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Abstract 
 

Mode localization refers to the spatial trapping of energy in a coupled oscillatory system 

that occurs when a disorder is introduced into a previously ordered system. This thesis 

explores the exploitation of this phenomenon in surface acoustic wave (SAW) devices 

for sensing applications. The sensing application of primary focus within this work is a 

magnetic field sensor, wherein the strength of mode localization changes in proportion 

to an external magnetic field. In addition, application as a bio-mass sensor is suggested 

and briefly discussed.  

Utilisation of mode localization as a sense mechanism involves the use of changes in 

the normalised mode shape of a weakly-coupled two degree-of-freedom system as the 

sensor output. This is in contrast to the use of shifts in frequency, phase or amplitude 

as is commonplace in resonant micro-electromechanical systems (MEMS) sensor 

technology. The theory and principles of device operation are introduced utilising a 

discretised model. In particular, the use of a periodic array to couple the sensors’ two 

degrees-of-freedom is investigated. A generalised geometry of the SAW device is 

introduced, consisting of a pair of acoustically-coupled cavities. An analytical solution 

is found for the displacement fields within the cavities. The solution is achieved by 

coupling the internal cavity solutions using a ray tracing method. The results of the 

analytical solution are compared to a numerical solution found using commercial finite 

element analysis (FEA) software; good agreement is observed. 

The model is subsequently used to analyse and discuss device performance in the 

presence of noise; expressions are presented describing device operation and 

performance, and a case study is outlined evaluating use as a MEMS magnetometer. 

Finally, the design, manufacture and testing of a prototype design is discussed. 
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Chapter 1. Introduction 

1.1 Problem statement and motivation 

In the field of micro-electromechanical systems (MEMS) it is commonplace for sensors 

to be designed to utilise a mechanical resonator for transduction, devices within this 

subset are termed resonant MEMS sensors. The output of such a device is typically the 

change in frequency, amplitude or phase of the mechanical resonance in proportion to 

some external influence. Common applications include gyroscopes, accelerometers, 

magnetometers, pressure sensors and mass sensors. This thesis concerns an emerging 

subset of resonant MEMS sensors which utilise an alternative resonant sensing protocol. 

These emerging devices use mode localization as the output metric rather than the 

aforementioned sensing techniques. This is explored with the primary motivation of 

developing a high signal-to-noise ratio (SNR) MEMS magnetometer. In addition, it is 

suggested that the principle of operation can be used to develop a robust, high-

sensitivity MEMS bio-mass sensor.  

Mode localization refers to the spatial trapping of energy in a coupled oscillatory system 

that occurs when a disorder is introduced into a previously ordered system. Mode 

localization sensing has recently emerged as an alternative resonant sensing protocol, 

with particular prominence in the field of MEMS. It has been shown to exhibit several 

advantages over other resonant methods, in particular a potential for higher sensitivity 

and rejection of common mode noise. Mode localization sensors have been approached 

primarily in the case of two weakly coupled symmetrical oscillators [1]–[3]. The current 

work extends this theory to encompass the use of periodic structures to couple the 

resonators. The use of periodic arrays presents potential sensitivity advantages and 

opens up the feasible choices of geometry.  

Realisation through the use of a surface acoustic wave (SAW) architecture is asserted 

from the outset. The use of SAW, already ubiquitous in microelectronic filters, presents 

many advantages when compared to the alternative of constructing periodic arrays of 

suspended MEMS. For one, the short wavelengths can allow long periodic structures 

whilst maintaining small device size. Furthermore, the SAW devices require a simple 
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and inherently robust architecture; there are no deep cavity etches or slender beams 

and the manufacturing process is well established. 

1.2 Contribution 

The predominant contribution of the current work as a whole is the design of a novel 

SAW MEMS sensor utilising mode localization in periodic structures. This is detailed 

from the concept and basic theory of operation (chapter 2), through to the performance 

(chapter 4) and limitations on functionality (chapter 5). This thesis outlines the concept, 

and proposes both a design and a potential application of the sensor (chapter 6). 

Much of the related work has focused predominantly on application and 

implementation of mode localization sensing, performing numerical simulations and 

harvesting valuable experimental data from prototype devices. In addition to 

presenting and appraising a novel sensor design, this thesis aims to take a step back to 

explore the phenomenon more deeply from an analytical mechanics viewpoint. One of 

the main contributions of the current work is presented in chapter 3, detailing a general 

analytical model for localization in periodically patterned surface acoustic wave 

structures. Scrutiny of the equations can provide deeper insight into the physical 

phenomena at play, the causes of localization, in addition to allowing for more guided 

device design. 

1.3 Orientation  

The theoretical backbone of this work draws heavily from the vast amounts of literature 

extant on the well-established fields of periodic structures and localization. The impact 

of the work is, however, intended to refer to the more recently emerging field of MEMS 

mode localization sensors.  A familiarity with these topics is essential for navigation of 

this thesis. This section is intended to review the pertinent literature and provides the 

reader, who is unfamiliar with any of the topics of this thesis, a brief, yet sufficient 

introduction to the background and principles of each topic. As the thesis progresses 

and more specialist topics are introduced, the relevant literature is presented where 

necessary.  



 

 

3

1.2.1 Introduction to the Wave Propagation Properties of Periodic Media 

Due to the expansive literature available of some relevance to the study of periodic 

structures, beginning as early as Newton’s calculation of the velocity of sound [4], in 

which he employed a one-dimensional lattice of point masses. The review will not be 

encompassing, instead, the seminal works will be indicated, and then the fundamental 

phenomena and terminology associated with periodic media will be introduced. The 

section will close by indicating works of particular relevance to the analysis of the 

following chapters. 

The majority of modern day analysis draws on the work of Floquet [5] and Bloch [4].  

Floquet approached the problem of parametric periodicity in the time domain, which 

reduces to the solution of Hill’s equation. It was shown that the solution was periodic 

and a general solution of Hill’s equation was presented. Bloch approached the problem 

of parametric periodicity in the spatial domains from the field of solid-state physics, 

thus the problem was generalised to three dimensions of infinite expanse and solutions 

equivalent to that of Floquet where found. Two excellent and authoritative reviews are 

provided by both Elachi [6] and Mead [7] these cover, almost all of the work of relevance 

and particularly the application of periodic media to mechanical engineering. The 

seminal work of Brillouin [4] must be mentioned for the reader unacquainted with 

periodic media. The work of Brillouin outlines in great detail much of the fundamental 

theory used throughout this work and serves as a brilliant reference for the engineer 

looking to exploit the phenomena, as it has for the author. 

The most prominent property possessed by periodic structures is the exhibition of 

distinct regions in the frequency domain in which waves are alternately propagated or 

are attenuated. These are known as ‘pass-bands’ and ‘stop-bands’ respectively. Some 

authors prefer the phrases, ‘propagation-zone’ and ‘attenuation-zone’, however, within 

this work, the former terminology will be used. The stop-bands occur when Bragg’s law 

[4] is met, in the case of one-dimensional wave propagation, this reduces to equation 

1.1. 

݀ =  
ߣ ݊
2  

 
(1.1) 
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With ݀ representing the period within the array, ߣ the wavelength of the incident wave 

and ݊ an integer. The nature of this behaviour will be demonstrated using two classical 

structures, the one-dimensional monatomic and diatomic lattices (Figure 1.1). 

 

 

Figure 1.1 Monatomic and diatomic lattice schematics 

The general solution for a wave travelling through either lattice is given in equation 

1.2. The parameter ߤ is the complex-valued wavenumber, often referred to as the 

propagation constant. This defines the change in amplitude and phase of the 

propagating wave. The real part of the wavenumber describes the number of waves per 

unit distance and is defined as the reciprocal of the wavelength multiplied by 2ߨ. The 

imaginary part of the wavenumber defines any attenuation or amplification of the wave 

in the spatial domain. The wavenumber of the array is a function of the angular 

frequency, ߱. The dispersion spectra are obtained by plotting ߤ vs. ߱, examples of 

these for the monatomic and diatomic lattices are overlaid in Figure 1.2. 

௡ݑ = ݁௜ఓ(ఠ)௡ௗ (1.2) 

 

Figure 1.2 Monatomic and diatomic lattice dispersion. 
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The white and grey regions in Figure 1.2 represent the pass- and stop-bands of the 

diatomic lattice respectively. An important general property of periodic arrays is 

demonstrated by the spectra: the number of pass-bands in the dispersion spectrum of 

a periodic structure is determined by the number of degrees of freedom (DOFs) per-

period. This is demonstrated by the presence of two pass-bands for the diatomic lattice 

and one for the monatomic lattice (Figure 1.2). If a structure is modelled as a 

continuous medium, then it possesses an infinite number of pass bands. A stop band 

emerges around each point when Bragg’s law is met, the width of the stop band 

determined by the system parameters. 

The propagation constant and the ‘transfer matrix’ (TM) are two tools that are 

ubiquitous in the study of periodic media and will be used repeatedly throughout this 

thesis. The derivation for the propagation constant of a 1-DOF period is straight 

forward, and is presented here as a simple introduction. Figure 1.3 shows one resonator 

from the array and its nearest neighbour coupling. Assuming simple harmonic motion 

with angular frequency, ߱. Newton’s second law can be applied to find equation 1.3. 

 

Figure 1.3 Example schematic for propagation constant derivation 

(݇ + 2 ݇஼ − ߱ଶ݉)ݑ௜ − ݇஼ ௜ିଵݑ  − ݇஼ ௜ାଵݑ  = 0 (1.3) 

At this point a Floquet-Bloch relationship between the DOFs is assumed (eqs. 1.4-5). 

The short expressions representing the Floquet-Bloch relationship insert the 

assumption that the system response is spatially periodic with the same period as the 

system. Inserting these equations into equation 1.3 and cancelling ݑ௜ throughout gives 

equation 1.6.  
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௜ିଵݑ = ݁ିఓݑ௜ (1.4) ݑ௜ାଵ = ݁ఓݑ௜ (1.5) 

(݇ + 2 ݇஼ − ߱ଶ݉) − ݇஼(݁ఓ + ݁ିఓ) = 0 (1.6) 

This can now be solved for ߤ in terms of ߱, the solution is given in equation 1.7. 

ߤ = ℎݏ݋ܥܿݎܣ ቆ
݇ + 2 ݇஼ − ߱ଶ݉

2 ݇஼
ቇ (1.7) 

This four line derivation provides an easy way to see the origins of the propagation 

constant and aid with its interpretation. Similar methods of derivation to this were 

used extensively by Mead [8]–[12], and fall in to a class referred to as receptance 

methods. Throughout this thesis however, the transfer matrix will be employed for 

calculating propagation constants. Although more convoluted for this simple, discrete 

case, the properties of the TM become very powerful when implementing boundary 

conditions or joining systems together. In addition to this, in the case of continuous 

systems, the calculation using the transfer matrix is no more long-winded than using 

receptance methods. As an introduction, the above calculation is repeated using the 

TM method. The initial schematic is redefined to aid with the derivation (Figure 1.4). 

Included in the schematic this time is the coupling forces between adjacent cells. 

Considering the unit cell, ݅, Newton’s second law can be applied to the DOFs on the 

right- and left-hand sides (eqs. 1.8 and 1.9 respectively). These can be combined to 

give the dynamic stiffness matrix, ܈ (eq. 1.10). 

 

Figure 1.4 Example schematic for transfer matrix derivation 
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௜ೃܨ  − ݇஼൫ݑ௜ೃ − ௜ಽݑ ൯ − ௜ೃݑ݇ = −߱ଶ ݉
2  ௜ೃ (1.8)ݑ

௜ಽܨ  − ݇஼൫ݑ௜ಽ − ௜ೃ൯ݑ = −߱ଶ ݉
2  ௜ಽ (1.9)ݑ

൜
௜ೃܨ 

௜ಽܨ 
ൠ = ൦

݇ + ݇஼ − ߱ଶ ݉
2 −݇஼

−݇஼ ݇஼ − ߱ଶ ݉
2

൪ ቄ
௜ೃݑ 
௜ಽݑ 

ቅ = ܈ ቄ
௜ೃݑ 
௜ಽݑ 

ቅ (1.10) 

Using simple algebraic manipulation, the system of equations in 1.10 can be rearranged 

and represented in terms of the ‘state vectors’ at the either end of the cell. This can be 

written in terms of the elements of the dynamic stiffness matrix in matrix form eq. 1.11 

[13]. 

൜
௜ೃݑ 

௜ೃܨ 
ൠ =

⎣
⎢
⎢
⎡

−ܼଶଶ

ܼଶଵ

1
ܼଶଵ

ܼଵଶ −
ܼଵଵܼଶଶ

ܼଶଵ

ܼଵଵ

ܼଶଵ⎦
⎥
⎥
⎤

൜
௜ಽݑ 

௜ಽܨ 
ൠ (1.11) 

Now, addressing the force and displacement continuity at the boundary between cells 

(eqs. 1.12 and 1.13) and inserting this into eq. 1.11 gives the transfer matrix ܂ in eq. 

1.14. 

௜ಽݑ  = ௜ಽܨ  ௜ିଵೃ (1.12)ݑ =  ௜ିଵೃ (1.13)ܨ−

ቄݑ
ቅܨ

௜ೃ
=

⎣
⎢
⎢
⎡

−ܼଶଶ

ܼଶଵ

1
ܼଶଵ

ܼଵଵܼଶଶ

ܼଶଵ
− ܼଵଶ

−ܼଵଵ

ܼଶଵ ⎦
⎥
⎥
⎤

ቄݑ
ቅܨ

௜ିଵೃ
= ܂ ቄݑ

ቅܨ
௜ିଵೃ

 (1.14) 

The form of the transfer matrix in eq. 1.14 is general for all mono-coupled systems and 

can be used once the dynamic stiffness matrix has been found. A mono-coupled system 

is defined as one with a single constraint coupling adjacent DOFs. A similar 

generalisation to multi-coupled systems is given in reference [13]. 

In order to obtain the propagation constant, Floquet-Bloch theory is once again 

asserted in the form of equation 1.15. This is equated to eq. 1.14 producing the 

eigenvalue problem in eq. 1.16 (where ۷ is the 2x2 identity matrix). 
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ቄݑ
ቅܨ

௜ೃ
= ݁ఓ ቄݑ

ቅܨ
௜ିଵೃ

 (1.15) 

܂| − ݁ఓ۷| = 0 (1.16) 

The two eigenvalues, ߣ଴ and, ଵ
ఒబ

 are equal to ݁ఓ and ݁ିఓ respectively [13] therefore: 

݁ఓ + ݁ିఓ = (ߤ)ℎݏ݋ܥ 2 = ଴ߣ  +
1
଴ߣ

 (1.17) 

The sum of the eigenvalues is equal to the trace of the matrix, where the trace is 

defined as the sum of the elements residing on the principle diagonal. The trace is 

invariant under a change of basis, allowing equation 1.18 to be written (for the mono-

coupled system). 

(ߤ)ℎݏ݋ܥ = ଵܶଵ + ଶܶଶ

2  (1.18) 

Evaluating eq. 1.18 yields an identical expression to eq. 1.7, demonstrating the 

equivalence of the two methods. 

An important conclusion for this thesis in particular, which has been reached relatively 

recently, concerns the validity of the transfer matrix approach, and more generally 

Floquet-Bloch theory for finite systems, or systems with few periods. Griffiths, Pererya 

and Hussein [14]–[17] all produced results that showed the frequency band structure 

was consistent for both finite and infinite system, showing that structures with as few 

as two cells can exhibit a band structure [16]. Griffiths [14] presented a pedagogical 

paper in order to collect together cross-discipline literature and current understanding 

of waves in locally periodic structures as well as finite periodic structures. This 

terminology is depicted graphically in Figure 1.5. 

 

Figure 1.5 (a) An infinite periodic structure. (b) a finite periodic structure. (c) a locally periodic structure. 
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The majority of the paper refers to the field of quantum mechanics and focuses on 

locally periodic structures. These are infinite systems where the periodic discontinuities 

are localized (Figure 1.5c), the dispersion however is still continuous. Griffiths 

elucidates the nature of truly finite periodic structures, that is, with conservative 

boundary conditions. These have discrete ‘bound states’ in the quantum case or 

standing waves in the case of mechanical waves, rather than a continuous dispersion 

spectrum from ‘scattering’ or travelling waves.   Using Schrödinger’s equation as an 

example, the structure of the transfer matrix was detailed. It was then shown how 

substitution of the boundary conditions leads to a condition to be solved for the 

allowable energy states. In the case of a mechanical system these correspond to the 

eigenfrequencies. Griffiths presents a recurrence relation used to represent N cells from 

the single cell transfer matrix, with no reference to Floquet-Bloch theory, thus valid 

for any length of periodic array. A simple closed form expression for the transmission 

coefficient of locally periodic systems is shown and examples provided.  

Pereyra [15] presented a method applied to locally periodic solid-state problems 

utilising the TM in a similar way to Griffiths. Pereyra elucidates details about the 

structure of the transfer matrix and its recursion relation. Pereyra's sequel [18], [19] 

aimed to provide analytical expressions for the eigenvalues and eigenfunctions of real 

finite periodic systems with arbitrary cell potential. Analytical expressions for the 

wavefunction and resonant energy (eigenfunctions and eigenvalues) of bounded and 

quasi-bounded periodic systems governed by Schrödinger’s equation. This is analogous 

and can be adapted to all systems governed by the wave equation. It was shown that 

for finite periodic systems the Bloch function property is inaccurate. Properties of the 

resonant states and eigenfunctions were described. 

1.2.2 Localization in Periodic Structures 

The entirety of this thesis is focussed on exploiting the phenomena associated with 

localization. The term ‘localization’ is used in different ways, even in closely related 

fields, and the terminology is often confused. It is therefore fitting to begin with a brief 

orientation into the use within this work.  

The study of localization in linear periodic arrays stretches across many disciplines. 

The first treatise, however, began in the field of solid-state physics with P.W. Anderson, 
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whom received the Nobel Prize in physics in 1977, partly for his work on the topic [20]. 

There are also fascinating localization phenomena that are exclusive to non-linear 

periodic structures, such as intrinsic localized modes (ILM’s) and discrete breathers 

[21], which no doubt can, and will, be exploited for engineering gain at some point in 

the future. This thesis however focuses on the purely linear phenomena of local 

resonances and localized modes. To begin, the subtle difference between these two 

similar, yet distinct, phenomena will be defined: 

 Local resonance: a local resonance occurs due to spatially localized forcing at a 

frequency within the stop-band of the array. When excited at a stop-band 

frequency, waves cannot propagate away from the source of the excitation. The 

surrounding array effectively acts as a non-dissipative boundary condition, hence 

the energy is trapped in the excitation region. A local resonance is therefore not 

a mode of the periodic structure as a whole, but modal behaviour of a subsection 

of the array. 

 Localized Mode: a localized mode is induced by the introduction of a disorder 

into the array. The modes of a perfectly periodic system all reside within the 

pass-band. Once a disorder is introduced, a mode of the whole structure moves 

into the stop-band of the array (Figure 1.6). This is the phenomenon described 

by Anderson and is known either eponymously or as ‘strong’ localization. 

 

Figure 1.6 The frequency space behaviour of mode localization. When a disorder is introduced into the perfectly 
periodic example structure of a ‘stepped-beam’ the mode is localized and moved to a frequency within the stop 
band. In this example the disorder has been introduced as a perturbation to the thickness of the central slender 

beam. 
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Although visually the difference may seem trivial, it becomes non-trivial when one 

wants to either simulate or exploit either effect. Two examples which demonstrate this 

are: (1) a local resonance must be excited by a spatially localized force, whereas a 

localized mode is indiscriminate of forcing location and (2) localized modes can be found 

through modal analysis of the homogeneous equations of the structure, but a local 

resonance is found only through a specific forced case. 

1.2.3 Mode Localization Sensors 

Mode localization refers to the spatial trapping of energy in a coupled oscillatory system 

that occurs when a disorder is introduced into a previously ordered system. In the 

structures of interest to this thesis this is manifested as a dramatic change in the mode 

shapes. This was first suggested as a novel sense protocol in references [1], [2] and 

coined ‘mode localization sensing’. The sense mechanism was initially proposed as an 

alternative to measuring frequency-shift, and therefore this method has been used as a 

benchmark for comparison [2], [3], [22]. 

Mode localization sensors have been approached primarily in the case of two weakly 

coupled symmetrical oscillators rather than periodic systems. They exploit the large 

change in the eigenvector that occurs when the symmetry is broken. A simplified model 

of a mode localization mass sensor is presented in Figure 1.7. The identical resonators 

are coupled by the weak spring of strength ݇௖. In the case when ∆݉ = 0 the system 

exhibits both in-phase and out-of-phase modes with equal distribution of displacement 

amplitude. As is commonly known, the in-phase mode is the fundamental and the out-

of-phase occurs at a higher frequency. When ∆݉ ≠ 0 the modal amplitude distribution 

is weighted unevenly, favouring the lower or higher frequency resonators, in the in-

phase and out-of-phase modes respectively. That is, if the system is vibrating in its 

fundamental mode, and a mass is added to one resonator, this resonator will experience 

a much larger displacement relative to the other resonator. In the second mode 

however, the un-laden resonator will exhibit the larger relative displacement. The 

sensors are proposed to operate in one mode and use the ratio of the amplitude of the 

resonators to detect the size of the added mass. 
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Figure 1.7 Illustrative example of the principles of mode localization sensing 

The mass-spring systems can take a variety of physical forms. A commonly proposed 

geometry in the literature is two cantilever beams with small coupling overhang [2], 

[3], [22]. Other geometries have been proposed that exploit electrostatic coupling. These 

include ring resonators, free-free beams and double-ended tuning fork (DETF) 

resonators. 

The effect and the dependence of the coupling strength is shown clearly using a simple 

eigenvalue perturbation method. Using the example system in Figure 1.7, the non-

dimensionalised equations of motion for the system can be posed as an eigenvalue 

problem (EVP) by, assuming harmonic motion [2] . 

൫۹ − ۻ)ߣ + ݑ൯(ۻ઼ = 0 

۹ = ቀ1 + ߢ ߢ−
ߢ− 1 +  ቁߢ

ۻ = ቀ1 0
0 1ቁ 

ۻ઼ = ቀ0 0
0  ቁߜ

ߜ =
Δ݉
݉  

ߢ =
݇௖

݇  

(1.19) 

(1.20) 

(1.21) 

(1.22) 

(1.23) 

(1.24) 

If Δ݉ = 0, the normalised, unperturbed eigenstates of the symmetrical system can be 

found to be those given in eqs. 1.25-28. 
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଴ߣ
(ଵ) = ଴ݑ  (1.25) 1

(ଵ) =
1

√2
ቄ1
1ቅ (1.26) 

଴ߣ
(ଶ) = ߢ2 + ଴ݑ  (1.27) 1

(ଶ) =
1

√2
ቄ 1
−1ቅ (1.28) 

If Δ݉ ≪  an eigenvalue perturbation method can be used to obtain the solution to ,ߢ

perturbed equation 1.19. Using the unperturbed solution, the perturbed eigenvalues 

and vectors can be defined by equations 1.29 and 1.30 respectively [23].  

௣ߣ
(௜) = ଴ߣ 

(௜) + ଴ݑ
(௜)୘

∙ ቀ઼۹ − ଴ߣ 
(௜)઼ۻቁ ∙ ଴ݑ

(௜) (1.29) 

௣ݑ
(௜) = ଴ݑ 

(௜) ∙  ൬1 −
1
2 ଴ݑ

(௜)୘ ∙ ۻ઼ ∙ ଴ݑ
(௜)൰ +  ෍

଴ݑ
(௝)୘

∙ ቀ઼۹ − ଴ߣ 
(௜)઼ۻቁ ∙ ଴ݑ

(௜)

଴ߣ
(௜) − ଴ߣ

(௝)

ଶ

௝ୀଵ
௝ ஷ௜

∙ ଴ݑ
(௝) (1.30) 

Using equations 1.29 and 1.30 the relative change in the eigenstate (mode shape) and 

eigenvalue (square of the resonant frequency) have been found to be as given in 

equations 1.31-32 [24]. 

௣ߣ
(௜) − ଴ߣ

(௜)

଴ߣ
(௜) =

ߜ−
2  (1.31) 

ቚݑ௣
(௜) − ଴ݑ

(௜)ቚ

ቚݑ଴
(௜)ቚ

= ൬
1
4 +

1
൰ߢ4  (1.32) ߜ

Equation 1.32 describes the sense protocol of mode-localization. It can be seen that 

decreasing the coupling strength, ߢ, can amplify the response to a fixed change in mass, 

 This result has drawn the interest of many researchers to see if mode localization .ߜ

presents a viable new sense paradigm to compete with other MEMS sense technologies.  

Mode localization sensors have been shown to possess potentially advantageous 

properties when compared with the commonly used frequency-shift sensors. The most 

prominent of these is the potential improvement in sensitivity; theoretically orders of 

magnitude better than the aforementioned frequency-shift alternative [2]. In addition, 

the sensors benefit from common mode rejection, that is, changes in the environment 
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or ambient conditions that affect both resonators, will not affect the measurement. 

This is a distinct advantage over frequency-shift measurement and is important for 

countering drift and false measurements. 

The vast majority of explorations into the exploitation of mode localization have been 

in the context of the development of ultra-sensitive mass sensors. These put particular 

emphasis upon targeting bio-molecules, to facilitate the realisation of low-cost, effective 

medical diagnostic devices. The origins of the idea of exploiting mode localization for 

sensing means can be attributed to Nicu and Bergaud [1]. A discretized model was used 

to represent a double-ended tuning fork resonator and operation as a bio-mass sensor 

was demonstrated using the theoretical results. The conditions for the avoidance of 

nonlinearity were considered, the response was shown to be governed by Duffing’s 

equation; however, this analysis was specific to the case of the double ended tuning 

fork. 

The sense concept was given further consideration by Spletzer et al. [2], whom 

presented the first experimental evidence of operation. The article introduced the 

method of using coupled cantilevers for mass detection. Experimental validation was 

sought for the predictions of an eigenvalue perturbation method applied to a discretised 

system of two coupled resonators. The study highlighted the most attractive features 

of the sense method: a high-sensitivity that is independent of quality factor and intrinsic 

common mode rejection, making the device less susceptible to drift and false readings 

due to changes in the ambient environment. It was highlighted that these features were 

achieved prior to any in-depth optimisation of the geometry. 

Thiruvenkatanathan et al. investigated similar systems, but focused attention upon the 

effect of the coupling strength on the sensitivity [3], [25].  It was shown that ensuring 

weak coupling is vital to enabling high sensitivity. This lead to the investigation of 

various electrostatically coupled high-Q geometries. These were shown to be capable of 

decreasing the coupling strength beyond that of a direct mechanical coupling, leading 

to a potential further increase in sensitivity. 

The investigation into the effect of the coupling strength drew attention to the limits 

imposed upon the maximum sensitivity of such devices. The limits occur primarily due 
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to the well-documented phenomenon of eigenvalue loci-veering [26] – and the 

subsequent bandwidth considerations – as well as the limits of the noise within the 

system. This was analysed in detail in reference [27]. The analysis yielded a 

fundamental limit on the resolution of this two-degree-of-freedom class of mode 

localization sensors. Similar investigations into the noise sensitivity of coupled 

microcantilever arrays has been conducted more recently by Ryan et al. [28], [29]. 

DeMartini et al. [30] highlighted the superior ability of coupled resonators arrays for 

multiple analyte detection, when compared to un-coupled arrays. Arrays of 

functionalised un-coupled arrays, although capable of detecting multiple analytes, 

require greater signal processing ancillaries, whereas a coupled resonator system can 

function as a single input-single output device. A complex topology using four micro-

beam resonators attached to a shuttle mass was modelled using an equivalent lumped 

parameter system. The novel sense method used four separate localized modes and 

detected the frequency shift of the modes via analysis of the frequency response of the 

shuttle mass. The sense method was applied to a coupled cantilever geometry in 

reference [31]. 

One of the major inhibitors to the implementation of this class of devices is the 

sensitivity to the presence of a fabrication imperfection. The imperfections can induce 

localization and thus impose a limit on the potential size and resolution of the devices. 

This problem was addressed in a novel way by Gil-Santos et al. [32]. The study 

proposed the use of thermomechanical noise as a means of excitation of nanomechanical 

cantilevers – previous studies involving cantilevers had all employed piezoelectric base 

excitation, which is poor at exciting the anti-symmetric mode. It was shown that this 

transduction scheme eliminates the requirement for the initial disorder to be zero as 

well as not requiring any excitation circuitry. The former potentially enables a dramatic 

improvement in the potential device resolution. 

Pakdast and Lazzarino [33] investigated the use of three coupled cantilevers for mass 

detection. The geometry was shown to be less sensitive to surface stress than the two 

coupled cantilever system, as well as allowing the possibility to determine which 

cantilever the mass had adsorbed to. Other extensions of note include Chopard et al. 

[34], who proposed the use of piezoelectric transduction. 
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The extension to systems of higher degrees of freedom was suggested by Spletzer et al. 

[2]. It was noted that the extension to a large array of cantilevers could enable multiple 

analyte detection. This was expanded upon by the same author in reference [22] in 

which a system of fifteen coupled microcantilevers were analysed using a similar 

procedure. The investigation revealed that the addition of mass to each cantilever will 

produce a unique eigenmode shift. Indicating that the location of the analyte can be 

deduced from the pattern of eigenmode shifts. It was suggested that this could enable 

simultaneous multi-analyte detection. In addition, and of critical importance in the 

context of this body of work, the sensitivity to the addition of a mass was improved 

by an order of magnitude over the previously analysed two-cantilever system.   

Zalalutdinov et al. [35] manufactured a 2D lattice of nanomechanical paddle resonators 

to investigate the suppression of the intrinsic localization due to a manufacturing 

disorder. It was sought to answer the question of whether extended modes could be 

realised in large arrays. It was found that the extended modes could be realised, with 

participation from all resonators. It was suggested that the results are of relevance to 

signal processing and sensing applications. 

1.3 Open questions 

The following chapters each aim to answer a specific question that is currently 

unanswered in the literature. The specific open questions corresponding to each chapter 

that this thesis aims to answer are enumerated below. 

1. How does using a periodic array as a coupler affect or enhance the operation of 

a mode localization sensor? 

Chapter 2 looks to a simplified model of the proposed device, paying particular 

attention to the novel coupling method. The models used are of a similar type 

to those present in the literature, aiming to allow direct comparison.  

2. Can a mode localization sensor be constructed using SAW? 

The overt assumption in beginning this work is that such a sense mechanism 

can be transferred to a SAW architecture. Evidence towards this assumption is 

provided in the modelling work carried out to produce chapter 3. 
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3. What benefits are afforded by using the SAW platform and how can they be best 

exploited? 

The analysis presented in chapter 4 looks specifically at the model derived to 

describe the SAW system, aiming to answer the question posed. 

4. What limits are imposed on such a device by loss mechanisms and thermal noise 

contributions? 

Chapter 5 intends to tackle this question, examining the feasibility of the 

proposed device in the presence of the limiting factors it will face in operation. 

5. Does the SAW mode localization sensor present a viable platform to construct 

a competitive MEMS magnetometer? 

The theoretical conclusions on device performance are posed in terms of the field 

of MEMS magnetometers in chapter 6. This application is employed as a 

yardstick to test the impact of the proposed device on current problems in the 

field of MEMS sensing. 
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Chapter 2. Theory and Principles of Operation 

2.1 Introduction 

Within this chapter the principles of the proposed novel sensor are described using 

simplified discretized models. This aligns with the majority of the analysis available in 

the literature and facilitates comparison between similar proposed devices. The novelty 

of the device presented here is twofold; firstly, the use of a periodic coupling array, and 

secondly the use of SAW, to be addressed in more depth in following chapters. The 

purpose of this chapter is to introduce the device and present simplified models to gain 

insight and intuition into the operation.  

The device is an extension of the ‘mode localization sensor’ that has been introduced 

recently in the literature, and is reviewed in depth in the opening chapter. This chapter 

begins by introducing the extensions proposed by this thesis, namely, the introduction 

of a periodic array as a coupler and the use of a SAW architecture. These are discussed 

in section 2.3. Two models will be used in combination to describe the mode of 

operation and performance. A lumped parameter model is introduced as a means of 

gleaning insight and intuition into the expected device behaviour. The system matrices 

are presented in a non-dimensional form alongside an approximate 2-DOF 

representation. The 2-DOF model allows for more straightforward analytical 

interrogation. The eigenvalues and eigenvectors are found both numerically and 

analytically. The proposed operation of the device is described qualitatively using the 

LPM models. In addition, selective forcing, the behaviour of the eigenvalues and device 

sensitivity are discussed separately, before conclusions are drawn. 

2.3 The SAW mode localization sensor 

One of the primary thrusts of the present work is to investigate the utility and potential 

benefit of a finite periodic array coupling the two DOFs of the mode localization sensor. 

It was indicated in the opening chapter that periodic structures possess a stop band, a 

region in frequency space in which energy cannot be transferred across it. In a finite 

periodic array the amount of energy that can be transmitted in the stop band is 

proportional to the number of periods in the array. A common result from the literature 
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on mode localization sensing is the need for weak coupling; a periodic array presents a 

means of achieving weak coupling for a multitude of sensor geometries. It is proposed 

here to utilise a SAW architecture. The use of SAW presents many advantages when 

compared to the alternative of constructing periodic arrays of suspended MEMS. The 

SAW devices require a simple and inherently robust architecture; there are no deep 

cavity etches or slender beams. The manufacturing process is well established and SAW 

resonators are commonplace in microelectronics. Therefore, the use of SAW presents a 

favourable platform to introduce a novel sense protocol. The author introduced the 

concept of a SAW mode localization sensor in references [36], [37] which, to the authors’ 

knowledge are the first examples available in the literature.  

The proposed configuration consists of two cavities, coupled by an N-period reflective 

array. The arrays are constructed from a patterned metal film deposited on a 

piezoelectric substrate. In the general case, excitation can occur in either cavity, or 

both cavities. Regardless of the excitation method, one cavity is deemed the reference, 

and the other the sense, cavity. The coupling strength between the two cavities is 

governed by the shared periodic reflector, deemed the ‘coupling array’. The basic 

arrangement is depicted in Figure 2.1.  

 

Figure 2.1 Schematic of basic SAW device geometry. The enclosing arrays act to bound the geometry working as 
quasi-hard boundary conditions. A mode is excited between the enclosing arrays by excitation in the reference 

cavity. The relative displacement amplitude of the sense cavity with respect to the reference cavity is used as the 
sensor output. The input can be any physical phenomenon that perturbs the surface wave speed within the sense 

cavity e.g. mass adsorption or magnetostrictive stiffening. 
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The output of the device is the ratio of the sense cavity displacement amplitude to the 

reference cavity displacement amplitude, or the inverse. The theory of operation is that 

this output responds in proportion to a break in the symmetry of the two cavities, 

directly analogous to the mode localization sensors described in section 1.1. A 

perturbation of the wave-speed in the sense cavity will be induced to break the 

symmetry. Causing an output response in proportion to the perturbation size and the 

coupling strength.  

2.4 Lumped parameter model 

A representative lumped parameter model (LPM) is introduced to give an initial 

assessment of the device behaviour. This will also allow direct comparison to the results 

presented in the literature, which are consistently modelled using LPMs. The LPM 

consists of two monatomic lattices coupled by a partially anchored diatomic lattice. 

This is shown schematically in Figure 2.2. A system of this kind can be found to be 

equivalent by posing the problem on a string and deriving the finite difference 

equations.  

 

Figure 2.2 Schematic of LPM representation 

The lattice consists of both anchored and free masses, each representing different 

regions of the SAW system described by Figure 2.1. The free masses represent a region 

of un-plated substrate, such as the cavities. The anchored masses represent a plated 

region, such as the IDT fingers or reflectors. The anchor spring and perturbed mass, ݇ 

and ݉,  represent the stiffness perturbation and mass loading due to the plate 

respectively. The model excludes the enclosing cavities and replaces these with hard 

boundary conditions. This is the artificial boundary of the device, in the SAW device, 

any wave propagation past this point is regarded as loss.   
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2.4.1 System matrices 

Applying Newton’s second law to the schematic of Figure 2.2, with 1 DOF assigned 

per cavity, leads to the system matrices and equation of motion described in equations 

2.1-2.3. 

ݑ̈ۻ + ݑ۹ =  (2.1) ܨ

ۻ =

⎣
⎢
⎢
⎢
⎢
⎡݉

݉
݉

∙
݉

݉௣⎦
⎥
⎥
⎥
⎥
⎤

 (2.2) 

۹ =

⎣
⎢
⎢
⎢
⎡2݇ −݇
−݇ ݇ + 2݇ −݇

−݇ 2݇ −݇
∙

−݇ ݇௣ + ݇⎦
⎥
⎥
⎥
⎤

 (2.3) 

It is useful to reduce the variables by non-dimensionalising the system matrices. It was 

chosen to normalise to the ‘substrate’ mass and stiffness, ݉ and ݇. After normalisation, 

setting ܨ = 0 and assuming time harmonicity at angular frequency ߱ produces an EVP 

in a non-dimensional form. In this case the eigenvalues are non-dimensionalised by the 

natural frequency of the one ‘substrate element’, if it were uncoupled. The EVP is 

shown in non-dimensional form in equations 2.4-2.11. 

หۻ෩ ିଵ۹෩ − ଴۷หߣ = 0 (2.4) 

෩ۻ =

⎣
⎢
⎢
⎢
⎢
⎡ 1

෥݉
1

∙
෥݉

݉௣෦ ⎦
⎥
⎥
⎥
⎥
⎤

    (2.5) 
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۹෩ =

⎣
⎢
⎢
⎢
⎡ 2 −1
−1 ෨݇ + 2 −1

−1 2 −1
∙

−1 ݇௣෪ + 1⎦
⎥
⎥
⎥
⎤

 (2.6) 

߱௡ = ඨ ݇
݉ (2.7) ෥݉ =

݉
݉ (2.8) 

݉௣෦ =
݉௣

݉  (2.9) ෨݇ =
݇
݇ (2.10) 

݇௣෪ =
݇௣

݇  (2.11)   

2.4.2 Approximate 2-DOF Representation 

An approximate alternative representation of the LPM is presented to enable the 

behaviour to be investigated analytically. The system is modelled as having 2-DOFs, 

each cavity represented as a single DOF, with the periodic array represented using an 

equivalent cross receptance. A receptance is defined as a force per unit displacement. 

The idea of using receptances for periodic structures was exploited heavily by Mead in 

references [8]–[12]. This model discards information about the displacements of the 

intermediate DOFs and therefore all the non-localized modes. Figure 2.3 shows a 

schematic of the model. 

 

Figure 2.3 Schematic of approximate device representation 

The periodic structure separating the two resonators is assumed to have sufficient 

periods such that Floquet-Bloch theorem can be assumed valid. In addition, one-way 

coupling into the periodic array is assumed for the force waves originating at either the 

left or the right hand end. This assumption states that a force originating at the LH 
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or RH boundary propagates away from the boundary into the periodic array with 

negligible reflection at the localized mass-periodic array boundary. Additionally, 

reflections from within the periodic array are assumed sufficiently weak by the time 

they reach the end boundary, and therefore can be neglected. Due to these assumptions, 

there are two separate force relations, one for forwards travelling waves originating at 

the LH boundary and one for rearwards travelling waves originating at the RH 

boundary. These are given in equations 2.12 and 2.13 respectively. 

ோାܨ =  ݁ேఓ  ௅ା (2.12)ܨ 

௅ିܨ =  ݁ேఓ  ோି (2.13)ܨ 

N is the number of periods within the periodic array and μ is the frequency dependent 

propagation constant. μ is a function of the elements of the receptance matrix, 

calculated for a single period of the array.  

To find the forwards travelling wave originating at the left-hand end (LHE), the 

equilibrium requirements at u1 must be considered, whilst ignoring the contribution of 

FL-. An identical procedure can be considered at x2 for the rearwards travelling wave. 

With reference to Figure 2.3 it can be seen that the forces FL+ and FR- are as shown in 

equations 2.14 and 2.15.  

௅ାܨ =  ଵ (2.14)ݑ ݇

ோିܨ =  ଶ (2.15)ݑ ݇

Combining the relationships shown in equations 2.12-2.15, the force on one mass due 

to a displacement at the other can be found. These are shown explicitly in equations 

2.16 and 2.17.  

௅ିܨ =  ݇ ݁ேఓ  ଶ (2.16)ݑ 
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ோାܨ =  ݇ ݁ேఓ  ଵ (2.17)ݑ 

The preceding derivation has effectively calculated the equivalent cross receptance, αc, 

for the periodic array, as given explicitly in equation 2.18. 

௖ߙ =
1

݇݁ேఓ (2.18) 

The equation of motion for the 2-DOF system can now be written. This is shown in 

equations 2.19-2.22. 

[۹ − ߱ଶۻ] ቄ
ଵݑ
ଶݑ

ቅ = 0 (2.19) 

ۻ =  ቂ1 + ߜ 0
0 1ቃ (2.20) ۹ =  ቂ 1 ݁ே ఓ

݁ே ఓ 1
ቃ (2.21) ߜ =  

∆݉
݉  (2.22) 

The eigenvalues and eigenvectors of the system are shown in equations 2.23-2.27. 

߱ଵ
ଶ =

2 + ߜ − ߫
2(1 + (ߜ ଴ݑ (2.23) 

(ଵ) = ൞
−

݁ିேఓ(ߜ + ߫)
2(1 + (ߜ

1

ൢ (2.24) 

߱ଶ
ଶ =

2 + ߜ + ߫
2(1 + (ߜ ଴ݑ (2.25) 

(ଶ) = ൞
−

݁ିே ఓ(ߜ − ߫)
2(1 + (ߜ

1

ൢ (2.26) 

 ߫ = ඥ4݁ଶேఓ + 4݁ଶேఓߜ +  ଶ (2.27)ߜ

The propagation constant for the anchored diatomic lattice can be found using the 

method outlined in section 1.2 of the previous chapter. The unit cell is displayed in 

Figure 2.4 and the equations of motion for the masses are given in equations 2.28 and 

2.29. 
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Figure 2.4 Unit cell of periodic coupling array 

ഥ݉ ௡ݑ̈
(ଵ) = −݇ቀݑ௡

(ଵ) − ௡ିଵݑ
(ଶ) ቁ − ݇ቀݑ௡

(ଵ) − ௡ݑ
(ଶ)ቁ − ത݇ݑ௡

(ଵ) (2.28) 

௡ݑ̈݉
(ଶ) = −݇ቀݑ௡

(ଶ) − ௡ݑ
(ଵ)ቁ − ݇ቀݑ௡

(ଶ) − ௡ାଵݑ
(ଵ) ቁ (2.29) 

After asserting a Bloch type solution and time harmonicity, these equations of motion 

can be presented in matrix form. The determinant of the resulting 2x2 matrix is set 

equal to zero and rearranged for the propagation constant. This is given in equation 

2.30. 

ߤ =
2݇ଶ + 2݇൫݇ − ݉߱ଶ൯ − ൫݇݉ + 2݇݉൯߱ଶ + ݉݉߱ସ

2݇ଶ  (2.30) 

2.5 Discussion 

2.5.1 Frequency Response 

The models outlined in the previous sections can be used in unison to give an 

informative qualitative description of the devices behaviour in frequency space. From 

which the modal behaviour can be inferred and subsequently confirmed by solving the 

numerical EVP.  

Initially the symmetric condition will be addressed, a representative plot of the mode 

distribution in frequency space is given in Figure 2.5 for a system with 30 coupling 

DOFs and 4 DOFs per cavity.  
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Figure 2.5 Modal distribution in frequency space showing pass and stop bands 

The location of the pass and stop bands have been indicated on the plot, it can be seen 

that two stop bands exist and the majority of the modes are clustered into the pass 

bands. Two ‘localized’ modes exist in the central stop band. In the special case where 

the cavities are matched to the coupling array, all modes exist within the pass band. 

The effect of increasing the length of the cavities is depicted in Figure 2.6. The cavity 

length can be used to tune the location of the modes in the stop band. 

 

Figure 2.6 Effect of cavity length on modal distribution 

The relationship between the system as a whole and dispersion spectrum of the coupling 

array can be seen more clearly by overlaying the modal distribution on the dispersion 

spectrum. An example of this is given in Figure 2.7, where the attenuation 

coefficient, ܴ݁(ߤ), is plotted against frequency.  
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Figure 2.7 Mode distribution plotted with coupling array dispersion 

This plot configuration is very useful for the current analysis as it provides the modal 

behaviour and one can also interpret the forced response. If the structure were to be 

excited at a frequency within a stop band, the energy is trapped at the forcing location 

and a local resonance will occur. The strength of the localization can be quantified by 

the attenuation constant. This is the imaginary part of the complex wavenumber, thus 

an increase in this leads to faster spatial attenuation and a sharper, more localized 

resonance. It is clear that the sharpest local resonance will appear when the excitation 

frequency resides in the centre of the stop band. 

The dispersion spectrum and modal distribution will distort as the parameters of the 

coupling array are varied. The stop band of interest for the current analysis is the stop 

band residing just above a normalized frequency of unity, corresponding to the primary 
ఒ
ଶ
 stop band. The stop band limits, and their dependence on the array parameters, can 

be found by considering the propagation constant expression (eq. 2.31). In the pass 

bands the solution is purely imaginary, the inverse hyperbolic function ArcCosh, 

appearing in the propagation constant definition of eq. 1.7, is purely imaginary when 

its argument is real and within the range -1 to 1. Thus, the argument is set equal to 

both -1 and 1 and the roots of ߱ found. After neglecting solutions for which ߱ < 0, four 

solutions are yielded which correspond to the upper and lower limits of the pass bands. 

The two positive solutions for arg(ߤ) = −1 are the limits of the stop band of interest. 

These are given in equations 2.31 and 2.32. 
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߱௅ଵ = ඨ2݇
݉  

(2.31) 

߱௅ଶ = ඨ2݇ + ݇
݉  

(2.32) 

It can be seen that these are the natural frequencies of the two degrees of freedom, if 

they were uncoupled. Therefore, if the parameters are chosen such that ߱௅ଵ = ߱௅ଶ, then 

the stop band does not exist. Furthermore, in the case plotted in Figure 2.7,  ߱௅ଶ is 

the lower limit of the stop band; however it is possible to reverse this by increasing the 

stiffness, ݇ or reducing the mass, ݉ sufficiently, or indeed a combination of the two. 

Increasing the width of the stop band also has an effect on the size of its peak. 

Considering again the case plotted in Figure 2.7, the effect of steadily increasing ݉ is 

shown in Figure 2.8. It is of note that the modal frequencies will always remain bound 

within their pass band or stop band, no matter how the parameters within the array 

are varied. 

 

Figure 2.8 Example of effect of array parameters on dispersion 

For the present description of the device the coupling array parameters are fixed 

arbitrarily. The only assumptions adhered to are that the coupling array is weakly 

anchored (ഥ݇ ≪ ݇) and that ݉ > ݉, this ensures that the limit ߱௅ଶ remains as the lower 

limit.  More detail on how the parameters will be chosen for the SAW device are 
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elaborated in the following chapters. The localized modes within the pass band in 

Figure 2.7 are analogous to the two modes of the 2-DOF resonators described in 

previous mode localization sensor literature and addressed in chapter 1. These are 

plotted in Figure 2.9, demonstrating that the modes differ only by the phase shift 

between the cavities, as with the 2-DOF example systems.  

 

Figure 2.9 Localized modes 

2.5.2 Qualitative overview of device operation 

The previous section summarised the general behaviour of the system. Within this 

section, the means of operation will be discussed. The operation is analogous to the 

mode localization devices previously described. One mode will be excited and the 

change in the amplitude ratio, due to an induced asymmetry, will be sensed. This will 

be referred to as ‘mode-tracked’ operation.  Methods of achieving this in practise 

include the use of a phase locked loop (PLL), a control system sensing and correcting 

for changes in the response phase. This will also correct for frequency drift due to 

ambient effects such as temperature fluctuations. The desired response can therefore 

be found by computing the change in the mode shape with an induced asymmetry. One 

way this can be found is from numerical solution of the EVP outlined in equations 2.4-

2.11.  
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Plotted in Figure 2.10 are the in-phase and anti-phase mode shapes, evaluated for 

various sizes of asymmetry. In this case, the mass ݉௣ was steadily increased. The 

behaviour of the modes in frequency space is presented in Figure 2.11. 

 

Figure 2.10 Example of mode shape change during device operation 

 

Figure 2.11 Frequency shift during device operation 

 The modes and frequencies behave in a very similar way to the examples in the 

literature, a large change is seen in the mode shape as well as a relatively small change 

in the natural frequencies. It can be seen that softening one of the cavities (increasing 

mass or reducing stiffness), will cause the lower frequency mode to drift downwards in 

frequency space, but will have negligible effect on the higher frequency mode. Although 

not shown, the reverse is true for a stiffening asymmetry, that is reducing mass or 

increasing stiffness, the higher frequency will drift upward with a negligible effect on 
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the lower frequency. In both cases the overall movement of the natural frequencies is 

very small in comparison to the change in the mode shape. 

2.5.3 Selective excitation 

The above described method of operation assumes a single mode can be excited. 

Previously proposed mode localization sensors have highlighted single mode excitation 

as a concern [27] as the excitation methods, primarily base excitation, have coupled 

into both modes relatively strongly. This produces a limitation on the device in that 

the bandwidth of each mode must be narrow enough so that the modes do not 

superpose. The currently proposed geometry however, allows highly selective 

excitation. This enables the forcing chosen to couple much more strongly into one of 

the modes, removing the limitation on the bandwidth. This is shown in the sequel. 

The steady-state forced response of the system can be evaluated numerically using the 

system matrices and equation of motion outlined in equations 2.1-2.3. However, in 

order for there to be coupling between modes, it is necessary to introduce some 

dissipation into the system. To ease computation of the solution Rayleigh damping is 

assumed, where the damping has been assumed to be proportional to the stiffness 

matrix. The forced and damped system of equations to be solved is now presented in 

equations 2.33-2.34. 

ݑ̈ۻ + ݑ۱̇ + ݑ۹ =  (2.33) ܨ

۱ =  (2.34) ۹ߚ

Three excitation scenarios will be discussed, in each case the excitation occurs only at 

the distal DOFs. The excitation arrangements are defined as in-phase, anti-phase and 

asymmetric forcing, these are depicted in Figure 2.12. The first two couple strongly 

into their synonymous modes, and weakly into the other. Asymmetric forcing refers to 

forcing only one distal DOF and not the other, this couples equally into both modes. 
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Figure 2.12 Graphics depicting the three forcing scenarios to be considered in the analysis. 

The forcing is described by the forcing vector on the right-hand side of equation 2.33. 

The three forms this will take are shown in equations 2.35-2.36.  

(±)ܨ = [1 0 ⋯ 0 ±1]୘݁ି௜ஐ௧ 

(௅)ܨ = [1 0 ⋯ 0 0]୘݁ି௜ஐ௧ 

(2.35) 

(2.36) 

This is presented in terms of the non-dimensional matrices in equation 2.37. 

෩ۻ ݑ̈ + ߱௡
ଶ۹ߚ෩̇ݑ + ߱௡

ଶ۹෩ݑ =
1
݉  (2.37) ܨ

At steady-state, the frequency of the response is assumed to match that of the forcing 

and thus takes the form in equation 2.38.  

ݑ =  ଴݁ି௜ஐ௧ (2.38)ݑ
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Substituting this into equation 2.38 yields a set of readily solvable linear equations for 

଴ݑ , the complex amplitude vector. This is given in equation 2.39, where a non-

dimensional excitation frequency,Ω෩, has been defined. 

଴ݑ = ෩ۻൣ ି૚. ۹෩൫1 − ݅߱௡Ω෩ߚ൯ − Ω෩ଶ۷൧ିଵ
. ൬

1
݇ ෩ۻ ି૚.  ൰ (2.39)ܨ

Ω෩ =
Ω

߱௡
 (2.40) 

Two damping conditions will be considered: weak damping, where the modes can be 

easily distinguished from each other in frequency space, and a stronger damping, 

although still underdamped, where the modes share a single peak in frequency space. 

First, the frequency response up to, and across, the first stop band is shown. 

 

Figure 2.13 Amplitude and phase frequency response plots 

The case plotted in Figure 2.13 has ten modes in the first pass band, (as expected from 

the 22 DOF system), there is large response present in the stop band. This is the 

frequency range where the two modes of interest reside. Decreasing the damping in the 

system will lead to a frequency separation between the modes. The weakly damped and 

strongly damped frequency responses are shown in Figure 2.14 for the three forcing 

scenarios, where only the stop band frequencies have been plotted. 

The displacement fields corresponding to the peaks in Figure 2.14 are plotted in Figure 

2.15. Detailing both the strongly and weakly-damped cases and the three excitation 

methods. Each plot displays the steady-state response due to excitation at two separate 

frequencies. In the strongly-damped case these are either side of the resonance peak, at 
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normalised frequencies of 1.22 and 1.27. For the weakly damped case these are Ω෩ =

1.244 and Ω෩ = 1.246. The plots in Figure 2.15 show that when the forcing is chosen to 

couple strongly into one mode, the chosen mode dominates across the frequency range 

of interest. This is true in both the strongly and weakly damped case, and therefore it 

can be expected that modal superposition will not have a detrimental effect on device 

performance. 

 

 

Figure 2.14 Amplitude and phase response for heavily damped (top) and weakly damped (bottom) system. 

When the forcing is indiscriminate of which mode it is excited, the anti-phase mode is 

excited at a higher frequency than the in-phase mode. This is most likely due to the 

fact that, in this configuration it is half a wavelength longer, and thus more strain 

energy is stored in the mode, with a smaller relative change in the inertial energy. This 

may change for different geometric layouts. Addressing the weakly damped case first, 

it can be seen that that when excited at the separate frequencies, the modes are strongly 

coupled into, and display similar mode shapes to the selectively excited counterparts. 

In the heavily damped case, when excited either side of the resonant peak, it can be 

seen that the behaviour switches between in-phase and anti-phase oscillation. However, 
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the response is, as expected, a weighted sum of the two modes. The response is 

asymmetric; one DOF is displaced to a much greater degree than the other. This is 

undesirable for the purposes of the device under investigation.  

 

Figure 2.15 Displacement field response for selective excitation and different damping cases. 

2.5.4 Sensitivity  

It is known from the literature that device sensitivity increases with a decreasing 

strength of coupling [2], [3]. The potential form of this relationship can be approximated 

by the model of section 2.4.2. If it is again assumed that the mass perturbation is small, 

that is ߜ ≪ 1. Then the ratio of the two DOFs can be simplified as in equations 2.41-

2.44.  
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If ߤ ≠ ߜ  ,0 ≪ 1;  

ฬ
ଶݑ

ଵݑ
ฬ =

݁ିேఓ൫ߜ + √4݁ଶேఓ + 4݁ଶேఓߜ + ଶ൯ߜ
2(1 + (ߜ  (2.41) 

ฬ
ଶݑ

ଵݑ
ฬ ≈

݁ିேఓ൫ߜ + 2݁ேఓ√1 + ൯ߜ
2(1 + (ߜ  (2.42) 

ฬ
ଶݑ

ଵݑ
ฬ ≈

݁ିேఓ(ߜ + 2݁ேఓ)
2  (2.43) 

ฬ
ଶݑ

ଵݑ
ฬ ≈

ேఓି݁ߜ + 2
2  (2.44) 

This implies that for small ߜ, the response is approximately linear. The potential 

sensitivity can then be found by differentiating the mode shape ratio with respect to ߜ. 

ฬ
߲

ߜ߲ ൬ฬ
ଶݑ

ଵݑ
ฬ൰ฬ ≈

݁ିேఓ

2  (2.45) 

This expression can be directly compared to that found in the literature for a 2-DOF 

mode localization sensor, highlighted in equation 1.32. For reference these are collated 

in Table 2.1. It is seen in equation 2.45 that the sensitivity is indeed a function of the 

coupling strength, however, the coupling strength is now defined by ݁ேఓ rather than ߢ. 

Recalling that ߤ < 0, causing spatial decay, equation 2.45 shows that increasing either 

the number of periods in the array or the propagation constant yields an exponential 

increase in sensitivity. This introduces an extra tuning term, potentially allowing for 

lower coupling strengths, and hence higher sensitivities, than currently achievable. The 

similarity of the two sensitivity expressions provides evidence towards the fundamental 

equivalence of the behaviour of the two systems. That is, the periodically coupled mode 

localization sensor behaves as the 2-DOF mode localization sensor and it is expected 

that conclusions drawn in previous research should still hold for the newly proposed 

system.  
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Table 2.1 Mass sensitivity comparison 

System Sensitivity to a mass 
perturbation References 

2-DOF Mode localization 
sensor 

1
ߢ2

 Equation (3), [24] 

Periodically coupled mode 
localization sensor 

1
2݁ேఓ Equation (2.45) 

2.6 Conclusions 

A novel MEMS sensor protocol has been introduced, utilising a SAW architecture. The 

device response and characteristics have been described qualitatively on a fundamental 

level utilising an LPM. An analytical approximation was presented. These were used 

in combination to depict and describe the mode of operation and performance.  

Device response to selective excitation was investigated and depicted graphically. It 

was shown that the forcing could be chosen to couple strongly into a single mode. 

Further evidence for this was provided in the form of the numerical solution for the 

forced response, this showed device behaviour as predicted by the frequency domain 

plots. 

The sensitivity was contrasted to that achievable with a 2-DOF mode localization 

sensor. The analytical expression used for the comparison was derived using a 2-DOF 

representation of the system. This yielded an approximate expression for sensitivity 

that implied approximate linearity of the response and portrayed a dependence upon 

coupling strength. It was shown that increasing the periods in the coupling array would 

yield an exponential increase in sensitivity. 

The utility of using a periodic coupling array has been proposed to be twofold; the 

extension to robust sensor geometries such as SAW being the first and secondly the 

potential for an exponential increase in sensitivity.  
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Chapter 3. Generalised Model of a SAW Mode Localization 

Sensor 

3.1 Introduction 

After the insight gained through the preliminary investigation of lumped parameter 

models performed in the preceding chapter, the usual engineering route would be to 

take one of three paths: (1) develop a more accurate analytical model, (2) perform 

numerical simulations on the system of interest or (3) design a series of experiments or 

a prototype device for further investigation. The choice of which route to take is often 

dependent on resources, time constraints and practicality. It is often preferable for 

many systems to develop experiments with the design aided through finite element 

analysis (FEA). In the current case however, it was decided to first develop a more 

accurate analytical model to inform the design of the device. The reasons for this choice 

over the alternatives are expounded here. 

Analytical models can be more useful for insight and design in that they describe the 

expanse of the parameter space, whereas numerical simulations and experiments 

provide data points from which the behaviour away from this point must be inferred. 

Arguably however, the data points provided by numerical or experimental methods are 

more true to the real system as they do not suffer from the assumptions often necessary 

to describe the problem analytically. Furthermore with the speed of modern computers, 

a parameter space can often be mapped out completely and fully using FEA. In the 

case of the current system however, it was not possible to use FEA in this way as a 

design tool. The primary reasons for this are twofold, i) The domain cannot be 

reasonably reduced without losing crucial information, ii) The feature sizes are orders 

of magnitude smaller than the total simulation domain size. The specifics of how these 

limitations manifest and affect the simulation are outlined in the following. 

Firstly, due to the nature of the device utilising a break in the symmetry of the problem, 

the geometry cannot be reduced significantly by exploiting symmetric planes in the 

model. Additionally, in order to reduce bulk scattering and from the edges of the 

reflectors, it is necessary to ensure the plate thickness is sufficiently small when 
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compared to the wavelength [38]. This leads to a large array of reflectors and 

consequently a model that is very large in comparison to the wavelength, likely on the 

order of hundreds of wavelengths long. Furthermore, a high stress point appears at 

every discontinuity in the surface, requiring a high mesh resolution to resolve it 

accurately. This requires mesh elements that are thousands of times smaller than the 

wavelength of interest. Thus the model is necessarily very large and involves high stress 

gradients and is therefore very computationally expensive. 

This problem has been encountered previously in the study of interdigitated 

transducers (IDTs). A method of analysis employing both the finite element method 

(FEM) and the boundary element method (BEM) was formulated to provide a way of 

solving the problem accurately for many strips with low computational effort. It was 

potentially viable to solve this system utilising the FEM/BEM approach, however, the 

script would have to be developed specifically for this problem. It was therefore more 

time efficient to develop an analytical solution that described the problem that could 

then serve to directly drive the design of prototype devices. 

It is possible that the insight gained from the investigations of chapter 2 could have 

enabled the design of a ‘best guess’ prototype. However, as this design is still in its 

infancy, with many potential permutations, it would be limiting to constrain the 

investigation at this point. The optimal course of action was deemed to be the 

investment of time into the development of a more detailed analytical model and the 

subsequent analysis. The body of this chapter therefore presents the derivation of a 

general analytical model of the proposed SAW device.  

The solution sought is the surface displacement fields within the resonant cavities. The 

full model is governed by the 3D elastodynamic equations [39]. As only the surface 

displacement for straight crested waves is sought, the system can be reduced to an 

equivalent one-dimensional model. This enables the use of the transfer matrix method, 

which applies rigorously only to one-dimensional solutions [7], to compute the 

amplitude and phase change across the finite periodic arrays. The implications and 

effects of this dimension reduction will be discussed within the body of the chapter. 
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Before the generalised solution that represents the novelty of this chapter can be 

presented, some preliminaries from the literature need to be addressed. The first of 

which is the aforementioned reduction of the 3D elastodynamic equations to a one-

dimensional form, which is addressed in section 3.2. Although the analysis can 

theoretically apply to all types of SAW, the present work will consider only Rayleigh 

waves. Therefore, the reduction of the elastodynamic equations is addressed for plane, 

straight-crested Rayleigh waves. 

The second preliminary is the derivation of the transfer matrix for locally periodic 

media. This is necessary to define the solutions across the arrays that enclose the 

cavities and is derived in section 3.4. The wave equation solution will be utilised in the 

validation of the generalised model by way of comparison to a finite element model of 

a simplified system. 

Section 3.5 presents the derivation of the analytical model, culminating in the solution 

of the displacement fields within each cavity. This section presents one of the main 

novel contributions of this thesis to the literature. A generalised geometry is presented 

in order to capture the complete parameter space. Section 3.5 outlines a simplified one-

dimensional finite element model of the system. The system is modelled as a one-

dimensional wave equation problem; this eliminates the geometric discontinuities that 

lead to the stress singularities in the 2D model. This is solved in the frequency domain, 

which amounts to a steady-state solution of an inhomogeneous one-dimensional 

Helmholtz equation with variable parameters. This is contrasted to the analytical 

model in section 3.6. The validity of the model to the system of interest and other 

potential methods are discussed in section 3.7 before conclusions are outlined in section 

3.8. 

3.2 Reduction of 3D elastodynamic equations of motion to one-dimension 

3.2.1 The linearized 3D elastodynamic equations of motion 

This brief section serves to present the coordinate system that will be used throughout 

and outline the basic equations from which the derivation will proceed. The linearized 

theory of elasticity is presented in several references, a particularly clear example, used 

by the author for reference is shown in [39]. The equations are described using the 
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material description, that is, the natural, undeformed state of the elastic body is used 

as a reference to the subsequent displacements. A rectangular coordinate system will 

be employed with the components ݔଵ, ݔଶ and ݔଷ. The displacement components in each 

direction are ݑଵ ଶݑ ,  and ݑଷ  respectively, the column vector of displacement 

components is denoted ݑ. A right-handed coordinate system is described in which the 

 ଷ extendsݔ ଶ runs from top to bottom andݔ ,ଵ-direction runs left to right on the pageݔ

into the page as displayed in Figure 3.1. 

 

Figure 3.1 Coordinate system and illustration of a segment of one wavelength of a straight crested Rayleigh wave 

So as not to overcomplicate the explanation of the phenomena within the chapter, 

consideration will only be given to an isotropic half space. It will be shown in the 

conclusion that the results can be easily extended to an anisotropic half space with the 

use of results readily available in the literature. The displacement equation of motion 

for an isotropic elastic solid is shown in equation 3.1 [39]. 

ݑ௅∇ଶߤ + ௅ߣ) + ∇∇(௅ߤ ∙ ݑ =  (3.1) ݑ̈ ߩ

Where ߣ௅ and ߤ௅, respectively are the first and second Lamé parameters. ߩ is the mass 

density and ∇ is the Gradient operator. This will serve as the starting point for the 

following derivation. 

The stress-strain relationships are also required in the following and are presented here 

for reference. A normal stress, ߬௜௜, is related to the strain components through equation 

3.2 [39]. 

߬௜௜ = ௅ߣ ൬
ଵݑ߲

ଵݔ߲
+

ଶݑ߲

ଶݔ߲
+

ଷݑ߲

ଷݔ߲
൰ + ௅ߤ2

௜ݑ߲

௜ݔ߲
 (3.2) 
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Where ݅ = 1,2 or 3. A shear stress, ߬௜௝ ,is related to the strain components through 

equation 3.3 [39]. 

߬௜௝ = ௅ߤ ቆ
௜ݑ߲

௝ݔ߲
+

௝ݑ߲

௜ݔ߲
ቇ (3.3) 

Where ݅, ݆ = 1,2 or 3 and ݅ ≠ ݆. 

3.2.2 Rayleigh waves in a semi-infinite half space 

The solution of Rayleigh waves in a semi-infinite half space is published in many 

locations, a very brief summary of the derivation using the present notation is shown 

here for completeness. For more detail the reader is directed to references [39], [40]. 

The straight-crested ݔଵ -propagating Rayleigh wave to be considered is depicted in 

Figure 3.1. 

The elastic body displayed in Figure 3.1 can be described as a semi-infinite half space 

with bounding surfaces at ݔଶ = 0 and ݔଷ = ±∞, with plane waves propagating in the 

-ଵ-direction. It is clear that the problem can be immediately reduced to one of twoݔ

dimensional plane-strain, that is ݑଷ = 0  and డ
డ௫య

= 0 . Equation 3.1 can now be 

expanded in component form. 

௅ߣ) + (௅ߤ 2
߲ଶݑଵ

ଵݔ߲
ଶ + ௅ߤ

߲ଶݑଵ

ଶݔ߲
ଶ + ௅ߣ) + (௅ߤ

߲ଶݑଶ

ଶݔଵ߲ݔ߲
 =  ߩ

߲ଶݑଵ

ଶݐ߲  (3.4) 

௅ߣ) + (௅ߤ 2
߲ଶݑଶ

ଶݔ߲
ଶ + ௅ߤ

߲ଶݑଶ

ଵݔ߲
ଶ + ௅ߣ) + (௅ߤ

߲ଶݑଵ

ଶݔଵ߲ݔ߲
 =  ߩ

߲ଶݑଶ

ଶݐ߲  (3.5) 

One well known solution to the above equations is that of a wave confined to the 

surface - a “Rayleigh wave” - The form of the trial solution is presented in equations 

3.6-7.  

ଵݑ =  క௫మା௜ఊ(௫భି௖ೃ௧) (3.6)ି݁ܣ

ଶݑ =  క௫మା௜ఊ(௫భି௖ೃ௧) (3.7)ି݁ܤ

Where ߛ and ߦ are the generally complex wavenumbers in the ݑଵ and ݑଶ  directions 

respectively and ܿோ is the Rayleigh wave speed. ܣ and ܤ are arbitrary constants. The 
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real part of ߦ in 3.6-7 is considered to be positive, such that waves decay with distance 

from the surface. 3.6-7 are inserted into 3.4-5 yielding two coupled algebraic equations 

constituting an EVP that can be solved for permissible values of ߦ  and the 

corresponding amplitude ratios ቀ஻
஺

ቁ (equations 3.8-3.15). 

ଵߦ = ଶߦ (3.8) ߛߙ =  (3.9) ߛߚ

൬
ܤ
൰ܣ

ଵ
=

݅
൬ (3.10) ߙ

ܤ
൰ܣ

ଶ
=  (3.11) ߚ ݅

ߙ = ቆ1 −
ܿோ

ଶ

்ܿ
ଶቇ

ଵ
ଶ
ߚ (3.12)  = ቆ1 −

ܿோ
ଶ

ܿ௅
ଶ ቇ

ଵ
ଶ
 (3.13) 

்ܿ
ଶ =

௅ߤ

ߩ  (3.14) ܿ௅
ଶ =

௅ߣ + ௅ߤ

ߩ  (3.15) 

From 3.8-3.15 and 3.6-7 a general solution can be written. 

ଵݑ = ൫ܣଵ݁ିఈఊ௫మ +  ଶ݁ିఉఊ௫మ൯݁௜ఊ(௫భି௖ೃ௧) (3.16)ܣ

ଶݑ = ൫ିߙଵܣଵ݁ିఈఊ௫మ +  ଶ݁ିఉఊ௫మ൯݅݁௜ఊ(௫భି௖ೃ௧) (3.17)ܣߚ

Note that the behaviour of the wavenumber with respect to the wave-speed (the 

dispersion) is still not known. This is to be found upon insertion of equations 3.16-17 

into the boundary conditions. The boundary conditions for the free surface regions are 

the vanishing of both the normal and shear surface stresses (߬ଶଶ and ߬ଶଵrespectively) 

at the boundary (ݔଶ = 0). These conditions are given explicitly in equations 3.18-19, 

with the ݑଷ and డ
డ௫య

 terms omitted. 

߬ଶଶ௫మୀ଴ = ൤ߣ௅ ൬
ଵݑ߲

ଵݔ߲
+

ଶݑ߲

ଶݔ߲
൰ + ௅ߤ2

ଶݑ߲

ଶݔ߲
൨

௫మୀ଴
= 0 (3.18) 

߬ଶଵ௫మୀ଴ = ൤ߤ௅ ൬
ଵݑ߲

ଶݔ߲
+

ଶݑ߲

ଵݔ߲
൰൨

௫మୀ଴
= 0 (3.19) 

Inserting the general solution 3.16-17 into 3.18 and 3.19 yields a second coupled 

algebraic problem [39]. Setting the determinant equal to zero yields the Rayleigh phase 
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velocity (equation 3.20). Demonstrating that the Rayleigh waves in the un-plated 

regions are non-dispersive, that is, the speed of propagation is independent of the 

wavelength. 

ቆ2 −
ܿோ

ଶ

்ܿ
ଶ ቇ

ଵ
ଶ

− 4 ቆ1 −
ܿோ

ଶ

ܿ௅
ଶ  ቇ

ଵ
ଶ

ቆ1 −
ܿோ

ଶ

்ܿ
ଶ ቇ

ଵ
ଶ

= 0 (3.20) 

This equation has one root in the interval 0 < ܿோ < ்ܿ , which corresponds to the 

Rayleigh wave speed [39]. The wave-speed ܿோ is therefore a function of the material 

properties, and can itself, be thought of as a material property. An approximation for 

the ratio of ܿோ  to ்ܿ , dependent only on the Poisson’s ratio, has been proven 

approximately accurate for isotropic materials [39], [40] and is shown in equation 3.21. 

ܿோ =
0.862 + ݒ1.14

1 + ݒ ்ܿ (3.21) 

Within this thesis the primary substrate material of interest is Lithium Niobate, 

although anisotropic, the volume average Poisson’s ratio has been quoted as 0.25-0.26 

[41]. In this special case, taking ݒ = 0.25, substitution of 3.21 into 3.12 and then 

subsequently into 3.20 and 3.13  yields the depth wave numbers as ߙ = 0.3933 and 

ߚ = 0.8475. Substitution of equations 3.16-17 into the boundary conditions 3.18-19 and 

subsequent algebraic manipulation yields the ratio of  ஺భ
஺మ

= −0.5773. Inputting these 

values into equations 3.16-17 yields the 2D free wave solution that will be employed 

throughout this thesis.  

ଵݑ = 0.5773݁ି଴.ଷଽଷଷఊ௫మ−)ܣ + ݁ି଴.଼ସ଻ହఊ௫మ)ݔ)ߛ)ݏ݋ܥଵ − ܿோ(3.22) ((ݐ 

ଶݑ = 1.4679݁ି଴.ଷଽଷଷఊ௫మ)ܣ − 0.8475 ݁ି଴.଼ସ଻ହఊ௫మ)ܵ݅݊(ݔ)ߛଵ − ܿோ(3.23) ((ݐ 

3.2.3 Rayleigh waves in a plated semi-infinite half space 

The effect of the plating on the substrate will be represented using equivalent boundary 

conditions. This necessitates the assumption that the plating thickness is much smaller 

than the wavelength, which is valid in this scenario.  The two-dimensional equations 

of motion and trial solution presented in equations 3.4-3.7 still hold and the derivation 

will proceed from there. It is also of note that once the substrate is plated, many 
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different wave types can be supported. The physics in this formulation is truncated 

substantially to only consider the possibility of the ‘extended Rayleigh wave’ [42]. 

The equivalent boundary conditions are formulated using thin plate equations. These 

were first introduced by Tiersten [42] and are known eponymously. Tiersten derived 

the boundary conditions by assuming that the effect of the plate could be represented 

as an equivalent stress condition due to the thin plate’s extensional stiffness and inertia. 

Due to the assumed thinness of the plate, the flexural stiffness contribution can be 

neglected. The equivalent boundary conditions are presented in equations 3.24-25. 

߬ଶଶ = 2ℎത̅ݑ̈ߩଶ (3.24) 

߬ଶଵ = ௅തതതℎതߤ 8− ቆ
௅തതതߣ + ௅തതതߤ

௅തതതߣ + ௅തതതߤ2
ቇ

߲ଶݑଵ

ଵݔ߲
ଶ + 2ℎത̅ݑ̈ߩଵ (3.25) 

Where an overbar has been used to distinguish properties that correspond to the plate 

rather than the substrate. The sole new parameter introduced is ℎത which is half the 

plating thickness. The 2ℎത̅ݑ̈ߩ௜ term common to both boundary conditions corresponds 

to the inertia of the plating in either direction. The additional term in the shear stress 

boundary condition corresponds to the extensional stiffness. The boundary conditions 

to be fulfilled at the surface of the half space are written explicitly in equations 3.26-

27. 

ቈߤ௅ ൬
ଵݑ߲

ଶݔ߲
+

ଶݑ߲

ଵݔ߲
൰ + ௅തതതℎതߤ 8 ቆ

௅തതതߣ + ௅തതതߤ
௅തതതߣ + ௅തതതߤ2

ቇ
߲ଶݑଵ

ଵݔ߲
ଶ − 2ℎത̅ݑ̈ߩଵ቉

௫మୀ଴
= 0 (3.26) 

൤ߣ௅ ൬
ଵݑ߲

ଵݔ߲
+

ଶݑ߲

ଶݔ߲
൰ + ௅ߤ2

ଶݑ߲

ଶݔ߲
− 2ℎത̅ݑ̈ߩଶ൨

௫మୀ଴
= 0 (3.27) 

The general solution within the plated region (eqs. 3.28-31) can be deduced from the 

un-plated solution (eqs. 3.16-17) and the knowledge that the plated region trial solution 

will have unique wavenumbers and wave-speed. Where the use of an over-bar to 

distinguish parameters belonging to the plated substrate has been continued. 

ଵതതതݑ = ൫ܣଵതതത݁ିఈഥ  ఊഥ ௫మ + ଶതതത݁ିఉഥܣ  ఊഥ ௫మ൯݁௜ఊഥ(௫భି௖ೃതതതത௧) (3.28) 
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ଶതതതݑ = ൫ߙതିଵܣଵതതത݁ିఈഥ  ఊഥ ௫మ +  ଶതതത݁ିఉഥ ఊഥ ௫మ൯݅݁௜ఊഥ(௫భି௖ೃതതതത௧) (3.29)ܣ ߚ̅

തߙ = ቆ1 −
ܿோതതതଶ

்ܿ
ଶቇ

ଵ
ଶ
 (3.30) 

ߚ̅ = ቆ1 −
ܿோതതതଶ

ܿ௅
ଶቇ

ଵ
ଶ
 (3.31) 

In an identical fashion to the un-plated substrate derivation, the trial solution is 

inserted into the boundary conditions yielding a determinantal expression, the 

derivation of which is provided in reference [42] for an isotropic substrate and [38], [43] 

for an anistropic substrate. Subsequent expansion of the determinantal equation yields 

a polynomial in ̅ߛ  and ܿோതതത . Any real positive ̅ߛ  will provide the values of ܿோതതത that 

correspond to the dimensionless phase velocities for the modes extant in the plated 

substrate region [42]. It is noted that negative or complex values of ̅ߛ are inadmissible 

as only real positive wavelengths are considered. The validity of obtaining the 

dispersion curves using this method is discussed in reference [42], it is necessary that 

the thin plate assumption is adhered to. Dispersion curves for various material 

combinations of interest are available in the literature, including for anisotropic 

substrates such a Lithium Niobate [38]. 

3.2.4 Reduction to one-dimension 

It is common to consider the propagation of SAW as a quasi-one-dimensional problem. 

A normal modes expansion method has been presented by Auld in reference [44] and 

utilised to calculate the reflection from a single strip in reference [45]. In addition, the 

prevalent coupling of modes method assumes a loaded wave equation as its starting 

point [46] with the parameters to be found through experiment or simulation. The 

solution to be utilised here however was presented in references [38], [43] where Sinha 

and Tiersten derived the equivalent equations of motion for the surface displacement 

in a partially plated substrate. 

Sinha and Tiersten used a variational principle and inserted a solution of the form 

shown in equations 3.6-7, where the depth behaviour is known from the derivations 

discussed in sections 3.2.2 and 3.2.3.  
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,ଵݔ)௝ݑ ,ଶݔ (ݐ = ߮௝(ݔଶ)߰(ݔଵ,  (3.32) (ݐ

Where ݆ = 1,2 and ߮௝(ݔଶ)corresponds to the depth behaviour, displayed explicitly in 

equations 3.16 and 3.17 for the example of an unplated substrate. The solution is then 

inserted into the variational indicator and integrated through the depth to eliminate 

the ݔଶ dependence. After the variations are performed the result is the equations of 

motion and the boundary conditions for both the plated, and free, substrates. The 

equations of motion are found to be of the form presented in equation 3.33 for the 

example of an un-plated region. 

ଵܥ
߲ଶ߰
ଵݔ߲

ଶ + ଶܥ
߲߰
ଵݔ߲

+ ଷ߰ܥ = ߩସܥ
߲ଶ߰
ଶݐ߲  (3.33) 

The parameters ܥ௞ are constants, consisting of sums of products of components of the 

elasticity matrix and the integrals of the depth behaviour, provided in detail in 

references [38], [43].  The edge conditions between a plated and un-plated region take 

the form given in equations 3.34-35. 

߰ = ത߰ (3.34) 

ܶ௦
ଵ = തܶ ௦

ଵ + 2ℎതߤ௅തതത ቆ1 +
௅തതതߣ3 + ௅തതതߤ2
௅തതതߣ + ௅തതതߤ2

ቇ ߮ଵതതതത(0)߮ଵ
∗(0)

߲ ത߰
ଵݔ߲

 (3.35) 

Where ܶ௦
௞ are surface stresses, they correspond to the tractions at the surface, after 

the depth integrals have been performed. The first boundary condition therefore 

specifies continuity of the surface displacement. The second boundary condition 

equated the stress state at the surface in both regions, however, there is an additional 

term from the plated region. This arises due to the discontinuity in the surface, and 

corresponds to a point load at each discontinuity. This is discussed in depth in 

references [45], [47]–[49] 

The preceding system of equations is solved by a solution of the form of equation 3.36 

in the un-plated region and equation 3.37 in the plated region. 

,ଵݔ)߰ (ݐ = ௜ఊ௫భ݁ܣ) +  ௜ఊ௫భ)݁ି௜ఠ௧ (3.36)ି݁ܤ
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ത߰(ݔଵ, (ݐ = ௜ఊഥ௫భ݁ܣ̅) +  ത݁ି௜ఊഥ௫భ)݁ି௜ఠ௧ (3.37)ܤ

Where ߱ = ோܿߛ .The dispersion relations in the one-dimensional theory have been 

shown to agree favourably with that of the three-dimensional theory presented in the 

opening sections [38], [43].  

3.3 Excitation and transduction 

The previous sections have discussed free wave motion. These solutions described the 

form of Rayleigh surface waves as well as providing the wave speed with which they 

propagate in a given substrate. In practise, the device will undergo sustained oscillation 

due to a time harmonic load. It is therefore necessary to determine the force-

displacement relationship due to such a load. This section begins by discussing the 

classic solution to ‘Lamb’s problem’ of a time harmonic line load. Following this is a 

description of the interdigitated transducer and the models that describe it.    

3.3.1 Response of an elastic half-space to a time harmonic line load 

Lamb [50] first investigated the response of an elastic body to both time harmonic and 

impulsive line loads. Since this work the method and results have become a staple of 

textbooks on elastic waves [39], [40]. The problem is posed as the solution of the plane 

strain equation of motion, defined in equations 3.4-5, with the boundary conditions 

described below in equations 3.38 and 3.39. 

߬ଶଶ௫మୀ଴ =  ௜ఠ௧ (3.38)ି݁(ଵݔ)ߜܲ−

߬ଶଵୀ଴ = 0 (3.39) 

Where ܲ has dimensions ܰ/݉ and ߜ(ݔଵ) is the Dirac delta function. Their product 

describes a distributed load applied along a straight line running along the ݔଷ direction, 

as depicted in Figure 3.2. 
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Figure 3.2 Orientation of time harmonic line load with respect to the coordinate system and free surface.  

It is convenient for the solution process to employ the Helmholtz decomposition and 

represent the equations of motion in terms of two potentials separately defining the 

divergence and curl of the vector field, ݑ. The potentials are defined in equations 3.40 

and 3.41. The displacement components ݑଵ and ݑଶ can be defined in terms of the 

potentials by equations 3.42 and 3.43 [39]. 

∇ ∙ ݑ =
 ଵݑ߲
ଵݔ߲

+
ଶݑ

ଶݔ߲
 (3.40) 

∇ × ݑ = ൬
 ଵݑ߲
ଶݔ߲

−
ଶݑ

ଵݔ߲
൰  (3.41) ܓ

ଵݑ =
߲(∇ ∙ (ݑ

ଵݔ߲
+

ห(∇ × ห(ݑ
ଶݔ߲

 (3.42) 

ଶݑ =
߲(∇ ∙ (ݑ

ଶݔ߲
−

߲ห(∇ × ห(ݑ
ଵݔ߲

 (3.43) 

The equations of motion in terms of the potentials become equations 3.44 and 3.45. 

߲ଶ(∇ ∙ (ݑ
ଵݔ߲

ଶ +
߲ଶ(∇ ∙ (ݑ

ଶݔ߲
ଶ = ܿ௅

ିଶ ߲ଶ(∇ ∙ (ݑ
ଶݐ߲  (3.44) 
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߲ଶ(∇ × (ݑ
ଵݔ߲

ଶ +
߲ଶ(∇ × (ݑ

ଶݔ߲
ଶ = ்ܿ

ିଶ ߲ଶ(∇ × (ݑ
ଶݐ߲  (3.45) 

The set of equations can be solved by employing a standard integral transform 

technique, the exponential Fourier transform [39], as defined by equation 3.46. The 

inverse transform is defined in equation 3.47.  

݂(ி)(ߛ) = ℱ[݂(ݔଵ)] = න ݁௜ఊ௫భ݂(ݔଵ)݀ݔଵ

ஶ

ିஶ
 (3.46) 

(ଵݔ)݂ = ℱିଵ[݂(ி)(ߛ)] =
1

ߨ2
න ݁ି௜ఊ௫భ݂(ி)(ߛ)݀ߛ

ஶ

ିஶ
 (3.47) 

The appropriate forms of the potential function solutions in Fourier space are given in 

equations 3.48-49, with the time harmonicity omitted. The stress equations 3.18 and 

3.19 are first represented using the potentials and then transformed yielding equations 

3.50 and 3.51.  

ℱൣ(∇ ∙ ൧(ݑ = ൫ఊమିఠమ௖ಽି݁(ߛ)෡ߔ
షమ൯

భ
మ௫మ (3.48) 

ℱൣ(∇ × ൧(ݑ = ൫ఊమିఠమ௖೅ି݁(ߛ)෠߆
షమ൯

భ
మ௫మ (3.49) 

߬ଶଶ௫మୀ଴ = ௅ߤ ቆ−߱ଶ்ܿ
ିଶℱൣ(∇ ∙ ൧(ݑ − 2

߲ଶℱൣ(∇ ∙ ൧(ݑ
ଶݔ߲

ଶ + ଶߛ݅ ߲ℱൣ(∇ × ൧(ݑ
ଶݔ߲

ቇ (3.50) 

߬ଶଵୀ଴ = ௅ߤ ቆ݅2ߛ
߲ℱൣ(∇ ∙ ൧(ݑ

ଶݔ߲
− ߱ଶ்ܿ

ିଶℱൣ(∇ × ൧(ݑ + ∇)ଶℱൣߛ2 ×  ൧ቇ (3.51)(ݑ

Equations 3.40-41 and 3.48-49 are inserted into equations 3.50-51 yielding equations 

for ℱൣ(∇ ∙ ∇)൧ and ℱൣ(ݑ ×   .൧(ݑ

ଶߛ2) − ߱ଶ்ܿ
ିଶ)ℱൣ(∇ ∙ ൧(ݑ − ଶߛ)ߛ2݅ − ߱ଶ்ܿ

ିଶ)
ଵ
ଶℱൣ(∇ × ൧(ݑ = −

ܲ
௅ߤ

 (3.52) 

ଶߛ)ߛ2݅ − ߱ଶܿ௅
ିଶ)

ଵ
ଶℱൣ(∇ ∙ ൧(ݑ − ଶߛ2) − ߱ଶ்ܿ

ିଶ)ℱൣ(∇ × ൧(ݑ = 0 (3.53) 

These are solved by equations 3.54-55. 
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ℱൣ(∇ ∙ ൧(ݑ = −
ଶߛ2 − ߱ଶ்ܿ

ିଶ

ℋ(ߛ)
ܲ
௅ߤ

 (3.54) 

ℱൣ(∇ × ൧(ݑ =
ଶߛ)ߛ2݅ − ߱ଶܿ௅

ିଶ)
ଵ
ଶ

ℋ(ߛ)
ܲ
௅ߤ

 (3.55) 

ℋ(ߛ) = ଶߛ2) − ߱ଶ்ܿ
ିଶ)ଶ − ଶߛ)ଶߛ4 − ߱ଶܿ௅

ିଶ)
ଵ
ଶ(ߛଶ − ߱ଶ்ܿ

ିଶ)
ଵ
ଶ (3.56) 

Using equations 3.42-43, these solutions can be put in terms of the displacement fields, 

as shown in equations 3.57 and 3.58. 

ℱ[ݑଵ] = ∇)ℱൣߛ݅− ∙ ൧(ݑ − ଶߛ) − ߱ଶ்ܿ
ିଶ)

ଵ
ଶℱൣ(∇ ×  ൧ (3.57)(ݑ

ℱ[ݑଶ] = ଶߛ)− − ߱ଶܿ௅
ିଶ)

ଵ
ଶℱൣ(∇ ∙ ൧(ݑ + ∇)ℱൣߛ݅ ×  ൧ (3.58)(ݑ

Inversion of equations 3.57-58 back into the spatial domain yields expressions 3.59-64. 

ଵݑ = ௨ଵଵ߇) + (௨ଵଶ߇
ܲ
௅ߤ

 (3.59) 

ଶݑ = ௨ଶଵ߇) + (௨ଶଶ߇
ܲ
௅ߤ

 (3.60) 

௨ଵଵ߇ =
݅

ߨ2
න

ଶߛ2)ߛ − ߱ଶ்ܿ
ିଶ)

ℋ(ߛ) ݁ି௜ఊ௫భି(ఊమିఠమ௖ಽ
షమ)

భ
మ௫మ݀ߛ

ஶ

ିஶ
 (3.61) 

௨ଵଶ߇ =
−݅
ߨ

න
ଶߛ)ߛ − ߱ଶ்ܿ

ିଶ)
ଵ
ଶ(ߛଶ − ߱ଶܿ௅

ିଶ)
ଵ
ଶ

ℋ(ߛ) ݁ି௜ఊ௫భି(ఊమିఠమ௖೅
షమ)

భ
మ௫మ݀ߛ

ஶ

ିஶ
 (3.62) 

௨ଶଵ߇ =
1

ߨ2
න

ଶߛ) − ߱ଶܿ௅
ିଶ)

ଵ
ଶ(2ߛଶ − ߱ଶ்ܿ

ିଶ)
ℋ(ߛ) ݁ି௜ఊ௫భି(ఊమିఠమ௖ಽ

షమ)
భ
మ௫మ݀ߛ

ஶ

ିஶ
 (3.63) 

௨ଶଶ߇ =
−1
ߨ

න
ଶߛ)ଶߛ − ߱ଶܿ௅

ିଶ)
ଵ
ଶ

ℋ(ߛ) ݁ି௜ఊ௫భି(ఊమିఠమ௖೅
షమ)

భ
మ௫మ݀ߛ

ஶ

ିஶ
 (3.64) 

The problem now falls to the evaluation of the integrals in equations 3.61 to 3.64 by 

contour integration. A contour integral describes a line integral in the complex plane. 

Evaluation of such integrals is achievable by the fact that, for an analytic function as 
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determined by the Cauchy-Reimann equations, the line integral of any closed loop on 

the complex plane is equal to zero. For the example at hand, there exists discrete points 

in the function that are not analytic, these are the poles that occur when ℋ(ߛ) = 0 in 

equations 3.61-64. Such points can usually be accounted for by computing the residual, 

as is common practise. However, in the current case, such computations are difficult 

and additional methods are required [39]. Full detail of the computation of the integrals 

in equations 3.61-64 is off-topic for the current discussion and will add little. Details of 

the computations can be found in references [51], [52]. The solutions relating to the 

surface waves, found in references [39], [40], [53] are quoted here. 

ଵ௫మୀ଴ݑ = −
ܲ
௅ߤ

Κଵ݁௜(ఠ௧ିఊ௫భ) (3.65) 

ଶ௫మୀ଴ݑ = −
݅ܲ
௅ߤ

Κଶ݁௜(ఠ௧ିఊ௫భ) (3.66) 

Κଵ =
−߱ଷܿோ ൬2ܿோ

ଶ − ்ܿ
ଶ − 2(ܿோ

ଶ − ܿ௅
ଶ)

ଵ
ଶ(ܿோ

ଶ − ்ܿ
ଶ)

ଵ
ଶ൰

ℋ′(߱ܿோ)  (3.67) 

Κଶ =
−߱ଷ்ܿ

ଶ(ܿோ
ଶ − ܿ௅

ଶ)
ଵ
ଶ

ℋ′(߱ܿோ)  (3.68) 

ℋᇱ(߱ܿோ) =
݀ℋ(ߛ)

ߛ݀
ቤ

ఊୀఠ௖ೃ

 (3.69) 

With reference to the reduced one-dimensional representation given in eq. 3.32, this 

solution would be represented as in equations 3.70-72.  

߮ଵ(ݔଶ) = Κଵ (3.70) 

߮ଶ(ݔଶ) = ݅Κଶ (3.71) 

,ଵݔ)߰ (ݐ = −
ܲ
௅ߤ

݁௜(ఠ௧ିఊ௫భ) (3.72) 
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3.3.2 The Interdigitated Transducer (IDT) 

Transduction of surface acoustic waves in a piezoelectric substrate is efficiently 

accomplished by the use of interdigitated transducers. The basic geometry, as shown 

in Figure 3.3, consists of two parallel bus bars with electrode ‘digits’ protruding 

perpendicular to both the bus bars and the direction of wave travel. In the simplest 

arrangement alternating electrodes attach to alternating bus bars. An alternating 

current is applied across the two bus bars which in turn excites an alternating stress 

field in the substrate through the reverse piezoelectric effect. 

Piezoelectricity is the accumulation of charge in a solid, and hence a voltage, through 

the application of a mechanical stress. Conversely, the reverse piezoelectric effect is the 

generation of a mechanical stress, due to the application of an electric field. With 

reference to Figure 3.3, through the reverse piezoelectric effect, the field lines in the 

substrate are directly related to a stress (and hence strain) within the substrate. The 

magnitude of this effect is described through the equations of linear piezoelectricity and 

in particular the constitutive equations coupling the stress and charge fields. The 

piezoelectric constitutive equations are shown in equations 3.73-74 [54].  

 

 

Figure 3.3 Top view and cross section of the basic interdigitated transducer geometry. The double headed arrow 
on the top view representation displays the direction of wave propagation. The dotted arrow lines on the cross 

section represent the field lines between the electrodes. 
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D = E܍ +  τ (3.73)܌

τ = E܂(۱܌)− + ۱ε (3.74) 

Where ܌ is the piezoelectric coefficient matrix, D is the charge density vector, ܍ is the 

dielectic permittivity matrix, E is the electric field vector, ۱ is the elasticity matrix, τ 

is the stress vector and ε is the strain vector. It can be seen that if one knows the 

piezoelectric coefficient matrix for a material and the applied electric field, then the 

resultant mechanical loading on the material can be found. 

For device design, transduction using an IDT is typically modelled using 

phenomenological equations, such as in the coupling of modes method (COM). A 

transduction coefficient is found, through experiment or simulation, for a material. This 

is used within a reduced order model to directly couple the voltage directly to the wave 

amplitude [46]. 

The simplest model for IDT design is the delta function model [55], [56]. This is widely 

used, and although simplistic, can produce useful results. As displayed in Figure 3.4 it 

represents the IDT excitation as a series of delta functions. Commonly these are located 

two per IDT finger, one at each edge. However, it is stated in reference [56]  that this 

can be simplified to one per IDT finger, located in the centre, with little loss of 

information, as depicted in Figure 3.5. 

 

Figure 3.4 Schematic of the delta function representation of IDT forcing. 
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Figure 3.5 Schematic of the reduced delta function model. 

In the device discussed within this thesis, an IDT will sit adjacent to each cavity, 

injecting waves into the device. On the other side of the IDT will lie the reflector array, 

bounding the device (see Figure 2.1). The analysis presented here will simplify each 

IDT to be represented by a single line load of the type presented in Figure 3.5. The 

simplification is displayed graphically in Figure 3.6. 

 

Figure 3.6 Positioning of the single line load in relation to the enclosing array and cavity. 

3.4 The transfer matrix for locally periodic media 

The transfer matrix for locally periodic media has been found in references [14], [15], 

[17]. This is to be used to provide the change in amplitude and phase for a reflected or 

transmitted wave incident upon an array. Contrary to many transfer matrix methods, 

this makes no reference to Floquet or Bloch theory; instead it finds closed form solutions 

for the recursive application of the single cell transfer matrix. Consequently it is valid 

for any length of repeating structure, unlike the Floquet-Bloch methods, which are 

rigorously valid only for infinite periodic arrays [12], [14], [15]. For completeness and 

because of its central role in the solutions yielded later in this chapter, the derivation 

and solutions yielded by Griffiths and Steinke [14] and Pereyra and Castillo [15] are 
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transcribed here in the context of the SAW system. A schematic of a general array 

geometry is presented in Figure 3.7. 

 

Figure 3.7 Schematic and coordinate system for derivation of the TM 

It can be seen that each period consists of three regions and that there are two internal 

boundaries per period. The incident wave is described by equation 3.75. The waves in 

the subsequent plated and un-plated regions are then described by equations 3.76 and 

3.77 respectively.  

߰଴(ݔଵ) = ଴݁௜ఊ௫భܣ + ଴݁ି௜ఊ௫భܤ ଵݔ < −݀ (3.75) 

߰௡തതതത(ݔଵ) = ௡݁௜ఊ(௫భି௡௦)ܣ + ௡݁ି௜ఊ(௫భି௡௦)ܤ −݀ + (݊ − ݏ(1 < ଵݔ < ݀ + (݊ −  (3.76) ݏ(1

߰௡(ݔଵ) = ௡݁௜ఊ(௫భି௡௦)ܣ + ௡݁ି௜ఊ(௫భି௡௦)ܤ ݀ + (݊ − ݏ(1 < ଵݔ < −݀ +  (3.77) ݏ݊

The ‘state vector’, ψ௡(ݔଵ), contains information on the displacement and its derivative 

at a point in the structure (equation 3.78). This information can be represented as the 

product of an amplitude vector, a phase matrix and a matrix representing the 

differential operation on the displacement. These are shown in equations 3.79, 3.80 and 

3.81 respectively, for the un-plated regions. 

ψ௡(ݔଵ) = ቊ
௡݁௜ఊ௫భܣ + ௡݁ି௜ఊ௫భܤ

௡݁௜ఊ௫భܣ൫ߛ݅ − ௡݁ି௜ఊ௫భ൯ܤ
ቋ = ۲.  ௡ (3.78)߶(ଵݔ)۾

߶௡ = ൜ܣ௡
௡ܤ

ൠ (3.79) 

(ଵݔ)۾ = ൤݁௜ఊ௫భ 0
0 ݁ି௜ఊ௫భ

൨ (3.80)  ۲ = ൤ 1 1
ߛ݅  ൨ (3.81)ߛ݅−
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With this terminology prescribed, the transfer matrix can be formulated. Referring to 

Figure 3.7, the transfer matrix from region ߰଴ to region ߰ଵ will first be constructed. 

Considering first the boundary at ݔଵ = −݀, continuity of the state vectors must be 

enforced; this results in equations 3.82-84. 

ψ଴(−݀) = ψ଴(−݀) (3.82) 

۲. ଴߶(݀−)۾ = ۲ഥ .  ഥ(−݀)߶଴തതതത (3.83)۾

߶଴ = ۲ି૚. .(݀−)૚ି۾ ۲ഥ .  ഥ(−݀)߶଴തതതത (3.84)۾

And identically, when considering the boundary at ݔଵ = ݀. 

ψ଴(݀) = ψ଴(݀) (3.85) 

۲ഥ . ഥ(݀)߶଴തതതത۾ = ۲.  ଵ (3.86)߶(݀)۾

߶଴തതതത = ۲ഥ ି૚. .(݀)ഥି૚۾ ۲.  ଵ (3.87)߶(݀)۾

Substituting 3.87 into 3.84 gives equation 3.88. 

߶଴ = ۲ି૚. .(݀−)૚ି۾ ۲ഥ . ഥ(−݀)۲ഥ۾ ି૚. .(݀)ഥି૚۾ ۲.  ଵ (3.88)߶(݀)۾

Evaluation of the matrix product yields the transfer matrix across one period of the 

array. Therefore, equation 3.88 is expressed at equations 3.89-91. 

߶଴ =  ଵ (3.89)߶܂

൜ܣ଴
଴ܤ

ൠ = ܂ ൜ܣଵ
ଵܤ

ൠ (3.90) 

܂ = ۲ି૚. .(݀−)૚ି۾ ۲ഥ . ഥ(−݀)۲ഥ۾ ି૚. .(݀)ഥି૚۾ ۲.  (3.91) (݀)۾

Once ܂ is evaluated it is found to be hermitian with the components as given below in 

equations 3.92-95.  

܂ = ቂݓ ݖ
∗ݖ  ቃ (3.92)∗ݓ
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ݓ = (݀ߛ2)ݏ݋ܥ) − ݅߳ାܵ݅݊(2݀ߛ))݁ଶ௜ఊௗ (3.93) 

ݖ =  (3.94) (݀ߛ2)݊݅ܵି߳݅

߳± =
1
2 ቆ

ߛ
ߛ ±

ߛ
 ቇ (3.95)ߛ

It is explained in references [14], [15] that the form of the transfer matrix is enforced 

due to the physical laws of time reversal invariance and conservation of energy. The 

transfer matrix takes this form for any distribution of wavenumber. In addition, it is 

shown that the transfer matrix is unimodular, that is,|܂| = ૚. These properties are 

employed to apply the transfer matrix recursively. The relationship between the ݊௧௛ 

un-plated region to the (݊ + 1)௧௛ un-plated region can be written from equations 3.96. 

ቊ ௡݁௜ఊ(௫భି௡௦)ܣ

௡݁ି௜ఊ(௫భି௡௦)ቋܤ = ܂ ቊ ௡ାଵ݁௜ఊ(௫భି(௡ାଵ)௦)ܣ

 ௡ାଵ݁ି௜ఊ(௫భି(௡ାଵ)௦)ቋ (3.96)ܤ

This simplifies to equations 3.97-98. 

൜ܣ௡
௡ܤ

ൠ = ܂ ቊܣ௡ାଵ݁ି௜ఊ௦

௡ାଵ݁௜ఊ௦ܤ ቋ = .܂ (ݏ−)۾ ൜ܣ௡ାଵ
௡ାଵܤ

ൠ = ܈ ൜ܣ௡ାଵ
௡ାଵܤ

ൠ (3.97) 

܈ = ൤ି݁ݓ௜ఊ௦ ௜ఊ௦݁ݖ

௜ఊ௦ି݁∗ݖ  ௜ఊ௦൨ (3.98)݁∗ݓ

Applying ܈ recursively can provide the transfer matrix for ܰ periods (equation 3.99).  

൜ܣ଴
଴ܤ

ൠ = ே܈ ൜ܣே
ேܤ

ൠ (3.99) 

The problem is now reduced to the evaluation of ܈ே, the ܰ௧௛ power of a unimodular, 

hermitian matrix. This is performed in references [14], [15] by exploiting the Cayley-

Hamilton theorem. The method is detailed here. First the characteristic equation of 

 .is considered ܈

܈| − ݉. ۷| = ݉ଶ − (܈)ݎܶ ݉ + |܈|  = 0 (3.100) 

Using the fact that ܈ is unimodular, this reduces to equation 3.101, where ݉ is a scalar. 
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݉ଶ − + ݉ߞ2  1 = 0 (3.101) 

ߞ =
1
2  (3.102) (܈)ݎܶ

The Cayley-Hamilton theorem states that any matrix will satisfy its own characteristic 

equation[14], [15],therefore ݉ can be set as equal to ܈. 

ଶ܈ − + ܈ߞ2 ۷ = 0 (3.103) 

This implies that any power of ܈ can be written as a linear combination of ܈ and ۷. 

This can be reasoned by first rearranging eq. 3.103 to an expression for ܈ଶ, and then 

multiply through by ܈, providing an equation for ܈ଷ in terms of ܈ଶ and ܈. The original 

equation (eq.3.103) for ܈ଶ can be substituted back in, providing a linear expression for 

 thus eq, 3.103 ,܈ and ۷. This process can be repeated for any power of ܈ ଷ, in terms of܈

can be written as below. 

ே܈ = .܈ ܷேିଵ(ߞ) − ۷. ܷேିଶ(ߞ) (3.104) 

It is shown in references [14], [15] that the polynomial ܷே(ߞ) is the ܰ௧௛ Chebyshev 

polynomial of the second kind. This can be expressed explicitly as in eq 3.105. 

ܷே(ߞ) =
ܵ݅݊[(ܰ + [(ߞ)ଵିݏ݋ܥ(1

[(ߞ)ଵିݏ݋ܥ]݊݅ܵ  (3.105) 

Therefore, finally the transfer matrix for the N cell array can be stated explicitly in 

equation 3.106. 

ே܈ = ቈି݁ݓ௜ఊ௦ܷேିଵ(ߞ) − ܷேିଶ(ߞ) ௜ఊ௦݁(ߞ)ேିଵܷݖ

௜ఊ௦ି݁(ߞ)ேିଵܷ∗ݖ (ߞ)௜ఊ௦ܷேିଵ݁∗ݓ − ܷேିଶ(ߞ)
቉ (3.106) 

Therefore the complex amplitudes of the transmitted and reflected portions of a wave 

incident on the left hand end of the array, can be stated as equations 3.107 and 3.108 

respectively. 

ேܶ = ൬
ேܣ

଴ܣ
൰

஻ಿୀ଴
= ൫ି݁ݓ௜ఊ௦ܷேିଵ(ߞ) − ܷேିଶ(ߞ)൯ିଵ (3.107) 
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ܴே = ൬
଴ܤ

଴ܣ
൰

஻ಿୀ଴
= (ߞ)௜ఊ௦ܷேିଵି݁ݓ௜ఊ௦൫ି݁(ߞ)ேିଵܷ∗ݖ − ܷேିଶ(ߞ)൯ିଵ (3.108) 

For the purposes of the analysis presented within this thesis, a negative phase shift 

equal to one of the un-plated regions in the array is applied to equations 3.107 and 

3.108. This is to account for the termination of the cavity at the end of the last plated 

region, as will be defined in the model in the following section. The necessity of this 

phase shift is depicted in Figure 3.8. 

 

Figure 3.8 Illustration of reason for phase shift 

After the application of the phase shift the expressions of equations 3.107 and 3.108 

are non-dimensionalised and shown in equations 3.109-114.  

ேܶ෪ = ൫ݓ෥݁ି௜గஐ෩ ܷேିଵ൫ߞሚ൯ − ܷேିଶ(ߞሚ)൯
ିଵ

݁ି௜గ௥ஐ෩  (3.109) 

ܴே෪ = ෥݁ି௜గஐ෩ݓሚ൯൫ߞேିଵ൫ܷ ∗ݖ̃ ܷேିଵ൫ߞሚ൯ − ܷேିଶ(ߞሚ)൯
ିଵ

݁ି௜గ௥ஐ෩  (3.110) 

ݖ̃ = −݅߳ିܵ݅݊ ቆ
Ω෩ݎߨ

ܿ෥ܴ ቇ (3.111) 

෥ݓ = ൭ݏ݋ܥ ቆ
Ω෩ݎߨ

ܿ෥ܴ ቇ − ݅߳ାܵ݅݊ ቆ
Ω෩ݎߨ

ܿ෥ܴ ቇ൱ ݁௜గ௥ஐ෩  (3.112) 

ሚߞ = Ω෩൯ߨ൫ݏ݋ܥ(෥ݓ)ܴ݁ +  Ω෩൯ (3.113)ߨ൫݊݅ܵ(෥ݓ)݉ܫ

߳± =
1
2 ൬ܿ෥ܴ ±

1
ܿ෥ܴ൰ (3.114) 

The non-dimensional parameters used are defined in equations 3.115-3.118. 
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Ω෩ =
݂ݏ2
ܿோ

 (3.115)  ܿோ෦ =
ܿோതതത
ܿோ

 (3.116) 

ݏ̃ =
݂ݏ
ܿோ

ݎ  (3.117)  =
݀
ݏ  (3.118) 

Where ݂ is the operating frequency, ܿோ is the substrate Rayleigh wave-speed, ܿோതതത is the 

Rayleigh wave-speed within the plated regions. The relationship between the period 

within the array and the incident wavelength, ߣ௜ , is therefore ߣ௜ =  .Ω෩/ݏ2

A representative plot of the frequency dependence of the transmission and reflection 

amplitude coefficients is shown in Figure 3.9. The stop band can be seen clearly on 

both plots, emerging as a dip in the transmission coefficient spectrum. With increasing 

periods it is shown that the transmitted amplitude moves towards zero. Within the 

pass bands, peaks occur that relate to the position of the resonant frequencies of the 

structure if it was finite. It is shown in reference [14], [15] that as the number of periods 

grows towards infinity the pass band response tends towards a straight line.  

 

Figure 3.9 Transmission and reflection coefficients. 

3.5 Generalised solution of the reduced one-dimensional problem 

This section utilises the results from the literature presented previously in this chapter 

and combines them in a novel way. The analysis yields a closed form analytical solution 

for the displacement fields within the each cavity of the SAW system. To the author’s 

knowledge, this is the first example of such a solution in the literature. 
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3.5.1 Solution of cavity displacement fields 

A schematic of the device is shown in Figure 3.10, it can be seen that five main sections 

define the device: the two cavities and the three arrays. In the general case, excitation 

can occur in either cavity, or both cavities. Regardless of the excitation method, one 

cavity is deemed the reference and the other the sense cavity.  

 

Figure 3.10 Device schematic 

The transmission and reflection due to the arrays has been defined by the transfer 

matrix solution of the preceding section. Therefore, these can now each be represented 

as a single boundary, simplifying the representation of the device (Figure 3.11).  

 

Figure 3.11 Reduced schematic in which he coupling array is replaced with a single boundary at point ‘a’. This 
point represents both the right hand end of the reference cavity and the left hand end of the sense cavity. 

The free-wave solution in the cavities was described in sections 3.2.2-3.2.4 and the 

forced solution of a semi-infinite half-space was found in section 3.31. Within this 

section the forced response of the two coupled cavities will be found utilising a ray 

tracing method. In a manufactured device, transduction would be realised using an 

IDT. As previously described, to simplify and approximate this forcing type, an IDT 

will be represented as single delta function source. This will radiate a sinusoid in either 

direction. The displacement fields in a forced and un-forced cavity, neglecting 

reflections, are defined in equations 3.119-3.121, where ݔி is the location of the source.  
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߰ி(ݔଵ)௫భழ௫ಷ =  ௅݁ି௜ఊ௫భ (3.119)ܨ

߰ி(ݔଵ)௫భவ௫ಷ =  ோ݁௜ఊ௫భ (3.120)ܨ

߰௎ி(ݔଵ) = ௜ఊ௫భ݁ܣ +  ௜ఊ௫భ (3.121)ି݁ܤ

It can be seen that the field within the sense and forcing cavities will be described by 

the sum of a leftwards and a rightwards propagating wave, the amplitudes of which 

are to be determined.  

The physics of this solution are such that there is both a leftward and rightward 

propagating plane wave originating at each forcing location. With reference to the 

schematic in Figure 3.10, it can be seen that each of these will propagate until they 

reach either an enclosing array or the coupling array. Upon reaching an array, the wave 

will be partially transmitted and partially reflected. The reflected portion of the wave 

will then traverse the same cavity again before undergoing partial 

reflection/transmission at the opposing boundary. The transmitted portion will either 

propagate away from the structure or traverse the neighbouring cavity, dependent on 

which array it is incident upon. This will continue in a manner demonstrated by Figure 

3.12, 

 

Figure 3.12 Illustration of path taken in initial stages of wave propagation. 

Following this reasoning allows for the construction of the solutions within the cavities. 

It is clear however, that the solutions will be fairly extensive considering the multiple 

reflections to be accounted for. However, it can be simplified somewhat by noticing 

that there are only three unique paths any wave can traverse before arriving back at 

its starting point. These will be termed the ‘fundamental paths’ and are (a) internal 

reflection within the reference cavity, (b) internal reflection traversing both cavities 

and (c) internal reflection within the sense cavity. These are depicted in Figure 3.13. 
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Considering a wave propagating away from any boundary, any future wave originating 

at the same boundary due to that wave is made up of the product of the original wave 

and some combination of these paths.  

 

Figure 3.13 Loci of the fundamental reflection paths. 

Each path is represented mathematically by a phase change due to distance travelled, 

and a complex amplitude coefficient due to the partial reflections and transmissions. 

The expressions for the paths are given in equations 3.122-124, each path expression 

will be denoted as ߯ఈ. 

ܣ ℎݐܽܲ = ߯஺ = ܴோܴ஼݁௜ଶఊ௔  (3.122) 

ܤ ℎݐܽܲ = ߯஻ = ܴௌ ஼ܶ
ଶܴோ݁௜ଶఊ(௔ାఎ௕) (3.123) 

ܥ ℎݐܽܲ = ߯஼ = ܴௌܴ஼ ݁௜ଶఎఊ௕  (3.124) 

Where ܴோ and ܴௌ are the reflection coefficients for the enclosing arrays of the reference 

and sense cavities respectively.  ஼ܶ  and ܴ஼  are the transmission and reflection 

coefficients of the coupling array and ߟ = ௌாேௌாߛ  .ߛ/

The solution within each cavity can therefore be said to be some product of the initial 

waves at each of its boundaries and a combination of the path expressions. The initial 

waves are defined as the excited or reflected waves that have not yet traversed one full 

fundamental path. These are most easily found by graphically tracing the initial 

propagation stages. Figure 3.14 shows the first stages of wave propagation, up until 

each ray has travelled 3 cavity lengths in distance, only the unique initial waves are 

displayed. 
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Figure 3.14 Graphical ray tracing method used to define the initial waves that multiply the infinite summations. 
The x-axis represents the cavity distance in the device and the y-axis is the time in phase shifts. The waves are 

collected vertically into initial wave 

Three path expression combinations (PECs) can be defined. These represent every 

possible combination of routes an initial wave can take as it is repeatedly internally 

reflected and transmitted between the two cavities along the fundamental paths. These 

take the forms shown in equations 3.125-127. 

Γ = ෍ ෍ ෍ ቆ
(݅ + ݆)!

݅! ݆! ቇ ቆ
(݆ + ݇)!

݆! ݇! ቇ ߯஺
௜߯஻

௝߯஼
௞

ஶ

௞ୀ଴

ஶ

௝ୀ଴

ஶ

௜ୀ଴

 (3.125) 

Γோ = ෍ ෍ ෍ ቆ
(݅ + ݆)!

݅! ݆! ቇ ቆ
(݆ + ݇)!

݆! ݇! −
(݆ + ݇ − 1)!
݆! (݇ − 1)! ቇ ߯஺

௜߯஻
௝߯஼

௞
ஶ

௞ୀ଴

ஶ

௝ୀ଴

ஶ

௜ୀ଴

 (3.126) 

Γௌ = ෍ ෍ ෍ ቆ
(݅ + ݆)!

݅! ݆! −
(݅ + ݆ − 1)!
݅! (݆ − 1)! ቇ ቆ

(݆ + ݇)!
݆! ݇! ቇ ߯஺

௜߯஻
௝߯஼

௞
ஶ

௞ୀ଴

ஶ

௝ୀ଴

ஶ

௜ୀ଴

 (3.127) 

Equation 3.125 is the sum of every possible combination of the three fundamental 

paths. Equation 3.126 is necessary for waves that originate from excitation within the 
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reference cavity. Equation 3.126 is the same as Equation 3.125 less all combinations in 

which path ߯஼ occurs before at least one incidence of path ߯஻. The initial waves cannot 

traverse path ߯஼ without this path occurring after path ߯஻ has begun. In other words, 

this enforces the requirement that reflections within the sense cavity can only occur 

post-transmission across the coupling array. The same reasoning is used for equation 

3.127; however, in relation to initial waves due to an excitation in the sense cavity. 

It is of note that the path expressions have all been placed within an infinite sum. This 

is due to the fact that, neglecting damping effects, the waves will repeat each reflection 

and transmission pattern indefinitely. It is necessary to simplify the expressions so that 

they can be analytically inspected and numerically evaluated. The summations are 

combinations of infinite arithmetico-geometric progressions. These can be evaluated 

using equation 3.128. 

෍
(݊ + ݉ − 1)!

݊! ߯ఈ
௡

ஶ

௡ୀ଴

=
(݉ − 1)!

(1 − ߯ఈ)௠ ݉ ݎ݋݂         = 1, 2, 3 … (3.128) 

Utilising linear combinations of equation 3.128 equations 3.125-127 simplify to 

equations 3.129-131 respectively. 

Γ = Λିଵ (3.129) 

Γோ = (1 − ߯஼ )Λିଵ (3.130) 

Γௌ = (1 − ߯஺)Λିଵ (3.131) 

Λ = 1 − ߯஺ − ߯஻ − ߯஼ + ߯஺߯஼  (3.132) 

This result of equations 3.129-132 is of particular significance to the current work. The 

reduction of equations 3.125-127 to simple, finite, exact expressions enables numerical 

simulation of the problem to become practical. Depending on the parameters chosen, 

between 500-1000 terms in the summations of equation 3.125 are required to provide 

an accurate representation of the frequency response. In equation 3.132, the same 
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function is described by only 5 terms. The utility of this reduction with regards to 

numerical modelling will be discussed in more detail in chapter 4. 

It can be seen that the path expression products share a common denominator, Λ. As 

one of the PECs multiply every initial wave, the roots of Λ can be used to find the 

conditions for resonance.  

The amplitude and phase of the leftward and rightward propagating waves are found 

for each cavity by summing the initial waves and multiplying them by their respective 

PEC. For the reference cavity, the rightward and leftward wave amplitudes are denoted 

as ܣோ  and ܤோ  respectively and are given in equations 3.133-134. In the following 

equations the first subscript of a variable refers to the cavity it is in reference to and 

the second subscript (where necessary) is in reference to the direction of travel. For 

example ܨோ௅ is the amplitude coefficient of the leftward travelling wave originating 

from the excitation source within the reference cavity.  

ோܣ = Λିଵ൛(1 − ߯஼)൫ܨோோ݁ି௜ఊ௫ೃ + ܴோܨோ௅݁௜ఊ௫ೃ൯
+ ܴோ ஼ܶ൫ܨௌ௅݁௜ఎఊ௫ೄ + ܴௌܨௌோ݁௜ఊ(ଶ௔ାఎ(ଶ௕ି௫ೄ))൯ൟ (3.133) 

ோܤ = Λିଵ൛(1 − ߯஼)൫ܨோ௅݁௜ఊ௫ೃ + ܴ஼ܨோோ݁௜ఊ(ଶ௔ି௫ೃ)൯
+ ஼ܶ൫ܨோ௅݁௜ఎఊ௫ೄ + ܴௌൣܨௌோ݁௜ఎఊ௫ೄ + ஼ܶܨோோ݁௜ఊ௫ೃ൧݁௜ଶఊ(௔ାఎ௕)൯ൟ (3.134) 

Similarly, the rightward and leftward wave amplitudes for the sense cavity are given 

in equations 3.135 and 3.136 respectively. 

ௌܣ = Λିଵ൛(1 − ߯஺)൫ܨௌோ݁ି௜ఎఊ௫ೄ + ܴ஼ܨௌ௅݁ି௜(ଶఊ௔ିఎఊ௫ೄ൯
+ ஼ܶ൫݁௜ఊ௫ೃ[ܨௌோ + ܴோܨோ௅] + ܴோ ஼ܶܨௌ௅݁௜ఎఊ௫ೄ൯ൟ (3.135) 

ௌܤ = Λିଵ൛(1 − ߯஺)൫ܨௌ௅݁௜ఎఊ௫ೄ + ܴௌܨௌோ݁௜ఊ(ଶ௔ାఎ(ଶ௕ି௫ೄ))൯
+ ܴௌ ஼ܶ(ܨோோ + ܴோܨோ௅)݁௜ఊ((ଶ௔ା௫ೃ)ାଶఎ௕)ൟ (3.136) 

The displacement fields in each cavity are therefore described by equations 3.137 and 

3.138. 

߰ோ(ݔ) = ቊ
หܣோ + ோܤ| − ோ௅|݁ି௜(ఊ௫ೃା∠(஻ೃିிಲಽ))ห݁௜ఊ௫ܨ ݔ > ோݔ

หܣோ + ோ|݁ି௜∠஻ೃܤ| − ோோ݁ି௜ఊ௫ೃห݁௜ఊ௫ܨ ݔ < ோݔ
 (3.137) 
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߰ௌ(ݔ) = ቊ
หܣௌ + ௌܤ| − ௌ௅|݁ି௜(ఎఊ௫ೄା∠(஻ೄିிೄಽ))ห݁௜ఎఊ௫ܨ ݔ > ௌݔ

หܣௌ + ௌ|݁ି௜∠஻ೄܤ| − ௌோ|݁ି௜ఎఊ௫ೄห݁௜ఎఊ௫ܨ| ݔ < ௌݔ
 (3.138) 

3.5.2 A special case 

A special case of this solution can be written for the device currently under 

investigation. The excitation arrangement described by Figure 3.6 is asserted, and the 

response to a line load presented in section 3.3.1 is utilised. As the forcing is effectively 

located at the boundary, which is designed to be highly reflective, a simplifying 

assumption is made that all the excited energy initially propagates into the cavity. This 

scenario is described by the following substitutions. 

ோோܨ = 2 ோܲாி/ߤ௅ (3.139) 

ோ௅ܨ = 0 (3.140) 

ௌோܨ = 0 (3.141) 

ௌ௅ܨ = 2 ௌܲாேௌா  ௅ (3.142)ߤ/

ோݔ =  (3.143) 4/ߣ

ௌݔ = ܽ + ܾ −  (3.144) 4/ߣ

Using the above substitutions and recalling that ߛ = ߱/ܿோ , the frequency response 

functions for the cavity amplitudes can be written as linear combinations of the 

contributions from each forcing location. 

|߰ௌ(߱)| = |(߱)ୗୖܩ| ோܲாி(߱) + |(߱)ୗୗܩ| ௌܲாேௌா(߱) (3.145) 

(߱)ୗୖܩ =
ܴௌ ஼ܶ݁௜ (ଶఊ௔ାଶఎఊ௕ିఊ௫ೃ)

௅(1ߤ − χ஺ − χ஻ − χ஼ + χ஺χ஼) 
(3.146) 

(߱)ୗୗܩ =
(1 − χ஺)݁௜ఎఊ௫ೄ

௅(1ߤ − χ஺ − χ஻ − χ஼ + χ஺χ஼) 
(3.147) 

|߰ோ(߱)| = |(߱)ୖୖܩ| ோܲாி(߱) + |(߱)ୗୖܩ| ௌܲாேௌா (߱) (3.148) 
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(߱)ୖୖܩ =
(1 − χ஼)݁ି௜ఊ௫ೃ

௅(1ߤ − χ஺ − χ஻ − χ஼ + χ஺χ஼ ) 
(3.149) 

(߱)ୗୖܩ =
ܴோ ஼ܶ݁௜ఎఊ௫ೄ

௅(1ߤ − χ஺ − χ஻ − χ஼ + χ஺χ஼) 
(3.150) 

3.5.3 Incorporation of dissipation 

This section will briefly address the incorporation of loss into the model. Further details 

of the specific physical mechanisms of loss and quantification will be addressed in 

chapter 5. The types of energy dissipation present in the system can be separated into 

two categories: radiative losses and viscous losses. One form of loss, radiation from the 

ends of the arrays, is already determined in the model by the reflection coefficients of 

the enclosing arrays. The effect of all other forms of loss will be included using a 

complex wavenumber. The general form of the wavenumber is given in equation 3.151. 

ߛ = ߣ/ߨ2  −  ௅ (3.151)ߙ݅

Where ߙ௅  is an attenuation coefficient specified in Nepers/m. Substituting a 

wavenumber of this form into equations 3.137 and 3.138 can account for all dissipation 

that takes place within the cavities. However, this does not account for losses occurring 

whilst waves traverse the coupling array. To account for this, the transmission 

coefficient must be replaced by the ‘lossy transmission coefficient’ , ஼ܶ௅ ,defined in 

equation 3.152. 

஼ܶ௅ =  ݁ିఈಽ௅಴ಲ ஼ܶ (3.152) 

Where ܮ஼஺ = (ܰ − ݏ(1 + 2݀ is the length of the coupling array. 

3.6 Finite element model 

An equivalent one-dimensional acoustic problem was constructed using Comsol 

Multiphysics in the Pressure Acoustics module. This amounts to a steady-state solution 

of a one-dimensional Helmholtz equation with variable parameters. In this case the 

variable parameter is the wave-speed, which is perturbed periodically in the arrays as 

well as uniformly across the sense cavity. This model will serve to validate the derived 



 

 

70

displacement field expressions, with the use of the one-dimensional wave equation 

transfer matrix derived in section 3.4.  

The geometry of the finite element model was simply a line split into sections reflecting 

the geometry shown in Figure 3.10. An overview of the 1D geometry, mesh and an 

example of the displacement field output is presented in Figures 3.15-3.19. 

 
Figure 3.15 Full 1D geometry used in the finite element model. The reference and sense cavities are highlighted as 

‘b’ and ‘c’ respectively. To the outside of the sense and reference cavities are the enclosing arrays and between 
cavities is the coupling array. Radiating boundary conditions were imposed at each end approximately 10 

wavelengths from the end of the enclosing arrays. 

 

 
Figure 3.16 Enlarged view of section ‘a’ highlighted in Figure 3.15. The end of the left-hand enclosing array is 
depicted along with the external region. The blue and black alternating regions in the array indicated sections of 

differing wave speed. 

 

 
Figure 3.17 Enlarged view of section ‘b’ highlighted in Figure 3.15. The reference cavity is depicted with the 
regions of in-phase excitation highlighted in blue and the regions of out-of-phase excitation shown in black. 
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Figure 3.18 1D mesh of approximately 15 elements per wavelength. 

 

 
Figure 3.19 Example displacement field outputs from a sweep of the wave speed within the sense cavity. 
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In the frequency domain, each section was governed by equation 3.153. The parameter 

ܿ was set equal to unity for all sections. Ω is the excitation frequency and ݒ is the 

section wave-speed, which varied between sections according to Figure 3.10.  

∇ ∙ ൫−ܿ∇ݑଵ(ݔଵ)൯ −
Ωଶ

ଶݒ (ଵݔ)ଵݑ = 0 (3.153) 

The length of the cavities was set to four wavelengths and the structure was terminated 

one wavelength after the enclosing arrays. Radiating boundary conditions were imposed 

at the terminations of the structure, as had been assumed in the analytical model. An 

excitation source was located in the centre of each cavity; a dipole acoustic source was 

selected, radiating two sinusoids of opposite phase in opposite directions, the 

amplitudes of which were tuned to unity. The numerical parameters were found from 

the non-dimensional parameters (equations 3.115-118) with ݏ and ݒଵ also set equal to 

unity. With these parameter choices made, Ω෩ = 2݂.  A mesh refinement investigation 

was performed, and due to the single dimension and simplicity of the model the critical 

parameter, cavity amplitude, was found to have negligible dependence on the mesh for 

meshes finer than 15 elements per wavelength.  

3.7 Contrast of analytical and numerical solutions 

Comparison to the FEM model is presented here as a means of validation of the model 

derived in section 3.5. In order to include all of the terms in the model, it will include 

excitation in both cavities. The comparison parameter will be the cavity amplitudes. 

This was evaluated from the FEM output as the maximum value within the 

displacement vector output from the respective cavity. The cavity amplitudes will be 

compared in terms of frequency response and variation of parameters ݔ ,ߟோ, ,ௌݔ ܽ and 

ܿோ෦ . Both models use identical boundary conditions and forcing conditions. The 

frequency response and parameter dependence plots are shown in Figure 3.20. The plots 

depict the agreement between the two models.  
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Figure 3.20 Validation plots showing cavity amplitudes expanded in various parameters. The full blue line depicts 
the sense cavity displacement amplitude and the dotted red line is that of the reference cavity. The plot markers 

represent data points from the FEM solution. 

3.8 Discussion 

3.8.1 Validity of the model to SAW devices: Reflection and transmission 

coefficients 

The accuracy of the solution of section 3.5 for SAW devices is determined solely by the 

accuracy of the complex reflection and transmission coefficients. The remainder of the 

model is completely general and applicable to all types of linear plane wave motion, 

and has been validated in section 3.7. Much attention has been given to analytical 

determination of the transmission and reflection of SAW from periodic arrays. The 
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problem has been tackled successfully using variational methods [38], [43], perturbation 

methods [47]–[49], [53], [57] and most commonly by combining phenomenological 

methods with experimental or numerical results [46], [58]. This section serves to discuss 

the methods of determining the reflection and transmission coefficients. Once obtained, 

by whichever means, these can be substituted into the model, yielding accurate results 

for the device behaviour. 

Within this chapter, and throughout the rest of this thesis, the reflection and 

transmission coefficients are determined using the transfer matrix of section 3.4. This 

form was found to be the most convenient and insightful for the current analysis. 

Additionally, this has been experimentally proven to provide accurate results in relation 

to SAW devices in references [17], [59]. However, the parameter ܿோ෦ used to account for 

the wave speed mismatch in the two regions is usually determined to a higher accuracy 

from experiment.  

An alternative to the TM method used here is the coupling of modes method (COM). 

Similarly to the method presented here, it assumes that surface waves can be described 

by a scalar wave equation and  yields a transfer matrix of the same form as presented 

in section 3.4 [58]; however, rather than being presented purely in terms of the array 

parameters, the parameters are found from either experiment or simulation. It has been 

found to provide results with a great degree of accuracy when compared to experimental 

results, particularly in the case of Rayleigh waves [46]. This can be said to further 

validate the assumption used here that no crucial information is lost by representing 

the wave motion by a scalar wave equation. This implies that any error produced by 

using the transfer matrix here will not have an effect on the phenomena of device 

operation, and is therefore sufficient for the purposes required.  

The source of the inaccuracy in ܿோ෦ when using the scalar wave equation model is 

evident from the one-dimensional equations of motion (eq’s. 3.32-3.37). In particular 

equation 3.35, the second continuity condition at the separation between a plated and 

un-plated region. This highlights the effect of the surface discontinuity introduced by 

the plating. This has been addressed separately in references [38], [57]. The effect of 

the discontinuity can be inserted as a point load [57], or be present in the boundary 

conditions as in equation 3.35 [38]. Again, in relation to the device under discussion, 
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the effect of this will be quantitative rather than phenomenological, in that the amount 

of energy transmitted and reflected will differ from this model, but will not affect device 

operation. It is of note that the one-dimensional transfer matrix for Rayleigh waves 

through a grating on a piezoelectric substrate has been derived in [38]. Similarly to the 

COM results, the results of this method can be easily inserted into the present model 

yielding a valid result. In fact, with adjustment of the coordinate system used, direct 

substitution of the components of the single cell transfer matrix within the 

aforementioned reference can be substituted directly into equation 3.106 for numerical 

evaluation. The derivation is, however, in depth and it does not add anything to be 

reproduced here. The most accessible course of action for specific device design is to 

obtain an accurate adjustment to ܿோ෦  from literature, numerical simulation [60] or from 

experiment using methods such as those outlined in [59] and input these into the model 

presented here. 

3.8.2 A note on the COM method 

The COM method is used prolifically in the design of SAW filters and resonators and 

is arguably the most commonly used design tools for SAW devices. A comprehensive 

review on the topic was presented in reference [46]. An extension of the COM method 

is the P-matrix formalism, and the conclusions drawn herein are true for both methods. 

A reasonable question that could be posed by someone familiar with SAW design is: 

why not use the COM method to model the whole device?  The answer is subtle but, 

to the authors mind, significant. COM based methods are powerful and useful tools, 

however they fail to capture and fully describe the phenomena of interest to the present 

device. Recalling that the variable of interest in the current work is the surface 

displacement field, and specifically the spatial distribution of amplitude. This is not 

commonly sought in SAW analysis and much more consideration is given to the 

frequency domain behaviour. This is reasonable considering the main application of 

SAW resonators as a bandpass filter. Accurate determination of the surface amplitude 

is far less significant than the selectivity in frequency space and much less the spatial 

distribution of the amplitude across coupled SAW resonators. The COM method was 

used in reference [58] for a very similar geometry to that of interest here. The analysis 

concerned application as a multipole filter. The frequency response was found for a 

symmetric structure of acoustically coupled cavities. The analysis however does not 
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yield access to the spatial distribution of the amplitude, furthermore, the analysis 

dismisses some of the fundamental physics of wave propagation that cause the effects 

of interest here, such as superposition of waves and separate cavity resonances. This 

determined the need for the development of a bespoke solution, as presented within 

this chapter. The solution presented here aimed to focus predominantly on the 

mechanics of wave motion. The ray tracing method employed, aimed to capture as 

much of the physics across as wide a range of the geometry as possible. Furthermore, 

as discussed in the previous section, this model can be used in conjunction with the 

COM method. It may then be reasonably thought of as an extension of the COM 

method to make it more amenable to the design and analysis of mode localization SAW 

devices. 

3.9 Conclusions 

Preliminary discussions have been presented covering results for the reduction of the 

three-dimensional elastodynamic equations of motion for Rayleigh waves to an 

equivalent one-dimensional model. In addition, the transfer matrix for locally periodic 

media was presented, non-dimensionalised and adapted for use in the current problem. 

A general model for the device of interest has been derived aiming to provide insight 

into the wave dynamics of localization within the coupled resonant system. This 

employed a ray tracing method to define initial waves and reduction of their future 

propagation paths to closed form expressions. This yielded expressions for the 

displacement fields within each cavity of the device. The model incorporated 

generalities in the geometry, excitation method and wave type. 

The validation of the model to SAW devices was discussed. Variations and 

substitutions of the result for the transmission coefficient were presented. Furthermore, 

the limitations of the COM model were outlined, highlighting the necessity for 

derivation of the model presented here. The model has been shown to exhibit excellent 

agreement with a separate numerically evaluated solution, providing a significant form 

of validation of the method and derived expressions. This deems the model as sufficient 

for use in the succeeding chapter as an analysis tool for use in evaluation of the 

envisioned devices described in the opening chapters. 
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Chapter 4. Numerical Modelling: Device Characteristics and 

Sensitivity Analysis 

4.1. Introduction 

The general model of the previous chapter provides access to a wealth of information 

about the system of interest. This chapter looks to explore the main characteristics of 

the device utilising the general model, before detailing and analysing the specifics of 

device operation. The chapter follows a similar structure to chapter 2; to aid with the 

transferral of concepts from the simplified discretized model, concepts from the second 

chapter are frequently recounted. 

The chapter opens by discussing characteristics that are general to the device regardless 

of the chosen mode of operation. Specifically, the frequency response, and response to 

selective forcing are examined. The frequency response is discussed initially, examining 

the conditions for resonance as well as certain parametric sensitivities of the localized 

mode resonant frequencies. The analysis of the device response to selective forcing 

follows, defining the forcing parameters for coupling strongly into one mode whilst 

rejecting unwanted modal superposition. 

The second half of the chapter looks specifically into device operation as a sensor, with 

the end goal of presenting the calibration curves of the device and assessing how the 

sensitivity of can be adjusted. These will be used in the following chapter in 

combination with a noise analysis to assess the potential signal-to-noise ratio (SNR) 

and dynamic range of the sensor protocol. On route to this end goal, the model derived 

in the previous chapter will be utilised firstly to provide a qualitative overview of the 

device operation. This will be followed by a quantitative analysis of both the natural 

frequencies and mode shapes. The movement of the natural frequencies in response to 

the cavity wave speed ratio, ߟ,  will be plotted and briefly discussed. The behaviour of 

the mode shapes in response to ߟ governs the sensitivity of the device. Therefore this 

is discussed in the context of device sensitivity, yielding the calibration curves. The 

aims of the analysis as a whole is to inform device design covering geometry, 
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transduction and excitation and to provide a quantitative assessment of the potential 

device performance, measured by the achievable sensitivity. 

4.2 Numerical model 

A Matlab code was constructed to perform device modelling, design and analysis. An 

example of the code is shown in appendix C or available for permanent download at 

https://1drv.ms/u/s!Av2Ut-dHxCMA_VgyF2LN6_hoUqpb. The code first calculates 

the non-dimensional frequency dependent transmission and reflection coefficients given 

by equations 3.109-3.110. These are utilised to calculate the cavity amplitude frequency 

responses given by equations 3.146 and 3.149. The code then calculates and outputs 

the expected sensitivity and noise performance for a device described by the input 

parameters. 

The tractability of the code is achieved by the reduction of the infinite sum shown in 

the previous chapter (equations 3.125-3.127). The time saved by this reduction is 

substantial, as is quantified in the following. Convergence of the truncated summation 

to the analytically found exact solution was found to vary dependent on the numerical 

values used, particularly for higher numbers of periods in the coupling array. This 

creates a rapidly varying solution in frequency space, requiring a higher frequency 

resolution to resolve adequately, thus increasing computation time. It was found that, 

for a reasonable selection of numerical values, acceptable convergence occurred with 

approximately 500 terms in each summation. Noting that equation 3.125 is the product 

of three summations, this amounts to 5003 = 125,000,000 terms. The reduced expression 

yields the exact solution whilst only requiring the evaluation of a single term. This was 

found to decrease the required computing time by a factor of 10-8, the same as the 

increase in terms to be evaluated. This computational saving allows for fast and 

iterative design of a SAW mode localisation transducer without the requirement for a 

high powered computer. 
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4.3 Frequency Response 

4.3.1 Overview 

If the device is considered as truncated after the cavities, removing the enclosing arrays, 

it can then be considered as a continuous equivalent of the LPM presented in chapter 

2. Considering the frequency response of such a device, it was shown that the majority 

of the modes reside in the pass band, with the localized modes within the stop band.  

In addition, there is the potential for local resonances to present themselves within the 

stop band in the presence of localized excitation. This can be seen to hold true in the 

analytical SAW model from the frequency response plot, overlaid on the coupling array 

transmission spectrum as shown in Figure 4.1. The outer reflection coefficients have 

been set to -1. This mimics the behaviour of a hard boundary condition allowing clearer 

visualisation of the position of the modes in frequency space. 

 

Figure 4.1 Sense cavity amplitude frequency response overlaid with the transmission amplitude coefficient. 
Assuming perfect reflection from enclosing cavities Parameters chosen as 10 periods in the coupling array, in-

phase excitation, ܿோ෦ = ߤ ,0.7 = 0.5, ݏ = 1 

The non-dimensional coupling array parameters used for the transmission plot in Figure 

4.1 will be used throughout this chapter. Therefore, for the rest of the discussion the 

stop band resides between the values Ω෩ = 0.7 − 0.95.  

4.3.2 Conditions for resonance 

It was noted in the derivation of the chapter 3 that all the terms contributing to the 

displacement field share a common denominator, Λ (Section 3.5 Equation 3.132). When 

the denominator goes to zero, the displacement amplitude will grow towards infinity. 
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This is the condition for resonance that will be addressed in this section. Some initial 

characteristics of the denominator, Λ , will be discussed before the expression is 

inspected and a condition on Ω෩ yielded.  

Figure 4.2 depicts two plots of Λ alongside one of the transmission spectrum. A general 

similarity can be seen when contrasting the plot shown in 4.2b to that of 4.1, the 

amplitude frequency response. This demonstrates the fact that the denominator 

governs the position of the resonant peaks. The numerator in equations 3.137 and 3.138 

bears the initial waves. The numerator dictates the effect of the forcing on the response 

and can be used to strategically superpose wave amplitudes. This has the effect of 

cancellation or amplification resonances, as will be addressed in the next section. 

However, the total absolute value of displacement in the cavity, which could also be 

thought of as the total energy remaining within the cavity, is governed solely by the 

denominator. The next characteristic of note is the two different behaviour types 

occurring separately in the pass and stop band. It can be seen that the pass band peaks 

are evenly spaced and of a similar width. Two peaks occur within the stop band which 

can be seen in the scaled view of plot 4.2c. As previously indicated these will be the 

modes of interest to the device. 

 

Figure 4.2 From left to right: (a) Transmission and reflection coefficients using standard parameters.(b) Inverse 
of the cavity amplitude denominator, ߉, across the pass and stop band. (c) As (b), zoomed to stop band. 

The denominator expression, Λ (eq. 3.132), is expanded below in terms of the non-

dimensional coefficients introduced in section 3.4. 

Λ = 1 − ߯஺ − ߯஻ − ߯஼ + ߯஺߯஼ (4.1) 

Λ = 1 − ܴோܴ஼݁௜ଶగஐ෩ ௔ − ܴௌܴ஼݁௜ଶగஐ෩ ఎ௕ + ܴோܴௌ൫ܴ஼
ଶ − ஼ܶ

ଶ൯݁௜ଶగஐ෩ (௔ାఎ௕) (4.2) 
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The case of zero loss will be considered to determine the resonant condition, that is ܴௌ 

and ܴோ are equal to -1. The substitutions listed in equations 4.3-7 are made to introduce 

the amplitude and phase components of the complex coefficients explicitly and simplify. 

The identity in equation 4.5 is presented in reference [61], and comes about from two 

factors. Firstly, due to the conservation of energy one can state equation 4.3, enforcing 

the total energy in the scattered waves to match the energy in the incident wave. 

Secondly due to the fact that the reflected and transmitted waves are always గ
ଶ
 radians 

out of phase, as shown by Figure 4.3, one can write equation 4.4 from 4.3. This defines 

the amplitude and phase of the reflected wave relative to the transmitted wave, rather 

than the incident wave. Equation 4.5 follows from equation 4.4 and equation 4.6 defines 

the general expression for the amplitude and phase of the reflected wave (i.e. relative 

to the incident wave).  

 

Figure 4.3 Phase spectrum of the square of the scattered waves. 

|ܴ஼|ଶ + | ஼ܶ|ଶ = 1 (4.3) 

ܴ஼
ଶ = ൫1 − ஼ܶ

ଶ൯݁௜గ = ஼ܶ
ଶ − 1 (4.4) 

ห ܴ஼
ଶ − ஼ܶ

ଶห = 1 (4.5) 

ܴ஼ = |ܴ஼|݁௜థ (4.6) 

஼ܴ]݃ݎܣ
ଶ − ஼ܶ

ଶ] =  (4.7) ߴ
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Insertion of the above substitutions, use of the identity [61] and adapting the expression 

to explicitly show the periodicity yields equation 4.8. 

Λ = 1 + |ܴ஼|݁௜(థ±ଶ௡గ)൫݁௜ଶగஐ෩ ௔ + ݁௜ଶగஐ෩ ఎ௕൯ + ݁௜(ଶగஐ෩ (௔ାఎ௕)ାణ±ଶ௡గ) (4.8) 

As stated previously, resonance occurs when this expression is minimised, or in the ‘no 

loss’ case, equal to zero. It can be seen clearly now why there are two distinct 

behaviours, within the pass band and within the stop band. Within the pass band the 

transmissibility of the coupling array is close to unity (Figure 4.1) and therefore |ܴ஼| ≈

0, with increasing validity as the number of periods in the coupling array goes to 

infinity. Observing equation 4.8, this condition will cause the central term to vanish. 

Conversely, within the stop band |ܴ஼| approaches unity (Figure 4.1) and all terms 

contribute to the resonant condition. Considering the pass band resonance initially, as 

described, setting |ܴ஼| = 0 in equation 4.8, yields equation 4.9. 

݁௜(ଶగஐ෩ (௔ାఎ௕)ାణ±ଶ௡గ) = −1 (4.9) 

This constitutes the approximate condition for resonance within the pass band. This 

will be solved for Ω෩ to yield the natural frequencies. Taking the natural logarithm of 

both terms and simplifying and rearranging for Ω෩ yields equation 4.10. 

Ω෩௡ =
2݊)ߨ + 1) − ߴ

ܽ)ߨ2 + (ܾߟ  (4.10) 

The parameter, ߴ, accounts for the phase shift due to the waves passing through the 

array. However, this is a function of Ω෩. It is linear and can be approximated by equation 

4.11. 

ߴ = Ω෩൫ܰߨ2 + ݎ − ݎܰ − 1 +  ൯ (4.11)(ோܿ/ݎܰ)

Substituting in yields the approximate equation for the natural frequencies within the 

pass band. 

Ω෩௡ =
݊

௘௤෪ܮ  (4.12) 
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௘௤෪ܮ = ܽ + ܾߟ + ܰ + ݎ − ݎܰ − 1 +  (4.13) (ோܿ/ݎܰ)

With ܽ and ܾ defined in terms of multiples of the coupling array period,ܮ ,ݏ௘௤෪ is the 

dimensionless equivalent cavity length. This accounts for wave travel across both 

cavities and the coupling array. Equation 4.12 states that a resonant frequency will 

occur when the non-dimensional natural frequency is any multiple of the inverse of 

௘௤෪ܮ . Recalling that Ω෩ =  this can be rewritten in terms of the wavelength and the ,ߣ/ݏ2

dimensional equivalent cavity length as shown in equation 4.14. 

௘௤ܮ =
ߣ݊
2  (4.14) 

௘௤ܮ = ൫ܽݏ + ܾߟ + ܰ + ݎ − ݎܰ − 1 +  ൯ (4.15)(ோܿ/ݎܰ)

Showing that, within the pass band, resonance occurs whenever the equivalent cavity 

length is equal to a multiple of half the wavelength. Figure 4.4 shows how the validity 

of this expression decreases as the frequencies approach the stop band, and the |ܴ஼| ≈

0 becomes increasingly less valid. Displaying หܴ஼
ଶห (black-dashed line), the true value 

of the denominator, Λ , (full-blue), the pass-band natural frequency expression of 

equation 4.9, without the phase approximation (green-dotted), and the approximate 

pass band natural frequency expression of equation 4.9 with 4.11 (red-dashed). The 

natural frequencies occur when the expressions are equal to zero. It can be seen that 

far away from the stop band the roots of the expressions are all well matched, but the 

root of the approximation drifts away as the frequency approaches the stop band. 

Within the stop band the converse assumption can be made, that |ܴ஼| ≈ 1, reducing 

the condition for resonance to equation 4.16. 

݁±௜ଶ௡గ ቀ൫݁௜ଶగஐ෩ ௔ + ݁௜ଶగஐ෩ ఎ௕൯݁௜థ + ݁௜(ଶగஐ෩ (௔ାఎ௕)ାణ)ቁ = −1 (4.16) 

Evaluation of this condition yields the stop band natural frequencies. The validity of 

the expression can be seen in Figure 4.5, contrasting it to Λ. Analytical evaluation of 

this expression is hindered as ߴ can no longer be approximated by equation 4.11, due 

to the nonlinear nature of the phase in the stop band. In addition, a closed form solution 
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for both ߶ and ߴ is not forthcoming from the transfer matrix solution. Therefore, this 

will be evaluated numerically to track the stop band modes in the analysis. 

 

Figure 4.4 Comparison of resonant condition expressions. Highlighting reduction in validity of the expression in 
equation 5.9 as the frequency approaches the stop band. 

 

Figure 4.5 Comparison of condition for resonance functions in the stop band. 

4.3.3 Effect of cavity length on stop band resonances 

It is observed that the eigenvalues of the localized modes move within the stop band 

as the cavities are identically changed in length. Figure 4.6 plots the loci of the stop 

band natural frequencies as the cavity length is extended in integer multiples of the 



 

 

85

wavelength. The modes are seen to drift upwards in frequency, asymptotically 

approaching the centre of the stop band. The separation between the modes is seen to 

reduce as cavity length is extended. 

 

Figure 4.6 Localized mode frequency loci. Plotted for standard transmission properties with Nc=10. 

4.3.4 Coupling array tuning 

The effect of the coupling array parameters on the dispersion was introduced in section 

2.5.1; it was shown that the upper and lower bounds of a stop band are a function of 

the array parameters. Furthermore, tuning the two expressions (eqs. 2.32-2.33) allowed 

for alteration of the stop band width and, when the expression were equal, the 

disappearance if the stop band. In the SAW case, the parameter available for stop band 

tuning is ܿோ෦, the ratio of the wave-speeds within the plated and un-plated regions. The 

condition for nullification of the stop band is therefore ܿோ෦ = 1. It is unlikely that this 

limit will be practicable, but the effect of varying ܿோ෦ around unity is discussed briefly 

here. The plots in Figure 4.7 show how the transmission spectrum varies as ܿோ෦ is varied 

around unity. 
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Figure 4.7 Variation of the transmission spectrum for a change in the wave speed within the plated region. 

The stop band depth and breadth is reduced as ܿோ෦ moves away from a value of 1. In 

addition, the stop band drifts in opposite directions for positive and negative values of 

∆ܿோ෦. The effect of this on the localized modes is depicted in Figure 4.8. 

 

Figure 4.8 Effect of change in transmission spectrum on the localized modes. 

The modes move in frequency space in the same direction as the stop band, however, 

at a slower rate. The modes drift towards the lower limit of the stop band, and are 

submerged within the pass band by the time ܿோ෦=0.9. The separation between the modes 

is also increased as the coupling strength is increased. 

4.4 Selective forcing 

As discussed in chapter 2, the device will be operated in one mode. It was suggested 

that the excitation be chosen so as to couple strongly into one mode and weakly into 
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the other in order to facilitate this. This will be discussed here in relation to the SAW 

device. Considering the case where the central point of each cavity is a node, this is 

equivalent to the initial wave field being made up of a leftwards and rightwards 

propagating waves. Figure 4.9 depicts the three forcing scenarios to be considered: in-

phase, anti-phase and asymmetric. 

 
Figure 4.9 Graphical representation of the three forcing scenarios to be considered in the analysis. The forcing 

arrangements are shown on the device schematic presented and annotated initially in Figure 3.10. 

For in-phase selective forcing of unit amplitude, the forcing coefficients of equations 

3.133-136 take the values given below. 

ோ௅ܨ =
ܲ
௅ߤ

ோோܨ (4.17)  = −
ܲ
௅ߤ

 (4.18) 

ௌ௅ܨ =
ܲ
௅ߤ

ௌோܨ (4.19)  = −
ܲ
௅ߤ

 (4.20) 

For the case of anti-phase selective forcing the reference cavity coefficients remain as 

in equations 4.17 and 4.18, and the sense cavity coefficients take the values given in 

equations 4.21-22. 
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ௌ௅ܨ = −
ܲ
௅ߤ

ௌோܨ (4.21)  =
ܲ
௅ߤ

 (4.22) 

The case of asymmetric loading will also be considered, in which both modes are 

coupled into equally. In this case the coefficients ܨௌ௅ and ܨௌோ are equal to zero and for 

this section of the analysis the ratio ௉
ఓಽ

 was set to unity.  The effects of these forcing 

conditions are demonstrated in the plots of Figure 4.10. Where the reference and sense 

cavity amplitude and phase frequency responses are plotted for a reasonably well 

damped system (ܳ~10ଶ). The dissipation in the model is controlled by the length of 

the enclosing arrays, in this case they have been set to 5 periods. 

The first conclusion to draw is the similarity of these plots with the selective forcing 

frequency response provided for the LPM, demonstrating consistent behaviour between 

the two models. It is clear that the frequency dependent behaviour changes dependent 

on the forcing condition. Addressing the asymmetric loading first, the amplitude 

response within both cavities resemble a damped bimodal system. The phase plots 

indicate that the cavities are resonating out-of-phase over the first resonance. As the 

frequency increases the phase within the sense cavity swings into phase with the 

reference cavity for the second resonant peak. It is of note that the phase shift normally 

associated with a resonant peak are suppressed by the heavy damping. When the 

damping is reduced the phase shifts for all resonance peaks are visible and pronounced. 

The order of the modes is consistent for the selectively forced responses as is evident 

from the relative phases in each cavity. The observation that the phases are consistent 

over the frequency range of interest indicates that the selective forcing has allowed one 

mode to dominate across the entire range. 
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Figure 4.10 Amplitude and phase response to selective forcing. 

It is implied in the analysis of chapter two, the geometry has an effect on the order of 

the modes. If the cavities are an integer number of wavelengths long, then the anti-

phase mode occurs at a lower frequency than the in phase mode. As seen above for the 

case of 5 wavelength long cavities. Conversely, if the cavity lengths are a non-integer 

multiple of half a wavelength, then the order of the modes is switched in frequency 

space. This implies that when the cavities are a integer number of wavelengths long 

the ratio of strain energy to inertial energy in the anti-phase mode is lower than when 

the cavity lengths are a non-integer multiple of half a wavelength. The converse being 

true for the in-phase mode. Evidence of this is given in Figure 4.11, when the cavity 

lengths have been shortened by half a wavelength. In this case the centre of the cavity 

is an anti-node, and the initial waves originate a quarter of a wavelength off-centre. 
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Figure 4.11 Response to selective forcing with cavity length equal to a non-integer number of wavelengths (4.5λ). 

4.5 Device operation 

4.5.1 Qualitative overview 

For the symmetry breaking mode of operation, it is intended that the device be 

selectively forced, and the mode shape of interest tracked. Localization within the mode 

is induced by altering the parameter ߟ, the wave-speed ratio, shown in equation 4.23 

where ߛ଴ and ܿ଴ represent the substrate wavenumber and wave speed respectively. 

ߟ =
ௌாேௌாߛ

଴ߛ
=

ܿ଴

ܿௌாேௌா
 (4.23) 

The desired behaviour can be seen qualitatively utilising similar frequency plots to 

above. In Figure 4.12, the loss from the system has been reduced by increasing the 

periods in the enclosing arrays to 9 per array. This has no effect on the amplitude ratio, 

but aids with visualisation. The device is forced asymmetrically to display the 

behaviour of both modes. 
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Figure 4.12 Plots illustrating the effect of η on cavity amplitudes. 

The plots in Figure 4.12 overlay the behaviour in the separate cavities as ߟ  is 

incrementally increased. The effect of this on both the resonant frequencies and mode 

shapes is evident. Frequency drift is observed in that both peaks are drifting downwards 

in frequency space, with the lower mode moving at a faster rate than the higher. 

Localization is seen in the mode shapes by comparing the relative amplitude of the 

peaks in each cavity as ߟ is varied. This can be seen more clearly by observing the 

same event from a different perspective as displayed in Figure 4.13. By overlaying both 

cavity amplitudes on the same plot for fixed ߟ, the asymmetry in the cavity amplitudes 

is clearly visible. It can be seen that when ߟ = 1 the cavity amplitudes are well matched 

in both modes. As ߟ is increased the amplitudes of both modes decrease identically in 

the sense cavity. However, in the reference cavity the high mode’s amplitude grows, 

indicating localization of energy in the reference cavity. Within the lower frequency 

mode, the amplitude shrinks, however, there is still an asymmetry with the sense cavity, 

with the mode favouring the reference cavity. Furthermore, the plots in in Figure 4.14 

show that when ߟ is reduced, a similar natural frequency drift is observed as well as 

the amplitude asymmetry in both modes. The same effects detailed for the previous 

case are observed, however the modal behaviours are switched. 
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Figure 4.13 Plots detailing effect of increasing η on amplitude ratio. 

 

Figure 4.14 Plots detailing effect of decreasing η on amplitude ratio. 

4.5.2 Behaviour of Natural Frequencies 

It was observed qualitatively that the natural frequencies drift away from one another 

as the asymmetry is increased. By plotting this behaviour in both directions around ߟ =

1 (Figures 4.13-14), it can be seen that the behaviour observed is the phenomenon of 

eigenvalue loci veering. This has been well documented in the fields of MEMS [62], [63], 

periodic structures [26], [64], as well as mode localization sensors [25]. Because of this, 

and as this is not the primary behaviour of interest in the current investigation, it will 

only be discussed here in brief.  

 

Figure 4.15 Eigenvalue loci veering. 
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The plot in Figure 4.15 is a typical example of loci veering as can be seen by comparing 

it to plots in references [26], [64]. In reference [26] it is stated that loci veering and 

mode localization are two manifestations of the same phenomenon, and one predicts 

the other. Of note is the asymmetry of the veering, as is more prominent in the higher 

coupling period plots, when ߟ is increased, the higher frequency mode remains fairly 

stationary as the lower frequency mode veers to a greater extent. The converse being 

true for decreasing ߟ  . In addition, it is seen that when the coupling periods are 

increased, the symmetric modes (ߟ = 1) are drawn closer together. 

4.5.3. Sensitivity 

The sensitivity, ܵ, is defined at the change in the amplitude ratio per unit change in ߟ, 

as given in equation 4.24. 

ܵ =
݀

ߟ݀
(|߰ௌ|/|߰ோ|) (4.24) 

The modes can be tracked in frequency space by setting Ω෩ equal to the condition for 

resonance (c.f. section 4.2.2). Substituting this into the cavity amplitude expressions 

allows for calculation of the change in cavity amplitudes with varying parameters. To 

begin, forcing was prescribed solely in the reference cavity in order to couple into both 

modes. The enclosing arrays were chosen to be 9 periods long to provide some 

dissipation (ܳ ≈ 8000). Both the number of periods in the coupling array and ߟ were 

varied, with the results reported for the cavity amplitudes and amplitude ratios for 

each mode case, in Figure 4.16. 
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Figure 4.16 Cavity amplitudes and amplitude ratio against η for asymmetrically forced device. 

It is evident that there is a remarkable symmetry between the behaviour in the modes, 

the cavity amplitudes and amplitude ratio plots are almost a mirror image of each 

other. There is a shift in behaviour across the line ߟ = 1, and the point of intersection 

of all cavity amplitudes lies upon this line. This denotes an amplitude ratio of unity 

occurring in all cases when ߟ = 1. The sense cavity amplitudes are symmetric about 

ߟ = 1, however, the reference cavity undergoes a sharp change in amplitude, inverting 

the amplitude ratio. It is of note at this point that the intensity of the behaviour is 

modulated by the number of periods in the coupling array. It can be seen that as ஼ܰ is 

increased the cavity amplitude distributions in ߟ-space become more localised. The 

effect is more explicit in the amplitude ratio plots, from which the sensitivity can be 

found, in that the gradient (ܵ) is increasing with increasing ஼ܰ. This shows implicitly 

the relationship between the coupling strength and the sensitivity. It has been shown 

that the coupling strength is reduced exponentially by increasing the lengths of the 

coupling array, and now that this will in turn increase the sensitivity. The amplitude 

ratio response appears linear for amplitude ratios greater than unity. The sub-unity 

behaviour is displayed in greater detail in Figure 4.17. 
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Figure 4.17 Sub-unity amplitude ratio behaviour. 

The amplitude ratio asymptotically approaches zero, as would be expected from the 

evident symmetry of the cavity amplitude plots, providing non-linear behaviour. 

Considering the case of selective forcing, the plots in Figure 4.18 depict the amplitude 

responses of the forced and un-forced mode similarly to the asymmetric forcing case. 

The responses are identical for the in-phase and anti-phase modes, so are shown here 

as general plots to encompass both cases. Other than a change in the forcing condition, 

the parameters are as used for Figure 4.18. 

 

Figure 4.18 Cavity amplitudes against η for the symmetrically forced case. 

The symmetry of behaviour in the cavities is immediately evident, showing the same 

amplitude ratio switch across ߟ = 1. In the case of the forced mode, the point of 

intersection of all lines still occurs on ߟ = 1, indicating unity amplitude ratio as desired. 
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In the un-forced case however, all cavity amplitudes reduce to zero, as expected from 

section 4.3. The amplitude ratio plots to compliment the above forced and un-forced 

cavity responses are provided in Figure 4.19. Somewhat surprisingly, the sensitivity in 

either mode is not effected by the forcing condition, even if that mode has zero 

amplitude at ߟ = 1.  

 

Figure 4.19 Amplitude ratio against η for symmetrically forced case. 

It has been shown in Figures 4.16-19 that, in line with previous qualitative analyses, 

the sensitivity is increased by growing the coupling array, hence lowering the coupling 

strength. The effect can be found to be exponential as is depicted in linear and log-

linear plots of Figure 4.20. 

 

Figure 4.20 Effect of number of periods in coupling array on device response (η=0.99). 

The exponential behaviour fits well with the fundamentals of transmission through 

periodic arrays, back to the definition of the propagation constant. The propagation 

constant was defined as a complex exponent that was multiplied by the number of 

periods in the array. The real part provided spatial decay, therefore the transmitted 
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force is described by ݁ே಴ఓ, where ߤ is a real constant. This concept held true in a 

similar form for continuous systems, and has manifested in an exponential relationship 

between sensitivity and periods in the coupling array. It is noted that the log-linear 

plot is not completely linear as ஼ܰ approaches zero, more specifically, this is seen below 

஼ܰ ≈ 5. This is expected as the array is moving into a region where it can no longer be 

validly described as periodic, and the above argument no longer holds. 

The first plot in Figure 4.21 constitutes an example of a calibration curve of the sensor, 

for a stimulus that would reduce the wave-speed within the sense cavity. A potential 

example of this would be adsorption of biological analytes in operation as a mass sensor. 

The gradient of this curve is the device sensitivity as is also plotted in Figure 4.21. The 

response will likely reach a limiting maxima (saturation) when the growing cavity 

amplitude is limited by non-linearity. The limit of detection is likely to be due to 

intrinsic thermal noise processes and will be evaluated in chapter 5. 

 

Figure 4.21 Calibration curve and sensitivity of the device ( ஼ܰ = 10). 

It can be deduced that the response is not linear due to the variable sensitivity. The 

main nonlinearity in the sensitivity is due to the change in behaviour across the ߟ = 1 

line. This is accentuated in Figure 4.22, also detailing the sensitivity increase due to 

increased periods in the coupling array. 

Away from the ߟ = 1 line the sensitivity plateaus, and although still not constant, it is 

agreeable to a linear approximation.  Figure 4.23 exemplifies a linear approximation of 

the form given in equation 4.25.  
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|߰ௌ|
|߰ோ| = ଵܥ)− − (ଶܥ +  (4.25) ߟଵܥ

 

Figure 4.22 Sensitivity against η 

For the case of ten coupling periods the parameters were chosen as ܥଵ = 930 and ܥଶ =

0.4, this clearly gives a 60% error at ߟ = 1, however away from this point it can be 

seen the error is much smaller. This suggests for implementation of the device it may 

be useful to have some initial asymmetry, enough to move the response into the quasi-

linear region.  

 

Figure 4.23 Linear approximation of device response. 
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4.6 Conclusions 

The general model derived in chapter 3 has been applied to the specific structure of 

interest in the context of exploitation as a mode localization sensor. The frequency 

response was explored in some depth. Conditions for resonance have been outlined and 

an expression found for the pass band natural frequencies. The effects of alteration of 

cavity length and changes to the array dispersion on the frequency response were 

detailed. Selective forcing was investigated and parameters found, for the symmetric 

case, to couple strongly into one mode whilst rejecting the other. 

Device operation was discussed in depth. The mode of operation was described 

qualitatively with the aid of selected results provided by the general model. It was 

found that the device exhibits the phenomenon of eigenvalue loci veering. The response 

of the mode shapes and the sensitivity of the device was addressed in detail. It was 

found that although the amplitude ratio response appears linear with respect to ߟ, 

there is in fact some non-linearity present. However, a linear approximation was found 

to fit well, with the highest error close to the symmetric case, where a change in 

behaviour occurs. It was suggested that this could be accounted for by having some 

initial asymmetry designed into the device. 

Valuable extensions and continuations of the work presented within this chapter can 

be found through further analytical scrutiny of the model of chapter 3. One particular 

example is the lack of a closed form solution for the natural frequencies within the stop 

band (c.f. section 4.2.2). Due to the complex frequency dependence of the phase 

components, derivation of this was found to be intractable. However, with further time 

and sufficient simplifying assumptions, this result can potentially be yielded. This 

would also allow derivation of further expressions, in particular one for device 

sensitivity. This would give valuable insight into device design and tuning, as well as 

indicating the source of the non-linearity present in the sensitivity. In the same vein, 

quantification of the size of the aforementioned initial asymmetry would be of value, if 

it was found to be a necessary parameter of device design.  

An additional extension is presented from the discussion of section 4.2.4. regarding 

coupling array tuning. It was shown that adjustment of ܿோ෦ can smoothly transition a 



 

 

100

mode into the pass band, where it will become a fully distributed mode, with an 

amplitude ratio of approximately unity. This opens up the possibility of an alternate 

sense regime, where the output is triggered by an alteration of  ܿோ෦, with a ‘designed-in’ 

asymmetry. Initial investigation of this method proved to be inferior in sensitivity to 

mode localization sensing. Predominantly as it relies on a large frequency shift, which 

is known to occur more slowly than the change in the amplitude ratio through 

symmetry breaking [2], [25]. However, this approach may provide practical benefits of 

some form and may warrant further investigation. 
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Chapter 5. Loss Quantification and Thermal Noise 

5.1 Introduction 

This chapter serves to quantify the main loss mechanisms that contribute towards the 

Q-degradation and intrinsic noise within the device. The total intrinsic noise will be 

quantified and used in conjunction with the results of the previous chapter to provide 

the limit of detection (LOD) and signal-to-noise ratio (SNR). The quantification of the 

loss and noise acts as a first step in assessing the feasibility of the device functioning 

once manufactured. The analysis will also look for ways to minimise each noise 

contribution to yield the highest SNR. 

5.2 Loss Mechanisms and Q quantification 

The main contributors to the intrinsic loss of SAW resonators are listed in [65] as: 

viscous material propagation loss (ܳ௠௔௧) , gas or fluid damping ൫ܳ௙௟௨௜ௗ൯, surface 

propagation loss (due to an imperfect surface finish) ൫ܳ௦௨௥௙൯, bulk wave scattering 

(ܳ௕௨௟௞), radiation from ends of the enclosing arrays (ܳ௥௔ௗ) and diffractions from the 

sides of the cavities and reflectors ൫ܳௗ௜௙௙൯. The total ܳ is the inverse of the sum of the 

inverse of these quantities as shown in equation 5.1. 

1
ܳ௧௢௧௔௟

=
1

ܳ௠௔௧
+

1
ܳ௙௟௨௜ௗ

+
1

ܳ௦௨௥௙
+

1
ܳ௕௨௟௞

+
1

ܳ௥௔ௗ
+

1
ܳௗ௜௙௙

 (5.1) 

In the following, each loss form will be discussed separately in brief before being 

considered in combination using equation 5.1 to determine the overall Q-factor of the 

device. It is implied in the experimental results in reference [66] that the surface loss 

can be reduced to an insignificant level. It will be assumed that the surfaces are 

sufficiently smooth so that surface loss can be neglected. In addition, electrical losses 

such as resistive dissipation in the IDT fingers will not be considered. 

5.2.1 Radiation Loss 

Within this section the different forms of radiative energy loss are discussed in turn, 

considering first the energy loss from the ends of the enclosing arrays ܳ௥௔ௗ. This can 
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be easily quantified by recasting the problem of chapter 3 to solve for the displacement 

fields outside of the enclosing arrays. The ratio of the energy retained to the energy 

lost per cycle would provide a measure to quantify ܳ௥௔ௗ . It is quoted in reference [67] 

that it can be quantified by equation 5.2. 

ܳ௥௔ௗ =
ߨ ݊

1 − ܴଶ (5.2) 

Where ܴ is the amplitude reflection coefficient of the enclosing arrays. However, the 

energy lost through these arrays is easily tuned towards zero simply by increasing their 

length. This loss mechanism therefore becomes vanishingly small, so that it can be 

considered to not contribute to the overall ܳ of the device. Furthermore, it has been 

shown experimentally in reference [66] that a sufficiently long array can be found to 

reflect as much as 98% of the incident wave back in the form of a surface wave. 

Considering some wave energy will be lost through other means, this can be considered 

experimental verification that this form of loss is inconsequential to the system. 

The obvious trade-off for maintaining a high ܳ௥௔ௗ by extension of the enclosing arrays 

is the limitations imposed on minimum device size. The interplay of this, the factors 

determining cavity length (such as SNR) and the minimum lithographic resolution will 

impose the hard limit on device length. 

5.2.2 Diffraction Loss 

Diffraction loss can be considered another radiative loss form with waves leaving the 

device in the transverse direction. This loss form has been quantified in reference [68] 

for a device where the arrays are created from grooves in the substrate. By considering 

the diffraction of the beam as it traverses the cavity, the diffraction loss is proportional 

to the square of the beam width and can be described by equation 5.3 [68]. 

ܳௗ௜௙௙ =
ߨ 5

|1 + |௔ߞ ൬
ܾ௪

ߣ ൰
ଶ

 (5.3) 

Where ܾ௪ is the beam width and ߞ௔ is the material anisotropy coefficient. It is shown 

in reference [68] that for LiNbO3, considering an anisotropy coefficient of ߞ௔ = −0.75, 

equation 5.3 reduces to equation 5.4. 
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ܳௗ௜௙௙
୐୧୒ୠ୓ଷ = ߨ 20 ൬

ܾ௪

ߣ ൰
ଶ

 (5.4) 

When the device is constructed in this way, the equations 5.3 and 5.4 show that this 

loss form can be removed as the limiting factor by increasing the beam width. It is 

stated in reference [68] that, in ST cut quartz or Y-Z lithium niobate, a width of 50ߣ 

is sufficient to remove this as the limiting factor in the total- ܳ. 

When the enclosing arrays are constructed from metal strips deposited on top of the 

substrate, it is stated in reference [68] that one must also consider diffraction loss from 

out of the edges of the array. It is suggested, however, that matching the incident beam 

width to the reflector width allows it to act like a wave guide, reducing the loss. 

Additionally, curved reflectors may be used to focus reflections such that they remain 

within the cavity. 

5.2.3 Bulk wave scattering 

Bulk wave generation from discontinuities on the surface is in fact another form of loss 

through radiation. This is vanishingly small when ℎ/ߣ ≪ 1 [67], [68], where ℎ is the 

strip height. In the context of a resonator enclosed by grooved arrays, this has been 

quantified in both theory and experiment to be kept vanishingly small when the strip 

height satisfies ℎ/ߣ < 0.02 [68]. In addition, the experimental result of reference [66], 

recalled previously in the context of radiation loss provides further evidence that this 

is also the case for arrays constructed of metal strips. Due to these considerations, the 

contribution of bulk wave generation will be neglected from the total- ܳ, so long as the 

strip height to wavelength ratio is adhered to. 

5.2.4 Fluid damping 

Energy is lost to the surrounding environment due to work being done by the out of 

plane component of displacement field on the environmental fluid, be that a liquid or 

a gas. The energy is both converted to heat through viscous friction and radiated away 

as acoustic waves. This has the potential to be a dominant form of loss from the system 

and a limit on the maximum achievable ܳ. The quantification of this loss form will not 

be considered; instead, two ways of mitigation will be considered, at least one of should 

be applicable to any device. 



 

 

104

Firstly, a commonly used method for many MEMS devices is operation under vacuum. 

The degree to which this reduces the loss depends on the degree to which the 

surrounding area has been evacuated. However, assuming a suitable level of vacuum 

has been achieved, this has been stated in references [67] to eliminate this a form of 

loss.  

For certain applications, operation under vacuum will not be feasible. The obvious 

example of this is mass sensing, where the device must be immersed in the carrier fluid 

in order to sense the presence or absence of the particle under consideration. For 

applications such as this, it is proposed that the device be operated using a wave type 

with purely in-plane displacement field. Surface skimming bulk waves and Love waves 

present two examples which could be utilised to this end. 

5.2.2 Material loss 

It is stated in references [65], [67], [68] that the viscous dissipation occurring within the 

substrate material corresponds to the ultimate limit on the maximum achievable 

ܳ.This form of loss is generally quantified through experiment and fitted to models 

representing its effect. Commonly, a complex modulus [69] or wavenumber [68] is 

employed to represent the attenuation of wave motion. One such model for quantifying 

ܳ௠௔௧ is provided in reference [68] and shown in equation 5.5. 

ܳ௠௔௧ =
ߨ

 (5.5) ߣௗߙ

Where ߙௗ is a frequency dependent dissipation parameter found from experiment. This 

has been found for Y-Z lithium niobate in reference [68] as 29.1 × (10ିଽ݂)ଶ ቀ௡௘௣௘௥௦
௠

ቁ. 

Inserting this parameter into equation 5.5 allows for the calculation of the frequency 

dependent ܳ௠௔௧. 

With the considerations outlined in this section, for a chosen material, the value of 

ܳ௠௔௧  can be used for the assumed ܳ௧௢௧௔௟  of the device and the other contributors 

imposed as design rules and limitations on device size. 
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5.3 Mechanical-thermal noise 

Thermal noise was originally discussed in relation to electrical circuits. Now well 

established and commonly used, it is known eponymously due to the original treatise 

as Johnson-Nyquist noise. The basis of the argument for noise generation is that each 

source of dissipation creates a path for thermal excitation of the system - the so-called 

fluctuation-dissipation theorem. In the case of resistors in an electrical circuit the 

excitation relates to thermal agitation of electrons. Energy lost through the resistor is 

converted to heat; this in turn causes voltage fluctuations in the resistor due to the 

equipartition theorem, turning each resistor in the circuit into a voltage generator, 

introducing noise into the system. The equipartition theorem states that each variable 

in the system has a thermal energy equal to ݇஻ܶ/2 where ݇஻ is the Boltzmann constant 

and ܶ is the temperature. Thus for a mechanical system in thermal equilibrium, both 

the kinetic and potential energies must separately equate to the equivalent thermal 

energy expression. In the context of a mechanical system, the noise can be due to 

Brownian motion of particles external to the elastic solid or internal frictions within 

the deforming elastic solid, causing fluctuations in force rather than voltage. A typical 

example is particle bombardment on the mass of a simple spring-mass-damper 

accelerometer. The particles in the atmosphere surrounding the mass are undergoing 

motion proportional to the atmospheric temperature, this will lead to particle 

bombardment on the mass of the system, causing excitation and introducing noise into 

the system. An expression for the spectral density of the mechanical-thermal noise has 

been presented in references [70], [71] as equation 5.6. 

௠௘௖௛ି௧௛௘௥௠ܨ = ඥ4݇஻ܶܿௗ ݖܪ√ܰ  
ିଵ

 (5.6) 

Where ܿௗ is the damping coefficient (equation 5.7) inserting this into equation 5.6 

yields equation 5.8. 

ܿௗ =
݉௘௤߱௡

ܳ  (5.7) 

௠௘௖௛ି௧௛௘௥௠ܨ = ඨ
4݇஻ܶ݉௘௤߱௡

ܳ ݖܪ√ܰ  
ିଵ

 (5.8) 
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This is the square root of the spectral density of the input force due to thermal 

excitation. To utilise this in the context of a SAW system, first an equivalent mass of 

the system must be derived, then the displacement due to this force will be found in 

order to determine the SNR and resolution. The equivalent mass will be found from 

the maximum inertial energy in one cavity, given by equation 5.9. 

Ε୍ =
1
2 ߩ න ݑ

. ଶdV
௏

 (5.9) 

Taking the square as the scalar product of ݑ with itself, and recalling that ݑ is a 2D 

elastic field thus constant in the ݔଷ-direction. Equation 5.9 becomes Equation 5.10 

where the time derivative has been performed assuming harmonic motion. 

Ε୍ =
1
2 ߱ଶܮߩ௪ න ଵݑ)

ଶ + ଶݑ
ଶ)dA

஺
 (5.10) 

Where ܮ௪ is the width of the device in the ݔଷ-direction. The free wave solution of 

equations 3.22 and 3.23 is substituted in. Integrating over one wavelength in the ݔଵ-

direction and from 0 to infinity in the ݔଶ-direction yields the energy in one wavelength. 

The maximum inertial energy per cycle in one wavelength is written in equation 5.11. 

Ε୍ି୑୅ଡ଼ = 0.09875
ଶߣ

2 ߱ଶܮߩ௪ܣଶ (5.11) 

Equating this expression to the maximum kinetic energy of a spring-mass resonator 

݉௘௤ݒଶ/2  yields an equation that can be solved for the equivalent mass of one 

wavelength. 

݉௘௤ିఒ =  ௪ (5.12)ܮߩଶߣ0.09875

The number of wavelengths in a cavity is equal to ܮ஼/ߣ, substitution into 5.12 gives 

the equivalent mass of one cavity. 

݉௘௤ = ஼ܮ௪ܮߩߣ0.09875 ≈  ஼ (5.13)ܮ௪݈ߩߣ0.1

The mechanical-thermal noise force can now be written directly in terms of the device 

parameters. 
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௠௘௖௛ି௧௛௘௥௠ܨ = ඨ
4݇஻ܶ߱௡ܮߩߣ௪ܮ஼

10ܳ ݖܪ√ܰ
ିଵ

 (5.14) 

The excitation force is kept constant during device operation and the amplitude 

changes independently due to the external stimulus. Therefore, to calculate the SNR 

and LOD, it is necessary to calculate the displacement amplitude due to the thermal 

noise excitation and evaluate it alongside the sensor response amplitude. This mean 

square displacement due to this force can be found using the frequency response 

function derived in chapter 3. Taking the square of equations 3.148 and 5.13 and 

integrating over the response bandwidth yields equations 5.15-16.  

〈|߰௡௢௜௦௘|ଶ〉 =
1

ߨ2
න ଶ|(߱)ୖୖܩ|

୫ܲୣୡ୦ି୲୦ୣ୰୫ ݀߱
∆ఠ/ଶ

ି∆ఠ/ଶ
 (5.15) 

୫ܲୣୡ୦ି୲୦ୣ୰୫ = ൬
௠௘௖௛ି௧௛௘௥௠ܨ

௪ܮ
൰

ଶ

(ܰ/݉)ଶିݖܪଵ (5.16) 

This can be written explicitly as equation 5.17, where due to the loss considerations 

stated in the first section of this chapter, the cavity width is asserted as 50ߣ. 

〈|߰௡௢௜௦௘|ଶ〉 =
4݇஻ܶ߱௡ܮߩ஼

ଶܳߤߨ1000
න

(1 − χ஼ )ଶ

(1 − χ஺ − χ஻ − χ஼ + χ஺χ஼)ଶ  ݀߱
∆ఠ/ଶ

ି∆ఠ/ଶ
 (5.17) 

The term within the integrand redistributes the noise power within the device 

bandwidth, producing a gain at the operating frequency. This gain can be evaluated 

numerically, or more conveniently for a rough calculation it can be approximated as 

ܳ∆߱. Multiplying by the bandwidth provides the total noise power around the resonant 

frequency, further multiplication by the Q-factor gives the resonant displacement 

amplitude due to this input force. Using this approximation the root mean square 

displacement amplitude in one cavity is given below, where the relationship ߱௡ = ܳ∆߱ 

has been utlised. 

ඥ〈|߰௡௢௜௦௘|ଶ〉 = ඨ
4݇஻ܶ߱௡

ଶܮߩ஼

ଶܳߤߨ1000  (5.18) 
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Although it may seem to appear as though against intuition noise grows with increasing 

mass, the ߱௡
ଶ term is classically classically is equal to ݇/݉, and physically represents 

the ratio of strain energy to inertial energy. In this particular scenario the stiffness, or 

strain energy is proportional to ߤ , the shear modulus. The inertial energy is 

proportional to ܮߩ஼.  The implications of this is that the noise amplitude is independent 

of device size and depends inversely on ߤ, the resistance to motion. However, this 

dependence neglects the effect of cavity size on Q which can be included by solving the 

integral in equation 5.17.  

The response amplitude is defined by equation 5.19.  

∆|߰ௌ| =  ோ| (5.19)߰|ߟ∆ଵܥ

Where ܥଵ is the linear approximation parameter introduced in equation 4.23. The SNR 

can be found as the ratio of the square of equation 5.19 to the square of equation 5.18. 

ܴܵܰ =
ଵܥଶܳߤߨ1000

ଶ∆ߟଶ|߰ோ|ଶ

4݇஻ܶ߱௡
ଶܮߩ஼

 (5.20) 

Defining the minimum detectable limit as the response yielding an SNR of unity, the 

limit of detection (LOD) can be described by equation 5.21. 

௠௜௡ߟ∆ = ඨ
4݇஻ܶ߱௡

ଶܮߩ஼

ଵܥଶܳߤߨ1000
ଶ|߰ோ|ଶ (5.21) 

5.4 Conclusions 

The different forms of mechanical loss contributing to the overall ܳ of the device have 

been listed and, where appropriate, quantified. Methods of reducing loss have been 

discussed. It can be concluded that all forms of radiation loss can be made vanishingly 

small by making limitations on device size. The limit on achievable ܳ is determined by 

the propagation loss due to the material. 

The mechanical-thermal noise has been discussed and the noise due to the total loss 

quantified in terms of the spectral density of the root mean square amplitude 

fluctuation within the cavities. This has been used in conjunction with the results of 
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the previous chapter to yield expressions for the SNR and LOD. This contextualises 

the limits imposed on the device function by the loss mechanisms present. 
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Chapter 6. Case Study: Application as a MEMS Magnetometer 

6.1 Introduction 

Previous chapters have described and analysed the SAW mode localization sensor in 

an abstract and general way. Little reference was given to any particular sensing 

application, but rather only to a perturbation of the wave-speed in the sense cavity by 

some external influence. This chapter aims to provide some context for the design by 

presenting a case study of one particular application of the SAW mode localization 

sensor: a MEMS magnetic field sensor. In addition to contextualising the work 

presented in the preceding chapters, the case study will assess the potential impact of 

the novel sensor implementation on the current landscape of MEMS sensors. 

The chapter opens by providing a background and history of magnetic field sensors 

and their development. A specific example of a SAW MEMS magnetic field sensor, the 

delay line sensor, is subsequently presented. This utilises a similar architecture and 

operating principle to the SAW mode localization magnetometer, and therefore the 

literature can provide useful information for the analysis presented here. A description 

and evaluation of the SAW mode localization magnetometer is then presented before 

conclusions are drawn. 

6.2 Background 

6.2.1 Magnetic field sensors 

Magnetic field sensors or ‘Magnetometers’ have wide ranging applications, prominently 

in the automotive, aerospace, medical, military and research fields [72], [73]. The 

sensors are of fundamental importance for the efficiency of operation of many devices, 

from cars to computers [72]. The types of use vary in sensitivity requirements; brain 

function mapping is an example of an application requiring a high-sensitivity sensor, 

whereas an application such as current sensing, requires a much lower sensitivity [72].  

Magnetometers are commonly compared based on parameters such as minimum size, 

power consumption, resolution and noise. The development and improvement of 

magnetic field sensors has been gradual, with small steps in improvements of these 
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features with each advancement in technology [74]. Resonant MEMS magnetometers 

(RMMs) are mostly still in a developmental stage. These however show potential for 

low cost, small-size sensors with favourable noise and resolution capabilities [74].  

The majority of proposed RMMs utilise the Lorentz force to deflect a sense structure. 

The deflection is amplified by exciting the structure at resonance, this has the added 

advantage of rejecting off-resonance noise [69]. A review of such devices is presented in 

reference [73]. A much smaller subset of these devices are those using the delta-E effect 

exhibited by giant magnetostrictive materials, as will be presented here. 

Magnetostriction is the induction of a strain in a material in the presence of a magnetic 

field [75]. This effect is common to all ferromagnetic materials, although in most the 

effect is very small. Materials have been engineered in which the magnetostrictive effect 

is large, these are termed giant magnetostrictive materials [75] prominent examples 

include Terfenol-D and Galfenol. The delta-E effect [75] is a property of these materials, 

in addition to a strain, there is a large relative change in the Young’s modulus of the 

materials. Some authors exploited this latter effect in the design of RMMs [76], [77].  

Thin film platings of magnetostrictive materials have been shown to perturb the wave 

speed of surface acoustic waves in proportion to an external magnetic field [78]–[81]. 

Utilising this effect SAW magnetostrictive magnetometers have been presented in 

references [80], [81]. These use a delay line configuration to sense the change in local 

magnetic field strength. One such device presented in reference [81] consisted of an area 

of Galfenol thin film deposited between two IDTs and the change in the phase was 

correlated to magnetic field strength. The experimental results found in the 

aforementioned reference provide the exact parameters necessary to assess the SAW 

mode localization sensor as a magnetometer. Within this chapter this will be input into 

the models and expressions gained in the previous chapters to evaluate the potential 

for a SAW mode localization sensor.  

To date, no attempt has been made in the literature to design or manufacture a 

magnetic field sensor using the phenomenon of localization. Such a device has the 

potential to achieve the much-desired properties of low-cost, high-resolution, low-noise 

and small package size. In addition, the device would benefit from the intrinsic 
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common-mode rejection associated with mode localization sensors. This work will seek 

to determine whether these advantages can be realised. Ripka and Janosek concluded 

in their review [74] that progress in miniaturisation will not occur without the use of 

new physical principles. It is believed by the author that localization is one physical 

principle worthy of investigation to benefit the field. 

6.2.2 The SAW delay line magnetometer 

This magnetostrictive effect has been utilised in the literature in a delay line 

configuration to create a SAW magnetometer [80], [81]. Examples of this are presented 

here in more detail in order to provide pertinent results that will be utilised in the 

following section for the evaluation of the mode localization magnetometer. 

The basic layout of a SAW delay line sensor in presented in Figure 6.1. It can be seen 

that this is a standard two-port SAW device. A wave excited in the input IDT traverses 

the free space region producing an output at the sense IDT with a constant phase lag 

from the input. In the presence of a magnetic field, the magnetostrictive thin film 

perturbs the wave speed in the free space region, altering the phase lag in proportion. 

 

Figure 6.1 Schematic of a SAW delay line magnetometer. 

This concept has been presented in references [55], [78], [82], although not explicitly 

applied to sensing the applied magnetic field. These references used thin films of nickel 

(Ni) [82], Terfenol (TbFe2) [78] and cobalt-chrome (Co-Cr) [55] on lithium niobate 
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(LiNb03) substrates. The wave speed perturbations achieved in these references are 

summarised in Table 6.1. 

Other examples have been presented in references [80], [81], in which the design was 

target specifically at sensing the local magnetic field strength. Li et al. [81] used 

Galfenol (FeGa) on ST-cut quartz and it is the results of this study that will be used 

to assess the mode localization magnetometer. The experimentally yielded results from 

[81] are summarised in Table 6.1 alongside the results of the aforementioned references. 

Table 6.1 Summary of literature values of SAW wave speed perturbation by a magnetic field 

Substrate 
Substrate 
Rayleigh 

wave speed 
Plating 

Maximum 
wave speed 
perturbation 

Max ࣁ Reference 

ST cut 
quartz 3158 m/s 500nm 

Galfenol 
0.64% over 0.1 

Tesla 0.0064 [81] 

Y-Z LiNbO3 3488 m/s 
2.5um 

Terfenol-D 
(TbFe2) 

-0.27% over 
4KOe -0.0027 

[78] 

 

Y-Z LiNbO3 3488 m/s 0.85um Nickel 0.07% 0.0007 [82] 

Y-Z LiNbO3 3488 m/s 4um Cr-Co 0.03% 0.0003 [79] 

6.3 Evaluation of the SAW mode localization magnetometer 

Within this section a conservative estimate for the SNR achievable by reconfiguring 

the SAW delay line magnetometer of Li et al. [81] as a mode localization magnetometer. 

The substrate and plating construction will kept identical to that summarised in the 

top row of Table 6.1, however the geometry is altered to resemble the device presented 

within this these. A schematic is shown in Figure 6.2.  

The SNR was first expressed in equation 5.20. In order to quantify SNR in the context 

of a magnetometer, the change in ߟ due to the magnetostrictive effect must be related 

to the magnetic field strength. To enhance SNR, the sensitivity can be tuned by device 

design, altering the linear response coefficient ܥଵ (c.f. equation 4.23). 
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Figure 6.2 Schematic of a SAW mode localization magnetometer. 

The change in ߟ can be found from the result presented reference [81] and listed in the 

first row Table 1. This assumes a 500nm thick Galfenol film has been deposited across 

the sense cavity. Allowing a Δߟ௠௔௫ of 0.0064 over a range of 0-0.1T, assuming linearity 

of this change yields equation 6.1. By substituting this into equation 5.20, it can be 

approximately recast in terms of the field strength B in Tesla, this is shown in equation 

6.2. 

ߟ =  (6.1) ܤ0.064

ܴܵܰ ≈
ଵܥଶܳߤߨ

ଶܤଶ|߰ோ|ଶ

100݇஻ܶ߱௡
ଶܮߩ஼

 (6.2) 

Defining the field sensitivity as the minimum detectable change in magnetic field 

strength in the presence of noise, the device sensitivity can be quantified as equation 

6.3.  

௠௜௡ܤ∆ ≈ ඨ
100݇஻ܶ߱௡

ଶܮߩ஼

ଵܥଶܳߤߨ
ଶ|߰ோ|ଶ  (6.3) 

Using equation 6.3, the SAW mode localization sensor will be compared to the current 

state-of-the-art in terms of field sensitivity in the presence of noise. Device size will also 

be addressed. For a base line comparison the material parameters and operating 

frequency from reference [81] will be used. This gives a starting point with parameters 

that are known to be manufacturable. Therefore, using an ST-quartz substrate, the 

reflectors will be made from sputtered 180nm thick aluminium. The device will operate 
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with a Rayleigh wavelength of 20um, which corresponds to an operating frequency 

around 158 MHz. Aluminium fingers on ST-quartz have been found to have a 

reflectivity equal to 0.507ℎ/ߣ per finger [57] in the centre of the stop band. Therefore, 

using the prescribed thickness and wavelength, full reflectivity would be achieved with 

approximately 220 fingers array. 

In chapter 5 it was stated that the radiative Q contributions can be made insignificant 

with restrictions on device size, and hence the total Q can be taken as equal to ܳ௠௔௧. 

The propagation loss of ST-quartz was discussed in reference [65], reporting ܳ௠௔௧ ≈

10ହ at frequencies around 10଼Hz. This will be assumed as ܳ௧௢௧ for the device being 

considered here. A device width of 50ߣ is assumed, it was discussed in chapter 5 that 

this width should be sufficient to eliminate diffraction loss. The assumed parameters 

for the device are now summarised in Table 6.2.  

Table 6.2 Parameters used for initial characterisation of the performance of a SAW mode localization magnetometer 

Parameter Symbol Value 

Angular frequency ߱௡ 2ߨ ∙ 158 × 10଺ rad s-1 

Quality factor ܳ 10ହ 

Boltzmann constant ݇஻ 1.38 × 10ିଶଷ J/K 

Temperature ܶ 293 K 

Substrate density 2650 ߩ kg/m3 

Substrate shear modulus 29 ߤ GPa 

Reference amplitude |߰ோ | 10 pm 

Cavity length ܮ஼ 1 wavelength = 20 ߤm 

 

Current MEMS magnetometers can achieve field sensitivities in the presence of noise 

ranging between 100-1000 ݊ܶ/√[69] ݖܪ. Figure 6.3 shows the sensitivity dependence 

on increasing coupling array length for the mode localization magnetometer. 

It can be seen that the transducer performance in the presence of noise improves as the 

number of periods in the coupling array are increased, however, diminishing returns 
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are found at larger device sizes. It is shown that the field sensitivity of sub-100 ݊ܶ/√ݖܪ 

is achieved with a coupling array length of 360 periods. With the proposed parameter 

from Table 6.2, this would yield an overall device length of ~7mm.  This presents the 

SAW mode localization magnetometer as a promising candidate for experimental 

prototyping and development. 

 

Figure 6.3 Change in minimum detectable magnetic field with length of coupling array. 

6.4 Conclusions 

A potential application for the SAW mode localization sensor has been presented in 

the form of a resonant MEMS magnetometer. The expressions found from previous 

chapters have been adapted to facilitate an analysis and comparison with the current 

capabilities of MEMS magnetometers. Specifically the resolution and size were 

addressed. This analysis will provide context to future experimental or theoretical 

calculations of the maximum achievable values of ܥଵ that can be achieved. 

This analysis provides evidence for the potential performance that can be yielded by 

the SAW mode localization sensor. In addition, the device can be tuned further for 

increased sensitivity, albeit at the expense of device size. 
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Chapter 7. Prototype Design, Manufacture and Testing 

7.1 Introduction 

Two experimental prototypes were designed, manufactured and tested to provide 

evidence of the predicted phenomena as well as further validation of the model derived 

in chapter 3. The first device utilised an alternative geometry: a MEMS fixed-fixed 

beam with varying cross-section. This sought to demonstrate a high-Q, ‘trapped’ mode. 

The second device closely resembles that analysed in the preceding chapters, a SAW 

device consisting of two acoustically coupled cavities. It was intended to realise 

localization by tuning wave speed within the sense cavity using a variable external 

load. 

No positive experimental results were found within the time constraints of the project, 

primarily due to damage to the experimental samples. Although no positive 

experimental results were achieved, experimental work is still ongoing within the team 

at Newcastle University. This chapter documents the prototype design, experimental 

set up and preliminary results produced as a result of the work within the previous 

chapters. 

The chapter first details the design and analysis of the MEMS ‘trapped mode’ beam 

resonator. The SAW device is then addressed in terms of mask design, device 

manufacture and packaging. The experimental methodology is presented, detailing the 

measurement techniques and apparatus. The results of preliminary tests on the 

damaged die are the presented and discussed before conclusions are drawn in the closing 

section. 

7.2 Design and analysis of a ‘trapped mode’ beam resonator 

7.2.1 Introduction 

As explored in detail in reference to the SAW mode localization sensor, the introduction 

of a disorder into a finite periodic oscillatory system induces the presence of a 'trapped 

mode': a mode in which the displacement field is localized to the region of the disorder. 

A main inhibitor to MEMS resonators achieving a high quality (Q) factor is energy 
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radiation through the support to the substrate. The trapped modes present a way to 

tune this support loss to a minimal value and thus are a good potential candidate for 

a high-Q geometry. An initial geometry is proposed and contrasted to a lumped-

parameter model. Separate two-dimensional resonator and substrate COMSOL models 

are used in combination to determine an optimal geometry for a maximum support Q 

(QSUPP). The QSUPP is shown to be on the order of the highest currently available in the 

literature. The theoretical maximum achievable Q factor, due to other dominant Q 

contributions, is discussed.  

The sensitivity of MEMS resonant sensors is dependent on a high quality (Q) factor. 

The Q factor can be described as the sum of the forms of dissipation that contribute 

to it (Equation 7.1). In MEMS devices, the most prominent of these are surface loss 

(QSURF), gas damping (QGAS), thermoelastic damping (QTED) and support loss (QSUPP) 

[83], [84]. 

்ܳை்஺௅
ିଵ =  ܳௌ௎௉௉

ିଵ + ܳௌ௎ோி
ିଵ + ்ܳா஽

ିଵ + ܳீ஺ௌ
ିଵ + ܳை்ுாோ

ିଵ  (7.1) 

QSUPP is one of the dominant contributors to the overall Q of the resonator; this is 

quantified by Equation 7.2 [84]. 

ܳௌ௎௉௉ = ௡ܹ ߨ 2

∆ܹ (7.2) 

Where ௡ܹ  and ∆ܹ  are the stored energy and energy loss through the support 

respectively. For a beam resonator vibrating its nth natural frequency, ߱௡, the stored 

energy can be described by Equation 7.3. Where ߩ, A and L are the density, cross 

sectional area and length of the beam respectively. ௡ܷ is the vibration amplitude [85]. 

௡ܹ =
1
8 ௡߱ܮܣߩ

ଶ
௡ܷ

ଶ (7.3) 

The energy lost through the support can be written in terms of the shear force, FS, and 

the displacement field, u, at the beam-substrate interface [84]. The contribution due to 

the bending moment can be neglected [86]. 
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∆ܹ =  ௫ୀ଴ (7.4)ݑ ௌܨ ߨ

The QSUPP can be optimised by designing a resonator geometry so that the oscillating 

force, FS, at the support interface is minimized, and the energy stored, ௡ܹ, in the bulk 

of the resonator is maximized. A structure exhibiting a trapped mode would be an ideal 

candidate for a high QSUPP resonator. One class of finite periodic system that can exhibit 

trapped modes are stepped beams. These can be easily integrated into planar systems 

and are well suited for use as isolating tethers, wave guides, delay lines or resonant 

sensors.  

The particular geometry of interest is elucidated in Figure 7.1. Slender Euler-Bernoulli 

(EB) beams are separated by much thicker sections of the beam, which do not 

themselves fall within the bounds of EB assumptions. 

 

Figure 7.1 Mode shape and geometry of the trapped mode beam resonator. The distal ends are clamped and the 
central slender section is mistuned in thickness from the surrounding slender beams. Therefore a mode exists in 

which vibration is localized to the central beam. 

It has been shown experimentally that as little as three periods of such a system excited 

in the stop band can enable a complete decay of the displacement field [87]. The present 

analysis focuses on a 4.5 period beam, with the displacement field localized to the 

central region (Figure 7.1). 

7.2.2 Lumped parameter model 

An equivalent lumped parameter model was employed to gain initial insight into the 

parameters of interest. This is presented here, along with the underlying 

approximations. 

In the global mode shape of interest (Figure 7.1) the EB beam sections will be 

oscillating locally in their first mode, therefore they are modelled with a single degree 

of freedom. This limits the analysis to the first band gap. The larger sections of the 
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beam are assumed to experience minimal deformation. To simplify the model and 

reduce the degrees of freedom, zero elastic deformation is assumed and therefore these 

are also modelled with one degree of freedom. The sections can be connected to form 

the full 4.5 period equivalent system of interest (Figure 7.2).  

 

Figure 7.2 Lumped parameter model of the trapped mode beam resonator 

The general non-dimensionalised eigenvalue problem for the non-localised system is 

given in equation 7.5. The form of the stiffness and mass matrices are given in equations 

7.6 and 7.7 and respectively. 

(۹ − ݔ(ۻ ߣ = [0] (7.5) 

۹ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ 2 −1
−1 2 −1

−1 2
∙

∙
2 −1

−1 2 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (7.6) 

ۻ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡݉௥

1
݉௥

∙
∙

1
݉௥⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (7.7) 

݉௥ =  
݉
ഥ݉  , ݉௥ < 1, ݉௥ ≠ 0 (7.8) 

A simple numerical analysis can be performed for the non-dimensional case by 

perturbing the stiffness matrix (the change in mass is assumed negligible). Equations 

7.9-7.11 are substituted into equation 7.5. 
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۹ =  ۹૙ + ઼۹ (7.9) 

઼۹ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ ૙

∙
࢑ࢾ ࢑ࢾ−

࢑ࢾ− ૛࢑ࢾ ࢑ࢾ−
࢑ࢾ− ࢑ࢾ

∙
૙ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (7.10) 

௞ߜ =  
Δ݇
݇  , ௞ߜ ≪ 1 (7.11) 

A quantity is required that is comparable to QSUPP. In order to maximize QSUPP, the 

stored energy at the centre must be maximized and the energy at the ends minimized. 

Solving the perturbed EVP will yield a localised mode, ݔ௅, from which the potential 

energy for the central and end masses can be calculated. The ratio of these is assumed 

to be proportional to the support loss. Thus, an ‘energy localization coefficient’, ζ, is 

defined by taking the ratio of the strain energy stored in the central (5th) DOF to the 

energy stored in the end (1st and 9th) DOFs (equation 7.12). 

ߞ =
(1 + ௅ݔ௞)ቚߜ 

(ହ)ቚ
ଶ

 ቚݔ௅
(ଵ)ቚ

ଶ
+  ቚݔ௅

(ଽ)ቚ
ଶ (7.12) 

The change in ζ with varying mass ratio, mr, and stiffness perturbation, δk, is shown in 

Figures 7.3-7.4. It must first be noted that the cases when either mr = 0 or δk =-1 are 

both unphysical and are to be ignored in the analysis. It can be seen from both Figures 

7.3 and 7.4 that when |δk| > 0, ζ asymptotically tends to infinity as as mr approaches 

zero. In addition to this, Figure 7.4 shows that the rate of change of the gradient 

increases with increasing δk. It is shown in Figure 7.3 that ζ approaches a maximum at 

an optimal value of δk ≈ -0.5. 
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Figure 7.3 Plot of ζ, the localization coefficient, against the non-dimensional stiffness perturbation for thicker 
lines as the mass ratio tends to zero. 

 

 

Figure 7.4 Plot of ζ, the localization coefficient against the mass ratio for thicker lines as δk tends to -0.5. 
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7.2.3 COMSOL models 

Two separate 2D models were used for the resonator and substrate, both using silicon 

material properties. The resonator geometry (Figure 7.5) was halved and replaced by 

a symmetry boundary in the centre of the central slender beam section. This assumes 

that the energy loss at each boundary is equal and uncoupled. The substrate model 

(Figure 7.6) consisted of three concentric semicircles, the smallest of which defined the 

loaded region, and the others to defined the total substrate region and a perfectly 

matched layer (PML).  

 

Figure 7.5 Geometry and geometric parameters used for the trapped mode beam finite element model. 

Meshing for both models was predominantly accomplished using free quadrilateral 

meshing. A mapped face mesh was employed for the slender sections in the resonator 

model. The meshed model of the substrate and the displacement field solution are 

shown in Figures 7.7-9. 

 

Figure 7.6 Substrate geometry used for the finite element model to calculate energy lost through the support. PML 
shown and mesh of loaded edge depicted in inset. 
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Figure 7.7 Fully meshed of substrate model. 

  

 

Figure 7.8 2D view of displacement field in substrate used to calculate support loss. 
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Figure 7.9 3D view of displacement field solution in substrate used to calculate support loss, with beam geometry 
shown in wire frame to exemplify the full coupled system. 

The dimensions of the resonator geometry are summarised in Table 7.1. 

Table 7.1 Trapped mode beam resonator dimension summary 

Parameter Symbol Value 

Length of beam sections ߤ 100 ܮm 

Thickness of slender beams ℎௌ 5 ߤm 

Thickness of central slender 
beam ℎ௖ 1.25 - 5 ߤm 

Thickness of large beam 
sections ℎ௅ 50 - 100 ߤm 

  

COMSOL’s post processor provided a value for the stored energy. This was compared 

to an analytical calculation of the sum of the energy (equation 7.3) stored in each of 

the slender beam sections, with the displacement amplitudes taken from the COMSOL 

solution. These were found to agree to within 20%, with an average difference of 15%. 

The difference can most likely be attributed to energy stored in the thick beam sections 

that is neglected in the analytical comparison calculation. 
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The shear stress can also be taken directly from COMSOL, however, due to the sharp 

changes in cross section, an extremely fine mesh would be required to achieve a 

consistent result. To allow for a coarser mesh and faster computation times, the shear 

force was calculated from equation 7.4 using the displacement solution from Comsol. 

A parametric sweep ran through the desired values of hL and hc as defined in Table 7.1. 

The required data was taken from the 5th Eigenmode output from an Eigenfrequency 

analysis. 

The substrate model was used to quantify the energy radiated away from the resonator 

per cycle. Referring to equation 7.4 it can be seen that the displacement field across 

the loading region is required as output from this model. Frequency and shear load 

solutions gleaned from the resonator solution were input into a parametric sweep for a 

Frequency Domain analysis.  

7.2.4 Discussion 

The results from the COMSOL models were combined with equations 7.2-7.4 and a 

maximum value sought. The parameter space solved for is plotted in Figure 7.10.  

 

Figure 7.10 Surface plot of the support Q against central beam and large beam thicknesses. 
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The maximum QSUPP achieved was ~3x108 which corresponded to a step thickness ratio 

of 20 and a disorder thickness ratio of 0.45. These values correspond to mr = 0.05 and 

δk � -0.8. The contour plots (Figure 7.11) compare the COMSOL solution and the 

lumped parameter solution. In general, good qualitative agreement is found within the 

bounds of validity of the perturbation solution.  

 

Figure 7.11 Contour plots comparing the qualitative behaviour of the lumped parameter and Comsol solutions. 
The left hand plot depicts the Comsol solution and the right hand plot the lumped parameter solution. 

Quoted values for QSUPP are sparse in the literature, however, the TMBR compares 

favourably to the values available. Two examples of note are for a xylophone bar 

resonator (XBR) [69], [83] and a micro-cantilever [84]. Contrasting these to the TMBR, 

the TMBR QSUPP is found to be of the same order or greater.  

The numerical value given for QSUPP is dependent on the scale of the device. Therefore, 

it is more useful to compare the parameters affecting the QSUPP and the limits imposed 

by them. In the case of the TMBR the QSUPP is limited by the maximum thickness 

ratio, which is equivalent to the wave-speed ratio, VR, between the segments. 

Therefore, the QSUPP is limited by the mass the slender beams can support. Increasing 

VR provides a simple method for increasing the QSUPP in a TMBR. The QSUPP, however, 

only needs to be tuned to a value where it is no longer the dominant form of dissipation. 

After this, efforts should be focused on reducing the new dominant dissipation 

mechanism to achieve the maximum QTOTAL. 

QSUPP is limited in general by geometric factors. Tuning to optimise these may affect 

the other Q contributors, leading to a compromised QTOTAL. It is reasoned in this section 
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that in the case of the TMBR, the parameters determining the other dominant Q 

contributors are uncoupled from the QSUPP tuning parameters. 

The dominant Q contributors for a silicon MEMS resonator operating in a vacuum are 

QSUPP, QTED and QSURF [84]. Calculating the equivalent values of these quantities for 

coupled systems [69] takes advantage of the fact that both QTED and QSURF are local 

dissipation mechanisms [88].The QTED expression reduces to one dimension by assuming 

negligible axial heat flux. When this is combined with the assumption that the strain 

in the thick section of the beam is negligible, it implies that the QTED is determined 

solely from the slender beam sections. Similarly, QSURF is a fundamentally local 

dissipation mechanism [88] and the geometric dependence is predominantly the beam 

thickness [69]. Thus, both QTED and QSURF are unaffected by the main QSUPP tuning 

parameter, ௛ಽ
௛ೄ

.  

From this is it not unreasonable to assert that a set of geometric parameters can be 

found that provide a QTED and QSURF in line with the highest found in the literature for 

a beam resonator, whilst still maintaining the same QSUPP. 

7.2.6 Conclusions 

It has been shown that a QSUPP value for the TMBR can theoretically be achieved of 

the order of those currently available in the literature and can be increased or decreased 

by altering the wave-speed ratio between segments. In addition, it has been reasoned 

that the other dominant Q contributors can be tuned with minimal effect on the 

achievable QSUPP value. The use of the equivalent lumped parameter model for 

obtaining qualitative information about TMBR systems has been validated. The given 

conclusions indicate that the TMBR geometry can be a suitable choice as a MEMS 

resonator as a support structure for other resonant devices.  

A device was manufactured in order to experimentally validate the conclusions of the 

analysis, a microscope image of one of the die including three trapped mode beam 

resonators is shown in Figure 7.12. 
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Figure 7.12 Optical microscope image of a MEMS die containing three trapped mode beam resonators. 

When the device was placed within a vacuum a high-Q mode was detected near the 

frequency of interest using a Laser Doppler Vibrometer. This result, however, has not 

yet been found to be sufficiently repeatable and further work is planned to validate the 

analysis. This includes repeat observation of the high-Q peak as well as mapping of the 

characteristic mode shape of the ‘trapped mode’. 

7.3 Design and manufacture of a prototype SAW mode localization sensor 

7.3.1 Device geometry 

The device geometry was designed to be multi-purpose and capable of yielding results 

for various experiments. In particular, a previous experiment for a conference paper 

[36] by the author. This related work was seeking to demonstrate tuning of the coupling 

array and evaluate the use as a sensor. Due to this the device is symmetric about the 

centre of the coupling array and will not exhibit localization without the use of external 

circuitry. Within this section the details of the geometry and design are presented. 
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The device is constructed from 150nm thick aluminium strips deposited on YX128-

LiNbO3, the free surface wave speed of which is widely reported as 3995 m/s [60]. The 

wave speed within the plated regions can be calculated using the equations of section 

3.2.3. It is detailed in reference [42] that aluminium strips of this thickness load the 

substrate and perturb the wave speed to approximately 97.3% of its original value. An 

overview of the layout is shown in Figures 7.13-15. 

The dimensions were chosen to operate with a nominal wavelength of 20 µm, therefore 

the period of the arrays and IDT's is 10µm. The substrate wave speed is 3995m/s, this 

indicates the operating frequency range to be near 199MHz. The enclosing arrays 

consist of 250 reflectors each to ensure near total reflection, calculated using the model 

presented in chapters 3 and 4 and available in appendix C. The coupling array is 100 

periods long to allow approximately 50% transmission and the IDT’s each consist of 5 

fingers. There are two IDT’s per cavity, allowing tuning in both cavities if desired, as 

well as giving the option of electrical sensing in both cavities. The IDTs are labelled 

depending on their chosen function, excitation, sensing or tuning. 

 

Figure 7.13 Full overview of the SAW device layout. All shaded regions represents regions of Aluminium 
deposited on the substrate. The orange, green and blue shaded regions are the excitation, sense and coupling IDT 
tracks and pads respectively. The grey shaded region is ground pads. The red box indicates the region containing 
the cavities and coupling array as shown in Figure 7.5. Outside of the red box to the left and the right are the 

enclosing array reflectors. 
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Figure 7.14 Enlarged view of the cavities and coupling array. The red box represents the region shown in Figure 
7.6. It can be seen that the ground bus bar running along the bottom of the device connects to every second 

finger. 

 

 

Figure 7.15 Enlarged view of the IDT fingers and enclosing array reflectors displaying the structure of the device. 
Each finger is five microns wide as is each space. 
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The device is symmetrical about the centre of the coupling array, and the IDT’s are 

synchronous with the arrays, therefore localization would not naturally occur as no 

disorder exists in the system. In order to induce and tune localization, a load is attached 

across the sense IDT, locally perturbing the wave speed. The localised response will 

occur in proportion to the impedance of the load applied and hence demonstrate the 

potential for device operation; this is discussed in the following section. 

7.3.2 Wave speed tuning 

It is shown in reference [59] that a varying of the impedance of a load connected across 

an IDT locally alters the effective wave speed. This phenomenon will be employed in 

order to initiate localization to validate the potential use as a sensor. 

In reference [59], tuning of a SAW resonator was demonstrated using a device 

constructed of aluminium strips on YZ-LINbO3. Both resistive and capacitive 

impedances ranging from 10-10kOhms were shown to be capable of varying the wave 

speed by 1.5%. 

A simple diagram of the electrical experimental set up is shown in Figure 7.16. The 

external impedance in this case will be resistive. A potentiometer is connected across 

the sense IDT allowing the load to be adjusted easily between experimental runs. The 

real load seen by the IDT, accounting for resistance in the cables and bonds will be 

measured across the IDT terminals using a multimeter. 

 

Figure 7.16 Simplified diagram of the initial experimental drive and tuning arrangement. 
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7.3.3 Die Manufacture 

The die were manufactured using a photolithographic process, whereby first the 

YX128-LiNbO3 substrate is sputter coated with a thin film of aluminium. A photoresist 

coating is deposited on top and selected areas, according to the mask of section 7.3.1, 

are exposed to light. The photoresist is then removed in the selected regions, exposing 

the aluminium to be etched away. After the aluminium etch, the remaining resist is 

removed leaving the patterned aluminium on YX128-LiNbO3 die. The manufacturing 

process flow is shown graphically in Figure 7.17. 

 

Figure 7.17 Process flow of the SAW device manufacturing process. 

7.3.4 Packaging 

The die were adhered into a 28-pin dual in-line package (DIP) using epoxy and wire-

bonded to the package terminals. An image of the die affixed within the package, pre-

wire-bonding is displayed in Figure 7.18.  

 

Figure 7.18 SAW device affixed in the DIP package with epoxy 
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The use of the 28-pin DIP allowed for utilisation of a pre-existing vacuum chamber. 

This could accept the DIP and routed the pins to SMA connectors using coaxial cables 

suitable for carrying the RF signals necessary for transduction. An image of the 

packaged die within vacuum chamber are shown in Figure 7.19. 

 

Figure 7.19 DIP located in vacuum chamber (lid not shown). 

7.4 Experimental methodology 

A schematic of the experiment is shown in Figure 7.20. 

 

Figure 7.20 Experimental schematic 
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The setup is centred around the optical transduction unit of the Polytec UHF-120 

Scanning Laser Doppler Vibrometer (LDV). The device uses the Doppler shift of a 

measurement beam in comparison to a reference beam to directly measure the velocity 

of the target. This is then automatically integrated within the software to provide the 

displacement fields, of interest to this study.  

Broadband excitation was provided using a Rohde & Schwarz SMBV100A vector signal 

generator, this was used to provide a white noise signal in the range of 195-205MHz 

with an amplitude of 1.7V. The output of the signal generator was split and sent to 

both the device and the LeCroy WavePro 725Zi-A 2.5GHz oscilloscope, for real time 

inspection of the excitation signal. The LDV output was also routed to the oscilloscope, 

this aided focussing of the laser for the optimal strength output as well as comparison 

with the input signal in real time. All devices were controlled using a PC and the 

proprietary Polytec PSV software. 

The sample was held under vacuum within the chamber shown in Figure 7.19. This 

was pumped to a steady partial vacuum of 4.3x10-2 mbar as monitored on a digital 

pressure gauge, plumbed in-line with the chamber. To limit transferal of pump 

vibrations to the sample, the vacuum hose was routed through a sand filled bucket, to 

significantly reduce the hose vibrations arising due to the rotary pump. 

7.5 Results and Discussion 

The scanning function of the LDV was used to map a section of the device on the 

excited IDT.  The device responded to white noise excitation of the forcing IDT, 

producing the frequency spectrum shown in Figure 7.21. The response over the peaks 

present around 199MHz were inspected. The response within the frequency band 

indicated on Figure 7.21 corresponds to a standing wave of approximately 20um 

wavelength. The displacement field corresponding to this frequency band is presented 

in Figures 7.22 and 7.23. 
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Figure 7.21 Measured frequency spectrum of a SAW prototype device. The response is relatively noisy with 
multiple similar sized peaks. The highlighted frequency band shows the peak near the modelled frequency of 

interest that produced the standing wave behaviour shown in Figures 7.12-7.13. The neighbouring peaks displayed 
travelling wave behaviour in the direction of interest. 

 

 

Figure 7.22 Top view of the measured displacement field. 

 

 

Figure 7.23 3D view of the measured displacement field. 
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It was found however that during pre-packaging transportation, the packaging process 

as well as post-packaging transportation the die developed damage to the IDT tracks 

that meant no positive evidence could be found with the current die. No single device 

had an intact IDT in both cavities, therefore one cavity could not be tuned to exhibit 

localization whilst the other was excited. Examples of the damage present on the die 

are shown in Figure 7.24. The most prevalent form of damage was a break in the long 

ground bus bar in the enclosing array region, between the pad and the IDT. This 

rendered all of the IDT’s it served non-functional. 

 

Figure 7.24 Examples of damage to thin film aluminium IDT tracks. 

The cause of device damage can most likely be attributed to one of the following two 

sources: 

 Accidental tweezer impact during the manual die pick or mounting process. 

 Loose transportation between manufacture and packaging locations. 

The manual process of die picking and mounting into the DIP packages is a risk that 

would need to be mitigated in a repeat experiment. One particular example of risk is 

the downwards pressure that needs to be applied when the devices are adhered into 

the package. This was applied with tweezers on the surface of the die, presenting a risk 

for scratching of the aluminium tracks. The risk of tweezer damage could be mitigated 

by the use of tools designed specifically for the purpose of picking and placing the die. 
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Transportation damage can be mitigated by packaging the die in the same location as 

manufacture. Furthermore, care must be taken in choosing the method to transport 

the packaged parts to the test lab. 

7.6 Conclusions 

Two separate experiments have been design, manufactured and a measurement 

methodology established. These aim to provide evidence to support the claims of this 

thesis as well as the related work completed in references [36], [89].  

Due to the widespread sample damage, the devices used within the first round of testing 

were unable to exhibit the localization predicted within the theory. The devices 

however performed as predicted in the frequency range of interest, yielding a 20um 

standing wave resonant response within the excited cavity at approximately 199MHz. 

This has validated the experimental set up and characterisation technique for the 

ongoing further testing and future revisions of the device design. 

At the time of writing the author is in continual liaison with researchers within the 

Mechanical Engineering School at Newcastle University. Experimental runs are ongoing 

and new samples are being designed and manufactured as required.  
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Chapter 8. Conclusions 

8.1 Introduction 

This chapter opens by restating and summarising the conclusions of the preceding 

chapters. The six open questions identified in the opening chapter are recalled and the 

answers provided to these questions by this thesis are outlined.  Shortcomings of the 

study are highlighted and recommendations for further work are identified. 

Dissemination of the work is addressed, covering existing publications from this work 

as well as planned future publications. Finally, closing remarks are made. 

8.2 Conclusions 

8.2.1 Chapter 2 

The basic geometry of the periodically-coupled SAW mode localization sensor was 

introduced (section 2.3) which allowed for the simplified lumped parameter model of 

the system to be constructed (section 2.4.1). A reduced order model was introduced 

alongside the LPM allowing, yielding analytical expressions of a form that could be 

compared directly to similar analyses in the literature (section 2.4.2). The reduced 

order model was shown to capture the majority of the behaviour of interest to device 

design and analysis. 

The discussion of the physics of the system encapsulated the natural frequencies and 

normal modes (section 2.5.1), the frequency dependence of the periodic coupling array 

(section 2.5.1), the device level frequency response (section 2.5.3) and the device 

sensitivity (section 2.5.4). Alongside this the model was used to provide a mainly 

qualitative overview of the basic physics of the device operation (section 2.5.2). The 

device sensitivity was contrasted with an equivalent 2-DOF device in the literature 

(Table 2.1). 

It was shown that the use of periodic coupling introduces an extra parameter (the 

number of periods) for tuning device sensitivity. The device was shown to response 

approximately linearly with respect to an introduced disorder and the sensitivity was 
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shown to have an exponential dependence on the number of periods in the coupling 

array.  

8.2.2 Chapter 3 

Chapter 3 yielded a comprehensive model of the wave dynamics of the SAW device 

with validation provided through FEM. The model provides insight into the physics of 

the device as well as forming the basis for fast numerical simulation of device behaviour. 

The model stemmed from the equations of linear elasticity (section 3.2), and the basis 

and prerequisites of the model were covered comprehensively (sections 3.2-3.4) before 

the expressions specific to the device were derived (section 3.5). 

The model presented in section 3.5 was derived for a general geometry, with parameters 

such as cavity length, excitation location and array lengths not predetermined. 

Subsequently, expressions specific to the special case of the device geometry presented 

in chapter 2 were derived from the general solutions (section 3.5.2). 

Good agreement was found between the derived model and an independent FEM 

analysis, validating the expressions (section 3.7). The validity of the model was 

discussed (section 3.8.1) and a comparison to the ubiquitous COM model was presented 

(section 3.8.2). 

8.2.3 Chapter 4 

The model derived in chapter 3 was utilised for a numerical investigation of the device 

behaviour. A primary tangible outcome of the work, a numerical code for fast 

computation of device behaviour, was introduced (section 4.2/appendix B). The utility 

of the expressions found in chapter 3 were discussed, specifically with reference to large 

increase in the speed of computation (section 4.2). The frequency response of the device 

was addressed in depth covering the conditions for resonance (section 4.3.2), the effect 

of the cavity length (section 4.3.3), coupling array tuning (section 4.3.4) and selective 

excitation (section 4.4). A comprehensive overview of the device behaviour was 

presented (section 4.5), detailing the behaviour of the natural frequencies (section 

4.5.2) and the amplitude response in the context of device operation and sensitivity 

(section 4.5.3). The chapter concluded by presenting the calibration curve and linear 

approximation to the device response (section 4.5.3). 
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8.2.4 Chapter 5 

The primary loss mechanisms of the SAW device were enumerated and their individual 

contributions quantified. These consisted of radiation loss (section 5.2.1), diffraction 

loss (section 5.2.2), bulk scattering (section 5.2.3), fluid damping (section 5.2.4) and 

material loss (section 5.2.5). The individual contributions to the overall device loss was 

discussed and quantified. It was found that device geometry could be tuned to make 

all forms of loss negligible when compared to the material loss. The likely impact of 

mechanical-thermal noise was addressed and expressions for the RMS noise amplitude, 

SNR and LOD were derived (section 5.3). 

8.2.5 Chapter 6 

An overview of the current-state-of-the-art in MEMS magnetometers was provided 

(section 6.1). A similar device to the one proposed by this work, the SAW delay line 

magnetometer, was introduced and details from literature provided (section 6.2). This 

provided evidence of the manufacturability of the device as well as realistic parameters 

to be used for this case study of the SAW mode localization sensor performance. 

The design of the novel MEMS magnetic field sensor was presented and expressions for 

the field sensitivity and SNR were derived (section 6.3). By tuning the length of the 

coupling array it was found that competitive device sensitivity (103 ݊ܶ/√ݖܪ) could be 

achieved. 

8.2.5 Chapter 7 

Detail of the design and implementation of two MEMS scale experiments was provided. 

The first experiment sought to employ an alternative geometry to the SAW device and 

was therefore addressed only briefly (section 7.2). Details of a conference paper arising 

from the work encompassing the analysis was provided. 

The design of the first prototype SAW mode localization sensor was detailed. The 

device geometry was presented (section 7.3.1) alongside the principles of operation 

(section 7.3.2) and method of manufacture and experimental apparatus (sections 7.3.3, 

7.3.4 and 7.4). A brief overview of the results gained was provided, however, no 

experimental evidence of a functional SAW mode localization sensor was provided. This 

shortcoming was primarily due to wide scale device damage and time constraints. 
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8.3 Answers to open questions 

 How does using a periodic array as a coupler effect or enhance the operation 

of a mode localization sensor? 

This question was addressed primarily in chapter 2. The simplified model indicated 

that the main utility of the coupling array was the introduction to two parameters that 

could be used independently as a means of tuning the device sensitivity, namely the 

propagation constant and the number of periods. This result is general and common to 

all types of periodic arrays, be these acoustic waves or suspended MEMS structures 

(i.e. a cantilever array). 

Further examples of the utility of the periodic array outlined above were shown in 

chapters 3 and 4, directly in relation to the SAW device. Additionally, the overt and 

practical benefit being that the periodic array is the simplest non-dissipative method 

of weakly coupling two SAW cavities. 

 Can a mode localization sensor be constructed using SAW? 

From a theoretical standpoint this question has been answered relatively conclusively 

within chapters 3 and 4. A model of the wave mechanics of the SAW system, 

constructed using minimal assumptions and inclusive of dissipation, exhibited 

behaviour mimicking that of the mode localization sensors described in the literature. 

This model was validated, showing a good level of agreement with a separate finite 

element model. 

Experimental evidence of a functioning SAW mode localization sensor has remained 

elusive. However, the theoretical analysis and numerical validation provides substantial 

evidence that a device can function in this manner. The practical limitations on device 

size and performance however still require experimental validation before the results 

can be quoted with absolute confidence. 

 What are the benefits afforded by using the SAW platform and how can they 

be best exploited? 
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One benefit was first alluded to in chapter 2: the use of a periodic coupling array 

provides a unique method of tuning the device sensitivity. This was reinforced 

throughout the thesis, with the coupling array length shown to have an exponential 

relationship with device sensitivity. 

Chapter 5 and 6 provided evidence that the SAW platform is likely to be a low-loss 

and hence low-noise implementation of the mode localization sensor. This aligns with 

another area within microelectronics, filters, where bulk acoustic wave filters (BAW) 

were widely replaced by SAW as it provided superior noise performance [90]. 

The inherently robust design of SAW devices was asserted within the opening chapter, 

however, this runs contrary to the wide-scale damage and low yield found on the 

experimental prototypes. This indicates that the claim of greater robustness is only 

valid is sufficient device packaging procedures are in place. 

 What are the limits imposed on such a device by loss mechanisms and thermal 

noise contributions? 

Chapter 5 provided an analysis of the primary loss mechanisms affecting the SAW 

system. The loss mechanisms were shown to impose a limit on device size. The total 

loss of the device was used to calculate a first estimate of the thermal noise of the 

transducer; expressions were presented outlining the parameters contributing to the 

device SNR and LOD. It was shown that device geometry and viscous losses to the 

material were two factors that needed to be considered to produce a device exhibiting 

low thermal noise. 

 Does the SAW mode localization sensor present a viable platform to construct 

a competitive MEMS magnetometer? 

Chapter 6 directly addressed this question, first providing a novel device design of a 

MEMS SAW mode localization magnetometer. The calculations showed the 

performance in terms of the magnetic field sensitivity in the presence of noise is likely 

to be competitive. This provides evidence that the platform is likely to be viable. 

Experimental evidence to support this is not currently forthcoming in the time scale of 
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this research. The analysis, however, provides evidence that this would likely be a 

fruitful direction of further study in the field of MEMS magnetic field sensors.  

8.4 Further work 

8.4.1 Model improvements 

The model produced in this work focussed on the elastodynamic properties of operation, 

neglecting the electrical properties of the device as well as the interaction with external 

networks. This was identified as the initial area that required investigation to determine 

the mechanics of the device operation. The end product of such a device described 

within this thesis would be a transducer component within an electrical circuit. Further 

work to model the system level performance would provide greater insight to the 

important parameters in device design. 

8.3.2 Experimental work 

The most fruitful focus of further work on this topic would be to obtain experimental 

data of the phenomena described. Initially, proof of concept and performance using the 

device design presented in section 7.3 is required. This will allow critique of the 

performance predictions of the loss and noise analysis. Furthermore, manufacture and 

testing of the MEMS magnetometer has not yet been performed. This will likely will 

require process development and research to obtain the correct magnetostrictive film 

performance. 

8.3.3 Applications 

There is much scope to expand the ideas presented within this thesis towards specific 

applications. One of these, a MEMS magnetometer, has been explored within the case 

study of chapter 7. Another application that presents itself is as a biological mass 

sensor. MEMS based bio-analyte detectors are often suggested in the literature. One 

common problem is that to function as a useful sensor in this field, these need to 

operate whilst submerged in a biological fluid. This can induce multiple failures in 

many common MEMS structures, in particular stiction or fracturing due to the fluid 

load. However, the main limitation is the Q-degradation associated with losses to a 

viscous fluid. Many of the proposed MEMS bio-mass sensors depend on high-Q to 

operate as does the SAW mode localization sensor. The SAW mode localization sensor 
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however presents potential solutions to these issues. The geometry will not fail due to 

stiction or fracture and Q-degradation can be addressed by the use of Love waves. 

These shear surface waves present no out-of-plane motion and therefore do not radiate 

energy to the fluid, thus the device can maintain a high Q. Therefore, focus of further 

study on a Love wave mode localization sensor may prove fruitful in this field. 

8.5 Dissemination 

Subsets of the work carried out during the period of candidature have been presented 

at three international conferences: 

 The initial steps of the mathematical model were presented at the 

International Conference on Vibration Problems (September 2013, Lisbon, 

Portugal).  

 The analysis of the first experimental design was presented at the 2014 

COMSOL conference (September 2014, Cambridge, UK).  

 The concept and parts of the analysis of the SAW mode localization sensor 

were presented at the 13th International Conference on Dynamical Systems: 

Theory and Applications (December 2015, Lodz, Poland). 

The main components of chapters 1-4 were condensed into an article that has been 

published in the Journal of Mechanical Systems and Signal Processing [37].  

A further article detailing the experimental study will be submitted to a MEMS specific 

journal, such as The Journal of Micro-electromechanical Systems, once sufficient results 

have been gained. 

8.6 Closing remarks 

This thesis centred on the design of a novel MEMS sensor: the SAW mode localization 

sensor. The in-depth mathematical analysis combined known methods in a novel 

manner to yield an accurate description of the device physics and aid experimental 

design. The body of work provides evidence of the feasibility and potential performance 

of this sensor, encouraging future experimental work into the development and 

optimisation of this sensor platform in multiple applications.  
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Appendix A. LPM Analysis Code (Mathematica) 
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Appendix B. SAW Numerical Analysis Code (Matlab) 

B1: Input code 

%% SAW MODE LOCALIZATION SENSOR 

% T. H. Hanley  
% Numerical calculation of sensitivity, SNR and resolution 
%% Parameters 
mu = 0.5; % plating ratio 
c1 = 0.975; % wave speed ratio 
att = 0.001; % attenuation coefficient (29.1*(f/10^9)^2 Nepers/m Bell & Li) 
Nc = 50:10:220; % periods in coupling array 
f = 0.978:0.000001:0.997; % frequencies vector 
eta = 0.95:0.001:1.05; % sense cavity disorder 
La = 1; % reference cavity length (in wavelengths - can be non-integer) 
Lb = 1; % sense cavity length 
P0 = 1; % excitation load N/m 
rho = 2650; % density of Quartz 
deltaeta = 0.064; % maximum physical change in eta 
sm = 29e9; % shear modulus of quartz 
lambda = 20e-6; % wavelength of interest 
kbT = 1.38e-23*300; % Boltzmann's constant multiplied by ambient 
temperature 
cR = 3158;% Rayleigh wave speed of ST-cut Quartz 
Q = 10^5; % quality factor 
%% Frequency dependent transmission and reflection coefficients 
ep = 0.5*(c1+1/c1); 
em = 0.5*(c1-1/c1); 
w = zeros(1,length(f)); 
z = zeros(1,length(f)); 
zeta = zeros(1,length(f)); 
trns = zeros(length(Nc),length(f)); 
ref = zeros(length(Nc),length(f)); 
for i = 1:length(f) 
    for j = 1:length(Nc) 
w(i) = (cos((pi*mu*f(i))/c1)-
1i*ep*sin((pi*mu*f(i))/c1))*exp(1i*pi*mu*f(i)); 
z(i) =  -1i*em*sin((pi*mu*f(i))/c1); 
zeta(i) = real(w(i))*cos(pi*f(i))+imag(w(i))*sin(pi*f(i)); 
trns(j,i) =  exp(-att*Nc(j))/((w(i)*exp(-1i*pi*f(i))*... 
    (sin((Nc(j))*acos(zeta(i)))/sin(acos(zeta(i))))... 
    -(sin((Nc(j)-
1)*acos(zeta(i)))/sin(acos(zeta(i)))))*exp(1i*pi*mu*f(i))); 
ref(j,i) = 
z(i)*(sin((Nc(j))*acos(zeta(i)))/sin(acos(zeta(i))))*trns(j,i)*exp(att*Nc(j
)); 
    end 
end 
  
%% Find stop band centre 
[tmin,fcind] = min(abs(trns(1,:))); 
fc = f(fcind);% centre frequency (non-dimensional) 
a = 2*La/fc; % length of reference cavity 
b = 2*Lb/fc; % length of sense cavity 
  
%% Assemble wavenumber arrays 
gamma_a = pi.*f - ones(1,length(f))*1i*att; % non-dimensional complex 
wavenumber vector in ref cavity 
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gamma_b = zeros(length(eta),length(f)); 
for i = 1:length(eta) 
    for j= 1:length(f) 
gamma_b(i,j) = eta(i)*pi*f(j) - 1i*att; % non-dimensional complex 
wavenumber matrix in sense cavity 
    end 
end 
  
%% Cavity Amplitude Frequency Responses 
xA=cell(length(Nc)); 
xB=cell(length(Nc)); 
xC=cell(length(Nc)); 
for j = 1:length(Nc) 
xA{j} = -ref(j,:).*exp((1i*2*a).*gamma_a); 
%xB = zeros(length(eta),length(f)); 
%xC = zeros(length(eta),length(f)); 
for i = 1:length(eta) 
xB{j}(i,:) = 
(trns(j,:).^2).*exp(((1i*2*a).*gamma_a)+((1i*2*b).*gamma_b(i,:))); 
xC{j}(i,:) = -ref(j,:).*exp((1i*2*b).*gamma_b(i,:)); 
end 
%XR=zeros(length(eta),length(f)); 
%XS=zeros(length(eta),length(f)); 
for i = 1:length(eta) 
XR{j}(i,:) = (1-xC{j}(i,:))./(sm.*(1-xA{j}-xB{j}(i,:)-
xC{j}(i,:)+xA{j}.*xC{j}(i,:))); 
XS{j}(i,:) = (-
trns(j,:).*exp(2*1i.*(gamma_a.*a+gamma_b(i,:).*b)))./(sm.*(1-xA{j}-
xB{j}(i,:)-xC{j}(i,:)+xA{j}.*xC{j}(i,:))); 
end 
end 
%% Eigenvalue loci and tracking modal amplitudes 
for i = 1:length(eta) 
    for j=1:length(Nc) 
[PKS1 LOCS1] = findpeaks(abs(XR{j}(i,:))); 
if length(LOCS1(:)) == 1 
    wn{j,i} = [f(LOCS1(1)) NaN]; 
    XRAMP{j,i} = [abs(XR{j}(i,LOCS1(1))) NaN]; 
    XSAMP{j,i} = [abs(XS{j}(i,LOCS1(1))) NaN]; 
else 
    wn{j,i} = [f(LOCS1(1)) f(LOCS1(2))]; 
    XRAMP{j,i} = [abs(XR{j}(i,LOCS1(1))) abs(XR{j}(i,LOCS1(2)))]; 
    XSAMP{j,i} = [abs(XS{j}(i,LOCS1(1))) abs(XS{j}(i,LOCS1(2)))]; 
end 
    end 
end 
wnLOW=zeros(length(Nc),length(eta)); 
wnHIGH=zeros(length(Nc),length(eta)); 
for i = 1:length(eta) 
    for j= 1:length(Nc) 
wnLOW(j,i)=wn{j,i}(1); 
wnHIGH(j,i)=wn{j,i}(2); 
end 
end 
%% Reference cavity modal amplitudes 
XRLOW=zeros(length(Nc),length(eta)); 
XRHIGH=zeros(length(Nc),length(eta)); 
for i = 1:length(eta) 
    for j=1:length(Nc) 
XRLOW(j,i)=XRAMP{j,i}(1); 
XRHIGH(j,i)=XRAMP{j,i}(2); 
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    end 
end 
  
%% Sense cavity modal amplitudes 
XSLOW=zeros(length(Nc),length(eta)); 
XSHIGH=zeros(length(Nc),length(eta)); 
for i = 1:length(eta) 
    for j = 1:length(Nc) 
XSLOW(j,i)=XSAMP{j,i}(1); 
XSHIGH(j,i)=XSAMP{j,i}(2); 
    end 
end 
  
%% Amplitude ratios 
for j =1:length(Nc) 
AMPRATLOW{j} = XRLOW(j,:)./XSLOW(j,:); 
AMPRATHIGH{j} = XRHIGH(j,:)./XSHIGH(j,:); 
end 
  
  
%% Find linear sensitivity coefficient 
for j = 1:length(Nc) 
Coeffs{j} = 
polyfit(eta(3*floor(length(eta)/4):end),AMPRATHIGH{j}(3*floor(length(eta)/4
):end),1); 
LinSens{j} = @(x) Coeffs{j}(1)*x+Coeffs{j}(2); 
end 
%% Noise calculations (in the context of the magnetic field sensor of 
chpt.6) 
% Parameters 
fdn = (fc*cR)/(lambda); % dimensionalised frequency (Hz) 
wdn = 2*pi*fdn; % angular frequency 
deltaf = fdn/Q; % bandwidth 
C1=zeros(length(Nc),1); 
for j = 1:length(Nc) 
C1(j) = Coeffs{j}(1); % linear sensitivity coefficient 
end 
refamp = 10e-12; % 10 picometer reference amplitude 
  
% SNR 
% SNR=(1000*pi*sm^2*Q*C1^2*deltaeta^2*refamp^2)/(4*kbT*wdn^2*rho*a); 
  
% Magnetometer resolution (Limit of detection) 
LODMAG2 = zeros(length(Nc),1); 
for j = 1:length(Nc) 
LODMAG2(j) = 
sqrt((100*kbT*wdn^2*a*rho)/(C1(j)^2*refamp^2*pi*Q*sm^2*deltaf)); 
disp(['Field Sensitivity = ',num2str(LODMAG2(j)*1e9),' nT/sqrt(Hz)']) 
end 
%% Plots 
  
% Plot transmission and reflection coefficients frequency behaviour 
figure 
hold on 
plot(f,abs(trns)) 
plot(f,abs(ref)) 
xlim([f(1) f(length(f))]) 
t1 = title('Transmission Spectrum'); 
lx1 = xlabel('Normalised frequency'); 
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ly1 = ylabel('|T_N| and |R_N|'); 
for i = 1:length(Nc) 
leg1{i} = ['Nc = ',num2str(Nc(i))]; 
end 
legend(leg1,'location','northeastoutside') 
set([t1, lx1, ly1]                , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
hold off 
  
% Plot cavity amplitude frequency response for symmetric case 
figure 
subplot(121) 
hold on 
plot(f,abs(XR{1}(floor(length(eta)/2),:))) 
plot(f,abs(XS{1}(floor(length(eta)/2),:)),'r--') 
xlim([f(1) f(length(f))]) 
t2 = title('Cavity Amplitude Responses (\eta=1)'); 
lx2 = xlabel('Normalised frequency'); 
ly2 = ylabel('Amplitude (m)'); 
legend('Reference Cavity', 'Sense Cavity') 
set([t2, lx2, ly2]                , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
hold off 
  
% Plot cavity amplitude frequency response for an asymmetric case 
subplot(122) 
hold on 
plot(f,abs(XR{1}(floor(length(eta)/2)+50,:))) 
plot(f,abs(XS{1}(floor(length(eta)/2)+50,:)),'r--') 
xlim([f(1) f(length(f))]) 
t3 = title('Cavity Amplitude Responses (\eta=1.049)'); 
lx3 = xlabel('Normalised frequency'); 
ly3 = ylabel('Amplitude (m)'); 
legend('Reference Cavity', 'Sense Cavity') 
set([t3, lx3, ly3]                , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
hold off 
  
% Plot eigenvalue loci 
figure 
hold on 
plot(eta,wnLOW) 
plot(eta,wnHIGH) 
xlim([eta(1) eta(length(eta))]) 
t4 = title('Eigenvalue Loci Veering'); 
lx4 = xlabel('\eta'); 
ly4 = ylabel('Normalised natural frequency'); 
legend(leg1,'location','northeastoutside') 
set([t4, lx4, ly4]                 , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
hold off 
  
% Plot reference cavity modal amplitudes against wave-speed ratio 
figure 
subplot(121) 
hold on 
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plot(eta,XRLOW(10:(length(Nc)),:)) 
plot(eta,XRHIGH(10:(length(Nc)),:)) 
xlim([eta(1) eta(length(eta))]) 
t5 = title('Reference Cavity Modal Displacement Amplitude'); 
lx5 = xlabel('\eta'); 
ly5 = ylabel('Reference cavity amplitude at resonance (m)'); 
for i = 10:length(Nc) 
leg5{i-9} = ['Nc = ',num2str(Nc(i))]; 
end 
legend(leg5) 
set([t5, lx5, ly5]                 , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
hold off 
  
% Plot sense cavity modal amplitudes against wave-speed ratio 
subplot(122) 
hold on 
plot(eta,XSLOW(10:(length(Nc)),:)) 
plot(eta,XSHIGH(10:(length(Nc)),:)) 
xlim([eta(1) eta(length(eta))]) 
t6 = title('Sense Cavity Modal Displacement Amplitude'); 
lx6 = xlabel('\eta'); 
ly6 = ylabel('Sense cavity amplitude at resonance (m)'); 
legend(leg5) 
set([t6, lx6, ly6]                 , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
hold off 
  
% Plot change in amplitude ratio against wave-speed ratio and linear fit 
% (Calibration curve) 
figure 
hold on 
plot(eta,AMPRATHIGH{1},'r.') 
fplot(LinSens{1},[1 1.05]) 
xlim([1 eta(length(eta))]) 
t7 = title('Calibration curve'); 
lx7 = xlabel('\eta'); 
ly7 = ylabel('Amplitude ratio'); 
legend('Quasi-linear device response','Linear fit') 
set([t7, lx7, ly7]                 , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
hold off 
  
% Plot change in field sensitivity in the presence of noise with length of 
% coupling array 
figure 
plot(Nc,(LODMAG2.*1e9)) 
xlim([Nc(1) Nc(length(Nc))]) 
t8 = title('Magnetic field sensitivity'); 
lx8 = xlabel('Number of periods in coupling array'); 
ly8 = ylabel('Field sensitivity (nT/sqrt(Hz))'); 
grid on 
grid minor 
set( [t8, lx8, ly8]                         , ... 
    'FontName'   , 'Helvetica'    ,... 
    'FontSize'   , 14             ); 
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B2: Output plots 
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