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Abstract  

Switch-mode power converters (SMPCs) are employed in many industrial and 

consumer devices.  Due to the continuous reduction in cost of microprocessors, and 

improvements in the processing power, digital control solutions for SMPCs have become a 

viable alternative to traditional analogue controllers. However, in order to achieve high-

performance control of modern DC-DC converters, using direct digital design techniques, an 

accurate discrete model of the converter is necessary. This model can be acquired by means of 

prior knowledge about the system parameters or using system identification methods. For the 

best performance of the designed controller, the system identification methods are preferred to 

handle the model uncertainties such as component variations and load changes. This process is 

called indirect adaptive control, where the model is estimated from input and output data using 

a recursive algorithm and the controller parameters are tuned and adjusted accordingly.  

In the parameter estimation step, Recursive Least Squares (RLS) method and its 

modifications exhibit very good identification metrics (fast convergence rate, accurate estimate, 

and small prediction error) during steady-state operation. However, in real-time 

implementation, the accuracy of the estimated model using the RLS algorithm is affected by 

measurement noise. Moreover, there is a need to continuously inject an excitation signal to 

avoid estimator wind-up.  In addition, the computational complexity of RLS algorithm is high 

which demands significant hardware resources and hence increase the overall cost of the digital 

system. For these reasons, this thesis presents a robust parametric identification method, which 

has the ability to provide accurate estimation and computationally efficient self-tuning 

controller suitable for real-time implementation in SMPCs systems. 

This thesis presents two complete real-time solutions for parametric system 

identification and explicit self-tuning control for SMPCs. The first is a new parametric 

estimation method, based on a state of the art Kalman Filter (KF) algorithm to estimate the 

discrete model of a synchronous DC-DC buck converter. The proposed method can accurately 

identify the discrete coefficients of the DC-DC converter. This estimator possesses the 

advantage of providing an independent strategy for adaptation of each individual parameter; 

thus offering a robust and reliable solution for real-time parameter estimation. To improve the 

tracking performance of the proposed KF, an adaptive tuning technique is proposed. Unlike 

many other published schemes, this approach offers the unique advantage of updating the 

parameter vector coefficients at different rates. This thesis also validates the performance of the 
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identification algorithm with time-varying parameters; such as an abrupt load change. 

Furthermore, the proposed method demonstrates robust estimation with and without an 

excitation signal, which makes it very well suited for real-time power electronic control 

applications. Additionally, the estimator convergence time is significantly shorter compared to 

many other schemes, such as the classical Exponentially weighted Recursive Least Square 

(ERLS) method.  

To design a computationally efficient self-tuning controller for DC-DC SMPCs, the 

second part of the thesis develops a complete package for real-time explicit self-tuning control. 

The novel partial update KF (PUKF) is introduced for real-time parameter estimation. In this 

approach, a significant complexity reduction is attained as the number of arithmetic operations 

are reduced, more specifically the computation of adaptation gains and covariance updates. The 

explicit self-tuning control scheme is constructed via integrating the developed PUKF with low 

complexity control algorithm such as Bányász/Keviczky PID controller. Experimental and 

simulation results clearly show an enhancement in the overall dynamic performance of the 

closed loop control system compared to the conventional PID controller designed based on a 

pre-calculated average model. Importantly, in this thesis, unlike a significant proportion of 

existing literature, the entire system identification, and closed loop control process is seamlessly 

implemented in real-time hardware, without any remote intermediate post processing analysis.  
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 Introduction  

 Introduction  

Switch-mode power converters are widely used in a variety of applications, ranging 

from DC motor drives, computers, home domestic appliances, spacecraft power systems and 

portable electronic devices [1]. All of these applications require efficient and cost-effective 

dynamic and steady-state power regulation over a wide range of operating conditions. Fixed-

gain PID controllers are often used to achieve the required dynamic performance in these 

systems. However, poor knowledge of the power converter parameters may cause sub-optimal 

controller design. Moreover, unpredictable behaviour such as a sudden load variation, ageing 

of components, noise, and changes in operating mode may degrade the controller performance 

and potentially lead to instability of the system[2-4]. For instance, in SMPCs used in computers 

and laptops, the CPU must remain within its specified tolerance even when the processor 

performs a current-load step from a low current “sleep mode” to a high current “active mode” 

in a single clock cycle. This requires an efficient controller to be designed in order to achieve 

fast transient response. 

Due to the aforementioned factors, adaptive and auto-tuning controllers based on system 

identification are now gaining more attention. These strategies are primarily feasible due to 

developments in digital control that offer many advantages over traditional analogue 

techniques. These include, but are not limited to robustness to noise and parameter variations, 

real-time programmability, component reduction, and simple integration with advanced 

techniques such as adaptive controllers and health monitoring diagnostics systems [4, 5]. 

Adaptive controllers often rely on reference models of the plant (transfer function, state-

space). These models need to be accurate and are determined by system identification 

techniques. The identified model in discrete-time form, which is related to the analogue transfer 

function, is then used to tune the system controller. In addition, identifying converter parameters 

is useful from a maintenance and reliability point of view; particularly in on-line fault detection. 

In general, there are two main classes of system identification: parametric and non-parametric 

approaches. In the parametric approach, a system model is assumed, and the identification 

amounts to an estimation of the model parameters. On the other hand, non-parametric 
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identification methods estimate the frequency or impulse response of the system using spectral 

analysis and correlation analysis [4, 6]. From the literature, it is clear that non-parametric 

system identification does not require any prior knowledge of the system model [7]. However, 

due to significant algorithm execution time, non-parametric identification methods are often 

not suitable for use in on-line applications, particularly those exhibit highly dynamic 

characteristics. For this reason, parametric methods are typically more appropriate in 

applications where parameter estimation is integrated with a real-time controller [8].  

In DC-DC converter applications, the load is often the most variable part of the system, 

which consequently affects the dynamics of the converter system. Hence, the load is usually 

regarded as a part of the system and is incorporated in the modelling and control design process.  

In power electronics applications, both low cost and high performance are desirable. 

Therefore, there is a requirement for low computational complexity algorithms, which can be 

rapidly executed and exhibit fast convergence in parameter estimation in cases of a sudden load 

change or fault within the circuit. As a result, the impact of load variation can be minimised, 

since the new load value is estimated and taken into consideration in the controller design [9, 

10]. This approach is called adaptive control and it has the ability to work continuously in 

estimating the converter parameters and update the controller in real-time. This type of 

compensation strategy provides considerable benefits such as better voltage stability, improved 

transient response, and design simplification [2]. Figure 1.1 shows the scheme of a typical self-

tuning adaptive controller which, consists of two loops, an ordinary linear feedback 

compensator and the process to be controlled in the inner loop, while the outer loop is composed 

of a parameter estimator and a control design strategy. A recursive estimation algorithm is 

employed to update the regulator parameters once a new sample is available. In addition, an 

excitation signal is injected to enhance the parameter estimation results [11]. In the plant 

parameter estimation box, a fast and cost effective on-line estimation algorithm is required 

which can rapidly respond to any variation in components, providing the controller with the 

new values cycle by cycle to apply suitable settings. An apparent advantage of this strategy 

over other adaptive control approaches is that the system parameters are monitored and any 

fault can be diagnosed quickly and alleviated at an early stage; which is vital from a 

maintenance point of view. However, system identification and adaptive controller methods 

often impose a high computational burden and require relatively powerful processors to be 

implemented. Therefore, finding an algorithm with a high degree of accuracy, low 



Chapter 1: Introduction 

 

3 

 

 

computational complexity, and fast parameter estimation convergence time is a particularly 

challenging task, and is the fundamental principle upon which this research work is based. .  

Input
Controller

1`

Online 

Parameter 

Estimation

Controller 

Design/Algebric 

method

DC-DC 

Converter

Output

Model Parameters

Setpoint

Controller 

Parameters

 

Figure 1.1 Explicit self-tuning control scheme in DC-DC converters  

In recent years, system identification and adaptive control of DC-DC converters has 

received considerable interest amongst researchers in academia and industry. Generally, this 

field can be divided into the following broad categories: 

1. System identification only; with no details about the computational cost of the method 

utilised and no real-time implementation. 

2. Direct adaptive control; which does not involve parameter estimation in the tuning 

stage. 

3. On-line estimation algorithms with trimmed computational cost; but which are not 

combined with an adaptive controller to evaluate system performance. 

 Scope and Contribution of the Thesis 

This thesis is concerned with system identification and adaptive control of switch mode 

power supply applications. It specifically focuses on the synchronous DC-DC step-down 

converter. In such systems, low cost and high performance are key issues which must be 

considered. 

 According to the literature on existing on-line estimation algorithms, the recursive least 

squares (RLS) method is perhaps the most commonly used on-line parameter estimation 
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algorithm and is applied in many adaptive control designs. Unfortunately, the conventional RLS 

algorithm is only used to estimate fixed parameters, therefore, its implementation is rarely 

investigated experimentally in self-tuning control strategy for DC-DC power converters. To 

overcome this problem, the Exponentially weighted Recursive Least Square (ERLS) based 

upon a forgetting factor strategy is applied to estimate time-varying parameters in power 

converters, such as load change. However, in selecting the appropriate forgetting factor, there 

is always a trade-off between estimation accuracy and sensitivity to noise. Some modifications 

have been proposed to develop an adaptive forgetting factor, but the same trade-off is applicable 

[3].  

In carrying out the research presented in this thesis, it is observed that the ERLS uses a 

scalar valued forgetting factor to give equal weight to all parameters in the system. This scenario 

is not ideal for the DC-DC converter where the transfer function parameters respond completely 

differently to any parameter change. Hence, this thesis presents a Kalman filter (KF) approach 

for parameter estimation of DC-DC power converters. It is believed that this is the first time a 

Kalman Filter has been used in this field. The KF strategy overcomes the previous described 

shortcomings of the classical ERLS and provides more degrees of freedom in optimising the 

identification process.  

Importantly, and demonstrated via this thesis, the KF exhibits a different way to update 

the error covariance matrix, whereby a diagonal matrix is added. The diagonal elements of the 

matrix are chosen to reflect the size of the corresponding parameter variation in a random walk. 

Therefore, the error covariance matrix will no longer tend to zero. In this updated form, the gain 

vector is kept as a non-zero value. Thus, the parameter vector changes continually at different 

rates. Considering the process noise covariance matrix as a design variable adds more flexibility 

to the KF. This characteristic assumes that there are different variations in different parameters, 

which is exactly the case in system identification of DC-DC converters when the effect of load 

change is studied. Since the KF follows the same initialisation technique used for ERLS, the 

process noise covariance matrix and measurement noise variance remain as the problematic 

parameters which need to be set by the designer, and this limits the adaptive behaviour of the 

algorithm.  

To overcome this problem, a new iterative algorithm based on the innovation term is 

proposed to produce a novel self-tuned KF. The diagonal matrix obtained is used to improve 

the tracking ability of the filter in the event of any abrupt load change. Additionally, unlike 
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classical RLS methods, the KF approach demonstrates robust estimation with and without any 

excitation signal due to the linear scheme used to update the gain covariance matrix. This makes 

the KF approach very well suited for real-time power electronic control applications. 

In cost sensitive applications like a DC-DC converter, computational burden is a critical 

factor. Thus, a novel partial update Kalman filter (PUKF) is presented in this research to reduce 

the computational complexity of the classical KF. The concept of this algorithm is based on 

data vector analysis to select the most important subset of the adaptive filter coefficients to be 

updated on a cycle-by-cycle basis. The robustness of the estimation results is investigated 

through designing an on-line adaptive controller. A stable and well-regulated output voltage is 

achieved. Importantly, the computational burden on the microprocessor platform is reduced by 

50% compared to the full update KF. With minimum number of arithmetic operations, the self-

tuning digital Bányász/Keviczky PID controller is chosen as the main voltage controller in a 

proposed Self Tuning Controller (STC) scheme. The dynamic performance of the controller 

and the developed estimator are investigated in detail. The on-line results validate the feasibility 

of the proposed PUKF approach in parameter estimation for DC-DC converters as the 

parameter variation are detected and estimated quickly and accurately. The proposed controller 

has the ability to work continuously in the feedback loop and rapidly regulates the output 

voltage after abrupt load changes.  

In summary, the main objectives and contributions to knowledge of this research are as follows:  

1. To Investigate the Kalman filter for parameter estimation in DC-DC converters 

(believed to be for the first time in this field). 

2. To develop a novel self-tuned Kalman filter for time-varying parameter estimation. 

3. To propose a novel partial-update Kalman filter as an efficient replacement for the 

existing ERLS with lighter computational cost.  

4. To develop a computationally efficient self-tuning control scheme suitable for low cost, 

low power DC-DC converters. 

5. To implement and validate the proposed algorithm in simulation, and experimentally 

using a Texas Instruments TMS320F28335 DSP platform, Embedded Coder Support, 

and a synchronous DC-DC buck converter. 
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 Publications Arising from this Research 

1. M. Ahmeid, M. Armstrong, S. Gadoue, M. Algreer, and P. Missailidis, "Real- Time 

Parameter Estimation of DC-DC Converters using a Self-tuned Kalman Filter," IEEE 

Transactions on Power Electronics, vol. PP, pp. 1-1, 2016. 

2. M. Ahmeid, M. Armstrong, S. Gadoue, and P. Missailidis, "Parameter estimation of a 

DC-DC converter using a Kalman Filter approach," in Power Electronics, Machines and 

Drives (PEMD 2014), 7th IET International Conference on, 2014, pp. 

3. M. Ahmeid, M. Armstrong, S. Gadoue, M. Algreer, and P. Missailidis 

“Computationally Efficient Self-Tuning Controller for DC-DC Switch Mode Power 

Converters Based on Partial Update Kalman Filter", under review in the IEEE 

Transactions on Power Electronics. 

 Layout of the Thesis  

This thesis is organised as follows: 

Chapter 2 presents DC-DC power converter topologies, modelling, and control. In 

particular, operation and circuit configuration of buck DC-DC SMPCs. The derivation of the 

state-space average model is also introduced, followed by simulation results of an open-loop 

buck converter operating in Continuous Conduction Mode (CCM). It also provides an overview 

of control strategies applied to regulate the output voltage with more emphasis on digital voltage 

mode control structure. In the digital control section, design by emulation and direct digital 

design methods are outlined and discussed in detail. Among these methods, the pole-placement 

approach is adopted and a digital PID controller is designed and tested in simulation. The 

modelling and control in this chapter is used to evaluate the proposed algorithms for system 

identification and self-tuning control. 

Chapter 3 reviews the principles and methods of system identification. It also provides 

details on the main steps followed in the identification procedure. In parametric identification 

approaches, the commonly applied model structures are highlighted. In addition, the self-tuning 

adaptive control strategy is also demonstrated. Moreover, a literature survey on recently 
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published research on system identification /adaptive control techniques for DC-DC SMPCs 

are also reviewed in this chapter. 

Chapter 4 provides details on the adaptive algorithms used in the area of parametric 

system identification with more focus on the derivation of the classical LS and RLS algorithms. 

This is followed by introducing the proposed KF approach configured for on-line system 

identification. Analysis and derivation of the proposed algorithm is also demonstrated. 

Furthermore, Chapter 4 explores a new tuning method for KF based on innovation term to detect 

and estimate the fast changes in the system. The new identification schemes in this chapter are 

comprehensively tested and validated through simulations. 

Chapter 5 presents the proposed PUKF. The first part of this chapter provides details on 

partial update adaptive filters and the methods applied in this scheme. Following this, an 

overview of M-Max PU method is presented along with the derivation of the M-Max PUKF 

adaptive algorithm. In addition, Chapter 5 demonstrates the effectiveness of using the proposed 

PUKF in a complete package of explicit STC. Extensive simulation results that evaluate the 

performance of the PUKF and the proposed self-tuning control scheme are provided in this 

chapter. 

Chapter 6 focuses on the experimental validation of the developed adaptive algorithms 

for system identification and self-tuning control using a high speed microprocessor board. It 

presents an overview on the architecture of the selected digital signal processor platform. 

Importantly, Chapter 6 concentrates on the real-time implementation of the proposed KF and 

PUKF employed in STC scheme. It also provides a comparison between the obtained 

experimental results of the proposed scheme using the full update KF and the classical ERLS 

algorithm. In addition, the proposed PUKF is investigated in real-time STC structure and the 

overall performance is compared with the conventional digital PID controller. 

Finally, Chapter 7 presents the conclusion drawn for this thesis and it summarises 

possible suggestions for future work.  
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 Modelling and Control of DC-DC Switch-Mode Power 

Converters  

 Introduction 

Switch-mode power converters are widely used in a variety of applications, ranging 

from Megawatts variable speed motor drives, several hundred-watt power supplies for 

computers and office equipment, to milliwatt converters for portable battery operated devices. 

All of these applications require efficient and cost-effective dynamic and steady-state power 

regulation over a wide range of operating conditions [12, 13]. Generally, in DC-DC converters, 

electronic switches (transistors, diodes) and storage components (capacitators, inductors) are 

utilised to transfer energy from the DC voltage source to a load. This process produces DC 

output voltages smaller or greater in magnitude than the DC input voltage. The resultant output 

voltage depends on how the passive and active components are configured, and the method of 

control [13, 14]. Typically, the output voltage is regulated, and kept constant regardless of any 

variations in input source or load current. In practical applications, such as portable personal 

computers, several DC-DC converter topologies may be connected to a single DC power source 

(e.g. Lithium Ion battery). Buck, Boost, Buck-Boost, and Flyback are common conventional 

topologies. 

In this thesis, the research work will focus on the Buck converter only. This converter 

is widely used in industry, and is regularly adopted in academic literature. [13] 

 Buck Converter Circuit 

The buck converter, sometimes called the step-down converter, is one of the simplest 

and most commonly used power converter topologies. The traditional or non-synchronous buck 

converter circuit as presented in figure 2.1(a) consists of DC power supply, a power switch 

(SW1) (e.g. MOSFET) connected to the high side, a freewheeling diode D1 connected to the 

ground, and an output filter constructed from an inductor L and capacitor C. Pulse Width 

Modulation (PWM) is applied to switch the MOSFET (SW1) on and off repeatedly every 

switching period 𝑇𝑠𝑤. This will charge and discharge the storage components L and C and 

deliver the energy to the load resistor R𝑜 [13]. To avoid high ripples in the regulated output 
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voltage, the corner frequency for the output filter 𝑓𝑐 is recommended to be much lower than the 

converter switching frequency 𝑓𝑠. The corner frequency can be calculated based on the inductor 

and capacitor values as presented in (2.1).[15]. 

 
f
c
=

1

2π√LC
 

(2.1) 

By assuming ideal components and converter steady-state operation, the relationship 

between the input voltage Vin and the output voltage 𝑣𝑜𝑢𝑡 can be expressed as 𝑣𝑜𝑢𝑡=Vin ×  D , 

where D is the controllable duty cycle of the semiconductor switch [15]. This converter 

configuration has two distinct operating modes. In the first mode, the current flows through the 

inductor continuously and never drops to zero over the entire switching period 𝑇𝑠𝑤; this mode 

is called Continuous Conduction Mode (CCM). On the other hand, the second operational mode 

appears when the inductor current drops to zero for a proportion of the switching cycle, and as 

a result the diode D1 will not conduct. This mode is called Discontinuous Conduction Mode 

(DCM) [12-14].  

Since the buck power stage has gained significant attention in low voltage applications 

of less than 5V, the voltage drop across the freewheeling diode D1 can no longer be ignored. 

Therefore, another variation of the buck power stage known as a synchronous-buck power stage 

is typically adopted; as shown in figure 2.1(b). In the synchronous buck converter, the 

freewheeling diode is replaced by a second active switch (SW2) [16]. Regardless of the cost, 

the synchronous converter enhances the overall efficiency of the system by lowering the power 

loss caused by the diode [17]. Therefore, this type of converter is a common choice in power 

supply design and is popular in the PC market [14].   
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(b) 

Figure 2.1 Circuit diagram of buck converter: a. non-synchronous buck converter, b. 

synchronous buck converter 

 Steady-State Operation and Modelling of the Buck Converter  

Developing a system model is a typical requirement in closed-loop feedback controllers. 

This allows the designer to evaluate the operation of the system in detail and, if necessary, 

understand the impact of sensitivity to variation in individual parameters or components. 

Furthermore, it facilitates greater investigation into the performance of systems such as power 

converters, which exhibit different operational modes in steady-state [18].  

Figures 2.2 and 2.3 illustrate the two states of a buck converter operating in CCM. In 

this circuit diagram, the parasitic resistances of the inductor and capacitor (RL, RC) are included 

in the analysis to model the practical losses in the converter power stage. During the On state, 

the switch SW1 is connected and switch SW2 is turned off, causing a linear increase in the 

inductor current and energy being stored in the inductor. The time duration of the On state 

𝑇𝑜𝑛 is equal to 𝐷 × 𝑇𝑠𝑤, where D denotes the duty ratio. 
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Figure 2.2 Equivalent buck converter circuit during On state 

In order to describe the converter dynamics during the ON state, Kirchhoff’s current and voltage 

laws are applied, and the following differential equations are obtained 

   
diL

dt
=

1

L
(V

in
 - (RL+RC)iL - vC+ RCio) (2.2) 

 
dvC

dt
=

1

C
(iL-iO) =

1

C
(iL-

vo

Ro

) (2.3) 

 vo = RC(iL-io)+vC = RCC
dvC

dt
+vC (2.4) 

Equations (2.2) – (2.4) are usually rearranged in matrix form as a linear set of state-space 

equations describing the topological On state [19]: 

 dx

dt
=A1x+B1Vin (2.5) 

 

[
vĊ

i ̇L
̇ ]=

[
 
 
 
 

-1

C(RC+Ro)

Ro

C(RC+Ro)
 

-Ro

L(R
C

+Ro)

-1

L
(

RoRC

RC+Ro

+RL)
]
 
 
 
 

[
vC

iL
]+ [

0
1

L

]Vin (2.6) 

The output voltage matrix is expressed as: 

 y=C1x+E1Vin (2.7) 

 

[vo]= [
Ro

(R
C

+Ro)

RoRC

(R
C

+Ro)
] [

vC

iL
]+[0]Vin (2.8) 

In the state-space representation in (2.6) and (2.8) the state variable vector 𝑥 includes the 

capacitor voltage 𝑣𝐶 , and the inductor current 𝑖𝐿 [vC iL]𝑇, y represents the output voltage vo, 
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and the matrices A1,B1,C1, and E1 define the vectors and matrices of the converter during this 

interval. 

Vin 
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C

Ro vo 

iL iO 

iC 

 

Figure 2.3 Equivalent buck converter circuit during Off state 

After a short dead time, switch SW1 is open and switch SW2 is closed with time duration equal 

to (1 − 𝐷) × 𝑇𝑠𝑤 (Off state) as shown in figure 2.3; at which point the voltage source is 

disconnected and the inductor current falls linearly. Similarly, the mode of operation during the 

Off state is described by state-space representation with system vectors and matrices identical 

to the On duration except for the control vector B, which is now equal to zero since the input 

voltage is disconnected. In both cases, the model is called a large signal model [18, 19]. After 

the switching period 𝑇𝑠𝑤 is completed, the switch SW1 is on and SW2 is off again [13]. Referring 

to figure 2.3 the state equations during the Off state are given by: 

 
diL

dt
=

1

L
( - (RL+RC)iL - vC+ RCio) (2.9) 

 dvC

dt
=

1

C
(iL-iO) =

1

C
(iL-

vo

Ro

) (2.10) 

 
vo = RC(iL-io)+vC = RCC

dvC

dt
+vC (2.11) 

By arranging (2.9) and (2.10) in a matrix form the state space representation of the buck 

converter during the off state is introduced as follows: 

 

[
vĊ

i ̇L
̇ ]=

[
 
 
 
 

-1

C(RC+Ro)

Ro

C(RC+Ro)
 

-Ro

L(R
C

+Ro)

-1

L
(

RoRC

RC+Ro

+RL)
]
 
 
 
 

[
vC

iL
]+ [

0

0
]Vin (2.12) 

 
dx

dt
=            A2x+B2Vin  

 Similarly the output equation during Off duration can be written as:  
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[vo]= [
Ro

(R
C

+Ro)

RoRC

(R
C

+Ro)
] [

vC

iL
]+[0]Vin 

y=C2x+E2Vin 

 

 

        

(2.13) 

 State-Space Average Model of Buck Converter in CCM 

According to the two states presented in the previous section, the transient analysis and 

design of an appropriate controller for simple buck converter is not a trivial task, due to the 

complicated equations which need to be solved. In order to reduce this complexity and to find 

a linear model for the DC-DC converter, these two states can be combined and averaged using 

knowledge of the duty ratio, D. The result is the following averaged large signal state model or 

the State Space Average Model (SSA) equations [13, 19]:  

 

dx

dt
=Ax+B𝑈 

y=Cx+EU 

(2.14) 

where 

 

A=dA1+(1-d)A2 

B=dB1+(1-d)B2 

C=dC1+(1-d)C2 

E=dE1+(1-d)E2.  

(2.15) 

Due to the switching behaviour of the converter the large signal model indicated by plain lower 

case can be expressed in terms of the steady value in upper case and the small signal with tilde 

notation and given by: 

 

x=X+x̃ 

d=D+d̃ 

y=Y+ỹ 

u=U+ũ 

(2.16) 

 By substituting (2.15-2.16) in (2.14), and discarding the higher order terms, the AC small-

signal description is obtained and given by: 
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ẋ̃=[DA1+(1-D)A2]x̃+[DB1+(1-D)B2]ũ + [(A1-A2)X+(B1-B2)U]d̃  

ỹ=Cx̃+E ũ+[(C1-C2)X+(𝐸1-𝐸2)]d̃  

 

(2.17) 

 

Finally, by applying the Laplace transformation to the AC equation (2.17), the transfer function 

between the output voltage and the duty ratio is expressed as [19]: 

 𝐺𝑑𝑣(𝑠)=
𝑣𝑜
𝐷
[

(CRCs+1)

s2L C (
RC+Ro

RL+Ro
)+S (CRC+C (

RORL

RO+RL
)+

L
RO+RL

)+1

] (2.18) 

The derived control to output transfer function in (2.18) can be expressed in the standard form 

of a second order transfer function [20]: 

 
ṽo(s)

d̃(s)
=GDC

1+
s

ωesr

1+
s

Qω0
+(

s
ω0

)
2
 (2.19) 

where ω0 is the power stage natural frequency, Q is the quality factor, GDC is the steady-state 

gain, and ωesr is the frequency location of the system zero due to equivalent series resistance of 

the capacitor Rc . For the buck converter, these figures are computed by equating (2.18) and 

(2.19) as follows [2]: 

 

ω0=√
Ro+RL

LC(Ro+RC)
 

GDC=Vin=
Vo

D
 

Q=
1

ω0 (RCC+
RoRLC
Ro+RL

+
L

Ro+RL
)

 

ωesr=
1

CRC

 

(2.20) 

In equation (2.19), the quality factor Q is used to measure the dissipation in the system, which 

is introduced by another term, (ξ), which is called damping factor where Q = 1/2𝜉 . This factor 

indicates the amount of overshoot during the transient response. In addition to the quality factor 

Q, the two Left Hand Plane (LHP) poles introduced in (2.19) are directly related to the corner 

frequency ω0, and hence the dynamic behaviour of the converter. Moreover, a LHP zero is 

observed which depends on the equivalent series resistance of the output capacitor RC. This 
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zero may lead to increased overshoot and make the system faster. In DC-DC converters, 

excessive overshoot is normally undesirable; therefore, designing a controller that can cancel 

the effect of this zero is usually preferred. 

 Open Loop Simulation Results 

After the modelling step is completed, simulating the derived mathematical model of 

the buck converter is recommended in order to investigate the behaviour of the system. To carry 

out this procedure, a simulation package such as MATLAB/SIMULINK is used. In this 

research, the verification is performed in a 10 V to 3.3 V synchronous buck converter switched 

at 20 kHz, with selected power stage parameters listed in Table 2.1. This prototype converter 

has been designed by Algreer [8] and adopted in this work without change. 

Table 2.1 Power stage parameters 

Symbol and description Parameter 

L: output inductor 220 μH 

C: output capacitor 330 μF 

RC: equivalent series resistor  25 mΩ 

RL: inductor series resistance 63 mΩ 

Ro: load resistance 5 Ω 

The open loop waveforms of the inductor current and the output voltage obtained from 

the Simulink model of the buck converter is illustrated in figure 2.4. It is shown here that the 

switching ripples are periodically repeated every switching cycle. In addition, the frequency 

response of the transfer function, derived in (2.18), is commonly used to investigate the 

dynamic characteristics of the converter for control design purposes. Figure 2.5 depicts the 

frequency response of the open-loop converter. From this plot, the important terms which 

describe the stability and dynamic behaviour of the converter, such as damping factor, phase 

margin, and gain margin, can be extracted and as a result an appropriate controller may be 

designed to meet the desired specifications.  
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Figure 2.4 Open loop response of the SSA mode a. output voltage; b. inductor current 

  

Figure 2.5 Frequency responses of the transfer function derived for the SSA model of the 

buck converter 
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 Closed-Loop Control for the PWM DC-DC Converter 

In the previous section, the duty cycle is set to a constant value (0.3). However, this 

situation is not practical since the converter often faces disturbances such as load current 

change, input voltage change, and tolerance in the circuit parameter values. Consequently, the 

output voltage will not stay at the desired value under all operating conditions. Therefore, the 

use of negative feedback control is essential to keep the output voltage at the reference value 

Vref regardless of any disturbance which occurs while the converter is operating. Typically, 

output variation is allowed within a specified range when any step change in load current or 

reference voltage  is applied [12]. 
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Figure 2.6 Voltage mode control  

The negative feedback control is implemented in two types of compensation scheme: 

voltage mode control, and current mode control. In voltage mode control structure (figure 2.6), 

only a single loop is required to sense the actual output voltage and compare it with the reference 

voltage, and then the error signal is fed to the compensator for PWM duty cycle generation. 

Due to the single feedback path required in voltage mode control, a simple design and analysis 

of the converter controller is achieved. Moreover, the low cost in sensing the output voltage 

simply using a voltage divider is introduced in this mode which adds more advantages in 

practical implementation. However, some drawbacks have emerged in voltage mode control in 
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terms of slow responses to any change in the output voltage or line voltage, because the 

feedback voltage is measured on the output capacitor[21]. 
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Figure 2.7 Current mode control[22] 

In current mode control (figure 2.7), the indirect regulation of the output voltage is 

achieved by providing cycle-by-cycle control of the current. In this topology, the inductor 

current rises with a slope determined by Vin -vo, this waveform will respond immediately to line 

voltage changes, eliminating both the delayed response and gain variation with changes in input 

voltage. In addition, in current mode control a higher bandwidth gain is obtained as the effect 

of the output inductor is minimised and the filter now offers only a single pole to the feedback 

loop. Consequently, the response to line and output voltage change become faster than in 

voltage mode control. However, in this mode, inner and outer loops are constructed, and hence 

the complexity and cost of the structure are increased [21]. 

 

 Digital Control Implementation for PWM SMPCs 

The control schemes described in the previous section are classically implemented using 

analogue controllers. Simply, the analogue controllers are constructed from a combination of 

passive components, such as capacitors, resistors, and op-amplifiers. These elements are prone 
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to change due to ageing and environmental variations, and they contribute to power dissipation 

and often occupy a large footprint on a printed circuit board. In addition, circuit redesign is 

required if any parameter or design specification is changed, which increases cost and consumes 

development time [23].  

In the last 20 years, digital control has gradually found its way into power electronics 

applications because of the rapid decrease in cost, and enhanced performance, of digital signal 

processors. Digital controllers offer many advantages over their analogue counterparts, 

including the ability to implement more advanced control schemes such as sophisticated non-

linear control algorithms, adaptive control systems, and parameter estimation/system 

identification algorithms. As a digital control system is mainly software-based, the number of 

passive components used are reduced, and therefore the system becomes less susceptible to 

noise and is smaller. Another advantage of digital controllers is that they can monitor and 

interact with the application while it is operating, which is not possible with analogue control. 

Most importantly, the design flexibility is introduced, where the same design platform is used 

for different topologies with the only modification being needed is in the application code [4, 

24-26]. Although there are many strengths of digital control systems, however, some drawbacks 

can be observed, such as the computational time delay due to the control algorithm, lower 

control loop bandwidth compared with analogue control systems, and finite word length in the 

processor which can cause limited signal resolution and limit cycle oscillation [25, 27, 28]. 

2.7.1 Digital Realisation of the Voltage-Mode Controlled Buck Converter 

The voltage mode control scheme is widely adopted to regulate the output voltage, due 

to its simplicity and cost effectiveness. To ensure high performance digital control for the 

SMPC, three basic hardware blocks are employed: the analogue-to-digital converter (ADC) 

block, the digital compensator, and the Digital Pulse Width Modulation (DPWM) block which 

works as the digital-to-analogue converter (DAC) [18, 29, 30]. These blocks are connected to 

the input and output of the converter through analogue components such as the gate drive and 

the sensor or voltage divider. Figure 2.9 illustrates the combination of analogue and digital parts 

used to establish voltage mode control. 
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Figure 2.8 Digital voltage-mode control of a synchronous Buck converter 

As depicted in figure 2.8 a voltage-divider circuit is used to sense and scale down the 

measured output voltage, and this provides the ADC with a suitable input voltage which 

matches its electrical characteristics within a specified range. Therefore, the ADC is protected 

by attenuating any measured voltage which exceeds its dynamic scale. For greater protection 

and isolation, a buffer circuit with wide bandwidth and an anti-aliasing filter (low pass filter) 

are often interposed between the voltage divider circuitry and the analogue input pins of the 

ADC module[29].  

To guarantee accurate digital representation of the measured continuous voltage, the 

cut-off frequency of the anti-aliasing filter should be lower than half of the ADC sampling 

frequency according to the Nyquist-Shannon sampling theorem [31]. In order to maintain the 

desired voltage regulation, the selected ADC must have certain important features such as that 

the resolution of the ADC should be less than the maximum allowed voltage fluctuation. Thus, 

any sensed voltage higher than this limit is digitized and considered in the compensation 

scheme. Furthermore, the ADC speed is vital to accomplish rapid conversion and a well-

regulated output voltage with improved dynamic response [32, 33].  
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After the sensed output voltage is digitized 𝑣𝑜(𝑘), the digital error signal 𝑒(𝑘) is 

computed through subtracting 𝑣𝑜(𝑘) from the constant digital value, 𝑉𝑟𝑒𝑓, corresponding to the 

desired output voltage. Then, this error is minimised by the action of the central discrete 

controller by generating the appropriate control signal 𝑑[𝑘] [18, 24, 27, 34]. Linear and non-

linear controllers can be employed in this role. In case of linear controllers, the well-known 

digital proportional-integral-derivative (PID) controller is the most commonly used types of 

compensation method in digitally controlled SMPCs [35, 36]. Finally, the DPWM generates 

the pulse-width-modulated control signal 𝑐(𝑡) to the gate drive, where its duty cycle is specified 

by the digital duty cycle  𝑑(𝑘) with constant frequency called a switching frequency [37]. The 

square pulses obtained from the gate drive are used to activate the power switches and run the 

converter. For fast and improved dynamic response, the output voltage is recommended to be 

sampled at least once every switching period [38]. 

2.7.2 Digital Control Design Methods  

The digital controller for a PWM DC-DC converter is designed using two techniques: 

the design by emulation approach and the direct digital design approach. In the first method, an 

analogue compensator is devised in the Laplace-domain to meet certain design specifications 

such as settling time, overshoot, bandwidth, and then the discrete form is obtained using one of 

the approximation transformations such as the backward Euler, bilinear, pole-zero match. 

However, if the designer does not have enough information about the open-loop response of 

the converter, inaccurate control is designed. This lack of information is expected in PWM DC-

DC converters, since the values of passive components (L, C) could change over time due to 

ageing or temperature, as well as because of unpredicted variations in the load. Furthermore, 

the computed discrete controller ignores the effects of sampling, quantisation, and 

computational delays, and therefore the overall performance of the closed loop might suffer 

from further degradation [20, 24].  

To overcome the aforementioned sources of inaccuracy and to produce a digital 

controller with improved dynamic performance, a direct digital design approach is developed. 

In this approach, the open-loop discrete transfer function of the converter is calculated, and then 

all of the control design steps are performed in the z-domain according to predefined 

specifications in a way similar to a continuous time control design [4, 20]. In digital signal 

processors, the sampling and hold operation is formed by the ADC and an on-chip PWM 
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module, where the ADC acts as a pure sampler and the PWM holds the control signal during 

the sampling period and then updates it at the beginning of a new cycle. To imitate this action 

in the discretisation step, the ZOH transformation shown in (2.21) is the preferred 

approximation method to translate from the s to the z domain [20, 24, 39]. As a result, a second-

order z-transfer function in the z for the buck converter under consideration is obtained in 

(2.22). 

  Gvd(z)=(1-𝑧−1)Z {
 Gvd(s)

s
} (2.21) 

  Gvd=
b1z-1 +b2z-2 

1+a1z-1+ a2z-2
 (2.22) 

In (2.22) the coefficients a and b depend on elements of the Laplace transfer function 

formed in equation (2.18) and on the digital sampling time 𝑇𝑠 which is usually equal to the 

converter switching time.  

A digital controller for SMPCs which has been indirectly designed has been presented 

in [25]. In this approach, several discretisation methods are applied and their performance is 

compared in terms of some desired design specifications. The discrete controllers obtained are 

compared with the direct design technique. It was demonstrated that the direct design approach 

outperforms the indirect method in terms of peak overshoot, loop bandwidth, and phase margin. 

In addition, the author concluded that a backward Euler method gives better discretisation when 

redesigning the digital controller from the analogue one. More investigations of the selection 

of discretisation method have been discussed in [40]. 

Experimental and simulation results show that some discretisation methods cannot 

preserve the design specifications for the analogue controller, and hence additional manual 

tuning is needed. Among the discretisation methods applied, pole-zero mapping has been used 

to form the discrete controller [24, 41, 42]. Similarly, bilinear-transformation has been deployed 

to produce a discrete controller which is designed based on a pole-zero cancellation technique 

[29, 43, 44]. However, the frequency response obtained by the discrete controller helps the 

designer to select the appropriate discretisation.  

Batao et al [4] introduced a direct digital control design approach where the discrete 

transfer function is extracted from real-time data by means of system identification. The 

proposed method has proven to be immune to common noise sources and parameter 



Chapter 2: Modelling and Control of DC-DC Switch-Mode Power Converters 

 

23 

 

 

uncertainties. Another common direct design paradigm studied in the literature is the pole-

placement approach [8, 39, 45-47]. This method is extensively applied in self-tuning control 

strategy. El Beid et al. [48], presented the direct digital design control of SMPC operating in 

CCM. To achieve this, the discrete transfer function is first identified and then utilised directly 

to design a digital PID controller using a pole-assignment approach. Following the same design 

procedure, the Dahlin PID and Bányász/Keviczky PID controller have been developed and 

designed, to control a step-down DC-DC converter [51]. These two strategies compute the 

controller’s tuning coefficients from the estimated second-order transfer function parameters. 

From the existing literature, it can be concluded that direct digital design methods rely entirely 

on the discrete transfer function of the SMPC. Therefore, in this research, a parametric system 

identification paradigm is presented and combined with voltage mode controller adjusted online 

using Bányász/Keviczky PID technique.  

2.7.3 Digital PID Controller  

In SMPC control, the PID controller is the most commonly applied compensation 

approach in voltage mode control. This control structure is simple, efficient, and easy to design 

and implement. Generally, the digital PID controller is realised as a second order linear infinite-

impulse-response (IIR) filter structure. Three terms are used to formulate the PID controller in 

parallel form figure 2.9. These terms are named the proportional, integral, and derivative, with 

associated gains 𝐾𝑃, 𝐾𝐼 , and 𝐾𝐷 respectively as depicted in (2.23) in a z domain [18]. Here 

𝑧−1indicates a unit-time delay. 

 𝐺𝑃𝐼𝐷(𝑧) =
𝑑(𝑧)

𝑒(𝑧)
= 𝐾𝑃 +

𝐾𝐼
1 − 𝑧−1

+ 𝐾𝐷(1 − 𝑧
−1) (2.23) 

The equivalent difference equation representing the controller action is written as follows: 

 

𝑑𝑃(𝑘) = 𝐾𝑃𝑒(𝑘) 

𝑑𝐼(𝑘) = 𝑑𝐼(𝑘 − 1) + 𝐾𝐼𝑒(𝑘) 

 𝑑𝐷(𝑘) = 𝐾𝐷[𝑒(𝑘) − 𝑒(𝑘 − 1)] 

𝑑(𝑘) = 𝑑𝑃(𝑘) + 𝑑𝐼(𝑘) + 𝑑𝐷(𝑘) 

(2.24) 

In this form, illustrated in (2.23), each gain can be adjusted individually, and hence a trial and 

error technique may be used and no model for the system is required. In (2.23) compensator 

performance and stability is shaped based on the selected values of 𝐾𝑃, 𝐾𝐼 ,and 𝐾𝐷 . In other 
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words, the controller gains are tuned to meet the design specifications such as phase margin, 

gain margin, and loop bandwidth. 

𝐾𝑃  

𝐾𝐼  

𝐾𝐷  

𝑧−1 
𝑧−1 

𝑒(𝑘) 

𝑑(𝑘) 

𝑑𝑃(𝑘) 

𝑑𝐼(𝑘) 

𝑑𝐷(𝑘) 

 

Figure 2.9 PID controller in parallel form 

The proportional gain is applied directly to the loop error 𝑒[𝑘]. A high value of 𝐾𝑃 increases 

the loop gain and makes the controller respond instantaneously to any change in the error signal. 

This means that the gain of all frequency components is enlarged. Increasing the proportional 

gain will increase the system bandwidth and this might push the system to the verge of 

instability if a specific value is exceeded. Therefore, the integral term is incorporated to 

eliminate the steady-state error and to enhance the recovery time after any disturbance. Due to 

characteristics of the low-pass filter in the integral term, the controller’s action becomes less 

affected by noise, where the high frequencies are attenuated and the low frequencies are 

assigned with high gain. However, the phase margin of the control loop is reduced due to the 

phase-lag added by the integral term, which can cause an undesirable oscillatory output 

response. This phase-lag is compensated by introducing the derivative term, which acts 

similarly to a phase-lead compensator to increase the phase-margin. Thus, the dynamic 

performance of the system is improved with wider stability margins. However, the derivative 

gain 𝐾𝐷 amplifies the high frequency noise in the measured output. Therefore, it is 

recommended to limit its value to avoid potential instability in the control loop. 

 [49, 50].  

Alongside the parallel form, the direct form is another important realisation of the PID 

controller (figure 2.10). Here, the PID controller is introduced as a two zeros and one pole filter 

[18, 29] as denoted in (2.25). 
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 𝐺𝑃𝐼𝐷(𝑧) =
𝑑(𝑧)

𝑒(𝑧)
=
𝐾0 + 𝐾1𝑧

−1 + 𝐾2𝑧
−2

1 − 𝑧−1
 (2.25) 

The direct form is translated into the difference equation (2.26), which is used to implement the 

controller strategy on a microprocessor. 

 𝑑(𝑘) = 𝑑(𝑘 − 1) + 𝐾0𝑒(𝑘) + 𝐾1𝑒(𝑘 − 1) + 𝐾2𝑒(𝑘 − 2) (2.26) 

 

𝐾0 = 𝐾𝑃 + 𝐾𝐼 + 𝐾𝐷 

𝐾1 = −[(𝐾𝑃 + 2𝐾𝐷)] 

𝐾2 = 𝐾𝐷 

(2.27) 

𝐾0 

𝐾1  

𝐾2  

𝑧−1 

𝑒(𝑘) 
𝑑(𝑘) 

 

𝑧−1 

𝑧−1 

 

Figure 2.10 PID controller in direct form  

 Direct Digital Control Design for Buck SMPC using Pole Placement  

2.8.1 Overview 

This control strategy ensures that the closed-loop poles are located at defined positions 

in order to achieve a desired closed-loop performance [51]. As an applied direct digital design 

approach, the complete design of the pole placement controller is performed in the z-domain. 

The controller structure is selected to be two-poles two-zeros transfer function as in (2.28) 

which is the commonly applied structure in pole placement controller design [45, 51].  

 
𝐺𝑐(𝑧) =

𝑑(𝑧)

𝑒(𝑧)
=
𝑞0 + 𝑞1𝑧

−1 + 𝑞2𝑧
−2

(1 − 𝑧−1)(1 + 𝛾𝑧−1)
=
𝑄(𝑧−1)

𝑃(𝑧−1)
 

(2.28) 

In addition, the discrete transfer function of the buck converter (2.29) is derived to form the 

block diagram of the closed loop system shown in figure 2.11: 
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 Gdv =

𝐵(𝑧−1)

𝐴(𝑧−1)
=

b1z-1 +b2z-2 

1+a1z-1+ a2z-2
 

(2.29) 

e(k)

-
+Reference 𝑦 (𝑘) 𝑢(𝑘) 𝑄(𝑧−1)

𝑃(𝑧−1)
 

𝐵(𝑧−1)

𝐴(𝑧−1)
 

 

Figure 2.11 Closed loop control of the buck SMPC 

Therefore, the corresponding closed-loop transfer function of the system shown in figure (2.11) 

is written in the following relationship: 

 
𝐺𝐶𝐿 =

𝐵(𝑧−1)𝑄(𝑧−1)

𝐴(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1)
 

(2.30) 

In order to obtain the desired dynamic behaviour of the closed loop system, the characteristic 

polynomial is found from the denominator in (2.30) [45, 52]. 

 𝐷(𝑧) =  𝐴(𝑧−1)𝑃(𝑧−1) + 𝐵(𝑧−1)𝑄(𝑧−1)

= 1 +∑𝑑𝑖𝑧
−𝑖, 𝑛𝑑(number of poles) ≤ 4

𝑛𝑑

𝑖=1

 
(2.31) 

The solution to the polynomial equation in (2.31) is found by calculating the controller 

parameters from (2.28). To do so, the characteristic polynomial of (2.31) is usually specified 

by a second order continuous model (2.32), where damping factor ξ and natural frequency ωn 

describe the desired response of the closed loop system [53]. The characteristic polynomial is 

formulated as follows: 

 𝑠2 + 2𝜉𝜔𝑛𝑠 + 𝜔𝑛
2 = 0 (2.32) 

If the polynomial 𝐷(𝑧−1) is chosen in the form 

 𝐷(𝑧−1) = 1 + 𝑑1𝑧
−1 + 𝑑2𝑧

−2 (2.33) 

Then the s-to-z transformation (𝑧 = 𝑒𝑠𝑇𝑠)is used, and the coefficients 𝑑1 and 𝑑2 for sampling 

time 𝑇𝑠 can be derived: 

 𝑑1 = −2𝑒
−𝜉𝜔𝑛𝑇𝑠 𝑐𝑜𝑠 𝜔𝑛𝑇𝑠√1 − 𝜉2 

 
(2.34) 
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𝑑2 = 𝑒
−2𝜉𝜔𝑛𝑇𝑠 

If the polynomial in (2.32) is substituted into (2.30), and the equation is then written in matrix 

form as (2.34), the unknown PID controller coefficients are computed and presented in (2.35) 

 

[

𝑏1 0 0 1
𝑏2 𝑏1 0 𝑎1 − 1
0 𝑏2 𝑏1 𝑎2 − 𝑎2
0 0 𝑏2 −𝑎2

] [

𝑞0
𝑞1
𝑞2
𝛾

] = [

𝑑1 + 1 − 𝑎1
𝑑2 + 𝑎1 − 𝑎2

𝑎2
0

] (2.35) 

 

𝑞0 =
1

𝑏1
(𝑑1 + 1 − 𝑎1 − 𝛾) 

𝑞1 =
𝑎2
𝑏2
− 𝑞2 (

𝑏1
𝑏2
−
𝑎1
𝑎2
+ 1) 

𝑞2 = −
𝑠1
𝑟1

 

𝛾 = 𝑞2
𝑏2
𝑎2

 

with 

𝑠1 = 𝑎2[(𝑏1 + 𝑏2)(𝑎1𝑏2 − 𝑎2𝑏1) + 𝑏2(𝑏1𝑑2 − 𝑏2𝑑1 − 𝑏2)] 

𝑟1 = (𝑏1 + 𝑏2)(𝑎1𝑏1𝑏2 + 𝑎2𝑏1
2 + 𝑏2

2) 

(2.36) 

Finally, from (2.28) the control action can be written in difference equation form as follows: 

 𝑑(𝑘) = [1 − 𝛾]𝑑(𝑘 − 1) + 𝛾𝑑(𝑘 − 2) + 𝑞0𝑒(𝑘) + 𝑞1𝑒(𝑘 − 1) + 𝑞2𝑒(𝑘 − 2) (2.37) 

2.8.2 Simulation Results 

The synchronous buck converter presented in section (2.5) is used here to implement 

the pole placement control strategy. Following the design steps illustrated in the previous 

section, the discrete transfer function of the buck converter is computed (2.38), and the damping 

factor is set to 0.7 to ensure less aggressive control action with a rapid response, and the closed-

loop natural frequency is selected to be twice that of the converter, for a faster settling time ωn 

= 2𝜔0 = 7447 rad/s [45, 46]. 

  Gdv =
0.2259𝑧−1  + 0.1118𝑧−2 

1 − 1.915𝑧−1 +  0.949𝑧−2
 (2.38) 

The PID coefficients are determined by inserting the obtained results from (2.38) and (2.34) in 

(2.36), that results the control action given by: 
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 𝑑(𝑘) = 0.1518𝑑(𝑘 − 1) + 0.8482𝑑(𝑘 − 2) + 5.0848𝑒(𝑘) − 8.2965𝑒(𝑘

− 1)    + 3.5250𝑒(𝑘 − 2) 

(2.39) 

To investigate the stability of the closed-loop system, the loop transfer function 

frequency response 𝐿(𝑧) = 𝐺𝑐(𝑧) Gdv(𝑧) is illustrated in figure 2.12, the bode plot shows that 

the gain margin is 8.83 dB, and the phase margin is 39.6 degree. The designed PID controller 

is implemented to regulate the output voltage at 3.3 V. Further investigation has been carried 

out to examine the transient characteristics of the closed-loop system when a periodic load 

change between 5 Ω and 2.5 Ω is applied. The results shown in figure 2.13 illustrate that small 

overshoot and undershoot are observed when a step change in load current is experienced. 

Furthermore, quick recovery to the reference value is achieved and the maximum overshoot is 

restricted to less than 5% of the desired output voltage, which demonstrates the successful 

design of the PID controller using the pole placement approach.   
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Figure 2.12 Frequency response of the compensated and uncompensated DC-DC buck 

converter 
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Figure 2.13 Load transient response of the pole-placement controller during 50%  step load 

change between 5 Ω and 2.5 Ω every 10 ms: a. output voltage; b. inductor current; c. load 

current  
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The robustness of the designed controller has been tested under significant load change, 

which is a common scenario in DC-DC converters. To show this, a step-load change between 

5 Ω and 1 Ω is repeatedly applied every 10 ms. Figure 2.14 illustrates the transient response of 

the output voltage, the inductor current, and the output current. According to the observed 

waveforms, the designed controller provides a stable closed-loop response with a clear 

overshoot and voltage drops as a result of the applied load step. Therefore, the stability of the 

closed loop is guranteed under signifcant load change, which will be applied during system 

identification procedure in the forthcoming chapters.   
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Figure 2.14  Pole-placement response during 80% load change between 5 Ω and 1 Ω every 10 

ms, a: output voltage, b: inductor current, c: load current 
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 Chapter Summary 

This chapter has presented the DC-DC power converter topology, modelling and 

control. Due to its simple structure, the step-down circuit topology has been selected in this 

research as an example of a commonly used SMPC. In this chapter, a general overview of the 

application considered is provided in terms of operation structure, and components used. The 

latter is considered carefully in the field of system identification as a good knowledge of the 

component values can significantly contribute towards developing a robust controller and an 

effective condition monitoring scheme. In terms of control design, this chapter introduced the 

state-space average model as a cornerstone in modelling DC-DC converters. This step 

highlighted the derivation of the control to output transfer function for feedback control design. 

Once the system model is obtained, the appropriate control design method is selected. In this 

chapter, digital realisation of a voltage mode controller is illustrated and the two fundamental 

design methods are introduced. 

 In system identification, the system model used is usually in discrete form; therefore, a 

well-known direct digital design approach based on the pole assignment technique is 

introduced. This method utilises the discrete transfer function to design the controller. The 

obtained controller is implemented and tested in Matlab/Simulink to investigate its dynamic 

performance in response to parameter variations such as abrupt load changes. According to the 

results, the selected direct design method is suitable for regulating the output voltage of the 

converter under significant load variations. This shows the usefulness of using the discrete 

transfer function of the converter in controller design without the need to design an analogue 

controller following the classical design process. However, the discrete transfer function is 

required to be known in advance. This can be provided by means of prior knowledge or can be 

estimated while the system evolves using identification techniques. Based on the derived SSA 

model and the discrete transfer function obtained, a parametric identification process can be 

established to estimate the transfer function parameters and hence design a digital PID 

controller using only the information provided by the identification procedure. This is the focus 

of the next Chapter. 

.  
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 System Identification for DC-DC Converter 

 Introduction 

As introduced in Chapter 2, knowing the model and the parameters of the DC-DC buck 

converter is essential to design a robust digital controller. While the model structure can be 

obtained using some well-known physical approaches, the parameters of this model need to be 

known accurately before the controller is designed. This can be achieved by means of system 

identification. Therefore, it is necessary to introduce this topic generally in terms of the 

approaches available and the steps required to use system identification efficiently for control 

design purposes. Recently, system identification has been used in SMPC applications for 

control and condition monitoring. In this chapter, an overview of the main two categories of 

system identification is introduced with a focus on recent research applied to SMPC. In 

addition, the identification procedures are described and the advantages and disadvantages of 

each method are highlighted. The chapter concludes by considering the use of parameter 

estimation techniques in the digital self-tuning control design of DC-DC SMPC applications. 

 System Identification Procedure  

The term system identification can be defined as the determination of a mathematical model of 

a system from measured input and output data [54]. This technique has been widely applied in 

different scientific fields such as medicine, biology, aviation, and automatic control. In the area 

of control, system identification is employed to construct self-tuning and adaptive controllers, 

especially for time-varying applications [55]. Typically; 

i) an experiment is conducted via injecting an enriched frequency input signal to 

the plant and measuring the system response. 

ii) choosing or estimating the model structure using a priori knowledge; 

iii) applying an identification algorithm to adjust the parameters of the selected 

model structure to the measured data;  

iv)  model validation to accept or reject the identified model (figure 3.1) [6, 56].  
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Among these steps, selecting the model structure is a prerequisite and can be very 

challenging. There are two types of modelling techniques, black-box or a posteriori modelling, 

and grey-box or priori modelling. In the latter approach, the model is constructed based on 

physical laws which describe the system dynamics, and this yields a mathematical model (state-

space, transfer function, etc.) containing some unknown parameters which need to be estimated. 

On the other hand, in the black-box model, no previous knowledge of the system is incorporated 

and the model is built to describe the effect of the inputs on the outputs, which makes it suitable 

for representing a large class of systems [57, 58]. 

Design of experiment 

Start

Input/output data 

collection

Apply the 

identification 

algorithm

Model validation

Model accepted

Select/Estimate the 

model structure 

End

Yes

No

 

Figure 3.1 Flowchart of system identification 
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Following the model structure selection, the identification algorithm has to be specified. 

This algorithm fits the selected model to the observed data by minimising the error between the 

observed output and the model output. The most common identification method employed in 

this step is the prediction-error approach. Afterwards, the identified model must be validated to 

investigate the behaviour of the model with respect to a priori knowledge, the intended purpose 

of using the model, and the experimental data. Different methods have been used to carry out 

the validation step, such as residual analysis, model prediction, and simulation. If an inadequate 

model is obtained, the identification procedure must be repeated using another method or 

selecting a different model structure [56].  

 Implementation Methods of System Identification 

In practice, the aforementioned identification procedure can be implemented on-line or 

off-line. The off-line method is commonly used when modelling highly complicated systems, 

and here the experimental data is collected and stored in memory. Following this, a sequence 

of post-processing and applying the identification algorithm is performed on a PC to produce 

an acceptable model. In contrast, on-line schemes typically use recursive estimation methods 

where the model parameters are updated every time a new sample becomes available, which 

makes it well suited for real-time applications. Therefore, on-line schemes are often utilised in 

adaptive control design where time-varying regulators are implemented to cope with parameter 

variations during operation [59]. In SMPC applications, the identification results can be tables, 

and curves if no physical modelling is needed, which provide useful information about the 

system such as the damping factor, natural frequency, time delay, and time constants. If physical 

modelling is involved, the identification results can be a transfer function or state-space model. 

 System Identification Techniques  

The linear model of a system can be described in terms of frequency response, impulse 

response, or transfer function. In order to obtain one of these descriptions, the relevant 

identification method must be applied. Generally, there are two common methods widely used 

to estimate a linear model of the system, and these are known as non-parametric and parametric 

techniques [55]. Typically, an excitation signal is injected to the system, and the subsequent 

response is recorded and analysed to estimate the linear model.  
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3.4.1 Non-parametric System Identification  

According to the input stimulus type, non-parametric techniques are divided into time 

domain methods and frequency domain methods. The time domain methods include impulse 

response, step response, and correlation analysis. In the frequency domain group, the main 

methods applied are Fourier analysis, spectrum analysis, sine-wave testing, and correlation 

analysis in the frequency domain [57]. In those techniques, only the data sets are employed 

without any prior knowledge of the model structure.  

However, lack of accuracy, high sensitivity to noise, and the large amount of data 

required are the main disadvantages of non-parametric identification techniques [20]. In 

addition, there are some practical limitations of some non-parametric identification methods. 

For instance, in the case of the impulse response test, a large impulse amplitude could cause 

nonlinear behaviour in the system or even damage to the hardware, whereas a small amplitude 

requires low noise levels to excite the system, which is not the case in real-time applications. 

Likewise, in the sine-wave testing approach, a wide range of frequencies need to be applied at 

the input to accomplish accurate estimation of the frequency response. This means that long 

data sequences need to be processed, accompanied by increased noise sensitivity [57]. To 

mitigate the noise issue, correlation analysis is used in both the time and frequency domain 

methods [60]. In time domain methods, this approach is employed to determine an estimation 

of the impulse response. Consider a linear time invariant sampled system defined by the 

following equation [61]: 

 𝑦(𝑘) = ∑𝑢(𝑘 − 𝑛)ℎ(𝑛) + 𝑣(𝑘)

∞

𝑛=1

 (3.1) 

where u(k) is the sampled stimulus signal, y (k) is the sampled response signal, h(n) is the 

discrete-time impulse response of the system being identified, and v(k) represents the 

disturbance signal. Assuming the input signal u(k) is white noise with zero mean statistically 

independent of the disturbance v(k) and uncorrelated with the output u (k) , the cross-correlation 

of the input signal u(k) to the output signal y(k) can be given by: 

 𝑅𝑢𝑦(𝑚)  = ∑𝑢(𝑘) 𝑦(𝑘 + 𝑚) 

∞

𝑘=1

=∑ℎ(𝑛) 𝑅𝑢𝑢(m − 𝑘)  + 𝑅𝑢𝑣

∞

𝑘=1

(𝑚) (3.2) 
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In (3.2), 𝑅𝑢𝑦 denotes the cross-correlation function of the stimulus signal to the response signal, 

𝑅𝑢𝑣 is the input to the disturbance cross-correlation, and  𝑅𝑢𝑢 is the autocorrelation of the input 

signal [60]. According to the previous assumption, the autocorrelation of the white noise input 

signal 𝑅𝑢𝑢(𝑚) is an ideal delta function δ(m) and the cross-correlation function 𝑅𝑢𝑣(𝑚) =

0.Thus, equation (3.2) can be simplified to define the discrete impulse response as the cross 

correlation function of the input signal to the output signal  𝑅𝑢𝑦(𝑚) [62] : 

 𝑅𝑢𝑦(𝑚)  = ℎ(𝑚) (3.3) 

Furthermore, the open loop transfer function of the system in the frequency domain H(jω) is 

obtained by applying the discrete Fourier transform (DFT) to the discrete impulse response 

(3.4) [60, 62] : 

 𝑅𝑢𝑦(𝑚)
     DFT      
→      𝐻(𝑗𝜔) (3.4) 

From a practical standpoint, it is convenient to approximate the white noise input with a pseudo-

random binary sequence (PRBS) perturbations generated using a shift register with feedback 

[61]. Despite the noise immunity demonstrated by correlation-based identification, the 

assumption of uncorrelated input and output signals is not satisfied in closed-loop applications 

due to the presence of a feedback signal [63]. Therefore, the correlation analysis is usually 

accomplished in the open loop to verify the predefined assumptions.  

An advantage of non-parametric system identification approaches is that one can 

provide useful information about the system without knowing its real parameters. Accordingly, 

an appropriate controller is designed based on some frequency response specifications, such as 

loop bandwidth and margin stabilities [31]. Classically, this methodology is employed to obtain 

continuous time parametric models (transfer function), and their corresponding discrete time 

models using a discretisation method with known sampling frequency [64]. However, the 

transformations from the s-to-z domains and quantisation error can degrade the accuracy of 

model deduced [39]. Consequently, the purpose of the identification process is strongly 

affected. In SMPC applications, the intention behind the identification procedure can be to 

design and tune a digital controller, or for health monitoring issues. In this case, inaccuracy in 

the estimated model might lead to unstable response or inappropriate decisions taken to replace 

or keep passive or active components in the circuit [65].  
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3.4.2 Parametric System Identification 

In this identification technique, the model strcuture is defined in advance, and the 

identification process directly computes the system parameters [39]. As in non-parametric 

methods, an appropriate excitation signal is required to cover the bandwidth of the system to be 

identified [66]. The estimated parameters can be the coefficients of a system difference 

equation, transfer function, or state-space matrix. Thus, the number of poles and zeros are 

specified in addition to the system order based on physical laws describing the system 

dynamics. This prior knowledge about the system can lead to more accurate estimation than 

with non-parametric methods [57, 66]. 

 For instance, by applying Kirchhoff’s current and voltage laws to the DC-DC buck 

converter considered in this work, the differential equations, state space, and converter transfer 

function are obtained as expressed in (2.2-2.17), and hence the discrete time model in (2.21). 

The estimated model can be utilised in simulation packages such as MATLAB/SIMULINK to 

obtain the non-parametric models of the step response or frequency response type with 

enhanced precision compared with the direct non-parametric approaches discussed in the 

previous section.  Based on the selected representation of the model structure, a suitable 

parametric identification algorithm is applied to estimate a limited number of mathematical 

parameters; for example, the prediction-error methods for transfer function estimation and 

subspace-based approaches implemented in state-space estimation [56].  

In (single input single output) systems SISO, as is the case in DC-DC buck converters, 

estimating the transfer function coefficients is preferred to acquire a more compact 

representation of the system due to the limited number of polynomials involved in the model 

structure [45]. Figure 3.2 shows the principle of Prediction Error identification Methods (PEM). 

Here, the discrete model parameters are adjusted at each iteration cycle using a recursive 

parameter adaptation algorithm. This algorithm is executed on a digital computer to minimise 

the difference between the system output 𝑦(𝑘) and the output of the predicted model 𝑦̂(𝑘), 

which is called the prediction error ɛ(𝑘)  defined by the follwing equation.:  

 ɛ(𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘) (3.5) 

In figure 3.2 the stimulus input signal u(k) is applied to both the real system and the adjustable 

discrete model. Generally, this input consists of a very low level PRBS signal added to the 
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original system input and it can be fulfilled either in an open-loop or closed-loop identification 

procedure.  

As the parametric identification is performed in a recursive manner, the new parameter 

vector θ(k) is computed throgh adding a correction term to the previous parameter vector 

estimation [67]. This structure is followed by all adaptation algorithms, such as the Least Mean 

Square (LMS), Normalised Least Mean Squares (NLMS), Recursive Least Squares (RLS), and 

Kalman Filter (KF)[68]. More details of the RLS and KF algorithms are presented and 

discussed in the next chapter. It is worth noting that, the parameter vector θ(k) is also estimated 

using non-recursive algorithms, some of which use the fundamental Least Squares  (LS) [69]. 

  
u(k) y(k) ɛ(k)

Adaptive 

Algorithm 

Adjustable 

Sampled 

Model

Unknown 

system

-
+

𝑦̂(𝑘) 

θ(k) 

 
Figure 3.2. Prediction error identification method  

The established recursive identification offers the advantage of continuously estimating 

the parameter vector as the system evolves. This yields an up-to-date parametric model which 

can be exploited in direct digital control design methods such as pole placement and internal 

model control [31, 70]. Accordingly, the error which emerges from transformation 

approximations from the s to the z domain are eliminated. In addition, due to the low memory 

requirements, recursive identification is likely to be realised in real-time on microcomputers. 

This feature is a key element in adaptive control where the controller coefficients or process 

parameters must be determined on-line [71]. Furthermore, according to the selected model 

structure, the disturbances can be modeled and hence their influence on the estimated 

parameters is reduced which grants an advantage of parametric system identification over non-

parametric identification techniques [67]. However, as the dimensions of the parameter vector 

increases the complexity of the implemented algorithm grows accordingly, leading to higher 

cost for the target application. Therefore, this research introduce an efficient parametric 
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identification method which provides accurate estimation with lower computational cost than 

existing algorithms.  

 Linear Model Structures for PEM  

In parametric identification approaches, the selection of an appropriate model structure 

that imitates the system dynamics is vital. Generally, a discrete system can be described using 

the general-linear polynomial model, as shown in figure 3.3. This general representation models 

the deterministic part and the stochastic part of the system as defined in equation (3.6) [57, 58]: 

 𝑦(𝑘) = 𝐺(𝑧)𝑢(𝑘) + 𝐻(𝑧)𝑒(𝑘) (3.6) 

u(k) y(k)
+

)(

)(

zD

zC

)(

)(

zF

zB

)(

1

zA

e(k)

 

Figure 3.3 General-Linear Polynomial Model 

where y(k) and u(k) are the sampled output and input respectively G(z) is the discrete transfer 

function of the undisturbed system specifying the relationship between the input and the output, 

H(z)  is the stochastic behaviour of the noise that describes the impact of random noise on the 

system output, and e(k) is assumed white noise with zero mean system disturbance. In the 

general model structure, the rational polynomials G(z) and H(z) can be expressed as following:  

 

𝐺(𝑧) =
𝐵(𝑧)

𝐴(𝑧)𝐹(𝑧)
 

𝐻(𝑧) =
𝐶(𝑧)

𝐴(𝑧)𝐷(𝑧)
 

(3.7) 

where the polynomials A(z), B(z), C(z), D(z), and F(z) are defined by the following equations: 

   

𝐴(𝑧) = 1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2 +⋯+ 𝑎𝑘𝑎𝑧
−𝑘𝑎 

𝐵(𝑧) = 𝑏0 + 𝑏1𝑧
−1 + 𝑏2𝑧

−2 +⋯+ 𝑏𝑘𝑏−1𝑧
−(𝑘𝑏−1) 

𝐶(𝑧) = 1 + 𝑐1𝑧
−1 + 𝑐2𝑧

−2 +⋯+ 𝑐𝑘𝑐𝑧
−𝑘𝑐 

(3.8) 
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𝐷(𝑧) = 1 + 𝑑1𝑧
−1 + 𝑑2𝑧

−2 +⋯+ 𝑑𝑘𝑑𝑧
−𝑘𝑑 

𝐹(𝑧) = 1 + 𝑓1𝑧
−1 + 𝑓2𝑧

−2 +⋯+ 𝑓𝑘𝑓𝑧
−𝑘𝑓 

In (3.8) ka, kb, kc, kd, and kf define the order of each polynomial. Using (3.7) and the input, the 

output, and the noise signal, a general description of the linear-ploynomial model is given by 

equation (3.9):  

 𝐴(𝑧)𝑦(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑘) +

𝐶(𝑧)

𝐷(𝑧)
𝑒(𝑘) (3.9) 

The general model depicted in figure (3.3) can be simplified to produce several model 

structures. The obtained new models are created based on the relationship between the rational 

functions  H(z)  and G(z)[57]. Figure 3.4 shows the most common and easiest model structure 

applied in polynomial model estimation, which is the so-called Auto Regressive eXogenous 

(ARX) model. In the ARX model, the polynomials 𝐶(𝑧), 𝐷(𝑧), and 𝐹(𝑧) are set to 1, and 

therefore, the equation (3.9) is rewritten in explicit form as: 

 𝐴(𝑧)𝑦(𝑘) = 𝐵(𝑧)𝑢(𝑘) + 𝑒(𝑘) (3.10) 

u(k) y(k)
+

e(k)

)(

1

zA
)( zB

 

Figure 3.4 ARX model structure 

In ARX model estimation, the term e(k) is minimised and hence the optimum parameter 

vector is accomplished accurately and quickly. To achieve this, linear regression equations are 

solved analytically using the so-called linear LS method, which implies  linearity in model 

parameters [6]. Therefore, the ARX model structure is considered in a variety of real-world 

applications especially when the model order is high [71]. Alternatively, the disturbance 

dynamics can be included in the model structure to form a new and more flexible model known 

as the Auto Regressive Moving Average exogenous (ARMAX) model as depicted in figure 3.5 

[67]. 
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Figure 3.5 ARMAX model structure 

The ARMAX model is constructed when the polynomials D(z) and F(z) are chosen to be 

F(z)=D(z) =1, and the incorporated disturbance 𝑣(𝑘) is characterised as a moving average of 

the white noise sequence e(k): 

 𝑣(𝑘) = 𝐶(𝑧)𝑒(𝑘) (3.11) 

By Substituting  (3.11) in (3.9), the resulting ARMAX model is described in (3.12) [6]. 

 𝐴(𝑧)𝑦(𝑘) = 𝐵(𝑧)𝑢(𝑘) + 𝐶(𝑧)𝑒(𝑘) (3.12) 
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Figure 3.6 BJ model structure 

Separate system dynamics and disturbance properties are represented by a Box-Jenkins 

(BJ) model structure as shown in figure 3.6. This type of parameterisation is preferred to model 

a system prone to output disturbance, such as measurement noise in real-applications [57]. 

Having the complete model description, the BJ equation is given by (3.13). 

 𝑦(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑘) +

𝐶(𝑧)

𝐷(𝑧)
𝑒(𝑘) (3.13) 

In the ARMAX and BJ model structures, the numbers of parameters to be identified is 

increased; hence, a more complicated recursive implementation is needed. To overcome this 
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problem, a reduced model structure termed the Output Error (OE) model has been introduced 

[72]. This model structure as depicted in figure 3.7 describes only the system dynamics and no 

model is specified for the disturbance signal, as expressed in (3.14) [72].  

 𝑦(𝑘) =
𝐵(𝑧)

𝐹(𝑧)
𝑢(𝑘) + 𝑒(𝑘) (3.14) 

u(k) y(k)
+

e(k)

)(

)(

zF

zB

 

Figure 3.7 OE model structure  

 Parameter Estimation and Self-Tuning Control  

One important motivation behind carrying out system identification is to design an 

appropriate controller which has the ability to control a process with time-varying parameters. 

This type of control scheme is considered to be a form of adaptive control strategy termed self-

tuning control (STC) [45]. Figure 3.8 illustrates a block diagram of the self-tuning adaptive 

control system technique. Here, the depicted structure of adaptive control encompasses a 

recursive identification of unknown system parameters from on-line measured input/output 

data, and then a controller design method is implemented to compute the optimal controller 

based on the acquired knowledge from the estimation step [73].  

Input
Controller

1`
Parameter 

Estimation
Controller 

Design

Process

Output

Model Parameters

Setpoint

Controller 

Parameters

 

Figure 3.8 Explicit self-tuning control  
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The above construction is also called indirect or explicit self-tuning control, since the 

control relies entirely on recursive estimation to establish the controller parameters [71]. 

Accordingly, the identification algorithm plays a central role in this synthesis; however, the 

algorithm’s reliability in providing accurate estimation and the computational cost are the main 

concerns in an explicit STC paradigm [45].  

As introduced earlier in this chapter, recursive algorithms such as RLS and Extended 

Least Squares (ELS) can perform this task. In STC, the controller parameters are calculated in 

real time, therefore, the classical design methods such as frequency response or root locus do 

not suit this kind of control scheme. For that reason, algebraic (model-based) control has been 

introduced in this field to accomplish the controller design task. Pole placement, Ziegler-

Nichols, dead-beat control, and minimum variance control are amongst the algebraic methods 

utilised in STC [71]. Here, the estimated model parameters are assumed to be correct, and that 

will allow the STC structure to be exploited for online fault detection or health monitoring 

purposes in addition to control duty. For instance, in SMPCs, the estimated discrete transfer 

function is used directly to design digital PID controller based on some time domain 

specifications such as peak overshoot, settling time, and damping factor. Also the STC is 

capable of monitoring and adapting to sudden changes such as load variation, which is a 

common scenario in SMPCs.  Furthermore, the physical parameters of the DC-DC power 

converters can be extracted from the estimated discrete model, and hence component ageing or 

onset faults are detected [1, 65]. 

 Literature Review on System Identification for SMPC 

The involvement of system identification in power electronics applications has 

increased in recent years. This is driven by the developments in digital signal processing 

resources and the necessity to produce DC-DC power converters equipped with intelligent 

control and health monitoring schemes. Accordingly, parametric and non-parametric system 

identification are applied to DC-DC power converters to serve these purposes. However, the 

trade-off between fidelity and the complexity of the adaption algorithm is obvious; which 

besides, a complete real-time implementation of the self-tuning control structure for DC-DC 

power converters has not been fully investigated yet. In this section, a literature survey of recent 
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publications in this field is presented based on the technique used and the motivation behind 

conducting system identification procedures. 

3.7.1 Non-Parametric System Identification Methods for DC-DC Converters 

As introduced earlier in this chapter, the non-parametric system identification approach 

is simple and easy to apply; furthermore, it does not require any model structure to be selected 

in advance.  Therefore, the early work published in system identification for DC-DC power 

converters used non-parametric techniques to accomplish this task.  

In [7] various non-parametric system identification methods have been introduced and 

tested on DC-DC forward power converter. Here, the authors investigated the performance of 

time-domain and frequency-domain methods, and according to the obtained results, it is 

necessary that the identification experiment runs for longer in order to yield reduced error and 

enhanced accuracy. Correlation analysis is the most common non-parametric approach applied 

to identify the impulse and frequency responses of digitally controlled DC-DC power 

converters as introduced in [4, 60, 61, 70]. To perform the cross-correlation test, the SMPC is 

excited by means of the PRBS signal as an approximation of white noise added to the duty 

cycle, in order to satisfy the assumptions made in correlation analysis. The basic correlation 

analysis was modified and tested experimentally on digitally controlled switching power 

converter by Miao et al.[4]. The proposed modification included, injecting multi-periods of 

PRBS signal added to the duty cycle, and the impulse response of the system was obtained by 

means of averaging the computed cross-correlation. The time-domain model was then 

converted to a frequency domain model via applying the Discrete Fourier Transform (DFT) to 

the resultant impulse response. To confirm the reliability of the identified frequency response, 

the identified magnitude and phase response were compared to network analyser 

measurements, and showed a good agreement. It is worth noting that the target converter 

worked in open loop during the data collection step, besides, and a long data sequence was 

required to compute the correlation between the control signal and the output voltage. 

Furthermore, the experimental data was exported to a PC and the cross-correlation analysis was 

performed off-line in the MATLAB/Simulink environment. 

Non-parametric system identification has been utilised for converter health-monitoring 

purposes [74]. Applying a correlation analysis method, changes related to the frequency 

response were identified to indicate any faults in the converter. The effect of low-resolution 
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ADC was reduced by means of pre-filtering the duty cycle perturbation, hence enhancing the 

frequency response fidelity in detecting any degradation in stability margins. The accuracy of 

the identified frequency response was then further investigated and improved via techniques 

borrowed from the audio engineering community [66]. The proposed identification procedure 

started with pre-emphasising the PRBS and then post-emphasising the measured output voltage. 

The cross-correlation method was used here to estimate the impulse response, which was then 

truncated before applying DFT to obtain a smoothed frequency response. Despite the low 

additional cost incurred by this method, identification takes several hundred milliseconds and 

also the loop was opened during the identification process. Subsequently, three different 

techniques to improve the accuracy of the cross-correlation identification method were 

proposed and implemented offline [61], including windowing the measured cross-correlation 

correcting for a non-ideal injected PRBS spectrum and reducing the phase shift caused by ZOH 

by delaying output voltage sampling. Furthermore, the improved correlation approach was used 

to measure the feedback loop gain without even opening the feedback loop. 

Siegers et al.[70] incorporated the improved correlation method presented previously 

[61], in order to establish a digital network analyser for non-parametric identification, which 

was then fitted to estimate a parametric model suitable for adaptive control design. To 

investigate the reliability of non-parametric identification in digital control design, Jun-Yan Lio 

et al.[60] proposed a design for the digital control of a DC-DC buck converter using  

correlation-based  identification. In [62] a multiple input multiple output (MIMO) non-

parametric identification technique has also been considered for the first time in a switched-

mode power converter. In this methodology, the frequency response of the converter was 

measured by means of cross correlating several simultaneously applied PRBS signals with their 

corresponding measured outputs. As with the previously presented correlation-based 

identification, the cross-correlation analysis was performed off-line on a PC connected with a 

high cost measurement card NI USB-6251, also, large numbers of data points were collected at 

up to 327, 600 samples in order to carry out the identification procedure. 

According to the existing literature, the PRBS has been the only perturbation signal used 

for system identification. However, switching and quantisation effects can cause nonlinearity 

in SMPC that will decrease the accuracy of linear model estimation. Alternatively, the use of 

Inverse-repeat binary sequence (IRS) has been investigated to excite the output voltage in DC-
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DC power converters in order to avoid strong nonlinear distortions, and to provide more 

accurate approximation of the linear part [75]. 

Another non-parametric identification paradigm based on the sine-sweep method has 

been investigated in [63, 76]. A sinusoidal perturbation was injected into the system to estimate 

the frequency response of the power stage of DC-DC power converter using the DFT approach 

in [63]. Unlike in correlation-based identification, the proposed technique was performed 

without the need to open the feedback loop. Although the implementation was simple, the swept 

frequency technique necessitated long time for the identification procedure if accurate 

estimation was required. The same identification methodology was exploited by Davoudi et 

al.[76] to design an off-line auto-tuning process based on an identified transfer function. 

Similarly, the addressed design criteria for the proposed tuning approach increased the 

computational time up to 105 ms to complete the identification process.  

The control to output transfer function of the step-down converter has since been 

estimated offline [77] by applying a dual-phase lock-in algorithm. Experimental and simulation 

verification was performed to verify the accuracy of the proposed algorithm, which showed a 

better estimation when compared with DFT when the time interval did not contain an integer 

number of sine cycles causing a spectral leakage. Again, in [78] DFT was implemented on-line 

on a PC connected to a DSP controlling power converter. This method was proposed as a 

replacement for the classical frequency response analyser for loop gain frequency response 

measurement. Recently, Bhardwaj et al.[1] have presented a software frequency response 

analyser (SFRA) based on the sine-sweep technique running on a low-cost microcontroller. 

Here, the proposed method was investigated on a synchronous bi-directional buck power 

converter to measure frequency response, and then the transfer function was identified to be 

deployed in direct digital control design or to monitor component degradation. Elsewhere, non-

parametric identification based on the sine-sweep method was combined with the recursive 

weighted least square approach to develop ageing detection capabilities for SMPCs [65]. 

In addition to deploying frequency response measurements for health monitoring 

purposes for SMPCs, the integration of non-parametric identification in auto-tuning control 

design is another possibility which has attracted more researchers in this field. For instance, the 

feasibility of utilising identification results to design an adaptive controller was introduced by 

Miao et al.[79]. In this work, an efficient and rapid hardware implementation of cross-

correlation analysis was achieved using the Walsh-Hadamard Transformation (WHT) 
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algorithm and verified on a field programmable gate array (FPGA). The Xilinx Virtex-II FPGA 

was used as a digital controller PRBS generator, and data collection and identification 

processing unit. After this study, a discrete transfer function of DC-DC converter was estimated 

in two stages [4]. Here, the frequency response was identified experimentally first, and then the 

least logarithmic squares is used to obtain the parametric model from converted time domain 

data. To validate the identification results, a direct digital controller was designed offline and 

implemented experimentally on an Xilinx Vertix-II FPGA based on the discrete transfer 

function. High performance closed-loop dynamic voltage regulation was acheived when the 

converter was subjected to a step load change.  

Adopting the same identification algorithm, Shirazi et al.[35] proposed an on-line 

frequency response identification to be used to construct an auto tuning PID controller for 

SMPC. The proposed algorithm was implemented on a Xilinx Virtex-IV FPGA, and 

demonstrated by application to different power converter topologies. Even with the high 

sampling frequency, the identification and tuning process took 350 ms to complete. A digital 

network analyser technique has been combined with a parametric identification method and 

used to design an adaptive controller of a power converter in [80]. The controller was 

synthesised based on the concept of internal model control, and a step-load change is applied 

to verify the robustness of the proposed an adaptive controller. However, this concept was 

demonstrated only in simulation and no experimental verification was established. 

Furthermore, the model-fitting procedure was conducted offline. In the most recent work in this 

field by Congiu et al.[81], a non-parametric system identification method using the power 

spectrum density (PSD) computation was introduced and validated on a digitally controlled 

buck converter. The resonant frequency and the zero frequency were both identified to 

characterise the control to output transfer function, and based on their values a set of PID gains 

were selected from a pre computed look up table to regulate the system dynamics. The proposed 

method was verified experimentally on a high cost Virtex6 FPGA using a VHDL-MATLAB 

cosimulation model.  

It can be concluded that the non-parametric system identification approach assumes that 

the converter is in steady state operation. In addition, the majority of the methods proposed so 

far perform system identification while the loop is open to inject the excitation signal. 

Furthermore, the computational cost has not been considered as a main concern for real-time 

implementation, and therefore employing this type of estimation algorithm is still limited in the 
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product development phase and it has not been exploited in on-line implementation. 

Importantly, very few of the existing non-parametric system identification techniques have 

been developed to work on-line for self-tuning purposes. 

3.7.2 Parametric Estimation Techniques for SMPC 

Various types of parametric identification methods have been developed and 

extensively analysed for DC-DC power converters [3, 20, 76]. According to the literature, the 

conventional  LS [10, 39, 82] and its recursive version, the RLS [1, 3, 83], are the most 

commonly applied algorithms to perform parametric identification for , analysis, control and 

condition monitoring purposes in SMPCs.  

Alonge et al.[82] presented a nonlinear modelling paradigm for DC-DC converters 

using the Hammerstein mathematical model. The described model structure is divided into a 

second order linear time-invariant ARX model and a nonlinear static characteristic model. Here, 

the experimental data obtained is exported to the MATLAB environment to compute the 

transfer function parameters for the second order ARX model using the basic LS algorithm off-

line. Although an accurate model is obtained in this approach, it is not suitable for real-time 

operation due to the complexity stemming from two steps in the identification process. 

Meanwhile, on-line and off-line parametric identification methods based on iterative least 

squares, have been demonstrated in an open-loop PWM DC-DC converter [39]. Here, a 5% 

step change in the duty cycle was applied to excite the system. This yielded a discrete transfer 

function which can be easily exploited in direct digital control design. However, due to the step 

change in the duty cycle, a 1 V deviation in the output voltage occurred, and this amount of 

overshoot is undesirable in some sensitive applications. Furthermore, the on-line 

implementation on TMS320F2407-DSP took 120 ms to be accomplished for a sampling 

frequency of 50 kHz. Again, the standard LS algorithm has been adopted, to estimate a black 

box model of the DC-DC converter [84]. Here, the step load change was used as a stimulus 

signal to excite the dynamic response of a Texas Instruments PTN78020WAZ switching 

converter. The captured step response was then utilised by two identification approaches to 

estimate the transfer function of the OE model based on a parametric LS algorithm, using a step 

response analysis. However, the identification step is composed of two off-line methods, which 

implies the suitability of this configuration for simulation work rather than real-time 

implementation.  
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The recursive parameter estimation of a SMPC was introduced for the first time by Pitel 

and Krein [83]. In this work, the conventional RLS was reviewed and experimentally examined 

on an open-loop synchronous buck converter. The authors explored three different types of 

perturbation signals, step impulse, white and pink noise, generated offline and uploaded to a 

fixed-point TMS320F2812-DSP. The experimental results obtained, confirmed that the 

classical RLS algorithm can give accurate parameter estimation for systems with fixed, or 

slowly varying, loads while operating at sampling frequency much lower than the switching 

frequency. However, the algorithm fails to track fast parameter changes. To overcome this 

issue,  Algreer et al. [3] presented an RLS algorithm with a fuzzy variable forgetting factor to 

estimate the discrete transfer function of a step-down converter. In this work, the tracking 

abilities of classical RLS was enhanced, and accurate estimation was achieved during abrupt 

load changes before the output voltage even reached the peak overshoot value. However, the 

proposed approach has not been validated experimentally, and also the computational cost of 

fuzzy logic implementation was not considered.  

Considering the computational cost of the previously mentioned RLS, a novel 

identification technique based on a dichotomous coordinate descent (DCD) algorithm, has been 

introduced [8]. According to simulation and initial experimental results, the identification 

algorithm demonstrates less computational complexity in comparison with conventional RLS, 

which makes it better suited for real-time adaptive control systems. Even though the proposed 

method was tested off-line, the convergence time for zero coefficients is long with a clear 

variation observed due to measurement noise. This effect could be higher if a real-time 

implementation was tested, which makes this algorithm not suitable for self-tuning controller 

design. In addition, the performance of the proposed algorithm was not investigated against fast 

parameter variations such as abrupt load changes.  

The deployment of parametric identification in fault diagnosis has been introduced and 

examined on different topologies of switched-mode DC-DC power converters [1, 85-87]. Jin 

Kim et al.[88] proposed an ageing detection technique based on LS estimation for boost and 

buck-boost converters. The experimental data was exported to MATLAB to implement the 

identification process, and hence compute the ageing indicator using the estimated transfer 

function. Another use of parametric identification in fault detection for DC-DC converters has 

also been presented in [86]. In this work, a high-speed data acquisition card PCI9810 was used 

to collect the input/output measurements at a sampling frequency of 3 MHz, and the parameter 
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estimation algorithm was implemented on an industrial PC. Abdennadher et al. [87] developed 

the condition monitoring of electrolytic capacitors in boost converters by means of online 

parameter estimation using RLS with a forgetting factor. The estimated values of C and ESR 

were compared with the measured values, showing good agreement. The control and 

identification algorithms were both implemented on a fixed-point TMS320F2812-DSP, which 

indicated that the parametric identification approach can be realised in real-time for fault 

diagnosis and control in DC-DC converters. However, the proposed method is limited to 

identifying capacitor faults and cannot be generalised to other faults.  

Li and Low [49] proposed a new scheme to deal with different fault scenarios in DC-

DC power converters. The discrete transfer function of DC-DC buck converter is firstly 

estimated via RLS, then the values of actual circuit components such as output capacitance, 

inductors, and equivalent series resistance are retrieved using the ZOH discretisation method. 

This method has been experimentally validated [1, 85] on digitally controlled DC-DC buck 

converters. Here, the DSP TMS320F28335 was used to generate a PRBS and to realise digital 

PI control. Afterwards,  the output voltage and the duty cycle are both sampled and transmitted 

to MATLAB to run the identification and mapping scheme off-line. Form the simulation and 

experimental results obtained based on RLS, it can be seen that the accuracy of the estimated 

transfer function coefficients is degraded due to measurement noise. To overcome this negative 

impact, another off-line parameter estimation approach using the Biogeography-Based 

Optimization (BBO) was proposed [1]. Due to the low sampling rate used in this approach, the 

estimation results took around 100 ms to converge to the final values. In addition, as the state-

space model was considered for the model structure, the BBO has a considerably higher 

computational cost than the classical RLS. Therefore, this method has restricted application and 

it is appropriate for off-line identification rather than real-time parameter estimation.  

To fully take the advantage of system identification results, the self-tuned adaptive 

controller is required to be designed on-line. This sort of implementation has been demonstrated 

in simulation [48, 89] and with experimental validation of the proposed combination in [90]. 

Indirect adaptive controller design was introduced by El Beid et al. [48], using recursive least 

squares with a forgetting factor in on-line identification. Then, the control was designed based 

on pole placement strategy. A repetitive load change was applied to investigate the robustness 

of the proposed method. However, the simulation results show only the estimation in steady 

state, while the accuracy of the estimated transfer function during abrupt load changes was not 
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investigated. Meanwhile, two digital self-tuned discrete controllers have been developed and 

designed [89], to control a step-down DC-DC converter  which also used recursive least squares 

with a forgetting factor for the system identification stage. A comparative study was carried out 

of the Dahlin controller and the Banyasz/Keviczky PID controller for a sudden change in input 

voltage and/or load variation, and the simulation results indicated that the self-tuned Dahlin 

controller outperforms the Banyasz/Keviczky PID controller in terms of model inaccuracy and 

disturbance.  

Elsewhere, an indirect self-tuning adaptive controller based on parametric estimation 

method has been introduced in [90, 91]. Here, the discrete transfer function coefficients of 

SMPC are estimated using Recursive Least Squares (RLS) algorithm and the controller is 

designed following a pole-placement method.  However, the overall complexity of this 

combination is high due to the requirement of a high number of mathematical operations used 

in RLS estimation. For this reason, the sampling frequency is selected to be much lower than 

the switching frequency in order to realise the proposed scheme on low-cost microcontrollers. 

Again, a model-based controller outperformed a fixed gains PI controller designed using the 

frequency domain conventional method [92]. In this work, the Hammerstein approach [82] was 

adopted for the identification step,  and the consequent robust control of a quadratic DC-DC 

step-up converter was designed based on an identified set of transfer functions. The fourth order 

ARX model was estimated by an ordinary LS algorithm, and the discrete transfer function 

obtained was utilised to realise the robust controller formed in a look up table. The suggested 

control algorithm was validated experimentally on a high cost DSPACE DS1103 board, with 

the possibility to be implemented on DSP or FPGA with insignificant augmentation in terms of 

computational burden.   
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 Chapter Summary 

This chapter has reviewed the basics of system identification, including the main 

categories of methods used and the steps followed to perform the identification procedure 

successfully. The well-known non-parametric and parametric identification approaches have 

been presented and discussed in detail. As the most important step in the parametric 

identification paradigm, the commonly applied model structures have been introduced with 

illustrations of their corresponding advantages and disadvantages. Full descriptions of the pre-

processing techniques used are also included to explain the data preparation prior to the 

identification process. Different types of model validation methods have been explained, with 

more of these focusing on model validation based on the prediction error approach. The self-

tuning adaptive control strategy is reviewed as a motivation for performing system 

identification.  

A literature survey of recently published research on system identification for DC-DC 

SMPCs has been presented and classified based on the identification method applied. This 

survey has shown that despite the good performance achieved using the non-parametric 

identification methods, the implementation cost is still high as more complicated and costly 

embedded systems are required, which is undesirable, in particular, for small and high volume 

systems such as DC-DC SMPCs. Therefore, the non-parametric identification methods are 

mostly used during the product development phase rather than in real-time implementation. On 

the other hand, the RLS is the commonly applied algorithm in parametric identification 

approach and can be utilised to build a complete package of self-turning control in real-time. 

Referring to the literature, this algorithm suffers from degradation in estimation accuracy due 

to measurement noise, and difficulties in tracking time varying parameters. For these reasons, 

a new parametric identification method based on KF approach is introduced in this work for the 

first time in system identification of DC-DC converters to mitigate the RLS shortcomings. In 

addition, very few of the existing literature consider the computational complexity and the real-

time implementation of system identification. Therefore, a new computationally efficient 

estimation algorithm based on partial update KF (PUKF) suitable for real-time implementation 

is proposed in this work and then embedded with the Bányász/Keviczky PID controller, in order 

to produce a new and computationally light self-tuning controller.  
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 Parameter Estimation of DC-DC Power Converter 

Using Kalman Filter Approach  

 Introduction 

Incorporating adaptive filtering algorithms to control system design has become an area 

of active research over the last two decades, particularly for applications where system 

parameters vary over time and the controller gains need to be continually updated. This can be 

clearly seen in STC applications, where an adaptive filter is used in the system identification 

scheme. In digital signal processing, there are two primary types of digital filters, named the 

Finite Impulse Response (FIR) filter and Infinite Impulse Response (IIR) filter. The latter has 

both adaptive poles and zeros, and is also known as a poles/zeros filter; therefore, the IIR filter 

is preferred in modelling unknown systems with poles and zeros in the desired model such as 

DC-DC SMPCs. In addition to the digital filter structure, the selection of the adaptation 

algorithm is vital in adaptive system identification. According to the literature review, various 

parametric algorithms such as LS and RLS are utilised to estimate the discrete transfer function 

in such a way that the error between the system output and the digital filter output is minimum 

[93]. Unfortunately, in many of the methods discussed in the literature review, a trade-off 

always exists and there is no an adaptation algorithm which can provide all desirable features 

simultaneously. In general, there are several factors which can be considered to evaluate the 

overall performance of adaptive algorithms in system identification convergence such as speed, 

estimation accuracy, computational complexity, and numerical robustness [94]. 

 In SMPC applications, it is very important that the adaptive filter coefficients are 

estimated as accurately as possible during the steady state and during abrupt changes since this 

will ultimately determine the closed loop controller response. Therefore, a parametric 

estimation algorithm which can handle the identification process efficiently is required to be 

implemented in real-time. For this reason, this chapter introduces a state-of-the-art Kalman 

Filter (KF) algorithm for real-time parameter estimation. This method is implemented here for 

the first time in system identification of DC-DC SMPCs.  

The proposed technique has the advantage of providing an independent strategy for the 

adaptation of each individual parameter. Compared to existing system identification 
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approaches, the proposed algorithm can be readily implemented on-line and is well-suited for 

real-time dynamic applications. Furthermore, unlike classical RLS approaches, the effects of 

the excitation signal and parameter uncertainty can be factored into the proposed algorithm. 

This results in greater precision in parameter estimation and much faster convergence speed. In 

order to improve the performance of the proposed KF, a new tuning technique that allows 

greater freedom to tune the recursive estimation and accurately tracking time-varying 

parameters is also presented. This is achieved by updating the parameter vector coefficients at 

different rates, which is different also from other existing schemes.  

  Recursive Least Squares with Exponential Forgetting (ERLS) 

For an assumed ARX model structure, the ordinary LS is the fundamental method used 

for parameter estimation in linear systems [95]. In the LS algorithm, a finite parameter vector 

θ is estimated in order to find the best fit between the predicted model output 𝑦̂(k) and the 

measured output y(k) over a determinate number of observations, in such a way that the sum of 

the squared error is at a minimum (figure 4.1)[96].  

  
u(k) ɛ(k)

Adaptive 

Algorithm 

Digital 

Filter

Process

-
+

𝑦̂(𝑘) 

𝑦(𝑘) 

 

Figure 4.1 An Adaptive Filter configured for system identification 

This scaler is required to be zero or small enough in order to obtain a good estimation result. 

Formally stated, the parameter vector θ is selected to minimise the cost function 𝐽(𝜃) [6]: 

 

     𝐽𝜃(𝑘) = ∑𝜀[(𝑘)]2
𝑀

𝑘=1

=∑[𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃]2
𝑘

𝑛=1

 (4.1) 

With M is the sample size of the data, an analytical solution can be found for the quadratic cost 

function 𝐽𝜃(𝑘) to deduce the Least Squares estimation as follows [96]:  
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𝜃𝐿𝑆 = [∑𝜑(𝑘)

𝑀

𝑘=1

𝜑𝑇(𝑘)]

−1

∑𝜑𝑇(𝑘)

𝑀

𝑘=1

𝑦(𝑘) (4.2) 

where: 

 𝑦(𝑘) = 𝜑𝑇(𝑘)𝜃 + ɛ(𝑘) (4.3) 

 𝜑(𝑘) = [−𝑦(𝑘 − 1),… ,−𝑦(𝑘 − 𝑛𝑎),   u(𝑘 − 1),… ,  u(𝑘 − 𝑛𝑏)] 
𝑇 (4.4) 

 𝜃 = [𝑎1, … , 𝑎𝑛𝑎 , 𝑏1, … , 𝑏𝑛𝑏]
𝑇 (4.5) 

It can be seen in (4.2), that the linear LS algorithm performs a matrix inversion to compute the 

parameter vector estimate 𝜃𝐿𝑆 using previously stored measurements. However, if on-line 

estimation is considered, the fundamental LS algorithm becomes inefficient, as the size of the 

data batch will increase at each time step. Consequently, more memory is required to perform 

this operation as new observations are added to the data vector sequentially [73].  

To save computational time and hence the implementation cost, the least squares 

estimate can be computed recursively resulting in RLS-based algorithms, which are extensively 

used in the STC framework [56, 71]. In this type of adaptive algorithm, the obtained estimation 

at time (k-1) is used to obtain the estimate at the current time (k) instead of recalculating 𝜃𝐿𝑆 

using the entire data set [71]. The conventional RLS can be visualised as in figure 4.2 and is 

summarised in Table 4.1. (Appendix A shows the derivation details of the RLS algorithm using 

matrix inversion lemma). 

φ (k)
y(k)

Update 

mechanism 

-
+

𝑦̂(𝑘)=𝜑𝑇(𝑘)𝜃(𝑘 − 1) 

θ 

𝜃(𝑘 − 1) 

𝜀(𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘) 

 

Figure 4.2 Block diagram of the RLS approach 

In Table 4.1, 𝑃(𝑘) ∈ R𝑁×𝑁is the error covariance matrix, 𝐾(𝑘) ∈ R𝑁×1is the adaptation 

gain vector or Kalman gain, and 𝑁 is the number of parameters to be estimated. The initial 
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choices of the system parameters 𝜃(0) and covariance matrix  𝑃(0) are selected by the designer, 

and the role of experience and intuition is paramount. [68, 85]. 

Table 4.1 Classical RLS algorithm based matrix inversion lemma 

Step Formula 

 𝜃 = 0, 𝑃(0) = 𝑔 ∗ 𝐼, 𝑔 >1 

 For each u(k), y(k), k ≥ 1, do 

1 𝜀(𝑘) = 𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃̂(𝑘 − 1) 

2 𝐾(𝑘) =
𝑃(𝑘 − 1)𝜑(𝑘)

𝐼 + 𝜑𝑇(𝑘)𝑃(𝑘 − 1)𝜑(𝑘)
 

3 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝐾(𝑘)[𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃̂(𝑘 − 1)] 

4 𝑃(𝑘) = [𝑃(𝑘 − 1) − 𝐾(𝑘)𝜑𝑇(𝑘)𝑃(𝑘 − 1)] 

In SMPCs, some circuit components are considered to be time-varying; for instance the 

effect of ageing upon the energy storage components (capacitor and inductor) or possible load 

variations [65, 74, 97]. In this situation, the Exponentially Weighted Recursive Least Squares 

(ERLS) is developed as an extension to the standard RLS, in order to capture the parameter 

variation. In this approach, the least squares criteria of (4.1) is replaced by the following [6, 

73]: 

 

    𝐽𝜃(𝑘) = ∑𝜆𝑘−𝑛[𝑦(𝑛) − 𝜑𝑇(𝑛)𝜃]2
𝑘

𝑛=1

 (4.6) 

 where λ is a nonnegative coefficient such that (0 << λ < 1), and this is known as the forgetting 

factor or discounting factor. As stated in (4.6), the most recent data is given more weight more 

than past data according to the performance criteria 𝜆𝑘−𝑛. In ERLS, the discounting factor is 

used to inflate the covariance matrix elements exponentially as denoted in (4.7) [93, 98]:  

 
𝑃(𝑘) =

1

𝜆
[𝑃(𝑘 − 1) −

𝑃(𝑘 − 1)𝜑(𝑘)𝜑𝑇(𝑘)𝑃(𝑘 − 1)

𝜆 + 𝜑𝑇(𝑘)𝑃(𝑘 − 1)𝜑(𝑘)
]        (4.7) 

Here, the appointed value of λ influences the performance of the RLS algorithm, as it 

affects on the algorithm’s alertness in terms of the adaptation gain. In other words, if a small 

value of λ is selected, the tracking capability of the RLS algorithm is improved, but the 

estimation becomes more sensitive to noise. On the other hand, a constant value of λ very close 

to one will mitigate the numerical problems caused by large adaptation gain, at the expense of 
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poor and sluggish tracking performance for time-varying parameters [99]. To alleviate this 

problem, RLS algorithms with a variable forgetting factor (VFF) have been used to 

simultaneously enhance the adaptation capabilities and decrease the steady state misalignment 

[73, 98, 100]. However, most of the proposed VFF strategies involve some design constants 

need to be chosen using trial and error as proposed in several studies [100-102]. Moreover, the 

computational complexity of the adaptation mechanism is increased [99, 103]. Regardless of 

the method used to find the forgetting factor, the main steps of the ERLS algorithm can be 

summarised as in Table 4.2.  

Table 4.2 ERLS algorithm for time varying parameters 

Step Formula 

 𝜃(0) = 0, 𝑃(0) = 𝑔 ∗ 𝐼, 𝑔 >1, 0 << λ < 1 

 For each u(k), y(k), k ≥ 1, do 

1 𝜀(𝑘) = 𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃̂(𝑘 − 1) 

2 𝐾(𝑘) =
𝑃(𝑘 − 1)𝜑(𝑘)

𝜆 + 𝜑𝑇(𝑘)𝑃(𝑘 − 1)𝜑(𝑘)
 

3 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝐾(𝑘)[𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃̂(𝑘 − 1)] 

4 𝑃(𝑘) =
1

𝜆
[𝑃(𝑘 − 1) − 𝐾(𝑘)𝜑𝑇(𝑘)𝑃(𝑘 − 1)] 

 The Disadvantages of ERLS Algorithm  

According to the operational steps in Table 4.2, the ERLS technique applies equal 

weight to all parameters during the estimation process. As a result, if the rate of variation of 

one of the estimated parameters is greater than those of the other parameters, the same 

adaptation gain correction is applied to all parameters, which greatly affects the estimator output 

[104]. The estimation of coefficients with small values will suffer from slow convergence speed 

and higher estimation error.  

In practice, the measurement noise may increase this deviation, which impacts on the 

reliability of the estimation results when used in fault detection applications, or controller 

design on-line. This scenario is illustrated in the parameter estimation of DC-DC SMPC, where 

sluggish convergence of the zero coefficients is observed and their final values are strongly 

affected by measurement noise [1, 8]. Another drawback of the ERLS implementation is the 
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requirement of superimposing the input signal with a frequency-rich signal (such as those 

generated by a Pseudo Random Binary Sequence: PRBS) to enhance the estimation accuracy 

and prevent estimator wind-up due to an exponential growth in the adaptation gain matrix [104]. 

This necessitates keeping the output voltage perturbed for long periods or resetting the estimator 

periodically, which can lead to some abrupt changes not being observed. To overcome this, the 

error covariance matrix can be updated using a different approach to add more freedom to the 

adaptive algorithm when calculating the adaption gain. Therefore, the KF is introduced in the 

following section as the first contribution of this work.   

 Kalman Filter Algorithm Configured for Parameter Estimation  

The Kalman Filter is a recursive method widely used to estimate unmeasured states in 

a linear dynamic system [68, 105]. In some cases, the estimated state vector is expanded to 

include the parameter vector as an additional state [106, 107]. To provide the necessary 

clarification, one can consider the stochastic component in the state-space model of the system 

in terms of the transition and the observation equations in discrete form for a time-varying case 

[108, 109]: 

 𝑥(𝑘 + 1) =  𝐹𝑥(𝑘) + 𝑤(𝑘)       (4.8) 

 𝑦(𝑘) =  𝐻𝑥(𝑘) + 𝑣(𝑘)       (4.9) 

Here, 𝑥(𝑘) ∈ R𝑁×1 is the state vector, 𝐹 ∈ R𝑁×𝑁 is the state transition matrix, 𝑦(𝑘) represents 

the measured output, k is the time index, and 𝐻 ∈ R1×𝑁is the output vector. The process noise 

𝑤(𝑘) and the measurement error 𝑣(𝑘) are uncorrelated random vectors with zero-means and 

their associated covariance matrices are given by:  

 𝐸 [𝑤𝑖𝑤𝑗
𝑇] = 𝑆𝛿𝑖𝑗 

𝐸 [𝑣𝑖𝑣𝑗
𝑇]  = 𝑅𝛿𝑖𝑗 

𝐸 [𝑤𝑖𝑣𝑗
𝑇]  = 0 

(4.10) 

where; E [. , . ] symbolises the expectation operator and 𝛿𝑖𝑗 is the Kronecker delta function. In 

this process, the Kalman filter approach seeks the optimal estimate of the state vector x(k), 

denoted by 𝑥̂(𝑘), using all the available measurements y(k) [68]. The is achieved via minimising 

the mean squared error function, which is equivalent to:  

 𝑃(𝑘) =  𝐸[𝜀(𝑘)𝜀𝑇(𝑘)] = 𝐸 [(𝑥(𝑘) − 𝑥̂(𝑘))(𝑥(𝑘) − 𝑥̂(𝑘))
𝑇
] (4.11) 
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where; 𝑃(𝑘) is an (N×N) error covariance matrix. The KF for state estimation can be configured 

as a cyclic two-state recursive algorithm, with the first step as the time update or prediction step 

and the second step for measurement updating or correction. These two phases represent the 

basis for the Kalman filter algorithm, which bears a resemblance to a predictor-corrector 

estimation algorithm [95]. 

Kalman Gain

Update 

Estimate

Project into 

k+1

Update 

Covariance 

Measurement Update (correct)Time Update (Predict)

Measurements

Initial Estimates 

 

Figure 4.3 Kalman filtering structure  [110] 

As illustrated in figure 4.3, the update equation for the new estimate can be written by 

combining the prior estimate (initial estimate) of 𝑥̂(𝑘) denoted by  𝑥̂′(𝑘) or 𝑥̂(𝑘 − 1) and the 

observation data as follows [111]: 

 𝑥̂(𝑘) = 𝑥̂′(𝑘) + 𝐾(𝑘)[ 𝑦(𝑘) − 𝐻𝑥̂′(𝑘)]           (4.12) 

where; 𝐾(𝑘) is the Kalman gain which will be derived shortly, and the term  𝑦(𝑘) − 𝐻𝑥̂′(𝑘) is 

recognised as the innovation or measurement residual, this term can be rewritten by substitution 

of (4.9) into (4.12) gives [110]: 

 𝑥̂(𝑘) = 𝑥̂′(𝑘) + 𝐾(𝑘)[ 𝐻𝑥(𝑘) + 𝑣(𝑘) − 𝐻𝑥̂′(𝑘)]           (4.13) 

As a result, the covariance matrix of ε (k) can then be expressed as: 

 𝑃(𝑘) = 𝐸[[(𝐼 − 𝐾(𝑘)𝐻)(𝑥(𝑘) − 𝑥̂(𝑘)) − 𝐾(𝑘)𝑣(𝑘)][(𝐼

− 𝐾(𝑘)𝐻(𝑥(𝑘) − 𝑥̂(𝑘)) − 𝐾(𝑘)𝑣(𝑘)]𝑇] 
(4.14) 

Note that the state estimation errors and process noise are uncorrelated, and therefore equation 

(4.14) can be simplified to result in the associated covariance given by:  
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 𝑃(𝑘) = (𝐼 − 𝐾(𝑘)𝐻)𝐸 [(𝑥(𝑘) − 𝑥̂(𝑘)) − (𝑥(𝑘) − 𝑥̂(𝑘))
𝑇
] (𝐼 −

                            𝐾(𝑘)𝐻) + 𝐾(𝑘)𝐸[ 𝑣(𝑘)𝑣𝑇(𝑘)] 𝐾𝑇(𝑘) 
(4.15) 

Substituting (4.10) and (4.11) into (4.14) and considering the prior estimate of 𝑃(𝑘) denoted by 

𝑃′(𝑘) gives the update equation of error covariance matrix: 

 𝑃(𝑘) = (𝐼 − 𝐾(𝑘)𝐻)𝑃′(𝑘)(𝐼 − 𝐾(𝑘)𝐻)𝑇 + 𝐾(𝑘)𝑅𝐾𝑇(𝑘) (4.16) 

The trace of this covariance matrix determines how good the estimate of the state variables at 

a given iteration is. As a result, the Kalman gain should be designed in order to minimise the 

trace of 𝑃(𝑘) [68]. By expanding and differentiating (4.16) with respect to 𝐾(𝑘) and setting the 

result equal to 0, the optimum value of the Kalman gain 𝐾(𝑘) is computed as: 

 
𝐾(𝑘) =

𝑃′(𝑘)𝐻

𝑅 + 𝐻𝑃′(𝑘)𝐻𝑇
 (4.17) 

Using the optimal gain sequence in (4.17), it is possible to reformulate the update step of the 

error covariance matrix 𝑃(𝑘) as follows: 

 𝑃(𝑘) = 𝑃′(𝑘)[𝐼 − 𝐾(𝑘)𝐻]        (4.18) 

After the update stage is accomplished using (4.17), (4.12), and (4.18), state projection 

or the prediction step into the next time interval, (k+1) is attained using: 

 𝑥̂(𝑘 + 1) = 𝐹 𝑥̂(𝑘)       (4.19) 

Using the above expression in (4.11) and the zero cross-correlation between 𝜀(𝑘) and 𝑣(𝑘), we 

can write the following equation, which projects the error covariance matrix into the next time 

interval, (k+1): 

 𝑃′(𝑘 + 1) =  𝐸[𝐹𝜀(𝑘)(𝐹𝜀(𝑘))𝑇] + 𝐸[𝑤(𝑘)𝑤𝑇(𝑘)]    

                    = 𝐹𝑃(𝑘)𝐹𝑇 + 𝑆(𝑘)   
(4.20) 

Here, 𝑆(𝑘) is the process noise covariance matrix defined in (4.10). Finally, the recursive filter 

for a linear stochastic system with a state-space description is completed. The salient 

mathematical expressions are combined and summarised in Table 4.3. 
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Table 4.3 Kalman filter recursive algorithm for state estimation. 

Description Formula 

Kalman Gain 𝐾(𝑘) =
𝑃′(𝑘)𝐻

𝑅 + 𝐻𝑃′(𝑘)𝐻𝑇
 

Update Estimate 𝑥̂(𝑘) = 𝑥̂′(𝑘) + 𝐾(𝑘)[ 𝑦(𝑘) − 𝐻𝑥̂′(𝑘)] 

Update Covariance 𝑃(𝑘) = 𝑃′(𝑘)[𝐼 − 𝐾(𝑘)𝐻] 

Project into 𝑘 + 1 
𝑥̂(𝑘 + 1) = 𝐹 𝑥̂(𝑘) 

𝑃′(𝑘 + 1) = 𝐹𝑃(𝑘)𝐹𝑇 + 𝑆(𝑘)  

According to the anatomised components of the KF state estimation, a clear 

resemblance is observed between the recursive estimator of time-varying parameters ERLS and 

the KF [56, 71]. In other words, the presented sequence can be configured for parameter 

estimation by defining the state-space model as follows: 

 𝑦(𝑘) = 𝜑𝑇(𝑘)𝜃̂(𝑘) + 𝑣(𝑘)       

𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝑤(𝑘) 
(4.21) 

More precisely, the output vector 𝐻 is simply the regression vector 𝜑𝑇, and an identity 

matrix is assigned for the state transition matrix 𝐹, and henceforth the suitability of the Kalman 

filter as a parameter estimator becomes evident.  In this revised form, the parameter vector θ is 

the entity to be estimated instead of the state 𝑥, the parameter changes are driven by the random 

vector 𝑤(𝑘) with covariance 𝑆, and 𝑣(𝑘) is the observation noise with variance 𝑟 [68, 112]. 

Table 4.4 demonstrates the implementation sequence of the Kalman filter as a parameter 

estimator [112]. 

Table 4.4 Kalman filter recursive algorithm for parameter estimation 

Description Formula 

Initialisation 

𝑃(0) = 𝑔 ∗ 𝐼, and 𝜃(0) = 0, where 𝐼 is an 𝑁 ×
𝑁 identity matrix, 𝑔 is large number, 𝑟 is scaler > 0, 

𝑆 is diag [𝑆11, 𝑆22, . . , 𝑆𝑁𝑁] 
Do for 𝑘 ≥  1 

Kalman Gain 𝐾(𝑘) =
𝑃′(𝑘)𝜑(𝑘)

𝑟 + 𝜑(𝑘)𝑃′(𝑘)𝜑𝑇(𝑘)
 

Update Estimate 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝐾(𝑘)[𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃(𝑘 − 1)] 

Update Covariance 𝑃(𝑘) = 𝑃′(𝑘)[𝐼 − 𝐾(𝑘)𝜑𝑇(𝑘)] 

Project into 𝑘 + 1 𝑃(𝑘 + 1) = 𝑃(𝑘) + 𝑆(𝑘) 
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 As shown in Table 4.4, at the prediction step the error covariance matrix is computed 

by the additional inclusion of a diagonal matrix 𝑆 to account for time-varying parameters. The 

size of the diagonal elements are conducive to the corresponding parameter variation in a 

random walk. Thus, the adaptation gain is adjusted for each parameter individually, and this 

yields more accurate estimation of all elements in the vector θ with comparable convergence 

times and more flexibility in tuning. In contrast to the ERLS illustrated in Table 4.2, a linear 

growth of the covariance matrix 𝑃 is observed in the Kalman filter. This allows the estimator 

to work for longer periods of time without any significant output perturbations. Unquestionably, 

the estimator will exhibit operational alertness over the operating time. For this reason, the KF 

approach is considered to be excellent choice for real-time applications such as DC-DC 

converters where long periods of perturbation in the output voltage are highly undesirable. 

Since the same initialization techniques as for ERLS are followed with the KF, the process 

noise covariance matrix (S) and measurement noise variance (r) remain as the problematic 

parameters which have to be supplied by the designer using a trial and error procedure, until 

the desired filter output response is attained [113]. However, in real-time implementations the 

use of ad hoc methods is impractical. Therefore, a self-tuned KF employed in the parameter 

estimation of a step-down DC-DC converter is proposed and discussed in the next section. 

 Kalman Filter Tuning in the Parametric Identification of SMPC 

The process noise covariance matrix S is the most critical tuning parameter in the KF 

used for state or parameter estimation, as it requires a priori knowledge of the process noise 

statistics and the expected parameter variations [108]. In the KF configured for parameter 

estimation, the tracking capability of the estimator relies entirely on the value of S, as small 

values in the diagonal elements indicate that only small changes are expected, producing a small 

adaptation gain K that can only adapt slowly. On the other hand, a large value of S leads to large 

values of P and thus large gains that make the estimator more sensitive to noise [114]. 

Therefore, several methods and approaches have been proposed to alleviate the deleterious 

effects related to the tuning of this matrix, in particular if a real-time implementation of the 

algorithm is required [109, 115]. 

 In this work, an adaptive tuning method for process noise covariance S is introduced,  

and this approach was initially provided for KF-based state estimation in [116, 117]. Here, the 
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modified version of this tuning scheme, computes each diagonal element in the matrix S based 

on its related innovation term and Kalman gain. Therefore, individual parameters with different 

rates of variation can potentially be tracked more accurately. Referring to Table 4.4, in step 2 

the parameter variation can be estimated from: 

  𝓌̂(𝑘) = 𝜃(𝑘) − 𝜃(𝑘 − 1) = 𝐾(𝑘)[ 𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃(𝑘)]      (4.22) 

As a result, different variance estimates are obtained for each element in the vector 𝓌̂𝑘 as 

follows: 

  𝑆̂𝑖𝑖(𝑘) = [𝓌̂𝑖(𝑘)]
2 (4.23) 

The deduced model error covariance in (4.24) is a time-varying matrix, iteratively used to 

improve the tracking capability of the filter in the event of any sudden change in system 

parameters such as an abrupt load change in DC-DC converter. 

 

 𝑆̂(𝑘) =

[
 
 
 
 
[𝓌̂1(𝑘)]

2 0 0 0

0 [𝓌̂2(𝑘)]
2 0 0

0 0 [𝓌̂3(𝑘)]
2 0

0 0 0 [𝓌̂𝑁(𝑘)]
2]
 
 
 
 

 (4.24) 

Using this matrix in updating the error covariance matrix P, each diagonal element in P 

will be updated according to the corresponding innovation term; hence the components of 

parameter vector 𝜃(𝑘) will have different variance estimate due to the assigned adaptation gain. 

This new tuning approach overcomes the difficulties faced in ERLS in estimating small 

parameters from noisy real-time data and tracking the sudden changes in system parameters. 

Therefore, the estimation accuracy and the tracking performance can be improved significantly 

for all transfer function coefficients. 

 The Proposed Parametric Identification Scheme Using KF Approach  

Following a typical identification procedure introduced in Chapter 3, the proposed 

parametric identification scheme can be constructed as shown in figure 4.4. Here, the system 

identification block is inserted alongside a digital PID controller used in the voltage mode 

control of a synchronous DC-DC buck converter. In this block, an adaptive system 

identification algorithm is performed continuously to estimate a discrete model of the buck 

converter system on a sample-by-sample basis. While the converter is operating, the 
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identification process can be enabled and disabled during the start-up of the converter, or during 

the steady state operation at regular set of intervals, alternatively, it can be activated if any 

change in the system is detected such as abrupt load change in SMPC [8, 83].  

Parameter Estimation 

Algorithm

Gate 

Drivers

L

C

RL

Iin

iL iO

iC

RC
RO vo(t)

SW1 SW2

A/D
vo(k)

Vref (k)

e(k)

PIDDPWM

PRBS

System identification block

ENABLE ID

Vin

Hs

d (k) d`(k) 

c(t) 

Buck converter

 

Figure 4.4 The Proposed parametric identification scheme using KF approach 

As illustrated in figure 4.4, the control signal d (k) is superimposed on a frequency-rich 

signal or called a perturbation signal to enhance the estimator capabilities in identifying the 

dynamic behaviour of the system and to improve the overall performance of the identification 

in terms of accuracy and convergence time. This small excitation signal is injected only during 

the identification process, and then the converter reverts back to its normal operation. The 

importance of using an excitation signal is to ensure that the input is persistently excited by 

means of having a non-singular correlation matrix [6, 68]. This yields more accurate estimation 

of the discrete model, as the estimated parameters converge to their actual values [6].  

4.6.1 Pseudo-Random Binary Sequence (PRBS) 

In this work, the amplitude-modulated Pseudo-Random-Binary-Sequence (PRBS) 

signal is selected as a perturbation signal. The PRBS is a periodic and deterministic signal which 
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can be easily generated using a shift register and an exclusive-or gate (XOR) in the feedback as 

shown in figure 4.5a. The data length for one period of an n-bit maximum length PRBS is given 

by M = 2𝑛  − 1 [4, 75]. This special class of PRBS is called the maximum-length binary 

sequence (MLBS) [81]. To generate the MLBS, the XOR operation is performed iteratively 

between the i-th register and a particular j-th cell register (Table 4.9) [4, 67].  

Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9Bit 1

XOR

  

(a) 

 

Figure 4.5 Nine-bits shift register with XOR feedback for 511 maximum length PRBS 

generation 

The amplitude of the generated signal has only two possible values; either one 

representing a positive signal or zero denoting a negative amplitude. The aforementioned steps 

are applied to generate a 9-bit PRBS signal as shown in Figure 4.5b. Here, the XOR operation 

is performed between the first and the fifth bits, producing a sequence of maximum length 

sequence M = 511 before the is repeated [4]. Once this signal is added to the controller output, 

dcopm (k), a perturbed control action is created d`(k), which causes a small disturbance in the duty 

cycle c(t).   
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Table 4.5 Bit cell setup for different MLBS generation 

Number of bits (n) M = 2𝑛  − 1 

Bits in XOR 

operation 

i-th, j-th bits 
 

2 3 1 and 2 

3 7 1 and 3 

4 15 3 and 4 

5 31 3 and 5 

6 63 5 and 6 

7 127 4 and 7 

8 255 2,3,4, and 8 

9 511 5 and 9 

4.6.2 Model Structure Selection 

Another essential step which has to be taken prior to a parametric identification 

procedure is the selection of the appropriate discrete time modelling of an SMPC. In the 

proposed scheme, the ARX model is selected as the simplest model structure to approximate 

the actual behaviour of the studied DC-DC buck converter. This regression ARX model (4.25) 

is adopted in most adaptive controller designs, due to its simple structure with only a few 

parameters which need to be estimated using measured input/output data [45, 91]: 

 𝐴(𝑧)𝑦(𝑘) = 𝐵(𝑧)𝑢(𝑘) + 𝜀(𝑘) (4.25) 

where the term ε(k) represents the residual error due to noise and parameter uncertainty. 

Referring to the mathematical model of DC-DC buck converter derived in Chapter 2, the 

discrete time model can be obtained by means of applying the state space average model to 

extract the continuous control-to-output transfer function (4.26) as a first step.: 

 
 G𝑑𝑣(s)=

vo(s)

d(s)
=

Vin (CRCs+1)

s2L C (
RC+Ro

RL+Ro
)+S (CRC+C (

RORL

RO+RL
)+

L
RO+RL

)+1

 
(4.26) 

Here the DC-DC buck converter is an SISO physical system, and the input is the control 

signal 𝑑(s) and the output is the measured output voltage vo(s). According to the literature, for 

the sake of simplicity and ease of use, the voltage transfer function representation is preferred 

for control design and health monitoring purposes in DC-DC converters [1, 8, 91]. Given the 

continuous transfer function in (4.27), the discrete-time model is determined using a 
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conventional continuous to discrete transformation method such as (ZOH), which results in a 

second order discrete transfer function as expressed in (4.27). 

 
 G𝑑𝑣(z)=

b1z
-1 +b2z

-2 

1+a1z
-1+ a2z

-2
 

(4.27) 

where a1, a2, b1, and b2 are the parameters to be estimated on-line and their values depend on 

the physical component values (R, L, C, RC, RL) and on the digital sampling time 𝑇, which is 

usually selected to be equal to the converter switching time [8, 83]. The discrete transfer 

function expressed in (4.27) is described as a linear difference equation suitable for hardware 

implementation as follows: 

 𝑣𝑜(𝑘) + 𝑎1𝑣𝑜(𝑘 − 1) + 𝑎2𝑣𝑜(𝑘 − 2) = 𝑏1d(𝑘 − 1) + 𝑏2d(𝑘 − 2) (4.28) 

In order to identify the coefficients a1, a2, b1, and b2, an error is added to the model expressed 

in (4.28), which takes into account measurement noise and modelling approximations [92]: 

 𝑣𝑜(𝑘) + 𝑎̂1𝑣𝑜(𝑘 − 1) + 𝑎̂2𝑣𝑜(𝑘 − 2) = 𝑏̂1d(𝑘 − 1) + 𝑏̂2d(𝑘 − 2) + 𝜀(𝑘) (4.29) 

Describing the ARX model structure as initially expressed as in (4.25), one can realise an 

obvious resemblance between the difference equation (4.29) and a second-order ARX model 

with b0 set to zero [92].  

 Simulation Results for Steady-State Operation 

In order to verify the performance of the proposed identification algorithm, a voltage-

controlled synchronous DC–DC buck SMPC circuit was implemented in MATLAB/Simulink 

(see appendix B). The component values for the converter depicted in figure (4.4) were: Vin =10 

V, RO = 5 Ω, L= 220 μH, C=330 μF, RC =25 mΩ, RL = 63 mΩ, RDS(on)= 18 mΩ, the switching 

frequency and sampling rate are 20 kHz, and the sensing gain Hs= 0.5. In figure 4.4, the parasitic 

elements are included to improve model accuracy and to demonstrate the importance of 

considering non-ideal components for system identification in applications such as power 

electronics converters. For instance, in the buck converter, the equivalent series resistor RC 

cannot be ignored because it adds a zero to the transfer function, which has a negative impact 

on the dynamic behaviour of the converter [118]. In addition, its value may be used as a 

diagnostic indicator of capacitor ageing [1].  
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 To justify the identification results, the discrete transfer function of the average model 

in (4.27) is calculated in advance, at a sampling time of 50 μs. In line with many other studies, 

convergence time and accuracy are considered to be the important metrics in evaluating the 

adaptive algorithm’s performance [8, 83]. 

 
 G𝑑𝑣(z) =   

0.2262 z-1+ 0.1119 z-2 

1-1.913 z-1+ 0.946 z-2
 

 

(4.30) 

Using the discrete transfer function obtained, a digital PID controller (4.31) is designed 

based on the pole placement technique to regulate the output voltage at 3.3 V: 

 
𝐺𝑐(𝑧) =

𝑑(𝑧)

𝑒(𝑧)
=
𝑞0 + 𝑞1𝑧

−1 + 𝑞2𝑧
−2

(1 − 𝑧−1)(1 + 𝛾𝑧−1)
 

(4.31) 

In (4.32), 𝑞0= 4.672, 𝑞1 = −7.539, 𝑞2 =3.184, and 𝛾 = −0.374. The designed digital controller 

is simulated and its performance was investigated in Chapter 2. This confirms that, if the 

discrete transfer function is accurately known, an efficient controller can be designed and the 

actual circuit component values are determined for condition monitoring use [65]. In practical, 

the coefficients [a1, a2, b1, b2 ] are not constant and can vary over time due to different 

circumstances, such as component ageing, temperature, and load change. Thus, a parametric 

system identification process is essential to alleviate any degradation in the overall performance 

of DC-DC converter and the powered application.  

In this work, the conventional ERLS scheme is applied as a test-bed for assessing the 

performance of the proposed KF algorithm. In the early stages of the estimation process, no 

preliminary knowledge of the converter parameters is assumed. The same initial values of 

covariance matrix and parameter vector for both ERLS and KF are selected to be P(0) = 10000 

I, and 𝜃 (0) = 0. For the ERLS, the forgetting factor λ= 0.95 is carefully chosen as a compromise 

between estimator sensitivity and convergence speed. The modified tuning method in (4.24) is 

applied to mitigate the disadvantages of using a trial and error procedure in the KF tuning and 

the measurement noise variance r is set to 0.095. 
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Figure 4.6 The procedure of system identification 

In addition to the step-down converter, the Simulink model is constructed identically to 

that in figure 4.4, and the system identification sequence is performed step by step as described 

by the flowchart in figure 4.6. Here, the identification procedure is enabled whilst the converter 

is in steady-state operation as depicted in figure 4.7(a), (b). Simultaneously, a 9-bit PRBS is 

injected into the feedback loop as a frequency rich excitation signal for 20 ms as shown in figure 

4.7(c). This is adequate to demonstrate the convergence time for both adaptive algorithms. In 

order to avoid causing large ripples in the output voltage, the magnitude of PRBS signal is 

selected to be ∆PRBS = ± 0.025. This perturbation signal is approximately ± 2.5% with respect 

to the nominal DC output voltage under normal operating conditions, as shown in figure 4.7(a).  

As a pre-processing step, each input/output sample is subtracted from its mean value to 

remove the offsets to yield a raw data with a zero mean value. Then, the obtained zero mean 

values of both the sampled power converter output voltage vo(k), and the control signal d`(k) 

are used by the identification algorithm (ELRS, KF) to compute and update the adaptive IIR 

filter coefficients for every sampling instant.  
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Figure 4.7 Identification sequence: a. output voltage during ID; b. control signal during ID; c. 

ID enable signal 
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Figure 4.8 shows the on-line parameter estimation results obtained using the ERLS 

identification algorithm and KF identification algorithm during the steady state operation. As 

depicted in figure 4.8, both estimation algorithms rapidly identify the transfer function 

coefficients with final estimation values very close to the average model in (4.44). However, 

the KF estimation converges to the steady state in less than 1.5 ms, while the ERLS estimator 

takes more than 2 ms to reach the final values. To demonstrate the overall performance of the 

KF scheme, the prediction error between the measured output voltage and the adaptive filter 

output is illustrated in 4.8(c). Here, the KF estimator minimises the prediction error faster than 

the classical ERLS algorithm with a smaller overshoot during estimation start-up.  

The individual estimation error for each parameter is shown in figure 4.9, where it can 

be seen that the KF algorithm outperforms the classical ERLS. Figure 4.9(a) demonstrates the 

comparable convergence for all transfer function coefficients when the KF algorithm is applied. 

This confirms the effectiveness of the covariance update strategy and the proposed tuning 

method used in the KF, where each parameter is assigned with a different gain based on its 

contribution to the overall filter output. In contrast, the convergence time of the ERLS varies 

between the estimated parameters, due to the effect of the forgetting factor strategy in forming 

the adaptation gain used in the correction step. The adaptation gains for the largest and the 

smallest coefficient in the discrete transfer function are illustrated in figure 4.10. 
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Figure 4.8 On-line parameter estimation results using ERLS and KF: a. denominator 

coefficients; b. numerator coefficients; c. prediction error 
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Figure 4.9 Parameters estimation error; a. classical ERLS; b. KF 
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Figure 4.10 Adaptation gain for a1 and b1: a. ERLS; b. KF 
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 Estimator Robustness Against Abrupt Load Change and the Absence of 

Excitation Signal  

It is known that, in SMPC, the mode of operation may be diverted from continuous 

conducting mode (CCM) to discontinuous conducting (DCM) if a wide load variation is 

applied, and as a result the loop stability margins are decreased and the converter may exhibit 

instability during the mode transition [119]. Traditionally, this phenomenon is treated by 

designing a conservative controller, also known as worst-case design to cope with any abrupt 

changes and ensure system stability. Therefore, it would be of great benefit if the load value 

could be estimated and the controller tuned to meet the desired bandwidth and stability margins. 

For this reason, a wide and abrupt load change is applied to further investigate the performance 

of the proposed self-tuned KF and compare its performance with the classical ERLS algorithm. 

Figure 4.11 shows the dynamic response of the output voltage when the load is changing from 

5 Ω-to-1 Ω at 0.015 s. In order to justify the identification results, the voltage transfer function 

model in both load values was calculated in advance as follows: 

 
 G𝑑𝑣(z) at (RO=5Ω) =   

0.2262 + 0.1119 z-2 

1-1.913 z-1+ 0.946 z-2
 

 

(4.32) 

  
 G𝑑𝑣(z) at (RO=1Ω) =   

0.2243 z-1 +0.1062 z-2 

1-1.814 z-1+ 0.8437 z-2
 

 

(4.33) 

The same identification procedure as outlined in section 4.7 is followed here, with 

unchanged settings for the PID compensator, PRBS generator, and adaptive algorithms. The 

denominator parameters [a1, a2] are the only parameters in the control-to-output transfer 

function shown in the estimation results. This is because the load change caused a significant 

variation in the pole parameters as expressed in equations (4.32) and (4.33), thus making the 

system disturbance easy to detect. The simulation results presented in figure (4.11) indicate that 

after a sudden change in the load the KF identifies the transfer function denominator 

coefficients accurately with a convergence time of less than 1 ms. In contrast, the ERLS 

estimation exhibited under-or-over shoot before it settled to the final values with a convergence 

time more than 5 ms.  
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Figure 4.11 On-line parameters estimation during a step load change from 5 Ω to 1 Ω at 0.02 

s: a. output voltage; b. ERLS estimation; c. KF estimation  
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To demonstrate the advantages of using the proposed tuning method for the KF, the 

related adaptation gains of a1 and a2 are recorded in steady state and during the load change as 

illustrated in figure 4.12(a). As stated in (4.24), each element in the matrix S is tuned according 

to the contribution of the related parameter vector component in the estimator output (𝜑𝑘𝜃𝑘). 

Therefore, the assigned Kalman gain elements for K1 for a1 and K2 for a2 vary with different 

rates in the correction step, yielding good tracking performance of the new applied load. This 

variation is confirmed by referring to (4.32) and (4.33), where the parameter a1 decreases by 

5.5% of its original value, and at the same time a2 at 1 Ω reduces by 1% of its value at 5 Ω. This 

means that the impact of load change varies between one coefficient and another in the discrete 

transfer function. To compare this with ERLS, the same adaptation gain elements are shown in 

figure 4.12(b), where it can be seen that similar magnitudes with different directions are applied 

to both a1 and a2 due to the single forgetting factor scheme. Thus, the KF approach is considered 

to be the ideal candidate in this case to provide reliable estimations of time-varying parameters, 

such as the load change which is a common scenario in power converter applications.  

However, in order to continuously monitor and estimate time-varying parameters such 

as load changes in DC-DC converters, a perturbation signal is required to be injected into the 

feedback loop. In some sensitive applications, this kind of continuous perturbation is not 

desirable. Therefore, there is a need to have an estimator that can work for a longer time with 

only a very short perturbation period. This scenario is investigated here by means of increasing 

the identification period to 80 ms and injecting the PRBS signal for 5ms only, as shown in 

figure 4.13. The estimation results shown in figure 4.13 demonstrate that the KF estimator has 

the ability to produce a smooth and stable estimation with no effect of estimator wind-up. This 

is due to the linear growth of the covariance matrix P. Consequently, the KF estimator can work 

for longer periods without any significant output perturbation and yet continues to exhibit 

operational responsiveness. In contrast, the ERLS suffers from the estimator wind-up 

phenomenon as the adaptation gain value increases over time to yield a clear offset in the final 

estimation value. 
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Figure 4.12, Adaptation gain behaviour during abrupt load change: a. ERLS; b. KF 
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Figure 4.13, Estimator wind-up effect: a. PRBS injected for 5 ms; b.ID enabled for 80 ms; c. 

voltage model parameters ID 
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 Chapter Summary  

In this chapter further attention is given to adaptive algorithms used in the area of 

parametric system identification; starting with an overview of the basic LS approach and 

highlighting the complexity and unsuitability of the LS algorithm for real-time 

implementations. Recursive parameter estimation is explored, considering the mathematical 

derivation of the conventional RLS and its extension, the ERLS, to deal with time-varying 

parameters. The disadvantages of ERLS have been addressed and discussed in detail, 

particularly in estimating the discrete transfer function of the DC-DC step-down converter. Due 

to the difficulties experienced with ERLS, the well-known KF state estimator is introduced for 

parameter estimation purposes to mitigate the shortcomings of ERLS and to enhance overall 

performance. In addition, a new tuning method for the KF approach is introduced in this chapter 

to improve the tracking capabilities of the estimator in identifying time-varying parameters. 

The model structure selection and excitation signal are also discussed in this chapter.  

 The performance of the KF estimator is validated by simulation and the results show 

that the convergence rate and the estimation of the model parameter are very good. Simulation 

results demonstrated that this approach exhibits excellent all round identification metrics 

(convergence rate, parameters estimation, and prediction error) during steady-state operation. 

During the identification process, the tracking capability of the KF has been investigated by 

means of applying an abrupt load change at the output of the DC-DC converter. The simulation 

results show that the KF reacts very quickly and responds to parameter changes. As a result, 

the tuning method is successfully employed for the first time in a KF for the purposes of 

parameter estimation. Finally, the stability of the KF estimator is evaluated with, and without, 

an excitation signal which demonstrates robust estimation due to the reduced effect of estimator 

wind-up. This makes the proposed technique very well-suited to real-time power electronics 

control applications. However, the superior performance obtained using KF approach comes at 

the cost of a slightly increase in computational burden of the adaptive scheme due to the 

proposed tuning step. For this reason, the second research contribution of this work is 

introduced in the next chapter; an improved computationally efficient KF algorithm is 

developed via adopting a partial update scheme for the first time.  
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 A Computationally Efficient Self-Tuning Controller for 

DC-DC Switch Mode Power Converters Based on Partial Update 

Kalman Filter 

 Introduction 

It is known that computational complexity is an important factor in evaluating the 

performance of any adaptive algorithm in real-time applications [8, 120]. For instance, in 

mobile communications and computing systems, and in particular battery-operated devices, the 

complexity of any employed algorithm must be kept to a minimum. This is required to reduce 

power consumption and to extend the battery life, or produce more compact and light-weight 

physical devices [121]. The algorithms used in these devices are usually those which involve 

control design for health monitoring purposes [1, 91]. In this work, the KF is introduced for 

parameter estimation in SMPC and can readily be applied in many battery-operated devices.  

The simulation results outlined in chapter 4 show that the KF algorithm can handle the 

parameter estimation task efficiently with several advantages over the classical ERLS adaptive 

algorithm. However, this performance comes with increased computational complexity, which 

is considered as the main concern in terms of implementation [122]. This is clearly 

demonstrated in Table 4.4, where the computational burden is proportional to the number of 

parameters to be estimated; in particular, the computation of adaptation gains and the 

covariance update. These two steps are known to be the bottlenecks of the recursive algorithm, 

where multiplication of matrices and vectors is required to update the parameter vector at each 

iteration. In addition, the overall complexity is likely to increase further if the identification 

algorithm is combined with an adaptive controller or health monitoring scheme in SMPC 

applications. This necessitates more power consumption, as more hardware multipliers and 

memory are required [121].  

To cope with this increased complexity and to maintain the desired performance, a more 

powerful and faster microprocessor platform is needed. This implies higher implementation 

cost, which is particularly undesirable in small, high-volume systems [8]. Therefore, it is 
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essential to reduce the computational overhead of the adaptive algorithm in order to exploit the 

system identification results in real-time for adaptive control design and condition monitoring 

purposes for low-cost hardware. This can be achieved by reducing the computational effort at 

the software level and hence reducing power consumption [121]. One promising approach to 

controlling the computational cost of adaptive algorithms is to use a partial update scheme 

where a subset of the adaptive filter coefficients are updated at each iteration [121, 123-126]. 

In parametric system identification, the achievable complexity reduction by partial coefficient 

updates is significant, as a number of key arithmetic operations are eliminated [121]. Several 

types of partial update methods have been studied in the literature including sequential PU, 

periodic PU, M-Max PU, stochastic PU, and selective PU [124].  In this work, PU methods are 

applied to the KF for the first time to reduce the computational overhead while retaining 

comparable overall performance to the full version.  

In addition to the adaptive algorithm, there is a need for a computationally light control 

strategy to implement an efficient and cost effective self-tuning controller. Therefore, this 

chapter presents a digital self-tuning Bányász/Keviczky PID controller based on PUKF 

estimation. In comparison with the previously described pole placement technique, the 

Bányász/Keviczky PID controller is simple in terms of the number of arithmetic operations 

required to calculate the controller output. Therefore, the overall complexity of the STC scheme 

is further reduced, which can be applied in many different applications. .  

 Partial Update Adaptive Filter Theory  

The partial-update (PU) scheme is a straightforward method to reduce the computational 

complexity of adaptive filtering algorithms because it only updates part of the parameter vector 

instead of updating the full filter vector [121, 127]. This means that, instead of updating all of 

the N × 1 coefficients in the parameter vector, the partial-update method only updates M×1 

coefficients, where M < N [127].  

According to the existing literature, PU methods are mostly applied to LMS and its 

modifications [120, 124, 126, 128-131]. These applied algorithms update a subset of the 

adaptive filter coefficients at the time of each iteration, either in a sequential or periodic manner, 

or by using a selection criterion [128]. On the other hand, very few studies have addressed the 
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use of partial update methods in computationally complex algorithms such as the RLS 

algorithm [122, 125]. Importantly, all the aforementioned algorithms are applied in the 

telecommunications field, and most of the results presented so far are from simulation only. 

Therefore, this work focuses on applying the PU scheme to the KF adaptive algorithm and 

investigating its performance on-line and in real-time power electronic applications. In addition, 

the reliability of the proposed approach is further evaluated by means of STC implementation.  

 Partial Update Methods  

The general concept of a PU scheme can be applied using different methods. Among 

these methods, data-independent approaches including the periodic PU and the sequential PU 

[124]. These approaches are the primary ones used to develop PU adaptive algorithms with 

reduced a computational cost [132]. However, these techniques exhibit slow convergence rates 

and their overall complexity is proportional to the size of the coefficient subsets in the case of 

sequential PU and to the update frequency for periodic PU [121, 133].  

To enhance the convergence rate, data-dependent PU methods have been proposed and 

successfully applied to LMS, NLMS, RLS, and AP algorithms [124, 125, 129, 133, 134]. The 

M-Max and the selective updates are the most commonly used data-dependent PU methods 

[127, 131]. Here, the update technique is based on finding the subset of the parameter vector 

that can make the biggest contribution to the filter output and result in the largest reduction in 

performance error [123]. In other words, for a filter with N coefficients, only the taps 

corresponding to the M largest magnitude of the data vector are updated at each time iteration 

[125]. This requires a prior knowledge of the application under consideration. In the parametric 

system identification of SMPC, this kind of prior knowledge can be acquired from modelling 

techniques such as SSA and using a model structure such as the ARX model.  

As presented in the literature, the M-Max tap-selection criterion provides a level of 

performance comparable to that of full version adaptive algorithms such as NLMS, RLS, and 

AP in terms of mean square error and convergence rate [129, 134-136]. The latter metrics are 

considered to evaluate the performance of the adaptive algorithm in the parametric system 

identification process. Therefore, this scheme is adopted in this work to perform the PU method 

in order to maintain the convergence rate and provide accurate estimation of the discrete transfer 
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function. A detailed description of M-Max PU method is given in the next section, followed by 

its implementation with the KF algorithm and an analysis of its computational complexity. 

More detail concerning other PU methods can be found elsewhere [121, 127]. 

 M-Max Algorithm  

The M-Max PU method is a data-dependent partial update technique which was 

originally proposed by Aboulnasr et al [123] with the intention of reducing the computational 

cost of the NLMS algorithm. Figure 5.1 shows an adaptive filter of length N used in a system 

identification structure, in which the input regression vector is defined as: 𝑥(𝑘) =

[𝑥(𝑘), 𝑥(𝑘 − 1),… . , 𝑥(𝑘 − 𝑁 + 1)]𝑇, and the filter coefficients vector is given by ℎ̂(𝑘) =

[ℎ̂1(𝑘), ℎ̂2(𝑘), … . , ℎ̂𝑁(𝑘)]
𝑇.  During the identification procedure the adaptive filter is used to 

identify the parameter vector ℎ(𝑘) = [ℎ1(𝑘), ℎ2(𝑘),… . , ℎ𝑁(𝑘)]
𝑇 by means of minimising the 

square of the error signal as follows [134]: 

where 𝑦̂(𝑘) = 𝑥𝑇(𝑘)ℎ̂(𝑘) and 𝑣(𝑘) is measurement noise. In the M-Max NLMS algorithm, the 

parameter vector is updated in each time iteration based on a specific selection criterion where 

only coefficients corresponding to the samples of largest amplitude in the regression vector  

𝑥(𝑘) are updated [136]. Therefore, the estimation update is computed in a recursive manner 

given by: 

where 𝜇 and 𝜗 are the step-size and regularisation parameters respectively, and  𝐼𝑀(𝑘) is the 

tap selection matrix defined as: 

Thus, the M-max updates are simply given by the M maxima of the magnitude of the input 

regression vector entries, which does not require the computation of the full update vector. This 

 𝜀 (𝑘) = 𝑦(𝑘) − 𝑦̂(𝑘) + 𝑣(𝑘) (5.1) 

 
ℎ̂(𝑘 + 1) = ℎ̂(𝑘) + 𝜇

𝐼𝑀(𝑘)𝑥(𝑘)𝜀 (𝑘)

‖𝑥(𝑘)‖2 + 𝜗
 (5.2) 

 

𝐼𝑀(𝑘) =

[
 
 
 
𝑖1(𝑘) 0 0 0

0 𝑖2(𝑘) 0 0

0 0 𝑖3(𝑘) 0

0 0 0 𝑖𝑁(𝑘)]
 
 
 
, 𝑖𝑗(𝑘) = {

1 |x(k-j+1)| ∈{M maxima |x(k)|

0  otherwise                                   
 

 

(5.3) 
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results in complexity reduction for the M-max NLMS algorithm defined by a factor of  B = 

N/M [121]. 

ɛ (k)

-
+
  

𝑥(𝑘) 𝑦 (𝑘) 

𝑦̂ (𝑘) 
ℎ̂(𝑘) 

ℎ(𝑘) 

𝑣(𝑘) 

 

Figure 5.1 System identification structure 

 M-Max PUKF 

In time-varying systems, the variations of the parameters do not affect the mean 

prediction error 𝜀 (𝑘) equally. Thus, the choice of the filter taps to be updated becomes a vital 

issue [123]. In this work the KF is introduced to estimate the discrete transfer function of the 

step-down DC-DC converter. Similarly to the M-Max NLMS, the M-Max algorithm is 

extended here and applied to the KF algorithm in order to reduce the computational cost of the 

full version and to produce a new light adaptive algorithm suitable for low-cost implementation. 

To derive the M-Max KF algorithm, the previously defined ARX model structure is selected to 

model the buck DC-DC converter and it is expressed in the form of linear regression as follows: 

 𝑣𝑜(𝑘) = 𝜑
𝑇(𝑘)𝜃 + 𝜀(𝑘) (5.4) 

where  

 𝜑(𝑘) = [−𝑣𝑜(𝑘 − 1), −𝑣𝑜(𝑘 − 2),   d(𝑘 − 1), d(𝑘 − 2)] 
𝑇 (5.5) 

 𝜃 = [𝑎1, 𝑎2, 𝑏1, 𝑏2]
𝑇 (5.6) 

According to the basics of the M-Max algorithm, the adaptive filter coefficients 

corresponding to the largest samples in the regression vector 𝜑(𝑘) are selected to be updated. 

In other words, the update step will consider only the coefficients with the highest error 

contribution. In the DC-DC buck converter the data vector 𝜑(𝑘) consists of the lagged sampled 
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output voltage 𝑣𝑜(𝑘) and the lagged sampled control signal 𝑑(𝑘). In practical applications, the 

duty cycle is selected to be 0.1 < 𝑑(𝑘) < 0.9, that means when the desired output voltage is 

higher than 1V, the filter coefficients corresponding to the lagged output voltage are selected 

to be updated in each time iteration. For instance, in the model example investigated in Chapter 

4, the targeted output voltage (𝑣𝑜) is 3.3 V and the control signal (𝑑) is around 0.33 in steady-

state operation. Accordingly, the denominator coefficients [a1,a2] are chosen for the update 

step, as their contribution in the filter output 𝑣1(𝑘)and hence in the prediction error 𝜀(𝑘) is 

higher than the numerator coefficients [b1,b2] contribution in the filter output indicated as 

 𝑣2(𝑘)  . Here, the parameters [b1,b2] are considered less important, and the algorithm’s 

performance will only be slightly affected if they are not updated at a given iteration. This 

results in a 50% complexity reduction compared to the full KF by a factor of B = N/M with N=4 

and M=2. 

Importantly, in some applications, the accuracy of the estimated parameters is crucial 

and hence the performance of the PU estimator is required to be as close as possible to the full 

version. Therefore, the PU algorithm proposed in [122] is adopted here and used to produce a 

modified version of the original M-Max algorithm. This modification requires the full estimator 

to be run early in the identification process for a short time, and then the less important 

parameters are fixed for the rest of the identification period. This means that the only term 

which will be computed using the full parameter vector with length N is the prediction error at 

every time iteration. The rest of the algorithm sequence is performed on the sub-filter 

coefficients with length M. As a result, the prediction error used in the update step describes 

the contribution of all parameters in the filter output 𝑣𝑜(𝑘), and this will produce a more 

accurate estimation as the less important filter coefficients are considered. In the same manner, 

the less important coefficients can be updated periodically if needs to be monitored any slow 

variation, such as ageing in the passive components in the DC-DC converter.  Figure 5.2 shows 

the block diagram of the proposed M-Max PUKF employed in parameter estimation of buck 

DC-DC converter.  

To demonstrate the advantages of the proposed algorithm, Table 5.1 illustrates the 

required number of arithmetic operations when the proposed M-Max KF is applied and this is 

compared with the full version of KF in Table 5.2. 
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M-Max PU 

KF

  

  

+

-

 

b2 

a1 

a2 

𝑣𝑜(𝑘) 

−𝑣𝑜(𝑘 − 1) 

−𝑣𝑜(𝑘 − 2) 

d(𝑘 − 1) 

d(𝑘 − 2) 

𝑣̂𝑜(𝑘) 

𝑣̂2(𝑘) 

𝑣̂1(𝑘) 

[b1,b2] 

[a1,a2] 

Full Update KF

𝜀(𝑘) 

𝜑(𝑘) 

b1 

 

Figure 5.2 The proposed PU scheme.  

Table 5.1 Relative computational complexity of the proposed M-Max PUKF 

Step Formula × + ÷ 

Initialisation 𝑃(0) = 𝑔 ∗ 𝐼, and 𝜃(0) = 0, where 𝐼 is an 𝑀 ×
𝑀 identity matrix, g is large number, 𝑟 is scaler 

> 0, 𝑄 is diag [𝑄11, 𝑄22, . . , 𝑄𝑀𝑀] 

  

 

 Do for 𝑘 ≥  1 

 

  
 

1 𝜀(𝑘) = 𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃(𝑘 − 1) N N - 

2 𝐾(𝑘) =
𝑃(𝑘 − 1)𝜑(𝑘)

𝑟 + 𝜑(𝑘)𝑃(𝑘 − 1)𝜑𝑇(𝑘)
 2M 2+M 2M 2-M 1 

3 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝐾(𝑘)𝑒(𝑘) M M - 

4 𝑆𝑖𝑖(𝑘) = [𝐾(𝑘)𝑒(𝑘)]
2 M 2 M - 

5 𝑃(𝑘 + 1) = 𝑃(𝑘)[𝐼 − 𝐾(𝑘)𝜑𝑇(𝑘)] + 𝑆 2M+M 3 2M+ M 3 - 
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Table 5.2 Relative computational complexity in terms of comparison  

Algorithm N > M × + ÷ 

Full update KF 5N+3 N 2+ N 3 4N+ 2N 2+ N 3 1 

M-Max PUKF N+4 M+ 3 M 2+ M 3 N+ 2M 2+ 3M+M 3 1 

 Digital Self-Tuning Bányász/Keviczky PID Controller 

Due to the rapid and significant development in digital signal processors and 

microcomputers, designing and implementing a complete package of explicit STC has become 

achievable even for low-cost applications such as SMPC. This package includes an 

identification algorithm combined with an algebraic control method and/or a health monitoring 

scheme. This section is devoted to introducing a simple and low-cost discrete PID controller 

which can be designed on-line in real-time using only the estimation results. This controller 

was originally developed and introduced by Bányász and Keviczky [137-139], and further 

investigated for STC design based on the recursive estimation of the process parameters [140]. 

In practice, the discrete PID regulator is the commonly used strategy in SMPC control scheme. 

The discrete PID controller can be realised in many different structures based on the selected 

design approach. As design simplicity is required in this work, the discrete PID controller in its 

direct form as a two zeros, one pole transfer function is considered: 

 
𝐺𝐶(𝑧) =

𝑞0 + 𝑞1𝑧
−1 + 𝑞2𝑧

−2

1 − 𝑧−1
=
𝑄(𝑧−1)

1 − 𝑧−1
 (5.7) 

For a voltage-mode buck regulator, two zeros are needed to compensate for the second order 

plant (power stage) and a pole at the origin is needed to minimise steady-state error [29]. In the 

direct digital control design approach, it is common to construct the regulator based on the 

inverse of the process model [139]. For that reason, the controlled process is assumed to be a 

stable, second order dead-time lag with a discrete transfer function given by: 

  GP (z)=
𝐵(𝑧−1)

𝐴(𝑧−1)
=  

𝑏1(1 + 𝛾𝑧
−1)

1 + 𝑎1𝑧−1 + 𝑎2𝑧−2
 z-𝑑𝑒 

 

(5.8) 

where de > 0 is the time delay steps of the process, γ = 
𝑏2

𝑏1
,  and b1 ≠ 0. For the given process 

specifications, the controller polynomial 𝑄(𝑧−1) is chosen to be proportional to the 

denominator of the controlled process and can be expressed as follows: 
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 𝑄(𝑧−1)  = 𝑞0(1 + 𝑎1𝑧
−1 + 𝑎2𝑧

−2) = 𝑞0 + 𝑞1𝑧
−1 + 𝑞2𝑧

−2 

 
(5.9) 

This implies that: 

 
𝑞1 = 𝑞0𝑎1, 𝑞2 = 𝑞0𝑎2  (5.10) 

The concept of this controller is identical to that of the pole-zero cancellation technique 

widely used in design using emulation approach [8, 43, 141], where all poles are cancelled and 

which is applicable for stable processes only. In the practice of tuning this means that the 

regulator cancels the two largest time constants in the process dynamics. Consequently, the 

control loop is simplified and given as follows[138]: 

 
 GP (z) GC (z)=

𝑘𝐼(1 + 𝛾𝑧
−1)

1 − 𝑧−1
 z-de  (5.11) 

Having the reference signal Ref(k), the closed loop obtained shown in figure 5.3 involves a pure 

time delay connected in series with an integrator gain that given by the following relationship: 

 
𝑘𝐼 = 𝑞0𝑏1  (5.12) 

Having obtained the estimated transfer function coefficients, the controller parameters can 

finally be computed by the application of the following formulae: 

 
𝑞0 =

𝑘𝐼
𝑏1

 (5.13) 

 
𝑞1 = 𝑞0𝑎1 (5.14) 

 
𝑞2 = 𝑞0𝑎2 (5.15) 

 
for γ = 0 → 𝑘𝐼 =

1

2𝑑𝑒 − 1
 (5.16) 

 
for γ > 0 → 𝑘𝐼 =

1

2𝑑𝑒(1 + 𝛾)(1 − 𝛾)
 (5.17) 

The relations tips (5.12-5.17) and (5.7) are then used to calculate the controller output as 

follows: 

 
𝑢(𝑘) = 𝑞0𝑒(𝑘) + 𝑞1𝑒(𝑘 − 1) + 𝑞2𝑒(𝑘 − 2) + 𝑢(𝑘 − 1) (5.18) 
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-
+𝑅𝑒𝑓(𝑘) 𝑦 (𝑘) 𝑢(𝑘) 𝑘𝐼(1 + 𝛾𝑧−1)

1 − 𝑧−1
 z-de 

𝑒(𝑘) 

 

Figure 5.3 Simplified closed-loop system for optimal design. 

 Simulation Results 

To investigate the overall performance of the proposed explicit STC scheme, a voltage 

controlled synchronous DC-DC buck SMPC circuit is simulated using MATLAB/Simulink as 

depicted in figure 5.4. The circuit parameters of the buck converter are as follows: Ro = 5 Ω, RL 

= 63 mΩ, RC = 25 mΩ, L = 220 μH, C = 330 μF, vo = 3.3 V, and Vin = 10 V. The buck converter 

is switched at 20 kHz using conventional pulse width modulation. The output voltage is also 

sampled every 50 μs. To demonstrate the parameter estimation task using the proposed M-Max 

PUKF, the same conditions as in the estimation procedure outlined in Chapter 4 were applied, 

including PRBS generation and the fixed gains PID controller to initially regulate the output 

voltage at 3.3 V. In order to imitate the practical case, all of the digital effects were considered 

in the simulated model, such as ADC, quantisation, and sample and hold delays (see appendix 

B). For the KF estimator and the M-Max PUKF, the algorithm’s initial values are selected to 

be P (0) = 10000 I, and 𝜃 (0) = 0.  

As shown in figure 5.4, at the beginning of the identification procedure, a 9-bit PRBS 

signal is injected into the loop for 25 ms using the ‘Enable 1’, and during this period the full 

KF is activated using the ‘Enable 2’ block for 10 ms, to identify the full parameter vector 

[a1,a2, b1, b2] as shown in figure 5.5. After the first stage is accomplished, the numerator 

coefficients [b1,b2] are fixed and exported to the M-Max PUKF and to the ST PID block. Once 

the full update KF is disabled, the M-Max PUKF is enabled (Enable 3) and the update of the 

denominator coefficients [a1,a2] commences at each time iteration for the rest of the 

identification procedure.  
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Figure 5.4 Explicit STC using M-Max PUKF 

Figure 5.6 illustrates the on-line parameter estimation results obtained using the M-Max 

PUKF algorithm. Here, the proposed adaptive algorithm rapidly identifies the selected subset 

of the adaptive filter coefficients [a1,a2] with final estimation values very close to the full KF 

and within the same convergence time of about 1 ms figure 5.6(a). Additionally, the prediction 

error converges to zero, indicating the good performance of the PUKF (figure 5.6(b)), which is 

confirmed by the individual estimation error of each coefficient in respect of the calculated 

average model as depicted in figure 5.6(c). 
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Figure 5.5 Identification sequence: a. output voltage during enable 1 period; b. enable 2 signal 

for full KF; c. estimated model parameters using full KF  
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Figure 5.6 On-line parameter estimation results using M-Max PUKF: a. denominator 

coefficients; b. Prediction error; c. Parameters estimation error  
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After the PRBS signal is disabled, the discrete transfer function is fully estimated. Now 

the control action can be computed on-line using the previously described self-tuning 

Bányász/Keviczky PID controller in the ST PID block, and then the position 2 in the switch is 

selected to regulate the output voltage by means of explicit the STC designed based on the pole-

zero cancellation method using only the estimated discrete transfer function. In SMPC, a 

significant load variation can occur unexpectedly. Therefore, a derivative action is added to the 

designed STC to damp out any oscillation caused by the pure integral gain obtained in (5.11), 

and the controller output is determined as: 

 𝑑(𝑘) = 𝑞0𝑒(𝑘) + 𝑞1𝑒(𝑘 − 1) + 𝑞2𝑒(𝑘 − 2) + 𝑑(𝑘 − 1) + 𝐾𝐷[𝑒(𝑘) 
+𝑒(𝑘 − 1)] 

(5.19) 

The simulation results shown in figure 5.7 demonstrate that the designed STC controller 

is able to maintain the output voltage at the desired value once it is appointed as the main 

controller. To study the dynamic behaviour of the proposed STC scheme, a periodic step load 

change from 5 Ω to 2.5 Ω starting at 0.05 s is introduced.  This load change forces the load 

current to switch between 0.66 A and 1.32 A every 10ms (figure 5.7(b)). As depicted in figure 

5.7(a), when an abrupt load change is applied, quick recovery with small overshoot and 

undershoot to the reference value is accomplished, with the maximum overshoot kept to less 

than 5% of the desired output voltage. This performance demonstrates the successful design of 

the proposed STC scheme with the Bányász/Keviczky PID as a control method and the M-Max 

PUKF algorithm for online parameter estimation.   
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Figure 5.7 Transient response of the proposed STC with de =2 and KD= 0.5: a. output voltage; 

b. inductor current; c. load current change between 0.66 A and 1.32 A every 10 ms  
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The same procedure is repeated to evaluate the robustness of the controller and the 

proposed estimator by means of applying a significant load step from 5 Ω to 1 Ω at 0.05 s. After 

the load change is detected, a 9-bit PRBS signal is injected to perturb the output voltage for 5 

ms in order to update the estimated transfer function as shown in figure 5.9(a). This improves 

the estimation accuracy and convergence time. At the same time, the M-Max PUKF block is 

enabled to identify the selected subset of the adaptive filter coefficients [a1,a2] in every time 

iteration.  Figure 5.9(b) illustrates the identification results using the M-Max PUKF technique. 

The transfer function poles are compared to the pre-calculated parameters at 1 Ω and show a 

very good match. Moreover, it can be seen that the estimation converges to steady-state values 

in less than 2 ms and the prediction error converges to a small value very close to zero within 

the same time as shown in figure 5.9(c). Having the new estimated load value, the controller 

action is updated on-line and the estimator block disabled to reduce the computational load at 

steady state. This typical scenario is commonly applied in this field, as the estimator block can 

be activated again if a significant change in the loop error is detected [8, 83, 142].  
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Figure 5.8 On-line parameters estimation during a step load change from 5 Ω to 1 Ω at 0.05 s: 

a. Output voltage; b. PUKF estimation; c. Prediction error  
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According to the simulation results, the applied concept of the M-Max PUKF is proven 

to be a reliable algorithm which can be employed in parametric system identification and in an 

optimal explicit STC scheme. As the less important coefficients [b1,b2] are fixed during the 

steady state and when the load change is applied, their small effect on the prediction error and 

on the accuracy of the proposed M-Max PUKF algorithm is clearly observed. The obtained 

estimation results using the identification scheme in figure 5.4 are compared and presented in 

Table 5.3 with the average model and full KF estimation at 5 Ω and at 1 Ω. 

Table 5.3 Discrete time control-to-output transfer function identification 

Parameter KF M-MAX PUKF Model 

at 5 Ω 

a1 -1.897 -1.923 -1.913 

a2 0.9233 0.950 0.945 

b1 0.2321 fixed 0.2321 0.2259 

b2 0.1023 fixed 0.1023 0.1118 

at 1 Ω 

a1 -1.8 -1.840 -1.814 

a2 0.822 0.852 0.8437 

b1 0.219 fixed 0.2321 0.2243 

b2 0.096 fixed 0.1023 0.1062 

As illustrated in Table 5.3, the effect of load change on b1 and b2 is very small and can 

be ignored, which allows the estimator to identify the new values of a1 and a2 accurately after 

a step load change is applied with 0.002 s convergence time and 1.4% estimation error for a1  

and  around 1% estimation error for a2. Moreover, in SMPCs the absolute values of numerator 

coefficients are further minimised as the switching frequency is increased [8, 143]. Therefore, 

their corresponding formulae (5.12, 5.13, and 5.17) in computing the controller parameters can 

be computed only once and used for all load values. This results in an additional 50% 

complexity reduction in the proposed STC scheme as illustrated in Table 5.4. Here, only the 

denominator coefficients are updated in each time iteration as they are important in stability 

analysis and in the pole-zero cancellation technique adopted in the Bányász/Keviczky PID 

controller. 

Table 5.4 Computational complexity reduction  in the proposed STC scheme 

STC scheme × + ÷ 

Bányász/Keviczky PID and KF  12 6 3 

Bányász/Keviczky PID and PUKF  6 3 - 
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 Chapter Summary  

This chapter demonstrates the viability of a low complexity self-tuning control scheme 

for a DC-DC buck converter. A computationally efficient M-Max PUKF algorithm is 

introduced to estimate the discrete transfer function partially during the identification 

procedure. The proposed algorithm achieves around 50% computational complexity reduction 

in comparison with the full version described in Chapter 4. The concept of this algorithm is 

based on the data vector analysis in order to select the more important subset of the adaptive 

filter coefficients to be updated on a cycle-by-cycle basis. Another important aspect covered in 

this chapter is the adoption of a simple and robust control design method suitable for real time 

power electronic applications. With a minimum number of arithmetic operations, the self-

tuning digital Bányász/Keviczky PID controller has been chosen as the main controller in the 

proposed STC scheme. In addition, the dynamic performance of the controller and the 

developed estimator have been investigated in this chapter. The simulation results demonstrate 

the feasibility of using the PU approach in parameter estimation for DC-DC converters, since 

the parameter variation are detected and estimated accurately. Furthermore, the controller has 

been designed on-line using only the estimation results. The proposed controller has the ability 

to work continuously in the feedback loop and to rapidly recover the output voltage after any 

load variations. Consequently, the proposed STC scheme is suitable for on-line controller 

adaptation and has the ability to provide accurate estimation for health monitoring purposes. 

Finally, the accuracy of the final estimation and the overall complexity reduction have also been 

explained in this chapter. The following Chapter provides experimental validation of this work. 
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 Experimental Validation  

 Introduction 

Even though incorporating digital control in power electronics applications has existed 

for the last 20 years, only recently has the implementation of advanced signal processing 

algorithms and intelligent adaptive controllers become feasible. This is achieved due to the 

continuous fall in prices, and developments in the processing power of microprocessor 

platforms. However, in the area of system identification, most existing studies run the 

identification algorithm off-line using real-time data, and then the results obtained are used in 

control design or condition monitoring schemes for the power electronic application 

considered. Therefore, a complete real-time implementation is conducted experimentally in this 

chapter in order to fully corroborate the schemes developed in this thesis. The experimental 

validation is performed using a 5 W synchronous DC-DC buck converter. The converter is 

digitally controlled by means of a Texas Instruments TMS320F28335 digital signal processor 

(DSP) platform. In addition to the digital controller, the DSP hosts the identification process 

and the STC scheme. The selection of this DSP controller has been motivated by its features 

such as its embedded floating point unit, and high speed high resolution on-chip ADCs. This 

chapter describes the real-time implementation and presents research results validating the 

system identification method using the KF algorithm presented in Chapter 4 and the STC 

scheme described in Chapter 5.  

 Digital Signal Processor 

In this research the TMS320F28335-DSP platform is used for on-line parameter 

estimation and for the STC design of the DC-DC SMPC. This chip is a floating point processor 

which operates at speeds up to 150 MHz, and it belongs to the TMS320C28x generation from 

Texas Instruments, optimised for digital control applications. In this generation, the DSP core 

is integrated with on-chip peripherals to provide a high-performance solution to digital control 

in power electronics, including motor drive and power supply controllers [144, 145]. The 

floating point feature allows the TMS320F28335-DSP to perform computationally advanced 
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algorithms hence simplifying the software design requirements [146]. Figure 6.1 shows the 

architecture of the TMS320F28335.  

 
Figure 6.1 Block diagram of TMS320F28335 [146] 

As shown in figure 6.1, this platform contains 68 KB data RAM and 512 KB of flash 

memory for code, so that code can be executed internally without having too costly external 

memories. The TMS320F28335 supports 32-bit CPU timers, 32-bit floating point units (FPUs), 

and several serial communication peripherals including the Enhanced Controller Area Network 

(eCAN), Serial Peripheral Interface (SPI), and Serial Communications Interface (SCI). In 

addition, many peripherals are integrated on the TMS320F28335 and widely used for embedded 

control, such as an extremely fast 12-bit ADC that handles up to 16 channels, a memory 

interface that is configurable for either 16 or 32 bits, and 18 PWM outputs that include six high-

resolution PWMs for controlling up to three three-phase motors [146]. In an embedded 

controller, ADC and PWM modules are the most used peripherals, therefore, more relevant 

details and explanations of these peripherals in TMS320F28335 are given in the following 

sections. 

6.2.1 Analog to Digital Converter (ADC) Module 

In digital control applications, it is required to read physical signals such as current and 

voltage in order to apply the appropriate control action. This task is handled by the ADC unit, 
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which works as an interface between the controller and the real world. The ADC converts the 

measured analogue voltage Vin into a digital number can be used in the processor for control 

signal computation. In case of the TMS320F28335, the analogue voltage range is limited to 

between 0 to 3V. With internal 12-bit resolution, the converted digital voltage (D) is computed 

in each sampling instant as follows: 

 𝐷 =
𝑉𝑖𝑛 ∗ 4095

3
 (6.1) 

The ADC of the TMS320F28335 provides a 12-bit core with built-in dual sample-and-hold 

(S/H), simultaneous sampling or sequential sampling modes, a very fast conversion time 

(running at 25 MHz), ADC clock or 12.5 MSPS, and 16-channel, multiplexed inputs and 16 

result registers to store the converted values. The sequencer of the ADC can be operated as two 

independent 8-state sequencers or as one large 16-state sequencer. The conversion operation 

can be started by a trigger signal generated by an event manager or by an external trigger signal 

through the general purpose input/output (GPIO). Two events (EVA, EVB) are used to trigger 

the ADCs, and these events can work independently. 

6.2.2 Enhanced Pulse Width Modulation (ePWM) Module 

In many power electronics systems, the control action is applied in the form of a PWM 

signal. These systems include digital motor control, switch mode power supply control, 

uninterruptible power supplies (UPS), and other forms of power conversion. The ePWM 

peripheral executes a digital-to-analogue (DAC) function, where the duty cycle amounts to a 

DAC analogue value; it is sometimes denoted to as Power DAC [147]. The TMS320F28335-

DSP is equipped with dual 6-channel/16-bit enhanced PWM. Each channel can be 

independently programmed to generate symmetrical and asymmetrical PWM. Each event 

manager module has a 16-bit general purpose timer. To generate the appropriate duty cycle, the 

associated control signal is compared with the timer registers using the PWM’s compare 

registers. The timers can be set as up/down counters to imitate the PWM operation. The 

TMS320F28335 processor also has 6-channels/32-bit enhanced capture input (eCAP) that can 

be configured to generate 6 PWM channels. The TMS320F28335 provides a programmable 

dead-band for the PWM output pairs, and the minimum dead-band duration of one device clock 

cycle (6.67 ns). In DC-DC converters this feature is used to prevent both switches from 

conducting at the same time [147].  
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 Code Development Tool 

In order to realise and assess the proposed system identification and STC algorithms on 

the TMS320F28335 DSP the Embedded Coder Support package for C2000 in 

MATLAB/Simulink is used on the host PC to configure the input/output modules such as the 

ePWM, ADC, and SCI peripherals and to convert the Simulink model to an executable C code 

(see appendix C). This in turn allows the designer to utilise the developed Simulink model at 

the simulation stage, which provides a reasonable comparison between simulation and 

experimental results. After the executable file is generated, the next step is to download it onto 

the DSP using the Texas Instruments Code Composer Studio (CCS)-based Integrated 

Development Environment (IDE).  

Finally, the configured Simulink model is run in real time using External mode. In this 

mode, the Simulink block diagram is connected to the application that runs the model on the 

DSP via an RS232 communication interface SCI_A. The block diagram becomes a user 

interface for the real-time application. This feature enables the user to tune and monitor the 

algorithm’s parameters in the real-time application while it is running in real-time without the 

need to stop the application and modify the code. Moreover, the signals from real-time 

application can be captured and displayed in the same Simulink Scope blocks which are used 

for simulating the model [148]. Thus, by adopting this procedure in code development stage, 

the modelling, algorithm design, simulation and real-time control are fully integrated, which 

can greatly improve the development efficiency of real-time control systems. 

  Experimental Set-up of a Synchronous Buck Converter for Real-time 

Parameter Estimation and STC 

A hardware overview of the entire test platform is shown in figure 6.2, which includes 

a single-phase synchronous DC-DC buck converter with a dynamic load change circuit, gate 

drive circuits, signal conditioning/measurement circuits, a separate power supply, and the 

TMS320F28335 DSP connected to a host PC via a USB serial cable. The synchronous DC-DC 

buck converter is constructed from a dual N-channel power MOSFET circuit (STS9D8NH3LL) 

for the upper and lower switches, power stage filter (L and C), a bench power supply for the 

DC input, and a restive load on the output. To investigate the dynamic performance of the 
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proposed KF estimator and the designed STC, a dynamic load change circuit is designed and 

connected at the output. The step load change is applied at regular intervals as desired using the 

GPIO pin configured as a digital output. This signal is used to switch (Power MOSFET 

IRF7103PbF) as illustrated in figure 6.3. By using different resistor values (R1, R2, R3, and R4) 

and appropriately control the switching time, the load seen by the power converter can be 

changed from 50% to 80% of the full load, as desired for the test.  

 
Figure 6.2 Hardware overview of the experimental setup  

The parameters of the prototype synchronous buck converter are listed in Table 6.1. To 

test the presented configuration, figures 6.4(a) shows the PWM generated and the converter 

output voltage in the open loop with a 33% duty cycle. Here, complementary PWM signals are 

generated with a 1 microsecond dead band configured to avoid switching both MOSFETS On 

at the same time as shown in figure 6.4(b). 

Table 6.1 Parameters for the experimental synchronous buck converter  

Symbol description Value 

Vin: Input voltage 10 V 

L: output inductor 220 μH 

C: output capacitor 330 μF 

RC: equivalent series resistor 25 mΩ 

RL: inductor series resistance 63 mΩ 

Ro: load resistance 5 Ω 

Ts: switching and sampling time 50 𝜇s 
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Figure 6.3 Block diagram of digitally voltage-controlled synchronous DC-DC buck converter  
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(a) 

 

(b) 

Figure 6.4 Generated  PWM waveforms in the open loop test: a. output voltage with duty 

ratio 33%; b. the primary and secondary gate signals with 1μs dead time in a symmetrical case 

 Real-Time Parameter Estimation of DC-DC Converters using a Self-

tuned Kalman Filter/ Experimental Validation  

To experimentally validate the previously demonstrated advantages of the KF over the 

ERLS algorithm in Chapter 4, this section introduces a complete real-time implementation of 

both algorithms. Using the code development tool described in section 6.3, the same 

identification procedure was outlined in section 4.7 is followed here and implemented in the 

TMS320F28335 DSP. This included, generating the PRBS signal, enabling the identification 

algorithm for a specific period of time (20 ms), and implementing a digital PID controller 

designed based on the pole placement technique. In the field of system identification, it is 
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recommended to investigate the suitability of the data being used and the selected model 

structure in order to proceed to the next step and to use the identification results for control 

design. Therefore, an off-line test is carried out first here. This test started via injecting a PRBS 

signal into the duty cycle to perturb the output voltage as shown in figure 6.5. A small amplitude 

signal is selected for the excitation signal to keep the perturbation within 5% of the nominal 

output voltage during the identification procedure; it then reverted back to normal operation as 

depicted in figure 6.5. 

 

Figure 6.5 Experimental output voltage during identification process 

Using the data logging feature in Simulink External mode, the output voltage and the 

control signal during the excitation period are both sampled at 20 kHz and exported to the 

MATLAB workspace. After the full sequence is recorded, a post-processing step is applied to 

filter the raw data and remove offsets. For filtering, a simple four-tap moving average (MA) 

filter is applied to smooth the input and output data by removing unwanted high frequency 

measurement noise. This filter type is selected due to its simple structure and ease of DSP 

implementation. Figure 6.6 highlights the filtered output voltage and duty cycle data from the 

DC-DC converter during the identification process. In the applied recursive algorithms, the data 

vector components are assumed to be zero mean values. Therefore, each sample is subtracted 

from the mean value to remove the offsets and to obtain a raw data with zero mean value. In 

DC-DC SMPC applications, the mean values of the regulated output voltage and the average 

duty-cycle ratio are known. Thus, they can be directly used to perform offset removal at each 

time iteration. The obtained signals are then fed to the KF algorithm to estimate the coefficients 

of the adaptive filter cycle-by-cycle and hence minimise the prediction error signal. It is worth 
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noting that the initial values of the KF algorithm is kept the same as those used in the simulation 

step.  

  

 

Figure 6.6. Experimental filtered data sampled at 20 kHz: a. output voltage; b. duty cycle 

Figure 6.7 shows the off-line estimation results, which confirm that the selected ARX 

model structure is suitable to describe the dynamics of the converter. Furthermore, the simple 

four-tap MA filter is sufficient to carry out the filtering task for a successful parameter 

estimation process. The results show very good agreement with the original simulation results 

illustrated in figure 4.8. To validate the applied identification procedure, different real-time data 

sets have been collected and used to estimate the discrete transfer function of the DC-DC buck 

converter. Comparable results have been obtained, which motivated the next step that aimed to 

perform the entire identification process on the DSP in real-time without any remote 

intermediate post-processing analysis unlike a significant proportion of the existing literature. 

Figure 6.8 shows the output voltage during the real-time identification process, which is enabled 

for 20 ms, while the PRBS signal is injected into the duty cycle for 10 ms only in order to 

examine the stability of both algorithms without the perturbation signal.  
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Figure 6.7 Off-line parameter estimation using experimental data: a. model parameters; b. 

prediction error 

 

Figure 6.8 Experimental output voltage during identification process with PRBS signal 

disabled after 10 ms  
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6.5.1 Real-Time Results for KF and ERLS  

Similar to the simulation procedure, the ERLS with forgetting factor λ= 0.95 is 

investigated. As shown in figure 6.9, the ERLS required around 5 samples (0.25 ms at sampling 

time 50 µs) to converge to the steady-state value for denominator coefficients (a1, a2) with an 

accuracy range ±7% (figure 6.9(a)), while the numerator taps takes longer to converge (around 

1ms), as there is a clear offset in the final estimation (figure 6.9(b)). The limited accuracy of 

the ERLS estimator during the excitation period can be clearly demonstrated via the estimation 

error signal, as illustrated in figure 6.9(c). Consequently, if the estimated coefficients are used 

for health monitoring purposes, as introduced in a previous study [1], inaccurate decisions may 

be taken in terms of predicting the health or age of the circuit components. In comparison with 

the simulation results presented earlier in figure 4.8, the estimation accuracy of the ERLS 

estimator is highly affected by measurement noise in the experimental implementation.  

To study the impact of the excitation signal on the estimation results, the PRBS signal 

is actively disabled after 10 ms, as shown in figure 6.8. Due to the scaler-forgetting factor used 

in ERLS, the estimated parameters start to deviate from steady state, which agrees with the 

simulation results in figure 4.13. This phenomenon is known as estimator wind-up, where the 

error covariance matrix grows exponentially and yields a high adaptation gain applied in the 

correction step. Therefore, the ERLS is not a reliable estimator if a self-tuning controller is 

desired. Hence, in direct digital control design such as the pole placement approach or the 

Bányász/Keviczky PID controller, the estimation results are fed to the controller directly, which 

may cause the system to be unstable since the values of (b1, b2) are not accurate  
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Figure 6.9 Real-time parameter estimation results using ERLS: a. denominator coefficients; b. 

numerator coefficients; c. steady state prediction error  
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The proposed KF algorithm is also evaluated and the estimated poles and zeroes 

parameters compared with the average model parameters with a resistive load equal to 5 Ω. In 

figure 6.10, the parameters a1, a2 converge to steady state-values in less than 0.15 ms, which is 

faster than the ERLS method with less over/undershoot, and with a 0.3% estimation error. This 

confirms the simulation results depicted in figure 4.8. In comparison with the ERLS, the 

parameters b1, b2 are estimated within a similar period of time, but with enhanced accuracy. 

Importantly, the execution time of the proposed KF, measured in real time using Code 

Composer Studio, is only 3 μs longer than the ERLS. Similarly to ERLS, the stability of the KF 

is examined when the PRBS signal is disabled, as illustrated in figure 6.10, and at 50.01s, the 

KF has the ability to produce a smooth and stable estimation with no effect of estimator wind-

up. Therefore, the results highlight stable self-tuning compensation since the zero coefficients 

do not fluctuate and stay very close to the pre-calculated ones. In addition, the observed 

prediction error (figure 6.10(c)) confirms the advantages of the KF over the ERLS in terms of 

accuracy and improved convergence speed for transfer function estimation. The results 

obtained for both algorithms investigated are summarised in Table 6.2, which demonstrates that 

the KF outperforms ERLS in terms of accuracy and convergence time, though with a small 

extra execution time required due to the tuning step outlined in section 4.5. 

Table 6.2 Steady state parameter estimation comparison between ERLS and KF 

Parameter KF ERLS MODEL 

a1 
-1.922 

-1.822 -1.913 

a2 0.925 0.842 0.946 

𝑏1 0.161 0.087 0.2259 

𝑏2 0.0991 -0.00573 0.1118 

Convergence time 0.15 ms 0.25 ms  

Computational time per iteration 37 µs 33 µs  
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Figure 6.10 Real-time parameter estimation results using KF: a. denominator coefficients; b. 

numerator coefficients; c. steady state prediction error 
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6.5.2 Model Validation  

From the estimation results for both algorithms, it can be seen that the prediction error 

converges to zero in both cases with a small difference in the convergence rate. This 

theoretically means that the ERLS and the KF have the same estimation results, which is not 

actually the case as highlighted in the results. Here, accuracy is judged based on the derived 

average model known to the designer. However, this knowledge cannot always be provided or 

the actual parameters may change over time due to ageing or other reasons. Therefore, a 

validation step is introduced to show which estimated model is suitable to describe the dynamic 

behaviour of the converter. This test is accomplished by studying the correlation between the 

residuals and past inputs for N samples, as indicated in (6.2).  

 𝑅𝑒𝑢
𝑁 (τ) =

1

𝑁
∑𝑒(𝑘)

𝑁

𝑘=1

𝑢(𝑘 − 𝜏) (6.2) 

From the cross-correlation test depicted in figure 6.11, it can be seen that a small cross-

correlation is observed when the residuals of the KF are used, while a higher cross-correlation 

is recorded in case of the ERLS residuals. Therefore, the prediction error in the KF is considered 

as white and no further information is required to improve the estimated model. On the other 

hand, the estimated model using the ERLS is not suitable for identification purposes as it is 

affected by measurement noise. 

 

Figure 6.11 Residuals, cross-correlation function 
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6.5.3 Abrupt Load Change / Real-Time Results  

Similar to the simulation test, a wide and abrupt load change is applied to further 

investigate the performance of the proposed self-tuned KF. Figure 6.12 shows the dynamic 

response of the output voltage when the load is changed from 5 Ω to 1 Ω at 50.015 s. As 

confirmed previously, the KF can provide good estimation performance without any 

perturbation in the observed data, and this can be clearly seen from the recorded output voltage 

during the identification procedure figure 6.12, where no excitation signal is injected. This 

scenario is applied deliberately because in the case of the ERLS the estimated parameters 

deviate immediately once the PRBS is disabled, and so if the load changed after this instant the 

ERLS would not be able to detect the new variation and another perturbation period is required 

to perform the estimation process. Therefore, to provide a fair comparison, a PRBS signal is 

injected before the step change is applied to investigate the performance of the tracking 

capability of the ERLS in response to load variation. On the other hand, the KF estimator stays 

alert for a longer time, and hence no perturbation is required to detect the load change. 

 

Figure 6.12 Output voltage recorded on the DSP during a step load change from 5 Ω to 1 Ω at 

50.015 s 

 Figure 6.13(a), shows the KF estimation results, with the transfer function poles 

accurately estimated before and after the load change with a convergence time less than 1 ms, 

and with a 0.4% estimation error.  In contrast, the ERLS estimation has a clear offset during the 

steady state, which improved after the load change as illustrated in figure 6.13(b) achieving a 

1.1% estimation error. This behaviour confirms that the ERLS estimator requires a large 

perturbation signal to provide accurate and reliable estimation. In line with the simulation 
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procedure, the numerator parameters are not illustrated here due to the small effect of the load 

change, which can be ignored according to the computed transfer function 4.33 and 4.34. 

 

 

Figure 6.13. Real-time parameters estimation during a step load change from 5 Ω to 1 Ω at 

50.015 s: a. KF estimation, b. ERLS estimation 

For more insight into the performance of both algorithms in tracking time-varying 

parameters, the behaviour of the experimental adaptation gain is recorded in steady state and 

during the load change for the self-tuned KF and for the ERLS as illustrated in figure 6.14. As 

the same tuning method outlined in section 4.5 is applied in the experimental validation, the 

real-time estimation obtained shows excellent agreement with the original simulation results in 

figures 4.11 and figure 4.12. With the assigned Kalman gain elements K1 for a1 and K2 for a2 



Chapter 6: Experimental Validation 

 

119 

 

 

varying with different rates in the correction step, the proposed self-tuned KF can provide a 

reliable and accurate estimation even for fast and significant parameter variations. For the ERLS 

algorithm, the experimental validation demonstrates that this algorithm requires a significant 

perturbation such as the applied load step in order to produce accurate and stable estimation. 

Furthermore, the experimental adaptation gain behaves as expected since the same magnitude 

with different directions are given during the correction step for both coefficients a1 and a2 due 

to the single forgetting factor scheme. This result clearly shows that the KF algorithm 

outperforms the classical ERLS in terms of achieving smaller estimation error with a rapid 

convergence rate in response to abrupt load change. 
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Figure 6.14 Adaptation gain behaviour during abrupt load change: a. KF; b. ERLS  
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 Experimental validation of the STC Design using the Developed M-Max 

PUKF 

This section presents the practical validation of the designed STC based on the 

developed M-Max PUKF configured for parameter estimation. The validation procedure started 

by regulating the output voltage at 3.3 V using a digital PID voltage controller. The PID gains 

are computed using the well-recognised pole-placement technique as previously presented in 

Section 2.10.1. This approach is usually adopted if a direct digital control design is required. 

Therefore, it is introduced here to serve as benchmark for evaluating the Bányász/Keviczky 

PID controller based on the M-Max PUKF.  

Firstly, the converter operates in steady state and a practical implementation of the 

simulation procedure in section 5.7 is conducted on the DSP. This includes, the real-time 

implementation of the full KF, M-Max PUKF, and the on-line design of the STC. Initially, the 

full update KF is activated at 50 s to identify the coefficients of the discrete transfer function 

[a1,a2, b1, b2] as shown in figure 6.10. Once full estimation is accomplished, the developed M-

Max PUKF is enabled at 50.01 s to estimate the selected subset of the adaptive filter coefficients 

[a1,a2].  

6.6.1 Parameter Estimation Using PUKF/ Real-Time Results 

Figure 6.15(a) illustrates the estimation results using the developed M-Max PUKF. 

Apart from the small decrease in accuracy of coefficient a2 , the selected parameters  a1, a2 

converge to steady state-values in less than 0.5 ms which demonstrates excellent agreement 

with the simulation results shown in figure 5.6(a), thus confirming the successful real-time 

implementation of the proposed M-Max PU KF as a reliable estimator. In order to update the 

full parameter vector, a periodic PUKF is enabled at 100 s to estimate the less important 

coefficients [b1,b2] as shown in figure 6.15(b) results comparable with those of the full 

estimator in terms of accuracy are achieved, while a longer convergence time in about 3 ms is 

observed due to their small error contribution. Importantly, the execution time of the proposed 

PUKF, measured in real time using Code Composer Studio, is 18 μs which indicates around 

50% complexity reduction compared to the full KF investigated in section 6.5.1.  
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Figure 6.15 Real-time parameter estimation results: a. denominator coefficients using M-Max 

PUKF; b. numerator coefficients using periodic PU KF 
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6.6.2 Improved Transient Response with Proposed STC  

Once the discrete transfer function is fully estimated, the self-tuning Bányász/Keviczky 

PID controller is then activated to regulate the output voltage at 3.3 V. As an important factor 

in assessing the designed STC, the converter is subjected to a step load change to investigate 

the dynamic performance. This test is conducted for a significant load change between 5 Ω to 

1 Ω every 10 ms. To evaluate the the transient characteristics of the designed STC, the same 

test is applied on the buck converter controlled using the well-recognised pole-placement 

technique. 

The waveforms in figures 6.16 and 6.17 show a comparison of the load transient 

responses of the pole-placement PID controller and the designed explicit STC scheme 

respectively. In figure 6.16, it can be seen that the output voltage transient shows significant 

oscillatory behaviour at the points of load change. Here the output voltage recovers to 3.3 V in 

1.8 ms with 48% overshoot. In contrast, the self-tuning improves the dynamic characteristics 

of the controller (figure 6.17), resulting in a significantly faster recovery time in 1.2 ms with 

lower transient overshoot and no voltage drops observed. Importantly, the execution time of 

both controller algorithms is measured in real time using Code Composer Studio. This shows 

that the classical pole-placement controller is executed in 9.5 μs whereas the proposed STC 

takes 2 μs to compute the control action. This means the whole STC scheme proposed here 

requires only 20 μs to be executed each iteration on the DSP. As a result, the switching 

frequency can be increased or the entire STC can be implemented in lower cost microcontroller 

hardware. It is worth noting that the switching frequency effect seen on the experimental 

waveforms is due to the common mode noise on the oscilloscope probe. 
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(a)  

 

(b) 

Figure 6.16 Transient response of the pole-placement PID controller with abrupt load change 

between 5Ω and 1Ω: a. 2 ms/div: showing two transient changes; b. 400 μs/div: “zoom-in”on 

second transient 
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(a) 

 

(b) 

Figure 6.17 Transient response of the explicit STC with abrupt load change between 5 Ω and 

1 Ω: a. 2 ms/div showing two transient changes; b. 400 μs/div “zoom-in” on second transient 
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 Chapter Summary 

This chapter has presented the experimental validation of the KF identification 

algorithm introduced in Chapter 4 and the proposed explicit STC scheme based on the PUKF 

illustrated in Chapter 5. A complete real-time implementation was conducted on a DSP to verify 

the performance of both algorithms online. The experimental results of the system identification 

method are in very good agreement with the simulation results illustrated in Chapter 4, 

indicating the practicality of the proposed algorithm for real-time application. Moreover, the 

robustness and tracking capability of the estimator has been investigated, and the results 

validate that the KF estimator is more reliable than the conventional ERLS algorithm in tracking 

time-varying parameters and in estimation stability. In addition, the proposed M-Max PUKF 

has been successfully implemented and employed in a real-time explicit STC scheme. The 

experimental results have confirmed the viability of integrating the PUKF with a low 

complexity control scheme such as the Bányász/Keviczky PID controller method in real-time. 

The final set of experimental results demonstrates an enhancement in the transient response 

attained with the explicit STC scheme compared to the conventional PID controller designed 

based on a pre-calculated average model. 

.  
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 Conclusion and Future Work 

 Conclusion 

To achieve a high performance control of modern SMPCs, using direct digital design 

techniques, an accurate discrete model of the converter is necessary. In order to acquire this 

model, a parameter estimation scheme is involved. This combination is known as explicit self-

tuning control strategy, where the discrete model of the converter is estimated from online 

measured input/output data using a recursive identification algorithm, and then a controller 

design method is implemented to compute the control signal based on the acquired knowledge 

from the estimation step. Accordingly, the recursive algorithm plays a vital role in this 

synthesis, as it must be able to provide high levels of accuracy and/or estimation speed in 

response to any unpredicted behaviour such as sudden load variations, components aging, noise, 

and unpredictable changes in operating mode. However, the algorithm reliability in providing 

accurate estimation and the computational cost are the major concerns in the explicit STC 

paradigm.  

For online parametric identification, the classical ERLS algorithm is widely applied due 

to its accurate estimation, fast convergence speed, and small prediction error. However, in 

practical applications such as SMPCs, the estimation accuracy of the ERLS technique is highly 

affected by measurement noise, which reduces the reliability of the estimation results when 

used in explicit STC scheme, or for condition monitoring purpose. In addition, the tracking 

capability is controlled by means of single forgetting factor.  Typically, this technique applies 

the same adaptation gain to all parameters regardless of their rate of variation in respond to 

unpredicted behaviour such as a sudden load change in SMPCs.  As a result, the estimation of 

coefficients with small values will suffer from slow convergence speed and higher estimation 

error. Furthermore, the ERLS algorithm requires injecting a frequency rich signal to enhance 

the estimation accuracy and prevent estimator wind up due to an exponential growth of the 

adaptation gain matrix. This necessitates keeping the output voltage perturbed for long periods 

or resetting the estimator periodically, which can lead to some abrupt changes not being 

observed. 
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To attain a stable and accurate steady-state estimation with short perturbation period 

and improved tracking capability for time-varying parameters, the error covariance matrix must 

be updated using a different approach to add more freedom to the adaptive algorithm when 

calculating the adaption gain. In this thesis, a research contribution is made by introducing a 

new parametric system identification method, based on the KF approach to overcome the 

highlighted limitations of the ERLS algorithm. A further research contribution of this thesis is 

incorporating a new state-of-the-art tuning method for the process covariance matrix to optimise 

convergence speed and allow the estimator to track time varying parameters. The self-tuned KF 

technique has the potential for use in real time system identification and adaptive control 

systems for power electronic applications, such as switch mode power supplies. 

Here, the mathematical description of the proposed algorithm is presented, and the 

algorithm is fully validated in simulation using MATLAB/SIMULINK, and experimentally 

using a Texas Instruments TMS320F28335 microcontroller platform and synchronous step 

down DC-DC converter.  In this thesis, unlike a significant proportion of existing literature, the 

entire system identification and closed loop control process is seamlessly implemented in real-

time hardware, without any remote intermediate post processing analysis.  Simulation and 

experimental results, show that the proposed self-tuned KF can accurately identify the discrete 

coefficients of the DC-DC converter. Furthermore, the estimator convergence time is 

significantly shorter compared to many other schemes, such as the classical ERLS method. The 

advantage of this has been successfully validated via an abrupt step change in load. The 

performance of the Kalman filter is also tested without a perturbation signal, and the results 

obtained prove that the covariance matrix update scheme keeps the estimator stable and 

responsive for longer periods of time. Furthermore, and important from a practical perspective, 

the effect of estimator wind up is reduced.  

The results and conclusions of this work have successfully been published in the 

following journal and international conference papers: 

 

1. M. Ahmeid, M. Armstrong, S. Gadoue, M. Algreer, and P. Missailidis, "Real- Time 

Parameter Estimation of DC-DC Converters using a Self-tuned Kalman Filter," IEEE 

Transactions on Power Electronics, vol. PP, pp. 1-1, 2016. 
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2. M. Ahmeid, M. Armstrong, S. Gadoue, and P. Missailidis, "Parameter estimation of a 

DC-DC converter using a Kalman Filter approach," in Power Electronics, Machines and 

Drives (PEMD 2014), 7th IET International Conference on, 2014, pp. 1-6. 

The second major contribution of this thesis is the computational complexity reduction 

of the proposed self-tuned KF by means of using a partial update scheme. This means, instead 

of updating all of the N × 1 coefficients in the parameter vector, the partial-update method only 

updates M×1 coefficients, where M < N. The selection of the subset to be updated is based on 

the data vector analysis or called M-Max partial update method. By adopting this technique in 

the proposed self-tuned KF algorithm, a significant complexity reduction is achieved as the 

number of arithmetic operations are reduced, more specifically the computation of adaptation 

gains and covariance updates. These two steps constitute the bottleneck of the recursive 

algorithms since elaborate matrix multiplications are required to update the parameters at every 

iteration step.  

In DC-DC buck converter, the denominator coefficients [a1,a2] are appointed as the 

more important parameters   according to the data vector analysis and the importance of system 

poles in terms of stability and control design. To successfully implement the M-Max PUKF, 

the full KF is activated for short time at the beginning of the identification procedure to estimate 

all the transfer function coefficients [a1,a2, b1, b2]. Then the M-Max PUKF is activated for the 

rest of the identification process to update the denominator coefficients [a1,a2] at each time 

iteration for the rest of the identification procedure. As a result, the M-Max PUKF achieves 

around 50% computational complexity reduction in comparison with the full version described 

in the first contribution.  In addition to the development of low complexity estimation algorithm, 

the explicit STC scheme is constructed using simple and robust control design method suitable 

for real time power electronic applications. This algebraic control method is called Bányász 

Keviczky PID controller, which uses only the discrete time model to calculate the controller 

elements with a substantial reduction in required number of arithmetic operations in comparison 

with the well-known pole placement technique. Simulation and experimental results, based 

upon a prototype synchronous DC-DC buck converter controlled by Texas Instruments 

TMS320F28335 DSP, show that the viability of adopting PU method in real-time parameter 

estimation for DC-DC converters. The developed M-Max PUKF provides fast convergence 

speed, small prediction error, and accurate parametric estimation very close to the full KF. In 
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addition, the results confirmed the feasibility of integrating the PUKF with low complexity 

control scheme such as Bányász/Keviczky PID controller method in real-time. Furthermore, 

the final set of experimental results demonstrate an enhancement in the overall dynamic 

performance of the closed loop control system compared to the conventional PID controller 

designed based on a pre-calculated average model.  Identical to the first contribution, the 

identification procedure using full KF, PUKF, and controller design is completely executed on 

real-time hardware, without any remote intermediate post processing analysis. 

The results and conclusions of this work have successfully been submitted in the following 

journal paper: 

1. M. Ahmeid, M. Armstrong, S. Gadoue, M. Algreer, and P. Missailidis 

“Computationally Efficient Self-Tuning Controller for DC-DC Switch Mode Power 

Converters Based on Partial Update Kalman Filter", under review in the IEEE 

Transactions on Power Electronics. 

 

 Future Work 

This thesis has focused on real-time implementation of parametric system identification 

techniques and employing them in explicit STC scheme for a buck DC-DC SMPC. The 

developed methods can be further investigated on other power converter topologies to 

demonstrate and investigate the overall performance in more complicated systems and other 

converter topologies. In terms of recursive algorithms, it may be worth investigating alternative 

tuning methods with forgetting factor strategies, and to study in detail the effect of the selected 

initial values of the error covariance matrix in terms of considering off-diagonal elements. 

Furthermore, the real-time implementation could include a validation step based on residual 

analysis to produce a complete identification procedure ready for DSP implementation. 

The proposed STC structure can be expanded to include health monitoring schemes. 

This can be achieved by means of developing an efficient technique to extract the actual 

component values from the estimated discrete transfer function.  

It will also be interesting to investigate code development tools for applying more 

complicated algorithms such as non-parametric system identification methods. This kind of 
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implementation can exploit more powerful DSPs or FPGAs to improve their computation 

capability. 
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Appendix A. Derivation of RLS Algorithm Based on Matrix Inversion 

Lemma  

In order to rewrite the least squares solution denoted in (4.7) in a recursive form, the matrix 

ФФ𝑇 has to be non-singular for all observations k and the 𝑁 × 𝑁 covariance matrix P(k) is 

defined as follows [71] :  

 

𝑃(𝑘) = [Ф(𝑘)Ф𝑇(𝑘)]−1 = [∑𝜑(𝑛)

𝑘

𝑛=1

𝜑𝑇(𝑛)]

−1

  (A.1) 

The parameter estimate at the particular moment (k) can be rewritten as:  

 

𝜃(𝑘) = 𝑃(𝑘)(∑𝜑(𝑛)

𝑘

𝑛=1

𝑦(𝑛)) = 𝑃(𝑘) [(∑𝜑(𝑛)

𝑘−1

𝑛=1

𝑦(𝑛)) + 𝜑(𝑘)𝑦(𝑘)]  (A.2) 

Similarly, the parameter estimate at the time instant (k-1) is defined as: 

 

𝜃(𝑘 − 1) = 𝑃(𝑘 − 1) [∑𝜑(𝑛)

𝑘−1

𝑛=1

𝑦(𝑛)]  (A.3) 

Rearrange (A.3), the following is obtained:  

 

∑𝜑(𝑛)

𝑘−1

𝑛=1

𝑦(𝑛) =   𝑃−1(𝑘 − 1)𝜃(𝑘 − 1)  (A.4) 

According to the definition of the covariance matrix in (A.1) and using the form presented in 

(A.4), one can deduce the relationship between the inverse of the covariance matrix at (k-1) and 

its counterpart at (k) and substitute in (A.4) as follows: 

 𝑃−1(𝑘 − 1) =  𝑃−1(𝑘) −  𝜑(𝑘)𝜑𝑇(𝑘)       (A.5) 

 

∑𝜑(𝑛)

𝑘−1

𝑛=1

𝑦(𝑛) =   [𝑃−1(𝑘) −  𝜑(𝑘)𝜑𝑇(𝑘)]𝜃(𝑘 − 1)  (A.6) 

From (A.2) and (A.6) the estimate at time k can now be written as:   

 𝜃(𝑘) =  𝑃(𝑘){[𝑃−1(𝑘) −  𝜑(𝑘)𝜑𝑇(𝑘)]𝜃(𝑘 − 1) + 𝜑(𝑘)𝑦(𝑘)}       (A.7) 

 𝜃(𝑘) = 𝜃(𝑘 − 1) +  𝑃(𝑘)𝜑(𝑘)[𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃(𝑘 − 1)]       (A.8) 
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As illustrated in equation (A.8), the recursive estimation of the parameter vector 𝜃 entails the 

computation of the covariance matrix 𝑃(𝑘) based on the matrix inversion given in (A.1) at each 

time instant.  Therefore, a direct update from 𝑃(𝑘 − 1) to 𝑃(𝑘) in a recursive manner is 

required, and this can be achieved by means of a mathematical expression called the matrix 

inversion lemma [6]: 

Matrix inversion lemma 

 (𝐴 + 𝐵𝐶𝐷)−1 = 𝐴−1 − 𝐴−1𝐵(𝐶−1 + 𝐷𝐴−1𝐵)−1𝐷𝐴−1 (A.9) 

Assuming the matrices, A, B, C, and D with appropriate dimensions, and selecting 

𝐴 = 𝑃−1(𝑘 − 1), 𝐵 = 𝜑(𝑘), 𝐶 = 𝐼,  and 𝐷 = 𝜑𝑇(𝑘), hence using (A.5) the updated step for the 

covariance matrix can be written as: 

 
𝑃(𝑘) =  𝑃(𝑘 − 1) −

𝑃(𝑘 − 1)𝜑(𝑘)𝜑𝑇(𝑘)𝑃(𝑘 − 1)

𝐼 + 𝜑𝑇(𝑘)𝑃(𝑘 − 1)𝜑(𝑘)
       (A.10) 

The adaptation gain (Kalman gain) is the 𝑁 × 1 vector and is calculated as: 

 
𝐾(𝑘) =  𝑃(𝑘)𝜑(𝑘) =

𝑃(𝑘 − 1)𝜑(𝑘)

𝐼 + 𝜑𝑇(𝑘)𝑃(𝑘 − 1)𝜑(𝑘)
       (A.11) 

Using (A.8) and (A.11), the parameter estimate is computed as follows: 

 𝜃(𝑘) = 𝜃(𝑘 − 1) + 𝐾(𝑘)[𝑦(𝑘) − 𝜑𝑇(𝑘)𝜃̂(𝑘 − 1)] 
 

(A.12) 
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Appendix B. Simulink Model of the Proposed Structures  

 

Figure B.1 Simulink model of parametric system identification using KF and STC based 

using PUKF
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Appendix C. Developed Simulink Model for Real-Time 

Implementation 

 

 

Figure C.1 Simulink model using Embedded Coder Support Package for Texas Instruments 

C2000 Processors
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