figure 2.4a. This occurs when the root of the
model is specified early on to allow for dependent notes to later be conditioned

18



Chapter 2. Background
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(b) An example matrix Q that will suffer from no fill-in on Cholesky factorisation.

Figure 2.4: Comparison of how the positioning of the non-zero elements, represented by
X, in a sparse matrix, Q, can affect the sparsity of its Cholesky factor, L.

on these roots, resulting in multiple non-zero values towards the top-left of the
precision matrix Q.

On models with a simple structure, variables can be specified in GDAGsim in
a more optimal ordering, where such an ordering is found using some careful
thought. But on more complicated examples, such an optimal ordering cannot
be found trivially. Looking at the matrix in Figure 2.5a, an optimal re-ordering
of rows and columns that will minimise Cholesky fill-in is not easy to spot. The
location of the non-zero entries for Figure 2.5a come from the ‘Can 61" dataset
of the Harwell-Boeing collection® with values modified to produce a positive-
definite matrix.

It is desirable that the user of the GDAGsim software should be free to specify
nodes in an intuitive order, without being penalised with poor Cholesky decom-
position performance caused by a bad ordering of variables. The solution is to
use an algorithm that finds an optimal permutation matrix, which can be used
to re-order the precision matrix Q before the Cholesky decomposition is taken.

Therefore the aim is to find a permutation matrix P, such that C = PQPT gives

Shttp://math.nist.gov/MatrixMarket/data/Harwell-Boeing/cannes/can___61.html
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Natural Ordering of Q Natural Ordering of L

S T

. i1

nnz: 557 ( 14.97%) nnz: 1484 ( 39.88%)

(@) The naturally ordered matrix Q. (b) The Cholesky factor L of the
Number of non-zero entries in lower- naturally-ordered Q in Figure 2.5a.

triangle is 309 (16.34%) Number of non-zero entries in lower-
triangle is 1484 (78.48%)
AMD Ordering of Q AMD Ordering of L

I

. m
I I
= mi
-
.8
nnz: 557 ( 14.97%) nnz: 361 ( 9.70%)

(c) The AMD ordered version of Q (d) The Cholesky factor L of the AMD-
in Figure 2.5a. Number of non-zero  ordered Q in Figure 2.5c. Number of
entries in lower-triangle remains 309 non-zero entries in lower-triangle is
(16.34%) 361 (19.09%)

Figure 2.5: The location of non-zero entries in an example sparse, symmetric, positive-
definite 61 x 61 matrix. In the full matrix, Q, there are 309 non-zero elements (16.34%). For
a fairer comparison, each plot is captioned with the quantity and percentage of non-zero
values in the lower-triangle only, since the Cholesky factors only occupy these elements.
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the minimum amount of fill-in when taking the Cholesky factor of C. Unfortu-
nately, as demonstrated by Yannakakis (1981) this task is NP-complete, but there
are heuristic algorithms that find an approximately optimum permutation.

The approximate minimum degree (AMD) algorithm (Amestoy et al., 1996,
2004) is a commonly used algorithm for determining the optimum permutation
matrix before performing a Cholesky decomposition. As there is no algorithm
that can find a “perfect’ permutation, plenty of attempts to optimise minimum
degree algorithms have been contributed over the years (George and Liu, 1989).

As can be seen in Figure 2.5¢, the algorithm attempts to reorder the rows and
columns of the matrix such that: rows with the highest density are placed in
the bottom/right of the matrix; the bandwidth is minimised by placing non-zero
values close to the diagonal; large rectangular blocks of non-zero values appear in
the permuted matrix, which will remain completely sparse in the Cholesky factor.

Figure 2.5b, which shows the non-zero values in the Cholesky factor of the
naturally-ordered matrix in Figure 2.5a, demonstrates the substantial fill-in en-
countered on the Cholesky factor—over three-quarters of the lower-triangle of
the matrix is now non-zero, compared to the original 16.34%. By performing a
Cholesky decomposition on an AMD-permuted version of Figure 2.5c, an imme-
diate improvement can be seen in Figure 2.5d with most of the sparsity being
maintained and the number of non-zero values being less than one-third of what
would be obtained without the permutation.

An increased number of non-zero values would carry a penalty in computation
time and memory usage whenever the Cholesky factor is used in any computa-
tion. Consequently, the performance gains from using minimum degree ordering
algorithms will generally outweigh the cost of running the algorithm to find an
approximately optimal permutation.

With the optimum permutation found, linear systems can be solved as,
(PAPT)(Px) = (Pb),

which will be quicker to compute if the Cholesky factor of (PAPT) can maintain
most of the sparsity held in A.
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2.3.3 Density calculations

Many of the multivariate Gaussian density calculations can be performed effi-
ciently once a sparse Cholesky factor of the precision matrix has been obtained.
Recall from Equation (2.6) that the multivariate Gaussian density in its canonical
parameterisation is given by

N (x;h,A) < exp {—%xTAx - th} :

The most computationally demanding part of this calculation will be the calcula-
tion of xT Ax. Take A = LL?, obtained by a Cholesky decomposition. Then we
can simplify the calculation to,

xTAx = xTLLTx = (LTx)T(LTx) =olo,

where LTx = v. Multiplication by the triangular matrix is less demanding than
multiplication by the full matrix.

The same method can be extended when calculating the density in the moment-
precision parameterisation, from Equation (2.5). Taking the Cholesky decomposi-
tion of Q = LLT and defining z = (x — u), we can complete the calculation in a

similar manner:
(x—m)TQ(x—p) = 2"LLTz = (LTz)" (LTz) = 0T,

where LTz = v.
The density also requires the calculation of |Q|'/?, which we can obtain at little
extra cost once the Cholesky factor is known:

/' /
Q]2 = (L] x L) = (L))" = L.

Since |L| is a triangular matrix, its determinant can be computed as the product
of its diagonal elements. Hence,

Q"2 =TTl
i

Algorithm 6 in Appendix A details how to calculate the log-density for a mul-
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tivariate Gaussian density represented in the moment parameterisation.

2.3.4 Switching from canonical to moment parameterisation

We find it easiest to construct a Gaussian DAG model in GDAGsim by updating the
canonical parameters as each node is added. However, we may wish to convert
the model to a moment parameterisation in order to obtain a mean vector or
precision matrix; this parameterisation may be used to condition the model on
non-Gaussian observations in a latent Gaussian model. To do this, we prepare the
Cholesky decomposition of the canonical parameter matrix, A = LL.

Computation of the mean (moment) parameter from the canonical parameters,

h and A, is given by,
n=A"'h
Au=h
LLTu = h. (2.15)

Let LTy = v. Then (2.15) simplifies to,
Lo = h.

Forward-solving for v allows us to return to finding u by back-solving the origi-
nal substitution, LTy = v. Solving a set of triangular problems provides a more
efficient way to obtain u than attempting to directly invert A.

2.3.5 Sampling from a multivariate Gaussian density

Suppose we have a d-dimensional multivariate Gaussian density with mean vec-
tor, #, and precision matrix, Q, and we wish to generate a random sample from
this distribution. We already have a Cholesky decomposition of the precision
matrix, Q = LLT.

Begin by generating d independent realisations from a standard univariate
normal distribution, Z; ~ N(0,1),i =1,...,d; methods to generate these values
are well-established (Box and Muller, 1958). When normalising x to be on the
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standard normal scale like the generated values of z, we find,

(x—mw)'Qx—p) = (x—w) Ll (x —p) = [LT(x — )] " [LT (x — )] = 2=

Using this result, we know to perform the following steps to create each sample:

Li(x—pu) =z [setw = (x — p)]
LTw =z [Backsolve for w]
x=w+ u.

Therefore, realisations can be generated for the cost of a single sparse backward
solve if we have already computed the Cholesky factor. A summary of this method
is provided in Algorithm 7 of Appendix A.
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Integrated nested Laplace

approximations

3.1 Introduction

Performing Bayesian inference will often present integrals which cannot be per-
formed analytically. As a solution to this, Rue et al. (2009) describe the use
of Laplace approximations for the problematic densities to be integrated. The
method they propose is known as integrated nested Laplace approximations (INLA).

Rue et al. (2009) demonstrated that INLA can perform approximate Bayesian
inference on latent Gaussian models with a sparse latent structure, often achiev-
ing results very close to the densities obtained from long Markov chain Monte
Carlo runs in a much quicker time. This has led to its adoption as a means of
performing Bayesian modelling in a number of fields. Applications in Ecology
have used INLA for Bayesian modelling to identify that increased forest species
diversity can reduce the transmission risk of pathogens (Haas et al., 2011), but also
that insects and pathogens have a large role to play in maintaining tropical plant
diversity (Bagchi et al., 2014). Spatio-temporal models are also popular applica-
tions for INLA as they often satisfy the requirement for a sparse latent field, such
as the modelling of veterinary data in Switzerland (Schrodle et al., 2011), digital
mapping of soil properties in Scotland (Poggio et al., 2016), and investigating links
between air pollution and socio-economic status (Hajat et al., 2013). The INLA
method was extended by van de Wiel et al. (2012) to allow for joint shrinkage of

priors for analysis of RNA sequencing data.
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There are restrictions on what models can be handled effectively by the INLA
method, with one of the most notable being that the dimension of the model pa-
rameters must be small, i.e. dim(0) < 6, since the numerical integration strategies
will struggle in high-dimension spaces. The latent structure can be of very high-
dimension, provided it demonstrates a considerable degree of sparsity between

latent variables.

3.2 Method

We will present the method for performing integrated nested Laplace approxi-
mations as described by Rue et al. (2009). We then use an example later on in
Section 3.3 to help demonstrate the calculations in more detail.

There are two main posterior marginals which we are aiming to find. The first
are posterior marginals for the elements of the latent field, which can be obtained

as follows,
m(xly) = [ 7] 6,y) 7(0 | ) de. 61)

We are also interested in the posterior marginals for each of the parameters. These
are obtained from the joint distribution of all parameters by integrating out all

other parameters:
w6 | y) = [ (0] y)doy, 62)

where 6, denotes the set of parameters with the k-th parameter removed.

In order to obtain these, nested approximations are used:
7(x; | y) = [ 7(x; 1 6,9)7(0 | y)do (63)
70 |y) = [ 70| y)dey, 64

where 77(- | -) denotes an approximated distribution conditional on its arguments.
This will require obtaining the approximated distributions 7 (x; | 8, y) and (0 | y).
An approximation for 77(6 | y) can be derived by factorising the joint distribu-

tion as,

mt(x,0,y) = (y)m(0 | y)m(x|6,y),
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and rearranging for 77(0 | y):

n(x,0,y)
x| 0,y)(y)

(0 1y) = (3.5)

The equality of Equation (3.5) highlights that since the left-hand side of this
equation does not depend on the latent variables x, the right hand side of this
equation must also not depend on x. This is demonstrated by the factorisation
performed in Appendix B.1. As a result, Equation (3.5) can be evaluated at any
convenient value of x we choose. The most stable approximation can then be
obtained where the density is well-represented by the modal configuration of

x*(0). So 71(0 | y), the approximation for 77(6 | y) in Equation (3.5), is given by,

ni(x,0,y)

7t(0 X ——————
(619) 6 (x| 0,Y) | x—x+(o)

, (3.6)

where x*(0) is the modal configuration of the latent elements, x, in the latent field
conditional on a given 0, and 77 (x | 0, y) is a Gaussian approximation of the full
conditional of x. Producing the Gaussian approximation is a method described in
Section 3.2.2.

3.2.1 Approximating marginal densities of hyperparameters

We will need an approximation of 77(0 | y) for use in the integrals of Equations (3.3)
and (3.4). The numerator of Equation (3.6) can be easily computed using an alter-

native factorisation of the joint distribution:
n(x,0,y) = 7(0) (x| 0) 7(y | x,6) (3.7)

where we have that
e 77(0) is the hyperparameter distribution.

e 77(x | 0) is the Multivariate Gaussian distribution of all elements of our latent
field.

e 711(y | x, 0) is the likelihood distribution which our observations follow.

During the calculation of Equation (3.6), we will also need to find the modal
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configuration of the latent field for the Gaussian approximations. This process is
explained in Section 3.2.2.

The density of the approximate posterior marginal of all parameters 77 (6 | y)
can be explored using a grid integration method as follows:

1. Maximise the log-density, log[77(0 | y)], with respect to 6, so that a modal
value 0” is found. A quasi-Newton method, such as the BFGS algorithm
(Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), is useful for
this and a gradient function can be found using finite differencing.

2. Calculate the negative Hessian, H, at the parameter density mode, 6*. Set
¥ = H ! and take an eigendecomposition of & = VAVT. Use this eigende-

composition to reparameterise for z as follows,

0(z) = 6* + VAZz. (3.8)

3. Use the new z parameterisation to create a new set of coordinate axes. Se-
lect points along each of these new axes as long as the density is above a
threshold of interest, creating a regular lattice of points throughout the den-
sity according to the directions of the new coordinate axes for z. Smith et al.
(1987) use this reparameterisation as “an appropriate linear transformation,
to a new, approximately orthogonal, set of parameters”, allowing densities
to be efficiently explored according to their shape.

4. A type of kernel density estimation or an interpolant can be created from
these points which can be used to perform numerical integration for the

posterior marginal distributions of the parameters.

More detail to steps 1-3 are given in Section 3.3.5, while a detailed description
of the kernel density estimation can be seen in Section 3.3.6.

3.2.2 Gaussian approximations

In order to obtain the density of 7(x; | y) from Equation (3.4), we need the ap-
proximation 7(x; | 8,y), and the simplest approximation for this is a Gaussian
approximation. One such Gaussian approximation would have already been per-
formed when exploring 7(6 | y).
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We need to find the modal configuration of the elements in the latent field,
which we find iteratively using a Newton-Raphson method. Assuming the latent
structure is a replacedmMultivariate Gaussian of zero mean, the Gaussian density

we are approximating is of the form,

(x| 6,y) < exp —%xTQ(G)ijZlog{n(yi | x;, 6)}]

1
o exp —ExTQ(B)x + Zgi(xi)] , (3.9)
i i
where ¢;(x;) = log {7 (v; | x;,0)}.

An initial guess at the modal configuration is made, denoted as ;4(0). Then
Qi(x;) is then expanded around the guess p using a Taylor series up to the second

order terms, .
gi(xl-) g (“l/ll(o)> + bix; — Ecixiz +o0 (x?) , (3.10)

with b; and ¢; both dependent on 0. The aim will be to iteratively solve the equa-
tion [Q + diag(c)|u = b for u and recomputing the values of b; and ¢; until p

converges to the modal configuration of the latent variables, x*.

This gives a
Gaussian distribution with mean x* and precision matrix Q* = Q + diag(c).

A demonstration of this method applied to an example model is given in
Section 3.3.4.

It is useful to find a good initial guess #(°) of the modal configuration to reduce
the number of iterative steps needed to converge on the modal configuration.

Yoon and Wilson (2011) propose a method to get close to the solution of,

_d7t(x]6,y)
dx

=0.

This is often not possible, especially where the derivative contains an exp{x} term,
so this cannot usually be solved directly for x. Their solution is to transform the
problem from vector space into the diagonals of a matrix space. This allows for the
equation to be solved, before the diagonal values of the matrices are transformed
back into vectors and used as the initial guess (0.

Better estimates can be obtained by using a Laplace approximation, where
third-order terms of the Taylor expansion are also considered (Gamerman and
Lopes, 2006) to account for skew in the latent densities, or simplified-Laplace

29



Chapter 3. Integrated nested Laplace approximations

approximation instead of the Gaussian approximation. These improved estimates

do come at a slight computational cost.

3.3 Application to traffic ‘near-miss’ example

3.3.1 Near-misses on the Place Charles de Gaulle

To demonstrate the calculations used by INLA, we will apply them to a simple,
tictional model.

Place Charles de Gaulle (informally known as the Arc de Triomphe roundabout)
is a major road junction in central Paris where 12 roads meet and priority is given
to vehicles entering the roundabout; this causes congestion and makes it notori-
ously hazardous to navigate safely. With an interest in minimising hazards on
the road, we choose to observe the number of collisions and near-misses! that
occur every 60 seconds, treating this as Poisson count data. We believe that the
rate of this Poisson distribution changes over time depending on an unobserved
latent process—which we assume follows an autoregressive process—influenced
by some unmeasured mixture of the prevailing traffic flow levels, road surface
wetness and average vehicle speed.

We have n observations, y;,i = 1,...,n from Y ~ Pois(A). We then have a link
function A; = E;jexp(n;), i = 1,...,n, where #; is the linear predictor and E; > 0

is a known constant (or log(E;) is the offset of 7;). The linear predictor is,
ni = a+x;, i=1,...,n,

where « is an intercept term and x is an AR(1) process with mean 0 and autore-

gressive constant |¢| < 1:

Xi=¢xiq1+e; |9 <1 € ~N(00%);, i=2,...,1 (3.11)

! we may choose to define a near-miss as an event where a driver has to brake or turn suddenly

in reaction to another driver’s actions.
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3.3.2 Construction of sparse precision matrix

It can be shown that for the AR(1) process given in Equation (3.11), the variance

of each term is

2
o
Var(xi) = VaI'((le‘_l + GI‘) = m, (312)
while for covariance between values of x is,
o2
Cov(xi—i, x;) = Cov(xj, xi—1) = Cov(Pxi—1 +€;, Xj1) = P7— el

and it can more generally be shown that,

kUz

Cov(xj—k, x;) = Cov(xj, xj_k) = ¢
fork = 1,...,i — 1. Derivations for Equations (3.12) and (3.13) are provided in
Appendix B.2.

The values of Equations (3.12) and (3.13) allow us to find the dense covariance

matrix X(0) for x:

o ¢ - 9
) (P 1 (P (Pkfl
(%
r(6) = 1 _4)2 4)2 ¢ 1 (Pk—z

It is more convenient to work with the precision matrix Q(6), which shows
conditional dependence between variables as opposed to the covariance, since this

may produce a sparse matrix, allowing for efficient computations. The precision
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matrix for this AR(1) process is,

L —¢

—¢p ¢*+1

0 —¢ ¢*+1
QO) =% 0)= 5| ¢

0 0

0 0

0 0

0
—¢

0

0
0

0 0 0
0 0 0
0 0 0

»P*+1 —¢ 0

—¢ ¢+l —¢
0 - 1

(3.14)

We will later find it useful to work with the Cholesky decomposition of this
matrix. We define U to be the upper (right) Cholesky factor of Q so that Q = U,
and the lower Cholesky factor to be L = UT. The upper Cholesky factor for an

AR(1) precision matrix as shown in Equation (3.14) is

L —¢
1

—¢

—¢
Ve

(3.15)

Recall from Section 2.3.3 that having the Cholesky factor, either L or U, allows

computation of |Q| and log |Q| with little additional computational cost:

2
Q| = [H lii] —
i=1

log |Q| =2 Zlog (1if)-

i=1

(3.16)

The prior distributions are placed on (61,65, 63) as opposed to being directly

placed on (0, ¢, u). In line with a reparameterisation made by Rue et al. (2009),

we link 6; to o using,

6, = log(x) = log [T(l — cpz)} = log (1 — ¢2> p

0> to ¢ using,

0 = 10g(
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and 63 is linked directly to y as 63 = p.
So when the precision matrix Q(6) is constructed for a given (61, 6,), we con-
vert the values to ¢ and ¢ before using them in the precision matrix. The values

of ¢ and ¢ are obtained by inverting Equations (3.17) and (3.18):

2exp(67)

_ : _ | 1—¢?
P repy 7 T \explen)

We place prior distributions on the parameters as follows:

6, ~ logGamma(a, ),
0r ~ N(W,aq%),

For these examples, we will use vague priors as used by the INLA software, for the

purposes of verification.

3.3.3 Finding the marginal hyperparameter distribution

With the precision matrix created, we can now begin to construct the approxima-
tion 77(0 | y) as given in Equation (3.6). When including Equation (3.7) for the

numerator of this expression we have,

n(0)r(x | 0)7(y | x,6)
fic(x | 6,y) x=x*(6)

(0] y) (3.19)

We can calculate each part to this in turn:

e 77(0) is the distribution of our parameters 8 = (01, 6,,63). With 6; following
a log-Gamma distribution and 6, and 65 following a Gaussian distribution,
the density of 77(0) simply becomes,

7t(0) = 7(61)7(602)7(63)
P a1 (62 — py)?
TP {ael —pe } opV/ 27 oP {_ 22‘74%4) }
1 (03 — pp)?
X ay\/ﬂexp {_?ﬁy} .
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The log of this density is

log[71(8)] = log(B) — log[I'()] + a; — B’

1 (62 — pg)?
— log(a(p) —5 log(27) — TZ(P
¢
1 03 — 1,)>
—log(oy) — 5 log(2m) — %. (3.20)
H

e 77(x | 0) is the multivariate Gaussian density of the latent field, conditional
on the current value of 8. Assuming a zero-mean latent Gaussian structure
(# = 0) and using a precision matrix Q(0) constructed from the current 6,
this has density,

Q(6)|"” 1
(x| 0)= %exp {—ExTQ(B)x} , (3.21)

which we will evaluate at the mode of x = x*(6). Recalling the log density
of |Q| from Equation (3.16), the log-density of Equation (3.21) is,

logl(x | 0)] = Y log i (0)] — 5 log(2m) — 5x'Q(O)x.  (3:22)

1

e The likelihood of 7z(y | x, 8) in the case where observations y; follow a Pois-
son distribution with parameter E; exp(x;) is,

E;e*i) exp (—E;ei
rtyn0) - T EE P CE)
i i

The log of this distribution is

log [(y | x,0)] = Zyi log(E;) + Zy,-xi - ZE,-exi - Zlog(yi!). (3.23)

* The denominator of Equation (3.19) contains the distribution of the Gaussian
approximation, 7t (x | 6,y), which has density,

Nf—=

. *(0 1 "
Folx | 0,y) = %exp{—;x—w@ O-mf, e
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where Q*(60) = Q(6) + diag(c) which is calculated from the Gaussian ap-
proximation. The log of the density in Equation (3.24) is

logla (x| 0,)] = Y- llog u} (6)] — 5 log(27) — 5 (x — 1) Q*(6)(x — ).
1 (3.25)

The log-density of our approximation therefore becomes

log 776 (x16, y)] = «log(B) — log[T(a)] -+ aby — e

1 (62 — pp)?

—log(oyp) — Elog(Zn) — T’Z(P
¢

1 (03 — py)?

—log(oy,) — 5 log(27) — ?Z;H
M

+ ) [logu;i(6)] — %xTQ(E))x
+ Z}/i log(E;) + Zyixi - ZEiexi — Zlog(yi!)

~ Y llog i (6)] + 5 (x — )" Q" (6)(x — ),

which we evaluate at x = x*(0) that we obtain from a Gaussian approximation.

3.3.4 Performing the Gaussian approximation

For the Gaussian approximation, we need to know g;(x;) = log{m(y; | x;,0)}

which we can obtain from Equation (3.23):

8i(xi) = log [7(yilxi, 0)] = yilog(E;) + yixi — Eje* —log(yi!).
With 1) being the i-th guess of the mode, we expand g;(x;) around p,

85) = i)+ 100) (i — ) + S0 (1, —

2 1

1 1
~ gilpi) + 8i(i)xi — &i(wa)pi + 52781 (i) — xipuigy! (i) + 51787 (i),
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and combining all constant terms,

1

~ gipi) + i [8i(ui) — pigi ()] — 57 (=87 ()] + const. (3.26)

We now need the values of g/(x;) and g/ (x;):
¢ (x;)) =y; — Eee", and g¢/(x;) = —E;e".
When applying Equation (3.26) to Equation (3.10) we can derive that,

bi(pi) = i (i) — pigi (i) and ci(pi) = —gi (i)
=Yi— Eie"" + yiEieW = Eiel‘i.
=vy;+ (ui — 1)E;et,

Starting with the initial guess u#(?), we can solve [Q + diag(c)] #(!) = b to find u(V),
This is repeated until u converges to the mode x* of a Gaussian distribution with
precision matrix Q* = Q + diag(c*).

An example of the result from a Gaussian approximation for x in this situation
is shown in Figure 3.1. When the latent values take low values (generally below
zero), the confidence intervals are very wide. This occurs since negative values
of x will often result in observations y taking values of zero. Consequently, we
can only make a vague guess as to where the actual latent value is, with only the
knowledge that x is likely to be negative.

3.3.5 Exploring the density of the parameters

The first stages of this process are described briefly in Section 3.2.1. Having per-
formed a Gaussian approximation at the initial value of 8, which obtains the guess
of the modal configuration of the latent field x*(0) along with its precision matrix
Q*(6), we now need to find the maximum value of the log-density log|[7(6 | y)].

Quasi-Newton optimisers are readily available in several programming lan-
guages, but the optimiser may need to be repeatedly called since every time we
have optimised our value of 8, we need to repeat the Gaussian approximation at
this new value of 6 for updated values of x*(0) and Q*(0). We then repeat the
cycle of optimisation on 6 and x*(6) until both have converged to the maximum
of the log[77(0 | y)] density. At this point, we say we have found the modal value

36



Chapter 3. Integrated nested Laplace approximations

7.5

5.0

2.5

0.0

-5.0

200 . 300
Latent value index

Figure 3.1: An example of the Gaussian approximation guessing the simulated latent
field. The “true” latent values, x, are shown by the black line; the mode of the Gaussian
approximation, x*, is shown by the solid red line, with 95% probability intervals given by
the shaded red area.

(U

We find a Hessian at the modal value 6* using finite-differencing. We need to
take the negative of this Hessian, so that result is a Hessian H > 0. Let £ = H™!
and take the eigendecomposition of this to get £ = VAV, To save the compu-
tational cost of inverting the Hessian H before taking the resulting eigendecom-
position, simply note that the eigendecomposition of H = £~1 = VA~1VT. We
now create a new parametrisation for the model parameters, which we call z and

specify this parameterisation as,
0(z) = 0" + VAZz

By exploring around z-space in regular step sizes J,, we can efficiently explore
around the 0-space. We start by exploring from the mode along each axis in z,
until the density drops below a pre-detemined threshold 4 in each direction.
Once this has been done for each z axis, we then fill in all the remaining points
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between the axes following the same grid, but only while these points stay above
the threshold.

Once this is done, we will have explored the density to obtain a list of coordi-
nates in z, which we can easily convert back to 8, and the density of each of these
points. We can use these 0 coordinates along with their associated densities to

perform the numerical integration specified in Equations (3.3) and (3.4).

3.3.6 Performing numerical integration

Recall from Equation (3.4) that we wish to find the marginal of each hyperparam-
eter, which is obtained from performing this integration,

7O | y) = [ 78] y)do.

Having explored the density of 77(0 | y) as described in Section 3.3.5, we now
have a grid of coordinates where the density is non-negligable, along with the
corresponding densities at those locations. As we have explored the densities in
z-space, our grid of exploration coordinates are very unlikely to align with the
axes in 6 space.

Attempting to sum densities within fixed-width intervals along 0-axes can
be unreliable when the regular grid of explored coordinates does not align with
the 0-axes. This happens because some of the intervals used may not necessarily
contain a consistent amount of evaluated density points, especially where narrow
intervals are used.

In order to be able to easily and reliably construct posterior marginals 77 (6 | y),
we will remove the dependency of the coordinates having to align with the 8-axes
and the need for selecting fixed interval widths, by using a variation of kernel
density estimation.

Kernel density estimation would normally construct a density by assigning a
Gaussian density to each individual value of a random sample from a density. Be-
ing from a random sample of size N, each Gaussian density constructed around
a sampled value would be given equal weighting, w; =1/N,i=1,...,N. By
adding the Gaussian densities, the sample can be used to build a representation of
the overall density. The variance of each Gaussian density would also need to be

carefully selected, which raises the issue of bandwidth selection—an excessively
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large bandwidth will lose too much information about the density, while a band-
width that is too small will cause a density that is too “spiky” and not smooth
enough.

However, in our situation we have a regular grid of points with their own cor-
responding densities, as opposed to a random scatter of points where each point
can be considered equally important. This means adjustments will be needed to
the usual method of kernel density estimation, with the main changes being to
the weighting applied to each point’s Gaussian density.

For simplicity, we describe this method in a two-dimensional context for 6,
noting that the methodology extends trivially to higher dimensions. For the ex-
ample described in Section 3.3.1, we can easily extend the method to work on
3-dimensions. Note that the computational cost of this method does increase
dramatically as the dimension of 0 increases.

Consider a two-dimensional density of 77(6 | y) which is explored in z-space,
where each coordinate from the exploration can be written as (z1,,,224). Using

the transformation from Equation (3.8), we can convert from z-space to 8-space:

(21,p,22,9) > (01,0, 02).

We then apply a weight w; ; to each point we explored in the density. The
weight assigned to each point is taken from the density at that coordinate:

wi,]‘ = 77((91,,', 92,]' | y)

Then the weights are all normalised by the total sum of all weights,

such that ), Y wy i= 1.
A Gaussian distribution is centered around each coordinate, (6, ;, 6, ]-) from
the exploration, with each scaled by their corresponding weights w7 ;. By summing

every Gaussian density created, we have constructed the posterlor marginals:

(61,62 | y) Zzwu N( 61,62); (91,1‘,92,]‘)129),
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where Xy is the kernel bandwidth matrix. This method can be generalised in the
obvious way for models where there is only one hyperparameter or more than
two parameters.

We can marginalise this to obtain the marginal posterior distributions of each
hyperparameter. For example, the posterior marginal density of 6; | y is,

(01 | y) = 13w N (0501 [Zo]un ).
L

As mentioned earlier, selection of the correct bandwidth is important in kernel
density estimation, and this is still true in this variation of the method. We can
gain an idea of what bandwidth to use thanks to Rue et al. (2009), who explain that
the eigendecomposition that forms the basis of Equation (3.8), L = H™! = VAV,
would be the covariance matrix for 0 if the density were Gaussian, and also that
z ~ N(0, I) whenever this posterior is Gaussian.

Let £, be the covariance (bandwidth) matrix for a Gaussian distribution used
if the kernel density estimation were to be performed in z-space, and g be the
corresponding standard deviation that would be needed to match this in 8-space.
Since we explore z-space in equal step sizes along each direction of z, we intu-
itively set the standard deviation ¢ of each Gaussian distribution to be equal to the
step size, 6,. This provides us with a kernel bandwidth matrix of £2 = ¢?I = 421,
where I is the identity matrix.

We now need to convert this bandwidth into something appropriate for 6-
space. Recalling that X would be the covariance matrix in 8-space, we scale the

covariance matrix from z-space appropriately:

Xy = LI,
= Xo?1 = 21
= 2VAVT,

If we wish to consider bandwidth in terms of the standard deviations, we can

obtain,
T = 6, VA'?,

meaning that the kernel density bandwidth for the integration in 6 depends on
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the step size, J,, used to explore the z-space and the eigendecomposition of the

Hessian, H.

3.3.7 Results

For this example, the AR(1) walk of dimension 1000 and its corresponding obser-
vations were simulated according to the model with, x =2, ¢ = 0.9 and ¢ = 1.
When converted into 0 values using Equations (3.17) and (3.18), they become,

— 2 _0n92
01 = log (1 P ) = log (1 18'9 ) = —1.66

o2
1+¢ 1409
n=tes (1) =18 (105) =2
93:0622
6, 6, 83

0.8
0.4

Density
0.4
1
=
Density
Density
0.2

e
0.1
1

00 01 02 03 04 05 06 0.7
1
B

0.0

T T T T T 1 T T T T T T 1
-5 -4 -3 -2 -1 0 0 1 2 3 4 5 6 0 5 10

61 62 03

Figure 3.2: Comparison of MCMC results for 0 = 61, 6>, 03 displayed as histograms, along
with “true” parameter values as a blue line, the estimates from the R-INLA package
displayed as a red line and a recreation of the INLA method using the weighted kernel-
density estimation shown as a green line. The MCMC output consists of 10000 iterations
(thinned by 30) produced by JAGS.

Figure 3.2 demonstrates that the methods are able to produce similar inference
for the parameter values, with the “true” parameter values well represented by
all of the schemes.

The R-INLA package has used its most accurate integration strategy: grid-
exploration with the step-size 6, = 0.2. Our own INLA method attempts to
recreate the results of the INLA package, except while the grid-exploration used
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here uses the same step-size J, = 0.2, this uses a greater log-density threshold é,; to
reduce computational efforts, and used the kernel density method for constructing
the marginal density. The fit of the R-INLA package appears to be better than our
own attempt due to the greater threshold ¢, allowing more of the density to be
explored.

The R-INLA package has arguably produced a better fit to the densities of 0
than our own attempts, which here is a direct consequence of the greater thresh-
old 4 that has been used. When the R-INLA package is restricted to the same
threshold 6, as our INLA code, the results seem less satisfactory. The R-INLA
package fails to represent the density in the tails of some distributions and does
not evaluate the 6, density above values of 3.3; the cause of this is unclear. Use of
the kernel density estimation avoids this and produces a satisfactory fit, despite

the compromise lower J, threshold.
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Markov chain Monte Carlo methods

for Bayesian inference

41 Introduction

Under a Bayesian framework, we wish to understand the uncertainty around
unseen parameters of the model, 6, where we have observed data, y. We may
hold prior views about the possible parameter values for 8, which can be de-
scribed by a probability density function, 77(6). Where a suitable model is used,
the observed data will depend on the model parameters according to its density
function, f,(y | 0). In the case where observations are conditionally independent
given any parameters in the model, as will be the case in the latent Gaussian mod-
els considered in this thesis, the likelihood function of the data can be computed

as,

y|9 nyyz|6

The prior beliefs about the parameter distribution can be combined with the
observations using Bayes” Theorem to obtain a posterior distribution for the pa-
rameters:

w019 = [ o) o @

By integrating over the possible parameter values, the denominator of Equa-

tion (4.1) no longer depends on 6 and simply becomes a normalising constant.
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We can therefore simplify this to,

(0 |y) < 7(6) n(y | 6),

which is to say that the posterior density is proportional to the product of the prior
and the likelihood density.

Performing the integrals analytically is typically unfeasible if non-conjugate
distributions are used, so Markov chain Monte Carlo (MCMC) methods are often
employed to do this.

4.2 Using MCMC for Bayesian inference

Monte Carlo integration uses random independent samples to evaluate a definite
integral. This can be performed for a multi-dimensional integral, but the increased
dimension makes integration more time-consuming as areas of low density are
more likely to be explored. In practice, the integration does not necessarily need
to be performed using independent samples, but can instead be performed by
constructing a Markov chain to explore areas of support for the target distribution
(Gilks et al., 1995; Gamerman and Lopes, 2006).

This is due to the memoryless property of Markov chains, which for a stochas-
tic process, {Xo, Xj, ...}, describes that the next value X;,1, given the current
and all previous states in the process, will only depend on the current state X;.
Formally, this is noted as,

P(Xpp1 € A| Xo, X1,..., X)) = P(Xpp1 € A | Xp)

for any set A and conditional probability P(- | -) (Gilks et al., 1995). Under cer-
tain conditions, the Markov chain is then able to converge to a unique stationary
distribution, ¢(x), if the Markov chain satisfies detailed balance, that is,

¢(X)P(x,y) = ¢(y)¢(y, x),

for transition kernel ¢(x,y), and any x, y. For Bayesian inference, the stationary
distribution of the chain is the target posterior distribution for which inference is
desired.

The starting value of the chain will eventually be forgotten thanks to the mem-
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oryless property, but all states should be discarded until the chain converges to
the stationary distribution; the period discarded prior to convergence is known

as a burn-in period.

4.3 Gibbs sampler

The Gibbs sampler was first demonstrated by Geman and Geman (1984) on a
Markov random field model used for image processing. Gelfand and Smith (1990)
later noticed a relationship between the Geman and Geman (1984) concept of a
Gibbs sampler, and both the Metropolis-Hastings algorithm (Hastings, 1970) and
data augmentation method by Tanner and Wong (1987), before describing how to
extend this to general statistical distributions.

To construct the target samples from the joint posterior distribution, a set of full-
conditional distributions are produced where each one can be sampled from. Each
of these distributions is then repeatedly sampled from based on the current state
of all other parameters, until the desired number of samples have been generated
from the target distribution. A fixed-sweep or deterministic-sweep Gibbs sampler
refers to the case where each parameter is sampled sequentially, which is the
method described in Algorithm 1. The random-sweep Gibbs sampler selects a
random order in which to update each parameter at each iteration, which creates
a reversible MCMC chain that is easier to analyse (Roberts and Sahu, 1997; Brooks,
1998).

Once the chain has converged to the stationary distribution, all samples come
from the distribution 77(8). Since each parameter value is only dependent on the

last parameter values to be generated, the Markov chain is homogeneous.

4.4 Metropolis-Hastings

The ability to perform Gibbs sampling methods from Section 4.3 relies on the
ability to know the full conditional distribution and sample from this. This is gen-
erally only feasible if conditionally-conjugate priors are used, where the product
of certain prior distributions with the likelihood distribution produces tractable
conditional posterior distributions that can be sampled from (Gelman et al., 2013).
Where this is not possible, the Metropolis-Hastings (MH) algorithm—created by
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Algorithm 1: A fixed-sweep Gibbs sampler algorithm.

nitialise 60 = (67, 6%”);

fori:=1to N do
Sample new 6 values from each full-conditional distribution:

ol ~ 7r<91 1oliY, .,efj‘”)
o) ~ n(@z ol ol=Y), .,9}{‘”)
o) ~ (s 6,00, 07V, 0V

Géi).w 7T<9d | GY),- : .,9;21>

end
Result: N samples from the target distribution for each of the d parameters.

Hastings (1970) as an extension to work by Metropolis et al. (1953)—allows for
samples to be generated from a distribution where the density can only be calcu-
lated up to a constant of proportionality.

To demonstrate a step of the Metropolis-Hastings method, suppose we have
a single parameter, 6, to update; multiple parameters can be updated trivially by
repeating the MH-step for each parameter. A proposal distribution, q(6* | 6), is
selected for the purpose of generating proposal values where the chain should
next move to. The probability of accepting the move based on the proposed value

is given by a(6* | ) = min{1, A}, where,

m(6%) (0 | 6%)
(6) q(0* | 6)

If the proposed move is rejected, then 0 remains at its existing value and the
MCMC routine continues as before. Algorithm 2 shows these steps in more detail.

A=

Where a proposal comes from a symmetric proposal distribution, we find that
q(6]6*) =q(0* | 9), resulting in a simplification of Equation (4.4):
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Algorithm 2: A Metropolis-Hastings method for drawing samples from the
univariate density, 77(0).
Initialise 0(©);
fori:=1to N do
Generate proposal: 6% ~ g(6* | 8(~1);
Compute acceptance probability:

) * (i-1) 0*
x| p(i=1)\ _ 3 7-[(9 ) q<9 | ) .
oc(@ | 6 > = min {1, 71(6(1'*1)) q(@* | 6(1'*1)) ;

Sample u ~ U(0,1);
if u < a(0* | 0(-1) then

‘ 0() .= g*;
else

‘ o) .— 9(1'*1);
end

end
Result: N samples from the target distribution, 77(6).

This is known as the Metropolis sampler; a special case of the MH method. In this
situation, we find that the proposal will always be accepted if the proposed move
is to a location of higher density.

A development of using the symmetric proposals in a Metropolis scheme is the
use of a random walk sampler. Here we define ‘innovations’, w, to be i.i.d. pertur-
bations generated from the symmetric proposal distribution, fq, so that proposals
become 6* = 6 + w and have transition density q(6* | 0) = fo(6* — 0) (Tierney,
1994). Common choices for a proposal distribution here include a bounded uni-
form distribution or Gaussian with zero mean.

The variance of the proposal distribution in the symmetric random walk will
influence how rapidly the chain converges. Large innovations will attempt to
explore the target density quickly, but the more ambitious moves proposed will
be less likely to be accepted, leading to the chain being too “hot”. Conversely,
small innovations on the proposals lead to higher acceptance probabilities, result-
ing in a “cold” chain that frequently moves to new values but is slow to explore
the entire density. Roberts et al. (1997) suggest methods for tuning the optimum
proposal variance on a Gaussian random walk and provide the theoretically opti-

mum acceptance ratio based on the dimension of the problem. Since this requires
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additional simulations to be performed and user interaction, Gibbs schemes are
considered more convenient to execute when possible.

The acceptance ratio of the Metropolis-Hastings scheme will depend on the
choice of proposal distribution—the acceptance ratio is higher when the proposal
distribution is similar to the target distribution. In fact, for the special case where
the proposal distribution comes from the target density up to a constant term,
we discover that Gibbs sampling is a special case of the Metropolis-Hastings
step where proposals are always accepted. To demonstrate this, suppose that
g(6* | ) o< 71(0*), then the acceptance probability based on Equation (4.4) be-

comes a(6* | 8) = min{1, A} where,

(6%)q(6]6") 7(6%) 7(6)
(6) q(0*6)  7(6) m(6%)

A: :1/

resulting in all moves being accepted.

4.5 Block samplers

Poor mixing of MCMC chains can occur where models have a large number of
parameters. The problem is exacerbated when the many parameters in the model
are highly correlated, leading to a posterior distribution that is difficult to explore
when each parameter is updated in turn. This effect can be reduced by reparame-
terising the model, but there are many situations where this will still fail to yield
a satisfactory result.

An alternative method for improving the problematic mixing of a MCMC
scheme is to employ blocking—the concept of simultaneously updating a group,
or ‘block’, of similar parameters as a single move during the MCMC scheme. The
ability to do this requires knowledge of the joint conditional distribution of all
parameters in the block to be updated. The block of parameters can be of high-
dimension with conditional dependence between these parameters, which in the
linear Gaussian case can be represented in the precision matrix. As a consequence
of working with this matrix, performing a block update is more computationally
expensive than performing a Gibbs update.

Roberts and Sahu (1997), which provides a nice example of how using an
equivalent reparameterisation of a model can improve mixing, also summarises
the ideas and benefits of the blocking method nicely with two quotes. The first
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describes a general belief about the positive correlation between block size and
the rate of chain’s convergence,

“the larger the blocks that are updated simultaneously — the faster the
convergence.” (Amit and Grenander, 1991)

The second attempts to explain why blocking helps combat the poor mixing
caused by highly correlated variables:

“[Blocking] moves any high correlation [between variables] from the
Gibbs sampler over to the random vector generator.” (Seewald, 1992)

This highlights how simulating multiple parameters at once, while incorporating
the dependence between variables, leads to MCMC chains which can explore in
the directions of the correlated density. In cases where there are highly correlated
variables in the model, the improved mixing offered by blocking methods can
considerably outweigh the additional computational overheads associated with
its implementation.

In many of the models, like that featured in Figure 2.2, there will be a correla-
tion between variables. While the precision matrix, like in Equation (2.3), can be
very sparse, the covariance matrix would be dense, indicating correlation between
those x. In these cases, we may find that simulating x as a block will improve mix-
ing. It is also worth considering that the parameters of the model 8 may also be
highly correlated, so it may be beneficial to also simulate these as a block.

Where a block of parameters to be updated are independent, blocking schemes
will demonstrate no advantage over a standard Gibbs sampler, as the marginal
distribution of the block is equivalent to the conditional distribution for each up-
date in the Gibbs sampler. In this situation, we may find a Gibbs sampler is more
efficient to compute due to the removal of more expensive matrix computations.

Blocking methods are known to perform well in the literature (Roberts and
Sahu, 1997; Rue, 2001), including applications to MCMC for spatial disease map-
ping (Knorr-Held and Rue, 2002). More recent developments by Chib and Ra-
mamurthy (2010) allow block updating on irregular densities by tailoring the
proposal to the curvature of the posterior at that location, while also randomising
the size and content of each block.
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4.6 Data augmentation

In the case of a linear Gaussian model, the target distribution that we wish to sam-
ple from is 77(x, 0 | y). Samples from this target can be obtained using the method
of data augmentation described by Tanner and Wong (1987) where samples are
drawn from 7(0 | x,y) and 7(x | 6,y) in turn.

In many cases, including the case studies to be explored in Chapters 5 and 6,
there will be no conditional dependence between any of the parameters, 8, mean-
ing that samples from 77(0 | x,y) can often be simulated one-at-a-time without
issues of poor mixing between themselves. The latent variables, x, are likely to
be highly correlated with each other so samples from 77(x | 8) should be sampled
as a multivariate Gaussian block using the sparse matrix algorithm described in
Section 2.3.5 which is implemented in GDAGsim (Wilkinson, 2002).

Generating a sample of values for the j-th iteration of the scheme is done in
two stages. Firstly, each parameter is simulated in-turn from its full conditional

distribution:
i i—1 i
9,57) | 9{’,{ ) 0 Dy,

but since 0y is unlikely to be dependent on other parameters this will often simplify

to,
915]) | x(]'—l),y.

A GDAGsim model is created using ') and conditioned on the observations
before a sample of the latent variables is generated as a block (Wilkinson and
Yeung, 2002):

x| o0, y.
4.7 Marginal updating scheme
The target distribution we wish to sample from can be factorised as,
7(x,0 | y) o 7(6) (x| 0) 7wy | x,0). (42)

We might only be interested in performing inference for the parameters 0,
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with little or no interest in obtaining simulations from the latent field x. If this
is the case, we will be interested in simulating from 77(0 | y). In order to tar-
get this posterior distribution, we would simulate proposal values of 8* from a
proposal distribution g(6* | 8), and then accept 8 with acceptance probability
a(6* | 0) = min{1, A}, where A is given by,

L7 [y)q(e]0)
7(0]y) q(0" [6)

The success of such a method depends on being able to evaluate (6 | y),

. (4.3)

which will not be possible for the majority of models. Instead, we may seek an
approximation to the this density, 77(0 | y). Use of an approximation means we
are now targeting an approximation of the posterior distribution as opposed to the
exact posterior distribution. If we combine this approximation with a symmetric
proposal distribution (6" | ), the value of A in Equation (4.3) simply becomes

A0 | y)
A= F0y)

where the approximation 77 (6 | y) aims to integrate out all dependence on x:

~ X
701 y) = 2

x=x*(0)
and the numerator can be factorised as per Equation (4.2):

n(0)7(x | 0)7(y | x,0)

HOly) ic(x | 0,y)

(4.4)

x=x*(0)

where x = x*(0) is the modal configuration of the latent field. As the LHS of
Equation (4.4) does not depend on v, it follows that the RHS does not either, so
this can be evaluated at any x desired. Rue et al. (2009) recommends evaluating
the density at the modal configuration x*(8), which is obtained Gaussian approx-
imation is performed at 6, for greatest accuracy in the approximation. A detailed
version of this method is given in Algorithm 3.

While this method does not perform inference on the latent variables, Liu
(1994) describes a method where these values could be obtained later using a

collapsed Gibbs sampler. Once the chain for 0 | y has converged, we can use the
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Algorithm 3: A marginal update scheme for drawing samples from the uni-
variate density, 77(0).
Initialise 6(©) ;
fori:=1to N do
Generate proposal: 8% ~ (6" | 8(~1);
Perform Gaussian approximation to find x*(0*);
Compute acceptance probability:

) ~ [ ¥ (i-1) *
06(9* | 6(1—1)) —min{1, 7t(0 ) q(e !9 )
7:[(9(1—1)) q(e* ’ 9(1—1))

where
m(0)m(x | 0)7t(y | x,6)

< (gli-1)) _
(O %o(x]6,)

7

x=x*(0)

Sample u ~ U(0,1);
if u < a(6* | 00-1) then

‘ 0\ .= o*;
else

‘ pl) .— gli-1).
end

end
Result: N samples from the target distribution, 77(0).

samples obtained to generate values of x | 6, y, either during the main monitoring

run or as a separate run afterwards.

4.8 Two block sampler

Where the Marginal updating scheme in Section 4.7 targets an approximation
of the posterior distribution, the two-block sampler can be used to target the
exact posterior distribution. In addition, where the Marginal scheme defaults to
only drawing samples of the parameters, 8, this two-block method also produces
samples for the latent field, x.

The aim of this method is to alternate between updating from 77(0 | x, y) and
7t(x | 6,y). Symmetric random walks can be used for each new update of 6.
A Metropolis step is used to determine whether each proposed new value, 6*
from proposal distribution gg(6* | ) and x* from proposal distribution g, (x* | x),

52



Chapter 4. Markov chain Monte Carlo methods for Bayesian inference

should be accepted. The acceptance probabilities for each simulation will be:

1. For 7t(0 | x,y), the acceptance probability would be,

(0 | xy) qe(0 ] 6°)
% (671 0) ‘“‘”‘{1' =@ 1%7) 10 (@ | e>}'

2. For 7t(x | 6,y), the acceptance probability would be,

) = mind 1 TE10y) gx(x [ x7)
% (x| %) {1' (x| 6,y) qx<x*|x>}'

A suitable proposal distribution, gy, for x can be the optimised Gaussian ap-
proximation of the latent field, N (x*, Q*(6)).

4.9 Single block sampler

As with the two-block sampler in Section 4.8, this method for the single-block
sampler can also produce simulations from the exact posterior distributions for
parameters, 0, and the latent field, x. This targets the same posterior distribution
as is given in Equation (4.2).

Rather than alternate between sampling new values of 8" and x* using the
method in Section 4.8, a new set of values (6%, x*) can be created in two steps:
A new 6" is proposed from a distribution gg(6* | 0), then a new x* is proposed
from a distribution g,(x* | 8*) conditional on the proposed 6. The proposed
(6%, x*) are then either jointly accepted or rejected using a Metropolis step, with
acceptance probability a ((6%,x*) | (6,x)) = min{1, A} where

T(0%) rr(x*

)y | x*,0%)qe(0] 0%) qx(x|0)
2(0) 7(x : (45)

) 7(y[x0) qo(6" | 0)qe(x* | 67)

The first three terms of Equation (4.5) are given by Equation (4.2). A possible

A=

| 0
| 0

proposal for gg is a symmetric random walk, meaning A would be simplified since
qo(0 | 07) = qo(0" | 0). Meanwhile, the proposal distribution for g,(x | %) comes

from the Gaussian approximation meaning gx(x | %) = 7ig(x | 0%, y).
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Hence A from Equation (4.5) would now simplify to,

(4.6)

(e x| 0°) iy | x°,8°) (x| 6,y)
7(6) 7(x|0) n(y|x0) Ac(x |6%y)

This scheme proves to be useful when there is a strong dependence between
the parameters, 0, and the latent variables, x. This is in contrast to the two-block
sampler where the mixing of a scheme can be affected if there is a strong correla-

tion between the 0 and x.

4.10 Blocking methods for Bayesian variable selection

models

4.10.1 Including indicators for inference

We can expand the blocking methods shown in this Chapter to allow for Bayesian
variable selection to be included in these models. We demonstrate this by sup-
posing there are binary indicators, I, such as those suggested by Kuo and Mallick
(1998) which act upon some latent variables. Developing on Equation (4.2), the

new target distribution would be,
i(x,0,I|y)ocm(0)t(I|6)r(x|6,I)m(y]|x061I). 4.7)

The full conditional distribution for I can be calculated in these models by
normalising the probability mass of being in each of the two possible states. In
this section, we explore how existing block-MCMC algorithms are adjusted to

account for this.

4.10.2 Data augmentation

Use of data augmentation already requires the ability to simulate from the full
conditional distributions for parameters and latent variables. As the full condi-
tional distribution for the indicator variables are also known, we simply include
this as an extra step in the existing method. Like the data augmentation scheme

seen in Section 4.6, this produces samples from the exact posterior distribution.
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The method for generating samples for the j-th iteration of the scheme is now

done in three stages:

1. Sample each parameter in turn,

‘ N N
9151) |9<Jk ) xU=1 1 U y.

2. Sample each indicator,

Since the indicators are conditionally independent from each other, these

can be sampled using a standard one-at-a-time Gibbs sampler.

3. Sample the latent variables as a block using the latest parameters and indi-

cators,
) | o), 1), .

This process is repeated for the desired number of iterations.

4.10.3 Augmented block in data augmentation

Data augmentation methods can be used where all the full conditional distribu-
tions are tractable, such as in linear Gaussian models. Where latent Gaussian
models are used, we may often find some of these full conditional distributions to
be intractable. To work around this issue, a hybrid of the data augmentation and
single block schemes are used, where the indicators are sampled directly from
their full conditional distribution before the parameters and latent variables are
sampled using a single-block-style method; this is detailed in Algorithm 4.

This method can be modified to accommodate a two-block (Section 4.8) scheme
to generate samples for the parameters and latent values. An option is to expand
further by splitting latent variables to be sampled in multiple distinct blocks is
possible, but this requires the model to be reconstructed for each accepted block,

leading to multiple model constructions per iteration.

4.10.4 Marginal schemes

As marginal schemes do not provide inference for the latent variables, inference

cannot be performed for the indicators. Attempts to use a collapsed sampler (Liu,
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Algorithm 4: Augmented block in data augmentation scheme drawing sam-
ples from 77(6, I, x | y).

Initialise (8%, 1(0), x(0));

fori:=1to N do
Sample new indicators from: 10 | 6 x(=1) y;

Generate proposal: 6 ~ (6" | U~ ),

Perform Gaussian approximation to find x* (8%, I)) and Q* (6%, 1));
Generate proposal: x* ~ N(x*, Q*) ;

Compute acceptance probability a (0", x*) | (6,x)) = min{1, A}, where:

_ (e 1Y) w(xr | 6%, 1%) iy |, 6%, 1%)
(00 | 10) (x| 601, 100) me(y | -0, 001, 10)
( (i-1) | 3*) nc(x(ifl) | e(ifl),I(i)’y).

go(6” [ 0U1)  7g(xt | 67,10, y)

Sample u ~ U(0,1);
if u < oc(( x*) | (6,x)) then
| (09,x0) = (8°,x");
else

‘ (B(i),x(i)) = (B(i_l)’x(i_l));

(4.8)

~~

end
Result: N samples from the target distribution, 77(6, I, x | y).

1994) are unlikely to be successful since the indicators that would be generated
are dependent on the current latent variables (which aren’t initially inferred), and
the current latent variables depend on the current indicators, creating a cyclic

dependency that can’t be resolved.

4.10.5 Gibbs variable selection

Gibbs variable selection (GVS), as described by Dellaportas et al. (2002), also pro-
vides a binary indicator to determine if an associated variable should be included
in the model. Under GVS, the variable associated with a currently excluded in-
dicator is sampled from a pseudo-prior rather than the originally specified prior
distribution. This does not affect the posterior distribution of the variable because

samples from the pseudo-prior are never included in the model if the indicator’s
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current value is zero.

Values for ji, and 7, are selected to approximately match the posterior distri-
bution for 7. This is achieved by performing a short trial-run where all indicator
variables are fixed to equal 1, before the main MCMC run is performed. The
mean and variance of each y; variable is recorded from the trial-run to create a
pseudo-prior in the MCMC run, being sampled from when the corresponding ¢,
takes the value of zero. Allowing the pseudo-prior to create samples closer to the
underlying posterior improves the mixing of the scheme by causing the indicators
to switch states more frequently, without affecting the proportion of time that the
indicator spends in each state.

Performing each iteration of this method works in the same way as the data
augmentation method described in Section 4.10.2, with the additional step at the
end of each iteration where variables excluded by their indicator are replaced by
a new value simulated from their pseudo-prior. As we have seen with the data

augmentation methods, this scheme will target the exact posterior distribution.

4.10.6 Dynamic resizing of GDAG models

All MCMC algorithms in this section involve using the GDAGsim software to create
a precision matrix and mean vector for the prior distribution of the latent variables;
in the case of linear Gaussian models, the software will also condition the model
on the observations. The high dimension of the latent variables mean the matrices
become large and expensive to work with. We can exploit the fact that many of
these latent variables may be excluded from the model by the indicator variables,
by not including these variables at all when constructing the precision matrix.

While matrix operations are expensive and we will gain performance benefits
by reducing the matrix size, there are additional overheads to model resizing,
mostly relating to ensuring that new samples of the latent variables are correctly
indexed to account for the variables which are missed out. There can also be
additional memory allocation overheads since the size of the model often changes,
resulting in extra allocation and garbage collection steps which negate some of
the computational efficiency benefits. As a result, implementing this technique
will only prove beneficial when a relatively small proportion of the variables are
likely to be included in the model at any given time.

No new values will be simulated for the latent variables which are excluded
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from the construction and processing of the GDAGsim model. Values are created
for these variables by creating independent samples from the prior distribution,
generated separately from the main GDAGsim model. Model resizing is especially
useful on schemes using Gibbs Variable Selection since excluded variables have

to be simulated from their pseudo-prior anyway.

4.11 Evaluation of method performance

Thinning can be used to decrease autocorrelation between samples in an MCMC
chain by creating a subsample of every k-th value where a thinning step size of k is
used. Use of thinning has drawbacks as it essentially discards useful information
from the chain. As a result, Geyer (1992) and Link and Eaton (2012) argue that
all thinning is bad—except where memory is limited for storing or analysing the
output chains—since a chain which has thinning applied will have greater error
in estimating parameter means compared to its unthinned equivalent. MacEach-
ern and Berliner (1994) take this view further by attempting to justify a ban on
thinning for the same reasons. All authors highlight that estimating variance of
a parameter can be affected by an autocorrelated chain, but suggest this can be
estimated on a subsampled chain or preferably using suitable time-series-based
methods.

As a measure of efficiency, we are interested in the amount of time it takes
to achieve a suitably thinned run with each scheme under investigation. A key
measurement for efficiency is obtained by determining the effective sample size
(ESS) generated per second of CPU! user time (ESS/s). For a sample generated
over N iterations, the ESS is calculated as,

N

ESS — o , 49
T+2%72 pk(6:) “9)

where pi(6;) is the autocorrelation at lag k for parameter 6; (Gong and Flegal,
2016; Ripley, 1987). This indicates the number of independent iterations the
chain would represent once any autocorrelation between the samples has been
accounted for. Kass et al. (1998) explain that in practice, the summation should
only be performed to an appropriate value of k as including autocorrelation es-

timates for higher lags produces a noisy estimate of ESS, so the summation in

ISimulations performed on a 3.40GHz Intel® Core™ i7-3770 CPU with 8GB RAM.
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Equation (4.9) may typically only be computed while pi(6;) > 0.05. In cases
where there is no (or negligible) autocorrelation between samples, ESS = N.

We consider a MCMC scheme to be as efficient overall as its least efficient part;
we concern ourselves with the minimum ESS/s value for any variable inferred
as part of the scheme as this is related to the geometric rate of convergence of the
MCMC chain. Some exceptions will apply to which parameters are included as
part of the minimum ESS except for indicator variables which will have an ESS of
zero if they stay in the same state for the entire chain.

Software implementations for computing ESS are freely available in the coda
(Plummer et al., 2006) and mcmcse (Flegal et al., 2016) packages for R; throughout
this thesis, we use the coda implementation to compute ESS values.

4.12 Application to the traffic ‘near-miss’ model

4.12.1 Constructing the necessary factors

We revisit the model for near-misses at Place Charles de Gaulle (introduced in
Section 3.3.1) to investigate some MCMC methods that can be applied to this
example.

We are interested in performing inference for the posterior of interest given in

Equation (4.2). We will look at each of the factorised terms in turn:

* We have 6 = (01, 0, 63) which represent the hyperparameters, where 6; is
a log-Gamma distribution and 6,, 63 are Normally distributed. This gives
71(0) the following distribution:

71(0) = 71(61)71(62) 77 (63)

_ P ' 1 (62 — pg)?
T TP {lx@l - pe } ) 0¢\/Ffexp {_Tl%}

1 (05— pp)?
- N exp { —2(75 } . (4.10)

e 77(x | 0) is a multivariate Gaussian density of the latent variables, with pre-

X

cision matrix, Q(0), constructed from the current parameters, 6. This has a
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density of,
0)|" 1
(x| 6) = %exp {e-we@a-w}). @

* The likelihood of 77(y | x,0) in the case where observations, y;, follow a
Poisson distribution with rate parameter, E; exp(xi), is,

% VYi exp (— E.e%i
ﬂ(y|x,9):H(EZ ) ep( El )

(4.12)
i€Z vit

By combining the terms from Equations (4.10), (4.11) and (4.12), we can write
the target posterior distribution as,

7(0,x | y) < (0)m(x | 0)7t(y | x,0)
o« 1(0)m(x | 0) Hn(yi | x;,0)

B a1 (62 — pip)?
“T(w) 7P {agl — } mp\/ﬂexp {_ 202 }

¢
1 (63 — Vﬂ)z
>< .
o o exp { 2‘7’%

1) ” Wz { 1 r }
exp § —5(x —p) Q(6)(x —p)
\/27rd 2
(Eje®i)Yi exp( E;e*i)
xl‘[[ o } (4.13)
i€l i

This forms the basis of finding acceptance probabilities for a number of MCMC
methods discussed in this chapter. Some methods, such as the data augmentation
method in Section 4.6 cannot be applied to this example since samples cannot be
directly sampled from the full conditional distributions.

4.12.2 Marginal method

The marginal MCMC method was initially described in Section 4.7. In order to
perform approximate inference, we need to be able to calculate the density of

71(0 | y) as shown in Equation (4.4). The numerator of Equation (4.4) is given by
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Equation (4.13), while its denominator is given by the density of the Gaussian
approximation as given in Equation (3.24). The whole density is then evaluated
at the modal value of x = x*(8) for reasons discussed in Section 3.2.

With the density of 77(0 | y) now known, we are then able to calculate the
acceptance probability for each proposed value of 6 by following the method
described in Section 4.7.

4.12.3 Double-block method

We perform the double-block method described in Section 4.8, but we note that
we need to calculate two different acceptance ratio terms for this method. Taking
relevant terms from Equation (4.13), we have ways to determine these acceptance
ratio components:

e For (0 | x, ),

(0 | x,y) o p (62— g)? }

1
af; — B\ —— —
['(a) P { 1F } TV 21T P { ZO'(ZP
1 (03 — pu)?
X e = P
oV 21 xp{ 207

1/2
>< %exp {3a-neEE-m}.

e While for r(x | 6,y),

X awex —1 X — T X —
e 09) o« B2 e { (v QO)x
(E;je¥i)Y exp (—E;e*)
Xg{ ! }

With these terms known, it is simple to follow the algorithm presented in Sec-
tion 4.8 to perform the double-block method.

4.12.4 Single-block method

For the single-block algorithm introduced in Section 4.9, we need to find the value

of A specified in Equation (4.5). The first three terms are given by Equation (4.13),
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while the final term is based on the density from a Gaussian approximation given
in Equation (3.24). These are then evaluated at the current and proposed values

of 8 and x, following the algorithm given in Section 4.9.

4.12.5 Results

We initially implement these MCMC methods to a 21 observation subset of the
same data used in Section 3.3.7 The parameter values from which the data was
generated remain unchanged: (601 = —1.66,6, = 2.94,60; = 2). Non-informative
priors were selected to match the vague defaults used by Rue et al. (2009) in their

INLA software. These priors are,

6, ~ LogGamma(1,0.00005)
6,603 ~ N(0,0.00171).

As parameters 0; and 6, are correlated, we select the proposal distribution
for parameters, (6" | 8), to be a zero-mean multivariate Gaussian random walk.
The variance matrix for the proposal distribution, ¥, is based on a multivariate

extension of the Roberts et al. (1997) suggestion for proposals:

s _ 2.38% X Z(p)
q d ’
where X g) is the d-dimensional variance matrix of the target distribution of 77(6)
which could be estimated by a short trial run of the MCMC scheme.

For this small model, we find that standard Gibbs schemes are able to compete
with the marginal and blocking methods, largely thanks to the low-dimension
restricting the correlation between latent variables.

Trace plots in Figure 4.1 demonstrate that the single and two-block methods are
the slowest to explore the target density compared to the approximate marginal
and JAGS methods. A major reason for this is that most proposed moves will be
rejected as part of the MH-step. The Marginal scheme also suffers this issue but
to a lesser extent since latent variables are not part of the proposal, leading to a
smaller dimension proposal with higher acceptance probability.

Autocorrelation plots given in Figure 4.2 reinforce traits identified in the trace
plots. JAGS and Marginal schemes have the lowest ACF values as lag increases
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thanks to their ability to explore the posterior density quicker than the Single and
Two block methods.

Kernel density estimates of the posterior distributions, generated from 30000
well-thinned realisations, are shown in Figure 4.3 to demonstrate how all schemes
are able to equivalently target the same posterior density, with the “true” parame-
ter values well-represented in the posterior density for each of the model param-
eter. Trace and ACF plots for the chains used to create these densities are pro-
vided as a supplement in Appendix C.1. For the model shown here, the Marginal
scheme, which only produces approximate inference, is able to closely match the
other schemes which are designed to target the exact posterior distribution.

CPU user time and Effective Sample Size measurements for running these long
schemes are provided in Table 4.1. The marginal method proves to be quickest in
producing a long and suitably thinned run with minimal autocorrelation between
samples—while the JAGS scheme manages to produce the least overall autocor-
relation, and therefore the highest Effective Sample Size, the Marginal scheme
produces the highest ESS/s due to its faster completion time. Despite the appar-
ent speed of the Marginal schemes, it is worth remembering that this scheme only
provides approximate inference for the posterior distribution and does not provide
inference for the latent values by default—latent values can be inferred later as
part of a collapsed Gibbs sampler (Liu, 1994).

As the dimension of the latent structure increases, the single and two block
schemes begin to struggle to perform inference for the latent values. Attempts
to perform inference on the full 1000 observations used in Section 3.3.7 typically
causes chains for the latent values to become very slow at mixing. The high
dimension of the block being sampled produces a very low acceptance probability.
In the case of the single-block sampler, this is enough to cripple the entire scheme
as movement of the parameters will be held back by poorly mixing latent values.
A way to mitigate this issue involves dividing the latent variables into a greater

number of smaller blocks, so each block has a higher acceptance probability.
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Figure 4.2: Autocorrelation plots with corresponding 95% intervals for the 10000 un-
thinned iterations shown in Figure 4.1, for the parameters (from left column to right

column) 01, 6, and 65, for each of the MCMC schemes used (from top row to bottom row):
JAGS, Marginal, Single Block and Two block methods.
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Figure 4.3: Kernel density plots of the posterior parameter densities (from left to right)
61, 62 and 03, provided by 30000 iterations (thinned by steps of 50) from various MCMC
schemes. Vertical grey bars represent the “true” parameter values.

’ Implementation \ Time (s) \ ESS Var. \ ESS/s. ‘

29140 64 278
JAGS 105 | 29231 6, 278
30000 65 286
27708 64 360
Marginal 77 | 28197 6, 366
26583 63 345
25735 64 243
Single Block 106 | 27267 0, 257
23519 63 222
23192 64 213
Two Block 109 | 24849 6, 228
21637 03 199

Table 4.1: CPU User time taken to obtain 30000 iterations (50 thinning steps between
iteration) of 6 in the small dimension model for the example AR(1) model.
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Case studies in genetic interactions
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Chapter 5

Quantitative Fitness Analysis

5.1 A brief introduction to genetics

511 DNA

The molecular structure of deoxyribonucleic acid (DNA) encodes the essential ge-
netic processes that are required for cells to function, grow and reproduce. Conse-
quently, DNA is considered essential for all living organisms and some viruses to
survive.

Watson and Crick (1953) demonstrated that DNA comprises of two strands of
nucleotides, each containing one of 4 nucleobases (or bases for short): adenine (4),
cytosine (C), guanine (G) or thymine (T). The nucleotide in any location on one
strand is always paired to its complementary nucleotide on the other strand, such
that adenine (4) pairs to thymine (T), while cytosine (C) pairs with guanine (G).

To identify the direction of each strand, each end of the strand is denoted
by 3’ and 5’ (pronounced “three-prime” and “five-prime”)!. The strands run
antiparallel to each other, such that the 5" end of one strand is at the same end
as the 3’ end of the other strand. It is important to note the sequence of bases
depends on which way round they are read, so denoting the ends can be necessary
to remove this potential ambiguity. The sequence 5’ GAT 3’ would be equivalent
to 3’ TAG 5’ when the same strand is view from the other side. When the 3’ and

5" ends are not denoted, the convention is assume bases are being listed in the

1 The 3’ refers to the end which terminates at the hydroxyl group and the 5 refers to the
end terminating at the phosphate group. The numbers 3 and 5 refer to the 3rd and 5th carbons
(respectively) in the deoxyribose sugar-ring where the hydroxyl and phosphate groups are found.
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5" — 3’ direction. Since bases appear as complements, only the sequence of one
strand needs to be recorded to know the overall sequence of both strands. An

example sequence is given in Figure 5.1.

5" .. .GTTCGACTCAAT... 3’
3’ . ..CAAGCTGAGTTA... 5

Figure 5.1: Example sequence of a DNA double-strand. Nucleotides in the top strand
are complemented by nucleotides in the bottom strand, so that C complements G and A
complements T.

To remove ambiguity in how the nucleobases are recorded, Cartwright and
Graur (2011) propose that all DNA sequences should follow the conventions used
in the Saccharomyces Genome Database (SGD) (Cherry et al., 2012). A centromere is
used to divide the chromosome into two unequal halves. The Watson strand is
then defined to have its 5’-end of the shorter half of the chromosome, while the
Crick strand has its 5'-end on the longer half. The sequence is then recorded in
the 5 — 3’ direction on the Watson strand.

Ribonucleic acid (RNA) is a molecule comprised from a chain of nucleotides,
much like DNA but with two notable differences in its structure that we will
consider. Firstly, uracil (U) appears as one of the four nucleobases in RNA as
a replacement for thymine (T) which appears in DNA. Secondly, while DNA
appears as two strands of nucleotides running antiparallel to each other, RNA

appears as a single strand that folds back on itself.

5.1.2 Open reading frames

When reading the sequence of nucleotides in the 5 — 3’ direction, the nucleotides
can be grouped into triplets. There are three possible reading frames for the same
sequence depending on which nucleotide the reading frame begins on; Figure 5.2
demonstrates the three possible reading frames you can have for a given sequence.
Each reading frame has the grouping of each triplet offset by one compared to the
other possible reading frames.

Certain triplets of bases translate to amino acids, or signals to start or stop
genetic translation—such triplets are known as codons. A triplet of ATG often
serves as a start codon in DNA, while any triplets from TAA, TAG or TGA behave as
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Reading frame 1: 5’ .. .GTTCGACTCAATGACGTG. .. 3
Reading frame 2: 5’ ...GTTCGACTCAATGACGTG. .. 3
Reading frame 3: 5’ .. .GTTCGACTCAATGACGTG. .. 3

Figure 5.2: Three possible reading frames for a given sequence of nucleotides in DNA.
The triplets in each reading frame are denoted by alternating blue and orange colouring.

stop codons?.

A sequence of DNA between a start codon and an end codon that could be
translated into RNA is called an open reading frame (ORF) (Pagon et al., 2017). The
sequence of one particular ORF in Saccharomyces cerevisiae, better known as baker’s

yeast, is listed in Figure 5.3.

ATG GTC AAA TTA ACT TCA ATC GCT GCC GGT GTC GCC GCC ATT GCT GCT
GGT GCC TCC GCC GCA GCA ACC ACT ACA TTA TCT CAA TCT GAC GAA AGA
GTT AAT TTG GTT GAA TTA GGT GTT TAT GTT TCC GAT ATC AGA GCT CAT
TTG GCT GAA TAC TAC TCT TTC TAA

Figure 5.3: The nucleotides of open reading frame YAR020C (known by the gene name
PAUY) in Saccharomyces cerevisiae with a length of 168 base-pairs. The start codon is shown
in blue while the end codon is shown in red. The first occurrence of a TAA sequence is
highlighted in pink, but since this is not in the same reading frame, it does not act as a
stop codon.

In this thesis, we will refer to ORF that appear in Saccharomyces cerevisiae by
their ORF names or gene names as defined by SGD naming scheme. For the ORF
featured in Figure 5.3, YAR020C, the name can be decoded as follows:

* 'Y’ stands for ‘yeast’.

e ‘A’ refers to which of the chromosomes this ORF is found on. There are 16
different chromosomes in Saccharomyces cerevisiae, labelled “A’—'P’.

* ‘R’ shows that this gene is found to the right of the centromere. A gene to

the left of the centromere would have ‘L instead.

e ‘020 indicates that this is the 20™ gene from the centromere.

2 The equivalent start codon in RNA would be AUG and the stop codons would be UAA, UAG and
UGA.
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* ‘C’ denotes a gene that appears on the ‘Crick” strand, while an ORF name

ending in "W’ would appear on the “Watson” strand.

Some ORF are given gene names (also known as genetic names), which relate
to their known genetic function. Example gene names include CDC13 (cell divi-
sion control protein 13, ORF name: YDL220C) and EXO1 (exonuclease protein
1, ORF name: YOR033C). In this thesis, we will refer to genes using their gene
name if it has one, otherwise we will use the ORF name. We will also use fictional
gene names, such as YFG1 (which stands for “your favourite gene”) and XYZ2, as
placeholders for other genes when describing some genetic processes.

5.1.3 Synthetic genetic array analysis

Synthetic genetic array analysis (SGA) is a method described by Tong and Boone
(2006) where a gene can be targeted for deletion using cassettes that contain a bar-
code and an antibiotic resistance strain. In Figure 5.4, we see a cassette containing
barcodes, which help identify the target location in the sequence to be replaced,
along with NATMX which provides antibiotic resistance to nourseothricin. When
these strains are allowed to culture for a while, a mixture of strains will develop
where some have remained unmodified and still contain the original ORF, while
other gene-deleted mutants contain the NATMX cassette. These strains are then
transferred to a new agar plate containing nourseothricin and allowed to culture
further. Any unmodified strains will die in the presence of nourseothricin, leaving
only the strains which had the ORF removed in exchange for the nourseothricin
resistance. The notation yfg1A is standard notation for denoting that the ORF with
the gene name YFG1 has been deleted from the strain of interest.

Tong et al. (2001) explains how that this can be extended so that multiple
genes can be removed from the same strain. To perform this, a second cassette is
required which targets the second ORF to be deleted and provides a different an-
tibiotic resistance. In the example illustrated in Figure 5.5, the KANMX antibiotic
resistance displaces the second target gene and provides the strain resistance to
kanamycin.

Allowing the strain to culture around the NATMX and KANMX markers pro-
duces a mixture of four different strains: unmodified strains that have both origi-
nal genes to be deleted; strains that accepted NATMX only; strains that accepted
KANMX only; strains that accepted both NATMX and KANMX and therefore had
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YFG1
NATMX
Culture

N NATMX B
and

N_YrG1

l Culture on nourseothricin

N NATMX B

Figure 5.4: Gene displacement by a NATMX cassette, causing the ORF for gene YFGI to
be lost but gaining a resistance to nourseothricin. The orange blocks represent barcodes
which identify the target location of the strain. This diagram is based on Figure 1a of Tong
and Boone (2006).

YFG1 YFG2
NATMX KANMX

Culture
N ~Natvx_ | | Kanmx_ |
and
N _YrG1 | | KANMX__ |
and
N ~Natvx N [ YrG2 |1
and
N_YrG1 | N YrG2 |
Culture on
kanamycin and nourseothricin
N NatMx_ N | KaNMX__ [T

Figure 5.5: Displacement of two genes by providing kanamycin and nourseothricin an-
tibiotic resistance cassettes to two different locations.
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both of the targeted genes displaced. When this is cultured on plates containing
both nourseothricin and kanamycin, the only strains that will survive are those
which collected both the NATMX and KANMX markers.

An interesting situation arises when two cassettes are designed to target the
same ORF of the same strain, which is illustrated by Figure 5.6. Only one of
the cassettes is able to replace the targeted ORF; if one cassette has successfully
displaced the ORF of interest, the second cassette would have to displace the
first cassette in order to be included in the strain. After being allowed to grow
under these conditions, three possible strains could develop, with none of them
containing both NATMX and KANMX resistance markers needed to grow on
a plate containing both kanamycin and nourseothricin. In this situation, there

would be no surviving strains and all strains would be synthetically dead.

KANMX
YFG1

NATMX

Culture

N KANMX B
and

N NATMX B
and

N _YrG1

l Culture on
kanamycin and nourseothricin

(no surviving strains)

Figure 5.6: Attempting gene displacement of the same gene ‘twice” from the same strain
using two different antibiotic resistance markers.

It may not appear logical to attempt to delete the same ORF twice from the
same strain, but it must be remembered that due to the large number of gene-
deletion combinations to perform, these strains are often created by robots spot-

ting multiple cultures simultaneously on to agar plates. Consequently, there will
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be a few cultures where the same gene is targeted by multiple cassettes and don’t
gain all necessary antibiotic resistance markers needed to survive, but still need to
be grown under the same conditions as other strains which have all the antibiotic

resistance needed to survive.

5.1.4 Genetic epistasis

Genetic epistasis is the phenomenon where a gene will interact with one or more
other genes. This often occurs when a genetic process relies on two genes to
perform the same task or when one gene inhibits the process of another gene.
Where there is no epistasis between two genes, the processes of one gene will not
be affected by the presence or absence of the other gene; the two genes will work
independently.

Epistasis can be explained using a known example which is originally men-
tioned by Vallen et al. (2000), where “deletions of BNI1 and BNR1 are synthetically
lethal at 23 °C”. This point is visually demonstrated by Buttery et al. (2012, Fig-
ure 3), where growth images of an unmodified wildtype strain is compared to
those for three other strains, each containing different deletions: one bnr1A strain,
one bnil-1A strain, one strain with both deletions, bnr1A bnil-1A. In Figure 3 of
Buttery et al. (2012), the wildtype strain has the highest fitness, while the bnr1A
and bnil-1A single-deletion strains nearly match the fitness levels of the wildtype.
While we might expect the double-deletion strain bnr1A bnil-1A to grow at a fit-
ness level reasonably close to the single-deletion strands, at higher temperatures
it does not grow at all, indicating epistasis is present between the two genes.

Epistasis can be quantified under different models which are explored later in
Section 5.2.2.

5.2 Introduction to QFA

5.2.1 Background

A telomere is a structure found at the end of a linear chromosome in the majority of
eukaryotes. The telomere’s structure prevents the end of the chromosomes being
mistaken for a DNA double-strand break and protects the ends of chromosomes

from deterioration. Problems or defects in the telomere caps cause them to be-
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have like double-strand-breaks (DSB), which in turn prompts a damage response.
Lydall (2009) summarises a number of genes and processes currently known to be
involved in telomere maintenance and DSB response.

Research by Cawthon et al. (2003) suggests that in people aged 60 and over,
shortened or defective telomeres are linked to an increased incidence of cancer
and greater effects of ageing. This brings obvious interest into identifying the
mechanisms of telomere defects and searching for ways to minimise their negative
health effects.

Certain non-essential genes along the chromosome can cause an interaction
with the strength of the telomere cap defect. We can investigate which non-
essential genes have an interaction by deleting those open reading frames, de-
noted as orf A, and measuring whether the telomere capping defect has been sup-
pressed or enhanced, indicating genetic epistasis.

Quantitative Fitness Analysis (QFA) as used by Addinall et al. (2011) provides
a high-throughput methodology for measuring genetic interactions between var-
ious telomere defects and genetic deletions created using the SGA method de-
scribed in Section 5.1.3. This can give better understanding of the role each gene
plays. QFA has been demonstrated on Saccharomyces cerevisiae, which can be
grown on defined media and for which the full genome sequence is known and
freely available (Goffeau et al., 1996).

Data collection for QFA involves the inoculation of cell cultures on solid agar
plates. Robotic equipment regularly removes each plate and to be photographed
at a number of time intervals, before being returned to incubate further. Image
analysis is performed on the photographs using Colonyzer (Lawless et al., 2010) to
provide quantitative estimates of the cell densities, which can then be used to esti-
mate the colony doubling rate and capacity parameters for logistic growth models.
Based on these parameters, several measures of culture fitness can be calculated—
such as Maximum Doubling Rate (MDR; doublings/day), Maximum Doubling
Potential (MDP; doublings), numerical area under [growth] curve (nAUC), or the
product of MDR and MDP (MDRMDP; doublings?/day)—as detailed by Addi-
nall et al. (2011).
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5.2.2 Modelling genetic interactions

The objective is to detect a deviation in the expected fitness of a query strain (con-
taining a telomere defect) compared to the fitness of a control strain (a wildtype
strain) with the same orfA in both strains. For the contents of this chapter, we
will use ura3A for the control strain, and cdc13-1 mutants for the query strain. We
search for these deviations assuming Fisher’s multiplicative model of epistasis
(Cordell, 2002).

Where the multiplicative model of epistasis holds, the fitness of a query strain
crossed with orf A should be,

fit(cdc13-1)

fit(cdc13-1 orfA) = fit(ura3A)

x fit(ura3A orfA), ¥ orfA, (5.1)
where orfA is a gene deletion that does not genetically interact with the query
strain, cdc13-1. The ratio of fitness for the query strain to the control strain remains
constant, so we expect a linear dependence between the fitness of the control
and query strain where an orfA is also present. Any such deviation between the
observed fitness and the expected fitness from Equation (5.1) implies a genetic
interaction between the defective telomere cap and the orfA, while the size of this
deviation is the genetic interaction strength.

Alternative models of epistasis can be used, such as additive, log and mini-
mum, which are evaluated by Mani et al. (2008). When fitness is converted to a
log-scale for use in the models of Section 5.3, the additive model on the log-scale
will be equivalent to the multiplicative model (Cordell, 2002) that is applied to the
MDRMDP fitness metric, as used in Addinall et al. (2011) and Heydari et al. (2016).
The minimum model of epistasis suggests that the fitness of a non-interacting
double-mutant will be the same as whichever corresponding single-mutant has
the lower fitness, but this not suitable for detecting interactions where a mutation
affects the whole pathway and is not considered optimal for identifying certain
interactions (Mani et al., 2008).

5.2.3 Previous Bayesian modelling for QFA

Heydari et al. (2016) uses a Bayesian Joint Hierarchical model (JHM) to detect
genetic interactions between the deletion of non-essential genes and defective
telomere caps. Unfortunately, the Joint Hierarchical model (JHM) which performs
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full inference, from inferring growth rates and maximal colony capacities through
to detecting significant epistasis, can take about a month of CPU time to complete.
The Interaction Hierarchical Model (IHM) focuses mainly on detecting epistasis,
which Heydari quotes as taking approximately a day to perform inference for. Part
of the relatively large time requirement to perform inference could be attributed
to the use of Gibbs sampling to update a large number of parameters in the model,
with a complex structure between the variables. This can lead to poor mixing
which requires thinning to reduce autocorrelation in the samples.

Previous models for measuring such interaction have been created by Heydari
et al. (2016), which followed on from prior frequentist analysis by Addinall et al.
(2011).

5.3 Linear Gaussian models

5.3.1 Frequentist random effects model

The simplest model for measuring genetic interactions mentioned by Heydari et al.
(2016) is the frequentist random effects model. To maintain the linear Gaussian
structure, this model was simplified to assume that for observed fitnesses, F, the
log-fitness f = log(F + 1) followed a Gaussian distribution with mean parameter
equal to a linear combination of latent variables. Furthermore, latent variables
were given Gaussian distributions whereas the JHM and IHM by Heydari et al.
(2016) used t-distributions for some of these variables—this potentially makes our
inference less robust if heavy-tailed distributions are necessary, but this compro-
mise in accuracy enables improvements to the scheme’s efficiency to be explored.

The random effects model is specified as,

fclm = Mc+ Z;+ Vel + Eclm (5-2)
p+a ifc=0 0 ifc=0
He = . Yel = .
u ifc=1 v ifc=1
Zy ~ N(O/ 0%) Eclm ™ N(O/ 02)

where
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* fis a measure of log-fitness,

¢ = 0 for control strain and ¢ = 1 for query strain,

I =1,...,L, is an index for each orfA,
* m is an index for each replicate,
* 17 is an estimate of genetic interaction strength for each orfA.

The fitness F for the model can be calculated by fitting a logistic growth model
as described by Addinall et al. (2011), with fitness F being defined as the product
of the maximal doubling rate and the maximal doubling potential of the colony.
The log-fitness is then defined as f = log(F + 1) for the model.

The fitness of the query strain is represented in the model as y, while (1 + «) ap-
plies to the control strain. We can therefore consider « to be the expected increase
in log-fitness for a control strain compared to its query strain. This corresponds
to the inverse of the fit(cdc13-1) /fit(ura3A) ratio seen in Equation (5.1). The ORF
fitness, a variation in the fitness caused by the deletion of a particular OREF, is rep-
resented by a random effect, Z. Deviations from this linear model are accounted
for by the genetic interaction strength term, -y, once errors are accounted for.

Significant interactions are determined by testing each of the ; interactions for
each orfA, and finding which of these have a false discovery rate (FDR) corrected
p-value of less than 0.05.

Significant interactions with a positive -; interaction strength suggest that the
query-strain fitness is better than expected compared to the control-strain fitness
when the same gene is deleted from both strains, hence the telomere capping
defect has been suppressed in the query-strain. Conversely, negative -; interaction
strength suggest an enhanced defect.

5.3.2 Bayesian linear Gaussian model with no indicators

The random effects model of Section 5.3.1 provides a good basis for building a
Bayesian model. We can easily account for other effects, such as plate effects,
using a hierarchical structure. However, the large quantity of parameters in the
model will require us to be more efficient, or inference may be time-consuming
to perform. Using fitness on the log-scale, as was used in the random effects

model in Section 5.3.1, and an identity link function on the linear predictor, gives
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a linear Gaussian structure to this model. This provides the potential for blocking
methods to be used which can improve mixing and overall efficiency.
Using this as a basis for a simple Bayesian model, the model can be specified

as follows:
fclm =Uu+ac+ 2+ v+ eum (5.3)
1~ N(0,0.00171) Z; ~N(0, 7, 1)
~N(0,0.00171) ifc=0 =0 ifc=0
&e . Vel 1 .
=0 ifc=1 ~N(0,7, ") ifc=1
ecim ~ N(0,72) Te, T2, Ty ~ Ga(1,0.00005)

where terms of the model are equivalent to that in the random effects model of
Section 5.3.1. Vague prior distributions are in use for this model, designed to
replicate those used in the INLA software.

A DAG representation of this model is shown in Figure 5.7.

feim Observations

@{ @ Latent Gaussian variables, x.
é @ Parameters, 6.

Figure 5.7: DAG for the basic model containing no indicator variables.

5.3.3 Bayesian linear Gaussian model with indicators

In the context of the QFA experiment, it is of great interest to infer the genetic
interaction strengths for each possible orf A and of even greater interest to identify
which of these interaction strength values contribute significantly to the model,
since these would denote that the corresponding ORF exhibits epistasis when
deleted. Identifying the significant interactions which should be included in the
model can be achieved by incorporating variable selection as part of the model,

such as Kuo and Mallick (1998) binary indicator variables. For our model, J;
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represents the binary indicator for the [-th orf A, where J; = 1 if the corresponding
interaction strength is significant and should be included in the model, and §; = 0
if not. The indicator will be incorporated into Equation (5.3) of the linear Gaussian
model in Section 5.3.2:

fclm = Y+ Zl + (sl')’cl + €cims (5-4)

where J; ~ Bern(0.05) as it is expected that only about 5% of the ORF deletions

will interact significantly. Significant interactions exist where P(5; =1) > 0.5,

hence MCMC simulations can identify such interactions where é; > 0.5 and the

corresponding interaction strength is the average value of y;6; for each orfA.
The model with the Kuo & Mallick indicator is specified as,

feim = p+ac+ 2+ 06 X Y + €cm (5.5)
1~ N(0,0.00171) Z; ~N(0, 7, 1)
~N(0,0.00171) ifc=0 =0 ifc =0
0% ) Vel T (5.6)
=0 ifc=1 ~N(0,7,") ifc=1
ecim ~ N(0,72) T, Tz, Ty ~ Ga(1,0.00005)

6 ~ Bern(p,)

A DAG representation of this model including Kuo & Mallick indicators is
shown in Figure 5.8.

feim Observations

Latent Gaussian
variables, x.
@ Parameters, 6.

Figure 5.8: DAG for the model now including binary indicators to select yq; variables.
The node with a double circle border represents a deterministic node.
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5.3.4 Reparameterising with a sum-to-zero contrast

The representation of 7y, given in Equation (5.6), in combination with the binary
indicator J;, will lead to a bi-modal distribution for the parameter Z; under certain
circumstances. This happens whenever the corresponding indicator é; does not
spend the vast majority of its time in only one of the include/exclude states of
5 =1 or é; = 0, respectively—the closer the mean value ¢; is to 0.5, the more
pronounced the bi-modal shape of the density of Z; will become, leading to a poor
effective sample size. This will be explored in more detail in Section 5.6.4.

To combat the bi-modal density of Z; created by the indicator variables, an
alternative parameterisation will be explored. This will match the model given
in Section 5.3.3 along with all definitions, except for the definition of vy.; in Equa-
tion (5.6), where the offset interaction strength is replaced by a sum-to-zero con-
trast:

1 .
Vel = {?% ife=0 , where 7; ~ N(0, T;l) (5.7)
+57 ifc=1
Note that under this parameterisation, the interpretation and magnitude of the

genetic interaction strength y; remains the same as the definition for -¢; in Equa-
tion (5.6).

5.4 Joint distributions for linear Gaussian models

5.4.1 Model without indicators

Using Bayes’” theorem, the target distribution can be factorised as,

(y | x,0)7(x,0)
n(y)
«7t(y | x,0)t(x | 0)7(0). (5.8)

i(x,0]y) =
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We will calculate each of these terms in turn, starting with the observation likeli-
hood distribution, 7(y | x, 0):

1 p n
y’xe HHanclm’xre)

c=01]=1m=1

P 7
=TT1T 7(form | % 0)7(fiim | x,6)

I=1m=1

P 7 X
:EE P{—%(fmm for)? }\/?nexp{ (fllm_fll)z}
- (zr_;)z”rl {__ Z%mzl [ form = for)> + (fum —fu)z]},

(5.9)

where r; denotes the number of replicates for the I-th orf A in the control (or query)
strain. As orfA are performed on the plates to an indentical layout for both con-

trol and query strains, there are the same p orfA and number of replicates, 7;,
I=1,...,pwhenc=0and c = 1.

Note fitted values f,; have different equations based on whether they are con-
trol (c = 0) or query (c = 1). Each is defined as follows:

f01=V+“+Zl; fll=H+Zl+’Y1z-

This provides the distribution,

iy | x,0) = <21’_;>25’_1r1

p 1
X exp {—% IZ 21 [(fOlm —u—a—Z)+ (fum—n—2Z — 711)2] } . (5.10)
=1 m=
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The prior distribution of the latent variables, 7r(x | 0), is given by,

p

(x| 0) = m(p)m(wo) [ [1(z | w)rt(ya | 7))
=1

Z\/geXp{—%(u—w)z} ZT—;"TeXP{—%(a—m)Z}
T {-Fa-wr} R or{-Zou-mr)]

and noting that all latent variables are assumed to have zero mean, i.e. j;, = p, =

1z = pq = 0, allows us to simplify this to,

(x| 0) = N («/TzTﬂY_)PeXp {_Ty_ﬂz 2 i [Tzzlz sz’)’%l] }

27 27 2 i= 2
(5.11)
Finally, the distribution of the parameters, 77(0), is calculated to be,
7(6) = () () (7o)
= bz* 102717 bTz baﬂ’y 207 by : ghelpmheTe (5.12)
I'(a;) * T(ay) 7 I'(ae) ' '

Using Equation (5.8), the joint conditional distribution can be written as the prod-
uct of Equations (5.10), (5.11) and (5.12):

o Te lezl ]
m(x,0y) = (5=)
T, p 1 ) )
X exp —52 [(fozm—ﬂ—“—zl) +(f11m—ﬂ—zz—71z)}
I=1m=1
» N Tz Ty pexp _TWZ B Tzzl Tﬂu
27 27T 2
bgz a,—1 _—b,T bley ay—=1 _p 1t a.—1 bgs —beT,
X Th7 e P2tz T e Oty et = __ e ete, 5.13
[(a:) [(ay) 7 T(ao) © (.13)

5.4.2 Model featuring indicators

The target distribution can now be factorised as,
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(x,0,I|y)xmn(y|x0,1I) 7n(I]|x,0)mr(x]|0)mr(6h),

where I represents the distribution of the indicator variables.

The Kuo & Mallick method assumes independence between the indicator and
its effect—for the QFA model, this is the interaction strength, . Observation
of Figure 5.8 reveals that the indicators are also conditionally independent from
other latent variables and parameters, allowing us to simplify (I | x,0) into
rt(I):

m(x,0,|y) xm(y|x06I)r(I)n(x]|06)m(0). (5.14)

Once again, we aim to find the distribution for each of these terms separately,
beginning with the density, t(y | x,6,I)

(y | x,6,1)
1 p
=TIITII 7(ferm [ % 6,1)
c:Ol: m=1
p
ZZTIHln(fozm | %,0,1)70(fum | x,6,1)
=1 m=

:ﬁ [1\/Te><p{——(fozm foz)}\/;exp{ (fum—fu)z}
S {——ZZ [fOlm for)? (fllm_fll)z}}' (5.15)

1m=1

Note that this is the identical to the distribution in Equation (5.9), but here the
fitted values f; are different for query (c = 1) strains. With the indicators and the
model defined in Section 5.3.3, they are now defined as follows:

fo=p+a+Z;  fu=u+Z+71
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This provides the distribution,

T Zle T
nly | x60,1) = (5=)

p
X expq —

i
) ) [(fOlm_P‘_“_Zl)z"i_(fllm_,u_zl_51711)2}}'
1m=1
(
Similarly, using the sum-to-zero contrast for 7; as specified in Section 5.3.4, the
Y, & P

N

1=
5.16)

fitted values fd will instead be,

A 1 A 1
fo=putat+zZi—s0v;  fu=ptZitSom,
providing the distribution,

T 2;7:1 T
nly|x6,1) = (55)

- p 1 1 2
Xexp{ - %12 Y. {(fozm —V—“—Zl+§5m)
=1m=1
1 2
+ (fllm —u—7Z - 55171) } } (5.17)

The binary indicators used in the Kuo & Mallick case here are J; ~ Bern(py),
where J; = 1 denotes the [-th variable would be included in the model and §; = 0
otherwise. Hence,

ifd =1
prg) =47 TUT L ae) =pla-p)th (518)
1-— Ps if (51 =0

By combining Equations (5.16) and (5.18) with the unchanged densities of
Equations (5.11) and (5.12), the complete joint distribution in Equation (5.14) can
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be constructed for the model in Section 5.3.3:
p

w0t ()5 10 o

I=1

T p 1
Xexp{—fz Y. [(fozm—ﬂ—“—zl)er(flzm—V—Zl—5l’Y1l)2]}
[=1m=1
w VT (” TZT’Y)pexp{——TW2 _t“_‘)‘z_i [Tz_zlz+—TW%l]}

27 27 2 2 =1 2 2
bgz a,—1_—b,T bleﬂr ay=1 _p. T a.—1 bgs —be T,
X T2 e 7P X T e Tty xfe Tee ete, 5.19
I(az) * I(a,)” T(a) * (5.19)

To obtain the equivalent expression for the model in Section 5.3.4, Equation (5.16)

is replaced with (5.17) to provide,

n(x,9,1|y):< )lelﬁ[ ) 51}

I=1

1 1
X exp ——ZZ (form —#—a—Zi+ =6m)* + (Fum — 1 — Z1 — 50m1)?
2 2

=1m=1
o VT VT Ty pex Tt Ta a? i z7 Tle
2 27 p 2
bgz a,—1 _—b,T bleW ay=1 _p. 1. a.—1 bgs —b.T,
X T2 e PR X ——T. ety xteTh — e tete, 5.20
M) Ia,) " Ma) (5.20)

5.5 Full conditional distributions for linear Gaussian

model parameters
There are three parameters of the model in Section 5.4.1 which can each be calcu-

lated as follows:

5.5.1 Full conditional for 7,

The parameter 7, specifies the common precision parameter for the ORF fitness
random effect for each of the p orfA. Each of these nodes, Z;, [ =1,...,p, are
specified as Z; ~ N(0, 1), where 7; ~ Ga(az, b;). The full conditional distribution
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then becomes,

7T(Tz | Ty, Te, U, e,y le Yel, Sclm)

p

=t | 7)) « N(TZ)HTC(ZZ | T2)
=1

bngZaz_le—szz P

1/2 Tz
T(a.) ETZ/ P {_E<Zl - 0)2}

p
o TP/ exp {—bz’rz -Y %le}

I=1

P 1&
x Ga Tz;az+§,bz+§;Zl .

5.5.2 Full conditional for T,

The parameter T, specifies the common precision parameter for the error in every
observation. Each of these nodes, ¢, c = {0,1}, 1 =1,...,p,and m=1,...,7
are specified as e ~ N(0, ), where 7. ~ Ga(ag, b¢). The full conditional distribu-

tion then becomes:

(Ts | Ty, Tzy Uy K,y Zy, ')’cl/ clm)

(Ts | 8clm X 7T Ts HHH 7T sclm | Ts

=01=1m=

bae Ae— 1 —beTe ]

p
& r(as) HH

c=01=1m=1

P _ L p 1
e e )
=

T,
Tsl/z exp {_Eg(sclm - 0)2}

c=11=1m=1
p 1 L p 1 )
x Ga Tg;ag—{—Zrl,bg+§Z chlm
=1 c=11=1m=1

where .1, = fom — fcl/ therefore,

N =

=1 c=11=1m=1

p L p n n 2
aGa(Tg,’ﬂg—Fzrl,bs‘F ZZZ(fclm fclm))
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5.5.3 Full conditional for 7,

The parameter T, specifies the common precision parameter for the genetic inter-
action strengths for each of the p orfA. Each of the nodes for the query strains,
Y11, 1 =1,..., p, are specified as 1; ~ N(0, T, ), where T, ~ Ga(a,, b,). The full
conditional distribution then becomes:

7T(T7 ’ Tz, Te, Wy Koy Zl/ ’Yclreclm) - 7T(T’y | 'Vll)

P
x 7(T) E”(’Yll | )

bavlﬂv_ e—b717 % T
& ! Zr(a(y) HT’ly/z exp {_?7(')’11 - 0)2}
I=1

p
ay+p/2-1 Ty, 2
x T, exp {—b777 — Z E’yu}
=1

1 p
2 2 =
Note that this is analogous to the calculation for 7, given in Section 5.5.1.

5.5.4 Full conditional for J;

This applies to the model described in Section 5.4.2. The parameter ¢; is a binary
indicator to determine which of the genetic interaction strength terms for each of
the p orf A should be included in the model. The prior for this is ; ~ Bern(p;).

For the calculations in this section, we will relax the assumption that the 7;,
I =1,...,p, are the same for both control and query strains. We denote ry; and
r1; to be the number of replicates for the I-th orf A in the control and query strains
respectively. In practice, we find that ry; = r1; due to the fixed orf A pattern on the
agar plates.
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For fixed 7y =0

When applied the model described in Section 5.4.2, the full conditional is,

71'(5[ | T’)/l TZI Te/ ‘I/ll OCCI Zl/ ,)/Cll EClTHI y)

1]

= 70(81 | fum) & 70(81) [T 72 (fum | 01)

m=1
B 1] T T R
x p’(1—p)t-2 iexp{—f(fum—fu)z}
m=1

s [ Te \U T &
o p(1—p) 0 (55) exp {—f Y. (fim = =2~ 6mz)2} SN CRAY

m=1

On noting that

(Fum — fi)* = (Fum — #— Z1 — 817u)?
= —2f1mOiv1 + 2u8y1 + 2218711 + 675 + C,

where C are other terms constant with respect to J;, additional simplification can
be performed as 512 = J; since J; only takes the values of 0 or 1:

A\ 2 1
(fllm — f11> o 201711 (V tz+ 57— fllm) ,

and now observing that y + z; + y1; = fl ;, means

A\ 2 ” 1
(fllm —f11> = 261711 (fll — 57 _fllm> -

Substituting this into Equation (5.21) gives,
5 1-6 T p 1
cp(l—p) expq—7 Y 2071 (fll — 57 _fllm)
m=1

_ 1 A 1 .
x p’l(1—p) " exp {V11Te5z’r1z <f_11 Y. fum+ 57— f11> } (5.22)
m=1
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For sum-to-zero 7, contrasts

When applied the model described in Section 5.3.4, the full conditional is a devel-
opment of Equation (5.21):

o1t
7-[(51 ‘ Tyr Tz, Tes Yy Key Z, Yelr Eclmy y) & pél( p)l o (E) X

exp{—%[% (fOlm_ —a—Z —i—éerl) 2 (fllm— - —%Y]}

m=1 m=

(5.23)

Using a method analogous to when the fixed 5 = 0 parameterisation was
used, it can be seen that,

1 1
(fOlm_P‘_“_Zl+§5l'Yl> = form — _“_Zl+4’Yl) +CG

Vi (fOlm — foz) +Cy,
1
(fllm —p—=7Z— 551’m> = (
=011 (fu — = — fllm) + Gy,

p+z+ 471 fllm) +C

where C; & C; are other terms constant with respect to §;. Substituting this into
equation (5.23) gives,

70(01 | Ty T Tes My Kes Z1, Vel E€clms Y) O p51(1 — p)l_‘sl X

.0 Al il rort
{ o (Z fiim — Y form + rorfor — rufu + Olzll’Y)}- (5.24)

m=1

Normalising and simulating the next indicator values

We normalize the probability using,

(6 =1]6,xy)

Pr(d =1 = '
I'(&l | G,x,y) 7-[(51 =0 | e’x’y) + 7'[(51 =1 | B,x/y)
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This results in the following full conditional distribution for the indicator vari-

ables:
1—pexp{¢(6,=0)} if6, =0
m(I10,xy) =3 P ey - 62)
(T—p) exp{9(6=0)} tpexpl@(e=1)] =% =

where, for the full conditional distribution in Equation (5.22) with ¢, = 0 fixed,

1]
¢(1) = ruTedru ( Z frm + 2711 —f1z>

and for the full conditional distribution in Equation (5.24) using sum-to-zero con-

trasts,

T(S Tl roit
$(0)) = = 171 (Z fiim — Z fotm + rorfor — rifu + l 1 )

Note that when §; = 0, ¢(0) = exp{0} = 1 in both of these parameterisations.

By generating a value u, a realisation from a U(0, 1) distribution, we can com-
pare this value to the probability in Equation (5.25). Hence, we can set §; =1
if,

pexpi{gp(1)} _pe! (5.26)
(1= p)exp{p(0)} +pef exp{p(1)} (1 —p)+pe?’ '

and é; = 0, otherwise. Note that we have written e? to represent exp{¢$(1)} for

u <

notational simplicity.

Care should be taken when calculating e?, as large values of ¢ can cause nu-
merical overflow. In software implementations that catch overflow and represent
the value as positive oo, the normalising step in Equation (5.25) will most likely
evaluate to NaN or O rather than 1, resulting in Equation (5.26) always evaluating
to false and &; = 0. This also occurs as underflow if ¢ is too small, but this would
cause Equation (5.26) to correctly default to ‘false” anyway.

Use of the log-sum-exp method can provide a stable way to handle this issue

of numerical under- and over-flow (Murphy, 2012), by observing the following:

pe?
q+ pe?

Pr(0=1|6,xy) =
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Now letting m = max{0, ¢},

e [pe?]
e~ [q + pe?]
ped "
qe="" + et~

Since m = max{0, ¢}, the largest possible value for e~ and ¢?~™ is 1, while the
other term will be less than or equal to this. This minimises the risk of overflow
or underflow occurring in the normalising step when ¢? is calculated, providing

greater numerical stability to the operation.

5.5.5 Full conditional for 7, with Kuo & Mallick indicators

This distribution replaces that in Section 5.5.3, to incorporate the binary indicators
featured in the Kuo & Mallick variable selection method in Section 5.4.2. The
parameter T, specifies the common precision parameter for the genetic interac-
tion strengths for each of the p orfA. Each of the nodes for the query strains, yy;,
I =1,...,p, are specified as y1; ~ N(0, T,), where T, ~ Ga(a,, b,). Here the dis-
tribution is now affected by what variables are currently selected for inclusion in
the model. Variables which are currently included will be in the set ®, of size po.
The full conditional distribution then becomes,

(T | Ty Testly e, Z1, Vel 01 €cim)

p
= 71(ty | &y1) < () [ [ (6rva | )

ay+pep/2—1 T
T, Po exp {—b,ﬂ;y — Z %(51’)/%1}
led

@ 1
led
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5.6 Comparison of model efficiency for linear Gaus-

sian models

5.6.1 About the QFA data

The data we use comes from the QFA experiment detailed by Addinall et al.
(2011), where a logistic growth model has been fitted to the data obtained from
the image analysis. We use MDRMDP? as a measure of culture fitness for cdc13-1
and URA3A strains grown at 27 °C. 159 orf A were stripped from the analysis
by Addinall et al. (2011) for varying experimental and biological issues which
would cause spurious results for reasons known to be unrelated to epistasis. This
leaves 35576 observations for 4135 possible orf A in each strain. For a QFA dataset
containing 4135 different orfA, the natural ordering of the latent field may be
W, 21,...,2435,%1,- -, Y4135, resulting in a latent dimension of 8272.

A subset of the data can also be used by selecting cultures grown on plate 15;
a plate with known neutral and telomere-related genes, designed to indicate if
the strain has grown as expected (Addinall et al., 2011). This contains at least 6
replicates for each of 50 possible orf A, allowing inference methods to be tested on
smaller dimension datasets.

To verify the accuracy of the schemes under test, long thinned runs are per-
formed and the densities are compared to ensure no discrepancies between results
from JAGS and GDAGsim.

5.6.2 Comparison of results using permutation matrices

As explained in Section 2.3.2, the positioning of the non-zero values in the preci-
sion matrix, Q, can cause fill-in to occur in the Cholesky factor, L. Using the Plate
15 dataset and the model with Kuo & Mallick indicators described in Section 5.4.1,
the benefit of the permutation matrix can be demonstrated visually in Figure 5.9.

When the Cholesky decomposition is done using the natural ordering, the
Cholesky factor, L, (Figure 5.9b) suffers complete fill-in here, resulting in L being
dense despite the original matrix (Figure 5.9a) being sparse. Having computed
the AMD ordering and permuting the precision matrix (Figure 5.9¢c), the resulting

SMDRMDP = Maximum Doubling Rate x Maximum Doubling Potential for the yeast colony,
as described in Section 5.2.1.
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Sparsity plot for Q Sparsity plot for L

nnz: 504 ( 4.84%) nnz: 5253 ( 50.49%)

(@) The naturally ordered matrix Q. (b) The Cholesky factor L of the
Number of non-zero entries in lower- naturally-ordered Q in Figure 5.9a.

triangle is 303 (5.768%) Number of non-zero entries in lower-
triangle is 5253 (100%)
Sparsity plot for Q Sparsity plot for L
nnz: 504 ( 4.84%) nnz: 304 (1 2.92%)

(c) The AMD ordered version of Q in Fig-  (d) The Cholesky factor L of the AMD-

ure 5.9a. Number of non-zero entries in  ordered Q in Figure 5.9c. Number of

lower-triangle remains 303 (5.768%) non-zero entries in lower-triangle is 304
(5.787%)

Figure 5.9: The location of non-zero entries in a 102 x 102 matrix. In the full matrix,
Q, there are 504 non-zero elements (4.84%). For a fairer comparison, each caption in-
cludes the quantity and percentage of non-zero values in the lower-triangle only, since the
Cholesky factors only occupy these elements. The natural-ordering for the variables from
the model in Section 5.4.1 here is (i, &, 21, ..., 250, Y1, - -, Y50)-
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Cholesky factor maintains the sparsity in Figure 5.9d.

As mentioned in Section 2.3.2, an optimum permutation can sometimes be
identified manually. In this case, the optimal order when specifying the model
in GDAGsim would be (1, z1, . - -, Y50, 250, &, it). However, if the user was unable to
identify this ordering, the AMD permutation would minimise the impact caused
by Cholesky fill-in.

To understand the performance benefit that can be gained from using a per-
mutation, a similar model that includes Kuo & Mallick, as defined in Section 5.3.3,
on the full-size dataset containing all plates. The latent structure has a dimension
of 8590 here. The time taken to perform the schemes with and without AMD
permutations are listed in Table 5.1. It is worth noting that use of the permutation
matrix is numerically equivalent and does not affect the mixing or accuracy of the
scheme—there are only differences with the computation time and the memory
usage in each implementation.

| Permutation scheme | #ofiter. Time (s) | Avg. time per iter. (s) |
Fixed permutation 100 3100 31.000
Dynamic AMD permutation 10000 704 0.070
Fixed AMD permutation 10000 713 0.071

Table 5.1: Time taken to obtain the stated number of unthinned iterations, depending on
the permutation scheme in use.

It is immediately obvious from Table 5.1 that use of the permutation matrix
allows more iterations to be computed in less time, in comparison to when no
permutation matrix is used. The memory usage is also considerably lower when
the permutation is applied.

The fixed permutation calculates the optimum permutation at the first iteration
and stores it for future iterations. This removes the need to run an algorithm to
tind the optimum permutation at every iteration, which is unnecessary as the lay-
out of the precision matrix won’t change over each iteration. Somewhat counter-
intuitively, the scheme that reuses the original permutation is very slightly slower
than the scheme that recomputes the approximately optimal permutation at each
iteration. For this reason, we will use the dynamic permutation for the remainder
of the results in this section.

We may find that on larger or models, or models with a more complicated de-

pendancy structure, that the approximate permutation algorithm becomes more
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costly to compute on each iteration, leading to a noticable benefit from fixing and
reusing the original permutation. Further developments on the use of a fixed

permutation will be discussed in Section 7.2.1.

5.6.3 Improvements from dynamic resizing of GDAG models

To find any improvement from implementing a dynamic resizing of the GDAG
model, as explained in Section 4.10.6, the full URA3/CDC13-1 dataset is modelled
with Kuo & Mallick indicators as defined in Section 5.4.2. The variable q; will
be removed from the GDAG model when the indicator is §; = 0 for that iteration,
and included if §; = 1. The fixed-size and dynamically-resized models both use a
re-computed AMD permutation before each Cholesky decomposition, as part of a
variable selection Data Augmentation scheme (see Section 4.10.2). The resizing of
the GDAG model does not affect the quality of the MCMC run, so only run times

need to be considered.

| Scheme | Time (s) |
Fixed size 721
Dynamic resizing 624

Table 5.2: CPU user time taken to obtain 10000 unthinned iterations, depending on
whether the size of the GDAG model is at the full, fixed size at each iteration, or resized
to only include 7y, variables where §; = 1.

From the results in Table 5.2, there is a slight reduction in computation time
over the course of a long run. Dynamically resizing the model requires additional
overheads to correctly map which variables are being included, which negates
some of the advantage obtained from working with smaller matrices. Despite
the overheads, allowing the model to resize generally provides an appreciable
performance improvement on large models or long runs that include a form of
variable selection, where a relatively high proportion of variables are likely to be
excluded at each iteration.

5.6.4 Improvements from model reparameterisation

Table 5.3 contains comparisons of the computation time and minimum effective
sample size (ESS) obtained from a selection of schemes run in JAGS and using

GDAGsim as part of a blocking method. The JAGS scheme performs a Gibbs sampler
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on the variables, while the GDAGsim software is used for the Data Augmentation
method described in Section 4.10.2. The smallest ESS value of all latent variables

and parameters (excluding indicator, ) simulated in the scheme is taken.

| Parameterisation | Implementation | Time (s) | Min. ESS ~ Var. | ESS/s. |
JAGS 282 284 1 1.01
. . 483 ZPGM?2 0.67
Fixed 71 = 0 GDAG (fixed size) 721 2760 N 383
. 483 ZPGM?2 0.72
GDAG (dyn. size) 674 2760 N 409
JAGS 429 300 1 0.70
. . 2191 YYDR476C 2.80
Sum-to-zero contrast GDAG (fixed size) 782 6780 o 8.67
. 2191 YYDR476C 2.92
GDAG (dyn. size) 751 6780 N 9.03

Table 5.3: Time taken to obtain 10000 unthinned iterations in JAGS and the Data Augmen-
tation using GDAGsim using both fixed and dynamic resizing.

The additional overheads associated with the blocking techniques mean that
a GDAG scheme typically takes around 2.5 times longer to complete the same
number of iterations than a JAGS scheme here. The ESS obtained by the GDAG
implementation is generally much higher than that from the JAGS implementation
for all variables. The lowest ESS from the Gibbs method in JAGS is 283.5 from
the parameter y, an expectedly low figure given that all observations depend
on u causing it to correlate heavily with other latent variables and mix poorly.
In contrast, the ESS for the same parameter in a block updating scheme using
GDAGsim was measured as 10000, indicating no autocorrelation in that chain. The
poorer mixing for u in the JAGS scheme is illustrated in Figure 5.10, where the
blocking method from GDAGsim is not affected by the correlation with other latent
variables.

The minimum ESS reading from the schemes using GDAGsim is hindered by the
changeable state of the variable selection indicators. The random effect for pgm2A,
zpgMe, suffers from a bi-modal state whenever the corresponding indicator dpgy
spends an approximately 50 : 50 split of time in its possible include/exclude
states. The indicator will switch between states frequently if the interaction that
the indicator is acting on, in this case 1 pgmp, is ‘borderline” in whether it is a
significant interaction or not.

Due to the parameterisation in use, including and excluding the 7 pgyp for
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Figure 5.10: Trace plots (on left) of 10000 unthinned iterations for # when performed
under GDAGsim (top) and JAGS (bottom) schemes. Corresponding ACF plots with 95%
intervals for each scheme are shown to the right.

roughly equal numbers of iterations has an effect on the zpgyp parameter—the
random effect z will swap between two modes to act as a compromise between
frequently including and excluding the value of -y, as demonstrated by Figure 5.11.
The bi-modal state in an MCMC chain will be penalised heavily in an ESS calcu-
lation and there will appear to be correlation between samples that don’t stay
in a single consistent state. By dissecting the chain for variables that suffer this
problem and separately evaluating the mixing of each chain where the indicator
is in the include and the exclude state, it can be seen that the mixing of samples
for z is very good in its own state.

Since the mixing of the parameter z is very good when split by the state of the
variable selection indicator, it could be argued that its poor performance in numer-

ical measurements such as autocorrelation and ESS can be overlooked. However,
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Figure 5.11: Trace plots of 10000 unthinned iterations for Zpgy, when performed using
GDAGsim methods. The colour of the line changes according to the current state of the
indicator &1 pgm2-

since the indicator acts on the genetic interaction strength in these models -y, and
not on the ORF fitness, z, we would argue that this poor performance should not
be overlooked.

To combat the problem of poor ESS and autocorrelation measurements in z, a
reparameterisation is employed as described in Section 5.3.4 and the effects are
investigated.

Computation time for the reparameterised model has increased over the equiv-
alent implementation, due to a few extra computation overheads as more fitted
values must be obtained to calculate the full conditional distributions that model
parameters and indicators will be computed from.

While there has been little change to the smallest ESS value in the JAGS imple-
mentation, the results from the blocking methods in the GDAGsim implementation
have improved considerably. The sum-to-zero contrast of the genetic interaction
strength, 7;, means the corresponding OREF fitness, z, is no longer behaving as a
compromised value that has to switch between two different modes. Numerical
assessments of these variables are now much better.

The minimum ESS value obtained is 2191 for the interaction strength of the
ydr476cA, yyprazec- This is also lowest as a result of the indicator being allowed
to switch states frequently, but the relatively poor ESS is to be expected as a conse-

quence of this—When the indicator dyprayec = 0, YyDRa76cC is simulated from the
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prior distribution, but when dyprazsc = 1, YyDRraz6c is simulated from a density
that likely has a different mean to the prior mean. This means 7y is expected to
have a bi-modal distribution.

Even when including the poorest ESS from the yyprazsc variable, the GDAGsim
implementation using a dynamic model resize has a greater ESS per second of
computation time than both the implementation in JAGS and previous parame-
terisations of GDAG implementations. This suggests improved efficiency over
standard Gibbs sampling methods, allowing large numbers of iterations with
desirably low autocorrelations to be produced in less time.

If all y variables are excluded from the analysis of ESS, on the grounds that
they will appear artificially bad due to their indicator influenced bi-modal state,
then the reparameterised blocking methods may be nearly 9 times more efficient,
in terms of ESS per second on this large model, than standard Gibbs sampling
methods. The minimum ESS reading from the schemes using GDAGsim is hindered
by the changeable state of the variable selection indicators. The random effect
zpGmp, suffers from a bi-modal state whenever the corresponding indicator dpgpn
spends an approximately 50 : 50 split of time in its possible include/exclude
states. The indicator will switch between states frequently if the interaction that
the indicator is acting on, in this case 7y1 pgmp, is ‘borderline” in whether it is a

significant interaction or not.

5.6.5 Effects of Gibbs variable selection

We implement a Gibbs variable selection scheme for comparison against a simpler
Kuo & Mallick indicator scheme that does not feature any pseudo-priors to sim-
ulate excluded variables. In both cases, these schemes use the sum-to-zero repa-
rameterisation from Section 5.3.4 and feature no dynamic resizing of the model as
mentioned in Section 4.10.6.

Timings and ESS measurements from these schemes can be viewed in Table 5.4.
Where simpler indicator schemes caused a lower ESS for the yyprazsc chain due
to its bi-modal behaviour, Gibbs variable selection avoids this by always ensuring
that samples are generated close to the posterior. The lowest ESS reading from a
GVS chain is three times higher than the equivalent model using Kuo & Mallick
indicators. The GVS scheme takes longer to perform since a tuning period must

be performed to find suitable hyperpriors and samples must then be taken from
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Figure 5.12: Trace plots of iterations 1000-1500 from an unthinned run for dyorgpaw When
performed under both the Gibbs variable selection scheme (top) and Kuo & Mallick indi-
cators (bottom). For both methods, dyor goaw =~ 0.52.

the correct hyperpriors depending on which variables are currently featured in
the model, as opposed to generating samples from a common prior distribution
for the Kuo & Mallick scheme. Under these circumstances, there is still a greater

minimum ESS/s from the GVS scheme.

| Implementation | Time (s) | Min. ESS Var. |  ESS/s. |
. . . 2192 YYDR476C 2.80
Kuo & Mallick indicators 782 6780 o 3.67
Gibbs Variable Selection 793 (825) 6107  yyprooyw | 7.70 (7.40)
(incl. tuning and burning) 6561 x 8.27 (7.95)

Table 5.4: CPU User time taken to obtain 10000 unthinned iterations before and after the
implementation of GVS. Values in brackets factor in the time taken for an additional 400
iteration tuning and burning period.

Figure 5.12 demonstrates that the Gibbs variable selection scheme causes in-
dicators to switch more frequently between the include/exclude states, without

affecting the overall proportion of time spent in each state.

5.7 Latent Gaussian models

We will modify the linear Gaussian model from Section 5.3.4 to allow for a Gaus-
sian distribution to be applied directly to fitness values, which is achieved by
using an exponential link function on the linear predictor, creating a latent Gaus-

sian model. The linear Gaussian model is equivalent to specifying a log-normal
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Fem ~ N(Fy, 1) F = exp(fa)
fa =p+ac+Zi+6 x v
1~ N(0,0.00171) Z; ~N(0, 7, 1)
7 ~N(0,7,)
N {N N(0,0.001°1) ifc=0 - {—%’yl ifc=0
=0 ifc=1 +1y ifc=1
6, ~ Bern(py) T, T2, T, ~ Ga(1,0.00005)

Figure 5.13: Latent Gaussian model specification for QFA model.

distribution on the observation layer of fitness (e.g. MDRMDP) values, whereas
the latent Gaussian model places a symmetric Gaussian distribution on the same
values. Alternative distributions can also be applied to the observation layer if
desired.

To implement this feature, we need to ensure that the likelihood for each ob-
servation is linked to a single latent variable, as shown in Equation (2.13), instead
of a linear combination of latent variables which was allowed in the linear Gaus-
sian models and demonstrated in Equation (2.2). This is achieved using an idea
mentioned by Martins et al. (2013) by creating an additional latent node in the
latent field, whose value is a linear combination of other nodes and has a precision
of exp(15)—not too high that it causes a numerical instability when a Cholesky
decomposition is performed on the precision matrix, but small enough to ensure
these nodes provide a negligible amount of error in the model. We will refer to
these nodes as pseudo-deterministic nodes.

The latent Gaussian model that follows these criteria can be found in Fig-
ure 5.13, with a DAG representation shown in Figure 5.14. When the exponential
link function is applied, each fitted fitness value, ﬁcl, is equivalent to eleteeZiedim,
in line with the multiplicative model of epistasis described in Section 5.2.1.

5.8 Joint distributions for latent Gaussian models

We can no longer sample from the full conditional distributions, as we could do
with the latent models in Section 5.3, so we are limited in our choice of inference
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Figure 5.14: DAG for the latent Gaussian model including binary indicators to select -y,
variables. The node with a double circle border represents a deterministic node, while the
node with a dashed-double circle border represents a pseudo-deterministic node needs
to be created in the prior structure.

schemes. Data augmentation cannot be used as it requires the ability to sample
from the full conditional distributions. The Marginal updating scheme is of little
use because we are interested in which orfA cause epistasis—this requires sam-
pling genetic interaction strengths which the indicator values are based on, but
neither of these are recorded in the Marginal scheme. We will attempt to use the
Data Augmentation with Augmented Block (Section 4.10.3) to perform the infer-
ence. This means we will need to be able to sample from I | 6, x,y and all terms
in Equation (4.8).

The density of the parameters, 77(6 | I), and the prior distribution of the la-
tent variables, 7(x | 6, I), remain unchanged from Equations (5.12) and (5.11),
respectively. The likelihood of the observations requires modification from Equa-
tion (5.15) to account for the new link function:

nly [%,0,1) = (1) ex {__ZZ[FOIm—Foz +(P1lm—ﬁ1l)2]}/

where,

. 5 . 5
FozZeXP(u+a+Z - 12%>, Flz:eXP(u+zl+ 1271)
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The indicator variables can still be generated from their full conditional distri-
bution, I | 6, x, y, where the density in Equation (5.23) is now modified to account
for the new link function,

(5 | 6,x,y) < p’(1—p)t=2

Tol 11
X exp {—% [Z (Fom — Far) + Y (Fum - 1511)2] } . (527)
m=1 m=1

The link function employed in this latent Gaussian model means there tends to be
no useful simplification of ¢(J;), as was performed for the linear Gaussian model.
As a result, ¢(0) will not always take the value of zero, so must also be computed
for use in Equation (5.26).

When performing the log-sum-exp method, as done for the linear Gaussian
model, we now find the maximum, m = max{¢(0),$(1)}. The probability that
each indicator should then be set to true is

pe‘P(l)
qe‘P(O) + pe‘P(l)
pe‘l’(l)*m
N qe‘P(O)_m + pe‘f’(l)_m'

Pr(6=1|6,xy) =

5.9 Gaussian approximation terms for latent Gaussian

model

At each iteration of the Data Augmentation scheme with Augmented block, a
Gaussian approximation must be performed. The distribution of the optimised
Gaussian approximation of the latent variables is used to generate a proposal for a
new set of latent variables, before the density is used in the acceptance probability
calculation. To perform this Gaussian approximation, as described in Section 3.2.2,
we need to calculate the values of b and c.

Suppose we have independent replicates, j = 1,...,r;, for observations, y;;, all
linked to latent node, x;. Then we find the log-likelihood contribution term, g;(x;)
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from Equation (3.9):

Ti

gi(xi) =y | x:,0)

j=1

=) _logln(yij | xi,0)]
j:1

.
= 5 log(27) + Zlog (Te) ng (2e% — yi5)",
=

and taking the derivatives of these gives,

—

i
8/ (xi) = Tee™ lZ(yij) — 2r1-exi] :
The calculation of ¢ follows as

ri
j=1

while the value of b is,

bi = gi(xi) + pici
ri ri

b; = 1. [Z<yij) — + Tepiet <2e"i - Zyi]) .
j=1 j=1

All values of b; and c; are set to zero if the latent variable does not have any

directly linked observations. Once the values of b and c are known, the guess at

the optimum mode of the latent variables can be found, as detailed in Section 3.2.2.

5.10 Results for latent Gaussian models

Using the smaller “plate 15" dataset, we perform the same analysis to compare the

Data Augmentation with Augmented block scheme from Section 4.10.3 against
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Gibbs sampling methods from JAGS on the model in Section 5.7. For the plate
15 dataset containing 50 different orfA, the ordering of the latent field will be

U, x, Zl/ ey Z50, Y1,---,7Y50, fO,l/ ce ,f0/50, fl,l/ . ,f1,50, resulting in a latent dimen-
sion of 204.

] Implementation \ Time (s) \ Min. ESS  Var. \ ESS/s. ‘

18 ZNMD2 0.24

JAGS 76 20 g 0.26
. 290 ZPRM4 3.72
GDAGsim 78 393 N 504

Table 5.5: CPU User time taken to obtain 10000 unthinned iterations for plate 15 as a latent
Gaussian model.

Table 5.5 shows timings and minimum ESS from this comparison. Mixing for
both these schemes is generally worse than was seen in the linear Gaussian models.
There is no indication that poor mixing for the ORF fitness values is caused by
a bi-modal state induced by the changing indicator state—these schemes both
use the sum-to-zero contrasts for ;—indicating the worst mixing variables are
indeed the z variables in both schemes. These schemes are likely to struggle with
the smaller dataset as the model works best with a full genome-wide dataset.

In the case of the JAGS scheme the ESS is very low, so to verify this sample is not
simply “noise” an additional run was performed using thinning of 10 iterations,
which yielded an ESS for u of 196.6, indicating that the quality of the output chain
improves as expected when thinning is employed. On small scale models, the
computation time per iteration is comparable, so the better mixing obtained from
blocking methods provides a much more efficient scheme in terms of ESS/s.

When performed on a full QFA dataset, the Augmented block in Data Augmen-
tation blocking method that uses GDAGsim fails as the ratio of accepted proposals
drop considerably. In contrast, JAGS models continue to perform adequate infer-
ence after thinning.

Simulated data of varying dimension was created to test these blocking meth-
ods that fail. Due to the non-linear observation model, the quality of the latent
Gaussian proposal deteriorates as the dimension of the system increases. As a
consequence, these schemes have a tendency to converge to the “true” values of
the simulated data before sticking to these values.

Since the linear Gaussian model in Section 5.3.4 is a special case of a latent

Gaussian model, we can implement it using the the same Augmented block in

106



Chapter 5. Quantitative Fitness Analysis

Data Augmentation MCMC method from Section 4.10.3. In this situation, we find
it successfully performs inference on the full-size dataset, suggesting that propos-
als for the latent variables match well to the posterior, keeping the proportion of
accepted proposals as the desired level. ESS/s figures are not as competitive with
the equivalent Data Augmentation method in Section 4.6, primarily because the
MH step means the chain will not move on all iterations.

A possible way to solve the issues encountered in the latent Gaussian model is
to use multiple smaller blocks of latent variables which have a higher probability
of being accepted, and deciding if each of these smaller-dimension proposals
should be accepted in turn. However, reducing the size of the block can have a
negative effect on the scheme’s mixing, so this would form a compromise between
the improved mixing of a large block and the greater acceptance rates of smaller
blocks.

5.11 Model assessment methods

5.11.1 Assessing model accuracy

Working with large genome-wide datasets, where the functions of many genes are
not fully understood already, makes it challenging to know whether these models
are producing sensible results. There are some strategies that can be employed to
decide if results look reasonable.

Using the “plate 15" dataset allowed for the model to be created and tested
quickly thanks to its small dimension, and since most of the genes selected for
use on plate 15 were known to be neutral or to interact, it can be used to roughly
gauge if the model is producing reasonable list of interacting genes. Once the
model was working on plate 15, we created higher-dimension simulated datasets
according to the model, allowing us to know which genes had a “true” genetic
interaction. We then verified that the model was able to correctly identify which
genes were interacting. Our tests on simulated data proved to be very accurate at
identifying the “true” interactions, but it is always worth remembering that real
data can, and probably will, behave differently to simulated data.

Residual plots were also investigated for these models to check whether resid-
uals followed the Gaussian distribution that was expected. The results from these
diagnostic plots were mostly satisfactory, albeit with some truncation in plots
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of residuals against fitted fitness values since large negative values won’t occur
when the predicted fitness values are already close to zero—this combination
of negative residual and small predicted fitness would imply a negative fitness
value.

Cross-validation methods involve dividing the data into two non-overlapping
subsets: a large training dataset and a smaller validation dataset. This is often
used to check the model is able to accurately predict the outcomes for observations
it hasn’t previously seen, and assessed by finding the correlation between the
prediction and actual observation. In the context of QFA, we consider the strategy
of leaving out data when fitting these models is not a sensible strategy because
these models rely on the full genome-wide sequence in order to accurately find

interactors.

5.11.2 Comparison against results from Heydari et al. (2016)

The structure of our latent Gaussian model is less complicated than that seen
in the Interaction Hierarchical Model (IHM) that Heydari et al. (2016) used to
identify interacting orf A in the original QFA analysis. We expect the IHM should
be more accurate at identifying orf A thanks to its increased complexity, while our
latent Gaussian model structure will be more efficient at producing good quality
inference.

To check that the results from both competing models are identifying similar
results, a correlation plot can be produced to display the posterior means for in-
teraction strengths obtained from each scheme—this can be seen in Figure 5.15. A
positive linear correlation would indicate that the different models identify similar
genetic interactions, and that the strongest interactions in our model appeared as
the strongest interactions in the IHM. While a positive correlation is desirable, the
points do not necessarily need to fall on the 1:1 line, as the models have different
parameterisations for the interaction strength.

There are some points of concern which can be found in Figure 5.15. Points at
the origin of the plot are acceptable, since this indicates both models are identify-
ing a gene is neutral, but other any points lying along either axis at zero indicate
that one model has identified an orf A as an interaction where the other model de-
cided that the same orf A was neutral. Of the 502 interactions found by the latent
Gaussian model and the 576 interactions by the IHM, 411 of these interactions
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Figure 5.15: Correlation plot of the mean posterior genetic interaction strength from the
Heydari et al. (2016) IHM and the latent Gaussian model specified in Section 5.7 (labelled
as ‘Newman GIS’). The dashed line represents the 1:1 line.
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are common between both sets of results. Two of these overlapping hits appear
in a concerning manner in Figure 5.15, since they appear in the top-left quadrant
of the plot, indicating the two models have reached conflicting statements about
whether sir3A and rsc2A cause suppressing or enhancing interactions. Overall, the
plot shows a promising overlap in ‘hits” and a positive and generally linear cor-
relation in interaction strengths, suggesting the simplified latent Gaussian model

performs acceptable inference in comparison to the IHM.
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Mini QFA

6.1 Introduction

Mini QFA is a recent and on-going development upon the previous QFA experi-
ments seen in Chapter 5. It aims to find genetic epistasis between defective telom-
eres and the simultaneous deletion of two other non-essential genes of interest.
As with QFA, this experiment is performed on Saccharomyces cerevisiae.

Groups of genes are known to work together to perform various operations,
each according to their own interaction pathway. One relevant example that exists
in Saccharomyces cerevisiae is the MRX complex, consisting of the genes MRE11,
RAD50 and XRS2. D’Amours and Jackson (2002) explains this complex is known
to play a part in telomere length maintenance and DNA double-strand-break
(DSB) repair pathways. Each gene in the complex plays its own part in these
processes; if the complex is damaged by the deletion of one or more of these
genes, the remaining genes will be unable to perform their task in maintaining
telomere length or fixing a DSB.

Developing methods which can identify groups of genes that interact together
with telomeres is of interest, not just for the case of Saccharomyces cerevisiae, but also
for identifying homologues of these genes present in human cells. While MRE11
and RADS50 were found to exist in many species, a homologue of XRS2 remained
elusive. When Carney et al. (1998) discovered that NBS1 deficiency prevented the
growth of MRE11/RADA50, it was discovered that NBS1 is the homologue of XRS2
in vertebrates, thereby revealing the group on genes that affect telomere length

maintenance and DSB repair in humans.
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The previous QFA experiment was concerned with finding genetic epistasis be-
tween the defective telomere and a single deletion from across the whole genome,
suggesting which of the 4294 non-essential genes (4135 after some were stripped
from the analysis) interact with a defective telomere. The new experiment aims
to delete all pairwise combinations of the non-essential genes from strains that
feature one of two possible telomeres. Attempting to perform a genome-wide
analysis of pairwise deletions across a set of 4135 genes with one of the telomeres
would result in 4135% = 17,098, 225 possible combinations to check, even before
any replicates have been taken; since each strain needs to be prepared, grown
and photographed at regular time-points, this would not be a feasible experiment
to perform at the laboratory under reasonable time and budget constraints, even
with access to robotic equipment.

Therefore, this new experiment is performed by deleting two genes from a
smaller selection of only 154 genes, leading to the name Mini QFA. The limit
of 154 genes was pragmatically selected as it is the number of genes that can
be grown on half an agar plate in 384-spot configuration; 384-spot format uses
a 24 x 16 grid layout, but edge-colonies must be discarded from the experiment
because they have a growth advantage due to the lack of competition for nutrients.
The growth advantage of edge colonies is visible in the example 384-spot plate
given in Figure 6.1, which shows the growth of yeast cultures after approximately
117 hours.

Genes were selected as part of the 154 orfA to be analysed if they fit any of
these criteria: they affect telomere length, they were found to interact with telom-
ere defects in the full QFA analysis, or they have homologues in human cells. Ad-
ditionally, a very small number of genes featured in the study which are known
neutral mutations, such as his3A, will be included in the selected 154 genes.

One concern exists about the lack of a genome-wide dataset because the se-
lected 154 genes are an inherently biased selection, mostly chosen as these genes
have exhibited an interaction in previous experiments. The inclusion of known
neutral mutations could allow a fixed reference point, which the many interacting
mutations can contrast against, with potential added benefits of helping prevent
some identifiability issues.

A background screen is made with a gene deleted from the sequence, and
divided up among the spots on each plate. Each query gene is then knocked

out from each of the spots using a different screen. This results in 154%> = 23716

112



Chapter 6. Mini QFA

09O 5008ONCOS | |
| OS2SB4 BIQIGRREEwO L]
'IFET Y FETEL Y LD F Al
:QQ*%&G*@&@%$&$@O~*
| SO 2 QAP HEIDEIED
| DR 2 CEFCRE QDI G B
PRSP DIBLBHODD
| BP9V O BR800 |
| @=L PLBHBSOLE08 |
1 GBRCERLBLGOBIEED |
| SPLELOLBLDPHBS LD
LT EBHEOBLBRTVRPL LGP

“-weﬁ&eaaﬁﬁaa&&wwe’
SHERBYPE R D ||
@&@#%fﬁﬁ@ﬁf

2@

28 S
c 1 1
”G.‘.
@ B4
86
D¢
&
- 1 X
(§Q
&%

]
3}
b ]
"u’

0@@%0@@@0&0

il PeGuBepide
FSE G HHRED

7 go®r9268849

Figure 6.1: An example 384-spot format plate provided in the Colonyzer package (Lawless
et al., 2010). The yeast cultures on this plate have grown for approximately 117 hours.
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different pairwise combinations of deletions to be analysed in this “all-by-all”
experiment.

We define the notation where a defective telomere (such as CDC13-1) is crossed
with the deletion of two other genes (for the sake of this example, the background
screen has YFG1 deleted, and the query screen deletes XYZ2?), then we denote
this triple mutant strain as cdc13-1 yfg1A xyz2A.

We will find that for some of the observations, the same gene is deleted twice;
once in the background screen and separately in the query screen. Using our
notation, this situation of having the same gene deleted twice will be described
as cdc13-1 yfg1A yfglA, and we will refer to these as double-I deletions since the [-th
OREF has been deleted twice. In such cases, we expect that all double-/ deletion
strains should always be dead? for reasons discussed in Section 5.1.3.

This experiment is performed at two different temperatures for each of two
different telomeres, giving four different combinations: CDC13+ at 27°C and 33°C,
and CDC13-1 at 27°C and 33°C. These are all treated as separate experiments and,
as a result, they are analysed independently.

6.2 Modelling for Mini QFA

6.2.1 Models of epistasis

We aim to model for pairwise deletions that cause an interaction, which would be
indicated by a deviation from expected behaviour. We use Fisher’s multiplicative
model of epistasis (Cordell, 2002), which was described previously in Section 5.2.2,
to define what behaviour is expected. We will illustrate properties of this model
by assigning hypothetical fitness values to some imaginary genes.

Suppose cdc13-1 yfg1A has a fitness of 2, cdc13-1 xyz1A has a fitness of 3, and
yfg1A & xyz1A actually have independent functions so should have no interactions.
We would expect to find that cdc13-1 yfg1A xyz1A has a fitness of 2 x 3 = 6.

Now suppose that cdc13-1 yfg1A has a fitness of 2, cdc13-1 yfg3A has a fitness
of 3, and yfg1A & yfg3A do interact (for example, YFG1 may be involved in essen-

tial preparation for chromosome repair which YFG3 completes; the chromosome

IThe genes YFG1 and XYZ2 are not real and they merely serve as placeholders; YFG is used
here to stand for “your favourite gene”.
2We may find extremely poor growth as opposed to zero growth from a truly dead strain.
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cannot be repaired if either of these are missing). The multiplicative model would
expect to find cdc13-1 yfg1A yfg3A to have a fitness of 6, but we might actually find
the fitness is only 2. This deviation from the expected value is indicative that the

pairwise deletion exhibits epistasis.

6.2.2 Standard Mini QFA model

Under the multiplicative model of genetic epistasis, we define the model as fol-

lows:
Ferprm ~ N(ﬁclzu'fs) By = exp (far)
fur =+ Zi+ Zp + S (6.1)
1t~ N(0,0.00171) Y~ N(0, T, )
—0 if1=1 —1 if1=1
Zl . 511/ .
~N(0,7;!) otherwise ~ Bern(ps) otherwise
enrm ~ N(0,72) Te, Tz, Ty ~ Ga(1,0.00005)
where:

e Fis a measure of fitness.

| represents that ORF [ is deleted from the background screen; I’ denotes
that ORF [ is the query deletion. The order of these ORF deletions does not
matter, excluding ORF | = 1 which we set to be the neutral deletion, HIS3.

* 7 is the OREF fitness expected when ORF [ is deleted from the strain. Z
represents the same for the query gene that is deleted. Since Z; = Zyjg3 = 0,

all other OREF fitnesses represent contrasts from a neutral deletion.

* u represents an underlying overall mean fitness for the chromosome with
its telomere. Since Zysz = 0, the underlying mean is the fithess where a
neutral HIS3 deletion has occurred.

* 7y is a genetic interaction strength between the two deleted genes.

* Jy is a Kuo & Mallick indicator which determines whether there is a signif-

icant genetic epistasis between the deleted genes and the telomere. When
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a double-I deletion occurs, the indicator is fixed to be “on’ as these strains
should always be dead.

6.2.3 Model variations

The fitness measurements, F, that are used in the model and described previously
in Section 6.2.2 are inferred using an updated version of the Colonyzer software
(Lawless et al., 2010) for image analysis and the fitting of logistic-growth curves.
The parameters from fitting these growth curves allow for multiple possible mea-
sures of fitness, such as MDR, MDRMDP and nAUC which were described in
Section 5.2.1, along with the doubling rate parameter, r, from the logistic growth
model. There is current debate as to which is the best measurement to use, so
models have been run on all four different fitness measures to investigate which
may be most informative.

As many of the ORF fitnesses, Z, selected for this study will often be quite
far from zero—an artifact from selecting 154 genes that mostly interact with the
telomere—we expect this distribution to have heavier tails than a Gaussian distri-
bution. For this reason, we also explore the possibility of modelling ORF fitness
using a t-distribution on 3 degrees of freedom, as this is more robust when pre-
sented with non-Normal data.

We have also explored whether ORF fitness distributions behave similarly if
the gene of interest is deleted in the background screen or the query. For biolog-
ical reasons, it is expected that the fitness of cdc13-1 yfg1A xyz2A should behave
identically or similar to cdc13-1 xyz2A yfg1A, but investigations on early datasets
showed examples where the fitness did not behave like this. Examples of this
occurring are shown in Figure 6.2, where in Figure 6.2a there is a slight discrep-
ancy between the fitness depending on where SCS2 was deleted. A more obvious
case of this discrepancy is visible in Figure 6.2b. All cdc13-1 dun1A yfg1A strains
were grown on the same plate and all had extremely poor growth, leading to the
decision that DUNT1 results should be stripped from the data and the plate grown
and evaluated again.

To account for this in the model based on the current data we have been pro-
vided, we implement asymmetric ORF fitness values by treating the ORF fitness
for the background screen deletion separately to the ORF fitness for the query

screen deletion. This would be represented in the model as an adjustment to
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Figure 6.2: Asymmetry in the ORF fitnesses depending on whether the gene was deleted
in the background strain or the query. Red vertical lines denote the fitness of double-/
deletions, i.e. the cdc13-1 scs2A scs2A fitness values in Figure (a).
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Equation (6.1):

fir =u+2Z)+ Z) + Sy

o g =0 if1=1
I i
"1~ N(0,7; ') otherwise

where Z? and Z4 are OREF fitness for the background and query deletions, respec-
tively.

Early datasets also showed some cases where fitness of the double-/ deletion
strains had higher than expected fitness values. In some cases, this was an indi-
cation that the screen had not worked correctly and would therefore need to be
stripped from the experiment. In other cases, it revealed that the double-/ deletion
culture was actually dead, but neighbouring cultures that were very fit would
overlap into the empty space left by the double-I/ deletion, causing the image anal-
ysis to believe the dead strain was growing. Recent refinements in Colonyzer’s
image analysis by Lawless et al. (2010) has proven more successful at correcting
for this, as shown in Figure 6.3, where the old methods in Figure 6.3a picked up
artificially high fitnesses for double-I deletions, but newer results in Figure 6.3b
show this issue has now been corrected..

This highlights some of the uncertainty there can be in the quality of the data,
and the problems presented in deciding whether these quirks in the data should
be handled by the Bayesian model, the image analysis and logistic growth-curve
titting, or at the laboratory stage. The histograms of fitness values, such as those in
Figures 6.2 and 6.3, are useful for identifying which genes should be investigated
for potential experimental error; this can be where the distributions are different
depending on whether the same gene is deleted from the background or query,
or whether there are several double-/ deletion strains with unusually high fitness

values.

6.3 Implementation and analysis

We can implement the model and its variants described in Sections 6.2 and 6.2.3
using JAGS (Plummer, 2003), as this provides the simplest way to explore the mul-

tiple model variations to be considered. As there are 4 independent experiments
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to analyse for each telomere and temperature, we can run each analysis in parallel
to make use of multi-core processors or computing clusters.

Scripts are used to create batches of jobs, making it more manageable to initiate
all the independent experiments for each of the different model variations. It is
generally best for the user to manually check that the chains have converged to
their posterior distributions and are mixing well, although methods suggested
by Raftery and Lewis (1992) could be used to identify the amount of iterations
to be discarded as the burn in and the amount of thinning to be applied to the
remaining results. This provides scope for the chain from each experiment to be
checked automatically as part of the Mini QFA analysis workflow.

Once the chains are manually checked, further scripts are used to calculate
genetic interaction strengths for each of the pairwise orf A combinations for each
experiment. With over 23,000 possible combinations of deleted genes, an intuitive
way of viewing the results from the model’s analysis is required. We have created
a HTML web page which finds and displays output from the Mini QFA analysis
scripts, and places these in the relevant parts of a template. This template allows
for results from each experiment to be viewed, for each of the telomere defects
used at the different temperatures, along with variations of the models explored.

A searchable and sortable data table of key numerical summaries can be cre-
ated using DT (Jardine, 2014), listing information such as the genetic interaction
strength, predicted and actual fitness measurements, and whether each pairwise
deletion is a phenotypic suppressor or enhancer.

To supplement this, a genetic interaction plot in PDF format is included dis-
playing how actual observed fitness values deviate from their predicted fitness
under the assumption of no interaction occurring (i.e. 7y;» = 0), highlighting terms
which deviate from this by a significant amount. Each interaction is labelled with
the concatenation of the names from the deleted genes, allowing the PDF to be
searched for deletions of interest. There is additional scope for using plotly (Siev-
ert et al., 2016) to provide an interactive version of these genetic interaction plots,
which may prove easier to explore due to the large quantity of points and labels
featured in the plot.

An example of a genetic interaction plot can be found in Figure 6.4. For the
horizontal axis of these plots, we compute the “predicted fitness” value under the
assumption of Fisher’s multiplicative model of epistasis based on what is expected
when each gene is deleted; this is the fitted value assuming no interaction occurs
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(i.e. ). For the vertical axis, we have the fitted value of the fitness measure
for each pairwise deletion; this is equivalent to adding the genetic interaction
strength, 7y, back into the predicted ‘fitness assuming no interactions” measure.
Most pairs of deletions do not interact, which is expected, and these lie on or
sufficiently close along a 1:1 gradient. Deviations above this line suggest that
the telomere defect is suppressed by the deletion of both ORF, performing better
than predicted. Conversely, deviations below the line suggest a telomere defect is
enhanced if the actual fitness was worse than predicted.

Purple points denote where a double-/ deletion has occurred. As we expect
these to always be dead, we expect to find their predicted ‘fitness including inter-
actions’ values to be minimal, meaning all these points should appear along the
bottom. This can be used as a form of quality control for indicating if the results

show any issues with any of the strains.

6.4 Adjustments from collaborator feedback

Providing the tables and plots of genetic interactions allows our collaborators to
identify problematic screens and provide feedback on what model variations are
showing the most promising ability to identify interactions correctly, based on
findings from smaller scale analyses that have previously been performed.

6.4.1 Identifying problematic data

Our collaborators believed they had the greatest understanding of what patterns
to expect in the cdc13-1 at 33°C experiment, so they requested for side-by-side
plots of results from the various models for each of the possible fitness measures
in the cdc13-1 at 33°C experiment. From these plots, they found the models had
identified a number of unexpectedly strong hits involving the POT1 gene where
the doubling rate parameter, , was used as the fitness measure—an original
plot which exhibited this behaviour is featured in Figure C.3 of Appendix C.2.
On further investigation, it emerged the metadata for POT1 had all dates offset
by one day, leading to inflated growth rate parameters being provided to the
interaction model. After re-performing the analysis with corrected POT1 data, the
interaction model also highlighted similar issues with the DPH5 screen, which
was subsequently removed from the dataset.
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Figure 6.4: Example GIS plot for Mini QFA data for cdc13-1 at 27°C using the MDR mea-
sure of fitness. Each interacting gene combinations is labelled by its concatenated name.
Purple points represent the double-/ deletions which are always set to be interacting. The
dashed line follows a 1:1 line of fitness.
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Under these circumstances, the interaction model proved useful in highlight-
ing problematic subsets of the data to our collaborators. When supplied with
unusually high fitness measurements, the interaction model remained robust
enough to avoid predicting correspondingly high fitness values, opting instead to
highlight these as strong interactions. Unfortunately, the model is not be robust
enough to reliably infer all the remaining interactions accurately as the very strong
false-interactions from the bad data cause many of the weaker interactions to be
considered neutral.

To produce a more robust model in the face of potentially incorrect data, fitness
measurements were modelled using a t3-distribution, in the hope that the heavier
tails of the distribution would be more robust to measurement errors. When this
model was fit to data containing the original incorrect POT1 and DPHS5 values,
these genes were not highlighted as strong interactions; it is robust enough to
continue identifying other interactions, but does not highlight the problematic
screens that needed correcting. This can be seen in Figure C.4 of Appendix C.2.

6.4.2 Selecting from model variations

A number of model variations are mentioned in Section 6.2.3 and we wish to
identify a single model that is best for identifying genetic interactions. Producing
side-by-side plots of the results from each of the model variations proved to be a
useful in identifying which models work best.

As problematic data was corrected or removed from the datasets provided
to the interaction models, we found that the results from the different models
converged to produce similar results, as seen in Figure C.5 of Appendix C.2. Mod-
elling the fitness measurements using Gaussian or t3-distributions often high-
lighted the greatest differences when problematic data was present. As these
models have now converged to give similar results, this might suggest that most,
if not all, problematic data has been successfully removed. We may opt for the
most convenient model to use; this may arguably be the model which applies
Gaussian distributions to both the fitness measurements and the ORF fitnesses,
since this is quickest to perform due to its latent Gaussian structure.

Models with asymmetric ORF fitnesses were also considered. As problem-
atic data was identified and corrected, we found that most of the symmetry has

returned to the ORF fitnesses. This was evident in plots where a pairwise dele-
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tion (e.g. cdc13-1 yfg1A xyz2A) would appear near its complement deletion (e.g.
cdcl3-1 xyz2A yfg1A). In light of this improvement, a model containing symmet-
ric ORF fitnesses could be used, which would fall inline with our collaborator’s

expectation of the underlying genetic processes.
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Conclusions and future work

7.1 Conclusions

The aim of this thesis was to explore the use of methods which can aid in more
efficient Bayesian inference on latent Gaussian models, including those containing
an aspect of Bayesian variable selection. DAG representations of latent Gaussian
models highlight the often-sparse dependence structure that appears between
variables. By exploiting the conditional independence seen between many of the
latent variables, we are able to represent the model using a multivariate Gaussian
distribution with a sparse precision matrix. This opens up the possibility of using
blocking methods to more efficiently sample from a correlated posterior distribu-
tion (Roberts and Sahu, 1997; Amit and Grenander, 1991; Seewald, 1992) since the
sparse matrix operations required to do this are feasible, even in large dimension
problems.

In the special case of linear Gaussian models, where observations are mod-
elled as Gaussian variables with mean equal to a linear combination of the latent
variables, we are able to simplify the calculation of the posterior distribution
through use of a canonical parameterisation of the multivariate Gaussian distri-
bution, which Wilkinson and Yeung (2004) demonstrate by constructing a linear
Gaussian model from its DAG representation. GDAGsim software (Wilkinson, 2002)
assists in the construction of linear Gaussian models based on its DAG representa-
tion; we created a new version of this in Java, GDADGsimJ, built using Parallel Colt
(Wendykier and Nagy, 2010) which, crucially, handles AMD permutations of the

precision matrix before Cholesky factors are taken and allows very large matrix
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operations to be performed in parallel. This therefore extends the original GDAGsim
implementation in two important ways: fill-reduction and parallelisation. These
both facilitate applications to larger and more challenging problems. The new
Java version of GDAGsimJ is to be publicly released on GitHub once fully tested
and documented.

For latent Gaussian models which feature more general likelihoods, GDAGsimJ
can be used for construction of the prior distribution of the model, but an alter-
native way of conditioning on the observations is required. Gaussian approxima-
tions, also referred to as a GMRF approximation by Rue and Held (2005), provide a
method for conditioning on the latent Gaussian model, supplying an approximate
multivariate Gaussian density with optimised mean and precision parameters. We
explored using a combination of GDAGsimJ with Gaussian approximations as part
of a blocking scheme for an example in Chapter 4. For this scheme, the model was
sufficiently small that standard Gibbs methods from JAGS did not struggle too
much with the correlation between variables. An approximate marginal scheme
was able to generate independent samples from the posterior with greatest effi-
ciently in terms of ESS/s, but only performs approximate inference and doesn’t
automatically produce any inference for latent variables without employing a col-
lapsed Gibbs Sampler (Liu, 1994). On larger dimension models, the single- and
two-block samplers could not cope with the dimension of the latent field it was
attempting to sample from.

Integrated nested Laplace approximations are a deterministic algorithm pro-
posed by Rue et al. (2009), which allows previously intractable integrals to be
computed using Laplace approximations. We recreated this method for use on
the same toy model and found it to produce close approximations to the exact
posterior density targeted by an MCMC scheme, although we could not match the
fast processing times achieved in the highly developed and refined INLA software.
Use of INLA is restricted to low-parameter-dimension problems, as the integra-
tion of the parameter space suffers as dimension increases. For this reason, it does
not work well for Bayesian variable selection problems as the number of possible
indicator states to integrate over can be of a prohibitively high dimension, but
some of the methods used in INLA are shared with some of the MCMC blocking
methods used on latent Gaussian models.

In Chapter 5, we examined the effect of blocking methods for Bayesian variable

selection models by applying them to a genome-wide genetics study to identify
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genes that interact with defective telomeres, developing on previous studies by
Addinall et al. (2011) and Heydari et al. (2016). The work was focused on pro-
ducing a more efficient sampling method at the potential cost of a slight decrease
in the model’s ability to identify interactions. On a linear Gaussian model, we
investigated how efficiency improved where we employed a number of tricks to
try and reduce computational time or improve mixing. We found: permutations
on precision matrices can be essential to reduce Cholesky fill-in; dynamic resiz-
ing of the model gives reasonable speed-ups where variables are often likely to
be excluded; choice of parameterisation can influence the mixing of a scheme. In
comparison with results obtained by JAGS, the blocking methods in one case were
over seven times more efficient in terms of the minimum ESS/s of any variable in
the chain.

Applying methods for the latent Gaussian model on the same genome-wide
dataset was problematic, as the high-dimension of the latent field creates a very
low acceptance probability for accepting new values of the latent variables. On
a smaller model, using only data from Plate 15, the blocking scheme manages
to perform inference successfully being over 14 times more efficient by ESS/s
than what is obtained from JAGS. However, this positive performance rapidly
deteriorates as the dimension increases.

Finally, in Chapter 6 we discussed details from an ongoing experiment, detail-
ing the considerations made to build an new model for detecting genetic epistasis
based on the fitness data provided by image analysis and growth-curve fitting
data.

7.2 Future work

7.2.1 Permutations for dynamically resizing models

In Section 2.3.2, we discussed how the AMD algorithm permutes a matrix to
minimise Cholesky fill-in. Then we see the effects of these permutations in Sec-
tion 5.6.2, and while fixing the permutation here does not cause a reduction in
computation time, it is possible that larger or more complicated models will ben-
efit from a fixed permutation. Then Section 5.6.3 demonstrated that dynamically
resizing the model at each iteration does reduce the CPU user time of the scheme.

Since the contents of the precision matrix was changing at each iteration, we al-
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lowed the permutation to be recomputed from scratch each time.

What has not yet been explored is whether a permutation can be fixed at the
start, while allowing the model to resize. Recall that in Section 2.3.2, we described
three key properties that the permutation aims for: densest final row/column, low
bandwidth and empty blocks. Suppose you begin with a sparse matrix, A, rep-
resenting a full model which is permuted by the AMD algorithm into C = PAP7,
and that each row/column i in A will have a bijective mapping to row /column j
in C, according to the permutation matrix P. We conjecture that once an optimum
permutation for the full model is obtained, any row /column i can be removed can
be removed from A, which will leave C approximately close to its optimal layout.

This is in fact because removing any row/column j from C will not damage
the three desirable properties for an approximately optimal permutation: we can’t
cause a dense row /column to appear further from the bottom-right of a matrix by
deleting any row /column; we can’t increase the maximum bandwidth by remov-
ing any row/column; while we can reduce the size of an empty block, we can’t
contaminate an empty block with a non-zero value by removing any row /column.
Since any j can be removed from C, it follows that any i can be removed can be
removed from A. By further extension, multiple rows and columns can be deleted

at once.

7.2.2 Multi-block methods for latent Gaussian models in QFA

Where performing a latent Gaussian model on a full-size dataset proved unsuc-
cessful due to the large dimension of the latent field being sampled, workarounds
can be investigated. One possible solution to the problem is to divide the latent
field into multiple smaller blocks, and proposing and accepting each block in turn.
Creating smaller blocks should increase the acceptance probability of each, allow-
ing the chain to move more frequently. Increasing the blocks will unfortunately
decrease the positive effect blocking has on the mixing, as correlation can exist
between the blocks, but this is favourable to a scheme that rarely moves at all. A
suitable way of dividing the QFA dataset into smaller blocks may be to perform
one block for each of the 15 plates the experiment is performed on. A paper is in
preparation awaiting results from the this multi-block approach before it is to be

submitted for publication.
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7.2.3 Developments on Mini QFA

Progress has been made in exploring which model should be used out of the model
variations that were considered, but since analysis of the Mini QFA experiment is
an ongoing project, this has not yet been finalised. Feedback and refinement is still
being performed in collaboration with the experimentalists, who found the use
of different fitness measures useful at tracking-down problematic datasets and
spotting interactions. For this reason, they have proposed that three additional
fitness measures be considered in the analysis: the carrying capacity parameter
from the logistic growth model, K; the product of rate and capacity parameters, rK;
a parametric area under the growth curve measurement, AUC. Once the model
has been finalised, utilising methods for blocking could be explored to investigate
if the inference can be performed in a more efficient manner.

Use of clustering methods can also be investigated, with an aim to iden-
tify groups of variables that feature in pairwise deletions. Genetic interaction
strengths can also be uploaded to GeneMANIA (Warde-Farley et al., 2010) to as-
sist in predicting clusters of genes that interact and guess at their genetic functions.

The scripts used to automatically create and run the JAGS models and process
results afterwards were designed to be easy to implement as a package for R (R
Core Team, 2016), which is likely to be released on R-Forge once further refine-
ments have been made. Potential additions to the work include automatically
checking the model has converged and is sufficiently thinned to remove autocor-
relation, although it could be argued that this stage should contain an element of
human intervention to double-check the results.

Current Mini QFA analysis provides point estimates for posterior measure-
ments. For example, the posterior genetic interaction terms, J;;7y;y/, are given as
the posterior mean. It would be beneficial to include a measure of uncertainty
around this estimate, especially since the lengthy and complicated process of ex-
perimental data collection creates a number of opportunities for error to enter into
the model. Probability intervals could easily be included in the searchable results
tables. Unfortunately, the large number of overlapping points on the genetic inter-
action plots would make it impractical to also show probability intervals around
each point, unless interactive plots are generated where the user would be able to
zoom in on an area of interest in the plot.

Current fitness measures supplied to the interaction models specified in Sec-
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tion 6.2 are point estimates from the Colonyzer software. A more recent version
of Colonyzer implementing Bayesian methods is being trialled which would be
able to provide posterior predictive distributions for each of the fitness measures
that are later used in interaction model specified in Section 6.2. The interaction
model would need to be restructured considerably in order to take advantage
of the posterior predictive distributions, but this would allow uncertainty from
the growth-curve fitting stages to be propagated through the model to the final
identification of interacting pairwise gene deletions. Under such a framework, it
may be advantageous to create one large Bayesian model which handles both the
inference of growth-curve parameters and genetic interaction identification. This
would be analogous to the Joint Hierarchical Model created by Heydari et al. (2016)
for the QFA experiment. A potential drawback to creating this model would be the
long time currently needed to infer the growth-curve parameters using MCMC,
which takes over one month to create a satisfactory sample.

Key findings on the detection of genetic epistasis in the Mini QFA paper are

expected to be published following further model refinement.
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Algorithms

Algorithm 5: Specification of a general GDAG model in GDAGsim.

Data: Values for precisions 7., number of roots n1, number of nodes 75,
model dimension 17 + 1y, = n.
Create GDAG instance of dimension 7;
/* Add roots of latent variables using prior values */
for i := 1 to Number of roots n; do
\ addRoot(index = i, mean = y;, precision = T;);
end
/* Condition other latent variables on the roots */
fori := ny; + 1 to Model dimension n do
Node := Specified dependencies for Node[i] conditioned on roots;
addNode(Node, index = i, offset = b;, precision = T;);
end
if log-density values are needed then
\ Process prior structure;
end
/* Add observations to the model */
for i := 1 to Number of observations do
Node := Specified dependencies of observation’s node;
addObservation(Node, precision = Tgpservation i)
end
Process GDAG model;
Result: Access to log-likelihood, simulations of latent variables, precision
matrix Q, Lower Cholesky factor L.
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Algorithm 6: Calculating a multivariate Gaussian density.

Function monLogDensity (x, u, L)

Data: Quantile vector x to evaluate the density at, Cholesky factor L
from precision matrix Q, mean vector y, dimension d of L and p.

Result: The log-density of Ny (x; 1, Q7 1).

d := dimension(u);

logd := —4log(2 x 7);

/* Now find the (x —pu)TQ(x —p) term */

fori:=1toddo

| z[i] o= x[i] — pli] ;

end
v := Mult(LT, z); /* Matrix multiply LTz =v */
tot :=0;

fori:=1toddo
| tot := tot + (v[i] x v[i]);

end

logd := logd — 0.5 x tot;

/* Calculate the square of the determinant for Q */
tot:= 0, /* Reset the total counter */

fori:=1tod do
| tot := tot + log (L[, 1]);
end
logd := logd + tot;
return logd;
end

Algorithm 7: Generating a sample from a multivariate Gaussian distribution.

Function multivariateGaussianSample (u, L)
Data: Cholesky factor L from precision matrix Q, mean vector p,

dimension d of L and .
Result: A sample of values from N (u, Q7 1).
d := dimension(yu);
fori:=1tod do

| z[i] := random sample from N(0, 1) distribution;
end
w := backsolve(L”, z); /* Solves LTw =z */
fori:=1toddo
| x[i] == wli] + pli];
end
return x;

end
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Additional derivations

B.1 Demonstration that Equation (3.5) has no depen-

dence on x

Section 3.2 contains the statement that the 77(6 | y) term on the left-hand side
of Equation (3.5) carries no dependence on the latent values x, and therefore the
right-hand side of the equation also does not depend on x, despite this term
appearing in the equation. By factorising Equation (3.5) further, it can be shown
there is no dependence on x:

Therefore, the expression in Equation (3.5) simplifies to a standard statement of
conditional probability containing no dependence on x.
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Appendix B. Additional derivations

B.2 Demonstration of Equations (3.12) and (3.13)

The AR(1) process for x in Equation (3.11) can be summarised as,
Xi=¢xi1+e€; P <1 €~ N(O,O’Z),‘ i=2,...,n.
The variance of this process for x can be derived as,

Var(x;) = Var(¢x;_1 +¢€;)
Var(xl-) = (pZVar(xi_l) + Var(ei)
(1 — ¢?)Var(x;) = o [Since Var(x;) = Var(x;_1)]

o2

Var(xi) = m

The covariance between two consecutive values in x is calculated as,

Cov(xi,l,xi) = COV(XZ', xi,l) = Cov(cpxi,l + €5, xi,l)
= gbCov(xl-,l, xi,l)

= ¢pVar(x;_1)
T

This can be extended to find the covariance between two latent values in x which

are k values apart, fork =0, ...,i — 1, since,

Cov(x;_k, x;) = Cov(x;, x;_) = Cov(pxi_1 + €, X k)
= ¢Cov(xi-1, X )
= ¢Cov(Ppx; 2 + €;, X 1)

= ¢*Cov(xi_2, Xi_g)

= (PkCOV(xi—k/ xi—k)
= ¢*Var(x; )

0.2

1—¢?

= ¢t
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Appendix C

Supplementary plots

C.1 Simple example for MCMC

To produce the plots shown in Figure 4.3, long MCMC runs were performed on
the simple model shown in Section 4.12.5 of 30000 iterations, each thinned by 50
iterations. ACF and trace plots of these runs are provided in Figures C.1 and C.2.
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Figure C.1: Autocorrelation plots with corresponding 95% intervals for the 30000 itera-
tions (thinned by 50) shown in Figure 4.1, for the parameters (from left column to right
column) 01, 6, and 65, for each of the MCMC schemes used (from top row to bottom row):
JAGS, marginal, single-block and two-block methods.
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Appendix C. Supplementary plots

C.2 Highlighting problematic data in Mini QFA

Section 6.4.1 discusses how the experimentalists had the greatest understanding
of the CDC13-1 experiment at 33°C from the small scale experiments they per-
formed, so the genetic interaction plots for these experiments provided interest-
ing comparisons to the behaviour which they expected. The unexpectedly strong
interactions involving POT1 and DPHS that appeared in Figure C.3 warranted
further investigation and highlighted problematic subsets in the dataset.

Figure C.4 is the analysis on the same problematic data featured in Figure C.3,
but where the fitness values are modelled with a t3-distribution instead of a Gaus-
sian distribution.

Figure C.5 shows results from the same model used to produce Figure C.3, but
this uses a more recent dataset where problematic data was corrected or stripped

from the analysis.
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Figure C.3: Genetic interaction strength plot for CDC13-1 at 33°C with a Gaussian distri-
bution used to model the fitness (r) measurements. Problematic POL1 and DPH5 data is
included in the analysed dataset. Note that very few interactions are found due to the
extreme outliers.
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Figure C.4: Genetic interaction strength plot for CDC13-1 at 33°C with a t3-distribution
used to model the fitness (r) measurements. Problematic POL1 and DPH5 data is included
in the analysed dataset.
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Figure C.5: Genetic interaction strength plot for CDC13-1 at 33°C with a Gaussian dis-
tribution used to model the fitness (r) measurements. Problematic datasets have been

removed or corrected for this more recent analysis.
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